
DBFS: Dynamic Bitwidth-Frequency Scaling
for Efficient Software-defined SIMD

Pengbo Yu∗, Flavio Ponzina†, Alexandre Levisse∗, Dwaipayan Biswas‡, Giovanni Ansaloni∗,
David Atienza∗, Francky Catthoor‡

∗EPFL, Lausanne, Switzerland, {pengbo.yu, alexandre.levisse, giovanni.ansaloni, david.atienza}@epfl.ch
†UCSD, La Jolla, USA, fponzina@ucsd.edu

‡IMEC, Leuven, Belgium, {Dwaipayan.Biswas, Francky.Catthoor}@imec.be

Abstract—Machine learning algorithms such as Convolutional
Neural Networks (CNNs) are characterized by high robust-
ness towards quantization, supporting small-bitwidth fixed-point
arithmetic at inference time with little to no degradation in
accuracy. In turn, small-bitwidth arithmetic can avoid using area-
and-energy-hungry combinational multipliers, employing instead
iterative shift-add operations. Crucially, this approach paves the
way for very efficient data-level-parallel computing architectures,
which allow fine-grained control of the operand bitwidths at
run time to realize heterogeneous quantization schemes. For the
first time, we herein analyze a novel scaling opportunity offered
by shift-add architectures, which emerges from the relation
between the bitwidth of operands and their effective critical path
timing at run time. Employing post-layout simulations, we show
that significant operating frequency increases can be achieved
(by as much as 4.13× in our target architecture) at run time,
with respect to the nominal design-time frequency constraint.
Critically, by exploiting the ensuing Dynamic Bitwidth-Frequency
Scaling (DBFS), speedups of up to 73% are achieved in our
experiments when executing quantized CNNs, with respect to an
alternative solution based on a combinational multiplier-adder
that occupies 2.35× more area and requires 51% more energy.

Index Terms—Low power architecture, Edge machine learning,
Software-defined SIMD, Dynamic Bitwidth-Frequency Scaling
(DBFS).

I. INTRODUCTION

With the rising number of edge devices and the rapid growth
of edge Machine Learning (ML), the computing requirement
of ultra-low power platforms has seen a dramatic increase [1].

One practical approach to tackling this challenge is to
optimize ML models via quantization, and then use hardware
accelerators supporting deeply quantized arithmetic. Indeed,
due to their intrinsic robustness, the operands (weights and
activations) of ML algorithms such as Convolutional Neural
Networks (CNNs) can be converted from floating-point to
small-bitwidth fixed-point arithmetic with a negligible impact
on accuracy, down to a handful of bits (e.g., 3-bit, 4-bit) [2]–
[4]. In this scenario, multiply-accumulates (MACs), the key
operation in ML algorithms, can be performed using shifts and
additions instead of conventional combinational multipliers,
resulting in area-and-energy-efficient implementations [3]–[5].
Moreover, shift-add accelerators can perform multiplications

This research was partially supported by EC H2020 FVLLMONTI project
(GA No. 101016776) and by the ACCESS – AI Chip Center for Emerging
Smart Systems, sponsored by InnoHK funding, Hong Kong SAR, and in part
by a joint research grant for ESL-EPFL by IMEC.

between a single scalar value and a vector of multiplicands in
parallel, a form of Single Instruction Multiple Data (SIMD)
processing that can be harnessed for key ML kernels such as
convolutional and fully connected layers.

A particularly interesting embodiment of the shift-add
SIMD paradigm is that of Software-defined SIMD (Soft
SIMD), in which dedicated bit positions (named guardbits) are
employed to partition a word in several subwords, each storing
a binary value [6]–[10]. The benefit of such an approach
is two-fold. First, very little hardware overhead is required
to support SIMD processing. Second, Soft SIMD resource
requirements only marginally scale with the number of sup-
ported SIMD modes (i.e., subword bitwidths). This character-
istic is particularly beneficial when heterogeneous quantization
strategies are employed [10]–[12], in which different bitwidths
are supported in different computation phases, e.g., in each
layer of a CNN.

Against this backdrop, the key observation driving this
paper’s contribution is that the critical path timing of Soft
SIMD architecture at run time is strongly dependent on the
subword bitwidths, with small-bitwidth operations allowing
higher operating frequencies than large-bitwidth ones. Hence,
a new opportunity emerges, namely of adjusting the operating
frequency in dependence on the operand bitwidths at run
time. Herein, for the first time, the effectiveness of this
strategy, which we name Dynamic Bitwidth-Frequency Scaling
(DBFS), is explored.

