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Abstract
Deep heteroscedastic regression involves jointly
optimizing the mean and covariance of the
predicted distribution using the negative log-
likelihood. However, recent works show that
this may result in sub-optimal convergence due
to the challenges associated with covariance es-
timation. While the literature addresses this by
proposing alternate formulations to mitigate the
impact of the predicted covariance, we focus on
improving the predicted covariance itself. We
study two questions: (1) Does the predicted co-
variance truly capture the randomness of the pre-
dicted mean? (2) In the absence of supervision,
how can we quantify the accuracy of covariance
estimation? We address (1) with a Taylor In-
duced Covariance (TIC), which captures the ran-
domness of the predicted mean by incorporating
its gradient and curvature through the second or-
der Taylor polynomial. Furthermore, we tackle
(2) by introducing a Task Agnostic Correlations
(TAC) metric, which combines the notion of cor-
relations and absolute error to evaluate the co-
variance. We evaluate TIC-TAC across multiple
experiments spanning synthetic and real-world
datasets. Our results show that not only does TIC
accurately learn the covariance, it additionally fa-
cilitates an improved convergence of the negative
log-likelihood. Our code is available at https:
//github.com/vita-epfl/TIC-TAC

1. Introduction
Modeling the target distribution is an important design
choice in heteroscedastic regression. Typically, the target is
assumed to follow a multivariate normal distribution, where
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the true mean and covariance are sample dependent and
unknown. Deep heteroscedastic regression learns this distri-
bution by predicting the mean and covariance through two
neural networks, which are jointly optimized to minimize
the negative log-likelihood. However, recent results in deep
heteroscedastic regression show that this joint optimization
leads to sub-optimal convergence.

This challenge is primarily attributed to covariance esti-
mation in heteroscedastic regression (Skafte et al., 2019).
Recent studies show that the gradient of incorrect variance
predictions significantly hinders optimization, and address
this by proposing alternate formulations to mitigate its im-
pact during optimization (Skafte et al., 2019; Seitzer et al.,
2022; Stirn et al., 2023; Immer et al., 2023). While these
approaches aim at regularizing the covariance, this begets
the question: Can we improve upon the predicted covari-
ance? We argue that the current parameterization for the
covariance may not truly explain the randomness of the
predicted mean. Indeed, we observe in Figure 1 that in the
absence of direct supervision, the predicted variance may
take on arbitrary values leading to sub-optimal convergence.
Moreover, evaluating the covariance is challenging without
ground-truth labels. Optimization metrics such as the likeli-
hood are not a direct measure for the covariance since they
also incorporate the performance of the mean estimator.

Hence, this paper studies covariance estimation in deep het-
eroscedastic regression. We distill the challenges into two
problems: (1) How do we model the covariance to explain
the randomness of the prediction? (2) How do we evaluate
the predicted covariance in the absence of annotations?

Our first contribution, the Taylor Induced Covariance
(TIC), explains the randomness of the prediction through
its gradient and curvature. We develop a closed-form ap-
proximation for the covariance of the prediction through its
second order Taylor polynomial. Modeling the covariance
through the gradient and curvature quantifies the variation
in the prediction within a small neighborhood of the input.
TIC when learnt through the negative log-likelihood not
only captures the underlying correlations but also improves
the convergence of the negative log-likelihood.

Our second contribution, the Task Agnostic Correlations
(TAC), addresses the lack of a direct metric to evaluate the
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Figure 1: Motivation. (Left) We learn a varying amplitude sinusoidal with heteroscedastic variance (shaded region). We
observe sub-optimal convergence since the predicted variance may be arbitrary and incorrectly minimizes the likelihood. We
address this through a Taylor Induced Covariance by tying the randomness of the prediction to its gradient and curvature.
(Right) The gradient and curvature quantify the variation in the prediction within a small neighborhood of the input.

covariance. By definition, an accurate covariance correctly
estimates the underlying correlations. Hence, given a partial
observation of the target, the covariance should accurately
update the prediction towards the unobserved target through
conditioning of the predicted distribution. Consequently,
we quantify TAC as the mean absolute error between the
updated prediction and the unobserved target. While the
likelihood is a measure of optimization, TAC quantifies the
accuracy of the learnt correlations.

We design and perform extensive experiments on synthetic
(sinusoidal, multivariate) and real-world (UCI Regression
and Human Pose - MPII, LSP) datasets using two metrics:
TAC and the likelihood. Our experiments show that TIC
outperforms the state-of-the-art baselines in learning corre-
lations across all tasks, demonstrating improved covariance
estimation in heteroscedastic regression. Additionally, we
also observe that incorporating TIC into the negative log-
likelihood improves convergence. Our code and environ-
ment are publicly available for reproducibility1.

