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ABSTRACT
In 2020, Covid-19-related mobility restrictions resulted in the most extensive human-
made air-quality changes ever recorded. The changes in mobility are quantified in terms 
of outdoor air pollution (concentrations of PM2.5 and NO2) and the associated health 
impacts in four UK cities (Greater London, Cardiff, Edinburgh and Belfast). After applying 
a weather-corrected machine learning (ML) technique, all four cities show NO2 and PM2.5 
concentration anomalies in 2020 when compared with the ML-predicted values for that 
year. The NO2 anomalies are –21% for Greater London, –19% for Cardiff, –27% for Belfast 
and –41% for Edinburgh. The PM2.5 anomalies are 7% for Greater London, –1% for Cardiff, 
–15% for Edinburgh, –14% for Belfast. All the negative anomalies, which indicate air 
pollution at a lower level than expected from the weather conditions, are attributable 
to the mobility restrictions imposed by the Covid-19 lockdowns. Spearman rank-order 
correlations show a significant correlation between the lowering of NO2 levels and 
reduction in public transport (p < 0.05) and driving (p < 0.05), which is associated with a 
decline in NO2-attributable mortality. These positive effects of the mobility restrictions on 
public health can be used to evaluate policies for improved outdoor air quality.

POLICY RELEVANCE

Finding the means to curb air pollution is very important for public health. Empirical 
evidence at a city scale reveals significant correlations between the reduction in vehicular 
transport and in ambient NO2 concentrations. The results provide justification for city-level 
initiatives to reduce vehicular traffic. Well-designed and effective policy interventions (e.g. 
the promotion of walking and cycling, remote working, local availability of services) can 
substantially reduce long-term air pollution and have positive health impacts.
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1. INTRODUCTION
The Covid-19-related nationwide restriction to human mobility, including two major lockdowns, in 
the UK in 2020 makes it possible, for the first time, to assess the effects of such great changes in 
mobility on air quality (Higham et al. 2020; Monks & Williams 2020; Vito et al. 2020; Thomas et al. 
2021). Various measures to control air pollution emissions over recent decades have improved the 
general air quality, and associated health impacts in the UK (Carnell et al. 2019), so that in much 
of the UK the air quality meets the minimum European Union standards that have been in place 
since 2008 (Saunders et al. 2012). However, these standards are not satisfied for all pollutants. 
For example, only about one-quarter of the 43 zones into which the UK is divided for the purpose 
of air quality assessment meets the minimum standards for nitrogen dioxide (NO2) (DEFRA 2020).

Poor air quality has negative effects on human health, including worsening respiratory and 
cardiovascular problems many of which are fatal (Zivin & Neidell 2018; Quarmby et al. 2019; WHO 
2013a, 2013b). It is estimated that millions of people die every year from illnesses that are largely 
due to air pollution. For example, air pollution was the fourth leading risk factor for mortality 
worldwide in 2019, with ambient air pollution contributing to 6.67 million deaths globally (Health 
Effects Institute 2020). The European Environmental Agency (EEA) estimates that in 2014 some 
78,000 premature deaths in 41 European countries could be attributed to excessive exposure to 
NO2, and as many as 428,000 to exposure to particulate matter PM2.5 (EEA 2020). Air pollution 
of various types also contributes to greenhouse effects and thus to global warming (Seinfeld & 
Pandis 2016; Smedley 2019). Harmful air pollutants include particulate matter (PM2.5 and PM10), 
NO2, nitric oxide (NO), carbon monoxide (CO), ozone (O3), lead (Pb) and benzene (C6H6). These 
pollutants are normally most common in urban areas, particularly in those with heavy traffic or 
industry, and also contribute to indoor air pollution (Ferguson et al. 2021). In the UK, the pollutants 
that are of most concern to health for the general population are PM2.5, NO2 and O3.

In view of the high number of attributed premature deaths and numerous non-fatal health issues 
related to these pollutants, it is of great importance to assess to what extent changes in human 
mobility (e.g. the use of cars, public transport and active travel) could reduce their concentrations 
in the air. The pollutants have many sources, but among the important ones are generation 
through human mobility, particularly fossil fuel-powered vehicles. The well-monitored Covid-
19-related restrictions in human mobility in 2020 (particularly for driving and public transport) 
provide important information on the impact of mobility changes on the concentrations of these 
air pollutants.

During the Covid-19 pandemic, there have been extensive human mobility restrictions in many 
countries, including the UK. This paper focuses on changes in the concentration of two main air 
pollutants during the Covid-19-related human mobility restrictions in the UK for the entire year 
2020, including the two lockdowns in 2020. The selected pollutants are NO2 and PM2.5. Both have 
adverse effects on human health, are strongly related to transport emissions (particularly NO2) 
and may be regarded as representative of a larger group of pollutants. In the UK, exposure to PM2.5 
is estimated to lead to 29,000 excess deaths per year (COMEAP 2010); when including mortality 
from NO2, this figure is 34,000 deaths per year (RCP 2016).

The principal aim of this study is to quantify the change in ambient pollutant concentrations (NO2 
and PM2.5) during the Covid-19 human mobility restrictions (using a weather-corrected machine 
learning (ML) technique), with a focus on the above four cities as case studies. For the detailed 
analysis, four major cities, namely Greater London, Cardiff, Edinburgh and Belfast, were selected. 
The analysis should provide a better understanding of how changes in human mobility-related 
activities in each city affect air quality. The year 2020 includes two major lockdowns (in spring 
and autumn). For comparison, this study includes the winter months January–February before 
any restrictions on human mobility were in place. Another aim is to explore the implications of 
the results for human health in urban areas, and to make approximate estimates of the fraction 
of annual all-cause mortality that can be associated with each pollutant for 2020, in comparison 
with preceding years.

https://doi.org/10.5334/bc.124
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2. DATA PRE-PROCESSING AND METHODS
2.1 MOBILITY DATA

Data on human mobility in 2020 were compiled and analysed using publicly available smartphone 
data from Apple (https://covid19.apple.com/mobility). The mobility data are divided into the following 
categories based on means of transport: walking, driving (e.g. cars and lorries) and public transport 
(e.g. buses, passenger trains and underground). Apple’s mobility data are based on location data 
of Apple’s map services and can be used to help mitigate the spread of Covid-19 and provide 
information on the effects of the various restrictions and lockdowns on human mobility. The data 
derive from the number of requests by users for directions and are given for each day. All the 
data are shared on an aggregated level; there is no maintained and stored history of the mobility 
behaviour of individual users.

