=Pr-L

m Ecole
polytechnique
fédérale
de Lausanne

Thése n°10515

Contemporary Logic Synthesis: with an Application to

AQFP Circuit Optimization

Présentée le 4 juin 2024

Faculté informatigue et communications

Laboratoire des systémes intégrés (IC/STI)

Programme doctoral en informatique et communications

pour I'obtention du grade de Docteur &s Sciences

par

Siang-Yun LEE

Acceptée sur proposition du jury

Prof. V. Kuncak, président du jury
Prof. G. De Micheli, directeur de thése
Prof. W. Burleson, rapporteur

Prof. U. Schlichtmann, rapporteur
Prof. P. lenne, rapporteur

2024

The pursuit of knowledge and understanding is a lifelong journey.
— Claude Shannon

Acknowledgements

The PhD is a long learning road. At school, teachers may have been obligated to teach us
knowledge because they get a salary explicitly for this. (Not saying we shouldn’t be thankful to
them, though!) But along the PhD journey, there have been so many people who helped us,
directly or implicitly, without having an obligation to do so.

I would like to start by thanking my advisor, Prof. Giovanni (Nanni) De Micheli, who gave me
great freedom and support, allowing me to freely try whatever I found interesting without
having to worry about resources. I would also like to thank my jury committee, who spent the
time and effort to read my thesis, traveled to attend my defense, and gave valuable feedback.
Moreover, I want to thank Dr. Heinz Riener and Dr. Alan Mishchenko, who are not officially
my advisors but have taught me a lot through our continuous collaboration.

A famous Taiwanese author wrote, “For everything in life, we've got so much from others but
used so little effort of ourselves; there are too many people to thank, so I would rather simply be
grateful to God (to the world).” P2 (#K)) Indeed, it would be too long to exhaustively
list everyone I should thank, and even such a list may still be incomplete. Hence, I would
refrain from enumerating more names to thank, such that no one would be disappointed.
Nevertheless, please accept my sincere appreciation to every one of you whom I have met
during these 4.5 years, both in academic and personal life. I truly believe that each one of the
tiny interactions integrates into who I am today. Thank you.

Last but notleast, [would like to thank myself. The journey to a PhD degree was not always easy
and joyful; there were times of stress and disappointment. Nevertheless, I never really gave up
trusting myself, which has been hard for someone with imposter syndrome. I have learned
to accept imperfection, to encourage myself, and to acknowledge what I have accomplished.
Thus, I want to thank myself for having grown into a better person through the PhD journey.

Munich, 18 April 2024 Siang-Yun (Sonia) Lee

Abstract

Electronic devices play an irreplaceable role in our lives. With the tightening time to market,
exploding demand for computing power, and continuous desire for smaller, faster, less energy-
consuming, and lower-cost chips, computer-aided design for electronics, or electronic design
automation (EDA), becomes not only inevitable but also critical in the semiconductor industry.
Being responsible for the transformation and optimization of switching circuits at the level
of logic gates, logic synthesis plays a central role in modern EDA flows and is key to bringing
up the quality of results (QoR). For several decades, logic synthesis techniques have been
developed based on the properties and needs of complementary metal-oxide-semiconductor
(CMOS) digital circuits and according to the available computing power. Recently, new chal-
lenges as well as opportunities have appeared and influenced the research directions of logic
synthesis.

The development of logic synthesis and the advancement of very-large-scale integration (VLSI)
designs are both enablers and challengers of each other. The up-scaling of computing systems
stresses logic synthesis algorithms for their scalability, efficiency, and QoR. Conversely, better
computing systems make computationally intensive strategies in logic synthesis affordable. A
major part of contemporary logic synthesis research lies in its synergy with the exponential
scaling of VLSI systems. Moreover, emerging alternatives to CMOS-based technologies pose
new problems to be solved in EDA and logic synthesis. As an example, adiabatic quantum-flux
parametron (AQFP) is a promising superconducting electronic technology featuring ultra-low
switching energy dissipation. However, it has unconventional path-balancing and fanout-
branching constraints to be considered in EDA.

This thesis presents a collection of novel approaches, demonstrating various aspects of con-
temporary logic synthesis. In the first part, we focus on technology-independent logic opti-
mization with an emphasis on scalability while pushing the limits on QoR. In the second part,
we show how new problems in EDA for emerging technologies like AQFP are approached, as
well as how techniques presented in the first part are applied in AQFP circuit optimization.

The main technical proposals of this thesis are as follows. First, the proposal of a simulation-
guided logic synthesis paradigm (a) sets the tone of the thesis, emphasizing additional QoR
improvements with manageable runtime overhead. Then, the presentation of a family of
heuristic resynthesis algorithms (b) complements the high-effort peephole optimization
framework. At a higher level, we demonstrate that a simple design space exploration strategy

iii

ABSTRACT

(c), which discovers good optimization sequences on the fly, outperforms human-designed
flows. To fulfill the special constraints imposed by the AQFP technology, we study possible
constraint relaxations and their tradeoffs (d) and propose an AQFP technology legalization
flow (e). Finally, by combining the proposed high-effort optimization (a, b) and other existing
optimization algorithms with AQFP legalization (e) in the design space exploration framework
(c), we achieve a significant 44% improvement over the state-of-the-art in the problem of
AQFP circuit optimization.

To sum up, this thesis presents the essence of contemporary logic synthesis with an application
in AQFP circuit optimization as an example. Indeed, in present days, the major challenge in
logic synthesis lies in finding a “good-enough” local optimal in the huge design space while
maintaining reasonable efficiency, as well as inventing or re-designing novel methods to tackle
unconventional constraints imposed by emerging technologies.

Keywords: Electronic design automation, logic synthesis, superconducting electronics, adia-
batic quantum-flux parametron

iv

Zusammenfassung

Elektronische Gerite spielen eine unersetzliche Rolle in unserem Leben. Angesichts der immer
kiirzer werdenden Markteinfithrungszeiten, der explodierenden Nachfrage nach Rechenlei-
stung und des stdndigen Wunsches nach kleineren, schnelleren, weniger Energie verbrauchen-
den und kostengiinstigeren Chips ist computergestiitztes Design fiir Elektronik oder Elektroni-
sche Entwurfsautomatisierung (electronic design automation, EDA) in der Halbleiterindustrie
nicht nur unvermeidlich, sondern auch entscheidend. Da die Logiksynthese fiir die Umwand-
lung und Optimierung von Schaltkreisen auf der Ebene von Logikgattern verantwortlich ist,
spielt sie eine zentrale Rolle in modernen EDA-Abldufen und ist der Schliissel zur Verbesserung
der Qualitdt der Ergebnisse. Seit mehreren Jahrzehnten werden Logiksynthesetechniken auf
der Grundlage der Eigenschaften und Anforderungen komplementérer Metall-Oxid-Halbleiter
(complementary metal-oxide-semiconductor, CMOS)-Digitalschaltungen und entsprechend
der verfiigbaren Rechenleistung entwickelt. In letzter Zeit sind neue Herausforderungen und
Moglichkeiten entstanden, die die Forschungsrichtungen der Logiksynthese beeinflussen.

Die Entwicklung der Logiksynthese und die Weiterentwicklung von VLSI-Designs (very lar-
ge scale integration) sind sowohl férderlich als auch herausfordernd fiir beide Seiten. Die
Aufwirtsskalierung von Rechensystemen stellt die Algorithmen der Logiksynthese in den
Mittelpunkt ihrer Skalierbarkeit, Effizienz und QoR. Umgekehrt machen bessere Rechner-
systeme rechenintensive Strategien in der Logiksynthese erschwinglich. Ein grof3er Teil der
aktuellen Logiksyntheseforschung liegt in der Synergie mit der exponentiellen Skalierung von
VLSI-Systemen.

Dariiber hinaus werfen aufkommende Alternativen zu CMOS-basierten Technologien neue
Probleme auf, die in EDA und Logiksynthese gelost werden miissen. Ein Beispiel dafiir ist das
adiabatische Quantenfluss-Parametron (adiabatic quantum-flux parametron, AQFP), eine viel-
versprechende supraleitende elektronische Technologie, die sich durch einen duerst geringen
Energieverlust beim Schalten auszeichnet. Sie hat jedoch unkonventionelle Pfadausgleichs-
und Fanout-Verzweigungsbeschriankungen, die in der EDA beriicksichtigt werden miissen.

Diese These priasentiert eine Sammlung neuartiger Ansétze, die verschiedene Aspekte der
modernen Logiksynthese aufzeigen. Im ersten Teil konzentrieren wir uns auf die technolo-
gieunabhingige Logikoptimierung mit dem Schwerpunkt auf Skalierbarkeit, wahrend wir
die Grenzen der QoR verschieben. Im zweiten Teil zeigen wir, wie neue Probleme in der
EDA fiir aufkommende Technologien wie AQFP angegangen werden und wie die im ersten

A%

ZUSAMMENFASSUNG

Teil vorgestellten Techniken in der AQFP-Schaltungsoptimierung angewendet werden. Die
wichtigsten technischen Vorschlédge dieser Arbeit sind wie folgt. Zunéchst gibt der Vorschlag
eines simulationsgefiihrten Logiksynthese-Paradigmas (a) den Ton der Arbeit an und be-
tont zusédtzliche QoR-Verbesserungen mit tiberschaubarem Laufzeit-Overhead. Dann wird
eine Familie von heuristischen Resynthese-Algorithmen (b) vorgestellt, die das aufwindige
Peephole-Optimierungsverfahren ergdnzen. Auf einer hoheren Ebene zeigen wir, dass eine
einfache Strategie zur Erkundung des Entwurfsraums (c), die gute Optimierungssequenzen
im laufenden Betrieb entdeckt, die von Menschen entworfenen Abldufe tibertrifft. Um die
speziellen Einschrankungen, die durch die AQFP-Technologie auferlegt werden, zu erfiillen,
untersuchen wir mogliche Lockerungen von Einschrankungen und deren Kompromisse (d)
und schlagen einen Legalisierungsfluss fiir die AQFP-Technologie vor (e). Durch die Kombina-
tion der vorgeschlagenen High-Effort-Optimierung (a, b) und anderer bestehender Optimie-
rungsalgorithmen mit der AQFP-Legalisierung (e) im Rahmen der Entwurfsraumerforschung
(c) erreichen wir schlieBlich eine signifikante Verbesserung von 44% gegeniiber dem Stand der
Technik bei der Optimierung von AQFP-Schaltungen.

Zusammenfassend wird in dieser Arbeit das Wesen der modernen Logiksynthese am Beispiel
der AQFP-Schaltungsoptimierung dargestellt. Heutzutage besteht die grofite Herausforderung
in der Logiksynthese darin, in dem riesigen Entwurfsraum ein lokales Optimum zu finden, das
“gut genug” ist und gleichzeitig eine angemessene Effizienz aufweist, sowie neue Methoden
zu erfinden oder neu zu entwerfen, um unkonventionelle Einschrinkungen durch neue
Technologien zu bewdéltigen.

Stichworter: Elektronische Entwurfsautomatisierung (EDA), Logiksynthese, supraleitende
Elektronik, adiabatisches Quantenflussparametron (AQFP)

vi

Contents

Acknowledgements i
Abstract (English/Deutsch) iii
List of Figures xiii
List of Tables XV
List of Algorithms xvii
List of Acronyms xix
1 Introduction 1
1.1 Electronic Design Automation 2

1.2 LogicSynthesis e 4

1.3 Trends in Logic Synthesis Techniques 5

1.4 Challenges and Opportunities of Contemporary Logic Synthesis 6

1.5 Thesis Organization ninen... 6
1.5.1 Chapter 3: Simulation-Guided Paradigm 7

1.5.2 Chapter 4: HeuristicResynthesis 8

1.5.3 Chapter 5: Design Space Exploration 8

1.5.4 Chapter 6: Testing and Debugging Logic Synthesis Algorithms 8

1.5.5 Chapter 8: Impact of Sequential Design on AQFP Technology Constraints 9

1.5.6 Chapter 9: AQFP Technology Legalization by Buffer/Splitter Insertion . . 9

1.5.7 Chapter 10: AQFP Logic Synthesis Toolbox 10

2 Background 13
2.1 Mathematical Abstractions and Data Structures for Logic Circuits 13
2.1.1 BooleanLogic e 13

2.1.2 TruthTables e 14

2.1.3 LogicNetworks e 14

2.2 Computational Tools e 17
2.2.1 Boolean Satisfiability Problem 17

2.2.2 Integer Linear Programming 18

2.2.3 Satisfiability Modulo Theory 18

CONTENTS

23

24

2.5
2.6

Components of Logic Synthesis
2.3.1 StructuralAnalysis
2.3.2 Don't-Care Conditions
2.3.3 Exact Synthesis and Databases
Modern Logic Synthesis Algorithms
2.4.1 Algebraic and Boolean Methods
242 CutRewriting
2.4.3 Boolean Resubstitution
244 TechnologyMapping
2.4.5 Combinational Equivalence Checking.
List of Symbols and Common Variables
Summary L

Contemporary Logic Synthesis

Simulation-Guided Paradigm

3.1
3.2
3.3
3.4

3.5
3.6
3.7

3.8
3.9

Motivation e
OVEIVIEW o o o e
The Simulation-Guided Paradigm
Simulation Pattern Generation
34.1 Stuck-atValues
3.4.2 Observability
343 Bit-Packing. o
344 Discussion
Simulation-Guided Resubstitution
Simulation-Guided Equivalence Checking
ExperimentalResults
3.7.1 Size of Simulation PatternSet
3.7.2 Pattern Generation Strategies
3.7.3 Pattern Compression with Bit-packing
3.7.4 Effect of Expressive Patterns in Resubstitution
3.7.5 Reusability of Simulation Patterns
3.7.6 Quality of Simulation-Guided Resubstitution

3.7.7 Reduction on SAT Calls in CEC with Expressive Patterns

Summary
Future Work e

Heuristic Resynthesis

4.1
4.2

Motivation e
Problem Formulation
4.2.1 LogicResynthesis
4.2.2 Peephole Optimization Targeting Size Reduction

27

29

....... 29
....... 30
....... 31
....... 33
....... 33
....... 34
....... 37
....... 38
....... 38
....... 40
....... 41
....... 41
....... 42
....... 44
....... 44
....... 45
....... 46
....... 51
....... 52
....... 52

55

....... 55
....... 56
....... 56
....... 57

viii

CONTENTS

4.2.3 Don't-Care-Based Optimization
4.2.4 Simulation-Guided Logic Synthesis
43 OVEIVIEW ottt e e e e e e
44 RelatedWorks L L
4.4.1 Functional Dependency by Interpolation
4.4.2 SAT-Based ExactSynthesis.
4.4.3 Enumeration-Based Resubstitution
4.4.4 Akers’ Majority Synthesis L.
4.5 Heuristic AND-Based Resynthesis
4.5.1 Classificationof Divisors,
4.5.2 Simple Dependency Circuits
4.5.3 Recursive Decomposition 0 o 0oL
4.5.4 Summary of AND-Based Resynthesis
4.6 Heuristic MAJ-Based Resynthesis.
4.6.1 Normalization
4.6.2 TheCareFunction
4.6.3 ChoosingDivisors i e
4.6.4 EXpansion
4.6.5 Summary and Example of MAJ-Based Resynthesis
4.7 Heuristic MUX-Based Resynthesis
4.8 ExperimentalResults e
4.8.1 Extracted ResynthesisProblems
4.8.2 Resynthesis as the Core of High-Effort Optimization
49 SUMINATY o vt e e e e e e e e e e e e e e e e e e e

Design Space Exploration
5.1 Motivation e e e
52 RelatedWorks
5.3 OVEIVIEW o ot e e e e e e
5.4 EscapingLocal Optimum
5.5 Stretching Outinthe DesignSpace.
5.6 On-the-flyExploration,
5.7 Customization i e e e
5.8 ExperimentalResults
5.8.1 Application to MIG Optimization
5.8.2 Design Space Exploration,
5.8.3 Importance of Random Restarts
5.9 Summary e e e e

6 Testing and Debugging Logic Synthesis Algorithms

6.1 Motivation e e e e e e e e e e
6.2 SCOPE . . . o o e e e e
6.3 RelatedWorks e

83
83
84
84
85
86
86
87
88
88
89
89
89

93
93
93
94

ix

CONTENTS

6.4

6.5

6.6

6.7

6.8
6.9

II AQFP Circuit Optimization

7 Adiabatic Quantum-Flux Parametron

7.1
7.2

7.3
7.4
7.5

8 Impact of Sequential Design on AQFP Technology Constraints

8.1

8.3

6.3.1 Fuzz Testing
6.3.2 Delta Debugging and Testcase Minimization
Testing and Debugging Toolkit for Logic Synthesis Applications
6.4.1 Testcase Generation
6.4.2 Testcase Minimization
6.4.3 Usage Example

Case Study

6.5.1 Capturing The Defect with Fuzz Testing
6.5.2 Effects of The Reduction Stages
Experimental Results
6.6.1 Fuzzing Open-Source Logic Synthesis Tools
6.6.2 Testcase Minimization

Discussions

6.7.1 Non-deterministic Defects
6.7.2 Other Applications of The Toolkit
Future Directions
Summary

Superconducting Electronics
Basic Principles of Adiabatic Qquantum-Flux Parametron
7.2.1 Parametron and Quantum-Flux Parametron
7.2.2 Adiabatic Operation
7.2.3 Logic Computation

7.2.4 Gate-level Clocking Schemes
AQFP Design Constraints
Memory Devices and Architectural Clocking
Abstraction and Terminology

Motivation

8.3.1 Buffer/Splitter Insertion Considering Relaxed Constraints
8.3.2 Motivational Example
8.3.3 Experimental Results on Constraint Relaxation

8.3.4 Experimental Results Using Larger Benchmarks

8.2 AQFP Design Constraints
8.2.1 Phase Alignment Instead of Path Balancing
8.2.2 PI Capacity and Phases
8.2.3 Consideration of Clock Skews
Impact of Technology Constraints on JJ] Count

CONTENTS

8.4 Discussions .

8.4.1 Trade-off Between Throughput and Maximum Phase Skip

8.4.2 n-phase

Clocking e

8.4.3 Physical Design and Post-physical-design Legalization.

8.5 Summary . . .

9 AQFP Technology Legalization by Buffer/Splitter Insertion

9.1 Motivation . .

9.2 Problem Formulation e

9.3 Related Works

9.4 Buffer and SplitterInsertion L oL

9.4.1 Irredundant BufferInsertion

9.4.2 Simple HeuristicScheduling
9.4.3 ExactScheduling

9.4.4 Depth-O

ptimal Scheduling

9.5 Buffer and Splitter Optimization
9.5.1 Chunked Movement
9.5.2 Retiming e
9.5.3 Buffer and Splitter OptimizationFlow

9.6 Technology Leg

alizationFlow

9.7 ExperimentalResults

9.7.1 Technology Legalization and Buffer Optimization
9.7.2 Scalable AQFP Legalization

9.8 Summary . . .

10 AQFP Logic Synthesis Toolbox

10.1 Related Works

10.2 MAJ-Based Logic Synthesis o o ..
10.3 Design Space Exploration for AQFP Technology Mapping

10.4 Verification . .

10.5 Experimental Results

10.6 Summary . . .

11 Conclusions

11.1 Summary of ImportantResults
11.2 Thesis Contributions e

11.3 Open Problems

11.3.1 Endless Pursuit for QoR and Efficiency
11.3.2 AQFP Synthesis: Integration into Production-Ready EDA Tools
11.3.3 Other Emerging Technologies

11.4 Final Remarks

Bibliography

131
131
131
133
134
134
137
137
139
141
142
144
146
146
147
147
148
149

151
151
152
153
155
156
157

159
159
161
161
162
162
162
163

175

CONTENTS

Curriculum Vitae 177

Xii

List of Figures

1.1

3.1
3.2
3.3

3.4

3.5

3.6

4.1
4.2
4.3
4.4
4.5

5.1
5.2

6.1
6.2

6.3
6.4

7.1
7.2
7.3
7.4

8.1

Simplified EDA flow and intermediate products. 3
The simulation-guided logic synthesis and verification paradigm. 32
Example network for pattern generation methods. 35
Corresponding network of the CNF instance to be built in procedure Observ-

ablePatternGeneration. e 36
Decreased percentages of counter-examples when provided with different num-
ber (#pat) of random simulation patterns, compared to the baseline #pat=4. 42
Decreased percentages of counter-examples when using different sets of stuck-at

simulation patterns, compared to the baseline set “1x s-a”. 43
Decreased percentages of counter-examples when using pattern sets generated

with different strategies, compared to the baseline set “rand 256”.. 44
lustration of unate literals and binate divisors. 64
Mlustration of composing simple dependency circuits. 66
Mlustration of the recursive decomposition. 67
Mlustration of the care functions. 69
Example of MAJ-based resynthesis. 71
Three different paths in the design space taken by three restarts. 91
Local optima found by 50 restarts (x) compared to a fixed flow (A). 92
[lustration of the reductionstages. 98

Example code to use the proposed toolkit to generate, minimize, and visualize a
failure-inducing testcase. 100
Example code to use the toolkit for testing and debugging an external tool, ABC. 100
The failure-inducing testcase for an algorithm implemented in mockturtle and

intermediate results of minimizingit. 0. ... 102
Circuit schematicofthe QFP. 111
An AQFP-legalized full adder circuit. o ... 113
Circuit schematicofan AQFP D-latch. 114
Circuit schematic of an QFPL-based NDRO. 115
lustration of path balancing and phase alignment. (pex=4) 119

LIST OF FIGURES

8.2
8.3

Circuit schematic of an improved D-latch design. 121
Running example of how technology constraints affect the number of buffers in
asmallcircuit. L e 124

8.4 n-phase clocking compared to path balancing and phase alignment. (pqx =4) 129
9.1 Example sub-network to illustrate Algorithm 9.1. (s, =2) 136
9.2 Example sub-network to illustrate Algorithm 9.2. (s, =2) 140
9.3 Example sub-network showing a chunk (ingrey). 143
9.4 Example sub-network for retiming. (s, =3) 145
9.5 Example of forward retiming. (s, =3) 146
10.1 Integration of algorithms in various chapters as an AQFP synthesis flow. 152

Xiv

List of Tables

2.1
2.2

3.1
3.2

3.3
3.4

3.5

3.6
3.7

4.1
4.2

4.3

4.4

4.5

5.1

6.1
6.2
6.3

7.1

8.1
8.2
8.3

Symbols and special functions used in this thesis. 25
Variables with a fixed meaningin thisthesis. 26
Number of generated patterns before and after bit-packing. 45

Resubstitution runtime as a function of the number of counter-examples pro-
duced. 46
Resubstitution efficiency after ECO with or without counter-example learning. 47
Resubstitution quality on AIGs comparing against ABC’s resub command. Base-
line: at mostone nodeinsertion. L oL 48

Resubstitution quality on AIGs comparing against ABC’s resub command. Best

achievable quality. e 49
Resubstitution quality on XAGs comparing against ABC’s &mfs command. . .. 50
Efficiency of CEC with or without using expressive patterns. 51
Comparison of AIG resynthesis algorithms. 75
AND-based heuristic resynthesis as the core of simulation-guided resubstitution

applied on highly-optimized benchmarks. 77
AND-XOR-based heuristic resynthesis as the core of simulation-guided resubsti-

tution applied on highly-optimized benchmarks. 79
MA]J-based and MUX-based heuristic resynthesis as the core of simulation-

guided resubstitution applied on highly-optimized benchmarks. 80
Comparisons of existing and proposed resynthesis algorithms. 81
Comparison of MIG size against previousworks. 88
Fuzzing the defective cut rewritingwithXAGs. 103
Fuzztestingresults. e 104
Testcase minimizationresults. 105
Truth table of D-latchand NDRO. 114
Parameters involved in AQFP constraint formulation. 118
Experimental results comparing different constraints. 125
Experimental results on EPFL benchmarks.. 126

LIST OF TABLES

9.1 Technology legalization results comparing to the state-of-the-art and global
OPHMUIML v o e e e e e e e e e e e e e e e e e e e 148

9.2 Technology legalization results on the largest EPFL benchmarks

10.1 Best-known results on AQFP technology mapping. 156

List of Algorithms

3.1 StuckAtCheck: Expressive simulation pattern generation based on stuck-at values. 34
3.2 SimResub: One iteration of Steps 4 and 5 in simulation-guided Boolean resubsti-
TULION. o e e 39
3.3 Solver.verify: Verify a resubstitution candidate using a SAT solver. 40
4.1 Heuristic AND-based resynthesis algorithm. 65
4.2 Heuristic MAJ-based resynthesis algorithm. 72
4.3 Heuristic MUX-based resynthesis algorithm. 74
5.1 On-the-fly design spaceexploration. 85
9.1 Irredundantbufferinsertion 135
9.2 Depth-optimal single node scheduling 139
9.3 Depth-optimal ALAPscheduling. 141
9.4 Chunkconstruction i, 142
9.5 Buffer and splitter optimization 146
9.6 AQFP technology legalization flow (solves Problem3) 147
10.1 AQFP technology mapping with design space exploration (solves Problem 1) . . 154

xvii

List of Acronyms

EDA Electronic Design Automation
IC Integrated Circuits
VLSI Very-Large-Scale Integration

RTL Register Transfer Level

CMOS Complementary Metal-Oxide-Semiconductor

FPGA Field Programmable Gate Array

BDD Binary Decision Diagram
SAT Boolean Satisfiability

ILP Integer Linear Programming
CNF Conjunctive Normal Form
SMT Satisfiability Modulo Theory
MAJ Majority

MUX Multiplexer

DAG Directed Acyclic Graph

AIG AND-Inverter Graph

MIG Majority-Inverter Graph

XAG XOR-AND-Inverter Graph
XMG XOR-Majority-Inverter Graph
MuxIG Multiplexer-Inverter Graph

TFI Transitive Fanin

Xix

Chapter 0

List of Acronyms

TFO Transitive Fanout

PI Primary Input

PO Primary Output

MFFC Maximum Fanout-Free Cone
SDC Satisfiability Don’t Care

ODC Observability Don'’t Care

LUT Look-Up Table

SOP Sum Of Products

CEC Combinational Equivalence Checking
ECO Engineering Change Order
CEX Counterexample

SoTA State of The Art

QoR Quality of Results

AUT Application Under Test

SCE Superconducting Electronics
QFP Quantum-Flux Parametron
AQFP Adiabatic Quantum-Flux Parametron
J1 Josephson Junction

SFQ Single-Flux Quantum

NDRO Nondestructive Readout
B/S Buffers and Splitters

ASAP As Soon As Possible

ALAP As Late As Possible

EDP Energy-Delay Product

|§ Introduction

Electronic devices and computing services are widely used in everyday life in modern society.
With the ever-advancing development of deep learning, artificial intelligence, and other
data-driven applications, demand for more intensive and efficient computation gives rise to
dramatic increases in the complexity and compactness of electronic circuits. As an example,
Apple’s latest M2 Ultra microprocessor (released in June 2023) has 134 billion transistors on a
single chip [New23]. It is obviously impossible for human engineers to design digital circuits
down to the lowest details by hand. The field of electronic design automation (EDA) was born
in the 1950s to assist the design of integrated circuits (ICs) and to avoid redundant manual
effort. Today, EDA tools are inseparable from any very-large-scale integration (VLSI) design
flow.

Logic synthesis is one stage in EDA positioned after register transfer level (RTL) synthesis and
before physical design. It refers to the translation from a functional specification of Boolean
logic into a gate-level representation of digital circuits, as well as the optimization of gate-
level logic networks. Logic synthesis involves transformation between different technology-
independent logic representations, identifying and removing logical redundancies hidden
in these representations, and finally mapping into a technology-compatible representation.
Although logic synthesis was not the first stage to be automatized in the history of EDA
development, it has become an essential step and an important means to push the limits on
the area, delay, power, performance, and other costs of the fabricated chips.

Logic synthesis stems from the theoretical foundation of Boolean algebra and switching logic
built by George Boole [Boo47] and Claude Shannon [Sha38]. Around the 1980s and 1990s,
logic synthesis techniques evolved from optimizing two-level logic representations to dealing
with multi-level logic networks. With the invention of binary decision diagram (BDD) [Ake78],
data structures used in logic synthesis also migrated from symbolic representations to more
efficient abstractions. Later in the 2000s, homogeneous logic networks consisting of only one
type of gates became a popular choice, separating efficient technology-independent optimiza-
tion and technology mapping [MBO06]. The development of heuristic NP-complete-problem
solving tools such as Boolean satisfiability (SAT) solvers and integer linear programming (ILP)

Chapter 1 Introduction

solvers further accelerated modern logic synthesis algorithms.

The rapid scaling of computing systems today both poses challenges and provides opportuni-
ties for logic synthesis researchers and engineers. Growth in computational power enables
more computationally intense approaches to be adopted in logic synthesis in order to achieve
limit-pushing chip size and efficiency results demanded by the newer generations of proces-
sors. There is thus a trend in contemporary logic synthesis to revisit and explore seemingly
naive strategies that would not have worked a few decades ago due to the limited computa-
tional power back then. Perhaps surprisingly, with some carefully crafted computational hacks
and smartly designed heuristic guidance, simple ideas are often shown to become powerful
algorithms providing another several percent improvements that all companies crave.

Moreover, the increasing scaling demand contributes to the emergence of new technologies
and computing paradigms, which have distinct characteristics compared to the traditional
complementary metal-oxide-semiconductor (CMOS) digital circuit family. With their special
design constraints and circuit properties, EDA tools must be adapted to fulfill their needs. An
important direction of modern logic synthesis lies in either modifying existing algorithms or
developing novel methodologies for emerging technologies. For example, in the second part
of this thesis, we discuss logic synthesis for adiabatic quantum-flux parametron (AQFP), a
promising superconductive circuitry providing ultra-low energy consumption. AQFP circuits
are different from CMOS in two ways: (1) AQFP circuits are based on majority (MA]) gates,
instead of NAND gates; (2) AQFP circuits impose two unconventional constraints, namely
path balancing and fanout branching. The MAJ-based property makes it a better choice to
optimize AQFP circuits using majority-inverter graphs (MIGs), and the two constraints must
be satisfied by an additional buffer and splitter insertion step. With AQFP circuit optimization
as an example application, we demonstrate key aspects of contemporary logic synthesis in
this thesis.

1.1 Electronic Design Automation

Electronic design automation (EDA) is an industry and an academic field aiming at the
computer-aided design (CAD) of electronic circuits. Modern EDA flows can be separated
into several stages (Figure 1.1), including:

1. High-level and behavioral synthesis: From a high-level system specification, the first
stage is to synthesize and optimize system architecture designs. This stage typically
includes resource allocation, scheduling, data path optimization, etc.

2. Architectural and RTL synthesis: This stage is responsible for optimizing the architecture
at the RTL (sequential) level, for example by retiming. Then, combinational parts are
separated from the large sequential design and a gate-level implementation is chosen
for each RTL component.

Introduction Chapter 1

System specification
(e.g., in SystemC)

High-level synthesis
Behavioral synthesis
|

Register-transfer level design /
(e.g., in Verilog) /

2

Architectural synthesis
RTL synthesis

|
/ Gate-level netlist /

(e.g., an AIG) /

2

Logic synthesis Verification &
Technology mapping Validation (signoff)

Mapped netlist
(e.g., composed of standard cells) /

2
Physical design

Layout /
(e.g., in GDSII format) /
v

Tape-out
Fabrication

|

/ Fabricated IC / Testing

Figure 1.1: Simplified EDA flow and intermediate products.

3. Logic synthesis and technology mapping: Naive implementations of logic circuits usually
contain lots of redundancies. In pursuit of more cost-efficient electronic systems, logic
circuits are optimized at this stage to reduce their area and delay. In the end, generic
logic representations are mapped into a technology-compliant circuit according to a
given standard cell library of the specific technology.

4. Physical design: Physical design refers to the transformation from a gate-level netlist into
a silicon layout ready for manufacture, including floor planning, placement, routing,
clock tree synthesis, timing analysis, etc.

5. Verification and validation: After each stage, the produced circuit is compared against
the original specification to ensure functional correctness. Moreover, timing and other
design constraints are also verified.

Chapter 1 Introduction

6. Testing: Because there may be non-idealities in the manufacturing process, post-silicon
testing must be done on the manufactured chips to identify possible defects.

Besides respecting the given specifications and constraints (i.e., correctness), EDA algorithms
often emphasize their optimization aspect. Indeed, the hardest is usually not finding a legal
and feasible solution, but one with the best quality of results (QoR). Various cost metrics are
of concern in the IC industry, such as chip area, latency, throughput, energy consumption,
density, wire length, and more. Moreover, there are often tradeoffs between these criteria. For
example, with the same functionality, the ripple-carry adder takes a smaller area but has a
higher latency, while the carry-lookahead adder achieves lower latency with the drawback of a
bigger area [NI0O96].

1.2 Logic Synthesis

In this thesis, the term logic synthesis refers to all steps after a gate-level netlist is obtained
(from an RTL description, i.e., RTL synthesis) and before physical design can be performed.
Logic synthesis flows typically consist of the following steps:

1. Technology-independent logic optimization: The input logic is broken down into a simple
logic representation and optimized at the technology-independent level to minimize
some given (often multiple and conflicting) cost metrics.

2. Technology mapping: The optimized representation is mapped to a target technology
using a standard cell library.

3. Post-mapping optimization and legalization: The mapped circuit is further optimized
with technology-specific optimization algorithms considering the constraints and pa-
rameters of the target technology.

4. Verification: To verify functional correctness, the optimized circuit is checked for logical
equivalence against the original logic. Timing verification is also performed to avoid
timing violations and glitches. Moreover, when there are special technology constraints
to be fulfilled, an additional legality check is required.

Logic synthesis plays a central role in all EDA tools as the translation and optimization process
from a functional specification to a structural description while meeting QoR goals in area,
delay, and power.

Formulated by and named after George Boole in 1847, Boolean algebra [Boo47] provides
the mathematical foundation for logic synthesis. A century later, in 1938, Claude Shannon
introduced Boolean logic into the world of electrical computers, showing that Boolean algebra
can be used to analyze switching circuits and proving that switching circuits designed in this
way can compute anything Boolean algebra can solve [Sha38].

Introduction Chapter 1

The problem of logic minimization was first tackled for two-level forms with an application
in area optimization of programmable logic arrays (PLAs). As its name suggests, two-level
forms, such as sum of products (SOP), represent Boolean logic functions using at most two
layers of logical operations. The most famous two-level minimization algorithms are the
Quine-McCluskey algorithm [Qui52; McC56] and Espresso [Bra+82]. These earliest logic
synthesis algorithms still use symbolic representations or bitstreams as their underlying data
structure for logic functions and their components.

However, in a VLSI design, digital circuits are multi-level netlists and two-level minimiza-
tion is not enough. Thus, multi-level logic optimization gained increased interest since
the 1980s with various pioneering academic tools being developed, including multi-level
logic optimization systems MIS [Bra+87] and M32 [KS98], the Boulder optimal logic design
system BOLD [Hac+89], the sequential logic synthesis system SIS [Sen+92], and the field pro-
grammable gate array (FPGA) logic synthesis system RASP [CPD96]. Simple, homogeneous
graph representations are used in multi-level logic synthesis as the underlying data structure
for logic circuits [BHS90], and auxiliary data structures like BDDs are involved in the core
computations of logic manipulations and simplifications [YCO02].

1.3 Trends in Logic Synthesis Techniques

Since the 2000s, a major portion of logic synthesis research has been developed around the
AND-Inverter Graph (AIG) [Kue+02]. AIG is a technology-independent representation of multi-
level logic networks involving only two-input AND gates and optionally-inverted wires. It
gains popularity because its minimalistic data structure allows simple and efficient programs
to be developed [BMO06]. AIGs were first used in formal verification to simplify the equivalence-
checking problem, but their application soon extended into technology-independent logic
optimization. A notable academic logic synthesis and verification tool relying heavily on AIGs
is ABC [BM10].

One of the core problems to be solved in logic synthesis, or logic optimization to be more
specific, is identifying and removing logic redundancies to simplify the circuit. These redun-
dancies are rooted in the flexibilities in logic representations, called don’t cares [Bra83; DM93].
The numerous logic optimization methods existing in the literature [BHS90; De 94] can be
roughly classified into two classes, namely algebraic methods, which treat Boolean functions
as polynomials and optimize the logic network locally, and Boolean methods, which consider
global and local Boolean logic and don’t-care conditions to improve the optimization quality.
Algebraic methods were popular in the earlier days because don’t-care computation was based
on BDDs which are not scalable. Since efficient don’'t-care computation techniques using
truth tables and bit-parallel circuit simulation were proposed, Boolean methods have become
mainstream.

The recent trend in logic synthesis in the twenty-first century favors efficient local transforma-
tions because they are more scalable. No matter how big the network is, small sub-networks of

Chapter 1 Introduction

usually less than a hundred nodes are extracted and optimized independently. Such strategy is
referred to as peephole optimization in this thesis. This way, the total runtime of an optimiza-
tion algorithm can be linear to the size of the network. As an inevitable compromise, these
algorithms are heuristics from a global optimization perspective. Indeed, the problem of logic
optimization is intractable and there is no scalable and optimal approach. Nevertheless, with
a portfolio of good heuristics, modern logic synthesis has been shown to reach near-optimal
results in some cases.

1.4 Challenges and Opportunities of Contemporary Logic Synthesis

The drastic growth in the scale of digital circuits poses two types of challenges in logic synthesis.
On the one hand, the scalability and efficiency of logic synthesis algorithms become crucial
requirements while the QoR cannot be sacrificed, even though the underlying problems are in-
tractable. On the other hand, as Moore’s law reaches its bottleneck, engineers and researchers
explore emerging beyond-CMOS electronic technologies and novel computing paradigms,
seeking potential breakthroughs in density, throughput, latency, and energy efficiency. These
new models often possess different characteristics than the traditional CMOS-based circuits
and sometimes impose unconventional constraints, such that existing logic synthesis algo-
rithms developed for CMOS-based circuits must be adapted accordingly.

Nevertheless, the increase in the available computational power nowadays provides oppor-
tunities for novel strategies in contemporary logic synthesis that were not advantageous or
possible twenty years ago. Enhancements in parallel computing and improvements in heuris-
tic problem-solving tools such as SAT solvers make it possible to solve some NP-hard problems
in logic synthesis efficiently. Increased central processing unit (CPU) speed and random-access
memory (RAM) size also allow some brute-force-like algorithms to become practically useful.
The development of EDA is both forced by and results in the rapid advancement of digital
integrated circuits with stronger computing power, forming a positive feedback loop.

This thesis presents new paradigms, methodologies and algorithms within a broad overview
of contemporary logic synthesis, demonstrating how the opportunities are leveraged to tackle
the challenges. It serves as a snapshot portrait of the ongoing development of logic synthesis
in the 2020s, four decades after the birth of EDA as an industry.

1.5 Thesis Organization

This thesis is separated into two parts. In the first part (Part I, Contemporary Logic Synthesis,
Chapters 3-6), we illustrate how carefully-designed heuristic approaches form the basis of
contemporary logic synthesis, starting from a simulation-guided paradigm (Chapter 3), which
leverages fast circuit simulation to extend the search space while maintaining scalability. Then,
as the core of peephole logic optimization, we study heuristic methods to solve the resynthesis
problem (Chapter 4), pushing the limits of high-effort optimization. As modern logic synthesis

Introduction Chapter 1

flows usually consist of multiple algorithms and iterations, we investigate an on-the-fly design
space exploration framework (Chapter 5) which is shown to be effective in advancing the
state-of-the-art QoR. Finally, we adapt existing automated testing and debugging techniques
for logic synthesis algorithms (Chapter 6) to help improve the robustness of logic synthesis
applications with minimal human effort.

In the second part (Part II, AQFP Circuit Optimization, Chapters 7-10), we demonstrate how
contemporary logic synthesis techniques are applied to emerging alternative technologies,
taking the optimization of AQFP superconducting circuits as an example. After the technology
and its special characteristics and constraints are introduced in Chapter 7, we must first
carefully study the design principles of AQFP sequential circuits to correctly establish an
abstraction model and constraint formulation that make sense in practice (Chapter 8). Since
the AQFP technology imposes special constraints to be fulfilled before physical design, we
propose a series of legalization and optimization algorithms to be performed as the last
step of logic synthesis (Chapter 9). In the end, we combine everything together as an AQFP
technology mapping flow (Chapter 10): Logic optimization and AQFP legalization (Chapter 9)
are interleaved in the design space exploration framework (Chapter 5). Among the various
logic optimization algorithms involved in the flow, MIG resubstitution consists of using the
MAJ-based resynthesis algorithm (Section 4.6) in the simulation-guided paradigm (Chapter 3).

The main chapters of this thesis (i.e., except for this chapter serving as an overview, Chap-
ters 2 and 7 giving necessary background knowledge for the two parts, and Chapter 11 as
conclusions) are based on published works. In the following, we summarize the technical
contributions of each main chapter.

1.5.1 Chapter 3: Simulation-Guided Paradigm

This chapter is adapted from [Lee+22] (© 2022 IEEE, reprinted with permission). The contri-
butions of this work are:

1. Proposes a simulation-guided logic synthesis and verification paradigm, which pre-
generates and reuses expressive simulation patterns to reduce the efforts needed in
SAT-based verification.

2. Presents methods to generate expressive simulation patterns, which are integrated with
a bit-packing technique.

3. Demonstrates the benefits of the proposed paradigm with improved resubstitution
quality and reduced SAT calls in CEC.

4. Shows the reusability of the pre-generated patterns across different applications and
with network modifications with experimental results.

Chapter 1 Introduction

1.5.2 Chapter 4: Heuristic Resynthesis

This chapter is adapted from [LM23] (© 2023 IEEE, reprinted with permission), which is
an extension to and summary of two previous works [Rie+22; LRD21]. The contents of this
chapter are important for the following reasons:

1. Peephole optimization is a commonly used approach in modern logic synthesis, which
selects small portions of a network and optimizes them locally. As the optimization core
of this strategy, we carefully define and study the problem of logic resynthesis.

2. Three heuristic resynthesis algorithms for different network types are proposed: AND-
based resynthesis was first proposed in [Rie+22] and MAJ-based resynthesis was first
proposed in [LRD21], whereas MUX-based resynthesis is new in [LM23]. They have
better complexities compared to existing exact algorithms while compromising with
little sacrifice in the QoR compared to optimal solutions.

3. With their high efficiency and unlimited problem size, heuristic resynthesis is the only
practical candidate to serve as the core of high-effort peephole optimization. Our
experimental results show that the proposed techniques enable additional size reduction
on benchmarks that are already highly optimized.

1.5.3 Chapter 5: Design Space Exploration

This chapter is adapted from [LRD23]. In this chapter, we study a higher-level problem in logic
synthesis: Design space exploration.

1. Design space exploration is the problem of finding a good sequence of individual al-
gorithms to apply on a specific benchmark, such that the best possible QoR can be
achieved. This is a complicated and difficult problem. We discuss various common
approaches.

2. In contrast to sophisticated strategies, we propose a simple, on-the-fly method to explore
the design space and discover a good flow without requiring a complex search-based
or Al-driven optimization framework. Despite the simplicity, we show that on-the-fly
design space exploration outperforms flows designed by human experts.

3. New best results for the problem of MIG size optimization are presented as evidence.
The proposed method is also used later in Chapter 10 in the context of AQFP circuit
optimization and, again, gives impressive results.

1.5.4 Chapter 6: Testing and Debugging Logic Synthesis Algorithms

This chapter is adapted from [LRD22a]. In this chapter, we introduce modern testing and
debugging techniques and adapt them specifically to gate-level logic networks. The main

8

Introduction Chapter 1

contributions are:

1. Our fuzz tester repeatedly generates small- and intermediate-sized netlists to hunt for
bugs. We provide systematic approaches to test on small circuit topologies in addition
to purely random networks.

2. Our testcase minimizer guarantees to isolate a minimal failure-inducing core of a poten-
tially lengthy bug report. It reduces testcases more efficiently by adopting specialized
structural reduction rules for gate-level networks.

3. Our methods are agnostic of the network type and support different gate-level netlist
formats. This is the first time that automated debugging techniques are available for
logic representations other than AIGs. We demonstrate with a case study that testing
with more compact representations like XAGs increases the possibility of capturing rare
defects.

4. Ourimplementations are tightly integrated into mockturtle, which eliminates interfacing
overheads and provides about 10x speed-up over using external testing and debugging
solutions.

1.5.5 Chapter 8: Impact of Sequential Design on AQFP Technology Constraints

This chapter is adapted from [LAD23] (© 2023 IEEE, reprinted with permission). The contribu-
tions are three-fold:

1. We re-examine the formulation of AQFP technology constraints and propose possible
relaxations on these constraints: phase alignment instead of path balancing, as well
as leveraging flexibilities on combinational inputs’ splitting capacity and phases. We
also discuss a potential issue with clock skew and the trade-off of adopting relaxed
constraints.

2. We implement the first buffer-insertion framework which considers detailed and re-
alistic constraints and possible relaxations. The framework is parameterized for easy
customization of constraint specification.

3. We investigate the influence of technology constraints on JJ count. Using the relaxed
constraints, a large portion of buffers can be saved. This observation can help scale up
AQFP circuits which were bottle-necked by too many buffers before.

1.5.6 Chapter 9: AQFP Technology Legalization by Buffer/Splitter Insertion

This chapter is adapted from [Lee+24] (© 2024 IEEE, reprinted with permission), which sum-
marizes a scalable and flexible framework for AQFP technology legalization and optimization,

9

Chapter 1 Introduction

based on two previous papers [LRD22b; CD23]'. The problem is systematically solved with
the proposal of the following algorithms:

1. Alinear-time irredundant buffer insertion algorithm that is locally optimal subject to a
given schedule. This algorithm links the buffer count with a schedule of the network,
showing that the buffer insertion problem is a scheduling problem.

2. Depth-optimal scheduling algorithms. They serve as starting points to obtain a legal
schedule first, which can be further optimized later. (This part is mainly contributed by
Alessandrol.)

3. Heuristic optimization algorithms to minimize buffer count globally from a given sched-
ule. Two orthogonal algorithms are presented: chunked movement and retiming. (Re-
timing is contributed by Alessandro'.)

4. An AQFP legalization flow combining the algorithms above, which consists of obtaining
an initial schedule, inserting buffers using the irredundant insertion algorithm, and
then (optionally) further optimizing by interleaving chunked movement and retiming.

1.5.7 Chapter 10: AQFP Logic Synthesis Toolbox

This chapter is adapted from [Lee+24] (© 2024 IEEE, reprinted with permission). Logic synthe-
sis for AQFP consists of majority-based logic optimization and technology legalization. They
may be tackled independently for a faster runtime, but interleaving them has the potential
of achieving better QoR. In this chapter, we summarize various algorithms presented in this
thesis to form an AQFP logic synthesis flow.

1. For logic optimization, we combine the heuristic MAJ-based resynthesis algorithm and
the simulation-guided paradigm as a high-effort MIG resubstitution algorithm.

2. We leverage the design space exploration framework to interleave logic optimization
and technology legalization. We discuss how this approach allows exploring the design
space in two orthogonal axes of MIG optimization and buffer minimization.

3. Verification is also briefly discussed, including functional and constraint verification.

4. Finally, experimental results show a significant 44% improvement in the energy-delay
product compared to the best-known AQFP synthesis results.

To summarize, this thesis presents recent advancements in various aspects of contemporary
logic synthesis, including the simulation-guided paradigm, high-effort resynthesis, on-the-fly

l[Lee+24] is a collaboration work with Alessandro Tempia Calvino. For completeness reasons, contents based
on his work [CD23] are still summarized, but kept short and clearly marked in this chapter.

10

Introduction Chapter 1

design space exploration, and tailored technology legalization for the emerging AQFP technol-
ogy with unconventional constraints. These results show two important directions of logic
synthesis development: First, while scalability and efficiency are still important, approaches
that give the extra few percent improvement within moderate runtime overhead are gaining
interest. Second, with new technologies with different constraints emerge, specialized algo-
rithms need to be developed or adapted to fulfill their needs. At the end of this thesis, we
present a complete flow for AQFP circuit optimization to demonstrate these properties of
contemporary logic synthesis.

11

4 Background

2.1 Mathematical Abstractions and Data Structures for Logic Cir-
cuits

2.1.1 Boolean Logic

A Boolean variable is a variable taking values in the Boolean domain B = {0,1}. The (n-
dimensional) Boolean space B" is an n-ary Cartesian power of the Boolean domain. An
(n-input, single-output, completely-specified) Boolean function is a function f : B" — B of n
Boolean variables. Multi-output Boolean functions can be seen as an ordered set of single-
output functions. A minterm of a Boolean function is a value assignment to all the function’s
input variables.

A Boolean relation R is a binary relation over two Boolean spaces R < B" x B™, a domain
(B"™) and a codomain (B"™). Boolean functions are special cases of Boolean relations. When
describing Boolean functions as Boolean relations, an element in the domain is a minterm of
the Boolean function.

Boolean functions can be classified into two types:

* Completely-specified Boolean functions are special cases of Boolean relations where the
relations are functional (i.e., an element in the domain maps into one unique element
in the codomain) and total (i.e., every element in the domain maps into an element in
the codomain).

» Incompletely-specified Boolean functions are Boolean functions for which the output
values under some minterms are not specified. In other words, for some minterm
b e B", the output value can be either 0 or 1. In terms of Boolean relations, we have both
(b,0) € R and (b,1) € R.

When not specified, functions in this thesis refer to completely-specified, single-output

13

Chapter 2 Background

Boolean functions.

There are several possible representations of Boolean functions, such as propositional for-
mulas, Boolean chains [Knul1l], binary decision diagrams [Ake78], and truth tables. We use
conventional symbols for logic operators (listed in Table 2.1) when writing propositional
formulas.

2.1.2 Truth Tables

The truth table T|f] of a k-input Boolean function f : B* — B is a bit-string u = u --- uy, i.e.,
a sequence of bits, of length [= 2k The bit u; € B at the i-th position (0 < i < [), denoted as
T[f1;, is equal to the output of f under the input assignment (i.e., minterm) a = (ay, ..., ax),
where

2k g+ +2% a = 2.1)
If T[f]; = f(a) =1, d is said to be an onset minterm; otherwise, if T[f]; = f(d) =0, d is said to
be an offset minterm.

