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Abstract

Electronic devices play an irreplaceable role in our lives. With the tightening time to market,

exploding demand for computing power, and continuous desire for smaller, faster, less energy-

consuming, and lower-cost chips, computer-aided design for electronics, or electronic design

automation (EDA), becomes not only inevitable but also critical in the semiconductor industry.

Being responsible for the transformation and optimization of switching circuits at the level

of logic gates, logic synthesis plays a central role in modern EDA flows and is key to bringing

up the quality of results (QoR). For several decades, logic synthesis techniques have been

developed based on the properties and needs of complementary metal-oxide-semiconductor

(CMOS) digital circuits and according to the available computing power. Recently, new chal-

lenges as well as opportunities have appeared and influenced the research directions of logic

synthesis.

The development of logic synthesis and the advancement of very-large-scale integration (VLSI)

designs are both enablers and challengers of each other. The up-scaling of computing systems

stresses logic synthesis algorithms for their scalability, efficiency, and QoR. Conversely, better

computing systems make computationally intensive strategies in logic synthesis affordable. A

major part of contemporary logic synthesis research lies in its synergy with the exponential

scaling of VLSI systems. Moreover, emerging alternatives to CMOS-based technologies pose

new problems to be solved in EDA and logic synthesis. As an example, adiabatic quantum-flux

parametron (AQFP) is a promising superconducting electronic technology featuring ultra-low

switching energy dissipation. However, it has unconventional path-balancing and fanout-

branching constraints to be considered in EDA.

This thesis presents a collection of novel approaches, demonstrating various aspects of con-

temporary logic synthesis. In the first part, we focus on technology-independent logic opti-

mization with an emphasis on scalability while pushing the limits on QoR. In the second part,

we show how new problems in EDA for emerging technologies like AQFP are approached, as

well as how techniques presented in the first part are applied in AQFP circuit optimization.

The main technical proposals of this thesis are as follows. First, the proposal of a simulation-

guided logic synthesis paradigm (a) sets the tone of the thesis, emphasizing additional QoR

improvements with manageable runtime overhead. Then, the presentation of a family of

heuristic resynthesis algorithms (b) complements the high-effort peephole optimization

framework. At a higher level, we demonstrate that a simple design space exploration strategy
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ABSTRACT

(c), which discovers good optimization sequences on the fly, outperforms human-designed

flows. To fulfill the special constraints imposed by the AQFP technology, we study possible

constraint relaxations and their tradeoffs (d) and propose an AQFP technology legalization

flow (e). Finally, by combining the proposed high-effort optimization (a, b) and other existing

optimization algorithms with AQFP legalization (e) in the design space exploration framework

(c), we achieve a significant 44% improvement over the state-of-the-art in the problem of

AQFP circuit optimization.

To sum up, this thesis presents the essence of contemporary logic synthesis with an application

in AQFP circuit optimization as an example. Indeed, in present days, the major challenge in

logic synthesis lies in finding a “good-enough” local optimal in the huge design space while

maintaining reasonable efficiency, as well as inventing or re-designing novel methods to tackle

unconventional constraints imposed by emerging technologies.

Keywords: Electronic design automation, logic synthesis, superconducting electronics, adia-

batic quantum-flux parametron
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Zusammenfassung

Elektronische Geräte spielen eine unersetzliche Rolle in unserem Leben. Angesichts der immer

kürzer werdenden Markteinführungszeiten, der explodierenden Nachfrage nach Rechenlei-

stung und des ständigen Wunsches nach kleineren, schnelleren, weniger Energie verbrauchen-

den und kostengünstigeren Chips ist computergestütztes Design für Elektronik oder Elektroni-

sche Entwurfsautomatisierung (electronic design automation, EDA) in der Halbleiterindustrie

nicht nur unvermeidlich, sondern auch entscheidend. Da die Logiksynthese für die Umwand-

lung und Optimierung von Schaltkreisen auf der Ebene von Logikgattern verantwortlich ist,

spielt sie eine zentrale Rolle in modernen EDA-Abläufen und ist der Schlüssel zur Verbesserung

der Qualität der Ergebnisse. Seit mehreren Jahrzehnten werden Logiksynthesetechniken auf

der Grundlage der Eigenschaften und Anforderungen komplementärer Metall-Oxid-Halbleiter

(complementary metal-oxide-semiconductor, CMOS)-Digitalschaltungen und entsprechend

der verfügbaren Rechenleistung entwickelt. In letzter Zeit sind neue Herausforderungen und

Möglichkeiten entstanden, die die Forschungsrichtungen der Logiksynthese beeinflussen.

Die Entwicklung der Logiksynthese und die Weiterentwicklung von VLSI-Designs (very lar-

ge scale integration) sind sowohl förderlich als auch herausfordernd für beide Seiten. Die

Aufwärtsskalierung von Rechensystemen stellt die Algorithmen der Logiksynthese in den

Mittelpunkt ihrer Skalierbarkeit, Effizienz und QoR. Umgekehrt machen bessere Rechner-

systeme rechenintensive Strategien in der Logiksynthese erschwinglich. Ein großer Teil der

aktuellen Logiksyntheseforschung liegt in der Synergie mit der exponentiellen Skalierung von

VLSI-Systemen.

Darüber hinaus werfen aufkommende Alternativen zu CMOS-basierten Technologien neue

Probleme auf, die in EDA und Logiksynthese gelöst werden müssen. Ein Beispiel dafür ist das

adiabatische Quantenfluss-Parametron (adiabatic quantum-flux parametron, AQFP), eine viel-

versprechende supraleitende elektronische Technologie, die sich durch einen äußerst geringen

Energieverlust beim Schalten auszeichnet. Sie hat jedoch unkonventionelle Pfadausgleichs-

und Fanout-Verzweigungsbeschränkungen, die in der EDA berücksichtigt werden müssen.

Diese These präsentiert eine Sammlung neuartiger Ansätze, die verschiedene Aspekte der

modernen Logiksynthese aufzeigen. Im ersten Teil konzentrieren wir uns auf die technolo-

gieunabhängige Logikoptimierung mit dem Schwerpunkt auf Skalierbarkeit, während wir

die Grenzen der QoR verschieben. Im zweiten Teil zeigen wir, wie neue Probleme in der

EDA für aufkommende Technologien wie AQFP angegangen werden und wie die im ersten
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ZUSAMMENFASSUNG

Teil vorgestellten Techniken in der AQFP-Schaltungsoptimierung angewendet werden. Die

wichtigsten technischen Vorschläge dieser Arbeit sind wie folgt. Zunächst gibt der Vorschlag

eines simulationsgeführten Logiksynthese-Paradigmas (a) den Ton der Arbeit an und be-

tont zusätzliche QoR-Verbesserungen mit überschaubarem Laufzeit-Overhead. Dann wird

eine Familie von heuristischen Resynthese-Algorithmen (b) vorgestellt, die das aufwändige

Peephole-Optimierungsverfahren ergänzen. Auf einer höheren Ebene zeigen wir, dass eine

einfache Strategie zur Erkundung des Entwurfsraums (c), die gute Optimierungssequenzen

im laufenden Betrieb entdeckt, die von Menschen entworfenen Abläufe übertrifft. Um die

speziellen Einschränkungen, die durch die AQFP-Technologie auferlegt werden, zu erfüllen,

untersuchen wir mögliche Lockerungen von Einschränkungen und deren Kompromisse (d)

und schlagen einen Legalisierungsfluss für die AQFP-Technologie vor (e). Durch die Kombina-

tion der vorgeschlagenen High-Effort-Optimierung (a, b) und anderer bestehender Optimie-

rungsalgorithmen mit der AQFP-Legalisierung (e) im Rahmen der Entwurfsraumerforschung

(c) erreichen wir schließlich eine signifikante Verbesserung von 44% gegenüber dem Stand der

Technik bei der Optimierung von AQFP-Schaltungen.

Zusammenfassend wird in dieser Arbeit das Wesen der modernen Logiksynthese am Beispiel

der AQFP-Schaltungsoptimierung dargestellt. Heutzutage besteht die größte Herausforderung

in der Logiksynthese darin, in dem riesigen Entwurfsraum ein lokales Optimum zu finden, das

“gut genug” ist und gleichzeitig eine angemessene Effizienz aufweist, sowie neue Methoden

zu erfinden oder neu zu entwerfen, um unkonventionelle Einschränkungen durch neue

Technologien zu bewältigen.

Stichwörter: Elektronische Entwurfsautomatisierung (EDA), Logiksynthese, supraleitende

Elektronik, adiabatisches Quantenflussparametron (AQFP)
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1 Introduction

Electronic devices and computing services are widely used in everyday life in modern society.

With the ever-advancing development of deep learning, artificial intelligence, and other

data-driven applications, demand for more intensive and efficient computation gives rise to

dramatic increases in the complexity and compactness of electronic circuits. As an example,

Apple’s latest M2 Ultra microprocessor (released in June 2023) has 134 billion transistors on a

single chip [New23]. It is obviously impossible for human engineers to design digital circuits

down to the lowest details by hand. The field of electronic design automation (EDA) was born

in the 1950s to assist the design of integrated circuits (ICs) and to avoid redundant manual

effort. Today, EDA tools are inseparable from any very-large-scale integration (VLSI) design

flow.

Logic synthesis is one stage in EDA positioned after register transfer level (RTL) synthesis and

before physical design. It refers to the translation from a functional specification of Boolean

logic into a gate-level representation of digital circuits, as well as the optimization of gate-

level logic networks. Logic synthesis involves transformation between different technology-

independent logic representations, identifying and removing logical redundancies hidden

in these representations, and finally mapping into a technology-compatible representation.

Although logic synthesis was not the first stage to be automatized in the history of EDA

development, it has become an essential step and an important means to push the limits on

the area, delay, power, performance, and other costs of the fabricated chips.

Logic synthesis stems from the theoretical foundation of Boolean algebra and switching logic

built by George Boole [Boo47] and Claude Shannon [Sha38]. Around the 1980s and 1990s,

logic synthesis techniques evolved from optimizing two-level logic representations to dealing

with multi-level logic networks. With the invention of binary decision diagram (BDD) [Ake78],

data structures used in logic synthesis also migrated from symbolic representations to more

efficient abstractions. Later in the 2000s, homogeneous logic networks consisting of only one

type of gates became a popular choice, separating efficient technology-independent optimiza-

tion and technology mapping [MB06]. The development of heuristic NP-complete-problem

solving tools such as Boolean satisfiability (SAT) solvers and integer linear programming (ILP)
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Chapter 1 Introduction

solvers further accelerated modern logic synthesis algorithms.

The rapid scaling of computing systems today both poses challenges and provides opportuni-

ties for logic synthesis researchers and engineers. Growth in computational power enables

more computationally intense approaches to be adopted in logic synthesis in order to achieve

limit-pushing chip size and efficiency results demanded by the newer generations of proces-

sors. There is thus a trend in contemporary logic synthesis to revisit and explore seemingly

naive strategies that would not have worked a few decades ago due to the limited computa-

tional power back then. Perhaps surprisingly, with some carefully crafted computational hacks

and smartly designed heuristic guidance, simple ideas are often shown to become powerful

algorithms providing another several percent improvements that all companies crave.

Moreover, the increasing scaling demand contributes to the emergence of new technologies

and computing paradigms, which have distinct characteristics compared to the traditional

complementary metal-oxide-semiconductor (CMOS) digital circuit family. With their special

design constraints and circuit properties, EDA tools must be adapted to fulfill their needs. An

important direction of modern logic synthesis lies in either modifying existing algorithms or

developing novel methodologies for emerging technologies. For example, in the second part

of this thesis, we discuss logic synthesis for adiabatic quantum-flux parametron (AQFP), a

promising superconductive circuitry providing ultra-low energy consumption. AQFP circuits

are different from CMOS in two ways: (1) AQFP circuits are based on majority (MAJ) gates,

instead of NAND gates; (2) AQFP circuits impose two unconventional constraints, namely

path balancing and fanout branching. The MAJ-based property makes it a better choice to

optimize AQFP circuits using majority-inverter graphs (MIGs), and the two constraints must

be satisfied by an additional buffer and splitter insertion step. With AQFP circuit optimization

as an example application, we demonstrate key aspects of contemporary logic synthesis in

this thesis.

1.1 Electronic Design Automation

Electronic design automation (EDA) is an industry and an academic field aiming at the

computer-aided design (CAD) of electronic circuits. Modern EDA flows can be separated

into several stages (Figure 1.1), including:

1. High-level and behavioral synthesis: From a high-level system specification, the first

stage is to synthesize and optimize system architecture designs. This stage typically

includes resource allocation, scheduling, data path optimization, etc.

2. Architectural and RTL synthesis: This stage is responsible for optimizing the architecture

at the RTL (sequential) level, for example by retiming. Then, combinational parts are

separated from the large sequential design and a gate-level implementation is chosen

for each RTL component.
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System specification
(e.g., in SystemC)

High-level synthesis
Behavioral synthesis

Register-transfer level design
(e.g., in Verilog)

Architectural synthesis
RTL synthesis

Gate-level netlist
(e.g., an AIG)

Logic synthesis
Technology mapping

Mapped netlist
(e.g., composed of standard cells)

Physical design

Layout
(e.g., in GDSII format)

Tape-out
Fabrication

Fabricated IC

Verification &
Validation (signoff)

Testing

Figure 1.1: Simplified EDA flow and intermediate products.

3. Logic synthesis and technology mapping: Naive implementations of logic circuits usually

contain lots of redundancies. In pursuit of more cost-efficient electronic systems, logic

circuits are optimized at this stage to reduce their area and delay. In the end, generic

logic representations are mapped into a technology-compliant circuit according to a

given standard cell library of the specific technology.

4. Physical design: Physical design refers to the transformation from a gate-level netlist into

a silicon layout ready for manufacture, including floor planning, placement, routing,

clock tree synthesis, timing analysis, etc.

5. Verification and validation: After each stage, the produced circuit is compared against

the original specification to ensure functional correctness. Moreover, timing and other

design constraints are also verified.
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6. Testing: Because there may be non-idealities in the manufacturing process, post-silicon

testing must be done on the manufactured chips to identify possible defects.

Besides respecting the given specifications and constraints (i.e., correctness), EDA algorithms

often emphasize their optimization aspect. Indeed, the hardest is usually not finding a legal

and feasible solution, but one with the best quality of results (QoR). Various cost metrics are

of concern in the IC industry, such as chip area, latency, throughput, energy consumption,

density, wire length, and more. Moreover, there are often tradeoffs between these criteria. For

example, with the same functionality, the ripple-carry adder takes a smaller area but has a

higher latency, while the carry-lookahead adder achieves lower latency with the drawback of a

bigger area [NIO96].

1.2 Logic Synthesis

In this thesis, the term logic synthesis refers to all steps after a gate-level netlist is obtained

(from an RTL description, i.e., RTL synthesis) and before physical design can be performed.

Logic synthesis flows typically consist of the following steps:

1. Technology-independent logic optimization: The input logic is broken down into a simple

logic representation and optimized at the technology-independent level to minimize

some given (often multiple and conflicting) cost metrics.

2. Technology mapping: The optimized representation is mapped to a target technology

using a standard cell library.

3. Post-mapping optimization and legalization: The mapped circuit is further optimized

with technology-specific optimization algorithms considering the constraints and pa-

rameters of the target technology.

4. Verification: To verify functional correctness, the optimized circuit is checked for logical

equivalence against the original logic. Timing verification is also performed to avoid

timing violations and glitches. Moreover, when there are special technology constraints

to be fulfilled, an additional legality check is required.

Logic synthesis plays a central role in all EDA tools as the translation and optimization process

from a functional specification to a structural description while meeting QoR goals in area,

delay, and power.

Formulated by and named after George Boole in 1847, Boolean algebra [Boo47] provides

the mathematical foundation for logic synthesis. A century later, in 1938, Claude Shannon

introduced Boolean logic into the world of electrical computers, showing that Boolean algebra

can be used to analyze switching circuits and proving that switching circuits designed in this

way can compute anything Boolean algebra can solve [Sha38].
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The problem of logic minimization was first tackled for two-level forms with an application

in area optimization of programmable logic arrays (PLAs). As its name suggests, two-level

forms, such as sum of products (SOP), represent Boolean logic functions using at most two

layers of logical operations. The most famous two-level minimization algorithms are the

Quine–McCluskey algorithm [Qui52; McC56] and Espresso [Bra+82]. These earliest logic

synthesis algorithms still use symbolic representations or bitstreams as their underlying data

structure for logic functions and their components.

However, in a VLSI design, digital circuits are multi-level netlists and two-level minimiza-

tion is not enough. Thus, multi-level logic optimization gained increased interest since

the 1980s with various pioneering academic tools being developed, including multi-level

logic optimization systems MIS [Bra+87] and M32 [KS98], the Boulder optimal logic design

system BOLD [Hac+89], the sequential logic synthesis system SIS [Sen+92], and the field pro-

grammable gate array (FPGA) logic synthesis system RASP [CPD96]. Simple, homogeneous

graph representations are used in multi-level logic synthesis as the underlying data structure

for logic circuits [BHS90], and auxiliary data structures like BDDs are involved in the core

computations of logic manipulations and simplifications [YC02].

1.3 Trends in Logic Synthesis Techniques

Since the 2000s, a major portion of logic synthesis research has been developed around the

AND-Inverter Graph (AIG) [Kue+02]. AIG is a technology-independent representation of multi-

level logic networks involving only two-input AND gates and optionally-inverted wires. It

gains popularity because its minimalistic data structure allows simple and efficient programs

to be developed [BM06]. AIGs were first used in formal verification to simplify the equivalence-

checking problem, but their application soon extended into technology-independent logic

optimization. A notable academic logic synthesis and verification tool relying heavily on AIGs

is ABC [BM10].

One of the core problems to be solved in logic synthesis, or logic optimization to be more

specific, is identifying and removing logic redundancies to simplify the circuit. These redun-

dancies are rooted in the flexibilities in logic representations, called don’t cares [Bra83; DM93].

The numerous logic optimization methods existing in the literature [BHS90; De 94] can be

roughly classified into two classes, namely algebraic methods, which treat Boolean functions

as polynomials and optimize the logic network locally, and Boolean methods, which consider

global and local Boolean logic and don’t-care conditions to improve the optimization quality.

Algebraic methods were popular in the earlier days because don’t-care computation was based

on BDDs which are not scalable. Since efficient don’t-care computation techniques using

truth tables and bit-parallel circuit simulation were proposed, Boolean methods have become

mainstream.

The recent trend in logic synthesis in the twenty-first century favors efficient local transforma-

tions because they are more scalable. No matter how big the network is, small sub-networks of
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usually less than a hundred nodes are extracted and optimized independently. Such strategy is

referred to as peephole optimization in this thesis. This way, the total runtime of an optimiza-

tion algorithm can be linear to the size of the network. As an inevitable compromise, these

algorithms are heuristics from a global optimization perspective. Indeed, the problem of logic

optimization is intractable and there is no scalable and optimal approach. Nevertheless, with

a portfolio of good heuristics, modern logic synthesis has been shown to reach near-optimal

results in some cases.

1.4 Challenges and Opportunities of Contemporary Logic Synthesis

The drastic growth in the scale of digital circuits poses two types of challenges in logic synthesis.

On the one hand, the scalability and efficiency of logic synthesis algorithms become crucial

requirements while the QoR cannot be sacrificed, even though the underlying problems are in-

tractable. On the other hand, as Moore’s law reaches its bottleneck, engineers and researchers

explore emerging beyond-CMOS electronic technologies and novel computing paradigms,

seeking potential breakthroughs in density, throughput, latency, and energy efficiency. These

new models often possess different characteristics than the traditional CMOS-based circuits

and sometimes impose unconventional constraints, such that existing logic synthesis algo-

rithms developed for CMOS-based circuits must be adapted accordingly.

Nevertheless, the increase in the available computational power nowadays provides oppor-

tunities for novel strategies in contemporary logic synthesis that were not advantageous or

possible twenty years ago. Enhancements in parallel computing and improvements in heuris-

tic problem-solving tools such as SAT solvers make it possible to solve some NP-hard problems

in logic synthesis efficiently. Increased central processing unit (CPU) speed and random-access

memory (RAM) size also allow some brute-force-like algorithms to become practically useful.

The development of EDA is both forced by and results in the rapid advancement of digital

integrated circuits with stronger computing power, forming a positive feedback loop.

This thesis presents new paradigms, methodologies and algorithms within a broad overview

of contemporary logic synthesis, demonstrating how the opportunities are leveraged to tackle

the challenges. It serves as a snapshot portrait of the ongoing development of logic synthesis

in the 2020s, four decades after the birth of EDA as an industry.

1.5 Thesis Organization

This thesis is separated into two parts. In the first part (Part I, Contemporary Logic Synthesis,

Chapters 3-6), we illustrate how carefully-designed heuristic approaches form the basis of

contemporary logic synthesis, starting from a simulation-guided paradigm (Chapter 3), which

leverages fast circuit simulation to extend the search space while maintaining scalability. Then,

as the core of peephole logic optimization, we study heuristic methods to solve the resynthesis

problem (Chapter 4), pushing the limits of high-effort optimization. As modern logic synthesis
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flows usually consist of multiple algorithms and iterations, we investigate an on-the-fly design

space exploration framework (Chapter 5) which is shown to be effective in advancing the

state-of-the-art QoR. Finally, we adapt existing automated testing and debugging techniques

for logic synthesis algorithms (Chapter 6) to help improve the robustness of logic synthesis

applications with minimal human effort.

In the second part (Part II, AQFP Circuit Optimization, Chapters 7-10), we demonstrate how

contemporary logic synthesis techniques are applied to emerging alternative technologies,

taking the optimization of AQFP superconducting circuits as an example. After the technology

and its special characteristics and constraints are introduced in Chapter 7, we must first

carefully study the design principles of AQFP sequential circuits to correctly establish an

abstraction model and constraint formulation that make sense in practice (Chapter 8). Since

the AQFP technology imposes special constraints to be fulfilled before physical design, we

propose a series of legalization and optimization algorithms to be performed as the last

step of logic synthesis (Chapter 9). In the end, we combine everything together as an AQFP

technology mapping flow (Chapter 10): Logic optimization and AQFP legalization (Chapter 9)

are interleaved in the design space exploration framework (Chapter 5). Among the various

logic optimization algorithms involved in the flow, MIG resubstitution consists of using the

MAJ-based resynthesis algorithm (Section 4.6) in the simulation-guided paradigm (Chapter 3).

The main chapters of this thesis (i.e., except for this chapter serving as an overview, Chap-

ters 2 and 7 giving necessary background knowledge for the two parts, and Chapter 11 as

conclusions) are based on published works. In the following, we summarize the technical

contributions of each main chapter.

1.5.1 Chapter 3: Simulation-Guided Paradigm

This chapter is adapted from [Lee+22] (© 2022 IEEE, reprinted with permission). The contri-

butions of this work are:

1. Proposes a simulation-guided logic synthesis and verification paradigm, which pre-

generates and reuses expressive simulation patterns to reduce the efforts needed in

SAT-based verification.

2. Presents methods to generate expressive simulation patterns, which are integrated with

a bit-packing technique.

3. Demonstrates the benefits of the proposed paradigm with improved resubstitution

quality and reduced SAT calls in CEC.

4. Shows the reusability of the pre-generated patterns across different applications and

with network modifications with experimental results.
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1.5.2 Chapter 4: Heuristic Resynthesis

This chapter is adapted from [LM23] (© 2023 IEEE, reprinted with permission), which is

an extension to and summary of two previous works [Rie+22; LRD21]. The contents of this

chapter are important for the following reasons:

1. Peephole optimization is a commonly used approach in modern logic synthesis, which

selects small portions of a network and optimizes them locally. As the optimization core

of this strategy, we carefully define and study the problem of logic resynthesis.

2. Three heuristic resynthesis algorithms for different network types are proposed: AND-

based resynthesis was first proposed in [Rie+22] and MAJ-based resynthesis was first

proposed in [LRD21], whereas MUX-based resynthesis is new in [LM23]. They have

better complexities compared to existing exact algorithms while compromising with

little sacrifice in the QoR compared to optimal solutions.

3. With their high efficiency and unlimited problem size, heuristic resynthesis is the only

practical candidate to serve as the core of high-effort peephole optimization. Our

experimental results show that the proposed techniques enable additional size reduction

on benchmarks that are already highly optimized.

1.5.3 Chapter 5: Design Space Exploration

This chapter is adapted from [LRD23]. In this chapter, we study a higher-level problem in logic

synthesis: Design space exploration.

1. Design space exploration is the problem of finding a good sequence of individual al-

gorithms to apply on a specific benchmark, such that the best possible QoR can be

achieved. This is a complicated and difficult problem. We discuss various common

approaches.

2. In contrast to sophisticated strategies, we propose a simple, on-the-fly method to explore

the design space and discover a good flow without requiring a complex search-based

or AI-driven optimization framework. Despite the simplicity, we show that on-the-fly

design space exploration outperforms flows designed by human experts.

3. New best results for the problem of MIG size optimization are presented as evidence.

The proposed method is also used later in Chapter 10 in the context of AQFP circuit

optimization and, again, gives impressive results.

1.5.4 Chapter 6: Testing and Debugging Logic Synthesis Algorithms

This chapter is adapted from [LRD22a]. In this chapter, we introduce modern testing and

debugging techniques and adapt them specifically to gate-level logic networks. The main
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contributions are:

1. Our fuzz tester repeatedly generates small- and intermediate-sized netlists to hunt for

bugs. We provide systematic approaches to test on small circuit topologies in addition

to purely random networks.

2. Our testcase minimizer guarantees to isolate a minimal failure-inducing core of a poten-

tially lengthy bug report. It reduces testcases more efficiently by adopting specialized

structural reduction rules for gate-level networks.

3. Our methods are agnostic of the network type and support different gate-level netlist

formats. This is the first time that automated debugging techniques are available for

logic representations other than AIGs. We demonstrate with a case study that testing

with more compact representations like XAGs increases the possibility of capturing rare

defects.

4. Our implementations are tightly integrated into mockturtle, which eliminates interfacing

overheads and provides about 10× speed-up over using external testing and debugging

solutions.

1.5.5 Chapter 8: Impact of Sequential Design on AQFP Technology Constraints

This chapter is adapted from [LAD23] (© 2023 IEEE, reprinted with permission). The contribu-

tions are three-fold:

1. We re-examine the formulation of AQFP technology constraints and propose possible

relaxations on these constraints: phase alignment instead of path balancing, as well

as leveraging flexibilities on combinational inputs’ splitting capacity and phases. We

also discuss a potential issue with clock skew and the trade-off of adopting relaxed

constraints.

2. We implement the first buffer-insertion framework which considers detailed and re-

alistic constraints and possible relaxations. The framework is parameterized for easy

customization of constraint specification.

3. We investigate the influence of technology constraints on JJ count. Using the relaxed

constraints, a large portion of buffers can be saved. This observation can help scale up

AQFP circuits which were bottle-necked by too many buffers before.

1.5.6 Chapter 9: AQFP Technology Legalization by Buffer/Splitter Insertion

This chapter is adapted from [Lee+24] (© 2024 IEEE, reprinted with permission), which sum-

marizes a scalable and flexible framework for AQFP technology legalization and optimization,
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based on two previous papers [LRD22b; CD23]1. The problem is systematically solved with

the proposal of the following algorithms:

1. A linear-time irredundant buffer insertion algorithm that is locally optimal subject to a

given schedule. This algorithm links the buffer count with a schedule of the network,

showing that the buffer insertion problem is a scheduling problem.

2. Depth-optimal scheduling algorithms. They serve as starting points to obtain a legal

schedule first, which can be further optimized later. (This part is mainly contributed by

Alessandro1.)

3. Heuristic optimization algorithms to minimize buffer count globally from a given sched-

ule. Two orthogonal algorithms are presented: chunked movement and retiming. (Re-

timing is contributed by Alessandro1.)

4. An AQFP legalization flow combining the algorithms above, which consists of obtaining

an initial schedule, inserting buffers using the irredundant insertion algorithm, and

then (optionally) further optimizing by interleaving chunked movement and retiming.

1.5.7 Chapter 10: AQFP Logic Synthesis Toolbox

This chapter is adapted from [Lee+24] (© 2024 IEEE, reprinted with permission). Logic synthe-

sis for AQFP consists of majority-based logic optimization and technology legalization. They

may be tackled independently for a faster runtime, but interleaving them has the potential

of achieving better QoR. In this chapter, we summarize various algorithms presented in this

thesis to form an AQFP logic synthesis flow.

1. For logic optimization, we combine the heuristic MAJ-based resynthesis algorithm and

the simulation-guided paradigm as a high-effort MIG resubstitution algorithm.

2. We leverage the design space exploration framework to interleave logic optimization

and technology legalization. We discuss how this approach allows exploring the design

space in two orthogonal axes of MIG optimization and buffer minimization.

3. Verification is also briefly discussed, including functional and constraint verification.

4. Finally, experimental results show a significant 44% improvement in the energy-delay

product compared to the best-known AQFP synthesis results.

To summarize, this thesis presents recent advancements in various aspects of contemporary

logic synthesis, including the simulation-guided paradigm, high-effort resynthesis, on-the-fly

1[Lee+24] is a collaboration work with Alessandro Tempia Calvino. For completeness reasons, contents based
on his work [CD23] are still summarized, but kept short and clearly marked in this chapter.
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design space exploration, and tailored technology legalization for the emerging AQFP technol-

ogy with unconventional constraints. These results show two important directions of logic

synthesis development: First, while scalability and efficiency are still important, approaches

that give the extra few percent improvement within moderate runtime overhead are gaining

interest. Second, with new technologies with different constraints emerge, specialized algo-

rithms need to be developed or adapted to fulfill their needs. At the end of this thesis, we

present a complete flow for AQFP circuit optimization to demonstrate these properties of

contemporary logic synthesis.
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2 Background

2.1 Mathematical Abstractions and Data Structures for Logic Cir-

cuits

2.1.1 Boolean Logic

A Boolean variable is a variable taking values in the Boolean domain B = {0,1}. The (n-

dimensional) Boolean space Bn is an n-ary Cartesian power of the Boolean domain. An

(n-input, single-output, completely-specified) Boolean function is a function f :Bn →B of n

Boolean variables. Multi-output Boolean functions can be seen as an ordered set of single-

output functions. A minterm of a Boolean function is a value assignment to all the function’s

input variables.

A Boolean relation R is a binary relation over two Boolean spaces R ⊆ Bn ×Bm , a domain

(Bn) and a codomain (Bm). Boolean functions are special cases of Boolean relations. When

describing Boolean functions as Boolean relations, an element in the domain is a minterm of

the Boolean function.

Boolean functions can be classified into two types:

• Completely-specified Boolean functions are special cases of Boolean relations where the

relations are functional (i.e., an element in the domain maps into one unique element

in the codomain) and total (i.e., every element in the domain maps into an element in

the codomain).

• Incompletely-specified Boolean functions are Boolean functions for which the output

values under some minterms are not specified. In other words, for some minterm

b⃗ ∈Bn , the output value can be either 0 or 1. In terms of Boolean relations, we have both

(⃗b,0) ∈R and (⃗b,1) ∈R.

When not specified, functions in this thesis refer to completely-specified, single-output
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Boolean functions.

There are several possible representations of Boolean functions, such as propositional for-

mulas, Boolean chains [Knu11], binary decision diagrams [Ake78], and truth tables. We use

conventional symbols for logic operators (listed in Table 2.1) when writing propositional

formulas.

2.1.2 Truth Tables

The truth table T [ f ] of a k-input Boolean function f :Bk →B is a bit-string u = u1 · · ·ul , i.e.,

a sequence of bits, of length l = 2k . The bit ui ∈B at the i -th position (0 ≤ i < l ), denoted as

T [ f ]i , is equal to the output of f under the input assignment (i.e., minterm) a⃗ = (a1, . . . , ak ),

where

2k−1 ·ak + . . .+20 ·a1 = i . (2.1)

If T [ f ]i = f (a⃗) = 1, a⃗ is said to be an onset minterm; otherwise, if T [ f ]i = f (a⃗) = 0, a⃗ is said to

be an offset minterm.

We use

ONES( f ) =
l−1∑
i=0

T [ f ]i (2.2)

to denote the number of 1-bits in the truth table of f , which is also the number of onset

minterms, or the size of the onset.

Truth tables are manipulated by carrying out the usual Boolean operations on all of their bits.

Suppose that u = u1 · · ·ul and v = v1 · · ·vl are two truth tables of length l , and α :B→B and

β :B2 →B are, respectively, unary and binary Boolean operations, then α(u) =α(u1) · · ·α(ul )

and β(u, v) = β(u1, v1) · · ·β(ul , vl ). Such truth table manipulations can be highly-efficiently

implemented with the bit-parallel operations supported by modern CPUs [CSG99]. The bits

of the truth tables are split into buckets of 32- or 64-bit machine words and each bucket is

processed in one machine instruction.

2.1.3 Logic Networks

Logic networks (or simply networks) are technology-independent representations of digital

circuits. A logic network N is a directed acyclic graph (DAG) defined by a pair (V ,E) of a set

V of nodes and a set E of directed edges. The node set V = I ∪O ∪G is disjointly composed

of a set I of primary inputs (PIs), a set O of primary outputs (POs), and a set G of (logic) gates.

Each PI has in-degree 0 and unbounded out-degree, whereas each PO has in-degree 1 and

out-degree 0. The out-degree of each gate is unbounded and the in-degree is a fixed number

depending on the type of the gate.
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Each element (ni ,no) in the edge set E ⊆V ×V models a wire between node ni and node no ,

where the information flows from ni to no , i. e., ni is an input of no . ni is said to be a fanin

of no and no is said to be a fanout of ni . The set of fanins of a node n is denoted by FI(n)

and the set of fanouts of n is denoted by FO(n). Two nodes having a common fanout no (i.e.,

the fanin nodes of no) are said to be siblings of each other. In many practical network data

structures, inverters are embedded on the edges. In other words, the edge set is extended to

E ⊆V ×V ×B, where an element (ni ,no ,c) ∈ E models a wire from node ni to node no with a

complementation tag c ∈ {0 = regular,1 = complemented} recording the absence or existence

of an inverter on the wire.

A path p in a network is a finite sequence n0, . . . ,nl of nodes such that (ni ,ni+1) ∈ E ,∀0 ≤ i < l .

We use n0
p
⇝ nl to denote that there is a path p from n0 to nl . The transitive fanin (TFI) or the

transitive fanout (TFO) of a node n is the set of nodes such that there is a path between n and

these nodes in the direction of fanin or fanout, respectively. A logic gate computes a Boolean

function of its fanins and passes the resulting output value to its fanouts.

The size of a network (denoted by |N |) is determined by its number of nodes, and the depth of a

network (denoted by d(N )) is the length of the longest path from a PI to a PO. This abstraction

models the combinational part of digital circuits. In practice, PIs of a logic network are often

provided by the register outputs of the previous sequential stage and POs are connected to the

register inputs of the next stage.

Cuts

A cut in a network, defined over a given set R ⊆V of root nodes, is a set C of nodes such that

any path from a PI to a root includes a node in C . Let CUTS(R) denote the set of all cuts for the

set R,

C ∈ CUTS(R) if ∀i ∈ I ,r ∈ R,∀p : i
p
⇝ r,∃n ∈C : n ∈ p. (2.3)

When R contains only one node n, CUTS(R) may be abbreviated as CUTS(n) and is also referred

to as a cut of n:

CUTS(n)≜ CUTS({n}). (2.4)

Nodes in a cut are also called leaves. A cut is said to be k-feasible if the number of leaves does

not exceed k. A node n is said to be supported by a set C of nodes if C is a cut of n. Given any

set R of roots, the identical set C = R is always a cut by definition, thus such cut is said to be a

trivial cut. Also, the set I of PIs is always a cut for any possible R.
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Cones and Windows

The logic cone between a cut C ∈ CUTS(n) and a node n, often also called a TFI cone of n if C is

unimportant or clear from the context, is the set of all nodes on any path from a node in C to

n. All nodes in the logic cone are supported by C .

Conversely, a TFO cone of a node n is the set of all nodes on any path from n to a PO. Practically,

we are often interested in TFO cones limited to a certain depth d , where the paths are limited

to a length of at most d in the definition above.

The maximum fanout-free cone (MFFC) [CD94b] of a node n is the set of nodes in the TFI cone

of n that only contributes to n. Specifically, a node m is said to be in the MFFC of n if all paths

from m to any PO pass through n. Identifying the MFFC is important because the MFFC of a

node n is the sub-graph that will be removed when n is removed.

A window is a sub-graph constructed from a root node r and a cut C ∈ CUTS(r ) and is used to

extract the local functionality and for local optimization. A window always includes the logic

cone between C and r . Additionally, depending on the application, nodes outside of the TFI

cone of r but supported by C can also be added to the window. A window can be viewed as a

smaller network with C as the set of PIs and r as a PO. The number of nodes in a window is

also called the volume of the window. In practice, windows with a higher volume-to-cut-size

ratio often contain more redundancy and are of higher interest in logic optimization.

Node Functions

Each node n in a network computes a Boolean function fn :B|I | →B in terms of the PIs, called

the node’s global function. To express the global functions, a Boolean variable xi is associated

with each PI i ∈ I . Let x⃗ = (x1, . . . , x|I |) be the set of all PI variables. By definition, the function

of a PI node i ∈ I is fi (⃗x) = xi . Then, in topological order, the functions of all nodes in the

network can be computed by composing the functions of a node’s fanins with the function of

the corresponding logic gate. Finally, the PO functions are computed by taking the function of

a PO node and inverting if the PO is complemented. Two nodes in a network are said to be

functionally equivalent if their global functions are logically equivalent; otherwise, they are

functionally non-equivalent.

The function of a node may also be expressed in terms of a cut supporting it. Given a node

n and a cut C ∈ CUTS(n), the local function f C
n : B|C | → B is the Boolean function derived by

associating a Boolean variable with each node in C and computing the local functions of each

node in the logic cone between C and n in topological order. The global functions are a special

case of local functions using the PI set I as the cut:

fn ≜ f I
n . (2.5)

16



Background Chapter 2

Types of Logic Networks

Prominent examples of logic networks include And-Inverter Graphs (AIGs) [Kue+02], where

each node represents a two-input AND gate, and Majority-Inverter Graphs (MIGs) [AGD16],

where each node represents a three-input majority (MAJ) gate. The MAJ gate computes the

majority function MAJ of its fanins [MTT61], i.e.,

MAJ(x1, x2, x3) = (x1 ∧x2)∨ (x2 ∧x3)∨ (x1 ∧x3). (2.6)

Extending the gate library with XOR gates, the Xor-And-Inverter Graph (XAG) [HFS17] is a

logic network where nodes can be either a two-input AND gate or a two-input XOR gate.

Similarly, the Xor-Majority Graph (XMG) [Haa+17] is extended from MIGs, where nodes can

be three-input MAJ gate or three-input XOR gate.

Another interesting type of network is the Multiplexer-Inverter Graph (MuxIG), where each

node represents a 2-to-1 multiplexer (MUX) gate. The MUX gate has three non-symmetric

inputs: the S-input as the selection (“if”) signal, the T-input as the “then” signal, and the

E-input as the “else” signal. The function computed by a MUX gate can be written as

MUX(s, t ,e) = (s ∧ t )∨ (¬s ∧e). (2.7)

2.2 Computational Tools

2.2.1 Boolean Satisfiability Problem

Boolean optimization methods are often formulated as a Boolean satisfiability (SAT) problem

and solved by a SAT solver [Tov84; MS00]. A SAT problem asks whether a Boolean formula,

usually presented in a conjunctive normal form (CNF) as a conjunction of clauses, is satisfiable.

That is, whether there exists a value assignment making the formula evaluate to true. If so, the

solver returns a satisfiable (SAT) result along with a satisfying value assignment; otherwise, it

concludes that the problem is unsatisfiable (UNSAT). Logic networks can be translated into

CNF formulae using the Tseytin transformation [Tse83].

By using SAT in logic optimization, we benefit from its global consideration of the Boolean

functions and hence better optimization quality. However, SAT is an NP-complete prob-

lem [Sch78]. Although many approaches have been proposed to solve SAT problems efficiently

for EDA applications [MS00] and efficient SAT solvers have been developed, SAT-solving is still

slower than algebraic and local-search methods in general. In practice, to avoid the program

being stuck in a difficult SAT solve, a timeout can be set to limit the time spent in solving SAT;

and/or a conflict limit can be set to restrict the effort made by the SAT solver.
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2.2.2 Integer Linear Programming

Linear programming is a mathematical optimization problem where constraints and the

objective are specified as linear relationships. The problem asks to find a feasible value

assignment to its variables, which satisfies all the constraints while optimizing toward the

objective (maximizing or minimizing its value). Integer linear programming (ILP) is a linear

programming problem where all variables are integers. In an ILP problem, the optimization

objective is a linear combination of a subset of its integer variables, and the constraints are

linear inequalities over its variables. ILP is NP-complete.

Many optimization problems can be formulated as ILP problems, such as the scheduling

problem in high-level synthesis. Being both NP-complete, an ILP-feasibility problem can be

encoded as a SAT problem and vice versa. Although exact algorithms to solve an ILP problem

have high runtime complexities, there exist many well-performing heuristic algorithms and

open-source tools.

