ANALYSE PROBABILISTE DES TASSEMENTS
D'UN MASSIF DE SOL GRANULAIREF

THESE No 628 (1986)

PRESENTEE AU DEPARTEMENT DE GENIE CIVIL

ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE

POUR L'OBTENTION DU GRADE DE DOCTEUR ES SCIENCES TECHNIQUES

PAR

PHILIPPE LOUIS BOURDEAU
Ingénieur civil diplômé EPFL
de nationalité française

acceptée sur proposition du jury:

Prof. E. Recordon, rapporteur
Prof. J.-P. Borel, corapporteur
Prof. F. Descoeudres, corapporteur
Prof. M.E. Harr, corapporteur

Lausanne, EPFL
1986
Tout ce qui existe dans l'univers
est le fruit du hasard et de la nécessité

Démocrite

Les convictions sont des prisons

Nietzsche

La science est d'un infini romanesque

Agatha Christie

Cette thèse est dédiée à ma famille
et à tous mes professeurs.
Table des matières

AVANT-PROPOS

RESUME - ABSTRACT

NOTATIONS GENERALES

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>2. NOTION DE CONTRAINTE DANS UN MILIEU GRANULAIRE</td>
<td>9</td>
</tr>
<tr>
<td>2.1. Contraintes dans un milieu granulaire considéré comme continu</td>
<td>9</td>
</tr>
<tr>
<td>2.1.1. Contraintes dans un milieu continu</td>
<td>9</td>
</tr>
<tr>
<td>2.1.2. Conséquences pour la mécanique des milieux granulaires</td>
<td>16</td>
</tr>
<tr>
<td>2.2. Contrainte effective</td>
<td>20</td>
</tr>
<tr>
<td>2.2.1. Le Principe des contraintes effectives de Terzaghi</td>
<td>20</td>
</tr>
<tr>
<td>2.2.2. Autres définitions des contraintes effectives</td>
<td>22</td>
</tr>
<tr>
<td>2.3. Contraintes en mécanique probabiliste des milieux granulaires</td>
<td>26</td>
</tr>
<tr>
<td>2.3.1. Caractère aléatoire des sollicitations internes dans un milieu granulaire</td>
<td>26</td>
</tr>
<tr>
<td>2.3.2. Forces de contact intergranulaires et contraintes</td>
<td>28</td>
</tr>
<tr>
<td>2.3.3. Contraintes dans une section d'une éprouvette de sol granulaire saturé</td>
<td>34</td>
</tr>
<tr>
<td>2.3.4. Contraintes en un point d'un massif granulaire chargé en surface</td>
<td>47</td>
</tr>
<tr>
<td>3. POROSITE ET DISTRIBUTION DE PROBABILITE DES CONTRAINTE S</td>
<td>51</td>
</tr>
<tr>
<td>3.1. Données du problème</td>
<td>52</td>
</tr>
<tr>
<td>3.2. Porosité</td>
<td>54</td>
</tr>
<tr>
<td>3.3. Distribution de probabilité des contraintes intrgranulaires</td>
<td>61</td>
</tr>
<tr>
<td>3.4. Distribution de probabilité des contraintes locales</td>
<td>67</td>
</tr>
<tr>
<td>3.5. Paramètres de la sollicitation interne</td>
<td>69</td>
</tr>
<tr>
<td>4. CHANGEMENTS DE POROSITE CONSECUTIFS A DES SOLlicitATIONS EXTERNES</td>
<td>71</td>
</tr>
<tr>
<td>4.1. Modes de rupture</td>
<td>71</td>
</tr>
<tr>
<td>4.2. Mécanismes de déformation à l'échelle granulaire</td>
<td>73</td>
</tr>
<tr>
<td>4.3. Tassements consécutifs à la propagation des micromécanismes</td>
<td>80</td>
</tr>
<tr>
<td>4.4. Changement de porosité en fonction de la sollicitation</td>
<td>81</td>
</tr>
</tbody>
</table>
5. COMPRESSION UNIFORME D'UNE COUCHE GRANULAIRE
D'EPAISSEUR LIMITEE - MODELE TRANSITOIRE
5.1. Rappel sur le mouvement Brownien 86
5.2. Le modele de Marsal 92
5.3. Une nouvelle formulation du probleme 95
 5.3.1. Systeme de coordonnees 97
 5.3.2. Equation de diffusion en
 coordonnees Lagragiennes 102
 5.3.3. Equation phenomeneologique 107
 5.3.4. Conditions aux limites 108
 5.3.5. Solution de l'equation de diffusion 113
 5.3.6. Coefficients de l'equation de diffusion 121
5.4. Conclusion 127

