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subclinical TB cases

Yves Tschan,1,2 Mohamed Sasamalo,3 Hellen Hiza,1,2,3 Jacques Fellay,4,5,6 Sébastien Gagneux,1,2 Klaus Reither,1,2 Jerry Hella,3 Damien 
Portevin1,2

AUTHOR AFFILIATIONS See affiliation list on p. 9.

ABSTRACT Tuberculosis (TB) caused by Mycobacterium tuberculosis (Mtb) remains one 
of the deadliest infectious diseases globally. Timely diagnosis is a key step in the 
management of TB patients and in the prevention of further transmission events. 
Current diagnostic tools are limited in these regards. There is an urgent need for new 
accurate non-sputum-based diagnostic tools for the detection of symptomatic as well 
as subclinical TB. In this study, we recruited 52 symptomatic TB patients (sputum Xpert 
MTB/RIF positive) and 58 household contacts to assess the accuracy of a sequence-spe­
cific hybridization assay that detects the presence of Mtb cell-free DNA in urine. Using 
sputum Xpert MTB/RIF as a reference test, the magnetic bead-capture assay could 
discriminate active TB from healthy household contacts with an overall sensitivity of 
72.1% [confidence interval (CI) 0.59–0.86] and specificity of 95.5% (CI 0.90–1.02) with a 
positive predictive value of 93.9% and negative predictive value of 78.2%. The detection 
of Mtb-specific DNA in urine suggested four asymptomatic TB infection cases that were 
confirmed in all instances either by concomitant Xpert MTB/RIF sputum testing or by 
follow-up investigation raising the specificity of the index test to 100%. We conclude that 
sequence-specific hybridization assays on urine specimens hold promise as non-invasive 
tests for the detection of subclinical TB.

IMPORTANCE There is an urgent need for a non-sputum-based diagnostic tool allowing 
sensitive and specific detection of all forms of tuberculosis (TB) infections. In that 
context, we performed a case-control study to assess the accuracy of a molecular 
detection method enabling the identification of cell-free DNA from Mycobacterium 
tuberculosis that is shed in the urine of tuberculosis patients. We present accuracy data 
that would fulfill the target product profile for a non-sputum test. In addition, recent 
epidemiological data suggested that up to 50% of individuals secreting live bacilli do not 
present with symptoms at the time of screening. We report, here, that the investigated 
index test could also detect instances of asymptomatic TB infections among household 
contacts.

KEYWORDS tuberculosis, diagnosis, non-sputum, urine, cell-free DNA

W ith the exception of the severe acute respiratory syndrome coronavirus 2 
pandemic, tuberculosis (TB) has remained the deadliest human disease caused 

by a single infectious agent worldwide for decades (1). In 2015, the World Health 
Organization (WHO) “End TB strategy” aimed to halve TB incidence by 2025 (1, 2). 
With an 8.8% reduction at the end of 2022, it is evident that more substantial invest­
ments into the development of new diagnostics, treatments, and vaccines are needed 
to better control TB (3). TB is transmitted via aerosols containing live Mycobacterium 
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tuberculosis (Mtb). In the past, only symptomatic cases were thought to contribute to the 
spread of TB. However, active case finding suggests that up to 50% of individuals 
excreting Mtb are asymptomatic (4, 5). As a consequence, such individuals could also 
contribute to TB transmission through mere tidal breathing and without the need for 
coughing (6, 7). Actually, the treatment of cases identified through repeated commun­
ity-wide screening had a greater impact than passive case findings on the prevalence 
of pulmonary tuberculosis at the end of the intervention (8). Thus, there is an urgent 
need to include the diagnosis and management of asymptomatic TB cases in routine TB 
control strategies.

