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ABSTRACT
In wearable sensors, energy efficiency is crucial, particularly dur-

ing phases where devices are not processing, but rather acquiring

biosignals for subsequent analysis. This study focuses on improv-

ing the power consumption of wearables during these acquisition

phases, a critical but often overlooked aspect that substantially

affects overall device energy consumption, especially in low-duty-

cycle applications. Our approach optimizes power consumption by

leveraging application-specific requirements (e.g., required signal

profile), platform characteristics (e.g., transition-time overhead for

the clock generators and power-gating capabilities), and analog

biosignal front-end specifications (e.g., ADC buffer sizes). We refine

the strategy for switching between low-power idle and active states

for the storage of acquired data, introducing a novel method to

select optimal frequencies for these states. Based on several case

studies on an ultra-low power platform and different biomedical

applications, our optimization methodology achieves substantial

energy savings. For example, in a 12-lead heartbeat classification

task, our method reduces total energy consumption by up to 58 %

compared to state-of-the-art methods. This research provides a

theoretical basis for frequency optimization and practical insights,

including characterizing the platform’s power and overheads for

optimization purposes. Our findings significantly improve energy

efficiency during the acquisition phase of wearable devices, thus

extending their operational lifespan.

CCS CONCEPTS
• Computer systems organization → Embedded systems; •
Hardware → Signal processing systems .
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1 INTRODUCTION
The increasing healthcare costs and the essential need for pre-

ventive measures are driving the development of wearables for

monitoring and processing long-term and real-time biosignals [15].

To ensure user privacy and extend battery life, it is vital to perform

the entire processing chain directly on the wearable device.

RISC-V-based Ultra-Low-Power (ULP) platforms such as [9, 10,

16, 18], using an open-source ISA for flexibility, rapid innovation

and energy efficient design, offer the necessary computational

power and memory capabilities for ML/AI applications.

Within this context, a portion of an application’s lifecycle is not

dedicated to processing but to the acquisition of bio-signals for

subsequent analysis. This acquisition phase is particularly critical

in low-duty-cycle applications, where it accounts for a substantial

part of the energy consumption. For example, [1] demonstrates an

extremely low duty-cycle scenario, with bio-signals collected for 1 s

and processing that lasts less than 1ms. Although the importance

of energy efficiency during the processing phase is well recognized,

particularly in the utilization of heterogeneous platforms [6], the

energy consumed during the acquisition phase often remains over-

looked and unreported [1, 7, 12]. This gap highlights a critical area

for energy optimization that has not yet been fully explored and

addressed in wearable healthcare technologies.

A balanced approach is necessary to enhance energy efficiency

during the acquisition phase, incorporating power gating and fre-

quency reduction strategies. Power gating can significantly reduce

both static and dynamic power consumption by shutting off non-

essential modules, whereas frequency reduction aims at minimizing

dynamic power. Two prevalent methods emerge in the literature:

maintaining only essential modules for sample reception with the

remainder of the system powered down [14, 20, 21], and switching

between an extremely low-power idle state, and an active state

upon sample reception [1, 5]. The latter requires careful consid-

eration of optimal frequencies to minimize energy consumption,

considering platform characteristics such as static and dynamic

power in each state, transition time overheads from FLL and power

gating, buffer size of Analog Front Ends (AFE), and an application’s

required number of channels and signal frequencies.

Our contributions to enhancing wearable device energy effi-

ciency during biosignal acquisition phases include 1) a novelmethod-

ology for optimal frequency selection in idle and active states, tai-

lored to both uniform and dynamic frequency adjustments under

varied overhead conditions; 2) a comprehensive system model for

power optimization based on target frequencies; 3) in-depth charac-

terization of a case study platform, including FLL overhead analysis

and modeling, and power assessment; 4) Practical validation via

different biomedical applications, demonstrating up to 58 % energy

savings compared to existing methods.

https://doi.org/10.1145/3665314.3670815
https://doi.org/10.1145/3665314.3670815
https://doi.org/10.1145/3665314.3670815
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2 RELATEDWORK
There are three main approaches when dealing with the acquisition

phase: 1) All-On, where there is no distinct policy differentiating

signal acquisition from processing; 2) Continuous Streaming (CS),

which employs a continuous low-power mode for sample storage;

and 3) Burst, which alternates between an active state for storing

samples and a very low-power idle state between samples.