We use
-1
ONES(f) =)_ TIf1; (2.2)
i=0

to denote the number of 1-bits in the truth table of f, which is also the number of onset
minterms, or the size of the onset.

Truth tables are manipulated by carrying out the usual Boolean operations on all of their bits.
Suppose that u = u; ---u; and v = v; --- v; are two truth tables of length /, and a : B — B and
B: B2 — B are, respectively, unary and binary Boolean operations, then a(u) = a(u;) --- a(u;)
and B(u, v) = B(u1, v1) - B(uy, v7). Such truth table manipulations can be highly-efficiently
implemented with the bit-parallel operations supported by modern CPUs [CSG99]. The bits
of the truth tables are split into buckets of 32- or 64-bit machine words and each bucket is
processed in one machine instruction.

2.1.3 Logic Networks

Logic networks (or simply networks) are technology-independent representations of digital
circuits. A logic network N is a directed acyclic graph (DAG) defined by a pair (V, E) of a set
V of nodes and a set E of directed edges. The node set V = I u Ou G is disjointly composed
of a set I of primary inputs (PIs), a set O of primary outputs (POs), and a set G of (logic) gates.
Each PI has in-degree 0 and unbounded out-degree, whereas each PO has in-degree 1 and
out-degree 0. The out-degree of each gate is unbounded and the in-degree is a fixed number
depending on the type of the gate.

14

Background Chapter 2

Each element (n;, n,) in the edge set E € V x V models a wire between node n; and node n,,
where the information flows from n; to n,, i. e., n; is an input of n,. n; is said to be a fanin
of n, and n, is said to be a fanout of n;. The set of fanins of a node n is denoted by FI(n)
and the set of fanouts of 7 is denoted by FO(n). Two nodes having a common fanout n, (i.e.,
the fanin nodes of n,) are said to be siblings of each other. In many practical network data
structures, inverters are embedded on the edges. In other words, the edge set is extended to
E c V x V x B, where an element (n;, n,, c) € E models a wire from node n; to node n, with a
complementation tag c € {0 = regular, 1 = complemented} recording the absence or existence
of an inverter on the wire.

A path p in a network is a finite sequence ny, ..., n; of nodes such that (n;,n;4+1) € E,V0<i <.
We use ny 2 n; to denote that there is a path p from ng to n;. The transitive fanin (TFI) or the
transitive fanout (TFO) of a node 7 is the set of nodes such that there is a path between »n and
these nodes in the direction of fanin or fanout, respectively. A logic gate computes a Boolean
function of its fanins and passes the resulting output value to its fanouts.

The size of a network (denoted by | N|) is determined by its number of nodes, and the depth of a
network (denoted by d (V) is the length of the longest path from a PI to a PO. This abstraction
models the combinational part of digital circuits. In practice, PIs of a logic network are often
provided by the register outputs of the previous sequential stage and POs are connected to the
register inputs of the next stage.

Cuts

A cut in a network, defined over a given set R € V of root nodes, is a set C of nodes such that
any path from a PI to a root includes a node in C. Let CUTS(R) denote the set of all cuts for the
set R,

CeCuts(R)ifVie,reRYp:i“r,AneC:nep. 2.3)
When R contains only one node n, CUTS(R) may be abbreviated as CUTS(n) and is also referred
to as a cut of n:

CuTs(n) £ CuTts({n}). (2.4)

Nodes in a cut are also called leaves. A cut is said to be k-feasible if the number of leaves does
not exceed k. A node n is said to be supported by a set C of nodes if C is a cut of n. Given any
set R of roots, the identical set C = R is always a cut by definition, thus such cut is said to be a
trivial cut. Also, the set I of PIs is always a cut for any possible R.

15

Chapter 2 Background

Cones and Windows

The logic cone between a cut C € CuTS(n) and a node n, often also called a TFI cone of n if C is
unimportant or clear from the context, is the set of all nodes on any path from a node in C to
n. All nodes in the logic cone are supported by C.

Conversely, a TFO cone of anode n is the set of all nodes on any path from 7z to a PO. Practically,
we are often interested in TFO cones limited to a certain depth d, where the paths are limited
to a length of at most d in the definition above.

The maximum fanout-free cone (MFFC) [CD94b] of a node n is the set of nodes in the TFI cone
of n that only contributes to n. Specifically, a node m is said to be in the MFFC of n if all paths
from m to any PO pass through n. Identifying the MFFC is important because the MFFC of a
node 7 is the sub-graph that will be removed when 7 is removed.

A window is a sub-graph constructed from a root node r and a cut C € CuTs(r) and is used to
extract the local functionality and for local optimization. A window always includes the logic
cone between C and r. Additionally, depending on the application, nodes outside of the TFI
cone of r but supported by C can also be added to the window. A window can be viewed as a
smaller network with C as the set of PIs and r as a PO. The number of nodes in a window is
also called the volume of the window. In practice, windows with a higher volume-to-cut-size
ratio often contain more redundancy and are of higher interest in logic optimization.

Node Functions

Each node n in a network computes a Boolean function f,, : B!/l — B in terms of the PIs, called
the node’s global function. To express the global functions, a Boolean variable x; is associated
with each PIi € I. Let X = (x1,..., X)) be the set of all PI variables. By definition, the function
of aPInode i € I is fi(X) = x;. Then, in topological order, the functions of all nodes in the
network can be computed by composing the functions of a node’s fanins with the function of
the corresponding logic gate. Finally, the PO functions are computed by taking the function of
a PO node and inverting if the PO is complemented. Two nodes in a network are said to be
functionally equivalent if their global functions are logically equivalent; otherwise, they are
functionally non-equivalent.

The function of a node may also be expressed in terms of a cut supporting it. Given a node
n and a cut C € CuTs(n), the local function f< :BI°! — B is the Boolean function derived by
associating a Boolean variable with each node in C and computing the local functions of each
node in the logic cone between C and 7 in topological order. The global functions are a special
case of local functions using the PI set I as the cut:

a2l (2.5)

16

Background Chapter 2

Types of Logic Networks

Prominent examples of logic networks include And-Inverter Graphs (AIGs) [Kue+02], where
each node represents a two-input AND gate, and Majority-Inverter Graphs (MIGs) [AGD16],
where each node represents a three-input majority (MAJ) gate. The MA]J gate computes the
majority function MAJ of its fanins [MTT61], i.e.,

MAJ(x1, X2, x3) = (X1 A X2) V (X2 A X3) V (X1 A X3). (2.6)

Extending the gate library with XOR gates, the Xor-And-Inverter Graph (XAG) [HFS17] is a
logic network where nodes can be either a two-input AND gate or a two-input XOR gate.
Similarly, the Xor-Majority Graph (XMG) [Haa+17] is extended from MIGs, where nodes can
be three-input MAJ gate or three-input XOR gate.

Another interesting type of network is the Multiplexer-Inverter Graph (MuxIG), where each
node represents a 2-to-1 multiplexer (MUX) gate. The MUX gate has three non-symmetric
inputs: the S-input as the selection (“if”) signal, the T-input as the “then” signal, and the
E-input as the “else” signal. The function computed by a MUX gate can be written as

MUX(s, t,e) =(sAt)V(TsAe). 2.7

2.2 Computational Tools

2.2.1 Boolean Satisfiability Problem

Boolean optimization methods are often formulated as a Boolean satisfiability (SAT) problem
and solved by a SAT solver [Tov84; MS00]. A SAT problem asks whether a Boolean formula,
usually presented in a conjunctive normal form (CNF) as a conjunction of clauses, is satisfiable.
That is, whether there exists a value assignment making the formula evaluate to true. If so, the
solver returns a satisfiable (SAT) result along with a satisfying value assignment; otherwise, it
concludes that the problem is unsatisfiable (UNSAT). Logic networks can be translated into
CNF formulae using the Tseytin transformation [Tse83].

By using SAT in logic optimization, we benefit from its global consideration of the Boolean
functions and hence better optimization quality. However, SAT is an NP-complete prob-
lem [Sch78]. Although many approaches have been proposed to solve SAT problems efficiently
for EDA applications [MS00] and efficient SAT solvers have been developed, SAT-solving is still
slower than algebraic and local-search methods in general. In practice, to avoid the program
being stuck in a difficult SAT solve, a timeout can be set to limit the time spent in solving SAT;
and/or a conflict limit can be set to restrict the effort made by the SAT solver.

17

Chapter 2 Background

2.2.2 Integer Linear Programming

Linear programming is a mathematical optimization problem where constraints and the
objective are specified as linear relationships. The problem asks to find a feasible value
assignment to its variables, which satisfies all the constraints while optimizing toward the
objective (maximizing or minimizing its value). Integer linear programming (ILP) is a linear
programming problem where all variables are integers. In an ILP problem, the optimization
objective is a linear combination of a subset of its integer variables, and the constraints are
linear inequalities over its variables. ILP is NP-complete.

Many optimization problems can be formulated as ILP problems, such as the scheduling
problem in high-level synthesis. Being both NP-complete, an ILP-feasibility problem can be
encoded as a SAT problem and vice versa. Although exact algorithms to solve an ILP problem
have high runtime complexities, there exist many well-performing heuristic algorithms and
open-source tools.

2.2.3 Satisfiability Modulo Theory

A satisfiability modulo theory (SMT) problem is a generalization of the Boolean satisfiability
problem [Bie+09]. A SMT problem asks whether a mathematical formula, interpreted within a
certain formal theory, is satisfiable. For example, a satisfiability modulo integer linear algebra
problem may ask whether a set of linear inequalities over integer variables is satisfiable, which
is equivalent to asking whether an ILP problem is feasible. As SAT is already NP-complete,
SMT problems are often NP-hard, depending on what the underlying theory is. Nevertheless,
heuristic SMT solvers can be efficient in solving SMT problems with various theories and have
been used in a wide range of applications [MB08].

2.3 Components of Logic Synthesis

2.3.1 Structural Analysis

Structural Hashing

Structural hashing is a technique integrated into homogeneous network data structures of
most modern logic synthesis packages. In a homogeneous network, every node represents
the same logic gate. Thus, two nodes having the same fanins (including the polarities of
complementation on the fanin edges) must compute the same function. In other words,
structurally equivalence implies functional equivalence. A hash table is used to efficiently
identify structurally equivalent nodes during network construction as well as transformations.

18

Background Chapter 2

Reconvergence-Driven Cut Computation

Two paths in a network are reconvergent if they start at the same node vy, end at the same
node v;, and contain, respectively, two different fanins of v;. Reconvergence is essential for
don’t-care-based optimization [Rie+22]. Having more reconvergent paths in the window also
helps increase the volume of the window while being limited to the same cut size. These
observations motivate the computation of a reconvergence-driven cut for a given root node as
the first step of window construction.

In [MBO06], a reconvergence-driven cut for a root node r is computed as follows. The expand
operation

EXPAND(C, n) = (C—{n}) UFI(n) (2.8)
replaces a node n in a cut C with its fanins. The cost
A(C, n) = |[EXPAND(C, n)| - |C]| (2.9)

of expanding C on a node 7 is the difference in the cut size after and before expansion. If
A(C, n) =0, we say it is a cost-free expansion. It is easy to observe that EXPAND(C, n) is cost-free
if and only if at most one fanin of n is notin C, i.e., iff |[FI(n) — C| < 1. Starting from the trivial
cut C = {r}, the algorithm iteratively expands on the lowest-cost node in C, until the upper
bound on cut size k is reached and there are no more cost-free expansions possible.

MFFC Computation

If the network data structure keeps a reference counter for each node that counts how many
fanouts it has, then MFFC computation can be done efficiently by recursively dereferencing
(decreasing the reference counter of a node, and recursively decreasing its fanins’ reference
counters if the reference count becomes zero) and then referencing (restore the reference
counters) the root node.

Circuit Simulation

A simulation pattern (or abbreviated as a pattern) is a collection of Boolean values assigned to
each primary input of a network. Circuit simulation is done by visiting nodes in topological
order and computing their output values with their input values. In practice, several simulation
patterns can be bundled together by using machine words, instead of a single bit, to represent
a sequence of Boolean values. This way, 32 or 64 patterns can be computed for a node within a
single CPU instruction using bitwise logical operations supported by modern arithmetic logic
units. The simulation signature of a node is an ordered set of values produced at the node
under each simulation pattern.

19

Chapter 2 Background

A set of simulation patterns is exhaustive if it covers all possible combinations of value assign-
ment, which requires 2¥ patterns for k Pls. The simulation signatures produced by simulating
an exhaustive pattern set are also called truth tables and they completely specify the Boolean
functions of the nodes.

Simulation can be done globally in the entire network or locally in a small window. In the
former case, the simulation pattern set is possibly non-exhaustive because 2!6 patterns are
already impractical to handle, but the number of PIs is usually larger than 16. To use an
exhaustive set of patterns, simulation must be restricted to a window of less than 16 (typically
8to 10) leaf nodes.

2.3.2 Don’'t-Care Conditions

A don’t care for an incompletely-specified function is a minterm for which the output value
is not specified. The don’t-care set of a function is the set of all of its don’t care minterms. In
a logic network, although all node functions (in terms of any cut) are completely specified,
for some nodes, there may be some minterms where the output values of their functions are
flexible. In other words, the function f¢ of a node 7 in terms of cut C may be modified by
changing its output value under some minterms without affecting the global functions of any
PO. As a consequence, an incompletely-specified function where these minterms are don'’t
cares and the output values under the other minterms are the same as f can be used to
re-synthesize the logic cone between C and n. Two types of internal don't cares, arising from
different reasons, may appear in logic networks:

Satisfiability don’t cares

Given a cut C € CUTS(R) supporting a set R of nodes! and let ¥ = (x1,...,xc)) be Boolean
variables associated with each node in C, a value assignment I;C € B! to X (i.e., a minterm
of the local functions f¢ of any node n € R) is a satisfiability don’t care (SDC) if this value
combination never appears under any PI value assignment:

Pb; e B!, (f,(by):neC)=be. (2.10)
For example, an AND gate g; and an OR gate g» sharing the same fanins can never have g; =1

and g, = 0 at the same time. This combination is a satisfiability don't-care of any node in the
common TFO cone of g and g».

IThe supported set R is not involved in the definition of SDCs, so it can, in theory, be empty and C is not
necessarily a cut. Although one may define and compute SDCs for any set C of nodes, in practice, SDCs are only
meaningful when C is indeed a cut, as SDCs are used to optimize nodes in R.

20

Background Chapter 2

Observability don’t cares

Given anode n and a cut C € CuTS(n) and let X = (x3,..., xc|) be Boolean variables associated
with each node in C, a value assignment b¢ € B! to % (i.e., a minterm of the local function £¢)
is an observability don’t care (ODC) with respect to n if none of the PO functions are affected
by flipping the output value of £ under be:

vhr B, (f,(b):neC)=bec = VoeO,f; by = f,(byp), 2.11)

where f, is the PO function derived by replacing any regular outgoing edge of n with a
complemented one and replacing any complemented outgoing edge of n with a regular one.
The value assignment b is said to be unobservable with respect to n.

Computation of Internal Don’t Cares

The appearance of “don’t care” as a technical term in the literature dates back to as early as the
80s [Bra83]. Pioneering research attempted to derive don’t care in multi-level networks and
use them in two-level minimization to resynthesize part of the network [Bar+88]. Theories
on don't-care computation were formulated based on symbolic computations propagated
through the network [Mur+89; DM93]. Until the late 90s, computation of don’t cares had
been implemented using binary decision diagrams (BDDs). Due to scalability concerns,
approximated computation was adopted [MB90], and the compatibility of ODCs was studied
to avoid re-computation of ODCs in the network once an ODC is used to change the function
of a node [SK04]. Since the early 00s, computation tools of don't cares have moved from
BDDs to SAT, enabling using complete, instead of approximate, don’t cares while maintaining
scalability [MBO5].

In many modern logic synthesis tools, internal don’t cares are derived locally (under-approximated)
using bit-parallel circuit simulation:

* To compute the SDCs for a given set C of nodes, we first find another cut Cy € CUTS(C)
supporting C. Then, we perform circuit simulation by assigning projection functions
to nodes in Cy and obtain the local functions of nodes in C in terms of Cy, represented
as truth tables. Finally, by analyzing each bit in the truth tables, we identify the value
combinations at C that do not happen, which are the SDCs at C.

* To compute the ODCs with respect to a node n, we first mark the TFO cone of 7 for a
predefined depth and collect the set R of nodes having fanouts outside of this transi-
tive fanout cone. Then, we find a cut C € CuTS(R) supporting R and perform circuit
simulation to obtain the local functions fr of nodes in R in terms of C. After adding
a temporary inverter at the output of n, we perform another simulation to obtain fj.
Finally, we compare the two simulation results to identify the minterms where fr and
[have identical values, which are the ODCs with respect to 7.

21

Chapter 2 Background

2.3.3 Exact Synthesis and Databases

Although the problem of finding the smallest circuit implementing a given logic function is
intractable, it can still be solved for smaller functions with about less than 10 input variables.
Such algorithms are called exact synthesis. Since exact synthesis algorithms have high runtime
complexity, small optimum circuits are often pre-generated and saved in a database, so that
they can be retrieved quickly during logic optimization. Such databases usually contain one
or more implementations of all functions or a subset of practical functions up to a certain
number of inputs. NPN classification is often used to reduce the number of entries because
functions in the same NPN class (i.e., functions differ by input negation, input permutation,
and/or output negation) may share the same optimum circuit.

There are two main approaches for database generation: SAT and enumeration. SAT-based
exact synthesis encodes the question “Does a network with r gates that implements function
f exist?” as a CNF formula and uses a SAT solver to find a feasible solution. In the formulation,
Boolean variables are used to encode the interconnections between gates and the functions
of each gate. The number of gates r is a fixed assumed value, which also affects the number
of variables and clauses in the formula. To find the smallest network, we start from a smaller
value of r, increase it if the formula is UNSAT, and solve iteratively until a feasible solution is
found. An optimum database can also be generated by enumerating all possible circuits and
recording the smallest ones seen for each NPN class [Lee+19].

2.4 Modern Logic Synthesis Algorithms

2.4.1 Algebraic and Boolean Methods
Algebraic Methods: Polynomial-Algebra-Based Optimization

Algebraic methods are one of the earliest approaches to optimizing logic circuits. These meth-
ods represent Boolean functions symbolically and treat them as polynomial expressions, for
example in the SOP form. Inspired by polynomial algebra, operations like division, substitu-
tion, and common sub-expression extraction are developed for Boolean functions written in
the polynomial form. These operations form the basis for decomposition and simplification
algorithms such as kernel extraction, factorization [Bra82], balancing [Mis+11a], refactor-
ing [Haa+18], and algebraic rewriting [YCM17]. Although simple and fast, algebraic methods
neglect the Boolean nature of logic functions and thus miss some optimization opportunities.

Boolean Methods: Don’t-Care-Based Optimization

In contrast to algebraic methods, Boolean methods often achieve better optimization quality
because they consider the flexibilities of the network. In other words, they incorporate some
form of don’t-care computation and utilize don’t-care conditions to find more optimization

22

Background Chapter 2

opportunities. Modern logic optimization algorithms are mostly don’t-care-based, and the
key to scalable implementations is efficient don’t-care computation. The remainder of this
section introduces some common Boolean methods.

2.4.2 Cut Rewriting

Cut rewriting (or simply rewriting) is a peephole optimization algorithm that leverages a
database of small optimum circuits. It works by enumerating k-feasible cuts (where k is
usually 4) for each node in the network, simulating each cone to obtain the local functions,
looking up in the database, choosing the best cut that gives the most gain, and replacing the
chosen cone with the optimum implementation in the database [MB06]. The algorithm is
said to be DAG-aware because when evaluating the potential gain of each replacement, it is
aware of the fact that the network is a structurally hashed DAG and that structurally equivalent
nodes can be shared [MCB06; RMS20; Rie+19a].

2.4.3 Boolean Resubstitution

Boolean resubstitution (or simply resubstitution) aims at reducing the size of a logic network
by trying to resynthesize each node using existing nodes in the network. For each node in a
network, called the root, the algorithm tries to find a smaller replacement for the MFFC of
the root. If the root node is replaced and deleted, all nodes in its MFFC can also be deleted,
reducing the size of the network. Resubstitution is also classified as a peephole optimization
algorithm.

The replacement for the root node, called the dependency circuit, is built upon a set of poten-
tially useful nodes existing in the network, called divisors. A divisor should not be in the TFO
cone of the root, otherwise the resulting network would be cyclic. It should also not be in the
MFFC because nodes in the MFFC are to be removed after resubstitution. Nodes depending
on primary inputs that are not in the TFI of the root node can also be filtered out from the set
of divisors because their functions are unrelated to that of the root node. In practice, to keep
the runtime reasonable, windows constructed with k-feasible cuts are often used to collect
the divisors.

A resubstitution candidate (also abbreviated as a candidate) is either a divisor itself or a single-
output function, named the dependency function, built with several divisors. In the latter case,
the candidate is represented by the top-most node of the dependency circuit. A resubstitution,
or simply substitution, is a pair (r, ¢) of a root node r and a resubstitution candidate ¢, and it is
said to be legal if replacing r with ¢ does not change the functions of any PO. Otherwise, the
resubstitution is said to be illegal.

Research in Boolean resubstitution techniques dates back to the 1990s [Sat+91; KS98]. In the
2000s, efforts were made to improve the scalability of BDD-based computations [KK04] and to
move away from BDDs to simulation and SAT solving [Mis+06b; Mis+11b]. In [Mis+06b], the

23

Chapter 2 Background

dependency function is computed by enumerating its onset and offset cubes using SAT and
interpolation [Cra57], where random simulation is used for the initial filtering of potentially
useful divisors. In [Mis+11b], structural analysis (windowing) was introduced to speed up
the algorithm further. Windowing is used to limit the search space and the SAT instance size,
with the inner window as a working space, and the outer window as the scope for computing
don’t-cares.

An efficient Boolean resubstitution algorithm for AIGs using windowing was presented in
[MBO06]. It relies entirely on truth table computation, without any use of BDDs or SAT. The
search for divisors is limited to a window near the root node, which is constructed from
a size-limited cut to allow exhaustive simulation. The node functions in the window are
expressed in terms of the cut nodes. The dependency function is not computed as a separate
step after minimizing its support, as in [Mis+11b]. Instead, simple dependency circuits of up
to three AND gates are explicitly tried for resubstitution using several heuristic filters. This
windowing-based and truth-table-based resubstitution framework has been generalized for
many different gate types including majority gates [Rie+18] and complex gates [Ama+18].

2.4.4 Technology Mapping

After technology-independent logic optimization is performed on homogeneous network data
structures, technology mapping is required as the last step in logic synthesis to transform
the network into one that is compatible with the underlying technology for fabrication. For
example, for an application-specific integrated circuit (ASIC), logic gates must be chosen from
a library where a transistor-level circuit design for each gate is available. In contrast, for FPGA
synthesis, a graph consisting of look-up tables (LUTs) with no more than a certain number
(k) of inputs, called a k-LUT network, is needed. The latter case requires a LUT mapping
algorithm, which is a special case of technology mapping [CD94a; CD94b; MCB07; CM10;
Ray+12].

A technology mapping algorithm maps from a subject graph, which is the input to the algo-
rithm, into a mapped graph, which is the output of the algorithm. In [Tem+22], a versatile
mapper was developed, which is capable of mapping from any subject graph into a mapped
graph using any library. Cuts are often enumerated in technology mapping to compute local
functions in the subject graph, which are then used to choose suitable gates from the library
to substitute the cuts in the mapped graph. Along the mapping process, optimizations on area
or delay can be performed. For LUT mapping, it has been shown that optimal delay can be
achieved in linear time [CD94a].

2.4.5 Combinational Equivalence Checking

Combinational equivalence checking (CEC) is the problem asking whether two (combinational)
logic networks are functionally equivalent. A miter network is often constructed in the process

24

Background Chapter 2

Table 2.1: Symbols and special functions used in this thesis.

Symbol Meaning

Logic operator NOT

Logic operator AND

Logic operator OR

Logic operator XOR

Logic operator XNOR

MAJ(-) Majority-vote function

MUX() 2-to-1 multiplexing function

FI(9) Set of fanins of a node

FO(") Set of fanouts of a node

ONES() The number of 1-bits in the truth table of a function
CuTs(-) The set of cuts of a node or a set of nodes
d() The depth of a network

1 & < > 1

of solving a CEC problem. A miter of two networks N; and N, having the same number
of PIs and the same number of POs is a network N,, consisting of N} and N,, where the
corresponding PIs in N} and N, are connected to the same PI of N, the corresponding POs of
Nj and N, are pair-wisely fed into XOR gates, and the XOR gates are then fed into one OR gate,
whose output is the only PO of N,,,. The miter network outputs 1 if and only if there exists
an input assignment such that N; and N, compute different values in at least one PO. The
CEC problem is equivalent to asking whether the miter of two networks produces a constant-0
output.

When the number of PIs is small, CEC can be solved by exhaustive simulation of the miter
network. Otherwise, SAT solvers are often used to formally prove that the miter produces
constant-0 output by asking whether there exists an input assignment such that the miter
output is 1. To facilitate SAT solving and reduce runtime, the miter network can be optimized
first to reduce its size. This is why CEC is often studied together with other logic optimization
problems.

In [Mis+06a], further improvements to CEC are proposed. Instead of proving the entire miter
network, which is often big, the authors propose to use random simulation to identify potential
equivalent nodes and leverage them as stepping stones.

2.5 List of Symbols and Common Variables

Symbols for logical operations and some special functions used in this thesis are listed in
Table 2.1. Also, certain variables have a fixed meaning throughout the thesis and are listed in
Table 2.2.

25

Chapter 2

Background

Table 2.2: Variables with a fixed meaning in this thesis.

Variable

Meaning

I IS

RO~ =

Boolean domain

A Boolean function

Anode

Cut size or number of variables

User-specified maximum size of dependency circuits in resubsti-
tution and resynthesis algorithms

A logic network

Set of PIs

Set of POs

Set of divisors (Chapters 3 and 4) or set of gates (Part II)
Dependency circuit (Chapters 3 and 4)

Set of buffers (Part II)

A schedule (Part II)

2.6 Summary

In this chapter, we introduced the foundation of contemporary logic synthesis, from mathe-

matical abstractions and data structures to model Boolean logic to powerful computational

tools and efficient algorithms for structural analysis and don’t-care computation. These ba-

sic concepts are important to the scalability of logic synthesis systems nowadays. We also

presented prominent examples of modern logic synthesis algorithms commonly used in aca-

demic as well as commercial tools. Based on these, the remainder of this thesis proposes novel

frameworks and algorithms to further advance the efficiency and QoR of logic synthesis flows.

26

Contemporary Logic Synthesis

27

8] Simulation-Guided Paradigm

3.1 Motivation

As the size and complexity of digital circuits grow, there is often a trade-off between efficiency
and quality. Algebraic methods, as well as other local search methods such as structural analy-
sis and window simulation, are efficient but often sacrifice optimality. In contrast, Boolean
methods usually achieve better quality at the cost of solving NP-hard Boolean problems using
a BDD package in earlier research or a SAT solver in more recent literature.

To balance between the two extremes, circuit simulation is often used in Boolean methods as
an efficient approximator of the Boolean functions embedded in logic networks. In functional
reduction [Mis+05], random and guided simulations are used to identify equivalent nodes and
merge them. In combinational equivalence checking [Mis+06a], simulation is also used to find
cut-points between two networks that serve as stepping stones for the proof of equivalence
at the primary outputs. However, if the simulation is not exhaustive, formal verification,
which is usually done with SAT-solving, is still required [Mis+06b]. In [MB05; Mis+06b], a
combination of random simulation and SAT solving was proposed to compute flexibilities
(don’t-cares) of Boolean networks within a window and to compute the dependency function
in resubstitution.

Motivated by the efficacy of these techniques adopting random simulation, in this chapter, we
introduce the simulation-guided paradigm for logic synthesis and verification, where efforts
are made in pre-generating a set of high-quality, expressive simulation patterns to further
strengthen the power of simulation. By increasing the expressive power of the simulation
patterns, synthesis and verification algorithms become more efficient, and the extension
of the search space in optimization algorithms becomes more affordable. The underlying
hypothesis, which is confirmed by experimental results, is that expressive simulation patterns
can be amassed for a logic network and used later as an efficient filter to avoid unnecessary
SAT solver calls.

Moreover, these patterns can be reused multiple times to speed up logic synthesis and verifi-

29

Chapter 3 Simulation-Guided Paradigm

cation for the same or a similar network in various applications. Inspired by the success of
counter-example-guided abstraction refinement (CEGAR) in the domain of software model
checking [Cla+00], the simulation-guided paradigm also refines the pre-generated patterns
throughout the process of logic synthesis with counter-examples generated by SAT solving.

The proposed paradigm is useful for algorithms dominated by expensive Boolean computa-
tions. Two representative applications are presented in this chapter: Boolean resubstitution
(introduced in Section 2.4.3) and combinational equivalence checking (introduced in Sec-
tion 2.4.5). We assume in this chapter that the underlying data structure for logic networks is
AIG, as it is widely used in logic synthesis. Nevertheless, this paradigm can also be applied
to other types of homogeneous logic networks, such as MIGs and XAGs, as well as mapped
networks such as k-LUT networks [MCBO07].

3.2 Overview

The simulation-guided paradigm is proposed and described in Section 3.3. As a core com-
ponent of the paradigm, strategies to generate simulation patterns based on stuck-at-value
testing [CR88] and observability checking [DD90], as well as a bit-packing technique to com-
press the generated patterns, are presented in Section 3.4.

In Section 3.5, the first representative application of the proposed paradigm, simulation-
guided Boolean resubstitution, is demonstrated. The classic resubstitution algorithm iterates
over the nodes in a logic network and attempts to re-express their functions using other
nodes in the network. In simulation-guided resubstitution, nodes fed into the resynthesis
engine are represented by their simulation signatures, and a SAT solver is used to validate
the computed resubstitution candidates. Using expressive simulation patterns, most illegal
candidates can be quickly identified and ruled out within the engine by simply comparing sim-
ulation signatures, without the need for SAT-based validation. Experimental results show that
simulation-guided resubstitution allows user-specified tuning of the efficiency-quality trade-
off and improves optimization quality by considering a larger search space while maintaining
reasonable efficiency. Compared to a state-of-the-art AIG resubstitution algorithm [MBO06],
the average reduction in the number of AIG nodes improves from 3.65% to 5.90%.

In Section 3.6, the second representative application, simulation-guided equivalence checking,
shows that expressive simulation patterns are also useful in verification. Similarly, simulation-
guided CEC leverages the expressive patterns generated in earlier synthesis stages to disprove
more non-equivalent nodes than random simulation can do, thus reducing the effort needed
in SAT-based formal verification. In our experiment, a 9.5% reduction in the number of SAT
calls is achieved when expressive patterns are used in CEC.

This motivates us to study what makes simulation patterns expressive and profile different pat-
tern generation strategies, including random simulation, the proposed stuck-at-value-based
and observability-based methods, and combinations of these. In Section 3.7, we test and com-

30

Simulation-Guided Paradigm Chapter 3

pare the expressive power of various simulation pattern sets. In the process of resubstitution
and CEC, pre-computed simulation patterns can be refined further with the counter-examples
generated by SAT-solving. The generated patterns and the supplemented counter-examples
can be reused in two schemes: across different algorithms, such as resubstitution followed by
CEC, and across different versions of the same design. Reusability in the latter case is verified
with experiments on engineering change order (ECO) [Jar+11] benchmarks, which are similar
networks with functional modifications.

3.3 The Simulation-Guided Paradigm

This chapter introduces a new paradigm for logic synthesis and verification that exploits
fast bit-parallel simulation to reduce the number of expensive NP-hard equivalence checks
based on SAT. The rationale behind the idea is to pre-compute a set of simulation patterns
for a given logic network, which can efficiently rule out most non-equivalences by simply
comparing simulation signatures. Motivated by the fact that detecting and verifying functional
equivalence are the major tasks in many logic optimization (especially Boolean methods) and
verification algorithms, we define expressive simulation patterns as follows.

Definition 3.1. A non-exhaustive set of simulation patterns for a logic network is said to be
expressive if the simulation signatures obtained by simulating the patterns can be used to
pair-wisely distinguish functionally non-equivalent nodes that either already exist in the logic
network or can be derived from some existing nodes. |

The exhaustive set of simulation patterns satisfies the latter part of this definition, but this
is typically too large for logic networks with 16 or more primary inputs. In practice, only
expressive simulation patterns that can be efficiently stored and simulated using less than,
say, a few hundred or thousand bits are of interest.

We assume that, for a given logic network of interest, a set of expressive simulation patterns
with size proportional to the network size can be found. This means that the expressive
simulation patterns can be pre-computed, stored, and reused by different logic synthesis
or verification algorithms when applied to the same network, or by the same algorithm
when invoked multiple times with slightly different networks. The assumption is verified
with experimental results in Section 3.7 by showing pattern reusability after ECOs, which
are typically small functional modifications to networks under design [Jar+11]. With this
assumption, we claim that the time needed to generate the expressive patterns is not critical
because they will be reused many times such that the benefits are more substantial.

Figure 3.1 illustrates the proposed simulation-guided paradigm. For each design (named
designl), a set of expressive simulation patterns is generated once (designl.pat) and is
used several times in the logic synthesis and verification flow. The same pattern set is also
applicable for various versions of the design with functional modifications (designl_v1,
designl_v2, etc.). When the pattern set is used in one of the simulation-guided algorithms, it

31

Chapter 3 Simulation-Guided Paradigm

Pattern Generation h
:> CEXs

\) designl.pat

CEXs

5 Simulation-Guided
—_
\ o .
Simulation-Guided Logic Synthesis Verification

Equivalence
Checking

designl_vl.v

Design
Change
(ECO) designl_v2.v

designl_v2_o,

Figure 3.1: The simulation-guided logic synthesis and verification paradigm.

is supplemented and refined with the counter-examples (CEXs) generated as side-products
during the execution of the algorithm. The blocks shaded in grey are implemented and
described in this chapter. While other logic synthesis algorithms may also benefit from
adopting the paradigm (the blank blocks in the figure), we present only resubstitution and
CEC as examples in this chapter.

Expressive simulation patterns cannot be derived directly from the Boolean functions of
the primary outputs, but must account for some structural information of the network. An
intuitive explanation of this observation is that a PO function can be implemented by a large
number of structurally different logic networks. Despite this, the idea of reusing simulation
patterns in multiple optimization or verification runs is still valid because the initial structure
of the network often is determined by high-level synthesis and later carefully fine-tuned
by logic optimization. Consequently, only a small fraction of closely related structures are
encountered during logic optimization and the final verification of the network.

The proposed simulation-guided paradigm can be adopted by algorithms dealing with the
Boolean relation among nodes in logic networks. For example, in Boolean resubstitution,
simulation signatures can be used as an approximation of node functions when finding resub-
stitution candidates. This way, restriction to local windows is avoided and global information
is utilized at a low cost. As simulation patterns are already generated for the optimization algo-
rithms prior to verification, reusing them in CEC comes at no extra cost. With their stronger
ability to distinguish non-equivalent nodes without SAT solving, the overall number of SAT
calls in CEC can be reduced. The paradigm is potentially suitable for other algorithms, such
as the computation of structural choices [Cha+06], to improve the quality of mapping and
gate matching between several versions of the same logic network. Furthermore, the resulting
patterns can also be used in automatic test pattern generation (ATPG) [Rot66] and in circuit
reliability analysis [CM10].

To conclude, simulation signatures are used as efficient approximations of node functions
to reduce NP-hard equivalence checks. As they may not cover all circuit states under all

32

Simulation-Guided Paradigm Chapter 3

possible input assignments, formal verification (in this chapter, by SAT-solving) is inevitable
in simulation-guided algorithms. As byproducts, counter-examples in terms of PI value
assignments, i.e., new simulation patterns, are generated. To reduce unnecessary SAT-solving,
we seek to increase the accuracy of such approximation by partial simulation. On one hand,
we propose to pre-generate an expressive pattern set to be reused across multiple optimization
runs and across different algorithms, and we study methods to ensure the good quality of these
patterns in the first place. On the other hand, motivated by the success of various counter-
example-guided logic synthesis and verification works [Cla+00; AA20; Mis+05; Mis+06b], we
propose to collect and keep the counter-examples generated by different algorithms and use
them to enhance the initial pattern set.

3.4 Simulation Pattern Generation

Following the previous section, several strategies to generate expressive simulation patterns are
formulated in this section. Two types of patterns are used as the basis: random patterns which
are random values generated with equal probability of 0 or 1 for each primary input, and stuck-
at patterns which are generated by trying to distinguish each node from constant functions 0
and 1. Generating random patterns is straightforward. The procedure to generate stuck-at
patterns is described in Section 3.4.1. Then, in Section 3.4.2, an observability-based method
to strengthen stuck-at patterns is elaborated. Finally, a bit-packing method to compress the
pattern set is explained in Section 3.4.3.

3.4.1 Stuck-at Values

In random simulation, the possibility of a certain bit value (0 or 1) appearing in the simulation
signature of some nodes in the network may be relatively low. For example, a 2-input AND gate
only produces 1 when both of its fanins are 1, which is of 25% possibility if the fanin values
are randomly assigned. However, a value of 1 at this node may be necessary for disproving
some non-equivalence. Thus, we refine the set of simulation patterns by asserting that every
node has both values appearing in its simulation signature. If only one value occurs, a new
simulation pattern is created by solving a SAT problem, which forces the node to have the
other value. This procedure is described in Algorithm 3.1, named StuckAtCheck.

In lines 1-2, we start with a small set of random simulation patterns and simulate the network
to get the initial simulation signatures of each node. A SAT solver is also initialized and loaded
with the CNF clauses translated from the network in lines 3-4. Then, for each node in the
network (line 5), if 0 or 1 does not appear (line 6), we try to generate a pattern by assuming
the missing value and solving the SAT instance (lines 7-11). If the solver finds a satisfying
assignment, the desired pattern is generated (lines 12-13). In an un-optimized network, there
may be nodes that never take one of the values and the solver will conclude that the problem
is unsatisfiable (line 14). These nodes can be replaced by a constant node in line 15. If the
solver times out or a given conflict limit is exceeded, we simply skip the node and continue

33

Chapter 3 Simulation-Guided Paradigm

Algorithm 3.1: StuckAtCheck: Expressive simulation pattern generation based on stuck-at
values.
Input: A logic network N
Output: A set S of expressive simulation patterns
1 S — A small set of random patterns
2 N.simulate(S)
3 initialize Solver
4 Solver.generate_CNF(N)
5 foreach noden in N do

6 | if n.signature=0 or n.signature =1 then
7 if n.signature = 0 then
8 ‘ Solver.add_assumption(n)
9 else
10 ‘ Solver.add_assumption(—n)
11 result — Solver.solve()
12 if result = SAT then
13 ‘ S — S U {Solver.pi_values}
14 else if result = UNSAT then
15 ‘ Replace n with constant node.
16 return S

the process with the next node.

The pattern set can be further strengthened by assuring both values appear multiple times
(for example, at least 10 times) in the signature of every node. This can be done by running the
SAT solver multiple times while making sure it takes different computation paths.

An example is shown in Figure 3.2. In this example, a simulation pattern is a value assignment
to X = (a, b, c). Suppose there are two random patterns in the initial set S = {000,110}. A
simulation signature of a node is the bit-string of simulation results under each patternin S, in
the same order. After simulation, the simulation signature obtained for node n is 00, where 1
does not appear. Hence, by asserting n = 1 and solving SAT, procedure StuckAtCheck generates
anew pattern 011 and adds it to the end of S. Now, the simulation signature of 7 is 001.

3.4.2 Observability

Due to the existence of observability don't cares, there may be some simulation patterns that
are unobservable with respect to an internal node; these patterns are possibly less useful
in disproving non-equivalence. Here, two cases are identified where a generation or re-
generation of an observable pattern may be done:

¢ Case 1: In StuckAtCheck when a node is stuck at a value, and a new pattern is generated
to express the other value, but this pattern is not observable.

34

Simulation-Guided Paradigm Chapter 3

Figure 3.2: Example network for pattern generation methods.

e Case 2: A node assumes both values, but for all the patterns under which the node
assumes one of the values, it is not observable.

The first case is identified during StuckAtCheck. Whenever a new pattern is generated (line
13), its observability with respect to the node n is checked according to the definition (Equa-
tion (2.11) in Section 2.3.2) with the following steps:

1. Simulate the network to obtain the PO values under this pattern.

2. Flip the simulation value at the output of 7 and simulate its TFO cone again.

3. Check if all of the PO values remain the same. If so, the pattern is unobservable.

=~

. Restore the value of n and simulate the TFO cone again.

This procedure is similar to how observability don't cares are computed. Step 4 is only needed
if the data storage of simulation signatures is shared and reused across different procedures
throughout the pattern generation process, which practically enhances efficiency by reducing
re-simulations.

The second case is checked after procedure StuckAtCheck is completed. We iterate over all the
nodes in the network again and check if, for each node, there are at least two patterns that are
observable with respect to the node and the node assumes 0 and 1 respectively under the two
patterns. The procedure to check whether each pattern is observable is the same as described
above.

To resolve unobservable patterns, a procedure ObservablePatternGeneration is devised, which
generates an observable simulation pattern X with respect to a given node n and makes sure

35

Chapter 3 Simulation-Guided Paradigm

TFI; TFI,

Figure 3.3: Corresponding network of the CNF instance to be built in procedure ObservablePat-
ternGeneration.

that n expresses a specified value v under X. This procedure builds a CNF instance, whose
corresponding network is shown in Figure 3.3. In Figure 3.3, the lower two triangles TFI; and
TFI, are the TFI cones of the two fanins of node n. 7 is created and connected to the same TFI
cones as n. The TFO cone of n is duplicated (the upper two triangles) and the counterpart is
connected to 7. Primary outputs in the two TFO cones are matched and connected to XOR
gates, and the XOR gates are fed to an OR gate, forming a miter. The output value of the miter
is asserted to be 1 and the output value of node 7 is asserted to be v. Then, the CNF instance is
solved by a SAT solver. If the instance is SAT, an observable pattern is generated (Lemma 3.1),
and we say that the originally unobservable pattern is resolved. Otherwise, if the solver returns
UNSAT, n is found to be unobservable with value v and can be replaced by the constant node
in the respective polarity (Lemma 3.2).

Lemma 3.1. A satisfying input assignment X in the network of Figure 3.3 is an observable
pattern with respect to node n.

Proof. By definition, X is observable with respect to 7 if the value of at least one of the primary
outputs of the network under X is different when n is replaced by 7. This condition is ensured
by the miter of the TFO cones of n and 7 in Figure 3.3. O

Lemma 3.2. Ifa node n is never observable with value v (v € {0, 1}), then it can be replaced by
constant —v without changing the network function(s). That is, there does not exist a primary
input assignment X, such that one of the primary outputs has different values in the original
network and in the modified network.

36

Simulation-Guided Paradigm Chapter 3

Proof. Assume the opposite: there exists a primary input assignment X, such that at least
one of the primary outputs has a different value after replacing n with —v. If the value of n is
—v under X, all node values in the network, including primary outputs, remain unchanged
if n is replaced by —v. If the value of n is v under X, because n is not observable with v, all
primary outputs remain at the same value when the node value of n changes to 77 = —v, which
contradicts the assumption. O

In order to limit the computation in large networks, the TFO in Figure 3.3 is practically
restricted to a depth. In this case, all the leaves of the cone should be XOR-ed with their
counterparts to build the miter. Note that restricting the TFO depth weakens the definition of
observability, but is essential for scalability. Empirically, using a depth of 5 is shown to be a
good tradeoff between quality and runtime.

After an observable pattern X is generated, in Case 1, we can replace the pattern generated by
StuckAtCheck with X. In Case 2, we simply add X to the set of patterns.

We continue with the example in Figure 3.2 with three patterns in the set S = {000,110,011}.
By checking the observability of each pattern, it is found that only 110 is observable and the
value of n under this pattern is 0. Hence, procedure ObservablePatternGeneration generates
another pattern 101 making n = 1. This pattern is indeed observable because flipping the
value of n from 1 to 0 also makes the PO value f change from 1 to 0.

3.4.3 Bit-Packing

For some large benchmarks with many primary inputs, the size of the generated pattern set
can be large, slowing down simulation. In the field of ATPG, test patterns are often compressed
by first identifying care and don’t-care bits in them [MKO06]. The set of care bits in a test pattern
is the set of PI values that contribute to detecting a certain fault, while the don'’t-care bits are
the PIs that can be assigned to any value. We integrated a similar technique in our simulation
pattern generation.

Similar to test pattern compression, the care bits in a simulation pattern are the PI values that
contribute to proving that the node is not stuck-at and in fact observable at one of the outputs.
During simulation pattern generation with the previously described methods, care bits are
identified by a simple structural support analysis, which highlights control paths from the
inputs to the target node, and from the target node to at least one output where it is observed.

After generating several patterns, the pattern set is compressed by trying to pack each new
pattern into one of the preceding patterns. Two patterns can be packed together if their care
bits do not overlap. To pack a pattern p; into another pattern p,, the care bits of p; are written
into don’t-care bits of p,, and these bits are marked as cares in p,.

37

Chapter 3 Simulation-Guided Paradigm

3.4.4 Discussion

In this section, we illustrate methods to derive an initial set of expressive patterns serving as
the basis of the simulation-guided paradigm. Starting from a mixture of random patterns
and stuck-at patterns as the basis and depending on the computation effort taken by the
pattern generation phase, observability checks can be applied to strengthen or append the
pattern set. It may seem, from the algorithms, that each pattern is generated for a specific
node in the network, which may be removed later during logic optimization and the pattern
becomes useless. However, we argue that this is not a problem because even random patterns
play an important role in this paradigm, as shown in our experimental results. Moreover,
it is practically inefficient to keep track of which pattern is generated for which node and
which patterns are still useful, especially after bit-packing. As another piece of evidence, our
experimental results on ECO benchmarks show that the generated patterns are as useful for
a functionally modified network even if they are generated with the original version of the
design.

3.5 Simulation-Guided Resubstitution

In this section, the simulation-guided paradigm is demonstrated with Boolean resubstitution
as an example application in logic synthesis. The main difference of our algorithm, compared
to a state-of-the-art resubstitution algorithm [MBO6], is in the representation of the divisors.
Instead of using the complete truth table of the local function of the node, we use the simula-
tion signature approximating the global function of the node. The algorithm consists of the
following steps:

1. Generation of a set of expressive simulation patterns, as described in Section 3.4.

2. Simulation of the network with these patterns to obtain simulation signatures for each
node.

3. Iterating over all nodes in the network and calling the currently chosen node the root
node. Estimating the gain by computing the root node’s MFFC and collecting the divisors.
Skipping the node if the gain is too small or if there are no divisors. Details of this step
are described in Section 2.3.1.

4. Searching for resubstitution candidates in terms of dependency functions using simula-
tion signatures. Details of this step are described in Chapter 4.

5. Validating the resubstitution with SAT solving by assuming non-equivalence. An UN-
SAT result validates the resubstitution, while a SAT result provides an input assignment
under which the optimized network is not equivalent to the original network. In the
latter case, the counter-example is added to the set of simulation patterns.

6. Iterating starting from Step 3, until all nodes in the network have been processed.

38

© o N e G s W N -

11
12
13
14
15

Simulation-Guided Paradigm Chapter 3

Algorithm 3.2: SimResub: One iteration of Steps 4 and 5 in simulation-guided Boolean
resubstitution.
Input: A root node n in a simulated network N, its MFFC MFFC, and a set G of divisors
Output: A legal (verified) candidate to substitute n, if exists
initialize Solver
Solver.generate_ CNF(N)
while TRUE do
H — resynthesize(n, G, min{| MFFC|, m})
if H # NULL then
result — Solver.verify(n, H) // Detailed in Algorithm 3.3
if result = TRUE then
‘ return H
else if result = FALSE then
‘ N.re_simulate()
else
‘ break

else
‘ break
return NULL

Simulation of the entire network in Step 2 enables better incorporation of global satisfiability
don’t cares without extra cost, which allows more optimization potential compared to the
windowing-based approach as in [MB06]. The collection of counter-examples in Step 5
expands the simulation pattern set, which further improves the efficiency of later optimization
runs. In the remainder of this section, we focus on Steps 4 and 5, shown in Algorithm 3.2,
which differ the most.

A SAT solver is initialized and the CNF clauses encoding gate logic are generated and added
to the solver in lines 1-2. In line 4, a simulation-signature-based resynthesis algorithm is
used to find a dependency circuit of up to m* nodes, where m* is the smaller value among
a user-specified parameter m and the size of the MFFC. Procedure resynthesize heuristically
searches for a minimum-node AIG implementation H of the target function f; using a set of
divisors G as PIs. Both the target function and the divisors are represented by their simulation
signatures. The PO of H should have the same signature as the given target f;. Details of the
underlying algorithm are described in Chapter 4.

Since the simulation signatures are an approximation of the node’s function, the resubstitution
candidate needs to be formally verified. Procedure verify in line 6 uses the SAT solver to try
to find a pattern, under which nodes n and H,;; have different values. This is detailed in
Algorithm 3.3. The resubstitution is legal if the solver returns UNSAT (lines 4-5 in Algorithm 3.3
and lines 7-8 in Algorithm 3.2); otherwise, a new pattern is added to the set and the network is
re-simulated if the solver returns SAT (lines 6-8 in Algorithm 3.3 and lines 9-10 in Algorithm 3.2).
Note that if the simulation signatures are stored as sequences of multiple machine words, a new

39

© N U e W N -

Chapter 3 Simulation-Guided Paradigm

Algorithm 3.3: Solver.verify: Verify a resubstitution candidate using a SAT solver.
Input: A root node 7 in a simulated network N, and a dependency circuit H with some
nodes in N as PIs and H,,; as PO
Output: Whether it is legal to substitute n with H
Solver.generate_ CNF(H)
Solver.add_assumption(literal(n) & literal(Hyyy))
result — Solver.solve()
if result = UNSAT then
| return TRUE
else if result = SAT then
N.add_pattern(Solver.pi_values)
return FALSE
return UNKNOWN

pattern is appended to the end of the last word and only this word needs to be re-computed
because the other words remain the same. With the appended signatures, resynthesize gives
a different result in the next invocation. The process continues until one resubstitution is
validated (lines 7-8), or the SAT solver times out (lines 11-12), or until the engine cannot find
another candidate dependency function (lines 13-14).