6. DEFORMATIONS A L'ETAT STATIONNAIRE SOUS L'EFFET
D'UNE FONDATION SUPERFICIELLE - ETUDE EXPERIMENTALE 129
6.1. Definition du probleme 129
6.2. Schema general du modele theorique
 et implications experimentales 132
6.3. Modele physique et procedure experimentale 133
 6.3.1. Matériaux testés 137
 6.3.2. Déroulement des essais sur modele 142
 6.3.3. Traitement numerique des radiographies 145
 6.3.4. Précision des résultats 149
6.4. Résultats des essais en déformation plane 152

7. DEFORMATIONS A L'ETAT STATIONNAIRE SOUS L'EFFET
D'UNE FONDATION SUPERFICIELLE - MODELE THEORIQUE
EN DEFORMATIONS PLANES 163
7.1. Aperçu historique 163
7.2. Formulation du modèle 174
 7.2.1. Définition d'un processus aléatoire 174
 7.2.2. Equation de diffusion de la charge
 en déformations planes 179
 7.2.3. Coefficient de diffusion de la charge 183
 7.2.4. Equation de diffusion des déplacements 189
 7.2.5. Coefficient de diffusion des déplacements 196
 7.2.7. Interprétation probabiliste de
 la déformation volumétrique 203
 7.2.8. Organisation des calculs 204
7.3. Exemples et étude paramétrique 207
7.4. Comparaison avec les essais 211
 7.4.1. Essai sur limon CL05 211
 7.4.2. Essai sur sable CS04 221
 7.4.3. Essai sur sol bicouche CLS06 221

8. LES NOUVEAUX HORIZONS 227

REFERENCES BIBLIOGRAPHIQUES
ANNEXES

A1 Traitement numérique des équations de diffusion

A2 Calculs d'erreurs pour la mesure des déplacements et des changements de volume

A3 Résultats des essais en déformations planes à l'état stationnaire
 A3.1 Essai sur limon CL05
 A3.21 Essai sur sable CS04
 A3.38 Essai sur bicouche sable/limon CLS06

A4 Modèle théorique pour l'état stationnaire en déformations planes
 A4.1 Exemple 1 : Massif homogène sur base rigide
 A4.7 Exemple 2 : Massif bicouche sur base rigide

A5 Modèle théorique appliqué aux cas des essais (état stationnaire de déformations planes)
 A5.1 Cas de l'essai CL05 (limon)
 A5.7 Cas de l'essai CS04 (sable)
 A5.13 Cas de l'essai CLS06 (bicouche sable/limon)
AVANT-PROPOS

Cette thèse est la concrétisation d'une réflexion, menée de front avec d'autres travaux, qui s'est étendue sur plus de six années. Le temps en a donc été l'un des ingrédients principaux, avec son cortège d'hésitations, de revirements, de déceptions, mais aussi la maturité nécessaire à une démarche qui met en question les bases théoriques d'une discipline établie.

Tout commença un jour de mai 1979, lorsque le Professeur E. Recordon me chargea d'une étude sur les conditions mécaniques d'interface, appliquées aux limites de couches des sols meubles stratifiés, et m'invita à en réexaminer d'un oeil critique la signification physique. Le sujet était alors d'actualité, dans le domaine du dimensionnement des chaussées et des fondations superficielles, en raison de l'évolution des modèles mathématiques dérivés de la théorie élastique des multicouches, et des possibilités nouvelles apportées, dans les techniques numériques, par l'apparition d'éléments finis spéciaux pour interfaces, créées pour le besoin de la mécanique des roches.

Quand je fus capable de considérer ce problème avec suffisamment de distance, il m'apparut que la question des conditions d'interface n'avait pas une origine physique, mais était générée par le modèle lui-même. Il s'agissait de la séquelle historique d'une description du comportement des sols issue de la mécanique des milieux continus. Cette opinion était confortée par la publication de l'ouvrage du Professeur M.E. Harr, où était présentée une nouvelle méthode de calcul des contraintes dans les milieux granulaires stratifiés, qui ne nécessitait l'expression d'aucune condition d'interface.

