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Abstract

Quantum computers have the potential to surpass conventional computing, but
they are hindered by noise which induces errors that ultimately lead to the loss of
quantum information. This necessitates the development of quantum error correc-
tion strategies for large-scale quantum information processors. Bosonic quantum
codes offer a promising solution, enabling quantum error correction on redundantly
encoded information in a quantum harmonic oscillator. Two of the main sources
of errors encountered in bosonic systems are photon loss and dephasing. Multiple
bosonic quantum codes have been proposed and experimentally realized in the
recent past.

However, devising hardware-efficient bosonic quantum codes that are able to
correct photon loss and dephasing to consistently enhance the life-time of logical
quantum information beyond break-even, is a pressing problem in the scientific
community. The cat code is a promising candidate as a biased-noise qubit, being
able to correct well against dephasing errors, but it suffers from loss errors.

In this thesis, we propose the squeezed cat code as way to simultaneously correct
for photon loss and dephasing errors. We provide a full numerical and analytical
analysis of the squeezed cat code, including protocols for encoding, quantum gates,
error characterization, and an optimized recovery procedure suitable for implemen-
tation on current quantum hardware platforms. Through numerical simulations
using realistic parameters, we demonstrate that even moderate squeezing enables
the squeezed cat code to significantly outperform the conventional cat code in cor-
recting particle loss errors. Notably, the squeezed cat code improves resilience to
dephasing errors at the same time, enhancing the noise bias of logical error errors.
Our main motivation lies in the fact that as squeezing is a Gaussian operation,
the generation and manipulation of the squeezed cat code can be achieved through
quadratic operations, without the need to introduce higher-order processes.

To simulate the dynamics of driven-dissipative bosonic systems accurately and
efficiently, with bosonic codes in mind specifically, new numerical methods need
to be developed. For bosonic codes, tailored numerical methods can enable the
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study of leakage out of the code space, effects of time-dependent and noisy gate
operations, or dissipative phase transitions.

The second part of this thesis addresses this problem by focusing on a new
variational approach for efficiently simulating the dynamics of open interacting
many-boson quantum systems. The method uses an ansatz for the density matrix
expanded in a basis of photon-added coherent states. This makes it well-suited
for driven-dissipative systems where the state exhibits quantum fluctuations on
top of a displaced field, enabling the simulation of multiple coupled modes with
large occupation numbers that pose a challenge for Fock-space methods. Several
example simulations are provided that validate the method and illustrate its po-
tential for predictively modeling interacting bosonic systems. We further extend
this method to include the rotational symmetry of cat qubits and showcase the
efficient simulation of cat qubit dynamics.

Taken together, this thesis presents important theoretical and computational
advancements towards realizing and simulating hardware-efficient bosonic quan-
tum codes required for scalable and fault-tolerant quantum information processing.

Keywords: open quantum systems, quantum error correction, bosonic quantum
codes, quantum harmonic oscillator, loss, dephasing, squeezed cat code, coherent-
state ladder, cat-state ladder, variational time-dependent principle, coherent states



Résumé

Bien que les ordinateurs quantiques aient le potentiel de surpasser l’informatique
conventionnelle, cela est rendu difficile en raison du bruit. En effet, il induit des
erreurs qui conduisent à terme à la perte d’information quantique. Pour cela, la
réalisation de processeurs d’information quantique à grande échelle nécessite le dé-
veloppement de stratégies de correction d’erreurs quantiques. Les codes quantiques
bosoniques offrent une solution prometteuse permettant la correction d’erreurs
quantiques sur l’information codée de manière redondante dans un oscillateur har-
monique quantique. Les principales sources d’erreurs rencontrées dans les systèmes
bosoniques sont la perte de photons et le déphasage. Plusieurs codes quantiques
bosoniques ont récemment été proposés et réalisés expérimentalement.

Cependant, la conception de codes quantiques bosoniques efficaces sur le plan
matériel, capables de corriger la perte de photons et le déphasage afin d’améliorer
systématiquement la durée de vie de l’information quantique logique en pratique,
constitue un problème urgent dans la communauté scientifique. Le cat code est un
candidat prometteur en tant que qubit biased-noise, étant capable de efficacement
corriger les erreurs de déphasage, bien que sensible aux erreurs de perte.

Dans cette thèse, nous proposons le squeezed cat code comme un moyen de
corriger simultanément la perte de photons et les erreurs de déphasage. Nous four-
nissons une analyse numérique et analytique complète du squeezed cat code, y
compris des protocoles d’encodage, des portes quantiques, la caractérisation des
erreurs ainsi qu’une procédure de correction optimisée adaptée à sa mise en œuvre
sur les plates-formes quantiques actuelles. Grâce à des simulations numériques uti-
lisant des paramètres réalistes, nous démontrons que même un squeezing modéré
permet au squeezed cat code de surpasser considérablement le cat code conven-
tionnel en matière de correction des erreurs induites par les pertes de particules.
En outre, le squeezed cat code améliore la résilience aux erreurs de déphasage,
renforçant ainsi le noise bias des erreurs logiques. Notre principale motivation ré-
side dans le fait que, étant donné que le squeezing est une opération gaussienne,
la génération et la manipulation du squeezed cat code peuvent être réalisées par
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des opérations quadratiques, sans qu’il soit nécessaire d’introduire des processus
d’ordre supérieur.

Afin de simuler avec précision et efficacité la dynamique des systèmes boso-
niques forcés et dissipatifs, en gardant spécifiquement à l’esprit les codes boso-
niques, de nouvelles méthodes numériques doivent être développées. De telles mé-
thodes numériques peuvent permettre l’étude des fuites hors de l’espace du code,
de l’effet de portes bruitées et dépendantes du temps, ou des transitions de phase
dissipatives.

La deuxième partie de cette thèse aborde ce problème en se concentrant sur
une nouvelle approche variationnelle pour simuler efficacement la dynamique des
systèmes quantiques ouverts constitués de multiples bosons en interaction. La mé-
thode utilise un ansatz pour la matrice de densité exprimée dans une base d’états
dits photon-added coherent states. Cela le rend adapté aux systèmes forcés et dis-
sipatifs dont l’état présente des fluctuations quantiques sur un champ déplacé,
permettant la simulation de plusieurs modes couplés avec de grandes populations
photoniques, qui constituent un défi pour les approches dans l’espace de Fock. Plu-
sieurs exemples de simulations sont fournis, qui valident la méthode et illustrent
son potentiel pour la modélisation prédictive de systèmes bosoniques en interac-
tion. Nous étendons cette méthode afin d’inclure la symétrie de rotation des cat
qubits et présentons des simulations efficaces de leur dynamique.

Dans l’ensemble, cette thèse présente d’importantes avancées théoriques et nu-
meriques visant à la réalisation et la simulation de codes quantiques bosoniques
efficaces sur le plan matériel, un préalable au traitement tolérant aux erreurs de
l’information quantique à grande échelle.

Mots-clés : systèmes quantiques ouverts, correction d’erreur quantique, codes
quantiques bosoniques, oscillateur harmonique quantique, pertes photoniques, dé-
phasage, squeezed cat code, états cohérents, principe variationnel dépendant du
temps



Zusammenfassung

Quantencomputer haben das Potenzial, herkömmliche Computer zu übertreffen,
werden jedoch durch Rauschen behindert, welches Fehler verursacht die letztend-
lich zum Verlust von Quanteninformation führen. Dies erfordert die Entwicklung
von Quantenfehlerkorrekturstrategien für große Quanteninformationsprozessoren.
Bosonische Quantencodes bieten eine vielversprechende Lösung und ermöglichen
eine Quantenfehlerkorrektur an redundant codierter Information in einem harmo-
nischen Quantenoszillator. Eine der Hauptfehlerquellen in bosonischen Systemen
sind Photonenverlust und Dephasierung. In der jüngeren Vergangenheit wurden
mehrere bosonische Quantencodes vorgeschlagen und experimentell realisiert.

Allerdings ist die Entwicklung hardwareeffizienter bosonischer Quantencodes,
die in der Lage sind, Photonenverlust und Dephasierung zu korrigieren, um die
Lebensdauer logischer Quanteninformation über die Gewinnschwelle hinaus konti-
nuierlich zu verlängern, ein dringendes Problem in der wissenschaftlichen Gemein-
schaft. Der Cat-Code ist ein vielversprechender Kandidat als biased-noise-Qubit,
da er Dephasierungsfehler gut korrigieren kann, aber unter Fehlern durch Photo-
nenverlust leidet.

In dieser Arbeit schlagen wir den komprimierten Cat-Code (Squeezed Cat-
Code) als Möglichkeit vor, gleichzeitig Photonenverlust und Dephasierungsfehler
zu korrigieren. Wir stellen eine vollständige numerische und analytische Analyse
des komprimierten Cat-Codes vor, einschließlich Protokollen zur Kodierung, Quan-
tengatter, Fehlercharakterisierung und einem optimierten Wiederherstellungsver-
fahren, das für die Implementierung auf aktuellen Quanten-Hardwareplattformen
geeignet ist. Durch numerische Simulationen mit realistischen Parametern zeigen
wir, dass der komprimierte Cat-Code selbst durch moderates Squeezing den her-
kömmlichen Cat-Code bei der Korrektur von Partikelverlustfehlern deutlich über-
trifft. Insbesondere verbessert der komprimierte Cat-Code gleichzeitig die Wider-
standsfähigkeit gegenüber Dephasierungsfehlern und erhöht so die Rauschverzer-
rung logischer Fehler. Unsere Hauptmotivation liegt in der Tatsache, dass das
Komprimieren/Squeezing eine Gausssche Operation darstellt und die Generierung
und Manipulation des komprimierten Cat-Codes durch quadratische Operationen
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erreicht werden kann, ohne dass Prozesse höherer Ordnung eingeführt werden müs-
sen.

Um die Dynamik getrieben-dissipativer bosonischer Systeme genau und effizi-
ent zu simulieren, insbesondere unter Berücksichtigung bosonischer Codes, bedarf
es der Entwicklung neuer numerische Methoden. Für bosonische Codes können
maßgeschneiderte numerische Methoden die Untersuchung von Leckagen aus dem
Coderaum, Auswirkungen zeitabhängiger und verrauschter Gatter oder dissipati-
ver Phasenübergänge ermöglichen.

Der zweite Teil dieser Arbeit befasst sich mit diesem Problem, indem er sich
auf einen neuen Variationsansatz zur effizienten Simulation der Dynamik offen
wechselwirkender Quantensysteme mit mehreren Bosonen konzentriert. Die Me-
thode verwendet einen Ansatz für die Dichtematrix, der auf der Basis photone-
naddierter kohärenter Zustände erweitert wird. Dadurch eignet sie sich gut für
getrieben-dissipative Systeme, bei denen der Zustand Quantenfluktuationen über
einem kohärenten Feld aufweist, was die Simulation mehrerer gekoppelter Moden
mit großen Besetzungszahlen ermöglicht, die eine Herausforderung für herkömm-
liche Fock-Raum-Methoden darstellen. Es werden mehrere Beispielsimulationen
vorgestellt, die die Methode validieren und ihr Potenzial für die prädiktive Model-
lierung interagierender bosonischer Systeme veranschaulichen. Wir erweitern diese
Methode weiter, um die Rotationssymmetrie von Cat-Qubits einzubeziehen, und
demonstrieren deren effiziente Simulation der Dynamik.

Zusammengenommen stellt diese Arbeit wichtige theoretische und numerische
Fortschritte bei der Realisierung und Simulation hardwareeffizienter bosonischer
Quantencodes dar, die für eine skalierbare und fehlertolerante Quanteninformati-
onsverarbeitung erforderlich sind.

Stichwörter: offene Quantensysteme, Quantenfehlerkorrektur, bosonische Quan-
tencodes, harmonischer Quantenoszillator, Photonenverlust, Dephasierung, kom-
primierter Cat-Code, kohärente Zustandsleiter, Cat-zustandsleiter, Variationszeit-
abhängiges Prinzip, kohärente Zustände
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We could, of course, use any notation we want; do not laugh at notations;
invent them, they are powerful. In fact, mathematics is, to a large extent,
invention of better notations.

— Richard Feynman, The Feynman Lectures on Physics Vol 1

Notation and Abbreviations

In the following work, we set ℏ = 1 for notational convenience. We use the
following definitions and abbreviations if not explicitly stated otherwise in the
main text. We avoid an excessive use of acronyms and abbreviations in this thesis,
but nevertheless use some of them occasionally throughout this work. We advise
the reader to use common-sense reasoning should the notation be ambiguous in
some parts of the manuscript.

Abbreviations

GPE Gross-Pitaevskii equation
TDVP time-dependent variational principle

QEC quantum error correction
BQC bosonic quantum code
SDP semidefinite program

CPTP completely positive and trace-preserving
ATS asymmetrically-threaded SQUID

GKP code Gottesman-Kitaev-Preskill code
KL conditions Knill-Laflamme conditions
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Symbols and Notations

We use the following symbols and notations.

Chapter 2

L Liouvillian superoperator
D[Â] dissipator with jump operator (Lindblad operator) Â

Op(H) operator space (H⊗H) of the Hilbert space H

Chapter 3

E noise channel
R recovery channel
S qubit-bosonic mapping
Q combined quantum channel Q = S−1 ◦ R ◦ E ◦ S

M[i,k],[j,k′] Knill-Laflamme tensor M[i,k],[j,k′] ≡ ⟨ψi|Ê†kÊk′ |ψj⟩
NL[γ] loss channel
ND[γϕ] dephasing channel

F channel fidelity
Fe entanglement fidelity
Π̂ parity operator Π̂ = eiπâ†â

Chapter 4

D̂(α) displacement operator
Ŝ(ξ) squeezing operator∣∣∣C±α,ξ

〉
squeezed cat states
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Chapter 5

S, SN coherent-state ladder basis (of order N)
Scat, Scat,N cat-state ladder basis (of order N and total number of 2N basis

states)
O matrix representation of operator Ô in a given basis
S overlap matrix with matrix elements Si,j = ⟨φi|φj⟩

C0 quantum-geometric tensor with elements [C0]kl
bc = ⟨∂θk

φb| [1̂ −
P̂S ] |∂θl

φc⟩
Y0 projection of the Liouvillian action on the tangent space of the

basis
[Y0]kba = ⟨∂θk

φb| [1̂− P̂S ]L[ρ̂] |φa⟩
L Liouvillian action on ρ̂ in a given basis with Li,j = ⟨φi|L[ρ̂]|φj⟩

O→ right derivative of an operator Ô with respect to α
O← left derivative of an operator Ô with respect to α
O↔ left-right derivative of an operator Ô with respect to α
P̂S projector onto subspace S
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General Introduction

The revolutions of quantum mechanics

The path of science is marked by several revolutions of discoveries that drastically
changed our description of reality. No single discovery has arguably changed our
understanding of the fabric of our universe as much as that of quantum mechanics.
From the first discoveries by the great minds in the beginning of the 20th century,
quantum mechanics has come a long way, solidifying its central position in the
physical sciences and sparking the conception of new technologies that were un-
thinkable just a few decades ago. It has since emerged as one of the most precisely
experimentally verified theories to date, revealing that the universe is fundamen-
tally quantum, with all its striking phenomena that are hard to comprehend with
our simple human capabilities.

The first revolution of quantum mechanics, emerging in the early 20th cen-
tury, marked a paradigm shift in the understanding of the physical world. This
revolution began with the groundbreaking work of Max Planck in the Year 1900,
who introduced the concept of quantization to explain the radiation emitted from
a black body [1]. At the time, Planck believed this to be a purely heuristic ef-
fect [2], but shortly after, Albert Einstein’s explanation of the photoelectric effect,
utilizing the concept of light quanta (photons), further substantiated the quantum
theory [3]. Einstein was the first to coin the term quantization, characterizing
that the energy of light is not distributed continuously but that light consists of a
finite number of energy quanta that are localized in space, which can be absorbed
or generated only as a whole [3]. Ernest Rutherford and Niels Bohr realized that
the quantization of energy also applies to matter, giving rise to the first quan-
tum model of the atom [4–7] that could explain the discrete emission spectrum
observed in hydrogen.

Later in the 1920s, Werner Heisenberg [8], Erwin Schrödinger [9, 10], and Paul
Dirac [11, 12], among others, laid the foundational pillars of modern quantum
mechanics. These scientists radically changed our description of the atomic and
subatomic levels, demonstrating that at the quantum scale, particles like electrons
behave in ways that defy classical physics’ predictability.
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After the foundational work on the building blocks of quantum mechanics in
the first half of the 20th century came a second, more gradual revolution. The
revolution of quantum technologies. With technological advances, the quantum
mechanical nature of our universe could be experimentally verified. From the
double-slit experiment [13, 14], proving the striking duality of particle and wave,
and the destructive role of measurement, to the experimental verification of quan-
tum entanglement [15], proving the intrinsic non-local nature of light and matter
that necessitates a joint description of spatially separated systems.

Not only did the quantum mechanical nature of light and matter become ex-
perimentally testable to an unprecedented degree, but technological advances such
as nano-fabrication and cryogenics allowed the development of quantum technolo-
gies to go beyond the usefulness in science laboratories. Devices that use the
fundamental principles of quantum mechanics have led to a plethora of useful ap-
plications. They allow for enhanced sensing devices [16] such as atomic clocks,
superconducting interference devices for geology, magnetic resonance imaging de-
vices for medical applications, or high-resolution spectroscopes. Also quantum
dots have found their way into displays for electronic devices, providing screens
with lower energy consumption.

The dawn of quantum computing

Another quantum revolution, currently in full swing, involves manipulating the
information of quantum systems. Classical computers, with their binary system
of bits represented by either 0s or 1s, have been the backbone of technological
advancement, transforming every aspect of our lives. As information is always
physical [17], one might wonder what the information in quantum systems is and
how it can be manipulated to perform computations. In the early 1980s, a new
computational paradigm began to emerge. Paul Benioff and Youri Manin were
among the first to conceptualize a quantum mechanical model of a computer that
performed operations, showing that a Turing machine could be implemented using
quantum devices [18–20]. At a famous talk held at MIT in 1981, Richard Feyn-
man clearly articulated the need for a quantum mechanical simulation device to
simulate physical processes:

Nature isn’t classical, dammit, and if you want to make a simula-
tion of nature, you’d better make it quantum mechanical, and by golly
it’s a wonderful problem, because it doesn’t look so easy. (Feynman,
(1982) [21])

He realized that digital computers are not adequate machines for efficiently simu-
lating quantum systems. One of the arguments is that the state space of quantum



General Introduction 3

mechanical systems needed to fully describe any arbitrary quantum space grows
exponentially with the system’s size, whereas in classical systems, it grows only
linearly. Hence, to simulate another physical system for which quantum mechan-
ical effects cannot be neglected, this has to be done on an intrinsically quantum
device. Turning the problem around, one might wonder what kind of simulations
or computations a quantum device could perform to solve certain problems that
are otherwise classically intractable. Only shortly after Feynman, David Deutsch
formulated and described the first universal quantum computer [22], a device ca-
pable of simulating any other quantum device efficiently.

During the 90s, algorithms were discovered that could be performed on a quan-
tum computer operating on quantum bits instead of classical bits, performing some
well-defined computational tasks more efficiently than any classical computer [22–
26]. These radical ideas were met with criticism by some leading physicists, such
as Landauer[27], Unruh [28], and Haroche [29], as they doubted whether such
quantum machines could be practically implemented for the algorithms to work
effectively.

Others were more hopeful and around the same time, different quantum hard-
ware platforms were proposed and studied that would allow for universal control
and measurements to perform quantum computational tasks, such as the semicon-
ductor spin-qubits [30], quantum optics [31, 32], trapped ions [33], and supercon-
ducting circuits [34–36].

Fast-forwarding until today, we see a flourishing field of quantum computing,
with the development of many different hardware platforms trying to implement a
universal quantum computer that can tackle useful applications that are beyond
reach for classical computers. Notable experiments have demonstrated (somewhat
artificial) tasks that can be performed in a very short time with few physical re-
sources on a quantum computer that would take decades or even centuries for its
classical counterpart [37]. As it stands, researchers from both academic institu-
tions and industry are making tremendous efforts to engineer large-scale reliable
quantum computing devices that can run practically useful quantum algorithms.

Noise and the need for quantum error correction

Roughly 40 years since the inception of the theory of quantum computing, we
find ourselves in a challenging yet hopeful situation. Quantum technologies have
made remarkable progress in the last two decades, enabling the coherent control
of multiple qubits to a degree that allows for the entanglement of many physical
constituents. Yet, contrary to what one might expect, scaling up the qubit count
in the hardware does not seem to easily increase the computational power of the
quantum device in the same way.
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At the heart of this problem lies noise that ultimately corrupts the information
stored in the quantum states of a physical system. Any quantum system inevitably
interacts – in some way or the other – with its surrounding environment, thereby
generating entanglement with a larger system. As such any quantum system must
be considered an open quantum system that couples to some kind of external de-
grees of freedom. At room temperature, many quantum effects are very quickly
washed out due to the large kinetic thermal fluctuations within the system com-
pared to the discrete quantized energy levels of the quantum system. Summarized
under the term decoherence, these unwanted interactions are – to a large extent –
one of the main reasons why many quantum phenomena are not observed in our
daily lives. As a result, quantum devices often need to be cryogenically cooled to
prevent as much unwanted interaction as possible with their surroundings in order
to control the system accurately and for a long enough time. Otherwise, the envi-
ronment will quickly introduce irreversible errors that will corrupt all information.
However, for quantum devices with many physically coupled constituents, this
seems to be not enough. Ever so slight interactions can quickly propagate through
the entire quantum system, detrimentally affecting subsequent computations [38,
39].

The current hardware limitations of increasing the coherence times of physical
qubits have sparked interest in the question of whether quantum information can
be encoded redundantly to detect and correct errors along the way, preserving
the information for a longer duration and enabling the implementation of deep
quantum circuits.

Already in the 1940s, Shannon [40] explored ways to encode classical infor-
mation to protect it from noise redundantly. Today, classical error correction
protocols are used in everyday devices and communication channels, such as inter-
net communication, deep-space telecommunication, satellite broadcasting, or data
storage devices.

Early on in the history of quantum computing, many researchers wondered
whether the information in quantum systems could be corrected in a similar way
to classical error correction, which was a naturally more mature field at the time.
Asher Peres [41], Peter Shor [42], Andrew Steane [43], and Alexei Kitaev [44],
among others, recognized the importance of errors in quantum computing and
proposed ways to correct them. Knill and Laflamme notably formulated mathe-
matically precise conditions under which errors can be exactly correctable [45]. It
is important to recognize that errors on quantum devices can manifest themselves
in different ways compared to classical digital information, where the only possible
error can be the flip of a logical bit. A quantum bit, on the other hand, can be
in a superposition of quantum states, which can be characterized as a point on
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Figure 1: Schematic comparison between a classical bit (left) and a quantum bit (right).
While a classical bit can be either in the state (0) or (1), a quantum bit can be in a
complex linear superposition of the basis states |0⟩ and |1⟩, described by a point on the
unit sphere, called Bloch sphere, that is parametrized by the two angles θ and φ.

the unit sphere, called the Bloch sphere, shown in Fig. 1. As such, the complex
phase of the superposition represents an additional dimension of information that
needs to be protected from noise processes. Hence, a quantum bit can be prone
to a bit flip error and a phase flip error (and a combination of both). Further-
more, simple approaches from classical error correction techniques that are based
on copying information are not available for quantum states. Due to the linearity
of quantum mechanical operations, the no-cloning theorem makes the copying of
arbitrary superpositions of quantum states impossible [46, 47]. Different quan-
tum error correction schemes have been developed to redundantly encode a logical
quantum bit into multiple physical qubits. Such approaches have already been
recently experimentally implemented [48] as a first proof of principle. It should
be noted that all such approaches make a trade-off: Increasing the lifetime of the
logical qubit at the expense of larger hardware overhead in the number of phys-
ical constituents. It is expected that in a realistic fully error-corrected quantum
circuit, the vast majority of the resources are spent on error correction [42, 43,
49–52]. Therefore, scaling to large error-corrected quantum devices is limited by
the hardware constraints of connecting and coherently controlling many physical
qubits.

A pressing question, therefore, is:

How can we efficiently encode quantum information redundantly with
a low hardware overhead?

This is one of the central guiding questions addressed in this thesis.
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Bosonic quantum error correction

So far, qubit-based quantum error correction encoding and gate operations on the
encoded qubits at a large scale beyond the quantum error correction threshold
– the point where increasing the number of qubits that participate in the error
correction scheme actually improves the lifetime of the encoded logical information
– still remain elusive [53].

A promising solution to these challenges is offered by a different quantum
computing approach: Continuous variable or bosonic quantum computing. In this
approach to quantum computing, information is stored in the state space of quan-
tum harmonic oscillators. These systems provide a much larger accessible Hilbert
space for the manipulation and encoding of quantum information. A single bosonic
mode can provide an (in principle) infinitely large Hilbert space, which allows the
use of quantum error correction schemes by redundantly encoding information in
the excitations of a quantum resonator while keeping the noise channels fixed [53].
At the same time, bosonic modes are hardware-scalable, as they can be realized
with multiple degrees of freedom in, e.g., space, time, or frequency [53]. They
are able to transfer information from one mode to another and can interact with
other physical systems, such as two-level systems, and thus can reliably serve as
elements in quantum networks.

For these reasons, bosonic systems have been widely studied for quantum sens-
ing [54, 55], quantum communication [56, 57], quantum simulation [58–60], and
quantum computing [61–64].

Different platforms for bosonic systems have been explored, such as trapped
ions [65–67], photonics [66, 68–70], and perhaps most importantly, superconduct-
ing quantum circuits [53, 62, 71–75]. First experiments have showcased the vi-
ability of bosonic quantum error correction [61, 72, 76–78], in some cases even
extending the logical lifetime of quantum information [76, 78].

Correcting quantum errors on bosonic systems, therefore, offer a promising
building block toward large-scale fault-tolerant quantum information processing.

The cat qubit

One notable bosonic qubit that encodes information in a subspace of the full
Hilbert space of a bosonic mode is the so-called cat qubit [79–81]. In this thesis,
we will discuss the cat qubit in more detail and analyze its properties, including
ways to improve it.

Two of the most important noise processes encountered in bosonic systems
are photon loss and dephasing. Photon loss can be understood as an uncontrolled
random emission of excitations (photons) into the environment, whereas dephasing
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can be viewed as random fluctuations of the oscillator’s energy resulting in a loss
of phase-coherence. Correcting these two sources of errors is one of the grand
challenges in bosonic quantum error correction. But correcting errors from both
noise channels equally well is a challenging task and represents an active area of
research.

The cat qubit uses even and odd superpositions of two (classical) coherent
states of opposite direction in phase space – characterized by position and mo-
mentum – as their logical code words. These superpositions are intrinsically non-
classical quantum states that admit a specific rotational symmetry in phase space.
This rotational symmetry results in the code-words consisting only of even and
odd photon number superpositions respectively, and hence the states can be dis-
tinguished by measuring their photon number parity.

It has been shown that the cat qubit provides a way to correct for dephasing
errors efficiently. Strikingly, bosonic codes can be stabilized through a carefully
engineered dissipation [81] that autonomously drives the quantum state back to
the manifold of the bosonic code. For the cat code, an autonomous stabilization
scheme can be realized by engineering an effective two-photon exchange interac-
tion [72, 81–83]. Furthermore, a setting to confine the code-space manifold through
a Kerr-nonlinear Hamiltonian has been proposed and experimentally realized [84–
86].

The cat code presents a type of biased-noise qubit in which some kind of logical
errors are drastically suppressed compared to other errors [81], which makes it
favorable for higher-level quantum error correction schemes for the correction of
the remaining errors [87–89].

The need for a better cat qubit

However, the cat code suffers from photon loss, a dominant source of errors in
many quantum hardware platforms. Due to their photon number parity, upon
the loss of a single photon, the parity is flipped which represents an intrinsically
unrecoverable error. It has been an active question of research whether by keeping
the rotational symmetry of the cat qubit, photon loss error can be – at least
approximately – be corrected. This is one of the driving questions in this work.
Precisely, we ask the question:

Can the cat code be improved in its robustness against loss and dephas-
ing errors?

Making headway in answering this question is of tremendous relevance in the field
of quantum error correction, and in this thesis, we attempt to provide at least one
affirmative answer, by using an essential ingredient: Squeezing.
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Squeezed states of light have already been successfully employed for enhancing
the sensitivity in certain measurement setups, an important example being the
LIGO gravitational wave detector [90, 91]. Using squeezed states of light allows to
go beyond the standard quantum limit in quantum metrology [92, 93] and suggests
the usefulness in bosonic quantum error correction. This is our main motivation
for the proposal of the squeezed cat code, an extension of the cat code that uses
squeezing to drastically enhance the correctability of dephasing errors, while at
the same time enabling the correction of photon loss errors by compressing the
cat state in phase space. In this thesis, we thoroughly analyze the squeezed cat
code and prove analytically and numerically that it can outperform the cat code
in physically relevant regimes. Our findings presented in this thesis were already
corroborated by first experiments that have showcased viability of this approach in
practical implementations [94]. Importantly, by using squeezing as a resource, the
experimental demands for an implementation require only quadratic operations,
just like for the standard cat qubit, and autonomous stabilization schemes can be
employed in a similar way.

Numerically simulating these bosonic codes, the application of time-dependent
quantum gates, and leakage processes outside of the quantum code proves to be
extremely challenging in many scenarios, which leads us to the second focus in
this thesis.

The need for efficient simulations

As the Hilbert space of bosonic systems is in principle infinite dimensional, the
need for efficient numerical methods are very apparent. Most realistic bosonic
quantum states are constrained to a narrow corner or subspace of the Hilbert
space due to the dissipation and Hamiltonian interactions present in the sys-
tem. Conventional methods, dating back to second quantization by Vladimir
Fock [95], construct the Hilbert space from excitations of the vacuum. This ap-
proach can however be inefficient when the average photon number in the system
grows large. In many physically relevant scenarios, the dynamics of a quantum
state of a driven-dissipative system can be well-described by a coherent state and
its excitations that are evolving in phase space. In particular, non-Gaussian ef-
fects frequently occur in non-linear driven-dissipative oscillators, that are difficult
to capture using Gaussian phase-space representations. But describing quantum
fluctuations accurately is often crucial to make correct predictions of dynamical
systems. Semi-classical methods that are based on the assumption of a coherent-



General Introduction 9

state descriptions throughout the entirety during the time-evolution do not capture
quantum fluctuations. Other methods, such as the corner-space renormalization
group [96] or the truncated Wigner approximation [97–99], are challenged by a
dynamically changing phase-space structure or large quantum fluctuations.

As a result, we clearly identify the need to efficiently describe the dynamics of
coherent-state-like states. Much progress has been made in describing the dynam-
ics of quantum two-level systems by parametrizing the quantum state with some
variational parameters and time-evolving the parameters according to variational
principles [100]. So far, however, the application of variational methods to open
bosonic systems has obtained little attention, despite its successful use in other
areas. Motivated by this, we thus we pose the question in the second half of this
thesis:

How can we efficiently simulate the dynamics of open bosonic quantum
systems that are coherent-state-like?

By coherent-state-like, we mean states that can be described well in a basis of
quantum fluctuations on top of coherent states. To answer this question, we pro-
pose the coherent-state ladder time-dependent variational principle, a variational
approach based on a basis of photon-added unnormalized coherent states. This
allows us to use a variational principle to describe dynamical changes in the basis
as well as in the density matrix which describes the quantum states in the co-
evolving basis. We showcase our method on various examples, and demonstrate
its wide range of applicability.

Circling back to bosonic error correction, we might wonder whether we can
incorporate rotational symmetries in such a variational approach. This would
directly enable the simulation of the dynamics of cat qubits and other rotation-
symmetric bosonic codes in a more efficient basis. Hence, we aim to answer the
question:

How can we efficiently simulate the dynamics of cat qubits?

In the last part of the thesis, we illuminate this question by extending the previous
variational approach to rotational symmetries. Although analytical expressions
can no longer be easily obtained, we find that the symmetric extension of the
coherent-state ladder to a cat-state ladder basis is surprisingly straightforward.
The cat-state variational principle developed in this thesis provides an efficient
numerical approach to simulate the dynamics of cat qubits. This allows to study
many different phenomena in bosonic error correction with cat qubits, such as the
leakage outside of the code-space due to noise, the effect of time-dependent and
even noisy gates, and the interaction of multiple interacting cat qubits.
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Overall, this thesis aims to address pressing problems in the field of bosonic
quantum error correction, with particular focus of cat qubits and their simulation
in an open quantum system setting.
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Structure of the manuscript
In Chapter 2, we give an overview of the theory of open quantum systems, an
essential foundation for the work presented in this thesis. We introduce bosonic
systems and consider notable numerical simulation methods. In Chapter 3, we
delve into quantum error correction, with a particular focus on bosonic quantum
systems. There we present precise conditions under which errors can be exactly
corrected and how to asses codes that can only approximately correct errors. As a
special bosonic quantum error correction code, we review the two-component cat
code. In Chapter 4, we present the squeezed cat code, a bosonic quantum error
correction code capable of correcting dephasing and loss errors partially, outper-
forming the standard cat code. This chapter is based on the results presented in
Ref. [α]. Finally, in Chapter 5, we present a method of simulating the dynamics of
dissipative bosonic systems efficiently for coherent-state-like systems using a time-
dependent variational principle. We extend our method to the simulation of cat
states, allowing for an efficient simulation of the dynamics of cat states and other
rotation-symmetric systems. This chapter is largely based on results presented in
Ref. [β].
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2 Theory of Open Quantum
Systems

In this chapter, we outline the theory of open quantum systems. Using the density
matrix formalism (Sec. I) describing statistical mixtures of quantum states, an
open system can be described by the Lindblad Master equation (Sec. II). If the
system is assumed to be Markovian, one can express the dynamics of the system by
a quantum dynamical semigroup. We describe how the Lindblad master equation
can be derived from general approximations and by using the Kraus representation
theorem. Bosonic systems – which are fundamental in this work – are introduced in
Sec. III. Finally we outline numerical methods for the treatment of open quantum
systems in Sec. IV.

I Density Matrix Formalism

Quantum mechanical systems must be regarded as open quantum systems on a
fundamental level to fully understand their behavior [101]. This is due to the fact
that, just like in classical physics, any realistic system is inevitably – if ever so
slightly – coupled to an uncontrollable environment that influences it in a way
that can not be neglected.

In the treatment of open quantum systems, a quantum state representation
in terms of pure states is not sufficient since the interaction with an environment
requires a description of statistical mixtures of quantum states. In this section, we
will, therefore, introduce the density matrix formalism, fully describing a quantum
system of a statistical ensemble.

I.1 The Density Matrix

When describing an ensemble of quantum states and in the case where the state
of a quantum system is not exactly known, it is convenient to represent its state
by the density matrix. Let {|ψi⟩} be the set of possible states that build a basis
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of the Hilbert space H of the system. We can define the density matrix ρ̂ by

ρ̂ ≡
∑

i

pi |ψi⟩⟨ψi| , (2.1)

where 0 ≤ pi ≤ 1 is the probability for the system to be in state |ψi⟩, with∑
i pi = 1. The density matrix obeys the following properties:

• Positive definiteness: ⟨ϕ|ρ̂|ϕ⟩ > 0 for all states |ϕ⟩,

• convex linearity: if ρ̂1, and ρ̂2 are in the set of all density matrices S(H),
then any linear combination ρ = αρ̂1 + (1− α)ρ̂2 is also in S(H),

• normalization: Tr{ρ̂} = ∑
ij
pi ⟨ψj|ψi⟩ ⟨ψi|ψj⟩ = 1.

The density matrix formalism facilitates the treatment of a statistical ensemble of
states and is thereby essential for the treatment of open quantum systems.

I.2 Time-Evolution in a Closed Quantum System
The time-evolution for any quantum state of a closed system is governed by the
Schrödinger equation

d
dt |ψ(t)⟩ = −iĤ |ψ(t)⟩ . (2.2)

If the Hamiltonian Ĥ is time-independent, the time evolution of an initial state
|ψ(0)⟩ to the time-evolved state at time t is given by |ψ(t)⟩ = U(t) |ψ(0)⟩, where
Û(t) is the time-evolution operator. The formal solution for the time-evolution
operator Û(t) is given by the operator equation ∂tÛ(t) = −iĤÛ(t) with the unique
solution Û(t) = e−iĤt. In terms of the density matrix of a pure state ρ̂ = |ψ⟩⟨ψ|
the generator which governs the dynamics is likewise given by the von Neumann
equation:

dρ̂
dt = −i[Ĥ, ρ̂(t)], (2.3)

with the formal solution ρ̂(t) = Û(t)ρ̂(0)Û †(t). Hence, for pure states the time-
evolved density matrix remains pure for a closed system and the dynamics evolves
according to the Schrödinger equation. Likewise, for a general density matrix
ρ̂ = ∑

i pi |ψi⟩⟨ψi| the time-evolution is given by

ρ̂(t) =
∑

i

piÛ(t) |ψi⟩⟨ψi| Û †(t). (2.4)
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As a consequence, transitions between any time-dependent states |ψi(t)⟩ = Û(t) |ψi(0)⟩
are impossible under unitary time-evolution. The solution to the von Neumann
equation (2.3) yields the same dynamics as an ensemble average over solutions to
the Schrödinger equation for each of the states |ψi⟩.

I.3 Measurement Process

The measurement process is central in quantum mechanics and plays an essential
role in open quantum systems, as one can often regard the external environment
as probing the system via some form of (a sometimes uncontrollable) measurement
apparatus.

The measurement process can be generalized from a pure state description
to the density matrix formulation. Taking a set {M̂m} of measurement operators
satisfying the completeness relation ∑m M̂

†
mM̂m = 1̂ in which each of the operators

M̂m corresponds to a specific measurement outcomem, the probability of obtaining
result m is given by

Pm =
∥∥∥M̂m |ψ⟩

∥∥∥2
= ⟨ψ|M̂ †

mM̂m|ψ⟩ . (2.5)

After observing measurement outcome m, the quantum state collapses into

|ψ⟩ m−→ |ψ′⟩ = M̂m |ψ⟩∥∥∥M̂m |ψ⟩
∥∥∥ = M̂m |ψ⟩√

⟨ψ|M̂ †
mM̂m|ψ⟩

. (2.6)

The most general type of measurement is the positive operator-valued measure,
or POVM, which is concerned only with the statistics of the measurement. In
general, POVM operators are not necessarily orthogonal or commutative [102].
Importantly, the number of POVM operators is not restricted by the dimension
of the Hilbert space whereas for projective operators M̂m = |m⟩⟨m| the number of
operators is always equal to the dimension of the Hilbert space.

In terms of the density matrix notation, the probability of obtaining result m
is given by

Pm = Tr{M̂mρ̂M̂
†
m} > 0. (2.7)

The corresponding new state upon measuring outcome m is

ρ̂
m−→ ρ̂′ = M̂mρ̂M̂

†
m

Tr{M̂ †
mM̂mρ̂}

. (2.8)
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As will be seen in Sec. II, a close connection can be made between the dynamics
of open quantum systems and probing the system by means of continuous local
measurements.

II Lindblad Master Equation

(S,HS, ρ̂S)
System

(B,HB, ρ̂B)
Environment

(S +B,HS ⊗HB, ρ̂)

Figure 2.1: Schematic representation of an open quantum system.