Among current diagnostic tools for active TB, sputum-smear microscopy lacks 
sensitivity and requires further molecular or culture-based testing for confirmation. Mtb 
culture remains the gold standard for TB detection, but time to culture positivity requires 
several weeks, making it suboptimal for rapid detection and control of TB (9, 10). In 2011, 
the Xpert MTB/RIF (Xpert; Cepheid, Sunnyvale, CA, USA), a nucleic acid amplification 
test, was endorsed by the WHO as a new diagnostic tool for pulmonary and extrapulmo­
nary TB (EPTB) (11). In 2015 and 2016, the urine-based lateral-flow lipoarabinomannan 
(LAM) and the sputum-based loop-mediated isothermal amplification TB assays were 
approved by WHO, respectively, as alternatives to sputum-smear microscopy for the 
detection of pulmonary TB (12, 13). The sensitivity of LAM-based diagnostics in urine is 
inversely proportional to the patients’ CD4 cell counts and is solely recommended for 
advanced HIV-infected individuals with low CD4 counts (14–16). Compared to sputum 
microscopy, Xpert MTB/RIF has excellent specificity and increased sensitivity and thus 
has been progressively replacing sputum microscopy as a first-line rapid diagnostic tool 
(11). However, particular patient populations, namely infants and immunocompromised 
individuals, are often unable to produce sputum and/or harbor paucibacillary infections. 
In addition, sputum analysis in itself becomes irrelevant in instances of EPTB. Conse­
quently, in 2014, the WHO established a target product profile (TPP) for the development 
of a non-invasive biomarker and non-sputum-based diagnostic tool that is applicable 
at the community level, affordable, and implementable in resource-limited settings (17). 
In the meantime, a series of non-sputum-based diagnostic tools have been developed 
and recently reviewed (18). With a sensitivity of 93.4% and a specificity of 100%, the 
detection of LAM in exhaled breath condensates has given promising results (19). In 
the area of blood-based biomarkers, we previously demonstrated that starting from a 
single milliliter of blood, T cell activation markers can be used to diagnose TB in adults 
and children with a sensitivity and a specificity close to the optimal TPP targets (20, 21). 
Moreover, a recent meta-analysis showed that blood transcriptional signatures overall 
display moderate sensitivity for the detection of incipient TB (22). Xpert MTB/RIF has 
been reported to detect Mtb-DNA in clinical specimens other than sputum as well as 
in low-volume sputum and other salivary samples (23, 24). Cell-free Mtb-DNA may be 
detected in urine samples (25) independently of HIV infection status (26–28). Com­
pared to blood or breath condensates, urine collection is non-invasive and technically 
non-challenging, and therefore, constitutes a particularly attractive non-sputum-based 
specimen for TB diagnosis. However, urine cell-free DNA fragments are particularly short, 
labile, and diluted, which lowers the sensitivity of methods based on standard DNA 
extraction or PCR protocol design (25–31). A hybridization approach enabling concen­
tration of Mtb-specific (IS6110) transrenal DNA fragments substantially increased the 
sensitivity of Mtb cell-free DNA testing of urine specimens (32, 33). In that context, and 
following the diagnostic accuracy reporting standards (STARD) (34), we assessed the 
accuracy of a sequence-specific hybridization assay that detects the presence of Mtb 
cell-free DNA in urine in a case-control study that included asymptomatic TB cases.
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MATERIALS AND METHODS

Study population

After informed consent, TB patients with a positive sputum Xpert MTB/RIF were recruited 
into the TBDAR cohort study conducted in the Temeke District of Dar es Salaam, 
Tanzania. The institutional review board of the Ifakara Health Institute, the Medical 
Research Coordinating Committee of the National Institute of Medical Research, and 
the Ethikkommission Nordwest- und Zentralschweiz in Switzerland approved the TBDAR 
study protocol related to the present study. The TBDAR cohort study enrolls TB patients 
as well as household contacts (HHCs). Eligibility criteria for HHCs were no previous 
records of a positive TB test or history of TB treatment. Patients and HHCs underwent 
similar clinical examinations and questionnaires and on the same day, sputum and 
urine specimens were collected for further laboratory analysis. In the case of patients, 
specimens were collected prior to the initiation of antibiotic treatment. Anonymized 
clinical data and laboratory tests’ results as well as laboratory report forms were centrally 
stored within the Open Data Kit Central secured server hosted by the Swiss TPH (35). 
Clinical data encompassing participants’ characteristics, symptoms, and Xpert MTB/RIF 
results from sputum were used to stratify participants by disease status and presence of 
symptoms after performing and interpreting the index test.