The mobility data through 2020 are compared with a baseline period, which is based on the 
requests by users for directions on 13 January 2020 and given in percentages. This was selected 
as a reference date by Apple partly because two weeks later, on 30 January, the World Health 
Organisation (WHO) classified Covid-19 as a ‘Public Health Emergency of International Concern’ 
(PHEIC). In the Apple data, days are defined as midnight to midnight using Pacific time.

As indicated, the mobility data as provided by Apple are normalised by a single day, namely 
Monday, 13 January, the first day in the dataset. However, nearly all the following days until mid-
March have higher mobility data recorded. Thus, Monday, 13 January is statistically the day with 
the lowest mobility (Figure 1). This causes some bias in the mobility data. To remove this bias, the 
data are normalised over the entire period before the effects of Covid-19 restrictions are considered 
in the UK mobility data. This period is defined from Monday, 13 January to Sunday, 14 March. While 
the official lockdown in the UK only started on 23 March, a steep decrease in mobility is visible in 
the data from 14 March following lockdown measures in several European countries. To obtain 
mobility-reduction data with the pre-Covid mean at zero, the normalisation is performed as:
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where mnorm,i,d denotes the normalised mobility reduction for transport means i (driving, walking, 
public transport) on day d; m0,i,d is the original mobility data (with m0,i,0 = 1 on 13 January); and mpc,i 
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where PC denotes the pre-Covid period from 13 January to 14 March, with NPC = 62 days. 
The mobility data obtained after applying the above pre-processing steps in Python is shown in 
Figure 2.

Figure 1: Bias in mobility data 
due to normalisation by a 
single day (provided by Apple), 
namely Monday, 13 January, 
the first day in the dataset.

Source: https://covid19.apple.
com/mobility/.

https://covid19.apple.com/mobility
https://covid19.apple.com/mobility/
https://covid19.apple.com/mobility/
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2.2 AIR POLLUTANTS

At some sites in the UK, the data collection goes back to 1972 with high-resolution hourly 
information. High levels of data availability mean that it is easy to compare the data 
from 2020 with earlier dates from the same sites, as is done here, where 2020 data are 
compared with those of each of 2010–19, inclusive. The Automatic Urban and Rural Network 
(AURN) measurements meet the standards set by the European Ambient Air Quality Directive 
2008/50/EC (EU, 2008). AURN measures many pollutants including NO2 and PM2.5, which are the 
focus in the present study.

Figure 2: Changes in direction 
requests (driving, public 
transport, walking) from 13 
January to the end of December 
2020 (%).

Note: The mobility changes 
for lockdown periods (first and 
second) are shown in dark grey. 
The Apple mobility data are 
normalised by taking 62 days 
from 13 January to 14 March as 
the baseline.

Source: https://covid19.apple.
com/mobility/.

https://covid19.apple.com/mobility/
https://covid19.apple.com/mobility/
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DEFRA (UK Air) classifies the monitoring sites into several different categories depending on their 
location. These categories are as follows: rural background, suburban background, suburban 
industrial, urban background, urban industrial and urban traffic. Urban traffic refers primarily 
to stations located close to roadsides. For the four cities, the number of stations used for the 
daily data is as follows: London, 16; Cardiff, two; Edinburgh, two; and Belfast, two. Of the London 
stations, 13 stations measure NO2 and 11 measure PM2.5. For the yearly averages as part of the 
health impact assessment, however, only stations in the category of urban background are used, 
as these are more representative of population exposure. In this category there are five stations 
for London, one for Cardiff, one for Edinburgh and one for Belfast.

2.3 METEOROLOGICAL DATA

The compiled daily meteorological data for the four cities are air temperature, precipitation and 
wind speed. These data were compiled for each day of 2020, as well as for the daily averages of 
the period 2010–19. The results are presented in Figures S1–S3 in Appendix A in the supplemental 
data online. The data used are from Meteostat, which provides access to meteorological data 
through a JavaScript Object Notation (JSON) Application Programming Interface (API) and a 
bulk data interface (https://meteostat.net/en/station). The database contains data from thousands 
of weather stations worldwide, which regularly report observations and statistics to Meteostat. 
Meteostat uses its own climate model to project observations and statistics of single weather 
stations on any geographical point. Therefore, matching weather stations around a reference point 
are weighted based on their three-dimensional distance and adjusted to the respective altitude.

2.4 METHODS
2.4.1 Time-series analysis

While there were suggestions to the public to reduce unnecessary travel earlier in 2020, the first 
formal lockdown due to Covid-19 in the UK was on 23 March 2020 (the ‘stay at home’ policy). 
This lockdown was nationwide and occurred at the same date and was of equal duration in all 
four cities, namely from 23 March to 10 May (when the ‘stay at home’ policy changed to the ‘stay 
alert’ policy). By contrast, the second lockdown was not at the same time in all the cities, as a tier 
system was introduced. In Greater London it was from 5 November to 2 December, in Cardiff from 
23 October to 9 November, in Edinburgh from 20 November to 11 December, and in Belfast from 
27 November to 11 December. Thus, not only were the second lockdowns at different times but 
also of different durations in these cities.

To analyse the temporal variations of air pollutants during the mobility restrictions in the four cities, 
daily mean concentrations of NO2 and PM2.5 were obtained for each day of the year in 2020 as well 
as for each day of the period 2010–19. To estimate the relative change (given as percentage), the 
two following items were calculated: (1) the difference between daily average pollutant levels for 
January–December 2020 and the average of those for a 10-year baseline (2010–19); and (2) the 
difference between daily average pollutant levels for the first lockdown (23 March–10 May; the 
same for all cities) and the second lockdown (varies between cities) for 2020 and the average of 
those for the 10-year baseline (2010–19). Data pre-processing for both daily mean concentrations 
data and daily meteorological data was made using Python.