Cette théorie probabiliste reposait sur l'idée que le sol est un matériau discontinu et désordonné. Tout observateur étranger à notre profession serait étonné que de tels concepts soient révolutionnaires, voire même originaux. Ce serait ignorer le poids des traditions !

Dès lors, il semblait que le comportement des sols stratifiés soumis à des charges en surface n'était pas dicté par des conditions
mathématiques appliquées à d'illusoires interfaces, mais plus prosaïquement par les interactions entre les grains dans les couches elles-mêmes.

Ainsi naquit le projet de suivre la direction indiquée par le Professeur Harr, dans le but lointain de réconcilier la mécanique des sols avec son sujet, grâce à une heureuse conjonction des besoins et des moyens.

Mon espoir est que cette tentative encourage d'autres chercheurs à répondre par l'innovation et un salutaire retour aux sources aux voix proclamant que la mécanique des sols est un chapitre désormais clos des sciences de l'ingénieur.

Les acteurs de cette aventure doivent être remerciés, et en particulier les deux hommes qui en ont été les guides éclairés.

L'expression de ma profonde gratitude va à Monsieur le Professeur Edouard Recordon, Directeur du Laboratoire de mécanique des sols de l'Ecole Polytechnique Fédérale de Lausanne, et à Monsieur le Professeur Milton E. Harr, professeur de mécanique des sols à Purdue University (Indiana, USA).

Le premier, m'ayant accueilli comme collaborateur au sein de son Institut, m'a honoré de sa confiance en me chargeant d'un sujet ambitieux, et en mettant à ma disposition un cadre et des moyens d'investigation qui sont l'exception au niveau d'un doctorat. J'ai particulièrement apprécié la manière libérale, bienveillante et optimiste, mais cependant attentive, critique et pragmatique dont il a rempli sa tâche de directeur de thèse.

Quant au second, qui m'a formé aux méthodes probabilistes en mécanique des sols, il m'a enseigné que l'incertitude est une richesse et qu'elle peut être une source de progrès lorsque l'imagination prend le pas sur les vieux dogmes. Ayant accepté d'assurer, malgré l'éloignement, la conduite du présent travail sur les plans conceptuels et théoriques, il y a contribué de façon décisive.
Je suis également reconnaissant à Monsieur le Professeur Richard Sinniger, qui a été mon parrain dans le domaine des fondations et a présidé mon jury en qualité de Chef du Département de Génie Civil de l'EPFL.

Monsieur le Professeur Jean-Pierre Borel, de l'Institut de physique expérimentale de l'EPFL, a bien voulu introduire dans le débat l'opinion indispensable du physicien spécialiste des phénomènes de diffusion. J'ai été très sensible à l'intérêt qu'il a manifesté pour mon travail dans un esprit pluridisciplinaire.

Monsieur le Professeur François Descoeudres, directeur du Laboratoire de mécanique des roches de l'EPFL, a accepté d'examiner cette thèse et de lui apporter ainsi le label de sa haute compétence géotechnique. Ses remarques très pertinentes seront certainement utiles pour la poursuite des recherches.

Mes remerciements vont aussi à tous ceux qui m'ont fourni une aide matérielle ou technique. Ainsi, Monsieur le Professeur B. Vittoz, Président de l'EPFL, et la Fondation de l'Union des Professionnels Suisses de la Route (VSS) pour Encourager la Formation Professionnelle, qui ont rendu possible mon stage aux USA en 1981, doivent être mentionnés.

L'attitude constructive avec laquelle Monsieur le Professeur P. Regamey, Monsieur le Professeur O. Koelbl, Monsieur le Directeur du Cadastre du Canton de Vaud, ainsi que leurs collaborateurs, m'ont permis d'accéder aux outils qui m'étaient nécessaires, m'a grandement facilité la tâche.

Au Laboratoire de Mécanique des sols de l'EPFL, c'est Monsieur Gilbert Gruaz qui a été l'artisan à la fois patient, compétent et inventif du travail expérimental. Une partie importante du traitement des radiographies a été effectuée par Mme Anne-France Despond et par Monsieur Pedro Basabe. Le graphisme est dû à Mesdames Pierrette Rosset et Gyslaine Neidhart, et le lecteur appréciera le remarquable travail de mise en pages du texte réalisé par Mlle Ursula Mägerle.

