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Abstract 1
A key challenge across many disciplines is to extract meaningful information
from data which is often obscured by noise. These datasets are typically
represented as large matrices. Given the current trend of ever-increasing data
volumes, with datasets growing larger and more complex, it is necessary to
develop matrix inference methodologies which provide us with the tools to deal
with high-dimensional matrices.

This thesis presents a theoretical exploration of high-dimensional matrix
inference problems. The high-dimensional nature of the matrices makes them
amenable to the application of statistical methods in the high-dimensional
limit. We primarily investigate spectral estimators, which are based on the
spectral properties of matrices and constructed using their singular vectors or
eigenvectors. The methodologies employed are rooted in random matrix theory
and statistical physics, alongside results from the high-dimensional limits
of spherical integrals. This approach provides a comprehensive theoretical
framework for understanding matrix inference in the context of large-scale
data.

We begin by studying low-rank estimation problems in the mismatched
setting, where perfect knowledge of the priors for both signal and noise is not
available. In this scenario, we derive the exact analytic expression for the
asymptotic mean squared error (MSE) in the large system size limit for the
particular case of Gaussian priors and additive noise for both symmetric and
non-symmetric signals. Our formulas demonstrate that in the mismatched
case, effective estimation is achievable, and the minimum MSE (MMSE) can
be attained by selecting a non-trivial set of parameters beyond the matched pa-
rameters. Furthermore, we compare the performance of the spectral algorithms
and Approximate Message Passing (AMP) in the mismatched setting.

In the latter part of the thesis, we explore the extensive-rank matrix inference
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2 Abstract

problems using the framework of rotationally invariant estimators (RIEs).
In the symmetric case, we study the asymptotic mutual information and
MMSE of denoising problem under Gaussian noise. Moreover, we extend
RIEs to accommodate rectangular matrices for general rotational invariant
noise matrices. Consequently, we derive the asymptotic MMSE in this setting.
Finally, we investigate a statistical model for matrix factorization, and derive
analytical formulas for the optimal RIE to reconstruct the two matrix factors,
given the noisy observation of their product.

Keywords: Matrix denoising, matrix factorization, Bayesian inference, mis-
matched estimation, rotational invariant estimators, random matrix theory,
spherical integrals, replica method



Résumé 2
Dans de nombreuses disciplines, l’un des défis majeurs consiste à extraire de
l’information souvent obscurcies par le bruit. Ces données sont généralement
représentées sous forme de matrices de grande taille. Compte tenu des tendances
actuelles d’augmentation constante du volume, dimension et complexité de
ces données, il est nécessaire de développer des méthodologies d’inférence
matricielle pour se munir des outils nécessaires afin de traiter ces matrices de
grande dimension.

Cette thèse présente une exploration théorique des problèmes d’inférence
matricielles en haute dimension. La structure de ces matrices permettent
l’application de méthodes statistiques dans la limite de haute dimension. Nous
examinons principalement les estimateurs spectraux, qui reposent sur les pro-
priétés spectrales des matrices et construits à l’aide de leurs vecteurs singuliers
ou de leurs vecteurs propres. Les méthodologies employées s’inscrivent dans
la théorie des matrices aléatoires et la physique statistique, ainsi que dans les
résultats provenant des limites en haute dimension des intégrales sphériques.
Cette approche offre un cadre théorique complet pour comprendre l’inférence
matricielle dans le contexte de données à grande échelle.

Nous commençons par étudier mes problèmes d’estimation de rang faible
dans un cadre non-apparié (ou "mismatch"), où la connaissance parfaite de la
distribution a priori ("prior") du signal et du bruit n’est pas disponible. Dans
ce scénario, nous dérivons l’expression analytique exacte de l’erreur quadratique
moyenne (MSE) asymptotique dans la limite d’un systèmé de grande taille,
dans le cas particulier d’un signal gaussien ainsi que d’un bruit additif pour les
signaux symétriques et non symétriques. Nos formules démontrent que dans le
cas non-apparié, une estimation efficace est réalisable, et l’erreur quadratique
moyenne minimale (MMSE) peut être atteinte en sélectionnant un ensemble
non trivial de paramètres au-delà des paramètres appariés. En outre, nous
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4 Résumé

comparons la performance des algorithmes spectraux et de "l’Approximate
Message Passing" (AMP) dans le cadre non-apparié.

Dans la dernière partie de la thèse, nous explorons les problèmes d’inférence
matricielle de rang extensif en utilisant le cadre des estimateurs rotationnelle-
ment invariants (RIEs). Dans le cas symétrique, nous étudions l’information
mutuelle asymptotique et le "MMSE" du problème de débruitage sous bruit
gaussien. De plus, nous étendons les "RIEs" pour prendre en compte les
matrices rectangulaire pour les matrices de bruit invariantes rotationnelles
générales. Par conséquent, nous dérivons le MMSE asymptotique dans ce cadre.
Enfin, nous étudions un modèle statistique pour la factorisation de matrices et
dérivons des formules analytiques pour le RIE optimal pour reconstruire les
deux facteurs de matrice, étant donné l’observation bruitée de leur produit.

Mots-clés: Débruitage de matrices, factorisation de matrices, inférence bayési-
enne, estimation discordante, estimateurs rotationnellement invariants, théorie
des matrices aléatoires, intégrales sphériques, méthode des répliques
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Introduction 4
Across diverse fields, from finance and biology to image processing and machine
learning, data is frequently represented as large matrices. In genomics, for
instance, gene expression data forms a matrix with genes as rows and different
experimental conditions or samples as columns. Similarly, in financial analytics,
matrices encapsulate stock price movements over time, with rows denoting time
intervals and columns representing individual stock prices. The impact of noise,
inaccuracies, or missing values within these matrices is substantial, affecting
analyses and model performance. The inevitability of noise is a fundamental
reality in data, stemming from various sources like measurement errors, environ-
mental fluctuations, or inherent randomness. Therefore, the ability to remove
or reduce noise while preserving important features or structures within these
matrices is crucial for extracting valuable insights, making informed decisions,
and advancing research and applications across diverse domains.

This thesis is about estimating a signal matrix of interest from its noisy
observation. Instead of considering real datasets, our focus will be on utilizing
random data, within the context of a probabilistic model. While this approach
may diverge from real-world application, it establishes a consistent mathematical
framework and enables the derivation of precise expressions that can yield
practical insights. In its simplest and general form, the problem can be
formulated as follows: Given the data matrix

Y = S +Z

the goal is to recover the hidden signal S, where Z is the noise matrix. We
study this problem in large dimensions. This setting is particularly relevant for
modern applications (as “real” datasets always get larger) and presents a lot of
interesting theoretical challenges.

We analyze this problem under various assumptions/constraints on the
signal and the noise matrices, which can be categorized into two main regimes.
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2 Introduction

One, is the low-rank regime where the rank of the signal is small compared to the
dimension, and the extensive-rank regime in which the rank is comparable to the
dimension (or more precisely grows with the dimension). In the following two
sections, we provide a more comprehensive introduction to the problem in these
two regimes, covering existing literature and outlining the main contributions
of this thesis.

4.1 Low-Rank Matrix Inference

There exist two main models studied in this regime. One is often called as
spiked Wigner model, in which one observes

Y =

√
κ

N
ss⊺ +Z (4.1)

where the "spike" s ∈ RN , s ∼ Ps is the signal and Z = Z⊺ ∈ RN×N is the
noise matrix with i.i.d. Gaussian entries N (0, 1). κ ∈ R+ is the signal-to-noise
ratio (SNR).

The second model is the non-symmetric counterpart of the model above,
called spiked Wishart :

Y =

√
κ

N
st⊺ +Z (4.2)

where s ∈ RN , s ∼ Ps and t ∈ RM , t ∼ Pt are independent, and Z ∈ RN×M

has i.i.d. Gaussian entries.
In both models (4.1), (4.2), the goal is to recover the rank-one signal matrix

(ss⊺ or st⊺) from the observation. We are interested in the regime where
N → ∞ (in model (4.1) it is assumed that N/M → α > 0). In the rest of this
section, we focus on the spiked Wigner model and review the basic notions
of estimation (both information-theoretically and algorithmically), and briefly
mention the extensions to the spiked Wishart model. Moreover, note that for
simplicity we develop the discussion for the rank-one hidden signal, but the
results can be extended to any finite-rank signal (by finite we mean the rank is
fixed while the dimension N tends to infinity).

4.1.1 Bayesian estimation

In Bayesian inference, it is assumed that the prior distribution of the signal
and the channel characteristics (distribution of the noise and SNR) are known
and one estimates the signal by the posterior mean. The posterior distribution
reads:

P (x|Y ) =
Ps(x)e

− 1
2
∥Y −

√
κ
N
xx⊺∥2F∫

dxPs(x)e
− 1

2
∥Y −

√
κ
N
xx⊺∥2F

(4.3)

and the Bayesian estimator is

E[ss⊺|Y ] =

∫
dxxx⊺P (x|Y ) (4.4)



4.1. Low-Rank Matrix Inference 3

The performance of the estimator is evaluated using the average quadratic loss,

1

N2
E
[∥∥ss⊺ − E[ss⊺|Y ]

∥∥2

F

]
where the outer expectation is over the signal s and the noise matrix Z. For this
choice of loss function, the Bayesian estimator E[ss⊺|Y ] is the best estimator
in the sense that it has the minimum mean-squared error (MMSE). Let ŝs⊺(.)
denote an estimator of ss⊺(Y ) given the observation Y . The MMSE is defined
as a function of the SNR parameter as:

MMSEN(κ) := min
ŝs⊺(.)

1

N2
E
[
∥ss⊺ − ŝs⊺(Y )∥2F

]
=

1

N2
E
[∥∥ss⊺ − E[ss⊺|Y ]

∥∥2

F

]
(4.5)

The Bayes optimal estimator not only establishes a fundamental benchmark
but also acts as a lower bound for the mean-square error of any estimator,
including those produced by algorithms. In practical scenarios, computing the
MMSE presents challenges due to the typical inaccessibility of true prior and
likelihood distributions. However, when dealing with fully-specified models,
it becomes viable to determine this universal lower bound and assess the
performance of existing algorithms in comparison. The evaluation of MMSE
involves two crucial steps: firstly, computing the normalization factor of the
posterior distribution in (4.3), and secondly, determining the posterior mean as
expressed in (4.4). Both of these steps entail the computation of N -dimensional
integrals, which becomes intractable for large values of N .

Yet, as presented in the next subsection, there exists a connection between
MMSE and the mutual information between the signal and the observation.
Given the close connection between mutual information and the free energy
in statistical mechanics, tools developed through extensive research on large
disordered systems, can be leveraged to compute the mutual information (and
consequently the MMSE) in high-dimensional regimes.

4.1.2 Mutual information

The mutual information is one of the central quantities in information theory
that can be interpreted as a quantification of the "shared information" between
two random variables. Let X and Y be two random variables with joint
distribution PX,Y and marginal distributions PX , PY . The mutual information
between X, Y is defined as:

I(X;Y ) := E
[
ln

PX,Y (X, Y )

PX(X)PY (Y )

]
(4.6)

I-MMSE relation

As mentioned before, from the estimation perspective, the importance of the
mutual information comes from its connection to the MMSE. The I-MMSE
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relation [1] is the formula that connects the derivative of the mutual information
to the MMSE, where the derivative is taken with respect to the SNR. In the
simplest case a scalar random variable S observed through Gaussian channel
Y =

√
κS + Z where Z ∼ N (0, 1), then the I-MMSE relation states:

∂

∂κ
I(S;Y ) =

1

2
MMSE(κ)

where here the MMSE is defined for the scalar inference as MMSE(κ) =

E
[(
S − E[S|Y ]

)2].
The I-MMSE relation for the spiked Wigner model reads:

∂

∂κ

I(s;Y )

N
=

1

2
MMSE(κ) (4.7)

The I-MMSE relation (4.7) allows us to explore the fundamental limits of an
estimation problem by examining the mutual information between observations
and the signal. In particular, the behavior of mutual information can be ana-
lyzed asymptotically to determine the MMSE in high-dimensional regime. This
involves computing the limit of the normalized mutual information, followed
by finding the derivative of this limit using (4.7), which ultimately yields the
asymptotic MMSE.

Using the law of total probability P (Y ) =
∫
P (Y |x)Ps(x) dx, and P (Y |s) =

P (s,Y )/Ps(s), from the definition (4.6), the normalized mutual information for
the spiked Wigner model reads:

1

N
I(s;Y ) = − 1

N
E
[
ln

∫
P (Y |x)Ps(x) dx

]
+

1

N
E
[
lnP (Y |s)

]
(4.8)

The second term can be written as:

1

N
E
[
lnP (Y |s)

]
=

1

N
E
[
ln

1

(2π)
N(N+1)

4

∏
1≤i≤j≤N

e−
1
2

(
Yij−

√
κsisj

)2]
= −N + 1

4
ln 2π − 1

2N

∑
1≤i≤j≤N

E[Z2
ij]

= −N + 1

4
ln 2π − N + 1

4

(4.9)

Therefore, computing the normalized mutual information reduces to computing
the first term in (4.8), which is the normalized expected logarithm of the
normalization factor of the posterior (4.3).

It turns out that the first term in (4.8) has the form of a central quantity
in statistical physics, called Free Energy. For physical systems analyzed in
statistical mechanics, computing this quantity leads to studying the properties
of that system. Therefore, computing the free energy has been a central focus
in this field and various approaches have been proposed. For a more thorough
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introduction of statistical physics and connections to inference problems, we
refer the reader to [2].

Due to this close connection between estimation and statistical mechanics,
several methods developed originally in statistical physics have been used
to analyze estimation problems. These methods not only lead to optimal
algorithms, but they also provide heuristic formulas for mutual information
and MMSE that can be proved rigorously.

The Replica method stands out as a highly influential technique rooted in
statistical physics [3, 4], particularly in its application to spiked models. In the
case of spiked models with a factorized prior on the signal Ps(s) =

∏N
i=1 Ps(si)

(and similarly for t in the Wishart case), the Replica method was employed to
derive the asymptotic mutual information and MMSE in a study by [5]. These
expressions had been rigorously obtained earlier for binary signals using the
Guerra-Toninelli interpolation method [6] in the work of [7]. Subsequently, [8]
delved into the problem extensively for general signals, utilizing Approximate
Message Passing (AMP) and spatial coupling. Additional contributions include
[9, 10], which applied Guerra-Toninelli interpolation and Aizenman-Sims-Starr
methods, and [11,12], which introduced the adaptive interpolation method to
rigorously establish the limiting expressions of mutual information and MMSE.

4.1.3 Algorithms

There are various algorithms proposed to reconstruct the hidden low-rank signal
matrix. In this section, we discuss two main algorithms spectral algorithms
and Approximate Message Passing (AMP).

Spectral estimators

Spectral estimators reconstruct the signal using eigenvectors (or singular vectors)
of the observation matrix. These estimators are based on the celebrated results
from random matrix theory. Specifically, when the SNR κ is sufficiently high,
the top eigenvalue and its corresponding eigenvector (or the top singular value
and singular vector) will be correlated with the hidden rank-one signal.

For the spiked Wigner model, using heuristic replica method it was noticed
in [13] that there exists a critical value of the SNR κ, beyond which the largest
eigenvalue of Y/

√
N escapes from the Wigner semi-circle bulk. This was later

proved rigorously in [14, 15]. The same phenomenon for the Wishart model
was proved in [16]. In [17,18], it was shown that the correlation between the
top eigenvector (or singular vector) and the signal, also undergoes a phase
transition at the same threshold.

Consider the spiked Wigner model with prior such that EPs

[
∥s∥2

]
= N ,

and let λ1 be the top eigenvalue of Y/
√
N in (4.1) and y1 be the eigenvector
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associated to it. Then, almost surely (a.s.) we have

λ1
N→∞−−−→

{
2 if κ ≤ 1√
κ+ 1√

κ
if κ ≥ 1

,
1

N
(s⊺y1)

2 N→∞−−−→
{
0 if κ ≤ 1

1− 1
κ

if κ ≥ 1
(4.10)

An analogous statement for the spiked Wishart model is proven in [18]. Using
these results one can estimate the hidden signal with y1y

⊺
1 (with possible

rescaling). A similar phase transition of the eigenvalues/eigenvectors (or
singular values/vectors) is proved for the general case of rotational invariant
noise matrices in [17, 18]. Moreover, the non-symmetric low-rank matrix
estimation under Gaussian noise in the regime with diverging aspect-ratio of
matrices (N/M → ∞ or N/M → 0) was studied in [19].

While these findings offer a precise understanding of the performance of the
top eigenvectors (or top singular vectors) in recovering low-rank signals, these
naive spectral estimators do not take into account the prior distribution or
constraints on the signal. Therefore, depending on the prior, these estimators
are not necessarily optimal.

Approximate Message Passing (AMP)

AMP algorithms are iterative algorithms that try to maximize the posterior
distribution or to achieve the Bayes optimal estimator E[S|Y ]. These algo-
rithms are "approximation" of belief propagation [20] for estimation problems
characterized by densely connected graphical representations. AMP originally
proposed for compressed sensing [21], has been applied to low-rank matrix
estimation in [22–24]. It has also been extended to general rotational invariant
noise matrix in [25,26].

A key property of AMP is that, in the high-dimensional regime, its perfor-
mance can be tracked by a set of equations called State Evolution (SE) [27].
Interestingly, for the majority of cases involving a factorized prior on the signal
Ps, AMP achieves the MMSE (in the high-dimensional setting). However, AMP
requires the full knowledge of the prior and channel characteristics.

4.1.4 Mismatched inference

The Bayesian estimation framework typically relies on the assumption that the
statistician has complete knowledge of the priors for both the signal and the
noise. However, this assumption often does not hold true in practice. In the
mismatched inference, a common approach is to assume a conventional prior
(such as a Gaussian distribution) and attempt to recover the signal through
Bayesian methods by calculating the posterior mean. The first part of this
thesis focuses on this issue for both symmetric and non-symmetric cases.

Mismatched estimation in the symmetric case has been explored with
Gaussian noise assumptions in works like [28, 29], as well as in [30], which
considers scenarios where the noise is incorrectly presumed to be Gaussian.
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Subsequently, the problem has been rigorously analyzed for separable priors on
the signal and noise by [31]. The non-symmetric case has been examined in
further studies by [32,33], expanding our understanding of the problem.

4.2 Extensive-Rank Matrix Inference

In this regime, the rank of the signal matrix S increases with the dimension,
resulting in the following observation model:

Y =
√
κS +Z, (4.11)

where Y is the observed data matrix, S is the true signal matrix, and Z
represents the noise. We refer to this model as denoising problem.

For the symmetric case, S,Z are symmetric N×N matrices, and in the non-
symmetric case, the signal and noise matrices are rectangular with dimensions
N ×M . The aspect ratio of these matrices converges to a constant α > 0
as N → ∞. Note that we assume that the entries of S,Z are of the order
O(1/

√
N), so that the eigenvalues (singular values) are of the order O(1).

This model can be seen as a generalization of the models (4.1), (4.2) as
follows: For the symmetric case, the spectral decomposition of S is given by:

S =
R∑
i=1

λisis
⊺
i ,

where λi are the eigenvalues and si ∈ RN are the corresponding eigenvectors of
S. For the non-symmetric case, the decomposition is:

S =
R∑
i=1

γis
(l)
i s

(r)
i

⊺
,

where γi are the singular values, s(l)i ∈ RN are the left singular vectors, and
s
(r)
i ∈ RM are the right singular vectors.

In both scenarios, the rank R of the signal matrix S grows with the
dimension N , capturing the extensive-rank nature of the signal.

Similar to the low-rank case, the posterior mean estimator E[S|Y ] is Bayes-
optimal and attains the MMSE:

MMSEN(κ) :=
1

N
E
[
∥S − E[S|Y ]∥2F

]
. (4.12)

Nevertheless, it is important to note that evaluating the N2-dimensional integral
inherent in this MMSE calculation is considerably more complex than in the
low-rank scenario and generally infeasible in practice.

Furthermore, due to the intricate nature of the problem, computing the
asymptotic mutual information is also formidable since conventional techniques
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such as the replica method may yield incorrect results. Consequently, re-
searchers have focused on addressing extensive-rank problems within specific
constrained classes of priors, or by imposing some internal structural on the
signal matrix.

Matrix denoising problem (4.11) is intimately connected to the more involved
problem of matrix factorization, where one must estimate two matrices S ∈
RN×K and T ∈ RM×K given the observation:

Y =
√
κST +Z, (4.13)

Many problems in signal processing and learning can be formulated as matrix
factorization, for example sparse coding [34,35], blind source separation [36],
robust principal component analysis [37], interpretations of patterns in images
[38] or also in genomics data [39].

The extensive-rank matrix factorization problem, considering matrices S
and T with i.id. entries, has been previously studied via the application
of the replica method coupled with generic priors and output channels, as
explored in [40]. Furthermore, algorithms leveraging AMP have been proposed
to tackle the factorization challenge in a series of papers [40–42]. However,
recent critical evaluation by [43] highlights that earlier derivations led to
only approximate solutions, which fall short of exactness in the limit due
to oversimplification in the calculations. Consequently, the proposed AMP
algorithms are (theoretically) sub-optimal, despite their practical efficiency as
evidenced in certain applications [44].

In the work by Maillard et al. [43], the factorization problem is revisited
with an improved methodology, employing high-temperature expansions with
fixed order parameters to refine prior analytical efforts [40]. This approach
aims to address and correct the inaccuracies contained within earlier work.
Separately, [45] have introduced an innovative method that integrates the
replica approach with elements of random matrix theory—termed the spectral
replica method—to address the same issue. Their work leads to the derivation
of variational formulas for the mutual information. However, it is important to
note that while these developments offer significant theoretical insights into
the factorization problem, neither provides a direct explicit algorithm for the
problem.

A rather simpler model is the symmetric factorization model, in which one
observes a corrupted version of the matrix S = XX⊺, with X having i.i.d.
entries drawn from a prior Px. The observed matrix Y =

√
κXX⊤ +Z tasks

researchers with two main challenges. The first is the denoising task, which seeks
to reconstruct the product XX⊺. This challenge has been explored in [43,45],
where variational formulas for the mutual information are derived. However,
these advancements do not yield a practical algorithm for denoising, with the
exception of the Gaussian prior case discussed in [43]. The second and more
complex challenge is the factorization task, aiming to recover the matrix X.
Notably, recovery in this context is achievable only up to a permutation of the
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columns of X. Despite various attempts, there is currently no analytical study
providing insights into the mutual information or the MMSE for factorization.
On the algorithmic front, a decimation scheme based on the AMP algorithm
has been proposed in [46,47], but this method lacks computational efficiency
and its claim to optimality remains conjectural.

Recently, a new version of the (non-rigorous) replica method is used to
derive the asymptotic mutual information for the symmetric factorization
problem in the sub-linear growth regime in [48]. More precisely, the signal has
the form S = XX⊺ with X ∈ Rn×M for M = N1−ϵ, ϵ > 0. Interestingly, the
final result coincides with the asymptotic mutual information of the rank-one
case. Moreover, a decimation algorithm inspired by [46] is proposed which is
conjectured to be optimal.

Given the challenging nature of matrix denoising and factorization tasks
when dealing with large matrices drawn from factorized priors, researchers
have shifted their focus toward a class of priors termed as rotationally invari-
ant. These priors often facilitate the resolution of high-rank matrix inference
problems, as they lead to models that are more amenable to analytical and
computational solutions. The second part of this thesis delves into matrix
inference problems with a particular emphasis on rotationally invariant priors,
exploring their theoretical framework and practical implications in the context
of matrix denoising and factorization.

To proceed, let us introduce rotationally invariant priors. A symmetric
matrix S ∈ RN×N is said to be distributed according to a rotational invariant
prior if for any orthogonal matrix O ∈ RN×N , the following holds:

PA(A) = PA(OAO⊺). (4.14)

Likewise, a non-symmetric matrix A ∈ RN×M is said to be distributed according
to a bi-rotational invariant prior if for any pair of orthogonal matrices U ∈
RN×N ,V ∈ RM×M , we have:

PA(A) = PA(UAV ⊺). (4.15)

Note that matrices with i.i.d. Gaussian entries are encompassed within this
category for both symmetric and non-symmetric cases.

4.2.1 Rotationally Invariant Estimators (RIEs)

Rotationally Invariant Estimators (RIEs) refer to a class of estimators that
are constructed from the observation matrix by modifying its eigenvalues (or
singular values) while keeping its eigenvectors (or singular vectors) unchanged.

These estimators have been studied for covariance matrix estimation in [49–
52]. They have been employed in matrix denoising, see [53] for the symmetric
case, and [54,55] for the non-symmetric case. Furthermore, their application
in extensive-rank matrix factorization is explored [56], which constitues the
content of the chapter 11 of this thesis.
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To illustrate the mechanism of RIEs, let us explain their application in
symmetric matrix denoising, as investigated by [53]. In the symmetric scenario
where S = S⊺ and Z = Z⊺, consider the eigenvalue decomposition of Y to be
Y =

∑N
k=1 λ

Y
k yky

⊺
k. Accordingly, a RIE for the signal matrix S is constructed

as:

ΞS(Y ) =
N∑
k=1

ξkyky
⊺
k (4.16)

Given this structure, for any orthogonal matrix O ∈ RN×N we have:

ΞS(OY O⊺) = OΞS(Y )O⊺ (4.17)

justifying the term rotational invariant. Indeed, one can show that any estimator
with property (4.17) has the same construction given in (4.16). Therefore, both
equations (4.16), (4.17) can serve as the definition for the RIE.

The goal is to minimize the squared error between the true signal matrix S
and the estimator, which leads to the optimal eigenvalues ξ∗k being the solutions
to the optimization problem:

min
ξ1,...,ξN

∥∥S −ΞS(Y )
∥∥2

F
,

Expanding the error term using (4.16), we find:

∥S −ΞS(Y )∥2F =
∥∥S∥∥2

F
+
∥∥ΞS(Y )

∥∥2

F
− 2TrSΞS(Y )

=
∥∥S∥∥2

F
+

N∑
k=1

ξ2k − 2
N∑
k=1

ξky
⊺
kSyk

which yields the following equation for the optimal eigenvalues:

ξ∗k = y⊺
kSyk, for 1 ≤ k ≤ N (4.18)

Determining these optimal eigenvalues is challenging since they depend on
knowledge of the signal matrix.

In the linear-growth regime, for a rotationally invariant distributed noise
matrix PZ(Z) = PZ(OZO⊺), Bun et al. [53] leveraged the replica method to
derive an explicit formula for calculating the optimal eigenvalues in the large
dimension limit. Although the derivation is based on the non-rigorous replica
method, it leads to an algorithm that performs well in practice. Remarkably,
this explicit formula does not require any prior knowledge on the signal matrix
S, and involves transforms of spectral measures of the noise matrix and the
observation.

Assuming that S is distributed according to a rotational invariant prior, we
can see that the Bayes-optimal estimator E

[
S|Y

]
satisfies the property (4.17).

The posterior mean estimator can be written as:

E[S|Y ] =

∫
dX PS(X)Xe−

N
4

∥∥Y −
√
κX

∥∥2

F∫
dX PS(X)e−

N
4

∥∥Y −
√
κX

∥∥2

F

.
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By rotation invariance of PS(X) under any orthogonal transformation X →
OXO⊺ with Jacobian |detO| = 1 we have

E[S|OY O⊺] =

∫
dX PS(X)Xe−

N
4

∥∥OY O⊺−
√
κX

∥∥2

F∫
dX PS(X)e−

N
4

∥∥OY O⊺−
√
κX

∥∥2

F

=

∫
dX PS(X)OXO⊺e−

N
4

∥∥OY O⊺−
√
κOXO⊺

∥∥2

F∫
dX PS(X)e−

N
4

∥∥OY O⊺−
√
κOXO⊺

∥∥2

F

= O
{∫

dX PS(X)Xe−
N
4

∥∥Y −
√
κX

∥∥2

F∫
dX PS(X)e−

N
4

∥∥Y −
√
κX

∥∥2

F

}
O⊺

= OE[S|Y ]O⊺.

Therefore, the posterior mean estimator is a RIE.
The RIE constructed with optimal eigenvalues (4.18) has the minimum

MSE among the RIE class. Moreover, the posterior mean estimator achieves the
MMSE and is inside the RIE class. Therefore, we conclude that for rotational
invariant prior on the signal, the optimal RIE is Bayes-optimal. Using this fact,
we can access the MMSE by computing the MSE of the optimal RIE.

4.3 Main Contributions and Organization

The thesis is divided into two main parts. The first part concerns mismatched
low-rank estimation problem, and the second part studies extensive-rank matrix
inference problems. The next two chapters introduce tools from random matrix
theory and spherical integrals which constitute an integral part of the methods
and results derived in the thesis.

Chapter 5 provides an in-depth yet not exhaustive exploration of random
matrix theory and the various analytical methods used to study the asymptotic
behavior of large random matrices. The analyses carried out in this chapter,
under a broadly applicable model of random matrices, will be consistently
referenced in subsequent sections. Moreover, we give a brief introduction to
Voiculescu’s free probability theory which was originally proposed to understand
a special class of von Neumann algebras through the concept of freeness [57].
Two matrices A and B are considered to be mutually free if their sets of
eigenbases are related through a random rotation, meaning that the eigenvectors
of A and B are effectively orthogonal with high probability. The discovery by
Voiculescu [58] that random matrices could asymptotically exhibit freeness has
had a profound impact on random matrix theory. Furthermore, we introduce the
concepts of Free entropy and Free Fisher information, which are the analogues
of Shannon entropy and Fisher information, respectively. The chapter concludes
with a discussion of the replica method, which is used to compute the resolvent
of a large class of random matrices, and leads to optimal RIEs.
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In chapter 6, we introduce the spherical integrals and discuss their asymp-
totic limit. For two symmetric matrices A,B ∈ RN×N , the spherical integral
is defined as:

IN(A,B) =
〈
exp

{N
2
TrAUBU ⊺

}〉
U

where the average is w.r.t. the Haar measure over the group of (real) orthogonal
N × N matrices. The spherical integrals can also be defined w.r.t. the
unitary or symplectic group. These integrals are often referred to as Harish
Chandra-Itzykson-Zuber (HCIZ) integrals in mathematical physics literature.
The study of these objects dates back to the work of mathematician Harish
Chandra [59] and they have since been extensively studied and developed in
both physics and mathematics [60–64]. We review the asymptotics of these
integrals, both symmetric and rectangular, in low-rank and high-rank regimes.
These theoretical results are applied to derive the limiting mutual information
in inference models and to find explicit formulas for RIEs.

Part I - Low-rank mismatched inference

In chapter 7, we look at the mismatched low-rank matrix estimation in the
symmetric case. We consider the spiked-Wigner model (4.1) where s ∈ RN has
i.i.d. elements distributed according to a true prior Ps and the noise matrix
has i.i.d. Gaussian entries. The statistician, unaware of the prior and the
channel properties, assumes a Gaussian prior for the signal and an incorrect
SNR, κ′. Using a Bayesian estimation approach, he/she attempts to construct
the posterior mean estimator to recover the signal. We are interested in the
asymptotic MSE of the estimation with mismatched parameters. To this end,
we first prove a formula relating the free energy of the system to the mismatched
MSE, as stated in lemma 7.1. This formula generalizes the I-MMSE relation
(4.7) to the mismatched setting, and we refer to it as the f-MSE relation.
We derive the asymptotic free energy of the mismatched estimation for two
cases of true priors, Gaussian prior (with mismatched variance) in Theorem
7.4 and Bernoulli prior in Theorem 7.6. These derivations utilize results on
high-dimensional limits of spherical integrals and the integrals are evaluated
carefully using Laplace method. Subsequently, we compute the asymptotic
mismatched MSE using the f-MSE relation, see Theorems 7.1, 7.3. Additionally,
we explore the performance of the AMP and spectral estimators in this context.

In chapter 8, we extend the analysis from chapter 7 to the non-symmetric
case. We adapt the spiked-Wishart model (4.2) with s ∈ RN , t ∈ RM having
i.i.d. elements from Ps, Pt. The statistician assumes Gaussian priors for both t
and s and an incorrect SNR. With this framework, we show a similar f-MSE
relation in the non-symmetric scenario, lemma 8.1. For the case where the true
priors are Gaussian (but statistician assumes a mismatched variance), we derive
the asymptotic free energy, see Statement 8.2, from which we can compute the
asymptotic mismatched MSE.
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Part II - Extensive-rank inference

In chapter 9, we investigate symmetric extensive-rank matrix denoising prob-
lem, focusing on the denoising model (4.11) with S = S⊺ ∈ RN×N distributed
according to a rotationally invariant prior. For the linear-rank growth with
Gaussian noise matrix, we prove in Theorem 9.1 that the asymptotic mutual
information is linked to the asymptotic log-spherical integrals. Moreover, using
the Bayes-optimality of the RIE, we find the asymptotic MMSE in terms of
the limiting spectral measure of the observation matrix in Theorem 9.2. Then,
using I-MMSE relation and basic results from free probability, we integrate the
MMSE and find an explicit expression for the asymptotic mutual information
(Theorem 9.3). Given the relation between the asymptotic mutual information
and the spherical integrals, the explicit formula for the asymptotic mutual
information can serve as an explicit formula for the asymptotic log-spherical
integral in a special case. An interesting issue is whether the known information
theoretic phase transitions for rank-one, and also sub-linear-rank [48], still
persist in linear-rank. Our analysis suggests that only a smoothed-out trace
of the transitions persists. In the sub-linear growth regime, we propose an
optimal RIE for the general rotation invariant noise matrices. We compute the
asymptotic MSE of this sub-linear RIE and show that it matches the rigorously
derived MMSE for the particular case of Gaussian noise in [65].

In chapter 10, we study the extensive-rank denoising problem with non-
symmetric matrices. We consider the model (4.11) with S,Z ∈ RN×M and
Z is a general bi-rotational invariant noise matrix. We propose rectangular
RIE which extends RIEs to accommodate rectangular matrices. Utilizing the
replica method, we derive an explicit RIE formula (see eq. (10.5)), which we
conjecture to be optimal for general bi-rotationally invariant noise matrices.
For the particular case of Gaussian noise, we prove a trace relation in Theorem
10.3, that strongly supports the proposed RIE’s optimality. Analogous to the
symmetric case, if the signal S is also bi-rotationally invariant distributed, the
optimal RIE is Bayes-optimal and its asymptotic MSE equals the asymptotic
MMSE. We derive the asymptotic MMSE under Gaussian noise in terms of
the limiting singular value distribution of the observation in Statement 10.4.
Furthermore, by independent methods we show that the asymptotic mutual
information between signal and the observation is linked to the asymptotic
log-spherical integral, see Theorem 10.5.

In chapter 11, we tackle the extensive-rank matrix factorization problem
(4.13). We study this problem under the assumption that S ∈ RN×N is a
symmetric matrix from a rotational invariant ensemble and both T ,Z ∈ RN×M

are distributed according to bi-rotational invariant priors. The goal is to
reconstruct both factors S,T separately, given the observation Y =

√
κST +Z.

Under the rotational invariant assumption of the priors, we show that the RIE
is Bayes-optimal to recover the factors. Using the replica method, we derive
analytical formulas for two RIEs which reconstruct S and T separately given
the knowledge of the priors and the observation matrix.
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This thesis is concluded by chapter 12 where we summarize its findings
and present possible research directions.



Random Matrix Theory:
Overview and Analytical
Tools 5
This chapter serves as a review of key principles and ideas from random matrix
theory, which are crucial for the rest of the thesis. While it does not aim to be
an exhaustive overview of the field, it presents a brief introduction to the core
concepts and findings necessary for understanding the following chapters. For
a comprehensive study of random matrix theory, we direct the reader to [66]
for a mathematical perspective, and to [67] by Potters and Bouchaud for an
approach from the physics standpoint.

The study of random matrices originated with Wishart’s work [68] in 1928,
focusing on the distribution of empirical covariance matrices. This early research
eventually led to the development of the Marčenko-Pastur distribution [69].
In the 1950s, Wigner introduced random matrix theory as a statistical model
for the energy levels in heavy nuclei [70], which contributed to the emergence
of the Wigner semi-circle distribution. random matrix theory, initially rooted
in physical and statistical contexts, has evolved into a dynamic field of study,
yielding numerous significant findings in recent decades. This chapter will focus
on the aspects of random matrices relevant to statistical inference, excluding
some topics. While, the discussion will be focused on square, symmetric
matrices, we also present the tools required to study non-symmetric matrices.

We begin this chapter with an introduction to probability transforms that
will be used later on.

5.1 Large Random Matrices and their Spectral
Distribution

In random matrix theory, it is common to consider matrices of infinite dimension
for theoretical analysis. However, in practice, we deal with large matrices of

15
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finite dimension N . This leads to an intriguing aspect, that as we approach the
limit N → ∞, we find that this theoretical model provides remarkably accurate
approximations for the properties of large, but finite-dimensional matrices.
Specifically, it is a well-established fact that the probability distributions
reflecting the fluctuations of large-scale observables often approach certain
stable laws as the size increases. Therefore, we anticipate that the statistical
characteristics of a random matrix A with dimension N (like its eigenvalue
distribution) will exhibit a predictable or self-averaging behavior as N increases.
This tendency towards deterministic behavior in the infinite dimension limit
becomes a crucial tool for characterizing the matrix, assuming it is sufficiently
large. Consequently, our focus will be on the N → ∞ limit in the following.

In this thesis the focus is on rotational invariant ensemble. As defined in
previous chapter a symmetric real matrix A ∈ RN×N is said to be rotationally
invariant if the probability is invariant under an orthogonal transformation,
i.e. PA(A) = PA(OAO⊺) for any orthogonal matrix O ∈ RN×N . A common
example of an invariant measure is of the form of a Boltzmann distribution:

PA(A) dA ∝ e−
N
2
TrV (A) dA (5.1)

where V (.) is called potential function, and dA =
∏

1≤i≤j≤N dAij denotes
Lebesgue measure. Changing variables from the entries of A to its eigenvalues
λ1, · · · , λN and eigenvectors we find:

PA(A) dA ∝ e−
N
2

∑N
i=1 V (λi)

N∏
i<j

|λi − λj|
( N∏

i=1

dλi
)
DO (5.2)

where the Vandermonde determinant
∏N

i<j |λi − λj| appears from the Jacobian
of the change of variables, and DO is the Haar (flat) measure over orthogonal
group (orthogonal matrices of dimension N).

A critical aspect of studying large matrices involves analyzing their eigenval-
ues (or singular values) and corresponding eigenvectors, which have been shown
to have significant practical importance, as discussed in the previous section.
Random matrix theory has been instrumental in providing insights into the
eigenvalues and eigenvectors of matrices. The distribution of the eigenvalues
λ1, · · · , λN can be characterized through the Empirical Spectral Distribution
(ESD):

ρ
(N)
A (x) =

1

N

N∑
i=1

δ(x− λi) (5.3)

where δ(.) is the Dirac delta function.
One of the most important property of large random matrices is that

under sufficient conditions, the ESD converges almost surely towards a unique
deterministic probability measure ρ(N)

A (x) → ρA as N → ∞. For example, for
priors like in (5.1) if lim inf |x|→∞ V (x)/(β ln |x|) > 1 for some β > 1, then the
ESD converges weakly almost surely to a well-defined measure with compact
support [66].
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In the next part, we give an overview of different transforms that are
employed to study the spectral properties of random matrices, and in particular
deal with the spectral distribution of sums of random matrices.

5.1.1 Resolvent matrix and Stieltjes transform

Stieltjes transform

We first define the Stieltjes (or Cauchy) transform of a probability density
function ρ on R as:

Gρ(z) =

∫
R

1

z − t
ρ(t) dt for z ∈ C\supp(ρ) (5.4)

The Stieltjes transform has many interesting properties. For example, Gρ(.)
is an analytic function on C+ when range is contained in C−. Moreover, if the
pdf ρ does not contain Dirac masses, we have:

lim
ϵ→0+

Gρ(x− iϵ) = πH[ρ](x) + πiρ(x) (5.5)

with H[ρ](x) = p.v. 1
π

∫
R

ρ(t)
x−t

dt the Hilbert transform of ρ (here p.v. stands for
"principal value"). Hence, the distribution ρ can be retrieved from its Stieltjes
transform.

The Stieltjes transform can also be seen as the generating function of
moments of ρ. If ρ has compact support contained in [−R,R] for some R > 0,
then for |z| > R Gρ has the following power series:

Gρ(z) =
1

z
+

∞∑
i=1

mρ
i

zi+1
(5.6)

where mρ
i is the ith moment of ρ.

Furthermore, suppose that {ρN}N is a sequence of probability measures on
R with GN the Stieltjes transform of ρN . If {GN}N converges pointwise to G
on C+ with limy→∞ iyG(iy) = 1, then there is a unique probability measure ρ
on R such that ρN → ρ weakly, and G is the Stietjes transform of ρ. Therefore,
studying the limiting Stieltjes transform of ESD of random matrices can provide
us with the limiting spectrum.

Resolvent matrix

For a symmetric matrix A ∈ RN×N , the resolvent matrix is defined as:

GA(z) :=
(
zIN −A

)−1 (5.7)

with z ∈ C\{λi}Ni=1. Consider the eigenvalue decomposition of A to be A =∑N
i=1 λiaia

⊺
i with ai ∈ RN eigenvectors of A, then the resolvent of A can
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alternatively be written as:

GA(z) =
N∑
i=1

1

z − λi
aia

⊺
i (5.8)

Therefore, the resolvent matrix contains the complete information about
the eigenvalues and eigenvectors of A. It is apparent that the number of
singularities in the resolvent corresponds directly to the number of eigenvalues
of A. Moreover, for z → λi for 1 ≤ i ≤ N , the residue at the pole defines
a projection onto the eigenspace associated to the eigenvalue(s) λi. In later
chapters, we will show how this property can be used to study the eigenvectors
and derive optimal RIEs.

Now, focusing on the statistics of eigenvalues, we examine the normalized
trace of the resolvent

1

N
TrGA(z) =

1

N

N∑
i=1

1

z − λi
(5.9)

which can be seen as the Stieltjes transform of the ESD defined in (5.3). Now
consider that the following limit exists for all z ∈ C+:

1

N
TrGA(z)

N→∞−−−→ G(z)

then, the limiting spectral distribution of A can be retrieved using the relation
(5.5). This approach is one of the techniques in random matrix theory to study
the limiting spectral measure of an ensemble, and we will follow this approach
to recover the well-known semi-circle law and Marchenko-Pastur distribution.

For z → ∞, the normalized trace can be expanded as:

1

N
TrGA(z)

z→∞
=

1

z
+

1

N

N∑
i=1

TrAk

zk+1

Therefore, if one can compute the moments of eigenvalue distribution in the
limit N → ∞, it is possible to reconstruct the density of eigenvalue distribution.

R-transform

To define the R-transform, we introduce the functional inverse of the Stieltjes
transform, also known as the Blue transform:

G−1
ρ

(
Gρ(z)

)
= z

and the R-transform is defined as:

Rρ(z) = G−1
ρ (z)− 1

z
(5.10)
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Considering the power series of Rρ one finds:

Rρ(z) =
∞∑
i=1

κρi z
i−1 (5.11)

where κρi is the free cumulant of order i of ρ, which for the first four terms
read:

κρ1 = mρ
1

κρ2 = mρ
2 −

(
mρ

1

)2
κρ3 = mρ

3 − 3mρ
2m

ρ
1 + 2

(
mρ

1

)3
κρ4 = mρ

4 − 4mρ
3m

ρ
1 − 2

(
mρ

2

)2
+ 10mρ

2

(
mρ

1

)2 − 5
(
mρ

1

)4
where mρ

i is the ith moment of ρ. Note that, the free cumulants differ from
’standard’ cumulants for i ≥ 4.

It turns out that, free cumulants of limiting spectral measures of sum of
random matrices are given by the sum of free cumulants of limiting spectral
measure of each matrix, i.e. κρA+B

i = κρAi + κρBi , see section 5.3.2. Therefore,
the R-transform is an important tool to study the spectral measure of sums of
random matrices.

5.1.2 Rectangular random matrices

In the exploration of random matrix theory, the study of rectangular random
matrices presents unique challenges. Unlike their symmetric counterparts, there
is no direct or unified theoretical framework for understanding the behavior
of rectangular matrices. This lack of a straightforward approach stems from
the inherent complexity and variability in the structure of non-square matrices.
However, by leveraging the existing analytical tools and methods developed
for symmetric random matrices, we can effectively investigate the statistical
properties of the singular values and singular vectors of rectangular random
matrices. This approach allows us to extend our understanding and apply
well-established principles from the study of symmetric matrices to the more
complex realm of rectangular matrices.

Consider a non-symmetric random matrix A ∈ RN×M with N ≤M 1. As
in the symmetric case, we are interested in studying the statistical properties
of this matrix in the limit N → ∞. A common assumption is that N,M grows
proportionally with ratio converging to a constant, N/M → α ∈ (0, 1].

The ESD of A is defined in the same as in (5.3):

µ
(N)
A (x) =

1

N

N∑
i=1

δ(x− γi)

1For the purpose of this chapter, it suffices to consider the case N ≤ M . If N > M , we
can consider A⊺ can exchange the role of N with M .
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where γ1, · · · , γN ≥ 0 are singular values of A. We can study the singular value
distribution of A by analyzing the eigenvalue distribution of the symmetric
matrix AA⊺. Let the SVD of A be:

A = UAΓV
⊺
A , Γ =

[
diag(γ1, · · · , γN) 0N×(M−N)

]
∈ RN×M

with orthogonal matrices UA ∈ RN×N ,VA ∈ RM×M . Then, the eigenvalue
decomposition of AA⊺ reads:

AA⊺ = UA

[
diag(γ21 , · · · , γ2N)

]
U ⊺

A

So, there is a one-to-one map between the singular values of A and eigenvalues
of AA⊺. The limiting eigenvalue distribution of AA⊺ can be studied using
the tools developed for symmetric matrices. Suppose this distribution exists,
and with abuse of notation we denote it as ρA. Then, the limiting spectral
distribution of A, denoted as µA can be retrieved by applying a (square-root)
transformation to ρA. Using this approach, we derive the limiting singular values
distribution of a non-symmetric Gaussian matrix by applying the square-root
transformation to the Marchenko-Pastur distribution in section 5.2.2.

A major limitation of this approach is that we cannot study the statistics
of singular vectors of A. For example, by considering AA⊺ we do not have any
information about the right singular vectors of A, VA.

Another approach is to embed a non-symmetric matrix into a symmetric
matrix. Construct the symmetric matrix A ∈ R(N+M)×(N+M) from the matrix
A,

A =

[
0N×N A
A⊺ 0M×M

]
(5.12)

By Theorem 7.3.3 in [71], the eigenvalue decomposition of A reads:

A = W

 diag(γ1, · · · , γN) 0 0
0 −diag(γ1, · · · , γN) 0
0 0 0(M−N)×(M−N)

W ⊺

(5.13)
with

W =

[
ÛA ÛA 0N×(M−N)

V̂
(1)
A −V̂

(1)
A V

(2)
A

]
∈ R(N+M)×(N+M)

where VA =
[
V

(1)
A V

(2)
A

]
in which V

(1)
A ∈ RM×N , and V̂

(1)
A = 1√

2
V

(1)
A ,

ÛA = 1√
2
UA.

Given the decomposition in (5.13), eigenvalues of A are signed singular
values of A plus M −N trivial zero eigenvalues. The ESD of A can be written
as:

ρ
(N)
A (x) =

1

N +M

2N∑
i=1

δ(x− γ̃i) +
M −N

N +M
δ(x)
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where γ̃k are the non-trivial zero eigenvalues of A, γ̃1 = γ1, . . . , γ̃N = γN , γ̃N+1 =
−γ1, . . . , γ̃2N = −γN . We can go further to get:

ρ
(N)
A (x) =

N

N +M
µ
(N)
A (x) +

N

N +M
µ
(N)
A (−x) + M −N

N +M
δ(x)

In the limit N → ∞, we have:

ρA(x) =
2α

1 + α
µ̄A(x) +

1− α

1 + α
δ(x)

where µ̄A(x) = 1
2
µA(x) +

1
2
µA(−x) is the symmetrization of µA. Therefore,

the spectral distribution of A excluding trivially zero eigenvalues is the sym-
metrization of spectral distribution of A.

Moreover, we can analyze the singular vector by constructing the resolvent
of A. Denote the eigenvectors of A by wi ∈ RM+N , i = 1, . . . ,M +N .

GA(z) =
(
zI −A

)−1

=
2N∑
i=1

1

z − γ̃i
wiw

⊺
i +

1

z

M+N∑
i=2N+1

wiw
⊺
i

Note that by (5.13), wi’s contain the full information about the singular vectors
of A, hence the resolvent GA(z) provides us with the full information about
both singular values and singular vectors of A.

The Stieltjes transform is defined in the same way as (5.4) for µA and can
be used to retrieve µA by the inversion formula (5.5). An important transform
for non-symmetric random matrices is the rectangular R-transform which is
used to study the spectrum of sums of non-symmetric matrices.

Rectangular R-transform

To define the rectangular R-transform, we first need to define some intermediate
quantities. For a probability measure µ with support contained in [−K,K] with
K > 0, we define a generating function of (even) moments Mµ : [0, K−2] → R+

as
Mµ(z) :=

∫
1

1− t2z
µ(t) dt− 1 (5.14)

For α ∈ [0, 1], define T (α)(z) = (αz + 1)(z + 1) and

H(α)
µ (z) := zT (α)

(
Mµ(z)

)
(5.15)

The rectangular R-transform with ratio α is then defined as:

C(α)
µ (z) := T (α)−1

( z

H(α)
µ

−1
(z)

)
(5.16)

Similar to the symmetric case, C(α)
µ can be written as power series with rect-

angular free cumulants. Therefore, it can be used to characterize the limiting
spectrum of sum of two non-symmetric matrices.
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5.1.3 Random matrix theory in practice

In this thesis, and often in practice, one needs to estimate the limiting spectral
distribution of a given large (data) matrix. As explained in 5.1.1, one can
approximate the Stieltjes transform of the spectral measure, and retrieve the
distribution using the inversion formula (5.5). Note that we cannot simply use
the normalized trace (5.9) to evaluate ρ(.) at a given a eigenvalue (or signular
value) because using 1

N
TrGA(z) in the inversion formula (5.5) gives infinity for

eigenvalues of A. One idea is to apply kernel methods to estimate continuous
density from discrete data.

Given a set of eigenvalues (or singular values) λ1, · · · , λN , a smooth estima-
tor of the density is constructed by replacing the Dirac delta function in (5.3)
by a proper normalized kernel of width η, Kη.

ρ(N) =
1

N

N∑
i=1

Kη(x− λi)

where ∫
Kη(t) dt = 1

Here, we present the Cauchy kernels which we use through the thesis, for
other choices of kernel we refer the reader to section 19.5 of [67]. Cauchy’s
kernel is defined as:

KC
η (t) :=

1

π

η

t2 + η2

and has the following Stieltjes transform:

GKC
η
(z) =

1

z ± iη
, ± = sign Im z

Then, the smoothed Stieltjes transform of ρ(N) is computed as:

Gρ(N)(z) ≈ 1

N

N∑
i=1

1

z − λi − iη

where η can be chosen properly at each point, however in the numerical
simulations in this thesis we use this approximation with fixed η =

√
1/N.

5.2 Semi-circlular Law and Marchenko-Pastur
Law

In this section, we investigate two well-known classes of random matrices:
Wigner and Wishart matrices. Our focus will be on deriving their respec-
tive limiting spectral distributions, specifically the semi-circle law for Wigner
matrices and the Marchenko-Pastur distribution for Wishart matrices.
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Figure 5.1: Comparison of the ESD of a Gaussian Wigner Matrix with the semi-circle
Law. The histogram represents the normalized distribution of eigenvalues for a 1000×1000
Gaussian Wigner matrix. The red curve illustrates the semi-circle law, highlighting the
convergence of the empirical distribution towards this theoretical prediction as the matrix
size increases.

5.2.1 Wigner matrix

A Gaussian Wigner matrix X = X⊺ ∈ RN×N is constructed with i.i.d. Gaus-
sian entries as follows:

Xij ∼ N
(
0,

1

N
(1 + δij)

)
for 1 ≤ i ≤ j ≤ N

One can easily see that X is rotationally invariant distributed, and its proba-
bility measure can be described as in (5.1):

dPX(X) = CNe
−N

4
TrX2

∏
i≤j

dXij (5.17)

where CN is the normalizing constant. The ensemble described by (5.17) is
often referred to as Gaussian Orthogonal Ensemble (GOE).

We will prove that the limiting spectral distribution of GOE is the renowned
semi-circle distribution which we define below. In figure 5.1, the ESD of a
Gaussian Wigner is plotted against the theoretical semi-circle law.

Semi-circle distribution

The (standard) semi-circle distribution is the probability measure on [−2, 2]
with density:

dρsc(t) =
1

2π

√
4− t2 dt (5.18)

Since the semi-circle distribution is symmetric, the odd moments are zero.
The even moments can be computed to be Catalan numbers Ck =

1
k+1

(
2k
k

)
.

1

2π

∫ 2

−2

tn
√
4− t2 dt =

{
0, n odd

Ck, n = 2k even
(5.19)
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Using the power series expansion of Stieltjes transform (5.6) and the recur-
rence relation of Catalan numbers, we find that Gρsc(z) satisfies the following
quadratic equation:

Gρsc(z)
2 − zGρsc(z) + 1 = 0 (5.20)

with two solutions:

Gρsc(z) =
z ±

√
z2 − 4

2
To choose the correct sign, from (5.19) we see that for z → ∞ the Stieltjes
transform behaves as 1/z. Choosing the minus sign in the solution above gives
the correct asymptotic behavior. Therefore, we have:

Gρsc(z) =
z −

√
z2 − 4

2
(5.21)

Finally, we can compute the R-transform of the semi-circle distribution to
be:

Rρsc(z) = z (5.22)

Proof of convergence of ESD of GOE to semi-circle law

There are various methods to prove the convergence of ESD of GOE towards
semi-circle distribution. One technique is to compute the moments of the
matrix and show that they match the Catalan numbers. This technique
involves combinatorial computations and is able to show the convergence holds
for general prior on entries.

Here, we directly compute the limiting normalized trace of the resolvent of
GOE and show that it satisfies (5.20). Then, using the inversion formula (5.5),
we find that the limiting spectrum of GOE is the semi-circle distribution.

We will use the following two lemmas in our derivation.

Lemma 5.1. Let GX(z) be the resolvent matrix of a symmetric matrix X ∈
RN×N . We have:

GX(z) =
1

z

(
XGX(z) + I

)
for z ∈ C\R (5.23)

Proof. By definition of the resolvent (5.7), we have:(
zIN −X

)
GX(z) = IN

After expanding and rearranging the terms, we find the result.

Lemma 5.2 (Stein’s identity). Let X1, · · · , Xk be independent Gaussian vari-
ables with E[Xi] = 0,Var(Xi) = σ2

i , and f : Rk → R be a continuously
differentiable function. If f and its partial derivatives are of polynomial growth,
then for all i we have:

E
[
f(X1, · · · , Xk)Xi

]
= E

[ ∂f
∂Xi

(X1, · · · , Xk)
]

(5.24)
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Proof. In the univariate case (k = 1), we have:

E[f(X)X] =
1√
2πσ2

∫
xf(x)e−

x2

2σ2 dx

=
1√
2πσ2

∫
f(x)

[
− σ2e−

x2

2

]′
dx

=
1√
2πσ2

∫
f ′(x)σ2e−

x2

2 dx− 1√
2πσ2

f(x)σ2e−
x2

2

∣∣∣+∞

−∞

= σ2E[f ′(X)]

For k ≥ 1, we do the same steps for the i-th random variable.

In what follows, we show that the expected normalized trace of the resolvent
of Gaussian Wigner matrix X converges to the Stieltjes transform of the
semi-circle distribution. By (5.23), we have:

1

N
ETrGX(z) =

1

N
E
[
Tr

1

z

(
XGX(z) + I

)]
=

1

z
+

1

z

1

N
ETrXGX(z)

(5.25)

Using Stein’s identity, the second term (dropping the factor 1/z) can be written
as:

1

N
ETrXGX(z) =

1

N
E

N∑
i,j=1

Xij

[
GX(z)

]
ji

=
1

N

N∑
i,j=1

Var(Xij)E
[ ∂

∂Xij

[
GX(z)

]
ji

] (5.26)

The partial derivatives are given by:

[ ∂

∂Xii

GX(z)
]
ii
=

[
GX(z)

]2
ii

[ ∂

∂Xij

GX(z)
]
ji
=

[
GX(z)

]2
ij
+
[
GX(z)

]
jj

[
GX(z)

]
ii
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Plugging in (5.26), we find:

1

N

N∑
i,j=1

Var(Xij)E
[ ∂

∂Xij

[
GX(z)

]
ji

]
=

1

N

N∑
i=1

Var(Xii)E
[ ∂

∂Xii

[
GX(z)

]
ii

]
+

1

N

∑
i ̸=j

Var(Xij)E
[ ∂

∂Xij

[
GX(z)

]
ji

]
=

1

N

N∑
i=1

2

N
E
[[
GX(z)

]2
ii

]
+

1

N

∑
i ̸=j

1

N
E
[[
GX(z)

]2
ij
+
[
GX(z)

]
jj

[
GX(z)

]
ii

]
=

1

N2

N∑
i,j=1

E
[[
GX(z)

]2
ij

]
+

1

N2

N∑
i,j=1

E
[[
GX(z)

]
jj

[
GX(z)

]
ii

]
=

1

N2
ETrGX(z)

2 +
1

N2
E
(
TrGX(z)

)2

(5.27)

We show that the first term in (5.27) goes to 0 as N → ∞. Let λ1, · · · , λN
be the eigenvalues of X. For z ∈ C\R, we have:

(z − λi)
2 =

(
Re z − λi

)2
+
(
Im z

)2 ≥ (
Im z

)2
Therefore, by Jensen inequality, we find:∣∣∣ 1

N2
ETrGX(z)

2
∣∣∣ ≤ 1

N2
E
∣∣TrGX(z)

2
∣∣

=
1

N2
E
[ N∑

i=1

1

(z − λi)2

]
≤ 1

N

1(
Im z

)2 → 0 asN → ∞

(5.28)

The second term in (5.27), can be written as:

1

N2
E
(
TrGX(z)

)2

= E
[( 1

N
TrGX(z)

)2
]

=
( 1

N
ETrGX(z)

)2

+ Var
( 1

N
TrGX(z)

) (5.29)

Using the Gaussian Poincaré inequality , the variance of the normalized
trace of the resolvent can be shown to converge to 0 as N → ∞,

Var
( 1

N
TrGX(z)

)
≤ Cz

N
(5.30)

where Cz is a constant indendent of N . Putting (5.25),(5.26),(5.27), (5.28),
(5.29),(5.30) together we find:

1

N
ETrGX(z) =

1

z
+

1

z

( 1

N
ETrGX(z)

)2

+O
( 1

N

)
(5.31)
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Therefore, we conclude that 1
N
ETrGX(z) in the limit N → ∞ satisfies the

quadratic equation (5.20), and choosing the correct sign for the solution we
obtain:

lim
N→∞

1

N
ETrGX(z) = Gρsc(z)

which implies that 1
N
TrGX(z) converges in probability to Gρsc(z). Conse-

quently, since 1
N
TrGX(z) is the Stieltjes transform of ESD of X, we deduce

that the ESD converges weakly in probability to ρsc.
We conclude this section with a few remarks about Wigner matrices. Firstly,

it is noteworthy that the convergence in probability discussed earlier can be
extended to almost sure convergence, offering a stronger form of convergence.
Additionally, the convergence of ESD to ρsc holds under a broader range of
distributions for the entries of matrix X, not just the Gaussian distribution.
The primary condition for this applicability is the existence of all moments of
the distribution.

5.2.2 Wishart matrix

Wishart matrices with Gaussian entries play a critical role in both statistical
theory and random matrix theory. Such a matrix, typically denoted as W =
XX⊺, is constructed from the matrix X ∈ RN×M , whose entries are i.i.d.
Gaussian random variables of variance 1/N. In statistical contexts, the Wishart
matrix is particularly significant when the columns of X represent independent
samples from a multivariate normal distribution, making W a sample covariance
matrix. The asymptotic behavior of these eigenvalues is characterized by the
Marchenko-Pastur law, when N → ∞ with fixed aspect ratio N/M → q ∈ R+.
This particular aspect makes Gaussian Wishart matrices indispensable in the
analysis of high-dimensional data.

Marchenko-Pastur distribution

The Marchenko-Pastur distribution with aspect ratio q > 0 is the probability
measure with density:

ρMP(t) =
(
1− 1

q

)+
δ(t) +

√(
t− λ−

)(
λ+ − t

)
2πt

(5.32)

where
λ± =

( 1√
q
± 1

)2
and

x+ =

{
x if x ≥ 0

0 if x < 0

From the formula (5.32), one can see that when q > 1, 1 − 1/q proportion of
eigenvalues are zero, which is expected since when N > M , W has N −M
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Figure 5.2: Comparison of empirical distributions for a Wishart Matrix. This figure
illustrates two key distributions: the empirical singular value distribution and the empirical
eigenvalue distribution of a Wishart matrix for N = 1000,M = 2000. Both distributions
are compared with the theoretical Marchenko-Pastur law. The histogram on the left
represents the distribution of singular values, showcasing their convergence towards the
square root transformation of the Marchenko-Pastur law. On the right, the histogram
depicts the eigenvalue distribution, aligning with the standard Marchenko-Pastur law.

trivial zero eigenvalues. In figure 5.2, the empirical eigenvalue distribution of a
Gaussian Wishart matrix is plotted against the theoretical Marchenko-Pastur
distribution.

The Stieltjes transform of ρMP can be shown to satsify the following quadratic
equation:

zGρMP
(z)2 −

(
z − 1

q
+ 1

)
GρMP

(z) + 1 = 0 (5.33)

from which we can find the (correct) solution to be:

GρMP
(z) =

z − 1
q
+ 1−

√
z − λ+

√
z − λ−

2z
(5.34)

and, its R-transform is:

RρMP
(z) =

1

q

1

1− z
+

1

z
(5.35)

The derivation of the Marchenko-Pastur law closely parallels that of the
semi-circle law, utilizing similar methodologies such as moment calculation
or the examination of the limiting normalized trace of the resolvent. Both
approaches involve complex mathematical procedures, and we omit them here.

Singular value distribution

Given the eigenvalues distribution of XX⊺, we can find the distribution of
singular values of X applying square-root transformation to ρMP. We assume
that N ≤ M so there are N non-trivial zero singular values. With abuse of
language and notation, we denote the resulting density function by µMP and
refer to it as Marchenko-Pastur distribution.

µMP(t) =

√(
t2 − λ−

)(
λ+ − t2

)
πt

(5.36)
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This distribution will be used in the analysis of denoising rectangular ma-
trices which are corrupted by additive Gaussian noise, therefore, one important
transform of this distribution is the rectangular R-transform which is given as :

C(q)
µMP

(z) =
1

α
z for q ≤ 1 (5.37)

5.3 Free Probability

In inference problems, we frequently encounter matrices that are corrupted by
noise, necessitating an analysis of their spectral properties. Common approaches,
such as examining the Stieltjes transform, often pose significant challenges and
may not always be applicable to these scenarios. This is particularly true when
dealing with matrices that are sums or products of random matrices, where the
complexity of interactions between matrix components complicates conventional
methods. Free Probability theory emerges as a powerful framework in this
context, offering robust tools for investigating the limiting spectral distribution
of such composite matrices.

This section offers a concise introduction to free probability theory, a distinct
approach for analyzing the asymptotic behavior of large-dimensional random
matrices. Specifically, free probability presents a technique for examining
the limiting spectral distribution of sums or products of symmetric random
matrices. In this discussion, we focus on the basic notions of free probability
as it applies to symmetric real random matrices. For a more comprehensive
exploration of the topic, readers are directed to [72].

5.3.1 Freeness

Free probability, originated by Dan Voiculescu, has created a significant in-
terplay between random matrix theory and operator algebra. Voiculescu’s
introduction of this theory, initially aimed to understand specific classes of
von Neumann algebras [57], laid the foundation for a new calculus for non-
commutative operators based on the concept of freeness. For simplicity, we
do not go into details of algebra and work with matrices as non-commutative
objects.

Consider a sequence of random symmetric matrices AN ,BN ∈ RN×N with
limiting spectral densities ρA, ρB, and define the linear functional

φ(A) := lim
N→∞

1

N
TrAN (5.38)

which is the first moment of ρA.
Assume that φ(A) = φ(B) = 0, then AN and BN are called (asymptoti-

cally) free if:

φ(An1Bm1 · · ·AnkBmk) = φ(An1)φ(Bm1) · · ·φ(Ank)φ(Bmk) (5.39)
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for any integers n1, · · · , nk and m1, · · · ,mk with k ∈ N. Note that if φ(A) ̸= 0
we can consider A− φ(A)I (and similarly for B).

For any pair of free matrices AN ,BN , we have:

φ
(
(A− φ(A)I)(B − φ(B)I)

)
= 0 ⇒ φ(AB) = φ(A)φ(B)

Therefore, if we consider the trace operator (5.38) as the non-commutative
equivalent of the expectation value for random variables, then the property
of freeness (5.39) can be seen as the analogue to the moment factorization
property. In general, freeness facilitates the calculation of mixed moments
of matrix products using the known moments of A,B (or ρA, ρB), analogous
to how classical independence functions in classical probability theory. For
example:

φ
(
(A− φ(A)I)(B − φ(B)I)(A− φ(A)I)

)
= 0 ⇒ φ(ABA) = φ(A2)φ(B)

and by similar calculation one can find:

φ(ABAB) = φ(A2)φ(B)2 + φ(A)2φ(B2)− φ(A)2φ(B)2

This theoretical framework has profound implications for the asymptotic
behavior of large-dimensional random matrices. Voiculescu’s seminal work [73]
revealed that rotationally invariant random matrices asymptotically satisfy
the criteria of freeness. This discovery has considerably impacted random
matrix theory, especially in understanding the relationship between eigenbases
of matrices. Under this framework, if A and B are independent self-adjoint
matrices with spectral densities converging almost surely as N grows, and if B
is rotationally invariant, then A and B are asymptotically free.

5.3.2 Free additive convolution

Besides computation of mixed moments of random matrices, free probability
allows us to compute the limiting spectral distribution of sums and products
of random matrices. Here, we only present the result for the additive case as it
will be used throughout the thesis.

Consider a sequence of random matrices MN = AN + BN that BN is
assumed to be rotational invariant, so we have:

MN = AN +OBNO
⊺

for any orthogonal matrix O ∈ RN×N . Suppose that ESDs of AN ,BN converge
to well-defined probability distributions ρA, ρB. As mentioned above AN and
BN are asymptotically free, therefore we can use the law of addition for non-
commutative operators to compute the limiting spectral distribution of M .
This law states:

RρM (z) = RρA(z) +RρB(z) (5.40)
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The free additive convolution of two measures is denoted as ρM = ρA ⊞ ρB. In
this way, the R-transform (5.10) can be viewed as the random matrix theory
counterpart to the logarithm of the Fourier transform used in classic additive
convolution. In the next section, we present a derivation of this relation using
replica method.

The formula (5.40) provides us with a systematic tool to compute the
limiting spectral distribution of a sum of two matrices. Using (5.10), we have:

G−1
ρM

(z) = G−1
ρA

(z) +RρB(z)

Plugging GρM (z) as z, after rearranging we find:

G−1
ρA

(
GρM (z)

)
= z −RρB

(
GρM (z)

)
Applying GρA(z) on both sides, we find:

GρM (z) = GρA

[
z −RρB

(
GρM (z)

)]
(5.41)

Therefore, we can compute the Stiletjes transform of ρM knowing ρA, ρB, from
which ρM can be obtained using inversion formula (5.5).

Rectangular free additive convolution

In [74], the free convolution is generalized to non-symmetric matrices. Consider
a sequence of N ×M matrices built as:

MN = AN +UBNV
⊺

for any orthogonal matrices O ∈ RN×N ,V ∈ RM×M . Suppose that ESDs
(distribution of singular values) of AN ,BN converge to well-defined probability
distributions µA, µB, and N/M → α ∈ (0, 1]. The law of rectangular-free convo-
lution states that the limiting singular values distribution of M is characterized
as:

C(α)
µM

(z) = C(α)
µA

(z) + C(α)
µB

(z) (5.42)

and this additive rectangular-free convolution is denoted as µM = µA ⊞α µB.
In chapter 10, we derive this formula as a part of developing rectangular RIE,
utilizing the replica method.

5.3.3 Free entropy and free Fisher information

In a series of papers [75–80], Voiculescu developed information theory for
non-commutative random variables. He introduced two types of free entropy,
see [76, 79, 81]. The first type, denoted as χ(X), quantifies the asymptotic
volume of matricial microstate spaces, which is closely related to the classical
entropy of random matrix models. The second type, χ∗(X), is defined through
free Fisher information, which has to do with how the distribution of X interacts
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with differentiation, akin to classical Fisher information. Heuristically, one
expects that both types of free entropy are equal and coincide with large N
limit of classical entropy of random matrix models. However, showing this
equality involves several technical challenges in its proof, as discussed in [81].

Nonetheless, in the one variable case these two types of free entropy are
proved to be equal. For X a self-adjoint non-commutative random variable
associated to a probability measure ρX with compact support on the real line,
the free entropy χ(X) and the free Fisher information Φ(X) are given as

χ(X) =

∫∫
ln |s− t|ρX(s)ρX(t) ds dt+

3

4
+

1

2
ln 2π, (5.43)

Φ(X) =
4π2

3

∫
ρ3X(s) ds. (5.44)

Moreover, these two quantities are linked through the relation:

χ(X) =
1

2

∫ ∞

0

( 1

1 + t
− Φ(X +

√
tZ)

)
dt+

1

2
ln 2π +

1

2
(5.45)

where Z is non-commutative random variable associated to the semi-circle
distribution ρsc, and X and Z are free (5.39).

In chapter 9, we leverage these relations to derive an explicit formula for
the mutual information in symmetric matrix denoising. This underscores that,
in the large N limit, matrix inference problems can effectively be modeled as
scalar inference problems within the framework of free probability.

5.4 Replica Method

As mentioned before (see (5.8)), the analysis of eigenvectors can be approached
through the study of the resolvent. However, methodologies like free probability
primarily provide insights into the normalized trace of the resolvent, offering
limited information about the structure of eigenvectors. To thoroughly examine
the resolvent matrix, it is necessary to employ additional techniques, such as
the Replica method, a technique adopted from statistical physics. In essence,
the Replica method enables the transformation of the expectation value of
a logarithm into a series of moments, computed as expectation values over
multiple copies, or replicas, of the original system. This approach has proven
highly effective in various areas, including random matrix theory and disordered
systems, as evidenced in references [4], and more comprehensive reviews like [82].
It is important to note, though, that despite its effectiveness as a heuristic tool,
the Replica method lacks formal mathematical rigor. Consequently, validating
results derived from the Replica method with other methods, such as numerical
simulations, is crucial.

As a preliminary case, we will outline the methodology for the Stieltjes
transform and subsequently illustrate how this approach can be expanded to
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analyze the full resolvent. We observe that the normalized trace of the resolvent
of a random matrix A can be represented as follows:

1

N
TrGA(z) =

1

N

N∑
i=1

1

z − λi
=

1

N

d

dz
ln

N∏
i=1

(z − λi) =
1

N

d

dz
ln det

(
zI −A

)
(5.46)

Then, using Gaussian representation of
(
det

(
zI −A

))−1/2

, we find:

Z(z) ≡
(
det

(
zI−A

))− 1
2
=

1

(2π)
N
2

∫ N∏
i=1

dηi exp
{
− 1

2
η⊺

(
zI−A

)
η
}

(5.47)

Now, assuming that 1
N
TrGA(z) is self-averaging (concentrates on its expecta-

tion), we can write:

1

N
TrGA(z) = −2

d

dz
E lnZ(z) (5.48)

where the expectation is over the prior on A, PA. However, computing the
moments EZ(z)n rather than E lnZ(z) is typically more straightforward, and
this is exactly what the Replica trick aims to facilitate. This method was
originally established based on the following identity:

lnZ = lim
n→0

Zn − 1

n
(5.49)

Hence, from (5.48) we formally obtain:

1

N
TrGA(z) = lim

n→0

d

dz

EZ(z)n − 1

n
(5.50)

Thus, instead of (5.48) we need to compute n replicas of the system in (5.50).
This computation involves working with integer values of n and then applying
analytical continuation to extend the results to real n values, followed by taking
the limit as n → ∞. The limit n → 0 is often taken after the limit N → ∞,
as in the large N limit the integrals can be evaluated using the saddle-point
method. The critical assumption here is the feasibility of analytical continuation
of n, which is not guaranteed, and might lead to uncontrolled approximations.
Despite these concerns, the Replica method offers a straightforward heuristic
for computing the resolvent matrix, which as shown below, is precise for the
quantities considered in this thesis.