To this end, we apply the proposed DBFS method on a
Soft SIMD hardware [10] that supports multiple operand sizes.
The variation in critical path timing across different operand
bitwidths is leveraged to set appropriate operating frequencies
accordingly. We showcase that DBFS can effectively enhance
its execution time efficiency while preserving energy effi-
ciency. Indeed, post-layout (28nm, 0.9V) simulation shows
that DBFS can achieve a maximum increase in the operating
frequency of ×4.13 (for 3-bit operands) with respect to the
nominal value imposed as a design constraint, which considers
the entire SIMD word instead of individual subwords. Cru-
cially, this benefit is achieved without negatively increasing
operating voltage or modifying hardware, thus not impacting
energy efficiency. When employed to execute inference on
a collection of heterogeneously quantized CNN benchmarks,
DBFS-based Soft SIMD simultaneous leads to a reduction of

up to 51% in energy cost and 73% in execution time compared
to a typical multiplier-adder implementation that lacks DBFS
support.

The key contributions of this work are as follows :
• We investigate the scaling between operand bitwidth and

operating frequency of fixed-point quantization operand,
and we propose DBFS as a method to fully leverage the
benefits of quantization.

• We demonstrate that DBFS can achieve up to 4.13×
higher operating frequency for small-bitwidth operand
than the nominal value set at design time, without in-
creasing voltage or energy consumption. It enhances ex-
ecution time efficiency and throughput of shift-add-based
architecture while maintaining high energy efficiency.

• Through post-layout simulations, we showcase that em-
ploying DBFS can decrease by up to 51% in energy
consumption and 73% in execution time when performing
inference on heterogeneously quantized CNNs.

II. BACKGROUND AND RELATED WORKS

A. Frequency-based Energy Optimization

A straightforward approach to optimize energy costs with
operating frequency is Dynamic Voltage Frequency Scaling
(DVFS) [13]. DVFS has a programmable clock generator and
an adjustable voltage generator, and it dynamically lowers
the operating voltage and clock frequency based on specific
workloads and hardware performance. Due to the concurrent
reduction of both frequency and voltage, although the exe-
cution time rises, the overall energy cost is reduced. Thermal
throttling employs similar methods to DVFS, like reducing the
operating frequency and voltage, but it is passively triggered
to ensure the processor temperature stays within acceptable
ranges [14] [15]. Our DBFS approach also manipulates the
clock frequency, but in conjunction with the operand bitwidths
instead of the voltage supply. By doing so, and as opposed to
DVFS, DBFS can operate at higher-than-nominal frequencies
and does not require a tunable voltage supply.

A further related strategy is Dynamic Duty Cycle Modu-
lation (DDCM) [16], which selectively enables/disables the
clock as required by applications. Similarly to DBFS, DDCM
does not require voltage adjustments. However, it operates
at a higher granularity, adjusting the number of clock cycles
instead of the operating clock periods. As with DVFS, DDCM
cannot exceed the nominal operating frequency.

Finally, dynamic clock adjustment [17] [18] is a tun-
able clocking strategy that targets general-purpose processor
pipelines. It analyzes the timing of different instructions being
executed on a processor pipeline stages, and dynamically
sets the operating frequency accordingly. Our proposed DBFS
focuses instead on the timing differences resulting from the
operand bitwidths of arithmetic operations. Our stance has a
much higher leeway for optimization: the authors of [17] report
clock frequency boost of up to 38% (28nm, from 494MHz
to 680MHz in their design), while DBFS achieves speedups
of 313% (28nm, from 200MHz to 826MHz) when reducing
operand bitwidths down to 3-bit.

+ 0 1 1 0 0

0 1 1 0

0 1 0 1 0
0 1 1 1+

0 0 0 0
(0.75)

0 1 1 1 (0.875)
(0.875)0 1 1 1

0 0 0 0

0 1 1 1

0 1 1 1

×

0 0 1 1 1
+

+ (>>1)

(>>1)

(>>1)

Q1.3Multiplier

0 0 0 0

0 1 1 0

0 1 1 1
1 1 1 1 0 0 1 (>>3)+ 0 1 1 1

-

(0.75)

0 1 1 1 (0.875)
1 0 0 -× (1-0.125 = 0.875)

CSD Multiplier
Multiplicand

(Q1.3)

Partial product
accumulation

(a) (b)
Fig. 1. Example of shift-add-based multiplication. The multiplicand is Q1.3
format, and the multiplier is (a) Q1.3, (b) Q1.3 + canonical signed digit (CSD)
encoding. The multiplication result is also in Q1.3 format.