Merci enfin pour leurs précieux encouragements aux collègues, amis et parents.
RESUME

Partant du principe qu'un sol est un milieu discontinu formé de particules distinctes, on tente de décrire la réponse mécanique d'un tel système à un apport d'énergie à ses frontières, indépendamment des concepts de la mécanique des sols classique qui sont issus de la mécanique des milieux continus.

Plus spécifiquement, on traite du comportement des sols non cohérents secs (ou parfaitement drainés) et lâches. Une nouvelle procédure pour la prédiction des tassements sous l'effet de charges superficielles statiques et verticales est proposée.

La thèse soutenue peut se résumer par trois idées de base :

- Le sol est formé d'un très grand nombre de grains indépendants et disposés de façon aléatoire, ainsi que de pores.

- L'application de charges provoque des changements locaux de porosité, et la propagation de ces modifications structurales produit les tassements macroscopiquement observables.

- Ces phénomènes peuvent être quantifiés par une démarche probabiliste.

Dans une première étape du développement théorique, une nouvelle définition des sollicitations internes est donnée. On montre que le concept classique de contrainte effective représente seulement une approximation au premier moment de la sollicitation locale dans un assemblage de grains. La dispersion de cette quantité aléatoire est une fonction croissante de la porosité du milieu. Cette conclusion théorique est en accord avec des résultats expérimentaux publiés par Marsal.

Deux problèmes de valeurs aux frontières sont étudiés :

a) déformation transitoire d'une couche granulaire d'épaisseur finie sous compression uniforme,
b) état stationnaire de déformation plane d'un massif granulaire homogène ou stratifié sous l'effet d'une fondation parfaitement souple ou rigide.

Dans les deux cas, à partir de l'idée d'une migration des volumes de pores en excès par échanges de positions avec les grains, un modèle simple de cheminement aléatoire est formulé. La généralisation de ce modèle discret conduit à des équations de diffusion unidimensionnelle de type Fokker-Planck. Elles sont résolues par une méthode aux différences finies. Dans le cas b), la solution complète est obtenue par une combinaison du modèle proposé pour le calcul des déplacements avec la théorie de diffusion des contraintes de Harr.

Après une comparaison avec des mesures en laboratoire, par une méthode radiographique, du champ des déplacements, on peut conclure à la capacité de la théorie à prédire le comportement des milieux granulaires lâches. Le nombre restreint de paramètres nécessaires et leur signification physique claire devrait permettre des développements en vue d'applications pratiques.
ABSTRACT

Starting from the elementary fact that a soil is a discontinuous particulate medium, it is attempted to describe the mechanical response of such a system to induced boundary energy, independently of the classical soil mechanics concepts which were derived from continuum mechanics.

The dissertation deals specifically with dry (or fully drained) loose non-cohesive soils and proposes a new procedure for the prediction of expected settlements under static vertical surface loads.

The thesis can be summarized by the following basic propositions:

- Soil is made of a very large number of discrete and randomly arranged grains, and of pores.

- The application of loads results in local changes of porosity and the propagation of these structural modifications produces apparent macroscopic settlements.

- These phenomena can be quantified using a probabilistic approach.

As a first step in the theoretical development, a new definition is given for the internal tensions. It is shown that the classical effective stress concept represents only a first-moment approximation of the local demand in a granular assembly. The scatter of this random quantity increases with the porosity of the medium. This theoretical prediction is in agreement with experimental results published by Marsal.

Two boundary-value problems are investigated:

a) transient uniform compression of a granular layer with finite thickness,

b) steady state plane strain deformation of a granular medium including stratifications under flexible or rigid foundation.
In both cases, a simple random walk model is formulated, based on the concept of migration of voids in excess exchanging their position with solid particles. The generalization of this discrete model leads to Pokker-Planck type one-dimensionnal diffusion equations which are solved by a finite differences method. In case b), a complete solution is provided by the combination of the proposed model for the displacement computations with Harr's stress diffusion theory.

