
Thèse n° 10 602

2024

Spatial Modeling for Building Design Evaluation: from 
Visual Landscape Quality Assessment to Devaluation 
Risk Estimation

Présentée le 21 mai 2024

Faculté de l’environnement naturel, architectural et construit
Laboratoire d’économie urbaine et de l’environnement
Programme doctoral en architecture et sciences de la ville 

pour l’obtention du grade de Docteur ès Sciences

par

Adam Robert SWIETEK

Acceptée sur proposition du jury

Prof. M. Andersen, présidente du jury
Prof. Ph. Thalmann, directeur de thèse
Prof. L. Barrage, rapporteuse
Dr S. Tobias, rapporteuse
Prof. A. Alahi, rapporteur



 A.R. Swietek  
 

 

2 

  



Spatial Modeling for Building Design Evaluation 

 

3 

Acknowledgements 

This dissertation would not have been possible without the support and expertise 
of my supervisor, Prof. Philippe Thalmann. I am grateful for the opportunity and 
academic freedom to explore and learn. 

I have been fortunate to meet many inspiring and talented researchers throughout 
my journey. I thank the members at LEURE for listening, discussing, and 
challenging my work. In particular, thank you to Sigit, Marc, Fleance, Abdul, 
Sascha, Margarita, Sergey, Vincent, Gino, Paola and Taka. A special thanks to the 
countless experts who have enriched my learning, including my collaborator 
Marius Zumwald, the team at Wüest Partner, and my jury: Marilyne Andersen, 
Alexandre Alahi, Lint Barrage, and Silvia Tobias, for their generous support, ideas 
and continuous encouragement.  

Thank you to my family for their endless support and love. To my parents, Wojciech 
and Marzena, without you I would not have the patience nor resilience to make 
this possible. To Conrad, Theresa, David, Tatiana thank you for always having an 
open ear, and for supporting me along this unconventional path. Hartwig und 
Marga, ich danke euch für eure endlose Ermutigung, Großzügigkeit und euer 
offenes Herz. Viele der Ideen in diesem Werk gehen auf einen Dachboden in 
Neustadt zurück. 

Finally, I owe my curiosity and confidence to you, Judith. Your love and strength 
are the basis of everything I have accomplished. I dedicate this work to my newborn 
son, Henry, who has given me the opportunity to rediscover the world from a new 
perspective. 



 A.R. Swietek  
 

 

4 

  



Spatial Modeling for Building Design Evaluation 

 

5 

ABSTRACT   

Zoning reform is a crucial tool for cities to adapt to contemporary challenges. 
However, its implementation remains challenging. Property owners, with a vested 
interest in the value of their neighborhoods, are sensitive to local developments 
and the potential unforeseen effects on environmental amenities.  

Where complete information exists, environmental amenities and risks are priced 
into real estate valuations. Yet, there remains a lack of forward-looking micro-scale 
environmental data. Moreover, methods to incorporate such information into 
urban and building design evaluation are limited to the macro-scale: e.g. climate 
change risk. These hinder the markets’ ability to effectively price discriminate, 
especially concerning uninsured local risks like zoning reform. Addressing this gap, 
this thesis leverages advancements in spatial modeling and geographical artificial 
intelligence (GeoAI) to estimate the financial impact of such risks, with a focus on 
the devaluation risk of visual impact from urban densification. 

This thesis introduces spatial modeling for building design evaluation as four 
parts: (i) Performance Simulation, (ii) Design Evaluation, (iii) Environmental 
Valuation, and (iv) Design Impact. The concept of design performance, its economic 
evaluation, and its exposure and sensitivity are introduced by relating building 
performance simulations and real estate economics. 

This work explores the impact of environmental risks on real estate valuation and 
proposes the concept of local area devaluation risk estimation. It focuses on visual 
impact resulting from nearby land-use changes as the variable of interest due to 
(1) the influence window views have on property valuations and on public 
opposition to densification and (2) the lack of methods to measure building-level 
visual quality in a comprehensive manner. It presents methods for the (i) 3D-CAD 
simulation of viewpoint visual shares and the (ii) statistical analysis of Visual 
Capital, a unique approach that estimates building level visual landscape quality 
by modeling income-sorting. Further, it introduces the (iii) hedonic pricing of 
Visual Capital and its application in an (iv) integrated impact analysis of 
computationally generated urban scenarios through Architectural Design 
Appraisal. Design Appraisal forecasts prices of procedurally generated building 
designs, using the learned estimates of financial preference of design performance. 
Applied within a regional simulation, it introduces a property-level environmental 
impact assessment to study local area devaluation risk. 

This work represents the first-time that financial valuation is integrated within 
building design evaluation. The main results illustrate the potential of large-scale 
3D data and GeoAI to (1) capture difficult to assess urban amenities (e.g. the view) 
and risks (e.g. obstruction), and to (2) inform urban design and land-use by 
incorporating market information into design simulations. This thesis concludes 
with a discussion of how these new concepts facilitate preference-driven 
generative design optimization and site selection.  



 A.R. Swietek  
 

 

6 

ZUSAMMENFRASSUNG   
Die Reform der Flächennutzungsplanung ist ein wichtiges Instrument für Städte, um sich 
an den Herausforderungen der Gegenwart zu stellen. Ihre Umsetzung bleibt jedoch eine 
Herausforderung. Grundstückseigentümer, die ein ureigenes Interesse am Wert ihres 
Viertels haben, reagieren empfindlich auf lokale Bauprojekte und die daraus 
hervorgehenden unvorhergesehenen Auswirkungen auf die Umwelt.  

Wenn vollständige Informationen vorliegen, können Umweltvorteile und -risiken in die 
Immobilienbewertung einbezogen werden. Dies ist jedoch selten der Fall. Es mangelt 
nach wie vor an zukunftsorientierten Umweltdaten auf Mikroebene. Darüber hinaus sind 
die Methoden, die solche Informationen in die Bewertung von Städten und Gebäuden 
einbeziehen, auf die Makroebene beschränkt: z. B. das Risiko des Klimawandels. Dies 
schränkt die Fähigkeit der Märkte ein, eine wirksame Preisdiskriminierung 
vorzunehmen, insbesondere in Betracht nicht versicherbarer lokaler Risiken, wie sie zum 
Beispiel solche, die aus einer Flächennutzungsreform hervorgehen. Um diese Lücke zu 
schließen, nutzt diese Arbeit Fortschritte in der räumlichen Modellierung und der 
geografischen künstlichen Intelligenz (GeoAI), um die finanziellen Auswirkungen solcher 
Risiken abzuschätzen, wobei der Schwerpunkt auf dem Abwertungsrisiko von Gebäuden 
liegt, welches auf visuelle Veränderungen bedingt durch städtische Verdichtung 
zurückzuführen ist. 

In dieser Arbeit wird die räumliche Modellierung für die Bewertung von Gebäudedesigns 
in vier Teilen vorgestellt: (i) Leistungssimulation, (ii) Designbewertung, (iii) 
Umweltbewertung und (iv) Auswirkungen des Designs. Das Konzept der Design-
bezogenen Gebäudeleistung, ihre wirtschaftliche Bewertung sowie ihre Exposition und 
Sensibilität werden neu eingeführt, indem Simulationen der Gebäudeleistung direkt mit 
der wirtschaftlichen Bewertung einer Immobilie in Zusammenhang gebracht werden. 

In dieser Arbeit werden die Auswirkungen von Umweltrisiken auf die 
Immobilienbewertung untersucht und das Konzept der Risikoabschätzung für die 
Abwertung lokaler Gebiete eingeführt. Die Arbeit konzentriert sich auf visuelle 
Auswirkungen, die sich aus nahegelegenen Landnutzungsänderungen ergeben, als 
Variable von Interesse aufgrund (1) des Einflusses, den Fensteransichten auf 
Immobilienbewertungen und auf den öffentlichen Widerstand gegen eine Verdichtung 
haben, und (2) des Mangels an Methoden zur umfassenden Messung der visuellen, 
Qualität einzelner Gebäude. Es werden Methoden vorgestellt, die die (i) 3D-CAD-
Simulation der visuellen Anteile von Aussichtspunkten und die (ii) statistische Analyse 
von Visual Capital erlauben. Letzteres ist ein neuer Ansatz, der die visuelle 
Landschaftsqualität auf Gebäudeebene durch Modellierung der Einkommenssortierung 
einschätzt. Darüber hinaus wird (iii) die Auswirkung von Visual Capital auf 
Immobilienpreise mithilfe des hedonischen Preismodels bestimmt und die daraus 
hervorgehenden Koeffizienten für eine (iv) integrierte Wirkungsanalyse (Architectural 
Design Appraisal) genutzt, die Computer-erzeugte urbane Designszenarien finanziell 
bewertet. Im Rahmen einer regionalen Simulation wird eine 
Umweltverträglichkeitsprüfung individuell abgeänderter Grundstücke eingeführt, um 
das Risiko der finanziellen Abwertung eines lokalen Gebiets aufgrund von Bauprojekten 
zu untersuchen. 

Diese Arbeit stellt, zum ersten Mal, eine Methode vor, die die finanzielle Bewertung einer 
Immobilie in die Bewertung von Gebäudedesigns integriert. Die Ergebnisse 
veranschaulichen welches Potenzial die großflächige Nutzung von 3D-Daten und GeoAI, 
bietet, um (1) schwer zu bewertende städtische Annehmlichkeiten (z. B. die Aussicht) und 



Spatial Modeling for Building Design Evaluation 

 

7 

Risiken (z. B. Einschränkung der Aussicht) zu bewerten und um (2) Stadtplanung und 
Flächennutzung durch die Einbeziehung von Marktinformationen in Designsimulationen 
zu optimieren. Diese Arbeit schließt mit einer Diskussion darüber, wie diese neuen 
Konzepte die präferenzgesteuerte generative Designoptimierung und Standortauswahl 
erleichtern können.  
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1  Introduction 

The overarching goal of this thesis is to add to the growing body of literature on 
environmental risk modeling (see section 1.1 and 1.2) by developing a spatial 
modeling approach to estimate local area risk in real estate. For reasons identified 
in Section 1.3, I narrow the context of the approach to a specific scope: the visual 
impact of land use change as a hazard to property values. Section 1.4 summarizes 
the four foundation parts to environmental risk modeling in real estate, and 
presents the unique and outstanding challenges for the chosen hazard. The 
remainder of the thesis aims to contribute to the existing economic, 
environmental, and design literature by addressing the following challenges: 

1. Generating building simulations to capture both spatial and aspatial 
characteristics of a view 

2. Developing a single measure of visual landscape quality  
3. Creating a pricing model fitted on building-level visual landscape quality 

metrics, which allows constructing an integrated impact analysis. 
4. Simulating and evaluating the direct and indirect effects of potential land-

use change scenarios on real estate valuations. 

 Applying these challenges to local area risk estimation brings us one step closer 
to addressing a broader question and a longstanding challenge in the field of 
architectural design optimization:  

5. Preference-driven generative design 

1.1 Real Estate and Environmental Risk 

Among the factors that drive devaluation in real estate, changes to the 
environment are an increasing concern. Consequently, understanding 
environment-related risks are seen as a priority for property owners (ULI & 
Heitmann, 2019). This concern stems from the actual and perceived potential 
impact of a changing environment on property valuations. Between 1930 and 2010 
in the United States, the profound effects of natural disasters on local communities 
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included two notable consequences: Firstly, there was an estimated 1.5 percentage 
point net increase in the number of people moving away from areas hit by severe 
weather events. Secondly, these areas experienced a decrease in property values 
following such disasters. These in turn led to reduced tax revenues and 
expenditures (Boustan et al., 2020). In a forward looking study, Zillow projects 
that a 6 foot rise in sea-level by 2100 could affect 2% of U.S. homes with an 
aggregate potential impact of $916 billion; Miami ($217.3B), New York City 
($123.2B), and Tampa($40.6B) being the hardest hit (Bretz, 2017). Extreme events 
such as Hurricane Harvey and Sandy have already led to elevated delinquency 
rates for commercial (Holtermans et al., 2023) and for residential mortgages 
(Kousky et al., 2020). Similarly, mortgage delinquency and foreclosures rose 
following California fires from 2000 to 2018 (Issler et al., 2020). Importantly, 
following a peril or catastrophic event, lenders restrict the supply of credit to 
susceptible properties (Garmaise & Moskowitz, 2009), whereby doing so directly 
negatively affects property valuations.  

1.1.1 Transition Risks 

Environmental risk in real estate isn’t limited to physical hazards. Often, risk is 
depicted as either physical or transitional (European Central Bank, 2020). The 
distinction lies in whether there is a direct impact on properties within a given 
location. Transitional risks describe the cost of transitioning to a lower-carbon 
economy (US EPA, 2022), it includes changes to regulation and energy cost,  as 
well as changes to market preference, i.e. market risk. Keys et al. show that homes 
sales volume fell by 16-20% for flood-prone areas prior to a fall in home prices, 
suggesting a shift in attitude towards buying in vulnerable environments (Keys & 
Mulder, 2020). Yet, attitudes towards long-run climate risk remains heterogenous. 
Flood-prone homes sell at a discount in ‘climate-believer’ neighborhoods compared 
to ‘non-believer’ (Baldauf et al., 2020). In the largest study of its kind, Fairweather 
et al use the Redfin home-search platform to conduct a nationwide field 
experiment, testing home buyer search decision in the face of home-specific flood-
risk information (Fairweather et al., 2023). This study randomly placed users into 
either a group that sees the flood-risk score (treatment) or does not (control), 
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finding a negative price effect for properties not already classified as risky by 
FEMA or properties not located on the waterfront. This suggests users implicitly 
consider risks where information is readily available. Thus, information on risks 
plays a critical role when delivered as ‘new news’, or in situations where 
estimating risk is complicated and not readily available. Moreover the complexity 
of measuring the variety of environmental risks, such as the visual quality, at the 
property level further inhibits a buyer’s ability to price discriminate.  

1.1.2 Mitigating Risk with Insurance and Risk Transfer Mechanisms 

Despite an increased awareness and concrete evidence of environmental risk on 
real estate, there is a continued investment of resources into regions deemed to be 
vulnerable. Redfin finds that in 2022 more people are moving into than out of 
disaster-prone (flooding, wild-fire, and heat) areas, and suggests “the consequences 

of climate change haven’t fully sunk into American because oftentimes, homeowners 

and renters don’t foot the whole bill when disaster strikes. Insurers and government 

programs frequently subsidize the cost of rebuilding after storm hits, and mortgages 

mean homeowners are ceding some risk to lenders” (Katz & Bokhari, 2023). This 
financial risk transfer mechanism represents an important factor in driving 
continued investments in risk-prone areas. Pooling by insurers and lenders allow 
individual investors to financially diversify away from risk-prone areas by simply 
paying a premium to banks (Kahn, 2024). The market price of the charged 
premium should reflect the risk of vulnerable areas. Yet, while lenders have the 
capacity to more readily assess the risk related to sea level rise (SLR) and other 
environment-related risks, financial securitization of insurance costs, federally-
backed loans as well as an ‘underwrite to securitize’ lending attitude all subsidize 
this cost, driving the continued funding of climate-vulnerable areas (Hurst et al., 
2019; Taylor, 2020). Indeed, Katz & Bokhari note that many insurers have either 
failed or backed out of the high-risk state of Louisiana, subsequently causing 
homeowner insurance premiums to substantially increase forcing the state to 
further subsidize its state-mandated insurance program. As Fairweather notes 
“…with natural disasters intensifying and insurers pulling out of disaster-prone 

areas including Florida and California, American may start feeling a greater sense 



 A.R. Swietek  
 

 

18 

of urgency to mitigate climate dangers – especially if their home’s value is at risk of 

declining.” (Katz & Bokhari, 2023). Insurance-Linked-Securities, ILS, diversify the 
financial exposure to high-impact and low-probability events allowing insurers to 
continue to provide short-term coverage policies to developers, lenders, and 
investors, ultimately allowing them to proceed with ‘business as usual’ (Taylor, 
2020). Moreover, it has been shown that government sponsored enterprise (GSEs) 
(Fannie Mae, Freddie Mac, and the FHA), when pricing these securities, do not 
factor in the regional variation of climate risk which suggests significant 
mispricing, and only recently announced plans to update its underwriting practices 
(Olick, 2023). ILS instruments, such as Catastrophe bonds (CAT-bonds), are 
important instruments cities can take advantage of to enhance their financial 
resilience to various environmental risks; however, considering that these 
securities are globalizing mispriced local-risks, it does little to address the 
underlying issue.  

 Insurances are designed to manage random impacts of predictable severity; 
however, with statistical non-stationarity, evident by an increasing frequency and 
severity (Herweijer et al., 2009), these instruments are relied upon to fund 
increasingly vulnerable assets. Thus as a form of climate adaptation, banks are 
increasingly securitizing and off-loading at-risk mortgages to GSEs as evidence of 
adverse selection grows (Ouazad & Kahn, 2022, 2023), and increased leverage in 
disaster-prone area (L. Bakkensen et al., 2023) 

1.1.3 Adaptation to Uninsured Risks 

Where complete information exists, environmental risks will be priced into real 
estate valuations.  Those willing to take on the risk, may bid on homes with an 
intention to upgrade or adapt them to a climate-ready state (Shogren & Stamland, 
2002), whereas the risk averse and those without technical or economic capacity 
will relocate. In addition to partisan beliefs, the latter may describe the factors 
driving residential climate sorting (Bernstein et al., 2022). Yet, as discussed in 
section 1.1.1, home buyers do not have complete information regarding emerging 
risks. In fact, a growing body of evidence points to the market risk of repricing 
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property due to newly revealed property level environmental information. For 
example, Gao et al show that new information about local pollution levels elicited 
an outward migration from polluted cities, and a near doubling of the marginal 
effect of pollutants on property prices (Gao et al., 2023). As such, detailed 
information is critical to capture existing and future risks to property valuation. 
Despite the existing financial incentives for real estate stakeholders to diversify 
against physical environmental risks (described in section 1.1.2), the available set 
of financial risk transfer mechanisms do not address the underlying and growing 
issue of these risks. Further, it is evident that transitional risks cannot be 
overlooked. Unlike physical risks, most transitional risks are not insurable and 
thus directly affect the valuation and potential financial performance of every 
stakeholder throughout the life-cycle. Importantly, information on transitional 
risks are difficult to evaluate and quantify for individual stakeholders. 

 The lack of coverage for transitional risks leaves a gap in risk management 
strategies for property owners. Exposure to uninsured transitional risks is not an 
abstract concern; for property owners, it has concrete implications at the local, or 
neighborhood level. Stakeholders, especially homeowners, are acutely aware of the 
potential for these risks to translate into financial losses (Fischel, 2001). Among 
these risks is the devaluation due to local land use change or development of 
unwanted land use (Schively, 2007). For example, Thibodeau showed that the 
development of a high-rise building had a negative effect on the property values of 
adjacent neighbors (within 2,500 meters) (Thibodeau, 1990). As visual obstruction 
and similar localized risks are not insurable, property owners find themselves 
without a safety net, nor mechanism to financially diversify, which 
understandably influences their subjective risk perception to proposed changes 
within their local neighborhoods (Sandman, 1986). 

 This local-level reaction is best depicted by the ‘not in my backyard’ (NIMBY) 
phenomena. NIMBYism is characterized by a collective opposition to local 
developments, including waste or industrial facilities (Lu, 2023; Schively, 2007), 
wind farms (van der Horst, 2007; Warren et al., 2005), social services (Davidson & 
Howe, 2014),  and residential housing projects  (Basolo & Hastings, 2003). This 
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response to the uninsured risks of property ownership – opposition to local land 
use change – is a rational option (Fischel, 2001). Home owners have a majority of 
their net worth tied to a single asset, as such, changes to the neighborhood pose a 
risk to local property values. This raises the question: if homeowners were offered 
insurance against devaluation risk, would there still be NIMBYs? Renters are 
seldom considered NIMBYs, perhaps because they are financially diversified; in 
the event of adverse local changes, they have the ability to relocate without 
suffering substantial financial losses. In theory, an insurance contract against 
home value loss could compensate property owners. In practice however, the lack 
of information to properly estimate risks and costs hinder its applications. This 
dilemma is known as the price-index problem and the moral hazards problem 
(Fischel, 2001). 

 Since property owners are exposed and sensitive to the indirect, or spillover, 
effects of new development, the NIMBY movement can be interpreted as a 
response to the potential unforeseen effects on the quality of neighborhoods. In 
this context, zoning enforcement and regulation can be seen as a neighborhood's 
collective response to development that poses a financial risk. Given these 
mechanisms, local authorities hold substantial power when it comes to shaping 
urban form and land-use. This collective response at the local level underscores 
the importance of land-use regulation and presents a challenge to urban planning 
and zoning reform as discussed in the following section. 

1.1.4 Local Effects of Urban Adaptation 

The need for zoning reform becomes clear when considering affordability and 
sustainability goals that cities aspire to achieve. Within the framework of 
sustainable development, housing development in a low carbon economy limits 
urban sprawl and requires densification and intensification (Intergovernmental 
Panel On Climate Change (Ipcc), 2023b, 2023a). Cities have committed to endorse 
and adopt policies to promote these concepts in an effort to achieve their 
sustainable development goals. Several have already implemented policies to 
promote urban solutions, high-density development, vertical construction and 
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updating zoning in low-density regions (Bibri et al., 2020; Lin et al., 2021). 
Toronto, for instance, has directed an intensification policy primarily through 
residential development (Bunce, 2023). 