2. Deep Heteroscedastic Regression
The goal of heteroscedastic regression is to learn the un-
known target distribution p(Y |X = x), which is com-
monly assumed to be a multivariate normal distribution
N (µY |X ,ΣY |X). Typically, deep heteroscedastic regres-
sion is performed through minimizing the negative log-
likelihood of the predicted distribution q(Ŷ |X = x) =
N (ŷ,Cov(Ŷ |X)). This involves the joint optimization of
estimators for the mean ŷ = fθ(x) and the covariance
Cov(Ŷ |X) = gΘ(x) over the dataset (Nix & Weigend,
1994; Kendall & Gal, 2017):

Ep(X,Y )

[
log

∣∣∣Cov(Ŷ |X)
∣∣∣+ (y − ŷ)T Cov(Ŷ |X)−1 (y − ŷ)

]
. (1)

The advantage of deep heteroscedastic regression over its
non-parametric counterparts like the Gaussian Process (Le
et al., 2005) is the ability to extract complex features from in-

1https://github.com/vita-epfl/TIC-TAC

puts such as images. This has lead to its adoption across var-
ious paradigms such as active learning (Houlsby et al., 2011;
Gal et al., 2017), uncertainty estimation (Gal & Ghahramani,
2016; Kendall & Gal, 2017; Lakshminarayanan et al., 2017;
Russell & Reale, 2021), image reconstruction (Dorta et al.,
2018), human pose estimation (Gundavarapu et al., 2019;
Nakka & Salzmann, 2023; Tekin et al., 2017), and other
vision tasks (Lu & Koniusz, 2022; Simpson et al., 2022; Liu
et al., 2018; Bertoni et al., 2019).

The challenge with deep heteroscedastic regression is that,
while mean estimation is supervised, the covariance lacks
direct supervision and needs to be inferred. This creates
optimization challenges when the predicted covariance is
incorrect. For instance, Skafte et al. (2019) highlights that
an incorrectly predicted small variance effectively increases
the learning rate, affecting optimization. Similarly, Seitzer
et al. (2022) observes that poor convergence is often accom-
panied with a large predicted variance, which further affects
convergence.

Several recent methods aim to alter the negative log-
likelihood to mitigate the impact of the predicted covari-
ance in optimization. Seitzer et al. (2022) addresses this by
proposing β-NLL, which scales the negative log-likelihood
objective (Eq. 1) with the predicted variance for optimiza-
tion: Lβ−NLL = ⌊Var(Ŷ |X)β⌋ ∗ LNLL. This scaling aims
to reduce the impact of the predicted variance in the train-
ing process. While simple and effective, β-NLL is not a
result of a valid distribution, and the optimized values do
not translate to the variance of a distribution.

The recent method of Stirn et al. (2023) proposes an alterna-
tive approach by scaling the gradients of the mean estimator
with the predicted covariance. Effectively, the mean esti-
mator is trained to minimize the mean squared error, and
the covariance estimator is trained to minimize the negative
log-likelihood. This involves conflicting assumptions; while
the mean estimator assumes that the multivariate residual is
uncorrelated, the covariance estimator is expected to recover
correlations from this residual (Immer et al., 2023).
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Unlike previous works which regularize the (co-)variance,
Immer et al. (2023) uses the natural parameterization of the
Gaussian: n1 = µ

σ2 and n2 = −1
2σ2 for regression. Addition-

ally, the method uses Bayesian techniques to regularize the
network as well as obtain a posterior over the parameters.
Similar to Seitzer et al. (2022), the method assumes a diago-
nal covariance matrix. However, this assumption diminishes
the main advantages of learning the covariance, such as cor-
relation analysis, sampling from the target distribution, and
updating our predictions conditioned on partial observations
of the target.

In contrast to previous works which focus on regulariza-
tion as a means to improve optimization, this paper fo-
cuses on improving the predicted covariance within the
negative log-likelihood formulation. The drawback of
Cov(Ŷ |X) = gΘ(x) being an arbitrary mapping from x to
a positive definite matrix is common to all the aforemen-
tioned approaches. This drawback is significant since, in the
absence of supervision, gΘ(x) can take on any value that
minimizes the objective and does not necessarily represent
the randomness of the prediction. Therefore, we propose a
novel closed-form approximation for the predicted covari-
ance and show that incorporating the gradient and curvature
of the prediction better explains its randomness.

3. Taylor Induced Covariance (TIC)
Let us return to the prediction distribution q(Ŷ |X=x) and
ponder on a fundamental question: What is the randomness
of a prediction ŷ for a sample x? Intuitively, we quantify
the covariance as a function of how quickly the predicted
mean changes within a small radius of x. Larger derivatives
imply a rapid change in ŷ, and as a result the model has a
higher variance about its estimate.

We therefore proceed by introducing a heuristic interpreta-
tion of the neighborhood, which allows us to take principled
steps towards a closed-form approximation.

3.1. ϵ - Neighborhood

For a continuously distributed random variable X , the prob-
ability of exactly observing p(X = x) is zero. Instead,
the standard approach (for example Sec. 2.4 in (Evans &
Rosenthal, 2004)) is to observe X in the neighborhood of
x: X ∈ [x− δ, x+ δ]. The definition of this neighborhood
is not rigid, allowing for a heuristic interpretation. For in-
stance, we can represent this neighborhood stochastically:
X = x + ϵ. Here, x is the observation, and ϵ is a random
variable, which we set to be a zero-mean isotropic Gaussian
distribution p(ϵ) = N (0, σ2

ϵ (x)Im) for future analysis.