From a comparison to X-rays measurements of the displacement fields in laboratory models, it is concluded that the theory is capable to predict the behaviour of loose particulate materials. The small number of parameters needed and their clear physical signification should allow further developments oriented to practical applications.
Notations générales

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>Coordonnée Lagrangienne verticale (cas unidimensionnel)</td>
</tr>
<tr>
<td>aB</td>
<td>Coordonnée Lagrangienne d'une barrière absorbante ou réfléchissante</td>
</tr>
<tr>
<td>a_n</td>
<td>Coefficient relatif à la variation de la porosité avec la profondeur</td>
</tr>
<tr>
<td>a_s</td>
<td>Aire spécifique des surfaces de contact intergranulaires</td>
</tr>
<tr>
<td>A</td>
<td>Aire d'une surface</td>
</tr>
<tr>
<td>A_i</td>
<td>Aire de l'intersection d'un grain i par un plan coupant le milieu granulaire</td>
</tr>
<tr>
<td>A_g</td>
<td>Surface de contact entre deux grains</td>
</tr>
<tr>
<td>A_t</td>
<td>Aire totale de la surface interceptée par un plan coupant le milieu granulaire</td>
</tr>
<tr>
<td>A(t)</td>
<td>Processus stochastique à moyenne nulle</td>
</tr>
<tr>
<td>B</td>
<td>Largeur d'une semelle de fondation</td>
</tr>
<tr>
<td>[B]</td>
<td>Matrice de changement de base</td>
</tr>
<tr>
<td>[B]^T</td>
<td>Transposée de la matrice [B]</td>
</tr>
<tr>
<td>B_g</td>
<td>Coefficient pondéral d'écrasement des grains selon Marsal</td>
</tr>
<tr>
<td>c'</td>
<td>Cohésion effective</td>
</tr>
<tr>
<td>C_a</td>
<td>Coefficient de convection ou de dérive en coordonnées Lagrangiennes dans le cas de la compression uniforme</td>
</tr>
<tr>
<td>C_z</td>
<td>Coefficient de convection ou de dérive dans la direction z</td>
</tr>
<tr>
<td>C_0</td>
<td>Valeur initiale d'un coefficient de dérive</td>
</tr>
<tr>
<td>C_W</td>
<td>Coefficient de dérive des déplacements dans le modèle stationnaire</td>
</tr>
</tbody>
</table>
d Une distance

\(\bar{d} \) Diamètre moyen des grains

\(d_{\text{max}} \) Diamètre maximum des grains

\(d_{x} \) Pratilé à \(X \% \) de la courbe granulométrique

\(\det (\cdot) \) Déterminant d'une matrice

D Profondeur d'une fondation

\(D_{a} \) Coefficient de diffusion en coordonnées Lagragiennes dans le cas de la compression uniforme

\(D_{r} \) Densité relative

\(D_{z} \) Coefficient de diffusion dans la direction \(z \)

\(D_{0} \) Valeur initiale d'un coefficient de diffusion

\(D_{x}^{\sigma} \) ou \(D_{x}^{S} \) Coefficient de diffusion des contraintes \(\sigma \) ou \(S \) dans la direction \(x \)

\(D_{x}^{W} \) Coefficient de diffusion dans la direction horizontale \(x \) des déplacements verticaux moyens \(\bar{W} \)

\(D_{\eta}^{W} \) Coefficient de diffusion des déplacements dans le modèle stationnaire

e Indice des vides

\((\hat{e}_{1}, \hat{e}_{2}, \hat{e}_{3}) \) Base orthonormée de l'espace

E[x] Opérateur espérance mathématique de \(x \) (ou moyenne) équivalent à \(\bar{x} \)

\(E_{1}, E_{2} \) Coefficients de l'équation du télégraphe dans le modèle de Litwiniszyn avec mémoire
f Concentration granulaire (nombre de grains par unité de volume)

f_i Force extérieure appliquée à un corps

$f(x,t)$ Concentration d'une substance diffusée au cours du temps dans la direction x

$f_X(x)$ Fonction de densité de probabilité de x
 (abréviation : p.d.f.)

$f_X(x;t)$ Fonction de densité de probabilité de transition entre t_0 et t d'un processus stochastique $X(t)$
 Fonction de densité marginale dans un processus tridimensionnel

$f_X(x;t|x_0)$ Fonction de densité de probabilité d'un processus $X(t)$
 conditionnée par la valeur initiale x_0

F_i Force intragranaulaire dans un grain i

$F_X(x)$ Fonction cumulée de probabilité de x
 (abréviation : c.d.f.)

g Accélération de la pésanteur

$g(\cdot)$ Une fonction analytique

$h(\hat{n})$ Une application géométrique sur le vecteur \hat{n}

H Epaisseur d'une couche de sol ou d'un échantillon

H_0 Epaisseur initiale d'une couche de sol

I Facteur adimensionnel pour l'expression de ε_v dans l'axe de la charge

$[I]$ Matrice unité

I_p Indice de plasticité

J Facteur adimensionnel utilisé pour l'étude de la diffusion transitoire à une dimension
 $J = \frac{Ca}{H_0}$