Different works leverage the All-On strategy. For instance, [12],

[11], [13], and [7] use theMr.Wolf platform [18] for Brain-Computer

Interface (BCI), 4-lead EEG-based epilepsy monitoring and 8-lead

and 16-lead EMG-based gesture recognition, maintaining the same

power profile during acquisition as in processing. Similarly, [8] uses

GAP9 [10] for EEG- and PPG-based BCI. However, these works do

not adopt specialized policies for the acquisition phase, resulting in

similar power usage for both the acquisition and processing phases.

For the second approach, [20] examines 8-lead sEMG-based hand

movement classification on GAP8 [9], adopting a low-power mode

by clock-gating the 8-core cluster and keeping the MCU active for

signal storage. [21] and [14] use similar strategies on Mr. Wolf for

1-lead ECG-based QRS complex detection and 3-lead EEG-based

drowsiness detection, with [21] also sleeping the CPU during acqui-

sition, a method not specified in [14]. However, maintaining a con-

stant mode during acquisition prevents these studies from exploring

potentially more energy-efficient strategies, such as power-gating

non-essential components like DMA and SPI interfaces, during

intervals between sample receptions.

For the burst approach, [1] and [5] explore EEG-based epileptic

seizure detection and EMG-based gesture recognition on Mr. Wolf,

respectively. Their approach alternates between low-power idle

and active states in response to incoming samples. During idle pe-

riods, most of the system, including the MCU and cluster, enters a

low-power mode, significantly cutting energy use. Upon receiving

samples, it transitions to an active state, activating the MCU for

data storage. Although these studies leverage reduced power by tog-

gling between two states, they adopt a straightforward frequency

selection strategy: opting for the lowest available frequency on the

platform during idle periods and maximizing frequency within the

minimal voltage range for active periods [1, 5].

It is important to note that AFEs often include built-in small

memories for temporary sample storage. For example, [2] and [3]

are equipped with FIFO buffers capable of holding 128 and 256

samples of 8 bit and 32 bit, respectively. Although these buffers,

which introduce minimal power overhead [3], can significantly

reduce the frequency of data transmission, their advantages remain

underexploited in the discussed wearable technologies.

We propose a novel optimization method that minimizes the

burst-mode power consumption by selecting optimal frequencies

for idle and active states. To our knowledge, this is the first propo-

sition of such a methodology. We demonstrate substantial energy

savings over conventional approaches in different case study appli-

cations.

3 METHODOLOGY FOR OPTIMIZATION OF
ACQUISITION POWER

Our methodology aims to reduce energy consumption in wearables

by optimizing frequency selection for the acquisition phase, which

can be challenging due to thewide range of frequencies supported at

each voltage level. This platform-independent procedure, applicable

to any setup, begins bymodeling various factors influencing optimal

frequency selection, as shown in Figure 1. Note that this step is

done once per system. Then, we outline steps for extracting an

accurate wearable platform characterization for determining values

like timing overheads and power profiles. The final phase uses these

parameters for optimization considering two scenarios: dynamically

changing frequency or maintaining a consistent frequency in burst

mode, where the optimal choice may vary based on application.

This process is assessed under different settings, for example, to see

whether the time required by the FLL to switch from one frequency

to another depends on the distance between both frequencies. Since

CS mode’s optimal frequency is fixed by the application bandwidth,

we focus our analysis on optimizing the frequencies for the active

(𝐹a) and idle (𝐹i) states of the burst mode.

This methodology is especially useful for dynamic applications,

where the setup may change during runtime, such as the number

of used signal channels or algorithm complexity. For such applica-

tions, the methodology can be implemented to calculate optimal

configurations online, or pre-calculate optimal configurations for

different scenarios offline during design time.
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Figure 1: Methodology flow for optimizing acquisition power.

3.1 System Modeling
The initial step involves system modeling to accurately represent

the wearable device architecture, typically comprising an MCU

connected to an AFE for biosignal reception, as depicted in Figure 2.

