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Abstract—Acoustical knee health assessment has long promised
an alternative to clinically available medical imaging tools, but
this modality has yet to be adopted in medical practice. The
field is currently led by machine learning models processing
acoustical features, which have presented promising diagnostic
performances. However, these methods overlook the intricate
multi-source nature of audio signals and the underlying mech-
anisms at play. By addressing this critical gap, the present
paper introduces a novel causal framework for validating knee
acoustical features. We argue that current machine learning
methodologies for acoustical knee diagnosis lack the required
assurances and thus cannot be used to classify acoustic features
as biomarkers. Our framework establishes a set of essential theo-
retical guarantees necessary to validate this claim. We apply our
methodology to three real-world experiments investigating the
effect of researchers’ expectations, the experimental protocol and
the wearable employed sensor. This investigation reveals latent
issues such as underlying shortcut learning and performance
inflation. This study is the first independent result reproduction
study in the field of acoustical knee health evaluation. We
conclude with actionable insights from our findings, offering
valuable guidance to navigate these crucial limitations in future
research.

Index Terms—Knee Acoustic Emissions, Knee Biomarkers,
Causal Machine Learning, Shortcut Learning, Explainable-AI,
Knee Arthritis

I. INTRODUCTION

Knee health evaluation by examining the vibrations of the
joint has been proposed as an alternative to other diagnostic
approaches such as medical imaging. This family of methods,
also referred to as Vibration Arthrometry, are based on the
premise that structural imperfections / damage to an unhealthy
knee will generate abnormal vibrations [1]. Capturing and
characterizing these abnormalities offers the opportunity to de-
velop novel diagnostic tools. In one of the first medical reports
on knee acoustic emissions [2], Blodgett set the tone: Finding
patterns useful for diagnosis would prove to be a challenging
task. He concluded his report by stretching the main difficulty
of the acoustical modality: Unlike other diagnostic tools, such
as X-ray imaging, the interpretation of the knee audio signal
is significantly based on the ”imagination of the observer”.

Blodgett’s initial work effectively kicked off efforts to
increase the diagnostic value of acoustic signals for knee
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pathologies. In the 1990s, significant advances in sensor and
signal processing technologies led to efforts to gain more
insights and understanding of these audio recordings [3], [4],
[5].

The introduction of Machine Learning (ML) shifted the
field’s scope from identifying, understanding and modelling
audio signals to directly developing features relevant to several
knee conditions, utilizing ML methods for knowledge discov-
ery. The workflow usually adopted is the following [6], [1], [7],
[8], [9] : (i) A vibration or acoustical sensor is placed on the
skin surface near the region of the knee. (ii) The sensor records
vibration/audio signals while the patient performs specific pos-
tular transitions, usually unloaded flexion-extension or loaded
sitting-to-stand. (iii) After the recording session has finished,
the acquired signals are filtered. Filtering usually involves
bandpass filtering [8], or discarding regions of signals that
are considered to be significantly affected by external artifacts
[9]. (iv) In the final step, the features are extracted from the
recordings and used as input to a ML algorithm to infer the
health status of the recorded knee, by classifying it in a range
between healthy and pathological with respect to a disease.
The acoustic features or the model’s output is then treated as
a ”biomarker” to evaluate the patient’s knee health. A plethora
of methods have emerged following this workflow, presenting
optimistic results based on diagnosis classification accuracies
as high as 96% [10].

Despite the overall positive reports, such approaches have
not yet been adopted in medical practice [11]. Furthermore,
the approach presented in knee acoustical biomarker reports
is contradicted by the current medical standards: acoustical
biomarkers are reported to be capable of successfully diagnos-
ing knee pathologies without any additional modalities or clin-
ical information. In contrast, medical guidelines recommend
a multi-modal approach involving patient history, clinical and
imaging examinations [12], [11]. In their 2013 review, Abott
et al. [10] critiqued the stagnation of the Vibration Arthrom-
etry field: the medical community approaches the field with
skepticism, and knee acoustic emissions have not yet found
their place in diagnostic applications. The authors argued that
for the field to move forward, better methodological practices
are needed to instill trust.

However, ten years later, the validity of vibration arthrom-
etry as a diagnostic tool is based solely on the promis-
ing performance of reported ML models trained on data
collected through retrospective studies [13]. Knowledge of
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how pathological acoustical signals manifest is fairly limited.
Nevertheless, classification performance alone is not enough to
guarantee robustness in ML knowledge discovery [14], [15]. In
the context of biomedical ML, external sources of information
can inflate the model’s performance [16], [17], [18] resulting in
wrong conclusions. The model then learns shortcuts: unwanted
patterns that do not correspond to the pathophysiology of
the patients. The solution is to identify the data structures
which lead the model to learn these spurious relations and
isolate them. However, in vibration arthrometry, we are still far
from what has been achieved in other biomedical fields where
there is prior medical knowledge of how body structures as
well as pathophysiological conditions are manifested in the
corresponding modality. For example, in medical imaging,
there is a general understanding of bone and soft tissue
structures, information introduced by the machine, as well as
common artifacts [19].