Reference standard

Xpert MTB/RIF on sputum specimen was used as a reference standard to determine 
sensitivity and specificity of the index test. The Xpert MTB/RIF test was performed at 
the National Tuberculosis and Leprosy Program laboratory. For household contacts, the 
collected sputum specimens were transferred to the TB laboratory of the Ifakara Health 
Institute, Bagamoyo branch and subjected to Xpert MTB/RIF Ultra testing following 
Cepheid’s instructions.

Index test

The index test was adapted from Oreskovic et al. (32). Urine specimens collected in 
parallel with sputum samples were treated within 10 min of collection by transferring 
10 mL into tubes pre-filled with 500 µL 0.5 M EDTA, pH 8.0 (Sigma-Aldrich, St. Louis, USA) 
and 100 µL 1 M Tris-HCl, pH 8 (Thermo Fischer, Waltham, USA) before cooled transport 
(4°C) to the laboratory and stored at −80°C. On the day of analysis, urine specimens 
were randomly sorted in batches and relabeled so that scientists performing the index 
test were blinded from clinical characteristics and laboratory test results. Positive and 
negative template controls (NTCs) were realized using commercially acquired pooled 
urine specimens from healthy individuals (Lee Biosolutions, Maryland Heights, USA) that 
were spiked or not in-house with synthetic positive control (SPC) template. Dynabeads 
MyOne Streptavidin C1 (Thermo Fischer, Waltham, USA) (50 µL per urine sample) were 
washed thrice with an equal volume of high salt wash buffer (1 M NaCl, 10 mM Tris-
HCl pH 8, 0.05% Tween-20) before rotating incubation with 50 µL of magnetic beads 
containing 25 pmol of each capture probe for 15 min at room temperature. Capture 
beads were washed thrice and resuspended in an equal volume of high salt buffer. Urine 
specimens (~10 mL) from patients and household contacts were processed in monopli­
cates while positive controls were carried out in duplicates or triplicates. Urine samples 
were thawed and centrifuged for 10 min at 4,347 × g and supernatants transferred into 
15 mL tubes before adding 50 µL of capture beads. Specimens were incubated at 120°C 
for 15 min in a dry bath and place under rotation at room temperature for 30 min 
before centrifugation for 10 min at 4,347 × g. Supernatants were discarded and beads 
transferred within left-over fluid into 1.5 mL DNase-free tubes and dried after standing 
1 min on a magnetic rack before subsequent washes twice with 1 mL of high salt wash 
buffer and once with 1 mL of low salt wash buffer (15 mM NaCl, 10 mM Tris-HCl pH 
8). Captured DNA targets were eluted after addition of 20 µL of molecular grade NaOH 
20 mM and subsequent neutralization with 3.5 µL of HCl 0.1 M.
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Primers, probes, synthetic positive control, and qPCR protocol

Primers, capture probes, and SPCs were purchased from IDT, Coralville, USA with 
sequences as described previously (36). qPCR reactions were conducted on a CFX96 
Touch Real-Time PCR Detection System (Bio-Rad Laboratories, Hercules, CA, USA) and 
its associated Bio-Rad CFX Maestro Software v5.3. The reaction mix consisted of 5 µL 
DNA template or urine extraction output, 1× HOT FIREPol EvaGreen qPCR Supermix (Solis 
Biodyne OÜ, Tartu, Estonia), and 0.2 µM of forward and reverse primers in a final volume 
of 50 µL topped up with certified nuclease-free water. The qPCR protocol consisted of 
an initial 12-min denaturation step at 95.0°C, followed by 45 amplification cycles of 95°C 
for 30 s, 64°C for 30 s, and 68°C for 1 min. The PCR phase was followed by a melt curve 
analysis from 65°C to 95°C in increments of 0.2°C every 5 s with an initial denaturation 
phase of 95°C for 30 s. Cycle threshold (ct) values were determined by the qPCR software 
at a threshold of 500 RFU.