AFEs often support multiple channels for simultaneous bio-signal

capture and may include a FIFO buffer for temporary data storage

before transmission. The key to modeling the power consumption

of the MCU during acquisition is identifying essential parameters.

The application’s bandwidth (𝐵𝑊 ) is dictated by the number and

sampling frequency of required biosignals. The burst frequency

(𝐹b), or how often the AFE signals the MCU to obtain data, is in-

versely related to the buffer size (𝑁s). Thus, assuming optimal buffer

utilization, we define the burst frequency as 𝐹b = 𝐵𝑊
𝑁s

.

The power in burst mode, 𝑃B, represents the average power over

the interval between bursts (𝑇b = 1/𝐹b), accounting for both active

(𝑡a) and idle (𝑡i) periods:

𝑃B =
𝑃a𝑡a + 𝑃i𝑡i

𝑡a + 𝑡i
= 𝐹𝑏 (𝑃a𝑡a + 𝑃i𝑡i) = 𝐹𝑏𝑡𝑎 (𝑃𝑎 − 𝑃𝑖 ) + 𝑃𝑖 . (1)

where 𝑃a and 𝑃i indicate power in active and idle states.

As we set our optimization objective based on the system’s fre-

quencies in idle, 𝐹i, and active, 𝐹a states, it is imperative to define

the power consumption for each state, 𝑃i and 𝑃a, as a function of
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Figure 2: A common wearable device architecture.
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their respective frequencies. CMOS circuit power consumption is

typically divided into static (𝑃𝑆 ) and dynamic (𝑃𝐷 ) components,

where 𝑃 = 𝑃𝑆 + 𝑃𝐷 [17]. Unlike 𝑃𝑆 , which is consistent across fre-

quencies, 𝑃𝐷 varies linearly with system frequency (𝐹 ), influenced

by the activity factor (𝛼), load capacitance (𝐶), and the voltage

squared (𝑉 2
), hence 𝑃𝐷 = 𝛼𝐶𝑉 2𝐹 [17]. By introducing the dynamic

power coefficient, 𝜂 = 𝛼𝐶𝑉 2
, the power consumption at any given

frequency for idle and active states can be expressed as follows:

𝑃𝑖 = 𝑃𝑖𝑠 + 𝜂𝑖𝐹𝑖 , 𝑃𝑎 = 𝑃𝑎𝑠 + 𝜂𝑎𝐹𝑎 . (2)

To account for the timing factors affecting idle and active dura-

tions, we examine the overheads arising from power gating and

reactivating modules (𝑡𝑝 ), and frequency adjustments via FLL (𝑡𝑓 ).

In the acquisition phase, the main task is transferring samples from

the AFE buffer to platform memory, typically facilitated by DMA.

This transfer time (𝑡𝑠 ) is directly proportional to the volume of

data to be transferred, represented by the number of samples (𝑁𝑠 ),

and inversely proportional to the system’s operational frequency

during active state (𝐹𝑎). Thus, we represent 𝑡𝑠 with the equation

𝑡𝑠 = 𝛽
𝑁𝑠

𝐹𝑎
, where 𝛽 acts as a proportionality constant, capturing the

operational overheads and transfer efficiencies.

Considering these dynamics, the active period duration (𝑡𝑎) inte-

grates these timing components as follows:

𝑡𝑎 = 𝛽
𝑁𝑠

𝐹𝑎
+ 𝑡𝑝 + 𝑡𝑓 . (3)

Merging this with the power components from Equations 2 and

1, we derive the formula for the power consumption in burst mode:

𝑃B = 𝐹𝑏 (𝛽
𝑁𝑠

𝐹𝑎
+ 𝑡𝑝 + 𝑡𝑓 ) ((𝑃𝑎𝑠 − 𝑃𝑖𝑠 ) + 𝜂𝑎𝐹𝑎 − 𝜂𝑖𝐹𝑖 ) + (𝑃𝑖𝑠 + 𝜂𝑖𝐹𝑖 ).

(4)

This equation frames our optimization problem, aiming to find 𝐹𝑎
and 𝐹𝑖 that minimize overall power consumption in burst mode.