 However, changes in land-use prompted by urban planning could worsen or 
exacerbate the existing local conditions (Grimmond, 2007; Seto et al., 2011; Smith 
& Levermore, 2008). A city’s urban form and morphology significantly influences 
its urban climate and stock of environmental amenities. Paying attention to and 
incorporating local urban variables within planning assessment can help to 
mitigate exposure to these local effects (Lenzholzer et al., 2020).  

 Despite the apparent conflict between NIMBY attitudes and the push for 
sustainable urban development- or, more broadly the resistance to local 
development vs. approval of densification and intensification – a common limiting 
factor is revealed: uncertainty on the local effects induced by local changes. As 
discussed in Section 1.1.1, the absence of such forward looking environmental 
information hampers the ability to discriminate between the cost/benefits of a 
proposed development, the uncertainty of the continuity of local area quality, or of 
an amenity’s persistence, represents the underlying stressor or hazard that 
presupposes financial risk to property owners. 

1.1.5 Local Amenities and Risk 

Local amenities and the risk or changes to the quality of those amenities play a 
central role in the property market. Homeowner flows into and out of 
neighborhoods depend on the relative attractiveness of the neighborhood (Ouazad 
& Rancière, 2019). Ouazad & Rancière use an index of trading opportunities, 
defined as the difference between a home’s amenity and market value, to depict 
the arbitrage opportunity whereby homeowners leave neighborhoods low in 
amenity value and high in property value. Their model describes the dynamic 
relationship between housing price and preferences where the variation in the 
trading opportunity reflect evolving preferences as well as market frictions. As 
discussed in sections 1.1.1-1.1.4, we can consider that among the set of possible 
market frictions is the asymmetry of information pertaining to the quality or 
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persistence of the environmental amenities. Thus, those with access to 
information on local urban effects could take advantage of mispricing within and 
across neighborhoods. Yet, quantifying such idiosyncratic risks, e.g. opportunity 
or vulnerability pertaining to individual properties due to impending zoning 
changes, has remained particularly challenging. 

 First, comprehensive data on environmental amenities or location-based 
characteristics are often limited. The limitation is less so in geographical coverage, 
as advances in remote sensing has enabled global scale availability of a vast array 
of environmental information, rather than in spatial resolution. Specifically, 
differences in environmental quality between neighboring buildings can only be 
captured via data acquired at a sufficiently high spatial resolution or 
approximated via physical performance modeling, which itself will be limited by 
resolution.  

 A second limitation pertains to the complexity of the property or real estate 
market. Defining devaluation risk in terms of change to urban attributes, requires 
not only data on the variables of interest but also a comprehensive set of covariates 
that influence the market value of the asset. These covariates include structural 
attributes (e.g. condition, morphology, etc), location attributes (e.g. proximity to 
points of interest), economic attributes (e.g. interest rates), among others.  

 Finally, a critical, but often understated challenge, is the identification of key 
relevant hazard variables. Properly selecting these factors is essential for 
simplifying the complexities inherent to physical performance modeling and for 
reducing the uncertainty of the estimated effect size within an economic 
sensitivity model.  

 Advances in computational methods and compute power present an opportunity 
to quantify the exposure and sensitivity to a broader spectrum of idiosyncratic 
risks. With the growing adoption of 3D Geographic Information Science (3DGIS) 
and GeoAI, these methods can now be applied to increasingly larger geographic 
areas, while still maintaining property-level resolution. The latter ensures that 
analyses remain detailed and relevant at the scale most pertinent to individual 
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stakeholders, thus providing an opportunity to mitigate widespread community 
resistance, e.g. NIMBYism .  

1.2 Evaluating Environmental Risks 

Spatial analytics, driven by a growing awareness of environmental risks, have 
increasingly influenced financial decisions (Fiedler et al., 2021). In the context of 
real estate, spatial modeling enables the assessment of future risks, informing 
property-level exposure to potential changes in urban and natural environments. 
Investors and homeowners pay particular attention to such exposures because of 
the potential for devaluation risk, or the potential decrease in the value of a 
property due to a given hazard or externality. As discussed in Section 1, by 
quantifying such spatial risks and attributes, homebuyers and investors can 
overcome information asymmetry and make informed financial decisions related 
to their real estate portfolio – whether to buy, sell, or develop.  

 

Figure 1 Abstract Definition of Environmental Risks, adapted from IPCC, EEA report 

Table 1: To explore the concept of devaluation risk, this thesis adopts the following terms that define the 
determinates of risk (IPCC, 2023). 

Term Description 

Hazard the stressor or potential source of 
adverse (or beneficial) effects. 

Exposure the extent to which a property 
faces a particular hazard. 

Sensitivity 
the degree to which a property is 
affected, adversely or beneficially, 
by a particular hazard. 

Potential 
Impact the possible gross effect of a 

hazard that interacts with a 
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property at a given exposure and 
sensitivity. 

Adaptive 
Capacity 

the ability of available tools to 
mitigate or reduce the potential 
impact of a given hazard. 

Vulnerability 
the potential for adverse (or 
beneficial) impacts resulting from 
a hazard considering the 
available adaptive capacity. 

 Using the IPCC’s definitions of risk (shown in Table 1 and Figure 1), it can be 
reasoned that exposure and sensitivity are the fundamental elements by which to 
assess a particular hazard. Exposure can be thought of as the property-level 
propensity to face a particular hazard at a future time; whereas, sensitivity depicts 
the property-level consequences in the event the hazard does unfold. Prior 
research has largely concentrated on property depreciation resulting from large-
scale natural disaster shocks, namely climate change. Another important 
determinant of risk is the system’s adaptive capacity. Here, we can consider the 
adaptive capacity to be a property’s ability to mitigate the effects, such as the 
financial risk transfer mechanisms described in Section 1.1.2 and 1.1.3. 
Quantifying the exposure and sensitivity to a hazard is often assessed through the 
analysis of historical financial and environmental data. Specifically, the lasting 
adverse effects on housing prices are demonstrated through the occurrence of 
natural disasters like floods (L. A. Bakkensen & Barrage, 2022; Holtermans et al., 
2022; Keys & Mulder, 2020; Ortega & Taṣpınar, 2018; Ouazad & Kahn, 2019) and 
wildfires (Issler et al., 2020). Critical to understanding the future impact of climate 
change on real estate is the development of detailed hazard exposure maps. For 
instance, detailed flood risk maps spanning from 2020 to 2050 (Bates et al., 2021) 
enabled subsequent studies to assess whether residential properties are over-
priced relative to their exposure to flooding (Gourevitch et al., 2023). Yet, as 
discussed in Section 1.1.5, there remains a gap in the literature presenting 
methods that assess the local risks of real estate.  

 The challenge in assessing local real estate risks is due to its idiosyncratic 
nature. Local hazards, such as land-use change, can have an effect that varies 
from neighbor-to-neighbor, and in some cases apartment-to-apartment. Thus, it 
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necessitates an approach that captures effect sizes via metrics at a high-spatial 
resolution. To clarify, this requires an integrated or end-to-end model, producing 
spatially varying estimates of potential impact. To understand this process in 
detail, we can draw insight from the data and methods past researchers have 
utilized to model macro-scale natural disaster risks in real estate. 

1.2.1 Modeling Physical Climate Risk  

Ground and earth observation instruments acquire direct physical and 
biogeochemical measurements of the natural world; recorded over time, temporal 
change and spatial variability of this data is used as evidence for changes in the 
climate system (Masson-Delmotte et al., 2021). Building on available earth 
observation techniques and data, statistical and physical climate models are 
developed for spatial interpolation and forecasting of environmental phenomena 
(Wikle et al., 2023). First Street Foundation is an example of a group that 
publishes results from its climate model for a range of hazards, including flooding, 
wildfires, heat, and wind (First Street Foundation, 2023). Each hazard is modeled 
using domain specific physical models, e.g., hydraulic and hydrology models for 
flooding, cyclone models for wind, extreme heat models for heat, and wildfire 
models for wildfire propagation. The models are physics-based simulations that 
ingest input parameters and probabilities related to such events, representing the 
dynamic interactions between climate systems. Dependent on spatially varying 
input parameters, the model output is a prediction of hazard occurrence, 
commonly referred to as an exposure map. Using these structured models, 
researchers can simulate varying conditions or scenarios, such as the flow of 
carbon dioxide in the atmosphere. On the basis of exposure maps, economic impact 
assessment studies are possible. First Street incorporates a component-based 
fragility model in their Wildfire risk model, which defines the sensitivity of 
individual building characteristics. Together, the exposure maps and definitions 
of building components sensitivity depict the estimate of the extent and severity 
of potential damages, i.e potential impact. To produce estimates of financial 
damages, First Street converts the potential physical damages from wildfires via 
a replacement cost curve.  
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 Iliyasu et al use sea level rise (SLR) projection maps from earth.org to estimate 
the price effect of flooding exposure on housing prices in Lagos, Nigeria (Iliyasu et 
al., 2023). Similarly, FEMA projection maps have been used to reveal an 
overvaluation of properties in floodplains, highlighting the heightened 
vulnerability of communities dependent on property taxes (Gourevitch et al., 2023; 
Hino & Burke, 2021). Comprehensive flooding maps developed by (Bates et al., 
2021) combined with available parcel data and a water depth damage curve 
enabled a property level economic impact assessment (Armal et al., 2020). 
Anderegg et al use a wildfire model developed by (Anderegg et al., 2022) along 
with land values and future climate projections to forecast the property value at 
risk due to wildfires across the continental US, identifying new vulnerable regions 
in the Southeast and Great Lakes (Anderegg et al., 2023) 

 Summarizing the studies that model the physical risks of climate change on real 
estate, we see that the approach is divided into distinct steps that sequentially 
build on top of one another. First is acquiring geospatial data that depicts parcel 
level attributes, and importantly the natural environment. Second is a physics-
based model that describes the performance or interaction between the natural 
environment and hazard of interest as a function of input parameters. Often a 
statistical downscaling (Kumar et al., 2023) is applied to enhance the spatial 
resolution, alternatively, a dimensionality reduction is employed to reduce output 
complexity. A simulation step follows, where the performance model is iteratively 
computed based on updated input parameters which depict potential future 
scenarios. As a result of the performance simulation, and statistical post 
processing, we obtain an exposure map. The exposure map indicates the extent to 
which a property is affected by the hazard of interest. Third, a sensitivity function 
is developed capable of translating the exposure into economic terms. This is 
typically done using a statistical model that applies a fitted damage (or 
replacement cost) estimate as a function of the exposure. Lastly, by combing the 
sensitivity and exposure measures, we obtain a property-level economic impact 
assessment with respect to a given hazard. 



Spatial Modeling for Building Design Evaluation 

 
 

27 

1.3 Modeling Local Area Risk  

1.3.1 Land Use Change as a Hazard to Property Valuations 

With a procedural framework for how to structure our risk modeling approach 
(Section 1.2.1), let’s turn the attention to selecting the hazard or stressor. Given 
the sequential steps involved in environmental risk modeling, it becomes evident 
that identifying the hazard of interest is of important consequence and dictates 
the necessary spatial data and modeling choices. An overly broad hazard increases 
the complexity of information required to capture it.  

 So far, Sections 1.1.3 had indicated that of the risks to property owners, a 
particular uninsurable concern is the devaluation due to nearby changes, also 
referred to as Land Use Change. Section 1.1.4 demonstrates that Land Use 
Change, defined as the functional use of an altered parcel, could worsen the urban 
condition, despite its importance for densification strategies that mitigate housing 
affordability and improve sustainable development. Section 1.1.5 reveals that 
Land Use Change ultimately disturbs the specific urban attributes and amenities, 
that are of value to individual stakeholders and that are capitalized into property 
valuations. Therefore, land use change has implications for nearby property 
valuation through disturbances to valuable amenities.  

 Indeed, developers or urban planners are interested in evaluating trade-offs 
between alternative design decisions in order to optimize the building design with 
respect to a set of criteria. Among the ‘amenity’ factors typically considered is a 
class of metrics describing the micro-climate also known as Urban Environmental 

Quality (UEQ). UEQ comprises metrics describing the local environmental 
condition that directly affect the quality of life in an urban setting. UEQ factors 
include air quality (C. Lee, 2019), noise pollution (Morillas et al., 2018), 
daylighting (Chinazzo et al., 2019), thermal comfort (Vellei et al., 2021), and visual 
quality (Ko et al., 2022); and play an increasingly important role in urban planning 
and real estate development, particularly so in the transition towards sustainable 
development– see Section 1.1.4, as well as defining the acceptability of a proposed 
design – see Section 1.1.5 and 1.1.3. Thus, changes in UEQ metrics can be used to 
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depict the effect, either gained benefits or damages, as a result of land-use change. 
Leveraging spatial modeling methods to simulate proposed land-use changes or 
proposed development projects, and to generate local exposure maps of, as well as 
estimate sensitivity to, change in UEQ could help to assess the localized impact to 
changes to the persistence of UEQ on property values. 

1.3.2 Addressing the Challenges with 3DGIS and the View Metrics 

Section 1.1.5 described the challenges to modeling local risks to devaluation, most 
of which centered around the availability of data at a high spatial resolution and 
the choice of variable of interest. To address these, this thesis exploits the inherent 
advantage of 3DGIS over other data types common to urban analytics.  

 Urban Analytics employs computational and statistical methods to study the 
built environment, covering a range from the heat island effect and vegetation to 
urban sprawl and aspects as abstract as visual quality. Table 2 illustrates the 
characteristics and advantages of various data types commonly used in research 
based on Urban Analytics. At the heart of these methods is the input data. The 
majority of studies in this field utilize high-resolution imagery, with satellite and 
street view images being the most common. However, a closer examination reveals 
a significant opportunity for 3D GIS and Computer-Aided Design (CAD) data. The 
biggest differentiator is, of course, 'mutability.'  

Table 2 Data Types common to Urban Analytics  

  Coverage Degrees 

of 
Freedom 

Fidelity Mutability 

Satellite Remote 
Sensing  

 
 

 

Drone Sensing  
  

 

Street-View Imagery 
 

 
 

 

Photogrammetry/Laser  
  

 

3D CAD *  
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Unlike images, CAD data can be systematically altered, allowing for the creation 
of new design scenarios and their programmatic comparison. This mutability 
characteristic is the primary driver behind the computational design or generative 
design field (Caetano et al., 2020; F. Jiang et al., 2023). 3D GIS is often limited in 
coverage, with low levels of design detail or availability in certain regions only. In 
Switzerland, however, thanks to significant investment in GIS and geospatial 
infrastructure, country-wide 3D CAD models of Switzerland’s entire territory are 
available. The downside of using CAD data is its fidelity, or how realistically the 
data reflects actual urban settings. However, considering that many machine 
learning algorithms processing satellite imagery, namely Convolutional Neural 
Networks (CNN), compress images and segment the image into an embedding, 
this information loss may represent an acceptable tradeoff given its advantage of 
mutability. In essence, is the information loss due to compression greater than the 
information variance across simulated design permutations? This thesis explores 
this hypothesis and introduces an approach to model the risks of property 
devaluation due to local changes in the built environment by leveraging the 
mutability of 3D CAD data. 

 The second challenge, outlined in Section 1.1.5, highlights the importance of 
selecting a variable that can simplify the complexity of the design study. As 
discussed in Section 1.3.1, changes in Urban Environmental Quality (UEQ) 
metrics can illustrate the effects, whether they are benefits gained or damages 
incurred, as a result of land-use change. Among the common UEQ metrics of 
interest to many generative designs or building performance simulations, visual 
quality, or the view from windows, is widely regarded as having the highest price-
amenity gradient, i.e., the greatest willingness to pay, and thus the greatest 
potential to result in devaluation in case of amenity loss. While other UEQ metrics, 
such as daylight and noise pollution, do contribute to explaining variability in 
prices, high-quality views are commonly seen as determinants of housing prices 
and are often considered a luxury good. Thus, visual landscape quality and a 
property’s risk of visual obstruction represent ideal variables of interest in 
assessing devaluation due to changes in the local urban context. 
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1.4 Motivation  

Despite the noted shortcoming in research on building-specific assessments of 
local area risk, there is a growing body of research on evaluating the economic 
value of urban systems and ecosystem services to draw from. Furthermore, the 
availability of city CAD models and GIS has enabled researchers to blend topics 
such as design, finance, and ecology, experimenting with new approaches to 
financially evaluate the physical capabilities of a broad range of aspects of the 
natural and built environment. This thesis is motivated by the goal to investigate 
ways to enhance our capacity for understanding uncertainties in real estate 
valuation using spatial data, with a particular focus on local vulnerabilities to the 
persistence of urban amenities, such as the view. While much work remains, this 
thesis represents a step forward in integrating the value of design, environment, 
and similar non-market goods into the site selection toolkit. Importantly, as more 
cities digitize their building stock, the approach described here can serve as a 
blueprint for future assessments of environmental preferences within the design-
decision-making process of the built environment 

 Past research employing 3D city models and digital twins has faced criticism for 
its failure to incorporate human and economic complexities. Advocates, such as 
(Fotheringham, 2023), have called for a shift towards research that is more 
functionally useful and attentive to these aspects. In other words, many studies 
fall short of applying learned environmental parameter estimates to guide design 
decisions in the built environment. This thesis, along with the studies that 
comprise it, introduces a methodology that bridges economics and spatial modeling 
techniques, aiming to address these concerns. 

 The remainder of this thesis will detail the completed work on modeling local 
area risk, which can be summarized into four distinct parts, initially identified in 
Section 1.2.1: (1) Simulation, (2) Evaluating Performance, (3) Price of 
Performance, and (4) Impact Assessment. To address the challenges outlined in 
Section 1.3.2, this thesis emphasizes localized risk estimation by focusing on 
building-level visual impact because views (1) are widely acknowledged to play an 
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important role in property valuations and (2) have remained challenging to 
quantify. In the following section, I will provide an overview of each of these four 
parts of local area risk estimation and itemize the unique challenges within visual 
impact assessment that this thesis aims to address.  

1.4.1 Background on Design Simulations 

Design simulation is commonly described as a mathematical modeling approach 
used to quantify the dynamic properties of a given design. Computational Fluid 
Dynamics (CFD) is among the most computationally intensive applications of 
simulation. For example, when applied to wind simulations, CFD helps 
mechanical engineers test the air drag performance of a design. 

 Design simulation applied to building computer-aided design, or CAD models, is 
referred to as building performance simulations or the computer-based evaluation 
of architectural building models. There is substantial literature covering various 
applications and approaches to quantifying the dynamic behavior and properties 
of building designs. Building performance simulation is particularly useful when 
integrated with parametric computing in the building concept phase (Wortmann 
et al., 2022). In this phase, building simulation helps to optimize architectural 
plans with respect to their set of objective functions. For example, a recent and 
growing application of simulation-based optimization is to promote the integration 
of digital fabrication as a co-designer in the architectural design process (Skoury 
et al., 2024). In the urban context, CAD-based simulations help to quantify the 
condition of the surrounding city and urban context and are most commonly used 
for 'energy-driven' generative design (Natanian & Wortmann, 2021; Shi et al., 
2017; Sonta et al., 2021). 

 Building performance simulation itself comprises a set of mathematical 
functions that describe the urban condition; also referred to as Micro-Climate, 
Urban Environmental Quality. Common attributes of UEQ that environmental 
simulations methods attempt to capture include air quality, daylighting, noise 
pollution, thermal comfort, and visual quality. Among the readily available tools 
(Ameen et al., 2015), the most popular is Energy Plus (NREL, 2017) which has 
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served as the back bone for energy simulation literature and utilized for such 
energy-driven design optimizations. A recent tool to generate noise maps is 
sonAIR, which models the effects of aircraft noise (Wunderli et al., 2018). 
Similarly, sonROAD models traffic noise (FOEN, 2023), and sonRAIL models 
transit and train noise (Wunderli, 2012). Each of these tools introduce a physical 
model of propagation and summarize the urban performance on urban maps.  

 Despite advances in several UEQ domains, methods to quantify visual landscape 
quality vary widely, and those that develop view metrics largely utilize satellite 
imagery. However, as the remainder of the thesis will discuss, this approach does 
not translate well to 3D applications. As noted in section 1.1.5, without local scale 
simulations, the development of measures of the view from the perspective of a 
building, or building-level view metrics, has lagged behind. 

1.4.2 Background on Building Performance Evaluation 

Building simulations, as introduced in Section 1.4.1, help to capture the spatial 
properties pertaining to a 3D geometry, or more specifically, a building’s CAD 
design. Evaluating the spatial statistics characterizes the select building or the 
conditions to which the building is exposed.  

 Urban Environmental Quality (UEQ) indicators are characteristics of the built 
environment that are broadly considered as indicators of a region’s capacity to 
sustain its resident population. The limits of such capacity are most evident in 
regions experiencing rapid urbanization or increasing rates of resource 
consumption, where a range of environmental and urban challenges arise. These 
challenges include, for instance, the contamination of air and water, or elevated 
levels of traffic noise, and heat stress. 

 In section 6.1, I illustrate the usefulness of building level urban environmental 
performance or micro-climate metrics by developing small case-studies showing 
the relationship to Urban Health and Energy Consumption. The methods in these 
case studies are not novel in and of themselves, however, it is applied in a novel 
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context. A large portion of the urban informatics literature utilizes similar 
methods and environmental performance metrics and study covariates of interest.  

 Evidence shows prolonged exposure to poor environmental quality, whether 
daylighting, noise pollution, thermal comfort, air quality, or visual quality, can 
have a profound impact on the public’s health as well as the overall perception of 
quality of life.  