3.6 Simulation-Guided Equivalence Checking

CEC after logic synthesis can benefit from the simulation information collected and used for
logic optimization. This is because, in the process of CEC [Mis+06a], one of the major tasks
is disproving candidate equivalences, which relies on SAT-solving when counter-examples
cannot be easily found with random simulation. The pre-computed expressive simulation
patterns provided to the CEC engine can be used to disprove many of the non-equivalent
nodes directly without any SAT-solving.

The command &cec in ABC!' [BM10], which is an improved version of cec [Mis+06a], compares
AIGs derived from two versions of the design presented for CEC. Internally, it generates
random simulation patterns iteratively to detect candidate equivalent pairs and filter out
non-equivalent nodes. Random simulation is repeated until no more refinement can be made,
i.e., no more non-equivalent nodes being distinguished. Then, a SAT solver is called to formally
prove the equivalence pairs by assuming non-equivalence, similar to the verification procedure
in the resubstitution algorithm presented in the previous section. If the solver returns UNSAT,
the equivalence pair is formally proved; otherwise, if the solver returns SAT, a counter-example
is generated. The counter-example disproves the given candidate equivalence and potentially
other unproven ones.

We implemented simulation-guided CEC by modifying command &cec to use pre-generated

1 Available: github.com/berkeley-abc/abc

40

github.com/berkeley-abc/abc

Simulation-Guided Paradigm Chapter 3

patterns instead of generating random patterns. This can be useful when the design is op-
timized with the proposed paradigm, for example, the simulation-guided resubstitution
developed in this chapter, so that an expressive set of patterns pre-generated, and maybe
even supplemented with the counter-examples generated during optimization, is already in
hand. Without any extra cost, the patterns can be reused in CEC to reduce SAT calls disproving
equivalence.

3.7 Experimental Results

In Sections 3.7.1 and 3.7.2, we first investigate the expressiveness of simulation patterns gener-
ated using different methods by comparing the number of counter-examples encountered
in resubstitution. After finding a good strategy, we use it to generate a pattern set to be used
for other experiments and report its size before and after bit-packing in Section 3.7.3. Then,
Section 3.7.4 demonstrates how an expressive pattern set makes a shift in runtime from op-
timization to pattern generation, and Section 3.7.5 confirms the reusability of patterns for
functionally-modified networks with a set of ECO benchmarks. Finally, the advantages of
simulation-guided resubstitution and simulation-guided equivalence checking are shown in
Sections 3.7.6 and 3.7.7, respectively.

The experiments are performed on a Linux machine with Xeon 2.5 GHz CPU and 256 GB RAM.
The OpenCore designs from IWLS’05 benchmark? are used in all experiments, except for those
in Section 3.7.5. When generating the patterns and testing the quality of resubstitution and
equivalence checking in Sections 3.7.3, 3.7.4, 3.7.6 and 3.7.7, the benchmarks are preprocessed
with redundancy removal by iterating command ifraig in ABC until no reduction in size.
The results for the preprocessed benchmarks are reported in Table 3.1. The preprocessed
benchmarks and the simulation patterns used can be found online®.

3.7.1 Size of Simulation Pattern Set

Intuitively, the more simulation patterns used, the higher the chance that the paradigm saves
time by not attempting to prove non-equivalences, i.e., a larger set of simulation patterns is
expected to be more expressive. Following the definition of expressive patterns in Section 3.3,
we measure the expressive power of a pattern set using the percentage decrease, as compared
to a baseline set, in the number of counter-examples encountered in resubstitution, which
is calculated separately for each benchmark. Different from the resubstitution framework
described in Section 3.5, the counter-examples are not added to the simulation set, to isolate
the impact of the provided patterns.

We start by investigating the expressive power of random patterns based on their count. In
Figure 3.4, each bar represents how expressive a pattern set of the respective size is, compared

2Available: iwls.org/iwls2005/benchmarks.html
3Available: github.com/Isils/sim-LSV_exp

41

iwls.org/iwls2005/benchmarks.html
github.com/lsils/sim-LSV_exp

Chapter 3 Simulation-Guided Paradigm

Expressive power of random patterns

100 - - - - =
90 —
80
= 70
g 60
- 50
(0]
2 40
5 30
R 20
10
0
> \ad > v & D &
EN N PN & < S
L ‘& 59& g,%& §°/

m#pat=16 W#pat=64 M#pat=256 W#pat=1024 D#pat=4096 O#pat=16384

Figure 3.4: Decreased percentages of counter-examples when provided with different number
(#pat) of random simulation patterns, compared to the baseline #pat = 4.

to the baseline of using only four simulation patterns. The smaller sets are subsets of the
larger sets to avoid the biasing effect of randomness. Since the trend is similar for each
benchmark, only some medium-sized benchmarks (with around 10 to 20 thousand nodes)
are shown here. As the size grows by a factor of four (leading to 4, 16, 64, etc. patterns), the
expressive power increases very fast at first, as expected, but saturates at a few hundred to
a few thousand patterns. Fortunately, a thousand patterns is still a practical size, for which
bit-parallel simulation runs fast.

A similar phenomenon is observed when patterns are generated by StuckAtCheck. As discussed
in Section 3.4.1, additional patterns can be used to ensure that every node has at least b bits of
0 and b bits of 1 in its signature. In the following experiments, stuck-at patterns are abbreviated
as “s-a”, with a prefix “bx” listing parameter b. In Figure 3.5, since the stuck-at pattern counts
are different for each benchmark, the pattern set size is normalized to the network size and
plotted in the logarithmic scale. Only benchmarks that are smaller than 25k nodes are included.
The baseline pattern setis “1x s-a”. It is observed that larger sets of patterns are usually more
expressive. Note that randomness plays a role in this case, since the default variable polarities,
which determine initial variable values in the SAT solver, are randomly reset before each run.

3.7.2 Pattern Generation Strategies

In this section, the expressive power of simulation patterns generated by StuckAtCheck is
compared with the case when observability is used (suffix “-~obs”) and/or when an initial
random pattern set of size 256 is used (prefix “rand 256”).

The observability check and observable pattern generation are done with a fanout depth of
5 levels. A conflict limit of 1000 is set for the SAT solver, and there is no time-out limit set. A
set of 256 random patterns is used as the baseline in Figure 3.6. Four small benchmarks, for

42

Simulation-Guided Paradigm Chapter 3

Expressive power of stuck-at patterns

10
0 X2x s-a e O O 0 o
90

%0 5x s-a x E}(D to
010x s-a x O
70

X X
60 %
50 x X x X
40
30
20
10

Decreased #cex (%)

-10 X
0.01 0.1 1
Normalized pattern set size (#pat / #node) (log)

Figure 3.5: Decreased percentages of counter-examples when using different sets of stuck-at
simulation patterns, compared to the baseline set “1x s-a”.

which the random pattern sets are more expressive than “1x s-a” and/or “1x s-a-obs”, are
not shown in the figure. Larger benchmarks with more than 25k nodes are also excluded. The
geometric means of the sizes of the pattern sets are 143 for “1x s-a”, 244 for “1x s-a-obs”,
354 for “rand 256 + 1x s-a” and 462 for “rand 256 + 1x s-a-obs”. On the other hand,
the geometric means of the decreased percentages of the counter-examples are 91.3%, 96.5%,
97.1%, and 99.5%, respectively.

It is observed that patterns generated by StuckAtCheck are usually more expressive than ran-
dom patterns, except for a few, typically small, benchmarks. Also, using observability increases
the expressive power of the generated patterns. Finally, seeding the pattern generation engine
with an initial set of random patterns not only speeds up the generation process but also
makes the resulting patterns more expressive.

As the patterns generated with “rand 256 + 1x s-a-obs” are shown to be the most expres-
sive, these pattern sets are used in the following experiments in Sections 3.7.3, 3.7.4, 3.7.6
and 3.7.7. Table 3.1 lists some information on the benchmarks and their pattern sets. On
average, about 80% of the runtime (about 50% for the largest five benchmarks) in pattern
generation was spent in the observability-based methods, including time for checking if a
pattern is observable, SAT-solving with the TFO cone, and re-simulation after a new pattern
is generated. As seen in Figure 3.6, using observability increases the expressive power of the
generated patterns, but not much. Thus, in practice, one may consider disabling observability
awareness for larger benchmarks. There is no constant node detected because the benchmarks
are preprocessed with redundancy removal, and there are about 0.1% unobservable nodes
found, on average.

43

Chapter 3 Simulation-Guided Paradigm

Expressive power of various patgen strategies

100 & ‘Ebf:?’ Eb(AC 5 ¢
i ’

o a
O O
95
x X
g X
5 90
Q
+*
o m}
2
8 85
g X X X1lx s-a
[a)]
X 1x s—a-obs
80
Orand 256 + 1x s-a
X
Arand 256 + 1x s-a-obs
75
0.005 0.05 0.5

Normalized pattern set size (#pat / #node) (log)

Figure 3.6: Decreased percentages of counter-examples when using pattern sets generated
with different strategies, compared to the baseline set “rand 256”.

3.7.3 Pattern Compression with Bit-packing

As discussed in Section 3.4.3, the generated patterns can be packed together to reduce the
pattern set size and speed up the simulation. This technique becomes more important in
larger benchmarks with huge amounts of primary inputs. The middle part of Table 3.1 shows
the total number of generated patterns (column gen.), the final number of patterns after
bit-packing (column packed), and the ratio of the two sizes (column (%)). The 256 random
patterns are not bit-packed, nor included in this table. On average, the sizes of the packed
pattern sets are about 70% of the original sets.

3.7.4 Effect of Expressive Patterns in Resubstitution

As stated in the motivation, an expressive set of simulation patterns is used to shift the
computation effort from the optimization algorithms to pattern pre-computation. Table 3.2
shows how the quality of the patterns affects the runtime of pattern generation (patgen) and
resubstitution (resub). For simplicity, only some of the larger benchmarks with more obvious
effects are shown in this table. A better set of patterns (Table 3.2, “rand 256 + 1x s-a-obs”)
efficiently filters out many illegal resubstitutions without calling the SAT solver, resulting in the
reduced counter-example counts (#cex) and faster runtimes. Note that there is no difference
in optimization quality (i.e., circuit size reduction) caused by using different patterns because
if an illegal resubstitution is not filtered out by simulation signatures, it is still disproved by
SAT solving.

Furthermore, in practice, when the same design is repeatedly synthesized during development
or when simulation patterns are reused by different optimization engines, counter-examples
from the previous runs can be saved for later use. In this case, the additional counter-example

44

Simulation-Guided Paradigm Chapter 3

Table 3.1: Number of generated patterns before and after bit-packing.

benchmark #patterns ratio runtime
name size #Pls gen. packed (%) (s)
leon2 787972 298888 23526 14858 63.2 17080.75
leon3_opt 972952 370159 24820 16448 66.3 24566.67
leon3 1085718 370159 24739 16161 65.3 23471.45
leon3mp 650722 217858 13799 9483 68.7 5045.94
netcard 802846 195730 28206 13944 49.4 8896.10
ac97_ctrl 14199 4482 88 27 30.7 0.38
aes_core 21441 1319 163 18 11.0 0.74
des_area 4827 496 18 18 100.0 0.19
des_perf 81998 17850 54 54 100.0 3.95
DMA 21992 5070 886 384 43.3 2.11
DSP 44132 7835 1374 736 53.6 6.87
ethernet 86293 21216 2787 1340 48.1 27.59
i2c 1120 275 65 57 87.7 0.02
mem_ctrl 7870 2281 601 393 65.4 0.70
pci_bridge32 22521 6880 714 207 29.0 1.82
RISC 73789 15678 3139 1012 32.2 17.30
sasc 770 250 1 1 100.0 0.00
simple_spi 1034 280 32 25 78.1 0.01
spi 3762 505 184 184 100.0 0.18
Ss_pcm 405 193 2 2 100.0 0.00
systemcaes 12108 1600 39 38 97.4 0.23
systemcdes 2857 512 3 3 100.0 0.07
tv80 9091 732 408 404 99.0 0.55
usb_funct 15245 3620 643 238 37.0 0.92
usb_phy 440 211 9 8 88.9 0.00
vga_lcd 126427 34247 5142 2957 57.5 120.34
wb_conmax 47449 2670 206 170 82.5 1.60

count during later runs can go down to nearly zero, and the runtime is only spent on logic
synthesis or verification tasks, such as proving equivalences among the nodes or computing
dependency functions and validating them. The latter scheme will be verified in the next
section and be used from then on.

3.7.5 Reusability of Simulation Patterns

In support of our assumption, the reusability of the generated patterns and the counter-
examples are verified with a set of ECO benchmarks [KJR20]. For each design, there is an
old version and a new version which are functionally different. The results of two runs of
resubstitution with the two versions of benchmarks are reported and compared in Table 3.3.
First, a set of patterns is generated for the old version with “rand 256 + 1x s-a-obs” where
only the first case of observability check is performed. Columns A and B show the number of
counter-examples (#cex) and the runtime of resubstitution on the two versions of benchmarks
using this generated pattern set. Comparing them, it is observed that the patterns are as effec-
tive on the new benchmarks, even though they are generated with the old ones. In columns C

45

Chapter 3 Simulation-Guided Paradigm

Table 3.2: Resubstitution runtime as a function of the number of counter-examples produced.

rand 256 rand 256 + 1x s-a-obs
runtime (s) runtime (s)

benchmark #cex patgen resub #cex patgen resub
aes_core 69 0.01 0.72 7 0.74 0.34
des_perf 11 0.01 3.23 2 3.95 3.50
DMA 4923 0.01 2.15 440 2.11 0.41
DSP 8436 0.01 5.71 510 6.87 1.71
ethernet 50334 0.01 67.27 5329 27.59 10.63
pci_bridge32 3303 0.01 2.61 484 1.82 0.96
RISC 15052 0.01 16.02 589 17.30 2.81
vga_lcd 88008 0.01 18236 3749 120.34 13.16
wb_conmax 920 0.01 0.66 146 1.60 0.64

and D, resubstitution is performed again, but using the generated patterns appended with
the counter-examples collected in A. There are almost no new counter-examples in column
C when the same optimization algorithm is applied on exactly the same benchmarks, as
expected. Moreover, when applying on slightly different networks in column D, the num-
ber of counter-examples is reduced by 73% compared to the first run (B). The runtime in D
is only slightly higher than in C, showing that most of the runtime is spent on computing
dependency functions and validating the legal resubstitutions, which are inevitable. The
lower-right column compares a flow optimizing first the old networks and then the new ones
without learning of counter-examples (A+B) against one that learns the counter-examples
from previous runs (A+D).

3.7.6 Quality of Simulation-Guided Resubstitution

This section shows the improvements in terms of resubstitution quality. Tables 3.4 and 3.5 com-
pare the proposed framework with command resub [MB06] in ABC [BM10], which performs
truth-table-based resubstitution. Because computing simulation patterns in our framework re-
sults in detecting combinational equivalences [Mis+05], for a fair comparison, the benchmarks
are preprocessed by repeating the command ifraig in ABC until no more size reduction is
observed. The quality of results, presented in the gain columns, is measured with the reduc-
tion percentage in network size after optimization, i.e., the difference in the number of nodes
before and after resubstitution, divided by the original network size. Simulation patterns
used in our framework are initially generated with “rand 256 + 1x s-a-obs”, bit-packed (as
described in Section 3.4.3), and then incrementally supplemented with the counter-examples
generated from the previous runs of the same resubstitution settings in each column. After
the resubstitution run in the last column of Table 3.5, the sizes of pattern sets increase by 30%
on average.

Two parameters can be set in both flows: the maximum cut size k used to collect divisors in

46

Simulation-Guided Paradigm

Chapter 3

Table 3.3: Resubstitution efficiency after ECO with or without counter-example learning.

A B C D
benchmark version old new old new
pattern set generated generated (for old) with CEX from A with CEX from A

benchmark size #cex time (s) #cex time(s) #cex time (s) #cex time (s)
designl 218679 2711 30.92 2869 31.75 0 12.39 441 17.63
design2 344 16 0.01 11 <0.01 0 0.00 11 <0.01
design3 453920 3089 48.52 3006 46.76 0 19.56 219 23.37
design4 30819 579 0.81 594 0.82 0 0.36 150 0.55
design5 3582 76 0.04 63 0.04 0 0.03 6 0.03
design6 77555 1161 4.40 1180 4.51 0 2.24 126 2.78
design?7 62336 844 2.10 907 2.18 1 1.13 123 1.41
design8 20517 540 0.59 575 0.65 0 0.31 130 0.46
design9 4650 69 0.05 83 0.05 0 0.03 26 0.04
design10 15995 86 0.23 138 0.21 0 0.18 71 0.20
designll 48817 949 2.17 931 2.10 0 1.06 94 1.18

average 920.00 8.17 941.55 8.10 0.09 3.39 127.00 4.33

Bvs.D (A+B) vs. (A+D)

benchmark A#cex Atime A#cex Atime
designl -84.63% -44.47% -43.51% -22.53%
design2 0.00% N/A* 0.00% 0.00%
design3 -92.71% -50.02% -45.73% -24.55%
design4 -74.75% -32.93% -37.85% -16.56%
design5 -90.48% -25.00% -41.01% -12.50%
design6 -89.32% -38.36% -45.02% -19.42%
design7 -86.44% -35.32% -44.77% -17.99%
design8 -77.39% -29.23% -39.91% -15.32%
design9 -68.67% -20.00% -37.50% -10.00%
designl0 -48.55% -4.76% -29.91% -2.27%
designll -89.90% -43.81% -44.52% -21.55%

average -72.99 -32.39* -37.25 -14.79

*The runtime is too fast to compute the reduction rate, hence this benchmark is excluded from the average.

47

Chapter 3 Simulation-Guided Paradigm

Table 3.4: Resubstitution quality on AIGs comparing against ABC’s resub command. Baseline:
at most one node insertion.

ABC Ours, Ours,
k=10,m=1 k=10,m=1 k=100,m=1

benchmark size gain (%) time(s) gain(%) time(s) gain (%) time (s)
leon2 787972 0.11 69.48 0.13 65.52 0.32 1639.16
leon3_opt 972952 0.18 55.40 0.23 82.55 0.28 1113.55
leon3 1085718 0.10 55.11 0.11 90.25 0.19 1347.85
leon3mp 650722 0.08 30.16 0.10 41.04 0.19 406.59
netcard 802846 0.08 52.79 0.09 60.21 0.13 1062.90
ac97_ctrl 14199 1.25 0.15 1.25 0.08 1.27 0.10
aes_core 21441 1.50 0.42 1.60 0.48 2.32 2.59
des_area 4827 1.82 0.08 2.15 0.07 2.15 0.50
des_perf 81998 6.07 1.37 7.01 291 7.17 3.61
DMA 21992 0.89 0.27 1.04 0.20 1.29 1.12
DSP 44132 2.13 0.54 2.71 0.64 3.32 4.08
ethernet 86293 0.31 2.03 0.34 1.95 0.49 15.76
i2c 1120 4.29 0.01 5.09 0.01 7.68 0.02
mem_ctrl 7870 1.91 0.08 3.44 0.07 5.17 0.89
pci_bridge32 22521 0.78 0.40 0.86 0.26 1.19 0.76
RISC 73789 1.83 0.71 2.18 0.91 4.21 3.94
sasc 770 0.65 <0.01 0.65 <0.01 0.65 <0.01
simple_spi 1034 1.74 0.01 1.64 0.01 2.22 0.01
spi 3762 2.15 0.07 2.23 0.04 2.37 0.36
ss_pcm 405 0.25 <0.01 0.25 <0.01 0.25 <0.01
systemcaes 12108 0.30 0.11 0.40 0.10 0.45 0.48
systemcdes 2857 4.83 0.04 5.50 0.06 5.67 0.23
tv80 9091 2.41 0.15 2.85 0.13 4.93 2.67
usb_funct 15245 2.93 0.16 3.67 0.14 7.65 0.35
usb_phy 440 2.73 <0.01 3.64 <0.01 3.64 <0.01
vga_lcd 126427 0.09 5.07 0.12 4.59 0.14 51.31
wb_conmax 47449 1.19 0.78 9.59 0.67 9.59 1.99

average 1.58 10.20 2.18 13.07 2.78 209.66

geomean 0.81 0.38* 1.02 0.39* 1.35 1.81*

*The values smaller than 0.01 are replaced with 0.005 when calculating geomean.

the TFI of the root node and the maximum number m of nodes in the dependency circuit.*
Since [MBO06] relies on computing truth tables in the window, k < 10 is typically used as a
reasonable trade-off between efficiency and quality. In contrast, windowing in our framework
is applied only to avoid potential runtime blow-up for large benchmarks and k can be set to
arbitrarily large values when a longer runtime is acceptable.

When the algorithms are limited to at most one node insertion (m = 1), Table 3.4 shows
that our framework achieves 2.18% network size reduction on average using the same, small
window size (m = 10), comparing to 1.58% by the state-of-the-art. This improvement is due to
better consideration of global satisfiability don’t-cares. Moreover, we can arbitrarily extend

4In ABC'’s command line interface, cut size is set by argument -X and the maximum number of nodes in the
dependency circuit is set by argument -N. However, here, we use the same symbols as in the other parts of the
thesis for consistency.

48

Simulation-Guided Paradigm Chapter 3

Table 3.5: Resubstitution quality on AIGs comparing against ABC’s resub command. Best
achievable quality.

ABC Ours,
k=16,m=3 k=100,m =20

benchmark size gain (%) time (s) gain (%) time (s)
leon2 787972 0.35 1811.35 0.65 5984.96
leon3_opt 972952 0.73 1273.16 1.02 5462.90
leon3 1085718 0.28 1824.90 0.63 5239.15
leon3mp 650722 0.80 875.65 0.57 1342.39
netcard 802846 0.28 1562.19 0.56 5425.19
ac97_ctrl 14199 2.24 4.81 6.87 0.93
aes_core 21441 3.02 19.53 6.29 8.62
des_area 4827 3.09 3.50 5.72 1.08
des_perf 81998 8.70 74.10 15.78 7.32
DMA 21992 1.93 8.49 2.78 3.36
DSP 44132 4.14 48.02 5.74 13.92
ethernet 86293 0.95 106.04 2.72 74.15
i2c 1120 8.48 0.56 11.88 0.13
mem_ctrl 7870 4.08 3.67 8.93 2.64
pci_bridge32 22521 2.33 17.52 2.78 3.27
RISC 73789 3.47 56.22 7.56 17.04
sasc 770 1.56 0.13 1.82 0.02
simple_spi 1034 4.64 0.35 5.32 0.06
spi 3762 3.19 2.16 5.24 0.74
ss_pcm 405 0.99 0.03 1.23 <0.01
systemcaes 12108 0.64 11.04 1.68 2.16
systemcdes 2857 7.46 1.87 11.41 0.28
tv80 9091 5.26 8.62 11.75 7.34
usb_funct 15245 7.04 7.56 11.82 1.96
usb_phy 440 7.73 0.07 10.91 0.01
vga_lcd 126427 0.26 207.27 0.48 153.19
wb_conmax 47449 14.95 48.41 17.15 6.54
average 3.65 295.45 5.90 879.98
geomean 2.13 14.72 3.55 6.15*

*The value smaller than 0.01 is replaced with 0.005 when calculating geomean.

the window size and achieve up to 2.78% gain when a longer runtime is acceptable.

In Table 3.5, parameters in resub are set to their extreme values (k = 16, m = 3), and param-
eters in our framework are set to large values semantically close to infinity. It is observed
that our framework can achieve up to 5.90% reduction while 3.65% is the best resub can
do, and the improvement comes even with faster runtime in most of the benchmarks. The
reason why our framework is especially slow in the largest five benchmarks is because they
also have large numbers of primary inputs and large sizes of pattern sets (shown in Table 3.1),
which slow down simulation as well as the computation of dependency functions. This can be
ameliorated, however, by fine-tuning the trade-off between quality and runtime according to
the user’s needs.

Furthermore, the proposed framework is also shown to be applicable on 2-LUT networks, or

49

Chapter 3 Simulation-Guided Paradigm

Table 3.6: Resubstitution quality on XAGs comparing against ABC’s &mfs command.

abc> &mfs -a Ours, k=10,m=1

benchmark size gain (%) time(s) gain (%) time (s)
leon2 785623 0.12 612.10 0.11 103.89
leon3_opt 970570 0.13 697.90 0.21 139.80
leon3 1082547 0.10 705.60 0.09 139.79
leon3mp 649333 0.13 317.60 0.09 59.96
netcard 800880 0.07 676.90 0.09 91.23
ac97_ctrl 13945 0.47 0.50 1.23 0.09
aes_core 18951 0.82 5.54 1.89 0.48
des_area 4673 1.16 2.20 2.23 0.08
des_perf 76458 3.23 11.96 7.53 2.87
DMA 21435 0.55 3.37 1.03 0.25
DSP 41795 1.06 15.97 1.90 0.55
ethernet 85355 0.17 19.00 0.30 2.06
i2c 1101 3.72 0.09 5.09 0.01
mem_ctrl 7408 4.94 1.96 3.62 0.07
pci_bridge32 21759 0.38 1.79 0.86 0.25
RISC 69514 1.72 12.79 1.46 0.90
sasc 733 0.82 0.02 0.68 0.01
simple_spi 1003 1.60 0.05 1.69 0.01
spi 3697 0.70 1.29 1.87 0.06
ss_pcm 398 0.00 0.01 0.25 0.01
systemcaes 10652 0.70 1.55 0.58 0.09
systemcdes 2744 3.72 0.62 5.69 0.07
tv80 8751 2.79 9.26 2.43 0.13
usb_funct 14201 1.88 1.00 3.15 0.13
usb_phy 408 3.19 0.01 3.43 0.01
vga_lcd 126093 0.06 56.83 0.11 5.25
wb_conmax 47449 14.38 8.75 9.59 0.63
average 1.80 117.21 2.12 20.32
geomean N/A 3.93 0.97 0.46

essentially, XAGs. Table 3.6 compares the proposed framework with command &mfs [Mis+11b]
in ABC.> The ifraig-preprocessed benchmarks are mapped into 2-LUT networks by the
command &if -K 2in ABC and read in as XAGs in mockturtle. The simulation pattern set
generated in Section 3.7.3 with the AIG benchmarks and used in the experiments in Tables 3.4
and 3.5 is reused for the XAG experiment. In Table 3.6, the numbers of 2-LUTs (or XAG nodes)
are reported in column size, and the percentage reduction and runtime of the two algorithms
are reported in columns gain and time, respectively. Using only an unaggressive parameter
setting (k = 10, m = 1), our framework outperforms command &mfs in both optimization
quality and efficiency.

SWhile the paper was published in 2011, the technical implementation has been continuously improved over
time and there are several versions of the same concept in ABC, such as commands mfs and mfs2. Among them,
&mfs is believed to be the newest and the best version.

50

Simulation-Guided Paradigm Chapter 3

Table 3.7: Efficiency of CEC with or without using expressive patterns.

abc> &cec &cec with expressive patterns

benchmark size #SAT #UNSAT time (s) #pats #SAT #UNSAT time (s)
leon2 787972 8579 19738 32.32 3200 7150 19465 41.53
leon3_opt 972952 19529 50162 42.15 3200 14751 50020 49.10
leon3 1085718 113427 127162 88.64 3200 80242 127163 82.64
leon3mp 650722 65439 90482 43.78 3200 37522 84326 35.52
netcard 802846 21691 107513 31.14 3200 19269 107523 28.93
ac97_ctrl 14199 0 2215 0.19 384 41 2215 0.17
aes_core 21441 0 3177 0.71 320 2 3177 0.65
des_area 4827 0 393 0.08 320 0 393 0.07
des_perf 81998 0 5423 1.22 320 0 5423 0.99
DMA 21992 337 2981 0.45 832 298 2981 0.34
DSP 44132 911 6232 1.60 1600 249 6230 1.23
ethernet 86293 596 10505 1.19 1408 9817 10486 2.25
i2c 1120 65 165 0.03 320 33 163 0.03
mem_ctrl 7870 651 927 0.24 832 166 929 0.18
pci_bridge32 22521 612 3132 4.44 576 511 3132 4.40
RISC 73789 3638 9084 2.37 1472 500 9083 1.37
sasc 770 0 116 0.03 320 0 116 0.02
simple_spi 1034 14 157 0.03 320 24 157 0.03
spi 3762 109 469 0.12 448 160 469 0.12
Ss_pcm 405 0 62 0.02 320 0 62 0.02
systemcaes 12108 0 1384 0.24 384 6 1384 0.23
systemcdes 2857 0 329 0.06 320 1 329 0.05
tv80 9091 279 1160 0.33 704 225 1160 0.27
usb_funct 15245 809 2003 0.37 512 275 2003 0.25
usb_phy 440 0 57 0.02 320 0 57 0.02
vga_lcd 126427 13852 13682 4.28 3584 1055 13670 2.28
wb_conmax 47449 2 3793 0.61 448 3 3793 0.51

average 994.32 3065.73 0.85 730.18 607.55 3064.18 0.70

3.7.7 Reduction on SAT Calls in CEC with Expressive Patterns

Finally, to show the effectiveness of the proposed paradigm on other logic synthesis and verifi-
cation algorithms, we take CEC as another example. The &cec command in ABC [Mis+06a]
is considered the state of the art. It iteratively generates random patterns for simulation to
find equivalent pair candidates. This command is modified to take pre-generated patterns
and use them for simulation. The number of SAT results (disproving equivalence; #SAT) and
UNSAT results (proving equivalence; #UNSAT) in &cec with and without using pre-generated
expressive patterns are reported in Table 3.7. For simulation efficiency, an upper limit of 3200
on the number of patterns is set. It can be observed from the table that the average number
of SAT results is reduced by about 40%; when combined with the UNSAT results, which are
unchanged, the total number of SAT solver calls is reduced by about 9.5%. In most cases, the
runtime does not decrease because it is dominated by the UNSAT calls, and too many patterns
slow down the simulation. Nevertheless, the runtime overhead in simulation can be mitigated
if the patterns can be better compacted, or if the simulation can be speeded up (e.g., by using
Haswell New Instructions (AVX2) which provides single-cycle bitwise operations on longer

51

Chapter 3 Simulation-Guided Paradigm

machine words) in a future implementation of simulation-guided CEC. More importantly, by
showing a decrease in unnecessary SAT solver calls the idea of guiding CEC with expressive
simulation patterns is shown to be useful in verification as well.

3.8 Summary

In this chapter, we (1) present a simulation-guided logic synthesis and verification paradigm,
which leverages pre-generated expressive simulation patterns to approximate the global
Boolean functions with reduced need for SAT-based verification; (2) propose several strategies
to generate expressive simulation patterns, including seeding with random patterns, stuck-at
value checking, and resolving un-observability; (3) demonstrate the benefits of the proposed
paradigm with improved resubstitution quality and reduced SAT solver calls in CEC; (4) show
the reusability of the expressive patterns and counter-examples across different algorithms
and with ECO modifications.

Parameters influencing the expressiveness of the simulation patterns are studied. In particu-
lar, stuck-at patterns generated with observability awareness and seeded with a small set of
random patterns are found to be the most expressive. The expressive patterns are shown to
be able to move runtime from optimization and verification to their pre-generation, which is
advantageous because they are also shown to be reusable in resubstitution after ECO and in a
different algorithm such as CEC. The experimental results show that the simulation-guided
resubstitution framework allows low-cost consideration of global satisfiability don’t-cares
and unlimited extension of the window sizes used, which improves the average network size
reduction from 1.58% to 2.77%, compared to a state-of-the-art windowing-based resubstitu-
tion algorithm. When comparing the best achievable quality of the two frameworks, a larger
improvement from 3.65% to 5.83% is shown. The effectiveness of the proposed paradigm in
CEC is also supported by experimental results with a 9.5% reduction in the number of SAT
solver calls.

3.9 Future Work

While resubstitution guided by simulation signatures automatically accounts for satisfiability
don’t-cares, observability don't-cares can also be considered in resubstitution, resulting in
better quality. Our preliminary result on utilizing ODCs in simulation-guided resubstitution
shows about 1% further circuit size reduction at the cost of 5x more runtime.

As shown in Section 3.7.4, using expressive patterns reduces the chance of encountering
counter-examples, making it possible to further reduce the use of SAT solving by validating
several candidates at the same time if the majority of them are legal.

Other future works include developing strategies to refine and enhance the generated simula-
tion patterns further and metrics to evaluate and sort the patterns. To maximize the benefit of

52

Simulation-Guided Paradigm Chapter 3

the generated patterns, other algorithms adopting this paradigm can also be developed so
that the patterns can be reused more often in a logic synthesis flow.

53

Heuristic Resynthesis

4.1 Motivation

Peephole optimization is a divide-and-conquer strategy to maintain scalability of logic syn-
thesis algorithms, where small portions of a circuit, often referred to as windows or cuts, are
extracted, optimized independently, and substituted back. With the large scale of designs
nowadays, most logic synthesis algorithms, such as rewriting [MB06; MCBO06; Rie+19a; RMS20],
resubstitution [MBO06; Mis+11b; Ama+18; Rie+18], refactoring [MB06; Ama+18; Haa+18], win-
dow rewriting [Rie+22], etc., fall into the category of peephole optimizations.

One of the important steps in any peephole optimization algorithm is re-synthesizing the
extracted sub-circuit into a better one. In this work, we define the logic resynthesis problem
as a generalized formulation of this step: The problem is given a target function, which is
usually the root of a cut or the output(s) of a window, and some divisor functions, which are
existing functions from neighboring nodes in the network. The resynthesis problem asks
for a dependency circuit, computing a dependency function, that takes as inputs a subset of
divisor functions and generates the target function at the output. If the solution is better than
the original sub-network in the predefined cost metric, then it can be used to substitute the
targeted node.

Various resynthesis strategies are adopted by different logic synthesis algorithms. For example,
in cut rewriting, the divisor functions are always the projection (identity) functions and
the target function has a small number of inputs (usually 4), thus the optimal dependency
circuit can be looked up from a pre-computed database [MB06; MCBO06] or be synthesized
by SAT solving [Rie+19a; RMS20]. As another example, in refactoring, the divisor functions
are also the projection functions, but the dependency circuit is synthesized by two-level logic
optimization [MB06; Ama+18]. In contrast, in resubstitution, divisor functions other than
only the projection functions are collected and used as stepping stones to construct the target
function. As the number of all possible sets of divisor functions is very large, a resubstitution
algorithm has to investigate the divisor functions and resynthesize the dependency circuit
on the fly. Previous resubstitution works mostly attempt to enumerate small dependency

55

Chapter 4 Heuristic Resynthesis

circuits and compare them to the target function [MBO06; Rie+18; Ama+18]. The drawback of
this approach is that the dependency circuit is limited to a small size, as otherwise the search
space becomes too big.

With the introduction of the simulation-guided paradigm in Chapter 3, it becomes affordable
to extend the window sizes in peephole optimization. Craving for better optimization effort,
resynthesis methods capable of optimizing more complex functions, which require larger
dependency circuits, are in need. In a highly-optimized network where rewriting with a
small cut size cannot make any further optimization, there may still be hidden optimization
opportunities requiring the involvement of a larger portion of the network. In some cases, not
only a larger cut (and thus a larger window) needs to be considered, but the resynthesized
sub-networks should also not be limited to small ones.

4.2 Problem Formulation

4.2.1 Logic Resynthesis

Logic resynthesis (or simply resynthesis) is the problem of re-expressing a function in terms of
other functions.

Problem Formulation 1 (Resynthesis). Given a target function (or simply target) f : B* — B
over k Boolean variables X = (x3,...,xx) and a collection G = {g,..., gn} of n divisor func-
tions (or simply divisors) g; : B* — B,1 < i < n over the same variables, find a dependency
function h: B" — B satisfying

f@ =hg@),...,g.(%), Vi eBF. (4.1)

In this formulation, variables x, ..., xj are not inputs of the function #, but any subset of them
may be embedded as divisors by defining, for example, g; (%) = x;. Also, the expression of h
does not necessarily depend on all of its n inputs. In practice, a resynthesis problem may be
further restricted by, for example, a set of logic operations and the number of operations al-
lowed to be used in the expression of the dependency function. This will be further introduced
in Section 4.2.2.

Example 1 (Unrestricted resynthesis). Given the target function
J (1, %2, x3) = (X1 A X2) V (7x2 A 71x3) 4.2)

56

Heuristic Resynthesis Chapter 4

and the divisor set

G =1{g1(x1, X2, x3) = X1 A X2,
&2(x1, X2, X3) = X2 A X3,
g3(x1, X2, X3) = X3,

8a(X1, X2, X3) = X1 < X2}, 4.3)
one possible dependency function is

h(g1,82,83 84) = (81V 1) A 8. (4.4)
Notice that Equation (4.1) is satisfied because

h=((x1 A1x2) V (X1 < x2)) A (X2 A X3)

= X1 AX2)V (Tx2 Axs) = f. (4.5)

The resynthesis problem can be seen as a generalization of the classical logic synthesis problem,
where an expression or realization of & over the same variables xi,..., x as f is sought for,
i.e., Gisrestricted to {g; = x1,..., 8k = Xi}. Logic resynthesis is different from logic decomposi-
tion [BD97], [MSPO1] or functional decomposition [Chu+18; LPP96], where the problem is not
limited to a given divisor collection G, but involves identifying the needed divisors. In contrast,
solving resynthesis problems can be seen as the core step in a resubstitution algorithm [MBOG6;
Mis+11b; Ama+18; Rie+18].

4.2.2 Peephole Optimization Targeting Size Reduction

Logic resynthesis can be used in peephole optimization to optimize an extracted sub-network
by resynthesizing the output function(s) of the sub-network. In this chapter, we focus on
the resynthesis problem for AND-based, MAJ-based, and MUX-based circuits targeting size
optimization. That is, the dependency function & is represented by an AIG, XAG, MIG, or
MuxIG, called the dependency circuit, and the optimization goal is minimizing its size.

Example 2 (MIG resynthesis targeting size optimization). Given the target function
fx1,%2,%3) = X1 © X2 ® X3 (4.6)

57

Chapter 4 Heuristic Resynthesis

and the divisor set

G =1{g1(x1, X2, X3) = X1,
82(x1, X2, X3) = X2,
83(x1,x2, X3) = X3,
8a(x1, X2, x3) = MAJ (X1, X2, X3),

g5(x1, X2, x3) = MAJ(mx1, X2, X3)} 4.7)

extracted from an MIG by a peephole optimization algorithm. The resynthesis problem is
restricted to use only majority gates and inverters, and solutions with fewer gates are preferred.
One possible dependency function is

h(g1,82,83,84) = MAJ(— g2, 84,7185), (4.8)

whose corresponding dependency circuit has the least possible size of 1. |

4.2.3 Don’t-Care-Based Optimization

Most modern logic optimization algorithms place emphasis on the computation and utiliza-
tion of don’t cares, which are flexibilities in logic functions [Bar+88]. Most Boolean methods
are examples of don’t-care-based optimization [MCB06; RMS20; Mis+11b; Ama+18; Lee+22;
Rie+22]. When solving the resynthesis problem as part of peephole optimization, it is im-
portant to take the computed don’t cares into account. Although don’t cares may come
from different sources, namely satisfiability don’'t cares and observability don't cares (see
Section 2.3.2), they can be treated the same when formulating the resynthesis problem.

Problem Formulation 2 (Resynthesis with don’t cares). Given a target function f : BX — B over
k Boolean variables X = (x,..., Xx), a don’t-care set D < B¥, and a collection G = {g1,...,8gn} of
n divisor functions g; : B* — B, 1 < i < n over the same variables, find a dependency function
h: B" — B satisfying

f@®=hg®),...,g.(3), VB \D. (4.9)
For convenience, we define the care set C = B¥\D and the care function ¢ : BX — B, where

1 XeC,
c(X) = (4.10)
0 XeD.

Thus, Equation (4.9) is equivalent to
f®=hg@),...,g.(%), Ve BF s.t. c() = 1. 4.11)
Moreover, if we define the target onset function fon, = f A ¢ and the offset function for =~ f A c,

58

Heuristic Resynthesis Chapter 4

then Equation (4.9) is also equivalent to

B(fo,) f) = o@D and fon(® = h(fg, @),.... fo, (D), VEEBE. @4.12)

Example 3 (Resynthesis with nonempty don’t-care set). Suppose we have the same target func-
tion f and divisor set G as in Example 1 (Equations (4.2) and (4.3), respectively). Additionally,
we are now given the care function

c(x1, X2, Xx3) = X2 V (X1 <> X3).

In other words, the don’t-care set D = {(1,0,0), (0,0, 1)} is nonempty. For this relaxed problem,
one possible dependency function is

h(g1,82, 83, 84) = &4, (4.13)

which is simpler than Equation (4.4) thanks to the provided don'’t cares. Notice that Equa-
tion (4.9) is satisfied because the difference between f and & (f ® h ={(1,0,0), (0,0,1)}) does
not intersect with the care set. |

4.2.4 Simulation-Guided Logic Synthesis

The resynthesis algorithms proposed in this chapter are compatible with the simulation-
guided paradigm described in Chapter 3. In this case, the target and divisor functions are
represented by the simulation signatures of the corresponding nodes in the network and
partial truth tables are used as the data structure. A partial truth table is a truth table of
arbitrary length [, representing a partially-specified, incomplete function f : X — B, where
X ¢ B¥ and k is the number of primary inputs of the network. The i-th bit T[f]; is the output
of f under the i-th simulation pattern in the set. What patterns are used in simulation is not
important for the resynthesis problem. It is only required that the partial truth tables of the
target and divisors are simulated using the same ordered set of simulation patterns.

Problem Formulation 3 (Resynthesis with incompletely-specified functions). Given a target
function f: X — B and a collection G = {gj,..., gx} of n divisor functions g; : X - B,1<i<n
defined over the same input space X < B¥, k € N*, find a dependency function h : B” — B
satisfying

f(X) =h(g1(),...,gn(X), Ve X. (4.14)

Optionally and similarly to the problem formulation in Section 4.2.3, a don’t-care set D € X
may be given. The care set is then C = X\D, and the care function c: X — B is defined the
same as in Equation (4.18). [|

A resynthesis algorithm receiving target and divisor functions as truth tables does not distin-

59

Chapter 4 Heuristic Resynthesis

guish the case where functions are incompletely-specified from where they are completely-
specified. A solution given by the algorithm fulfills Equation (4.14), and it is up to the
simulation-guided framework to validate the dependency circuit in the context of the network
and add more bits into the partial truth tables to block invalid solutions.

4.3 Overview

In this chapter, we propose three heuristic resynthesis algorithms to be used in peephole
optimizations of, respectively, AIGs, MIGs, and MuxIGs. The proposed resynthesis algorithms
share the following characteristics:

 Support for incomplete functions and don’t cares: The divisor and target functions
may be given as completely-specified Boolean functions or partial simulation signa-
tures [Lee+22]. The algorithms resynthesize dependency circuits satisfying the given
parts of functions and make no assumption on the uninformed parts. Moreover, don’t
cares of the target function may be given, and the algorithms take advantage of this
information to resynthesize smaller dependency circuits.

¢ Heuristic but unlimited: Optimality may only be guaranteed when the optimal solution
is small. It is also not guaranteed that a solution is always found. Nevertheless, there
is no limit on the possible solution size. When a small-sized solution does not exist,
the heuristic may still find a larger solution that exact methods can never find within
reasonable runtime.

* Top-down decomposition: Although the three proposed algorithms are designed dif-
ferently, they all start from choosing “good” divisors based on some evaluation criteria
involving the target function. Then, if the target cannot be realized within a few gates, it
is decomposed into easier-to-realize targets by a gate on top.

4.4 Related Works

In this section, we introduce previous works dealing with the same or similar problems.

4.4.1 Functional Dependency by Interpolation

In [Lee+07], a method to find functional dependency using interpolation was proposed. The
problem of finding functional dependency is essentially the same as the unrestricted logic
resynthesis problem (Problem Formulation 1), where the goal is only to find a dependency
function without a particular focus on (minimizing) the corresponding dependency circuit.
In [Lee+07], given a target function f and a set of base functions G (i.e., divisor functions
in our terminology), it is first checked if f functionally depends on G, i.e., if a dependency
function h exists. This is done by solving a SAT problem consisting of two copies of the circuit

60

Heuristic Resynthesis Chapter 4

representation of f and G and additional constraints that the outputs of G are the same, but
one copy outputs f = 0 and the other outputs f = 1. Intuitively, the SAT problem encodes
that there exists a pair of offset Xy and onset X; minterms of f, such that g;(%) = g;(%;) for
all g; € G. A dependency function # exists if and only if the SAT instance is unsatisfiable, and
such & can be computed by deriving the interpolant from the refutation proof given by the
SAT solver.

The interpolation-based method was later used in [Mis+11b] as part of resubstitution for
k-LUT networks. Because the dependency function is implemented as a LUT node, it is not
needed to construct a dependency circuit. However, for resubstitution algorithms for AIGs,
XAGs, or MIGs, etc., the size of the dependency circuit is crucial for the optimization quality.
Thus, the interpolation-based method is not applicable there. Also, as the procedure involves
constructing CNF clauses of a circuit computing f and G, it cannot solve the resynthesis
problem with incomplete simulation signatures (Problem Formulation 3).

4.4.2 SAT-Based Exact Synthesis

SAT solving can also be used to find the smallest dependency circuit, instead of just some
feasible dependency function. SAT-based exact synthesis of Boolean chains encodes the
following question into a CNF formula: “Does there exist a Boolean chain which implements
the given function f with exactly r steps'?” A solution Boolean chain can be interpreted from
a satisfiable assignment to the encoded CNF formula, whereas an unsatisfiable result means
a solution of r steps is impossible. By solving such SAT problem iteratively with different
values of r, the smallest feasible r can be found [Knul1]. While SAT-based exact synthesis was
originally described to synthesize a Boolean chain computing a given function at its output(s)
in terms of its input variables, i.e., it solves a subset of the resynthesis problem where divisors
are projection functions, it can be modified and extended to solve the general resynthesis
problem where divisors can be any functions and don't cares are supported [RMS20]. In
[Haa+20], different CNF encodings of the problem were analyzed and compared. However,
although it is possible to reduce the number of variables involved in the SAT instance, it is done
at the cost of more clauses in the CNF formula. As the intrinsic complexity of the problem is
exponential, the scalability of an exact algorithm is always limited.

4.4.3 Enumeration-Based Resubstitution

Resubstitution is a logic optimization technique which substitutes a node in the network
with another existing node, or with newly-created nodes constructed upon other existing
nodes [Bra+87]. Resubstitution for AIG size minimization was first proposed in [MB06], where
windows of no more than 16 inputs are constructed to collect structurally-proximate divisor

1Using the terminology in this thesis, a Boolean chain with r steps is a logic network with r nodes, where each
node models an arbitrary logic gate. Additional clauses may be added to the CNF formula to constrain possible
gate types to a predefined set.

61

Chapter 4 Heuristic Resynthesis

nodes and to perform complete local simulation. Small sub-networks of up to three AND
gates and taking divisors as inputs are enumerated, simulated and compared to the target
function. If the composed function is the same as (or compatible subject to the care set) the
target, a viable dependency circuit is found. Such search for resubstitutions is essentially
the AIG resynthesis problem with size awareness. The complexity of the enumeration-based
resynthesis approach is O(G|'H*1) where |G| is the number of divisors and | H]| is the size of
possible dependency circuit. Thus, |G| is limited to at most 150 and | H| is limited to at most 2
in [MBO06].

In [Ama+18], enumeration-based resynthesis was extended to larger dependency circuits, but
still limited to some predefined structures such as AND-XOR, MUX, MUX-XOR, etc. A Boolean
filtering rule was proposed to filter out useless divisors, so that the search space was reduced.
Overall, eight types of dependency circuit structures are tried in the increasing order of their
size, and for each structure, filtered set of divisors are enumerated at the inputs similarly to
[MBO06].

An enumeration-based resubstitution for MIGs was first proposed in [Rie+18]. The algo-
rithm enumerates dependency circuits of up to two MAJ gates. Two efficiency enhancement
techniques were proposed: (1) A filtering rule derived from the majority law is applied:

if x # yand 3z, MAJ(x, y,2) = f, then MAJ(x, y, f) = f (4.15)

(2) As a preprocessing step, the truth tables are normalized to have the first bit always 1, such
that the number of inversion cases to investigate is reduced. Truth tables having a 0 as the first
bit are complemented and the inversion is recorded.

In addition to enumerating small dependency circuits, a special type of node replacement,
called R-resubstitution, is explored. R-resubstitution exploits the relevance rule of majority
gates [AGD16]:

MAJ(x, y, 2) = MAJ(Xy/z, ¥, 2), (4.16)

where x,,; is obtained by replacing all occurrences of y with =z in x. Instead of substituting
the root node with a dependency circuit in the classical resubstitution, R-resubstitution
substitutes a fanin node x of the root r = MAJ(x, y, z) with a divisor d if (x & d)(y ® z) = 0 and
r is the only fanout of x. Unfortunately, finding R-resubstitution cannot be formulated as a
resynthesis problem, thus it is not considered in the rest of this chapter.

The core problem resubstitution algorithms solve is logic resynthesis. Existing works on
resubstitution are based on enumeration, thus there exist small upper bounds on the size of
dependency circuits they can find. In contrast, the heuristic resynthesis algorithms proposed
in this work are unlimited in this respect.

62

Heuristic Resynthesis Chapter 4

4.4.4 Akers Majority Synthesis

Akers’ majority synthesis algorithm was the earliest work on heuristic synthesis of MIGs [Ake62].
It is a bottom-up approach that builds new gates using the constructed ones. In [Ake62], Akers’
Algorithm was presented to synthesize an MIG for any given function from primary inputs,
but the algorithm can actually also solve the MIG resynthesis problem. First, the truth tables
of the primary inputs are normalized by taking their XNOR with the target function, such that
the goal of the algorithm becomes building the constant 1 function. The main data structure
in Akers’ Algorithm, called the unitized table, is a collection of the normalized truth tables
of primary inputs (and their negations) and of the outputs of MAJ gates created throughout
the algorithm. Each column of the unitized table corresponds to a node (a PI or a gate) that
can be used to build the next gate, and each row corresponds to a value assignment to the PIs
(i.e., a minterm). The algorithm iteratively reduces the unitized table, by removing redundant
columns and dominated rows, and expands the unitized table, by choosing three columns to
build a new MAJ gate and adding a new column. The procedure repeats until there is only one
column of all 1s left, or until the resource limit exceeds. The choice on using which columns
to build new gates is heuristic, so the algorithm does not guarantee to always find a solution.