We now transition to open quantum systems of a general kind. In this regard
we couple the quantum system S that we are interested in to an environment
B. Here we assume the combined system S + B to be closed, such that for the
entire system the von Neumann equation (2.3) holds and the entire system is thus
following Hamiltonian dynamics. However, we can not expect that the system S

follows Hamiltonian dynamics as its internal dynamics depends on the interaction
with the environment. Alongside literature (see e.g. [101, 103]), the system S is
often referred to as the reduced system, reflecting that the considered dynamics
is reduced to the system described by the density matrix ρ̂S. In some cases,
the environment itself is affected by internal processes of the reduced system,
e.g., photon emission in atomic, molecular, and optical systems with light-matter
interaction. These correlations with the environment will not be considered in this
work and we will restrict ourselves solely to Markovian processes, detailed in Sec.
II.1.

As schematically illustrated in Fig. 2.1, the total Hilbert space is spanned by
the tensor product space H = HS⊗HB on which the Hamiltonian may be defined
as

Ĥ = ĤS ⊗ 1̂B + 1̂S ⊗ ĤB + ĤI , (2.9)

where ĤS defines the dynamics governing the reduced system, ĤB is the free
Hamiltonian of the environment, and ĤI describes the interaction between the
system and the environment.

The environment is generally assumed to have an infinite number of degrees of
freedom, such that the frequencies of the environment form a continuum. Further-
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ρ̂(0) = ρ̂S(0)⊗ ρ̂B ρ̂(t) = Û(t) [ρ̂S(0)⊗ ρ̂B] Û †(t)

ρ̂S(0) ρ̂S(t) = V (t)ρ̂S(0)

unitary evolution

dynamical map
TrB TrB

Figure 2.2: Diagram showing the time-evolution of the density matrix of the reduced
system ρ̂S using the dynamical map. Instead of evolving the density matrix of the closed
system ρ̂ and tracing out the environment (top and right path), the dynamics of the
reduced system can be obtained by the action of the dynamical map V (t) incorporating
the interaction with the environment (left and bottom path).

more in many cases it is assumed that the environment is in thermal equilibrium,
often referred to as a thermal bath. To obtain the density matrix of the reduced
system one can trace out the environmental degrees of freedom,

TrB{ρ̂} = TrB{ρ̂S ⊗ ρ̂B} = ρ̂STrB{ρ̂B} = ρ̂S, (2.10)

where TrB{•} denotes the trace over the degrees of freedom of B. Since the entire
system evolves unitarily under Hamiltonian dynamics governed by the von Neu-
mann equation, the formal solution for the dynamics of the reduced system can
be written as

ρ̂S(t) = TrB

{
Û(t)ρ̂(0)Û †(t)

}
, (2.11)

where Û(t) is the time-evolution operator for the entire system ρ̂.

II.1 Quantum Markov Processes

In general, directly obtaining the time-evolution of the reduced density matrix
from Eq. (2.11) is often unfeasible. This is because calculating the time-evolution
operator Û(t) acting on the entire system is often impractical or impossible due
to the infinite amount of degrees of freedom of the environment. Therefore, one
seeks a treatment of the reduced system dynamics by incorporating the interaction
with the environment, defining a dynamical equation on the Hilbert space for the
reduced system only. The time-evolution is then given by a dynamical map. Here,
we will introduce the notion of quantum dynamical semigroups to arrive at a master
equation for the reduced density matrix.

If one neglects memory effects of the environment due to induced correlations
by the interaction with the reduced system, one may treat the environmental
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state as some reference state ρ̂B that is in (thermal) equilibrium with no time-
dependence. The reduced system’s dynamics can then be described by a quantum
Markov process, in which the time-evolution of the reduced system only depends
on its current state and not on its history. This assumption of the system and
environment being uncorrelated is justified if the systems can be prepared sepa-
rately. The initial state of the entire system can then be written as a product state
ρ̂(0) = ρ̂S(0) ⊗ ρ̂B. The time-evolution of the reduced system is then given by a
dynamical map V (t), defined by

ρ̂S(t) = V (t)ρ̂S(0) ≡ TrB

{
Û(t) [ρ̂S(0)⊗ ρ̂B] Û †(t)

}
. (2.12)

The dynamical map is thus solely defined on the Hilbert space of the reduced
system HS and can be characterized by operators that are only acting on the
reduced system.

II.2 Quantum Dynamical Semigroups

In this section, we introduce quantum dynamical semigroups and give a derivation
of the Lindblad master equation, describing the time evolution of the density
matrix. We approach the Lindblad equation from general assumptions and employ
the Kraus representation theorem. The Lindblad master equation can also be
derived microscopically from the underlying Hamiltonian dynamics of the total
system [101] in the weak coupling limit, which will not be considered here. The
Lindblad master equation can also be derived from other assumptions, leading,
e.g., to the quantum-optical master equation [101].

Kraus Representation Theorem

Motivated by seeking an expression for the dynamical map V (t), given a density
matrix ρ̂, one can ask for the most general form of a super-operator acting on
ρ̂ that preserves all relevant properties of ρ̂, namely complete-positivity, trace-
preservation, and convex-linearity. The Kraus representation theorem states that
any super-operator V preserving these properties of ρ̂, can be written in the Kraus
representation given by [104, 105]

V [ρ̂] =
∑

α

K̂αρ̂K̂
†
α, with

∑
α

K̂†αK̂α = 1̂, (2.13)

where K̂α are the so-called Kraus operators that form a countable set of operators.
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To see that the dynamical map can be represented by operators acting only on
the system’s Hilbert space, we might take a spectral decomposition of the density
matrix describing the environment ρ̂B:

ρ̂B =
∑

α

λα |ϕα⟩⟨ϕα| , (2.14)

where |ϕα⟩ form an orthonormal basis of HB. We can then rewrite Eq. (2.12):

V (t)ρ̂S =
∑
α,β

λα ⟨ϕβ| Û(t) |ϕα⟩ ρ̂S ⟨ϕα| Û †(t) |ϕβ⟩ (2.15)

=
∑
α,β

K̂αβ(t)ρ̂SK̂
†
αβ, (2.16)

with K̂αβ(t) ≡
√
λα ⟨ϕβ| Û(t) |ϕα⟩. Since ∑α,β K̂

†
αβK̂αβ = 1̂, it is clear that the

dynamical map V (t) preserves the trace of the reduced density matrix ρ̂S. Hence,
the dynamical map V (t) defines a convex-linear, completely positive and trace-
preserving quantum operation on the reduced density matrix ρ̂ [106]. For varying
t, the set {V (t)|t ≥ 0} defines a one-parameter family with V (0) = 1 being the
identity map.

Memory effects of the environment induced by the interaction with the system
can often be neglected if the time scales with associated correlation functions
induced by the coupling between system and environment are much smaller in
comparison to the characteristic time scale of the system dynamics itself [101].
This simple, yet important, assumption is well justified when the correlation time
in the environment τB induced by the interaction with S is much shorter than the
relaxation time scale τR over which the state of the system varies, induced by the
action of the environment on the system, i.e, τB ≪ τR. If this assumption holds,
the dynamical map obeys the semigroup property:

V (t1)V (t2) = V (t1 + t2), t1, t2 ≥ 0. (2.17)

The semigroup property guarantees that the dynamics of the reduced system is
Markovian, such that the dynamics can be expressed as a differential equation
in which the time derivative of the reduced density matrix depends only on the
current state of the system.

Lindblad’s Theorem

Given that a dynamical map satisfies the semigroup property and that it is convex-
linear, completely positive, and trace preserving (CPTP), one can ask for a general
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form of the generator L of the semigroup:

d
dt ρ̂S = L[ρ̂S]. (2.18)

L is also called the Liouvillian superoperator that describes the effective equation
of motion for ρ̂S. Remarkably, with the assumptions above, a specific form of
the above equation can be derived. If the dynamical map satisfies the semigroup
property and employing the Kraus representation theorem, the evolution of the
density matrix over an infinitesimal timestep δt can be written as

ρ̂S(t+ δt) =
∑

α

K̂α(δt)ρ̂S(t)K̂†α(δt), (2.19)

where the Kraus operators K̂α(δt) do not depend on the current time t, as required
by the semigroup property. To get a specific form for the Kraus operators, we may
write

ρ̂S(t+ δt) = ρ̂S(t) +O(δt). (2.20)

To obtain the first order correction, we demand K̂α(δt) =
√
δtÂα, with some

time-independent operator Âα, since K̂α(δt)ρ̂S(t)K̂†α(δt) = δtÂαρ̂S(t)Â†α ∼ δt. To
achieve that for δt = 0 we obtain the identity in Eq. (2.20), and to ensure the
normalization of the Kraus operators, ∑α K̂

†
α(δt)K̂α(δt) = 1̂, we need one Kraus

operator to be different from the others:

K̂0 = 1̂+ Ĝδt (2.21)

Computing the normalization of the Kraus operator, we find:
∑

α

K̂†α(δt)K̂α(δt) = (1̂+ δtĜ†)(1̂+ δtĜ) + δt
∑
α ̸=0

Â†αÂα (2.22)

= 1̂+ δt(Ĝ† + Ĝ) + δt
∑
α ̸=0

Â†αÂα +O(δt2). (2.23)

Since the operator Ĝ is arbitrary, we can parameterize it as

Ĝ = B̂ − iĤ, (2.24)
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where B̂ and Ĥ are both Hermitian. Then, we see that B̂ can be fixed by the
normalization of the Kraus operators:

B̂ = −1
2
∑
k ̸=0

Â†αÂα. (2.25)

Substituting into Eq. (2.19), we obtain:

ρ̂S(t+ δt) = ρ̂S(t)− iδt[Ĥ, ρ̂S] + δt
∑
α ̸=0

(
Âαρ̂SÂ

†
α −

1
2
{
Â†αÂα, ρ̂S

})
. (2.26)

Here, {•, •} denotes the anti-commutator. Taking the limit δt → 0, substituting
Âα → Âα

√
γα, with γα ∈ R, and relabeling the sum, we obtain the so-called master

equation in Lindblad form [107]:

d
dt ρ̂S = L[ρ̂S] ≡ −i[Ĥ, ρ̂S] +

∑
α

γαD[Âα](ρ̂S), with

D[Âα](ρ̂S) = Âαρ̂SÂ
†
α −

1
2
{
Â†αÂα, ρ̂S

}
(2.27)

(2.28)

Up to this point, no specific type for the operators Ĥ and Âα is assumed, it is
however clear that the above equation resembles the Von Neumann equation if the
operators Âα vanish. It thus seems natural to interpret Ĥ as an effective Hamil-
tonian. When deriving the Lindblad master equation from a microscopic model,
the effective Hamiltonian might differ from the system Hamiltonian, demonstrat-
ing that the interaction with a reservoir can also change the unitary part of the
time-evolution [108].

The right-most term of the above equation is called the dissipator D[Âα](ρ̂S),
taking into account the interaction with the environment that leads to non-unitary,
dissipative dynamics. Yet, no particular form for the Lindblad operators Âα have
been presupposed, but comparing the structure of the dissipator with Eq. (2.8)
shows that it represents a set of generalized quantum measurements. In this con-
text, one can interpret each Âαρ̂SÂ

†
α term as a continuous quantum measurement

of the system ρ̂S with an observable Âα. The other term in the dissipator then en-
sures the preservation of the trace. The real-valued amplitudes γα are often called
dissipation amplitudes or dissipation rates as they play the role of relaxation rates
for different decay channels, specified by the operators Âα and determine the re-
laxation time scale of the system.
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It is important to note that the Lindblad operators are not unique since the
Lindblad master equation remains invariant under unitary transformations of the
Lindblad operators Âα [101]:

Âα → Â′α =
∑

β

ÛαβÂβ (2.29)

Hence, unitary transformations of the Lindblad operators will induce non-diagonal
matrix elements in the Dissipator D. Additionally, the Lindblad master equation
remains invariant under inhomogeneous transformations of the Lindblad operators:

Âα → Â′α = Âα + cα,

Ĥ → Ĥ ′ = Ĥ − i

2
∑

α

γα

(
c∗αÂα − cαÂ

†
α

)
,

(2.30)

with a constant shift cα ∈ C.
From Eq. (2.27) it directly follows that the dynamics of ρ̂S is no longer unitary.

The formal solution of the master equation (2.27) is given by:

ρ̂S(t) = eLtρ̂S(0). (2.31)

We review numerical methods to solve the Lindblad master equation in Sec. IV

Choi-representation

It can be numerically advantageous to re-express the super-operator L acting on
the density matrix ρ̂S as a matrix-vector product employing the Choi-isomorphism [104,
109], requiring the density matrix of dimension N × N to be cast into a N2-
dimensional vector [110]. The Lindblad super-operator is then a N2 ×N2 matrix
acting on the vectorized density matrix ρ̂S. In general, explicit schemes of dis-
cretizing Eq. (2.18) are simpler to be implemented than implicit schemes, but can
be numerically unstable, requiring an adaptive stepsize [111].

II.3 Spectral Properties

To better understand the dynamics of the Lindblad master equation, a spectral
analysis of the Liouvillian superoperator L gives important insights. Analyzing
the stability of the Lindblad master equation’s solution, we can find eigenmatrices
ρ̂(n) and eigenvalues λn according to the eigenvalue equation:

∑
k,l

Lijklρ
(n)
kl = λnρ

(n)
ij , (2.32)
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Figure 2.3: Schematic representation of the Eigenvalues λn of a general Liouvillian L
in the complex plane. Eigenvalues with non-zero imaginary part come in conjugate
pairs (blue) and represent damped oscillations of the corresponding eigen-matrices ρ̂(n).
For zero imaginary part (red), ρ̂(n) are exponentially decaying. The λ = 0 eigenvalue
corresponds to the steady state (red circle). The smallest non-zero eigenvalue defines
the dissipative gap ∆, characterizing the slowest decay rate of the system.

for a density matrix of the form ρ̂ = ∑
ij ρij |ψi⟩⟨ψj|. Here λn are the eigenvalues of

L. In general, the eigenmatrices are not orthogonal, Tr{ρ̂(n)ρ̂(m)} ≠ 0, since L is
not Hermitian. If the Liouvillian can be diagonalized, one can use the eigenstates
of L as a basis of the Liouville space [112] and for any operator Â, there exists a
unique decomposition into eigenstates of L:

Â =
∑

n

cnρ̂
(n), (2.33)

with complex coefficients cn.
The eigenvalues of the Liouvillian have the following properties [112]:

(i) The eigenvalues of L are either real or come in conjugate pairs.

(ii) Positivity of L requires the eigenvalues to have a negative real part, Re(λn) ≤ 0.

(iii) For any L, there is at least one eigenvalue with λ0 = 0. The corresponding
eigenstate is referred to as the steady state, ρ̂ss ≡ ρ̂(0). If the zero eigenvalue
is degenerate with multiplicity n, there exist n multiple steady states towards
which the system can evolve, depending on the initial conditions.

(iv) Tr[ρ(n)] = 0 if Re(λn) ̸= 0. Hence, apart from the steady-state eigenmatrix
ρ̂ss the other eigenmatrices cannot be understood as density matrices, but
rather as excitations of the steady-state density matrix.
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For a time-independent Liouvillian with a finite Hilbert space dimension, the
steady state is unique under quite general conditions [113, 114]. We can then
decompose the time-evolved density matrix by eigenstates of L [112]

ρ̂(t) = ρ̂ss

Tr[ρ̂ss]
+
∑
n̸=0

cn(t)ρ̂(n) = ρ̂ss

Tr[ρ̂ss]
+
∑
n̸=0

cn(0)eλntρ̂(n), (2.34)

with the overlap between the initial state and the n-th eigenstate cn(0) = Tr[ρ̂(0)ρ̂(n)].
Another relevant quantity, characterizing the relaxation behavior of the system

is the dissipation gap, or asymptotic decay rate [115], defined by ∆ ≡ minn{|Re(λn)| :
n ̸= 0}. The dissipation gap characterizes the slowest time scale with which the
system relaxes to the steady state, given by τ ∼ 1/∆. A schematic representation
of the structure of the eigenvalues of a general Liouvillian L is shown in Fig. 2.3.

III Bosonic quantum systems

In this work, we are primarily interested in bosonic systems. Such systems are
ubiquitously encountered in quantum mechanics and can be found on a wide range
of platforms, such as photonics, optomechanical systems, and electromagnetic res-
onators in superconducting devices.

III.1 The quantum harmonic oscillator

Classical harmonic oscillator: An illustrative and insightful example is pro-
vided by the model of the quantum harmonic oscillator [116, 117]. However, let us
first look at the classical one-dimensional harmonic oscillator, which is described
by an angular oscillation frequency ω and a mass m, such that its Hamiltonian
reads

H = p2

2m + 1
2mωx

2. (2.35)

Here, x and p describe the position and momentum of the massive particle, re-
spectively. The dynamics of the harmonic oscillator is given by the Hamiltonian
equations

d
dtp(t) = ∂H

∂p
= −mω2x(t),

d
dtx(t) = ∂H

∂x
= p(t)

m
.

(2.36)
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We can solve the set of coupled differential equations above by introducing the
complex dimensionless variable

α(t) =
√
mω

2

(
x(t) + i

mω
p(t)

)
. (2.37)

Then, the set of differential equations above is reduced to a single complex-valued
equation

d
dtα(t) = −iωα(t), (2.38)

which has a simple oscillating solution

α(t) = α0e
−iωt. (2.39)

The evolution of x and p are given by the relations

x = 1√
2mω

(α + α∗) =
√

2
mω

Re(α)

p = −i
√
mω

2 (α− α∗) =
√

2mωIm(α)
(2.40)

The energy of the system is then simplyH = ω|α0|2. The interpretation of this that
x and p represent conjugate variables that can be represented as real and imaginary
parts of a complex variable α. The dynamics of the system then describes a point
that is moving in a circle around the origin of the complex plain.

Quantum harmonic oscillator: Let us now look on the quantum version
of the harmonic oscillator. Similar to the classical case, the Hamiltonian of the
system takes the form

Ĥ = p̂2

2m + 1
2mωx̂

2. (2.41)

Note that here, the position and momentum variables are operators, obeying
[x̂, p̂] = i. Similarly, we can introduce the creation and annihilation operators

â =
√
mω

2

(
x̂+ i

mω
p̂
)
,

â† =
√
mω

2

(
x̂− i

mω
p̂
)
.

(2.42)

It is straightforward to check that â and â† obey[
â, â†

]
= 1̂. (2.43)
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We can re-express x̂ and p̂ in terms of the creation and annihilation operators as

x̂ =
√

1
2mω

(
â† + â

)
,

p̂ = i

√
mω

2
(
â† − â

)
.

(2.44)

Inserting the above expression, the Hamiltonian has the form

Ĥ = ω
(
â†â+ 1

2

)
. (2.45)

We can conveniently define the photon number operator n̂ ≡ â†â whose eigenstates
are the eigenstates of the Hamiltonian Ĥ. For eigenstates |n⟩, the action of the
operators â, â† and n̂ are given by

â†|n⟩ =
√
n+ 1|n+ 1⟩,

a|n⟩ =
√
n|n− 1⟩,

n̂ = n |n⟩ .
(2.46)

The states |n⟩ of Ĥ are often referred to as Fock states. In the above expression,
the naming of â and â† as annihilation and creation operators becomes apparent
as the annihilate and create excitations, whereas the number operator counts the
number of excitations of the quantum harmonic oscillator. Formally, the Fock-
states are given by

|n⟩ = â†
n

√
n!
|0⟩ , (2.47)

where |0⟩ is the ground state of the quantum harmonic oscillator.

III.2 Coherent states

We might wonder whether there are states that have a similar analogy to the
oscillating solutions for the classical harmonic oscillator. The eigenstates |n⟩ have
always zero expectation value for x̂ and p̂ and are non-oscillating. As in the
classical picture, where the solution is simply given by the complex amplitude
α(t) in phase space, we might define an analogous state for the quantum harmonic
oscillator by displacing the vacuum. Then, the resulting state is a unique eigenstate
of the annihilation operator, defined by the relation

â |α⟩ = α |α⟩ , (2.48)
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Figure 2.4: (a) Quasi-probability representation of a coherent state |α⟩ in phase space.
(b) The photon number distribution P (n) = | ⟨n|α⟩ |2 follows a Poissonian distribution.

with complex eigenvalue α. Using the definition of the annihilation operator, we
can check that the above eigenvalue equation is satisfied when

|α⟩ = e−
|α|2

2

∞∑
n=0

αn

√
n!
|n⟩ . (2.49)

We can obtain a coherent state by displacing it from the vacuum:

|α⟩ = D̂(α) |0⟩ , (2.50)

with
D̂(α) ≡ eαâ†−α∗â = e−

|α|2
2 eαâ†

e−α∗â. (2.51)

We can verify that the above definition of the displacement operator D̂(α) satisfies
the relation in Eq. (2.48).

By calculating the expectation values for the operators x̂ and p̂ for the state
|α⟩, the analogy to the classical harmonic oscillator becomes very clear:

⟨x̂⟩ =
√

2
mω

Re(α),

⟨p̂⟩ =
√

2mω Im(α).
(2.52)

These relations are exactly identical to the classical harmonic oscillator in Eq. (2.40),
which is why the coherent states are often referred to as semi-classical states.

One important difference with respect to the classical picture is that the state
|α⟩ saturates the Heisenberg uncertainty principle with equal uncertainty in the x̂
and p̂ quadratures:

∆x = ∆p, with ∆x∆p = 1
2 , (2.53)
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with (∆A)2 ≡ ⟨Â2⟩ − ⟨Â⟩2. As such, the state |α⟩ represents a wave-packet of
minimum Heisenberg uncertainty in x̂ and p̂, as depicted in Fig. 2.4.

III.3 Wigner representation

One can fully represent a continuous-variable quantum system in phase space
using quasi-probability distributions. This provides a powerful tool to describe
pure and mixed bosonic quantum states. One such approach, which we briefly
detail here, is the Wigner function representation of a density matrix ρ̂. The idea
to represent bosonic states in phase space is intrinsically inspired from classical
mechanics, for which a state can be described by a point in phase space that moves
through it according to the governing equations of motion. For a quantum state,
such an approach is more subtle due to the fundamentally probabilistic nature
of quantum mechanics. Nonetheless, we can define a close analogy of a quantum
state representation in phase space. The uncertainty relation does not allow us to
represent a quantum state as a single point in phase space, but we can represent
in terms of a quasi-probability W (q, p), such that

∫ +∞

−∞
W (q, p) dp = ⟨q|ρ̂|q⟩,

∫ +∞

−∞
W (q, p) dq = ⟨p|ρ̂|p⟩, (2.54)

where |q⟩ and |p⟩ are eigenstates of the position operator x̂ and momentum oper-
ator p̂, respectively.

For this, we define the Wigner characteristic function

χ(u, v) = χ(η) ≡ Tr
[
ρ̂D̂(η)

]
, (2.55)

with u, v being the real and imaginary part of η.
The Wigner function can be defined by the Fourier transform of the character-

istic function [97, 99, 118] as

W (α, α∗) ≡ 1
π

∫ ∞
−∞

d2η χ(η)eη∗α−ηα∗ (2.56)

Here, α and α∗ act as two independent orthogonal variables, representing the two
quadratures in phase space, and can alternatively be represented by the real-valued
variables q = Re(α) and p = Im(α).

An alternative representation of the Wigner function can be given in terms of
the parity operator Π̂ ≡ eiπâ†â [119–121]:

W (α, α∗) = 2Tr
{
D̂†(α)ρ̂D̂(α)Π̂

}
. (2.57)



IV. Numerical methods for open quantum systems 29

By integrating over q or p, (or α, α∗ equivalently) we obtain the non-negative
marginal distributions in Eq. (2.54) that can be interpreted as probability distri-
butions.

The Wigner function obeys the following important properties:

• The Wigner function is properly normalized: 1
π

∫∞
−∞W (α, α∗)d2α = 1.

• W (α, α∗) is a real-valued function. Regions of negativity characterize non-
classical quantum states [116, 122, 123]. For non-negativity of the Wigner
function for pure states, W (α, α∗) is required to be Gaussian (See also
Chap. 4).

• The Wigner function is unique for any density matrix ρ̂ and represents a one-
to-one mapping, i.e. the density matrix can be uniquely determined from its
Wigner representation. Hence, the Wigner function contains all information
about ρ̂.

Interestingly, the action of operators on the density matrix ρ̂ corresponds to
derivatives in the Wigner function [97]:

âρ̂ −→
(
α + 1

2
∂

∂α∗

)
W (α, α∗)

â†ρ̂ −→
(
α∗ − 1

2
∂

∂α

)
W (α, α∗)

ρ̂â† −→
(
α∗ + 1

2
∂

∂α

)
W (α, α∗)

ρ̂â −→
(
α− 1

2
∂

∂α∗

)
W (α, α∗)

(2.58)

This correspondence between action of creation and annihilation operator on
the density matrix and derivatives in the Wigner function can be used to devise
numerical methods of simulating the dynamics of the quantum state in phase
space.

IV Numerical methods for open quantum sys-
tems

Several numerical methods have been proposed for the treatment of open quantum
systems. We will detail a selection of numerical methods that are relevant to this
work here. For a general overview, see, e.g., Ref. [124].
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ρ̂S(t0) ρ̂S(t)

P [|ψ⟩ , t0] P [|ψ⟩ , t]

dynamical map

V (t)

PDP

E [|ψ⟩ ⟨ψ|] E [|ψ⟩ ⟨ψ|]

Figure 2.5: Unraveling of the master equation as a commutative diagram. Instead of
time-evolving the density matrix ρ̂S by applying the dynamical map V (t), one can time-
evolve single quantum states drawn from an initial probability distribution P [|ψ⟩ , t0]
using a piecewise deterministic process to approximate the final probability distribution
P [|ψ⟩ , t]. The density matrix is then given by calculating the stochastic average of the
covariance matrix corresponding to state |ψ(t)⟩.

IV.1 Monte Carlo Wave Function method

Numerically solving the Lindblad master equation requires to store N2 matrix
elements of the density matrix for a Hilbert space of dimension N . Even taking
Hermiticity into account – reducing the number of matrix elements to N2/2 – stor-
ing the matrix elements fully describing the system requires substantial memory
and computation power when N is large. Thus, for larger system sizes, solving the
Lindblad master equation becomes impracticable, also due to the limited possibili-
ties to parallelize the time-evolution, since the Lindblad master equation is usually
a set of highly coupled differential equations, requiring a sequential numerical in-
tegration. If it is possible to store at least N complex-valued amplitudes, one can
implement a stochastic process whose ensemble average resembles the Lindblad
master equation. This allows an unraveling of the Lindblad master equation to
piece-wise deterministic processes (PDPs), often referred to as quantum trajecto-
ries, which evolve in time as pure states. Note that the respective unraveling is not
unique, and other approaches have been developed, giving rise to, e.g., a Wiener
process, sometimes referred to as quantum diffusion [101], which will not be con-
sidered here. Unlike using the Lindblad equation, where the full density matrix
has to be propagated in time, here, only single state vectors are time-evolved in
the quantum trajectory method, posing a substantial advantage of this technique.
This, however, necessitates stochastic sampling of multiple quantum trajectories to
achieve a significantly high accuracy. Therefore, the quantum trajectory method
is only superior to the classical Lindblad approach if the number of samples is well
below the dimension of the Hilbert space [125].

The simplest approach of unraveling the Lindblad equation as a piece-wise
deterministic process was first proposed by Dalibard et al. [126, 127] and Dum
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et al. [128] in optical settings for laser cooling and continuous measurements. In
these works, the Lindblad equation is expanded in first order of the timestep δt.

To arrive at a stochastic equation that resembles the Lindblad master equation
in the statistic limit, we can rewrite Eq. (2.27) as:

d
dt ρ̂S = −i(Ĥeffρ̂S − ρ̂SĤ

†
eff) +

∑
α

γαÂαρ̂SÂ
†
α, (2.59)

where Ĥeff is the effective Hamiltonian given by

Ĥeff = Ĥ − i
2
∑

α

γαÂ
†
αÂα. (2.60)

It is important to note that Ĥeff is not Hermitian. Following Ref. [125], as an
intuitive stochastic approach to Eq. (2.59), we can take an initial pure state |ψ(t)⟩
for which a candidate for a new state at time t+ δt in first order is∣∣∣ψ(1)(t+ δt)

〉
≈ (1− iĤeffδt) |ψ⟩ . (2.61)

The norm of the resulting state is less than one due to the dissipative term in the
effective Hamiltonian:〈

ψ(1)(t+ δt)
∣∣∣ψ(1)(t+ δt)

〉
= ⟨ψ(t)|(1 + iĤ†effδt)(1− iĤeffδt)|ψ(t)⟩ = 1− δp,

(2.62)
where the loss δp is due to possible decay channels corresponding to the action of
different Lindblad operators Âα:

δp ≡ δt ⟨ψ(t)|i(Ĥeff − Ĥ†eff)|ψ(t)⟩
= δt

∑
α

γα ⟨ψ(t)|Â†αÂα|ψ(t)⟩ ≡
∑

α

δpα.
(2.63)

Intuitively, one can interpret δpα as the probability that the action by the Lindblad
operator Âα occurs during the given timestep. With the definition (2.63), we can
now construct a simple stochastic process in which we choose the propagated state
stochastically according to the following rule:

• no jump: with probability 1− δp

|ψ(t+ δt)⟩ =

∣∣∣ψ(1)(t+ δt)
〉

√
1− δp (2.64)
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Figure 2.6: Schematic representation of the quantum trajectory method. With the initial
state, the jump probability for time-step δt is calculated. If a jump occurs, a particular
Lindblad operator Âα is applied to the state with probability Πα. If no jump occurs,
the state evolves under the effective Hamiltonian Ĥeff.

• jump: with probability δp

|ψ(t+ δt)⟩ =
√
γαÂα |ψ(t)⟩√
δpα/δt

(2.65)

where the particular Lindblad operator Âα is chosen out of all possible Lind-
blad operators with probability Πα = δpα/δp.

If the initial state of the density matrix is not a pure state, the initial states for
the quantum trajectory approach can be sampled from a distribution to match the
initial mixed state of the density matrix.

It is important to show that the stated method resembles the Lindblad master
equation in the stochastic average. We therefore consider the density matrix of a
pure state:

ρ̂(t) = |ψ(t)⟩⟨ψ(t)| (2.66)
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Then, the statistical average of the density matrix after a timestep δt is given by

E [ρ̂(t+ δt)] = (1− δp)

∣∣∣ψ(1)(t+ δt)
〉

√
(1− δp)

〈
ψ(1)(t+ δt)

∣∣∣
√

1− δp

+ δp
∑

α

Πα

√
γαÂα |ψ(t)⟩√

δpαδt

⟨ψ(t)| √γαÂ
†
α√

δpαδt

(2.67)

This simplifies to:

E [ρ̂(t+ δt)] = (1− iδtĤeff) |ψ(t)⟩ ⟨ψ(t)| (1 + iδtĤ†eff) + δt
∑

α

γαÂα |ψ(t)⟩ ⟨ψ(t)| Â†α

= ρ̂(t)− iδt(Ĥeffρ̂(t)− ρ̂(t)Ĥ†eff) + δt
∑

α

γαÂαρ̂(t)Â†α.

(2.68)

Thus, for arbitrary small timesteps δt, this yields Eq. (2.59):

d
dt ρ̂ = −i(Ĥeffρ̂− ρ̂Ĥ†eff) +

∑
α

γαÂαρ̂Â
†
α. (2.69)

It is important to note that the above equation holds regardless of whether the
corresponding state of ρ̂(t) is pure or mixed.

Stochastic Schrödinger Equation: More formally, we can cast the above
procedure of a piecewise deterministic process into a stochastic differential equa-
tion. The Lindblad master equation can be effectively modeled by the stochastic
equation [101, 129]:

|dψ⟩ =
[
−iĤeff + 1

2
∑

α

γα ⟨ψ|Â†αÂα|ψ⟩
]
|ψ⟩ dt+

∑
α

 Âα |ψ⟩∥∥∥Âα |ψ⟩
∥∥∥ − |ψ⟩

 dNα,

(2.70)
where the stochastic Poisson increments dNα have the expectation value

E [dNα] = γα ⟨ψ|Â†αÂα|ψ⟩ dt, (2.71)

with dNαdNβ = δαβdNα, such that only one quantum jump can occur at once. The
above equation (2.70) is a piecewise deterministic process with stochastic quantum
jumps that collapses the quantum state, indicated by the right-most term. In
this framework, the process |ψ(t)⟩ encompasses the random change of the state
conditioned on the outcomes of continuous monitoring of certain environmental
observables, represented by the operators Âα.
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Physical interpretation: It is insightful to treat the quantum trajectory ap-
proach to dissipative systems not only as a technical tool for efficiently calculating
expectation values through stochastic averaging. Rather, it also gives an intrigu-
ing physical interpretation of how the system and the reservoir are interacting.
In the described process, the system undergoes the evolution of a non-Hermitian
effective Hamiltonian Ĥeff which is interrupted by quantum jumps that act like a
generalized quantum measurement. Hence, we can view the interaction between
the system and its environment as a measurement collapsing the wave function at
stochastically chosen times.

It is also clear that we gain information about the system: If we measure out-
come α, we know that a quantum jump corresponding to the operator Âα occurred.
Even if no jump occurs, we know that the system evolves according to the effective
Hamiltonian Ĥeff, from which we can infer its state after the previous quantum
jump. We can, therefore, interpret each of the individual quantum trajectories in
terms of an experimental setup in which information about the system is gained by
probing it via measurement-like observables. This interpretation is only possible
if there exists an appropriate set of Lindblad operators for the modeled dynamics
that can be interpreted as or transformed into measurement-like operators. To
this regard, it is important to note that the Lindblad equation remains invariant
under unitary transformation of the Lindblad operators (See Eq. (2.29)). There-
fore, the same effective dynamics can be achieved with different operators that
might correspond to different types of measurements. Hence, if one seeks a physi-
cal interpretation in terms of a local measurement, one has to choose the Lindblad
operators accordingly.

IV.2 Coherent mean-field approximation

In quantum-optical systems, a central method to describe the dynamics of an open
and interacting system is the semi-classical mean-field approximation.

A common approach for the numerical treatment of open quantum systems
consists of assuming the density matrix to be in a product state of subsystem
density matrices ρ̂i [130], such that

ρ̂ =
⊗

i

ρ̂i. (2.72)

In quantum optical systems [131], a versatile method is the Gross-Pitaevskii mean-
field approximation [132, 133] (initially used for the description of cold Bose gases).
The central assumption in this semi-classical approximation is that the density
matrix of a single mode ρ̂ is described by a single coherent state with complex
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field amplitude α at all times:

ρ̂(t) = |α(t)⟩⟨α(t)| . (2.73)

This approximation is justified when no or only weak correlations or quantum
fluctuations are induced throughout the system’s time evolution. In this approxi-
mation, expectation values take the simple form〈

â†
m
ân
〉

(t) = α∗m(t)αn(t). (2.74)

We can obtain an equation of motion for α(t) through

∂α

∂t
= ∂

∂t
⟨â⟩ = Tr

{
â
∂ρ̂

∂t

}
= Tr

{
∂â

∂t
ρ̂(t)

}
. (2.75)

We can thus obtain the right-hand side by projecting the Liouvillian from Eq. (2.27)
onto the coherent state |α(t)⟩:

∂α

∂t
= −i ⟨α(t)|

[
â, Ĥ

]
|α(t)⟩+

∑
β

γβ ⟨α(t)|Â†βâÂβ −
1
2
{
Â†βÂβ, â

}
|α(t)⟩ (2.76)

The terms involved on the right-hand side can typically be expressed in terms of
polynomial combinations of â and â†.

For interacting bosonic systems, the product ansatz in Eq. (2.72) can be used,

ρ̂(t) =
⊗

i

|αi(t)⟩⟨αi(t)| . (2.77)

The equation of motion for the fields αi will, in general, be coupled, yielding a set
of first-order non-linear ordinary differential equations.

Often, analytical treatments are possible when the right-hand side of Eq. (2.76)
is a low-order polynomial in α and α∗. Additionally, calculating fixed points in
this semi-classical approximation can give valuable insights about dissipative phase
transitions in driven-dissipative systems [112].

IV.3 Phase-space methods

An important example of phase-space methods using the Wigner function is the
truncated Wigner approximation [131, 134, 135]. From Sec. III.3, we have seen that
the action of operators on the density matrix corresponds to first-order derivatives
in the Wigner function. Non-linear terms in the Hamiltonian or dissipator will
thus correspond to derivatives of order higher than two in the Wigner function.
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The truncated Wigner approximation consists in dropping third and higher order
derivatives, which is justified if the originating interaction or dissipation strength
is sufficiently small.

In doing so, the differential equation for the Wigner function represents a
Fokker-Planck equation under general assumptions [131, 136], so that the differ-
ential equation for W (α, α∗) reads

∂W (α, α∗)
∂t

≈ L̂(α, α∗)W (α, α∗), with

L̂(α, α∗) = ∂

∂α
A(α, α∗) + 1

2
∂2

∂α∂α∗
D(α, α∗),

(2.78)

with drift term A(α, α∗) and diffusion term D(α, α∗), which depend on the Hamil-
tonian and dissipators of the system.

We can associate a stochastic Langevin equation to the Fokker-Plank equation:

dα = A(α, α∗)dt+B(α, α∗)dχ(t), (2.79)

with |B(α, α∗)|2 = D(α, α∗) and normalized random complex Gaussian noise χ(t),
such that ⟨χ(t)χ(t′)⟩ = 0 and ⟨χ(t)χ∗(t′)⟩ = δ(t− t′).

Integrating the above equation drastically reduces the computational complex-
ity of the problem: Instead of time-evolving the entire Wigner function, we evolve
only stochastic trajectories α(t) in the complex plane. By ensemble-averaging over
many trajectories, we recover the Fokker-Plank equation in Eq. (2.78). Simulat-
ing an N -boson system, we therefore only need to simulate a coupled stochastic
N -dimensional trajectory α⃗(t).

One disadvantage of this method is that by the nature of the truncation of
higher-order derivatives, only classical correlations can be induced in the system.
While preparing a non-classical initial state by carefully selecting appropriately
distributed initial values α0 is possible, this method limits the simulation of cases
of long-living or even increasing quantum fluctuations.

Other phase-space methods have been developed over the past for the simula-
tion of open bosonic quantum systems [137, 138], in particular with approaches
to simulate the evolution of the Wigner function directly using Gaussian wave-
function approaches [139, 140].

IV.4 Other numerical methods

Let us mention some other notable numerical methods for the treatment of open
quantum systems
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Corner-space renormalization. In most systems, the density matrix has
support on a finite subspace of the Hilbert space. Describing the system in this
most relevant subspace in an exponentially growing Hilbert space has led to an
efficient representation of open quantum systems using the corner-space renor-
malization method [96, 141]. In this method, the individual subsystem density
matrices are diagonalized from a product ansatz. By taking only the most domi-
nant eigenvalues to capture only the relevant corners, one can obtain a truncated
basis of the Hilbert space by joining the two bases together. Iteratively increasing
this corner-space basis has shown to be effective in many scenarios, in particular
for steady-state calculations [96, 141].