2.2.3 Satisfiability Modulo Theory

A satisfiability modulo theory (SMT) problem is a generalization of the Boolean satisfiability

problem [Bie+09]. A SMT problem asks whether a mathematical formula, interpreted within a

certain formal theory, is satisfiable. For example, a satisfiability modulo integer linear algebra

problem may ask whether a set of linear inequalities over integer variables is satisfiable, which

is equivalent to asking whether an ILP problem is feasible. As SAT is already NP-complete,

SMT problems are often NP-hard, depending on what the underlying theory is. Nevertheless,

heuristic SMT solvers can be efficient in solving SMT problems with various theories and have

been used in a wide range of applications [MB08].

2.3 Components of Logic Synthesis

2.3.1 Structural Analysis

Structural Hashing

Structural hashing is a technique integrated into homogeneous network data structures of

most modern logic synthesis packages. In a homogeneous network, every node represents

the same logic gate. Thus, two nodes having the same fanins (including the polarities of

complementation on the fanin edges) must compute the same function. In other words,

structurally equivalence implies functional equivalence. A hash table is used to efficiently

identify structurally equivalent nodes during network construction as well as transformations.
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Reconvergence-Driven Cut Computation

Two paths in a network are reconvergent if they start at the same node v0, end at the same

node vl , and contain, respectively, two different fanins of vl . Reconvergence is essential for

don’t-care-based optimization [Rie+22]. Having more reconvergent paths in the window also

helps increase the volume of the window while being limited to the same cut size. These

observations motivate the computation of a reconvergence-driven cut for a given root node as

the first step of window construction.

In [MB06], a reconvergence-driven cut for a root node r is computed as follows. The expand

operation

EXPAND(C ,n) = (C − {n})∪FI(n) (2.8)

replaces a node n in a cut C with its fanins. The cost

∆(C ,n) = |EXPAND(C ,n)|− |C | (2.9)

of expanding C on a node n is the difference in the cut size after and before expansion. If

∆(C ,n) ≤ 0, we say it is a cost-free expansion. It is easy to observe that EXPAND(C ,n) is cost-free

if and only if at most one fanin of n is not in C , i.e., iff |FI(n)−C | ≤ 1. Starting from the trivial

cut C = {r }, the algorithm iteratively expands on the lowest-cost node in C , until the upper

bound on cut size k is reached and there are no more cost-free expansions possible.

MFFC Computation

If the network data structure keeps a reference counter for each node that counts how many

fanouts it has, then MFFC computation can be done efficiently by recursively dereferencing

(decreasing the reference counter of a node, and recursively decreasing its fanins’ reference

counters if the reference count becomes zero) and then referencing (restore the reference

counters) the root node.

Circuit Simulation

A simulation pattern (or abbreviated as a pattern) is a collection of Boolean values assigned to

each primary input of a network. Circuit simulation is done by visiting nodes in topological

order and computing their output values with their input values. In practice, several simulation

patterns can be bundled together by using machine words, instead of a single bit, to represent

a sequence of Boolean values. This way, 32 or 64 patterns can be computed for a node within a

single CPU instruction using bitwise logical operations supported by modern arithmetic logic

units. The simulation signature of a node is an ordered set of values produced at the node

under each simulation pattern.
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A set of simulation patterns is exhaustive if it covers all possible combinations of value assign-

ment, which requires 2k patterns for k PIs. The simulation signatures produced by simulating

an exhaustive pattern set are also called truth tables and they completely specify the Boolean

functions of the nodes.

Simulation can be done globally in the entire network or locally in a small window. In the

former case, the simulation pattern set is possibly non-exhaustive because 216 patterns are

already impractical to handle, but the number of PIs is usually larger than 16. To use an

exhaustive set of patterns, simulation must be restricted to a window of less than 16 (typically

8 to 10) leaf nodes.

2.3.2 Don’t-Care Conditions

A don’t care for an incompletely-specified function is a minterm for which the output value

is not specified. The don’t-care set of a function is the set of all of its don’t care minterms. In

a logic network, although all node functions (in terms of any cut) are completely specified,

for some nodes, there may be some minterms where the output values of their functions are

flexible. In other words, the function f C
n of a node n in terms of cut C may be modified by

changing its output value under some minterms without affecting the global functions of any

PO. As a consequence, an incompletely-specified function where these minterms are don’t

cares and the output values under the other minterms are the same as f C
n can be used to

re-synthesize the logic cone between C and n. Two types of internal don’t cares, arising from

different reasons, may appear in logic networks:

Satisfiability don’t cares

Given a cut C ∈ CUTS(R) supporting a set R of nodes1 and let x⃗ = (x1, . . . , x|C |) be Boolean

variables associated with each node in C , a value assignment b⃗C ∈ B|C | to x⃗ (i.e., a minterm

of the local functions f C
n of any node n ∈ R) is a satisfiability don’t care (SDC) if this value

combination never appears under any PI value assignment:

∄⃗bI ∈B|I |, ( fn (⃗bI ) : n ∈C ) = b⃗C . (2.10)

For example, an AND gate g1 and an OR gate g2 sharing the same fanins can never have g1 = 1

and g2 = 0 at the same time. This combination is a satisfiability don’t-care of any node in the

common TFO cone of g1 and g2.

1The supported set R is not involved in the definition of SDCs, so it can, in theory, be empty and C is not
necessarily a cut. Although one may define and compute SDCs for any set C of nodes, in practice, SDCs are only
meaningful when C is indeed a cut, as SDCs are used to optimize nodes in R.
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Observability don’t cares

Given a node n and a cut C ∈ CUTS(n) and let x⃗ = (x1, . . . , x|C |) be Boolean variables associated

with each node in C , a value assignment b⃗C ∈B|C | to x⃗ (i.e., a minterm of the local function f C
n )

is an observability don’t care (ODC) with respect to n if none of the PO functions are affected

by flipping the output value of f C
n under b⃗C :

∀b⃗I ∈B|I |, ( fn (⃗bI ) : n ∈C ) = b⃗C =⇒ ∀o ∈O, f ∗
o (⃗bI ) = fo (⃗bI ), (2.11)

where f ∗
o is the PO function derived by replacing any regular outgoing edge of n with a

complemented one and replacing any complemented outgoing edge of n with a regular one.

The value assignment b⃗C is said to be unobservable with respect to n.

Computation of Internal Don’t Cares

The appearance of “don’t care” as a technical term in the literature dates back to as early as the

80s [Bra83]. Pioneering research attempted to derive don’t care in multi-level networks and

use them in two-level minimization to resynthesize part of the network [Bar+88]. Theories

on don’t-care computation were formulated based on symbolic computations propagated

through the network [Mur+89; DM93]. Until the late 90s, computation of don’t cares had

been implemented using binary decision diagrams (BDDs). Due to scalability concerns,

approximated computation was adopted [MB90], and the compatibility of ODCs was studied

to avoid re-computation of ODCs in the network once an ODC is used to change the function

of a node [SK04]. Since the early 00s, computation tools of don’t cares have moved from

BDDs to SAT, enabling using complete, instead of approximate, don’t cares while maintaining

scalability [MB05].

In many modern logic synthesis tools, internal don’t cares are derived locally (under-approximated)

using bit-parallel circuit simulation:

• To compute the SDCs for a given set C of nodes, we first find another cut C0 ∈ CUTS(C )

supporting C . Then, we perform circuit simulation by assigning projection functions

to nodes in C0 and obtain the local functions of nodes in C in terms of C0, represented

as truth tables. Finally, by analyzing each bit in the truth tables, we identify the value

combinations at C that do not happen, which are the SDCs at C .

• To compute the ODCs with respect to a node n, we first mark the TFO cone of n for a

predefined depth and collect the set R of nodes having fanouts outside of this transi-

tive fanout cone. Then, we find a cut C ∈ CUTS(R) supporting R and perform circuit

simulation to obtain the local functions fR of nodes in R in terms of C . After adding

a temporary inverter at the output of n, we perform another simulation to obtain f ∗
R .

Finally, we compare the two simulation results to identify the minterms where fR and

f ∗
R have identical values, which are the ODCs with respect to n.
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2.3.3 Exact Synthesis and Databases

Although the problem of finding the smallest circuit implementing a given logic function is

intractable, it can still be solved for smaller functions with about less than 10 input variables.

Such algorithms are called exact synthesis. Since exact synthesis algorithms have high runtime

complexity, small optimum circuits are often pre-generated and saved in a database, so that

they can be retrieved quickly during logic optimization. Such databases usually contain one

or more implementations of all functions or a subset of practical functions up to a certain

number of inputs. NPN classification is often used to reduce the number of entries because

functions in the same NPN class (i.e., functions differ by input negation, input permutation,

and/or output negation) may share the same optimum circuit.

There are two main approaches for database generation: SAT and enumeration. SAT-based

exact synthesis encodes the question “Does a network with r gates that implements function

f exist?” as a CNF formula and uses a SAT solver to find a feasible solution. In the formulation,

Boolean variables are used to encode the interconnections between gates and the functions

of each gate. The number of gates r is a fixed assumed value, which also affects the number

of variables and clauses in the formula. To find the smallest network, we start from a smaller

value of r , increase it if the formula is UNSAT, and solve iteratively until a feasible solution is

found. An optimum database can also be generated by enumerating all possible circuits and

recording the smallest ones seen for each NPN class [Lee+19].

2.4 Modern Logic Synthesis Algorithms

2.4.1 Algebraic and Boolean Methods

Algebraic Methods: Polynomial-Algebra-Based Optimization

Algebraic methods are one of the earliest approaches to optimizing logic circuits. These meth-

ods represent Boolean functions symbolically and treat them as polynomial expressions, for

example in the SOP form. Inspired by polynomial algebra, operations like division, substitu-

tion, and common sub-expression extraction are developed for Boolean functions written in

the polynomial form. These operations form the basis for decomposition and simplification

algorithms such as kernel extraction, factorization [Bra82], balancing [Mis+11a], refactor-

ing [Haa+18], and algebraic rewriting [YCM17]. Although simple and fast, algebraic methods

neglect the Boolean nature of logic functions and thus miss some optimization opportunities.

Boolean Methods: Don’t-Care-Based Optimization

In contrast to algebraic methods, Boolean methods often achieve better optimization quality

because they consider the flexibilities of the network. In other words, they incorporate some

form of don’t-care computation and utilize don’t-care conditions to find more optimization
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opportunities. Modern logic optimization algorithms are mostly don’t-care-based, and the

key to scalable implementations is efficient don’t-care computation. The remainder of this

section introduces some common Boolean methods.

2.4.2 Cut Rewriting

Cut rewriting (or simply rewriting) is a peephole optimization algorithm that leverages a

database of small optimum circuits. It works by enumerating k-feasible cuts (where k is

usually 4) for each node in the network, simulating each cone to obtain the local functions,

looking up in the database, choosing the best cut that gives the most gain, and replacing the

chosen cone with the optimum implementation in the database [MB06]. The algorithm is

said to be DAG-aware because when evaluating the potential gain of each replacement, it is

aware of the fact that the network is a structurally hashed DAG and that structurally equivalent

nodes can be shared [MCB06; RMS20; Rie+19a].

2.4.3 Boolean Resubstitution

Boolean resubstitution (or simply resubstitution) aims at reducing the size of a logic network

by trying to resynthesize each node using existing nodes in the network. For each node in a

network, called the root, the algorithm tries to find a smaller replacement for the MFFC of

the root. If the root node is replaced and deleted, all nodes in its MFFC can also be deleted,

reducing the size of the network. Resubstitution is also classified as a peephole optimization

algorithm.

The replacement for the root node, called the dependency circuit, is built upon a set of poten-

tially useful nodes existing in the network, called divisors. A divisor should not be in the TFO

cone of the root, otherwise the resulting network would be cyclic. It should also not be in the

MFFC because nodes in the MFFC are to be removed after resubstitution. Nodes depending

on primary inputs that are not in the TFI of the root node can also be filtered out from the set

of divisors because their functions are unrelated to that of the root node. In practice, to keep

the runtime reasonable, windows constructed with k-feasible cuts are often used to collect

the divisors.

A resubstitution candidate (also abbreviated as a candidate) is either a divisor itself or a single-

output function, named the dependency function, built with several divisors. In the latter case,

the candidate is represented by the top-most node of the dependency circuit. A resubstitution,

or simply substitution, is a pair (r,c) of a root node r and a resubstitution candidate c , and it is

said to be legal if replacing r with c does not change the functions of any PO. Otherwise, the

resubstitution is said to be illegal.

Research in Boolean resubstitution techniques dates back to the 1990s [Sat+91; KS98]. In the

2000s, efforts were made to improve the scalability of BDD-based computations [KK04] and to

move away from BDDs to simulation and SAT solving [Mis+06b; Mis+11b]. In [Mis+06b], the
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dependency function is computed by enumerating its onset and offset cubes using SAT and

interpolation [Cra57], where random simulation is used for the initial filtering of potentially

useful divisors. In [Mis+11b], structural analysis (windowing) was introduced to speed up

the algorithm further. Windowing is used to limit the search space and the SAT instance size,

with the inner window as a working space, and the outer window as the scope for computing

don’t-cares.

An efficient Boolean resubstitution algorithm for AIGs using windowing was presented in

[MB06]. It relies entirely on truth table computation, without any use of BDDs or SAT. The

search for divisors is limited to a window near the root node, which is constructed from

a size-limited cut to allow exhaustive simulation. The node functions in the window are

expressed in terms of the cut nodes. The dependency function is not computed as a separate

step after minimizing its support, as in [Mis+11b]. Instead, simple dependency circuits of up

to three AND gates are explicitly tried for resubstitution using several heuristic filters. This

windowing-based and truth-table-based resubstitution framework has been generalized for

many different gate types including majority gates [Rie+18] and complex gates [Ama+18].

2.4.4 Technology Mapping

After technology-independent logic optimization is performed on homogeneous network data

structures, technology mapping is required as the last step in logic synthesis to transform

the network into one that is compatible with the underlying technology for fabrication. For

example, for an application-specific integrated circuit (ASIC), logic gates must be chosen from

a library where a transistor-level circuit design for each gate is available. In contrast, for FPGA

synthesis, a graph consisting of look-up tables (LUTs) with no more than a certain number

(k) of inputs, called a k-LUT network, is needed. The latter case requires a LUT mapping

algorithm, which is a special case of technology mapping [CD94a; CD94b; MCB07; CM10;

Ray+12].

A technology mapping algorithm maps from a subject graph, which is the input to the algo-

rithm, into a mapped graph, which is the output of the algorithm. In [Tem+22], a versatile

mapper was developed, which is capable of mapping from any subject graph into a mapped

graph using any library. Cuts are often enumerated in technology mapping to compute local

functions in the subject graph, which are then used to choose suitable gates from the library

to substitute the cuts in the mapped graph. Along the mapping process, optimizations on area

or delay can be performed. For LUT mapping, it has been shown that optimal delay can be

achieved in linear time [CD94a].

2.4.5 Combinational Equivalence Checking

Combinational equivalence checking (CEC) is the problem asking whether two (combinational)

logic networks are functionally equivalent. A miter network is often constructed in the process
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Table 2.1: Symbols and special functions used in this thesis.

Symbol Meaning

¬ Logic operator NOT
∧ Logic operator AND
∨ Logic operator OR
⊕ Logic operator XOR
↔ Logic operator XNOR
MAJ(·) Majority-vote function
MUX(·) 2-to-1 multiplexing function
FI(·) Set of fanins of a node
FO(·) Set of fanouts of a node
ONES(·) The number of 1-bits in the truth table of a function
CUTS(·) The set of cuts of a node or a set of nodes
d(·) The depth of a network

of solving a CEC problem. A miter of two networks N1 and N2 having the same number

of PIs and the same number of POs is a network Nm consisting of N1 and N2, where the

corresponding PIs in N1 and N2 are connected to the same PI of Nm , the corresponding POs of

N1 and N2 are pair-wisely fed into XOR gates, and the XOR gates are then fed into one OR gate,

whose output is the only PO of Nm . The miter network outputs 1 if and only if there exists

an input assignment such that N1 and N2 compute different values in at least one PO. The

CEC problem is equivalent to asking whether the miter of two networks produces a constant-0

output.

When the number of PIs is small, CEC can be solved by exhaustive simulation of the miter

network. Otherwise, SAT solvers are often used to formally prove that the miter produces

constant-0 output by asking whether there exists an input assignment such that the miter

output is 1. To facilitate SAT solving and reduce runtime, the miter network can be optimized

first to reduce its size. This is why CEC is often studied together with other logic optimization

problems.

In [Mis+06a], further improvements to CEC are proposed. Instead of proving the entire miter

network, which is often big, the authors propose to use random simulation to identify potential

equivalent nodes and leverage them as stepping stones.

2.5 List of Symbols and Common Variables

Symbols for logical operations and some special functions used in this thesis are listed in

Table 2.1. Also, certain variables have a fixed meaning throughout the thesis and are listed in

Table 2.2.
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Table 2.2: Variables with a fixed meaning in this thesis.

Variable Meaning

B Boolean domain
f A Boolean function
n A node
k Cut size or number of variables
m User-specified maximum size of dependency circuits in resubsti-

tution and resynthesis algorithms
N A logic network
I Set of PIs
O Set of POs
G Set of divisors (Chapters 3 and 4) or set of gates (Part II)
H Dependency circuit (Chapters 3 and 4)
B Set of buffers (Part II)
S A schedule (Part II)

2.6 Summary

In this chapter, we introduced the foundation of contemporary logic synthesis, from mathe-

matical abstractions and data structures to model Boolean logic to powerful computational

tools and efficient algorithms for structural analysis and don’t-care computation. These ba-

sic concepts are important to the scalability of logic synthesis systems nowadays. We also

presented prominent examples of modern logic synthesis algorithms commonly used in aca-

demic as well as commercial tools. Based on these, the remainder of this thesis proposes novel

frameworks and algorithms to further advance the efficiency and QoR of logic synthesis flows.
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3 Simulation-Guided Paradigm

3.1 Motivation

As the size and complexity of digital circuits grow, there is often a trade-off between efficiency

and quality. Algebraic methods, as well as other local search methods such as structural analy-

sis and window simulation, are efficient but often sacrifice optimality. In contrast, Boolean

methods usually achieve better quality at the cost of solving NP-hard Boolean problems using

a BDD package in earlier research or a SAT solver in more recent literature.

To balance between the two extremes, circuit simulation is often used in Boolean methods as

an efficient approximator of the Boolean functions embedded in logic networks. In functional

reduction [Mis+05], random and guided simulations are used to identify equivalent nodes and

merge them. In combinational equivalence checking [Mis+06a], simulation is also used to find

cut-points between two networks that serve as stepping stones for the proof of equivalence

at the primary outputs. However, if the simulation is not exhaustive, formal verification,

which is usually done with SAT-solving, is still required [Mis+06b]. In [MB05; Mis+06b], a

combination of random simulation and SAT solving was proposed to compute flexibilities

(don’t-cares) of Boolean networks within a window and to compute the dependency function

in resubstitution.

Motivated by the efficacy of these techniques adopting random simulation, in this chapter, we

introduce the simulation-guided paradigm for logic synthesis and verification, where efforts

are made in pre-generating a set of high-quality, expressive simulation patterns to further

strengthen the power of simulation. By increasing the expressive power of the simulation

patterns, synthesis and verification algorithms become more efficient, and the extension

of the search space in optimization algorithms becomes more affordable. The underlying

hypothesis, which is confirmed by experimental results, is that expressive simulation patterns

can be amassed for a logic network and used later as an efficient filter to avoid unnecessary

SAT solver calls.

Moreover, these patterns can be reused multiple times to speed up logic synthesis and verifi-
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cation for the same or a similar network in various applications. Inspired by the success of

counter-example-guided abstraction refinement (CEGAR) in the domain of software model

checking [Cla+00], the simulation-guided paradigm also refines the pre-generated patterns

throughout the process of logic synthesis with counter-examples generated by SAT solving.

The proposed paradigm is useful for algorithms dominated by expensive Boolean computa-

tions. Two representative applications are presented in this chapter: Boolean resubstitution

(introduced in Section 2.4.3) and combinational equivalence checking (introduced in Sec-

tion 2.4.5). We assume in this chapter that the underlying data structure for logic networks is

AIG, as it is widely used in logic synthesis. Nevertheless, this paradigm can also be applied

to other types of homogeneous logic networks, such as MIGs and XAGs, as well as mapped

networks such as k-LUT networks [MCB07].

3.2 Overview

The simulation-guided paradigm is proposed and described in Section 3.3. As a core com-

ponent of the paradigm, strategies to generate simulation patterns based on stuck-at-value

testing [CR88] and observability checking [DD90], as well as a bit-packing technique to com-

press the generated patterns, are presented in Section 3.4.

In Section 3.5, the first representative application of the proposed paradigm, simulation-

guided Boolean resubstitution, is demonstrated. The classic resubstitution algorithm iterates

over the nodes in a logic network and attempts to re-express their functions using other

nodes in the network. In simulation-guided resubstitution, nodes fed into the resynthesis

engine are represented by their simulation signatures, and a SAT solver is used to validate

the computed resubstitution candidates. Using expressive simulation patterns, most illegal

candidates can be quickly identified and ruled out within the engine by simply comparing sim-

ulation signatures, without the need for SAT-based validation. Experimental results show that

simulation-guided resubstitution allows user-specified tuning of the efficiency-quality trade-

off and improves optimization quality by considering a larger search space while maintaining

reasonable efficiency. Compared to a state-of-the-art AIG resubstitution algorithm [MB06],

the average reduction in the number of AIG nodes improves from 3.65% to 5.90%.

In Section 3.6, the second representative application, simulation-guided equivalence checking,

shows that expressive simulation patterns are also useful in verification. Similarly, simulation-

guided CEC leverages the expressive patterns generated in earlier synthesis stages to disprove

more non-equivalent nodes than random simulation can do, thus reducing the effort needed

in SAT-based formal verification. In our experiment, a 9.5% reduction in the number of SAT

calls is achieved when expressive patterns are used in CEC.

This motivates us to study what makes simulation patterns expressive and profile different pat-

tern generation strategies, including random simulation, the proposed stuck-at-value-based

and observability-based methods, and combinations of these. In Section 3.7, we test and com-
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pare the expressive power of various simulation pattern sets. In the process of resubstitution

and CEC, pre-computed simulation patterns can be refined further with the counter-examples

generated by SAT-solving. The generated patterns and the supplemented counter-examples

can be reused in two schemes: across different algorithms, such as resubstitution followed by

CEC, and across different versions of the same design. Reusability in the latter case is verified

with experiments on engineering change order (ECO) [Jar+11] benchmarks, which are similar

networks with functional modifications.

3.3 The Simulation-Guided Paradigm

This chapter introduces a new paradigm for logic synthesis and verification that exploits

fast bit-parallel simulation to reduce the number of expensive NP-hard equivalence checks

based on SAT. The rationale behind the idea is to pre-compute a set of simulation patterns

for a given logic network, which can efficiently rule out most non-equivalences by simply

comparing simulation signatures. Motivated by the fact that detecting and verifying functional

equivalence are the major tasks in many logic optimization (especially Boolean methods) and

verification algorithms, we define expressive simulation patterns as follows.

Definition 3.1. A non-exhaustive set of simulation patterns for a logic network is said to be

expressive if the simulation signatures obtained by simulating the patterns can be used to

pair-wisely distinguish functionally non-equivalent nodes that either already exist in the logic

network or can be derived from some existing nodes.

The exhaustive set of simulation patterns satisfies the latter part of this definition, but this

is typically too large for logic networks with 16 or more primary inputs. In practice, only

expressive simulation patterns that can be efficiently stored and simulated using less than,

say, a few hundred or thousand bits are of interest.

We assume that, for a given logic network of interest, a set of expressive simulation patterns

with size proportional to the network size can be found. This means that the expressive

simulation patterns can be pre-computed, stored, and reused by different logic synthesis

or verification algorithms when applied to the same network, or by the same algorithm

when invoked multiple times with slightly different networks. The assumption is verified

with experimental results in Section 3.7 by showing pattern reusability after ECOs, which

are typically small functional modifications to networks under design [Jar+11]. With this

assumption, we claim that the time needed to generate the expressive patterns is not critical

because they will be reused many times such that the benefits are more substantial.

Figure 3.1 illustrates the proposed simulation-guided paradigm. For each design (named

design1), a set of expressive simulation patterns is generated once (design1.pat) and is

used several times in the logic synthesis and verification flow. The same pattern set is also

applicable for various versions of the design with functional modifications (design1_v1,

design1_v2, etc.). When the pattern set is used in one of the simulation-guided algorithms, it
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Figure 3.1: The simulation-guided logic synthesis and verification paradigm.

is supplemented and refined with the counter-examples (CEXs) generated as side-products

during the execution of the algorithm. The blocks shaded in grey are implemented and

described in this chapter. While other logic synthesis algorithms may also benefit from

adopting the paradigm (the blank blocks in the figure), we present only resubstitution and

CEC as examples in this chapter.

Expressive simulation patterns cannot be derived directly from the Boolean functions of

the primary outputs, but must account for some structural information of the network. An

intuitive explanation of this observation is that a PO function can be implemented by a large

number of structurally different logic networks. Despite this, the idea of reusing simulation

patterns in multiple optimization or verification runs is still valid because the initial structure

of the network often is determined by high-level synthesis and later carefully fine-tuned

by logic optimization. Consequently, only a small fraction of closely related structures are

encountered during logic optimization and the final verification of the network.

The proposed simulation-guided paradigm can be adopted by algorithms dealing with the

Boolean relation among nodes in logic networks. For example, in Boolean resubstitution,

simulation signatures can be used as an approximation of node functions when finding resub-

stitution candidates. This way, restriction to local windows is avoided and global information

is utilized at a low cost. As simulation patterns are already generated for the optimization algo-

rithms prior to verification, reusing them in CEC comes at no extra cost. With their stronger

ability to distinguish non-equivalent nodes without SAT solving, the overall number of SAT

calls in CEC can be reduced. The paradigm is potentially suitable for other algorithms, such

as the computation of structural choices [Cha+06], to improve the quality of mapping and

gate matching between several versions of the same logic network. Furthermore, the resulting

patterns can also be used in automatic test pattern generation (ATPG) [Rot66] and in circuit

reliability analysis [CM10].

To conclude, simulation signatures are used as efficient approximations of node functions

to reduce NP-hard equivalence checks. As they may not cover all circuit states under all
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possible input assignments, formal verification (in this chapter, by SAT-solving) is inevitable

in simulation-guided algorithms. As byproducts, counter-examples in terms of PI value

assignments, i.e., new simulation patterns, are generated. To reduce unnecessary SAT-solving,

we seek to increase the accuracy of such approximation by partial simulation. On one hand,

we propose to pre-generate an expressive pattern set to be reused across multiple optimization

runs and across different algorithms, and we study methods to ensure the good quality of these

patterns in the first place. On the other hand, motivated by the success of various counter-

example-guided logic synthesis and verification works [Cla+00; AA20; Mis+05; Mis+06b], we

propose to collect and keep the counter-examples generated by different algorithms and use

them to enhance the initial pattern set.

3.4 Simulation Pattern Generation

Following the previous section, several strategies to generate expressive simulation patterns are

formulated in this section. Two types of patterns are used as the basis: random patterns which

are random values generated with equal probability of 0 or 1 for each primary input, and stuck-

at patterns which are generated by trying to distinguish each node from constant functions 0

and 1. Generating random patterns is straightforward. The procedure to generate stuck-at

patterns is described in Section 3.4.1. Then, in Section 3.4.2, an observability-based method

to strengthen stuck-at patterns is elaborated. Finally, a bit-packing method to compress the

pattern set is explained in Section 3.4.3.

3.4.1 Stuck-at Values

In random simulation, the possibility of a certain bit value (0 or 1) appearing in the simulation

signature of some nodes in the network may be relatively low. For example, a 2-input AND gate

only produces 1 when both of its fanins are 1, which is of 25% possibility if the fanin values

are randomly assigned. However, a value of 1 at this node may be necessary for disproving

some non-equivalence. Thus, we refine the set of simulation patterns by asserting that every

node has both values appearing in its simulation signature. If only one value occurs, a new

simulation pattern is created by solving a SAT problem, which forces the node to have the

other value. This procedure is described in Algorithm 3.1, named StuckAtCheck.

In lines 1-2, we start with a small set of random simulation patterns and simulate the network

to get the initial simulation signatures of each node. A SAT solver is also initialized and loaded

with the CNF clauses translated from the network in lines 3-4. Then, for each node in the

network (line 5), if 0 or 1 does not appear (line 6), we try to generate a pattern by assuming

the missing value and solving the SAT instance (lines 7-11). If the solver finds a satisfying

assignment, the desired pattern is generated (lines 12-13). In an un-optimized network, there

may be nodes that never take one of the values and the solver will conclude that the problem

is unsatisfiable (line 14). These nodes can be replaced by a constant node in line 15. If the

solver times out or a given conflict limit is exceeded, we simply skip the node and continue
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Algorithm 3.1: StuckAtCheck: Expressive simulation pattern generation based on stuck-at
values.
Input: A logic network N
Output: A set S of expressive simulation patterns

1 S ← A small set of random patterns
2 N .simulate(S)
3 initialize Solver
4 Solver.generate_CNF(N )
5 foreach node n in N do
6 if n.signature = 0⃗ or n.signature = 1⃗ then
7 if n.signature = 0⃗ then
8 Solver.add_assumption(n)
9 else

10 Solver.add_assumption(¬n)
11 result ← Solver.solve()
12 if result = SAT then
13 S ← S ∪ {Solver.pi_values}
14 else if result = UNSAT then
15 Replace n with constant node.

16 return S

the process with the next node.

The pattern set can be further strengthened by assuring both values appear multiple times

(for example, at least 10 times) in the signature of every node. This can be done by running the

SAT solver multiple times while making sure it takes different computation paths.

An example is shown in Figure 3.2. In this example, a simulation pattern is a value assignment

to x⃗ = (a,b,c). Suppose there are two random patterns in the initial set S = {000,110}. A

simulation signature of a node is the bit-string of simulation results under each pattern in S, in

the same order. After simulation, the simulation signature obtained for node n is 00, where 1

does not appear. Hence, by asserting n = 1 and solving SAT, procedure StuckAtCheck generates

a new pattern 011 and adds it to the end of S. Now, the simulation signature of n is 001.

3.4.2 Observability

Due to the existence of observability don’t cares, there may be some simulation patterns that

are unobservable with respect to an internal node; these patterns are possibly less useful

in disproving non-equivalence. Here, two cases are identified where a generation or re-

generation of an observable pattern may be done:

• Case 1: In StuckAtCheck when a node is stuck at a value, and a new pattern is generated

to express the other value, but this pattern is not observable.
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Figure 3.2: Example network for pattern generation methods.

• Case 2: A node assumes both values, but for all the patterns under which the node

assumes one of the values, it is not observable.

The first case is identified during StuckAtCheck. Whenever a new pattern is generated (line

13), its observability with respect to the node n is checked according to the definition (Equa-

tion (2.11) in Section 2.3.2) with the following steps:

1. Simulate the network to obtain the PO values under this pattern.

2. Flip the simulation value at the output of n and simulate its TFO cone again.

3. Check if all of the PO values remain the same. If so, the pattern is unobservable.

4. Restore the value of n and simulate the TFO cone again.

This procedure is similar to how observability don’t cares are computed. Step 4 is only needed

if the data storage of simulation signatures is shared and reused across different procedures

throughout the pattern generation process, which practically enhances efficiency by reducing

re-simulations.

The second case is checked after procedure StuckAtCheck is completed. We iterate over all the

nodes in the network again and check if, for each node, there are at least two patterns that are

observable with respect to the node and the node assumes 0 and 1 respectively under the two

patterns. The procedure to check whether each pattern is observable is the same as described

above.

To resolve unobservable patterns, a procedure ObservablePatternGeneration is devised, which

generates an observable simulation pattern x⃗ with respect to a given node n and makes sure
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Figure 3.3: Corresponding network of the CNF instance to be built in procedure ObservablePat-
ternGeneration.

that n expresses a specified value v under x⃗. This procedure builds a CNF instance, whose

corresponding network is shown in Figure 3.3. In Figure 3.3, the lower two triangles TFI1 and

TFI2 are the TFI cones of the two fanins of node n. n is created and connected to the same TFI

cones as n. The TFO cone of n is duplicated (the upper two triangles) and the counterpart is

connected to n. Primary outputs in the two TFO cones are matched and connected to XOR

gates, and the XOR gates are fed to an OR gate, forming a miter. The output value of the miter

is asserted to be 1 and the output value of node n is asserted to be v . Then, the CNF instance is

solved by a SAT solver. If the instance is SAT, an observable pattern is generated (Lemma 3.1),

and we say that the originally unobservable pattern is resolved. Otherwise, if the solver returns

UNSAT, n is found to be unobservable with value v and can be replaced by the constant node

in the respective polarity (Lemma 3.2).

Lemma 3.1. A satisfying input assignment x⃗ in the network of Figure 3.3 is an observable

pattern with respect to node n.

Proof. By definition, x⃗ is observable with respect to n if the value of at least one of the primary

outputs of the network under x⃗ is different when n is replaced by n. This condition is ensured

by the miter of the TFO cones of n and n in Figure 3.3.

Lemma 3.2. If a node n is never observable with value v (v ∈ {0,1}), then it can be replaced by

constant ¬v without changing the network function(s). That is, there does not exist a primary

input assignment x⃗, such that one of the primary outputs has different values in the original

network and in the modified network.
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Proof. Assume the opposite: there exists a primary input assignment x⃗, such that at least

one of the primary outputs has a different value after replacing n with ¬v . If the value of n is

¬v under x⃗, all node values in the network, including primary outputs, remain unchanged

if n is replaced by ¬v . If the value of n is v under x⃗, because n is not observable with v , all

primary outputs remain at the same value when the node value of n changes to n =¬v , which

contradicts the assumption.

In order to limit the computation in large networks, the TFO in Figure 3.3 is practically

restricted to a depth. In this case, all the leaves of the cone should be XOR-ed with their

counterparts to build the miter. Note that restricting the TFO depth weakens the definition of

observability, but is essential for scalability. Empirically, using a depth of 5 is shown to be a

good tradeoff between quality and runtime.

After an observable pattern x⃗ is generated, in Case 1, we can replace the pattern generated by

StuckAtCheck with x⃗. In Case 2, we simply add x⃗ to the set of patterns.

We continue with the example in Figure 3.2 with three patterns in the set S = {000,110,011}.

By checking the observability of each pattern, it is found that only 110 is observable and the

value of n under this pattern is 0. Hence, procedure ObservablePatternGeneration generates

another pattern 101 making n = 1. This pattern is indeed observable because flipping the

value of n from 1 to 0 also makes the PO value f change from 1 to 0.

3.4.3 Bit-Packing

For some large benchmarks with many primary inputs, the size of the generated pattern set

can be large, slowing down simulation. In the field of ATPG, test patterns are often compressed

by first identifying care and don’t-care bits in them [MK06]. The set of care bits in a test pattern

is the set of PI values that contribute to detecting a certain fault, while the don’t-care bits are

the PIs that can be assigned to any value. We integrated a similar technique in our simulation

pattern generation.

Similar to test pattern compression, the care bits in a simulation pattern are the PI values that

contribute to proving that the node is not stuck-at and in fact observable at one of the outputs.

During simulation pattern generation with the previously described methods, care bits are

identified by a simple structural support analysis, which highlights control paths from the

inputs to the target node, and from the target node to at least one output where it is observed.

After generating several patterns, the pattern set is compressed by trying to pack each new

pattern into one of the preceding patterns. Two patterns can be packed together if their care

bits do not overlap. To pack a pattern p1 into another pattern p2, the care bits of p1 are written

into don’t-care bits of p2, and these bits are marked as cares in p2.
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3.4.4 Discussion

In this section, we illustrate methods to derive an initial set of expressive patterns serving as

the basis of the simulation-guided paradigm. Starting from a mixture of random patterns

and stuck-at patterns as the basis and depending on the computation effort taken by the

pattern generation phase, observability checks can be applied to strengthen or append the

pattern set. It may seem, from the algorithms, that each pattern is generated for a specific

node in the network, which may be removed later during logic optimization and the pattern

becomes useless. However, we argue that this is not a problem because even random patterns

play an important role in this paradigm, as shown in our experimental results. Moreover,

it is practically inefficient to keep track of which pattern is generated for which node and

which patterns are still useful, especially after bit-packing. As another piece of evidence, our

experimental results on ECO benchmarks show that the generated patterns are as useful for

a functionally modified network even if they are generated with the original version of the

design.

3.5 Simulation-Guided Resubstitution

In this section, the simulation-guided paradigm is demonstrated with Boolean resubstitution

as an example application in logic synthesis. The main difference of our algorithm, compared

to a state-of-the-art resubstitution algorithm [MB06], is in the representation of the divisors.

Instead of using the complete truth table of the local function of the node, we use the simula-

tion signature approximating the global function of the node. The algorithm consists of the

following steps:

1. Generation of a set of expressive simulation patterns, as described in Section 3.4.

2. Simulation of the network with these patterns to obtain simulation signatures for each

node.

3. Iterating over all nodes in the network and calling the currently chosen node the root

node. Estimating the gain by computing the root node’s MFFC and collecting the divisors.

Skipping the node if the gain is too small or if there are no divisors. Details of this step

are described in Section 2.3.1.

4. Searching for resubstitution candidates in terms of dependency functions using simula-

tion signatures. Details of this step are described in Chapter 4.

5. Validating the resubstitution with SAT solving by assuming non-equivalence. An UN-

SAT result validates the resubstitution, while a SAT result provides an input assignment

under which the optimized network is not equivalent to the original network. In the

latter case, the counter-example is added to the set of simulation patterns.

6. Iterating starting from Step 3, until all nodes in the network have been processed.
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Algorithm 3.2: SimResub: One iteration of Steps 4 and 5 in simulation-guided Boolean
resubstitution.
Input: A root node n in a simulated network N , its MFFC MFFC, and a set G of divisors
Output: A legal (verified) candidate to substitute n, if exists

1 initialize Solver
2 Solver.generate_CNF(N )
3 while TRUE do
4 H ← resynthesize(n, G , min{|MFFC|,m})
5 if H ̸= NULL then
6 result ← Solver.verify(n, H) // Detailed in Algorithm 3.3
7 if result = TRUE then
8 return H
9 else if result = FALSE then

10 N .re_simulate()
11 else
12 break
13 else
14 break
15 return NULL

Simulation of the entire network in Step 2 enables better incorporation of global satisfiability

don’t cares without extra cost, which allows more optimization potential compared to the

windowing-based approach as in [MB06]. The collection of counter-examples in Step 5

expands the simulation pattern set, which further improves the efficiency of later optimization

runs. In the remainder of this section, we focus on Steps 4 and 5, shown in Algorithm 3.2,

which differ the most.

A SAT solver is initialized and the CNF clauses encoding gate logic are generated and added

to the solver in lines 1-2. In line 4, a simulation-signature-based resynthesis algorithm is

used to find a dependency circuit of up to m∗ nodes, where m∗ is the smaller value among

a user-specified parameter m and the size of the MFFC. Procedure resynthesize heuristically

searches for a minimum-node AIG implementation H of the target function ft using a set of

divisors G as PIs. Both the target function and the divisors are represented by their simulation

signatures. The PO of H should have the same signature as the given target ft . Details of the

underlying algorithm are described in Chapter 4.

Since the simulation signatures are an approximation of the node’s function, the resubstitution

candidate needs to be formally verified. Procedure verify in line 6 uses the SAT solver to try

to find a pattern, under which nodes n and Hout have different values. This is detailed in

Algorithm 3.3. The resubstitution is legal if the solver returns UNSAT (lines 4-5 in Algorithm 3.3

and lines 7-8 in Algorithm 3.2); otherwise, a new pattern is added to the set and the network is

re-simulated if the solver returns SAT (lines 6-8 in Algorithm 3.3 and lines 9-10 in Algorithm 3.2).

Note that if the simulation signatures are stored as sequences of multiple machine words, a new
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Algorithm 3.3: Solver.verify: Verify a resubstitution candidate using a SAT solver.

Input: A root node n in a simulated network N , and a dependency circuit H with some
nodes in N as PIs and Hout as PO

Output: Whether it is legal to substitute n with H
1 Solver.generate_CNF(H)
2 Solver.add_assumption( literal(n) ⊕ literal(Hout ) )
3 result ← Solver.solve()
4 if result = UNSAT then
5 return TRUE

6 else if result = SAT then
7 N .add_pattern(Solver.pi_values)
8 return FALSE

9 return UNKNOWN

pattern is appended to the end of the last word and only this word needs to be re-computed

because the other words remain the same. With the appended signatures, resynthesize gives

a different result in the next invocation. The process continues until one resubstitution is

validated (lines 7-8), or the SAT solver times out (lines 11-12), or until the engine cannot find

another candidate dependency function (lines 13-14).

3.6 Simulation-Guided Equivalence Checking

CEC after logic synthesis can benefit from the simulation information collected and used for

logic optimization. This is because, in the process of CEC [Mis+06a], one of the major tasks

is disproving candidate equivalences, which relies on SAT-solving when counter-examples

cannot be easily found with random simulation. The pre-computed expressive simulation

patterns provided to the CEC engine can be used to disprove many of the non-equivalent

nodes directly without any SAT-solving.

The command &cec in ABC1 [BM10], which is an improved version of cec [Mis+06a], compares

AIGs derived from two versions of the design presented for CEC. Internally, it generates

random simulation patterns iteratively to detect candidate equivalent pairs and filter out

non-equivalent nodes. Random simulation is repeated until no more refinement can be made,

i.e., no more non-equivalent nodes being distinguished. Then, a SAT solver is called to formally

prove the equivalence pairs by assuming non-equivalence, similar to the verification procedure

in the resubstitution algorithm presented in the previous section. If the solver returns UNSAT,

the equivalence pair is formally proved; otherwise, if the solver returns SAT, a counter-example

is generated. The counter-example disproves the given candidate equivalence and potentially

other unproven ones.

