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We show that a large family of groups without non-abelian 
free subgroups satisfy the following strengthening of non-
amenability: they each have a rich supply of irreducible 
representations defining exotic C*-algebras. The construction 
is explicit.
© 2024 The Author(s). Published by Elsevier Inc. This is an 

open access article under the CC BY license (http://
creativecommons .org /licenses /by /4 .0/).

1. Introduction

1.1. Group C*-algebras

Let Γ be any group; in this note, we consider groups without topology. Two C*-
algebras are canonically attached to Γ: the maximal C*-algebra C∗

max(Γ) and the reduced 
C*-algebra C∗

red(Γ). Moreover, there is a canonical epimorphism C∗
max(Γ) → C∗

red(Γ), 
which is an isomorphism if and only if Γ is amenable.
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Following [17], [4], [15], [16], [27] and [25], a C*-algebra A is called exotic if it lies 
strictly inbetween C∗

max(Γ) and C∗
red(Γ). That is, if C∗

max(Γ) → C∗
red(Γ) factors through 

two epimorphisms

C∗
max(Γ) −→ A −→ C∗

red(Γ)

and neither of them is an isomorphism. Thus, the existence of an exotic C*-algebra is a 
refinement of the non-amenability of Γ.

The purpose of this note is to describe an explicit situation where Γ admits an un-
countable family of different exotic C*-algebras. Moreover, these algebras are defined 
by concrete irreducible representations of Γ. Specifically, we consider the quasi-regular 
representation algebras associated to uncountably many suitable subgroups of Γ.

In particular, we obtain an explicit and simple parametrization of a huge set in the
primitive dual Prim(Γ) of the group Γ, reflecting layers upon layers of non-amenability 
in this dual. Moreover, in our situation Γ is known to be C*-simple, which by definition 
means that C∗

red(Γ) is simple, i.e. that the interval between C∗
max(Γ) and C∗

red(Γ) is a 
maximal interval (in the poset of quotients maps).

Of particular interest is the fact that our groups Γ do not contain non-abelian 
free subgroups. First, since exotic algebras constitute a refinement of non-amenability, 
the von Neumann–Day problem naturally challenges us to find such examples. Sec-
ondly, some early constructions of exotic algebras ([4], [24]) were precisely based on 
the analytical properties of non-abelian free groups and subgroups, namely on so-called 
Lp-representations (cf. also [9]).

Very different examples can already be found in [6] and [3]; as they are based on non-
solvable Lie groups and respectively their lattices, they happen to contain non-abelian 
free subgroups too. A rather different approach with remarkable properties of quasi-
regular C*-algebras can be found in [5]; see also [18, Thm. 7.6]. Finally, a completely 
general observation from [10, Rem. 2.2] is that whenever Γ is a non-amenable non-
Kazhdan group, the (very much non-irreducible) representation λΓ ⊕ 1 generates an 
exotic C*-algebra A. Indeed, A maps onto C∗

red(Γ) by construction. This projection 
is not an isomorphism since 1 is not weakly contained in λΓ by non-amenability (the 
Hulanicki–Reiter criterion). The fact that A ∼= C∗

max(Γ) would imply Kazhdan’s property 
is the so-called “Kazhdan projection” criterion, see [26, Lem. 3.1].

1.2. A family of groups

Let S ⊆ N be any set of prime numbers and denote by Z[1/S] the ring of S-integers. 
Following [21,22], we consider the group ΓS of all piecewise-SL2(Z[1/S]) homeomor-
phisms of the real line R. More precisely, ΓS consists of all homeomorphisms g for which 
R can be cut into finitely many intervals such that, on each interval, g coincides with a 

projective transformation x �→ ax + b for some 
(
a b
c d

)
in SL2(Z[1/S]).
cx + d
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We recall that ΓS is a “free group free group”; in the notation of [21], ΓS = H(Z[1/S]), 
except for S = ∅ where the breakpoint conditions chosen in [21] define a smaller group, 
see [22, §2].

If we fix S, any subset T ⊆ S provides a subgroup ΓT < ΓS . Starting with S infinite, 
this is an uncountable family of subgroups of ΓS. This poset, the collection of all subsets 
T ⊆ S, will parametrise the region of interest in the primitive dual Prim(ΓS) under 
the map T �→ C∗(λΓS/ΓT

) which takes T to the C*-algebra generated by the quasi-
regular representation λΓS/ΓT

of ΓS associated to ΓT . In other words, λΓS/ΓT
is the 

ΓS-representation induced from the trivial ΓT -representation.