J_i Invariants du tenseur des contraintes
 ($i = I, II, III$)
k' Coefficient de contact de Oda
k_s Variable aléatoire discrète, entière, positive, utilisée dans l'expression des contraintes intragranaulaires
K Coefficient de pression des terres
K_0 Coefficient de pression des terres au repos
K_a Coefficient de pression des terres à l'état actif
K_p Coefficient de pression des terres à l'état passif

lim () Limite algébrique
T_1 Distance moyenne entre deux grains voisins
L Longueur d'une semelle de fondation
Log x Logarithme népérien de x
LMS Laboratoire de mécanique des sols de l'EPFL
m_A Porosité surfacique relative à la surface d'aire totale A
m_v Coefficient de compressibilité du sol (dans l'oedomètre)

m_s Coefficient de compressibilité des grains

n(x, y, z) Probabilité qu'un point de coordonnées (x, y, z) d'un milieu granulaire soit situé dans un pore
n_0 Valeur de n(x, y, z) pour z = 0 dans un massif statistiquement homogène selon x et y
\hat{n} Vecteur unitaire normal à une portion de surface ΔS
[n] Matrice ligne ou colonne du vecteur \hat{n}
n_v(ou n) Porosité volumique relative au volume total V
\bar{n}_v Mesure statistique de n_v
n_{v0} Porosité initiale d'un volume V de matériau
\(\hat{N} \) (ou \(\hat{N}_1 \))

Vecteur propre du tenseur des contraintes

\(N_C \)

Nombre de contacts par particule

\(\bar{N}_C \)

Nombre moyen de contacts par particule ou nombre de coordination

\(N_T \)

Nombre de points nodaux sur l'axe du temps utilisés pour la résolution numérique de l'équation de diffusion

\(N_Z \)

Nombre de points nodaux sur l'axe vertical utilisés pour la résolution numérique de l'équation de diffusion

\(P \)

Probabilité de transition en un pas dans une marche au hasard discrète unidimensionnelle (\(p = 1 - q \))

\(\hat{P}_i \)

Forces massiques dans un corps

\(P_r \)

Pression radiale sur une éprouvette de sol

\(P_z \)

Pression verticale

\(P \)

Point matériel

\(\hat{P}_{ij} \)

Force agissant au \(j \)ème contact sur un grain \(i \)

\(\hat{P}_{BA} \)

Force de contact entre les grains A et B

\(P(x) \)

Fonction de masse de probabilité de la variable discrète \(x \) (abrégéation m.p.f.)

Prob \([A] \)

Probabilité d'occurrence de l'événement A

Prob \([A|B] \)

Probabilité de l'événement A conditionné par l'événement B

Prob \([A, B] \)

Probabilité d'occurrence conjointe des deux événements A et B

Prob \([A; t] \)

Probabilité de l'événement A à l'époque \(t \) (\(A \) est un processus stochastique)
q
Probabilité de transition en un pas dans une marche au hasard discrète unidimensionnelle (q = 1 - p)

qV
Concentration solide relative au volume de matériau V (rapport du volume des particules solides au volume total)

qz
Pression verticale appliquée en surface

Q
Densité linéaire de charge (charge par unité de longueur)

r
Valeur d'indice du rapport S/\bar{S} (contraintes intragranulaires)

Rz_{i}
Contrainte locale normale verticale dans le grain i

R_{i}(x,y,z)
Contrainte locale normale verticale au point (x,y,z)

R_{x_{i}}
Contrainte locale tangentielle dans le grain i

R_{z_{x}}(x,y,z)
Contrainte locale tangentielle au point (x,y,z)

s_{x}
Écart type d'une variable aléatoire x

s_{x}^{2} (ou V[x])
Variance de x

S
Surface (élément géométrique)

S^*
Contrainte critique d'écrasement des grains

S_{F}
Facteur de forme des grains

S_{r}
Degré de saturation

S_{x}(x,y,z)
Contrainte intragranulaire normale au point (x,y,z) dans la direction x

