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Abstract

In computational hydraulics models, predicting bed topography and bedload transport with

sufficient accuracy remains a significant challenge. An accurate assessment of a river’s sedi-

ment transport rate necessitates a prior understanding of its bed topography. Therefore, we

designed a machine learning model to deduce bathymetry from cost-effective flow surface

data, i.e., velocity fields. This model was applied to three case scenarios, especially at the

confluence of the Kaskaskia River and Copper Slough in east-central Illinois, United States of

America. The results demonstrated the model’s effectiveness in gravel-bed river bathymetry

estimation.

Although the bed topography can be deduced with good accuracy using indirect approaches,

predicting bedload transport still faces a high level of error. One accepted reason among

scientists for such high errors is that bedload transport is a noise-driven process. The bed-

load transport depends on many non-linearly varying parameters with various time and

space scales, and these parameters are interrelated. Additionally, the fluctuations in bed-

load transport significantly influence several aspects of morphodynamic variations, such as

bedform and bank erosion. Hence, the spatio-temporal variability of the bedload transport

rate is of great importance as an inherent characteristic of gravel-bed rivers. To account for

these fluctuations, we developed and validated one- and two-dimensional stochastic bedload

models.

In the next step of this thesis, we aim to examine the one-dimensional stochastic bedload

model through numerical simulation. To this end, bedform development and bedload trans-

port rate in narrow gravel-bed flumes under supercritical flow regimes have been studied.

This examination employs a numerical solver based on the one-dimensional depth-averaged

Saint-Venant–Exner equations, integrated with a stochastic bedload model. In this work, we

have proposed closure analytical formulas to parameterize the mass exchange rates between

the flow and the bed. The numerical solver is implemented by the Finite Volume Method.

While the stochastic numerical solver provides a single realization of reality, its key character-

istics oscillate around mean values, allowing for meaningful comparisons between numerical

outcomes and experimental datasets. The numerical studies concentrate on three key aspects:

i. the rate of bedload transport; ii. the amplitude and wavelength of the antidunes; and iii.

their migration velocity. These numerical predictions are examined by applying the solver to
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two laboratory datasets.

Finally, the last aim is to develop a two-dimensional stochastic bedload model that incorpo-

rates fluctuations and computes the random time variations in particle activity. To achieve

this, the one-dimensional morphodynamic model is generalized to two dimensions. A linear

stability analysis was carried out based on the developed governing equations, yielding neutral

curves that align with the experimental dataset drawn from the literature. Subsequently, a

numerical solver is developed based on the Finite Volume Method. The two-dimensional

depth-averaged solver was used to study alternate bar development. It has been applied to

gravel-bed experiments conducted in a long and wide gravel-bed flume under steady-state

flow conditions. The numerical outcomes successfully captured the bedload transport rate,

bar formation, and their growth rates in line with experimental data.
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Résumé

Dans les modèles d’hydraulique numérique, prédire la topographie du lit et le transport

solide avec une précision suffisante reste un défi majeur. Une évaluation précise du débit

solide dans une rivière nécessite une compréhension préalable de la topographie du lit. C’est

dans ce contexte que j’ai conçu un modèle d’apprentissage automatique pour déduire la

bathymétrie à partir de la mesure de la vitesse à la surface libre de l’écoulement. Ce modèle a

été appliqué à trois scénarios, dont un cas de terrain (la confluence de la rivière Kaskaskia et

du Copper Slough dans le centre-est de l’Illinois, États-Unis d’Amérique). Les résultats ont

montré l’efficacité du modèle dans l’estimation de la bathymétrie des rivières à lit de gravier.

Bien que la topographie du lit puisse être déduite avec une bonne précision en utilisant des

approches indirectes, la prédiction du transport de sédiment est associée à des incertitudes

significatives. Une raison évoquée parmi les scientifiques pour de telles erreurs est que le

transport solide par charriage a une composante fortement aléatoire. Le charriage dépend de

nombreux paramètres variant de manière non linéaire sur différentes échelles de temps et

d’espace, et ces paramètres sont interdépendants. De plus, les fluctuations du débit solide

influent fortement sur les processus morphodynamiques, tels que la formation de dunes et

l’érosion des berges. Par conséquent, la variabilité spatio-temporelle du débit solide est d’une

grande importance comme caractéristique inhérente des rivières à lit de gravier. Pour tenir

compte de ces fluctuations, j’ai généralisé et validé des modèles stochastiques de transport

sédimentaire par charriage pour des écoulement unidimensionnels et bidimensionnels.

Dans la seconde partie de ma thèse, j’ai résolu les équations du modèle stochastique de

charriage à l’aide d’un modèle numérique dans le cas unidimensionnel. Cela m’a permis

d’étudier le développement des formes du lit et le débit solide dans des canaux étroits à lit

de gravier pour des régimes d’écoulement supercritiques. Cette étude emploie un solveur

numérique basé sur les équations moyennées selon la hauteur appelées équation de Saint-

Venant–Exner auxquelles était adjoint un modèle stochastique du charriage. Ces équations

doivent être fermées à l’aide d’équations paramétrisant les taux d’échange de masse entre

l’écoulement et le lit. Le solveur numérique est fondé sur la méthode des volumes finis. Bien

que le solveur numérique stochastique fournisse une seule solution parmi d’autres et ne

fournisse pas directement la solution moyennée (moyenne d’ensemble), on observe que les

valeurs prédites de débit solide oscillent autour des valeurs moyennes, ce qui permet de
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comparer les résultats numériques et les données expérimentales. Les études numériques

se concentrent sur trois aspects clés : i. le débit solide par charriage; ii. l’amplitude et la

longueur d’onde des antidunes; et iii. leur vitesse de migration. Ces prédictions numériques

sont examinées en appliquant le solveur à deux groupes distincts de données de laboratoire.

Dans la dernière partie de ma thèse, j’ai développé un modèle stochastique de transport

sédimentaire bidimensionnel moyenné. Pour ce faire, j’ai généralisé le modèle morphodyna-

mique généralisé aux deux dimensions de l’espace (les équations restant moyennées selon

la hauteur). J’ai réalisé une analyse de stabilité linéaire des équations du mouvement. J’ai

montré que les courbes neutres que j’ai obtenues sont cohérentes avec l’ensemble de données

expérimentales tirées de la littérature. Enfin, j’ai développé un solveur numérique fondé sur

la méthode des volumes finis. Le solveur bidimensionnel moyenné selon la hauteur a été

utilisé pour étudier le développement des bancs alternés. Il a été appliqué à des expériences

de lit de gravier réalisées dans un canal long et large à lit de gravier dans le cas d’écoulements

supercritiques permanents. Les résultats numériques prédisent des débits solides qui sont en

bon accord avec les données expérimentales.
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λ′ = 10s−1, µ = 4s−1, σ = 5s−1, ūs = 2m/s, and λ̃ = λ′/∆x. The approximations
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1 Introduction

1.1 Motivation

The study of particle movement within fluids has attracted scientists’ attention for a long time.

Historically, one of the pioneering observations in this domain was documented by Robert

Brown (1773–1858), who studied the kinetic behavior of pollen grains suspended in an aqueous

medium (Brown, 1828). The movement of granular materials requires an agent (Costa, 2016).

Gravitational forces can initiate movements leading to phenomena such as landslides and

debris flows (Takahashi, 1981). In addition, liquid currents can instigate sediment movement,

a phenomenon evident in river systems (Abbaspour et al., 2007). Moreover, atmospheric

currents, i.e., wind, can cause particle movement, which is commonly observed in desert

environments and known as aeolian transport (Kok et al., 2012; Wang et al., 2014).

The study of sediment transport is important in elucidating the mechanisms underlying the

morphological evolution of the earth’s surface, including domains such as sedimentary geology

and geomorphology (Hauer, Leitner, et al., 2018; Tao et al., 2019). Furthermore, this area of

study provides insights into the possible effects of infrastructural construction on the riverine

environment, a concern central to environmental engineering (W. Graf et al., 2016; Kondolf,

1997). Sediment dynamics also play a crucial role in marine ecosystems and in the design,

construction, and protection of critical and fundamental infrastructure in a country (roads,

dams, and bridges) by decreasing the risk of river bank erosion, as addressed in hydraulic

engineering (Hauer, Wagner, et al., 2018; Rinaldi & Casagli, 1999). Such studies help reduce

the risk to human life and crucial infrastructure by facilitating accurate predictions about the

size, duration, and location of erosional and depositional events.

Different climate change scenarios are depicted for Switzerland 2050, showing a rise in average

precipitation, frequency, and intensity, with precipitation occurring more frequently as rain

rather than snow (OcCC, 2007), which may cause torrential floods. Torrential floods are

common hazards that affect human life in various regions worldwide, leading to substantial

economic implications due to intense erosional and depositional events. For instance, a 2017

landslide in Bondo, Bregaglia, Switzerland, released three million cubic metres of debris, as
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(a) (b)

(c) (d)

Figure 1.1: (a) Bondo village after the landslide in August 2017, marking Switzerland’s most
significant landslide over 130 years, resulting from three million cubic metres of debris from
the Piz Cengalo mountain. ©Gian Ehrenzeller. (b) Landslide of 10000 cubic meters fell on
the village of Gondo, Valais ©Union of cantonal fire insurances, commission for natural
hazard damage prevention. (c) Persistent heavy rains submerged large areas of Switzerland’s
northwest and center. The flood impact on the River Aare is shown here, notably affecting
parts of Olten, Switzerland. ©Swissinfo.ch. (d) The record-breaking flood of August 2005,
primarily impacting the cantons of Luzern, Obwalden, Bern and Url in Switzerland. A picture
from the submerged Ennetburgen, Switzerland. ©Swiss Air Force.

shown in Fig. 1.1(a). This incident resulted in economic losses of about 41 million CHF. In

the fall 2000, another notable mudslide occurred in Gondo, Valais, Switzerland as depicted in

Fig. 1.1(b). It destroyed the protective wall constructed to shield the village from such disasters,

causing 13 deaths and much damage to the village.

In 2007, northwestern Switzerland experienced extensive flooding after two days of heavy

rainfall, leading to damages exceeding 400 million CHF. The aftermath of this deluge on the

River Aare is shown in Fig. 1.1(c). Notably, the most expensive flood ever documented, often

refereed to as ’costliest flood’, happened in central Switzerland in August 2005 (Badoux et al.,

2014). This event, shown in Fig. 1.1(d), caused widespread destruction to public infrastruc-

ture, residential, commercial, as well as agricultural areas, resulting in losses estimated at

approximately 3,000 million CHF (Hilker et al., 2009). Overall, from 1972 to 2011, erosional
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and depositional events due to torrential floods, has resulted in total financial losses ranging

between 4.3–5.1 billion CHF (Badoux et al., 2014).

If we cannot prevent torrential floods, we must learn to adapt to and live with them. Con-

sequently, thorough research into torrential floods becomes imperative. The alterations in

riverbed morphology and the dynamics of sediment transport are primary factors that in-

fluence flood risk (Nones & Guo, 2023). One of the pioneers in sediment transport research

was Paul François du Boys, who undertook significant studies on the Rhone River (du Boys,

1879). He was among the first to introduce a systematic methodology for sediment transport

prediction in gravel-bed rivers, suggesting that a requisite shear stress is essential to initiating

particle movement (Hager, 2005).

Sediment transport can occur in three modes: bedload, suspended load, and wash load

(Komar, 1980). The mode of sediment transport can be determined based on the Rouse

number, a non-dimensional number that indicates how sediment will be transported in a

current. It is calculated as the ratio of the sediment’s settling velocity, denoted by ws , to the

shear velocity, denoted by u∗—the rate of fall compared to the turbulence strength imposing

on the particles (Rouse, 1937). The Rouse number is given by ws/(κu∗), where κ is the von

Kármán constant. If it is more than the limit, ws/(κu∗) > 2.5 meaning that the mode of

sediment transport is bedload (Rouse, 1938). According to Rouse, 1938, the type of sediment

transport is suspension when 0.8 < ws/(κu∗) < 2.5 and ws/(κu∗) < 0.8 indicate wash load.

In gravel-bed rivers, the predominant mode of sediment transport is bedload transport (Van

Rijn, 1984a). The bedload transport is defined as those of particles that spend the majority

of the time at the bottom of the stream, in the bed layer, in contact with the bed (Julien,

2010). These particles experience such things as being entrained into the flow, carried a short

distance, and deposited. Their motions can be categorized into three types: rolling, sliding,

and saltation (jumping) (W. H. Graf & Altinakar, 2000), all occurring within a thin layer of fluid

(Drake et al., 1988). The specific movement of a particle depends on its intrinsic properties,

its interaction with other particles, and flow characteristics. As particles in bedload transport

consistently interact with the riverbed, the bed topography can significantly influence the

bedload transport rate (Church, 2006).

1.2 Bed topography

An accurate assessment of a river’s sediment transport rate requires a thorough understanding

of its bed topography (Church, 2006). While direct bathymetric measurements, e.g., wading

or multi-beam imaging sonar systems, provide this information (Marcus, 2002), they might

incur significant costs and be time-consuming. As a result, bathymetry is often deduced via

indirect methodologies, e.g., remote sensing techniques (Garambois & Monnier, 2015). These

techniques leverage data that is either readily accessible or effortlessly collected and possesses

a strong correlation with bed topography.
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As per Smith and McLean, 1984, there exists a strong relationship between bed topography and

surface flow data, such as the velocity field, especially under one-dimensional flow conditions.

Accessing the velocity field data is generally more straightforward compared to bed topography.

Various methodologies, including the drifter global positioning system (GPS) (Landon et al.,

2014), particle image velocimetry (Lewis & Rhoads, 2015), and synthetic aperture radar (Biondi

et al., 2020), can facilitate the velocity field measurements.

Recently, machine learning techniques have been used in geophysics and hydraulics (Yu & Ma,

2021; Zounemat-Kermani et al., 2021) especially for inferring bathymetry from velocity fields

(Almeida et al., 2018; Forghani et al., 2021; X. Liu et al., 2022). The interest of these models

in water resources modeling is growing due to their ability to estimate complex relationships

(Bermúdez et al., 2018; Bhattacharya et al., 2007; X. Liu et al., 2022; Yaseen et al., 2015).

Many studies have shown the successful application of data-driven machine learning models

across a wide spectrum of hydrological processes, including topics like bathymetry inference

(Ghorbanidehno et al., 2021; X. Liu et al., 2022), sediment transport predictions (Afan et al.,

2015; Lafdani et al., 2013; Wieprecht et al., 2013), groundwater modeling (Barzegar et al., 2017),

rainfall analysis (Jeong & Kim, 2005), water elevation forecasting (Atashi et al., 2022), as well as

anticipatory models for floods and droughts (Z. Liu & Merwade, 2018).

For example, regarding sediment transport prediction, artificial neural networks have been

used to estimate the daily sediment load in the Johor River in Malaysia by Afan et al., 2015.

Moreover, Altunkaynak, 2009 used the genetic algorithm for prediction of the sediment load

from discharge measurements and applied it to the Mississippi River in Missouri, St. Louis,

USA. In the context of bathymetry inference, Ghorbanidehno et al., 2021 used a fully connected

deep neural network to infer bed topography for flow depths in the range of 3–10 m using the

depth-averaged flow velocity field. For deep waters, Al Najar et al., 2021 proposed two novel

deep learning techniques and showed that their techniques are able to capture the ocean

depth with sufficient accuracy.

The aforementioned examples demonstrate the capability of data-driven models for bed

topography prediction. In this technique, the need to solve time-consuming governing equa-

tions will be bypassed, and instead, the interested output will be inferred from input data, e.g.,

flow surface data, quickly and accurately.

1.3 Sediment transport

Following the measurement of bed topography—by either direct or indirect measurements—and

knowing the channel geometry, the subsequent step is to estimate the bedload transport rate.

Numerous attempts have been made to formulate the bedload transport rate, mostly treating

the bedload transport problem as a deterministic one. There are two approaches to predicting

bedload transport, namely, equilibrium and non-equilibrium theories (Bohorquez & Ancey,

2016).
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The first approach, equilibrium theory, in modeling bedload transport hinges on a critical

condition that must be met for bedload movement. This approach introduces a critical

tractive force exerted on the boundary, such as the critical Shields number (du Boys, 1879)

or critical water discharge (Gilbert & Murphy, 1914) and is independent of flow conditions

(steady or unsteady non-uniform flow). It ends up in a deterministic scaled formulation of

bedload transport through the fitting of empirical data (Ancey & Recking, 2023). For instance,

a particular water discharge is correlated with a specific capacity to transport solid weight,

resulting in a one-to-one function of water discharge (Gilbert & Murphy, 1914).

A key implication of this assumption is that sediment transport is viewed as a deterministic

process that instantaneously adjusts to changes in flow conditions. For instance, Meyer-Peter

and Müller, 1948 and Ashida and Michiue, 1973 proposed two different types of formulae for

bedload transport, respectively, as

Φ = 8(τ∗−τ∗c )3/2, τ∗c = 0.047

Φ = 17(τ∗−τ∗c )(
p
τ∗−

√
τ∗c ), τ∗c = 0.05

(1.1)

where τ∗ is the dimensionless shear stress (Shields number), τ∗c is its threshold value, and Φ is

the dimensionless sediment transport rate, defined as

Φ =
q̄s√

(ϱs/ϱ−1)g d 3
(1.2)

where q̄s is the unit bedload transport rate, and ϱs and ϱ represent the sediment and fluid

density, respectively. The term g denotes the acceleration due to gravity, while d signifies the

mean particle diameter for a uniform grain size. For non-uniform grain size distribution, d50

is typically considered, where the index indicates that 50% of the particles have a diameter

smaller than d50. The Shields number is defined as

τ∗ =
τ

(ϱs −ϱ)g d
=
ϱg hSr ed

(ϱs −ϱ)g d
=

hSr ed

(s −1)d
(1.3)

The variable h represents the flow depth, Sr ed stands for the reduced energy slope, and s is

ratio of solid to water density. Regarding deterministic bedload models, it is noteworthy to

mention that:

• These models assume the particles are neither eroded nor deposited over time, neglect-

ing the duration spent by the particles in rest and motion, or, in other words, particle

jumps assumed to be instantaneous,
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Figure 1.2: Various bedload deterministic equations are shown in solid lines. Meyer-Peter and
Müller, 1948: Φ = 8(τ∗−0.047)1.5; Einstein, 1942: Φ = 2.1exp(−0.391/τ∗); Wong and Parker,
2006a: Φ = 4.93(τ∗−0.047)1.6; Ashida and Michiue, 1972: Φ = 17(τ∗−0.05)(

p
τ∗−p

0.05); Parker,
1979: Φ = 11.2(τ∗−0.03)4.5/τ∗3; Cheng, 2002: Φ = 13τ∗1.5 exp(−0.05/τ∗1.5). Data points are
from Aziz and Scott, 1989; Bogardi and Yen, 1938; H. H. Cao, 1985; Capart and Fraccarollo,
2011; Casey, 1935; P. Gao, 2008; Gilbert and Murphy, 1914; W. H. Graf, 1987; Ho, 1939; Mavis
et al., 1935; Meyer-Peter and Müller, 1948; Paintal, 1971a; Recking et al., 2008a; Rickenmann,
1990; Smart, 1984.

• It follows that the quantity of sediment introduced into the flume Φs,i must be equal to

the quantity of sediment that exits the channel Φs,o i.e., Φs,i =Φs,o ,

• The validity of the deterministic bedload models are vague with the enormous fluctua-

tions in mean bedload transport rate for τ∗ < 0.1 as can be seen in Fig. 1.2,

• The models for sediment transport rate Φ usually are a function of Shields number and

involve a threshold value, meaning that Φ = f (τ∗) for τ∗ > τ∗c , and Φ = 0 for τ∗ ≤ τ∗c
causing the stubborn paradox (Ancey & Recking, 2023; Bohorquez & Ancey, 2016),

• The relative error in bedload transport predicted, for example by Meyer-Peter and Müller,

1948 formula, by imposing a small error ϵ in τ∗, approximately would be

∆Φ
Φ

≈ dΦ
dτ∗

ϵ

Φ
→ ∆Φ

Φ
≈ 1.5ϵ(τ∗−τ∗c )−1

meaning that a small error ϵ in τ∗ cause the relative error approaches infinity in the

threshold of motion,

• The function Φ = f (τ∗) implies that for a given Shields number, we can have one specific

amount of sediment transport, as it is a one-to-one function of the Shields number

(Bohorquez & Ancey, 2016),

• They mostly can be categorized into three groups i. those with a function in the form

of Φ∝ (τ∗−τ∗c )α being 1 ≤α≤ 16 (Cohen et al., 2010; Paintal, 1971a) with an accepted

value of α = 3/2; ii. ones with a function in the form of Φ∝ (τ∗−τ∗c )(
p
τ∗−√

τ∗c ); and
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iii. those with exponential function Φ∝ τ∗β exp(−cte/τ∗γ) meaning that all formulae

have same behavior if τ∗ is far from the threshold value τ∗c : If τ∗ →∞ then we can write

i. Φ∝ (τ∗−τ∗c )α ≈ τ∗α being α = 3/2 as a common agreement,

ii. Φ∝ (τ∗−τ∗c )(
p
τ∗−√

τ∗c ) ≈ τ∗pτ∗ = τ∗3/2,

iii. Φ∝ τ∗β exp(−cte/τ∗γ) ≈ τ∗β being β = 3/2 for example in Cheng, 2002.

And have significant difference if τ∗ approaches the threshold as one can see in Fig. 1.2.

It has long been recognized that sediment rates measured from field data differ from de-

terministic bedload transport relations by one to three orders of magnitude (J. Garcia et al.,

2007; Gomez, 1991; Recking, 2010; Rickenmann, 2001, 2018), as illustrated in Fig. 1.2. This

magnitude of error is the reason that this seemingly simple question remains unanswered:

Given the controlling parameters of a fluvial system, how long does it take to collect a spe-

cific amount of sediment at the end of a flume? Applying deterministic bedload transport

equations to experimental data that exhibits stochastic tendencies is inappropriate, especially

when τ∗ < 0.1, as they can at best represent the trend of the experimental data. Referring to

Fig. 1.2, it is evident that as the Shields numbers diminish, the variability in sediment transport

increases, leading to a greater relative error when using deterministic equations.

The second approach in bedload modeling is Einstein, 1950’s in which sediment transport

is the result of the unbalancing of entrainment and deposition rates. In this approach, the

sediment transport rate is not just a function of Shields number; it is adjusted to the flow

conditions (Bohorquez & Ancey, 2016). Although Einstein, 1937 pioneered the probabilistic

point of view in his PhD dissertation, his approach ultimately resulted in a deterministic

bedload model (Ancey, 2020).

In recent years, several attempts have been made to describe the mechanics of flow over a

movable bed from a probabilistic and stochastic point of view. Among them:

• In the work of Parker et al., 2000, they have proposed a probabilistic formulation of

the Exner equation. Their derivation has two key assumptions: i. There was no active

layer for the sediment bed, meaning that the entire sediment bed was in motion. ii.

There were no significant changes in the mean bed level over time, suggesting that these

variations had no significant impact on the probability density function (PDF) of bed

elevation. Using the aforementioned assumptions, Parker et al., 2000 calculated the PDF

of the bed elevation and ended up with the Exner equation in probabilistic form.

• Ancey et al., 2006 made another significant contribution by extending Einstein’s frame-

work to account for non-Gaussian fluctuations. This was achieved by incorporating

a collective entrainment rate. This sediment transport model is developed using the

principles of Markov chain analysis. The model assumed that the probability of observ-

ing the particles at each time step was dependent only on the previous time step and

that only one event could occur at each time step. This led to a stochastic formulation

of bedload transport, which calculated the variation in the number of active particles
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within a control volume at each time step. The resulting bedload formulation was of

a stochastic advection-diffusion type for Poisson density rate, and a deterministic ver-

sion for the mean active particle was obtained by taking the ensemble average of the

stochastic version.

It is important to highlight three key points here:

• There is a general agreement that bedload transport is a noise-driven process, particu-

larly in cases of low sediment transport,

• The fluctuations in bedload transport have a significant impact on bulk dynamics,

• Current deterministic bedload transport formulas do not account for the fluctuations in

particle movement.

Therefore, to enhance the accuracy of bedload transport predictions, we came to the conclu-

sion that incorporating these fluctuations is crucial.

1.4 Sediment transport rate fluctuations

It is difficult to predict bedload transport due to many aspects. These include a limited

understanding of the extent to which a riverbed becomes armored, the existence of particle

clusters with diverse size distributions, the nature of the processes being noise-driven, the

propagation of the noise into the system, a mixture of fast and slow processes, and the

interaction of several non-equilibrium or semi-equilibrium processes (Ancey, 2020; Sun

et al., 2015). A primary source of prediction inaccuracy stems from the stochastic nature

and inherent fluctuations of this phenomenon, which complicate the prediction of bedload

transport rate.

Although bedload transport rate fluctuations are observable over a wide range of spatial

and temporal scales (Paintal, 1971b), most researchers have focused on their mean value

and ignored their fluctuations. For a long time, bedload fluctuations have been ignored in

hydraulic studies like in turbulence, as if average quantities were sufficient to describe the

flow dynamics, but there is growing evidence that they play a key role (D. Liu et al., 2016; Shih

et al., 2017; A. Singh et al., 2010).

These fluctuations cause the mechanics of flow over a movable bed to show stochastic behavior

in many respects, meaning that it involves randomness and uncertainty at different levels

such as bedload transport rate and bed morphology (Paintal, 1971a; Valyrakis et al., 2013). The

particle motion is influenced by various factors such as turbulence, lift, drag, and collision

with other particles, making it difficult to predict the exact trajectory of each particle (Cameron

et al., 2019; Schmeeckle et al., 2007). It results in stochasticity in the rate of bedload transport

even in the steady-state flow regime (Benavides et al., 2022).
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1.4 Sediment transport rate fluctuations

Figure 1.3: Bedload transport rate time series at the gravel-bed flume’s outlet. The top plot
corresponds to an experiment conducted under steady-state flow conditions with a flow
rate of Ql = 15 L/s, a sediment feed rate of Qs = 5 g/s, and a slope of S = 1.6%, conducted by
Dhont, 2017. The bottom plot conducted with an unsteady flow condition involving cyclic
hydrographs with a period of 8 hours, minimum and maximum flow discharges of Ql ,m = 10
L/s and Ql ,M = 20 L/s, respectively, with sediment feed rate of Qs = 2.5 g/s and a slope of
S = 1.6%, carried out by the thesis’s author using the same flume.

Encountering an inherently stochastic flow is often associated with enormous challenges and

difficulties. For instance, the exact moments at which fluctuational lift and drag forces cause

the particles to move are difficult to characterize (Cameron et al., 2019; Schmeeckle et al.,

2001). It is worth mentioning that these fluctuations are caused by turbulent impulses that are

caused by the sudden release of kinetic energy stored within the turbulent flow.

Turbulent impulses are known to play a critical role in both particle entrainment (Cameron

et al., 2020; Valyrakis et al., 2010), and deposition (Shih et al., 2017) as they can cause sediment

particles to be lifted from the bed and carried away by the flow (Cameron et al., 2019). Shih

et al., 2017 uses a quadrant analysis of velocity and pressure sequences to investigate the

correlation between turbulent flow structures and particle dislodgement events. The results of

their study indicate that turbulent flow structures, particularly those associated with negative

velocity and positive pressure fluctuations, play an important role in particle dislodgement.

In a feedback loop, the sediment movements change the turbulence structure (D. Liu et al.,

2016; A. Singh et al., 2010). D. Liu et al., 2016 have used numerical simulations to quantify the

effects of bedload on various flow parameters, including velocity, turbulence intensity, and

Reynolds stress. The results revealed that the higher the bedload concentrations, the higher

the turbulence and Reynolds stress.

The turbulent fluctuations and bed topography variations generate randomly varying bedload

fluxes, having constant average characterizations of flow and sediment transport. That means
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bedload transport modeling needs to be treated as a stochastic problem instead of using

the traditional approach in which averaged values are used. Otherwise, the accuracy of the

numerical results will be undermined. For example, Recking et al., 2012 applied sixteen

most-used traditional bedload transport formulas to four datasets corresponding to different

measurements and could estimate the sediment volume transport with more than 200%

error, while non-capacity frameworks such as Markov processes in bedload modeling may

improve the accuracy because of the local definition of the deposition and entrainment rates

(Bohorquez & Ancey, 2015, 2016).

Figure 1.3 presents high-resolution bedload transport time series, illustrating the inherent

bedload fluctuations across two long-term experiments: one under a steady-state condition

and the other under an unsteady flow condition. Large fluctuations, around 10 times the

average bedload transport rate in both experiments, are observable. Here, it is worth mention-

ing that the time-averaged transport rate for the steady-state experiment shown in Fig. 1.3,

defined as Q̄s(T ) = T −1
∫ T

0 Qs(t )d t with the sampling time T , converges to the mean sediment

transport value over the entire experimental run—which is equal to the input sediment feed-

ing rate—approximately after 225 hours (Dhont & Ancey, 2018). Additionally, a significant

finding is that, even under unsteady flow conditions shown in Fig. 1.3, bedload transport

eventually converges to the sediment feeding rate, but this occurred after a longer period of

time, approximately 265 hours.

These bedload transport fluctuations are random realizations of stochastic processes (Cudden

& Hoey, 2003) and can be attributed to micro- and macro-scale factors, such as random

particle movements and migration/failures in bed morphology. For example, Dhont, 2017

studied how bedload pulses can be attributed to bed morphology migration/failures that

significantly contribute to the amount of bedload transport flushed out of the flume.

The bedload transport fluctuations that correspond to macro-scale factors are frequently

reported as intermittent—long duration of minimal transport interrupted by sudden, sig-

nificant occurrences of sediment transport rate (Benavides et al., 2022; Wang et al., 2014),

and periodic—where the sediment transport rate oscillates in a regular manner over time

(Ghilardi et al., 2014; Gomez et al., 1989; Iseya & Ikeda, 1987). To effectively examine the

characteristics of bedload transport fluctuations and their contributions, one must employ a

stochastic methodology.

1.5 Realization of fluvial systems

The equilibrium theory proposes that a unique bedform characteristic will develop for a

specific set of controlling variables. However, experiments show the bedload and morphology

are rarely a single-valued response to a specific set of controlling parameters. In other words,

repeating exact same experiment several times, even in a steady-state condition, will lead to

different realizations (Ashmore, 1988; Warburton & Davies, 1994; Young, 1989), for example:
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• Ashmore, 1988 conducted four experiments with different bed slopes and flow dis-

charges using a wide braided flume and the same initial bed configuration, each repli-

cated two times, and sampled the bedload at a rate of 1 sample per 15 minutes during

the 60 hours experiment. The bedload transport rate time series have been fully dif-

ferent, with wide fluctuations even for two replications, although they had almost the

same mean values. The fluctuations reported to be large, up to four times more than av-

eraged values, even at constant discharges, with the coefficient of variation of the mean

transport rate ranging from 27% to 83% with an average of 49% among all experiments.

• Young, 1989 replicated one of his experiments in a wide braided flume, operating at a

flow discharge of 0.88 L/s and a slope of 0.74%. One replication lasted 16 hours, while

another extended for 20 hours. He also observed different bedload transport time series,

where fluctuations reached 4 and 6 times the mean bedload values of 3.13 g/s and 2.75

g/s, respectively. The coefficient of variation for these measurements was 69.7% and

73.3%.

• Warburton and Davies, 1994 conducted eleven replications of one experiment with the

same initial condition to study the statistical significance of bedload transport time

series and bed topographies. They observed that the bedload time series, sampled every

5 minutes, and channel morphology are different in all eleven replications during the 90

hours run. Although Warburton and Davies, 1994 captured different realizations for bed

topography and bedload time series for each replication, they fluctuated around a mean

value of 1.21 g/s and a coefficient of variation of 11%. They reported the fluctuations to

be up to three to four times higher than the mean value when no external forces existed.

The experiments described above demonstrate that fluctuations in bedload transport are

autogenic, show that key variables fluctuate gently around their mean values, and highlight

the problem’s stochastic nature. Hence, to account for these fluctuations and to be able

to capture various realization of the system, our attention has been directed towards the

stochastic bedload model suggested by Ancey et al., 2008.

1.6 Stochastic bedload transport model

Ancey et al., 2008 proposed a stochastic advection-diffusion type of equation for bedload

transport. This model was developed by treating bedload transport as a probability problem,

similar to Einstein’s approach in 1937 (Einstein, 1937). Ancey et al., 2006 attempted to extend

Einstein’s work by generating wide and non-Gaussian fluctuations. As evidenced by the

analysis of experimental data, the distribution of the bedload transport rate exhibits a heavy

tail (Ancey et al., 2006; Campagnol et al., 2012; Turowski, 2010). They concluded that there

was a missing element in the Einsteinian framework. Specifically, they found that bedload

transport and particle activity did not exhibit significant fluctuations in the absence of positive

feedback effect of mobile particles on the entrainment of additional particles that would

amplify these fluctuations (Heyman, 2014).
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In other words, the heavy tail of the PDF for bedload transport, indicating wide fluctuations,

can be the hallmark of collective motions. This has been supported by laboratory observations

(Dinehart, 1999; Drake et al., 1988), and the physical interpretation for the existence of such

motion is discussed in Heyman, 2014. Due to the reasons mentioned above, Ancey et al., 2008

generates large and non-Gaussian fluctuations by introducing a collective entrainment mass

exchange rate into the bedload formulation. Therefore, the derivation of the model begins by

considering three mass exchange rates between the bed and the flow: individual entrianment,

collective entrainment, and deposition rates (see Fig. 1.4).