2.4.2 Machine learning (ML) weather correction

To consider the effects of meteorological variability on the measured air pollution, two ML 
algorithms are used—linear regression (LR) and gradient boosting regression (GBR)—to predict 
what air pollutant concentrations would be expected in the absence of any mobility restrictions 
in 2020. GBR, a popular ML algorithm, can be used for both regression and classification 
problems. The objective of any supervised learning algorithm such as GBR is to define a loss 
function and minimise it (Natekin & Knoll 2013). The mean squared error (MSE) is an example 
of loss function. Whereas random forests (RFs) build an ensemble of deep independent 
trees (using bagging technique), GBR builds an ensemble of shallow trees in a sequence, 

https://meteostat.net/en/station
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with each tree-learning improving the previous one (using a boosting technique). Both ML 
algorithms were trained on five-year historical data (daily air pollutant concentrations and 
daily metrological data) for the cities (consistent datasets for all cities is available only for the 
past five years). For Cardiff, however, temperature was the only meteorological data available. 
The following features in the training process are considered: (1) yearly and daily values for 
air pollutant concentrations (for 2015–19) to account for weekly cycles as well as for long-
term trends; (2) temperature, precipitation and wind speed (for 2015–19); and (3) temperature, 
precipitation and wind speed offset by three days. The offset meteorological features allow for 
some time lags between weather conditions and pollutant concentrations to be modelled. All 
variables show significant correlations with pollutant concentrations. The predicted air pollutant 
concentrations are in μg m–3 and relative change in percentages. The feature importance for 
the four cities and for NO2 and PM2.5 are shown in Appendix B in the supplemental data online  
(Figure S4).

2.4.3 Spearman rank-order correlation

To obtain the correlations between changes in mobility (vehicle driving and public transport 
use) and predicted air pollutant levels, the procedure was as follows. First, the daily air pollutant 
concentrations (NO2 and PM2.5) were aggregated to weekly means so as to smooth the data. The 
smoothing makes the long-term trends in the datasets clearer. Second, a Spearman rank-order 
correlation was used to assess the monotonic relationships (linear and non-linear) (e.g. Upton & 
Cook 1996; Corder & Foreman 2014). The statistical distributions of the changes in concentrations 
of pollutants and the changes in human mobility are not assumed to be normally distributed. Thus, 
parametric tests—where the parameters refer to the population of normal distributions—are not 
suitable, hence the use of non-parametric tests (distribution-free tests) such as Spearman’s (cf. 
Shaw & Wheeler 1985; Upton & Cook 1996).

3. RESULTS
3.1 CHANGES IN MOBILITY

Driving, public transport and walking all show a sharp and broadly similar decrease during the first 
lockdown in the four cities. The maximum measured change (Figure 2; negative values indicate a 
decrease) was in public transport, –92% (Edinburgh), followed closely by Greater London (–90%) 
and Cardiff (–89%), whereas the maximum changes in walking was –87% and in driving was –83% 
(Edinburgh). The changes are much less noticeable in the second lockdown and occur at different 
times in different cities, for the reasons given above. A summary of the mobility changes for each 
of the four cities during 2020, with a focus on the percentage decreases during the first and second 
lockdowns, is given in Figure 2 (maximums) and Table 1 (averages).

3.1.1 Greater London

During the first lockdown there was a sharp decrease in driving, use of public transport and walking 
(Figure 2). The maximum measured change in public transport was –90%, in walking was –85% 
and in driving was –80%. This decrease occurred following the formal lockdown on 23 March and 
the mobility stayed at a much reduced level throughout the lockdown period, from 23 April to 10 
May. Following gradual relaxation after 10 May of the restrictions to human mobility, the rise in 
driving was the fastest (Figure 2). Driving reached its pre-lockdown values—the baseline—before 
the second lockdown, while walking and public transport remained well below the baseline until 
the end of the year. The second lockdown in Greater London was from 5 November to 2 December 
(Figure 2 and Table 1). During this lockdown the maximum measured change in public transport 
was –63%, in walking was –66% and in driving was –49%. All these modes of transport stayed 
low during the lockdown, and then gradually rose in December until the third lockdown (at the 
end of December/beginning of January 2021). (Note that the third lockdown is not considered in 
this paper.)
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For Greater London the average change in the first lockdown period was –86% for public transport, 
–78% for walking and –69% for driving (Table 1). For the duration of the second lockdown, the 
corresponding changes were –58% for public transport, –59% for walking and –36% for driving. 
For comparison, for the entire year, since 13 January 2020, the average changes were as follows: 
–45% for public transport, –43% for walking and –23% for driving. Thus, in all cases for Greater 
London the restrictions to human mobility had, for these three parameters, the greatest effect on 
the use of public transport, and least effect on driving.

3.1.2 Cardiff

The first lockdown Cardiff showed an even greater decrease in driving than in Greater London 
(Figure 2). The maximum measured change in public transport was –89%, in walking was –83% 
and in driving was –82%. Figure 2 shows that these reductions in public transport, walking and 
driving were largely maintained through the lockdown period. After 10 May, both driving and 
walking rose in harmony to their pre-lockdown (baseline) values, whereas public transport rose  
much less and remained far below the pre-lockdown values until the end of the year. In this 
respect, the development of the mobility modes following the first lockdown is very different 
from that of Greater London, but similar to that observed for Edinburgh and Belfast (Figure 2). This 
difference between the cities as regards the use of public transport is presumably largely due to 
the necessity of such use in Greater London in contrast with the much smaller cities (and thus with 
shorter, and commonly walkable, distances) of Cardiff, Edinburgh and Belfast.

During the second lockdown in Cardiff, from 23 October to 9 November (Figure 2 and Table 1), the 
maximum measured change in public transport was –76%, in walking was –65% and in driving 
was –60%. All these modes of transport stayed low during the lockdown and then gradually rose 
in December until the third lockdown at the end of December/beginning of January 2021.

The average changes in the first lockdown period were –84% for public transport, –76% for walking 
and –72% for driving. For the duration of the second lockdown, the corresponding changes were 
–64% for public transport, –47% for walking and –43% for driving. For the entire year, since 13 
January 2020, the average changes were –51% for public transport, –33% for walking and –27% 
for driving.