S_{z_{x}}(x,y,z)
Contrainte intragranulaire tangentielle au point (x,y,z)
\[t \quad \text{Le temps} \]
\[\mathbf{t'}(n) \quad \text{Vecteur des contraintes relatif à la portion de surface } \Delta S, \text{ de vecteur unitaire normal } \mathbf{n} \]
\[t_{j}^{(n)} \quad \text{Composante de } \mathbf{t'}(n) \text{ dans la base } (\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3) \]
\[[t^{(n)}] \quad \text{Matrice ligne ou colonne des composantes du vecteur } \mathbf{t'}(n) \]
\[T \quad \text{Facteur de temps adimensionnel utilisé dans l'étude de diffusion transitoire à une dimension} \]
\[T = \frac{t \cdot H^2}{D_a} \]
\[u_a \quad \text{Surpression interstitielle de l'air} \]
\[u_w \quad \text{Surpression interstitielle de l'eau} \]
\[v_a \quad \text{Vitesse de propagation en coordonnées Lagrangiennes} \]
\[\bar{v}_s \quad \text{Volume moyen d'une particule} \]
\[V \quad \text{Volume} \]
\[V_l \quad \text{Densité linéaire de volume déplacé (m}^3\text{ par m)} \]
\[V_x \quad \text{Coefficient de variation de la variable aléatoire } x \]
\[V[x] \text{ (ou } s_x^2) \quad \text{Variance de } x \]
\[\bar{w}(a, t) \quad \text{Tassement moyen à l'époque } t \text{ des particules (ou espérance du tassement d'une particule) ayant pour coordonnée Lagrangienne } a \]
\[w_L \quad \text{Limite de liquidité} \]
\[w_p \quad \text{Limite de plasticité} \]
Déplacement moyen dans le modèle stationnaire

Composante horizontale de \(\bar{W} \)

Composante verticale de \(\bar{W} \)

- Variables algébriques ou aléatoires continues
 - Coordonnées ou directions de l'espace

Variable aléatoire discrète

Abscisse d'une limite latérale dans le modèle stationnaire

Espérance mathématique de \(x \) (abréviation : moyenne)

Processus stochastiques

Profondeur dans un massif granulaire comptée à partir de la surface

Coordonnée verticale dans un massif granulaire comptée vers le haut (altitude à partir de l'origine)

Paramètre d'état ou de structure d'un milieu granulaire

Constante d'étalonnage utilisée dans l'expression des contraintes intragranulaires

Coefficient représentant la viscosité du milieu diffusant dans l'équation de Langevin

Module de déformation volumétrique

Poids volumique apparent

Poids volumique apparent sec

Poids volumique apparent sec initial

Poids volumique des grains
δx Intervalle fini le long de l'axe x
δ(x) Delta de Dirac
δa Intervalle fini entre deux valeurs de a
δt Intervalle de temps fini

ΔA Aire moyenne de contact entre deux grains, selon Oda

Δf Résultante des forces extérieures \(f_i \) sur une portion de surface \(ΔS \)

Δf_j Composante de \(Δf \) dans une base \(\hat{e}_1, \hat{e}_2, \hat{e}_3 \)

ΔH Tassement de la surface d'une couche de sol

ΔM Moment résultant des forces extérieures \(\hat{f}_i \) sur une portion de surface \(ΔS \)

ΔM_j Composante de \(ΔM \) dans une base \(\hat{e}_1, \hat{e}_2, \hat{e}_3 \)

Δn Variation spatiale de \(n(x,y,z) \)

Δn_ν(a,t) Porosité en excès dans un état transitoire de déformation

ΔS Portion d'une surface \(S \)

ΔU Degré de diffusion

Δx Intervalle de discrétisation horizontale pour la résolution numérique

Δz Intervalle de discrétisation verticale pour la résolution numérique

ε_ν Déformation volumétrique

ζ(a,t) Coordonnée convective à l'époque \(t \) d'une particule de coordonnée Lagrangienne \(a \)

ζ̅(a,t) Coordonnée convective moyenne

η(x,y,z) Fluctuation d'une contrainte locale \(R(x,y,z) \) autour de la contrainte intragranulaire correspondante \(S(x,y,z) \) au point \((x,y,z) \)

η'(x,y,z) Forme adimensionnelle de la fluctuation \(η(x,y,z) \)
Coordonnées locales liées à la direction des contraintes intragranulaires moyennes principales S_1 et S_{III}

$\theta(x,z)$ Angle de la direction de la contrainte principale majeure avec la verticale au point (x,z)

λ_S Paramètre de la distribution de Poisson pour S/\bar{S} (contraintes intragranulaires)