A moving particle can be transformed into a bed particle (at rate σ0). Alternatively, a bed

particle can disturb a moving particle, causing the moving particle to become one of the bed

particles (at rate σ1). However, we can consider both processes as deposition with a rate

of σ =σ0 +σ1. The entrainment process is divided into individual and collective rates. The

fluid flow can entrain a bed particle and cause it to move (at rate λ′) indicating the individual

entrainment. Additionally, a moving particle can interfere with the bed particles and entrain

the bed particles (at rate µ) indicating collective entrainment.

An Eulerian approach was taken: considering a control volume and counting the number of

mobile particles, represented as n. The number of mobile particles could be explained by

four processes: entrainment, deposition, and particles either exiting or entering the control

volume. To quantify the changes in the number of active particles within the control volume,

they applied the birth-death—emigration-immigration Markov processes theory. This theory

enables the calculation of the probability P (n, t ), which is the likelihood of finding n moving

particles within the control volume at a specific time t (Ancey et al., 2008). These processes

are classified as stochastic jump processes. They have made two assumptions:

• Firstly, P (n, t) is just dependent on the system state at t −δt being δt the time step.

It means that the waiting time for two particles to pass the control surface follows an

exponential distribution (Ancey & Pascal, 2020).

• Secondly, the value of n changes by 1, 0, or −1 in the time interval [t , t +δt ], meaning

that only one event can happen during the time step δt that prevents coherent particle

motion (Ancey, 2020). Therefore, the model is expected to have weak performance at

intense bedload transport rates.

By considering M cells of length ∆x and studying the evolution of the system, i.e., calculating

P (n, t) while taking into account the aforementioned phenomena, the model results in a

Chapman-Kolmogorov equation (Ancey & Heyman, 2014)

12



1.6 Stochastic bedload transport model

Figure 1.4: Illustration of the processes involved in mass exchanges: λ′, µ, and σ are particle
entrianment, collective entrainment, and deposition coefficient, respectively.

∂P

∂t
(n, t ) =

M∑
i =1

(ni +1)(P (n+ ri+1
i , t )νi +P (n+ r+i , t )σi )

+P (n+ r−i , t )(λ′
i +µi (ni −1))

+P (n+ ri−1
i , t )νi−1ni−1

−P (n, t )(νi−1ni−1 +λ′
i +µi ni+1 +νi ni +σi ni )

(1.4)

where the migration from the upstream and downstream cells is represented by rate ν andDisplacement from cell j to cell i (r j
i ) : ri = 1,r j = −1,rk = 0 for k ̸= i , j

Entrainment or deposition within cell i (r ±
i ) : ri = ±1,rk = 0 for k ̸= i

Therefore, r j
i is a vector where all entries except two are zero, whereas r ±

i is a vector with

all entries except one being zero. To switch from discrete probability space to continuous

probability space, Poisson representation could be used to expand any discrete probability

space, such as Eq. 1.4 into a series of Poisson distribution with parameter ai

P (n, t ) =
∏

i

∫
R+

e−ai an
i

n!
f (a, t )da (1.5)

After some mathematical derivation and using the Itô convention, we end up with the govern-

ing equation for an integrable function, i.e., f (a, t ) as

∂ f (a, t )

∂t
=

∑
i
µi

∂2ai f

∂a2
i

+ ∂

∂ai

[[
λ′

i −ai (σi −µi +νi )
]

f

]
+ ∂

∂ai−1
(νi−1ai−1 f ) (1.6)
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The Langevin representation equivalent (Gardiner et al., 1985) to Eq. 1.6 is

d ai (t ) =
(
νi−1ai−1 +νi ai +λ′

i −ai (σi −µi )
)
d t +√

2µi ai dWi (t ) (1.7)

where Wi is a Wiener process that corresponds to cell i . We can let ∆x → 0 and by introducing

the Poisson density bi = lim∆x→0
ai

∆x
(the PDF of the discrete random variable ni is decom-

posed into a series of Poisson distributions whose rate is bi ), it results in the following partial

differential equation for b

∂b

∂t
+ ∂

∂x
(ūsb)− ∂2

∂x2 (Dub) =λ−κb +
√

2µbξb (1.8)

where κ = σ−µ, λ = λ′/∆x, ūs and Du are mean particle velocity and particle diffusivity,

respectively, and ξb is Gaussian noise term. Taking the ensemble average of Eq. 1.8 result in a

governing equation for particle activity

∂〈γ〉
∂t

+ ∂

∂x
(ūs〈γ〉)− ∂2

∂x2 (Du〈γ〉) = λ̃−κ〈γ〉 (1.9)

The particle activity, denoted by γ, is defined as the limit of the ratio of the volume occupied by

the particles to the volume of the control space as ∆x approaches 0: γ = lim∆x→0
nVp

B∆x
, where

Vp =πd 3/6 represents particle volume, B is the control volume width, and d represents the

particle diameter. The ensemble average of particle activity is denoted by 〈γ〉 and λ̃ =λVp /B .

The derived bedload model is for a one-dimensional case study; however, we could extend the

stochastic advection-diffusion equation into two dimensions. One way to extend the model is

by generalizing the spatial operators in the system of equations. By expanding the equation

into two dimensions, one can obtain

∂b

∂t
+ ∂

∂x
(ūsb)− ∂2

∂x2 (Dub)+ ∂

∂y
(v̄sb)− ∂2

∂y2 (Dv b) =λ−κb +
√

2µbξb (1.10)

The governing equation for particle activity in two dimensions reads

∂〈γ〉
∂t

+ ∂

∂x
(ūs〈γ〉)− ∂2

∂x2 (Du〈γ〉)+ ∂

∂y
(v̄s〈γ〉)− ∂2

∂y2 (Dv 〈γ〉) = λ̃−κ〈γ〉 (1.11)
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1.7 Exner equation

Figure 1.5: Control volume with unit width, length of ∆x, and bed height of yb .

where v̄s and Dv are mean particle velocity and particle diffusivity in transversal direction, re-

spectively. The described bedload model offers information on the number of active particles,

but to accurately simulate bed topography, it is also necessary to employ the Exner equation.

The Exner equation is a common approach taken in numerical simulations for continuity

of the bed (Murillo & García-Navarro, 2010). It is possible to incorporate the classic Exner

equation, which does not consider particle fluctuations, with the aforementioned probabilistic

bedload transport model.

1.7 Exner equation

Exner, a meteorologist from Vienna, formulated an equation for sediment mass conservation

(Exner, 1925). The mass conservation within a control volume with a length ∆x and a unit

width (see Fig. 1.5) can be defined as follows:

∂
∂t

(sediment mass in the control volume)=sediment inflow rate - sediment outflow rate. Thus

we have

∂

∂t

[
ϱs(1−ζp )yb

]
∆x.1 = ϱs

[
q̄s,x − q̄s,x+∆x

]
.1 (1.12)

where ζp denotes the bed porosity, which refers to the proportion of the bed’s volume occupied

by voids rather than sediment, typically considered 0.36 for gravel-beds. After simplification

(1−ζp )
∂yb

∂t
= −∂q̄sx

∂x
= D−E (1.13)

where D and E represent the deposition and entrainment rates, respectively. In two-dimension,

the Exner equation, will be
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(1−ζp )
∂yb

∂t
= −∂q̄sx

∂x
− ∂q̄s y

∂y
= D−E (1.14)

where q̄sx and q̄y x are the average bedload transport rates in the longitudinal and transversal

directions, respectively.

1.8 Fluid governing equation

Numerous mathematical theories have been developed to predict the open flow morphody-

namics, particularly in straight streams, starting with the work of Callander, 1969. The math-

ematical theories in computational hydraulics models are mostly based on depth-averaged

shallow water equations known as Saint-Venant equations. We may derive the Saint-Venant

equations from the Navier-Stokes equations using two fundamental assumptions: i. the

hydrostatic pressure and ii. the Boussinesq approximation (Cushman-Roisin & Beckers, 2011).

The two-dimensional Saint-Venant equations consist of three equations: namely, the depth-

averaged conservation of mass and two momentum equations for the fluid phase. In a straight

channel, the governing equations — ignoring wind effects and Coriolis terms, in addition to

diffusion of momentum due to viscosity — are (Mignot et al., 2006; Zhou, 2004)

∂h

∂t
+ ∂

∂x
(hū)+ ∂

∂y
(hv̄) = 0 (1.15)

∂(hū)

∂t
+ ∂

∂x
(hū2)+ ∂

∂y
(hūv̄)+ g h

∂h

∂x
= −g h

∂yb

∂x
− τbx

ϱ
(1.16)

∂(hv̄)

∂t
+ ∂

∂x
(hūv̄)+ ∂

∂y
(hv̄2)+ g h

∂h

∂y
= −g h

∂yb

∂y
− τby

ϱ
(1.17)

where x and y are the longitudinal and normal coordinates, respectively, and t represents time.

The flow depth-average velocities in the x and y directions are ū = ū(x, y, t ) and v̄ = v̄(x, y, t ),

respectively. The flow depth, from the surface level to the bottom, is indicated by h = h(x, y, t ) =

ys−yb , where yb(x, y, t ) and ys(x, y, t ) represent the bed and free surface positions. The bottom

shear stresses are τbx and τby .

1.9 Numerical simulation

The Saint-Venant equations are depth-averaged Navier-Stokes equations; given that the bot-

tom boundary exchanges mass with the flow, two additional equations—the Exner equation
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and advection-diffusion equation for bedload movement—are necessary to capture the mor-

phodynamic variations.

These models simulate the interactions between water flow and sediment transport, leading

to bed formation (Tucker & Hancock, 2010). Two distinct strategies can be employed to solve

these governing equations: decoupled and fully coupled.

• In the decoupled strategy, the bed topography is assumed to be fixed, and then the

shallow water equations are solved. The hydrodynamic variables are then used to update

the bed topography via the Exner equation (Siviglia et al., 2022). This method exhibits

weak performance in scenarios characterized by rapid changes in bed topography,

typically associated with high sediment transport rates. Under such conditions, the

decoupled approach is unsuitable due to the intense interactions between water and

sediment variables (Hudson & Sweby, 2005; Postacchini et al., 2012). This strategy may

face numerical stability problems, as discussed by Cordier et al., 2019. However, it

remains appropriate when the flow and bed have weak integration (Soares-Frazão &

Zech, 2011).

• In the coupled strategy, the shallow water and sediment transport equations are solved

at the same time (Hudson & Sweby, 2005). It will be capable of capturing dynamic

interactions between water flow and bed topography. This approach proves effective

in conditions characterized by high sediment transport rates and rapid changes in bed

morphology Kassem and Chaudhry, 1998; X. Liu et al., 2008.

The application of these equations is not without challenges. Recent studies have developed

advanced numerical schemes to tackle the complexities of the coupled Saint-Venant–Exner

model. For example, a splitting method has been proposed by Toro, 2013, which divides

the Saint-Venant–Exner equations into hyperbolic and parabolic subsystems (LeVeque et al.,

2002).

In addition, the accurate prediction of sediment transport rates and patterns requires careful

calibration and validation against empirical data. Furthermore, the assumptions inherent in

shallow water and the Exner equations, such as the uniformity of sediment and the treatment

of turbulence, can limit their applicability in certain scenarios. A notable contribution in this

regard includes the work of Bohorquez and Ancey, 2015, who developed a coupled model for

bedload and bed form prediction.

1.10 Stability analysis

The general prediction power of morphodynamic models can be foreseen before solving the

governing equations by performing stability analysis. There have been many mathematical

theories about stability analysis since the 1960s (Callander, 1969) to predict the morphody-

namics of bars, especially the alternate bars in straight flumes. The equations’ qualities of
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linear stability reveal new information on the validity of the mean equations in the context

of pattern formation. The approach starts by adopting several simplifying assumptions that

simplify the mathematical problem, e.g., constant water discharge or channel width.

The primary advantage of these analyses lies in their capacity to provide insights that facilitate

the straightforward assessment of the governing parameters of physical processes. Moreover,

they enable the estimation of the spatial and temporal scales associated with bar morpho-

dynamics. For example, "why aren’t river beds and deserts flat?" A question has been asked

by Kennedy, 1969, and has been addressed by using fluid-stability analysis with the initial

disturbance. Moreover, by means of linear theories applied to straight channels, it has been

found that forced bars stay stationary while free bars migrate downstream (Schielen et al.,

1993; Zolezzi et al., 2005).

1.11 Objectives and research contributions

The aim of this research thesis is to develop a data-driven model for inferring bed topog-

raphy, specifically for rivers with gravel-beds. Then, the capability of the one-dimensional,

depth-averaged stochastic computational hydraulics model in predicting bed topography and

bedload transport will be examined by comparing the resulting numerical outputs with exper-

imental data. Lastly, a two-dimensional, depth-averaged stochastic solver will be developed,

and its predictions will be examined by applying it to laboratory data.

The specific objectives are to expand the one-dimensional morphodynamic model into a two-

dimensional framework and to numerically implement it. To fulfill these objectives, specific

targets have been set:

• To evaluate the precision of data-driven modeling in estimating riverine bathymetry,

• To explore the accuracy of the one-dimensional stochastic bedload model when inte-

grated with the Saint-Venant–Exner equations in bed topography and bedload transport

rate prediction by applying to narrow gravel-bed flume,

• To extend the one-dimensional stochastic bedload model into two dimensions and

integrate it with the two-dimensional Saint-Venant–Exner equations to incorporate

particle fluctuations in the computational hydraulic model. Furthermore, the accuracy

of the numerical solver in bed topography and bedload transport rate prediction when

applied to wide gravel-bed flume has been examined.

To accomplish these aims, I will introduce three main contributions.
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Data-driven modeling to infer bed topography

In this work, we have used machine learning techniques to develop a data-driven surrogate

model for inferring bed topography from depth-averaged velocity fields. A well-trained neural

network model requires numerous data points (either experimental or simulation data). The

total experimental dataset comprises 5742 pairs (bed topography and velocity field in image

format). Bathymetry is measured during each experiment using the laser-sheet imaging

technique, and depth-averaged velocity fields are calculated using statistical methods. The

code is written in Python, utilizing the PyTorch library, and has been executed in Colaboratory.

The U-Net architecture is employed to train the convolutional neural network (CNN) model.

U-net’s main strength lies in its ability to deliver good results even with a limited amount of

data, thanks to its structured.

The neural network’s basic parameters and hyperparameters need to be studied in advance to

achieve the best performance. After fine-tuning the model, it was applied to i. a part of the

dataset previously unseen by the network; ii. numerical simulation conducted by computa-

tional hydraulic software called Iber version 2.5.1; and iii. field data from the confluence of

two rivers in Illinois, USA.

One-dimensional depth-averaged numerical simulation

The one-dimensional hydraulic model is integrated with a one-dimensional stochastic advection-

diffusion bedload equation, and the numerical solver is implemented using the Finite Volume

Method. In this research phase, we implemented the q-wave propagation method using the

FORTRAN language.

The accuracy of the proposed set of equations, i.e., the Saint-Venant–Exner equations coupled

with the stochastic bedload model, is examined by applying it to laboratory experiments. The

model predictions are examined by comparing numerical outcomes to laboratory experiments

from Pascal et al., 2021; Recking et al., 2009 conducted in narrow gravel-bed flumes. These

experimental datasets allowed us to investigate the bedload time series, antidune amplitude

and wavelength characteristics, and their migration celerity.

There are three mass exchange rates in the stochastic bedload model. Before conducting

a numerical simulation, we need to parameterize the mass exchange rates. Therefore, we

first proposed closure relations to parameterize the particle exchange rates. Then, these

closure relations are used to numerically solve the set of governing equations, to reproduce

the laboratory experiments.

Two-dimensional depth-averaged numerical simulation

We have extended the work on one-dimensional numerical simulation into two dimensions.

Two-dimensional numerical simulations and stability analyses were performed to study the
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model’s ability to predict the bedload transport rate and the alternate bar characteristics in a

wide gravel-bed flume.

The numerical simulation is based on the Finite Volume Method and, more specifically, uses

an extended HLL Riemann solver called the f -wave propagation method, implemented using

the FORTRAN language. The Riemann problem is solved at every interface (or approximated

by different approaches, e.g., the Roe averages) at every time step to gather information about

the waves and speeds needed to update the solution for the next time step.

The numerical solver is applied to three steady-state laboratory experiments from Dhont,

2017 conducted in a wide gravel-bed flume to study the model’s validity. This experimental

dataset allowed us to investigate the bedload time series, alternate bar characteristics, and

their growth rates.

1.12 Dissertation outline

This dissertation is composed of three main pillars explained in distinct chapters, in addition

to the introduction and conclusion. Every chapter is organized in the style of a research paper

and is self-contained regarding the definition of parameters. The dissertation ends with a

concluding chapter and includes six appendices that contain the mathematical derivations of

the formulations, thus simplifying the main text.

Chapter 2 discusses the details of how the surrogate model for bed topography inference is

developed. This methodology, well-known in the medical field, is advantageously applied in

the field of hydraulics. This chapter is published as a journal publication (Kiani-Oshtorjani &

Ancey, 2023). Appendix A is associated with this chapter.

Chapter 3 presents a comprehensive description of the one-dimensional numerical methodol-

ogy and its implementation. The details of this implementation are explored and applied to

one-dimensional experimental data sourced from existing literature. Appendices B, C, and D

are associated with this chapter.

Chapter 4 details the stability analysis of the governing equations and compares the obtained

neutral curves with experimental datasets from other research groups. This is done to validate

our calculations and assess the predictive capability of the system of governing equations in

the context of pattern formation. The development and validation of the two-dimensional

numerical solver are explained in detail and examined using experimental data from gravel-

bed flume performed in our laboratory. Appendices E and F are related to this chapter.

Chapter 5 provides a summary of the findings and conclusions of the dissertation. It also

discusses the limitations of the current work and suggests ideas for future works.
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Abstract

Measuring bathymetry has always been a major scientific and technological challenge. In this

work, we used a deep learning technique for inferring bathymetry from the depth-averaged

velocity field. The training of the neural network is based on 5742 laboratory data using a

gravel-bed flume and reconstructed velocity fields (namely, the topographies were obtained

from real-world experiments and the velocity fields were estimated using a statistical model).

To examine the predictive power of the proposed neural network model for bathymetry

inference, we applied the model to flume experiments, numerical simulation, and field data.

Results showed the model properly estimates topography, leading to a model for riverine

bathymetry estimation with a 31.3% maximum relative error for the case study (confluence of

the Kaskaskia River with the Copper Slough in east-central Illinois state, USA).
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Chapter 2. Bed topography inference from velocity field using deep learning

2.1 Introduction

Imaging riverine bathymetry is fraught with difficulty. Among the available techniques in

riverine bathymetry, a typical example is provided by the use of light detection and ranging

(LiDAR) systems (Hilldale & Raff, 2008; Marcus, 2002; Wozencraft & Millar, 2005). This tech-

nique is based on the estimation of distance by recording the time lapse between sending and

receiving a signal and having prior knowledge of the signal’s speed. While these techniques do

provide direct access to bathymetry, it is time-consuming and costly. Other examples include

the use of indirect bathymetry techniques (Zaron, 2017), which usually involve solving an

inverse problem relating bed topography to surface elevation (Durand et al., 2008; Simeonov

et al., 2019), and surface velocity data (Almeida et al., 2018; Emery et al., 2010).

Inferring variation in riverine bathymetry from surface flow data is predicated on a potent

causal relationship between them (Smith & McLean, 1984). This assumption is true, especially

in shallow and one-dimensional flow conditions when the magnitude of velocity in the vertical

direction is low compared to the streamwise velocity component (Wilson & Özkan-Haller,

2012). Employing surface velocity data is an alternative to estimate bathymetry, thanks to its

affordability and sensitivity to river depth (Ghorbanidehno et al., 2021; Landon et al., 2014; Lee

et al., 2018; Wilson & Özkan-Haller, 2012). There are several techniques for estimating surface

velocity, including the use of drifter global positioning system (GPS) recordings (Honnorat

et al., 2010; Landon et al., 2014; MacMahan et al., 2009). For example, Landon et al., 2014

investigated whether drifters’ trajectories are sensitive enough to bottom topography to allow

for depth determination. They successfully extracted river bathymetry using velocity field

measurements collected from drifter GPS records in an ensemble-based data assimilation

approach. The estimated bathymetry based on this technique on a shallow braided and deep

meandering reach of the Kootenai River in Idaho, in the United States of America (USA) was

more accurate than the previous estimations. Wilson and Özkan-Haller, 2012 applied this

technique to a one-dimensional (1D) channel and to two real-world reaches, namely the

Snohomish River, Washington, and the Kootenai River, Idaho, in the USA. The main difference

with Landon et al., 2014 was this: they used depth-averaged velocities (based on numerical

solutions to the shallow water equations) and a least-square method to minimize a cost

function that combines known information and measured data. By using a state augmentation

technique, the measured variable is connected to the unknown parameter, providing a model

for deep water bathymetry estimation (depth in the 3–10 m range).

In recent years, deep learning has become one of the most powerful tools for overcoming

some deterministic approach limitations (Forghani et al., 2021; Ghorbanidehno et al., 2021;

X. Liu et al., 2022; Najar et al., 2022). It can be used to image bed topography from surface

flow data. Due to their ability to identify patterns or trends in data, neural networks are

becoming increasingly popular in geophysics and hydraulics (Yu & Ma, 2021). For instance,

Ghorbanidehno et al., 2021 used the neural network technique to obtain bed topography

based on the depth-averaged flow velocity field, using limited labeled data. In order to reduce

network size, the authors combined a fully connected deep neural network with principal
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Figure 2.1: A diagram showing the neural network architecture. Convolutional layers are
shown in blue, and skip connections are shown in orange. The number in the format of
a ×b × c close to each box indicate the number of channels and image size in the x and z
directions, respectively.

component analysis (PCA). PCA is a widely recognized method for reducing the dimensionality

of data, where it transforms the data onto a new basis with fewer dimensions (Jackson, 2005).

For instance, this could be achieved by calculating the covariance matrix of the training data

and extracting its eigenvalue decomposition.

Usually, training the network needs a huge amount of data to avoid the curse of dimensionality

(Bellman, 1966), which implies that the data occupy less and less of the data space as the data

space moves from lower to higher dimensions. The volume of this space grows so fast that

the data cannot keep up and thus becomes sparse—the sparsity problem is a major statistical

significance issue. To enhance the training dataset size, Ghorbanidehno et al., 2021 divided

the river’s entire domain into small subdomains. As a result, each river profile provided several

hundred training samples rather than just one.

The training of the neural network for bathymetry estimation could be done by solving the

shallow water equations and using the resulting solutions. A typical example is provided by

X. Liu et al., 2022, who employed shared-encoders and separate-decoders, where bathymetry’s

input image is encoded and then decoded to three outputs, namely, the flow’s longitudinal

and transverse depth-averaged velocity components and the water surface elevation. Two-

dimensional (2D) simulations using randomly generated input bathymetry data were used to

generate the training data.

Recent advancements in measurement techniques have led to the availability of high-resolution

and low-cost surface velocity fields (Almeida et al., 2018). These techniques include the use of

Lagrangian drifters (Honnorat et al., 2010; Maximenko et al., 2012), large-scale particle image

velocimetry (Bradley et al., 2002; Lewis & Rhoads, 2015), and synthetic aperture radar (Biondi
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Chapter 2. Bed topography inference from velocity field using deep learning

Figure 2.2: Gravel-bed flume illustration, in which all the dataset is gathered based on the
experiments performed on this channel. It has 17 m length but the useful length (removing
1.5 m from each side) is 14 m.

et al., 2020; Yoon et al., 2012). This work intends to predict bathymetry by using indirect

measurements, i.e., the velocity field, through a convolutional neural network. The neural

network training is based on a U-net architecture, used for the first time for segmentation

problems (Ronneberger et al., 2015), and to our knowledge, this is the first attempt to use

the U-net model for bathymetry inversion. To this end, we used an experimental dataset

made of 5742 data points. It was not realistic to measure the velocity field, but we could

estimate it using entropy-based models. Figure 2.1 shows the model’s architecture. In this

network, the encoder and decoder are connected by skip connections, in contrast with regular

convolutional networks. By doing so, we ensure we actually lose no information during the

feature extraction process (Drozdzal et al., 2016; Orhan & Pitkow, 2017). In order to develop a

well-trained neural network model, we need to collect a large amount of data. Due to the size

of the experimental dataset used in this study, we had no problems with dataset size. As an

alternative, if we were dealing with a small dataset, we could divide the experiment domain

into smaller regions, thereby, we could increase the amount of data.

In this work, training the convolutional neural network model to infer bathymetry is based on

bed topography scans and velocity field estimates. Solving the governing partial differential

equations will be bypassed, and the solutions will be found solely by a convolutional neural

network that is trained based on a huge experimental dataset. Closely related to our work

is Ghorbanidehno et al., 2021’s PCA-DNN framework, which combined the traditional fully

connected deep learning method and principal component analysis. They trained the deep

neural network model based on field data, whereas we focused on a convolutional neural

network; besides, our dataset is produced in the laboratory. Our trained model is suitable for

gravel-bed rivers, whereas their model is suitable for deep rivers. All of the training networks

in this work have been done using Colaboratory on GPU: the Nvidia Tesla P100-PCIE-16GB,

manufactured by Nvidia Corporation with headquarters in Santa Clara, California, United
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States.

This paper is structured as follows: The methodology for generating the dataset based on

experiments and analytical derivation is explained in § 2.2. Moreover, the U-net architecture is

described, and the basic parameters, regularization, and hyperparameters—such as dropout,

learning rate, weight decay, and training dataset size—are studied in that section. In § 2.3,

the model’s performance and accuracy have been studied. In addition, the neural network

model’s predictive power has been studied by applying it to flume experiments, the numerical

simulation of a gravel-bed flume, and field data performed at the confluence of the Kaskaskia

River and Copper Slough in central-east Illinois, USA. § 2.4 and § 2.5 discuss and summarize

our achievements and future work, respectively.

2.2 Methodology

2.2.1 Data collection

The dataset is based on the experiments conducted at LHE-EPFL (Dhont, 2017). Table 2.1

represents the input parameters and each experiment’s duration. It consists of three long-term

experiments. Experiments were carried out in a tilted flume at an angle of S = 1.6% and 1.7%,

a length of L = 17 m and a width of w = 60 cm, as depicted in Fig. 2.2. The useful length of the

flume is 14 m because of technical limitations (1.5 m from each side is ignored). The flume

bed was made of natural gravel with a height of 31.5 cm at the beginning of the experiments.

Sediments mean diameter was d = 5.5 mm, with a σ = 1.2 mm standard deviation, and density

of ϱs = 2660 kg/m3. The water discharge and sediment feeding rates at the flume inlet were set

to 15 L/s and 2.5, 5, and 7 g/s, respectively. Each experiment lasted for hundreds of hours. At

the beginning of each experiment, the bed surface was flattened. These long-term experiments

are conducted via a sequence of short-term experiments that last 8 hours. To prevent the

destruction of the bed topography, these short-term experiments are lunched with very low

flow discharge. During the experiment, water discharge and sediment feeding rate were kept

constant (Dhont, 2017). Experiment 1 included 1566; experiment 2 consisted of 741; and

experiment 3 consisted of 3435 scans, respectively (a total of 5742 scans, each consisting of

bed topography and flow depth data). Based on the entropy-based models, we computed

the depth-averaged velocity field using the flow depth data and knowing the constant flow

discharge as a constraint. In the next following sections, the details of entropy-based models

for inferring velocity fields will be explained.

Table 2.1: Input parameters of the experiments.

Exp. 1 Exp. 2 Exp. 3
Flow rate (L/s) 15 15 15
Flume slope (%) 1.6 1.7 1.6
Sediment feed rate (g/s) 2.5 7.5 5.0
Duration (h) 250 556 118
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Chapter 2. Bed topography inference from velocity field using deep learning

Figure 2.3: An example of experimental topography using the gravel-bed flume. The bed and
flow heights are measured from the bottom of the flume. The initial height of the bed is at 31.5
cm.

During an experiment, measurements of the bed topography and flow depth are recorded

with a fine resolution. The bed topography is measured by the laser-sheet imaging technique,

i.e., using two angled lasers. Those lasers are mounted on an automated moving cart. Water

disturbances, caused by a variety of factors (including turbulent flow conditions, varying

bed topography, sediment transport, and inflow/outflow perturbations), can interfere with

measurements. To overcome this issue, calibration is conducted prior to the experiments. By

calibrating the distance between two angled lasers projected on the bed, the bed topography

can be induced with a resolution of 60 × 281 pixels. Every 10 minutes, the cart programmed to

scan the bed proceeds using MatLab. Each scan took about 145 seconds and covered 14 m ×
60 cm. During each scan, the bed topography by lasers and flow depth by ultrasonic probes

are measured. The ultrasonic probes determine flow height, a sound pulse is emitted, and the

travel time between the sensor and the object can be used to infer flow depth (see Fig. 2.2).

The sediment feeding system operates as follows: it moves sediments from the hopper to

the flume’s inlet via a conveyor belt. Subsequently, these sediments are introduced into

the channel through a pin board, which spreads the gravel along the width with a Gaussian

distribution. The rate at which sediment is fed is regulated by controlling the speed of a

rotating cylinder that clogs up the hopper’s outlet. The most frequent mode happening in

the flume using the aforementioned flow, channel geometry, and sediment characteristics is

alternate bars. In Fig. 2.3, the bed topography and alternate bar appearance are illustrated.

Due to erosion, deposition, and transport processes, the bed topography changes over time

during the experiments. In turn, the hydraulic conditions in the system are affected by the

bed morphology as a result of a feedback loop driven by the movement of particles (Dhont,

2017; Griffiths, 1993). Based on the Froude number, F r = v/
√

g h (where g is the gravitational
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acceleration, v is flow velocity and obtained by particle image velocimetry using tracking light

polystyrene balls, and h is flow depth measured by ultrasonic probes), the flow regime was

turbulent and super-critical with a Froude number greater than 1 (Dhont, 2017). Since the

flow depth is uniform at the beginning of each experiment, when there is no bed form, the

streamwise bed shear stress can be measured by τ = ϱg RhS where Rh = hw/(2h +w) is the

hydraulic radius and ϱ is fluid density. The shear stress is estimated by computing its average

value along longitude bed profiles (Dhont, 2017; Venditti et al., 2012). The value of shear

stress in our experiments varies between 4.89 to 10.75 kg/m/s2. The Shields number and the

shear velocity can be obtained by τ∗ = RhS/R/d , and u∗ =
√
τ/ϱ =

√
g RhS, respectively, where

R = (ϱs −ϱ)/ϱ. The shear velocity varies in a range of 0.07 ≤ u∗(m/s) ≤ 0.10 and the Shields

number changes between 0.05 ≤ τ∗ ≤ 0.11 among all experimental data.

In order to have a suitable input/output image size for training the neural network, we applied

a bicubic interpolation over a 4×4 pixel neighborhood to the flow depth and bathymetry data

to change the size of the data, i.e., bed topography and velocity fields, from 60×281 pixels

into 64×256 pixels. Subsequently, the dataset was partitioned into three subsets: the training

dataset, the validation dataset, and the test dataset. The distribution of the total number of

samples was as follows: 80% for training data and 20% for validation data. Moreover, the

training data was again divided into 90% as the training dataset and 10% as the test dataset.

Training and validation data will be used to fit the models, and to estimate the prediction error

for model selection and hyperparameter tuning, respectively, and finally, a test dataset will be

used to assess the generalization error of the selected (best) model. The dataset is composed

of 5742 pairwise (bed topography and velocity field) grayscale images, and, therefore, the

training, validation, and test datasets consist of 4133, 1149, and 460 data, respectively. The

dataset is published attached to this work on https://rb.gy/84l4hk. A total of 11484 fields

are included in the published dataset, including both bed topography and depth-averaged

velocity data.

2.2.2 Entropy-based velocity profile

Entropy is defined as a measure of a system’s randomness or disorder and originated from

thermodynamics (V. P. Singh, 2016). Shannon was one of the pioneers who developed entropy’s

mathematical foundation and connected it to information (V. P. Singh, 2016). To obtain the one-

dimensional and two-dimensional velocity profiles, it is necessary to maximize the entropy

of the velocity distribution in order to obtain the least biased velocity probability density

function (Vyas et al., 2020). It is based on Jaynes’s principle of maximum entropy, which states

that any system in the equilibrium state attempts to maximize its entropy, subject to given

constraints (Jaynes, 1957). The entropy of a flume/river must reach its maximum value when

it reaches a dynamic (or quasi-dynamic) equilibrium (V. P. Singh et al., 2003). At any location

where maximum velocity occurs, the 2D velocity distribution based on entropy theory should

be valid (V. P. Singh, 2016).
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As aforementioned, during each experiment, bed topography and flow depth are measured

locally with high resolution. Since the flow discharge is fixed to a constant 15 L/s value during

all the experiments, the constraint in the entropy-based models is constant flow discharge.

Then, the velocity profile can be obtained locally by maximizing entropy. Estimating flow

velocity can be achieved using a number of techniques. Two entropic principles are known

as Shannon and Tsallis (this entropy is a generalization of the Shannon entropy) that are

often applied to river discharge assessment (Bechle & Wu, 2014; V. P. Singh, 2016). Both of

these principles connect the maximum flow velocity at a vertical axis of the flow area to the

cross-sectional mean flow velocity.