The advantage of this heuristic is that it allows us to repre-
sent ŷ = fθ(x+ ϵ) stochastically. While the variance of ϵ
is unknown (we will later show that it is learnt), we assume

heteroscedasticity, which allows us to represent neighbor-
hoods of varying spatial extents for each x. We therefore
model Cov(fθ(x+ ϵ)), and continue by taking the second
order Taylor polynomial of fθ(x+ ϵ).

3.2. Second Order Taylor Polynomial

The second order Taylor polynomial introduces the notion
of gradient and curvature in modeling the covariance, and
quantifies the rate at which a function can change within a
small neighborhood around x. We have

fθ(x+ ϵ) = fθ(x) + J(x)ϵT +
h

2
,

where hi = ϵHi(x)ϵ
T ∀i ∈ 1 . . . n . (2)

Here, x ∈ Rm is the input, fθ(x) ∈ Rn represents the mul-
tivariate prediction, ϵ ∈ Rm represents the neighborhood of
x, J(x) ∈ Rn×m corresponds to the Jacobian matrix, and
H(x) ∈ Rn×m×m represents the Hessian tensor. We note
that all the individual terms in Eq. 2 are n-dimensional.

3.3. Covariance Estimation

The covariance of Eq. 2, Covfθ(x+ ϵ), with respect to the
random variable ϵ is

Cov(J(x)ϵT ) + Cov(
h

2
) + 2

[
Cov(J(x)ϵT ,

h

2
)

]
. (3)

We obtain this since fθ(x) is a constant with respect to ϵ.
Below, we evaluate the three terms individually.

3.3.1. ESTIMATING Cov(J(x)ϵT ,h/2)

We begin by noting that J(x)ϵT and h are n-
dimensional vectors with elements [. . .Ji(x)ϵ

T . . . ] and
[. . . ϵHk(x)ϵ

T . . . ], respectively. The covariance between
any two elements is given by

Cov
(
Ji(x)ϵ

T , ϵHk(x)ϵ
T
)

= E
(
Ji(x)ϵ

T ϵHk(x)ϵ
T
)
− E

(
Ji(x)ϵ

T
)
E
(
ϵHk(x)ϵ

T
)

= 0 . (4)

Odd and Even Functions. We use the property of odd-
even functions (Shynk, 2012), which is based on symmetry
and anti-symmetry of a function. Recall that an odd func-
tion is defined as f(−t) = −f(t) and an even function as
f(−t) = f(t). Furthermore, the product of an odd and an
even function is odd, and the product of two even functions
is even. Finally, the integral of an odd function over its
domain evaluates to zero.

We note that Ji(x)ϵ
T =

∑
k Ji,k(x)ϵ

T
k is an odd function

with respect to ϵ. Furthermore, our design choice of p(ϵ) =
N (0, σ2

ϵ (x)Im) implies that p(ϵ) is an even function. The
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term E
(
Ji(x)ϵ

T
)

can be written as
∫
ϵ
Ji(x)ϵ

T p(ϵ)dϵ. This
term represents the integral of a product of an odd and an
even function, which evaluates to zero.

The quadratic term ϵHk(x)ϵ
T can be written as∑

i

∑
j H(k)

i,j ϵiϵj , which is an even function. Subse-
quently, Ji(x)ϵ

T ϵHk(x)ϵ
T is a product of odd Ji(x)ϵ

T

and even ϵHk(x)ϵ
T terms. Finally, we can write

E
(
Ji(x)ϵ

T ϵHk(x)ϵ
T
)

as
∫
ϵ
Ji(x)ϵ

T ϵHk(x)ϵ
T p(ϵ)dϵ,

which represents the integral of a product of odd, even, and
even functions, which also evaluates to zero.

As a result, we get Cov
(
Ji(x)ϵ

T , ϵHk(x)ϵ
T
)

= 0 ∀i, k,
implying that Cov(J(x)ϵT ,h/2) = 0.

3.3.2. ESTIMATING Cov(J(x)ϵT ) AND Cov(h/2)

Estimating Cov(J(x)ϵT ) and Cov(h/2) in Eq. 3 is eas-
ier since they follow a linear and quadratic form, respec-
tively, with known solutions for isotropic Gaussian random
variables (Eq. 375, 379 in (Petersen & Pedersen, 2012)).
Specifically, we have

Cov(J(x) ϵT ) = k1(x)J(x)J(x)
T

Cov(h/2)i,j = k2(x) Trace (Hi,:,:(x) Hj,:,:(x)) . (5)

Since we do not know the variance of the ϵ and its transfor-
mation for each x, we define them through positive quanti-
ties k1(x) and k2(x), which are optimized by the covariance
estimator gΘ(x). We also note that both Cov(J(x) ϵT ) and
Cov(h/2) have dimensions n× n.