Such insights about knee acoustical signals are consider-
ably limited: identifying the source for each component is
not trivial. In fact, it is the goal of the entire acoustical-
biomarker-discovery exploration. This realization bears two
consequences: (i) Identifying possible sources of bias in
knee-audio datasets is a significantly more challenging task
than in other medical modalities, e.g. images. (ii) Conse-
quently, attribution of statistical differences in acoustical fea-
tures between populations to a pathophysiological source is
not a straightforward process.

In this work, we contribute to the field of Knee Vi-
broarthrometry by introducing a novel causal framework as
a tool to robustly validate acoustical knee biomarkers. We
argue that the current state of the art in Knee Vibroarthrometry
has failed to provide satisfying evidence in support of the
field’s main hypothesis: unhealthy knee joints produce abnor-
mal vibrations. We begin our exploration by formulating a
causal description of the task at hand. Through this theoretical
investigation we highlight the main pitfalls of the state-of-
the-art workflow and demonstrate that features extracted from
knee audio recordings cannot serve as health biomarkers. We
support our theoretical approach with our findings on real-
world data. To the best of our knowledge, our work is the
first independent result reproduction study. Finally, we show
how this causal exploration allows for the proposal of a set of
strict guarantees that should be met in order to reach robust
conclusions.

II. THEORETICAL EXPLORATION

We will now attempt to construct a more formalized descrip-
tion of the problem and link this theoretical notation to the
workflow adopted by proposed ML methods. An illustrative
summary of our approach is presented in Figure 1.

We start with the health condition of the knee, which
we will refer to as H . Being a complex structure, the joint
can be affected by several conditions, such as osteoarthritis,
meniscal or ligament tear, etc. [12]. However, to simplify our
analysis, for now we will ignore the vast range of plausible
conditions and treat them all the same. Hence, without loss
of generality we assume that variable H can take two values:

Healthy and Unhealthy. A similar approach is also adopted
in most publications where unhealthy knees are conditioned
by a specific pathology, e.g. meniscus tear [20]. Furthermore,
our approach can also be extended to multi-class classification
[21].

The joint health, H , will affect the structural integrity of the
knee [12], and the general consensus is that by extension the
vibrations formed in the joint region during motion will also be
affected. It is important here to emphasize that this consensus
is a hypothesis that needs to be supported by evidence. In
an ideal scenario, a vibration sensor should be placed on the
affected component of the knee (e.g. meniscus or ligament) to
capture these hypothesized vibrations. We refer to these ideal
vibration signals as V . Thus the main hypothesis can be stated
as:

H −→ V (1)

Unfortunately, such an ideal observation is practically in-
feasible due to the complexities involved in designing and
implementing the experimental setup and doing so without
interfering with the observed mechanism. In practice, the
vibration sensor is placed non-intrusively on the surface of
the skin, in strategic areas near the knee [1], [22], [23]. The
goal of this experimental setup is to capture the best possible
approximation of V , Ṽ . Thus, the Main Hypothesis of Eq. 1,
transforms into the real-world hypothesis:

H −→ Ṽ (2)

This transformation bears the implicit assumption that Ṽ
approximates the ideal vibration V in a satisfactory manner.
As such, Eq. 1 is equivalent to Eq. 2 under the approximation
constraint:

Ṽ ≈ V (3)

On the contrary, if this constraint cannot be guaranteed, the
equivalence between Eq. 1 and Eq. 2 cannot be guaranteed
either. Of course, robustly validating Eq. 3 presents challenges
since access to the actual V is infeasible. Thus, in a real-
world setting, we could only require evidence hinting at this
constraint. We will elaborate on this issue later on.

Having acquired the observed signal Ṽ , the next step is to
extract features to describe its qualitative properties that are
hypothesized to be linked to the patient’s knee health status.
An intermediate step of filtering is also usually employed
before feature extraction; however, for simplicity let us as-
sume that Ṽ has already been filtered and contains the final
vibration approximation signal accompanied by all necessary
guarantees, i.e. Eq. 3. Let g be the function that maps the
recording Ṽ to a set of features X , then:

X = g(Ṽ ) (4)

In the final step a classifier, f(·) is trained:

Y = f(X) = f ◦ g(Ṽ ) (5)
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Fig. 1: Illustration of our proposed causal framework for investigating and validating acoustic knee biomarkers. (a) Multiple
audio source may be present in the experimental environment, including the examined knee. (b) These source will potentially be
picked up by the acoustical sensor and may influence the extracted acoustical features. c These external source may introduce
bias in the final results, severely boosting the model’s performance and leading to wrong conclusions.

so that a loss function between Y and H is minimized. There
are many works achieving satisfying levels of classification
accuracy [10]. Interpreting these high classification results is a
non-trivial task. The most common argumentation is that they
provide evidence supporting the original hypothesis Eq. 2, and
by extension Eq. 1. The conclusion is indeed that (i) health
deterioration of the knee can affect the vibrations it emits
and (ii) the experimental setup is capable of capturing and
identifying these vibrations.