Shannon entropy-based method

The application of Shannon entropy to open-channel flows has been shown by Chiu and

colleagues (Chiu, 1987, 1988, 1989). Entropy-based models have been in use in hydraulics for a

number of years, and we have some hindsight about their validity (Kumbhakar et al., 2020; Vyas

et al., 2020). Building upon Chiu’s work, Moramarco et al., 2004 proposed a version of Chiu’s

entropy-based velocity distribution equation that can calculate the 2D velocity distribution

using only the maximum velocity and bathymetry information (Vyas et al., 2020). This model

does not require parameter calibration or the isovel equation and only requires knowledge

of the maximum velocity and its position. Generally, maximum flow velocity occurs at the

water’s surface; especially when w/h > 3.5, the maximum velocity occurs on the flow surface

(Song & Graf, 1996) which is true of our experiments. The velocity equation can be expressed

as follows (Moramarco et al., 2004)

u =
umax

M
log

[
1+ (

eM −1
) y

h −D
exp

(
1− y

h −D

)]
(2.1)

The equation for estimating the longitudinal velocity along the vertical axis (u) includes

several variables, namely, the maximum flow velocity and its depth from the flow’s surface,

represented by umax and D , respectively. The Shannon’s entropy parameter is symbolized as

M , whereas the variable y signifies the vertical position of the velocity with respect to the bed

topography. To determine the constant value of the entropy parameter, the following equation

can be used

um

umax
=

eM

eM −1
− 1

M
(2.2)
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Tsallis entropy-based method

Tsallis introduced the generalization of Boltzmann–Gibbs–Shannon (known as Shannon)

statistics (Tsallis, 1988). According to the Tsallis entropy theory, the 2D velocity equation is

expressed as follows (V. P. Singh, 2016)

u

umax
=

2

G

[
G

y

h +D
exp

(
1− y

h +D

)
+ (4−G)2

16

]1/2

−
(

4−G

2G

)
(2.3)

where the entropic parameter is denoted as G . Here, D = 0 (meaning that the maximum

velocity happens on the surface flow) because the flume is considered wide, w/h > 3.5, and

on the other hand, Song’s experiments emphasize this hypothesis (Song & Graf, 1996). The

definition of G is

um

umax
=

12+G

24
(2.4)

The mean velocity in a cross section um is known based on reckoning the flow discharge and

the section area, while umax is determined iteratively by the algorithm expressed in § 2.2.2, by

knowing that the maximum velocity is happening on the flow surface, assuming the maximum

velocity in the first iteration, and correcting the maximum velocity iteratively by calculating

the flow discharge using the estimated velocity profile and comparing with the ground truth.

Depth-averaged velocity fields

The mean velocity over a cross section um can be calculated if we know the flow discharge and

the section area, while umax is determined iteratively by knowing that the maximum velocity

is happening at the water’s surface. Water depth and bed topography during the experiments

were measured at a high spatial resolution, as detailed in § 2.2.1. Our measurement system

provided matrices with dimensions of 60×281 elements (width by length). For each of these

16860 elements, we computed the velocity field using entropy-based models and a depth

increment of d y = 0.1 mm by employing the algorithm described below and using a trial-

and-error approach. As a consequence, the size of the velocity vector at each of these 16860

elements depended on the water depth at that point. The algorithm is as follows:

• Assuming a maximum velocity (e.g., umax = 1 m/s) in the initial iteration,

• Calculate the section flow area A using the measured local flow depth data with the

assistance of the trapz function in MatLab,

• Determine the mean cross-sectional flow velocity um by dividing the flow rate Ql = 15
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Figure 2.4: Velocity plot based on (a) Shannon-entropy and (b) Tsallis-entropy for a cross
section in the middle of the channel based on Exp. 3 at t = 200 minutes. The border between
the white and blue regions indicates the bed topography for one cross section.

L/s by the section area A,

• Compute the entropy parameter M based on Eq. 2.2 (or G based on Eq. 2.4 in case using

the Tsallis entropy-based method),

• Iterate over each set of 60 data points along the channel width and calculate the velocity

profiles for the cross section using Eq. 2.1 (or Eq. 2.3 in case using the Tsallis entropy-

based method),

• Estimate the flow discharge Ql ,est based on the calculated velocity profiles,

• Adjust the maximum velocity in the initial step and repeat the process until the error

er r = Ql −Ql ,est is less than 10−3.

The contour plot of the calculated velocity profile is plotted in Fig. 2.4(a). However, for the

sake of comparison, the Tsallis entropy-based method has been applied to the same cross

section. The velocity profile based on Tsallis entropy is plotted in Fig. 2.4(b). One can see that

the velocity gets close to 1 m/s on the surface flow, which coincides with the measured flow

surface velocity in the laboratory using particle image velocimetry (PIV) technique by tracking

polystyrene balls travelling along the entire flume length (Dhont, 2017). By comparing two

velocity fields in Fig. 2.4(a) and Fig. 2.4(b), there is no such difference in using each entropy

models. We therefore decided to use Shannon’s entropy to calculate the velocity fields in all of

our experiments.

2.2.3 Neural network

We use the U-net architecture for our neural network model. In the main journal paper where

the U-net has been introduced by Ronneberger et al., 2015, the input and output images were

of different sizes and used to solve the segmentation problem. Since our input/output are
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of the same size, we reworked the model by changing the convolution function parameters

and using the model as a regression problem. The U-net has been used for segmentation

(Kohl et al., 2018; Rafique et al., 2022; Siddique et al., 2021), classification (Sudhan et al., 2022;

Windheuser et al., 2023; Yan et al., 2022) as well as the regression problem (Jiang et al., 2021;

Thuerey et al., 2020; Yao et al., 2018).

It has already been mentioned that the U-net is divided into two parts. Firstly, a standard

convolutional neural network architecture is used to perform the contracting process. Leaky

ReLU activation units are followed by multiple convolutions with padding in the contracting

path. The same structure is repeated several times. One of U-nets’ key characteristics lies

in the expansive path, i.e., the second path. Using transposed convolution, each stage in

the expansive path upsampling the feature map. Afterwards, we concatenate the upsampled

feature map with the corresponding layer from the contracting path. Therefore, we obtain a U-

shaped network and, perhaps most importantly, contextual information is propagated along

the network, enabling a proper reconstruction of context (Ronneberger et al., 2015). In this

work, an upsampling followed by a convolution rather than a typical transpose convolution is

used instead.

These features allow the model to handle the spatial complexity required for the pixel-wise

regression tasks (Huet-Dastarac et al., 2023). Its symmetric structure, combining both down-

sampling (reducing the spatial resolution of the feature maps while increasing their depth and

detecting the important characteristics in the input image) and upsampling paths (identifying

the features while maintaining the spatial resolution of the input), allows for the effective cap-

ture of multi-scale spatial information, which is essential for accurate regression predictions

(Alom et al., 2018; Ronneberger et al., 2015).

The implementation is based on the Pytorch deep learning framework (Paszke et al., 2019).

The table in Appendix A shows the structure of the U-net used in all our tests, with details of

the different layers. The schematic of our neural network architecture can be seen in Fig. 2.1,

in which a fully convolutional U-net is used. This is a famous architecture that uses a number

of convolutions at various spatial resolutions. This network differs mainly from a regular

encoder–decoder network in that skip connections are used from encoder to decoder parts.

By doing this, the network can use fine-grained details learned in the encoder to reconstruct

an image in the decoder. Using it as a whole is the only way to make this network work; if we

want to use the decoder as a standalone component, it does not work. No pooling is used, and

instead, strides and transposed convolutions are used.

The selection of U-Net’s hyperparameters, such as learning rate, number of epochs, batch size,

number of layers, activation functions, optimizer, dropout rate, and weight initialization, has

a substantial influence on its efficacy. Traditional procedures for hyperparameter optimiza-

tion, such as grid search or random search (Shekhar et al., 2021) can be used, but they are

computationally costly. To solve this issue, some recent research has proposed methods for

refining the U-Net hyperparameters (Ghosh et al., 2023). In this study, we used a variety of

31



Chapter 2. Bed topography inference from velocity field using deep learning

(a) (b)

Figure 2.5: (a) Effect of different constant learning rates in terms of validation loss (b) testing
models based on validation loss with and without learning rate decay versus training dataset
size.

tests to establish the best hyperparameters explained in § 2.2.3 and § 2.2.3. However, for some

hyperparameters, such as batch size, the selection method involves trying out several values

and selecting the best one by using a random search strategy.

Basic parameters

In order to tune the training hyperparameters, such as learning rate and learning rate decay,

we have studied these hyperparameters following Thuerey et al., 2020 using the baseline

architecture. The learning rate is a tuning parameter of the optimizer function that determines

the step size taken by the optimizer at each iteration while moving toward a loss function

minimum. Figure 2.5(a) shows the validation loss using different learning rates varying in a

range of [10−5,10−1]. The validation loss is computed by employing the mean absolute error

(MAE - L1 loss) as the metric, which measures the disparity between the bathymetry field ŷ

derived from the validation dataset and the bathymetry field predicted by the neural network

model, denoted as y . The MAE is calculated by summing the absolute differences between

the predicted values (y) and the actual values (ŷ), divided by the total number of validation

dataset size, denoted as N and expressed as: M AE = 1/N
∑N

i =1 |ŷi − yi |. The error bar, which

represents result uncertainty, is calculated by repeating the same configuration four times. As

can be seen, it is clear that the lowest and largest learning rates result in the highest validation

loss, considering our problem, we have the best learning rate with a learning rate of 10−2.

With gradient-based optimization algorithms, saddle points can be approached, and training

takes longer since surface around such points are flatter and gradients are close to zero

(Goodfellow et al., 2016). Therefore, rather than using a fixed value for the learning rate, it

could be decreased over time. If training no longer improves our loss, the learning rate is

changed, with every iteration being based on some cyclic function f . The number of iterations

in each cycle is fixed. By using this method, the learning rate is allowed to vary cyclically

between reasonable boundaries. We can traverse saddle point plateaus more quickly when
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we increase our learning rate, since we are less likely to get trapped in unfavorable states like

saddle points. We have performed a test: in it the learning rate decays by a gamma factor

in every epoch that is set to be γ = 0.99 i.e., l repoch = γ× l repoch−1. Figure 2.5(b) compares

validation loss based on this strategy, comparing constant and varying learning rate factors.

We found out that the learning rate decay does not help the improvement of the model based

on validation loss comparison; for nearly all training dataset sizes, the validation loss when

using learning rate decay is greater than that with a constant learning rate, while it helps

decrease diversity around the mean value.

Based on Fig. 2.5(a) and Fig. 2.5(b) tests, we used Adam optimizer (Kingma & Ba, 2014) with

a fixed learning rate of 0.01 and β1,2=[0.5,0.999] for the rest of the training optimizations. In

addition to a nonlinear activation function, each of the network section contains a convolu-

tional layer, batch normalization, and dropout one (refer to Table in Appendix A). In the model,

we included the possibility of normalizing batches. During training, it shifts and rescales

according to the mean and variance estimated on the batch. The literature has proven that

batch normalization makes the training process faster and smoother (Ioffe & Szegedy, 2015;

Santurkar et al., 2018). However, it requires a sufficiently large batch size, and our choice of

batch size of 100. We did not use any pooling for the training process.

Regularization and hyperparameters

The idea behind regularization is to reduce complexity of the neural network model and

inhibits overfitting - that is, the model learns unnecessary details, noises or random fluc-

tuations in the training data as main concepts, insofar as it negatively impacts the model’s

performance -, and it is essential to study when using deep learning algorithms. For example,

dropout, weight decay, data augmentation, and weight initialization are the most often used

regularization techniques. Following Thuerey et al., 2020, these techniques have been studied

and discussed in the subsequent analysis.

The choice of initialization is highly influential on deep learning algorithms when training

deep models. Algorithm converge-ability can be determined by the initial point, with some

initial points being so unstable that numerical difficulties arise and the algorithm fails. The

weight initialization of a neural network consists of setting its weights at small random values,

which determine the starting point of the optimization when training. In order to prevent

layer activation outputs from exploding or vanishing gradients during training, an appropriate

initialization of the weights is necessary and manages to achieve better performance. Here are

the most widely used, among others: the constant initialization, the He normalization (He et

al., 2015) and Xavier normalization (Glorot & Bengio, 2010), when dealing with convolutional

layers. In deep networks, the performance of the constant initialization scheme usually is

subpar (Goodfellow et al., 2016). We chose not to use constant initialization because it sets all

computing units to the same state, resulting in symmetric or identical outputs and gradients

during backward propagation. This symmetry restricts the flexibility of our network, hence

we chose not to use constant initialization. We experimented with two other initialization for
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Figure 2.6: (a) Test error as a function of the dropout rate for a model with 142,689 training pa-
rameters, (b) illustrates the influence of the weight decay factor on the training and validation
performance.

our networks: He and Xavier normalization and the former seems to lead to slightly better

performances than the latter. We therefore stuck to that one. Based on the He initialization

method, initialization is based on a randomly generated number computed with a Gaussian

probability distribution with a mean of zero and a standard deviation of
p

2/n, where n stands

for the number of inputs to the node (He et al., 2015).

We can go one step further by adding mechanisms specifically designed to facilitate the

training such as dropout (Srivastava et al., 2014). Dropout consists of randomly dropping

out neurons in a layer, with a probability that corresponds to the dropout coefficient. We

implemented the possibility to include it in the model. Here is this technique’s main advantage:

it prevents overfitting as the neurons of a layer become less dependent on particular inputs. In

Fig. 2.6(a), the influence of the dropout is studied, which has a negative effect on the test error.

As the dropout rate decreases, the test error tends to converge to zero. Therefore, the dropout

is not recommended for this study and it is considered as zero for the rest of the training. This

might be the reason: dropout is usually unnecessary when the network is small compared to

the dataset. By adding this regularization, it will worsen performance if the model capacity is

already low.

In order to further improve the models’ performance, we can also use the weight decay

technique, which holds greater significance for fully connected neural networks compared

to convolutional neural networks. This approach consists in adding a penalty to the model

based on the amplitude of its weights, in order to limit overfitting. The model will all the more

be penalized as the values of the network connections increase. This strategy is based on the

principle that large weights in a neural network can cause more variance at output and prevent

the model from generalizing correctly. The penalty forces weights down, and permits to obtain

a less flexible network that is less specialized in the data used for training. This penalty is

defined as follows: Lwei g ht_decay =λ
∑

i ω
2
i where Lwei g ht_decay is the penalty associated with

weight decay, ωi is the i−th weight in the network and λ is a positive coefficient that affects

the importance of the penalty. This parameter is yet to be determined, so we carry out training
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(a) (b)

Figure 2.7: (a) Validation loss, and (b) relative error for various model complexity and training
dataset size.

with several values of λ as presented in Fig. 2.6(b) in which the validation and training loss

are plotted as a function of the weight decay factor. Losses for the weight decay factor larger

than 10−4 start to increase while the losses for the lower weight decay reach a plateau. The

training time using different weight decay factor does not change dramatically, therefore the

best weight decay could be chosen by just paying attention to the losses in which 10−6 is the

best for the rest of the training.

Data augmentation is a technique in deep learning methods that increase the amount of

training dataset by leveraging existing data, often via techniques involving alterations in

position and color, among others. In physical application, it is also feasible to employ data

augmentation, as presented in Ghorbanidehno et al., 2021. Nevertheless, as evidenced by

the results detailed in the subsequent subsection, when evaluating the adequacy of data

volume relative to the model’s complexity through validation error comparison, it becomes

apparent that the existing data volume suffices. Consequently, in this study, we refrained from

employing any data augmentation techniques.

2.3 Results and performance

2.3.1 Model performance

To investigate the impact of neural network model complexity on the accuracy of its pre-

dictions, in the following training runs, the total amount of weights is modified by varying

the number of feature maps. For instance, the total weights will quadruple by duplicating

the number of input channels (Thuerey et al., 2020), hence, by manipulating the number of

input/output channels, we can investigate diverse model complexities. Figure 2.7 shows the

accuracy results for five distinct network sizes, namely networks with {9.3,36,143,567,2300}k

training parameters, as a function of various dataset sizes including {0.25,0.5,1,2,4}k data.

A network with 9.3k training parameters, is relatively small for a generative neural network with

35



Chapter 2. Bed topography inference from velocity field using deep learning

1×64×256 = 16k outputs, but it allows for faster training time and prevents overfitting in view

of the relatively small dataset we are working with. Nevertheless, a network comprising 2.3m

training parameters faces challenges concerning time constraints and lacks generalization

capabilities - because of relatively small training dataset. Number of training parameters

is a crucial number to keep in mind when training neural networks. It is easy to change

and increase it, and end up with a network with millions of parameters, then it is highly

probable we will be faced with all kinds of convergence and overfitting issues. To avoid the

dimensionality curse, the number of parameters must match the amount of training data, as

well as scale with the network’s depth (Zhang et al., 2021). The exact relationship between

these three depends on the problem under consideration.

In Fig. 2.7(a), various models with different complexity - number of training parameters -

perform differently when applied to 1149 velocity fields from the test dataset. As depicted in

Fig. 2.7(a), both error and error bar tend to be larger when training occurs on a small dataset

size. Conversely, as the dataset size increases, the error and error bar decrease. Furthermore,

for a large dataset size, increasing the number of training parameters leads to a decrease

in validation error. However, for a small dataset size, augmenting the number of training

parameters results in an increase in validation error due to overfitting to the data.

In Fig. 2.7(b), the relative error (RE) is computed using the formula: RE = 1/N
∑N

i =1 |yi − ŷi |/ŷi ,

where ŷ refers to the ground-truth bed elevation, y represents the estimated bed elevation

calculated based on the neural network model, and i counts the sample data. Curves in

Fig. 2.7(b) show the relative errors for various model sizes and training dataset size. For a

given number of training samples, there exists a slight variation among relative errors of

different model sizes. However, the decrease in error is comparable when larger amounts

of training data are utilized. Once again, the error bar reduces as the dataset size increases.

When dealing with the smallest dataset size, an increase in training parameters leads to a

corresponding increase in relative error. However, this behavior reverses for larger dataset

sizes. Based on the findings in Fig. 2.7, the most optimal model seems to be the one with

2.3m training parameters, achieving a L1 loss of 0.16 cm and a relative error of 0.5% when

trained on a 4k dataset size. However, this model requires a considerable training time of

approximately 2 hours. In comparison, smaller models show faster training times, taking

{0.31,0.39,0.59,0.97,1.8} h - from smallest to largest model for 600 epochs -, when applied to a

4k dataset size.

Considering both the execution time for training and the performance metrics, we have

ultimately chosen the model with 143k trainable parameters as the best model. This model

exhibits a relative error of 0.85% and a validation loss of 0.26 cm when trained on the 4k dataset

size. These results demonstrate that the model has been effectively trained and can generate

accurate predictions within a reasonable timeframe.

Figure 2.8(a) shows the best neural network is trained properly without overfitting - given

that the training and validation loss plots did not exhibit divergence. After 600 epochs, the
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Figure 2.8: (a) Training and validation losses for learning rate 0.01, (b) histogram plot of the L1
norms of prediction errors (applied to 460 test samples).

validation and training losses should have decreased from an initial value of around 8.9 cm

to 0.02 cm based on the standard settings. It is visually easy to see the loss curves trend

down for 100 epochs and, afterwards, the curve flattens out. As we move towards the end

by increasing the number of epochs, the validation loss is still decreasing slowly, and most

importantly, it is not increasing. Nevertheless, achieving a training loss reduction of more than

0.02 cm will come at the expense of increased training time without significant improvement

in loss compared to previous epochs. A divergent validation loss from the training loss would

indicate overfitting, something we should avoid. The graph illustrates the models do not

exhibit overfitting over time and reach to stable levels of validation and training losses after

600 epochs.

To study the neural network model performances, in which we have tuned the parameters in

the previous parts on a larger number of training and validation datasets, we perform an error

measurement for all the test dataset. The best model is applied to the test dataset and L1 error

is calculated. Figure 2.8(b) shows the distribution of L1 error varying in a range of [−0.32,0.24]

cm. The 50th - known as the median -, and 95th percentile - meaning that only 5% of the

samples exhibit a greater L1 error -, are -0.041 cm, and 0.058 cm, respectively with a mean of

-0.045 cm. It means, L1 error of predicted examples - in the test dataset - by the neural network

model lie close to zero. The maximum error is 3.2 cm while the bed topography changes in an

interval of 18.19 cm to 37.02 cm, meaning in a 18.83 cm range.

2.3.2 Model predictions

In this section, the best trained network’s prediction capability may be investigated further.

By selecting the best model, namely, having 143k training parameters and with no dropout,

learning rate of 10−2, and choosing 10−6 as the weight decay factor, and using the whole

dataset, i.e., 4133 data points for the training, the final neural network is established and used

for studying accuracy and performance on different case scenarios, namely, on test dataset,
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Figure 2.9: Qualitative result of the U-net: the first row is the normalized bed topography fields
from the test dataset (ground truth). The second row are the images that are predicted by the
U-net. The third row are the error images (ground truth - prediction).

numerical simulation, and real-world case scenarios.

Model’s predictions based on experiments

A part of the dataset (460 data points) is kept for testing the neural network model’s prediction

power. The velocity fields in the test dataset feed into the neural network and the prediction is

examined by comparing with the ground truth (experiments). The accuracy of the model is

shown in Fig. 2.9 so that each column represents one of the bathymetry in the test dataset.

The first row is the ground truth of the bed topography and the second row shows the pre-

dicted bathymetry, using the neural network model. The difference between aforementioned

topography fields (ground truth - prediction) are presented in the third row. The mean error

among all the test dataset is 0.045 cm, while the topography varies in a range of 18.8 cm.

To quantify the model’s prediction further, the topography over a longitudinal axis along the

flow direction is compared in Fig. 2.10 with the neural network model’s predictions. The data

presented in the first to third columns of Fig. 2.10 corresponds to the respective data in the first

to third columns of Fig. 2.9. The longitudinal axes are located in z = 5, 30, and 55 cm from the

down side wall. The black and red solid lines represent the prediction and the ground-truth

(experimental data), respectively. As can be seen, the curves variations are finely reproduced

and values coincide very well. This allows to conclude that hyperparameters related to the

training and the architecture of the neural network model are chosen properly and provide

sufficient accuracy. In addition to the validation of the model based on the test dataset, the

numerical simulation performed and field data measurements are used to compare with the
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Figure 2.10: Each column belongs to one experiment. The first row is the profile of the bed
topography along the channel length at z = 5 cm from the down wall, the second row is the
profile at z = 30 cm, and the last row is the bed topography at z = 55 cm. Ground truth is shown
by red and prediction by black color.

model’s prediction in the next subsections.

Model’s predictions based on numerical simulation

In § 2.3.2, the model was applied to the test dataset derived from experiments conducted at

LHE-EPFL (Dhont, 2017), and it yielded precise predictions. Since the model is trained on the

same experimental dataset - the training part of dataset -, therefore the model prediction using

the test dataset in the previous subsection just shows us the model is well trained and that,

if someone applied the model to gravel-bed laboratory channel, they can get very accurate

results. An important question would be about the model’s accuracy on the other applications.

In order to further study the model’s prediction power, the model will be compared with the

simulation performed based on Iber - hydraulic software for the simulation of free surface

flows (Bladé et al., 2014).

A gravel-bed flume is simulated based on Iber. A flume with a Q = 15 L/s flow discharge, 1%

slope, 10 m length and 0.5 m width, using a uniform structured mesh grid with 100 elements

in the flow direction and with 10 elements in the transversal direction has been simulated

with final time of t f = 7200 minutes. The virtual flume dimensions differ from the dimensions
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of the flume on which the model is trained (0.6 m by 14.0 m). In spite of the difference in

size, the trained model can be applied to the simulation flume. Additionally, using the resize

function from the OpenCV library with bicubic interpolation, the image size is increased to

256× 64 elements, allowing it to be fed into the ML models. The mean particle diameter

considers 7 mm in addition of using Manning coefficient of 0.025, and choosing Meyer-Peter

and Müller (MP-M) as the bedload model on the software. The simulation input parameters

are intentionally selected such that to be close to the input parameters of the experiments

upon which the neural network is trained.

The inlet boundary condition is set to constant flow discharge and an open boundary condition

for the output has been chosen. Afterwards, the velocity field and the topography at the

end of simulation time i.e., t f = 7200 minutes are extracted from Iber. The trained neural

network model has been applied to the depth-averaged velocity field extracted from Iber

and the topography prediction from the neural network model has been compared with the

topography of Iber.

Top plot in Fig. 2.11 is the channel bathymetry based on numerical simulation and down

plots are a comparison of the neural network prediction versus the bed profile based on

Iber on a cross section at x = 1.0 m (left plot), and x = 5.5 m (right plot) from flume inlet.

Figure 2.11 shows the neural network model’s prediction in comparison with the ground-

truth (bathymetry from Iber), in which prediction has a 25% maximum relative error. The

mean absolute error in cross section x = 1.0 m is 0.75 cm, while at the cross section x = 5.5

m is 0.14 cm. However, gaining such mean absolute error is small in comparison of the

range in which bathymetry changes. This validation shows that, as long as the flow and

bed satisfies the mass and momentum conservation laws, the trained model is robust and

accurate to predict bathymetry for gravel-bed and shallow flows. Despite finding out about

the neural network model performance in laboratory experiments, and simulation, inquiring

about model performance on the field data is a natural question and an intriguing subject to

examine, which will be answered in the next part.

Model’s predictions based on field data

Predicting the trained neural network model on the field data would be interesting to investi-

gate. Thus, we performed model predictions on a river located in east central Illinois state in

the USA. Lewis and Rhoads, 2018a, 2018b’s work on confluence stream provides the velocity

measurements using the acoustic Doppler velocimeter (ADV - Nortek Vectrino+) in addition to

bed topography for three cross sections. Experiments were conducted at the confluence of the

Kaskaskia River and Copper Slough (KRCS), positioned at 40°04’34.1"N, 88°20’53.9"W, as can

be seen in Fig. 2.12. The width is about 20 meters at the confluence center and approximately

10 m downstream. ADVs mounted on a topset wading rod and placed at predetermined cross

sections within the flow were used to determine the vertical velocity field. Three cross sections,

denoted as A, C, and E (refer to Fig. 2.12), were measured, and these measurements were

utilized in our neural network model for the purpose of inferring bathymetry. Sample volumes
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Figure 2.11: Up: Bed topography based on simulation using Iber, down: bathymetry compar-
ison of the Iber and neural network model. The red line is the Iber topography for a cross
section at x = 1.0 m (down-left), and x = 5.5 m (down-right) from flume inlet and the black line
represent the neural network model’s prediction.

for ADV are 0.125 cm3 and sampling frequency is 25 Hz, and configured in laboratory mode

(Lewis & Rhoads, 2018b). ADV sampling was carried out with a downward-looking probe 6 cm

below the surface, to position the sampling volume as close to the surface as possible (Lewis &

Rhoads, 2018a). 60−80 samples, 60 seconds in length are collected at three cross-sections

during one measurement campaign. Cross-sectional ADV measurements were obtained the

same day. All field campaigns resulted in only a few centimeters change in water surface

elevation between the beginning and the end of the measurements, far less than the average

flow depth (Lewis & Rhoads, 2018b). Cross-sectional velocity fields are fed into the neural

network model. Given the disparities between real-world and experimental data, our ap-

proach involves model calibration (Farahani et al., 2021; Tsai et al., 2021). The neural network

model, trained on an experimental dataset, establishes a mapping function denoted as fm

that connects bathymetry and velocity fields: y = fm(v f ), where v f represents the velocity

field, and y represents the bathymetry field. Due to differences between the real-world data

distribution and the laboratory dataset, this mapping function is adjusted to y = α fm(v f ),

with α as a constant calibration parameter (Acuña et al., 2019; H. Gao et al., 2019; Yang et al.,

2019). After analyzing one of the cross-sectional data, we determine the optimal value for α

to be 14.5, and this value is subsequently applied to the other two cross-sectional data. The

bathymetry prediction for the aforementioned cross-sections based on the calibrated neural

network model are compared with the field data in Fig. 2.12’s right-hand side. The ground

truth (field data) is shown in red solid line while the prediction of the trained neural network

model has been shown in black color.
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Figure 2.12: (left) Google Maps (2023). Modified map of the confluence of the Kaskaskia River
with the Copper Slough, East-Central Illinois, USA. Retrieved from https://maps.google.com/.
The arrows show flow direction. The red lines represent the cross-sections where these
measurements have been conducted. (right) comparison of the neural network prediction vs
the field data measurements. The red and black lines represent the field measurements and
neural network model prediction, respectively.

The predictions’ absolute errors in comparison with the measurements in cross section A, C,

and E are 15.0, 15.6, and 6.6 cm, respectively and maximum relative errors are 31.3%, 18.5%,

and 8.3%, respectively. However, the maximum relative error and the absolute error is still

small compared to the approximately 100 cm depth of the river, while these errors could be

decreased by adding a part of the field data to the training dataset, enhancing the number of

training data, or using a more complicated model with more layers and training parameters.

2.4 Discussion

This work is concerned with imaging topography from the depth-averaged velocity field,

which can be obtained more easily with a lower cost-rate than the bed topography direct

measurement. The network connects velocity field and bathymetry. The U-Net is chosen for

this purpose. The U-Net architecture is unique. It was first introduced for image segmentation

to overcome the problem of limited training samples in the medical field – where image cap-

turing may be expensive (Siddique et al., 2021). Its main strength is its capacity to deliver good

results even with a limited number of data, thanks to its structure. Indeed, it is able to keep

trace of global and local information by analyzing the image at different scales, and preserve
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detailed features through skip connections (Ronneberger et al., 2015). Skip connections from

the contracting path help to retain the pieces of spatial information that were lost in the

contracting path, allowing the decoder layers to more accurately detect features.

According to our tests, refer to Fig. 2.7, error reduction requires an increase in training dataset,

and using a more complicated convolutional neural network model such as increasing the

number of feature extractions, and network layers at the cost of increased training time. Also,

the relationship between model size and relative errors for a fixed number of training samples

can be seen in Fig. 2.7. Notably, even with the same number of training samples, different

model sizes exhibit slight variations in relative errors. However, as the volume of training

data increases, the overall decrease in error remains comparable across various model sizes.

When considering the smallest dataset size in Fig. 2.7, augmenting the number of training

parameters results in a corresponding increase in relative error. However, this trend reverses

when dealing with larger dataset sizes. Intriguingly, the model containing 2.3m training

parameters achieves the best relative error of 0.5% when trained on a 4k dataset. Nevertheless,

it demands substantial training time, making it less practical for certain applications. On

the other hand, smaller models exhibit faster training times while still delivering reasonably

accurate results, which may be sufficient for the given requirements.

In Fig. 2.9, the lower row displays the magnitudes of errors produced by the model when

applied to flume experiments. These errors are relatively small in size, and their distribution

across the test dataset is depicted in Fig. 2.8(b), revealing that the mean value of the errors

is very close to zero. The reason for this favorable performance and relatively small error

in Fig. 2.9 can be attributed to the model’s application on the test dataset. Notably, the test

dataset represents a portion of the same dataset that the model was originally trained on.

Consequently, this effective performance on the test data indicates that the model has been

well-trained and that the hyperparameters have been appropriately selected, allowing it to

generalize well and produce accurate predictions when applied to the flume experiments.

The trained convolutional neural network model used the depth-averaged velocity fields,

while field scientists usually measure surface velocities, for instance, by using particle image

velocimetry method. Therefore, it was worth asking how much the error propagates when a

field scientist feeds the surface velocity fields into the trained model in this work. The experi-

ments (which we have used in this work to train the neural network) have been performed in

a straight channel (no cross-stream secondary current), near steady state, with weak sediment

transport. In these conditions, the velocity profile has been obtained by Song et al., 1994. Fig-

ure 2.13 shows the flow velocity profile for uniform flow at various bed slope 0.25 < S(%) < 1.5,

and discharge 30 <Q(L/s) < 130 measured by acoustic Doppler current profilers (ADVP). The

log-law for the inner region (y/h < 0.2) is presented in red dashed line and the Coles wake law

could represent the velocity profile in the outer region (y/h > 0.2) in a blue dot-dashed line,

and the black solid line is the depth-averaged velocity profile.

As one can see, by increasing the flow depth, the depth-averaged velocity deviates from the
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Figure 2.13: The red dashed line represents the log-law velocity profile in the inner region
(y/h < 0.2) where ū is the point velocity averaged for different experiments, u∗ is the shear
velocity, y is distance from the top of the sediments, y0 = 0.2ks is viscous sublayer, ks is
roughness height which is equal to d50, and Br=8.44 is integration constant. The blue dot-
dashed line is the velocity profile in the outer region (y/h > 0.2) where κ is Von Karman’s
constant, Π = 0.108 is the wake strength parameter, and δ is the distance between the bed and
the point where maximum velocity occurs, here it is equal to h.

velocity profile, and the maximum relative error happens on the surface flow, with a 16.8%

magnitude. In order to know how this error was propagated in the model prediction, we have

applied the trained convolutional neural network model to the surface velocity of field data

and gained a 31.3% maximum relative error based on Fig. 2.12. Therefore, however, the training

of the neural network model is based on depth-averaged velocity fields but it is possible to use

surface velocity to infer bathymetry while accepting several dozen percentage of relative error.

A potential source of error originates from the lateral velocity: in the trained model, the lateral

velocity is virtually zero compared to what we observed in real-world scenarios. However, we

believe that this issue does not prevent us from applying the model to the real-world rivers.

Another concern about this work was about the amount of data needed to suffice for training

the neural network. A test on the dataset size in Fig. 2.5(b) shows that 4133 data points was

enough for this work’s purpose, since the error does not significantly decrease after a 2500

dataset size. However, having 31.3% maximum relative error when the model applied to real

rivers is good enough for real-world applications, however further accuracy is possible using a

more complicated model (then training time increases and needs more datapoints in order

to avoid overfitting) but whether it is necessary or not depends on application of the model.

The proposed neural network model trained on 4133 experimental dataset applied to the

flume experiments in Fig. 2.10 and Fig. 2.9, on the numerical simulation in Fig. 2.11, and field

measurements on a river in Illinois state, USA in Fig. 2.12 and all the comparison, show an

acceptable accurate prediction of the model, meaning that the model is trained properly and

can be used for academic/industrial applications.