Finally, we obtain the solution for Eq. 3 by substituting
Eq. 5 and Eq. 4 into it, which yields

Covfθ(x+ ϵ) = k1(x)J(x)J(x)
T +H

where Hi,j = k2(x)Trace (Hi,:,:(x)Hj,:,:(x)) . (6)

3.4. Formulation

We defined the covariance through ϵ, the neighborhood ran-
dom variable which allows us to capture the gradient and
curvature of fθ(x + ϵ). However, the target y could have
stochasticity that does not depend upon the neighborhood.
We take as an example the function y = c + N (0,Σ(x)).
Here, the stochasticity of y is independent of the neigh-
borhood ϵ. To address scenarios such as these, we intro-
duce a new random variable ε ∼ N (0,Σ(x)), which is
heteroscedastic and is independent of fθ(x + ϵ). Indeed,
ε does not depend upon the gradient or curvature of fθ.
Subsequently, we can write ŷ = fθ(x+ ϵ) + ε. Since ε is
independent of fθ(x+ϵ), we can write the covariance as the
sum of Covfθ(x + ϵ) and Σ(x). This is possible because
the sum of two independent Gaussians results in a Gaus-
sian with the means and covariances summed. We therefore
model the covariance through the gradient and curvature as
well as account for the inherent stochasticity of the samples.

Algorithm 1 Taylor Induced Covariance
Input: x: Input sample
Input: fθ: Mean estimator
Output: Cov(Ŷ |X): Covariance prediction

// Parallelized using vmap

J(x) = get jacobian wrt x(fθ(x))
H(x) = get hessian wrt x(fθ(x))
k1(x), k2(x), k3(x) = gΘ(x)

// Jacobian term
// J.shape = (out dims × in dims)

jacobian = k1(x)J(x)J(x)
T

// Hessian term
// H.shape = (out dims × in dims × in dims)
Hi,j = k2(x)Trace (Hi,:,:(x)Hj,:,:(x))
hessian = H

// Independent term
independent = k3(x)

// Taylor Induced Covariance
TIC = jacobian + hessian + independent

// Train using negative loglikelihood
return TIC

We learn the covariance of ε through k3(x) ∈ Rn×n, a
learnable positive definite matrix which is optimized via the
covariance estimator gΘ(x). The final expression for TIC is

Cov(Ŷ |X=x) ≈ k1(x)J(x)J(x)
T +H+ k3(x) . (7)

The covariance estimator gΘ(x) predicts k1(x), k2(x) and
k3(x), where k1(x), k2(x) are positive scalars. We enforce
k3(x) to be positive definite by predicting an unconstrained
matrix and multiplying it with its transpose, similarly to
previous work. The covariance estimator is jointly opti-
mized with the mean and is trained to minimize the negative
log-likelihood by substituting Eq. 7 into Eq. 1.

3.5. Discussion

At first, the use of the Hessian in TIC resembles its use in
optimization (Gilmer et al., 2022; Kingma & Ba, 2015). The
Cramer-Rao bound (Ly et al., 2017) links the variance of
a parametric estimator with its inverse Fisher information.
However, the Fisher information computes the Hessian with
respect to the parameters, measuring its sensitivity over all
samples. By contrast, the Hessian in our formulation is
computed with respect to the input, allowing us to model
heteroscedasticity.

We incorporate TIC within the negative log-likelihood for-
mulation and do not employ covariance specific regular-
ization. Similar to previous works (Kendall & Gal, 2017;
Skafte et al., 2019; Seitzer et al., 2022; Stirn et al., 2023;
Immer et al., 2023), our method is an approximation without
theoretical guarantees. This approximation results from a
heuristic interpretation of the neigborhood, as well as the
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Figure 2: Task Agnostic Correlations (TAC). We propose
the TAC metric for covariance evaluation. Given the ground
truth y, predicted mean ŷ and covariance Σ, TAC quantifies
the improvement in the predicted mean given partial obser-
vations of the ground truth. TAC uses conditioning of the
normal distribution to directly assess the covariance.

use of the second order taylor polynomial. However, our
experimental evaluations show that TIC provides accurate
covariance estimates and works well in practice.

Limitations. The computational complexity in TIC arises
from computing the Hessian. While determining this for
a general network architecture is non-trivial, computing
the Hessian for a function that maps x ∈ Rm to y ∈ Rn

has a complexity of O(nm3) (Yao et al., 2020), which is
large. There are multiple possible ways to mitigate this in
practice. The simplest approach would be to use paralleliza-
tion, which we provide in our code. The second approach
would be to use a smaller, proxy model in place of a large
model (which could be retained for mean estimation). This
smaller model could be trained through a student-teacher
setup using techniques from knowledge distillation (Gou
et al., 2021). The reduced parameter count would decrease
the computational requirements of the Hessian. An inter-
esting direction for future research would be to find useful
approximations of the Hessian with respect to the input,
similarly to research in optimization which approximates
the Hessian with respect to the parameters.