Here, we propose a more reserved and pragmatic interpre-
tation. In fact, experiments in small datasets show that Y ,
and by extension (Eq. 5) Ṽ , are correlated with H . As such,
according to the Common Cause Principle [24], there exists a
third variable, Z, that causes the dependence between Ṽ and H
and the conditioning of which renders Ṽ and H independent.
In the extreme case, Z can be the same as H , which is the
case adopted by current literature. Making this claim however
requires proper guarantees for Eq. 3 in order to reduce the
possibility of a third external source of information. That in
combination with high Ṽ−H correlations could provide strong
evidence in support of the argument that Z is indeed H further
supporting the original hypothesis from Eq. 1 and 2.

Let’s now elaborate on the classification task starting with
Eq. 5 describing the output of the classifier inferring a knee’s
health by its acoustical observations as input. Observation X
is inherently a multi-source signal, and thus exploration of Eq.
5 should take into consideration X’s multi-source nature.

We begin our exploration with the observation Ṽ , and its
representation X in an appropriate domain. A finite set of N
sources Sources = S0, ..., SN−1 which are observable by our
sensor contribute to Ṽ (Figure 1a). For each source Si our
sensor observes a corresponding observation Oi forming the
finite set of N observations Observations = O0, ..., ON−1.
The distinction between the Sources and the Observations
is equivalent to that between V and Ṽ . Sources refer to real-
world events, the knowledge of which requires perfect prior

information about the world in which the experiments take
place. On the contrary, Observations, is the set of signal
sources that the sensor observes.

To give more insight on the introduced notation, let us
consider the example of the knee acoustical sensor. The event
Source = Knee signifies that the knee produces a vibration
during the acquisition of the observation Ṽ . Observation =
Knee refers to the event of the sensor capturing the knee and
hence X can partly be attributed to the knee. Thus, the proba-
bility p(Observation = Knee | Source = Knee), describes
the sensor’s ability to capture a knee acoustic event. Similarly
Observation = Knee | Source = Knee is impossible to
happen. Now imagine that in the experimental environment
there is an additional external mechanism generating sound
waves, for example, the room’s ventilation or air-conditioner
(A/C) (Figure 1a). Then p(Observation = A/C | Source =
(Knee,A/C)) describes the device’s ability to filter out the
external noise of the A/C.

For the classification task, given an acoustical observation
Ṽ we need to estimate the most probable knee health status
Y :

p(Y | X) = p(Y | g(Ṽ )) (6)

We consider the multi-source scenario and the notation
introduced in Eq. 6. Also, for now the observations Oi, Oj

∀Oi, Oj ∈ Observations are considered disjoint and
similarly all sources Si, Sj ∀Si, Sj ∈ Sources. In
the real world this assumption cannot be guaranteed; in the
previous example the A/C could operate at the same time as
the subject mobilizes the knee joint. We will deal with this
scenario later. For now, we can rewrite Eq. 6 as:

p(Y | X) =
∑
i

p(Y | X,Oi)p(Oi | X) (7)
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The first term of the sum, p(Y | X,Oi), describes a model
trying to infer Y from a sample X attributed to observation
Oi. The second term, p(Oi | X), is essentially a source iden-
tification model, attributing the sample X to observation Oi.
Through Eq. 7, the initial source-neglecting model is rewritten
into a source-aware model that performs source separation and
source-specific classification. Using Bayes’ rule, we elaborate
on the source identification term, p(Oi | X):

p(Oi | X) =
p(X | Oi) · p(Oi)

p(X)
(8)

p(Oi) denotes the probability that observation i is observed
in our experimental setting using the sensor. Intuitively, we can
consider that capturing an observation from source Si requires
that the actual source Si occurs, p(Si), and that our sensor is
capable of observing this event when it is happening, p(Oi|Si).
As such, considering all possible sources Sj , we can split
p(Oi) as:

p(Oi) =
∑
j

p(Oi | Sj)p(Sj) (9)

Putting together Eq. 6, 7, 8 and 9:

p(Y | X) =
1

p(X)

∑
i

p(Y | X,Oi)p(X | Oi)

·
∑
j

p(Oi | Sj)p(Sj)
(10)

For the use-case of classifying the health status of a knee,
H , from an acoustical sample X , we can split the set of
Sources - Observations into two subsets: those that can be
attributed to the knee, and those that are attributed to external
phenomena, e.g. A/C :

p(Y | X) ∝
∑
Knee

Observations

p(Y | X,Oi)p(X | Oi)

·
∑
j

p(Oi | Sj)p(Sj)

+
∑

External
Observations

p(Y | X,Oi)p(X | Oi)

·
∑
j

p(Oi | Sj)p(Sj)

(11)

Eq. 10 interestingly reveals that: inferring a knee’s health
condition by its acoustic observations implicitly requires un-
derstanding of the knee behavior and the sensor’s ability to
capture it.