We end this section by deriving a resolvent relation for the additive model:

M = A+OBO⊺ (5.51)

where A,B are two sequences of symmetric N × N matrices with limiting
ESDs ρA, ρB, and O is a Haar-distributed matrix. For simplicity of notation
we use G(z) ≡ GM(z) for the resolvent of a random matrix M .
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First, we express the entries of the resolvent G(z) using the Gaussian
integral representation of an inverse matrix [83]:

Gij(z) =

√
1

(2π)N det (zI −M )

∫ ( N∏
k=1

dηk

)
ηiηj exp

{
− 1

2
η⊺

(
zI −M

)
η
}

=

∫ ( N∏
k=1

dηk

)
ηiηj exp

{
− 1

2
η⊺

(
zI −M

)
η
}

∫ ( N∏
k=1

dηk

)
exp

{
− 1

2
η⊺

(
zI −M

)
η
}

(5.52)

For z not close to the real axis, the resolvent is expected to exhibit self-averaging
behavior in the limit of large N, meaning that it will not depend on the particular
matrix realization. Thus, we can examine the resolvent GM(z) by analyzing
its ensemble average, denoted by ⟨.⟩ in the following.

〈
Gij(z)

〉
=

〈
1

Z

∫ ( N∏
k=1

dηk

)
ηiηj exp

{
− 1

2
η⊺

(
zI −M

)
η
}〉

M

(5.53)

where Z is the denominator in (5.52). Computing the average is, in general,
non-trivial. However, the replica method provides us with a technique to
overcome this issue by employing the following identity:

〈
Gij(z)

〉
= lim

n→0

〈
Zn−1

∫ ( N∏
k=1

dηk

)
ηiηj exp

{
− 1

2
η⊺

(
zI −M

)
η
}〉

M

= lim
n→0

〈 ∫ ( N∏
k=1

n∏
τ=1

dη
(τ)
k

)
η
(1)
i η

(1)
j exp

{
− 1

2

n∑
τ=1

η(τ)⊺
(
zI −M

)
η(τ)

}〉
M

(5.54)

So, the problem now is reduced to the computation of an average over n copies
(or replicas) of the initial system (5.52). Note that, the identity (5.54) is valid
for any random matrix M and is particularly useful when the average over
the probability density PM can be effectively computed. This equation enables
us to explore the asymptotic behavior of the entries of the resolvent, thereby
providing a more comprehensive insight into the spectral decomposition of M
than what is offered by considering the normalized trace.

Using (5.51), we can see that PM is the Haar measure over orthogonal
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group, so (5.54) can be written as:〈
Gij(z)

〉
= lim

n→∞〈 ∫ ( N∏
k=1

n∏
τ=1

dη
(τ)
k

)
η
(1)
i η

(1)
j exp

{
− 1

2

n∑
τ=1

η(τ)⊺
(
zI −A−OBO⊺

)
η(τ)

}〉
O

= lim
n→∞

∫ ( N∏
k=1

n∏
τ=1

dη
(τ)
k

)
η
(1)
i η

(1)
j exp

{
− 1

2

n∑
τ=1

η(τ)⊺
(
zI −A

)
η(τ)

}
×

〈
exp

{1

2

n∑
τ=1

η(τ)η(τ)⊺OBO⊺
)}〉

O

(5.55)

where the last term ⟨· · · ⟩O is the low-rank (symmetric) spherical integral
(explained in the next chapter) which in the large N limit is approximated by:〈

exp
{1

2

n∑
τ=1

η(τ)η(τ)⊺OBO⊺
)}〉

O

≈ exp
{N
2

n∑
τ=1

PρB

( 1

N
∥η(τ)∥2

)}
(5.56)

with
PρB(x) =

∫ x

0

RρB(t) dt

the primitive of R-transform of ρB. Plugging (5.56) in (5.55), we find:

〈
Gij(z)

〉
= lim

n→∞

∫ ( N∏
k=1

n∏
τ=1

dη
(τ)
k

)
η
(1)
i η

(1)
j

× exp

{ n∑
τ=1

[
− 1

2
η(τ)⊺

(
zI −A

)
η(τ) +

N

2
PρB

( 1

N
∥η(τ)∥2

)]}
(5.57)

In the next step, introducing delta functions δ
(
p(τ) − 1

N
∥η(τ)∥2

)
, (5.57) can

written as:

〈
Gij(z)

〉
= lim

n→∞

∫ ( N∏
k=1

n∏
τ=1

dη
(τ)
k

)( n∏
τ=1

dp(τ)
)
η
(1)
i η

(1)
j

×
n∏

τ=1

δ
(
p(τ) − 1

N
∥η(τ)∥2

)
× exp

{ n∑
τ=1

[
− 1

2
η(τ)⊺

(
zI −A

)
η(τ) +

N

2
PρB(p

(τ))
]}
(5.58)

Then, we replace each delta function with its Fourier transform δ
(
p(τ) −

1
N
∥η(τ)∥2

)
∝

∫
dζ(τ) exp

{
− N

2
ζ(τ)

(
p(τ) − 1

N
∥η(τ)∥2

)}
. After rearranging, we
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find:

〈
Gij(z)

〉
∝

∫ ( n∏
τ=1

dp(τ) dζ(τ)
)
exp

{
N

2

n∑
τ=1

[
PρB(p

(τ))− ζ(τ)p(τ)
]}

×
∫ ( N∏

k=1

n∏
τ=1

dη
(τ)
k

)
η
(1)
i η

(1)
j exp

{
− 1

2

n∑
τ=1

[
η(τ)⊺

(
zI −A

)
η(τ)

− ζ(τ)∥η(τ)∥2
]

(5.59)

The second integral in (5.59) is a Gaussian integral with matrix:

C(τ) = (z − ζ(τ))I −A (5.60)

Let λ1, · · · , λN be the eigenvalues of A, then we have:

detC(τ) =
N∏
k=1

(z − ζ(τ) − λk)

So, except for the first replica, the Gaussian integral is (up to constants):

exp
{
− 1

2

N∑
k=1

ln(z − ζ(τ) − λk)
}

(5.61)

Noticing that C(1)−1
= GA(z − ζ(1)), the integral for the first replica is the

above expression multiplied by
[
GA(z−ζ(1))

]
ij
. Putting these remarks together,

the integral in (5.59) can be written as:

〈
Gij(z)

〉
∝

∫ ( n∏
τ=1

dp(τ) dζ(τ)
)[

GA(z − ζ(1))
]
ij
exp

{
− Nn

2
F0(p, ζ)

}
(5.62)

with

F0(p, ζ) =
1

n

n∑
τ=1

[ 1

N

N∑
k=1

ln(z − ζ(τ) − λk)− PρB(p
(τ)) + ζ(τ)p(τ)

]
In the large N limit, the integral in (5.62) can be computed using the saddle-
points of the function F0. In the evaluation of this integral, we use the replica
symmetric ansatz that assumes a saddle-point of the form:

∀τ ∈ {1, · · · , n} : p(τ) = p, ζ(τ) = ζ

One finds that the extremum of the function F0 in the limit N → ∞ is attained
at:

p∗ = GρA(z − ζ∗), ζ∗ = RρB(p
∗)
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To simplify the solution, consider the normalized trace of both sides in
(5.62) which gives

GρM (z) = GρA(z − ζ∗) = p∗

consequently we find:
ζ∗ = RρB

(
GρM (z)

)
(5.63)

Therefore, we have:

GρM (z) = GρA

[
z −RρB

(
GρM (z)

)]
which coincides with (5.41).

Finally, plugging (5.63) in (5.62), we find:〈
GM(z)

〉
= GA

(
z −RρB

(
GρM (z)

))
(5.64)

which generalizes (5.41) to matrix entries.





Spherical Integrals 6
In this section, we discuss spherical integrals, which can be seen as the analogue
of Laplace/Fourier transforms in the context of random matrices. We will
present results on asymptotic limits of various classes of spherical integrals .

6.1 Symmetric Spherical Integrals

For two symmetric matrices A,B ∈ RN×N , the spherical integral is defined as:

IN(A,B) :=

∫
DU exp

{N
2
TrAUBU ⊺

}
(6.1)

where DU is the Haar measure on orthogonal matrices of size N . These
integrals can also be defined for Hermitian matrices, with integration over the
Haar measure on the unitary group.

High-dimensional spherical integrals find extensive applications in statistical
physics and random matrix theory. They have been explored in various scenarios,
including their role in spin glass models [84, 85]. These integrals play a crucial
role in tasks such as determining the density of eigenvalue distributions of
random matrices [86, 87] and analyzing large deviations of eigenvalues [88–92].

For the case that the integral is over the unitary group, Harish-Chandra
[59] initially derived explicit formulas for these integrals for any dimension,
and this was further developed by Itzykson and Zuber [60]. For this reason,
these integrals are often referred to as Harish- Chandra-Itzykson-Zuber (HCIZ)
integrals. However, it is important to note that these formulas, which we
omit here for brevity, are complex and involve determinants, making them less
suitable for straightforward calculations of high-dimensional asymptotics.

39
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We will investigate the high-dimensional limit of the integral (6.1) in two
cases: one where one of the matrices has low rank, and another where the ranks
of both matrices increase with the dimension N .

6.1.1 Low-rank symmetric spherical integrals

Rank-one case

The simplest case is the case in which one of the matrices is rank-one. This
class of spherical integral will be used in chapter 7. The asymptotic limit of
this class will be used in deriving the resolvent relation (as shown in previous
chapter) which is important in deriving the optimal RIE.

Let B be a rank-one matrix with non-zero eigenvalue θ. From the definition
(6.1), one may notice that the integral only depends on the eigenvalues of A,B,
and its high-dimensional limit involves the limiting ESD of A. So, with abuse
of notation, we will denote this integral as:

IN(θ,A) :=

∫
DU exp

{N
2
TrAUBU ⊺

}
(6.2)

Theorem 6.1 (Guionnet and Maida [93]). Suppose, as N → ∞, the ESD of
A converges weakly a.s. to ρA and the minimum and maximum eigenvalues
of A converge a.s. to the finite values λmin, λmax, respectively. Let Gmin =
limz→λmin

GρA(z), Gmax = limz→λmax GρA(z). Then,

J (θ, ρA) := lim
N→∞

1

N
ln IN(θ,A) =

1

2
θν(θ)− 1

2

∫
ln(1 + θν(θ)− θt)ρA(t) dt

(6.3)

where

ν(θ) =


RρA(θ) if Gmin ≤ θ ≤ Gmax

λmin − 1
θ

if θ > Gmax

λmax − 1
θ

if θ < Gmin

Note that, for small θ namely Gmin ≤ θ ≤ Gmax, one can check, by comparing
the derivatives, that:

J (θ, ρA) =
1

2

∫ θ

0

RρA(t) dt ≡
1

2
PρA(θ) (6.4)

Finite-rank

The asymptotic limit given in Theorem 6.1, can be extended to the case where
B has rank k which is finite as N → ∞. Let θ1, · · · , θk be the eigenvalues of
B, then it is shown in [65,93,94] that:

lim
N→∞

1

N
ln IN(A,B) =

k∑
i=1

J (θi, ρA) (6.5)
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In the replica computations, we often use this asymptotic formula where the
rank is the number of replicas which we assume are finite (because eventually
we take the limit n→ ∞). However, we only consider the case where all θi’s are
small enough to use the formula (6.4) (see for example (5.56). Although, this
might lead to uncontrolled approximations, but numerical simulations show
that results of a replica calculation are exact.

6.1.2 Extensive-rank symmetric spherical integrals

Sub-linear rank

In this scenario, the matrix B has a rank of k(N) such that k(N)/N → 0 as
N → ∞. Interestingly, it has been established that the limit of the integral
in this case converges to a sum of k(N) decoupled rank-one integrals, as in
the finite-rank case (6.5). This result was initially demonstrated in [93] for
situations where k(N) = o(N−1/2−ϵ) (for any positive ϵ) and the values of θi’s
below the transition threshold. Subsequently, this finding was extended in [94]
to any k(N) = o(N). Notably, Husson and Ko [65] recently demonstrated
that the assumption regarding the convergence of maximum (and minimum)
eigenvalues of A in Theorem 6.1 can be relaxed, and the asymptotic limit holds
for any k(N) = o(N).

Under conditions of Theorem 6.1, and assuming that the empirical distribu-
tion of non-zero eigenvalues of B converges to ρB, 1

k

∑k
i=1 δ(x− θi) → ρB as

N → ∞, we have:

lim
N→∞

1

Nk(N)
ln IN(A,B) =

∫
J (t, ρA)ρB(t) dt (6.6)

Authors in [65], used this result to derive the asymptotic MMSE and mutual
information in denoising symmetric matrices of sub-linear rank, which we will
also use it in chapter 9.

Linear rank

The case where both matrices have rank which grows linearly with N is more
involved and cannot be reduced to the rank-one case. It was first demonstrated
by Matytsin [95], that using Dyson’s Brownian motion, one can find:

lim
N→∞

1

N2
ln IN(A,B) =

1

2

[
− 3

4
− S(ρA, ρB) +

1

2

∫
dt t2

(
ρA(t) + ρB(t)

)
− 1

2

∫∫
dt ds ln |s− t|

(
ρA(t)ρA(s) + ρB(t)ρB(s)

)]
(6.7)

where
S(ρA, ρB) =

1

2

∫
dt

∫
dλ ρ(λ, t)

[
ν2(λ, t) +

π2

3
ρ2(λ, t)

]
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with ρ(λ, t), ν(λ, t) satisfying the Euler equations:
∂t ρ(λ, t) + ∂λ

[
ρ(λ, t)ν(λ, t)

]
= 0,

∂t ν(λ, t) + ν(λ, t) ∂λ ν(λ, t) =
π2

3
∂λρ

2(λ, t)

ρ(λ, 0) = ρA(λ), ν(λ, 1) = ρB(λ)

(6.8)

Guionnet and Zeitouni [61] subsequently provided a rigorous proof for the
asymptotic limit of these integrals. They formulated the limit in terms of a
variational problem over probability measures, which we do not present here.
Instead, we only outline the conditions necessary for the existence of this limit.
It is worth noting that, as discussed in [61], the resulting limit aligns with the
findings of Matystin [95] when the integral is over the unitary group.

Theorem 6.2 (Guionnet and Zeitouni [61]). Assume that the support of the
ESD of A is contained in a compact subset of R, and the second moment of
ESD of B is uniformly bounded. Moreover, suppose that the ESDs of A,B
converge weakly towards ρA, ρB. Then the following limit exists

J (ρA, ρB) := lim
N→∞

1

N2
ln IN(A,B), (6.9)

and J (ρA, ρB) is the solution of a variational problem over a space of probability
measures.

In chapter 9, we use this result to prove the existence of the asymptotic
mutual information for symmetric denoising problem. Moreover, we derive an
explicit expression for the particular case where ρB = ρA ⊞ ρsc.

J (ρA, ρB) =
1

2

∫
t2ρA(t) dt−

1

2

∫∫
ln |s− t| ρB(s)ρB(t) ds dt−

1

8

This formula was previously derived in [43] by solving the Euler equations (6.8)
for this particular case.

6.2 Rectangular Spherical Integrals

For the matrices A ∈ RM×N ,B ∈ RN×M , the rectangular spherical integral is
defined as:

IN,M(A,B) :=

∫
DU DV exp

{√
NM TrAUBV

}
(6.10)

where DU , DV are Haar measures on orthogonal matrices of size N and M
respectively. These integrals can also be defined for Hermitian matrices, with
integration over the Haar measure on the unitary group.

Rectangular spherical integrals are the counterparts to symmetric ones
(6.1), emerging from the study of rectangular matrices. They are expected to
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have similar applications, including being useful for understanding the large
deviations of singular values of rectangular matrices. However, as the study of
these integrals is quite recent, the full extent of their applications remains to
be fully explored.

Like the symmetric case, we will investigate the high-dimensional limit of
the integral (6.10) in two cases: one where one of the matrices has low rank,
and another where the rank of both matrices increases with the dimension N.

6.2.1 Low-rank rectangular spherical integrals

Rank-one case

This class of spherical integrala will be used in chapter 8, and to derive the
resolvent relation (as shown in previous chapter) which is important in deriving
the optimal RIE.

Let B be a rank-one matrix with non-zero singular value θ. From the
definition (6.10), one may notice that the integral only depends on the singular
values of A,B, and the its high-dimensional limit involves the limiting ESD of
A. With abuse of notation, we will denote this integral as:

IN,M(θ,A) :=

∫
DU DV exp

{√
NM TrAUBV

}
(6.11)

Recall the transforms defined in (5.14), (5.15), (5.16). We state the asymp-
totic limit of IN,M(θ,A) below:

Statement 6.3. Suppose that ESD of A converges weakly towards µA and
the top singular value of A converges to γmax as N → ∞. Moreover, assume
N/M → α ∈ (0, 1]. Let Hmax = limz→ 1

γ2max

H(α)
µA (z). Then,

J (α)(θ, µA) := lim
N→∞

1

N
ln IN,M(θ,A)

= ν − 1

2α
ln(1 + αν)− 1

2
ln(1 + ν)− 1

2

∫
ln
(
1− θ2

T (α)(ν)
t2
)
µA(t) dt

with

ν =

{
C(α)
µA (θ

2) if θ2 ≤ Hmax

T (α)−1
(θ2γ2max) if θ2 > Hmax

The expression in Statement 6.3 is derived in appendix 6.A by solving the
non-rigorous (but conjectured to be exact) variational problem proposed in [96]
for the asymptotic rectangular spherical integral. In [64], Statement 6.3 is
rigorously proved for a smaller interval of θ, namely θ2 < 1

γ2
max

≤ Hmax.
Similar to the symmetric case, for small θ ≤ Gmax, one can check, by

comparing the derivatives, that:

J (α)(θ, µA) =

∫ θ

0

C(α)
µB (t

2)

t
dt =

1

2

∫ θ2

0

C(α)
µB (t)

t
dt ≡ 1

2
Q(α)

µB
(θ2) (6.12)
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In the replica computations for deriving optimal RIEs, we encounter these
types of integral in which the matrix B has higher but fixed rank (≥ 1). Similar
to the symmetric case, see section 6.1.1, we use the formula which is the sum
over singular values of the expression on the rhs of (6.3). For B with singular
values θ1, · · · , θk:

lim
N→∞

1

N
ln IN,M(A,B) =

k∑
i=1

J (α)(θi, ρA)

Although we are not aware if this generalization has been proved, we believe
that the ideas found in [63] can be applied to show it holds. Furthermore, we
use the formula for the case where all θi’s are small enough to use the formula
(6.12).

6.2.2 Extensive-rank rectangular spherical integrals

As mentioned before, compared to their symmetric counterparts, high-dimensional
limits of rectangular spherical integrals have been less explored. However, in
cases where the rank of both matrices grows with the dimension, the asymptotics
of these integrals have recently been investigated, as detailed in [97].

They formulated the limit in terms of a variational problem involving
probability measures, which, we do not present here. Instead, we only outline
the conditions necessary for the existence of this limit which will be used
derivation of asmptotic mutual information in chapter 10.

Theorem 6.4 (Guionnet and Jiaoyang [97]). Suppose that the ESDs of the ma-
trices A,B converge weakly towards µA, µB, respectively. Moreover, assume the
second moment of the ESD of A is uniformly bounded and the non-commutative
entropy of the symmetrization of µA is finite,

∫∫
ln |x−y| dµ̄A(x) dµ̄A(y) > −∞,

and
∫
ln |x| dµ̄A(x) > −∞. Then the following limit exists

J (α)(µA, µB) := lim
N→∞

1

NM
ln IN,M(A,B), (6.13)

and J (α)(µA, µB) is given in terms of variational problem.

In [98], an explicit expression of this limit is derived for the case where
B = A+Z where Z has i.i.d. Gaussian entries, µB = µA ⊞α µMP.



Appendix

6.A Derivation of Asymptotic Rank-One
Rectangular Spherical Integral

Lemma 6.1. (Extension of lemma 4.2 in [64]) Fix α ∈ [0, 1], θ ∈ [0,
√
Hmax),

and define γ = C(α)
µ (θ2). Then

Mµ

( θ2

T (α)(γ)

)
= γ (6.14)

Proof. By definition, T (α)(γ) = θ2

H(α)
µ

−1
(θ2)

, so H(α)
µ

−1
(θ2) = θ2

T (α)(γ)
. Applying

H(α)
µ on the both sides, we get θ2 = H(α)

µ

(
θ2

T (α)(γ)

)
,

θ2

T (α)(γ)
T (α)

(
Mµ

( θ2

T (α)(γ)

))
= θ2

It follows that T (α)
(
Mµ

(
θ2

T (α)(γ)

))
= T (α)(γ). Since, both Mµ

(
θ2

T (α)(γ)

)
and γ

are non-negative real numbers, one gets (6.14)

Remark 6.1. If µ(t) ̸= δ(t), then Mµ is an increasing function, and γ =

C(α)
µ (θ2) is the unique solution of (6.14).

6.A.1 Proof of Statement 6.3

We start with the following theorem:

Theorem 6.5. (Kabashima [99]) Assume the ESD of A⊺A ∈ RM×M converges
weakly towards ρA. Also, assume that N,M → ∞ with N/M → α. Assume
moreover that the top eigenvector of A⊺A converges to γmax. Let θ ≥ 0 be the

45
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only non-zero singular value of B. Then,

lim
M→∞

1

M
ln IN,M(A,B)

=
1

2
inf

x,y>0
xy≥θ2γmax

[
αx+ y − (α− 1) lnx−

∫
dρA(λ) ln(xy − θ2λ)

]
− 1 + α

2

(6.15)

Our goal is to solve the variational problem in (6.15). We are interested in
the limit of 1

N
ln IN,M , which is

1

2
inf

x,y>0
xy≥θ2γmax

[
x+

1

α
y− (1− 1

α
) lnx− 1

α

∫
dρA(λ) ln(xy− θ2λ)

]
− 1 + 1

α

2
(6.16)

We also assume that, α ∈ [0, 1], which implies N ≤M . By the assumption
in Theorem 6.5, the empirical spectral law of A⊺A converges to ρA.

1

M

m∑
i=1

δλi
→ ρA, λi are eigenvalues of A⊺A

Since M ≥ N , A⊺A has M −N zero eigenvalues. So,

1

M

(
(M −N)δ0 +

N∑
i=1

δλ′
i

)
→ ρA, λ′i are eigenvalues of AA⊺

In the limit N → ∞, we can write(1−α)δ0+αρ∗A = ρA where ρ∗A is the limiting
spectral law of AA⊺.

Replacing ρA with (1− α)δ0 + αρ∗A in (6.16), we find

1

2
inf

x,y>0
xy≥θ2γmax

{
x+

1

α
y − (1− 1

α
) lnx− 1

α

[
(1− α) lnx+ (1− α) ln y

+ α

∫
dρ∗A(λ) ln(xy − θ2λ)

]}
− 1 + 1

α

2

=
1

2
inf

x,y>0
xy≥θ2γmax

{
x+

1

α
y − (1− 1

α
) lnx− 1

α

[
lnx+ ln y

+ α

∫
dρ∗A(λ) ln

(
1− θ2

xy
λ
)]}

− 1 + 1
α

2

=
1

2
inf

x,y>0
xy≥θ2γmax

[
x+

1

α
y − lnx− 1

α
ln y −

∫
dρ∗A(λ) ln

(
1− θ2

xy
λ
)]

− 1 + 1
α

2

(6.17)
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Since ρ∗A is the limiting spectral law of AA⊺, we find that 1
N

∑N
i=1 σ

2
i → ρ∗A,

where σi’s are the singular values of A. So, ρ∗A is the pushforward measure
(with function f(x) = x2) of µA, which is the limiting ESD of A. Assuming
the the function is integrable, we can write (6.17) as

1

2
inf

x,y>0
xy≥θ2σ2

max

[
x+

1

α
y − lnx− 1

α
ln y −

∫
dµ(t) ln

(
1− θ2

xy
t2
)]

− 1 + 1
α

2
(6.18)

Define the function f(x, y) as the objective function in (6.18). First, we show
that f(x, y) is convex.

Let g(x, y) = x − lnx + 1
α
(y − ln y). It can easily be checked that this

function is convex in the whole plane, in particular in the convex set x > 0, y >
0, xy ≥ θ2σ2

max.
Define h(x, y) = −

∫
dµA(t) ln(1− θ2

xy
t2) on the convex set x > 0, y > 0, xy ≥

θ2σ2
max. The Hessian of h(x, y) reads

Hh =

[
1
x2MµA

(
θ2

xy

)
+ θ2

x3y
M′

µA

(
θ2

xy

)
θ2

x2y2
M′

µA

(
θ2

xy

)
θ2

x2y2
M′

µA

(
θ2

xy

)
1
y2
MµA

(
θ2

xy

)
+ θ2

xy3
M′

µA

(
θ2

xy

)]

detHh =
1

x2y2
M2

µA

( θ2
xy

)
+ 2

θ2

x3y3
MµA

( θ2
xy

)
M′

µA

( θ2
xy

)
First note that, MµA

is non-negative (in particular positive if θ > 0), and
non-decreasing. Thus, detHh is non-negative. Moreover, all entries of H are
non-negative. Therefore, Hh is positive semi-definite, which implies h(x, y)
is convex. Finally, we conclude that f(x, y) = g(x, y) + h(x, y) is a convex
function.

To find the global minimum of f(x, y), we put the derivative of f(x, y) to
zero.

∇f(x, y) =
[
1− 1

x
− 1

x
MµA

(
θ2

xy

)
1
α
− 1

α
1
y
− 1

y
MµA

(
θ2

xy

)] ≡ 0 ⇒
{

MµA

(
θ2

xy

)
= x− 1

MµA

(
θ2

xy

)
= 1

α
(y − 1)

Denoting x− 1 = 1
α
(y − 1) = γ, the above equations can be written as

MµA

( θ2

T (α)(γ)

)
= γ

By lemma 6.1, if θ2 < Hmax, then γ = C(α)
µ (θ2) is the unique solution of

equation above. On the other hand, if θ2 ≥ Hmax then there is no solution to
the equation above (in the proof of lemma 6.1, we use the assumption that
θ2 < Hmax to show that H(α)

µ

−1
(θ2) is defined. However, if θ2 ≥ Hmax this fails

which implies that there is no solution to the equation). So, in this case by
convexity of f(x, y), the minimum is attained on the boundaries of domain of
the function. Therefore, the minimum is attained on the curve xy = θ2σ2

max.
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If θ2 < Hmax, then

x∗ = 1 + C(α)
µA

(θ2), y∗ = 1 + αC(α)
µ (θ2)

Denoting C(α)
µA (θ

2) by γ, we can write (6.18) as

1

2

[
1 + γ+

1

α
(1 + αγ)− ln(1 + γ)− 1

α
ln(1 + αγ)

−
∫
dµA(t) ln

(
1− θ2

T (α)(γ)
t2
)]

− 1 + 1
α

2

= γ − 1

2α
ln(1 + αγ)− 1

2
ln(1 + γ)− 1

2

∫
dµA(t) ln

(
1− θ2

T (α)(γ)
t2
)

(6.19)

which coincides with the eq. (29) in [64], and is equal to
∫ θ

0

C(α)
µ (t2)

t
dt.

If θ2 ≥ Hmax, the minimizer lies on the the curve xy = θ2σ2
max ≡ A.

Plugging y = A
x

in (6.18) we find

1

2
inf
x>0

[
x+

1

α

A

x
− lnx− 1

α
ln
A

x
−
∫
µ(dt) ln

(
1− θ2

A
t2
)]

− 1 + 1
α

2

Computing the derivative w.r.t. x, we get

1− A

α

1

x2
− 1− 1

α

x
≡ 0 ⇒ x2 − (1− 1

α
)x− A

α
= 0

positive root
=======⇒ x =

√
(α− 1)2 + 4αA− 1 + α

2α
= T (α)−1

(A) + 1

Therefore,

x∗ = T (α)−1
(θ2σ2

max) + 1, y∗ = αT (α)−1
(θ2σ2

max) + 1

It can be seen that x∗y∗ = T (α)
(
T (α)−1

(θ2σ2
max)

)
= θ2σ2

max. Denoting T (α)−1
(θ2σ2

max)
by γ, f(x∗, y∗) can be rewritten as (6.19), and we deduce Statement 6.3.
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Mismatched Estimation
of Rank-One Symmetric
Matrices 7
In this chapter, we investigate the mismatched estimation in the simplest
case, where the signal matrix is a rank-one symmetric matrix and noise is
Gaussian. Our primary objective is to compute the full asymptotic mismatched
MSE in the large N limit, when a Gaussian prior is employed by statisticians
for estimation. We introduce an additional temperature parameter β, in the
posterior distribution, which may improve the estimation performance. For
this model,

• We prove a relation which links the free energy of the system to the
mismatched MSE, see lemma 7.1.

• We derive the asymptotic free energy for two cases of true priors: Gaussian
prior in Theorem 7.4, and Bernoulli prior in Theorem 7.6.

• Using the f-MSE relation, we find the asymptotic mismatched MSE for
Gaussian prior (Theorem 7.1) and Bernoulli prior (Theorem 7.3).

• We explore the performance of the AMP algorithm and spectral algorithms
in the mismatched setting.

Part of this work was presented in [28] F. Pourkamali and N. Macris, “Mismatched
estimation of symmetric rank-one matrices under gaussian noise,” in International Zurich
Seminar on Information and Communication (IZS 2022). Proceedings. ETH Zurich, 2022,
pp. 84–88
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7.1 Setting and Preliminaries

Suppose s ∈ RN is generated according to a prior denoted P∗. The goal is to
estimate the vector s upon observing the matrix

Y =

√
κ

N
ss⊺ +Z (7.1)

where κ is the signal-to-noise-ratio (SNR), and the noise matrix Z is a symmetric
matrix with i.i.d. N (0, 1) off-diagonal and N (0, 2) diagonal entries. This model
is called the Spiked-Wigner model. The purpose of the scaling factor 1√

N
is to

make the inference problem neither trivially easy nor completely impossible in
the large system limit.

To measure the quality of our estimate, we pick the matrix mean squared
error (MSE). For any estimator (function of Y ) θ̂ which outputs an estimate
of ss⊺, MSE is defined as

MSEN =
1

N2
EP∗,PZ

[∥∥ss⊺ − θ̂(Y )
∥∥2

F

]
(7.2)

where ∥.∥F is the Frobenius norm of a matrix. Note that it is natural to define
the error in matrix form, since if P ∗ is a centered distribution, there is an
ambiguity of sign inherited in the observation matrix; s can be replaced by −s
without changing the probabilistic aspects of the observation matrix.

It can be proved that the minimum MSE (MMSE) is achieved for θ̂ =
E[xx⊺|Y ], where the expectation is taken over the posterior distribution with
true known parameters and prior distribution.

MMSEN :=
1

N2
EP∗,PZ

[∥∥ss⊺ − ⟨xx⊺⟩∗]
∥∥2

F

]
where ⟨.⟩∗ denotes the expectation with respect to the posterior distribution.
Here we adopt the traditional statistical mechanics notation for the internal
(annealed) expectations

⟨f(x)⟩∗ =
∫
dxP∗(x)f(x)e−

1
4
∥Y −

√
κ
N
xx⊺∥2F∫

dxP(x)e−
1
4
∥Y −

√
κ
N
xx⊺∥2F

for any reasonable function f(x) such that the integrals are finite. We necessarily
have MSEN ≥ MMSEN .

7.1.1 Mismatched inference

We consider the mismatched scenario in which the statistician is not aware of
the prior distribution P∗ and the SNR parameter κ. However, he knows that
the channel is additive Gaussian with variance one (and two on diagonal 1).

1In fact, as N → ∞ the variance on the diagonal does not affect the probabilistic behavior
of the problem
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He assumes that the prior distribution is P, and the SNR is κ′. Following the
Bayesian approach, he chooses his estimator to be the mean of the posterior
distribution. Our goal is to compute the asymptotic MSE for his estimator.

The statistician considers the posterior distribution which reads up to a
normalizing factor

P{x|Y } ∝ e−
β
4
∥Y −

√
κ′
N
xx⊺∥2FP(x)

∝ e−
βκ′
4N

∥x∥4+β
2

√
κ′
N

TrY xx⊺
P(x)

(7.3)

where P is the assumed mismatched distribution. In deriving the second line,
we use the fact that ∥Y ∥F is a constant (because it is being conditioned on).
Note that, by introducing the parameter β we consider a more general class of
estimators. Although, in the fully matched case β = 1 is optimal, as we will see,
in the mismatched case this auxiliary parameter may improve the performance
of the estimator for a set of mismatched parameters.

The partition function is defined as the normalization factor of the posterior
distribution

Z(Y ) =

∫
dx e−

βκ′
4N

∥x∥4+β
2

√
κ′
N

TrY xx⊺
P(x) (7.4)

and the mismatched free energy is defined as

fN(P
∗,P, κ, κ′, β) = − 1

N
EP∗,PZ

[lnZ(Y )] (7.5)

Now we state a lemma relating mismatched free energy to MSE. Keep in mind
that both mismatched free energy and MSE are functions of P∗,P, κ, κ′, β, but
for simplicity of notation we drop the arguments.

Lemma 7.1.(
2− 1

β

√
κ

κ′

)
1

β

√
κ

κ′
d

dκ
fN +

2β − 1

β2

d

dκ′
fN +

1− β

β

1

κ′
d

dβ
fN +

1

4N2
EP∗ [∥s∥4]

=
1

4
MSEN

(7.6)

Proof. Appendix 7.A.

Remark 7.1. Lemma (7.1) generalizes the classical I-MMSE relation. Here the
mismatched free energy cannot be related to a mutual information. Nevertheless,
note that, in the special case where κ′ = κ, β = 1 Eq. (7.1) simplifies slightly
and combining with the I-MMSE relation, we obtain that the difference of MSE
and MMSE is directly related to a derivative of a relative entropy, equivalent to
relations discussed in detail in [100] for vector channels.
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Thus, to find the asymptotic MSE, we need to compute the asymptotic
(mismatched) free energy.

The central assumption in our analysis is that the statistician’s prior is
rotationally invariant. This assumption enables us to apply the known results
from the literature on spherical integrals.

Exploiting the rotational invariance of P and changing variables x → Ux,
for an orthogonal matrix U ∈ RN×N , the integral in eq. (7.4) becomes
(|detU | = 1):

Z(Y ) =

∫
dx e−

βκ′
4N

∥Ux∥4+β
2

√
κ′
N

TrY Uxx⊺U⊺
P(Ux)

=

∫
dxP(x) e−

βκ′
4N

∥x∥4+β
2

√
κ′
N

TrY Uxx⊺U⊺

Since this holds for any orthogonal matrix U , we can take the expectation over
the Haar measure on the group of N ×N orthogonal matrices.

Z(Y ) =

∫
dxP(x) e

−βκ′
4N

∥x∥4
∫
DUe

β
2

√
κ′
N

TrY Uxx⊺U⊺
(7.7)

where DU denotes the Haar measure.

7.1.2 Computing free energy

One clearly sees that the inner integral in eq. (7.7), is the rank-one spherical
integral (6.1) in the rank-one setting. To apply the asymptotic result from
theorem 6.1, we can rewrite the spherical integral in eq. (7.7) as∫

DUe
N Tr Y√

N
U β

√
κ′

2N
xx⊺U⊺

(7.8)

The first matrix is Y√
N

=
√
κ

N
ss⊺ + 1√

N
Z, where 1√

N
Z is the suitably

normalized Wigner matrix whose limiting spectral measure is the renowned
semi-circle law (5.18). Moreover, the spectral measure of Y√

N
converges almost

surely (a.s) as N → ∞ to the semi-circle law (see e.g. proposition 1 in [101]).
We have Gρsc(z) =

1
2
(z −

√
z2 − 4) and Rρsc(z) = z.

Let λmin and λmax be the bottom and top eigenvalue of Y√
N

, from the results
in [102], we have (a.s.)

λmin = −2, γmax =

{
2 if

√
κ∥s∥2
N

≤ 1√
κ∥s∥2
N

+ N√
κ∥s∥2 if

√
κ∥s∥2
N

≥ 1
(7.9)

So,

Gmin = −1,Gmax =

{
1 if

√
κ∥s∥2
N

≤ 1
N√
κ∥s∥2 if

√
κ∥s∥2
N

≥ 1
(7.10)
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On the other hand the non-zero eigenvalue of the rank-one matrix β
√
κ′

2N
xx⊺

is θ = β
√
κ′

2N
∥x∥2. Thus, the asymptotic of the integral in eq. (7.8) is only a

function of ∥x∥ and ∥s∥, and can be computed by theorem 6.1 for the different
cases of the parameters.

Now assume that P(x) ∝ e−Ng(∥x∥). Substituting the asymptotic of the
integral in eq. (7.7) in eq. (7.7), followed by an application of the Laplace
method, we can find the asymptotics of the partition function, from which we
are able to compute the free energy. Once we obtain the asymptotic of the free
energy, we can find the MSE using lemma 7.1.

7.1.3 Approximate Message Passing (AMP) Algorithm

The approximate message passing (AMP) algorithm is an iterative algorithm
rooted in statistical physics. A powerful feature of AMP is that its performance
can be tracked by running a simple recursion called State Evolution. AMP and
its state evolution were studied in [27] for the compressed sensing problem,
and [103] generalized the results for the rank-one matrix estimation problem.

Following the work of [104], the AMP algorithm for the mismatched esti-
mator in (7.3) reads

x̂t+1
i = ηP(a

t, bti)
νt+1
i = η′P(a

t, bti)

bti = β
√

κ′

N
(Y x̂t)i − β2κ′

(
1
N

∑N
k=1 ν

t
k

)
x̂t−1
i

at = βκ′ ∥x̂
t∥2
N

− β(β − 1)κ′ 1
N

∑N
k=1 ν

t
k

(7.11)

for i = 1, . . . , N , where ηP is called the denoising function, and η′P is the
derivative with respect to the second argument, b. The denoising function is
defined as

ηP(a, b) =

∫
dxP(x)x ebx−

1
2
ax2∫

dxP(x) ebx−
1
2
ax2

Note that the AMP equations are derived assuming that the (mismatched)
prior P is i.i.d.

To derive the state evolution equations for (7.11), we introduce the following
order parameters.

mt =
1

N
(s⊺x̂t)2, qt =

1

N
∥x̂t∥4, Σt =

1

N

N∑
i=1

νti

mt measures how much the AMP estimate is correlated with the true signal at
iteration t, qt is the norm of the estimate, and Σt is the mean of the variance
of the estimate x̂i.

Assuming the independence of messages for large enough n, the variables
bti and at can be approximated by a normal random variables by central
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limit theorem. This enables us to derive the recursion formula for the order
parameters as follows:

mt+1 = EP∗,PW

[
ηP

(
βκ′

√
qt − β(β − 1)κ′Σt, β

√
κκ′mts+ β

√
κ′
√
qtw

)
s
]2

qt+1 = EP∗,PW

[
ηP

(
βκ′

√
qt − β(β − 1)κ′Σt, β

√
κκ′mts+ β

√
κ′
√
qtw

)2]2
Σt+1 = EP∗,PW

[
η′P

(
βκ′

√
qt − β(β − 1)κ′Σt, β

√
κκ′mts+ β

√
κ′
√
qtw

)]
(7.12)

where s and w are two independent random variables, w is a Gaussian variables
with mean 0 and variance 1, and s is distributed according to P∗. Iterating
over the equations (7.12) allows us to to assess the MSE of the AMP estimate
at each iteration.

MSEt = EP∗
[
s4
]
+ qt − 2mt (7.13)

Remark 7.2. It is also possible to determine the Vector MSE of the AMP
estimate at each iteration. For that purpose, the order parameters and state
evolution equations are slightly different from the ones in (7.12); however, since
our primary object of interest is the matrix MSE, we refer the reader to the
appendix for the evaluation of vector MSE.

7.1.4 Nishimori identity

In the Bayes optimal setting in which the model is fully known, the Bayes’ rule
yields a set of identities which are called Nishimori identities. In its simplest
form, it states that

EP∗,PZ

[〈
g(x1,x2)

〉
∗

]
= EP∗,PZ

[〈
g(s,x)

〉
∗

]
(7.14)

where g is a generic function, and x1,x2,x are i.i.d. according to the (true)
posterior distribution, and s is generated from P∗. Note that, the Nishimori
identity holds for functions with more than two arguments, however for the
matrix estimation problem the simple version, (7.14), is used.

Define the following two quantities

m∗
stat =

1

N2
EP∗,PZ

[
Tr ss⊺⟨xx⊺⟩∗

]
q∗stat =

1

N2
EP∗,PZ

[∥∥⟨xx⊺⟩∗
∥∥2

F

]
Applying (7.14), we get

q∗stat = EP∗,PZ

[
Tr⟨x1x

⊺
1⟩∗⟨x2x

⊺
2⟩∗

]
= EP∗,PZ

[
Tr ss⊺⟨xx⊺⟩∗

]
= m∗

stat

Therefore, one of the primary identities we have in the Bayes optimal scenario
is q∗stat = m∗

stat.
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For the mismatched case, we can similarly define

mstat =
1

N2
EP,PZ

[
Tr ss⊺⟨xx⊺⟩P,κ′

]
qstat =

1

N2
EP,PZ

[∥∥⟨xx⊺⟩P,κ′
∥∥2

F

]
First note that we have access to m∗

stat, q∗stat directly from the free energy via
the following relations

mstat = − 4

β

√
κ

κ′
d

dκ
f

qstat = − 4

β

κ

κ′
d

dκ
f +

4(2β − 1)

β2

d

dκ′
f +

4

κ′
1− β

β

d

dβ
f

(7.15)

As we will see, enforcing the Nishimori condition, mstat = qstat in the mismatched
case leads to the minimum mismatched MSE.

7.2 Gaussian Prior

Let si be i.i.d. random variables generated from N (0, σ2) for i = 1, . . . , N . The
statistician observes the matrix Y of the form (7.1). Considering the posterior
distribution (7.3) with P be the centered Gaussian with variance σ′2, we denote
his estimate for ss⊺ by ⟨xx⊺⟩σ′,κ′,β to stress that the estimation is done with
the mismatched parameters σ′, κ′, β. The asymptotic MSE of this estimator is
stated in the following theorem.

Theorem 7.1. Assume that the sequence (MSE)N≥1 converges uniformly in
(κ, κ′, β) ∈ K ⊂ R3

+. Then for all σ, σ′ (strictly positive) and (κ, κ′, β) ∈ K,
the asymptotic mismatched MSE reads:

lim
N→∞

MSEN(σ, σ
′, κ, κ′, β)

=


σ4 +

[
(1−2β)

√
κ′σ′2+1

]2
β2κ′2σ′4 if (2β − 1)

√
κ′ > 1

σ′2 , κ ≤ 1
σ4 ,

A if κ ≥ 1
σ4 ,

√
κκ′ ≥ 1

βσ2ρ∗
,

σ4 o.w.

(7.16)

where

A = σ4

(
1−

√
κ

κ′

)2

+
1

β

[
2√
κκ′

+
1

β

1

κ′2σ′4 +
2

κ′
σ2

σ′2

(
1−

√
κ

κ′

)
− 2

κκ′σ2σ′2

]

+

(
1− 1

β

)[
2

κ′
− 1

β

2√
κκ′3σ2σ′2

+

(
1− 1

β

)
1

κκ′σ4
+

2√
κ3κ′σ4

]
and

ρ∗ =

 σ′2 if β = 1,

1
κ′β(β−1)

(
1

2σ′2 −
√

1
4σ′4 − κ′β(β − 1)

)
if β ̸= 1
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Proof. First, we derive the asymptotic free energy (7.5) in Theorem 7.4. This
derivation utilizes the careful application of the Laplace method for computation
of the integrals, incorporating results on asymptotic log-spherical integrals, as
explained in section 7.1.2. Subsequently, we compute the asymptotic MSE
using lemma 7.1. For a details, refer to Appendix 7.B.

Remark 7.3. In the fully matched case, uniform convergence of the sequence
(MMSE)N≥1 - except possibly at phase transition points which form a set of
measure zero - follows using the concavity of mutual information with respect
to κ. Then, using the I-MMSE relation [105], this allows to interchange limit
and derivative to go from asymptotic mutual information (a.k.a. free energy) to
asymptotic MMSE. For the present mismatched MSE, we use a relation similar
to I-MMSE but in terms of mismatched free energies, which lack concavity w.r.t.
κ and κ′. Therefore, uniform convergence is difficult to establish from general
principles. However, we conjecture that it holds on a set K of measure one and
that (7.16) holds almost everywhere (i.e., except possibly at phase transition
lines).

In the following, we will investigate the asymptotic MSE for different cases
of parameters. Note that the MSE= σ4 can be achieved by simply x̂ = 0.
Therefore, we are interested in studying the problem where the inference is
possible, in the sense that MSE less than σ4 is achievable. By theorem 7.1 it is
statistically impossible to achieve a MSE lower than σ4 when κ < 1

σ4 , even in
the matched case. Thus, the main quantity of interest is the expression A, and
we try to study the behavior of this expression for different cases of parameters.

Also, we investigate the performance of AMP algorithm and compare it
with the spectral methods. For mismatched prior P = N (0, σ′2), the AMP
equations (7.11) reduces to

x̂t+1
i =

bti
at+ 1

σ′2

b⊺i = β
√

κ′

N
(Y x̂t)i − β2 κ′

at−1+ 1
σ′2
x̂t−1
i

a⊺ = βκ′ ∥x̂
t∥2
N

− β(β − 1) κ′

at−1+ 1
σ′2

(7.17)

and the state evolution equations read

mt+1 = β2κκ′σ4mt[
βκ′

√
qt−β(β−1)κ′Σt+ 1

σ′2

]2
qt+1 =

β4κ′2
(
κσ2mt+

√
qt
)2[

βκ′
√

qt−β(β−1)κ′Σt+ 1
σ′2

]4
Σt+1 = 1

βκ′
√

qt−β(β−1)κ′Σt+ 1
σ′2

(7.18)

To evaluate the performance of AMP, we can find the fixed points of SE
equations above, which we denote by m∗

AMP, q
∗
AMP.
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7.2.1 Bayes optimal estimation

Since the true and the mismatched prior are Gaussian, we can have the Bayes
optimal scenario by substituting κ′ = κ, σ′ = σ. This leads to

A =
2

κ
+

1

κ2σ4

(
3− 8

β
+

4

β2

)
which attains its minimum for β = 1. Putting β = 1 in (7.16) implies the
MMSE for the Gaussian prior.

lim
N→∞

MMSEN(σ, κ) =

{
σ4 if κ ≤ 1

σ4

2
κ
− 1

κ2σ4 if κ ≥ 1
σ4

(7.19)

This expression is well known and derived previously by a set of different
approaches (see [8, 9, 106–108]).

The free energy for the Bayes optimal case can be obtained from theorem 7.4,
from which we can find m∗

stat, q
∗
stat using (7.15). We can see that as predicted

by the Nishimori identity they are equal.

m∗
stat = q∗stat =

(
σ2 − 1

κσ2

)2
Performance of AMP

In this scenario, AMP is optimal, in the sense that it achieves the same MMSE.
This can be checked from the fixed points of the SE equations and the relation
(7.13).

m∗
AMP = q∗AMP =

(
σ2 − 1

κσ2

)2
Spectral algorithm

A natural and simple algorithm for this problem is to compute the top eigen-
vector of Y . Spectral analysis of the matrix Y yields that if κσ4 > 1 then the
top eigenvector of Y is correlated with the planted signal [102]. Denote the
(unit norm) top eigenvector of Y by y, and the normalized s by s̄. In the limit
N → ∞, we have (

s̄⊺y
)2

=

{
0 if κσ4 ≤ 1
1− 1

κσ4 if κσ4 ≥ 1
(7.20)

To minimize the matrix MSE, we can rescale y by a factor δ. With this
rescaling, we have

MSE = lim
N→∞

1

N2
EP∗

[
∥ss⊺ − δ2yy⊺∥2F

]
= σ4 + δ4 − 2δ2σ2

(
1− 1

κσ4

)
Minimizing over δ, we find that the optimum δ is

√
σ2 − 1

κσ2 . Note that there

should be also a factor of
√
N in the rescaling. With this rescaling, we can see

that the spectral estimate can also achieve the MMSE.
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Remark 7.4. First, note that the AMP equations form a kind of power iteration
applied to the matrix Y (In fact this comes from the linearity of the denoising
function for the Gaussian prior), so the fixed point of AMP iteration is the
top eigenvector of Y . On the other hand, q∗AMP coincides with the optimum
rescaling factor (Note that q∗AMP is ∥x̂∥4). Therefore, the AMP can be seen as
a spectral method with inherited rescaling.

7.2.2 Mismatched estimation with β = 1

Corollary 7.2. For β = 1, the asymptotic MSE in (7.16) reduces to

lim
N→∞

MSEN =


σ4 +

(
1−

√
κ′σ′2

κ′σ′2

)2
ifκ ≤ 1

σ4 , andκ
′ ≥ 1

σ′4

σ4
(
1−√

κ
κ′

)2
+ 2√

κκ′ +
1

κ′2σ′4 ifκ ≥ 1
σ4 , and

√
κκ′ ≥ 1

σ2σ′2

+ 2
κ′

σ2

σ′2

(
1−√

κ
κ′

)
− 2

κκ′σ2σ′2

σ4 o.w.

(7.21)

Fix σ = 1, κ = 4, the mismatched MSE is illustrated in Fig. 7.2.1. Through-
out the paper, we stick to this example for simplicity; however, the observations
are generic for κσ4 > 1 (note that σ4 could be absorbed in κ in the model
definition, so it is natural to set σ = 1), and can be checked analytically from
the expressions of the MSE and MMSE. We observe one phase transition line
and an intermediate region where estimation better than chance is possible,
in the sense that the MSE is smaller than σ4. We refer to the caption of Fig.
1 for details. In the case σ = 1 and κ < 1, or more generally κσ4 < 1, it is
easy to see from Eq. (7.21) that the intermediate region disappears and the
MSE is always greater or equal to σ4 (the phase transition line is still present
technically speaking).

Figures 7.2.2 and 7.2.3 depict the behavior of the MSE along vertical
and horizontal sections of Fig. 1. We clearly observe that the MSE is not
monotonous and that for κ′ < 8, the minimal value given by the MMSE may
be achieved.

Putting κ′ = κ, the mismatched MSE then reduces to:

if σ′ ≤ σ, lim
N→∞

MSEN(σ, σ
′, κ) =

{
σ4 if κ ≤ 1

σ2σ′2
2
κ
− 1

κ2σ′2 (
2
σ2 − 1

σ′2 ) if κ ≥ 1
σ2σ′2

if σ′ ≥ σ, lim
N→∞

MSEN(σ, σ
′, κ) =


σ4 if κ ≤ 1

σ′4

σ4 + 1
κ
− 2

κ
3
2 σ′2

+ 1
κ2σ′4 if 1

σ′4 ≤ κ ≤ 1
σ4

2
κ
− 1

κ2σ′2 (
2
σ2 − 1

σ′2 ) if κ ≥ 1
σ4

For σ = 1 the MSE is plotted as a function of SNR for various values of σ′

in Fig. 7.2.4. When σ′ > σ, we observe that the MSE increases as the SNR
increases. Although this happens when we are still in the regime of small SNR
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Figure 7.2.1: Plot of MSE according to Eq. (7.21) for σ = 1, κ = 4. The solid
leftmost (red) curve is a phase transition line. On the left of this curve MSE = σ4 = 1.
In the intermediate region between the solid leftmost (red) curve and the dashed (red)
curve the MSE takes values less than σ4 = 1. In this intermediate region estimation
better than chance is possible. On the dotted (green) curve the MSE attains equal to
MMSE(σ, κ) = 2

κ − 1
κ2σ4 = 7/16 (even though we do not have κ′ = κ, σ′ = σ except for

one point which corresponds to the true parameters, shown by ∗). This curve has vertical
tangent at κ′ = 16/9, σ′ =

√
3/2. The MSE equals σ4 = 1 on the dashed (red) line and

takes higher values in the region on the right-hand side of this line. Note that this is not
a phase transition line. Finally, we point out that the MSE is continuous throughout,
and the phase transition is, therefore, a continuous phase transition. The analytical
expressions of the phase transition line, as well as dotted and dashed lines can easily be
written down from eqs. (7.21) and (7.19). For σ = 1, κ = 4 the dotted (resp. dashed)
curves have horizontal asymptotes κ′ = 64/9 (resp. κ′ = 16/9).
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Figure 7.2.2: Behavior of the MSE as a function of σ′. Here σ = 1, κ = 2. The
horizontal (green) level gives the value of the MMSE = 2

κ − 1
κ2σ4 = 7/16 in the matched

case. We have limσ′→+∞MSE = 1 − 3√
κ′ +

4
κ′ and this limiting value is decreasing

(resp. increasing) for κ′ < 64/9 (resp. κ′ > 64/9). For κ′ > 16/9 estimation better then
chance is possible for large enough σ′.
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Figure 7.2.3: Behavior of the MSE as a function of κ′. Here σ = 1, κ = 2. The
horizontal (green) level gives the value of the MMSE = 2

κ − 1
κ2σ4 = 7/16 in the matched

case. For σ′ <
√
3/2, the curve does not attain the MMSE, but for σ′ >

√
3/2 the curve

equals the MMSE at two points (this can also be seen in Fig. 7.2.1.). All curves have
horizontal asymptote σ4 = 1 for κ → +∞.
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Figure 7.2.4: Behavior of the MSE for matched SNR κ′ = κ.

and estimation is impossible, we find this behavior rather counterintuitive. A
similar behavior has been observed in Fig. 1 of [100] for the vector case.

As a sanity check of our result for the matched SNR case, with a bit of
work we can check explicitly that∫ ∞

0

[MSE(σ, σ′, κ)−MMSE(σ, κ)] dκ = 4DKL(N (0, σ2),N (0, σ′2)) (7.22)

where DKL denotes the Kullback-Leibler divergence. This sum-rule was already
derived in [100] for vector channels (with a factor of 2 instead of 4 in the vector
case).

Remark 7.5. The MMSE achieving curve in Fig. 7.2.1 can also be obtained
by enforcing the Nishimori condition, mstat = qstat. By (7.15), and (7.30) we
can compute the two quantities mstat, qstat. Equating the two expressions, we
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find the same curve as in Fig. 1. This was observed in [109] by enforcing the
Nishimori identity on the order parameters of estimation of AMP. For more
details, we refer the reader to the appendix 7.C.

Remark 7.6. Suppose instead of the MSE, we choose the angle between the
estimate ⟨xx⊺⟩σ′,κ′ and ss⊺ as the measure of our accuracy. To find the angle,
we need to compute the normalized inner product of the two matrices.

Tr ss⊺⟨xx⊺⟩σ′,κ′

∥⟨xx⊺⟩σ′,κ′∥F∥ss⊺∥F
=

mstat√
qstatσ2

= 1− 1

κσ4

This value is the value that also can be get by spectral method, see eq. (7.20).
This suggests that, in the case that κ ≥ 1

σ4 ,
√
κκ′ ≥ 1

σ2σ′2 the posterior mean
always has the possible optimum angle with the ground, however due to the
resacling factor qstat we might get different MSEs. Therefore, the bracket
estimator acts like the spectral algorithm with different rescaling qstat. Equating
qstat with the optimum rescaling in the fully matched case

(
σ2 − 1

κσ2

)2 gives the
MMSE curve.

Performance of AMP

For β = 1, the AMP (7.17) reduces to
x̂t+1
i =

bti
at+ 1

σ′2

bti =
√

κ′

N
(Y x̂t)i − κ′

at−1+ 1
σ′2
x̂t−1
i

at = κ′ ∥x̂
t∥2
N

(7.23)

and SE (7.18) equations read
mt+1 = κκ′σ4mt[

κ′
√

qt+ 1
σ′2

]2
qt+1 =

κ′2
(
κσ2mt+

√
qt
)2[

κ′
√

qt+ 1
σ′2

]4 (7.24)

By eq. (7.13), the MSE of AMP estimate can be tracked by iterating the SE
equations, see Fig. 5. The MSE of the estimate of the AMP can be obtained
from studying the fixed points of the SE equations (7.24) and the relation
(7.13), which results in (7.21).

In the mismatched case, one may think that the number of iterations
needed for the AMP to converge may help the statistician to find the optimum
parameters, or at least to find the MMSE achieving curve, however as it is
shown in Fig. 7.2.6, the statistician cannot infer any information from the
number of iterations.

By remark 7.5, enforcing the Nishimori identity is equivalent to choose σ′, κ′

on the MMSE achieving curve. Running AMP with the chosen parameters
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Figure 7.2.5: Value of the MSE under iterations of AMP equations (7.23) for 10
instances for σ = 1, κ = 4, N = 10000, compared with the SE predictions (7.24). The
AMP is randomly initialized with m = q = 1/N . In the left most plot (matched case),
MSE monotonically decreases with iteration, this can be checked by iterating the SE
equations. However, this is not necessarily the case in the mismatched case. In this
scenario, MSE is monotonically decreasing when σ′ ≤ σ. Moreover, we see that the AMP
converges even in the regions where the estimation is worse than the random guess, and
the SE tracks its performance.
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Figure 7.2.6: Averaged (over 100 instances) number iterations that AMP takes to
converge for σ = 1, κ = 4, N = 1000. The dashed black line is where there is a phase
transition in MSE. As it can be seen, the level sets of the number of iterations are not
correlated with the ones of the MSE, and the number of iterations does not reveal any
information.
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Figure 7.2.7: Value of m and q under iterations of AMP equations (7.23) for 10
instances for σ = 1, κ = 4, N = 10000, compared with the SE predictions (7.24). The
AMP is randomly initialized with m = q = 1/N . In the left most plot (matched case), m
and q are equal through iterations and monotonically increase until the algorithm stops.
In the the two middle plots in which κ′, σ′ are chosen on the MMSE achieving curve, m
and q are not equal through iterations, and their evolution is not necessarily monotone
(depends on σ′, see caption of Fig. 7.2.5), but m = q holds for the estimate when the
algorithm converges. And, the right most plot, illustrates an example that the Nishimori
identity does not hold through iterations and the final estimate.

results in the Nishimori identity m = q holding for the estimation when AMP
converges. However, unlike the matched case, m = q does not hold through
the iterations, even if we initialize AMP with m = q.
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Figure 7.2.8: Plot of MSE according to Eq. (7.25) for σ = 1, κ = 4. The solid
leftmost (red) curve is a phase transition line. In the intermediate region between the
two dashed (red) curves the MSE takes values less than σ4 = 1. In this intermediate
region estimation better than chance is possible. On the dotted (green) curve the MSE
attains the MMSE(σ, κ) = 2

κ− 1
κ2σ4 = 7/16 (even though we do not have κ′ = κ, σ′ = σ

except for one point which corresponds to the true parameters, shown by ∗). This curve
has vertical asymptote at σ′ =

√
3/2. This value is the minimum σ′ that there exists an

optimum κ′, and is the same as the bracket estimator. The analytical expressions of the
phase transition line and dotted and dashed lines can easily be written down from eqs.
(7.25) and (7.19).

Performance of spectral method

As we saw in the Bayes optimal case, for the normal prior, we need to rescale the
top (unit-norm) eigenvector of the the observation matrix Y by

√
σ2 − 1

κσ2 to
achieve the MMSE. In the mismatched scenario, we assume that the statistician
will rescale with the factor

√
σ′2 − 1

κ′σ′2 . This rescaling results in a MSE which
we denote it by MSEspectral. We have

MSEspectral = EP∗,PZ

[∥∥∥∥ss⊺ − (√
σ′2 − 1

κ′σ′2

)2

yy⊺

∥∥∥∥2

F

]
= σ4 +

(
σ′2 − 1

κ′σ′2

)2 − 2σ2
(
σ′2 − 1

κ′σ′2

)(
1− 1

κσ4

)
=

(
σ2 − σ′2)2 + 1

κ′2σ′4 − 2

κ′
+ 2

σ2

σ′2
1

κ′
+ 2

σ′2

σ2

1

κ
− 2

κκ′σ2σ′2

(7.25)

The MSE of spectral method with rescaling is depicted in Fig. 7.2.8 for
κ = 4, σ = 1. The MSE is continuous in the plain, and there is no phase
transition. Similar to the bracket estimator, the MMSE achieving curve can
be found either by equating MSE and MMSE, or by equating the mismatched
rescaling factor with the matched one,

√
σ′2 − 1

κ′σ′2 =
√
σ2 − 1

κσ2 .
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Figure 7.2.9: Comparison of AMP and spectral method. In black regions, none of the
two algorithms can get an estimate better than a random guess. In regions hatched with
\, AMP converges to an estimate with MSE less than 1, and the spectral method does
not find an appropriate estimate. In the regions hatched with / spectral method, unlike
AMP, finds a good estimate. In the intermediate region both algorithms attain MSE less
than 1, and MSEAMP −MSESpectral is illustrated.

Comparison of AMP and spectral method

First, we compare the two algorithms in the fully mismatched case. We compare
the methods in situations where at least one of them finds a reasonable estimate.
In fact, in the regions where AMP obtains estimates with MSE less than 1, AMP
behaves like the spectral method with different rescaling. Therefore, comparing
the two algorithms is to compare the two different rescaling functions. Fig.
7.2.9 illustrates the difference between the two MSEs’ in the fully mismatched
case.

A remarkable point in the AMP rescaling factor is that it is data dependent,
unlike the spectral method. The AMP rescaling factor is

√√
κ
κ′σ2 − 1

κ′σ′2

which depends on the observation matrix via the term
√
κσ2. This value

can be estimated in two ways. First, the top eigenvector of the matrix Y is
approximately

√
κσ2 + 1√

κσ2 . Also, running AMP with any set of κ′, σ′ that
κ′ ≤ 1

σ′4 , and
√
κκ′ ≥ 1

σ2σ′2 or κ′ ≥ 1
σ′4 holds will converge to a vector with

norm
√√

κ
κ′σ2 − 1

κ′σ′2 from which
√
κσ2 can be extracted.

Now suppose one of the parameters κ, σ is known to the statistician. He
can estimate the other parameter by finding the value

√
κσ2 from the matrix

Y , then he can apply his inference method (whether AMP or spectral) with
one matched parameter and one with a small mismatched. In Fig. 7.2.10, we
compare the MSE of the two methods for this scenario. In the case where κ is
known, the MSE of AMP (or equivalently bracket estimator) is close to the
MMSE around the true value; however the spectral method behaves poorly in
the neighborhood of σ. In the other case, where σ is known, both approaches
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Figure 7.2.10: Comparison of the MSE of the Bayesian approach and spectral method
in the partially mismatched scenario. In the left plot, the SNR parameter κ is known, and
σ′ is estimated from the data. In the right plot, σ is known and κ is estimated.
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Figure 7.2.11: MMSE achieving curves for various values of β for σ = 4, κ = 1. For
any set of (σ′, κ′) such that 0 < κ′ < 100/9 = κ (1+κσ4)2

(1−κσ4)2
there exists a β > 0.2 = 1

1+κσ4

such that the mismatched MSE of the bracket estimator achieves the MMSE. For β → ∞,
κ′ = 100/9 gives the MMSE.

are not sensitive to minor errors around the true value κ.

7.2.3 Mismatched estimation with β ̸= 1

Introducing the auxiliary (temperature) parameter β > 0 to the (assumed)
posterior distribution will add a degree of freedom to the problem. This leads
to that for a region in the σ′, κ′ plane, for any pair of (σ′, κ′) there exists a β
such that MMSE is achieved.The MMSE achieving curves for some values of β
are plotted in Fig. 7.2.11. Note that for β < 1

1+κσ4 , the MSE is σ4 for any pair
of (σ′, κ′) and estimation better than random guess is not possible.

Similar to the case of β = 1, the MMSE curves can be obtained by either
equating the mismatched MSE and MMSE, or enforcing the condition mstat =
qstat. Moreover, computing the normalized matrix inner product of the estimate



7.3. Bernoulli-Rademacher Prior 69

with the true signal, we get

Tr ss⊺⟨xx⊺⟩σ′,κ′

∥⟨xx⊺⟩σ′,κ′∥F∥ss⊺∥F
=

mstat√
qstatσ2

= 1− 1

κσ4

Therefore, in the case that κ ≥ 1
σ4 ,

√
κκ′ ≥ 1

βσ2ρ∗
the posterior mean always has

the possible optimum angle with the ground truth, however due to the resacling
factor qstat we might get different MSEs. Therefore, the bracket estimator acts
like the spectral algorithm with different rescaling qstat. Equating qstat with
the optimum rescaling in the fully matched case

(
σ2 − 1

κσ2

)2 gives the MMSE
curve.

Studying the fixed points of the SE equation (7.18) enables us to evaluate
the performance of the AMP in the general case. It turns out that, similar to
the case of β = 1, considering different conditions inserting the fixed points
of SE equations mAMP, qAMP into the eq. (7.13) leads to the same MSE as in
theorem 7.1.

Moreover, the estimates of the AMP performed with the optimum β for
a pair of (σ′, κ′) satisfies the Nishimori identity. Fig. 7.2.12 illustrates the
performance of AMP and SE under various situations.

7.3 Bernoulli-Rademacher Prior

Assume si be i.i.d. random variables distributed according to the Bernoulli-
Rademacher (BR) distribution with probabaility mass function defined as

p(s) =

{
α
2

if s = ±1
1− α if s = 0

where 0 ≤ α ≤ 1 is the sparsity parameter. This prior is often adopted to
model the sparse signals. The observed matrix is defined as in (7.1). The
statistician assumes the Gaussian prior N (0, σ′2) as the signal prior, and κ′ as
the SNR parameter. Since the assumed prior distribution is not the same as
the true prior, we cannot be in the Bayes optimal case for any set of parameters.
Therefore, we start this section with a short summary on the Bayes optimal
scenario of inference with the BR prior distribution.

7.3.1 Bayes optimal estimation

From theorem 1 in [9] the matrix MMSE with the BR prior reads:

MMSEn = α2 −m∗2

where m∗ is computed numerically through an involved recursion formula which
we omit here. It turns out that, there is a phase transition at κ = 1

α2 that for
κ less than this value the MMSE is equal to α2 and estimation better than
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Figure 7.2.12: Performance of AMP in general case of β for 10 instances for σ =
1, κ = 4, N = 10000, compared with the SE predictions (7.18). In the first two rows, we
applied AMP with the optimum β for the two pairs (σ′, κ′) = (0.1, 0.5), (2, 2). The MSE
of the final estimates is equal to the MMSE, and the Nishimori identity holds for the final
estimates of the algorithm, although it does not hold through iterations. In the third row,
AMP is applied with an arbitrary β for σ′ = 2, κ′ = 2. The MSE of the AMP and SE
coincides with the theoretical one as in theorem 7.1, and MSE is greater than the MMSE.
Furthermore, the Nishimori identity does not hold for the final estimates.

chance is not possible. However, for κ greater than this value the MMSE is
less than α2.

From an algorithmic point of view, AMP achieves the theoretical MMSE in
the whole plane of (α, κ) except for a small region [110] which corresponds to
the high sparsity regimes. In Fig. 7.3.1, we compare the performance of AMP
(predicted by SE) and the spectral method (with optimum rescaling) for two
values α. This figure illustrates how the knowledge of the prior distribution
helps to improve on the spectral methods. Computing the best rescaling factor
of the spectral is similar to the case of Gaussian prior by simply substituting
σ2 by α, see section 7.2.1. The MSE of the spectral method with the optimum
rescaling factor is equal to the MMSE when the prior is Gaussian with σ2 = α.
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Figure 7.3.1: Comparison of MMSE, MSE of AMP (predicted by SE), and MSE of
spectral method for the Bernoulli-Rademacher prior. In low sparsity regimes, the phase
transition of MMSE is the same as predicted by spectral methods, κ = 1

α2 , the vertical
dotted (red) line in the left plot, and AMP achieves the MMSE for all values of κ. In
high sparsity regimes, α ≪ 1, the phase transition of MMSE is not continuous and AMP
fails to achieve the MMSE in a small region around the phase transition point. In both
cases, the MSE of spectral method is greater than the MMSE, which demonstrates how
spectral method performs poorly comparing to the Bayesian approach with the knowledge
of the prior distribution.

7.3.2 Mismatched estimation

Considering the posterior distribution as in (7.3) with P be the Gaussian
distribution with variance σ′2 leads to the following MSE in the N large limit.

Theorem 7.3. Assume that the sequence (MSE)N≥1 converges uniformly in
(κ, κ′, β) ∈ K ⊂ R3

+, then for For all σ, σ′ (strictly positive) and (κ, κ′, β) ∈ K,
the asymptotic mismatched MSE is given :
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lim
N→∞

MSEN(α, σ
′, κ, κ′, β)

=


α2 +

[
(1−2β)

√
κ′σ′2+1

]2
β2κ′2σ′4 if (2β − 1)

√
κ′ > 1

σ′2 , κ ≤ 1
α2 ,

A if κ ≥ 1
α2 ,

√
κκ′ ≥ 1

βαρ∗
,

σ4 o.w.

(7.26)

where

A = α2

(
1−

√
κ

κ′

)2

+
1

β

[
2√
κκ′

+
1

β

1

κ′2σ′4 +
2

κ′
α

σ′2

(
1−

√
κ

κ′

)
− 2

κκ′ασ′2

]

+

(
1− 1

β

)[
2

κ′
− 1

β

2√
κκ′3ασ′2

+

(
1− 1

β

)
1

κκ′α2
+

2√
κ3κ′α2

]

and

ρ∗ =

 σ′2 if β = 1,

1
κ′β(β−1)

(
1

2σ′2 −
√

1
4σ′4 − κ′β(β − 1)

)
if β ̸= 1

Proof. The proof follows similar steps as in Theorem 7.4. For details, see
appendix 7.D.

The expression in (7.26) is the same as the one in (7.16) with σ2 replaced
with α. Therefore, the discussion (and plots) on the mismatched estimation
with Gaussian prior holds for the problem with Bernoulli-Rademacher prior
with a major difference. Unlike the Gaussian case, the mismatched MSE (with
BR prior) does not achieve the MMSE. In fact, the minimum of mismatched
MSE is equal to the MSE of spectral method in the Bayes optimal scenario
(equal to the MMSE of Gaussian prior) which is greater than the MMSE.

The AMP equations with the fake prior are the same as in (7.17) (note
that in writing the AMP equations only the assumed prior matters). The SE
equations are also similar to (7.18) with σ2 replaced with α. Similar to the
Gaussian prior, studying the fixed points of SE leads to the same MSE as in
(7.3). Thus, there is no gap between the theoretical MSE and the MSE of AMP
in the whole region, although they do not attain the MMSE in any cases. In
Fig. 7.3.2, the performance of AMP and SE is depicted.
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Figure 7.3.2: Performance of AMP in general case of β for 10 instances for σ =
1, κ = 4, N = 10000, compared with the SE predictions (7.18). In the first two rows, we
applied AMP with the optimum β for the two pairs (σ′, κ′) = (0.1, 0.5), (2, 2). The MSE
of the final estimates is equal to the MMSE, and the Nishimori identity holds for the final
estimates of the algorithm, although it does not hold through iterations. In the third row,
AMP is applied with an arbitrary β for σ′ = 2, κ′ = 2. The MSE of the AMP and SE
coincides with the theoretical one as in theorem 7.1, and MSE is greater than the MMSE.
Furthermore, the Nishimori identity does not hold for the final estimates.





