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In the absence of analytical solutions for the dynamics of non-spherical cavitation bubbles, we have implemented 
a numerical simulation solver based on the boundary integral method (BIM) that models the behavior of a single 
bubble near an interface between two fluids. The density ratio between the two media can be adjusted to 
represent different types of boundaries, such as a rigid boundary or a free surface. The solver allows not only 
the computation of the dynamics of the bubble and the fluid-fluid interface, but also, in a secondary processing 
phase, the computation of the surrounding flow field quantities. We present here the detailed implementation of 
this solver and validate its capabilities using theoretical solutions, experimental observations, and results from 
other simulation softwares. This solver is called BIMBAMBUM which stands for Boundary Integral Method for

Bubble Analysis and Modeling in Bounded and Unbounded Media.

Program summary

Program Title: BIMBAMBUM

CPC Library link to program files: https://doi .org /10 .17632 /89vv35pmhr .1
Licensing provisions: GPLv3

Programming language: C++ and Python

Nature of problem: The code solves the axisymmetric dynamics of single cavitation bubble in the vicinity of 
different types of boundaries. The boundaries are treated as an interface between two fluids, where the fluids 
can have different density ratios. The two fluids are considered inviscid and incompressible and the associated 
flows irrotational so that Laplace’s equation is valid everywhere.

Solution method: A boundary integral method is used to calculate the velocities on the discretized bubble 
surface and the fluid-fluid interface. The position of these boundaries can then be updated in time using a 
Lagrangian approach. In the fluid domain surrounding the bubble, the velocities and pressure are estimated 
using a combination of the boundary integral method and finite differences.

Additional comments including restrictions and unusual features: The code solves the bubble dynamics as long as its 
surface remains simply connected.
1. Introduction

Cavitation refers to the formation of vapor and gas-filled cavities 
in a liquid following a sudden drop in pressure. These cavities, known 
as cavitation bubbles, are a subject of significant and growing interest 
owing to the many processes in which they are found. Traditionally ob-

served around ship propellers and hydraulic turbines, where they cause 

✩ The review of this paper was arranged by Prof. Andrew Hazel.
✩✩ This paper and its associated computer program are available via the Computer Physics Communications homepage on ScienceDirect (http://www .sciencedirect .
com /science /journal /00104655).

* Corresponding author.

unwanted and deteriorating effects [1,2], cavitation bubbles are now 
gradually being used in biomedical, chemical and cleaning applications, 
with the aim of exploiting their powerful properties [3–5].

Due to the diversity and nature of these applications, an accurate 
understanding of the behavior of the bubbles is critical for the safe and 
efficient use of cavitation. For that purpose, the study of the bubbles 
fundamental dynamics is often reduced to a simplified test case: the 
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Fig. 1. Growth and collapse of a bubble near a free-surface at 𝛾 = 0.8. The first row demonstrates the results obtained with the first processing stage only. The second 
row shows the associated pressure (left halves of the frames) and velocity (right halves of the frames) fields obtained with the second processing stage. All units are 

dimensionless.

growth and collapse of a single bubble. If the bubble remains spheri-

cal throughout its lifetime, there are a number of 1D theoretical models 
that can be used to study the dynamics of the bubble oscillation [6–11]. 
However, when the bubble exhibits an aspherical behavior, as it is the 
case for oscillations near a boundary, other approaches are generally 
required to study the dynamics of the bubble and the deformation of its 
surface. One of these approaches is numerical simulations which allow 
the modeling of a wide range of flow configurations and provide valu-

able information about the nature of the flow field surrounding the bub-

ble. In that case, the governing Navier-Stokes or Euler equations may 
be solved with grid-based methods that employ level-set [12–14], front-

tracking [15–17], volume of fluid [18–20] or diffuse-interface [21–23]

techniques to capture the interface between the bubble and the liquid. 
These methods provide accurate results that compare well with experi-

ments, but they can be computationally expensive as the number of cells 
required to solve the problem in an axisymmetric configuration is gen-

erally of the order of (105) cells. Alternatively, if one assumes the flow 
incompressible and potential during the lifetime of the bubble, Laplace’s 
equation is satisfied and the boundary integral method (BIM) may be 
used. The BIM makes it possible to find the velocity potential anywhere 
in the numerical domain by solely solving the flow problem at the edges 
of the domain. This means that only the boundaries of the numerical do-

main need to be meshed, thus significantly reducing the computational 
cost. Initiated by Blake and collaborators to model the growth and col-

lapse of bubbles near flat rigid walls and free surfaces [24–26], the use 
of BIM has since been widely adopted to study the behavior of single 
cavitation bubble in a variety of configuration, such as near planar or 
curved rigid interfaces, free-surfaces, elastic interfaces, fluid-fluid in-

terfaces or even in tubular vessels [27–38]. Compared to grid-based 
methods, the BIM can significantly reduce the computational cost of 
a simulation, as demonstrated by Li et al. [29] for a bubble collaps-

ing near a rigid surface. The authors reported a 16-minute computation 
time for a BIM simulation running on a single core of a personal desk-

top, as opposed to 13000 core-hours needed to run a volume of fluid 
simulation of the same bubble.

Many of the references cited above have contributed to the im-

provement of the BIM with the objective of better understanding and 
predicting the behavior of cavitation bubbles. Nevertheless, the numer-

ical solvers these references describe have essentially been developed 
in-house by the different research teams and are rarely open access. Al-

though open-source Boundary Integral/Element Method packages such 
as Bempp [39], Bembel [40] or BESLE [41] exist, they are not specif-

ically designed for single cavitation bubble dynamics simulations. We 
have developed such solver that we successfully employed to describe 
2

the dynamics of cavitation bubbles near granular boundaries, which we 
modeled as equivalent liquid [42], near elastic interfaces [43] or near 
a rigid boundary [44]. We now wish to make this solver publicly avail-

able with the vocation to allow research teams, students and any other 
interested person to quickly get insights into the behavior of cavitation 
bubbles and hopefully to provide a basis for an accelerated and collab-

orative developments of this solver.

In this work we thus present the version 1.0 of BIMBAMBUM, which 
stands for Boundary Integral Method for Bubble Analysis and Modeling 
in Bounded and Unbounded Media. The solver models the dynamics of 
single cavitation bubbles, assuming axial symmetry in the bubble shape 
and flow field, and allows these dynamics to be considered in a variety 
of flow configurations. In section 2 we provide a short overview of the 
solver structure and introduce its dependencies. Section 3 describes the 
equations governing the flow field and section 4 the numerical imple-

mentation of these equations. We finally validate the code in section 5.

2. Solver overview and dependencies

BIMBAMBUM is a two-stage potential flow solver designed to model 
the dynamics of a cavitation bubble near an initially flat boundary. The 
first stage, also referred to as main stage, computes the time evolution 
of the surfaces of the bubble and nearby boundary. The second stage 
computes the velocity and pressure fields associated with the bubble 
dynamics at any selected time point in the bubble lifetime. Both stages 
of the solver must be executed separately. The first processing stage can 
be used as stand-alone if the user only wants to calculate the dynam-

ics of the bubble. The secondary processing stage, on the other hand, 
requires the results of the first stage as inputs. Sample results obtained 
with the first and second processing stage are illustrated in Fig. 1 for a 
bubble evolving near a free surface.

BIMBAMBUM is largely written in C++ to allow fast computation of 
bubble dynamics on a personal computer. The main processing stage 
is fully written in C++ and employs the modular nature of the lan-

guage through polymorphism and inheritence of classes allowing for 
facilitated further developments. The solver relies on the Armadillo 
library for linear algebra [45,46] and on the GNU scientific library 
[47] for numerical integrations. To accelerate the computation, the 
performance-critical tasks are moreover parallelized using the multi-

processing library OpenMP [48]. Finally, the BOOST library is used to 
parse the JSON input data in C++ [49]. The secondary processing stage 
is partially written in Python and relies on the following freely available 
open source libraries: Numpy [50] and Matplotlib [51]. Yet, the perfor-

mance critical tasks are written in C++ and integrated into the Python 

program as an extension module using pybind11 [52].
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Fig. 2. Computational domain.