4.5 Heuristic AND-Based Resynthesis

In this section, we introduce the heuristic AND-based resynthesis algorithm which resynthe-
sizes an AIG or an XAG. The algorithm primarily considers AND gates (and cost-free inverters),
but it may be extended to consider XOR gates as well, although in a limited way. The algorithm
is based on (a) classification of divisors and (b) recursive decomposition. The former idea has
been practically adopted in enumeration-based resubstitution [MBO06], but rarely described in
the literature. In Section 4.5.1, we give the definition of the unateness of divisors and explain
why it is useful in reducing the search space of resynthesis. On top of that, in Section 4.5.3,
we propose the recursive decomposition, which is key for our resynthesis algorithm being
unbounded by the solution size.

We use figures to illustrate essential concepts in this section. In Figures 4.1 to 4.3, a rectangle
marks the Boolean space under which the target and divisor functions are defined (B* in
Problem Formulations 1 and 2 or X in Problem Formulation 3). Black dots in the rectangle
represent onset minterms of the target and white dots represent offset minterms. In the space
where no dots are present, there can be don't-care minterms. For clearer illustration, don't-care
minterms are plotted as gray dashed dots in Figure 4.3.

A divisor function g separates the Boolean space into two halves, the region where g =1 and
the region where g = 0 (or equivalently, =g = 1). We refer to a divisor with or without negation
as a literal, i.e., a literal is either a divisor g or a negated divisor —g, corresponding respectively
to the two halves of the Boolean space.

63

Chapter 4 Heuristic Resynthesis

4.5.1 Classification of Divisors

Any composition of some divisor functions is also a function defined over the same Boolean
space, thus also separates the space into two halves. For example, composing two literals
Iy, I, with an AND gate results in a separation where the region /; A I, =1 is the intersection of
the regions /; =1 and l;, = 1, and the region [; A I = 0 is the union of the regions /; = 0 and
I, = 0. The goal of the resynthesis algorithm is to find a composition whose resulting function
separates the Boolean space into a half containing only onset minterms of the target and a
half containing only offset minterms.

We observe that, if two literals /1, > are to be composed using an AND gate and realizing the
target, then the regions /; = 0 and /; = 0 must not contain any onset minterm of the target.
Similarly, if two literals I3, [, are to be composed using an OR gate (equivalent to an AND gate
with input and output negations) and realizing the target, then the regions I3 =1and Iy =1
must not contain any offset minterm of the target because the resulting region /3 v I = 1 is the
union of the regions I3 = 1 and I4 = 1. We call such property unateness.

81 81 82 K 83

(a) Literal gy is positive (b) Literal gy is negative (c) g3 is a binate divisor.

unate.

83

unate.

783

85

"85

84

84

86

86

(d) AND-pair g3 A 71g4 is
positive unate.

(e) XOR-pair g5 @ g¢ is neg-
ative unate.

Figure 4.1: Illustration of unate literals and binate divisors.

Aliteral [is said to be positive unateif I A fog = 0. For example, in Figure 4.1 (a), g; is positive
unate. Similarly, aliteral / is said to be negative unateif IA fon, = 0. For example, in Figure 4.1 (b),
—1g» is negative unate. In contrast to unate literals, binateness is defined for divisors. Given a
divisor g, if both g and — g are neither positive nor negative unate, then g is said to be a binate
divisor. For example, in Figure 4.1 (c), g3 is a binate divisor. Note that unateness is defined
for literals and binateness is defined for divisors. A (non-binate) divisor g may have one of its
literals being unate, but the other literal being neither positive nor negative unate, such as g;
in Figure 4.1 (a) and g in Figure 4.1 (b). Also note that these definitions are different from the
unateness of a Boolean function with respect to a variable [McN61].

Only unate literals can be used to construct the target function using one gate. Thus, by

64

© 00 NS a s W -

26
27
28

Heuristic Resynthesis Chapter 4

classifying divisors, the number of comparisons required to identify dependency circuits of
no more than one gate is reduced. Nevertheless, binate divisors are not totally useless. Two
binate divisors may be composed with a gate and become unate. Thus, the definitions of
positive and negative unateness are extended for pairs of literals. A pair p of two literals [, [,
obtained from (optionally negating) two binate divisors is said to be a positive unate AND-pair
if (I3 A) A fofe = 0. For example, in Figure 4.1 (d), (g3, g4) is a positive unate AND-pair.
Similarly, it is negative unate if (I; A I) A fon = 0. When finding unate pairs, we investigate all
pairs of two binate divisors and all of the four possible inverter configurations, corresponding
to the four regions of the Boolean space divided by the two divisor functions. There is no
need to try an OR-pair because composing two binate divisors with an OR gate (i.e., taking the
union) will never lead to a unate function. If XOR gates are allowed, we additionally try to find
unate XOR-pairs. For example, in Figure 4.1 (e), (g5, g¢) is a negative unate XOR-pair.

Algorithm 4.1: Heuristic AND-based resynthesis algorithm.

Input: target onset fon, target offset fug, divisors G = {gy,..., gn}
Output: dependency circuit H

if fon, = 0 then return Constant 0

if fof = 0 then return Constant 1

U, < positive_unate(G, fofr)
U, — negative_unate(G, fon)
B < binate(G,Up, Uy)

if u — find_Oresyn(Uy, U,) then return u

Uy < sort(Up, fon)
Up < sort(Uy, fofr)

if u, v — find_Iresyn(Uy, fon) then return u v v
if u, v — find_Iresyn(Uy, fof) then return "u A -y

P, — positive_unate_pair(B, foi); Pp — sort(Pp, fon)
P,, — negative_unate_pair(B, fon); Pn «— sort(Py, fotf)

if p, u — find_2resyn(Py, Uy, fon) thenreturn (p; oy, p2) vV u

if p, u — find_2resyn(Py,, Uy, fotr) then return —(py oy p2) A U

if p, g — find_3resyn(P,, fon) then return (p1 o, p2) V (g1 04 G2)

if p, q — find_3resyn(Py, for) then return —(p1 oy p2) A (g1 04 G2)

u — choose_top(Up, Uy, Py, Py)
fon — new_target(u, fon)

fis — new_target(u, for)

H; «— resynthesize(foy, frg G)
return u o, H;

65

Chapter 4 Heuristic Resynthesis

87 87 88 88
L] . o o _|g9 L] 5 . L]
. ° °) ° °
89
(a) 7g7 is a 0-resyn. (b) gg v g9 is a 1-resyn.
810 “810
~gu|l *\ o ° -gs
L] o

811 86
(c) groA—gr1isal-resyn. (d) gi2 A (g5 ® ge) is a 2-
resyn.

Figure 4.2: Illustration of composing simple dependency circuits.

4.5.2 Simple Dependency Circuits

Simple dependency circuits of no more than three gates are identified similarly to the enumeration-
based method. First, if the target onset or offset is empty, then it can be realized with a constant
(lines 1-2 in Algorithm 4.1). After classifying divisors and collecting unate literals as described

in Section 4.5.1 (lines 4-6), we first check if there exists a literal that realizes the target without
extra gates. That is, if a literal / is positive unate and its negation !/ is negative unate, then

[realizes the target (line 8). We call this a 0-resyn because it has 0 gates in the dependency
circuit. For example, in Figure 4.2 (a), —g7 is positive unate and g7 is negative unate, thus —g;

is a 0-resyn.

To find dependency circuits with one gate, called 1-resyn, we try to compose two positive unate
literals with an OR gate, or to compose two negative unate literals with an AND gate (lines 13-
14). For each pair /;, I, of positive unate literals, we check if their union contains all of the onset
minterms. That is, if =(l; v I) A fon =0, or equivalently, =/ A =l A fon = 0. We do not need
to check for offset minterms thanks to the definition of positive unate literals. For example,
Figure 4.2 (b) is an OR-type 1-resyn because there is no more onset minterms in the white
region. Similarly, two negative unate literals I3, /; form an AND-type 1-resyn if their union
contains all of the offset minterms. That is, —l3 A 114 realizes the target if —l3 A =1y A foe =0,
such as Figure 4.2 (c). As the condition to be checked in this step is whether the union of two
literals contains all onset (for positive unate) or offset (for negative unate) minterms, we first
sort the literals based on how many onset or offset minterms they contain (lines 10-11). This
way, we may terminate the investigation earlier when we know the remaining pairs of literals
all have a total number of onset (or offset) minterms less than the number of onset (or offset)
minterms of the target.

If a dependency circuit of size no more than one cannot be found, we proceed to collect unate

66

Heuristic Resynthesis Chapter 4

81 81
L] L]
° o 814
. © °©
814
(a) Decompose fon witha (b) f, can be more easily
positive unate literal gj. realized by —g13 A 71814

Figure 4.3: Illustration of the recursive decomposition.

pairs (lines 16-17) and try to find a 2-resyn (lines 19-20) or 3-resyn (lines 21-22). A 2-resyn is
composed of a unate literal and a unate pair. The conditions to be checked are similar to those
for 1-resyn. For example, in Figure 4.2 (d), a negative unate literal =g, and a negative unate
XOR-pair (gs, g6) (taken from Figure 4.1 (e)) forms an AND-type 2-resyn. Similarly, a 3-resyn is
composed of two unate pairs. In Algorithm 4.1, we use o to denote an unspecified gate type
depending on the pair noted as the subscript, and we use p, p2 to denote the two elements of
a pair p.

4.5.3 Recursive Decomposition

When the target cannot be realized within three gates, the algorithm heuristically chooses
an unate literal or an unate pair to decompose the target function (lines 24-28). If a positive
unate literal /; is chosen, a new target onset f), = fon A 711 with fewer minterms is derived
by constructing the dependency circuit with an OR gate on top, having /; as one of its fanins.
Then, Algorithm 4.1 is recursively called on the new onset f;,, and the same offset f_ . = fofr
(line 27) to construct the remaining circuit as the other fanin of the top OR gate. For example,
in Figure 4.3 (a), we decompose f,n, with a positive unate literal g; (taken from Figure 4.1 (a)),
resulting in f; in Figure 4.3 (b). The new f] has only one onset minterm remaining and
is more easily realized by —1g13 A 71814, which were both binate before decomposition. The
original target function is thus realized by g1 v (g3 A —g14).2 In contrast, if a negative unate
literal I, is chosen, the target onset stays the same, whereas a new offset f), = fog A L2 is
derived. The dependency circuit is then constructed with an AND gate with negated fanins on
top.

The choice on which literal or pair to use to decompose (line 24) is made by comparing the
number of onset (for positive unate literals or pairs) or offset (for negative unate) minterms
they contain. The one containing the most minterms is preferred. However, a pair is only
chosen if it contains more than twice the number of minterms than the winning literal because
choosing a pair leads to one more gate in the dependency circuit.

2The example is made simple for easier understanding. This solution can actually be found as a 2-resyn without
the recursive decomposition. To give a real example where recursive decomposition is needed, for example, g13
and g4 could be pairs instead of divisors, which only become unate with respect to the new onset f7,.

67

Chapter 4 Heuristic Resynthesis

4.5.4 Summary of AND-Based Resynthesis

Algorithm 4.1 summarizes the AND-based resynthesis algorithm. In Algorithm 4.1, lines 1-26
are similar to enumeration-based resubstitution, which resynthesizes dependency circuits of
at most 3 gates. Lines 24-28 are the key for the algorithm to resynthesize larger dependency
circuits, where line 27 calls the resynthesis algorithm recursively.

It is neglected in the pseudocode, but in practice an additional parameter size limit is passed
to the algorithm. Before each step, the size limit is checked and the algorithm terminates
without a solution if the limit is reached. For example, before find_3resyn, if size limit is 2, the
algorithm returns no solution. In line 27, the size limit being passed to the recursive call is the
current size limit minus 1 (when decomposing with a literal) or 2 (when decomposing with
a pair). When the algorithm returns no solution, it is possible that a solution larger than size
limit exists and can be found if size limit were set larger, or that the given problem is infeasible.
It is also possible that a solution exists, but cannot be found by the algorithm because it is
heuristic, irrelevant to size limit. The same early-termination mechanism also applies to the
following MAJ-based and MUX-based resynthesis algorithms.

4.6 Heuristic MAJ-Based Resynthesis

We introduce the heuristic MAJ-based resynthesis algorithm in this section, based on the
following key ideas:

* Normalization: Divisor functions are normalized to simplify the algorithm and reduce
the number of bitwise operations needed. This step is done only once in the beginning.
(Section 4.6.1)

* Covering the care function: We introduce the notion of care functions at any position in
the dependency circuit under construction. The goal of the algorithm is to cover more
uncovered bits in the care function by modifying the current dependency circuit until
all bits are covered. (Section 4.6.2)

* Heuristic choice of divisors: The algorithm repeatedly chooses three divisors to form
a new majority gate. Divisors are chosen according to their evaluation on a heuristic
weight function with respect to the current care function. (Section 4.6.3)

* Expansion to a tree-like circuit: The algorithm constructs the dependency circuit by
repeatedly expanding on a leaf of the circuit. It chooses a fanin of a gate which is
connected to a divisor, takes out the divisor, and replaces it with a newly-constructed
gate. The resulting circuits thus have tree-like structures. (Section 4.6.4)

68

Heuristic Resynthesis Chapter 4

4.6.1 Normalization

Given the target f and the set of divisors G = {g3,...,gn}, the divisors are normalized by
computing their XNOR with the target. By doing so, the logic of the algorithm is simplified—
comparing the output function of the dependency circuit against the target simplifies to
testing if the output function is a tautology. Moreover, due to the self-duality property of the
majority function [MTT61], inverters can always be pushed to the primary inputs. Hence, we
limit our search to dependency circuits without internal inverters and consider inverters only
at the inputs by supplementing the divisor set with negated literals. The set N of normalized
literals to be chosen from as inputs to the dependency circuit is computed by

N={bji-1=8i—f, hi=2gi— fl1<i<n} (4.17)

4.6.2 The Care Function

Consider a MA]J gate with function y = MAJ(x;, x2, x3) and a certain bit position p in its truth
table. In order to have T'[y], = 1, we must have

Tlx;lp=Tlxjlp=1,where i, je{l,2,3}and i # j.

If the functions x; and x, have been decided but x3 is still flexible, then we require T'[x3], =1
only if T[x1], = 0 or T[x2], = 0. In such case, we say that p is a care bit for the third fanin of
the gate under construction.

care: ¢, =¢

function: y = M(x1, x2, x3)
care: ¢, = Cp,i = (MS1VIS2) Ay

T care: cp, 3= (7X1 VX2) Acy,
X1 X2 X3

Figure 4.4: Illustration of the care functions.

Generalizing and extending to all bit positions, we define the care function c; of afanin i to a
node 7 as

Cn,i = (TS V82) Ay, (4.18)

where s; and s, are the other two fanin functions of n (i.e., siblings of i) and ¢, is the care
function of n. If n is the topmost node of the dependency circuit, as in Figure 4.4, then its
care function c;, is the care function c of the target, given as input to the resynthesis problem.
Otherwise, as our dependency circuits are tree-like, the node n must have exactly one fanout
(parent) node, and its care function is derived using Equation (4.18) according to its parent’s

69

Chapter 4 Heuristic Resynthesis

care function and its siblings’ functions. For example, the care function c¢,, of node n; in
Figure 4.4 is the care function of the fanin i to node n.

A care bit in a care function is said to be covered if the function presented at the node (or at
the fanin edge) indeed provides 1 at this bit. For example, for a care bit in ¢, 3 to be covered,
the function x3 needs to be 1 at this bit. If the care function of a node (for example, c,, in
Figure 4.4) is of interest, then we need at least two fanin functions of the node (for example, x;
and x3) to cover the bit by having 1’s.

4.6.3 Choosing Divisors

Given the care function ¢, of a node n, a heuristic selection is used to choose three literals
I, 1y, I3 from N to construct a MAJ gate, aiming at maximizing ONES(MAJ(/y, I, I3) A ¢p):

I, = argmax(ONES(I A ¢p,))

leN
I = argmax(ONES(l; AL A cp)+2-ONES(m Iy AL A Cy))
I€N2
I3 =argmax(ONES((lh &) Al A cy) +2-ONES((m Iy A D) ALACp)
leN3
where N2 IN\{ll,_lll},Ng=N2\{lz,_llz} (4.19)

The first literal is chosen to cover most care bits. When choosing the second literal, the care
bits covered by the first literal still need to be covered again, thus we acknowledge more
ONES(I; Al A cpy). But more importantly, we are more eager to cover the care bits that are
not covered by the first literal, thus the weight for ONES(—/; A I A ¢;,) is doubled. For the last
literal, the care bits that are already covered twice can be ignored; the care bits covered only
once ((I; ® I) Al A ¢y,) seek to be covered again; the care bits that are never covered before
((mlhy A L) A LA cy) appear to be more difficult to cover than the other bits and they are thus
doubly weighed. In the last case, it may seem counter-intuitive to cover these bits with the last
literal because covering them only once is not enough. However, the first two literals may be
replaced by new nodes later on in the algorithm, so it is still useful to cover them at least once
in this stage.

This evaluation step will be repeatedly incurred throughout the algorithm. The computational
complexity is linear to the number of divisors, which can be large. We observe that the resulting
choice depends solely on the care function c,. To speed up the computation, a computed
table can be used to cache the results. This is implemented as a hash table mapping from a
care function to three divisors.

70

Heuristic Resynthesis Chapter 4

np = 1110 0001 np = 1110 0111 np = 1111 1111
c=1111 1111 c=1111 1111 L‘: 1111 1111

ny = o111 1110 ny = o111 1110
€p,1 = 0111 1110 \ 501 0111 1110

. / ‘l\ I3 = 1010 0101 l3 = 1010 0101
7 = 0110 1001 3 = 1010 0101 \ 0,3 = 1011 1101 0,3 = 1010 0101
co,1 = 0111 1110 €,3 = 1011 1110

n; 1101 1011
Iy = 1100 0011 I =o0o011 1100 | Ig=0110 0110 Ip = 0011 1100 IG 0110 0110 Zh=

¢ 1101 1011
€0,2 = 1101 1110 l4 = 0101 1010 l4 = 0101 1010 0.2 =

I} = 1100 0011

[= o110 1001 Cp,2 = 1101 1011
Iy = 110070011 I5 = 1001 1001 g

I = o011 1100 lg = o110 0110

I3=1010 0101 7 = 0110 1001 I} = 1100 0011 l5 1001 1001
Iy = 0101 1010 lg = 1001 0110

Iy = o101 1010

(@) The topmost node ng. (b) Expand at (ng,1) with n; = (c) Expand at (ng,2) with np =
MAJ(l, 14, I6). MAJ (11,1, 15).

Figure 4.5: Example of MAJ-based resynthesis.

4.6.4 Expansion

When all care bits of the three fanins of the topmost node are covered, the constant 1 function
is successfully derived at its output and the algorithm terminates. After constructing the first
node with three literals, we choose one of the fanins with uncovered care bits, if any, and
try to cover more care bits by replacing the literal with a new gate. This process is called an
expansion.

To expand a fanin, the original literal is temporarily taken away. Then, three literals are chosen
as the fanins of the new gate using Equation (4.19). After an expansion, the function at the
expanded fanin is different, thus the functions of its transitive fanouts, as well as the care
functions of its siblings, are updated accordingly. Until the constant 1 is derived at the output
of the topmost node by covering all the care bits, the algorithm proceeds by choosing another
position to expand. An expansion position is a fanin of any node which is connected to a literal
and whose care function is not fully covered. Heuristically, we choose the position with the
least uncovered care bits to be expanded first because it is closest to be fully covered.

It is possible that the majority output of the three chosen literals does not cover more care
bits than the original literal. Hence, the new gate is only constructed and used to replace the
original literal if the number of covered care bits increases. When an expansion position is
tried but the coverage of care bits does not increase, the new gate is discarded and the position
is marked as visited to avoid trying it again. However, if its care function is updated because
of an update in the function of one of its siblings, the visited flag is reset and the expansion
position may be tried again. To avoid constructing gates using the same literals repeatedly
as a chain, when the care function of a node is the same as one of its fanins, the expansion
position at this fanin is directly marked as visited without trying to expand it.

71

© o N e G A W N -

| L=
N = ©

Chapter 4 Heuristic Resynthesis

Algorithm 4.2: Heuristic MAJ-based resynthesis algorithm.

Input: target function f, care function c, divisor functions G = {gy, ..., gn}

Output: dependency circuit H

N — normalize(G, f)

ng < choose_literals(N, c)

H — {ne}

while ny.output # 1 do

(np, i) < choose_expansion_position(H)

n < choose_literals(N, ny.fanin(i).care)

if accept_expansion(ny, i, n) then
np.fanin(i) < n
update(H)

else

‘ mark_visited(np, i)
return H

4.6.5 Summary and Example of MAJ-Based Resynthesis

Algorithm 4.2 summarizes the heuristic MAJ-based resynthesis algorithm. First, the set of
divisors is normalized and supplemented using Equation (4.17) (line 1). Then, the top node ng
is constructed by choosing three literals using Equation (4.19) and added into the dependency
circuit as the first node (lines 2-3). If the output function of ng is not constant 1 (line 4), we
choose an expansion position (the i-th fanin of a parent node 7)) which is currently connected
to a literal (line 5). The care function of the position is computed by Equation (4.18) and used
to choose three literals to construct a new gate (line 6). If replacing the original literal with
the new gate increases the number of covered care bits, the expansion is accepted and the
dependency circuit is updated (lines 7-9); otherwise, the position is marked as visited (lines
10-11). The expansion procedure is repeated until the constant 1 function is obtained at the
output of the topmost node.

An example execution of the algorithm is illustrated in Figure 4.5, where the target function is
f(X)=x1 0 x2 @ x3, (4.20)
the care function ¢ = 1, and the set G of divisors consists of
G=1{g1(X) = x1,8(X) = x2, g3(X) = x3, 84(X) = 0}. (4.21)

The normalized set N of literals, computed according to Equation (4.17), is listed in their
truth table representations in the box in Figure 4.5 (a). The yellow-shaded parts Figure 4.5
are the truth tables being updated after expansions. First, in Figure 4.5 (a), given the care
function ¢ = 1, three literals I;, [, l3 are chosen according to Equation (4.19) to form the
topmost node ny, computing the function at its output ny = MAJ(l7,1;,l3). Care functions
of each fanin cp; are computed according to Equation (4.18). Then, in Figure 4.5 (b), the

72

Heuristic Resynthesis Chapter 4

first fanin of ng is chosen to be expanded with a new node n;. According to its care function
¢o,1, three literals I, 4, I are chosen. The function at the expanded fanin is updated with
ny; = MAJ(lp, l4, lg). Following which, the care functions at its siblings cp 2 and cg 3, as well
as the output function ng are also updated. After the expansion, all care bits of the first
fanin of ny have been covered by the function of n;, but there are still two care bits in each
of the updated ¢y and ¢y 3 not yet covered. So, in Figure 4.5 (c), the second fanin of ng
is expanded with another new node n,. Similarly, according to its care function cg », three
literals [, 14, I5 are chosen, and the node functions n, and ng, as well as the sibling’s care
function ¢y 3, are updated. Now, all care bits in cp » and also ¢y 3 are covered, and the output
function of ng is constant 1. The resynthesis has thus been completed. The final solution is
h(g1,82,83,84) = MAJ(MAJ(—g1, 82, 183), MAJ (g1, 82, 83), 82).

4.7 Heuristic MUX-Based Resynthesis

Although rarely researched on, MuxIGs may be a practical data structure for some technologies
where MUX gates are of similar cost as AND and XOR gates, such as memristors [OKR14],
quantum-dot cellular automata (QCA) [KA22], and pass transistor logic [SB00]. Although the
MUX gate itself is functionally complete without inverters, we still use complemented edges to
represent cost-free inverters in the network to be more memory-efficient. This can be disabled
(i.e., 7x has to be implemented as MUX(x, 0,1)) and the MUX-based resynthesis algorithm
can also be adjusted accordingly, if desired. A MUX gate can implement the 2-input AND, OR,
and XOR functions, thus MuxIGs are more compact than XAGs. Though conceptually similar,
MuxIGs are different from BDDs [Ake78]. In BDDs, S-inputs can only be primary variables,
whereas in MuxIGs, S-inputs can be connected to the output of any other MUX gates in the
network. Thus, MuxIGs are more general than BDDs. In this section, we propose a MUX-based
resynthesis algorithm that can be used to optimize MuxIGs.

Due to the natural characteristics of the MUX gate, our MUX-based resynthesis algorithm
is designed with a combination of ideas from AND- and MAJ-based resynthesis. First, we
observe that similar to resynthesizing with MA]J gates, we seek to select or construct functions
resembling the target to be placed at the T- and E-inputs of a MUX gate, subject to a care
function depending on the function at its S-input. Thus, we also normalize divisor functions
and adopt the bit-counting-based ranking and selection of divisors as in MAJ-based resyn-
thesis. Second, when there are some care bits not covered, unlike MAJ-based resynthesis, the
expansions on the T- and E-inputs are independent of each other. For a MUX gate with care
function ¢, once the S-input s is selected, the care function at the T-input is ¢; = ¢ A s and the
care function at the E-input is ¢, = ¢ A 5. Thus, we adopt the recursive decomposition similar
to that in AND-based resynthesis to expand on T- or E-inputs until all care bits are covered.
To avoid re-normalizing divisors and to simplify the computation, we do not expand on the
S-input once it is selected.

Algorithm 4.3 illustrates the MUX-based resynthesis algorithm. First, the set N of normalized

73

1
2
3
4

© o0 N o O

Chapter 4 Heuristic Resynthesis

Algorithm 4.3: Heuristic MUX-based resynthesis algorithm.

Input: target function f, care function c, divisor functions G = {gy, ..., gn}
Output: dependency circuit H

N — normalize(G, f)

return resynthesize(c)

Function resynthesize(care c):
¢ — argmax;. y ONES(I A ¢)
if ONES(—t A ¢) =0 then
‘ return ¢
S — argmin ey ~o.0ep ONES(TEA LA C)
§ — argmin;. g ONES(7/ A ¢)
if ONES(—s A ¢) =0 then
‘ e—0
else
e — argmax;. y ONES(I A5 A C)
if ONES(—e A s A ¢) >0 then
‘ e — resynthesize(—s A)
if ONES(—t A sAc) >0 then
‘ t — resynthesize(s A ¢)
return MUX(s, £, e)

divisors is derived using Equation (4.17) (line 1). The unchanged set N is then available
and used throughout the algorithm along with the original set of divisors G. The recursive
algorithm starts with the given top-level care function c (line 2). In line 5, a literal ¢ covering
the most care bits is chosen from N as the T-input. If all care bits are covered by ¢, then itis a
0-resyn and is returned (lines 5-6). Otherwise, we continue to choose a literal s from G as the
S-input using two criteria: Literals S whose (cared) 1-bits overlap the least with the 0-bits of
t are prioritized (line 8). If there are more than one literal in S, then the literal with the least
0 in the cares bits is chosen (line 9). The first criterion aims at reducing uncovered care bits
at the T-input, whereas the second criterion aims at reducing the care bits to be covered at
the E-input. If the selected s has no cared 0-bit, then the function at the E-input does not
matter and we choose constant 0 as the E-input, assuming it has the lowest cost (lines 10-11).
Otherwise, similar to choosing ¢, a literal e covering the most care bits is chosen as the E-input
(line 13). Although the philosophy behind the choice of ¢ and the choice of e is the same, there
is a difference in their evaluations: When choosing ¢, the S-input is not selected yet, thus only
the care function c for the gate is considered. However, when choosing e, the S-input s is
already decided, thus the more precise care function at the E-input ¢, = ¢ A s is considered.
Finally, we check if the care bits at the T- and E-inputs are all covered by ¢ and e, respectively,
and recursively expand on the inputs using their care functions if not so (lines 16-17 and 14-15,
respectively).

74

Heuristic Resynthesis Chapter 4

Table 4.1: Comparison of AIG resynthesis algorithms.

1) k=4, 2) k=6, 3) k=6,

maxm =1 all problems maxm =4
#Probs 128312 337155 22691
Avg. n 6.55 14.16 7.18
Avg. maxm 1.53 0.70 4.18

SAT Ours Enum. Ours SAT Ours

#Sols 920 990 1248 1589 522 465
Avg. m 172 1.71 1.97 261 4.17 4.38
0.00 - 0.05 - 0.6

Avg. overhead —0%) - (%) - (3%)

Tot. time (s) 43.12 0.11 0.28 034 63821 0.10

4.8 Experimental Results

In this section, we test the performance and efficiency of the proposed resynthesis algorithms
on sets of real resynthesis problems extracted from the EPFL benchmarks [AGD15] by re-
substitution (Section 4.8.1). We also demonstrate in Section 4.8.2 the effectiveness of using
resynthesis as the core of an high-effort optimization to further optimize highly-optimized
benchmarks. The experiments were conducted on a laptop with Apple M1 Pro chip and 32 GB
RAM.

4.8.1 Extracted Resynthesis Problems

As the core of peephole optimization, it is more meaningful to compare different resynthesis
approaches using real resynthesis problems in their general form, with arbitrary divisor
functions coming into play. In this section, we test our heuristic resynthesis algorithm on
sets of resynthesis problems extracted from the EPFL benchmark suite. The benchmarks
are preprocessed by running the script compress2rs in ABC [BM10] once to rule out most
optimizations that are easier to identify. To extract resynthesis problems, for each node (root)
in the benchmarks, a reconvergence-driven cut [MBO06] of size k = 4 or 6 is computed and
used as the basis to obtain local functions of nodes supported by the cut. The function of the
root node is the target of the resynthesis problem and the functions of all nodes supported
by the cut, including the cut leaves, are divisors. The care set is derived by computing (local)
satisfiability don't cares from a larger cut of size 12. A size limit max m is given along with the
resynthesis problem, determined by the root’s MFFC size minus 1.

Three sets of AIG resynthesis problems are considered in Table 4.1:

1. First big column: A subset of problems extracted using cut size k = 4 (thus truth table
length [= 2k = 16) where the size limit is at least 1.

2. Second big column: A subset of problems extracted using cut size k = 6 (thus truth table

75

Chapter 4 Heuristic Resynthesis

length [= 2% = 64) where the size limit is at most 3.

3. Third big column: A subset of problems extracted using cut size k = 6 where the size
limit is at least 4.

The total number of resynthesis problems (“#Probs”), the average number of divisors per
problem (“Avg. n”), and the average size limit (“Avg. max m”) are listed for each set in the upper
half of Table 4.1. We compare our AND-based heuristic resynthesis (“Ours”) against SAT-based
exact synthesis [Haa+20] (“SAT”, Section 4.4.2, conflict limit = 10000) and enumeration-based
method [MBO06] (“Enum.”, Section 4.4.3, up to 3 gates). The number of solutions found within
the size limit (“#Sols”), the average number of gates in the dependency circuits found (“Avg.
m”), the average overhead comparing to the optima (“Avg. overhead”), and the total runtime
in seconds (“Tot. time”) are listed for each method.

We observe from this experiment that resynthesis problems requiring larger dependency
circuits do exist in real benchmarks. Both SAT and enumeration are exact algorithms, meaning
that the solutions they give, if any, are always optimal. However, the optimality of SAT-based
exact synthesis comes with the cost of a much higher runtime, and enumeration, although
being fast, can only solve problems with small solutions. In 2), the 341 more problems solved
by our heuristic than enumeration are cases where a solution cannot be found within three
gates and the recursive decomposition described in Section 4.5.3 is necessary. The quality
degradation of our heuristic is zero for smaller dependency circuits (m < 3), and is still very
small (3%) for medium-sized dependency circuits for which SAT-based synthesis needs a long
time to find the optimal solution.

4.8.2 Resynthesis as the Core of High-Effort Optimization

To demonstrate the practical application of the proposed heuristic resynthesis algorithms
in high-effort optimization, we use them as the core component in the simulation-guided
resubstitution framework [Lee+22] and perform experiments on benchmarks that are already
optimized by state-of-the-art size optimization flows. The resubstitution framework computes,
for each target node as the root, a reconvergence-driven cut of at most 8 nodes to collect up to
150 divisors supported by the cut. Functions of the target and divisor nodes are estimated by
global simulation using about 1000 simulation patterns.

AIG

For AIG size optimization, the script compress2rs in ABC [BM10] is considered as the state-
of-the-art flow, which comprises 18 commands including balancing, resubstitution, rewriting,
and refactoring with different hyper-parameters. In Table 4.2, after listing the benchmark
names and their original size, the size reduction in terms of percentage number of gates
(“Red.”) and runtime (“Time”) of four optimization settings are presented: Column “O —
A” applies compress2rs once on the original benchmarks; we call the resulting set of opti-

76

Heuristic Resynthesis

Chapter 4

Table 4.2: AND-based heuristic resynthesis as the core of simulation-guided resubstitution
applied on highly-optimized benchmarks.

AIG: O = Original, A = compress2rs x1, B = compress2rs xoo

Benchmark O0—A A — Ours A—B B — Ours

Name Size Red. Time Red. Time Red. Red. Time

(#gates) (%) (s) (%) (s) (%) (%) (s)
adder 1020 12.55 0.08 0.00 0.00 0.00 0.00 0.00
bar 3336 5.85 0.27 2.58 0.04 0.00 2.58 0.04
div 57247 63.80 3.64 0.89 0.23 1.05 0.00 0.63
hyp 214335 4.57 30.03 0.15 14.93 0.16 0.05 14.44
log2 32060 8.95 5.08 1.73 5.41 0.56 1.54 6.10
max 2865 1.15 0.18 0.00 0.01 0.28 0.00 0.02
multiplier 27062 10.07 3.53 0.10 0.28 0.09 0.01 0.27
sin 5416 7.33 0.97 1.35 0.44 1.00 1.19 0.58
sqrt 24618 25.85 2.87 0.30 4.39 0.01 0.26 4.39
square 18484 14.03 2.61 0.66 0.13 0.57 0.09 0.06
arbiter 11839 0.00 1.42 0.00 0.15 0.00 0.00 0.28
cavlc 693 8.37 0.19 4.25 0.09 2.20 3.06 0.16
ctrl 174 48.28 0.04 0.00 0.00 0.00 0.00 0.00
dec 304 0.00 0.06 0.00 0.00 0.00 0.00 0.00
i2c 1342 20.34 0.12 2.90 0.02 5.05 2.17 0.02
int2float 260 19.62 0.05 0.96 0.03 0.96 0.48 0.06
mem_ctrl 46836 6.22 5.21 15.95 1.76 12.13 14.09 2.03
priority 978 52.35 0.07 0.64 0.00 8.15 0.23 0.01
router 257 28.79 0.04 20.77 0.00 20.77 9.66 0.00
voter 13758 42.24 1.58 0.18 0.02 0.13 0.08 0.05
Average 19.02 2.90 2.67 1.40 2.66 1.77 1.46
Total gain 71402 8460 6360 6257

77

Chapter 4 Heuristic Resynthesis

mized benchmarks A. Column “A — Ours” applies simulation-guided resubstitution using
our heuristic AND-based resynthesis on the benchmark set A. Column “A — B” applies more
times of compress2rs on A until no more size reduction is observed for at least 5 consecutive
times; we call this set of benchmarks B. Column “B — Ours” applies our resubstitution on the
benchmark set B. In the last row, “Total gain” lists the total number of reduced gates, summed
over all benchmarks.

Comparing “A — Ours” and “A — B”, we can observe that, on top of the benchmark set A that
is already optimized, our high-effort optimization achieves similar “leftover” size reduction as
the best compress2rs can do. Moreover, column “B — Ours” shows that our approach can
still squeeze 1.78% more size reduction out of the highly-optimized benchmark set B. In both
“A — Ours” and “B — Ours”, the runtime of our high-effort optimization is comparable with
compress2rs.

Experiments on XAG, MIG and MuxIG optimization all use the optimized benchmark set A
as the starting point (column “AIG” in Tables 4.3 and 4.4). Besides size reduction percentage
(“Red.”) and total runtime (“Time”; for Columns XAG and MIG, time for compress2rs is
excluded), the runtime spent by our heuristic algorithms in solving the resynthesis problems
is also listed (“Tresyn”)-

XAG

For XAG optimization, we first apply the LUT mapping command &if in ABC with K (number
of inputs per LUT) set to 2, followed by the interpolation-based LUT resubstitution command
&mfs [Mis+11b] to obtain XAG benchmarks (column “XAG” in Table 4.3; note that a 2-LUT
network is essentially an XAG). Then, in column “XAG — Ours” we apply simulation-guided
resubstitution using our AND-based resynthesis with XOR enabled, and 2.86% size reduc-
tion is obtained from the set of optimized XAGs within similar runtime as optimizing and
transforming into XAGs.

MIG

As the state-of-the-art MIG optimization flow, we apply three times graph (re-)mapping [Tem+22]
from the optimized AlIGs, followed by enumeration-based MIG resubstitution [Rie+18] re-
peated until no more size reduction is observed (column “MIG” in Table 4.4). Then, similarly,
simulation-guided resubstitution using our MAJ-based resynthesis is applied, which obtains
2.45% size reduction on top of highly-optimized benchmarks within a faster runtime (column
“MIG — Ours” in Table 4.4).

78

Heuristic Resynthesis Chapter 4

Table 4.3: AND-XOR-based heuristic resynthesis as the core of simulation-guided resubstitu-
tion applied on highly-optimized benchmarks.

AlIG = compress2rs, XAG = compress2rs; &if -K 2; &mfs

AIG XAG XAG — Ours

Benchmark Size Size Time Red. Time Tresyn

(#gates) (#gates) (s) (%) (s) (s)
adder 892 637 0.04 0.00 0.00 0.00
bar 3141 3141 1.16 2.10 0.04 0.03
div 20725 16791 0.13 0.40 0.63 0.06
hyp 204533 160201 72.60 5.03 47.55 0.46
log2 29192 23966 19.58 1.55 2.15 0.22
max 2832 2832 0.12 0.00 0.02 0.01
multiplier 24337 18571 10.59 0.12 0.23 0.13
sin 5019 4263 11.37 2.18 0.54 0.04
sqrt 18255 14381 0.13 12.79 3.41 0.05
square 15891 12450 9.80 0.10 0.07 0.04
arbiter 11839 11839 29.94 0.00 0.34 0.13
cavlc 635 634 0.12 5.21 0.23 0.22
ctrl 90 90 0.01 4.44 0.00 0.00
dec 304 304 0.01 0.00 0.00 0.00
i2c 1069 1062 0.08 3.48 0.03 0.02
int2float 209 208 0.02 2.88 0.05 0.04
mem_ctrl 43924 38241 61.50 10.11 2.28 1.04
priority 466 443 0.07 1.13 0.02 0.01
router 183 143 0.01 5.59 0.01 0.00
voter 7946 5717 4.23 0.12 0.53 0.02
Average 11.08 2.86 291 0.13

MuxIG

Finally, as there is not yet much research on MuxIG, we transform the optimized AIGs directly
into MuxIGs by replacing AND gates with MUX gates with a constant input. Then, in column
“MuxIG, ours” in Table 4.4, simulation-guided resubstitution using our MUX-based resynthesis
successfully reduces the sizes of these MuxIGs by 20.24% by identifying MUX functions in the
networks. It is worth noting that although the runtime for the largest benchmark hyp seems
to be long, the time spent in the resynthesis algorithm takes only 1% and most of the time is
spent in proving the validity of the identified optimization choices.

4.9 Summary

In this chapter, three heuristic resynthesis algorithms are proposed, targeting networks based
on AND, MA]J, and MUX gates. The common characteristic of the proposed algorithms is that
they are efficient heuristics without superlinear scalability concerns. Table 4.5 compares the
proposed heuristics with other existing methods. All methods compared solve the resynthesis

79

Chapter 4 Heuristic Resynthesis

Table 4.4: MAJ-based and MUX-based heuristic resynthesis as the core of simulation-guided
resubstitution applied on highly-optimized benchmarks.

AIG = compress2rs, MIG = compress2rs + map x3 + resub xoo

AIG MIG MIG — Ours MuxIG, ours

Benchmark Size Size Time Red. Time Tresyn Red. Time Tresyn

(#gates) (#gates) (s) (%) (s) (s) (%) (s) (s)
adder 892 384 0.11 0.00 0.00 0.00 28.48 0.03 0.01
bar 3141 2594 0.29 0.23 0.03 0.03 43.36 0.07 0.02
div 20725 12565 0.93 0.26 0.32 0.11 39.24 2.64 0.10
hyp 204533 127877 13.01 2.89 9.10 0.86 21.56 104.69 1.05
log2 29192 23643 3.00 226 6.41 0.34 14.92 21.23 0.24
max 2832 2210 0.32 0.00 0.03 0.03 28.32 0.08 0.02
multiplier 24337 18700 1.76 1.39 0.34 0.20 19.13 4.51 0.20
sin 5019 4018 0.81 1.27 0.19 0.07 15.06 0.77 0.05
sqrt 18255 12513 1.09 0.72 3.25 0.16 20.36 4.35 0.11
square 15891 9573 1.03 0.78 0.08 0.05 30.87 1.06 0.08
arbiter 11839 6866 1.38 2.14 0.17 0.14 1.08 0.42 0.33
cavlc 635 541 0.83 1.48 0.02 0.02 14.02 0.02 0.01
ctrl 90 80 0.21 1.25 0.01 0.01 15.56 0.00 0.00
dec 304 304 0.09 0.00 0.01 0.01 0.00 0.01 0.01
i2c 1069 951 0.12 2.00 0.02 0.02 19.36 0.02 0.01
int2float 209 190 0.09 474 0.01 0.01 12.44 0.00 0.00
mem_ctrl 43924 38179 3.86 8.91 2.24 1.24 23.23 2.78 0.97
priority 466 449 0.10 4.01 0.01 0.01 13.30 0.01 0.00
router 183 170 0.07 11.18 0.00 0.00 21.86 0.00 0.00
voter 7946 4729 0.53 3.55 0.05 0.03 22.73 0.29 0.04
Average 4.38 2.45 1.11 0.17 20.24 7.15 0.16

problem with incompletely-specified functions (Problem Formulation 3), except for looking
up in an optimal database, which only solves a subset of resynthesis problems where divisors
are projection functions and all functions are completely-specified. All algorithms are sound,
but only database look-up, SAT-based exact synthesis, and enumeration are complete and
guarantee optimality. As a compromise, these exact methods have a rather high complexity
(except for database) and are practically limited by the number of divisors (n), the size of
dependency circuit (m), and/or the truth table length (/). In contrast, although the proposed
heuristics do not guarantee optimality, their complexities are linear in all variables (or only
quadratic in n for AND-based resynthesis) and are thus practically unlimited.

Experimental results show that the proposed heuristic resynthesis serve as an important
component in high-effort peephole optimization, achieving, on average, about 2-3% more size
reduction on benchmarks that are already highly-optimized, within manageable runtime. The
key to finding these hidden optimization opportunities is the heuristics’ capability to solve
resynthesis problems with more divisors (scalability in #), having larger solutions (scalability
in m), and where functions are given as longer simulation signatures (scalability in /).

80

Chapter 4

(DIXNIA pue DA 10] € = X ‘OYX PUR HIY 10} ¢ = X) 913 1ad suruej Jo roquinu :X ‘sa[qel
ymn jo y3uay : yC=1 ‘suoTIOUNJ I0SIAIP pue 19318) JO SI[qRLIBA JO IaquUINU :y 9mdI Aouspuadap ul sa1ed Jo I9quInu :u/ ‘SIOSIAIP JO Idquinu U

ywi ou umouwyun csu 9SSy 0ISW+uU F5y=U Sy [eonoeid
(jwu)) 'paseq-XNIN pue -[VIN (x(W +u)w)) sasneo#
(1w)0 (AR le) Mo Kyxerduwo)
(jut 1)) :paseq-aNy (1 + y(w +u))w) () sTey
ou ou sak (AToATIRI19)1 PAATOS JT) S9A sak ArewndQ
ou ou sak sak Sak ssauajorduro)
sak sak sk sak sak SsauUpuUNog
sak sak sak sak ou suonounj ae[duwoout jo 110ddng
soh soA s9A soA ou s10SIAIp Jo 110ddng
[299v] [8T+9TY ‘gT1+BWY ‘90HIN] [0ZSINY ‘Oc+eeH] [904DINI
sonsumay pasodoid SIY uoperownuyg (3Urpodud ASS) PASEq-IVS 9seqele(

Heuristic Resynthesis

‘suritiode sisayiuisal pasodoid pue unsixa jo suosmredwo) 6§ S[qel,

81

Design Space Exploration

5.1 Motivation

The general case of the Boolean optimization problem is intractable, such that academic as
well as industrial tools rely on well-tuned heuristics. Boolean optimization algorithms such as
rewriting, factoring, and resubstitution [Rie+19a; Lee+22] have been revisited several times
and have been improved in scalability and achievable optimization quality. Combining the
individual algorithms into an efficient Boolean optimization flow, however, is rarely addressed
and requires careful parameter tuning.

As a remedy, recent research proposals suggest data-driven Artificial Intelligence (Al) to guide
logic synthesis flows and improve overall QoR. An intelligent agent powered by Al could be
capable of smarter decision-making by controlling when to run and stop logic optimization
while considering trade-offs and conflicting QoR goals [Net+22; Per+21]. Modern Al technol-
ogy, however, has its own challenges: computational demands are often extraordinarily high,
large amounts of training data are required, aggressive learning policies may result in biased
and unexplainable decision-making, sophisticated training, and learning approaches require
Al experts to design, tune, and maintain.

Moreover, with the development of beyond-CMOS emerging technologies, unconventional
circuit properties, design constraints, and cost functions need to be considered in design
automation. For example, Spin Torque Majority Gate (STMG) [NBG11] circuits are based
on majority gates and inverters are expensive, thus MIG [AGD16] instead of AIG is a better
logic network abstraction. AQFP [Tak+13] is also based on majority gates, and it imposes
additional path-balancing and fanout-branching constraints. Field-coupled Nanocomputing
(FCN) [AB14] is a family of nanotechnologies whose physical design requires the circuit to be
planarized, in addition to path-balancing and fanout-branching. Although these constraints
may be dealt with after technology mapping, research has shown that tailored logic opti-
mization algorithms considering specialized cost metrics early on yield better QoR. However,
carefully-tuned optimization flows for individual technologies are even more rarely researched,
as such work would require experts in both the technology and logic synthesis (and AI).

83

Chapter 5 Design Space Exploration

In this chapter, we propose a simpler design space exploration approach that takes a combina-
tional gate-level circuit represented as input, evaluates its characteristics, and makes decisions
about what optimizing transformations to apply as it proceeds. Our goal is to provide an easily
adaptable solution, customizable for various applications, when the best-achievable QoR is
of interest and higher runtime is acceptable. Restart and bailout strategies are used in the
exploration procedure as a mechanism to retry if a logic minimum has been reached and to
terminate optimization early if QoR deviates too much from a desired quality goal.

5.2 Related Works

Logic optimization flows are fixed sequences of optimizing transformations. While many
research works focus on improving the performance and quality of individual transformations,
complete optimization flows are rarely proposed. The problem of finding a sequence of
optimizing transformations that achieves the best results for a given benchmark suite is only
recently investigated using techniques from machine learning (ML) [Per+21; YXM18; Net+22]
and Bayesian optimization [Gro+22]. These works arrange existing technology-independent
optimizing transformations to reduce the area and delay of the final netlist as much as possible,
where each optimizing transformation maintains a local view on the logic, e.g., in the form
of sliding windows, and implements a well-known scalable logic optimization. Alternatively,
algorithms based on global optimization principles such as simulated annealing [MJV00] and
evolutionary algorithms [Fis+10; FDK11] achieve better logic compaction, but they are rarely
considered in practice due to their massive computational demands.

5.3 Overview

An overview of the on-the-fly design space exploration algorithm is outlined in Algorithm 5.1.
Like most logic network optimization algorithmes, it takes an original network as input and
outputs an optimized network. Additionally, there are three custom functions a user should
specify: cost evaluation, decompressing, and compressing scripts, which will be further
described in Sections 5.4 and 5.7.

There is an outer loop (lines 3-19) and an inner loop (lines 8-17) in Algorithm 5.1. In the
following, we call an iteration of the outer loop a restart and an iteration of the inner loop a
step. Furthermore, an execution of decompress (line 9) or compress (line 10) is called a script,
which may contain one or more algorithms or transformations.

In each restart, the network is restored to the original one, and a new random engine seeded
with a different seed is generated (line 6). The number of restarts is defined by the user
(parameter num_restarts). The best network having the smallest cost in all restarts is recorded
and eventually output by the algorithm (lines 18-20). Each restart has its own timer to upper-
bound the runtime (line 7).

84

1
2
3
4

e & N o O

10
11
12
13
14
15
16
17
18
19
20

Design Space Exploration Chapter 5

Algorithm 5.1: On-the-fly design space exploration

Input: Original network Ny

Output: Optimized network Nyeg;

Custom functions: cost, decompress, compress

Parameters: num_restarts, max_steps, max_no_impr, timeout, init_seed

Npest — No.copy()

R; — random_engine(init_seed)

for restart =1 upto num_restarts do

Nuest_inner — No-copy()

Neurr < Np.copy()

Ry — random_engine(R;.rand())

elapsed_time — 0; start_timer(elapsed_time)

for step = 1 upto max_steps do

decompress (Ngyy, Ro.rand())

compress (Neyrr Re.rand())

if cost (Neyrr) < cost (Npest inner) then
Nuest_inner — Neurr-copy()
last_impr — step

else if step — last_impr = max_no_impr then
break

else if elapsed_time = timeout then

‘ break
if cost (Npest inner) < cost (Npes;) then
‘ Npest — Nbest_inner-copy()
return Np,g

Each step consists of a call to a decompressing script followed by a call to a compressing
script, which are both randomized. After these transformations are done, the network cost
is evaluated. The current network is recorded if its cost is the best seen among the steps
executed so far in the current restart (lines 11-12). The inner loop breaks if there have been
max_no_impr steps executed without seeing a better network (lines 14-15), or if the timeout
limit has reached (lines 16-17).