Appendix

7.A Proof of Lemma 7.1

From (7.5), (7.4) we have

fN(P
∗,P, κ, κ′, β) =

− 1

N
EP∗,PZ

[
ln

∫
dxP(x)e−

βκ′
4N

∥x∥4+β
2

√
κκ′
N

(s⊺x)2+β
2

√
κ′
n

TrZxx⊺
]

So,

d

dκ
fN

= − 1

N
E

[∫
dxP(x)

[
β
4N

√
κ′

κ
(s⊺x)2

]
e−

βκ′
4N

∥x∥4+β
2

√
κκ′
N

(s⊺x)2+β
2

√
κ′
N

TrZxx⊺

∫
dxP(x)e−

βκ′
4N

∥x∥4+β
2

√
κκ′
N

(s⊺x)2+β
2

√
κ′
N

TrZxx⊺

]

= −β
4

1

N2

√
κ′

κ
EP∗,PZ

[〈
(s⊺x)2

〉
P,κ′,β

]
(7.27)

and

d

dκ′
fN = − 1

N
EP∗,PZ

[
− β

4n

〈
∥x∥4

〉
P,κ′,β

+
β

4n

√
κ

κ′
〈
(s⊺x)2

〉
P,κ′,β

+
β

4

1√
κ′n

TrZ⟨xx⊺⟩P,κ′,β

]
Using a standard Gaussian integration by parts trick (see lemma 5.2), we have

EP∗,PZ

[
TrZ⟨xx⊺⟩P,κ′,β

]
= β

√
κ′

n
EP∗,PZ

[〈
∥x∥4

〉
P,κ′,β

−
∥∥⟨xx⊺⟩P,κ′,β

∥∥2

F

]
Therefore,

d

dκ′
fN =

β

4

1

N2
EP∗,PZ

[
(1− β)

〈
∥x∥4

〉
P,κ′,β

+ β
∥∥⟨xx⊺⟩P,κ′,β

∥∥2

F

−
√
κ

κ′
〈
(s⊺x)2

〉
P,κ′,β

] (7.28)

75
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Again by Gaussian integration by parts trick, we get

d

dβ
fN =

1

4

1

N2
EP∗,PZ

[
κ′(1− 2β)

〈
∥x∥4

〉
P,κ′,β

+ 2βκ′
∥∥⟨xx⊺⟩P,κ′,β

∥∥2

F

− 2
√
κκ′

〈
(s⊺x)2

〉
P,κ′,β

] (7.29)

Putting (7.27), (7.28), (7.29), with a bit of algebra we find that the left-hand
side of (7.6) is equal to

1

4

1

N2
EP∗,PZ

[∥∥⟨xx⊺⟩P,κ′,β

∥∥2

F
− 2

〈
(s⊺x)2

〉
P,κ′,β

+ ∥s∥4
]

=
1

4

1

N2
EP∗,PZ

[∥∥⟨xx⊺⟩P,κ′,β

∥∥2

F
− 2Tr ss⊺⟨xx⊺⟩P,κ′,β + ∥ss⊺∥2F

]
=

1

4
MSEN □

7.B Proof of Theorem 7.1

First, we compute the asymptotic of the free energy of the system.

Theorem 7.4. For all σ, σ′, κ, κ′, β positive, the asymptotic of free energy for
the mismatched inference is given as:

1
4

ρ∗

σ′2 − 1
2
ln ρ∗ − 1

4
+ lnσ′ if (2β − 1)

√
κ′ ≤ 1

σ′2 , κ ≤ 1
σ4 ,

1
2
ln β + 1

4
lnκ′ + lnσ′ + 1

4
if (2β − 1)

√
κ′ > 1

σ′2 , κ ≤ 1
σ4 ,

− 1
4βκ′σ′4 +

1√
κ′σ′2 − β

1
4

ρ∗

σ′2 − 1
2
ln ρ∗ − 1

4
+ lnσ′ if (2β − 1)

√
κ′ ≤ 1

σ′2 ,
1√
κ
≤ σ2 ≤ 1

β
√
κκ′ρ∗

,
1−β
4κσ4 − 1

4βκ′σ′4 − 1
4
βκσ4 if κ ≥ 1

σ4 ,
√
κκ′ ≥ 1

βσ2ρ∗
,

+1
2

√
κ
κ′

σ2

σ′2 +
1

2
√
κκ′σ2σ′2

+1
2
ln β

√
κκ′σ2σ′2 − β

2

0 o.w.
(7.30)

where

ρ∗ =

 σ′2 if β = 1,

1
κ′β(β−1)

(
1

2σ′2 −
√

1
4σ′4 − κ′β(β − 1)

)
if β ̸= 1

Proof Sketch. We have

fN = − 1

N
EP∗,PZ

[
lnZ(Y )

]
= − 1

N

∫
dsP∗(s)EPZ

[
ln

∫
dxP(x) e

−βκ′
4N

∥x∥4+ln IN
] (7.31)

where
IN =

∫
DUe

N Tr Y√
N
U β

√
κ′

2N
xx⊺U⊺

(7.32)
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It is not difficult to see that IN is invariant under the transformation x → Rx
where R is a rotation matrix. Therefore the integrand in the x-integral in (7.31)
is a function of ∥x∥. Furthermore recalling Y =

√
κ
N
ss⊺+Z and using rotation

invariance of PZ we see that the integrand of the s-integral is a function of
∥s∥. Therefore we can use spherical coordinates (see appendix 7.E) to reduce
the integrals in (7.31) to two one-dimensional integrals which yields

fN = −2−
N
2
+1

Γ(N
2
)

1

σN

∫ +∞

0

dr rN−1e−
r2

2σ2

× EPZ

[
1

N
ln
{2−

N
2
+1

Γ(N
2
)

1

σ′N

∫ +∞

0

dρ ρN−1e−
ρ2

2σ′2−
βκ′
4N

ρ4+ln IN
}]

(7.33)

where r := ∥s∥, ρ := ∥x∥, and Γ(.) is the Gamma function.
Changing variable r2

N
→ r, ρ2

N
→ ρ, we obtain

fN = −2−
N
2 N

N
2

Γ(N
2
)

1

σN

∫ +∞

0

dr r
N
2
−1 e−N r

2σ2

× EPZ

[
1

N
ln
{2−

N
2 N

N
2

Γ(N
2
)

1

σ′N

∫ +∞

0

dρ ρ
N
2
−1e−N( ρ

2σ′2+
βκ′
4

ρ2− 1
N

ln IN
}]
(7.34)

To compute the asymptotic of the above integral, first we need to find the
asymptotic of 1

N
ln IN , then we can find the asymptotic of the expression in the

EPZ
by applying Laplace method. This asymptotic is independent of Z, finally

the asymptotics of fN in (7.34) can be computed using the Laplace method
again.

Once we have the expression for the free energy, we can compute the MSE
using Lemma 7.1. As explained in remark 7.3 this step uses the assumption
that for (κ, κ′) ∈ K ⊂ R2

+ the sequence (MSE)N≥1 converges uniformly.
In the following we explain the steps of the proof of theorem 7.4.

7.B.1 Computation of 1
N ln IN

With the change of variables ∥s∥2
n

= r2

n
→ r, ∥x∥2

n
= ρ2

n
→ ρ, the maximum and

minimum eigenvalues of Y/
√
N are:

λmin = −2, λmax =

{
2 if

√
κr ≤ 1√

κr + 1√
κr

if
√
κr ≥ 1

So,

Gmin = −1,Gmax =

{
1 if

√
κr ≤ 1

1√
κr

if
√
κr ≥ 1
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On the other hand the non-zero eigenvalue of the rank-one matrix β
√
κ′

2n
xx⊺

is θ = β
√
κ′

2N
∥x∥2 = β

√
κ′

2
ρ.

From Theorem 6.1, we have for N large enough

1

N
ln IN = θν(θ)− 1

2

∫
ln(1 + 2θν(θ)− 2θt) dµSC(t) + o(N)

= θν(θ)− 1

2

∫
ln(1 + 2θν(θ)− 2θt)

1

2π

√
4− t2dt+ o(N)

where

ν(θ) =


2θ if Gmin ≤ 2θ ≤ Gmax

λmax − 1
2θ

if 2θ > Gmax

λmin − 1
2θ

if 2θ < Gmin

Lemma 7.2. For A,B ∈ R, such that A−Bx > 0 for −2 ≤ x ≤ 2,

1

2π

∫ 2

−2

ln(A−Bx)
√
4− x2dx =

A

A+
√
A2 − 4B2

+ln
(
A+

√
A2 − 4B2

)
−1

2
−ln 2

Using this lemma, we find the asymptotic of 1
N
ln IN under different condi-

tions:

β2κ′

4
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√
κr ≤ 1, β

√
κ′ρ ≤ 1

β
√
κ′ρ− 1

2
ln ρ− 1

2
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lnκ′ − 3

4
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4
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2
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ln ρ− 1
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for

√
κr > 1, β

√
κ′ρ > 1√
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−1
2
ln β

√
κκ′r − 1
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(7.35)

7.B.2 Laplace method

We want to compute the limit in eq. (7.34) using Laplace method, however
since we are dealing with nested integrals, we need a generalization of Laplace
method. We apply the following theorem from [111] to find the asymptotics of
the integrals we are interested in.

Theorem 7.5 (Olver [111]). Let k, N be fixed positive numbers, and

Jn =

∫ k

0

e−np(x)+t(n,x)q(n, x)dx

Assume that : (i) p′(x) is continuous and positive in (0, k], and as x→ 0+

p(x) = p(0) + Pxµ +O(xµ1), p′(x) = µPxµ−1 +O(xµ1−1)

(ii) For n ≥ N , the real (or complex) functions t(n, x), q(n, x) are continuous
in (0, k]. Moreover,

|t(n, x)| ≤ Tnαxν , |q(n, x)−Qxλ−1| ≤ Q1n
βxλ1−1
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where T, α, ν,Q, λ,Q1, β and λ1 are independent of n, x, and

ν ≥ 0, λ > 0, λ1 > 0, α < min(1, ν/µ), β < (λ1 − λ)/µ

Then,

Jn =
Q

µ
Γ(
λ

µ
)
e−np(0)

(Pn)λ/µ
[
1 +O(

1

nω/µ
)
]

where
ω = min(µ1 − µ, ν − µα, λ1 − λ− β)

Remark 7.7. If x = 0 is the unique minimizer of p(x) in the interval (0,+∞),
then the same result holds for

∫ +∞
0

, since the contribution of
∫ +∞
k

is exponen-
tially negligible, for k a positive number.

Remark 7.8. If the minimizer (x = 0) in the interior of the integral domain,
then the asymptotic can be evaluated by splitting the integral to two integrals∫ 0

−l
,
∫ k

0
. And, the first can be tuned to the conditions of the Theorem 7.5 by

change of variables, and the final result is multiplied by two.

7.B.3 Details of applying the Laplace method

To compute the limit in eq.(7.34), we need to apply the Laplace method twice,
first to the interior integral ( the integral over ρ), then to the integral over r.

For the first integral q(N, ρ) = 1, so we have thatQ = 1, β = 0, κ = 1, κ1 = 2.
The term t(N, ρ) in this integral comes from the error in the asymptotic of the
1
N
ln IN , which is of the order of o(N), so α = 0. By Theorem 4 in [93], and

Theorem 1 in [112], we can set ν = 1. As it turns out from the functions we
are dealing with in the exponent, we have µ1 − µ = 1, thus the error of the
asymptotic we find for the interior integral is of the order of 1

N
. Note that, since

we have the (natural) logarithm of the interior integral, we will only consider
the exponential term in the asymptotic, and drop other factors for simplicity.

For the integral over r, t(N, r) is zero, so α = 0, ν = 1. The term q(N, r)
comes from the interior integral which is of the form − 1

N
lnCNe

−Np(r)(1 +
O(1/N)) = p(r)− 1

N
lnCN(1 +O(1/N)), where CN is a polynomial factor in N .

For the first term, we can apply the regular Laplace method. For the second
term, we can set Q = 0 in theorem 7.5 which results that the integral with the
second term is asymptotically zero.

Based on the conditions on in eq. (7.35), we split the integral over different
regions, and substitute the asymptotic of 1

N
ln IN .

1) r ≤ 1√
κ

•ρ ≤ 1

β
√
κ′∫ 1

β
√
κ′

0

dρ

ρ
e−N( ρ

2σ′2+β κ′
4
ρ2− 1

2
ln ρ−β2κ′

4
ρ2) =

∫ 1

β
√
κ′

0

dρ

ρ
e−N

[
ρ2 κ′

4
β(1−β)+ ρ

2σ′2−
1
2
ln ρ

]
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The function in the exponent is p1(ρ) = ρ2 κ
′

4
β(1− β) + ρ

2σ′2 − 1
2
ln ρ. First note

that this function is undefined at ρ = 0, so by splitting the integral into two
integral

∫ ϵ

0
,
∫ 1

β
√
κ′

ϵ
, the contribution of the first part is exponentially negligible,

thus we need to compute the the second one. Nevertheless, we will keep the

integral
∫ 1

β
√
κ′

0 in the following.
If β < 1, it is straightforward to check that the minimum of p1(ρ) is attained

at

ρ∗ =
1

κ′β(β − 1)

(
1

2σ′2 −
√

1

4σ′4 − κ′β(β − 1)

)
And we have that (2β − 1)

√
κ′ ≤ 1

σ′2 ⇔ ρ∗ ≤ 1

β
√
κ′ .

For β > 1, it can be verified that if (2β − 1)
√
κ′ ≤ 1

σ′2 , then p′1(ρ) ≡ 0 has
two solutions, one corresponding to a local minima denoted by ρ∗ and one to a
local maxima denoted by ρ̂. We have

(2β − 1)
√
κ′ ≤ 1

σ′2 ⇒ ρ∗ ≤ 1

β
√
κ′
< ρ̂

On the other hand, if (2β − 1)
√
κ′ > 1

σ′2 there are two cases. First, p′1(ρ) ≡ 0
has two solutions, but in this case ρ∗ > 1

β
√
κ′ . Second, p′1(ρ) ≡ 0 has no

solutions, in this case p1(.) is monotonically decreasing. Therefore, in either
case the minimum of p1(ρ) in the interval (0, 1

β
√
κ′ ] is attained at 1

β
√
κ′ . Putting

all together, we find

∫ 1

β
√
κ′

0

dρ

ρ
e−N

[
ρ2 κ′

4
β(1−β)+ ρ

2σ′2−
1
2
ln ρ

]
≈

{
e−Np1(ρ∗) if (2β − 1)

√
κ′ ≤ 1

σ′2

e
−Np1(

1

β
√
κ′

)
if (2β − 1)

√
κ′ > 1

σ′2

=

{
e−N( 1

4
ρ∗

σ′2−
1
2
ln ρ∗+ 1

4
) if (2β − 1)

√
κ′ ≤ 1

σ′2

e
−N

(
− 1

4
(1− 1

β
)+ 1

2β
1√

κ′σ′2+
1
2
lnβ+ 1

4
lnκ′

)
if (2β − 1)

√
κ′ > 1

σ′2

(7.36)

•ρ > 1

β
√
κ′∫ ∞

1

β
√
κ′

dρ

ρ
e−N( ρ

2σ′2+β κ′
4
ρ2− 1

2
ln ρ−β

√
κ′ρ+ 1

2
ln ρ+ 1

2
lnβ+ 1

4
lnκ′+ 3

4
)

= e−N( 1
2
lnβ+ 1

4
lnκ′+ 3

4
)

∫ ∞

1

β
√
κ′

dρ

ρ
e−N

[
β κ′

4
ρ2+( 1

2σ′2−β
√
κ′)ρ

]

The minima of the function in the exponent is at ρ = 2
κ′ − 1

βκ′σ′2 . It can be
verified that

(2β − 1)
√
κ′ <

1

σ′2 ⇔ 2

κ′
− 1

βκ′σ′2 <
1

β
√
κ′
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Therefore, we get

e−N( 1
2
lnβ+ 1

4
lnκ′+ 3

4
)

∫ ∞

1

β
√
κ′

dρ

ρ
e−N

[
β κ′

4
ρ2+( 1

2σ′2−β
√
κ′)ρ

]

≈ e−N( 1
2
lnβ+ 1

4
lnκ′+ 3

4
)

{
e
−Np2(

1

β
√
κ′

)
if (2β − 1)

√
κ′ < 1

σ′2

e−Np2(ρopt) if (2β − 1)
√
κ′ ≥ 1

σ′2

=

{
e
−N( 1

2
lnβ+ 1

4
lnκ′− 1

4
+ 1

4β
+ 1

2β
√
κ′σ′2 ) if (2β − 1)

√
κ′ ≤ 1

σ′2

e
−N( 1

2
lnβ+ 1

4
lnκ′+ 3

4
− 1

4βκ′σ′4+
1√

κ′σ′2−β)
if (2β − 1)

√
κ′ > 1

σ′2

(7.37)

We need to sum the asympotics in eq. (7.36),(7.37) to find the asymptotic
of

∫∞
0
dρ. Since, we are considering the n large limit, we pick the dominant

term under each condition. For the case (2β − 1)
√
κ′ ≤ 1

σ′2 the term form eq.
(7.36) is dominant, and for the case (2β − 1)

√
κ′ > 1

σ′2 the term in eq.(7.37)
is dominant. Note that in both eq. (7.36),(7.37), when (2β − 1)

√
κ′ = 1

σ′2 the
exponent in both cases is equal, so we can properly move the equality case of
the condition from one part to the other.

We have∫ ∞

0

dρ

ρ
e−N( ρ

2σ′2+β κ′
4
ρ2− 1

2
ln ρ− 1

n
ln IN )

≈
{
e−N( 1

4
ρ∗

σ′2−
1
2
ln ρ∗+ 1

4
) if (2β − 1)

√
κ′ ≤ 1

σ′2

e
−N( 1

2
lnβ+ 1

4
lnκ′+ 3

4
− 1

4βκ′σ′4+
1√

κ′σ′2−β)
if (2β − 1)

√
κ′ > 1

σ′2

(7.38)

Now, we need to compute the asymptotic of

2−
N
2 N

N
2

Γ(N
2
)

1

σ′N

∫ ∞

0

dρ

ρ
e−N( ρ

2σ′2+β κ′
4
ρ2− 1

2
ln ρ− 1

N
ln IN )

To do so, we use the following lemma from [113] which states the asymptotic
of Γ(n

2
).

Lemma 7.3. For x→ ∞,

Γ(x+ 1) =
√
2πx(

x

e
)x(1 +O(

1

x
))

Using this lemma, we have

Γ(
N

2
) ≈

√
2π(

N

2
− 1)(

N

2
− 1)

N
2
−1e−

N
2
+1 ≈

√
πN(

N

2
)
N
2
−1e−

N
2
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Substituting Γ(N
2
) with its asymptotic results in

2−
N
2 N

N
2

Γ(N
2
)

1

σ′N

∫ ∞

0

dρ

ρ
e−N( ρ

2σ′2+β κ′
4
ρ2− 1

2
ln ρ− 1

N
ln IN )

≈ 2−
N
2 N

N
2

√
πN(N

2
)
N
2
−1e−

N
2

1

σ′N

∫ ∞

0

dρ

ρ
e−N( ρ

2σ′2+β κ′
4
ρ2− 1

2
ln ρ− 1

N
ln IN )

≈ CNe
−N(− 1

2
+lnσ′)

∫ ∞

0

dρ

ρ
e−N( ρ

2σ′2+β κ′
4
ρ2− 1

2
ln ρ− 1

N
ln IN )

≈
{
CNe

−N( 1
4

ρ∗

σ′2−
1
2
ln ρ∗− 1

4
+lnσ′) if (2β − 1)

√
κ′ ≤ 1

σ′2

CNe
−N( 1

2
lnβ+ 1

4
lnκ′+lnσ′+ 1

4
− 1

4βκ′σ′4+
1√

κ′σ′2−β)
if (2β − 1)

√
κ′ > 1

σ′2

where CN is a polynomial factor in N . This leads us to

− 1

N
ln

[
2−

N
2 N

N
2

Γ(N
2
)

1

σ′N

∫ ∞

0

dρ

ρ
e−N( ρ

2σ′2+β κ′
4
ρ2− 1

2
ln ρ− 1

N
ln IN )

]

≈
{

1
4

ρ∗

σ′2 − 1
2
ln ρ∗ − 1

4
+ lnσ′ if (2β − 1)

√
κ′ ≤ 1

σ′2
1
2
ln β + 1

4
lnκ′ + lnσ′ + 1

4
− 1

4βκ′σ′4 +
1√
κ′σ′2 − β if (2β − 1)

√
κ′ > 1

σ′2

Define

q =

{
1
4

ρ∗

σ′2 − 1
2
ln ρ∗ − 1

4
+ lnσ′ if (2β − 1)

√
κ′ ≤ 1

σ′2
1
2
ln β + 1

4
lnκ′ + lnσ′ + 1

4
− 1

4βκ′σ′4 +
1√
κ′σ′2 − β if (2β − 1)

√
κ′ > 1

σ′2

(7.39)
Thus, in this case the function q(N, r) is independent of r. It remains to

compute the the following limit:

lim
N→∞

2−
N
2 N

N
2

Γ(N
2
)

1

σN

∫ 1√
κ

0

dr r
N
2
−1e−N r

2σ2 q

Applying the regular Laplace method to the integral over r, we get∫ 1√
κ

0

dr r
N
2
−1e−N r

2σ2 =

{
2
√

π
N
e−N( 1

2
−lnσ)

(
1 +O( 1

N
)
)

if κ ≤ 1
σ4

2
√
κ√

κ− 1
σ2

1
N
e
−N( 1

2
√
κσ2+

1
4
lnκ)(

1 +O( 1
N
)
)

if κ > 1
σ4

Further, we have

2−
N
2 N

N
2

Γ(N
2
)

1

σN

∫ 1√
κ

0

dr r
N
2
−1e−N r

2σ2 ≈ 1

2

√
N

π
e−N(− 1

2
+lnσ)

∫ 1√
κ

0

dr r
N
2
−1e−N r

2σ2

≈
{

1 if κ ≤ 1
σ4

C 1√
N
e
−N( 1

2
√
κσ2+lnκ

1
4 σ− 1

2
)

if κ > 1
σ4

where C is some constant.
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Since 1
x
+ lnx− 1 is positive for x ≥ 1, we find

lim
N→∞

2−
N
2 N

N
2

Γ(N
2
)

1

σN

∫ 1√
κ

0

dr r
N
2
−1e−N r

2σ2 q =

{
q if κ ≤ 1

σ4

0 if κ > 1
σ4

Substituting q from eq.(7.39), we obtain

lim
N→∞

2−
N
2 N

N
2

Γ(N
2
)

1

σN

∫ 1√
κ

0

dr r
N
2
−1e−N r

2σ2

×
[
− 1

N
ln

(
2−

N
2 N

N
2

Γ(N
2
)

1

σ′N

∫ ∞

0

dρ

ρ
e−N( ρ

2σ′2+β κ′
4
ρ2− 1

2
ln ρ− 1

N
ln IN )

)]

=


1
4

ρ∗

σ′2 − 1
2
ln ρ∗ − 1

4
+ lnσ′ if (2β − 1)

√
κ′ ≤ 1

σ′2 , κ ≤ 1
σ4

1
2
ln β + 1

4
lnκ′ + lnσ′ + 1

4
if (2β − 1)

√
κ′ > 1

σ′2 , κ ≤ 1
σ4 ,

− 1
4βκ′σ′4 +

1√
κ′σ′2 − β

0 otherwise

(7.40)

To compute the remaining part of integral, we need to consider two cases.
Throughout the following, suppose (2β − 1)

√
κ′ ≤ 1

σ′2 . This implies that
p′1(ρ) ≡ 0 has two solutions ρ∗, ρ̂.

2) 1√
κ
< r ≤ 1

β
√
κκ′ρ∗

• ρ ≤ 1

β
√
κκ′r∫ 1

β
√

κκ′r

0

dρ

ρ
e−N( ρ

2σ′2+β κ′
4
ρ2− 1

2
ln ρ−β2κ′

4
ρ2)

=

∫ 1

β
√
κκ′r

0

dρ

ρ
e−N

[
ρ2 κ′

4
β(1−β)+ ρ

2σ′2−
1
2
ln ρ

]
In both cases β < 1 and β > 1, p′1(ρ) = 0 has solution and p is minimized at
ρ∗. We are in the region where r ≤ 1

β
√
κκ′ρ∗

, so ρ∗ is in the integral domain,
and we get∫ 1

β
√

κκ′r

0

dρ

ρ
e−N

[
ρ2 κ′

4
β(1−β)+ ρ

2σ′2−
1
2
ln ρ

]
≈ e−N( 1

4
ρ∗

σ′2−
1
2
ln ρ∗+ 1

4
) (7.41)

• ρ > 1

β
√
κκ′r∫ ∞

1

β
√
κκ′r

dρ

ρ
e−N( ρ

2σ′2+β κ′
4
ρ2− 1

2
ln ρ−β

√
κκ′
2

rρ− 1
2
β
√

κ′
κ

ρ
r
+ 1

2
ln ρ+ 1

4κr2
+ 1

2
lnβ

√
κκ′r+ 1

2
)

= e−N( 1
4κr2

+ 1
2
lnβ

√
κκ′r+ 1

2
)

∫ ∞

1

β
√
κκ′r

dρ

ρ
e−N

[
β κ′

4
ρ2+( 1

2σ′2−β
√
κκ′r
2

−β 1
2

√
κ′
κ

1
r
)ρ
]



84 Mismatched Estimation of Rank-One Symmetric Matrices

The function in the exponent is p3(ρ) = β κ′

4
ρ2 + ( 1

2σ′2 − β
√
κκ′r
2

− β 1
2

√
κ′

κ
1
r
)ρ,

whose minimum is at ρopt = − 1
βκ′σ′2 +

√
κ
κ′ r+

1√
κκ′r

. It can be checked that, in
this region ρopt < 1

β
√
κκ′r

. Thus, p3(.) is minimized at 1

β
√
κκ′r

(in the integral
domain). So, we get

e−N( 1
4κr2

+ 1
2
lnβ

√
κκ′r+ 1

2
)

∫ ∞

1

β
√
κκ′r

dρ

ρ
e−N

[
β κ′

4
ρ2+( 1

2σ′2−β
√
κκ′r
2

−β 1
2

√
κ′
κ

1
r
)ρ
]

≈ e−N( 1
4κr2

+ 1
2
lnβ

√
κκ′r+ 1

2
)e

−np3(
1

β
√
κκ′r

)

= e
−N

[
− 1

4κr2
(1− 1

β
)+ 1

2β
√
κκ′σ′2r

+ 1
2
lnβ

√
κκ′r

] (7.42)

Comparing eq. (7.41),(7.42), we obtain

∫ ∞

1

β
√
κκ′r

dρ

ρ
e−N( ρ

2σ′2+β κ′
4
ρ2− 1

2
ln ρ− 1

N
ln IN ) ≈ e−N( 1

4
ρ∗

σ′2−
1
2
ln ρ∗+ 1

4
)

which leads to

2−
N
2 N

N
2

Γ(N
2
)

1

σ′N

∫
dρ

ρ
e−N( ρ

2σ′2+β κ′
4
ρ2− 1

2
ln ρ− 1

N
ln IN ) ≈ e−N( 1

4
ρ∗

σ′2−
1
2
ln ρ∗− 1

4
+lnσ′)

q = − 1

N
ln

[
2−

N
2 N

N
2

Γ(N
2
)

1

σ′N

∫
dρ

ρ
e−N( ρ

2σ′2+β κ′
4
ρ2− 1

2
ln ρ− 1

N
ln IN )

]
≈ 1

4

ρ∗

σ′2 − 1

2
ln ρ∗ − 1

4
+ lnσ′

(7.43)

It remains to compute the limit

lim
N→∞

2−
N
2 N

N
2

Γ(N
2
)

1

σN

∫ 1

β
√
κκ′ρ∗

1√
κ

dr r
N
2
−1e−N r

2σ2 q

Applying the regular Laplace method to the integral over r, we get

∫ 1

β
√
κκ′ρ∗

1√
κ

dr r
N
2
−1e−N r

2σ2

≈


2
√

π
N
e−N( 1

2
−lnσ) if 1√

κ
≤ α ≤ 1

β
√
κκ′ρ∗

1
N
e
−N( 1

2
√
κσ2+

1
4
lnκ)

if κ < 1
σ4

1
N
e
−N( 1

2β
√
κκ′σ2ρ∗

+ 1
2
lnβ

√
κκ′ρ∗)

if 1

β
√
κκ′ρ∗

< σ2
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Further, we have

2−
N
2 N

N
2

Γ(N
2
)

1

σN

∫ 1

β
√
κκ′ρ∗

1√
κ

dr r
N
2
−1e−N r

2σ2

≈ 1

2

√
N

π
e−N(− 1

2
+lnσ)

∫ 1

β
√
κκ′ρ∗

1√
κ

dr r
N
2
−1e−N r

2σ2

≈


1 if 1√

κ
≤ σ2 ≤ 1

β
√
κκ′ρ∗

Ce
−N( 1

2
√
κσ2+

1
2
ln

√
κσ2− 1

2
)

if κ < 1
σ4

Ce
−N( 1

2β
√
κκ′σ2ρ∗

+ 1
2
lnβ

√
κκ′σ2ρ∗− 1

2
)

if 1

β
√
κκ′ρ∗

< σ2

where C is some constant.
Since 1

x
+ lnx− 1 is positive for x ≥ 1, we find

lim
N→∞

2−
N
2 N

N
2

Γ(N
2
)

1

σN

∫ 1

β
√
κκ′ρ∗

1√
κ

dr r
N
2
−1e−N r

2σ2 q =


q if 1√

κ
≤ σ2 ≤ 1

β
√
κκ′ρ∗

0 if κ < 1
σ4

0 if 1

β
√
κκ′ρ∗

< σ2

Therefore, for (2β − 1)
√
κ′ ≤ 1

σ′2 ,

lim
N→∞

2−
N
2 N

N
2

Γ(N
2
)

1

σN

∫ 1

β
√
κκ′ρ∗

1√
κ

dr r
N
2
−1e−N r

2σ2

×
[
− 1

N
ln

(
2−

N
2 N

N
2

Γ(N
2
)

1

σ′N

∫
dρ

ρ
e−N( ρ

2σ′2+β κ′
4
ρ2− 1

2
ln ρ− 1

N
ln IN )

)]

=

{
1
4

ρ∗

σ′2 − 1
2
ln ρ∗ − 1

4
+ lnσ′ if 1√

κ
≤ σ2 ≤ 1

β
√
κκ′ρ∗

0 if o.w.

(7.44)

3)r > 1

β
√
κκ′ρ∗

• ρ ≤ 1

β
√
κκ′r ∫ 1

β
√

κκ′r

0

dρ

ρ
e−N( ρ

2σ′2+β κ′
4
ρ2− 1

2
ln ρ−β2κ′

4
ρ2)

=

∫ 1

β
√
κκ′r

0

dρ

ρ
e−N

[
ρ2 κ′

4
β(1−β)+ ρ

2σ′2−
1
2
ln ρ

]
We are in the region where r > 1

β
√
κκ′ρ∗

, so p1(.) is minimized at 1

β
√
κκ′r

, and we
get ∫ 1

β
√
κκ′r

0

dρ

ρ
e−N

[
ρ2 κ′

4
β(1−β)+ ρ

2σ′2−
1
2
ln ρ

]
≈ e

−Np1(
1

β
√
κκ′r

)

= e
−N

[
− 1

4κr2
(1− 1

β
)+ 1

2β
√
κκ′σ′2r

+ 1
2
lnβ

√
κκ′r

] (7.45)
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• ρ > 1

β
√
κκ′r∫ ∞

1

β
√
κκ′r

dρ

ρ
e−N( ρ

2σ′2+β κ′
4
ρ2− 1

2
ln ρ−β

√
κκ′
2

rρ− 1
2
β
√

κ′
κ

ρ
r
+ 1

2
ln ρ+ 1

4κr2
+ 1

2
lnβ

√
κκ′r+ 1

2
)

= e−N( 1
4κr2

+ 1
2
lnβ

√
κκ′r+ 1

2
)

∫ ∞

1

β
√
κκ′r

dρ

ρ
e−N

[
β κ′

4
ρ2+( 1

2σ′2−β
√
κκ′r
2

−β 1
2

√
κ′
κ

1
r
)ρ
]

The function in the exponent is minimized is at ρopt = − 1
βκ′σ′2 +

√
κ
κ′ r +

1√
κκ′r

.
It can be checked that, in this region ρopt > 1

β
√
κκ′r

. So, we get

e−N( 1
4κr2

+ 1
2
lnβ

√
κκ′r+ 1

2
)

∫ ∞

1

β
√
κκ′r

dρ

ρ
e−N

[
β κ′

4
ρ2+( 1

2σ′2−β
√
κκ′r
2

−β 1
2

√
κ′
κ

1
r
)ρ
]

≈ e−N( 1
4κr2

+ 1
2
lnβ

√
κκ′r+ 1

2
)e−np3(ρopt)

= e
−N

[
− 1

4κr2
(β−1)− 1

4βκ′σ′4−
1
4
βκr2+ 1

2

√
κ
κ′

1
σ′2 r+

1

2
√
κκ′σ′2

1
r
− 1

2
(β−1)+ 1

2
lnβ

√
κκ′r

]
(7.46)

Comparing the exponent in eq.(7.45),(7.46)∫
dρ ρ

N
2
−1e−N ρ

2σ′2−Nβ κ′
4
ρ2+ln IN

≈ e
−N

[
− 1

4κr2
(β−1)− 1

4βκ′σ′4−
1
4
βκr2+ 1

2

√
κ
κ′

1
σ′2 r+

1

2
√
κκ′σ′2

1
r
− 1

2
(β−1)+ 1

2
lnβ

√
κκ′r

]
which leads to

q(r) = − 1

N
ln

[
2−

N
2 N

N
2

Γ(N
2
)

1

σ′N

∫
dρ

ρ
e−N( ρ

2σ′2+β κ′
4
ρ2− 1

2
ln ρ− 1

N
ln IN )

]
= − 1

4κr2
(β − 1)− 1

4βκ′σ′4 − 1

4
βκr2 +

1

2

√
κ

κ′
1

σ′2 r +
1

2
√
κκ′σ′2

1

r

− 1

2
(β − 1) +

1

2
ln β

√
κκ′r

(7.47)

Now, we need to compute the integral∫ ∞

1

β
√
κκ′ρ∗

dr r
N
2
−1e−N r

2σ2 q(r)

This integral asymptotically is 2
√

π
N
e−N( 1

2
−lnσ)q(σ2) if σ2 ≥ 1

β
√
κκ′ρ∗

1
N
e
−N( 1

2β
√
κκ′σ2ρ∗

+ 1
2
lnβ

√
κκ′ρ∗)

q( 1

β
√
κκ′ρ∗

) if σ2 < 1

β
√
κκ′ρ∗
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This leads to

2−
N
2 N

N
2

Γ(N
2
)

1

σN

∫ ∞

1

β
√

κκ′ρ∗

dr r
N
2
−1e−N r

2σ2 q(r)

≈
{
q(σ2) if σ2 ≥ 1

β
√
κκ′ρ∗

e
−n( 1

2β
√
κκ′σ2ρ∗

+ 1
2
lnβ

√
κκ′σ2ρ∗− 1

2
)
q( 1

β
√
κκ′ρ∗

) if σ2 < 1

β
√
κκ′ρ∗

So,

lim
N→∞

2−
N
2 N

N
2

Γ(N
2
)

1

σN

∫ ∞

1

β
√
κκ′ρ∗

dr r
N
2
−1e−N r

2σ2 q(r) =

{
q(σ2) if σ2 ≥ 1

β
√
κκ′ρ∗

0 if σ2 < 1

β
√
κκ′ρ∗

Since 1
x
+ lnx− 1 is positive for x ≥ 1.

Inserting q(σ2) from eq.(7.47), we find that for (2β − 1)
√
κ′ ≤ 1

σ′2 ,

lim
N→∞

2−
N
2 N

N
2

Γ(N
2
)

1

σN

∫ ∞

1

β
√

κκ′ρ∗

dr r
N
2
−1e−N r

2σ2

×
[
− 1

N
ln

(
2−

N
2 N

N
2

Γ(N
2
)

1

σ′N

∫
dρ

ρ
e−N( ρ

2σ′2+β κ′
4
ρ2− 1

2
ln ρ− 1

N
ln IN )

)]

=


1−β
4κσ4 − 1

4βκ′σ′4 − 1
4
βκσ4 + 1

2

√
κ
κ′

σ2

σ′2 if σ2 ≥ 1

β
√
κκ′ρ∗

+ 1

2
√
κκ′σ2σ′2 − β

2
+ 1

2
ln β

√
κκ′σ2σ′2

0 if σ2 < 1

β
√
κκ′ρ∗

(7.48)

Now assume (2β − 1)
√
κ′ > 1

σ′2 .

4)r > 1√
κ

•ρ < 1

β
√
κκ′r∫ 1

β
√

κκ′r

0

dρ

ρ
e−N( ρ

2σ′2+β κ′
4
ρ2− 1

2
ln ρ−β2κ′

4
ρ2)

=

∫ 1

β
√
κκ′r

0

dρ

ρ
e−N

[
ρ2 κ′

4
β(1−β)+ ρ

2σ′2−
1
2
ln ρ

]
If β < 1, then p1(.) is minimized at ρ∗, but since (2β− 1)

√
κ′ > 1

σ′2 and r > 1√
κ
,

it can be checked that ρ∗ > 1

β
√
κκ′r

.
If β > 1, then p1(.) is either a monotonically decreasing function, or attains

its minimum at ρ∗ (but ρ∗ > 1

β
√
κκ′r

). Therefore, in any case p1 is minimized
(over the integral domain) at 1

β
√
κκ′r

.
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∫ 1

β
√
κκ′r

0

dρ

ρ
e
−N

[
ρ2 κ′

4
β(1−β)+ ρ

2σ′2−
1
2
ln ρ

]
≈ e

−N
[
− 1

4κr2
(1− 1

β
)+ 1

2β
√
κκ′σ′2r

+ 1
2
lnβ

√
κκ′r

] (7.49)

• ρ ≥ 1

β
√
κκ′r∫ ∞

1

β
√
κκ′r

dρ

ρ
e−N( ρ

2σ′2+β κ′
4
ρ2− 1

2
ln ρ−β

√
κκ′
2

rρ− 1
2
β
√

κ′
κ

ρ
r
+ 1

2
ln ρ+ 1

4κr2
+ 1

2
lnβ

√
κκ′r+ 1

2
)

= e−N( 1
4κr2

+ 1
2
lnβ

√
κκ′r+ 1

2
)

∫ ∞

1

β
√
κκ′r

dρ

ρ
e−N

[
β κ′

4
ρ2+( 1

2σ′2−β
√
κκ′r
2

−β 1
2

√
κ′
κ

1
r
)ρ
]

The function in the exponent is minimized is at ρopt = − 1
βκ′σ′2 +

√
κ
κ′ r +

1√
κκ′r

.
It can be checked that, in this region ρopt > 1

β
√
κκ′r

. So, we get

e−N( 1
4κr2

+ 1
2
lnβ

√
κκ′r+ 1

2
)

∫ ∞

1

β
√
κκ′r

dρ

ρ
e−N

[
β κ′

4
ρ2+( 1

2σ′2−β
√
κκ′r
2

−β 1
2

√
κ′
κ

1
r
)ρ
]

≈ e−N( 1
4κr2

+ 1
2
lnβ

√
κκ′r+ 1

2
)e−np3(ρopt)

= e
−N

[
− 1

4κr2
(β−1)− 1

4βκ′σ′4−
1
4
βκr2+ 1

2

√
κ
κ′

1
σ′2 r+

1

2
√
κκ′σ′2

1
r
− 1

2
(β−1)+ 1

2
lnβ

√
κκ′r

] (7.50)

Picking the dominant term from eq. (7.49), (7.50), we have∫
dρ ρ

N
2
−1e−N ρ

2σ′2−Nβ κ′
4
ρ2+ln IN

≈ e
−N

[
− 1

4κr2
(β−1)− 1

4βκ′σ′4−
1
4
βκr2+ 1

2

√
κ
κ′

1
σ′2 r+

1

2
√
κκ′σ′2

1
r
− 1

2
(β−1)+ 1

2
lnβ

√
κκ′r

]
which leads to

q(r) = − 1

N
ln

[
2−

N
2 N

N
2

Γ(N
2
)

1

σ′N

∫
dρ

ρ
e−N( ρ

2σ′2+β κ′
4
ρ2− 1

2
ln ρ− 1

N
ln IN )

]
= − 1

4κr2
(β − 1)− 1

4βκ′σ′4 − 1

4
βκr2 +

1

2

√
κ

κ′
1

σ′2 r +
1

2
√
κκ′σ′2

1

r

− 1

2
(β − 1) +

1

2
ln β

√
κκ′r

(7.51)

Now, we need to compute the integral∫ ∞

1√
κ

dr r
N
2
−1e−N r

2σ2 q(r)

This integral asymptotically is{
2
√

π
N
e−N( 1

2
−lnσ)q(σ2) if σ2 ≥ 1√

κ

1
N
e
−N( 1

2β
√
κκ′σ2ρ∗

+ 1
2
lnβ

√
κκ′ρ∗)

q( 1

β
√
κκ′ρ∗

) if σ2 < 1√
κ
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This leads to

2−
N
2 N

N
2

Γ(N
2
)

1

σN

∫ ∞

1√
κ

dr r
N
2
−1e−N r

2σ2 q(r)

≈
{
q(σ2) if σ2 ≥ 1√

κ

e
−N( 1

2β
√

κκ′σ2ρ∗
+ 1

2
lnβ

√
κκ′σ2ρ∗− 1

2
)
q( 1

β
√
κκ′ρ∗

) if σ2 < 1√
κ

So,

lim
N→∞

2−
N
2 N

N
2

Γ(N
2
)

1

σN

∫ ∞

1√
κ

dr r
N
2
−1e−N r

2σ2 q(r) =

{
q(σ2) if σ2 ≥ 1√

κ

0 if σ2 < 1√
κ

Since 1
x
+ lnx− 1 is positive for x ̸= 1.

Inserting q(σ2) from eq.(7.51), we find that for (2β − 1)
√
κ′ > 1

σ′2 ,

lim
N→∞

2−
N
2 N

N
2

Γ(N
2
)

1

σN

∫ ∞

1√
κ

dr r
N
2
−1e−N r

2σ2

×
[
− 1

N
ln

(
2−

N
2 N

N
2

Γ(N
2
)

1

σ′N

∫
dρ

ρ
e−N( ρ

2σ′2+β κ′
4
ρ2− 1

2
ln ρ− 1

N
ln IN )

)]

=


1−β
4κσ4 − 1

4βκ′σ′4 − 1
4
βκσ4 + 1

2

√
κ
κ′

σ2

σ′2 if σ2 ≥ 1√
κ

+ 1

2
√
κκ′σ2σ′2 − β

2
+ 1

2
ln β

√
κκ′σ2σ′2

0 if σ2 < 1√
κ

(7.52)

Finally, from eq.(7.40),(7.44),(7.48),(7.52), we have limN→∞ fN =:

1
4

ρ∗

σ′2 − 1
2
ln ρ∗ − 1

4
+ lnσ′ if (2β − 1)

√
κ′ ≤ 1

σ′2 , κ ≤ 1
σ4 ,

1
2
ln β + 1

4
lnκ′ + lnσ′ + 1

4
if (2β − 1)

√
κ′ > 1

σ′2 , κ ≤ 1
σ4 ,

− 1
4βκ′σ′4 +

1√
κ′σ′2 − β

1
4

ρ∗

σ′2 − 1
2
ln ρ∗ − 1

4
+ lnσ′ if (2β − 1)

√
κ′ ≤ 1

σ′2 ,
1√
κ
≤ σ2 ≤ 1

β
√
κκ′ρ∗

,
1−β
4κσ4 − 1

4βκ′σ′4 − 1
4
βκσ4 if (2β − 1)

√
κ′ ≤ 1

σ′2 ,
√
κκ′ ≥ 1

βσ2ρ∗
,

+1
2

√
κ
κ′

σ2

σ′2 +
1

2
√
κκ′σ2σ′2

+1
2
ln β

√
κκ′σ2σ′2 − β

2
1−β
4κσ4 − 1

4βκ′σ′4 − 1
4
βκσ4 + 1

2

√
κ
κ′

σ2

σ′2 if (2β − 1)
√
κ′ > 1

σ′2 , κ ≥ 1
σ4 ,

+1
2

√
κ
κ′

σ2

σ′2 +
1

2
√
κκ′σ2σ′2

+1
2
ln β

√
κκ′σ2σ′2 − β

2

0 if o.w.
(7.53)

with

ρ∗ =
1

κ′β(β − 1)

(
1

2σ′2 −
√

1

4σ′4 − κ′β(β − 1)

)
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Remark 7.9. ρ∗ was defined as the minimizer of p1(.). For β = 1 we have
p1(ρ) =

ρ
2σ′2 − 1

2
ln ρ, so ρ∗ = σ′2 and all the steps we went through are valid by

simply substituting ρ∗ = σ′2.

The two conditions (2β − 1)
√
κ′ ≤ 1

σ′2 ,
√
κκ′ ≥ 1

βσ2ρ∗
or (2β − 1)

√
κ′ >

1
σ′2 , κ ≥ 1

σ4 can be combined into κ ≥ 1
σ4 ,

√
κκ′ ≥ 1

βσ2ρ∗
.

7.C MMSE Achieving Curve for β = 1

7.C.1 Equating MSE and MMSE

For β = 1, the asymptotic mismatched MSE reads

σ4 +
(
1−

√
κ′σ′2

κ′σ′2

)2
ifκ ≤ 1

σ4 , andκ
′ ≥ 1

σ′4

σ4
(
1−√

κ
κ′

)2
+ 2√

κκ′ +
1

κ′2σ′4 ifκ′ ≤ 1
σ′4 , and

√
κκ′ ≥ 1

σ2σ′2

+ 2
κ′

σ2

σ′2

(
1−√

κ
κ′

)
− 2

κκ′σ2σ′2

σ4
(
1−√

κ
κ′

)2
+ 2√

κκ′ +
1

κ′2σ′4 ifκ′ ≥ 1
σ′4 , and κ ≥ 1

σ4

+ 2
κ′

σ2

σ′2

(
1−√

κ
κ′

)
− 2

κκ′σ2σ′2

σ4 o.w.

We consider the case where κσ4 > 1 and estimation better than guess is possible.
Equating MSE and MMSE (7.19) for parameters κ′, σ′, we find:

κ′ =
κσ2

1− κσ4

1

σ′2 ± 1

2

κ2σ5

(κσ4 − 1)2
1

σ′

√
4(1− κσ4) + κ2σ6σ′2 +

1

2

κ3σ8

(κσ4 − 1)2

σ′ ≥ 2

√
κσ4 − 1

κσ3

(7.54)

From (7.54), we see that the curve has vertical tangent at κ′ = κ3σ8

4(κσ4−1)2
, σ′ =

2
√
κσ4−1
κσ3 . Moreover, the asymptotic of the curve at σ′ → ∞ is κ′ = κ3σ8

(κσ4−1)2
.

7.C.2 Enforcing Nishimori condition

For β = 1, the asymptotic free energy is

− 1
4κ′σ′4 +

1√
κ′σ′2 − 3

4
+ lnκ′

1
4σ′ if κ ≤ 1

σ4 , and κ′ ≥ 1
σ′4

1
2
ln
√
κκ′σ2σ′2 − 1

4κ′σ′4 − κσ4

4
if κ′ ≤ 1

σ′4 , and
√
κκ′ ≥ 1

σ2σ′2

+
√

κ
κ′

σ2

2σ′2 +
1

2
√
κκ′σ2σ′2 − 1

2
1
2
ln
√
κκ′σ2σ′2 − 1

4κ′σ′4 − κσ4

4
if κ′ ≥ 1

σ′4 , and κ ≥ 1
σ4

+
√

κ
κ′

σ2

2σ′2 +
1

2
√
κκ′σ2σ′2 − 1

2

0 if o.w.
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Using (7.15), we have

mstat = −4

√
κ

κ′
d

dκ
f = − 1√

κκ′
+

√
κ

κ′
σ4 − 1

κ′
σ2

σ′2 +
1

κκ′σ2σ′2

qstat = −4
κ

κ′
d

dκ
f + 4

d

dκ′
f =

(√
κ

κ′
σ2 − 1

κσ′2

)2

Imposing Nishimori identity, mstat = qstat we find the same relation as (7.54)
for κ′, σ′.

Remark 7.10. As the fixed points of the state evolution equations (7.24),
m∗

AMP and q∗AMP coincides with their corresponding statistical parameters, the
same discussion is true for m∗

AMP, q
∗
AMP.

7.C.3 Spectral rescaling

By remark 7.5, the bracket estimator performs as the spectral algorithm with

the rescaling factor qstat =
(√

κ
κ′σ

2 − 1
κσ′2

)2

. The rescaling factor in the fully

known model is δ2 =
(
σ2 − 1

κσ2

)2. Equating qstat with true factor gives the
same curve as eq. (7.54).

7.D Proof of Theorem 7.3

First, we compute the asymptotic of the free energy of the system with the
true Bernoulli-Rademacher prior.

Theorem 7.6. For all α, σ′, κ, κ′, β positive, the asymptotic of free energy for
the mismatched inference reads:

1
4

ρ∗

σ′2 − 1
2
ln ρ∗ − 1

4
+ 1

2
lnα if (2β − 1)

√
κ′ ≤ 1

σ′2 , κ ≤ 1
α2 ,

1
2
ln β + 1

4
lnκ′ + lnσ′ + 1

4
if (2β − 1)

√
κ′ > 1

σ′2 , κ ≤ 1
α2 ,

− 1
4βκ′σ′4 +

1√
κ′σ′2 − β

1
4

ρ∗

σ′2 − 1
2
ln ρ∗ − 1

4
+ 1

2
lnα if (2β − 1)

√
κ′ ≤ 1

σ′2 ,
1√
κ
≤ α ≤ 1

β
√
κκ′ρ∗

,
1−β
4κα2 − 1

4βκ′σ′4 − 1
4
βκα2 − β

2
if κ ≥ 1

α2 ,
√
κκ′ ≥ 1

βσ2ρ∗
,

+ 1

2
√
κκ′ασ′2 +

1
2

√
κ
κ′

α
σ′2

+1
2
ln β

√
κκ′ασ′2

0 o.w.

(7.55)
where

ρ∗ =

 σ′2 if β = 1,

1
κ′β(β−1)

(
1

2σ′2 −
√

1
4σ′4 − κ′β(β − 1)

)
if β ̸= 1
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Proof. We follow the same steps as the proof of the theorem 7.4 for the Gaussian
prior. We have

fN = − 1

N
EP∗,PZ

[
lnZ(Y )

]
= EP∗,PZ

[
− 1

N
ln

∫
dxP(x) e

−βκ′
4N

∥x∥4+ln IN
] (7.56)

where
IN =

∫
DUe

nTr Y√
n
U β

√
κ′

2n
xxTUT

(7.57)

The integrand in the x-integral in (7.56) is a function of ∥x∥. Furthermore,
the function in the expectation EP∗ is a function of ∥s∥. Therefore we can use
spherical coordinates (see appendix 7.E) to reduce the interior integral in (7.56)
to a one-dimensional integral, and the expectation over P∗ to the expectation
over the norm ∥s∥ = r.

fN = EPr,PZ

[
− 1

N
ln
{2−

N
2
+1

Γ(N
2
)

1

σ′N

∫ +∞

0

dρ ρN−1e−
ρ2

2σ′2−
βκ′
4N

ρ4+ln IN
}]

(7.58)

where r := ∥s∥, ρ := ∥x∥, and Γ(.) is the Gamma function. r2 is distributed
according to the Binomial distribution, B(n, α). Changing variable r2

n
→ r,

ρ2

n
→ ρ, we obtain

fN = EPr,PZ

[
1

N
ln
{2−

N
2 N

N
2

Γ(N
2
)

1

σ′N

∫ +∞

0

dρ ρ
N
2
−1e−N( ρ

2σ′2+
βκ′
4

ρ2− 1
N

ln IN
}]
(7.59)

where r has the following distribution:

P{r = k

N
} =

(
N

k

)
αk(1− α)N−k, k = 0, 1, . . . , N

The term 1
N
ln IN is the same as the case of Gaussian prior, see (7.35).

7.D.1 Details of applying the Laplace method

To compute the limit in eq.(7.59), we split the interior integral and the expec-
tation (over r) based on the different cases of the involved parameters.

1)r ≤ 1√
κ

With similar calculations in 7.B.3 we can find the asymptotic of the function
in the expectation which leads us to the following expression that we need to
compute.

EPr,PZ

[
q I{r ≤ 1√

κ
}
]
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where

q =


1
4

ρ∗

σ′2 − 1
2
ln ρ∗ − 1

4
+ lnσ′ if (2β − 1)

√
κ′ ≤ 1

σ′2
1
2
ln β + 1

4
lnκ′ + lnσ′ + 1

4
− 1

4βκ′σ′4 if (2β − 1)
√
κ′ > 1

σ′2

+ 1√
κ′σ′2 − β

(7.60)

q is independent of the Z, therefore, we have

EPr

[
q I{r ≤ 1√

κ
}
]
=

⌊ N√
κ
⌋∑

i=0

(
N

i

)
αi(1− α)N−iq = q

⌊ N√
κ
⌋∑

i=0

(
N

i

)
αi(1− α)N−i

(7.61)
By central limit theorem, we can approximate the Binomial distribution with
a normal one, and for N → ∞ we have(

N

i

)
αi(1− α)N−i ∼ 1√

2πNα(1− α)
e−

(i−Nα)2

2Nα(1−α)

Substituting in (7.61), we get

EPr

[
q I{r ≤ 1√

κ
}
]
= q

⌊ N√
κ
⌋∑

i=0

1√
2πNα(1− α)

e−
(i−Nα)2

2Nα(1−α)

= q

1√
κ∑

j=0

1√
2πNα(1− α)

e−N
(j−α)2

2α(1−α)

(7.62)

where in the last equality we changed the index i
N

→ j, and approximate 1
N
⌊ N√

κ
⌋

with 1√
κ

for N large enough. Now, for N → ∞ the sum can be interpreted as
a Riemann sum.

q

1√
κ∑

j=0

1√
2πNα(1− α)

e−N
(j−α)2

2α(1−α) = q N

∫ 1√
κ

0

d r√
2πNα(1− α)

e−N
(r−α)2

2α(1−α)

(7.63)
Thus, it remains to compute the the following limit:

lim
N→∞

q

√
N

2πα(1− α)

∫ 1√
κ

0

d r e−N
(r−α)2

2α(1−α)

Applying the regular Laplace method to the integral over r, we get

∫ 1√
κ

0

d r e−N
(r−α)2

2α(1−α) =


√

2π
N 1

α(1−α)

(
1 +O( 1

N
)
)

if κ ≤ 1
α2

α(1−α)

α− 1√
κ

1
N
e−N

( 1√
κ
−α)2

2α(1−α)
(
1 +O( 1

N
)
)

if κ > 1
α2
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Therefore, we have

lim
N→∞

q

√
N

2πα(1− α)

∫ 1√
κ

0

d r e−N
(r−α)2

2α(1−α) =

{
q if κ ≤ 1

α2

0 if κ > 1
α2

Substituting q from eq.(7.60), we obtain

lim
N→∞

− 1

N
EPr,PZ

[
I{r ≤ 1√

κ
}

× ln

(
2−

N
2 N

N
2

Γ(N
2
)

1

σ′N

∫ ∞

0

dρ

ρ
e−N( ρ

2σ′2+β κ′
4
ρ2− 1

2
ln ρ− 1

N
ln IN )

)]

=


1
4

ρ∗

σ′2 − 1
2
ln ρ∗ − 1

4
+ lnσ′ if (2β − 1)

√
κ′ ≤ 1

σ′2 , κ ≤ 1
α2

1
2
ln β + 1

4
lnκ′ + lnσ′ + 1

4
if (2β − 1)

√
κ′ > 1

σ′2 , κ ≤ 1
α2 ,

− 1
4βκ′σ′4 +

1√
κ′σ′2 − β

0 otherwise
(7.64)

To compute the remaining part of integral, we need to consider two cases.
Throughout the following, suppose (2β − 1)

√
κ′ ≤ 1

σ′2 .

2) 1√
κ
< r ≤ 1

β
√
κκ′ρ∗

In this case, the asymptotic of the interior integral is same as in (7.43), and
by the discussion in previous section we can approximate Pr by a Gaussian
distribution with mean α, and variance α(1 − α). Therefore, in the end, we
need to compute the following limit.

lim
N→∞

√
N

2πα(1− α)

∫ 1

β
√
κκ′ρ∗

1√
κ

dr e−N
(r−α)2

2α(1−α) q

where

q = − 1

N
ln

[
2−

N
2 N

N
2

Γ(N
2
)

1

σ′N

∫
dρ

ρ
e−N( ρ

2σ′2+β κ′
4
ρ2− 1

2
ln ρ− 1

N
ln IN )

]
≈ 1

4

ρ∗

σ′2 − 1

2
ln ρ∗ − 1

4
+ lnσ′

Applying the regular Laplace method to the integral over r, we get

∫ 1

β
√
κκ′ρ∗

1√
κ

dr e−N
(r−α)2

2α(1−α) ≈



√
2π

N 1
α(1−α)

if 1√
κ
≤ α ≤ 1

β
√
κκ′ρ∗

1
N
e−N

( 1√
κ
−α)2

2α(1−α) if κ < 1
α2

1
N
e−N

( 1
β
√
κκ′ρ∗

−α)2

2α(1−α) if 1

β
√
κκ′ρ∗

< α
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which leads to

lim
N→∞

√
N

2πα(1− α)

∫ 1

β
√
κκ′ρ∗

1√
κ

dr e−N
(r−α)2

2α(1−α) q =


q if 1√

κ
≤ α ≤ 1

β
√
κκ′ρ∗

0 if κ < 1
α2

0 if 1

β
√
κκ′ρ∗

< α

Therefore for (2β − 1)
√
κ′ ≤ 1

σ′2 ,

− 1

N
EPr,PZ

[
I{ 1√

κ
< r ≤ 1

β
√
κκ′ρ∗

}

× ln

(
2−

N
2 N

N
2

Γ(N
2
)

1

σ′N

∫
dρ

ρ
e−N( ρ

2σ′2+β κ′
4
ρ2− 1

2
ln ρ− 1

N
ln IN )

)]

=

{
1
4

ρ∗

σ′2 − 1
2
ln ρ∗ − 1

4
+ lnσ′ if 1√

κ
≤ α ≤ 1

β
√
κκ′ρ∗

0 if o.w.

(7.65)

3)r > 1

β
√
κκ′ρ∗

In this case, the asymptotic of the interior integral is same as in (7.47), and
by the discussion in previous section we can approximate Pr by a Gaussian
distribution with mean α, and variance α(1 − α). Therefore, in the end, we
need to compute the following limit. which leads to

lim
N→∞

√
N

2πα(1− α)

∫ ∞

1

β
√
κκ′ρ∗

dr e−N
(r−α)2

2α(1−α) q(r)

where

q(r) = − 1

4κr2
(β − 1)− 1

4βκ′σ′4 − 1

4
βκr2 +

1

2

√
κ

κ′
1

σ′2 r

+
1

2
√
κκ′σ′2

1

r
− 1

2
(β − 1) +

1

2
ln β

√
κκ′r

We have

∫ ∞

1

β
√
κκ′ρ∗

dr e−N
(r−α)2

2α(1−α) q(r) ≈


√

2π
N 1

α(1−α)

q(α) if α ≥ 1

β
√
κκ′ρ∗

1
N
e−N

( 1
β
√
κκ′ρ∗

−α)2

2α(1−α) q( 1

β
√
κκ′ρ∗

) if α < 1

β
√
κκ′ρ∗

This leads to

lim
N→∞

√
N

2πα(1− α)

∫ ∞

1

β
√
κκ′ρ∗

dr e−N
(r−α)2

2α(1−α) q(r) ≈
{
q(α) if α ≥ 1

β
√
κκ′ρ∗

0 if α < 1

β
√
κκ′ρ∗
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Inserting q(σ2), we find that for (2β − 1)
√
κ′ ≤ 1

σ′2 ,

lim
N→∞

− 1

N
EPr,PZ

[
I{ 1

β
√
κκ′ρ∗

< r}

× ln

(
2−

N
2 N

N
2

Γ(N
2
)

1

σ′N

∫
dρ

ρ
e−N( ρ

2σ′2+β κ′
4
ρ2− 1

2
ln ρ− 1

N
ln IN )

)]

=


1−β
4κα2 − 1

4βκ′σ′4 − 1
4
βκα2 + 1

2

√
κ
κ′

α
σ′2 if α ≥ 1

β
√
κκ′ρ∗

+ 1

2
√
κκ′ασ′2 − β

2
+ 1

2
ln β

√
κκ′ασ′2

0 if α < 1

β
√
κκ′ρ∗

(7.66)

Now assume (2β − 1)
√
κ′ > 1

σ′2 .

4)r > 1√
κ

We need to compute the following limit

lim
N→∞

√
N

2πα(1− α)

∫ ∞

1√
κ

dr e−N
(r−α)2

2α(1−α) q(r)

where (from (7.51))

q(r) = − 1

4κr2
(β − 1)− 1

4βκ′σ′4 − 1

4
βκr2 +

1

2

√
κ

κ′
1

σ′2 r

+
1

2
√
κκ′σ′2

1

r
− 1

2
(β − 1) +

1

2
ln β

√
κκ′r

We have

∫ ∞

1√
κ

dr e−N
(r−α)2

2α(1−α) q(r) ≈


√

2π
N 1

α(1−α)

q(α) if α ≥ 1√
κ

1
N
e−N

( 1√
κ
−α)2

2α(1−α) q( 1√
κ
) if α < 1√

κ

which implies

lim
N→∞

√
N

2πα(1− α)

∫ ∞

1√
κ

dr e−N
(r−α)2

2α(1−α) q(r) =

{
q(α) if α ≥ 1√

κ

0 if α < 1√
κ



7.E. N-Dimensional Spherical Coordinates 97

Substituting q(α), we find that for (2β − 1)
√
κ′ > 1

σ′2 ,

lim
N→∞

− 1

N
EPr,PZ

[
I{ 1√

κ
< r}

× ln

(
2−

N
2 N

N
2

Γ(N
2
)

1

σ′N

∫
dρ

ρ
e−N( ρ

2σ′2+β κ′
4
ρ2− 1

2
ln ρ− 1

N
ln IN )

)]

=


1−β
4κα2 − 1

4βκ′σ′4 − 1
4
βκα2 + 1

2

√
κ
κ′

α
σ′2 if α ≥ 1√

κ

+ 1

2
√
κκ′ασ′2 − β

2
+ 1

2
ln β

√
κκ′ασ′2

0 if α < 1√
κ

(7.67)

Finally, from eq.(7.64),(7.65),(7.66),(7.67), we have limN→∞ fN =:



1
4

ρ∗

σ′2 − 1
2
ln ρ∗ − 1

4
+ lnσ′ if (2β − 1)

√
κ′ ≤ 1

σ′2 , κ ≤ 1
α2 ,

1
2
ln β + 1

4
lnκ′ + lnσ′ + 1

4
if (2β − 1)

√
κ′ > 1

σ′2 , κ ≤ 1
α2 ,

− 1
4βκ′σ′4 +

1√
κ′σ′2 − β

1
4

ρ∗

σ′2 − 1
2
ln ρ∗ − 1

4
+ lnσ′ if (2β − 1)

√
κ′ ≤ 1

σ′2 ,
1√
κ
≤ α ≤ 1

β
√
κκ′ρ∗

,
1−β
4κα2 − 1

4βκ′σ′4 − 1
4
βκα2 if (2β − 1)

√
κ′ ≤ 1

σ′2 ,
√
κκ′ ≥ 1

βαρ∗

+1
2

√
κ
κ′

α
σ′2 +

1

2
√
κκ′ασ′2

+1
2
ln β

√
κκ′ασ′2 − β

2
1−β
4κα2 − 1

4βκ′σ′4 − 1
4
βκα2 if (2β − 1)

√
κ′ > 1

σ′2 , κ ≥ 1
α2 ,

+1
2

√
κ
κ′

α
σ′2 +

1

2
√
κκ′ασ′2

+1
2
ln β

√
κκ′ασ′2 − β

2

0 if o.w.
(7.68)

with

ρ∗ =
1

κ′β(β − 1)

(
1

2σ′2 −
√

1

4σ′4 − κ′β(β − 1)

)

Remark 7.11. ρ∗ was defined as the minimizer of p1(.). For β = 1 we have
p1(ρ) =

ρ
2σ′2 − 1

2
ln ρ, so ρ∗ = σ′2 and all the steps we went through are valid by

simply substituting ρ∗ = σ′2.

The two conditions (2β − 1)
√
κ′ ≤ 1

σ′2 ,
√
κκ′ ≥ 1

βαρ∗
or (2β − 1)

√
κ′ >

1
σ′2 , κ ≥ 1

α2 can be combined into κ ≥ 1
α2 ,

√
κκ′ ≥ 1

βαρ∗
.

7.E N-Dimensional Spherical Coordinates

ds = ds1ds2 . . . dsN
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Consider the variables 0 ≤ r, 0 ≤ θ ≤ 2π, ϕ1, ϕ2, . . . , ϕN−2, where 0 ≤ ϕi ≤ π
with the following transformation:

s1 = r cosϕ1

s2 = r sinϕ1 cosϕ2

s3 = r sinϕ1 sinϕ2 cosϕ3

...
sN−2 = r sinϕ1 . . . sinϕN−1 cosϕN−2

sN−1 = r sinϕ1 . . . sinϕN−1 sinϕN−2 cos θ

sN−1 = r sinϕ1 . . . sinϕN−1 sinϕN−2 sin θ

The Jacobian of transformation is rN−1
∏N−1

j=1 sinN−1−j ϕj.Thus we have

ds1ds2 . . . dsN = dr dθ dϕ1 . . . dϕN−2 r
N−1

N−1∏
j=1

sinN−1−j ϕj

If the integrand is only function of ∥s∥2, we can get rid of the integral over the
angles. ∫ 2π

0

dθ
N−2∏
j=1

∫ π

0

sinN−1−j ϕj dϕj =
2π

N
2

Γ
(
N
2

)



Mismatched Estimation
of Rank-One
Non-Symmetric Matrices 8
In this chapter, we delve into the analysis of mismatched estimation focusing
on a scenario where the signal matrix is a rank-one non-symmetric matrix and
the noise follows a Gaussian distribution. Our main goal is to calculate the
full asymptotic of the mismatched MSE in the large N limit, specifically when
statisticians use a Gaussian prior for estimation.

• We prove a relation which links the free energy of the system to the
mismatched MSE in the non-symmetric case, see Theorem 8.1.

• We derive the asymptotic free energy for the case where true prior is
Gaussian in Statement 8.2.

• Using the f-MSE relation, we derive the asymptotic mismatched MSE for
Gaussian prior.

8.1 Problem Setting

Suppose the ground-truth vectors s∗ ∈ RN ,t∗ ∈ RM are distributed according
to Ps, Pt, respectively. The matrix estimation problem is the task to infer the
matrix s∗t∗⊺ from the noisy observation:

Y =

√
κ

N
s∗t∗⊺ +Z (8.1)

This work was presented in [32] F. Pourkamali and N. Macris, “Mismatched estimation
of non-symmetric rank-one matrices under gaussian noise,” in 2022 IEEE International
Symposium on Information Theory (ISIT). IEEE, 2022, pp. 1288–1293.
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where κ is the signal-to-noise-ratio (SNR), and the noise matrix Z ∈ RN×M has
i.i.d. entries (independent of s∗, t∗) distributed according to N (0, 1). We assume
that M scales like N , and N/M → α ∈ (0, 1] as N → ∞. The normalization
1/

√
N makes the inference problem nontrivial in the limit N → ∞.
The statistician is aware that the channel is additive Gaussian with variance

1. But, he does not know the SNR κ and the prior distributions, and he assumes
(not necessarily) untrue priors Qu, Qv, κ′ instead. Following the Bayesian
inference framework, he chooses the mean of the posterior distribution as his
estimate for s∗t∗⊺. The goal is to compute the MSE of this estimation in the
N → ∞ limit. The MSE is defined as

MSEN =
1

NM
E
[∥∥s∗t∗⊺ − ⟨st⊺⟩

∥∥2

F

]
(8.2)

where E is the expectation over the true prior distributions Ps,Pt, and the
noise distribution PZ , and ∥.∥F is the Frobenius norm of a matrix. Adopting the
traditional statistical mechanics notation, we use ⟨.⟩ to denote the expectation
with respect to the posterior distribution from the statistician’s point of view
with the mismatched priors Qs,Qt and the SNR κ′.

⟨g(s, t)⟩ =
∫∫

ds dt g(s, t)Qu(s)Qv(t) e
− 1

2

∥∥Y −
√

κ′
N
st⊺

∥∥2

F∫∫
ds dtQu(s)Qv(t) e

− 1
2

∥∥Y −
√

κ′
N
st⊺

∥∥2

F

for a reasonable function g(s, t) such that the integrals exist.
It is understood that the MSE in (8.2) is a function of α, κ,Ps,Pt, κ

′,Qs,Qt.
Also, note that since we are interested in the large size limit, we only use N in
the subscript for the MSE.

In the matched case, i.e. κ′ = κ,Qs = Ps,Qt = Pt, the MSE reduces to
the MMSE which is the best achievable error:

MMSEN =
1

NM
E
[∥∥s∗t∗⊺ − ⟨st⊺⟩matched

∥∥2

F

]
(8.3)

Notation: We often drop the N subscript to denote the asymptotic large N
limit. We may also drop the parameter dependency for notational simplicity. We
use E to denote the expectation over the true priors and the noise distribution
unless the distribution is specified as a subscript. ⟨.⟩ denotes the expectation
over the posterior distribution with mismatched priors and parameters, unless
the parameters are indicated as a subscript.

Remark 8.1. Studying the problem for the case α ∈ (0, 1] suffices to capture
the problem in the general case. Suppose the observation matrix be Y ∈ RN×M

as in (8.1) such that N > M (so α > 1). Exchanging the role of M,N and
rescaling κ to κ/α, we can apply our method to the matrix Y ⊺ with the aspect
ratio 1/α ∈ (0, 1).
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8.2 Main Result

In the matched setting, one method for obtaining the MMSE is to compute
the mutual information between the signal and the observation, and proceed
with the well-known I-MMSE relationship [1]. However, mutual information
cannot be defined in a mismatched setting, and such relationships do not exist.

In the mismatched setting, the average free energy (a similar quantity to
mutual information) is the key to accessing the mismatched MSE. Free energy is
defined as the logarithm of the normalizing factor of the posterior distribution.
Theorem 8.1 states the relation of mismatched average free energy and MSE
(in the following, we often refer to the mismatched average free energy simply
as free energy).

8.2.1 Asymptotic mismatched free energy and MSE

Given an observation matrix Y and the model (8.1), the posterior distribution
from the standpoint of the statistician, reads up to a normalizing factor as

P(s, t|Y ) ∝ e−
1
2

∥∥Y −
√

κ′
N
st⊺

∥∥2

FQs(s)Qt(t)

∝ e−
κ′
2N

∥s∥2∥t∥2+
√

κ′
N

TrY ts⊺Qs(s)Qt(t)

(8.4)

where Qs,Qt are the priors the statistician has assumed. To derive the second
line, we drop the term

∥∥Y ∥∥2

F
in the exponent since it is a constant term (because

the probability is conditioned on Y ).
The partition function is defined as the normalization factor of the posterior

distribution

Z(Y ) :=

∫∫
dsdtQs(s)Qt(t)e

− κ′
2N

∥s∥2∥t∥2+
√

κ′
N

TrY ts⊺ (8.5)

and the mismatched free energy is defined as

fN(α, κ,Ps,Pt, κ
′,Qs,Qt) := − 1

N
E
[
lnZ(Y )

]
(8.6)

Now, we state the relation between the free energy and MSE.

Theorem 8.1. For the model (8.1), with any true priors Ps,Pt and assumed
priors Qs,Qt with bounded second moment, we have

d

dκ′
fN+

(
2−

√
κ

κ′

)√
κ

κ′
d

dκ
fN +

1

2

1

N2
EPs

[
∥s∥2

]
EPt

[
∥t∥2

]
=

1

2

M

N
MSEN

(8.7)

The proof of Theorem 8.1 is given in section 8.3. Eq. (8.7), generalizes the
classical I-MMSE relation [1], and holds (with a change of constant factors) for
other mismatched inference problems such as symmetric matrix estimation [28],
and vector channels.
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Remark 8.2. Denote the mismatched distribution of Y by QY . We have

fN +
κ

2

1

N2
EPs

[
∥s∥2

]
EPt

[
∥t∥2

]
− 1

N
I(s∗, t∗;Y ) =

1

N
D(PY ∥QY ) (8.8)

Then, (8.7) links the difference of MSE and MMSE to a derivative of relative
entropy, equivalent to relations discussed in detail in [114] for vector channels.
The relations of free energy and mutual information and other information
theory notions are discussed in detail in Appendix 8.A.

8.2.2 Gaussian priors

In this section, we consider the case in which the priors (both true and assumed
ones) are Gaussian and derive the mismatched free energy using the non-
rigorous results in spherical integrals. Suppose s and t are generated with i.i.d.
elements from N (0, σ2

s), N (0, σ2
t ), and statistician assumes incorrect priors

N (0, σ′
s
2), N (0, σ′

t
2).