3.1.3 Edinburgh

The first lockdown in Edinburgh showed greater decrease in driving, public transport and walking 
than Greater London (Figure 2). The maximum measured change in public transport was –92%, 
in walking was –87% and in driving was –83%. Following the lockdown period, both driving and 

CITY PERIOD DATES AVERAGE MOBILITY REDUCTION (%)

DRIVING PUBLIC TRANSPORT WALKING

Greater 
London

Year 13 January–30 December –23% –45% –43%

First lockdown 23 March–10 May –69% –86% –78%

Second lockdown 5 November–2 December –36% –58% –59%

Cardiff Year 13 January–30 December –27% –51% –33%

First lockdown 23 March–10 May –72% –84% –76%

Second lockdown 23 October–9 November –43% –64% –47%

Edinburgh Year 13 January–30 December –29% –52% –42%

First lockdown 23 March–10 May –75% –89% –82%

Second lockdown 20 November–11 December –39% –59% –58%

Belfast Year 13 January–30 December –16% –47% –29%

First lockdown 23 March–10 May –62% –83% –68%

Second lockdown 27 November–11 December –19% –61% –42%

Table 1: Average mobility 
reduction (for driving, public 
transport and walking) for the 
entire year 2020 and the two 
lockdown periods for the four 
cities.

Note: Apple mobility data are 
normalised by taking 62 days 
from 13 January to 14 March as 
a baseline.

Source: Apple Mobility Reports.
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walking rose in harmony to their pre-lockdown (baseline) values, whereas public transport remained 
well below the pre-lockdown values until the end of the year. In this respect, the development of 
the mobility modes following the first lockdown is very different from that of Greater London, but 
similar to that observed for Cardiff and Belfast (Figure 2), for the reasons given above.

The formal second lockdown in Edinburgh was from 20 November to 11 December, while other 
mobility measures had been taken earlier. It follows that the formal lockdown period is less 
marked in the mobility curves for Edinburgh than for either Greater London or Cardiff, but similar to 
that for Belfast (Figure 2). During the second lockdown, the maximum measured change in public 
transport was –64%, in walking was –64% and in driving was –50%. In contrast to Greater London 
and Cardiff, there was no significant rise in mobility towards the end of the year: primarily because 
the formal lockdown was so late in the year.

The average changes in the first lockdown period were –89% for public transport, –82% for walking 
and –75% driving (Table 1). For the duration of the second lockdown, the corresponding changes 
were –59% for public transport, –58% for walking and –39% for driving. For the entire year from 13 
January 2020, the average changes were –52% for public transport, –42% for walking and –29% 
for driving.

3.1.4 Belfast

During the first lockdown in Belfast the maximum measured change in public transport was –88%, 
in walking was –79% and in driving was –76% (Figure 2). Following the lockdown period, both 
driving and walking rose in harmony to well above their pre-lockdown (baseline) values, while 
public transport remained well below the pre-lockdown values until the end of the year. These 
variations in transport are very similar to those for Cardiff and Edinburgh (Figure 2).

The formal second lockdown in Belfast was from 27 November to 11 December, but other mobility 
measures had been taken earlier. It follows that, as for Edinburgh, the formal lockdown period is 
less marked in the mobility curves than for Greater London and Cardiff (Figure 2). During the second 
lockdown, the maximum measured change in public transport was –67%, in walking was –63% 
and in driving was –40%. All these modes of transport stayed low until the end of the year, except 
for a rise in walking towards the end of December.

The average change in mobility during the first lockdown period was –83% for public transport, 
–68% for walking and –62% driving (Table 1). For the duration of the second lockdown, the 
corresponding changes were –61% for public transport, –42% for walking and –19% for driving. 
For the entire year from 13 January 2020, the average changes were –47% for public transport, 
–29% for walking and –16% for driving. On average, the reductions in walking and driving for the 
entire year are considerably less in Belfast than in the other cities.

3.2 CHANGES IN GROUND-LEVEL NO2 CONCENTRATIONS

The results show that NO2 decreased significantly from 13 January until the end of December 2020 
in comparison with the 10-year baseline (Figure 3a). On average, the 10-year baseline curve is 
above the 2020 curve for all four cities. The reduction with reference to the 10-year baseline, while 
clear, is quite irregular (blue line), presumably partly due to the effects of meteorological factors 
and different air masses—associated with different temperatures, moisture and wind speed (see 
Figures S1–S3 in Appendix A in the supplemental data online) at the location of the cities in 2020 
(see Section 3.4). Such variability is reduced in the 10-year averages (brown line), which tend to 
smooth out pollution peaks and troughs. Also considered were the changes in NO2 concentrations 
in the two formal lockdown periods and the whole year for the four cities in comparison with 
the five-year trend (for Greater London), five-year mean (for the other cities) and mean 10-year 
concentrations in the same periods for all the stations (Figure 4) and for the urban-background 
stations (see Figure S5 in Appendix C in the supplemental data online). While the dates for the 
first lockdown were the same for all the cities, namely 23 March–10 May, the dates for the second 
lockdown were different.



767Mohajeri et al. 
Buildings and Cities  
DOI: 10.5334/bc.124

The results show that for all the cities the reduction in NO2 was greater in the first than in the 
second lockdown (Figure 4). This is as expected because the first lockdown reduced the mobility 
much more than the second lockdown (Figure 2 and Table 1). Comparison with the same periods 
in the previous 10 years shows that the NO2 concentrations in the lockdown periods in 2020 were 
mostly lower than in the previous years. The only exceptions to this general conclusion are the 
second lockdown periods in Belfast and Edinburgh, where the NO2 concentrations were similar to, 
or slightly higher than, the two to three previous periods. This is understandable because driving 
was less reduced during the second lockdown in these two cities, particularly in Belfast, than in 
Greater London and Cardiff (Figure 2), and the exhaust from fossil fuel vehicles is one of the main 
contributors to NO2 concentration in urban areas.

The estimated relative changes in NO2 in the four cities for the two lockdown periods as well as 
for the whole year 2020, using the average 10-year concentrations in the same periods as the 
baseline, are presented in Table 2. In the first lockdown, the changes in NO2 concentrations for 
the four cities range from –36% to –54%, when all the monitoring stations are used. When only 
the urban-background stations are used (Table 2, in parentheses), then the change is from –35% 
to –53%. Thus, the results are very similar whether all the stations or only the urban-background 
stations are used. For the second lockdown, the change is from –18% to –46% or, for only the 

Figure 3: Mean daily time-series 
analysis of the air pollutants (a) 
NO2 and (b) PM2.5 for 2020 and 
the period 2010–19 (10 years 
as the baseline) for each of the 
four cities.