3. Mathematical model

3.1. Physical domain and governing equations

We consider the growth and collapse of a single cavitation bubble in 
a liquid of density 𝜌1. Since most of the phenomena associated with 
single bubble dynamics may be seen as axisymmetric, we treat this 
problem in a 2D configuration with coordinates (𝑟, 𝑧), as illustrated in 
Fig. 2. The domain occupied by fluid 1 is denoted as 𝐷1 and is delim-

ited by a boundary 𝜕𝐷1 consisting of the bubble surface, 𝜕𝐵, and an 
infinite interface 𝜕𝐼 . On the other side of this interface we consider a 
second fluid of density 𝜌2 and domain 𝐷2, delimited by the boundary 
𝜕𝐷2 which solely consists of 𝜕𝐼 . Both fluids are subjected to gravity 𝒈. 
Considering a fluid-fluid interface with a density jump provides a gen-

eralization of the already well-documented interactions of cavitation 
bubbles with rigid boundaries and free surfaces [27,28,32,33], where 
a density ratio 𝜌1∕𝜌2 → 0 models the behavior of a bubble near a rigid 
wall, 𝜌1∕𝜌2 → ∞ near a free surface and 𝜌1∕𝜌2 = 1 simulates a bub-

ble in an unbounded liquid, as shown by Klaseboer and Khoo [34]. In 
agreement the majority of other works in the literature [27,28,32,33], 
the two fluids under consideration are assumed inviscid and incom-

pressible and the associated flows irrotational. These assumptions are 
acceptable given that most of the bubble dynamics are inertia domi-

nated and viscous effects are concentrated in thin boundary layers near 
the surfaces. It should nonetheless be emphasized that compressibility 
effects of the liquid can be important in the final instants of the bub-

ble collapse, where its interface velocity may become significant with 
respect to the liquid speed of sound. The above assumptions lead to the 
velocity being expressed as the gradient of a potential 𝒖𝒊 = ∇𝜙𝑖, with 
𝑖 = 1, 2. In that case, the following equations are valid in both fluids 
[34,53],

∇2𝜙𝑖 = 0 (1)

𝜕𝜙𝑖

𝜕𝑡
+
|∇𝜙𝑖|2

2
+

𝑝𝑖

𝜌𝑖
+ 𝑔(𝑧𝑖 − 𝑧0) =

𝑝∞
𝜌𝑖

(2)

Equation (1) is Laplace’s equation and equation (2) is the Bernoulli 
equation, where 𝑝∞ is the far-field reference pressure and 𝑧0 is a refer-

ence coordinate of the system at rest. The bubble, which would reach 
a maximum radius 𝑅m in an unbounded medium, is initially located at 
a distance 𝑠 from the interface. We consider that it is uniformly filled 
with a combination of liquid vapor with constant pressure, 𝑝v, and non-

condensable gas with pressure 𝑝g. The heat and mass transfer across the 
interface are neglected and the gas is considered as ideal yielding an 
adiabatic process with a gas pressure given by 𝑝g = 𝑝g,0(𝑉0∕𝑉 )𝑘, where 
𝑝g,0 and 𝑉0 are the initial gas pressure and bubble volume, respectively, 
and 𝑉 is the instantaneous bubble volume. The superscript 𝑘 denotes 
the ratio of specific heat. Hence, we can write the pressure within the 
bubble as [54],
3

𝑝b = 𝑝v + 𝑝g,0(𝑉0∕𝑉 )𝑘 (3)
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The case of zero non-condensable gas content may also be consid-

ered in the simulation and would result in a bubble solely filled with 
liquid vapor.

At the liquid-liquid interface, we include the possibility to mimic 
the effects of an elastic boundary. This is done by considering an inter-

facial tension between the two immiscible fluids [35,55]. As a result,

the pressure directly above and directly below the interface is related 
by the Young-Laplace equation,

𝑝1 = 𝑝2 + 𝜎𝐾 (4)

where 𝜎 is the interfacial tension and 𝐾 represents the curvature of the 
interface.

3.2. Non-dimensionalization

For the sake of convenience, we scale all terms and solely consider 
dimensionless quantities. To that end, we follow the work of Blake et al. 
[25,26] and scale the lengths by the bubble maximum radius 𝑅m, the 
time by 𝑅m

√
𝜌1∕Δ𝑝 and the pressure 𝑝 by (𝑝 − 𝑝v)∕Δ𝑝, where Δ𝑝 =

𝑝∞ − 𝑝v. This yields the following set of dimensionless quantities,

𝛾 = 𝑠

𝑅m

𝜖 =
𝑝g,0

Δ𝑝
𝛿 =

𝜌1𝑔𝑅m

Δ𝑝
�̄� = 𝜎

𝑅mΔ𝑝
(5)

where 𝛾 is the stand-off distance, 𝜖 is the strength parameter, 𝛿 is 
the buoyancy parameter and �̄� represents the dimensionless surface 
tension. The notation 𝛼 = 𝜌1∕𝜌2 is additionally used to represent the

density ratio. We note here that for small bubbles, 𝑅m ∼ (10−3 m), 
the effects of gravity scale as 𝛿 ∼(10−4) in water at atmospheric con-

dition and may be neglected.

3.3. Dynamic and kinematic boundary conditions

Since the BIM formulation requires the values of the potentials on 
the boundaries of the fluid domain, an appropriate set of boundary con-

ditions must be employed on 𝜕𝐵 and 𝜕𝐼 . At the bubble interface, the 
dynamics boundary condition requires that the pressure within the bub-

ble and in the flow be equated. This is achieved by combining equations 
(2) and (3), where the value of 𝑧0 is taken as the initial position of the 
bubble, 𝛾 , assuming that all points on its surface originate from a single 
location. Neglecting surface tension, this yields in dimensionless form,

𝜕𝜙1
𝜕𝑡

+
|∇𝜙1|2

2
+ 𝜖

(
𝑉0
𝑉

)𝑘

+ 𝛿(𝑧− 𝛾) − 1 = 0 (6)

At the liquid-fluid interface, the formation of holes between the two 
liquid phases is avoided by ensuring that the normal velocities are con-

tinuous across the interface. Given that we include an interfacial tension 
to mimic elastic effects, the pressure directly above and directly below 
the interface is related by the Young-Laplace equation, so that the di-

mensionless dynamic boundary condition is given by,

𝜕(𝜙2 − 𝛼𝜙1)
𝜕𝑡

+
|∇𝜙2|2 − 𝛼|∇𝜙1|2

2
+ 𝛿(1 − 𝛼)𝑧− 𝛼�̄��̄� = 0 (7)

Note that the value 𝑧0 = 0 is considered at the fluid-fluid interface. 
Following the formulation of Klaseboer and Khoo [34,36], all surfaces 
are treated in a Lagrangian manner where the material derivatives 
𝐷∕𝐷𝑡 are taken with respect to fluid 1 so that 𝐷𝑥∕𝐷𝑡 = 𝜕𝑥∕𝜕𝑡 +∇𝜙1 ⋅
∇𝑥. The rate of change of the potential thus takes the following form 
on the boundaries of the bubble 𝜕𝐵,

𝐷𝜙1

𝐷𝑡
=
|∇𝜙1|2

2
+ 1 − 𝜖

(
𝑉0
𝑉

)𝑘

− 𝛿(𝑧− 𝛾) (8)

and at the fluid-fluid interface 𝜕𝐼 ,

𝐷𝐹
( |∇𝜙2|2 |∇𝜙1|2)
𝐷𝑡
= ∇𝜙1 ⋅∇𝜙2 − 2

− 𝛼
2

− 𝛿(1 − 𝛼)𝑧+ 𝛼�̄��̄� (9)
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where 𝐹 = 𝜙2 − 𝛼𝜙1. Finally, the position of the bubble surface and the 
fluid-fluid interface is subjected to the following kinematic condition,

𝐷𝒙

𝐷𝑡
=∇𝜙1 (10)

where 𝒙 = (𝑟, 𝑧) is a point on the boundaries of the domain and ∇𝜙1 =
(𝜕𝜙1∕𝜕𝑛, 𝜕𝜙1∕𝜕𝑠), with 𝜕𝜙1∕𝜕𝑛 the normal and 𝜕𝜙1∕𝜕𝑠 the tangential 
velocity on the boundaries of fluid 1.

4. Numerical implementation

4.1. Boundary integral method

The solution to equation (1) may be found by solving a boundary in-

tegral equation, where the potential in the fluid domain can be derived 
as a function of the potential and its normal derivative on the bound-

aries of the domain. It follows that the solution at a point 𝒚 inside the 
fluid domains can be found by solving the following direct boundary 
integral in fluid 1 with domain 𝐷1,

𝑐1(𝒚)𝜙1(𝒚) + ∫
𝒙∈𝜕𝐷1

𝜙1(𝒙)
𝜕𝐺(𝒚,𝒙)

𝜕𝑛
ds = ∫

𝒙∈𝜕𝐷1

𝐺(𝒚,𝒙)
𝜕𝜙1(𝒙)

𝜕𝑛
ds (11)

and in fluid 2 with domain 𝐷2,

𝑐2(𝒚)𝜙2(𝒚) − ∫
𝒙∈𝜕𝐷2

𝜙2(𝒙)
𝜕𝐺(𝒚,𝒙)

𝜕𝑛
ds = ∫

𝒙∈𝜕𝐷2

𝐺(𝒚,𝒙)
𝜕𝜙2(𝒙)

𝜕𝑛
ds (12)

where 𝐺(𝒚, 𝒙) = 1∕ |𝒚 − 𝒙| is the Green function. The coefficients 𝑐1 and 
𝑐2 are the solid angles which, for smooth boundaries, satisfy,

𝑐1,2(𝒚) =

{
2𝜋 if 𝒚 ∈ 𝜕𝐷1,2,

4𝜋 if 𝒚 ∈𝐷1,2 ⧵ 𝜕𝐷1,2

(13)

Since only the boundaries of the domain need to be meshed to solve 
the integrals in equations (11) and (12), the use of the boundary inte-

gral method makes it possible to reduce the originally two-dimensional 
axisymmetric problem to a one-dimensional problem.