Eq. 11 shows how a model f(X) inferring p(Y | X)
can still draw information from external sources as long as
p(Y | X,Oi) is informative for at least one of them, creating
a Bias Introduction Pathway (Figure 1). This equation also
reveals a set of strategies to achieve a robust experimental
setting. In the Approximation Constraint, Eq. 3, we required
knowledge of the ideal knee observation V , which was con-
sidered physically infeasible. Here, we require to minimize
the effect of the second summation term, so as to ensure

that no external source interferes with the classification task,
breaking the Bias Introduction Pathway. This can be achieved
by optimizing in three different directions:

1) p(Y | X,Oi): External observations should be random
and not correlated with knee health.

2) p(Oi | Sj): The sensor should be shielded from interfer-
ence sources, so that external signals do not affect knee
recording.

3) p(Sj): Ideally, there should not be any external sources of
interference in the experimental setting. The only source
of information present in the audio recordings, Ṽ should
be the knee mechanism.

For each external observation Oi in the world of our exper-
iments, ensuring at least one of these conditions is enough to
provide a robust dataset, safe from external biases. Achieving
this is not trivial since one needs to first identify all possible
sources of external interference and then study their effect
on the experiment. However, this task is considerably more
feasible than acquiring direct access to the ideal recording Ṽ .

An important assumption that was necessary to derive
Eq. 10 was that the sources in the set of Sources are
pairwise disjoint, and similar for the observations. In the
real world however this assumption does not necessarily hold
true, and multiple events can occur during the recording of
an observation Ṽ . To overcome this limitation, we define
Sources as follows. First, we define the finite set of all N
sources occurring in the experiment S, the complementary set
S = {x, x ∈ S} and their union A = S ∪ S. Now consider
one subset Mi ⊂ A such that:

|Mi| = N (12)

and
∀xi, xj ∈ Mi, xi ̸= xj (13)

Define the event Si as the intersection of all elements of Mi,
Si =

⋂
xj∈Mi

xj . Due to Eq. 12 and 13, given two different sets

Si and Sj , they are disjoint. Finally the Sources set is defined
as the union of all possible Si. The set of Observations can
be defined in a similar way. For example, in the case where we
only consider the sources of the Knee and the A/C, instead
of defining Sources = {Knee,A/C}, Sources should be
defined as:

Sources = {(Knee,A/C), (Knee,A/C),

(Knee,A/C), (Knee,A/C)}
(14)

III. REAL-WORLD LESSONS

So far, we have established a framework to describe and
characterize the task at hand and the tools employed to tackle
it, i.e. classification. However, our analysis has remained
mostly theoretical. In this section we complement this ex-
ploration with three real-life study cases. Simultaneously we
provide key takeaways from our investigation and literature re-
garding best practices when designing knee acoustic emission
experiments and evaluating their results.
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A. The Relevance of the Expectations

We begin with a counterfactual thought experiment involv-
ing the design of a study to identify and evaluate acoustical
biomarkers. The question we raise is: Will acoustical features
reveal knee structural differences, even when they should
not? We show how the researchers’ expectations regarding
the experiment’s output, i.e. how the samples are split in
health/unhealthy groups, can influence the interpretation of
the features. An illustration of the counterfactual thought-
experiment is presented in Figure 2.

Day 1 Day 2 Day 3 Day 4 Day 5

Subject 1 Subject 1 Subject 1 Subject 1 Subject 1

Day 1 Day 2 Day 3 Day 4 Day 5

Subject 1 Subject 2 Subject 3 Subject 4 Subject 5

What if ?

Real Experiment

Counterfactual ExperimentSame audio data 
Different outcome 
expectations

Fig. 2: Illustration of our counterfactual experiment. By chang-
ing the expectation on the output (asking what if) the same
audio data are interpreted differently. This interpretation is not
necessarily causally linked to the underlying knee mechanism
we are trying to describe.

The exploration is set up as follows. We perform a real ex-
periment with a single subject who underwent measurements
on the right knee for five consecutive days. Following a similar
workflow as the ones proposed in the relevant literature, we
employed a wearable acoustical device to record knee audio
signals. The wearable device uses two microphones to record
signals from the sub-patella region: one on the medial and
one on the lateral side of the knee. On each day the subject
performed 6 unloaded reciprocal knee flexion-extensions, an
exercise that is usually used for this purpose [1], [9], [8],
[20], [5], [23], [25], [26], [27]. After collection, a set of
audio features was extracted, following the work of [9], [8],
[23], [26], [27]. All recordings were taken approximately at
the same time of the day, between 12:00 and 12:30 and no
injury was reported throughout the week. Hence, we have
no reason to believe that there was any mechanical degra-
dation in the subject’s knee mechanism that would affect its
acoustic emissions throughout the course of the experiment.
Under these assumptions, any variance in the audio features
is interpreted not as fluctuations in the knee mechanism but
rather as variance in the measurement process.