We implemented simulation-guided CEC by modifying command &cec to use pre-generated

1Available: github.com/berkeley-abc/abc
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patterns instead of generating random patterns. This can be useful when the design is op-

timized with the proposed paradigm, for example, the simulation-guided resubstitution

developed in this chapter, so that an expressive set of patterns pre-generated, and maybe

even supplemented with the counter-examples generated during optimization, is already in

hand. Without any extra cost, the patterns can be reused in CEC to reduce SAT calls disproving

equivalence.

3.7 Experimental Results

In Sections 3.7.1 and 3.7.2, we first investigate the expressiveness of simulation patterns gener-

ated using different methods by comparing the number of counter-examples encountered

in resubstitution. After finding a good strategy, we use it to generate a pattern set to be used

for other experiments and report its size before and after bit-packing in Section 3.7.3. Then,

Section 3.7.4 demonstrates how an expressive pattern set makes a shift in runtime from op-

timization to pattern generation, and Section 3.7.5 confirms the reusability of patterns for

functionally-modified networks with a set of ECO benchmarks. Finally, the advantages of

simulation-guided resubstitution and simulation-guided equivalence checking are shown in

Sections 3.7.6 and 3.7.7, respectively.

The experiments are performed on a Linux machine with Xeon 2.5 GHz CPU and 256 GB RAM.

The OpenCore designs from IWLS’05 benchmark2 are used in all experiments, except for those

in Section 3.7.5. When generating the patterns and testing the quality of resubstitution and

equivalence checking in Sections 3.7.3, 3.7.4, 3.7.6 and 3.7.7, the benchmarks are preprocessed

with redundancy removal by iterating command ifraig in ABC until no reduction in size.

The results for the preprocessed benchmarks are reported in Table 3.1. The preprocessed

benchmarks and the simulation patterns used can be found online3.

3.7.1 Size of Simulation Pattern Set

Intuitively, the more simulation patterns used, the higher the chance that the paradigm saves

time by not attempting to prove non-equivalences, i.e., a larger set of simulation patterns is

expected to be more expressive. Following the definition of expressive patterns in Section 3.3,

we measure the expressive power of a pattern set using the percentage decrease, as compared

to a baseline set, in the number of counter-examples encountered in resubstitution, which

is calculated separately for each benchmark. Different from the resubstitution framework

described in Section 3.5, the counter-examples are not added to the simulation set, to isolate

the impact of the provided patterns.

We start by investigating the expressive power of random patterns based on their count. In

Figure 3.4, each bar represents how expressive a pattern set of the respective size is, compared

2Available: iwls.org/iwls2005/benchmarks.html
3Available: github.com/lsils/sim-LSV_exp
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Figure 3.4: Decreased percentages of counter-examples when provided with different number
(#pat ) of random simulation patterns, compared to the baseline #pat = 4.

to the baseline of using only four simulation patterns. The smaller sets are subsets of the

larger sets to avoid the biasing effect of randomness. Since the trend is similar for each

benchmark, only some medium-sized benchmarks (with around 10 to 20 thousand nodes)

are shown here. As the size grows by a factor of four (leading to 4, 16, 64, etc. patterns), the

expressive power increases very fast at first, as expected, but saturates at a few hundred to

a few thousand patterns. Fortunately, a thousand patterns is still a practical size, for which

bit-parallel simulation runs fast.

A similar phenomenon is observed when patterns are generated by StuckAtCheck. As discussed

in Section 3.4.1, additional patterns can be used to ensure that every node has at least b bits of

0 and b bits of 1 in its signature. In the following experiments, stuck-at patterns are abbreviated

as “s-a”, with a prefix “bx” listing parameter b. In Figure 3.5, since the stuck-at pattern counts

are different for each benchmark, the pattern set size is normalized to the network size and

plotted in the logarithmic scale. Only benchmarks that are smaller than 25k nodes are included.

The baseline pattern set is “1x s-a”. It is observed that larger sets of patterns are usually more

expressive. Note that randomness plays a role in this case, since the default variable polarities,

which determine initial variable values in the SAT solver, are randomly reset before each run.

3.7.2 Pattern Generation Strategies

In this section, the expressive power of simulation patterns generated by StuckAtCheck is

compared with the case when observability is used (suffix “-obs”) and/or when an initial

random pattern set of size 256 is used (prefix “rand 256”).

The observability check and observable pattern generation are done with a fanout depth of

5 levels. A conflict limit of 1000 is set for the SAT solver, and there is no time-out limit set. A

set of 256 random patterns is used as the baseline in Figure 3.6. Four small benchmarks, for
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Figure 3.5: Decreased percentages of counter-examples when using different sets of stuck-at
simulation patterns, compared to the baseline set “1x s-a”.

which the random pattern sets are more expressive than “1x s-a” and/or “1x s-a-obs”, are

not shown in the figure. Larger benchmarks with more than 25k nodes are also excluded. The

geometric means of the sizes of the pattern sets are 143 for “1x s-a”, 244 for “1x s-a-obs”,

354 for “rand 256 + 1x s-a” and 462 for “rand 256 + 1x s-a-obs”. On the other hand,

the geometric means of the decreased percentages of the counter-examples are 91.3%, 96.5%,

97.1%, and 99.5%, respectively.

It is observed that patterns generated by StuckAtCheck are usually more expressive than ran-

dom patterns, except for a few, typically small, benchmarks. Also, using observability increases

the expressive power of the generated patterns. Finally, seeding the pattern generation engine

with an initial set of random patterns not only speeds up the generation process but also

makes the resulting patterns more expressive.

As the patterns generated with “rand 256 + 1x s-a-obs” are shown to be the most expres-

sive, these pattern sets are used in the following experiments in Sections 3.7.3, 3.7.4, 3.7.6

and 3.7.7. Table 3.1 lists some information on the benchmarks and their pattern sets. On

average, about 80% of the runtime (about 50% for the largest five benchmarks) in pattern

generation was spent in the observability-based methods, including time for checking if a

pattern is observable, SAT-solving with the TFO cone, and re-simulation after a new pattern

is generated. As seen in Figure 3.6, using observability increases the expressive power of the

generated patterns, but not much. Thus, in practice, one may consider disabling observability

awareness for larger benchmarks. There is no constant node detected because the benchmarks

are preprocessed with redundancy removal, and there are about 0.1% unobservable nodes

found, on average.
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Figure 3.6: Decreased percentages of counter-examples when using pattern sets generated
with different strategies, compared to the baseline set “rand 256”.

3.7.3 Pattern Compression with Bit-packing

As discussed in Section 3.4.3, the generated patterns can be packed together to reduce the

pattern set size and speed up the simulation. This technique becomes more important in

larger benchmarks with huge amounts of primary inputs. The middle part of Table 3.1 shows

the total number of generated patterns (column gen.), the final number of patterns after

bit-packing (column packed), and the ratio of the two sizes (column (%)). The 256 random

patterns are not bit-packed, nor included in this table. On average, the sizes of the packed

pattern sets are about 70% of the original sets.

3.7.4 Effect of Expressive Patterns in Resubstitution

As stated in the motivation, an expressive set of simulation patterns is used to shift the

computation effort from the optimization algorithms to pattern pre-computation. Table 3.2

shows how the quality of the patterns affects the runtime of pattern generation (patgen) and

resubstitution (resub). For simplicity, only some of the larger benchmarks with more obvious

effects are shown in this table. A better set of patterns (Table 3.2, “rand 256 + 1x s-a-obs”)

efficiently filters out many illegal resubstitutions without calling the SAT solver, resulting in the

reduced counter-example counts (#cex) and faster runtimes. Note that there is no difference

in optimization quality (i.e., circuit size reduction) caused by using different patterns because

if an illegal resubstitution is not filtered out by simulation signatures, it is still disproved by

SAT solving.

Furthermore, in practice, when the same design is repeatedly synthesized during development

or when simulation patterns are reused by different optimization engines, counter-examples

from the previous runs can be saved for later use. In this case, the additional counter-example
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Table 3.1: Number of generated patterns before and after bit-packing.

benchmark #patterns ratio runtime

name size #PIs gen. packed (%) (s)

leon2 787972 298888 23526 14858 63.2 17080.75
leon3_opt 972952 370159 24820 16448 66.3 24566.67
leon3 1085718 370159 24739 16161 65.3 23471.45
leon3mp 650722 217858 13799 9483 68.7 5045.94
netcard 802846 195730 28206 13944 49.4 8896.10
ac97_ctrl 14199 4482 88 27 30.7 0.38
aes_core 21441 1319 163 18 11.0 0.74
des_area 4827 496 18 18 100.0 0.19
des_perf 81998 17850 54 54 100.0 3.95
DMA 21992 5070 886 384 43.3 2.11
DSP 44132 7835 1374 736 53.6 6.87
ethernet 86293 21216 2787 1340 48.1 27.59
i2c 1120 275 65 57 87.7 0.02
mem_ctrl 7870 2281 601 393 65.4 0.70
pci_bridge32 22521 6880 714 207 29.0 1.82
RISC 73789 15678 3139 1012 32.2 17.30
sasc 770 250 1 1 100.0 0.00
simple_spi 1034 280 32 25 78.1 0.01
spi 3762 505 184 184 100.0 0.18
ss_pcm 405 193 2 2 100.0 0.00
systemcaes 12108 1600 39 38 97.4 0.23
systemcdes 2857 512 3 3 100.0 0.07
tv80 9091 732 408 404 99.0 0.55
usb_funct 15245 3620 643 238 37.0 0.92
usb_phy 440 211 9 8 88.9 0.00
vga_lcd 126427 34247 5142 2957 57.5 120.34
wb_conmax 47449 2670 206 170 82.5 1.60

count during later runs can go down to nearly zero, and the runtime is only spent on logic

synthesis or verification tasks, such as proving equivalences among the nodes or computing

dependency functions and validating them. The latter scheme will be verified in the next

section and be used from then on.

3.7.5 Reusability of Simulation Patterns

In support of our assumption, the reusability of the generated patterns and the counter-

examples are verified with a set of ECO benchmarks [KJR20]. For each design, there is an

old version and a new version which are functionally different. The results of two runs of

resubstitution with the two versions of benchmarks are reported and compared in Table 3.3.

First, a set of patterns is generated for the old version with “rand 256 + 1x s-a-obs” where

only the first case of observability check is performed. Columns A and B show the number of

counter-examples (#cex) and the runtime of resubstitution on the two versions of benchmarks

using this generated pattern set. Comparing them, it is observed that the patterns are as effec-

tive on the new benchmarks, even though they are generated with the old ones. In columns C
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Table 3.2: Resubstitution runtime as a function of the number of counter-examples produced.

rand 256 rand 256 + 1x s-a-obs

runtime (s) runtime (s)

benchmark #cex patgen resub #cex patgen resub

aes_core 69 0.01 0.72 7 0.74 0.34
des_perf 11 0.01 3.23 2 3.95 3.50
DMA 4923 0.01 2.15 440 2.11 0.41
DSP 8436 0.01 5.71 510 6.87 1.71
ethernet 50334 0.01 67.27 5329 27.59 10.63
pci_bridge32 3303 0.01 2.61 484 1.82 0.96
RISC 15052 0.01 16.02 589 17.30 2.81
vga_lcd 88008 0.01 182.36 3749 120.34 13.16
wb_conmax 920 0.01 0.66 146 1.60 0.64

and D, resubstitution is performed again, but using the generated patterns appended with

the counter-examples collected in A. There are almost no new counter-examples in column

C when the same optimization algorithm is applied on exactly the same benchmarks, as

expected. Moreover, when applying on slightly different networks in column D, the num-

ber of counter-examples is reduced by 73% compared to the first run (B). The runtime in D

is only slightly higher than in C, showing that most of the runtime is spent on computing

dependency functions and validating the legal resubstitutions, which are inevitable. The

lower-right column compares a flow optimizing first the old networks and then the new ones

without learning of counter-examples (A+B) against one that learns the counter-examples

from previous runs (A+D).

3.7.6 Quality of Simulation-Guided Resubstitution

This section shows the improvements in terms of resubstitution quality. Tables 3.4 and 3.5 com-

pare the proposed framework with command resub [MB06] in ABC [BM10], which performs

truth-table-based resubstitution. Because computing simulation patterns in our framework re-

sults in detecting combinational equivalences [Mis+05], for a fair comparison, the benchmarks

are preprocessed by repeating the command ifraig in ABC until no more size reduction is

observed. The quality of results, presented in the gain columns, is measured with the reduc-

tion percentage in network size after optimization, i.e., the difference in the number of nodes

before and after resubstitution, divided by the original network size. Simulation patterns

used in our framework are initially generated with “rand 256 + 1x s-a-obs”, bit-packed (as

described in Section 3.4.3), and then incrementally supplemented with the counter-examples

generated from the previous runs of the same resubstitution settings in each column. After

the resubstitution run in the last column of Table 3.5, the sizes of pattern sets increase by 30%

on average.

Two parameters can be set in both flows: the maximum cut size k used to collect divisors in
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Table 3.3: Resubstitution efficiency after ECO with or without counter-example learning.

A B C D
benchmark version old new old new

pattern set generated generated (for old) with CEX from A with CEX from A

benchmark size #cex time (s) #cex time (s) #cex time (s) #cex time (s)

design1 218679 2711 30.92 2869 31.75 0 12.39 441 17.63
design2 344 16 0.01 11 < 0.01 0 0.00 11 < 0.01
design3 453920 3089 48.52 3006 46.76 0 19.56 219 23.37
design4 30819 579 0.81 594 0.82 0 0.36 150 0.55
design5 3582 76 0.04 63 0.04 0 0.03 6 0.03
design6 77555 1161 4.40 1180 4.51 0 2.24 126 2.78
design7 62336 844 2.10 907 2.18 1 1.13 123 1.41
design8 20517 540 0.59 575 0.65 0 0.31 130 0.46
design9 4650 69 0.05 83 0.05 0 0.03 26 0.04
design10 15995 86 0.23 138 0.21 0 0.18 71 0.20
design11 48817 949 2.17 931 2.10 0 1.06 94 1.18

average 920.00 8.17 941.55 8.10 0.09 3.39 127.00 4.33

B vs. D (A+B) vs. (A+D)

benchmark ∆#cex ∆time ∆#cex ∆time

design1 -84.63% -44.47% -43.51% -22.53%
design2 0.00% N/A* 0.00% 0.00%
design3 -92.71% -50.02% -45.73% -24.55%
design4 -74.75% -32.93% -37.85% -16.56%
design5 -90.48% -25.00% -41.01% -12.50%
design6 -89.32% -38.36% -45.02% -19.42%
design7 -86.44% -35.32% -44.77% -17.99%
design8 -77.39% -29.23% -39.91% -15.32%
design9 -68.67% -20.00% -37.50% -10.00%
design10 -48.55% -4.76% -29.91% -2.27%
design11 -89.90% -43.81% -44.52% -21.55%

average -72.99 -32.39* -37.25 -14.79

*The runtime is too fast to compute the reduction rate, hence this benchmark is excluded from the average.
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Table 3.4: Resubstitution quality on AIGs comparing against ABC’s resub command. Baseline:
at most one node insertion.

ABC Ours, Ours,
k = 10,m = 1 k = 10,m = 1 k = 100,m = 1

benchmark size gain (%) time (s) gain (%) time (s) gain (%) time (s)

leon2 787972 0.11 69.48 0.13 65.52 0.32 1639.16
leon3_opt 972952 0.18 55.40 0.23 82.55 0.28 1113.55
leon3 1085718 0.10 55.11 0.11 90.25 0.19 1347.85
leon3mp 650722 0.08 30.16 0.10 41.04 0.19 406.59
netcard 802846 0.08 52.79 0.09 60.21 0.13 1062.90
ac97_ctrl 14199 1.25 0.15 1.25 0.08 1.27 0.10
aes_core 21441 1.50 0.42 1.60 0.48 2.32 2.59
des_area 4827 1.82 0.08 2.15 0.07 2.15 0.50
des_perf 81998 6.07 1.37 7.01 2.91 7.17 3.61
DMA 21992 0.89 0.27 1.04 0.20 1.29 1.12
DSP 44132 2.13 0.54 2.71 0.64 3.32 4.08
ethernet 86293 0.31 2.03 0.34 1.95 0.49 15.76
i2c 1120 4.29 0.01 5.09 0.01 7.68 0.02
mem_ctrl 7870 1.91 0.08 3.44 0.07 5.17 0.89
pci_bridge32 22521 0.78 0.40 0.86 0.26 1.19 0.76
RISC 73789 1.83 0.71 2.18 0.91 4.21 3.94
sasc 770 0.65 < 0.01 0.65 < 0.01 0.65 < 0.01
simple_spi 1034 1.74 0.01 1.64 0.01 2.22 0.01
spi 3762 2.15 0.07 2.23 0.04 2.37 0.36
ss_pcm 405 0.25 < 0.01 0.25 < 0.01 0.25 < 0.01
systemcaes 12108 0.30 0.11 0.40 0.10 0.45 0.48
systemcdes 2857 4.83 0.04 5.50 0.06 5.67 0.23
tv80 9091 2.41 0.15 2.85 0.13 4.93 2.67
usb_funct 15245 2.93 0.16 3.67 0.14 7.65 0.35
usb_phy 440 2.73 < 0.01 3.64 < 0.01 3.64 < 0.01
vga_lcd 126427 0.09 5.07 0.12 4.59 0.14 51.31
wb_conmax 47449 1.19 0.78 9.59 0.67 9.59 1.99

average 1.58 10.20 2.18 13.07 2.78 209.66
geomean 0.81 0.38* 1.02 0.39* 1.35 1.81*

*The values smaller than 0.01 are replaced with 0.005 when calculating geomean.

the TFI of the root node and the maximum number m of nodes in the dependency circuit.4

Since [MB06] relies on computing truth tables in the window, k ≤ 10 is typically used as a

reasonable trade-off between efficiency and quality. In contrast, windowing in our framework

is applied only to avoid potential runtime blow-up for large benchmarks and k can be set to

arbitrarily large values when a longer runtime is acceptable.

When the algorithms are limited to at most one node insertion (m = 1), Table 3.4 shows

that our framework achieves 2.18% network size reduction on average using the same, small

window size (m = 10), comparing to 1.58% by the state-of-the-art. This improvement is due to

better consideration of global satisfiability don’t-cares. Moreover, we can arbitrarily extend

4In ABC’s command line interface, cut size is set by argument -K and the maximum number of nodes in the
dependency circuit is set by argument -N. However, here, we use the same symbols as in the other parts of the
thesis for consistency.
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Table 3.5: Resubstitution quality on AIGs comparing against ABC’s resub command. Best
achievable quality.

ABC Ours,
k = 16,m = 3 k = 100,m = 20

benchmark size gain (%) time (s) gain (%) time (s)

leon2 787972 0.35 1811.35 0.65 5984.96
leon3_opt 972952 0.73 1273.16 1.02 5462.90
leon3 1085718 0.28 1824.90 0.63 5239.15
leon3mp 650722 0.80 875.65 0.57 1342.39
netcard 802846 0.28 1562.19 0.56 5425.19
ac97_ctrl 14199 2.24 4.81 6.87 0.93
aes_core 21441 3.02 19.53 6.29 8.62
des_area 4827 3.09 3.50 5.72 1.08
des_perf 81998 8.70 74.10 15.78 7.32
DMA 21992 1.93 8.49 2.78 3.36
DSP 44132 4.14 48.02 5.74 13.92
ethernet 86293 0.95 106.04 2.72 74.15
i2c 1120 8.48 0.56 11.88 0.13
mem_ctrl 7870 4.08 3.67 8.93 2.64
pci_bridge32 22521 2.33 17.52 2.78 3.27
RISC 73789 3.47 56.22 7.56 17.04
sasc 770 1.56 0.13 1.82 0.02
simple_spi 1034 4.64 0.35 5.32 0.06
spi 3762 3.19 2.16 5.24 0.74
ss_pcm 405 0.99 0.03 1.23 < 0.01
systemcaes 12108 0.64 11.04 1.68 2.16
systemcdes 2857 7.46 1.87 11.41 0.28
tv80 9091 5.26 8.62 11.75 7.34
usb_funct 15245 7.04 7.56 11.82 1.96
usb_phy 440 7.73 0.07 10.91 0.01
vga_lcd 126427 0.26 207.27 0.48 153.19
wb_conmax 47449 14.95 48.41 17.15 6.54

average 3.65 295.45 5.90 879.98
geomean 2.13 14.72 3.55 6.15*

*The value smaller than 0.01 is replaced with 0.005 when calculating geomean.

the window size and achieve up to 2.78% gain when a longer runtime is acceptable.

In Table 3.5, parameters in resub are set to their extreme values (k = 16,m = 3), and param-

eters in our framework are set to large values semantically close to infinity. It is observed

that our framework can achieve up to 5.90% reduction while 3.65% is the best resub can

do, and the improvement comes even with faster runtime in most of the benchmarks. The

reason why our framework is especially slow in the largest five benchmarks is because they

also have large numbers of primary inputs and large sizes of pattern sets (shown in Table 3.1),

which slow down simulation as well as the computation of dependency functions. This can be

ameliorated, however, by fine-tuning the trade-off between quality and runtime according to

the user’s needs.

Furthermore, the proposed framework is also shown to be applicable on 2-LUT networks, or
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Table 3.6: Resubstitution quality on XAGs comparing against ABC’s &mfs command.

abc> &mfs -a Ours, k = 10,m = 1

benchmark size gain (%) time (s) gain (%) time (s)

leon2 785623 0.12 612.10 0.11 103.89
leon3_opt 970570 0.13 697.90 0.21 139.80
leon3 1082547 0.10 705.60 0.09 139.79
leon3mp 649333 0.13 317.60 0.09 59.96
netcard 800880 0.07 676.90 0.09 91.23
ac97_ctrl 13945 0.47 0.50 1.23 0.09
aes_core 18951 0.82 5.54 1.89 0.48
des_area 4673 1.16 2.20 2.23 0.08
des_perf 76458 3.23 11.96 7.53 2.87
DMA 21435 0.55 3.37 1.03 0.25
DSP 41795 1.06 15.97 1.90 0.55
ethernet 85355 0.17 19.00 0.30 2.06
i2c 1101 3.72 0.09 5.09 0.01
mem_ctrl 7408 4.94 1.96 3.62 0.07
pci_bridge32 21759 0.38 1.79 0.86 0.25
RISC 69514 1.72 12.79 1.46 0.90
sasc 733 0.82 0.02 0.68 0.01
simple_spi 1003 1.60 0.05 1.69 0.01
spi 3697 0.70 1.29 1.87 0.06
ss_pcm 398 0.00 0.01 0.25 0.01
systemcaes 10652 0.70 1.55 0.58 0.09
systemcdes 2744 3.72 0.62 5.69 0.07
tv80 8751 2.79 9.26 2.43 0.13
usb_funct 14201 1.88 1.00 3.15 0.13
usb_phy 408 3.19 0.01 3.43 0.01
vga_lcd 126093 0.06 56.83 0.11 5.25
wb_conmax 47449 14.38 8.75 9.59 0.63

average 1.80 117.21 2.12 20.32
geomean N/A 3.93 0.97 0.46

essentially, XAGs. Table 3.6 compares the proposed framework with command &mfs [Mis+11b]

in ABC.5 The ifraig-preprocessed benchmarks are mapped into 2-LUT networks by the

command &if -K 2 in ABC and read in as XAGs in mockturtle. The simulation pattern set

generated in Section 3.7.3 with the AIG benchmarks and used in the experiments in Tables 3.4

and 3.5 is reused for the XAG experiment. In Table 3.6, the numbers of 2-LUTs (or XAG nodes)

are reported in column size, and the percentage reduction and runtime of the two algorithms

are reported in columns gain and time, respectively. Using only an unaggressive parameter

setting (k = 10,m = 1), our framework outperforms command &mfs in both optimization

quality and efficiency.

5While the paper was published in 2011, the technical implementation has been continuously improved over
time and there are several versions of the same concept in ABC, such as commands mfs and mfs2. Among them,
&mfs is believed to be the newest and the best version.
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Table 3.7: Efficiency of CEC with or without using expressive patterns.

abc> &cec &cec with expressive patterns

benchmark size #SAT #UNSAT time (s) #pats #SAT #UNSAT time (s)

leon2 787972 8579 19738 32.32 3200 7150 19465 41.53
leon3_opt 972952 19529 50162 42.15 3200 14751 50020 49.10
leon3 1085718 113427 127162 88.64 3200 80242 127163 82.64
leon3mp 650722 65439 90482 43.78 3200 37522 84326 35.52
netcard 802846 21691 107513 31.14 3200 19269 107523 28.93
ac97_ctrl 14199 0 2215 0.19 384 41 2215 0.17
aes_core 21441 0 3177 0.71 320 2 3177 0.65
des_area 4827 0 393 0.08 320 0 393 0.07
des_perf 81998 0 5423 1.22 320 0 5423 0.99
DMA 21992 337 2981 0.45 832 298 2981 0.34
DSP 44132 911 6232 1.60 1600 249 6230 1.23
ethernet 86293 596 10505 1.19 1408 9817 10486 2.25
i2c 1120 65 165 0.03 320 33 163 0.03
mem_ctrl 7870 651 927 0.24 832 166 929 0.18
pci_bridge32 22521 612 3132 4.44 576 511 3132 4.40
RISC 73789 3638 9084 2.37 1472 500 9083 1.37
sasc 770 0 116 0.03 320 0 116 0.02
simple_spi 1034 14 157 0.03 320 24 157 0.03
spi 3762 109 469 0.12 448 160 469 0.12
ss_pcm 405 0 62 0.02 320 0 62 0.02
systemcaes 12108 0 1384 0.24 384 6 1384 0.23
systemcdes 2857 0 329 0.06 320 1 329 0.05
tv80 9091 279 1160 0.33 704 225 1160 0.27
usb_funct 15245 809 2003 0.37 512 275 2003 0.25
usb_phy 440 0 57 0.02 320 0 57 0.02
vga_lcd 126427 13852 13682 4.28 3584 1055 13670 2.28
wb_conmax 47449 2 3793 0.61 448 3 3793 0.51

average 994.32 3065.73 0.85 730.18 607.55 3064.18 0.70

3.7.7 Reduction on SAT Calls in CEC with Expressive Patterns

Finally, to show the effectiveness of the proposed paradigm on other logic synthesis and verifi-

cation algorithms, we take CEC as another example. The &cec command in ABC [Mis+06a]

is considered the state of the art. It iteratively generates random patterns for simulation to

find equivalent pair candidates. This command is modified to take pre-generated patterns

and use them for simulation. The number of SAT results (disproving equivalence; #SAT) and

UNSAT results (proving equivalence; #UNSAT) in &cec with and without using pre-generated

expressive patterns are reported in Table 3.7. For simulation efficiency, an upper limit of 3200

on the number of patterns is set. It can be observed from the table that the average number

of SAT results is reduced by about 40%; when combined with the UNSAT results, which are

unchanged, the total number of SAT solver calls is reduced by about 9.5%. In most cases, the

runtime does not decrease because it is dominated by the UNSAT calls, and too many patterns

slow down the simulation. Nevertheless, the runtime overhead in simulation can be mitigated

if the patterns can be better compacted, or if the simulation can be speeded up (e.g., by using

Haswell New Instructions (AVX2) which provides single-cycle bitwise operations on longer
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machine words) in a future implementation of simulation-guided CEC. More importantly, by

showing a decrease in unnecessary SAT solver calls the idea of guiding CEC with expressive

simulation patterns is shown to be useful in verification as well.

3.8 Summary

In this chapter, we (1) present a simulation-guided logic synthesis and verification paradigm,

which leverages pre-generated expressive simulation patterns to approximate the global

Boolean functions with reduced need for SAT-based verification; (2) propose several strategies

to generate expressive simulation patterns, including seeding with random patterns, stuck-at

value checking, and resolving un-observability; (3) demonstrate the benefits of the proposed

paradigm with improved resubstitution quality and reduced SAT solver calls in CEC; (4) show

the reusability of the expressive patterns and counter-examples across different algorithms

and with ECO modifications.

Parameters influencing the expressiveness of the simulation patterns are studied. In particu-

lar, stuck-at patterns generated with observability awareness and seeded with a small set of

random patterns are found to be the most expressive. The expressive patterns are shown to

be able to move runtime from optimization and verification to their pre-generation, which is

advantageous because they are also shown to be reusable in resubstitution after ECO and in a

different algorithm such as CEC. The experimental results show that the simulation-guided

resubstitution framework allows low-cost consideration of global satisfiability don’t-cares

and unlimited extension of the window sizes used, which improves the average network size

reduction from 1.58% to 2.77%, compared to a state-of-the-art windowing-based resubstitu-

tion algorithm. When comparing the best achievable quality of the two frameworks, a larger

improvement from 3.65% to 5.83% is shown. The effectiveness of the proposed paradigm in

CEC is also supported by experimental results with a 9.5% reduction in the number of SAT

solver calls.

3.9 Future Work

While resubstitution guided by simulation signatures automatically accounts for satisfiability

don’t-cares, observability don’t-cares can also be considered in resubstitution, resulting in

better quality. Our preliminary result on utilizing ODCs in simulation-guided resubstitution

shows about 1% further circuit size reduction at the cost of 5x more runtime.

As shown in Section 3.7.4, using expressive patterns reduces the chance of encountering

counter-examples, making it possible to further reduce the use of SAT solving by validating

several candidates at the same time if the majority of them are legal.

Other future works include developing strategies to refine and enhance the generated simula-

tion patterns further and metrics to evaluate and sort the patterns. To maximize the benefit of
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the generated patterns, other algorithms adopting this paradigm can also be developed so

that the patterns can be reused more often in a logic synthesis flow.
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4 Heuristic Resynthesis

4.1 Motivation

Peephole optimization is a divide-and-conquer strategy to maintain scalability of logic syn-

thesis algorithms, where small portions of a circuit, often referred to as windows or cuts, are

extracted, optimized independently, and substituted back. With the large scale of designs

nowadays, most logic synthesis algorithms, such as rewriting [MB06; MCB06; Rie+19a; RMS20],

resubstitution [MB06; Mis+11b; Ama+18; Rie+18], refactoring [MB06; Ama+18; Haa+18], win-

dow rewriting [Rie+22], etc., fall into the category of peephole optimizations.

One of the important steps in any peephole optimization algorithm is re-synthesizing the

extracted sub-circuit into a better one. In this work, we define the logic resynthesis problem

as a generalized formulation of this step: The problem is given a target function, which is

usually the root of a cut or the output(s) of a window, and some divisor functions, which are

existing functions from neighboring nodes in the network. The resynthesis problem asks

for a dependency circuit, computing a dependency function, that takes as inputs a subset of

divisor functions and generates the target function at the output. If the solution is better than

the original sub-network in the predefined cost metric, then it can be used to substitute the

targeted node.

Various resynthesis strategies are adopted by different logic synthesis algorithms. For example,

in cut rewriting, the divisor functions are always the projection (identity) functions and

the target function has a small number of inputs (usually 4), thus the optimal dependency

circuit can be looked up from a pre-computed database [MB06; MCB06] or be synthesized

by SAT solving [Rie+19a; RMS20]. As another example, in refactoring, the divisor functions

are also the projection functions, but the dependency circuit is synthesized by two-level logic

optimization [MB06; Ama+18]. In contrast, in resubstitution, divisor functions other than

only the projection functions are collected and used as stepping stones to construct the target

function. As the number of all possible sets of divisor functions is very large, a resubstitution

algorithm has to investigate the divisor functions and resynthesize the dependency circuit

on the fly. Previous resubstitution works mostly attempt to enumerate small dependency
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circuits and compare them to the target function [MB06; Rie+18; Ama+18]. The drawback of

this approach is that the dependency circuit is limited to a small size, as otherwise the search

space becomes too big.

With the introduction of the simulation-guided paradigm in Chapter 3, it becomes affordable

to extend the window sizes in peephole optimization. Craving for better optimization effort,

resynthesis methods capable of optimizing more complex functions, which require larger

dependency circuits, are in need. In a highly-optimized network where rewriting with a

small cut size cannot make any further optimization, there may still be hidden optimization

opportunities requiring the involvement of a larger portion of the network. In some cases, not

only a larger cut (and thus a larger window) needs to be considered, but the resynthesized

sub-networks should also not be limited to small ones.

4.2 Problem Formulation

4.2.1 Logic Resynthesis

Logic resynthesis (or simply resynthesis) is the problem of re-expressing a function in terms of

other functions.

Problem Formulation 1 (Resynthesis). Given a target function (or simply target) f :Bk →B

over k Boolean variables x⃗ = (x1, . . . , xk ) and a collection G = {g1, . . . , gn} of n divisor func-

tions (or simply divisors) gi : Bk → B,1 ≤ i ≤ n over the same variables, find a dependency

function h : Bn →B satisfying

f (⃗x) = h(g1(⃗x), . . . , gn (⃗x)), ∀x⃗ ∈Bk . (4.1)

In this formulation, variables x1, . . . , xk are not inputs of the function h, but any subset of them

may be embedded as divisors by defining, for example, g1(⃗x) = x1. Also, the expression of h

does not necessarily depend on all of its n inputs. In practice, a resynthesis problem may be

further restricted by, for example, a set of logic operations and the number of operations al-

lowed to be used in the expression of the dependency function. This will be further introduced

in Section 4.2.2.

Example 1 (Unrestricted resynthesis). Given the target function

f (x1, x2, x3) = (x1 ∧x2)∨ (¬x2 ∧¬x3) (4.2)
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and the divisor set

G = {g1(x1, x2, x3) = x1 ∧¬x2,

g2(x1, x2, x3) =¬x2 ∧x3,

g3(x1, x2, x3) = x3,

g4(x1, x2, x3) = x1 ↔ x2}, (4.3)

one possible dependency function is

h(g1, g2, g3, g4) = (g1 ∨ g4)∧¬g2. (4.4)

Notice that Equation (4.1) is satisfied because

h = ((x1 ∧¬x2)∨ (x1 ↔ x2))∧¬(¬x2 ∧x3)

= (x1 ∧x2)∨ (¬x2 ∧¬x3) = f . (4.5)

The resynthesis problem can be seen as a generalization of the classical logic synthesis problem,

where an expression or realization of h over the same variables x1, . . . , xk as f is sought for,

i.e., G is restricted to {g1 = x1, . . . , gk = xk }. Logic resynthesis is different from logic decomposi-

tion [BD97], [MSP01] or functional decomposition [Chu+18; LPP96], where the problem is not

limited to a given divisor collection G , but involves identifying the needed divisors. In contrast,

solving resynthesis problems can be seen as the core step in a resubstitution algorithm [MB06;

Mis+11b; Ama+18; Rie+18].

4.2.2 Peephole Optimization Targeting Size Reduction

Logic resynthesis can be used in peephole optimization to optimize an extracted sub-network

by resynthesizing the output function(s) of the sub-network. In this chapter, we focus on

the resynthesis problem for AND-based, MAJ-based, and MUX-based circuits targeting size

optimization. That is, the dependency function h is represented by an AIG, XAG, MIG, or

MuxIG, called the dependency circuit, and the optimization goal is minimizing its size.

Example 2 (MIG resynthesis targeting size optimization). Given the target function

f (x1, x2, x3) = x1 ⊕x2 ⊕x3 (4.6)
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and the divisor set

G = {g1(x1, x2, x3) = x1,

g2(x1, x2, x3) = x2,

g3(x1, x2, x3) = x3,

g4(x1, x2, x3) = MAJ(¬x1, x2, x3),

g5(x1, x2, x3) = MAJ(¬x1,¬x2, x3)} (4.7)

extracted from an MIG by a peephole optimization algorithm. The resynthesis problem is

restricted to use only majority gates and inverters, and solutions with fewer gates are preferred.

One possible dependency function is

h(g1, g2, g3, g4) = MAJ(¬g2, g4,¬g5), (4.8)

whose corresponding dependency circuit has the least possible size of 1.

4.2.3 Don’t-Care-Based Optimization

Most modern logic optimization algorithms place emphasis on the computation and utiliza-

tion of don’t cares, which are flexibilities in logic functions [Bar+88]. Most Boolean methods

are examples of don’t-care-based optimization [MCB06; RMS20; Mis+11b; Ama+18; Lee+22;

Rie+22]. When solving the resynthesis problem as part of peephole optimization, it is im-

portant to take the computed don’t cares into account. Although don’t cares may come

from different sources, namely satisfiability don’t cares and observability don’t cares (see

Section 2.3.2), they can be treated the same when formulating the resynthesis problem.

Problem Formulation 2 (Resynthesis with don’t cares). Given a target function f :Bk →B over

k Boolean variables x⃗ = (x1, . . . , xk ), a don’t-care set D ⊆Bk , and a collection G = {g1, . . . , gn} of

n divisor functions gi :Bk →B,1 ≤ i ≤ n over the same variables, find a dependency function

h : Bn →B satisfying

f (⃗x) = h(g1(⃗x), . . . , gn (⃗x)), ∀x⃗ ∈Bk \D. (4.9)

For convenience, we define the care set C =Bk \D and the care function c :Bk →B, where

c (⃗x) =
1 x⃗ ∈C ,

0 x⃗ ∈ D.
(4.10)

Thus, Equation (4.9) is equivalent to

f (⃗x) = h(g1(⃗x), . . . , gn (⃗x)), ∀x⃗ ∈Bk s.t. c (⃗x) = 1. (4.11)

Moreover, if we define the target onset function fon = f ∧c and the offset function foff =¬ f ∧c ,
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then Equation (4.9) is also equivalent to

h
(

fg1 (⃗x), . . . , fgn (⃗x)
)
=⇒ ¬ foff(⃗x) and fon(⃗x) =⇒ h

(
fg1 (⃗x), . . . , fgn (⃗x)

)
,∀x⃗ ∈Bk . (4.12)

Example 3 (Resynthesis with nonempty don’t-care set). Suppose we have the same target func-

tion f and divisor set G as in Example 1 (Equations (4.2) and (4.3), respectively). Additionally,

we are now given the care function

c(x1, x2, x3) = x2 ∨ (x1 ↔ x3).

In other words, the don’t-care set D = {(1,0,0), (0,0,1)} is nonempty. For this relaxed problem,

one possible dependency function is

h(g1, g2, g3, g4) = g4, (4.13)

which is simpler than Equation (4.4) thanks to the provided don’t cares. Notice that Equa-

tion (4.9) is satisfied because the difference between f and h ( f ⊕h = {(1,0,0), (0,0,1)}) does

not intersect with the care set.

4.2.4 Simulation-Guided Logic Synthesis

The resynthesis algorithms proposed in this chapter are compatible with the simulation-

guided paradigm described in Chapter 3. In this case, the target and divisor functions are

represented by the simulation signatures of the corresponding nodes in the network and

partial truth tables are used as the data structure. A partial truth table is a truth table of

arbitrary length l , representing a partially-specified, incomplete function f : X → B, where

X ⊆Bk and k is the number of primary inputs of the network. The i -th bit T [ f ]i is the output

of f under the i -th simulation pattern in the set. What patterns are used in simulation is not

important for the resynthesis problem. It is only required that the partial truth tables of the

target and divisors are simulated using the same ordered set of simulation patterns.

Problem Formulation 3 (Resynthesis with incompletely-specified functions). Given a target

function f : X →B and a collection G = {g1, . . . , gn} of n divisor functions gi : X →B,1 ≤ i ≤ n

defined over the same input space X ⊆ Bk ,k ∈ N+, find a dependency function h : Bn → B

satisfying

f (⃗x) = h(g1(⃗x), . . . , gn (⃗x)), ∀x⃗ ∈ X . (4.14)

Optionally and similarly to the problem formulation in Section 4.2.3, a don’t-care set D ⊆ X

may be given. The care set is then C = X \D, and the care function c : X → B is defined the

same as in Equation (4.18).

A resynthesis algorithm receiving target and divisor functions as truth tables does not distin-
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guish the case where functions are incompletely-specified from where they are completely-

specified. A solution given by the algorithm fulfills Equation (4.14), and it is up to the

simulation-guided framework to validate the dependency circuit in the context of the network

and add more bits into the partial truth tables to block invalid solutions.

4.3 Overview

In this chapter, we propose three heuristic resynthesis algorithms to be used in peephole

optimizations of, respectively, AIGs, MIGs, and MuxIGs. The proposed resynthesis algorithms

share the following characteristics:

• Support for incomplete functions and don’t cares: The divisor and target functions

may be given as completely-specified Boolean functions or partial simulation signa-

tures [Lee+22]. The algorithms resynthesize dependency circuits satisfying the given

parts of functions and make no assumption on the uninformed parts. Moreover, don’t

cares of the target function may be given, and the algorithms take advantage of this

information to resynthesize smaller dependency circuits.

• Heuristic but unlimited: Optimality may only be guaranteed when the optimal solution

is small. It is also not guaranteed that a solution is always found. Nevertheless, there

is no limit on the possible solution size. When a small-sized solution does not exist,

the heuristic may still find a larger solution that exact methods can never find within

reasonable runtime.

• Top-down decomposition: Although the three proposed algorithms are designed dif-

ferently, they all start from choosing “good” divisors based on some evaluation criteria

involving the target function. Then, if the target cannot be realized within a few gates, it

is decomposed into easier-to-realize targets by a gate on top.

4.4 Related Works

In this section, we introduce previous works dealing with the same or similar problems.