Our optimization primarily targets the burst mode, given its

intricate dynamics and power-saving potential. However, it should

be noted that the power consumption of the CS mode follows a

straightforward formula, since the system is always completely

active: 𝑃cs = 𝑃cs𝑠 + 𝜂cs𝐹cs.

3.2 System Characterization
The system characterization involves extracting the timing and

power parameters of the system required by our formulation, par-

ticularly timing overheads for FLL reconfiguration (𝑡𝑓 ) and module

power transitions (𝑡𝑝 ). Accurate modeling of 𝑡𝑓 , crucial due to its

potential variation with the frequencies 𝐹𝑎 and 𝐹𝑖 , requires measur-

ing transition times across a broad frequency range, encompassing

both low and high spectrums. Analysis of these measurements can

inform the development of a predictive model through regression

or other fitting techniques. Additionally, the transfer efficiency con-

stant, 𝛽 , is determinable by measuring sample transfers from AFE

to MCU at different frequencies.

Choosing which system modules to keep active and which ones

to power down is also important. In CS mode, only those modules

essential to implement continuous sample acquisition need to be

active, with others power-gated. In contrast, during burst mode’s

idle state, all modules except those essential for waking up and

maintaining data integrity are power gated to achieve minimal

power; in burst mode, the CPU and most of the rest of the system

modules need to be activated only during the active state to respond

to the interrupts generated by the AFE.

Accurate optimization requires detailed energy profiles, includ-

ing static and dynamic components, for each custom-defined ac-

quisition mode. It requires individual power consumption mea-

surements of each system module. However, directly measuring

module-specific power in a circuit is often unfeasible. An effective

alternative involves utilizing post-place-and-route (post-PNR) anal-

ysis. This technique uses the netlist to derive the relative power

contributions of each module, allowing an estimation of individ-

ual module power based on the total system power measured on

the actual platform. For separating the static (𝑃𝑆 ) and dynamic

power coefficient (𝜂), we measure the power across frequencies at a

constant voltage for a specific application, then fit a linear model, ac-

cording to Equation 2, to these measurements. In scenarios lacking

netlist access, estimations must rely on best-guess approximations

or published data for similar components in analogous technologies.

3.3 System Optimization
Our objective is to minimize power consumption by optimizing the

system frequencies (𝐹𝑎 and 𝐹𝑖 ) in Equation 4 under two scenarios

of uniform or dynamic frequencies and various settings, especially

considering 𝑡𝑓 ’s impact, which can vary between platforms.

Uniform Frequency Optimization: If the system uses always

the same frequency, 𝐹 = 𝐹𝑖 = 𝐹𝑎 , the FLL configuration time is zero

(𝑡𝑓 = 0). This modifies Equation 4 as follows:

𝑃 =
𝑎0

𝐹
+ 𝑎1𝐹 + 𝑎2, (5)

where 𝑎0 = 𝐹𝑏𝛽𝑁𝑠 (𝑃𝑎𝑠 − 𝑃𝑖𝑠 ), 𝑎1 = 𝜂𝑖 + 𝐹𝑏 (𝑡𝑝 ) (𝜂𝑎 − 𝜂𝑖 ),
𝑎2 = 𝐹𝑏𝛽𝑁𝑠 (𝜂𝑎 − 𝜂𝑖 ) + 𝑃𝑖𝑠 + 𝐹𝑏 (𝑡𝑝 ) (𝑃𝑎𝑠 − 𝑃𝑖𝑠 )

Optimizing for minimum power consumption leads us to find the

optimal frequency, 𝐹 ∗, by setting the derivative of 𝑃 with respect

to 𝐹 to zero, 𝑃
′
= 𝑎1𝐹

2 − 𝑎0 = 0, which gives:

𝐹 ∗ =
√︂

𝑎0

𝑎1
=

√︄
𝐹𝑏𝛽𝑁𝑠 (𝑃𝑎𝑠 − 𝑃𝑖𝑠 )
𝜂𝑖 + 𝐹𝑏𝑡𝑝 (𝜂𝑎 − 𝜂𝑖 )

. (6)