Tensor networks. One can describe a pure state of a system consisting of N
one-dimensional subsystems of Hilbert space dimensions d using an N -dimensional
coefficient tensor:

|ψ⟩ =
d∑

σ1,...,σN =1
cσ1,...σN

|σ1, σ2, . . . , σN⟩ (2.80)

However, we can decompose the tensor c in terms of singular-value decompositions
as

cσ1,...σN
= A(σ1)A(σ2) . . . A(σN ) (2.81)

Such a decomposition is referred to as an matrix product state. If the entan-
glement between the subsystems is sufficiently bounded (satisfying an area-law
entanglement growth), the matrices A(σi) can be reduced to incorporate only the
non-negligible singular value components, thereby drastically reducing the mem-
ory needed to represent the state [142–144]. Contracting the matrices A(σi) can
be done exactly and efficiently [145]. This approach has been very successful in
ground-state calculations for systems with area-law bounded entanglement [146].

The matrix product state framework has been extended to density matrices,
yielding a matrix product operator decomposition [144, 147–149].

Variational approaches. Variational approaches by parametrizing the den-
sity matrix with a set of variational parameters have been explored in various
settings [100, 124, 131, 140, 150–153], and we will revisit variational principles for
open quantum systems in detail in Chap. 5. All these principles have in common
to restrict the representation of the density matrix to a variational manifold that
best describes the system at any given time. By employing a variational principle,
equations of motion for the variational parameters can be obtained that govern
the evolution of the parameters on the variational manifold.
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Quantum errors are nasty, unforgiving things.
If you don’t know what you are doing, a single
misstep can result in the destruction of
irreplaceable quantum information.

— Daniel Gottesman, Surviving as a
Quantum Computer in a Classical World

3 Bosonic Quantum Error
Correction

In this chapter, we introduce the field of quantum error correction with a particu-
lar focus on bosonic quantum codes. In Sec. II, we define quantum error correction
codes and give provide an intuitive example of how errors can be corrected using
the 3-qubit repetition code. Furthermore, we introduce the Knill-Laflamme con-
ditions for the correctability of errors. In Sec. III, we illustrate bosonic quantum
error correction using the example of the kitten-code. We characterize the most
common noise process encountered on bosonic platforms: loss and dephasing in
terms of quantum channels in Se. IV. In Sec. V, we define a robust measure to
gauge the performance of bosonic codes in terms of channel fidelity and discuss
ways of numerically calculating it using convex optimization methods. We then
consider the cat code in Sec. VI, an important bosonic biased-noise qubit in bosonic
error correction and detail its error correction properties, logical gates, and stabi-
lization methods. Finally, we briefly consider other notable bosonic codes, such as
the GKP, binomial, and multi-component cat code in Sec. VII.
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I Introduction

Quantum computers have the potential to surpass conventional computing by
leveraging the quantum nature of light and matter. Various platforms of using
the discrete energy levels of physical systems, such as Rydberg atoms [154–162],
trapped ions [163–174], superconducting circuits [71, 175–183], photonics [69, 70,
184–197], optomechanical systems [198–203], to name only the most prominent
platforms, can be used to encode information and to manipulate it to execute
computational tasks. Controlling quantum devices, however, can be extremely
challenging due to decoherence effects [204–209] that lead to the loss of informa-
tion and errors in the computational task. This is due to the fact that quantum
systems constantly interact with their surrounding environment, thereby gener-
ating entanglement between system and environment, such that the information
is no longer stored by the considered system alone. Protecting physical systems
from unwanted interaction, therefore, is one of the greatest current challenges in
designing and engineering quantum devices to carry out large-scale computational
tasks. Reducing the amount of thermal interactions by reducing the tempera-
ture of the environment, such that the energy level separation between the logical
qubits is much larger than the energy scale of the thermal fluctuations, is but one
of the main requirements to be able to coherently control quantum bits to carry
out quantum computations. There are, however, physical and engineering limits
to the degree of isolation between the system and the surrounding environment,
setting bounds to the lifetime of quantum information, even for a single quantum
bit. Performing quantum computations on the physical qubits on state-of-the-
art quantum hardware is still limited by the decoherence effects of the physical
systems, presenting a roadblock towards useful quantum computations.

To overcome these challenges, one can redundantly encode quantum informa-
tion in a way that allows for the detection and correction of some errors. In the
last three decades, this field of quantum error correction has been intensively stud-
ied [42, 47, 210–215], leading to various proofs of principles in device setups [48,
216–220]. In these schemes, a logical qubit is redundantly encoded in multiple
physical two-level systems.

An alternative approach that has attracted recent interest in quantum error
correction is to encode quantum information in the state space of a quantum har-
monic oscillator. These so-called bosonic quantum codes (BQCs) offer a hardware-
efficient approach to quantum error correction on redundantly encoded quantum
information. Due to the principally infinite-dimensional Hilbert space, a much
larger state space is available to encode logical qubits in a single physical sys-
tem, making BQCs promising candidates for fault-tolerant quantum computing.
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Figure 3.1: Schematic comparison between two-level quantum error correction (QEC)
and bosonic quantum error correction. In two-level QEC, quantum information is redun-
dantly encoded in multiple two-level systems. As an example, we show on the bottom left
a false-color image of a distance-3 surface code from Ref. [48] using 17 physical qubits.
Here, a logical qubit is encoded in nine superconducting transmons, with eight auxil-
iary qubits for detection and correction of errors. In bosonic quantum error correction,
shown on the right, quantum information is encoded in the state-space of a quantum
harmonic oscillator. As an example, an optical micrograph, adapted from Ref. [242], of
a superconducting circuit implementing a cat-qubit is shown at the bottom right. Here,
the blue colored line represents the memory mode of the system storing the quantum
information, while other connections are used for coherent control and readout. Note
that while the distance-3 surface code in Ref. [48] is able to correct single-qubit bit-flip
and phase-flip errors, the cat-qubit in Ref. [242] suppresses only one type of errors (bit-
or phase-flip, depending on the choice of basis), such that the remaining error type needs
to be addressed in a higher-level error-correction scheme.

Bosonic quantum codes have been proposed theoretically [32, 79, 80, 221–238],
and we have recently seen first experimental realizations [64, 77, 86, 239–242],
even extending the life-time of the qubit [76, 78] over the physical constituent.
Being able to store quantum information redundantly in a system with low hard-
ware overhead is crucial for scaling quantum devices towards useful applications,
and hence bosonic quantum codes are intensively studied to reduce hardware de-
mands while reaching logical qubit life times long enough to carry out quantum
algorithms with industry use cases.
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II Quantum error correction codes

In the following, we define and outline quantum error correction codes and give a
few examples.

In the classical world, the theory of error correction has been widely studied
since the 1940s [40, 243–247], leading to many applications in signal-processing
with everyday use to protect against noise. In the quantum world, however, the
theory of classical error correction cannot be straightforwardly extended due to the
intrinsically different structure of quantum information. Most importantly, con-
trary to classical information, it is impossible to copy arbitrary quantum states,
|ψ⟩ → |ψ⟩ ⊗ |ψ⟩, due to the no-cloning theorem [248], and hence error correction
schemes based on copying arbitrary quantum information are unavailable. Fur-
thermore, measuring a quantum system changes our description of it. One of the
most important questions in quantum error corrections is, therefore, how can we
measure a quantum system without destroying the quantum information we aim
to protect? Lastly, in the classical world, the state-space of classical bits is the
point set {0, 1} and can be described using a Boolean algebra. The only possible
error can be a bit-flip. On the other hand, the state-space of a quantum bit is C2,
described by two phases on a Bloch-sphere describing a superposition of the basis
states |0⟩ and |1⟩. Here, in addition to a bit-flip, described by the change of one of
the phases, we have an additional phase-flip to deal with that has no counterpart
in the classical world.

In quantum error correction, rather than copying quantum information, which
is only available for classical information, we can encode quantum information into
a sub-space of the available Hilbert space.

Intuitive example: The repetition code

An intuitive example to correct some errors is the 3-qubit repetition code, which
we use to showcase the power of error correction codes. To this end, consider n
qubits, with a Hilbert space of dim(H) = 2n. We can define an error channel
acting on the density matrix ρ̂ ∈ Op(H):

E(ρ̂) =
∑
P̂

pP P̂ ρ̂P̂ , (3.1)

where the sum is taken over P̂ which are tensor products of Pauli-group operators
1̂, X̂, Ŷ , and Ẑ. This channel is often referred to as a Pauli channel. We can
interpret pP as the probability of the occurrence of an error with operator P̂ .
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Figure 3.2: Encoding and syndrome measurement quantum circuit for the 3-qubit rep-
etition code correcting single-qubit bit flips (a) and single-qubit phase flips (b).

As an example, we can consider 3 qubits, with the Pauli channel E(ρ̂) =∑3
n=1 pX̂nρ̂X̂

†
n + (1 − 3p)ρ̂, that is the occurrence of the operator X̂n – corre-

sponding to a bit-flip of the n-th qubit – takes place with probability p. A simple
error correction code using 3 qubits consists in extending the classical repetition
code to the repetition of basis states:

|ψ0⟩ = |000⟩ , |ψ1⟩ = |111⟩ . (3.2)

Note that the no-cloning theorem only prohibits us from copying superpositions of
quantum states, but not from copying basis states, so the above 3-qubit repetition
code is a valid encoding of quantum information. We can observe how this code
can correct for a single bit-flip error. Suppose we act with operator X̂2 on a linear
superposition of the code-words:

X̂2(α |000⟩+ β |111⟩) = α |010⟩+ β |101⟩ . (3.3)

Here, under the considered error channel, we can identify unambigously that the
error X̂2 acted upon the code by identifying that the middle qubit was flipped.
Importantly, the superposition-carrying parameters α and β remain unperturbed,
and the resulting state is orthogonal to the original code-space. It is thus possible
to measure the fact that the respective qubit is different from the others without
gaining information about α or β, which would destroy the superposition. We can
hence measure the error without measuring the information that we are trying to
protect.

A possible quantum circuit to encode and measure the error syndromes of the
3-qubit repetition code is given in Fig. 3.2(a). In the first part, we start with an
unencoded state |ψ⟩ = α |0⟩ + β |1⟩ and add two additional qubits using CNOT
operations. The resulting encoded state is an entangled state. By making two pair-
wise comparisons of the parity of neighboring qubits, using two ancillary qubits,
we can exactly identify on which qubit an error has occurred. It is important to
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note that this strategy only works if we know that the error channel E entails only
single-qubit bit-flip errors. For example the weight-2 error X̂1X̂2 would flip the
first two bits, and in our scheme we would mistake it for a bit-flip in the third
qubit.

Furthermore, we can check that phase-flips of the form Ẑn also remain uncor-
rected with this code, as for example

Ẑ2(α |000⟩+ β |111⟩) = α |000⟩ − β |111⟩ . (3.4)

We see that, here, the resulting state remains within the code space, changing
β → −β, thus changing the initial superposition, resulting in an uncorrectable
error. Note, however, that in a change of basis from |0/1⟩ ↔ |±⟩ = 1√

2(|0⟩ + |1⟩)
(which can be carried out using a Hadamard rotation), any single qubit phase flip
acts as a bit flip in the new basis:

Ẑ2(α |+ + +⟩+ β |− − −⟩) = α |+−+⟩+ β |−+−⟩ . (3.5)

Hence, we can devise a very similar encoding scheme to protect against single-qubit
phase flip errors by rotating states into the |±⟩ basis as shown in Fig. 3.2(b). Note
that the CNOT gate used for code-state preparation is reversed compared to the
bit-flip repetition code due to the Hadamard transform.

We can thus straightforwardly design two repetition codes that correct single-
qubit bit-flip errors and single-qubit phase-flip errors, respectively, but not both
independently. To do this, we can stack the two codes together to form a 9-qubit
code, also called Shor’s code [42], with the code-words:

|ψ0⟩ = |+bit−flip⟩ |+bit−flip⟩ |+bit−flip⟩

= 1
2
√

2
(|000⟩+ |111⟩)(|000⟩+ |111⟩)(|000⟩+ |111⟩)

|ψ1⟩ = |−bit−flip⟩ |−bit−flip⟩ |−bit−flip⟩

= 1
2
√

2
(|000⟩ − |111⟩)(|000⟩ − |111⟩)(|000⟩ − |111⟩),

(3.6)

with rotated code-words of the bit-flip code:

|±bit−flip⟩ = 1√
2

(|000⟩ ± |111⟩) (3.7)

We see that we can group the qubits together in three groups of three qubits,
respectively. If we now have a single X̂n error on one of the nine qubits, we can
identify this error by a change of parity in one of the groups. If, however, we have
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a single Ẑn error, one of the groups will flip a sign from |+bit−flip⟩ → |−bit−flip⟩, and
we can identify this change by comparing to the other two groups. We also see that
the effect of single-qubit bit flips and phase flips manifests itself in two different
ways, making the identification of both of these errors independently possible.
By realizing that X̂nẐn = −iŶn, we can see that also individual Ŷn errors are
correctable in the Shor code. Because of the independence of these errors, any
linear combination of an error Ên = c1,n1̂ + c2,nX̂n + c3,nŶn + c4,nẐn acting on a
single-qubit can be corrected [47].

II.1 Knill-Laflamme conditions

We now define an error correction code and give conditions for the correction of
errors.

Given a Hilbert space H, we define a logical qubit, with density matrix ρ̂L in
a sub-space of the Hilbert space, such that ρ̂ ∈ Op(HC) ⊂ Op(H). The sub-space
HC is called the code-space, defining the sub-space of H in which the quantum
information of the qubit is encoded.

A central question in quantum error correction is: Can we find a recovery
channel R that reverses the errors caused by some noise channel E , such that

(R ◦ E)(ρ̂L) = ρ̂L (3.8)

Here, (g ◦ f)(x) = g(f(x)). As a result, R ◦ E would act as the identity on the
code-space.

The Knill-Laflamme error correction conditions

We now give one of the most central theorems in QEC theory that addresses
excatly this question by providing a necessary and suficcient condition for the
correctability of errors for a quantum code. Let {Êk} be a set of Kraus-operators
associated to the noise channel E that we here refer to as errors. Furthermore,
let P̂C = |ψ0⟩⟨ψ0|+ |ψ1⟩⟨ψ1| be the projector onto the code-space, with the logical
qubit states |ψ0⟩ , |ψ1⟩ ∈ HC. Then, there exists a recovery R for the noise channel
E if and only if

P̂CÊ
†
kÊk′P̂C = αk,k′P̂C, (3.9)

with a Hermitian matrix αk,k′ that is independent of the code-words. This condi-
tion was found and named after Knill and Laflamme [45] and independently found
by Bennet et al. [249]. If this condition is fulfilled for the set {Êk} of errors, we
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Figure 3.3: Schematic illustration of the conditions for quantum error correction. The
quantum information is encoded in a two-level sub-space HC of the full Hilbert space,
shown as the blue Bloch sphere with orthonormal code-words |ψ0⟩ and |ψ0⟩. Upon the
action of errors Êk and Êk′ , the code-space is in general mapped to mutually orthogonal
error sub-spaces, shown as red Bloch spheres, with corresponding error sub-spaces HEk

and HEk′ . To preserve superpostions of the original quantum information in the code-
space errors must act in the same way on the code-words |ψ0⟩ and |ψ1⟩, mapping a
qubit in the code-space to a qubit into the respective error sub-space. As an example,
upon the action of an error Êk, |ψ0⟩ is mapped onto a state |ψk

0 ⟩ in the associated error
sub-space (green arrow). Likewise, |ψ1⟩ → |ψk

1 ⟩ in the same way. Transitions mapping
|ψ0,1⟩ → |ψk

1,0⟩ (red arrows) would allow to gain information about the original state
and are therefore not allowed.

refer to them as correctable errors for a code-space HC. As a first remark, it is
interesting to observe that the condition above does not contain information of
how an actual recovery operation R can be constructed, it only shows that such
an operation exists.

By sandwiching Eq. (3.9) with a basis state ⟨ψi| on the left and another |ψj⟩
on the right, we obtain the matrix elements for the KL-conditions,

M[i,k],[j,k′] ≡ ⟨ψi|Ê†kÊk′ |ψj⟩ = δi,jαk,k′ , (3.10)

with the KL tensor M[i,k],[j,k′] specifying the overlap between the two states Êk |ψi⟩
and Êk′ |ψj⟩.

Let us provide an intuitive picture of the KL conditions. If the condition
above is satisfied, α is a Hermitian matrix, and we can always decompose it into
α = udu† with a diagonal matrix d and a unitary matrix u. When rotating
the error operators Êk by the unitary matrix u, such that Ê ′k = ∑

ℓ uk,ℓÊℓ, it is
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straightforward to show that we cast the KL conditions to a simpler form,

P̂CÊ
′
k

†
Ê ′k′P̂C = δk,k′dkP̂C. (3.11)

Expressing this condition in terms of orthonormal basis states of the logical qubits
|ψ0⟩ and |ψ1⟩, we have

⟨ψi|Ê ′k
†
Ê ′k′|ψj⟩ = δi,jδk,k′dk, (3.12)

with ∑k dk = 1 and dk > 0.

Distinguishing errors. For k ̸= k′, we directly have ⟨ψi|Ê ′k
†
Ê ′k′|ψj⟩ = 0 as

a consequence of the diagonalization of α. This means that the error sub-spaces
HEk

and HEk′ associated to the errors Ê ′k and Ê ′k′ are mutually orthogonal to
each other, so that the two distinct errors can be distinguished from one another.
Measuring a set of commuting observables probing the error sub-spaces HEk

and
HEk′ , these errors can be unambigously identified.

Mapping of a qubit to another qubit. However, ensuring that distinct
errors are mapped to orthogonal sub-spaces is not sufficient for error correction.
For the same error sub-space, k = k′, we must also ensure that when we make
a measurement to probe the error sub-space we don’t learn anything about the
original state of the code-space. Otherwise, superpositions would be disturbed.
Through the relation ⟨ψi|Ê ′k

†
Ê ′k|ψj⟩ = δi,jdk, we make sure that Ê ′k rotates the

locigal code-words to an orthogonal basis in HEk
, thereby mapping the qubit in

the code-space to a qubit in the error sub-space. This ensures that upon detection
of an error Ê ′k, we can apply a unitary operation that reverses the action of the
error.

More concretely, we can set Ê ′k =
√
dkÛk, such that the projector on to HEk

is
given by Π̂Ek

= ÛkP̂CÛ
†
k . We can thus construct recovery operators R̂k = Û †kΠ̂Ek

=
P̂CÛ

†
k that rotate states in HEk

back to the code-space. We can verify this by
computing

(R ◦ E)(ρ̂L) =
∑
k,ℓ

R̂ℓÊ
′
kρ̂LÊ

′
k

†
R̂†ℓ (3.13)

=
∑
k,ℓ

dkP̂CÛ
†
ℓ Ûkρ̂LÛ

†
kÛℓP̂C = ρ̂L, (3.14)

where in the last line we have used that Û †ℓ Ûk = δℓ,k1̂ as the unitaries Ûk and Ûℓ act
on mutually orthogonal sub-spaces. Furthermore, we have used that ∑k dk = 1.
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If the error correction conditions in Eq. (3.9) are not exactly satisfied, there
will, in general, be a contribution of Pauli-errors induced on the code-space. As
the space of 2-by-2 matrices can always be decomposed in terms of the Pauli-
group [236], we can write the projection of an error pair Ê†ℓ Êℓ′ as:

P̂CÊ
†
ℓ Êℓ′P̂C = cℓ,ℓ′1̂L + xℓ,ℓ′X̂L + yℓ,ℓ′ŶL + zℓ,ℓ′ẐL. (3.15)

Examining the different contributions from the error-inducing components xℓ,ℓ′ ,
yℓ,ℓ′ , and zℓ,ℓ′ can give valuable information in what logical errors are produced as
the effect of the error Ê†ℓ Êℓ′ . Here again, comparing the above equation with the
Knill-Laflamme error correction condition in Eq. (3.9), we see that we have perfect
error correction when xℓ,ℓ′ = yℓ,ℓ′ = zℓ,ℓ′ = 0.

III Bosonic quantum codes

Here, we define and characterize bosonic quantum codes, study their hardware
realizations, and provide a few examples, focusing on the cat code.

We can use the infinite dimensional Hilbert space of a quantum harmonic oscila-
tor to redundantly encode quantum information, just like we can encode quantum
information in multiple connected physical two-level systems. Encoding quantum
information in the state-space of a quantum harmonic oscillator can have various
advantages: First, we already have an infinite Hilbert space available to encode
quantum information instead of a finite Hilbert space for two-level error correction
codes. Practically, this does not mean that we can perfectly encode information, as
the noise channels are intrinsically different from the noise processes for two-level
systems. As an example, one of the most prominent decay processes in microwave
cavities is photon damping for which excitations decay with a rate proportional
to their excitation number, and so encoding information in highly excited states
becomes unfeasible. Another advantage is the resources needed for coherent quan-
tum control: In general, we can universally control a quantum harmonic oscillator
using a single non-linear element [250–253]. We can thus perform operations, such
as error correction cycles or gates, with a much lower hardware footprint compared
to multiple physical two-level systems, which are individually addressed.

A main difference between two-level and bosonic quantum error correction
codes are the different noise channels that are typically encountered. While two-
level systems often suffer from noise processes, such as depolarization, dephasing,
and amplitude damping, typically involving only two energy levels. For bosonic
systems, however, we often deal with noise processes, such as photon loss, dephas-
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ing, photon gain, or thermal noise, and correcting for these types of errors in a
single bosonic mode can be challenging.

Illustrative Example: The Kitten code

We demonstrate how to encode and correct errors in a bosonic mode by using
the illustrative example of the so-called Kitten code, a bosonic code in the class of
binomial codes [232]. For this example, let us assume a discrete set of errors {1̂, â}.
Note that we include the identity operation here to be able to distinguish whether
nothing happened or whether we lost a photon. The main idea is to encode the
logical code-words |ψ0⟩ and |ψ1⟩, in such a way that, upon the action of â, a state
in the code-space is brought to a state orthogonal to the code-space, without the
possibility of gaining information about superpositions between basis states.

We now define the two code-words of the Kitten code,

|ψ0⟩ = 1√
2

(|0⟩+ |4⟩), |ψ1⟩ = |2⟩ . (3.16)

We immediately observe that both these states involve only superpositions of even
Fock states and have therefore an even photon number parity. Hence, a single
photon loss event maps an even parity state |ψL⟩ = α |ψ0⟩ + β |ψ1⟩ to an odd
parity state â |ψL⟩ =

√
2(α |3⟩ + β |1⟩) and is therefore orthogonal to |ψL⟩ [74].

We could therefore detect wheter a single-photon loss event occured by measuring
the photon number parity Π̂ = eiπn̂. Importantly, in order to learn nothing about
superpositions, the states have the property:

⟨ψ0|â†â|ψ0⟩ = ⟨ψ1|â†â|ψ1⟩ = 2. (3.17)

We see that we have chosen the code-words in Eq. (3.16) in such a way as to
have the same average photon number, so that a single-photon loss event does not
distort the information that is encoded in the state |ψL⟩ [74]. We can think of this
in terms of information that can be extracted from the error sub-space: If we are
able to gain partial information from probing the error sub-space as to whether
|ψL⟩ was in |ψ0⟩ or in |ψ1⟩, we would change the superposition of the initial state.

As a recovery of the error â, we can simply measure the photon number parity
Π̂, and in case of odd measured parity apply a recovery to the state:

|ψL⟩
â−→ â |ψL⟩ =

√
2(α |3⟩+ β |1⟩) recovery−→ R̂(â |ψL⟩) = α |ψ0⟩+ β |ψ1⟩ = |ψL⟩ ,

(3.18)
with the recovery R̂ = [(|0⟩+ |4⟩) ⟨3|+ |2⟩⟨1|]/

√
2. Intuitively, instead of applying

the recovery operator R̂, we might be tempted to just add a photon back to the
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state by applying â†, but it is easy to check that this approach does not yield the
correct initial state |ψL⟩. We can systematically check that for the set of errors
{1, â} the KL conditions in Eq. (3.9) are satisfied for the Kitten code. More gen-
eral codes can be designed to correct for arbitrary discrete errors (See Sec. VII). In
order to correct more errors of the form {1̂, â, â2, . . . , âK , â†, . . . , â†

M
, n̂, . . . , n̂D}

for some integer values of K, M and D, code-words in the class of binomial codes
exactly satisfy the KL conditions [232]. While the Kitten code has been demon-
strated experimentally [64, 239], it remains challenging to experimentally construct
bosonic codes correcting higher-order errors in this way, as the Fock-state coeffi-
cients have to be precisely engineered.

IV Modeling noise on bosonic systems
Here, we focus on different noise models of bosonic systems that typically arise
in superconducting circuit platforms but are also prominent on other hardware
platforms. In particular, we explore photon loss and dephasing below.

IV.1 Photon Loss
Photon loss often represents a dominant error channel in bosonic platforms [74,
232, 236], where the rate of photon loss is determined by the internal quality
factor of the superconducting cavity. Furthermore, the pure-loss channel is also
an accurate model in broadband-line and free-space communication [254]. We
define the pure-loss channel in terms of the Lindblad master equation

dρ̂
dt = κD[â](ρ̂). (3.19)

It is useful to define the dimensionless quantity γ ≡ 1− e−κt ∈ [0, 1]. Integrating
Eq. (3.19) over time defines the channel

NL[γ](ρ̂(0)) ≡ κ

t∫
0

D[â](ρ̂(τ))dτ (3.20)

By applying the loss channel to a Fock-space coherence |n⟩⟨m|, we have [255]

NL[γ](|n⟩⟨m|) =
min{n,m}∑

ℓ=0

√√√√(n
ℓ

)(
m

ℓ

)
γℓ(1− γ)n+m

2 −ℓ |n− ℓ⟩⟨m− ℓ| . (3.21)

We see that the loss channel introduces transitions towards lower excitation num-
bers.
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We can think of the loss channel as an unwanted coherent beam-splitter cou-
pling with an auxiliary system B. This purification of a channel – called Stinespring
dilation – can be described by the unitary [256]

Û = exp
(
sin−1(√γ)(âb̂† − â†b̂)

)
, (3.22)

where b̂ describes the auxiliary system B. By tracing out the degrees of freedom
of the auxiliary mode, we are left with

TrB{Û(ρ̂⊗ |0⟩⟨0|B)Û †} = NL[γ](ρ̂). (3.23)

We can represent the loss channel in an operator-sum representation as:

NL[γ] =
∞∑

n=0
L̂k • L̂†k, with L̂k =

√
γk

k! (1− γ) n̂
2 âk. (3.24)

Here, the Kraus operators are ordered in powers of dimensionless rate γ.
As the operators L̂k are trace-class, we can expand them in terms of displace-

ments. In particular, we have [236]

L̂†kL̂k′ =
∫ d2α

π
e−

1
2 (1−γ)|α|2 ⟨k|D̂(α∗)|k′⟩ D̂(√γα). (3.25)

The first two Kraus operators in leading order of γ are given by:

L̂0 = 1̂− γ

2 â
†â, L̂1 = √γâ. (3.26)

We see that this channel does not contain the identity in the Kraus-operator for
γ ̸= 0, due to the back-action of the damping term (1− γ)n̂/2 in Eq. (3.24). This
is due to the fact that during the time intervals where no losses are recorded,
information is gained about what state the system is in, causing a redistribution
of probabilities by L̂0.

It proves insightful to look at how states in phase space are transformed under
the loss channel. The loss channel gives rise to the equation of motion for the
Wigner function W (q, p) [122]:

∂W (q, p)
∂t

= κ

2

(
∂qW

∂q
+ ∂pW

∂p

)
+ κ

4

(
∂2W

∂q2 + ∂2W

∂p2

)
(3.27)

The above equation is a Fockker-Planck equation for the Wigner function under the
loss channel [257]. The first term is a drift term, describing the loss of amplitude,
while the second term is a diffusion term, accounting for the loss-induced noise. We
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(a) loss dephasing(b)

Figure 3.4: Schematic illustration of the effect of noise on points in the Wigner func-
tion. (a) For the pure loss channel NL[γ], initial points (blue) are re-scaled towards the
origin with a rate of

√
1− γ and smoothed with a Gaussian function. (b) For the pure

dephasing channel ND[γϕ], initial points get smeared out tangentially.

can straightforwardly solve the Focker-Planck equation through a Fourier transfor-
mation. Let W̃ (u, v) be the Fourier transformation of W (q, p), called characteristic
function. Then, W̃ (u, v) has a simple form:

∂W̃ (u, v)
∂t

= −κ2

(
u
∂W̃

∂u
+ v

∂W̃

∂v

)
− κ

4 (u2 + v2)W̃ . (3.28)

With ∂W̃
∂t

containing only first-order derivatives, we can obtain a solution by inte-
gration, yielding:

W̃ (u, v, t) = W̃ (
√

1− γu,
√

1− γv, t = 0) exp
(
−γu

2 + v2

4

)
, (3.29)

We observe that the characteristic function W̃ gets point-wise rescaled under the
action of loss from low frequencies to higher frequencies and multiplied with a
Gaussian function with variance of 1/(2γ). This multiplication with a Gaussian
acts as a low-pass filter that dampens higher-frequency components. We can also
obtain the structure of the regular time-evolved Wigner function W (q, p) by an
inverse-Fourier transformation, yielding [122]:

W (q, p, t) = 1
γπ
W ( q√

1− γ ,
p√

1− γ , t = 0) ∗ exp
(
−q

2 + p2

γ

)
, (3.30)

where f ∗ g ≡
∫∞
−∞ f(u, v)g(x − u, y − v)dudv is a convolution. Here, we see

a similar effect of a point-wise re-scaling towards the origin (q, p) = (0, 0) and
Gaussian smoothing.
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In Fig. 3.4(a), we schematically depict the action of the loss function for points
in phase space. From Eq. (3.30), we can straightforwardly see that Gaussian states
remain Gaussian under the application of the loss channel. Hence, the loss channel
is in the class of Gaussian quantum channels.

IV.2 Dephasing

Temperature fluctuations [258], Kerr non-linearities [259], and other phenom-
ena [260, 261] can lead to decoherence effects that can be jointly described by
noise model of pure dephasing. In superconducting circuits, the dephasing channel
often arises through an unwanted dispersive coupling to an auxiliary system [74].

We define the pure-dephasing channel by the Lindblad master equation:

dρ̂
dt = κϕD[â†â](ρ̂). (3.31)

We introduce the dimensionless parameter γϕ ≡ κϕt ≥ 0. In Fock-space, the
dephasing channel can be described by

ND[γϕ](ρ̂) =
∞∑

m,n=0
e−

γϕ
2 (m−n)2 |m⟩⟨m| ρ̂ |n⟩⟨n| . (3.32)

We see that the dephasing channel has the effect of dampening Fock-space co-
herences in the density matrix, but does not introduce transitions as compared
to the loss channel. The dephasing channel can be expressed in an operator-sum
representation [256],

ND [γϕ] =
∞∑

k=0
L̂k • L̂†k, with L̂k =

√
γk

ϕ

k! e
−

γϕ
2 n̂2

n̂k. (3.33)

Similar to the pure loss channel, we can look at the Kraus operators in leading
order of γϕ:

L̂0 = 1̂− γϕ

2 n̂
2, L̂1 = √γϕn̂ (3.34)

Similar to the loss channel, the dephasing channel can be dilated with a dis-
persive – or longitudinal – coherent interaction [262–264]:

Û = exp
(
−i√γϕ(â†â)(b̂+ b̂†)

)
, (3.35)

such that
TrB{Û(ρ̂⊗ |0⟩⟨0|B)Û †} = ND[γϕ](ρ̂). (3.36)
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To better understand the effect of the pure dephasing channel, we can decom-
pose it in terms of phase space rotations [262]:

ND[γϕ](ρ̂) =
∫ ∞
−∞

p(ϕ)e−iϕâ†âρ̂eiϕâ†âdϕ, with p(ϕ) =
√
γϕ

2πe
− 1

2 γϕϕ2
. (3.37)

The channel ND[γϕ] is thus a convex combination of phase space rotations with
ρ̂ → e−iϕâ†âρ̂eiϕâ†â, where the variable ϕ is a Gaussian distribution with variance
1/γϕ, As a result, the density matrix ρ̂ is tangentially smeared out in phase space
according to the Gaussian envelope p(ϕ), schematically depicted in Fig. 3.4(b).
It is important to note that the dephasing channel is a non-Gaussian channel,
mapping Gaussian states to non-Gaussian states, as can be seen from Eq. (3.37).

IV.3 Joint loss and dephasing
In a realistic scenario, a quantum system can be subjected to both loss and de-
phasing. We can define the joint-loss dephasing channel NLD[γ, γϕ] through the
Lindblad master equation:

NLD[γ, γϕ](ρ̂(0)) = ρ̂(t), with dρ̂
dt = κD[â](ρ̂) + κϕD[â†â](ρ̂). (3.38)

Because the dissipators D[â] and D[â†â] commute, the loss-dephasing channel is
also commutative:

NLD[γ, γϕ] = NL[γ] ◦ ND [γϕ] = ND [γϕ] ◦ NL[γ]. (3.39)

In a setting where γ and γϕ differ significantly from each other, such as in a noise-
biased environment, in order to simulate the dynamics using a finite number of
Kraus operators for NLD[γ, γϕ], one should choose a truncation of Kraus-operators
carefully.

V Channel Fidelity

V.1 Continuous errors
The KL conditions determine if a given set of discrete errors can be exactly cor-
rected. However most noise acting on a quantum system induces errors in a con-
tinuous way. Typically, a noise channel E can be expressed in terms of a Lindblad
master equation evolution acting for some duration τ until we measure the system
for possible errors or for reading out the state of the system. For such a channel,
we have E = exp{Lτ}, with Liouvillian L as defined in Eq (2.18). In general, for
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Figure 3.5: Combined quantum channel Q, consisting of an encoding S of a qubit into a
bosonic mode, a bosonic noise channel E , a subsequent recovery channel R, and finally
a decoding S−1 back to the qubit space A.

the infinte-dimensional Hilbert space of a bosonic system, E has infinitely many
Kraus-operators in its operator-sum representation, generating an infinite set of
discrete errors. Instead of trying to know which of these errors can be corrected,
we might want to ask instead: Given a bosonic code and a noise channel E , what
information can still be extracted from the system after performing a recovery
operation R after time τ?

V.2 Definition of channel fidelity
To answer this question, we resort to the concept of channel fidelity [236, 265]. We
define a perfect encoding channel S, with S(ρ̂) ≡ Ŝρ̂Ŝ† and Ŝ = |ψ0⟩⟨0A|+ |ψ1⟩⟨1A|
that maps the basis states |0/1A⟩ of a qubit to the logical code-words |ψ0/1⟩ in a
bosonic mode, satisfying ŜŜ−1 = P̂C, and Ŝ−1Ŝ = P̂A. Let E be a noise channel,
and R a recovery channel trying to correct the channel E . Then, we define a
combined quantum channel Q, mapping a qubit density matrix again to a qubit
density matrix .

Q ≡ S−1 ◦ R ◦ E ◦ S (3.40)

While the combined channel Q is a mapping between a density matrices in a
two-level basis, the channels R and E are mappings between density matrices in
the bosonic Hilbert space, as depicted in Fig. 3.5. We can therefore always express
Q in terms of only four distinct operators in the Pauli group,

Q =
∑
α,β

Qα,βσ̂α • σ̂†β =
∑

i

Q̂i • Q̂†i , (3.41)

with σ̂α,β ∈ {1̂, σ̂x, σ̂y, σ̂z}. The matrix elements Qα,β can be computed as

Qα,β = Tr{σ̂αQ(σ̂β)}. (3.42)

The operators Q̂i can be found by diagonalizing the matrix above. Let A be the
system acted upon with the channel Q and let B be a reference system. We can
define an entanglement fidelity [236, 265–267] for a mixed state in A in terms
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of a purification to the reference system B. If |Ψ⟩ ∈ HA ⊗ HB is a purification
of ρ̂A, then ρ̂A can be obtained by tracing out the degrees of freedom in B, i.e.
ρ̂A = TrB{|Ψ⟩⟨Ψ|}, and |Ψ⟩, therefore, captures all information about ρ̂A. In
general, |Ψ⟩ contains entanglement between the systems A and B.

The channel fidelity is a measure of how much the channel Q preserves the
state |Ψ⟩. It is therefore a measure how well Q preserves the entanglement with
its reference system B:

Fe(ρ̂A,Q) ≡ ⟨Ψ| (Q⊗ I)(|Ψ⟩⟨Ψ|) |Ψ⟩ (3.43)

The entanglement fidelity Fe is linear in Q for any input state ρ̂A. This is partic-
ularly useful for quantum error correction that is adapted to the specific channel
Q and enables the application of convex optimization problems called semidefinite
programs to optimize e.g. a bosonic encoding S and/or the respective recovery R.

Computing the entanglement fidelity using the definition in Eq. (3.43) directly
does not seem straightforward. Interestingly, however, we can express Fe in terms
of the channel Q and the density matrix ρ̂A alone:

Fe(ρ̂A,Q) =
4∑

i=1
⟨Ψ|(Q̂i ⊗ 1̂)|Ψ⟩ ⟨Ψ|(Q̂i ⊗ 1̂)†|Ψ⟩ (3.44)

=
4∑

i=1
Tr{ρ̂AQ̂i}Tr{ρ̂AQ̂

†
i} =

4∑
i=1
|Tr{ρ̂AQ̂i}|2, (3.45)

with the Kraus operators Q̂i corresponding to the channel Q. It is often more
insightful to consider a strict fidelity condition for a state ρ̂A, which is the case
for a fully mixed state ρ̂A = 1̂/2. In this case, the purification with subsystem
B produces a maximally entangled state |Ψ⟩ = (|0A0B⟩ + |1A1B⟩)/

√
2. We thus

obtain the average channel fidelity

F ≡ Fe(1̂/2,Q) = 1
4

4∑
i=1
|Tr{Q̂i}|2 (3.46)

We can also express F in terms of the matrix elements Qα,β in the basis spanned
by the Pauli group σα ∈ {1̂, σ̂x, σ̂y, σ̂z} of orthogonal operators,

F = 1
4Tr{Q} = 1

4

4∑
α=1

Tr{σαQ(σα)} = 1
4Tr{Q}, (3.47)

where Tr{Q} is the matrix trace of the matrix-representation of Q in the basis
of the Pauli group, given in Eq. (3.41), with matrix elements Qα,β. The channel
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fidelity F now is a quantity depending only on the channel Q and can be computed
from an operator-sum representation.
F gives an intuitive measure on how much entanglement can be preserved when

the system of interest is purified to a reference system. It, therefore, gives a better
insight into the correctability of errors for a specific error correction code and for
a specific noise channel when the KL conditions are not exactly satisfied.

In the scenario of dissipative stabilization of the code-space manifold, detailed
in Sec. VI.2, no active recovery is applied to the system and the system evolves
in time entirely with the channel E ′ = eL

′τ , where L′ includes both the natural
dissipation and the engineered dissipation. The channel fidelity in Eq. (3.47) then
reduces to

F = 1
4

4∑
α=1

Tr{σ̂αE ′(σ̂α)} = 1
4

4∑
α=1

Tr{σ̂ασ̂α(τ)}, (3.48)

where σ̂α(τ) is the evolution of the the code-space Pauli operator σ̂α under the
dissipator L′.