In the remainder of this section, we explain why we believe such algorithmic design helps
achieve better design space exploration.

5.4 Escaping Local Optimum

Although a user of our algorithm has the freedom to define any set of decompressing and
compressing scripts, we encourage them to classify possible transformation algorithms into
two categories and have good candidates in both. A decompressing script should be a script
that dramatically restructures the network and likely increases its size and depth. A promi-
nent example of a decompressing script is LUT mapping followed by naive resynthesis to

85

Chapter 5 Design Space Exploration

convert back into the original representation (e.g. AIG or MIG). Another example, when the
representation is an MIG, is randomly breaking each majority gate into four using the relation

MAJ(a,b,c) = (anb) Vv (cA(av b)) =MAJ(MAJ(a, b,0), MAJ(c,MA](a, b,1),0),1). (5.1)

The purpose of decompressing is to create the possibility of escaping from local optima.
Imagine if the design space of all feasible networks is projected to the x axis and the y axis
is the cost of each network. Such a curve is very likely not convex and many valleys of local
minima exist. When we are stuck at a local minimum, decompressing scripts help us climb up
the hills and potentially reach a better local minimum afterward.

In contrast, a compressing script is a sequence of algorithms that attempts to optimize for the
given cost metric. Examples of compressing scripts include well-known logic optimization
algorithms such as rewriting, balancing, refactoring, resubstitution, graph remapping, etc. The
aim of compressing scripts is to converge to a local minimum. By interleaving decompressing
and compressing scripts, our algorithm may explore different local optima in the design space,
instead of being trapped in the nearest local optima when only applying one optimization
algorithm.

5.5 Stretching Outin the Design Space

Consider the original network Ny and a certain optimized network Npes; to be reached, they
may be far away in the design space, and a long sequence of transformations is required to
get from Ny to Npegr- Thus, our design space exploration strategy aims at stretching far out
and really performing long transformation sequences. The key to such an aim is that in the
inner loop, even if the cost is getting much worse, there is no mechanism to backtrack to the
previous best result or to retrieve the original network. A design space exploration strategy
that tries many different combinations of transformation sequences but frequently backtracks
would explore the design space more densely near the original network, but less likely to reach
out to further points.

5.6 On-the-fly Exploration

Being able to try long sequences of transformations is not enough. The next big question is:
What kind of sequence leads to better results? Although machine-learning-based research
and human expert experiences give some insights, we argue that the answer is different for
different benchmarks and different cost metrics. Instead of pre-defining particular sequences,
our algorithm simply performs random walks. The purpose of the outer loop is to mitigate
the possibility of a “bad” random seed leading to unsatisfactory results and to increase the
chance of meeting at least one “good” random sequence in all restarts. We call such strategy an
on-the-fly exploration because we do not know the best transformation sequence in advance,
but discover it on the fly during exploration.

86

Design Space Exploration Chapter 5

5.7 Customization

Aiming at applications to emerging technologies with diverse logic representations, dedicated
algorithms, and cost evaluation metrics, our algorithm is customizable in these aspects.

* Logic representation: As long as the transformation scripts and cost evaluation func-
tion are compatible, there is no limitation on the data structure of Ny. Although this
chapter focuses mainly on network optimization, it is also possible to use other logic
representations such as two-level forms.

* Decompressing and compressing scripts: To set up the algorithm, the user must provide
a nonempty set of decompressing scripts and a nonempty set of compressing scripts.
When the functions decompress and compress (line 9 and 10 in Algorithm 5.1) are
called, one of the scripts in the respective set is randomly chosen. The user may also
define the probability of each script being chosen, preferring some scripts over the
others. Moreover, how randomness is involved in the scripts is also customizable. For
example, a user may define that the cut size to be used in resubstitution is randomly
chosen within a range.

* Cost evaluation: Most importantly, the cost evaluation function is customized. Such a
function should take a network as input and output a number. It should not modify the
network, but it may execute complicated algorithms to compute the cost.

Besides the custom functions, there are also some parameters users may set according to their
needs.

* num_restarts: This parameter defines how many different transformation sequences,
or exploration paths, will be tried randomly. We will experiment on the impact of this
parameter in Section 5.8.3.

* max_steps, max_no_impr, timeout: These parameters define the optimization effort of
each restart. Particularly, max_no_impr defines how many steps without seeing any
improvement in the cost the algorithm will tolerate before bailing out from the current
exploration path, and timeout defines the runtime budget.

* init_seed is the user-specified initial random seed used to generate different seeds to
be used in each restart. This parameter is only used to ensure deterministic and repro-
ducible results of the algorithm. When num_restarts is sufficiently large (Section 5.8.3),
different init_seed should give similar results, and tuning of this parameter should not
be needed.

87

Chapter 5 Design Space Exploration

Table 5.1: Comparison of MIG size against previous works.

Map [Tem+22] Flow [TD24] DSE [Ours]
Bench. Size Size Size Impr. Depth
adder 384 384 384 - 129
bar 2588 2433 1906 21.7% 15
div 36858 12462 12368 0.8% 2251
hyp 137048 115541 115539 0.002% 9129
log2 24295 22010 22008 0.01% 184
max 2171 2190 1939 11.5% 172
multiplier 19299 17112 17112 - 137
sin 4196 3870 3869 0.03% 124
sqrt 17355 12357 12247 0.9% 2156
square 11924 8138 8089 0.6% 126
Total (arith.) 256118 196497 195461 0.53% 14423
arbiter - 6711 792 88.2% 108
cavlc - 492 374 24.0% 16
ctrl - 74 60 18.9% 8
dec - 304 304 - 3
i2c - 871 636 27.0% 16
int2float - 172 115 33.1% 9
mem_ctrl - 32097 6886 78.5% 26
priority - 406 337 17.0% 23
router - 147 97 34.0% 13
voter - 4555 3894 14.5% 32
Total (all) - 242326 208956 13.8% 14677

5.8 Experimental Results

In this section, we present experimental results on the problem of MIG size optimization as an
example. The EPFL benchmark suite [AGD15] is used.

5.8.1 Application to MIG Optimization

Table 5.1 compares a state-of-the-art MIG restructuring algorithm, graph remapping [Tem+22]
(Map), the current best MIG size results seen in the literature produced by an optimization
flow [TD24] (Flow), and the new best results achieved by our design space exploration (DSE).
The MIG sizes (number of gates) are listed for all of the three as the main comparison, and
the MIG depth is additionally listed in DSE for reference. Column “Impr.” computes the
improvement percentages of MIG size comparing our DSE to SoTA Flow. The benchmark suite
is divided into arithmetic circuits (upper half) and control circuits (lower half), and the sum
of arithmetic benchmarks as well as all benchmarks are listed separately. Data of the control
circuits for Map were omitted in the table because they were not presented in [Tem+22].

From Table 5.1, we observe the improvements made by extending from a single algorithm to a

88

Design Space Exploration Chapter 5

fixed flow, and finally to an exploration of a portfolio of different flows. Overall, our new best
result improves over state of the art by 13.8%.

Another application of the proposed design space exploration on AQFP optimization will be
presented in Chapter 10.

5.8.2 Design Space Exploration

We take the benchmark “arbiter” from the MIG optimization experiment and plot the processes
of three restarts in Figure 5.1 as an example illustration of design space exploration. The
optimization goal is set to minimize MIG size (y-axis), and the MIG depth is used as the x-axis
of the plot to help distinguish different networks seen in the process. Both axes are plotted on
alogarithmic scale. Only the networks causing an update to Npest inner are recorded. From
this figure, we can observe the different paths taken by the design space exploration algorithm.
The third restart (green) ends up with the best Npes; inner and is taken as the final Nyeg;.

5.8.3 Importance of Random Restarts

To investigate the influence of different random seeds used in each restart, we plot the best-
seen network in 50 restarts in the same run. The benchmark “priority” from the EPFL bench-
mark suite is used and optimized for MIG size. In Figure 5.2, the y-axis is MIG size (optimiza-
tion goal) and the x-axis is MIG depth (a second network trait). Both axes are plotted on a
logarithmic scale. Each blue cross is a local optimum Nyeg; inner Fecorded after 50 steps of
transformation without improvement or when the inner loop times out, and the green square
marks the best among the 50 restarts. The red circle is the initial network Ny, and the brown
crosses are the results of fixed, predefined flows designed by human experts.

We observe from this experiment that there really exist many different local minima in the
design space. Some of them are worse in both metrics, and some of them form a portion of the
Pareto curve. As the algorithm is a random process, the order of encountering them is random.
If num_restarts was set smaller, the chance of getting the same best local optimum is reduced.

However, there are not infinite local minima, and increasing num_restarts indefinitely may not
always help find a better optimum. We have observed that for some benchmarks and settings,
many restarts fall into the same few local minima.

5.9 Summary

This work presents an on-the-fly design space exploration algorithm that emphasizes long
transformation sequences and restarts with different random decisions. The implementation
is customizable for unconventional cost functions often seen in emerging technologies, as well
as dedicated, customized optimization scripts. With the proposed design space exploration,

89

Chapter 5 Design Space Exploration

we are able to improve over state-of-the-art QoRs on MIG and AQFP optimization problems.

We study the different trajectories of design space exploration and experimentally show that
there may be many different local optima reachable by different flows found by the design
space exploration algorithm. We argue that there does not exist a fixed universally-good flow
that works well for all benchmarks so that the search for the best flow shall be done on the fly.
As future work, we would like to experimentally demonstrate this claim by applying the best
flow found for one benchmark on another benchmark.

Randomized decision is key to the proposed algorithm because it is the premise of forming
different flows and taking different trajectories leading to different local optima. The algorithm
would not work if there is only one unrandomized script provided. However, it remains an open
question how many different scripts do we need. We conjecture that the more randomization
involved, the wider the distribution of local optima we will get in a plot similar to Figure 5.2.
In other words, better optima would become reachable, but there will be more worse optima
as well. Further experiments are required to answer this question.

90

Design Space Exploration Chapter 5

O Original
ORestart 1 5
» Restart 2
ORestart 3
10% [2
)
N
n
103 [8
C hi

| | | | | | |
Depth
Figure 5.1: Three different paths in the design space taken by three restarts.

91

Chapter 5 Design Space Exploration

103 |- o
102.9 | A N
° 102.8 | N
N
7
102.7 [|
2.6 - ©No
10¢° [X » Fixed flow |
% ﬁ%&w&% X Npest_inner
X O Npest
2.5 L | ! i
10 101.5 102 102.5
Depth

Figure 5.2: Local optima found by 50 restarts (x) compared to a fixed flow (A).

92

Testing and Debugging Logic Synthe-
sis Algorithms

6.1 Motivation

The inherent complexity of these engines, optimized for many corner cases, makes logic
synthesis algorithms susceptible to design and implementation errors. Moreover, algorithms
are often only tested on fixed benchmark suites, such as the EPFL logic synthesis bench-
marks [AGD15]. Due to numerous possibilities to implement the same Boolean function with
different circuit structures, it is not rare that subtle faults slip through the development process
and only show themselves when the algorithm is used in practice.

Motivated by the success of automated testing methods, we argue that directed testing ap-
proaches and bug-pointing tools specialized for logic synthesis applications can support the
developers in detecting bugs earlier, can make implementations more robust, and ultimately
lead to a reduction in the time and effort spent for debugging. Due to the large state space and
homogeneity of the commonly used netlist formats, general-purpose testing and debugging
tools often are incapable of providing the necessary performance to efficiently test imple-
mentations of logic synthesis algorithms. The C++ logic network library mockturtle [Rie+19b;
Soe+22] has deployed a framework for unit testing, continuous integration on various oper-
ating systems and compilers, and a static code analysis engine controlled by user-defined
queries to aid developers.

6.2 Scope

This chapter focuses on testing and debugging software applications, referred to as the appli-
cation under tests (AUTs), that take a logic network, called a testcase, as an input. Prominent
examples of such applications include implementations of logic synthesis algorithms such as
rewriting [MCBO06], resubstitution [Mis+11b], and technology mapping [Tem+22]. Methods to
verify the correctness of the results, referred to as the verification, are assumed to be provided.
They may come from several sources:

93

Chapter 6 Testing and Debugging Logic Synthesis Algorithms

¢ Assertions within the program.

* Memory protection processes in the operating system checking for illegal memory
access (typically raising segmentation faults).

* CEC [Mis+06a] of the output network against the input testcase (for logic optimization
algorithms).

* Additional code checking coherence of the program’s internal data structures, such as
checking if the network is acyclic and checking the correctness of reference counts, etc.

¢ Another algorithm of the same purpose used to provide reference solutions (for prob-
lems having a unique correct solution).

A failing verification, e.g., a non-equivalent CEC result, indicates that a defect of the AUT is
observed and the testcase used is said to be failure-inducing. The AUT combined with its
verification is referred to as an oracle, and running the oracle with a testcase is an oracle call.

6.3 Related Works

6.3.1 Fuzz Testing

Fuzz testing [MFS90] is a software testing technique heavily used to detect security-related
vulnerabilities and reliability issues. It is conceptually simple, yet empirically powerful. A
fuzzing algorithm involves repeatedly generating testcases and using them to test the AUT.
The idea of fuzz testing first appeared in 1990, when spurious characters in the command
line caused by a noisy dial-up connection to a workstation led to, surprisingly, crashes of the
operating system [MFS90]. Nowadays, the generation of testcases in fuzz testing algorithms
often involves randomness, and the testcases are supposed to be beyond the expectation of
the AUT.

Various taxonomies of fuzz testing algorithms have been developed. For example, black-box
fuzzers [Lee+17] treat the AUT as a black-box oracle and only observe its input/output behavior,
whereas white-box fuzzers [GLM08; CDEO08] analyze some internal information of the AUT
and generate testcases accordingly. Depending on the targeted types of AUTSs, some fuzzers
generate testcases based on predefined models or grammars [DRH14], whereas some other
fuzzers mutate an initial seed testcase to generate more testcases [CWB15]. There are often
some parameters to be set for the testcase generators. A series of fuzz-tests using testcases
generated with a specific parameter configuration is called a fuzz testing campaign [Man+21].

6.3.2 Delta Debugging and Testcase Minimization

Given two versions of the code of a program, where the first version works but the second fails,
delta debugging [Zel99] is a method originally proposed to extract a minimal set of changes

94

Testing and Debugging Logic Synthesis Algorithms Chapter 6

(differences in the two versions of code) that causes the failure. The algorithm was later
extended for minimizing failure-inducing testcases [ZH02].

The basic idea of delta debugging is binary searching and dividing the set of components, may
it be the delta between two versions of code or the input testcase to a program, testing the
program with the reduced set, keeping the subsets that preserve the failure, and increasing the
granularity of division. The delta debugging algorithm (ddmin) guarantees to find a 1-minimal
subset and requires, in the worst case, n? + 3n oracle calls, where 7 is the size of the given
set [ZHO02].

Besides delta debugging being a generic method for testcase minimization, researchers have
claimed that domain-specific testcase minimization techniques are more effective and effi-
cient for some applications such as tree-structured inputs [MS06], compilers [Reg+12] and
SMT solvers [KNP21]. Various open-source implementations of testcase minimization tools
exist, including the general-purposed delta', aigdd? for the AIGER format, ddSMT? for the
SMT-LIB v2 format, and the LLVM bugpoint tool*. Inspired by delta debugging, in this chapter,
we aim to provide such an effective testcase minimization tool specialized for logic networks
but not limited to AIGs.

6.4 Testing and Debugging Toolkit for Logic Synthesis Applications

6.4.1 Testcase Generation

We develop a fuzz testing framework for testing any application that takes a logic network
as input. The AUT and the verification checks are provided as a combined oracle call, thus
categorizing it as a black-box fuzzer. Although in some cases of fuzzing, testing with malformed
testcases is key to testing the robustness of the AUT, this is not the case for our usage. In logic
synthesis applications, detecting and rejecting malformed inputs, e.g. a cyclic network, are
usually dealt with by the parsers instead of the logic synthesis algorithms. Nevertheless, as
logic synthesis applications are often only tested with some common benchmark suites, our
fuzzing framework still tests them with a larger input space beyond what they are usually
tested with.

To generate random testcases, we propose three parameterized methods. These methods
apply to any type of network having a finite set of possible gate types.

Random: Randomly generate nodes in topological order. This method is parameterized by the
starting number of PIs xy, the starting number of gates yp, the number of networks z of the
same configuration to generate, the increment of the number of PIs Ax, and the increment of

Thttps://github.com/dsw/delta
2https://github.com/arminbiere/aiger
Shttp://fmv.jku.at/ddsmt/
4https://llvm.org/docs/Bugpoint.html

95

https://github.com/dsw/delta
https://github.com/arminbiere/aiger
http://fmv.jku.at/ddsmt/
https://llvm.org/docs/Bugpoint.html

Chapter 6 Testing and Debugging Logic Synthesis Algorithms

the number of gates Ay. The generator starts by generating networks of x = xy PIsand y = y,
gates and keeps a counter of how many networks have been generated. After generating z
networks, the values of x and y are increased by Ax and Ay, respectively. Given the current
values of x and y, a network is generated by:

1. Create x PIs.

2. Randomly decide on a gate type. Assume that the type requires « fanins.

3. Randomly sample x nodes (PIs or gates) that have been created.

4. Randomly decide for each fanin if it is complemented.

5. Create the gate. Repeat from step 2 if the number of gates is smaller than y.

6. Assign all nodes without fanout to be POs.

For network types with trivial-case simplifications (e.g., in AIGs, attempting to create an AND
gate with identical fanins results in returning the fanin without creating a gate) and structural
hashing enabled, the number of gates may not increase after step 4. Thus, the loop of steps 2
to 4 may iterate more than y times and the terminating condition is when the actual number
of gates is y. If the parameters are set improperly, e.g., if x = 1, this might lead to an infinite
loop.

Topology: Exhaustively enumerate all small-sized DAG topologies and randomly concretize
them. This method is parameterized by the starting number of gates yy, the lower r; and upper
r, bounds on the PI-to-input ratio, and the number of networks z of the same configuration
to generate. Upon initialization, the generator enumerates all isomorphic DAG topologies
of y = yp vertices using an algorithm implemented in [Haa+20] and randomly shuffles them.
Then, it starts by generating networks of the first topology and keeps a counter of how many
networks have been generated. After generating z networks, the generator moves on to
generating the next topology. After all topologies have been used to generate z networks, the
value of y is incremented by 1 and topologies of the increased size are enumerated. Given a
topology, which is specified by a DAG T with hanging inputs (i.e., the topology specifies how
gates are connected to each other, but not how they are connected to PIs), a random network
is concretized by:

1. Let i be the number of hanging inputs in T. Randomly decide on an integer x such that
r;-i <x<ry-i.Create x Pls.

2. For each input of T, randomly decide on a PI to connect to.

3. For each vertexin T, randomly decide on a gate type.

4. For each edge in T, randomly decide whether it is complemented.

96

Testing and Debugging Logic Synthesis Algorithms Chapter 6

5. Assign the last gate to be a PO.

In step 1, lower values of x/i lead to a higher probability that the generated network recon-
verges on PIs, whereas higher values of x/i lead to a higher probability of generating a tree-like
network. The generated networks are always single output.

Composed: Randomly compose a few small-sized DAG topologies to form a larger network.
This method is parameterized by the lower y; and upper y;, bounds of the size of DAG topolo-
gies, the starting number of components ¢y, the starting number of PIs xy, the number of
networks z of the same configuration to generate, the increment of the number of PIs Ax
and of the number of components Ac. Upon initialization, the generator enumerates all
isomorphic DAG topologies of y; to yj, vertices. Then, it starts by generating networks of x = xp
PIs and composed of ¢ = ¢y components and keeps a counter of how many networks have
been generated. After generating z networks, the values of x and c are increased by Ax and Ac,
respectively. Given the current values of x and ¢, a network is generated by:

1. Create x PIs.
2. Randomly choose a topology T from the list.

3. For each hanging input of T, randomly decide on an existing node (a PI or anode in a
created component) to connect to.

4. For each vertexin T, randomly decide on a gate type.
5. For each edge in T, randomly decide whether it is complemented.
6. If the number of created components is smaller than c, repeat from step 2.

7. Assign all nodes without fanout to be POs.

6.4.2 Testcase Minimization

Assuming that the concerned defect is deterministic, there is a core in any given failure-
inducing testcase, which is a subset of the testcase essential for observing the defect. The other
parts of the network are said to be irrelevant for observing the defect and can be removed. For
example, for a defect caused by the algorithm trying to insert an XOR gate into an AIG, which
is interpreted as inserting an AND gate instead, a core in the testcase may be a subnetwork
computing the XOR function. Due to the localized-computation design style of modern
scalable logic synthesis algorithms, the cores are usually small-sized. We say that a core is
minimal if, for any node n, removing n results in never observing the defect again no matter
how the fanins and fanouts of n are re-connected. A minimal core in a failure-inducing
testcase may or may not be unique. The goal of testcase minimization is to find a minimal
core in a given failure-inducing testcase.

97

Chapter 6 Testing and Debugging Logic Synthesis Algorithms

y :
/
/
/
\
/[\
Y \
\
A\
A A

(@) Remove PI: The TFO (b) Remove PO: The (c) substitute gate: The

of n is simplified. MFFC of nisremoved. ~ MFFC of n is removed
and the TFO of n is sim-
plified.

(d) Simplify TFO: The (e) Remove MFFC: The (f) Remove gate: Only n is
TFO of n is simplified. MFEC of n is removed. removed.

Figure 6.1: Illustration of the reduction stages.

We develop a testcase minimization tool for logic networks similar to delta debugging but
without adopting binary search. Given a network and an AUT with verification (i.e. an oracle),
our testcase minimizer iteratively tries to reduce the network and tests if the defect is still
observed. Only the reduction operations that preserve observing the defect are kept; otherwise,
the operation is undone. Different reduction operations are tried in six stages with increasing
(finer) granularity as follows:

(a) Remove PI: Substitute a PI n with constant zero, thus simplifying its TFO by constant
propagation. In AIGs, some nodes in the TFO of n that are connected to n without
complementation are removed, and so are their MFFCs.

(b) Remove PO: Substitute a PO n with constant zero, thus removing its MFEC.

(c) substitute gate: Substitute a gate n with constant zero, thus removing its MFFC and
simplifying its TFO by constant propagation (as in (a)).

(d) Simplify TFO: Assign fanins of a gate n as new POs, and then substitute n with constant
zero. This operation is less aggressive than the previous one because only the TFO of n
is simplified and its MFFC is kept.

(e) Remove MFFC: Substitute a gate n with a new PI. This operation does not cause constant
propagation in its TFO and only removes the MFFC of n.

98

Testing and Debugging Logic Synthesis Algorithms Chapter 6

(f) Remove gate: Assign fanins of a gate n as new POs, and then substitute n with a new PI
or with one of its fanins. Only 7 is removed.

Figure 6.1 illustrates the effects of an operation in each of the reduction stages, where small
triangles at the bottom and on top are PIs and POs, respectively, and circles are specific nodes.
Regions filled in blue are removed after the operation, and regions marked in yellow are
simplified by constant propagation after the operation. Wires and PIs or POs drawn in green
are added after the operation.

The relative granularity of stages remove PI and remove PO depends on the shape of the
network. For networks with smaller TFO of PIs and less logic sharing in the TFI of POs,
remove PO reduces the network faster; for networks with smaller MFFC of POs and more
reconvergences near the PIs, remove PI reduces the network faster. Thus, the first stage to
apply is heuristically decided by whether the network has more PIs than POs (remove PO is
applied first) or more POs than PIs (remove PI is applied first).

In each stage, the minimizer backs up the current network, randomly samples a PO or a gate as
n, and performs the corresponding reduction operation. If the defect is not observed anymore
after reduction, the backup is restored. This procedure is repeated until all POs or all gates
have been sampled, or until a pre-defined number of operations have been tried.

The resulting network after minimization cannot be reduced anymore because the last stage
tries every possibility to remove one gate. Thus, by definition, the minimized testcase is
guaranteed to be a minimal core. However, minimal cores are not necessarily unique, so it is
possible that a different order of reduction operations (e.g. by using a different random seed)
results in a smaller minimal core.

The minimized testcases are, in most cases, highly destructed and cannot be recognized or
reverse-engineered anymore. Therefore, the testcase minimizer does not only facilitate the
debugging process but also the communication between developers when commercially-
sensitive benchmarks are involved.

6.4.3 Usage Example

The testing and debugging toolkit described in this chapter is implemented in mockturtle® as
part of the EPFL open-source logic synthesis libraries [Soe+22]. The toolkit supports testing
and debugging any application that takes a logic network, written in AIGER (for AIGs) or
Verilog (for other network types supported in mockturtle, such as XAGs and MIGs) formats, as
input.

Figure 6.2 shows an example workflow of our toolkit. In this example, the toolkit is used to
fuzz test an algorithm implemented in mockturtle (marked in green), and then, if a defect is

5Available: https://github.com/Isils/mockturtle

99

https://github.com/lsils/mockturtle

Chapter 6 Testing and Debugging Logic Synthesis Algorithms

1| #include <mockturtle/mockturtle.hpp>

2| using namespace mockturtle;

3

4| int main()

51 { (_Oracle)
6 auto opt = []J(aig_network aig) -> bool {

7 aig_network const aig_copy = aig.clone();

8 aig_resubstitution(aig);

9 aig_network const miter = *miter (aig_copy, aig);

10 return *equivalence_checking(miter);

11 };

12 (_Fuzzer)
13 fuzz_tester_params fuzz_ps;

14 fuzz_ps.file_format = fuzz_tester_params::aiger;

15 fuzz_ps.filename = "fuzz.aig";

16 fuzz_ps.timeout = 20; // 20 minutes

17 auto gen = random_aig_generator();

18 network_fuzz_tester<aig_network, decltype(gen)>

19 fuzzer (gen, fuzz_ps);

20 bool has_bug = fuzzer.run(opt);

21
22 if ('has_bug) return O;

23 {(Minimizer)—

24 testcase_minimizer_params min_ps;

25 min_ps.file_format = testcase_minimizer_params::aiger;
26 min_ps.init_case = "fuzz";

27 min_ps.minimized_case = "fuzz_min";

28 testcase_minimizer<aig_network> minimizer (min_ps);

29 minimizer.run (opt) ;

30

31 aig_network aig;

32 lorina::read_aiger ("fuzz_min.aig", aiger_reader (aig));
33 write_dot (aig, "fuzz_min.dot");

34 std::system("dot -Tpng -0 fuzz_min.dot");
35
36 return O;
37|

Figure 6.2: Example code to use the proposed toolkit to generate, minimize, and visualize a

failure-inducing testcase.

)

auto opt = [](std::string filename) -> std::string {

8| T3

7 return "abc -c \"read " + filename + "; rewrite\"";

Figure 6.3: Example code to use the toolkit for testing and debugging an external tool, ABC.

100

Testing and Debugging Logic Synthesis Algorithms Chapter 6

observed, minimizes the generated failure-inducing testcase (marked in red). This can be
done similarly for other C++-based tools that include mockturtle as a library.

Our toolkit is also applicable for testing and debugging external tools. In this case, the lambda
function in lines 6 to 11 in Figure 6.2 shall be replaced by one that resembles the code in
Figure 6.3.

Similar to aigfuzz and aigdd, calling the oracle as a system command requires switching
the program control through the command shell and interfacing the testcases by reading and
writing files. With the possibility of a tight integration as in Figure 6.2, these interfacing over-
heads can be eliminated and thus, empirically, making the automated testing and debugging
workflow about 10x faster.

6.5 Case Study

As a case study, we apply the toolkit on a known defect in a variation of cut rewriting, which uses
a compatibility graph to identify compatible substitution candidates [Rie+19a], implemented
in mockturtle.’ The defect can be observed by having a cyclic network after applying the
algorithm. The failure-inducing core of this defect is shown in Figure 6.4 (d). The cyclic
result is caused by the algorithm observing n; ® n, as a substitution for n;; and ny; @ n, as
a substitution for n7, and trying to apply the two substitutions at the same time. To identify
that the two substitution candidates are in conflict, the algorithm should check, for every
pair (4, B) of candidates, if the root of A is contained in the cut of B and the root of B is
contained in the cut of A. This would be a feasible fix for the defect but would impact the
efficiency of the algorithm. Another rewriting algorithm that does not use the compatibility
graph but eagerly substitutes each candidate before searching for the next one is available in
mockturtle.” However, when not affected by the defect, the defective algorithm has on average
better quality of result than eager rewriting. Also, the defect seems to be observed very rarely,
as will be discussed in Section 6.5.1. As a compromise, both algorithms are kept in mockturtle.

The first reported failure-inducing testcase for this defect is shown in Figure 6.4 (a). The
original testcase was not minimized by the reporter and have 49 PIs, 272 AND gates, and 28
POs. It took a human expert about 30 minutes to manually reduce the testcase to Figure 6.4 (d),
with 3 PIs, 8 gates, and 2 POs. Using the testcase minimizer, the original testcase is minimized
to the same graph (subject to permutations of the two POs) within a second and using 94
oracle calls. In Section 6.5.2, we study the effectiveness and necessity of the reduction stages
described in Section 6.4.2.

6The function cut_rewriting_with_compatibility_graph can be found in
algorithms/cut_rewriting.hpp.
"The function cut_rewriting can be found in the same header file.

101

Chapter 6 Testing and Debugging Logic Synthesis Algorithms

\ty

(b) Remove PO only. (c) Remove PO and substitute gate. (d) The minimum
failure-inducing test-
case.

Figure 6.4: The failure-inducing testcase for an algorithm implemented in mockturtle and
intermediate results of minimizing it.

6.5.1 Capturing The Defect with Fuzz Testing
Using AIGs

Knowing the existence of the defect, we investigate if our fuzz tester is capable of generating
another failure-inducing testcase. However, even though the code line coverage has reached
its maximum (100% excluding the lines disabled by the algorithm'’s options), the defect is
not observed with more than a billion (10%) regular (i.e., without leveraging knowledge of the
known core) fuzz tests. Even if we limit the sampling space to the 3-input, 8-gate, 2-output
topology as in Figure 6.4 (d) and leaving only the connections to PIs and edge complementa-
tions as random choices, there are still 62 x 3% x 216 = 191102976 different possible networks,
out of which only 3! x 23 = 48 networks (equivalent to Figure 6.4 (d) subject to permutation
and negation of PIs) are failure-inducing.

This case evidences that rare corner-case defects exist in logic synthesis applications, and the
identification of them may only rely on real-world benchmarks. In these cases, the testcase
minimization techniques are important to automatize the extraction of the failure-inducing
core, which facilitates communication and debugging.

Using XAGs

We observe that the XOR functions in the core (nodes 9,10, 11 and nodes 5,6, 7 in Figure 6.4 (d)
are necessary. Using any of the randomized methods described in Section 6.4.1, the possibility
of generating an XOR function composed of three AIG nodes is low. However, it is much more
likely to generate an XOR gate in an XAG. As the implementation is generic and works for both

102

Testing and Debugging Logic Synthesis Algorithms Chapter 6

Table 6.1: Fuzzing the defective cut rewriting with XAGs.

Method #Tests Time (s)

Random 8150 1.8
Topology 44498 6.6
Composed 77573 22.8

AIGs and XAGs, we can try to capture the defect using XAGs instead. Table 6.1 shows that all
the three methods successfully capture the defect within reasonable runtime.

6.5.2 Effects of The Reduction Stages

Given the initial failure-inducing testcase as in Figure 6.4 (a), using the default settings, our
testcase minimizer produces the minimal failure-inducing testcase as in Figure 6.4 (d), which
is a 97% reduction rate in gate count. The minimality can be proved by trying to remove each
gate and seeing that any possible resulting testcases are not failure-inducing.

Figures 6.4 (b) and 6.4 (c) show the reduction results if only some reduction stages are applied.
The first stage, remove PO (remove PI is skipped because there are more PIs than POs), provides
already 89% reduction of the testcase by removing large cones of irrelevant logic and quickly
concentrates to the transitive fanin cone of two POs (Figure 6.4 (b), 30 gates). The next stage,
substitute gate, further reduces the size to 15 gates (Figure 6.4 (c)), and the failure-inducing
core is easily observable (marked with a red box). However, the other nodes on top of the core
cannot be removed in this stage because substituting any of them with constant zero also
removes part of the core. This can be accomplished by adding the stage simplify TFO, resulting
in Figure 6.4 (d). The two key operations are adding PO at nodes 13 and 20 and substituting
nodes 14 and 21 with constant zero. It is also possible to reach the minimum by adding only
the stage remove gate, but it requires at least 6 operations to remove nodes 14,15,16,21,22
and 23 one by one, showing that this stage operates in finer granularity. It may seem that the
stage remove MFFC is not necessary. However, this is only because the failure-inducing core in
this example does not have irrelevant transitive fanin gates (i.e., it is connected to PIs) in the
original testcase. When this is not the case, the stages remove MFFC and/or remove gate are
necessary to obtain the minimum.

6.6 Experimental Results

6.6.1 Fuzzing Open-Source Logic Synthesis Tools

To demonstrate the effectiveness of fuzzing and compare different testcase generation meth-
ods, we fuzz-tested the following open-source logic synthesis tools: mockturtle® [Rie+19b],

8Available: https://github.com/Isils/mockturtle. Commit c£4769f.

103

https://github.com/lsils/mockturtle

Chapter 6 Testing and Debugging Logic Synthesis Algorithms

Table 6.2: Fuzz testing results.

aigfuzz Random Topology Composed
#Tests = 1000 #Tests = 1000 #Tests = 5000 #Tests = 5000

AUT #FITs Size Time #FITs Size Time #FITs Size Time #FITs Size Time

§ aig_resub 0 - 103 0 - 3.5 0 - 0.02 1 14.0 0.03
§ sim_resub 3 8123 223 0 - 4.2 6 5.0 0.06 93 21.7 0.11
if -u 952 2476.0 325 1000 950.0 14.6 1716 4.7 128 3749 203 13.0
mfs -dael 956 2515.1 4.5 969 978.8 1.6 0 - 142 1047 239 123

O mfsd 473 3935.9 30.5 584 1078.4 14.1 0 - 14.1 120 24.2 14.1
% mfsd -cd 481 3959.7 130.0 73 1266.4 47.8 0 - 142 1 200 14.4
mfse 458 2763.3 14.7 93 940.3 13.6 1 50 160 1056 234 15.0
stochsyn 13 11648 14.6 0 - 6.0 0 - 125 14 18.9 125

< aigscript 1 7364.0 38.1 0 - 164 0 - 328 1 140 328
g deep 12 32273 416 0 - 215 0 - 333 6 23.0 328
3 xmgscript 3 1056.0 21.6 2 350.0 105 38 49 115 99 20.1 12.0
Average 29416 32.8 995.5 14.0 4.7 14.7 215 145

aig_resub = mockturtle::aig_resubstitution,sim_resub = mockturtle::sim_resubstitution
if -u = abc> "bms_start; if -u; strash",mfs -dael = abc> "&if; &mfs -dael; &st"

mfsd = abc> "&mfsd; &st",mfsd -cd = abc> "&mfsd -cd; &st"

mfse = abc> "if; mfse; strash", stochsyn = abc> "&stochsyn resub"

aigscript = lsoracle> aigscript,deep = lsoracle> deep, xmgscript = lsoracle> xmgscript

104

Testing and Debugging Logic Synthesis Algorithms Chapter 6

Table 6.3: Testcase minimization results.

Original aigdd Ours

AUT Size Size #Calls Time Size #Calls Time
mockturtle:: - 272 8 210 325 8 96 0.1
cut_rewriting_with_compatibility_graph

mockturtle::sim_resubstitution 615 7 735 11.6 8 351 2.5
abc> &mfsd -cd; &st 1050 31 1198 150.0 20 857 120.5
abc> if; mfse; strash 1850 6 834 61.2 5 333 30.3
abc> &stochsyn resub 3228 10 1124 59.6 8 411 21.1

ABC? [BM10], and LSOracle!® [Net+19]. Table 6.2 lists the commands or functions where
defects have been observed. Fuzz testing campaigns were conducted on each AUT using
aigfuzz and the three network generation methods described in Section 6.4.1. In each cam-
paign, aigfuzz and the method Random ran 1000 tests, whereas the methods Topology and
Composed ran 5000 tests. In Table 6.2, column #FITs lists the total number of failure-inducing
testcases generated, column Size lists the average size (number of gates) of the failure-inducing
testcases, and column Time lists the total runtime in minutes including the oracle calls.

The Composed method captured defects in all of the listed AUTs. On average, Composed is
about 2 x faster than aigfuzz and it tests on 5x more networks. This is because the Composed
testcases are, on average, 7% in size compared to those generated by aigfuzz. Also, notice
that for AUTs in mockturtle, the runtimes of our fuzzing methods are about 10x faster than
aigfuzz thanks to the tight integration.

6.6.2 Testcase Minimization

We compare our testcase minimizer to aigdd using the user-reported failure-inducing testcase
in Section 6.5 and four bigger testcases found by fuzz testing in Section 6.6.1. In Table 6.3,
column Size lists the number of gates of the original and the minimized testcases, column
#Calls lists the number of oracle calls and column Time lists the total runtime in seconds. It
can be observed that our minimizer reduces the testcases into minimal cores of roughly the
same or smaller sizes compared to aigdd, using on average 50% oracle calls and 50% runtime.

6.7 Discussions

6.7.1 Non-deterministic Defects

Non-deterministic defects may be hard to debug because they cannot always be reproduced.
Non-determinism may come from a random number generator without a fixed seed, a race

9Available: https://github.com/berkeley-abc/abc. Commit 31519bd.
10Available: https:// github.com/Inis-uofu/LSOracle. Pull request #81.

105

https://github.com/berkeley-abc/abc
https://github.com/lnis-uofu/LSOracle

Chapter 6 Testing and Debugging Logic Synthesis Algorithms

condition in concurrent computation, or accessing to uninitialized or unintended (index-out-
of-bounds) memory. If a non-deterministic defect is first observed with a large testcase, it may
be difficult to minimize it while maintaining the defect being observed. In such cases, fuzz
testing may help generate smaller testcases to observe the defect deterministically.

6.7.2 Other Applications of The Toolkit

In addition to testing and debugging, the proposed tools can also be used for finding examples
with specific properties. For example, an open problem in logic synthesis is whether it is better
to heavily optimize an AIG before transforming into MIG, or to perform optimization directly
with an MIG. Our toolkit can be used to generate minimal examples where one optimization
script obtains better results than the other, which might help researchers identify weaknesses
in the algorithms.

6.8 Future Directions

Our network fuzzer currently does not support generating k-LUT networks easily without spec-
ifying all possible LUT functions as different gate types. This can be mitigated by integrating a
random truth table generator.

In addition to minimizing the failure-inducing input networks, when the defective AUT in-
volves multiple independent algorithms (i.e., a script with a sequence of commands), it would
also be helpful to minimize the script and remove irrelevant commands. This can be accom-
plished by automatic binary search, similar to delta debugging.

6.9 Summary

In this chapter, we survey automated testing and debugging techniques and provide an open-
sourced toolkit specialized for gate-level logic synthesis applications. While random fuzz
testing can already catch many higher-frequency defects, the topology-based fuzzing methods
provide a more systematic approach to thoroughly test topology-related corner cases. After
failure-inducing testcases are found, the testcase minimizer can be used to reduce their
size efficiently to facilitate manual debugging (and also anonymizing sensitive testcases).
Moreover, our testcase minimization technique guarantees finding a minimal core in the
failure-inducing testcase, which often gives insights into the cause of the defect and may also
be used to categorize testcases for the same AUT. The case study shows that (1) some defects
may be difficult to catch by fuzz testing, thus testcase minimization is important when we
need to rely on real-world testcases; and (2) testing with more functionally-compact networks,
such as XAGs, may help to detect some defects in generic logic synthesis algorithms.

106

AQFP Circuit Optimization

107

rd Adiabatic Quantum-Flux Parametron

Adiabatic quantum-flux-parametron (AQFP) is an emerging superconducting electronic (SCE)
technology receiving increased interest. Featuring an ultra-low energy consumption and a
high switching speed, AQFP is a promising and attractive alternative to CMOS-based digital
families for high-performance computing.

The AQFP technology imposes some special constraints uncommon to classical CMOS tech-
nologies. First, because every gate in an AQFP circuit is clocked, all input signals for a logic
gate must arrive at the same time (in the same clocking phase). To ensure this, shorter data
paths need to be delayed with clocked buffers. Moreover, the output signal of AQFP logic gates
cannot be directly branched to feed into multiple fanouts. Instead, splitters are placed at the
output of multi-fanout gates to amplify the output current, and they are also clocked. Special
care needs to be taken in EDA to fulfill these constraints (i.e., to legalize the circuit for AQFP),
which is the main topic in Part II of this thesis. Besides, the elementary logic gate in AQFP is
the majority gate and input negation is for free, thus making MIGs a natural choice for AQFP
logic synthesis. In Chapter 10, we will integrate methods developed in Part I for MIGs with new
algorithms proposed in Part II for AQFP legalization to form a complete AQFP logic synthesis
flow.

In this chapter, we introduce the basic concepts related to SCE and AQFP, including the gate-
level and architecture-level clocking schemes, as well as the special design constraints. We
will also define the mathematical abstraction and terminology to be used in the remainder of
this thesis.

7.1 Superconducting Electronics

Magnetic Flux Qquantum

The magnetic flux threading a superconducting material is, in contrast to normal conductors,
quantized. The magnetic flux quantum, denoted as @y, is the smallest unit of magnetic flux

109

Chapter 7 Adiabatic Quantum-Flux Parametron

for any superconductor. Its value, @y = 2—}; ~2.07 x 1071°> Wb, is a constant that can be derived
from the Planck constant % and the electron charge e.

Josephson Junction

Josephson junction (J]) is the active device in superconducting circuits. It is composed of two
superconducting regions and a weak link with no or weakened superconductivity between
them. The number of JJs in a superconducting circuit is related to its energy consumption and
complexity. Thus, JJ count is commonly used as the cost metric for superconducting circuits.

The characteristic parameter associated with a JJ is its critical current I., which is the maximum
current amplitude through the JJ. The current and voltage across a J] are related to its Josephson
phase ¢, which is the phase difference of the wave functions of Cooper pairs in the two
superconductors of the JJ. Known as the Josephson effect, the current flowing through a JJ is
related to its phase by I(#) = I sin¢g(t) and can flow for indefinitely long without dissipation.

Superconducting Digital Computing

Superconductors can be used in both classical digital logic and quantum computing. We
focus on the former in this thesis. As the underlying computing paradigm remains the same,
that is, explainable using Boolean logic instead of superpositioned quantum qubits, existing
logic synthesis techniques can be easily applied. There are currently two main families of
SCE technologies, namely single-flux quantum (SFQ) [LS91b] and adiabatic quantum-flux
parametron (AQFP) [Tak+13]. Both of them (still) require a cryogenic environment for their
correct operation. Nevertheless, even with the refrigerating cost taken into account, SCE
technologies still achieve significantly lower energy consumption compared to the CMOS
family.

7.2 Basic Principles of Adiabatic Quantum-Flux Parametron

7.2.1 Parametron and Quantum-Flux Parametron

The parametron, proposed by Goto in 1954, was a candidate of the logic component in com-
puters competing against the transistor before the breakthrough in semiconductor technology
had made the latter become a much more reliable and economical choice. The parametron is
essentially a resonant circuit utilizing the parametric oscillation phenomenon. By applying an
alternating excitation current of frequency 2 f to a balanced system, an oscillation of frequency
f is generated and it is stable in either of two phases differing by 7 radians. The two stable
points are thus used to represent logic 0 and 1 [Got59].

The quantum-flux parametron (QFP) uses JJs in the parametron circuit to create persistent
current. The circuit schematic of the basic QFP model is shown in Figure 7.1. When the

110

Adiabatic Quantum-Flux Parametron Chapter 7

o
I Iin
—_x’ww—’l—ww—
k ——— —_—k
_ YYY\L_ | YYY__
LI L2 =L1
—_—
Iour
XJI Lq Lout JZX
kout
; <+

Figure 7.1: Circuit schematic of the QFP.

excitation current I is applied, which creates an excitation flux in the loops by inductive
coupling, the potential energy of the QFP appears to have two local minima at a positive value
and a negative value of output flux (Figure 2 in [Hos+91] and Figure 2 (a) in [Tak+13]). With
a small input current, the system falls into either one of the stable states, determining the
direction of the output current [Har+87; Hos+91].

7.2.2 Adiabatic Operation

The AQFP is a QFP circuit operated in the adiabatic mode. The term adiabatic in the name of
AQFP refers to switching operations without, or with very low, loss or gain of electronic charge.
By carefully tuning the circuit parameters in a QFP gate, it has been shown that the switching
energy dissipation of an AQFP gate can be reduced to much lower than (i.e., 12% of) I,®,
which is the limit for any technology in the SFQ family [Tak+13]. The AQFP switching energy
dissipation is close to the theoretically predicted limit! [KL70].

In short, by operating in the superconductive region, AQFP circuits achieve zero static energy
dissipation [Har+87]; by operating in the adiabatic mode, AQFP circuits achieve very small
dynamic energy consumption [Tak+13].

7.2.3 Logic Computation

In AQFP digital circuits, logic ‘0’ and ‘1’ are represented by different current directions of
the same magnitude, which is a result of a quantum flux existing in one of the two loops
(Figure 7.1), instead of low and high voltages as in CMOS. The basic circuit components in

IThe typical value of I is about 50 uA, hence I.®y is of order 107197, On the other hand, kg = 1.4 x 10723 is the
Boltzmann constant, and the operation temperature T is typically several Kelvin, making the theoretical limit kg T
at the order of 10722 J.

111

Chapter 7 Adiabatic Quantum-Flux Parametron

AQFP logic are the buffer cell (as shown in Figure 7.1, using 2 JJs) and the branch cell (a current
forking circuit, without any JJs). A NOT gate is created with a buffer with negative inductive
coupling (kyy; = —k). A majority-3 (MAJ3) gate can be constructed by combining three buffer
cells with a reverted branch cell (i.e., a 3-to-1 merger). Other preliminary logic gates, such as
the AND2 and OR2 gates, can be built from the MAJ3 gate with a constant input (constant
0 for AND2 and constant 1 for OR2) made of an asymmetric buffer cell. Input negation of
logic gates is realized using a negative mutual inductance and is of no extra cost [TYY15]. Like
other superconducting technologies, the commonly-used cost metric for AQFP circuits is the
JJ count. A buffer costs 2 JJs, a branch cell is of zero JJ-cost, and a logic gate based on MAJ3
costs 6JJs [TYY15].

7.2.4 Gate-level Clocking Schemes

Logic gates, buffers, and splitters in AQFP are periodically activated and reset by an alternating
excitation current [Tak+13]. A gate takes its inputs, computes its logic function, and provides its
output with the presence of the excitation current. In the absence of the excitation current, an
AQFP gate produces no output current (i.e., neither logic ‘0’ nor logic ‘1’). Thus, two cascaded
gates must be fed with consecutive clocking phases, where the capturing gate is activated later
than, but overlapping with, the activation of the launching gate, such that the information can
be propagated along the circuit. Using similar terminology as in logic synthesis, we call the
capturing gate a fanout of the launching gate, and the launching gate a fanin of the capturing
gate.

Various clocking schemes have been proposed. 3-phase clocking was used in earlier works
[Tak+13; TYY15; Aya+17], where three excitation currents with a phase shift of 120° to each
other are fed into different levels of gates. A few years later, 4-phase clocking was pro-
posed [Tak+17] and has remained the most commonly-used clocking scheme until now. In
4-phase clocking, the phase shift decreases to 90°, the number of alternating current sources
decreases to 2, and the number of clocking phases in each clock cycle increases to 4, allowing
for slightly lower latencies by enabling a logical depth of 4 gates instead of 3 per cycle. In both
3- and 4-phase clocking, logic gates in each level are assigned to one of the three or four phases
and phase synchronization must be ensured: Any fanin of a gate g must be at the previous
phase of g.

Another clocking scheme is delay-line clocking [Tak+19], where a single alternating excitation
current is used and transmission lines are inserted between levels to delay the clock. Delay-
line clocking not only allows for even lower latency but also enables the phase-skipping
operation [SAY21; YTY21], reducing the number of path-balancing buffers.

In this thesis, we use pjx to denote the number of phases in a (gate-level) clock cycle. Typically,
Pex =3 or4.

112

Adiabatic Quantum-Flux Parametron Chapter 7

sum

Figure 7.2: An AQFP-legalized full adder circuit.

7.3 AQFP Design Constraints

Logic gates in an AQFP circuit need to be activated and deactivated periodically by an ex-
citation current [Tak+17]. In other words, every gate in an AQFP circuit is clocked, and all
input signals have to arrive at the same clock cycle. To ensure this, shorter data paths need
to be delayed by clocked buffers. Moreover, the output signal of AQFP logic gates cannot be
directly branched to feed into multiple fanouts. Instead, splitters are placed at the output of
multi-fanout gates to amplify the output current. A splitter cell is composed of a buffer cell
and a 1-to-n branch cell (usually, 2 < n < 4) and is also clocked. As the cost of splitters comes
mostly from the buffer cells, in the remainder of this thesis, we do not distinguish buffers from
splitters and model them using the same abstraction. Also, in all figures, we use circles to
represent MA]J gates and squares to represent buffers/splitters.

To illustrate the AQFP technology constraints, Figure 7.2 shows a full adder as a legalized AQFP
circuit. Splitters (S squares) are inserted to drive multiple fanouts and buffers (B squares) are
used to balance all paths from a PI to a PO.

7.4 Memory Devices and Architectural Clocking

To implement sequential circuits using a similar finite-state-machine model as CMOS digital
systems, AQFP memory devices are needed. At least two possible designs have been proposed
in the literature: D-latch and QFPL-based NDRO.

A simplified AQFP feedback delay latch (D-latch) is depicted in Figure 7.3, where the 4-phase
clocking scheme is used. A D-latch takes an Enable signal E and a Data signal D as inputs. Its
operation is illustrated by the truth table shown in Table 7.1. When E = 0, the majority gate
has input values (0, 1, Q;,), thus keeping the same internal state Q,+; = Q,; when E =1, the
majority gate has input values (D, D, Qy,), thus the internal state is overwritten by the new data
D [Tsu+17].