Dynamic Frequency Optimization, General Case: In the

case where frequencies dynamically switch between idle and active

states, and the transition time 𝑡𝑓 depends on these frequencies (𝑡𝑓 =

𝑔(𝐹𝑎, 𝐹𝑖 )), the power consumption 𝑃 becomes a complex function

of multiple terms involving 𝐹𝑎 and 𝐹𝑖 . For instance, modeling 𝑡𝑓 as

a linear function of the frequency difference introduces terms such

as 𝐹 2𝑎 and 𝐹 2
𝑖
and interactions between 𝐹𝑎 and 𝐹𝑖 , resulting in 𝑃 =

ℎ1

(
𝐹𝑎, 𝐹𝑖 ,

1

𝐹𝑎
, 𝐹 2𝑎 , 𝐹

2

𝑖
, 𝐹𝑎𝐹𝑖 ,

𝐹𝑖
𝐹𝑎

)
. Due to this complexity, optimization

requires numerical methods.

Even simplifying the scenario by fixing 𝐹𝑖 at the platform’s low-

est frequency (𝐹𝑖 = 𝐹𝑙 ) leads to a reduced complexity in 𝑃 , expressed

as 𝑃 = ℎ2

(
𝐹𝑎,

1

𝐹𝑎
, 𝐹 2𝑎

)
. However, this simplification still necessitates

numerical solutions due to the cubic equation from the derivative

with respect to 𝐹𝑎 . This highlights that, in this case, an analytical

solution is not feasible and the designer will need to use numerical

methods on Equation 4 with the parameters of the concrete system

to reach optimized frequencies.
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Dynamic Frequency Optimization, Constant Overhead: For
platforms where the timing overhead is constant 𝑡𝑎 + 𝑡𝑓 = 𝐶 , as 𝐹𝑖
solely influences 𝑃𝑖 in Equation 1, we should put 𝐹𝑖 to the lowest

frequency our platform supports, 𝐹𝑖 = 𝐹𝑙 , to minimize 𝑃 . Given this,

Equation 4 is modified as follows:

𝑃 =
𝑎3

𝐹𝑎
+ 𝑎4𝐹𝑎 + 𝑎5, (7)

where 𝑃𝑖,𝑙 = 𝑃𝑖𝑠 + 𝜂𝑖𝐹𝑙 ,
𝑎3 = 𝐹𝑏𝛽𝑁𝑠 (𝑃𝑎𝑠 − 𝑃𝑖,𝑙 ), 𝑎4 = 𝐹𝑏 (𝑡𝑝 + 𝑡𝑓 )𝜂𝑎,
𝑎5 = 𝑃𝑖,𝑙 + 𝐹𝑏𝛽𝑁𝑠𝜂𝑎 + 𝐹𝑏 (𝑡𝑝 + 𝑡𝑓 ) (𝑃𝑎𝑠 − 𝑃𝑖,𝑙 ).

Optimization targets finding the optimal active frequency, 𝐹 ∗𝑎 , by
equating the derivative of 𝑃 with respect to 𝐹𝑎 to zero, resulting in:

𝐹 ∗𝑎 =

√︂
𝑎3

𝑎4
=

√︄
𝛽𝑁𝑠 (𝑃𝑎𝑠 − 𝑃𝑖,𝑙 )
(𝑡𝑝 + 𝑡𝑓 )𝜂𝑎

. (8)

Dynamic Frequency Optimization, No Overhead: In an ideal
case without transition and configuration overheads (𝑡𝑎 + 𝑡𝑓 ≈ 0),

the optimal frequency, according to Equation 8, trends towards

the platform’s maximum capability. Thus, for maximum energy

efficiency, setting 𝐹𝑎 to the highest supported frequency (𝐹ℎ) at the

platform’s lowest voltage is recommended.