Note: Dark grey highlighted 
columns show the periods of 
the first and second lockdowns.
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Figure 4: Comparison 
between the yearly average 
concentration of NO2 for all 
stations for each city during the 
two lockdown periods and the 
previous 10 years.

Note: Dashed lines show the 
10-year averages (2010–19); 
and broken lines show the five-
year mean (trend for Greater 
London).

CITY PERIOD DATES AIR POLLUTION REDUCTION (%)

NO2 (URBAN 
BACKGROUND)

PM2.5 (URBAN 
BACKGROUND)

Greater 
London

Year 13 January–30 December –42% (–38%) –31% (–28%)

First lockdown 23 March–10 May –47% (–39%) –13% (–8%)

Second lockdown 5 November–2 December –35% (–29%) 0% (0%)

Cardiff Year 13 January–30 December –32% (–41%) –35% (–30%)

First lockdown 23 March–10 May –36% (–50%) –5% (–4%)

Second lockdown 23 October–9 November –43% (–53%) –10% (–10%)

Edinburgh Year 13 January–30 December –27% (–49%) –42% (–42%)

First lockdown 23 March–10 May –54% (–53%) –35% (–37%)

Second lockdown 20 November–11 December –18% (–38%) –24% (–24%)

Belfast Year 13 January–30 December –23% (–24%) –33% (–33%)

First lockdown 23 March–10 May –43% (–35%) –33% (–32%)

Second lockdown 27 November–11 December –23% (–21%) –14% (–14%)

Table 2: Average air-pollution 
reduction (NO2 and PM2.5) for 
all ground-level monitoring 
stations as well as urban-
background stations separately 
(in parentheses) for the entire 
year 2020 as well as for two 
lockdown periods for the four 
cities.



769Mohajeri et al. 
Buildings and Cities  
DOI: 10.5334/bc.124

urban-background stations, from –21% to –53%, so rather similar in both cases. For the entire year, 
the change in NO2 concentration is from –23% to 42% (from –24% to –49%) for urban-background 
stations. Clearly, therefore, the lockdowns and the general mobility restrictions in 2020 resulted in 
significant overall reduction in the concentration of NO2.

The annual mean concentration of NO2 for the past 10 years in comparison with the mean for 
2020 shows the impact of the general trend in concentrations since 2010. The annual mean 
concentrations for all four cities in 2020 are lower than those in any of the previous 10 years 
(Figure 4; and see Figure S5 in Appendix C in the supplemental data online). Furthermore, the 
results show clearly that the mean yearly concentration of NO2 in these four cities has been 
gradually decreasing in the past decade.

3.3 CHANGES IN GROUND-LEVEL PM2.5 CONCENTRATIONS

The results for PM2.5 are less clear than those for NO2, possibly because PM2.5 concentrations are 
more strongly affected by weather patterns and have more natural sources than NO2. While the 
average PM2.5 concentration in 2020 is generally lower than the average for the 10-year baseline 
period (Figure 3b), there are many concentration peaks throughout the year where, for a short 
while, the concentration is higher than the corresponding 10-year baseline. Such peaks may be 
partly related to sudden changes in wind direction and/or speed or other weather factors that bring 
different air masses from outside over large parts of the UK (Macintyre et al. 2016) (cf. Section 3.4).

The changes in PM2.5 concentrations in the two lockdown periods were also compared with 
the mean 10-year concentrations in the same periods. The results (Figure 5; and see Figure S6 
in Appendix C in the supplemental data online) show that for Greater London and Belfast the 
reduction in PM2.5 was much greater in the first lockdown than in the second, but for Cardiff and 
Edinburgh the reductions were slightly greater in the second lockdown. Comparison with the same 

Figure 5: Comparison 
between the yearly average 
concentration of PM2.5 for all 
stations for each city and for 
the two lockdown periods.

Note: Dashed lines show the 
10-year average (2010–19); 
and broken lines show the five-
year mean (trend for Greater 
London).
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periods in the previous 10 years shows that the PM2.5 concentration for the first lockdown in Belfast 
is the lowest, and for Greater London and Edinburgh the second to third lowest concentrations 
measured during these 10 years. However, the concentration in the second lockdown, while low 
in Edinburgh, is comparatively high in Cardiff and Belfast, and higher than in any of the same 
periods in the previous 10 years in Greater London. Thus, while overall the values for PM2.5 for the 
lockdown periods when considered together are low in comparison with the same periods in the 
previous decade, these comparatively low values are not uniform and the concentrations show 
great variations between the cities and between the lockdown periods.

The changes in PM2.5 in the four cities for the two lockdown periods as well as for the whole year 
2020, using the average 10-year concentrations in the same periods as the baseline, are given in 
Table 2. In the first lockdown, the changes in PM2.5 concentrations for the four cities range from –5% 
to –74%, when all the monitoring stations are used. However, when only the urban-background 
stations are used (Table 2, in parentheses), then the change is from –4% to –37%. Thus, the results 
are different depending on whether all the stations or only the urban-background stations are used. 
For the second lockdown, the change is from –10% to –88% or, for only the urban-background 
stations, from –0% to –24%, so, again, different depending on the stations used. For the entire year 
(with urban-background stations in parentheses), the change in PM2.5 concentrations is from –31% 
to 82% (from –28% to –42%). Clearly, therefore, the lockdowns and the general mobility restrictions 
in 2020 resulted in an overall, even if highly variable, reduction in the concentration of PM2.5.

The yearly concentration of PM2.5 for the past 10 years in comparison with the mean for 2020 
shows that the mean concentration for all four cities is lower in 2020 than in any of the previous 
10 years. The data support the conclusion that the restriction to human mobility, and particularly 
the two lockdowns, in 2020 resulted in significant, even if somewhat variable, reduction in the 
atmospheric concentration of PM2.5 in the four cities considered in this study.

3.4 WEATHER-CORRECTED AIR POLLUTIONS CHANGES

In order to consider the effects of variable weather conditions, models using two machine learning 
(ML) algorithms—linear regression (LR) and gradient boosting regression (GBR)—were run to 
predict what air pollutant concentrations were expected to be during the Covid-19 period based 
on meteorological data and concentrations of air pollution from previous years. The daily absolute 
values (µg m–3) for NO2 and PM2.5 are predicted based on the LR and GBR models. The average 
yearly absolute values for the two models are given in (Table 3).