Using the same audio recordings, we ask a counterfactual
question, changing the researchers’ expectations: What if the
data had been recorded from 5 different subjects? In this
scenario, the first 2 knees are healthy, while the next 3
are unhealthy. Now we are looking to identify the most
relevant audio features that will serve as our proposed knee
health biomarkers. After our analysis, we conclude that the
Mel Frequency Cepstral Coefficient (MFCC) features [28],
specifically MFCC 8 and MFCC 11, have a good discriminant
validity, as they show a clear separation between the two
populations (Figure 3). Furthermore, similar audio features
have already been successful in discriminating healthy and

unhealthy subjects [9]. The study of this counterfactual thought
experiment is concluded with very positive remarks. We have
managed to identify promising audio biomarkers, capable of
identifying unhealthy knees with a Leave-One-Subject-Out
(LOSO) Cross Validation accuracy of 96%.

0.15 0.20 0.25 0.30 0.35 0.40
MFCC 8

0.10

0.08

0.06

0.04

0.02

0.00

0.02

0.04

0.06

M
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C
 1

1

Healthy
Unhealthy
Decision Boundary

Fig. 3: Separation of Healthy / Unhealthy subsets based on
MFCC8 and MFCC11.

In this experiment, by construction, we know that the
audio features do not characterize biomechanical degradation.
Yet, in the counterfactual case, the interpretation of the high
classification accuracy led to (falsely) attributing the feature
information to the knee mechanism.

Takeaway: High classification accuracy alone is not
enough to establish knee health biomarkers.

Conclusions such as the one made in the counterfactual
scenario fail to take into consideration the multi-source nature
of the audio recordings: all the information contained in the
signal has been attributed to the observed knees and their
health status. However, referring back to Eq. 11, there are two
terms that could potentially contribute to this classification:
one whose source is the joint mechanism and another one
which should be attributed to external sources, w.r.t. the joint
sources.

Proper source attribution in Eq. 11 is crucial: by attributing
all information to the knee we have managed to identify
structural differences where we should not have. Thus, a
causal exploration of the phenomena that affect the audio
features identified as relevant biomarkers should not be
considered as future work [23], [8], but rather a necessary
step in the researchers’ exploration.

Takeaway: Causal investigation on the audio features is
imperative to claim them as biomarkers.

Such an investigation is not necessarily a trivial task.
In the next two study-cases we present two examples of
acoustical features causal study.
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As a final note, two points need to be addressed. The
first one is the population size which is admittedly small (5
subjects). Nevertheless, similar knee acoustic emission studies
with comparable sample sizes exist in the literature [29], [20],
[30], [31], [25], [32], [27]. Furthermore, a larger population
size could help address the issue in this particular case: it
decreases the probability that p(Y | X,Oi) is informative for
external sources. However, it does not necessarily guarantee
lack of bias in the data. As we demonstrate in the next section a
larger population size can still be affected by external sources.

Takeaway: Larger sample size helps, but cannot substitute
proper causal investigation.

The second point is that the audio data remained the
same in the counterfactual exploration with only the output -
expectations changing. The counterargument here is that in
the scenario with multiple subjects, Healthy and Unhealthy,
other components related to the health variable would have
been added in the audio features. This is also what the state
of the art usually adopts as a direction. However it is crucial
here to stress that this is just a hypothesis which needs to be
validated. It should not be considered as prior information.
What we have shown in this example is that this hypothesis
is not necessary for the health classification accuracy to be
high.

B. The Relevance of the Protocols

This case-study is a real-world case of a publicly available
dataset [8]. 43 subjects were recruited for the study: 18 healthy
and 25 with Juvenile Idiopathic Arthritis (JIA) [33]. Five of
the 25 JIA subjects were not included in the public dataset.
We replicate the workflow reported in the original publication:

1) Bandpass filter the audio signal in the range 250 Hz - 10
kHz.

2) Extract the most significant features, as reported in [8].
3) Train and validate a linear regression model using the

LOSO strategy.
We achieved an average exercise-repetition accuracy of

51.28%, a significant drop from the reported 80.6%. To
investigate further, we performed the following explorations:
(i) manual inspection of the audio signals and (ii) per frequen-
cy-range classification.

Manual Inspection. We performed an audio-visual
inspection of the recorded signals in the time-frequency
domain. A constant frequency component centered around
33 kHz with a high prevalence was detected in the unhealthy
population, a representative example is presented in Figure
4b. However, this component was not present in any of the
healthy samples (Figure 4a), with the exception of one healthy
subject. This signal is constant throughout the duration of
the recording, even when the legs are inactive. Thus, we
consider impossible the scenario that it is generated by the
joint’s internal mechanism. Rather, there has to be an external
interference.

Takeaway: Thorough manual audio-visual inspection

helps in the causal attribution investigation.

Per Frequency-Range Classification. We elaborate on the
previous findings by determining the frequency range that is
more informative for the knee’s health status, i.e. it achieves
higher classification accuracy. We split the available range 250
Hz - 50 kHz of the signal into 5 groups of 10 kHz. For
each frequency range group, we follow the same procedure as
in [8]: features are extracted for the corresponding frequency
range, and a linear model is trained and validated using LOSO
cross validation. Figure 4c presents the results: classification
accuracy as a function of the frequency components in the
inputs of the classifier. Average accuracy peaks in the 30 kHz
- 40 kHz range at 77.9%, while for the rest of the groups it
remains close to 50%.

