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AI-CPG: Adaptive Imitated Central Pattern
Generators for Bipedal Locomotion Learned
through Reinforced Reflex Neural Networks

Guanda Li1, Auke Ijspeert2, and Mitsuhiro Hayashibe1

Abstract—Humans have many redundancies in their bodies
and can make effective use of them to adapt to changes in the
environment while walking. They can also vary their walking
speed in a wide range. Human-like walking in simulation or
by robots can be achieved through imitation learning. However,
the walking speed is typically limited to a scale similar to the
examples used for imitation. Achieving efficient and adaptable lo-
comotion controllers for a wide range from walking to running is
quite challenging. We propose a novel approach named adaptive
imitated central pattern generators (AI-CPG) that combines cen-
tral pattern generators (CPGs) and deep reinforcement learning
(DRL) to enhance humanoid locomotion. Our method involves
training a CPG-like controller through imitation learning, gener-
ating rhythmic feedforward activity patterns. DRL is not used for
CPG parameter tuning; instead, it is applied in forming a reflex
neural network, which can adjust feedforward patterns based on
sensory feedback, enabling the stable body balancing to adapt
to environmental or target velocity changes. Experiments with
a 28-degree-of-freedom humanoid in a simulated environment
demonstrated that our approach outperformed existing methods
in terms of adaptability, balancing ability, and energy efficiency
even for uneven surfaces. This study contributes to develop
versatile humanoid locomotions in diverse environments.

Index Terms—Bioinspired robot learning, legged robots, ma-
chine learning for robot control.

I. INTRODUCTION

Humanoid robots have been a topic of interest for re-
searchers because of their potential to revolutionize various
fields, such as healthcare, industry, and entertainment [1].
These robots are designed to mimic human behavior, move-
ment, and communication, making them more approachable
and relatable to humans [2]. Humanoid robots can walk on
both legs similar to humans, in a feature known as bipedal
locomotion. Therefore the humanoid robots can navigate and
interact with environments designed for humans, making them
more versatile and useful for various applications [3], [4].

Despite the potential advantages of humanoid robots with
bipedal locomotion, adaptively controlling humanoid robots

Manuscript received: November, 25, 2023; Revised February, 22, 2024;
Accepted April, 3, 2024. This paper was recommended for publication by
Editor Abderrahmane Kheddar upon evaluation of the Associate Editor and
Reviewers’ comments. This work was funded by JSPS 20KK0256 (Fostering
Joint International Research A) and 22H04764 (Hyper-adaptability project).
(Corresponding authors: Guanda Li and Mitsuhiro Hayashibe.)

1G. Li and M. Hayashibe are with the Neuro-Robotics Lab, Department of
Robotics, Graduate School of Engineering, Tohoku University, Sendai, Japan
li.guanda.s5@dc.tohoku.ac.jp

2A. Ijspeert is with the Biorobotics Laboratory, the École polytechnique
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is challenging because of their complex dynamics and overly
redundant degrees of freedom (DoFs) [4]. One of the current
issues that should be addressed is related to the gait coor-
dination of humanoid robots, which can significantly affect
their overall performance. Some existing humanoid robots,
including advanced models like Atlas from Boston Dynamics,
have made significant progress, yet there is still room for
improvement to enhance their adaptability to complex and
unknown environments. Furthermore, current humanoid robots
often struggle to adapt to changes in their surroundings,
which makes them less efficient and effective [5], [6]. To
overcome these challenges, the gait of humanoid robots should
be improved with a focus on enhancing energy efficiency,
increasing flexibility, and improving adaptability to complex
environments through learning.

Deep reinforcement learning (DRL), a machine learning
algorithm has gained significant attention in recent years owing
to its potential to solve complex problems in various fields,
including robotics [7], [8]. DRL involves training an agent to
learn the optimal behavior through trial-and-error interactions
with its environment, using a reward signal to guide its actions.
In robotics, DRL has been used to improve the performance of
various tasks, such as grasping [9], locomotion [10], especially
on the quadrupedal robots [11], [12]. However, one of the
current obstacles in applying DRL to humanoid robots is
the large dimensional space that should be explored and the
imbalance of biped locomotion. This makes it challenging to
learn a desirable gait directly because there are significantly
many possible combinations of movements to consider and
many lead to falls. Currently, the application of DRL in
humanoid locomotion necessitates intricate reward functions
and high computational costs [13], or a reduction in the
robot’s DoFs [14]. Therefore, new methods and techniques to
address this challenge and enable DRL to effectively control
humanoids by managing high dimensionality, are desirable.