The relative changes or anomalies for 2020, that is, the differences between the predicted and 
observed values for NO2 and PM2.5, are given in Table 3. As indicated, the anomalies are calculated 
through two different ML algorithms, LR and GBR, the latter being regarded as more reliable 
because of somewhat lower mean absolute errors—a metric for the model’s performance (Table 3). 
For LR, all anomalies and, for GBR, all except one, are negative, indicating that the measured 
concentrations of NO2 and PM2.5 are lower than would be expected from the weather conditions 

ANNUAL MEAN 
CONCENTRATION

2020 GROUND-LEVEL 
MEASURED DATA 
(μg m–3)

LR 
PREDICTION 
(μg m–3)

MEAN 
ABSOLUTE 
ERROR, LR 
(μg m–3)

RELATIVE 
CHANGE 
(%), LR 
PREDICTION

GBR 
PREDICTION 
(μg m–3)

MEAN 
ABSOLUTE 
ERROR, GBR 
(μg m–3)

RELATIVE 
CHANGE 
(%), GBR, 
PREDICTION

NO2 Greater London 25.3 30.6 5.88 –18% 31.9 5.31 –21%

Cardiff 17.8 24.1 8.95 –26% 21.9 8.75 –19%

Edinburgh 19.4 42.9 9.63 –55% 33.2 7.96 –41%

Belfast 27.7 38.9 8.05 –29% 37.8 7.93 –27%

PM2.5 Greater London 9.2 9.7 4.36 –5% 8.6 3.73 +7%

Cardiff 7.5 9.7 4.64 –23% 7.5 4.34 –1%

Edinburgh 4.5 6.0 2.96 –26% 5.3 2.69 –15%

Belfast 6.8 7.7 3.02 –12% 8.0 3.02 –14%

Table 3: Two modelled 
predictions—linear regression 
(LR) and gradient boosting 
regression (GBR)—for 
air pollutants in 2020 
compared with ground-level 
concentrations.

Note: Mean absolute errors and 
relative changes (%) are given 
for each model prediction.
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at the time. For GBR, the NO2 anomalies are –21% for Greater London, –19% for Cardiff, –41% for 
Edinburgh and –27% for Belfast. Similarly, the PM2.5 anomalies are +7% for Greater London, –1% 
for Cardiff, –15% for Edinburgh and –14% for Belfast.

More specifically, the estimated 95% confidence intervals for NO2 and PM2.5 for all four cities 
indicate that the (mostly) reduced levels of pollution cannot be explained in terms of weather 
conditions. They are very likely attributed to other factors, primarily the reduction in mobility. The 
confidence intervals for the predicted NO2 and for the four cities are shown in Figure 6.

Figure 6: The 95% confidence 
intervals for the weather-
corrected machine learning 
(ML) model for the four cities 
and for the predicted NO2.
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3.5 CORRELATION BETWEEN MOBILITY AND WEATHER-CORRECTED POLLUTION CHANGES

While the results indicate that concentrations of both NO2 and PM2.5 in the four cities in 2020 were 
reduced as a result of the restrictions on human mobility, further analyses are warranted as to the 
correlation between the changes in mobility and the changes in the concentrations of the pollutants. 
It turns out that the correlations between mobility and the five-year mean daily and weekly ground-
level concentrations are not high, although significant. Analysis of the correlations between changes 
in weekly concentration (using weather-corrected models) and weekly mobility activities indicate a 
strong correlation between mobility activities and the predicted concentrations for NO2. In particular, 
there is a significant correlation between predicted NO2 reduction and vehicle driving (generally p < 
0.05) and public transport (generally p < 0.01) for all the cities in both models (Figure 7 and Table 4). 

Figure 7: Air pollution 
anomalies (relative change in 
percentage compared with the 
baseline) for NO2 (weather-
corrected models) for each city 
in relation to changes (%) in 
driving, public transport and 
walking.

Note: For improved clarity, both 
mobility data and air pollution 
data are aggregated weekly to 
smooth out the curves.



The strongest correlation is between the reduction in NO2 concentrations and mobility for Belfast 
with correlation coefficients rs = 0.73 for public transport (p < 0.0001) and rs = 0.64 for driving (p < 
0.0001). The correlations between NO2 and public transport significantly increase from the five-year 
measurement data to the modelled (predicted) data from rs = 0.18 to 0.69 for Greater London, from 
rs = 0.24 to 0.57 for Edinburgh and from rs = 0.59 to 0.73 for Belfast (public transport), all values being 
statistically significant (Table 4). For Cardiff correlations increase by a smaller margin (from rs = 0.33 to 
0.34, p < 0.05 for public transport), presumably because there only temperature data were available 
to train the models.

There are, however, no significant correlations between PM2.5 and public transport and driving 
(Table 4). This suggests that PM2.5 concentrations were less affected by transportation changes 
during the lockdowns than the NO2 concentrations. There are also some negative relationships 
between PM2.5 and mobility. The negative correlations are somehow counter-intuitive because 
they suggest that PM2.5 increases as mobility decreases. The results show that while there is a 
significant and strong correlation between NO2 and mobility (using weather-corrected models), 
no such correlation exists for PM2.5, presumably primarily because sources of pollution from PM2.5 
are more strongly related to industry, power generation and residential energy use than to traffic. 
For example, much of PM measured in Greater London originates outside the city (Saunders et al. 
2012). Thus, the constant movement of air masses and the different types of sources for PM2.5, 
many of which are outside the four cities where the concentrations were measured, make for a 
less clear correlation with the mobility changes in the cities in 2020.

4. IMPACTS ON HEALTH AND MORTALITY
Air pollution has a negative impact on health and is considered a major contributor to premature 
mortality. In the UK somewhere between 28,000 and 36,000 premature deaths every year are 
attributable to poor air quality (PHE 2019). The attributable fraction (AF) of all-cause mortality 
associated with NO2 and PM2.5 for each year 2010–20 is estimated below to assess the potential 
health impacts of the lockdown-induced reductions in air pollution in 2020.