As discussed in Section II, the Common Cause Principal
is crucial in interpreting our results. The external constant
interference, Z, causes the dependence between the classifier’s
output g(Ṽ ) and the knee health status H . Since the knee
cannot produce such an interference, Z is not the same as H .
By filtering out the 33kHz component, effectively conditioning
on Z, Ṽ and H become independent. It is also important to
note that the constraints resulting from Eq. 11, as discussed
in Section II, are also violated. We can now summarize the
Bias Introduction Pathway proposing solutions to breaking it.
For the second sum of Eq. 11 describing the effect of external
sources :

1) p(Sj): There is obviously an external interference.
Potential Solution: Remove the external interference
from the experiment environment.

2) p(Oi | Sj): The acoustic sensor observes this external
interference.
Potential Solution: Isolate the sensor and electronics
from the detected interference. Depending on the nature
of the external source filtering can also be performed
post-hoc through digital filtering, if it is not affecting the
actual knee components.

3) p(Y | X,Oi): The external source is not random and
provides information to the classifier about the health
status of the knee.
Potential Solution: Randomizing the observation of the
external component w.r.t. the health status of the knee
would prevent bias, even if external interference was
present. For example, if it was present in half of the
healthy and unhealthy populations and not present in the
rest of the subjects.

Takeaway: The same environmental conditions should be
guaranteed for the entire trial population.

Such inconsistencies may arise either from ambient noises,
e.g. machinery present in the room, or from electronic
component noise from within the signal acquisition setup,
e.g. power source.

Regardless the solution, the first and most difficult step in
tackling the bias issue is detecting and identifying it. In this
case-study, manual inspection of the signals, using intuitive
time-frequency representations was crucial in detecting the 33
kHz constant component. Equally important is observing its



7

(a) (b) (c)

Fig. 4: External 33kHz interference and its effect on the health classification task. Representative time-frequency representations
of the audio recordings of a Healthy (a) and an Unhealthy (b) individual. The constant component interference characterizing
the unhealthy samples is visible at around 33kHz. (c) The accuracy of the knee health classification as a function of the
frequency range demonstrating the effect of external interference on the classification task.

behavior and evaluating the possibility that it is generated by
the knee mechanism. Such insights require prior knowledge on
the experimental setting and on the biomechanical properties
of the knee joint. It is difficult or even impossible to acquire
this level of information just from the trained model alone.

Takeaway: Knowledge of the experimental conditions is
necessary to attribute signal components to suspected
sources.

C. The Relevance of the Sensors
In the third and final case study, we use a custom-made

apparatus similar to a knee orthosis to collect acoustic in-
formation from the subpatellar medial compartment of the
knee joint without hindering the movements of the patient.
The apparatus consisted of a silicone-covered frame with
embedded electronics to collect and store data from a non-
contact acoustic sensor positioned at a constant distance from
the area of interest. Institutional review board approval was
obtained (BASEC-Nr.: 2020-01031) and all patients signed
an informed consent prior to data acquisition. The population
consists of 16 subjects undergoing for unilateral total knee
replacement surgery: for half of the population, the left leg is
the one to be operated, while for the rest half, the right knee.
For the sake of consistency with the terminology used in the
rest of the manuscript, we will label as healthy the non-surgical
knees, and unhealthy surgical ones. However, it is important
to note that we do not have specific information about the
health status of the not-to-be-operated legs, and our objective
is reduced to distinguish between groups. Patients performed
eight unloaded and consecutive flexion-extension movements
of the knee at a self-selected comfortable pace while wearing
an apparatus on each leg, to record knee sounds. One device
was always worn on the left knees, which we will refer to as
the left device, while another one on the right ones, the right
device. The classification task is thus defined as classifying
the legs as to-be or not-to-be operated, depending on their
acoustic emissions.

We performed a feature-based analysis similar to the two
previous experiments. The acoustical signals were bandpassed
in the frequency range 900Hz - 3kHz and then the acoustical
features were extracted. We have observed that the family
of MFCC features is one of the most relevant ones, so we
designed a linear model to classify each knee as surgical or
non-surgical based on the MFCC feature of its audio signals.
With LOSO cross-validation we achieved a 75% classification
accuracy. Neglecting Eq. 3 and 11 we can conclude that
acoustic emissions can predict the knee undergoing surgery.

Just like in Sections III-A and III-B, we introduce our
causal approach. First, we investigate whether the two devices
themselves introduced bias. To this end we pose two questions:

1) Can we infer the device from the same audio features?
2) Does the knee health status classification performance

change when conditioning on the device?
Then, we explore the mechanism - structures in the data
allowing the separation between healthy and unhealthy knees.

To answer the first question, we train a classifier to infer the
device based on the audio features. LOSO validation results
in a device classification accuracy of 87.5%. Indeed, the same
audio features can differentiate between left and right leg
devices.