Inspired by neuroscience, central pattern generators (CPGs)
are another promising approach for improving legged robots
locomotion [15]. CPGs are neural circuits located in the spinal
cord that generate rhythmic patterns of muscle activity, such
as those used during walking and running [16]. Using CPGs,
robots can achieve more natural and stable movements, similar
to those of living organisms [17]–[19]. The CPG mechanism
involves a network of interconnected neurons that generate
oscillatory signals that are transmitted to the muscles respon-
sible for movement. In animals, the reflex circuit usually works
together with CPGs as a feedback control [20]. Computational
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models were used to investigate the merging of CPGs with
sensory feedback [21]–[23]. However, the question of how to
effectively integrate and apply them to humanoid locomotion
control remains unresolved [20], since CPGs can potentially
constrain the control space and help decrease dimensionality
but to be adaptive and flexible for different environments, it
should be well supported by reflex networks.

Our study aims to enhance learning-based algorithms for
humanoid locomotion using CPGs with a sensory feedback
mechanism. We trained a CPG controller using imitation learn-
ing and then trained a reflex neural network using DRL. Unlike
other algorithms that use reinforcement learning for imitation
purposes [24], [25], our training objective was not only to
make the agent behave similarly to the collected human motion
data; we used imitation learning to train a CPG-like controller
to form feedforward control. The CPG-like controller was
designed to generate rhythmic patterns of joint torques, similar
to those generated by CPGs in living organisms. We use
imitation learning for training pattern formation of CPG to
avoid the complex calculations and tuning required by other
nonlinear functions, such as Hopf and Matsuoka Oscillators
[26]. The reflex neural network was then trained with DRL
to adjust the movements generated by the CPG-like network
based on sensory feedback, allowing the robot to adapt to
changes in the environment. Regarding the combination of
CPG and RL, CPG-RL was recently proposed for learning
and modulating oscillator parameters of CPG [18]. In this
research, reinforcement learning is used for forming a reflex
neural network to support CPG rather than forming CPG itself.

The contribution of this study is that we propose a new
learning-based control framework for the locomotion task of
a legged system inspired by CPG with a reinforced reflex
neural circuit mechanism, without reducing the robot’s DoFs.
Our method employs a CPG as a feedforward controller,
which is trained by imitation learning, and another reflex
neural network as a feedback controller, which is trained
using DRL. Then we verify the performance of the proposed
framework, which can adapt to environmental changes, and
demonstrate its performance through a comparative study with
existing learning methods. Our approach is based on bio-
inspired mechanisms, which help us better understand the
potential mechanisms of human locomotion and develop more
sophisticated and versatile humanoid robots with improved
locomotion capabilities in a variety of environments.

II. METHOD

A. CPG-Learning

Our control framework, adaptive imitated CPG (AI-CPG),
consists of rhythm generator G, which defines the rhythm
of motor activities; pattern formation layer S, which shapes
the rhythmic timing signals to the target joint angles of the
robot; PD controller, which outputs the motor commands
based on the error between current joint angles and target
joint angles; and reflex neural network controller R based on
sensory feedback, as shown in Fig. 1 (b).

During the process of controlling the robot locomotion, the
speed command in Fig. 1 (b) modulates the robot’s speed

by altering the frequency of G and S. This corresponds to
a similar mechanism in Fig. 1 (a), where the brain adjusts
the human motor pattern by descending modulation to the
spinal network. Previous research has shown how descending
modulation adjusts the activity of the CPG [23], collaborates
with a sensory-driven model [27], [28], and facilitates walk-
run transitions [29]. G and S served as feedforward CPG
controllers that reduce the dimensionality of the action space
of the robot using prior knowledge. Contrarily, R serves as a
feedback controller responsible for maintaining the balance of
the robot and adapting to the given physical environment.

1) CPG controller: The rhythm generator G is defined by

G(Tk) = sin(2πfTk), (1)

Tk = [tk, tk+1, tk+2, · · · , tk+i]. (2)

The input of G is a set of sine wave phase oscillators starting
from different timesteps. i is the number of phase oscillators
and f is the adjustable frequency. The output of G is called
the fundamental timing signal w and is the input to S. The
output θt of S(w) is the target angles of the robot joints.