4.2. Discretization and integration

The integrals in equations (11) and (12) are computed using a colo-

cation method where the surfaces of the bubbles and the fluid-fluid 
interface are discretized in 𝑁b and 𝑁s elements, respectively, resulting 
in 𝑁b + 1 and 𝑁s + 1 node points. The bubble and fluid-fluid interface 
surfaces are represented by cubic splines fitted through the node points 
and parametrized with respect to the surfaces arc length 𝜉. At the nodes, 
the potentials take the value 𝜙𝑗 and their normal derivatives the value 
𝜓𝑗 = 𝜕𝜙𝑗∕𝜕𝑛. Both quantities are assumed to vary linearly between two 
adjacent node points. With these considerations, equation (11) may be 
discretized as follows (a similar discretization applies to equation (12)),

𝑐p,𝑖𝜙𝑖 +𝐴𝑖,𝑗𝜙𝑗 = 𝐵𝑖,𝑗𝜓𝑗 (14)

where 𝜙𝑖 is the potential at 𝒚 = (𝑟𝑖, 𝑧𝑖). The coefficient matrix 𝑨 con-

tains the discretized integral of the normal derivative of the Green’s 
function and the matrix 𝑩 contains the discretized integral of the 
Green’s function. Both matrices additionally take into account the linear 
interpolation between the nodal points. These quantities, the detailed 
derivation of which can be found in the work of Taib [24] or Curtiss 
[53], have the following forms in axisymmetric coordinates,

𝐴𝑖,𝑗 =−

𝜉𝑗

∫
𝜉𝑗−1

(
𝜉 − 𝜉𝑗−1

𝜉𝑗 − 𝜉𝑗−1

)
4𝑟(𝜉)(

(𝑟(𝜉) + 𝑟𝑖)2 + (𝑧(𝜉) − 𝑧𝑖)2
)1.5 (2𝑧′(𝜉)𝑟𝑖𝐾(𝑘(𝜉))

𝑘(𝜉)2[
′ ′ 2𝑧′(𝜉)𝑟𝑖

]
𝐸(𝑘(𝜉))

)

and

𝐵𝑖,

wit

𝑘2(

the

wit

𝐾(

𝐸(

wh

wh

thi

(𝑟(
(𝐺

In 
lar

com

int

the

Ko

new

ing

me

the

4.3

eva

𝑟𝑖 =
the[
2

and[
2𝜋

wh

sub

𝜕𝐵

3 w

𝒙 ∈
the

1 ×
4

+ 𝑧 (𝜉)(𝑟(𝜉) + 𝑟𝑖) − 𝑟 (𝜉)(𝑧(𝜉) − 𝑧𝑖) −
𝑘(𝜉)2 1 − 𝑘(𝜉)2

d𝜉
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−

𝜉𝑗+1

∫
𝜉𝑗

(
𝜉𝑗+1 − 𝜉

𝜉𝑗+1 − 𝜉𝑗

)
4𝑟(𝜉)(

(𝑟(𝜉) + 𝑟𝑖)2 + (𝑧(𝜉) − 𝑧𝑖)2
)1.5 (2𝑧′(𝜉)𝑟𝑖𝐾(𝑘(𝜉))

𝑘(𝜉)2

+
[
𝑧′(𝜉)(𝑟(𝜉) + 𝑟𝑖) − 𝑟′(𝜉)(𝑧(𝜉) − 𝑧𝑖) −

2𝑧′(𝜉)𝑟𝑖
𝑘(𝜉)2

]
𝐸(𝑘(𝜉))
1 − 𝑘(𝜉)2

)
d𝜉

(15)

,

𝑗 =

𝜉𝑗

∫
𝜉𝑗−1

(
𝜉 − 𝜉𝑗−1

𝜉𝑗 − 𝜉𝑗−1

)
4𝑟(𝜉)

√
𝑟′(𝜉)2 + 𝑧′(𝜉)2𝐾(𝑘(𝜉))√

(𝑟(𝜉) + 𝑟𝑖)2 + (𝑧(𝜉) − 𝑧𝑖)2
d𝜉

+

𝜉𝑗+1

∫
𝜉𝑗

(
𝜉𝑗+1 − 𝜉

𝜉𝑗+1 − 𝜉𝑗

)
4𝑟(𝜉)

√
𝑟′(𝜉)2 + 𝑧′(𝜉)2𝐾(𝑘(𝜉))√

(𝑟(𝜉) + 𝑟𝑖)2 + (𝑧(𝜉) − 𝑧𝑖)2
d𝜉

(16)

h,

𝜉) =
4𝑟(𝜉)𝑟𝑖

(𝑟(𝜉) + 𝑟𝑖)2 + (𝑧(𝜉) − 𝑧𝑖)2
(17)

The functions 𝐾(𝑘) and 𝐸(𝑘) are the complete elliptic integrals of 
 first and second kind, respectively, and their values are estimated 
h 12th order polynomial approximation as in Pearson [56],

𝑘) ≈ 𝑃 (1 − 𝑘2) −𝑄(1 − 𝑘2) log(1 − 𝑘2) (18)

𝑘) ≈𝑅(1 − 𝑘2) −𝑆(1 − 𝑘2) log(1 − 𝑘2) (19)

ere 𝑃 , 𝑄, 𝑅 and 𝑆 are the tabulated polynomials, the coefficients of 
ich are provided in Appendix A. Note that the polynomials used in 
s work slightly differ from the ones employed by Pearson [56].

Singularities occur when evaluating the boundary integrals if 𝒙 =
𝜉), 𝑧(𝜉)) approaches 𝒚 = (𝑟𝑖, 𝑧𝑖), since the value of the Green function 
(𝒚, 𝒙) = 1∕ |𝒚 − 𝒙|) and its normal derivative tend towards infinity. 
the axisymmetric configuration considered in this work, these singu-

ities appear as weak logarithmic singularities in the evaluation the 
plete elliptic integrals when 1 − 𝑘2 approaches zero. We therefore 

egrate equations (15) and (16) using the QAGS routine provided in 
 GNU scientific library [47]. This routine performs a 21-points Gauss-

nrod quadrature on adaptively refined subintervals concentrating the 
 subinterval around possible singularities. It is however worth not-

 that there exist non-singular formulations of the boundary integral 
thod that allow the use of standard quadrature methods to estimate 
 surface integrals [57,58].

. Determination of normal and tangential velocities at the boundaries

The normal velocities at the domain boundaries are determined by 
luating the potentials 𝜙𝑖 at the node points with discrete coordinates 
𝑟(𝜉𝑖) and 𝑧𝑖 = 𝑧(𝜉𝑖). In this case, equation (11) can be rewritten into 

 following system of 𝑁𝑏 +𝑁𝑠 + 2 linear equations,

𝜋𝑰b +𝑨1 𝑨2

𝑨3 2𝜋𝑰 s +𝑨4

][
𝝓1,b

𝝓1,s

]
=

[
𝑩1 𝑩2

𝑩3 𝑩4

][
𝝍1,b

𝝍1,s

]
(20)

 equation (12) into the following 𝑁𝑠 + 1 system,

𝑰 s− 𝑨4

]
𝝓2,s =𝑩4𝝍2,s (21)

ere 𝑨1-4 are sub-matrices of 𝑨 and 𝑩1-4 are submatrices of 𝑩. The 
script 1 indicates contributions to the boundary integrals where 𝒚 ∈
and 𝒙 ∈ 𝜕𝐵, the subscript 2 where 𝒚 ∈ 𝜕𝐼 and 𝒙 ∈ 𝜕𝐵, the subscript 
here 𝒚 ∈ 𝜕𝐵 and 𝒙 ∈ 𝜕𝐼 and the subscript 4 where 𝒚 ∈ 𝜕𝐼 and 
𝜕𝐼 . The subscript 𝑏 refer to quantities on the bubble surface and 

 subscript 𝑠 to quantities on the fluid-fluid interface. 𝑰b is the (𝑁b +
𝑁b +1) identity matrix, and 𝑰 s the (𝑁s +1 ×𝑁s +1) identity matrix.