For the second question we condition on the device side
(Figure 5) forming the following subsets from the original
dataset:

1) One set consisting only of the left legs, DL,
2) one only of the right ones, DR and
3) a third sample as control, DC , to account for the effect

of sample size, since the sample size in each subset,
DL, DR, is approximately halved compared to the origi-
nal dataset. DC is formed by randomly sampling 50% of
the samples in the original dataset.

We train and validate (LOSO) a linear classifier from scratch
for each of the three subsets: DL, DR, DC . Since DC is
a random sampling of the original dataset, we repeat the
experiment for DC 10.000 times to account for variation
introduced between different random splits. A different linear
classifier is trained on each iteration.
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Fig. 5: Illustration of the process to assess the effect of the
device on the health classification performance by conditioning
on the device.

The results are presented in Figure 6a. We can observe that
the effect of subsampling on the accuracy (blue distribution
DC , 67.15%± 7.4%) does not explain the significant drop to
50% for DR (green line).

The dependence of the accuracy on the existence of samples
from the left leg is also shown in Figure 6b. Here, we begin
with the subset DR and incrementally add 1, 2, ... left leg
samples. The left legs to be added are randomly selected and
the experiment is repeated 500 times. As a point of reference,
we also evaluate the classification accuracy if all legs samples
had been drawn randomly but with the same total number
of legs. Observe how a large percentage (higher than 40%) of
samples from the left leg is necessary for the two distributions
to start to converge.

We will now explore how the three structures of the data
allow for the classification between healthy and unhealthy
knees. For visualization purposes, we will only focus on two of
the most informative MFCC features: MFCC8 and MFCC11
(Figure 8) which can achieve 73.75% classification accuracy.

Structure 1: Population The first structure is our popula-
tion of 16 patients which is divided into two sub-groups:

1) 6 patients with left knee unhealthy and right knee healthy,
DLU and

2) 10 patients with left knee healthy and right knee un-
healthy, DRU .

There are no patients with both legs healthy or both legs
unhealthy, breaking the independence between the samples:
let HLi

be the health status of the left leg of patient i and
HRi

the health condition of their right leg, then p(HLi
=

Unhealthy) = 1− p(HRi
= Unhealthy).

Structure 2: Device Identification The second data struc-
ture is the separation between left and right knees. MFCC 8
differentiates between the left and the right device (Figure 7),
MFCC 11 also presents the same separation but the effect is
not so strong. As a result, two samples xi ∈ DL, yi ∈ DR

from the same patient, either DRU or DLU , tend to be
positioned diametrically opposite in the MFCC8-MFCC11
feature map (Figure 8a). In fact, for both subsets the first
principal component (vRU , vLU ) distinguishes between the left
and right devices, Figure 7b, while it is independent of the
leg’s health condition.

Structure 3: Distribution shift The third and final data

40 50 60 70 80 90 100
% Classification accuracy

0.00

0.01

0.02

0.03

0.04

0.05

D
en

si
ty

67.15%65%50.83%

 = 7.4%

(a)

(b)

Fig. 6: Dependence of the classification accuracy on the
device. Top: Conditioning on the right device the accuracy
drops to 50% (green vertical line), a significant reduction
that cannot be explained by the reduced sample size (blue
distribution). Conditioning on the left device is presented with
an orange vertical line. Bottom: Classification accuracy is
dependent on the percentage of sample of the left leg in the
dataset (blue). This dependence cannot be explained by the
reduced amount of samples (black).

structure is the distribution shift between DLU and DRU .
There is a rotation between vRU and vLU (Figure 8a):
ϕ(vRU , vLU ) = cos−1

(
vRU ·vLU

|vRU |·|vLU |

)
. It is this misalignment,

ϕ(vRU , vLU ) which allows the classification between healthy
and unhealthy legs. Accentuating the shift between the two
sub-populations, Figure 8b, results in a better separation and
higher classification accuracy (80%). In contrast, aligning the
two populations, ϕ = 0, results in the inability to distinguish
between healthy and unhealthy legs (Figure 8c). Interestingly,
only a few degrees of distribution shift, ϕ ≤ 10◦, can result
in a significant inflation of the classification accuracy (Figure
9).

Interpreting the distribution shift, ϕ, is non-trivial. If the
effect of knee health on the audio features is considered as
prior knowledge, and given the underlying Structures 1 and
2, then ϕ is the mechanism through which the healthy and
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Fig. 7: Feature plots indicating separation between left and
right leg. Left: Leg separation in the MFCC8 and MFCC11.
The features do not differentiate between healthy and un-
healthy legs: Healthy Right coincides with Unhealthy Right.
Right: Distributions of features when projected along the first
main principal component. Leg side separation is evident while
health status is independent. For example, similarly to MFCC8
and MFCC11, Healthy Right overlaps with Unhealthy Right
and Healthy Left overlaps with Unhealthy left.

unhealthy knees are separated. Still, this interpretation does
not explain the lack of health status separation in the Right
device, in contrast to the Left device: the effect of knee
degradation should be independent of the device. In any case,
in this scenario the results cannot be used as evidence in
favor of the Main Hypothesis (Eq. 1), since it has been used
as prior information. If the Main Hypothesis is not used as
prior information, but rather as a hypothesis we test against,
then there’s a second possible interpretation of the results, i.e.
ϕ is the result of variance between the two subpopulations.
To reach a conclusive result further investigation would be
needed. Just like in previous examples we can refer to Eq. 11
for possible directions:

1) p(Sj): There is an interference generated by the device
itself.
Potential Solution: Study acoustically the two devices
to understand its nature and possibly normalize between
the two devices in the physical world.