The closer the conditions are to those under which the dataset was collected, the more precise
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the predictions become. For instance, when deep learning models are applied to a subset of

the experimental data in § 2.3.2, the accuracy of predictions is noticeably higher. Conversely,

if the flow conditions diverge from the conditions which the dataset was collected, like when

applied to real-world river data in § 2.3.2, the predictions become less accurate. In this section,

the model is applied to the following range of hydraulic values (where the model’s prediction

relative error reached several dozen percentage): the average depth of the upstream tributaries

measured 51 cm, while their average speed measured 0.31 m/s. Consequently, the model

usage is recommended for the aforementioned flow conditions e.g., shallow flows over gravel-

bed conditions. This empirical observation explains why the simulation input parameters

presented in § 2.3.2, were chosen to closely match the experimental conditions used to train

the neural network.

2.5 Conclusion

We applied the U-net with alternating convolutional layers to encode the velocity field (which

was here estimated using a statistical method), followed by alternating convolutional and

upsampling layers to decode them and a final convolutional layer with Leaky Relu activation

to infer the bed topography. The model contains skip connections, which improves training

efficiency. This network has a skipping layer, which allows the decoding part of the network to

have additional information about the encoding without losing any information. The final

neural network has been established according to the tests performed in order to find out

the best parameters, 143k trainable parameters with no dropout, learning rate of 10−2, and

choosing 10−6 as the weight decay factor, and using the whole dataset i.e., 4133 data points for

the training. The network is summarized in Appendix A.

The trained model does not require solving the shallow water equations numerically. It con-

structs the solution (bathymetry) by just looking at the input data (velocity fields). Overall, after

studying the basic and hyperparameters, and training a neural network model, we have found

the best model yields a good accuracy (its less than 1% relative error for estimated bathymetry)

when working on the test dataset (laboratory experiments), less than 20% maximum relative

error when applying the model to the numerical simulations (using Iber), and with a maximum

31.3% relative error by applying the model to field data (confluence of Kaskaskia River with

the Copper Slough).

This work shows the possibility of using the U-net architecture for predicting the bathymetry

from the velocity field and provides a user-friendly tool for whoever has the velocity field and

is interested in deducing the bed topography. The user needs to be aware that this is not a

general model for every kind of flume or rivers. This work is based on gravel-bed flume/river

and therefore the model provides accurate bathymetry for gravel-bed rivers. The strength of

the proposed model is that it is trained on experimental data and the neural network model

avoids solving the partial differential equations that governs the flow, and the bed and gives

quick access to the bed topography.

45





3 Simulation of antidune migration in
straight channel

Mehrdad Kiani-Oshtorjani 1 and Christophe Ancey 1

1 Environmental Hydraulics Laboratory, École Polytechnique Fédérale de Lausanne, 1015

Lausanne, Switzerland

In preparation for publication.

Doctoral candidate’s contribution

The candidate performed the entire implementation, analysis, and figures for this chapter.

Part of this chapter comes from additions made by Prof. Ancey to the candidate’s initial text.

Abstract

There is growing evidence that bedload transport is driven by noise (i.e., large fluctuations in

the number and velocity of moving particles) for a wide range of flow conditions. Capturing

the full dynamics of bedload transport requires specific computational hydraulic models. In

this paper, we have tested a model based on a set of deterministic equations (the shallow

water equations supplemented with the Exner equation) for water and continuity of the bed

and a stochastic equation for bedload transport. The set of governing equations was solved

numerically using a Riemann solver-based method to study bedlaod transport and bedform

development in a narrow gravel-bed flume with high Froude numbers. To assess the predictive

ability of the model, laboratory experiments (super-critical flows over a gravel-bed exhibiting

antidunes) were used and have been compared with the numerical results. The resulting

bedload time series have been found a maximum relative error as high as -258% for the

mean bedload transport. In agreement with experiments, we found that bedforms migrate

upstream. The relative errors for the antidune wavelength and amplitude were -41%, and

-91.5%, respectively, and observed a good match between measured, and computed antidune

celerity.
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3.1 Introduction

Like in turbulence, bedload fluctuations have long been ignored in hydraulic studies, as if

average quantities were sufficient to describe the flow dynamics, but there is growing evidence

that they play a key role (D. Liu et al., 2016; Shih et al., 2017; A. Singh et al., 2010). The motion

of individual particles experiences random movements, which could be considered the source

of randomness in the system, even in steady-state conditions, resulting in strong fluctuations

in bedload flux due to the complex interactions between particles-fluid and particles-particles

(Benavides et al., 2022). The bedload fluctuations bring stochastic behaviors at both the

grain-scale, such as drag force random fluctuations (Paintal, 1971a; Valyrakis et al., 2013), and

macroscopic scale, e.g., bed morphology (Warburton & Davies, 1994).

Although bedload transport rate fluctuations are observable over a wide range of spatial and

temporal scales (Paintal, 1971b), most researchers have ignored those fluctuations and focused

on the averaged bedload transport rate. By ignoring the stochastic nature of bedload transport,

one can easily miss the point that, similar to Reynolds stress in turbulence, bedload transport

rate fluctuations create special features on the bulk scale that cannot be simply described

without a proper accounting of the role played by fluctuations. For instance, bedload transport

rate may be modulated by diffusive effects (Ancey et al., 2015; Charru et al., 2004; Furbish

et al., 2017).

The turbulent fluctuations and bed topography variations generate randomly varying bedload

fluxes that fluctuate three to four times more than their average value while having constant

controlling variables such as constant flow discharge (Warburton & Davies, 1994). That

means bedload transport modeling requires being treated as a stochastic problem, despite

using averaged characteristics, such as the averaged Shields number, in traditional bedload

modeling. Otherwise, the accuracy of the numerical results will be undermined. The latter

approach - deterministic equations - estimates the sediment volume transport for a favorable

case study - fully mobile and high Shields number - with more than 200% error (Recking et al.,

2012), while non-capacity bedload models by considering the temporal and spatial delay of

sediment movements (Ancey et al., 2008; Giri & Shimizu, 2006; Nakagawa & Tsujimoto, 1980)

derived based on Markov process framework may improve the accuracy because of the local

definition of the deposition and entraiment rates (Bohorquez & Ancey, 2015, 2016).

When studying such systems—flow over an erodible bed—we need specific tools for extracting

statistical information characterizing them. This makes it possible to compare how distinct

systems respond to a given input. The reason lies in the stochastic nature of the system. For

instance, several identical experimental configurations, or alternatively, replication of one

experiment, could lead to different bedload transport time series and bed morphology after a

certain amount of time while having the same statistical characteristics, e.g., average bedload

time series, slope, braiding, and sinuosity indexes, and bar area (Ashmore, 1988; Warburton &

Davies, 1994; Young, 1989). In Warburton and Davies, 1994 experiments, eleven repetitions

of the same experiment with identical initial and boundary conditions led to various bed
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topographies and bedload transport time series. Although, in their study, the turbulence

fluctuations and irregularity in bed topography strongly influenced sediment dynamics and

consequently the bedload transport, and bedform statistical characteristics gently fluctuate

around an averaged value under steady-state flow conditions (Dhont & Ancey, 2018).

To incorporate the effects of fluctuations in the bedload formulation, an attempt has been

made in recent years by Ancey and Heyman, 2014 to describe the mechanics of flow over

a movable bed from a stochastic point of view. They have taken a collective entrainment

rate into account to generate non-Gaussian fluctuations. In addition, they introduced white

noise in bedload formulation derivation through the jump Markov process framework. This

approach ended up with a stochastic formulation of the bedload transport by calculating

the variation of the active particle number in a given control volume at each time step. To

assess the predictive capacity of the stochastic bedload model, it is essential to couple it with

the governing equations for the flow phase, which include the Saint-Venant equations and

continuity of the bed, i.e., the Exner equation.

In this work, we study bedform development along with bedload transport rate in narrow

gravel-bed flume under a supercritical flow regime by means of numerical simulations. The

numerical solver is based on Saint-Venant–Exner equations coupled with the stochastic bed-

load model. The numerical studies focus on three aspects, namely, i. the rate of bedload

transport, ii. the amplitude and wavelength of the antidunes, and iii. their migration velocity.

The numerical predictions examined by applying the solver to laboratory experiments from

Pascal et al., 2021; Recking et al., 2009. In advance of conducting a numerical simulation,

we need to parameterize the mass exchange rates. There are three mass exchange rates in

the stochastic bedload model. To this end, we proposed closure relations to parameterize

the particle exchange rates. Then, these closure relations are used to solve the governing

equations when reproducing the experiments.

The set of governing equations, consisting of four equations, is non-homogeneous. Follow-

ing the fractional-step method proposed by Toro, 2013, this non-homogeneous system of

equations could be split into two sets of equations, namely, a hyperbolic and a parabolic

subproblem. Afterwards, each set could be separately solved at each time step. The hyperbolic

subproblem is solved by the q-wave propagation algorithm (Ketcheson et al., 2013), and the

parabolic subproblem by the Crank-Nicholson algorithm.

This work is structured as follows: the theoretical background, including the governing equa-

tions, the stochastic/deterministic bedload model, and the parametrization of the entrainment

and deposition terms are explained in § 3.2. The architecture of the numerical model and

methodology to solve them are explained in § 3.3. § 3.4 outlines the experimental dataset,

which will be utilized for comparison and reproduced by the numerical solver to demonstrate

the prediction power of the stochastic and deterministic models with a focus on bedload

transport time series, wavelength, amplitude, and migration celerity of the antidunes. Lastly,

this work is discussed in § 3.5 and concluded in § 3.6.

49



Chapter 3. Simulation of antidune migration in straight channel

3.2 Theoretical model

3.2.1 Saint-Venant–Exner equations

We consider one-dimensional flows over a smooth topography y = yb(x, t), where x and y

denote the coordinates in the horizontal and vertical directions, respectively, and t is time.

We use the Saint-Venant–Exner equations to model the bed’s morphodynamical evolution

and the stream dynamics (N. J. Balmforth & Provenzale, 2001; Cunge & Perdreau, 1973; Cunge

et al., 1980)

∂h

∂t
+ ∂hū

∂x
= 0 (3.1)

∂hū

∂t
+ ∂hū2

∂x
+ g h

∂h

∂x
= −g h

∂yb

∂x
+ ∂

∂x

(
νt h

∂ū

∂x

)
− τb

ϱ
(3.2)

(1−ζp )
∂yb

∂t
= D−E = −∂q̄s

∂x
(3.3)

where ū(x, t ) is the depth-averaged velocity, h(x, t ) = ys(x, t )−yb(x, t ) is the flow depth defined

as the distance between the free surface and bed, and ys (x, t ) is the free surface’s position. The

eddy viscosity is denoted by νt , g = 9.81 m2/s stands for the gravity acceleration, ϱ is the water

density, τb is the bottom shear stress, ζp is the bed porosity (as we will study beds made of

well sorted gravel, we will set ζp = 0.36 in the following), and q̄s is the bedload transport rate.

The deposition and entrainment rates are denoted by D and E , respectively.

We followed Kranenburg, 1992 and included diffusion in the momentum equation, which

accounts for local changes in the velocity profile in the presence of strong flow-depth gradients.

It has been shown that this diffusive term is essential to properly describing the flow dynamics

in supercritical flows by limiting the development of short-wavelength instabilities, making

the flow-depth profile more consistent with experimental observations, and smoothing dis-

continuities (N. J. Balmforth & Provenzale, 2001; N. Balmforth et al., 2004; Bohorquez et al.,

2019; Kranenburg, 1992; Needham & Merkin, 1984). This diffusive term has been justified by

Rastogi and Rodi, 1978, who supplemented the Saint-Venant equations (Eq. 3.1 and Eq. 3.2)

with depth-averaged equations for the turbulent kinetic energy and its dissipation rate. For

supercritical flows (with Froude numbers exceeding 2), Z. Cao et al., 2015 showed that Rastogi

and Rodi’s model led to eddy-viscosity values that were too low, and thus, based on empirical

grounds, they suggested adding a Boussinesq-like eddy viscosity to Rastogi and Rodi’s estimate

of the turbulent viscosity

νt = cνhu∗ with u∗ =

√
τb

ϱ
(3.4)

where the dimensionless parameter cν was found to increase from 0 to 16 when the Froude

number was increased from 2 to 6 (Z. Cao et al., 2015), and u∗ is the friction velocity. Here, we
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used the minimum values suggested by Bohorquez and Ancey, 2015 and set cν = 4.

We used the Darcy–Weisbach equation to model flow resistance

τb =
f

8
ϱū2 (3.5)

where the Darcy–Weisbach friction coefficient was computed using Keulegan’s equation√
8

f
= 6.25+5.75log

h

ks
(3.6)

where ks denotes the bed roughness size. Various values have been proposed for gravel-bed

rivers (López & Barragán, 2008). Here, following Pitlick, 1992, we set

ks = 3d84 (3.7)

where d84 is the particle size quantile such that 84% of the grains are finer than d84. Flow

resistance is affected by bedload transport and bedforms (Recking et al., 2008b; Van Rijn,

1984b). As we studied supercritical flows over antidunes, we considered that the flow depth

profiles were in phase with bed undulations, and therefore bedforms did not increase flow

resistance significantly. For the ranges of flow depth and bed slope explored in this paper,

bedload transport can increase the Darcy–Weisbach friction coefficient by a factor of 1.5

(Recking et al., 2008b). It is possible to take this increased flow resistance by increasing the

bed roughness (Recking et al., 2008b), but as a first approximation, we decided to ignore the

influence of bedload transport on f .

Until now, we have used quite consensual elements to close the momentum balance equation

Eq. 3.2. The Exner equation gives more scope to explore how effectively some assumptions

about bedload transport help to predict the stream’s morphodynamic evolution. Our anal-

ysis will have two threads: first, we will investigate the stochastic bedload transport model

proposed by Ancey and Heyman, 2014, which allows us to compute the entrainment and

deposition rates E and D. We will outline this model in the next subsection.

As the model parameters were calibrated only for a finite set of experiments, we will study

in §3.2.3 how we can relate these parameters quite generally to flow conditions. Second, we

will use an empirical bedload transport equation that is routinely used in the majority of

morphodynamical models: using flume data, Meyer-Peter and Müller, 1948 (MP-M) proposed

an equation that is today often written (in the absence of sidewall effect) in the dimensionless

form (Wong & Parker, 2006b)

Φ =
q̄s√

sg d 3
50

= 8(τ∗−τ∗c )3/2 (3.8)

51



Chapter 3. Simulation of antidune migration in straight channel

Figure 3.1: Illustration of the processes involve in sediment exchanges: λ′, µ and σ are particle
entrianment, collective entrainment and deposition exchange rates, respectively.

where Φ denotes the dimensionless bedload transport rate, τ∗ = τb/(∆ϱg d50) is the Shields

stress (dimensionless bottom shear stress), τ∗c = 0.047 is the critical threshold of incipient

motion, ∆ϱ = ϱs −ϱ is the density difference between sediment and water, s = ∆ϱ/ϱ is the

scaled density difference, and d50 is the median particle diameter. Empirical bedload transport

equations such as Eq. 3.8 posit that bedload transport is at equilibrium with the water stream

and at full transport capacity (Wainwright et al., 2015; Wu & Wang, 2007), which makes it

possible to relate transport rates and water discharges in an univocal way. By contrast, models

based on entrainment and deposition rates do not assume a one-to-one relationship between

transport rates and water discharge. They are sometimes referred to as non-equilibrium

models (this naming may be ambiguous insofar as equilibrium can be understood quite

differently depending on the person).

3.2.2 Stochastic bedload transport model

In an attempt to provide a consistent theoretical framework for computing the number of

moving particles in a given control volume, Ancey et al., 2008 suggested regarding bedload

transport as a Markov counting process. The model principle is simple: one counts the number

N (t ) of particles that enter or leave the control volume and are deposited or entrained from

the bed in this volume over short time steps δt . This counting process is said to be Markovian

when what happens at time t depends only on the immediate history t −δt , and not on past

events (there is no memory effect). This assumption (valid at low transport rates) makes it

possible to use the arsenal of statistical methods developed for Markov processes. Ancey and

Heyman, 2014 then derived the continuum version of this model, where the number N of

moving particles in the control volume is replaced with the particle activity γ, which defines

the volume of moving particles per streambed area.

The fundamental idea is that entrainment and deposition rates E and D are functions of the

flow conditions, represented by the Shields stress τ∗, and particle activity. As γ is small, we
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can expand these rates into a power series of γ

E (τ∗,γ) = E0(τ∗)+E1(τ∗)γ+ . . . (3.9)

D(τ∗,γ) = D0(τ∗)+D1(τ∗)γ+ . . . (3.10)

where Ei and Di (i = 1,2, . . .) are functions of the Shields stress τ∗ alone. As deposition is

necessarily dependent on the number of moving particles, the first coefficient is 0: D0 = 0.

A first-order expansion is usually sufficient to capture the statistical behavior of particle

entrainment and deposition (Ancey & Pascal, 2020; Ancey et al., 2008). To be consistent with

earlier publications, we introduce λ (volumetric entrainment rate), µ (collective entrainment

rate), σ (deposition rate), and κ (difference of deposition and collective rate)

E0 =λ,E1 =µ,D1 =σ, and κ =σ−µ

The results obtained by Ancey et al., 2008 on a single control volume can be generalized to

an array of adjacent control volumes of length ∆x as shown in Fig. 3.1. The counting process

is applied to each control volume separately. Assuming that particles move randomly with

mean velocity ūs and diffusivity Du (the exact probability distribution is not essential in a

first approximation), Ancey et al., 2015 found that in the continuum limit of ∆x → 0, the time

and space variations in the ensemble-averaged particle activity 〈γ〉 can be described using an

advection diffusion equation

∂〈γ〉
∂t

+ ∂

∂x
(ūs〈γ〉) =λ−κ〈γ〉+ ∂2

∂x2 (Du〈γ〉) (3.11)

where particle diffusivity is defined as

D = Du

(
1+ 1

2
Pe

)
where Pe =

ūs∆x

Du
(3.12)

is the Péclet number.

Two remarks about this equation are in order. First, we note that in the continuum limit

of ∆x → 0, the Péclet number drops to zero and Eq. 3.11 looks like any advection diffusion

equation, but in many practical situations (for instance, when running experiments in a

flume and observing bedload in a given area, or discretizing Eq. 3.11 using finite-volume

techniques), the Péclet number is nonzero, and thus there is additional diffusion, whose

strength is proportional to ∆x and which reflects long-range spatial correlation in the particle

flux (Ancey et al., 2015). This scale-dependent diffusion is a peculiarity of the model, which is
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not met in classic diffusion models such as Brownian motion (Ancey et al., 2015).

Second, this equation involves the ensemble-average particle activity 〈γ〉, that is, the statistical

average of γ over an infinite set of realizations subject to the same initial and boundary condi-

tions. In this context, the governing equations—the set of equations made of the Saint-Venant–

Exner equations (Eq. 3.1–Eq. 3.3) supplemented with the definitions of the entrainment and

depositions (Eq. 3.9 and Eq. 3.10) and the advection diffusion equation, Eq. 3.11—are fully

deterministic even though Eq. 3.11 was obtained from a stochastic model.

It is possible to work on particular realizations, and not only on the ensemble average of

particle activity, when interested in the statistical behavior of particle activity. In that case, one

has to solve a generalized Langevin equation for the variable b(x, t ) (interpreted below)

∂b

∂t
=
∂2(Dub)

∂x2 − ∂(būs)

∂x
+ λ̃−κb +

√
2µbξb (3.13)

where λ̃ =λ/ωp is the entrainment rate in particules per second and per unit width, ωp is the

particle volume per unit width, and ξb denotes the Gaussian noise term ξb(x, t ) which satisfies

lim
∆x→0

dW (t )p
∆x

= ξb(x, t )dt (3.14)

where W denotes the Wiener process. This definition of ξb(x, t ) is needed to properly encode

in numerical simulations. The white noise in Eq. 3.13 is uncorrelated in time and space such

that 〈ξb(x, t )ξb(x ′, t ′)〉 = δx (x−x ′)δt (t−t ′), where δx and δt are Kronecker’s deltas (Ancey et al.,

2015).

The random variable b(x, t) is called the Poisson rate density (Ancey et al., 2015; Gardiner,

1983). It can be interpreted as follows: Like any random variable, it is characterized by its

probability density function fb(b, t ), and we use this density function to compute the number

of moving particles. To that end, we can show that the probability P (n, t) of observing n

particles at time t in a control volume of length ∆x is related to fb(b, t) by the following

expression called the Poisson representation (Gardiner, 1983)

P (n, t ) =
∫ ∞

0

e−b∆x (b∆x)n

n!
fb(b, t )db (3.15)

In short, using the Poisson rate density b makes it possible to work with continuous random

variables rather than discrete ones, which is a decisive advantage when deriving a continuum
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model in which all variables are supposed to be continuous. We refer the reader to Appendix B,

where we performed sensitivity analysis on the mesh length ∆x.

The Poisson representation Eq. 3.15 has a particularly interesting property: although the ran-

dom variable n is expressed as the integral Eq. 3.15 over all possible b values, its moments are

a simple linear combination of b moments. For instance, we have the following relationships

(which were used to derive Eq. 3.11 from Eq. 3.13)

〈n〉 =∆x〈b〉 and varn = var(b∆x)+∆x〈b〉

Equivalently, if we use particle activity γ =ωp n/∆x instead of the number of particles, we have

〈γ〉 =ωp〈b〉 and varγ =ω2
p varb + ωp

∆x
〈b〉 (3.16)

Here we summarize the two possibilities offered by the computational framework proposed by

Ancey et al., 2015. In both cases, the governing equations are made of the Saint-Venant–Exner

equations (Eq. 3.1–Eq. 3.3), where the entrainment and deposition rates (Eq. 3.9 and Eq. 3.10)

are linear functions of particle activity γ. What differs is the nature of γ.

• If we are interested in fully characterizing the stochastic fluctuations of bedload trans-

port, then we have to solve the generalized Langevin equation, Eq. 3.13, for the Poisson

density b. The particle activity γ is a random variable, which can be related to b. There

is no simple method for relating their probability density functions, but it is easy to

simulate realizations of b and γ. Let us assume that we have discretized the governing

equations Eq. 3.1–Eq. 3.3 supplemented by the Langevin equation, Eq. 3.13. Let us

assume that for a given mesh cell i at time t , we have obtained the value bi , then the

probability of observing particles in this cell is given by the Poisson representation,

Eq. 3.15, conditioned by our knowledge of bi

P (n, t |bi , t ) =
∫ ∞

0

e−b∆x (b∆x)n

n!
fb(b, t )δ(b −bi )db

=
e−bi∆x (bi∆x)n

n!
(3.17)

To determine the particle activity, we just have to draw a random integer ni from the

Poisson distribution, Eq. 3.17, and then set γi =ωp ni /∆x. When γ is a random variable,

then the source term in the Exner equation, Eq. 3.3, is noised, and thus, in turn, all the

variables (h, ū, yb) in the governing equations, Eq. 3.1–Eq. 3.3, are random variables

even though there is no randomness source in these equations.

• If we are interested in the mean behavior of bedload transport, then we can use the

relationships between the moments of b and γ. We have to solve the advection diffu-
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sion equation, Eq. 3.11, for the ensemble-average particle activity 〈γ〉. The governing

equations are fully deterministic in that case.

3.2.3 Model calibration

The stochastic model involves five parameters: the mean particle velocity ūs , particle diffu-

sivity Du (related to velocity fluctuations), entrainment rates λ and µ, and deposition rate σ.

Apart from some specific values obtained for a finite set of experiments (Ancey & Pascal, 2020;

Ancey et al., 2008; Heyman et al., 2013, 2016), little is known about the dependence of the

model parameters on flow conditions. Here we propose a model calibration based on existing

data.

In narrow laboratory flumes (such as the ones used in the model validation in § 3.4), the mean

particle velocity ūs is often related to the depth-averaged velocity ū or friction velocity u∗
through a dimensionless parameter β

ūs =βū (3.18)

where β shows weak dependence on the flow conditions. Typically, β∼ 0.5−0.6 is a reasonable

approximation (Ancey et al., 2003; Böhm et al., 2004; Chatanantavet et al., 2013; Heyman

et al., 2016). Authors such as Auel et al., 2017 and Demiral et al., 2022 preferred to relate

the mean particle velocity to friction velocity: ūs =βu∗ with β∼ 20. In supercritical flows in

narrow flumes, particle acceleration is often low, reaching less than 10% of the gravitational

acceleration (Heyman et al., 2016), and thus velocity fluctuations are usually low under such

flow conditions. For the sake of simplicity, we will use Eq. 3.18 with β = 0.5 and Du = 0.

Charru et al., 2004 suggested expressing the deposition rate D as

D =σγ =
〈γ〉
td

(3.19)

where td is a characteristic time of deposition for a particle of diameter d

td =
d

cd ws
(3.20)

where ws is the particle settling velocity and cd is the deposition factor. Lajeunesse et al., 2010

found that Eq. 3.19 with cd = 0.09 fitted reasonably well their deposition data. When using

the data obtained by Ancey et al., 2008 and Ancey and Pascal, 2020, we found that Charru’s

Eq. 3.19 captured the deposition rates to within 20% when the deposition factor cd was set

at 0.06. Therefore, we will use the value cd = 0.06 in the following. We will use the empirical

equation developed by Dietrich, 1982. Dietrich, 1982 proposed an empirical equation for
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Figure 3.2: Partial experimental data available from Ancey et al., 2008 to relate the collective
entrainment to deposition rate with µ = 0.85σ.

the settling velocity ws of spherical particles of diameter d in a Newtonian fluid of kinematic

viscosity ν

ws =

(
∆ϱ

ϱ
gν

)1/3

F 1/3(d∗) with d∗ =
∆ϱ

ϱ

g d 3

ν2 = R2 (3.21)

and

105 logF = −376715+192944logd∗−9815log2 d∗−575log3 d∗+56log4 d∗ (3.22)

where log gives the logarithm with base 10. The settling velocity as a function of the particle

Reynolds number R

R =

√
sg d 3

50

ν
(3.23)

where ν is the kinematic viscosity of water.

Ancey et al., 2008 found a weak µ dependence on the flow conditions, and on average, µ is

closely related the deposition rate σ as can be seen in Fig. 3.2

µ = 0.85σ (3.24)
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Chapter 3. Simulation of antidune migration in straight channel

Substituting Eq. 3.19 into Eq. 3.24, we obtain

µ = 0.85σ = 0.85cd
ws

d50
(3.25)

This relation implies that the factor κ

κ =σ−µ = 0.15cd
ws

d50
(3.26)

The last parameter, the entrainment rateλ, can be estimated using the mean bedload transport

rate q̄s in the absence of particle diffusion. In that case, Ancey and Heyman, 2014 defined it as

q̄s = ūs〈γ〉 (3.27)

Under steady-state conditions, deposition matches entrainment (D = E ), and thus particle

activity reaches the steady-state value

〈γ〉ss =
λ

σ−µ (3.28)

Combining Eq. 3.27 and Eq. 3.28 leads to the desired relation between λ and q̄s

λ =
σ−µ

ūs
q̄s (3.29)

Using the dimensionless transport rate Φ (q̄s =
√

sg d 3
50Φ), the mean particle velocity equation,

Eq. 3.18, Darcy–Weisbach friction coefficient f = 8(u∗/ū)2, and Eq. 3.26, we can express the

entrainment rate λ as a function of Φ(τ∗)

λ =
κd50

β

√
f

8

Φ(τ∗)p
τ∗

(3.30)

This equation shows that the entrainment rate is mainly controlled by the bottom shear stress.
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Figure 3.3: Equation 3.31 fit on experimental dataset from Aziz and Scott, 1989; Bogardi and
Yen, 1938; H. H. Cao, 1985; Capart and Fraccarollo, 2011; Casey, 1935; P. Gao, 2008; Gilbert and
Murphy, 1914; W. H. Graf, 1987; Ho, 1939; Mavis et al., 1935; Meyer-Peter and Müller, 1948;
Paintal, 1971a; Recking et al., 2008a; Rickenmann, 1990; Smart, 1984.

If we assume that Φ scales as τ∗3/2 at sufficiently high shear stress—like in the Meyer-Peter–

Müller equation, Eq. 3.8—, then λ ∝ τ∗, a linear relation which is roughly confirmed by

experiments (Heyman et al., 2016; Lajeunesse et al., 2010).

To close Eq. 3.30, we need a parametrisation of Φ(τ∗). Using a large set of laboratory flume

data and revisiting Bagnold’s theory, Ancey and Recking, 2023 obtained the following scaling

law for dimensionless bedload transport

Φ = (10τ∗)16

(
1+

(
τ∗

τ∗1

)3/2
)−8/9 (

1+
(
τ∗

τ∗0

)8)−13/8

(3.31)

where τ∗0 = 0.078 and τ∗1 = 0.40 are the lower and upper limits of the domain named transitional

regime by Bagnold, 1966. This equation summarizes three scaling (Ancey & Recking, 2023)

Φ =


∝ τ∗16 No-transport regime (rarefied transport regime) if τ∗ < τ∗0
∝ τ∗3 Transitional regime (kinetic regime) if τ∗0 ≤ τ∗ < τ∗1
∝ τ∗5/3 High-transport regime (sheet-flow regime) if τ∗ ≥ τ∗1

The stochastic model developed by Ancey et al., 2015 is valid for low transport rates, thus

typically for τ∗ < τ∗1 . The advantage of the parametrisation above is that there is a smooth

transition near the threshold of incipient motion: the transport rate, and thus the entrainment
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Chapter 3. Simulation of antidune migration in straight channel

rate λ, become vanishingly small when the bottom shear stress tends to zero, but they remain

nonzero.

3.3 Numerical model

3.3.1 Governing equations

We sought numerical solutions to the governing equations involving the Saint-Venant–Exner

equations (Eq. 3.1–Eq. 3.3) and the stochastic bedload advection-diffusion equation, Eq. 3.13,

using the method of finite volumes (LeVeque, 2002; Toro, 2001). These equations can be recast

in the following conservative form

∂q

∂t
+ ∂ f

∂x
+ ∂g

∂x
= s(x, q) (3.32)

where q is the vector of the unknowns q = [h,hū,b, yb]T , f (q) is the flux function

f (q) =

[
hū,

(hū)2

h
+ g h2

2
,βūb,0

]T

(3.33)

the function g (q) includes the diffusive contributions

g (q) =

[
0,−νh

∂ū

∂x
,−Du

∂b

∂x
,0

]T

(3.34)

and s is the source term

s =

[
0, g yb

∂ys

∂x
+ g

∂

∂x

(
y2

b

2
− ys yb

)
− f

8
ū|ū|,λ−κb +ξb

√
2µb,

κγ−λ
1−ζp

]T

(3.35)

Before solving Eq. 3.32 numerically (see § 3.3.3), we need to slightly reshape it to ensure that its

form is consistent with the requirements of well-balanced finite-volume methods. The defini-

tion of a well-balanced algorithm is as follows: It should provide us both the time-dependent

solution to a boundary initial value problem and the steady-state solution. A nonzero steady-

state solution exists whenever the source term is nonzero and entirely balanced by the gradient

and diffusive terms

d

d x
( f (q)+g (q)) = s(x, q)

The main problem with irregular topography is that the bed profile yb(x, t) may vary sub-

stantially over short distances, and thus the bed slope −∂x yb fluctuates considerably. This

problem is exacerbated when including noise in the Exner equation, Eq. 3.3.

One strategy to cope with these bed slope fluctuations is to express the driving force −g h∂x yb

(per unit density) in the momentum balance equation, Eq. 3.2 in an approximate divergence
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3.3 Numerical model

form. Following Valiani and Begnudelli, 2006 and making use of the flow depth definition

(h = ys − yb), we can express this force as follows

−g h
∂yb

∂x
= −g h

∂ys

∂x
+ g h

∂h

∂x
(3.36)

= −g (ys − yb)
∂ys

∂x
+ 1

2
g
∂h2

∂x
(3.37)

= g yb
∂ys

∂x
+ 1

2
g
∂

∂x

(
y2

b −2ys yb
)

(3.38)

Admittedly, Eq. 3.38 is not strictly in divergence form since the free-surface slope ∂x ys is

weighted by the non-constant bed elevation yb , but as the bed evolves much more slowly than

the free surface, yb is almost constant over short time periods, which justifies that we regard

Eq. 3.38 as an approximate divergence form of the driving force.

3.3.2 Initial and boundary conditions

For all simulations, we consider a one-directional flow along a granular bed of length Lx and

tilted by an angle θ to the horizon. The water discharge at the flume inlet is q0. Actually, the

bed is not completely flat: Following Bohorquez and Ancey, 2015, we add a low-amplitude

harmonic perturbation to the mean bed elevation

yb(x,0) = −x tanθ+ϵsin

(
2πx

Λb

)
(3.39)

where ϵ is the perturbation amplitude and Λb is the perturbation’s longitudinal wavelength. In

our simulations, we set ϵ = 10−7 m and Λb = Lx . Using this initial condition makes it possible

to reduce the computational time without changing the late-time solution’s characteristics

(Defina, 2003).

For the other flow variables h, ū, and b, the initial values at t = 0 correspond to the uniform

steady-state

h(x,0) = hss , ū(x,0) = ūss and b(x,0) = 〈b〉ss (3.40)

where hss and ūss are the flow depth and depth-averaged velocity related to the selected water

discharge q0 at the flume inlet and bed slope θ, while the Poisson rate density 〈b〉ss is given by

Eq. 3.16, where γss is given by Eq. 3.28. The flow depth and velocity are determined by solving

the nonlinear set of equations, Eq. 3.5 and Eq. 3.6, with ūss = q0/hss and τb = ϱg hss |y ′
b |. For

the sake of simplicity, we neglect sidewall effects on flow dynamics in our simulation—these

effects could have been accounted for by using, for instance, Einstein–Johnson’s method (Guo,

2017).

We implemented cyclic boundary conditions to mimic the flow conditions in infinitely long

flumes.
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Chapter 3. Simulation of antidune migration in straight channel

3.3.3 Finite volume method

We solved the governing equations in the computational domain 0 ≤ x ≤ Lx made of nx cells

with uniform size ∆x = Lx /nx = 1 cm.