As shown in Fig. 2 (a) and (b), We trained S through
imitation learning using human motion data from the CMU
motion capture database [30], which consisted of a set of
gait data both for walking and running. We used Fast Fourier
Transform (FFT) to obtain the motion frequencies fw and fr
for the two sets of data. Based on the motion frequencies and
G, we calculated the input features used for training. After
mapping the input features to the real motion data in the time
series, we obtained a training dataset that was used to train
S by supervised learning. By varying the frequency f of the
input sine wave signal to S(t, f), we could generate the joint
angles and torques of the humanoid robot corresponding to
different movement speeds.

In our study, S was a multilayer perceptron (MLP) with an
input layer of size 50 (the same as the value of i in Equation
2), a hidden layer of size [128, 128], and an output layer of size
28. The activation function is ReLU. Using a PD controller,
we obtained the joint torque τg of the robot from the target
joint angles θt(t) and actual joint angles θ(t).

e(t) = θt(t)− θ(t), (3)

τg(t) = Kpe(t) +Kd
d

dt
e(t), (4)

where for the three joints on the torso Kp is 750, and for the
remaining joints Kp is 250. Kd for all joints is 1.

2) Reflex neural network: The reflex neural network con-
troller was trained using proximal policy optimization (PPO)
[31]. During the training process, S produced rhythmic control
signals to the robot. We used 8,192 agents in parallel to
interact with the environment and collect data. Each agent
was assigned a different frequency f such that R could
simultaneously learn how to keep the humanoid stable under
the influence of S at different motion frequencies.

After the training, changing the input frequency f in both
G(t, f) and R(t, f) enabled the humanoid to move at different
speeds and both for walking and running.
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Fig. 1. (a) Schematic of the central pattern generator mechanism in human locomotion. CPG is designed to combine motor rhythm with sensory feedback to
achieve a bipedal gait. (b) The control framework of our study comprises feedforward and feedback controllers. The feedforward controller is the generative
shaping network output of the joint angles θ of the robot, while the PD controller calculates the output torque τg based on the input target angles θ. The
feedback controller consists of a reflex neural network trained by DRL, which takes environmental information as the input and outputs the joint torque τr .
(c) Humanoid model in the simulation environment with DoFs distribution.
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Fig. 2. Training approach of a pattern formation layer. (a) Dataset for training generative shaping network with fixed-length segments of sine signals as
input features and motion data obtained from human subjects as the corresponding output labels. The frequency of the sine signals was calculated using FFT
from the real motion data. The generative model was trained using supervised learning. (b) Generating different motion data by varying the input sine signal
frequency from the generative shaping network within six seconds. Owing to the periodicity of the input sine signal, the generated motion data exhibited basic
rhythmic activity patterns similar to the neural signals outputted by the CPG. fw and fr are the frequencies of the real human walking and running data.

The reward function R for training R is

R = Rh − αRe +Ra +Rs +Rd + βRg. (5)

Rh is the height of the humanoid head, which helps the robot
learn to stand. Re is used to limit the energy consumption of
R with an α value of 0.5.

Re =
∑
J

|τj(t)ωj(t)|+ τ2j (t). (6)

If the robot falls, we set the total reward R to zero and reset
the environment. Contrarily, if the robot does not fall, it gets
an accumulating survival reward Ra = 1 in each timestep.
Rs is equal to zglobal · zpelvis, which is used to optimize
the orientation of the pelvis and improve the robot’s balance.
Rs equals 1 when the pelvis’s z-axis is perpendicular to the
ground, and Rs equals 0 when it is parallel to the ground. Rd

is used to teach robots to move in a target direction and is
equivalent to the velocity of the robot in the target direction.

The higher the velocity towards the target, the greater the
reward Rd received by the robot. Note that our reward function
does not directly specify the movement speed of the robot.
The robot can move at different speeds is only influenced by
changes in the input frequency f . Rg is used to reduce e(t)
in Eq. 3, which is

e =

∣∣∣∣∣∑
J

e(t)

∣∣∣∣∣ (7)

Rg =

{
1− e/b, e ≤ b
0, e > b

, (8)

where b is 2.5, and β is 5.0 in Eq. 5.
Compared with other studies that use DRL to train hu-

manoid robots [13], [14], our reward function does not include
terms related to tracking velocity and motion trajectory.