Mask

Operand A

Operand B

Carry

+/-

11101110

a0a1a2a2a4a6a6

c0c1c20/1c4c5c60/1 0/1

b0b1b2b2b4b5b6b6

Sum

Guardbits setting
+ -

Operand D
a0a1a2a3a4a5a6a7

Operand D>>1
a1a2a3a3a5a6a7a7

Mask

a5

(a) Addition or Subtraction (b) Arithmetic Shift

s0s1s2s3s4s5s6s7 s3/7 MSB Check

b2/6=0

a2/6=0

b2/6=1

a2/6=1
11101110

Fig. 2. Soft SIMD operations: (a) addition or subtraction and (b) arithmetic
shift. Soft SIMD can adapt to arbitrary SIMD size through control signals
(mask) at run time, providing more data-level parallelism. It assigns guardbits
as either ’0’ or ’1’ for addition or subtraction operations to guarantee correct
carry propagation.

B. Shift-add-based Edge Accelerator

DBFS is experimented on Soft SIMD pipelines, as re-
ported in Section III-A, which perform MACs in fixed-point
arithmetic serially using shifts and additions. The shift-add-
based multiplication is presented in Figure 1(a). Notice that,
when employing 1 bit for the integer part and X bits for
the fractional part (commonly indicated as Q1.X notation,
and ranges in (-1,1)), the multiplication result is guaranteed
not to overflow. Moreover, the result of an N-bit × M-
bit multiplication can be stored in N bits by truncating the
less significant bits (LSBs). In more detail, it begins from
the LSB of the multiplier, accumulating partial products for
each multiplier bit, then shifting the accumulator right by 1-
bit iteratively until the multiplication result is achieved. In
the naive implementation in Figure 1(a), on average, such a
process requires N shift-adds for N-bit multiplier operand.
Nonetheless, this number is averagely reduced to N/3 by
allowing multiple bit-shift when processing bit fields with
trailing zeros (e.g., ”100”), and by adopting Canonical Signed
Digit (CSD) [19] to encode the multiplier operand [10]. CSD
encoding comprises three symbols (positive: ‘1’, zero: ‘0’, and
negative: ‘-’) for each bit and maximizes the likelihood of ‘0’
bits. This optimized implementation is shown in Figure 1(b).

C. Shift-add Topology with Soft SIMD

Soft SIMD supports data-level-parallel signed arithmetic
among operands stored in subwords, implementing addi-
tion/subtraction and shift, which are then chained to realize
more complex ones such as multiplications, dot-products, and
convolutions [6]–[10].

The boundary between subwords is dictated by guardbits,
determined at run time by a mask. For N-bit fixed-point
addition/subtraction, the information representation of the

Stage 1

>>

Stage 2

Data
Pack
Unit

+
Arithmetic

UnitR
ea

d
W

rit
e

3 244 6 8 12 16
3
4
6
8

12
16
24

In
pu

t B
itw

id
th

Output Bitwidth

In
pu

t:8
-b

it×
6

su
bw

or
ds

O
ut

pu
t:

12
-b

it×
4

su
bw

or
ds

Su
pp

or
te

d
R

ep
ac

k
M

od
esAdder Topology

Carry Ripple Adder

Ai Bi

Sumi

Cini

Ai+1Bi+1

Sumi+1

Cini+1Cini+2

Couti-1CoutiCouti+1

Reg

Reg

Reg

Reg

Full
Adder

Full
Adder

Fig. 3. The computing microarchitecture overview. It consists of an Arithmetic
Unit (AU) and a Data Pack Unit (DPU). AU consists of a shifter and an adder,
which implements signed Soft SIMD shifts and additions/subtractions, by
controlling the guardbits of the operands. DPU converts the operand bitwidth
to a larger/equal/smaller size.

operands is confined to N-1 bits to prevent result overflow,
allowing the Nth bit to be used as a guardbit temporarily
during computation. During addition, the guardbit positions
of the operands are both set to ‘0’, as shown in Figure 2(a).
Conversely, for subtraction, guardbits of operands are set to
‘1’, so that the carry-in of the next subword is equal to ‘1’
to implement 2’s complement arithmetic properly (A-B = A +
B̄ + 1). Shift operations are also conditioned by guardbits,
ensuring that sign extensions occur in guardbit positions,
while regular shifts are performed for non-guardbit positions,
as shown in Figure 2(b). In this way, independence among
subwords can be enforced, particularly ensuring that overflows
cannot propagate from one subword to neighboring ones.