 Daylighting literature underscores the point that building occupants' preference 
for natural daylighting is linked to both physiological and psychological reasons 
(Cho et al., 2023a; Karmann et al., 2023; Ko et al., 2022; Münch et al., 2020; Turan 
et al., 2020a). In the specific context of indoor office work, the number of hours and 
availability daylight has been linked to higher productivity (Ander, 2003) as well 
as lower levels of sick leave (Elzeyadi, 2011). The number of daylight hours, 
whether indoors or at street level, directly depends on the urban form, more 
specifically, a point’s orientation towards and direct obstructions to the sun. 
Further, daylight hours can be viewed as the cumulative exposure to direct 
sunlight, thus it is common to treat the aggregated solar irradiation as a proxy for 
daylighting (see Section 6.1).  

 Noise pollution, similar to air quality though rarely studied in parallel, largely 
results from traffic noise. Excessive exposure to traffic infrastructure, such as 
highways and airports, poses adverse health effects (Khan et al., 2018; Roswall et 
al., 2015). Additionally, the hedonic pricing literature indicates that homes 
exposed to high levels of road noise typically sell as a discount, revealing the 
preference for low to no level of direct noise pollution (Baranzini et al., 2006; Y. 
Wang et al., 2023).  

 Air Quality is described as one of the largest environmental risks, with countless 
studies reflecting the health consequences of exposure to air pollution (EEA, 2015). 
Historical air pollution from coal use has even been linked to persistent 
neighborhood-level segregation decades later (Heblich et al., 2021). Although 
various industrial air pollutants exist and vary by region, the World Health 
Organization’s  air quality framework (World Health Organization, 2021) provides 
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guidelines for a set of five pollutants: PM2.5, PM10, ozone, nitrogen dioxide, sulfur 
dioxide, and carbon monoxide, which are now the focus of most air quality 
monitoring efforts. Beyond direct health effects, economists have investigated 
"non-health" links, including labor productivity, cognitive performance, and 
decision-making (Turner, 2016).  

Visual Quality, though difficult to quantify, and visual aesthetics are widely 
recognized as playing a significant role in how individuals perceive landscapes and 
their environments (Wartmann et al., 2021). Often it is studied alongside 
daylighting (Cho et al., 2023a; Elzeyadi, 2011; Jain et al., 2023; Ko et al., 2022; 
Sruthi Krishnan & Mohammed Firoz, 2020; Vardoulakis et al., 2016). Real estate 
literature has long highlighted the revealed preference for high-quality window 
views (Benson et al., 1998; Turan et al., 2021; Ye & Becker, 2018). Evidence from 
indoor office research suggests that a visual window view improves workers' 
mental state, including sleep quality, stress reduction, and creativity (Aries et al., 
2010; Farley & Veitch, 2001; Tennessen & Cimprich, 1995). The most common 
method to represent a view is with a binary indication of a visible point of interest 
from an observation point. However, more comprehensive works in landscape 
quality assessment reveal that high-quality and preferred landscape views are 
characterized by, but not limited to, visual complexity and open panoramic scenes. 
More recently, Cho et al point out that motion is fundamental attribute of visual 
quality often overlooked, and calls for methods to capture the dynamic properties 
of a view (Cho et al., 2023b). Similarly, neuroscience research emphasizes the 
unconscious influence of fractal patterns and biophilic factors on visual perception, 
describing an optimal band of fractal dimensions that significantly reduces stress 
and triggers the release of powerful endorphins (Brielmann et al., 2022).  

 This literature illustrates a substantial connection between environmental 
quality, public health, and economic preferences. Furthermore, we understand 
that this relationship extends to the scale of buildings or neighborhoods and is 
identifiable through location decisions in the form of urban amenities – as 
discussed in Section 1.1.5. Yet, of the range of UEQ factors, Visual Quality stands 
out. Section 1.4.1 illustrated the challenges and proposed a method for capturing 
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the spatial characteristics of the view from the building. Additionally, a lack of 
methods for evaluating visibility simulation hinders the development of a 
standardized metric for visual landscape quality. 

1.4.3 Background on Environmental Valuation 

Unlike tangible economic goods that can be directly traded, environmental goods 
lack a straightforward method for valuation. However, it is widely accepted in real 
estate analysis that properties featuring certain environmental and urban 
amenities tend to command higher market prices. By utilizing hedonic regression 
analysis, a technique well-documented in real estate literature (Sirmans et al., 
2005), researchers can quantify the marginal impact of various characteristics or 
amenities on housing prices. This approach reveals the premium that buyers are 
willing to pay for specific features, effectively capitalizing on 'non-market' 
environmental goods, such as micro-climate factors and visual landscape 
amenities, into property values. 

Visual amenities, in particular, have garnered significant attention within 
hedonic valuation studies, despite the challenge of their qualitative nature and 
lack of standardized measurement units. This variability complicates comparisons 
across different studies, which often focus on localized regions. A comprehensive 
review of hedonic valuations highlights the diversity of research in this field 
(Bourassa et al., 2004). For instance, studies have found that visual accessibility 
can lead to a price premium of 3.2% in Worcester, Massachusetts (Mittal & 
Byahut, 2019), while views of residential gardens in Shenzhen Bay Area command 
a 17.2% premium (W. Y. Chen & Jim, 2010). Water views exhibit particularly 
variable premiums, with studies showing an 89% increase for lake views (Benson 
et al., 1998) , a 3.8% premium for ocean views in Oslo (Osland et al., 2022), and a 
59% premium in Auckland, Australia (Bourassa et al., 2004). These findings 
underscore that although the direction of price gradients for visual amenities is 
consistently positive, the magnitude of these premiums varies significantly (Boyle 
& Kiel, 2001).  
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 Incorporating variables from large-scale building performance simulations into 
hedonic regression models enables the estimation of the financial value of specific 
environmental amenities, going beyond the traditional locational, structural, and 
economic factors. As introduced in Section 1.1.5 and further detailed in 
Supplement Section 6.2, this methodology has been applied to estimate the 
marginal price effect of two significant view metrics: the maximum visual share of 
water bodies and views of distant elements, as well as a composite metric of visual 
landscape quality. This approach broadens the understanding of how views 
contribute to well-being and property value, offering a nuanced perspective on 
environmental valuation in urban real estate markets. 

1.4.4 Background on Design Impact Assessment 

Design impact refers to the direct and indirect effects exerted by a particular 
building or urban form. For instance, Rong et al. demonstrate that the form of a 
building can positively influences the property's direct value – for example, 
diagonality (+12.4 percentage points) and podiums (+9.7 percentage points). 
Furthermore, as outlined in Section 1.1.4, the design of urban spaces significantly 
affects local climate conditions and environmental amenities. Awareness and 
consideration of local urban climate variables can assist in mitigating adverse 
effects (Lenzholzer et al., 2020). Yet, despite the available methods to determine 
real estate valuation (see Section 1.4.3), the disconnect between real estate 
valuation and building design results in suboptimal design and economic outcomes 
(Rong et al., 2020). This thesis posits that leveraging spatial analytics to measure 
local exposure effects, particularly in financially sensitive neighborhoods, can 
unveil the potential impact of design. 

 In architectural design optimization, economic performance indicators quantify 
the financial implications of architectural or design decisions. A number of 
startups in the Architectural Engineering and Construction space, also known as 
aec-tech, are leading this effort (Allegrini et al., 2015; Ameen et al., 2015). For 
instance, Cove-tools (Cove.Tools, 2024) is a spatial analytics platform designed for 
single building designs, generating building and urban quality indices based on a 
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3D building design. Additionally, platforms such as Autodesk Forma, Google Delve 
(Delve, 2024), and Giraffee (Giraffee, 2024) are integrating spatial analytics with 
generative design. They employ parametric engines to simulate and evaluate 
multiple design iterations based on environmental criteria like sunlight exposure, 
energy efficiency, and material use. These tools not only demonstrate the 
applicability of such technologies for developers and urban planners but also 
highlight the largely unexplored area of assessing design's indirect effects on 
surrounding neighborhoods. By combining spatial analysis and parametric design, 
there is an opportunity to examine both the direct and indirect impacts of 
architectural decisions, thus offering a comprehensive view of a design's potential 
benefits and its influence on nearby developments. 

 These platforms and wider literature, however, utilize cost-based economic 
performance metrics and do not consider the financial risk. Nagy et al.'s approach, 
which involves using predefined values for selling prices and project costs to 
generate profit-optimized designs that consider environmental quality and 
sunlight, illustrates one method. While this approach effectively addresses key 
considerations by adopting a fixed sale price, it overlooks the unique spatial 
attributes of a building design, along with both its direct and spillover effects onto 
sales price (see Section 3.2.1). 

 Section 3 of this thesis aims to bridge these identified gaps by proposing 
methodologies that account for both the direct and indirect local urban effects of 
design changes and by exploring how economic valuation metrics can be applied 
to assess design-related financial risks. Furthermore, Section 5 will delve into the 
potential future applications of these methodologies in architectural design 
optimization and generative design, highlighting their significance in advancing 
the field. 

.  
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Abstract 

Evaluating visual landscape quality provides valuable information for urban 
development and spatial planning. In practice however, obtaining high resolution 
view-metrics and outcome data with sufficient geographic coverage has remained 
challenging. To overcome this limitation, we construct a scalable measure of visual 
landscape quality by first defining building-level view-metrics derived from a 
large-scale 3D representation of Switzerland’s building stock. Leveraging the 
principle of income-sorting, we estimate visual preferences by calibrating the 
building level view-metrics with commune-level incomes (CLI). The learned model 
captures common intuition on visual preferences, i.e. attributing positive weight 
to lake-views, and identifies context-dependent relationships between view 
metrics. To contextualize the derived quantitative measure, we refer to the 
preference for a building’s portfolio of viewpoints as a building’s visual capital 
(VC). By assessing the supply of VC across Switzerland’s entire building stock, we 
uncover an association between VC and the urban and natural form, where urban 
density and landscape topology explain the strength of view-driven-income sorting 
across agglomerations. We demonstrate that spatial clustering of VC varies across 
cities and frequently crosses administrative boundaries. Finally, we release a 
privacy protected version of VC at www.visualcapital.xyz, which we expect to 
promote future interdisciplinary studies focused on correlates of visual landscape 
quality (whether financial, social, environmental or physiological). 
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2.1 Introduction 

To estimate the revealed preference for housing views and visual landscape, 
defined as the geographic areas visible as perceived by an observer from one or 
more viewpoints (Inglis et al., 2022a), it is common to use the hedonic pricing 
model to calculate the marginal effect of a derived view indicator on real estate 
transaction prices (Baranzini & Schaerer, 2011; M. Chen et al., 2022; Law et al., 
2019; Turan et al., 2021; Yamagata et al., 2016). However, limiting its wider use, 
sales transaction data and view-relevant details are not always (publicly) 
available, are often limited in geographic coverage, or focus on rare, yet easily 
extractable view attributes, such as ocean-views (Yamagata et al., 2016). This lack 
of large scale spatial data hampers efforts to assess the factors that influence 
visual quality at the building-level, with most studies focusing on a single city or 
region with sample sizes of typically less than 10,000 observations (Yamagata et 
al., 2016).  

In place of transaction data, income data may be used as a proxy for high quality 
amenities by modeling income-sorting. Income-sorting can be described as the 
tendency of higher-income earners to settle in regions with better and higher 
quality amenities (Couture et al., 2023). Lee & Lin 2018 formally extended this 
theory to natural amenities, presenting evidence that geographic features shape 
the spatial distribution of incomes. Similarly, Bosker & Buringh, 2017 use 
geographic attributes to explain initial location choice for European cities, and 
Burchfield, Overman, Puga, & Turner, 2006 and Saiz, 2010 find geography plays 
a causal role in a city’s continued urban growth and development. Beyond obvious 
factors, such as waterbodies, other amenities, such as climate and seasonal 
temperatures have also been found to play an important role in household income 
sorting (Sinha et al., 2021). Importantly, terrain hilliness contributes to income-
segregation, where the view – as a ‘housing luxury good’ – likely plays an 
important, yet difficult to assess role (Ye & Becker, 2018). Despite recent progress, 
leveraging income sorting to reveal location preference for building-level views 
remains challenging for different reasons. Although income statistics are typically 
widely available, they are reported on aggregate as commune, zip-code, or district-
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level averages. For small scale studies, this leads to an insufficient number of 
observations for inference. As a result, view attributes can only be assessed if they 
are either aggregated (based on landscape or urban features rather than building-
level information) or they are extracted on a large scale. 

To overcome these challenges, we present a large-scale approach aimed at 
establishing a building-level metric for visual landscape quality. The methodology 
combines income with quantitative view data on a national scale. Based on 
previous findings that high-quality views are economic determinants of property 
valuation and of an individual’s judgement, attention, and decisions (Ko et al., 
2022), we hypothesize that a building’s visual landscape quality plays an 
important role in residential income-sorting. Consequently, average communal 
income levels should reflect visual preferences. Leveraging this relationship, we 
characterize the preference for a building’s visual landscape by the observed 
relationship between building-level view metrics and regional income level. To do 
so, we first derive building-level view-metrics from a 3D digital model of the Swiss 
building stock, including topography and land use. Next, we model commune-level 
income as a function of a building’s view-metrics using machine learning. 
Calibrating building-level view metrics with average incomes allows us to derive 
a single composite measure for each building, namely its visual capital (VC), which 
can be understood as the scaled predicted income of a household residing in a 
building with a given portfolio of viewpoints. Large geographic-coverage analysis 
of VC allows us to reveal spatial patterns of visual inequality, and to define new 
urban boundaries of similarly ranked visual landscapes. These de novo boundaries 
of high or low VC could enable future studies interested in socio-economic 
covariates, such as urban health, within and across income levels. Importantly, 
we can infer the relative strength of view-driven income-sorting for a given region 
and relate it to differences in natural and urban form. 
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2.2 Literature Review 

2.2.1 Spatial Feature Extraction 

The availability of satellite and street-view images has enabled a range of methods 
to quantify visual attributes of urban areas (Biljecki & Ito, 2021). Although 
informative on a neighborhood level, such image-based feature-extraction and 
evaluation methods do not generalize well to views from an individual building 
(i.e. street-view images can be a proxy for neighborhood appeal, but not for visual 
landscape differences across neighboring buildings). 

To investigate a building’s visual landscape, Digital Twins, or simulated 3D urban 
environments are a common alternative to satellite and street-view imagery. 
Although qualitatively not as detailed as an image, they capture 3D information 
from an elevation- and orientation-specific vantage point, thus enabling a more 
comprehensive and quantitative definition of a view. Information with respect to 
elevation and orientation provides a greater spatial resolution for viewshed and 
visibility analysis; as well as for noise, solar and similar environmental simulation 
common to urban informatics (Biljecki et al., 2015). Further, due to crowdsourcing 
and federal open data initiatives, 3D urban data have become widely available, 
enabling urban informatic applications at a large geographic coverage. 
Highlighting the scalability of 3D data, Milojevic-Dupont et al., 2023 harmonized 
disparate databases covering the European building stock, and Biljecki & Chow, 
2022 consolidated common building morphology metrics and developed a global 
database. Despite these advantages, country scale studies focusing on building-
level environmental performance have been limited to heat demand (Buffat et al., 
2017), and roof top solar potential (Assouline et al., 2017; Walch et al., 2020). To 
our knowledge, there are no previous studies that have quantified visual 
landscapes from the perspective of individual buildings on a national scale.  

This gap in research is in part due to the abstract nature of the view. Unlike other 
environmental quality attributes such as solar and noise, the extent of possible 
metrics to describe view quality is considerably broader, making consensus on 
measurement difficult. As a result, scaling and evaluating the view quality 
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demands greater computational effort. Broadly, we find that 3D-view based 
metrics define a visual landscape quality by the elements it contains – mountains, 
greenery, historical buildings, agriculture and similar land use categories  
(Baranzini & Schaerer, 2011; Yamagata et al., 2016, 2016; Yu et al., 2016), or by 
the spatial arrangement of elements unique to the observer’s perspective – access, 
distance, sky-openness & diversity (Turan et al., 2020b, 2021; Yu et al., 2020). 
Although there are many more possible ways to describe the view-metrics, the 
categorization given above is in line with the approaches previously utilized in 
spatial statistics and spatial pattern comparison (Long & Robertson, 2018), 
namely those that measure the spatial patterns that relate the abundance and 
arrangement of values. It is thus feasible to characterize a building’s visual 
landscape based on the composition and configuration of elements visible from the 
set of façade viewpoints associated with the building. Put another way, 
composition metrics define the aspatial properties of each element within a visual 
landscape (e.g. view of a lake, sky-view-factor, proportion of views onto greenery)., 
whereas configuration metrics define the spatial properties of elements within the 
visual landscape (e.g. balance of all elements, total elements in far distance). The 
required computation efforts to apply such structured approaches, however, has 
thus far limited studies to single cities or smaller geographic area, which in turn 
inhibits a wider adoption and reach across disciplinary boundaries (Inglis et al., 
2022a; Kang & Liu, 2022; Yamagata et al., 2016)  

2.2.2 Evaluation of view-metrics 

Substantial effort has been devoted to determining and correctly quantifying 
attributes of a ‘good view’ from an urban and building-level perspective. Yet, there 
are few empirical studies on landscape preference, and the methods to weigh the 
importance of visual attributes remain disparate (Inglis et al., 2022a; Kang & Liu, 
2022). A likely confounder is that what constitutes a ‘good view’ is complex and 
driven by both individual and societal preferences. This complexity may not simply 
be described by the sum of individual elements, but rather by a nonlinear 
weighting of elements according to their arrangement, proportion, scarcity, 
cultural importance, and overall context. 
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Interestingly, although no standardized measure of a building’s visual landscape 
quality exists, window-views and visual quality are commonly understood to play 
an important role in how individuals perceive landscapes and make decisions (Ko 
et al., 2022; Schutte & Malouff, 1986; Ulrich, 1977, 1981, 1986). Accounting for 
visual quality and an individual’s preference thereof is thus an important 
consideration when it comes to financial and urban planning decisions in the 
context of the built environment. For instance, it is known that visual landscape 
quality influences public opinion in Switzerland, and increases the economic value 
of a building (Lindenthal, 2020; Lindenthal & Johnson, 2021; Turan et al., 2021), 
and changes to the visual landscape have a measurable impact on public 
perception (Ögçe et al., 2020; Oh, 1998). Yet the methods to support these findings 
rely on disparate sets of spatial metrics that are difficult to compare. Therefore, 
the creation of a unifying, quantitative measure to represent a building’s visual 
landscape quality would represent an important step forward, facilitating cross 
disciplinary adaptation (Inglis et al., 2022a; Kang & Liu, 2022). 

In perhaps the closest adaptation of such goals, Walz et al and Roth et al have 
introduced methodologies for a country-scale scenic landscape assessment. 
However, since they had to rely on stated-preference surveys and 2D imagery, the 
resolution of the produced estimates remained restricted to 1 to 5km.(Roth et al., 
2018; Walz & Stein, 2018) 

To our knowledge, a structured approach by which to evaluate the weighted 
importance of elements in the visual landscape of buildings has yet to be 
developed. Only then can building-specific estimates of visual landscape quality 
be assessed at a national scale.  

2.3 Data & Methods 

In the following section we outline the steps to develop a large-scale accounting of 
Switzerland’s building-level visual landscapes and to investigate its variability 
across urban agglomerations and topology.  
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2.3.1 Viewpoint Visual Share Data 

Our approach leverages a precomputed dataset containing point-of- view results 
from a viewshed visibility simulation based on open-access 3D databases, and 
presents a systematic and automated method to develop building-level view-
indicators. Specifically, the large-scale viewpoint visibility analysis and resulting 
visual share dataset, provided by n-Sphere and Wüest Partner, was computed 
using a ray-tracing approach, whereby the proportion of rays cast outward, in a 
120-degree cone orthogonal to the façade surface (Figure 2) from a single façade 
viewpoint, that intersect a select visible element represents the visual share of 
that element. Visual shares are expressed as a percentage ranging from 0-100%, 
and the total visual share proportions for a single façade viewpoint sum to 100%. 
A single façade viewpoint observation containing visual share data can be thought 
of as an image taken from a window. In Figure 2, we illustrate the data sources 
and how this procedure was applied to a generated 3D urban environment. Origin 
viewpoints were computed for all facades and floors within a building, and 
viewpoint target intersection information, distances between origin and target 
points, as well as obstructions and landscape elements in line of sight were 
recorded. Table 3 describes the landscape elements, obstructions, and distances 
contained within the provided database. The selection of landscape elements is 
limited to the elements provided in the landcover maps (Federal Office of 
Topography swisstopo, 2018c) that the view database is derived from.  
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Figure 2 Schematic summarizing the visual share dataset. Data collected from each Viewpoint (VP) is 
illustrated with a representative Viewpoint Image. The actual database contains values representing the 
proportion of each landscape element visible from a single VP. 

 

Figure 3 Schematic summarizing the developed methodology 
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Table 3 Landscape Elements and Distance Considered 

Visual Element    Distance 

Mining and Industrial National Airport  Near (< 100m) 

Waste-Water Treatment Agriculture  Mid (100m – 1km) 

Roof Obstruction Nature  Far (1km – 50km) 

Facade Obstruction Sacred/Historic Buildings  Infinite (> 50km) 

Airfield Other  
 

Buildings Vegetation Obstruction  
 

Water Bodies Traffic area  
 

Heliport High-performing Traffic area  
 

Waste Incineration Water Basin  
 

Artificial Green Sky 

  
 

2.3.2 Developing Building-Level View-Metrics 

As a result of the viewpoint spacing approach used to develop the visual share 
dataset, the number of viewpoint observations collected per building varies with 
the size of the building, i.e. the larger the façade surface area, the more viewpoints. 
Since we are primarily interested in comparing the view quality of one building 
vs. another, we first generated building-level indicators from the viewpoint visual 
share data. Specifically, we compute two sets of building-level summary statistics. 
They characterize the view based on the abundance (composition) and 
arrangement (configuration) of visible elements, which from hereon are referred 
to as visual composition and visual configuration. Building level metrics used in 
this study are listed in Table 3 with examples for further clarification. Together, 
the 57 developed visual composition and configuration metrics (see summary 
statistics in Table 5 and Table 6) quantify the quality of the visual landscape. In 
Figure 3, we illustrate the main steps in our methodology. 
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Table 4 Definitions for Visual Composition and Configuration Metrics 

Visual Composition 
 

ID View-Metric Description of Calculation 

maxVSH 
maximum 
visual share 

The maximum visible share of a select element from the set of a building’s 
viewpoints. e.g. out of all visual shares of the lake, the maxVSH for a building 
may be 5%. 