Statement 8.2. For all α ∈ (0, 1], κ, σs, σt, κ
′, σ′

s, σ
′
t > 0, the asymptotic free

energy of mismatched inference model (with Gaussian priors) is given by:

lim
N→∞

fN

=



1
2α

(
F + (α− 1) ln

(
1 +

√
α
)

if κσ2
sσ

2
t <

√
α, κ′σ′

s
2σ′

t
2 >

√
α,

−α ln
√
α +

√
α
)

1
2α

(
F + (α− 1) ln(α + κσ2) if κσ2

sσ
2
t >

√
α, κκ′σ2

sσ
2
t σ

′
s
2σ′

t
2 > α,

−α lnα + lnκσ2 + α
κσ2

)
0 otherwise

(8.9)

where

F = −
√
A+ (1− α) ln

(
1− α +

√
A
)
+ lnκ′σ′

s
2
σ′
t
2 − α

κ′σ′
s
2σ′

t
2 + γ2max

+ (α− 1) ln
(
− 2α + κ′σ′

s
2
σ′
t
2(
1− α +

√
B
))

with

A =
4γ2max

κ′σ′
s
2σ′

t
2

(
α + κ′σ′

s
2
σ′
t
2(
γ2max −

√
B
))

+ (α− 1)2

B = (α− 1)2 + 4α
γ2max

κ′σ′
s
2σ′

t
2

γmax =

{
1 +

√
α if κσ2

sσ
2
t <

√
α,√

(1+κσ2
sσ

2
t )(α+κσ2

sσ
2
t )

κσ2
sσ

2
t

if κσ2
sσ

2
t >

√
α
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Figure 8.2.1: Plot of mismatched MSE for Gaussian priors with α = 0.4, σs = σt =
1, κ = 2. The solid leftmost (red) curve is a phase transition (the derivative of MSE is
discontinuous) line. On the left of this curve, MSE = σ2

sσ
2
t = 1. In the intermediate

region, between the solid leftmost (red) and the dashed (red) curves the MSE is less
than σ2

sσ
2
t = 1 and the estimation better than chance is possible. On the dotted (green)

curve the MSE attains its minimum which is equal to the MMSE, although we do not
have κ′ = κ, σsσt = σ′

sσ
′
t except for one point (which is the point where we are in fully

matched case) depicted by *. The MSE is σsσt = 1 on the dashed (red) line, and take
higher values on the right of this line. MSE is analytic on this curve, and this line is not a
phase transition. Finally, we point out that the MSE is continuous throughout and the
phase transition is therefore a continuous phase transition.

Proof. The derivation is sketched in section 8.3.2, with details provided in
appendix 8.B.

Now, we are able to compute the asymptotic MSE using Theorem 8.1. We
assume that the sequence (MSE)N≥1 converges uniformly for (κ, κ′) ∈ K ⊂ R2

+.
This allows us to interchange limit and derivative to go from asymptotic
mismatched free energy to asymptotic mismatched MSE. Due to the complexity
of the expression, we omit the detailed presentation of the MSE.

Remark 8.3. In the matched setting, concavity of mutual information with
respect to κ implies uniform convergence of the sequence (MMSE)N≥1, which
enables us to interchange limit and derivative when using I-MMSE relation.

The MSE is illustrated for the case of α = 0.4, σs = σt = 1, κ = 2 in Fig. 1.
The observed behavior is generic when we are above the information theory
threshold, κσ2

sσ
2
t >

√
α. In this case, as we see in Fig. 8.2.1, there is an

intermediate region where the MSE is less than σ2
sσ

2
t , and estimation better

than chance is possible. We refer to the caption of Fig. 8.2.1 for details. In the
case κσ2

sσ
2
t <

√
α, the mutual information between the signal and the observed

matrix is zero and the MSE is always greater or equal to σ2
sσ

2
t .
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Fully matched setting

Setting κ′ = κ, σ′
s
2σ′

t
2 = σ2

sσ
2
t in (8.9), and using (8.8), we find the asymptotic

average mutual information:

I(s∗, t∗;Y ) = f fully matched +
κ

2α
σ2
sσ

2
t

=


κ
2α
σ2
sσ

2
t if κσ2

sσ
2
t <

√
α

1
2α

[
α

κσ2
sσ

2
t
+ (1− α) ln

1+κσ2
sσ

2
t

α+κσ2
sσ

2
t

if κσ2
sσ

2
t >

√
α

+(1 + α) lnκσ2
sσ

2
t − α lnα

] (8.10)

From the mutual information, we can find the asymptotic MMSE using the
I-MMSE relation. The expressions for mutual information and MMSE are
well-known and obtained previously using a variety of methods [10,11,115].

Limit α → 0

Setting n = 1, the model (8.1) reduces to a modified vector channel of the form

y =
√
κut+ z (8.11)

where u is a random variable distributed according to N (0, σ2
s), and t ∈ RM

has i.i.d. elements generated from N (0, σ2
t ). Similar to the matrix case, we

can define the partition function for this model, and the free energy is defined
as fvector

M = − 1
M
E
[
lnZ(y)

]
(because N is fixed and M tends to ∞). With

a slight abuse of notation that we can index the matrix free energy with
M , we can see the asymptotic (mismatched) free energy of vector channel
as limM→∞ limN/M→0

N
M
fM . Assuming that we are permitted to interchange

the limits, we find limM→∞ fvector
M = limα→0 αf , where f is the asymptotic

mismatched free energy of the matrix model.

lim
M→∞

fvector
M =

1

2

(
ln(1 + κσ2

sσ
2
t )− κσ2

sσ
2
t

)
(8.12)

This result seems rather counter-intuitive, since the mismatched free energy
does not depend on the mismatched parameters and it is equal to the matched
free energy. But, independent calculations confirms this behavior.

Case of α = 1

Consider the symmetric rank-one matrix estimation problem defined as

Y sym. =

√
κ

N
s∗s∗⊺ +Z (8.13)

where s∗ ∈ RN has i.i.d. elements distributed according to N (0, σ2), and Z is
a symmetric Gaussian noise matrix with variance 1. The asymptotic average
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mutual information for this model reads

I(s∗;Y sym.) =

{
1
4
κσ4 if κσ4 < 1

1
4

(
1

κσ4 + 2 lnκσ4
)

if κσ4 ≥ 1
(8.14)

In the non-symmetric case, let α = 1 and σs = σt = σ. Comparing (8.10) and
(8.14), we find 2I(s∗;Y sym.) = I(s∗, t∗;Y ).

The same relation also holds for the mismatched free energy. The mis-
matched free energy for the symmetric model is computed in previous chapter
7.4 with mismatched parameters κ′, σ′. In the non-symmetric case, with
σ′
s = σ′

t = σ′ we have

2f sym.(κ, σ, κ′, σ′) = f(α = 1, κ, σ, σ, κ′, σ′, σ′)

8.3 Analysis

8.3.1 Proof of Theorem 8.1

From (8.1),(8.5), (8.6), we can write

fN = − 1

N
E
[
ln

∫∫
ds dtQs(s)Qt(t)

× e−
κ′
2N

∥s∥2∥t∥2+
√
κκ′
N

(s∗⊺s)(t∗⊺t)+
√

κ′
n

TrZts⊺
]

From which, we have

d

dκ
fN = −1

2

1

N2

√
κ′

κ
E
[〈
(s∗⊺s)(t∗⊺t)

〉]
Using a standard Gaussian integration by parts trick, we get

d

dκ′
fN =

1

2

1

N2
E
[∥∥⟨st⊺⟩∥∥2

F
−
√
κ

κ′
〈
(s∗⊺s)(t∗⊺t)

〉]
Plugging these two equations into (8.7), we find

1

2

1

N2
E
[∥∥⟨st⊺⟩∥∥2

F
−2

〈
(s∗⊺s)(t∗⊺t)

〉
+ ∥s∗∥2∥t∗∥2

]
=

1

2

1

N2
E
[∥∥⟨st⊺⟩∥∥2

F
− 2Tr s∗t∗⊺⟨ts⊺⟩+ ∥s∗t∗⊺∥2F

]
=

1

2

1

N2
E
[∥∥s∗t∗⊺ − ⟨st⊺⟩

∥∥2

F

]
=

1

2

M

N
MSEN

8.3.2 Asymptotic mismatched free energy for Gaussian
priors

The main idea to compute the free energy, is to exploit the rotational invariance
of the mismatched priors Qs,Qt. Changing variables s → U ⊺s, t → V t for
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orthogonal matrices U ∈ RN×N , V ∈ RM×M , the integral in (8.5) becomes
(| detU | = | detV | = 1):

Z(Y ) =

∫∫
ds dtQs(U

⊺s)Qt(V t)e−
κ′
2N

∥U⊺s∥2∥V t∥2+
√

κ′
N

TrY V ts⊺U

=

∫∫
ds dtQs(s)Qt(t)e

− κ′
2N

∥s∥2∥t∥2+
√

κ′
N

TrY V ts⊺U

We have this relation for any orthogonal matrices U ,V , so it also holds for
the expectation over Haar measure on group of orthogonal matrices.

Z(Y ) =

∫∫
ds dtQs(s)Qt(t)e

− κ′
2N

∥s∥2∥t∥2
∫
DV

∫
DUe

√
κ′
N

TrY V ts⊺U (8.15)

where DU , DV denote the Haar measure on group of n × n and m × m
orthogonal matrices, respectively.

We can write the interior integral in (8.15) as in the definition of the rank-
one rectangular spherical integral (6.10) with A = Y√

M
, B =

√
κ′

N
ts⊺ (which is

rank-one with non-zero singular-value
√
κ′

N
∥s∥∥t∥), so (8.15) can be rewritten

as

Z(Y ) =

∫∫
ds dtQs(s)Qt(t)e

− κ′
2N

∥s∥2∥t∥2+ln IN,M (
√
κ′
N

∥s∥∥t∥, Y√
M

) (8.16)

Since the priors Qs,Qt are Gaussian, and the function in the exponent is only
a function of ∥s∥, ∥t∥, we can use spherical coordinates to reduce the integrals
into a two-dimensional integral over ∥s∥ ≡ ρs, ∥t∥ ≡ ρt. Following by a change
of variables ρ2s

N
→ ρs,

ρ2t
M

→ ρt, we can write:

Z(Y ) =
2−

N
2 N

N
2

Γ(N
2
)

1

σ′
s
N

2−
M
2 M

M
2

Γ(M
2
)

1

σ′
t
M

∫∫ +∞

0

dρsdρt
ρsρt

× e
−N

[
1
2
( ρs

σ′
s
2−ln ρs

)
+ 1

2
M
N

(
ρt

σ′
t
2−ln ρt

)
+κ′

2
M
N

ρsρt− 1
N

ln IN,M

(√
κ′ M

N
ρsρt,

Y√
M

)]
(8.17)

By statement 6.3 converges to a deterministic function J (α)(
√

κ′/αρsρt, µMP)
where µMP is the limiting singular law of Y√

M
. Note that since we are interested

in the large N limit, we replaced M = N
α
.

The limiting singular law of the matrix Z√
M

is the Marchenko-Pastur law

with density µMP =

√
4α−(t2−1−α)2

παt
which support is [1 − √

α, 1 +
√
α] [18].

Moreover, by [74] since Y√
M

is the rank-one deformation of Z√
M

has the same
limiting distribution, but the top singular-value of Y can be different. By [18],
the top singular-value of Y√

M
converges (a.s.) as N → ∞ to γmax given in (8.9).

The prefactors in (8.17) are independent of the Y and we find:

lim
N→∞

− 1

N
ln

2−
N
2 N

N
2

Γ(N
2
)

1

σ′
s
N

2−
M
2 M

M
2

Γ(M
2
)

1

σ′
t
M

= −1

2
(1 +

1

α
) + ln σ′

s +
1

α
lnσ′

t
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It remains to find the limN→∞ E
[
− 1

N
lnKB(Y )

]
, where KB(Y ) is the integral

in (8.17). Let us define the function

ψ(ρs, ρt) =
1

2
(
ρs
σ′
s
2 − ln ρs

)
+

1

2α

( ρt
σ′
t
2 − ln ρt

)
+
κ′

2α
ρsρt

− J (α)
(√κ′

α
ρsρt, µMP

) (8.18)

We show in appendix 8.B that limN→∞ E
[
− 1

N
lnKN(Y )

]
is bounded above

and below by minρs,ρt≥0 ψ(ρs, ρt). Therefore, we have:

lim
N→∞

fN = min
ρs,ρt≥0

ψ(ρs, ρt)−
1

2
(1 +

1

α
) + ln σ′

s +
1

α
lnσ′

t (8.19)

from which we can derive (8.9).





Appendix

8.A Relations between Free Energy and
Information Theory Notions

8.A.1 Matched setting

Denote the true distribution of Y by PY .

PY

(
Y
)
=

1

CZ

∫∫
ds dtPs(s)Pt(t) e

− 1
2

∥∥Y −
√

κ
N
st⊺

∥∥2

F

where CZ is the normalizing constant of the distribution of the noise matrix
Z. From the definition of matched partition function (setting Qs = Ps,Qt =

Pt, κ
′ = κ in (8.5)), we can write PY

(
Y
)
= 1

CZ
e−

1
2

∥∥Y

∥∥2

FZ fully matched(Y ). So,
the matched free energy can written as

f fully matched
N = − 1

N
EPY

[
lnZ fully matched(Y )

]
= − 1

N
EPY

[
lnPY

(
Y
)]

− 1

2

1

N
EPY

[∥∥Y ∥∥2

F

]
− 1

N
lnCZ

=
1

N
h(Y )− 1

2

1

N

(
κ

N
E
[
∥s∗∥2

]
E
[
∥t∗∥2

]
+ E

[∥∥Z∥∥2

F

])
− 1

N
lnCZ

(8.20)

where h(Y ) is the differential entropy of Y . In deriving the last line, we use
the independence of s∗, t∗,Z.

The average mutual information is
1

N
I
(
Y ; s∗, t∗

)
=

1

N
h
(
Y
)
− 1

N
h
(
Y |s∗, t∗

)
=

1

N
h
(
Y
)
− 1

N
h
(
Z
) (8.21)

Z is Gaussian matrix with i.i.d. entries, so h
(
Z
)
= 1

2
E
[∥∥Z∥∥2

F

]
+ lnCZ .

Putting (8.20), (8.21) together, we find

f fully matched
N +

κ

2

1

N2
E
[
∥s∗∥2

]
E
[
∥t∗∥2

]
=

1

N
I
(
Y ; s∗, t∗

)
(8.22)
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8.A.2 Mismatched setting

Let QY denote the mismatched distribution of Y .

QY

(
Y
)
=

1

CZ

∫∫
ds dtQs(s)Qt(t) e

− 1
2

∥∥Y −
√

κ′
N
st⊺

∥∥2

F

From the definition of mismatched partition function (8.5), we can write

QY

(
Y
)
= 1

CZ
e−

1
2

∥∥Y

∥∥2

FZ(Y ). So, the mismatched free energy can written as

fN := − 1

N
EPY

[
lnZ(Y )

]
= − 1

N
EPY

[
lnQY

(
Y
)]

− 1

N

1

2
EPY

[∥∥Y ∥∥2

F

]
− 1

N
lnCZ

The relative entropy between the two distributions PY ,QY reads

1

N
D
(
PY ∥QY

)
=

1

N
EPY

[PY

(
Y
)

QY

(
Y
)]

= − 1

N
h(Y ) + fN +

1

N

1

2
EPY

[∥∥Y ∥∥2

F

]
+

1

N
lnCZ

= fN − f fully matched
N (From second equality in (8.20))

From (8.22), we can also write

fN +
κ

2

1

N2
E
[
∥s∥2

]
E
[
∥t∥2

]
=

1

N
D(PY ∥QY ) +

1

N
I
(
Y ; s∗, t∗

)
(8.23)

8.B Derivation of Eq. (8.19)
In this section, we present the detailed derivation of asymptotic mismatched
free energy. We start with (8.16):

Z(Y ) =

∫∫
ds dtQs(s)Qt(t)e

− κ′
2N

∥s∥2∥t∥2+ln IN,M (
√
κ′
N

∥s∥∥t∥, Y√
M

)

(a)
=

1

(2π)
N
2 σ′

s
N

1

(2π)
M
2 σ′

t
M

∫∫
ds dt

× e
− ∥s∥2

2σ′
s
2−

∥t∥2

2σ′
t
2−

κ′
2N

∥s∥2∥t∥2+ln IN,M (
√
κ′
N

∥s∥∥t∥, Y√
M

)

(b)
=

2−
N
2
+1

Γ(N
2
)

1

σ′
s
N

2−
M
2
+1

Γ(M
2
)

1

σ′
t
M

∫∫ +∞

0

dρsdρt ρ
N−1
s ρM−1

t

× e
− ρ2s

2σ′
s
2−

ρ2t

2σ′
t
2−

βκ′
2N

ρ2sρ
2
t+ln IN,M (

√
κ′
N

ρsρt,
Y√
M

)

(8.24)

In (a), we write the explicit distribution functions of Qs,Qt, and in (b) we used
the spherical coordinates 7.E to change the integrals into a two-dimensional
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integral. With change of variables ρ2s
N

→ ρs,
ρ2t
M

→ ρt, we have

Z(Y ) =
2−

N
2 N

N
2

Γ(N
2
)

1

σ′
s
N

2−
M
2 M

M
2

Γ(M
2
)

1

σ′
t
M

∫∫ +∞

0

dρsdρt ρ
N
2
−1

s ρ
M
2
−1

t

× e
−N ρs

2σ′
s
2−M

ρt

2σ′
t
2−

βκ′
2N

NρsMρt+ln IN,M (
√
κ′
N

√
MNρsρt,

Y√
M

)

=
2−

N
2 N

N
2

Γ(N
2
)

1

σ′
s
N

2−
M
2 M

M
2

Γ(M
2
)

1

σ′
t
M

∫∫ +∞

0

dρsdρt
ρsρt

× e
−N

[
1
2
( ρs

σ′
s
2−ln ρs

)
+ 1

2
M
N

(
ρt

σ′
t
2−ln ρt

)
+κ′

2
M
N

ρsρt− 1
N
IN,M

(√
κ′ M

N
ρsρt,

Y√
M

)]
(8.25)

where 1
N
IN,M

(√
κ′M

N
ρsρt,

Y√
M

)
, by statement 6.3 converges to a deterministic

function J (α)(.;µMP) where µMP is the limiting singular law of Y√
M

.
We are interested in limN→∞ fN = limN→∞ E

[
− 1

N
lnZ(Y )

]
. First, we

compute the asymptotic of the integral in (8.25), denoted from now on by
K(Y ). Let us define the function

ψ(ρs, ρt) =
1

2
(
ρs
σ′
s
2 − ln ρs

)
+

1

2α

( ρt
σ′
t
2 − ln ρt

)
+
κ′

2α
ρsρt

− J (α)
(√κ′

α
ρsρt, µMP

) (8.26)

We show that limN→∞ E
[
− 1

N
lnK(Y )

]
= minρs,ρt≥0 ψ(ρs, ρt). Assume that

the minimum of ψ(ρs, ρt) is attained at (ρ∗s, ρ
∗
t ).

To show this limit, we need the following lemma:

Lemma 8.1. For θ ≥ 0,

lim
n→∞

E
[ 1

N
ln IN,M

(
θ,

Y√
M

)]
= J (α)(θ, µMP)

and this convergence is uniform over compacts.

Proof. By Statement 6.3, limN→∞
1
N
ln IN,M

(
θ, Y√

M

)
= J (α)(θ, µMP), and this

convergence is an almost sure convergence.
Let Y√

M
= UY ΓY VY be singular value decomposition of Y√

M
, and Σθ be an

M ×N with all zeros entries except the first entry which is θ. We can write:

IN,M

(
θ,

Y√
M

)
=

∫
DU

∫
DV e

√
MN TrΓY UΣθV

=

∫
DU

∫
Dte

√
MNθ

∑n
i=1 γiUi1V1i

≤
∫
DU

∫
DV e

√
mnθγ

(Y )
max

= e
√
MNθγ

(Y )
max
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where γ(Y )
max is the top singular-value of Y√

M
. So, we have that 1

N
ln IN,M

(
θ, Y√

M

)
≤√

M
N
θγ

(Y )
max. By [116] (Theorem II.13), for any N,M we have

P
{
γ(Y )
max ≥ 1 +

√
N

M
+ t

}
< e−M t2

2

From this and since γ(Y )
max is a positive random variable, we can deduce that the se-

quence 1
N
ln IN,M

(
γ
(Y )
max

)
N,M

is uniformly integrable. Because 1
N
ln IN,M

(
θ, Y√

M

)
≤√

M
N
θγ

(Y )
max, so

(
1
N
ln IN,M

(
θ, Y√

M

))
N,M

is also uniformly integrable. There-

fore, the almost sure convergence of 1
N
ln IN,M

(
θ, Y√

M

)
to J (α)(θ, µMP) implies

limN→∞ E
[

1
N
ln IN,M

(
θ, Y√

M

)]
= J (α)(θ, µMP).

Moreover, similar to Lemma 14 in [62], one can show that for θ, θ′ ≥ 0 :∣∣∣ 1
N

ln IN,M

(
θ,

Y√
M

)
− 1

N
ln IN,M

(
θ′,

Y√
M

)∣∣∣ ≤ √
M

N
γ(Y )
max|θ − θ′|

Therefore, using Jensen’s inequality, we can write∣∣∣∣E[ 1

N
ln IN,M

(
θ,

Y√
M

)]
−E

[ 1

N
ln IN,M

(
θ′,

Y√
M

)]∣∣∣∣
≤ E

[∣∣∣ 1
N

ln IN,M

(
θ,

Y√
M

)
− 1

N
ln IN,M

(
θ′,

Y√
M

)∣∣∣]
≤ E

[√M

N
γ(Y )
max|θ − θ′|

]
=

√
M

N
E
[
γ(Y )
max

]
|θ − θ′|

≤
√
M

N
E
[√ κ

NM
∥s∗∥∥t∗∥+ γ(Z)

max

]
|θ − θ′|

≤
√
M

N

(√
κσsσt + 1 +

√
N

M

)
|θ − θ′|

≤ C|θ − θ′|
(8.27)

for a constant C and for N large enough. γ(Z)
max denotes the top singular-value

of the matrix Z ∈ RN×M , and by [116] E
[
γ
(Z)
max] ≤ 1 +

√
N
M

. In deriving the
last inequality, we also used the fact that for a Gaussian vector x ∈ RN with
i.i.d. elements of variance σ2, E

[
∥x∥

]
≤

√
Nσ.

Therefore, the family of functions
{
E
[

1
N
ln IN,M

(
θ, Y√

m

)]}
is uniformly

equicontinuous. So, the point-wise convergence to J (α)(θ, µMP) is uniform over
compacts.
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8.B.1 Upper bound

For any N,M , we have:

K(Y ) =

∫∫ +∞

0

dρsdρt
ρsρt

× e
−N

[
1
2
( ρs

σ′
s
2−ln ρs

)
+ 1

2
M
N

(
ρt

σ′
t
2−ln ρt

)
+κ′

2
M
N

ρsρt− 1
N

ln IN,M

(√
κ′ M

N
ρsρt,

Y√
M

)]
≥ 1

ρ∗sρ
∗
t

e
−N

[
1
2
(

ρ∗s
σ′
s
2−ln ρ∗s

)
+ 1

2
M
N

(
ρ∗t
σ′
t
2−ln ρ∗t

)
+κ′

2
M
N

ρ∗sρ
∗
t−

1
N

ln IN,M

(√
κ′ M

N
ρ∗sρ

∗
t ,

Y√
M

)]
(8.28)

So,

E
[
− 1

N
lnK(Y )

]
≤ 1

2
(
ρ∗s
σ′
s
2 − ln ρ∗s

)
+

1

2

M

N

( ρ∗t
σ′
t
2 − ln ρ∗t

)
+
κ′

2

M

N
ρ∗sρ

∗
t

− E
[ 1

N
ln IN,M

(√
κ′
M

N
ρ∗sρ

∗
t ,

Y√
M

)]
+

1

N
ln ρ∗sρ

∗
t

(8.29)

Since the convergence of E
[

1
N
ln IN,M

(
θ, Y√

M

)] N→∞−−−→ J (α)(θ, µMP) is uniform

over compacts, and
√
κ′M

N
ρ∗sρ

∗
t

N→∞−−−→
√

κ′

α
ρ∗sρ

∗
t , so

E
[ 1

N
ln IN,M

(√
κ′
M

N
ρ∗sρ

∗
t ,

Y√
M

)] N→∞−−−→ J (α)(

√
κ′

α
ρ∗sρ

∗
t , µMP)

Therefore, we obtain

lim
N→∞

E
[
− 1

N
lnK(Y )

]
≤ ψ(ρ∗s, ρ

∗
t ) (8.30)

8.B.2 Lower bound

Denote aN (ρs, ρt) = 1
2
( ρs
σ′
s
2 −ln ρs

)
+ 1

2
M
N

(
ρt
σ′
t
2 −ln ρt

)
, and bN (ρs, ρt) = κ′

2
M
N
ρsρt−

1
N
ln IN,M

(√
κ′M

N
ρsρt,

Y√
M

)
. Let (ρ′s, ρ′t) be the minimizer of aN (ρs, ρt)+bN (ρs, ρt).

Since N
M

→ α, for sufficiently large N , we have ρ′s < N , ρ′t < N .
We can split the integral in K(Y ) over different regions in R2

+, D1 =
(ρ′s− ϵ, ρ′s+ ϵ)× (ρ′t− ϵ, ρ′t+ ϵ) for small constant ϵ > 0, D2 = [0, N ]× [0, N ]\D1,
D3 = R2

+\(D1 ∪D2). For the first part, choosing ϵ small enough, we have:∫∫
D1

dρsdρt
ρsρt

e−N
[
aN (ρs,ρt)+bN (ρs,ρt)

]
≤ e−N minρs,ρt∈D1

[
aN (ρs,ρt)+bN (ρs,ρt)

] ∫∫
D1

dρsdρt
ρsρt

= e−N minρs,ρt∈D1

[
aN (ρs,ρt)+bN (ρs,ρt)

]
ln
ρ′s + ϵ

ρ′s − ϵ
ln
ρ′t + ϵ

ρ′t − ϵ

≤ e−N minρs,ρt∈D1

[
aN (ρs,ρt)+bN (ρs,ρt)

]
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D2 is a closed, bounded, and connected subset of R2
+, so by integral mean value

theorem, there exists a point (ρ̂s, ρ̂t) s.t.

∫∫
D2

dρsdρt
ρsρt

e−N
[
aN (ρs,ρt)+bN (ρs,ρt)

]
≤ N2 e

−N
[
aN (ρ̂s,ρ̂t)+bN (ρ̂s,ρ̂t)

]
ρ̂sρ̂t

= CN,2e
−N

[
aN (ρ̂s,ρ̂t)+bN (ρ̂s,ρ̂t)

]
For the last part, we have∫∫

D3

dρsdρt
ρsρt

e−N
[
aN (ρs,ρt)+bN (ρs,ρt)

]
≤ e−N minρs,ρt∈D3

bN (ρs,ρt)

∫∫
D3

dρsdρt
ρsρt

e−NaN (ρs,ρt)

For N large enough, since M ≥ N , the integral in the RHS can be upper
bounded as below:∫∫

D3

dρsdρt
ρsρt

e
−N 1

2

(
ρs

σ′
s
2−ln ρs

)
−M 1

2

(
ρt

σ′
t
2−ln ρt

)

≤
∫∫

D3

dρsdρt
ρsρt

e
−N

[
1
2

(
ρs

σ′
s
2−ln ρs

)
+ 1

2

(
ρt

σ′
t
2−ln ρt

)]
This integral can be well approximated by Laplace method (for N large). The
minimum of the function in the exponent (in D3 is attained on the boundaries
at either (σ′

s
2, N) or (σ′

t
2, N). Without loss of generality, assume that the

minimum is at (σ′
s
2, N).∫∫

D3

dρsdρt
ρsρt

e
−N

[
1
2

(
ρs

σ′
s
2−ln ρs

)
+ 1

2

(
ρt

σ′
t
2−ln ρt

)]

= CN,3e
−N

[
1
2
(1−lnσ′

s
2)+ 1

2

(
N

σ′
t
2−lnN

)](
1 +O

( 1

N

))
where CN,3 is a polynomial in N corresponding to the terms in Laplace approx-
imation. So, we have∫∫

D3

dρsdρt
ρsρt

e−N
[
aN (ρs,ρt)+bN (ρs,ρt)

]
≤ CN,3e

−N

[
1
2
(1−lnσ′

s
2)+ 1

2

(
N

σ′
t
2−lnN

)
+minρs,ρt∈D3

bN (ρs,ρt)

]
Putting all together, for N large we have

K(Y ) ≤ e−N min
[
aN (ρs,ρt)+bN (ρs,ρt)

](
1 + CN,2e

−NrN,2 + CN,3e
−NrN,3

)
where rN,2,rN,3 are positive constants (depending on N).
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Therefore,

E
[
− 1

N
lnK(Y )

]
≥ E

[
min

[
aN(ρs, ρt) + bN(ρs, ρt)

]
− 1

N
ln
(
1 + CN,2e

−NrN,2 + CN,3e
−NrN,3

)]
Second term is bounded by 1

N
lnCN , where CN is polynomial in N . By an

application dominated convergence theorem and continuity of log function, this
term vanishes in N → ∞. For the first term, we have

E
[
min aN(ρs, ρt) + bN(ρs, ρt)

]
= E

[
min
ρs,ρt

1

2
(
ρs
σ′
s
2 − ln ρs

)
+

1

2

M

N

( ρt
σ′
t
2 − ln ρt

)
+
κ′

2

M

N
ρsρt

− 1

N
ln IN,M

(√
κ′
M

N
ρsρt,

Y√
M

)]
= E

[
min
ρs,ρt

1

2
(
ρs
σ′
s
2 − ln ρs

)
+

1

2

M

N

( ρt
σ′
t
2 − ln ρt

)
+
κ′

2

M

N
ρsρt

− 1

N
ln IN,M

(√
κ′
M

N
ρsρt,

Y√
M

)
+ ψ(ρs, ρt)− ψ(ρs, ρt)

]
≥ min

ρs,ρt
ψ(ρs, ρt)

+ min
ρs,ρt

1

2

M

N

( ρt
σ′
t
2 − ln ρt

)
+
κ′

2

M

N
ρsρt −

[ 1

2α

( ρt
σ′
t
2 − ln ρt

)
+
κ′

2α
ρsρt

]
+ E

[
min
ρs,ρt

J (α)
(√κ′

α
ρsρt, µMP

)
− 1

N
ln IN,M

(√
κ′
M

N
ρsρt,

Y√
M

)]
In the limit N → ∞, it can easily be shown that the second term vanishes.
We show that the third term also vanishes. Similar to the proof of compact
convergence of E

[
1
N
ln IN,M

(
θ, Y√

m

)]
, we have:

E
[
min
ρs,ρt

J (α)
(√κ′

α
ρsρt, µMP

)
− 1

N
ln IN,M

(√
κ′
M

N
ρsρt,

Y√
M

)]
≥ E

[
min
ρs,ρt

J (α)
(√κ′

α
ρsρt, µMP

)
− 1

N
ln IN,M

(√κ′

α
ρsρt,

Y√
M

)]
+ E

[
min
ρs,ρt

1

N
ln IN,M

(√κ′

α
ρsρt,

Y√
M

)
− 1

N
ln IN,M

(√
κ′
M

N
ρsρt,

Y√
M

)]
where both terms converges to 0 as N → ∞ (see (8.27)).

Thus, we find

lim
N→∞

E
[
− 1

N
lnK(Y )

]
≥ ψ(ρ∗s, ρ

∗
t ) (8.31)

From (8.30),(8.31), we have

lim
N→∞

E
[
− 1

N
lnK(Y )

]
= ψ(ρ∗s, ρ

∗
t ) (8.32)
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8.B.3 Constant terms

Lemma 8.2. For N → ∞,

Γ
(N
2

)
=

√
πN(

N

2
)
N
2
−1e−

N
2

(
1 +O

( 1

N

))
Proof. From [113], Γ(N

2
) can be approximated by√

2π(
N

2
− 1)(

N

2
− 1)

N
2
−1e−

N
2
+1
(
1 +O

( 1

N

))
,

from which the result follows.

Using this lemma, we have:

lim
N→∞

− 1

N
ln

2−
N
2 N

N
2

Γ(N
2
)

1

σ′
s
N

2−
M
2 M

M
2

Γ(M
2
)

1

σ′
t
M

= −1

2
(1 +

1

α
) + ln σ′

s +
1

α
lnσ′

t (8.33)

From (8.32),(8.33), we get

lim
N→∞

fN = min
ρs,ρt

ψ(ρs, ρt)−
1

2
(1 +

1

α
) + ln σ′

s +
1

α
lnσ′

t (8.34)

8.C Computation of free energy

In this section, we present the computation of free energy from the expression
minρs,ρt ψ(ρs, ρt), where ψ(., .) is defined in (8.18). First, we find the expression
of the function J (α)(.;µMP).

8.C.1 J (α)(., µMP)

From Statement 6.3, we have that

J (α)(.;µMP) = ν− 1

2α
ln(1+αν)− 1

2
ln(1+ν)− 1

2

∫
dµMP(t) ln

(
1− θ2

T (α)(ν)
t2
)

with

ν =

{
C

(α)
µMP(θ

2) if θ2 < Hmax

T (α)−1
(θ2γ2max) if θ2 ≥ Hmax

First, we compute rectangular R-transform for the Marchenko-Pastur distribu-

tion µMP =

√
4α−(t2−1−α)2

παt
. We have

H(α)
µMP

(z) =
1− (1 + α)z −

√[
1− (1 + α)z

]2 − 4αz2

2αz
, H(α)

µMP

−1
(z) =

z

T (α)(z)

So, we have that C(α)
µMP(z) = z.
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By [18], the top singular-value of the matrix Y as n → ∞ converges to

γmax =

{
1 +

√
α if κσ2

sσ
2
t ≤ √

α√
(1+κσ2

sσ
2
t )(α+κσ2

sσ
2
t )

κσ2
sσ

2
t

if κσ2
sσ

2
t ≥ √

α
. Thus, we can compute

Hmax =

{
1√
α

if κσ2
sσ

2
t ≤ √

α
1

κσ2
sσ

2
t

if κσ2
sσ

2
t ≥ √

α

Moreover, we have

∫
dµMP(t) ln

(
1− zt2

)
= −

1− (1 + α)z −
√[

1− (1 + α)z
]2 − 4αz2

2αz
+ ln 2

− α + 1

2α
ln
(
1− (1 + α)z +

√[
1− (1 + α)z

]2 − 4αz2
)

+
1− α

2α
ln
(
α + 1− (−1 + α)2z − (−1 + α)

√[
1− (1 + α)z

]2 − 4αz2
)

(8.35)

Putting all together, J (α)(θ, µMP) can be expressed as the following:
If κσ2

sσ
2
t ≤ √

α:

J (α)(θ, µMP) =


1
2
θ2 if θ2 ≤ 1√

α
√
α+1
2α

(√
4αθ2 +

(
1−√

α
)2 − 1

)
− ln θ − 1

2
if θ2 ≥ 1√

α

+1−α
2α

ln
(

2√
4αθ2+

(
1−

√
α
)2

−
√
α+1

)
− lnα

4

If κσ2
sσ

2
t ≥ √

α, γ2max =
(1+κσ2

sσ
2
t )(α+κσ2

sσ
2
t )

κσ2
sσ

2
t

:

J (α)(θ, µMP) =



1
2
θ2 if θ2 ≤ 1

κσ2
sσ

2
t

−1−α
2α

ln
(
1− α +

√
(−1 + α)2 + 4αθ2γ2max

)
if θ2 ≥ 1

κσ2
sσ

2
t

− 1
2κσ2

sσ
2
t
+

√
(−1+α)2+4αθ2γ2

max

2α
− 1+α

2α

− lnκσ2
sσ

2
t

2α
+ 1−α

2α
ln 2− ln θ

+1−α
2α

ln(α + κσ2
sσ

2
t )

8.C.2 Minimizing of ψ(ρs, ρt)

The calculations in this part are carried out using Mathematica [117]. Consider-
ing different conditions, based on these calculations, the minimizer of ψ(ρs, ρt)
is unique.

1)κσ2
sσ

2
t ≤ √

α

If κ′σ′
s
2σ′

s
2 ≤ √

α: {
ρ∗s = σ′

s
2

ρ∗t = σ′
t
2
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If κ′σ′
s
2σ′

s
2 ≥ √

α: ρ∗s = − 1
κ′σ′

t
2 +

σ′
s
2

2α

[
α− 1 +

√
(α− 1)2 + 4α (1+

√
α)2

κ′σ′
s
2σ′

t
2

]
ρ∗t = − α

κ′σ′
s
2 +

σ′
t
2

2

[
1− α +

√
(α− 1)2 + 4α (1+

√
α)2

κ′σ′
s
2σ′

t
2

]
2)κσ2

sσ
2
t ≥ √

α

If κ′σ′
s
2σ′

s
2 ≤ α

κσ2
sσ

2
t
: {

ρ∗s = σ′
s
2

ρ∗t = σ′
t
2

If κ′σ′
s
2σ′

s
2 ≥ α

κσ2
sσ

2
t
: ρ∗s = − 1

κ′σ′
t
2 +

σ′
s
2

2α

[
α− 1 +

√
(α− 1)2 + 4α

(1+κσ2
sσ

2
t )(α+κσ2

sσ
2
t )

κκ′σ′
s
2σ′

t
2σ2

sσ
2
t

]
ρ∗t = − α

κ′σ′
s
2 +

σ′
t
2

2

[
1− α +

√
(α− 1)2 + 4α

(1+κσ2
sσ

2
t )(α+κσ2

sσ
2
t )

κκ′σ′
s
2σ′

t
2σ2

sσ
2
t

]
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Extensive-Rank
Symmetric Matrix
Denoising 9
This chapter focuses on estimating a large, real symmetric signal matrix
S ∈ RN×N from noisy observations. The observations are modeled as:

Y =
√
κS +Z (9.1)

Here, Z is a symmetric Gaussian matrix, and κ > 0 is proportional to the SNR.
We study this problem for the case S follows a rotationally invariant prior

and its rank diverges as N → ∞. Two growth regimes are considered: linear
(rank grows linearly with N) and sub-linear.

In the linear growth regime:

• We show that the asymptotic mutual information is linked to the asymp-
totic of the log-spherical integral, Theorem 9.1.

• Leveraging the optimality of RIEs, in Theorem 9.2 we derive the asymp-
totic MMSE is in terms of the limiting ESD of Y .

• Using the I-MMSE relation, we derive an explicit expression for the
asymptotic mutual information in Theorem 9.3.

In the sub-linear growth regime:

• We derive the optimal RIE, see (9.52).

• We calculate the asymptotic MMSE and mutual information for this
regime, aligning with findings in [65], which supports the optimality of
the proposed RIE in this regime, see section 9.6.2.

The content of this chapter is based on a joint work with Prof. Barbier in [48] F.
Pourkamali, J. Barbier, and N. Macris, “Matrix inference in growing rank regimes,” arXiv
preprint arXiv:2306.01412, 2023.
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9.1 Linear Rank Matrix Denoising

We consider S = S⊺ ∈ RN×N distributed according to a rotation invariant
prior, i.e., dPS,N (OSO⊺) = dPS,N (S) for any N×N orthogonal matrix O. The
matrix S is corrupted by Gaussian Wigner noise Y =

√
κS +Z and we are

interested in the asymptotic mutual information and MMSE of this estimation
problem.

The empirical spectral distribution of S is denoted as ρ(N)
S (x)dx = 1

N

∑
i≤N δ(x−

λSi )dx where (λSi ) are the eigenvalues of S. For the rigorous analysis throughout
the linear rank case we shall assume the following:

Assumption 9.1. The empirical spectral distribution ρ
(N)
S converges almost

surely weakly to a well-defined probability measure ρS with support in [−C,C]
for some finite C > 0 independent of N . Moreover, the second moment of ρ(N)

S

is almost surely bounded.

Signal instances satisfying this assumption can be constructed as S = OΛO⊺

with O uniformly sampled over the manifold of orthogonal matrices (or Haar
distributed) and Λ = diag(λS1 , . . . , λ

S
N) i.i.d. eigenvalues distributed according

to ρS with compact support. Note that for measures ρS containing a weight ϵ ∈
[0, 1] at 0 the random matrices S have rank M = (1−ϵ)N . When M = N there
is another popular way to construct rotation invariant matrix ensembles, namely
by setting dPS,N (S) ∝ exp(−N

2
TrV (S))dS where V (S) is a rotation invariant

“matrix potential”. For such priors almost sure weak convergence of the empirical
spectral distribution is proved in [66] whenever lim inf |x|→∞ V (x)/(β ln |x|) > 1
for some β > 1. Moreover, under some additional conditions, the largest
eigenvalue of such a random matrix satisfies a large deviation principle, which
implies the almost sure boundedness of the top eigenvalue [66]. Therefore, our
assumption holds for a large class of ensembles described by rotation invariant
potentials.

Recall the spherical integral defined in (6.1), and denote the log-spherical
integral as JN(A,B) := 1

N
ln IN(A,B). Let

J [ρ√κS, ρ√κS ⊞ ρsc] = lim
N→+∞

JN(
√
κS,Y )

where ρ√κS is the limiting spectral distribution of
√
κS, ρsc is the Wigner

semi-circle distribution, and ρ√κS ⊞ ρsc is the free convolution of ρκS and ρsc
which is the limiting ESD of Y .

Our first result for matrix denoising in the linear rank regime is a rigorous
formula for the mutual information.

Theorem 9.1 (Mutual Information for linear rank matrix denoising).
Under assumption 9.1,

IN(S;Y )

N2

N→∞−−−→ κ

2

∫
x2ρS(x) dx− J [ρ√κS, ρ√κS ⊞ ρsc]. (9.2)
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Proof. Proof steps are outlined in section 9.3.

Although we know that the limiting log-spherical integral is given by a
variational problem, see [61], its computation requires going through Matytsin’s
formalism [95] and is, in general, highly non-trivial. Here, we will provide
another formula (Theorem 9.3) for the mutual information, which is much
simpler and explicit and which, in turn, also provides an expression for the
log-spherical integral.

The route to this program goes first through the class of RIE. An estimator
Ξ̂(Y ) is called rotation invariant if for any orthogonal matrix O, OΞ̂(Y )O⊺ =
Ξ̂(OY O⊺). We may define the best possible reconstruction error within the
RIE class as

MMSERIE,N(κ) = min
Ξ̂∈RIE

1

N
E∥S − Ξ̂(Y )∥2F. (9.3)

Obviously MMSEN (κ) ≤ MMSERIE,N(κ). However, it is easy to check explicitly
that the MMSE estimator E[S | Y ] belongs to the RIE class. Thus we also
have MMSERIE,N(κ) ≤ MMSEN(κ) and hence MMSEN(κ) = MMSERIE,N(κ).

Because of rotation invariance, Y and Ξ̂ ∈ RIE can be diagonalized in the
same basis (yi). Thus any RIE is expressed as Ξ̂(Y ) =

∑
ξ̂iyiy

⊺
i where (ξ̂i) are

the eigenvalues of the estimator. Therefore (9.3) requires minimizing over (ξ̂i)
only. In [53] the heuristic replica method is used to show that in the large N
limit, the optimal (ξ̂i) can be expressed only in terms of the limiting spectral
measure ρY of the data Y and its eigenvalues (λYi ):

Ξ̂∗(Y ) =
∑
i≤N

ξ∗i yiy
⊺
i , ξ∗i =

1√
κ

(
λYi − 2πH[ρY ](λ

Y
i )
)
, (9.4)

where H[ρY ](z) := P.V 1
π

∫
ρY (x)/(z−x)dx is the Hilbert transform of ρY . Note

that ρY is given by the free convolution ρY = ρ√κS ⊞ ρsc which is a continuous
density due to the smoothing effect of the semi-circle law [118]. Based on this
result we make the following assumption here:

Assumption 9.2. The estimator (9.4) is asymptotically optimal in the RIE
class, i.e.,

MMSERIE,N(κ) =
1

N
E∥S − Ξ̂∗(Y )∥2F + oN(1). (9.5)

Using (9.4) and (9.5) we prove the following explicit formula for the MMSE
in linear rank matrix denoising:

Theorem 9.2 (MMSE for linear rank matrix denoising). Under assump-
tions 9.1, 9.2 we have

MMSEN(κ)
N→∞−−−→ 1

κ

(
1− 4π2

3

∫
ρ3Y (x) dx

)
(9.6)

where the data spectral density ρY = ρ√κS ⊞ ρsc. Moreover, MMSE(κ) :=
limN→∞ MMSEN(κ) is continuous in κ > 0.



124 Extensive-Rank Symmetric Matrix Denoising

Proof. Section 9.4.

This is an explicit formula that can be used to concretely compute the
MMSE(κ) curves for various models of rotation invariant signal ensembles,
and in particular, allows to investigate the existence and nature of phase
transitions1. The continuity of MMSE(κ) guarantees that there is no first
order phase transition. In low-rank matrix denoising (as well as other inference
problems) when there is no first order phase transition (but possibly higher
order continuous transitions) the model does not display an algorithmically
“hard phase” for low complexity algorithms (e.g., message passing algorithms
are optimal). The present linear-rank rotation invariant case is no exception
to this picture. Indeed equation (9.4) suggests an optimal spectral algorithm
to estimate the signal: given an observation Y one computes its eigenvalues
and an estimate of the Hilbert transform replacing the integral by an empirical
sum to use in (9.4). This algorithm is optimal since as remarked above
MMSEN(κ) = MMSERIE,N(κ). Finally, we also mention that the optimality of
RIE was also discussed in [43] in a different manner where the authors show
heuristically that the posterior mean E[S | Y ] equals Ξ̂∗(Y ) as N → +∞, and
also before in [51].

We now proceed to deduce a simpler formula for the mutual information
(than in Thm. 9.1) using the I-MMSE relation [1]

MMSEN(κ) = 4
d

dκ

IN(S;Y )

N2
(9.7)

and free probability. Using the concavity of the mutual information w.r.t. the
SNR, (9.7) also holds as N → +∞. One can thus permute the limit N → +∞
with the derivative w.r.t. κ. Therefore, it suffices to compute the integral over
the asymptotic MMSE to find the asymptotic mutual information; this is done
using basic results from free probability leading to:

Theorem 9.3 (Explicit Mutual Information for linear rank matrix
denoising). Let ρY = ρ√κS ⊞ ρsc. Under assumptions 9.1, 9.2 we have

IN(S;Y )

N2

N→∞−−−→ 1

2

∫∫
ln |s− t|ρY (s)ρY (t) ds dt+

1

8
. (9.8)

Proof. Section 9.5.

In appendix 9.A, we extend Theorem 9.3 to the case where the noise matrix
the realization of a non-Gaussian rotation invariant ensemble. While we are
not quite able to treat this case, we can generalize this theorem to the setting
Yϵ =

√
κS + Zϵ where Zϵ = Z +

√
ϵζ with ζ from the Gaussian Wigner

ensemble, and ϵ > 0 (so the noise is non-Gaussian rotation invariant).
1Phase transitions are non-analyticity points in the asymptotic mutual information as a

function of SNR. This is a concave and continuous function, and k-th order phase transitions
correspond to discontinuities in the k-th derivative. In particular for a first order transition
the MMSE is discontinuous because of the I-MMSE relation (9.7).
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Figure 9.2.1: MMSE for the Rademacher spectral distribution. From left to right:
Plot (a) MMSE(κ) computed from (9.6) and MSEN,RIE(κ) points computed from (9.4)
for N = 1000 averaged over 20 runs (error bars are invisible). Plots (b) and (c): first and
second derivatives of MMSE(κ) computed using their integral representation (integral
computed numerically). Plots (d) and (e): first and second numerical differentiation of
(c). These suggest that the MMSE′′(κ) has a vertical tangent at κc = 1, and a possible
phase transition (if present) would be 4-th order. A numerical analysis in appendix 9.B.1
is compatible with a weak singularity at κc = 1 of the form (κ− 1)3 ln |κ− 1|.

9.2 Numerical Examples

As first example in the linear rank regime, we consider the case where ρS =
1
2
δ−1 +

1
2
δ+1. Using the technique introduced in [118], we obtain an explicit

analytical expression for ρY = ρ√κS ⊞ρSC. For κ ≥ 1 the support of ρY consists
of two disjoint intervals, and for κ < 1 we get a single interval. Therefore,
we expect that, if a phase transition in the mutual information and MMSE
exists, it should happen at κc = 1. As noted before, because of Theorem 9.2
we know that MMSE(κ) is continuous, so a phase transition can only be
second or higher order. Furthermore, from the explicit formula for ρY we get
integral representations of the first few derivatives of MMSE(κ). Fig. 9.2.1
displays the results of precise numerical integrations for the MMSE and its
first two derivatives, while the third derivative is computed by numerically
differentiating the second derivative. These plots suggest that there is 4-th
order phase transition for this example model at κc = 1. All details and
additional figures can be found appendix 9.B.1.

In a second example we consider S = XX⊺/N where X ∈ RN×M has i.i.d.
standard Gaussian entries. The limiting spectral distribution of S when the
aspect ratio N/M → q (fixed) is the Marchenko-Pastur law. For this model it is
not difficult to directly compute ρY (see apendix 9.B.3). Its support is a single
interval for q ≤ 1, and two disjoint intervals for q > 1 and κ > q(q1/3 − 1)−3.
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Figure 9.2.2: MMSE in the linear-rank regime with sparse spectral priors. The MMSE
of the rank-one problem is also plotted for comparison. (left) Signal with Marchenko-
Pastur spectral distribution for large q’s.The vertical dashed lines corresponds to the
critical value where the support of ρY splits. (right) Signal with rank (1 − p)N and
Bernoulli spectral distribution, ρS = pδ0 + (1− p)δ+1, for p’s close to 1.

However, when the intervals merge in this case there does not seem to exist a
phase transition, at least on low order derivatives (investigated numerically).
Fig. 9.2.2 (left) shows the MMSE as a function of log κ.

We observe in the left part of Fig. 9.2.2 that as q → +∞ the MMSE tends
to the one of the rank-one version of matrix denoising with Gaussian prior. In
particular, we recover the second-order phase transition of the rank-one problem
at κ = 1, which matches the famous BBP transition [16]. This convergence
towards the rank-one prediction can also be observed in a model with Bernoulli
spectral distribution, see right part of Fig.9.2.2.

9.3 Proof Steps of Theorem 9.1

We present the steps needed to prove theorem 9.1. It is convenient to decompose
Assumption 1 in the main text in two parts.

Assumption 1.A The empirical spectral distribution of S converges almost
surely weakly to a well-defined probability measure ρS with support included
in [−C,C] for some finite positive constant 0 < C < +∞ independent of N .
Assumption 1.B The second moment of the empirical spectral distribution
of S is almost surely bounded.

Remark 9.1. These assumptions taken together imply that the second moment
of the empirical measure ρ(N)

S converges almost surely to the second moment of
ρS.

Remark 9.2. By Theorem 7.12 in ref. [119], these assumptions are equivalent
to the convergence of the empirical distribution in the Wasserstein-2 metric to
ρS.
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We start from the posterior distribution of the model, which is proportional
to

PN(X|Y ) ∝ e−
N
4
∥Y −

√
κX∥2FPS,N(X)

∝ e
N
2
Tr
[√

κXY −κ
2
X2

]
PS,N(X).

(9.9)

The partition function is defined as the normalizing factor of the posterior
distribution (9.9)

Z(Y ) =

∫
dXe

N
2
Tr
[√

κXY −κ
2
X2

]
PS,N(X) (9.10)

and the free energy is defined as

FN(κ) = − 1

N2
EY

[
lnZ(Y )

]
. (9.11)

One can easily see that the free energy is linked to the average mutual informa-
tion via the identity

1

N2
IN(S;Y ) = FN(κ) +

κ

4N
E
[
TrS2

]
(9.12)

in which 1
N
E
[
TrS2

]
converges to the second moment of ρS by assumption.

Therefore, to prove theorem 9.1 it is enough to show

lim
N→∞

FN(κ) =
κ

4

∫
x2ρS(x) dx− J [ρ√κS, ρ√κS ⊞ ρsc]. (9.13)

The proof of (9.13) is done in two main steps. First we we show that such
a limit holds for the free energy of an independent eigenvalue model. Second,
using the pseudo-Lipschitz continuity of the free energy w.r.t. to the prior
distribution, we deduce that the same limit holds for the free energy of the
original model.

We make the convention that in the eigen-decomposition of a N × N
matrix S = UΛU ⊺ with Λ = diag(λ), the eignevalues λ1, · · · , λN are in
non-decreasing order.

9.3.1 An independent eigenvalue model

Suppose λ0 ∈ RN is generated with i.i.d. elements from ρS and is ordered in non-
decreasing way. Fix λ0 once for all. Let S̃ ∈ RN×N the matrix constructed as
UΛ̃U ⊺ where U is distributed according to the Haar measure, and Λ̃ = diag(λ̃)
is a diagonal matrix. The distribution of the matrix S̃ is

dPS̃,N(S̃) = dµN(U)dpS̃,N(λ̃) = dµN(U )
N∏
i=1

δ(λ̃i − λ0i ) dλ̃. (9.14)
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The independent eigenvalue model is defined as an inference model where
the matrix S̃ is observed through an AWGN channel Ỹ =

√
κS̃ + Z̃ with

SNR proportional to κ and Z̃ a symmetric Gaussian Wigner matrix. The
associated partition function and the free energy are defined in the same way
as in (9.10),(9.11)

Z̃(Ỹ ) =

∫
dXe

N
2
Tr
[√

κXỸ −κ
2
X2

]
PS̃,N(X). (9.15)

F̃N(κ) = − 1

N2
EỸ

[
ln Z̃(Ỹ )

]
. (9.16)

For this independent eigenvalue model, we have

Proposition 9.4. For ρS with compact support and any κ > 0, ρS-almost
surely

lim
N→∞

F̃N(κ) =
κ

4

∫
x2ρS(x) dx− J [ρ√κS, ρ√κS ⊞ ρsc]. (9.17)

Proof. We start from the partition function (9.15),

Z̃(Ỹ ) =

∫
dXe

N
2
Tr
[√

κXỸ −κ
2
X2

]
PS̃,N(X)

=

∫
dλdµN(U)

N∏
i=1

δ(λi − λ0i ) e
N
2
Tr[

√
κUΛU⊺Ỹ −κ

2
Λ2]

= e−
N
4
κTrΛ02

∫
dµN(U) e

N
2
Tr[

√
κUΛ0U⊺Ỹ ]

= e−
N
4
κTrΛ02IN

(√
κΛ0, Ỹ

)
(9.18)

Recall that Ỹ =
√
κUΛ0U ⊺ + Z̃, so the free energy can be written as

F̃N(κ) = EỸ

[ κ

4N
TrΛ02 − JN

(√
κΛ0, Ỹ

)]
=

κ

4N
TrΛ02 − EUEZ̃

[
JN

(√
κΛ0, Ỹ

)]
(a)
=

κ

4N
TrΛ02 − EUEZ̃

[
JN

(√
κΛ0,

√
κUΛ0U ⊺ +UZ̃U ⊺

)]
(b)
=

κ

4N
TrΛ02 − EUEZ̃

[
JN

(√
κΛ0,

√
κΛ0 + Z̃

)]
=

κ

4N
TrΛ02 − EZ̃

[
JN

(√
κΛ0,

√
κΛ0 + Z̃

)]
(9.19)

where in (a), we use rotational invariance of the noise matrix Z, and in (b), we
use the fact that JN is invariant under rotation by U .

By the strong law of large numbers the first term in (9.19) converges to
κ
4

∫
x2ρS(x) dx almost surely. Finally proposition 9.4 follows from the subse-

quent lemma.
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Lemma 9.1. For any κ ∈ R+, the sequence EZ̃

[
JN

(√
κΛ0,

√
κΛ0 + Z̃

)]
converges to J [ρ√κS, ρ√κS ⊞ ρsc] as N → ∞, ρS-almost surely.

This lemma is based on an important result on the convergence of log-spherical
integrals [61]. We refer to appendix 9.C.1 for the details.

9.3.2 Pseudo-Lipschitz continuity of the free energy

Consider any two rotationally invariant matrix ensembles P (1)
N , P (2)

N . Let
S ∼ P

(1)
N (S), S̃ ∼ P

(2)
N (S̃) with eigendecompositions S = UΛU ⊺, S̃ = ŨΛ̃Ũ ⊺

and

dP
(1)
N (S) = dµN(U) P

(1)
N (λ) dλ,

dP
(2)
N (S̃) = dµN(Ũ) P

(2)
N (λ̃) dλ̃

(9.20)

where P
(1)
N (λ), P (2)

N (λ̃) are the joint probability density functions for the
eigenvalues, induced by the priors. Now consider the two inference problems
corresponding to reconstructing the signals from outputs of an AWGN channel
and define as before the corresponding free energies F (1)

N (κ), F
(2)
N (κ). Then we

have

Proposition 9.5. For all κ > 0 and N

∣∣F (1)
N (κ)− F

(2)
N (κ)

∣∣ ≤ κ

4N

(√
Eλ

[
∥λ∥22

]
+
√

Eλ̃

[
∥λ̃∥22

])√
Eλ,λ̃

[
∥λ− λ̃∥22

]
.

(9.21)

Proof. The proof is based on an interpolation between the two matrix ensembles.
We refer to appendix 9.C.2.

9.3.3 The distance between the original and independent
eigenvalue models

Consider the original and independent eigenvalue models, in other words, the
models with prior distributions

dPS,N(S) = dµN(U)PS,N(λ) dλ
S,

dPS̃,N(S̃) = dµN(U)
N∏
i=1

δ(λ̃i − λ0i ) dλ̃
(9.22)

where PS,N(λ) is the joint p.d.f. of eigenvalues of S, and λ0 is generated with
i.i.d. elements from ρS. Denote

∏N
i=1 δ(λ̃i − λ0i ) by PS̃,N(λ̃).
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Lemma 9.2. Under assumption 1 for λ ∼ PS,N(λ) and λ̃ ∼ PS̃,N(λ̃) we have

lim
N→∞

1

N
Eλ,λ̃

[
∥λ− λ̃∥2

]
= 0. (9.23)

Proof. Since PS̃,N(λ̃) is a delta distribution, we can write

Eλ,λ̃

[
∥λ− λ̃∥2

]
= Eλ

[
∥λ− λ0∥2

]
. (9.24)

For a vector λ, denote the empirical distribution of its components by µ̂λ. The
Wasserstein-2 distance between two empirical distributions, µ̂λ, µ̂λ0 is defined
as

W2(µ̂λ, µ̂λ0) =
√

inf
κ∈κ(µ̂λ,µ̂λ0 )

Eκ(x,y)

[
(x− y)2

]
with κ(µ̂λ, µ̂λ0) the set of couplings of (µ̂λ, µ̂λ0). By lemma 9.8 in appendix
9.C.3 , we have

W2(µ̂λ, µ̂λ0) =

√
min
π∈SN

1

N
∥λ− λ0

π∥2

where λ0
π is the permuted version of λ0, and SN is the group of all permutations

of N elements. So, for given λ and λ0 (which have a non-decreasing order), we
have (considering the identity permutation)

∥λ− λ0∥2 ≥ NW2(µ̂λ, µ̂λ0)2. (9.25)

Now we recall recall the rearrangement inequality : for real numbers x1 ≤ x2 ≤
· · · ≤ xn, y1 ≤ y2 ≤ · · · ≤ yn, for every permutation π ∈ SN we have [120]

xny1 + . . .+ x1yn ≤ xπ(1)y1 + . . .+ xπ(n)yn ≤ x1y1 + . . .+ xnyn

For any permutation of λ0 (in particular the one which achieves the minimum
in (9.25)), using the rearrangement inequality, we get (recall that λ0 is ordered
in non-decreasing order)

∥λ− λ0
π∥2 = ∥λ∥2 + ∥λ0

π∥2 − 2λ⊺λ0
π

≥ ∥λ∥2 + ∥λ0
π∥2 − 2λ⊺λ0

= ∥λ− λ0∥2

and consequently
∥λ− λ0∥2 ≤ NW2(µ̂λ, µ̂λ0)2. (9.26)

Finally from (9.24), (9.25),(9.26), we obtain

Eλ,λ̃

[
∥λ− λ̃∥2

]
= Eλ

[
NW2(µ̂λ, µ̂λ0)2

]
. (9.27)

Lemma 9.9 in appendix 9.C.3 allows to conclude the proof.
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9.3.4 Concluding the proof

By proposition 9.5, the free energies FN(κ) (defined in (9.11)) and F̃N(κ)
(defined in (9.16)), satisfy∣∣F (1)

N (κ)− F
(2)
N (κ)

∣∣ ≤ κ

4N

(√
Eλ

[
∥λ∥2

]
+
√

Eλ̃

[
∥λ̃∥2

])√
Eλ,λ̃

[
∥λ− λ̃∥2

]
.

(9.28)

The term 1
N
∥λ∥2 = 1

N

∑
λ2i is the second moment of the empirical spectral

distribution of S, which is almost surely bounded by assumption 1.B. So,
1
N
Eλ

[
∥λ∥2

]
is bounded uniformly in N . Moreover, 1

N
E
[
∥λ̃∥2

]
= 1

N

∑
λ0

2
i is

also bounded uniformly in N . By lemma 9.2, limN→∞
1
N
Eλ,λ̃

[
∥λ− λ̃∥2

]
= 0.

Therefore
lim

N→∞
|FN(κ)− F̃N(κ)| = 0. (9.29)

Proposition 9.4 together with (9.29) conclude the proof. □

9.4 Proof of Theorem 9.2 and Rotation
Invariance of the Bayes Estimator

In this section we show how to use the RIE class in order to prove Theorem
9.2 under the extra assumption 1.B. Recall that an estimator Ξ̂(Y ) is called
rotation invariant if for any orthogonal matrix OΞ̂(Y )O⊺ = Ξ̂(OY O⊺). Such
an estimator has the same eigenvectors as the matrix Y and denoting the
eigenvectors of Y by y1, . . . ,yN , it can be expressed as Ξ̂(Y ) =

∑N
i=1 ξ̂iyiy

⊺
i

where ξ̂1, . . . , ξ̂N are the eigenvalues of the estimator. The best RIE estimator
corresponds to eigenvalues chosen to minimize the mean-square-error in the
RIE class and a heuristic calculation using the replica method leads to{

Ξ̂∗(Y ) =
∑N

i=1 ξ
∗
i yiy

⊺
i

ξ∗i =
∑N

j=1 λ
S
j

(
s⊺jyi

)2
= 1√

κ

(
λYi − 2πH[ρY ](λ

Y
i )
) (9.30)

where (λYi )1≤i≤N are the eigenvalues of Y , and H[ρY ] is the Hilbert transform
of the limiting spectral distribution of Y defined as:

H[ρY ](z) := PV
1

π

∫
ρY (x)

z − x
dx. (9.31)

We will need the following properties of the Hilbert transform. A proof can be
found in lemma 3.1 of [121].

Lemma 9.3. If f : R → R is compactly supported and sufficiently regular, then
one has the identities∫

R
f(x)

(
H[f ](x)

)2
dx =

1

3

∫
R
f 3(x) dx, (9.32)
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R
H[f ](x)xf(x) dx =

1

2π

(∫
R
f(x) dx

)2

. (9.33)

Proof of theorem 9.2. As explained in the main text the best RIE estimator
is optimal in the sense MMSEN(κ) = MMSERIE,N(κ) so our proof proceeds by
a computation of the limit of the r.h.s (the optimality follows from rotation
invariance of the MMSE estimator E(S|Y ) and this rotation invariance is
checked later for completeness). From assumption 2, it suffices to compute
the limit of 1

N
E∥S − Ξ̂∗(Y )∥2. Denoting the eigenvectors of S by s1, . . . , sN .

Expanding the MSE, we find

∥∥S − Ξ̂∗(Y )
∥∥2

F
=

N∑
i=1

[
λSi

2
+ ξ∗i

2 − 2ξ∗i

N∑
j=1

λSj
(
s⊺jyi

)2]

=
N∑
i=1

(λSi
2 − ξ∗i

2)

(9.34)

where we used (9.30) to get the last equality. Using again (9.30) we have

∥∥S − Ξ̂∗(Y )
∥∥2

F
=

N∑
i=1

(λSi
2 − ξ∗i

2)

=
N∑
i=1

λSi
2 − 1

κ

(
λYi − 2πH[ρY ](λ

Y
i )
)2

=
N∑
i=1

λSi
2 − 1

κ

N∑
i=1

λYi
2 − 4π2

κ

N∑
i=1

(
H[ρY ](λ

Y
i )
)2

+
4π

κ

N∑
i=1

H[ρY ](λ
Y
i )λ

Y
i

(9.35)

From linearity of expectation and, as the Hilbert transform H[ρY ] is continuous
on the support of ρY [118], we find

lim
N→∞

1

N
E
∥∥S − Ξ̂∗(Y )

∥∥2

F

=

∫
x2ρS(x) dx−

1

κ

∫
x2ρY (x) dx−

4π2

κ

∫
ρY (x)

(
H[ρY ](x)

)2
dx

+
4π

κ

∫
H[ρY ](x)xρY (x) dx

(9.36)

By the independence of S and Z, we have:∫
x2ρY (x) dx = lim

N→∞

1

N
ETrY 2

= lim
N→∞

1

N
κETrS2 + lim

N→∞

1

N
ETrZ2 + lim

N→∞

2

N
ETrSZ
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= κ

∫
x2ρS(x) + 1 (9.37)

Finally, using the identities in lemma 9.3, we get

lim
N→∞

1

N
E
∥∥S − Ŝ

∥∥2

F
= −1

κ
− 4π2

3κ

∫
ρ3Y (x) dx+

2

κ
=

1

κ

(
1− 4π2

3

∫
ρ3Y (x) dx

)
.

(9.38)

For completeness we provide a check that the MMSE estimator belongs to
the RIE class. The posterior mean given Y is

E[S|Y ] =

∫
dX PS,N(X)Xe−

N
4

∥∥Y −
√
κX

∥∥2

F∫
dX PS,N(X)e−

N
4

∥∥Y −
√
κX

∥∥2

F

. (9.39)

By rotation invariance of PS,N (X) under any orthogonal transformation X →
OXO⊺ with Jacobian |detO| = 1 we have

E[S|OY O⊺] =

∫
dX PS,N(X)Xe−

N
4

∥∥OY O⊺−
√
κX

∥∥2

F∫
dX PS,N(X)e−

N
4

∥∥OY O⊺−
√
κX

∥∥2

F

=

∫
dX PS,N(X)OXO⊺e−

N
4

∥∥OY O⊺−
√
κOXO⊺

∥∥2

F∫
dX PS,N(X)e−

N
4

∥∥OY O⊺−
√
κOXO⊺

∥∥2

F

= O
{∫

dX PS,N(X)Xe−
N
4

∥∥Y −
√
κX

∥∥2

F∫
dX PS,N(X)e−

N
4

∥∥Y −
√
κX

∥∥2

F

}
O⊺

= OE[S|Y ]O⊺.

(9.40)

Therefore the posterior mean estimator is an RIE.

9.5 Proof of Theorem 9.3: Explicit Expression
of the Mutual Information

We derive an explicit expression for the asymptotic mutual information using
the I-MMSE relation [1] and basic results in free probability. This derivation
is completely independent of Theorem 9.1 in which the asymptotic mutual
information is expressed using the asymptotic spherical integral, J [ρ√κS, ρ√κS⊞
ρsc].

Free probability (see [72, 122]) was initially introduced to study operator
algebras, but has gained considerable importance in other realms due to its
connection with the asymptotic behavior of random matrices. While free
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probability has been exploited in linear estimation and wireless communication
problems [114,123–125], the connection with matrix inference setting studied
here is to the best of our knowledge new.

Let X be a self-adjoint non-commutative random variable X associated to
a probability measure µX with compact support on the real line. According
to [75, 76] the free entropy χ(X) and the free Fisher information Φ(X) are
given as

χ(X) =

∫∫
ln |s− t|µX(s)µX(t) ds dt+

3

4
+

1

2
ln 2π, (9.41)

Φ(X) =
4π2

3

∫
µ3
X(s) ds. (9.42)

Moreover, these two quantities are related through the relation:

χ(X) =
1

2

∫ ∞

0

( 1

1 + t
− Φ(X +

√
tZ)

)
dt+

1

2
ln 2π +

1

2
(9.43)

where Z is a semicircular non-commutative random variable, and X and Z
are free. We apply these relations to X = S and Z, two free non-commutative
random variables (not to confused with the N×N matrices S and Z) associated
to the probability measures ρS and ρsc. Since S and Z are free, the sum√
κS + Z is a non-commutative random variable associated to the measure

ρ√κS ⊞ ρsc = ρY . Clearly then (9.6) can be written in the free probability
language as

MMSE(κ) =
1

κ

(
1− Φ(

√
κS + Z)

)
. (9.44)

Proof of Theorem 9.3. An important property of the Gaussian channel is the I-
MMSE relation relating the MMSE to the derivative of the mutual information
w.r.t the SNR. The concavity of the mutual information w.r.t. SNR, implies
that this relation also holds in the limit N → ∞. Integrating this relation we
have

I(S;Y ) =
1

4

∫ κ

0

MMSE(t) dt+ constant (9.45)

where I(S;Y ) := limN→∞
1
N2 IN(S;Y ) and MMSE(t) = limN→+∞ MMSEN(t).

Since for κ = 0, I(S;Y ) = 0 the integration constant vanishes. Therefore,
we just need to compute the integral over the asymptotic MMSE given by
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Theorem 9.2. Using (9.44), we have

I(S;Y ) =
1

4

∫ κ

0

(1
t
− 1

t
Φ(

√
tS + Z)

)
dt

=
1

4

∫ κ

0

(1
t
− 1

t2
Φ(S +

√
1

t
Z)

)
dt

=
1

4

∫ ∞

1
κ

(1
x
− Φ(S +

√
xZ)

)
dx (

1

t
→ x)

(a)
=

1

4

∫ ∞

1
κ

(1
x
− κΦ(

√
κS +

√
κxZ)

)
dx

=
1

4

∫ ∞

1

(1
y
− Φ(

√
κS +

√
yZ)

)
dy (κx→ y)

=
1

4

∫ ∞

0

( 1

t+ 1
− Φ(

√
κS +

√
t+ 1Z)

)
dt (y → t+ 1)

(b)
=

1

4

∫ ∞

0

( 1

t+ 1
− Φ(

√
κS + Z0 +

√
tZ)

)
dt

=
1

2
χ(
√
κS + Z0)−

1

4
ln 2π − 1

4
(from (9.43))

(9.46)

where in (a), we use the relation Φ(cX) = 1
c2
Φ(X) for c > 0, and in (b) Z

and Z0 two (mutually) free semi-circular non-commutative random variables.
Therefore, we obtain

lim
N→∞

1

N2
IN(S;Y ) =

1

2

∫∫
ln |s− t|ρY (s)ρY (t) ds dt+

1

8
(9.47)

where ρY = ρ√κS ⊞ ρsc.

9.6 Sub-Linear Rank RIE and MSE

The signal matrix S ∈ RN×N is taken from a rotationally invariant prior and
observed through an additive channel,

Y =
√
κS +Z

where the noise Z ∈ RN×N is also distributed according to a rotationally
invariant ensemble. Here we allow non-Gaussian noise. It is assumed that S
has M = ⌊Nα⌋ non-zero i.i.d eigenvalues sampled from a distribution ρS(x)
with finite second moment and bounded support. By construction the empirical
distribution of non-zeros eigenvalues 1

M

∑M
i=1 δ(x− λSi ) tends weakly to ρS(x).

Moreover we assume that Z has a limiting spectral distribution ρZ . Since we
are in the sub-linear regime, the limiting spectral measure of Y (normalized
by 1/N) is the same as the one of Z. But note that Y may have sub-linear
number of eigenvalues outside the support.
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We propose a sub-linear rank RIE and an associated algorithm to estimate
S from Y , which we conjecture to be optimal. Arguing as in the linear case
it is not difficult to see that the optimal RIE (i.e., the one minimizing the
MSE in the general RIE class)must have a MSE which equals the MMSE. We
conjecture that the proposed RIE, and associated algorithm, are indeed the
optimal. Evidence for this conjecture comes from numerics discussed below
(at least for some range of α), but also from the particular case of Gaussian
noise. Indeed for Gaussian noise we have the I-MMSE relation so by integrating
the MMSE we find the mutual information. Thus our proposed sub-linear
rank RIE predicts an expression for the mutual information. On the other
hand the mutual information has recently been rigorously computed from
the asymptotics of sub-linear rank spherical integrals [65]. By comparing the
expressions obtained by these two independent approaches we validate the
conjecture analytically, at least for Gaussian noise.