The governing equation written in strong form Eq. 3.32 can be solved numerically using a

fractional-step method, which involves splitting the governing equation Eq. 3.32 into

(i) The non-homogeneous hyperbolic subproblem ∂t q +∂x f (q) = s and

(ii) The parabolic subproblem ∂t q = −∂x g (LeVeque, 2002).

For solving the hyperbolic subproblem, we used the high-resolution Godunov-type method

developed by Ketcheson et al., 2013, while for solving the parabolic subproblem, we utilized

the classic Crank-Nicholson method (LeVeque, 2002). We specify these methods below.

We first seek a solution to the homogeneous hyperbolic system in conservative form: q t + f x =

0, or in non-conservative form: q t + A(q) ·q x = 0, where A = ∇q f is the Jacobian matrix associ-

ated with the flux function f . We denote the left and right eigenvectors of A corresponding to

the eigenvalues λ̂p by l p and r p , respectively, with 1 ≤ p ≤ m where m = 4 is the dimension of

the system, Eq. 3.32. These eigenvalues are:

λ̂1 = ū −
√

g h, λ̂2 = ū +
√

g h, λ̂3 =βū, and λ̂4 = 0

As noticed by Bohorquez and Ancey, 2015, the first two eigenvalues ū ±√
g h are the values

classically found for the Saint-Venant equations and fixed beds. They show no dependence on

the variables b and yb , a property that will prove useful in the following when we extend the

Roe solver to our problem. We define the matrix of the right eigenvectors R (each column is

an eigenvector r p ) and left eigenvectors L = R−1.

Following LeVeque, 2002, we define Q i as the average of q over the integral [xi−1/2, xi+1/2] at

time t

Q i (t ) =
1

∆x

∫ x+1/2

xi−1/2

q(x, t )d x (3.41)

Let us first assume that at time tn the solution q(x, tn) is known and can be approximated

by a piecewise-polynomial function q̃(x, tn) (Ketcheson et al., 2013). To update the solution

and determine q(x, tn+1), we need to solve a series of Riemann problems at each cell inter-

face xi−1/2. As the subproblem is hyperbolic, the right eigenvectors r p are real and linearly

independent, and they form a basis on which we can decompose any vector. For instance, the

jump between two neighboring cells can be decomposed as follows
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Q i −Q i−1 =
m∑

p=1
α

p
i−1/2r p

i−1/2 =
m∑

p=1
W

p
i−1/2 (3.42)

where W
p
i−1/2 = αp

i−1/2r p
i−1/2 is the shock wave that propagates in the direction of the pth

eigenvector at speed λp
i−1/2, and the factors αi−1/2 = (αp

i−1/2)1≤p≤m are defined by

αi−1/2 = R−1
i−1/2 · (Q i −Q i−1) = Li−1/2 · (Q i −Q i−1) (3.43)

It can be shown that updating Q i from time tn to tn+1 = tn +∆t leads to an estimate of the

solution Q∗
i in the absence of diffusion (Ketcheson et al., 2013)

Q∗
i = Qn

i − ∆t

∆x

(
A + ·∆q i−1/2 +A − ·∆q i+1/2 +A∆q i

)+∆tS i (3.44)

where we used the shorthand notation proposed by LeVeque, 2002 for representing the fluctu-

ations. These fluctuations represent the changes in the mean value Qn
i caused by the waves W

traveling to the right (associated with the superscript +) or left (associated with the superscript

−):

A ± ·∆q i−1/2 =
m∑

p=1

(
λ̂p (qL

i−1/2, qR
i−1/2)

)±
W p (qL

i−1/2, qR
i−1/2) (3.45)

A ·∆q i =
m∑

p=1

(
λ̂p (qR

i−1/2, qL
i+1/2)

)±
W p (qR

i−1/2, qL
i+1/2) (3.46)

where A − = min(A ,0) and A + = max(A ,0)–The same definition applies for other parameters.

The labels L and R denote the left and right states of the cell interfaces, respectively.

To compute the fluctuations A ±, we extended the approximate linear Riemann solver pro-

posed by Roe, 1981. As this extension poses no particular problem, we refer the reader to

Appendix C.

The mean source term S i in Eq. 3.44 is defined as

S i =
1

∆x

∫ x+1/2

x−1/2
s(q , tn)d x (3.47)
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Figure 3.4: Relationship between characteristic velocities and Froude number, with β = 0.5.

which is evaluated explicitly from the known solution at time tn . Special attention has been

paid to the integration of the friction term in the momentum balance equation, Eq. 3.2. See

Appendix D for further information.

The parabolic subproblem is solved using the implicit Crank–Nicholson scheme, which has

second-order accuracy in both space and time. The solution to the hyperbolic subproblem

Q∗
i is used as the initial condition for the equations ∂q t = ψ(q) where ψ = −∂x g includes

the diffusive terms in the momentum balance equation, Eq. 3.2, and the advection diffusion

equation, Eq. 3.13 for b. The implicit Crank-Nicholson scheme leads us to solve the following

linear system for Qn+1
i

Qn+1
i = Q∗

i +
∆t

2∆x2

(
Ψ(Q∗

i )+Ψ(Qn+1
i )

)
(3.48)

where

Ψ(Q) =


0

hi−1/2νi−1/2ūi−1 − (hi−1/2νi−1/2 +hi+1/2νi+1/2)ūi +hi+1/2νi+1/2ūi+1

Dubi−1 −2Dubi +Dubi+1

0

 (3.49)

The interface values in Eq. 3.49 are calculated using averages of the neighboring cells, i.e.,

hi+1/2 = (hi +hi+1)/2, and hi−1/2 = (hi−1 +hi )/2. Equation 3.44 is integrated in time using the

ten-stage fourth-order Runge–Kutta method.

64



3.4 Simulating antidunes formation and motion

3.3.4 Numerical implementation

We implemented the wave decomposition algorithm called the q-wave Riemann solver by

Ketcheson et al., 2013. The algorithm is based on the discretization presented in § 3.3.3. The

algorithm used is a fifth-order accurate weighted essentially nonoscillatory (WENO) reconstruc-

tion of the left and the right cell states, and a fourth-order accurate strong stability preserving

Runge–Kutta scheme for marching on time.

The code is implemented in Fortran, compiled with Intel Fortran Compiler 2021.6.0 ran

on a Linux operating system using Intel i7-10875H core processors operating at 2.30 GHz.

We used the SuiteSparse library to solve the system, Eq. 3.48 (Davis, 2006). The noise term

ξb = rand/
p
∆t∆x in Eq. 3.35 was generated by specifying a seed number and using the

vdRngGaussian function rand from Intel’s MKL library. As explained in § 3.2.2, we used

the Poisson representation Eq. 3.17 to link particle activity γ and Poisson rate density b. In

practice, this means that after computing bi in cell i of length ∆x, we determined γi by

drawing a random number ni of particles from the Poisson distribution with rate bi∆x using

the virngpoisson provided by Intel’s MKL library function: γi =ωp ni /∆x.

3.4 Simulating antidunes formation and motion

The main elements of the stochastic model have been tested against experimental data in

earlier publications. Ancey and Heyman, 2014 showed that the model was able to predict the

statistical properties of bedload transport rates under steady-state conditions in narrow flumes.

In particular, they showed that the collective entrainment coefficient µ played a significant

role in the creation of wide (non-Gaussian) fluctuations in the bedload transport rates (setting

µ = 0 would produce Gaussian fluctuations). Bohorquez and Ancey, 2015 conducted a stability

analysis of the morphodynamic model, Eq. 3.1–Eq. 3.3. They found that under supercritical

flow conditions, Eq. 3.1–Eq. 3.3, supplemented by Eq. 3.11 were linearly unstable regardless of

the Froude number value, whereas Eq. 3.1–Eq. 3.3 supplemented by the Meyer-Peter–Müller

bedload transport equation, Eq. 3.8, became unstable only for Froude numbers in excess of 2.

Here we provide a more quantitative comparison between experimental data and what the

morphodynamic model based on Eq. 3.1–Eq. 3.3 and Eq. 3.11 predicts. A particular difficulty

is that an experiment can be regarded as one realization of a stochastic process: replicating

the same experimental conditions (bed slope, boundary conditions) does not produce the

same output: the bedload transport rate’s time series and the position and shape of bedform

differ from one realization to another.

3.4.1 Experimental scenarios

We used two data sets issued from two different settings. The only common point of these

data sets was the data were related to supercritical flow conditions.
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Chapter 3. Simulation of antidune migration in straight channel

The first data set was obtained by Recking et al., 2009 using a 10-cm–wide 6-m–long flume. In

all, they carried out 19 experiments with varied water discharges Q, bed slope i , and particle

diameter d . We retained only the eleven runs related to the particle size d = 9 mm and

ϱp = 2570 kg/m3 because Recking et al., 2009 provided the antidune dimensions only for these

runs. These runs were named R1 to R11 in Table 3.1. The depth-averaged velocity and flow

depth were estimated by solving the Keulegan equation, Eq. 3.6, with a bespoke definition of

the roughness size ks . Although the authors measured the bedload transport rate qs at the

flume outlet, they did not provide further information about the statistical properties of qs .

The antidune wavelength was estimated by dividing the total length over which antidunes

were observed by their number.

The second data set was collected by Pascal et al., 2021. These authors used well-sorted,

rounded gravel particles with a median diameter d = 2.9 mm and a density ϱp = 2550 kg/m3

in a 2.5-m–long 4-cm–wide flume. The authors carried out four experiments in which they

kept nearly the same values for the mean bed slope and inflow rate and changed the sediment

rate. By filming the flume from the side, they measured the flow-depth and bed profiles, from

which they deduced the depth-averaged velocity. Filming the flume outlet allowed them to

measure the bedload transport rates at a high temporal resolution (from 60 to 100 Hz). The

antidune wavelength and celerity were determined from the bed profile’s spatio-temporal

variations. Their runs were labelled P1 to P4 in Table 3.1.
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Chapter 3. Simulation of antidune migration in straight channel

(a)

(b)

Figure 3.5: Numerical bedload time series by applying the stochastic solver to (a) R1, and (b)
R7.

3.4.2 Bedload transport based on stochastic framework

This section’s goal is to examine the numerical solver’s prediction for bedload transport

when it applies to laboratory experiments. Here, the numerical simulation is based on the

stochastic bedload model, Eq. 3.13, along with the Saint-Venant–Exner equations, Eq. 3.1–

Eq. 3.3. The numerical solver can provide us the number of moving particles in each numerical

computational cell. The numerical sediment transport time series at the flume outlet has

been computed for each of laboratory dataset. The bedload transport time series for R1 and

R7 are presented in Fig. 3.5(a) and Fig. 3.5(b), respectively. The bedload transport is reported

in grain/s in this work to provide a physical sense about the magnitude of the numbers.

In Fig. 3.5(a), the mean bedload transport rate is calculated as q̄s = 8.6 grain/s, with a maximum

value of qs,max = 24 grain/s. This indicates that the fluctuations in bedload transport are

approximately 2.8 times larger than the mean value. In addition, for R7, the mean bedload

transport rate is determined q̄s = 64.8 grain/s, with a maximum value of qs,max = 173 grain/s

that is 2.7 times more than the mean value.

Throughout the duration of the run, the coefficient of variation – defined as the division of

the standard deviation by the mean value – is found to be 37.5% and 27.6% for R1 and R7,

respectively. The coefficient of variation indicates that for simulation runs with a higher

bedload transport rate, the dispersion of the bedload is less accentuated relative to its mean

value. This pattern is analogous to the behavior observed in the experimental data represented

in Fig. 3.3.
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3.4 Simulating antidunes formation and motion

Run i ū h q̄s q̄ ′
s σ2 REs

m/s cm grain/s grain/s (grain/s)2 %
P1 0.0506 0.37 0.83 62.6 38.2 44.7 39.0
P2 0.0524 0.41 0.92 109.6 65.8 142.4 40.0
P3 0.0541 0.44 0.95 150.4 83.8 268.9 44.3
P4 0.0524 0.46 1.04 191.1 94.8 178.0 50.4
R1 0.0516 0.61 2.41 2.4 8.6 10.5 -258.3
R2 0.0516 0.67 2.91 12.1 22.7 49.9 -87.6
R3 0.0516 0.73 3.38 27.5 35.3 128.3 -28.4
R4 0.0516 0.77 3.82 47.2 47.0 149.4 0.42
R5 0.0853 0.51 1.94 14.3 36.5 48.4 -155.2
R6 0.0853 0.55 2.31 38.5 51.2 144.0 -33.0
R7 0.0853 0.58 2.54 59.3 64.8 313.1 -9.3
R8 0.0853 0.60 2.76 83.2 69.9 213.3 16.0
R9 0.126 0.43 1.98 90.9 82.8 300.3 8.9
R10 0.126 0.45 2.17 131.4 94.4 478.2 28.2
R11 0.126 0.47 2.27 159.3 103.8 920.2 34.8

Table 3.2: Experimental and simulation outputs regarding bedload transport rate. The
laboratory-based and simulation-based averaged bedload transport rates are denoted by
q̄s and q̄ ′

s , respectively. Furthermore, σ2 represents the variance of the numerical bedload
time series and REs denotes its relative errors.

The considerable fluctuations observed in the bedload transport, which are several orders

of magnitude higher than the mean value, may be attributed to the exit of sediment waves

from the flume. Following an initial transient stage, the bedload transport for both runs

exhibits significant fluctuations around the mean value. It is important to mention that

the bedload transport time series depicted in Fig. 3.5(a) and Fig. 3.5(b) represent only one

possible realization of reality. By repeating the stochastic simulation, it would yield different

realizations; nevertheless, the key variables would fluctuate modestly around the mean values.

The relative error can be defined as RE=100× (F −F ′)/F , where F is the reference value of

the variable of interest, such as mean bedload transport rate, and F ′ is the estimated value of

F based on simulation outputs. By applying the numerical solver to the experimental dataset,

the mean bedload transport values q̄ ′
s and their variances σ2, which range from 1 to 9 times

the mean value, are presented in Table 3.2. The maximum relative error for bedload transport

among all simulations is −258.3%. Recking et al., 2012 by testing various bedload transport

formulas with huge time-averaged flume experimental dataset found a minimum error of

200%. Therefore, the proposed model in this study is deemed reliable for predicting bedload

transport rates in terms of accuracy considering reasonable computational time.

In order to characterize the stationary stochastic processes, we have plotted the probability

distribution for numerical bedload transport rates of R1 and R7 in Fig. 3.6(a) and Fig. 3.6(b),

respectively. As shown in Fig. 3.6(a) and Fig. 3.6(b), the non-Gaussian wide fluctuations in

the bedload transport rate cause the time-averaged values, q̄ ′
s = 8.6 grain/s and q̄ ′

s = 64.8
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Chapter 3. Simulation of antidune migration in straight channel

(a) (b)

Figure 3.6: Probability density function for number of moving particles based on simulation
outputs applied to (a) R1 and (b) R7.

grain/s for R1 and R7, respectively do not be the mode - this does not align with the system’s

most commonly observed state. In addition, the probability density function exhibits a non-

Gaussian shape with a thick tail, indicating the presence of large fluctuations in the bedload

time series, which are accounted for in our bedload model as collective entrainment rate.

3.4.3 Wavelength and amplitude based on stochastic framework

It is interesting to study the model’s ability in bedform characteristics prediction. Therefore,

through numerical solutions of a fully coupled set of stochastic equations, specifically Eq. 3.1–

Eq. 3.3 and Eq. 3.13, one can observe a typical bedform shape in Fig. 3.7, which shows the flow

and bed elevation based on simulation applied to R1 at t = 9 and t = 10 minutes. Figure 3.7

shows, firstly, the upstream migration of the antidunes and, secondly, the spatial and temporal

variability of the bedform.

Figure 3.7: Illustration of antidune migration: numerical bed and flow elevations at t = 9
minutes (dashed line) and t = 10 minutes (solid line) for R1. The red symbols indicate the
locations where local minima have been detected to calculate the mean wavelength.

Antidunes geometry is usually characterized by their wavelength and amplitude. The wave-

length of an antidune is defined as the distance between successive troughs or crests of the
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3.4 Simulating antidunes formation and motion

(a) (b)

Figure 3.8: (a) Temporal evolution of simulation-based bedform amplitude for R1 (blue circle)
and R7 (red square) (b) relation between antidune amplitude and wavelength.

bedform, which can be measured from one minimum point in the bed elevation to the next or

from one maximum point to the next. In this study, the wavelength is defined as the length

between two adjacent local minimums. To calculate the mean wavelength numerically, we

first smoothed the bed topography and then identified the local minimums, as indicated by

the red symbols in Fig. 3.7.

The amplitude of an antidune defines as the vertical distance between successive crests and

troughs of the bedform. It is quantified as the vertical distance between the lowest point of a

trough and the highest point of the crest immediately above it. The wavelength and amplitude

of antidunes exhibit spatial and temporal variability along the flume. To enable comparison

between numerical and experimental data, the mean numerical wavelength and amplitude

have been reported in Table 3.3 with prime notation (L′ and A′) and compared with the

corresponding laboratory dataset by reporting the relative errors. The minimum wavelength

of an antidune suggested by Kennedy, 1963 is also provided in Table 3.3 as Lm = 2πhF r 2.

The amplitude of the bed formation initially increases and eventually reaches a constant

value after a certain time period. To quantify the antidunes growth rate, the minimum and

maximum elevations of the bed elevation perturbation z were calculated at each time step, and

the difference between them is plotted versus time as shown in Fig. 3.8(a), based on numerical

simulations applied to R1 and R7. After a transient period of 70 seconds (R7) and 370 seconds

(R1), which exhibits exponential growth, the amplitude reaches a plateau, indicating that it no

longer increases and has saturated.

The maximum relative error corresponding to the antidune wavelength and amplitude among

all numerical simulations in comparison to the experimental dataset is -40.7% and -91.5%,

respectively. The large relative error associated with the amplitude may be attributed to the

challenges in its laboratory measurement, as mentioned and discussed in Recking et al., 2009.

It is worth mentioning that according to Pascal et al., 2021, the typical amplitude of an antidune

ranges from the median grain size to the mean flow depth. Since the amplitude and wavelength

show a period of growth and eventual saturation, we decided to compare the maximum range
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Chapter 3. Simulation of antidune migration in straight channel

Run i ū h L A Lm L′ REL A′ RE A

% m/s cm cm mm cm cm % mm %
P1 5.06 0.37 0.83 6-20 3-8 8.8 19.0 5.0 3.8 52.5
P2 5.24 0.41 0.92 8-16 3-9 10.8 21.0 -31.3 4.8 46.7
P3 5.41 0.44 0.95 9-15 3-10 12.4 21.1 -40.7 5.2 48.0
P4 5.24 0.46 1.04 8-18 3-10 13.2 23.3 -29.4 5.5 45.0
R1 5.16 0.61 2.41 29.5 15 23.8 37.8 -28.1 7.3 51.3
R2 5.16 0.67 2.91 36.0 14 28.8 47.6 -32.2 15.9 -13.6
R3 5.16 0.73 3.38 39.9 15 34.1 47.5 -19.0 18.6 -24.0
R4 5.16 0.77 3.82 43.1 11 38.0 34.9 19.0 19.3 -75.5
R5 8.53 0.51 1.94 24.3 14 16.7 31.4 -29.2 5.9 57.9
R6 8.53 0.55 2.31 31.5 13 19.4 31.8 -1.0 11.2 13.8
R7 8.53 0.58 2.54 34.9 13 21.5 34.1 2.3 16.5 -26.9
R8 8.53 0.60 2.76 35.0 13 23.1 39.0 -11.4 24.9 -91.5
R9 12.6 0.43 1.98 24.3 15 11.8 19.1 21.4 12.3 18.0
R10 12.6 0.45 2.17 23.7 - 13.0 24.0 -1.3 14.5 -
R11 12.6 0.47 2.27 27.4 - 14.1 22.7 8.1 14.3 -

Table 3.3: Experimental and numerical results for bedform characteristics. Lm = 2πhF r 2 is
the minimum antidunes wavelength proposed by Kennedy, 1963. The simulated values of
wavelength and amplitude are denoted as L′ and A′, respectively, and the corresponding
relative errors are REL and RE A .

of them reported by Pascal et al., 2021 with those obtained from our numerical simulations to

compute the relative errors.

According to Recking et al., 2009, a linear fit A = 0.033L on the experimental data can represent

the relationship between the antidune amplitude and wavelength. However, our numerical

simulations mostly overestimate the amplitude for a specific wavelength, suggesting that other

parameters may influence the relationship between the two. As shown in Fig. 3.8(b), there is

no unique relation between the two, and therefore, further investigation is necessary in this

regard.

3.4.4 Migration celerity based on stochastic framework

The migration celerity of antidunes is defined as the speed at which the entire bedform moves

upstream over time and is an important parameter for understanding the dynamics of open-

channel flows. In this section, we study the migration celerity of antidunes to examine the

capability of our stochastic numerical solver.

The simulation results of bed elevation as a function of time are presented in Fig. 3.9 for P1

to P4. In the figure, the troughs and crests of the antidunes can be recognized by the color

scheme, where the color yellow represents the crests and the color blue represents the troughs.

The simulations demonstrate that after an initial transient stage, during which antidunes
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3.4 Simulating antidunes formation and motion

experience exponential growth, trains of antidunes migrate upstream at a constant velocity

with some accelerating periods. General speaking, from P1 to P4, the antidunes form sooner,

migrate faster upstream, have a larger amplitude and longer wavelength (bigger geometry),

and correspond to a higher mean bedload transport rate.

(a) (b)

(c) (d)

Figure 3.9: Contour plots of the bed elevation perturbation in the {x, t}-plane during 2 minutes
of simulation time. (a) to (d) correspond to P1 to P4, respectively.

A range of experimental values for the migration celerity of the antidunes for P1 to P4 is

reported, which is summarized in Table 3.4. The approach to calculating the migration celerity

numerically is to track the movement of the antidune’s head over time and calculate the speed

of the pattern relative to a stationary observer by c ′ =∆p/∆t , where ∆p is the head position

displacement between two time steps ∆t , reported in Table 3.4. The simulation migration

celerity c ′ is measured numerically by considering simulation results within [1.5,2] minutes.

The obtained results are within the experimentally reported range.
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Chapter 3. Simulation of antidune migration in straight channel

Run i ū h c c ′
% m/s cm mm/s mm/s

P1 5.06 0.37 6-20 1-16 8.6
P2 5.24 0.41 8-16 1-20 12.6
P3 5.41 0.44 9-15 10-22 15.1
P4 5.24 0.46 8-18 1-30 15.9

Table 3.4: Experimental and numerical results concerning antiduens migration celerity.

3.4.5 Bedload transport based on ensemble-averaged framework

Replication of one specific setup configuration using the stochastic numerical framework -

Eq. 3.13 coupled with Eq. 3.1–Eq. 3.3 -, end up with different outcomes that represent only

one realization of reality. On the other hand, the ensemble-averaged bedload formulation,

Eq. 3.11, is deterministic, meaning that it has one realization by repeating the same numerical

run, as it is an ensemble-averaged of all possible realizations of the stochastic framework.

In this section, the interest lies in coupling and solving the deterministic ensemble-averaged

bedload formulation, Eq. 3.11, with the shallow water and Exner equations, Eq. 3.1–Eq. 3.3.

The simulation-based temporal evolution of the bed topography corresponding to R1 has

been plotted on the left-hand side of Fig. 3.10(a), and on the right-hand side, the bed elevation

at the flume outlet has been plotted, which varies in a range of 1 cm around the initial bed

value.

Figure 3.10(b) and Fig. 3.10(c) depict the bedload transport for R1 and R7, respectively, using

the deterministic set of equations—ensemble-averaged framework. By comparing the tempo-

ral bed evolution at the flume outlet at x = 6 m and the bedload transport time series for R1,

one can observe that the bedload peaks correspond to the migration of antidunes indicating

that when a sediment wave front passes through a section of a channel, it causes a peak in

sediment discharge.

Here, R1 has a mean value of q̄s = 9.2 grain/s with a maximum of qs,max = 11.1 grain/s, indi-

cating that the fluctuations are 1.2 times greater than the average value, while R7 has a mean

value of q̄s = 61.5 grain/s and a maximum value of qs,max = 143.2 grain/s, which is 2.3 times

greater than the mean value. The bedload transport rate fluctuations are less strong when

using the ensemble-averaged framework compared to the stochastic one.

Over the entire run duration, the coefficient of variation is 4.9% and 23.5% for R1 and R7, re-

spectively. The averaged values for the bedload transport were computed using the numerical

deterministic solver for P1 to P4 and for R1 to R11, along with their variances, and reported

in Table 3.5. The difference between the two presented bedload transport models, i.e., the

stochastic and ensemble-averaged models, in terms of mean bedload transport is small and

can be neglected. The maximum relative error of the averaged bedload is around -282%, which

is close to the maximum relative error when the stochastic framework.

We have calculated the amount of bedload transported for each of the experimental datasets
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3.4 Simulating antidunes formation and motion

(a)

(b)

(c)

Figure 3.10: (a) Left: bed elevation using numerical simulation applied to R1 in the {x, t}-plane,
right: bed elevation at the flume exit. Bedload transport time series using the ensemble-
averaged framework correspond to (b) R1 and (c) R7.

using MP-M and reported it in Table 3.5 to enable comparison with the model being given.

The bedload transport rate using the MP-M formula can be calculated with the averaged-

controlling variables. Despite the non-capacity bedload models, this model is a one-to-one

function of the averaged Shields number. The minimum and maximum bedload transport

relative errors based on the MP-M model ranged from 61% to 1984%, respectively. We have

observed higher bedload relative errors by using the MP-M model compared to the presented

model. It means the non-capacity bedload models, such as the stochastic model employed in

this study in the majority of experiments, are more accurate in bedload transport prediction.
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3.5 Discussion

3.5 Discussion

There are two important points which require further discussions concerning variability of

antidunes, and realization of numerical simulations.

3.5.1 Antidunes variability

Spatial and temporal variability of bedform is observed in simulation runs, as has been ob-

served by Pascal et al., 2021. Five probability density functions for antidunes wavelength are

calculated over time periods [2(T −1), 2T ) minutes such that T = 1, ...,5 in Fig. 3.11. The

obtained findings indicate the absence of antidunes during the initial two-minute period, fol-

lowed by the emergence of long-wavelength antidunes in the subsequent two-minute interval.

Within the time interval [4,6) minutes, as denoted by the red color, a more frequent occurrence

of antidunes with smaller wavelengths was observed. Although temporal variability in the

wavelength of antidunes was observed during the development stage (the first 6 minutes),

the probability density function remained almost unchanged after the transient stage, while

spatial variability along the flume length persisted. It is worth-noting that this behavior during

the development stage is visible in the spectra plots presented in Pascal et al., 2021.

Moreover, the initial mean wavelength value at the commencement of the simulation period

is considerably higher, yet it progressively converges to a constant and smaller value over time,

as visually represented in Fig. 3.11. Antidunes amplitude has a similar behavior shown in

Fig. 3.8(a) such that after a transient stage, the amplitude does not grow anymore and remains

constant. These constant values are compared with experimental data in Table 3.3. As can

be seen in Table 3.3, the mean values of both antidune wavelength and amplitude are more

pronounced for simulation runs with higher mean bedload transport rates.

3.5.2 Realization of fluvial systems

The equilibrium theory – sediment transport being in a state of dynamic equilibrium with the

flow and the amount of bedload transported is a one-to-one function of a tractive or critical

tractive force to be imposed on the boundary such as critical Shields number –, suggests that

for a given set of controlling variables, a single bedform characteristic will evolve in fluvial

systems. However, experiments show the bedload and morphology are rarely a single-valued

response to a specific set of controlling variables. In other words, repeating same experiment

several times even in a steady-state condition will end up to different realization (Ashmore,

1988; Warburton & Davies, 1994; Young, 1989).

For example, Ashmore, 1988 conducted four experiments using braided flume and replicated

them two times and found out the bedload transport rate time series have been fully different

with wide fluctuation even for two replications, although they had almost same mean values.

The fluctuations reported to be large up to four times more than averaged values even at
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Chapter 3. Simulation of antidune migration in straight channel

Figure 3.11: Probability density functions of antidunes wavelength over five time periods
[2(T −1), 2T ) minutes being T = 1, ...,5 calculated using simulation run R1.

constant discharges. Another example is the study by Warburton and Davies, 1994 who

conducted eleven replication of one experiment. They observed the bedload time series and

channel morphology are different in all eleven replications. Although, Warburton and Davies,

1994 captured different realizations for bed topography and bedload time series for each

replication, they fluctuated around a mean value. The coefficient of variation for bedload

transport was 11% and the bedload fluctuations were up to three to four times higher than the

mean value when no external forces existed.

For narrow gravel-bed systems yielding to different realization by replicating one experiment

is not unexpected. However, to date, no experimental inquiry has been conducted to explore

this phenomenon, to the best of our knowledge. By means of numerical simulation presented

in this study and by calculating R1 four times, it yields to different realizations - after a specific

amount of time -, as shown in Fig. 3.12.

Although, the bed topographies for different cases are not the same, their statistical behavior

remain the same as they fluctuate around a mean value. It is the reason the statistical tools are

necessary to describe these sort of stochastic systems. Four different replications of R1 yield

four different bedload time series - whereas, the mean and variance of the bedload transport

over entire run duration remain almost unchanged (refer to Fig. 3.13).

The above-mentioned experiments and simulation studies provide more evidence to support

that i. the fluctuations in bedload transport are autogenic (Gomez et al., 1989; A. Singh et al.,

2009), ii. the stochasticity of the problem, and iii. key variables gently fluctuate around mean

values. Therefore, comparing an experiment—a single realization—with one simulation—a

single realization, too—is not very compelling, as we do not compare the same thing. There-

fore, in this paper, we compared the mean values of bedload and form characteristics with the
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Figure 3.12: Illustration of bed (in black) and flow (in blue) elevation at t = 10 minutes with four
replications with exact same run configuration (R1). The initial bed slope has been removed
for a better comparison.

mean values of experimental data.

It is worth noting that the traditional deterministic bedload models, by fitting a power law

curve on the dimensionless experimental data on logarithmic scales, result in high errors in

bedload transport (M. H. Garcia, 2008; Recking et al., 2012). For instance, a small variation

in the Shields number results in a high variation in bedload transport, as typically modeled

by power laws. High variation in bedload prediction can lead to erroneous estimations of

bedform and, consequently, erroneous estimations of hydraulic variables. The feedback loop

mechanism of the system can exacerbate the error in bedload prediction.

3.6 Conclusion

In this work, the fluctuation of particle movements attracted our attention, which resulted

in spatial and temporal variability in bedload transport and bed formation. To capture these

fluctuations, we used a stochastic bedload model, which incorporates noise in the bedload

formulation, and coupled it with the governing equations for the flow and bed phases. Al-

though using the stochastic bedload model results in only one realization of reality, the key

characteristics fluctuate around mean values. These mean values allowed us to compare the

numerical results to the experimental dataset. We have used two different laboratory data sets

to study the antidune dynamics as well as the bedload transport rate under supercritical flow

conditions in gravel-bed channels.

In line with experimental findings, this study revealed that antidunes form in phase with the

water surface and migrate upstream with a constant velocity with some accelerating periods.

Initially, the growth of antidunes is exponential, but after a transient phase, their growth

comes to a halt. Moreover, during the upstream migration of the train antidunes, the sediment

transport rate increases as sediment is transported from the downstream-facing slope to the

upstream-facing slope. This, consequently, results in the formation of a sediment transport

peak at the crest of the antidune. The peak in sediment transport rate can be several times

higher than the sediment transport rate over a flat bed. Therefore, the migration of antidunes

can have a significant impact on average sediment transport.
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Chapter 3. Simulation of antidune migration in straight channel

(a)

(b)

(c)

(d)

Figure 3.13: Bedload time series from (a) to (d) with noise seed 300, 444, 500, and 600.
The averaged bedload transport rate are: q̄s = 8.7,8.7,8.7,8.6 grain/s with a variance of
σ2 = 10.2,10.1,10.5,10.4 (grain/s)2, respectively.

The antidune upstream migration celerity and geometry are more pronounced for runs char-

acterized by a higher mean bedload transport rate; however, we did not observe any relation

between the amplitude and wavelength of the antidunes. The proposed numerical model

exhibits a relative error of less than 258% in predicting bedload transport. Moreover, the

maximum relative error in predicting the wavelength and amplitude of the bedform is found

to be -41% and -92%, respectively. The relatively high error in predicting the form amplitude
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could be attributed to the challenges in measuring it in a laboratory or model calibration.

Although it is acknowledged that particle-resolved numerical simulations, based on cou-

pling the Lattice Boltzmann Method with the Discrete Element Method, have the potential to

provide high accuracy in bedload transport prediction (Schwarzmeier et al., 2023), the compu-

tational time required for such methodologies is a major challenge, with more than 80% of

the computational time dedicated to discrete element method contact detection (Williams &

O’Connor, 1999). This limitation hinders its applicability to large-scale problems. Therefore,

the proposed model in this study is deemed reliable for predicting bedload transport rates,

considering both its computational efficiency and accuracy.