VA visual access 
The fraction of a building’s viewpoints that have a visible share that meets a 
minimum threshold of 1%. e.g. a 1% view of the lake is visible from 10% of a 
building’s viewpoints. 

   
Visual Configuration 

 

ID View-Metric Description of Calculation 

richness 
element 
richness 

The total number of unique visual elements from a single viewpoint. E.g. 5 
landscape elements are visible from a given point. 

balance/gini 
element 
balance 

The statistical dispersion of the visual shares of unique elements from a single 
viewpoint. E.g. 5 unique landscape elements each with a 20% visual share, would 
produce a perfect equality balance score of 0. 

pano panorama 
The total visual share of elements (excluding sky) located in the far and infinite 
distance, i.e. >1km away.  

refuge refuge 
The ratio between the total visible share of elements in far distance and the near 
distance. E.g. the visible share of far elements in the distance is 10% that of 
elements in the near distance. 

snt 
visual 
sentiment 

The total visual share of positive, negative, or neutral elements from a single 
viewpoint. E.g. 20% of the visual landscape is attributable to positively labeled 
elements (vegetation, water, nature, etc.). 

dist 
visual 
distance 

The total visual share of elements located at a particular distance: Near, Mid, Far, 
and Infinite distance. 25% of the visual share is of elements in the near distance. 
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Table 5 - Summary Statistic for Visual Composition Indicators for 33 million viewpoints. 

ID Visual Element 

Visual Composition 

Max Visual Share Mean Visual Share Visual Access 

(maxVSH) (mnVSH) (VA) 

mean std mean std mean std 

Abb7 
Mining and 
Industrial 

      0.27        2.63        0.09        1.31        6.26      17.19  

Abw14 
Waste-Water 
Treatment 

      0.05        1.36        0.03        0.82        0.40        4.71  

Dac1 Roof Obstruction       6.88      11.47        1.85        3.50      80.84      27.27  

Fas2 
Facade 
Obstruction 

    26.33      21.86      12.99      11.57      91.77      20.08  

Flu18 Airfield       0.01        0.66        0.01        0.42        0.49        5.03  

Geb12 Buildings     11.94      10.53        3.85        4.04      88.35      20.24  

Gew1 Water Bodies       0.34        2.52        0.13        1.20        9.56      21.57  

Hel19 Heliport           -          0.19            -          0.12        0.01        0.69  

Keh15 Waste Incineration       0.01        0.45            -          0.23        0.06        1.69  

Kue8 Artificial Green     33.64      16.88      22.75      12.67      89.21      26.73  

Lan10 National Airport       5.19      12.34        3.02        8.75      52.39      39.09  

Lan17 Agriculture       0.01        0.69        0.01        0.40        0.38        4.40  

Nat3 Nature       7.54      14.12        4.81      10.74      76.19      29.69  

Sak13 
Sacred/Historic 
Buildings 

      0.10        1.57        0.03        0.58        1.38        7.78  

Ueb5 Other       0.60        4.59        0.29        2.62        7.00      18.19  
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Veg3 
Vegetation 
Obstruction 

    22.42      16.93      12.62      10.61      97.22      10.62  

Ver6 Traffic area       0.16        1.91        0.04        0.60        5.01      15.01  

Ver11 
High-performing 
Traffic area 

      9.68      11.34        3.31        4.47      76.29      28.88  

Was16 Water Basin       0.12        1.37        0.03        0.40        2.12        9.37  

Sky Sky     40.94        6.59      34.14        7.19      99.62        3.89  
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Table 6 Summary Statistics for Visual Configuration Indicators 

  Visual Configuration 

ID View-Metric mean std min 0.25 0.50 0.75 max 

cmpx_rh Element Richness 9.42 1.73 1.00 9.00 9.00 10.00 19.00 

cmpx_shan
on 

Element Balance - shanon 1.48 0.18 0.00 1.39 1.50 1.60 2.14 

cmpx_gini Element Balance - gini 0.83 0.03 0.67 0.82 0.83 0.85 0.95 

snt_0 Neutral Sentiment 46.94 6.53 0.00 43.25 47.80 50.62 100.0 

snt_Neg Negative Sentiment 3.78 5.42 0.00 0.18 1.69 5.37 91.50 

snt_Pos Positive Sentiment 30.76 10.04 0.00 25.10 31.53 37.30 100.0 

rh_snt_0 Neutral Sentiment Richness 7.33 1.82 0.00 6.00 8.00 9.00 12.00 

dist_gini Distance Balance - gini 0.54 0.06 0.07 0.51 0.54 0.57 0.75 

pano_sum Panoramic Share 3.61 4.13 0.00 0.78 2.09 4.97 51.30 

pano_rh Panoramic Richness 22.24 9.94 0.00 15.00 23.00 29.00 85.00 

refuge Refuge 0.64 0.22 0.00 0.50 0.64 0.76 47.66 

ShNah1 
Share of Elements in Near 
Distance 

62.24 8.49 2.06 56.78 61.10 66.60 100.0 

ShMit2 
Share of Elements in Mid 
Distance 

2.11 2.61 0.00 0.47 1.22 2.74 46.84 

ShFer3 
Share of Elements in Far 
Distance 

1.50 2.36 0.00 0.09 0.46 1.87 37.22 

ShUne4 
Share of Elements in Inf 
Distance 

0.01 0.02 0.00 0.00 0.00 0.00 1.33 

ShSky Share of Sky 34.14 7.19 0.00 30.42 35.38 39.25 50.62 
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2.3.2.1 Defining Visual Composition 
Visual composition, defines the visual landscape in terms of individual elements 
or points of interest. We propose maximum visual share (maxVSH) and visual 
access (VA) to represent aggregate values of a single element within a select 
building (see Table 4). 

The first visual composition metric, maxVSH, describes the maximum visual 
share of a selected target element (e.g. Nature) from a select building’s set of 
viewpoints. Using the maxima helps to preserve variance across the national 
sample and, importantly, is robust to the shape and size of a building’s footprint 
and surface. The second, VA, describes the proportion of a building’s viewpoints 
that a select element is visible from. Put another way, the VA quantifies the 
potential exposure a select building has to a select visible element. 

2.3.2.2 Defining Visual Configuration 
Visual configuration, the second approach to define view-metrics, defines the 
visual landscape in terms of the spatial arrangement of these visible elements 
from a particular viewpoint. In this paper, we apply the commonly used metrics: 
richness, balance, panorama, refuge, distance, and sentiment (see Table 4 for 
definitions and examples). A few of these offer a relative measure of the average 
visual shares (as a %) across all viewpoints within a building, for all cardinal 
directions (richness, balance, and refuge). The remainder describes a building’s 
average exposure level in terms of distance or sentiment: such as the average sky 
exposure, or the average exposure to positive elements. Combining these metrics 
could be particularly useful when comparing the visual landscape from buildings 
across regions, as each of these measures highlights the spatial structure of 
elements as opposed to the elements themselves. For instance, element balance 
informs the degree to which the visual scenery is dominated by a single element 
or whether an even distribution is present. Similarly, this metric can be repeated 
to measure the balance of elements grouped by distance. Visual balance as a 
function of distance could help to characterize the natural topography (e.g.  terrain 
slope) and the urban form, e.g. dense urban core, suburban periphery, or rural 
outskirts 
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2.3.3 Measuring Visual Capital 

To perform a national-scale evaluation and accounting of visual landscapes and of 
window-views, we develop a framework to measure VC. The measurement 
framework consists of our 57-view metrics and our target variable, commune-level 
income (CLI). CLI is assigned using the 2018 average net-income per taxpayer for 
a given commune (Federal Statistical Office, 2022). We apply a machine learning 
model that learns the relationship between the two at the building level, granting 
us a method to directly estimate income from view-data. Specifically, we estimate 
a gradient-boosted regression tree, eXtreme Gradient Boosting (T. Chen & 
Guestrin, 2016). Despite the CLI not varying at the commune level, the large 
amount of data allows us to extract intra-communal variation across communal 
building stocks, which enables building-level predictions of CLI, that can solely be 
attributed to visual characteristics. Hence, while the response variable CLI is 
uniform across buildings within a commune, the model predictions are 
individualized. We define the rescaled predictions of a building’s ‘income’ derived 
directly from the building’s view metrics as visual capital (VC).   

VC is thus a weighted combination of the visual composition and visual 
configuration view-metrics that were extracted directly from 3D data of the 
building itself and its surrounding landscape. Following our assumption that 
buildings found in high-income neighborhoods have, on average, desirable, high-
quality views, our model thus finds the combination of these view-metrics that 
best predicts CLI. Considering the likely nonlinear nature of visual preference, we 
use a gradient boosted decision-tree algorithm, which is well suited and has been 
deployed in similar frameworks, such as predicting an individual’s economic 
success (income) based on friendship network attributes (Chetty et al., 2022). To 
ensure a high degree of income-sorting (competition for housing), which is 
generally the case in urban areas, we compile a training sample of buildings 
located within the top 10 agglomerations (for information on selected 
agglomerations, see Table 7); located in communes with at least 100 taxpayers; 
and which have a maximum of five stories. Limiting building height reduces the 
model’s propensity to overfit to inner-city urban areas and minimizes biases that 
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arise due to the underlying correlation of building height and visual composition 
(e.g. the size of a lake view increases the higher up you are in the same building). 
The focus of this study is thus on individual and single-family homes, which are 
typically the main focus of real estate valuation approaches. Our final training 
sample consists of 781,220 buildings from 365 communes.  

Table 7- Summary of Commune-Level Income Statistics for Agglomerations Used in Training Sample 

Agglomeration 
No. 

Communes 

No. 

Buildings 

Commune Average 
Net-income Per Taxpayer 

(2018, CHF 1'000) 

Commune Average 
Taxable Income Per Tax Payer 

(2018, CHF 1'000) 

mean std min median max mean std min median max 

Basel 44 92,789 95 16 71 91 135 86 15 64 83 126 

Bern 28 62,172 83 10 70 80 121 76 10 64 73 113 

Biel/Bienne 11 14,791 75 12 67 69 111 68 11 61 63 102 

Geneva 46 62,246 137 62 75 119 480 128 62 67 108 468 

Lausanne 35 41,750 99 21 68 92 142 90 20 60 83 133 

Lugano 36 43,809 91 16 61 94 146 84 16 56 84 138 

Luzern 15 33,411 96 29 67 80 170 88 29 60 74 163 

St. Gallen 12 36,025 81 14 70 73 122 74 14 64 67 111 

Zug 13 22,952 134 31 78 116 196 126 31 70 108 188 

Zurich 106 214,258 108 43 69 92 300 99 43 61 86 292 

 

2.3.3.1 Machine learning setup and evaluation 
To assess model robustness, we ran 100 iterations of 10-fold spatial cross-
validation (see illustration in Supplement 6.3 Fig S1A). Each round consists of 
the following 4 steps: (1) Randomize the order of communes and partition into 10-
groups, (2) Train the model on buildings located within communes of 9 groups, (3) 
Evaluate the model on buildings in the excluded group, assign R2-score, and (4) 
Repeat until all 10 groups are excluded. R2-scores are derived from comparing the 
average building-level prediction within a commune to that of the average 
commune-level net income. As a result of the 100 iterations of the 10-fold spatial 
cross validation, we obtain 1000 models, where each commune has exactly 100 
associated R2-scores. The distribution of model performance provides an 
assessment and range of how well the model performs and allows us to explore 
communes associated with under/over performing models. After validating model 
robustness, a final model was fit on the entire training dataset. In section 2.5 we 
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further validate our approach by using a separate data-set that provides a high-
income label for each commune from the year 2000 (Federal Statistical Office, 
2000).  

To further assess prediction sensitivity, we compared the results across 7 machine 
learning regression models: Linear, Penalized Linear Regression (Lasso), 
Generalized Linear Model (GLM), Light Gradient Boost Model (LightGBM), 
Neural Network (NN100), Random Forest (RF), and, our chosen model, eXtreme 
Gradient Boosting (XGB) (Breiman, 2001; T. Chen & Guestrin, 2016; Ke et al., 
2017). In addition to comparing model accuracy on a common test-set, we visually 
compare the spatial distribution of fitted valuation for lake-shore communes with 
3 different CLIs: Morges (CHF 79K), Préverenges (CHF 96k), and St.Sulpice (CHF 
134k). This helps to visually determine whether the model is simply learning 
administrative boundaries or rather important visual characteristic. Lastly, we 
compare the correlation of the fitted values to the individual view-metrics as well 
as a subset of relevant non-view metrics, to gauge variability of the association 
between metrics and model predictions. The subset of used non-view metrics 
define building attributes (including year of construction, volume, land area, 
condition, free-standing, number of rooms, sun exposure, street noise), distances 
to regional amenities (including main street, train station, atomic power plant, 
city center, shopping, nature, lake, river, and public transport) and location 
attributes (including lake access, and public transport quality). 

To better interpret the influence of a select view-metric, we implement the SHAP 
algorithm, which quantifies the optimal credit allocation across all model features 
(Lundberg & Lee, 2017) and computes a proxy value characterizing the marginal 
contribution of each feature towards one additional unit of VC. The SHAP 
algorithm provides greater model explainability, and as a result has become 
common place in spatial modeling methodologies. For example, a recent study 
(Zekar et al., 2023) used the method to measure the effect of urban form features 
on temperature changes. Additionally, SHAP allows us to explore the context-
dependence of view-metrics. After training the final model, we rescale the fitted 
values to derive the normalized [0,1] measure of VC across the entire building 
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stock sample. For spatial analysis, we can further standardize these values, 
centering the mean at 0, to visually identify regions that tend to be above or below 
average. 

2.3.4 Measuring Regional Difference of Visual Capital  

Building level indicators at a national-scale enable a quantitative assessment of 
inter- and intra-regional differences. In this study we summarize a region by the 
median building value or the proportion of buildings with a select value; for 
instance, the percentage of buildings in a commune with a maxVSH greater than 
1%. When directly comparing the distributions of building-level values across 
regions or agglomerations, we additionally account for spatial concentrations of 
buildings. To do so, we can group buildings into 1-km2 regions, called hexbins. 
Such standardized hexbin regions control for the spatial dispersion of buildings 
and allow to directly compare the spatial distribution of a value across an 
agglomeration. When comparing landscape topology differences across regions, 
utilizing administrative boundaries such as communes can complicate the 
analysis, since communes can vary in both size and shape and hence obscure intra-
commune variability of the urban and natural form. Thus, in this study, we also 
calculate a 100m buffer area for each building and compute the building density 
(e.g. the number of buildings) and the terrain slope (e.g. the average terrain slope). 
These buffer areas represent the respective urban and natural forms each building 
is exposed to. Terrain slope was calculated utilizing readily available digital 
elevation models of Switzerland (Federal Office of Topography swisstopo, 2018a).  

2.3.5 Drawing New Geographic Boundaries of High Visual Capital 

To validate and show the usefulness of a building-level measure of VC, we define 
new geographic boundaries of high-VC as a case-study. Specifically, we adopt the 
LISA (local indicator of spatial association) method (Anselin, 1995) to isolate 
buildings that have a spatial association with high values of VC, and partition 
these buildings into distinct clusters to draw new urban boundaries.  
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Following the LISA method, we compare the VC of a select building to that of its 
100 closest spatially lagged neighbors. To test for the spatial dependence between 
a building’s VC and that of its neighbor, we compute the Local Moran statistic for 
the observed data and compare it to the Local Moran of a randomly generated set 
of neighbors. After correcting for multiple hypothesis testing, we retain only the 
buildings with a significant Local Moran statistic, a high-VC and high spatially 
lagged-VC. We then group the location (coordinates) of these buildings into 
distinct clusters using an unsupervised hierarchical density-based clustering 
method, (HDBscan) (McInnes et al., 2017). Buildings that are either isolated or in 
low density areas are considered noise and thus removed. Next, we generate 
geographic boundaries by calculating the alpha shape for each cluster’s set of 
buildings using an alpha parameter of .01. The newly generated shape boundaries 
are considered regions of high-VC. Note, this process can also be used to identify 
geographic boundaries of low-visual capital clusters. Importantly, these newly 
defined boundaries of high VC can be compared against a validation dataset of 
high-income communes held out of the training sample. 

2.4 Results 

2.4.1 Distribution of building-level view-metrics across the Swiss 
building stock 

We find that the 20 visual elements considered in this study vary in abundance. 
Figure 4 shows that only about 15% of the building stock has any view of Water 
Bodies. Visually abundant elements, such as Nature, Sky and Agriculture, are 
seen by at least 50% of the building stock (we consider > 0% maxVSH as the cutoff 
for being seen).  
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Figure 4 ECDF of maxVSH elements across the Swiss building stock. Figure indicates that building-level 
views of elements vary in abundance, where abundant elements are seen (maxvsh >0%) by more than half of 
the building stock and scarce elements are visible in less than half. 

While visually-abundant elements exist in similar quantities from region to 
region, we identify a few exceptions. Buildings in rural regions have about ten 
times larger view-shares of nature – where a 75th percentile-ranked building in 
the rural region will have a 10% maxVSH of nature, whereas an equally ranked 
building found in any major agglomeration will have less than a 1% maxVSH. For 
views of vegetation, Geneva ranks highest among Swiss agglomerations, where 
the median building has a 5 – 10% greater share. See  Supplementary 6.3 Fig 
S2,S3,S4 for information on the visually-abundant elements.  

Upon inspecting the visually scarce elements, i.e. seen by less than 50% of the 
building stock, we find much greater variety across the major agglomerations of 
Switzerland (see Supplementary Fig S2). Buildings in Lausanne are more likely 
to have a view onto a body of water, with 40% of buildings having a water-view of 
some quantity; approximately 15% more than in Zurich and 30% more than in 
Bern and Basel (river-cities). We find substantial differences in visual 
configuration across urban and landscape typology classification (see 
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Supplementary Fig. S3, S4). For example, visual landscape for urban areas is 
dominated by elements in the near distance, whereas the Alpine region boasts 
more balanced views and has the largest panoramic views, namely 4 to 8-fold 
larger than other terrain typologies.  

2.4.2 Model 

2.4.2.1 Model results 
We assess the performance of the full XGB model, trained on the full training 
dataset (i.e. all buildings located within the top 10 agglomerations), by comparing 
the average model prediction across all buildings within a commune to the 
commune’s actual average net-income per taxpayer – the CLI. We find that the 
residuals for average commune predictions are normally distributed for communes 
with a CLI of less than or equal to CHF 100k, whereas  for communes above this 
threshold the residuals are skewed and the 95% percentile ranked prediction is a 
better predictor of CLI than the mean predicted value ( 

Figure 5).  

 

Figure 5 Scatterplot of commune-level predictions against commune-level net-income. Plot illustrates the 
dispersion of commune-level prediction increases against net-income, where the 95th percentile and Mean 
score are shown in Red and Blue. 
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The k-fold spatial cross validation procedure (section 2.4) confirms the robustness 
of the chosen XGB methodology, with a normally distributed model performance 
(mean of R2-score = .32, standard deviation = .09) consistent across agglomerations 
(see Supplementary Fig S1). The final model achieved an R2-score of .47, which 
falls within the upper decile of the cross-validation performance range (see 
Supplement Fig S1).  

We find model estimates are robust to other tested regression architectures: 
Linear, Lasso, GLM, LightGBM, NN100, XGBoost, and RF regression models (see 
Supplementary Fig. S5). Specifically, the individual correlation of each model’s 
prediction against individual view-metrics is consistent across all models (see 
Supplementary Fig. S5A). While correlations between model predictions and 
the subsets of non-view metrics are equally consistent; values for non-linear model 
architectures (LGBM, XGB, NN100, and RF) are more similar than for linear 
architectures (Linear, Lasso, GLM) (see Supplementary Fig. S5B). While the 
Random Forest model maintained similar prediction accuracy compared to the two 
gradient boosted regression tree models (i.e. LGBM and XGB), it was prone to 
overfit to the training data and the compute time was orders of magnitudes larger 
(see Supplementary Fig S6) than the XGB model, chosen in this study.  

2.4.2.2 Understanding the factors that determine Visual Capital 
We find that a handful of metrics have a particularly strong positive impact on the 
model prediction (Figure 6A and Supplementary Fig S7). Greater visible 
proportions (i.e. maxVSH) of water-bodies, sky and far-distance views contribute 
positively while agriculture views are inversely predictive of high CLI and indicate 
distinct non-linear effects. Importantly, we find the influence of most landscape 
elements on model prediction is context-dependent, i.e., conditional on the other 
elements within the same visual landscape (Figure 6B-E).  For example, the 
influence of a nature view varies with the visual access to waterbodies (Figure 
5B), and large (50% or greater maxVSH) views of vegetation are amplified in the 
context of an imbalanced share of elements and a balanced proportion of the visible 
distances; i.e. elements in the near, mid, far, infinite distance (Figure 6E). Views 
of waterbodies have a substantial influence on the prediction, and can amplify the 



 A.R. Swietek  
 

 

62 

influence of views of elements in the far distance (Figure 6D). Interestingly, sky 
exposure has a persistent influence on the predictive capacity of all other 
attributes. For instance, within the context of limited sky exposure, views of 
buildings have a negative impact on predictions. Conversely, views of buildings 
with high sky exposure positively influence the predictions (Figure 6C).  