9.6.1 Sub-linear rank RIE

Let the eigen-decomposition of S and Y be S =
∑M

i=1 λ
S
i sis

⊺
i , Y =

∑N
i=1 λ

Y
i yiy

⊺
i .

For a RIE Ξ(Y ) =
∑N

i=1 ξiyiy
⊺
i , the MSE can be written as:

1

M
∥S − Ξ(Y )∥2F =

1

M

∥∥ M∑
i=1

λSi sis
⊺
i −

N∑
i=1

ξiyiy
⊺
i

∥∥2

F

=
1

M

M∑
i=1

λSi
2
+

1

M

N∑
i=1

ξ2i −
2

M

N∑
i=1

ξi

M∑
j=1

λSj
(
s⊺jyi

)2
.

(9.48)

Minimizing (9.48) over ξi’s, the optimum is achieved at

ξ∗i =
M∑
j=1

λSj
(
s⊺jyi

)2
= y⊺

i Syi. (9.49)

This estimator is called oracle estimator since it requires the knowledge of the
signal.

To compute the optimal eigenvalues we need to know the overlap between
the eigenvectors of the signal and the observation. For finite-rank additive
perturbation, X of a rotationally invariant matrix Z, the eigenvalues and the
overlap between the eigenvectors of the perturbation and the perturbed matrix
X + Z has been computed rigorously in [17]. In [126] this is extended to
sub-linear rank perturbations. Essentially the same formulas (as for finite-rank
perturbations) give the eigenvalues of the perturbed matrix and overlap in the
large size limit.

These results could presumably be used to get a rigorous computation of
the asymptotic MSE predicted by the oracle estimator but this is left for future
work. Here we use these results in an heuristic way to propose a specific RIE
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and associated algorithm. We use the notation a → b to mean that |a − b|
tends to zero with high probability as N → +∞. Theorem 2.7 in [126] suggests

(
s⊺iyi

)2 →


−1

κλS
i
2G′

ρZ

(
G−1
ρZ

(
1√
κλS

i

)) if 1√
κλS

i
∈
(
GρZ (a

−),GρZ (b
+)
)
,

0 else.
(9.50)

where GρZ (z) is the Cauchy transform of ρZ , constrained on R\supp ρZ , and
a, b are the infimum and supremum of the support of ρZ , and GρZ (a

−) ≡
limz→a− GρZ (z) and similarly for b+. The overlap in (9.50) is expressed in terms
of eigenvalues of S, but since the corresponding eigenvalue of Y is affected
by λSi , we can express the overlap in terms of eigenvalues of Y . Theorem 2.1
in [126] suggests

λYi →


G−1
ρZ

(
1√
κλS

i

)
if 1√

κλS
i
∈
(
GρZ (a

−),GρZ (b
+)
)
,

b if 1√
κλS

i
> GρZ (b

+),

a if 1√
κλS

i
> GρZ (a

−).

(9.51)

From (9.51), we can see that if an eigenvalue of Y is outside the support of ρZ ,
then the corresponding eigenvalue of the signal can computed as λSi ≈ 1√

κGρZ
(λY

i )
.

From (9.50), (9.51) we deduce that for an eigenvalue λYi ∈ (a, b) there is no
spike aligned with yi, because otherwise λYi would be outside of the support
of ρZ . So, the corresponding ξ∗i ’s are zero for the eigenvalues in (a, b). On the
other hand, since there are M spikes, at most M ξ∗i ’s are non-zero which makes
the whole expression in (9.48) for the optimum ξ∗i ’s O(1).

Finally the proposed RIE estimator is naturally constructed as follows
Ξ̂∗(Y ) =

∑N
i=1 ξ

∗
i yiy

⊺
i ,

ξ∗i = − 1√
κ
I
(
λYi /∈ [a, b]

) GρZ

(
λY
i

)
G′
ρZ

(
λY
i

) . (9.52)

This provides an algorithm with the following steps to reconstruct the signal

(i) Compute spectral data (λYi ,yi) from the matrix Y .

(ii) Apply the function fZ to the eigenvalues

fZ(x) =

{
− 1√

κ

GρZ
(x)

G′
ρZ

(x)
if x /∈ [a, b]

0 else.

(iii) Construct the estimate as Ŝ =
∑N

i=1 fZ(λ
Y
i )yiy

⊺
i .

The second algorithmic step requires knowledge of the limiting distribution of
the noise which can in principle be computed from its distribution.
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9.6.2 Gaussian noise

For ρZ = 1
2π

√
4− x2, we have that Gρsc(z) =

z−sign(z)
√
z2−4

2
. Thus, given matrix

Y the estimator reads:{
Ξ̂∗(Y ) =

∑N
i=1 ξ

∗
i yiy

⊺
i ,

ξ∗i = 1√
κ
I
(
|λYi | > 2

)
sign(λYi )

√
λYi

2 − 4.

MSE

To compute the MSE, we use (9.50) which is in terms of the eigenvalues of S.
We have (

s⊺iyi

)2 → {
1− 1

κλS
i
2 if κλSi

2 ≥ 1,

0 else,
(9.53)

so the optimal eigenvalues of the estimator are

ξ∗i →
{
λSi − 1

κλS
i

if κλSi
2 ≥ 1,

0 else.
(9.54)

The MSE can be written as,

1

M
∥S − Ξ∗(Y )∥2F =

1

M

M∑
i=1

λSi
2 − 1

M

N∑
i=1

ξ∗i
2 (9.55)

where, we used that, in the limit N → ∞, at most M number of ξ∗i ’s are
non-zero. Taking the limit N → ∞ (or M → ∞), we find

lim
N→∞

1

M
∥S − Ξ∗(Y )∥2F =

∫
x2ρS(x) dx−

∫
|x|≥ 1√

κ

(
x− 1

κx

)2
ρS(x) dx. (9.56)

Mutual information in Gaussian noise

As already explained the MSE computed above should be equal to the MMSE,
thus by integrating over κ we should recover the mutual information. Moreover,
the mutual information can be computed using the limit of the spherical
integrals of sub-linear rank [65]. In this section we explicitly check for a few
priors that the two expressions indeed coincide.

We first present the main formula of [65]. The asymptotic mutual informa-
tion between S and the observation Y =

√
κS +Z is

lim
N→∞

1

MN
IN(S;Y ) =

κ

2

∫
x2ρS(x) dx− lim

N→∞

1

MN
ln

∫
DUe

N
2
Tr

√
κSUY U⊺

.

(9.57)
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The integral
∫
DUe

N
2
Tr

√
κSUY U⊺ is the spherical integral of sub-linear rank,

and its asymptotic limit has been studied in [65]. For matrix A with M positive
eigenvalues, by Theorem 2.5 in [65], we have that

lim
N→∞

1

MN
ln

∫
DUe

N
2
TrAUBU⊺

=
1

2
lim

N→∞

1

M

M∑
i=1

K(θi, λi, µB) (9.58)

where θi’s are non-zero eigenvalues of A, λi’s are the top eigenvalues of B, and
µB is the limiting spectral distribution of B. Note that the result of [65] also
covers the case of negative eigenvalues, however for simplicity we only consider
matrices with positive eigenvalues. The function K is defined as

K(θ, λ, µ) = θλ′ + (v − λ′)Gµ(v)− ln |θ| −
∫

ln |v − x| dµ(x)− 1

where λ′ = max(λ, r(µ)) (r(µ) is the rightmost point of the support of µ),

v := v(λ, θ) =

{
λ′ when 0 ≤ Gµ(λ

′) ≤ θ or θ ≤ Gµ(λ
′) ≤ 0

G−1
µ (θ) else

and Gµ is the Stieltjes transform of µ.

Example 1: Sub-linear Wishart signal

Consider the signal matrix S to be 1
N
XX⊺, with X ∈ RN×M has i.i.d. standard

Gaussian entries, and M = ⌊Nα⌋. In the limit N → ∞, one can show that the
limiting distribution of non-zero eigenvalues of S is δ(x− 1). For this example,
the MSE given by (9.56) reads

MSE(κ) =

{
1 if κ ≤ 1,
1
κ

(
2− 1

κ

)
if κ ≥ 1.

(9.59)

Integrating over κ, we find the mutual information to be:

lim
N→∞

1

MN
IN(S;Y ) =

{
κ
4

if κ ≤ 1,
1
4
1
κ
+ 1

2
lnκ if κ ≥ 1.

(9.60)

which is the mutual information in the rank-one case when the prior for the
spike is a Gaussian vector.

Now, we compute the mutual information using spherical integrals. All
the non-zeros eigenvalues of sub-linear rank matrix

√
κS, θi’s, converge to a

single number,
√
κ. By [17], the limiting top eigenvalues of Y , λi’s, can also

be computed. So, all the summands in r.h.s. of (9.58) are equal in the limit,
and we have:

lim
N→∞

1

MN
ln

∫
DUe

N
2
Tr

√
κSUY U⊺

=

{
1
2
K(

√
κ, 2, ρsc) if κ < 1,

1
2
K(

√
κ,

√
κ+ 1√

κ
, ρsc) if κ ≥ 1.

(9.61)



140 Extensive-Rank Symmetric Matrix Denoising

Case κ < 1: we have λ′ = 2 and v = G−1
ρsc (

√
κ) =

√
κ+ 1√

κ
. Thus

K(
√
κ, 2, ρsc) = 2

√
κ+

(√
κ+

1√
κ
− 2

)
Gρsc

(√
κ+

1√
κ

)
− ln

√
κ

−
∫ 2

−2

√
4− x2

2π
ln
∣∣√κ+

1√
κ
− x| dx− 1

= 2
√
κ+

(√
κ+

1√
κ
− 2

)√
κ− 1

2
lnκ−

(κ
2
− 1

2
lnκ

)
− 1

=
κ

2
(9.62)

where we used the integral formula

1

2π

∫ 2

−2

ln(A−Bx)
√
4− x2dx =

A

A+
√
A2 − 4B2

+ ln
(
A+

√
A2 − 4B2

)
− 1

2
− ln 2

Case κ ≥ 1: we have λ′ =
√
κ+ 1√

κ
and v = λ′ =

√
κ+ 1√

κ
. Thus

K(
√
κ,

√
κ+

1√
κ
, ρsc) =

√
κ
(√

κ+
1√
κ

)
− ln

√
κ

−
∫ 2

−2

√
4− x2

2π
ln
∣∣√κ+

1√
κ
− x| dx− 1

= κ+ 1− 1

2
lnκ−

(1
2

1

κ
+

1

2
lnκ

)
− 1

= κ− 1

2

1

κ
− lnκ.

(9.63)

From (9.61), (9.62), and (9.63), we obtain

lim
N→∞

1

MN
ln

∫
DUe

N
2
Tr

√
κSUY U⊺

=

{
κ
4

if κ < 1,
κ
2
− 1

4
1
κ
− 1

2
lnκ if κ ≥ 1.

(9.64)

Replacing this result in (9.57) we get

lim
N→∞

1

MN
IN(S;Y ) =

{
κ
4

if κ < 1,
1
4
1
κ
+ 1

2
lnκ if κ ≥ 1.

which is the same as the mutual information computed from the MSE, (9.60).
In Fig. 9.6.1, we compare the performance of the sub-linear RIE and the

oracle estimator (9.49) with M = ⌊
√
N⌋ for various values of N . We observe

that the performance of the RIE is very close to the one of oracle estimator
(which requires the knowledge of the signal). Moreover, the MSE is close to
the theoretical predictions.
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Figure 9.6.1: Comparison of the sub-linear RIE and the oracle estimator (9.49) for
Gaussian noise with sub-linear Wishart signal with M = ⌊

√
N⌋. Horizontal lines are

MMSE computed from (9.59). Points are averaged over 10 experiments (error bars might
be invisible).

Example 2: Uniform distribution

Let ρS be the uniform distribution on [1, 2]. From (9.56), the MSE can be
computed to be

MSE(κ) =


7
3

for 0 ≤ κ ≤ 1
4
,

−1
3
+ 4

κ
− 8

3κ3/2 +
1

2κ2 for 1
4
≤ κ ≤ 1,

2
κ
− 1

2κ2 for 1 ≤ κ.

(9.65)

Integrating over κ, we find the mutual information to be:

lim
N→∞

1

MN
IN(S;Y ) =


7
12
κ for 0 ≤ κ ≤ 1

4
,

− κ
12

+ lnκ+ 2(ln 2− 1) + 4
3
√
κ
− 1

8κ
for 1

4
≤ κ ≤ 1,

1
2
lnκ+ 2 ln 2− 1 + 1

8κ
for 1 ≤ κ.

(9.66)
Now, we proceed with the computation of the mutual information using

the asymptotic of spherical integrals. In the limit N → ∞, r.h.s. of (9.58)
becomes an integral (expectation w.r.t. ρS). For ρS = U

(
[1, 2]

)
we have

lim
N→∞

1

MN
ln

∫
DUe

N
2
Tr

√
κSUY U⊺

=
1

2

∫ 2

1

K
(√

κx, h
(√

κx
)
, ρsc

)
dx (9.67)

with

h
(√

κx
)
=

{
2 if

√
κx ≤ 1,√

κx+ 1√
κx

if
√
κx ≥ 1.

K
(√

κx, h
(√

κx
)
, ρsc

)
=


1
2
κx2 for 0 < κ ≤ 1

4
,

1
2
κx2 for 1

4
≤ κ ≤ 1 and x ≤ 1√

κ
,

κx2 − 1
2

1
κx2 − lnκx2 for 1

4
≤ κ ≤ 1 and x ≥ 1√

κ
,

κx2 − 1
2

1
κx2 − lnκx2 for 1 ≤ κ.
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(a) high-SNR, M = ⌊
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Figure 9.6.2: Comparison of the sub-linear RIE and the oracle estimator (9.49) for
Gaussian noise with sub-linear signal with ρS = U([1, 2]). Horizontal lines are MSE
computed from (9.65). Points are averaged over 10 experiments (error bars might be
invisible).

Thus we find:

lim
N→∞

1

MN
ln

∫
DUe

N
2
Tr

√
κSUY U⊺

=


7
12
κ for 0 ≤ κ ≤ 1

4
,

5
4
κ− lnκ+ 2(1− ln 2)− 4

3
√
κ
+ 1

8κ
for 1

4
≤ κ ≤ 1,

7
6
κ− 1

2
κ+ 1− 2 ln 2− 1

8κ
for 1 ≤ κ.

(9.68)

Replacing in (9.57), we find the same mutual information as in (9.66).
In Fig. 9.6.2, we compare the performance of the sub-linear RIE and the

oracle estimator (9.49) with M = ⌊
√
N⌋ for various values of N as well as with

theoretical predictions for a uniformly distributed signal.

9.6.3 Uniform noise

We now consider non-Gaussian noise, a noise matrix with eigenvalues which
are uniformly distributed ρZ = U

(
[1, 2]

)
. We have GU([1,2])(z) = ln z−1

z−2
. Thus

the eigenvalues of the proposed estimator are:

ξ∗i =
1√
κ
I
(
λYi /∈ [1, 2]

)
ln
λYi − 1

λYi − 2

(
λYi − 1

)(
λYi − 2

)
.

MSE

Writing the overlap in terms of the eigenvalues of the signal, for 1 ≤ i ≤M we
have (

s⊺iyi

)2 → 1

4

1

κλSi
2

(
csch

1

2
√
κλSi

)2
. (9.69)

Note that, GU([1,2])(1
−) = −∞ and GU([1,2])(2

+) = +∞, so for any κ > 0 we have
an outlier eigenvalue for each spike in the signal. From (9.69), the eigenvalues
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Figure 9.6.3: Comparison of the sub-linear RIE and the oracle estimator (9.49) for
noise with uniform spectral distribution and sub-linear Wishart signal, for M = ⌊

√
N⌋.

Horizontal lines are MSE computed from 1− 1
16

1
κ2

(
csch 1

2
√
κ

)4. Points are averaged over
10 experiments (error bars might be invisible). Note that unlike the Gaussian noise, for
any SNR the estimation is possible and MSE is less than 1.

of the estimator are
ξ∗i → 1

4

1

κλSi

(
csch

1

2
√
κλSi

)2
. (9.70)

Using (9.55) we find in the asymptotic limit

lim
N→∞

1

M
∥S − Ξ∗(Y )∥2F =

∫ [
x2 − 1

16

1

κ2x2
(
csch

1

2
√
κx

)4]
ρS(x) dx. (9.71)

Example: Sub-linear Wishart Signal

As mentioned in section 9.6.2, the limiting measure of the signal in this case
is ρS = δ+1, so the MSE is 1 − 1

16
1
κ2

(
csch 1

2
√
κ

)4. In Fig. 9.6.3, we compare
the performance of the sub-linear RIE and the oracle estimator (9.49) for
M = ⌊

√
N⌋ for various values of N . We observe that the performance of the

RIE is very close to the one of oracle estimator (which requires the knowledge
of the signal). Moreover, the MSE is close to the theoretical predictions.





Appendix

9.A Discussion of Models with Rotation
Invariant Noise

Suppose that the noise matrix Z in our basic model is the realization of a
rotation invariant ensemble. While we are not quite able to treat this case, we
can generalize Theorem 9.3 to the setting Yϵ =

√
κS+Zϵ where Zϵ = Z+

√
ϵζ

with ζ from the Gaussian Wigner ensemble, and ϵ > 0 (so the noise is non-
Gaussian rotation invariant). We call this model the Additive Rotation Invariant
Noise (ARIN) model.

Proposition 9.6 (Explicit Mutual Information for the ARIN model).
Assume that the conditions in assumption 1 hold for both Sand Z. Then, we
have for the ARIN model:

IN(S;Yϵ)

N2

N→∞−−−→ 1

2

∫∫
ln |s− t|ρYϵ(s)ρYϵ(t) ds dt

− 1

2

∫∫
ln |s− t|ρZϵ(s)ρZϵ(t) ds dt.

(9.72)

The proof leverages only on the simple formula for the mutual information
for Gaussian noise in theorem 9.3, and does not really hinge on assumption 9.2.
Finally we would like to take the limit ϵ→ 0. This however is a subtle problem
which would require more specific hypothesis on the rotation invariant ensemble
of Z. For example it is quite apparent that one would need the existence of
a density for the limiting empirical measures ρZ and ρY0 . Moreover, this also
requires an argument to permute the limits N → +∞ and ϵ→ 0.

Proof. Set X =
√
κS +Z. We have the information theoretic equalities (HN

are Shannon entropies)

IN(Yϵ;S) = HN(Yϵ)−HN(Yϵ|S)
= HN(Yϵ)−HN(Zϵ)

= [HN(Yϵ)−HN(ζ)]− [HN(Zϵ)−HN(ζ)]

= [HN(Yϵ)−HN(Yϵ|X)]− [HN(Zϵ)−HN(Zϵ|Z)]

= IN(Yϵ;X)− IN(Zϵ;Z).

(9.73)
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Figure 9.B.1: MMSE and the MSE of RIE (9.4) for the signal with spectrum ρS =
1
2δ−1 +

1
2δ+1. The MMSE is continuous w.r.t. κ. The RIE is computed for N = 1000,

and the results are averaged over 20 runs (error bars are invisible).

The two mutual informations in the last line correspond to the inference
models for two AWGN models with strength ϵ, namely Yϵ = X +

√
ϵζ and

Zϵ = Z +
√
ϵζ, and inputs from rotation invariant ensembles. By the formula

in Theorem 9.3 which holds for these channels we obtain

lim
N→+∞

1

N2
IN(Yϵ;S) =

1

2

∫∫
ln |s− t|ρYϵ(s)ρYϵ(t)dsdt

− 1

2

∫∫
ln |s− t|ρZϵ(s)ρZϵ(t)dsdt.

(9.74)

9.B Examples and Numerical Calculations for
Linear Ranks

9.B.1 Signal with Rademacher spectrum

In this example, we consider the case where ρS = 1
2
δ−1 +

1
2
δ+1. Using the

technique introduced in [118], we compute ρY = ρ√κS ⊞ ρsc in Appendix 9.D.
Fig. 9.D.1 shows the support of ρY which consists of two disjoint intervals
when κ ≥ 1, and one single open set when κ < 1. Therefore, we expect that a
phase transition, if it exists, should happen at a value κc = 1. By Theorem 9.2
the MMSE is a continuous function of κ, and the phase transition (if it exists)
is of the second or higher order. The MMSE and the performance of the RIE
for this example are plotted in figure 9.B.1.

From the expression of ρY in Appendix 9.D and from Theorem 9.2 we
provide integral representations of the derivatives of the MMSE w.r.t. κ. These
integrals are computed numerically and the result illustrated in figures 9.B.2
(a-b-c) for the MMSE and its first and second derivatives. For the third and
the fourth derivatives the integral representation become unwieldy, so we only
computed it numerically from the second derivative, as shown in figures 9.B.2
(f),(g). Based on these plots, we see that the third derivative (of the MMSE)
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Figure 9.B.2: Analysis of the MMSE in example 9.B.1. In plots (a),(b),(c) MMSE
and its first and second derivatives are computed using the the expression (9.38). Plots
(d), (e), (f) are the numerical differentiation of plots (a),(b), (c) respectively. The fourth
derivative of the MMSE is computed from the curve in plot (c) by numerical second order
differentiation. The first three plots shows that the MMSE, its first and second derivatives
are continuous. But, plots (f), (g) suggests that the d2

dκ2MMSE(κ) has a vertical tangent
at κc = 1, and MMSE has a phase transition of third order at this point.

at κc = 1 does not seem to exist, and therefore the free energy (9.11) (or
mutual information) might have a fourth order phase transition at this point.
Further numerical analysis in appendix 9.D is compatible with a behavior of
the function MMSE(κ) close to the point κc = 1 of the form

MMSE(κ) ≈ MMSE(1) +MMSE′(1)(κ− 1) +
1

2
MMSE′′(1)(κ− 1)2

+ α(κ− 1)3
(
ln |κ− 1|+ β

)
+ o

(
(κ− 1)3

) (9.75)

with α ≈ −0.06125, β ≈ 1.411.

9.B.2 Signal with Bernoulli spectrum

Let ρS = pδ0 + (1− p)δ+1. The corresponding signal matrix is not full-rank but
it has a rank linear in N . For this prior, the spectrum of ρY = ρ√κS ⊞ ρsc is
computed in Appendix 9.E using a similar technique as in the previous example.
Depending on the SNR parameter κ the support of ρY can be a single interval
or is composed of two disjoint intervals as shown on figure 9.E.1. The MMSE
and the MSE of RIE are illustrated in figure 9.B.3 for the two values p = 0.9
and p = 0.3.

In figure 9.B.4, the suitably normalized MMSE is plotted for the highly
sparse case where p tends to 1. The MMSE is normalized by dividing by
p(1− p). We observe that as p→ 1 the MMSE approaches the MMSE of the
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Figure 9.B.3: MMSE computed for the signal with Bernoulli spectrum ρS = pδ0 +

(1− p)δ+1 for p = 0.3 and 0.9. The MMSE is continuous w.r.t. κ. The vertical dashed
lines corresponds to the values of κ, i.e., 2.92 for p = 0.9 and 3.78 for p = 0.3, where the
disjoint intervals of the support of ρY merge. We do not observe any phase transition for
any low order derivative at these values. The MSE of RIE is computed for N = 1000,
and the results are averaged over 20 runs.
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Figure 9.B.4: Normalized MMSE for the signal with spectrum ρS = pδ0 + (1− p)δ+1

for p → 1. The MMSE of the rank-one problem is also plotted for comparison.

rank-one symmetric matrix estimation problem, which has a phase transition
at κc = 1.

9.B.3 Wishart matrix

In this example, we consider the signal matrix S to be 1
N
XX⊺, where X ∈

RN×M has i.i.d. standard Gaussian entries. We look at the limit of aspect ratio
N
M

→ q. Then, the limiting spectral distribution of S is a rescaling of the usual
Marchenko-Pastur distribution by the factor α:

ρS(x) =
(
1− 1

q

)+
δ(x) +

√(
x−

(
1√
q
− 1

)2)(( 1√
q
+ 1

)2 − x
)

2πx
. (9.76)

The limiting spectral distribution of Y is computed in Appendix 9.F. For q > 1

the support of ρY is the union of two disjoint intervals if κ > q
(

3
√
q− 1

)−3, and
is a single interval otherwise. As in the previous example, we expect that in
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Figure 9.B.5: Normalized MMSE for the signal with the Marchenko-Pastur spectral
distribution for large q’s . The MMSE of the rank-one problem is also plotted for
comparison. The vertical dashed lines corresponds to the critical value where the support
of ρY splits into two intervals. We do not find any phase transition on low order derivatives

the high sparse regime, the MMSE behaves like the low-rank case. In figure
9.B.5 the MMSE is illustrated large q’s.

9.B.4 Finite-rank deformation of a Wigner matrix as
signal

First, consider the case where S is a standard Wigner matrix, then by inde-
pendence of S and Z, Y is also a Wigner matrix with variance κ+ 1, and ρY
is a semi-circle law of variance κ+ 1. From (9.47), we find that 1

N2 IN(S;Y )
converges to 1

4
ln(κ+1). This limit could also be obtained using the Gaussianity

of entries of the matrices.
Now, let S be a finite rank deformation of a Wigner matrix, S = A+ζ, where

A is a finite-rank symmetric matrix, and ζ ∈ RN×N is a symmetric Gaussian
matrix with variance 1

N
for non-diagonal, and 2

N
for diagonal entries. We have

the observation Y =
√
κS +Z. Since A has finite rank, the limiting spectral

measure of S is the semicircle law, and average mutual information 1
N2 IN (S;Y )

converges to 1
4
ln(κ+1), (9.47). Since Z and ζ are independent, the observation

matrix Y has the same distribution as the matrix Ỹ =
√
κA +

√
κ+ 1Z̃,

where Z̃ is a symmetric Gaussian matrix, so H(Y ) = H(Ỹ ). Define the matrix
Y ′ =

√
κ

κ+1
A+Z ′. By symmetry of the matrices, we have:

HN(Y
′) = HN(Y )− N(N + 1)

2
ln
√
κ+ 1. (9.77)

Here Y ′ has the form of the observation matrix in the low-rank matrix esti-
mation, which has been extensively studied in [8, 9], and in particular, it has
been shown that under suitable assumptions, the average mutual information
1
N
IN(A;Y ′) converges to a finite value. By definition of mutual information,
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and (9.77), we have:

1

N
IN(A;Y ′) =

1

N
HN(Y

′)− 1

N
HN(Z

′)

=
1

N
HN(Y )− 1

N
HN(Z

′)− N + 1

4
ln(κ+ 1)

=
1

N
IN(S;Y )− N + 1

4
ln(κ+ 1).

(9.78)

Dividing by N and taking the limit, we find the asymptotic mutual information

lim
N→∞

1

N2
IN(S;Y ) = lim

N→∞

1

N2
IN(A;Y ′) +

N + 1

4N
ln(κ+ 1)

=
1

4
ln(κ+ 1).

(9.79)

where we used the fact that 1
N
IN (A;Y ′) has a finite limit. Moreover, from (9.78)

the finite-size correction term for the asymptotic average mutual information
can be derived as

lim
N→∞

N
( 1

N2
IN(S;Y )− 1

4
ln(κ+1)

)
= lim

N→∞

1

N
IN(A;Y ′)+

1

4
ln(κ+1). (9.80)

Therefore when S is a finite rank deformation of the Wigner matrix, the
finite-size correction term is directly related to the mutual information in the
low-rank matrix estimation problem, which may exhibit a phase transition.

Now, let A be a rank-one matrix. S =
√
η

N
xx⊺ + ζ where x ∈ RN has i.i.d.

components distributed according to the standard normal distribution. The

matrix Y ′ =

√
ηκ
κ+1

N
xx⊺ +Z ′ is a rescaling of the rank-one model studied in [9],

and since mutual information is invariant under rescaling, using Theorem 1
in [9], we have:

lim
N→∞

1

N
IN(x;Y

′) =

{
1
4

ηκ
κ+1

if ηκ
κ+1

≤ 1,
1
4
κ+1
ηκ

+ 1
2
ln ηκ

κ+1
else.

(9.81)

Fix η ≤ 1. For all κ > 0, we have ηκ
κ+1

≤ 1 and there is no phase transition in
the mutual information. On the other hand, for η > 1 mutual information has
a phase transition at κ = 1

η−1
. From random matrix theory [17], we know that

For η ≤ 1, in the limit N → ∞, all the eigenvalues of S are inside the bulk,
whereas for η > 1 one eigenvalue (which is the largest one) is outside the bulk.
Therefore, for this particular signal, we can relate the phase transition of the
correction term to the existence of an eigenvalue outside the bulk of ρS in the
asymptotic limit.

9.C Further details for proof of Theorem 9.1

9.C.1 Proof of lemma 9.1

To prove lemma 9.1 we first need four preliminary lemmas.
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Lemma 9.4. For any N , and N ×N symmetric matrices A,B with spectral
radius r(A), r(B)

−1

2
r(A)r(B) ≤ JN(A,B) ≤ 1

2
r(A)r(B).

Proof. Let A = UAΛAU
⊺
A, B = UBΛBU

⊺
B be the eigendecomposition of A,

B. We can write

IN(A,B) =

∫
DUe

N
2
TrUΛAU⊺ΛB =

∫
DUe

N
2

∑N
i,j λ

(A)
i λ

(B)
j U2

ij .

For each for all i, j ∈ {1, . . . , N}, −r(A)r(B) ≤ λ
(A)
i λ

(B)
j ≤ r(A)r(B). Therefore,

we get

IN(A,B) =

∫
DUe

N
2

∑N
i,j λ

(A)
i λ

(B)
j U2

ij

≤
∫
DUe

N
2
r(A)r(B)

∑N
i,j U

2
ij

=

∫
DUe

N2

2
r(A)r(B)

= e
N2

2
r(A)r(B)

.

Similarly we can obtain IN(A,B) ≥ e−
N2

2
r(A)r(B) . Therefore

−1

2
r(A)r(B) ≤ JN(A,B) ≤ 1

2
r(A)r(B).

Lemma 9.5. Let r(
˜̃Y ) denote the spectral radius of the matrix ˜̃Y =

√
κΛ0 + Z̃.

For k > 2 +
√
κC, we have

P{r( ˜̃Y ) ≥ k} ≤ 4e−
N
4
(k−

√
κC−2)2 .

Proof. Denote the top and bottom eigenvalues of ˜̃Y by λ(
˜̃Y )

max, λ(
˜̃Y )

min. By Weyls’
inequality,

λ(
˜̃Y )

max ≤
√
κmax

i
λ0i + λ(Z̃)

max ≤
√
κC + λ(Z̃)

max

λ
( ˜̃Y )
min ≥ √

κmin
i
λ0i + λ

(Z̃)
min ≥ −√

κC + λ
(Z̃)
min

where λ(Z̃)
max,λ(Z̃)

min are the top and bottom eigenvalues of Z̃. Thus, we can write

P{λ( ˜̃Y )
max ≥ k} ≤ P

{
λ(Z̃)
max +

√
κC ≥ k

}
= P{λ(Z̃)

max ≥ k −√
κC}.
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By [116] (Theorem II.11), for k −√
κC > 2, we have

P{λ(Z̃)
max ≥ k −√

κC} ≤ e−
N
4
(k−

√
κC−2)2

and therefore we get

P{λ( ˜̃Y )
max ≥ k} ≤ e−

N
4
(k+

√
κC−2)2 . (9.82)

For the bottom eigenvalue we have

P{λ(
˜̃Y )

min ≤ −k} ≤ P
{
−√

κC + λ
(Z̃)
min ≤ −k}

= P
{
λ
(Z̃)
min ≤ √

κC − k}
≤ e−

N
4
(k−

√
κC−2)2 .

(9.83)

From (9.82), (9.83), we get

P{r( ˜̃Y ) ≥ k} ≤ P{|λ( ˜̃Y )
max| ≥ k}+P{|λ(

˜̃Y )
min| ≥ k}

≤ P{λ( ˜̃Y )
max ≥ k}+P{λ( ˜̃Y )

max ≤ −k}+P{λ(
˜̃Y )

min ≥ k}+P{λ(
˜̃Y )

min ≤ −k}

≤ 2P{λ( ˜̃Y )
max ≥ k}+ 2P{λ(

˜̃Y )
min ≤ −k}

≤ 4e−
N
4
(k−

√
κC−2)2

for k > 2 +
√
κC.

Lemma 9.6. For any polynomial function g, and k a sufficiently large constant,
we have that

lim
n→∞

E
[
g(r(

˜̃Y ))I{r( ˜̃Y ) ≥ k}
]
= 0.

Proof. By linearity of expectation, it is enough to consider the case g(x) = xi.

Let X = r(
˜̃Y )

i

I{r( ˜̃Y ) ≥ k} a non-negative random variable. We have

E[X] =

∫ ∞

0

P(X ≥ x)dx

= i

∫ ∞

0

P(X ≥ xi)xi−1dx

= i

∫ ∞

0

P
(
r(

˜̃Y )
i

I{r( ˜̃Y ) ≥ k} ≥ xi
)
xi−1dx

= i

∫ ∞

0

P(r(
˜̃Y ) ≥ k, r(

˜̃Y ) ≥ x)xi−1dx

= i

∫ k

0

P(r(
˜̃Y ) ≥ k)xi−1dx+ i

∫ ∞

k

P(r(
˜̃Y ) ≥ x)xi−1dx

≤ 4e−
N
4
(k−

√
κC−2)2ki + 4i

∫ ∞

k

e−
N
4
(x−

√
κC−2)2dx

≤ 4e−
N
4
(k−

√
κC−2)2ki + 4i

∫ ∞

0

e−
N
4
(x−

√
κC−2)2xi−1dx.
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The first term converges to 0 as N → ∞. The second term involves moments of
a Gaussian with variance 1

2N
, one can see that the second term also converges

to 0. Thus, limN→∞ E[X] = 0.

Lemma 9.7. For the sequence of random matrices ˜̃Y , the log spherical integral
JN

(√
κΛ0, ˜̃Y

)
converges almost surely to a well-defined limit, denoted by

J [ρ√κS, ρ√κS ⊞ ρsc].

Proof. By assumption 1.A the support of µ̂(N)√
κΛ0 is included in a compact subset

of R,[−√
κC,

√
κC], for all N ∈ N. Moreover, by the law of large numbers,

µ̂
(N)√
κΛ0 converges weakly towards ρ√κS.
Consider the sequence

√
κΛ0 + Z̃. For each matrix in the sequence, the

second moment of the empirical spectral distribution is:

1

N
Tr(

√
κΛ0 + Z̃)2 =

1

N
κTrΛ02 +

2

N

√
κTrΛ0Z̃ +

1

N
Tr Z̃2.

The first term is bounded (for all N) by the construction of λ0. The last term
is also bounded since the second moment of the sequence of Wigner matrices
converges to 1 almost surely. For the second term, we have

1

N
TrΛ0Z̃ ≤ 1

N

√∑
κ0i

2
√
Tr Z̃2

≤ C

√
1

N
Tr Z̃2

which is bounded for all N , since 1
N
Tr Z̃2 is a convergent sequence (a.s.).

Therefore, the sequence of matrices
√
κΛ0 + Z̃ has bounded second moment

for all N almost surely. Moreover, according to [66], by the independence of λ0

and Z̃, the empirical spectral distribution of this sequence converges weakly,
almost surely to the free additive convolution of ρ√κS with the semi-circle law
ρsc.

Therefore, the conditions of theorem 1 in [61] hold a.s. for the sequence
Λ0,

√
κΛ0 + Z̃. Hence, JN

(√
κΛ0, ˜̃Y

)
has a well-defined limit which is a

function of ρ√κS and ρ√κS ⊞ ρsc, and is dented byJ [ρ√κS, ρ√κS ⊞ ρsc].

Now, we are ready to prove lemma 9.1.

Proof. of lemma 9.1. For simplicity of notation, we denote JN(
√
κΛ0, ˜̃Y ) by

JN , and J [ρ√κS, ρ√κS ⊞ ρsc] by J . By Jensen’s inequality (note that the
expectation is over the matrix Z̃), we have∣∣E[JN ]− J

∣∣ ≤ E
[
|JN − J |

]
. (9.84)

Let XN ≡ JN − J . For ϵ > 0 We can write

E
[
|XN |

]
= E

[
|XN | I{|XN | ≤ ϵ}

]
+ E

[
|XN | I{|XN | > ϵ}

]
≤ ϵ+ E

[
|XN | I{|XN | > ϵ}

]
.

(9.85)
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By lemma 9.4, |JN | ≤ 1
2

√
κCr(

˜̃Y ), so the second term in (9.85) can be bounded
as,

E
[
|XN | I{|XN | > ϵ}

]
≤ E

[
|WN | I{|XN | > ϵ}

]
(9.86)

where

WN = max
{∣∣J − 1

2

√
κCr(

˜̃Y )
∣∣, ∣∣J +

1

2

√
κCr(

˜̃Y )
∣∣} =

1

2

√
κCr(

˜̃Y ) + sign(J )J .

For any positive constant t, we have

E
[
|WN | I{|XN | > ϵ}

]
= E

[
|WN | I{|XN | > ϵ} I{|WN | ≤ t}

]
+ E

[
|WN | I{|XN | > ϵ} I{|WN | > t}

]
≤ E

[
|WN | I{|XN | > ϵ}I{|WN | ≤ t}

]
+ E

[
|WN | I{|WN | > t}

]
(9.87)

For the first term in (9.87) we can write

E
[
|WN | I{|XN | > ϵ}I{|WN | ≤ t}

]
≤ tE

[
I{|XN | > ϵ}

]
≤ tP

(
|XN | > ϵ

) (9.88)

and the second term in (9.87) can be rewritten as

E
[
|WN | I{|WN | > t}

]
= E

[
|WN | I

{
r(

˜̃Y ) >
2√
κC

(
t− sign(J )J

)}]
. (9.89)

From (9.86), (9.87), (9.88), we obtain

E
[
|XN | I{|XN | > ϵ}

]
≤ tP

(
|XN | > ϵ

)
+ E

[
|WN | I

{
r(

˜̃Y ) >
2√
κC

(
t− sign(J )J

)}]
.

(9.90)

Notice that WN is a polynomial function of r(
˜̃Y ), so by lemma 9.6, vanishes as

N → ∞ for sufficiently large constant t. By lemma 9.7, P
(
|XN | > ϵ

) N→∞−−−→ 0.
For a fixed t > 0, the first term in (9.90) goes to 0 in the limit N → ∞.
Therefore, taking the limit of both sides in (9.85), for any ϵ > 0, we find:

lim
N→∞

E
[
|XN |

]
≤ ϵ. (9.91)

From which, by (9.84), we deduce that limN→∞ E[JN ] = J .

9.C.2 Proof of proposition 9.5

Consider two matrices with the same eigenvectors, S = UΛU ⊺ and S̃ =
UΛ̃U ⊺, where U is a Haar orthogonal matrix, and λ, λ̃ are distributed
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according to P (1)
N (λ), P

(2)
N (λ̃), respectively. For two such matrices, we write

(S, S̃) ∼ QN(U ,λ, λ̃), where QN(U ,λ, λ̃) is the joint p.d.f. of U ,λ, λ̃,

dQN(U ,λ, λ̃) = dµN(U) P
(1)
N (λ) dλ P

(2)
N (λ̃) dλ̃.

For t ∈ [0, 1] an interpolating parameter, consider the following observation
model: {

Y
(t)
1 =

√
κtS +Z1

Y
(t)
2 =

√
κ(1− t)S̃ +Z2

(9.92)

where Z1,Z2 are Wigner matrices independent of each other, and (S, S̃) ∼
QN(U ,λ, λ̃). The free energy for this model can be written as :

FN(t) = − 1

N2
E

Y
(t)
1 ,Y

(t)
2

[
ln

∫
dQN(U ,λ, λ̃)

× e
N
2
Tr[

√
κtXY

(t)
1 −κt

2
X2+

√
κ(1−t)X̃Y

(t)
2 −κ(1−t)

2
X̃2]

]
= − 1

N2
E

Y
(t)
1 ,Y

(t)
2

[
ln

∫
dQN(U ,λ, λ̃)

× e
N
2
Tr[κtXS+

√
κtXZ1−κt

2
X2+κ(1−t)X̃S̃+

√
κ(1−t)X̃Z2−κ(1−t)

2
X̃2]

]
where X, X̃ has the same eigenspace, X = UΛU ⊺, X̃ = UΛ̃U ⊺. Note that,
for t = 0 the only term depending on λ (in both the inner and outer expectation)
is the pdf P (1)

N (λ) and we can integrate over λ in both of the expectations, to
get FN(0) = F

(2)
N (κ). Similarly, we have FN(1) = F

(1)
N (κ).

Taking the derivative w.r.t. t, we get:

d

dt
FN(t) = − 1

N
E
[κ
2
Tr⟨XS⟩t +

1

4

√
κ

t
TrZ1⟨X⟩t −

κ

4
Tr⟨X2⟩t

− κ

2
Tr⟨X̃S̃⟩t −

1

4

√
κ

1− t
TrZ2⟨X̃⟩t +

κ

4
Tr⟨X̃2⟩t

]
where ⟨.⟩t denotes the expectation with respect to the posterior distribution of
the model (9.92). By integration by parts, we have

E
[
TrZ1⟨X⟩t] =

√
κtE

[
Tr⟨X2⟩t − Tr⟨X⟩2t

]
,

E
[
TrZ2⟨X̃⟩t] =

√
κ(1− t)E

[
Tr⟨X̃2⟩t − Tr⟨X̃⟩2t

]
Therefore,

d

dt
FN(t) = − 1

N

κ

4
E
[
2Tr⟨XS⟩t − Tr⟨X⟩2t − 2Tr⟨X̃S̃⟩t + Tr⟨X̃⟩2t

]
=

1

N

κ

4
E
[
Tr[⟨XS⟩t − ⟨X̃S̃⟩t]

]
(By a Nishimori identity).
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We have

4N

κ

∣∣∣ d
dt
FN(t)

∣∣∣ = ∣∣∣∣∣E
[〈

Tr
[
S(X − X̃)− (S̃ − S)X̃

]〉
t

]∣∣∣∣∣
≤ E

[〈∣∣∣Tr [S(X − X̃)− (S̃ − S)X̃
]∣∣∣〉

t

]
(By Jensen)

≤ E

[〈∣∣∣TrS(X − X̃)
∣∣∣〉

t

]
+ E

[〈∣∣∣Tr(S̃ − S)X̃]
∣∣∣〉

t

]
≤ E

[
∥S∥F ⟨∥X − X̃∥F ⟩t

]
+ E

[
∥S − S̃∥F ⟨∥X̃∥F ⟩t

]
≤

√
E
[
∥S∥2F

]
E
[〈
∥X − X̃∥F

〉2
t

]
(By Cauchy–Schwarz)

+

√
E
[
∥S − S̃∥2F

]
E
[〈
∥X̃∥F

〉2
t

]
≤

√
E
[
∥S∥2F

]
E
[〈
∥X − X̃∥2F

〉
t

]
(By Cauchy–Schwarz)

+

√
E
[
∥S − S̃∥2F

]
E
[〈
∥X̃∥2F

〉
t

]
=

√
E
[
∥S∥2F

]
E
[
∥S − S̃∥2F

]
(By Nishimori)

+
√

E
[
∥S − S̃∥2F

]
E
[
∥S̃∥2F

]
=

(√
E
[
∥S∥2F

]
+
√

E
[
∥S̃∥2F

])√
E
[
∥S − S̃∥2F

]
=

(√
Eλ

[
∥λ∥2

]
+
√

Eλ̃

[
∥λ̃∥2

])√
Eλ,λ̃

[
∥λ− λ̃∥2

]
.

We obtain the result by integrating over t from 0 to 1. □

9.C.3 Proof of technical lemmas

Lemma 9.8. Given two vectors u,v ∈ RN , denote their empirical distributions
by µ, ν respectively. We have

W2(µ, ν) =

√
min
π∈SN

1

N
∥u− vπ∥2

where vπ is a permutation of v.

Proof. By definition we have

W2(µ, ν)
2 = inf

κ∈κ(µ,ν)
Eκ(x,y)

[
(x− y)2

]
.
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Any measure in κ(µ, ν) can be represented by a doubly stochastic N × N
matrix. Thus, we have

W2(µ, ν)
2 = inf

P∈BN

1

N

∑
i,j

Pij(ui − vj)
2

where BN denotes the set of doubly stochastic matrices. This minimization
problem is a linear optimization problem on the bounded convex set BN . By
Choquet’s theorem, the solutions to this problem exist and are the extremal
points of BN , which are permutation matrices (by Birkhoff’s theorem). There-
fore, the minimization can be written on the set of permutation matrices to
get:

W2(µ, ν)
2 = min

π∈SN

1

N

∑
i,j

(ui − vπ(i))
2.

Lemma 9.9. Suppose λ ∈ RN is distributed according to PS,N(λ), and λ0

is generated with i.i.d. elements from ρS. Let µ̂λ, µ̂λ0 be their empirical
distribution. We have:

lim
N→∞

Eλ

[
W2(µ̂λ, µ̂λ0)2

]
= 0.

Proof. By the triangle inequality

W2(µ̂λ, µ̂λ0) ≤ W2(µ̂λ, ρS) +W2(µ̂λ0 , ρS). (9.93)

The first term approaches 0 as N → ∞ almost surely, by remark 9.2. By
lemma 9.10, the second term also converges 0 as N → ∞. Therefore, we have
W2(µ̂λ, µ̂λ0) → 0 almost surely. Consequently, we have that W2(µ̂λ, µ̂λ0)2 → 0
almost surely. Denote W2(µ̂λ, µ̂λ0)2 by XN which is a non-negative random
variable. We have:

E[XN ] = E
[
XN I{XN ≤ ϵ}

]
+ E

[
XN I{XN > ϵ}

]
≤ ϵ+ E

[
XN I{XN > ϵ}

]
.

(9.94)

By definition, one can see that W2(µ̂λ, µ̂λ0)2 ≤ 2(m
(2)
µ̂λ

+m
(2)
µ̂λ0

), where m(2)
µ̂λ

=
1
N

∑
λ2i and m(2)

µ̂λ0
= 1

N

∑
λ0i

2. For the second term in (9.94) we have

E
[
XN I{XN > ϵ}

]
≤ 2E

[
(m

(2)
µ̂λ

+m
(2)
µ̂λ0

) I{XN > ϵ}
]

= 2m
(2)
µ̂λ0

E
[
I{XN > ϵ}

]
+ 2E

[
m

(2)
µ̂λ

I{XN > ϵ}
]

= 2m
(2)
µ̂λ0

P[XN > ϵ] + 2E
[
m

(2)
µ̂λ

I{XN > ϵ}
]
.

(9.95)

For the last term in (9.95) is decomposed as

E
[
m

(2)
µ̂λ

I{XN > ϵ}
]

= E
[
m

(2)
µ̂λ

I{XN > ϵ} I{m(2)
µ̂λ

≤ t}
]
+ E

[
m

(2)
µ̂λ

I{XN > ϵ} I{m(2)
µ̂λ
> t}

]
≤ tP[XN > ϵ] + E

[
m

(2)
µ̂λ

I{m(2)
µ̂λ
> t}

] (9.96)
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where t is a fixed sufficiently large constant such that t > C. From (9.94),
(9.95), (9.96), we get:

E[XN ] ≤ ϵ+ 2m
(2)
µ̂λ0

P[XN > ϵ] + 2tP[XN > ϵ] + 2E
[
m

(2)
µ̂λ

I{m(2)
µ̂λ
> t}

]
. (9.97)

Since W2(µ̂λ, µ̂λ0)2 → 0 almost surely, P[XN > ϵ] approaches 0 as N → ∞. By
construction m(2)

µ̂λ0
is bounded (by the constant C), so the second and the third

terms approaches 0 as N → ∞. The last term also converges 0, by lemma 9.11.
Therefore, for arbitrary ϵ > 0 we find

lim
N→∞

E[XN ] ≤ ϵ.

Lemma 9.10. Let X1, . . . , XN be i.i.d. random variables distributed according
to distribution µ, which has finite support. Let µN denote their empirical
distribution. Then

lim
N→∞

W2(µN , µ) = 0 almost surely.

Proof. By the law of large numbers, µN → µ almost surely. Moreover, since µ
has bounded support, the second moment of µN converges to the one of µ. By
Theorem 7.12 in [119], we have the convergence in the Wasserstein-2 metric
almost surely.

Lemma 9.11. Under assumption 1.B, for t large enough, we have:

lim
N→∞

E
[
m

(2)
µ̂λ

I{m(2)
µ̂λ
> t}

]
= 0.

Proof. Boundedness and a.s. convergence of m(2)
µ̂λ

imply that limN→∞ E[m(2)
µ̂λ
] =

m
(2)
ρS , which is bounded since ρS has compact support. Denote

XN = m
(2)
µ̂λ

I{m(2)
µ̂λ

≤ t}

Then, XN → m
(2)
ρS a.s. and by bounded convergence we also have that

limN→∞ E[XN ] = m
(2)
ρS . Therefore,

lim
N→∞

E
[
m

(2)
µ̂λ

I{m(2)
µ̂λ
> t}

]
= lim

N→∞
E
[
m

(2)
µ̂λ

−XN

]
= 0.

9.D Derivation of the limiting spectral
distribution for the model 9.B.1

Suppose we want to find the density µ(x), which is the free convolution of the
density ρ(x) with the semi-circle density ρsc(x). This density is given in [118]
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by

µ
(
ψ(u)

)
=
v(u)

π

ψ(u) = u+

∫
R

u− x

(u− x)2 + v(u)2
ρ(x) dx,

v(u) = inf
{
w ≥ 0

∣∣ ∫
R

ρ(x)

(u− x)2 + w2
dx ≤ 1

}
.

(9.98)

This result will be used repeatedly.
To compute the density ρY = ρ√κS ⊞ ρsc where ρ√κS(x) =

1
2
δ(x +

√
κ) +

1
2
δ(x−√

κ), we compute functions v(u) and ψ(u)

if κ < 1 :

v(u) =

{
1√
2

√
1− 2(u2 + κ) +

√
1 + 16κu2 if |u| ≤ 1√

2

√
1 + 2κ+

√
1 + 8κ

0 else.

ψ(u) =

{
1+8u2−

√
1+16κu2

4u
if |u| ≤ 1√

2

√
1 + 2κ+

√
1 + 8κ

u(u2−κ+1)
u2−κ

else.
(9.99)

if κ ≥ 1 :

v(u) =

{
1√
2

√
1− 2(u2 + κ) +

√
1 + 16κu2 if u satisfies (9.101)

0 else.

ψ(u) =

{
1+8u2−

√
1+16κu2

4u
if u satisfies (9.101)

u(u2−κ+1)
u2−κ

else.

(9.100)

with the condition:

1√
2

√
1 + 2κ−

√
1 + 8κ ≤ |u| ≤ 1√

2

√
1 + 2κ+

√
1 + 8κ (9.101)

Solving the equation ρY
(
ψ(u)

)
= v(u)

π
, we find:

if κ < 1 : ρY (x) =

{
1√
2π

√
1− 2

(
κ+ 1

2304
A2

)
+
√

1 + κ
144
A2 if |x| ≤ U(κ)

0 else.

if κ ≥ 1 :

ρY (x) =

{
1√
2π

√
1− 2

(
κ+ 1

2304
A2

)
+
√

1 + κ
144
A2 if L(κ) ≤ |x| ≤ U(κ)

0 else.
(9.102)

where

A = 16x+
32× 21/3(−3 + 3κ+ x2)

B
+ 22/3B
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Figure 9.D.1: The continuous line is the asymptotic spectral density of the observation
matrix Y in example 9.B.1. ρY (x) = ρ√κS ⊞ ρsc where ρ√κS(x) = 1

2δ(x +
√
κ) +

1
2δ(x−√

κ) for κ = 2 and κ = 0.5. Compared to the histogram of a realization of size
N = 5000.

B =
3

√
576x+ 1152κx− 128x3 + 64

√
x2(9 + 18κ− 2x2)2 − 4(−3 + 3κ+ x2)3

L(κ) =

(
− 3 +

√
1 + 8κ

)√
1 + 2κ−

√
1 + 8κ√

2
(
− 1 +

√
1 + 8κ

)
U(κ) =

(
3 +

√
1 + 8κ

)√
1 + 2κ+

√
1 + 8κ√

2
(
1 +

√
1 + 8κ

)
From (9.102), one can see that the support of ρY is constituted of two disjoint
intervals for κ ≥ 1, and of one single interval for κ < 1.

Once we have the expression (9.102), we get from Theorem 9.2 an explicit
integral representation for MMSE(κ), as well as for the derivatives. We show
the details here for κ ≥ 1. Since in this example ρY (x) is symmetric we have
for κ > 1

MMSE(κ) =
1

κ

(
1− 8π2

3

∫ U(κ)

L(κ)

ρ3Y (x) dx
)
. (9.103)

By the Leibniz integral rule (all derivatives are w.r.t κ) we have using that ρY
vanishes at the end-points of the interval [L(κ), U(κ)]

MMSE′(κ) = − 1

κ2
+

1

κ2
8π2

3

∫ U(κ)

L(κ)

ρ3Y (x) dx

− 1

κ

8π2

3

(
ρ3Y

(
U(κ)

)
U ′(κ)− ρ3Y

(
L(κ)

)
L′(κ)

+

∫ U(κ)

L(κ)

3ρ2Y (x)ρ
′
Y (x) dx

)
= − 1

κ2
+

1

κ2
8π2

3

∫ U(κ)

L(κ)

ρ3Y (x) dx−
8π2

κ

∫ U(κ)

L(κ)

ρ2Y (x)ρ
′
Y (x) dx.

(9.104)
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Figure 9.D.2: Analysis of the MMSE in example 9.B.1. In (a), MMSE is plotted from
(9.103) for 0 < κ ≤ 10 with step-size h = 0.01. The numerical first derivative of the
curve in (a) is illustrated in (d), which is computed using five-point stencil [127] f ′(x) ≈
−f(x+2h)+8f(x+h)−8f(x−h)+f(x−2h)

12h . In (b), the first derivative is plotted from (9.104) with
step-size h = 0.01, and its numerical first derivative is plotted in (e). The second derivative
of MMSE, computed from (9.105), is depicted in (c) with step-size h = 0.005. The inset
plot is with step-size h = 0.00025. The third derivative of MMSE in (f) is obtained
from the numerical differentiation of the curve in (c). The fourth derivative is computed
using the five-point stencil f ′′(x) ≈ −f(x+2h)+16f(x+h)−30f(x)+16f(x−h)−f(x−2h)

12h2 from the
curve in (c).

Moreover, ρ2Y (x)ρ′Y (x) can also be checked to vanishes at the end-points of the
interval [L(κ), U(κ)] so

MMSE′′(κ) =
2

κ3
− 1

κ3
16π2

3

∫ U(κ)

L(κ)

ρ3Y (x) dx+
16π2

κ2

∫ U(κ)

L(κ)

ρ2Y (x)ρ
′
Y (x) dx

− 8π2

κ

∫ U(κ)

L(κ)

[
2ρY (x)

(
ρ′Y (x))

2 + ρ2Y (x)ρ
′′
Y (x)

]
dx.

(9.105)

A similar and somewhat simpler calculation also provides integral representa-
tions for κ < 1.

It is not clear how to compute these integrals analytically but precise results
can be obtained from numerical integration. Integral represenations of higher
derivatives can also be obtained in principle but become unwieldy. In fact the
numerical integration of the formula for the second derivative is precise enough
to get a good numerical calculation of the third and fourth derivatives. All
numerical results are summearized in figure 9.D.2.

Plots (f),(g) in figure 9.D.2 suggest the existence of a third-order phase
transition at κc = 1. Note that this is the point where the support of ρY



162 Extensive-Rank Symmetric Matrix Denoising

-9 -8 -7 -6 -5

-26

-24

-22

-20

-18

-16

log |�-1|

lo
g
|f
(�

)|

(a) log |f(κ)| for κ → 1−. The
fitted line has slope α ≈ 2.929, and
log |c| ≈ −0.5511.

-9 -8 -7 -6 -5

-26

-24

-22

-20

-18

-16

log |�-1|

lo
g
|f
(�

)|

(b) log |f(κ)| for κ → 1+. The
fitted line has slope α ≈ 2.929, and
log |c| ≈ −0.5511.

Figure 9.D.3: log |f(κ)| as a function of log |κ− 1|
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Figure 9.D.4: Numerical third derivative of MMSE at κ = 1 computed from
MMSE′′(1+ϵ)−MMSE′′(1−ϵ)

2ϵ as a function of log ϵ. A linear function −0.8463 log ϵ −
0.8249 is fitted to the points.

transitions from a single to two intervals. Since the singularity seems to appear
in teh third derivative we define the function

f(κ) = MMSE(κ)−MMSE(1) +MMSE′(1)(κ− 1) +
1

2
MMSE′′(1)(κ− 1)2.

If one tries the ansatz f(κ) = c|κ − 1|α with 2 < α ≤ 3, or in other words
log |f(κ)| ≈ log |c|+α log |κ−1| we find α ≈ 2.929. This is shown in figure 9.D.3
where f(κ) is plotted on a log-log scale on both sides of κc = 1±. However, the
appearance of this exponent is not consistent with the fact that the expression
for ρY (9.102) is fully algebraic and an excat integration could only give an
integer exponent or a logarithmic singularity. To further investigate the behavior
of the MMSE, we study the third numerical derivative obtained from the curve
of MMSE′′(κ) using the relation d3

dκ3MMSE(1) ≈ MMSE′′(1+ϵ)−MMSE′′(1−ϵ)
2ϵ

. As
plotted in figure 9.D.4, d3

dκ3MMSE(1) diverges linearly as ϵ decays exponentially.
This suggests that the behavior of the correction term for the second derivative
is of the form a(κ− 1)

(
log |κ− 1|+ b

)
. Define the function

g(κ) = MMSE′′(κ)−MMSE′′(1) (9.106)
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Figure 9.D.5: g(κ)
κ−1 as a function of log |κ− 1|
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Figure 9.D.6: Comparison of the second derivative of the MMSE(κ) and the
expansion (9.108) (plotted with dashed line).

for κ close to 1, we have:

g(κ)

κ− 1
≈ a log |κ− 1|+ ab (9.107)

From the plots in figure 9.D.5, we deduce that a ≈ −0.8463 and b ≈ 0.9746.
Therefore, the MMSE′′(κ) can be described by the following expansion close to
the point κ = 1

MMSE′′(κ) = MMSE′′(1) + a(κ− 1)
(
log |κ− 1|+ b

)
+ o

(
(κ− 1)

)
. (9.108)

From this expansion, we conjecture that the MMSE has a third-order phase
transition at κ = 1.

9.E Derivation of the limiting spectral
distribution for the model 9.B.2

We indicate the main steps to compute the density ρY = ρ√κS ⊞ ρSC where
ρ√κS(x) = pδ(x) + (1− p)δ(x−√

κ). Following the same procedure as in the
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previous example, functions v(u) and ψ(u) can be derived as :

v(u) =


1
2

[
− 2u2 + 2

√
κu− κ+ 1 if u ∈ Supp(v)

+
√√

κ
(√

κ− 2u
)(

− 2
√
κu+ κ+ 4p− 2

)
+ 1

] 1
2

0 else.

ψ(u) =


−8u2+6

√
κu+

√
√
κ
(√

κ−2u
)(

−2
√
κu+κ+4p−2

)
+1−κ−1

2
(√

κ−2u
) if u ∈ Supp(v)

u+ p
u
+ 1−p

u−
√
κ

else.

where
Supp(v) =

{
u
∣∣g(u) < 0

}
and

g(u) = u4 − 2
√
κu3 + (κ− 1)u2 + 2p

√
κu− pκ. (9.109)

Solving the equation ρY
(
ψ(u)

)
= v(u)

π
, we find the analytical expression for

ρY (x) which we omit here.
The set Supp(v) determines the support of ρY . For a given 0 < p < 1 the

degree four polynomial g(u) has either two or four real roots, depending on
κ. The former case corresponds to the situation where the support of ρY is
a single interval, and the latter corresponds to the case where the support of
ρY is a union of two intervals. Using Theorem 3.7 in [128], a critical value κc
is found such that for κ < κc the polynomial g(u) has two real roots and for
κ > κc it has four real roots. We have

κc = 1 + 3 3
√
p2(1− p) + 3 3

√
p(1− p)2. (9.110)

An example is illutrated on figure 9.E.1. But contrary to the previous example
we have not identified any singularity in MMSE(κ) due to the merging of the
two intervals.

9.F Derivation of the limiting spectral
distribution for the model 9.B.3

In this example, we find the limiting spectral measure ρY = ρ√κS ⊞ ρsc directly
using the free additive convolution formula. The limiting spectral measure
of S is the Marchenko-Pastur law rescaled by factor q, which we denote by
ρMP. The R-transform is RρMP

= 1
q

1
1−z

. Using the relation Ra∗µ(z) = aRµ(az),
we have that Rρ√κS

(z) =
√
κ
q

1
1−

√
κz

. The free additive convolution formula is
Rρ√κS

(z) + Rρsc(z) = RρY (z). Substituting z by the inverse of the Cauchy
transform of ρY , G−1

ρY
, and using that Rρsc(z) = z we get:

GρY (z) +

√
κ

q

1

1−√
κGρY (z)

+
1

GρY (z)
= z. (9.111)
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Figure 9.E.1: The continuous line is plotted from the analytical expression for the
asymptotic spectral density of the observation matrix Y in example 9.B.2 for p = 0.7.
ρY (x) = ρ√κS ⊞ ρSC where ρ√κS(x) = 0.7δ(x) + 0.3δ(x −√

κ) for κ = 3 and κ = 7.
The critical value for p = 0.7 is κc ≈ 3.78. This is compared to the histogram of a
realization of size N = 5000.

Solving this equation for GρY (z), and using the Stieltjes inversion formula,
µ(x) = 1

π
limϵ→0ℑSµ(x+ iϵ), we find the density of ρY to be

ρY (x) =


3√
2A2−2

(
qκ(x2−3)−q

√
κx+q+3κ

)
π2

5
3
√
3qκ 3√A

if x ∈ Supp(ρY )

0 else.
(9.112)

where

A = q
3
2

(√
κx− 2

)(
κ(2x2 − 9) +

√
κx− 1) + 9

√
qκ

(√
κx+ 1

)
+
√
f(x)

(9.113)

where

f(x) = q
(
q
(√

κx− 2
)(
2κx2 +

√
κx− 9κ− 1

)
+ 9(κ

3
2x+ κ)

)2

− 4
(
qκ(x2 − 3)− q

√
κx+ q + 3κ

)3
(9.114)

and
Supp(ρY ) =

{
x
∣∣∣f(x) ≥ 0

}
. (9.115)

If q ≤ 1, then the support of ρ√κS is only a single interval, and the support
of ρY is also an interval. However, for q > 1, ρ√κS has a delta at zero, and the
support of ρY can be a single interval or union of two intervals, depending on
κ. For fixed q > 1, the intervals merge at the critical value κc = q(

3
√
q−1

)3 : if

κ ≤ κc, Supp(ρY ) is a single interval, while if κ > κc, Supp(ρY ) is the union of
two intervals. In Fig. 9.F.1, the density is plotted for q = 8, for which κc = 8.
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Figure 9.F.1: Asymptotic spectral density of the observation matrix Y in example
9.B.3 for q = 8. κc = 8. It is Compared to the empirical density of a realization of size
N = 10000.



Extensive-Rank
Non-Symmetric Matrix
Denoising 10
In this chapter, we consider denoising a non-symmetric rectangular matrix
under additive bi-rotational invariant noise. We consider the model:

Y =
√
κS +Z

where S,Z ∈ RN×M are non-symmetric matrices,Z is distributed according to
a bi-rotationally invariant distribution, and S has rank which grows linearly
with N .

For this model,

• We extend the rotational invariant estimators to rectangular matrices.
We conjecture that the proposed estimator is optimal among the RIE
class under general bi-rotational invariant noise, see (10.5).

• For the particular case of Gaussian noise:

– We prove a trace relation which gives a solid justification for the
optimality of the proposed RIE (Theorem 10.3).

– Using the optimality of the RIE, we derive the asymptotic Bayes-
optimal error in terms of the limiting singular value distribution of
the observation matrix, presented in Statement 10.4.

– We prove by independent methods that the mutual information
between S and Y is linked to the asymptotic log-spherical integral
(Theorem 10.5).

• We provide numerical simulations under various settings, which

Part of this work was presented in [54] F. Pourkamali and N. Macris, “Rectangular
rotational invariant estimator for general additive noise matrices,” in 2023 IEEE International
Symposium on Information Theory (ISIT), 2023, pp. 2081–2086.
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– support the optimality of the proposed (general) RIE, as suggested
by the derivation based on (non-rigorous) methods from statistical
physics.

– suggest that RIE is not limited to the rotational invariant signals,
and can be applied regardless of of the prior to get non-trivial
(although non-optimal) estimates.

10.1 Denoising Model and Rotational Invariant
Estimators

Let S ∈ RN×M be the signal matrix that we aim to estimate from the observa-
tion matrix Y :

Y =
√
κS +Z (10.1)

where Z ∈ RN×M is a bi-rotationally invariant matrix, i.e. PZ(Z) = PZ(UZV ⊺)
for any orthogonal matrices U ,V , and κ ∈ R+ is proportional to the signal-to-
noise-ratio (SNR). We assume that M scales like N , and N/M → α. Moreover,
we assume that the empirical singular value distributions (ESD) of Z and
Y have well-defined limiting measures as N → ∞. We denote them µZ , µY

respectively and refer to them as limiting ESD. Studying the problem for the
case α ∈ (0, 1] suffices. Indeed, suppose the observation matrix Y ∈ RN×M

has dimensions N > M (so α > 1), then exchanging the role of M,N , we can
apply our results to the matrix Y ⊺ with aspect ratio 1/α ∈ (0, 1).

10.1.1 Rectangular RIE Class

Given the observation Y , the class of Rotational Invariant Estimators (RIE)
ΞS(Y ) of S have the same singular vectors than Y . More precisely, consider
the SVD of Y to be:

Y = UYΓV
⊺
Y , Γ =

[
diag(γ1, · · · , γN) 0N×(M−N)

]
∈ RN×M

with γ1, · · · , γN ≥ 0 singular values of Y , and orthogonal matrices UY ∈
RN×N ,VY ∈ RM×M . RIEs ΞS(Y ) are constructed by definition as :

ΞS(Y ) =
N∑
j=1

ξjujv
⊺
j (10.2)

where uj,vj are columns of UY ,VY . The goal is to have the minimum squared
error, therefore the optimal singular values are the solution to the following
optimization problem:

min
ξ1,··· ,ξN

∥S −ΞS(Y )∥2F (10.3)

One can easily see that the solutions to optimization problem (10.3) are:

ξ∗j = u⊺
jSvj for 1 ≤ j ≤ N (10.4)
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The particular estimator constructed with the singular values (10.4) is denoted
by Ξ∗

S(Y ), and is called oracle estimator as it involves the signal matrix S.

10.1.2 Algorithmic RIE

Our main contribution is the derivation of an explicit formula for the optimal
singular values (10.4) which only involves the observation matrix and the knowl-
edge of spectral measure of the noise. This formula leads to an algorithm for
the estimation, which we conjecture, has in the asymptotic limit a performance
matching the one of the oracle estimator (in the sense of the mean-square-error
(10.3).

The optimal singular values can be approximated for sufficiently large N ,
as:

ξ̂∗j =
1√
κ

[
γj −

1

πµ̄Y (γj)
Im C(α)

µZ

(
1− α

γj
πH[µ̄Y ](γj) + α

(
πH[µ̄Y ](γj)

)2
− α

(
πµ̄Y (γj)

)2
+ iπµ̄Y (γj)

(1− α

γj
+ 2απH[µ̄Y ](γj)

))] (10.5)

where µ̄Y (γ) =
1
2
(µY (γ)+µY (−γ)) is the symmetrization of the limiting ESD of

Y , C(α)
µZ is the rectangular R-transform of µZ , and H[µ̄Y ] is the Hilbert transform

of µ̄Y . Derivation of the estimator (10.5) is sketched in section 10.4.1.
The algorithm to estimate S proceeds as follows:

1. Compute the SVD of Y , Y = UYΓV
⊺
Y .

2. Approximate Gµ̄Y
(z) from the singular values of Y , from which µ̄Y (γ)

and H[µ̄Y ](γ) can be evaluated using (5.5).

3. Compute ξ̂∗j as in (10.5), and construct the estimator Ξ̂∗
S(Y ) =

∑N
j=1 ξ̂

∗
jujv

⊺
j .

10.1.3 Bayes optimality and MMSE

From the Bayesian estimation point of view, considering a prior distribution
for the signal PS(S), one wishes to minimize the average mean-squared-error
(MSE), which is defined for an estimator ΘS : RN×M → RN×M as

MSEΘS
=

1

N
E
∥∥S −ΘS(Y )∥2F ,

where the expectation is over S,Z. It is well known that the estimator which
has the minimum MSE is the posterior mean estimator Θ∗

S(Y ) = E[S|Y ].
Note that for model (10.1) the oracle estimator (10.4) is the best estimator

among the RIE class (in the sense that it minimizes the MSE in this class).
Furthermore the derivation of the explicit estimator (10.5) does not involve
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Bayesian methodology and does not require any knowledge of the prior of the
signal.

However, if the prior on the signal is bi-rotationally invariant, i.e. PS(S) =
PS(USV ⊺) for any orthogonal matrices U ,V , these estimators are intimately
related to the Bayesian one. As shown in section 10.4.2 for bi-rotationally
invariant signal distributions the posterior mean estimator E[S|Y ] belongs to
the RIE class. Since the oracle estimator has minimum MSE among the RIE
class, we have that MSEΞ∗

S
≤ MSEΘ∗

S
. On the other hand, by definition, we

have MSEΞ∗
S
≤ MSEΘ∗

S
. Therefore, the oracle estimator is Bayes-optimal under

bi-rotational invariant prior and achieves the MMSE.
Moreover, the "exact" analytical derivation of the explicit estimator (10.5)

suggests that it has the same performance as the oracle estimator as N → ∞.
Therefore, the above algorithm should be asymptotically Bayes-optimal with an
asymptotic MSE equal to the MMSE. Denoting the rhs in (10.5) as a function
of singular values of Y , ξ̂∗ : supp(µY ) → R, we are led to the following result.

Statement 10.1 (MMSE). Suppose that S,Z have bi-rotational invariant
priors, and Assume their ESDs converge to well-defined measures µS, µZ with
bounded second moments. We have:

lim
N→∞

MMSEN(κ) =

∫
x2µS(x) dx−

∫
ξ̂∗(x)

2
µY (x) dx (10.6)

where µY is the limiting ESD of Y , µY = µS ⊞α µZ.

Remark 10.1. Note that, for non-rotation invariant priors the estimator
(10.5) still can be applied, however it may results in a sub-optimal estimate
of the signal. However, this estimate can be used as a "warmed-up" spectral
initialization for more efficient algorithms (see for example [23,24]).

10.2 Gaussian Noise

10.2.1 RIE

In this section, we consider the case of Gaussian noise matrix, more precisely we
suppose that Z ∈ RN×M has i.i.d. Gaussian entries of variance 1/N, and κ ∈ R+

is proportional to the signal-to-noise-ratio (SNR). We make the following
assumptions:

Assumption 10.1. The operator norm of S, and the ratio M/N are bounded
by some numerical constant K > 0 independent of N,M .

Recall that the resolvent of the matrix Y Y ⊺, evaluated at z2 is defined as:

GY Y ⊺(z2) =
(
z2I − Y Y ⊺

)−1

Now, define two random functions of z ∈ C\R as:

G(z) =
1

N
TrGY Y ⊺(z2), L(z) =

1

N
TrGY Y ⊺(z2)Y S⊺ (10.7)
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Proposition 10.2. For 1 ≤ j ≤ N , and for any ϵ > 0 such that [γj − ϵ, γj +
ϵ] ∩ {γ1, · · · , γN} = {γj}, the optimal singular values (10.4) satisfy

ξ∗j = lim
η→0

∫ γj+ϵ

γj−ϵ
ImL(x+ iη) dx∫ γj+ϵ

γj−ϵ
Im

{
(x+ iη)G(x+ iη)

}
dx

(10.8)

The proof of the above Proposition is presented in section 10.4.3. Note that
(10.8) is an exact formula for the optimal singular values ξ∗j , but in practice
given an explicit expression for L(z) we use the following approximation to
evaluate ξ∗j :

ξ∗j ≈ ImL(z)

Im
{
zG(z)

} ≡ ξ̂∗j for z = γj + iη, with η ≪ 1 (10.9)

The definition of the function L(z) in the numerator of the estimator (10.9),
involves the signal matrix. Therefore, to use the estimator, we need to find a
way to estimate this function only from the data. In the following theorem, we
give an asymptotic approximation of L(z), which we prove in section 10.4.4.