CITY POLLUTANT SPEARMAN FIVE-YEAR MEAN (WEEKLY) LR (DAILY, AGGREGATED WEEKLY) GBR (DAILY, AGGREGATED 
WEEKLY)

DRIVING PUBLIC 
TRANSPORT

DRIVING PUBLIC  
TRANSPORT

DRIVING PUBLIC 
TRANSPORT

Greater 
London

NO2 rs 0.16 0.18 0.58 0.67 0.60 0.69

p-value 0.26 0.22 <0.0001 <0.0001 <0.0001 <0.0001

PM2.5 rs –0.19 –0.30 –0.04 –0.10 –0.22 –0.26

p-value 0.17 0.03 0.80 0.49 0.13 0.06

Cardiff NO2 rs 0.31 0.33 0.34 0.40 0.32 0.34

p-value 0.02 0.02 0.01 <0.01 0.02 0.01

PM2.5 rs –0.10 –0.16 –0.28 –0.31 –0.22 –0.25

p-value 0.48 0.26 0.05 0.03 0.13 0.09

Edinburgh NO2 rs 0.29 0.24 0.50 0.53 0.54 0.57

p-value 0.04 0.10 <0.001 <0.0001 <0.0001 <0.0001

PM2.5 rs –0.09 –0.13 –0.11 –0.01 –0.22 –0.15

p-value 0.52 0.37 0.47 0.93 0.14 0.33

Belfast NO2 rs 0.54 0.59 0.60 0.66 0.64 0.73

p-value <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

PM2.5 rs 0.09 –0.02 –0.28 –0.25 –0.27 –0.21

p-value 0.55 0.91 0.07 0.10 0.07 0.16

Table 4: Spearman’s rank 
correlation coefficients (rs) 
between two predicted models 
for air pollutants (NO2 and 
PM2.5) and mobility (driving and 
public transport) for each of 
the four cities. The results are 
compared with the five-year 
mean daily and five-year mean 
weekly trends.

Note: GBR = gradient boosting 
regression; and LG = linear 
regression.
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At the local level, the UK Committee on the Medical Effects of Air Pollutants (COMEAP) (2015), 
recommends three metrics for calculating the mortality burden associated with particulate air 
pollutants. One of these is ‘attributable fraction’ (AF), which is the proportion of local deaths 
attributable to the long-term (more than one year) exposure to anthropogenic air pollution. 
The AF of all-cause mortality in each city associated with PM2.5 and NO2 for 2020 and the each 
of the 10 years before is calculated as follows (COMEAP 2015; Saunders et al. 2012; Macintyre 
et al. 2016):

				     AF RR –1 /RR� (3)

where RR is the relative risk. Attributable fraction is often expressed as a percentage and, therefore, 
calculated as:

				      AF 100 RR –1 /RR � (4)

and is equal to:

				     )0( /1RR x � (5)

where β is the concentration-response coefficient for each pollutant (per 10 μg m−3); and x is 
the annual average pollutant concentration. Not provided is an estimate of changes in absolute 
mortality figures from air pollution due to lack of daily baseline all-cause mortality data. It is worth 
noting that the direct impact of Covid-19 would result in elevated baseline mortality figures. The 
β-values for estimating the annual attributable mortality from long-term exposure to air pollution 
used here are based on COMEAP’s recommendations. Specifically, the β-coefficient for PM2.5 used 
here is 1.060 (95% confidence interval (CI) = 1.04–1.08), based on COMEAP (2010), and for NO2 is 
1.023 (95% CI = 1.008–1.037) from COMEAP (2018).

Using equations (3–5) and the information above, the AFs (%) were calculated based on the yearly 
average NO2 and PM2.5 since 2010 and then compared with the calculated AF for 2020 with those 
of the previous decade. The results show as follows (Table 5). First, for all four cities, there has 
been a gradual decline in the NO2-related AFs since 2010. The decline is not strictly linear—there 
have been some occasional increases from year to year, such as in both London and Belfast—but 
overall the AF related to this pollutant has decreased. In 2010, the AF due to NO2 is estimated to 
be 7–10% for these four cities, but falls to 5–7% in 2019. A further decline then occurred in 2020, 
reducing the NO2-related AF to 3–5%.

Second, for the PM2.5-related AFs, the general results are similar to those for NO2: there has been 
an overall decline in the AFs since 2010 (Table 5). Again, the decline is not linear, with many slight 
increases from year to year in all four cities. In particular, the PM2.5-related changes in AF in both 
Cardiff and Belfast are irregular, while Greater London and Edinburgh show a steadier decline in 
AF. In 2010, the PM2.5-related PMs are estimated at 6–8% for the four cities, but decline to 3–6% in 
2019. Again, a further decline occurs in 2020 when the PM2.5-related PM is 2–5%.

POLLUTANT CITY AF OF ALL-CAUSE MORTALITY ASSOCIATED WITH EACH POLLUTANT (%)

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

NO2 Greater London 9.93% 8.90% 9.73% 8.49% 8.90% 7.86% 8.07% 8.07% 7.23% 6.81% 5.10%

Cardiff 7.23% 5.95% 5.95% 5.74% 5.53% 5.95% 5.10% 4.45% 4.01% 4.88% 3.35%

Edinburgh 6.81% 5.53% 5.31% 4.88% 4.23% – 4.45% 4.45% 4.01% 4.66% 2.91%

Belfast 7.65% 6.17% 6.38% 6.81% 6.17% 6.38% 6.59% 5.53% 5.95% 5.31% 4.01%

PM2.5 Greater London 8.37% 9.43% 8.90% 7.83% 8.37% 6.21% 6.21% 6.21% 6.21% 6.21% 5.11%

Cardiff 7.83% 7.30% 6.75% 7.83% 6.75% 5.66% 5.66% 5.11% 5.66% 6.75% 4.00%

Edinburgh 5.66% 6.75% 6.21% 4.55% 5.11% 3.44% 3.44% 4.00% 3.44% 3.44% 2.30%

Belfast 7.30% 7.83% 5.66% 6.75% 6.21% 5.11% 5.66% 5.11% 5.66% 6.21% 4.00%

Table 5: Health impact 
assessments for the four cites 
based on attributable fraction 
(AF) of all-cause mortality 
associated with NO2 and PM2.5 
(%) for 2020 and the previous 
10 years.
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5. DISCUSSION
Covid-19-related mobility restrictions in four cities in the UK were compared with the associated 
changes in the concentrations of NO2 and PM2.5. The three measured mobility factors—driving, 
public transport and walking—show a sharp decrease during and following the first lockdown in 
all the cities. The greatest change was in public transport, where the maximum measured change 
was –92% (Edinburgh), followed closely by Greater London (–90%), while the least change was 
in driving. More specifically, the maximum change in driving was from –76% (Belfast) to –83% 
(Edinburgh). Following the lockdowns there was a gradual increase in these modes of transport, 
and both walking and driving reached close to or above their pre-lockdown values—mostly in 
September–October—before the second lockdown.