 

Figure 6 Impact of view-metrics on a single building’s prediction. (A) Summary plot illustrates the SHAP 
value of a single instance and directionality of impact of the view-metric, where high and low feature values 
are shown in Red and Blue. The impact of the top 6 features are shown, the remaining, less influential metrics 
(by absolute mean) can be found in the Supplementary material Fig S7. Interaction plots show that 
prediction influence of (B) nature views vary across visual access to water, (C) views of buildings vary against 
sky exposure, (D) larger views of a waterbodies in the same scenery, as well as views of far-distance, have 
larger predictions than smaller views of waterbodies, and (E) vegetation varies across distance inequality. 

2.4.3 Visual Capital 

In the following section, we present Visual Capital (VC), the rescaled fitted values 
representing the building-level visual landscape quality preference across the 
entire swiss building stock. We directly compare the VC of cities and communes 
and present evidence illustrating (1) the extent to which visual quality contributes 
to income sorting within and across agglomerations, (2) VC’s association to the 
urban and natural form, and (3)  a validation case-study that correctly identifies 
held-out high-income regions. 

2.4.3.1 Regional Difference in Visual Capital 
Generally, we find that averaging all building level VC predictions per commune 
correlates well with the CLI of the respective commune, however, in some Swiss 
cities this relationship is stronger than in others. Comparing Lausanne and Basel, 
which are two cities with a similar CLI range, we find that view metrics are more 

https://www.sciencedirect.com/topics/social-sciences/influencer
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predictive of CLI in Lausanne than Basel, suggesting that view-based income 
sorting is stronger in Lausanne, whereas in Basel other socio-economic factors 
may play a more important role (Figure 7). Comparing the slopes across the top 
ten agglomerations, we can identify Zug and Lausanne as the cities with the 
strongest slope, i.e. VC to CLI association. 

 

Figure 7 Scatterplot of Commune-level prediction for the 10 largest Swiss urban agglomerations. A fitted line, 
and it’s slope shown in blue and the agglomeration’s mean prediction is shown in orange. The plot and 
computed slope describe the degree to which income sorting can explain residential sorting variations across 
Switzerland. A steeper slope, e.g. Lausanne, implies that the visual environment can describe the difference 
between low- and high-income communes; whereas in Bern smaller differences in visual capital between the 
high- and low- income communes, i.e. flatter slopes, suggests visual landscape to be less important to the 
residential income sorting process. 

Another indicator we can compare across agglomerations is average predicted VC. 
Conceptually this can be understood as the expected view when choosing a 
building at random. We find that Geneva and Lausanne achieve the highest 
average VC. Importantly this is true even in the lowest CLI bins, indicated by a 
higher intercept for the agglomeration-specific fitted line in Figure 7. Zurich, 
although situated by a lake, barely ranks higher than river-cities like Basel and 
Bern. Beyond average expectations, the variability in building-level predictions of 
VC for a given income bin allows us to investigate “view-inequality” both at a 
global and local scale .  

2.4.3.2 Generalizing the Regional Difference in Visual Capital  
To investigate what drives the differences in the average and the variability of VC 
across different agglomerations, we analyzed the spatial distribution of VC across 
agglomerations. We observe a similar spatial dispersion of VC in Lausanne and 
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Geneva; whereas Zug and Zurich exhibit heavily skewed values. Specifically, the 
first 60% of Zurich’s building-level VC values and land-level values (i.e. using 
hexbin aggregation to control for spatial dispersion) are substantially lower than 
that of cities along Lake Geneva (see Supplementary Fig S8). Further, we 
observe a spatial concentration of high VC along the East and South-Coast of lake 
Zurich; whereas in Lausanne VC is evenly distributed across the city boundaries. 
Figure 8 illustrates the spatial distribution of above average VC and highlights 
the importance of distance to lakes for all cities. Intriguingly, the spatial 
distribution of VC across the two cities Zurich and Lausanne appears to not only 
reflect distance to the body of water (see Supplementary Fig S9), but also 
differences in natural topography. For instance, Lausanne sits on a hill, however, 
its downtown lies in an area of depression, which is reflected by lower VC values 
for buildings in this area (Figure 8). Similar holds true for the nine other 
agglomerations. This indicates that our measure of VC can accurately capture 
natural form.  

 

Figure 8 Spatial Distribution of Visual Capital across Swiss agglomerations. Standardized VC values are used 
to illustrate the spatial dispersion of above and below average within and across agglomerations. 
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2.4.3.3 Visual Capital and the Urban Natural Form 
At the national scale, we observe that buildings with high visual-capital tend to 
be located near lakes and on the foothills of the Alps (Figure 9). As such, our 
building-level view scores confirm what one might expect, that rural-like views 
are most sought after when buildings are located within urban centers. The 
concentration of popular urban view-preferences at the foothill of the Alps further 
suggests that there may be a direct link between VC and landscape topography 
such as hilly/mountainous terrains. Supporting this notion, intra-communal 
variation in VC still display spatial patterns, with similar VC values forming 
localized clusters (Figure 9). 

 

Figure 9 Choropleth depicting visual capital of the Swiss building stock shows higher levels of visual capital 
are found nearby lakes and on the foothills of the Alps. Comparison of the distribution of building-level 
average net-income and Visual Capital values for Zurich and Geneva reveals that VC captures intra-
communal differences in building-level view quality. 

When we stratify VC by landscape attributes (the slope of the land the buildings 
are located on) and the urban form (using building density within 100m as a 
representation), a non-linear pattern emerges. It recapitulates the intuition one 
might have on the relationship across terrain slope, building density and views: 
the average VC of dense urban areas increases with the slope of the terrain, as 
steeper slopes make it more likely that the view of a given building is not 
obstructed by another one (Figure 10). Unlike income, the optimal VC trendline 
cannot be defined to a single best slope, as lower density areas can achieve 
similarly good or better views with minimal elevation gain. Moreover, the 
likelihood of a good view decreases once the slope of the terrain passes 20%, which 
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may indicate distance from other important urban view indicators, such as view 
complexity. Further, investigating the VC variance within a given urban and 
natural form bin, confirms that VC scores reflect our intuitive understanding of 
the relationship between view and the urban form: For low-density urban 
environments, the skewness of visual capital remains low across terrain slopes, as 
buildings are spread out making it less likely that one building’s view is influenced 
by another; on the contrary, skewness increases for dense regions as a function of 
terrain slope, with a hotspot of high-VC skewness within dense urban areas with 
a moderately steep elevation gain, indicative of visual obstruction due to 
neighboring buildings as a driver for view inequality (Figure 10). This presents 
strong evidence that our model of building-level VC accurately reflects important 
view characteristics, such as the intricate interplay between typology, terrain, and 
building-specific viewpoints that cannot be captured by a simple measure such as 
CLI (Supplementary Fig S10). 

 

Figure 10 Heatmap depicts the average VC (left) and skewness of VC (right) when stratified by urban and 
natural form; i.e. building density (100 m radius) and terrain slope (1 km area). Urban/Natural form 
conditions with less than 1000 buildings are excluded (greyed). 

2.4.3.4 Drawing Geographic Boundaries of High Visual-Capital 
Here we present the result from our methodology to generate micro-location visual 
quality indicators for our validation case study in Lausanne. We group buildings 
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based on their VC similarity and identify natural boundaries of shared visual 
quality.  

Our spatial clustering analysis of Lausanne identifies a number of high-VC 
clusters (Figure 11). The generated regions overlap, to a large extent, with both 
administrative boundaries of high-income communes used during the model 
training, as well as those held-out for testing. However, our newly defined regions 
often extend past these predefined administrative bounds. This spill-over effect 
tends to track with terrain and urban form, confirming our previous findings. For 
example, Figure 11 shows the largest identified cluster encompasses the majority 
of the commune Pully, which has an average CLI of CHF 119k, however, the 
natural view boundaries spill over into the neighboring commune of Lausanne 
center, whose CLI is a comparatively meager CHF 79k. We identify high VC spill-
over in several other high-income communes, such as Saint-Sulpice, Buchillon, 
and Saint-Prex. Notably, despite being surrounded by lower-income communes, a 
cluster of high VC is found within the boundary of Jouxtens-Mezery, whose net-
income per taxpayer information was not publicly available, however gross net-
income data from 2018 and tax data from the year 2000 labeled this commune as 
high-income (Figure 11). Furthermore, we identify several smaller clusters of 
high VC that are not labeled as high income, either because of missing data or 
because they are located in lower income communes. These findings indicate that 
spatial clustering of VC can serve as a local indicator of areas with similar, and 
particularly highly valued views. This analysis may be extended to locate clusters 
of low-VC regions, or be applied to other cities and regions.  
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Figure 11 Computed boundaries of high visual capital (HVC) are shown in blue. Communes with darker 
shades of green indicate higher income levels, grey communes were excluded from the training-sample 
because no income data was readily available, and the red border indicates high-income communes as labeled 
by a secondary data source. HVC appears in all held-out validation samples; including Jouxtens-Mezery. HVC 
spills past administrative boundaries of high-income neighborhood, including St.Sulpice and Pully. 

2.5 Discussion 

Determining the value of visual landscapes is challenging in part due to the 
difficulty of how to best quantify the view itself. Viewpoint data from 3D GIS and 
Digital Twins, in combination with spatial machine-learning techniques, offer an 
opportunity to both develop comprehensive view-metrics and uncover the context 



Spatial Modeling for Building Design Evaluation 

 
 

69 

of visual landscape preferences. We leverage commune-level income (CLI) 
statistics to generate a composite measure of building-level visual landscape 
quality, which we term visual capital (VC). Visual capital is derived by extracting 
visual composition and configuration metrics directly from a building’s 3D 
configuration and that of its surrounding environment. Hence, we extend the 
existing literature in two ways: First, we provide an accounting of the visual 
landscape of the entire Swiss building stock and, second, we provide a building-
level visual landscape ranking in the form of VC, which can be understood as the 
view-based, individualized ‘income’ of each building. Furthermore, we show that 
VC captures non-linear relationships of individual view metrics, urban density 
and natural form, thus providing an accessible summary indicator of a building’s 
visual environment. Such assessments have remained challenging in the past, due 
to either a lack of large-scale data or accessible response variables.  

Our model relies on the assumption of view-based income sorting, and thus relies 
on competition for the scarce resource ‘good view’. In contrast to previous studies 
(Inglis et al., 2022a), we are not bound by a limited number of observations, thus 
allowing us to benchmark landscape-based preferences at the resolution of 
individual buildings. By restricting the trained model to the ten most populous 
agglomerations, we maximize amenity-driven income sorting effects, providing a 
more accurate depiction of building-level view preferences. Supporting this notion, 
view-based income sorting is strongest in agglomerations with access to high-
quality views, as typically found in lake-regions. Individualizing view preferences 
at the building-level in this manner, allows us to quantify and compare how good 
of a view an average citizen of a select city can expect and what income is required 
to obtain it.  

An important aspect of our approach is the applicability of the learned visual 
preferences to the entire national building stock, including rural regions. The 
positive correlation between the variability in inter-commune VC and CLI 
suggests that communes attracting higher income individuals have larger visual 
inequality, with only a portion of buildings (20-40%) attaining desirable and 
differentiable visual landscapes, whereas the VC of the remaining stock resembles 
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that of lower-income communes. Further, we can use the global predictions of VC 
to assess how the visual landscape quality of Switzerland is associated with both 
urban and natural form factors. For example, we can confirm the intuitive 
assertion that, on average, income-sorting tends to favor either elevated or less-
dense areas within an agglomeration. Unlike previous studies that lacked 
building-level information, our methodology reveals a more complex relationship 
between slope and building-density. The high overall high skewness of VC within 
dense communes supports that view preferences are well-captured as, 
unavoidably, there will be buildings whose view remains blocked by others. It 
further indicates that proximity-metrics (such as distance to the lake) or simple 
neighborhood-scale attributes, i.e. net-income, may not be sufficient to capture a 
‘good view’ for individual buildings, as it discounts important 3D differentiators 
such as natural and urban form. 

Since the resulting predictions of VC are individualized and thus no longer bound 
by communal statistics, we can de novo assign ‘view-boundaries’ that indicate local 
clusters of buildings with similar VC. These newly defined regions of shared VC 
may thus provide a basis for view-based micro-location indicators, as commonly 
used in housing price evaluation studies: comparing clusters of shared VC could 
highlight buildings or neighborhoods that are over/undervalued with respect to 
their visual quality. Such assessment could prove valuable to developers looking 
for properties in economically undervalued, but perhaps visually appealing areas, 
as well as urban planners interested in quantifying the visual impact of a proposed 
new development. 

A single quantitative measure for building-level VC may provide further benefits: 
automated real estate valuation and mass-appraisal methods can particularly 
benefit from building-level differentiation of visual quality. Previous studies have 
highlighted that iBuyers, who use automated valuation models, are challenged by 
adverse selection (Buchak et al., 2020), which may partly reflect a lack of data on 
‘hard-to-measure’ qualities such as the view. Including VC into valuation models 
may thus improve the predictive performance of a statistical model. In this 
context, extending our analysis to individual floors, sides, or even units within a 
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select building, may allow modeling view-based price variation within large 
multifamily buildings. Further, extending the analysis to focus on other urban 
form typologies, i.e. tourist communities, may yield interesting insight into the 
factors that predict visual capital in specific regions or contexts. Pricing studies 
incorporating sales, rental or hotel prices, while controlling for other important 
building and local attributes, could further validate the importance of this metric. 
In addition to determining the willingness to pay with hedonic pricing, studies can 
utilize mixed-effects models and spatially varying coefficient models (Dambon et 
al., 2021) to assess whether the marginal effect of visual capital on home prices 
varies across space (e.g. coordinates or urban typologies), and income (i.e. as a 
luxury or inferior good). 

Although our building-level VC metric captures many intuitive concepts on how 
individual view metrics, as well as urban and natural forms, should interact to 
create a preferential visual landscape, there are several limitations of our 
automated assessment tool. While it could be reasonable to assume that visual 
landscape preferences do not significantly change from year to year, our approach 
only considers income from a single year and thus may not fully represent changes 
in visual preferences over time. Despite defining view-metrics at nation-wide 
resolution, the view-metrics used in this study cannot fully capture the aesthetic 
quality of a particular view. For example, we currently cannot differentiate the 
view towards a facade with damaged and unmaintained cladding from one with 
architectural sculptures and intricate stonework. Thus visual capital may struggle 
to explain income sorting for building stocks with undifferentiable visual 
landscapes or with variability arising from a more abstract level of detail, such as 
specific building components. Future approaches may thus benefit from 
incorporating aesthetic aspects, i.e. as learned from street view images.  

Lastly, our approach is restricted to buildings for which 3D GIS models are 
available. With more regions and countries digitizing their building stock, and 
given the standardized approach to generate view metrics, it should however 
become feasible to extend our analysis and compare differences in view 
preferences across a more diverse building stock. Comparing results from two or 
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more regions with differing source 3D data may require additional data 
engineering to ensure reliability of results and consistency of labeling.  

2.6 Conclusion 

Evaluating visual landscape quality at large-scale has remained challenging. In 
this paper we have introduced a spatial machine learning approach to generate an 
income-derived building-specific measure of Visual Capital. 

We identify that waterbodies, elements in the distance (>1km), and sky exposure 
are the strongest individual predictors of high-income. We further show a context-
dependency of individual view metrics, with certain features gaining importance 
only in the presence of another. 

We demonstrate the utility of this approach by estimating Visual Capital values 
for the entire Swiss building stock and investigating the inter- and intra-regional 
distribution in building-level Visual Capital, including view equity, and the 
agglomeration-specific degree to which view contributes to income-sorting. We 
further show that our composite measure of Visual Capital captures urban and 
natural form attributes, such as a non-linear relationship of view quality with 
terrain slope and building density. Lastly, we validate our work with a case-study. 
By clustering our building-level prediction of Visual Capital directly, we generate 
view-based boundaries that capture groupings of buildings with similar visual 
landscapes unbound by administrative boundaries.  

Visual landscape quality, and changes to it, have a direct influence on urban 
planning, policy decisions and individual preferences. Yet, assessing and 
quantifying visual quality on a large scale remains a challenge. Overcoming this 
limitation, visual capital provides an easily accessible indicator of a building’s 
visual landscape quality. It thus enables studies that aim to identify correlates 
with a ‘good’ view; improve automated real estate valuation models, or quantify 
the visual impacts of new landscape and urban development projects. 
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Abstract 

Financial criteria in architectural design evaluation are limited to cost 
performance. Here, I introduce a method – Automated Design Appraisal (ADA) – 
to predict the market price of a generated building design concept within a local 
urban context. Integrating ADA with 3D building performance simulations 
enables financial impact assessment that exceeds the spatial resolution of 
previous work. Within an integrated impact assessment, ADA measures the direct 
and localized effect of urban development. To demonstrate its practical utility, I 
study local devaluation risk due to nearby development associated with changes 
to visual landscape quality. The results shed light on the relationship between 
amenities and property value, identifying clusters of properties physically exposed 
or financially sensitive to local land-use change. Beyond its application as a 
financial sensitivity tool, ADA serves as a blueprint for architectural design 
optimization procedures, in which economic performance is evaluated based on 
learned preferences derived from financial market data.  

Keywords:   

GeoAI, building performance simulation, design optimization, real estate price, 
machine learning 
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3.1 Introduction 

In architectural design optimization, computer generated designs are iteratively 
evaluated with respect to building performance criteria. While building design 
concepts are commonly assessed for engineering performance, including structural 
resilience (Mayencourt & Mueller, 2019), environmental quality (Gagne & 
Andersen, 2012; Natanian & Auer, 2020) and energy performance (Natanian & 
Wortmann, 2021; Shi et al., 2017), as well as for cost performance, including 
material usage (Weber et al., 2022) and sustainability goals (Ameen et al., 2015; 
Elshani, 2021), current approaches have stopped short of considering the financial 
value of a given design directly, or more broadly speaking the preference thereof. 
The limited feedback between building design and real estate valuation models 
can be attributed to a lack of availability of simulations and pricing models with 
similarly specified attributes and parameters, in part due to the traditional 
separation of disciplines. 

Most current studies in real estate economics utilize valuation models in specific 
geographic regions to infer the marginal price effect, or the price premium, of a 
given performance metric, including environmental amenities such as streetscape 
(Law et al., 2019), waterscape (W. Y. Chen et al., 2019), viewshed (Dai et al., 2023), 
building morphology (Rong et al., 2020), greenery (Yang et al., 2021), daylighting 
(Turan et al., 2020a), visual quality (Turan et al., 2021), and landcover (Baranzini 
& Schaerer, 2011). Yet, to our knowledge, no study has utilized these fitted models 
to predict the price of newly generated building and urban designs. This would 
require incorporating pricing models within a generative design or optimization 
framework or within a risk framework to assess the impact of attribute 
persistence: An example for the latter would be whether a desirable lake-view is 
exposed to future obstructions. The challenge arises from the need to additionally 
generate new building designs, and, for risk assessment studies, to compute the 
exposure to urban development or land-use change. While parametric design and 
building simulation are central to architectural design optimization (F. Jiang et 
al., 2023), limited access to relevant transaction data and model parameters, 
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hampers efforts to evaluate the preference or value of a generated design, as well 
its impact on the local context.  

To overcome these challenges, this paper introduces an integrated workflow, an 
augmented valuation model called Automated Design Appraisal (ADA). The ADA 
algorithm incorporates computational design techniques to generate a city model 
based on design parameters; geometric computing to simulate building 
performance; and finally, a fitted econometric model that predicts the value of a 
building’s design. The output is a single value representing the weighted economic 
preference of the individual attributes defining a single building design concept 
and its surrounding context. As a structured approach, ADA can be incorporated 
within various design analytic frameworks, including design optimization, or risk 
and impact assessment, by perturbing the initial design parameters and 
subsequently quantifying the effect size of an altered design scenario.  

To demonstrate its usefulness, this paper implements ADA within the context of 
a visual impact and risk assessment. It presents results from two case-studies in 
Lausanne, Switzerland; (1) the impact due to a single proposed development and 
(2) the potential value at risk due to nearby land-use changes across an entire 
commune. Importantly, the effect size is assessed not only at the point of 
alteration, but also for nearby buildings to capture the imposed cost of a generated 
design, or put another way, the risk of neighbor property devaluation. The results 
illustrate the theoretical space of localized costs imposed on the neighborhood due 
to simulated design scenarios.  

To assess both direct and localized effect sizes, it is important to choose an 
appropriate building performance metric by which to benchmark one urban design 
against another. Of the environmental performance metrics, a building’s view or 
visual landscape is particularly relevant as high-quality views are considered 
inherently important to home prices (Ko et al., 2022; Roth et al., 2021). Moreover, 
visual obstructions and the subsequent risk of devaluation are primary drivers of 
objection to proposed developments by community members – a sentiment 
typically referred to as NIMBYism (not in my backyard) (Fischel, 2001). We 
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therefore use a building’s Visual Capital (VC), a value that evaluates building level 
visual landscape quality, in our case study. VC is as an income derived, non-linear 
weighting of the visible share of landscape elements (A. R. Swietek & Zumwald, 
2023), and, importantly, is derived directly from 3D building geometries and is 
thus sensitive to nearby design changes to the urban environment. Additionally, 
we fit a pricing model trained on transaction data, provided by Wüest Partner, 
learning the preferences for VC and other covariates, and subsequently apply this 
model to gauge the magnitude of change in predicted price with respect to changes 
in VC across our design scenarios. 