III. DBFS ON THE ARITHMETIC MICROARCHITECTURE

A. Microarchitecture Overview

As a target for our DBFS methodology, we consider a Soft
SIMD pipelines similar to the one in [10], whose block scheme
is presented in Figure 3. It comprises two stages, with the first
stage being the Arithmetic Unit (AU) and the second stage
being the Data Pack Unit (DPU). Four registers are used for
data reuse and localization through feedback datapath loops.

The AU consists of a shifter and an adder, and it supports
Soft SIMD operations as illustrated in Figure 2. The adder is
based on a carry ripple topology. The shifter has a logarithmic
topology and supports a maximum of 7-bit right shifts.

The DPU can repack data to smaller, equal or larger
subwords by employing multiplexers. Notably, its structure
presents a shallow critical path, which is not dependent on
the subword bitwidths. Nonetheless, it does not represent a
bottleneck for DBFS, even when very small bitwidths are
considered. In our target applications, the DPU is employed
during the accumulations, where it dynamically increases the

Stage 1 (AU)

Stage 2 (DPU)

Delay-bitwidth
independent Delay-bitwidth dependent

Critical path

Multiplexers OutputInput

+ + + +…Input
Shifter CL

Output

Input

tconstant + t1-bit adder × Operand bitwidth Timing Margin

+ + …Shifter CL
Output

Fig. 4. Delay analysis of the two stages in the arithmetic microarchitecture.

subword bitwidths, ensuring that the accumulation result never
overflows. In this work, we consider repacking between 12
Soft SIMD modes as shown in Figure 3.
B. DBFS Implementation

The adder in the AU pipeline stage is the focus of our
DBFS strategy. It employs a carry ripple topology. Such choice
minimizes area requirements, while at the same time allowing
to place the critical path only along the carry propagation
chain. In turn, since the carry chain does not propagate across
subword boundaries at run time, a carry ripple implementation
takes full advantage of DBFS, ultimately allowing the Soft
SIMD pipeline to achieve higher performance than a combina-
torial alternative performing multiplications in a single cycle.

DBFS relies on the difference between the nominal design-
time critical path and the actual run-time critical path, where
the former depends on the datapath width (WDP) and the latter
on the subword width (WSubW). The design-time critical path
of the AU in Soft SIMD pipeline is expressed as follows:

tShifter + tCL +WDP × t1−bit−adder (1)
Where tCL refers to the delay of peripheral combinational
logic, such as the multiplexers routing the AU inputs/outputs.

As illustrated in Figure 4, the timing path delays at run time
can be classified as operand-bitwidth-dependent and operand-
bitwidth-independent. The delay of the shifter and peripheral
combinational logic is almost constant with different operand
bitwidths, while the delay of the adder rises with the increase
of operand bitwidth. Thus, the run-time critical timing path is
redefined as :

tconstant +WSubW × t1−bit−adder (2)
Hence, if the operating clock frequency is determined by

design-time consideration alone, a large amount of timing
margin is not exploited. DBFS instead exploits run-time infor-
mation to determine operating frequency and increase perfor-
mance. Also, given that the hardware remains unchanged, the
total energy consumption stays constant despite the increased
operating frequency, thereby preserving energy efficiency.
Thus, this approach does not involve a conventional energy-
delay trade-off.

We show in Section V-B that, as the operand bitwidth
decreases, the increase in operating frequency facilitated by
DBFS becomes more significant. In turn, very small bitwidth
operands (down to 3-bit, 4-bit) are very commonly employed
in deeply quantized ML models such as CNNs for edge infer-
ence, where they have shown to incur in very small accuracy
degradation with respect to floating-point equivalents [12].