4. Task Agnostic Correlations (TAC)
How can we evaluate covariance estimation in the absence
of ground-truth annotation? Existing methods (Kendall &
Gal, 2017; Seitzer et al., 2022; Stirn et al., 2023) use metrics
such as likelihood scores and the mean squared error for
evaluation. However, these methods are skewed towards
learning the mean; a perfect mean estimator fθ(x) would re-

Algorithm 2 Task Agnostic Correlations
Input: y: Ground truth, ŷ: Target prediction
Input: Cov(Ŷ |X): Covariance prediction
Output: TAC error

dimensions = get dimensions(ŷ)
TAC = zeros(shape=dimensions)

for i in dimensions do
// Observe all but one dimension
obs dim = set(dimensions) - set(i)
hidden dim = i
// Conditioning the normal distribution

Σ22 = Cov(Ŷ |X)[obs dim, obs dim]
Σ12 = Cov(Ŷ |X)[hidden dim, obs dim]
ỹ = ŷ[hidden dim] + (Σ12Σ

−1
22 (y[obs dim]− ŷ[obs dim]))

// Error between updated and true value
TAC [i] = | ỹ − y[hidden dim] |

return TAC.mean()

sult in zero mean squared error, while log-likelihood scores
put greater emphasis on the determinant of the covariance
and do not directly assess correlations. Other metrics such
as the Conditional Marginal Likelihood (CML) (Lotfi et al.,
2022) are a measure of generalization. Therefore, we argue
for the use of a much more direct method to assess the co-
variance. Specifically, we reason that the goal of estimating
the covariance is to encode the relation between the target
variables. Therefore, partially observing a set of correlated
targets should improve the prediction of the hidden targets
since by definition the covariance encodes this correlation.
As an example, if P and Q are correlated, then observing P
should improve our estimate of Q. Hence, we propose a new
metric that evaluates the accuracy of correlations, which we
call the Task Agnostic Correlations, (Figure 2).

4.1. Algorithm

Formally, given an n-dimensional target prediction ŷ, the
ground truth y, and the predicted covariance Cov(Ŷ |X=
x), we define the TAC error as

∑
i |yi − ỹi|/n, where

ỹi is the updated mean obtained after conditioning
N (ỹi,Cov(Ŷ |X) | yj ̸=i,x). For each prediction ŷi, we
obtain a revised estimate ỹi by conditioning it over the
ground truth of the remaining variables yi ̸=j . We measure
the absolute error of this revised estimate against the ground
truth of the unobserved variable and repeat for all i. An
accurate estimate of Cov(Ŷ |X=x) will decrease the error
whereas an incorrect estimate will cause an increase. We
describe this in Algorithm 2.

4.2. Discussion

This evaluation bears resemblance with leave-one-out,
where we observe one ỹi given other observations yj ̸=i.
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Figure 3: Univariate. We perform experiments on three different sinusoidals, showing that incorporating the gradient
and curvature of the predicted mean results in accurate variance estimation. The TIC parameterization also results in an
improved convergence of the negative log-likelihood.

While leave-one-out can be generalized to leave-k-out, we
do not observe any change in the evaluation trend. A method
having lower leave-one-out also has a lower leave-k-out er-
ror. Moreover, leave-k-out requires taking

(
n
k

)
combinations,

which is significantly higher than taking n combinations in
leave-one-out. This motivates the use of the leave-one-out.

We highlight that this metric is agnostic of downstream
tasks involving covariance estimation. We also note that
TAC and the log-likelihood are complementary: while log-
likelihood is a measure of optimization, TAC is a measure
of accuracy of the learnt correlations. Hence, we use TAC
as an additional metric for all multivariate experiments.

5. Experiments
The goal of this paper is to improve covariance estimation
in deep heteroscedastic regression. Therefore, we specifi-
cally focus on multivariate outputs, and readdress several
existing experimental designs. Our synthetic experiments
consist of learning a univariate sinusoidal and a multivariate
distribution. We conduct our real-world experiments on the
UCI regression repository and the MPII, LSP 2D human
pose estimation datasets.

Our baselines consist of different (co-)variance models in
deep heteroscedastic regression. These include the negative
log-likelihood (Dorta et al., 2018), and its variants: β-NLL
(Seitzer et al., 2022), Faithful Heteroscedastic Regression
(Stirn et al., 2023), and Natural Laplace (Immer et al., 2023)
(univariate). We refer to the diagonal covariance (Kendall
& Gal, 2017) and the TIC formulation as NLL-Diagonal

and NLL-TIC since they are optimized using the negative
log-likelihood. We take care to provide a fair comparison;
all methods are randomly initialized with the same mean
and covariance estimators, with each method having its
own learning rate scheduler. Furthermore, the batching and
ordering of samples is the same for all methods. We train
our method and all baselines for 100 epochs using a learning
rate scheduler which reduces the learning rate on plateau.
Unless specified, we use simple fully connected layers with
batch normalization as our network architecture.

Since covariance estimation lacks direct supervision, we
do not make training and evaluation splits of the dataset
to increase the number of samples. While this may seem
questionable, we reason that the covariance is a measure of
correlation as well as variance. If too few samples are pro-
vided for training then the resulting covariance is nearly sin-
gular. Moreover, existing work (Skafte et al., 2019; Seitzer
et al., 2022; Stirn et al., 2023) show that the negative log-
likelihood is prone to sub-optimal convergence and does not
overfit the training samples. Finally, our evaluation remains
fair since our experimental methodology is the same for all.