2) p(Oi | Sj): This device-specific interference is being

picked up by the microphones.
Potential Solution: Understanding how it manifests in
audio recordings could potentially help us filter it digi-
tally.

3) p(Y | X,Oi): External interference along with the data
structures in our dataset allow for the significant inflation
of the classification accuracy.
Potential Solution: We propose three possible solutions:
• Include patients with both legs healthy and both legs

unhealthy
• Expand study to include a larger population
• Randomly shuffle the left and right devices between

subjects
Our results indicate that the device indeed functioned as

a bias source, inflating the performance of the knee health
classification. Unlike the previous example, here the external
interference observation was indirect, we studied the data
structures in the dataset. Still, our extensive feature-based
causal investigation was necessary since high accuracy alone
was not enough. We demonstrated how data variances, remi-
niscent of the first example, can explain the separation between
healthy and unhealthy samples. The sample size was also
limited, sub-sampling half the population results in only 8
subjects, a sample size similar to the 5 subjects of the first
example (Section III-A).

Unfortunately, we were unable to directly detect the au-
dio component differentiating the devices despite thorough
manual audio-visual inspection, in a similar fashion to the
33kHz component of Section III-B. We were also unable to
manually identify audio events or patterns that discriminate
between healthy and unhealthy knees. However, we managed
to manually distinguish click sounds which could potentially
be attributed to the knee mechanism.

Similarly to Section III-B all three conditions of Eq. 11 were
violated. In the experiment there was external interference
(p(Sj)) which was captured by our experimental device
(p(Oi | Sj)) and introduced bias into the classification task
(p(Y | X,Oi)). We suspect differences between the left- and
right-leg devices; the two devices were prototyped manually
which could have introduced dissimilarities between them.
For example, the physical interface between the microphone
and the skin could present slight differences resulting in
variations in the frictions on the skin. We can now extend our
conclusion from Section III-B: external interference can be
generated by both the environment and the recording device
itself.

Takeaway: Condition on device-specific audio properties.

IV. CONCLUSIONS

In this work, we have introduced a comprehensive causal
framework to the field of knee vibroarthrometry. Our tools
allow us to perform a holistic investigation taking into account
various possible sources of information, i.e. the knee mech-
anism as well as external interference, expanding the current
state-of-the-art, which considers only the knee mechanism as
the information source.
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Fig. 9: The ability to distinguish between healthy/unhealthy
legs is dependent on the distribution shift between the two
sub-populations DLU and DRU . The classification accuracy
is sensitive to the shift and just a few degrees of relative angle
can inflate it.

We have applied our proposed methodology to three case
studies. Our findings challenge the assumption that achieving
high classification is sufficient evidence for acoustic knee
biomarkers. Across the three experiments, we identified ex-
ternal sources of information that significantly inflated knee
health classification performance, leading to a gross overesti-
mation of the ability of the proposed biomarkers to diagnose
knee degradation. In two out of three experiments, the pro-
posed biomarkers did not characterize the knee mechanism.
In the third one the experimental process was not enough to
reach a conclusive interpretation of the result, while external
biases were present.

These outcomes underscore the need for a comprehensive
causal investigation of audio features to fully claim them as
biomarkers. Meticulous audio-visual inspection of the audio
recordings plays an important role in our proposed method-
ology, unveiling external interference and helping attribute
observations to sources, as evidenced in the second example.
Complementary to manual inspection, a thorough examination
of underlying data structures provides insights into the possible
external, wr.t. the knee, confounders.

Finally, we identified two categories of external sources that
can contribute to the health classification task: environmental
and device-specific. Therefore, maintaining consistent environ-
mental conditions across the entire population is paramount.
Similarly, a thorough examination of the wearable audio
acquisition device is essential to ensure that it does not affect
the classification task or, at least, its effect is homogeneous
throughout the entire data set.

A remaining challenge to be considered is the labeling of the
conditions to enhance the clinical relevance of any study. It is
of utmost importance to define labels based on actual medical
information (e.g., examination, imaging...) while considering
that most clinical scoring is based on symptoms, which have a
non-linear and non-continuous relation with disease severity.
Thus, different approaches should be explored to assess the
impact of specific symptoms on the acoustic emissions, and
also the influence of the model properties in the label space.
For example, a model assuming a smooth output or a sharp
threshold between classes may not be appropriate for repre-
senting the clinical definition of the target labels.
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