4.4.1 Functional Dependency by Interpolation

In [Lee+07], a method to find functional dependency using interpolation was proposed. The

problem of finding functional dependency is essentially the same as the unrestricted logic

resynthesis problem (Problem Formulation 1), where the goal is only to find a dependency

function without a particular focus on (minimizing) the corresponding dependency circuit.

In [Lee+07], given a target function f and a set of base functions G (i.e., divisor functions

in our terminology), it is first checked if f functionally depends on G , i.e., if a dependency

function h exists. This is done by solving a SAT problem consisting of two copies of the circuit
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representation of f and G and additional constraints that the outputs of G are the same, but

one copy outputs f = 0 and the other outputs f = 1. Intuitively, the SAT problem encodes

that there exists a pair of offset x⃗0 and onset x⃗1 minterms of f , such that gi (⃗x0) = gi (⃗x1) for

all gi ∈G . A dependency function h exists if and only if the SAT instance is unsatisfiable, and

such h can be computed by deriving the interpolant from the refutation proof given by the

SAT solver.

The interpolation-based method was later used in [Mis+11b] as part of resubstitution for

k-LUT networks. Because the dependency function is implemented as a LUT node, it is not

needed to construct a dependency circuit. However, for resubstitution algorithms for AIGs,

XAGs, or MIGs, etc., the size of the dependency circuit is crucial for the optimization quality.

Thus, the interpolation-based method is not applicable there. Also, as the procedure involves

constructing CNF clauses of a circuit computing f and G , it cannot solve the resynthesis

problem with incomplete simulation signatures (Problem Formulation 3).

4.4.2 SAT-Based Exact Synthesis

SAT solving can also be used to find the smallest dependency circuit, instead of just some

feasible dependency function. SAT-based exact synthesis of Boolean chains encodes the

following question into a CNF formula: “Does there exist a Boolean chain which implements

the given function f with exactly r steps1?” A solution Boolean chain can be interpreted from

a satisfiable assignment to the encoded CNF formula, whereas an unsatisfiable result means

a solution of r steps is impossible. By solving such SAT problem iteratively with different

values of r , the smallest feasible r can be found [Knu11]. While SAT-based exact synthesis was

originally described to synthesize a Boolean chain computing a given function at its output(s)

in terms of its input variables, i.e., it solves a subset of the resynthesis problem where divisors

are projection functions, it can be modified and extended to solve the general resynthesis

problem where divisors can be any functions and don’t cares are supported [RMS20]. In

[Haa+20], different CNF encodings of the problem were analyzed and compared. However,

although it is possible to reduce the number of variables involved in the SAT instance, it is done

at the cost of more clauses in the CNF formula. As the intrinsic complexity of the problem is

exponential, the scalability of an exact algorithm is always limited.

4.4.3 Enumeration-Based Resubstitution

Resubstitution is a logic optimization technique which substitutes a node in the network

with another existing node, or with newly-created nodes constructed upon other existing

nodes [Bra+87]. Resubstitution for AIG size minimization was first proposed in [MB06], where

windows of no more than 16 inputs are constructed to collect structurally-proximate divisor

1Using the terminology in this thesis, a Boolean chain with r steps is a logic network with r nodes, where each
node models an arbitrary logic gate. Additional clauses may be added to the CNF formula to constrain possible
gate types to a predefined set.
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nodes and to perform complete local simulation. Small sub-networks of up to three AND

gates and taking divisors as inputs are enumerated, simulated and compared to the target

function. If the composed function is the same as (or compatible subject to the care set) the

target, a viable dependency circuit is found. Such search for resubstitutions is essentially

the AIG resynthesis problem with size awareness. The complexity of the enumeration-based

resynthesis approach is O(|G||H |+1), where |G| is the number of divisors and |H | is the size of

possible dependency circuit. Thus, |G| is limited to at most 150 and |H | is limited to at most 2

in [MB06].

In [Ama+18], enumeration-based resynthesis was extended to larger dependency circuits, but

still limited to some predefined structures such as AND-XOR, MUX, MUX-XOR, etc. A Boolean

filtering rule was proposed to filter out useless divisors, so that the search space was reduced.

Overall, eight types of dependency circuit structures are tried in the increasing order of their

size, and for each structure, filtered set of divisors are enumerated at the inputs similarly to

[MB06].

An enumeration-based resubstitution for MIGs was first proposed in [Rie+18]. The algo-

rithm enumerates dependency circuits of up to two MAJ gates. Two efficiency enhancement

techniques were proposed: (1) A filtering rule derived from the majority law is applied:

if x ̸= y and ∃z,MAJ(x, y, z) = f , then MAJ(x, y, f ) = f (4.15)

(2) As a preprocessing step, the truth tables are normalized to have the first bit always 1, such

that the number of inversion cases to investigate is reduced. Truth tables having a 0 as the first

bit are complemented and the inversion is recorded.

In addition to enumerating small dependency circuits, a special type of node replacement,

called R-resubstitution, is explored. R-resubstitution exploits the relevance rule of majority

gates [AGD16]:

MAJ(x, y, z) = MAJ(xy/z̄ , y, z), (4.16)

where xy/z̄ is obtained by replacing all occurrences of y with ¬z in x. Instead of substituting

the root node with a dependency circuit in the classical resubstitution, R-resubstitution

substitutes a fanin node x of the root r = MAJ(x, y, z) with a divisor d if (x ⊕d)(y ⊕ z) = 0 and

r is the only fanout of x. Unfortunately, finding R-resubstitution cannot be formulated as a

resynthesis problem, thus it is not considered in the rest of this chapter.

The core problem resubstitution algorithms solve is logic resynthesis. Existing works on

resubstitution are based on enumeration, thus there exist small upper bounds on the size of

dependency circuits they can find. In contrast, the heuristic resynthesis algorithms proposed

in this work are unlimited in this respect.
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4.4.4 Akers’ Majority Synthesis

Akers’ majority synthesis algorithm was the earliest work on heuristic synthesis of MIGs [Ake62].

It is a bottom-up approach that builds new gates using the constructed ones. In [Ake62], Akers’

Algorithm was presented to synthesize an MIG for any given function from primary inputs,

but the algorithm can actually also solve the MIG resynthesis problem. First, the truth tables

of the primary inputs are normalized by taking their XNOR with the target function, such that

the goal of the algorithm becomes building the constant 1 function. The main data structure

in Akers’ Algorithm, called the unitized table, is a collection of the normalized truth tables

of primary inputs (and their negations) and of the outputs of MAJ gates created throughout

the algorithm. Each column of the unitized table corresponds to a node (a PI or a gate) that

can be used to build the next gate, and each row corresponds to a value assignment to the PIs

(i.e., a minterm). The algorithm iteratively reduces the unitized table, by removing redundant

columns and dominated rows, and expands the unitized table, by choosing three columns to

build a new MAJ gate and adding a new column. The procedure repeats until there is only one

column of all 1s left, or until the resource limit exceeds. The choice on using which columns

to build new gates is heuristic, so the algorithm does not guarantee to always find a solution.

4.5 Heuristic AND-Based Resynthesis

In this section, we introduce the heuristic AND-based resynthesis algorithm which resynthe-

sizes an AIG or an XAG. The algorithm primarily considers AND gates (and cost-free inverters),

but it may be extended to consider XOR gates as well, although in a limited way. The algorithm

is based on (a) classification of divisors and (b) recursive decomposition. The former idea has

been practically adopted in enumeration-based resubstitution [MB06], but rarely described in

the literature. In Section 4.5.1, we give the definition of the unateness of divisors and explain

why it is useful in reducing the search space of resynthesis. On top of that, in Section 4.5.3,

we propose the recursive decomposition, which is key for our resynthesis algorithm being

unbounded by the solution size.

We use figures to illustrate essential concepts in this section. In Figures 4.1 to 4.3, a rectangle

marks the Boolean space under which the target and divisor functions are defined (Bk in

Problem Formulations 1 and 2 or X in Problem Formulation 3). Black dots in the rectangle

represent onset minterms of the target and white dots represent offset minterms. In the space

where no dots are present, there can be don’t-care minterms. For clearer illustration, don’t-care

minterms are plotted as gray dashed dots in Figure 4.3.

A divisor function g separates the Boolean space into two halves, the region where g = 1 and

the region where g = 0 (or equivalently, ¬g = 1). We refer to a divisor with or without negation

as a literal, i.e., a literal is either a divisor g or a negated divisor ¬g , corresponding respectively

to the two halves of the Boolean space.
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4.5.1 Classification of Divisors

Any composition of some divisor functions is also a function defined over the same Boolean

space, thus also separates the space into two halves. For example, composing two literals

l1, l2 with an AND gate results in a separation where the region l1 ∧ l2 = 1 is the intersection of

the regions l1 = 1 and l2 = 1, and the region l1 ∧ l2 = 0 is the union of the regions l1 = 0 and

l2 = 0. The goal of the resynthesis algorithm is to find a composition whose resulting function

separates the Boolean space into a half containing only onset minterms of the target and a

half containing only offset minterms.

We observe that, if two literals l1, l2 are to be composed using an AND gate and realizing the

target, then the regions l1 = 0 and l2 = 0 must not contain any onset minterm of the target.

Similarly, if two literals l3, l4 are to be composed using an OR gate (equivalent to an AND gate

with input and output negations) and realizing the target, then the regions l3 = 1 and l4 = 1

must not contain any offset minterm of the target because the resulting region l3 ∨ l4 = 1 is the

union of the regions l3 = 1 and l4 = 1. We call such property unateness.

g1 ¬g1

(a) Literal g1 is positive
unate.

g2 ¬g2

(b) Literal ¬g2 is negative
unate.

g3 ¬g3

(c) g3 is a binate divisor.

g3 ¬g3

¬g4

g4

(d) AND-pair g3 ∧¬g4 is
positive unate.

g5 ¬g5

¬g6

g6

(e) XOR-pair g5 ⊕g6 is neg-
ative unate.

Figure 4.1: Illustration of unate literals and binate divisors.

A literal l is said to be positive unate if l ∧ foff = 0. For example, in Figure 4.1 (a), g1 is positive

unate. Similarly, a literal l is said to be negative unate if l∧ fon = 0. For example, in Figure 4.1 (b),

¬g2 is negative unate. In contrast to unate literals, binateness is defined for divisors. Given a

divisor g , if both g and ¬g are neither positive nor negative unate, then g is said to be a binate

divisor. For example, in Figure 4.1 (c), g3 is a binate divisor. Note that unateness is defined

for literals and binateness is defined for divisors. A (non-binate) divisor g may have one of its

literals being unate, but the other literal being neither positive nor negative unate, such as g1

in Figure 4.1 (a) and g2 in Figure 4.1 (b). Also note that these definitions are different from the

unateness of a Boolean function with respect to a variable [McN61].

Only unate literals can be used to construct the target function using one gate. Thus, by
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classifying divisors, the number of comparisons required to identify dependency circuits of

no more than one gate is reduced. Nevertheless, binate divisors are not totally useless. Two

binate divisors may be composed with a gate and become unate. Thus, the definitions of

positive and negative unateness are extended for pairs of literals. A pair p of two literals l1, l2

obtained from (optionally negating) two binate divisors is said to be a positive unate AND-pair

if (l1 ∧ l2)∧ foff = 0. For example, in Figure 4.1 (d), (g3,¬g4) is a positive unate AND-pair.

Similarly, it is negative unate if (l1 ∧ l2)∧ fon = 0. When finding unate pairs, we investigate all

pairs of two binate divisors and all of the four possible inverter configurations, corresponding

to the four regions of the Boolean space divided by the two divisor functions. There is no

need to try an OR-pair because composing two binate divisors with an OR gate (i.e., taking the

union) will never lead to a unate function. If XOR gates are allowed, we additionally try to find

unate XOR-pairs. For example, in Figure 4.1 (e), (g5, g6) is a negative unate XOR-pair.

Algorithm 4.1: Heuristic AND-based resynthesis algorithm.

Input: target onset fon, target offset foff, divisors G = {g1, . . . , gn}
Output: dependency circuit H

1 if fon = 0 then return Constant 0
2 if foff = 0 then return Constant 1
3

4 Up ← positive_unate(G , foff)
5 Un ← negative_unate(G , fon)
6 B ← binate(G ,Up ,Un)
7

8 if u ← find_0resyn(Up ,Un) then return u
9

10 Up ← sort(Up , fon)
11 Un ← sort(Un , foff)
12

13 if u, v ← find_1resyn(Up , fon) then return u ∨ v
14 if u, v ← find_1resyn(Un , foff) then return ¬u ∧¬v
15

16 Pp ← positive_unate_pair(B , foff); Pp ← sort(Pp , fon)
17 Pn ← negative_unate_pair(B , fon); Pn ← sort(Pn , foff)
18

19 if p,u ← find_2resyn(Pp ,Up , fon) then return (p1 ◦p p2)∨u
20 if p,u ← find_2resyn(Pn ,Un , foff) then return ¬(p1 ◦p p2)∧¬u
21 if p, q ← find_3resyn(Pp , fon) then return (p1 ◦p p2)∨ (q1 ◦q q2)
22 if p, q ← find_3resyn(Pn , foff) then return ¬(p1 ◦p p2)∧¬(q1 ◦q q2)
23

24 u ← choose_top(Up ,Un ,Pp ,Pn)
25 f ′

on ← new_target(u, fon)
26 f ′

off ← new_target(u, foff)

27 Hr ← resynthesize( f ′
on, f ′

off,G)

28 return u ◦u Hr
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¬g7 g7

(a) ¬g7 is a 0-resyn.

g8 ¬g8

¬g9

g9

(b) g8 ∨¬g9 is a 1-resyn.

g10 ¬g10

¬g11

g11

(c) g10 ∧¬g11 is a 1-resyn.

g5 ¬g5

¬g6

g6

g12 ¬g12

(d) g12 ∧¬(g5 ⊕ g6) is a 2-
resyn.

Figure 4.2: Illustration of composing simple dependency circuits.

4.5.2 Simple Dependency Circuits

Simple dependency circuits of no more than three gates are identified similarly to the enumeration-

based method. First, if the target onset or offset is empty, then it can be realized with a constant

(lines 1-2 in Algorithm 4.1). After classifying divisors and collecting unate literals as described

in Section 4.5.1 (lines 4-6), we first check if there exists a literal that realizes the target without

extra gates. That is, if a literal l is positive unate and its negation ¬l is negative unate, then

l realizes the target (line 8). We call this a 0-resyn because it has 0 gates in the dependency

circuit. For example, in Figure 4.2 (a), ¬g7 is positive unate and g7 is negative unate, thus ¬g7

is a 0-resyn.

To find dependency circuits with one gate, called 1-resyn, we try to compose two positive unate

literals with an OR gate, or to compose two negative unate literals with an AND gate (lines 13-

14). For each pair l1, l2 of positive unate literals, we check if their union contains all of the onset

minterms. That is, if ¬(l1 ∨ l2)∧ fon = 0, or equivalently, ¬l1 ∧¬l2 ∧ fon = 0. We do not need

to check for offset minterms thanks to the definition of positive unate literals. For example,

Figure 4.2 (b) is an OR-type 1-resyn because there is no more onset minterms in the white

region. Similarly, two negative unate literals l3, l4 form an AND-type 1-resyn if their union

contains all of the offset minterms. That is, ¬l3 ∧¬l4 realizes the target if ¬l3 ∧¬l4 ∧ foff = 0,

such as Figure 4.2 (c). As the condition to be checked in this step is whether the union of two

literals contains all onset (for positive unate) or offset (for negative unate) minterms, we first

sort the literals based on how many onset or offset minterms they contain (lines 10-11). This

way, we may terminate the investigation earlier when we know the remaining pairs of literals

all have a total number of onset (or offset) minterms less than the number of onset (or offset)

minterms of the target.

If a dependency circuit of size no more than one cannot be found, we proceed to collect unate
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g1 ¬g1

(a) Decompose fon with a
positive unate literal g1.

g13 ¬g13

¬g14

g14

(b) f ′on can be more easily
realized by ¬g13 ∧¬g14.

Figure 4.3: Illustration of the recursive decomposition.

pairs (lines 16-17) and try to find a 2-resyn (lines 19-20) or 3-resyn (lines 21-22). A 2-resyn is

composed of a unate literal and a unate pair. The conditions to be checked are similar to those

for 1-resyn. For example, in Figure 4.2 (d), a negative unate literal ¬g12 and a negative unate

XOR-pair (g5, g6) (taken from Figure 4.1 (e)) forms an AND-type 2-resyn. Similarly, a 3-resyn is

composed of two unate pairs. In Algorithm 4.1, we use ◦ to denote an unspecified gate type

depending on the pair noted as the subscript, and we use p1, p2 to denote the two elements of

a pair p.

4.5.3 Recursive Decomposition

When the target cannot be realized within three gates, the algorithm heuristically chooses

an unate literal or an unate pair to decompose the target function (lines 24-28). If a positive

unate literal l1 is chosen, a new target onset f ′
on = fon ∧¬l1 with fewer minterms is derived

by constructing the dependency circuit with an OR gate on top, having l1 as one of its fanins.

Then, Algorithm 4.1 is recursively called on the new onset f ′
on and the same offset f ′

off = foff

(line 27) to construct the remaining circuit as the other fanin of the top OR gate. For example,

in Figure 4.3 (a), we decompose fon with a positive unate literal g1 (taken from Figure 4.1 (a)),

resulting in f ′
on in Figure 4.3 (b). The new f ′

on has only one onset minterm remaining and

is more easily realized by ¬g13 ∧¬g14, which were both binate before decomposition. The

original target function is thus realized by g1 ∨ (¬g13 ∧¬g14).2 In contrast, if a negative unate

literal l2 is chosen, the target onset stays the same, whereas a new offset f ′
on = foff ∧¬l2 is

derived. The dependency circuit is then constructed with an AND gate with negated fanins on

top.

The choice on which literal or pair to use to decompose (line 24) is made by comparing the

number of onset (for positive unate literals or pairs) or offset (for negative unate) minterms

they contain. The one containing the most minterms is preferred. However, a pair is only

chosen if it contains more than twice the number of minterms than the winning literal because

choosing a pair leads to one more gate in the dependency circuit.

2The example is made simple for easier understanding. This solution can actually be found as a 2-resyn without
the recursive decomposition. To give a real example where recursive decomposition is needed, for example, g13
and g14 could be pairs instead of divisors, which only become unate with respect to the new onset f ′on.
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4.5.4 Summary of AND-Based Resynthesis

Algorithm 4.1 summarizes the AND-based resynthesis algorithm. In Algorithm 4.1, lines 1-26

are similar to enumeration-based resubstitution, which resynthesizes dependency circuits of

at most 3 gates. Lines 24-28 are the key for the algorithm to resynthesize larger dependency

circuits, where line 27 calls the resynthesis algorithm recursively.

It is neglected in the pseudocode, but in practice an additional parameter size limit is passed

to the algorithm. Before each step, the size limit is checked and the algorithm terminates

without a solution if the limit is reached. For example, before find_3resyn, if size limit is 2, the

algorithm returns no solution. In line 27, the size limit being passed to the recursive call is the

current size limit minus 1 (when decomposing with a literal) or 2 (when decomposing with

a pair). When the algorithm returns no solution, it is possible that a solution larger than size

limit exists and can be found if size limit were set larger, or that the given problem is infeasible.

It is also possible that a solution exists, but cannot be found by the algorithm because it is

heuristic, irrelevant to size limit. The same early-termination mechanism also applies to the

following MAJ-based and MUX-based resynthesis algorithms.

4.6 Heuristic MAJ-Based Resynthesis

We introduce the heuristic MAJ-based resynthesis algorithm in this section, based on the

following key ideas:

• Normalization: Divisor functions are normalized to simplify the algorithm and reduce

the number of bitwise operations needed. This step is done only once in the beginning.

(Section 4.6.1)

• Covering the care function: We introduce the notion of care functions at any position in

the dependency circuit under construction. The goal of the algorithm is to cover more

uncovered bits in the care function by modifying the current dependency circuit until

all bits are covered. (Section 4.6.2)

• Heuristic choice of divisors: The algorithm repeatedly chooses three divisors to form

a new majority gate. Divisors are chosen according to their evaluation on a heuristic

weight function with respect to the current care function. (Section 4.6.3)

• Expansion to a tree-like circuit: The algorithm constructs the dependency circuit by

repeatedly expanding on a leaf of the circuit. It chooses a fanin of a gate which is

connected to a divisor, takes out the divisor, and replaces it with a newly-constructed

gate. The resulting circuits thus have tree-like structures. (Section 4.6.4)
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4.6.1 Normalization

Given the target f and the set of divisors G = {g1, . . . , gn}, the divisors are normalized by

computing their XNOR with the target. By doing so, the logic of the algorithm is simplified—

comparing the output function of the dependency circuit against the target simplifies to

testing if the output function is a tautology. Moreover, due to the self-duality property of the

majority function [MTT61], inverters can always be pushed to the primary inputs. Hence, we

limit our search to dependency circuits without internal inverters and consider inverters only

at the inputs by supplementing the divisor set with negated literals. The set N of normalized

literals to be chosen from as inputs to the dependency circuit is computed by

N = {l2i−1 = gi ↔ f , l2i =¬gi ↔ f | 1 ≤ i ≤ n}. (4.17)

4.6.2 The Care Function

Consider a MAJ gate with function y = MAJ(x1, x2, x3) and a certain bit position p in its truth

table. In order to have T [y]p = 1, we must have

T [xi ]p = T [x j ]p = 1, where i , j ∈ {1,2,3} and i ̸= j .

If the functions x1 and x2 have been decided but x3 is still flexible, then we require T [x3]p = 1

only if T [x1]p = 0 or T [x2]p = 0. In such case, we say that p is a care bit for the third fanin of

the gate under construction.

care: cn = c

n

ni

function: y = M(x1, x2, x3)
care: cni = cn,i = (¬s1∨¬s2)∧cn

s1 s2

x1 x2 x3

care: cni ,3 = (¬x1 ∨¬x2)∧ cni

i

Figure 4.4: Illustration of the care functions.

Generalizing and extending to all bit positions, we define the care function ci of a fanin i to a

node n as

cn,i = (¬s1 ∨¬s2)∧ cn , (4.18)

where s1 and s2 are the other two fanin functions of n (i.e., siblings of i ) and cn is the care

function of n. If n is the topmost node of the dependency circuit, as in Figure 4.4, then its

care function cn is the care function c of the target, given as input to the resynthesis problem.

Otherwise, as our dependency circuits are tree-like, the node n must have exactly one fanout

(parent) node, and its care function is derived using Equation (4.18) according to its parent’s
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care function and its siblings’ functions. For example, the care function cni of node ni in

Figure 4.4 is the care function of the fanin i to node n.

A care bit in a care function is said to be covered if the function presented at the node (or at

the fanin edge) indeed provides 1 at this bit. For example, for a care bit in cni ,3 to be covered,

the function x3 needs to be 1 at this bit. If the care function of a node (for example, cni in

Figure 4.4) is of interest, then we need at least two fanin functions of the node (for example, x1

and x3) to cover the bit by having 1’s.

4.6.3 Choosing Divisors

Given the care function cn of a node n, a heuristic selection is used to choose three literals

l1, l2, l3 from N to construct a MAJ gate, aiming at maximizing ONES(MAJ(l1, l2, l3)∧ cn):

l1 = argmax
l∈N

(ONES(l ∧ cn))

l2 = argmax
l∈N2

(ONES(l1 ∧ l ∧ cn)+2 ·ONES(¬l1 ∧ l ∧ cn))

l3 = argmax
l∈N3

(ONES((l1 ⊕ l2)∧ l ∧ cn)+2 ·ONES((¬l1 ∧¬l2)∧ l ∧ cn)

where N2 =N \{l1,¬l1}, N3 = N2\{l2,¬l2} (4.19)

The first literal is chosen to cover most care bits. When choosing the second literal, the care

bits covered by the first literal still need to be covered again, thus we acknowledge more

ONES(l1 ∧ l ∧ cn). But more importantly, we are more eager to cover the care bits that are

not covered by the first literal, thus the weight for ONES(¬l1 ∧ l ∧ cn) is doubled. For the last

literal, the care bits that are already covered twice can be ignored; the care bits covered only

once ((l1 ⊕ l2)∧ l ∧ cn) seek to be covered again; the care bits that are never covered before

((¬l1 ∧¬l2)∧ l ∧ cn) appear to be more difficult to cover than the other bits and they are thus

doubly weighed. In the last case, it may seem counter-intuitive to cover these bits with the last

literal because covering them only once is not enough. However, the first two literals may be

replaced by new nodes later on in the algorithm, so it is still useful to cover them at least once

in this stage.

This evaluation step will be repeatedly incurred throughout the algorithm. The computational

complexity is linear to the number of divisors, which can be large. We observe that the resulting

choice depends solely on the care function cn . To speed up the computation, a computed

table can be used to cache the results. This is implemented as a hash table mapping from a

care function to three divisors.
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n0

n0 = 1110 0001

c = 1111 1111

l7 = 0110 1001

c0,1 = 0111 1110
l1 = 1100 0011

c0,2 = 1101 1110

l3 = 1010 0101

c0,3 = 1011 1110

f = 0110 1001
l1 = 1100 0011

l2 = 0011 1100

l3 = 1010 0101

l4 = 0101 1010

l5 = 1001 1001

l6 = 0110 0110

l7 = 0110 1001

l8 = 1001 0110

(a) The topmost node n0.

n0

n1

n0 = 1110 0111

c = 1111 1111
n1 = 0111 1110

c0,1 = 0111 1110

l1 = 1100 0011

c0,2 = 1101 1011

l3 = 1010 0101

c0,3 = 1011 1101

l2 = 0011 1100

l4 = 0101 1010

l6 = 0110 0110

(b) Expand at (n0,1) with n1 =
MAJ(l2, l4, l6).

n0

n1

n2

n0 = 1111 1111

c = 1111 1111
n1 = 0111 1110

c0,1 = 0111 1110

n2 = 1101 1011

c0,2 = 1101 1011

l3 = 1010 0101

c0,3 = 1010 0101

l2 = 0011 1100

l4 = 0101 1010

l6 = 0110 0110

l1 = 1100 0011

l4 = 0101 1010

l5 = 1001 1001

(c) Expand at (n0,2) with n2 =
MAJ(l1, l4, l5).

Figure 4.5: Example of MAJ-based resynthesis.

4.6.4 Expansion

When all care bits of the three fanins of the topmost node are covered, the constant 1 function

is successfully derived at its output and the algorithm terminates. After constructing the first

node with three literals, we choose one of the fanins with uncovered care bits, if any, and

try to cover more care bits by replacing the literal with a new gate. This process is called an

expansion.

To expand a fanin, the original literal is temporarily taken away. Then, three literals are chosen

as the fanins of the new gate using Equation (4.19). After an expansion, the function at the

expanded fanin is different, thus the functions of its transitive fanouts, as well as the care

functions of its siblings, are updated accordingly. Until the constant 1 is derived at the output

of the topmost node by covering all the care bits, the algorithm proceeds by choosing another

position to expand. An expansion position is a fanin of any node which is connected to a literal

and whose care function is not fully covered. Heuristically, we choose the position with the

least uncovered care bits to be expanded first because it is closest to be fully covered.

It is possible that the majority output of the three chosen literals does not cover more care

bits than the original literal. Hence, the new gate is only constructed and used to replace the

original literal if the number of covered care bits increases. When an expansion position is

tried but the coverage of care bits does not increase, the new gate is discarded and the position

is marked as visited to avoid trying it again. However, if its care function is updated because

of an update in the function of one of its siblings, the visited flag is reset and the expansion

position may be tried again. To avoid constructing gates using the same literals repeatedly

as a chain, when the care function of a node is the same as one of its fanins, the expansion

position at this fanin is directly marked as visited without trying to expand it.
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Algorithm 4.2: Heuristic MAJ-based resynthesis algorithm.

Input: target function f , care function c, divisor functions G = {g1, . . . , gn}
Output: dependency circuit H

1 N ← normalize(G , f )
2 n0 ← choose_literals(N ,c)
3 H ← {n0}
4 while n0.output ̸= 1 do
5 (np , i ) ← choose_expansion_position(H)
6 n ← choose_literals(N , np .fanin(i ).care)
7 if accept_expansion(np , i ,n) then
8 np .fanin(i ) ← n
9 update(H)

10 else
11 mark_visited(np , i )

12 return H

4.6.5 Summary and Example of MAJ-Based Resynthesis

Algorithm 4.2 summarizes the heuristic MAJ-based resynthesis algorithm. First, the set of

divisors is normalized and supplemented using Equation (4.17) (line 1). Then, the top node n0

is constructed by choosing three literals using Equation (4.19) and added into the dependency

circuit as the first node (lines 2-3). If the output function of n0 is not constant 1 (line 4), we

choose an expansion position (the i -th fanin of a parent node np ) which is currently connected

to a literal (line 5). The care function of the position is computed by Equation (4.18) and used

to choose three literals to construct a new gate (line 6). If replacing the original literal with

the new gate increases the number of covered care bits, the expansion is accepted and the

dependency circuit is updated (lines 7-9); otherwise, the position is marked as visited (lines

10-11). The expansion procedure is repeated until the constant 1 function is obtained at the

output of the topmost node.

An example execution of the algorithm is illustrated in Figure 4.5, where the target function is

f (⃗x) = x1 ⊕x2 ⊕x3, (4.20)

the care function c = 1, and the set G of divisors consists of

G = {g1(⃗x) = x1, g2(⃗x) = x2, g3(⃗x) = x3, g4(⃗x) = 0}. (4.21)

The normalized set N of literals, computed according to Equation (4.17), is listed in their

truth table representations in the box in Figure 4.5 (a). The yellow-shaded parts Figure 4.5

are the truth tables being updated after expansions. First, in Figure 4.5 (a), given the care

function c = 1, three literals l7, l1, l3 are chosen according to Equation (4.19) to form the

topmost node n0, computing the function at its output n0 = MAJ(l7, l1, l3). Care functions

of each fanin c0,i are computed according to Equation (4.18). Then, in Figure 4.5 (b), the
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first fanin of n0 is chosen to be expanded with a new node n1. According to its care function

c0,1, three literals l2, l4, l6 are chosen. The function at the expanded fanin is updated with

n1 = MAJ(l2, l4, l6). Following which, the care functions at its siblings c0,2 and c0,3, as well

as the output function n0 are also updated. After the expansion, all care bits of the first

fanin of n0 have been covered by the function of n1, but there are still two care bits in each

of the updated c0,2 and c0,3 not yet covered. So, in Figure 4.5 (c), the second fanin of n0

is expanded with another new node n2. Similarly, according to its care function c0,2, three

literals l1, l4, l5 are chosen, and the node functions n2 and n0, as well as the sibling’s care

function c0,3, are updated. Now, all care bits in c0,2 and also c0,3 are covered, and the output

function of n0 is constant 1. The resynthesis has thus been completed. The final solution is

h(g1, g2, g3, g4) = MAJ(MAJ(¬g1,¬g2,¬g3),MAJ(g1,¬g2, g3), g2).

4.7 Heuristic MUX-Based Resynthesis

Although rarely researched on, MuxIGs may be a practical data structure for some technologies

where MUX gates are of similar cost as AND and XOR gates, such as memristors [OKR14],

quantum-dot cellular automata (QCA) [KA22], and pass transistor logic [SB00]. Although the

MUX gate itself is functionally complete without inverters, we still use complemented edges to

represent cost-free inverters in the network to be more memory-efficient. This can be disabled

(i.e., ¬x has to be implemented as MUX(x,0,1)) and the MUX-based resynthesis algorithm

can also be adjusted accordingly, if desired. A MUX gate can implement the 2-input AND, OR,

and XOR functions, thus MuxIGs are more compact than XAGs. Though conceptually similar,

MuxIGs are different from BDDs [Ake78]. In BDDs, S-inputs can only be primary variables,

whereas in MuxIGs, S-inputs can be connected to the output of any other MUX gates in the

network. Thus, MuxIGs are more general than BDDs. In this section, we propose a MUX-based

resynthesis algorithm that can be used to optimize MuxIGs.

Due to the natural characteristics of the MUX gate, our MUX-based resynthesis algorithm

is designed with a combination of ideas from AND- and MAJ-based resynthesis. First, we

observe that similar to resynthesizing with MAJ gates, we seek to select or construct functions

resembling the target to be placed at the T- and E-inputs of a MUX gate, subject to a care

function depending on the function at its S-input. Thus, we also normalize divisor functions

and adopt the bit-counting-based ranking and selection of divisors as in MAJ-based resyn-

thesis. Second, when there are some care bits not covered, unlike MAJ-based resynthesis, the

expansions on the T- and E-inputs are independent of each other. For a MUX gate with care

function c, once the S-input s is selected, the care function at the T-input is ct = c ∧ s and the

care function at the E-input is ce = c ∧¬s. Thus, we adopt the recursive decomposition similar

to that in AND-based resynthesis to expand on T- or E-inputs until all care bits are covered.

To avoid re-normalizing divisors and to simplify the computation, we do not expand on the

S-input once it is selected.

Algorithm 4.3 illustrates the MUX-based resynthesis algorithm. First, the set N of normalized
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Algorithm 4.3: Heuristic MUX-based resynthesis algorithm.

Input: target function f , care function c, divisor functions G = {g1, . . . , gn}
Output: dependency circuit H

1 N ← normalize(G , f )
2 return resynthesize(c)
3

4 Function resynthesize(care c) :
5 t ← argmaxl∈N ONES(l ∧ c)
6 if ONES(¬t ∧ c) = 0 then
7 return t
8 S ← argminl∈{g ,¬g :g∈G} ONES(¬t ∧ l ∧ c)

9 s ← argminl∈S ONES(¬l ∧ c)
10 if ONES(¬s ∧ c) = 0 then
11 e ← 0
12 else
13 e ← argmaxl∈N ONES(l ∧¬s ∧ c)
14 if ONES(¬e ∧¬s ∧ c) > 0 then
15 e ← resynthesize(¬s ∧ c)

16 if ONES(¬t ∧ s ∧ c) > 0 then
17 t ← resynthesize(s ∧ c)
18 return MUX(s, t ,e)

divisors is derived using Equation (4.17) (line 1). The unchanged set N is then available

and used throughout the algorithm along with the original set of divisors G . The recursive

algorithm starts with the given top-level care function c (line 2). In line 5, a literal t covering

the most care bits is chosen from N as the T-input. If all care bits are covered by t , then it is a

0-resyn and is returned (lines 5-6). Otherwise, we continue to choose a literal s from G as the

S-input using two criteria: Literals S whose (cared) 1-bits overlap the least with the 0-bits of

t are prioritized (line 8). If there are more than one literal in S, then the literal with the least

0 in the cares bits is chosen (line 9). The first criterion aims at reducing uncovered care bits

at the T-input, whereas the second criterion aims at reducing the care bits to be covered at

the E-input. If the selected s has no cared 0-bit, then the function at the E-input does not

matter and we choose constant 0 as the E-input, assuming it has the lowest cost (lines 10-11).

Otherwise, similar to choosing t , a literal e covering the most care bits is chosen as the E-input

(line 13). Although the philosophy behind the choice of t and the choice of e is the same, there

is a difference in their evaluations: When choosing t , the S-input is not selected yet, thus only

the care function c for the gate is considered. However, when choosing e, the S-input s is

already decided, thus the more precise care function at the E-input ce = c ∧¬s is considered.

Finally, we check if the care bits at the T- and E-inputs are all covered by t and e, respectively,

and recursively expand on the inputs using their care functions if not so (lines 16-17 and 14-15,

respectively).
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Table 4.1: Comparison of AIG resynthesis algorithms.

1) k = 4, 2) k = 6, 3) k = 6,
maxm ≥ 1 all problems maxm ≥ 4

#Probs 128312 337155 22691
Avg. n 6.55 14.16 7.18
Avg. maxm 1.53 0.70 4.18

SAT Ours Enum. Ours SAT Ours

#Sols 920 990 1248 1589 522 465
Avg. m 1.72 1.71 1.97 2.61 4.17 4.38

Avg. overhead
– 0.00 – 0.05 – 0.16
– (0%) – (1%) – (3%)

Tot. time (s) 43.12 0.11 0.28 0.34 638.21 0.10

4.8 Experimental Results

In this section, we test the performance and efficiency of the proposed resynthesis algorithms

on sets of real resynthesis problems extracted from the EPFL benchmarks [AGD15] by re-

substitution (Section 4.8.1). We also demonstrate in Section 4.8.2 the effectiveness of using

resynthesis as the core of an high-effort optimization to further optimize highly-optimized

benchmarks. The experiments were conducted on a laptop with Apple M1 Pro chip and 32 GB

RAM.

4.8.1 Extracted Resynthesis Problems

As the core of peephole optimization, it is more meaningful to compare different resynthesis

approaches using real resynthesis problems in their general form, with arbitrary divisor

functions coming into play. In this section, we test our heuristic resynthesis algorithm on

sets of resynthesis problems extracted from the EPFL benchmark suite. The benchmarks

are preprocessed by running the script compress2rs in ABC [BM10] once to rule out most

optimizations that are easier to identify. To extract resynthesis problems, for each node (root)

in the benchmarks, a reconvergence-driven cut [MB06] of size k = 4 or 6 is computed and

used as the basis to obtain local functions of nodes supported by the cut. The function of the

root node is the target of the resynthesis problem and the functions of all nodes supported

by the cut, including the cut leaves, are divisors. The care set is derived by computing (local)

satisfiability don’t cares from a larger cut of size 12. A size limit maxm is given along with the

resynthesis problem, determined by the root’s MFFC size minus 1.

Three sets of AIG resynthesis problems are considered in Table 4.1:

1. First big column: A subset of problems extracted using cut size k = 4 (thus truth table

length l = 2k = 16) where the size limit is at least 1.

2. Second big column: A subset of problems extracted using cut size k = 6 (thus truth table
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length l = 2k = 64) where the size limit is at most 3.

3. Third big column: A subset of problems extracted using cut size k = 6 where the size

limit is at least 4.

The total number of resynthesis problems (“#Probs”), the average number of divisors per

problem (“Avg. n”), and the average size limit (“Avg. maxm”) are listed for each set in the upper

half of Table 4.1. We compare our AND-based heuristic resynthesis (“Ours”) against SAT-based

exact synthesis [Haa+20] (“SAT”, Section 4.4.2, conflict limit = 10000) and enumeration-based

method [MB06] (“Enum.”, Section 4.4.3, up to 3 gates). The number of solutions found within

the size limit (“#Sols”), the average number of gates in the dependency circuits found (“Avg.

m”), the average overhead comparing to the optima (“Avg. overhead”), and the total runtime

in seconds (“Tot. time”) are listed for each method.

We observe from this experiment that resynthesis problems requiring larger dependency

circuits do exist in real benchmarks. Both SAT and enumeration are exact algorithms, meaning

that the solutions they give, if any, are always optimal. However, the optimality of SAT-based

exact synthesis comes with the cost of a much higher runtime, and enumeration, although

being fast, can only solve problems with small solutions. In 2), the 341 more problems solved

by our heuristic than enumeration are cases where a solution cannot be found within three

gates and the recursive decomposition described in Section 4.5.3 is necessary. The quality

degradation of our heuristic is zero for smaller dependency circuits (m ≤ 3), and is still very

small (3%) for medium-sized dependency circuits for which SAT-based synthesis needs a long

time to find the optimal solution.

4.8.2 Resynthesis as the Core of High-Effort Optimization

To demonstrate the practical application of the proposed heuristic resynthesis algorithms

in high-effort optimization, we use them as the core component in the simulation-guided

resubstitution framework [Lee+22] and perform experiments on benchmarks that are already

optimized by state-of-the-art size optimization flows. The resubstitution framework computes,

for each target node as the root, a reconvergence-driven cut of at most 8 nodes to collect up to

150 divisors supported by the cut. Functions of the target and divisor nodes are estimated by

global simulation using about 1000 simulation patterns.

AIG

For AIG size optimization, the script compress2rs in ABC [BM10] is considered as the state-

of-the-art flow, which comprises 18 commands including balancing, resubstitution, rewriting,

and refactoring with different hyper-parameters. In Table 4.2, after listing the benchmark

names and their original size, the size reduction in terms of percentage number of gates

(“Red.”) and runtime (“Time”) of four optimization settings are presented: Column “O →
A” applies compress2rs once on the original benchmarks; we call the resulting set of opti-

76



Heuristic Resynthesis Chapter 4

Table 4.2: AND-based heuristic resynthesis as the core of simulation-guided resubstitution
applied on highly-optimized benchmarks.