Frequency

Po
w

er

nominal
frequency

Frequency

En
er

gy

nominal
frequency

(a) (b)

DBFS Increase nominal frequency DVFS
Fig. 5. The trend of (a) power and (b) energy cost versus operating frequency
of our proposed DBFS method and other approaches.

Figure 5 qualitatively illustrates the power and energy trends
with respect to frequency of our proposed DBFS method
and state of the art alternatives, namely DVFS and varying
the timing constraint at design time. As the design-time
timing constraint rises, the corresponding power increases
super-linearly, increasing energy consumption. DBFS instead
enables high operating frequency on hardware designed with a
lower timing constraint through scaling between bitwidth and
frequency. This strategy leads to approximately linear growth
in power value, while energy consumption remains essentially
unchanged. Moreover, traditional DVFS can only operate at
frequencies lower than the designed frequency, by decreasing
both the operating frequency and voltage. Note that nothing
prevents DBFS and DVFS to be applied concurrently. We
reserve the exploration of the joint DBFS/DVFS design space
as future work.

IV. EXPERIMENTAL SETUP

A. Microarchitecture Parameters

As a test vehicle for our experiments, we consider a Soft
SIMD pipeline microarchitecture as described in Section III-A,
having a datapath width of 48 bits and supporting subwords of
[3, 4, 6, 8, 12, 16, 24] bits. The DPU in the pipeline second
stage supports conversions between adjacent subword sizes.
Synthesis and place and route are performed considering a
28nm CMOS technology library characterized at 0.9V and
adopting a 200MHz design-time frequency constraint.

B. Baselines

As a first baseline, termed ”Hard SIMD” in the following,
we implemented a state-of-the-art SIMD-based combinational
multiplier and adder [20], which can support 8, 16, and 24
bits of multiplication or addition operations in each cycle. We
assume this baseline has the same microarchitecture topology
as our adopted one and supports data conversion of 8 to
16, 16 to 8, 16 to 24, and 24 to 16 bits. As detailed in
Section V-A, while having less flexibility in terms of supported
SIMD modes, this implementation requires 2.35× more area,
as combinatorial multipliers are area-hungry.

The second baseline only differs from our implementation
by waiving the support from DBFS. That is, it has the same
microarchitecture as described in Section III-A, but operates
at the frequency dictated by its design-time critical path,
irrespective of the subword size.

0
2
4
6
8

10
12
14
16

Bi
tw

id
th

/ b
it

Activation bitwidth Weight bitwidth

LeNet-5 VGG16 ResNet20
LayersLayersLayers

Fig. 6. Heterogeneous quantization of CNN benchmarks.

𝑎𝑎𝑖𝑖 × 𝑤𝑤𝑖𝑖

�
𝑖𝑖=0

𝑛𝑛−1

𝑎𝑎𝑖𝑖 × 𝑤𝑤𝑖𝑖

N-bit M-bit

Bitwidth increase Frequency decline

f1N-bit

(N+log2n)-bit
fx < fx-1

……

(N+1)-bit

……

f2 < f1

(N+log2n)-bit

Fig. 7. Mapping example of dot product operations with DBFS.

*

×

×

×

M-bit Weight

×

N-bit Activations

+

……………
……………
……………

……………

+

....…………….............
+
…

N
-b

it
m

ul
t.

re
su

lts

A
cc

um
ul

at
io

n

Overflow management DBFS

N-bit
Multiplication Accumulation

(N+ log2filter size)-bit……………

Fr
eq

ue
nc

y
de

cl
in

e

B
itw

id
th

in
cr

ea
se

Fig. 8. Mapping strategy of convolution layers with DBFS.

C. Benchmark CNNs

To assess the benefit of DBFS from an application perspec-
tive, we targeted a collection of edge CNN models comprising
LeNet-5 [21], VGG16 [22] and ResNet20 [23]. These were
heterogeneously quantized, adopting more aggressive quanti-
zations for the layers showing a higher degree of robustness,
according to the quantization-aware training methodology pre-
sented in [11]. The resulting implementations, described in
Figure 6, employ representations of weights and activations
ranging from 3 to 16 bits. They exhibit less than 1% accuracy
degradation on the employed dataset (CIFAR-10 dataset [24]
in the case of LeNet-5, CIFAR-100 dataset [24] for VGG16
and ResNet20), with respect to floating-point equivalents.