Theorem 10.3 (Estimation of L(z)). Let α0 = N/M. For any z ∈ C\R with∣∣Im z
∣∣ < 1, the function L(z) defined in (10.7) satisfies

L(z) =
1√
κ

[
G(z)

(
z2 + 1− 1

α0

)
− z2G2(z)− 1

]
+ ϵN (10.10)

where the error term ϵN is bounded as:

ϵN ≤ CK +X

N
∣∣Im z

∣∣3
with CK a constant depending on K, and X is a complex sub-Gaussian random
variables with finite sub-Gaussian norm depending on K.

Remark 10.2. We believe that adopting the methodology developed in [129,130]
the approximation (10.10) can be improved, with the error term controlled by(
N |Im z|

)−1. We numerically verify this conjecture in section 10.3.2.

Algorithm

Using the explicit expression (10.10) for L(z), we are led to the following
approximation to evaluate ξ∗j :

ξ̂∗j =
1√
κ

Im
{
G(z)

(
z2 + 1− 1

α0

)
− z2G2(z)

}
Im

{
zG(z)

} for z = γj + i
1√
N

(10.11)
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Remark 10.3 (On imaginary part of z in (10.9)). Approximating the exact
formula (10.8) with the expression (10.9) is more accurate when z is closer to
the real line (small η). On the other hand, for z close to the real line the error
of the approximation (10.10) gets worse. Considering that the error in (10.10)
is controlled by

(
N |Im z|

)−1, we can see that η = 1/Nϵ with any 0 < ϵ < 1
should work properly as N increases. We study the effect of choice of ϵ in the
numerical section, see Fig. 10.3.3b.

Remark 10.4 (Relation to the formula (10.5)). First note that zG(z) in the
denominator of (10.11) is the Stieltjes transform of empirical symmetric spectral
measure of Y , and in the limit η → 0, Re

{
zG(z)

}
= πH[µ̄Y ](x). Therefore,

from (10.10), for z = γj + iη with η ≪ 1, we have

ImL(z)

Im
{
zG(z)

} =
1√
κ

Re
{
G(z)

}
2γjη + Im

{
G(z)

}(
γ2j − η2 + 1− 1

α0

)
γjIm

{
G(z)

}
+Re

{
G(z)

}
η

− 1√
κ
2Re

{
zG(z)

}
≈ 1√

κ

[
γj +

(
1− 1

α0

) 1

γj
− 2πH[µ̄Y ](γj)

] (10.12)

For Z with i.i.d. Gaussian entries of variance 1/N and with the assumption
that α0 → α we have C(α)

µZ (z) =
1
α
z, and thus the expression in (10.5) reduces

to (10.12).

10.2.2 MMSE

Given the rather simple expression for the optimal singular values, we can
compute the asymptotic MMSE for the particular case of Gaussian noise, see
section 10.4.5 for the derivation.

Statement 10.4 (Gaussian MMSE). Assume that the prior on S is bi-
rotational invariant, and the ESD of S converges to a well-defined limiting
measure µS with compact support and bounded second moment. We have:

lim
N→∞

MMSEN(κ) =
1

κ

[ 1
α
−
( 1
α
− 1

)2 ∫ µY (x)

x2
dx− π2

3

∫
µY (x)

3 dx
]

(10.13)

where µY is the limiting ESD of Y and µY = µS ⊞α µMP.

Remark 10.5. In the symmetric case, the asymptotic MMSE of a Gaussian
channel is linked to the free Fisher information of non-commutative random
variables [48]. Using this link, we can deduce the continuity of the MMSE
as a function of SNR, which rules out the existence of the first-order phase
transitions. Moreover, using the I-MMSE relation [1], this link also implies a
rather explicit expression for the asymptotic mutual information. We believe
that similar relations hold for the rectangular case and the MMSE should be a



10.2. Gaussian Noise 173

continuous function of κ. However in the rectangular case free probability [131]
is much less developed than its symmetric counterpart, and these considerations
are beyond the scope of the present paper.

10.2.3 Mutual information

In this subsection we prove that the asymptotic mutual information is linked
to the asymptotic rectangular spherical integral. The rectangular spherical
integral is defined for two matrices A,B ∈ RN×M as:

IN,M(A,B) :=

∫∫
DU DV eN TrA⊺UBV ⊺

where DU , DV denote the Haar measures over the groups of N × N and
M ×M orthogonal matrices. The asymptotic behavior of these integrals has
been studied in [132] which proves that the limit limN→∞

1
N2 ln IN,M(A,B)

exists and equals a variational formula given in terms of limiting ESD of A,B.
We make the following assumptions on the prior of S:

Assumption 10.2. The empirical singular value distribution of S converges
almost surely weakly to a well-defined probability density function µS(x) with
compact support in [C1, C2] with C1, C2 ∈ R≥0. Moreover, the symmetrization of
µS has bounded second moment

∫
x2 dµ̄S <∞, finite non-commutative entropy∫∫

ln |x− y| dµ̄S(x) dµ̄S(y) > −∞, and
∫
ln |x| dµ̄S(x) > −∞.

Assumption 10.3. The second moment of µ(N)
S is almost surely bounded.

Let

J (α)[µ√
κS, µ√

κS ⊞α µMP] = lim
N→+∞

1

NM
ln IN,M(

√
κS,Y )

where µ√
κS is the limiting spectral distribution of

√
κS and µMP is the

Marchenko-Pastur distribution.

Theorem 10.5 (Mutual Information). Under assumptions 10.2,10.3 and
M/N ≤ K, we have:

lim
N→∞

1

MN
IN(S;Y ) = κα

∫
x2µS(x) dx− J (α)[µ√

κS, µ√
κS ⊞α µMP] (10.14)

Remark 10.6. In [98], the asymptotic log-spherical integral J (α)[µ√
κS, µ√

κS⊞α

µMP] is computed explicitly, which together with Theorem 10.5 gives an an
explicit expression for the asymptotic mutual information under Gaussian
noise.
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Figure 10.3.1: Performance of the algorithmic RIE based on (10.5) as compared
to the oracle one. Signal matrix S ∈ RN×M has i.i.d. Gaussian entries of variance
1/N. Results are averaged over 10 runs (error bars are invisible). Average relative
error is also reported. In both examples, the Hilbert transform of the observation is
computed numerically using Cauchy kernel method in [67].

10.3 Numerical Simulations

10.3.1 General bi-rotational invariant noise

In Fig. 10.3.1, the performance of the algorithmic RIE based on (10.5) is
compared against the oracle estimator (10.4) for two cases of noise distribution
and Gaussian signal matrix, i.e. S is a matrix with i.i.d. Gaussian entries of
variance 1/N.

Uniform spectral noise. For this prior, the noise matrix Z ∈ RN×N is con-
structed as Z = Udiag(r1, · · · , rN)V ⊺, where U ,V ∈ RN×N are independent
Haar distributed matrices, and the singular values r1, · · · , rN are chosen indepen-
dently uniformly from [0, 2]. The limiting spectral measure of the uniform noise
distribution U[0,2] has rectangular R-transform C(1)

U[0,2]
(z) = 2

√
z coth

(
2
√
z
)
− 1.

Sum of rank-one factors. For the noise matrix we take a sum of rank-
one matrices, Z =

∑L
k=1 ukv

⊺
k, where uk’s and vk’s are independent uniform

random vectors of the unit norm in RN ,RM . Denoting the limiting ratio
L/N → c, the liming symmetrized ESD of Z is the rectangular analogue of
the symmetrized Poisson distribution with parameter c, with rectangular R-
transform C(α)(z) = cz/1−z (see section 4.3, Proposition 6.1 in [133]).



10.3. Numerical Simulations 175

200 400 600 800 1,000

0.02

0.04

0.06

0.08

0.1

N

R
el

at
iv

e
E

rr
or

α0 = 1/2
α0 = 1

(a) Relative error

200 400 600 800 1,000
0.01

0.02

0.03

0.04

N

|ϵ N
|

α0 = 1/2
α0 = 1

0.4N−1/2

(b) Error term

Figure 10.3.2: Validity of the estimation (10.10). Plots are average of 100
experiments and 95% confidence interval is also depicted. The signal matrix
S ∈ RN×M has i.i.d. Gaussian entries of variance 1/N, and M = N/α0. the
expressions are evaluated for z = 1 + i/

√
N. In the left panel, the relative error

(10.15) is plotted for various values of N . On the same simulations, the error
term is plotted in the right panel which behaves as N−1/2 which matches with the
conjecture of remark 10.2.

10.3.2 Gaussian noise

Validity of Theorem 10.3

In Fig. 10.3.2, we numerically verify Theorem 10.3 and check the behavior of
the error term ϵN . For simplicity, we set the SNR parameter to one, κ = 1. In
Fig. 10.3.2a, the relative error is plotted,

|ϵN |
|L(z)| =

∣∣∣∣L(z)− [
G(z)

(
z2 + 1− 1

α0

)
− z2G2(z)− 1

]∣∣∣∣
|L(z)| (10.15)

for the case of a signal matrix with i.i.d. Gaussian entries of variance 1/N. In Fig.
10.3.2b, the behavior of the error term is depicted, which verifies the conjecture
stated in remark 10.2, namely that the error is controlled by

(
N |Im z|

)−1.

Gaussian Signal

If we consider the signal matrix to have i.i.d. Gaussian entries of variance
1/N, then each entry of Y can be viewed as an independent scalar AWGN
channel. For this scalar channel, the MMSE equals 1

N
1

1+κ
[1]. Therefore, the

(normalized) MMSE of the matrix problem is M
N

1
1+κ

→ 1
α

1
1+κ

for N → ∞. As a
sanity check of Statement 10.4, using the fact that µY is the Marchenko-Pastur
(MP) law rescaled with

√
κ+ 1, we compute the MMSE analytically (with the

help of Mathematica [117]) and find it equal to 1
α

1
1+κ

. In Fig. 10.3.3a, MSE of
RIE is compared to the theoretical MMSE for α = 1, α = 1/2. Note that, for
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i.i.d. Gaussian entries of variance 1/N.
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(b) Performance of the RIE using
(10.11) for the Gaussian signal. The for-
mula (10.11) is used to estimate the op-
timal singular values with z = γj+ iN−ϵ.
RIE is applied to N = 1000,M =
2000, κ = 2, and results are averaged
over 10 runs.

this example, we use the RIE (10.5), and the Hilbert transform used in RIE
is the exact Hilbert transform of the symmetrization of MP law rescaled with√
κ+ 1, which is Hµ̄Y

(x) = x
2+2κ

− 1−α
2αx

.
In Fig. 10.3.3b, we investigate the performance of the RIE using the relation

(10.11) for various values of the imaginary part of z. In this plot, the difference
of the MSEs of the RIE and the oracle estimator for the Gaussian signal
and noise matrices is depicted. The RIE is applied with z = γj + iN−ϵ. A
few remarks about this plot are in order. First, it supports the conjecture
stated in remark 10.2 that the error term in (10.3) is controlled by

(
N |Im z|

)−1.
Moreover, we can see that as the imaginary part of z increases (ϵ decreases) the
difference increases. For this regime, the error term in (10.3) becomes small,
however the approximation (10.11) of the exact formula (10.8) is inaccurate.
On the other hand, for z with small imaginary part, this approximation is more
accurate, but the error of the estimation in (10.3) becomes large.

Signal with sparse spectrum

The signal matrix S ∈ RN×M is constructed as

S = U [diag(σ1, · · · , σN),0M−N ]V
⊺

where U ∈ RN×N ,V ∈ RM×M are independent Haar distributed matrices, and
the singular values σ1, · · · , σN are independent Bernoulli random variables,
µS = pδ0 + (1− p)δ+1 for 0 ≤ p ≤ 1. In Fig. 10.3.4 MSE of RIE is compared
to the MSE of oracle estimator with α = 1/2 for p = 0.2, 0.9. We observe that,
in the high-sparsity regime p = 0.9, the model behaves like finite-rank signal
and the MSE is close to the rank-one MMSE computed in [10].
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Figure 10.3.4: Signal with Bernoulli spectrum. MSE is normalized by the norm
of the signal, 1− p. The RIE is applied to N = 1000,M = 2000, and the results
are averaged over 10 runs (error bars might be invisible).

10.3.3 Non-rotational invariant signal distribution

We consider S to have i.i.d. entries from the Bernoulli-Rademacher distribution,

Si,j =


+ 1√

N
with probability 1−p

2

0 with probability p
− 1√

N
with probability 1−p

2

, ∀ 1 ≤ i ≤ N, 1 ≤ j ≤M

With normalization 1/
√
N, the spectrum of S does not grow with the dimension

and has a finite support, thus we can apply our estimator to reconstruct S.
Note that the prior of S is not rotationally invariant, and neither the oracle
estimator nor the RIE are optimal. In Fig. 10.3.5, the performance of the RIE
is compared with the oracle estimator for two cases of noise priors. Note that
under Gaussian noise, the MMSE can be computed simply by considering the
MMSE of scalar channel, and the MMSE is also plotted. We can see that RIE,
although it is sub-optimal, can give a non-trivial estimate of the signal for
non-rotationally invariant priors.

10.4 Analytical Derivations and Proofs

10.4.1 Derivation sketch of the explicit rectangular RIE

Let the SVD of the signal be S =
∑N

k=1 σks
(l)
k s

(r)
k

⊺
where s

(r)
k /s(l)k is the

right/left singular vector of S corresponding to the k-th singular value σk.
From (10.4), the optimal singular values of the oracle RIE can be written as:

ξ∗j = u⊺
jSvj =

N∑
k=1

σk
(
u⊺

js
(l)
k

)(
v⊺
j s

(r)
k

)
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Figure 10.3.5: Performance of the RIE ( (10.5) and (10.11)) and oracle estimator
for non-rotational invariant signal. Signal matrix S ∈ RN×M has i.i.d. Bernoulli-
Rademacher entries (divided by 1/

√
N. Results are averaged over 10 runs (error bars

are invisible).

The main assumption is that in the large-N limit, ξ∗j ’s can be approximated by

the expectation, ξ̂∗i =
∑N

j=1 σj

〈(
u⊺

js
(l)
k

)(
v⊺
j s

(r)
k

)〉
, where the expectation ⟨−⟩

is over the singular vectors of the observation Y .
Therefore, to compute the optimal singular vales, we need to find the

overlap
〈(

u⊺
js

(l)
k

)(
v⊺
j s

(r)
k

)〉
between singular vectors of S and singular vectors

of Y . In what follows, we will see that (a rescaling of) this quantity can
be expressed in terms of j-th singular value of Y and k-th singular value
of S and the limiting measures, indeed. Thus, we will use the notation
O(γj, σk) = N

〈(
u⊺

js
(l)
k

)(
v⊺
j s

(r)
k

)〉
in the following and write

ξ̂∗j =
1

N

N∑
k=1

σkO(γj, σk) (10.16)

In the next section, we discuss how this overlap can be computed from the
resolvent of the "Hermitized" version of Y .

Relation between overlap and the resolvent

Construct the symmetric matrix Y ∈ R(N+M)×(N+M) from the matrix Y ,

Y =

[
0N×N Y
Y ⊺ 0M×M

]
(10.17)

By Theorem 7.3.3 in [71], the eigen-decomposition of Y reads:

Y = W

 diag(γ1, · · · , γN) 0 0
0 −diag(γ1, · · · , γN) 0
0 0 0

W ⊺ (10.18)
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W =

[
ÛY ÛY 0N×(M−N)

V̂
(1)
Y −V̂

(1)
Y V

(2)
Y

]

with VY =
[
V

(1)
Y V

(2)
Y

]
in which V

(1)
Y ∈ RM×N , and V̂

(1)
Y = 1√

2
V

(1)
Y , ÛY =

1√
2
UY . Denote the eigenvectors of Y by wi ∈ RM+N , i = 1, . . . ,M +N . Define

the resolvent of Y
GY(z) =

[
zI −Y

]−1

For z = x− iη, we have:

GY(x− iη) =
2N∑
k=1

x+ iη

(x− γ̃k)2 + η2
wkw

⊺
k +

x+ iη

x2 + η2

M+N∑
k=2N+1

wkw
⊺
k

where γ̃k are the non-trivially zero eigenvalues of Y , which are in fact the (signed)
singular values of Y , γ̃1 = γ1, . . . , γ̃N = γN , γ̃N+1 = −γ1, . . . , γ̃2N = −γN .
Define set of vectors ri, li ∈ RN+M for i = 1, . . . , N as:

ri =

[
0N

s
(r)
i

]
li =

[
s
(l)
i

0M

]
We have

r⊺
j

(
ImGY(x− iη)

)
lj =

2N∑
k=1

η

(x− γ̃k)2 + η2
(r⊺

jwk)(w
⊺
klj)

+
x+ iη

x2 + η2

M+N∑
k=2N+1

(r⊺
jwk)(w

⊺
klj)

(10.19)

Given the structure of wk’s in (10.18):

(r⊺
jwk)(w

⊺
klj) =


1
2

(
u⊺

ks
(l)
j

)(
v⊺
ks

(r)
j

)
for 1 ≤ k ≤ N

−1
2

(
u⊺

ks
(l)
j

)(
v⊺
ks

(r)
j

)
for N + 1 ≤ k ≤ 2N

0 for 2N + 1 ≤ k ≤M +N

Taking an average over singular vectors of Y in (10.19), we find:

r⊺
j

〈
ImGY(x− iη)

〉
lj =

1

N

2N∑
k=1

η

(x− γ̃k)2 + η2
(−1)I(k>N)O(γk, σj) (10.20)

Now, taking the limit N → ∞, we obtain:

r⊺
j

(
ImGY(x− iη)

)
lj

N→∞−−−→
∫
R

η

(x− t)2 + η2
O(t, σj)µ̄Y (t) dt

where O(t, σj) is extended (continuously) to arbitrary values inside the support
of µ̄Y (the symmetrized limiting singular value distribution of Y ) with the
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property that O(−t, σj) = −O(t, σj). Sending η → 0, we find the following
formula valid in the large N limit:

r⊺
j

〈
ImGY(x− iη)

〉
lj ≈ πµ̄Y (x)O(x, σj) (10.21)

Eq. (10.21) is important because it enables us to investigate the overlap
through the resolvent of Y . In the next section, we derive a relation between
this resolvent and the signal S which will allow us to find a formula for the
optimal singular values ξ∗i ’s in terms of the singular values of the observation
matrix Y .

Resolvent relation

To derive a resolvent relation between the observation and the signal, we
consider the model

Y = S +UZV ⊺ (10.22)

with Z a fixed matrix with limiting singular value distribution µZ , and U ∈
RN×N ,V ∈ RM×M random orthogonal matrices. Note that for convenience the
SNR parameter has been absorbed into S, so to obtain the estimator for model
(10.1), this estimator should be divided by

√
κ eventually.

In Appendix 10.A, we derive the relation (10.23) for the resolvent GY(z),
in which ⟨.⟩ is the expectation w.r.t. the singular vectors of Y , and GS⊺S is
the resolvent matrix of S⊺S.

⟨GY(z)⟩ =
〈[

z−1IN + z−1Y GY ⊺Y (z
2)Y ⊺ Y GY ⊺Y (z

2)
GY ⊺Y (z

2)Y ⊺ zGY ⊺Y (z
2)

]〉

≈
[

A B
B⊺ C

] (10.23)

where each block is:

A = (z − ζ∗1 )
−1IN + (z − ζ∗1 )

−1SGS⊺S

(
(z − ζ∗2 )(z − ζ∗1 )

)
S⊺

B = SGS⊺S

(
(z − ζ∗2 )(z − ζ∗1 )

)
C = (z − ζ∗1 )GS⊺S

(
(z − ζ∗2 )(z − ζ∗1 )

)
with

ζ∗a = z
Z(z)

MµY

(
1
z2

)
+ 1

, ζ∗b = αz
Z(z)

αMµY

(
1
z2

)
+ 1

,

Z(z) = C(α)
µZ

(
1

z2
T (α)

(
MµY

( 1

z2
))) (10.24)

As a sanity check, by considering the normalized trace of the first block on
both sides of (10.23), one can recover the free rectangular addition formula
C(α)
µS (u) + C(α)

µZ (u) = C(α)
µY (u) for u = 1

z2
T (α)

(
MµY

(
1
z2

))
(see Appendix 10.B).
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Overlap and optimal singular values

From the lower-left block of (10.23), we get:

r⊺
j ⟨GY(z)⟩ lj = s

(r)
j

⊺
GS⊺S

(
(z − ζ∗2 )(z − ζ∗1 )

)
S⊺s

(l)
j

=
σj

(z − ζ∗2 )(z − ζ∗1 )− σj2

and using (10.21), we find:

O(γ, σ) ≈ 1

πµ̄Y (γ)
lim

z→γ−i0+
Im

σ

(z − ζ∗2 )(z − ζ∗1 )− σ2
(10.25)

where σ is in the support of the limiting singular value distribution of S, µS.
In Fig. 10.4.1a we illustrate on an example that theoretical predictions for the
overlaps from (10.25) are in good agreement with numerical simulations.

The optimal estimator for singular values reads:

ξ̂∗j =
1

N

N∑
k=1

σkO(γj, σk) ≈
1

Nπµ̄Y (γj)
lim

z→γj−i0+
Im

N∑
k=1

σ2
k

(z − ζ∗2 )(z − ζ∗1 )− σ2
k

=
1

Nπµ̄Y (γj)
lim

z→γj−i0+
Im TrSGS⊺S

(
(z − ζ∗2 )(z − ζ∗1 )

)
S⊺

(10.26)

Comparing the left-upper blocks in the first and second lines of (10.23) we find

SGS⊺S

(
(z − ζ∗2 )(z − ζ∗1 )

)
S⊺ =

〈
− ζ∗1

z
IN +

(
1− ζ∗1

z

)
Y GY ⊺Y (z

2)Y ⊺
〉

(10.27)

The trace of the r.h.s of (10.27) is (with multiplication by 1/N)

1

N

N∑
k=1

[ γk
2

z2 − γk2
(
1− ζ∗1

z

)
− ζ∗1

z

]
= −ζ

∗
1

z

1

N

N∑
k=1

[ γk
2

z2 − γk2
+ 1

]
+

1

N

N∑
k=1

γk
2

z2 − γk2

≈ −ζ∗1zGρY (z
2) +MµY

( 1

z2
)

= −ζ∗1zGρY (z
2) + z2GρY (z

2)− 1
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The last expression on the r.h.s can be expressed in terms of the symmetrized
limiting spectral distribution of Y . Indeed if we denote the Stieltjes of µ̄Y

by Gµ̄Y
(z), using the relation zGρY (z

2) = Gµ̄Y
(z), the above trace implies with

(10.27):

1

N
TrSGS⊺S

(
(z − ζ∗2 )(z − ζ∗1 )

)
S ≈ −ζ∗1Gµ̄Y

(z) + zGµ̄Y
(z)− 1

Moreover ζ∗1 in (10.24) can be written as,

ζ∗1 =
1

Gµ̄Y
(z)

C(α)
µZ

(
1

z
Gµ̄Y

(z)
(
1− α + αzGµ̄Y

(z)
))

(10.28)

Replacing these results in (10.26) we easily deduce (10.29) for the optimal
singular values of the RIE.

ξ̂∗j =
1

πµ̄Y (γj)
Im

[
γjGµ̄Y

(γj − i0+)

− C(α)
µZ

(
1

γj
Gµ̄Y

(γj − i0+)
(
1− α + αγjGµ̄Y

(γj − i0+)
))]

= γj −
1

πµ̄Y (γj)
Im C(α)

µZ

(
1− α

γj
πH[µ̄Y ](γj) + α

(
πH[µ̄Y ](γj)

)2
− α

(
πµ̄Y (γj)

)2
+ iπµ̄Y (γj)

(1− α

γj
+ 2απH[µ̄Y ](γj)

))
(10.29)

10.4.2 Optimality of oracle estimator

In this section, we show that for rotational invariant priors, the posterior mean
estimator belongs to the RIE class. We proceed by presenting an equivalent
definition of the RIE and then show that posterior mean estimator satisfies
this definition.

Lemma 10.1. Given the observation matrix Y , let ΘS(Y ) be an estimator
for S. Then ΘS(Y ) is a RIE if and only if for any orthogonal matrices
U ∈ RN×N ,V ∈ RM×M :

ΘS(UY V ⊺) = UΘS(Y )V ⊺ (10.30)

Proof. If ΘS(Y ) is a RIE, then this property clearly follows from the definition
(10.2). Let us now show the converse.

Suppose that an estimator ΘS(Y ) satisfies (10.30). First, we show that if the
observation matrix is diagonal, then the estimator is also diagonal. Consider
the observation matrix to be Y diag =

[
diag(y1, . . . , yN) 0N×(M−N)

]
. Let

I−
k ∈ RN×N ,J−

k ∈ RM×M be diagonal matrices with diagonal entries all one
except the k-th entry which is −1. Note that for 1 ≤ k ≤ N , we have
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Y diag = I−
k Y

diagJ−
k . Moreover matrices I−

k ,J
−
k are orthogonal thus or any

1 ≤ k ≤ N , from (10.30) we have:

ΘS(Y
diag) = ΘS(I

−
k Y

diagJ−
k ) = I−

k ΘS(Y
diag)J−

k (10.31)

This implies that all entries on the k-th row and k-th column of ΘS(Y
diag)

is zero except the k-th entry on the diagonal. Since this holds for any k, we
conclude that ΘS(Y

diag) is diagonal.
Now, for a given general observation matrix Y = UYΓV

⊺
Y , put U =

U ⊺
Y ,V = V ⊺

Y in the property (10.30). We have:

ΘS(Γ) = U ⊺
YΘS(Y )VY

From the argument above, the matrix on the l.h.s is diagonal. Consequently, the
matrix U ⊺

YΘS(Y )VY is diagonal which implies that the columns of UY ,VY are
the left and right singular vectors of ΘS(Y ). Therefore, ΘS(Y ) is a RIE.

Now, we prove that the posterior mean estimator Θ∗
S(Y ) = E[S|Y ] has the

property (10.30), and thus belongs to the RIE class. For simplicity, we drop
the SNR factor

√
κ. For any orthogonal matrices U ∈ RN×N ,V ∈ RM×M , we

have:

E[S|UY V ⊺] =

∫
dS̃ S̃ PS(S̃)PZ(UY V ⊺ − S̃)∫
dS̃ PS(S̃)PZ(UY V ⊺ − S̃)

(a)
=

∫
dS̃ US̃V ⊺ PS(S̃)PZ(UY V ⊺ −US̃V ⊺)∫

dS̃ PS(S̃)PZ(UY V ⊺ −US̃V ⊺)

(b)
= U

{∫
dS̃ S̃ PS(S̃)PZ(Y − S̃)∫
dS̃ PS(S̃)PZ(Y − S̃)

}
V ⊺

= UE[S|Y ]V ⊺

where in (a), we changed variables S̃ → US̃V ⊺, used | detU | = | detV | = 1,
and bi-rotational invariance of PS, PS(S̃) = PS(US̃V ⊺). In (b), we used
the bi-rotational invariance property of PZ , namely PZ(UY V ⊺ −US̃V ⊺) =
PZ(Y − S̃).

10.4.3 Proof of Proposition 10.2

Define the two measures:

ν :=
1

2N

N∑
j=1

u⊺
jSvj

(
δγj − δ−γj

)
, τ :=

1

2N

N∑
j=1

(
δγj + δ−γj

)
Using the Stieltjes inversion formula, for any ϵ > 0 such that [γj − ϵ, γj + ϵ] ∩
{γ1, · · · , γN} = {γj}, the optimal singular value ξ∗j can be expressed as:

ξ∗j = lim
η→0

∫ γj+ϵ

γj−ϵ
ImGν(x+ iη) dx∫ γj+ϵ

γj−ϵ
Im

{
Gτ (x+ iη)

}
dx

(10.32)
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with Gν ,Gτ the Stieltjes transforms of ν, τ . The first Stiltjes transform can be
written as:

Gν(z) =
1

2N

N∑
j=1

u⊺
jSvj

( 1

z − γj
− 1

z + γj

)
=

1

N

N∑
j=1

γj
z2 − γ2j

u⊺
jSvj

=
1

N

N∑
j=1

γj
z2 − γ2j

Trvju
⊺
jS

=
1

N

N∑
j=1

γj
z2 − γ2j

TrS⊺ujv
⊺
j

=
1

N
TrS⊺

N∑
j=1

γj
z2 − γ2j

ujv
⊺
j

=
1

N
TrS⊺

(
z2I − Y Y ⊺

)−1
Y

=
1

N
TrGY Y ⊺(z2)Y S⊺

= L(z)

(10.33)

Similarly, we get
Gτ (z) = zG(z) (10.34)

Finally (10.8) follows from (10.32), (10.33), (10.34). □

10.4.4 Proof of Theorem 10.3

For simplicity of notation, we drop the z-dependence of the random functions
G(z), L(z). Let

g := EG, l := EL

where the expectation is over the noise matrix Z in (10.1). We will need the
following lemma whose proof is deferred to subsection 10.4.4.

Lemma 10.2. There is a numerical constant c > 0 (depending on K) such
that for any z ∈ C\R and for any t > 0, we have:

P
(
|G− g| ≥ t

)
≤ 2e−c

(
tN

∣∣Im z

∣∣3)2

The same is also true for L, l.

Consider the decomposition

L = l + (L− l)
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from the lemma above, L − l is a sub-Gaussian random variable with sub-
Gaussian norm O

(
1

N

∣∣Im z

∣∣3). Therefore, to prove the Theorem, it suffices to

show that

l = g
(
z2 − 1

α0

)
− g

(
z2g − 1)− 1 +O

( 1

N
∣∣Im z

∣∣3) (10.35)

Let G := GY Y ⊺(z2). We start by expanding the following matrix products:

GY Y ⊺ = κGSS⊺ +
√
κGSZ⊺ +

√
κGZS⊺ +GZZ⊺

GY S⊺ =
√
κGSS⊺ +GZS⊺

Using the identity z2G− I = GY Y ⊺, we have:

GY S⊺ =
1√
κ

(
z2G− I −GZZ⊺

)
−GSZ⊺ (10.36)

Taking expectation and trace of the both sides:

E TrGY S⊺ =
1√
κ
z2E TrG− 1√

κ
N−E TrGSZ⊺− 1√

κ
ETr GZZ⊺ (10.37)

The next step is to compute the last two terms in (10.37) through a use of
gaussian integration by parts.

• Expansion of E TrGSZ⊺: Using cyclicity of the trace and the fact that
G is symmetric, we have:

E TrGSZ⊺ = E TrGZS⊺ =
N∑
i=1

M∑
j=1

N∑
k=1

EGikZkj Sij (10.38)

Gaussian integration by parts yields:

EGikZkj =
1

N
E
( ∂G

∂Zkj

)
ik

(10.39)

We have:

∂G

∂Zab

= −G
∂
(
z2I − Y Y ⊺

)
∂Zab

G = G
(
Y Jab⊺ + JabY ⊺

)
G

with Jab ∈ RN×M , Jab
ij = δ{i = a, j = b}. Thus, we find:( ∂G

∂Zkj

)
ik
=

[
GY Jkj⊺G]ik +

[
GJkjY ⊺G]ik

=
∑
a,b,c

Gia Yab J
kj
cb Gck +

∑
a,b,c

Gia J
kj
ab YcbGck

=
∑
a

Gia Yaj Gkk +
∑
c

Gik Ycj Gck

= Gkk

(
GY

)
ij
+Gik (GY )kj

(10.40)
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Joining (10.40) with (10.39), (10.38) can be written further to be:

E TrGSZ⊺ =
1

N

N∑
i=1

M∑
j=1

N∑
k=1

[
Gkk

(
GY

)
ij
+Gik (GY )kj

]
Sij

=
1

N
E
[(

TrG
)(

TrGY S⊺
)]

+
1

N
E TrGGY S⊺

(10.41)

• Expansion of E TrGZZ⊺:

E TrGZZ⊺ =
N∑
i=1

M∑
j=1

N∑
k=1

EGikZkj Zij (10.42)

Using again gaussian integration by parts:

EGikZkjZij =
1

N
E
∂GikZij

∂Zkj

=
1

N
EZij

( ∂G

∂Zkj

)
ik
+ δ{i = k} 1

N
EGik

=
1

N
EZij

(
Gkk

(
GY

)
ij
+Gik (GY )kj

)
+ δ{i = k} 1

N
EGik

(10.43)

Plugging in (10.42), we find

E TrGZZ⊺

=
1

N

N∑
i=1

M∑
j=1

N∑
k=1

EZijGkk

(
GY

)
ij
+

1

N

N∑
i=1

M∑
j=1

N∑
k=1

EZijGik

(
GY

)
kj

+
1

N

∑
i,j,k

δ{k = i}EGik

=
1

N
E
[(

TrG
)(

TrGY Z⊺
)]

+
1

N
E TrGGY Z⊺ +

M

N
E TrG

(10.44)
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Replacing (10.41) and (10.44) in (10.37), we find:

E TrGY S⊺

=
1√
κ
z2E TrG− 1

N
E
[(

TrG
)(

TrGY S⊺
)]

− 1√
κ

1

N
E
[(

TrG
)(

TrGY Z⊺
)]

− 1

N
E TrGGY S⊺ − 1√

κ

1

N
E TrGGY Z⊺ − 1√

κ

M

N
E TrG− 1√

κ
N

=
1√
κ

(
z2 − 1

α0

)
E TrG− 1√

κ

1

N
E
[(

TrG
)(

TrGY Y ⊺
)]

− 1√
κ

1

N
E TrGGY Y ⊺ − 1√

κ
N

=
1√
κ

(
z2 − 1

α0

)
E TrG− 1√

κ

1

N
E
[(

TrG
)(
z2TrG−N

)]
− 1√

κ

1

N
E TrG

(
z2G− I

)
− 1√

κ
N

(10.45)

Dividing by N and rearranging terms we find:

l =
1√
κ

(
z2 + 1− 1

α0

)
g − 1√

κ
z2EG2 − 1− 1

N2
z2E TrG2 − 1

N
g (10.46)

Using lemma 10.2,

EG2 = g2 + E
(
g −G)2 + 2gE

(
g −G)

= g2 +O
( 1

N
∣∣Im z

∣∣3) (10.47)

and, ∣∣ 1

N2
z2E TrG2

∣∣ ≤ E
∣∣ 1

N2
z2TrG2

∣∣
≤ 1

N2
E
∣∣ N∑
k=1

z2(
z2 − γ2k

)2 ∣∣
≤ 1

N2
E

N∑
k=1

∣∣ z2(
z2 − γ2k

)2 ∣∣
≤ 1

N2
E

N∑
k=1

1(
Im z

)2 = O
( 1

N
(
Im z

)2)
(10.48)

Similarly, we have that
1

N
g = O

( 1

N
(
Im z

)2) (10.49)

Combining (10.46), (10.47),(10.48), (10.49), we obtain the result:

l =
1√
κ

[(
z2 + 1− 1

α0

)
g − z2g2 − 1

]
+O

( 1

N
∣∣Im z

∣∣3)
This completes the proof of Theorem 10.3.
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Proof of Lemma 10.2

To prove lemma 10.2, we use a Gaussian concentration inequality:

Theorem 10.6 (Gaussian concentration inequality). Let X = (X1, ..., Xn)
be a vector of n independent Gaussian random variables of variance σ2. Let
f : Rn → R denote an L-Lipschitz function (w.r.t Euclidean norm in Rn).
Then, for any t > 0,

P
(
|f(X)− Ef(X)| ≥ t

)
≤ 2e−

1
σ2

t2

2L2

that is, f(X)− Ef(X) is sub-Gaussian with sub-Gaussian norm O
(

1
Lσ

)
.

Using the above result, it suffices to show that G(z), L(z) as functions of
the noise matrix Z ∈ RN×M are Lipschitz with constant O

(
1

√
N

∣∣Im z

∣∣3 ).
Consider the Hermitization Y of Y in (10.17). Given the decomposition

(10.18), we have:

G(z) =
1

N
Tr

(
z2I − Y Y ⊺

)−1

=
1

N

N∑
k=1

1

z2 − γ2k

=
1

N

N∑
k=1

1

2z

( 1

z − γk
+

1

z + γk

)
=

1

N

1

2z

[ N∑
k=1

( 1

z − γk
+

1

z + γk

)
+ (M −N)

1

z

]
− M −N

2N

1

z2

=
1

N

1

2z
Tr

(
zI −Y

)−1 − M −N

2N

1

z2

(10.50)

and

L(z) =
1

N
Tr

(
z2I − Y Y ⊺

)−1
Y S⊺

=
1

N
Tr

( N∑
k=1

1

z2 − γ2k
uku

⊺
k

)
Y S⊺

=
1

N

N∑
k=1

1

z2 − γ2k
Truku

⊺
kY S⊺

=
1

N

N∑
k=1

γk
z2 − γ2k

Trukv
⊺
kS

⊺

(10.51)
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On the other hand, letting S be the Hertmitization of S, and wk the k-th
column of W in (10.18), we have:

w⊺
kSwk =


u⊺

kSvk for 1 ≤ k ≤ N

−u⊺
k−NSvk−N N + 1 ≤ k ≤ 2N

0 2N + 1 ≤ k ≤M +N

Therefore, denoting eigenvalues of Y by γ̃k, we find

1

N
Tr(zI −Y)−1S =

1

N

M+N∑
k=1

1

z − γ̃k
Trwkw

⊺
kS

=
1

N

[ N∑
k=1

1

z − γk
Trukv

⊺
kS −

N∑
k=1

1

z + γk
Trukv

⊺
kS

]
=

1

N

N∑
k=1

( 1

z − γk
− 1

z + γk

)
Trukv

⊺
kS

⊺

=
2

N

N∑
k=1

γk
z2 − γ2k

Trukv
⊺
kS

⊺

(10.52)

From (10.51), (10.52), we obtain:

L(z) =
1

2N
Tr(zI −Y)−1S (10.53)

Now, to show Lipschitz continuity of the functions we consider a variation
of the noise matrix Z → Z + δZ . From now on, variables evaluated at Z + δZ
are denoted with a "tilde" symbol, for example:

G̃(z) =
1

N
Tr

(
z2I − Ỹ Ỹ ⊺

)−1
=

1

N
Tr

(
z2I − (S +Z + δZ)(S +Z + δZ)

⊺
)−1

We have:

|G(z)− G̃(z)| = 1

N

∣∣∣∣Tr [(z2I − Y Y ⊺
)−1 −

(
z2I − Ỹ Ỹ ⊺

)−1
]∣∣∣∣

(a)
=

1

N

1

2|z|

∣∣∣∣Tr [(zI −Y
)−1 −

(
zI − Ỹ

)−1
]∣∣∣∣

(b)
=

1

N

1

2|z|

∣∣∣∣Tr (zI −Y
)−1(Ỹ −Y

)(
zI − Ỹ

)−1

∣∣∣∣
(c)

≤
√
M +N

N

1

2|z|
∥∥∥(zI −Y

)−1(Ỹ −Y
)(
zI − Ỹ

)−1
∥∥∥
F

(d)

≤
√
M +N

N

1

2|z|
∥∥∥(zI −Y

)−1
∥∥∥
op

∥∥∥(zI − Ỹ
)−1

∥∥∥
op

∥∥∥(Ỹ −Y
)∥∥∥

F

(e)

≤ C
1√
N

1∣∣Im z
∣∣3∥∥δZ∥∥F

(10.54)
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where in (a) we use the identity in (10.50), in (b) we use the following resolvent
formula, namely that for any square matrices A,B:(

zI −A
)−1 −

(
zI −B

)−1
=

(
zI −A

)−1(
A−B

)(
zI −B

)−1
,

in (c) we use the inequality for any matrix A ∈ RN×N :∣∣TrA∣∣ ≤ √
N∥A∥F,

in (d) we use a non-commutative Hölder-type inequality (see e.g. [134], Thm
2.8), namely for any product A1 · · ·Ak of matrices with any size and any
i = 1, ..., k, ∥∥A1 · · ·Ak

∥∥
F
≤

∏
j ̸=i

∥Aj∥op ∥Ai∥F,

and finally in (e) the constant C depends only on K and we use that the
operator norm of

(
zI − Ỹ

)−1 is bounded by Im z:∥∥∥(zI − Ỹ
)−1

∥∥∥
op

= max
{0,±γ1,··· ,±γk}

1

|z − x| ≤
1

|z − Re z| =
1∣∣Im z

∣∣
Similarly for L(z), we have:

|L(z)− L̃(z)| = 1

2N

∣∣∣∣Tr [(zI −Y
)−1S −

(
zI − Ỹ

)−1S
]∣∣∣∣

=
1

2N

∣∣∣∣Tr [(zI −Y
)−1 −

(
zI − Ỹ

)−1
]
S

∣∣∣∣
≤ 1

2N

∥∥∥(zI −Y
)−1 −

(
zI − Ỹ

)−1
∥∥∥
F

∥∥S∥∥
F

≤
√
2N

2N

∥∥∥(zI −Y
)−1 −

(
zI − Ỹ

)−1
∥∥∥
F

∥∥S∥∥
op

≤ C ′
√
N

1(
Im z

)2∥∥δZ∥∥F

(10.55)

with C ′ a positive constant depending only on K.

10.4.5 Computation of MMSE for the Gaussian noise -
Statement 10.4

From (10.6) and (10.12) we see that to compute the MMSE we must compute
the following expectation:∫ (

x− 1− α

α

1

x
− 2πH[µ̄Y ](x)

)2

µY (x) dx

In the following, using properties of the Hilbert transform, we show this integral
equals:∫

x2µY (x) dx+
( 1
α
− 1

)2 ∫ µY (x)

x2
dx+

π2

3

∫
µY (x)

3 dx− 2

α
(10.56)
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Putting these relations together, we deduce (for Gaussian noise):∫
ξ∗(x)2µY (x) dx =

∫
x2µS(x) dx

− 1

κ

[ 1
α
−

( 1
α
− 1

)2 ∫ µY (x)

x2
dx− π2

3

∫
µY (x)

3 dx
]

Replacing this identity in (10.6), we get (10.13).

Derivation of (10.56)

For simplicity we denote H[µ̄Y ](x) by H̄(x). Expanding the square in the
integrand, we find

x2+
(1− α

α

)2 1

x2
− 2

1− α

α
+ 4π2

(
H̄(x)

)2 − 4πxH̄(x) + 4π
1− α

α

H̄(x)

x
(10.57)

To compute the expectation of the last three terms, we need the following
properties of the Hilbert transform.

Lemma 10.3. If f : R → R is compactly supported and sufficiently regular,
then one has the identities∫

R
f(x)

(
H[f ](x)

)2
dx =

1

3

∫
R
f 3(x) dx (10.58)∫

R
H[f ](x)xf(x) dx =

1

2π

(∫
R
f(x) dx

)2

(10.59)∫
R

H[f ](x)

x
f(x) dx = − 1

2π

(∫
R

f(x)

x
dx

)2

(10.60)

Proof. The proof of the first two properties can be found in Lemma 3.1 of [121].
To prove the last equality, we apply the same idea as in remark 3.2 of this
paper to write:∫

R

H[f ](x)

x
f(x) dx =

1

2π

∫∫ (1
x
− 1

y

) 1

x− y
f(x)f(y) dx dy

= − 1

2π

∫∫
1

xy
f(x)f(y) dx dy

= − 1

2π

(∫
f(x)

x
dx

)2

We remark that the Hilbert transform of an even function is an odd function
(see e.g. [135]), in other words for the symmetrized measure µ̄Y we have
H̄(x) = −H̄(x). From (10.58) we have:∫ (

H̄(x)
)2
µ̄Y (x) dx =

1

3

∫
µ̄Y (x)

3 dx (10.61)
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The l.h.s can be written as:

1

2

∫
R+

(
H̄(x)

)2
µY (x) dx+

1

2

∫
R−

(
H̄(x)

)2
µY (−x) dx

=
1

2

∫
R+

(
H̄(x)

)2
µY (x) dx+

1

2

∫
R+

(
H̄(−x)

)2
µY (x) dx

=
1

2

∫
R+

(
H̄(x)

)2
µY (x) dx+

1

2

∫
R+

(
H̄(x)

)2
µY (x) dx

=

∫
R+

(
H̄(x)

)2
µY (x) dx

The rhs in (10.61) equals 1
12

∫
µY (x)

3 dx. Therefore, the expectation of the
fourth term in (10.57) is:

4π2

∫ (
H̄(x)

)2
µY (x) dx =

π2

3

∫
µY (x)

3 dx (10.62)

Similarly, using symmetry properties of H̄ and µ̄Y we have that:∫
xH̄(x)µ̄Y (x) dx =

∫
xH̄(x)µY (x) dx

Thus, by (10.59), the expectation of the fifth term in (10.57) is:

−4π

∫
xH̄(x)µY (x) dx = −2

(∫
R
µ̄Y (x) dx

)2

= −2. (10.63)

Again, by symmetry we have:∫
H̄(x)

x
µ̄Y (x) dx =

∫
H̄(x)

x
µY (x) dx

Thus, by (10.60), the expectation of the last term in (10.57) is:∫
H̄(x)

x
µY (x) dx =

(∫
R

µ̄Y (x)

x
dx

)2

= 0 (10.64)

where we used that µ̄Y (x)
x

is an odd function.
Finally putting together (10.57), (10.62), (10.63), (10.64) we get (10.56).

10.4.6 Proof of Theorem 10.5

We start from the posterior distribution of the model (10.1) which reads (up
to some constants):

P (X|Y ) ∝ e−
N
2
∥Y −

√
κX∥2FPS(X)

∝ eN Tr
[√

κXY ⊺−κ
2
XX⊺

]
PS(X)

(10.65)
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The partition function is defined as the normalizing factor of the posterior
distribution (10.65):

Z(Y ) =

∫
dX eN Tr

[√
κXY ⊺−κ

2
XX⊺

]
PS(X) (10.66)

and the free energy is defined as:

FN(κ) = − 1

MN
EY

[
lnZ(Y )

]
(10.67)

One can easily see that the free energy is linked to the (average) mutual
information via the relation:

1

MN
IN(S;Y ) = FN(κ) +

κ

2M
E
[
TrSS⊺

]
in which 1

M
E
[
TrS⊺S

]
converges to the second moment of µS rescaled by the

factor α. Therefore, to prove theorem 10.5, it is enough to show that

lim
N→∞

FN(κ) =
κ

2
α

∫
x2µS(x) dx− J (α)[µ√

κS, µ√
κS ⊞α µMP]

To prove this limit, first, we show that this limit also holds for the free energy of
a simpler model. Then, using the pseudo-Lipschitz continuity of the free energy
w.r.t. to a distance between two models which converges to 0 as N → ∞, we
deduce that the same limit holds for the free energy of the original model.

An independent singular value model

Suppose σ0 ∈ RN is generated with i.i.d. elements from µS, and is ordered in
non-decreasing way. Fix σ0 once for all. Let S̃ ∈ RN×M the matrix contructed
as UΣ̃V ⊺ where U ∈ RN×N ,V ∈ RM×M are independent and distributed
according to the Haar measure, and Σ̃ ∈ RN×M with σ̃ on its main diagonal
for σ̃ ∈ RN . The distribution of the matrix S̃ is :

dPS̃(S̃) = dµN(U) dµM(V )dpS̃(σ̃) = dµN(U) dµM(V )
N∏
i=1

δ(σ̃i − σ0
i ) dσ̃

(10.68)

Matrix S̃ is observed through an AWGN channel as in (10.1), Ỹ =
√
κS̃+Z̃.

The partition function and the free energy can be defined in the same way as
in (10.66),(10.67) denoted by Z̃(Ỹ ), F̃N(κ) respectively.

Proposition 10.7. For µS with compact support, and any κ > 0, we have
µS-almost surely

lim
N→∞

F̃N(κ) =
κ

2
α

∫
x2µS(x) dx− J (α)[µ√

κS, µ√
κS ⊞α µMP]

Proof Appendix 10.C.1.
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Pseudo-Lipschitz continuity of the free energy

Consider two bi-rotationally invariant matrix ensembles P (1), P (2), i.e. for
S ∼ P (1)(S), S̃ ∼ P (2)(S̃) with SVDs S = UΣV ⊺, S̃ = ŨΣ̃Ṽ ⊺

dP
(1)
N (S) ∝ dµN(U) dµM(V ) p(1)(σ) dσ

dP
(2)
N (S̃) ∝ dµN(Ũ) dµM(Ṽ ) p(2)(σ̃) dσ̃

where p(1)(σ), p(2)(σ̃) are the joint probability density functions for the singular
values, induced by the priors. Suppose each of these distributions to be the prior
of an inference problem in model (10.1). The free energy can be defined similarly
for each of the priors, which are denoted by F (1)

N (κ), F
(2)
N (κ) respectively. Then,

we have

Proposition 10.8. For all κ > 0 and N :∣∣F (1)
N (κ)− F

(2)
N (κ)

∣∣ ≤ κ

2N

(√
Eσ

[
∥σ∥2

]
+
√

Eσ̃

[
∥σ̃∥2

])√
Eσ,σ̃

[
∥σ − σ̃∥2

]
(10.69)

Proof Appendix 10.C.2.

The distance between two models

Recall that

dPS(S) ∝ dµN(U) dµM(V )pS(σ) dσ

where pS(σ) is the joint p.d.f. of singular values of S. Moreover, dPS̃(S̃) is
defined in (10.68) with pS̃(σ̃) ≡

∏N
i=1 δ(σ̃i − σ0

i ), where σ0 is generated with
i.i.d. elements from µS

Lemma 10.4. Under assumptions 10.2, 10.3, for σ ∼ pS(σ), σ̃ ∼ pS̃(σ̃) , we
have:

lim
N→∞

1

N
Eσ,σ̃

[
∥σ − σ̃∥2

]
= 0 (10.70)

Proof Appendix 10.C.3.

Concluding the proof

By proposition 10.8, the distance between the free energies FN(κ) (defined in
(10.67)) and F̃N(κ) is upper bounded by rhs in (10.69). The term 1

N
∥σ∥2 =

1
N

∑
σ2
i is the second moment of the empirical spectral distribution of S, which

is almost surely bounded by assumption 10.3. So, 1
N
Eσ

[
∥σ∥2

]
is bounded.

Moreover, 1
N
E
[
∥σ̃∥2

]
= 1

N

∑
σ02

i which is bounded by C2
2 . By proposition 10.4,

limN→∞
1
N
Eσ,σ̃

[
∥σ − σ̃∥2

]
= 0. Therefore limN→∞ |FN(κ) − F̃N(κ)| = 0 and

Proposition 10.7 gives the result. □



Appendix

10.A Derivation of the Resolvent Relation

From (10.22), we have

Y =

[
0 S
S⊺ 0

]
+

[
U 0
0 V

] [
0 Z
Z⊺ 0

] [
U ⊺ 0
0 V ⊺

]
= S +OZO⊺

(10.71)

Let G(z) ≡ GY(z). First, we express the entries of G(z) using the Gaussian
integral representation of an inverse matrix [83]:

Gij(z) =

√
1

(2π)N+M det (zI −Y)

∫ (M+N∏
k=1

dηk

)
ηiηj exp

{
− 1

2
η⊺

(
zI −Y

)
η
}

=

∫ (M+N∏
k=1

dηk

)
ηiηj exp

{
− 1

2
η⊺

(
zI −Y

)
η
}

∫ (M+N∏
k=1

dηk

)
exp

{
− 1

2
η⊺

(
zI −Y

)
η
}

(10.72)

For z not close to the real axis, the resolvent is expected to exhibit self-averaging
behavior in the limit of large N, meaning that it will not depend on the particular
matrix realization. Thus, we can examine the resolvent GY(z) by analyzing its
ensemble average, denoted by ⟨.⟩ in the following.

〈
Gij(z)

〉
=

〈
1

Z

∫ (M+N∏
k=1

dηk

)
ηiηj exp

{
− 1

2
η⊺

(
zI −Y

)
η
}〉

(10.73)

where Z is the denominator in (10.72). Computing the average is, in general,
non-trivial. However, the replica method provides us with a technique to

195
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overcome this issue by employing the following identity:

〈
Gij(z)

〉
= lim

n→0

〈
Zn−1

∫ (M+N∏
k=1

dηk

)
ηiηj exp

{
− 1

2
η⊺

(
zI −Y

)
η
}〉

= lim
n→0

〈 ∫ (M+N∏
k=1

n∏
τ=1

dη
(τ)
k

)
η
(1)
i η

(1)
j exp

{
− 1

2

n∑
τ=1

η(τ)⊺
(
zI −Y

)
η(τ)

}〉
(10.74)

For the expression in the exponent, we have:

−1

2

n∑
τ=1

M+N∑
k,l=1

η
(τ)
k

(
zδkl −Ykl

)
η
(τ)
l = −1

2

n∑
τ=1

M+N∑
k,l=1

η
(τ)
k

(
zδkl − Skl

)
η
(τ)
l

+
1

2

n∑
τ=1

M+N∑
k,l=1

η
(τ)
k (OZO⊺)klη

(τ)
l

(10.75)

The first term in the RHS can be written as

−1

2

n∑
τ=1

η(τ)⊺
(
zIN+M − S

)
η(τ) (10.76)

Given the structure (10.71) for OZO⊺, the second sum in (10.75) can be
written as:

N∑
k=1

M+N∑
l=N+1

η
(τ)
k

(
UZV ⊺)k,l−Nη

(τ)
l +

M+N∑
k=N+1

N∑
l=1

η
(τ)
k

(
V Z⊺U ⊺)k−N,lη

(τ)
l (10.77)

Split each replica η(τ) into two vectors a(τ) ∈ RN , b(τ) ∈ RM , η(τ) =

[
a(τ)

b(τ)

]
.

The expression in (10.77) can be rewritten as 2Tr b(τ)a(τ)⊺UZV ⊺. So, we have
(dropping the limit term for brevity):

⟨Gij(z)⟩ =
∫ (M+N∏

k=1

n∏
τ=1

dη
(τ)
k

)
η
(1)
i η

(1)
j exp

{
− 1

2

n∑
τ=1

η(τ)⊺
(
zIN+M − S

)
η(τ)

}
×
〈
exp

{ n∑
τ=1

Tr b(τ)a(τ)⊺UZV ⊺
}〉

U ,V

(10.78)

Using the formula for the rectangular spherical integral [64] (see (6.4)) for the
last term we find:〈

exp
{ n∑

τ=1

Tr b(τ)a(τ)⊺UZV ⊺
}〉

U ,V

≈ exp
{N
2

n∑
τ=1

QµZ

( 1

NM
∥a(τ)∥2∥b(τ)∥2

)}
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where we used that for each replica, the non-zero singular value of b(τ)a(τ)⊺ is
∥a(τ)∥∥b(τ)∥.

Therefore, we find

⟨Gij(z)⟩ =
∫ (M+N∏

k=1

n∏
τ=1

dη
(τ)
k

)
η
(1)
i η

(1)
j

× exp

{ n∑
τ=1

[
− 1

2
η(τ)⊺

(
zI − S

)
η(τ) +

N

2
QµZ

( 1

NM
∥a(τ)∥2∥b(τ)∥2

)]}
(10.79)

Introducing delta functions δ
(
p
(τ)
1 − 1

N
∥a(τ)∥2

)
, δ

(
p
(τ)
2 − 1

M
∥b(τ)∥2

)
, (10.79)

can be written as:

⟨Gij(z)⟩ =
∫ (M+N∏

k=1

n∏
τ=1

dη
(τ)
k

)( n∏
τ=1

dp
(τ)
1 dp

(τ)
2

)
η
(1)
i η

(1)
j

×
n∏

τ=1

δ
(
p
(τ)
1 − 1

N
∥a(τ)∥2

)
δ
(
p
(τ)
2 − 1

M
∥b(τ)∥2

)
× exp

{ n∑
τ=1

[
− 1

2
η(τ)⊺

(
zI − S

)
η(τ) +

N

2
QµZ

(
p
(τ)
1 p

(τ)
2

)]}
(10.80)

In the next step, we replace each delta with its Fourier transform δ
(
p
(τ)
1 −

1
N
∥a(τ)∥2

)
∝

∫
dζ

(τ)
1 exp

{
− N

2
ζ
(τ)
1

(
p
(τ)
1 − 1

N
∥a(τ)∥2

)}
. After rearranging, we

find:

⟨Gij(z)⟩ ∝
∫ (∏

dp
(τ)
1 dp

(τ)
2 dζ

(τ)
1 dζ

(τ)
2

)
× exp

{N
2

n∑
τ=1

[
QµZ

(p
(τ)
1 p

(τ)
2 )− ζ

(τ)
1 p

(τ)
1 − 1

α
ζ
(τ)
2 p

(τ)
2

]}
×

∫ (M+N∏
k=1

n∏
τ=1

dη
(τ)
k

)
η
(1)
i η

(1)
j

× exp

{ n∑
τ=1

[
− 1

2
η(τ)⊺

(
zI − S

)
η(τ) +

1

2
ζ
(τ)
1 ∥a(τ)∥2 + 1

2
ζ
(τ)
2 ∥b(τ)∥2

]}
(10.81)

The second integral in (10.81) is a Gaussian integral with matrix

M (τ) =

[
(z − ζ

(τ)
1 )IN −S

−S⊺ (z − ζ
(τ)
2 )IM

]
(10.82)
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Using the formula for determinant of block matrices, we have

detM (τ) = det
[
(z − ζ

(τ)
1 )IN − (z − ζ

(τ)
2 )−1SS⊺

]
det

[
(z − ζ

(τ)
2 )IM

]
= (z − ζ

(τ)
2 )M−N

N∏
k=1

[
(z − ζ

(τ)
1 )(z − ζ

(τ)
2 )− σk

2
]

Except for the first replica, the Gaussian integral is (up to constants):

exp

{
− 1

2

[
(M −N) ln(z − ζ

(τ)
2 ) +

N∑
k=1

ln
{
(z − ζ

(τ)
1 )(z − ζ

(τ)
2 )− σk

2
}]}

And, the integral for the first replica is the above expression multiplied by(
M (1)−1)

ij
. By Proposition 2.8.7 [136]), M (1)−1 can be written as

M (1)−1
=

[
A B
B⊺ C

]
(10.83)

with blocks given as:

A =
1

z − ζ
(1)
1

IN +
1

z − ζ
(1)
1

SGS⊺S

(
(z − ζ

(1)
2 )(z − ζ

(1)
1 )

)
S⊺

B = SGS⊺S

(
(z − ζ

(1)
2 )(z − ζ

(1)
1 )

)
C = (z − ζ

(1)
1 )GS⊺S

(
(z − ζ

(1)
2 )(z − ζ

(1)
1 )

)
with GS⊺S the resolvent of the matrix S⊺S.

Putting all this together, the integral in (10.81) can be written as

⟨Gij(z)⟩ ∝
∫ ( n∏

τ=1

dp
(τ)
1 dp

(τ)
2 dζ

(τ)
1 dζ

(τ)
2

)(
M (1)−1)

ij

× exp
{
− Nn

2
F0

(
p1,p2, ζ1, ζ2

)} (10.84)

with

F0

(
p1,p2, ζ1, ζ2

)
=

1

n

n∑
τ=1

[ 1

N

N∑
k=1

ln
{
(z − ζ

(τ)
1 )(z − ζ

(τ)
2 )− σk

2
}
−
(
1− 1

α

)
ln(z − ζ

(τ)
2 )

−QµZ
(p

(τ)
1 p

(τ)
2 ) + ζ

(τ)
1 p

(τ)
1 +

1

α
ζ
(τ)
2 p

(τ)
2

]
In the large N limit, the integral in (10.84) can be computed using the saddle-
points of the function F0. In the evaluation of this integral, we use the replica
symmetric ansatz that assumes a saddle-point of the form:

∀τ ∈ {1, · · · , n} : p
(τ)
1 = p1, p

(τ)
2 = p2, ζ

(τ)
1 = ζ1, ζ

(τ)
2 = ζ2
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One finds that the extremum of the function is then at:

p∗1 = (z − ζ∗2 )GρS

(
(z − ζ∗1 )(z − ζ∗2 )

)
p∗2 = (1− α) 1

z−ζ∗2
+ α(z − ζ∗1 )GρS

(
(z − ζ∗1 )(z − ζ∗2 )

)
ζ∗1 =

C(α)
µZ

(p∗1p
∗
2)

p∗1

ζ∗2 = α
C(α)
µZ

(p∗1p
∗
2)

p∗2

(10.85)

where GρS is the Stieltjes transform of the matrix SS⊺, whose limiting eigenvalue
distribution is the squared transform of the limiting singular value distribution
of S.

To simplify the solution, we compute the normalized trace of both sides in
(10.84). First on the r.h.s we compute the trace of the matrix M−1 in (10.83)
plugging ζ∗1 , ζ∗2 . The trace of the first block is:

1

N

1

z − ζ∗1

N∑
k=1

[
1+

σk
2

(z − ζ∗2 )(z − ζ∗1 )− σk2

]
=

1

N
(z − ζ∗2 )

N∑
k=1

1

(z − ζ∗2 )(z − ζ∗1 )− σk2

≈ (z − ζ∗2 )GρS

(
(z − ζ∗2 )(z − ζ∗1 )

)
= p∗1

(10.86)

Similarly, the trace of the last block can be computed to be p∗b .
The matrix in the l.h.s of (10.84) is GY(z), which has the blocks

GY(z) =
(
zI −Y

)−1

=

[
z−1IN + z−1Y GY ⊺Y (z

2)Y ⊺ Y GY ⊺Y (z
2)

GY ⊺Y (z
2)Y ⊺ zGY ⊺Y (z

2)

] (10.87)

The trace of the first block is:

1

N

1

z

N∑
k=1

[
1 +

γk
2

z2 − γk2
]
=

1

N
z

N∑
k=1

1

z2 − γk2

≈ zGρY (z
2)

(10.88)

Therefore, from (10.86), we find p∗1 = zGρY (z
2). The trace of the last block can

be evaluated to be αzGρY (z
2) + (1− α)1

z
. So, p∗2 = αzGρY (z

2) + (1− α)1
z
.

Thus we find{
p∗1 = zGρY (z

2) = 1
z
MµY

(
1
z2

)
+ 1

z

p∗2 = αzGρY (z
2) + (1− α)1

z
= α 1

z
MµY

(
1
z2

)
+ 1

z

(10.89)

and
p∗1p

∗
2 =

1

z2
T (α)

(
MµY

( 1

z2
))
,
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which implies

ζ∗1 = z

C(α)
µZ

(
1
z2
T (α)

(
MµY

(
1
z2

)))
MµY

(
1
z2

)
+ 1

, ζ∗2 = αz

C(α)
µZ

(
1
z2
T (α)

(
MµY

(
1
z2

)))
αMµY

(
1
z2

)
+ 1

(10.90)

10.B Derivation of Rectangular Free
Convolution

Consider the normalized trace of the first block on each side in (10.23). The
trace of the first block of the lhs is computed in (10.88) which is 1

z
MµY

(
1
z2

)
+ 1

z
.

The trace of the first block in rhs is computed in (10.86) which is (z−ζ∗2 )GρS

(
(z−

ζ∗2 )(z − ζ∗1 )
)
.

1

z
MµY

( 1

z2
)
+

1

z
= (z − ζ∗2 )GρS

(
(z − ζ∗2 )(z − ζ∗1 )

)
= (z − ζ∗2 )

1

(z − ζ∗2 )(z − ζ∗1 )

(
MµS

( 1

(z − ζ∗2 )(z − ζ∗1 )

)
+ 1

)
=

1

z − ζ∗1
MµS

( 1

(z − ζ∗2 )(z − ζ∗1 )

)
+

1

z − ζ∗1

From which, we get:

(z − ζ∗1 )MµY

( 1

z2
)
+ z − ζ∗1 = zMµS

( 1

(z − ζ∗2 )(z − ζ∗1 )

)
+ z

Taking the ζ∗1 to the rhs, and plugging the expression for ζ∗1 from (10.90),
after a bit of algebra we find:

MµY

( 1

z2
)
= MµS

( 1

(z − ζ∗2 )(z − ζ∗1 )

)
+ C(α)

µZ

(
1

z2
T (α)

(
MµY

( 1

z2
)))

Let 1
z2
T (α)

(
MµY

(
1
z2

))
= u. Then, 1

z2
= H(α)

µY

−1
(u). Moreover, from the

definition one can see that MµY

(
H(α)

µY

−1
(u)

)
= C(α)

µY (u). So, (10.91) can be
written as:

C(α)
µY

(u) = MµS

( 1

(z − ζ∗2 )(z − ζ∗1 )

)
+ C(α)

µZ
(u) (10.91)

From (10.90),

(z − ζ∗2 )(z − ζ∗1 ) = z2
(
1− C(α)

µZ (u)

C(α)
µY (u) + 1

)(
1− αC(α)

µZ (u)

αC(α)
µY (u) + 1

)
= z2

[
1− C(α)

µZ
(u)

( 1

C(α)
µY (u) + 1

+
α

αC(α)
µY (u) + 1

)
+

α
(
C(α)
µZ (u)

)2
T (α)

(
C(α)
µZ (u)

)]
=

z2

T (α)
(
C(α)
µY (u)

)T (α)
(
C(α)
µY

(u)− C(α)
µZ

(u)
)
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The first factor, using the definition of C(α)
µY (u), is:

z2

T (α)
(
C(α)
µY (u)

) =
1
1
z2

1

T (α)
(
C(α)
µY (u)

)
=

1

H(α)
µY

−1
(u)

1
u

H(α)
µY

−1
(u)

=
1

u

So, (10.91) can be written as

C(α)
µY

(u)− C(α)
µZ

(u) = MµS

( u

T (α)
(
C(α)
µY (u)− C(α)

µZ (u)
))

One can see that, if the limiting singular value distribution of S, is not
δ(x), the unique solution to the equation MµS

(
u

T (α)(x)

)
= x, is x = C(α)

µS (u) (see
lemma 4.2 in [64] for a particular case). Therefore, we find:

C(α)
µY

(u)− C(α)
µZ

(u) = C(α)
µS

(u) (10.92)

as we expected.

10.C Detailed proof of Theorem 10.5

10.C.1 Proof of proposition 10.7

We start from the partition function,

Z̃(Ỹ ) =

∫
dXeN Tr

[√
κX⊺Ỹ −κ

2
X⊺X

]
PS̃(X)

=

∫∫∫
dσ dµN(U) dµM(V )

N∏
i=1

δ(σ̃i − σ0
i ) e

N Tr[
√
κV Σ̃⊺U⊺Ỹ −κ

2
Σ̃Σ̃⊺]

= e−
N
2
κTrΣ0⊺Σ0

∫∫
dµN(U) dµM(V ) eN Tr[

√
κΣ0⊺UỸ V ⊺]

= e−
N
2
κTrΣ0⊺Σ0IN,M

(√
κΣ0, Ỹ

)
(10.93)

where, we change variables U → U ⊺,V → V ⊺ in third line to match the
definition of the spherical integral.

Recall that Ỹ =
√
κUΣ0V ⊺ + Z̃, so denoting 1

NM
ln IN,M

(√
κΣ0, Ỹ

)
by

JN,M

(√
κΣ0, Ỹ

)
, the free energy can be written as:

F̃N(κ) = EỸ

[ κ

2M
TrΣ0⊺Σ0 − JN,M

(√
κΣ0, Ỹ

)]
=

κ

2M

N∑
i=1

σ0
i
2 − EU ,V ,Z̃

[
JN,M

(√
κΣ0,

√
κUΣ0V ⊺ + Z̃

)] (10.94)
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By bi-rotational invariance of Z̃, the second term equals

EU ,V ,Z̃

[
JN,M

(√
κΣ0,

√
κUΣ0V ⊺ +UZ̃V ⊺

)]
and then, both matrices U ,V can be absorbed into the integration in JN,M .
So, the free energy equals:

F̃N(κ) =
κ

2M

N∑
i=1

σ0
i
2 − EZ̃

[
JN,M

(√
κΣ0,

√
κΣ0 + Z̃

)]
By the strong law of large numbers, the first term in (10.94) converges to

κ
2
α
∫
x2µS(x) dx almost surely, and proposition 10.7 follows from the following

lemma.

Lemma 10.5. For any κ ∈ R+, the sequence EZ̃

[
JN,M

(√
κΣ0,

√
κΣ0 + Z̃

)]
converges to J (α)[µ√

κS, µ√
κS ⊞α µMP] as N → ∞, µS-almost surely.

Proof. We first show that the assumptions of Theorem 1.1 in [132] holds a.s.
for the sequence

√
κΣ0,

√
κΣ0 + Z̃, so JN,M converges to J (α) a.s. .

By assumption 10.2, the symmetrized ESD of
√
κΣ0 converges weakly

to µ̄√
κS by construction. The ESD of Z̃ converges a.s. to the MP law

µMP, so by independence of Σ0, Z̃ the limiting ESD of
√
κΣ0 + Z̃ is the

rectangular free convolution of µ√
κS, µMP denoted by µ√

κS ⊞α µMP . Moreover,
by assumptions 10.2, 10.3, the second moment of ESD of

√
κΣ0 is boounded

and µ̄S has finite non-commutative entropy
∫∫

ln |x− y| dµ̄S(x) dµ̄S(y) > −∞,
and

∫
ln |x| dµ̄S(x) > −∞. Therefore, the sequence JN,M

(√
κΣ0,

√
κΣ0 + Z̃

)
converges a.s. to J (α)[µ√

κS, µ√
κS ⊞α µMP].

Now, we prove that the limit also holds under the expectation EZ̃ . For sim-
plicity of notation we denote JN,M

(√
κΣ0,

√
κΣ0+Z̃

)
by JN , and J (α)[µ√

κS, µ√
κS⊞α

µMP] by J . By Jensen’s inequality (note that the expectation is over the matrix
Z̃), we have ∣∣E[JN ]− J

∣∣ ≤ E
[
|JN − J |

]
. (10.95)

Let XN ≡ JN − J . For ϵ > 0 We can write

E
[
|XN |

]
= E

[
|XN | I{|XN | ≤ ϵ}

]
+ E

[
|XN | I{|XN | > ϵ}

]
≤ ϵ+ E

[
|XN | I{|XN | > ϵ}

]
.

(10.96)

By lemma 10.6, |JN | ≤
√
κC2γ̃N , where γ̃N is the top singular value of

√
κΣ0+

Z̃. The second term in (10.96) can be bounded as,

E
[
|XN | I{|XN | > ϵ}

]
≤ E

[
|WN | I{|XN | > ϵ}

]
(10.97)

where

WN = max
{∣∣J −√

κC2γ̃N
∣∣, ∣∣J +

√
κC2γ̃N

∣∣} =
√
κC2γ̃N + sign(J )J .
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For any positive constant t, we have

E
[
|WN | I{|XN | > ϵ}

]
= E

[
|WN | I{|XN | > ϵ} I{|WN | ≤ t}

]
+ E

[
|WN | I{|XN | > ϵ} I{|WN | > t}

]
≤ E

[
|WN | I{|XN | > ϵ}I{|WN | ≤ t}

]
+ E

[
|WN | I{|WN | > t}

]
(10.98)

For the first term in (10.98) we can write

E
[
|WN | I{|XN | > ϵ}I{|WN | ≤ t}

]
≤ tE

[
I{|XN | > ϵ}

]
≤ tP

(
|XN | > ϵ

) (10.99)

and the second term in (10.98) can be rewritten as

E
[
|WN | I{|WN | > t}

]
= E

[
|WN | I

{
γ̃N >

2√
κC2

(
t− sign(J )J

)}]
. (10.100)

From (10.97), (10.98), (10.99), we obtain

E
[
|XN | I{|XN | > ϵ}

]
≤ tP

(
|XN | > ϵ

)
+ E

[
|WN | I

{
γ̃N >

2√
κC2

(
t− sign(J )J

)}]
.

(10.101)

Notice that WN is a polynomial function of γ̃N , so by lemma 10.8, vanishes as
N → ∞ for sufficiently large constant t. By almost sure convergence of JN to
J , P

(
|XN | > ϵ

) N→∞−−−→ 0. For a fixed t > 0, the first term in (10.101) goes to 0
in the limit N → ∞. Therefore, taking the limit of both sides in (10.96), for
any ϵ > 0, we find:

lim
N→∞

E
[
|XN |

]
≤ ϵ. (10.102)

From which, by (10.95), we deduce that limN→∞ E[JN ] = J .