AIG: O = Original, A = compress2rs ×1, B = compress2rs ×∞
Benchmark O → A A → Ours A → B B → Ours

Name Size Red. Time Red. Time Red. Red. Time
(#gates) (%) (s) (%) (s) (%) (%) (s)

adder 1020 12.55 0.08 0.00 0.00 0.00 0.00 0.00
bar 3336 5.85 0.27 2.58 0.04 0.00 2.58 0.04
div 57247 63.80 3.64 0.89 0.23 1.05 0.00 0.63
hyp 214335 4.57 30.03 0.15 14.93 0.16 0.05 14.44
log2 32060 8.95 5.08 1.73 5.41 0.56 1.54 6.10
max 2865 1.15 0.18 0.00 0.01 0.28 0.00 0.02
multiplier 27062 10.07 3.53 0.10 0.28 0.09 0.01 0.27
sin 5416 7.33 0.97 1.35 0.44 1.00 1.19 0.58
sqrt 24618 25.85 2.87 0.30 4.39 0.01 0.26 4.39
square 18484 14.03 2.61 0.66 0.13 0.57 0.09 0.06
arbiter 11839 0.00 1.42 0.00 0.15 0.00 0.00 0.28
cavlc 693 8.37 0.19 4.25 0.09 2.20 3.06 0.16
ctrl 174 48.28 0.04 0.00 0.00 0.00 0.00 0.00
dec 304 0.00 0.06 0.00 0.00 0.00 0.00 0.00
i2c 1342 20.34 0.12 2.90 0.02 5.05 2.17 0.02
int2float 260 19.62 0.05 0.96 0.03 0.96 0.48 0.06
mem_ctrl 46836 6.22 5.21 15.95 1.76 12.13 14.09 2.03
priority 978 52.35 0.07 0.64 0.00 8.15 0.23 0.01
router 257 28.79 0.04 20.77 0.00 20.77 9.66 0.00
voter 13758 42.24 1.58 0.18 0.02 0.13 0.08 0.05

Average 19.02 2.90 2.67 1.40 2.66 1.77 1.46
Total gain 71402 8460 6360 6257
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mized benchmarks A. Column “A → Ours” applies simulation-guided resubstitution using

our heuristic AND-based resynthesis on the benchmark set A. Column “A → B” applies more

times of compress2rs on A until no more size reduction is observed for at least 5 consecutive

times; we call this set of benchmarks B. Column “B → Ours” applies our resubstitution on the

benchmark set B. In the last row, “Total gain” lists the total number of reduced gates, summed

over all benchmarks.

Comparing “A → Ours” and “A → B”, we can observe that, on top of the benchmark set A that

is already optimized, our high-effort optimization achieves similar “leftover” size reduction as

the best compress2rs can do. Moreover, column “B → Ours” shows that our approach can

still squeeze 1.78% more size reduction out of the highly-optimized benchmark set B. In both

“A → Ours” and “B → Ours”, the runtime of our high-effort optimization is comparable with

compress2rs.

Experiments on XAG, MIG and MuxIG optimization all use the optimized benchmark set A

as the starting point (column “AIG” in Tables 4.3 and 4.4). Besides size reduction percentage

(“Red.”) and total runtime (“Time”; for Columns XAG and MIG, time for compress2rs is

excluded), the runtime spent by our heuristic algorithms in solving the resynthesis problems

is also listed (“Tresyn”).

XAG

For XAG optimization, we first apply the LUT mapping command &if in ABC with K (number

of inputs per LUT) set to 2, followed by the interpolation-based LUT resubstitution command

&mfs [Mis+11b] to obtain XAG benchmarks (column “XAG” in Table 4.3; note that a 2-LUT

network is essentially an XAG). Then, in column “XAG → Ours” we apply simulation-guided

resubstitution using our AND-based resynthesis with XOR enabled, and 2.86% size reduc-

tion is obtained from the set of optimized XAGs within similar runtime as optimizing and

transforming into XAGs.

MIG

As the state-of-the-art MIG optimization flow, we apply three times graph (re-)mapping [Tem+22]

from the optimized AIGs, followed by enumeration-based MIG resubstitution [Rie+18] re-

peated until no more size reduction is observed (column “MIG” in Table 4.4). Then, similarly,

simulation-guided resubstitution using our MAJ-based resynthesis is applied, which obtains

2.45% size reduction on top of highly-optimized benchmarks within a faster runtime (column

“MIG → Ours” in Table 4.4).
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Table 4.3: AND-XOR-based heuristic resynthesis as the core of simulation-guided resubstitu-
tion applied on highly-optimized benchmarks.

AIG = compress2rs, XAG = compress2rs; &if -K 2; &mfs

AIG XAG XAG → Ours

Benchmark Size Size Time Red. Time Tresyn

(#gates) (#gates) (s) (%) (s) (s)

adder 892 637 0.04 0.00 0.00 0.00
bar 3141 3141 1.16 2.10 0.04 0.03
div 20725 16791 0.13 0.40 0.63 0.06
hyp 204533 160201 72.60 5.03 47.55 0.46
log2 29192 23966 19.58 1.55 2.15 0.22
max 2832 2832 0.12 0.00 0.02 0.01
multiplier 24337 18571 10.59 0.12 0.23 0.13
sin 5019 4263 11.37 2.18 0.54 0.04
sqrt 18255 14381 0.13 12.79 3.41 0.05
square 15891 12450 9.80 0.10 0.07 0.04
arbiter 11839 11839 29.94 0.00 0.34 0.13
cavlc 635 634 0.12 5.21 0.23 0.22
ctrl 90 90 0.01 4.44 0.00 0.00
dec 304 304 0.01 0.00 0.00 0.00
i2c 1069 1062 0.08 3.48 0.03 0.02
int2float 209 208 0.02 2.88 0.05 0.04
mem_ctrl 43924 38241 61.50 10.11 2.28 1.04
priority 466 443 0.07 1.13 0.02 0.01
router 183 143 0.01 5.59 0.01 0.00
voter 7946 5717 4.23 0.12 0.53 0.02

Average 11.08 2.86 2.91 0.13

MuxIG

Finally, as there is not yet much research on MuxIG, we transform the optimized AIGs directly

into MuxIGs by replacing AND gates with MUX gates with a constant input. Then, in column

“MuxIG, ours” in Table 4.4, simulation-guided resubstitution using our MUX-based resynthesis

successfully reduces the sizes of these MuxIGs by 20.24% by identifying MUX functions in the

networks. It is worth noting that although the runtime for the largest benchmark hyp seems

to be long, the time spent in the resynthesis algorithm takes only 1% and most of the time is

spent in proving the validity of the identified optimization choices.

4.9 Summary

In this chapter, three heuristic resynthesis algorithms are proposed, targeting networks based

on AND, MAJ, and MUX gates. The common characteristic of the proposed algorithms is that

they are efficient heuristics without superlinear scalability concerns. Table 4.5 compares the

proposed heuristics with other existing methods. All methods compared solve the resynthesis
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Table 4.4: MAJ-based and MUX-based heuristic resynthesis as the core of simulation-guided
resubstitution applied on highly-optimized benchmarks.

AIG = compress2rs, MIG = compress2rs + map ×3 + resub ×∞
AIG MIG MIG → Ours MuxIG, ours

Benchmark Size Size Time Red. Time Tresyn Red. Time Tresyn

(#gates) (#gates) (s) (%) (s) (s) (%) (s) (s)

adder 892 384 0.11 0.00 0.00 0.00 28.48 0.03 0.01
bar 3141 2594 0.29 0.23 0.03 0.03 43.36 0.07 0.02
div 20725 12565 0.93 0.26 0.32 0.11 39.24 2.64 0.10
hyp 204533 127877 13.01 2.89 9.10 0.86 21.56 104.69 1.05
log2 29192 23643 3.00 2.26 6.41 0.34 14.92 21.23 0.24
max 2832 2210 0.32 0.00 0.03 0.03 28.32 0.08 0.02
multiplier 24337 18700 1.76 1.39 0.34 0.20 19.13 4.51 0.20
sin 5019 4018 0.81 1.27 0.19 0.07 15.06 0.77 0.05
sqrt 18255 12513 1.09 0.72 3.25 0.16 20.36 4.35 0.11
square 15891 9573 1.03 0.78 0.08 0.05 30.87 1.06 0.08
arbiter 11839 6866 1.38 2.14 0.17 0.14 1.08 0.42 0.33
cavlc 635 541 0.83 1.48 0.02 0.02 14.02 0.02 0.01
ctrl 90 80 0.21 1.25 0.01 0.01 15.56 0.00 0.00
dec 304 304 0.09 0.00 0.01 0.01 0.00 0.01 0.01
i2c 1069 951 0.12 2.00 0.02 0.02 19.36 0.02 0.01
int2float 209 190 0.09 4.74 0.01 0.01 12.44 0.00 0.00
mem_ctrl 43924 38179 3.86 8.91 2.24 1.24 23.23 2.78 0.97
priority 466 449 0.10 4.01 0.01 0.01 13.30 0.01 0.00
router 183 170 0.07 11.18 0.00 0.00 21.86 0.00 0.00
voter 7946 4729 0.53 3.55 0.05 0.03 22.73 0.29 0.04

Average 4.38 2.45 1.11 0.17 20.24 7.15 0.16

problem with incompletely-specified functions (Problem Formulation 3), except for looking

up in an optimal database, which only solves a subset of resynthesis problems where divisors

are projection functions and all functions are completely-specified. All algorithms are sound,

but only database look-up, SAT-based exact synthesis, and enumeration are complete and

guarantee optimality. As a compromise, these exact methods have a rather high complexity

(except for database) and are practically limited by the number of divisors (n), the size of

dependency circuit (m), and/or the truth table length (l ). In contrast, although the proposed

heuristics do not guarantee optimality, their complexities are linear in all variables (or only

quadratic in n for AND-based resynthesis) and are thus practically unlimited.

Experimental results show that the proposed heuristic resynthesis serve as an important

component in high-effort peephole optimization, achieving, on average, about 2-3% more size

reduction on benchmarks that are already highly-optimized, within manageable runtime. The

key to finding these hidden optimization opportunities is the heuristics’ capability to solve

resynthesis problems with more divisors (scalability in n), having larger solutions (scalability

in m), and where functions are given as longer simulation signatures (scalability in l ).
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5 Design Space Exploration

5.1 Motivation

The general case of the Boolean optimization problem is intractable, such that academic as

well as industrial tools rely on well-tuned heuristics. Boolean optimization algorithms such as

rewriting, factoring, and resubstitution [Rie+19a; Lee+22] have been revisited several times

and have been improved in scalability and achievable optimization quality. Combining the

individual algorithms into an efficient Boolean optimization flow, however, is rarely addressed

and requires careful parameter tuning.

As a remedy, recent research proposals suggest data-driven Artificial Intelligence (AI) to guide

logic synthesis flows and improve overall QoR. An intelligent agent powered by AI could be

capable of smarter decision-making by controlling when to run and stop logic optimization

while considering trade-offs and conflicting QoR goals [Net+22; Per+21]. Modern AI technol-

ogy, however, has its own challenges: computational demands are often extraordinarily high,

large amounts of training data are required, aggressive learning policies may result in biased

and unexplainable decision-making, sophisticated training, and learning approaches require

AI experts to design, tune, and maintain.

Moreover, with the development of beyond-CMOS emerging technologies, unconventional

circuit properties, design constraints, and cost functions need to be considered in design

automation. For example, Spin Torque Majority Gate (STMG) [NBG11] circuits are based

on majority gates and inverters are expensive, thus MIG [AGD16] instead of AIG is a better

logic network abstraction. AQFP [Tak+13] is also based on majority gates, and it imposes

additional path-balancing and fanout-branching constraints. Field-coupled Nanocomputing

(FCN) [AB14] is a family of nanotechnologies whose physical design requires the circuit to be

planarized, in addition to path-balancing and fanout-branching. Although these constraints

may be dealt with after technology mapping, research has shown that tailored logic opti-

mization algorithms considering specialized cost metrics early on yield better QoR. However,

carefully-tuned optimization flows for individual technologies are even more rarely researched,

as such work would require experts in both the technology and logic synthesis (and AI).
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In this chapter, we propose a simpler design space exploration approach that takes a combina-

tional gate-level circuit represented as input, evaluates its characteristics, and makes decisions

about what optimizing transformations to apply as it proceeds. Our goal is to provide an easily

adaptable solution, customizable for various applications, when the best-achievable QoR is

of interest and higher runtime is acceptable. Restart and bailout strategies are used in the

exploration procedure as a mechanism to retry if a logic minimum has been reached and to

terminate optimization early if QoR deviates too much from a desired quality goal.

5.2 Related Works

Logic optimization flows are fixed sequences of optimizing transformations. While many

research works focus on improving the performance and quality of individual transformations,

complete optimization flows are rarely proposed. The problem of finding a sequence of

optimizing transformations that achieves the best results for a given benchmark suite is only

recently investigated using techniques from machine learning (ML) [Per+21; YXM18; Net+22]

and Bayesian optimization [Gro+22]. These works arrange existing technology-independent

optimizing transformations to reduce the area and delay of the final netlist as much as possible,

where each optimizing transformation maintains a local view on the logic, e.g., in the form

of sliding windows, and implements a well-known scalable logic optimization. Alternatively,

algorithms based on global optimization principles such as simulated annealing [MJV00] and

evolutionary algorithms [Fis+10; FDK11] achieve better logic compaction, but they are rarely

considered in practice due to their massive computational demands.

5.3 Overview

An overview of the on-the-fly design space exploration algorithm is outlined in Algorithm 5.1.

Like most logic network optimization algorithms, it takes an original network as input and

outputs an optimized network. Additionally, there are three custom functions a user should

specify: cost evaluation, decompressing, and compressing scripts, which will be further

described in Sections 5.4 and 5.7.

There is an outer loop (lines 3-19) and an inner loop (lines 8-17) in Algorithm 5.1. In the

following, we call an iteration of the outer loop a restart and an iteration of the inner loop a

step. Furthermore, an execution of decompress (line 9) or compress (line 10) is called a script,

which may contain one or more algorithms or transformations.

In each restart, the network is restored to the original one, and a new random engine seeded

with a different seed is generated (line 6). The number of restarts is defined by the user

(parameter num_restarts). The best network having the smallest cost in all restarts is recorded

and eventually output by the algorithm (lines 18-20). Each restart has its own timer to upper-

bound the runtime (line 7).

84



Design Space Exploration Chapter 5

Algorithm 5.1: On-the-fly design space exploration

Input: Original network N0

Output: Optimized network Nbest

Custom functions: cost, decompress, compress
Parameters: num_restarts, max_steps, max_no_impr, timeout, init_seed

1 Nbest ← N0.copy()
2 R1 ← random_engine(init_seed)
3 for restart = 1 upto num_restarts do
4 Nbest_inner ← N0.copy()
5 Ncurr ← N0.copy()
6 R2 ← random_engine(R1.rand())
7 elapsed_time ← 0; start_timer(elapsed_time)
8 for step = 1 upto max_steps do
9 decompress(Ncurr, R2.rand())

10 compress(Ncurr, R2.rand())
11 if cost(Ncurr) < cost(Nbest_inner) then
12 Nbest_inner ← Ncurr.copy()
13 last_impr ← step

14 else if step − last_impr ≥ max_no_impr then
15 break
16 else if elapsed_time ≥ timeout then
17 break
18 if cost(Nbest_inner) < cost(Nbest) then
19 Nbest ← Nbest_inner.copy()

20 return Nbest

Each step consists of a call to a decompressing script followed by a call to a compressing

script, which are both randomized. After these transformations are done, the network cost

is evaluated. The current network is recorded if its cost is the best seen among the steps

executed so far in the current restart (lines 11-12). The inner loop breaks if there have been

max_no_impr steps executed without seeing a better network (lines 14-15), or if the timeout

limit has reached (lines 16-17).

In the remainder of this section, we explain why we believe such algorithmic design helps

achieve better design space exploration.

5.4 Escaping Local Optimum

Although a user of our algorithm has the freedom to define any set of decompressing and

compressing scripts, we encourage them to classify possible transformation algorithms into

two categories and have good candidates in both. A decompressing script should be a script

that dramatically restructures the network and likely increases its size and depth. A promi-

nent example of a decompressing script is LUT mapping followed by naive resynthesis to

85



Chapter 5 Design Space Exploration

convert back into the original representation (e.g. AIG or MIG). Another example, when the

representation is an MIG, is randomly breaking each majority gate into four using the relation

MAJ(a,b,c) = (a ∧b)∨ (c ∧ (a ∨b)) = MAJ(MAJ(a,b,0),MAJ(c,MAJ(a,b,1),0),1). (5.1)

The purpose of decompressing is to create the possibility of escaping from local optima.

Imagine if the design space of all feasible networks is projected to the x axis and the y axis

is the cost of each network. Such a curve is very likely not convex and many valleys of local

minima exist. When we are stuck at a local minimum, decompressing scripts help us climb up

the hills and potentially reach a better local minimum afterward.

In contrast, a compressing script is a sequence of algorithms that attempts to optimize for the

given cost metric. Examples of compressing scripts include well-known logic optimization

algorithms such as rewriting, balancing, refactoring, resubstitution, graph remapping, etc. The

aim of compressing scripts is to converge to a local minimum. By interleaving decompressing

and compressing scripts, our algorithm may explore different local optima in the design space,

instead of being trapped in the nearest local optima when only applying one optimization

algorithm.

5.5 Stretching Out in the Design Space

Consider the original network N0 and a certain optimized network Nbest to be reached, they

may be far away in the design space, and a long sequence of transformations is required to

get from N0 to Nbest. Thus, our design space exploration strategy aims at stretching far out

and really performing long transformation sequences. The key to such an aim is that in the

inner loop, even if the cost is getting much worse, there is no mechanism to backtrack to the

previous best result or to retrieve the original network. A design space exploration strategy

that tries many different combinations of transformation sequences but frequently backtracks

would explore the design space more densely near the original network, but less likely to reach

out to further points.

5.6 On-the-fly Exploration

Being able to try long sequences of transformations is not enough. The next big question is:

What kind of sequence leads to better results? Although machine-learning-based research

and human expert experiences give some insights, we argue that the answer is different for

different benchmarks and different cost metrics. Instead of pre-defining particular sequences,

our algorithm simply performs random walks. The purpose of the outer loop is to mitigate

the possibility of a “bad” random seed leading to unsatisfactory results and to increase the

chance of meeting at least one “good” random sequence in all restarts. We call such strategy an

on-the-fly exploration because we do not know the best transformation sequence in advance,

but discover it on the fly during exploration.
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5.7 Customization

Aiming at applications to emerging technologies with diverse logic representations, dedicated

algorithms, and cost evaluation metrics, our algorithm is customizable in these aspects.

• Logic representation: As long as the transformation scripts and cost evaluation func-

tion are compatible, there is no limitation on the data structure of N0. Although this

chapter focuses mainly on network optimization, it is also possible to use other logic

representations such as two-level forms.

• Decompressing and compressing scripts: To set up the algorithm, the user must provide

a nonempty set of decompressing scripts and a nonempty set of compressing scripts.

When the functions decompress and compress (line 9 and 10 in Algorithm 5.1) are

called, one of the scripts in the respective set is randomly chosen. The user may also

define the probability of each script being chosen, preferring some scripts over the

others. Moreover, how randomness is involved in the scripts is also customizable. For

example, a user may define that the cut size to be used in resubstitution is randomly

chosen within a range.

• Cost evaluation: Most importantly, the cost evaluation function is customized. Such a

function should take a network as input and output a number. It should not modify the

network, but it may execute complicated algorithms to compute the cost.

Besides the custom functions, there are also some parameters users may set according to their

needs.

• num_restarts: This parameter defines how many different transformation sequences,

or exploration paths, will be tried randomly. We will experiment on the impact of this

parameter in Section 5.8.3.

• max_steps, max_no_impr, timeout: These parameters define the optimization effort of

each restart. Particularly, max_no_impr defines how many steps without seeing any

improvement in the cost the algorithm will tolerate before bailing out from the current

exploration path, and timeout defines the runtime budget.

• init_seed is the user-specified initial random seed used to generate different seeds to

be used in each restart. This parameter is only used to ensure deterministic and repro-

ducible results of the algorithm. When num_restarts is sufficiently large (Section 5.8.3),

different init_seed should give similar results, and tuning of this parameter should not

be needed.
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Table 5.1: Comparison of MIG size against previous works.

Map [Tem+22] Flow [TD24] DSE [Ours]

Bench. Size Size Size Impr. Depth

adder 384 384 384 - 129
bar 2588 2433 1906 21.7% 15
div 36858 12462 12368 0.8% 2251
hyp 137048 115541 115539 0.002% 9129
log2 24295 22010 22008 0.01% 184
max 2171 2190 1939 11.5% 172
multiplier 19299 17112 17112 - 137
sin 4196 3870 3869 0.03% 124
sqrt 17355 12357 12247 0.9% 2156
square 11924 8138 8089 0.6% 126

Total (arith.) 256118 196497 195461 0.53% 14423

arbiter - 6711 792 88.2% 108
cavlc - 492 374 24.0% 16
ctrl - 74 60 18.9% 8
dec - 304 304 - 3
i2c - 871 636 27.0% 16
int2float - 172 115 33.1% 9
mem_ctrl - 32097 6886 78.5% 26
priority - 406 337 17.0% 23
router - 147 97 34.0% 13
voter - 4555 3894 14.5% 32

Total (all) - 242326 208956 13.8% 14677

5.8 Experimental Results

In this section, we present experimental results on the problem of MIG size optimization as an

example. The EPFL benchmark suite [AGD15] is used.

5.8.1 Application to MIG Optimization

Table 5.1 compares a state-of-the-art MIG restructuring algorithm, graph remapping [Tem+22]

(Map), the current best MIG size results seen in the literature produced by an optimization

flow [TD24] (Flow), and the new best results achieved by our design space exploration (DSE).

The MIG sizes (number of gates) are listed for all of the three as the main comparison, and

the MIG depth is additionally listed in DSE for reference. Column “Impr.” computes the

improvement percentages of MIG size comparing our DSE to SoTA Flow. The benchmark suite

is divided into arithmetic circuits (upper half) and control circuits (lower half), and the sum

of arithmetic benchmarks as well as all benchmarks are listed separately. Data of the control

circuits for Map were omitted in the table because they were not presented in [Tem+22].

From Table 5.1, we observe the improvements made by extending from a single algorithm to a
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fixed flow, and finally to an exploration of a portfolio of different flows. Overall, our new best

result improves over state of the art by 13.8%.

Another application of the proposed design space exploration on AQFP optimization will be

presented in Chapter 10.

5.8.2 Design Space Exploration

We take the benchmark “arbiter” from the MIG optimization experiment and plot the processes

of three restarts in Figure 5.1 as an example illustration of design space exploration. The

optimization goal is set to minimize MIG size (y-axis), and the MIG depth is used as the x-axis

of the plot to help distinguish different networks seen in the process. Both axes are plotted on

a logarithmic scale. Only the networks causing an update to Nbest_inner are recorded. From

this figure, we can observe the different paths taken by the design space exploration algorithm.

The third restart (green) ends up with the best Nbest_inner and is taken as the final Nbest.

5.8.3 Importance of Random Restarts

To investigate the influence of different random seeds used in each restart, we plot the best-

seen network in 50 restarts in the same run. The benchmark “priority” from the EPFL bench-

mark suite is used and optimized for MIG size. In Figure 5.2, the y-axis is MIG size (optimiza-

tion goal) and the x-axis is MIG depth (a second network trait). Both axes are plotted on a

logarithmic scale. Each blue cross is a local optimum Nbest_inner recorded after 50 steps of

transformation without improvement or when the inner loop times out, and the green square

marks the best among the 50 restarts. The red circle is the initial network N0, and the brown

crosses are the results of fixed, predefined flows designed by human experts.

We observe from this experiment that there really exist many different local minima in the

design space. Some of them are worse in both metrics, and some of them form a portion of the

Pareto curve. As the algorithm is a random process, the order of encountering them is random.

If num_restarts was set smaller, the chance of getting the same best local optimum is reduced.

However, there are not infinite local minima, and increasing num_restarts indefinitely may not

always help find a better optimum. We have observed that for some benchmarks and settings,

many restarts fall into the same few local minima.

5.9 Summary

This work presents an on-the-fly design space exploration algorithm that emphasizes long

transformation sequences and restarts with different random decisions. The implementation

is customizable for unconventional cost functions often seen in emerging technologies, as well

as dedicated, customized optimization scripts. With the proposed design space exploration,
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we are able to improve over state-of-the-art QoRs on MIG and AQFP optimization problems.

We study the different trajectories of design space exploration and experimentally show that

there may be many different local optima reachable by different flows found by the design

space exploration algorithm. We argue that there does not exist a fixed universally-good flow

that works well for all benchmarks so that the search for the best flow shall be done on the fly.

As future work, we would like to experimentally demonstrate this claim by applying the best

flow found for one benchmark on another benchmark.

Randomized decision is key to the proposed algorithm because it is the premise of forming

different flows and taking different trajectories leading to different local optima. The algorithm

would not work if there is only one unrandomized script provided. However, it remains an open

question how many different scripts do we need. We conjecture that the more randomization

involved, the wider the distribution of local optima we will get in a plot similar to Figure 5.2.

In other words, better optima would become reachable, but there will be more worse optima

as well. Further experiments are required to answer this question.
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Figure 5.1: Three different paths in the design space taken by three restarts.
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Figure 5.2: Local optima found by 50 restarts (×) compared to a fixed flow (△).
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6 Testing and Debugging Logic Synthe-
sis Algorithms

6.1 Motivation

The inherent complexity of these engines, optimized for many corner cases, makes logic

synthesis algorithms susceptible to design and implementation errors. Moreover, algorithms

are often only tested on fixed benchmark suites, such as the EPFL logic synthesis bench-

marks [AGD15]. Due to numerous possibilities to implement the same Boolean function with

different circuit structures, it is not rare that subtle faults slip through the development process

and only show themselves when the algorithm is used in practice.

Motivated by the success of automated testing methods, we argue that directed testing ap-

proaches and bug-pointing tools specialized for logic synthesis applications can support the

developers in detecting bugs earlier, can make implementations more robust, and ultimately

lead to a reduction in the time and effort spent for debugging. Due to the large state space and

homogeneity of the commonly used netlist formats, general-purpose testing and debugging

tools often are incapable of providing the necessary performance to efficiently test imple-

mentations of logic synthesis algorithms. The C++ logic network library mockturtle [Rie+19b;

Soe+22] has deployed a framework for unit testing, continuous integration on various oper-

ating systems and compilers, and a static code analysis engine controlled by user-defined

queries to aid developers.

6.2 Scope

This chapter focuses on testing and debugging software applications, referred to as the appli-

cation under tests (AUTs), that take a logic network, called a testcase, as an input. Prominent

examples of such applications include implementations of logic synthesis algorithms such as

rewriting [MCB06], resubstitution [Mis+11b], and technology mapping [Tem+22]. Methods to

verify the correctness of the results, referred to as the verification, are assumed to be provided.

They may come from several sources:
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• Assertions within the program.

• Memory protection processes in the operating system checking for illegal memory

access (typically raising segmentation faults).

• CEC [Mis+06a] of the output network against the input testcase (for logic optimization

algorithms).

• Additional code checking coherence of the program’s internal data structures, such as

checking if the network is acyclic and checking the correctness of reference counts, etc.

• Another algorithm of the same purpose used to provide reference solutions (for prob-

lems having a unique correct solution).

A failing verification, e.g., a non-equivalent CEC result, indicates that a defect of the AUT is

observed and the testcase used is said to be failure-inducing. The AUT combined with its

verification is referred to as an oracle, and running the oracle with a testcase is an oracle call.

6.3 Related Works

6.3.1 Fuzz Testing

Fuzz testing [MFS90] is a software testing technique heavily used to detect security-related

vulnerabilities and reliability issues. It is conceptually simple, yet empirically powerful. A

fuzzing algorithm involves repeatedly generating testcases and using them to test the AUT.

The idea of fuzz testing first appeared in 1990, when spurious characters in the command

line caused by a noisy dial-up connection to a workstation led to, surprisingly, crashes of the

operating system [MFS90]. Nowadays, the generation of testcases in fuzz testing algorithms

often involves randomness, and the testcases are supposed to be beyond the expectation of

the AUT.

Various taxonomies of fuzz testing algorithms have been developed. For example, black-box

fuzzers [Lee+17] treat the AUT as a black-box oracle and only observe its input/output behavior,

whereas white-box fuzzers [GLM08; CDE08] analyze some internal information of the AUT

and generate testcases accordingly. Depending on the targeted types of AUTs, some fuzzers

generate testcases based on predefined models or grammars [DRH14], whereas some other

fuzzers mutate an initial seed testcase to generate more testcases [CWB15]. There are often

some parameters to be set for the testcase generators. A series of fuzz-tests using testcases

generated with a specific parameter configuration is called a fuzz testing campaign [Man+21].

6.3.2 Delta Debugging and Testcase Minimization

Given two versions of the code of a program, where the first version works but the second fails,

delta debugging [Zel99] is a method originally proposed to extract a minimal set of changes
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(differences in the two versions of code) that causes the failure. The algorithm was later

extended for minimizing failure-inducing testcases [ZH02].

The basic idea of delta debugging is binary searching and dividing the set of components, may

it be the delta between two versions of code or the input testcase to a program, testing the

program with the reduced set, keeping the subsets that preserve the failure, and increasing the

granularity of division. The delta debugging algorithm (ddmin) guarantees to find a 1-minimal

subset and requires, in the worst case, n2 +3n oracle calls, where n is the size of the given

set [ZH02].

Besides delta debugging being a generic method for testcase minimization, researchers have

claimed that domain-specific testcase minimization techniques are more effective and effi-

cient for some applications such as tree-structured inputs [MS06], compilers [Reg+12] and

SMT solvers [KNP21]. Various open-source implementations of testcase minimization tools

exist, including the general-purposed delta1, aigdd2 for the AIGER format, ddSMT3 for the

SMT-LIB v2 format, and the LLVM bugpoint tool4. Inspired by delta debugging, in this chapter,

we aim to provide such an effective testcase minimization tool specialized for logic networks

but not limited to AIGs.

6.4 Testing and Debugging Toolkit for Logic Synthesis Applications

6.4.1 Testcase Generation

We develop a fuzz testing framework for testing any application that takes a logic network

as input. The AUT and the verification checks are provided as a combined oracle call, thus

categorizing it as a black-box fuzzer. Although in some cases of fuzzing, testing with malformed

testcases is key to testing the robustness of the AUT, this is not the case for our usage. In logic

synthesis applications, detecting and rejecting malformed inputs, e.g. a cyclic network, are

usually dealt with by the parsers instead of the logic synthesis algorithms. Nevertheless, as

logic synthesis applications are often only tested with some common benchmark suites, our

fuzzing framework still tests them with a larger input space beyond what they are usually

tested with.

To generate random testcases, we propose three parameterized methods. These methods

apply to any type of network having a finite set of possible gate types.

Random: Randomly generate nodes in topological order. This method is parameterized by the

starting number of PIs x0, the starting number of gates y0, the number of networks z of the

same configuration to generate, the increment of the number of PIs ∆x, and the increment of

1https://github.com/dsw/delta
2https://github.com/arminbiere/aiger
3http://fmv.jku.at/ddsmt/
4https://llvm.org/docs/Bugpoint.html
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the number of gates ∆y . The generator starts by generating networks of x = x0 PIs and y = y0

gates and keeps a counter of how many networks have been generated. After generating z

networks, the values of x and y are increased by ∆x and ∆y , respectively. Given the current

values of x and y , a network is generated by:

1. Create x PIs.

2. Randomly decide on a gate type. Assume that the type requires κ fanins.

3. Randomly sample κ nodes (PIs or gates) that have been created.

4. Randomly decide for each fanin if it is complemented.

5. Create the gate. Repeat from step 2 if the number of gates is smaller than y .

6. Assign all nodes without fanout to be POs.

For network types with trivial-case simplifications (e.g., in AIGs, attempting to create an AND

gate with identical fanins results in returning the fanin without creating a gate) and structural

hashing enabled, the number of gates may not increase after step 4. Thus, the loop of steps 2

to 4 may iterate more than y times and the terminating condition is when the actual number

of gates is y . If the parameters are set improperly, e.g., if x = 1, this might lead to an infinite

loop.

Topology: Exhaustively enumerate all small-sized DAG topologies and randomly concretize

them. This method is parameterized by the starting number of gates y0, the lower rl and upper

rh bounds on the PI-to-input ratio, and the number of networks z of the same configuration

to generate. Upon initialization, the generator enumerates all isomorphic DAG topologies

of y = y0 vertices using an algorithm implemented in [Haa+20] and randomly shuffles them.

Then, it starts by generating networks of the first topology and keeps a counter of how many

networks have been generated. After generating z networks, the generator moves on to

generating the next topology. After all topologies have been used to generate z networks, the

value of y is incremented by 1 and topologies of the increased size are enumerated. Given a

topology, which is specified by a DAG T with hanging inputs (i.e., the topology specifies how

gates are connected to each other, but not how they are connected to PIs), a random network

is concretized by:

1. Let i be the number of hanging inputs in T . Randomly decide on an integer x such that

rl · i ≤ x ≤ rh · i . Create x PIs.

2. For each input of T , randomly decide on a PI to connect to.

3. For each vertex in T , randomly decide on a gate type.

4. For each edge in T , randomly decide whether it is complemented.
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5. Assign the last gate to be a PO.

In step 1, lower values of x/i lead to a higher probability that the generated network recon-

verges on PIs, whereas higher values of x/i lead to a higher probability of generating a tree-like

network. The generated networks are always single output.

Composed: Randomly compose a few small-sized DAG topologies to form a larger network.

This method is parameterized by the lower yl and upper yh bounds of the size of DAG topolo-

gies, the starting number of components c0, the starting number of PIs x0, the number of

networks z of the same configuration to generate, the increment of the number of PIs ∆x

and of the number of components ∆c. Upon initialization, the generator enumerates all

isomorphic DAG topologies of yl to yh vertices. Then, it starts by generating networks of x = x0

PIs and composed of c = c0 components and keeps a counter of how many networks have

been generated. After generating z networks, the values of x and c are increased by ∆x and ∆c ,

respectively. Given the current values of x and c, a network is generated by:

1. Create x PIs.

2. Randomly choose a topology T from the list.

3. For each hanging input of T , randomly decide on an existing node (a PI or a node in a

created component) to connect to.

4. For each vertex in T , randomly decide on a gate type.

5. For each edge in T , randomly decide whether it is complemented.

6. If the number of created components is smaller than c, repeat from step 2.

7. Assign all nodes without fanout to be POs.

6.4.2 Testcase Minimization

Assuming that the concerned defect is deterministic, there is a core in any given failure-

inducing testcase, which is a subset of the testcase essential for observing the defect. The other

parts of the network are said to be irrelevant for observing the defect and can be removed. For

example, for a defect caused by the algorithm trying to insert an XOR gate into an AIG, which

is interpreted as inserting an AND gate instead, a core in the testcase may be a subnetwork

computing the XOR function. Due to the localized-computation design style of modern

scalable logic synthesis algorithms, the cores are usually small-sized. We say that a core is

minimal if, for any node n, removing n results in never observing the defect again no matter

how the fanins and fanouts of n are re-connected. A minimal core in a failure-inducing

testcase may or may not be unique. The goal of testcase minimization is to find a minimal

core in a given failure-inducing testcase.
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n

(a) Remove PI : The TFO
of n is simplified.

n

(b) Remove PO: The
MFFC of n is removed.

n

(c) substitute gate: The
MFFC of n is removed
and the TFO of n is sim-
plified.

n

(d) Simplify TFO: The
TFO of n is simplified.

n

(e) Remove MFFC: The
MFFC of n is removed.

n

(f) Remove gate: Only n is
removed.

Figure 6.1: Illustration of the reduction stages.

We develop a testcase minimization tool for logic networks similar to delta debugging but

without adopting binary search. Given a network and an AUT with verification (i.e. an oracle),

our testcase minimizer iteratively tries to reduce the network and tests if the defect is still

observed. Only the reduction operations that preserve observing the defect are kept; otherwise,

the operation is undone. Different reduction operations are tried in six stages with increasing

(finer) granularity as follows:

(a) Remove PI : Substitute a PI n with constant zero, thus simplifying its TFO by constant

propagation. In AIGs, some nodes in the TFO of n that are connected to n without

complementation are removed, and so are their MFFCs.

(b) Remove PO: Substitute a PO n with constant zero, thus removing its MFFC.

(c) substitute gate: Substitute a gate n with constant zero, thus removing its MFFC and

simplifying its TFO by constant propagation (as in (a)).

(d) Simplify TFO: Assign fanins of a gate n as new POs, and then substitute n with constant

zero. This operation is less aggressive than the previous one because only the TFO of n

is simplified and its MFFC is kept.

(e) Remove MFFC: Substitute a gate n with a new PI. This operation does not cause constant

propagation in its TFO and only removes the MFFC of n.
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(f) Remove gate: Assign fanins of a gate n as new POs, and then substitute n with a new PI

or with one of its fanins. Only n is removed.

Figure 6.1 illustrates the effects of an operation in each of the reduction stages, where small

triangles at the bottom and on top are PIs and POs, respectively, and circles are specific nodes.

Regions filled in blue are removed after the operation, and regions marked in yellow are

simplified by constant propagation after the operation. Wires and PIs or POs drawn in green

are added after the operation.

The relative granularity of stages remove PI and remove PO depends on the shape of the

network. For networks with smaller TFO of PIs and less logic sharing in the TFI of POs,

remove PO reduces the network faster; for networks with smaller MFFC of POs and more

reconvergences near the PIs, remove PI reduces the network faster. Thus, the first stage to

apply is heuristically decided by whether the network has more PIs than POs (remove PO is

applied first) or more POs than PIs (remove PI is applied first).

In each stage, the minimizer backs up the current network, randomly samples a PO or a gate as

n, and performs the corresponding reduction operation. If the defect is not observed anymore

after reduction, the backup is restored. This procedure is repeated until all POs or all gates

have been sampled, or until a pre-defined number of operations have been tried.

The resulting network after minimization cannot be reduced anymore because the last stage

tries every possibility to remove one gate. Thus, by definition, the minimized testcase is

guaranteed to be a minimal core. However, minimal cores are not necessarily unique, so it is

possible that a different order of reduction operations (e.g. by using a different random seed)

results in a smaller minimal core.

The minimized testcases are, in most cases, highly destructed and cannot be recognized or

reverse-engineered anymore. Therefore, the testcase minimizer does not only facilitate the

debugging process but also the communication between developers when commercially-

sensitive benchmarks are involved.

6.4.3 Usage Example

The testing and debugging toolkit described in this chapter is implemented in mockturtle5 as

part of the EPFL open-source logic synthesis libraries [Soe+22]. The toolkit supports testing

and debugging any application that takes a logic network, written in AIGER (for AIGs) or

Verilog (for other network types supported in mockturtle, such as XAGs and MIGs) formats, as

input.

Figure 6.2 shows an example workflow of our toolkit. In this example, the toolkit is used to

fuzz test an algorithm implemented in mockturtle (marked in green), and then, if a defect is

5Available: https://github.com/lsils/mockturtle
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1 #include <mockturtle/mockturtle.hpp >
2 using namespace mockturtle;
3

4 int main()
5 {
6 auto opt = []( aig_network aig) -> bool {
7 aig_network const aig_copy = aig.clone();
8 aig_resubstitution(aig);
9 aig_network const miter = *miter(aig_copy , aig);

10 return *equivalence_checking(miter);
11 };
12

13 fuzz_tester_params fuzz_ps;
14 fuzz_ps.file_format = fuzz_tester_params ::aiger;
15 fuzz_ps.filename = "fuzz.aig";
16 fuzz_ps.timeout = 20; // 20 minutes
17 auto gen = random_aig_generator ();
18 network_fuzz_tester <aig_network , decltype(gen)>
19 fuzzer(gen , fuzz_ps);
20 bool has_bug = fuzzer.run(opt);
21

22 if (! has_bug) return 0;
23

24 testcase_minimizer_params min_ps;
25 min_ps.file_format = testcase_minimizer_params :: aiger;
26 min_ps.init_case = "fuzz";
27 min_ps.minimized_case = "fuzz_min";
28 testcase_minimizer <aig_network > minimizer(min_ps);
29 minimizer.run(opt);
30

31 aig_network aig;
32 lorina :: read_aiger("fuzz_min.aig", aiger_reader(aig));
33 write_dot(aig , "fuzz_min.dot");
34 std:: system("dot -Tpng -O fuzz_min.dot");
35

36 return 0;
37 }

Fuzzer

Minimizer

Oracle

Figure 6.2: Example code to use the proposed toolkit to generate, minimize, and visualize a
failure-inducing testcase.

6 auto opt = [](std:: string filename) -> std:: string {
7 return "abc -c \"read " + filename + "; rewrite \"";
8 };

Figure 6.3: Example code to use the toolkit for testing and debugging an external tool, ABC.
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observed, minimizes the generated failure-inducing testcase (marked in red). This can be

done similarly for other C++-based tools that include mockturtle as a library.

Our toolkit is also applicable for testing and debugging external tools. In this case, the lambda

function in lines 6 to 11 in Figure 6.2 shall be replaced by one that resembles the code in

Figure 6.3.

Similar to aigfuzz and aigdd, calling the oracle as a system command requires switching

the program control through the command shell and interfacing the testcases by reading and

writing files. With the possibility of a tight integration as in Figure 6.2, these interfacing over-

heads can be eliminated and thus, empirically, making the automated testing and debugging

workflow about 10× faster.

6.5 Case Study

As a case study, we apply the toolkit on a known defect in a variation of cut rewriting, which uses

a compatibility graph to identify compatible substitution candidates [Rie+19a], implemented

in mockturtle.6 The defect can be observed by having a cyclic network after applying the

algorithm. The failure-inducing core of this defect is shown in Figure 6.4 (d). The cyclic

result is caused by the algorithm observing n7 ⊕n2 as a substitution for n11 and n11 ⊕n2 as

a substitution for n7, and trying to apply the two substitutions at the same time. To identify

that the two substitution candidates are in conflict, the algorithm should check, for every

pair (A,B) of candidates, if the root of A is contained in the cut of B and the root of B is

contained in the cut of A. This would be a feasible fix for the defect but would impact the

efficiency of the algorithm. Another rewriting algorithm that does not use the compatibility

graph but eagerly substitutes each candidate before searching for the next one is available in

mockturtle.7 However, when not affected by the defect, the defective algorithm has on average

better quality of result than eager rewriting. Also, the defect seems to be observed very rarely,

as will be discussed in Section 6.5.1. As a compromise, both algorithms are kept in mockturtle.