V.3 Approximate Knill-Laflamme conditions

Note that contrary to the KL conditions, which only pose the existence of a re-
covery map for a given set of correctable errors, in the expression of the channel
fidelity, a recovery operation has to be explicitly specified (See Eq. (3.40)). To
be able to compare the channel fidelity to the KL conditions, we would therefore
need to find an optimal recovery operation

F opt(E ,S) = max
R
F(E ,S,R), (3.49)

which can be found using convex optimization techniques, detailed in the next
section.

We can relate the recovery-optimized fidelity Fopt to the KL conditions [268],
by considering the near-optimal fidelity, FKL

FKL ≡
1
4
∥∥∥TrL{

√
M}

∥∥∥
F
, (3.50)

with TrL{A}ℓ,ℓ′ = ∑
i A[i,ℓ],[i,ℓ′] and the Frobenius norm ∥A∥F =

√
Tr[A†A].

Here, M is the KL-tensor with matrix elements M[i,ℓ],[i,ℓ′], introduced in Sec. II.1,
Eq. (3.10). FKL gives an upper and lower bound to the optimal channel fi-
delity [268] Fopt:

1
2
(
1−FKL

)
≤ 1−Fopt ≤ 1−FKL. (3.51)
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A more straightforward measure for the violation of some discrete set of errors
{Êk} can be given in terms of the cost function [236, 269]

CKL ≡
∑
ℓ,ℓ′
|M[0,ℓ],[0,ℓ′] −M[1,ℓ],[1,ℓ′]|2 + |M[0,ℓ],[1,ℓ′]|2 (3.52)

The above cost function is exactly zero only if the Knill-Laflamme conditions for
the given set of errors are exactly satisfied, as can be straightforwardly checked
from the definition of the Knill-Laflamme tensor in Eq. (3.10).

V.4 Convex Optimization of the Channel Fidelity

In the expression of the channel fidelity F defined in Eq. (3.46), the recovery
operation R has to be explicitly specified. Rather than specifying a recovery R
inspired by physical intuition or experimental constraints, we might want to know
the optimal recovery that maximizes the amount of quantum information that can
be sent through the noisy channel Q.

Let us call the Ropt the optimal recovery resulting from optimizing over all
possible recoveries R:

Ropt = argmax
R
F(Q). (3.53)

Let R = ∑
i
R̂i•R̂†i an operator-sum representation of the recovery map in diagonal

form. Let {B̂r ∈ HC ⊗ Hb ⊂ Op(Hb)} be a set of basis operators, taking states
in the bosonic Hilbert space Hb back to states in the code-space manifold HC.
Following the quantum process tomography method [47, 270], we can expand the
operators R̂r in terms of the basis operators B̂i:

R̂r =
∑

i

xr,iB̂i, (3.54)

with complex scalars {xr,i}. We can now define a process matrix, describing the
noise-channel matrix elements, when inserting the map Ri,j ≡ B̂i • B̂†j for the
recovery [271]:

FR(E ,S)i,j ≡
1
4Tr{S−1 ◦ Ri,j ◦ E ◦ S} (3.55)

=
∑

k,l,m

Tr{Ŝ−1
m B̂iÊkŜl}Tr{Ŝ−1

m B̂jÊkŜl}∗ (3.56)

= 1
4
∑

k

Tr{B̂iÊk}Tr{B̂jÊk}∗. (3.57)
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If the noise channel E is expressed in terms of a Liouvillian time evolution, E =
exp(Lτ), the process matrix can be written in the form

FR(E ,S)i,j = 1
4Tr{(B̂i ⊗ B̂†j ) exp(Lτ)} = 1

4

4∑
k=1

Tr{Â†kB̂iÂk(τ)B̂†j}, (3.58)

where Âk ∈ Op(HC) are orthonormal basis operators in the code-space. Here, we
have time-evolved a basis operator Âk(τ) = eLτ Âk.

Due to the linearity of the operators R̂r in the basis operators B̂i (See Eq. (3.54)),
we can write the average channel fidelity F as

F =
∑
i,j

[XR]i,j[FR]i,j = Tr{XRFR}. (3.59)

Here, we have defined the recovery matrix

[XR]i,j ≡
∑

r

xr,ix
∗
r,j (3.60)

Trace-preservation of the channel R demands
∑
i,j

(XR)i,jB̂
†
i B̂j = 1̂b. (3.61)

We note that the process matrix FR is a positive semidefinite matrix [104, 271,
272], due to the fact that the combined channel Q is a CPTP map.

We can now define an optimization over R in terms of XR and FR:

maximize F(Q) = Tr{XRFR}
subject to

∑
i,j

(XR)i,jB̂
†
i B̂j = 1̂b,

(XR)i,j ≡
∑

r

xr,ix
∗
r,j

(3.62)

We observe that the equality constraints in the optimization in Eq. (3.62)
are quadratic in xr,i, and therefore, do not form a convex set [271]. We can
however relax the above optimization to the following optimization that in which
the optimization parameters form a convex set:

maximize Tr{XRFR}
subject to XR ≽ 0∑

i,j

(XR)i,jB̂
†
i B̂j = 1̂b.

(3.63)
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In the optimization above, instead of optimizing over the parameters xr,i, we di-
rectly optimize over the matrix elements of XR, which we constrain to be positive
semidefinite. A convex optimization as in Eqs. (3.63) with the optimization matrix
XR being positive semidefinite is often referred to as a semidefinite program [273,
274] (SDP). There are various numerical methods to efficiently solve SDP prob-
lems [275–282].

Once a solution Xnear−opt
R to the SDP in Eqs. (3.63) is found, we can obtain

an explicit form of the near-optimal channel Rnear−opt by expressing Xnear−opt
R in

its singular value decomposition,

Xnear−opt
R = V ΣV † (3.64)

Then, the Kraus-operators R̂near−opt
r of the near-optimal recovery Rnear−opt are

given by
R̂near−opt

r ≡
√
σr

∑
i

Vi,rB̂i, (3.65)

where σr are the singular values of the diagonal matrix Σ. We immediately see
that ∑r R̂

near−opt
r

†
R̂near−opt

r = 1̂b, and hence Rnear−opt is a CPTP map.

V.5 Correcting a finite set of errors

The complete set of basis operators {B̂i} transforming states in the Hilbert space
is often too large to be tractable numerically. We can, however, restrict the set
of basis operators {B̂i} to operations transforming states in certain error-sub-
spaces back to the code-space. Let {Êk} be a discrete set of errors. We can, for
example, obtain such a discrete set of errors by considering the Kraus-operators
in the noise channel E (See Eq. (3.40)) up to order O((δt)n). We can construct
mutually orthogonal sub-spaces HEk′ by first applying the operators in the finite
error set {Êk} to the states |ψ0⟩, |ψ1⟩ in the code-space and subsequently ortho-
normalizing the states with respect to each other using, e.g. the Gram-Schmidt
process [283], such that the sub-spaces HEk′ = Span{ |ψ(k′)

0 ⟩ , |ψ
(k′)
1 ⟩} ⊂ Hb are

mutually orthogonal two-dimensional error sub-spaces that are also orthogonal to
the code space. We now define the Pauli operators σ̂(k′)

i : HEk′ → HC mapping the
states in HEk′ back to HC:

σ̂
(k′)
1 = 1̂HEk′→HC = |ψ0⟩⟨ψ(k′)

0 |+ |ψ1⟩⟨ψ(k′)
1 |

σ̂
(k′)
2 = X̂HEk′→HC = |ψ0⟩⟨ψ(k′)

1 |+ |ψ1⟩⟨ψ(k′)
0 |

σ̂
(k′)
3 = ŶHEk′→HC = i |ψ0⟩⟨ψ(k′)

1 | − i |ψ1⟩⟨ψ(k′)
0 |

σ̂
(k′)
4 = ẐHEk′→HC = |ψ0⟩⟨ψ(k′)

0 | − |ψ1⟩⟨ψ(k′)
1 |

(3.66)
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The operators in Eqs. (3.66) define a basis of mutually orthogonal recovery
operations, such that any arbitrary recovery operator B̂(k′) : HEk′ → HC can be
uniquely decomposed into the operators σ̂(k′)

i . The operator set {B̂i} = {σ̂(k′)
n , n =

1, . . . , 4, k′ = 0, . . . , N}, with N the number of orthogonal error-sub-spaces, thus
defines a basis of operators mapping all considered error-sub-spaces to the code-
space. Considering, e.g., N error-sub-spaces, we have a number of 4(N + 1) basis
operators {B̂I} (The N + 1 originates from also considering rotations within the
code-space). A critical remark is that, in general, the operators in Eq. (3.66) do
not yield ∑i B̂

†
i B̂i = 1̂b, as long as error-operators {Êk} are not a generating set

of E .

VI The cat code
To address some of the noise discussed in the previous section that is typically
encountered in bosonic systems, various bosonic quantum error correction codes
have been proposed.

In this section, we will discuss the so-called two-component cat code, a promi-
nent example of a bosonic quantum error correction code. It has gained recent
interest as a biased-noise qubit [72, 86, 284–286], where a quantum system is en-
gineered to have one type of error occur much more frequently than other types of
errors, which can address the remaining errors in the next layer of quantum error
correction efficiently [87, 88, 287, 288].

The cat code as an error correction code was first proposed by Cochrane et
al. [79] and was further analyzed by Ralph et al. [289]. It has since regained more
attraction [81, 86, 227, 233, 236] and led to experimental realizations [64, 72, 76,
82, 94, 242, 290, 291]. In the following, we will define the cat code, present its
error-correcting properties, and their realization through dissipation engineering
and Hamiltonian confinement.

To begin, we construct the code-words of the two-component cat code (we
use the wording two-component to distinguish it from other cat codes but omit
it hereafter) by taking even and odd superpositions of two coherent states with
opposite displacement [79, 289]:

∣∣∣C+
α

〉
≡ 1
N+

[
D̂(α) + D̂(−α)

]
|0⟩ = 1

N+ (|α⟩+ |−α⟩)∣∣∣C−α 〉 ≡ 1
N−

[
D̂(α)− D̂(−α)

]
|0⟩ = 1

N−
(|α⟩ − |−α⟩)

(3.67)

Here, N± =
√

2(1± e−2|α|2) is a normalization constant. We use the convention of
defining |C+

α ⟩ as the logical Ẑ eigenstate, with eigenvalue +1. Note that this choice
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Figure 3.6: (a) Bloch sphere of the cat code. The states |C±α ⟩ are the logical Ẑ eigen-
states. We also depict the X̂ and Ŷ eigenstates. (b) Wigner functions of the even and
odd cat states for α0 = 2.

is arbitrary, and throughout the literature, different conventions can be found. We
depict the Wigner functions of the logical X̂L, ŶL, and ẐL eigenstates in Fig. 3.6.
Interestingly, the cat states |C+

α ⟩ and |C−α ⟩ contain superpositions of only even and
odd Fock-states, respectively:

∣∣∣C+
α

〉
∝
∞∑

n=0

α2n√
(2n)!

|2n⟩

∣∣∣C−α 〉 ∝ ∞∑
n=0

α2n+1√
(2n+ 1)!

|2n+ 1⟩
(3.68)

To see this more clearly, we define the rotation operator R̂(θ), rotating a state at
an angle θ around the origin in phase space,

R̂(θ) ≡ eiθâ†â. (3.69)

For θ = π, we have R̂(θ = π) ≡ Π̂ = eiπâ†â = (−1)n̂. Π̂ is the called the
photon number parity operator and transforms â, and â†, as Π̂âΠ̂† = −â, and
Π̂â†Π̂† = −â†, as can be seen from applying the Baker-Campbell-Hausdorff for-
mula [292, 293]. We can decompose Π̂ in two parity sectors, Π̂ = Π̂even − Π̂odd =∑∞

n=0 |2n⟩⟨2n| − |2n+ 1⟩⟨2n+ 1|. We immediately see that the parity operator
changes displacements from α→ −α,

Π̂D̂(α)Π̂† = D̂(−α). (3.70)
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As a result, taking the definition of the cat states in Eq. (3.67), we have

Π̂
[
D̂(α) + D̂(−α)

]
Π̂† = +1

[
D̂(α) + D̂(−α)

]
Π̂
[
D̂(α)− D̂(−α)

]
Π̂† = −1

[
D̂(α)− D̂(−α)

]
.

(3.71)

From this, we can immediately deduce that the cat states |C±α ⟩ are eigenstates of
the photon number parity, with eigenvalues ±1. Π̂ therefore serves as the logical Ẑ
operator of the cat states. We can also see that from Eq. (3.68), |C+

α ⟩ and |C−α ⟩ are
orthogonal for any value of α and therefore represent a valid qubit. Furthermore,
we have the limiting behavior of |C+

α ⟩ → |0⟩ and |C−α ⟩ → |1⟩ for α→ 0.
The logical X̂ eigenstates are given by

|+⟩L = 1√
2
(∣∣∣C+

α

〉
+
∣∣∣C+

α

〉)
= |α⟩+O(e−2|α|2)

|−⟩L = 1√
2
(∣∣∣C+

α

〉
−
∣∣∣C+

α

〉)
= |−α⟩+O(e−2|α|2)

(3.72)

The deviation from coherent states |±α⟩ on the right-hand side is given by the
overlap between opposite states:

⟨α|−α⟩ = e−2|α|2 (3.73)

For large α, the states |±α⟩ thus represent the basis of a valid qubit in the conju-
gate basis.

A coherent state |α⟩ is an eigenstate of â with eigenvalue α. For the cat code,
it is straightforward to verify that â2 has the cat states |C±α ⟩ as their eigenstates
with eigenvalue α2:

â2
∣∣∣C±α 〉 = α2

∣∣∣C±α 〉 (3.74)

Error correction properties

Consider the set of errors {1̂, â}, which is the generating set of errors of the loss
channel to leading order of dissipation rate or equivalently the duration of the
channel (See Sec. IV, Eq. (3.26)). A single-photon loss event â flips the parity
of the corresponding code-word, so we directly have ⟨C±α |â|C±α ⟩ = 0. With the
projector on the code space P̂C = |C+

α ⟩⟨C+
α |+ |C−α ⟩⟨C−α |, we can compute the Knill-

Laflamme matrix elements (See Eq. (3.9)). We compute in the asymptotic regime
of large α, i.e. α≫ 1:

P̂C âP̂C = α

 0 N−
α

N+
α

N+
α

N−
α

0

 α≫1= α(1− e2|α|2)X̂L − iαe−2|α|2ŶL (3.75)
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We see that in the limit of large α, a photon loss event exactly corresponds to
a bit flip in the code-space – a fact noted very early by Cochrane et al. [79] (up
to a re-scaling by α), where phase flip errors ŶL are exponentially suppressed.
Furthermore, we have

P̂C â
†âP̂C = |α|2


(

N−
α

N+
α

)2
0

0
(

N+
α

N−
α

)2

 α≫1= 2|α|2(1−e−2|α|2)1̂L−2|α|2e−2|α|2ẐL (3.76)

Here, we obtain the crucial result that a dephasing event â†â becomes correctable
as for large α the action on the code-space is proportional to the identity. It is
thus unaffected by this error (up to a re-scaling by 2|α|2). For a more detailed list
of Knill-Laflamme matrix elements, see Appendix A.

From these two relations in Eq. (3.75) and Eq. (3.76), we can deduce that in
the limit of large displacement α, a dephasing error â†â induces an exponentially
suppressed ẐL error, while a photon loss â only induced an X̂L error that scales
linearly with α. We hence observe that the cat code presents a biased-noise qubit,
as X̂L errors occur much more frequently than ẐL or ŶL errors. This noise bias has
been shown to lead to high thresholds for the tolerable errors when multiple cat
qubits are part of a higher-level error correction scheme [87, 238, 284–286, 288]
and thus, the cat code represents a promising candidate for fault-tolerant quantum
computation.

VI.1 Subsystem decomposition and Shifted-Fock method

A powerful method used to study the cat code is the so-called Shifted Fock Ba-
sis, first introduced in Chamberland et al. [238]. This makes use of a subsystem
decomposition [294, 295], by breaking the Hilbert space of the bosonic mode into
two sectors, which capture the encoded logical information in one sector and gauge
information about the system in the other sector,

H = HL ⊗Hgauge, (3.77)

as schematically illustrated in Fig. 3.7 in the case of a qubit decomposition with
dim(HL) = 2.

The shifted Fock basis provides an intuitive basis for studying logical errors
on the cat qubit as well as leakage outside of the cat qubit manifold. We refer to
Refs. [238, 296] for details and give an introduction here as this method proves to be
very useful here and in Chap. 5. For the cat code, we have seen that the two basis
states defining the cat code are characterized by symmetric and antisymmetric
displacements, as in Eqs. (3.71). We can apply these to Fock-states to obtain the
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Figure 3.7: Schematic illustration of a subsystem decomposition [294, 295] of a single
bosonic mode. Here the total Hilbert space of the bosonic mode H is decomposed into
a subsystem of a qubit HL and a gauge mode Hgauge.

basis states
|0/1, n⟩ ≡ 1√

2
[
D̂(α)± (−1)nD̂(−α)

]
|n⟩ , (3.78)

where 0 and 1 represent the even and odd parity of the state, respectively. For
n = 0, we obtain the cat states |0/1, 0⟩ ∝ |C±α ⟩. The space Span{|µ, n⟩}{µ,n} covers
the entire Hilbert space. However, the states |µ, n⟩ and |µ,m⟩ are not mutually
orthogonal due to the fact that displaced number states have non-zero overlap [297,
298]. By Gram-Schmidt diagonalizing the individual two parity sectors, we can,
however, obtain an orthogonal basis [238].

We can nicely represent combinations of creation and annihilation operators in
the shifted Fock basis. For example, we have in the regime of α≫ 1,

â |0/1, n⟩ =
√
n |1/0, n− 1⟩+ α |1/0, n⟩

= X̂L ⊗ (ã+ α) |0/1, n⟩
, (3.79)

with the operator ã acting only on the gauge mode as ã |0/1, n⟩ =
√
n |0/1, n− 1⟩.

As a result, we map the annihilation operator to the shifted Fock basis, as

â ∼ X̂L ⊗ (ã+ α). (3.80)

We can thus see that the annihilation operator acts as a logical X̂L on the code
space, defined by the photon number parity, and as the annihilation operator
displaced by α in the gauge mode. We can obtain similar expressions of other
operators that facilitate the study of the action on the code-space.

VI.2 Dissipation Engineering

The cat code detailed above presents us with several more practical questions:
(i) How can the code-words be generated efficiently? (ii) How can we efficiently
perform a recovery operation for the correctable errors? (iii) How can we perform
quantum gates that do not break the noise bias of the bosonic code? Here, we
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will deal with questions (i) and (ii) in a broader context by introducing dissipation
engineering and using the cat code as an intuitive example. We detail gates of the
cat qubit subsequently.

In the last sections, we have assumed either the existence of an active recovery
operation in the case of the Knill-Laflamme conditions or, in the case of channel
fidelity, explicitly specified a recovery that measures and corrects errors of the
bosonic code under study. This usually requires a classical adaptive control mech-
anism of measuring a non-demolition error syndrome that measures the respective
error sub-spaces and subsequently maps the error sub-space back to the original
code-space manifold. Although recent experimental demonstrations of bosonic
quantum codes used classical adaptive control to surpass the break-even point [76,
78], the performance is often limited by readout errors [76, 239] or the decoherence
from error syndrome measurement [61, 65]. Additionally, a classical feedback loop
introduces time delays and additional heating of the system [77, 299], accompanied
by significant computational and physical resources for the control pulses of the
recovery protocol [300, 301].

We might alternatively try to implement a bosonic code without the need for
an active recovery relying on classical adaptive control. We can think of errors
in a QEC producing entropy, which active adaptive control schemes aim to re-
duce under additional energetic, computational, and hardware costs. Using an
approach called autonomous quantum error correction, dissipation engineering, or
dissipative stabilization, we can try to empty the entropy that is being produced by
errors into the environment [302–305]. In recent experiments, autonomous QEC
has efficiently suppressed dephasing errors [72, 83, 86] as well as single-photon
loss errors [64] using the cat code. Autonomous QEC methods are, therefore, a
promising candidate for realizing hardware-efficient QEC [81, 85, 87, 306, 307].

The general idea of autonomous quantum error correction is to add an en-
gineered dissipation LR(ρ̂) = ∑

kD[ÂR,k](ρ̂) to the present natural dissipation
LN(ρ̂) = ∑

kD[ÂN,k](ρ̂), such that the system ρ̂ evolves under the master equation

L(ρ̂) = −i
[
Ĥ, ρ̂

]
+ λLR(ρ̂) + κLN(ρ̂), (3.81)

where Ĥ is a control Hamiltonian for the realization of logical gates on the bosonic
code. It has been shown that such an autonomous QEC scheme can improve the
decoherence rate to O(κ2/λ) at the logical level [302–305, 307].

Let us illustrate this dissipative stabilization technique for the two-component
cat code. In Eq. (3.74), we have seen that cat states |C±α ⟩ are degenerate eigen-
states of the operator â2 with eigenvalue α2. As a direct consequence, |C±α ⟩ are
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annihilated by L̂ = â2 − α2. By taking the Liouvillian

L(ρ̂) = κ2D[â2 − α2](ρ̂), (3.82)

we see that any coherence ρ̂µ,ν = |Cµ
α⟩⟨Cν

α|, with µ, ν ∈ {+,−} is preserved under
this evolution. In other words, the steady state is spanned by the density matrix

ρ̂ss =
∑

µ,ν∈{+,−}
ρµ,ν |Cµ

α⟩⟨Cν
α| . (3.83)

We can use the fact that the Lindblad master equation in Eq. (3.82) is invariant
under inhomogeneous transformations (See Chap. 2, Sec. II), and cast it in the
form

L(ρ̂) = −i
[
G

2 â
2† + G∗

2 â2, ρ̂
]

+ κ2D[â2, ρ̂](ρ̂) (3.84)

The coherent field amplitude α is then given by α =
√
iG/κ2. We now clearly see

that the cat code can be stabilized with a two-photon drive and a two-photon loss
process.

The Liouvillian L in Eq. (3.84) possesses a strong Z2 symmetry [113, 308],
and the Liouvillian can be block-diagonalized, corresponding to the four different
parity sectors (including even-odd transitions). Due to the strong symmetry, the
Liouvillian admits four distinct preserved quantities Ĵµ,ν .

The density matrix coefficients ρµ,ν are uniquely determined by [81, 113, 309]

ρµ,ν = Tr{Ĵ†µ,ν ρ̂(0)}. (3.85)

Here, Ĵ++ ≡ Π̂even and Ĵ−− ≡ Π̂odd. The other conserved quantities are given by:

Ĵ+− ≡

√√√√ 2α2

sinh (2α2)

∞∑
a=−∞

(−1)a

2a+ 1Ia

(
α2
)
Ĵ

(a)
+−, (3.86)

where Ia is the modified Bessel function of the first kind, and the operators Ĵ (a)
+−

are given by

Ĵ
(a)
+− ≡


(â†â−1)!!

(â†â+2a)!!
Ĵ++â

2a+1 a ≥ 0

Ĵ++â
†(2|a|−1) (â†â)!!

(â†â+2|a|−1)!!
a < 0

, (3.87)

where n!! = (n−2)!!n is the double factorial. Furthermore, Ĵ−+ = Ĵ†+−. Physically,
Ĵ+− represents how the environment distinguishes components of ρ̂ [113]. These
conserved quantities can be used to extract decay rates in the logical basis of cat
states when other noise processes are present.



68 Chapter 3. Bosonic Quantum Error Correction

single-photon
drive
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nonlinear
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Figure 3.8: Schematic representation of a dissipative stabilization of the cat-qubit man-
ifold. A lossy buffer mode is driven with a single-photon drive. Through a non-linear
element that is resonantly driven with respect to an interaction causing an exchange of
two photons in the target mode with a photon in the buffer mode, leading to an effec-
tive two-photon drive of the target mode. Figure adapted from Ref. [310] with slight
modifications.

If we now subject the dissipatively stabilized cat code to the noise channel of
pure dephasing with dissipator κϕD[â†â], Ĵ+− no longer is a conserved quantity
and we can use its decay rate to calculate the phase-flip rate [81]. For κ2 ≫ κϕ,
we have the asymptotic behavior

γZ ≃ 2κϕ|α|2e−|α|
2
, (3.88)

where we once again see the exponential suppression with the coherent-field am-
plitude α, already encountered for discrete dephasing errors in Eq. (3.76).

Reservoir engineering with an auxiliary mode

To engineer a two-photon dissipation and a two-photon drive to stabilize the cat-
qubit manifold as in Eq. (3.84) in practice, we can make use of a two-mode system
where the target mode â for the bosonic qubit is coupled to a strongly damped
auxiliary mode b̂ (or buffer mode). To this end, let us assume the Lindblad master
equation for the joint system

dρ̂
dt = −i[Ĥint, ρ̂] + κbD[b̂](ρ̂), where

Ĥint = g2(â2 − α2)b̂+ h.c.
(3.89)

The interaction Hamiltonian Ĥint introduces exchanges of single photons in the
auxiliary mode with photon pairs in the target mode. We can recast Ĥint as

Ĥint = g2â
2b̂† + g∗2 â

2†b̂+ Fbb̂
† + F ∗b b̂, (3.90)
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with the single-photon drive amplitude of the auxiliary mode Fb = −α2g2. In the
limit of strong dissipation in the auxiliary mode compared to the exchange rate
g2, i.e. κb ≫ g2, all processes in the auxiliary mode are decaying at a much faster
time-scale than in the target mode, and we can adiabatically eliminate the degrees
of freedom of the auxiliary mode to obtain an effective dynamics [311, 312] of only
the target mode:

dρ̂a

dt = 4g2
2

κb

D[â2 − α2](ρ̂a). (3.91)

Such a process was experimentally realized by, e.g., Leghtas et al. [290] and Les-
canne et al. [72] using superconducting circuits, where the interaction Hamiltonian
was engineered using an asymmetrically threaded SQUID (ATS) [313, 314] that
was driven resonant with respect to the target interaction Hamiltonian.

Logical gates

Let us briefly detail some notable quantum gates for the dissipatively stabilized
cat code. See Refs. [81, 85, 87, 238] for a detailed analysis of gates for stabilized
cat qubits.

X̂-rotation. We can perform rotations around the logical X̂-axis by using an
adiabatic single-photon drive with Hamiltonian:

ĤX = F ∗â+ F â† (3.92)

The coherent rotation around the logical X̂-axis can be realized by adding ĤX to
the master equation in Eq. (3.82) [81], with single-photon driving amplitude F . In
the adiabatic limit F ≪ κ2, the logical code space remains the cat qubit manifold
and the qubit is adiabatically rotated an angle φ = ΩXt around the X̂-axis, with
Rabi frequency ΩX = 2F |α| [81], for real values of F and α. In Chap. 4, we
will explore in-depth how non-adiabatic effects of this continuous rotation can be
simulated efficiently.

Ẑ-gate. The X̂-eigenstates of the cat qubit are approximately given by |±α⟩
(See also Eq. (3.72)), in the limit of large displacement field. Hence, the Ẑ-gate
corresponds to interchanging the states |+⟩L ≈ |α⟩ and |−⟩L ≈ |−α⟩. Intuitively,
this can be achieved by varying the phase of the effective two-photon drive G in
Eq. (3.83), controlling the phase of α. In fact, detuning the resonator by an amount
∆ with respect to the resonant frequency generates a continuous time-dependent
rotation of the cat-qubit manifold:

L(ρ̂) = −i
[
∆â†â+ Ge−2i∆t

2 â2† + G∗e2i∆t

2 â2
]

+ κ2D[â2](ρ̂) (3.93)
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A π-rotation from α ↔ −α is achieved at T = π/∆. We can see that in a frame
rotated by frequency 2∆, the cat-qubit manifold is stationary.

CNOT-gate. For a universal gate set, we need at least one entangling gate.
Here, we consider the CNOT-gate, consisting of a Pauli X gate on a target qubit
conditioned on the state of a control qubit along the logical Z axis, or equivalently
in the adjoint picture, a Pauli Z gate on a target qubit conditioned on the state
of a control qubit along the X axis. For our choice of basis, we will consider the
latter. As a result, we can combine the Ẑ-gate and X̂-rotation, explained above to
realize a CNOT gate. An engineered dissipator that realizes a Ẑ-gate conditioned
on the state of the control mode can be formally given by the jump operator [238]

L̂2(t) = â2
2 − α2 + α

2 (e2i∆t − 1)(â1 − α). (3.94)

When mode 1 is in the state |−⟩L ≈ |−α⟩, the dissipator L̂2(t) reduces (ap-
proximately) to the rotating dissipator for the Ẑ-gate on mode 2. On the other
hand, when mode 1 is in the state |+⟩L ≈ |+α⟩, L̂2(t) reduces to the usual time-
independent Lindblad operator â2

1−α2 [238]. The control mode is always stabilized
using the usual two-photon dissipation, with L̂1 = â2

1 − α2. Similar to the Ẑ-gate
where the detuning term ∆â†â provides a compensating Hamiltonian for arbitrar-
ily fast gates, we can apply a similar conditional Hamiltonian here to ensure that
at any time, the two-mode system remains in the sub-space stabilized by the dis-
sipators D[L̂1] and D[L̂2(t)]. Such an approximately compensating Hamiltonian
can be given by [87, 238]

ĤCX = ∆
4α(â1 + â†1 − 2α)(â†2â2 − α2). (3.95)

We thus have the following master equation, realizing an CNOT gate:

dρ̂
dt = −i[ĤCX, ρ̂] + κ2D[L̂1](ρ̂) + κ2D[L̂2(t)](ρ̂). (3.96)

VI.3 Hamiltonian confinement
A different approach to engineering a stable cat qubit manifold is through Hamil-
tonian confinement instead of purely reservoir engineering approaches. This ap-
proach, first introduced by Puri et al. [84] and experimentally realized by Grimm
et al. [86], uses a strong Kerr-nonlinearity to encode the cat qubit in the degenerate
groundstate of the system Hamiltonian. In fact, the Kerr-cat Hamiltonian

ĤKerr = −K
(
â†

2 − α∗2
) (
â2 − α2

)
(3.97)
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Figure 3.9: (a) Schematic representation of the eigenspectrum of the Kerr-cat. The
groundstate is two-fold degenerate and hosts the cat-qubit manifold. The first excited
states are gapped by an energy gap of ∆Egap =∼ 4α2K. (b) Semi-classical potential of
the Kerr Hamiltonian, with the two fix points −α0 and α0.

has a two-fold degenerate sub-space of groundstates, spanned by coherent states
|±α⟩. By diagonalizing the Hamiltonian ĤKerr, we find that the groundstate sub-
space is gapped to excited eigenstates by an energy of order ∆Egap ∼ 4α2K, and
hence a large Kerr non-linearity protects the groundstate manifold from undesired
leakage to excited states, as depicted in Fig. 3.9(a). Indeed, weak perturbations by
spurious Hamiltonian terms to ĤKerr will only produce exponentially small leakage
outside of the groundstate manifold. In a semiclassical treatment, the dynamics
has the two coherent states |±α⟩ as fix points of the semiclassical potential, shown
in Fig. 3.9(b). We can rewrite ĤKerr in Eq. (3.97) as

ĤKerr = −Kâ†2â2 + G

2 â
†2 + G∗

2 â2, (3.98)

with Kerr nonlinearity K and two-photon drive amplitude G, such that ±α =
±
√
G/(2K).
However, higher excited eigenstates split the degeneracy of the ground-state

manifold [315]. By carefully detuning the Kerr resonator with respect to the
resonant frequency, we can benefit from strong symmetries in the system, lead-
ing to multiple degeneracies in the spectrum of the Kerr Hamiltonian, causing
the higher-excited eigenstates to be non-deganerate [316]. It should be noted
that in this purely Hamiltonian confinement, there is no engineered process that
ensures convergence back to the groundstate sub-space after leakage to higher
excited eigenstates. It is, however, possible to combine Hamiltonian confinement
using the Kerr-cat Hamiltonian and two-photon dissipative stabilization to confine
the steady-state manifold to the groundstate manifold of the Kerr-cat Hamilto-
nian [310]. Furthermore, these hybrid confinement approaches have also been
analyzed in the regime of non-zero detuning, making use of the first-order crit-



72 Chapter 3. Bosonic Quantum Error Correction

Figure 3.10: Schematic Wigner functions of the logical GKP code-words |ψ0⟩ and |ψ1⟩,
according to Eq. (3.100) with an additional Gaussian envelope for finite-energy states.

ical phase transition of the driven-dissipative Kerr resonator [317] to reduce the
phase-flip rate further under the loss-dephasing channel.

For gates on the Kerr-cat qubit, we refer to Ref. [85].

VII Other bosonic codes

Let us briefly illustrate two other notable single-mode bosonic codes, the GKP
code and the binomial code, of which we already encountered one illustrative
example in Sec. III. For a detailed review of single-mode bosonic codes, we refer
to Refs. [53, 73, 74, 89, 236, 318].

Translation symmetric codes: The Gottesmann-Kitaev-Preskill code

The GKP code – named after Gottesman, Kitaev, and Preskill – is a bosonic en-
coding defined through two commuting displacement operators that act as trans-
lations in phase space [224]. This simplest version of it is the square lattice GKP,
which encodes a bosonic qubit by the two commuting displacement operators:

Ŝq ≡ ei2
√

πq̂ = D̂(i
√

2π), Ŝp ≡ e−i2
√

πp̂ = D̂(
√

2π), (3.99)

where q̂ = (â + â†)/
√

2, and p̂ = (â − â†)/(i
√

2) are the position and momentum
operators, respectively. Crucially, the two operators Ŝq and Ŝp commute, and
hence can be simultaneously measured. Measuring Ŝq and Ŝp is equivalent as
measuring q̂ and p̂ modulo

√
π. Being able to measure these operators modulo√

π importantly does not violate the Heisenberg uncertainty but rather shifts the
uncertainty to which unit cell of a square lattice the measurement belongs. We
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can define the code-words of the square GKP code as:

|ψ0⟩ ∝
∑
n∈Z
|q̂ = (2n)

√
π⟩ ∝

∑
n∈Z
|p̂ = n

√
π⟩,

|ψ1⟩ ∝
∑
n∈Z
|q̂ = (2n+ 1)

√
π⟩ ∝

∑
n∈Z

(−1)n|p̂ = n
√
π⟩,

(3.100)

As a result, any wave function in the code space has support on q = k
√
π and p =

l
√
π, with k, l ∈ Z. We can obtain the structure of the code-words in Eq.(3.100)

by applying the stabilizer formalism [214, 319], as the simultaneous +1 eigenspace
of the operators Ŝq and Ŝp. The logical operators ẐL, X̂L, and ŶL are given by [73]

ẐL = ei
√

πq̂, X̂L = e−i
√

πp̂, and ŶL = ei
√

π(q̂−p̂), (3.101)

The wave function of the state |ψ0⟩ is a sum of Dirac-delta functions in q at even
multiple values of

√
π, whereas |ψ0⟩ has support in q at odd multiples of

√
π, as

can be seen from Eq. (3.100). We can also conceptually understand the GKP
code-words as a superposition of infinitely many and infinitely strong squeezed
states, where each component is described by a Dirac delta function. As the states
define a grid in phase space with

√
π periodicity, the GKP admits an invariance

under discrete translations by multiples of
√
π. This naturally means that any

translations smaller than
√
π/2 result in a sub-space orthogonal to the code-space.

Therefore, any errors of discrete displacements with {eiup̂, eivq̂; |u|, |v| ≤
√
π/2} are

correctable errors [73]. We can relate single-photon loss errors to displacements
(See Sec. IV Eq. (3.25)) and verify that the GKP code can partially correct loss
errors, making it an interesting bosonic code for the pure loss channel [224, 236,
320, 321].

It is important to note – and easy to verify from Eq. (3.100) – that the ideal
GKP code-words have an infinite energy. We can regularize the GKP code by
applying a Gaussian envelope [224, 320], equivalent to superpositions of finite-
squeezed states. The two ẐL eigenstates |ψ0⟩ and |ψ1⟩ code-words of the ap-
proximate GKP code are shown in Fig. 3.10 in phase space. However, the GKP
suffers from dephasing as even small random rotations in phase space result in
large displacement errors [320]. Different ways to realize approximate GKP code
on several hardware platforms have been proposed [74, 224, 320, 322–335], as well
as approaches to simulate the approximate states efficiently [73, 294, 336–339].
The GKP code has been experimentally realized in trapped ions [65, 336] and
superconducting circuit QED platforms [78, 340], even reaching lifetimes beyond
break-even [78].
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Rotation-symmetric codes: Binomial codes and multi-component cat
codes

The class of binomial codes is a class of rotation-symmetric bosonic codes [341]
that uses precisely engineered superpositions of Fock-states to correct for a finite
set of discrete errors [232]. Notably, it possesses a discrete ZN rotation symmetry
with R̂(θ = 2π/N) = ei2π/Nâ†â (See also Eq. (3.69)). By construction of the
rotational symmetry, rotation-symmetric codes are capable of detecting N − 1
photon loss events, as one can encode information in photon number parity sub-
spaces that leak into orthogonal sub-spaces upon the loss of N − 1 photons. As
we have seen in Sec. III, for exact correctability of a quantum code, we also have
to ensure that the errors Ê†ℓ Êℓ′ act in the same way on both of the code-words
in order to gain no information about superpositions in the encoded state. For
example, in the Kitten code, detailed in Sec. III, that can correct single-photon
loss errors, this amounts to the requirement of both code-words having the same
average photon number. For higher-order discrete loss and dephasing errors, we
can match precisely these requirements. To this end, consider the finite error set
{1̂, â, â2, . . . , âK , â†, . . . , â†

M
, n̂, . . . , n̂D} for some integer values of K, M and D.

We define the code-words of the general binomial code:

∣∣∣ψ0/1
〉
≡ 1√

2N

[0,N+1]∑
p even/ odd

√√√√(N + 1
p

)
|p(S + 1)⟩ , (3.102)

Here, S = K + M is the Fock-space spacing, i.e., the rotational symmetry of the
code, and N = max{K,M, 2D} is the maximum Fock-number in the code. We see
that the Fock-number coefficients are binomially distributed. It can be checked
that the binomial code, defined in Eq. (3.102) satisfies the Knill-Laflamme error
correction conditions for the given set of errors. The Kitten code, the smallest bi-
nomial code with K = 1, M = D = 0, has been demonstrated experimentally [64,
239], but it remains challenging to experimentally construct bosonic codes cor-
recting higher-order errors in this way, as the Fock-state coefficients have to be
precisely engineered, and dissipatively stabilizing arbitrary superpositions of Fock-
states requires very large nonlinearities, making the scaling towards higher-order
binomial codes extremely challenging.

Lastly, we mention here that we can also construct higher rotation-symmetric
codes of the cat code. In Sec. VI, we have analyzed the two-component cat code,
which possesses a discrete Z2 symmetry. We can use arbitrary discrete rotational
symmetries by taking superpositions of coherent states

∣∣∣αeiϕ
〉

with the same mag-
nitude |α|, but with different phases. We can define the general multi-component
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cat states by ∣∣∣C(n)
N,α

〉
≡ 1√
N (n)

N,α

N−1∑
k=0

e−
i2πnk

N |αe
i2πk

N ⟩ . (3.103)

Here N (n)
α is a normalization constant, given by

N (n)
N,α =

N−1∑
k,k′=0

e
2πin

N
(k−k′) ⟨αe

2πik
N |αe

2πik′
N ⟩ . (3.104)

Due to the discrete ẐN -rotation symmetry of the states in Eq. (3.103), the states
{ |C(n)

N,α⟩ , n = 0, . . . , N − 1} are all orthogonal to each other, as they contain su-
perpositions of n Fock-states modulo N .