The advantages of the proposed stochastic bedload transport model are, firstly, the gentle

behavior with hydraulic variations, and secondly, taking the particle fluctuations into account,

which could affect the bulk scale characteristics. Thirdly, the model demonstrated its ability to

predict particle transport and form characteristics with good accuracy. For the future model

development we suggest, i. as Warburton and Davies, 1994 mentioned, the current bedload

transport state is statistically dependent on two previous time steps, therefore, a second-order

Markov process bedload model may lead to a better prediction, ii. the Stratonovich instead

of Ito convention is recommended as it has a better physical interpretation, iii. collecting a

bank of experimental time-series data to extract their statistical features is a crucial step to

calibrate the proposed Markov process based bedload model, and iv. improving bedload pre-

diction requires a comprehensive understanding and modeling of deposition and entrainment

processes across a range of hydraulic conditions, both with and without of bed formation.
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Abstract

In this study, we introduce a two-dimensional stochastic bedload model that provides the

number of moving particles. This model departs from traditional capacity-based method-

ologies, instead adopting a fluid dynamics approach in which the sediment transport rate is

dictated by flow conditions rather than exclusively by the Shields number. We have integrated

this model with the two-dimensional Saint-Venant–Exner equations to evaluate its predictive

efficiency. In the first part of the study, we used linear stability analysis to study the emergence

of two-dimensional bedforms under a variety of flow conditions. The resultant data were

validated by comparison with an experimental dataset from the literature. The analysis yielded

valuable insights, highlighting the essential factors necessary for bedform development. In the

second part, we implemented a numerical algorithm based on a Riemann-solver method to

study the model’s performance. The numerical solver was applied to three controlled, steady-

state flume experiments conducted in a gravel-bed flume. In line with experimental data, the

numerical simulations predicted the sediment transport rate, alternate bar characteristics,

their growth rate, and deposition/erosion rates of the bed.
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Chapter 4. Stochastic modeling of bedload transport and bar development

4.1 Introduction

Bedload transport, characterized by significant non-Gaussian fluctuations, is known to be a

stochastic phenomenon (Ancey et al., 2008; Benavides et al., 2022). These individual particle

movement fluctuations can spread within the system, leading to a situation where microscopic

particle-level fluctuations exert influence on macroscopic scales, such as bedform develop-

ment and bedform-induced variations in hydraulic conditions. That is why fluvial systems

exhibit chaotic behavior. It means that even with identical boundary and initial conditions,

such systems lead to various realizations (Ashmore, 1988; Warburton & Davies, 1994).

The difficulties of traditional (deterministic) bedload models in predicting the bedload more

accurately than one order of magnitude compared to observed data (Ancey, 2020; Recking

et al., 2012) and, consequently, the bed topography (Deigaard, 2006; Van Duin et al., 2017), can

be attributed to the overlooking of bedload fluctuations. This oversight occurs when viewing

fluvial systems from a capacity perspective (Martínez-Aranda et al., 2019). In this perspective,

a given set of controlling variables is assigned a specific maximum load for transporting solid

weight (Z. Cao et al., 2012; Wu, 2007).

This capacity is formulated by introducing a tractive force (or critical tractive force) exerted on

the boundary (Armanini & Di Silvio, 1988), such as the critical Shields number (du Boys, 1879)

or water discharge (Gilbert & Murphy, 1914), to initiate bedload movements: transitioning

from clear water (incipient motion) to a mobile bed. It ends up with a deterministic, scaled

formulation of bedload transport through the fitting of experimental data. For example, a

specific water discharge is correlated with a certain capacity to transport solid weight, resulting

in an injective function that relates bedload transport to water discharge (Gilbert & Murphy,

1914).

In other words, in this approach, the fluctuations are smoothed out by averaging the bedload

transport. This averaging process potentially erases crucial information related to fluctuations

that impact bulk scales (Ancey et al., 2015; Charru et al., 2004; Furbish et al., 2017). For this

reason, several modifications have been proposed for deterministic models to better mimic

the observed laboratory values, such as introducing different roughness heights in friction

formulations (Millar, 1999) or introducing different exponents for power laws in deterministic

bedload models (Ancey & Recking, 2023).

In recent years, Benavides et al., 2022; Fan et al., 2014; Li et al., 2023; Pierce et al., 2022 have

incorporated the fluctuations into the formulation. These studies have shown promising

results in predicting critical incipient motion conditions, the dynamics of individual particles,

the dual-mode dynamics of bedload transport, and sediment flux, respectively.

Recently, a stochastic bedload model proposed by Ancey and Heyman, 2014 suggested

advection-diffusive type of movement for particles. This stochastic bedload transport model

has been effectively coupled in one dimension with shallow water and Exner equations, leading

to improved accuracy in predicting bedload transport and bedform evolution, specifically the
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formation of antidunes from a flat surface (Bohorquez & Ancey, 2015, 2016; Kiani-Oshtorjani

& Ancey, 2024). However, it has yet to be evaluated in a two-dimensional case study.

In this study, we aim to tackle the challenge of incorporating bedload transport fluctuations

by supplementing the two-dimensional depth-averaged shallow water equations with a two-

dimensional stochastic bedload transport model and using the Exner equation to maintain

bed continuity. Our approach differs from conventional bedload transport models that directly

link water discharge and particle flux, as it defines particle flux as a stochastic variable. This

framework is particularly suitable for simulating the partial mobility regime, which is typically

characterized by the emergence of alternate bars.

The inception of alternate bars is indicative of the early stages of the meandering process in

rivers. Alternate bars, large-scale bedforms, are characterized by alternating pools and ripples

along either side of a channel, with a wavelength many times the channel’s width. These

features can either experience downward migration (Crosato et al., 2012) or remain stationary

(Lisle et al., 1991). The formation of alternate bars is influenced by various factors, including

stream obstructions (Struiksma & Crosato, 1989), suspended bedload (Bertagni & Camporeale,

2018), and channel geometry—for instance, the ratio of half-width-to-flow-depth (Colombini

et al., 1987).

Prior to the implementation of the numerical simulation, we studied the linear stability

properties of the system of equations. The stability analysis provides us the key parameters

influencing our physical problem and indicates which mathematical term in our governing

equations is of greater relative importance. To establish the validity of our methodology, we

verify the obtained results with experimental data from the literature. Subsequently, we employ

a Riemann-based numerical solver, the f -wave method, within a finite volume framework.

This numerical solver is applied to laboratory experiments for the analysis of bedload transport

and the formation of alternate bars under steady-state conditions.

The structure of this work is organized as follows: In § 4.2, the mathematical theory including

the governing equations, and the stochastic bedload model are explained. In § 4.3, we con-

ducted a linear stability analysis and studied the neutral curves correlating the Froude number,

half-width-to-depth ratio, lateral wavenumber, and the ratio of grain-size-to-water-depth to

the longitudinal wavenumber of the alternate bars. In § 4.4, we detail the wave propagation

algorithm employed to numerically solve the governing equations. In § 4.5 and § 4.6, we pro-

vide a comprehensive explanation of the obtained results by applying the numerical solver to

laboratory experiments and demonstrate the model’s capabilities. We present the discussion

and conclusion of the study in § 4.7.

85



Chapter 4. Stochastic modeling of bedload transport and bar development

4.2 Physical problem

4.2.1 Saint-Venant–Exner equations

We may derive the Saint-Venant equations from the Navier-Stokes equations using the hydro-

static pressure assumption and the Boussinesq approximation (Cushman-Roisin & Beckers,

2011). The two-dimensional Saint-Venant–Exner equations include four equations, namely,

the depth-averaged conservation of mass, two momentum equations for the fluid phase, and

the Exner equation for continuity of the bed—the bed being erodible. In a straight channel

with a slowly varying erodible bottom - ignoring the wind effects and Coriolis terms in addition

of diffusion of momentum due to viscosity - the governing equations are (Mignot et al., 2006;

Zhou, 2004)

∂h

∂t
+ ∂

∂x
(hū)+ ∂

∂y
(hv̄) = 0 (4.1)

∂(hū)

∂t
+ ∂

∂x
(hū2)+ ∂

∂y
(hūv̄)+ g h

∂h

∂x
= −g h

∂yb

∂x
− τbx

ϱ
(4.2)

∂(hv̄)

∂t
+ ∂

∂x
(hūv̄)+ ∂

∂y
(hv̄2)+ g h

∂h

∂y
= −g h

∂yb

∂y
− τby

ϱ
(4.3)

(1−ζp )
∂yb

∂t
= D−E = −∂q̄sx

∂x
− ∂q̄s y

∂y
(4.4)

The set of equations represents a flow with varying topography at time t and spatial position (x,

y) that are longitudinal and normal coordinates, respectively. The set of equations has infinite

solutions, while the boundary and initial conditions will determine the unique solution for our

physical problem. The flow depth-average velocities at time t and position (x, y) are denoted

by ū = ū(x, y, t) and v̄ = v̄(x, y, t) in longitudinal and normal directions, respectively. The

flow depth from the surface level to the bottom is h = h(x, y, t) = ys(x, y, t)− yb(x, y, t), while

ys(x, y, t ) and yb(x, y, t ) are the positions of the free surface flow and the bed, respectively.

The bed slopes in the x and y directions given by tanθx = −∂x yb and tanθy = −∂y yb , respec-

tively. The gravity acceleration is represented by g = 9.81 m2/s and ϱ is the fluid density. The

bottom shear stress longitudinal and transversal components are τbx and τby , respectively.

The bed porosity is denoted as ζp and is assigned a value of 0.36. The averaged bedload

transport rates in the streamwise and spanwise directions are represented by q̄sx and q̄s y , as

well as the deposition and entrainment rates indicated as D and E , respectively. To close the

set of equations, suitable closure relations are required to establish the connection between

the deposition and entrainment rates, D and E , and the shear stresses, τbx and τby , to the

sediment and flow characteristics.
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4.2 Physical problem

4.2.2 Friction model

The bed friction stress, indicative of the effect of bed roughness, is related to the flow properties

(Shettar & Keshava Murthy, 1996) as follows

τbx = C f ϱū
√

ū2 + v̄2

τby = C f ϱv̄
√

ū2 + v̄2
(4.5)

where the friction factor C f can be determined by C f = f /8. In order to calculate the friction

factor, the Keulegan, 1938 equation has been used

f =

(
2.03log

(
12.2h/ks

))−2
(4.6)

where the roughness height ks is approximated with 5.9d50 to represent various bedform

roughness (Millar, 1999). The initial slope by a well-known formula can be related to Froude

number F r0 and friction factor C0 for uniform flow over unperturbed bed (Colombini &

Stocchino, 2012)

S0 = F r 2
0 C0 (4.7)

4.2.3 Stochastic bedload transport model

A bedload transport model was recently derived by adopting an Eulerian approach (Ancey

& Heyman, 2014). Three rates of mass exchange between the bed and flow were considered:

deposition σ, individual entrainment λ′, and collective entrainment µ. The terminology used

to describe the collective entrainment has caused some confusion, as it may suggest that

multiple particles are simultaneously entrained. However, this is not the case, as the term

simply reflects the fact that the likelihood of entrainment is influenced by the number of

particles in motion.

The resulting analysis led to a probability problem that could be expressed in terms of joint

and conditional probabilities. Although the underlying physical process may have some

memory, it may be short-term memory, and not long-term. As a result, the problem was

simplified into a Markov process with a single memory step. By leveraging this simplification,

a stochastic formulation for bedload transport was proposed. The proposed formulation

provides a framework for predicting the number of active particles in a probabilistic manner,

taking into account the stochastic nature of the process as

∂b

∂t
+ ∂

∂x

(
ūsb

)+ ∂

∂y

(
v̄sb

)
=

∂2

∂x2

(
Dx b

)+ ∂2

∂y2

(
D y b

)+λ−κb +
√

2µbξb (4.8)
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Chapter 4. Stochastic modeling of bedload transport and bar development

where b is the Poisson density rate, the Gaussian noise term is ξb and can be generated using

the vdRngGaussian function (Intel’s MKL library). The difference between deposition and

collective rates is κ =σ−µ, and the entrainment rate per unit length is λ =λ′/∆x, where ∆x is

the length of the control volume.

The mean particle velocity is denoted by ūs and v̄s and particle diffusivities by Dx and D y

in streamwise and spanwise directions, respectively. In contrast to the classical advection-

diffusion equation, which assumes that diffusivity is independent of spatial scale, our analysis

yields a modified diffusivity with Dx = ūs∆x/2 and D y = v̄s∆y/2.

The sediment velocities and their directions were then taken into account by estimating them

based on relating them to flow velocities by ūs =βx ū and v̄s =βy v̄ , where βx and βy represent

the ratios of sediment velocity to water velocity in the longitudinal and normal directions,

respectively. The value of these ratios is set to 1.0, indicating that the sediment velocity and

direction are the same as the flow, except when specifically stated otherwise in the context.

This is a rough assumption, and for future studies, there is a need to model these parameters

with greater precision. By taking the ensemble average of Eq. 4.8 and using Itô convention, an

equation for particle activity 〈γ〉 is derived as

∂〈γ〉
∂t

+ ∂

∂x

(
ūs〈γ〉

)+ ∂

∂y

(
v̄s〈γ〉

)
=

∂2

∂x2

(
Dx〈γ〉

)+ ∂2

∂y2

(
D y 〈γ〉

)+ λ̃−κ〈γ〉 (4.9)

The definition of particle activity can be expressed as the volume occupied by the active

particles in motion per unit streambed area, in the limit as the area of the control volume

approaches zero

γ = lim
∆x→0

nVp

B∆x
(4.10)

where Vp denotes the particle volume, B is the control volume width, and ∆x is the control

volume length. The volumetric entrainment rate in Eq. 4.9 is λ̃ = λVp /B . The Eulerian ap-

proach enables the definition of entrainment and deposition rates in the Exner equation as

functions of mean particle activity, such as

E = λ̃+µ〈γ〉
D =σ〈γ〉

(4.11)

The moments of b and γ are linked via

〈γ〉 = 〈b〉Vp /B (4.12)

The mean bedload transport rate q̄s in the absence of particle diffusion define as (Ancey &
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Heyman, 2014)

q̄s = ūs〈γ〉 (4.13)

In the steady-state, the equilibrium value for particle activity satisfy (Bohorquez & Ancey,

2015)

〈γ〉ss =
λ̃

σ−µ (4.14)

Consequently, the Exner equation can be rewritten as

∂yb

∂t
=

D−E

1−ζp
=
κ〈γ〉− λ̃

1−ζp
=
κVp B−1〈b〉− λ̃

1−ζp
(4.15)

In the aforementioned theory for bedload transport, three parameters are crucial: deposition

rate, individual and collective entrainment rates. To close the set of equations, it is necessary

to relate the entrainment and deposition coefficients to the fluid/solid properties. As an initial

approximation, the following equation for κ is suggested by Bohorquez and Ancey, 2015

κ = cd

√
(s −1)g

d
(4.16)

Based on the analysis of particle flight time by Lajeunesse et al., 2010, we set the deposition

coefficient cd to 0.1, and s = ϱs/ϱw is the specific density defined as sediment density over the

water density ratio. The following equation is suggested for the erosion rate (Bohorquez &

Ancey, 2015)

λ̃ =
ceVp

ϱd 3

τb −τcr√
(s −1)g d

(4.17)

where the entrainment coefficient ce was deduced from Durán et al., 2012 equivalent to

ce = 1.75cd = 0.175. Based on experimental investigations by Ancey et al., 2008, it has been

shown that the collective entrainment µ exhibits minimal sensitivity to flow conditions (please

refer to Chapter 3). Specifically, it was found that µ is, on average, 0.85 times the deposition

coefficient, expressed as µ = 0.85σ.
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Chapter 4. Stochastic modeling of bedload transport and bar development

4.3 Linear stability analysis

In this section, prior to numerical simulation, the steady and uniform base flow’s spatio-

temporal stability analysis is examined. The equations’ qualities of linear stability reveal new

information on the validity of the mean equations in the context of pattern formation. The

study of stability analysis was performed using our deterministic set of equations, namely,

Eq. 4.1–Eq. 4.4, and Eq. 4.9. The general prediction power of morphodynamic models can be

foreseen by performing stability analysis. For instance, according to linear theories applied to

straight channels, free alternate bar migrates downstream, while forced bar do not migrate

and stay stationary. Additionally, has been found that forced bars are two times bigger than

free bars (Schielen et al., 1993; Zolezzi et al., 2005).

The analytical solutions for alternate bars in a straight channel usually make the following

assumptions: i. the channel is an infinitely long rectangular channel; ii. the flow is shallow; iii.

the flow discharge is constant; iv. the channel width is constant; v. uniformity of the sediment

size; and vi. sediment transport is in equilibrium with the flow capacity. The key point in

the stability analysis is that we view bars as sediment waves; therefore, we will seek for wavy

solutions.

The Saint-Venant–Exner equations, when coupled with the traditional bedload model, have

been found to have difficulties in predicting bed formation, as demonstrated in the stability

analysis performed by Nelson and Morgan, 2018 and facing this question: "Why did alternate

bars develop in our experiments when theory predicts that the flow was too deep to allow them

to form?". Despite the discrepancy between the prediction based on the traditional set of

equations and observed results in the laboratory, the proposed set of equations, equipped

with an advection-diffusion bedload model, Eq. 4.9, was able to accurately predict the bed

formation, aligning with the experimental dataset drawn from the literature.

4.3.1 Dimensional groups

Morphodynamic theories can be derived in dimensional or dimensionless form. Here we

will follow a dimensionless mathematical treatment of the problem, which is obtained by

scaling (or normalizing) each quantity in the equations through appropriate scale quantities.

These scale quantities are usually representative of the reach-averaged quantities that describe

the hydraulic conditions of the uniform flow that would occur in the channel with a given

discharge, slope, width, and grain size.

Working with dimensionless equations is important since this allows us to derive results

that are scale-independent, i.e., the same dimensionless result can refer to a large river, e.g.,

the Navisence river in the Val d’Anniviers, Wallis, Switzerland (Ancey et al., 2014), and to a

hydraulic gravel-bed flume in the laboratory, provided they are characterized by the same

value of the input dimensionless parameters. Moreover, this allows for the detection of the

most important parameters on which the physical problem depends, and it also allows for the
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4.3 Linear stability analysis

comparison of the relative importance of each mathematical term appearing in the governing

equations.

To make the variables dimensionless, we will use the characteristic values {H0,U0,〈γ〉ss ,B}.

Here, 〈γ〉ss denotes the steady-state particle activity for the variable 〈γ〉, and the channel

half-width B = w/2 is used for normalizing the streamwise and spanwise coordinates (x, y).

The reach-averaged water depth H0 serves as the scale for the local water depth (h), and the

reach-averaged uniform flow velocity U0 is used for scaling the depth-averaged velocity fields

(ū, v̄). The dimensionless variables are defined as follows

u′ ← ū

U0
, v ′ ← v̄

U0
, η← h

H0
, z ← yb

H0
, φ← 〈γ〉

〈γ〉ss
,

x ′ ← x

B
, y ′ ← y

B
, t ′ ← tU0

B
, τ′bx ← τbx

ϱU 2
0

, τ′by ←
τby

ϱU 2
0

(4.18)

By taking into account the non-dimensional parameters Eq. 4.18 and subtituding into Eq. 4.1–

Eq. 4.4, and Eq. 4.9, the dimensionless equations can be obtained as

∂η

∂t ′
+ ∂ηu′

∂x ′ + ∂ηv ′

∂y ′ = 0

F r 2
0

(
∂ηu′

∂t ′
+ ∂ηu′2

∂x ′ + ∂ηu′v ′

∂y ′

)
+η ∂η

∂x ′ = −η ∂z

∂x ′ −βF r 2
0τ

′
bx

F r 2
0

(
∂ηv ′

∂t ′
+ ∂ηv ′2

∂y ′ + ∂ηu′v ′

∂x ′

)
+η ∂η

∂y ′ = −η ∂z

∂y ′ −βF r 2
0τ

′
by (4.19)

∂z

∂t
= Ke

φ−
(p

u′2 + v ′2
)2 −u2∗

1−u2∗


∂φ

∂t
+βx

∂u′φ
∂x ′ +βy

∂v ′φ
∂y ′ = Kd


(p

u′2 + v ′2
)2 −u2∗

1−u2∗
−φ

+Dx
∂2φ

∂x ′2 +Dy
∂2φ

∂y ′2

where the index 0 specifies the value of the variables at steady-state flow condition, and β cor-

responds to the ratio of half width over water depth. In Eq. 4.19, each variable is dimensionless

by reach-averaged uniform flow quantities. The non-dimensional variables in Eq. 4.19 are

F r0 =
U0√
g H0

, δ2 =
d

H0
, Ke =

πceβ(1−u2∗) tanθ

6(1−ζb)F r0
p

s −1δ
, Kd =

cd
p

s −1β

δF r0

u∗ =
√
θcr /θ0, Dx =

Dx

BU0
, Dy =

D y

BU0

(4.20)
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4.3.2 Dispersion relation

Theories on bar formation in straight channels derive from perturbation analyses imposed on

the governing equations (Papa, 2020). Linear theories focus on the stability of uniform flow

when subjected to bar perturbation (typically in the form of a bar). For free bars, the focus is to

study the system’s spontaneous response to such perturbations, and for forced bars, the focus

is to examine the system’s reaction to external obstructions within the straight channel, such as

channel narrowing and bridge piers. For free bars, linear stability analysis studies the resilience

of the dimensionless governing differential system (referred to in Eq. 4.19) to imposed small

perturbations with amplitude ϵ. The linear expansion of the dependent variables reads

(
η,u′, v ′, z,φ

)
= (1,1,0,−x,1)+ϵ(η1,u1, v1, z1,φ1

)+O(ϵ2) (4.21)

(τ′bx ,τ′by ) = (τbx0,0) +ϵ(τbx1,τby1
) +O(ϵ2) (4.22)

The variables are replaced in Eq. 4.19 while keeping the terms of O(ϵ) in order to study the

effect of the perturbation. Each equation has terms with the same order of magnitude of O(ϵ)

that are collected separately. The equations expressing the balance of O(1) terms retrieve

the uniform flow solution, which represents the trivial solution of the governing system. The

equations expressing the balance of O(ϵ) terms are called the linearized equations because

they allow to calculate the linear perturbations of our unknowns, i.e., {η1, u1, v1, z1, φ1} and

their dependency on (x, y, t). In the framework of linear analysis, all terms having O(ϵ2) or

higher are discarded, and this is not the case of nonlinear theories, of course. The resulting

equations reads

∂η1

∂t
+ ∂η1

∂x
+ ∂u1

∂x
+ ∂v1

∂y
= 0

F r 2
0

(
∂u1

∂t
+ ∂u1

∂x

)
+ ∂η1

∂x
−η1 + ∂z1

∂x
+βF r 2

0τbx1 = 0

F r 2
0

(
∂v1

∂t
+ ∂v1

∂x

)
+ ∂η1

∂y
+ ∂z1

∂y
+βF r 2

0τby1 = 0 (4.23)

∂z1

∂t
−Ke

(
φ1 − 2u1

1−u2∗

)
= 0

∂φ1

∂t
+βx

(∂u1

∂x
+ ∂φ1

∂x

)
+βy

∂v1

∂y
−Kd

(
2u1

1−u2∗
−φ1

)
−Dx

∂2φ1

∂x2 −Dy
∂2φ1

∂y2 = 0

The shear stress terms τbx1 and τby1 in Eq. 4.23 in particular have been obtained in Appendix E.

After the mathematical derivation, the shear stresses become τbx1 = C0s1u1 +C0s2η1, and

τby1 = C0v1. The variable C0 corresponds to the friction coefficient of the undisturbed uniform

flow, and variables s1 and s2 are given in Appendix E. The exponential form as a general solution

(Colombini & Stocchino, 2012) can be admitted into the linear perturbations equations, i.e.,
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4.3 Linear stability analysis

Eq. 4.23 in order to obtain the solution such as

(η1,u1, v1, z1,φ1) = (η2,u2, v2, z2,φ2)e−i (ct−kx x−ky y) (4.24)

where kx = 2πh/Lx is the wavenumber in the longitudinal component being Lx the wavelength

in the streamwise direction, whereas ky = 2πh/Ly = 2π/2w/h = π/2β is the wavenumber in

the spanwise direction being Ly the wavelength in the spanwise direction. It is worth noting

that the bedform is characterized by the transverse wavelength, considering two times the

width of the channel.

In Eq. 4.24, the wave complex celerity is represented as c = cr + i ci , where the real part cr ,

denotes the growth rate and the imaginary part ci , denotes the dimensionless frequency of

perturbations. The imaginary part of the wave speed being positive ci > 0, the base flow is said

to be unstable, and ci < 0 implies a stable region. If cr > 0, it indicates that the perturbation

moves downstream, and if cr < 0, it indicates upstream migration. Additionally, if cr > 1, it

means that the bed form perturbation moves faster than the base flow (Bohorquez & Ancey,

2015). After substituting Eq. 4.24 in Eq. 4.23, it leads to the following eigenvalues problem:



−i c


1 0 0 0 0

0 F r 2
0 0 0 0

0 0 F r 2
0 0 0

0 0 0 1 0

0 0 0 0 1

+ i kx


1 1 0 0 0

1 F r 2
0 0 1 0

0 0 F r 2
0 0 0

0 0 0 0 0

0 βx 0 0 βx

+ i ky


0 0 1 0 0

0 0 0 0 0

1 0 0 1 0

0 0 0 0 0

0 0 βy 0 0



−k2
x


0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 −Dx

−k2
y


0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 −Dy

+



0 0 0 0 0

X C0s2 −1 X C0s1 0 0 0

0 0 X C0 0 0

0 2Ke

1−u2∗
0 0 −Ke

0 − 2Kd

1−u2∗
0 0 Kd





.


η2

ū2

v̄2

z2

φ2

 = 0

(4.25)

where X stands for X = F r 2
0β. The algebraic system of five equations with five unknowns can

be written as AX = 0 which admits a non-trivial solution only if the determinant of the matrix

of the coefficients A is different from zero. The dispersion equation is obtain by imposing

det(A) = 0 which has a general algebraic form, that provides the temporal growth rate of the

disturbance for known wavelength or wave number.

In the subsequent section, the neutral curves are plotted by solving det(A) = 0 using Mathe-

matica. To produce these curves, the approach involves seeking the case where the complex

part of the wave speed is set to zero (the boundary between ci > 0 and ci < 0), achieved by

varying two variables under study while treating the others as constants.

4.3.3 Neutral curves

The wave speed imaginary component ci was calculated to produce the neutral curves after a

number of variables - as was covered in the previous section - were fixed. The neutral curves
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Chapter 4. Stochastic modeling of bedload transport and bar development

were obtained by solving the system of det(A) = 0. Such that by varying two variables and

solving det(A) = 0 numerically for c , the imaginary part of the solution is obtained and used to

produce the corresponding contour plot. This contour plots can be divided into two domains.

The domain where ci > 0 is referred as the unstable domain since bed formation appears,

when ci < 0, on the other hand, the domain is said to be stable.

Along with these variables, the fixed variables also include the ratio of grain-size-to-water-

depth, δ2
0, the normal and longitudinal non-dimensional diffusivities, Dy and Dx , Froude

number F r0, bed slope S0, lateral wavenumber ky , ratio of half width to flow depth β, critical

Shields number θcr and porosity ζb . The variables were fixed to the following values: δ2
0 = 0.01,

Dx = 0.01, Dy = Dx /10, S0 = 1%, β = 4, and θcr = 0.047 when they have not been mentioned.

A dataset is collected based on laboratory experiments for studying the alternate bars con-

ducted by Jaeggi, 1984, Sukegawa, 1971, Kinoshita, 1961, Muramoto and Fujimata, 1978,

Ashida and Shiomi, 1966, Ikeda, 1984, Chang et al., 1971, Fujita and Muramoto, 1982, Lanzoni,

2000, M. Garcia and Niño, 1993, Redolfi et al., 2020, Garcia Lugo et al., 2015, Ahmari and

Da Silva, 2011, Dhont, 2017, Nelson and Morgan, 2018 to evaluate the validity of the neutral

curves. The majority of the dataset is taken from Redolfi, 2021 and has been extended. The

minimum and maximum characteristics of the experiments are presented in Table 4.1. The

minimum and maximum values of the observed wavenumber in the longitudinal and transver-

sal directions, as well as the half-width-to-water-depth ratio, are determined and reported in

Table 4.2.

In Fig. 4.1, the initial bed slope varied among S0(%) = [0.1,0.2,0.5,1.0,2.0,5.0] while the rest

of parameters assumed to be constant to draw the boundaries between the stable and un-

stable domains (the neutral curves) in the {kx ,F r }-, {kx ,β}-, {kx ,ky }-, and {kx ,δ2}-planes. In

Fig. 4.1(a), Froude number versus the longitudinal wavenumber have been plotted. By assum-

ing a constant slope, the friction factor can be obtained with Eq. 4.7. As the Froude number is

increased, the region of instability for the formation of bed forms with smaller longitudinal

wavenumbers becomes increasingly restricted, and this trend is reflected in the behavior of

the experimental data points as well.

For small Froude numbers, neutral curves have larger kx values, i.e., appearing forms with a

smaller streamwise dimensionless wavelength that is in line with theoretical and experimental

studies by Inoue et al., 2020, and Kennedy, 1963. The boundary between stable and unstable

parts can be represented by the function: 1/F r 2 =αkx tanhkx , where α = 8.5. However, the

critical Froude number for the formation of dunes occurs when α = 1 (Parker, 1975; Reynolds,

1965).
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Chapter 4. Stochastic modeling of bedload transport and bar development

Researcher Wavelength β kx ky

cm - - -
Jaeggi, 1984 (PVC) 168-608 3.63-19.23 0.0152-0.154 0.0408-0.216
Jaeggi, 1984 (Sand) 280-780 4.03-9.55 0.0250-0.0617 0.0822-0.195
Sukegawa, 1971 82-396 2.56-20.40 0.0184-0.255 0.0385-0.306
Kinoshita, 1961 60-194 4.1-16.93 0.0163-0.169 0.0464-0.192
Muramoto and Fujimata, 1978 216-720 7.58-39.86 0.00947-0.0471 0.0197-0.104
Ashida and Shiomi, 1966 280-456 10.68-32.65 0.0170-0.0418 0.0245-0.0735
Ikeda, 1984 120-380 4.47-16.33 0.0202-0.161 0.0481-0.176
Chang et al., 1971 411.5-2438.4 5.86-23.81 0.00745-0.0517 0.0330-0.134
Fujita and Muramoto, 1982 280-2010 10.00-24.10 0.0135-0.0343 0.0326-0.0785
Lanzoni, 2000 750-1130 9.04-22.73 0.0188-0.0695 0.0346-0.0869
M. Garcia and Niño, 1993 320-400 9.05-25.98 0.0138-0.0418 0.0302-0.0868
Redolfi et al., 2020 161-344 7.66-14.39 0.0223-0.0778 0.0546-0.103
Garcia Lugo et al., 2015 - 10.95-24.29 - 0.0647-0.287
Ahmari and Da Silva, 2011 - 4.58-42.03 - 0.0374-0.343
Dhont, 2017 400-700 7.5-7.5 0.0071-0.01 0.418-0.418
Nelson and Morgan, 2018 200-250 4-4 0.28-0.28 -

Table 4.2: Maximum and minimum of the bar wavelength, half-width-to-water-depth ratio
β, and wavenember in the longitudinal kx and transversal ky directions, respectively, are
presented.

To investigate the possible existence of a critical threshold, βc , influencing the formation of

alternate bars, the neutral curve was plotted in the {kx ,β}-plane, illustrated as a function of

the initial bed slope in Fig. 4.1(b). The results indicated that as the initial bed slope increases,

the unstable region occupies a smaller area in the {kx ,β}-plane. This suggests that significant

slopes provide less diversity for the formation of alternate bars, in agreement with physical

intuition. Interestingly, we observed that smaller values of β corresponded to a wider range of

potential kx for the formation of bars, which is consistent with the experimental data points.

Colombini et al., 1987 conducted a linear stability analysis on the conventional shallow water

equation and used the Meyer-Peter–Müller sediment transport model, complemented by

the Engelund, 1981 formula for direction of particle movement. Their methodology predicts

the existence of critical βc for the formation of alternate bars. Later, Redolfi, 2021 found

inconsistency between the formation of alternate bars in some flume experiments, and critical

β value predicted by Colombini et al., 1987. Nevertheless, these experimental data points were

captured in the unstable domain in Fig. 4.1(b).

Additionally, Fig. 4.1(b) shows that the critical βc for bed formation varies with the initial bed

slope. Chang et al., 1971 found that bars formed only when β< 24. Similarly, Kinoshita, 1957

proposed the criterion β< 10 to 40 for the formation of alternate bars. In 2002, Repetto et al.,

2002 studied the stability of channels with varying channel width and in line with our findings

96



4.3 Linear stability analysis

(a) (b)

(c) (d)

Figure 4.1: Neutral curve of free alternate bars in (a) {kx ,F r }-plane, (b) {kx ,β}-plane, (c)
{kx ,ky }-plane, (d) {kx ,δ2}-plane as a function of bed initial slope. The experimental data-
points are categorized based on the initial bed slope.

concluded the region of instability in {kx ,β}-plane widens with decreasing the Shields number

- equivalent by decreasing bed slope as the other parameters are fixed.

In the various experimental runs illustrated in Fig. 4.1(c), it can be observed that a significant

longitudinal wavenumber often corresponds to a large normal wavenumber. Additionally, the

stability analysis results show a trend similar to the experimental data.

The neutral curves displayed in Fig. 4.1(d) illustrate how δ2
0 varies as a function of kx and bed

slope. These neutral curves indicate that lower bed slopes are associated with larger domains

of instability. The condition 1/(δ0.66
0 (2β)0.66) < 0.45 must be satisfied for the formation of

alternate bars according to Muramoto and Fujimata, 1978. This condition aligns with the

neutral curves depicted in Fig. 4.1(d), as a smaller value ofδ2
0 indicates less favorable conditions

for alternate bar formation. Moreover, the results presented in Fig. 4.1(d) are in agreement

with the findings of Eekhout et al., 2013, who showed that a smaller value of δ2
0 leads to a

smaller domain of instability.
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Chapter 4. Stochastic modeling of bedload transport and bar development

(a) (b)

Figure 4.2: (a) Neutral curve of free alternate bars in the {kx ,F r }-plane as a function of δ2
0, and

diffusion, (b) neutral curve of free alternate bars in the {kx ,β}-plane as a function of βx and
βy . The experimental data-points are shown with black circles.