The first reported failure-inducing testcase for this defect is shown in Figure 6.4 (a). The

original testcase was not minimized by the reporter and have 49 PIs, 272 AND gates, and 28

POs. It took a human expert about 30 minutes to manually reduce the testcase to Figure 6.4 (d),

with 3 PIs, 8 gates, and 2 POs. Using the testcase minimizer, the original testcase is minimized

to the same graph (subject to permutations of the two POs) within a second and using 94

oracle calls. In Section 6.5.2, we study the effectiveness and necessity of the reduction stages

described in Section 6.4.2.

6The function cut_rewriting_with_compatibility_graph can be found in
algorithms/cut_rewriting.hpp.

7The function cut_rewriting can be found in the same header file.
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(a) Before reduction, the original testcase is too big for human eyes to understand.

(b) Remove PO only. (c) Remove PO and substitute gate. (d) The minimum
failure-inducing test-
case.

Figure 6.4: The failure-inducing testcase for an algorithm implemented in mockturtle and
intermediate results of minimizing it.

6.5.1 Capturing The Defect with Fuzz Testing

Using AIGs

Knowing the existence of the defect, we investigate if our fuzz tester is capable of generating

another failure-inducing testcase. However, even though the code line coverage has reached

its maximum (100% excluding the lines disabled by the algorithm’s options), the defect is

not observed with more than a billion (109) regular (i.e., without leveraging knowledge of the

known core) fuzz tests. Even if we limit the sampling space to the 3-input, 8-gate, 2-output

topology as in Figure 6.4 (d) and leaving only the connections to PIs and edge complementa-

tions as random choices, there are still 62 ×34 ×216 = 191102976 different possible networks,

out of which only 3!×23 = 48 networks (equivalent to Figure 6.4 (d) subject to permutation

and negation of PIs) are failure-inducing.

This case evidences that rare corner-case defects exist in logic synthesis applications, and the

identification of them may only rely on real-world benchmarks. In these cases, the testcase

minimization techniques are important to automatize the extraction of the failure-inducing

core, which facilitates communication and debugging.

Using XAGs

We observe that the XOR functions in the core (nodes 9,10,11 and nodes 5,6,7 in Figure 6.4 (d)

are necessary. Using any of the randomized methods described in Section 6.4.1, the possibility

of generating an XOR function composed of three AIG nodes is low. However, it is much more

likely to generate an XOR gate in an XAG. As the implementation is generic and works for both
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Table 6.1: Fuzzing the defective cut rewriting with XAGs.

Method #Tests Time (s)

Random 8150 1.8
Topology 44498 6.6
Composed 77573 22.8

AIGs and XAGs, we can try to capture the defect using XAGs instead. Table 6.1 shows that all

the three methods successfully capture the defect within reasonable runtime.

6.5.2 Effects of The Reduction Stages

Given the initial failure-inducing testcase as in Figure 6.4 (a), using the default settings, our

testcase minimizer produces the minimal failure-inducing testcase as in Figure 6.4 (d), which

is a 97% reduction rate in gate count. The minimality can be proved by trying to remove each

gate and seeing that any possible resulting testcases are not failure-inducing.

Figures 6.4 (b) and 6.4 (c) show the reduction results if only some reduction stages are applied.

The first stage, remove PO (remove PI is skipped because there are more PIs than POs), provides

already 89% reduction of the testcase by removing large cones of irrelevant logic and quickly

concentrates to the transitive fanin cone of two POs (Figure 6.4 (b), 30 gates). The next stage,

substitute gate, further reduces the size to 15 gates (Figure 6.4 (c)), and the failure-inducing

core is easily observable (marked with a red box). However, the other nodes on top of the core

cannot be removed in this stage because substituting any of them with constant zero also

removes part of the core. This can be accomplished by adding the stage simplify TFO, resulting

in Figure 6.4 (d). The two key operations are adding PO at nodes 13 and 20 and substituting

nodes 14 and 21 with constant zero. It is also possible to reach the minimum by adding only

the stage remove gate, but it requires at least 6 operations to remove nodes 14,15,16,21,22

and 23 one by one, showing that this stage operates in finer granularity. It may seem that the

stage remove MFFC is not necessary. However, this is only because the failure-inducing core in

this example does not have irrelevant transitive fanin gates (i.e., it is connected to PIs) in the

original testcase. When this is not the case, the stages remove MFFC and/or remove gate are

necessary to obtain the minimum.

6.6 Experimental Results

6.6.1 Fuzzing Open-Source Logic Synthesis Tools

To demonstrate the effectiveness of fuzzing and compare different testcase generation meth-

ods, we fuzz-tested the following open-source logic synthesis tools: mockturtle8 [Rie+19b],

8Available: https://github.com/lsils/mockturtle. Commit cf4769f.
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Table 6.2: Fuzz testing results.

aigfuzz Random Topology Composed

#Tests = 1000 #Tests = 1000 #Tests = 5000 #Tests = 5000

AUT #FITs Size Time #FITs Size Time #FITs Size Time #FITs Size Time

m
oc

kt
u

rt
le aig_resub 0 - 10.3 0 - 3.5 0 - 0.02 1 14.0 0.03

sim_resub 3 812.3 22.3 0 - 4.2 6 5.0 0.06 93 21.7 0.11

A
B

C

if -u 952 2476.0 32.5 1000 950.0 14.6 1716 4.7 12.8 3749 20.3 13.0

mfs -dael 956 2515.1 4.5 969 978.8 1.6 0 - 14.2 1047 23.9 12.3

mfsd 473 3935.9 30.5 584 1078.4 14.1 0 - 14.1 120 24.2 14.1

mfsd -cd 481 3959.7 130.0 73 1266.4 47.8 0 - 14.2 1 20.0 14.4

mfse 458 2763.3 14.7 93 940.3 13.6 1 5.0 16.0 1056 23.4 15.0

stochsyn 13 1164.8 14.6 0 - 6.0 0 - 12.5 14 18.9 12.5

LS
O

ra
cl

e aigscript 1 7364.0 38.1 0 - 16.4 0 - 32.8 1 14.0 32.8

deep 12 3227.3 41.6 0 - 21.5 0 - 33.3 6 23.0 32.8

xmgscript 3 1056.0 21.6 2 350.0 10.5 38 4.9 11.5 99 20.1 12.0

Average 2941.6 32.8 995.5 14.0 4.7 14.7 21.5 14.5

aig_resub = mockturtle::aig_resubstitution, sim_resub = mockturtle::sim_resubstitution
if -u = abc> "bms_start; if -u; strash", mfs -dael = abc> "&if; &mfs -dael; &st"
mfsd = abc> "&mfsd; &st", mfsd -cd = abc> "&mfsd -cd; &st"
mfse = abc> "if; mfse; strash", stochsyn = abc> "&stochsyn resub"
aigscript = lsoracle> aigscript, deep = lsoracle> deep, xmgscript = lsoracle> xmgscript
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Table 6.3: Testcase minimization results.

Original aigdd Ours

AUT Size Size #Calls Time Size #Calls Time

mockturtle::
272 8 210 32.5 8 96 0.1

cut_rewriting_with_compatibility_graph
mockturtle::sim_resubstitution 615 7 735 11.6 8 351 2.5

abc> &mfsd -cd; &st 1050 31 1198 150.0 20 857 120.5
abc> if; mfse; strash 1850 6 834 61.2 5 333 30.3
abc> &stochsyn resub 3228 10 1124 59.6 8 411 21.1

ABC9 [BM10], and LSOracle10 [Net+19]. Table 6.2 lists the commands or functions where

defects have been observed. Fuzz testing campaigns were conducted on each AUT using

aigfuzz and the three network generation methods described in Section 6.4.1. In each cam-

paign, aigfuzz and the method Random ran 1000 tests, whereas the methods Topology and

Composed ran 5000 tests. In Table 6.2, column #FITs lists the total number of failure-inducing

testcases generated, column Size lists the average size (number of gates) of the failure-inducing

testcases, and column Time lists the total runtime in minutes including the oracle calls.

The Composed method captured defects in all of the listed AUTs. On average, Composed is

about 2× faster than aigfuzz and it tests on 5× more networks. This is because the Composed

testcases are, on average, 7% in size compared to those generated by aigfuzz. Also, notice

that for AUTs in mockturtle, the runtimes of our fuzzing methods are about 10× faster than

aigfuzz thanks to the tight integration.

6.6.2 Testcase Minimization

We compare our testcase minimizer to aigdd using the user-reported failure-inducing testcase

in Section 6.5 and four bigger testcases found by fuzz testing in Section 6.6.1. In Table 6.3,

column Size lists the number of gates of the original and the minimized testcases, column

#Calls lists the number of oracle calls and column Time lists the total runtime in seconds. It

can be observed that our minimizer reduces the testcases into minimal cores of roughly the

same or smaller sizes compared to aigdd, using on average 50% oracle calls and 50% runtime.

6.7 Discussions

6.7.1 Non-deterministic Defects

Non-deterministic defects may be hard to debug because they cannot always be reproduced.

Non-determinism may come from a random number generator without a fixed seed, a race

9Available: https://github.com/berkeley-abc/abc. Commit 31519bd.
10Available: https://github.com/lnis-uofu/LSOracle. Pull request #81.
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condition in concurrent computation, or accessing to uninitialized or unintended (index-out-

of-bounds) memory. If a non-deterministic defect is first observed with a large testcase, it may

be difficult to minimize it while maintaining the defect being observed. In such cases, fuzz

testing may help generate smaller testcases to observe the defect deterministically.

6.7.2 Other Applications of The Toolkit

In addition to testing and debugging, the proposed tools can also be used for finding examples

with specific properties. For example, an open problem in logic synthesis is whether it is better

to heavily optimize an AIG before transforming into MIG, or to perform optimization directly

with an MIG. Our toolkit can be used to generate minimal examples where one optimization

script obtains better results than the other, which might help researchers identify weaknesses

in the algorithms.

6.8 Future Directions

Our network fuzzer currently does not support generating k-LUT networks easily without spec-

ifying all possible LUT functions as different gate types. This can be mitigated by integrating a

random truth table generator.

In addition to minimizing the failure-inducing input networks, when the defective AUT in-

volves multiple independent algorithms (i.e., a script with a sequence of commands), it would

also be helpful to minimize the script and remove irrelevant commands. This can be accom-

plished by automatic binary search, similar to delta debugging.

6.9 Summary

In this chapter, we survey automated testing and debugging techniques and provide an open-

sourced toolkit specialized for gate-level logic synthesis applications. While random fuzz

testing can already catch many higher-frequency defects, the topology-based fuzzing methods

provide a more systematic approach to thoroughly test topology-related corner cases. After

failure-inducing testcases are found, the testcase minimizer can be used to reduce their

size efficiently to facilitate manual debugging (and also anonymizing sensitive testcases).

Moreover, our testcase minimization technique guarantees finding a minimal core in the

failure-inducing testcase, which often gives insights into the cause of the defect and may also

be used to categorize testcases for the same AUT. The case study shows that (1) some defects

may be difficult to catch by fuzz testing, thus testcase minimization is important when we

need to rely on real-world testcases; and (2) testing with more functionally-compact networks,

such as XAGs, may help to detect some defects in generic logic synthesis algorithms.
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7 Adiabatic Quantum-Flux Parametron

Adiabatic quantum-flux-parametron (AQFP) is an emerging superconducting electronic (SCE)

technology receiving increased interest. Featuring an ultra-low energy consumption and a

high switching speed, AQFP is a promising and attractive alternative to CMOS-based digital

families for high-performance computing.

The AQFP technology imposes some special constraints uncommon to classical CMOS tech-

nologies. First, because every gate in an AQFP circuit is clocked, all input signals for a logic

gate must arrive at the same time (in the same clocking phase). To ensure this, shorter data

paths need to be delayed with clocked buffers. Moreover, the output signal of AQFP logic gates

cannot be directly branched to feed into multiple fanouts. Instead, splitters are placed at the

output of multi-fanout gates to amplify the output current, and they are also clocked. Special

care needs to be taken in EDA to fulfill these constraints (i.e., to legalize the circuit for AQFP),

which is the main topic in Part II of this thesis. Besides, the elementary logic gate in AQFP is

the majority gate and input negation is for free, thus making MIGs a natural choice for AQFP

logic synthesis. In Chapter 10, we will integrate methods developed in Part I for MIGs with new

algorithms proposed in Part II for AQFP legalization to form a complete AQFP logic synthesis

flow.

In this chapter, we introduce the basic concepts related to SCE and AQFP, including the gate-

level and architecture-level clocking schemes, as well as the special design constraints. We

will also define the mathematical abstraction and terminology to be used in the remainder of

this thesis.

7.1 Superconducting Electronics

Magnetic Flux Quantum

The magnetic flux threading a superconducting material is, in contrast to normal conductors,

quantized. The magnetic flux quantum, denoted asΦ0, is the smallest unit of magnetic flux
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for any superconductor. Its value,Φ0 = h
2e ≈ 2.07×10−15 Wb, is a constant that can be derived

from the Planck constant h and the electron charge e.

Josephson Junction

Josephson junction (JJ) is the active device in superconducting circuits. It is composed of two

superconducting regions and a weak link with no or weakened superconductivity between

them. The number of JJs in a superconducting circuit is related to its energy consumption and

complexity. Thus, JJ count is commonly used as the cost metric for superconducting circuits.

The characteristic parameter associated with a JJ is its critical current Ic , which is the maximum

current amplitude through the JJ. The current and voltage across a JJ are related to its Josephson

phase ϕ, which is the phase difference of the wave functions of Cooper pairs in the two

superconductors of the JJ. Known as the Josephson effect, the current flowing through a JJ is

related to its phase by I (t ) = Ic sinϕ(t ) and can flow for indefinitely long without dissipation.

Superconducting Digital Computing

Superconductors can be used in both classical digital logic and quantum computing. We

focus on the former in this thesis. As the underlying computing paradigm remains the same,

that is, explainable using Boolean logic instead of superpositioned quantum qubits, existing

logic synthesis techniques can be easily applied. There are currently two main families of

SCE technologies, namely single-flux quantum (SFQ) [LS91b] and adiabatic quantum-flux

parametron (AQFP) [Tak+13]. Both of them (still) require a cryogenic environment for their

correct operation. Nevertheless, even with the refrigerating cost taken into account, SCE

technologies still achieve significantly lower energy consumption compared to the CMOS

family.

7.2 Basic Principles of Adiabatic Quantum-Flux Parametron

7.2.1 Parametron and Quantum-Flux Parametron

The parametron, proposed by Goto in 1954, was a candidate of the logic component in com-

puters competing against the transistor before the breakthrough in semiconductor technology

had made the latter become a much more reliable and economical choice. The parametron is

essentially a resonant circuit utilizing the parametric oscillation phenomenon. By applying an

alternating excitation current of frequency 2 f to a balanced system, an oscillation of frequency

f is generated and it is stable in either of two phases differing by π radians. The two stable

points are thus used to represent logic 0 and 1 [Got59].

The quantum-flux parametron (QFP) uses JJs in the parametron circuit to create persistent

current. The circuit schematic of the basic QFP model is shown in Figure 7.1. When the
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Figure 7.1: Circuit schematic of the QFP.

excitation current Ix is applied, which creates an excitation flux in the loops by inductive

coupling, the potential energy of the QFP appears to have two local minima at a positive value

and a negative value of output flux (Figure 2 in [Hos+91] and Figure 2 (a) in [Tak+13]). With

a small input current, the system falls into either one of the stable states, determining the

direction of the output current [Har+87; Hos+91].

7.2.2 Adiabatic Operation

The AQFP is a QFP circuit operated in the adiabatic mode. The term adiabatic in the name of

AQFP refers to switching operations without, or with very low, loss or gain of electronic charge.

By carefully tuning the circuit parameters in a QFP gate, it has been shown that the switching

energy dissipation of an AQFP gate can be reduced to much lower than (i.e., 12% of) IcΦ0,

which is the limit for any technology in the SFQ family [Tak+13]. The AQFP switching energy

dissipation is close to the theoretically predicted limit1 [KL70].

In short, by operating in the superconductive region, AQFP circuits achieve zero static energy

dissipation [Har+87]; by operating in the adiabatic mode, AQFP circuits achieve very small

dynamic energy consumption [Tak+13].

7.2.3 Logic Computation

In AQFP digital circuits, logic ‘0’ and ‘1’ are represented by different current directions of

the same magnitude, which is a result of a quantum flux existing in one of the two loops

(Figure 7.1), instead of low and high voltages as in CMOS. The basic circuit components in

1The typical value of Ic is about 50 µA, hence IcΦ0 is of order 10−19 J. On the other hand, kB ≈ 1.4×10−23 is the
Boltzmann constant, and the operation temperature T is typically several Kelvin, making the theoretical limit kB T
at the order of 10−22 J.
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AQFP logic are the buffer cell (as shown in Figure 7.1, using 2 JJs) and the branch cell (a current

forking circuit, without any JJs). A NOT gate is created with a buffer with negative inductive

coupling (kout =−k). A majority-3 (MAJ3) gate can be constructed by combining three buffer

cells with a reverted branch cell (i.e., a 3-to-1 merger). Other preliminary logic gates, such as

the AND2 and OR2 gates, can be built from the MAJ3 gate with a constant input (constant

0 for AND2 and constant 1 for OR2) made of an asymmetric buffer cell. Input negation of

logic gates is realized using a negative mutual inductance and is of no extra cost [TYY15]. Like

other superconducting technologies, the commonly-used cost metric for AQFP circuits is the

JJ count. A buffer costs 2 JJs, a branch cell is of zero JJ-cost, and a logic gate based on MAJ3

costs 6 JJs [TYY15].

7.2.4 Gate-level Clocking Schemes

Logic gates, buffers, and splitters in AQFP are periodically activated and reset by an alternating

excitation current [Tak+13]. A gate takes its inputs, computes its logic function, and provides its

output with the presence of the excitation current. In the absence of the excitation current, an

AQFP gate produces no output current (i.e., neither logic ‘0’ nor logic ‘1’). Thus, two cascaded

gates must be fed with consecutive clocking phases, where the capturing gate is activated later

than, but overlapping with, the activation of the launching gate, such that the information can

be propagated along the circuit. Using similar terminology as in logic synthesis, we call the

capturing gate a fanout of the launching gate, and the launching gate a fanin of the capturing

gate.

Various clocking schemes have been proposed. 3-phase clocking was used in earlier works

[Tak+13; TYY15; Aya+17], where three excitation currents with a phase shift of 120° to each

other are fed into different levels of gates. A few years later, 4-phase clocking was pro-

posed [Tak+17] and has remained the most commonly-used clocking scheme until now. In

4-phase clocking, the phase shift decreases to 90°, the number of alternating current sources

decreases to 2, and the number of clocking phases in each clock cycle increases to 4, allowing

for slightly lower latencies by enabling a logical depth of 4 gates instead of 3 per cycle. In both

3- and 4-phase clocking, logic gates in each level are assigned to one of the three or four phases

and phase synchronization must be ensured: Any fanin of a gate g must be at the previous

phase of g .

Another clocking scheme is delay-line clocking [Tak+19], where a single alternating excitation

current is used and transmission lines are inserted between levels to delay the clock. Delay-

line clocking not only allows for even lower latency but also enables the phase-skipping

operation [SAY21; YTY21], reducing the number of path-balancing buffers.

In this thesis, we use pclk to denote the number of phases in a (gate-level) clock cycle. Typically,

pclk = 3 or 4.
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Figure 7.2: An AQFP-legalized full adder circuit.

7.3 AQFP Design Constraints

Logic gates in an AQFP circuit need to be activated and deactivated periodically by an ex-

citation current [Tak+17]. In other words, every gate in an AQFP circuit is clocked, and all

input signals have to arrive at the same clock cycle. To ensure this, shorter data paths need

to be delayed by clocked buffers. Moreover, the output signal of AQFP logic gates cannot be

directly branched to feed into multiple fanouts. Instead, splitters are placed at the output of

multi-fanout gates to amplify the output current. A splitter cell is composed of a buffer cell

and a 1-to-n branch cell (usually, 2 ≤ n ≤ 4) and is also clocked. As the cost of splitters comes

mostly from the buffer cells, in the remainder of this thesis, we do not distinguish buffers from

splitters and model them using the same abstraction. Also, in all figures, we use circles to

represent MAJ gates and squares to represent buffers/splitters.

To illustrate the AQFP technology constraints, Figure 7.2 shows a full adder as a legalized AQFP

circuit. Splitters (S squares) are inserted to drive multiple fanouts and buffers (B squares) are

used to balance all paths from a PI to a PO.

7.4 Memory Devices and Architectural Clocking

To implement sequential circuits using a similar finite-state-machine model as CMOS digital

systems, AQFP memory devices are needed. At least two possible designs have been proposed

in the literature: D-latch and QFPL-based NDRO.

A simplified AQFP feedback delay latch (D-latch) is depicted in Figure 7.3, where the 4-phase

clocking scheme is used. A D-latch takes an Enable signal E and a Data signal D as inputs. Its

operation is illustrated by the truth table shown in Table 7.1. When E = 0, the majority gate

has input values (0,1,Qn), thus keeping the same internal state Qn+1 =Qn ; when E = 1, the

majority gate has input values (D,D,Qn), thus the internal state is overwritten by the new data

D [Tsu+17].

A quantum-flux-parametron latch (QFPL) is a special AQFP gate that can hold its state when

the excitation current is low. The internal state of an QFPL is updated only when its two inputs

A and B present the same value; otherwise, it keeps the previous state. Combining an QFPL

and some logic gates, a non-destructive-read-out (NDRO) can be made, as shown in Figure 7.4.

An NDRO also takes an Enable signal E and a Data signal D as inputs and has the same truth

table as in Table 7.1. When E = 0, we have A = 0 and B = 1, thus the QFPL holds its previous
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Figure 7.3: Circuit schematic of an AQFP D-latch.

Table 7.1: Truth table of D-latch and NDRO.

E D Qn+1 Action

0 0 Qn Hold
0 1 Qn Hold
1 0 0 Write 0
1 1 1 Write 1
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Figure 7.4: Circuit schematic of an QFPL-based NDRO.

state; when E = 1, then A = B = D and the new data is written into the QFPL [Sai+21].

For a D-latch, an update to the state, caused by a new value at the input D enabled with E = 1,

is propagated through the circuit and changes the output Qn+1 4 phases later. In contrast, an

update to the state of a NDRO is available at the output 3 phases later.

In a classical sequential circuit model, the data D inputs of registers come from the outputs

of the previous-stage combinational circuit, the outputs Q of registers are connected to the

inputs of the next-stage combinational circuit, and the enable E input of registers comes from

an architectural clock (in contrast to the gate-level clock discussed in Section 7.2.4). In the

CMOS paradigm, the enabling signal of registers is the rising edge or falling edge of a periodic

clock signal. In contrast, in AQFP, the enabling signal E is kept at 0 most of the time and

become 1 once every k gate-level clock cycles, where the value k depends on the length of the

critical combinational path. In this thesis, we denote the number of phases in an architectural

clock cycle by parch = k ·pclk.

7.5 Abstraction and Terminology

In the remaining part of this thesis, we abstract AQFP circuits at the gate level as homogeneous

logic networks using the same terminology as in Part I. Because the basic logic gate in AQFP is

the majority gate and input negation is cost-free, AQFP logic networks are essentially MIGs.

Buffers and splitters need to be inserted in an AQFP logic network to fulfill technology con-

straints, producing a mapped network. A mapped network N ′ = (V ′,E ′) is a network extended

from a (unmapped) network N = (V = I ∪O ∪G ,E), where the node set V ′ is supplemented

with a set B of buffers, i.e., V ′ = I ∪O ∪G ∪B . A buffer is a node with an in-degree 1, modeling

an AQFP buffer cell (when having an out-degree 1) or an AQFP splitter cell (when having an

out-degree larger than 1). In a mapped network, the definition of the fanouts of a gate is

modified by ignoring any intermediate buffers, i.e., a path from a gate g to one of its fanouts
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go ∈ FO(g ) ⊂ (G ∪O) may include any number of buffers in B , but never another gate. The

definition of fanins is modified similarly. The fanout tree of a gate (or a PI) n, denoted by

FOT(n), is the set of buffers between n and any gate or PO in FO(n).

A schedule of a network is a function S : V → Z≥0 that assigns a non-negative integer S(n)

to each node n ∈ V , called the level of n. A valid schedule must fulfill the condition that

∀n ∈ V ,∀ni ∈ FI(n),S(ni ) < S(n). We do not consider invalid schedules in this thesis. The

depth of a network N = (V = I ∪O ∪G ,E ) with a schedule S is defined as d(N ) = maxo∈O S(o).

This chapter serves as the background introduction for Part II of this thesis. We introduced the

basic principles and the special design constraints of the AQFP technology, which motivated

the research to be done in the following chapters: In Chapter 8, we first discuss the necessity of

these constraints and tradeoffs caused by possible relaxations. Then, in Chapter 9, we propose

systematic legalization methods to fulfill the constraints. Finally, we put everything together

as an AQFP logic synthesis and technology mapping flow in Chapter 10.
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8 Impact of Sequential Design on AQFP
Technology Constraints

8.1 Motivation

As switching energy dissipation in AQFP is related to the number of JJs, reducing the JJ count

of AQFP circuits has been the primary optimization goal along with reducing circuit latency.

This in turn, also helps to reduce the overall circuit area as AQFP primitives have a large

footprint due to their output transformer. In previous works, the AQFP buffer and splitter

insertion problem has been formulated as follows: All paths should be balanced to the same

length (path balancing), and all gates, including primary inputs, with multiple fanouts must

be branched (fanout branching). Surprisingly, research has found that a large portion of JJs in

AQFP benchmark circuits is dedicated to buffering cells to fulfill these technology constraints.

It is very seldom the case in modern EDA where the design under synthesis is purely combi-

national without any memory devices. In conventional EDA flows, we usually cut off com-

binational parts of the circuit for logic synthesis because the combinational optimization

problem is simpler than the sequential one. However, in the context of AQFP legalization, it

is important to understand the mechanism of the sequential model when formulating the

constraints and diving into solving the legalization problem, because the required constraints

are not exactly the same in a purely combinational scenario and in a sequential design.

While the path-balancing and fanout-branching constraints are absolutely required for the

correct operation of an AQFP combinational1 circuit without memory devices, in the context

of a sequential computing model where combinational inputs and outputs are connected

to registers, these constraints may be too conservative. According to the architectural clock-

ing scheme currently used in AQFP sequential circuits, registers generally hold their values

throughout the architectural clock cycle and their outputs can be taken by the next-stage

combinational circuit multiple times. In other words, the same computation is repeated in

waves in an AQFP combinational circuit. With a careful analysis, we argue that it is not always

necessary to balance all paths to equal length. Instead, aligning the gate-level clock phases is

1Although AQFP gates are clocked, we use the terms combinational and sequential here in a similar sense as in
CMOS digital circuits, considering the (architectural) clock connected to registers.
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Table 8.1: Parameters involved in AQFP constraint formulation.

Parameter Meaning Reasonable value(s)

sb Buffers’ splitting capacity (maximum num-
ber of fanouts)

sb ≥ 1, usually 3 or 4

si PIs’ splitting capacity (maximum number
of fanouts)

1 ≤ si < sb (See Section 8.2.2)

sg Gates’ splitting capacity (maximum num-
ber of fanouts)

1

pclk Clocking scheme (number of phases in a
gate-level clock cycle)

3 or 4

Φro Set of phase differences a register may pro-
duce its output relative to its input phase

Φro = {4} orΦro = {3,4,5} (See
Section 8.2.2)

enough.

In this chapter, we discuss how architectural clocking and register design affect AQFP technol-

ogy constraints. We argue that the commonly adopted constraint formulation is sometimes

too conservative and propose relaxations to the constraints. Consequently, we also investigate

how the relaxation of constraints affects the number of buffers needed, and discuss possible

trade-offs when the constraints are relaxed.

8.2 AQFP Design Constraints

In most existing works related to AQFP technology legalization, the path-balancing and the

fanout-branching constraints are assumed, which are mathematically defined as follows for

a mapped network N ′ = (V ′ = I ∪O ∪G ∪B ,E ′) and its associated schedule S , subject to the

splitting capacities (the maximum number of fanouts a node may have) si = 1, sg = 1 and

sb ≥ 1 of PIs, gates, and buffers, respectively.

• Path balancing: N ′ is path-balanced if

∀ni ,no ∈V ′ : (ni ,no) ∈ E ′ ⇒S(ni ) =S(no)−1, (8.1)

∀i ∈ I :S(i ) = 0, and (8.2)

∀o ∈O :S(o) = d(N ′). (8.3)

• Fanout branching: N ′ is properly-branched if every PI has an out-degree no larger than

si , every gate has an out-degree no larger than sg , and every buffer has an out-degree

no larger than sb .

In particular, the path-balancing constraint has its origin in the phase synchronization require-
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Figure 8.1: Illustration of path balancing and phase alignment. (pclk = 4)

ment: an AQFP gate can only compute and output its logic function correctly at a gate-level

clock phase φi if all of its fanins output their values at the previous phase φi−1. However, recall

that the AQFP gate-level clock phases are not infinite but loop from φ1 to φpclk and then back

to φ1. In a 4-phase clocking scheme (pclk = 4) for example, the next phase of φ4 is φ1, and the

phase 5 phases after φ4 is also φ1. In other words, any phase difference of k ·pclk +1 shall be

allowed, as illustrated in Figure 8.1. Moreover, it may be possible for the memory devices to

output their values at more than one phase, depending on their circuit design.

Thus, we define the phase alignment constraint formally as follows, subject to two parameters:

the clocking scheme pclk (the number of phases in a gate-level clock cycle) andΦro (the set of

phase differences a register may produce its output relative to its input phase).

• Phase alignment: N ′ is phase-aligned if

∀ni ,no ∈V ′ : (ni ,no) ∈ E ′

⇒S(ni ) mod pclk = (S(no)−1) mod pclk ∧S(no) >S(ni ), (8.4)

∀i ∈ I : ∃φi ∈Φro,S(i ) mod pclk =φi mod pclk ∧S(i ) ≥φi , and (8.5)

∀o ∈O :S(o) mod pclk = 0. (8.6)

In the following, we discuss which subset of these properties shall be required as AQFP

technology constraints and the values of the parameters involved.

8.2.1 Phase Alignment Instead of Path Balancing

Existing works on AQFP sequential architectural design [Aya+21; Sai+21], logic synthesis [Xu+17;

Cai+19c; Aya+20; Tes+21; MRM21; Meu+22], and buffer insertion-optimization [Hua+21;

LRD22b; CD23; Fu+23a] conventionally adopt a conservative set of constraints: path balanc-

ing and fanout branching. Notice that fulfilling path balancing, with an additional constraint

that d(N ′) mod pclk = 0, implies fulfilling phase alignment withΦro = {0}. While this ensures
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correct and robust operation of the AQFP circuit even with fast clock frequencies, enforcing

these constraints often leads to bulky circuits with more than half — sometimes up to 90%

— area taken by buffers. In this section, we argue that in the context of synthesizing com-

binational logic between register stages, assuring phase alignment, instead of the stronger

path-balancing constraint, is enough.

In [Sai+21], the authors proposed that when registers in several sequential stages share the

same enable signal, which arrives once per parch phases matching the depth of the deepest

stage, shallower stages do not need to be balanced to the same length as the deepest stage. The

main reason is that memory devices output their value every pclk phases and do not change

their internal state for the entire architectural clock cycle until the enable signal arrives. Thus,

although shallower stages finish their computation earlier than when the registers are enabled

to take the next values again, the same computation is repeated every (gate-level) clock cycle,

and the same computational results are produced repeatedly until the registers are enabled

again to accept them.

With a similar reasoning, we extend the argument further and propose that the path-balancing

constraint can be relaxed to phase alignment, formally stated as follows.

Lemma 8.1. In an AQFP sequential circuit, let d be the longest path length between any two

register stages, φro be the phase difference between the register output Qn+1 and inputs D,E.

Suppose that the register enable signal E is 1 for one phase in every parch = k ·pclk phases, where

parch ≥ φro +d, then fulfilling the phase-alignment constraint (Equations (8.4) to (8.6)), in

addition to fanout branching, is enough to ensure correct sequential operation of the circuit.

Proof. Without loss of generality, consider the computation propagated from one register

stage I , through a combinational circuit N , to the next register stage O, in one architectural

clock cycle. Suppose that E = 1 at time t = 0 and at time t = parch (the unit of time is number of

phases) and that E = 0 all the other time. Let the (multi-input, multi-output) Boolean function

computed by N be fN and let the values presented at the outputs of registers I at time t =φro

be x⃗, we will prove that the values presented at the inputs of registers O at time t = parch are

exactly fN (⃗x).

First, observe that the same x⃗ is produced at I every pclk phases until (excluding) t = parch+φro,

i.e., at

t =φro,φro +pclk,φro +2 ·pclk, . . . ,φro + (k −1) ·pclk. (8.7)

Comparing Section 8.2.1 against Equation (8.5), we conclude that for all combinational inputs

i , its value is ready at time t = S(i ) corresponding to its assigned level, as well as every pclk

phases afterward.

Next, consider a gate n with two fanins2 ni 1 and ni 2 and suppose that the values of ni 1 and

2We consider two fanins in the analysis for convenience, but the argument can be extended to any number of
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Figure 8.2: Circuit schematic of an improved D-latch design.

ni 2 are ready at times corresponding to their assigned level, as well as every pclk phases after

these times, i.e., t = S(ni 1)+ j ·pclk and t = S(ni 2)+ j ·pclk, respectively, where j ∈ Z≥0. By

Equation (8.4), we know that at time t =S(n)−1, both fanins of n provide their correct values,

thus n computes its correct value at time t = S(n). Moreover, as ni 1 and ni 2 produce the

same values every pclk phases, the same correct computation also repeats every pclk phases

since t = S(n). Notice that this argument does not require S(ni 1) and S(ni 2) to be equal.

By induction, we conclude that all gates compute and produce the correct value since time

corresponding to their assigned levels and every pclk phases afterward.

Finally, by definition of d(N ), we know that all combinational outputs o are ready since time

t =S(o) ≤ d(N ) ≤φro +d , thus at time t = parch ≥φro +d , correct values fN (⃗x) are presented

at the inputs of registers O. Equation (8.6) ensures that register inputs are placed at the correct

phase.

Notice that in this analysis, the requirements for the architectural clock period parch = k ·pclk

and parch ≥Φro +d must hold regardless of adopting path-balancing or phase-alignment con-

straints. In other words, the proposed relaxation does not affect architectural clock frequency

or latency.

8.2.2 PI Capacity and Phases

Based on the conventional D-latch as shown in Figure 7.3, which adopts the 4-phase clocking

scheme, we modify the design in Figure 8.2 to show the possibility for memory devices to

fanins.
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have an output capacity larger than 1 and to have their output signal available at multiple

phases. In Figure 8.2, buffers are replaced by splitters to drive up to sb −1 fanouts at various

phases, not only phase 4. Adopting such D-latches as registers in a sequential circuit, PIs of

the combinational network now have a splitting capacity si = sb −1 (where sb is usually 3 or 4)

instead of 1.

With the modified D-latch design in Figure 8.2, instead ofΦro = {4} when adopting D-latches in

Figure 7.3, we may useΦro = {3,4,5} for a more relaxed phase-alignment requirement because

register outputs can be provided at various phases in the feedback loop in D-latch.

8.2.3 Consideration of Clock Skews

The analysis above assumes an ideal clock with zero clock skew. However, in real circuits,

clock skews may arise when the clock signal travels along many logic levels. In other words,

the activated time of a gate receiving a phase-1 clock closer to the clock source may be

earlier than another gate receiving also a phase-1 clock, but further away from the clock

source. The difference in the clock timing is called clock skew. One typical superconductor

electronics process used to manufacture AQFP circuits is the National Institute of Advanced

Industrial Science and Technology (AIST) 10 kA ·cm−2 Nb four-layer high-speed standard

process (HSTP). In this process, microstriplines with a ground layer are used to deliver the

AC power-clock signals to the AQFPs. A first-order approximation of the transport delay of a

5µm long microstripline in this process is approximately 6.20 ps ·mm−1 [Aya+20]. This results

in a non-zero clock skew that accumulates along the meandering power-clock network of

the AQFPs [Aya+21]. With the existence of a non-zero clock skew, there is an upper limit on

how many phases can be skipped without any buffer in between, in addition to the phase

alignment constraint.

For large AQFP circuit designs such as a microprocessor, a meandering power-clock net-

work may span across an entire chip which is typically in the range of 5 mm × 5 mm to

10 mm × 10 mm in present-day superconductor fabrication processes. The accumulated skew

at this scale is significant enough to produce timing errors at GHz-range operating frequencies.

In this case, it is important to physically constrain the clock skew by using microwave power

dividers [Aya+21] or microwave H-tree networks [He+22] to reduce the physical size of the

local meandering microstripline power-clock networks, and thus reduce the accumulated

clock skew. Timing characterization of AQFP cells indicate that for 5 GHz sinusoidal clocks,

data can still be successfully captured with a clock skew of up to 30 ps between the launching

and capturing AQFP [Aya+15; ACY19; Aya+20]. This provides a nominal baseline target for

how the power-clock network should be designed, and it also provides an upper limit on how

much phase-skipping can be tolerated.
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8.3 Impact of Technology Constraints on JJ Count

In this section, we demonstrate the impact of the proposed relaxation on technology con-

straints on the number of buffers, and consequently on the JJ count of an AQFP circuit. To

simplify the problem and control unrelated variances, we insert buffers and splitters without

modifying the logic structure using an algorithm adapted from the legalization flow described

in the next chapter (Chapter 9). After a brief summary in Section 8.3.1 explaining the adap-

tations made in the algorithm, in Section 8.3.2, a small example circuit is first presented, for

which the optimum can be easily derived. Then, in Sections 8.3.3 and 8.3.4, experimental

results comparing different constraint formulations are listed.

8.3.1 Buffer/Splitter Insertion Considering Relaxed Constraints

The AQFP legalization problem, also called the AQFP buffer insertion problem, asks to insert

the least buffers and splitters into a logic network, without logic restructuring, to fulfill the

technology constraints. This problem will be further described in Chapter 9, including a

formal definition, related works, and a proposed flow combining various algorithms. The

details are omitted here, but it is worth noting that all existing works on this problem assume

the conservative constraints, i.e., path balancing and fanout branching.

To experiment with different formulations of the technology constraints, we adapted the

algorithms to support customizable parameters involved in the constraints. These parameters

include:

• Buffer’s splitting capacity sb : The maximum out-degree of buffers. This is the same as in

previous works.

• PI’s splitting capacity si : The maximum out-degree of PIs. si was fixed to 1 in previous

works. However, as discussed in Section 8.2.2, it is possible to have si = sb −1. Thus, we

make this an integer parameter to be specified by the user.

• A flag to switch between path balancing (Equations (8.1) to (8.3)) and phase alignment

(Equations (8.4) to (8.6)): If phase alignment is adopted, modifications in the algorithms

are made. First, levels of PIs and POs are not fixed. Special care is given to ensure that

PIs and POs are always assigned to a legal phase with respect to pclk and Φro. Finally,

chains of single-fanout buffers of a length being a multiple of pclk are removed in a

post-processing step.

• Number of phases in a gate-level clock cycle pclk: When adopting path balancing, as in

previous works, this parameter is not relevant. However, when relaxing path balancing

to phase alignment, pclk is involved in the constraints.

• Possible phase differences between register input and outputΦro: Set of phases PIs are

allowed to be assigned (Equation (8.5)). In previous works, PIs are always assigned to

level 0 (Equation (8.2)).
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(a) Path-balanced,
si = 1 (16 buffers)

(b) Path-balanced,
si = 2 (13 buffers)

(c) Imbalanced PIs
and POs (9 buffers)

(d) Remove buffer
chains (5 buffers)

Figure 8.3: Running example of how technology constraints affect the number of buffers in a
small circuit.

• If clock skew is of concern, as discussed in Section 8.2.3, then in any unbalanced path, a

user-specified maximum phase-skip is ensured.

A possible realistic setting uses phase-alignment constraints and parameters sb = 3, si =
2, pclk = 4,Φro = {3,4,5}, which is expected to result in the least number of buffers.

8.3.2 Motivational Example

We use an 1-bit full adder circuit as an example. In Figure 8.3, PIs are at the bottom and POs on

top; ellipse nodes are MAJ gates whose constant inputs are neglected for simplicity (i.e., AND

gates or OR gates) and negated fanins are dashed; and square blue and red nodes are buffers

and splitters. All subfigures show the optimal insertion subject to the specified constraints.

The mapped network when adopting conventional constraints (path balancing and fanout

branching, si = 1) is shown in Figure 8.3 (a), which is the optimal insertion with 16 buffers

already shown in state-of-the-art works [LRD22b]. If si is increased to 2 as discussed in

Section 8.2.2, splitters at the first level are no longer needed, decreasing the network depth by

1 and reducing the number of buffers to 13, as shown in Figure 8.3 (b).

Moreover, as discussed in Section 8.2.1, when enforcing the phase alignment constraint

instead of path balancing, the number of buffers further reduces to 5, which is less than a

third of the initial mapped network. This adjustment is done in two steps as described in
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Table 8.2: Experimental results comparing different constraints.