We have the freedom of choice to define the code space within this manifold,
but by convention [81, 236, 341], we choose the logical basis:

|ψ0⟩ ≡
∣∣∣C(0)

N,α

〉
, |ψ1⟩ ≡

∣∣∣C(N/2)
N,α

〉
(3.105)

Upon the loss of k photons, we have in the limit of large α:

âk
∣∣∣C(n)

N,α

〉
∝
∣∣∣C(n−k mod N)

N,α

〉
, (3.106)

and hence a multi-component cat code of spacing N can correct k = N/2 − 1
photon losses.

As an example, the four-component cat code [81, 342, 343] with N = 4 consists
of superpositions of the states |α⟩, |−α⟩, |iα⟩, and |−iα⟩. This code is capable
of correcting single-photon loss errors and has been experimentally realized using
adaptive classical control techniques in a superconducting resonator [76].

Autonomous stabilization of multi-component cat states using dissipation en-
gineering requires engineering an effective N -photon interaction. Higher-order
interactions are typically much weaker than, e.g., four-wave mixing interactions,
and hence, it remains challenging to experimentally design a setup with a sizeable
target interaction strength without introducing parasitic processes.

To summarize, we have seen in this chapter how to characterize bosonic quan-
tum codes and how to asses their error correction capabilities. In particular, we
have detailed the biased-noise cat qubit as a promising candidate for fault-tolerant
quantum computing devices. Most importantly, we have seen that while dephas-
ing errors are exponentially suppressed in the cat code, they are vulnerable to
photon loss. Other codes, such as the GKP, binomial, and multi-component cat
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code, have been proposed as a means to address photon loss errors. These codes,
however, require strong non-linearities for preparation, stabilization, and error re-
covery. In the next chapter, we explore how we can extend the two-component cat
code to address photon loss errors while further increasing the protection against
dephasing errors, requiring only quadratic operations for state preparation and
gates.



A cat has nine lives.
For three he plays,
for three he strays,
and for the last three he stays.

— English proverb

4 Quantum Error Correction
with the Squeezed Cat Code

We have seen in the previous chapter that the cat qubit, composed of even and
odd superpositions of two opposite coherent states as their logical code-words,
is a promising bosonic code that can be used to exponentially suppress errors
induced by dephasing in a noise-biased environment by increasing the average
photon number of the cat qubit and can thereby efficiently autonomously correct
dephasing errors [74, 81, 236]. A single particle loss in the code-space, however,
exactly maps the code-word with even photon number |C+

α ⟩ to the code-word with
odd photon number |C−α ⟩ and vice versa, thereby inducing a logical error in the
code-space. Furthermore, a photon loss event does not map the code space into
an associated error space but only introduces an unwanted rotation within the
code space. We might, therefore, ask whether we can extend the cat qubit to a
different bosonic code that inherits its protection against dephasing but makes it
correctable also against photon loss.

In this chapter, we introduce the squeezed cat code [α] – a two-component cat
code that relies on squeezed states – that is able to correct particle loss errors
while at the same time drastically improving the correction of dephasing errors.
We provide a comprehensive analysis of the squeezed cat code in terms of KL
conditions as well as channel fidelity and discuss how the squeezed cat code can
be implemented experimentally.

In Sec. I, we motivate the use of squeezing for quantum error correction, intro-
duce squeezed states, analyze some important properties, and define and charac-
terize squeezed cat states. We briefly outline how the code can be generated and
how gates can be performed on the squeezed cat code. In Sec. II, we detail the
error correction capabilities of the code and analyze the Knill-Laflamme error cor-
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rection conditions for discrete errors arising from the loss-dephasing channel. We
then analyze the performance of the squeezed cat code in Sec. III where we con-
sider the full continuous-time loss-dephasing channel and optimize the code and
recovery to reach the optimal channel fidelity. We finally briefly outline approaches
towards experimental realizations in terms of dissipative stabilization techniques
in Sec. IV. Sec. V concludes the chapter and gives a future outlook.

I Squeezed Schrödinger Cat States

I.1 Motivation

Let us motivate the proposal of the squeezed cat as a bosonic quantum code.
As a first motivation, it is well-known that squeezed states are not eigenstates

of the annihilation operator â [123]. An immediate consequence is that upon a
single-photon loss event on a squeezed state, the resulting state will have a non-
zero contribution orthogonal to the original state. This leakage carries information
about the occurrence of a photon loss event and can be used in an error correction
scheme to at least partially correct photon loss errors.

Notably, squeezed states of light have been studied in the context of quantum
metrology for enhanced quantum sensing devices [90, 91, 93, 344–347], even be-
yond the standard quantum limit [92]. These results strongly suggest the use of
squeezed states for enhanced bosonic quantum error correction, as a crucial task
in bosonic error correction is the unambiguous identification of different kinds of
errors. As squeezed states are non-classical states of light with reduced uncertainty
in one phase-space quadrature and increased uncertainty in the conjugate quadra-
ture [123], one might intuitively wish to exploit this to enhance the sensitivity
with respect to certain errors.

Lastly, we might think of squeezing as compressing information in phase space [94].
Loss manifests itself in the Wigner function by deterministically rescaling the
quadratures and applying a Gaussian smoothing [122] (See Chap. 3, Sec. IV for
details), whereas dephasing is represented as a rotational smearing of the Wigner
function. Fourier-transforming the Wigner function of a cat state, obtaining
the characteristic function, the interference fringes between the opposite coher-
ent states are mapped to coherent states with amplitudes ±α in reciprocal space.
Under the effect of loss, these large-frequency components diminish significantly
as loss acts as a low-pass Gaussian filter. Compressing the cat state in phase
space would result in a deterministic reshaping of the characteristic function, and
therefore in principle allow to fit the high-frequency components that carry the
non-classical superposition features within the low-pass filter [94]. As a result, we



I. Squeezed Schrödinger Cat States 79

Figure 4.1: Schematic representation of a displaced squeezed state |α, ξ⟩ in phase space,
with displacement α and squeezing ξ = reiθ. We show the quadratures Y1,2 that are
rotated by θ/2, with respect to X1,2 and highlight their respective uncertainties.

expect the decay of the interference features to be more protected from the Gaus-
sian filtering caused by loss due to the compression of the characteristic function.
In the Wigner function, this would result in a larger spacing between interference
fringes, or equivalently, in lower-frequency components in the characteristic func-
tion, resulting in a slowing down of loss-induced quantum decoherence. [348–356].
In the following, we will analytically and numerically confirm that the squeezed
cat code indeed possess stronger error correction properties than compared to the
standard cat code.

I.2 Squeezed states

Here, we introduce the squeezed cat code and analyze some important proper-
ties. In quantum optical systems, squeezed states of light were first introduced to
characterize minimum-uncertainty quantum states [357–366]. First, let us define
a squeezed state in terms of its displacement α and squeezing parameter ξ [366]
by first squeezing the vacuum and then displacing it:

|α, ξ⟩ ≡ D̂(α)Ŝ(ξ) |0⟩ . (4.1)

In the above definition, D̂(α) is the displacement operator (See also Chap. 2,
Sec. III) and Ŝ(ξ) is the squeezing operator, defined by

D̂(α) ≡ exp
[
αâ† − α∗â

]
, (4.2)

Ŝ(ξ) ≡ exp
[

1
2

(
ξ∗â2 − ξâ†2

)]
. (4.3)
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The phase-space representation of |α, ξ⟩ is schematically depicted in Fig. 4.1. In
the following, we use the notation ξ = reiθ with non-negative amplitude r and
phase θ. We can rotate the canonical quadratures X1 and X2 (See also Chap. 2,
Sec III, where we used the equivalent notation of x and p for the quadratures)
by θ/2 into new quadratures Y1, Y2 for which the uncertainties are increased and
decreased with the squeezing amplitude r, respectively [123]:

∆Y1 = 1
2e
−r, ∆Y2 = 1

2e
r, (4.4)

with ∆A ≡
√
⟨Â2⟩ − ⟨Â⟩2. Some notable properties of the squeezed states are [366]:

〈
X̂1 + iX̂2

〉
=
〈
Ŷ1 + iŶ2

〉
eiθ/2 = α〈

â†â
〉

= |α|2 + sinh2(r)〈
â2
〉

= α2 − eiθ sinh(r) cosh(r)

(4.5)

Importantly, note that squeezed states maintain minimum Heisenberg uncertainty.
To analyze the effect of squeezing on operators, we can apply a similarity

transform Ŝ(ξ) on the annihilation operator â, yielding [123]

Ŝ(ξ)âŜ†(ξ) = â cosh (r) + eiθâ† sinh (r), (4.6)

From this relation, we can deduce that the order of the operators D̂(α) and Ŝ(ξ)
in Eq. (4.1) is important, as they obey the relations

D̂(α)Ŝ(ξ) = Ŝ(ξ)D̂(ζ), (4.7)

with
ζ = α cosh (r)− eiθα∗ sinh (r) (4.8)

We can see from Eq. (4.7) that a squeezed state |α, ξ⟩ can be obtained by dis-
placing first with a different complex amplitude ζ and then squeezing with the
same parameter ξ. If both ξ and α are real, the squeezing is orthogonal to the
displacement, and we simply have

ζ = αer. (4.9)

Importantly, contrary to a coherent state |α⟩ which is an eigenstate of â, a
squeezed state no longer is an eigenstate of â, since the squeezing similarity trans-
form of the operator â in Eq. (4.6) produces a non-zero contribution of â† which
cannot have a coherent state as an eigenstate. Analogous to coherent states, we
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can find an operator b̂ that has |α, ξ⟩ as an eigenstate. We can show that a squeezed
annihilation operator, with b̂ ≡ Ŝ(ξ)âŜ†(ξ), is in fact the operator with |α, ξ⟩ as
an eigenstate:

b̂ |α, ξ⟩ = Ŝ(ξ)âŜ†(ξ) |α, ξ⟩
= Ŝ(ξ)âŜ†(ξ)D̂(α)Ŝ(ξ) |0⟩
= Ŝ(ξ)âD̂(ζ) |0⟩
= Ŝ(ξ)ζ |ζ⟩ = ζ |α, ξ⟩ ,

(4.10)

where we have used the relation in Eq. (4.7).

We can decompose a squeezed state |α, ξ⟩ in its number state representa-
tion [123]

|α, ξ⟩ = 1√
cosh r

exp
[
−1

2 |α|
2 − 1

2α
∗2eiθ tanh r

]

×
∞∑

n=0

[
1
2e

iθ tanh r
]n/2

√
n!

Hn

[
γ
(
eiθ sinh(2r)

)−1/2
]
|n⟩.

(4.11)

Here, Hn(x) are Hermite polynomials of the second kind. We thus have the prob-
ability Pn of finding n photons in the state |α, ξ⟩

Pn ≡|⟨n | α, ξ⟩|2

=

(
1
2 tanh r

)n

n! cosh r exp
[
−|α|2 − 1

2
(
α∗2eiθ + α2e−iθ

)
tanh r

]
×
∣∣∣∣Hn

[
γ
(
eiθ sinh(2r)

)−1/2
]∣∣∣∣2 .

(4.12)

It is clear from the above expression that the distribution Pn depends both on
the phase of α = |α|eiφ and of ξ = reiθ. For φ − θ/2 = 0 for example, the
distribution Pn is narrower than for a coherent state |α⟩ – also referred to as
number squeezing [367] – for which the distribution is sub-Poisonnian and is an
unequivocally quantum effect. In this case, the photon number distribution can
exhibit large scale oscillations [368–370]. On the other hand, in the case of φ −
θ/2 = π/2, the distribution is super-Poissonian, i.e. broader than for a coherent
state, which is not a non-classical effect [123], as it can be generated classically.

From projecting a squeezed state |α, ξ⟩ onto coherent states, one can obtain
the Wigner function representation (here, for θ = 0 and α = 0 for simplicity)

W (β) = 2
π

exp
[
−1

2[Re(β)]2e−2r − 1
2[Im(β)]2e2r

]
. (4.13)
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From this expression, we can once again see a narrowing in one quadrature and
an expansion in the conjugate quadrature as a function of squeezing amplitude r.
A notable property of the squeezed state |α, ξ⟩ is that it is the most general pure
quantum state with non-negative Wigner function [371].

I.3 The Squeezed cat code
Let us now define the code-words of the squeezed cat code:

∣∣∣C±α,ξ

〉
≡ 1
N±α,ξ

(|α, ξ⟩ ± |−α, ξ⟩) (4.14)

In close analogy to the cat code, we have taken even (+) and odd (-) superposition
of squeezed states for the definition of the states |C±α,ξ⟩. The connection to the
cat code becomes even more apparent when we reverse the order of squeezing and
displacement using Eq. (4.7):

∣∣∣C±α,ξ

〉
= Ŝ(ξ) 1

N±ζ
(|ζ⟩ ± |−ζ⟩), (4.15)

with ζ as defined in Eq. (4.8).
An important observation is that the squeezed cat states leave the photon num-

ber parity of the cat code intact. Since the squeezing operator, defined in Eq. (4.3),
contains square powers of â and â† in the exponential, it is straightforward to check
that Π̂Ŝ(ξ)Π̂† = Ŝ(ξ). As a result, the states |C+

α,ξ⟩( |C−α,ξ⟩) maintain even(odd)
photon number parity, respectively. The normalization constant in Eq. (4.15) is
given by N±α,ξ = N±ζ =

√
2(1± e−2|ζ|2).

The squeezing phase θ determines the phase-space direction of the squeezing. In
the following, we set the squeezing orthogonal to the direction of the displacement,
that is, α = |α|e2θ. Without loss of generality, we set θ = 0 for simplicity. This
implies that α > 0 is a positive real-valued parameter. In particular, with this
choice, the overlap between squeezed states with opposite displacement becomes
minimal,

⟨α, ξ|−α, ξ⟩ = exp
(
−2|α|2e2|ξ|

)
. (4.16)

We notice that the overlap between these states is double-exponentially suppressed
in the squeezing ξ and exponentially suppressed in the displacement α.

The code-words |C±α,ξ⟩, defining the logical Ẑ-eigenstates, are depicted in Fig. 4.2(a)
on the logical Bloch-sphere. Wigner functions of the even and odd squeezed cat
states are shown in Fig. 4.2(b-c).
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Figure 4.2: (a) Bloch sphere of the squeezed cat code. The states |C±α,ξ⟩ are the logical Ẑ-
eigenstates. We also depict the logical X̂-eigenstates, i.e the superpositions 1√

2( |C+
α,ξ⟩ ±

|C−α,ξ⟩). (b-c) Wigner functions W (α), of the even squeezed cat state |C+
α ⟩ (b) and the

odd squeezed cat state |C−α ⟩ (c). Parameters: α = 1, ξ = 1.

I.4 Asymptotic discrete translation invariance

In addition to the Z2-symmetry due to the even and odd superpositions of mirrored
squeezed states, in the limit of large squeezing, the squeezed cat states become
invariant under phase-space translations orthogonal to the displacement direction,
connecting rotation-symmetric codes [341] to translation-invariant codes, such as
the GKP code [224]. For a displacement D̂(η), with η ⊥ α, we have

⟨C+
α,ξ|D̂(η)|C+

α,ξ⟩ = cos(|αη|) exp
(
−1

2e
−2|ξ||η|2

)
(4.17)

In the limit ξ →∞, the exponential term vanishes and we have ⟨C+
α,ξ|D̂(η)|C+

α,ξ⟩ =
cos(|αη|). In this limit, we have for the odd squeezed cat state ⟨C−α,ξ|D̂(η)|C−α,ξ⟩ =
sin(|αη|). As a result, in the limit ξ →∞, the squeezed cat code becomes invariant
under translation along one direction in phase space, with |η| = n2π/|α|, with
n ∈ Z. Note that contrary to the ideal GKP code, which is invariant under
discrete translations in two directions in phase space, the squeezed cat code is
only invariant under discrete translations along a single direction in phase space
in the infinite-squeezing limit. In the GKP, the discrete translation invariance can
be related to the ability to partially correct for certain errors – including single-
photon loss [74, 236, 237]. For finite squeezing, we therefore expect the capability
of approximately correcting particle loss, similar to a finite-energy GKP code.
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I.5 Code generation and gates

As seen in Eq. (4.15), we can obtain a squeezed cat state by squeezing a standard
two-component cat state. Moreover, we can express any linear combination of
squeezed states as

a |α, ξ⟩+ b |−α, ξ⟩ = Ŝ(ξ)(a |ζ⟩+ b |−ζ⟩). (4.18)

As a result, the squeezed cat code can be potentially implemented on platforms
where squeezing and coherent states can be generated. This includes, for exam-
ple, superconducting circuits [372, 373], quantum optomechanics [198, 291], and
photonics [348, 351, 374–378]. Through two-photon processes, squeezed cat states
can be generated from squeezing two-component cat states [290, 379].

Furthermore, we can generate bright squeezed states |α, ξ⟩ by decomposing the
displacement and squeezing into a series of smaller displacement and squeezing:

D̂(α)Ŝ(ξ) =
N∏

k=1
D̂(αk)Ŝ(ξk), (4.19)

with

α0 = α/N, ξk = ξ/N, (4.20)
αk = αk−1 cosh(r)− α∗k−1e

iθ sinh(r). (4.21)

Eq. (4.19) allows the use of pulsed schemes of small squeezing and displacement
to generate bright squeezed states.

We can implement quantum gates with the squeezed cat code similar to the
two-component cat code [81] by first de-squeezing to the two-component cat code
manifold, performing the gate and then re-squeezing back to the squeezed cat code
manifold. Formally, any gate ÛHSC in the squeezed cat code can be expressed as

ÛHSC = Ŝ(ξ)ÛHcatŜ
†(ξ), (4.22)

with a gate ÛHcat acting in the two-component cat-state manifold. Note that this
procedure does, in general, not preserve the enhanced noise bias of the squeezed
cat code.

Noise-bias preserving gates for the squeezed cat qubit can be straightforwardly
extended from the standard two-component cat states, as the photon-parity struc-
ture of the code-words remain unaffected by squeezing. For a detailed set of
bias-preserving gates, we refer to Ref. [83].



II. Quantum error correction conditions 85

II Quantum error correction conditions

II.1 Intuitive picture

Let us give a first intuitive picture of the partial correctability of loss errors us-
ing the squeezed cat code. To highlight the difference with respect to the two-
component cat code, let us recall that for the cat code, we have â |C±α ⟩ ∝ |C∓α ⟩. A
single-photon loss event acting on the cat code remains entirely within the code
space, generating a bit-flip error, and hence, there is no error syndrome that can
detect if such an error occurred.

For the squeezed cat code, however, the action of â results in a state that lies
partially outside of the code-space:

â
∣∣∣C±α,ξ

〉
= c1

∣∣∣C∓α,ξ

〉
+ c2

∣∣∣C̃∓α,ξ

〉
, (4.23)

where the states |C̃∓α,ξ⟩ lie in an error-sub-space orthogonal to the code-space. The
states |C̃∓α,ξ⟩ remain orthogonal to each other, just like the original code-space and
thus, the qubit information is (partially) contained in the error-sub-space. An
appropriate non-demolition syndrome, probing the sub-space spanned by |C̃∓α,ξ⟩
will obtain information about the error and can be used to devise a recovery
operation. We have an analogous picture for the action of dephasing with photon
number operator n̂.

In Fig 4.3(a), we show the phase space deformation of the logical code-words
|C±α,ξ⟩ upon the action of â and â†â, respectively. Arguing from the phase-space
deformations, a contribution outside of the original code-space manifold as in
Eq. (4.23) becomes evident. First, it is important to note that for finite squeez-
ing, the action of â on a state in the code-space does not fully bring the state
into an orthogonal error sub-space (See Eq. (4.23)). Therefore, there will be a
finite uncorrectable part of the error. Second, when considering multiple errors,
such as â and â†â, the resulting error sub-spaces are not mutually orthogonal for
finite squeezing, and hence, unambiguously identifying which error occurred is, in
general not possible (See Fig. 4.3(b)). In the limiting case of infinite squeezing,
however, the error sub-spaces associated with single-photon loss and dephasing
errors become mutually orthogonal, and the KL conditions can be satisfied for
discrete loss and dephasing errors.

II.2 Knill-Laflamme conditions for the squeezed cat code

We now analyze the correctability of discrete errors using the Knill-Laflamme error
correction conditions (See Sec. II.1). To this end, let us consider the discrete set of
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Figure 4.3: (a) Wigner quasi-probability distribution function W (X,Y ) of the squeezed
cat code-words |C±α,ξ⟩ for α = 0.5 and ξ = 1.5. The arrows indicate the action of
operators â and â†â on the state |C+

α,ξ⟩, respectively, notably deforming the initial phase
space structure. Note the difference in scale between X and Y axis by one order of
magnitude. On the sides of each subpanel, we show the integrated Wigner functions
W (X) and W (Y ). (b) Schematic illustration of the effect of single-photon loss and
dephasing events on the code-space. For |C±α,ξ⟩, we schematically depict the action of
these errors for finite squeezing.

errors {1̂, â, â†â}. These are the generating set of errors up to order O(τ) arising
from the joint loss-dephasing channel (See Chap. 3, Sec. IV).

Here, we report and analyze the limiting cases of the Knill-Laflamme conditions
for the squeezed cat code. For full analytical expressions, see Appendix A. First,
we consider single-photon loss. In the limit of large squeezing, we have

lim
ξ→∞

〈
C∓α,ξ

∣∣∣â∣∣∣C±α,ξ

〉
= α. (4.24)

This is similar to the cat code, where we have ⟨C∓α |â|C±α ⟩ ∝ α. Hence, in the limit of
large displacement, both cat code and squeezed cat code are equally vulnerable to
particle loss. The difference here with respect to the cat code is that in the squeezed
cat code, we can reduce the displacement in favor of an increased squeezing to make
the error â increasingly correctable, such that Eq. (4.24) approaches zero, as for
a fully correctable error. In this regime of small α and large ξ, the squeezed cat
code is able to correct loss due to the small α, but also dephasing due to the large
ξ, which we demonstrate below.
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The KL conditions for the given set of errors require the code-words to have
the same average photon number,〈

C+
α,ξ

∣∣∣â†â∣∣∣C+
α,ξ

〉
=
〈
C−α,ξ

∣∣∣â†â∣∣∣C−α,ξ

〉
. (4.25)

This condition is fulfilled in the limit of either large displacement or large squeez-
ing. We can show that in this limit, the difference between the left-hand side and
right-hand side is given by〈
C+

α,ξ

∣∣∣â†â∣∣∣C+
α,ξ

〉
−
〈
C−α,ξ

∣∣∣â†â∣∣∣C−α,ξ

〉
∝ 2|α|2 ⟨α, ξ|−α, ξ⟩ = 2|α|2 exp

(
−2|α|2e2|ξ|

)
,

(4.26)
where we have used the expression of the overlap ⟨α, ξ|−α, ξ⟩ in Eq. (4.16). From
the above equation, we deduce an improved suppression of dephasing errors, gen-
erated by the operator â†â due to the double-exponential decay of the overlap of
opposite squeezed states with the squeezing ξ.

As detailed in Chap. 3, Sec. II.1, we can decompose discrete errors in logical
operations, by projecting the errors on the code-space. We have, in particular:

P̂C âP̂C = e−rζ
e2ζ2

√
e4ζ2 − 1

X̂L − ierζ
1√

e4ζ2 − 1
ẐL. (4.27)

In the regime of large squeezing or displacement, e−2ζ2 ≪ 0, the above expression
reduced to

P̂C âP̂C =
√
n− sinh2(ξ)X̂L − ieξ−2ζ2

ζẐL, (4.28)

where n ≡ Tr{P̂Cn̂}/2 is the average photon number of the squeezed cat code.
From the above expression, we see that phase flips, corresponding to ẐL, are
exponentially suppressed, while for ξ → ∞, we recover the linear scaling of the
logical X̂L error with α, as stated in Eq. (4.24). Furthermore, the projection of
â†â yields in the regime e−2ζ2 ≪ 0

P̂C â
†âP̂C = n1̂L + 2|α|2e−2ζ2

ẐL, (4.29)

from which the exponential suppression of phase-flip errors, equivalent to Eq. (4.26),
becomes even more apparent.

For the remaining elements of the Knill-Laflamme tensorM[i,ℓ],[j,ℓ′] = ⟨ψi|Êℓ†Êℓ′ |ψj⟩
for the considered error set (See Chap. 3, Sec. (II.1)), we can analytically verify
that the Knill-Laflamme conditions are exactly verified in the considered limit.
See Appendix A for the analytical expressions.

We can summarize the correction against loss and dephasing in the following
intuitive picture: Due to the additional degree of freedom in the squeezing param-
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eter ξ, we can increase the correctability against single-photon loss by lowering
the displacement α, and compensate for the reduced correctability by increasing
the squeezing parameter ξ, with code-words that are widely spread out in one
direction of the phase space, reminiscent of squeezed comb states [380]. This is
notably not the case in the GKP code, where the correctability against dephasing
decreases with the squeezing (that defines the envelope of the grid states in phase
space).

II.3 Correction of multiple errors

Although we focus on the correction of loss and dephasing errors in the remainder
of this chapter, it is notable that the squeezed cat code is able to correct also other
errors, such as photon gain or higher-order dephasing or particle loss errors. This
stems from the fact that, in the regime of large displacement, or finite displacement
and large squeezing, the operators â† and â have a similar effect when acted on
the code-words (up to a complex phase). For example, we have in this limit

〈
C±α,ξ

∣∣∣â†â∣∣∣C±α,ξ

〉
= −

〈
C±α,ξ

∣∣∣â2
∣∣∣C±α,ξ

〉
= e2|ξ|

4 . (4.30)

Hence, the Knill-Laflamme conditions for â† and â2 become identical up to a sign
in this limit. As we have previously demonstrated that â†â is a correctable error,
so is â2.

In this light, we can see that the squeezed cat code constitutes a degenerate
bosonic quantum code, in which multiple errors – such as â†â and â2 act identical
on the code-space. This a crucial difference between the squeezed cat code and
other bosonic quantum codes, such as the binomial code [232]. As a result, higher-
order error correction schemes for the squeezed cat code might be devised beyond
first-order single-photon loss and dephasing errors.

III Approximate quantum error correction
In a realistic scenario, squeezing is a limited resource in most experimental plat-
forms, and as a result, the Knill-Laflamme conditions for the correction of loss and
dephasing are not exactly satisfied. Nevertheless, the results above suggest that
we can approximately correct errors arising from the loss-dephasing channel to
some degree. We can, therefore, ask the question: How much information can the
squeezed cat code preserve in an approximate error-correction recovery protocol
where both displacement and squeezing are bounded? Naturally, due to the fact
that different errors (e.g. â and â†â) can not unambiguously be identified from



III. Approximate quantum error correction 89

their respective error sub-spaces (See Fig. 4.3(b)), a recovery protocol aiming to
correct these errors optimally depends on the nature of the noise channel and on
the respective noise rates in particular.

Here, we assess the performance of the squeezed cat code in terms of channel
fidelity, detailed in Chap. 3, Sec. V for the joint loss-dephasing channel. To this
extent, let us consider the Lindblad master equation of the joint loss-dephasing
channel (See Chap. 3, Sec. IV for details)

L(ρ̂) = κ1D[â](ρ̂) + κ2D[â†â](ρ̂). (4.31)

with single-photon loss rate κ1 and dephasing rate κ2. We consider that the loss
channel with Liouvillian L acts for a time τ , after which we perform a recovery
operation. To obtain a finite error set, we consider the Kraus operators in leading
order of τ . We therefore consider the errors generated by the Kraus operators:

Ê0 = 1̂− κ1τ

2 â†â− κ2τ

2
(
â†â

)2
,

Ê1 = √κ1τ â, Ê2 = √κ2τ â
†â.

(4.32)

In a quantum-trajectory picture, the additional terms in the expression of Ê0

are due to the information back-action, for the case where no quantum jump
with either operator Ê1 or Ê2 occurred. For the subsequent analysis, instead of
considering the Kraus operators above, which explicitly depend on the decay rates
κ1,2 and time τ , we consider the equivalent generating set of errors:

{Êk} = {1̂, â, â†â, (â†â)2}. (4.33)

We compute error sub-spaces associated to the operators in {Êk}:∣∣∣ψ̃±i 〉 = Êi

∣∣∣C±α,ξ

〉
, with Êi ∈ {Êk} (4.34)

Note that the states |ψ̃±i ⟩ are parity eigenstates as the operators in {Êk} do not mix
parity sectors (although the action of â flips the parity). Therefore, ⟨ψ̃+

i |ψ̃−i ⟩ = 0,
for every state in the error-sub-spaces. Hence, the states within each error sub-
space remain orthogonal. With the notation in Eq. (4.34), |ψ̃±0 ⟩ = |C±α,ξ⟩ describes
the states in the code-space.

Importantly, the spaces Span{ |ψ̃+
i ⟩ , |ψ̃−i ⟩} and Span{ |ψ̃+

j ⟩ , |ψ̃−j ⟩} for finite
α and ξ are not mutually orthogonal to each other. As a direct consequence,
the Knill-Laflamme conditions for the correction of the errors in Eq. (4.33) are
not exactly satisfied. We can, however, obtain a set of orthonormal error sub-
spaces by applying an orthonormalization procedure such as Gram-Schmidt or-
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thonormalization. We thus obtain mutually orthogonal error subpsaces HEj
=

Span{ |ψ+
j ⟩ , |ψ−j ⟩}, with ⟨ψµ

i |ψν
j ⟩ = δi,j. Errors in the set {Êk} in Eq. (4.33) will,

in general, leak into multiple error sub-spaces {HEj
}, depending on the code-space

parameters α and ξ, as well as on the noise parameters, namely the single-photon
loss rate κ1 and dephasing rate κ2.

To obtain a near-optimal recovery, attempting to correct the errors in {Êk},
we construct a set of basis operators (See also Chap. 3, Sec. V, Eq. (3.66))

σ̂
(k)
1 = 1̂HEk

→HC = |C+
α,ξ⟩⟨ψ+

k |+ |C−α,ξ⟩⟨ψ−k | ,

σ̂
(k)
2 = X̂HEk

→HC = |C+
α,ξ⟩⟨ψ−k |+ |C−α,ξ⟩⟨ψ+

k | ,

σ̂
(k)
3 = ŶHEk

→HC = i |C+
α,ξ⟩⟨ψ−k | − i |C−α,ξ⟩⟨ψ+

k | ,

σ̂
(k)
4 = ẐHEk

→HC = |C+
α,ξ⟩⟨ψ+

k | − |C−α,ξ⟩⟨ψ−k | .

(4.35)

The Pauli-operators in Eq. (4.35) define a basis of a general quantum map that
projects the error space HEk

to the code-space HC.
Using a semidefinite program, a convex optimization procedure, described in

detail in Chap. 3, Sec. V, and using the basis operators defined in Eq. (4.35),
we can numerically obtain a near-optimal recovery operation to gauge the perfor-
mance of an approximate error correction protocol for the squeezed cat code. It is
important to note that the recovery operation R with basis operators {σ̂i

(k), i =
1, . . . , 4, k = 1, . . . , 4} is assumed to be noise-less and instantaneous and thus pro-
vides an upper bound on the achievable correctability of the set of errors, defined
in Eq. (4.33). Furthermore, despite considering only the correction of a finite er-
ror set {Êk} that includes leading-order errors from the loss-dephasing channel to
limit the numerical complexity of the problem, for the noise channel, we consider
the full loss-dephasing channel to all orders. As a result, a recovery operation
considering higher-order errors will, in general, yield a better performance. As a
first benchmark, however, we will restrict ourselves to the correction of the errors
{Êk} in Eq. (4.33).

III.1 Channel fidelity

In the following, for given values of the loss and dephasing rates κ1,2, or equiva-
lently for different times τ , we optimize the recovery operation for the error set
{Êk} in Eq. (4.33) using a semidefinite program explained in Chap. 3, Sec. V to
maximize the channel fidelity F . The resulting near-optimal recovery R⋆ yields
an explicit form of its operator-sum representation with Kraus operators {R̂⋆

k},
such that actual hardware operations could be devised to construct the desired
target operations using, for example, optimal-control techniques [381–385]. This
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Algorithm 1 Schematic pseudocode for the optimization of the encoding param-
eters α, ξ and the recovery R for a range of noise channel parameters κ1τ , κ2τ .

1: for κ1τ ∈ range(κ1τ) do ▷ Loop over dimensionless single-photon loss
parameter

2: for κ2τ ∈ range(κ2τ) do ▷ Loop over dimensionless dephasing parameter
3: repeat
4: R, F ← SDP(κ1τ, κ2τ, α, ξ) ▷ Perform SDP to obtain optimal R
5: α, ξ ← propose_new(α, ξ,F) ▷ Propose new code-space

parameters α, ξ
6: until F converged or break condition reached
7: save α⋆, ξ⋆, R⋆, F ▷ Save optimal results for each value of κ1τ , κ2τ
8: end for
9: end for

is a significant advantage over measures for approximate error correction based on
the Knill-Laflamme tensor alone (See Eq. (3.10)), which do not give an explicit
expression for the recovery operation.

Note also that the optimal recovery operation R⋆ is not conditional to the
outcome of syndrome measurements, as it is usually the case for stabilizer-based
quantum error correction protocols [214]. The overall quantum-error correction
protocol for the squeezed cat code can therefore be considered semi-autonomous,
in the sense that it requires periodic syndrome measurements but only an uncondi-
tional recovery operation, as the recovery operation does not depend on the state
of the density matrix itself. A generalized procedure could, in principle, be devel-
oped for the squeezed cat code where the recovery is conditioned on the outcome
of the syndrome measurement, probing the error sub-spaces. Although such an
approach could further improve the error correction efficiency of the squeezed cat
code, it is usually associated with additional resource costs in quantum hardware
implementations.

It is important to note that the overall channel fidelity also depends on the
displacement α and the squeezing ξ that define the code-words |Cα,ξ⟩. An intuitive
understanding of this can be given in terms of the probabilities of single-photon
loss and dephasing events:

pâ = κ1τ
〈
â†â

〉
, pâ†â = κ2τ

〈
(â†â)2

〉
. (4.36)

Both single-photon loss probability pâ and dephasing probability pâ†â grow with
displacement α and squeezing ξ, therefore increasing the probability of these errors.
At the same time, the capabilities of correcting these errors also increase.
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As a result, depending on the dimensionless loss and dephasing rates κ1τ and
κ2τ , there exists optimal displacement α⋆ and squeezing parameters ξ⋆, as well
as an optimal recovery R⋆. Unfortunately, the encoding parameters α and ξ do
not enter linearly in the definition of the code-words |C±α,ξ⟩, and therefore a bi-
convex optimization for both recovery and encoding is not possible [271]. We
can, however, devise an iterative optimization scheme that globally optimizes the
encoding parameters α and ξ in a restricted parameter regime, using derivative-free
constrained optimization techniques [386, 387]. A sketch of the implementation
is shown in Alg. 1, where we loop over a predefined regime of dimensionless noise
parameters κ1τ , κ2τ to obtain for each pair [κ1τ, κ2τ ] the optimized values of α⋆,
ξ⋆, R⋆ and its associated channel fidelity F .
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Figure 4.4: Optimal channel infidelity 1 − F color map of the squeezed cat code for
optimal encoding parameters α⋆, ξ⋆ and recovery R⋆ for the loss-dephasing channel
as a function of dimensionless loss parameter κ1τ and dephasing parameter κ2τ . We
restrict the maximum squeezing to ξmax = 0.5 (a), 1.0 (b) and 1.5 (c). White contour
lines represent channel infidelity isolines of the squeezed cat codes, while other isolines
represent the channel infidelity for the single-rail code (blue) and the two-component
cat code (green) with optimal recovery and encoding.
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With the optimization procedure detailed above, we compute the optimal chan-
nel fidelity F as a function of κ1τ and κ2τ . As τ characterizes the duration of
the noise channel or, equivalently, the time between two subsequent recoveries,
a larger value of κ1τ or κ2τ either corresponds to stronger dissipation or longer
intervals between two recoveries. In Fig. 4.4(a-c), we plot the channel infidelity
1−F as a function of κ1τ and κ2τ , for three different values of maximal squeezing
ξmax = 0.5, 1.0, and 1.5. White isolines highlight selected values of equal infidelity
of the squeezed cat code.

We compare the squeezed cat code to two other bosonic codes that also admit
a Z2 symmetry: First, the single-rail code, i.e., the encoding in the Fock states
|0⟩ and |1⟩ for which the recovery operation is trivial, and second, the optimal
two-component cat code for which we also optimize the recovery for the same set
of errors {Êk} considered for the squeezed cat code as well as the displacement α.

An important reason for this choice of comparison is that all three bosonic
codes are limiting cases of each other: The squeezed cat code entails the cat
code (in the limit of vanishing squeezing), and the cat code entails the single-rail
code (in the limit vanishing displacement). Hence, we have the general relation
F squeezed cat ≥ F cat ≥ F single−rail. All three bosonic codes require at most quadratic
operations for state-preparation and, therefore, are expected to require similar
resources for experimental realizations.

We observe that for increasing the allowed maximum squeezing ξmax, the chan-
nel fidelity of the squeezed cat code increasingly improves upon the single-rail
and the optimal cat code. We can identify three different regimes: (I) κ1 > κ2.
In the regime where the channel is dominated by particle loss, the squeezed cat
code slightly improves over the cat code for small squeezing (See Fig. 4.4(a)), but
notably for larger squeezing (See Fig. 4.4(b-c)) due to the fact that the error-
sub-spaces associated to single-photon loss become increasingly orthogonal to the
code-space, demonstrating the partial correctability of single-photon loss errors.
(II) κ1 < κ2. In the dephasing-dominated regime, the squeezed cat code out-
performs the cat code, even for moderate squeezing of ξmax = 0.5, due to its
double exponentially decreasing overlap ⟨α, ξ|−α, ξ⟩ with ξ, in agreement with re-
cent experimental results [94, 352]. Also the cat code drastically outperforms the
single-rail code in this regime due to the exponentially decreasing overlap ⟨α|−α⟩
with α. (III) κ1 ∼ κ2. In the regime of comparable loss and dephasing rates –
a relevant working regime for many quantum hardware platforms – the squeezed
cat code also shows a significant improvement over the cat and single-rail codes
for ξmax > 0.5.

In Fig. 4.5, we show the resulting optimal parameters for the code space as a
function of κ1τ and κ2τ . We observe that in most regimes, the optimal squeezing
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Figure 4.5: Optimized values of the displacement α (top row) and squeezing ξ (middle
row) for different values of maximum squeezing ξmax = 0.5 (first column), 1.0 (second
column), and 1.5 (third column) as a function of dimensionless loss rate κ1τ and dephas-
ing rate κ2τ . For comparison, we show the average photon number n̂ of the squeezed
cat code in the last row.

saturates the maximum squeezing ξmax, while the displacement mostly grows with
increasing dephasing rate κ2τ . Especially we observe that in the loss-dominated
regime, the displacement α is much smaller than the squeezing parameter ξ. In-
terestingly, we observe discontinuities for κ1 ∼ κ2 and ξmax = 0.5, where the op-
timized parameters converged towards the single-rail encoding of ξ = α = 0 (See
Fig. 4.5). For ξmax = 1.5, we further observe a discontinuity in the dephasing-
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dominated regime κ2 > κ1, for which the optimized encoding favors less squeez-
ing, but large displacement and low average photon number compared to the other
regimes.