Theorem. For any non-empty sets T � S of prime numbers, we have an exotic algebra

C∗
max(ΓS) ��−−→ C∗(λΓS/ΓT

) ��−−→ C∗
red(ΓS)

with λΓS/ΓT
irreducible and C∗

red(ΓS) simple.
Moreover, given S, the corresponding quotients maps C∗

max(ΓS) � C∗(λΓS/ΓT
) are 

pairwise non-isomorphic as T varies.

Since there is a correspondence between (non-degenerate) representations of C∗
max(ΓS)

and unitary ΓS-representations [8, §13], all the above statements on group C*-algebras 
can be reformulated in terms of weak containment and weak inequivalence of various 
ΓS-representations. For instance, the last statement means that the various λΓS/ΓT

are 
pairwise not weakly equivalent ΓS-representations.

Remark. We do not know, however, whether the various C∗(λΓS/ΓT
) are non-isomorphic 

as C*-algebras. Note that the very definition of exotic C*-algebra is defined by morphisms 
rather than by objects.

In the opposite direction, the only part of the Theorem that we stated in terms of 
ΓS-representations is the irreducibility, which alows us to view λΓS/ΓT

as points in the 
unitary dual Γ̂S . In the C* language, this amounts to saying that the ideal of C∗

max(ΓS)
defining C∗(λΓS/ΓT

) is a primitive ideal.
In conclusion, we have faithfully embedded the entire collection subsets T ⊆ S into 

the primitive dual Prim(ΓS) of ΓS and a fortiori in the unitary dual Γ̂S since Prim(ΓS)
can be viewed as the Kolmogorov T0-quotient of Γ̂S . Moreover, this region of Prim(ΓS)
consists entirely of exotic group C*-algebra of ΓS .

2. Proof of the theorem

We begin by recording a general property of piecewise-projective groups; similar facts 
were already observed in [21], [7] and [2]. Given any ring A < R, we denote by Hc the 



4 M. Gerasimova, N. Monod / Advances in Mathematics 442 (2024) 109594
subgroup of compactly supported piecewise-SL2(A) homeomorphisms of R and by H ′
c

the derived subgroup of Hc.

Lemma. For any h0 ∈ SL2(A) and any compact interval I ⊆ R with ∞ /∈ h0I, there is 
h ∈ H ′

c such that h and h0 coincide on I.

Proof. We first claim that there is h1 ∈ Hc coinciding with h0 on I. Write I = [u, v]; 
we shall construct h1 on [v, +∞) with h1v = h0v, and then the same argument can be 
applied on (−∞, u] to complete the claim. If h0 fixes v, we can continue with the identity. 
If h0v > v, we can pick x ∈ (v, h0v) close enough to v that h0x ∈ (h0v, +∞). We can 
choose a hyperbolic element q ∈ SL2(A) whose repelling/attracting fixed points ξ−, ξ+
are respectively in (v, x) and in (h0x, +∞). Indeed already for SL2(Z) the pairs of fixed 
points are dense in P1 × P1. Upon replacing q by a positive power of itself, qx > h0x. 
Since on the other hand qξ− = ξ− < h0v < h0ξ−, there is by continuity some t ∈ (ξ−, x)
with qt = h0t. We can now define h1 by h0 on [v, t], by q on [t, ξ+] and by the identity 
on [ξ+, +∞).

The case h0v < v is analogous: pick x > v close enough that h0x ∈ (h0v, v) and choose 
q such that ξ− ∈ (v, x) and ξ+ ∈ (−∞, h0v). Replacing q by a suitable power, we have 
qv < h0v but on the other hand qξ− = ξ− > v > h0x > h0ξ−. Thus there is t ∈ (v, ξ−)
with qt = h0t and we define h1 by h0 on [v, t], by q on [t, ξ−] and by the identity on 
[ξ−, +∞). The claim is established.

Let now J be a compact interval containing I and the support of h1. We can choose 
an element b1 ∈ Hc with b−1

1 J ∩J = ∅; this exists e.g. by another application of the first 
claim, this time for J and a translation b0 ∈ SL2(A) that translates the left endpoint 
of J past its right endpoint. Then b1h

−1
1 b−1

1 is trivial on I and hence the commutator 
h = h1b1h

−1
1 b−1

1 in H ′
c has the desired properties. �

2.1. Irreducibility

It is well-known that the representation λΓS/ΓT
is irreducible if and only if ΓT is 

self-commensurating in ΓS . This is generally attributed to Mackey as it follows from 
Theorem 6’ in [20]; we note that it was already proved by Godement in Appendice A 
p. 80 of [13].

Thus, given any element g ∈ ΓS not in ΓT , we need to show that Γg
T ∩ ΓT does not 

have finite index in both ΓT and the conjugate Γg
T .