R is an MLP with an input layer of size 192 correspond-
ing to the size of the observation space. The observation
space includes the robot’s joint angles, angular velocities, foot
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pressures, spatial orientation, target angles θt(t), and output
torques τg of the CPG controller. The output layer has a size
of 28, which is the same as the number of joints in the robot.
The output of R is τr. The hidden layer sizes are [512, 256,
128], and the activation function is ReLU. The joint torque τ
applied to the robot is the sum of τg and τr.

B. Simulation Method

The simulation software used in our study is Isaac Gym,
which stores all computational data as tensors in the graphics
processing unit (GPU), enabling the DRL algorithm to collect
data for training from thousands of actors through a parallel
training framework [32]. This approach takes full advantage
of the computing power of the GPU and eliminates the need
to transfer data from the central processing unit (CPU) to the
GPU during simulation and training, significantly improving
the training speed of DRL.

We used a humanoid robot with a height of 1.6 m and
weight of 48.9 kg, 28 DoFs, and 13 links throughout its body,
as shown in Fig. 1 (c), for both of training and evaluating the
performance of the proposed approach. First, we compared
our method with other learning methods for controlling the
humanoid gait. Second, we performed a transition task from
walking to running and analyzed the changes in gait. Third, we
trained and tested the performance of the humanoid on uneven
terrain, where the robot has to adjust its gait to maintain
postural balance.

C. Evaluation Index

The following indexes are used to evaluate the performance
of the humanoid robot after training:

1) Symmetry Index: Symmetric gait is considered normal
in human walking; therefore, we used the symmetry index to
determine the similarity of a robot’s gait with that of a human.
The symmetry index refers to the extent to which movement
patterns are similar between the left and right sides of the
body and is calculated by dividing the difference between
the left and right parameters by the sum of the left and
right parameters. A typical equation [33] used to calculate
the symmetry index is

SI =
(XR −XL)

0.5 (XR +XL)
, (9)

where XR and XL could be the angles, angular velocities, or
torques of the joints produced by the left and right limbs. A
value of SI close to zero indicates a symmetric gait, whereas
far from zero indicates an asymmetric gait.

In our study, the equation used to calculate the symmetry
index is

SI =
1

T · J

T∑
t=0

∑
J

|XR(t, j))−XL(t, j)|
0.5 (XR(t, j) +XL(t, j))

, (10)

where T is the number of timesteps in one test trial, J is the
joint number of the robot, and XR(t, j) and XL(t, j) are the
joint angles of the limbs on the left and right sides of the
robot, respectively.

2) Froude Number: The Froude number (Fr) is a di-
mensionless quantity used to determine whether a person is
walking, running, or performing other forms of locomotion
[34]. Humans tend to transition from walking to running at
Fr between 0.4 and 0.6, with individual variations depending
on factors, such as age, fitness level, and body proportion [35].
Fr is used to determine the gait pattern of the robot. When

the Froude number is closer to zero, the gait of the robot
tends to be more stable and suitable for slow movements.
Conversely, when the Froude number is large, the gait tends
to be more dynamic and unstable and is suitable for fast
movement. When the Froude number was approximately 0.5,
the gait was in a transitional state. Fr is expressed as

Fr =
v2

gL
, (11)

where v is the characteristic velocity, g is the gravitational
acceleration, and L is the characteristic length. In this study,
v is the average velocity of the center of mass of the robot on
the x-axis, g was 9.81 m/s2, and L is the total leg length of
the humanoid robot (0.855 m).

3) Average Velocity and Cost of Transport: We employed
the following equations to compute the average velocity v and
cost of transport (CoT) of the robot during movement:

CoT =
p

mgv
=

∑T
t=0

∑
J |τ(t, j)ω(t, j)|

mg
∑T

t=0 vt(t)
(12)

where vt represents the velocity of the robot’s CoM in the
target direction, τ is the torque of the robot’s joints, ω is the
angular velocity of the robot’s joints, T is the number of time
steps, J is the number of robot joints, m is the mass of the
robot, and g is 9.81 m/s2.

4) Balance: We assessed the robot’s balance in motion by
measuring the offset between the pelvis (lower part of the
trunk) and the ground on the z-axis directional vectors. The
equation to calculate the balance index BI is

BI =
1

T

T∑
0

zglobal · zpelvis, (13)

where zglobal and zpelvis are the direction vectors of the
ground and robot torso on the z-axis, respectively. A value
of BI close to one indicates better balancing ability.