Statistical methods

Study participants were recruited consecutively aiming for a sample size of n = 100 with 
equal representation of patients and household contacts. Statistical analysis encompass­
ing paired t-test, Wilcoxon test, and linear regression was carried out with GraphPad 
Prism v8.1.2 (GraphPad Software, San Diego, USA). When specified, statistical signifi-
cance was corrected for multiple comparisons using the Holm-Sidak method. Receiver 
operating characteristics (ROC) analysis, including confidence interval calculations and 
plots, was performed using the R package pROC.

RESULTS

Index test yield and cut-off determination

We applied an Mtb-specific DNA capture approach (32) on urine specimens from healthy 
individuals spiked with 101–104 copies of a synthetic positive control and compared 
the resulting qPCR calibration curve to qPCR reaction mixes containing a comparable 
amount of spiked DNA. Linear regression for both calibration curves revealed compa­
rable excellent goodness of fit (R2 > 0.96) (Fig. 1A). The mean ct difference between 
real-time amplification of directly spiked DNA and those from DNA captured and eluted 
through the hybridization procedure was 0.46. This indicates that in average, 72.6% of 
spiked DNA could be recovered from the capture bead assay. Furthermore, negative 
template controls performed on a pool of urine specimens from healthy individuals were 
repeatedly and independently subjected to the index test (n = 7, Fig. 1B). The lower limit 
of the 95% confidence interval (CI) (38.91–43.88) of the cycle threshold values obtained 
for the NTCs was used to establish the cut-off for positivity/negativity determination of 
the index test results at a ct of 38.91. This cut-off, after extrapolation from the linear 
regression model equation, was equivalent to 4.2 copies of target DNA per 10 mL of 
urine (Fig. 1B).

Index test accuracy results

The clinical characteristics of the TB patients and household contacts recruited between 
31 January and 23 November 2022 are summarized in Table 1. All patients had at least 
two symptoms including cough while only six HHCs reported cough, of which one 
also suffered from weight loss, chest pain, and fever. Complying with current standards 
for reporting diagnostic accuracy studies (34), a STARD diagram of the study profile is 
presented in Fig. 2 to list the processed specimen stratified by index test and reference 
standard results. For quality control purposes, positive and negative template controls 
were processed in parallel with patients’ specimens for each run of index test assess­
ment. Out of 112 study participants, urine samples from 110 could be blindly subjected 
to the index test (STARD diagram, Fig. 2). The processed specimens included 52 samples 
from TB patients and 58 samples from HHCs. Results from 22 samples were excluded 
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(13 Xpert MTB/RIF positive TB patients and 9 HHC samples) due to technical errors 
(master mix preparation, n = 10) or experimental caveats (magnetic beads aggregation, 
n = 9 or cell debris carryover, n = 3). Overall, the index test results were completed 
from 39 symptomatic Xpert MTB/RIF positive TB patients and 49 HHCs, of which four 
displayed positive Xpert MTB/RIF test results (Fig. 4A). Index test quantitative results for 
Xpert MTB/RIF positive participants ranged from 0 to 2,999 copies per 10 mL of urine 
(Interquartile range 1.96–375.0; median 28.26) and were significantly enriched in the 
Mtb-specific target DNA compared to Xpert MTB/RIF negative participants (Fig. 3A, P > 
0.0001). At a threshold of 4.83 determined by the Youden’s index, ROC analysis of the 
index test resulted in an area under the curve of 0.86, corresponding to a sensitivity of 

FIG 1 Index test yield and boundaries assessment. (A) Calibration curves resulting from index test results over four dilution series of water templates (black) 

spiked with 101–104 copies of SPC or eluted target DNA from equally spiked urine samples that had been subjected to the hybridization capture protocol 

(orange). The resulting R2 values from a linear regression model are indicated. Target DNA copies = 10(ct − 41.04)/−3.411. (B) Urine specimens from healthy individuals 

were subjected to the index test to determine the lower limit of the 95% CI (38.91–43.88) as the index test cut-off equivalent to 4.2 copies of the target DNA 

sequence.