We then use the formulation introduced by Klaseboer and Khoo [34,
36] to rewrite equations (20) and (21) in a set of two coupled blocks 
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and one independent block of linear equations that take into account 
the relationship between the potentials on both sides of the interface. 
A detailed description of this implementation is provided in the work 
of the authors, so we only give the final results of their derivation,[
−𝑩𝟏 𝑨𝟐(1 − 𝛼)
−𝑩𝟑 2𝜋𝑰 +𝑨𝟒 + 𝛼(2𝜋𝑰 −𝑨𝟒)

][
𝝍1,b

𝝓1,s

]

=

[
−(2𝜋𝑰 +𝑨𝟏)𝝓1,b +𝑨𝟐𝑭

−𝑨𝟑𝝓1,b − (2𝜋𝑰 −𝑨𝟒)𝑭

]
(22)

𝝍1,s = −𝑩−1
𝟒 (2𝜋𝑰 −𝑨𝟒)

[
𝛼𝝓1,b + 𝑭

]
(23)

The values 𝝍1,b and 𝝓1,s are obtained by solving the matrix sys-

tem of equation (22). The potential 𝝓2,s may then be obtained from 
the relation 𝝓2,s = 𝑭 + 𝛼𝝓1. Finally, the tangential velocities, 𝜕𝝓1,b∕𝜕𝑠, 
𝜕𝝓1,s∕𝜕𝑠 and 𝜕𝝓2,s∕𝜕𝑠, are calculated based on the potentials at the 
node points and the geometry of the boundaries using cubic spline in-

terpolations. With both the normal and tangential velocities known at 
each node, the boundaries of the domain are updated in time using 
equation (10). Similarly, 𝝓1,b and 𝑭 are updated with equations (8)

and (9), respectively.

4.4. Initial conditions

The initial conditions determine the values of the potentials on the 
bubble surface and at the fluid-fluid interface at the beginning of the 
simulation. We consider that the fluid-fluid interface is initially at rest, 
meaning that the potential 𝜙1,s(𝑡0) = 𝜙2,s(𝑡0) = 0 and therefore 𝐹 (𝑡0) =
0, where 𝑡0 is the initial time. On the surface of the bubble, two sets 
of initial conditions may be employed depending on the gas content 
of the bubble. This choice is left to the user before the beginning the 
simulations. If one wishes to model a cavitation bubble filled exclusively 
with liquid vapor, the earliest stage of its growth can be approximated 
by the Rayleigh model [6], which is assumed to also hold by symmetry 
for the growth phase of a spherical bubble in an unconfined medium. 
The approximation of initial sphericity is not unreasonable as nearby 
boundaries have little effect on the bubble behavior within the first 
instants of its lifetime. In that case, the bubble is initiated as a sphere 
of radius 𝑅0 = 0.1𝑅m, as suggested by Blake et al. [25]. Note that the 
dimensionless value of 𝑅m is unity. The corresponding initial time, 𝑡0, 
and potential, 𝜙1,b(𝑡0), are derived from the Rayleigh equation for a 
growing bubble. These values of are listed below in non-dimensional 
units,

𝑡0 = 0.0015527 and 𝜙1,b(𝑡0) = −2.580698 (24)

If one wishes to include the presence of non-condensible gas, we 
consider the bubble as an initially stationary high-pressure gas cavity 
whose earliest stage of growth is approximated by the dimensionless

Rayleigh-Plesset equation,

𝑅�̈�+ 3
2
�̇�2 = 𝜖

(
𝑅0
𝑅

)3𝑘
− 1 (25)

where the over-dots indicate the temporal derivatives. At time 𝑡0 = 0, 
the potential on the bubble is given by 𝜙1,b(𝑡0) = 0. By further imposing 
that the maximum dimensionless radius reached by this bubble in an 
infinite medium is unity, the relation between 𝑅0, 𝜖 and 𝑘 may be 
derived from the Rayleigh-Plesset equation and is given by [36,59,37],

𝜖

𝑘− 1
(𝑅3𝑘

0
−𝑅3

0
) =𝑅3

0
− 1 (26)

A root-finding algorithm [47] is used to establish the value of 𝑅0

based on the values of 𝜖 and 𝑘 provided by the user.

4.5. Time-stepping

Once all potentials and velocities are known at time 𝑡 = 𝑡𝑛, equations 
5

(8), (9) and (10) are advanced in time. We have included two temporal 
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schemes to update the different quantities, noted here 𝑦. The scheme is 
to be chosen by the user before beginning the simulations. A first order 
explicit Euler time step is implemented to allow fast computations. It 
uses a constant approximation of the derivative 𝑓 = 𝑑𝑦∕𝑑𝑡 at time 𝑡𝑛 so 
that the value of 𝑦 at time 𝑡𝑛 +Δ𝑡 is given by,

𝑦(𝑡𝑛 +Δ𝑡) = 𝑦(𝑡𝑛) + Δ𝑡𝑓 (𝑡𝑛, 𝑦𝑛) (27)

For increased accuracy and stability, the second order Heun’s 
method is also implemented. In that case, the value of 𝑦 at time 𝑡𝑛 +Δ𝑡

is given by,

𝑦(𝑡𝑛 +Δ𝑡) = 𝑦(𝑡𝑛) +
Δ𝑡

2
[
𝑓 (𝑡𝑛, 𝑦𝑛) + 𝑓 (𝑡𝑛 +Δ𝑡, 𝑦(𝑡𝑛) + Δ𝑡𝑓 (𝑡𝑛, 𝑦𝑛))

]
(28)

For both time-stepping schemes, we use adaptive time steps. This 
ensures that small time steps are used when high flow velocities occur, 
which is usually the case in the first moments of bubble growth or the 
last instants of its collapse, and that larger time steps are used around 
the instants when the bubble reaches its maximum volume, where the 
flow velocities are much slower. Following the work of Curtiss [53], we 
define the value of Δ𝑡 to limit the maximum change in potential over 
the bubble boundary or at the fluid-fluid interface,

Δ𝑡 = max

⎡⎢⎢⎢⎣min

⎛⎜⎜⎜⎝
Δ𝜃

max
[
max

(|𝐷𝜙1
𝐷𝑡

|) ,max
(|𝐷𝐹

𝐷𝑡
|)] ,Δ𝑡max

⎞⎟⎟⎟⎠ ,Δ𝑡min

⎤⎥⎥⎥⎦
(29)

where Δ𝜃 is a constant chosen by the user on a case by case basis. 
A maximum time step size is additionally imposed in the computation 
to avoid a loss of stability, Δ𝑡max = 0.01, as well as a minimum value 
of this time step set at Δ𝑡min = 10−5. The latter is implemented to limit 
the effect of numerical noise as well as smoothing and filtering effects, 
which may become preponderant when very small time steps are used 
[53].

4.6. Curvature computation

The computation of the curvature is required to account for elastic 
effects at the fluid-fluid interface. In an axisymmetric configuration, it 
may be calculated as a function of the spatial derivatives of the coordi-

nates 𝑟(𝜉) and 𝑧(𝜉),

�̄� =
⎧⎪⎨⎪⎩

𝑟′𝑧′′ − 𝑧′𝑟′′

(𝑟′ 2 + 𝑧′ 2)3∕2
+ 𝑧′

𝑟(𝑟′ 2 + 𝑧′ 2)1∕2
if 𝑟 ≠ 0,

2(𝑟′𝑧′′ − 𝑧′𝑟′′)
(𝑟′ 2 + 𝑧′ 2)3∕2

if 𝑟 = 0
(30)

The values of the various spatial derivatives (noted with prime sym-

bols) are estimated by a fourth order polynomial fitted over 9 points 
around the node of interest. The spatial derivatives of this polynomial 
are then used in equation (30). This technique was proposed by Cur-

tiss [53] to achieve higher stability compared to the spatial derivative 
obtained from spline interpolations. We use the function polyfit of the 
Armadillo library to efficiently construct the polynomials [45,46].