To this end, it suffices to find a subgroup Λ < ΓT without proper finite index sub-
groups, e.g. infinite and simple, such that Λg is not in ΓT . We now proceed to show that 
the second derived subgroup Λ = (ΓT )′′ has the required properties.

The simplicity of H(A)′′ and the identity H(A)′′ = H(A)′c hold for any ring A < R, 
see [7]. In fact, all this holds more generally for all “locally moving” groups of homeo-
morphisms of R, see [2, §4]. In our case, ΓT = H(A) with A = Z[1/T ].
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Since g /∈ ΓT , there is an interval J on which g is represented by a matrix 
(
a b
c d

)
in SL2(Z[1/S]) with at least one coefficient not in A. That is, some coefficient contains 
a negative power of some p ∈ S � T .

Suppose first that this coefficient is a or b. Choose any q ∈ T and select n ∈ N large 

enough so that the matrix h0 =
(

1 0
q−n 1

)
satisfies h0I ⊆ Int(gJ) for some compact 

interval I ⊆ gJ . This is possible since h0 converges to the identity as n → +∞. Applying 
the Lemma, we obtain h ∈ Λ given by h0 on I. The conjugate g−1hg is given on g−1I ⊆ J

by a matrix of the form

(
a b
c d

)−1 ( 1 0
q−n 1

)(
a b
c d

)
=

(
∗ −b2q−n

a2q−n ∗

)
.

Thus the negative power of p is still present in that case and hence g−1hg is not in ΓT .

If the coefficient is c or d, then we argue similarly with h0 =
(

1 q−n

0 1

)
and this time 

the conjugate g−1hg involves a matrix 
(

∗ d2q−n

−c2q−n ∗

)
, and hence again is not in 

ΓT . This completes the proof of irreducibility.

2.2. Unconfinment

Let Λ < Γ be a subgroup of a group Γ. Following [14], recall that Λ is called unconfined
in Γ if the closure in the Chabauty space of subgroups of Γ of the conjugation Γ-orbit of 
Λ contains the trivial subgroup. Explicitly, this simply means that for any finite subset 
E ⊆ Γ not containing the identity, there is γ ∈ Γ such that the conjugate γΛγ−1 does 
not meet E.

The relevance of this notion to our situation is that it implies that the quasi-regular 
representation λΓ/Λ weakly contains the regular representation λΓ. Indeed, this follows 
from Fell’s continuity of the induction map, see Theorem 4.2 in [12].

Given T � S, we shall now prove that ΓT is unconfined in ΓS . Equivalently, we 
produce a sequence (gn) in ΓS such that for every non-trivial h ∈ ΓS , the conjugate 
g−1
n hgn is outside ΓT for all n large enough (depending on h).

To this end, let p ∈ S�T and define gn by the element 
(
pn p−2n

0 p−n

)
of SL2(Z[1/S]). 

Note that gn fixes ∞ and hence defines an element of ΓS. Consider now any non-trivial 
h ∈ ΓS . There is some interval I ⊆ R on which h is represented by an element hI =(
a b
c d

)
of SL2(Z[1/S]) which is not ±Id. On g−1

n I, the conjugate g−1
n hgn is represented 

by the conjugate of hI , whose top right corner is computed to be

bp−2n + (a− d)p−3n − cp−4n.
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If this number were in Z[1/T ] for arbitrarily large n, then the three coefficients b, a− d

and c would vanish because the exponents of p−n are different. Together with the deter-
minant condition ad − bc = 1, this implies a2 = 1 and hence hI = ±Id, contrary to our 
assumption.

2.3. Inequivalence

We now justify that whenever T, T ′ ⊆ S are two different subsets, the quotient maps 
C∗

max(ΓS) � C∗(λΓS/ΓT
) and C∗

max(ΓS) � C∗(λΓS/ΓT ′ ) are non-isomorphic. Without 
loss of generality, we can assume T �⊆ T ′ and we shall verify the following more precise 
statement: there is no vertical morphism for which the following diagram commutes.

C∗(λΓS/ΓT ′ )

C∗
max(ΓS)

C∗(λΓS/ΓT
)

By the correspondence between representations of ΓS and of C∗
max(ΓS), this is equivalent 

to the statement that λΓS/ΓT
is not weakly contained in λΓS/ΓT ′ .

Suppose for a contradiction that this weak containment holds. In particular, the re-
striction (λΓS/ΓT

)|ΓT
to ΓT is weakly contained in the restriction (λΓS/ΓT ′ )|ΓT

. But 
(λΓS/ΓT

)|ΓT
contains the trivial ΓT -representation. Thus this trivial representation is 

weakly contained in (λΓS/ΓT ′ )|ΓT
. This is equivalent to stating that ΓT ′ is co-amenable 

to ΓT relative to ΓS , see [22]. However, it is proved in [22] that this relative co-amenability 
does not hold, in fact not even relatively to the larger group H(Q).