III.2 Error correction in the quantum trajectory picture

We can illustrate the effect of the correction of photon loss in a recovery operation
by considering the quantity

P (t) = 1−
〈
C+

α,ξ

∣∣∣ρ̂(t)∣∣∣C+
α,ξ

〉
, (4.37)

which describes the difference in overlap between ρ̂(t) and the logical code-word
|C+

α,ξ⟩. Let us assume an initial state ρ̂(0) = |C+
α,ξ⟩⟨C+

α,ξ|, for which P (0) = 0. In
Fig. 4.6(a), we plot P (t) as a function of time. We can sample individual quantum
trajectories [101, 126, 128, 388, 389] from repeatedly applied channel R ◦ eLτ , in
close resemblance to a repeated recovery protocol, aiming to correct errors in the
system. Note that in a quantum trajectory, due to information back-action, the
system with initial state |ψ(0)⟩ evolves according to the non-Hermitian effective
Hamiltonian

Ĥeff = −iκ1

2 â
†â− iκ2

2
(
â†â

)2
, (4.38)

until a quantum jump with jump operators â (for single-photon loss) or â†â (for de-
phasing) occurs after a randomly chosen time-interval (See also Chap 2, Sec. IV).
At multiples of the measurement time τ , the recovery operation acts on the time-
evolved state |ψ(t)⟩. We recover the Lindblad master equation of this quantum
trajectory unraveling by averaging over the statistical ensemble of quantum tra-
jectories. As individual quantum trajectories remain pure at all times, we have in
this case

P (t) = 1− |
〈
C+

α,ξ

∣∣∣ψ(t)
〉
|2, (4.39)

with the initial state |ψ(0)⟩ = |C+
α,ξ⟩. In Fig. 4.6(a), we show three different

sample trajectories in which (i) no error occurs, (ii) a loss event with operator â
occurs and is successfully corrected in the following recovery, and (iii) a loss event
occurs, but is incorrectly identified and therefore not accurately corrected in the
subsequent recovery. Note that even during intervals where no quantum jump
occurs, the overlap with the initial state decreases due to the evolution under the
non-Hermitian Hamiltonian in Eq. (4.38). In the absence of errors, the recovery
operation reverses this non-Hermitian evolution by projecting the system back to
the code space. In case (ii), in which a quantum jump with operator â occurs
and is accurately corrected, the projective syndrome measurement included in
the recovery correctly identifies the error by projecting the error on the photon-
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Figure 4.6: (a) P (t) as defined in Eqs.(4.37) and (4.39) of a quantum state initially
prepared in |C+

α,ξ⟩ as it evolves in time under the loss-dephasing channel and repeated
recovery operation at multiples of time τ , shown as black dashed lines. In the first row,
we show the full master equation evolution. In the second to last row, we show quantum
trajectories in which no error occurs (second row), an error occurred (red line) and is
correctly identified and corrected (third row), and an error occurred but is not correctly
identified and, therefore uncorrected (last row). (b) Knill-Laflamme cost function CKL,
defined in Chap. 3, Sec. III, Eq. (3.52) as a function of squeezing parameter for the GKP
code (grey), and the squeezed cat code for α = 0.4 (orange) and α = 1 (green) for the
error set {1̂, â} (loss, solid lines) and for the error set {1̂, â†â} (dephasing, dashed lines).

loss error sub-space (instead of another error sub-space). The recovery can be
viewed as subsequently correcting the error by rotating the error sub-space and
projecting the state back onto the code space. Immediately after the occurrence of
the quantum jump, we have P (t) = 1, due to the fact that |ψ(t)⟩ transforms into a
state with opposite parity, and P (t) = 0, immediately after the successful recovery.
For case (iii), the recovery operation is unsuccessful in correcting the error, as the
syndrome measurement erroneously projects the system back onto the code space
instead of the associated error sub-space due to their final overlap of sub-spaces.
We can obtain the quantity P (t), shown in the top panel of Fig. 4.6(a) obtained
from integrating the full Lindblad master equation and applying the recovery map
from ensemble-averaging over quantum trajectories. The analysis of individual
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quantum trajectories, however, gives an intuitive picture of the recovery process
and highlights the effectiveness of the error detection and correction procedure.

III.3 Comparison between the squeezed cat code and the
GKP code

We can compare the error correction properties of the squeezed cat code with those
of the finite-energy GKP code [341] (See Chap. 3, Sec. VII for details on the GKP
code). Here, we assume a Gaussian envelope of the GKP code-words |µ⟩, with
µ ∈ {0, 1}

|µ(∆⟩) ∝ e−∆2â†â |µ⟩ (4.40)

The GKP code-words are in the ideal limit (See also Chap. 3, Sec. VII)

|µ⟩ ∝
∞∑

k,l=−∞
e−iπ(kl+µ/2)D̂((2k + µ)α + lβ) |0⟩ (4.41)

To explicitly relate the GKP code to the squeezed cat code, we can express the
finite-energy GKP code-words in terms of the squeezing operator as [236]

|µ(∆)⟩ ∝
∑
n∈Z

e−
π
2 ∆2(2n+µ)2

D̂
(√

π

2 (2n+ µ)
)
Ŝ(− ln ∆) |0⟩ . (4.42)

We can thus identify the squeezing parameter of the GKP due to its finite energy
as ξ = − ln(∆). We can now compare the performance of the GKP code and the
squeezed cat code for the same value of squeezing parameter ξ. As a metric, we
use the Knill-Laflamme cost function CKL{Êk}, introduced in Chap. 3, Sec. V.3.

In Fig. 4.6(b), we show CKL as a function of the squeezing parameter ξ for the
squeezed cat code for two different values of α and for the GKP code. We consider
the two error sets {1̂, â} for loss (solid lines) and {1̂, â†â} for dephasing (dashed
lines). We observe that the cost function CKL for loss shows similar features for
the GKP code and the squeezed cat code and saturates to a finite value for large
squeezing that depend on the value of α in the case of the squeezed cat code.
For dephasing, the Knill-Laflamme cost function rapidly approaches zero as α
increases for the squeezed cat code. On the other hand, CKL grows indefinitely for
the GKP code in this case for large squeezing. This analysis clearly highlights the
difference between the squeezed cat code and the GKP code with respect to their
correctability of loss and dephasing errors, and shows how the squeezed cat code
takes advantage of squeezing as a quantum error correction resource. This further
corroborates results on the analysis of optimal bosonic codes for the loss-dephasing
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channel [256], showing that the performance of GKP and squeezed cat code highly
depends on the noise regime they are subjected to.

IV Approaches to Experimental Realization

Here, we discuss how the squeezed cat code can be implemented in experimental
platforms.

Squeezed cat states have been been experimentally realized in various ways in
quantum optical setups [94, 348, 390] and trapped ion devices [352, 391], while
their time dynamics and robustness against photon loss have only been experimen-
tally probed using an optical parametric process [351]. Very recently, the increased
protection of the non-Gaussian interference features of the squeezed cat has been
experimentally verified in superconducting microwave 3D cavity designs [94]. The
authors in Ref. [94] used conditional displacement operations, employing only the
native cavity and transmon gates to generate superpositions of the states |α, ξ⟩
and |−α, ξ⟩, thereby overcoming previous obstacles of implementing fast non-linear
controls for the state preparation without introducing excessive non-linear effects
in the bosonic mode. This setup, however, did not implement the semi-autonomous
recovery protocol to actively correct errors, but only makes use of the slowed de-
coherence due to squeezing that compress cat states in phase space.

IV.1 Dissipative stabilization of squeezed cat states

In the previous sections, we have assumed an active recovery operation R that
detects and corrects errors generated from a finite error set. It remains a challeng-
ing task to engineer these targeted optimized recovery operations in experimental
setups as they generally require strong non-linearities.

We can, however, employ autonomous quantum error correction schemes through
engineered dissipation that stabilizes the code manifold of squeezed cat states [392]
(See Chap. 3, Sec. VI.2 for details on dissipation engineering), similar to the dissi-
pative stabilization techniques used for the stabilization of regular cat qubits [81,
82, 290]. We here detail two dissipative stabilization approaches: The first is a
straightforward extension of the cat qubit stabilization to squeezed modes. The
second approach takes into account the autonomous correction of photon-loss er-
rors using a conditional dissipator, explored in Ref. [83].

For the first approach, we recall from Eq. (4.10) that a squeezed state |α, ξ⟩
is an eigenstate of ŝ = Ŝ(ξ)âŜ†(ξ) with eigenvalue ζ, defined in Eq. (4.8). From
this relation, it is straightforward to show that squeezed cat states are degenerate
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eigenstates of ŝ2,
ŝ2
∣∣∣C±α,ξ

〉
= ζ2

∣∣∣C±α,ξ

〉
. (4.43)

As a consequence, the squeezed cat code manifold can be dissipatively stabilized
with the dissipator D[ŝ2 − ζ2], such that

κD[ŝ2 − ζ2]
(
|Cµ

α,ξ⟩⟨Cν
α,ξ|
)

= 0, (4.44)

with µ, ν ∈ {+,−}, and dissipation rate κ. We can transform the purely dissipative
process into the following Liouvilian [393]:

L(ρ̂) = −i[Ωŝ2† + Ω∗ŝ2, ρ̂] + κD[ŝ2](ρ̂), (4.45)

with ζ2 = −2iΩ/κ. In Eq. (4.45), we can identify a coherent part with Ĥ =
Ωŝ2† + Ω∗b̂2, corresponding to a two-photon drive of a squeezed mode, with drive
amplitude Ω.

To further analyze the effect of errors, we can choose a subsystem decompo-
sition for the squeezed cat qubit, explained in detail in Chap. 3, Sec. VI.1, by
defining the states

∣∣∣C±α,ξ

〉
L
⊗ |n⟩g ≈

1
N±ζ

Ŝ(ξ)
[
D̂(ζ)± (−1)nD̂(−ζ)

]
|n⟩ , (4.46)

where the approximate equality is due to the fact that the right-hand side should be
orthonormalized within each parity sector. In this notation, |C±α,ξ⟩L ⊗ |n = 0⟩g =
|C±α,ξ⟩, i.e. the code-space is the two-dimensional manifold in which the gauge
mode is in the ground state.

In this picture, the action of â becomes more intuitive:

â = X̂L ⊗ (e−rζ + cosh(r)ã− sinh(r)ã†) +O(e−2ζ2), (4.47)

where we have used the notation ã = ∑∞
n=0
√
n+ 1 |n⟩g ⟨n+ 1| to represent the

annihilation operator of the gauge mode.

For the dissipative stabilization of the squeezed cat code in Eq. (4.44), the
jump operator L̂′ ≡ ŝ2 − ζ2 is decomposed in the subsystem decomposition as
follows,

L̂′ ≡ (ŝ2 − ζ2) ≈ 1̂L ⊗ 2ζã, (4.48)

where we neglected higher order terms, from which it becomes clear that the
code space is acted upon with the identity operator. We see that although L̂′

in Eq. (4.48) drives states back to the original code space manifold, the induced
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Figure 4.7: Schematic illustration of a circuit QED implementation autonomously sta-
bilizing the squeezed cat qubit. The storage (target) mode (red) is coupled to a strongly
dissipative buffer mode (turquoise) and an ATS coupler (orange). The coupler is flux-
pumped with three tones to enable the targeted three-wave mixing interaction to realize
an effective two-photon interaction of a squeezed storage mode. Figure adapted from
Ref. [392] with slight modifications.

bit-flip of â in Eq. (4.47), remains uncorrected. Nevertheless, we can make use of
enhanced noise-bias of the logical errors, outperforming the cat-qubit.

IV.2 Physical implementation

It should be noted that experimentally stabilizing the squeezed cat code manifold
is a matter of active research [83, 392]. Let us nonetheless give an approach to a
realization on superconducting circuits, following Ref. [392]. Analogous to the cat
code stabilization, the main goal is the generation of an interaction Hamiltonian
that exchanges photons of a buffer mode b̂ with two-photons of a squeezed mode
ŝ:

Ĥ = gŝ2b̂† + h.c.

= g
(
cosh(r)â− sinh(r)â†

)2
b̂† + h.c.

(4.49)

In the limit of strong dissipation in the buffer mode, adiabatic elimination yields
the targeted squeezed two-photon interaction and dissipation. Similar to the cat-
qubit stabilization techniques on superconducting circuits [72], we can couple the
buffer mode to the storage mode using a non-linear coupler, provided by an asym-
metrically threaded SQUID (ATS), as schematically shown in Fig. 4.7. The mi-
croscopic Hamiltonian reads

Ĥ = ωaâ
†â+ ωbb̂

†b̂+ ωcĉ
†ĉ− 2EJφ(t) sin(φ̂). (4.50)
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Here ωa, ωb, and ωc represent the frequencies of the target mode, buffer mode, and
coupler, respectively, and EJ is the Josephson energy. φ̂ describes the hybridized
mode in the non-linear coupler and is given by φ̂ = (φaâ + φbb̂ + φcĉ + h.c.),
with φa, φb, and φc being the respective participation ratios of the modes in the
Josephson element that depend on microscopic circuit parameters. φ(t) represents
a modulation of the ATS flux bias. Expanding the above Hamiltonian of the ATS
interaction up to third order yields

Ĥ = ωaâ
†â+ ωbb̂

†b̂+ ωcĉ
†ĉ− 2EJ

[
φ(t)φ̂− φ(t) φ̂

3

6

]
(4.51)

We can apply a three-tone modulation of the flux bias, yielding

φ(t) = ϵ1 cos(ω1t) + ϵ2 cos(ω2t) + ϵ3 sin(ω3t). (4.52)

We can enter a displaced frame [136], through the unitary

ÛD = exp
(
ξ∗aâ− ξaâ

† + ξ∗b b̂− ξbb̂
† + ξ∗c ĉ− ξcĉ

†
)
, (4.53)

with time-dependent parameters ξa, ξb, ξc. For the continuous wave drives in
Eq. (4.52), the parameters ξx are the solution of the differential equations

dξx

dt = −
(
κx

2 + iωx

)
ξx−iEJφ(t), ⇒ ξx(t) =

3∑
k=1

EJφxe
−iωkt

iκx/2− |ωk − ωx|
, (4.54)

where κx is the decay rate of the respective mode. In this displaced frame, the
linear term φ̂ in Ĥ is removed and the Hamiltonian reads

Ĥ = ωaâ
†â+ ωbb̂

†b̂+ ωcĉ
†ĉ+ EJφ(t) φ̃

3

3 , with (4.55)

φ̃ = φa(â+ ξa) + φb(b̂+ ξb) + φc(ĉ+ ξc). (4.56)

We can now apply the frequency matching conditions for the target interaction
Hamiltonian in Eq. (4.49):

ω1 = 2ωa − ωb, ω2 = 2ωa + ωb, ω3 = ωb. (4.57)

Furthermore, to match the right coefficients (cosh(r) and − sinh(r)), we can choose
the flux-pump amplitudes as

ϵ1(r) = ϵ cosh2(r), ϵ2(r) = ϵ sinh2(r), ϵ3(r) = ϵ sinh(2r), (4.58)
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with the driving strength of the drive tones |ϵ| ≪ 1. Choosing ω3 = ωb creates a
single-photon drive in the buffer mode:

Ĥdrive = F̃ ∗b̂+ F̃ b̂†, with F̃ ≈ iEJϵ3(r)φ2
b

κb/2
, (4.59)

where here we have assumed that κb ≫ κa, κc. As the strength of the drive F̃ is
given by the microscopic properties of the system, we can add a resonant single-
photon drive on the buffer mode, to reach stabilized cat states with arbitrary
displacement α. We absorb the microscopic Hamiltonian in Eq. (4.59) into an
effective single photon drive with effective drive amplitude F = −gα2e2r.

To obtain an effective description in the buffer mode, we can further as-
sume κb ≫ g cosh(r) to adiabatically eliminate buffer mode, to finally obtain
the squeezed two-photon dissipator

κ2D[b2 − ξ2], with κ2 = 4g2

κb

. (4.60)

IV.3 Dissipation Engineering with bit-flip suppression

As the phase flip error rate induced by dephasing is already exponentially sup-
pressed in ζ, the main error is the bit-flip induced by photon loss, which we
address below.

In the approach detailed above, single-photon loss events that flip the parity of
code-words, remain uncorrected, as the jump operator L̂′ = b̂2 − ζ2 in Eq. (4.44)
remains invariant under change of parity b̂ → −b̂ that defines the logical ẐL

eigenstates of the squeezed cat code. To counteract the action of â, an operator
performing X̂L while at the same time driving excitations in the gauge mode to
the ground state, has to be engineered. To address this, let us detail the second
approach that autonomously corrects loss errors using a conditional dissipation,
proposed in Ref. [83].

An intuitive picture gives the action of â on one of the code-words in the
subsystem decomposition:

â
(∣∣∣C+

α,ξ

〉
L
⊗ |0⟩g

)
=
∣∣∣C−α,ξ

〉
L
⊗
√
n(√η |0⟩g −

√
1− η |1⟩g), (4.61)

with η ≡ (n − sinh2(r))/n, and n describing the average photon number of the
code-words. To make use of the loss correction, we can define the jump operator

L̂ = (X̂L ⊗ Ĩ)(b̂2 − ζ2) ≈ X̂L ⊗ 2ζã. (4.62)
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We can construct the term X̂L⊗Ĩ from squeezing a linear combination of operators
c1â+ c2â

†, with c1 + c2 = 1:

1
ζ
Ŝ(ξ)

(
c1â+ c2â

†
)
Ŝ†(ξ) = X̂L ⊗

[
Ĩ + 1

ζ

(
c1ã+ c2ã

†
)]

+O
(
e−2ζ2) ≈ X̂L ⊗ Ĩ ,

(4.63)
where the last approximation holds when ζ ≫ 1. As a result, we can engineer a
dissipator

L̂ = 1
ζ
Ŝ(ξ)(c1â+ c2â

†)(â2 − ζ2)Ŝ†(ξ) ≈ X̂L ⊗ 2ζã, (4.64)

that engineers the target jump operator in the limit of ζ ≫ 1 [83]. In [83],
a proposal to realize such a conditional dissipator was explored using trapped
ion setups. It remains an active question, how to engineer such dissipation on
superconducting circuit devices.

V Discussion and Outlook
In this chapter, we have explored the error correction capabilities of the squeezed
cat code. In Sec. I, we have introduced squeezed states and defined the logical code-
words |C±α,ξ⟩. We have shown that in the limit of large squeezing, the squeezed
cat code admits discrete translation invariance in the direction of the squeez-
ing quadrature, thus showing an interesting relation to the translation-symmetric
GKP code which admits discrete translation invariance in both quadratures. The
code-words of the squeezed cat code can be engineered in various ways and have
been experimentally realized on various platforms [94, 348, 351, 390], with results
showcasing the enhanced robustness against dephasing [94]. Notably, since our
proposal of the squeezed cat for quantum error correction, different schemes have
been proposed to dissipatively stabilize the squeezed cat code in superconducting
circuits [392] and trapped ion systems [83]. We have analyzed quantum error cor-
rection conditions in terms of the Knill-Laflamme conditions for discrete errors in
Sec. II, where we have analytically shown that the squeezed cat code possesses
a double-exponential suppression with respect to to dephasing in the squeezing
parameter while at the same time being able to correct for loss errors by reduc-
ing the displacement. In the limit of large squeezing and small displacement, we
have shown that single-photon loss and dephasing errors become perfectly cor-
rectable. This is a major advantage over the standard two-component cat code,
for which the error rate associated to photon loss grows linearly with the dis-
placement α. While this theoretical regime is typically constrained by hardware
devices, we analyzed the correctability of errors of the squeezed cat code subject
to the full continuous loss-dephasing channel for finite squeezing in Sec. III. For
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this, we proposed a periodic recovery that aims to optimally correct the errors
incurred by noise channel. By using a semidefinite program, we have numerically
optimized the recovery operation to maximize the channel fidelity of the combined
noise channel and recovery channel by finding optimal recovery operations trans-
forming first-order error sub-spaces of the noise channel back to the code space.
We also optimized the encoding parameters of the squeezed cat code to reach the
optimal squeezed cat encoding for different regimes of loss and dephasing rates.
Our results reveal that even for experimentally reachable values of the squeezing
parameter, the correctability against loss and dephasing can be significantly in-
creased, when compared to the standard cat code. In our analysis, we have shown
that the squeezed cat shows promising properties as a strongly noise-biased bosonic
qubit in which the phase-flip error rate is double-exponentially suppressed in the
squeezing parameter, and hence we expect the implementation of autonomously
stabilized squeezed cat qubits and concatenation with discrete-variable encodings
in the near future.
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5 Variational Simulation of
Bosonic Open Quantum

Systems

Simulating the dynamics and steady-state properties of interacting bosonic sys-
tems coupled to an environment has been a matter of active research for several
decades. As the size of a quantum system increases, the full Hilbert space grows ex-
ponentially, making direct classical simulation of a large closed many-body system
generally impossible. Furthermore, in open quantum systems, states are char-
acterized by the system’s density matrix, an element of linear operators acting
on the Hilbert space H. Describing a density matrix thus requires dim(H)2 el-
ements, making simulations of large systems even more challenging compared to
closed quantum systems, in which only dim(H) elements are needed to describe
the quantum state.

Variational methods provide one of many promising frameworks to simulate
the dynamics of closed and open quantum systems, which we will consider in
more detail in this chapter. These methods for simulating quantum systems use
a restricted subspace of the Hilbert space to avoid the computational challenges
associated with a prohibitively large Hilbert space. These restricted subspaces are
often motivated physically, as the dynamics of most quantum systems are naturally
bounded to a narrow corner of the Hilbert space [144, 394].

In bosonic systems, the Hilbert space is infinite-dimensional, and hence, the
need to capture the relevant part of the Hilbert space that contributes to the
time evolution or steady-state of a system in consideration becomes even more
apparent. Simulating the time evolution of bosonic systems is a crucial task for
understanding the behavior of dynamical systems, such as bosonic quantum gates
for quantum information processing, dynamical phase transitions, and quench dy-
namics. Simulating the dynamical behavior of bosonic systems in the context of
quantum information processing, in particular, is an essential task to understand
how quantum gates affect the encoded quantum state as quantum states may tem-
porarily depart from the original manifold that encodes the quantum bit. Hence,
simulating the dynamics of bosonic quantum gates gives important insight into
code-subspace leakage, code-deformation, and sources of errors that might occur
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along the dynamics. It further provides means to optimize quantum gates for
higher-fidelity and faster quantum gates.

In the following, therefore, we will focus on the simulation of the dynamics of
open many-boson quantum systems.

In Sec. I, we introduce different variational principles for open quantum systems
that are equivalent under some assumptions. In Sec. II, we specifically consider a
time-dependent and non-orthonormal parametrization of the basis and derive the
general equations of motion. We propose the coherent-state ladder [β] in Sec. III
that uses a parametrized basis of photon-added unnormalized coherent states and
derive the resulting equations of motion using a time-dependent variational prin-
ciple in Sec. IV. In Sec. V, we detail its numerical implementation and provide an
analytical approach to calculate the Fidelity and Wigner function in Sec. VI. We
showcase the method on various examples in Sec. VII. We further extend our devel-
oped method to include discrete rotational symmetries and propose the cat-state
ladder time-dependent variational principle in Sec. VIII and give some examples
for the simulation of single and multiple cat-qubit dynamics in Sec. IX. Finally,
we formulate approaches that go beyond the coherent-state and cat-state ladder
variational methods in Sec. X and conclude this chapter in Sec. XI.

I Variational Principles for Open Quantum Sys-
tems

Figure 5.1: Schematic representation of the variational principle: The state-space is
restricted to a variational manifold – subspace of the full Hilbert space. The evolution of
the parameters in the variational manifold represents an evolution within the variational
subspace.
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In the following, we detail three different variational principles; the Dirac-Frenkel
variational principle, McLachlan’s variational principle, and the time-dependent
variational principle (TDVP). Despite the different approaches of these variational
principles, they can be shown to yield the same equations of motion for the vari-
ational parameters under certain conditions [100].

We suppose that the system’s density matrix ρ̂ is parametrized by a set of
variational parameters θ⃗, i.e. ρ̂(t) = ρ̂(θ⃗(t)). We then want to describe the (real
or imaginary) time evolution through the time-evolution of the parameters θ⃗.

Dirac-Frenkel variational principle

The Liouvillian action on ρ̂ can be expressed in terms of the variational parameters
θ⃗,

L(ρ̂) ≈
∑

i

∂ρ̂(θ⃗(t))
∂θi

∂θi

∂t
. (5.1)

The derivative ∂ ˆρ(θ(t)
∂t

= ∑
i

∂ρ̂(θ⃗(t))
∂θi

∂θi

∂t
lies in the tangent subspace of {∂ρ̂(θ⃗(t))

∂θi
}. But

L(ρ̂) may not lie in this subspace. Therefore, we can project the left-hand side of
Eq. (5.1) onto the subspace spanned by {∂ρ̂(θ⃗(t))

∂θi
}, yielding the Dirac and Frenkel

variational principle [395, 396],

Tr
[
(δρ̂(θ⃗(t)))†

(
dρ

dt
− L(ρ)

)]
= 0. (5.2)

Here, the infinitesimal variation δρ̂ is given by

δρ̂ =
∑

i

∂ρ̂

∂θi

δθi. (5.3)

The evolution of the parameters θ⃗ can be solved to be
∑

j

Mi,j θ̇j = Vi, (5.4)

with matrix M and vector V⃗ defined as

Mi,j = Tr


∂ρ̂(θ⃗(t))

∂θi

† ∂ρ̂(θ⃗(t))
∂θj

 ,
Vi = Tr


∂ρ̂(θ⃗(t))

∂θi

† L(ρ̂)

 .
(5.5)
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In general, θ⃗ can be complex, so that ∂ρ̂(θ⃗(t))
∂θj

̸=
(

∂ρ̂(θ⃗(t))
∂θi

)†
, in which case M , V⃗ ,

and ˙⃗
θ are in general also complex.

McLachlan’s variational principle

The variational principle by McLachlan [397] aims to minimize the distance be-
tween the evolution of the parametrized state and the true evolution by the Liou-
villian, yielding

δ

∥∥∥∥∥∂ρ̂(θ)(t)∂t
− L(ρ̂)

∥∥∥∥∥ = 0, (5.6)

with the Frobenius norm of matrices
∥∥∥Ô∥∥∥ =

√
Tr[Ô†Ô].

Using a distance measure as in Eq. (5.6), we can obtain the distance between
the parametrized state and the true evolution,

∥dρ̂/dt− L(ρ̂)∥2 =
∑
i,j

Mi,j θ̇iθ̇j − 2
∑

i

Viθ̇i + Tr
[
L(ρ̂)2

]
. (5.7)

The resulting equation of motion for θ⃗ can be shown to be equivalent to the Dirac-
Frenkel variational principle.

Time-depentent variational principle

In the time-dependent variational principle [398] (TDVP), we can define a La-
grangian by

L = Tr
[
ρ̂(θ⃗(t))†(dρ̂(θ⃗(t))/dt− L(ρ̂))

]
(5.8)

Applying the Euler-Lagrange equations, we recover the time-evolution for ρ̂, dρ̂/dt =
L(ρ̂). Assuming that θ⃗ is complex, ρ̂ and ρ̂† can be considered independent. Ap-
plying the Euler-Lagrange equation to θ⃗∗ yields again the same evolution as for
the Dirac-Frenkel variational principle. If θ⃗ is real however, the Euler-Lagrange
equation cannot lead to an equation of motion for θ⃗.

II Time-dependent Basis

There are many different possibilities of parametrizing the density matrix ρ̂(t) =
ρ̂(θ⃗(t)), that are typically tailored to the specific problem or the ease of imple-
mentation. In a pure-state context e.g., a quantum state |ψ⟩ can be parametrized
using a set of unitaries {Ûi(θ⃗)}. For two-level systems, such approaches can be im-
plemented on a quantum computer [100]. These approaches use a fixed computa-
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tional basis, where variations in the state correspond to variations in parametrized
operators acting on it.

An alternative approach – that we will explore in more detail here – is to intro-
duce a time-dependent basis, where the basis itself is parametrized by variational
parameters. We define the subspace Span(S) ⊂ H, parametrized by θ⃗, as

S = { |φk(θ⃗)⟩ ; k = 1, . . . , Nbasis}, (5.9)

where |φk(θ⃗)⟩ are the basis states of S and Nbasis < dim(H) is the number of basis
states. It is important to note that the basis states

∣∣∣φk(θ⃗)
〉

are not assumed to be
mutually orthogonal, and hence the overlap matrix S defined by

Si,j = ⟨φi(θ⃗)|φj(θ⃗)⟩ (5.10)

is in general non-diagonal. We now detail some important properties resulting from
non-orthogonality S and requirements for a variational principle. To facilitate the
notation, we omit the explicit dependence of θ⃗ from now on, except where it is
crucial.

Projector and conversion of operators

One can construct an orthonormal basis from S by setting

|ψk⟩ ≡
Nbasis∑

i=1
[S− 1

2 ]k,i |φi⟩ . (5.11)

It can be straightforwardly verified that ⟨ψi(θ⃗)|ψj(θ⃗)⟩ = δi,j by using the above
equation. The inverse square-root of the overlap matrix S above can be directly re-
lated to the Gram-Schmidt orthonormalization procedure by means of a Cholesky
decomposition of S.

Projecting onto the basis S involves inversion of the overlap-matrix S, with
the projector P̂S , defined as

P̂S ≡
Nbasis∑
k=1
|ψk⟩⟨ψk| =

Nbasis∑
i,j=1

|φi⟩ [S−1]i,j ⟨φj| . (5.12)

The definition above satisfies P̂ 2
S = P̂S . We can thus project an arbitrary operator

Ô = ∑
m,n |χm⟩Om,n ⟨χn| ∈ Op(H), with an arbitrary orthonormal basis {|χm⟩}
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onto S,

ÔS ≡ P̂SÔP̂S =
dim(H)∑
m,n=1

Nbasis∑
i,j,k,l=1

|φi⟩ [S−1]i,k ⟨φk|χm⟩Om,n ⟨χn|φl⟩ [S−1]l,j ⟨φj| ,

(5.13)
such that

ÔS i,j = ⟨φi|ÔS |φj⟩ =
dim(H)∑
m,n=1

Nbasis∑
k,l=1

[S−1]i,kAk,mOm,nA
∗
l,n[S−1]l,j

= [S−1AOA†S−1]i,j,
(5.14)

where we have defined Ak,l = ⟨φk|χl⟩.
Consequently, projecting an operator ÔS defined in the basis S onto the full

Hilbert space H yields

Ôi,j = ⟨χi|Ô|χj⟩ = ⟨χi|P̂ ÔSP̂ |χj⟩ =
dim(H)∑
m,n=1

⟨χi|φm⟩OSm,n ⟨φn|χj⟩ = [A†OSA]i,j.

(5.15)
It is important to note that since S ⊂ H, an operator Ô ∈ H might have support
that lies outside of S and hence P̂ P̂SP̂ ̸= P̂ .

Trace

Using Eq. (5.11), calculating the trace in the basis S yields:

Tr{ÔS} =
Nbasis∑

i=1
⟨ψi|ÔS |ψi⟩ = · · · = Tr{SOS}. (5.16)

Analyticity

If the parametrization θ⃗ is complex, a sufficient condition for the equivalence of
McLachlan’s variational principle and the TDVP is the analyticity in the varia-
tional parameters θ⃗ [399]:

∂ |φk⟩
∂θ∗i

= 0; ∀k, i (5.17)

This requirement ensures energy preservation in the limiting case of an isolated
system in a pure state [400].
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II.1 Parametrization of the Density Matrix

We now define a variational ansatz for the parametrized density matrix ρ̂, by
parametrizing both the basis S as well as the coefficients of the density matrix
itself:

ρ̂(θ⃗,B) =
Nbasis∑
i,j=1

∣∣∣φi(θ⃗)
〉
Bi,j

〈
φj(θ⃗)

∣∣∣ . (5.18)

Here, θ⃗ and the density matrix coefficients B constitute variational parameters. It
proves useful to think of θ⃗ as an internal parametrization for which the equations
of motion provide the evolution of the subspace S in which the density matrix
resides. The external parametrization is given by the density matrix coefficients
B, for which the equations of motion provide the evolution of the density matrix
within the co-moving manifold S.

II.2 TDVP Equations of Motion

We now outline the resulting TDVP equations of motion for a variational ansatz of
the density matrix defined in Eq. (5.18). The method relies on a recent formalism
developed by Joubert-Doriol et al. [400, 401] in the context of simulating the
dynamics of dissipative quantum chemistry problems. It was introduced to apply
the time-dependent variational principle to open quantum systems with a density
matrix ansatz as in Eq. (5.18) subject to a Lindblad master equation.

We assume that the analyticity condition, ∂|φk⟩
∂θ∗

i
= 0, (See Eq. (5.17)) for the

basis parametrization is satisfied. As a result, the Dirac-Frenkel and McLachlan
variational principles as well as the TDVP are ensured to be equivalent. We can
thus impose the Dirac-Frenkel stationary condition [402] (See Sec. I)

Tr{(δρ̂)†( ˙̂ρ− L[ρ̂])} = 0, (5.19)

with an infinitesimal variation in the density matrix δρ̂.

We can express δρ̂ in terms of its variational parameters:

δρ̂ =
∑
ij

∂ρ̂

∂Bij

δBij +
∑

i

∂ρ̂

∂θi

δθi +
∑

i

∂ρ̂

∂θ∗i
δθ∗i . (5.20)
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We can insert the above expression in Eq. (5.19), and, due to the independent
nature of the derivatives, we arrive at three stationary conditions:

Tr
{
∂ρ̂

∂Bij

( ˙̂ρ− L[ρ̂])
}

= 0 (5.21)

Tr
{
∂ρ̂

∂θi

( ˙̂ρ− L[ρ̂])
}

= 0 (5.22)

Tr
{
∂ρ̂

∂θ∗i
( ˙̂ρ− L[ρ̂])

}
= 0 (5.23)

We can rewrite Eq. (5.20) as

dρ̂
dt =

∑
ij

Ḃij |φi⟩⟨φj|+Bij |φ̇i⟩⟨φj|+Bij |φi⟩⟨φ̇j| (5.24)

We replace this expression into Eq. 5.21, yielding:

Tr
{
∂ρ̂

∂Bij

( ˙̂ρ− L[ρ̂]
)}

= 0 (5.25)

=
∑
kl

⟨φl|S−1
kl

[
|φi⟩⟨φj|

(∑
cd

Ḃcd |φc⟩⟨φd| (5.26)

+Bcd |φ̇c⟩⟨φd|+Bcd |φc⟩⟨φ̇d| − L[ρ̂]
)]
|φk⟩

=
∑
cd

SjcḂcdSdi + τjcBcdSdi + SjcBcdτ
∗
id − Lji. (5.27)

In the last line, we have introduced

[τ ]mn =
∑

i

〈
φm

∣∣∣∣∣∂φn

∂θi

〉
θ̇i, (5.28)

[L]ij = ⟨φi|L[ρ̂]|φj⟩ . (5.29)

We thus have the condition

SḂS + τBS + SBτ † −L = 0, (5.30)

which gives the equation of motion for the density matrix coefficients,

Ḃ = S−1LS−1 − S−1τB −Bτ †S−1. (5.31)
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For the equation of motion for θ̇i, we have by inserting the definition of ˙̂ρ from
Eq. (5.24),

Tr
{
∂ρ̂

∂θ∗i
( ˙̂ρ− L[ρ̂])

}
= 0 (5.32)

=
∑
ab

⟨∂θi
φb|

{∑
cd

(
Ḃcd |φc⟩⟨φd|

+Bcd |φ̇c⟩⟨φd|+Bcd |φc⟩⟨φ̇d|
)
− L[ρ̂]

}
|φa⟩Bab.

(5.33)

Inserting the definition of Ḃ from Eq. (5.31), we obtain

Tr
{
∂ρ̂

∂θ∗i
( ˙̂ρ− L[ρ̂])

}
(5.34)

=
∑
ab

⟨∂θi
φb|

{∑
cd

(
[S−1LS−1

− S−1τB −Bτ †S−1]cd |φc⟩⟨φd|

+Bcd |φ̇c⟩⟨φd|+Bcd |φc⟩⟨φ̇d|
)
− L[ρ̂]

}
|φa⟩Bab

(5.35)

By using the definition of the projector P̂ in Eq. (5.12), we have

Tr
{
∂ρ̂

∂θ∗i
( ˙̂ρ− L[ρ̂])

}
(5.36)

=
∑
ab

⟨∂θi
φb|

{∑
cd

(
1̂− P̂

)
|φ̇c⟩BcdSda

+
(
P̂ − 1̂

)
L[ρ̂] |φa⟩

}
Bab

(5.37)

=
∑
abcl

⟨∂θi
φb| [1̂− P̂S ] |∂θl

φc⟩ [BSB]cbθ̇l

− ⟨∂θi
φb| [1̂− P̂S ]L[ρ̂] |φa⟩Bab

, (5.38)

where in the last step we have inserted the definition of |φ̇c⟩.
We can finally cast the above expression into a matrix equation form:

∑
bcl

[C0]ilbc[BSB]cbθ̇l −
∑
ab

[Y0]ibaBab = 0, (5.39)

where we have defined

[C0]kl
bc ≡ ⟨∂θk

φb| [1̂− P̂S ] |∂θl
φc⟩ , (5.40)

[Y0]kba ≡ ⟨∂θk
φb| [1̂− P̂S ]L[ρ̂] |φa⟩ . (5.41)
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The tensor C0 can be interpreted as a quantum-geometric tensor [403–407], that
relates changes of the variational parameters θ⃗ to changes in the basis states of the
ansatz. Y0, on the other hand, relates the action of the Liouvillian L on the basis
to variational changes of the basis with respect to the variational parameters θ⃗.

II.3 Remarks

Non-conservation of the density matrix trace

It is important to note that by construction of the variational principle in Eq. (5.19),
the trace of the density matrix is not conserved in general. This can be seen by
computing

Tr{ ˙̂ρ} = Tr{Ḃ + (τ + τ †)B} (5.42)
= Tr{S−1L− S−1τBS −Bτ † + (τ + τ †)B} = Tr{S−1L}. (5.43)

We can constrain the variational principle by applying a Lagrange multiplier to
ensure the conservation of the density matrix trace:

Tr{(δρ̂)†( ˙̂ρ− L[ρ̂] + λρ̂} = 0 (5.44)
∂

∂t
Tr{ρ̂} = 0 (5.45)

This leads to the following trace-preserving equation of motion for Ḃ:

Ḃ = S−1LS−1 − S−1τB −Bτ †S−1 − Tr{S−1L}B (5.46)

For a detailed derivation of this result, see Ref. [400].