4.7. Re-meshing

The Lagrangian nature of the simulation implies that the nodes on 
the bubble surface and the fluid-fluid interface are advected by the fluid 
velocity and may end up clustering around region of high curvature and 
high flow velocities. This may lead to difficulties associated with the 
integration of equations (15) and (16) as well as leave certain regions of 
the boundaries under-resolved. We avoid this by re-meshing the bubble 
and the fluid-fluid interface at each time step. The 𝑁 nodes are re-

gridded using a geometric progression, in which case their positions, 𝜉𝑖, 

along the surfaces of total arc-length 𝑆 are given by,
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Fig. 3. Meshing of the computational domain 𝐷1. Three successive instants of the collapse of a spherical cavity are shown at time points 𝑡𝑛−1 , 𝑡𝑛 and 𝑡𝑛+1. The 
solid green line illustrates the boundary of the fluid region defined by the cavity, and the dashed orange line shows the same boundary shifted by the user-defined 
quantity 𝑎. The filled black markers indicate grid points that lie within the newly defined fluid domain (i.e. defined by the orange dashed boundary) at times 𝑡𝑛−1, 
𝑡𝑛 and 𝑡𝑛+1 . For grid point laying adjacent to the domain boundaries, additional grid nodes are generated so that finite-differences may be conducted on a five-point 
stencil. The later is indicated by blue circular markers in the zoomed box. (For interpretation of the colors in the figure(s), the reader is referred to the web version 

of this article.)

𝜉𝑖 =
⎧⎪⎨⎪⎩
0 if 𝑖 = 1,

ℎ𝑆

𝑖∑
𝑘=2

𝑟𝑘−2 if 𝑖 = 2,3, ...,𝑁
(31)

where ℎ = (𝑟 − 1)∕(𝑟(𝑁−1) − 1) is the first grid spacing with 𝑟 the ra-

tio of the geometric progression. On the bubble surface we find that 
uniformly distributed grid points give satisfactory results in most cases 
and therefore set 𝑟 = 0.9999. At the fluid-fluid interface, we concentrate 
the node density around the symmetry axis, where the deformation is 
largest, and use 𝑟 = 0.97.

4.8. Smoothing

As observed in previous works [32,56,36,53], numerical instabilities 
may develop on the boundaries of the domain. If left untreated, these 
may grow and lead to a saw-tooth shape of the bubble surface and/or 
fluid-fluid interface. To prevent the occurrence of such instabilities, the 
boundaries surfaces are smoothed using a five point smoothing formula 
proposed by Longuet-Higgins and Cokelet [60] and extended to han-

dle unevenly spaced nodes. The frequency at which the boundaries are 
smoothed is left to user.

4.9. End of simulation

The model computes the bubble dynamics as long as its surface re-

mains simply connected. In most cases, this means that the simulation 
ends at the moment when the liquid micro-jet that forms and travels 
along the symmetry axis of the bubble hits its opposite side, i.e. when 
the bubble becomes toroidal. Right after this instant, the fluid domain 
is doubly connected and the solution procedure described above is no 
longer applicable. Although numerical methods have been developed to 
simulate toroidal bubble dynamics (see for instance the work of Wang 
et al. [32]), these are not implemented in the current version of our 
solver, which we believe is adequate to capture most features of the 
bubble first oscillation. As a result, a condition to detect any intersec-

tion of the bubble surface is checked after each time step.

4.10. Flow field quantities: second processing stage

In a secondary processing phase, we additionally provide the option 
to calculate the velocity and pressure fields in the fluid domain 𝐷1 at 
any time step, 𝑡𝑛. These quantities are evaluated at discrete location 
in the domain 𝐷1 ⧵ 𝜕𝐷1, meshed on a structured grid with equidis-

tant nodes (note that such a grid is not needed for the first processing 
6

phase). We evaluate the values of the potentials 𝜙1 at any grid point 
by solving equation (11), taking 𝑐1(𝒚) = 4𝜋 for 𝒚 ∈𝐷1 ⧵ 𝜕𝐷1. The flow 
velocities are then obtained as (𝑢, 𝑣) = (𝜕𝜙1∕𝜕𝑟, 𝜕𝜙1∕𝜕𝑧) using a central 
differencing scheme on a five point stencil,

𝑢𝑖,𝑗 =
𝜙𝑖+1,𝑗 − 𝜙𝑖−1,𝑗

2ℎ
(32)

𝑣𝑖,𝑗 =
𝜙𝑖,𝑗+1 −𝜙𝑖,𝑗−1

2ℎ
(33)

where ℎ is the spacing between nodes and the subscripts 𝑖 and 𝑗 refer 
to an arbitrary node point in 𝐷1 ⧵ 𝜕𝐷1. Alternatively, the pressures are 
computed from the dimensionless Bernoulli equation valid in 𝐷1,

𝜕𝜙1
𝜕𝑡

+
|∇𝜙1|2

2
+ 𝑃1 + 𝛿(𝑧1 − 𝑧0) − 1 = 0 (34)

where 𝑃1 is the dimensionless pressure. The presence of temporal 
derivative in equation (34) implies that the potentials must also be 
evaluated at different time steps around 𝑡𝑛. We choose a 3-point cen-

tral difference scheme to calculate the potential temporal derivative,

𝜕𝜙𝑖,𝑗

𝜕𝑡
=

Δ𝑡21𝜙𝑖,𝑗,𝑡𝑛+1
+ (Δ𝑡22 − Δ𝑡21)𝜙𝑖,𝑗,𝑡𝑛

−Δ𝑡22𝜙𝑖,𝑗,𝑡𝑛−1

Δ𝑡2Δ𝑡1(Δ𝑡2 + Δ𝑡1)
(35)

where Δ𝑡1 = 𝑡𝑛 − 𝑡𝑛−1 and Δ𝑡2 = 𝑡𝑛+1 − 𝑡𝑛. Note that the 3-point cen-

tral difference scheme requires the potentials to be known at time 𝑡𝑛+1. 
This implies that equation (35) can only be solved in a secondary pro-

cessing phase, once the potentials on the domain boundaries have been 
evaluated for the entire lifetime of the bubble.

To ensure that each node where the potential is evaluated remains 
bounded within the fluid domains 𝐷1,𝑛−1, 𝐷1,𝑛 and 𝐷1,𝑛+1 at times 𝑡𝑛−1, 
𝑡𝑛 and 𝑡𝑛+1, respectively, the temporal evolution of the boundaries of 𝐷1
must be considered. The procedure to achieve this is illustrated in Fig. 3, 
which shows the boundary (solid green line) of a spherically collapsing 
cavity at three successive times. First, the boundary at time 𝑡𝑛 is shifted 
away from the original boundary by a user-defined constant quantity, 
𝑎. The newly defined boundary is illustrated with an orange dashed 
line. This adjustment ensures that the grid points in the fluid domain 
are taken at a certain distance from the nodes constituting the actual 
domain boundaries (bubble and fluid-fluid interface), thus avoiding in-

accuracies in the evaluation of the integrals in equation (11) that could 
occur in the case of excessive proximity. Next, a point-in-polygon prob-

lem is solved using a winding number algorithm to select the grid points 
that lie within this modified domain. The same process is repeated at 
times 𝑡𝑛−1 and 𝑡𝑛+1. The grid points accepted over all three time steps 
are indicated with black filled markers in Fig. 3, while the grids points 

outside the domain are indicated with hollow circular markers. Finally, 
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Algorithm 1 Solution procedure for the main processing stage.

1: Inputs:

Read the input file;

2: Initialize:

Assign the initial nodes position (𝑟0, 𝑧0) and associated 
potential values 𝜙0,b and 𝐹0;

3: while intersection = False do ⊳ Simulation stops if the bubble surface

is intersected.
4: for 𝑖 in 𝑁𝑏 +𝑁𝑠 + 2 do

5: for 𝑗 in 𝑁𝑏 +𝑁𝑠 + 2 do

6: Compute the elements 𝐴𝑖𝑗 and 𝐵𝑖𝑗 of the coefficient matrices;

7: end for

8: end for

9: Compute the normal velocities 𝝍b and 𝝍1,s and the potentials

𝝓1,s and 𝝓2,s;

10: Compute the tangential velocities 𝜕𝝓b∕𝜕𝑠, 𝜕𝝓1,s∕𝜕𝑠 and 𝜕𝝓2,s∕𝜕𝑠;

11: Compute the bubble volume 𝑉 ;

12: if elasticity then ⊳ Only if surface tension is considered.

13: Compute the fluid-fluid interface curvature �̄� ;

14: end if

15: Update the values of 𝝓b and 𝑭 ;

16: Update the position of the nodes (𝑟, 𝑧);
17: if smoothing then ⊳ Smoothing is applied every 𝑁 time steps.

18: Smooth the bubble surface and fluid-fluid interface;

19: end if

20: Re-mesh boundaries;

21: Check for bubble intersection;

22: Write solution to file;

23: end while

to also compute the finite-differences on a five-point stencil at the nodes 
adjacent to the domain boundaries, we create additional grid nodes at a 
distance 𝑎∕4 from the grid point of interest (blue markers in the zoomed 
box of Fig. 3).