III. RESULTS

A. Comparison

To showcase the features of our new control framework,
we trained a humanoid agent to perform the task of moving
along a straight line at different speeds on flat ground. We
used two algorithms, PPO [31] and Adversarial Motion Priors
(AMP) [25] for comparison. PPO is one of the most commonly
used DRL methods in robotics. Its advantage is to handle high
dimensional and continuous state and action spaces with stable
training performance. AMP is a new algorithm for animation
generation and robot control that combines imitation learning,
adversarial learning, and DRL. It is an efficient method for
imitating natural and lifelike behaviors from real motion data
without requiring the artifical design of reward functions.
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Fig. 3. Performance comparison of humanoid agents trained using AI-CPG, AMP, and PPO. (a) Cost of transport at different speeds. (b) Symmetry indices
at various speeds. (c) Number of the robot falls within one minute under random disturbances. Red lines indicate the results of AI-CPG, and blue and green
dots indicate the results of AMP and PPO. The red shaded area represents the standard deviation of the corresponding points; the blue and green shaded
areas represent the standard deviation of corresponding points on the x- and y-axises. (d) The variation in the flight phase ratio of AI-CPG result at different
speeds. The black dashed line indicates the points of gait transition. The stable walking gait ends at 2.0 m/s, and the stable running gait begins at 2.8 m/s. (e)
and (f) Motion examples of three algorithms at walking and running. The motion pattern results could be referred at the accompanying video of the paper.

To ensure that the experimental conditions were as similar
as possible during training, the number of epochs for each of
the three algorithms was 3,000, with each epoch lasting for
1,000 iterations. The number of actors trained in parallel was
8,192 and the neural networks used were MLP with hidden
layers of sizes [512, 256, 128] for all three algorithms. The two
sets of real-motion data used to train the AMP were identical
to those used to train the AI-CPG.

The reward function of the PPO algorithm is similar to AI-
CPG. The only difference is we use Rt instead of Rg in the
reward function (see Eq. 5). Rt is used to set the target velocity
for the humanoid robot. For the AMP algorithm, we do not
explicitly set a reward function. The style reward in AMP is
derived through an automatic learning process from a dataset
of reference motion clips. The observation space of AMP and
PPO is similar to that of AI-CPG but does not contain the
information in the CPG controller part of AI-CPG.

For the PPO algorithm, we set the target velocities in the
reward function to 1.5, 2.0, 2.5, 3.0, 3.5, and 4.0 [m/s].
The AMP algorithm learns two different speeds based on the
walking and running gaits of human motion data it uses. For
AI-CPG, the range of input frequency of the CPG generator is
[0.8, 1.4] for training and [0.7, 1.4] for testing. After every 100
training epochs, the neural network was saved as a checkpoint.
We selected the checkpoints with the highest average velocity
in each round of training as the convergence results after
training. We trained each algorithm with five random seeds,
and the results are shown in Fig. 3.

By comparing the CoT at different average velocities in
Fig. 3 (a), we can notice that the agent trained with the AI-
CPG could adjust its movement speed using only one neural
network controller even for a wide range of speeds. In addition,
the U-shaped CoT-velocity relationship in walking and the
linear CoT-v relationship in running is very similar to the
actual human case relationship [36]. However, the movement
speed of the robot trained using the PPO algorithm was limited

to the design of its reward function. The AMP algorithm
focuses excessively on making the robot’s movements similar
to the real motion data, which makes it hard to flexibly
adjust the robot’s movement speed. Additionally, compared
to the AMP algorithm, the PPO and AI-CPG algorithms
optimized the energy efficiency of the robot during movement
by following the energy consideration at the reward function.

In Fig. 3 (b), we compared the symmetry index of the robot
at different speeds, and in Fig. 3 (e) and (f), we visually display
the gait of the robot moving in the simulator. We found that
because the PPO algorithm did not reference any real motion
data during training, its gait symmetry was far worse (i.e.
with higher values) than that of the AMP and AI-CPG. These
abnormal gaits limit the application of the PPO method in
real-world robots.