D. Mapping CNN Layers with DBFS

The dominating computational pattern of ML applications

like CNNs is the dot-product:
n−1∑
i=0

aiwi, in which multiple

MACs are executed in sequence, since convolutions and fully
connected layers can be expressed in terms of this pattern.
Figure 7 exemplifies how the execution of dot products is
optimized with DBFS. Assuming that the ai and wi operands

552.3
584.1
735.9

0.0
500.0

1000.0
1500.0
2000.0

Area / μm2

Others(registers,etc.)
Stage 2(DPU)
Stage 1(AU)

Stage 2 (DPU)

Registers

Registers

Stage 1 (AU)

Fig. 9. Layout of adopted microarchitecture

are encoded in N and M bits, respectively, by using the shift-
add-based multiplication depicted in Figure 1, the result of
aiwi is also N-bit. During accumulation, the bitwidth size
of the results increases logarithmically with the number of
accumulated values n, requiring the second stage (DPU) to
dynamically repack the operands to a larger size to pre-
vent overflows. During dynamic adjustment of the operand
bitwidth, the corresponding operating frequency must be ad-
justed accordingly. Hence, at run time two phases can be
identified: (i) during the multiplication phase, the frequency
and bitwidth are constant, (ii) while in the accumulation phase,
the bitwidth must increase while the frequency decreases.

The experiments in Section V-D consider the mapping of
all convolutional and fully connected layers of each CNN
on the DBFS microarchitecture and on the baselines. As for
convolutional layers, mapping is performed as in Figure 8.
First, the im2col transformation [25] is used to reshape the
convolution as a sequence of dot-products. Then these are
performed for different input activations in parallel (on dif-
ferent subwords), accumulating along filter weights. A similar
strategy is employed for fully connected layers, skipping the
im2col transformation as their mathematical expression is
already in terms of dot-products. Note that the multiplication
phase occupies a larger share of the execution time with
respect to the accumulation phase.

V. RESULTS

A. Hardware Implementation

The layout of the Soft SIMD datapath, presented in Figure 9,
occupies 1872.3 µm2 in the target technology. On the contrary,
the Hard SIMD baseline requires 2.35× times larger area,
which takes 4407.9 µm2 after place and route, even if less
subword bitwidths are supported. In more detail, the largest
portion of area in our implementation is taken up by registers,
along with other peripheral logic gates, comprising 39.3% of
the total area. In contrast, in the case of Hard SIMD, the
multiplier alone occupies 78.4% of the area.

B. Frequency Adaptive Performance

Figure 10(a) illustrates the maximum delay of the first stage
(AU) and the second stage (DPU) versus different operand
sizes in the applied microarchitecture. As analyzed in Sec-
tion III-B, the maximum delay of the second stage is almost
constant, and it can be easily adjusted to always be smaller
than the first stage without extra hardware cost. Regarding
the maximum delay of the first stage, it grows almost linearly
with the operand bitwidth. We observe a tiny difference in
the delay of each bit of the carry ripple adder, resulting

(a) (b)

326
415

490

595

680

787
826

0
100
200
300
400
500
600
700
800
900

3 6 9 12 15 18 21 24

Fr
eq

ue
nc

y
/ M

H
z

Operand Bitwidth / bit

0

0.5

1

1.5

2

2.5

3

3.5

3 6 9 12 15 18 21 24

D
el

ay
 /

ns

Operand Bitwidth / bit

Stage 1 (AU) Maxmium Delay
Stage 2 (DPU) Maxmium Delay

Fig. 10. (a) The maximum delay of stage 1 and stage 2 versus operand
bitwidth. (b) The maximum operating frequency versus operand bitwidth.

16-bit ×16-bit

24-bit ×24-bit

8-bit ×8-bit

0.00
0.50
1.00
1.50
2.00
2.50
3.00
3.50

3 4 5 6 7 8 9 10 11 12 13 14 15 16

Pe
r

su
bw

or
d

en
er

gy
 /

pJ

Multiplier bitwidth / bit

0.25

1.00

4.00

16.00

64.00

3 4 5 6 7 8 9 10 11 12 13 14 15 16

T
hr

ou
gh

tp
ut

Multiplier bitwidth / bit

(a)

(b)