4.11. Solution procedure

In the interest of clarity, we provide a step-by-step overview of the 
solution procedure for the main processing stage, summarized in Algo-

rithm 1. A set of initial conditions is provided by the user in an input 
file that is read by the main program. This file contains information 
about the spatial discretization, the temporal integration scheme, and 
the physical parameters that determine the dynamics of the bubbles. 
Based on the input data, the main solver initializes the simulation by 
discretizing the domain boundaries and assigning a potential 𝜙b,0 to 
each node on the bubble surface and a potential difference 𝐹0 to each 
node at the fluid-fluid interface. The solver then computes the elements 
of the coefficient matrices 𝑨 and 𝑩 using the equations (15) and (16), 
respectively. At this stage, the normal velocities 𝝍b and 𝝍1,s as well 
as the potential 𝝓1,s can be obtained by solving the equations (22) and 
(23). The potential 𝝓2,s is found via the relation 𝝓2,s = 𝑭 − 𝛼𝝓1. The 
tangential velocities are derived from the potentials on the boundaries. 
The bubble volume and, depending on the simulation inputs, the cur-

vature of the fluid-fluid interface are also calculated at this stage. The 
potentials 𝝓b and 𝑭 are then updated in time with the equations (8) and 
(9), and the position of the nodes with the equation (10). Depending on 
the smoothing frequency chosen by the user, the boundaries can be fil-

tered to avoid the onset of numerical instabilities. Finally, the bubble 
and fluid-fluid interface surfaces are re-meshed to avoid a clustering of 
the node points. The calculation is performed until the originally spheri-

cal bubble becomes toroidal or splits into two or more separate bubbles. 
At each time step, the position, potential value, and normal velocity of 
each node on the bubble and fluid-fluid surface are stored in an out-

put file for post-processing. The volume evolution of the bubble is also 
stored.

After this simulation, the user can choose to calculate the velocity 
and pressure fields at any of the calculated time steps. This is done in 
the secondary processing stage with a Python script that uses the output 
7

file of the main processing stage as input for the new calculation.
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5. Validation

5.1. Comparison with analytical solutions

We begin by assessing the validity and accuracy of the numerical 
implementation described above by comparing the BIM calculations 
with analytical solutions of a spherically oscillating bubble in an infi-

nite medium. In this configuration, the fluid-fluid interface should have 
no influence on the bubble dynamics. This is achieved by setting the 
densities on both sides of the interface equal, i.e. 𝛼 = 1. The effects of 
gravity are also neglected. The bubbles considered in this section are 
discretized in 40 elements and are located at a distance 𝛾 = 1 from the 
fluid-fluid interface, which itself is discretized in 60 elements. A value 
of Δ𝜃 = 0.01 is chosen for the time steps and smoothing is applied ev-

ery eight time steps. Finally, unless otherwise stated, the second-order 
time integration scheme is used.

5.1.1. Rayleigh bubble
We first consider the dynamics of a vapor bubble. Given the ini-

tial conditions assumed for such a bubble, the time evolution of its 
radius is expected to follow that predicted by the Rayleigh model, mir-

rored across the axis at 𝑡 = 𝑡R ≈ 0.915. This evolution is illustrated in 
Fig. 4(a) which demonstrates a very good agreement between the ra-

dius calculated with the BIM simulation and the radius obtained by 
solving the Rayleigh equation. Moreover, an originally spherical bub-

ble should remain spherical in an infinite medium. Thus, any deviation 
from sphericity is a consequence of numerical noise. We assess this 
deviation with the following formula which computes the maximum 
difference between the radius at a node and the averaged radius of all 
nodes [58],

𝑑sph =max
(|𝑅𝑖 −𝑅avg|

𝑅avg

)
(36)

where 𝑅𝑖 =
√

𝑟2
𝑖
+ (𝑧𝑖 + 𝛾)2 is the distance between the bubble center, 

located at 𝛾 , and the 𝑖𝑡ℎ node on the bubble surface and 𝑅avg represents 
this same distance but averaged over all the nodes. Note that 𝑧𝑖 < 0. We 
apply equation (36) at every time step of the simulation, the results of 
which are shown in Fig. 4(b). The maximum deviation from sphericity 
remains below a tenth of a percent, indicative of a bubble retaining a 
very high sphericity throughout its lifetime. We nevertheless note that 
the deviation increases at the end of the collapse, i.e. around 𝑡 ≈ 1.83, 
where the radius of the bubble tends towards zero. This is likely because 
the nodes that make up the bubble surface become very close to each 
other, leading to inaccuracies and instabilities in the calculation of the 
boundary integrals [58].

Fig. 5(a) shows the BIM computation of the velocity and pressure 
fields in the liquid phase associated with the same bubble at time 
𝑡 = 1.815. The analytical solutions for the radial distribution the liquid 
velocity and pressure fields induced by a collapsing Rayleigh bubble are 
known and can be derived from the liquid continuity and momentum 
equations. These are expressed as follows in dimensionless form for a 
bubble whose maximum radius is unity,

𝑈 (𝑟, 𝑡) =
√

2
3

( 1
𝑅3 − 1

)
𝑅2

𝑟2
∀ 𝑟 ≥𝑅 (37)

𝑃 (𝑟, 𝑡) = 1 + 𝑅

3𝑟

( 1
𝑅3 − 4

)
− 𝑅4

3𝑟4
( 1
𝑅3 − 1

)
∀ 𝑟 ≥𝑅 (38)

where 𝑅 =𝑅(𝑡) denotes the bubble radius evolution as predicted by the 
Rayleigh model and 𝑟 is the distance from the bubble center. Fig. 5(a) 
shows the BIM computation of the velocity and pressure field associated 
with a collapsing bubble at time 𝑡 = 1.815. The computed velocity and 
pressure radial evolution are compared to the analytical solutions to 
equations (37) and (38) in Figs. 5(b) and 5(c), respectively. For both 

quantities, we observe an excellent agreement.
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Fig. 4. (a) Temporal evolution of the vapor bubble averaged radius. The circular markers represent the solution of the BIM simulation and the solid line shows the 
solution of the Rayleigh model mirrored across the axis at 𝑡 = 𝑡R ≈ 0.915, indicated with a dashed line. (b) Temporal evolution of the maximum deviation from the 
averaged radius for the bubble obtained with the BIM simulation. The following additional dimensionless parameters are considered in the simulation: 𝜖 = 0, 𝛿 = 0
and 𝛼 = 1.

Fig. 5. (a) Computed pressure (left) and velocity (right) fields induced by a collapsing vapor bubble at time 𝑡 = 1.815. The black line around 𝑧 = 0 indicates the 
position of the fluid-fluid interface and the gray zone at 𝑧 > 0 represents the second fluid for which the flow field quantities are not computed. (b) Comparison of 
the computed and analytical velocity fields along the radial direction taking 𝑧 = −1. (c) Comparison of the computed and analytical pressure fields along the radial 

 in t
direction taking 𝑧 = −1. The following dimensionless parameters are considered

5.1.2. Rayleigh-Plesset bubble
We now consider a bubble filled with liquid vapor and non-

condensable gas. Fig. 6(a) shows the 3 first oscillations of a bubble 
with strength parameter 𝜖 = 100 and specific heat ratio 𝑘 = 1.4. The 
BIM simulation is compared to the solution of the Rayleigh-Plesset 
equation (see equation (25)) and we find a remarkable agreement. On 
Fig. 6(b), we use equation (36) to assess the maximum deviation from 
sphericity of a bubble with strength parameter 𝜖 = 100 and another one 
with 𝜖 = 1000. Overall, both bubbles exhibit excellent spherical sym-

metry with an average maximum deviation over the 3 first oscillation 
of 0.3% for the bubble with 𝜖 = 100 and 0.37% for the bubble with 
𝜖 = 1000. However, we observe spikes in the maximum deviation from 
sphericity when the bubbles reach their respective minimum volumes 
(at 𝑡 ≈ 1.94, 3.89, 5.83 for the bubble with 𝜖 = 100 and 𝑡 ≈ 1.87, 3.74, 5.61
for the bubble 𝜖 = 1000). These are attributed to the nodes on the bub-

ble surface being very close to each other at these instants, which can 
8

lead to errors in the evaluation of the boundary integrals [58]. Smooth-
he simulation: 𝜖 = 0, 𝛿 = 0 and 𝛼 = 1 and 𝛾 = 1.

ing prevents these instabilities from growing after the first and second 
collapse and the simulation remains stable. Nevertheless, after the third 
bubble collapse, the growing and accumulated numerical instabilities 
are such that both simulations diverge despite the surface smoothing.