Baseline A B A+B Best

Register design
si = 1, si = 2, si = 1, si = 2, si = 2,
Φro = {4} Φro = {3,4,5} Φro = {4} Φro = {3,4,5} Φro = {3,4,5}

Balance PIs & POs Yes Yes No No No
Remove buffer chains No No No No Yes

Bench. #Gates #Buf. #JJs #Buf. ∆B #Buf. ∆B #Buf. ∆B #Buf. ∆B #JJs ∆JJ MPS

adder1 7 16 74 13 (19%) 12 (25%) 9 (44%) 5 (69%) 52 (30%) 4
adder8 77 400 1262 341 (15%) 172 (57%) 115 (71%) 87 (78%) 636 (50%) 24
mult8 439 1740 6114 1721 (1%) 1297 (25%) 1305 (25%) 681 (61%) 3996 (35%) 60
counter16 29 80 334 64 (20%) 56 (30%) 52 (35%) 52 (35%) 278 (17%) 20
counter32 82 170 832 158 (7%) 142 (16%) 139 (18%) 131 (23%) 754 (9%) 28
counter64 195 379 1928 360 (5%) 319 (16%) 317 (16%) 309 (18%) 1788 (7%) 36
counter128 428 801 4170 776 (3%) 685 (14%) 680 (15%) 656 (18%) 3880 (7%) 44
c17 6 18 72 5 (72%) 14 (22%) 5 (72%) 5 (72%) 46 (36%) 0
c432 121 904 2534 805 (11%) 582 (36%) 487 (46%) 147 (84%) 1020 (60%) 28
c499 387 1328 4978 1306 (2%) 1299 (2%) 1235 (7%) 407 (69%) 3136 (37%) 24
c880 306 1786 5408 1623 (9%) 982 (45%) 888 (50%) 516 (71%) 2868 (47%) 40
c1355 389 1330 4994 1321 (1%) 1302 (2%) 1242 (7%) 398 (70%) 3130 (37%) 24
c1908 289 1325 4384 1305 (2%) 1181 (11%) 1132 (15%) 364 (73%) 2462 (44%) 28
c2670 368 2036 6280 1812 (11%) 712 (65%) 459 (77%) 351 (83%) 2910 (54%) 32
c3540 794 2339 9442 2226 (5%) 1722 (26%) 1564 (33%) 1060 (55%) 6884 (27%) 44
c5315 1302 6013 19838 5791 (4%) 2743 (54%) 2417 (60%) 1337 (78%) 10486 (47%) 40
c6288 1870 9040 29300 9008 (0%) 5924 (34%) 5886 (35%) 3206 (65%) 17632 (40%) 168
c7552 1394 10243 28850 9521 (7%) 4373 (57%) 4108 (60%) 1860 (82%) 12084 (58%) 56
sorter32 480 544 3968 448 (18%) 544 (0%) 448 (18%) 448 (18%) 3776 (5%) 0
sorter48 880 1008 7296 960 (5%) 1008 (0%) 960 (5%) 960 (5%) 7200 (1%) 0
alu32 1513 14212 37502 13889 (2%) 7976 (44%) 7797 (45%) 1969 (86%) 13016 (65%) 156

Total 55712 179560 53453 (4%) 33045 (41%) 31245 (44%) 14949 (73%) 98034 (45%)

Section 8.3.1. First, relaxing the constraints on PIs and POs (Equations (8.5) and (8.6) instead

of Equations (8.2) and (8.3)) results in Figure 8.3 (c) with 9 buffers. Then, removing buffer

chains (Equation (8.4) instead of Equation (8.1)) saves 4 more buffers.

8.3.3 Experimental Results on Constraint Relaxation

Table 8.2 shows the experimental results on the commonly-used benchmark suite consisting

of ISCAS benchmarks and some arithmetic circuits3. Five sets of constraints are presented

and compared. To have a fair comparison, all of them use sb = 3 and pclk = 4 and the mapped

networks are obtained using our adapted buffer insertion framework described in Section 8.3.1.

Columns “#Bufs.” list the number of buffers in the (optimized) mapped networks, columns

“#JJs” list the JJ count of the mapped networks (obtained by #JJs = 6·#Gates+2·#Buf.), columns

“∆B” and “∆JJ” list the reduction on buffer count and JJ count, respectively, and column “MPS”

list the maximum phase skip.

3Available: https://github.com/lsils/SCE-benchmarks
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Table 8.3: Experimental results on EPFL benchmarks.

Baseline Best

Register design
si = 1, si = 2,
Φro = {4} Φro = {3,4,5}

Constraint Path balancing Phase alignment

Bench. #Gates #Buf. RB-G #Buf. RB-G ∆B

adder 384 50’046 130.3 1’904 5.0 (96%)
bar 3’016 3’125 1.0 2’310 0.8 (26%)
div 57’300 1’883’971 32.9 148’268 2.6 (92%)
hyp 136’108 9’065’938 66.6 386’735 2.8 (96%)
log2 24’457 129’363 5.3 50’013 2.0 (61%)
max 2’413 71’841 29.8 3’341 1.4 (95%)
multiplier 19’716 103’153 5.2 40’263 2.0 (61%)
sin 4’307 19’261 4.5 8’450 2.0 (56%)
sqrt 23’238 1’796’085 77.3 50’299 2.2 (97%)
square 12’179 90’857 7.5 29’195 2.4 (68%)
arbiter 7’000 28’134 4.0 14’962 2.1 (47%)
cavlc 667 762 1.1 705 1.1 (7%)
ctrl 118 163 1.4 133 1.1 (18%)
dec 304 376 1.2 352 1.2 (6%)
i2c 1’246 2’921 2.3 1’549 1.2 (47%)
int2float 237 321 1.4 260 1.1 (19%)
mem_ctrl 42’714 224’766 5.3 61’114 1.4 (73%)
priority 988 17’546 17.8 1’466 1.5 (92%)
router 267 1’606 6.0 401 1.5 (75%)
voter 7’860 19’619 2.5 15’944 2.0 (19%)

Total/Average 13.5M 20.2 0.8M 1.9 (94%)

Column “Baseline” is the most conservative constraints used in related works [Xu+17; Aya+20;

Hua+21; LRD22b; CD23; Fu+23a], i.e., path balancing and fanout branching, plus an additional

but realistic constraint that the network depth must be a multiple of pclk = 44. Column “A”

uses the improved D-latch design discussed in Section 8.2.2, but still adopts path balancing.

In contrast, column “B” still uses the classical register design, but does not balance PIs and

POs. Column “A+B” combines both improvements. Finally, column “Best” further removes

buffer chains in “A+B”, shifting from path balancing to phase alignment and achieving the best

constraint relaxation proposed in this chapter.

We observe from this experiment that considering phase alignment instead of path balancing

reduces about 70% of buffers in AQFP circuits, among which about 40% are balancing PIs and

POs, and the other 30% are chains of buffers within the network.
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8.3.4 Experimental Results Using Larger Benchmarks

Table 8.3 shows the results of a similar experiment on the EPFL benchmark suite [AGD15],

which consists of up to 100× larger benchmarks than in the previous section. For the sake of

simplicity, only the settings corresponding to columns “Baseline” and “Best” in Table 8.2 are

shown. The number of buffers (“#Buf.”) and the buffer-to-gate ratio (“RB-G”, the number of

buffers divided by the number of gates) are listed for the two settings, as well as the reduction

percentage on buffer count after relaxation (“∆B”).

It can be observed that many benchmarks have a high buffer-to-gate ratio when adopting the

conventional conservative constraints, especially the arithmetic circuits (upper half). This is

likely due to the imbalanced nature of these circuits. By relaxing the path-balancing constraint

to phase alignment, a large portion of path-balancing buffers are eliminated, drastically

reducing the number of buffers and making the buffer-to-gate ratio more reasonable. Take the

adder benchmark as an example, with merely 384 gates in the original network, state-of-the-

art buffer insertion algorithms adopting conservative constraints need to insert around 50k

buffers to balance every path, 130× of the number of gates. Most JJs in the circuit and energy

dissipation are wasted on these buffers. The resulting bulky mapped network also makes

the following physical design and fabrication steps difficult. However, simply by relaxing the

constraints to phase alignment, only about 1.9k buffers are actually needed, reducing the

buffer count by 96%.

8.4 Discussions

8.4.1 Trade-off Between Throughput and Maximum Phase Skip

A disadvantage of replacing path balancing with phase alignment is that the possibility of wave-

pipelining is disabled. Wave-pipelining, or multi-threaded gate-level pipelining, is a technique

to increase throughput by propagating more than one computation in one (architectural)

clock cycle, which has been researched for classical CMOS-based digital systems [Bur+98]

as well as emerging technologies [Zog+17; Li+22]. One important requirement for a wave-

pipelined system is path balancing, thus making AQFP circuits a natural candidate to adopt

this technique, although related research has not been proposed yet.

If an AQFP circuit is fully path-balanced, up to k = parch/pclk waves may be propagated

between two register stages at the same time, increasing its throughput by k×. When phase

alignment is adopted instead to reduce JJ count, a trade-off between throughput and buffer

count (thus energy and area) arises. In such case, the number of waves allowed is bounded

by the maximum phase skip, or inversely, given a desired throughput, the maximum allowed

phase skip must be ensured, which can be achieved with our framework. Related work for the

SFQ technology family has been proposed [Li+22], which uses ILP for scheduling and buffer

4Many related works do not impose this constraint, although it is necessary. Enforcing this constraint adds
about 1.7% buffers on this benchmark suite.
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insertion under similar constraints. However, for AQFP, because splitters are also clocked,

this formulation cannot guarantee optimality and is also less scalable than our approach.

Future AQFP circuit designers may choose path-balanced, wave-pipelined circuits for smaller

components requiring higher throughput, and phase-aligned, non-pipelined circuits for larger

parts consuming more energy.

8.4.2 n-phase Clocking

Another buffer reduction method leveraging an n-phase clocking scheme has recently been

proposed [SAY21]. The basic idea is to multiply the number of phases in one (gate-level) clock

cycle by an integer r while keeping the activated period of each gate the same, such that a

gate is valid for r phases and any chain of r buffers can be reduced to 1. An example with

pclk = 4 and r = 2, n = 8 is illustrated in Figure 8.4, where the colored areas are the times when

gates at the corresponding phase are activated and arrows indicate the transfer of information.

In normal 4-phase clocking, information can only be transferred from φ1 to φ2, whereas in

8-phase clocking, information can be transferred fromφ1 toφ2 andφ3. Using our terminology,

n-phase clocking can be seen as using fractions instead of integers as the range of the schedule,

i.e., a gate may be assigned to levels 1/r,2/r, . . . , etc.

The n-phase clocking technique is also very effective in reducing the number of buffers in

AQFP circuits, but it does not diminish the value of this work because the relaxation comes

from different sources. n-phase clocking relaxes the path balancing constraint by changing

the clocking scheme, whereas we develop our argument from analysis of the sequential circuit

model. Thus, these two relaxations affect the constraints independently. Instead of comparing

against n-phase clocking, we argue that these are two independent techniques that may work

in collaboration to achieve the best results and future work remains to formally consider them

together. Also, as both techniques have their own drawbacks, engineers may choose between

the two depending on the application requirements.

8.4.3 Physical Design and Post-physical-design Legalization

In this chapter, we propose to relax path-balancing constraints to phase alignment, which will

have an impact on physical design because current tools generally expect a path-balanced

netlist as their input. Although adapting a physical design tool accordingly to generate realistic

layouts is beyond the scope of this thesis, Figure 8.3 serves as a good visualization of how a real

layout would appear. Moreover, to truly exploit the possible area reduction due to the lower

buffer count, the placement algorithm needs to be adapted to allow circuit folding. That is,

instead of placing logic gates scheduled at the same level in the same physical row and having

as many rows as logic levels, some gates could be placed in different rows with empty slots

because of phase skipping. However, this would affect wire lengths and clock synthesis, with

additional physical and timing constraints to be carefully considered.
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Figure 8.4: n-phase clocking compared to path balancing and phase alignment. (pclk = 4)

The real clock skew between two gates in an AQFP circuit does not only depend on the

number of phases in between but also on the microstripline length of the power-clock network

between them [Aya+21]. Moreover, interconnect delay of data signals and longer wire lengths

must also be considered to ensure the correct operation of an AQFP circuit. If the physical

distance between the launching and capturing gates is too long (> 0.7 mm for buffer-to-buffer

connections), we may need to insert repeaters or use current boosters. However, these values

are only available after physical design and are hard to predict during the buffer insertion stage.

Thus, an estimation must be used in buffer insertion. More careful analysis and legalization,

which may result in extra buffers being inserted, have to be done during or after physical

design. Such overhead may occur in any AQFP synthesis flow regardless of whether adopting

the proposals of this work or not, but having a higher phase skip may cause the circuit to be

more prone to these issues, especially when operating in high frequency.

Assuming a layout realized similar to Figure 8.3 (d), we expect the power-clock margins to
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remain unchanged. However, we expect timing margins to reduce because larger phase

skipping will likely incur more skew beyond the ideal timing of the capturing clocking phase.

Thus, timing-aware placement [Don+22] is important to make sure the circuit still meets

sufficient timing margins.

8.5 Summary

In this chapter, we experiment with how assumptions on technology constraints impact

AQFP circuit cost and propose possible relaxations. When working with new technologies,

formalizing the technology constraints correctly on the chosen abstraction level is important,

because if the formulation does not correlate to the underlying technology, the research

work that follows becomes meaningless. Indeed, we have shown in this chapter different

possibilities in formulating the technology constraints and demonstrated their impact.

As discussed in Section 8.4.1, although relaxing the path-balancing constraint to phase align-

ment may save a major portion of buffers, such relaxation has the drawback of invalidating

wave-pipelining. As a result, this work divides future research on the AQFP buffer insertion

problem into two independent directions: On the one hand, considering path balancing

makes the problem computationally easier and maintains the possibility of wave-pipelining.

On the other hand, considering phase alignment largely reduces JJ count, as shown in Sec-

tion 8.3, but its optimization problem becomes harder because of the increased flexibility, and

wave-pipelining is not applicable anymore.

In the remainder of this thesis, we explore the former direction and adopt the path-balancing

constraint without relaxation. The second direction is left for future investigation. We choose

to approach the AQFP legalization problem first considering path balancing and fanout

branching for the following reasons: 1) This is the “standard” formulation adopted by the

community, so it makes our results easier comparable against other works and our implemen-

tation easier to be integrated with other tools. 2) With the arguments and analysis presented in

this chapter in mind, we develop our algorithms in a parameterized way such that it is easy to

switch between different constraint formulations. As path balancing is the stricter constraint,

it is easier to apply relaxing optimizations (e.g., removing buffer chains) on a path-balanced

mapped network, compared to the other way around.
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9 AQFP Technology Legalization by
Buffer/Splitter Insertion

9.1 Motivation

One major challenge in AQFP design automation is the legalization of the logic circuit to fulfill

two unconventional technology constraints, path balancing and fanout branching, before

physical design. Due to its gate-level clocking property, AQFP gates require all input signals to

arrive at the same time, thus buffers have to be inserted on shorter data paths to balance with

the longer paths. Moreover, splitters are needed at the output of AQFP gates driving multiple

signals, and these splitters are also clocked. Thus, logic circuits generated by technology-

independent logic synthesis must be legalized for the AQFP technology by inserting buffers

and splitters. Legalization of AQFP circuits is essential to unlock its potential of pipelined

computation while maintaining correct functionality.

In a legalized AQFP circuit, buffers and splitters (B/S) often contribute to over 50% of the JJ

count, which is the commonly-used cost metric related to area as well as energy consumption.

Thus, optimized algorithms for AQFP legalization are needed to reduce the overhead and

increase the scalability of AQFP circuits.

9.2 Problem Formulation

To fulfill the needs in the AQFP technology for fanout-branching and path-balancing, we

define the following properties subject to the splitting capacities si = 1, sg = 1, and sb ≥ 1 of

PIs, gates, and buffers, respectively.

Definition 9.1. Given a mapped network N ′ = (V ′ = I ∪O ∪G ∪B ,E ′),
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1. N ′ is path-balanced if there exists a schedule S of N ′ such that

∀n1,n2 ∈V ′ : (n1,n2) ∈ E ′ ⇒S(n1) =S(n2)−1, (9.1)

∀i ∈ I :S(i ) = 0, and (9.2)

∀o ∈O :S(o) = d(N ′). (9.3)

2. N ′ is properly-branched if every PI has an out-degree no larger than si = 1, every gate

has an out-degree no larger than sg = 1, and every buffer has an out-degree no larger

than sb .

3. N ′ is legal if it is both path-balanced and properly-branched.

In an AQFP design automation flow, the logic synthesis stage after RTL synthesis and before

physical design converts an input specification netlist (represented as, e.g., an AND-Inverter

Graph (AIG) or a Majority-Inverter Graph (MIG)) into a legal mapped network whose gates are

all AQFP-compatible. The problem to be solved is formulated as follows:

Problem 1 (AQFP technology mapping). Given a network N = (V = I ∪O ∪G ,E) with uncon-

strained gate types in G , find a mapped network N ′ = (V ′ = I ∪O ∪G ′∪B ,E ′) such that:

1. N and N ′ are logically-equivalent.

2. All gates in G ′ are of an AQFP-compatible type (i.e., AND2, OR2, or MAJ3 with optional

input negation).

3. N ′ is legal (i.e., path-balanced and properly-branched).

Problem 1 may be solved as one problem, or it may be divided into two problems to be solved

independently:

Problem 2 (Majority-based logic restructuring). Given a network N = (V = I ∪O ∪G ,E) with

unconstrained gate types in G , find a network N∗ = (V ∗ = I ∪O ∪G∗,E∗), such that:

1. N and N∗ are logically-equivalent.

2. All gates in G∗ are of an AQFP-compatible type (i.e., AND2, OR2, or MAJ3 with optional

input negation).
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Problem 3 (AQFP technology legalization). Given a network N∗ = (V ∗ = I ∪O ∪G∗,E∗) and

the value of sb , find a mapped network N ′ = (V ′ = I ∪O ∪G ′∪B ,E ′), such that:

1. N ′ is legal (i.e., path-balanced and properly-branched).

2. G ′ =G∗, and for all gates g ∈G∗, FO(g ) and FI(g ) remain the same in N ′ as in N∗.

Moreover, for all of the three problems, in addition to finding a network fulfilling the require-

ments, we also optimize for some common metrics. For the main problem to solve, Problem 1,

common optimization objectives are minimizing JJ count (#JJs = 6·|G ′|+2·|B |) and minimizing

JJ depth d(N ′).

Problem 2 is equivalent to mapping into and optimizing a Majority-Inverter Graph (MIG) [AGD16],

which is a logic network where all gates are MAJ3 and edges may contain inverters, because

AND2 and OR2 gates are equivalent to MAJ3 with a constant (0 and 1, respectively) input.

Graph mapping [Tem+22] and MIG optimization [AGD16; Rie+18; LRD21] are well-researched

problems with existing algorithms to use. These algorithms usually optimize for MIG size

(|G∗|) or depth (d(N∗)).

In this chapter, we focus on solving Problem 3. Because G ′ =G∗, this problem is often also

referred to as the AQFP B/S insertion problem. Minimizing JJ count in Problem 1 is equivalent

to minimizing |B | in Problem 3.

9.3 Related Works

(Rapid) Single-Flux Quantum (RSFQ or SFQ) [LS91b] is a sibling superconducting technology

of AQFP and has similar path-balancing and fanout-branching constraints, thus also requir-

ing buffer and splitter insertion [KP18; PP18]. However, a key difference between the two

technologies makes the problem computationally distinct for them: In SFQ, splitters are not

clocked and not considered in path balancing, so fanout branching and path balancing can be

considered separately; whereas AQFP splitters are clocked, thus the two constraints must be

considered together to discover potential optimizations. The interplay between buffers and

splitters makes the B/S optimization problem for AQFP a challenging one.

In the earliest AQFP design automation tools, legalization was done by first inserting splitters

(as balanced trees) at the output of all multi-fanout gates, and then inserting buffers on all

imbalanced paths [Xu+17]. This was a rather naive approach that guaranteed the correct

operation of the AQFP circuit but often resulted in a large portion of JJ count taken by buffers

and splitters. Thus, a local optimization technique called retiming [Aya+20] or buffer merg-

ing [Cai+19b] was proposed. The basic idea is to move buffers across a multi-fanin gate or a

multi-fanout splitter. For example, moving buffers from the fanins of a MAJ3 gate to its fanout
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reduces buffers by 3× (Figure 8 in [Cai+19b]); alternatively, moving buffers from the fanouts of

a splitter to its fanin can be seen as sharing buffers or delayed splitting and also reduces the

buffer count (Figure 5 in [Aya+20]). This idea was elaborated in [Cai+19a] as a B/S insertion

algorithm using the notion of virtual splitters.

Further improvements on the B/S optimization problem involving more complicated algo-

rithms were made in the following years. In [Hua+21], the authors attempted to localize the

optimization problem to a single wire and proposed a locally-optimal algorithm subject to a

complex cost function involving maximum and total additional delay and the number of B/S.

The local insertion algorithm has a quadratic complexity. In [Fu+23a], the authors proposed to

first solve for a schedule of the mapped network, formulated as an ILP problem with a crafted

objective function estimating B/S count, followed by another locally-optimal splitter-tree

insertion algorithm subject to the same cost function defined in [Hua+21]. This local insertion

algorithm has a cubic time complexity.

Exact methods solving for the global size-optimal B/S insertion were also researched. In

[LRD22b], the B/S optimization problem was first formulated as a scheduling problem, en-

coded as an optimization modulo linear integer arithmetic problem, and solved by a satisfia-

bility modulo theory (SMT) solver. (This is also described in this chapter in Section 9.4.3.) The

global minimum B/S insertion results were obtained for some small benchmarks. Then, an

ILP encoding was proposed in [MD23] which led to some improvement in efficiency, and opti-

mal results for some more benchmarks were reported. Whereas size-optimality still remains

intractable, depth-optimal B/S insertion has been proved to be solvable in linear time [CD23].

(This is also described in this chapter in Section 9.4.4.)

9.4 Buffer and Splitter Insertion

In this section, we explain how we approach Problem 3. First, in Section 9.4.1, we identify that

the AQFP legalization (buffer and splitter insertion) problem is a scheduling problem because

once a schedule is given, the minimal-size mapped network can be derived in linear time

using an irredundant buffer insertion algorithm (Algorithm 9.1). Thus, various scheduling

methods are then discussed, including as-soon-as-possible (ASAP) and as-late-as-possible

(ALAP) scheduling (Section 9.4.2), SMT-based exact scheduling that minimizes buffer count

(Section 9.4.3), and depth-optimal scheduling (Section 9.4.4).

9.4.1 Irredundant Buffer Insertion

Claim. The AQFP legalization problem (Problem 3) is a scheduling problem on the unmapped

network.

To elaborate on the above claim, we will first introduce the notion of irredundant mapped net-

work. Then, we will present Algorithm 9.1 to show how buffers can be inserted irredundantly
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given a schedule of the unmapped network. Finally, we show in Lemma 9.1 that irredundant

networks have the minimum size subject to its schedule.

Definition 9.2. A mapped network is said to be irredundant if the following two conditions

hold.

1. There is no dangling buffer, i.e., every buffer has at least one outgoing edge.

2. There does not exist any pair of buffers in the same fanout tree, at the same level, and

both of them have out-degrees smaller than sb .

Otherwise, the network is redundant.

Notice that the local retiming optimization used in [Cai+19a; Aya+20], which pushes buffers

from the outputs of a splitter to its input, is subsumed by the definition of irredundant

networks. In other words, if a mapped network is irredundant, no optimization can be made

with the local retiming technique. This is because local retiming looks for splitters whose

fanouts are all buffers and the sum of the fanout counts of these buffers does not exceed the

splitting capacity sb , which violates the second condition in Definition 9.2.

Algorithm 9.1: Irredundant buffer insertion
Input: An unmapped network N∗ = (V ∗ = I ∪O ∪G∗,E∗) and a schedule S for N∗
Output: An irredundant and legal mapped network N ′ = (V ′ = I ∪O ∪G∗∪B ,E ′)

1 N ′ ← N∗
2 foreach n ∈ I ∪G∗ do
3 lmax ← max

no∈FO(n)
S(no)

4 A ← {no ∈ FO(n) :S(no) = lmax}
5 for l = lmax −1 downto S(n)+1 do

6 Create
⌈ |A|

sb

⌉
buffers at level l in N ′

7 B ← the set of newly-created buffers
8 for i = 1 to |A| do
9 Remove n from A[i ]’s fanins in N ′

10 Add B [⌈ i
sb
⌉] as A[i ]’s fanin in N ′

11 A ← B ∪ {no ∈ FO(n) :S(no) = l }
12 assert |A| = 1
13 Add n as A[1]’s fanin in N ′

14 return N ′

For each PI or gate n, Algorithm 9.1 iterates over all levels l between n its fanouts. Initially, the

set A contains the fanouts (gates and POs, if any) of n at the highest level lmax. At each level l ,

enough buffers (|B | = ⌈ |A|sb
⌉) are inserted, where |A| is the number of nodes at level l +1. Then,

n is removed from the fanins of the i -th element in A, and the ⌈ i
sb
⌉-th buffer in B is added

instead. Finally, A is updated as the newly-created buffers and the fanouts at the current level.

Figure 9.1 illustrates an example iteration (of the out-most loop) of Algorithm 9.1, where sb = 2

is assumed.
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nl =S(n)

l =S(n)+1

l =S(n)+2

l =S(n)+3

l =S(n)+4

l =S(n)+5

|B | = ⌈ 2
2 ⌉ = 1,

|B | = ⌈ 1
2 ⌉ = 1,

|B | = ⌈ 2
2 ⌉ = 1,

|B | = ⌈ 3
2 ⌉ = 2,

|A| = 1

|A| = 2

|A| = 1

|A| = 2

|A| = 3

Figure 9.1: Example sub-network to illustrate Algorithm 9.1. (sb = 2)

Algorithm 9.1 runs in linear time with respect to
∑

n∈I∪G∗ |FO(n)| ≤ |E∗|. It also verifies whether

it is possible to build a properly-branched network with the given schedule S . In line 12, the

assertion makes sure that the gate or PI n has only one outgoing edge. If this assertion does

not hold, then it is impossible to construct a legal mapped network with S and we say that S
is an illegal schedule. Otherwise, the constructed mapped network is properly branched if the

given schedule is legal. It is also path-balanced as each node is connected to a node at exactly

one level lower. Moreover, the constructed mapped network is irredundant because in each

level in the fanout tree, at most one of the inserted buffer has fanout count smaller than sb .

With the following lemma, we show that an irredundant network created by Algorithm 9.1 is

size-optimal with respect to the given schedule.

Lemma 9.1. Given an irredundant mapped network N ′
1 = (V ′

1 = I ∪O ∪G ′∪B1,E ′
1) with a

schedule S1, there does not exist, for the same unmapped network, a smaller mapped network

N ′
2 = (V ′

2 = I ∪O ∪G ′∪B2,E ′
2) with a schedule S2 such that ∀n ∈ I ∪O ∪G ′,S1(n) =S2(n) and

|B2| < |B1|.

Proof. Because |B2| < |B1|, there exists at least one node n whose fanout tree is smaller in N ′
2

than in N ′
1. Let us denote the two fanout trees as T1 and T2, respectively, and the number of

buffers at level l in T1 and T2 as b1(l ) and b2(l ), respectively. Because the levels of n and its

fanouts are the same in the two networks, there exists at least one level l such that

b2(l ) < b1(l ). (9.4)

Let us consider the highest of such a level so that b2(l +1) ≥ b1(l +1) and let the number of

fanouts of n at level l +1 be o(l +1), which is the same in the two networks. The number of

edges from level l to level l +1 is b1(l +1)+o(l +1) and b2(l +1)+o(l +1), respectively, and we

have

b2(l +1)+o(l +1) ≥ b1(l +1)+o(l +1). (9.5)

Because N ′
1 is irredundant, there is at most one buffer at level l in T1 with out-degree smaller
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than sb . In other words, there are at least sb · (b1(l )−1) outgoing edges provided by the other

buffers, so

b1(l +1)+o(l +1) > sb · (b1(l )−1). (9.6)

On the other hand, in T2 at level l , b2(l ) buffers can provide at most sb ·b2(l ) outgoing edges,

so we have

b2(l +1)+o(l +1) ≤ sb ·b2(l ). (9.7)

Finally, we derive

sb ·b2(l ) ≥ b2(l +1)+o(l +1) ≥ b1(l +1)+o(l +1) > sb · (b1(l )−1) (9.8)

=⇒ b2(l ) > b1(l )−1, (9.9)

which is in contradiction to Equation (9.4). Thus, such N ′
2 does not exist.

In conclusion, a legal schedule on the unmapped network determines an irredundant and

legal mapped network, therefore Problem 3 is equivalent to finding a legal schedule whose

corresponding irredundant mapped network is optimal with respect to the given cost metric.

9.4.2 Simple Heuristic Scheduling

To obtain a legal schedule on an unmapped network such that an irredundant legal mapped

network can be derived using Algorithm 9.1, we need a scheduling algorithm. As the schedul-

ing problem is well-researched in the context of behavioral-level synthesis [HLH91], we borrow

the simplest scheduling algorithms to be used in our problem. The as-soon-as-possible schedul-

ing (ASAP) is a greedy algorithm that schedules nodes in a topological order to their lowest

possible level according to the schedule of their fanins. In the context of AQFP legalization, to

ensure the legality of the schedule, enough levels for a balanced fanout tree are reserved at the

output of each multi-fanout node, which is calculated by
⌈

log(|FO(g )|)
log(sb )

⌉
.

Another well-known scheduling algorithm is the as-late-as-possible scheduling (ALAP), which,

conversely, schedules each node to the highest possible level in a reversed topological order.

For the upper bound on the maximum levels to schedule the POs, we use d(N ) obtained by

ASAP.

9.4.3 Exact Scheduling

With the direct relation between a schedule and the corresponding minimal buffer count given

by Algorithm 9.1, Problem 3 can be formulated as a satisfiability modulo theory (SMT) [Bie+09]

problem using linear integer arithmetic as the underlying theory. The primary variables of

the instance are integers corresponding to the depth of each gate. Auxiliary variables are used
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to compute the total number of buffers using Algorithm 9.1. Four types of constraints are

encoded:

1. Bounds: An upper bound on the network depth is assumed. Lower and upper bounds

on the possible levels of each gate can be obtained using ASAP and ALAP, respectively.

2. Sequencing: The directed edges are encoded by asserting ∀g ∈G ,∀go ∈ FO(g ) :S(g ) <
S(go).

3. Buffer counting: For each gate or PI n, the number of buffers at the fanout of n is counted

by unrolling the for-loop in the following rewritten version of Algorithm 9.1 using relative

levels r between n and its fanouts:

|A|← |{no ∈ FO(n) :S(no)−S(n) = rmax}| (9.10)

for r = rmax −1 downto 1 do

|B |← ⌈ |A|
sb

⌉
(9.11)

|A|← |B |+ |{no ∈ FO(n) :S(no)−S(n) = r }| (9.12)

assert |A| = 1 (9.13)

The maximum possible relative level rmax is computed as the difference between the

maximum fanout level in the ALAP schedule and the level of n in the ASAP schedule.

(9.11) and (9.12) are encoded rmax −1 times using 2 · (rmax −1) auxiliary variables for |A|
and |B | in different iterations. Specifically, (9.11) is encoded by the equivalent relation

sb · (|B |−1) < |A| ≤ sb · |B |, (9.14)

which is a linear relation because sb is a constant. (9.12) is encoded with the help of the

if-then-else (ITE) operator to count the number of fanouts at relative level r . Finally, all

the auxiliary variables for |B | are summed up as the total buffer count.

4. Legality: The legality of S is ensured by assuming the assertion in (9.13). That is, the last

auxiliary variable for |A| should equal to 1.

To find the global minimum, the satisfiability problem is extended to an optimization problem,

either by using an optimization modulo theory solver [BPF15] or by imposing an upper bound

on the buffer count and iteratively decreasing the bound until the problem becomes UNSAT.

The problem has an exponential search space and optimization modulo theory is NP-hard,

thus this formulation may be only practical for small networks. Nevertheless, it provides the

possibility to understand how good existing and future-developed heuristics are. In [MD23], an

ILP encoding based on fanout-bounded synthesis is proposed, which shows some efficiency

improvements, and results for more benchmarks are solved. Thus, in Section 9.7.1, we present

numbers from [MD23] to compare our heuristics with and omit explicit discussion on the

experimental results of our SMT encoding.
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9.4.4 Depth-Optimal Scheduling

Disclaimer. This section is based on contributions by collaborator Alessandro Tempia Calvino.1

This section is an improvement over the simple heuristic scheduling methods in Section 9.4.2,

i.e., an algorithm that guarantees depth optimality is proposed, which yields better results. We

thus include a summary of the algorithm in this section for completeness reasons, but omit

the proofs.

As discussed in Section 9.2, common cost metrics to be considered for AQFP circuits are

network size and depth. Unlike in many other technologies where circuit area and delay

are often inversely related in a Pareto curve and engineers must trade one for the other, we

observe that in the AQFP buffer insertion problem, the size of an irredundant mapped network

correlates to the depth of the provided schedule. Intuitively, in Problem 3, the unmapped

network and any mapped network have roughly the same number of paths and similar logic

sharing (slight differences may only exist in how fanouts are split), and the size of a mapped

network is the sum of all path lengths, which is the network depth, minus the sizes of the

shared cones. In other words, a larger network depth results in longer (balanced) paths and

thus larger network size. Hence, we present scheduling algorithms that also optimize for depth

besides being fast (having a linear time complexity) and giving legal results. These algorithms

are intended to serve as quick initial scheduling methods that will be further optimized later

on (Section 9.5).

Algorithm 9.2: Depth-optimal single node scheduling
Input: A node n and a partial schedule S
Output: Level S(n) assigned to node n

1 lprev ← max
no∈FO(n)

S(no)

2 edges ← 0
3 foreach no ∈ FO(n) in a descending order of S(no), let l =S(no) do

4 splitters ←
⌈

edges

s
(lprev−l )

b

⌉
5 edges ← splitters +1
6 lprev ← l
7 while edges ̸= 1 do

8 edges ←
⌈

ed g es
sb

⌉
9 lprev ← lprev −1

10 S(n) ← lprev −1
11 return S(n)

Given a partial schedule S where some nodes, including n but excluding all fanouts of n, have

not been assigned a level, Algorithm 9.2 computes the value to be assigned to S(n), such that

the fanout tree of n has the minimum-possible height. This algorithm follows a similar strategy

1This chapter is adapted from [Lee+24] (© 2024 IEEE, reprinted with permission) which is a collaboration work
with Alessandro Tempia Calvino based on two previous papers [LRD22b; CD23]. Contents in this section and in
Section 9.5.2 are summarized from his work [CD23].
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l = 4
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3
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⌉
= 2
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3
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⌉
+1 = 3
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n

n1 n2 n3

n4

Figure 9.2: Example sub-network to illustrate Algorithm 9.2. (sb = 2)

as compared to Algorithm 9.1. Variable edges corresponds to |A| in Algorithm 9.1, counting

the number of nodes (thus edges) needed to be connected at each level; variable splitters

corresponds to |B | in Algorithm 9.1, computing the number of splitters (buffers) needed at

each level. The foreach-loop (lines 3 to 6) iterates over the fanouts of n in descending order

of their levels, and variable lprev keeps the level of the previous iteration. If the level does not

change from the previous to the current iteration, variable splitters is equal to edges because

lprev = l and sb
0 = 1 (line 4). As a result, edges is simply increased by 1 in this iteration, counting

the fanout itself (line 5). Otherwise, when a fanout at a lower level is encountered, we compute

the minimum number of buffers needed at level l to drive edges nodes at level lprev as follows.

A complete binary tree of height h has at most 2h leaves. Similarly, a splitter tree rooted at level

l can split into at most sb
h fanouts at level l +h. To drive edges fanouts at level lprev, at least⌈

edges

s
(lprev−l )

b

⌉
splitter trees rooted at level l are needed (line 4). Moreover, at most one of them is

not full, i.e., they are irredundant. In line 5, this value, plus one for the fanout itself, is used to

update variable edges. Finally, after all fanouts of n have been processed, the algorithm finds

the highest level where edges is one to schedule n (lines 7 to 10).

Figure 9.2 shows an example to illustrate Algorithm 9.2, where edges(v,l ) indicates the value of

variable edges when node nv at level S(nv ) = l is considered in the foreach-loop (lines 3 to 6).

The foreach-loop ends with lprev = 7 and edges = 3. Then, in the while-loop (lines 7 to 9), edges

is updated two times before it reaches value 1, resulting in lprev = 5. Thus, node n is scheduled

at S(n) = 4.

Algorithm 9.2 requires that a node is only scheduled after all of its fanouts have been scheduled.

In other words, a reversed topological order is required. Thus, it is suitable to use an ALAP

scheduling scheme, which first schedules all POs of a network to an upper bound λ, and then

schedules the remaining nodes to the largest-possible level (“as late as possible”) in a reversed

topological order. We present Algorithm 9.3 for this purpose. It first computes a sufficiently

large upper bound λ on the depth of the mapped network for ALAP scheduling, assuming

each node would need a balanced splitter tree to drive the maximum fanout in the network.

POs are first scheduled at λ. Then, each node is scheduled using Algorithm 9.2 in a reversed
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Algorithm 9.3: Depth-optimal ALAP scheduling
Input: An unmapped network N∗ = (V ∗ = I ∪O ∪G∗,E∗)
Output: A schedule S for N∗ such that its corresponding mapped network N ′ is legal and d(N ′) is

minimal
1 λ← d(N∗) · (1+max

n∈V ∗⌈
log(|FO(n)|)

log(sb ) ⌉)

2 foreach o ∈O do
3 Sλ(o) ←λ

4 foreach n ∈ I ∪G∗ in a reversed topological order do
5 Sλ(n) ← schedule_node(n, Sλ) // alg. 9.2
6 lmin ← min

i∈I
Sλ(i )

7 foreach i ∈ I do
8 S(i ) ← 0
9 foreach n ∈O ∪G∗ do

10 S(n) ← Sλ(n)− lmin

11 return S

topological order. Finally, to obtain a schedule independent of the value of λ, post-scheduling

correction is applied: PIs are moved to level 0 to fulfill Equation (9.2), and the levels of all other

nodes are reduced by the smallest PI level before correction. This algorithm has a linear time

complexity with respect to the network size.

In conclusion, Algorithm 9.3 finds a schedule for an unmapped network in linear time. Fol-

lowed by Algorithm 9.1, a mapped network is obtained, which is guaranteed to be legal and

depth-optimal. We omit the formal proofs in this thesis, but they can be found in [Lee+24].

Starting from such an initial schedule (and its corresponding mapped network), we can further

optimize it for size using the heuristic optimization algorithms to be presented in the next

section (Section 9.5). As heuristics are often biased by the starting point, having more than one

different initial schedules may be beneficial. Thus, in addition to the ALAP-based scheduling

(Algorithm 9.3), an ASAP-based depth-optimal scheduling algorithm is also proposed. We

omit the details in this thesis, but they can be found in [Lee+24].

9.5 Buffer and Splitter Optimization

The scheduling-based legalization approach presented in the previous section allows us to

find one (or two) legal mapped network that is (are) depth-optimal. In some scenarios, this

may already be good enough, but it is still possible to further optimize the obtained mapped

network to reduce its size. In this section, given a mapped network, we attempt to find a better

schedule to minimize |B |. Two orthogonal heuristic algorithms are proposed in Sections 9.5.1

and 9.5.2, and then combined as a portfolio flow in Section 9.5.3.
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Algorithm 9.4: Chunk construction
Input: An initial gate g0

Output: A chunk C and its interfaces T
1 C ← {g0}
2 Q ← {(g0, g ) : g ∈ FI(g0)∪FO(g0)}
3 T ←;
4 while Q ̸= ; do
5 (gc , ge ) ← pop(Q)
6 if ge ∈C then continue
7 if gc and ge are close then
8 C ← C ∪ ge

9 Q ← Q ∪ {(ge , g ) : g ∈ FI(ge )∪FO(ge )}
10 else
11 T ← T ∪ {(gc , ge )}
12 return C ,T

9.5.1 Chunked Movement

The chunked movement technique attempts to move groups of nodes up or down to reduce

the total number of buffers. Moving a gate g up (down) by l levels means that S(g ) is increased

(resp. decreased) by l while the levels of the other gates remain the same. During the pro-

cess, we always ensure that the network is legal and buffers are inserted irredundantly using

Algorithm 9.1. A movement is legal if the network remains legal after the movement. For

example, if a gate g has a fanout go at level S(go) = S(g )+1, then moving g up alone is not

legal. Similarly, if a gate g has more than one fanout, then moving any of its fanouts down

to level S(g )+1 is not legal because there must be a splitter occupying the only outgoing

edge of g at S(g )+1. We observe that sometimes it is impossible to legally move a single gate,

or that moving it alone does not reduce the total buffer count. However, rearranging some

neighboring gates together might eventually lead to further reduction. Thus, we propose to

identify groups of connected gates and move them together as chunks, defined as follows.

A gate g and one of its fanouts go ∈ FO(g ) are said to be close if either one of the following

conditions holds:

1. |FO(g )| = 1 and S(go) =S(g )+1.

2. |FO(g )| > 1 and S(go) =S(g )+2.

If a gate g and its fanout go are not close, then there is flexibility at the output of g and the input

of go . A chunk is a set C of closely-connected gates. Seen as a group together, it has multiple

incoming and outgoing edges, called the input interfaces (IIs) and output interfaces (OIs),

respectively. An interface is an ordered pair (gc , ge ) of a gate in the chunk gc ∈ C and an

external gate ge ∉C , and either ge ∈ FI(gc ) (for an II) or ge ∈ FO(gc ) (for an OI).