5.1. Synthetic Data

Univariate. We repeat the experiments of Seitzer et al.
(2022) with a major revision. First, we introduce het-
eroscedasticity and substantially increase the variance of the
samples. Second, we simulate different sinusoidals having
constant and varying amplitudes. We draw 50,000 samples
and train a fully-connected network with batch normaliza-
tion (Ioffe & Szegedy, 2015) for 100 epochs. Our results
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Sample X

Homoscedastic Target Heteroscedastic Noise

Heteroscedastic Target

Figure 4: Multivariate Schematic. We present a simple
method to simulate heteroscedastic data. We first randomly
sample the input x, which in turn is used to sample an initial
target y. We then add sample-dependent noise z, giving us
the target q, which the network is required to learn.

Table 1: Multivariate Results. We compare the log-
likelihood value for all methods. We skip NLL-Diagonal
and β-NLL, both of which have very low likelihoods since
they assume a diagonal covariance.

Method Dim: 4 6 8 10 12 14 16 18 20

MSE -10.1 -16.4 -23.1 -30.9 -36.1 -41.6 -49.2 -53.2 -66.6
NLL -8.2 -14.9 -19.9 -26.6 -34.2 -42.7 -46.6 -60.9 -67.2
Faithful -8.7 -14.7 -20.3 -27.3 -32.4 -40.2 -48.6 -55.4 -69.0

NLL-TIC -7.6 -11.7 -15.8 -19.9 -23.3 -26.8 -30.3 -34.2 -39.7

are shown in Figure 3. We observe that in the absence of
direct supervision, the negative log-likelihood incorrectly
overestimates the variance since it does not represent the ran-
domness of the predicted mean. Furthermore, both β-NLL
and Faithful are susceptible to incorrect variance predic-
tions because the methods regularize the variance, which
compromises on variance fits. While Natural Laplace fits
the constant amplitude sinusoidal, the method results in
unstable optimization for sinusoidals of varying amplitude.

Multivariate. We propose a new experiment for multivariate
analysis to study heteroscedastic covariance. We let X,Y
be jointly distributed and sample x from this distribution.
Subsequently, we sample y conditioned on x. To simu-
late heteroscedasticity, we draw samples from Z, a zero
mean random variable whose covariance ΣZ = diag(

√
|x|)

depends on x. Since Y and Z are independent given X ,
their sum also satisfies the normal distribution Q|X ∼
N (µY |X ,ΣY |X +ΣZ|X). Therefore, the goal of this exper-
iment is to model the mean and the heteroscedastic covari-
ance of Q|X given samples (x, q). The schematic for our
experimental design is shown in Fig. 4.

We vary the dimensionality of x and q from 4 to 20 in steps
of 2, and report the mean and standard deviation over ten

4 6 8 10 12 14 16 18 20
Dimensions

1.0

1.5

2.0

2.5

3.0

3.5

4.0

TA
C

MSE
NLL: Diagonal
NLL
Beta-NLL
Faithful
NLL: TIC

Figure 5: Multivariate Results. We plot the Task Agnostic
Correlations (TAC) metric mean and standard deviation for
all methods from dimensions 4 to 20. The gap between TIC
and the baselines widens as the dimensionality increases.

trials for each dimension. Depending on the dimensionality,
we draw from 4000 up to 20000 samples and report our
results using TAC (Fig. 5) and the log-likelihood (Table
1). We observe two trends in Fig. 5: First, as the dimen-
sionality of the samples increases, the gap between TIC and
the other methods widens. This is because, with increasing
dimensionality, the number of free parameters to estimate
in the covariance matrix grows quadratically. An increase
in parameters typically requires a non-linear growth in the
number of samples for robust fitting. As a result, the dif-
ficulty of mapping the input to a positive definite matrix
increases with dimensionality. Second, we note that TIC
allows for better convergence in comparison to the naive
parameterization of the covariance in NLL.

5.2. UCI Regression

We perform our analysis on twelve multivariate UCI regres-
sion (Dua & Graff, 2017) datasets, which have been used in
previous work on negative log-likelihood (Stirn et al., 2023;
Seitzer et al., 2022). Nevertheless, our goal of studying
covariance estimation in deep heteroscedastic regression
requires us to use a different pre-processing, as many of the
datasets have univariate or low-dimensional targets.

Specifically, for each dataset we randomly allocate 25% of
the features as input and the remaining 75% features as mul-
tivariate targets at run-time. Some combinations of input
variables may fare poorly at predicting the target variables.
However, this is an interesting challenge for the covariance
estimator, which needs to learn the underlying correlations
even in unfavorable circumstances. Moreover, random split-
ting also allows our experiments to remain unbiased as we
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Table 2: UCI Regression. We perform ten trials over all the datasets and report the TAC error and the log-likelihood. TIC
outperforms all the baselines on ten out of twelve datasets in terms of TAC error, and outperforming on all but one dataset in
terms of the likelihood error. Additionally, the TIC parameterization (NLL-TIC) results in improved convergence of the
negative log-likelihood.