In summary, optimal frequency selection depends on whether

frequencies between states are uniform (𝐹𝑎 = 𝐹𝑖 ) or vary (𝐹𝑖 ≠

𝐹𝑎). Uniform frequency optimization is guided by Equation 6. For

dynamic frequencies, general scenarios with frequency-dependent

overheads require numerical methods like Gradient Descent for

power minimization. With fixed overheads, Equation 8 determines

𝐹𝑎 with 𝐹𝑖 set to the lowest frequency (𝐹𝑙 ). Ideally, with minimal

overheads (𝑡𝑎 + 𝑡𝑓 = 0), frequencies are set to their operational

extremes (𝐹𝑎 = 𝐹ℎ and 𝐹𝑖 = 𝐹𝑙 ) for maximum efficiency.

4 EXPERIMENTAL SETUP
4.1 Case Study Applications
This work focuses on two applications as case studies, chosen for

their representation of scenarios with low-duty cycles where acqui-

sition power significantly impacts overall energy efficiency. The

first application is heartbeat classification (HBC), using electrocar-

diogram (ECG) signals for real-time detection of abnormal heart

patterns indicative of common heart diseases. This application is

explored in three configurations: 1-lead, 3-lead, and 12-lead ECG,

each sampled at 256Hz, as detailed in [6]. HBC also showcases a

dynamic application, where the number of leads may change dur-

ing runtime, which highlights the utility of our methodology for

dynamic applications. The second application, real-time cognitive

workload monitoring (CWM), uses electroencephalogram (EEG)

signals to monitor cognitive states on wearable devices, showcasing

its utility through a four-lead EEG setup sampled at 256Hz [19]. The

selection of HBC and CWM as case studies highlights examples of

applications where efficient power management during acquisition

is crucial because of their inherently low-duty cycles.

4.2 Case Study Platform: HEEPocrates
Our experimental setup utilizes the HEEPocrates platform [16],

although our platform-independent methodology can be applied

to any hardware setup. HEEPocrates is a system evolving from the

X-HEEP architecture optimized for ultra-low-power edge comput-

ing in healthcare. This RISC-V-based platform integrates a host

processor with specialized accelerators for a diverse computational

ecosystem. HEEPocrates employs an advanced power management

strategy, which includes clock-gating, power-gating, and RAM re-

tention for detailed power control. However, certain chip domains,

such as the always-on peripheral, cannot be power-gated. The

platform design supports dynamic voltage and frequency scaling

through an FLL, facilitating flexible frequency adjustments for ac-

quisition and processing.

In addition, this section covers two key characterizations of the

HEEPocrates platform: FLL timing analysis and modeling, and de-

tailing the energy consumption profiles for each acquisition mode.

Table 1: Static power consumption (𝑃𝑠 ) and dynamic power coeffi-
cients (𝜂) of HEEPocrates for different acquisition modes at 0.8 V.

Mode Ps (µW) η(µW/MHz)

Continuous Sampling (CS) 231.66 10.49

Burst Mode (Idle) 117.77 2.24

Burst Mode (Active) 349.20 22.83

4.2.1 Energy Profiles of HEEPocrates. For power profile assessment

in each acquisition mode on the HEEPocrates platform [16], it is

crucial to first determine which modules are used per mode. In CS

mode, for energy-efficient data streaming via DMA, non-essential

modules like the CPU, debug unit, PLIC, GPIO, timers, I2C, UART,

and accelerators are power-gated. Conversely, burst mode’s idle

state retains only essential modules: bus, memory, FLL, Boot ROM,

GPIO, SoC controller, fast interrupt controller, to ensure system

wake-up and prevent data loss. During the active state of burstmode,

the CPU and most modules are reactivated, except for accelerators.

To assess the power profiles of these modes, we combined em-

pirical measurements across the voltage range of the platform with

post-PNR simulations to analyze the relative power contributions

of each module. This approach allowed us to estimate the static

and dynamic power components for each mode at 0.8V, as de-

tailed in Section 3.2 and summarized in Table 1. The extraction of

static power coefficients (𝑃𝑆 ) and dynamic power coefficients (𝜂)

was crucial for our optimization, demonstrating the necessity of a

meticulous characterization process.

4.2.2 FLL Timing Analysis and Modeling. In this section, we exam-

ine the timing overhead associated with FLL reconfiguration on the

HEEPocrates platform, representing a typical FLL in RISC-V-based

ULP platforms [4]. We then present a model for FLL configuration

times, critical to our optimization strategy in Section 3 aimed at

improving power efficiency for the case studies in Section 5.1.