In Fig. 4.2(a), we have explored the influence of diffusivity and grain size-to-flow depth ratio on

the neutral curves. Unlike the results in Fig. 4.1, the slope is not fixed, and have been obtained

using Eq. 4.7.

Figure 4.2(a) shows that for larger values of kx , the neutral curves remain unchanged regardless

of the diffusivity or the grain size-to-flow depth ratio. However, as kx decreases to 0.1, δ2
0

becomes a crucial factor, and the results align with those obtained in Fig. 4.1(d), where a larger

δ2
0 creates a more favorable condition for alternate bar formation. Furthermore, diffusivity

appears to play a role for kx < 0.03, as an increase in diffusivity results in an increase in

the unstable domain. This outcome is consistent with the results of other studies on bed

formation, such as Bohorquez and Ancey, 2016, who demonstrated that diffusivity favors the

formation of antidunes, particularly those with long wavelengths and small wavenumbers.

Figure 4.2(b) examines the significance of sediment velocity and direction. In this model, the

sediment velocity and direction depend on the modeling of βx and βy . The findings indicate

that the magnitude of βx,y does not significantly affect the results, provided that the ratio

βx /βy remains consistent. This is exemplified in the case of the red neutral curve, where

βx,y = 0.1, and the blue light neutral curve, where βx,y = 0.9; these two curves overlap. However,

the ratio βx /βy plays a crucial role in defining the unstable domain. The results suggest that

when this ratio exceeds 1, the unstable domain is larger than when it is less than 1.

98



4.4 Numerical scheme

4.4 Numerical scheme

4.4.1 Architecture of the numerical model

This section provides an overview of the numerical scheme. The non-linear set of governing

equations, Eq. 4.1–Eq. 4.4 and Eq. 4.8, reformulated into a vector equation as

∂q

∂t
+ ∂f

∂x
+ ∂g

∂y
+ ∂k

∂x
+ ∂p

∂y
= sb +s f (4.26)

The conserved variables are denoted by q vector containing five conserved quantities as

q = [h,hū,hv̄ ,b, yb]T (4.27)

The Cartesian components of convective fluxes in the streamwise and spanwise directions are

expressed by f and g, respectively, and have the following components

f =

[
hū,

(hū)2

h
+ g h2

2
,hūv̄ ,βx ūb,0

]T

, g =

[
hv̄ ,hūv̄ ,

(hv̄)2

h
+ g h2

2
,βy v̄b,0

]T

(4.28)

However, the fluxes f, and g going to be handled in the hyperbolic subproblem; the fluxes k,

and p as

k =

[
0,0,0,−Dx

∂b

∂x
,0

]T

, p =

[
0,0,0,−D y

∂b

∂y
,0

]T

(4.29)

will be handled in the parabolic subproblem. The source and sink terms are

sb =

[
0,−g h

∂yb

∂x
,−g h

∂yb

∂y
,0,0

]T

(4.30)

s f =

[
0,−C f ū

√
ū2 + v̄2,−C f v̄

√
ū2 + v̄2,λ−κb +ξb

√
2µb,

κVp B−1〈b〉− λ̃
1−ζp

]T

(4.31)

These sink terms take the bed slopes and friction losses into consideration within the momen-

tum equations, as well as bedload source terms and the deposition and entrainment rates

within the Exner equation. The friction source term, as a function of depth and momentum,

can be rewritten as

−τbx

ϱ
= −C f ū

√
ū2 + v̄2 = −C f

√
(hū)2 + (hv̄)2

h2 (hū)

(4.32)

In all simulations, the friction coefficient C f is set to 0.004.
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4.4.2 Finite volume method

The equation Eq. 4.26 is solved over a rectangular grid C with the node coordinates of

Ci j = [xi−1/2, xi+1/2]× [y j−1/2, y j+1/2]. The governing equations were decomposed using the

fractional-step method, distinguishing between a hyperbolic subproblem that manages the

source terms, and a parabolic subproblem that addresses the diffusive component of the

governing equations, as detailed in Toro, 2013.

To solve the hyperbolic system, a high-resolution Godunov-type method was employed, i.e.,

the f -wave (an abbreviation for flux waves) Riemann solver—a technique explained by Bader

et al., 2014; Bale et al., 2003; LeVeque, 2011, while for solving the parabolic subproblem, we

used the Crank-Nicholson method. The governing equation involves splitting the governing

equation into: i. The non-homogeneous hyperbolic subproblem: ∂t q +∂x f (q)+∂y g (q) =

sb + s f , and ii. The parabolic subproblem: ∂t q = −∂x k −∂y p .

The uniform hyperbolic equation in the longitudinal direction is given by q t + f x = 0. Alter-

natively, in a non-conservative representation, it can be written as q t + A(q) ·q x = 0, where

A = ∇q f represents the Jacobian matrix. The linearized matrix Â’s right eigenvectors are

denoted as r p where 1 ≤ p ≤ m = 5 and its associated eigenvalues are λ̂p . The eigenvalues are

derived as follows

λ̂1 = ū − ĉ, λ̂2 = ū + ĉ, λ̂3 = û, λ̂4 =βū, and λ̂5 = 0

where ĉ =
√

g h̄ (please refer to Appendix F). The set of governing equations creates five waves

traveling upstream or downstream, depending on their velocity sign. These five wave speeds

are plotted in Fig. 4.3 as a function of Froude number.

The algorithm uses approximated averaged flux values as initial data to solve the Riemann

problem between the reconstructed values. The solution of the Riemann problem can be

obtained through waves resulting from decomposing the jump in fluxes. In this method, the

flux difference is split into waves rather than using the cell average values, which is a key

aspect of the flux-based wave decomposition methods. This methodology allows for the direct

incorporation of bed slope source terms sb into formulation (Bale et al., 2003).

By integrating the bed slope source terms directly into the splitting, a well-balanced scheme is

attained (Bale et al., 2003). The flux difference in the streamwise direction can thus be split

into f -waves, such as

f(Qi , j )− f(Qi−1, j )−∆xSb
i−1/2, j =

m∑
p=1

ψ
p
i−1/2, j rp

i−1/2, j ≡
m∑

p=1
Z

p
i−1/2, j (4.33)

where the f -waves are Z
p
i−1/2, j . Therefore, bed slope source terms sb , are handled in the

Riemann solver, while s f explicitly treated. Here Sb
i−1/2, j is suitable average of sb between

the neighboring states to obtain them at cell interfaces, and rp is the right eigen vector of
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4.4 Numerical scheme

the Roe averaged wave decomposition of the Riemann problem. The Roe averaged wave

decomposition of the Riemann problem for the presented set of equations is derived in

Appendix F and ψi−1/2, j being

ψi−1/2. j = R−1
i−1/2, j

(
f(Qi , j )− f(Qi−1, j )−∆xSb

i−1/2, j

)
(4.34)

where R−1
i−1/2, j is the matrix of right eigenvectors of the approximated Jacobian Âi−1/2. The

fully discrete scheme is thus

Q∗
i , j = Qn

i , j − ∆t

∆x

(
A +∆Qi−1/2, j +A −∆Qi+1/2, j

)
(4.35)

− ∆t

∆y

(
B+∆Qi , j−1/2 +B−∆Qi , j+1/2

)+∆tS f
i , j (4.36)

where A ± determines the direction of the fluctuations and Qi∓1/2, j their origin—same def-

inition applies for the y-direction. The net-updates A ±∆Qi∓1/2, j are calculated by solving

the one-dimensional Riemann problem on the vertical edges of the cell. It describes the

fluctuations in the positive direction that are entering the cell from the left as well as the

fluctuations in the negative direction that are entering the cell from the right.

Similar, the net-updates B±∆Qi , j∓1/2 are the fluctuations in the positive direction that are

entering the cell from the bottom as well as the fluctuations in the negative direction that

are entering the cell from the top cell edge, which require Riemann to be computed on the

horizontal edges. Adding these fluctuations to the current cell value determines the cell

quantity for the next time step. For example, the fluctuations in the streamwise direction can

be calculated by

A +∆Qi−1/2, j =
∑

p:sp
i−1/2, j>0

Z
p
i−1/2, j

A −∆Qi+1/2, j =
∑

p:sp
i−1/2, j<0

Z
p
i+1/2, j (4.37)

The solution Q∗
i is then inserted into the parabolic set of equations as the input value. The

particle diffusivity terms can be integrated by using Crank–Nicolson. Diffusion terms in the

streamwise and transverse directions are given by Dx = ūs∆x/2 and D y = v̄s∆x/2, respectively.

Since v ≪ 0, the particle velocity vs =βx v ≪ 0 is very small, and consequently, D y ≪ 0. There-

fore, we have omitted D y and have implemented only the diffusion term in the streamwise

direction using the Crank-Nicolson method.

The solution of the non-homogeneous hyperbolic subproblem is inserted into the Crank-

Nicolson algorithm as the input parameter, and the output is the updated solution at tn+1
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Figure 4.3: Relationship between characteristic velocities and Froude number. For a better
illustration, β = 0.8 has been used in this plot.

Qn+1
i , j = Q∗

i , j +
∆t

2∆x2

(
Ψ(Q∗

i , j )+Ψ(Qn+1
i , j )

)
(4.38)

where

Ψ(Q) =

[
0,0,0,Dx bi−1, j −2Dx bi , j +Dx bi+1, j ,0

]T

(4.39)

This linear system of equations, Eq. 4.38 is solved at each time step using the SuiteSparse

library (Davis, 2006).

4.4.3 Numerical implementation

The described set of equation is computed within the rectangular domain C , bounded by

0 ≤ x ≤ Λb = 17 m and 0 ≤ y ≤ w = 60 cm. The mesh consists of nx = 255 and ny = 9 cells

along the longitudinal and transversal directions, respectively, each uniformly sized at 0.067 m.

Furthermore, the Courant–Friedrichs–Lewy (CFL) condition has been set at a value of 0.5. The

initial values for h(x, y, t )|t=0, ū(x, y, t )|t=0, v̄(x, y, t )|t=0, and b(x, y, t )|t=0 are set to steady-state

values

h(x, y,0) = hss , ū(x, y,0) = ūss and b(x, y,0) = 〈b〉ss (4.40)

where hss and ūss are the flow depth and depth-averaged velocity being 4.5 cm and 0.56 m/s,

respectively, and 〈b〉ss is calculated from Eq. 4.12 and Eq. 4.13. The initial condition for the

yb(x, y, t )|t=0 is based on Defina’s work. Following Defina, 2003, an intentional perturbation

was introduced along the bed, characterized as follows:

yb(x, y,0) = ϵsin(2πx/Λb)cos(πy/w) (4.41)
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where ϵ denotes the amplitude of perturbation, which is set to 1 cm. It is worth mentioning that

Defina, 2003 showed that the initial disturbance amplitude does not impact the equilibrium

bar characteristics. However, an increase in ϵ decreases the time required to attain equilibrium.

The solver written in Fortran, was compiled via the Intel® Fortran Compiler (version 2021.2.0)

on a Linux 5.15.0-94-generic x86_64 platform and executed on processors of the Intel(R)

Core(TM) i7-7700K CPU @ 4.20 GHz. The real-time to simulation-time ratio is approximately

5, indicating that numerical simulations require roughly four days to simulate T = 17 hours of

real-time for the specified flume geometry and mesh size.

4.5 Experimental dataset

In this section, we describe three steady-state experiments that will be used to evaluate the

accuracy of the numerical simulation. These experiments are performed in a wide gravel-bed

flume under supercritical flow conditions (Dhont, 2017). The high-resolution data collected

during the experiments facilitated the comparison between numerical and experimental

outcomes.

The experiments were executed in a gravel-bed flume with dimensions of 17 m in length and

60 cm in width. Due to technical constraints, the effective operational length of the flume was

14 m, with the last 1.5 m at each end being excluded–due to technical issues. The bed was

composed of natural gravel, was flattened, and initially had a height of 31.5 cm. The sediment

was characterized by d50 = 6 mm, mean diameter of d = 5.5 mm, a standard deviation of 1.2

mm, and a density of ϱs = 2660 kg/m3.

The water discharge and sediment feed rates at the inlet were set to 15 L/s and 2.5, 5, and 7.5

g/s, respectively. Throughout the entire experiment, both the water discharge and sediment

feeding rates were kept constant. Every 10 minutes, bed topography and flow depth were

scanned using a laser detection technique (image processing) and ultrasonic probes (signal

processing), respectively. In Table 4.3, the input parameters of the conducted experiments are

reported, along with the measured values of height Hb , and wavelength Lb of the alternate

bars.

E. 1 E. 2 E. 3
Flow rate (L/s) 15 15 15
Flume slope (%) 1.6 1.6 1.7
Sediment feeding rate (g/s) 2.5 5.0 7.5
Bar height (Hb in cm) 1-5 1-5 1-5
Bar wavelength (Lb in m) 2-8 2-8 2-8

Table 4.3: Experiment’s input parameters and alternate bar characteristics.
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Chapter 4. Stochastic modeling of bedload transport and bar development

4.6 Model prediction

Model examination is a crucial step that involves comparing model predictions with observed

data to assess the accuracy and reliability of the model. In this section, to validate the numeri-

cal simulation, it has been applied to the experimental dataset described in § 4.5. Alongside

the study of bedload transport rates, the high resolution experimental data allowed for an anal-

ysis of bar characteristics, namely i. height, and wavelength of the alternate bars, ii. erosion

and deposition rates of the bed, and iii. alternate bars growth rate.

The model calibration is a primary step when employing hydraulic models. The calibration

can be conducted through the analytical derivation, or it can be accomplished by using

experimental data. The rates of deposition and entrainment were determined using Eq. 4.16,

with the values κ = σ−µ = 5.2 1/s, and µ = 0.85σ = 29.43 1/s. For each of the simulation

runs, the entrainment rate λ̃ was determined by employing both Eq. 4.13 and Eq. 4.14, which

facilitated the calculation of λ̃ = κ/ūs q̄s . In this approach, the experimental data is used for

calibrating the parameter λ̃.

4.6.1 Bedload transport time series

In this section, our main focus will be on evaluating model predictions regarding to bedload

transport. We will achieve this by applying numerical simulations to laboratory experiments.

Bedload transport estimation with sufficient accuracy is crucial as it significantly impacts

the prediction of bed topography and, consequently, the hydraulic conditions. Inaccurate

estimation of hydraulic conditions can lead to erroneous predictions of bedload transport,

creating a problematic feedback loop.

Figure 4.4 displays the bedload transport time series resulting from applying the numer-

ical solver to the three experiments described in § 4.5. River sediment dynamics can be

better understood by using the bedload transport time series alongside with the measured

bed topography. It is especially useful for examining how bedload transport affects hydro-

morphodynamic processes such as hydraulic conditions, river bank development, and bed

erosion and deposition by using joint analysis (Dhont, 2017).

The bedload transport time series fluctuates around a mean value of 2.5 g/s for simulation

run 1, with a variance of 0.75 (g/s)2. Over the entire simulation run period, the coefficient

of variation was 35%. The particle transport fluctuations exceed qs/q̄s = 2.2, whereas the

experiment shows a higher ratio. Dhont and Ancey, 2018 found that around 80% of bedload

pulses are caused by sediment waves sent out by pools due to the destruction of bars at the

downstream slope face of the bars. Therefore, the absence of such high bedload pulses could

be attributed to the omission of the bar failure mechanism in the numerical simulation.

The time-averaged bedload transport is presented in Fig. 4.5 (left), demonstrating that bedload

transport converges to the mean sediment transport after a short time, whereas experiments
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4.6 Model prediction

Figure 4.4: Bedload transport time series by applying the numerical solver to laboratory exper-
iments (E.1 to E.3, respectively). The averaged bedload transport and its variance respectively
are: q̄s = 2.5 g/s, σ2 = 0.75 (g/s)2; and q̄s = 4.9 g/s, σ2 = 1.5 (g/s)2; and q̄s = 7.4 g/s and σ2 = 2.0
(g/s)2.

usually take a few hours to converge to the mean bedload values. The reason may lie in setting

the initial condition of the numerical solver to steady-state values.

Figure 4.5: (left) Time-averaged bedload transport rate: Q̄s(T ) =
∫ T

0 Qs(t )d t/T , converges to
its mean value over the entire simulation time. The dashed lines represent Q̄s ±5%Q̄s , (right)
The probability density function of bedload transport corresponds to three simulation runs.
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Chapter 4. Stochastic modeling of bedload transport and bar development

The probability density function of the bedload transport is plotted in Fig. 4.5 (right), showing

that simulations associated with higher bedload transport have a larger bedload variation. The

reason can be explained as follows: with increased sediment availability and high transport,

particle interactions will increase, resulting in larger fluctuations in sediment movement and

a wider variation in sediment transport rates.

4.6.2 Alternate bar characteristics

Alternate bar wavelength and height

Due to the stochastic nature of the system under investigation, analyzing the characteristics of

alternate bars involves comparing the mean values of bar geometry. Figure 4.6(left) illustrates

the three-dimensional bed topography obtained by applying the numerical solver to experi-

ment 1 at t = 17 hours, indicating that the stochastic bedload model is capable of capturing

bed topography within the same range of variations observed in experiment, as shown in

Fig. 4.6(right).

Figure 4.6: Illustration of the appearance of alternate bars based on (left) simulation and
(right) experiment at t = 17 hours.

Figure 4.7: Top plots of bed topography based on (top) simulation and (bottom) experiment at
t = 17 hours.

The top view of Fig. 4.6 is presented in Fig. 4.7. In both figures, the bars, pools, and flow path
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S. 1 S. 2 S. 3
Bar height (H ′

b in cm) 1.4 2.3 3.4
Bar wavelength (L′

b in m) 8.6 8.6 8.6

Table 4.4: The wavelength and height of alternate bars based on numerical simulation.

are depicted. The numerical simulations successfully reproduce the alternating three bars in

the gravel-bed channel with two pools between them, reflecting experimental observations

through our numerical modeling.

Two longitudinal profiles along the channel and on two transversal sides of the flume have

been considered in order to study the bar geometry. The profiles are positioned 5 cm away

from the upper and lower walls. The sections of the profiles located above the reference line

are called bars. The highest points of the bars relative to the reference line are defined as the

bar heads. The height of the bar is measured from the reference line to the bar head, while the

wavelength of the bar is determined by the distance between two points where the bar profile

intersects the reference line, as illustrated in Fig. 4.8.

According to the simulation results applied to experiment 1, the bar’s length and height are

measured at 8.6 m and 1.4 cm, respectively. The experimental data show that the distribution

of bar heights is bimodal, ranging from 1 to 5 cm, and the lengths of the bars fall between

2 m and 8 m. The computed values from simulations, as reported in Table 4.4, are within

the reported experimental ranges, indicating the model’s ability to predict bar geometry.

Interestingly, similar to the behavior of antidunes studied in Chapter 3, larger alternate bar

geometry corresponds to a higher mean bedload transport rate.

Bar Height

Bar Wavelength

Figure 4.8: Amplitude of the alternate bars along the longitudinal profiles at t = 17 h. Smoothed
plots are depicted by the black lines.
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Bed aggradation and degradation

In this section, the local erosion and deposition of the bed have been studied. These rates are

calculated as follows: Let

δyb = yb(x, y, tn+1)− yb(x, y, tn) (4.42)

The conditional equations to calculate the deposition and erosion rates can be expressed as:

Dep =

δyb if δyb > 0

0 otherwise
Depo. rate =

∑
Dep/T

Ero =

δyb if δyb < 0

0 otherwise
Ero. rate =

∑
Ero/T

Figure 4.9 and Fig. 4.10 present the rates of bed deposition and erosion throughout the entire

simulation and experimental run 1. This highlights that areas of intense aggradation and

degradation extend longitudinally and are alternately positioned on both sides of the channel.

The white areas in Fig. 4.9 indicating the absence of deposition, suggesting locations of

degradation as one can see in Fig. 4.10. In line with experimental findings, these zones of

intense aggradation and degradation are positioned close to the channel walls, either on the

right or the left side, spanning 20-30 cm in width and approximately 8 m in length. Comparing

these simulation findings with results derived from experimental data shows good agreement

in capturing the deposition and erosion rates using numerical simulation.

Figure 4.9: Deposition rate contour plot of (top) simulation and (bottom) experiment, cal-
culated over 17 hours for run 1, shows that alternate bars experience intensive aggradation,
alternately, on either side of the channel.
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Figure 4.10: Erosion rate contour plot of (top) simulation and (bottom) experiment, calculated
over 17 hours for run 1. Pools experience intensive degradation, alternately, on either side of
the channel.

Alternate bars growth rate

The simulation and experimental growth rates of alternate bars have been compared in

Fig. 4.11. The growth rates for all runs, both simulation and experimental, show a sharp

increase initially, followed by a plateau. This suggests that the sediment erosion and deposition

processes are very active at the beginning and then reach a state of equilibrium within the first

few hours as the curves flatten out.

It also shows that the higher the bedload transport rate, the higher the growth rate. For all

three runs, the simulation data follow the experimental trend, indicating that the simulations

could capture the growth rate behavior.

Figure 4.11: Temporal variation of the bed elevation using both simulation and experimental
outputs.
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4.7 Concluding remarks

In this study, the noise-driven nature of bedload movements has attracted our attention.

Therefore, we have developed a two-dimensional stochastic partial differential equation

for bedload transport in the form of advection-diffusion. It is developed based on its one-

dimensional version. To assess the model’s effectiveness in predicting bedload transport and

the features of bed topography, we integrated it with shallow water and Exner equations.

The set of governing equations includes five equations: the depth-averaged conservation

of mass, two depth-averaged conservation equations of momentum for the fluid phase, the

Exner equation for bed continuity, and the bedload stochastic equation providing the number

of active particles. A stability analysis was conducted prior to solving the governing equations.

The creation of alternate bars was considered in the stability analysis, and the influence of

various dimensionless variables on the bars’ appearance was studied. The stability analysis

demonstrates that the unstable domain of our system of equations accurately captures bed

formation, i.e., alternate bars.

Through stability analysis, we have found out that a larger domain of potential wavenumber

in the longitudinal direction is associated with a smaller β and Froude number. Additionally,

as the slope increases, a critical βc restricts the development of alternate bars. This critical βc

decreases with an increase in bed slope, meaning that alternate bars are more likely to form on

gentler slopes. Moreover, we examined the impacts of diffusivity and sediment velocity on the

stability of the bed, and the predictions were in good agreement with experimental data. For

example, we found that diffusivity does not significantly affect the creation of alternate bars.

Additionally, the magnitude of βx,y individually does not significantly impact the unstable

domain, but their ratio has a great impact.

The set of governing equations has been solved by splitting the governing equations into a

parabolic subproblem without considering the source terms and one hyperbolic subproblem

that involves the source terms. The numerical solver was applied to three steady-state experi-

ments conducted in a gravel-bed flume. The main difference among the three experiments is

that they have different sediment feeding rates. These experiments provide high-resolution

measurements of bed topography, enabling us to compare them with the numerical results.

The numerical studies focus on: i. the bedload transport rate; ii. the geometry of alternate

bars (wavelength and height); iii. bed erosion and deposition rates; and iv. the growth rate of

the bed. The simulation results capture bedload transport rate and bed topography with good

accuracy in comparison with the experimental data. The numerical simulations reveal that

the bar formation experiences an exponential growth rate in the initial few hours, followed

by a plateau where no further growth occurs (or with a very small growth rate). In addition,

the numerical simulations reveals that sediment feeding rate notably affect bar geometry.

Consequently, bars tend to be larger and more pronounced under conditions of high sediment

transport, while they become smaller and less distinct during minimal sediment transport

scenarios.
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5.1 Summary of the thesis

As of yet, computational hydraulics models have faced difficulties in predicting the bedload

transport rate with accuracy better than one order of magnitude for a given set of controlling

variables. Consequently, establishing a protocol to determine the required time with sufficient

accuracy for collecting a specific amount of bedload transport has not yet been achieved.

In this thesis, we tried to shed a small light to show the roadmap towards answering this

longstanding question regarding sediment transport and bed topography prediction.

The natural first step towards the estimation of sediment load for a given water discharge is

knowing about bed topography, as it has a strong influence on bedload transport. As in the

numerical simulation, the initial step involves importing the bed topography data (usually

refereed to as Digital Elevation Model–DEM). Therefore, assessing bathymetry is crucial step

for predicting bedload transport. This accounts for a significant challenge, both in scientific

and technological aspects, in river-based research.

Chapter 1 addressed the challenge of estimating bed topography in shallow gravel-bed streams.

The goal was to develop a methodology that allowed for fast inference of bed topography from

velocity fields while maintaining high accuracy, achieved through machine learning modeling.

However, measuring velocity fields for an extensive spatial areas proved impractical. Therefore,

we employed a statistical approach, the Shannon entropy method, to compute velocity fields

using available information. Subsequently, with a substantial amount of data collected, we

implemented a data-driven model for bathymetry inference. We evaluated the effectiveness

of our proposed neural network model for bathymetry estimation by applying it to controlled

flume experiments, numerical simulation, and field data.

Importing the DEM file to computational hydraulics solvers and applying traditional bedload

models often encounter difficulties in predicting bedload transport. Traditional deterministic

bedload models often depend on applying a power law equation to dimensionless experimen-

tal data on logarithmic scales. By using these models in numerical simulations, they encounter
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huge uncertainties in predicting bedload transport. This issue arises due to neglecting the

bedload fluctuations and the fact that minor variation in the Shields number can cause a

significant change in the bedload transport predicted by the traditional power law equations.

For instance, employing the bedload formula proposed by Meyer-Peter and Müller, 1948: If

τ∗ = 0.06 but is calculated with just an error of ϵ = 5×10−3, the resulting predicted bedload

would be 1.6 times greater than the actual one. Such an error ϵ results in an even higher dis-

crepancy as τ∗ decreases. Such high variability in bedload predictions may result in inaccurate

estimations of bedform and hydraulic variables. As a result, the feedback loop mechanism

within the system may further amplify the inaccuracies in bedload transport predictions.

In Chapters 3 and 4, we have developed the numerical model to account for one of today’s

major challenges: considering particle fluctuations in the computational hydraulics model.

To that end, we used a one- and two-dimensional stochastic bedload model for computing

the random time variations in particle activity. This model differs from most current bedload

transport models, in which mean bedload transport rates are related to flow rate deterministi-

cally. The stochastic model was coupled to the one- and two-dimensional Saint-Venant–Exner

equations, respectively, in Chapters 3 and 4.

In Chapters 3 and 4, we studied the bedload transport rate and the development of one- and

two-dimensional bedforms. We compared the resulting criteria with experimental evidence.

We implemented a numerical algorithm based on the Finite Volume Method. We used it to

study antidunes (for the one-dimensional depth-averaged numerical solver) and gravel bar

development (for the two-dimensional depth-averaged numerical solver) in long flumes under

steady-state conditions and compared the numerical simulations with experimental data. The

bed surface was initially flat at the beginning of the simulation, and one small perturbation

was imposed. The numerical simulations could capture the bedload transport rate, stages

of bedform formation, erosion and deposition zones, and its growth rate in agreement with

laboratory experimental data.

5.2 Outcomes

This section provides a summary of the findings from each chapter.

Bed topography inference for shallow flows

In this work, we have inferred the bed topography of gravel bed streams from depth-averaged

velocity fields by leveraging advanced machine learning techniques. Overall, after studying

the basic and hyperparameters, we have found that, considering our problem, the optimal

learning rate is 0.01. Deviating from this value results in a higher validation loss. Additionally,

we found that the implementation of learning rate decay does not aid in improving the model

performance, as evidenced by the validation loss comparison. For nearly all training dataset

sizes, the validation loss with learning rate decay is greater than that with a constant learning
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rate. However, learning rate decay does help in reducing variability around the mean value.

Moreover, we observed that as the dropout rate decreases, the test error tends to converge

towards zero. Therefore, using dropout is not recommended for this study.

The best-trained model achieves accuracy with less than 1% relative error for estimated

bathymetry when applied to the test dataset (laboratory experiments). It shows less than

20% maximum relative error when applied to numerical simulation and a maximum of 31.3%

relative error when applied to field data collected at the confluence of the Kaskaskia River and

Copper Slough. This study shows that the U-net architecture, even with a small dataset, could

properly capture the relationship between input (velocity fields) and output data (bathymetry)

with sufficient accuracy. This model is designed and specialized for gravel-bed flumes and

rivers and is not a one-size-fits-all solution.

One-dimensional computational hydraulics model

In this work, we have implemented a stochastic, one-dimensional, depth-averaged numerical

simulation and applied it to narrow, gravel-bed flume experiments. The numerical outcomes

align with experimental data, showing that antidunes initially form with a long wavelength

and minimal amplitude, then gradually grow in sync with the water surface and consistently

migrate upstream. The growth of antidunes is initially exponential, stabilizing after a period of

transition. As these antidunes move upstream, there’s an increase in sediment transport rate,

resulting in a peak at the crest that is significantly higher than the mean bedload transport rate.

Thus, the dynamics of antidunes are key in determining average sediment transport rates.

Through the analysis of different realizations of a single numerical simulation, we found that

key parameters fluctuate around their mean values–consistent with experimental evidence.

However, the probability density function of the antidunes’ wavelength remained unchanged

after the transient stage, indicating that although temporal variability came to a halt, spatial

variability along the length of the flume persisted.

Moreover, the study showed that the velocity and shape of antidunes’ upstream migration

are more pronounced in conditions of higher bedload transport rates. Additionally, the

relationship between the amplitude and wavelength of the antidunes could not be established

without considering additional parameters. Additionally, this study indicated a relative error

under -258% for bedload transport predictions, with the maximum relative errors for bedform

wavelength and amplitude being -41% and -91.5%, respectively. The substantial error in

predicting form amplitude may arise from difficulties in laboratory measurements or issues

with model calibration.

Two-dimensional computational hydraulics model

After evaluating the predictive capabilities of the one-dimensional depth-averaged compu-

tational hydraulics model, we extended the model to two dimensions. For the first time, a
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stability analysis was performed using our set of governing equations. The influence of various

dimensionless variables on the appearance of bars was thoroughly investigated. The stability

analysis shows that our system’s unstable domain could capture alternate bar formation,

revealing new information about alternate bar formation. For example, a smaller Froude num-

ber and β (half-width-to-depth ratio) associated with a larger wavenumber in the longitudinal

direction. Additionally, as the bed slope increases, the βc decreases and further limits the

unstable zone.

This solver was applied to high-resolution experimental data gathered under steady-state con-

ditions. The numerical solver is used to study bedload transport and alternate bars formation.

The bedform studies involve: i. form geometry; ii. aggradation and degradation in the location

where alternate bars and pools appear; and iii. form growth rate. The numerical simulations

successfully captured the bedload transport rate, bed topography, areas of aggradation and

degradation, and bed form growth rate, consistent with the experimental data.

5.3 Future perspectives

This dissertation focuses on predicting bed topography and bedload transport through var-

ious types of modeling, i.e., data-driven surrogate modeling and computational hydraulic

modeling, though there is considerable scope for further research.

In the context of data-driven surrogate modeling, we suggest leveraging the large datasets

provided by satellite imagery to identify patterns and predict changes in bed topography

using deep learning algorithms. Additionally, deep learning techniques can also be applied to

predict bedload transport. In scenarios where the focus is not on understanding the physical

processes but rather on computational time and prediction accuracy, we can leverage these

techniques. For example, using machine learning models to quickly analyze huge amounts

of meteorological data can provide accurate weather forecast without solving the complex

physical dynamics of weather systems, which may last weeks.

In Chapters 3 and 4, we focused on computational hydraulic modeling in bedload and bed

topography prediction in steady-state flow conditions, but exploring unsteady flows could

yield intriguing results. Additionally, employing stochastic models in a two-dimensional flume

to study various possible realizations opens up possibilities for a deeper understanding of

fluvial systems. Furthermore, the two-dimensional numerical solver is applicable to real-world

rivers and is interesting to use for river forecasting to find out and highlight its limitations.

We incorporate the noise into the numerical modeling as the particle movement through the

fluid is a noise-driven process. The governing equation for such a process is modeled as a

stochastic partial differential equation. It needs to be coupled with the Exner equation to nu-

merically capture the bed topography. This integration considers particle fluctuations, which

are influential at a bulk scale and show a notable response to hydraulic changes. This approach

offers insights beyond traditional bedload models, encompassing aspects like periodicity and
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5.3 Future perspectives

intermittency, which can be related to hydraulic conditions, river bank development, and bed

erosion and deposition by using techniques such as joint analysis.

Finally, it would also be interesting to explore the effectiveness of other probabilistic models,

such as Charru’s and Furbish’s, in predicting morphological changes and to compare them

with the model presented in this dissertation.

5.3.1 Open challenges

In this dissertation, we have targeted the prediction of bed topography and sediment transport.

Nevertheless, numerous interesting challenges remain open for future investigation.

Data-driven surrogate modeling

The use of data-driven surrogate modeling, leveraging advanced machine learning techniques,

has shown promising results in geophysics and hydraulics. The surrogate model acts as ef-

ficient approximations of complex physical processes, enabling the prediction of sediment

transport and changes in riverbed landscapes with a high degree of accuracy. An open chal-

lenge in this regard is to incorporate physical governing equations into machine learning

models by using techniques like physical-informed neural networks.

Computational hydraulic modeling

According to Warburton and Davies, 1994, the current state of bedload transport shows

statistical dependencies on the two preceding time steps. This insight suggests that employing

a second-order Markov process in bedload modeling may enhance prediction accuracy. In the

derivation of Markov process-based models for bedload transport, adopting the Stratonovich

convention is preferable to the Itô convention, because of its better physical interpretation.

The Itô convention is non-anticipative, in contrast to the anticipatory nature of the Stratonovich

convention. In the Stratonovich approach, the integrand is assessed at the midpoint of each

interval, giving it an anticipatory nature. Conversely, the Itô approach assesses the integrand

at the start of each interval, meaning that future increments of the stochastic process do not

impact the current value, making it non-anticipative. Beside that, the acquisition and analysis

of high-resolution bedload transport time series to extract their statistical characteristics are

essential in fine-tuning the proposed bedload model based on Markov processes.