TABLE 1 Demographics and clinical characteristics of patients and household contacts at the time of 
study enrolment

TB patients (n = 53) Household contacts (n = 59)

Age, median (IQR) 36.2 (26.7–47.3) 36.8 (27–45)
Female, n (%) 13 (24.5) 34 (57.6)
Xpert MTB/RIF positivea, n (%) 53 (100) 5 (8.5)
Symptoms, n (%)
  Cough 53 (100) 6 (10.2)
  Weight loss 43 (81.1) 1 (1.7)
  Chest pain 39 (73.6) 1 (1.7)
  Fever 31 (58.5) 1 (1.7)
  Night sweat 8 (15.1) 0 (0)
Culture, n (%)
  Positive for MTBCb 23 (43.4) 2 (3.4)
  Negative 28 (52.8) 47 (79.7)
  Positive for NTMc ND 7 (11.9)
  Contaminated 2 (3.8) 3 (5.1)
aNo errors or invalid results among negatives, rifampicin resistance detected in one household contact.
bMTBC, Mycobacterium tuberculosis complex.
cNTM, non-tuberculous mycobacteria.
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72.1% (CI 0.59–0.86) at 95.5% specificity (CI 0.90–1.02) with a positive predictive value of 
93.9% and negative predictive value of 78.2% (Fig. 3B).

Concordance of reference and index test among HHCs

We then stratified the diagnostic accuracy analysis of the index test considering the 
presence of TB symptoms in combination with the reference standard test results. The 

FIG 2 STARD diagram reporting flow of participants through the study. One hundred twelve participants were recruited, and cryopreserved urine specimens 

were blindly subjected to the index test (positivity threshold at 4.2 copies of target DNA per 10 mL of urine) and valid assessments stratified by the reference test 

results (sputum Xpert MTB/RIF assay). TP, true positives; FP, false positives; TN, true negatives; FN, false negatives.

FIG 3 Index test results’ agreement with reference standard. (A) Violin plot with overlaying individual values of Mtb-IS6110 DNA copy numbers retrieved from 

urine specimens of sputum Xpert positive and negative study participants (Mann-Whitney two-tailed test). The dashed horizontal line depicts the optimal cut-off 

value (Youden’s index) determined from the ROC analysis presented in (B) receiving operating characteristic curve with 95% CI. The red dot depicts the optimal 

sensitivity and specificity of the diagnostic tool based on the Youden’s index. The orange stars indicate the optimal and minimal targets for the latest target 

product profile definition for a non-sputum TB diagnostic test (17).

Research Article Microbiology Spectrum

Month XXXX  Volume 0  Issue 0 10.1128/spectrum.00426-24 6

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//j

ou
rn

al
s.

as
m

.o
rg

/jo
ur

na
l/s

pe
ct

ru
m

 o
n 

21
 M

ay
 2

02
4 

by
 1

28
.1

78
.1

16
.7

8.

https://doi.org/10.1128/spectrum.00426-24


stratification analysis is presented in Fig. 4A, including NTCs and reference positive 
controls cumulated across seven individual rounds of index test batches. The clinical 
characteristics of the respective household contacts are listed in Table 2. Four household 
contacts generated a positive result following sputum Xpert MTB/RIF testing, of which 
two were concomitantly identified as TB cases by the index test and one by culture. 
One TB instance was identified solely by culture. The index test identified two additional 
individuals that were not detected by the sputum Xpert MTB/RIF test nor by culture. The 
consistency and individuality of the three tests are summarized in Fig. 4B. A follow-up 
investigation revealed that the two asymptomatic HHCs that displayed a positive index 
test in the absence of molecular or culture confirmation later developed active TB that 
was diagnosed at National Tuberculosis and Leprosy Program laboratory by sputum 
Xpert MTB/RIF testing and received treatment (Table 2). Eventually, all “false positive” 
index tests turned out to be true asymptomatic TB infection cases that later required TB 
treatment.