A quantum-flux-parametron latch (QFPL) is a special AQFP gate that can hold its state when
the excitation current is low. The internal state of an QFPL is updated only when its two inputs
A and B present the same value; otherwise, it keeps the previous state. Combining an QFPL
and some logic gates, a non-destructive-read-out (NDRO) can be made, as shown in Figure 7.4.
An NDRO also takes an Enable signal E and a Data signal D as inputs and has the same truth
table as in Table 7.1. When E =0, we have A =0 and B = 1, thus the QFPL holds its previous

113

Chapter 7 Adiabatic Quantum-Flux Parametron

Phase

ED On by
v 1

MAJ P2

¢3

AN N S

Qn+1 (pl

Figure 7.3: Circuit schematic of an AQFP D-latch.

Table 7.1: Truth table of D-latch and NDRO.

E D ‘ Qn+1 ‘ Action
0 O Qn Hold
0 1 Qn Hold
1 0 0 Write 0
1 1 1 Write 1

114

Adiabatic Quantum-Flux Parametron Chapter 7

Phase

E D ¢3
¢
07)

B A
QFPL 3

I

Qn+1 ¢1

Figure 7.4: Circuit schematic of an QFPL-based NDRO.

state; when E = 1, then A = B = D and the new data is written into the QFPL [Sai+21].

For a D-latch, an update to the state, caused by a new value at the input D enabled with E =1,
is propagated through the circuit and changes the output Q,; 4 phases later. In contrast, an
update to the state of a NDRO is available at the output 3 phases later.

In a classical sequential circuit model, the data D inputs of registers come from the outputs
of the previous-stage combinational circuit, the outputs Q of registers are connected to the
inputs of the next-stage combinational circuit, and the enable E input of registers comes from
an architectural clock (in contrast to the gate-level clock discussed in Section 7.2.4). In the
CMOS paradigm, the enabling signal of registers is the rising edge or falling edge of a periodic
clock signal. In contrast, in AQFP, the enabling signal E is kept at 0 most of the time and
become 1 once every k gate-level clock cycles, where the value k depends on the length of the
critical combinational path. In this thesis, we denote the number of phases in an architectural
clock cycle by parch = k- peik-

7.5 Abstraction and Terminology

In the remaining part of this thesis, we abstract AQFP circuits at the gate level as homogeneous
logic networks using the same terminology as in Part I. Because the basic logic gate in AQFP is
the majority gate and input negation is cost-free, AQFP logic networks are essentially MIGs.

Buffers and splitters need to be inserted in an AQFP logic network to fulfill technology con-
straints, producing a mapped network. A mapped network N’ = (V', E’) is a network extended
from a (unmapped) network N = (V = Tu OU G, E), where the node set V' is supplemented
with a set B of buffers, i.e., V' = ITuOuU G U B. A bulffer is a node with an in-degree 1, modeling
an AQFP buffer cell (when having an out-degree 1) or an AQFP splitter cell (when having an
out-degree larger than 1). In a mapped network, the definition of the fanouts of a gate is
modified by ignoring any intermediate buffers, i.e., a path from a gate g to one of its fanouts

115

Chapter 7 Adiabatic Quantum-Flux Parametron

8o € FO(g) c (Gu 0) may include any number of buffers in B, but never another gate. The
definition of fanins is modified similarly. The fanout tree of a gate (or a PI) n, denoted by
FOT(n), is the set of buffers between n and any gate or PO in FO(n).

A schedule of a network is a function § : V — Z, that assigns a non-negative integer S(n)
to each node n € V, called the level of n. A valid schedule must fulfill the condition that
Vne V,Vn; € FI(n),S(n;) < S(n). We do not consider invalid schedules in this thesis. The
depth of a network N = (V = Tu OU G, E) with a schedule § is defined as d(IN) = max,eo S(0).

This chapter serves as the background introduction for Part II of this thesis. We introduced the
basic principles and the special design constraints of the AQFP technology, which motivated
the research to be done in the following chapters: In Chapter 8, we first discuss the necessity of
these constraints and tradeoffs caused by possible relaxations. Then, in Chapter 9, we propose
systematic legalization methods to fulfill the constraints. Finally, we put everything together
as an AQFP logic synthesis and technology mapping flow in Chapter 10.

116

Impact of Sequential Design on AQFP
Technology Constraints

8.1 Motivation

As switching energy dissipation in AQFP is related to the number of JJs, reducing the JJ count
of AQFP circuits has been the primary optimization goal along with reducing circuit latency.
This in turn, also helps to reduce the overall circuit area as AQFP primitives have a large
footprint due to their output transformer. In previous works, the AQFP buffer and splitter
insertion problem has been formulated as follows: All paths should be balanced to the same
length (path balancing), and all gates, including primary inputs, with multiple fanouts must
be branched (fanout branching). Surprisingly, research has found that a large portion of JJs in
AQFP benchmark circuits is dedicated to buffering cells to fulfill these technology constraints.

It is very seldom the case in modern EDA where the design under synthesis is purely combi-
national without any memory devices. In conventional EDA flows, we usually cut off com-
binational parts of the circuit for logic synthesis because the combinational optimization
problem is simpler than the sequential one. However, in the context of AQFP legalization, it
is important to understand the mechanism of the sequential model when formulating the
constraints and diving into solving the legalization problem, because the required constraints
are not exactly the same in a purely combinational scenario and in a sequential design.

While the path-balancing and fanout-branching constraints are absolutely required for the
correct operation of an AQFP combinational® circuit without memory devices, in the context
of a sequential computing model where combinational inputs and outputs are connected
to registers, these constraints may be too conservative. According to the architectural clock-
ing scheme currently used in AQFP sequential circuits, registers generally hold their values
throughout the architectural clock cycle and their outputs can be taken by the next-stage
combinational circuit multiple times. In other words, the same computation is repeated in
waves in an AQFP combinational circuit. With a careful analysis, we argue that it is not always
necessary to balance all paths to equal length. Instead, aligning the gate-level clock phases is

1 Although AQFP gates are clocked, we use the terms combinational and sequential here in a similar sense as in
CMOS digital circuits, considering the (architectural) clock connected to registers.

117

Chapter 8 Impact of Sequential Design on AQFP Technology Constraints

Table 8.1: Parameters involved in AQFP constraint formulation.

Parameter Meaning

Reasonable value(s)

Sp Buffers’ splitting capacity (maximum num-
ber of fanouts)

S PIs’ splitting capacity (maximum number
of fanouts)

Sg Gates’ splitting capacity (maximum num-

ber of fanouts)

Pclk Clocking scheme (number of phases in a
gate-level clock cycle)

Dy Set of phase differences a register may pro-
duce its output relative to its input phase

sp =1, usually 3 or 4

1< s; < sy, (See Section 8.2.2)

3or4

Dy = {4} or &, = {3,4,5} (See
Section 8.2.2)

enough.

In this chapter, we discuss how architectural clocking and register design affect AQFP technol-

ogy constraints. We argue that the commonly adopted constraint formulation is sometimes

too conservative and propose relaxations to the constraints. Consequently, we also investigate

how the relaxation of constraints affects the number of buffers needed, and discuss possible

trade-offs when the constraints are relaxed.

8.2 AQFP Design Constraints

In most existing works related to AQFP technology legalization, the path-balancing and the

fanout-branching constraints are assumed, which are mathematically defined as follows for
amapped network N’ = (V' = Tu Ou GU B, E’) and its associated schedule S, subject to the
splitting capacities (the maximum number of fanouts a node may have) s; = 1,sg = 1 and

sp = 1 of PIs, gates, and buffers, respectively.

e Path balancing: N’ is path-balanced if

Vni,n,€V':(ni,n,) € E'=8S(n;) =S, -1,
Viel:S(@)=0,and
Yoe0:8(0) = d(N").

(8.1)
(8.2)
(8.3)

 Fanout branching: N’ is properly-branched if every PI has an out-degree no larger than
s, every gate has an out-degree no larger than sg, and every buffer has an out-degree

no larger than sj,.

In particular, the path-balancing constraint has its origin in the phase synchronization require-

118

Impact of Sequential Design on AQFP Technology Constraints Chapter 8

Path Balancing Phase Alignment

¢2 1=6 Q ¢2 1=6

do $1 1=5 ¢1 1=5
é s 1=4 s 1=4
é $s 1=3 $3 1=3
é 2 1=2 P2 1=2
é (5 $1 1=1 é () ¢ 1=1

Figure 8.1: Illustration of path balancing and phase alignment. (pcx = 4)

ment: an AQFP gate can only compute and output its logic function correctly at a gate-level
clock phase ¢; if all of its fanins output their values at the previous phase ¢;_;. However, recall
that the AQFP gate-level clock phases are not infinite but loop from ¢, to ¢, and then back
to ¢. In a 4-phase clocking scheme (px = 4) for example, the next phase of ¢4 is ¢, and the
phase 5 phases after ¢, is also ¢, . In other words, any phase difference of k- p + 1 shall be
allowed, as illustrated in Figure 8.1. Moreover, it may be possible for the memory devices to
output their values at more than one phase, depending on their circuit design.

Thus, we define the phase alignment constraint formally as follows, subject to two parameters:
the clocking scheme pjx (the number of phases in a gate-level clock cycle) and @y, (the set of
phase differences a register may produce its output relative to its input phase).

* Phase alignment: N’ is phase-aligned if

Vn,n,eV' :(njny) €E

= S(n;) mod pe = (S(n,) —1) mod pai A S(no) > S(ny), (8.4)
VieI:3¢p; € Dy, S(i) mod pex = ¢; mod pec A S(0) = ¢, and (8.5)
Yoe O:5(0) mod pgi = 0. (8.6)

In the following, we discuss which subset of these properties shall be required as AQFP
technology constraints and the values of the parameters involved.

8.2.1 Phase Alignment Instead of Path Balancing

Existing works on AQFP sequential architectural design [Aya+21; Sai+21], logic synthesis [Xu+17;
Cai+19c; Aya+20; Tes+21; MRM21; Meu+22], and buffer insertion-optimization [Hua+21;
LRD22b; CD23; Fu+23a] conventionally adopt a conservative set of constraints: path balanc-
ing and fanout branching. Notice that fulfilling path balancing, with an additional constraint
that d(N") mod p = 0, implies fulfilling phase alignment with ®;, = {0}. While this ensures

119

Chapter 8 Impact of Sequential Design on AQFP Technology Constraints

correct and robust operation of the AQFP circuit even with fast clock frequencies, enforcing
these constraints often leads to bulky circuits with more than half — sometimes up to 90%
— area taken by buffers. In this section, we argue that in the context of synthesizing com-
binational logic between register stages, assuring phase alignment, instead of the stronger
path-balancing constraint, is enough.

In [Sai+21], the authors proposed that when registers in several sequential stages share the
same enable signal, which arrives once per pach, phases matching the depth of the deepest
stage, shallower stages do not need to be balanced to the same length as the deepest stage. The
main reason is that memory devices output their value every px phases and do not change
their internal state for the entire architectural clock cycle until the enable signal arrives. Thus,
although shallower stages finish their computation earlier than when the registers are enabled
to take the next values again, the same computation is repeated every (gate-level) clock cycle,
and the same computational results are produced repeatedly until the registers are enabled
again to accept them.

With a similar reasoning, we extend the argument further and propose that the path-balancing
constraint can be relaxed to phase alignment, formally stated as follows.

Lemma 8.1. In an AQFP sequential circuit, let d be the longest path length between any two
register stages, ¢r, be the phase difference between the register output Q,+1 and inputs D, E.
Suppose that the register enable signal E is 1 for one phase in every parch = k - pcix phases, where
Parch = Gro + d, then fulfilling the phase-alignment constraint (Equations (8.4) to (8.6)), in
addition to fanout branching, is enough to ensure correct sequential operation of the circuit.

Proof. Without loss of generality, consider the computation propagated from one register
stage I, through a combinational circuit N, to the next register stage O, in one architectural
clock cycle. Suppose that E =1 at time ¢ = 0 and at time ¢ = p,.ch (the unit of time is number of
phases) and that E = 0 all the other time. Let the (multi-input, multi-output) Boolean function
computed by N be fy and let the values presented at the outputs of registers I at time ¢ = ¢by
be X, we will prove that the values presented at the inputs of registers O at time ¢ = pych, are
exactly fy(%).

First, observe that the same X is produced at I every p¢x phases until (excluding) t = parch +bro»
i.e., at

[= (ro, Pro + Pelis Pro + 2 Pelics - - +» Pro + (K= 1) - pek. (8.7)

Comparing Section 8.2.1 against Equation (8.5), we conclude that for all combinational inputs
i, its value is ready at time ¢ = S(i) corresponding to its assigned level, as well as every pcx
phases afterward.

Next, consider a gate n with two fanins? n;; and n;, and suppose that the values of n;; and

2We consider two fanins in the analysis for convenience, but the argument can be extended to any number of

120

Impact of Sequential Design on AQFP Technology Constraints Chapter 8

Phase
ED P4
MAJ QP | ¢
o3
it P
}
Q(ﬁj f ¢

Figure 8.2: Circuit schematic of an improved D-latch design.

n;, are ready at times corresponding to their assigned level, as well as every p.x phases after
these times, i.e., t = S(nj1) + j - pcik and ¢ = S(n;2) + j - pe, respectively, where j € Z. By
Equation (8.4), we know that at time ¢ = S(n) — 1, both fanins of n provide their correct values,
thus n computes its correct value at time ¢t = S(n). Moreover, as n;; and n;, produce the
same values every p.x phases, the same correct computation also repeats every pcx phases
since ¢ = S(n). Notice that this argument does not require S(r;;) and S(n;2) to be equal.
By induction, we conclude that all gates compute and produce the correct value since time
corresponding to their assigned levels and every p.x phases afterward.

Finally, by definition of d(IV), we know that all combinational outputs o are ready since time
t =85(0) = d(N) < ¢y + d, thus at time ¢ = parch = Pro + d, correct values fi(X) are presented
at the inputs of registers O. Equation (8.6) ensures that register inputs are placed at the correct
phase. O

Notice that in this analysis, the requirements for the architectural clock period parch = k- Peix
and parch = @0 + d must hold regardless of adopting path-balancing or phase-alignment con-
straints. In other words, the proposed relaxation does not affect architectural clock frequency
or latency.

8.2.2 PI Capacity and Phases

Based on the conventional D-latch as shown in Figure 7.3, which adopts the 4-phase clocking
scheme, we modify the design in Figure 8.2 to show the possibility for memory devices to

fanins.

121

Chapter 8 Impact of Sequential Design on AQFP Technology Constraints

have an output capacity larger than 1 and to have their output signal available at multiple
phases. In Figure 8.2, buffers are replaced by splitters to drive up to s, — 1 fanouts at various
phases, not only phase 4. Adopting such D-latches as registers in a sequential circuit, PIs of
the combinational network now have a splitting capacity s; = s, — 1 (where s;, is usually 3 or 4)
instead of 1.

With the modified D-latch design in Figure 8.2, instead of ®;, = {4} when adopting D-latches in
Figure 7.3, we may use @, = {3,4, 5} for a more relaxed phase-alignment requirement because
register outputs can be provided at various phases in the feedback loop in D-latch.

8.2.3 Consideration of Clock Skews

The analysis above assumes an ideal clock with zero clock skew. However, in real circuits,
clock skews may arise when the clock signal travels along many logic levels. In other words,
the activated time of a gate receiving a phase-1 clock closer to the clock source may be
earlier than another gate receiving also a phase-1 clock, but further away from the clock
source. The difference in the clock timing is called clock skew. One typical superconductor
electronics process used to manufacture AQFP circuits is the National Institute of Advanced
Industrial Science and Technology (AIST) 10kA-cm™ Nb four-layer high-speed standard
process (HSTP). In this process, microstriplines with a ground layer are used to deliver the
AC power-clock signals to the AQFPs. A first-order approximation of the transport delay of a
5 um long microstripline in this process is approximately 6.20 ps-mm~! [Aya+20]. This results
in a non-zero clock skew that accumulates along the meandering power-clock network of
the AQFPs [Aya+21]. With the existence of a non-zero clock skew, there is an upper limit on
how many phases can be skipped without any buffer in between, in addition to the phase
alignment constraint.

For large AQFP circuit designs such as a microprocessor, a meandering power-clock net-
work may span across an entire chip which is typically in the range of 5mm x 5mm to
10 mm x 10 mm in present-day superconductor fabrication processes. The accumulated skew
at this scale is significant enough to produce timing errors at GHz-range operating frequencies.
In this case, it is important to physically constrain the clock skew by using microwave power
dividers [Aya+21] or microwave H-tree networks [He+22] to reduce the physical size of the
local meandering microstripline power-clock networks, and thus reduce the accumulated
clock skew. Timing characterization of AQFP cells indicate that for 5 GHz sinusoidal clocks,
data can still be successfully captured with a clock skew of up to 30 ps between the launching
and capturing AQFP [Aya+15; ACY19; Aya+20]. This provides a nominal baseline target for
how the power-clock network should be designed, and it also provides an upper limit on how
much phase-skipping can be tolerated.

122

Impact of Sequential Design on AQFP Technology Constraints Chapter 8

8.3 Impact of Technology Constraints on JJ Count

In this section, we demonstrate the impact of the proposed relaxation on technology con-
straints on the number of buffers, and consequently on the JJ count of an AQFP circuit. To
simplify the problem and control unrelated variances, we insert buffers and splitters without
modifying the logic structure using an algorithm adapted from the legalization flow described
in the next chapter (Chapter 9). After a brief summary in Section 8.3.1 explaining the adap-
tations made in the algorithm, in Section 8.3.2, a small example circuit is first presented, for
which the optimum can be easily derived. Then, in Sections 8.3.3 and 8.3.4, experimental
results comparing different constraint formulations are listed.

8.3.1 Buffer/Splitter Insertion Considering Relaxed Constraints

The AQFP legalization problem, also called the AQFP buffer insertion problem, asks to insert
the least buffers and splitters into a logic network, without logic restructuring, to fulfill the
technology constraints. This problem will be further described in Chapter 9, including a
formal definition, related works, and a proposed flow combining various algorithms. The
details are omitted here, but it is worth noting that all existing works on this problem assume
the conservative constraints, i.e., path balancing and fanout branching.

To experiment with different formulations of the technology constraints, we adapted the
algorithms to support customizable parameters involved in the constraints. These parameters
include:

* Buffer’s splitting capacity s;: The maximum out-degree of buffers. This is the same as in
previous works.

* PI's splitting capacity s;: The maximum out-degree of PIs. s; was fixed to 1 in previous
works. However, as discussed in Section 8.2.2, it is possible to have s; = s — 1. Thus, we
make this an integer parameter to be specified by the user.

* A flag to switch between path balancing (Equations (8.1) to (8.3)) and phase alignment
(Equations (8.4) to (8.6)): If phase alignment is adopted, modifications in the algorithms
are made. First, levels of PIs and POs are not fixed. Special care is given to ensure that
PIs and POs are always assigned to a legal phase with respect to p¢x and @y,. Finally,
chains of single-fanout buffers of a length being a multiple of p. are removed in a
post-processing step.

* Number of phases in a gate-level clock cycle p¢x: When adopting path balancing, as in
previous works, this parameter is not relevant. However, when relaxing path balancing
to phase alignment, p.j is involved in the constraints.

* Possible phase differences between register input and output ®,,: Set of phases PIs are
allowed to be assigned (Equation (8.5)). In previous works, PIs are always assigned to
level 0 (Equation (8.2)).

123

Chapter 8 Impact of Sequential Design on AQFP Technology Constraints

(a) Path-balanced, (b) Path-balanced, (c) Imbalanced PIs (d) Remove buffer
s; =1 (16 buffers) s; =2 (13 buffers) and POs (9 buffers) chains (5 buffers)

Figure 8.3: Running example of how technology constraints affect the number of buffers in a
small circuit.

¢ If clock skew is of concern, as discussed in Section 8.2.3, then in any unbalanced path, a
user-specified maximum phase-skip is ensured.

A possible realistic setting uses phase-alignment constraints and parameters s, = 3,s; =
2, peik = 4, P10 = {3,4,5}, which is expected to result in the least number of buffers.

8.3.2 Motivational Example

We use an 1-bit full adder circuit as an example. In Figure 8.3, PIs are at the bottom and POs on
top; ellipse nodes are MAJ gates whose constant inputs are neglected for simplicity (i.e., AND
gates or OR gates) and negated fanins are dashed; and square blue and red nodes are buffers
and splitters. All subfigures show the optimal insertion subject to the specified constraints.

The mapped network when adopting conventional constraints (path balancing and fanout
branching, s; = 1) is shown in Figure 8.3 (a), which is the optimal insertion with 16 buffers
already shown in state-of-the-art works [LRD22b]. If s; is increased to 2 as discussed in
Section 8.2.2, splitters at the first level are no longer needed, decreasing the network depth by
1 and reducing the number of buffers to 13, as shown in Figure 8.3 (b).

Moreover, as discussed in Section 8.2.1, when enforcing the phase alignment constraint
instead of path balancing, the number of buffers further reduces to 5, which is less than a
third of the initial mapped network. This adjustment is done in two steps as described in

124

Impact of Sequential Design on AQFP Technology Constraints Chapter 8

Table 8.2: Experimental results comparing different constraints.

Baseline A B A+B Best

. . Si=1, S,'ZZ, SiII, Si:2' SL'ZZ,
Register design Bro=) Bro=(3,45 o= =345 Pro = (3,4,5)
Balance PIs & POs Yes Yes No No No
Remove buffer chains No No No No Yes
Bench. #Gates #Buf. #JJs #Buf. AB #Buf. AB #Buf. AB #Buf. AB #]]s AJ] MPS
adderl 7 16 74 13 (19%) 12 (25%) 9 (44%) 5 (69%) 52 (30%) 4
adder8 77 400 1262 341 (15%) 172 (57%) 115 (71%) 87 (78%) 636 (50%) 24
mult8 439 1740 6114 1721 (1%) 1297 (25%) 1305 (25%) 681 (61%) 3996 (35%) 60
counterl6 29 80 334 64 (20%) 56 (30%) 52 (35%) 52 (35%) 278 (17%) 20
counter32 82 170 832 158 (7%) 142 (16%) 139 (18%) 131 (23%) 754 (9%) 28
counter64 195 379 1928 360 (5%) 319 (16%) 317 (16%) 309 (18%) 1788 (7%) 36
counter128 428 801 4170 776 (3%) 685 (14%) 680 (15%) 656 (18%) 3880 (7%) 44
cl7 6 18 72 5 (72%) 14 (22%) 5 (72%) 5 (72%) 46 (36%) 0
c432 121 904 2534 805 (11%) 582 (36%) 487 (46%) 147 (84%) 1020 (60%) 28
c499 387 1328 4978 1306 (2%) 1299 (2%) 1235 (7%) 407 (69%) 3136 (37%) 24
c880 306 1786 5408 1623 (9%) 982 (45%) 888 (50%) 516 (71%) 2868 (47%) 40
cl355 389 1330 4994 1321 (1%) 1302 (2%) 1242 (7%) 398 (70%) 3130 (37%) 24
c1908 289 1325 4384 1305 (2%) 1181 (11%) 1132 (15%) 364 (73%) 2462 (44%) 28
c2670 368 2036 6280 1812 (11%) 712 (65%) 459 (77%) 351 (83%) 2910 (54%) 32
¢c3540 794 2339 9442 2226 (5%) 1722 (26%) 1564 (33%) 1060 (55%) 6884 (27%) 44
c5315 1302 6013 19838 5791 (4%) 2743 (54%) 2417 (60%) 1337 (78%) 10486 (47%) 40
c6288 1870 9040 29300 9008 (0%) 5924 (34%) 5886 (35%) 3206 (65%) 17632 (40%) 168
Cc7552 1394 10243 28850 9521 (7%) 4373 (57%) 4108 (60%) 1860 (82%) 12084 (58%) 56
sorter32 480 544 3968 448 (18%) 544 (0%) 448 (18%) 448 (18%) 3776 (5%) 0
sorter48 880 1008 7296 960 (5%) 1008 (0%) 960 (5%) 960 (%) 7200 (1%) 0
alu32 1513 14212 37502 13889 (2%) 7976 (44%) 7797 (45%) 1969 (86%) 13016 (65%) 156
Total 55712 179560 53453 (4%) 33045 (41%) 31245 (44%) 14949 (73%) 98034 (45%)

Section 8.3.1. First, relaxing the constraints on PIs and POs (Equations (8.5) and (8.6) instead
of Equations (8.2) and (8.3)) results in Figure 8.3 (c) with 9 buffers. Then, removing buffer
chains (Equation (8.4) instead of Equation (8.1)) saves 4 more buffers.

8.3.3 Experimental Results on Constraint Relaxation

Table 8.2 shows the experimental results on the commonly-used benchmark suite consisting
of ISCAS benchmarks and some arithmetic circuits®. Five sets of constraints are presented
and compared. To have a fair comparison, all of them use s; = 3 and p¢x = 4 and the mapped
networks are obtained using our adapted buffer insertion framework described in Section 8.3.1.
Columns “#Bufs.” list the number of buffers in the (optimized) mapped networks, columns
“#JJs” list the JJ count of the mapped networks (obtained by #JJs = 6-#Gates+2-#Buf.), columns
“AB” and “AJJ” list the reduction on buffer count and JJ count, respectively, and column “MPS”
list the maximum phase skip.

3Available: https://github.com/Isils/ SCE-benchmarks

125

https://github.com/lsils/SCE-benchmarks

Chapter 8 Impact of Sequential Design on AQFP Technology Constraints

Table 8.3: Experimental results on EPFL benchmarks.

Baseline Best
. . s;i=1, $i=2,

Register design O = (4] ®ro = (3,4,5)
Constraint Path balancing Phase alignment

Bench. #Gates #Buf. Rp.g #Buf. Rp.g AB
adder 384 50’046 130.3 1’904 5.0 (96%)
bar 3’016 3'125 1.0 2’310 0.8 (26%)
div 57’300 1'883’971 329 148268 26 (92%)
hyp 136’108 9'065’938 66.6 386’735 2.8 (96%)
log2 24’457 129’363 5.3 50’013 2.0 (61%)
max 2’413 71’841 29.8 3’341 1.4 (95%)
multiplier 19’716 103’153 5.2 40263 2.0 (61%)
sin 4’307 19’261 4.5 8’450 2.0 (56%)
sqrt 23’238 1'796’085 77.3 50’299 2.2 (97%)
square 12’179 90’857 7.5 29’195 24 (68%)
arbiter 7’000 28’134 4.0 14’962 2.1 (47%)
cavlc 667 762 1.1 705 1.1 (7%)
ctrl 118 163 14 133 1.1 (18%)
dec 304 376 1.2 352 1.2 (6%)
i2c 1’246 2’921 2.3 1’549 1.2 (47%)
int2float 237 321 14 260 1.1 (19%)
mem_ctrl 42’714 224’766 5.3 61’114 1.4 (73%)
priority 988 17’546 17.8 1’466 1.5 (92%)
router 267 1’606 6.0 401 1.5 (75%)
voter 7’860 19’619 2.5 15’944 20 (19%)
Total/Average 13.5M 20.2 0.8M 1.9 (94%)

Column “Baseline” is the most conservative constraints used in related works [Xu+17; Aya+20;
Hua+21; LRD22b; CD23; Fu+23a], i.e., path balancing and fanout branching, plus an additional
but realistic constraint that the network depth must be a multiple of pgy = 4*. Column “A”
uses the improved D-latch design discussed in Section 8.2.2, but still adopts path balancing.
In contrast, column “B” still uses the classical register design, but does not balance PIs and
POs. Column “A+B” combines both improvements. Finally, column “Best” further removes
buffer chains in “A+B”, shifting from path balancing to phase alignment and achieving the best
constraint relaxation proposed in this chapter.

We observe from this experiment that considering phase alignment instead of path balancing
reduces about 70% of buffers in AQFP circuits, among which about 40% are balancing PIs and
POs, and the other 30% are chains of buffers within the network.

126

Impact of Sequential Design on AQFP Technology Constraints Chapter 8

8.3.4 Experimental Results Using Larger Benchmarks

Table 8.3 shows the results of a similar experiment on the EPFL benchmark suite [AGD15],
which consists of up to 100x larger benchmarks than in the previous section. For the sake of
simplicity, only the settings corresponding to columns “Baseline” and “Best” in Table 8.2 are
shown. The number of buffers (“#Buf.”) and the buffer-to-gate ratio (“Rp.g”", the number of
buffers divided by the number of gates) are listed for the two settings, as well as the reduction
percentage on buffer count after relaxation (“AB”).

It can be observed that many benchmarks have a high buffer-to-gate ratio when adopting the
conventional conservative constraints, especially the arithmetic circuits (upper half). This is
likely due to the imbalanced nature of these circuits. By relaxing the path-balancing constraint
to phase alignment, a large portion of path-balancing buffers are eliminated, drastically
reducing the number of buffers and making the buffer-to-gate ratio more reasonable. Take the
adder benchmark as an example, with merely 384 gates in the original network, state-of-the-
art buffer insertion algorithms adopting conservative constraints need to insert around 50k
buffers to balance every path, 130x of the number of gates. Most JJs in the circuit and energy
dissipation are wasted on these buffers. The resulting bulky mapped network also makes
the following physical design and fabrication steps difficult. However, simply by relaxing the
constraints to phase alignment, only about 1.9k buffers are actually needed, reducing the
buffer count by 96%.

8.4 Discussions

8.4.1 Trade-off Between Throughput and Maximum Phase Skip

A disadvantage of replacing path balancing with phase alignment is that the possibility of wave-
pipelining is disabled. Wave-pipelining, or multi-threaded gate-level pipelining, is a technique
to increase throughput by propagating more than one computation in one (architectural)
clock cycle, which has been researched for classical CMOS-based digital systems [Bur+98]
as well as emerging technologies [Zog+17; Li+22]. One important requirement for a wave-
pipelined system is path balancing, thus making AQFP circuits a natural candidate to adopt
this technique, although related research has not been proposed yet.

If an AQFP circuit is fully path-balanced, up to k = parch/ Pk Waves may be propagated
between two register stages at the same time, increasing its throughput by kx. When phase
alignment is adopted instead to reduce JJ count, a trade-off between throughput and buffer
count (thus energy and area) arises. In such case, the number of waves allowed is bounded
by the maximum phase skip, or inversely, given a desired throughput, the maximum allowed
phase skip must be ensured, which can be achieved with our framework. Related work for the
SFQ technology family has been proposed [Li+22], which uses ILP for scheduling and buffer

4Many related works do not impose this constraint, although it is necessary. Enforcing this constraint adds
about 1.7% buffers on this benchmark suite.

127

Chapter 8 Impact of Sequential Design on AQFP Technology Constraints

insertion under similar constraints. However, for AQFP, because splitters are also clocked,
this formulation cannot guarantee optimality and is also less scalable than our approach.
Future AQFP circuit designers may choose path-balanced, wave-pipelined circuits for smaller
components requiring higher throughput, and phase-aligned, non-pipelined circuits for larger
parts consuming more energy.

8.4.2 n-phase Clocking

Another buffer reduction method leveraging an n-phase clocking scheme has recently been
proposed [SAY21]. The basic idea is to multiply the number of phases in one (gate-level) clock
cycle by an integer r while keeping the activated period of each gate the same, such that a
gate is valid for r phases and any chain of r buffers can be reduced to 1. An example with
Pclk =4 and r =2, n = 8 is illustrated in Figure 8.4, where the colored areas are the times when
gates at the corresponding phase are activated and arrows indicate the transfer of information.
In normal 4-phase clocking, information can only be transferred from ¢, to ¢», whereas in
8-phase clocking, information can be transferred from ¢; to ¢ and ¢b3. Using our terminology,
n-phase clocking can be seen as using fractions instead of integers as the range of the schedule,
i.e., a gate may be assigned to levels 1/r,2/r,..., etc.

The n-phase clocking technique is also very effective in reducing the number of buffers in
AQFP circuits, but it does not diminish the value of this work because the relaxation comes
from different sources. n-phase clocking relaxes the path balancing constraint by changing
the clocking scheme, whereas we develop our argument from analysis of the sequential circuit
model. Thus, these two relaxations affect the constraints independently. Instead of comparing
against n-phase clocking, we argue that these are two independent techniques that may work
in collaboration to achieve the best results and future work remains to formally consider them
together. Also, as both techniques have their own drawbacks, engineers may choose between
the two depending on the application requirements.

8.4.3 Physical Design and Post-physical-design Legalization

In this chapter, we propose to relax path-balancing constraints to phase alignment, which will
have an impact on physical design because current tools generally expect a path-balanced
netlist as their input. Although adapting a physical design tool accordingly to generate realistic
layouts is beyond the scope of this thesis, Figure 8.3 serves as a good visualization of how a real
layout would appear. Moreover, to truly exploit the possible area reduction due to the lower
buffer count, the placement algorithm needs to be adapted to allow circuit folding. That is,
instead of placing logic gates scheduled at the same level in the same physical row and having
as many rows as logic levels, some gates could be placed in different rows with empty slots
because of phase skipping. However, this would affect wire lengths and clock synthesis, with
additional physical and timing constraints to be carefully considered.

128

Impact of Sequential Design on AQFP Technology Constraints Chapter 8

Path Balancing Phase Alignment n-phase Clocking
r=2,n=4x2=8

b2 1=6 () ¢2 1=6 ds 1=35

d% $1 1=5 ()/ $1 1=5 ()/% ¢s5 1=3
g E by 1=4 $ba 1=4 g $s 1=25
¢3 1=3 ¢3 1=3 E] 3 =2
g g P2 1=2 b2 1=2 g $2 1=15
$r1=1 O ¢ 1=1 () ¢ i=1

4-phase Clocking 8-phase Clocking

RN Y TR
- A
b2 v R ¢s v ' . .

: : : bs -
N |

Figure 8.4: n-phase clocking compared to path balancing and phase alignment. (pcx = 4)

The real clock skew between two gates in an AQFP circuit does not only depend on the
number of phases in between but also on the microstripline length of the power-clock network
between them [Aya+21]. Moreover, interconnect delay of data signals and longer wire lengths
must also be considered to ensure the correct operation of an AQFP circuit. If the physical
distance between the launching and capturing gates is too long (> 0.7 mm for buffer-to-buffer
connections), we may need to insert repeaters or use current boosters. However, these values
are only available after physical design and are hard to predict during the buffer insertion stage.
Thus, an estimation must be used in buffer insertion. More careful analysis and legalization,
which may result in extra buffers being inserted, have to be done during or after physical
design. Such overhead may occur in any AQFP synthesis flow regardless of whether adopting
the proposals of this work or not, but having a higher phase skip may cause the circuit to be
more prone to these issues, especially when operating in high frequency.

Assuming a layout realized similar to Figure 8.3 (d), we expect the power-clock margins to

129

Chapter 8 Impact of Sequential Design on AQFP Technology Constraints

remain unchanged. However, we expect timing margins to reduce because larger phase
skipping will likely incur more skew beyond the ideal timing of the capturing clocking phase.
Thus, timing-aware placement [Don+22] is important to make sure the circuit still meets
sufficient timing margins.

8.5 Summary

In this chapter, we experiment with how assumptions on technology constraints impact
AQFP circuit cost and propose possible relaxations. When working with new technologies,
formalizing the technology constraints correctly on the chosen abstraction level is important,
because if the formulation does not correlate to the underlying technology, the research
work that follows becomes meaningless. Indeed, we have shown in this chapter different
possibilities in formulating the technology constraints and demonstrated their impact.

As discussed in Section 8.4.1, although relaxing the path-balancing constraint to phase align-
ment may save a major portion of buffers, such relaxation has the drawback of invalidating
wave-pipelining. As a result, this work divides future research on the AQFP buffer insertion
problem into two independent directions: On the one hand, considering path balancing
makes the problem computationally easier and maintains the possibility of wave-pipelining.
On the other hand, considering phase alignment largely reduces JJ count, as shown in Sec-
tion 8.3, but its optimization problem becomes harder because of the increased flexibility, and
wave-pipelining is not applicable anymore.

In the remainder of this thesis, we explore the former direction and adopt the path-balancing
constraint without relaxation. The second direction is left for future investigation. We choose
to approach the AQFP legalization problem first considering path balancing and fanout
branching for the following reasons: 1) This is the “standard” formulation adopted by the
community, so it makes our results easier comparable against other works and our implemen-
tation easier to be integrated with other tools. 2) With the arguments and analysis presented in
this chapter in mind, we develop our algorithms in a parameterized way such that it is easy to
switch between different constraint formulations. As path balancing is the stricter constraint,
it is easier to apply relaxing optimizations (e.g., removing buffer chains) on a path-balanced
mapped network, compared to the other way around.

130

AQFP Technology Legalization by
Buffer/Splitter Insertion

9.1 Motivation

One major challenge in AQFP design automation is the legalization of the logic circuit to fulfill
two unconventional technology constraints, path balancing and fanout branching, before
physical design. Due to its gate-level clocking property, AQFP gates require all input signals to
arrive at the same time, thus buffers have to be inserted on shorter data paths to balance with
the longer paths. Moreover, splitters are needed at the output of AQFP gates driving multiple
signals, and these splitters are also clocked. Thus, logic circuits generated by technology-
independent logic synthesis must be legalized for the AQFP technology by inserting buffers
and splitters. Legalization of AQFP circuits is essential to unlock its potential of pipelined
computation while maintaining correct functionality.

In a legalized AQFP circuit, buffers and splitters (B/S) often contribute to over 50% of the JJ
count, which is the commonly-used cost metric related to area as well as energy consumption.
Thus, optimized algorithms for AQFP legalization are needed to reduce the overhead and
increase the scalability of AQFP circuits.

9.2 Problem Formulation

To fulfill the needs in the AQFP technology for fanout-branching and path-balancing, we
define the following properties subject to the splitting capacities s; = 1,sg = 1, and s, = 1 of
PIs, gates, and buffers, respectively.

Definition 9.1. Given a mapped network N' = (V' =ITuOUGUB, E'),

131

Chapter 9 AQFP Technology Legalization by Buffer/Splitter Insertion

1. N'is path-balanced if there exists a schedule S of N’ such that

Vn,noeV' :(n,n) €eE =8Sn) =Sy -1, 9.1)
Viel:S(i)=0,and 9.2)
Yoe 0:S5(0) =d(N). (9.3)

2. N'is properly-branched if every PI has an out-degree no larger than s; = 1, every gate
has an out-degree no larger than sg = 1, and every buffer has an out-degree no larger
than s,

3. N'is legal if it is both path-balanced and properly-branched.

In an AQFP design automation flow, the logic synthesis stage after RTL synthesis and before
physical design converts an input specification netlist (represented as, e.g., an AND-Inverter
Graph (AIG) or a Majority-Inverter Graph (MIG)) into a legal mapped network whose gates are
all AQFP-compatible. The problem to be solved is formulated as follows:

Problem 1 (AQFP technology mapping). Given a network N = (V =1UOuU G, E) with uncon-
strained gate types in G, find a mapped network N’ = (V' = Tu Ou G' U B, E') such that:
1. N and N’ are logically-equivalent.

2. All gates in G’ are of an AQFP-compatible type (i.e., AND2, OR2, or MAJ3 with optional
input negation).

3. N'islegal (i.e., path-balanced and properly-branched).

Problem 1 may be solved as one problem, or it may be divided into two problems to be solved
independently:

Problem 2 (Majority-based logic restructuring). Given a network N = (V = IuU OU G, E) with
unconstrained gate types in G, find a network N* = (V* = Tu OuU G*, E*), such that:
1. N and N* are logically-equivalent.

2. All gates in G* are of an AQFP-compatible type (i.e., AND2, OR2, or MAJ3 with optional
input negation).

132

AQFP Technology Legalization by Buffer/Splitter Insertion Chapter 9

Problem 3 (AQFP technology legalization). Given a network N* = (V*=TuOuUG*,E*) and
the value of sy, find a mapped network N’ = (V' = Tu Ou G’ U B, E'), such that:

1. N'islegal (i.e., path-balanced and properly-branched).

2. G' = G*, and for all gates g € G*, FO(g) and FI(g) remain the same in N’ as in N*.
[|

Moreover, for all of the three problems, in addition to finding a network fulfilling the require-
ments, we also optimize for some common metrics. For the main problem to solve, Problem 1,
common optimization objectives are minimizing JJ count (#JJs = 6-|G’| +2-|B|) and minimizing
JJ depth d(N").

Problem 2 is equivalent to mapping into and optimizing a Majority-Inverter Graph (MIG) [AGD16],
which is a logic network where all gates are MAJ3 and edges may contain inverters, because
AND?2 and OR2 gates are equivalent to MAJ3 with a constant (0 and 1, respectively) input.
Graph mapping [Tem+22] and MIG optimization [AGD16; Rie+18; LRD21] are well-researched
problems with existing algorithms to use. These algorithms usually optimize for MIG size
(IG*)) or depth (d(N™)).

In this chapter, we focus on solving Problem 3. Because G’' = G*, this problem is often also
referred to as the AQFP B/S insertion problem. Minimizing JJ count in Problem 1 is equivalent
to minimizing |B| in Problem 3.

9.3 Related Works

(Rapid) Single-Flux Quantum (RSFQ or SFQ) [LS91b] is a sibling superconducting technology
of AQFP and has similar path-balancing and fanout-branching constraints, thus also requir-
ing buffer and splitter insertion [KP18; PP18]. However, a key difference between the two
technologies makes the problem computationally distinct for them: In SFQ, splitters are not
clocked and not considered in path balancing, so fanout branching and path balancing can be
considered separately; whereas AQFP splitters are clocked, thus the two constraints must be
considered together to discover potential optimizations. The interplay between buffers and
splitters makes the B/S optimization problem for AQFP a challenging one.

In the earliest AQFP design automation tools, legalization was done by first inserting splitters
(as balanced trees) at the output of all multi-fanout gates, and then inserting buffers on all
imbalanced paths [Xu+17]. This was a rather naive approach that guaranteed the correct
operation of the AQFP circuit but often resulted in a large portion of JJ count taken by buffers
and splitters. Thus, a local optimization technique called retiming [Aya+20] or buffer merg-
ing [Cai+19b] was proposed. The basic idea is to move buffers across a multi-fanin gate or a
multi-fanout splitter. For example, moving buffers from the fanins of a MAJ3 gate to its fanout

133

Chapter 9 AQFP Technology Legalization by Buffer/Splitter Insertion

reduces buffers by 3x (Figure 8 in [Cai+19b]); alternatively, moving buffers from the fanouts of
a splitter to its fanin can be seen as sharing buffers or delayed splitting and also reduces the
buffer count (Figure 5 in [Aya+20]). This idea was elaborated in [Cai+19a] as a B/S insertion
algorithm using the notion of virtual splitters.

Further improvements on the B/S optimization problem involving more complicated algo-
rithms were made in the following years. In [Hua+21], the authors attempted to localize the
optimization problem to a single wire and proposed a locally-optimal algorithm subject to a
complex cost function involving maximum and total additional delay and the number of B/S.
The local insertion algorithm has a quadratic complexity. In [Fu+23a], the authors proposed to
first solve for a schedule of the mapped network, formulated as an ILP problem with a crafted
objective function estimating B/S count, followed by another locally-optimal splitter-tree
insertion algorithm subject to the same cost function defined in [Hua+21]. This local insertion
algorithm has a cubic time complexity.

Exact methods solving for the global size-optimal B/S insertion were also researched. In
[LRD22b], the B/S optimization problem was first formulated as a scheduling problem, en-
coded as an optimization modulo linear integer arithmetic problem, and solved by a satisfia-
bility modulo theory (SMT) solver. (This is also described in this chapter in Section 9.4.3.) The
global minimum B/S insertion results were obtained for some small benchmarks. Then, an
ILP encoding was proposed in [MD23] which led to some improvement in efficiency, and opti-
mal results for some more benchmarks were reported. Whereas size-optimality still remains
intractable, depth-optimal B/S insertion has been proved to be solvable in linear time [CD23].
(This is also described in this chapter in Section 9.4.4.)

9.4 Buffer and Splitter Insertion

In this section, we explain how we approach Problem 3. First, in Section 9.4.1, we identify that
the AQFP legalization (buffer and splitter insertion) problem is a scheduling problem because
once a schedule is given, the minimal-size mapped network can be derived in linear time
using an irredundant buffer insertion algorithm (Algorithm 9.1). Thus, various scheduling
methods are then discussed, including as-soon-as-possible (ASAP) and as-late-as-possible
(ALAP) scheduling (Section 9.4.2), SMT-based exact scheduling that minimizes buffer count
(Section 9.4.3), and depth-optimal scheduling (Section 9.4.4).

9.4.1 Irredundant Buffer Insertion

Claim. The AQFP legalization problem (Problem 3) is a scheduling problem on the unmapped
network.

To elaborate on the above claim, we will first introduce the notion of irredundant mapped net-
work. Then, we will present Algorithm 9.1 to show how buffers can be inserted irredundantly

134

AQFP Technology Legalization by Buffer/Splitter Insertion Chapter 9

given a schedule of the unmapped network. Finally, we show in Lemma 9.1 that irredundant
networks have the minimum size subject to its schedule.

Definition 9.2. A mapped network is said to be irredundant if the following two conditions
hold.

1. There is no dangling buffer, i.e., every buffer has at least one outgoing edge.

2. There does not exist any pair of buffers in the same fanout tree, at the same level, and
both of them have out-degrees smaller than s;,.

Otherwise, the network is redundant. [|

Notice that the local retiming optimization used in [Cai+19a; Aya+20], which pushes buffers
from the outputs of a splitter to its input, is subsumed by the definition of irredundant
networks. In other words, if a mapped network is irredundant, no optimization can be made
with the local retiming technique. This is because local retiming looks for splitters whose
fanouts are all buffers and the sum of the fanout counts of these buffers does not exceed the
splitting capacity sj, which violates the second condition in Definition 9.2.

Algorithm 9.1: Irredundant buffer insertion

Input: An unmapped network N* = (V* = TuOu G*,E*) and a schedule S for N*
Output: An irredundant and legal mapped network N' = (V' = IuOuU G* UB, E')

1 N <~ N*

2 foreachne IuG* do

3 Imax — max S(n,)
M eFOm)

4 A—1{n,e FOn):8(ny) = Imax}
5 for | = [.x — 1 downto S(n) + 1 do

6 Create PS—"” buffers at level | in N
7 B — the set of newly-created buffers
8 fori=1to|A| do

Remove n from Alil’s fanins in N'
Add BI[1] as Ali)'s fanin in N'
11 A—Buf{n,eFOn):S8n,) =1

12 assert |A| =1

13 Add n as A(1]’s fanin in N’

14 return N’

10

For each PI or gate n, Algorithm 9.1 iterates over all levels / between # its fanouts. Initially, the
set A contains the fanouts (gates and POs, if any) of n at the highest level /5. At each level [,
enough buffers (|B| = [%]) are inserted, where | A| is the number of nodes at level / + 1. Then,
n is removed from the fanins of the i-th element in A, and the [Sib] -th buffer in B is added
instead. Finally, A is updated as the newly-created buffers and the fanouts at the current level.
Figure 9.1 illustrates an example iteration (of the out-most loop) of Algorithm 9.1, where s;, = 2
is assumed.

135

Chapter 9 AQFP Technology Legalization by Buffer/Splitter Insertion

1=Sn)+5 Q QQ 1Al =3

1=S8(n)+4 IBl=131=2, |Al=2
1=S(n)+3 IBl=131=1, |Al=1
1=sm+2 () i] Bl=ri1=1, |AI=2
1=8(n)+1 IB|=131=1, |Al=1
=8

Figure 9.1: Example sub-network to illustrate Algorithm 9.1. (s, = 2)

Algorithm 9.1 runs in linear time with respect to)¢ ;jug* IFO(n)| < |E*|. It also verifies whether
it is possible to build a properly-branched network with the given schedule S. In line 12, the
assertion makes sure that the gate or PI n has only one outgoing edge. If this assertion does
not hold, then it is impossible to construct a legal mapped network with S and we say that S
is an illegal schedule. Otherwise, the constructed mapped network is properly branched if the
given schedule is legal. It is also path-balanced as each node is connected to a node at exactly
one level lower. Moreover, the constructed mapped network is irredundant because in each
level in the fanout tree, at most one of the inserted buffer has fanout count smaller than s;,.

With the following lemma, we show that an irredundant network created by Algorithm 9.1 is
size-optimal with respect to the given schedule.

Lemma 9.1. Given an irredundant mapped network N; = (V] = ITuOUG' U By, E}) with a
schedule S, there does not exist, for the same unmapped network, a smaller mapped network
N, = (V, = IuOUG'U By, E)) with a schedule S, such thatVne IuOuUG',S1(n) = S2(n) and
|B2| <|Byl.

Proof. Because |B| <|Bj|, there exists at least one node n whose fanout tree is smaller in Né
than in N{. Let us denote the two fanout trees as T; and 7>, respectively, and the number of
buffers atlevel [in T; and T» as by (I) and b, (1), respectively. Because the levels of n and its
fanouts are the same in the two networks, there exists at least one level [such that

b (1) < by (1). 9.4)

Let us consider the highest of such a level so that b,(I +1) = by (I + 1) and let the number of
fanouts of n atlevel [+ 1 be o(l + 1), which is the same in the two networks. The number of
edges from level [tolevel [+11is by (I+1)+o(l+1) and by (I + 1) + o(l + 1), respectively, and we
have

by(l+1)+o0(l+1)=b1(I+1)+o0(l+1). (9.5)
Because N{ is irredundant, there is at most one buffer at level / in T} with out-degree smaller

136

AQFP Technology Legalization by Buffer/Splitter Insertion Chapter 9

than s;,. In other words, there are at least s;, - (b; () — 1) outgoing edges provided by the other
buffers, so

bi(l+1)+o(l+1)> s, (b1 ())-1). (9.6)

On the other hand, in T> at level [/, b, (I) buffers can provide at most s;, - b»(I) outgoing edges,
so we have

by(I+1)+o(l+1)<sp-ba(D). 9.7

Finally, we derive

sp-ba(Dzby(I+D+o(l+D)=bi(I+D)+o(l+1)>s,-(b1(D-1) (9.8)
= b ()>b(D-1, (9.9)
which is in contradiction to Equation (9.4). Thus, such N, does not exist. O

In conclusion, a legal schedule on the unmapped network determines an irredundant and
legal mapped network, therefore Problem 3 is equivalent to finding a legal schedule whose
corresponding irredundant mapped network is optimal with respect to the given cost metric.