Non-conservation of energy for isolated systems

An important remark is that even for isolated systems, the resulting equations of
motion from the employed variational principle in Eq. (5.19) do not conserve the
energy during time-evolution. Assuming an isolated system, this can be seen by
computing

Tr{ ˙̂ρĤ} = −2Im[Tr{θ̇†Y }] (5.47)

See Ref. [400] for a detailed numerical derivation. This property of non-conservation
of energy in isolated systems enters as a result of the density matrix entering
quadratically in the variational principle. As a result, the variational principle
conserves Tr{ρ̂(t)2Ĥ}, rather than Tr{ρ̂(t)Ĥ}. In special cases, such as time-
independent bases, complete bases, pure states, and in a linear parametrization
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of the basis, energy is still preserved in isolated systems [400]. In Ref. [400], a
problem-free time-dependent variational principle is established based on a vari-
ational principle for the square root of the density matrix, such that the density
matrix enters linearly in the equation of motion.

In the following, we neglect this property as we consider only dissipative sys-
tems in which the energy is in general not a conserved quantity.

III Coherent-state Ladder Time-dependent Vari-
ational Principle

Figure 5.2: Schematic representation of the coherent-state ladder time-dependent vari-
ational principle. The basis is parametrized by the coherent-state amplitude α that
displaces the Fock-space. The density matrix is parametrized by its density matrix co-
efficients. By including higher moments of â† in the basis, the density matrix covers
a broader subspace of the total Hilbert space. In the equations of motion, both time
evolutions (indicated as paths) are coupled to each other.

This section outlines a variational method based on a coherent-state ladder basis
to simulate the dynamics of bosonic systems classically. A large part of this work
was published in [β].

III.1 Motivation
In a large class of quantum device setups, the quantum state of a bosonic system
can be accurately described by coherent states and small quantum fluctuations
thereof. As an example, a dissipative Kerr-resonator [408] in the regime of small
non-linearity can be well described by coherent-like states, i.e. a coherent state
and its excitations.

As outlined in Chap. 2, Sec. IV, several methods have been developed to model
systems that are close to their classical limit, such as the Gross-Pitaevskii equa-
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tion [131–133] and the Gutzwiller mean-field approximation [409–413]. However,
quantum correlations induced by interactions cannot be captured by mean-field
approaches, the truncated Wigner approximation, or low-order cumulant expan-
sion [414, 415].

In most modern-day bosonic hardware platforms, systems can acquire a large
degree of coherence from engineered driving fields, leading to long-lived quan-
tum correlations that evolve over time. Important examples of such systems are
autonomously stabilized bosonic quantum codes in which a carefully engineered
environment can stabilize quantum superposition of coherent states [61, 74, 76,
78].

On the other side of the spectrum of numerical simulation techniques reside
full-quantum simulations that aim to incorporate the full-quantum nature of the
system’s state, e.g. by using a Fock-space representation or wave-function repre-
sentation of the basis states [416, 417]. The Fock-space method is the most promi-
nent, which relies on photon number states as its computational basis in second
quantization. The Fock basis is typically truncated to include a finite number
of computational basis states up to a certain photon number state to represent a
quantum state in finite memory. Such a truncation is sufficient if the time-evolving
quantum state can be well approximated in terms of the computational basis, such
that contributions from Fock-states not included in the basis are negligible.

Representing a coherent state |α⟩ – characterized by its complex amplitude α
(See Chap. 2, Sec. III) – using a Fock-space representation requires O(|α|2) Fock
states. In particular, in situations when α grows large, accurately representing a
coherent state in Fock-space comes with a quadratic overhead in α. This does not
include excitations of a coherent state to represent, e.g., non-linear effects, such as
the Kerr effect or squeezing [116, 123, 418, 419], which would further increase the
number of Fock-states needed to describe the state. Due to the exponential scaling
of the computational basis with respect to the number of bosonic modes when
considering many-body bosonic systems, numerical simulation of the dynamics of
multi-mode dissipative systems quickly becomes intractable for systems with large
occupation numbers in Fock-space.

Hence, one can identify a clear need in the scientific community for an efficient
numerical method that bridges the gap between a fully classical and fully quantum
treatment of the underlying quantum system. Controlling the degree of quantum
fluctuations included in such a method is crucial for simulating the dynamics of
quantum systems that are bounded by the entropy that the system develops over
time and enables the simulation of the dynamics of bosonic systems for a wide
range of quantum states.
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In the following, we detail the coherent-state ladder time-dependent variational
principle that aims to bridge this gap in numerical simulation methods of multi-
boson open quantum systems.

III.2 Bargmann States and the Coherent-State Ladder

To construct an efficient simulation method with the requirements detailed above,
we aim to construct a parametrized basis that can efficiently represent coherent-
like states, i.e. a state that can be described by a basis of a coherent state and
few excitations thereof. To ensure the equivalence of the variational principles
detailed in Sec. I, we require the parametrization of the basis states to be analytic
with respect to their variational parameter (See Eq. (5.17)). Normalized coherent
states, |α⟩ = e−

|α|2
2
∑∞

n=0
αn
√

n! |n⟩, do not satisfy the analyticity condition due to

the normalization factor e−
|α|2

2 in front, for which it is easy to check that ∂|α⟩
∂α∗ ̸= 0.

Bargmann states

For a parametrization that is analytic in the variational parameter, we consider
the so-called Bargmann states [420–422], which are un-normalized coherent states:

∥α⟩ ≡ eαâ† |0⟩ =
∞∑

n=0

αn

√
n!
|n⟩ = e

|α|2
2 |α⟩ . (5.48)

They obey the following properties:

⟨β∥α⟩ = eβ∗α, (5.49)
â∥α⟩ = α∥α⟩, (5.50)
∂

∂α
∥α⟩ = â†∥α⟩, (5.51)

∂

∂α∗
∥α⟩ = 0. (5.52)

As can be seen from Eq. (5.51), the derivative of a Bargmann state ∥α⟩ is identical
to the application of the creation operator to the state, â†∥α⟩, admitting a very
simple form (in contrast to normalized coherent states, in which ∂|α⟩

∂α
depends both

on α and â†).

Coherent-state Ladder

With the definition of the Bargmann state, we can now construct a basis to be
used in a variational principle by excited Bargmann states. For this, we define
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photon-added (or excited) Bargmann states [297, 298, 423]:

∥α, n⟩ ≡ â†
n∥α⟩, (5.53)

such that ∥α, 0⟩ = ∥α⟩. The states ∥α, n⟩ obey the following properties:

∥α, n⟩ = eαâ†√
n! |n⟩ , (5.54)

â∥α, n⟩ = ââ†
n∥α⟩ = (â†nâ+ nâ†

n−1)∥α⟩
= α∥α, n⟩+ n∥α, n− 1⟩,

(5.55)

∂

∂α
∥α, n⟩ = â†

n+1∥α⟩ = ∥α, n+ 1⟩. (5.56)

Note in particular the last equation relating the derivate with respect to α of a
photon-added Bargmann state ∥α, n⟩ to a photon-added Bargmann state with an
additional added photon ∥α, n+ 1⟩. From this, we can now define a coherent-state
ladder, which we define as the basis of n photon-added Bargmann states:

S ≡
{
â†

k∥α⟩, k = 0, . . . , n
}

(5.57)

= {∥α, k⟩, k = 0, . . . , n} (5.58)

From the above definition of the coherent-state ladder it is straightforward to show
that for α <∞ and n→∞, S spans the entire Hilbert space.

Overlap matrix

It is important to note that the coherent-state ladder basis S, defined in Eq. (5.57),
is non-orthonormal. We can compute the overlap of different photon-added Bargmann
with the same coherent field amplitude α as

Smn = ⟨α,m∥α, n⟩ (5.59)

We can obtain a recursion relation for Sij by computing:

Smn =⟨α,m− 1∥ââ†∥α, n− 1⟩ (5.60)
=Sm−1,n−1 + (m− 1)(n− 1)Sm−2,n−2

+ |α|2Sm−1,n−1 + α(m− 1)Sm−2,n−1

+ α∗(n− 1)Sm−1,n−2.

(5.61)
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Furthermore, we can obtain an explicit analytical expression for the lower triangle
of the overlap matrix through normal ordering of operators [424–428]:

Smn = e|α|
2
αm−n

m∑
p=0

(
m

p

)
n

p
¯ |α|2(n−p), for m ≥ n (5.62)

where xn
¯ = x(x− 1) . . . (x−n+ 1) = ∏n−1

k=0(x− k) is the falling factorial [429, 430]
and

(
n
m

)
= n!

m!(n−m)! is the binomial coefficient. Using the fact that the overlap
matrix S is Hermitian, i.e. S = S†, the upper triangle of S follows immediately.

For the inverse of the S-matrix, we can similarly obtain an analytic expression:

[S−1]mn = e−|α|
2 (−α)m−n

(1 +m)!

N−1∑
p=m

(
p

m

)
|α|2(p−m)

(p+ 1− n)! , for m ≥ n. (5.63)

Operator representation

We can represent operators of the form â†
r
âs in the basis of S and express them

in terms the overlap matrix S. For example, by using Eq. 5.55, we have:

[a]m,n = ⟨α,m∥â∥α, n⟩ = ⟨α,m∥(α∥α, n⟩+ n∥α, n− 1⟩) = αSm,n + nSm,n−1.

(5.64)
Other operators can be calculated similarly (See appendix B for a representation
of more operators).

For multiple bosonic modes, we have for an operator Ôk acting only on mode
k,

Ok = S1 ⊗ · · · ⊗ Sk−1 ⊗O ⊗ Sk+1 ⊗ · · · ⊗ SN . (5.65)

Left and right derivatives

An important property of the coherent-state ladder S is that the tangent space of
Sn (where here the subscript n denotes the number of basis states) lies in Sn+1,
which can be shown by directly applying Eq. (5.56) to the basis states in S. We can
thus relate derivatives of the basis S to block shifts in the matrix representation of
operators. Let [O]m,n be the matrix representation of an operator Ô in the basis
of S. Then, by denoting O→, the right derivative, we have

O→m,n ≡ ⟨α,m∥Ô
(
∂∥α, n⟩
∂α

)
= ⟨α,m∥Ôâ†∥α, n⟩ = ⟨α,m∥Ô∥α, n+ 1⟩ = [O]m,n+1.

(5.66)
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And similarly, for the left and left-right derivatives,

O←m,n ≡
(
∂⟨α,m∥
∂α

)
Ô∥α, n⟩ = [O]m+1,n, (5.67)

O↔m,n ≡
(
∂⟨α,m∥
∂α

)
Ô

(
∂∥α, n⟩
∂α

)
= [O]m+1,n+1. (5.68)

Hence, derivatives with respect to the variational parameter α of the matrix rep-
resentation of an operator in the basis of S are directly given by its row and/or
column shifts. As a result, in order to calculate first derivatives with respect to α
of an operator requires to include one additional basis state in S.

IV Coherent-sate Ladder Equations of Motion

Single bosonic mode

We can now derive the equations of motion for a density matrix ρ̂ = ρ̂(α,B) in a
coherent-state ladder basis. Compared to the general case in Sec. II.2, here, the
basis of a bosonic mode is solely characterized by a single variational parameter,
α. Hence, Eq. (5.39), simplifies to

∑
bc

[C0]bc[BSB]cbα̇−
∑

a

[Y0]baBab = 0 (5.69)

=Tr{C0BSB}α̇− Tr{Y0B}, (5.70)

with C0 and Y0 in this particular basis:

[C0]bc = ⟨∂αφb| [1̂− P̂S ] |∂αφc⟩ , (5.71)
[Y0]ba = ⟨∂αφb| [1̂− P̂S ]L[ρ̂] |φa⟩ . (5.72)

We thus have the following set of equations of motion for the parameters α
and the matrix B:

Ḃ = S−1LS−1 − S−1τB −Bτ †S−1,

α̇ = Tr{Y0B}
Tr{C0BSB}

(5.73)

The above set of equations presents an implicit coupled ordinary differential equa-
tion where the equation of motion of α is directly coupled to B and where the



V. Numerical implementation 123

equation of motion of B is coupled to α through τ , which contains α̇, and implic-
itly through the matrix-representation of S and L, which change upon a change
in α.

Multiple bosonic modes

We can straightforwardly extend the equations of motion for B and α, given in
Eqs. (5.73), to multiple bosonic modes. To do so, we parametrize each bosonic
mode k with a different coherent-state amplitude αk, so that the basis S of the
density matrix is simply given by the bases of each individual modes, S = S1 ⊗
S2⊗· · ·⊗SN , where N is the number of bosonic modes. Thus, the parametrization
of the density matrix ρ̂ = ρ̂(α⃗,B) is given by the density matrix coefficients B

and the basis parametrization, in which each mode k is parametrized by αk.
As a result of the independent parametrization of the basis of each individual

bosonic mode, we have

⟨∂αk
φb| [1̂− P̂S ] |∂αk′φc⟩ = 0, for k ̸= k′. (5.74)

Hence, changes in the variational parameter αk of a basis state are uncorrelated
to changes in the variational αk′ of another basis state for different modes k, k′.
We thus arrive at the following set of equations of motion for the parameters α⃗
and the matrix B in the case of multiple bosonic modes:

Ḃ = S−1LS−1 − S−1τB −Bτ †S−1,

α̇k = Tr{Y0
(k)B}

Tr{C0
(k)BSB}

,
(5.75)

where here, we have an additional index for C0 and Y0 specifying the index of the
bosonic mode,

[C0]kbc = ⟨∂αk
φb| [1̂− P̂S ] |∂αk

φc⟩ , (5.76)
[Y0]kba = ⟨∂αk

φb| [1̂− P̂S ]L[ρ̂] |φa⟩ . (5.77)

V Numerical implementation

We now sketch how the equations of motions Eqs. (5.73) and Eqs. (5.75) are
implemented numerically.
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V.1 Quantum-geometric tensor C0

The quantum-geometric tensor C0 in Eq. (5.71) can be drastically simplified by
relating it to left and right derivatives of the overlap matrix S:

[C0]bc = ⟨∂αφb| [1̂− P̂S ] |∂αφc⟩ = S↔ − S←S−1S→, (5.78)

where in the last step, we have used the definitions of left- and right derivatives.
By using the analytical expressions of S in Eq. (5.62) and S−1 in Eq. (5.63), we
arrive with a simple analytic expression for C0:

[C0]bc =
(N − 1)! for b = c = N − 1,

0 otherwise.
(5.79)

Hence, C0 has only one non-vanishing and α-independent matrix element for
[C0]N−1,N−1 = (N −1)!. This surprisingly simple expression reveals one of the im-
portant characteristics of Bargmann states: Since the derivative in α of a photon-
added Bargmann state ∥α, n⟩ is identical to the same Bargmann state with an
additionally added photon, ∥α, n+ 1⟩ (See Eq. (5.56)), all infinitesimal variations
of the basis S with respect to α are described by S itself, except for the highest
excited state included in S, as the derivative lies outside of S. As a result, only
the highest excited state in S can induce a change in the variational parameter
α. This makes variational changes in α susceptible to the corner of the basis S.
Consequently, the term Tr{C0BSB} in Eq. (5.73) is zero if the corner of the
basis, i.e. ∥α,N − 1⟩, remains unpopulated. We thus have

Tr{C0BSB} = (N − 1)!
N−1∑
k,l=0

BN−1,kSk,lBl,N−1. (5.80)

The multi-mode case for C0 can be calculated straightforwardly:

C0
(k) = S1 ⊗ · · · ⊗ Sk−1 ⊗C0 ⊗ Sk+1 ⊗ . . .SL (5.81)

V.2 Calculation of L and Y0

We can rewrite Y0 (See Eq. (5.72)) in terms of S and L,

Y0 = L← − S←S−1L. (5.82)

We notice that, as left or right derivatives of an operator Ô with respect to α can be
expressed in terms of row or column shifts of the respective matrix representation
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of Ô in the Bargmann basis S, we can directly compute L← from L, in the
following way: We can expand L in terms of its operator-sum representation
L = ∑

p ApBDp with left and right Kraus operator matrices Ap and Dp. We
have L← = ∑

p A←p BDp through linearity. Hence, we can store both L and L←

in a single matrix of shape (N + 1)×N :

L(N+1)×N =
∑

p

A(N+1)×N
p BN×NDN×N

p , (5.83)

such that

L = L0:N−1,0:N−1, (5.84)
L← = L1:N,0:N−1, (5.85)

where a : b denotes the index range from a to b.

We can explicitly calculate the Liouvillian L from Hamiltonian Ĥ, and jump
operators L̂µ an their associated dissipation rates γµ:

Lij = ⟨φi| L[ρ̂] |φj⟩ (5.86)
=
∑
kl

−iBkl ⟨φi|
[
Ĥ |φk⟩⟨φl| − |φk⟩⟨φl| Ĥ

]
|φj⟩ (5.87)

+Bkl

∑
µ

γµ ⟨φi|
[
L̂µ |φk⟩⟨φl| L̂†µ −

1
2 L̂
†
µL̂µ |φk⟩⟨φl| −

1
2 |φk⟩⟨φl| L̂†µL̂µ

]
|φj⟩

(5.88)
= −i [HikBklSlj − SikBklHlj]

+
∑

µ

γµ

[
LµikBklL

†
µlj
− 1

2
(
L†µLµ

)
ik
BklSlj −

1
2SikBkl

(
L†µLµ

)
lj

]
, (5.89)

leaving in matrix notation,

L = −i [HBS − SBH ] +
∑

µ

γµ

[
LµBL†

µ −
1
2
(
L†

µLµ

)
BS − 1

2SB
(
L†

µLµ

)]
.

(5.90)
Here, Lµ, L†

µ, and
(
L†

µLµ

)
are the jump-operator expressions in the basis of the

ansatz. From the above expression of L, one can straightforwardly identify the
operator-sum representation in Eq. (5.83).
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To calculate S←S−1, we can employ the analytical expressions of S in Eq. (5.62)
and S−1 in Eq. (5.63) to leave again a simple analytic expression:

S←S−1 =



0 1 · · · 0
0 0 · · · 0
... ... . . . ...
0 0 · · · 1(

N
0

)
αN(−1)1+N

(
N
1

)
αN−1(−1)2+N · · ·

(
N

N−1

)
α(−1)2N


(5.91)

Due to the off-diagonal structure in S←S−1 – except for the last row – and due
to the fact that L← is a shift of L by one row, the two terms in Eq. (5.82) exactly
cancel – except for the last row – leaving only a single non-vanishing row in the
expression of Y0:

[Y0]N−1,c = L←N−1,c −
N−1∑
k=0

(
N

k

)
αN(−1)N+1+kLk,c (5.92)

This is again a direct consequence of the tangent space of SN lying in SN+1. Fur-
thermore, as Y0 appears in a trace in Eqs. (5.73), we have Tr{Y0B} = ∑

k Y0N−1,kBk,N−1.

V.3 Numerical Regularization

It can be deduced directly from the analytical expressions of C0 and Y0 that if the
density matrix ρ̂ has no population of the corner of the coherent-state ladder S,
i.e. ⟨α,N − 1∥ρ̂∥α,N − 1⟩ = BN−1,N−1 = 0, both the numerator, Tr{C0BSB},
as well as the denominator, Tr{Y0B}, in the equation of motion for α are zero.

This fact can be reconciled in the following way. Let us suppose that for the
basis SN , ρ̂(α,B) can be described by a rank-deficient coefficient matrix B, such
that BN−1,N−1 = 0. As a result, α̇ is undefined, and only Ḃ can be non-vanishing.
If the Liouvillian L does not contain transitions between ∥α, k⟩ ↔ ∥α,N − 1⟩,
BN−1,N−1 can never get populated and consequently, α̇ will remain undefined. In
this case, the entire density matrix can be efficiently described with the smaller
basis SN−1. Only if L induces transitions to the corner of the basis is α̇ well-
defined. At the heart of this problem lies a redundancy that is intrinsic to the
Bargmann basis S: For certain states, we have ρ̂(α,B) = ρ̂(β,B′), i.e. the same
density matrix might be equally described by different Bargmann bases S and S ′.
An example of this is a coherent state |α⟩ expressed in the coherent-state ladder S
that is parametrized by α. This state can be efficiently described in another basis
S ′ that is displaced in phase space by a small amount δβ, with different density
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matrix coefficients B′. As a result, the equations of motion in Eqs. (5.73) are only
properly defined if the corner BN−1,N−1 is non-zero.

Mathematically, this can be shown in the following way. Suppose BN−1,N−1 = ϵ

and B1:N,N−1 = 0, i.e. ρ̂ has no coherences with state |φN−1⟩. Then, the expression
of α̇ simplifies to

α̇ = YN−1,N−1ϵ

(N − 1)!ϵ2SN−1,N−1
. (5.93)

We can see that for ϵ→ 0, α̇ diverges. Allowing for coherences associated with the
corner state, B1:N,N−1 ̸= 0, we get the same result as the coherences are bounded
by BN−1,N−1 due to B being Hermitian.

We can regularize the equations of motion by imposing a regularization for α̇.
There are multiple options to do so, of which we discuss only a few.

Implicit regularization
A straightforward regularization for α̇ is to set α̇ = 0 for BN−1,N−1 < ϵ for a small
value of ϵ. In this implicit regularization scheme, if the initial state is a rank-
deficient density matrix in the basis of S, the initial basis S is allowed to change
in its variational parameter if the time-evolution of B causes a population of the
corner of B. A drawback of this regularization is the introduction of discontinu-
ities in the evolution of α, which can make numerical integration schemes more
demanding. Furthermore, ϵ has to be chosen carefully to be large enough to allow
sufficient sensitivity in the computation of α̇ and small enough to avoid larger de-
viations from leakage outside of the basis S leading to errors in the time-evolution.

Tikhonov regularization
We can also regularize the equation of motion for α̇, by using Tikhonov regular-
ization [431–433] in Eqs. (5.73):

α̇ = Tr{C}Tr{Y }
Tr{C}2 + ϵ

, (5.94)

such that α̇ = 0 if the corner of B is unpopulated. This regularization has the
advantage of being continuous and favoring solutions of small absolute values of
α̇. Here, ϵ also has to be chosen such as to balance the artificially induced nu-
merical error with the efficiency of integrating the regularized equations of motion.

Regularization of B

Another way of regularizing the equations of motion is to artificially impose
BN−1,N−1 ≥ ϵ throughout the dynamics, e.g. by either setting BN−1,N−1 = ϵ

in the initial state, such that α̇ is well-defined. While this regularization scheme
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is numerically efficient, it directly manipulates the coefficient matrix B, leading
to inaccurate results that can lead to an accumulation of the error to the true
variational evolution, in particular when the number of basis states N is large.

V.4 Sketch of the Implementation

We now sketch a numerical implementation for the simulation of a single bosonic
mode. A schematic pseudocode for the function RHS, computing the right-hand-
side of Eqs. (5.73), is given in algorithm 2.

Algorithm 2 Schematic pseudocode for computing the derivatives α̇ and Ḃ in
Eqs. (5.73).

1: function rhs(α, B)
2: S, S−1 ← S(α), S−1(α) ▷ Compute S using Eq. (5.61) or Eq. (5.62) and

S−1 by numerical inversion or analytically using Eq. (5.63)
3: {Ap} ← {Ap}(α,S) ▷ compute all other elementary operators involved in
L

4: L← L(B,S, {Ap}) ▷ compute the Liouvillian action on B (See
Eq. (5.90))

5: Tr{Y } ← Tr{Y (α,B,L)} ▷ compute Tr{Y } = Tr{Y0B}
6: Tr{C} ← Tr{C(B,S)} ▷ compute Tr{C} = Tr{C0BSB}
7: α̇← Tr{C}Tr{Y }/(Tr{C}2 + ϵ}) ▷ Compute regularized expression for α̇
8: drift← drift(α, α̇,B) ▷ compute drift term Bτ †S−1 using Eq. (5.91)
9: Ḃ ← S−1LS−1 − drift− drift† ▷ compute rhs of Ḃ

10: return α̇, Ḃ
11: end function

An important remark is that when explicit numerical integration schemes are
used, we can substitute the right-hand-side of α̇ into the expression of the right-
hand-side of Ḃ, without loss of numerical accuracy, and hence we can treat implicit
ordinary differential Eqs. (5.73) as explicit ones due to α̇ entering linearly in the
expression of Ḃ.

As detailed in Sec. V.2, we can obtain L← and L directly from a single matrix
L. Computing L requires computing operators in the Hamiltonian and jump
operators with an additional basis state, such that the matrix representation of
the operators is of dimension (N + 1)×N .

Solving the differential equation numerically is straightforward, and a work-
flow sketch of integrating the equations of motion is schematically depicted in
algorithm 3.
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Algorithm 3 Schematic pseudocode for integrating the equations of motion
1: Initialize matrices S, S−1,{Ap}, and L.
2: Define problem-specific function L(B,S, {Ap})
3: Define initial state α(t0),B(t0)
4: Set integration time T
5: Set solver algorithm and its numerical accuracy
6: Solve differential equation defined by RHS(α,B)

Computational Resource Estimate

It is crucial to assess the scaling of the computational resources needed for the
developed coherent-state ladder TDVP method with respect to the to be able to
compare the method to others.

To assess the scaling of the number of computations with the basis size N and
the number of modes L, we consider the resources in a single time-step, i.e. in
a single evaluation of the right-hand side of the derivatives for α̇ and Ḃ. For a
single bosonic mode with basis size N , calculating the right-hand side for Ḃ and
α̇ involves O(N3) operations, arising from a constant number of matrix-matrix
multiplications, thus leaving O(N3) operations for a single mode.

For a number of L bosonic modes, with each mode having a basis size N ,
the computational cost can be estimated in the following way. Matrix-matrix
multiplications then involveO(N3L) operations, as the Hilbert space has dimension
dim(HS) = NL. Computing the L different derivatives α̇k for each mode k thus
yields the overall scaling of O(LN3L) for this method. In comparison, a standard
Fock-space method with truncated Hilbert space of dimension dim(HFock) = NL

Fock
involves O(N3L

Fock) operations per time-step, where NFock is the number of Fock
states in each mode. Notice that the optimal operating regime of our method is
when NFock ≫ N , which is the regime of small quantum fluctuations in the system,
corresponding to low entropy.

VI Fidelity and Wigner function

Fidelity

To gauge the performance of the time-evolved density matrix of the coherent-state
ladder ansatz ρ̂(α(t),B(t)) with a standard Fock-space approach σ̂(t), we compute
the fidelity between these two states [47, 434]:

F ≡ Tr{
√√

ρ̂σ̂
√
ρ̂}2 (5.95)
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To do so, we compute the square root of ρ̂ by expressing it in an orthogonal basis
(See Eq. (5.11))

ρ̂ =
∑
i,j

Bi,j |φi⟩⟨φj| =
∑
i,j

Bi,j |ψi⟩⟨ψj| , (5.96)

with
B = S−

1
2 BS−

1
2 , (5.97)

such that ⟨ψi|ψj⟩ = δi,j. Then, we have for the fidelity

F = Tr{
√√

BC
√

B}2, (5.98)

with Cm,n = ⟨ψm|σ̂|ψn⟩.

Wigner Function

We can calculate the Wigner function directly from ρ̂ without having to transform
ρ̂ into a Fock-space representation.

W [β] ≡ Tr{ρ̂D̂(β)Π̂D̂†(β)} (5.99)
=
∑
k,l

⟨φk| [S−1]klρ̂D̂(β)Π̂D̂†(β) |φl⟩ (5.100)

=
∑
m,n

Bm,n ⟨φn| D̂(β)Π̂D̂†(β) |φm⟩ = Tr{BA}, (5.101)

where in the last step we have defined An,m ≡ ⟨φn| D̂(β)Π̂D̂†(β) |φm⟩. We calculate
the matrix elements Anm:

An,m = (−1)me|α|
2

n∑
k1=0

m∑
k2=0

min(k1,k2)∑
k=0

k!
(
n

k1

)(
k1

k

)(
m

k2

)(
k2

k

)

× βn−k1 (−β∗)m−k2 (α∗ − β∗)k2−k (β − α)k1−ke−2|α−β|2 .

(5.102)

VII Applications

We now turn to applying the coherent-state ladder time-dependent variational
principle, developed in the previous sections, to various systems to gauge the
method’s performance.
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Application I: Driven-dissipative Kerr resonator

We consider as a first proof of principle a single bosonic mode consisting of a
single-photon drive and Kerr-nonlinearity with Hamiltonian:

Ĥ = U

2 â
†2â2 + F (â+ â†), (5.103)

where F is the single-photon driving amplitude, and U is the strength of the Kerr-
nonlinearity. Furthermore, the system is subjected to single-photon loss, with
dissipator γD[â], where γ is the photon-loss rate. In the classical limit of vanishing
non-linearity and infinite driving amplitude with F

√
U constant, the required

number of Fock states to describe the system’s dynamics accurately increases as
O(F/U)2/3 [408].

In Fig. 5.3(a), we show the number of basis states N required to reach a
fidelity F > 0.99 for both the TDVP method and the Fock-space method for
reference throughout the time-evolution of an initial coherent state. We observe
that while the number of required Fock states needed to accurately describe the
entire dynamics increases by lowering U , the number of required basis states in
the coherent-state ladder S remains nearly constant. Furthermore, we show in
Fig. 5.3(b) the infidelity 1− F as a function of time for different basis sizes N in
the coherent-state ladder used to describe the density matrix. We observe – as
expected – a monotonous improvement in the fidelity F with increasing the basis
size N . The initial increase in the infidelity is due to the fact that the state departs
from a coherent state, leading to leakage outside of the basis S. In Fig. 5.3(c), we
show the Wigner functions in the steady state for different values of U , highlighting
departure from a coherent state.

Application IIb: Asymmetrically driven nonlinear photonic dimer

Next, we consider a system of two coupled dissipative bosonic modes, in which
only one of the two modes is driven. The Hamiltonian of the system reads

Ĥ =
∑

i=1,2
−∆â†i âi + U

2 â
†
i

2
â2

i

− J
(
â†1â2 + â1â

†
2

)
+ F

(
â†1 + â1

)
.

(5.104)

The two modes are subject to single-photon loss with dissipators γD[â1] and
γD[â2]. Here, ∆ represents the detuning between the two modes with respect to
the drive frequency, J is the hopping interaction, and F is the driving amplitude of
mode the first mode. In a semiclassical approximation using the Gross-Pitaevskii
equation, we predict multiple parametrically unstable regions for different param-
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Figure 5.3: (a) Number of basis states N needed to reach a fidelity above F = 0.99
throughout the dynamics of the dissipative Kerr resonator for the Fock-basis (blue) and
the coherent-state ladder basis (orange). (b) Infidelity 1 − F as a function time γt
for different numbers of basis states N in the dissipative Kerr resonator. (c) Wigner
function of the steady state for different values of U . System parameters for (a-c) are
F = 1.5

√
γ3/U and the initial state is a coherent state with α = −1.0− 1.84i.

eter regimes [435, 436]. Similar to the previous application, in the classical limit
of F → ∞ and U → 0, with F

√
U constant, describing the effect of quantum

fluctuations accurately becomes increasingly challenging as |α|2 → ∞, and hence
the average number of photons diverges as (F/U)2/3 [408]. In this system, the
field amplitudes describing the coherent states in the GPE approximation change
periodically along the dynamics in the thermodynamic limit [436] as depicted in
Fig.5.4(a) and thus cannot be well-described using a stationary ansatz in which
the basis is time-independent, as, for example, using the shifted Fock basis [238].
This system, therefore, provides an ideal study case for the coherent-state ladder
TDVP method. In Fig. 5.4(b), we show the number of basis states N needed to
reach F > 0.99 as a function of inverse non-linearity U−1κ. We observe that,
while scaling similarly, the coherent-state ladder basis requires a lower number of
basis states N to accurately describe the dynamics of the system. In Fig. 5.4(c),
we show the infidelity 1 − F as a function of time κt for different basis sizes N .
It is important to note that while in the classical limit, the system can exhibit
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Figure 5.4: For the asymmetrically driven nonlinear photonic dimer, we show in (a)
the limit cycles of the mean-field trajectories in the coherent field amplitudes α1,2 of
the respective modes using the Gross-Pitaevskii equation. (b) Number of basis size
required to reach a fidelity F > 0.99 throughout the time-evolution with tκ ∈ [0, 10]
for the coherent-state ladder TDVP method and the Fock-space method. (c) Infidelity
1 − F as a function of time tκ for different basis states N per mode for an initial
product state of coherent states with coherent-field amplitudes on the meanfield limit
cycles in (a). System parameters: J = 1.2γ, ∆1,2 = 2γ, α1(t = 0) = −1.0 − 1.84i,
α2(t = 0) = 1.36 + 0.8i.

limit cycles (See Fig. 5.4(a)), the steady state for finite but small U can be highly
entropic, leading to a large number of basis states needed to describe the state.

Application IIa: Driven-dissipative Bose-Hubbard chain

As a third example of multiple interacting bosonic driven-dissipative systems, we
consider a one-dimensional Bose-Hubbard chain with periodic boundary condi-
tions. The driven-dissipative Bose-Hubbard model has been intensively investi-
gated theoretically [131, 413, 415, 437–441] and experimentally in semiconductor
microcavities [442] and superconducting microwave resonators [443–445] in partic-
ular and can show rich physical phenomena, such as phase-transitions and crit-
ically slowing down [415]. Studying this system in a regime that can no longer
be described in a mean-field approach therefore provides an ideal testbed for our
developed varational method.

In the frame rotating with the frequency of the drives, the Hamiltonian reads:

ĤBH = −J
∑

<i,j>

(
â†i âj + h.c.

)
+

L∑
i=1

F
(
â†i + âi

)
+ ∆â†i âi + U

2 â
†
i â
†
i âiâi. (5.105)

Each bosonic mode is subject to single-photon loss with rate γ. Here, every site
is driven homogeneously. We study the system at a driving amplitude F that
corresponds to a steady-state that contains quantum fluctuation and thus cannot
be described by coherent states alone. In this regime, a mean-field approach using
the Gross-Pitaevskii equation fails to accurately describe the full quantum solution,
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L

Figure 5.5: Average photon number per mode ⟨n̂ss⟩ in the steady-state of the driven-
dissipative Bose-Hubbard chain as a function of driving amplitude F in units of dissipa-
tion rate γ for different basis sizes per mode N and different numbers of modes L. The
dashed line represents the Gross-Pitaevskii meanfield solution. Exact results for L = 2
are represented in black dots. Markers of different N are offset to the driving amplitudes
F corresponding to gray dashed lines for better visibility. System parameters: U = 0.2γ,
J = 0.45γ, ∆ = 0.1γ.

as the steady-state solution significantly deviates from coherent states [446]. In
Fig. 5.5, we show simulation results for the average number of photons ⟨n̂ss⟩ per
site for different numbers of basis sizes N per mode and different numbers of
modes L in the steady-state. We compare our results to a semiclassical result by
means of the Gross-Pitaevskii equation [446], leading to the semi-classical equation
|α|2[2J − U −∆|α|2 + γ2/4] = F 2, shown as dashed lines in Fig. 5.5.

To compute the steady-state with our variational method, one can make use of
a restarted procedure to facilitate the convergence towards the steady-state. For
this we compute the steady-state density matrix ρ̂(α⃗ss,Bss) for a basis ⊗L

i=1S
(i)
N .

By increasing the basis size in each mode by one, we use the previously obtained
state ρ̂(α⃗ss,Bss) as the initial state for the larger basis ⊗L

i=1S
(i)
N+1, setting matrix

elements of B associated with an added basis state to zero. Due to the fact that
the previous state already has a large overlap with the steady-state in the larger
basis, the steady-state is reached faster compared to e.g. an initial state consisting
of coherent states. Alternatively, one can directly set the right-hand side of ˙⃗α and
Ḃ in Eqs. (5.75) to zero.

VIII Cat-state Ladder
An important advantage of the coherent-state ladder presented in the previous sec-
tions is that the coherent-state ladder can be straightforwardly extended to include
rotational symmetries, which are ubiquitous in many physical systems that ex-
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hibit weak or strong ZN symmetries. As an example, rotation-symmetric bosonic
codes [341] exihbit a discrete rotational symmetry associated to the rotation oper-
ator ẐN = exp{i(π/N)n̂} which acts as the logical Ẑ operator on the code-space.
Simulating the dynamics of physical systems implementing rotation-symmetric
bosonic codes can be extremely challenging due to the involved symmetry sectors.

In the following we demonstrate the symmetry-extension of the coherent-state
ladder to the simulation of cat qubit dynamics. As cat qubits have been widely
studied for quantum sensing [447–451], quantum communication [452–454] and
quantum computing [53, 64, 72–74, 76, 79–82, 84, 86–89, 94, 227, 233, 236, 238,
242, 290, 291, 317, 318], the need to efficiently simulate the dynamics of cat qubits
is ever-present.

To this end, we make use of a subsystem decomposition, detailed in Chap. 3,
Sec. III. Similar to the shifted Fock basis [238], we construct a subsystem decom-
position using the coherent-state ladder, we define the unnormalized (Bargmann)
cat states, characterizing the logical qubit:

∥C±α ⟩ = ∥α⟩ ± ∥−α⟩ (5.106)

The states ∥C±α ⟩ obey the relations

∂

∂α
∥C±α ⟩ = â†∥C∓α ⟩, (5.107)

â∥C±α,n⟩ = α∥C∓α,n⟩+ n∥C∓α,n−1⟩. (5.108)

We now define the cat-state ladder based on the coherent-state ladder by consid-
ering the two symmetry sectors:

Scat ≡
{
â†

k∥C±α ⟩, k = 0, . . . , N − 1
}

=



even : odd :
∥C+

α ⟩, ∥C−α ⟩,
â†∥C−α ⟩, â†∥C+

α ⟩,
... ,

...
â†

N∥CN⊕0
α ⟩, â†

N∥CN⊕1
α ⟩


= {∥Cσ

α,k⟩, k = 0, . . . , N − 1, σ ∈ {0(+), 1(−)}}

(5.109)

(5.110)

(5.111)

Here, a ⊕ b = (a + b) mod 2. A basis state ∥Cσ
α,k⟩ in the cat ladder Scat is

thus characterized by the coherent-field amplitude α, the parity σ ∈ {0(+), 1(−)}
(where 0(+) represents even photon number parity and 1(−) represents odd photon
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number parity) and the order k, i.e. the number of creation operators â† applied
to the Bargmann cat ∥Cσ

α⟩.

Overlap matrix

Similar to the coherent-state ladder, we can compute the overlap between states
in the cat-state ladder Scat:

Sµ,ν
m,n ≡ ⟨Cµ

α,m∥Cν
α,n⟩, (5.112)

Analogous to the coherent-state ladder in Eq. (5.61), we can compute Sµ,ν
m,n using

a recursion relation:

Sµν
mn =⟨Cµ̄

α,m−1∥ââ†∥C ν̄
α,n−1⟩ (5.113)

=Sµ̄ν̄
m−1,n−1 + (m− 1)(n− 1)Sµν

m−2,n−2

+ |α|2Sµν
m−1,n−1 + α(m− 1)Sµν

m−2,n−1

+ α∗(n− 1)Sµν
m−1,n−2,

(5.114)

where ν indicates a flip of the parity index ν, i.e. ν = ν ⊕ 1. The overlap matrix
for the even and odd Bargmann cat can be computed to be

Sµν
00 =

(
N+

α 0
0 N−α

)
=
(

4 cosh (|α|2) 0
0 4 sinh (|α|2)

)
, (5.115)

from which the overlap matrix S with matrix elements Sµ,ν
m,n can be computed

recursively for m,n > 0.