Soft SIMD + DBFS

8-bit ×(3~16)-bit

12-bit ×(3~16)-bit

16-bit ×(3~16)-bit

24-bit ×(3~16)-bit

4-bit ×(3~16)-bit

6-bit ×(3~16)-bit

3-bit ×(3~16)-bit

Hard SIMD Multiplier

Fig. 11. (a) Average multiplication energy cost per subword, and (b)
multiplication throughput. The energy is based on post-layout simulation. The
throughput is defined as the number of multiplications completed within 1
design clock period (5ns).

in a slightly higher than expected critical path for the 3-bit
configuration. Figure 10(b) illustrates the maximum operating
frequency corresponding to different operand bitwidths when
utilizing DBFS. For instance, for 3-bit operands, the operating
frequency can be raised to 826MHz, ×4.13 times the nominal
frequency corresponding to the design synthesis/place-and-
route timing constraint. Thus, DBFS fully harnesses the timing
margin resulting from the decreased operand size thanks to
quantization. Performance gains can be harnessed even for
larger bitwidth settings: in the case of 24-bits subwords, a run-
time frequency of 326MHz can be achieved for a design-time
timing constraint of 200MHz. Additionally, in more advanced
wire-dominated technology nodes [26], the timing margin
and corresponding DBFS range resulting from differences in
operand bitwidths will be more significant, and we reserve this
as a topic for future exploration.
C. Multiplications performance

Before analyzing entire applications, we herein compar-
atively evaluate the energy and throughput of Soft SIMD
+ DBFS when performing multiplications, as a) this is the
most critical operation in ML algorithms and b) a shift-add-
based implementation could be at a disadvantage with respect
to a combinatorial solution for throughput. The results are
generated from post-layout random multiplication simulations.

(a) (b)

0.77 0.73

0.46

0.72 0.72

0.49

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

LeNet5 VGG16 ResNet20

N
or

m
al

iz
ed

 e
ne

rg
y

co
st

1.59

1.37

0.85
0.74

0.46
0.27

0.00
0.20
0.40
0.60
0.80
1.00
1.20
1.40
1.60
1.80

LeNet5 VGG16 ResNet20

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

Hard SIMD Multiplier-adder Soft SIMD without DBFS Soft SIMD with DBFS

-53.5%

-66.4%
-68.2%

Fig. 12. When running heterogeneously quantized CNNs, (a) the normalized
energy cost and (b) the normalized execution time of our adopted design
with/without DBFS and the baseline.

As shown in Figure 11(a), an energy analysis clearly favors
Soft SIMD with DBFS. For example, our design only require
19.6% of the energy of the Hard SIMD baseline to perform a
4-bit × 4-bit multiplication. The energy gain increases as the
multiplicand or/and multiplier size decreases, highlighting the
benefit of our approach for deeply quantized ML algorithms.

Results in Figure 11(b) further show that, counterintuitively,
the increased flexibility of Soft SIMD combined with DBFS
achieves instead comparable, and often better, performance in
throughput than 1-cycle Hard SIMD multiplier that can not
support DBFS due to much longer and more complex critical
path. This is particularly evident for smaller multiplicand
bitwidths (3, 4, 6, 8 bits) or/and small-size multipliers (<8
bits). On the other hand, Hard SIMD performs better for the
24-bit multiplicand case, but such large bitwidths are very
rarely required in CNNs, as they are employed only at the
very last accumulation operations and only in large layers.

D. CNNs Performance

Figure 12 shows the normalized energy cost and execution
time per inference on the considered benchmarks of the Soft
SIMD microarchitecture, with and without DBFS, normalized
to the Hard SIMD baseline. Regarding energy consumption,
Soft SIMD behaves similarly either when utilizing DBFS or
not, achieving a reduction ranging from 23% to 54%, mainly
because it does not require an energy-hungry combinational
multiplier and offers highly flexible data-level parallelism.

On the contrary, in terms of execution time, DBFS is a clear
differentiator. Indeed, Soft SIMD without frequency scaling
may incur in slowdowns of up to 59% with respect to Hard
SIMD. However, if DBFS is employed, the adopted design
achieves speedups ranging from 26% to 73%, which tend to
increase for deeper CNNs such as ResNet20, as these are more
robust towards quantization.