Studies in other countries where Covid-19-related mobility restrictions were imposed show similar 
changes in mobility. For example, Ash’aari et al. (2020) report a sharp decrease in visits to parks, 
transit stations and workplaces during lockdowns in Malaysia in early 2020. Also, Li & Tartarani 
(2020) report a great reduction in visits to transit stations, workplaces, car parks and driving during 
lockdown in Singapore in the early part of 2020.

The second lockdown was at different times in the four cities, and its effects on human mobility 
were neither as abrupt nor as great as in the first lockdown. The greatest change, again, was in 
public transport, where the maximum change was from –63% (Greater London) to –76% (Cardiff). 
Similarly, the maximum change in driving was from –40% (Belfast) to –60% (Cardiff).

The average reductions in NO2 concentrations in 2020 are significant in comparison with average 
concentrations in the cities in the previous 10 years (Figure 3a). Also, the NO2 concentrations in the 
specific lockdown periods in 2020 show much reduction in comparison with the same periods in 
the previous 10 years. While there has been a gradual decrease in NO2 in the atmosphere in the UK 
during the past decade, the reduction in 2020 is greater that would be expected if that trend had 
simply continued at the same rate as before (Figures 4 and 5). For urban-background monitoring 
stations, the changes in NO2 in the four cities range from –35% to –53% in the first lockdown, and 
from –21% to –53% in the second lockdown. For the entire year the changes in NO2 at urban-
background stations range from –24% to –49%.

While PM2.5 also shows an overall reduction during 2020, the results are not as clear as for NO2. 
The average PM2.5 changes in the first lockdown in the four cities at the urban-background 
stations range from –4% to –37%. For the second lockdown, the changes, again using the urban-
background stations, are from 0% to –24%. For the entire year 2020 for urban-background 
stations, the changes in PM2.5 concentration are from –28% to –42%. The results also show that the 
yearly concentrations of PM2.5 in the past decade are higher in these cities than in 2020. Thus, the 
restrictions to human mobility in 2020 in these four cities resulted in significant, even if somewhat 
variable, reduction in the atmospheric concentration of PM2.5.

Several studies have considered the effects of various Covid-19-related mobility restrictions on the 
concentrations of various pollutants in the atmosphere in various countries and cities. For example, 
Baldasano (2020) considered the effects of lockdowns in early 2020 on the concentration of NO2 in 
Barcelona and Madrid in Spain and concluded that the changes in NO2 concentrations were –50% 
and –62%, respectively. Similarly, Li & Tartarani (2020) considered the early 2020 lockdown effects 
on various pollutants in Singapore. As for NO2, the changes were –54%, and for PM2.5, the changes 
were –29%. Also, Ash’aari et al. (2020) analysed the changes in several pollutants during similar 
mobility restrictions in Malaysia in early 2020. They found that the NO2 concentrations changed by 
–54% and PM2.5 concentrations by –23.1%. Thus, the results for Malaysia are very similar to those 
for the adjacent Singapore. For the world as a whole, Venter et al. (2020) used more than 10,000 
air quality stations in 34 countries to measure the effects of various lockdowns in early 2020 on 
the concentrations of NO2 and PM2.5. They found that, on average, the change in NO2 during the 
lockdowns was –60% and that of PM2.5 was –31%.

Using the weather-correction ML technique, all four cities show NO2 and PM2.5 concentration 
anomalies in 2020. These anomalies are the difference between the measured and predicted 
concentrations. The anomalies were calculated through two different ML algorithms, LR and GBR, 
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the latter being regarded as more reliable because of somewhat lower mean absolute errors. For 
LR, all anomalies, and for GBR, all except one, are negative, so that the measured concentrations 
of NO2 and PM2.5 are lower than would be expected from the weather conditions. For GBR, the 
NO2 anomalies are –21% for Greater London, –19% for Cardiff, –41% for Edinburgh and –27% for 
Belfast, while the PM2.5 anomalies are +7% for Greater London, –1% for Cardiff, –15% for Edinburgh 
and –14% for Belfast. All the negative anomalies are presumably the results of the Covid-19 
mobile restrictions.

The effects of excess concentrations of PM2.5 and NO2 in the atmosphere on human health are 
well documented (Saunders et al. 2012; Carnell et al. 2019; Quarmby et al. 2019). In particular, 
many premature deaths are attributed to these pollutants (EEA 2020). Therefore, the effects 
of the changes in NO2 and PM2.5 concentrations in the four cities in 2020 on the percentage of 
attributable mortality (AF) due to exposure to these pollutants were calculated. The results were 
compared with those for the previous decade and the general trend in the concentration of these 
pollutants during that decade. The results (Table 5) show a significant decline in AF in 2020. This 
decline is more than would be expected from the overall decrease in AF due to improved air quality 
in the past decade. This decline was also tested, and confirmed, by weather-corrected models. 
Therefore, it can be concluded that the restrictions in human mobility in 2020 and the associated 
decrease in concentration of NO2 and PM2.5 resulted in a significant reduction in associated AF and 
had, by implication, other positive effects on public health.

6. CONCLUSIONS
The present study indicates significant positive short-term effects of city-scale Covid-19-
related reductions in transportation on ground-level concentrations of nitrogen dioxide (NO2) 
and particulate matter PM2.5. While there is a significant correlation between the decline in NO2 
concentrations and public transport (p < 0.05) and vehicle driving (p < 0.05), no significant correlation 
is found for changes in PM2.5 concentrations (in weather-corrected models). This suggests that NO2  
concentrations are more strongly affected by changes in the volume of on-land transportation 
than PM2.5 concentrations. For these cities, the concentration of PM2.5 is likely to depend partly on 
residential energy use, power generation and agriculture, and partly on the general complexity of 
its formation.

Finding the means to curb air pollution remains important. Empirical evidence at a city scale 
reveals correlations between reduction in on-land transport and changes in the ambient PM2.5 and 
NO2 concentrations. The results provide justification for city-level initiatives to reduce vehicular 
traffic. Well-designed and effective policy interventions can substantially reduce long-term air 
pollution and have positive health impacts.
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