The proposed methodology and impact analysis can be further extended to 
examine the cost/benefit of proposed urban infrastructure, optimized greenery 
layouts, as well as its effect on other location-based attributes. The proposed 
design appraisal offers insights into the direct gain and social acceptance of design 
choices, making it a tool for site-selection and feasibility assessments. Additionaly, 
future design optimization studies can leverage ADA, by converting performance 
metrics into financial metrics, to aggregate building objectives into a single value, 
producing a preference ranking of the ‘optimized’ set of designs.  

3.2 Literature Review  

3.2.1 Economic Performance Metrics  

In the context of architectural design, economic performance has been described 
as the evaluation of revenue, cost, and profitability (F. Jiang et al., 2023). 
Commonly used economic performance metrics focus on a cost minimization 
objective, such as the cost of pedestrian walking routes (Elshani, 2021), or the cost 
of lighting & heating (or space efficiency) (Baušys & Pankrašovaite, 2005; Weber 
et al., 2022). For example, Nagy et al utilize a profit metric to explore modular 
design solutions at the urban scale (Nagy et al., 2018). Using pre-defined values 
for selling price and project cost for each modular unit type, a generative design 
procedure produces a set of profit-optimized solutions. However, the approach has 
specific limitations: When a fixed selling price is applied, it overlooks the 
significance of the unique spatial qualities within the proposed design. This can 
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contradict the proven value of the design itself (Rong et al., 2020). In addition, the 
potential cost imposed on neighbors as a result of new development (Thibodeau, 
1990) remains unexplored.  

The few studies that have focused on evaluating the preference of a generated 
design primarily leverage satisfaction questionnaires (Brown, 2020; Villaggi et al., 
2018; T.-K. Wang & Duan, 2023). Such stated preference approaches only 
describes the hypothetical preference which itself may be biased (Fifer et al., 
2014). In contrast, revealed preference methods, such as the determining the 
willingness to pay by regressing attributes on transaction prices, describe actual 
economic decisions (Rosen, 1974), are considered a superior method to measure 
preference.  

Thus, the current study contributes to the literature in two ways: it provides a 
new method that leverages revealed preferences using real estate transaction data 
to ascribe economic value of newly proposed designs, and it simultaneously 
estimates the economic impact of a design solution on its immediate urban 
surrounding. It thus allows to assess the devaluation risk due to land-use change. 

3.2.2 Devaluation Risk 

Devaluation risk, or potential decrease in the value of a property, is a major 
concern to property owners and lenders. Previous work primarily focused on the 
devaluation due to climate change (Stroebel & Wurgler, 2021). Typically, the 
effects of physical risks are estimated by using historical financial and 
environmental data; where natural disaster shocks, such as flooding (L. A. 
Bakkensen & Barrage, 2022; Holtermans et al., 2022; Ortega & Taṣpınar, 2018; 
Ouazad & Kahn, 2019) and wildfires (Issler et al., 2020), are used to show 
persistent negative impacts on housing values. To understand the future and 
potential impact of climate change on real estate, the generation of hazard 
exposure maps is essential. For example, high resolution flood hazard maps for 
the year 2020-2050 (Bates et al., 2021) enabled subsequent studies to assess 
whether residential properties are over-priced relative to their flood exposure 
(Gourevitch et al., 2023). 
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Among the risks to real estate owners is property devaluation due to local land-
use change (Fischel, 2001). For example, Thibodeau shows that the development 
of a high-rise building had a negative effect on the property values of adjacent 
neighbors (< 2,500 meters) (Thibodeau, 1990). At such a local scale, it is possible 
to compute exposure maps by leveraging computational design, urban analytics, 
and micro-climate simulation methods, including energy modeling (Natanian & 
Wortmann, 2021), solar irradiation (Nault et al., 2015) , daylighting (Gagne & 
Andersen, 2012), and visibility (Florio et al., 2021). Past studies have leveraged 
these simulations and applied the hedonic pricing model (Rosen, 1974) to assess 
the marginal price effect of micro-climate performance on real estate valuation 
(Baranzini et al., 2006, 2008; Inglis et al., 2022b; Turan et al., 2021). Yet, unlike 
the future flood risk projections example, local risk evaluation methods stop short 
of examining the sensitivity of a set of building valuations across future urban 
design scenarios. Thus, this paper extends the literature by taking advantage of a 
key feature of geometric data, that differentiates it over other urban data types: 
it’s mutability. Specifically, a sensitivity analysis which can be applied to generate 
new design scenarios and to automatically assess the impact of design 
perturbation on property values.  

3.2.3 Visibility Simulation and Visual Capital 

Of the factors that drive property devaluation risk, visual impact resulting from 
land-use change is of particular concern to NIMBYs (Fischel, 2001; Thibodeau, 
1990). This concern is driven by the significant influence of attractive views  on 
property values (Dai et al., 2023; Inglis et al., 2022b; Ko et al., 2022; Li et al., 2022) 
and the localized effect of visual obstructions (Thibodeau, 1990). Views 
encapsulate an abstract summary of the urban environment from a single 
perspective, making it easier for individuals to notice changes in the landscape 
aesthetics compared to aspects such as noise or air pollution. Yet, despite the 
importance and attention  paid to visual impact assessment (Cilliers et al., 2023) 
and visual landscape research more broadly (Inglis et al., 2022b), access to a 
structured 3D approach to evaluate visual landscape at the building-level has only 
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been achieved recently, in the form of the Visual Capital (VC) index (A. R. Swietek 
& Zumwald, 2023).  

The computation of the VC index is composed of three essential parts: (1), the 
viewpoint visual share simulation, (2) a set of aggregation functions defining 
building view-metrics, and (3) a machine learning model that predicts net-income, 
with the latter serving as a proxy for economic preference based on the concept of 
amenity-based income sorting (Gaigné et al., 2022; Vukomanovic & Orr, 2014). 
The viewpoint visual share simulation leverages the raycasting algorithm 
originating from a set of façade points to determine the ‘visible’ part of a 3D city 
model, and recording the attributes of the intersected ray, including distance, 
obstructions, and landcover category. The generated viewpoint visual share 
dataset indicates what landcover categories are visible and in what proportion 
from a single viewpoint, before being aggregated to the building-level. Specifically, 
viewpoints are grouped by their associated building and a series of aggregation 
functions are mapped, resulting in a set of 57 view-metrics describing the spatial 
composition and configuration of visible landcover elements for each building. 
View-metrics include average sky exposure, maximum visual share of nature, 
visual access to lake-view, balance of elements in distance, richness of panorama, 
among others.  A neural network then estimates that weighted importance of these 
building view-metrics in predicting the commune average net-income. And finally, 
applying the fitted model to out of sample visual share data produces a building’s 
VC index. 

Unlike other view-based building performance metrics, VC is a single value and 
can be easily integrated within pricing models to determine the price-amenity 
gradient. In addition, it can easily be derived for newly generated design scenarios, 
thus providing a direct link between design performance evaluation (the view) and 
pricing. 

3.3 Material and Methods  

Automated Design Appraisal (ADA) is the application of a fitted pricing model to 
evaluate the economic preference of multiple design metrics. We demonstrate the 
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applicability of ADA by integrating it within a devaluation risk assessment 
focused on the potential visual impact of a simulated urban development. The 
workflow includes three parts: (1) pricing model (2) design simulation and (3) 
parametric design generator. To identify the potential financial impact, we 
measure the difference in predicted price between the simulated urban design 
scenarios (alt) and the as-built design scenario (ref). 

3.3.1 Pricing Model 

To analyze the relationship between the design attributes of a generated design 
scenario and real estate sale transactions, I use the hedonic pricing model. The 
commonly used approach in real estate economics literature quantifies the 
revealed preference, or the buyer’s willingness to pay, for a given characteristic. 
These building characteristics includes immutable attributes, including year of 
transaction, year of construction, etc., as well as mutable attributes, which are the 
variables of interest within parametric design and design evaluation. Eq. 1 
presents the functional form of the specified model, 

ln(𝑃)! = 𝛽" + 𝛽#(𝑉𝐶)! + 𝛽$(L)! +	𝛽%(M)! + 𝛽&(S)! + 𝛽'(T)! + ε!  (1) 

where the dependent variable ln(P) is the natural logarithm of the transacted sales 
prices for building observation i. In this paper we are interested in quantifying the 
price sensitivity with respect to visual impact, thus we use Visual Capital (VC) as 
the variable of interest. L is a vector of exogenous location characteristic, including 
the log-scaled distance to water bodies. M is a vector of neighborhood level 
characteristics, such as macro-location(Djurdjevic et al., 2008). T is a vector 
representing time fixed effects, i.e. year of transaction, and ε! is a vector of the 
unobservable characteristics.  

Given the importance of water-bodies on property valuation and on VC, we further 
limit the training sample to transactions of buildings located within 
agglomerations in proximity to a major lake, i.e. Biel/Bienne, Zurich, Lausanne, 
Geneva, Vevey–Montreux, Luzern, Thun, Neuchatel, and Zug. To control for 
differences between these urban regions of Switzerland, we condition a building’s 
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VC on agglomeration identity. Transaction data, including 7,651 sales 
transactions from years 2008 to 2017, and exogenous data points were provided 
and anonymized by Wüest Partner in compliance with Swiss privacy laws.  

3.3.2 Design Simulation 

A building’s design performance is measured with respect to its visual landscape 
quality.  

3.3.2.1 City Model 
To evaluate a building’s visual landscape, I first construct a Digital Twin, or 3D 
city model, using three separate publicly available databases: representing 
terrain, buildings, and vegetation (Federal Office of Topography swisstopo, 2018a, 
2018b; Vegetation Height Model NFI - 2019 Vegetation Height Model NFI (Current) 

- EnviDat, n.d.). The composed city model provides a 3D digital representation of 
the building stock and is used as the reference scenario (ref). Importantly, due to 
the mutability of 3D data we can subsequently alter the input geometries to 
represent design changes. The swissBUILDING3D database provides separate 3D 
geometries for a building’s facade and roof, which allowing the modification of the 
height of an individual building, e.g. add a story, without distorting the roof. The 
altered design parameters thus lead to a slightly modified city model (alt). To 
represent different design scenarios, I compile a set of structured design 
alterations that can be compared against one another and against the reference 
scenario. 

3.3.2.2 Performance Metrics 
Using the compiled city model, a viewpoint visual share dataset is generated and 
subsequently used to compute a range of view-metrics and the Visual Capital 
index, as described in Swietek et al (A. R. Swietek & Zumwald, 2023). Specifically, 
I compute viewpoints for 𝐽 buildings (𝐵) indexed by 𝑗. The 𝑗-th building has 𝑛 
viewpoints (𝐵()) situated on its façade, spaced apart by 8 meters across each floor. 

Importantly, only exterior walls are considered. For instance, in the case of two 
buildings joined by an interior wall (e.g. row of townhomes) they are considered as 
single joint structure. For each viewpoint 𝐵()	𝑤𝑖𝑡ℎ	𝑛 = 1,2, … , 𝑛, a 120-degree view 
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cone composed of 2600 rays is cast outward and the endpoint of intersection within 
the city model is recorded. The count of rays intersecting the same 𝑙 =
1,2, … ,20	landcover categories at 𝑑 = 1,2, … ,4	distance categories are summed and 
divided by the total number of rays(i.e. 2600), generating the visual proportions 
for 𝐵()	denoted by	𝑧*+. Visible proportions of landcover data for building j are thus 

represented by a (𝑛𝑥20𝑥4) array, denoted by 𝑍(. The values are derived from the 

swissTLM3D, COPERNICUS databases, describing whether the view is 
obstructed by a façade, roof, or vegetation; as well as the distance to visual 
elements. This procedure is referred to as the viewpoint visual share simulation, 
or visibility analysis. Next, the generated viewpoint visual share dataset is used 
to aggregate the land-use proportion viewpoint values to building level view 
metrics (for details see (A. R. Swietek & Zumwald, 2023)). This results in 57 view 
metrics describing the visual landscape for a given building, e.g. maximum share 
of lake-view, sky exposure, etc. Lastly, to generate the Visual Capital index, I 
apply the pre-trained neural network, from Swietek et al, to the newly constructed 
vector of view-metrics. 

 

Figure 12 (a) Abstract schematic of the proposed Automated Design Appraisal algorithm: step 1.) define the 
set of design parameters of interest; step 2.) update buildings within 3D city model according to design 
parameters, thereby creating an alternative design scenario; step 3.) compute building performance metrics 
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using building and micro-climate simulations – in this paper, we utilize a viewpoint visual share visibility 
simulation to generate a set of view-metrics and subsequently calculate the visual landscape quality, i.e. 
Visual Capital; step 4.) update vector of building attributes to include new performance metrics; step 5.) use 
fitted model to predict price of building with updated performance metrics. (b) Abstract schematic showing 
the application of ADA for a visual impact assessment in Lausanne. The proposed development, shown in red, 
represents the point of modification within a reference 3D city model. The spatial distribution of price impact, 
computed via ADA, is shown, with darker red representing greater impact on a building’s predicted price.  

3.3.3 Integrated Impact Assessment 

The determinants of risk are the degree of exposure and sensitivity to a given 
hazard(IPCC, 2023). In the context of this paper, a hazard is a proposed building 
development that may obstruct the view and degrade the visual landscape quality 
of nearby buildings. As such, I propose two case-studies: an impact assessment of 
a single hazard, and of multiple hazards.  

To measure the exposure of building j to changes in the urban form, we can 
iteratively perturb the underlying city model denoted by 𝑠,-. thereby creating a 
set of new design scenarios of length 𝑆, and measure the persistence of the 
performance values. The design evaluation procedure consisting of 𝑀 metrics (here 
𝑚 = 1,2, … ,57 view metrics) applied to building 𝑗 derived from the context of design 
scenario 𝑠, results in a 𝑀𝑥𝐽𝑥𝑆 matrix 𝑉/*0 of design performance values. To express 
the impact or change in performance metrics in a given building, 

𝛥𝑉	 = 𝑉/*0 − 𝑉,-. (2) 

Where Δ𝑉(𝑚) is a 𝐽𝑥𝑆 matrix and 𝑉,-.(𝑚) is a vector of length j, describing the 
design performance values of metric 𝑚 in the as-built design scenario 𝑠,-.across 
all included buildings 𝑗. To standardize the impact to represent the relative 
change,  

𝛥𝑉,1 = 23
3!"#

− 1	 (3) 

Thus, Δ𝑉(𝑚)(4,1 	describes the relative change in the value of metric 𝑚	for building 𝑗 

due to the proposed project s. To express the maximally exposed metric, I take the 
metric with the largest change for each building and scenario 



 A.R. Swietek  
 

 

84 

 𝑀𝐸𝑉𝑀( = 	𝑀𝑎𝑥5	R𝛥𝑉(𝑚)(4S⬚ (4) 

To derive the impact on predicted price Δ𝑌, I take the difference in the predicted 
prices of building 𝑗. Where	𝑌	is a 𝐽𝑥𝑆	matrix. The predicted price is calculated by 
applying the previously development pricing model to the sample region with 
updated values for building performance values, 𝑉/*0. Further, to identify the 
financial impact due to the effect on a building’s visual capital, I simplify the price 
impact equation by assuming no change across the other building’s attributes. 
Thus, 

𝛥𝑌 = 𝑌/*0 − 𝑌,-. ≈ 𝛽81𝛥𝑉(𝑉𝐶) + 𝜀 (5) 

3.3.3.1 Single Development 

The first case study examines the potential visual impact of the Rasude 
Development within a .5km radius of a proposed 15-story office project near the 
Lausanne train station (La Rasude reprend vie au cœur de Lausanne., n.d.; 
Quartier Rasude à Lausanne – Quinze Étages, «c’est Un Cadeau Aux Promoteurs», 
2023). Thus, one new design scenario 𝑠/*0 is a modified city model containing the 
proposed Rasude Development. The proposed massing, containing three distinct 
structures(L’association Perirasude, 2023), is designed in Rhinoceros 3D and 
added to 𝑠,-.replacing the existing structures. Next, the design performance 
simulation with respect to a building’s visual landscape quality is initiated 
(described in section 3.1.2) and spatial view metrics are calculated for both design 
scenarios. 

3.3.3.2 Regional Vulnerability 
The second case study pertains to assessing the risk of multiple hazards, the 
spatial distribution of vulnerability to land-use changes within a sample region. 
Unlike the first case study, it incorporates multiple design scenarios and contrasts 
the potential gain in value of the up-zoned building to the potential losses in value 
of its neighboring buildings. Specifically, using the process iteratively modifies 
each building in a sample by adding 1 floor (i.e. 5 meters) to the existing building 
structure. Thus, in a sample region of 204 buildings index by j, this design 
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augmentation results in 204 alternate design scenarios indexed by 𝑠. Using this 
set of design scenarios, we next compute the visibility performance of buildings in 
the sample region. Importantly, for each iteration, we dynamically limit the 
sample region to the point of modification and its nearest 9 buildings. This helps 
to reduce the compute time, while maintaining the buildings expected to be most 
vulnerable to the change within a sample. As a result of this procedure, 2244 
design performance simulation were executed: where in addition to the reference 
design scenario (no modifications), the 204 buildings were modified and the visual 
impact of each modification was assessed either from the perspective of the 
modified building itself or from the perspective of each of the nearest 9 neighboring 
buildings. This results in a sparse 𝐽𝑥𝑆 matrix Δ𝑉, where each design scenario 
corresponds to a specific modified building. Hence diagonal entries of the matrix 
of Δ𝑉 represent the impact of the modification on the building itself, or direct effect 
(𝐷𝐸). DE is a vector of size J that represent the increase (benefit) in a given metric 
at the modified site. 

𝐷𝐸(𝑚) = 𝛥𝑉(𝑚),𝑤ℎ𝑒𝑟𝑒	𝑠 = 𝑗 (6) 

Whereas the off-diagonal entries represent the impact of a modification on nearby 
neighbors, defined as local effects (𝐿𝐸).  

𝐿𝐸(𝑚) = 𝛥𝑉(𝑚),𝑤ℎ𝑒𝑟𝑒	𝑠	 ≠ 𝑗 (7) 

As LE maintains a two-dimensional representation, we additionally compute a 
vector of cumulative local effects and exposure to local effects. Cumulative local 
effects (CLE) illustrative to collective impact of a single modification on its 
neighboring buildings.  

𝐶𝐿𝐸4(𝑚) = ∑ Δ𝑉(𝑚)4( , 𝑤ℎ𝑒𝑟𝑒	𝑠	 ≠ 𝑗 (8) 

On the other hand, exposure to local effects (ELE; from the perspective of an 
unaltered neighbor) denotes the maximum change experienced across all design 
scenarios s. Put another way, this indicates the potential value at risk attributed 
to simulated land-use changes in the vicinity of a building.  
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𝐸𝐿𝐸(𝑚)( = 𝑀𝑎𝑥4(Δ𝑉(𝑚)(), 𝑤ℎ𝑒𝑟𝑒	𝑠	 ≠ 𝑗 (9) 

Figure 13 illustrates the spatial distribution via impact maps portraying maxVSH: 
Sky, the maximum proportion of sky visible from a single viewpoint. Further, an 
abstract graph network represents the relationship considered across the impact 
assessment metrics: ref, DE, CLE, and ELE metrics. 

 

Figure 13: Spatial distribution and abstract representation of the integrated impact assessment metrics used 
to visualize the distribution of impacts on maxVSH Sky, i.e. the maximum visible proportion of sky from a 
single viewpoint across all of a building’s viewpoints. Reference is the as-built condition of the city, Direct 
Effect (DE) express the gain in Sky Exposure as a result of the up zoning, Cumulative Local Effects (CLE)  
describes the gross cost imposed on its neighbors due up zoning at a given building, and Exposure to Local 
Effects (ELE) expresses the maximum potential loss across all of the unzoning scenarios tested.  

3.4 Results 

3.4.1 Value of a View 

We carry out a hedonic regression to understand the net effect of each included 
variable (see Methods) in predicting the sales transactions of included buildings. 
We are particularly interested in the coefficients for Visual Capital, as this learned 
parameter will drive variability across our integrated impact assessment tool. 
Table 8 shows parameter estimates across four pricing models where the natural 
logarithm of transacted prices is used as the dependent variable. We test four 
specified models (Table 1) to understand the interaction of Visual Capital across 
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two different location-based scenarios, fitting VC independent (model 1 and 3) or 
dependent (model 2 and 4) on the agglomeration buildings are located in. In 
addition, each location-based model excludes (model 1 and 2) or includes (model 3 
and 4) agglomeration and a macro-location indices (Djurdjevic et al., 2008) 
provided by Wüest Partner. The difference between the first and second model (as 
well as between third and fourth model) helps identify the variable importance VC 
has across agglomerations. The third and fourth model additionally control for a 
set of important covariates, including a macro-location index which describes 
desirability across communes. Thus, the difference between the third and fourth 
model, highlights the spatial variability of VC after controlling for both building- 
and macro-level covariates. Importantly, the ranked coefficients for 
agglomeration-specific VC remain consistent whether macro-location indices are 
included or not. A similar trend is observed for all model coefficients when 
comparing the third and fourth models, with the one notable exception being the 
coefficient associated with the macro-location indicator. This suggests that part of 
the index is explained by agglomeration-specific VC. The fully specified model, 
shown in column (4), indicates that the model explains up to 81% of the variability 
in sales transactions, and, relevant to this study, indicates that Visual Capital has 
a positive influence on price in the Lausanne agglomeration used for the two 
design scenarios.  