Algorithm 9.4 illustrates how a chunk is identified. Starting from an initial gate g0, a chunk is

142



AQFP Technology Legalization by Buffer/Splitter Insertion Chapter 9

II
slack=1

RII
slack=1

RII
slack=1

RII
slack=2OI

OI

g0 g4

g1 g3

g2

g5

Figure 9.3: Example sub-network showing a chunk (in grey).

formed by exploring its fanins and fanouts and adding gates into the chunk if they are close

(line 8), or recording an input or output interface otherwise (line 11). When a new gate is

added to the chunk, its fanins and fanouts are also explored (line 9). The queue Q stores the

edges to be checked next.

By definition, a chunk has flexibilities at all of its interfaces. Moreover, the set of all chunks in a

mapped network forms a partitioning of all gates. Figure 9.3 shows an example chunk. Starting

from the initial gate g0, closely-connected gates g1, g2, g3, g4 are added into the chunk in the

respective order. The gate g1, for example, cannot be moved up nor down legally without

moving other gates at the same time. Also, although the gate g0 can be legally moved down,

moving it alone would only incur more buffers. However, if the entire chunk is moved down

together by one level, one buffer is saved, which is analyzed as follows.

To see how many levels a chunk can be moved, a slack is computed at each interface. For an

input interface (gc , ge ),

slack(gc , ge ) =
 S(gc )−S(ge )−1, if |FO(ge )| = 1

S(gc )−S(ge )−2, otherwise.
(9.15)

For an output interface, gc and ge are exchanged in Equation (9.15). When trying to move a

chunk down, the maximum number of levels we can move is the minimum slack at all input

interfaces; when moving a chunk up, it is the minimum slack at all output interfaces.

We further classify input interfaces as relevant or not. An input interface (gc , ge ) is said to be a

relevant input interface (RII) if

∀go ∈ FO(ge ), go ∉C :S(go) >S(gc ). (9.16)

For example, in Figure 9.3, (g0, g5) is not an RII because g5 has another fanout at a higher level
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than S(g0), so when g0 is moved, no buffer is added or eliminated at this interface.

We decide to move a chunk up or down on whether there are more OIs or RIIs. If a chunk

has x OIs and y RIIs, moving the chunk up by l levels eliminates l · (x − y) buffers (if x > y),

and moving the chunk down eliminates l · (y − x) buffers (if y > x). In Figure 9.3, there are 3

RIIs and 2 OIs, and the minimum slack at all IIs is 1, thus moving the chunk down by 1 level

reduces 1 buffer.

Overall, the chunked movement algorithm iteratively constructs a chunk using Algorithm 9.4

for each node that is not yet in a chunk and tries to move the chunk up or down, applying the

movement only when it is legal and beneficial.

9.5.2 Retiming

Disclaimer. This section is based on contributions by collaborator Alessandro Tempia Calvino.1

This section illustrates a buffer and splitter optimization algorithm orthogonal to the chunked

movement method in Section 9.5.1, which, in combination, yields better results. We thus

include a summary of the algorithm in this section for completeness reasons, but omit some

details.

The optimization of buffers and splitters in an AQFP circuit is reminiscent of the register

minimization problem called retiming. Minimum register retiming is the problem of relocating

the registers of a circuit in order to minimize their number while preserving the functionality.

Retiming is formulated as a linear problem dual to the minimum-cost flow problem for

which many polynomial algorithms exist [LS91a]. In this section, we propose the AQFP B/S

retiming algorithm, which minimizes buffers and splitters in an AQFP network, similar to how

registers are minimized in minimum register retiming. Previous work applied a retiming-like

optimization to AQFP logic [Aya+20; Cai+19a]. However, their approach does not perform

global retiming but moves buffers locally from the output of splitters to the input. This

optimization is subsumed by Algorithm 9.1 in the definition of irredundant mapped networks.

Minimizing the number of buffers can be seen as maximizing sharing of buffers on multiple

paths. Without accounting for fanout-branching, e.g., assuming that buffers have an infinite

splitting capability, the minimum number of buffers is achievable in polynomial time using a

minimum register retiming algorithm considering each buffer as a register. Retiming preserves

the path-balancing constraint since each path traverses the same number of registers before

and after retiming. As mentioned in Section 9.3, previous works successfully applied this idea

to the RSFQ technology family [KP18], but when the fanout-branching constraint in AQFP

comes into consideration, splitter relocation is conditional on respecting the splitting capacity.

Hence, retiming is only a heuristic for minimizing the buffer count instead of an optimal

algorithm.

Figure 9.4 (a) shows an example mapped sub-network under retiming, where sb = 3 is assumed.
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f0 f1 f2 f3
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(a) Before retiming

f0 f1

f2 f3

n

b0

b2

(b) After moving b1

Figure 9.4: Example sub-network for retiming. (sb = 3)

This sub-network is redundant because b1 and b2 have out-degree 2 < sb (Definition 9.2).

Indeed, a mapped network can become redundant temporarily during retiming. Not all

buffers can be retimed at the same time, and this example shows two such cases. First, b0

cannot be retimed because its movement would increase the fanout count of n to 2, violating

the fanout constraint of gates (sg = 1). Second, only one of the splitters b1 and b2 can be

selected for retiming since the movement of both of them would increase the fanout count of

b0 to 4, violating the fanout constraint of buffers (sb = 3). Also, fanouts of splitters in the same

fanout tree originating from the same gate are exchangeable, and such exchanges may affect

possible retiming optimizations. For example, instead of FO(b1) = { f0, f1}, FO(b2) = { f2, f3}

in Figure 9.4 (a), FO(b1) = { f0, f2}, FO(b2) = { f1, f3} is also possible and may unlock more

retiming on b1 and b2. Figure 9.4 (b) shows the fanout tree after the relocation of splitter b1 to

its transitive fanout cone (not shown).

The retiming problem is formulated as a binary maximum-flow problem similar to [HMB07],

which separates flow computation into forward and backward directions. The algorithm

performs an optimization loop in each direction until no more improvements can be made. A

loop starts by selecting a set of buffers, which can be relocated without exceeding the splitting

capacity of their fanin nodes, to be retimed. In the case of mutually exclusive selections (i.e.,

two splitters cannot be retimed at the same time), one is picked randomly. Each selected buffer

is a source and a sink of a unitary flow. Then, the algorithm computes the binary maximum

flow using the augmenting path algorithm to obtain the minimum cut. If there is a reduction

in buffer count, the selected buffers are moved to the new position. Since retiming movements

may create redundant fanout trees, at the end of the algorithm, fanout trees are reconstructed

irredundantly using Algorithm 9.1.

An example of a forward retiming iteration is depicted in Figure 9.5, where sb = 3 is assumed.

The algorithm selects four buffers in the initial sub-network (Figure 9.5 (a), orange) to be

retimed. After retiming (Figure 9.5 (b)), three of the selected buffers are removed and two new

buffers (green) are inserted. The number of buffers is reduced from 6 to 5 while maintaining

the same path lengths.
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g0 g1

(a) Initial sub-network

g0 g1

(b) Optimized sub-network

Figure 9.5: Example of forward retiming. (sb = 3)

Algorithm 9.5: Buffer and splitter optimization

Input: Mapped network N ′
init

Output: Optimized mapped network N ′
opt

1 N ′
tmp ← bs_retiming(N ′

init) // section 9.5.2
2 repeat
3 N ′

opt ← N ′
tmp

4 N ′
tmp ← chunked_movement(N ′

opt) // section 9.5.1
5 N ′

tmp ← bs_retiming(N ′
tmp) // section 9.5.2

6 N ′
tmp ← randomize(N ′

tmp)

7 until |N ′
tmp| ≥ |N ′

opt|
8 return N ′

opt

9.5.3 Buffer and Splitter Optimization Flow

Algorithm 9.5 describes our optimization flow. It combines chunked movement and retiming

to achieve better results than the individual algorithms. Additionally, we use a randomization

function to pick different random fanout groupings when constructing splitter trees to change

the structure of the circuit and unlock further optimizations.

9.6 Technology Legalization Flow

In Section 9.4, we presented algorithms to obtain an initial scheduling (Section 9.4.4) and

to insert buffers irredundantly (Section 9.4.1). In Section 9.5, we presented optimization

algorithms to further reduce the buffer count of a mapped network. Combining everything

together, a technology legalization flow is presented in Algorithm 9.6. Two initial scheduling,

ALAP and ASAP are obtained with the depth-optimal scheduling algorithms and result in two

mapped networks by inserting buffers irredundantly. Then, the two mapped networks are

optimized independently using the portfolio optimization flow. Finally, the better one with a

smaller size is adopted.
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Algorithm 9.6: AQFP technology legalization flow (solves Problem 3)
Input: MIG network N∗
Output: Mapped network N ′

1 SALAP ← ALAP(N∗) // alg. 9.3
2 SASAP ← ASAP(N∗, SALAP)
3 N ′

ALAP ← insert_buffers(N∗, SALAP) // alg. 9.1
4 N ′

ASAP ← insert_buffers(N∗, SASAP) // alg. 9.1
5 N ′

ALAP ← optimize(N ′
ALAP) // alg. 9.5

6 N ′
ASAP ← optimize(N ′

ASAP) // alg. 9.5
7 if |N ′

ALAP| < |N ′
ASAP| then

8 return N ′
ALAP

9 else
10 return N ′

ASAP

9.7 Experimental Results

In this section, we present experimental results of our methods solving Problem 3 alone

(Section 9.7.1). We also demonstrate in Section 9.7.2 the scalability of the proposed AQFP

legalization algorithm using much bigger benchmarks. To be consistent with previous works

that we compare to, we use sb = 4 for the splitting capacity of buffers.

9.7.1 Technology Legalization and Buffer Optimization

First, we compare the performance of our AQFP legalization and optimization flow (Algo-

rithm 9.6) against the state-of-the-art (SoTA) on solving the same problem [Fu+23a]. For the

sake of completeness, we list all of the benchmarks used in the first work on AQFP B/S inser-

tion [Cai+19a] in Table 9.1, but the totals are computed only with the benchmarks presented

in [Fu+23a]. The number of gates (|G∗|) and the depth (d(N∗)) of the initial MIGs, as well as

the number of buffers (|B |), the JJ count (#JJs) and the depth (d(N ′)) of the mapped networks

are listed. Moreover, the runtime (Time) used by our flow is presented. Unfortunately, the

runtime data was not presented in [Fu+23a]. In the last column, we list the known global

optimum results obtained by ILP solving [MD23] to have an idea of how far the heuristics are

from optimal. Some of the numbers are only an upper bound because the ILP formulation

could not be solved within a reasonable runtime, and some of the benchmarks are too big for

the ILP solver to return any partial result.

From Table 9.1, we can see that the heuristic methods achieve optimum for the smaller

benchmarks and are fairly close to optimum for most of the benchmarks. While our flow

obtains slightly worse results in average size than SoTA, the difference is very small (0.96% in

number of buffers and 0.5% in JJ count). Thanks to the depth-optimal scheduling, we obtain a

better depth in one benchmark (c7552). Most importantly, these results are obtained using

short runtime. Thus, our flow can be used in design space exploration, where legalization is

called extensively, such that large improvements can be achieved (Section 10.5).
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Table 9.1: Technology legalization results comparing to the state-of-the-art and global opti-
mum.

MIG N∗ SoTA [Fu+23a] Ours (Algorithm 9.6) Global optimum [MD23]

Bench. |G∗| d(N∗) |B | #JJs d(N ′) |B | #JJs d(N ′) Time (s) |B | #JJs d(N ′)

adder1 7 4 - - - 16 74 8 0.00 16 74 8
adder8 77 17 - - - 371 1204 33 0.01 371 1204 33
mult8 439 35 1681 5996 70 1690 6014 70 0.18 ≤1724 ≤6082 ≤70
counter16 29 9 66 306 17 65 304 17 0.00 65 304 17
counter32 82 13 156 804 23 154 800 23 0.01 154 800 23
counter64 195 17 351 1872 30 347 1864 30 0.02 347 1864 30
counter128 428 22 755 4078 38 747 4062 38 0.07 747 4062 38
c17 6 3 - - - 12 60 5 0.00 12 60 5
c432 121 26 829 2384 37 839 2404 37 0.02 829 2384 37
c499 387 18 1173 4668 29 1173 4668 29 0.09 1173 4668 29
c880 306 27 1536 4908 40 1511 4858 40 0.15 - - -
c1355 389 18 1186 4706 29 1184 4702 29 0.06 1178 4690 29
c1908 289 21 1253 4240 34 1234 4202 34 0.09 1232 4198 34
c2670 368 21 1869 5954 28 1912 6032 28 0.32 ≤1804 ≤5816 ≤28
c3540 794 32 1963 8690 52 1943 8650 52 0.81 ≤1926 ≤8516 ≤52
c5315 1302 26 5505 18942 40 5640 19092 40 2.06 ≤6260 ≤20332 ≤42
c6288 1870 89 8832 28884 179 8647 28514 179 2.56 - - -
c7552 1394 33 6768 21908 58 7437 23238 56 4.20 - - -
sorter32 480 15 - - - 480 3840 30 0.06 480 3840 30
sorter48 880 20 - - - 880 7040 35 0.20 880 7040 35
alu32 1513 100 13976 37030 169 13836 36750 169 2.74 - - -

Total1 47899 155370 873 48359 156154 871 13.38
1Excluding benchmarks missing in SoTA.

9.7.2 Scalable AQFP Legalization

To demonstrate the scalability of our AQFP legalization approach, we use the largest 10

benchmarks in the EPFL benchmark suite [AGD15] for experiment, which are 10×-100× in

size compared to the benchmarks generally used in previous works on AQFP logic synthesis.

The MIGs are obtained using delay-oriented graph mapping [Tem+22]. In Table 9.2, we

compare our results obtained using a simple depth-optimal legalization flow (Algorithm 9.3

followed by Algorithm 9.1, column “D.-opt. legal.”) as well as depth-optimal legalization with

further optimization (Algorithm 9.6, column “D.-opt. legal.+opt.”) against results of non-

depth-optimal legalization with optimization presented in [LRD22b] (column “Non.-d.-opt.

legal.+opt.”). A timeout limit of 300 seconds is enforced. From this experiment, we can see

that simple legalization without optimization is very fast, so such a flow can still be used in

design space exploration even when benchmarks are large. Comparing the mapped network

depths, the proposed depth-optimal scheduling reduces the depth by about 9% on average.

148



AQFP Technology Legalization by Buffer/Splitter Insertion Chapter 9

Table 9.2: Technology legalization results on the largest EPFL benchmarks

MIG N∗ Non-d.-opt. legal.+opt. D.-opt. legal. D.-opt. legal.+opt.
[LRD22b] (alg. 9.3 + alg. 9.1) (alg. 9.5)

Bench. |G∗| d(N∗) |B | d(N ′) Time (s) |B | d(N ′) Time (s) |B | d(N ′) Time (s)

div 57300 2217 2084772 4918 271.71 1881255 4371 0.87 - 4371 >300
hyp 136109 8762 - 17910 >300 9035578 17246 2.78 - 17246 >300
log2 24456 200 98047 414 194.92 129547 379 0.10 86705 379 64.18
multiplier 19710 133 79651 286 13.21 102005 264 0.08 63414 264 43.50
sin 4303 110 17470 225 5.67 18905 188 0.01 14886 188 4.12
sqrt 23238 3366 1751742 8191 5.64 1791005 6628 0.49 1343705 6628 284.10
square 12180 126 60552 256 42.71 89516 251 0.03 63630 251 18.30
arbiter 7000 59 31011 65 5.80 27566 63 0.01 25721 63 1.28
mem_ctrl 42758 73 305689 182 87.86 216927 114 0.27 215202 114 10.55
voter 7860 47 18044 99 5.43 19263 86 0.01 15736 86 0.92

9.8 Summary

In this chapter, we first establish that the AQFP legalization problem is a scheduling problem

and propose two depth-optimal scheduling algorithms. Then, the obtained schedules may be

further optimized for size using the proposed chunked movement and retiming techniques.

Experimental results show that our legalization flow obtains similar, near-optimal quality as

the state-of-the-art ILP-based algorithm within very little runtime. Moreover, our approach is

flexible in runtime budget as the optimization part can be skipped. As both irredundant buffer

insertion and depth-optimal scheduling have linear time complexity, scalability is guaranteed.

We demonstrate legalization results on benchmarks 10× to 100× larger than what any other

related works could handle.
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As discussed in Section 9.2, the AQFP technology mapping problem (Problem 1) can be divided

into two sub-problems, MIG restructuring (Problem 2) and AQFP legalization (Problem 3).

Solving the two sub-problems together leads to a high problem complexity and has to rely on

a pre-computed database that is locally optimal [MRM21]. Hence, we propose to solve the

two sub-problems untangled, but mixed and interleaved in multiple iterations to enhance

QoR. It is essential for the algorithms used to solve both sub-problems to be efficient, such

that more iterations can be done in a reasonable runtime and achieve better results.

In this chapter, we first review related works on the broader problem of AQFP technology

mapping in Section 10.1 and summarize MAJ-based logic synthesis algorithms in Section 10.2,

including existing works in the literature and a high-effort MIG resubstitution algorithm

combining elements proposed in this thesis. Then, in Section 10.3, we present our AQFP

technology mapping solution combining MIG optimization (Section 10.2) and AQFP tech-

nology legalization (Chapter 9) with the on-the-fly design space exploration methodology

introduced in Chapter 5. We also discuss verification for AQFP synthesis in Section 10.4.

Finally, we present experimental results on the AQFP technology mapping problem, utilizing

all mentioned elements in our AQFP logic synthesis toolbox. The relationship between each

section in this chapter and various chapters in this thesis is outlined in Figure 10.1.

10.1 Related Works

Existing AQFP logic synthesis flows can be categorized into two approaches: solving Problem 2

and Problem 3 separately, or considering Problems 2 and 3 together. The earliest works took

the first approach to adapt available CMOS-based design automation tools for AQFP [Xu+17;

Aya+20]. Problem 2 was addressed by AND-based technology-independent logic synthe-

sis followed by technology mapping into an AQFP-compatible library, and Problem 3 was

solved separately in an additional buffer insertion stage before physical design. Later, to

better leverage the intrinsic MAJ function in AQFP circuits, MAJ-based logic synthesis was

adopted [Cai+19b; Tes+21]. At this time, Problem 3 was still solved separately using the naive
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Simulation-guided
paradigm

(Chapter 3)

MAJ-based
heuristic resynthesis

(Section 4.6)

Simulation-guided MIG resubstitution

Algebraic rewriting

Graph remapping

..
.

MAJ-based logic synthesis (Problem 2, Section 10.2) AQFP technology
legalization
(Problem 3,
Chapter 9)

Design space exploration (Chapter 5)

AQFP technology mapping (Problem 1, Section 10.3)

Figure 10.1: Integration of algorithms in various chapters as an AQFP synthesis flow.

insertion approach introduced in Section 9.3.

Although solving the two problems separately is easier, it is hard to predict the impact of

legalization in the logic restructuring stage. The smallest MIG in size may not be still the

smallest after legalization. Thus, in [MRM21], the authors proposed to consider the two

problems together and optimize directly for the final cost function. A database of optimal

AQFP sub-circuits is used in restructuring, and legalization is done during the process. This

algorithm was used in a flow consisting of graph mapping, AQFP resynthesis, and post-

synthesis buffer optimization [Meu+22].

The latest work on AQFP synthesis, presenting currently the best results, took the first ap-

proach (separating the two problems) and used Bayesian optimization to find the best MIG

restructuring script with respect to the actual AQFP cost after legalization [Fu+23b].

10.2 MAJ-Based Logic Synthesis

MIG was proposed as an alternative technology-independent logic representation with an

advantage in depth optimization especially in arithmetic circuits [AGD16]. Due to the special

properties of some emerging technologies including AQFP, MIG also become a good logic syn-

thesis data structure for these technologies [Tes+21]. Various logic synthesis and optimization

algorithms have been proposed and tailored for MIGs.

To convert an AIG into an MIG, the simplest way is to translate each AND2 gate into an MAJ3
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gate with a constant 0 input. Alternatively, a versatile graph mapping algorithm can also

map from AIGs (or other types of networks) to MIGs while optimizing for depth and/or size

in the process [Tem+22]. The graph mapping algorithm can also be used to optimize MIGs

by remapping (i.e., mapping from an MIG into an MIG), in which case it is similar to a cut

rewriting algorithm.

Many common logic optimization algorithms originally developed for AIGs can also be applied

to MIGs with little adaptation, such as cut rewriting, functional reduction, and balancing. Tai-

lored MIG optimization algorithms include algebraic rewriting, which applies special Boolean

algebraic rules to reduce MIG depth [AGD16], and (enumeration-based) resubstitution, which

resynthesizes a small part of the network using majority gates to reduce MIG size [Rie+18].

Whereas the above algorithms are relatively lightweight with faster runtimes and limited QoR,

in pursuit of additional quality improvements when other algorithms saturate, we apply high-

effort simulation-guided MIG resubstitution. By adopting the simulation-guided paradigm

(Chapter 3, Section 3.5), the window size is unlimited and more divisors can be considered.

Moreover, global satisfiability don’t cares are naturally considered when using the simulation

signatures computed by global simulations. By leveraging the heuristic resynthesis algorithm

(Chapter 4, Section 4.6), larger dependency circuits may be found for roots with a large enough

MFFC size. This extends the search space for optimization candidates and creates more gain.

To diversify the set of MIG optimization scripts for better results in design space exploration,

we also form complex flows consisting of converting the MIG back into an AIG, applying an

AIG-based optimization flow, and then mapping back into MIG. As discussed in Section 5.4,

such a decompressing-compressing strategy helps drastically restructure the network and

escape from local minima. We may also benefit from the well-developed AIG flows because

AIG optimization has been researched for a longer time and by a broader range of developers

such that AIG-based algorithms might have better performance and efficiency.

10.3 Design Space Exploration for AQFP Technology Mapping

Imagine a design space consisting of all legal and logically equivalent mapped networks, the

optimization problem of AQFP technology mapping is to find the best one in the design space

in terms of a cost metric (usually, JJ count or depth). Performing MIG restructuring and AQFP

legalization can be seen as moving along two orthogonal directions (or axes) in the design

space, exploring first different logically-equivalent MIGs without buffers, and then different

mapped networks corresponding to the same MIG. This approach confines the degree of

freedom of the exploration in order to be more scalable and potentially explore a larger space

within the confined regions. However, if the two axes are only explored once each, then still

only a small subset of the entire space is explored and the result may be far from the global

optimal. The major problem is that during MIG restructuring, buffers are not inserted yet and

the algorithm can only decide on the best moves based on a truncated cost metric (usually,

MIG size or depth) which does not completely correlate to the actual cost metric.
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Algorithm 10.1: AQFP technology mapping with design space exploration (solves Prob-
lem 1)
Input: Unconstrained network N
Output: Optimized mapped network N ′

1 N∗
0 ← map_into_MIG(N ) // [Tem+22]

2 N∗
best ← copy(N∗

0 )

3 best_cost ←∞
4 for restart = 1 upto num_restarts do
5 N∗

best_inner ← N∗
0

6 N∗
curr ← N∗

0
7 best_cost_inner ←∞
8 rnd ← new_random_engine()
9 timer ← start_timer()

10 for step = 1 upto max_steps do
11 N∗

curr ← restructure_MIG_randomly(N∗
curr, rnd) // [MCB07; Tem+22; LRD21; AGD16;

Mis+11a]
12 curr_cost ← evaluate(legalize(N∗

curr)) // alg. 9.6
13 if curr_cost < best_cost_inner then
14 N∗

best_inner ← N∗
curr

15 best_cost_inner ← curr_cost
16 last_impr ← step
17 if step − last_impr ≥ max_no_impr then break
18 if elapsed_time(timer) ≥ timeout then break
19 if best_cost_inner < best_cost then
20 N∗

best ← N∗
best_inner

21 best_cost ← best_cost_inner
22 N ′ ← legalize(N∗

best) // alg. 9.6
23 return N ′

We propose to use the design space exploration approach described in Chapter 5 for AQFP

technology mapping. The flow is illustrated in Algorithm 10.1, which performs multiple

iterations of MIG restructuring and legalizes the MIGs in every iteration to compute the actual

JJ cost, such that the exploration is correctly guided. As formulated in Problem 1, the input

is an unconstrained network N , so we first map it into an MIG network (line 1). In the rest

of the algorithm, four copies of the MIG are maintained: the initial MIG N∗
0 , the overall best

MIG N∗
best, the best MIG in the inner for-loop N∗

best_inner, and the current MIG N∗
curr. The

algorithm explores the design space by starting num_restarts times from the initial point N∗
0

(the outer for-loop, lines 4-21), each time exploring MIGs along a random trajectory (the inner

for-loop, lines 10-18). For each MIG, the second axis of different mapped networks is also

explored, and the cost is evaluated on the best mapped network (line 12). The best-seen MIGs

are book-marked on the current trajectory (N∗
best_inner, line 14) and on all trajectories (N∗

best,

line 20). The inner loop is terminated when no improvement is observed for max_no_impr

steps consecutively (line 17), or when the timeout limit is exceeded (line 18).

The key ingredients are the functions map_into_MIG (line 1), restructure_MIG_randomly (line

11), and legalize (lines 12 and 22). In line 1, function map_into_MIG calls a graph mapping
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algorithm [Tem+22]. In the case where N is an AIG, it can also be transformed directly into

an MIG by converting each AND2 into a MAJ3 with a constant 0 fanin. In line 11, function

restructure_MIG_randomly applies a randomly-chosen MIG restructuring script. In our

experience, scripts that perform well consist of a drastic restructuring step, such as mapping

into k-LUT network [MCB07] and then remapping into MIG [Tem+22], followed by some MIG

optimization steps, such as resubstitution [LRD21; LM23], algebraic rewriting [AGD16], and

balancing [Mis+11a]. In line 12, the current MIG is legalized using the proposed legalization

flow (Algorithm 9.6) to obtain a mapped network N ′ for evaluation. Depending on the design

objective, the function evaluate may return the JJ count (#JJs = 6 · |G ′|+2 · |B |), depth (d(N ′)),

or energy-delay product (EDP = #JJs ·d(N ′)). Line 22 legalizes the best MIG again also using

Algorithm 9.6. If better runtime efficiency is desired, lighter-effort legalization (for example,

by limiting the number of optimization iterations in Algorithm 9.5) can be used in line 12 for

cost evaluation while keeping the final legalization in line 22 the highest-affordable effort.

The advantages of this design space exploration approach are two-fold. First, compared to

existing approaches, it explores a larger design space, and the frontier of exploration also

stretches further. This is thanks to the hill-climbing strategy, where we simply record the

best-seen design on the trajectory and keep moving forward when the cost gets worse instead

of rolling back. Moreover, the key enabling factor to explore on the orthogonal axis (different

mapped networks from the same MIG) is that the legalization runtime is fast enough, which

motivates the focus of this paper on efficient heuristic buffer optimization methods instead of

unscalable exact algorithms. The second advantage of Algorithm 10.1 is that the design space

exploration is done on the fly. That is, no heavy data training, complicated decision-making, or

human expert intuition is needed to guide the exploration, and the results are not over-fitted

for a subset of benchmarks. The direction of exploration is guided by the simplest strategy,

randomness, and the best transformation sequence is discovered on the fly. As there is a factor

of luck involved, the purpose of the outer loop is to mitigate the possibility of a “bad” random

seed leading to unsatisfactory results and to increase the chance of meeting at least one “good”

random sequence in all restarts.

10.4 Verification

To ensure the correct functionality of the synthesized AQFP circuit, two types of verification

should be performed: logic equivalence to the specification and legality with respect to

the AQFP technology constraints. These correspond to the first and the third condition in

Problem 1. The second condition, i.e., only AQFP-compatible gates are used, is ensured

automatically by having used MIG as logic representation in the restructuring step.

For logic equivalence, we apply the well-developed combinational equivalence checking

algorithm [Mis+06a] on the mapped network N ′ and the original network N . For legality verifi-

cation, we check if the mapped network is indeed path-balanced and properly-branched. First,

a schedule S of the mapped network is (re-)computed by visiting all nodes in a topological
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Table 10.1: Best-known results on AQFP technology mapping.

Bench. SoTA [Fu+23b] Ours (Algorithm 10.1)

#JJs d(N ′) EDP #JJs d(N ′) EDP Time (s) Eval. (s)

5xp1 726 10 7260 368 -49% 9 -10% 3312 -54% 66.2 0.7
c1908 5108 34 173672 4434 -13% 29 -15% 128586 -26% 190.4 36.4
c432 3098 34 105332 2342 -24% 27 -21% 63234 -40% 68.0 2.7
c5315 16410 30 492300 13986 -15% 24 -20% 335664 -32% 519.8 267.8
c880 3876 23 89148 3364 -13% 19 -17% 63916 -28% 100.6 14.6
chkn 3500 15 52500 2238 -36% 15 0% 33570 -36% 96.5 6.0
count 1400 12 16800 1302 -7% 11 -8% 14322 -15% 77.3 1.4
dist 3536 14 49504 1824 -48% 14 0% 25536 -48% 116.7 6.1
in5 3370 14 47180 1602 -52% 13 -7% 20826 -56% 120.2 4.4
in6 2884 11 31724 1708 -41% 12 +9% 20496 -35% 90.3 3.5
k2 14748 22 324456 8376 -43% 19 -14% 159144 -51% 404.7 102.8
m3 2680 12 32160 1600 -40% 12 0% 19200 -40% 115.6 4.3
max512 4812 16 76992 2740 -43% 14 -13% 38360 -50% 140.8 10.1
misex3 11272 20 225440 2634 -77% 17 -15% 44778 -80% 238.1 21.9
mlp4 2976 14 41664 1588 -47% 14 0% 22232 -47% 160.0 7.3
prom2 22326 20 446520 15258 -32% 16 -20% 244128 -45% 788.8 286.5
sqr6 916 10 9160 710 -22% 9 -10% 6390 -30% 59.3 0.7
x1dn 1208 11 13288 714 -41% 10 -9% 7140 -46% 61.5 0.5

Total 104846 322 2235100 66788 -36% 285 -12% 1239208 -44% 3414.6 777.8

order and assigning:

S(n) =
0 if n ∈ I

max
ni∈FI(n)

S(ni )+1 otherwise.
(10.1)

Then, we verify if N ′ is path-balanced by traversing all nodes again and testing Equations (9.1)

to (9.3). The “for all edges” in Equation (9.1) is equivalent to checking all fanins n1 of all gates

n2. Finally, we verify if N ′ is properly branched by comparing the number of fanouts of all PIs,

gates, and buffers against the parameters si , sg , and sb , respectively. With our data structure

and constraint formulation, the AQFP technology legality verification can be done in linear

time.

10.5 Experimental Results

In this section, we present the experimental results of Algorithm 10.1 on solving Problem 1. To

be consistent with previous works that we compare to, we use sb = 4 for the splitting capacity

of buffers.

With the proposed design space exploration approach presented in Section 10.3, we present

new best-known results on the problem of AQFP technology mapping on the MCNC bench-

mark suite [Yan91]. In Table 10.1, our results are compared to SoTA [Fu+23b]. Since [Fu+23b]

outperformed other previous works [Cai+19b; Tes+21; MRM21; Meu+22] on all benchmarks
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and on all metrics1, data from these works is omitted. We use the same optimization objective

as in [Fu+23b], i.e., minimizing energy-delay product (EDP). The parameters used in Algo-

rithm 10.1 are num_restarts = 5, max_steps2 = 1000, max_no_impr = 50, and timeout = 100

seconds.

In addition to #JJs, d(N ′) and EDP, the last two columns in Table 10.1 list, respectively, the total

runtime of Algorithm 10.1 (column “Time”) and the runtime for cost evaluation (line 12 in

Algorithm 10.1, column “Eval.”) using Algorithm 9.6. The runtime information of [Fu+23b] is

unfortunately not provided.

Our design space exploration achieves strictly better results than [Fu+23b] in #JJs and EDP

on all benchmarks. In total, 36% improvement in #JJs, 12% improvement in depth, and 44%

improvement in EDP are achieved within manageable runtime.

10.6 Summary

This chapter collects various elements presented in this thesis as a complete AQFP logic syn-

thesis toolbox. First, as AQFP is based on majority gates, we combine the simulation-guided

paradigm introduced in Chapter 3 with the MAJ-based resynthesis algorithm proposed in

Chapter 4 as a high-effort MIG resubstitution algorithm. Together with other existing algo-

rithms, a portfolio of MIG restructuring commands is established. Then, we discuss whether

logic optimization and technology legalization should be tackled together or separately and

argue that when circuits are small enough or the runtime budget is sufficient, the two should

be interleaved to achieve better results. For such, we leverage the unsupervised design space

exploration framework proposed in Chapter 5 and combine it with the AQFP legalization

flow presented in Chapter 9. Experimental results show that our AQFP technology mapping

methodology gives a significant 44% improvement in the energy-delay product compared

to the best-known AQFP synthesis results. For the sake of completeness, we also discuss

verification methods for legalized AQFP circuits. All the presented experimental results are

verified and published3 for third-party verification.

1[Tes+21] and [MRM21] used different assumptions, i.e. primary inputs do not need to be balanced, so the
numbers presented in the papers are different. As both works are open-sourced and flexible to taking different
assumptions, we reran the experiment with the same assumptions for a fair comparison.

2All restarts end within 200 steps due to the two terminating conditions, so this value is never really reached.
3https://github.com/lsils/SCE-benchmarks
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11 Conclusions

Logic synthesis is a field of intractable problems with heuristic solutions. It is a story of

the mutual stimulation between the scaling of computing systems and the advancement

of synthesis algorithms. Motivated by the need for higher-performance logic synthesis and

the unconventional challenges posed by emerging technologies, we presented in this thesis

various breakthroughs in contemporary logic synthesis and an in-depth investigation into

the problem of AQFP legalization, with a closing demonstration in Chapter 10 showing an

application of contemporary logic synthesis techniques in AQFP circuit optimization.

In this section, we first summarize important technical and experimental results presented in

each chapter. Then, an overview of the most significant contributions of this thesis is given,

along with a discussion on future perspectives and open problems.

11.1 Summary of Important Results

• Chapter 3: Simulation-Guided Paradigm

– With experiments on various simulation pattern generation strategies, we found

that the strategy “rand 256 + 1x s-a-obs” (i.e., starting with 256 random pat-

terns and generating at least one stuck-at pattern for each node with consideration

of observability) performs the best in generating expressive patterns that reduce

99.5% counter-examples encountered in simulation-guided resubstitution.

– By generating expressive simulation patterns, instead of using random patterns,

runtime is shifted from optimization (resubstitution) to pattern generation. If

these patterns are pre-generated and reused, then this means optimization time is

highly reduced.

– Using ECO benchmarks, we showed that the simulation patterns and the counter-

examples are still effective on functionally modified benchmarks in reducing run-

time.

– The simulation-guided resubstitution is capable of using a much larger window

159



Chapter 11 Conclusions

size and achieves a 5.9% reduction in the number of AIG nodes, compared to 3.7%

by a state-of-the-art resubstitution algorithm, within comparable runtime.

• Chapter 4: Heuristic Resynthesis

– High-effort resubstitution reduces AIG, XAG, MIG, and MuxIG sizes by an addi-

tional 1.77%, 2.86%, 2.45%, and 20.24%, respectively, on highly optimized (satu-

rated) benchmarks within smaller or similar runtime.

– The proposed high-effort heuristic resynthesis algorithms have better complexities

compared to existing approaches. The AND-based resynthesis algorithm has

O(n2ml ) complexity and the MAJ- and MUX-based resynthesis algorithms have

O(nml ) complexity, where n is the number of divisors, m is the number of gates

in dependency circuit, and l is the length of truth tables (simulation signatures).

• Chapter 5: Design Space Exploration

– We presented new best results on the problem of MIG size optimization, which

are better than or the same as the state-of-the-art on all benchmarks with an

improvement of 16.9% on average.

• Chapter 6: Testing and Debugging Logic Synthesis Algorithms

– We adapted the fuzz testing technique to generate logic networks for the testing

of logic synthesis algorithms. Our topology-based fuzzer captures defects in ABC,

mockturtle and LSOracle using 93% smaller testcases compared to an existing AIG

fuzzer aigfuzz.

– A testcase minimizer specialized for logic networks was developed based on the

delta debugging technique. Our minimizer isolates smaller or equal-sized minimal

failure-inducing cores using 50% oracle calls and 50% runtime compared to an

existing AIG delta debugger aigdd.

• Chapter 8: Impact of Sequential Design on AQFP Technology Constraints

– We re-examined the formulation of AQFP technology constraints and propose pos-

sible relaxations on these constraints: phase alignment instead of path balancing,

and the flexibilities on combinational inputs’ splitting capacity and phases. How-

ever, phase alignment comes with a tradeoff on the possibility of wave-pipelining.

– Adopting the relaxed constraints reduces 73% of buffers on average, and up to 90%

in some particularly-imbalanced benchmarks.

• Chapter 9: AQFP Technology Legalization by Buffer/Splitter Insertion

– We presented a heuristic AQFP legalization and optimization flow that obtains

similar, near-optimal quality as the state-of-the-art ILP-based algorithm within

very little runtime.
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– Our scheduling-based AQFP legalization approach is fast and scalable. We demon-

strate legalization results on benchmarks 10× to 100× larger than what any other

related works could handle.

• Chapter 10: AQFP Logic Synthesis Toolbox

– We presented AQFP technology mapping results strictly better than the state-of-

the-art in #JJs and EDP on all benchmarks. In total, 36% improvement in #JJs,

12% improvement in depth, and 44% improvement in EDP are achieved within

manageable runtime.

11.2 Thesis Contributions

The three most important contributions of this thesis are:

• Chapters 3 and 4 — High-effort simulation-guided resubstitution [Lee+22; LM23].

Combining the simulation-guided paradigm and high-effort resynthesis in a resubsti-

tution algorithm, we provide an opportunity to keep optimizing benchmarks that are

already highly optimized. The simulation-guided paradigm allows us to enlarge the

window size and unlocks global consideration of don’t cares. The heuristic resynthesis

algorithms are unlimited in the size of dependency circuits, broadening the search space

and finding more optimization opportunities.

• Chapters 8 and 9 — Pioneering investigation on the problem of AQFP legalization

[LAD23; Lee+24]. By really diving into the details of AQFP systems design and circuit

properties, we set the ground for realistic directions of research in the AQFP legalization

problem. By establishing a linear relation between a schedule and the minimum buffer

count, we identify that the AQFP legalization problem is a scheduling problem. Built

upon this observation, we presented an AQFP legalization flow consisting of depth-

optimal scheduling, irredundant buffer insertion, and heuristic optimization.

• Chapters 5 and 10 — Significant improvements in AQFP circuit optimization [LRD23;

Lee+24]. We presented an AQFP technology mapping flow combining on-the-fly de-

sign space exploration, simulation-guided MIG resubstitution, and AQFP legalization,

revisiting various elements in this thesis. A significant 44% improvement in EDP was

achieved, demonstrating the power of advanced logic synthesis techniques presented in

this thesis.

11.3 Open Problems

In addition to future works directly related to the research problem or ideas in each chapter

that we have discussed at the end of the respective chapter, we list here the open problems in

a broader sense as possible future research directions.
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11.3.1 Endless Pursuit for QoR and Efficiency

Logic synthesis problems are mostly NP-hard. Unless P=NP is proven or quantum computing

becomes realistic, all we can do is develop better and better heuristics. This is an endless

competition with never-satisfying results. Thus, in some sense, we could say that logic syn-

thesis never dies as an ongoing research field. It may become more and more difficult, but

new algorithms or strategies getting another percent QoR improvement are likely always

possible and companies are willing to pay the extra synthesis runtime for it. Conversely, if the

efficiency of logic synthesis algorithms improves and the same QoR could be achieved within

less runtime, then more optimization iterations or higher-effort parameters could be applied

and better QoR could be achieved within the same runtime budget.

11.3.2 AQFP Synthesis: Integration into Production-Ready EDA Tools

Research and development of EDA for AQFP are still in a relatively early stage. Various algo-

rithms are independently developed by different research groups in different EDA systems.

The Cadence system with a complete, working flow used for fabrication by the lab at Yokohama

National University (where AQFP was first proposed) does not adopt all the latest algorithms

yet. Due to the special clock phase assignment issue, common file-exchange formats need to

be extended, and such an extended format has to be agreed upon by developers of different

algorithms in order for them to be compatible. Moreover, as discussed in Chapter 8, not all of

the newly proposed algorithms respect the actual properties and realistic constraints of the

technology, and some subtle constraints can only be correctly considered with communica-

tion and collaboration between algorithms in different synthesis stages. Hence, it is important

to make an effort to integrate all state-of-the-art algorithms into one EDA tool.

11.3.3 Other Emerging Technologies

In this thesis, we take the optimization of AQFP circuits as an example application of con-

temporary logic synthesis techniques. There are many more emerging technologies and

computing paradigms that are being rapidly developed and shown to be promising. Each

of them has different properties and constraints to be considered in logic synthesis. For ex-

ample, technologies in the field-coupled nanocomputing (FCN) family require the circuit to

be planarized by inserting crossing cells, in addition to similar path-balancing and fanout-

branching constraints as AQFP [Wal+19]. As the crossing cells also need to be balanced, the

three constraints must be considered together, making it a similar but harder problem than

the AQFP legalization problem.
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11.4 Final Remarks

All of the algorithms, frameworks, and flows presented in this thesis are implemented in the

open-source C++ logic synthesis library mockturtle1 [Rie+19b; Soe+22]. Whenever possible,

verification is performed so that correct results are ensured.

1https://github.com/lsils/mockturtle
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