The stochastic bedload model has proven effective in predicting particle transport and bed

formation characteristics with good accuracy when calibrated properly. To calibrate the

collective entrainment rate, there is not much information in the literature–although collective

entrainment occurs less frequently than other processes, it accounts for a significant portion

of bedload transport. It is worth noting that one has to be careful about the terminology
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used to describe collective entrainment. It has caused some confusion, as it may suggest that

multiple particles are simultaneously entrained. However, this is not the case, as the term

simply reflects the fact that the likelihood of entrainment is influenced by the number of

particles in motion.

Given that fluvial systems consist of slow-term processes, it is essential that the numerical

simulation run with greater speed to facilitate long-term simulations. Hence, parallelizing

the solver becomes a critical requirement. Additionally, conducting sensitivity analysis on

the numerical solver is important to understanding how the system of equations responds to

variations in mass exchange rates.

Finally, applying the numerical solvers to real-world riverine environments offers a promising

solution, hopefully to overcome the existing challenges faced by professionals in hydraulic en-

gineering in providing a more accurate flood risk map as recent researches have demonstrated

the significant impact of sediment dynamics and morphological changes on flood risk.

Experimental study

The need to perform more grain-scale experiments to calibrate the proposed bedload model

is greatly felt in this work. The main issue with the proposed parametrization adjusted to

the data in Chapter 3 is the enormous fluctuations in the mean bedload transport rate for

τ∗ < 0.1. Therefore, the determination of the entrainment rate is not accurate enough for

this domain. Improving bedload prediction requires a comprehensive understanding and

modeling of deposition and entrainment processes by performing grain-scale experiments in

a wide range of hydraulic conditions, both in the presence and absence of bed formation.

In Chapter 3, we discussed existing experimental investigations that used braided flumes to

study various realizations by repeating one experiment many times. However, as far as we

know, there has been no experimental research in this regard using narrow or wide gravel-bed

flumes. While it is not unexpected to obtain different realizations by repeating experiments

in narrow gravel-bed systems, whether the same holds true for wide gravel-bed flumes is

less intuitive. Therefore, experimental study in this regard can help in understanding fluvial

systems to a greater degree.

Additionally, addressing the mixed short- and long-term processes involved in the fluvial

system necessitates the implementation of long experiment, facilitating a more detailed

investigation of the critical processes at play.
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A Machine learning model architecture

The neural network consisting a total of 12 layers, with each layer includes activation, upsam-

pling, convolution, batch normalization, and dropout operations. The below table shows the

structure of the U-net used in all of our tests. The network weights were initialized following

He et al., 2015. After conducting some tests, we found out that dropout does not aid learning

by the model, so we do not use it. Instead, we utilize batch normalization. Training was

done using Adam (Kingma & Ba, 2014) with β1,2 = [0.5,0.999], and ϵ = 10−8 parameter values.

Learning rate was kept at a constant value during training. A 0.01 learning rate, and a 100

minibatch size were used in all tests.
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Appendix A. Machine learning model architecture

Table A.1: Deep learning model summary.

Layer (type) Output Shape Function parameters

InputLayer [1, 256, 64]
Conv2-D-1 [16, 128, 32] nout /ni n =2, kernel size 4×4, stride=2, pad=1
BatchNorm2-D-2 [16, 128, 32]
Dropout2-D-3 [16, 128, 32] p = 0, inplace=True
LeakyReLU-4 [16, 128, 32] negative slope=0.2, inplace=True
Conv2-D-5 [16, 64, 16] nout /ni n =2, kernel size 4×4, stride=2, pad=1
BatchNorm2-D-6 [16, 64, 16]
Dropout2-D-7 [16, 64, 16] p = 0, inplace=True
LeakyReLU-8 [16, 64, 16] negative slope=0.2, inplace=True
Conv2-D-9 [32, 32, 8] nout /ni n =4, kernel size 4×4, stride=2, pad=1
BatchNorm2-D-10 [32, 32, 8]
Dropout2-D-11 [32, 32, 8] p = 0, inplace=True
LeakyReLU-12 [32, 32, 8] negative slope=0.2, inplace=True
Conv2-D-13 [64, 16, 4] nout /ni n =8, kernel size 4×4, stride=2, pad=1
BatchNorm2-D-14 [64, 16, 4]
Dropout2-D-15 [64, 16, 4] p = 0, inplace=True
LeakyReLU-16 [64, 16, 4] negative slope=0.2, inplace=True
Conv2-D-17 [64, 8, 2] nout /ni n =8, kernel size 2×2, stride=2, pad=0
BatchNorm2-D-18 [64, 8, 2]
Dropout2-D-19 [64, 8, 2] p = 0, inplace=True
LeakyReLU-20 [64, 8, 2] negative slope=0.2, inplace=True
Conv2-D-21 [64, 4, 1] nout /ni n =8, kernel size 2×2, stride=2, pad=0
BatchNorm2-D-22 [64, 4, 1]
Dropout2-D-23 [64, 4, 1] p = 0, inplace=True
LeakyReLU-24 [64, 4, 1] negative slope=0.2, inplace=True
Upsample-25 [64, 8, 2] scale factor=2, mode=’bilinear’
Conv2-D-26 [64, 8, 2] nout /ni n =8, kernel size 1×1, stride=1, pad=0
BatchNorm2-D-27 [64, 8, 2]
Dropout2-D-28 [64, 8, 2] p = 0, inplace=True
ReLU-29 [64, 8, 2] inplace=True
Upsample-30 [128, 16, 4] scale factor=2, mode=’bilinear’
Conv2-D-31 [64, 16, 4] nout /ni n =8, kernel size 1×1, stride=1, pad=0
BatchNorm2-D-32 [64, 16, 4]
Dropout2-D-33 [64, 16, 4] p = 0, inplace=True
ReLU-34 [64, 16, 4] inplace=True
Upsample-35 [128, 32, 8] scale factor=2, mode=’bilinear’
Conv2-D-36 [32, 32, 8] nout /ni n =4, kernel size 3×3, stride=1, pad=1
BatchNorm2-D-37 [32, 32, 8]
Dropout2-D-38 [32, 32, 8] p = 0, inplace=True
ReLU-39 [32, 32, 8] inplace=True
Upsample-40 [64, 64, 16] scale factor=2, mode=’bilinear’
Conv2-D-41 [16, 64, 16] nout /ni n =2, kernel size 3×3, stride=1, pad=1
BatchNorm2-D-42 [16, 64, 16]
Dropout2-D-43 [16, 64, 16] p = 0, inplace=True
ReLU-44 [16, 64, 16] inplace=True
Upsample-45 [32, 128, 32] scale factor=2, mode=’bilinear’
Conv2-D-46 [16, 128, 32] nout /ni n =2, kernel size 3×3, stride=1, pad=1
BatchNorm2-D-47 [16, 128, 32]
Dropout2-D-48 [16, 128, 32] p = 0, inplace=True
ReLU-49 [16, 128, 32] inplace=True
Upsample-50 [32, 256, 64] scale factor=2, mode=’bilinear’
Conv2-D-51 [1, 256, 64] nout /ni n =1, kernel size 3×3, stride=1, pad=1
Dropout2-D-52 [1, 256, 64] p = 0, inplace=True
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B Sensitivity analysis

In this section, we aim to explore the equivalence between the discrete and continuous

bedload models, as well as the sensitivity of the continuous bedload model’s solution to the

cell size ∆x. The discrete bedload model (Ancey et al., 2015)

∂P

∂t
(n, t ) =

∑
i =1

(ni +1)

(
P (n+ ri+1

i , t )νi +P (n+ r+i , t )σi

)
+P (n+ r−i , t )(λ′

i +µi (ni −1))

+P (n+ ri−1
i , t )νi−1ni−1

−P (n, t )(νi−1ni−1 +λ′
i +µi ni+1 +νi ni +σi ni )

(B.1)

and its continuous version, Eq. 3.13, are solved independently, without any coupling with the

Saint-Venant–Exner equations. Identical parameters are used in both the discrete and contin-

uous formulations: λ′ = 10s−1, µ = 4s−1, σ = 5s−1, and ūs = 2m/s. Further, the approximations

Du = ν∆x2/2 and ν = ūs/∆x are applied.

Figure B.1 shows numerical solutions for Eq. B.1 and Eq. 3.13, detailing the bedload trans-

port time series, the autocorrelation of the number of moving particles time series, and the

probability density function of bedload transport. Figure B.1(a) and Fig. B.1(b) illustrate the

temporal variation in the number of active particles within a central domain cell, compared

with the analytical solution (in red solid line)

〈N〉ss =
λ′

σ−µ (B.2)

Figure B.1(c) and Fig. B.1(d) depict the autocorrelation of the number of moving particles time

series compared with the analytical solution (in black solid line)
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Figure B.1: (left) Simulation of the continuous model, (right) simulation of the discrete model.
Both models are solved numerically using identical parameters: λ′ = 10s−1, µ = 4s−1, σ = 5s−1,
and ūs = 2m/s. The cell size is ∆x = 1 m with λ̃ = λ′/∆x. The approximations Du = ν∆x2/2
and ν = ūs/∆x are applied.

ρ(t ) = exp(−(ν+σ−µ)t ) (B.3)

The probability density function of active particles is depicted in Fig. B.1(e) and Fig. B.1(f). In

steady-state flow conditions with a non-zero collective entrainment rate µ, the distribution

of the number of active particles within the control volume follows a negative binomial
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Figure B.2: A sensitivity analysis was conducted on the mesh size using the continuous bedload
model. Eq. 3.13 was numerically solved for a duration of 500 seconds usingλ′ = 10s−1, µ = 4s−1,
σ = 5s−1, ūs = 2m/s, and λ̃ = λ′/∆x. The approximations Du = ν∆x2/2 and ν = ūs/∆x are
applied.

distribution as

prob(N = n) =

(
q +n −1

q −1

)
pq (1−p)n (B.4)

where q = λ′
µ and p = 1− µ

σ . The numerical results are compared with the negative binomial

distribution (in red solid line) and the gamma distribution, characterized byα = λ′
µ and β = µ

σ−µ
(in red dashed line). The findings demonstrate that the probability density function of active

particles, as determined through both discrete and continuous models, aligns closely with

the analytical solution. Moreover, the specified approximations are validated within the

continuous model to accurately reflect the discrete model solution.

Before integrating the bedload model, Eq. 3.13, with the shallow water and Exner equations,

it is crucial to examine the impact of mesh size ∆x on the solution. To this end, a sensitivity

analysis is conducted. This analysis has been done by solving the continuous stochastic

bedload model with parameters: λ′ = 10s−1, µ = 4s−1, σ = 5s−1, and ūs = 2m/s across a range of

cell lengths ∆x.

The averaged number of active particles is calculated in a central domain cell for various

control volume sizes. The mean and variance of active particles for varying ∆x values are

presented in Fig. B.2 (a) and Fig. B.2 (b), respectively, with the analytical solution, as per

Eq. B.2 (in red line). The results indicate that selecting ∆x < 1 m leads to convergence to the

theoretical value, suggesting the solution for the continuous model becomes independent of

∆x.

121





C Extended Roe solver in one-
dimension

Roe, 1981 proposed a method that involves linearizing a nonlinear hyperbolic system of

equations

∂q

∂t
+ A · ∂q

∂x
= 0,

where A = ∇q f is the Jacobian of the flux function f , and replacing it with the linear system

∂q

∂t
+ Â · ∂q

∂x
= 0,

where the linearized matrix Â that must satisfy a number of properties (continuity, hyperbolic-

ity, and Roe linearization). Roe, 1981 showed that this matrix was defined by integrating the

Jacobian

Â =
∫ 1

0

d f ( f (ξ))

d q
dξ

using the change of variable z = q/
p

h. This method initially applied to the Euler equation was

used for solving the Saint-Venant equations and has been routinely used since then (LeVeque,

2002). It can be easily extended to the Eq. 3.32.

We consider the hyperbolic subproblem ∂t q + ∂x f (q) = 0. We use the same notation as

LeVeque, 2002 did

q =


h

hu

b

yb

 =


q1

q2

q3

q4

 , f (q) =


hu

hu2 + 1
2 g h2

βub

0

 =


q2

(q2)2/q1 + 1
2 g (q1)2

βq2/q1 ×q3

0

 (C.1)

and the corresponding Jacobian matrix may be
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A =


0 1 0 0

−(q2/q1)2 + g q1 2q2/q1 0 0

−β q2

(q1)2 q3 βq3/q1 βq2/q1 0

0 0 0 0

 =


0 1 0 0

−u2 + g h 2u 0 0

−βub
h β b

h βu 0

0 0 0 0

 (C.2)

We use the same change of variable z = q/
p

h as Roe, 1981 did

z =


z1

z2

z3

z4

 =


p

hp
hu

b/
p

h

yb/
p

h

⇒ q(z) =


(z1)2

z1z2

z1z3

z1z4

→ ∂q

∂z
=


2z1 0 0 0

z2 z1 0 0

z3 0 z1 0

z4 0 0 z1

 (C.3)

and by rewriting the flux function f and its Jacobian matrix using this new variable

f (z) =


z1z2

(z2)2 + 1
2 g (z1)4

βz2z3

0

→ A(z) =


z2 z1 0 0

2g (z1)3 2z2 0 0

0 βz3 βz2 0

0 0 0 0

 . (C.4)

We integrate ∂ f /∂z and ∂q/∂z along the path

zp = Z p
i−1 + (Z p

i −Z p
i−1)ζ p = 1, ..,4 (C.5)

where Z j = z(Q j ) for j = i −1, i . Then (zp )′(ζ) = Z p
i −Z p

i−1 is independent of ζ. The integration

of each element of these matrices is from ζ = 0 to ζ = 1. As one can see, all elements in ∂ f /∂z

are linear in ζ except the term in the second row and first column

f (Q i )− f (Q i−1) =
∫ 1

0

d f (z(ζ))

dζ
dζ =

∫ 1

0

d f (z(ζ))

d z
z ′(ζ)dζ =

[∫ 1

0

d f (z(ζ))

d z
dζ

]
(Z i −Z i−1) (C.6)

Q i −Q i−1 =
∫ 1

0

d q(z(ζ))

dζ
dζ =

∫ 1

0

d q(z(ζ))

d z
z ′(ζ)dζ =

[∫ 1

0

d q(z(ζ))

d z
dζ

]
(Z i −Z i−1) (C.7)

Ĉ i−1/2 being
∫ 1

0
d f (z(ζ))

d z dζ and B̂ i−1/2 being
∫ 1

0
d q(z(ζ))

d z dζ, then we have

f (Q i )− f (Q i−1) = Ĉ i−1/2(Z i −Z i−1)

Q i −Q i−1 = B̂ i−1/2(Z i −Z i−1)
(C.8)

Now we can obtain the desired relation by Âi−1/2 = Ĉ i−1/2B̂
−1
i−1/2. Integrating the linear terms
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zp (ζ) yields∫ 1

0
zp (ζ)dζ =

1

2
(Z p

i−1 +Z p
i ) ≡ Z̄ p

∫ 1

0
(z1(ζ))3dζ =

1

4

(
(Z 1

i )4 − (Z 1
i−1)4

Z 1
i −Z 1

i−1

)
=

1

2
(Z 1

i−1 +Z 1
i )× 1

2

[
(Z 1

i−1)2 + (Z 1
i )2

]
= Z̄ 1h̄

(C.9)

where h̄ = 1
2 (hi−1 +hi ). Hence we obtain

B̂ i−1/2 =


2Z̄ 1 0 0 0

Z̄ 2 Z̄ 1 0 0

Z̄ 3 0 Z̄ 1 0

Z̄ 4 0 0 Z̄ 1

 ,Ĉ i−1/2 =


Z̄ 2 Z̄ 1 0 0

2g Z̄ 1h̄ 2Z̄ 2 0 0

0 βZ̄ 3 βZ̄ 2 0

0 0 0 0

 (C.10)

By using of Mathematica, we have

B̂
−1
i−1/2 =


1

2Z̄ 1 0 0 0

− Z̄ 2

2(Z̄ 1)2
1

Z̄ 1 0 0

− Z̄ 3

2(Z̄ 1)2 0 1
Z̄ 1 0

− Z̄ 4

2(Z̄ 1)2 0 0 1
Z̄ 1

 (C.11)

And so

Âi−1/2 = Ĉ i−1/2B̂
−1
i−1/2 =


0 1 0 0

g h̄ − ( Z̄ 2

Z̄ 1 )2 2 Z̄ 2

Z̄ 1 0 0

−β Z̄ 2 Z̄ 3

(Z̄ 1)2 β Z̄ 3

Z̄ 1 β Z̄ 2

Z̄ 1 0

0 0 0 0

 (C.12)

where

Z̄ 2

Z̄ 1
=

1
2 (Z 2

i−1 +Z 2
i )

1
2 (Z 1

i−1 +Z 1
i )

=

√
hi−1ui−1 +

√
hi ui√

hi−1 +
√

hi

= û (C.13)

and

Z̄ 3

Z̄ 1
=

1
2 (Z 3

i−1 +Z 3
i )

1
2 (Z 1

i−1 +Z 1
i )

=

bi−1p
hi−1

+ bip
hi√

hi−1 +
√

hi

=
bi−1

√
hi +bi

√
hi−1

hi−1
√

hi +hi
√

hi−1

=
b̂

ĥ
(C.14)

We can now simplify the Âi−1/2 such as

Âi−1/2 =


0 1 0 0

−û2 + g ĥ 2û 0 0

−β ûb̂
ĥ

β b̂
ĥ

βû 0

0 0 0 0

 (C.15)
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The eigenvalues of Âi−1/2 are
û − ĉ

û + ĉ

βû

0

 (C.16)

where

λ̂1 = û − ĉ, λ̂2 = û + ĉ, λ̂3 =βû, λ̂4 = 0 (C.17)

and four different corresponding eigenvectors

R =



p
g ĥ+

p
ĥû(β−1)

βb̂
p

g
−
p

ĥ(
√

g ĥ−û)(
√

g ĥ−û+ûβ)

βb̂
p

g
1 0

p
ĥ(

√
g ĥ+û−ûβ)

βb̂
p

g

p
ĥ(

√
g ĥ+û)(

√
g ĥ+û−ûβ)

βb̂
p

g
1 0

0 0 1 0

0 0 0 1

 (C.18)

which each row shows an eigenvector. After simplifying we have

r̂ 1 =


1

û − ĉ
g b̂β

ĉ(ĉ+ûβ−û)

0

 , r̂ 2 =


1

û + ĉ
g b̂β

ĉ(ĉ−ûβ+û)

0

 , r̂ 3 =


0

0

1

0

 , r̂ 4 =


0

0

0

1

 (C.19)

where ĉ =
√

g h̄. If we simplify R

R =


1 1 0 0

û − ĉ û + ĉ 0 0
g b̂β

ĉ(ĉ+ûβ−û)
g b̂β

ĉ(ĉ−ûβ+û) 1 0

0 0 0 1

 (C.20)

From Eq. 3.42 we can write

Q i −Q i−1 =α1
i−1/2r̂ 1 +α2

i−1/2r̂ 2 +α3
i−1/2r̂ 3 +α4

i−1/2r̂ 4

≡W 1
i−1/2 +W 2

i−1/2 +W 3
i−1/2 +W 4

i−1/2

(C.21)

The coefficientsαp
i−1/2 are computed by solving this linear system, which can be done explicitly
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by inverting the right eigenvectors matrix R

R−1 =


ĉ+û
2ĉ

−1
2ĉ 0 0

ĉ−û
2ĉ

1
2ĉ 0 0

− b̂g (ĉ2−û2(β−1))β
ĉ2(ĉ+û(β−1))(ĉ+û−ûβ) − b̂g û(−1+β)β

ĉ2(ĉ+û(β−1))(ĉ+û−ûβ) 1 0

0 0 0 1

 (C.22)

where, R−1
31 = −1

2 (R31 +R32)+ û
2ĉ (R32 −R31) and R−1

32 = − 1
2ĉ (R32 −R31), therefore, by multiplying

this by the vector ∆() ≡Q i −Q i−1 gives the vector of α-coefficients, and hence
α1

α2

α3

α4

 = R−1 ×


∆h

∆(hu)

∆b

∆yb

 (C.23)

therefore finally we have

α1 =
(ĉ + û)∆h −∆(hu)

2ĉ

α2 =
(ĉ − û)∆h +∆(hu)

2ĉ

α3 = −1

2
(R31 +R32)∆h + û

2ĉ
(R32 −R31)∆h − 1

2ĉ
(R32 −R31)∆(hu)+∆b

α4 =∆yb

(C.24)

and now the fluctuations using Eq. 3.45 can be computed.
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D Friction source term discretization

The friction term is solved by splitting method by solving

d q

d t
= s f (D.1)

where s f = −τb/ϱ. The implicit discretization method yields q t+1−q t

∆t
= s t+1

f . If we express s t+1
f

using Taylor expansion, we have

s t+1
f = s t

f +
(
∂s f

∂q

)t

∆q +O(∆q2) (D.2)

where ∆q = q t+1 −q t . By simplifying Eq. D.2, one can obtain

q t+1 = q t +∆t
s t

f

1−∆t
(∂s f

∂q

)t (D.3)

which

s f

1−∆t (∂s f /∂q)
=

−τb/ϱ

1−∆t (∂(−τb/ϱ)/∂q)
=

−1
8 f ū|ū|

1+∆t f |ū|/4h
=

− f hū|ū|
8h +2∆t f |ū| (D.4)
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E Derivation of τbx1 and τby1

In order to obtain the linearize shear stresses in Eq. 4.23, we followed Colombini et al., 1987.

One can consider the friction factor as a function of dimensionless water height η and Shields

number θ as

C f = C f (η,θ) = C0 +ϵC1 (E.1)

By expansion of the function and considering the linearized Shields number as θ = θ0 +ϵθ1,

we can obtained the expressions for C0, and C1 as follows

C f = C0 +ϵ
[∂C

∂η
η1 + ∂C

∂θ
θ1

]
(E.2)

By defining CT =
(∂C
∂θ

) θ0
C0

, and CD =
(∂C
∂η

) 1
C0

, and θ′1 := θ1/θ0, one can write them as

C f = C0 +ϵC1 = C0 +ϵ
[
CDη1C0 +CT C0θ

′
1

]
(E.3)

Therefore, C1 = CDη1C0+CT C0θ
′
1. The Shields number as a function of dimensionless numbers

can be expressed as

θ =
C f F r 2

0 (u′2 + v ′2)

(s −1)δ2 (E.4)

Thus in order to linearized the Shields number

θ = θ0 +ϵθ1 =
C0F r 2

0

(s −1)δ2 +ϵ
[ 2C0F r 2

0

(s −1)δ2 u1 +
F r 2

0

(s −1)δ2 C1

]
(E.5)

Therefore θ′1 can be obtained

θ′1 :=
θ1

θ0
= 2u1 +C1/C0 = 2u1 +η1CD +CT θ

′
1 → θ′1 =

2u1

1−CT
+ CD

1−CT
η1 (E.6)
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Appendix E. Derivation of τbx1 and τby1

The aforementioned derivation is going to be used for linearzing the shear stress and calculat-

ing τbx1 and τby1 as follows

τ′bx = τbx0 +ϵτbx1 = C0 +ϵ
[

2C0u1 +CDη1C0 + 2CT C0

1−CT
u1 + CDCT C0

1−CT
η1

]
= C0 +ϵ

[ 2C0

1−CT
u1 + CDC0

1−CT
η1

]
τ′by = τby0 +ϵτby1 = 0+ϵC0v1

(E.7)

Then τbx1 can be simplified as τbx1 = C0s1u1 +C0s2η1 where s1 = 2/(1−CT ), and s2 = CD /(1−
CT ), and τby1 = C0v1.
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F Extended Roe solver in two-
dimension

The nonlinear hyperbolic system of equations can be written in the strong form of

qt + fx +gy = 0 (F.1)

where q, f, and g are vectors on Rm (m = 5 is number of equations) and defined using the

notation used by LeVeque et al., 2002 as

q =


h

hu

hv

b

yb

 =


q1

q2

q3

q4

q5

 (F.2)

The Roe average, an approximation of the exact solution to the Riemann problem, can be

employed to reduce computational time. This section details the derivation of the Roe matrix

for the governing equations. Given that the Riemann problem is inherently one-dimensional, it

is necessary to determine the Roe average for both the longitudinal and transversal directions.

But the derivation for the longitudinal direction is elaborated upon here. By splitting the set of

equation, one can consider the normal direction, i.e., qt + fx = 0 where

q =


h

hu

hv

b

yb

 =


q1

q2

q3

q4

q5

 , f(q) =


hu

hu2 + 1
2 g h2

huv

βub

0

 =


q2

q2
2 /q1 + 1

2 g q2
1

q2q3/q1

βq2q4/q1

0

 (F.3)
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Appendix F. Extended Roe solver in two-dimension

and the corresponding Jacobian matrix is

f′(q) =



0 1 0 0 0

−(q2/q1)2 + g q1 2q2/q1 0 0 0

− q2q3

q2
1

q3/q1 q2/q1 0 0

−β q2q4

q2
1

0 βq4/q1 βq3/q1 0

0 0 0 0 0


=


0 1 0 0 0

g h −u2 2u 0 0 0

−uv v u 0 0

−bβu
h

bβ
h 0 βu 0

0 0 0 0 0

 (F.4)

As a parameter vector we choose z = h−1/2q following similar parameter transformation have

been used by Roe, 1981 for Euler equation, so that

z =


z1

z2

z3

z4

z5

 =



p
hp

hup
hv

b/
p

h

yb/
p

h

⇒ q(z) =


(z1)2

z1z2

z1z3

z1z4

z1z5

→ ∂q

∂z
=


2z1 0 0 0 0

z2 z1 0 0 0

z3 0 z1 0 0

z4 0 0 z1 0

z5 0 0 0 z1

 (F.5)

and by rewriting matrix f using the parameter vector, one can obtain

f(z) =


z1z2

(z2)2 + 1
2 g (z1)4

z2z3

βz2z4

0

→ ∂f

∂z
=


z2 z1 0 0 0

2g z3
1 2z2 0 0 0

0 z3 z2 0 0

0 βz4 0 βz2 0

0 0 0 0 0

 (F.6)

We now integrate along the path

zp = Z p
i−1 + (Z p

i −Z p
i−1)ζ p = 1, ...,5 (F.7)

where Z j = z(Q j ) for j = i −1, i and then integrate each element of these matrices from ζ = 0 to

ζ = 1. As one can see, all elements are linear in ζ except one term

f(Qi )− f(Qi−1) =
∫ 1

0

df(z(ζ))

dζ
dζ =

∫ 1

0

df(z(ζ))

dz
z′(ζ)dζ =

[∫ 1

0

df(z(ζ))

dz
dζ

]
(Zi −Zi−1) (F.8)

Qi −Qi−1 =
∫ 1

0

dq(z(ζ))

dζ
dζ =

∫ 1

0

dq(z(ζ))

dz
z′(ζ)dζ =

[∫ 1

0

dq(z(ζ))

dz
dζ

]
(Zi −Zi−1) (F.9)
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If we simplify the obtained equations, then we have

f(Qi )− f(Qi−1) = Ĉi−1/2(Zi −Zi−1)

Qi −Qi−1 = B̂i−1/2(Zi −Zi−1)
(F.10)

From these we can obtain the desired relation by using Âi−1/2 = Ĉi−1/2B̂
−1
i−1/2. Integrating the

linear terms zp (ζ) yields∫ 1

0
zp (ζ)dζ =

1

2
(Z p

i−1 +Z p
i ) ≡ Z̄ p

∫ 1

0
(z1(ζ))3dζ =

1

4

(
(Z 1

i )4 − (Z 1
i−1)4

Z 1
i −Z 1

i−1

)
=

1

2
(Z 1

i−1 +Z 1
i ).

1

2

[
(Z 1

i−1)2 + (Z 1
i )2

]
= Z̄ 1h̄

(F.11)

where h̄ = 1
2 (hi−1 +hi ). Hence, we obtain

B̂i−1/2 =


2Z̄1 0 0 0 0

Z̄2 Z̄1 0 0 0

Z̄3 0 Z̄1 0 0

Z̄4 0 0 Z̄1 0

Z̄5 0 0 0 Z̄1

 , Ĉi−1/2 =


Z̄2 Z̄1 0 0 0

2g hZ̄1 2Z̄2 0 0 0

0 Z̄3 Z̄2 0 0

0 βZ̄4 0 βZ̄2 0

0 0 0 0 0

 (F.12)

The inverse B̂i−1/2 would be

B̂
−1
i−1/2 =



1
2Z̄1

0 0 0 0

− Z̄2

2Z̄ 2
1

1
Z̄1

0 0 0

− Z̄3

2Z̄ 2
1

0 1
Z̄1

0 0

− Z̄4

2Z̄ 2
1

0 0 1
Z̄1

0

− Z̄5

2Z̄ 2
1

0 0 0 1
Z̄1


(F.13)

And so

Âi−1/2 = Ĉi−1/2B̂
−1
i−1/2 =



0 1 0 0 0

g h̄ − Z̄ 2
2

Z̄ 2
1

2Z̄2

Z̄1
0 0 0

− Z̄2 Z̄3

Z̄ 2
1

Z̄3

Z̄1

Z̄2

Z̄1
0 0

−βZ̄2 Z̄4

Z̄ 2
1

βZ̄4

Z̄1
0 βZ̄2

Z̄1
0

0 0 0 0 0


(F.14)
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Appendix F. Extended Roe solver in two-dimension

where

Z̄ 2

Z̄ 1
=

1
2 (Z 2

i−1 +Z 2
i )

1
2 (Z 1

i−1 +Z 1
i )

=

√
hi−1ui−1 +

√
hi ui√

hi−1 +
√

hi

= û

Z̄ 3

Z̄ 1
=

1
2 (Z 3

i−1 +Z 3
i )

1
2 (Z 1

i−1 +Z 1
i )

=

√
hi−1vi−1 +

√
hi vi√

hi−1 +
√

hi

= v̂

Z̄ 4

Z̄ 1
=

1
2 (Z 4

i−1 +Z 4
i )

1
2 (Z 1

i−1 +Z 1
i )

=

bi−1p
hi−1

+ bip
hi√

hi−1 +
√

hi

=
bi−1

√
hi +bi

√
hi−1

hi−1
√

hi +hi
√

hi−1

=
b̂

ĥ

(F.15)

We can now simplify the Âi−1/2 as following

Âi−1/2 =



0 1 0 0 0

g ĥ − û2 2û 0 0 0

−ûv̂ v̂ û 0 0

−βb̂û

ĥ

βb̂

ĥ
0 βû 0

0 0 0 0 0

 (F.16)

The five different eigenvalues of Âi−1/2 are
û − ĉ

û + ĉ

û

βû

0

 (F.17)

And its five correspondence eigenvectors are

r̂1 =



1

û − ĉ

v̂
g b̂β

ĉ(ĉ+ûβ−û)

0

 , r̂2 =



1

û + ĉ

v̂
g b̂β

ĉ(ĉ−ûβ+û)

0

 , r̂3 =


0

0

1

0

0

 , r̂4 =


0

0

0

1

0

 , r̂5 =


0

0

0

0

1

 (F.18)

where ĉ =
√

g h̄. We define R such as

R =



1 1 0 0 0

û − ĉ û + ĉ 0 0 0

v̂ v̂ 1 0 0
g b̂β

ĉ(ĉ+ûβ−û)
g b̂β

ĉ(ĉ−ûβ+û) 0 1 0

0 0 0 0 1

 (F.19)
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so that each column consist of one eigenvector. According to Eq. 4.34, one can write

fi − fi−1 =ψ1
i−1/2r̂ 1 +ψ2

i−1/2r̂ 2 +ψ3
i−1/2r̂ 3 +ψ4

i−1/2r̂ 4 +ψ5
i−1/2r̂ 5 (F.20)

The coefficientsψp
i−1/2 are computed by solving this linear system, which can be done explicitly

by inverting the matrix of right eigenvectors, R. R−1 is equal to

R−1 =



ĉ+û
2ĉ − 1

2ĉ 0 0 0
ĉ−û
2ĉ

1
2ĉ 0 0 0

−v̂ 0 1 0 0

− b̂βg(ĉ2−(β−1)û2)
ĉ2(ĉ+(β−1)û)(ĉ−βû+û) − b̂(β−1)βg û

ĉ2(ĉ+(β−1)û)(ĉ−βû+û) 0 1 0

0 0 0 0 1

 (F.21)

where, R−1
41 = −1

2 (R41 +R42)+ û
2ĉ (R42 −R41) and R−1

42 = − 1
2ĉ (R42 −R41) therefore, by multiplying

R−1 by the vectors ∆(f) ≡ fi − fi−1, the vector of ψm-coefficients can be computed as
ψ1

ψ2

ψ3

ψ4

ψ5

 = R−1 ×


∆(hu)

∆(hu2 + 1
2 g h2)

∆(huv)

∆(βub)

0

 ,


Λ1

Λ2

Λ3

Λ4

Λ5

 = P−1 ×


∆(hv)

∆(huv)

∆(hv2 + 1
2 g h2)

∆(βvb)

0

 (F.22)

Therefore, finally, we have

ψ1 =
(û + ĉ)∆(hu)−∆(hu2 + 1

2 g h2)

2ĉ

ψ2 =
−(û − ĉ)∆(hu)+∆(hu2 + 1

2 g h2)

2ĉ

ψ3 = −v̂∆(hu)+∆(huv)

ψ4 = − (R41 +R42)

2
∆(hu)+ û

2ĉ
(R42 −R41)∆(hu)− 1

2ĉ
(R42 −R41)∆(hu2 + 1

2
g h2)+∆(βub)

ψ5 = 0

(F.23)

Thus the fluctuations can be calculated using Eq. 4.34.
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