Table 8: Regression results across four models, where the dependent variable is the natural logarithm of the 
transacted price. Column (1) presents the regression results of the model that includes only the variable of 
interest, visual capital (VC). Column (2) presents the results of the model containing VC conditional on the 
agglomeration. Column (3) incorporates the fully specified model with an unconditional VC . Column (4) 
presents results for the fully specified model with VC conditioned on  lake-side agglomeration. Robust 
standard errors are shown in brackets and statistical significance is denoted at the following levels 
***p < 0.01, **p < 0.05, *p < 0.1. 

Parameters (1) (2) (3) (4) 

𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 
-50.62*** 
[3.85] 

-46.92*** 
[3.48] 

-55.47*** 
[3.03] 

-61.87*** [2.79] 

𝑉𝑖𝑠𝑢𝑎𝑙𝐶𝑎𝑝𝑖𝑡𝑎𝑙(𝑉𝐶) 1.62*** [0.04] - 0.27*** [0.03] - 

VC:	[Biel/Bienne] - 1.39*** [0.04] - 
0.29*** 
[0.03] 
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Parameters (1) (2) (3) (4) 

𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 
-50.62*** 

[3.85] 

-46.92*** 

[3.48] 

-55.47*** 

[3.03] 
-61.87*** [2.79] 

𝑉𝑖𝑠𝑢𝑎𝑙𝐶𝑎𝑝𝑖𝑡𝑎𝑙(𝑉𝐶) 1.62*** [0.04] - 0.27*** [0.03] - 

VC:	[Genève] - 1.54*** [0.04] - 
0.37*** 
[0.03] 

VC: [Lausanne] - 1.5*** [0.04] - 
0.35*** 
[0.03] 

VC:	[Luzern] - 1.5*** [0.04] - 
0.34*** 
[0.03] 

VC:	[Neuchâtel] - 1.42*** [0.04] - 0.3*** [0.03] 

VC: [Thun] - 1.42*** [0.04] - 
0.32*** 
[0.03] 

VC:	[Vevey–Montreux] - 1.49*** [0.04] - 
0.33*** 
[0.02] 

VC: [Zug] - 1.59*** [0.04] - 0.4*** [0.03] 

VC: [Zürich] - 1.54*** [0.04] - 
0.39*** 
[0.03] 

𝑌𝑒𝑎𝑟!"#$%#&!'($ 0.03*** [0.0] 0.03*** [0.0] 0.03*** [0.0] 0.03*** [0.0] 

log 𝑉𝑜𝑙𝑢𝑚𝑒 - - 0.37*** [0.02] 
0.39*** 

[0.02] 

𝑁. 𝑅𝑜𝑜𝑚𝑠 - - 0.06*** [0.0] 0.05*** [0.0] 

𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 - - 0.05*** [0.0] 0.05*** [0.0] 

𝐹𝑖𝑡𝑜𝑢𝑡𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 - - 0.16*** [0.0] 0.14*** [0.0] 

log 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒%)# - - -0.05*** [0.0] -0.08*** [0.0] 

𝐴𝑔𝑒 - - 0.15 [0.33] 0.34 [0.3] 

log 𝑃𝑙𝑜𝑡𝐴𝑟𝑒𝑎 - - 0.13*** [0.01] 
0.18*** 
[0.01] 

log𝑀𝑎𝑐𝑟𝑜𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 - - 0.67*** [0.01] 0.4*** [0.01] 

Adj. R-squared 0.21 0.36 0.76 0.81 

Observations 7651 7651 7651 7651 

R-squared 0.21 0.36 0.76 0.81 

 

Figure 14 provides an illustration of the varying price effect of VC across lakeside 
agglomerations. Additionally, it shows the range of VC values used to train model 
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4. Lausanne, displayed in red, has the fourth largest coefficient, and third largest 
maximum VC range.  

 

Figure 14: Price Effect of Visual Capital by agglomeration while holding the other model parameters constant. 
The black line represents the actual range of values used during model training. For comparison, Lausanne 
(the agglomeration used in the case studies), is shown in red.  

The remainder of the paper describes results from two case studies which apply 
the fitted pricing model: (1) the local visual impact on neighboring buildings due 
to a single proposed development in central Lausanne, and (2) the visual capital 
at risk due to localized up-zoning in the commune of Saint-Sulpice.  

3.4.2 Single Hazard  

The proposed 15-story Rasude development negatively impacts the visual metrics of 50% of 
buildings within a 500m radius. To understand the extent of visual impact, the largest relative 
loss across all view-metrics – the maximally exposed view metric (MEVM) – is computed and 

summarized across all buildings. Figure 15 illustrates that approximately 65% of the buildings 

have a MEVM of less than 1% relative change and that impact on both MEVM and prices are 

highly concentrated. Figure 15b shows among the most common negatively exposed view-metrics 

is sky-exposure, proportion of distant views (>1km), as well as the maximum share on water-body, 
industrial complexes, and nature, with each being impacted in some capacity for 20% of the 
sampled buildings. As expected, there are positive gains in view-metrics related to façade and near 
distance obstructions. Note, that the largest relative losses are for scarce view-metrics, such as 
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distant views and water-bodies; and the largest absolute changes are for more abundant view-
metrics, such as sky-exposure.  

To understand how price impact is distributed, I compare the aggregate valuations 
across all buildings in the sample region. Figure 15c illustrates that 44% of 
aggregate value lost is held by only 4% of the neighbors. They individually have 
losses greater than 5%, where the most price sensitive building lost 16% of its 
original valuation. Nearly 40% of the building stock account for the majority or 
63% of aggregate value lost, where each individual loss is between 0-5% of the 
initial valuation (Figure 15c). Interestingly, 8% of the buildings sampled gain 
value as a consequence of the change in urban form. An analysis of this building 
subset shows that they benefit from the development of the sky-line. Specifically, 
the minimal obstruction of positive views with an increase in the visual complexity 
of the panorama, results in a gain in visual capital, and, in turn predicted price 
(Figure 15). 

 

Figure 15: (a) ECDF of relative change of maximally exposed view-metric and predicted price for all buildings 
in the sample region. Maximum visual impact is defined as the maximum relative change across a building’s 
vector of view-metrics between the two design scenarios. Heavily skewed distribution indicates concentrated 
losses. (b) Summary of log fold changes of view-metrics for all buildings between two design scenarios, the 
design scenario with the proposed development versus the baseline, as-built condition. (c) Barplot of the 



Spatial Modeling for Building Design Evaluation 

 
 

91 

proportion of aggregate value lost for each level of price sensitivity, relative to the sample share of 
corresponding buildings. (d) Dot plot comparing the exposed view-metrics of buildings with Positive and 
Negative price sensitivity, suggesting some building benefits from additions to the ‘Sky-Line’ (Panoramic and 
Element Richness). (e) Series of effect-size maps following the developed method: 4-view metrics (lake-view, 
nature view, far-distance, and sky-exposure). (f) Effect size map of the predicted price impact  the proposed 
development site has on neighboring buildings (development shown in black). (g) Top ranked view-metric 
contributing to price risk at a given building. 

The spatial distribution of price impact expands radially from the proposed 
development site, yet, a disproportionate share of the aggregate losses is held by 
the adjacent neighbors to the north (Figure 15f). Figure 15e shows the spatial 
distribution of effect size for the sample regions for individual view metrics. As 
expected, the spatial pattern of exposure varies by view-metrics; contingent on the 
location and abundance of landcover elements. For instance, impacted lake-views 
are exclusively to the north of the development site (Lake Geneva is directly south 
on the development site); and impacted nature views are additionally found in 
pockets in the east and north west of the sample region (Jura Mountains to the 
west, Swiss Alps to the east, and French Alps to the South); whereas a radial 
impact zone appears for sky-exposure. Using the weighting importance of view-
metric in estimating visual capital, Figure 15g depicts the metric most responsible 
for driving the change in predicted price. For examples changes to desirable visual 
qualities – e.g. lake-views, are the driving determinant for the high price impact 
region.   

3.4.3 Multi Hazard  

Results from the regional simulation of up-zoning each building in the commune 
of Saint-Sulpice by one additional floor confirm that neighboring buildings face 
devaluation risk caused by nearby developments, with estimates as high as 5% of 
value lost for individual buildings. Despite the predicted price exposure to local 
effect (ELE) of individual buildings, the direct effect (DE) of most simulated single-
story additions results in aggregate housing price gain even after accounting for 
the cumulative local effects (CLE).  
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Figure 16 Barplot of the share of (a) altered buildings with newly gained or enlarged existing views (direct 
effects) of specific landcover elements.  (b) Share of exposed buildings with partial or full obstruction by view 
metric. (c) Spatial distribution of Lake-View direct effects, relative direct effect ranks, local exposure, and 
relative exposure ranks. (d) Boxplot of the Price effect across all design scenario; including direct (DE), 
cumulative local (CLE), exposure (ELE), and net effect. (e) Spatial distribution of Price Effects (DE and ELE); 
illustrating spatial variability of the number of impacted building to a specific hazard and the count of hazards 
a building is exposed to (Visual Risk). (f) Correlation plot of price effect metric and Urban and Environmental 
form attributes, with correlation values shown for significant values 𝑝 < .05. 

For direct effects (DE) at the site of alteration, the majority of absolute gain is 
defined by the enlargement of already visible abundant landcovers: vegetation, 
sky, mid-distance (Figure 16a). The most common new views, or the landcover 
elements not visible prior to the alteration, are local roads, industrial areas, and 
agriculture. Of the exposed views: landcover area identified as local roads, 
industrial areas, and agriculture are most at risk of complete obstruction. Figure 
16b shows that abundant view-metrics account for the majority of partial 
obstructions: including sky exposure and vegetation. The average loss of the 
maximally exposed view-metric (MEVM) is 10%, whereas 15% of the sample risks 
completely losing its maximally exposed view-metric. Additionally, potential 
visual impact is a function of the development’s location. Despite the large DE and 
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CLE values, the majority of change is explained by abundant and negative 
sentiment; desirable views account for smaller proportion due to their scarce 
nature and as such exhibit spatial patterns in change. Figure 16c maps the spatial 
distribution of lake-view changes, showing that buildings along the shoreline 
enlarge their lake-view the most, and inland buildings have the greatest relative 
gain. Whereas the exposed lake-views are distributed in two distinct pockets on 
the west and eastern edges of the commune. Thus, even though changes to 
individual view-metrics provide insight to the extent of exposure, they alone do 
not describe the overall impact, as the importance of the metric, or sensitivity to 
change in value, have not been accounted for. The following section describe 
results in terms of price, which can be thought of as weighted combination of 
building performance metrics according to the learned market preferences.  

3.4.3.1 Price Risk 
The automated design appraisal model (ADA) captures the price effect with 
respect to a given design change. The average direct effect of single floor additions 
in Saint-Sulpice result in a 4.4% price improvement, whereas the highest ranked 
building gains 12.5%. Interestingly, the rank of direct effect, or price gain, is 
weakly negatively correlated to both the rank cumulative local effects (CLE), i.e. 
social cost imposed, and exposure to local effects (ELE), or price vulnerability to 
local changes. Considering price change, the cumulative local effect (CLE) remains 
small compared to the direct effect (DE), i.e. price effect at the point of modification 
effect. Figure 16d shows that the vast majority of design scenarios are a net-
positive for Saint-Sulpice, with only 5 locations where the DE is less than the cost 
imposed through visual obstructions to neighboring buildings. Figure 16f maps 
the spatial distribution of price changes, showing several distinct pockets of 
buildings along the shoreline with the largest relative gain in value. Yet, the 
spatial distribution of value at risk does not follow the same spatial pattern, with 
multiple clusters forming for both inward and outward impact Figure 16e. To 
examine the apparent spatial pattern found in the analysis, I subsequently 
examine the relationship of price impact with characteristics of the urban and 
natural form. Figure 16f illustrates the correlation between the price effect metrics 
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and urban environmental form metrics, such as slope, building density, elevation, 
and spread. Although correlations are weak, they are significant, suggesting that, 
on average, urban form influences the price effect of simulated modifications. For 
example, buildings in low-density areas, greater distance to neighbors, correlates 
with larger benefits to alterations (DE) and smaller value at risk (ELE).  

It is additionally useful to understand the individual factors, in this case the view-
metrics, driving the spatial patterns in both price gain (DE) and value at risk 
(ELE) within the region. To examine this, Figure 17 depicts the change in a 
common set of view-metrics from two properties: one from a region of high price 
gain (DE), and another from a region of high price vulnerability (ELE). The first 
property (EGID 796374), sees benefits from the alteration, such as a new lake-
view, and increased view of natures with little risk to its view-metrics from 
neighboring local development. However, the second property (EGID), has its 4% 
visual share of the lake at risk of obstruction due to a single neighbor’s alterations, 
moreover its view share of nature is at risk of obstruction by multiple potential 
local developments.  
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Figure 17: Change in top weighted view-metrics for 2 separate properties, EGID 796374 from a region of high 
price gain and EGID 280091437 representing a region from high price risk. Points in grey represent the values 
for the reference scenario, or as-built condition; Blue points represent visual share value after alteration at 
the property; and the set of Red points represent the values after the modification it’s set of neighbors. Change 
in visual share (%) of view-metric is expressed for DE with green dashed line, and ELE with red dashed line. 
The relative change in listed in brackets. For example, the maximum visual share of water (maxVSH:Water) 
for EGID 280091437 in the reference scenario is ~2.3%; whereas it drops to .3% when EGID 280026324 builds 
up an addition floor, and rises to 8% when EGID 280091437 itself build up an additional floor.  

Summarizing the metrics driving price gain and risk, Figure 18 depicts the ranked 
feature importance for both price gain and risk across all buildings. For Saint-
Sulpice, maxVSH of water-bodies is the primary determinant of price gain for most 
site alterations (Figure 18a,b), and is a within the top 3 factors for nearly 60% of 
the building stock (Figure 18c). For price risk, due to the long coast, 
proportionately few buildings have exposed lake-views, thus metrics related to sky 
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exposure, such as the maximum visual share of sky, are more commonly the 
primary determinant of price risk to single-story up-zoning in Saint-Sulpice 
(Figure 18d,f), with exception of properties along the coast, where the gained 
façade (within Neutral Sentiment index) and lost view of roofs play a bigger role 
(Figure 18e). 

 

Figure 18: Predictive importance rank of view-metrics in driving (a) price gain and (d) price risk as a 
proportion of buildings. (b+e) Maps illustrate the spatial distribution of the first ranked view-metric, and the 
spatial distribution of (c +f) of the view-metric with largest impact on price: (c) maximum visual share of water 
and (f) and maximum visual share of sky 

3.5 Discussion 

Integrating large scale geometric computing with econometric methods offers an 
opportunity to infer the price effect of a proposed design alteration. Hence: this 
paper extends the literature in two ways: First, it presents a novel approach to 
estimate the financial value of procedurally-generated designs, which I refer to as 
Automated Design Appraisal (ADA). Second, it incorporates the ADA algorithm 
within a 3D urban design simulation to measure devaluation risks with respect to 
design changes. Further, focusing on the urban scale enables the quantification 
not just of the benefit of a given development at the site of modification, but also 
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of the local vulnerability to the proposed development, i.e. the cost imposed on 
neighbors by the point of modification. 

ADA relies on the assumption that the price of a building is the weighted sum of 
its individual attributes, also known as the hedonic price theory(Rosen, 1974). 
Though, unlike the vast hedonic pricing literature, this study takes the additional 
step to apply the fitted models to newly generated building and urban designs. 
Utilizing computational design and large-scale 3D geodatabases, the as-built city 
model is systematically perturbed by altering design parameters, thereby creating 
new urban scenarios. A subsequent analysis of the price changes relative to the 
initial as-built conditions help to confirm that urban land-use change has localized 
impact affecting nearby neighbors to a greater extent. An important aspect of this 
approach is its interpretability. It is possible to not only explore the impact at the 
point of modification and nearby buildings; but also understand the determinants 
of the underlying risk. The latter is achieved by investigating the persistence of 
specific exposed building attributes– such as lake-view, nature-view, sky-
exposure, etc.- and the aggregate valuation at risk due to these specific exposures. 
A common objection to local development is the immediate impact on visual 
landscape, which supports the use of Visual Capital in this study; however, future 
studies may extend this method by focusing on other environmental attributes, 
including noise pollution, thermal comfort, and air-quality, which are commonly 
used to raise objection to developments by the NIMBY movement, or more 
generally communities opposed to local development. Thus, this approach may 
prove beneficial to local communities interested in quantifying and 
communicating the visual and environmental impact in terms of local real estate 
valuation.   

A streamlined method to infer the price of computer-generated designs may 
provide further benefits: Generative Design tools may particularly benefit from 
ADA. Generative Design in architecture is an iterative design process that outputs 
feasible building designs under specified optimization functions. The proposed 
algorithm, ADA enables two new types of objective functions for architectural 
design optimization. First is optimizing valuation, whereby converting building 
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attributes into monetary terms allows Generative Design procedures to (1) 
quantify the importance of non-market goods, e.g. environmental quality such as 
the view, and (2) weigh tradeoffs between seemingly disparate building attributes 
(e.g. visual quality and programming). The second opportunity, is optimizing for 
social cost or the cost imposed on its nearby neighbors. It can be reasoned that 
developments which minimize the localized cost (whether gross cost or count of 
neighbors negatively impacted) also minimize the risk of local opposition. 
Evaluating the distribution effects- both direct and localized cost- could be 
particularly useful for urban planners and property developers who perform pre-
development site selection and feasibility studies. 

Although the method could be useful for both design optimization and distribution 
effect exploration, the approach does have its limitations. As with all hedonic 
analyses, inference is dependent on the specified model. Given that building 
attributes are highly correlated, results and parameter selection should be 
approached with care and scrutinized to assure meaningful interpretation. In this 
paper I study the distribution of price effects of urban development on visual 
impact. Thus, our results communicate price effects due to visual changes and 
ignore the changes from other environmental and economic changes that may 
arise simultaneously. Building upon this work, future studies can incorporate 
distribution effects stemming from changes to other environmental quality 
indicators: including noise pollution, thermal comfort, and air-quality. 

Lastly, the measures of exposure and sensitivity are ultimately derived from 3D 
city models. Thus, the level of detail of the underlying 3D model will define the 
resolution of the building performance metrics. That is, information at a higher 
fidelity than that of the 3D model will not be included in the evaluation. For 
instance, building facades in this study are all considered to be the same, ignoring 
differences in construction materials and textures; lakes are also considered the 
same, ignoring difference in pollution and geometry. To build upon this limitation,  
future studies may incorporate images as a way to improve the fidelity of the 
automated visual impact assessment.  
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3.6 Conclusion 

Economic performance objectives within Architectural Design Optimization have 
remained challenging to implement, and have thus far been limited to cost 
minimization, ignoring economic preferences. In this paper, I introduce a novel 
approach to infer the financial value of a generated design. The proposed 
Automated Design Appraisal produces building-level price predictions using local-
scale environmental performance simulations. Further, I integrate the algorithm 
within a visual impact framework to understand the property value at risk due to 
local development.  

Results from an impact assessment of a single proposed urban development 
indicate (1) losses are concentrated to neighbors closest to the point of modification 
and (2) a subset of buildings benefit from the development of the sky-line, 
confirming previous findings. Findings from a regional assessment show potential 
impact -both direct effects and localized costs- are a function of the local urban and 
environmental form. The spatial pattern of exposure varies by view-metrics; 
contingent on the location and abundance of landcover elements. Yet, despite the 
devaluation risk to individual properties, moderate urban development (single-
story up-zoning) is estimated to yield aggregate price benefits to low-density 
regions. 

Automated Design Appraisal provides a scalable approach to incorporate economic 
performance within Architectural Design Optimization procedures. Doing so, 
enables evaluating generative urban design procedures with respect to both the 
(1) predicted price and (2) devaluation risk imposed on nearby neighbors. The 
approach enables future studies to integrate devaluation risk within automated 
real estate valuation models, reveal mispriced real estate with respect to their 
local exposure 
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4  Conclusion & Outlook 

As cities continue to digitalize and as more sophisticated tools for assessing and 
integrating novel forms of data emerge, it becomes feasible to evaluate urban 
design decisions with respect to two dimensions: economic preference and 
environmental impact. With growing attention to the physical and transitional 
risks cities face, methods and tools that account for these two dimensions will be 
increasingly important to planners and policy makers. 

 This thesis was motivated by the lack of methods that account for the dynamic 
relationship between price and amenities, i.e. the price-amenity gradient. As such 
it set out to develop a method to evaluate the price effect- whether it be a direct 
gain or a social cost – of a design change at the concept design stage. Furthermore, 
it sought to apply this approach to model a risk that is particularly relevant to 
property owners as densification increases: devaluation risk of visual impact due 
to zoning reform.  

4.1 Main Contribution & Findings 

This thesis explores the concept of local area risk estimation (Section 1), and 
introduces GeoAI methods to model the devaluation risk of visual impact due to 
zoning reform by integrating building performance simulation (Section 2) with 
property valuation estimation techniques (Section 3). This section presents the 
unique contribution and findings according to each risk modeling stage:  

 Performance Simulation: Capturing visual landscape quality at the building 
level has been a persistent challenge. Existing methods largely focused on lighting, 
wind, or noise-based simulations. Section 2 introduces a viewpoint visual share 
simulation that quantifies the visual proportion of unique land elements and 
obstructions visible from a building’s set of viewpoints. To improve the 
interpretability of the viewpoint visual share geodatabase, Section 2 introduces a 
comprehensive set of view-metrics which describe both the spatial and aspatial -
referred to as the visual composition and configuration- attributes of the building’s 
visual landscape quality. By constructing view metrics for the entire building stock 
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of Switzerland, Section 2 identifies abundant and scarce visual elements, and 
reveals the spatial concentration of view-metrics relating to urban typology, 
natural landscape, and the identity of major agglomerations. 