Technical lemmas

Lemma 10.6. For any N , M ≥ N , and N ×M symmetric matrices A,B
with top singular values σA

N , σ
B
N

−σA
Nσ

B
N ≤ JN,M(A,B) ≤ σA

Nσ
B
N .

Proof. Let A = UAΣAV
⊺
A , B = UBΣBV

⊺
B be the SVD of A, B. We can write

IN,M(A,B) =

∫∫
DU DV eN TrΣ⊺

AUΣBV ⊺
=

∫∫
DU DV eN

∑N
i,j=1 σ

A
i σB

j UijVij
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The term in the exponent can be bounded as:

N∑
i,j=1

σA
i σ

B
j UijVij ≤

N∑
i,j=1

∣∣σA
i σ

B
j UijVij

∣∣
≤ σA

Nσ
B
N

N∑
i,j=1

∣∣UijVij
∣∣

≤ ∥U∥F∥V ∥FσA
Nσ

B
N

≤
√
NMσA

Nσ
B
N

(10.103)

which implies IN,M(A,B) ≤ eN
√
NMσA

NσB
N . Similarly, we get IN,M(A,B) ≥

e−N
√
NMσA

NσB
N . Therefore, we obtain

−
√
N

M
σA
Nσ

B
N ≤ JN,M(A,B) ≤

√
N

M
σA
Nσ

B
N

The result follows since N ≤M .

Lemma 10.7. Let γ̃N be the top singular value of the matrix
√
κΣ0 + Z̃. For

k > 1 +
√
K +

√
κC2, we have

P{γ̃N ≥ k} ≤ e−
N
2
(k−

√
κC2−1−

√
K)2 .

Proof. By triangle inequality, we have:

γ̃N ≤ √
κmaxσi + γZ̃N ≤ √

κC2 + γZ̃N

where γZ̃N is the top singular value of Z̃. Thus, we can write

P{γ̃N ≥ k} ≤ P
{
γZ̃N +

√
κC2 ≥ k

}
= P{γZ̃N ≥ k −√

κC2}.

By [116] (Theorem II.13), for k −√
κC2 > 1 +

√
K > 1 +

√
M/N, we have

P{γ̃N ≥ k −√
κC2} ≤ e−

N
2
(k−

√
κC2−1−

√
K)2

and therefore we get the result.

Lemma 10.8. For any polynomial function g, and k a sufficiently large con-
stant, we have that

lim
n→∞

E
[
g(γ̃N)I{γ̃N ≥ k}

]
= 0.

Proof. See Lemma H.3 in [48].
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10.C.2 Proof of proposition 10.8

Consider two matrices with the same singular vectors, S = UΣV ⊺, S̃ = UΣ̃V ⊺,
where U ∈ RN×N ,V ∈ RM×M are Haar orthogonal matrices, and σ, σ̃ are
distributed according to P (1)

N (σ), P
(2)
N (σ̃), respectively. For two such matrices,

we write (S, S̃) ∼ QN,M(U ,V ,σ, σ̃) which is the joint p.d.f. of U ,V ,σ, σ̃,

dQN,M(U ,V ,σ, σ̃) = dµN(U) dµM(V )P
(1)
N (σ) dσ P

(2)
N (σ̃) dσ̃

For t ∈ [0, 1], consider the following observation model:{
Y

(t)
1 =

√
κtS +Z1

Y
(t)
2 =

√
κ(1− t)S̃ +Z2

(10.104)

where Z1,Z2 ∈ RN×M are Gaussian matrices as in (10.1), independent of each
other. (S, S̃) ∼ QN,M(U ,V ,σ, σ̃). The free energy for this model can be
written as

FN(t) = − 1

MN
E

Y
(t)
1 ,Y

(t)
2

[
ln

∫
dQN,M(U ,V ,σ, σ̃)

× eN Tr[
√
κtX⊺Y

(t)
1 −κt

2
X⊺X+

√
κ(1−t)X̃⊺Y

(t)
2 −κ(1−t)

2
X̃⊺X̃]

]
= − 1

MN
E

Y
(t)
1 ,Y

(t)
2

[
ln

∫
dQN,M(U ,V ,σ, σ̃)

× eN Tr[κtX⊺S+
√
κtX⊺Z1−κt

2
X⊺X+κ(1−t)X̃⊺S̃+

√
κ(1−t)X̃⊺Z2−κ(1−t)

2
X̃⊺X̃]

]
(10.105)

where the singular vectors of X, X̃ are the same, X = UΣV ⊺, X̃ = UΣ̃V ⊺.
Note that, for t = 0 the only term depending on σ (in both the inner and
outer expectation) is the pdf P (1)

N (σ) and we can integrate over σ in both of
the expectations, to get FN(0) = F

(2)
N (κ). Similarly, we have FN(1) = F

(1)
N (κ).

Taking the derivative w.r.t. t, we get

d

dt
FN(t) = − 1

M
E
[
κTr⟨X⊺S⟩t +

1

2

√
κ

t
TrZ⊺

1 ⟨X⟩t −
κ

2
Tr⟨X⊺X⟩t

− κTr⟨X̃⊺S̃⟩t −
1

2

√
κ

1− t
TrZ⊺

2 ⟨X̃⟩t +
κ

2
Tr⟨X̃⊺X̃⟩t

]
(10.106)

where ⟨.⟩t denotes the expectation with respect to the posterior distribution of
the model (10.104). By integration by parts, we have

E
[
TrZ⊺

1 ⟨X⟩t] =
√
κtE

[
Tr⟨X⊺X⟩t − Tr⟨X⟩⊺t ⟨X⟩t

]
E
[
TrZ⊺

2 ⟨X̃⟩t]=
√
κ(1− t)E

[
Tr⟨X̃⊺X̃⟩t − Tr⟨X̃⟩⊺t ⟨X̃⟩t

]
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Therefore (10.106) can be written as:

d

dt
FN(t) = − 1

M

κ

2
E
[
2Tr⟨X⊺S⟩t − Tr⟨X⟩⊺t ⟨X⟩t − 2Tr⟨X̃⊺S̃⟩t + Tr⟨X̃⟩⊺t ⟨X̃⟩t

]
= − 1

M

κ

2
E
[
Tr[⟨X⊺S⟩t − ⟨X̃⊺S̃⟩t]

]
(By Nishimori)

(10.107)

We have:

2M

κ

∣∣∣ d
dt
FN(t)

∣∣∣ = ∣∣∣∣∣E
[〈

Tr
[
S⊺(X − X̃)− (S̃⊺ − S)X̃

]〉
t

]∣∣∣∣∣
≤ E

[〈∣∣∣Tr [S⊺(X − X̃)− (S̃⊺ − S)X̃
]∣∣∣〉

t

]

≤ E

[〈∣∣∣TrS⊺(X − X̃)
∣∣∣〉

t

]
+ E

[〈∣∣∣Tr(S̃ − S)X̃⊺]
∣∣∣〉

t

]
≤ E

[
∥S∥F⟨∥X − X̃∥F⟩t

]
+ E

[
∥S − S̃∥F⟨∥X̃∥F⟩t

]
≤

√
E
[
∥S∥2F

]
E
[〈
∥X − X̃∥F

〉2
t

]
+

√
E
[
∥S − S̃∥2F

]
E
[〈
∥X̃∥F

〉2
t

]
≤

√
E
[
∥S∥2F

]
E
[〈
∥X − X̃∥2F

〉
t

]
+

√
E
[
∥S − S̃∥2F

]
E
[〈
∥X̃∥2F

〉
t

]
=

√
E
[
∥S∥2F

]
E
[
∥S − S̃∥2F

]
+
√

E
[
∥S − S̃∥2F

]
E
[
∥S̃∥2F

]
=

(√
E
[
∥S∥2F

]
+
√

E
[
∥S̃∥2F

])√
E
[
∥S − S̃∥2F

]
=

(√
Eσ

[
∥σ∥2

]
+
√

Eσ̃

[
∥σ̃∥2

])√
Eσ,σ̃

[
∥σ − σ̃∥2

]
(10.108)

We obtain the result by integrating (10.108), over t from 0 to 1, and using
N ≤M . □

10.C.3 Proof of lemma 10.4

First, note that by rotational invariance, pS(σ) is invariant under permutations,
so without loss of generality, we can assume σ is in non-decreasing order.

Since pS̃(σ̃) is a delta distribution, we can easily write

Eσ,σ̃

[
∥σ − σ̃∥2

]
= Eσ

[
∥σ − σ0∥2

]
(10.109)

For a vector σ, denote the empirical distribution of its components by µ̂σ.
The Wasserstein-2 distance between two empirical distributions, µ̂σ, µ̂σ0 is
defined as

W2(µ̂σ, µ̂σ0) =
√

inf
γ∈Γ(µ̂σ ,µ̂σ0 )

Eγ(x,y)

[
(x− y)2

]
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with Γ(µ̂σ, µ̂σ0) is the set of couplings of µ̂σ, µ̂σ0 . By lemma H.5 in [48] ,the
Wasserstein-2 distance can be written as

W2(µ̂σ, µ̂σ0) =

√
min
π∈SN

1

N
∥σ − σ0

π∥2 (10.110)

where σ0
π is the permuted version of σ0, and SN is the set of all N -permutations.

So, for a given σ and σ0 (which have a non-decreasing order), we have (consid-
ering the identity permutation)

∥σ − σ0∥2 ≥ NW2(µ̂σ, µ̂σ0)2 (10.111)

On the other hand, for any permutation of σ0 (in particular, the one which
achieves the minimum in (10.110)), we have

∥σ − σ0
π∥2 = ∥σ∥2 + ∥σ0

π∥2 − 2σ⊺σ0
π

≥ ∥σ∥2 + ∥σ0
π∥2 − 2σ⊺σ0 = ∥σ − σ0∥2

where we used rearrangement inequality [120] to get the inequality in the second
line. So,

∥σ − σ0∥2 ≤ NW2(µ̂σ, µ̂σ0)2 (10.112)
From (10.109), (10.111),(10.112), we have

Eσ,σ̃

[
∥σ − σ̃∥2

]
= Eσ

[
NW2(µ̂σ, µ̂σ0)2

]
(10.113)

Lemma 10.9 concludes the proof.

Lemma 10.9. Suppose σ ∈ RN is distributed according to pS(σ), and σ0

is generated with i.i.d. elements from µS. Let µ̂σ, µ̂σ0 be their empirical
distribution. We have:

lim
N→∞

Eσ

[
W2(µ̂σ, µ̂σ0)2

]
= 0

Proof. By triangle inequality, we have:

W2(µ̂σ, µ̂σ0) ≤ W2(µ̂σ, µS) +W2(µ̂σ0 , µS) (10.114)

From the weak convergence and convergence of second moment, assumptions
10.2 and 10.3 imply that the second moment of the empirical spectral distribu-
tion converges almost surely to the one of µS. Thus, by [119](Theorem 7.12),
the empirical singular value distribution in the Wasserstein-2 metric to µS.
Hence, the first term approaches 0 as N → ∞ almost surely.

By law of large numbers and since the support of µS is bounded, the second
term also converges 0 as N → ∞. Therefore, we have W2(µ̂σ, µ̂σ0) → 0 almost
surely. Consequently, we have that W2(µ̂σ, µ̂σ0)2 → 0 almost surely.

One can see that:

W2(µ̂σ, µ̂σ0)2 ≤ 2

N

∑
σ2
i +

2

N

∑
σ0
i
2

≤ 2m
(2)
µ̂σ

+ 2C2
2

(10.115)

with m(2)
µ̂σ

the second moment of µ̂σ which is almost surely bounded by assump-
tion. Therefore, the result follows by using dominated convergence theorem.





Extensive-Rank Matrix
Factorization 11
In this chapter, we consider the extensive-rank matrix factorization (MF)
problem. We approach the problem from a Bayesian perspective and assume
that an observation or data matrix

Y =
√
κST +Z

is given to a statistician who knows the prior distributions of S and T as
well as the prior of the additive noise matrix Z and the SNR κ > 0. The
task of the statistician is to construct estimators ΞS(·), ΞT (·) for the matrix
factors S, T , that ideally, minimize the average MSE E∥S − ΞS(Y )∥2F and
E∥T −ΞT (Y )∥2F (the expectation is w.r.t S,T ,Z). We consider priors which
are rotation invariant for all three matrices S, T , Z and for S we furthermore
impose that it is square and symmetric. We look at the asymptotic regime
where all matrix dimensions and ranks tend to infinity at the same speed.

We propose:

• an explicit RIE to estimate S, which requires the knowledge of the
priors of both S,T and of the noise Z (see (11.6)). Moreover, under the
assumption that S is positive-semi-definite, a sub-optimal RIE can be
derived which does not require any prior on S (see (11.9)).

• an explicit RIE to estimate T (see (11.11)), which requires the knowledge
of the priors of the noise Z and S only (the prior of Y is not required).

• combined with the singular value decomposition (SVD) of the observation
matrix, our explicit RIEs provide a spectral algorithm to reconstruct
both factors S and T .

Content of this chapter was presented in [56] F. Pourkamali and N. Macris, “Bayesian
extensive-rank matrix factorization with rotational invariant priors,” in Thirty-seventh
Conference on Neural Information Processing Systems, 2023.

209
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11.1 Matrix Factorization Model and Rotation
Invariant Estimators

11.1.1 Matrix Factorization Model

Let S = S⊺ ∈ RN×N a symmetric matrix distributed according to a rotationally
invariant prior PS(S), i.e., for any orthogonal matrix O ∈ RN×N we have
PS(OSO⊺) = PS(S). Let also T ∈ RN×M be distributed according to a
bi-rotationally invariant prior PT (T ), i.e. for any orthogonal matrices U ∈
RN×N ,V ∈ RM×M we have PT (UTV ⊺) = PT (T ). We observe the data matrix
Y ∈ RN×M ,

Y =
√
κST +Z (11.1)

where Z ∈ RN×M is also bi-rotationally invariant distributed, and κ ∈ R+ is
proportional to the signal-to-noise-ratio (SNR). The goal is to recover both
factors S and T from the data matrix Y . For definiteness, we consider the
regime M ≥ N with aspect ratio N/M → α ∈ (0, 1] as N → ∞. The case
of α > 1 can be analyzed in the same manner and is presented in appendix
11.E. Furthermore, we assume that the entries of S,T and Z are of the order
O(1/

√
N). This scaling is such that the eigenvalues of S and singular values of

T ,Z and Y are of the order O(1) as N → ∞.

Assumption 11.1. The empirical eigenvalue distribution of S converge weakly
to measure ρS, and the ESD of T ,Z converge weakly to measures µT , µZ with
bounded support on the real line. Moreover, these measures are known to the
statistician. He can deduce (in principle) these measures from the priors on
S,T ,Z.

Remark 11.1. In a general formulation of matrix factorization the hidden
matrices have dimensions S ∈ RN×H ,T ∈ RH×M , and in the Bayesian
framework with bi-rotational invariant priors for both factors, the optimal
estimators are trivially the zero matrix. Indeed, from bi-rotational invari-
ance we have PS(−S) = PS(S), PT (−T ) = PT (T ), which implies that the
Bayesian estimate is zero. Here, by imposing that S ∈ RN×N is symmetric
and PS(OSO⊺) = PS(S), we can break this symmetry and find non-trivial esti-
mators. This is due to the fact that the map S → −S cannot be realized as a
(real) orthogonal transformation, so PS(−S) = PS(S) does not hold in general
(various examples are given in section 11.3 and appendices). Of course, if the
prior is even, e.g. Wigner ensemble, again the Bayesian posterior estimate is
trivially zero for both factors. As we will see our RIEs are consistent with these
observations.

Related literature and discussion

In extensive-rank regimes, when the rank grows like the matrix dimensions,
despite various attempts there is no solid theory of MF. One approach is
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based on Approximate Message Passing (AMP) methods developed in [40–42].
Despite acceptable performance in practical settings [44], as pointed out in [43]
the AMP algorithms developed in these works are (theoretically) sub-optimal.
Other approaches rooted in statistical physics have been considered in [43,45–47]
but have not led to explicit reconstructions of matrix factors or algorithms.
A practical probabilistic approach to MF problem is based on variational
Bayesian approximations [137–139], in which one tries to approximate the
posterior distribution with proper distribution. In [140] it is shown that under
Gaussian priors, the solution to the MF problem is a reweighted SVD of the
observation matrix. We point out here that these estimators can be seen as
a RIE and therefore there seems to be a rather close relation between the
RIE studied here and the variational Bayesian approach. This also suggests
that adapting RIEs to real data is an interesting direction for future research.
Finally, let us also mention optimization approaches where one constructs
estimators by following a gradient flow (or gradient descent) trajectory of a
training loss of the type ∥Y − ST ∥2F + reg. term (see [141], [142] for analysis
in rotation invariant models). Benchmarking these various other algorithmic
approaches against our explicit RIEs (conjectured to be optimal) is outside the
scope of this work and is left for future work.

Constraints such as sparsity or non-negativity of the matrix entries which
have important applications [38] are not covered by our theory. Despite this
drawback, we believe that the proposed estimators are important both for
theoretical and practical purposes. Even in non-rotation invariant problems
our explicit RIEs may serve as sub-optimal estimators, and as we show in an
example they can be used as a "warmed-up" spectral initialization for more
efficient algorithms (see for example [23,24] for related ideas in other contexts).
The methodology developed here may open up the way to further analysis in
inference and learning problems perhaps also in the context of neural networks
where extensive rank weight matrices must be estimated.

11.1.2 Rotation Invariant Estimators

To recover matrices S,T from Y , we consider two denoising problems. One
is recovering S by treating both T ,Z as "noise" matrices, and the other is
estimating T by treating S,Z as "noise". As will become clear the procedure
is not iterative, and the two denoising problems are solved independently and
simultaneously. In the following, for each of these two problems, we introduce
two rotation invariant classes of estimators and discuss their optimum Oracle
estimators. We then provide an explicit construction and algorithm for RIEs
which we conjecture have the optimum performance of Oracle estimators in
the large N limit.
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RIE class for S

Consider the SVD of Y = UYΓV
⊺
Y , where UY ∈ RN×N , VY ∈ RM×M are

orthogonal, and Γ ∈ RN×M is a diagonal matrix with singular values of Y
on its diagonal,

(
γi
)
1≤i≤N

. A rotational invariant estimator for S is denoted
ΞS(Y ), and is constructed as:

ΞS(Y ) = UY diag(ξs1, . . . , ξsN)U
⊺
Y (11.2)

where ξs1, . . . , ξsN are the eigenvalues of the estimator.
First, we derive an Oracle estimator by minimizing the squared error

1
N

∥∥S −ΞS(Y )
∥∥2

F
for a given instance, over the RIE class or equivalently over

the choice of the eigenvalues
(
ξsi

)
1≤i≤N

. Let the eigen-decomposition of S be
S =

∑N
i=1 λi sis

⊺
i with si ∈ RN eigenvectors of S. The error can be expanded

as:

1

N

∥∥S −ΞS(Y )
∥∥2

F
=

1

N

N∑
i=1

λ2i +
1

N

N∑
i=1

ξs
2
i −

2

N

N∑
i=1

ξsi

N∑
j=1

λj
(
u⊺

i sj
)2

where ui’s are columns of UY . Minimizing over ξsi’s, we find the optimum
among the RIE class:

Ξ∗
S(Y ) =

N∑
i=1

ξ∗s i uiu
⊺
i , ξ∗s i =

N∑
j=1

λj
(
u⊺

i sj
)2

= u⊺
iSui (11.3)

Expression (11.3) defines the Oracle estimator which requires the knowledge
of signal matrix S. Surprisingly, in the large N limit, the optimal eigenvalues(
ξ∗s i

)
1≤i≤N

can be computed from the observation matrix and knowledge of
the measures ρS, µT , µZ . In the next section, we show that this leads to an
explicitly computable (or algorithmic) RIE, which we conjecture to be optimal
as N → ∞, in the sense that its performance matches the one of the Oracle
estimator.

Now we remark that the Oracle estimator is not only optimal within the
rotation invariant class but is also Bayesian optimal. From the Bayesian
estimation point of view, one wishes to minimize the average mean squared
error (MSE) MSEŜ ≡ 1

N
E
∥∥S− Ŝ(Y )

∥∥2

F
, where the expectation is over S,T ,Z,

and Ŝ(Y ) is an estimator of S. The MSE is minimized for Ŝ∗(Y ) = E[S|Y ]
which is the posterior mean. Therefore, the posterior mean estimator has
the minimum MSE (MMSE) among all possible estimators, in particular
MSEŜ∗ ≤ MSEΞ∗

S
for any N . In appendix 11.A.1, we show that, for rotational

invariant priors, the posterior mean estimator is inside the RIE class. Thus,
since Ξ∗

S(Y ) is optimum among the RIE class MSEΞ∗
S
≤ MSEŜ∗ . Therefore,

we conclude that the Oracle estimator (11.3) is Bayesian optimal in the sense
that MSEΞ∗

S
= MSEŜ∗ = MMSE.
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RIE class for T

Estimators for T from the rotation invariant class are denoted ΞT (Y ), and are
constructed as:

ΞT (Y ) = UY

[
diag(ξt1, . . . , ξtN) 0N×(M−N)

]
V ⊺

Y (11.4)

where ξt1, . . . , ξtN are the singular values of the estimator.

Let the SVD of T be T =
∑N

i=1 σi t
(l)
i t

(r)
i

⊺
with t

(l)
i ∈ RN , t

(r)
i ∈ RM the left

and right singular vectors of T . To derive an Oracle estimator, we proceed as
above. Expanding the error, we have:

1

N

∥∥T −ΞT (Y )
∥∥2

F
=

1

N

N∑
i=1

σ2
i +

1

N

N∑
i=1

ξt
2
i −

2

N

N∑
i=1

ξti

N∑
j=1

σj
(
u⊺

i t
(l)
j

)(
v⊺
i t

(r)
j

)

where vi’s are columns of VY . Minimizing over ξti’s, we find the optimum
among the RIE class:

Ξ∗
T (Y ) =

N∑
i=1

ξ∗t i uiv
⊺
i , ξ∗t i =

N∑
j=1

σj
(
u⊺

i t
(l)
j

)(
v⊺
i t

(r)
j

)
= u⊺

iTvi (11.5)

Expression (11.5) defines the Oracle estimator which requires the knowledge
of signal matrix T . Like for the case of S, in the large N limit we can
derive the optimal singular values

(
ξ∗t i

)
1≤i≤N

in terms of the singular values
of observation matrix and knowledge of the measures ρS, µZ . This leads to an
explicitly computable (or algorithmic) RIE, which is conjectured to be optimal as
N → ∞, in the sense that it has the same performance as the Oracle estimator.
Note that unlike the estimator for S, we do not need the knowledge of µT .

In appendix 11.A.2, we show that for bi-rotationally invariant priors the
posterior mean estimator T̂ ∗(Y ) = E[T |Y ] belongs to the RIE class, which
(by similar arguments to the case of S) implies that the Oracle estimator (11.5)
is Bayesian optimal.

11.2 Algorithmic RIEs for the Matrix Factors

In this section, we present our explicit RIEs for S,T and the corresponding
algorithm. We conjecture that their performance matches the one of Oracles
estimators in the large N limit and they are therefore Bayesian optimal in this
limit.
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11.2.1 Explicit RIE for S

The RIE for S is constructed as Ξ̂∗
S(Y ) =

∑N
i=1 ξ̂

∗
s iuiu

⊺
i with eigenvalues(

ξ̂∗s i
)
1≤i≤N

:

ξ̂∗s i =
1

2κπµ̄Y (γi)
Im lim

z→γi−i0+

{
1

ζ3

[
GρS

(√z − ζ1
κζ3

)
+ GρS

(
−
√
z − ζ1
κζ3

)]}
(11.6)

where γi is the i-th singular value of Y , µ̄Y is the symmetrized limiting ESD
of Y , and

ζ1 =
1

Gµ̄Y
(z)

C(α)
µZ

(
Gµ̄Y

(z)
[
αGµ̄Y

(z) +
1− α

z

])
(11.7)

and ζ3 satisfies 1:

(z − ζ1)Gµ̄Y
(z)− 1 = C(α)

µT

( 1

ζ3

[
αGµ̄Y

(z) +
1− α

z

][
(z − ζ1)Gµ̄Y

(z)− 1
])

(11.8)

Remark 11.2. If ρS is a symmetric measure, ρS(x) = ρS(−x), then GρS(−z) =
−GρS(z). This implies that the optimal eigenvalues

(
ξ̂∗s i

)
1≤i≤N

in (11.6) are all

zero, and Ξ̂∗
S(Y ) = 0, see figure 11.4.1.

An estimator for S2

It is interesting to note that we can construct a RIE for S2 as Ξ̂∗
S2(Y ) =∑N

i=1 ξ̂
∗
s2 i
uiu

⊺
i with eigenvalues

(
ξ̂∗s2 i

)
1≤i≤N

:

ξ̂∗s2 i =
1

κ

1

πµ̄Y (γi)
Im lim

z→γi−i0+

z − ζ1
ζ3

Gµ̄Y
(z)− 1

ζ3
(11.9)

with ζ1, ζ3 as in (11.7), (11.8). Note that, ζ1, ζ3 can be evaluated using the
observation matrix and the knowledge of µT , µZ , and therefore this time the
statistician does not need to know the prior of S. Furthermore, assuming that
S is positive semi-definite (PSD), we can construct a sub-optimal RIE for S

by using
√
ξ̂∗s2 i for the eigenvalues of the estimator.

Case of Gaussian T ,Z

If T ,Z have i.i.d. Gaussian entries with variance 1/N, then C(α)
µT (z) = C(α)

µZ (z) =
z/α. Consequently, ζ1, ζ3 can easily be computed to be ζ1 = ζ3 = Gµ̄Y

(z) +
(1−α)/(αz), thus the estimator (11.6) can be evaluated from the observation
matrix. In particular, the estimator (11.9) simplifies to:

ξ̂∗s2 i =
1

κ

[
− 1 +

1

α
(
π2µ̄Y (γi)2 +

(
πH[µ̄Y ](γi) +

1−α
αγi

)2)
]

(11.10)

1ζ1, ζ3 are the only parameters which appear in the final estimator. However, in derivation
of the RIE, we have defined other parameters which do not appear in the final estimator and
we omit them here.
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11.2.2 Explicit RIE for T

Our explicit RIE for T is constructed as Ξ̂∗
T (Y ) =

∑N
i=1 ξ̂

∗
t iuiv

⊺
i with singular

values
(
ξ̂∗t i

)
1≤i≤N

:

ξ̂∗t i =
1√
κ

1

πµ̄Y (γi)
Im lim

z→γi−i0+
q4 (11.11)

where γi is the i-th singular value of Y , and q4 is the solution to the following
system of equations 2:


β1 =

C(α)
µZ

(q1q2)

q1
+ 1

2

√
q3
q1

(
RρS

(
q4 +

√
q1q3

)
−RρS

(
q4 −√

q1q3
))

β4 =
1
2

(
RρS

(
q4 +

√
q1q3

)
+RρS

(
q4 −√

q1q3
))

q1 = Gµ̄Y
(z), q2 = αGµ̄Y

(z) + (1− α)1
z

q3 =
(z−β1)2

β2
4

Gµ̄Y
(z)− z−β1

β2
4
, q4 =

z−β1

β4
Gµ̄Y

(z)− 1
β4

(11.12)

Similarly to the estimator derived for S, if ρS is a symmetric measure then the
optimal singular values for the estimator of T are all zero, see remark 11.5.

If S is a shifted Wigner matrix, i.e. S = F + cI with F = F ⊺ ∈ RN×N

having i.i.d. Gaussian entries with variance 1/N and c ̸= 0 a real number, then
RρS(z) = z + c. Moreover, if Z is Gaussian matrix with variance 1/N, then the
set of equations (11.12) simplifies to a great extent, and we can compute q4
analytically in terms of Gµ̄Y

(z), see appendix 11.C.4.

11.2.3 Algorithmic nature of the RIEs

The explicit RIEs (11.6) and (11.11) proposed in this section, provide spectral
algorithms to estimate the matrix factors from the data matrix (and the priors).
An essential ingredient that must be extracted from the data matrix is Gµ̄Y

(z).
This quantity can be approximated from the observation matrix using Cauchy
kernel method introduced in [67](see section 19.5.2), from which µ̄Y (.) can
be approximated using (5.5). Therefore, given an observation matrix Y , the
spectral algorithm proceeds as follows:

1. Compute the SVD of Y .

2. Approximate Gµ̄Y
(z) from the singular values of Y .

3. Construct the RIEs for S,T as proposed in paragraphs 11.2.1, 11.2.2.

2Like the case for S, we omit some of the parameters which do not appear in the final
estimator.
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Figure 11.3.1: MSE of estimating S. MSE is normalized by the norm of the signal,
∥S∥2F. S is a Wishart matrix with aspect ratio 1/4, S = HH⊺ with H ∈ RN×4N having
i.i.d. Gaussian entries of variance 1/N. Both T and Z are N ×M matrices with i.i.d.
Gaussian entries of variance 1/N. RIE is applied to N = 2000,M = 4000, and the results
are averaged over 10 runs (error bars are invisible).

11.3 Numerical Results

11.3.1 Performance of RIE for S

We consider the case where T ,Z both have i.i.d. Gaussian entries of variance
1/N, and S is a Wishart matrix, S = HH⊺ with H ∈ RN×4N having i.i.d.
Gaussian entries of variance 1/N. For various SNRs, we examine the performance
of two proposed estimators, the RIE (11.6), and the square-root of the estimator
(11.9) (since S is PSD), which is sub-optimal. In figure 11.3.1, the MSEs of
these algorithmic estimators are compared with the one of Oracle estimator
(11.3). We see that the average performance of the algorithmic RIE Ξ̂∗

S(Y ) is
very close to the (optimal) Oracle estimator Ξ∗

S(Y ) (relative errors are small
and provided in the appendices) and we believe that the slight mismatch is due
to the numerical approximations and finite-size effects. Note that, although
the estimator

√
Ξ̂∗

X2(Y ) is sub-optimal, it does not use any prior knowledge of
S. For more examples, details of the numerical experiments and the relative
error of the estimators, we refer to appendix 11.B.3.

11.3.2 Performance of RIE for T

We consider the case where Z has i.i.d. Gaussian entries of variance 1/N, and S
is a shifted Wigner matrix with c = 3. Matrix T is constructed as T = UTΣV ⊺

T

with UT ∈ RN×N ,VT ∈ RM×M are Haar distributed, and the singular values
are generated independently from the uniform distribution on [1, 3]. MSEs of
the RIE (11.11) and the Oracle estimator (11.5) are illustrated in figure 11.3.2.
We see that the performance of the algorithmic RIE Ξ̂∗

T (Y ) is very close to
the optimal estimator Ξ∗

T (Y ).

Non-rotational invariant prior In another example, which we omit here,
with the same settings for S,Z, we consider the case where T is a sparse
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Figure 11.3.2: MSE of estimating T . MSE is normalized by the norm of the signal,
∥T ∥2F. T has uniform spectral density, U

(
[1, 3]

)
. S is a shifted Wigner matrix with c = 3,

and Z is a N ×M matrix with i.i.d. Gaussian entries of variance 1/N. RIE is applied to
N = 2000,M = 4000, and the results are averaged over 10 runs (error bars are invisible).

matrix with entries distributed according to Bernoulli-Rademacher prior. The
RIE is not optimal in this setting (since the prior is not bi-rotational invariant),
however applying a simple thresholding function on the matrix constructed by
RIE yields an estimate with lower MSE. This observation suggests that for the
case of general priors, the RIEs can provide a spectral initialization for more
efficient estimators. For more details and examples, see appendix 11.C.4.

11.3.3 Comparing RIEs of matrix factorization and
denoising

The proposed RIEs, namely (11.6) and (11.11), simplify greatly when the
matrices Z,T are Gaussian, and S is a shifted Wigner matrix. We perform
experiments with these priors, where for a given observation matrix Y , we look
at the RIEs of S, T for the MF problem, and simultaneously at the RIE of the
product ST as a whole for the denoising problem with formulas introduced
in [54] (which can also be obtained by taking S to be the identity matrix, see
appendix 11.C.3). Figure 11.3.3 illustrates these experiments. In particular
the MSE of the denoising-RIE matches well the one of the associated Oracle
estimator, and as expected is lower than the MSE of the product of MF-RIEs.

11.4 Derivation of the Explicit RIEs

In this section, we sketch the derivation of our explicit RIE for S. The RIE
for T is derived similarly, but requires more involved analysis and is presented
in appendix 11.C. For simplicity, we take the SNR parameter in (11.1) to be
1, so the model is Y = ST + Z. The optimal eigenvalues are constructed
as ξ∗s i =

∑N
j=1 λj

(
u⊺

i sj
)2. We assume that in the large N limit, ξ∗s i can be
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Figure 11.3.3: MSE of factorization problem. MSE is normalized by the norm of the
signal. S is a shifted Wigner matrix with c = 1, and both T and Z are N ×M matrices
with i.i.d. Gaussian entries of variance 1/N. RIE is applied to N = 2000,M = 4000. In
each run, the observation matrix Y is generated according to (11.1), and the factors S,
T are estimated simultaneously from Y . Results are averaged over 10 runs (error bars
are invisible).

approximated by its expectation and we introduce

ξ̂∗s i =
N∑
j=1

λj E
[(
u⊺

i sj
)2] (11.13)

where the expectation is over the (left) singular vectors of the observation matrix
Y . Therefore, to compute these eigenvalues, we need to find the mean squared
overlap E

[(
u⊺

i sj
)2] between eigenvectors of S and singular vectors of Y . In

what follows, we will see that (a rescaling of) this quantity can be expressed in
terms of i-th singular value of Y and j-th eigenvector of S (and the limiting
measures, indeed). Thus, we will use the notation OS(γi, λj) := NE

[(
u⊺

i sj
)2]

in the following. In the next section, we discuss how the overlap can be
computed from the resolvent of the "Hermitized" version of Y .

11.4.1 Relation between overlap and resolvent

Construct the matrix Y ∈ R(N+M)×(N+M) from the observation matrix:

Y =

[
0N×N Y
Y ⊺ 0M×M

]
By Theorem 7.3.3 in [71], Y has the following eigen-decomposition:

Y =

[
ÛY ÛY 0

V̂
(1)
Y −V̂

(1)
Y V

(2)
Y

] ΓN 0 0
0 −ΓN 0
0 0 0

[
ÛY ÛY 0

V̂
(1)
Y −V̂

(1)
Y V

(2)
Y

]⊺

(11.14)
with VY =

[
V

(1)
Y V

(2)
Y

]
in which V

(1)
Y ∈ RM×N . And, V̂

(1)
Y = 1√

2
V

(1)
Y ,

ÛY = 1√
2
UY . Eigenvalues of Y are signed singular values of Y , therefore the
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limiting eigenvalue distribution of Y (ignoring zero eigenvalues) is the same as
the limiting symmetrized singular value distribution of Y . Define the resolvent
of Y ,

GY(z) = (zI −Y)−1

We assume that as N → ∞ and z is not too close to the real axis, the
matrix GY(z) concentrates around its mean. Consequently, the value of GY(z)
becomes uncorrelated with the particular realization of Y . Specifically, as
N → ∞ , GY(z) converges to a deterministic matrix for any fixed value of
z ∈ C\R (independent of N). Denote the eigenvectors of Y by yi ∈ RM+N ,
i = 1, . . . ,M +N . For z = x− iϵ with x ∈ R and small ϵ, we have:

GY(x− iϵ) =
2N∑
k=1

x+ iϵ

(x− γ̃k)2 + ϵ2
yky

⊺
k +

x+ iϵ

x2 + ϵ2

N+M∑
k=2N+1

yky
⊺
k

where γ̃k are the eigenvalues of Y , which are in fact the (signed) singular values
of Y , γ̃1 = γ1, . . . , γ̃N = γN , γ̃N+1 = −γ1, . . . , γ̃2N = −γN .

Define the vectors s̃i = [s⊺i ,0M ]⊺ for si eigenvectors of S. We have

s̃⊺i
(
ImGY(x− iϵ)

)
s̃i =

2N∑
k=1

ϵ

(x− γ̃k)2 + ϵ2
(
s̃⊺iyk

)2
+

ϵ

x2 + ϵ2

N+M∑
k=2N+1

(
s̃⊺iyk

)2
(11.15)

Given the structure of yk’s in (11.14),
(
s̃⊺iyj

)2
= 1

2

(
s⊺iuj

)2
=

(
s̃⊺iyj+N

)2 for
1 ≤ j ≤ N , and the second sum in (11.15) is zero. We assume that in the limit
of large N this quantity concentrates on OS(γj, λi) and depends only on the
singular values and eigenvalue pairs (γj, λi). We thus have:

s̃⊺i
(
ImGY(x− iϵ)

)
s̃i

N→∞−−−→
∫
R

ϵ

(x− t)2 + ϵ2
OS(t, λi)µ̄Y (t) dt (11.16)

where the overlap function OS(t, λi) is extended (continuously) to arbitrary
values within the support of µ̄Y (the symmetrized limiting singular value
distribution of Y ) with the property that OS(t, λi) = OS(−t, λi) for t ∈
supp(µY ) . Sending ϵ→ 0, we find

s̃⊺i
(
ImGY(x− iϵ)

)
s̃i → πµ̄Y (x)OS(x, λi) (11.17)

This is a crucial relation as it allows us to study the overlap by means of
the resolvent of Y . In the next section, we establish a connection between
this resolvent and the signal S, which enables us to determine the optimal
eigenvalues values ξ̂∗s i in terms of the singular values of Y .

11.4.2 Resolvent relation

To derive the resolvent relation between Y and S, we fix the matrix S and
consider the model

Y = SU1TV ⊺
1 +U2ZV ⊺

2
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with T ,Z ∈ RN×M fixed matrices with limiting singular value distribution
µT , µZ , and U1,U2 ∈ RN×N ,V1,V2 ∈ RM×M independent random Haar ma-
trices. Indeed, if we substitute the SVD of the matrices T ,Z in model (11.1)
we find the latter model. Now, the average over the singular vectors of Y
(with fixed S) is equivalent to the average over the matrices U1,U2,V1,V2. In
appendix 11.B.1, using the Replica trick, we derive the following relation in
the limit N → ∞:〈

GY(z)
〉
=

[
ζ−1
3 GS2

(
z−ζ1
ζ3

)
0

0 (z − ζ2)
−1IM

]
(11.18)

with ζ1, ζ2, ζ3 satisfying set of equations (11.37). ⟨.⟩ is the expectation w.r.t.
the singular vectors of Y (or equivalently over U1,U2,V1,V2), and GS2 is
the resolvent of S2. As stated earlier, we assume that the resolvent GY(z)
concentrates in the limit N → ∞, therefore we drop the brackets in the
following computation.

11.4.3 Overlaps and optimal eigenvalues

From (11.17), (11.18), we find:

OS(γ, λi) ≈
1

πµ̄Y (γ)
Im lim

z→γ−i0+
s⊺i ζ

−1
3 GS2

(z − ζ1
ζ3

)
si

=
1

πµ̄Y (γ)
Im lim

z→γ−i0+

1

z − ζ1 − ζ3λ2i

(11.19)

In Fig. 11.4.1 we illustrate that the theoretical predictions (11.19) are in good
agreement with numerical simulations for a particular case of S a Wigner
matrix, and T ,Z with i.i.d. Gaussian entries.

Once we have the overlap, we can compute the optimal eigenvalues to be

ξ̂∗s i ≈
1

N

N∑
j=1

λjOS(γi, λj) ≈
1

πµ̄Y (γi)
Im lim

z→γi−i0+

1

N

N∑
j=1

λj
z − ζ1 − ζ3λ2j

(11.20)

With a bit of algebra, we find the estimator in (11.6) in the limit N → ∞, see
appendix 11.B.2.
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Figure 11.4.1: Comparison of the theoretical prediction (11.19) of the rescaled overlap
with the numerical simulation. The rescaled overlap between 200-th and 800-th left
singular vector of Y and the eigenvectors of S is illustrated. S = S⊺ ∈ RN×N has i.i.d.
Gaussian entries with variance 1/

√
N and is fixed. Both T and Z are N ×M matrices

with i.i.d. Gaussian entries of variance 1/N. The simulation results are average of 1000
experiments with fixed S, and N = 1000,M = 2000. Some of the simulation points are
dropped for clarity.
One can see that the overlap is an even function of eigenvalues λi, so the optimal
eigenvalues ξ∗s i =

∑N
j=1 λj

(
u⊺
i sj

)2 are all zero, as discussed in remark 11.2.





Appendix

11.A Posterior Mean Estimator is in the RIE
Class

In this section, we show that for rotational invariant priors, the posterior mean
estimator is inside the RIE class. For each of the estimators of S,T , we present
an equivalent definition of the RIE, then we show that posterior mean estimator
satisfies this definition.

11.A.1 S Estimator

Lemma 11.1. Given the observation matrix Y , let Ŝ(Y ) be an estimator
of S. Then Ŝ(Y ) is a RIE if and only if for any orthogonal matrices U ∈
RN×N ,V ∈ RM×M :

Ŝ(UY V ⊺) = UŜ(Y )U ⊺ (11.21)

Proof. If Ŝ(Y ) is a RIE, then the property (11.21) clearly follows from the
definition (11.2). Now we turn to the converse.

Suppose that an estimator Ŝ(Y ) satisfies (11.21). First, we show that if the
observation matrix is diagonal, then the estimator is also diagonal. Consider
the observation matrix to be Y diag =

[
diag(y1, . . . , yN) 0N×(M−N)

]
. Let

I−
k ∈ RN×N ,J−

k ∈ RM×M be diagonal matrices with diagonal entries all one
except the k-th entry which is −1. Note that for 1 ≤ k ≤ N , we have
Y diag = I−

k Y
diagJ−

k . Moreover, matrices I−
k ,J

−
k are indeed orthogonal. For

any 1 ≤ k ≤ N , from the property we have:

Ŝ(Y diag) = Ŝ(I−
k Y

diagJ−
k ) = I−

k Ŝ(Y
diag)I−

k (11.22)

This implies that all entries on the k-th row and k-th column of Ŝ(Y diag) are
zero except the k-th entry on the diagonal. Since this holds for any k, we
conclude that Ŝ(Y diag) is diagonal.

Now, for a given general observation matrix with SVD Y = UYΓV
⊺
Y , put

U = U ⊺
Y ,V = V ⊺

Y in the property (11.21). We have:

Ŝ(Γ) = U ⊺
Y Ŝ(Y )UY

223
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From the argument above, the matrix on the lhs is diagonal. Consequently,
the matrix U ⊺

Y Ŝ(Y )UY is diagonal which implies that the columns of UY are
eigenvectors of Ŝ(Y ). Therefore, Ŝ(Y ) is a RIE.

Now, we prove that the posterior mean estimator Ŝ∗(Y ) = E[S|Y ] has the
property (11.21), and therefore belongs to the RIE class. For simplicity, we
drop the SNR factor

√
κ. For any orthogonal matrices U ∈ RN×N ,V ∈ RM×M ,

we have:

E[S|UY V ⊺] =

∫
dT dXX PS(X)PT (T )PZ(UY V ⊺ −XT )∫
dT dX PS(X)PT (T )PZ(UY V ⊺ −XT )

(a)
=

∫
dT dXUXU ⊺ PS(X)PT (T )PZ(UY V ⊺ −UXU ⊺T )∫

dT dX PS(X)PT (T )PZ(UY V ⊺ −UXU ⊺T )

(b)
=

∫
dT dXUXU ⊺ PS(X)PT (T )PZ(UY V ⊺ −UXU ⊺UTV ⊺)∫

dT dX PS(X)PT (T )PZ(UY V ⊺ −UXU ⊺UTV ⊺)

(c)
= U

{∫
dT dXX PS(X)PT (T )PZ(Y −XT )∫
dT dX PS(X)PT (T )PZ(Y −XT )

}
U ⊺

= UE[S|Y ]U ⊺

where in (a), we changed variables X → UXU ⊺, used | detU | = 1, and
rotational invariance of PS, PS(X) = PS(UXU ⊺). In (b), we changed variables
T → UTV ⊺, used | detU | = | detV | = 1, and bi-rotational invariance of PT ,
PT (T ) = PT (UTV ⊺). In (c), we used the bi-rotational invariance property of
PZ , namely PZ(UY V ⊺ −UXTV ⊺) = PZ(Y −XT ).

11.A.2 T Estimator

Lemma 11.2. Given the observation matrix Y , let T̂ (Y ) be an estimator
for T . Then T̂ (Y ) is a RIE if and only if for any orthogonal matrices U ∈
RN×N ,V ∈ RM×M :

T̂ (UY V ⊺) = UT̂ (Y )V ⊺ (11.23)

Proof. If T̂ (Y ) is a RIE, then this property clearly follows from the definition
(11.4). Let us now show the converse.

Suppose that an estimator T̂ (Y ) satisfies (11.23). First, we show that
if the observation matrix is diagonal, then the estimator is also diagonal.
Consider the observation matrix to be Y diag =

[
diag(s1, . . . , sN) 0N×(M−N)

]
.

Let I−
k ∈ RN×N ,J−

k ∈ RM×M be diagonal matrices with diagonal entries all
one except the k-th entry which is −1. Note that for 1 ≤ k ≤ N , we have
Y diag = I−

k Y
diagJ−

k . Moreover, matrices I−
k ,J

−
k are indeed orthogonal. For

any 1 ≤ k ≤ N , from the property we have:

T̂ (Y diag) = T̂ (I−
k Y

diagJ−
k ) = I−

k T̂ (Y diag)J−
k (11.24)

This implies that all entries on the k-th row and k-th column of T̂ (Y diag) is
zero except the k-th entry on the diagonal. Since this holds for any k, we
conclude that T̂ (Y diag) is diagonal.
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Now, for a given general observation matrix Y = UYΓV
⊺
Y , put U =

U ⊺
Y ,V = V ⊺

Y in the property (11.23). We have:

T̂ (Γ) = U ⊺
Y T̂ (Y )VY

From the argument above, the matrix on the lhs is diagonal. Consequently, the
matrix U ⊺

Y T̂ (Y )VY is diagonal which implies that the columns of UY ,VY are
the left and right singular vectors of T̂ (Y ). Therefore, T̂ (Y ) is a RIE.

Now, we prove that the posterior mean estimator T̂ ∗(Y ) = E[T |Y ] has
the property (11.23), and it is inside the RIE class. For simplicity, we drop
the SNR factor

√
κ. For any orthogonal matrices U ∈ RN×N ,V ∈ RM×M , we

have:

E[T |UY V ⊺] =

∫
dS dXX PS(S)PT (X)PZ(UY V ⊺ − SX)∫
dS dX PS(S)PT (X)PZ(UY V ⊺ − SX)

(a)
=

∫
dS dXUXV ⊺ PS(S)PT (X)PZ(UY V ⊺ − SUXV ⊺)∫

dS dX PS(S)PT (X)PZ(UY V ⊺ − SUXV ⊺)

(b)
=

∫
dS dXUXV ⊺ PS(S)PT (X)PZ(UY V ⊺ −USU ⊺UXV ⊺)∫

dS dX PS(S)PT (X)PZ(UY V ⊺ −USU ⊺UXV ⊺)

(c)
= U

{∫
dS dXX PS(S)PT (X)PZ(Y − SX)∫
dS dX PS(S)PT (X)PZ(Y − SX)

}
V ⊺

= UE[T |Y ]V ⊺

where in (a), we changed variables X → UXV ⊺, used | detU | = | detV | = 1,
and bi-rotational invariance of PT , PT (X) = PT (UXV ⊺). In (b), we changed
variables S → USU ⊺, used | detU | = 1, and rotational invariance of PS,
PS(S) = PS(USU ⊺). In (c), we used the bi-rotational invariance property of
PZ , namely PZ(UY V ⊺ −USXV ⊺) = PZ(Y − SX).

11.B Derivation of the RIE for S

In this section, we consider estimating S, and treat both T and Z as noise.
We consider S to be fixed, and the observation model:

Y = SU1TV ⊺
1 +U2ZV ⊺

2 (11.25)

where T ,Z ∈ RN×M are fixed matrices with limiting singular value distribution
µT , µZ , and U1,U2 ∈ RN×N ,V1,V2 ∈ RM×M are independent random Haar
matrices.

Construct the hermitization Y ∈ R(N+M)×(N+M) from Y as

Y =

[
0N×N Y
Y ⊺ 0M×M

]
For simplicity of notation, we use W ≡ SU1TV ⊺

1 , W ∈ R(N+M)×(N+M) the
hermitization of W , and Z̃ denotes the hermitization of the matrix U2ZV ⊺

2 .



226 Extensive-Rank Matrix Factorization

11.B.1 Resolvent relation

We want to find a relation between G(z) ≡ GY(z), and the signal matrix S.
We have

⟨Gij(z)⟩ = lim
n→∞

∫ (N+M∏
k=1

n∏
τ=1

dη
(τ)
k

)
η
(1)
i η

(1)
j

×
〈
exp

{
− 1

2

n∑
τ=1

η(τ)⊺(zI −Y)η(τ)
}〉

U1,U2,V1,V2

= lim
n→∞

∫ (N+M∏
k=1

n∏
τ=1

dη
(τ)
k

)
η
(1)
i η

(1)
j exp

{
− z

2

n∑
τ=1

η(τ)⊺η(τ)
}

×
〈
exp

{1
2

n∑
τ=1

η(τ)⊺Wη(τ)
}〉

U1,V1

〈
exp

{1
2

n∑
τ=1

η(τ)⊺Z̃η(τ)
}〉

U2,V2

(11.26)

Split each replica η(τ) into two vectors a(τ) ∈ RN , b(τ) ∈ RM , η(τ) =

[
a(τ)

b(τ)

]
.

The exponent in the first bracket in (11.26) can be written as:

η(τ)⊺Wη(τ) = a(τ)⊺SU1TV ⊺
1 b

(τ) + b(τ)
⊺
V1T

⊺U ⊺
1Sa

(τ)

= 2a(τ)⊺SU1TV ⊺
1 b

(τ)

= 2Tr b(τ)a(τ)⊺SU1TV ⊺
1

(11.27)

Using the formula for the rectangular spherical integral [64] (see (6.12)), we
find:〈

exp
{ n∑

τ=1

Tr b(τ)a(τ)⊺SU1TV ⊺
1

}〉
U1,V1

≈ exp
{N
2

n∑
τ=1

Q(α)
µT

( 1

NM
∥Sa(τ)∥2∥b(τ)∥2

)} (11.28)

with Q(α)
µT (x) =

∫ x

0

C(α)
µT

(t)

t
dt. In (11.28), we used that b(τ)a(τ)⊺S is a rank-one

matrix with non-zero singular value ∥b(τ)∥∥Sa(τ)∥.
Similarly, for the second bracket in (11.26) we can write:

η(τ)⊺Z̃η(τ) = a(τ)⊺U2ZV ⊺
2 b

(τ) + b(τ)
⊺
V2Z

⊺U ⊺
2a

(τ)

= 2a(τ)⊺U2ZV ⊺
2 b

(τ)

= 2Tr b(τ)a(τ)⊺U2ZV ⊺
2

(11.29)

which using the formula of rectangular spherical integrals, implies〈
exp

{ n∑
τ=1

Tr b(τ)a(τ)⊺U2ZV ⊺
2

}〉
U2,V2

≈ exp
{N
2

n∑
τ=1

Q(α)
µZ

( 1

NM
∥a(τ)∥2∥b(τ)∥2

)} (11.30)
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From (11.26), (11.28), (11.30), we find:

⟨Gij(z)⟩ = lim
n→∞

∫ (N+M∏
k=1

n∏
τ=1

dη
(τ)
k

)
η
(1)
i η

(1)
j

× exp

{
− 1

2

n∑
τ=1

z∥η(τ)∥2 −NQ(α)
µT

(∥Sa(τ)∥2∥b(τ)∥2
NM

)
−NQ(α)

µZ

(∥a(τ)∥2∥b(τ)∥2
NM

)}
(11.31)

Now, we introduce delta functions δ
(
p
(τ)
1 − ∥a(τ)∥2

N

)
, δ

(
p
(τ)
2 − ∥b(τ)∥2

M

)
, and δ

(
p
(τ)
3 −

∥Sa(τ)∥2
N

)
, and using them, the integral in (11.31) can be written as (for brevity

we drop the limit term):

⟨Gij(z)⟩ =
∫ (N+M∏

k=1

n∏
τ=1

dη
(τ)
k

)( n∏
τ=1

dp
(τ)
1 dp

(τ)
2 dp

(τ)
3

)
η
(1)
i η

(1)
j

×
n∏

τ=1

δ
(
p
(τ)
1 − ∥a(τ)∥2

N

)
δ
(
p
(τ)
2 − ∥b(τ)∥2

M

)
δ
(
p
(τ)
3 − ∥Sa(τ)∥2

N

)
× exp

{
− 1

2

n∑
τ=1

z∥η(τ)∥2 −NQ(α)
µT

(p
(τ)
2 p

(τ)
3 )−NQ(α)

µZ
(p

(τ)
1 p

(τ)
2 )

}
(11.32)

In the next step, we replace each delta with its Fourier transform, δ
(
pτ1 −

1
N
∥aτ∥2

)
∝

∫
dζτ1 exp

{
− N

2
ζτ1
(
pτ1 − 1

N
∥aτ∥2

)}
. After rearranging, we find:

⟨Gij(z)⟩ ∝
∫ ( n∏

τ=1

dp
(τ)
1 dp

(τ)
2 dp

(τ)
3 dζ

(τ)
1 dζ

(τ)
2 dζ

(τ)
3

)
× exp

{N
2

n∑
τ=1

Q(α)
µT

(p
(τ)
2 p

(τ)
3 ) +Q(α)

µZ
(p

(τ)
1 p

(τ)
2 )

− ζ
(τ)
1 p

(τ)
1 − 1

α
ζ
(τ)
2 p

(τ)
2 − ζ

(τ)
3 p

(τ)
3

}
×

∫ (N+M∏
k=1

n∏
τ=1

dη
(τ)
k

)
η
(1)
i η

(1)
j

× exp
{
− 1

2

n∑
τ=1

z∥η(τ)∥2 − ζ
(τ)
1 ∥a(τ)∥2

− ζ
(τ)
2 ∥b(τ)∥2 − ζ

(τ)
3 ∥Sa(τ)∥2

}
(11.33)
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The inner integral in (11.33) is a Gaussian integral, and can be written as:∫ (N+M∏
k=1

n∏
τ=1

dη
(τ)
k

)
η
(1)
i η

(1)
j

× exp

{
n∑

τ=1

−1

2
η(τ)⊺

[
(z − ζ

(τ)
1 )IN − ζ

(τ)
3 S2 0

0 (z − ζ
(τ)
2 )IM

]
η(τ)

}
(11.34)

Denote the matrix in the exponent by C
(τ)
S . Its determinant reads:

detC
(τ)
S = (z − ζ

(τ)
2 )M

N∏
k=1

(z − ζ
(τ)
1 − ζ

(τ)
3 λ2k)

where λk’s are eigenvalues of S. So replacing the formula for the Gaussian
integrals, (11.33) can be written as:

⟨Gij(z)⟩ ∝
∫ ( n∏

τ=1

dp
(τ)
1 dp

(τ)
2 dp

(τ)
3 dζ

(τ)
1 dζ

(τ)
2 dζ

(τ)
3

)(
C

(1)
S

−1
)
ij

× exp
{
− Nn

2
F S
0 (p1,p2,p3, ζ1, ζ2, ζ3)

}
(11.35)

with

F S
0 (p1,p2,p3, ζ1, ζ2, ζ3)

=
1

n

n∑
τ=1

[
1

N

N∑
k=1

ln(z − ζ
(τ)
1 − ζ

(τ)
3 λ2k) +

1

α
ln(z − ζ

(τ)
2 )

−Q(α)
µT

(p
(τ)
2 p

(τ)
3 )−Q(α)

µZ
(p

(τ)
1 p

(τ)
2 ) + ζ

(τ)
1 p

(τ)
1 +

1

α
ζ
(τ)
2 p

(τ)
2 + ζ

(τ)
3 p

(τ)
3

]
(11.36)

In the large N limit, the integral in (11.35) can be computed using the saddle-
points of the function F S

0 . In the evaluation of this integral, we use the replica
symmetric ansatz that assumes a saddle-point of the form:

∀τ ∈ {1, · · · , n} :

{
pτ1 = p1, pτ2 = p2, pτ3 = p3

ζτ1 = ζ1, ζτ2 = ζ2, ζτ3 = ζ3

The saddle point is a solution of the set of equations:
ζ∗1 =

C(α)
µZ

(p∗1p
∗
2)

p∗1
, ζ∗2 = α

p∗2

(
C(α)
µZ (p

∗
1p

∗
2) + C(α)

µT (p
∗
2p

∗
3)
)
, ζ∗3 =

C(α)
µT

(p∗2p
∗
3)

p∗3

p∗1 =
1
ζ∗3
GρS2

( z−ζ∗1
ζ∗3

)
, p∗2 =

1
z−ζ∗2

, p∗3 =
z−ζ∗1
ζ∗3

2 GρS2

( z−ζ∗1
ζ∗3

)
− 1

ζ∗3

(11.37)
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Now, since the relation (11.35) and the solutions (11.37) hold for arbitrary
indices i, j, we can state the relation in matrix form. The inverse of C∗

S
−1, and

the block structure of GY(z) are computed in sections 11.F. From (11.104),
(11.105) we have (for sufficiently large N):〈

GY(z)
〉
U1,U2,V1,V2

=

〈[
1
z
IN + 1

z
Y GY ⊺Y (z

2)Y ⊺ Y GY ⊺Y (z
2)

GY ⊺Y (z
2)Y ⊺ zGY ⊺Y (z

2)

]〉

=

[
1
ζ∗3
GS2

( z−ζ∗1
ζ∗3

)
0

0 1
z−ζ∗2

IM

] (11.38)

With this relation, we proceed to simplify the equations (11.37).
The normalized trace of the upper-left blocks of

〈
GY(z)

〉
U1,U2,V1,V2

is:

1

N

N∑
k=1

[1
z
+

1

z

γ2k
z2 − γ2k

]
=

1

z

1

N

N∑
k=1

[
1 +

γ2k
z2 − γ2k

]
= z

1

N

N∑
k=1

1

z2 − γ2k

=
1

2N

N∑
k=1

[ 1

z − γk
+

1

z + γk

]
= Gµ̄Y

(z)

(11.39)

and the normalized trace of the upper-left block in C∗
S
−1 is 1

ζ∗3
GρS2

( z−ζ∗1
ζ∗3

)
= p∗1.

Therefore, we have p∗1 = Gµ̄Y
(z).

The normalized trace of lower-right block of
〈
GY(z)

〉
U1,U2,V1,V2

reads:

1

M
z
[ N∑

k=1

1

z2 − γ2k
+ (M −N)

1

z2

]
=
N

M
Gµ̄Y

(z) +
M −N

M

1

z
= αGµ̄Y

(z) + (1− α)
1

z

(11.40)

and the normalized trace of the lower-right block in C∗
S
−1 is 1

z−ζ∗2
= p∗2.

Therefore, we have p∗2 = αGµ̄Y
(z) + (1 − α)1

z
. Moreover, we also have that

ζ∗2 = αz
zGµ̄Y

(z)−1

αzGµ̄Y
(z)+1−α

.
Therefore, the saddle point equations (11.37) can be rewritten in a simplified

form, which does not involve ρS2 , as:
ζ∗1 =

C(α)
µZ

(p∗1p
∗
2)

p∗1
, ζ∗2 = αz

zGµ̄Y
(z)−1

αzGµ̄Y
(z)+1−α

, ζ∗3 =
C(α)
µT

(p∗2p
∗
3)

p∗3

p∗1 = Gµ̄Y
(z), p∗2 = αGµ̄Y

(z) + (1− α)1
z
, p∗3 =

z−ζ∗1
ζ∗3

Gµ̄Y
(z)− 1

ζ∗3
(11.41)

Note that ζ∗1 , ζ∗2 can be computed from the observation matrix, and we only
need to find ζ∗3 satisfying the following equation:

(z− ζ∗1 )Gµ̄Y
(z)− 1 = C(α)

µT

( 1

ζ∗3

[
αGµ̄Y

(z)+
1− α

z

][
(z− ζ∗1 )Gµ̄Y

(z)− 1
])

(11.42)
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11.B.2 Overlaps and optimal eigenvalues

We restate the relation between the resolvent and the overlaps from the main
text (11.17). For s̃i = [s⊺i ,0M ]⊺ with si eigenvectors of S, we have:

s̃⊺i
(
ImGY(x− iϵ)

)
s̃i ≈ πµ̄Y (x)OS(x, λi) (11.43)

From (11.43), (11.38), we find:

OS(γ, λi) ≈
1

πµ̄Y (γ)
Im lim

z→γ−i0+
s⊺i ζ

∗
3
−1GS2

(z − ζ∗1
ζ∗3

)
si

=
1

πµ̄Y (γ)
Im lim

z→γ−i0+

1

z − ζ∗1 − ζ∗3λ
2
i

(11.44)

Once we have the overlap, we can compute the optimal eigenvalues from
(11.13) in section 11.4. Note that, until now we had absorbed

√
κ into S.

Therefore, we should use (11.44) with OS(γ,
√
κλi). This leads to:

ξ̂∗s i ≈
1

N

N∑
j=1

λjOS(γi,
√
κλj)

≈ 1

πµ̄Y (γi)
Im lim

z→γi−i0+

1

N

N∑
j=1

λj
z − ζ∗1 − ζ∗3κλ

2
j

=
1

πµ̄Y (γi)
Im lim

z→γi−i0+

1

κζ∗3

1

N

N∑
j=1

λj
z−ζ∗1
κζ∗3

− λ2j

=
1

κπµ̄Y (γi)
Im lim

z→γi−i0+

1

ζ∗3

(
1

2

1

N

N∑
j=1

1√
z−ζ∗1
κζ∗3

− λj
− 1

2

1

N

N∑
j=1

1√
z−ζ∗1
κζ∗3

+ λj

)

≈ 1

κπµ̄Y (γi)
Im lim

z→γi−i0+

{
1

2

1

ζ∗3
GρS

(√z − ζ∗1
κζ∗3

)
− 1

2

1

ζ∗3
Gρ−S

(√z − ζ∗1
κζ∗3

)}

=
1

2κπµ̄Y (γi)
Im lim

z→γi−i0+

{
1

ζ∗3

[
GρS

(√z − ζ∗1
κζ∗3

)
+ GρS

(
−
√
z − ζ∗1
κζ∗3

)]}
(11.45)

Estimating S2

The resolvent relation we have found in (11.38) is in terms of GS2 . Therefore,
like other RIEs in other problems [53, 54], we can express the estimator for S2

without any knowledge about ρS or ρS2 . One can see that, the optimal RIE
for S2 is constructed in the same way as for S with eigenvalues denoted by
ξ̂∗s2 i. To compute the optimal eigenvalues, we absorb

√
κ into S and we use the

exact expression in (11.44). In the end, we only need to divide by κ to find an
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estimator for the true S2.

ξ̂∗s2 i ≈
1

N

N∑
j=1

λ2jOS(γi, λj)

≈ 1

πµ̄Y (γi)
Im lim

z→γi−i0+

1

N

N∑
j=1

λ2j
z − ζ∗1 − ζ∗3λ

2
j

=
1

πµ̄Y (γi)
Im lim

z→γi−i0+

1

ζ∗3

1

N

N∑
j=1

λ2j
z−ζ∗1
ζ∗3

− λ2j

=
1

πµ̄Y (γi)
Im lim

z→γi−i0+
− 1

ζ∗3

1

N

N∑
j=1

z−ζ∗1
ζ∗3

− λ2j − z−ζ∗1
ζ∗3

z−ζ∗1
ζ∗3

− λ2j

=
1

πµ̄Y (γi)
Im lim

z→γi−i0+
− 1

ζ∗3

1

N

N∑
j=1

[
1− z − ζ∗1

ζ∗3

1
z−ζ∗1
ζ∗3

− λ2j

]
≈ 1

πµ̄Y (γi)
Im lim

z→γi−i0+
− 1

ζ∗3
+
z − ζ∗1
ζ∗3

2 GρS2

(z − ζ∗1
ζ∗3

)
(a)
=

1

πµ̄Y (γi)
Im lim

z→γi−i0+
p∗3

(b)
=

1

πµ̄Y (γi)
Im lim

z→γi−i0+

z − ζ∗1
ζ∗3

Gµ̄Y
(z)− 1

ζ∗3

(11.46)

where in (a) we used (11.37), and for (b) we used (11.41). Thus, the optimal
eigenvalues for S2 read:

ξ̂∗s2 i =
1

κ

1

πµ̄Y (γi)
Im lim

z→γi−i0+

z − ζ∗1
ζ∗3

Gµ̄Y
(z)− 1

ζ∗3
(11.47)

Note that the parameters ζ∗1 , ζ∗3 can be computed from (11.41), (11.42), without
the knowledge of ρS or ρS2 .

Remark 11.3. The main barrier to find an estimator for S is that the resolvent
relation (11.38) is in terms of GρS2 . Moreover, in the estimator for S, second
equality in (11.45), we have the sum

∑N
j=1

λj

z−ζ∗1−κζ∗3λ
2
j

which cannot be written
in terms of GρS2 .

Remark 11.4. If we add the assumption that the matrix S is positive semi-

definite, without any further knowledge on the prior, we can use
√
ξ̂∗s2 i for the

eigenvalues of ΞS(Y ). However, note that, this estimator is sub-optimal for S

as
√∑N

j=1 λ
2
j

(
u⊺

i sj
)2 ̸= ∑N

j=1 λj
(
u⊺

i sj
)2.

11.B.3 Numerical examples

In this section, we will illustrate the derived formulas (11.38), (11.44), and
(11.45) with numerical experiments.



232 Extensive-Rank Matrix Factorization

We consider matrices T ,Z ∈ RN×M to have i.i.d. Gaussian entries, so
C(α)
µT (z) = C(α)

µZ (z) = 1
α
z which leads to a simplification of saddle point equations

(11.41):{
ζ∗1 = 1

α
p∗2, ζ∗2 = αz

zGµ̄Y
(z)−1

αzGµ̄Y
(z)+1−α

, ζ∗3 = 1
α
p∗2

p∗1 = Gµ̄Y
(z), p∗2 = αGµ̄Y

(z) + (1− α)1
z
, p∗3 =

z−ζ∗1
ζ∗3

Gµ̄Y
(z)− 1

ζ∗3

(11.48)

Resolvent relation

We take κ = 1. In model (11.25), without loss of generality we can consider S
to be diagonal. In figures 11.B.1 and 11.B.2 respectively, we consider the S to
be a diagonal matrix obtained by taking the eigenvalues of a Wigner matrix
and a Wishart matrix respectively.

Note that µY and Gµ̄Y
(z) can be computed analytically using tools from

random matrix theory, but the computation is highly involved. In our exper-
iments, we use instead a numerical estimation of Gµ̄Y

(z) obtained from the
observation matrix with the help of a Cauchy kernel to compute the parameters
ζ∗1 , ζ

∗
3 (see section 5.1.3, and [67] for details on the Cauchy kernel method).
Unlike the simpler models [51] for which the fluctuations are derived to

be of the order 1/
√
N, based on our derivation we cannot assess the order of

fluctuations. However, from our numerics we observe that the fluctuations are
of the order o(N). Moreover, fluctuations near the edge points of density are
larger (in particular for the last row in both figures 11.B.1, 11.B.2), which is
due to the fact that the limiting measures have higher fluctuations on their
edge-points.

Another observation, from comparison of figures 11.B.1, 11.B.2, is that the
fluctuations for the first example are relatively larger than the second one.
One possible guess could be that this is due to the symmetry of ρS in the first
example. However based on more extensive numerical observations (which we
omit here) we speculate that this issue is in fact related to the existence of small
eigenvalues of S. In other words, if S has eigenvalue 0 or small eigenvalues, we
have higher fluctuations in the relation (11.43).

Overlaps

To illustrate the formula for the overlap (11.44), we fix the matrix S and run
experiments over various realization of the model (11.25). For each experiment,
we record the overlap of k-th left singular vector of Y and the eigenvectors
of S. To compute the theoretical prediction, we find ζ∗1 = ζ∗3 for z = γ̄k − i0+

where γ̄k is the average of k-th singular value of Y in the experiments.
To find ζ∗1 = ζ∗3 , we use the set of equations (11.37) which for T ,Z Gaussian

can be written as:
ζ∗1 = 1

α
p∗2, ζ∗2 = p∗1 + p∗3, ζ∗3 = 1

α
p∗2

p∗1 =
1
ζ∗1
GρS2

(
z
ζ∗1

− 1
)
, p∗2 =

1
z−ζ∗2

, p∗3 =
z−ζ∗1
ζ∗1

2 GρS2

(
z
ζ∗1

− 1
)
− 1

ζ∗1

(11.49)
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Figure 11.B.1: Illustration of (11.38). S is diagonal matrix from the eigenvalues
of a Wigner matrix and T ,Z are Gaussian matrices with N = 2000,M = 3000. The

empirical estimate of GY(z) (dashed blue line) is computed for z = γi − i
√

1
2N for

1 ≤ i ≤ N . Theoretical estimate (solid orange line) computed from the rhs of (11.38)
with parameters obtained from the generated matrix. Note that, the theoretical estimate
has also fluctuations because the parameters ζ∗1 , ζ

∗
3 are given by the numerical estimate

of Gµ̄Y (z).
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Figure 11.B.2: Illustration of (11.38).S is diagonal matrix from the eigenvalues of a
Wishart matrix with aspect ratio 1/2 and T ,Z are Gaussian matrices with N = 2000,M =

3000. The empirical estimate of GY(z) (dashed blue line) is computed for z = γi− i
√

1
2N

for 1 ≤ i ≤ N . The Theoretical estimate (solid orange line) is computed from the rhs of
(11.38) with parameters obtained from the generated matrix. Note that, the theoretical
estimate has also fluctuations because the parameters ζ∗1 , ζ

∗
3 are given by the numerical

estimate of Gµ̄Y (z).
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Now we proceed to simplify the solution above:

ζ∗2 = p∗1 + p∗3 =
z

ζ∗1
2GρS2

( z
ζ∗1

− 1
)
− 1

ζ∗1

p∗2 =
1

z − ζ∗2
=

ζ∗1
ζ∗1z − z

ζ∗1
GρS2

(
z
ζ∗1

− 1
)
+ 1

ζ∗1 =
1

α
p∗2 =⇒ ζ∗1z −

z

ζ∗1
GρS2

( z
ζ∗1

− 1
)
+ 1 =

1

α

⇒ GρS2

( z
ζ∗1

− 1
)
= ζ∗1

2 +
(
1− 1

α

)ζ∗1
z

⇒ z

ζ∗1
− 1 = G−1

ρS2

(
ζ∗1

2 +
(
1− 1

α

)ζ∗1
z

)
⇒ z

ζ∗1
− 1− 1

ζ∗1
2 +

(
1− 1

α

) ζ∗1
z

= RρS2

(
ζ∗1

2 +
(
1− 1

α

)ζ∗1
z

)
(11.50)

Thus, ζ∗1 is the solution to (11.50). For each example, we solve this equation
and compare the obtained theoretical overlap against the average over the
experiments.

Wigner S. Let S ∈ RN×N be a Wigner matrix, then RρS2 (z) =
1

1−z
. Solving

(11.50), we can compute the overlap using (11.44). In Fig. 11.B.3a, we compare
the theoretical computation with simulations for N = 1000,M = 2000. As in
previous cases µ̄Y (γ) is approximated using a Cauchy kernel [67].

Square root Wishart S. Let S ∈ RN×N be the square root of a Wishart
matrix S =

√
1
N
HH⊺ with H ∈ RN×N ′ having i.i.d. Gaussian entries. Then

RρS2 (z) = 1
α′

1
1−z

, α′ = N/N ′. Solving (11.50), we can compute the overlap
using (11.44). In Fig. 11.B.3b, we compare the theoretical computation with
simulations for N = 1000, N ′ = 4000,M = 2000.

RIE performance

In this section, we investigate the performance of our proposed estimators for S.
We compare performances of the optimal RIE (11.45) with the one of Oracle
estimator (11.3). Moreover, we illustrate the performance of the estimator for
S2 (11.46), and the sub-optimal estimator of S derived from it, see remark
11.4.
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Figure 11.B.3: Computation of the rescaled overlap. Both T and Z are N×M matrices
with i.i.d. Gaussian entries of variance 1/N , and aspect ratio N/M = 1/2. The simulation
results are averaged over 1000 experiments with fixed S, and N = 1000,M = 2000.
Some of the simulation points are dropped for clarity.