9.4.2 Simple Heuristic Scheduling

To obtain a legal schedule on an unmapped network such that an irredundant legal mapped
network can be derived using Algorithm 9.1, we need a scheduling algorithm. As the schedul-
ing problem is well-researched in the context of behavioral-level synthesis [HLH91], we borrow
the simplest scheduling algorithms to be used in our problem. The as-soon-as-possible schedul-
ing (ASAP) is a greedy algorithm that schedules nodes in a topological order to their lowest
possible level according to the schedule of their fanins. In the context of AQFP legalization, to

ensure the legality of the schedule, enough levels for a balanced fanout tree are reserved at the
log(lFO(g)|)'|

output of each multi-fanout node, which is calculated by [Tog(sp)

Another well-known scheduling algorithm is the as-late-as-possible scheduling (ALAP), which,
conversely, schedules each node to the highest possible level in a reversed topological order.
For the upper bound on the maximum levels to schedule the POs, we use d(N) obtained by
ASAP.

9.4.3 Exact Scheduling

With the direct relation between a schedule and the corresponding minimal buffer count given
by Algorithm 9.1, Problem 3 can be formulated as a satisfiability modulo theory (SMT) [Bie+09]
problem using linear integer arithmetic as the underlying theory. The primary variables of
the instance are integers corresponding to the depth of each gate. Auxiliary variables are used

137

Chapter 9 AQFP Technology Legalization by Buffer/Splitter Insertion

to compute the total number of buffers using Algorithm 9.1. Four types of constraints are
encoded:

1. Bounds: An upper bound on the network depth is assumed. Lower and upper bounds
on the possible levels of each gate can be obtained using ASAP and ALAP, respectively.

2. Sequencing: The directed edges are encoded by asserting Vg e G,Vg, € FO(g):5(g) <
S(8o)-

3. Buffer counting: For each gate or PI n, the number of buffers at the fanout of n is counted
by unrolling the for-loop in the following rewritten version of Algorithm 9.1 using relative
levels r between n and its fanouts:

|A| — [{n, € FO(n) : S(ny) — S(n) = rmax}! (9.10)
for r = rmax — 1 downto 1 do
|B| — [%1 (9.11)
|A| — |B|+|{n, € FO(n): S(ny) - S(n) =r}| (9.12)
assert |[A| =1 (9.13)

The maximum possible relative level ryax is computed as the difference between the
maximum fanout level in the ALAP schedule and the level of n in the ASAP schedule.
(9.11) and (9.12) are encoded rmax — 1 times using 2 - (rmax — 1) auxiliary variables for | Al
and |B| in different iterations. Specifically, (9.11) is encoded by the equivalent relation

sp-(IBI=1) <|Al = sp- B, (9.14)

which is a linear relation because sj, is a constant. (9.12) is encoded with the help of the
if-then-else (ITE) operator to count the number of fanouts at relative level r. Finally, all
the auxiliary variables for | B| are summed up as the total buffer count.

4. Legality: The legality of S is ensured by assuming the assertion in (9.13). That is, the last
auxiliary variable for | A| should equal to 1.

To find the global minimum, the satisfiability problem is extended to an optimization problem,
either by using an optimization modulo theory solver [BPF15] or by imposing an upper bound
on the buffer count and iteratively decreasing the bound until the problem becomes UNSAT.
The problem has an exponential search space and optimization modulo theory is NP-hard,
thus this formulation may be only practical for small networks. Nevertheless, it provides the
possibility to understand how good existing and future-developed heuristics are. In [MD23], an
ILP encoding based on fanout-bounded synthesis is proposed, which shows some efficiency
improvements, and results for more benchmarks are solved. Thus, in Section 9.7.1, we present
numbers from [MD23] to compare our heuristics with and omit explicit discussion on the
experimental results of our SMT encoding.

138

-

w N

10
11

AQFP Technology Legalization by Buffer/Splitter Insertion Chapter 9

9.4.4 Depth-Optimal Scheduling

Disclaimer. This section is based on contributions by collaborator Alessandro Tempia Calvino.!

This section is an improvement over the simple heuristic scheduling methods in Section 9.4.2,
i.e., an algorithm that guarantees depth optimality is proposed, which yields better results. We
thus include a summary of the algorithm in this section for completeness reasons, but omit
the proofs.

As discussed in Section 9.2, common cost metrics to be considered for AQFP circuits are
network size and depth. Unlike in many other technologies where circuit area and delay
are often inversely related in a Pareto curve and engineers must trade one for the other, we
observe that in the AQFP buffer insertion problem, the size of an irredundant mapped network
correlates to the depth of the provided schedule. Intuitively, in Problem 3, the unmapped
network and any mapped network have roughly the same number of paths and similar logic
sharing (slight differences may only exist in how fanouts are split), and the size of a mapped
network is the sum of all path lengths, which is the network depth, minus the sizes of the
shared cones. In other words, a larger network depth results in longer (balanced) paths and
thus larger network size. Hence, we present scheduling algorithms that also optimize for depth
besides being fast (having a linear time complexity) and giving legal results. These algorithms
are intended to serve as quick initial scheduling methods that will be further optimized later
on (Section 9.5).

Algorithm 9.2: Depth-optimal single node scheduling

Input: A node n and a partial schedule S
Output: Level S(n) assigned to node n

Lyrey — max S(ny)
prev= L eFom -

edges — 0
foreach n, € FO(n) in a descending order of S(n,), let | = S(n,) do

. edges
splitters — [W-‘
b

edges — splitters +1
lprev —1
while edges # 1 do

edges — [%’ies]

lprev - lprev -1
Sn) — lprev_ 1
return S(n)

Given a partial schedule S where some nodes, including n but excluding all fanouts of r, have
not been assigned a level, Algorithm 9.2 computes the value to be assigned to S(n), such that
the fanout tree of n has the minimum-possible height. This algorithm follows a similar strategy

I This chapter is adapted from [Lee+24] (© 2024 IEEE, reprinted with permission) which is a collaboration work
with Alessandro Tempia Calvino based on two previous papers [LRD22b; CD23]. Contents in this section and in
Section 9.5.2 are summarized from his work [CD23].

139

Chapter 9 AQFP Technology Legalization by Buffer/Splitter Insertion

edges; g) = 1
edges g =2

s) (D) (9 edgesgn =3

1=7 i] edgesy,p) = 3] +1=3

I=6 |£] edges = [§] =2

I=5 edges = 3] =1

T

Figure 9.2: Example sub-network to illustrate Algorithm 9.2. (s, =2)

as compared to Algorithm 9.1. Variable edges corresponds to | Al in Algorithm 9.1, counting
the number of nodes (thus edges) needed to be connected at each level; variable splitters
corresponds to |B| in Algorithm 9.1, computing the number of splitters (buffers) needed at
each level. The foreach-loop (lines 3 to 6) iterates over the fanouts of n in descending order
of their levels, and variable I, keeps the level of the previous iteration. If the level does not
change from the previous to the current iteration, variable splitters is equal to edges because
lprey =l and s =1 (line 4). As a result, edges is simply increased by 1 in this iteration, counting
the fanout itself (line 5). Otherwise, when a fanout at a lower level is encountered, we compute
the minimum number of buffers needed at level [to drive edges nodes at level [, as follows.
A complete binary tree of height & has at most 2" leaves. Similarly, a splitter tree rooted at level
[can split into at most sp" fanouts at level [+ h. To drive edges fanouts at level ey, at least
Luprepn

b
not full, i.e., they are irredundant. In line 5, this value, plus one for the fanout itself, is used to

—‘ splitter trees rooted at level [are needed (line 4). Moreover, at most one of them is

update variable edges. Finally, after all fanouts of n have been processed, the algorithm finds
the highest level where edges is one to schedule 7 (lines 7 to 10).

Figure 9.2 shows an example to illustrate Algorithm 9.2, where edges, ;, indicates the value of
variable edges when node n, atlevel S(n,) = [is considered in the foreach-loop (lines 3 to 6).
The foreach-loop ends with I, = 7 and edges = 3. Then, in the while-loop (lines 7 to 9), edges
is updated two times before it reaches value 1, resulting in [, = 5. Thus, node n is scheduled
at S(n) =4.

Algorithm 9.2 requires that a node is only scheduled after all of its fanouts have been scheduled.
In other words, a reversed topological order is required. Thus, it is suitable to use an ALAP
scheduling scheme, which first schedules all POs of a network to an upper bound A, and then
schedules the remaining nodes to the largest-possible level (“as late as possible”) in a reversed
topological order. We present Algorithm 9.3 for this purpose. It first computes a sufficiently
large upper bound A on the depth of the mapped network for ALAP scheduling, assuming
each node would need a balanced splitter tree to drive the maximum fanout in the network.
POs are first scheduled at A. Then, each node is scheduled using Algorithm 9.2 in a reversed

140

© & N D G R w N -

-

AQFP Technology Legalization by Buffer/Splitter Insertion Chapter 9

Algorithm 9.3: Depth-optimal ALAP scheduling

Input: An unmapped network N* = (V* = TuOuUG*,E¥)
Output: A schedule S for N* such that its corresponding mapped network N’ is legal and d(N') is
minimal
log(IFO(m))

foreach o€ Odo
‘ Syp0) — A
foreach n € TUG* in a reversed topological order do
| Si(n) — schedule_node(n, Sy) // alg. 9.2
Imin — minS, (i)
iel
foreach i € I do
| S0
foreach n€ Ou G* do
| S(n) — 8x(n) — Imin
return S

topological order. Finally, to obtain a schedule independent of the value of A, post-scheduling
correction is applied: PIs are moved to level 0 to fulfill Equation (9.2), and the levels of all other
nodes are reduced by the smallest PI level before correction. This algorithm has a linear time
complexity with respect to the network size.

In conclusion, Algorithm 9.3 finds a schedule for an unmapped network in linear time. Fol-
lowed by Algorithm 9.1, a mapped network is obtained, which is guaranteed to be legal and
depth-optimal. We omit the formal proofs in this thesis, but they can be found in [Lee+24].
Starting from such an initial schedule (and its corresponding mapped network), we can further
optimize it for size using the heuristic optimization algorithms to be presented in the next
section (Section 9.5). As heuristics are often biased by the starting point, having more than one
different initial schedules may be beneficial. Thus, in addition to the ALAP-based scheduling
(Algorithm 9.3), an ASAP-based depth-optimal scheduling algorithm is also proposed. We
omit the details in this thesis, but they can be found in [Lee+24].

9.5 Buffer and Splitter Optimization

The scheduling-based legalization approach presented in the previous section allows us to
find one (or two) legal mapped network that is (are) depth-optimal. In some scenarios, this
may already be good enough, but it is still possible to further optimize the obtained mapped
network to reduce its size. In this section, given a mapped network, we attempt to find a better
schedule to minimize |B|. Two orthogonal heuristic algorithms are proposed in Sections 9.5.1
and 9.5.2, and then combined as a portfolio flow in Section 9.5.3.

141

© 0 N o g e W N =

10
11
12

Chapter 9 AQFP Technology Legalization by Buffer/Splitter Insertion

Algorithm 9.4: Chunk construction

Input: An initial gate g
Output: A chunk C and its interfaces T
C —{go}
Q — {(g0,8) : g € FI(go) UFO(go)}
T—¢
while Q # ¢ do
(8c)8e) — pop(Q)
if g. € C then continue
if g. and g, are close then
C—CU g
Q — QU {(8e,8): g € F1(ge) UFO(ge)}
else
| T —TUl(ge8e)
return C, T

9.5.1 Chunked Movement

The chunked movement technique attempts to move groups of nodes up or down to reduce
the total number of buffers. Moving a gate g up (down) by [levels means that S(g) is increased
(resp. decreased) by [while the levels of the other gates remain the same. During the pro-
cess, we always ensure that the network is legal and buffers are inserted irredundantly using
Algorithm 9.1. A movement is legal if the network remains legal after the movement. For
example, if a gate g has a fanout g, at level S(g,) = S(g) + 1, then moving g up alone is not
legal. Similarly, if a gate g has more than one fanout, then moving any of its fanouts down
to level S(g) + 1 is not legal because there must be a splitter occupying the only outgoing
edge of g at S(g) + 1. We observe that sometimes it is impossible to legally move a single gate,
or that moving it alone does not reduce the total buffer count. However, rearranging some
neighboring gates together might eventually lead to further reduction. Thus, we propose to
identify groups of connected gates and move them together as chunks, defined as follows.

A gate g and one of its fanouts g, € FO(g) are said to be close if either one of the following
conditions holds:

1. |[FO(g)l=1and S(g,) =S5(g) +1.

2. |[FO(g)| >1and S(g,) =S(g) +2.
If a gate g and its fanout g, are not close, then there is flexibility at the output of g and the input
of go. A chunkis a set C of closely-connected gates. Seen as a group together, it has multiple
incoming and outgoing edges, called the input interfaces (1Is) and output interfaces (Ols),

respectively. An interface is an ordered pair (g., g.) of a gate in the chunk g, € C and an
external gate g, ¢ C, and either g, € FI(g,) (for an II) or g, € FO(g,) (for an OI).

Algorithm 9.4 illustrates how a chunk is identified. Starting from an initial gate gy, a chunk is

142

AQFP Technology Legalization by Buffer/Splitter Insertion Chapter 9

o)l slack=2

[]
8 RI (84 RI

slacliy' \laEc]k:l
II
ﬁ] slack=1 6 é ‘

Figure 9.3: Example sub-network showing a chunk (in grey).

formed by exploring its fanins and fanouts and adding gates into the chunk if they are close
(line 8), or recording an input or output interface otherwise (line 11). When a new gate is
added to the chunk, its fanins and fanouts are also explored (line 9). The queue Q stores the
edges to be checked next.

By definition, a chunk has flexibilities at all of its interfaces. Moreover, the set of all chunks in a
mapped network forms a partitioning of all gates. Figure 9.3 shows an example chunk. Starting
from the initial gate gy, closely-connected gates g1, g2, g3, g4 are added into the chunk in the
respective order. The gate g;, for example, cannot be moved up nor down legally without
moving other gates at the same time. Also, although the gate gy can be legally moved down,
moving it alone would only incur more buffers. However, if the entire chunk is moved down
together by one level, one buffer is saved, which is analyzed as follows.

To see how many levels a chunk can be moved, a slack is computed at each interface. For an
input interface (g, ge),

S cl)] — S e) — 1, f FO e = 1
slack(ge, go) = (8c) —5(8e) it [FO(ge)| 9.15)
S(gc) —S(ge) —2, otherwise.

For an output interface, g, and g, are exchanged in Equation (9.15). When trying to move a
chunk down, the maximum number of levels we can move is the minimum slack at all input
interfaces; when moving a chunk up, it is the minimum slack at all output interfaces.

We further classify input interfaces as relevant or not. An input interface (g, ge) is said to be a
relevant input interface (RII) if

Vg, € FO(ge), 80 ¢ C:5(g0) >S(gc). (9.16)
For example, in Figure 9.3, (go, g5) is not an RII because g5 has another fanout at a higher level

143

Chapter 9 AQFP Technology Legalization by Buffer/Splitter Insertion

than S(gp), so when gp is moved, no buffer is added or eliminated at this interface.

We decide to move a chunk up or down on whether there are more OlIs or RlIs. If a chunk
has x OIs and y RIIs, moving the chunk up by [levels eliminates /- (x — y) buffers (if x > y),
and moving the chunk down eliminates [- (y — x) buffers (if y > x). In Figure 9.3, there are 3
Rlls and 2 OlIs, and the minimum slack at all IIs is 1, thus moving the chunk down by 1 level
reduces 1 buffer.

Overall, the chunked movement algorithm iteratively constructs a chunk using Algorithm 9.4
for each node that is not yet in a chunk and tries to move the chunk up or down, applying the
movement only when it is legal and beneficial.

9.5.2 Retiming

Disclaimer. This section is based on contributions by collaborator Alessandro Tempia Calvino.
This section illustrates a buffer and splitter optimization algorithm orthogonal to the chunked
movement method in Section 9.5.1, which, in combination, yields better results. We thus
include a summary of the algorithm in this section for completeness reasons, but omit some
details.

The optimization of buffers and splitters in an AQFP circuit is reminiscent of the register
minimization problem called retiming. Minimum register retiming is the problem of relocating
the registers of a circuit in order to minimize their number while preserving the functionality.
Retiming is formulated as a linear problem dual to the minimum-cost flow problem for
which many polynomial algorithms exist [LS91a]. In this section, we propose the AQFP B/S
retiming algorithm, which minimizes buffers and splitters in an AQFP network, similar to how
registers are minimized in minimum register retiming. Previous work applied a retiming-like
optimization to AQFP logic [Aya+20; Cai+19a]. However, their approach does not perform
global retiming but moves buffers locally from the output of splitters to the input. This
optimization is subsumed by Algorithm 9.1 in the definition of irredundant mapped networks.

Minimizing the number of buffers can be seen as maximizing sharing of buffers on multiple
paths. Without accounting for fanout-branching, e.g., assuming that buffers have an infinite
splitting capability, the minimum number of buffers is achievable in polynomial time using a
minimum register retiming algorithm considering each buffer as a register. Retiming preserves
the path-balancing constraint since each path traverses the same number of registers before
and after retiming. As mentioned in Section 9.3, previous works successfully applied this idea
to the RSFQ technology family [KP18], but when the fanout-branching constraint in AQFP
comes into consideration, splitter relocation is conditional on respecting the splitting capacity.
Hence, retiming is only a heuristic for minimizing the buffer count instead of an optimal
algorithm.

Figure 9.4 (a) shows an example mapped sub-network under retiming, where s, = 3 is assumed.

144

AQFP Technology Legalization by Buffer/Splitter Insertion Chapter 9

0 h fV3) %
fo f
g

(a) Before retiming (b) After moving by

Figure 9.4: Example sub-network for retiming. (s, = 3)

This sub-network is redundant because b; and b, have out-degree 2 < s; (Definition 9.2).
Indeed, a mapped network can become redundant temporarily during retiming. Not all
buffers can be retimed at the same time, and this example shows two such cases. First, by
cannot be retimed because its movement would increase the fanout count of 7 to 2, violating
the fanout constraint of gates (sg = 1). Second, only one of the splitters b; and b, can be
selected for retiming since the movement of both of them would increase the fanout count of
by to 4, violating the fanout constraint of buffers (s, = 3). Also, fanouts of splitters in the same
fanout tree originating from the same gate are exchangeable, and such exchanges may affect
possible retiming optimizations. For example, instead of FO (b)) = {fo, fi}, FO(b2) = {f2, f3}
in Figure 9.4 (a), FO(b1) = {fo, f2}, FO(b2) = {fi, f3} is also possible and may unlock more
retiming on b; and b,. Figure 9.4 (b) shows the fanout tree after the relocation of splitter b; to
its transitive fanout cone (not shown).

The retiming problem is formulated as a binary maximum-flow problem similar to [HMB07],
which separates flow computation into forward and backward directions. The algorithm
performs an optimization loop in each direction until no more improvements can be made. A
loop starts by selecting a set of buffers, which can be relocated without exceeding the splitting
capacity of their fanin nodes, to be retimed. In the case of mutually exclusive selections (i.e.,
two splitters cannot be retimed at the same time), one is picked randomly. Each selected buffer
is a source and a sink of a unitary flow. Then, the algorithm computes the binary maximum
flow using the augmenting path algorithm to obtain the minimum cut. If there is a reduction
in buffer count, the selected buffers are moved to the new position. Since retiming movements
may create redundant fanout trees, at the end of the algorithm, fanout trees are reconstructed
irredundantly using Algorithm 9.1.

An example of a forward retiming iteration is depicted in Figure 9.5, where s; = 3 is assumed.
The algorithm selects four buffers in the initial sub-network (Figure 9.5 (a), orange) to be
retimed. After retiming (Figure 9.5 (b)), three of the selected buffers are removed and two new
buffers (green) are inserted. The number of buffers is reduced from 6 to 5 while maintaining
the same path lengths.

145

—

w N

'S

N

Chapter 9 AQFP Technology Legalization by Buffer/Splitter Insertion

Phyipdyd

(a) Initial sub-network (b) Optimized sub-network

Figure 9.5: Example of forward retiming. (s, =3)

Algorithm 9.5: Buffer and splitter optimization

Input: Mapped network Ni’rlit
Output: Optimized mapped network N
N, t’mp
repeat

N

N t,mp
N t’mp
N, tlrnp
until INLfmp

!
return N, .

pt

«— bs_retiming(N/) // section 9.5.2

init

pt Nt,mp
< chunked_movement(Ng,) // section 9.5.1
< bs_retiming(Nj,,) // section 9.5.2
— randomize(Nt’mp)

!
12N,

9.5.3 Buffer and Splitter Optimization Flow

Algorithm 9.5 describes our optimization flow. It combines chunked movement and retiming
to achieve better results than the individual algorithms. Additionally, we use a randomization
function to pick different random fanout groupings when constructing splitter trees to change
the structure of the circuit and unlock further optimizations.

9.6 Technology Legalization Flow

In Section 9.4, we presented algorithms to obtain an initial scheduling (Section 9.4.4) and
to insert buffers irredundantly (Section 9.4.1). In Section 9.5, we presented optimization
algorithms to further reduce the buffer count of a mapped network. Combining everything
together, a technology legalization flow is presented in Algorithm 9.6. Two initial scheduling,
ALAP and ASAP are obtained with the depth-optimal scheduling algorithms and result in two
mapped networks by inserting buffers irredundantly. Then, the two mapped networks are
optimized independently using the portfolio optimization flow. Finally, the better one with a
smaller size is adopted.

146

© NS g s W N =

—
=]

AQFP Technology Legalization by Buffer/Splitter Insertion Chapter 9

Algorithm 9.6: AQFP technology legalization flow (solves Problem 3)

Input: MIG network N*
Output: Mapped network N’

Sarap — ALAP(N™) // alg. 9.3
Sasap — ASAP(N™, Sarap)
Ny ap < insert_buffers(N*, Sarap) // alg. 9.1
Njgap < insert_buffers(N*, Sasap) // alg. 9.1
Nj;ap — Optimize(N}; \p) // alg. 9.5
Nygap < optimize(Nyq,p) // alg. 9.5
if N ,pl <INl then

‘ return N, ,,
else

| return N

ASAP

9.7 Experimental Results

In this section, we present experimental results of our methods solving Problem 3 alone
(Section 9.7.1). We also demonstrate in Section 9.7.2 the scalability of the proposed AQFP
legalization algorithm using much bigger benchmarks. To be consistent with previous works
that we compare to, we use s, = 4 for the splitting capacity of buffers.

9.7.1 Technology Legalization and Buffer Optimization

First, we compare the performance of our AQFP legalization and optimization flow (Algo-
rithm 9.6) against the state-of-the-art (SoTA) on solving the same problem [Fu+23a]. For the
sake of completeness, we list all of the benchmarks used in the first work on AQFP B/S inser-
tion [Cai+19a] in Table 9.1, but the totals are computed only with the benchmarks presented
in [Fu+23a]. The number of gates (|G*|) and the depth (d(N*)) of the initial MIGs, as well as
the number of buffers (|B|), the JJ count (#JJs) and the depth (d(N')) of the mapped networks
are listed. Moreover, the runtime (Time) used by our flow is presented. Unfortunately, the
runtime data was not presented in [Fu+23a]. In the last column, we list the known global
optimum results obtained by ILP solving [MD23] to have an idea of how far the heuristics are
from optimal. Some of the numbers are only an upper bound because the ILP formulation
could not be solved within a reasonable runtime, and some of the benchmarks are too big for
the ILP solver to return any partial result.

From Table 9.1, we can see that the heuristic methods achieve optimum for the smaller
benchmarks and are fairly close to optimum for most of the benchmarks. While our flow
obtains slightly worse results in average size than SoTA, the difference is very small (0.96% in
number of buffers and 0.5% in JJ count). Thanks to the depth-optimal scheduling, we obtain a
better depth in one benchmark (c7552). Most importantly, these results are obtained using
short runtime. Thus, our flow can be used in design space exploration, where legalization is
called extensively, such that large improvements can be achieved (Section 10.5).

147

Chapter 9 AQFP Technology Legalization by Buffer/Splitter Insertion

Table 9.1: Technology legalization results comparing to the state-of-the-art and global opti-
mum.

MIG N* SoTA [Fu+23a] Ours (Algorithm 9.6) Global optimum [MD23]
Bench. IG*| d(N¥) |B| #]Is d(N") |B| #]Js d(N') Time (s) |B| #Is d(N")
adder1 7 4 - - - 16 74 8 0.00 16 74 8
adder8 77 17 - - - 371 1204 33 0.01 371 1204 33
mult8 439 35 1681 5996 70 1690 6014 70 0.18 <1724 =6082 <70
counterl6 29 9 66 306 17 65 304 17 0.00 65 304 17
counter32 82 13 156 804 23 154 800 23 0.01 154 800 23
counter64 195 17 351 1872 30 347 1864 30 0.02 347 1864 30
counterl28 428 22 755 4078 38 747 4062 38 0.07 747 4062 38
cl7 6 3 - - - 12 60 5 0.00 12 60 5
c432 121 26 829 2384 37 839 2404 37 0.02 829 2384 37
c499 387 18 1173 4668 29 1173 4668 29 0.09 1173 4668 29
c880 306 27 1536 4908 40 1511 4858 40 0.15 - - -
c1355 389 18 1186 4706 29 1184 4702 29 0.06 1178 4690 29
c1908 289 21 1253 4240 34 1234 4202 34 0.09 1232 4198 34
c2670 368 21 1869 5954 28 1912 6032 28 0.32 <1804 <5816 <28
c3540 794 32 1963 8690 52 1943 8650 52 0.81 <1926 <8516 <52
c5315 1302 26 5505 18942 40 5640 19092 40 2.06 =6260 =20332 <42
c6288 1870 89 8832 28884 179 8647 28514 179 2.56 - - -
c7552 1394 33 6768 21908 58 7437 23238 56 4.20 - - -
sorter32 480 15 - - - 480 3840 30 0.06 480 3840 30
sorter48 880 20 - - - 880 7040 35 0.20 880 7040 35
alu32 1513 100 13976 37030 169 13836 36750 169 2.74 - - -
Total! 47899 155370 873 48359 156154 871 13.38

TExcluding benchmarks missing in SoTA.

9.7.2 Scalable AQFP Legalization

To demonstrate the scalability of our AQFP legalization approach, we use the largest 10
benchmarks in the EPFL benchmark suite [AGD15] for experiment, which are 10x-100x in
size compared to the benchmarks generally used in previous works on AQFP logic synthesis.
The MIGs are obtained using delay-oriented graph mapping [Tem+22]. In Table 9.2, we
compare our results obtained using a simple depth-optimal legalization flow (Algorithm 9.3
followed by Algorithm 9.1, column “D.-opt. legal.”) as well as depth-optimal legalization with
further optimization (Algorithm 9.6, column “D.-opt. legal.+opt.”) against results of non-
depth-optimal legalization with optimization presented in [LRD22b] (column “Non.-d.-opt.
legal.+opt.”). A timeout limit of 300 seconds is enforced. From this experiment, we can see
that simple legalization without optimization is very fast, so such a flow can still be used in
design space exploration even when benchmarks are large. Comparing the mapped network
depths, the proposed depth-optimal scheduling reduces the depth by about 9% on average.

148

AQFP Technology Legalization by Buffer/Splitter Insertion

Chapter 9

Table 9.2: Technology legalization results on the largest EPFL benchmarks

MIG N* Non-d.-opt. legal.+opt. D.-opt. legal. D.-opt. legal.+opt.
[LRD22b] (alg. 9.3 +alg. 9.1) (alg. 9.5)
Bench. IG*| d(N*) |Bl d(N') Time (s) |B| d(N") Time (s) |B| d(N") Time (s)
div 57300 2217 2084772 4918 271.71 1881255 4371 0.87 - 4371 >300
hyp 136109 8762 - 17910 >300 9035578 17246 2.78 - 17246 >300
log2 24456 200 98047 414 194.92 129547 379 0.10 86705 379 64.18
multiplier 19710 133 79651 286 13.21 102005 264 0.08 63414 264 43.50
sin 4303 110 17470 225 5.67 18905 188 0.01 14886 188 4.12
sqrt 23238 3366 1751742 8191 5.64 1791005 6628 0.49 1343705 6628 284.10
square 12180 126 60552 256 42.71 89516 251 0.03 63630 251 18.30
arbiter 7000 59 31011 65 5.80 27566 63 0.01 25721 63 1.28
mem_ctrl 42758 73 305689 182 87.86 216927 114 0.27 215202 114 10.55
voter 7860 47 18044 99 5.43 19263 86 0.01 15736 86 0.92
9.8 Summary

In this chapter, we first establish that the AQFP legalization problem is a scheduling problem
and propose two depth-optimal scheduling algorithms. Then, the obtained schedules may be

further optimized for size using the proposed chunked movement and retiming techniques.

Experimental results show that our legalization flow obtains similar, near-optimal quality as

the state-of-the-art ILP-based algorithm within very little runtime. Moreover, our approach is

flexible in runtime budget as the optimization part can be skipped. As both irredundant buffer

insertion and depth-optimal scheduling have linear time complexity, scalability is guaranteed.

We demonstrate legalization results on benchmarks 10x to 100x larger than what any other

related works could handle.

149

IIJ AQFP Logic Synthesis Toolbox

As discussed in Section 9.2, the AQFP technology mapping problem (Problem 1) can be divided
into two sub-problems, MIG restructuring (Problem 2) and AQFP legalization (Problem 3).
Solving the two sub-problems together leads to a high problem complexity and has to rely on
a pre-computed database that is locally optimal [MRM21]. Hence, we propose to solve the
two sub-problems untangled, but mixed and interleaved in multiple iterations to enhance
QoR. It is essential for the algorithms used to solve both sub-problems to be efficient, such
that more iterations can be done in a reasonable runtime and achieve better results.

In this chapter, we first review related works on the broader problem of AQFP technology
mapping in Section 10.1 and summarize MAJ-based logic synthesis algorithms in Section 10.2,
including existing works in the literature and a high-effort MIG resubstitution algorithm
combining elements proposed in this thesis. Then, in Section 10.3, we present our AQFP
technology mapping solution combining MIG optimization (Section 10.2) and AQFP tech-
nology legalization (Chapter 9) with the on-the-fly design space exploration methodology
introduced in Chapter 5. We also discuss verification for AQFP synthesis in Section 10.4.
Finally, we present experimental results on the AQFP technology mapping problem, utilizing
all mentioned elements in our AQFP logic synthesis toolbox. The relationship between each
section in this chapter and various chapters in this thesis is outlined in Figure 10.1.

10.1 Related Works

Existing AQFP logic synthesis flows can be categorized into two approaches: solving Problem 2
and Problem 3 separately, or considering Problems 2 and 3 together. The earliest works took
the first approach to adapt available CMOS-based design automation tools for AQFP [Xu+17;
Aya+20]. Problem 2 was addressed by AND-based technology-independent logic synthe-
sis followed by technology mapping into an AQFP-compatible library, and Problem 3 was
solved separately in an additional buffer insertion stage before physical design. Later, to
better leverage the intrinsic MAJ function in AQFP circuits, MAJ-based logic synthesis was
adopted [Cai+19b; Tes+21]. At this time, Problem 3 was still solved separately using the naive

151

Chapter 10 AQFP Logic Synthesis Toolbox

AQFP technology mapping (Problem 1, Section 10.3)

Design space exploration (Chapter 5)

MAJ-based logic synthesis (Problem 2, Section 10.2) AQFP technology
Simulation-guided MIG resubstitution legalization
(Problem 3,
Simulation-guided MAJ-based Chapter 9)
paradigm heuristic resynthesis
(Chapter 3) (Section 4.6)

Algebraic rewriting

Graph remapping

Figure 10.1: Integration of algorithms in various chapters as an AQFP synthesis flow.

insertion approach introduced in Section 9.3.

Although solving the two problems separately is easier, it is hard to predict the impact of
legalization in the logic restructuring stage. The smallest MIG in size may not be still the
smallest after legalization. Thus, in [MRM21], the authors proposed to consider the two
problems together and optimize directly for the final cost function. A database of optimal
AQFP sub-circuits is used in restructuring, and legalization is done during the process. This
algorithm was used in a flow consisting of graph mapping, AQFP resynthesis, and post-
synthesis buffer optimization [Meu+22].

The latest work on AQFP synthesis, presenting currently the best results, took the first ap-
proach (separating the two problems) and used Bayesian optimization to find the best MIG
restructuring script with respect to the actual AQFP cost after legalization [Fu+23b].

10.2 MA]J-Based Logic Synthesis

MIG was proposed as an alternative technology-independent logic representation with an
advantage in depth optimization especially in arithmetic circuits [AGD16]. Due to the special
properties of some emerging technologies including AQFP, MIG also become a good logic syn-
thesis data structure for these technologies [Tes+21]. Various logic synthesis and optimization
algorithms have been proposed and tailored for MIGs.

To convert an AIG into an MIG, the simplest way is to translate each AND2 gate into an MAJ3

152

AQFP Logic Synthesis Toolbox Chapter 10

gate with a constant 0 input. Alternatively, a versatile graph mapping algorithm can also
map from AIGs (or other types of networks) to MIGs while optimizing for depth and/or size
in the process [Tem+22]. The graph mapping algorithm can also be used to optimize MIGs
by remapping (i.e., mapping from an MIG into an MIG), in which case it is similar to a cut
rewriting algorithm.

Many common logic optimization algorithms originally developed for AIGs can also be applied
to MIGs with little adaptation, such as cut rewriting, functional reduction, and balancing. Tai-
lored MIG optimization algorithms include algebraic rewriting, which applies special Boolean
algebraic rules to reduce MIG depth [AGD16], and (enumeration-based) resubstitution, which
resynthesizes a small part of the network using majority gates to reduce MIG size [Rie+18].

Whereas the above algorithms are relatively lightweight with faster runtimes and limited QoR,
in pursuit of additional quality improvements when other algorithms saturate, we apply high-
effort simulation-guided MIG resubstitution. By adopting the simulation-guided paradigm
(Chapter 3, Section 3.5), the window size is unlimited and more divisors can be considered.
Moreover, global satisfiability don’t cares are naturally considered when using the simulation
signatures computed by global simulations. By leveraging the heuristic resynthesis algorithm
(Chapter 4, Section 4.6), larger dependency circuits may be found for roots with a large enough
MFEFC size. This extends the search space for optimization candidates and creates more gain.

To diversify the set of MIG optimization scripts for better results in design space exploration,
we also form complex flows consisting of converting the MIG back into an AIG, applying an
AIG-based optimization flow, and then mapping back into MIG. As discussed in Section 5.4,
such a decompressing-compressing strategy helps drastically restructure the network and
escape from local minima. We may also benefit from the well-developed AIG flows because
AIG optimization has been researched for a longer time and by a broader range of developers
such that AIG-based algorithms might have better performance and efficiency.

10.3 Design Space Exploration for AQFP Technology Mapping

Imagine a design space consisting of all legal and logically equivalent mapped networks, the
optimization problem of AQFP technology mapping is to find the best one in the design space
in terms of a cost metric (usually, JJ] count or depth). Performing MIG restructuring and AQFP
legalization can be seen as moving along two orthogonal directions (or axes) in the design
space, exploring first different logically-equivalent MIGs without buffers, and then different
mapped networks corresponding to the same MIG. This approach confines the degree of
freedom of the exploration in order to be more scalable and potentially explore a larger space
within the confined regions. However, if the two axes are only explored once each, then still
only a small subset of the entire space is explored and the result may be far from the global
optimal. The major problem is that during MIG restructuring, buffers are not inserted yet and
the algorithm can only decide on the best moves based on a truncated cost metric (usually,
MIG size or depth) which does not completely correlate to the actual cost metric.

153

1
2
3
4
5

6
7
8
9
10
11

12
13
14
15
16
17
18
19
20
21
22
23

Chapter 10 AQFP Logic Synthesis Toolbox

Algorithm 10.1: AQFP technology mapping with design space exploration (solves Prob-
lem 1)

Input: Unconstrained network N

Output: Optimized mapped network N’

Ny < map_into_MIG(N) // [Tem+22]
Npest == cOPY(Ng)

best_cost — oo

for restart = 1 upto num_restarts do

* *
best_inner NO

N, c*urr e N;
best_cost_inner — oo
rnd — new_random_engine()
timer — start_timer()
for step = 1 upto max_steps do
N < restructure_MIG_randomly (N,
Mis+11la]
curr_cost — evaluate(legalize (N},,,.) // alg. 9.6
if curr_cost < best_cost_inner then
NZestjnner - NC*W r
best_cost_inner — curr_cost
last_impr — step
if step — last_impr = max_no_impr then break
if elapsed_time (timer) = timeout then break
if best_cost_inner < best_cost then
N;est - N;est_inner
best_cost — best_cost_inner
N' — legalize(N) // alg. 9.6

bes
return N’

rnd) // [MCBO7; Tem+22; LRD21; AGD16;

We propose to use the design space exploration approach described in Chapter 5 for AQFP
technology mapping. The flow is illustrated in Algorithm 10.1, which performs multiple
iterations of MIG restructuring and legalizes the MIGs in every iteration to compute the actual
JJ cost, such that the exploration is correctly guided. As formulated in Problem 1, the input
is an unconstrained network N, so we first map it into an MIG network (line 1). In the rest
of the algorithm, four copies of the MIG are maintained: the initial MIG N, the overall best
MIG N, the best MIG in the inner for-loop N ;. .., and the current MIG N(,,. The
algorithm explores the design space by starting num_restarts times from the initial point N;
(the outer for-loop, lines 4-21), each time exploring MIGs along a random trajectory (the inner
for-loop, lines 10-18). For each MIG, the second axis of different mapped networks is also
explored, and the cost is evaluated on the best mapped network (line 12). The best-seen MIGs

are book-marked on the current trajectory (NN}, line 14) and on all trajectories (IV,,

est_inner’ est’
line 20). The inner loop is terminated when no improvement is observed for max_no_impr

steps consecutively (line 17), or when the timeout limit is exceeded (line 18).

The key ingredients are the functions map_into_MIG (line 1), restructure_MIG_randomly (line
11), and legalize (lines 12 and 22). In line 1, function map_into_MIG calls a graph mapping

154

AQFP Logic Synthesis Toolbox Chapter 10

algorithm [Tem+22]. In the case where N is an AIG, it can also be transformed directly into
an MIG by converting each AND2 into a MAJ3 with a constant 0 fanin. In line 11, function
restructure_MIG_randomly applies a randomly-chosen MIG restructuring script. In our
experience, scripts that perform well consist of a drastic restructuring step, such as mapping
into k-LUT network [MCBO07] and then remapping into MIG [Tem+22], followed by some MIG
optimization steps, such as resubstitution [LRD21; LM23], algebraic rewriting [AGD16], and
balancing [Mis+11a]. In line 12, the current MIG is legalized using the proposed legalization
flow (Algorithm 9.6) to obtain a mapped network N’ for evaluation. Depending on the design
objective, the function evaluate may return the JJ count (#JJs =6-|G'| + 2-|B|), depth (d(N")),
or energy-delay product (EDP = #JJs- d(N'")). Line 22 legalizes the best MIG again also using
Algorithm 9.6. If better runtime efficiency is desired, lighter-effort legalization (for example,
by limiting the number of optimization iterations in Algorithm 9.5) can be used in line 12 for
cost evaluation while keeping the final legalization in line 22 the highest-affordable effort.

The advantages of this design space exploration approach are two-fold. First, compared to
existing approaches, it explores a larger design space, and the frontier of exploration also
stretches further. This is thanks to the hill-climbing strategy, where we simply record the
best-seen design on the trajectory and keep moving forward when the cost gets worse instead
of rolling back. Moreover, the key enabling factor to explore on the orthogonal axis (different
mapped networks from the same MIG) is that the legalization runtime is fast enough, which
motivates the focus of this paper on efficient heuristic buffer optimization methods instead of
unscalable exact algorithms. The second advantage of Algorithm 10.1 is that the design space
exploration is done on the fly. That is, no heavy data training, complicated decision-making, or
human expert intuition is needed to guide the exploration, and the results are not over-fitted
for a subset of benchmarks. The direction of exploration is guided by the simplest strategy,
randomness, and the best transformation sequence is discovered on the fly. As there is a factor
of luck involved, the purpose of the outer loop is to mitigate the possibility of a “bad” random
seed leading to unsatisfactory results and to increase the chance of meeting at least one “good”
random sequence in all restarts.

10.4 Verification

To ensure the correct functionality of the synthesized AQFP circuit, two types of verification
should be performed: logic equivalence to the specification and legality with respect to
the AQFP technology constraints. These correspond to the first and the third condition in
Problem 1. The second condition, i.e., only AQFP-compatible gates are used, is ensured
automatically by having used MIG as logic representation in the restructuring step.

For logic equivalence, we apply the well-developed combinational equivalence checking
algorithm [Mis+06a] on the mapped network N’ and the original network N. For legality verifi-
cation, we check if the mapped network is indeed path-balanced and properly-branched. First,
a schedule S of the mapped network is (re-)computed by visiting all nodes in a topological

155

Chapter 10 AQFP Logic Synthesis Toolbox

Table 10.1: Best-known results on AQFP technology mapping.

Bench. SoTA [Fu+23b] Ours (Algorithm 10.1)

#Is d(N") EDP #]Js d(N") EDP Time (s) Eval. (s)
5xpl 726 10 7260 368 -49% 9 -10% 3312 -54% 66.2 0.7
c1908 5108 34 173672 4434 -13% 29 -15% 128586 -26% 190.4 36.4
c432 3098 34 105332 2342 -24% 27 -21% 63234 -40% 68.0 2.7
c5315 16410 30 492300 13986 -15% 24 -20% 335664 -32% 519.8 267.8
c880 3876 23 89148 3364 -13% 19 -17% 63916 -28% 100.6 14.6
chkn 3500 15 52500 2238 -36% 15 0% 33570 -36% 96.5 6.0
count 1400 12 16800 1302 -7% 11 -8% 14322 -15% 77.3 1.4
dist 3536 14 49504 1824 -48% 14 0% 25536 -48% 116.7 6.1
in5 3370 14 47180 1602 -52% 13 -7% 20826 -56% 120.2 4.4
in6 2884 11 31724 1708 -41% 12 +9% 20496 -35% 90.3 3.5
k2 14748 22 324456 8376 -43% 19 -14% 159144 -51% 404.7 102.8
m3 2680 12 32160 1600 -40% 12 0% 19200 -40% 115.6 4.3

max512 4812 16 76992 2740 -43% 14 -13% 38360 -50% 140.8 10.1
misex3 11272 20 225440 2634 -77% 17 -15% 44778 -80% 238.1 21.9

mlp4 2976 14 41664 1588 -47% 14 0% 22232 -47% 160.0 7.3
prom2 22326 20 446520 15258 -32% 16 -20% 244128 -45% 788.8 286.5
sqr6 916 10 9160 710 -22% 9 -10% 6390 -30% 59.3 0.7
xldn 1208 11 13288 714 -41% 10 -9% 7140 -46% 61.5 0.5

Total 104846 322 2235100 66788 -36% 285 -12% 1239208 -44% 3414.6 777.8

order and assigning:

0 ifnel
S(n) = (10.1)

max S(n;)+1 otherwise.
n;eFI(n)
Then, we verify if N’ is path-balanced by traversing all nodes again and testing Equations (9.1)
to (9.3). The “for all edges” in Equation (9.1) is equivalent to checking all fanins 7; of all gates
ny. Finally, we verify if N’ is properly branched by comparing the number of fanouts of all PIs,
gates, and buffers against the parameters s;, sg, and sp, respectively. With our data structure
and constraint formulation, the AQFP technology legality verification can be done in linear

time.

10.5 Experimental Results

In this section, we present the experimental results of Algorithm 10.1 on solving Problem 1. To
be consistent with previous works that we compare to, we use s = 4 for the splitting capacity
of buffers.

With the proposed design space exploration approach presented in Section 10.3, we present
new best-known results on the problem of AQFP technology mapping on the MCNC bench-
mark suite [Yan91]. In Table 10.1, our results are compared to SoTA [Fu+23b]. Since [Fu+23b]
outperformed other previous works [Cai+19b; Tes+21; MRM21; Meu+22] on all benchmarks

156

AQFP Logic Synthesis Toolbox Chapter 10

and on all metrics!, data from these works is omitted. We use the same optimization objective
as in [Fu+23b], i.e., minimizing energy-delay product (EDP). The parameters used in Algo-
rithm 10.1 are num_restarts = 5, max_steps® = 1000, max_no_impr = 50, and timeout = 100
seconds.

In addition to #JJs, d(N') and EDP, the last two columns in Table 10.1 list, respectively, the total
runtime of Algorithm 10.1 (column “Time”) and the runtime for cost evaluation (line 12 in
Algorithm 10.1, column “Eval.”) using Algorithm 9.6. The runtime information of [Fu+23b] is
unfortunately not provided.

Our design space exploration achieves strictly better results than [Fu+23b] in #JJs and EDP
on all benchmarks. In total, 36% improvement in #JJs, 12% improvement in depth, and 44%
improvement in EDP are achieved within manageable runtime.

10.6 Summary

This chapter collects various elements presented in this thesis as a complete AQFP logic syn-
thesis toolbox. First, as AQFP is based on majority gates, we combine the simulation-guided
paradigm introduced in Chapter 3 with the MAJ-based resynthesis algorithm proposed in
Chapter 4 as a high-effort MIG resubstitution algorithm. Together with other existing algo-
rithms, a portfolio of MIG restructuring commands is established. Then, we discuss whether
logic optimization and technology legalization should be tackled together or separately and
argue that when circuits are small enough or the runtime budget is sufficient, the two should
be interleaved to achieve better results. For such, we leverage the unsupervised design space
exploration framework proposed in Chapter 5 and combine it with the AQFP legalization
flow presented in Chapter 9. Experimental results show that our AQFP technology mapping
methodology gives a significant 44% improvement in the energy-delay product compared
to the best-known AQFP synthesis results. For the sake of completeness, we also discuss
verification methods for legalized AQFP circuits. All the presented experimental results are
verified and published? for third-party verification.

1[Tes+21] and [MRM21] used different assumptions, i.e. primary inputs do not need to be balanced, so the
numbers presented in the papers are different. As both works are open-sourced and flexible to taking different
assumptions, we reran the experiment with the same assumptions for a fair comparison.

2All restarts end within 200 steps due to the two terminating conditions, so this value is never really reached.

3https://github.com/lIsils/SCE-benchmarks

157

https://github.com/lsils/SCE-benchmarks

B8 Conclusions

Logic synthesis is a field of intractable problems with heuristic solutions. It is a story of
the mutual stimulation between the scaling of computing systems and the advancement
of synthesis algorithms. Motivated by the need for higher-performance logic synthesis and
the unconventional challenges posed by emerging technologies, we presented in this thesis
various breakthroughs in contemporary logic synthesis and an in-depth investigation into
the problem of AQFP legalization, with a closing demonstration in Chapter 10 showing an
application of contemporary logic synthesis techniques in AQFP circuit optimization.

In this section, we first summarize important technical and experimental results presented in
each chapter. Then, an overview of the most significant contributions of this thesis is given,
along with a discussion on future perspectives and open problems.

11.1 Summary of Important Results
e Chapter 3: Simulation-Guided Paradigm

- With experiments on various simulation pattern generation strategies, we found
that the strategy “rand 256 + 1x s-a-obs” (i.e., starting with 256 random pat-
terns and generating at least one stuck-at pattern for each node with consideration
of observability) performs the best in generating expressive patterns that reduce
99.5% counter-examples encountered in simulation-guided resubstitution.

- By generating expressive simulation patterns, instead of using random patterns,
runtime is shifted from optimization (resubstitution) to pattern generation. If
these patterns are pre-generated and reused, then this means optimization time is
highly reduced.

— Using ECO benchmarks, we showed that the simulation patterns and the counter-
examples are still effective on functionally modified benchmarks in reducing run-
time.

- The simulation-guided resubstitution is capable of using a much larger window

159

Chapter 11 Conclusions

size and achieves a 5.9% reduction in the number of AIG nodes, compared to 3.7%
by a state-of-the-art resubstitution algorithm, within comparable runtime.

¢ Chapter 4: Heuristic Resynthesis

— High-effort resubstitution reduces AIG, XAG, MIG, and MuxIG sizes by an addi-
tional 1.77%, 2.86%, 2.45%, and 20.24%, respectively, on highly optimized (satu-
rated) benchmarks within smaller or similar runtime.

— The proposed high-effort heuristic resynthesis algorithms have better complexities
compared to existing approaches. The AND-based resynthesis algorithm has
O(n?ml) complexity and the MAJ- and MUX-based resynthesis algorithms have
O(nml) complexity, where n is the number of divisors, m is the number of gates
in dependency circuit, and [is the length of truth tables (simulation signatures).

¢ Chapter 5: Design Space Exploration

— We presented new best results on the problem of MIG size optimization, which
are better than or the same as the state-of-the-art on all benchmarks with an
improvement of 16.9% on average.

¢ Chapter 6: Testing and Debugging Logic Synthesis Algorithms

— We adapted the fuzz testing technique to generate logic networks for the testing
of logic synthesis algorithms. Our topology-based fuzzer captures defects in ABC,
mockturtle and LSOracle using 93% smaller testcases compared to an existing AIG
fuzzer aigfuzz.

— A testcase minimizer specialized for logic networks was developed based on the
delta debugging technique. Our minimizer isolates smaller or equal-sized minimal
failure-inducing cores using 50% oracle calls and 50% runtime compared to an
existing AIG delta debugger aigdd.

¢ Chapter 8: Impact of Sequential Design on AQFP Technology Constraints

— We re-examined the formulation of AQFP technology constraints and propose pos-
sible relaxations on these constraints: phase alignment instead of path balancing,
and the flexibilities on combinational inputs’ splitting capacity and phases. How-
ever, phase alignment comes with a tradeoff on the possibility of wave-pipelining.

— Adopting the relaxed constraints reduces 73% of buffers on average, and up to 90%
in some particularly-imbalanced benchmarks.

¢ Chapter 9: AQFP Technology Legalization by Buffer/Splitter Insertion

— We presented a heuristic AQFP legalization and optimization flow that obtains
similar, near-optimal quality as the state-of-the-art ILP-based algorithm within
very little runtime.