2.4. End of proof

The representation λΓS/ΓT
defines a quotient C∗(λΓS/ΓT

) of C∗
max(ΓS). The fact that 

the canonical map C∗
max(ΓS) → C∗

red(ΓS) factors through

C∗
max(ΓS) −→ C∗(λΓS/ΓT

) −→ C∗
red(ΓS) = C∗(λΓS

)

is equivalent to λΓS
being weakly contained in λΓS/ΓT

, which is established in Section 2.2.
For C∗(λΓS/ΓT

) to be exotic, we need to know that neither of the above two morphisms 
is an isomorphism.

If the first morphism is an isomorphism, then C∗(λΓS/ΓT
) has an epimorphism to 

the scalar algebra C because C∗
max(ΓS) admits such a morphism. This means that the 

trivial representation is weakly contained in λΓS/ΓT
, which happens if and only if ΓT
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is co-amenable in ΓS , see [11, No. 3, §2]. However, it is shown in [22] that ΓT is not 
co-amenable in ΓS .

The second morphism is an isomorphism if and only if λΓS/ΓT
is weakly contained 

in λΓS
. The latter holds if and only if ΓT is an amenable group, see Proposition 4.2.1 

in [1]. (That reference requires another condition which is trivially satisfied in the cur-
rent setting of discrete groups.) Thus, using the non-amenability established in [21], we 
conclude that indeed C∗(λΓS/ΓT

) is exotic.
The fact that λΓS/ΓT

is irreducible was proved above in Section 2.1 and the sim-
plicity of C∗

red(ΓS) was established in [19]. Finally, the inequivalence was proved in 
Section 2.3. �
3. Comments

If we only want a group Γ without non-abelian free subgroups but admitting some
exotic group C*-algebra, then other easy examples from quasi-regular representations 
associated to subgroups Λ < Γ can be constructed as follows. Of course, these simple 
examples will not enjoy the stronger properties listed in the Theorem, in particular the 
representations will be far from irreducible and therefore they do not describe anything 
in the dual or primitive dual of Γ.

For the reasons exposed in Section 2, we will have an exotic algebra

C∗
max(Γ) ��−−→ C∗(λΓ/Λ) ��−−→ C∗

red(Γ)

provided the following three conditions are all satisfied:

(i) Λ is not amenable;
(ii) Λ is unconfined in Γ;
(iii) Λ is not co-amenable in Γ.

Start with any non-amenable group Λ without non-abelian free subgroups. Consider the 
“lamplighter” restricted wreath product

Γ = Λ � Z =
(⊕

z∈Z

Λz

)
� Z

where Z is any infinite group without non-abelian free subgroups; e.g. Z = Z or Z = Λ. 
Here Λz denotes a copy of Λ for each z ∈ Z. Note that Γ still has no non-abelian free 
subgroups. View Λ as a subgroup of Γ, say Λ = Λe at the coordinate e ∈ Z.

Condition (i) holds by construction. For (ii), let (zn)n≥1 be any sequence in Z leaving 
any finite subset, viewed as a sequence in Γ. Then Λzn converges to the trivial subgroup 
in the Chabauty space because Λzn = Λz−1

n
, while any given element of 

⊕
z∈Z Λz has 

finite support in Z.
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Condition (iii) is immediate if Z is non-amenable, because if Λ were co-amenable in 
Γ, then so would be the normal subgroup 

⊕
z∈Z Λz, which is equivalent to the quotient 

Z being amenable.
However, condition (iii) does indeed hold more generally as soon as Z is non-trivial, e.g. 

Z = Z. Suppose indeed for a contradiction that μ is a Γ-invariant mean on Γ/Λ. Consider 
a general element γ ∈ Γ with coordinates γ = ((λz)z∈Z , x). Given y ∈ Z, the stabiliser in 
Λy of the point γΛ ∈ Γ/Λ is Λy∩γΛeγ

−1. On the other hand, γΛeγ
−1 = Λx and therefore 

this stabiliser is trivial whenever x �= y. In conclusion, all orbits of the Λy-action on Γ/Λ
are regular orbits except the orbits of the points γΛ where γ = ((λz)z∈Z , y). Since μ
is Λy-invariant and Λy

∼= Λ is non-amenable, μ is supported on the complement of the 
union of regular Λy-orbits. That is, μ is supported on the union of the orbits of the form 
(∗, y)Λ. Applying the same argument to any y′ �= y, which exists since Z is non-trivial, 
leads to a contradiction.

We observe that when Z = Z, this non-co-amenability contrasts with the co-
amenability of 

⊕
n≥0 Λz in Λ � Z, see [23].
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