Although this surface smoothing can prevent the onset of instabili-

ties, it can also lead to undesirable energy and/or mass variations. The 
re-meshing of the interface nodes as well as an inappropriate temporal 
integration scheme and time step size may also contribute to this un-

desirable effect. We therefore evaluate the accuracy of BIMBAMBUM in 
this respect by considering the first two oscillation periods of a spher-

ical, non-buoyant bubble filled with liquid vapor and non-condensable 
gas and analyze the associated energy conservation. In this configu-

ration, the total energy of the bubble system consists of the potential 
energy and the kinetic energy, 𝐸𝑡𝑜𝑡 = 𝐸𝑝 + 𝐸𝑘. The definition of these 
quantities can be found in the work of Wang [61]. Considering the non-

viscous and incompressible nature of the problem, the total energy must 

be conserved throughout the bubble lifetime, and any change in the lat-
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Fig. 6. (a) Temporal evolution of the bubble averaged radius. The bubble under consideration is filled with vapor and non-condensable gas, with a strength parameter 
𝜖 = 100. The circular markers represent the solution of the BIM simulation and the solid lines show the solution of the Rayleigh-Plesset model. (b) Temporal evolution 
of the maximum deviation from the averaged radius for bubbles obtained with the BIM simulation with two distinct strength parameters: 𝜖 = 100 and 𝜖 = 1000. The 
peaks in the maximum deviation occur when the bubbles reach their respective minimum radius. The following additional dimensionless parameters are considered 
in the simulation: 𝛿 = 0 and 𝛼 = 1 and 𝛾 = 1.0.

Fig. 7. (a) and (b) Temporal evolution of the potential and kinetic energy of a spherical bubble filled with vapor and non-condensable gas, computed with the 
first-order (RK1) and second-order (RK2) time integration schemes (strength parameter 𝜖 = 100 and time step constant Δ𝜃 = 0.01). The markers indicate the solution 
of the BIM simulations and the lines show solutions obtained by solving the Rayleigh-Plesset equation for the bubble dynamics over its first two oscillation periods. 
(c) and (d) Variation of the bubble total energy for different Δ𝜃 values, computed with the first-order (RK1) and second-order (RK2) time integration schemes. 
A non-zero total energy variation indicates inaccuracies in the numerical scheme.
ter would be due to numerical errors. Figs. 7(a) and 7(b) show the 
evolution of the potential and kinetic energy of such a bubble with 
the strength parameter 𝜖 = 100, whose dynamics were calculated us-

ing the first (RK1) and second-order (RK2) time integration schemes, 
respectively. The results of the BIM simulations are compared to the en-
9

ergies obtained by solving the Rayleigh-Plesset equation for the bubble 
dynamics. We observe an excellent agreement between the theoretical 
and second-order BIM solution, but discrepancies when the first-order 
scheme is used. To quantify those discrepancies, we show in Figs. 7(c) 
and 7(d) the relative change in total energy for different values of the 
time constant Δ𝜃 (see equation (29)) and the two different temporal 

integration schemes. It is evident that the use of the first-order tempo-
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Fig. 8. Comparison between the experimental and numerical results for a vapor cavitation bubble in the vicinity of a rigid boundary at 𝛾 = 0.95. The simulation 
is superposed on the left halve of the frames. The experimental image sequence highlights the formation of the bubble’s micro-jet. The laser-induced bubble has 
a maximum radius 𝑅m ≈ 4.4 mm and the image sequence is initiated 832 μs after the bubble generation. The times of the numerical simulation are shifted by 
25 μs with respect to the experiment so that the spatiotemporal evolution of the bubbles may be compared. The following additional dimensionless parameters are 
considered in the simulation: 𝛿 = 0, 𝛼 = 0.001 and 𝜖 = 0. The white line indicates the 2 mm scale.
ral integration scheme with large Δ𝜃 values does not conserve the total 
energy and leads to unacceptable results, especially during the second 
oscillation period. On the other hand, the second-order temporal inte-

gration scheme provides accurate results with little change in the total 
energy of the bubble system. Care must therefore be taken when choos-

ing these simulation parameters.

5.2. Comparison with experiments and other numerical implementations

5.2.1. Rigid boundary
The dynamics of a cavitation bubble near a rigid boundary is sub-

stantially different to that of an unbounded bubble. Such a bubble 
exhibits an aspherical collapse together with the formation of a liquid 
micro-jet directed toward the rigid boundary. We test the BIM solver 
against the experiment of a laser-induced cavitation bubbles collaps-

ing in the vicinity of a thick aluminum plate. Details pertaining to the 
experimental setup can be found in the references [42,43]. The laser-

induced bubble has a maximum radius 𝑅m ≈ 4.4 mm and is generated 
at a stand-off distance 𝛾 ≈ 0.95. In the simulation, we consider a vapor 
bubble which we discretize with 𝑁𝑏 = 80 elements. Later, we will jus-

tify this choice of discretization. The fluid-fluid interface is discretized 
with 𝑁𝑠 = 60 elements. In accordance with the work of Klaseboer and 
Khoo [36], we moreover use 𝛼 = 0.001 to model the rigid boundary.

Fig. 8 shows an image sequence that focuses on the formation of the 
micro-jet and its displacement within the bubble. The sequence is initi-

ated 832 μs after the bubble generation and exhibits the following 70 μs 
of its lifetime at the end of which the micro-jet impacts onto the bub-

ble’s lower hemisphere. The simulations overestimate the instant of jet 
impact by roughly 25 μs, which corresponds to a relative error of 2.8% 
with respect to the experiment. Therefore, to compare the spatiotempo-

ral evolution of the two bubbles profile, we superimpose the simulations 
results on the left halves of the frames, shifted by 25 μs. Apart from the 
temporal shift, we find a close qualitative agreement between the two 
dynamics and conclude that the simulation reproduces the experiment 
quite well despite the simplifying assumptions of the physical model, 
such as the exclusion of compressibility or viscosity effects.

The discretization of the boundaries of the numerical domain can 
significantly influence the accuracy of the solver. In the case of a bubble 
near a rigid boundary, this is especially true for the choice of elements 
10

on the bubble surface, 𝑁𝑏. In Fig. 9, we perform a convergence study 
to assess the influence of this parameter on the numerical solution. 
Fig. 9(a) shows the bubble profile at dimensionless time 𝑡 = 2.0864 for 
different values of 𝑁𝑏. There is a notable difference in the position of 
the micro-jet tip, suggesting that the timing of the jet impact on the 
lower bubble hemisphere and its velocity may be miscalculated if an 
inadequate discretization is employed. The timing of the jet impact for 
the different discretizations is shown in Fig. 9(b). The figure illustrates a 
clear convergence of this feature of the bubble dynamics where the rel-

ative difference between the 𝑁𝑏 = 80 and 𝑁𝑏 = 100 disctretizations is 
less than 0.02%. Increasing the value of 𝑁𝑏, however, is also associated 
with an increased computational cost, which we depict in Fig. 9(b). The 
results, which were performed on a single core of a laptop computer 
(the processor of the computer is an Apple M1 chip), show that the cal-

culation time increases from about 4 minutes for 𝑁𝑏 = 20 to about 17 
minutes for 𝑁𝑏 = 100. Nevertheless, these calculation times can be sig-

nificantly reduced if the user executes the code in parallel through the 
OpenMP library [48], as can be seen in Fig. 9(c), where the execution 
of the solver on 8 threads can reduce the computation time by a fac-

tor of 7.3 (these tests were conducted on a computer equipped with an 
Intel Xeon E5-2630v4 processor).

5.2.2. Free surface
Cavitation bubbles oscillating near a free surface also exhibit a 

micro-jet during their collapse, which differs from the jet formed near a 
rigid wall mainly in that it is directed away from the adjacent boundary. 
Depending on the distance, the free surface can also deform drastically 
resulting in the formation of liquid spikes.

We compare the prediction of the BIM to the experiment of a laser-

induced cavitation bubble with 𝑅m ≈ 2.4 mm generated at 𝛾 ≈ 0.75
from a water-air interface. We consider a vapor bubble in the simula-

tion and discretize both the fluid-fluid interface and the bubble with 
80 elements. To reproduce the density jump of the experiment, we use 
𝛼 = 1000. A direct comparison between the experiment and the simula-

tion is provided in Fig. 10, where the first frame is taken 22 μs after the 
bubble generation. Frames 1–4 depict the bubble growth and frames 
5–8 its collapse until the micro-jets impact on the bubble lower hemi-

sphere. We observe an excellent agreement between the spatiotemporal 
evolution the bubble exterior shape, although the simulation underes-

timates the time to jet impact by 15 μs resulting in a relative error of 

4.5% with respect to the experiment (frame 8).
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Fig. 9. (a) Convergence study of the bubble profile near a rigid boundary at 𝛾 = 0.95 at dimensionless time 𝑡 = 2.0864 for different discretizations 𝑁𝑏 and (b) 
convergence study of the dimensionless time of micro-jet impact on the bubble’s lower hemisphere for the different discretizations, with the associated computation 
time. The simulations were performed on a single core of a laptop computer (the processor of the computer is an Apple M1 chip). (c) Speedup of the computation 
time relative to serial processing achieved through parallelization of the performance-critical tasks with the OpenMP library [48]. The speedup tests were conducted 
on a computer equipped with a 10-core Intel Xeon E5-2630v4 processor and for a bubble discretized in 𝑁𝑏 = 80 elements. A linear speedup curve is included for 
reference.