FIG 4 Index test results stratified by disease status and reference standards. (A) Copy numbers of Mtb-IS6110 DNA per 10 mL 

of urine specimen from sputum Gene Xpert MTB/RIF (Xpert) positive or negative participants. Positive controls (PCs, 105 

copies of synthetic DNA target) and negative template controls (NTCs). Sputum GeneXpert MTB/RIF-negatives are depicted 

as triangles or positives as circles. Index test positives are colored in green and negatives in pink. (B) Venn diagram showing 

intersections and exclusivities of positive test results among HHCs for the index test, Xpert test, and culture test (clinical 

characteristics of respective individuals presented in Table 2).

TABLE 2 HHCs with discrepant index test, GeneXpert MTB/RIF (Xpert) test, or culture test (LJ) results: clinical characteristics at enrolment and follow-up visits

TB test

Urine Sputum

HHCs Index Xpert LJ Sex Symptom Follow-up, treatment, and outcome

I + − − M None Completed TB treatment in August 2022
II + − − M None Completed TB treatment in September 2022
III + + − M None Completed TB treatment in September 2022
IV + + − M None Lost on follow-up
V − + − M Cough Completed TB treatment in September 2022
VI − + + F None Completed TB treatment in November 2022, currently complaining of general joint pain
VII − − + F None Initiated TB treatment in February 2023
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DISCUSSION

In a case-control study design, we reported here that a magnetic bead-capture assay 
based on urine specimens could discriminate active TB from sputum Xpert MTB/RIF 
negative household contacts with an overall sensitivity of 72.1% and specificity of 95.5%. 
In addition, we showed that all false-positive index tests had identified subclinical TB 
cases. The likelihood that individuals being asymptomatically infected with Mtb may 
be contributing to the transmission of TB has been neglected in the past but is now 
increasingly gaining attention (5, 6). Available TB detection methods are commonly used 
on symptomatic individuals and optimized for the detection of active pulmonary forms 
of the disease. New TB diagnostic tools that are independent of sputum collection and 
suitable for community-wide screening are urgently needed and should include the 
detection of subclinical forms of TB.

Most diagnostic methods that are already approved or in development are based on 
clinical specimens, for which the collection can be invasive and/or technically challeng­
ing, e.g., sputum, blood, nasal swabs, or breath condensates. Collecting such specimens 
from asymptomatic individuals appears both inconvenient due to the need to visit a 
healthcare facility and/or impossible due to the inability to produce sputum. Although 
blood previously displayed high diagnostic accuracy in our study setting (20, 21), we 
anticipated that fear and inconvenience of giving blood are likely restraining healthy 
individuals from participating in a diagnostic study (37). In contrast, urine constitutes 
a particularly convenient non-invasive sample alternative that can be collected without 
the need for specialized equipment or trained personnel (32). Currently endorsed TB 
diagnostic tools based on urine only detect the presence of LAM, a glycolipid shed 
from the mycobacterial cell envelope. Overall, LAM-based lateral-flow assays displayed 
limited sensitivity, likely due to the dilution effect of the large volume inherent to urine 
specimens (38). In that context, Oreskovic et al. developed a molecular hybridization 
assay to concentrate Mtb-DNA targets from urine providing good accuracy and offering a 
promising alternative to current TB diagnostics (32).