(a) Task Agnostic Correlations (TAC) Metric

Method Abalone Air Appliances Concrete Electrical Energy Turbine Naval Parkinson Power Red Wine White Wine

MSE 2.54 4.31 1.79 6.15 7.91 4.40 4.74 0.56 2.32 6.01 5.97 6.32
NLL-Diagonal 5.49 8.03 11.71 7.86 10.06 7.12 7.07 5.01 8.56 8.16 7.96 8.44
NLL 3.28 3.42 2.41 4.16 7.14 5.10 3.40 0.25 1.86 6.22 5.81 7.26
β-NLL 2.85 5.67 4.89 7.21 8.41 6.17 5.03 1.06 5.48 6.73 6.96 7.08
Faithful 2.96 3.27 1.79 3.93 7.36 2.90 3.29 0.20 1.68 5.81 5.74 6.89

NLL-TIC 1.83 2.27 1.39 2.82 4.89 2.34 2.40 0.28 2.54 3.87 4.05 4.60

(b) Log Likelihood Metric. We skip NLL-Diagonal and β-NLL which have very low likelihoods since the methods assume diagonal
covariance. We remind the reader that the datasets are adapted for covariance estimation

Method Abalone Air Appliances Concrete Electrical Energy Turbine Naval Parkinson Power Red Wine White Wine

MSE -60.7 -231.5 -99.6 -238.3 -494.6 -169.6 -230.8 -20.9 -154.0 -295.6 -305.8 -338.15
NLL −8.5× 103 -53.32 -84.5 -83.6 -57.9 -55.8 -27.1 4.1 −1.5× 103 -34.2 -236.0 -206.0
Faithful −9.4× 103 -52.1 -55.4 -80.6 -57.3 -30.8 -26.1 7.5 −1.2× 103 -33.9 -434.4 -250.9

NLL-TIC -13.4 -29.3 -42.45 -22.2 -35.8 -19.1 -22.9 -10.3 -63.0 -27.1 -30.63 -30.1

do not control the split of variables at any instant. For all
datasets, we standardize our variables with zero mean and
a variance of ten (which yields better convergence for all
methods). We perform 10 trials for each dataset and report
the TAC error and likelihood in Table 2.

While TIC outperforms the baselines on a majority of the
datasets, we particularly focus on the Naval dataset which
highlights a limitation of the TIC parameterization. We
observe that TIC may not be suitable if all samples have
a low degree of variance. A low degree of variance (as
indicated by the likelihood) results in accurate mean fits,
which implies that small gradients are being backpropagated,
and in turn affecting the TIC parameterization. However,
we argue that datasets with a small degree of variance may
not benefit from heteroscedastic modelling.

5.3. 2D Human Pose Estimation

We introduce experiments on human pose estimation since
the human pose is an organised collection of points and is
naturally suited for correlation analysis (Shukla et al., 2022).
Moreover, popular human pose architectures (Newell et al.,
2016; Sun et al., 2019; Kreiss et al., 2019; 2021; Xu et al.,
2022) are either convolutional or transformer based, pre-
senting a viable challenge to modelling the Taylor Induced
Covariance. This is because TIC assumes vector inputs
x ∈ Rm and predictions ŷ ∈ Rn, whereas popular archi-
tectures rely on input images X ∈ RC×H×W and output
heatmaps Ŷ ∈ R#joints×64×64.

We therefore perform experiments on two architectures: the
Stacked Hourglass (Newell et al., 2016) and ViTPose (Xu

et al., 2022). The Stacked Hourglass is a popular method
which extends the convolutional U-Net (Ronneberger et al.,
2015) architecture to predict heatmaps for human pose es-
timation. ViTPose is a recent state-of-the-art architecture
which extends vision transformers (Dosovitskiy et al., 2021)
to the task of human pose estimation.

For both architectures, we use soft-argmax (Li et al.,
2021b;a) to reduce the heatmap of shape Ŷ ∈ R#joints×64×64

to a vector of shape R#joints∗2. Next, we recursively call
the hourglass module until we obtain a one-dimensional
vector encoding (Shukla, 2022) for the image, which serves
as the input to the covariance estimator. For ViTPose, we
obtain vector embeddings from a simple residual connection
involving a one-dimensional downscaling and upscaling of
the features predicted by the backbone network.

We use popular single person datasets: MPII (Andriluka
et al., 2014) and LSP/LSPET (Johnson & Everingham, 2010;
2011), with the latter emphasizing on poses involving sports.
We perform our analysis by merging the MPII and LSP-
LSPET datasets to increase the number of samples. We train
the pose estimator using the Adam optimizer with a ’Re-
duceLROnPlateau’ learning rate scheduler for 100 epochs
with the learning rate set to 1e-3. We use two augmentations:
Shift+Scale+Rotate and horizontal flip. We refer the reader
to the code for implementation details.