In our analysis, we measured the FLL’s transition times to lock

onto various frequencies at the platform’s minimum voltage of

0.8 V. Our findings indicate that transitions to frequencies closer to

the current one incur less overhead than transitions to more dis-

tant frequencies. Moreover, transitions involving lower frequencies

face increased overheads due to 1) longer register read and write

times for actions like controller reprogramming, and 2) extended

stabilization times at reduced FLL clock rates.

Given that we observed the shortest FLL reconfiguration times

for frequencies slightly above 1 MHz, with times notably increasing
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Figure 3: Model predictions vs. actual HEEPocrates FLL transition
times. For example, the green point highlights the model-predicted
and measured transition time for switching from 110 MHz to 5 MHz.

as frequencies decreased below this threshold, we designed our FLL

model to employ both direct and reciprocal values of initial (𝐹1)

and target (𝐹2) frequencies to represent the non-linear relationship

across the frequency spectrum accurately. We used a polynomial

model up to the third degree, incorporating squared, cubed, and

interaction terms, effectively mapping frequency changes to config-

uration times. The accuracy of our third-degree polynomial model

is evidenced in Figure 3, which compares the actual measured FLL

transition times with the predictions of our model from various

starting frequencies. The precision of the model, underscored by

an 𝑅2 score of 0.9817, attests to its efficacy in reliably forecasting

FLL configuration times across various frequency transitions.

5 EXPERIMENTS
5.1 Optimal Frequencies for Our Case Studies
This section evaluates power efficiency after applying our proposed

frequency optimization methodology to the biomedical applica-

tions introduced in Section 4.1, comparing the results against the

conventional methodologies discussed in Section 2. Given the diver-

sity of platforms used in existing studies, we adapt methods from

the literature to HEEPocrates, considering an ADC buffer size of

256 samples. This comparison allows us to highlight the energy

efficiency gains achieved through our optimization methodology.

In our comparative analysis, we revisit the primary approaches

for managing the acquisition phase in wearables: the uniform All-

On approach without specialized acquisition policies; the CS mode

for energy-efficient continuous sampling; and the Blh approach,

which toggles between idle and active states at the platform’s lowest

and highest frequencies within the lowest voltage setting. For Blh,

we set frequencies to 32 kHz (idle) and 170MHz (active) at 0.8V,

which corresponds to HEEPocrates’ frequency range. For CS mode,

to optimize dynamic power, we adjust operating frequencies to just

exceed each application’s bandwidth requirements. For example, the

HBC_3 application’s need for three ECG signals from 256Hz results

in setting the frequency to approximately 38 kHz after applying

a compensation factor (𝜆 = 50) for SPI communication efficiency,

minimizing their dynamic power consumption.

We explore two configurations to optimize frequencies for burst

mode, with the aim of minimal power consumption: (1) uniform
frequency, setting 𝐹𝑎 = 𝐹𝑖 and eliminating the FLL configuration

time (𝑡𝑓 = 0), resulting in an optimal uniform frequency between

idle and active states (referred to as Buni, detailed in Table 2), based

on Equation 6; and (2) dynamic frequency, varying frequen-

cies between idle (𝐹𝑖 ) and active (𝐹𝑎) states, incorporating the FLL

configuration time model (Section 4.2.2) to optimize Equation 4

(identified as Bdyn, with optimized frequencies and their power

consumption in Table 2).

Table 2 illustrates the power improvement achieved through

our proposed frequency optimization strategies. In particular, the

Bdyn configuration demonstrates superior power efficiency for the

HBC_1, HBC_3, and CWM_4 applications, benefiting from the dy-

namic adjustment of frequencies between the idle and active states.

This aligns with the FLL reconfiguration to optimize energy use.

Conversely, for the HBC_12 application, which demands higher

bandwidth, the Buni configuration emerges as more efficient, high-

lighting the advantage of maintaining a uniform frequency for

high-bandwidth applications. This observation underscores the

adaptability of our approach to application-specific demands. The

table also presents the frequencies corresponding to the minimized

power consumption, allowing us to observe the direct impact of

our optimization on the operational frequencies.