 Performance Evaluation: The attribute space for visual landscape quality is 
far larger than that of other micro-climate and environmental features. The 
absence of a standardized metric to quantify views has limited derivative works 
that associate building-level urban environmental metrics with external factors, 
such as health (Section 6.1), or price (Section 6.2). To overcome this limitation, 
Section 2 constructs a Visual Capital index, that, based on the concept of income-
sorting, depicts the preference for a building’s viewpoints. Section 2 goes on to 
describe the primary drivers of visual capital – water-bodies and elements in the 
far distance – and illustrates the context-dependent nature of each metric, 
whereby the importance of a landscape element varies in the presence of another. 
Importantly, section 2 identifies that on average the visual landscape quality 
increases in settings of  both (1) low density, as well as (2) high density with 
moderately steep terrain. Further, by applying an unbiased clustering analysis, 
new boundaries of high visual capital are uncovered, thus identifying potentially 
undervalued properties – i.e. high visual capital in low-income communes. 

 Price of Performance: Properties featuring high quality environmental 
amenities typically command a premium on the market. Vistas and views of water 
bodies are commonly considered ‘luxury-goods’ sought after by high-income 
individuals. However, the lack of standardization in pricing visibility and visual 
quality – often reduced to 'line-of-sight' indices – impedes our ability to accurately 
capture non-linear and interaction effects. To address this, Section 3 utilizes the 
composite Visual Capital indices and estimates revealed preferences using the 
hedonic pricing model. By limiting the training sample to major lake regions in 
Switzerland,  Section 3 demonstrates that the coefficients for Visual Capital vary 
by lake region. This variation suggests that additional factors, not captured by the 
underlying visibility simulation and which differ across lakes, may further 
influence pricing estimates, such as environmental condition or market supply. 
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Importantly, Visual Capital serves as a macro-location variable (average listing 
price) and exerts a positive effect on sales transactions. 

 Impact of Design Choice: While densification is understood to critically 
contribute toward the transition to sustainable development, achieving public 
acceptance for development projects remains challenging. Section 1 and 3 
highlight the role of NIMBY (Not In My Backyard) attitudes in public acceptance 
and the negative externalities associated with increased densification. Existing 
methods to evaluate the impact of densification and similar urban design choices 
fall short in quantifying the devaluation risk posed by these negative externalities 
to property owners. To address this, Section 3 presents an automated visual 
impact assessment that measures the property valuation at risk due to local land 
use change. Central to this is Automated Design Appraisal (ADA) – a combination 
of methods developed in Section 2 and Section 3. ADA measures the change in 
predicted price across simulated design scenarios, providing both direct and 
indirect effects. Where indirect effects are the spillover effects onto nearby 
properties. Applied to a single hazard case-study, a new office tower development, 
Section 3 illustrates that ‘damages’ are concentrated within the  immediate 
neighborhood of the new development, whereas potential benefits (the 
improvement to the ‘sky-line’) are observed for buildings at further distances. 
Simulating multiple-hazards, single-floor additions across an entire commune, the 
method not only identifies buildings highly vulnerable to local land-use changes, 
but also distills which view-metrics drive this sensitivity.  
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5  Future Outlook 

This section highlights the outlook and addresses the limitations of each section. 
Further, it covers two promising future directions made possible by this research. 

5.1 Addressing Limitations 

This thesis explores the price effect of visual obstructions caused by urban 
development. As a result, the analysis focuses on how changes in view metrics 
influence visual landscape quality, therefore deliberately omitting the impact of 
simultaneous environmental and economic shifts. This provides an opportunity for 
subsequent studies to investigate how variations in other environmental quality 
factors, such as noise pollution, thermal comfort, and air quality, affect the 
underlying dynamics of the price-amenity gradient. Moreover, there is an 
opportunity to incorporate alternative estimator models to reveal additional 
predictive efficiency. 

 Since this research is based on 3D models, the resolutions of these models 
determine the accuracy and the level of detail of the building performance metrics. 
As a result, details finer than those provided by the 3D models are not included in 
our analysis (e.g. composition and condition of façades). To address this limitation, 
future studies could employ images to refine the precision of automated visual 
impact assessments. That is, update 3D models with the components and 
aesthetics captured by each image. 

5.2 Towards Preference Driven Design 

A novel aspect of this thesis is the introduction of Automated Design Appraisal 
(ADA) and its role in estimating devaluation risk. Looking forward, there is an 
opportunity to integrate ADA within architectural design optimization 
procedures, specifically in Generative Design. 

 One of the major challenges in the field of Architectural Design Optimization 
(ADO) is multi-objective optimization. ADO aims to produce a set of design options 
that satisfy objective functions, i.e., the Pareto front. However, without a clear 
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approach to weigh the results from each optimization task, ADO struggles to 
narrow down the design space towards solutions satisfying higher priority 
objectives. Essentially, to produce a single design recommendation, ADO requires 
a mechanism to manage trade-offs. As discussed in Section 3, past approaches 
(including the more recent 'human-in-the-loop' approach (Z. Jiang et al., 2022)) 
have relied on survey-based or stated preference methods, which can be biased 
and challenging to scale. 

 To effectively bypass these hurdles, ADA proposes to solve the multi-objective 
tradeoff problem by directly using design-induced price alterations. The predicted 
price for a simulated building design reflects the weighted combination of the 
design-focused objective functions, where the weight corresponds to the learned 
market preference for each design parameter. Further, we can use the predicted 
valuation as a new objective function within a generative design algorithm thereby 
exploring the design search space along the trajectory of increasing valuations. 

 This thesis additionally explores the concept of local area devaluation risk. This 
concept equally applies to ADO. Whereby a Generative Design procedure can 
evaluate the cost imposed onto the neighborhood, whether as a risk to local 
valuations or as public goods such as urban environmental quality. 

 Thus, ADA within ADO enables designs to leverage market data to quantify the 
financial performance of the design itself, as well as the spillover effects that the 
design imposes onto its neighbors. In (A. Swietek, 2023), I explain “While building 

design concepts are commonly assessed for engineering performance, including 

structural resilience (Mayencourt & Mueller, 2019), environmental quality (Gagne 

& Andersen, 2012; Natanian & Auer, 2020) and energy performance (Natanian & 

Wortmann, 2021; Shi et al., 2017), as well as for cost performance, including 

material usage (Weber et al., 2022) and sustainability goals (Ameen et al., 2015; 

Elshani, 2021), current approaches have stopped short of considering the financial 

value of a given design directly, or more broadly speaking the preference thereof…”. 
Figure 19 provides an illustration of the two additional objective functions that 
emerge as a result: maximize predicted valuation and minimize social cost. 
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Figure 19: Illustration of the outcome for a Generative Design simulation, where grey circles represent 
generated building designs and the black line delineates the Pareto Front of optimal designs. The left figure 
displays the traditional two objective functions found in Architectural Design Optimization literature: 
minimizing Material Cost (which encompasses efficiency, sustainability, etc.) and maximizing Engineering 
Performance (encompassing structural, thermal, etc. aspects). The right figure introduces the expanded 
dimensions made possible by integrating a property valuation model: maximizing property valuation 
(predicted price) and minimizing social cost (including local devaluation risk, NIMBY acceptability, etc.) 

 This approach to building design evaluation within a generative design 
procedure facilitates a more efficient exploration of the design space. A distinctive 
feature of this method is the ability to quantify the cost and benefits of a marginal 
unit of a non-market good. For instance, the addition of a tree or vegetation to a 
proposed development, previously seen merely as a cost, can now be evaluated for 
its contributions to the design's value. With this approach, the inferred value 
provided by non-market goods such as urban amenities is documented. Since the 
interpretation of marginal price effects reflects revealed preferences, this method 
leads to the creation of building design solutions that are optimized not only for 
valuation but also for market preference: Preference-Driven Generative Design. 
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6  Supplements 

6.1 Mini-Study: UEQ, Urban Health, Energy Consumption 

In this section, I illustrate the usefulness of performance metrics by presenting results from 
a small case study. It is known that environmental quality of the built environment directly 
contributes to both the health and quality of life of an individual by reducing stress, improving 
concentration, and increasing productivity. This can be shown by investigating differences in 
urban environmental quality (UEQ) indicators across spatial clusters of years of potential life 
lost or gained (YPLLG), a mortality metric. To do so, we can build on previous socio-economic 
work on life expectancy inequalities using existing individual-level mortality data in the 
canton of Geneva, Switzerland (Ladoy et al., 2021), and take advantage of environmental data 
from the open-source Swiss Topo and SwissBuildings3D database. Specifically; solar 
irradiation [kWh/m2/Jahr], road traffic noise [db], air temperatures [°C], nitrogen dioxide 
(NO2) concentrations [ug/m3], and the visual share of vegetation and visible elements in the 
far distance [%]; as quantitative measures representing daylighting, noise pollution, thermal 
comfort, air quality, and visual quality.  

 

Table 9 Urban environmental quality metrics and their underlying data source.  

Results show YPLLG to have a spatial structure within Geneva, and substantial 
differences in UEQ are observed across regions of high and low spatial 
autocorrelation, when computed using robust Local Moran clustering methods. 
Further, controlling for UEQ covariates reduces the size of these initial high and 
low Local Moran clusters of YPLLG by 92% and 81%, suggesting that UEQ could 
explain the spatial pattern of the mortality metric. Based on these results we can 
infer the benefits of high-resolution UEQ. Public health policy and urban health 
initiatives could benefit from a greater understanding of a region's UEQ. 
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Table 10 Environmental features (including solar irradiance, road noise, air quality, thermal comfort, view 
metrics) help to partly explain the spatial structure of the YPLLG in Geneva  

In a second small case-study, I explore the questions: Does Building Level Urban 
Environmental Quality influence energy consumption behavior? To do this, I use 
an 11-year sample of Heat Expenditure for a sample of the Geneva Building Stock, 
8641 buildings. Compiling the micro-climate data, I develop UEQ indicators at 
property level by taking the maximum raster value within a 100m buffer zone. 
Using a bootstrap approach, we find that building level indicators improve the 
model’s predictive power, and the solar metrics, daylighting and thermal comfort, 
have a small, yet, significant influence (when compared to age or size) on a 
building’s renovation propensity, Figure 20.  

 

Figure 20: Effect of Building Level Urban Environmental Indicators on Renovation Propensity.  

While overall energy consumption declined in the period between 2010 and 2022, 
we can be seen that buildings in hotter urban areas, e.g. city center, have seen the 
strongest declines in energy consumption.  
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6.2 How view determines well-being and value 

Adam R. Swieteka,*, Jacqueline Schweizerb 

a Laboratory of Environmental and Urban Economics (LEURE), École 
Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland 

b Wüest Partner, Zurich, Switzerland 

 

Abstract 

With a digital twin of Switzerland’s building stock, we are able to derive a range 
of view-metrics, such as a building’s visual share of a lake. This allows us to 
measure the financial impact of visual elements on housing prices at a previously 
unattained level of resolution. We find that large views of lakes and cities in the 
far distance have the strongest impact on the sale price; however, we find the 
financial influence of the studied visual elements are highly-context dependent. 
The analysis provides a rich picture of how visual quality varies across the Swiss 
building stock and within a given building. 

6.2.1.1 View in Real-Estate 
View qualities are commonly understood to play an important role in how 
individuals perceive landscapes and how they make decisions. Recent 
neuroscience research highlights for instance the unconscious influence of fractal 
patterns on visual perception and well-being. Optimal fractal dimensions (i.e. 
nature scenery) greatly reduces stress and induces the release of endorphins 
(Brielmann et al., 2022). Further, distant backgrounds (>1km) tend to command 
a greater share of people’s attention than objects in the mid-ground (150-1km) 
(Hull & Stewart, 1995). Both the aspect of depth perception and visibility of fractal 
patterns (such as trees) are thus relevant aspects to consider in the context of the 
built environment. This is backed up by urban health and indoor research 

 Article published with Wüest Partner 

Swietek, A. R*, M. Zumwald, J.Schweizer “How view determines well-being and value” (2022) 
https://www.wuestpartner.com/ch-en/2022/11/07/how-view-determines-well-being-and-value/  

https://www.wuestpartner.com/ch-en/2022/11/07/how-view-determines-well-being-and-value/
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indicating that a high-quality window view improves a worker’s mental state and 
sleep quality, reduces stress, and boosts creativity (Al Horr et al., 2016; Frontczak 
& Wargocki, 2011). 

What we see not only influences our well-being, but can also have an effect on 
rents or real-estate value. View and visual quality metrics explain price 
differences in Geneva multi-family (Baranzini et al., 2008), as well as Manhattan 
office rentals. In the latter case, office spaces with high access to views had a 6% 
net effective rent premium compared to spaces with low view access (Turan et al., 
2021). 

While previous analyses have highlighted the revealed preference – higher 
premiums – for high-quality window views, they have, for the most part, focused 
on smaller case-studies, relying on simplified proxy variables. Thus, with the new 
ability to quantify the view with orientation-specific and 3D-based metrics, we 
have the opportunity to analytically evaluate the financial value of a view at a 
higher resolution and with larger geographic coverage. 

6.2.1.2 Our view data: Derived from a Digital Twin 
Digital twins or simulated 3D urban environments allow researchers to capture 
information based on elevation and orientation, enabling a more comprehensive 
and quantitative definition of a view. Our view database consists of 32 mio. 
viewpoints from building facades across Switzerland. Each point represents the 
visual landscape as seen through a virtual window, allowing the quantification of 
a view in terms of the composition and configuration of visual elements. 
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Figure 21 Schematic of the Viewpoint Visual Share geodatabase 

Concretely the Digital Twin consists of an exact 3D representation of all buildings 
and topologies, view-relevant point of interest data, such as mountains, nuclear 
power plants, power transmission lines, and different land surface types such as 
roads, forest, lakes etc. This allows us to model what is visible from different floors 
from every side of the building. One viewpoint contains the information about the 
share of facades, roofs, lakes, vegetation and undesirable structures, such as high-
voltage power transmission lines. 

Visual landscape elements can vary in scarcity. For instance, a meager 4.6 % of 
the Swiss building stock has a 1% view onto a waterbody (e.g. river, lake); whereas 
57.6% has a 1% view of nature. Abundance of such visual elements further varies 
by location; for instance, the average building in Basel will have a 18.7% view of 
vegetation, compared to 26.7% in Geneva. 

Urban form and natural terrain play a significant role in determining the local 
supply of views. If we consider the coastal cities of Lausanne and Zürich, and 
examine solely the distribution of lake-views; a few interesting patterns emerge: 
Buildings in Lausanne are not only more likely to have lake-views, but also tend 
to have a larger visual share if they do. However, there are proportionately more 
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buildings in Zürich with exceptionally good lake-views (total share of over 10%), 
indicating a higher degree of inequality with respect to access to lake-views across 
these two cities. Considering the location of the buildings with the best lake-views, 
it becomes evident that, while the hilly topography of the north-eastern shore of 
Lake Geneva (Lausanne, Lavaux, Vevey, Montreux) increases the propensity of 
above average views far away from the lake, the clustering within 1.5 km of the 
lakeshore in Zürich creates a natural scarcity of high-quality lake-views. 

Economically, scarcity of goods typically results in a higher willingness to pay 
which may contribute to the competitiveness of Zürich’s housing market. These 
observations are of course intuitive, however, the ability to quantify the national 
supply of views opens up new avenues to measure our cities and improve the 
accuracy of property evaluation models. 

 

Figure 22 Plotting the geographic footprint of lake-view buildings, colored by the size of their respective 
largest view, reveals the differences in supply of lake-view buildings, between Lake Geneva and Lake Zürich. 

6.2.1.3 View influences Home prices in Switzerland 
We examine the effect of different visual elements in Switzerland on house prices. 
Specifically, we define our set of view attributes as the maximum visible share of 
a selected variable for a given building; e.g. a 5% lake-view. Controlling for 
standard structural, accessibility-, and environmental characteristics, we use the 
hedonic pricing model (Rosen, 1974) to determine the implicit price of our 
attributes of interest. Under this model, we find that homes with a larger view of 
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a lake command an 11% premium on average; whereas larger views of nature, on 
average, trade at a 1.6% discount. Yet, a closer look reveals that while particular 
visual features, (i.e. lake-view or view of a city in the distance see figure), have 
large price effects that are globally true, others vary spatially and are highly 
context-dependent. For instance, larger views of nature trade at a 1% premium in 
wealthy-urban areas; as opposed to a 1% discount in the peri-urban neighborhoods 
of mid-sized cities. 

 

Figure 23 The x-axis shows the highest value (share as %) per building of the respecting view element. The 
y-axis shows the predicted valuation (in thousands of CHF) of a single-family home with a given visual share, 
while controlling for other predictors used in our hedonic model. Left: Marginal effect of a view of building 
elements in distance (1km). Right: Effect of lake-view on transaction prices. 

6.2.1.4 From macro- to nano-location 
When describing the location of a property, the distinction between macro- and 
micro-location has been established. In Switzerland, the macro-location, i.e. the 
large-scale spatial classification, is usually represented by the municipality. The 
micro-location describes the small-scale location characteristics that differentiate 
within the macro-location. 

In addition to the identification of a location and the assignment of the associated 
location characteristics, the conversion of this collected information into economic 
categories is of decisive importance. In this context, the value is derived from the 
scarcity of the spatial bundle of goods: the rarer a certain combination of desirable 
site characteristics occurs in an area, the higher its economic value is in principle. 
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Thus, land with a lake-view fetches significantly higher prices than land without 
one, because it is rare – at least in Switzerland. A micro-location criterion only 
becomes price-relevant if it is also an exclusive attribute that is not available in 
other locations in the same macro-location. 

With the growing availability of high-resolution spatial data, a third level of 
location quality has found its way into the valuation practice: the nano-location. 
This term is used to define the quality of location of an apartment within the 
building. E.g. an apartment on the top floor has different views than an apartment 
on the ground floor and a south-facing apartment has more daily sunlight than a 
north-facing one. The nano-location introduces an additional spread of willingness 
to pay within the price level of the macro- and micro-location. Our view database 
allows for data-driven assessment of the nano-location. 
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6.3 Supplementary Material for Visual Capital Article 

 

Figure S 1: (A) k-fold cross validation methodology. (B) Model fit results from 100 iterations, i.e. 1000 models. 
(C) Low performing models were tested on lower income communes, suggesting view-data better explains 
average income in high-income communes, than in low-income communes. (D) Boxplot of model fit results by 
Agglomeration. (E) Choropleth plot of average commune R2-score across 100 models. Majority of scores are 
normally distributed between .28 and .34, and Zurich holds most of the high and low scoring outliers 

A k-fold cross validation procedure confirms the robustness of the methodology, 
with a normally distributed model performance (mean of R2-score = .32, standard 
deviation = .09) consistent across agglomerations. Communes within the Zurich 
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agglomeration accounted for most of the high and low scoring outliers where the 
neighboring communes of Zumikon and Erlenbach represented the lowest and 
highest R2-scores respectively. The suboptimal  performance model was limited to 
instances where lower-income communes were enriched in the test set  

 

Figure S 2: Figure depicts summary statistics for view-metrics across 10 agglomerations in Switzerland 
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Figure S 3: Figure depicts summary statistics for view-metrics across the 8 major urban typologies in 
Switzerland 
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Figure S 4: Figure depicts summary statistics for view-metrics across 5 landscape typologies in Switzerland 
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Figure S 5: (A) Heatmap depicts the correlation between view-metrics and prediction results from each of the 
regression models tested (B) Heatmap depicts the correlation between non-view metrics and the prediction 
results from each of the regression models tested in this study.  
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Figure S 6: (A) Comparison of the fitted line on Prediction vs Actual test and training data (B) Choropleth 
map of fitted values for buildings with 3 adjacent lake-shore communes in Lausanne, for each of the 6 models 
tested.  

We find the results are robust across all tested model architectures. Specifically, 
the correlation of each model’s prediction against individual metrics is consistent 
across models. XGB/RF Model perform best, having similar test-set results, 
however, RF does tend to overfit to the training data, with considerably higher 
training set r2 indicates. This is most evident in the attached figure showing the 
spatial distribution of prediction in 3 neighbouring communes of increasing net-
income. Our goal is to calibrate scores on the average net-income but extract 
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distribution of results The RF model’s predictions are closely related to the 
administration boundaries with minimal variance. Importantly, XGB is 
considerably faster than RF (10 seconds vs 6 minutes), allowing us to perform an 
extensive k-fold testing (1000 total iterations) to further validate robustness. 
Considering the promising results obtained, future research can explore the 
optimization of neural networks to potentially enhance the performance and 
accuracy of predictions in similar and new contexts, namely floor-level predictions. 
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Figure S 7: SHAP value summary plot for fully trained XGB, gradient boosted regression model 
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Figure S 8: Comparison of lake shore agglomeration of  Zurich, Zug, Lausanne and Geneva's ECDF of Visual 
Capital. Spatially controlled VC is the maximum value for each 1-km2 hexbin aggregation. The figure shows 
that both the majority of the land and building stock in Zurich has substantially lower VC than Geneva. Yet, 
some of the highest values appear in Zurich in a small portion of the building stock that take up an equally 
small portion of the land area. 
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Figure S 9: Boxplot describes the Visual Capital by Distance to the nearest lake for the major agglomerations 

 

Figure S 10: Heatmap depicts the average and skewness of Commune Level Income (CLI) stratified by Terrain 
Slope and Building Density 
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