Operator representation

We can compute the representation of operators in the cat-state ladder by con-
sidering their action on the two subsystems in the Hilbert-space decomposition in
Eq. (3.77). For instance, we have for the annihilation operator â, by using the
relation in Eq. (5.108) [238],

â = X̂ ⊗ (b̃+ α). (5.116)

In the logical subspace, â acts as the logical X̂-operator, while in the gauge mode,
it acts as a displaced annihilation operator b̃+α. Analogous to the coherent-state
ladder, we can express â in the cat ladder in terms of the overlap matrix S:

⟨Cµ
α,m∥â∥Cν

α,n⟩ = αSµ,ν̄
mn + nSµ,ν̄

m,n−1, (5.117)
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More generally, we have

â†∥Cσ
α,n⟩ = ∥Cσ⊕1

α,n+1⟩ (5.118)
â†

m∥Cσ
α,n⟩ = ∥Cσ⊕m

α,n+m⟩ (5.119)

We can obtain similar expressions for other operators; see appendix B for details.

Left and right derivatives

Similar to the coherent-state ladder, we can also express derivatives in terms of
block shifts of matrix representations of operators in Scat. Specifically, we have
(analogous to Eq. (5.66))

[O→]µ,ν
m,n ≡ ⟨Cµ

α,m∥Ô
(
∂∥Cν

α,n⟩
∂α

)
= ⟨Cµ

α,m∥Ôâ†∥Cν⊖1
α,n ⟩ = ⟨Cµ

α,m∥Ô∥Cν
α,n+1⟩ = [O]µ,ν

m,n+1.

(5.120)

Analogously, we have for the right derivative and left-right derivative:

[O←]µ,ν
m,n ≡

(
∂⟨Cµ

α,m∥
∂α

)
Ô∥Cν

α,n⟩ = [O]µ,ν
m+1,n (5.121)

[O↔]µ,ν
m,n ≡

(
∂⟨Cµ

α,m∥
∂α

)
Ô

(
∂∥Cν

α,n⟩
∂α

)
= [O]µ,ν

m+1,n+1. (5.122)

As a result, left and right derivatives are computed exactly analogous to the
coherent-state ladder, except that operators carry additional indices for the parity.

By extending the variational principle detailed in Sec. IV for the coherent-state
ladder S to the cat-state ladder Scat, we obtain exactly the same equations of mo-
tion (Eqs. (5.73) for a single bosonic mode and Eqs. (5.75) for multiple bosonic
modes), except that the matrices Y 0 and C0 take a slightly different form. Impor-
tantly, as the properties of the cat-state ladder with respect to derivatives in the
parametrization parameter α of Scat remain exactly identical to the coherent-state
ladder (See Eqs. (5.120)-(5.122) above and Eqs. (5.66)-(5.68) for the coherent-state
ladder S), we observe the same properties of Y0 and C0 as before, with the dis-
advantage that analytical expressions for Y0 and C0 can no longer be obtained
easily.
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Figure 5.6: (a) Winger functions at different times along the dynamics for an initial even
cat state, highlighting the deformation of the cat state during the transient dynamics
due to the present Kerr-interaction. (b) Infidelity 1−F as a function of time t (in units
of U−1) for different orders N of the basis Scat. System parameters: η = U/4, G0 = 5iU ,
G1 = −i5U .

IX Applications

Application Ia: Relaxation dynamics of a cat qubit.

As a first application and proof-of-principle of the cat-state ladder TDVP method,
we consider a system where both the subspace, parametrized by α, and the density
matrix coefficient matrix B are evolving in time. To this end, we consider a
quantum oscillator that is subject to a two-photon drive and Kerr-nonlinearity. In
a frame rotating with the driving frequency, the system can be described with the
following Hamiltonian, and Liouvillian

Ĥ =
(
G

2 â
2 + G∗

2 â†2
)

+ U

2 â
†2â2, (5.123)

L[ρ̂] = −i[Ĥ, ρ̂] + ηD[â2](ρ̂), (5.124)

where G is the amplitude of the two-photon drive and U is the Kerr-nonlinearity.
Furthermore, the system is subject to two-photon loss with dissipation rate η. As
the system admits a weak Z2-symmetry, the steady-state manifold of the system is
spanned by even and odd cat states, such that ρ̂ ∈ Span{|Cµ

α⟩⟨Cν
α| , µ, ν ∈ {+,−}},

with α =
√
iG2/(η2 + U2) [408, 455]. We now consider an initial pure cat state

ρ̂0 = |Cσ
α′⟩⟨Cσ

α′| that is not in the steady-state manifold of the system. We can,
therefore, assume ρ̂0 to be in the steady-state manifold of the same system but
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Figure 5.7: (a) For the continuous Zeno dynamics inducing a continuous X̂-rotation of
the cat qubit, we show the parity

〈
Π̂
〉

as a function time (in units of Rabi frequency
π/ΩX) for different rations of driving amplitude F/η for an initial even state (solid lines)
and an initial odd state (dashed lines), for G = 10η. For larger values of F/η, code-
space non-adiabatic effects lead to reduced gate fidelity. (b) For a non-adiabatic value
of F/η = 4, we show the parity

〈
Π̂
〉

as a function of time for different orders of the
basis N using the cat-ladder variational method and compare the results to the exact
simulation (black dashed line).

with different driving amplitude G′. Thus, evolving ρ̂0 with respect to Eq. (5.124),
can be interpreted as a quench-dynamics, in which the system parameter G is
changed from G′ to G instantaneously at t = 0 and the system relaxes to the new
steady-state. In Fig. 5.6(a), we depict snapshots of the Wigner function along
selected times throughout the time evolution. We observe a significant departure
from the cat-state manifold in the transient dynamics due to the Kerr interaction.
This deformation of the cat provides an ideal test case for our variational method
and allows an analysis of the performance when increasing the order of in cat-
ladder ansatz. In Fig. 5.6(b), we show the infidelity 1 − F as a function of time
for different orders N in the cat-state ladder ansatz. As expected, we observe a
lower fidelity in the transient regime as the density matrix significantly departs
from a cat state. By increasing the order N , the dynamics of the density matrix
can be described more accurately, capturing some of the quantum fluctuations in
the state.

Non-adiabatic Zeno dynamics

As a second use case, our method allows for the study of time-dependent cat qubit
gates and their study of leakage in particular. To this end, we now consider the
case of vanishing nonlinearity, U = 0. We can induce a continuous X̂-rotation
gate through quantum Zeno dynamics [456–458] by adding a Hamiltonian evo-
lution with a time-scale much slower than the two-photon dissipation rate (See
also Chap. 3, Sec. III). A coherent rotation around the logical X̂-axis can be
realized by adding a single-photon drive ĤX = F (â+ â†) to the Hamiltonian in
Eq. (5.123) [81], with single-photon driving amplitude F . In the adiabatic limit
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F ≪ η, the logical code space remains the cat qubit manifold and the qubit is
adiabatically rotated an angle φ = ΩXt around the X̂-axis, with Rabi frequency
ΩX = 2F |α| [81]. However, if the adiabatic condition is violated, the logical code
space deviates from a pure cat qubit, leading to a deformation of the original cat
qubit manifold. To study this effect, we show in Fig. 5.7(a) the average photon
number parity ⟨Π̂⟩ for different ratios of F/η as a function of time for even and odd
initial cat states. We observe that for F/η ≳ 1, the single-photon pump induced
non-adiabatic leakages outside of the original code-space manifold, reducing the
fidelity of the rotation gate. To assess the efficiency of our method in capturing
these non-adiabatic effects, we simulate the dynamics of the system for F/η = 4, a
regime where the non-adiabatic effects are strong. In Fig. 5.7(b), we show ⟨Π̂⟩ as
a function of time for different orders N of the cat-state ladder basis and compare
our results to the full quantum solutions. We observe that, already for N = 3,
the variational method is able to accurately describe the time-evolution of this
non-adiabatic Zeno dynamics.

Dynamics of interacting cat qubits

Simulating the dynamics of multiple interacting qubits poses an essential task.
For example, studying code-space leakage and higher-order processes in cat qubit
gates involving multiple cat qubits [81, 238] can lead to a significantly better un-
derstanding of these processes where analytical methods are unavailable, creating
opportunities for better cat qubit device architectures and gate designs. To this
end, we now consider a multi-mode bosonic system, where each mode k is described
by a two-photon driven dissipative Kerr-nonlinear resonator with Hamiltonian in
Eq. (5.123). Additionally, the modes interact via nearest-neighbor hopping (beam-
splitter) Hamiltonian:

Ĥint =
∑
⟨k,l⟩

Jk,l(âkâ
†
l + â†kâl), (5.125)

where Jk,l is the hopping interaction between modes k and l. The system conserves
the total photon number parity

〈
Π̂1 ⊗ Π̂2 ⊗ · · · ⊗ Π̂L

〉
for a system of L bosonic

modes. The interaction through Ĥint enables the coherent exchange of particles
between neighboring modes, thereby creating entanglement in the system [81].

For a two-mode system, we simulate the time evolution using the cat-ladder
TDVP method starting from an initial product state consisting of even-parity cat
states, |ψ(0)⟩ = |C+

α1⟩ ⊗ |C
+
α2⟩, where α1 and α2 differ from the coherent-state

amplitudes characterizing the steady state of system. Similar to the single-mode
case considered previously, this may represent a case where the two-photon drive
amplitude is instantaneously changed at t = 0 so that the state will relax to its
new steady state.
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6

(a) (b)

Figure 5.8: (a) Trajectories of the real and imaginary part of
〈
â2

1
〉

along the dynamics of
a system of two interacting two-photon driven-dissipative Kerr resonators for different
orders N of the cat-state ladder basis. For the same system, we show in (b) the single-
mode parity

〈
Π̂1
〉

as a function of time for different values of N . System parameters:
Gi = 5U, ηi = 0.25U, J1,2 = U , initial state: |ψ(0)⟩ = |C+

α1 , C
+
α2⟩, with α1 = α2 = 2.

In Fig. 5.8, we show the real and imaginary part of ⟨â2⟩ as the system evolves
in time for different orders N of the cat-state ladder. In the setup considered,
the system evolves both in the basis parameter α as well as in the density matrix
coefficients B, and we observe convergence to the exact dynamics for low N ,
showcasing the efficiency of the method in representing cat-qubit dynamics. In
Fig. 5.8(b), we show the single-mode parity

〈
Π̂1
〉

as a function of time for different
values of N , where we also observe an accurate agreement with the exact dynamics
for N > 6 for the given system parameters.

As a final example using cat-qubits, we now consider a chain of three inter-
acting two-photon driven-dissipative Kerr resonators. Simulating these systems
for large average occupation numbers ⟨n̂i⟩ becomes already challenging for con-
ventional methods, such as the Fock-space method, as the required number Fock-
space density matrix coefficients scale as ⟨n̂i⟩2L. However, if the dynamics remains
close to a cat qubit throughout the dynamics, the cat-state ladder TDVP method
can efficiently describe the system’s dynamics. The order N of the cat-ladder
Scat required depends only on the deformation of the cat-space manifold, i.e. the
amount of quantum fluctuations on top of the cat-space needed to capture the
density matrix. When the dynamics remains close to a cat qubit manifold, the
order N of basis states in S is independent of α and thus requires significantly
less memory to simulate the dynamics of the system. In Fig. 5.9(a-b), we show
the single-mode parity ⟨Π̂1⟩ and two-mode parity ⟨Π̂1Π̂2⟩ as a function of time
for an initial product state of cat-qubits. For the given set of system parameters,
we already observe good agreement with Fock-space simulation results for N ≥ 4.
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(a) (b)

Figure 5.9: Single-mode parity ⟨Π̂1⟩ (a) and two-mode parity ⟨Π̂1Π̂2⟩ (b) as a function
of time for a system of three coupled two-photon driven-dissipative Kerr resonators.
System parameters: Gi = 5U ηi = 0.25U, J12 = J23 = 0.8U , initial state |ψ(0)⟩ =
|C+

α1 , C
+
α2 , C

+
α3⟩, with αi = 2.

X Beyond coherent-state and cat-state ladder
TDVP

We have shown in the previous sections that the coherent-state ladder TDVP
method and the cat-state ladder TDVP method can be efficient numerical varia-
tional methods to study the dynamics and steady-state properties of bosonic sys-
tems in the regime where the quantum state remains coherent-like (in the coherent-
state ladder) or cat-like (in the cat-state ladder) throughout the dynamics of they
system.

We can further extend the applicability of the developed methods by including
higher-order photon processes in the basis-parametrization and by changing the
construction of the coherent-state ladder. We will briefly discuss these aspects
below.

Basis parametrization including higher-order processes

In the previous section, for both the coherent-state ladder and the cat-state ladder,
the basis was parametrized by a single parameter α, characterizing the coherent-
state amplitude. We can, however, include higher-order processes such as squeez-
ing and higher-order processes in the parametrization of the basis. For a single
bosonic mode, we can define the following un-normalized state that includes up to
K-photon moments,

∥θ⃗⟩ ≡
K∏

n=1
eθnâ†n

|0⟩ . (5.126)
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We clearly identify θ1 = α. Since the operators applied onto the vacuum state
only contain creation operators, every operator commutes with each other. We
can hence naturally relate derivatives of the state ∥θ⃗⟩ with respect to θn to the
application of â†n:

∂

∂θn

∥θ⃗⟩ = â†
n∥θ⃗⟩. (5.127)

We define a photon-added ladder from the basis state ∥θ⃗⟩ by Sθ⃗ ≡ {â†
k∥θ⃗⟩, k =

0, . . . , N}. We thus have the following equation of motion for the variational
parameters θ⃗ for a single bosonic mode:

θ̇n = [C−1Y ]n, (5.128)

with

[C]kl = Tr{C0
k,l[BSB]}, (5.129)

Y k = Tr{Y0
(k)B}, (5.130)

[C0]k,l
m,n ≡ ⟨∂θk

φm| [1̂− P̂S ] |∂θl
φn⟩ , (5.131)

[Y0]km,n ≡ ⟨∂θk
φm| [1̂− P̂S ]L[ρ̂] |φn⟩ . (5.132)

Using the fact that higher-photon processes correspond to higher-order deriva-
tives (See Eq. (5.127)), we can deduce that the equation of motion for ˙⃗

θ is now
sensitive not only to occupations of the corner-state but also states that are of
lower order. Hence, the quantum-geometric tensor C0 now contains elements not
only related to the corner of the basis Sθ⃗, as derivatives of states in Sθ⃗ with respect
to θn are identical to the application of â†n. Consequently, if θ⃗ and Sθ⃗ have the
same dimensions, the quantum-geometric tensor has full rank, and the evolution
of ˙⃗
θ is sensitive to every matrix element in B. As a result, some of the numerical

challenges resulting from C0 being of rank one for S and rank two for Scat due to
the two symmetry sectors, can be alleviated. For dim(θ⃗) = dim(Sθ⃗), C0 is a full-
rank tensor. In this case, however, from Eq. (5.128), the matrix C of dimension
dim(θ⃗)2 has to be inverted numerically – contrary to the coherent-state ladder and
cat-state ladder where computing α̇ amounts to a simple division of two complex
numbers (See Eqs. (5.73)).

Alternative basis constructions

A distinctive property of the coherent-state ladder S is that the tangent space
of SN lies in SN+1 as outlined in Sec. III.2. Importantly, as the derivative with
respect to α of a photon-added Bargmann state ∥α, n⟩ is identical to ∥α, n+ 1⟩
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basis S S ′

∥α, n⟩ = â†
n∥α⟩ |α, n⟩ = (â† + α∗)n |0⟩

â α∥α, n⟩+ n∥α, n− 1⟩ n∥α, n− 1⟩

â† ∥α, n+ 1⟩ α |α, n⟩+ |α, n+ 1⟩
∂

∂α
∥α, n+ 1⟩ 0

∂
∂α∗ 0 n |α, n− 1⟩

S recursive & analytic recursive & analytic

C0 rank-1 rank-(N − 2)

Table 5.1: Schematic comparison of the coherent-state ladder S and the photon-added-
displaced basis S ′.

(See Eq. (5.51)), the derivative of the corner state ∥α,N − 1⟩ of the basis SN with
respect to α does not lie in SN . As a result, the quantum-geometric tensor C0

is only non-zero corresponding to the population of the corner state, causing the
equation of motion for α̇ to be well-defined only if the corner state is populated.
We might seek an alternative construction of a photon-added coherent-state basis
that does not result in a highly singular quantum-geometric tensor while still
maintaining most of the properties of S.

As a candidate basis S ′, we define the states

|α, n⟩ ≡ D̂(α)†â†nD̂(α) |0⟩ = (â† + α∗)n |0⟩ . (5.133)

Here, we apply the operator â†n in a frame that is displaced by α. For n = 0,
we have |α, 0⟩ = |0⟩. We can straightforwardly verify the following relations to
derivatives with respect to α:

∂

∂α
|α, n⟩ = 0, (5.134)

∂

∂α∗
|α, n⟩ = n(â† + α∗)n−1 |0⟩

= n |α, n− 1⟩ .
(5.135)

Note that here, in contrast to the basis S, the derivative point downwards in the
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basis S ′. Furthermore, we have the relations

â |α, n⟩ = â(â† + α∗)n |0⟩
= [n(â†)n−1 + (â† + α∗)nâ] |0⟩

= n |α, n− 1⟩ = ∂

∂α∗
|α, n⟩ ,

(5.136)

â† |α, n⟩ = â†(â† + α∗)n |0⟩
= (â† − α∗ + α∗)(â† + α∗)n |0⟩
=
[
−α∗(â† + α∗)n + (â† + α∗)n+1

]
|0⟩

= −α∗ |α, n⟩+ |α, n+ 1⟩ ,

(5.137)

where we have used the relation [â, f(â†)] = ∂f
∂â† [459]. The overlap matrix elements

Sm,n = ⟨α,m|α, n⟩ can be computed recursively,

Sm,n =(|α|2 + 1)Sm−1,n−1 + (n− 1)α∗Sm−1,n−2

+ α(m− 1)Sm−2,n−1 + (n− 1)(m− 1)Sm−2,n−2,
(5.138)

with S0,0 = 1 and S0,n = α∗n. A comparison between the coherent-state ladder S
and the alternative basis S ′ is given in Tab. 5.1.

XI Discussion and Outlook
In this chapter, we have studied variational approaches of numerically simulating
the dynamics of bosonic open quantum systems. In Sec. III.2, we have constructed
the coherent-state ladder that lies at the heart of the ansatz for the variational
method. The computational basis states of the coherent-state ladder are non-
orthonormal photon-added Bargmann states. The overlap matrix and its inverse
can be calculated analytically. Operators can be straightforwardly computed in
this basis and derivatives with respect to the variational parameter α – parametriz-
ing the coherent-field amplitude of the basis – can be computed as block-shifts in
the matrix-representation. We have derived the resulting equations of motion and
discussed the numerical implementation. We have showcased the performance of
the method by applying it onto several relevant examples in Sec. VII, such as the
driven-dissipative Kerr resonator, an asymmetrically driven non-linear photonic
dimer, and a driven-dissipative Bose-Hubbard chain. In all these examples, and in
the studied regimes, our method needed considerably fewer basis states to describe
the dynamics of the system accurately.

We extended the coherent-state ladder by including rotational symmetry sec-
tors in the variational ansatz in Sec. VIII. In particular, we introduced the cat-state
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ladder, a computational basis based on even and odd superposition of photon-
added Bargmann states. Using the cat-state ladder variational method, we nu-
merically studied several systems of cat-qubit dynamics in Sec. IX, such as a
two-photon driven-dissipative Kerr-resonator, to study quench dynamics and the
non-adiabatic effect of cat-qubit rotations. These studies reveal that the cat-state
ladder provides an ideal method to study cat-qubit dynamics in which the density
matrix remains in a subspace that is cat-like, which is the typical working regime
in many cat-qubit-based quantum devices. Furthermore, we have showcased the
applicability of the cat-state TDVP method by numerically simulating two and
three interacting bosonic cat-qubits, a use case in which conventional numerical
methods start to become challenging.

As the tangent space of the coherent-state and cat-state ladder lie in the same
space with an additional photon-added state, the quantum-geometric tensor char-
acterizing the geometry of the variational manifold is only non-zero for the corner-
state in the basis, i.e., the highest photon-added state included in the basis. As
a result, the equation of motion for the evolution of the variational parameter
α is well-defined only if the density matrix has non-vanishing occupation of the
corner state. We discussed in Sec. V.3 different numerical regularization schemes
to handle this singularity in the equations of motion. We discussed possible exten-
sions of the coherent-state ladder ansatz in Sec. X to include higher-order photon
processes in the parametrization of the basis. Additionally, we discussed an alter-
native construction of a coherent-state ladder that admits a similar structure to
the coherent-state ladder defined previously but has a dense rank of the quantum-
geometric tensor, thereby presenting a viable alternative variational basis ansatz.

The methods developed in this chapter can be extended to a wide range of
applications. At the heart of the variational ansatz lies the assumption that the
quantum state can be described in a basis of coherent states and quantum fluctu-
ations thereof. In some scenarios, this assumption breaks down, for example, in
the presence of bistability [131, 439, 460, 461]. It remains an interesting question
how these systems can be described efficiently using a variational ansatz in the
presence of dissipation.
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Stepping back, we conclude this thesis by reviewing our main findings, and putting
this work into a broader picture in the scientific community.

In Chap. 2, we have reviewed the theory of open bosonic systems that provided
a basis for this thesis in which the systems considered were fundamentally open.
In Chap. 3, we introduced quantum error correction, with a specific focus on
bosonic quantum error correction, where we have analyzed the most common noise
models encountered in bosonic systems and characterized under what conditions
bosonic quantum codes are exactly and approximately correctable. Much of the
discussion focused on the cat qubit – a promising candidate for fault-tolerant
quantum computing.

These two introductory chapters provided the foundation for the results pre-
sented in Chap. 4 and Chap. 5.

Bosonic Quantum Error Correction

One of our guiding questions throughout this thesis was how we can efficiently
encode quantum information redundantly in the state-space of a quantum har-
monic oscillator with a low hardware overhead. Bosonic systems in particular,
have proven to be promising candidates for fault-tolerant quantum devices, as
they can be universally controlled and can be efficiently implemented on various
hardware platforms.

The cat qubit is a noteworthy bosonic quantum code to which we devoted
much attention in this thesis. As a biased-noise qubit, it is a promising solution
for fault-tolerant quantum computing as an element of higher-level quantum error
correction schemes.

In Chap. 4, we have proposed the squeezed cat code and thoroughly analyzed
its error correction properties, both analytically and numerically. Surprisingly, in
the limit of small displacement and large squeezing, the squeezed cat code enables
the correction of both photon loss and dephasing errors. Furthermore, we observe
a double-exponential suppression of dephasing errors with respect to the squeezing
parameter, making it an even stronger noise-biased qubit. Even in experimentally
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relevant regimes the squeezed cat qubit outperforms the cat qubit, in some regimes
even up to an order of magnitude.

This bosonic qubit has gained interest in the scientific community [83, 94,
255, 268, 392, 462–474], and we foresee its application as a biased-noise qubit in
quantum information processing, but also its use in quantum communication [469]
and quantum sensing.

Although its error-correction capabilities have been studied in this thesis,
some questions still remain unanswered or still need more research: How can the
squeezed cat code manifold be autonomously stabilized in a circuit QED imple-
mentation? How can fault-tolerant gates be performed on the squeezed cat qubit?
How can photon loss be corrected using dissipation engineering in practice? In
particular, engineering quantum gates should ideally preserve the enhanced noise
bias provided by the squeezed cat code [85, 89]. As the additional protection in-
duced by a finite amount of squeezing is not of the same kind as provided by the
displacement, finding bias-preserving gates is crucial to foster the capabilities of
the squeezed cat code. We see that this is just the start and much work still needs
to be done to fully understand quantum computing using the squeezed cat code.

Ultimately, it is a matter of active research to find optimal bosonic code, de-
pending on the noise regime of the hardware platform. Many hardware implemen-
tations of theoretically proposed quantum error correction codes [64, 76, 78, 85,
86, 239–241, 475] have so far not taken fully into account the hardware-specific
characteristics of noise and the respective noisy gate operations, and this work is
no exception. Recent theoretical results, however, indicate an intricate interplay
between the specific nature of the noise channel and the optimal bosonic quantum
code [234, 256, 268, 476]. Investigating how the lifetime of quantum information
can be increased using quantum error correction protocols given the underlying
noise of the system, as well as the inherently noisy gate operations necessary for
state preparation and recovery operations, is an essential step toward efficient
quantum error correction.

An important remaining practical and relevant question therefore is:

What are optimal bosonic quantum codes that can be achieved on noisy
quantum devices?

Making headway in answering this question requires investigating and employing
analytical and numerical optimization techniques that take into account noisy
hardware operations to optimize hardware-tailored bosonic quantum codes. More
specifically, this also amounts to studying noise and noisy operations encountered
at specific hardware platforms. We leave this as a fundamental open problem to
the community.
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Another question directly related to bosonic quantum codes that we have ad-
dressed in this thesis is: How can we efficiently simulate these systems?

Simulation of Open Bosonic Systems

Fully understanding processes in driven-dissipative bosonic systems requires going
beyond analytical methods, which often are restricted by approximations. Sim-
ulating dynamical open multi-boson systems can be challenging due to the fact
that a single bosonic mode already has an infinitely large Hilbert space. Luckily,
in many physically relevant systems, the state space is restricted to a narrow –
but moving – corner of the Hilbert space.

In Chap. 5, we have tackled a new simulation method to simulate the dynamics
of open bosonic systems using a variational parametrization of a so-called coherent-
state ladder. We have seen that such a variational approach is capable of simulating
the dynamics of low-entropic systems which can be efficiently described by coherent
states and fluctuations thereof. As such, our method goes beyond a standard
mean-field description and is able to include quantum fluctuations.

Furthermore, we have extended this method and introduced the cat-state lad-
der, which includes the rotational symmetry sectors of the cat qubit. With this
variational method, we were able to simulate dynamical processes in cat qubit
systems in an ideal basis, requiring much fewer basis states as in, e.g., a standard
Fock basis. This method allows for the simulation of many interacting cat qubits,
which is an essential tool for studying the effects of many-qubit quantum circuits
based on the cat code. We foresee that this method or variations of it will be
applied to efficiently simulate the dynamical effects of interacting cat qubits and
other bosonic codes in the future.

Let us note that this developed method is not perfect, as it includes some
numerical challenges discussed in Chap. 5, Sec. X. It is an interesting question in
itself to find an ideal variational parametrization that is not only efficient in the
representation of the relevant part of the Hilbert space but also computationally
efficient in computing the resulting equations of motion, and we leave this as an
open question to be explored in the future.

Furthermore, when simulating many-boson systems, in the current formulation
of the technique, the number of density matrix coefficients still grows exponentially
with the number of bosonic modes. If the entanglement between bosonic systems
is locally bounded, efficient tensor-network representations within the cat-state
ladder, such as matrix-product density matrix approaches, might further increase
the efficiency of this method [143, 149, 477].

As it stands, simulating the dynamics of open bosonic systems efficiently in
which the quantum states admit a specific structure throughout their evolution is
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an active area of research. With this work, we have contributed to an approach
to efficiently simulate the dynamics of coherent-state-like and cat-like systems.

With this, let me conclude this thesis. Quantum devices have made it to the
point of immense control, enabling the execution of algorithms that are beyond
the capabilities of classical computers. However, to reach the regime of practi-
cally useful applications, new approaches are needed. Quantum error correction
provides such an approach, and recent research results with bosonic systems have
indicated their promise of reaching this goal. Actual quantum devices, however,
are intrinsically noisy. Correcting the noise of quantum hardware and efficiently
simulating the resulting dynamics efficiently is hard. Nevertheless, it is the hard
problems that, time and time again, prove to be the most interesting ones. And
so I hope that this work presented here has provided a step in the right direction,
and I remain curious as to what comes next.
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A Analytical Knill-Laflamme
matrix elements for the cat
code and squeezed cat code

Here, we report the analytical Knill-Laflamme matrix elements of the form

⟨ψi|Ê†l Êl′ |ψj⟩ , (A.1)

where {Êl} is a given set of errors and |ψi/j⟩ are the logical code words.

In the following, we consider the set of errors:{
1̂, â, â†â,

(
â†â

)2
}
. (A.2)

Cat code

As we detailed in this thesis in Chap. 3, Sec. VI, the two-component cat states are
defined by ∣∣∣C±α 〉 = 1

N±α
( |α⟩ ± |−α⟩) , (A.3)

where
N±α =

√
2 (1± e−2|α|2). (A.4)

Thus, the following relation between normalization constants of the even and odd
cat state holds (

N−α
N+

α

)2

= tanh
(
|α|2

)
. (A.5)

For notational convenience, however, we use the normalization constants instead.

In Tab. A.1, we show the Knill-Laflamme matrix elements
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Table A.1: Knill-Laflamme matrix elements for the cat states |C±α ⟩.

Squeezed cat code

As detailed in Chap. 4, Sec. I, the squeezed cat code is defined as
∣∣∣C±α,ξ

〉
= 1
N±α,ξ

( |α, ξ⟩ ± |−α, ξ⟩) (A.6)

= Ŝ(ξ) 1
N±γ

( |γ⟩ ± |−γ⟩) , (A.7)

with γ = αe|ξ| in the case of squeezing orthogonal to the displacement (See Chap. 4,
Sec. I, Eq. (4.8) for the general case). The normalization constant is hence identical
to Eq. (A.4).

Due to the different photon number parity of the code words, any Wick-ordered
operator : Ô := â†

m
ân with odd m + n will change the parity of the state, and

conversely, for even m+n, the parity of the state will remain the same. Note that
the initial ordering of creation and annihilation operators in Ô is irrelevant for this
statement.
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squeezed cat code

As a result, we generally have:

⟨±|â†mân|±⟩

 = 0 , for m+ n even
̸= 0 , for m+ n odd

, (A.8)

where ± describes the even and odd parity of the state. As such, this relation
holds true also for the standard cat-code. The cases in the above relation change
place when computing ⟨±|â†mân|∓⟩.

We, therefore, only look at non-trivial (i.e. non-zero) contributions to the
Knill-Laflamme matrix elements.

We show in Tab. A.2 and Tab. A.3, the non-trivial Knill-Laflamme matrix
elements for the squeezed cat states and the error set in Eq. (A.2). In Tab. A.2,
we provide the matrix-elements of the form

〈
C±α,ξ

∣∣∣Ê†l Êl′

∣∣∣C±α,ξ

〉
, and in Tab. A.3, we

give matrix-elements of the form
〈
C±α,ξ

∣∣∣Ê†l Êl′

∣∣∣C∓α,ξ

〉
.
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⟨C±α,ξ| â†â |C±α,ξ⟩ sinh(ξ) (sinh(ξ)− 2γ2 cosh(ξ)) + γ2 cosh(2ξ)(N∓
αξ)2

(N±
αξ)2

⟨C±α,ξ| (â†â)2 |C±α,ξ⟩ 1
4

 (4γ4 + 1) cosh(4ξ) + 4γ2 sinh(2ξ) − 6γ2 sinh(4ξ) −

2 cosh(2ξ) + 2γ2(−2γ2 sinh(4ξ)−2 cosh(2ξ)+3 cosh(4ξ)+1)(N∓
αξ)2

(N±
αξ)2 + 1


⟨C±α,ξ| (â†â)3 |C±α,ξ⟩ 1

32

 (24γ4 + 11) cosh(2ξ)− 2 (24γ4 + 5) cosh(4ξ)

−2γ2
[
(16γ4 + 45) sinh(6ξ)− 60γ2 cosh(6ξ) + sinh(2ξ)

−36 sinh(4ξ)
]

+ 5 cosh(6ξ)− 6

+2γ2
(

N∓
αξ

N±
αξ

)2 (
(16γ4 + 45) cosh(6ξ)

−12 (γ2(sinh(2ξ)− 2 sinh(4ξ) + 5 sinh(6ξ)) + 1)

+19 cosh(2ξ)− 36 cosh(4ξ)
)

⟨C±α,ξ| (â†â)4 |C±α,ξ⟩ 1
64

 − 6 (16γ4 + 3) cosh(2ξ) + 16 (7γ4 + 1) cosh(4ξ) −

2 (240γ4 + 7) cosh(6ξ) + 72γ4 − 56γ2 sinh(2ξ) +
(64γ8 + 840γ4 + 7) cosh(8ξ) + 8 (9− 8γ4) γ2 sinh(4ξ) +
8 (16γ4 + 45) γ2 sinh(6ξ) − 28 (16γ4 + 15) γ2 sinh(8ξ) + 9 +

4γ2
(

N∓
αξ

N±
αξ

)2 (
4 (4γ4 + 3) cosh(4ξ)− 2 (16γ4 + 45) cosh(6ξ)−

22 cosh(2ξ) + 105 cosh(8ξ) + 11 + 2γ2
[
56γ2 cosh(8ξ) −

(8γ4 + 105) sinh(8ξ) + 12 sinh(2ξ) − 14 sinh(4ξ) +

60 sinh(6ξ)
])

Table A.2: Non-trivial Knill-Laflamme matrix elements for the squeezed cat code of the
form

〈
C±α,ξ

∣∣∣Ê†l Êl′

∣∣∣C±α,ξ

〉
.
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squeezed cat code

⟨C±α,ξ| â |C∓α,ξ⟩
γ cosh(ξ)N±

αξ

N∓
αξ

− γ sinh(ξ)N∓
αξ

N±
αξ

⟨C±α,ξ| â† |C∓α,ξ⟩
γ cosh(ξ)N∓

αξ

N±
αξ

− γ sinh(ξ)N±
αξ

N∓
αξ

⟨C±α,ξ| (â†)2â |C∓α,ξ⟩
γ(4γ2 cosh(3ξ)+5 sinh(ξ)−3 sinh(3ξ))N±

αξ

4N∓
αξ

−γ(4γ2 sinh(3ξ)+3 cosh(ξ)−3 cosh(3ξ))N∓
αξ

4N±
αξ

⟨C±α,ξ| (â†)2ââ†â |C∓α,ξ⟩
γN±

αξ

16N∓
αξ

[
8γ2

(
− 2γ2 sinh(5ξ) + cosh(ξ)− 4 cosh(3ξ)

+5 cosh(5ξ)
)
− 22 sinh(ξ) + 27 sinh(3ξ)− 15 sinh(5ξ)

]
+ γN∓

αξ

16N±
αξ

[
(16γ4 + 15) cosh(5ξ)− 8γ2(sinh(ξ)

−4 sinh(3ξ) + 5 sinh(5ξ)) + 6 cosh(ξ)− 21 cosh(3ξ)
]

⟨C±α,ξ| â†â2 |C∓α,ξ⟩
γ(4γ2 cosh(3ξ)+5 sinh(ξ)−3 sinh(3ξ))N∓

αξ

4N±
αξ

−γ(4γ2 sinh(3ξ)+3 cosh(ξ)−3 cosh(3ξ))N±
αξ

4N∓
αξ

⟨C±α,ξ| â†ââ†â2 |C∓α,ξ⟩
γN∓

αξ

16N±
αξ

[
8γ2

(
− 2γ2 sinh(5ξ) + cosh(ξ)− 4 cosh(3ξ)

+5 cosh(5ξ)
)
− 22 sinh(ξ) + 27 sinh(3ξ)− 15 sinh(5ξ)

]
+ γN±

αξ

16N∓
αξ

[
(16γ4 + 15) cosh(5ξ)− 8γ2(sinh(ξ)

−4 sinh(3ξ) + 5 sinh(5ξ)) + 6 cosh(ξ)− 21 cosh(3ξ)
]

Table A.3: Non-trivial Knill-Laflamme matrix elements for the squeezed cat code of the
form

〈
C±α,ξ

∣∣∣Ê†l Êl′

∣∣∣C∓α,ξ

〉
.



B Expressions in the coherent-
and cat-state ladder

Here, we give the representation of operators in the coherent-state ladder S and
cat-state ladder Scat, detailed in Chap. 5.

I Operators in the coherent-state ladder

As detailed in the main text, we have for the operator â:

[a]m,n = ⟨α,m∥â∥α, n⟩ = ⟨α,m∥(α∥α, n⟩+n∥α, n− 1⟩) = αSm,n+nSm,n−1, (B.1)

where S is the overlap matrix, with elements

Sm,n = ⟨α,m∥α, n⟩ (B.2)

From this â† is straightforwardly computed as

[a†]m,n = α∗Sm,n +mSm−1,n (B.3)

For â†â, we have

[a†a]m,n =
(
m⟨α,m− 1∥+ α∗⟨α,m∥

)(
α∥α, n⟩+ n∥α, n− 1⟩

)
= |α|2Sm,n +mnSm−1,n−1 + αmSm−1,n + α∗nSm,n−1

(B.4)

Here, it becomes evident that [a†] · [a] ̸= [a†a].

We have for â2:

[a2]m,n = α2Sm,n + 2αnSm,n−1 + n(n− 1)Sm,n−2. (B.5)
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Furthermore, we have for the non-linear term a†
2
a2:

[a†2a2]m,n =|α|4Sm,n + 2|α|2αmSm−1,n + α2m(m− 1)Sm−2,n

+ 2|α|2α∗nSm,n−1 + 4|α|2mnSm−1,n−1

+ 2αm(m− 1)nSm−2,n−1 + α∗2n(n− 1)Sm,n−2

+ 2α∗mn(n− 1)Sm−1,n−2 +mn(m− 1)(n− 1)Sm−2,n−2.

(B.6)

II Operators in the cat-state ladder
For the cat-state ladder Scat, we have two additional parity sectors and it is con-
venient to use a tensor notation Oµ,ν

m,n, where the indices µ, ν carry the parity.
Let us simplify the notation by setting

∥n, σ⟩ ≡ ∥Cσ
α,n⟩, (B.7)

where now the dependence on α is only stated implicitly. The overlap matrix is
given by

Sµ,ν
m,n = ⟨m,µ∥n, ν⟩. (B.8)

We note that the action of any even power of ân or â†n onto ∥n, σ⟩ will not
change the parity index σ, however, any odd power will flip the parity index σ → σ.

As a result, we compute the following operator representations:

[a]µ,ν
m,n =αSµ,ν

m,n + nSµ,ν
m,n−1 (B.9)

[a†]µ,ν
m,n =α∗Sµ,ν

m,n +mSµ,ν
m−1,n (B.10)

[a†a]µ,ν
m,n =αSµ,ν

m,n +mnSµ,ν
m−1,n−1 + αmSµ,ν

m−1,n + α∗nSµ,ν
m,n−1 (B.11)

[a2]µ,ν
m,n =α2Sµ,ν

m,n + 2αnSµ,ν
m,n−1 + n(n− 1)Sµ,ν

m,n−2 (B.12)

[a†2]µ,ν
m,n =α∗2Sµ,ν

m,n + 2α∗mSµ,ν
m−1,n +m(m− 1)Sµ,ν

m−2,n (B.13)

[a†2a2]µ,ν
m,n =|α|4Sµ,ν

m,n + 2|α|2αmSµ,ν
m−1,n + α2m(m− 1)Sµ,ν

m−2,n

+ 2|α|2α∗nSµ,ν
m,n−1 + 4|α|2mnSµ,ν

m−1,n−1

+ 2αm(m− 1)nSµ,ν
m−2,n−1 + α∗2n(n− 1)Sµ,ν

m,n−2

+ 2α∗mn(n− 1)Sµ,ν
m−1,n−2 +mn(m− 1)(n− 1)Sµ,ν

m−2,n−2.

(B.14)
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