160

Conclusions Chapter 11

— Our scheduling-based AQFP legalization approach is fast and scalable. We demon-
strate legalization results on benchmarks 10x to 100x larger than what any other
related works could handle.

e Chapter 10: AQFP Logic Synthesis Toolbox

— We presented AQFP technology mapping results strictly better than the state-of-
the-art in #JJs and EDP on all benchmarks. In total, 36% improvement in #]Js,
12% improvement in depth, and 44% improvement in EDP are achieved within
manageable runtime.

11.2 Thesis Contributions

The three most important contributions of this thesis are:

* Chapters 3 and 4 — High-effort simulation-guided resubstitution [Lee+22; LM23].
Combining the simulation-guided paradigm and high-effort resynthesis in a resubsti-
tution algorithm, we provide an opportunity to keep optimizing benchmarks that are
already highly optimized. The simulation-guided paradigm allows us to enlarge the
window size and unlocks global consideration of don't cares. The heuristic resynthesis
algorithms are unlimited in the size of dependency circuits, broadening the search space
and finding more optimization opportunities.

e Chapters 8 and 9 — Pioneering investigation on the problem of AQFP legalization
[LAD23; Lee+24]. By really diving into the details of AQFP systems design and circuit
properties, we set the ground for realistic directions of research in the AQFP legalization
problem. By establishing a linear relation between a schedule and the minimum buffer
count, we identify that the AQFP legalization problem is a scheduling problem. Built
upon this observation, we presented an AQFP legalization flow consisting of depth-
optimal scheduling, irredundant buffer insertion, and heuristic optimization.

* Chapters 5 and 10 — Significant improvements in AQFP circuit optimization [LRD23;
Lee+24]. We presented an AQFP technology mapping flow combining on-the-fly de-
sign space exploration, simulation-guided MIG resubstitution, and AQFP legalization,
revisiting various elements in this thesis. A significant 44% improvement in EDP was
achieved, demonstrating the power of advanced logic synthesis techniques presented in
this thesis.

11.3 Open Problems

In addition to future works directly related to the research problem or ideas in each chapter
that we have discussed at the end of the respective chapter, we list here the open problems in
a broader sense as possible future research directions.

161

Chapter 11 Conclusions

11.3.1 Endless Pursuit for QoR and Efficiency

Logic synthesis problems are mostly NP-hard. Unless P=NP is proven or quantum computing
becomes realistic, all we can do is develop better and better heuristics. This is an endless
competition with never-satisfying results. Thus, in some sense, we could say that logic syn-
thesis never dies as an ongoing research field. It may become more and more difficult, but
new algorithms or strategies getting another percent QoR improvement are likely always
possible and companies are willing to pay the extra synthesis runtime for it. Conversely, if the
efficiency of logic synthesis algorithms improves and the same QoR could be achieved within
less runtime, then more optimization iterations or higher-effort parameters could be applied
and better QoR could be achieved within the same runtime budget.

11.3.2 AQFP Synthesis: Integration into Production-Ready EDA Tools

Research and development of EDA for AQFP are still in a relatively early stage. Various algo-
rithms are independently developed by different research groups in different EDA systems.
The Cadence system with a complete, working flow used for fabrication by the lab at Yokohama
National University (where AQFP was first proposed) does not adopt all the latest algorithms
yet. Due to the special clock phase assignment issue, common file-exchange formats need to
be extended, and such an extended format has to be agreed upon by developers of different
algorithms in order for them to be compatible. Moreover, as discussed in Chapter 8, not all of
the newly proposed algorithms respect the actual properties and realistic constraints of the
technology, and some subtle constraints can only be correctly considered with communica-
tion and collaboration between algorithms in different synthesis stages. Hence, it is important
to make an effort to integrate all state-of-the-art algorithms into one EDA tool.

11.3.3 Other Emerging Technologies

In this thesis, we take the optimization of AQFP circuits as an example application of con-
temporary logic synthesis techniques. There are many more emerging technologies and
computing paradigms that are being rapidly developed and shown to be promising. Each
of them has different properties and constraints to be considered in logic synthesis. For ex-
ample, technologies in the field-coupled nanocomputing (FCN) family require the circuit to
be planarized by inserting crossing cells, in addition to similar path-balancing and fanout-
branching constraints as AQFP [Wal+19]. As the crossing cells also need to be balanced, the
three constraints must be considered together, making it a similar but harder problem than
the AQFP legalization problem.

162

Conclusions Chapter 11

11.4 Final Remarks

All of the algorithms, frameworks, and flows presented in this thesis are implemented in the
open-source C++ logic synthesis library mockturtle' [Rie+19b; Soe+22]. Whenever possible,
verification is performed so that correct results are ensured.

https://github.com/lsils/mockturtle

163

https://github.com/lsils/mockturtle

Bibliography

[AA20]

[AB14]

[ACY19]

[AGD15]

[AGD16]

[Ake62]

[Ake78]

[Ama+18]

[Aya+15]

[Aya+17]

Bijan Alizadeh and Yasaman Abadi. “Incremental SAT-based correction of gate
level circuits by reusing partially corrected circuits”. In: IEEE Transactions on
Circuits and Systems II: Express Briefs 67.12 (2020), pp. 3063-3067.

Neal G. Anderson and Sanjukta Bhanja, eds. Field-Coupled Nanocomputing -
Paradigms, Progress, and Perspectives. Vol. 8280. Lecture Notes in Computer
Science. Springer, 2014.

Christopher L Ayala, Olivia Chen, and Nobuyuki Yoshikawa. “AQFPTX: Adiabatic
Quantum-Flux-Parametron Timing eXtraction Tool”. In: 2019 IEEE International
Superconductive Electronics Conference (ISEC). 2019, pp. 1-3.

Luca Amard, Pierre-Emmanuel Gaillardon, and Giovanni De Micheli. “The EPFL
combinational benchmark suite”. In: Proceedings of IWLS. 2015.

Luca Gaetano Amarl, Pierre-Emmanuel Gaillardon, and Giovanni De Micheli.
“Majority-Inverter Graph: A New Paradigm for Logic Optimization”. In: IEEE Trans.
Comput. Aided Des. Integr. Circuits Syst. 35.5 (2016), pp. 806-819.

Sheldon B. Akers Jr. “Synthesis of combinational logic using three-input majority
gates”. In: 3rd Annual Symposium on Switching Circuit Theory and Logical Design.
1962, pp. 149-157.

Sheldon B. Akers Jr. “Binary Decision Diagrams”. In: IEEE Trans. Computers 27.6
(1978), pp. 509-516.

Luca Gaetano Amaru et al. “Improvements to Boolean resynthesis”. In: 2018
Design, Automation & Test in Europe Conference & Exhibition, DATE 2018. 2018,
pp. 755-760.

Christopher L Ayala et al. “Timing Extraction for Logic Simulation of VLSI Adia-
batic Quantum-Flux-Parametron Circuits”. In: IEICE Technical Report. SCE2015-
21 115.242 (Oct. 2015), pp. 7-12.

Christopher L Ayala et al. “Majority-Logic-Optimized Parallel Prefix Carry Look-
Ahead Adder Families Using Adiabatic Quantum-Flux-Parametron Logic”. In:
IEEE Trans. Appl. Supercond. 27.4 (June 2017), pp. 1-7.

165

BIBLIOGRAPHY

[Aya+20]

[Aya+21]

[Bar+88]

[BD97]

[BHS90]

[Bie+09]

[BMO6]

[BM10]

[Boo47]
[BPF15]

[Bra+82]

[Bra+87]

[Bra82]

[Bra83]

[Bur+98]

[Cai+19a]

Christopher L Ayala et al. “A semi-custom design methodology and environ-
ment for implementing superconductor adiabatic quantum-flux-parametron
microprocessors”. In: Superconductor Science and Technology 33.5 (2020).

Christopher L. Ayala et al. “MANA: A Monolithic Adiabatic iNtegration Archi-
tecture Microprocessor Using 1.4-z]/op Unshunted Superconductor Josephson
Junction Devices”. In: IEEE]. Solid State Circuits 56.4 (2021), pp. 1152-1165.

Karen A. Bartlett et al. “Multi-level logic minimization using implicit don’t cares”.
In: IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 7.6 (1988), pp. 723-740.

Valeria Bertacco and Maurizio Damiani. “The disjunctive decomposition of logic
functions”. In: Proceedings of the 1997 IEEE/ACM International Conference on
Computer-Aided Design, ICCAD 1997. 1997, pp. 78-82.

Robert K. Brayton, Gary D. Hachtel, and Alberto L. Sangiovanni-Vincentelli. “Mul-
tilevel logic synthesis”. In: Proceedings of IEEE 78.2 (1990), pp. 264-300.

Armin Biere et al., eds. Handbook of Satisfiability. Vol. 185. Frontiers in Artificial
Intelligence and Applications. IOS Press, 2009.

Robert Brayton and Alan Mishchenko. “Scalable logic synthesis using a simple
circuit structure”. In: IWLS 2006. Vol. 6. 2006, pp. 15-22.

Robert K. Brayton and Alan Mishchenko. “ABC: An Academic Industrial-Strength
Verification Tool”. In: Proceedings of CAV. 2010, pp. 24-40.

George Boole. The mathematical analysis of logic. Philosophical Library, 1847.

Nikolaj Bjgrner, Anh-Dung Phan, and Lars Fleckenstein. “vZ - An Optimizing
SMT Solver”. In: Proceedings of TACAS. Vol. 9035. Springer, 2015, pp. 194-199.

Robert K Brayton et al. “A comparison of logic minimization strategies using
ESPRESSO: An APL program package for partitioned logic minimization”. In:
Proceedings of the International Symposium on Circuits and Systems. 1982, pp. 42—
48.

Robert K. Brayton et al. “MIS: A Multiple-Level Logic Optimization System”. In:
IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 6.6 (1987), pp. 1062-1081.

Robert K Brayton. “The decomposition and factorization of Boolean expressions”.
In: ISCA-82 (1982), pp. 49-54.

Daniel Brand. “Redundancy and Don’t Cares in Logic Synthesis”. In: IEEE Trans.
Computers 32.10 (1983), pp. 947-952.

Wayne P. Burleson et al. “Wave-pipelining: a tutorial and research survey”. In:
IEEE Trans. Very Large Scale Integr. Syst. 6.3 (1998), pp. 464-474.

Ruizhe Cai et al. “A Buffer and Splitter Insertion Framework for Adiabatic Quantum-
Flux-Parametron Superconducting Circuits”. In: Proceedings of ICCD. 2019, pp. 429—
436.

166

BIBLIOGRAPHY

[Cai+19b]

[Cai+19c]

[CD23]

[CD94a]

[CD94b]

[CDEO08]

[Cha+06]

[Chu+18]

[Cla+00]

[CM10]

[CPD96]

[CR88]

[Cra57]

[CSGI9]

[CWBI15]

Ruizhe Cai et al. “A Majority Logic Synthesis Framework for Adiabatic Quantum-
Flux-Parametron Superconducting Circuits”. In: Proceedings of GLSVLSI. 2019,
pp. 189-194.

Ruizhe Cai et al. “IDE Development, Logic Synthesis and Buffer/Splitter Insertion
Framework for Adiabatic Quantum-Flux-Parametron Superconducting Circuits”.
In: Proceedings of ISVLSI. IEEE. 2019, pp. 187-192.

Alessandro Tempia Calvino and Giovanni De Micheli. “Depth-Optimal Buffer and
Splitter Insertion and Optimization in AQFP Circuits”. In: Proceedings of ASPDAC.
2023, pp. 152-158.

Jason Cong and Yuzheng Ding. “FlowMap: an optimal technology mapping algo-
rithm for delay optimization in lookup-table based FPGA designs”. In: IEEE Trans.
Comput. Aided Des. Integr. Circuits Syst. 13.1 (1994), pp. 1-12.

Jason Cong and Yuzheng Ding. “On area/depth trade-off in LUT-based FPGA
technology mapping”. In: IEEE Trans. Very Large Scale Integr. Syst. 2.2 (1994),
pp. 137-148.

Cristian Cadar, Daniel Dunbar, and Dawson R. Engler. “KLEE: Unassisted and
Automatic Generation of High-Coverage Tests for Complex Systems Programs”.
In: OSDI 2008. USENIX Association, 2008, pp. 209-224.

Satrajit Chatterjee et al. “Reducing structural bias in technology mapping”. In:
IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 25.12 (2006), pp. 2894-2903.

Zhufei Chu et al. “Functional decomposition using majority”. In: Proceedings of
ASP-DAC. 1IEEE. 2018, pp. 676-681.

Edmund M. Clarke et al. “Counterexample-Guided Abstraction Refinement”. In:
Proceedings of CAV. Vol. 1855. 2000, pp. 154-169.

Jason Cong and Kirill Minkovich. “LUT-based FPGA technology mapping for
reliability”. In: Proceedings of DAC. 2010, pp. 517-522.

Jason Cong, John Peck, and Yuzheng Ding. “RASP: A general logic synthesis system
for SRAM-based FPGAs”. In: Proceedings of the 1996 ACM fourth international
symposium on Field-programmable gate arrays. 1996, pp. 137-143.

Henry Cox and Janusz Rajski. “Stuck-open and transition fault testing in CMOS
complex gates”. In: Proceedings of of ITC. IEEE. 1988, pp. 688-694.

William Craig. “Linear reasoning: A new form of the Herbrand-Gentzen theorem”.
In: The Journal of Symbolic Logic 22.3 (1957), pp. 250-268.

David E. Culler, Jaswinder Pal Singh, and Anoop Gupta. Parallel computer archi-
tecture - a hardware / software approach. 1999. 1SBN: 978-1-55860-343-1.

Sang Kil Cha, Maverick Woo, and David Brumley. “Program-Adaptive Mutational
Fuzzing”. In: SP 2015. IEEE Computer Society, 2015, pp. 725-741.

167

BIBLIOGRAPHY

[DD90]

[De 94]

[DM93]

[Don+22]

[DRH14]

[FDK11]

[Fis+10]

[Fu+23a]

[Fu+23b]

[GLMO08]

[Got59]

[Gro+22]

[Haa+17]

[Haa+18]

[Haa+20]

[Hac+89]

Maurizio Damiani and Giovanni De Micheli. “Observability Don’t Care Sets and
Boolean Relations”. In: Proceedings of ICCAD. 1990, pp. 502-505.

Giovanni De Micheli. Synthesis and optimization of digital circuits. McGraw-Hill
Higher Education, 1994.

Maurizio Damiani and Giovanni De Micheli. “Don’t care set specifications in
combinational and synchronous logic circuits”. In: IEEE Trans. Comput. Aided
Des. Integr. Circuits Syst. 12.3 (1993), pp. 365-388.

Peiyan Dong et al. “TAAS: a timing-aware analytical strategy for AQFP-capable
placement automation”. In: Proceedings of DAC. 2022, pp. 1321-1326.

Kyle Dewey, Jared Roesch, and Ben Hardekopf. “Language fuzzing using con-
straint logic programming”. In: ASE 2014. ACM, 2014, pp. 725-730.

Petra Farm, Elena Dubrova, and Andreas Kuehlmann. “Integrated logic synthesis
using simulated annealing”. In: Proceedings of the 21st edition of the great lakes
symposium on Great lakes symposium on VLSI. 2011, pp. 407-410.

Petr Fiser et al. “On logic synthesis of conventionally hard to synthesize circuits
using genetic programming”. In: Proceedings of DDECS. 2010, pp. 346-351.

Rongliang Fu et al. “A Global Optimization Algorithm for Buffer and Splitter
Insertion in Adiabatic Quantum-Flux-Parametron Circuits”. In: Proceedings of
ASPDAC. 2023, pp. 769-774.

Rongliang Fu et al. “BOMIG: A Majority Logic Synthesis Framework for AQFP
Logic”. In: Proceedings of DATE. 2023.

Patrice Godefroid, Michael Y. Levin, and David A. Molnar. “Automated Whitebox
Fuzz Testing”. In: NDSS 2008. The Internet Society, 2008.

Eiichi Goto. “The parametron, a digital computing element which utilizes para-
metric oscillation”. In: Proceedings of the IRE 47.8 (1959), pp. 1304-1316.

Antoine Grosnit et al. “BOILS: Bayesian Optimisation for Logic Synthesis”. In:
Proceedings of DATE. 1EEE, 2022, pp. 1193-1196.

Winston Haaswijk et al. “A novel basis for logic rewriting”. In: Proceedings of
ASP-DAC. 2017, pp. 151-156.

Winston Haaswijk et al. “Integrated ESOP Refactoring for Industrial Designs”. In:
25th IEEE International Conference on Electronics, Circuits and Systems, ICECS
2018. 2018, pp. 369-372.

Winston Haaswijk et al. “SAT-Based Exact Synthesis: Encodings, Topology Fami-
lies, and Parallelism”. In: IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 39.4
(2020), pp. 871-884.

G Hachtel et al. “BOLD: The Boulder optimal logic design system”. In: Proceedings
of the Twenty-Second Annual Hawaii International Conference on System Sciences.
Volume 1: Architecture Track. Vol. 1. IEEE Computer Society. 1989, pp. 59-60.

168

BIBLIOGRAPHY

[Har+87]

[He+22]

[HFS17]

(HLH91]

(HMBO07]

[Hos+91]

[Hua+21]

Jar+11]

[KA22]

[KJR20]

[KKO04]

[KL70]

[KNP21]

(Knull]

[KP18]

Yutaka Harada et al. “Basic operations of the quantum flux parametron”. In: IEEE
Trans. Magn. 23.5 (1987), pp. 3801-3807.

Yuxing He et al. “Low clock skew superconductor adiabatic quantum-flux-parametron
logic circuits based on grid-distributed blocks”. en. In: Supercond. Sci. Technol.
36.1 (Dec. 2022), p. 015006.

Ivo Hélecek, Petr FiSer, and Jan Schmidt. “Are XORs in logic synthesis really
necessary?” In: Proceedings of of DDECS. 2017, pp. 134-139.

Cheng-Tsung Hwang, Jiahn-Hurng Lee, and Yu-Chin Hsu. “A formal approach
to the scheduling problem in high level synthesis”. In: IEEE Trans. on CAD 10.4
(1991), pp. 464-475.

Aaron P. Hurst, Alan Mishchenko, and Robert K. Brayton. “Fast Minimum-Register
Retiming via Binary Maximum-Flow”. In: Proceedings of FMCAD. 2007.

Mutsumi Hosoya et al. “Quantum flux parametron: a single quantum flux device
for Josephson supercomputer”. In: IEEE Transactions on Applied Superconductiv-
ity 1.2 (1991), pp. 77-89.

Chao-Yuan Huang et al. “An Optimal Algorithm for Splitter and Buffer Insertion
in Adiabatic Quantum-Flux-Parametron Circuits”. In: Proceedings of ICCAD. 2021.

TAW Jarratt et al. “Engineering change: an overview and perspective on the litera-
ture”. In: Research in Engineering Design 22.2 (2011), pp. 103-124.

Angshuman Khan and Rajeev Arya. “Design and energy dissipation analysis of
simple QCA multiplexer for nanocomputing”. In: J. Supercomput. 78.6 (2022),
pp. 8430-8444.

Victor N Kravets, Jie-Hong R Jiang, and Heinz Riener. “Learning to automate the
design updates from observed engineering changes in the chip development
cycle”. In: Proceedings of DATE. IEEE. 2020, pp. 738-743.

Victor N Kravets and Prabhakar Kudva. “Implicit enumeration of structural changes
in circuit optimization”. In: Proceedings of DAC. 2004, pp. 438-441.

Robert W Keyes and Rolf Landauer. “Minimal energy dissipation in logic”. In: IBM
Journal of Research and Development 14.2 (1970), pp. 152-157.

Gereon Kremer, Aina Niemetz, and Mathias Preiner. “ddSMT 2.0: Better Delta
Debugging for the SMT-LIBv2 Language and Friends”. In: CAV 2021. Springer,
2021, pp. 231-242.

Donald Ervin Knuth. The art of computer programming, volume 4A: combinatorial
algorithms, part 1. Addison-Wesley, 2011.

Naveen Kumar Katam and Massoud Pedram. “Logic optimization, complex cell
design, and retiming of single flux quantum circuits”. In: IEEE Trans. Appl. Super-
cond. 28.7 (2018), pp. 1-9.

169

BIBLIOGRAPHY

[KS98]

[Kue+02]

[LAD23]

[Lee+07]

[Lee+17]

[Lee+19]

[Lee+22]

[Lee+24]

[Li+22]

[LM23]

[LPP9I6]

[LRD21]

[LRD223a]

[LRD22b]

Victor N Kravets and Karem A Sakallah. “M32: A constructive multilevel logic
synthesis system”. In: Proceedings of DAC. 1998, pp. 336-341.

Andreas Kuehlmann et al. “Robust Boolean reasoning for equivalence checking
and functional property verification”. In: IEEE Trans. Comput. Aided Des. Integr.
Circuits Syst. 21.12 (2002), pp. 1377-1394.

Siang-Yun Lee, Christopher L Ayala, and Giovanni De Micheli. “Impact of Se-
quential Design on The Cost of Adiabatic Quantum-Flux Parametron Circuits”.
In: IEEE Transactions on Applied Superconductivity (2023). DOI: 10.1109/TASC.
2023.3308408.

Chih-Chun Lee et al. “Scalable exploration of functional dependency by inter-
polation and incremental SAT solving”. In: 2007 International Conference on
Computer-Aided Design, ICCAD 2007. 2007, pp. 227-233.

Seungsoo Lee et al. “DELTA: A Security Assessment Framework for Software-
Defined Networks”. In: NDSS 2017. The Internet Society, 2017.

Siang-Yun Lee et al. “Enumeration of Minimum Fanout-Free Circuit Structures”.
In: Proceedings of IWLS. 2019.

Siang-Yun Lee et al. “A Simulation-Guided Paradigm for Logic Synthesis and
Verification”. In: IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 41.8 (2022),
pP- 2573-2586. DOI: 10.1109/TCAD.2021.3108704.

Siang-Yun Lee et al. “Technology Legalization and Optimization for Adiabatic
Quantum-Flux Parametron”. In: IEEE Trans. Comput. Aided Des. Integr. Circuits
Syst. (2024). (Under review).

Xi Li et al. “Multi-Phase Clocking for Multi-Threaded Gate-Level-Pipelined Super-
conductive Logic”. In: Proceedings of ISVLSI. 2022, pp. 62-67.

Siang-Yun Lee and Giovanni De Micheli. “Heuristic Logic Resynthesis Algorithms
at the Core of Peephole Optimization”. In: IEEE Trans. Comput. Aided Des. Integr.
Circuits Syst. 42.11 (2023), pp. 3958-3971. DOI: 10.1109/TCAD.2023.3256341.

Yung-Te Lai, K-RR Pan, and Massoud Pedram. “OBDD-based function decomposi-
tion: Algorithms and implementation”. In: IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems 15.8 (1996), pp. 977-990.

Siang-Yun Lee, Heinz Riener, and Giovanni De Micheli. “Logic Resynthesis of
Majority-Based Circuits by Top-Down Decomposition”. In: Proceedings of DDECS.
2021, pp. 105-110.

Siang-Yun Lee, Heinz Riener, and Giovanni De Micheli. “An Automated Testing
and Debugging Toolkit for Gate-Level Logic Synthesis Applications”. In: Proceed-
ings of IWLS. 2022.

Siang-Yun Lee, Heinz Riener, and Giovanni De Micheli. “Beyond local optimality
of buffer and splitter insertion for AQFP circuits”. In: Proceedings of DAC. 2022,
pp. 445-450.

170

https://doi.org/10.1109/TASC.2023.3308408
https://doi.org/10.1109/TASC.2023.3308408
https://doi.org/10.1109/TCAD.2021.3108704
https://doi.org/10.1109/TCAD.2023.3256341

BIBLIOGRAPHY

[LRD23]

[LS91a]

[LS91b]

[Man+21]

[MBO05]

[MBO06]

(MBO08]

[MB90]

[MCBO06]

MCBO07]

[McC56]

[McN61]

MD23]

[Meu+22]

[MFS90]

Siang-Yun Lee, Heinz Riener, and Giovanni De Micheli. “Customizable On-the-fly
Design Space Exploration for Logic Optimization of Emerging Technologies”. In:
Proceedings of IWLS. 2023.

Charles E. Leiserson and James B. Saxe. “Retiming Synchronous Circuitry”. In:
Algorithmica 6.1-6 (1991), pp. 5-35.

Konstantin K Likharev and Vasilii K Semenov. “RSFQ logic/memory family: A
new Josephson-junction technology for sub-terahertz-clock-frequency digital
systems”. In: IEEE Trans. Appl. Supercond. 1.1 (1991), pp. 3-28.

Valentin J. M. Manes et al. “The Art, Science, and Engineering of Fuzzing: A
Survey”. In: IEEE Trans. Software Eng. 47.11 (2021), pp. 2312-2331.

Alan Mishchenko and Robert K. Brayton. “SAT-Based Complete Don’t-Care Com-
putation for Network Optimization”. In: 2005 Design, Automation and Test in
Europe Conference and Exposition (DATE 2005), 7-11 March 2005, Munich, Ger-
many. IEEE Computer Society, 2005, pp. 412-417.

Alan Mishchenko and Robert Brayton. “Scalable logic synthesis using a simple
circuit structure”. In: Proceedings of IWLS. 2006, pp. 15-22.

Leonardo Mendonca de Moura and Nikolaj Bjerner. “Z3: An Efficient SMT Solver”.
In: Proceedings of TACAS. Vol. 4963. Springer, 2008, pp. 337-340.

Patrick C. McGeer and Robert K. Brayton. “The observability don’t-care set and its
approximations”. In: Proceedings of ICCD. IEEE Computer Society, 1990, pp. 45—
48.

Alan Mishchenko, Satrajit Chatterjee, and Robert K. Brayton. “DAG-aware AIG
rewriting: A fresh look at combinational logic synthesis”. In: Proceedings of the
43rd Design Automation Conference, DAC 2006. Ed. by Ellen Sentovich. 2006,
pp. 532-535.

Alan Mishchenko, Satrajit Chatterjee, and Robert K Brayton. “Improvements to
technology mapping for LUT-based FPGAs”. In: IEEE Trans. Comput. Aided Des.
Integr. Circuits Syst. 26.2 (2007), pp. 240-253.

Edward] McCluskey. “Minimization of Boolean functions”. In: The Bell System
Technical Journal 35.6 (1956), pp. 1417-1444.

Robert McNaughton. “Unate Truth Functions”. In: IRE Trans. Electron. Comput.
10.1 (1961), pp. 1-6.

Dewmini Sudara Marakkalage and Giovanni De Micheli. “Fanout-Bounded Logic
Synthesis for Emerging Technologies”. In: IEEE Trans. Comput. Aided Des. Integr.
Circuits Syst. 2023.

Giulia Meuli et al. “Majority-based Design Flow for AQFP Superconducting Fam-
ily”. In: Proceedings of DATE. IEEE, 2022, pp. 34-39.

Barton P. Miller, Lars Fredriksen, and Bryan So. “An Empirical Study of the Relia-
bility of UNIX Utilities”. In: Commun. ACM 33.12 (1990), pp. 32—44.

171

BIBLIOGRAPHY

[Mis+05]

[Mis+06a]

[Mis+06b]

[Mis+11a]

[Mis+11Db]

MJVO00]

[MKO6]

[MRM21]

[MSO00]

[MSO06]

[MSP01]

MTT61]

[Mur+89]

[NBG11]

[Net+19]

[Net+22]

Alan Mishchenko et al. “FRAIGs: A unifying representation for logic synthesis and
verification”. In: ERL Technical Report. 2005.

Alan Mishchenko et al. “Improvements to combinational equivalence checking”.
In: Proceedings of ICCAD. 2006, pp. 836-843.

Alan Mishchenko et al. “Using simulation and satisfiability to compute flexibilities
in Boolean networks”. In: IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 25.5
(2006), pp. 743-755.

Alan Mishchenko et al. “Delay optimization using SOP balancing”. In: Proceedings
of ICCAD. 2011, pp. 375-382.

Alan Mishchenko et al. “Scalable don’t-care-based logic optimization and resyn-
thesis”. In: ACM Trans. Reconfigurable Technol. Syst. 4.4 (2011), 34:1-34:23.

Julian F Miller, Dominic Job, and Vesselin K Vassilev. “Principles in the evolu-
tionary design of digital circuits—Part I”. In: Genetic programming and evolvable
machines 1.1 (2000), pp. 7-35.

S. Mitra and K. S. Kim. “XPAND: an efficient test stimulus compression technique”.
In: IEEE Trans. Computers 55.2 (2006), pp. 163-173.

Dewmini Sudara Marakkalage, Heinz Riener, and Giovanni De Micheli. “Op-
timizing Adiabatic Quantum-Flux-Parametron (AQFP) Circuits using an Exact
Database”. In: IEEE/ACM International Symposium on Nanoscale Architectures,
NANOARCH 2021. 2021, pp. 1-6.

Jodo P Marques-Silva and Karem A Sakallah. “Boolean satisfiability in electronic
design automation”. In: Proceedings of DAC. 2000, pp. 675-680.

Ghassan Misherghi and Zhendong Su. “HDD: Hierarchical Delta Debugging”. In:
ICSE 2006. ACM, 2006, pp. 142-151.

Alan Mishchenko, Bernd Steinbach, and Marek Perkowski. “An algorithm for
bi-decomposition of logic functions”. In: Proceedings of DAC. 2001, pp. 103-108.

Saburo Muroga, Iwao Toda, and Satoru Takasu. “Theory of majority decision
elements”. In: Journal of the Franklin Institute 271.5 (1961), pp. 376-418.

Saburo Muroga et al. “The Transduction Method-Design of Logic Networks Based
on Permissible Functions”. In: IEEE Trans. Computers 38.10 (1989), pp. 1404-1424.

Dmitri E Nikonov, George I Bourianoff, and Tahir Ghani. “Proposal of a spin
torque majority gate logic”. In: IEEE Electron Device Letters 32.8 (2011), pp. 1128-
1130.

Walter Lau Neto et al. “LSOracle: a Logic Synthesis Framework Driven by Artificial
Intelligence: Invited Paper”. In: ICCAD 2019. ACM, 2019, pp. 1-6.

Walter Lau Neto et al. “FlowTune: End-to-end Automatic Logic Optimization
Exploration via Domain-specific Multi-armed Bandit”. In: IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems (TCAD) (2022).

172

BIBLIOGRAPHY

[New23]

[NIO96]

[OKR14]

[Per+21]

[PP18]

[Quib2]

[Ray+12]

[Reg+12]

[Rie+18]

[Rie+19a]

[Rie+19b]

[Rie+22]

[RMS20]

[Rot66]

[Sai+21]

[Sat+91]

Apple Newsroom. Apple introduces M2 Ultra. [online] https://www.apple.com/
newsroom/2023/06/apple-introduces-m2-ultra/. [Accessed: 05-01-2024]. 2023.

Chetana Nagendra, Mary Jane Irwin, and Robert Michael Owens. “Area-time-
power tradeoffs in parallel adders”. In: IEEE Transactions on Circuits and Systems
II: Analog and Digital Signal Processing 43.10 (1996), pp. 689-702.

Hadi Owlia, Parviz Keshavarzi, and Abdalhossein Rezai. “A novel digital logic
implementation approach on nanocrossbar arrays using memristor-based multi-
plexers”. In: Microelectron. J. 45.6 (2014), pp. 597-603.

Yasasvi V. Peruvemba et al. “RL-Guided Runtime-Constrained Heuristic Explo-
ration for Logic Synthesis”. In: ICCAD 2021. IEEE, 2021, pp. 1-9.

Ghasem Pasandi and Massoud Pedram. “PBMap: A path balancing technology
mapping algorithm for single flux quantum logic circuits”. In: IEEE Trans. Appl.
Supercond. 29.4 (2018), pp. 1-14.

Willard V Quine. “The problem of simplifying truth functions”. In: The American
mathematical monthly 59.8 (1952), pp. 521-531.

Sayak Ray et al. “Mapping into LUT structures”. In: Proceedings of DATE. 2012,
pp. 1579-1584.

John Regehr et al. “Test-case reduction for C compiler bugs”. In: PLDI 2012. ACM,
2012, pp. 335-346.

Heinz Riener et al. “Size Optimization of MIGs with an Application to QCA and
STMG Technologies”. In: Proceedings of the 14th IEEE/ACM International Sympo-
sium on Nanoscale Architectures, NANOARCH 2018. 2018, pp. 157-162.

Heinz Riener et al. “On-the-fly and DAG-aware: Rewriting Boolean Networks with
Exact Synthesis”. In: Proceedings of DATE. 2019, pp. 1649-1654.

Heinz Riener et al. “Scalable Generic Logic Synthesis: One Approach to Rule Them
All”. In: DAC 2019. ACM, 2019, p. 70.

Heinz Riener et al. “Boolean Rewriting Strikes Back: Reconvergence-Driven Win-
dowing Meets Resynthesis”. In: Proceedings of ASPDAC. 2022, pp. 395-402.

Heinz Riener, Alan Mishchenko, and Mathias Soeken. “Exact DAG-Aware Rewrit-
ing”. In: Proceedings of DATE. 2020, pp. 732-737.

J Paul Roth. “Diagnosis of automata failures: A calculus and a method”. In: IBM
Journal of Research and Development 10.4 (1966), pp. 278-291.

Ro Saito et al. “Logic synthesis of sequential logic circuits for adiabatic quantum-
flux-parametron logic”. In: IEEE Trans. Appl. Supercond 31.5 (2021), pp. 1-5.

Hitomi Sato et al. “Boolean resubstitution with permissible functions and binary
decision diagrams”. In: Proceedings of DAC. 1991, pp. 284-289.

173

https://www.apple.com/newsroom/2023/06/apple-introduces-m2-ultra/
https://www.apple.com/newsroom/2023/06/apple-introduces-m2-ultra/

BIBLIOGRAPHY

[SAY21]

[SBOO]

[Sch78]

[Sen+92]

[Sha38]

[SKO04]

[Soe+22]

[Tak+13]

[Tak+17]

[Tak+19]

[TD24]

[Tem+22]

[Tes+21]

[Tov84]

[Tse83]

Ro Saito, Christopher L Ayala, and Nobuyuki Yoshikawa. “Buffer reduction via
N-phase clocking in adiabatic quantum-flux-parametron benchmark circuits”.
In: IEEE Trans. Appl. Supercond. 31.6 (2021), pp. 1-8.

Christoph Scholl and Bernd Becker. “On the Generation of Multiplexer Circuits
for Pass Transistor Logic”. In: 2000 Design, Automation and Test in Europe DATE
2000. 2000, pp. 372-378.

Thomas J Schaefer. “The complexity of satisfiability problems”. In: Proceedings of
ACM Symposium on Theory of Computing. 1978, pp. 216-226.

E.M. Sentovich et al. SIS: A System for Sequential Circuit Synthesis. Tech. rep. EECS
Department, University of California, Berkeley, 1992.

Claude E Shannon. “A symbolic analysis of relay and switching circuits”. In:
Electrical Engineering 57.12 (1938), pp. 713-723.

Nikhil Saluja and Sunil P. Khatri. “A robust algorithm for approximate compatible
observability don't care (CODC) computation”. In: Proceedings of DAC. 2004,
pp. 422-427.

Mathias Soeken et al. The EPFL Logic Synthesis Libraries. 2022. arXiv: 1805.05121.
URL: http://arxiv.org/abs/1805.05121.

Naoki Takeuchi et al. “An adiabatic quantum flux parametron as an ultra-low-
power logic device”. In: Superconductor Science and Technology 26.3 (2013),
p. 035010.

Naoki Takeuchi et al. “Adiabatic quantum-flux-parametron cell library designed
using a 10 kA cm ™2 niobium fabrication process”. In: Superconductor Science and
Technology 30.3 (2017), p. 035002.

Naoki Takeuchi et al. “Low-latency adiabatic superconductor logic using delay-
line clocking”. In: Applied Physics Letters 115.7 (2019), p. 072601.

Alessandro Tempia Calvino and Giovanni De Micheli. “Scalable Logic Rewriting
Using Don't Cares”. In: Proceedings of DATE. 2024.

Alessandro Tempia Calvino et al. “A Versatile Mapping Approach for Technol-
ogy Mapping and Graph Optimization”. In: 27th Asia and South Pacific Design
Automation Conference, ASP-DAC 2022. 2022, pp. 410-416.

Eleonora Testa et al. “Algebraic and Boolean Optimization Methods for AQFP
Superconducting Circuits”. In: Proceedings of ASP-DAC. 2021, pp. 779-785.

Craig A Tovey. “A simplified NP-complete satisfiability problem”. In: Discrete
Applied Mathematics 8.1 (1984), pp. 85-89.

Grigori S Tseitin. “On the complexity of derivation in propositional calculus”. In:
Automation of reasoning. Springer, 1983, pp. 466-483.

174

https://arxiv.org/abs/1805.05121
http://arxiv.org/abs/1805.05121

BIBLIOGRAPHY

[Tsu+17]

[TYY15]

[Wal+19]

(Xu+17]

[Yan91]

[YCO02]

[YCM17]

[YTY21]

[YXM18]

[Zel99]

[ZHO02]

[Zog+17]

Naoki Tsuji et al. “Design and implementation of a 16-word by 1-bit register file
using adiabatic quantum flux parametron logic”. In: IEEE Transactions on Applied
Superconductivity 27.4 (2017), pp. 1-4.

Naoki Takeuchi, Yuki Yamanashi, and Nobuyuki Yoshikawa. “Adiabatic quantum-
flux-parametron cell library adopting minimalist design”. In: Journal of Applied
Physics 117.17 (2015), p. 173912.

Marcel Walter et al. “Scalable design for field-coupled nanocomputing circuits”.
In: Proceedings of ASP-DAC. 2019.

Qiuyun Xu et al. “Synthesis flow for cell-based adiabatic quantum-flux-parametron
structural circuit generation with HDL back-end verification”. In: IEEE Transac-
tions on Applied Superconductivity 27.4 (2017), pp. 1-5.

Saeyang Yang. Logic synthesis and optimization benchmarks user guide: version
3.0. Microelectronics Center of North Carolina (MCNC), 1991.

Congguang Yang and Maciej J. Ciesielski. “BDS: a BDD-based logic optimization
system”. In: IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 21.7 (2002),
pp. 866-876.

Cunxi Yu, Maciej Ciesielski, and Alan Mishchenko. “Fast algebraic rewriting based
on and-inverter graphs”. In: IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems 37.9 (2017), pp. 1907-1911.

Taiki Yamae, Naoki Takeuchi, and Nobuyuki Yoshikawa. “Adiabatic quantum-
flux-parametron with delay-line clocking: logic gate demonstration and phase
skipping operation”. In: Superconductor Science and Technology 34.12 (2021),
p. 125002.

Cunxi Yu, Houping Xiao, and Giovanni De Micheli. “Developing Synthesis Flows
without Human Knowledge”. In: Design Automation Conference (DAC’18) (2018).

Andreas Zeller. “Yesterday, My Program Worked. Today, It Does Not. Why?” In:
SIGSOFT 1999. Springer, 1999, pp. 253-267.

Andreas Zeller and Ralf Hildebrandt. “Simplifying and Isolating Failure-Inducing
Input”. In: IEEE Trans. Software Eng. 28.2 (2002), pp. 183-200.

Odysseas Zografos et al. “Wave pipelining for majority-based beyond-CMOS
technologies”. In: Proceedings of DATE. 2017, pp. 1306-1311.

175

Lausanne, Switzerland S I a n g'Yu n Lee lee30sonia.github.io

siang-yun.lee@epfl.ch . © github.com/lee30sonia
siangyun.sonia.lee@gmail.com Ph.D. Candidate 0000-0001-5907-2314

+ Research interests: Logic synthesis, design automation for emerging technologies, computational neuroscience
» Current maintainer of the EPFL logic synthesis library mockturtle
+ Experiences in reviewing, teaching, course design, and supervising student projects

EDUCATION & WORK EXPERIENCE

Software Engineer Internship, Cadence Design Systems, Munich, Germany 04/2023 — 09/2023
Doctoral Program in Computer and Communication Sciences, Ecole Polytechnique Fédéral de Lausanne (EPFL) 2019 — 2024
Bachelor of Science in Electrical Engineering, National Taiwan University (NTU) 2015 —2019

RESEARCH PROJECTS & SELECTED PUBLICATIONS

Synthesis and Optimization for Emerging Technologies in Superconducting Electronics 08/2020 — 03/2024

Advisor: Prof. Giovanni De Micheli Integrated Systems Lab, EPFL

+ Siang-Yun Lee, Christopher L. Ayala, and Giovanni De Micheli. “Impact of Sequential Design on The Cost of Adiabatic
Quantum-Flux Parametron Circuits,” IEEE Trans. on Applied Superconductivity (TAS). 2023.

+ Siang-Yun Lee, Heinz Riener, and Giovanni De Micheli. “Beyond Local Optimality of Buffer and Splitter Insertion for AQFP
Circuits,” 2022 Design Automation Conference (DAC).

Scalable and Generic Logic Synthesis 02/2020 — 03/2024

Advisor: Prof. Giovanni De Micheli Integrated Systems Lab, EPFL

Collaborators: Dr. Alan Mishchenko (UC Berkeley), Dr. Heinz Riener (Cadence, Germany)

+ Siang-Yun Lee, Heinz Riener, Alan Mishchenko, Robert K. Brayton, and Giovanni De Micheli. “A Simulation-Guided Paradigm
for Logic Synthesis and Verification,” IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems (TCAD). 2022.

+ Siang-Yun Lee and Giovanni De Micheli. “Heuristic Logic Resynthesis Algorithms at the Core of Peephole Optimization,” IEEE
Trans. on Computer-Aided Design of Integrated Circuits and Systems (TCAD). 2023.

Threshold Logic Canonicalization and Weight-Sharing Synthesis 08/2016 — 08/2019
Advisor: Prof. Jie-Hong Roland Jiang Bachelor Project, NTU

+ Siang-Yun Lee, Nian-Ze Lee, and Jie-Hong R. Jiang. “Searching Parallel Separating Hyperplanes for Effective Compression of
Threshold Logic Networks,” 2019 International Conference on Computer-Aided Design (ICCAD).

+ Siang-Yun Lee, Nian-Ze Lee, and Jie-Hong R. Jiang. “Canonicalization of Threshold Logic Representation and Its
Applications,” 2018 International Conference on Computer-Aided Design (ICCAD).

TEACHING ACTIVITIES

Lecturer CS-724: Advanced Logic Synthesis and Quantum Computing Spring 2022, 2023 (EPFL
Ph.D. assistant CS-472: Design Technologies for Integrated Systems Fall 2020, 2021, 2022 (EPFL
Ph.D. assistant CS-173: Digital System Design Spring 2020, 2021, 2022 (EPFL
Course design & assistant Cornerstone EECS Design and Implementation Spring 2018,2019 (NTU
Student assistant Switching Circuit and Logic Design Fall2016 (NTU
Course design & instructor Interactive hands-on camp introducing EE to high school students 2018 — 2019 (TimeMap

AWARDS & GRANTS

+ Best Student Paper Award, International Workshop on Logic and Synthesis (IWLS), 07/2022.
— For the paper “An Automated Testing and Debugging Toolkit for Gate-Level Logic Synthesis Applications”

+ First Prize Award, IWLS Programming Contest, 07/2022.

+ First Prize Award, ACM/SIGDA CADathlon Programming Contest (ICCAD, USA), 11/2019.

+ EPFL Doctoral Program in Computer and Communication Sciences (EDIC) Fellowship, 2019.

+ First Prize Award, Integrated Circuits Computer Aided Design Contest (Ministry of Education, Taiwan), 11/2017.
— For the project “Input Sequence Generator for System Verilog Assertion Checking”

+ Undergraduate Student Research Program, Ministry of Science and Technology, Taiwan, 2018.

+ Undergraduate Scholarship, TSMC-NTU Joint Research Center, 2017.

+ Fourth Award in cellular and molecular biology, Intel International Science and Engineering Fair (ISEF, USA), 05/2015.
— For the project “Mitochondrial Protein CYP11A1 Changes Mitochondrial Morphology”

SKILLS
Computer Languages C/C++, Python, Verilog, VHDL, JavaScript
Software Tools Git, BTEX, EDA tools (Synopsys Design Compiler, Intel Quartus Il, ModelSim, etc.), Matlab

Human Languages English (fluent), Mandarin (native), French (A2), German (B1)

T = " e . —

	Acknowledgements
	Abstract (English/Deutsch)
	List of Figures
	List of Tables
	List of Algorithms
	List of Acronyms
	Introduction
	Electronic Design Automation
	Logic Synthesis
	Trends in Logic Synthesis Techniques
	Challenges and Opportunities of Contemporary Logic Synthesis
	Thesis Organization
	ch:sim: Simulation-Guided Paradigm
	ch:resyn: Heuristic Resynthesis
	ch:DSE: Design Space Exploration
	ch:testing: Testing and Debugging Logic Synthesis Algorithms
	ch:sequential: Impact of Sequential Design on AQFP Technology Constraints
	ch:legalization: AQFP Technology Legalization by Buffer/Splitter Insertion
	ch:mapping: AQFP Logic Synthesis Toolbox

	Background
	Mathematical Abstractions and Data Structures for Logic Circuits
	Boolean Logic
	Truth Tables
	Logic Networks

	Computational Tools
	Boolean Satisfiability Problem
	Integer Linear Programming
	Satisfiability Modulo Theory

	Components of Logic Synthesis
	Structural Analysis
	Don't-Care Conditions
	Exact Synthesis and Databases

	Modern Logic Synthesis Algorithms
	Algebraic and Boolean Methods
	Cut Rewriting
	Boolean Resubstitution
	Technology Mapping
	Combinational Equivalence Checking

	List of Symbols and Common Variables
	Summary

	I Contemporary Logic Synthesis
	Simulation-Guided Paradigm
	Motivation
	Overview
	The Simulation-Guided Paradigm
	Simulation Pattern Generation
	Stuck-at Values
	Observability
	Bit-Packing
	Discussion

	Simulation-Guided Resubstitution
	Simulation-Guided Equivalence Checking
	Experimental Results
	Size of Simulation Pattern Set
	Pattern Generation Strategies
	Pattern Compression with Bit-packing
	Effect of Expressive Patterns in Resubstitution
	Reusability of Simulation Patterns
	Quality of Simulation-Guided Resubstitution
	Reduction on SAT Calls in CEC with Expressive Patterns

	Summary
	Future Work

	Heuristic Resynthesis
	Motivation
	Problem Formulation
	Logic Resynthesis
	Peephole Optimization Targeting Size Reduction
	Don't-Care-Based Optimization
	Simulation-Guided Logic Synthesis

	Overview
	Related Works
	Functional Dependency by Interpolation
	SAT-Based Exact Synthesis
	Enumeration-Based Resubstitution
	Akers' Majority Synthesis

	Heuristic AND-Based Resynthesis
	Classification of Divisors
	Simple Dependency Circuits
	Recursive Decomposition
	Summary of AND-Based Resynthesis

	Heuristic MAJ-Based Resynthesis
	Normalization
	The Care Function
	Choosing Divisors
	Expansion
	Summary and Example of MAJ-Based Resynthesis

	Heuristic MUX-Based Resynthesis
	Experimental Results
	Extracted Resynthesis Problems
	Resynthesis as the Core of High-Effort Optimization

	Summary

	Design Space Exploration
	Motivation
	Related Works
	Overview
	Escaping Local Optimum
	Stretching Out in the Design Space
	On-the-fly Exploration
	Customization
	Experimental Results
	Application to MIG Optimization
	Design Space Exploration
	Importance of Random Restarts

	Summary

	Testing and Debugging Logic Synthesis Algorithms
	Motivation
	Scope
	Related Works
	Fuzz Testing
	Delta Debugging and Testcase Minimization

	Testing and Debugging Toolkit for Logic Synthesis Applications
	Testcase Generation
	Testcase Minimization
	Usage Example

	Case Study
	Capturing The Defect with Fuzz Testing
	Effects of The Reduction Stages

	Experimental Results
	Fuzzing Open-Source Logic Synthesis Tools
	Testcase Minimization

	Discussions
	Non-deterministic Defects
	Other Applications of The Toolkit

	Future Directions
	Summary

	II AQFP Circuit Optimization
	Adiabatic Quantum-Flux Parametron
	Superconducting Electronics
	Basic Principles of Adiabatic Quantum-Flux Parametron
	Parametron and Quantum-Flux Parametron
	Adiabatic Operation
	Logic Computation
	Gate-level Clocking Schemes

	AQFP Design Constraints
	Memory Devices and Architectural Clocking
	Abstraction and Terminology

	Impact of Sequential Design on AQFP Technology Constraints
	Motivation
	AQFP Design Constraints
	Phase Alignment Instead of Path Balancing
	PI Capacity and Phases
	Consideration of Clock Skews

	Impact of Technology Constraints on JJ Count
	Buffer/Splitter Insertion Considering Relaxed Constraints
	Motivational Example
	Experimental Results on Constraint Relaxation
	Experimental Results Using Larger Benchmarks

	Discussions
	Trade-off Between Throughput and Maximum Phase Skip
	n-phase Clocking
	Physical Design and Post-physical-design Legalization

	Summary

	AQFP Technology Legalization by Buffer/Splitter Insertion
	Motivation
	Problem Formulation
	Related Works
	Buffer and Splitter Insertion
	Irredundant Buffer Insertion
	Simple Heuristic Scheduling
	Exact Scheduling
	Depth-Optimal Scheduling

	Buffer and Splitter Optimization
	Chunked Movement
	Retiming
	Buffer and Splitter Optimization Flow

	Technology Legalization Flow
	Experimental Results
	Technology Legalization and Buffer Optimization
	Scalable AQFP Legalization

	Summary

	AQFP Logic Synthesis Toolbox
	Related Works
	MAJ-Based Logic Synthesis
	Design Space Exploration for AQFP Technology Mapping
	Verification
	Experimental Results
	Summary

	Conclusions
	Summary of Important Results
	Thesis Contributions
	Open Problems
	Endless Pursuit for QoR and Efficiency
	AQFP Synthesis: Integration into Production-Ready EDA Tools
	Other Emerging Technologies

	Final Remarks

	Bibliography
	Curriculum Vitae