5.2 Total Energy Consumption Improvement
To understand the impact of our optimized frequency settings on

energy consumption, considering both acquisition and processing

times is crucial. The optimal frequency is determined by selecting

the lowest voltage that enables a frequency where the system can

meet its deadlines, then picking the highest possible frequency at

that voltage to enable the fastest return to sleep mode (low-power

acquisition phase). Figure 4 shows HBC_12’s total energy consump-

tion across processing frequencies, employing an optimal setting

during acquisition, Buni. Thus, within their operational windows

(15 s for HBC apps and 56 s for CWM_4), HBC_1, HBC_3, HBC_12,

and CWM_4 execute in 22, 60, 210, and 2612ms, respectively, at

170MHz, each with a power of 4322.5 µW on HEEPocrates.
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Figure 4: Total energy consumption for HBC_12 in one window,
varying processing frequency, using Buni for acquisition.

We evaluated each application’s energy consumption over a sin-

gle operational windowwith varying acquisition strategies. Figure 5

presents the normalized energy consumption per second, dividing

the energy of a single window by the duration of the window, allow-

ing standardized comparisons of improvements in energy efficiency

in applications with different window times.

Figure 5 delineates the energy distribution between the pro-

cessing and acquisition phases of each methodology. It visually

emphasizes the efficiency gains from our optimization, with the
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Table 2: Comparison of acquisition power consumption and selected frequencies for HBC_1, HBC_3, HBC_12, and
CWM_4 applications between our proposed method and methods found in the literature.

Method
Applications

HBC_1 HBC_3 HBC_12 CWM_4

Power (uW) Freq (MHz) Power (uW) Freq (MHz) Power (uW) Freq (MHz) Power (uW) Freq (MHz)

Buni 120.1 0.51 121.9 0.89 126.4 1.78 122.6 1.03

Bdyn 118.8 0.08, 3.53 120.6 0.10, 3.64 128.3 0.13, 3.74 121.4 0.11, 3.67

Blh
1

140.1 0.032, 170 184.5 0.032, 170 384.6 0.032, 170 206.8 0.032, 170

CS
2

232.0 0.032
4

232.1 0.038 233.3 0.15 232.2 0.05

All-On
3

4322.5 170 4322.5 170 4322.5 170 4322.5 170

1
Blh approach as used in [1, 5].

2
CS mode adopted in [14, 20, 21].

3
All-On method utilized in [7, 8, 11–13].

4
The lowest supported frequency in HEEPocrates.
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Figure 5: Normalized energy consumption for case study appli-
cations using different techniques, highlighting the proportion of
energy allocated to acquisition and processing phases.

All-On approach excluded because of its disproportionately high

energy consumption. In all of our case studies, our optimized fre-

quencies lead to substantial energy savings. Specifically, for HBC_1,

HBC_3, and CWM_4 applications, the dynamic frequency approach

(Bdyn) consistently outperforms other methods, showcasing energy

savings of 14.5 %, 31.7 %, and 20.4 % over the Blh method, and 47.5 %,

44.7 %, and 25.0 % over the CS method, respectively. Meanwhile, for

the high-bandwidth HBC_12 application, maintaining a uniform

frequency (Buni) is found to be the most effective, yielding a 57.9 %

and 36.3 % reduction in total energy consumption compared to the

Blh and CS approaches.

6 CONCLUSIONS
In this study, we have introduced a novel approach for optimizing

power during the biosignal acquisition phase in wearables by se-

lecting optimal frequencies for low-power acquisition states. By

modeling the system and analyzing key parameters, we have for-

mulated the acquisition power based on target frequencies. Our

analysis identifies optimal frequencies for both uniform and dy-

namic frequency selection between idle and active states. This

includes variations where overheads depend on target frequencies,

are fixed, or are negligible, catering to a wide range of operational

contexts. We characterize our case study platform, detailing the FLL

modeling and power coefficients for each state, which underpinned

our optimization. Our methodology, applied to different biomedical

applications, demonstrated notable energy savings and underscored

the potential to extend the battery life of wearable devices.
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