As shown in Fig. 3 (c), we verified the robustness of the
gait controller by applying a certain high random disturbance
force from -200 N to 200 N for all axes to the torso of the
trained agent during gait. The external force was applied for a
duration of 0.1 s for every second. The results are the averages
of the last five checkpoint test results for each random seed
training. During the 60-second test, it was observed that for
robots controlled by the same algorithm, the low-speed motion
state is more unstable than the high-speed state. Moreover,
the AI-CPG and AMP experienced fewer instances of falls
compared with the PPO over most of the speed ranges. This
suggests that the human-like gait, which AMP and AI-CPG
learn from human motion data, is more robust against external
disturbances compared to the abnormal gait of PPO.

In Fig. 3 (d), we use the ”flight phase ratio” to determine
the agent’s gait. The flight phase refers to the phase in which
both feet are not in contact with the ground during one
complete gait cycle. The ”flight phase ratio” indicates the
proportion of time during the gait cycles when it is in the
flight phases. According to the flight phase ratio, the moving
speed controlled by AI-CPG is divided into three periods by
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signals with increasing frequency were used as inputs to the rhythm generator of the CPG controller. The x-axis represents the frequency increase over
time and the y-axis represents the amplitude of the input signal. The total duration was 30 seconds, and the rate of frequency increase was 0.023 Hz/s. (b)
Correspondence between robot center of mass velocity, Froude number, flight phase ratio, input frequency of AI-CPG, and motion time. The transition velocity
was 2.05 m/s when the Froude number was 0.5. The black dashed line indicates where the gait of the robot changes. When the frequency is less than 0.93
Hz, the robot has a stable walking gait, and when the frequency is greater than 1.14 Hz, the robot has a stable running gait. (c) Transition schematic from
walking to running gait. (d) Time diagram of walking gait cycles from 2.0 to 5.0 s. (e) Time diagram of running gait cycles from 27.0 to 30.0 s.

the black dashed line in Fig. 3 (a) and (d). The leftmost
period represents the stable walking gait without a flight phase.
The middle range represents a transition gait where the flight
phase fluctuates. The rightmost period represents the stable
running gait, where the float phase ratio is greater than zero
and steadily increases with speed. The result confirms that
AI-CPG lets the neural network learn different gaits including
transitions up to running successfully.

Based on a comparison of the three methods above, we can
conclude that AI-CPG combines the advantages of imitation
learning and DRL. Through the shaping of the reward function,
DRL assists the robot in learning to maintain balance and
optimize energy efficiency. The human-like gait learned from
human motion data enables AI-CPG to better resist external
disturbances. Additionally, the feedforward control mechanism
in the CPG part of AI-CPG enables it to consistently handle
a wide range of moving speeds and different gaits.

B. Transition from Walking to Running

By adjusting the value of f at the checkpoint trained in
Section III-A, we achieved a smooth transition in the robot’s
gait from walking to running. The relationship between f and
time t is f(t) = 0.7 + 0.023t. As shown in Fig. 4 (a), an
increase in f causes the input sine signal to gradually become
denser in the AI-CPG, leading to an adjustable dynamic gait.
Meanwhile, in Fig. 4 (b), we observed the gait transition in
the different stages of the result. A time window of 60 time
steps (1 second) is used to calculate the flight phase ratio.
When both t and f are small, the robot moves slowly in a
walking gait. The flight phase ratio, Fr, and the gait diagram
in Fig. 4 (d) confirm this observation. As t and f increased,
the speed of the robot also increased, and the flight phase ratio
gradually increased and fluctuated, indicating a transition gait
of the robot. When the frequency is greater than 1.14 Hz,

The robot transitioned to a stable running gait with further
increases in t and f , as shown in Fig. 4 (e).

One advantage of the AI-CPG that can be observed from
this result is its ability to adjust the speed of the robot during
its movement simply with tonic input through f . This special
feature enables the humanoid to operate more efficiently and
effectively in real-world applications, making it a versatile and
flexible solution for various scenarios.

C. Locomotion on Uneven Terrain

We retrained and tested the locomotion task of the humanoid
on an uneven terrain using the PPO, AI-CPG, and AMP algo-
rithms with the same training parameters as those described
in Section III-A. The uneven terrain consisted of a triangular
mesh and exhibited a height variation range of 10 cm. Fig. 5
(a) shows the changes in the motion trajectory of the robot as
the training iterations increased at different target velocities.
The results indicate that PPO and AI-CPG were successful
in controlling the movement of the robot on uneven terrain,
whereas AMP failed to learn the task.