With a sensitivity of 72.1% and a specificity of 95.6%, the implementation of 
Oreskovic’s hybridization assay closely meets the TPP defined by the WHO set at 65% 
and 98%, respectively (17). Our preliminary assessment confirmed that even in the 
presence of DNA preservatives, urine specimens should be processed as soon as possible 
or otherwise stored at −80°C to slow down DNA degradation occurring within minutes 
at room temperature (Supplemental Material) (39, 40). Therefore, the sensitivity of the 
index test will likely further improve in a real-time clinical setting where urine specimens 
will be processed directly to overcome the degradation of the short DNA fragments in 
urine (41). Furthermore, following the concept of diagnostic “yield,” even if the sensitivity 
is lower than Xpert MTB/RIF on sputum, the yield of the index test could be higher due 
to better availability of urine specimens in general (42). Moreover, the specificity of a 
diagnostic test refers to its ability to accurately identify individuals without the specific 
condition of interest, i.e., the true negatives. False positives are not necessarily artefacts 
and may originate from an imperfect sensitivity of the gold standard that leads to an 
underestimation of true positives. In the context of community screening, false positives 
are particularly interesting as they may reveal cases of asymptomatic TB. The identifica-
tion of asymptomatic or subclinical TB cases requires cross-sectional surveys or thorough 
examination of individuals at risk that may include follow-up clinical investigations. In 
our study, four household contacts displayed positive index test results in the absence 
of TB symptoms. With only a partial overlap, four household contacts also displayed 
positive results for the reference standard, among which, one already reported cough at 
the time of enrolment and another one showed a positive result upon culture testing. 
Cross-comparison revealed that only two household contacts had positive results for 
both index and reference tests. Follow-up clinical investigations among these four 
index-test false-positive participants indicated that three developed active TB subse­
quently and underwent TB treatment, while the fourth was lost on follow-up yet had 
displayed a positive sputum Xpert MTB/RIF result. In summary, 100% of the supposedly 
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“false positive” index tests turned out to be asymptomatic TB infections. We solely 
performed follow-up investigations of household contacts with a positive index test as a 
TB episode occurring later among index test negative controls would rather point toward 
a new infection than progression from a subclinical infection. The discrepancy between 
Xpert MTB/RIF and urine testing in instances where only the index test delivered positive 
results may be explained by the fact that during asymptomatic TB, mycobacteria may 
subsist within interstitial tissue and not yet have reached the airways yet still raising 
Mtb cell-free DNA access to the urine through the lymph/blood/bladder circuit. Taken 
together, our data show that the urine-based index test identifies household contacts 
with asymptomatic TB in a complementary manner and at least comparable sensitivity to 
sputum Xpert MTB/RIF testing.

Our study has two main limitations. First, our sample size was relatively small and as 
a consequence, our results represent a proof-of-concept that requires further validation 
across independent study sites. Second, we had to exclude index test results from 22 
participants (20%), which reflects the technical complexity of this methodology and that 
would require further simplification for it to be implemented routinely. After technical 
errors, bead aggregation was identified as the main reason for the exclusion of assay 
results, and this may be due to the addition of streptavidin-coated capture beads onto 
urine samples naturally containing high amounts of biotin. To avoid this, biotin depletion 
via ultrafiltration or precipitation may be tested prior adding the streptavidin-coated 
beads. Alternatively, a different coupling method could be used to generate the capture 
beads. Moreover, TB caused by Mtb strains harboring no or only a few copies of IS6110 
may lead to false negative results. Further analysis including genome sequencing of 
the infecting strains could estimate the impact of IS6110 genome copy numbers on 
the index test accuracy across different study settings. Along this line, Oreskovic et al. 
reported a median of 150 Mtb-DNA copies per 10 mL urine collected from TB patients 
in South Africa, while we reported a median of 30 copies in our cohort of Tanzanian 
TB patients. In the Tanzanian context, lineage 1 strains may harbor lower numbers of 
IS6110 copies compared to other phylogenetic lineages of Mtb (43). Lineage 1 strains 
are more prevalent in Tanzania (16.5%) than in South Africa (1.75%), and this could 
have contributed to a generally lower recovery of Mtb-DNA targets from the specimen 
of Tanzanian TB patients (44, 45). In the future, optimization of a multiplexed assay 
could make use of existing platforms to develop a cartridge-based approach pre-loaded 
with capture beads prior molecular amplification and detection of several independent 
Mtb-DNA targets to increase sensitivity.

In conclusion, we show that Mtb-DNA hybridization assays on urine specimens have 
the potential to accurately detect TB infections, and we further demonstrate their 
capacity to detect cases of subclinical TB. With Mtb-DNA being found in urine samples 
from children and individuals with extrapulmonary TB as well as patients co-infected 
with HIV, the assay could fill the diagnostic gap for these specific patient groups (24, 46, 
47). Importantly, urine samples can be pooled easily, rendering such tests particularly 
suitable for prospective community-wide screening.
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