VI. CONCLUSION

This work has introduced Dynamic Bitwidth-Frequency
Scaling as a novel strategy for optimizing fixed-point and
deeply quantized arithmetic, demonstrating its effectiveness
on benchmark Convolutional Neural Networks. Our approach
exploits the critical path timing margin resulting from quan-
tized operands in shift-add-based architectures, using it to
scale operating frequencies versus operand bitwidths above the
timing constraint defined at design time. We applied DBFS on

a Soft SIMD microarchitecture, which supports highly flexible
data-level parallelism. Experimental results highlight that, for
small-bitwidth operands, DBFS can operate at up to 4.13 times
its design-time frequency constraint. When executing inference
on heterogeneously quantized CNNs, DBFS leads to up to
73% reduction in execution time and 51% reduction in energy
consumption with respect to an equivalent architecture using
a combinatorial multiplier-adder, which also requires 2.35×
more area.

REFERENCES

[1] R. Singh and S. S. Gill, “Edge AI: a survey,” Internet Things Cyber-
Phys. Syst., 2023.

[2] M. van Baalen et al., “FP8 versus INT8 for efficient deep learning
inference,” arXiv:2303.17951, 2023.

[3] F. Ponzina et al., “A flexible in-memory computing architecture for
heterogeneously quantized CNNs,” in ISVLSI, 2021.

[4] M. Rios et al., “Bit-Line Computing for CNN Accelerators Co-Design
in Edge AI Inference,” IEEE Trans. Emerging Top. Comput., 2023.

[5] L.-C. Hsu et al., “Essa: An energy-aware bit-serial streaming deep
convolutional neural network accelerator,” J. Syst. Archit., 2020.

[6] S. Kraemer et al., “SoftSIMD-Exploiting Subword Parallelism Using
Source Code Transformations,” in DATE, 2007.

[7] F. Catthoor et al., Ultra-low energy domain-specific instruction-set
processors. Springer, 2010.

[8] G. Psychou et al., “Sub-word handling in data-parallel mapping,” in
ARCS, 2012.

[9] R. Fasthuber et al., “Energy-efficient communication processors,”
Springer, 2013.

[10] P. Yu et al., “An Energy Efficient Soft SIMD Microarchitecture and Its
Application on Quantized CNNs,” IEEE Trans. Very Large Scale Integr.
(VLSI) Syst., 2024.

[11] F. Ponzina et al., “Overflow-free compute memories for edge AI
acceleration,” ACM Trans. Embedded Comput. Syst., 2023.

[12] R. Goyal et al., “Fixed-point quantization of convolutional neu-
ral networks for quantized inference on embedded platforms,”
arXiv:2102.02147, 2021.

[13] S. K. Panda et al., “Energy-efficient computation offloading with DVFS
using deep reinforcement learning for time-critical IoT applications in
edge computing,” IEEE Internet Things J., 2022.

[14] R. Rao and S. Vrudhula, “Performance optimal processor throttling
under thermal constraints,” in CASES, 2007.

[15] M. Bao et al., “On-line thermal aware dynamic voltage scaling for
energy optimization with frequency/temperature dependency consider-
ation,” in DAC, 2009.

[16] Bhalachandra et al., “Using dynamic duty cycle modulation to improve
energy efficiency in high performance computing,” in IEEE IPDPS
Workshop, 2015.

[17] J. Constantin et al., “Exploiting dynamic timing margins in micropro-
cessors for frequency-over-scaling with instruction-based clock adjust-
ment,” in DATE, 2015.

[18] ——, “DynOR: A 32-bit microprocessor in 28 nm FD-SOI with cycle-
by-cycle dynamic clock adjustment,” in ESSCIRC, 2016.

[19] A. Avizienis, “Signed-digit numbe representations for fast parallel
arithmetic,” IRE Trans. Electron. Comput., 1961.

[20] Arm, “NEON™ Version: 1.0 Programmer’s Guide,” 2013.
[21] Y. LeCun et al., “Gradient-based learning applied to document recogni-

tion,” Proc. IEEE, 1998.
[22] K. Simonyan and A. Zisserman, “Very deep convolutional networks for

large-scale image recognition,” arXiv:1409.1556, 2014.
[23] K. He et al., “Deep residual learning for image recognition,” in

IEEE/CVF CVPR, 2016.
[24] A. Krizhevsky et al., “Learning multiple layers of features from tiny

images,” 2009.
[25] K. Chellapilla et al., “High performance convolutional neural networks

for document processing,” in IWFHR, 2006.
[26] V. Huang et al., “From interconnect materials and processes to chip level

performance: Modeling and design for conventional and exploratory
concepts,” in IEEE IEDM, 2020.