Fig. 10. Comparison between the experimental and numerical results for a vapor cavitation bubble in the vicinity of a free surface at 𝛾 = 0.75. The simulation is 
superposed on the left halve of the frames. The experimental image sequence depicts the growth (frames 1–4) and collapse (frames 5–8) of a laser-induced bubble 
with 𝑅m ≈ 2.4 mm. The timings of the numerical simulation and the experiment are identical for frames 1–7, but are shifted by 15 μs on frame 8 to allow comparison 
of the bubble profiles just before the micro-jet impact. The following additional dimensionless parameters are considered in the simulation: 𝛿 = 0, 𝛼 = 1000 and 
11

𝜖 = 0. The white line indicates the 2 mm scale.



Computer Physics Communications 299 (2024) 109150A.B. Sieber, H.H. Sieber, D.B. Preso et al.

Fig. 11. Comparison between the current numerical results and other numerical results. (a) Comparison with the VOF simulation of Li et al. [62] (right halves of the 
frames) for a bubble filled with vapor and non-condensable gas near a free surface at 𝛾 = 0.77 at two dimensionless times. The following additional dimensionless 
parameters are considered in the simulation: 𝛼 = 1000, 𝛿 = 0.0018, 𝜖 = 115 and 𝑘 = 1.25. (b) Comparison with the BIM simulation of Robinson et al. [33] (right 
halves of the frames) for a vapor cavitation bubble in the vicinity of a free surface at 𝛾 = 0.56 at two dimensionless times. The following additional dimensionless 
parameters are considered in the simulation: 𝛼 = 1000 and 𝛿 = 0.038.
A direct evaluation of the micro-jet evolution within the bubble as 
well as the formation of the liquid spike predicted by the BIM is not 
possible due to the illumination technique employed in the experiment. 
Instead, we evaluate the validity of these features of the bubble by 
comparing our implementation of the BIM solver with other numeri-

cal results of bubbles oscillating near a free surface. First, we compare 
our BIM implementation with a compressible VOF (Volume of Fluid) 
simulation performed by Li et al. [62]. The authors considered a bub-

ble located at a stand-off distance 𝛾 = 0.77 with a maximum reference 
radius of 𝑅m = 18.2 mm. Their bubble is filled with gas with the spe-

cific heat ratio 𝑘 = 1.25, is located in an environment with the pressure 
𝑝∞ = 101325 Pa and the initial pressure inside the bubble is set to 
115 × 𝑝∞. As such, we choose the following parameters for our sim-

ulation: 𝛿 = 0.0018, 𝜖 = 115 and 𝑘 = 1.25. The comparison of the two 
numerical simulations is illustrated on Fig. 11(a) for two dimensionless 
times: 𝑡 = 0.712 and 𝑡 = 1.396. The left halves of the frames show re-

sults from BIMBAMBUM and the right halves show the bubble profile 
extracted from the VOF simulation of Li et al. [62]. Both simulation re-

sults exhibit a good spatio-temporal agreement, which shows that our 
solver performs well compared to more elaborated numerical models. 
We then compare our BIM solver with that of Robinson et al. [33] for 
the case of a vapor bubble oscillating near a free surface at 𝛾 = 0.56. 
The reference experimental bubble on which these authors simulation 
is based reaches a maximum radius 𝑅m = 17.9 mm in an environment 
with pressure 𝑝∞ = 6930 Pa [63]. We therefore set 𝛿 = 0.038. The com-

parison of the two numerical simulations is illustrated on Fig. 11(b) for 
two dimensionless times: 𝑡 = 0.495 and 𝑡 = 1.022. Again, the left halves 
of the frames show the current numerical implementation and the right 
halves show the bubble profile extracted from the BIM implementation 
of Robinson et al. [33]. Both bubbles display a very similar appearance, 
with the most notable difference being the position of the micro-jet 
tip and the height of the liquid spike. This difference, however small, 
could be explained by the use of different temporal schemes, spatial 
discretization or solution procedure.

6. Conclusion

We have presented the detailed implementation of BIMBAMBUM, 
a numerical flow solver designed to model the behavior of cavita-

tion bubbles near an interface between two fluids. By adjusting the 
density ratio between the two fluids, different types of interfaces can 
be simulated, including rigid boundaries or free surfaces. In addition, 
a membrane-like elastic behavior of the fluid-fluid interface can be 
modeled through the inclusion of interfacial tension. Both fluids must 
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satisfy Laplace’s equation, so a boundary integral method can be used 
to solve the flow problem by only discretizing the boundaries of the 
numerical domain.

We have validated the current implementation of the solver using 
theoretical solutions for the dynamics of spherical bubbles, experimen-

tal observations of cavitation bubbles collapsing near a rigid boundary 
and a free surface, and results from other simulation softwares that 
model the behavior of bubbles near free surfaces.
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Appendix A. Polynomial approximation of the complete elliptic 
integrals of the first and second kind

The complete elliptic integrals of the first and second kind, 𝐾(𝑘) and 
𝐸(𝑘), respectively, are approximated with 12th order polynomials,

𝐾(𝑘) ≈ 𝑃 (1 − 𝑘2) −𝑄(1 − 𝑘2) log(1 − 𝑘2) (A.1)
𝐸(𝑘) ≈𝑅(1 − 𝑘2) −𝑆(1 − 𝑘2) log(1 − 𝑘2) (A.2)
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The polynomials 𝑃 , 𝑄, 𝑅 and 𝑆 are expressed as 𝑃 (𝑥) =
∑12

𝑖=0 𝑝𝑖𝑥
𝑖, 

𝑄(𝑥) =
∑12

𝑖=0 𝑞𝑖𝑥
𝑖, 𝑅(𝑥) =

∑12
𝑖=0 𝑟𝑖𝑥

𝑖 and 𝑆(𝑥) =
∑12

𝑖=0 𝑠𝑖𝑥
𝑖, respectively, 

and the associated tabulated coefficients are provided in Tables A.1

and A.2.

Table A.1

Tabulated polynomial coefficients for the approximation of the complete elliptic 
integral of the first kind.

𝑝0 1.38629436111989061883446424 𝑞0 0.50000000000000000000000000

𝑝1 0.09657359027997265470861606 𝑞1 0.12500000000000000000000000

𝑝2 0.03088514453248461827359656 𝑞2 0.07031250000000000000000000

𝑝3 0.01493760036978098687568492 𝑞3 0.04882812499999999987824278

𝑝4 0.00876631219862835129486730 𝑞4 0.03738403320299965249042380

𝑝5 0.00575489991651211831713086 𝑞5 0.03028106526770420433989236

𝑝6 0.00406819648916235957842217 𝑞6 0.02544378896278751497219371

𝑝7 0.00316713448114840176286619 𝑞7 0.02189639358590439516170295

𝑝8 0.00385918735043451810914414 𝑞8 0.01859695172048566289195740

𝑝9 0.00697248927202287553710545 𝑞9 0.01326644642298080552433290

𝑝10 0.00700030498423661873526199 𝑞10 0.00572150665129845121056799

𝑝11 0.00235535576237663133325157 𝑞11 0.00098749488654029748460148

𝑝12 0.00016175003824586587091022 𝑞12 0.00003519107157048046293917

Table A.2

Tabulated polynomial coefficients for the approximation of the complete elliptic 
integral of the second kind.

𝑟0 1.00000000000000000000000000 𝑠0 0.00000000000000000000000000

𝑟1 0.44314718055994530941723212 𝑠1 0.25000000000000000000000000

𝑟2 0.05680519270997949103146207 𝑠2 0.09375000000000000000000000

𝑟3 0.02183137044373718396138156 𝑠3 0.05859374999999999987183993

𝑟4 0.01154452141883701103542361 𝑠4 0.04272460937486806132127659

𝑟5 0.00714201318820502987066619 𝑠5 0.03364562817049392175150879

𝑟6 0.00485846659881274463594893 𝑠6 0.02775688834606027631579899

𝑟7 0.00366680346394393045387665 𝑠7 0.02358179637126350018588892

𝑟8 0.00426469424891906813517382 𝑠8 0.01984699815591322481619125

𝑟9 0.00745727014212456596918847 𝑠9 0.01407783193717112862114295

𝑟10 0.00741871341163044927753980 𝑠10 0.00605330008329266855825149

𝑟11 0.00248933547336496339904368 𝑠11 0.00104321202098794509265719

𝑟12 0.00017076513539687204438478 𝑠12 0.00003714782778910401536553
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