For T ,Z with Gaussian i.i.d. entries, (11.47) simplifies to:

ξ̂∗s2 i =
1

κ

1

πµ̄Y (γi)
Im lim

z→γi−i0+

z − ζ∗1
ζ∗3

Gµ̄Y
(z)− 1

ζ∗3

=
1

κ

1

πµ̄Y (γi)
Im lim

z→γi−i0+

z

ζ∗1
Gµ̄Y

(z)− Gµ̄Y
− 1

ζ∗1

=
1

κ

1

πµ̄Y (γi)
Im lim

z→γi−i0+

z

Gµ̄Y
(z) + 1−α

α
1
z

Gµ̄Y
(z)− Gµ̄Y

(z)− 1

Gµ̄Y
(z) + 1−α

α
1
z

=
1

κ

1

πµ̄Y (γi)
Im

{
γi

πH[µ̄Y ](γi) + πiµ̄Y (γi) +
1−α
α

1
γi

(
πH[µ̄Y ](γi) + πiµ̄Y (γi)

)
−

(
πH[µ̄Y ](γi) + πiµ̄Y (γi)

)
− 1

πH[µ̄Y ](γi) + πiµ̄Y (γi) +
1−α
α

1
γi

}
=

1

κ

1

πµ̄Y (γi)
πµ̄Y (γi)

(
− 1 +

1

α
(
π2µ̄Y (γi)2 +

(
πH[µ̄Y ](γi) +

−1+ 1
α

γi

)2)
)

=
1

κ

[
− 1 +

1

α
(
π2µ̄Y (γi)2 +

(
πH[µ̄Y ](γi) +

−1+ 1
α

γi

)2)
]

(11.51)

For our first example, we consider two priors for S:

Shifted Wigner S. We consider S = F + cI where F = F ⊺ ∈ RN×N has
i.i.d. entries with variance 1/N, and c ≠ 0 is a real number. Then, the spectrum
of S is a shifted version of the Wigner law

ρS(λ) =

√
4− (λ− c)2

2π
, for c− 2 < λ < c+ 2,
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and the Stieltjes transform reads:

GρS(z) =
z − c−

√
(z − 2− c)(z + 2− c)

2

Wishart S. Take S = 1
N
HH⊺ with H ∈ RN×N ′ having i.i.d. Gaussian

entries, with N/N ′ = α′ ≤ 1. Then, the spectrum of S is the renowned
Marchenko-Pastur distribution:

ρS(λ) =

√[
λ−

(
1√
α′ − 1

)2][( 1√
α′ + 1

)2 − λ
]

2πλ

for
(

1√
α′ − 1

)2
< λ <

(
1√
α′ + 1

)2, and the Stieltjes transform reads:

GρS(z) =

z −
(

1
α′ − 1

)
−

√[
z −

(
1√
α′ − 1

)2][
z −

(
1√
α′ + 1

)2]
2z

In Figure 11.B.4, the MSE of Oracle estimator, RIE (11.45), and
√
S2-RIE

is illustrated for shifted Wigner S with c = 3, and Wishart with aspect-ratio
α′ = 1/4. We see that the performance of RIE is close to the one of Oracle
estimator, which implies the optimality of the proposed estimator (11.45).

Moreover, we observe the sub-optimality of estimating S using
√

Ξ̂∗
S2(Y ).

Note that, in the low-SNR regime, the estimated eigenvalues ξ̂∗s2 i might be

negative which makes the estimator
√

Ξ̂∗
S2(Y ) undefined, so the MSE is not

depicted in this case.
In Figure 11.B.5, the MSE of estimating S2 is shown. We see that in the

high-SNR regimes the RIE (11.51) has the same performance as the Oracle
estimator.

Bernoulli spectral distribution. In this case, the matrix S is constructed
as S = USΛU ⊺

S with US a N × N orthogonal matrix distributed according
to Haar measure on orthogonal matrices, and Λ = diag(λ) where λ has i.i.d.
Bernoulli elements. Thus, ρS = pδ0 + (1− p)δ+1 for p ∈ (0, 1), and the Stieltjes
transform is:

GρS(z) = p
1

z
+ (1− p)

1

z − 1

For this prior, we have that S = S2, so both estimators Ξ̂∗
S(Y ) and Ξ̂∗

S2(Y )

should have the same performance. However, note that Ξ̂∗
S2(Y ) does not use

any knowledge of ρS. In Figure 11.B.6, the MSE is illustrated for these two
estimators for two sparsity parameter, p = 0.5 and 0.9. We observe that, except
for for the low-SNR regimes, both estimators have the same MSE. The poor
performance of Ξ̂∗

S2(Y ) in the low-SNR regimes might be due to the fact that,
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Figure 11.B.4: Estimating S. The MSE is normalized by the norm of the signal,
∥S∥2F. Both T and Z are N ×M matrices with i.i.d. Gaussian entries of variance 1/N ,
and aspect ratio N/M = 1/2. The RIE is applied to N = 2000,M = 4000, and the
results are averaged over 10 runs (error bars are invisible). Average relative error between
RIE Ξ̂∗

S(Y ) and Oracle estimator is also reported.

0 1 2 3 4 5

0.16

0.18

0.2

0.22

0.24
10.37%

2.46%

1.15%

0.71%
0.42% 0.46% 0.39% 0.36%

κ

M
SE

Oracle estimator, Ξ∗
S2(Y )

RIE, Ξ̂∗
S2(Y )

(a) Shifted Wigner, c = 3

0 1 2 3 4 5

0.16

0.18

0.2

0.22

0.24

0.26 2.0%

0.6%

0.37%

0.29%
0.3% 0.31% 0.31% 0.33%

κ

M
SE

Oracle estimator, Ξ∗
S2(Y )

RIE, Ξ̂∗
S2(Y )

(b) Wishart, α′ = 1/4

Figure 11.B.5: Estimating S2. The MSE is normalized by the norm of the signal,
∥S2∥2F. Both T and Z are N ×M matrices with i.i.d. Gaussian entries of variance 1/N ,
and aspect ratio N/M = 1/2. The RIE is applied to N = 2000,M = 4000, and the
results are averaged over 10 runs (error bars are invisible). Average relative error between
RIE Ξ̂∗

S(Y ) and Oracle estimator is also reported.
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Figure 11.B.6: Estimating S and S2 with Bernoulli spectral prior distribution. The
MSE is normalized by the norm of the signal, ∥S∥2F = ∥S2∥2F. Both T and Z are N ×M
matrices with i.i.d. Gaussian entries of variance 1/N , and aspect ratio N/M = 1/2. The
RIE is applied to N = 2000,M = 4000, and the results are averaged over 10 runs (error
bars are invisible). Average relative error between RIE Ξ̂∗

S(Y ) and Oracle estimator is
also reported.
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Figure 11.B.7: MSE of estimating S as a function of aspect-ratio α, prior on S is
shifted Wigner with c = 3, and κ = 5. MSE is normalized by the norm of the signal,
∥S∥2F. Both T and Z are N ×M matrices with i.i.d. Gaussian entries of variance 1/N .
The RIE is applied to N = 2000,M = 1/αN , and the results are averaged over 10 runs
(error bars are invisible). Average relative error between RIE Ξ̂∗

S(Y ) and Oracle estimator
is also reported.

some of the estimated eigenvalues ξ̂∗s2 i are negative although the true eigenvalue
is 0. This makes the estimation more difficult for the sparser prior, see Figure
11.B.6b. However, this problem is resolved in Ξ̂∗

S(Y ) by taking the knowledge
of GρS(z) into account.

Effect of aspect-ratio α. In Figure 11.B.7, we consider S to be shifted
Wigner with c = 3, and the MSE is depicted for various values of the aspect-ratio
α. As expected, as M increases (α decreases) and we have more observation or
more data samples, the estimation error decreases.
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11.C Derivation of the RIE for T

In this section, we present the derivation of the optimal RIE for T . For
simplicity, the SNR parameter in (11.1) is absorbed into T , so the model is
Y = ST +Z. Therefore, the final estimator should be divided by 1/√κ to give
an estimate of the original T .

The optimal singular values are constructed as ξ∗t i =
∑N

j=1 σj
(
u⊺

i t
(l)
j

)(
v⊺
i t

(r)
j

)
.

We assume that, for large N , ξ∗t i can be approximated by its expectation:

ξ̂∗t i ≈
N∑
j=1

σj E
[(
u⊺

i t
(l)
j

)(
v⊺
i t

(r)
j

)]
where the expectation is over the singular vectors of the observation matrix
Y . Therefore, to compute the optimal singular values, we need to find the
mean overlap E

[(
u⊺

i t
(l)
j

)(
v⊺
i t

(r)
j

)]
between singular vectors of T and singular

vectors of Y . In the following we will see that (a rescaling of) this quantity
can be expressed in terms of i-th singular value of Y and j-th singular value
of T (and the limiting measures, indeed). Thus, we will use the notation
OT (γi, σj) := NE

[(
u⊺

i t
(l)
j

)(
v⊺
i t

(r)
j

)]
in what follows. In the nest section, we

discuss how the overlap can be computed from the resolvent of the Hermitized
matrix of Y .

11.C.1 Relation between overlap and the resolvent

Construct the matrix Y ∈ R(N+M)×(N+M) from the observation matrix:

Y =

[
0N×N Y
Y ⊺ 0M×M

]
By Theorem 7.3.3 in [71], Y has the following eigen-decomposition:

Y =

[
ÛY ÛY 0

V̂
(1)
Y −V̂

(1)
Y V

(2)
Y

] ΓN 0 0
0 −ΓN 0
0 0 0

[
ÛY ÛY 0

V̂
(1)
Y −V̂

(1)
Y V

(2)
Y

]⊺

(11.52)
with VY =

[
V

(1)
Y V

(2)
Y

]
in which V

(1)
Y ∈ RM×N . And, V̂

(1)
Y = 1√

2
V

(1)
Y ,

ÛY = 1√
2
UY . Eigenvalues of Y are signed singular values of Y , therefore the

limiting eigenvalue distribution of Y (ignoring zero eigenvalues) is the same as
the limiting symmetrized singular value distribution of Y .

Define the resolvent of Y
GY(z) =

(
zI −Y

)−1

Denote the eigenvectors of Y by yi ∈ RM+N , i = 1, . . . ,M + N . For
z = x− iϵ with x ∈ R and ϵ≫ 1

N
, we have:

GY(x− iϵ) =
2N∑
k=1

x+ iϵ

(x− γ̃k)2 + ϵ2
yky

⊺
k +

x+ iϵ

x2 + ϵ2

N+M∑
k=2N+1

yky
⊺
k
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where γ̃k are the eigenvalues of Y , which are in fact the (signed) singular values
of Y , γ̃1 = γ1, . . . , γ̃N = γN , γ̃N+1 = −γ1, . . . , γ̃2N = −γN .

Define the vectors ri =
[
0N

t
(r)
i

]
, li =

[
t
(l)
i

0M

]
for t(r)i , t

(l)
i right/ left singular

vectors of T , we have

r⊺
i

(
ImGY(x− iϵ)

)
li =

2N∑
k=1

ϵ

(x− γ̃k)2 + ϵ2
(
r⊺
i yk

)(
l⊺i yk

)
+

x+ iϵ

x2 + ϵ2

N+M∑
k=2N+1

(
r⊺
i yk

)(
l⊺i yk

)
(11.53)

Given the structure of yk’s in (11.52), we have:

(
r⊺
i yk

)(
l⊺i yk

)
=


1
2

(
u⊺

kt
(l)
i

)(
v⊺
kt

(r)
i

)
for 1 ≤ k ≤ N

−1
2

(
u⊺

k−Nt
(l)
i

)(
v⊺
k−Nt

(r)
i

)
for N + 1 ≤ k ≤ 2N

0 for 2N + 1 ≤ k ≤ N +M

In the limit of large N, the latter quantity is also self-averaging, due to the fact
that as N → ∞, these overlaps exhibit asymptotic independence, enabling the
law of large numbers to be applied here. We can thus state that:

r⊺
i

(
ImGY(x− iϵ)

)
li

N→∞−−−→
∫
R

ϵ

(x− t)2 + ϵ2
OT (t, σi)µ̄Y (t) dt (11.54)

where the overlap function OT (t, σi) is extended (continuously) to arbitrary
values within the support of µ̄Y with the property that OT (−t, σi) = −OT (t, σi)
for t ∈ supp(µY ) . Sending ϵ→ 0, we find

r⊺
i

(
ImGY(x− iϵ)

)
li ≈ πµ̄Y (x)OT (x, σi) (11.55)

In the next section, we establish a connection between the resolvent GY(z)
and the signal T , which enables us to determine the overlap and consequently
the optimal singular values values ξ̂∗t i in terms of the singular values of the
observation matrix Y .

11.C.2 Resolvent relation for T

In this section, we consider estimating T , and treat both S and Z as noise.
We consider the model to be:

Y = OSO⊺T +UZV ⊺ (11.56)

where S = S⊺ ∈ RN×N ,Z ∈ RN×M are fixed matrices with limiting eigen-
value/singular value distribution ρS, µZ , and O,U ∈ RN×N ,V ∈ RM×M
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are independent random Haar matrices. For simplicity of notation, we use
W ≡ OSO⊺T , and W ∈ R(N+M)×(N+M) the hermitization of W . And Z̃
denotes the hermitization of the matrix UZV ⊺.

As in the case for S, we express the entries of G(z) ≡ GY(z) using Gaussian
integral representation, and after applying the replica trick, we find:

⟨Gij(z)⟩

= lim
n→∞

∫ (N+M∏
k=1

n∏
τ=1

dη
(τ)
k

)
η
(1)
i η

(1)
j

〈
exp

{
− 1

2

n∑
τ=1

η(τ)⊺(zI −Y)η(τ)
}〉

O,U ,V

= lim
n→∞

∫ (N+M∏
k=1

n∏
τ=1

dη
(τ)
k

)
η
(1)
i η

(1)
j exp

{
− z

2

n∑
τ=1

η(τ)⊺η(τ)
}

×
〈
exp

{1
2

n∑
τ=1

η(τ)⊺Wη(τ)
}〉

O

〈
exp

{1
2

n∑
τ=1

η(τ)⊺Z̃η(τ)
}〉

U ,V

(11.57)

Split each replica η(τ) into two vectors a(τ) ∈ RN , b(τ) ∈ RM , η(τ) =

[
a(τ)

b(τ)

]
.

The exponent in the first bracket in (11.57) can be written as :

η(τ)⊺Wη(τ) = a(τ)⊺OSO⊺Tb(τ) + b(τ)
⊺
T ⊺OSO⊺a(τ)

= TrOSO⊺
(
Tb(τ)a(τ)⊺ + a(τ)b(τ)

⊺
T ⊺︸ ︷︷ ︸

T̃ (τ)

) (11.58)

where T̃ (τ) is a symmetric N × N matrix with two non-zero eigenvalues
a(τ)⊺Tb(τ) ± ∥a(τ)∥∥Tb(τ)∥ by lemma 11.3.

Using the formula for the spherical integral [62] (see (6.4)), we find:

〈
exp

{1
2

n∑
τ=1

TrOSO⊺T̃ (τ)
}〉

O

≈ exp

{
N

2

n∑
τ=1

PρS

( 1

N

(
a(τ)⊺Tb(τ) + ∥a(τ)∥∥Tb(τ)∥

))
+ PρS

( 1

N

(
a(τ)⊺Tb(τ) − ∥a(τ)∥∥Tb(τ)∥

))}
(11.59)

By the same computation as previous section, for the second bracket we
have:

〈
exp

{ n∑
τ=1

Tr b(τ)a(τ)⊺UZV ⊺
}〉

U ,V
≈ exp

{N
2

n∑
τ=1

Q(α)
µZ

( 1

NM
∥a(τ)∥2∥b(τ)∥2

)}
(11.60)
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From (11.57), (11.59), (11.60), we find:

⟨Gij(z)⟩ = lim
n→∞

∫ (N+M∏
k=1

n∏
τ=1

dη
(τ)
k

)
η
(1)
i η

(1)
j

× exp

{
− 1

2

n∑
τ=1

[
z∥η(τ)∥2 −NQ(α)

µZ

( 1

NM
∥a(τ)∥2∥b(τ)∥2

)
−NPρS

( 1

N

(
a(τ)⊺Tb(τ) + ∥a(τ)∥∥Tb(τ)∥

))
−NPρS

( 1

N

(
a(τ)⊺Tb(τ) − ∥a(τ)∥∥Tb(τ)∥

))]}
(11.61)

Now, we introduce delta functions (for brevity we drop the limit term):

⟨Gij(z)⟩ =
∫ (N+M∏

k=1

n∏
τ=1

dη
(τ)
k

)( n∏
τ=1

dp
(τ)
1 dq

(τ)
2 dq

(τ)
3 dq

(τ)
4

)
η
(1)
i η

(1)
j

×
n∏

τ=1

δ
(
q
(τ)
1 − 1

N
∥a(τ)∥2

)
δ
(
q
(τ)
2 − 1

M
∥b(τ)∥2

)
× δ

(
q
(τ)
3 − 1

N
∥Tb(τ)∥2

)
δ
(
q
(τ)
4 − 1

N
a(τ)⊺Tb(τ)

)
× exp

{
− 1

2

n∑
τ=1

z∥η(τ)∥2 −NQ(α)
µZ

(q
(τ)
1 q

(τ)
2 )

−NPρS

(
q
(τ)
4 +

√
q
(τ)
1 q

(τ)
3

)
−NPρS

(
q
(τ)
4 −

√
q
(τ)
1 q

(τ)
3

)}
(11.62)

In the next step, we replace each delta with its Fourier transform. Note that
for the parameters q1, q2, q3 we use δ

(
qτ1 − 1

N
∥aτ∥2

)
∝

∫
dβτ

1 exp
{
− N

2
βτ
1

(
qτ1 −

1
N
∥aτ∥2

)}
, and for q4 we use δ

(
q
(τ)
4 − 1

N
a(τ)⊺Tb(τ)

)
∝

∫
dβτ

1 exp
{
−Nβτ

1

(
q
(τ)
4 −
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1
N
a(τ)⊺Tb(τ)

)}
. After rearranging, we find:

⟨Gij(z)⟩ ∝
∫ ( n∏

τ=1

dq
(τ)
1 dq

(τ)
2 dq

(τ)
3 dq

(τ)
4 dβ

(τ)
1 dβ

(τ)
2 dβ

(τ)
3 dβ

(τ)
4

)
× exp

{N
2

n∑
τ=1

Q(α)
µZ

(q
(τ)
1 q

(τ)
2 ) + PρS

(
q
(τ)
4 +

√
q
(τ)
1 q

(τ)
3

)
+ PρS

(
q
(τ)
4 −

√
q
(τ)
1 q

(τ)
3

)
− β

(τ)
1 q

(τ)
1 − 1

α
β
(τ)
2 q

(τ)
2 − β

(τ)
3 q

(τ)
3 − 2β

(τ)
4 q

(τ)
4

}
×

∫ (N+M∏
k=1

n∏
τ=1

dη
(τ)
k

)
η
(1)
i η

(1)
j exp

{
− 1

2

n∑
τ=1

z∥η(τ)∥ − β
(τ)
1 ∥a(τ)∥2 − β

(τ)
2 ∥b(τ)∥2

− β
(τ)
3 ∥Tb(τ)∥2 − 2β

(τ)
4 a(τ)⊺Tb(τ)

}
(11.63)

The inner integral is a Gaussian integral, and can be written as:∫ (N+M∏
k=1

n∏
τ=1

dη
(τ)
k

)
η
(1)
i η

(1)
j

× exp
{ n∑

τ=1

−1

2
η(τ)⊺

[
(z − β

(τ)
1 )IN −β(τ)

4 T

−β(τ)
4 T ⊺ (z − β

(τ)
2 )IM − β

(τ)
3 T ⊺T

]
η(τ)

}
(11.64)

Denote the matrix in the exponent by C
(τ)
T . Using the formula for determi-

nant of block matrices (see proposition 2.8.4 in [136]), we have::

detC
(τ)
T = det

[
(z − β

(τ)
1 )IN − β

(τ)
4

2
T
(
(z − β

(τ)
2 )IM − β

(τ)
3 T ⊺T

)−1
T ⊺

]
× det

[
(z − β

(τ)
2 )IM − β

(τ)
3 T ⊺T

]
=

N∏
k=1

[
z − β

(τ)
1 − β

(τ)
4

2 σ2
k

z − β
(τ)
2 − β

(τ)
3 σ2

k

] N∏
k=1

(
z − β

(τ)
2 − β

(τ)
3 σ2

k

) (
z − β

(τ)
2

)M−N

=
(
z − β

(τ)
2

)M−N
N∏
k=1

[
(z − β

(τ)
1 )(z − β

(τ)
2 − β

(τ)
3 σ2

k)− β
(τ)
4

2
σ2
k

]
=

(
z − β

(τ)
2

)M−N
N∏
k=1

[
(z − β

(τ)
1 )(z − β

(τ)
2 )−

(
β
(τ)
4

2
+ β

(τ)
3 (z − β

(τ)
1 )

)
σ2
k

]
where σk’s are the singular values of T . So computing the Gaussian integrals,
(11.63) can be written as:

⟨Gij(z)⟩ ∝
∫ ( n∏

τ=1

dq
(τ)
1 dq

(τ)
2 dq

(τ)
3 dq

(τ)
4 dβ

(τ)
1 dβ

(τ)
2 dβ

(τ)
3 dβ

(τ)
4

)(
C

(1)
T

−1)
ij

× exp
{
− Nn

2
F T
0 (q1, q2, q3, q4,β1,β2,β3,β4)

}
(11.65)
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with

F T
0 (q1, q2,q3, q4,β1,β2,β3,β4) =

1

n

n∑
τ=1

[( 1
α
− 1

)
ln(z − β

(τ)
2 )

+
1

N

N∑
k=1

ln
(
(z − β

(τ)
1 )(z − β

(τ)
2 )−

(
β
(τ)
4

2
+ β

(τ)
3 (z − β

(τ)
1 )

)
σ2
k

)
−Q(α)

µZ
(q

(τ)
1 q

(τ)
2 )− PρS

(
q
(τ)
4 +

√
q
(τ)
1 q

(τ)
3

)
− PρS

(
q
(τ)
4 −

√
q
(τ)
1 q

(τ)
3

)
+ β

(τ)
1 q

(τ)
1 +

1

α
β
(τ)
2 q

(τ)
2 + β

(τ)
3 q

(τ)
3 + 2β

(τ)
4 q

(τ)
4

]
(11.66)

We will evaluate the integral (11.63) using saddle-points of the function F T
0 .

From the replica symmetric ansatz at the saddle-point we have:

∀τ ∈ {1, · · · , n} :

{
qτ1 = q1, qτ2 = q2, qτ3 = q3, qτ4 = q4

βτ
1 = β1, βτ

2 = β2, βτ
3 = β3, βτ

4 = β4

Finally, we find the solution to be:

β∗
1 =

C(α)
µZ

(q∗1q
∗
2)

q∗1
+ 1

2

√
q∗3
q∗1

(
RρS

(
q∗4 +

√
q∗1q

∗
3

)
−RρS

(
q∗4 −

√
q∗1q

∗
3

))
β∗
2 = α

C(α)
µZ

(q∗1q
∗
2)

q∗2

β∗
3 = 1

2

√
q∗1
q∗3

(
RρS

(
q∗4 +

√
q∗1q

∗
3

)
−RρS

(
q∗4 −

√
q∗1q

∗
3

))
β∗
4 = 1

2

(
RρS

(
q∗4 +

√
q∗1q

∗
3

)
+RρS

(
q∗4 −

√
q∗1q

∗
3

))
q∗1 =

(z−β∗
2 )β

∗
4
2

Z2(z)2
GρT

(Z1(z)
Z2(z)

)
+

β∗
3

Z2(z)

q∗2 = α
z−β∗

1

Z2(z)
GρT

(Z1(z)
Z2(z)

)
+ 1−α

z−β∗
2

q∗3 =
(z−β∗

1 )Z1(z)

Z2(z)2
GρT

(Z1(z)
Z2(z)

)
− z−β∗

1

Z2(z)

q∗4 =
β∗
4Z1(z)

Z2(z)2
GρT

(Z1(z)
Z2(z)

)
− β∗

4

Z2(z)

(11.67)

with {
Z1(z) = (z − β∗

1)(z − β∗
2)

Z2(z) = β∗
4
2 + β∗

3(z − β∗
1)

where ρT is the limiting eigenvalue distribution of TT ⊺.
The relation (11.65) and the solutions (11.67) hold for arbitrary indices i, j,

so we can state the relation in the matrix form. Computing the inverse of C∗
T
−1

(see section 11.F), we have:〈
GY(z)

〉
O,U ,V

=

〈[
1
z
IN + 1

z
Y GY ⊺Y (z

2)Y ⊺ Y GY ⊺Y (z
2)

GY ⊺Y (z
2)Y ⊺ zGY ⊺Y (z

2)

]〉

=

[
1

z−β∗
1
IN +

β∗
4
2

(z−β∗
1 )Z2(z)

TGT ⊺T

(Z1(z)
Z2(z)

)
T ⊺ β∗

4

Z2(z)
TGT ⊺T

(Z1(z)
Z2(z)

)
β∗
4

Z2(z)
GT ⊺T

(Z1(z)
Z2(z)

)
T ⊺ z−β∗

1

Z2(z)
GT ⊺T

(Z1(z)
Z2(z)

) ]
(11.68)
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With this relation, we can further simplify the solution (11.67).
We start with comparing the trace of upper-left block in (11.68). The

normalized trace of the first block in
〈
GY(z)

〉
O,U ,V

is computed in (11.39) to
be Gµ̄Y

(z). The normalized trace of the upper-left block in C∗
T
−1 is:

1

N
Tr

[
(z − β∗

1)
−1IN +

β∗
4
2

(z − β∗
1)Z2(z)

TGT ⊺T

(Z1(z)

Z2(z)

)
T ⊺

]
=

1

N

1

z − β∗
1

N∑
k=1

[
1 +

β∗
4
2

Z2(z)

σ2
k

Z1(z)
Z2(z)

− σ2
k

]
=

1

N

1

z − β∗
1

N∑
k=1

[β∗
4
2Z1(z)

Z2
2(z)

1
Z1(z)
Z2(z)

− σ2
k

+ 1− β∗
4
2

Z2(z)

]
=

1

N

1

z − β∗
1

β∗
4
2Z1(z)

Z2
2(z)

N∑
k=1

1
Z1(z)
Z2(z)

− σ2
k

+
1

z − β∗
1

β∗
3(z − β∗

1)

Z2(z)

=
(z − β∗

2)β
∗
4
2

Z2(z)2
GρT

(Z1(z)

Z2(z)

)
+

β∗
3

Z2(z)

= q∗1

(11.69)

Thus, q∗1 = Gµ̄Y
(z).

The normalized trace of the lower-right block of
〈
GY(z)

〉
O,U ,V

is αGµ̄Y
(z)+

(1− α)1
z

(see (11.40)). The normalized trace of the lower-right block in C∗
T
−1

is:

1

M
Tr

[z − β∗
1

Z2(z)
GT ⊺T

(Z1(z)

Z2(z)

)]
=

1

M

z − β∗
1

Z2(z)

N∑
k=1

1
Z1(z)
Z2(z)

− σ2
k

+
M −N

M

z − β∗
1

Z2(z)

Z2(z)

Z1(z)

=
N

M

1

N

z − β∗
1

Z2(z)

N∑
k=1

1
Z1(z)
Z2(z)

− σ2
k

+
M −N

M

z − β∗
1

Z1(z)

= α
z − β∗

1

Z2(z)
GρT

(Z1(z)

Z2(z)

)
+

1− α

z − β∗
2

= q∗2

(11.70)

So, q∗2 = αGµ̄Y
(z) + (1− α)1

z
.

With a bit of algebra, we can express the parameters q∗3, q∗4 in terms of
q∗1, β

∗
1 , β

∗
4 :

q∗3 =
(z − β∗

1)
2

β∗
4
2 q∗1 −

z − β∗
1

β∗
4
2 , q∗4 =

z − β∗
1

β∗
4

q∗1 −
1

β∗
4

(11.71)
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Therefore, the solution can be written without involving GρT , as:

β∗
1 =

C(α)
µZ

(q∗1q
∗
2)

q∗1
+ 1

2

√
q∗3
q∗1

(
RρS

(
q∗4 +

√
q∗1q

∗
3

)
−RρS

(
q∗4 −

√
q∗1q

∗
3

))
β∗
2 = α

C(α)
µZ

(q∗1q
∗
2)

q∗2

β∗
3 = 1

2

√
q∗1
q∗3

(
RρS

(
q∗4 +

√
q∗1q

∗
3

)
−RρS

(
q∗4 −

√
q∗1q

∗
3

))
β∗
4 = 1

2

(
RρS

(
q∗4 +

√
q∗1q

∗
3

)
+RρS

(
q∗4 −

√
q∗1q

∗
3

))
q∗1 = Gµ̄Y

(z)

q∗2 = αGµ̄Y
(z) + (1− α)1

z

q∗3 =
(z−β∗

1 )
2

β∗
4
2 Gµ̄Y

(z)− z−β∗
1

β∗
4
2

q∗4 =
z−β∗

1

β∗
4
Gµ̄Y

(z)− 1
β∗
4

(11.72)

Remark 11.5. The simplifications in (11.71) are derived with the assumption
that β∗

4 ̸= 0. However, in the initial set of equations (11.67), if ρS is symmetric
measure then β∗

4 = q∗4 = 0 is a solution. If ρS is symmetric, then RρS(−z) =
−RρS(z), and plugging q∗4 = 0 in the expression for β∗

4 in (11.67), we find that
β∗
4 = 0.

11.C.3 Overlaps and the optimal singular values

From (11.55), (11.68), we find:

OT (γ, σi) ≈
1

πµ̄Y (γ)
Im lim

z→γ−i0+

β∗
4

Z2(z)
t
(r)
i

⊺
GT ⊺T

(Z1(z)

Z2(z)

)
T ⊺t

(l)
i

=
1

πµ̄Y (γ)
Im lim

z→γ−i0+
β∗
4

σi
Z1(z)− Z2(z)σ2

i

(11.73)

From the overlap, we can compute the optimal singular values:

ξ̂∗t i ≈
1

N

N∑
j=1

σjOT (γi, σj)

≈ 1

πµ̄Y (γi)
Im lim

z→γi−i0+

1

N

N∑
j=1

β∗
4

σ2
j

Z1(z)− Z2(z)σ2
j

=
1

πµ̄Y (γi)
Im lim

z→γi−i0+

1

N

β∗
4

Z2(z)

N∑
j=1

σ2
j

Z1(z)
Z2(z)

− σ2
j

=
1

πµ̄Y (γi)
Im lim

z→γi−i0+

1

N

β∗
4

Z2(z)

N∑
j=1

[ Z1(z)
Z2(z)

Z1(z)
Z2(z)

− σ2
j

− 1

]
≈ 1

πµ̄Y (γi)
Im lim

z→γi−i0+

β∗
4Z1(z)

Z2(z)2
GρT

(Z1(z)

Z2(z)

)
− β∗

4

Z2(z)

=
1

πµ̄Y (γi)
Im lim

z→γi−i0+
q∗4

(11.74)
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where in the last equality we used the solution we have found in (11.67). Note
that, based on (11.72), we do not need to have any knowledge about ρT to
compute q∗4. In the end, we need to divide the estimator by

√
κ as we have

absorbed it into T .

Recovering the rectangular RIE for a denoising problem

Note that if in the model (11.56), we put S = I the model reduces to the
additive denoising of T , and we recover the estimator derived in previous
chapter (10.5) ( [54]) for the rectangular case.

For S = I, RρS(z) = 1, so (11.72) reduces to:
β∗
1 =

C(α)
µZ

(q∗1q
∗
2)

q∗1
, β∗

2 = α
C(α)
µZ

(q∗1q
∗
2)

q∗2
, β∗

3 = 0, β∗
4 = 1

q∗1 = Gµ̄Y
(z), q∗2 = αGµ̄Y

(z) + (1− α)1
z

q∗3 = (z − β∗
1)

2Gµ̄Y
(z)− (z − β∗

1), q∗4 = (z − β∗
1)Gµ̄Y

(z)− 1

(11.75)

From (11.74), we have:

ξ̂∗t i =
1

πµ̄Y (γi)
Im lim

z→γi−i0+
q∗4

=
1

πµ̄Y (γi)
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zGµ̄Y

(z)− β∗
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1
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zGµ̄Y

(z)− C(α)
µZ (q

∗
1q

∗
2)
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Gµ̄Y

(z)− 1

=
1

πµ̄Y (γi)
Im lim

z→γi−i0+
zGµ̄Y

(z)− C(α)
µZ

(q∗1q
∗
2)− 1

=
1

πµ̄Y (γi)
Im lim
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zGµ̄Y

(z)− C(α)
µZ

(
Gµ̄Y

(z)
(
αGµ̄Y

(z) + (1− α)
1

z

))
− 1

(a)
=

1

πµ̄Y (γi)
Im

[
γiGµ̄Y

(γi − i0+)

− C(α)
µZ

(
1

γi
Gµ̄Y

(γi − i0+)
(
1− α + αγiGµ̄Y

(γi − i0+)
))]

(b)
= γi −

1

πµ̄Y (γi)
Im C(α)

µZ

(
1− α

γi
πH[µ̄Y ](γi) + α

(
πH[µ̄Y ](γi)

)2
− α

(
πµ̄Y (γi)

)2
+ iπµ̄Y (γi)

(1− α

γi
+ 2απH[µ̄Y ](γi)

))
(11.76)

where in (a) we used the analyticity of rectangular R-transform [74], and in
(b), we used Plemelj formula (5.5). Note that, the final estimator should be
divided by the

√
κ.



11.C. Derivation of the RIE for T 249

11.C.4 Examples

Throughout the numerical experiments, we consider the matrix Z to have
i.i.d. Gaussian entries with variance 1/N, so C(α)

µZ (z) =
1
α
z. And, S = F + cI

where F = F ⊺ ∈ RN×N has i.i.d. entries with variance 1/N, and c ̸= 0 is a real
number, so RρS(z) = z + c. With these choices, the solution (11.72) simplifies
to: 

β∗
1 = 1

α
q∗2 + q∗3, β∗

2 = q∗1, β∗
3 = q∗1, β∗

4 = q∗4 + c

q∗1 = Gµ̄Y
(z), q∗2 = αGµ̄Y

(z) + (1− α)1
z

q∗3 =
(z−β∗

1 )
2

β∗
4
2 Gµ̄Y

(z)− z−β∗
1

β∗
4
2 , q∗4 =

z−β∗
1

β∗
4
Gµ̄Y

(z)− 1
β∗
4

(11.77)

Note that in (11.77), q∗1, q∗2 are given in terms of the observation, so to find the
solution we only need to find the parameters q∗3, q∗4. In (11.77), one can see
that we have the relation q∗3 =

z−β∗
1

β∗
4
q∗4. Writing the parameters β∗

1 , β
∗
4 in terms

of q∗2, q∗3, q∗4, after a bit of algebra we have the following relation:

q∗3 =
z − 1

α
q∗2

2q∗4 + c
q∗4 (11.78)

In the expression for q∗4 in (11.77), using (11.78) we can rewrite β∗
1 , β

∗
4 in terms

of q∗2, q∗4. After some manipulations we find that q∗4 is the solution to the
following cubic equation:

2x3 + 3c x2 +
[
c2 + 2−

(
z − Gµ̄Y

(z)− 1− α

α

1

z

)
Gµ̄Y

(z)
]
x

− c
[(
z − Gµ̄Y

(z)− 1− α

α

1

z

)
Gµ̄Y

(z)− 1
]
= 0

(11.79)

Based on our numerical simulations, we pick the following root for q∗4:

q∗4 = − c
2
− 12− 3c2 + 6A

3 3
√
B

+
3
√
B

12
(11.80)

with

A = Gµ̄Y
(z)2 − Gµ̄Y

(z)

z

(
1− 1

α

)
− Gµ̄Y

(z)z

B = −216cA+ 4

√
4
(
12− 3c2 + 6A

)3
+ 542c2A2

Once we have q∗4, we can find q∗3 using (11.78). In the end, β∗
1 , · · · , β∗

4 can be
evaluated. Note that, for the RIE, only q∗4 is required. Other parameters are
used to evaluate the resolvent relation (11.68) and the overlap (11.73).

Resolvent relation

We take κ = 1. In model (11.56), without loss of generality we can consider T
to be diagonal.
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In figure 11.C.1, T is the diagonal matrix obtained from the singular values
of a Gaussian matrix with i.i.d. entries of variance 1/N. In figure 11.C.2, the
non-zero entries (on main diagonal) of T are uniformly distributed in [1, 3]. As
in previous cases, µY ,Gµ̄Y

(z) are estimated numerically using Cauchy kernel,
from which the parameters β∗

1 , · · · , β∗
4 are computed.

Overlap

To illustrate the formula for the overlap (11.73), we fix the matrix T and run
experiments over various realization of the model (11.56). For each experiment,
we record the overlap of k-th singular vectors left and right) of Y and singular
vectors of T . To compute the theoretical prediction, we evaluate the parameters
β∗
1 , β

∗
2 , β

∗
3 , β

∗
4 , for z = γ̄k − i0+ where γ̄k is the average of k-th singular value of

Y in the experiments.
In figure 11.C.3a, the overlap is shown for T with i.i.d. Gaussian entries of

variance 1
N

, so µT is the Marchenko-Pastur law with aspect-ratio α. In figure
11.C.3b, matrix T is constructed as T = UTΣV ⊺

T , where UT ∈ RN×N ,VT ∈
RM×M are Haar distributed orthogonal matrices, and singular values σ1, · · · , σN
are chosen independently uniformly from [1, 3], so µT = U

(
[1, 3]

)
.

RIE performance

In this section, we investigate the performance of our proposed estimators
for T . To construct the RIE for T , we only need q∗4 which we use (11.80).
We compare performances of the optimal RIE (11.74) with the one of oracle
estimator (11.5).

In figures 11.C.4,11.C.5, the MSE of RIE and the oracle estimator is plotted
for three cases of priors: T with Gaussian entries, T with uniform spectral
density, and T with Bernoulli spectral density. In all cases, observe that the
RIE has the same performance as the oracle estimator.

Effect of aspect-ratio α. In Figure 11.C.6, we take T to have Gaussian
entries (with variance 1

N
), and the MSE is depicted for various values of the

aspect-ratio α. We see that as M increases (α decreases) the estimation error
(of T ) decreases.

Sparse T : a non-rotation invariant example. We consider T to have
i.i.d. entries from the Bernoulli-Rademacher distribution,

Ti,j =


+ 1√

N
with probability 1−p

2

0 with probability p
− 1√

N
with probability 1−p

2

, ∀ 1 ≤ i ≤ N, 1 ≤ j ≤M

With the normalization 1/
√
N, the spectrum of T does not grow with the dimen-

sion and has a finite support, thus we can apply our estimator to reconstruct T .
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Figure 11.C.1: Illustration of (11.68). T ∈ RN×M is a diagonal matrix obtained from
the singular values of a N × M matrix with i.i.d. entries of variance 1/N, S = S⊺ is
shifted Wigner matrix with c = 3, and Z is a Gaussian matrices with. The empirical

estimate of GY(z) (dashed blue line) is computed for z = γi − i
√

1
2N for 1 ≤ i ≤ N ,

for N = 2000,M = 4000. Theoretical one (solid orange line) is computed from the
rhs of (11.68) with parameters computed from the generated matrix. Note that, the
theoretical one has also fluctuations because the parameters β∗

1 , · · ·β∗
4 are computed from

the numerical estimate of Gµ̄Y (z).
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Figure 11.C.2: Illustration of (11.68). T ∈ RN×M is a diagonal matrix with (main)
diagonal entries uniformly distributed in [1, 3], S = S⊺ is shifted Wigner matrix with
c = 3, and Z is a Gaussian matrices with. The empirical estimate of GY(z) (dashed

blue line) is computed for z = γi − i
√

1
2N for 1 ≤ i ≤ N , for N = 2000,M = 4000.

Theoretical one (solid orange line) is computed from the rhs of (11.68) with parameters
computed from the generated matrix. Note that, the theoretical one has also fluctuations
because the parameters β∗

1 , · · ·β∗
4 are computed from the numerical estimate of Gµ̄Y (z).
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Figure 11.C.3: Computation of the rescaled overlap. S is a shifted Wigner matrix with
c = 3, and Z has i.i.d. Gaussian entries of variance 1/N , and N/M = 1/2. The simulation
results are average of 1000 experiments with fixed T , and N = 1000,M = 2000. Some
of the simulation points are dropped for clarity.
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Figure 11.C.4: Estimating T . MSE is normalized by the norm of the signal, ∥T ∥2F.
S is a shifted Wigner matrix with c = 3, and Z has i.i.d. Gaussian entries of variance
1/N , and N/M = 1/2. The RIE is applied to N = 2000,M = 4000, and the results
are averaged over 10 runs (error bars are invisible). Average relative error between RIE
Ξ̂∗

T (Y ) and Oracle estimator is also reported.

Note that the prior of T is not rotationally invariant, and neither the oracle
estimator nor the RIE are optimal. Therefore, taking the prior into account,
we apply a thresholding function on the entries of the matrix obtained from the
RIE, Ξ̂∗

T (Y ). We apply the following function on each entry of the estimator:

fh(x) =


+ 1√

N
if x > h√

N

0 if |x| ≤ h√
N

− 1√
N

if x < − h√
N

, for h ∈ [0, 1]

In figure 11.C.7, the MSE of the oracle estimator, RIE, and RIE+fp(x) (with
h = p) is plotted. A few remarks on this figure are in order. First, RIEs are
not limited to rotationally invariant priors and can give non-trivial estimates
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Figure 11.C.5: Estimating T with Bernoulli spectral prior. MSE is normalized by the
norm of the signal, ∥T ∥2F. T has Bernoulli spectral distribution with parameter p. S is a
shifted Wigner matrix with c = 3, and Z has i.i.d. Gaussian entries of variance 1/N , and
N/M = 1/2. The RIE is applied to N = 2000,M = 4000, and the results are averaged
over 10 runs (error bars are invisible).Average relative error between RIE Ξ̂∗

T (Y ) and
Oracle estimator is also reported.
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Figure 11.C.6: MSE of estimating T as a function of aspect-ratio α, T has Gaussain
entries of variance 1/N, and κ = 5. MSE is normalized by the norm of the signal, ∥T ∥2F.
S is a shifted Wigner matrix with c = 3, and Z has i.i.d. Gaussian entries of variance
1/N . The RIE is applied to N = 2000,M = 1/αN , and the results are averaged over 10
runs (error bars are invisible). Average relative error between RIE Ξ̂∗

T (Y ) and Oracle
estimator is also reported.
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Figure 11.C.7: Estimating T with Bernoulli-Rademacher entries. MSE is normalized
by the norm of the signal, ∥T ∥2F. S is a shifted Wigner matrix with c = 3, and Z
has i.i.d. Gaussian entries of variance 1/N , and N/M = 1/2. The RIE is applied to
N = 2000,M = 4000, and the results are averaged over 10 runs (error bars are invisible).
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Figure 11.C.8: Estimating T with Bernoulli-Rademacher entries. MSE is normalized
by the norm of the signal, ∥T ∥2F. S is a shifted Wigner matrix with c = 3, and Z
has i.i.d. Gaussian entries of variance 1/N , and N/M = 1/2. The RIE is applied to
N = 2000,M = 4000, and thresholding function is applied with the best h among
{0, 0.1, · · · , 1}. Results are averaged over 10 runs (error bars are invisible).

for non-rotationally invariant priors, although they are sub-optimal. The RIE’s
output can be refined, or used as a warmed-up initialization for other algorithms
to get a better estimate.

In figure 11.C.8, for one experiment, the MSE is plotted for RIE and
RIE+f(x) with the best h among {0, 0.1, · · · , 1}. We observe that for the
particular case of Bernoulli-Rademacher prior, the thresholding stage can
improve the MSE when SNR is greater than 1, however the parameter h should
be chosen properly.
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11.D Comparison of RIEs for Matrix
Factorization and Denoising

For estimating S, we have derived the estimator (11.45) for general priors
ρS, µT , µZ . This estimator simplifies greatly, with parameters in (11.48), when
both µT , µZ are Marchenko-Pastur distribution, i.e. both T ,Z having i.i.d.
Gaussian entries of variance 1/N. Similarly, although the RIE for T in (11.74)
is derived for the general priors, it reduces to a rather simple estimator if
ρS, µZ are taken to be shifted Wigner, and Marchenko-Pastur distribution,
respectively. Therefore, in our numerical examples on factorization problem, we
consider S to be a shifted Wigner matrix, and T ,Z to be Gaussian matrices.

In each experiment, the factors S, T are estimated simultaneously using
RIE from the observation matrix Y . In addition to the MSE of estimating
each factor, we also compute the MSE of estimating the product ST . We
compare the MSE of the product with the MSE of the oracle estimator and
the RIE introduced in [54] for the denoising problem. The oracle estimator for
the denoising is constructed as:

Ξ∗
ST (Y ) =

N∑
i=1

ξ∗sti uiv
⊺
i , ξ∗sti = u⊺

iSTvi (11.81)

where ui,vi’s are left/right singular vectors of Y . In the RIE proposed in [54],
the singular values are estimated by (see section 11.C.3)

ξ̂∗sti =
1√
κ

[
γi −

1

πµ̄Y (γi)
Im C(α)

µZ

(
1− α

γi
πH[µ̄Y ](γi) + α

(
πH[µ̄Y ](γi)

)2
− α

(
πµ̄Y (γi)

)2
+ iπµ̄Y (γi)

(1− α

γi
+ 2απH[µ̄Y ](γi)

))]
(11.82)

Note that, in general the MSE of the denoising RIE Ξ̂∗
ST (Y ), is less than the

MSE of the prdouct of the estimated factors Ξ̂∗
S(Y )Ξ̂∗

T (Y ).
In figures 11.D.1,11.D.2, the MSE of estimating the factors is illustrated for

c = 1 and c = 3 respectively. The MSE of estimating the product is shown in
figure 11.D.3.

11.E Case of α ≥ 1

In this section we consider the case where M ≤ N and N/M → α ≥ 1 as
N → ∞. Throughout this section Γ ∈ RN×M is a (tall) matrix with ΓM in
its upper M × M block, and the rest zero entries. ΓM is diagonal matrix
constructed from γ ∈ RM which are the singular values of Y .
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Figure 11.D.1: MSE of factorization problem. MSE is normalized by the norm of the
signal. S is a shifted Wigner matrix with c = 1, and both T and Z are N ×M matrices
with i.i.d. Gaussian entries of variance 1/N , and N/M = 1/2. The RIE is applied to
N = 2000,M = 4000. In each run, the observation matrix Y is generated according to
(11.1), and the factors S, T are estimated simultaneously from Y . Results are averaged
over 10 runs (error bars are invisible). Average relative error between RIEs and Oracle
estimators is also reported.
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Figure 11.D.2: MSE of factorization problem. MSE is normalized by the norm of the
signal. S is a shifted Wigner matrix with c = 3, and both T and Z are N ×M matrices
with i.i.d. Gaussian entries of variance 1/N , and N/M = 1/2. The RIE is applied to
N = 2000,M = 4000. In each run, the observation matrix Y is generated according to
(11.1), and the factors S, T are estimated simultaneously from Y . Results are averaged
over 10 runs (error bars are invisible). Average relative error between RIEs and Oracle
estimators is also reported.
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Figure 11.D.3: MSE of the product of the factors. MSE is normalized by the norm of
the signal ∥ST ∥2F. S is a shifted Wigner matrix with c = 1, c = 3, and both T and Z
are N ×M matrices with i.i.d. Gaussian entries of variance 1/N , and N/M = 1/2. The
RIE is applied to N = 2000,M = 4000. Results are averaged over 10 runs (error bars
are invisible).

Similar to the case of α ≤ 1, resolvent of the matrix Y ∈ R(N+M)×(N+M)

plays a central role in deriving the RIEs. For the case of M ≥ N , with
Y = UYΓV

⊺
Y , the matrix Y has the following eigen-decomposition:

Y =

[
Û

(1)
Y −Û

(1)
Y U

(2)
Y

V̂Y −V̂Y 0

] ΓM 0 0
0 −ΓM 0
0 0 0

[
Û

(1)
Y −Û

(1)
Y U

(2)
Y

V̂Y −V̂Y 0

]⊺

(11.83)
with UY =

[
U

(1)
Y U

(2)
Y

]
in which U

(1)
Y ∈ RN×M . And, Û

(1)
Y = 1√

2
U

(1)
Y ,

V̂Y = 1√
2
VY . The resolvent of Y can be written as:

GY(x− iϵ) =
2M∑
k=1

x+ iϵ

(x− γ̃k)2 + ϵ2
yky

⊺
k +

x+ iϵ

x2 + ϵ2

M+N∑
k=2M+1

yky
⊺
k

where γ̃k are the eigenvalues of Y , which are in fact the (signed) singular values
of Y , γ̃1 = γ1, . . . , γ̃M = γM , γ̃M+1 = −γ1, . . . , γ̃2M = −γM .

11.E.1 Estimating S

The RIE for S is constructed in the same way as in the case of α ≤ 1, (11.2).
However, in the present case the observation matrix Y has M (non-trivially
zero) singular values and we need to estimate N eigenvalues for the RIE. As it
will be clear, the N −M eigenvalues are chosen to be equal.
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Relation between overlap and the resolvent

Define the vectors s̃i = [s⊺i ,0M ]⊺ for si eigenvectors of S. We have

s̃⊺i
(
ImGY(x− iϵ)

)
s̃i =

2M∑
k=1

ϵ

(x− γ̃k)2 + ϵ2
(
s̃⊺iyk

)2
+

ϵ

x2 + ϵ2

M+N∑
k=2M+1

(
s̃⊺iyk

)2
(11.84)

Given the structure of yk’s in (11.83), we have:

(
s̃⊺iyk

)2
=


1
2

(
s⊺iuk

)2
for 1 ≤ k ≤M

1
2

(
s⊺iuk−M

)2
for M + 1 ≤ k ≤ 2M(

s⊺iuk−M

)2
for 2M + 1 ≤ k ≤M +N

We assume that in the limit of large N this quantity concentrates on
OS(γj, λi) and depends only on the singular values and eigenvalue pairs (γj, λi).
This assumption implies that the singular vectors associated with 0 singular
values (uj for M + 1 ≤ j ≤ N) all have the same overlap with the eigenvectors
of S, OS(0, λi). We thus have:

s̃⊺i
(
ImGY(x− iϵ)

)
s̃i

N→∞−−−→ 1

α

∫
R

ϵ

(x− t)2 + ϵ2
OS(t, λi)µ̄Y (t) dt

+
(
1− 1

α

) ϵ

x2 + ϵ2
OS(0, λi)

(11.85)

where the overlap function OS(t, λi) is extended (continuously) to arbitrary
values within the support of µ̄Y (the symmetrized limiting singular value
distribution of Y ) with the property that OS(t, λi) = OS(−t, λi) for t ∈
supp(µY ) . Sending ϵ→ 0, we find

s̃⊺i
(
ImGY(x− iϵ)

)
s̃i →

1

α
πµ̄Y (x)OS(x, λi) +

(
1− 1

α

)
πδ(x)OS(x, λi) (11.86)

Resolvent relation

We derive the resolvent relation for the same model as in (11.25). The derivation
is similar to the procedure explained in section 11.B.1, and we omit here. The
final resolvent relation is the same as (11.38), with parameters satisfying:ζ∗1 = 1

α

C(1/α)
µZ

(p∗1p
∗
2)

p∗1
, ζ∗2 = 1

p∗2

(
C(1/α)
µZ (p∗1p

∗
2) + C(1/α)

µT (p∗2p
∗
3)
)
, ζ∗3 = 1

α

C(1/α)
µT

(p∗2p
∗
3)

p∗3

p∗1 =
1
ζ∗3
GρS2

( z−ζ∗1
ζ∗3

)
, p∗2 =

1
z−ζ∗2

, p∗3 =
z−ζ∗1
ζ∗3

2 GρS2

( z−ζ∗1
ζ∗3

)
− 1

ζ∗3

(11.87)
Again, with the same procedure as (11.39),(11.40), the saddle point equations
(11.87) can be rewritten in a simplified form, which does not involve ρS2 , as:

ζ∗1 = 1
α

C(1/α)
µZ

(p∗1p
∗
2)

p∗1
, ζ∗2 = z − 1

Gµ̄Y
(z)
, ζ∗3 = 1

α

C(1/α)
µT

(p∗2p
∗
3)

p∗3

p∗1 =
1
α
Gµ̄Y

(z) +
(
1− 1

α

)
1
z
, p∗2 = Gµ̄Y

(z)

p∗3 =
z−ζ∗1
αζ∗3

Gµ̄Y
(z) +

z−ζ∗1
ζ∗3

(
1− 1

α

)
1
z
− 1

ζ∗3

(11.88)
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with µ̄Y the limiting ESD of non-trivial singular values of Y . Note that ζ∗1 , ζ∗2
can be computed from the observation matrix, and we only need to find ζ∗3
satisfying the following equation:

(z − ζ∗1 )
[ 1
α
Gµ̄Y

(z)+
(
1− 1

α

)1
z

]
− 1

=
1

α
C(1/α)
µT

( 1

ζ∗3
Gµ̄Y

(z)(z − ζ∗1 )
[ 1
α
Gµ̄Y

(z) +
(
1− 1

α

)1
z

])
(11.89)

Note that both sets of equations (11.86), (11.88) and (11.43), (11.41) match
for α = 1.

Overlaps and optimal eigenvalues

From (11.86), (11.38), for γ a non-trivially zero singular value of Y we find:

OS(γ, λi) ≈
α

πµ̄Y (γ)
Im lim

z→γ−i0+
s⊺i ζ

∗
3
−1GS2

(z − ζ∗1
ζ∗3

)
si

=
α

πµ̄Y (γ)
Im lim

z→γ−i0+

1

z − ζ∗1 − ζ∗3λ
2
i

(11.90)

And, in the case of M > N , for zero singular values we have:

OS(0, λi) ≈
α

(α− 1)π
Im lim

z→−i0+
s⊺i ζ

∗
3
−1GS2

(z − ζ∗1
ζ∗3

)
si

=
α

(α− 1)π
Im lim

z→−i0+

1

z − ζ∗1 − ζ∗3λ
2
i

(11.91)

Finally, the optimal eigenvalues can be derived in the same way as in (11.45).
For 1 ≤ i ≤M , we have:

ξ̂∗s i =
α

2κπµ̄Y (γi)
Im lim

z→γi−i0+

{
1

ζ∗3

[
GρS

(√z − ζ∗1
κζ∗3

)
+ GρS

(
−
√
z − ζ∗1
κζ∗3

)]}
(11.92)

And, for all M + 1 ≤ i ≤ N :

ξ̂∗s i =
α

2κ(α− 1)π
Im lim

z→−i0+

{
1

ζ∗3

[
GρS

(√z − ζ∗1
κζ∗3

)
+ GρS

(
−

√
z − ζ∗1
κζ∗3

)]}
(11.93)

Numerical examples

For matrices T ,Z ∈ RN×M with i.i.d. Gaussian entries of variance 1/N and
M > N , we have that C(1/α)

µT (z) = C(1/α)
µZ (z) = z which leads to a simplification
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Figure 11.E.1: Estimating S. The MSE is normalized by the norm of the signal, ∥S∥2F.
Both T and Z are N ×M matrices with i.i.d. Gaussian entries of variance 1/N , and
aspect ratio N/M = 2. The RIE is applied to N = 2000,M = 1000, and the results
are averaged over 10 runs (error bars are invisible). Average relative error between RIE
Ξ̂∗

S(Y ) and Oracle estimator is also reported.

of equations (11.88):
ζ∗1 = 1

α
p∗2, ζ∗2 = z − 1

Gµ̄Y
(z)
, ζ∗3 = 1

α
p∗2

p∗1 =
1
α
Gµ̄Y

(z) +
(
1− 1

α

)
1
z
, p∗2 = Gµ̄Y

(z)

p∗3 =
z−ζ∗1
αζ∗3

Gµ̄Y
(z) +

z−ζ∗1
ζ∗3

(
1− 1

α

)
1
z
− 1

ζ∗3

(11.94)

Therefore, ζ∗1 = ζ∗3 = 1
α
Gµ̄Y

(z).
In Figure 11.E.1, the MSE of the Oracle estimator and the RIE (11.92),

(11.93) is illustrated for shifted Wigner S with c = 3, and Wishart with
aspect-ratio α′ = 1/4.

Effect of aspect-ratio α. In Figure 11.E.2, we take S to be a shifted Wigner
matrix with c = 3, and the MSE is depicted for various values of the aspect-ratio
α > 1. We see that as M decreases (α increases) the estimation error (of T )
increases.

11.E.2 Estimating T

Relation between overlap and the resolvent

For the vectors ri =

[
0N

t
(r)
i

]
, li =

[
t
(l)
i

0M

]
with t

(r)
i , t

(l)
i right/ left singular

vectors of T , we have

r⊺
i

(
ImGY(x− iϵ)

)
li =

2M∑
k=1

ϵ

(x− γ̃k)2 + ϵ2
(
r⊺
i yk

)(
l⊺i yk

)
+

ϵ

x2 + ϵ2

M+N∑
k=2M+1

(
r⊺
i yk

)(
l⊺i yk

) (11.95)
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Figure 11.E.2: MSE of estimating S as a function of aspect-ratio α > 1, prior on S
is shifted Wigner with c = 3, and κ = 5. MSE is normalized by the norm of the signal,
∥S∥2F. Both T and Z are N ×M matrices with i.i.d. Gaussian entries of variance 1/N .
The RIE is applied to N = 2000,M = 1/αN , and the results are averaged over 10 runs
(error bars are invisible). Average relative error between RIE Ξ̂∗

S(Y ) and Oracle estimator
is also reported.

Given the structure of yk’s in (11.83), we have:

(
r⊺
i yk

)(
l⊺i yk

)
=


1
2

(
u⊺

kt
(l)
i

)(
v⊺
kt

(r)
i

)
for 1 ≤ k ≤M

−1
2

(
u⊺

k−Mt
(l)
i

)(
v⊺
k−Mt

(r)
i

)
for M + 1 ≤ k ≤ 2M

0 for 2M + 1 ≤ k ≤ N +M

Therefore, in the limit N → ∞, we have:

r⊺
i

(
ImGY(x− iϵ)

)
li

N→∞−−−→ 1

α

∫
R

ϵ

(x− t)2 + ϵ2
OT (t, σi)µ̄Y (t) dt (11.96)

where the overlap function OT (t, λi) is extended (continuously) to arbitrary
values within the support of µ̄Y with the property that OT (−t, λi) = −OT (t, λi)
for t ∈ supp(µY ) . Sending ϵ→ 0, we find

r⊺
i

(
ImGY(x− iϵ)

)
li ≈

1

α
πµ̄Y (x)OT (x, σi) (11.97)
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Resolvent relation

The resolvent relation for the model (11.56) with M < N is the same as in
(11.68) with parameters satisfying:

β∗
1 = 1

α

C(α)
µZ

(q∗1q
∗
2)

q∗1
+ 1

2

√
q∗3
q∗1

(
RρS

(
q∗4 +

√
q∗1q

∗
3

)
−RρS

(
q∗4 −

√
q∗1q

∗
3

))
β∗
2 =

C(α)
µZ

(q∗1q
∗
2)

q∗2

β∗
3 = 1

2

√
q∗1
q∗3

(
RρS

(
q∗4 +

√
q∗1q

∗
3

)
−RρS

(
q∗4 −

√
q∗1q

∗
3

))
β∗
4 = 1

2

(
RρS

(
q∗4 +

√
q∗1q

∗
3

)
+RρS

(
q∗4 −

√
q∗1q

∗
3

))
q∗1 = 1

α

(z−β∗
2 )β

∗
4
2

Z2(z)2
GρT

(
Z1(z)
Z2(z)

)
+ 1

α

β∗
3

Z2(z)
+ α−1

α
1

z−β∗
1

q∗2 =
z−β∗

1

Z2(z)
GρT

(Z1(z)
Z2(z)

)
q∗3 = 1

α

(z−β∗
1 )Z1(z)

Z2(z)2
GρT

(Z1(z)
Z2(z)

)
− 1

α

z−β∗
1

Z2(z)

q∗4 = 1
α

β∗
4Z1(z)

Z2(z)2
GρT

(Z1(z)
Z2(z)

)
− 1

α

β∗
4

Z2(z)

(11.98)

with {
Z1(z) = (z − β∗

1)(z − β∗
2)

Z2(z) = β∗
4
2 + β∗

3(z − β∗
1)

With the same procedure as (11.69),(11.70), the saddle point equations (11.98)
can be rewritten in a simplified form:

β∗
1 = 1

α

C(α)
µZ

(q∗1q
∗
2)

q∗1
+ 1

2

√
q∗3
q∗1
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RρS
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∗
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C(α)
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∗
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√
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(
RρS

(
q∗4 +

√
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∗
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(
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√
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∗
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(
1− 1

α

)
1
z
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(z)
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1 )
2
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4
2 q∗1 − z−β∗

1
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4
2
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1
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4
q∗1 − 1

β∗
4

(11.99)

Note that both sets of equations (11.97), (11.99) and (11.55), (11.72) match
for α = 1.

Overlaps and optimal singular values

From (11.68), (11.97), we have:

OT (γ, σi) ≈
α

πµ̄Y (γ)
Im lim

z→γ−i0+

β∗
4

Z2(z)
t
(r)
i

⊺
GT ⊺T

(Z1(z)

Z2(z)

)
T ⊺t

(l)
i

=
α

πµ̄Y (γ)
Im lim

z→γ−i0+
β∗
4

σi
Z1(z)− Z2(z)σ2

i

(11.100)
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Figure 11.E.3: Estimating T . MSE is normalized by the norm of the signal, ∥T ∥2F.
S is a shifted Wigner matrix with c = 3, and Z has i.i.d. Gaussian entries of variance
1/N , and N/M = 2. The RIE is applied to N = 2000,M = 1000, and the results are
averaged over 10 runs (error bars are invisible).

Similar to (11.74), we can compute the optimal singular values to be:

ξ̂∗t i =
α

πµ̄Y (γi)
Im lim

z→γi−i0+
q∗4 (11.101)

Numerical examples

We consider the matrix Z to have i.i.d. Gaussian entries with variance 1/N,
so C(1/α)

µZ (z) = z. And, S = F + cI where F = F ⊺ ∈ RN×N has i.i.d. entries
with variance 1/N, and c ̸= 0 is a real number, so RρS(z) = z + c. With these
choices, the solution (11.99) simplifies to:

β∗
1 = 1

α
q∗2 + q∗3, β∗

2 = q∗1, β∗
3 = q∗1, β∗

4 = q∗4 + c

q∗1 = 1
α
Gµ̄Y

(z) +
(
1− 1

α

)
1
z
, q∗2 = Gµ̄Y

(z)

q∗3 =
(z−β∗

1 )
2

β∗
4
2 q∗1 − z−β∗

1

β∗
4
2 , q∗4 =

z−β∗
1

β∗
4
q∗1 − 1

β∗
4

(11.102)

After a bit of algebra, we find that q∗4 is the solution to the following qubic
equation:

2x3 + 3c x2 +
[
c2 + 2−

(
z − 1

α
Gµ̄Y

(z)
)( 1
α
Gµ̄Y

(z) +
α− 1

αz

)]
x

− c
[(
z − 1

α
Gµ̄Y

(z)
)( 1
α
Gµ̄Y

(z) +
α− 1

αz

)
− 1

]
= 0

(11.103)

In figure 11.E.3 the MSE of RIE and the oracle estimator is plotted for two
cases of priors: T with Gaussian entries and T with uniform spectral density.

Effect of aspect-ratio α. In Figure 11.E.4, we take T to have Gaussian
entries (with variance 1

N
), and the MSE is depicted for various values of the

aspect-ratio α > 1. We see that as M decreases (α increases) the estimation
error (of T ) increases.
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Figure 11.E.4: MSE of estimating T as a function of aspect-ratio α > 1, T has
Gaussain entries of variance 1/N, and κ = 5. MSE is normalized by the norm of the signal,
∥T ∥2F. S is a shifted Wigner matrix with c = 3, and Z has i.i.d. Gaussian entries of
variance 1/N . The RIE is applied to N = 2000,M = 1/αN , and the results are averaged
over 10 runs (error bars are invisible). Average relative error between RIE Ξ̂∗

T (Y ) and
Oracle estimator is also reported.

11.F Auxiliary Lemmas and Calculations

Proposition 11.1 (Inverse of a block matrix, Bernstein [136]). For a block

matrix F =

[
A B
C D

]
with A ∈ RN×N ,B ∈ RN×M ,C ∈ RM×N ,D ∈ RM×M ,

if A and D −CA−1B, are non-singular, then,

F−1 =

[
A−1 +A−1B(D −CA−1B)−1CA−1 −A−1B(D −CA−1B)−1

−(D −CA−1B)−1CA−1 (D −CA−1B)−1

]

Block structure of GY(z) The matrix GY(z) is:

GY(z) =
(
zI −Y

)−1
=

[
zIN −Y
−Y ⊺ zIM

]−1

Using Proposition 11.1, first we need to compute the inverse matrix
(
zIM −

(−S⊺)(zIN)
−1(−S)

)−1 which simply reads:

(
zIM − 1

z
Y ⊺Y

)−1
= z

(
z2IM − Y ⊺Y

)−1
= zGY ⊺Y (z

2)

Consequently, we find:

GY(z) =

[
1
z
IN + 1

z
Y GY ⊺Y (z

2)Y ⊺ Y GY ⊺Y (z
2)

GY ⊺Y (z
2)Y ⊺ zGY ⊺Y (z

2)

]
(11.104)
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Inverse of C∗
S For C∗

S since the blocks B,C are zero, the inverse is simply:

C∗
X

−1 =

[ [
(z − ζ∗1 )IN − ζ∗3S

2
]−1

0

0
[
(z − ζ∗2 )IM

]−1

]

=

[
1
ζ∗3

[ z−ζ∗1
ζ∗3

IN − S2
]−1

0

0 1
z−ζ∗2

IM

]

=

[
1
ζ∗3
GS2

( z−ζ∗1
ζ∗3

)
0

0 1
z−ζ∗2

IM

] (11.105)

Inverse of C∗
T Let the block structure of C∗

T be as in Proposition 11.1, then

(D −CA−1B)−1 =
(
(z − β∗

2)IM − β∗
3T

⊺T − β∗
4
2

z − β∗
1

T ⊺T
)−1

=
(
(z − β∗

2)IM −
(
β∗
3 +

β∗
4
2

z − β∗
1

)
T ⊺T

)−1

= (z − β∗
1)
(
Z1(z)IM − Z2(z)T

⊺T
)−1

=
z − β∗

1

Z2(z)

(Z1(z)

Z2(z)
IM − T ⊺T

)−1

=
z − β∗

1

Z2(z)
GT ⊺T

(Z1(z)

Z2(z)

)
where GT ⊺T is the resolvent of the matrix T ⊺T . So, we have

C∗
T
−1 =

[
(z − β∗

1)
−1IN +

β∗
4
2

(z−β∗
1 )Z2(z)

TGT ⊺T

(Z1(z)
Z2(z)

)
T ⊺ β∗

4

Z2(z)
TGT ⊺T

(Z1(z)
Z2(z)

)
β∗
4

Z2(z)
GT ⊺T

(Z1(z)
Z2(z)

)
T ⊺ z−β∗

1

Z2(z)
GT ⊺T

(Z1(z)
Z2(z)

) ]
Lemma 11.3. Consider two vectors x,y ∈ RN . The symmetric matrix xy⊺ +
yx⊺ has rank at most two with non-zero eigenvalues x⊺y ± ∥x∥∥y∥.
Proof. Construct the matrices A ∈ R2×N ,B ∈ RN×2 as follows:

A =

[
x⊺

y⊺

]
, B =

[
y x

]
Then, we have that xy⊺ + yx⊺ = BA. Using the lemma 11.4, we have that:

z2 det
(
zIN −BA

)
= zN det

(
zI2 −AB

)
So, the characteristic polynomial of xy⊺ + yx⊺ is zN−2 det

(
zI2 −AB

)
, which

implies that the xy⊺ + yx⊺ has eigenvalue 0 with multiplicity N − 2, plus the
eigenvalues of the 2× 2 matrix AB. The matrix AB is:

AB =

[
x⊺y ∥x∥2
∥y∥2 x⊺y

]
which has two eigenvalues x⊺y ± ∥x∥∥y∥.
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Lemma 11.4. For matrices A ∈ RM×N ,B ∈ RN×M , we have:

zM det
(
zIN −BA

)
= zN det

(
zIM −AB

)
Proof. Construct the matrices C,D ∈ R(M+N)×(M+N) as follows:

C =

[
zIM A
B IN

]
, D =

[
IM 0M×N

−B zIN

]
We have:

detCD = zN det
(
zIM −AB), detDC = zM det

(
zIN −BA

)
The result follows from the fact that detCD = detDC.





Conclusion and Future
Directions 12
In this thesis, we leveraged diverse tools from random matrix theory, statistical
physics and information theory alongside results on high-dimensional limits of
spherical integrals to study high-dimensional matrix inference problems. In
part I, we investigated mismatched estimation of finite-rank signal matrices
corrupted by Gaussian noise both in symmetric and non-symmetric scenarios.
We derive the asymptotic MSE of estimation assuming incorrect Gaussian prior,
and we compare performance of the spectral algorithms and AMP. In part II,
we explored the matrix inference problems in growing-rank regimes through the
lens of rotation invariant estimators (RIE). In the symmetric case, using the
optimality of RIE we deduce the asymptotic MMSE of denoising problem under
Gaussian noise with rotational invariant priors. In the non-symmetric case, we
derive explicit optimal RIE for the denoising problem, and consequently we
computed the asymptotic MMSE under Gaussian noise. Finally, we explored a
solvable model of the matrix factorization problem in the extensive-rank regime
and derived analytical formulas for the optimal RIEs to reconstruct the two
matrix factors.

In inference problems, the assumption of perfectly known priors (on both
signal and the noise) is often unrealistic, highlighting the significance of mis-
matched estimation in practical scenarios. In chapters 7 and 8, we considered
a simple model in this scenario where the statistician assumes Gaussian pri-
ors. However, considering models (in both low and extensive-rank regimes)
where the estimation is conducted with more general priors (which are possibly
incorrect) is an interesting research problem with practical importance.

The problems we studied in this thesis involved scenarios with proportional
aspect ratios, which align with conventional settings in high-dimensional matrix
inference. However, in many practical cases the number of samples is much
larger than the dimension or vice versa, for example in genomics the number of
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sequences (subjects) is a few thousands, while the number of genes can be of
the order of hundreds of thousands. This necessitates a shift in focus towards
diverging aspect ratios, which requires developing tools in random matrix
theory and high-dimensional statistics suitable for such regimes. Developing
these tools will enable us to effectively tackle the unique challenges posed by
large-scale datasets, paving the way for more robust and applicable statistical
models in the field of high-dimensional data analysis.

In the extensive-rank regime, our exploration included the application of
RIEs to denoising problems and matrix factorization, as detailed in chapters
9, 10, and 11. A major limitation in the current methodology of RIEs is their
lack of consideration for the internal structure of the signal. The framework
developed so far, while effective in various problems, does not account for the
internal constraints and priors on the signal itself. This represents a significant
area for future research and development. Incorporating an understanding of
the signal’s internal structure into RIEs could enhance their effectiveness and
applicability, which may also broaden their utility in more complex inference
scenarios.

As we conclude our discussion, it is important to acknowledge that despite
various progress made, several crucial problems in the extensive-rank regime
remain open. One such example is the analysis of denoising models like
S = XX⊺ with separable priors (non-rotational invariant) on entries of X. This
particular problem presents unique challenges and opportunities for advancing
our understanding of high-dimensional inference. The exploration of such
models is not only critical for deepening our theoretical knowledge but also
for practical applications in fields like machine learning and data science.
Addressing these open problems will require innovative approaches and possibly
the development of new theoretical tools, continuing the evolution of the
interdisciplinary collaboration between statistical physics, random matrix theory
and high-dimensional statistics. Tackling these challenges will not only push
the boundaries of existing theories but also pave the way for advancements in
the analysis and application of extensive-rank problems.
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