In addition to the likelihood, we continue to use TAC as
our metric since for single person estimation, the scale of
the person is fixed. Hence, TAC is highly correlated with
PCKh/PCK, the preferred metric for multi-person multi-
scale pose estimation. We perform five trials and report
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MSE Diagonal NLL Faithful NLL: TIC MSE Diagonal NLL Faithful NLL: TIC

Figure 6: Human Pose Visualization. We show that the Taylor Induced Covariance (TIC) parameterization results in a more
accurate pose estimation for complex poses. As an example, we visualize the updated prediction for the head conditioned
on observing the ground truth for the remaining joints. We show that TIC accurately predicts the location for the head for
complex poses in comparison to all other methods.

Table 3: Human Pose Results - ViTPose architecture. We report the TAC error for each joint along with the average across
all joints. Additionally, we report the likelihood score for all methods. We show that NLL-TIC outperforms baselines across
all joints and successfully scales to convolutional and transformer based architectures.

Method head neck lsho lelb lwri rsho relb rwri lhip lknee lankl rhip rknee rankl Avg: TAC Avg: LL

MSE 6.14 7.12 7.05 8.60 10.56 6.78 8.33 10.35 7.67 7.90 9.69 7.40 7.82 9.72 8.22 ± 0.05 -973.7 ± 8.6
NLL-Diagonal 14.88 12.33 12.38 12.25 13.87 11.36 11.39 13.54 10.42 11.49 17.84 9.84 11.46 18.28 12.95 ± 1.36 -204.5 ± 177.0
NLL 4.97 5.76 4.86 4.58 6.62 4.48 4.36 6.59 5.97 5.80 7.88 5.78 5.68 7.81 5.80 ± 0.07 -91.61 ± 1.26
β-NLL 12.63 11.22 11.63 12.06 13.95 10.45 11.21 13.63 10.84 11.45 16.23 10.02 11.09 15.97 12.31 ± 0.31 -4.2e3 ± 1.6e3
Faithful 5.25 5.86 4.97 4.68 6.77 4.60 4.45 6.75 6.10 5.98 7.90 5.94 5.82 7.89 5.93 ± 0.03 -91.77 ± 0.11

NLL-TIC 3.97 5.38 4.47 4.29 6.06 4.12 4.08 5.89 5.45 5.24 7.03 5.25 5.09 6.97 5.23 ± 0.03 -80.31 ± 0.39

our results for the ViTPose backbone in Table 3. We report
results on the Stacked Hourglass backbone in the appendix.
Our experiments show that TIC outperforms all baselines,
especially on challenging joints.

6. Conclusion
We improved covariance estimation in deep heteroscedas-
tic regression through two contributions. With the Taylor
Induced Covariance (TIC), we parameterize the predicted
covariance to capture the randomness of the predicted mean
through its gradient and curvature. With the Task Agnostic
Correlations (TAC) metric, we have proposed a novel metric
for covariance evaluation by leveraging conditioning of the
normal distribution to quantify the accuracy of learnt cor-
relations. Our extensive experiments across multiple tasks

have shown that, not only does TIC outperform the state
of the art in learning the covariance, it also facilitates an
improved convergence of the negative log-likelihood.
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A. Additional Visualizations

MSE Diagonal NLL Faithful NLL: TIC MSE Diagonal NLL Faithful NLL: TIC

Figure 7: We show additional visualizations to highlight the updated prediction for the head conditioned on observing the
ground truth for the remaining joints. TIC accurately updates the location for the head based on successfully learning the
correlations underlying the joints.
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B. Human Pose Estimation - Hourglass

Table 4: Human Pose Results - Stacked Hourglass architecture. We report the TAC error for each joint along with the
average across all joints. Additionally, we report the likelihood score for all methods. We show that NLL-TIC outperforms
baselines across all joints and successfully scales to convolutional and transformer based architectures.

Method head neck lsho lelb lwri rsho relb rwri lhip lknee lankl rhip rknee rankl Avg: TAC Avg: LL
MSE 5.53 7.88 7.31 8.73 10.52 7.01 8.41 10.19 8.43 8.53 10.53 8.13 8.37 10.58 8.58 ± 0.21 -1018.6 ± 31.2
NLL-Diagonal 5.36 7.23 6.95 8.17 10.01 6.48 7.79 9.73 8.11 8.30 11.12 7.75 8.17 11.20 8.32 ± 3.19 -96.3 ± 127.2
NLL 4.48 6.81 5.38 5.19 7.13 5.11 4.86 6.89 6.62 6.35 8.45 6.43 6.17 8.40 6.31 ± 0.21 -93.0 ± 1.76
β-NLL 4.63 7.14 6.74 8.23 9.98 6.43 7.92 9.65 8.01 8.13 10.12 7.71 7.93 10.19 8.06 ± 0.17 -97.5 ± 0.25
Faithful 5.13 6.36 5.32 4.94 7.18 4.96 4.72 6.85 6.67 6.29 8.39 6.36 6.22 8.37 6.27 ±0.06 -91.8 ± 0.22

NLL-TIC 3.76 5.98 4.80 4.64 6.34 4.46 4.41 6.12 6.09 5.82 7.59 5.79 5.63 7.55 5.64 ± 0.03 -88.6 ± 0.08
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