In the early stages of training, both the PPO and AI-
CPG had a disordered velocity vector (indicated by the dark-
colored arrow in the figure) that clustered around the origin,
making the agent unable to move effectively. As the number
of training iterations increased, the velocity vector gradually
aligned with the positive x-axis and shifted toward the right,
indicating that the agent learned to move in the desired
direction. Conversely, AMP’s trajectory and velocity vectors
were always disorganized and haphazard.

In Fig. 5 (b), we compared the experimental results of
PPO and AI-CPG and found that AI-CPG outperformed PPO
in terms of the symmetry index, balance index, and cost of
transport at two different moving speeds. It is important to note
that the AI-CPG case is with the same neural network both
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Fig. 5. Training and testing results of humanoid locomotion task on uneven terrain. (a) Changes in the motion trajectory of the agent as the training epoch
progresses at walking speed (1.5 m/s) and running speed (3.0 m/s) for the three algorithms. The position of the arrow corresponds to the position of the robot,
and the direction and magnitude of the arrow represent the direction and magnitude of the velocity vector of the robot, respectively. The color bar represents
the number of epochs for which the robot was trained. Lighter arrows indicate an increased number of training epochs. (b) Bar chart used to compare the
mean and standard deviation of the velocity, symmetry index, balance index, and cost of transport of the PPO and AI-CPG methods for walking and running.
(c)-(d) Agent moving on uneven terrain using (c) walking gait and (d) running gait controlled by the same AI-CPG controller.

for walking and running, whereas PPO needs a different neural
network for walking and running, respectively. Furthermore,
the standard deviation of the AI-CPG results was smaller,
indicating a more stable learning process.

Finally, transition from walking to running was tested on
uneven terrain, which is quite challenging task. Similar to
the flat surface result described in Section III-B, the AI-CPG
could manage to implement a speed transition from walking
to running on uneven terrain, as shown in Fig. 6.

IV. DISCUSSION

In this study, we propose a learning framework that com-
bines a generative imitative neural network and a reinforced
reflex neural network controller to achieve stable, energy-
efficient, and natural control of humanoid bipedal locomotion.
The proposed framework can control the motion speed both

Transition Velocity Froude Number = 0.5

Fig. 6. Transition process from walking to running on uneven terrain. The
variation for the humanoid’s center of mass velocity and the Froude number.

for walking and running, and the direction of the robot and can
adapt to different environments and terrains, as demonstrated
by the successful locomotion of the humanoid under different
gait patterns and speeds. The generative neural network gen-
erated periodic control signals based on real human motion
data, making humanoid locomotion more natural and intuitive.
Moreover, the reflex neural network could simultaneously
learn to keep the high DoFs humanoid stable under the influ-
ence of a generative neural network at different frequencies,
which can finally create Adaptive Imitated Central Pattern
Generators, keeping a good balance of human motion imitation
and adaptive capabilities by reinforcing reflex networks. It
demonstrated the advantages of energy efficiency, postural
balance coordination, and natural symmetry indexes.

One limitation of our study is that we tested the framework
only in a simulated environment as a first-step evaluation.
Further testing with a real robot is necessary to evaluate the
effectiveness of the framework in the real world. Another
limitation is that we tested only the locomotion task in a
straight direction. It would be interesting to investigate the
application of the proposed framework to other motor tasks.

In this work, reflex neural network was formed by using
DRL, however the model-based approach for parameter-tuning
reflex circuit is also an important research direction for under-
standing its internal mechanism of adaptive gait control [37].
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V. CONCLUSIONS

Inspired by the roles of CPGs and reflex neural circuits
in controlling legged locomotion in human, we proposed a
novel control framework for humanoid locomotion based on
imitation learning and reinforced reflex networks. Our AI-CPG
control framework combines the advantages of feedforward
and feedback control and improves the utilization efficiency
of real motion data extending its speed variation. To evaluate
the effectiveness of our control framework, we compared
our controller with other learning-based controllers widely
used for robot gait control. The results demonstrate that our
controller outperforms other state-of-the-art deep reinforce-
ment and imitation learning controllers in terms of energy
efficiency, balancing ability, and adaptability for a wide range
of moving speeds even on uneven surface. Our controller has
the benefits of flexible gait speed adjustment during humanoid
locomotion with only a single training session and one neural
network, which can complete the gait transition from walking
to running, at different speeds and on uneven terrains.
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