$\lambda(x,y,z)$ Fonction aléatoire spatiale

ν Coefficient de diffusivité des charges

ρ Coefficient de corrélation linéaire

ρ_f Masse volumique d'un fluide

ρ_S Masse volumique des particules solides

σ' Contrainte effective

σ_a Contrainte normale axiale sur une éprouvette triaxiale

σ_g Contrainte intergranulaire

σ_{ij} Composante de rang ij du tenseur $[\sigma]$

σ^* Contrainte effective moyenne (isotrope)

σ_r Contrainte normale radiale sur une éprouvette triaxiale

σ_x Contrainte normale sur une surface \perp à la direction x

$\sigma(x)$ Une fonction de la variable aléatoire x

$[\sigma]$ Tenseur des contraintes en mécanique des milieux continus

$[\sigma]_B$ Tenseur des contraintes diagonalisé par le changement de base de matrice $[B]$

σ_N Valeurs propres du tenseur des contraintes ou contraintes principales ($N = I, II, III$)
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\tau)</td>
<td>Contrainte tangentielle</td>
</tr>
<tr>
<td>(\tau_{xy})</td>
<td>Contrainte tangentielle selon (y) sur une surface (\perp) à la direction (x), en mécanique du continu</td>
</tr>
<tr>
<td>(\phi')</td>
<td>Angle de frottement interne effectif</td>
</tr>
<tr>
<td>(\phi_\mu)</td>
<td>Angle de frottement intergranulaire</td>
</tr>
<tr>
<td>(\phi_{\text{res}})</td>
<td>Angle de frottement résiduel</td>
</tr>
<tr>
<td>(\phi_{\text{pic}})</td>
<td>Angle de frottement de pic</td>
</tr>
<tr>
<td>(\Phi_C)</td>
<td>Flux de convection</td>
</tr>
<tr>
<td>(\Phi_D)</td>
<td>Flux de diffusion</td>
</tr>
<tr>
<td>(\chi)</td>
<td>Coefficient de Bishop</td>
</tr>
<tr>
<td>(\psi)</td>
<td>Angle de frottement interne du matériau constituant les grains</td>
</tr>
<tr>
<td>(\psi(t))</td>
<td>Fonction cumulative de la distribution de Gauss normalisée</td>
</tr>
<tr>
<td>(\Omega(a) \text{ ou } \Omega(\zeta(a,t)))</td>
<td>Coordonnée matérielle réduite, selon Schiffman</td>
</tr>
</tbody>
</table>
1. INTRODUCTION

Le 30 septembre 1920, Karl TERZAGHI écrivait dans Engineering News Record :

"... The fundamental error was introduced by Coulomb, who purposely ignored the fact that sand consists of individual grains, and who dealt with the sand as if it were a homogeneous mass with certain mechanical properties. Coulomb's idea proved very useful as a working hypothesis for the solution of one special problem of the earth-pressure theory, but it developed into an obstacle against further progress as soon as its hypothetical character came to be forgotten by Coulomb's successors.

The way out of the difficulty lies in dropping the old fundamental principles and starting again from the elementary fact that sand consists of individual grains..."

A cette époque où l'on se préoccupait bien plus de définir géométriquement une hypothétique surface de rupture que de comprendre les phénomènes physiques susceptibles de la générer, le point de vue de Terzaghi était radicalement nouveau. La critique, en forme d'acte d'accusation, visait la théorie de la poussée des terres de COULOMB (1773), et surtout l'utilisation abusive qui en était faite dans le dimensionnement des soutènements. L'analyse de Terzaghi, qui annonçait les méthodes actuelles du calcul de poussée sur les écrans, partait en substance des constatations suivantes :

- L'intensité des pressions qu'exerce le sol sur une paroi est une fonction des déplacements (en direction et amplitude) que peut effectuer cette paroi.

- Sauf dans des conditions très particulières, la résistance au cisaillement ne se mobilise pas sans changements de volumes consécutifs aux déplacements relatifs des grains. La rupture dans un massif de sol ne se produit donc pas selon des surfaces théoriques, mais dans les zones où la mobilité des grains est autorisée. Dans le développement de la poussée des terres, le glissement est un événement d'importance secondaire comparé aux variations de volume.
La nature granulaire du sol, qui est constitué de particules discrètes de volume fini, peu déformables par rapport à l'ensemble, non solidaires, est à l'origine de ce comportement. Une théorie qui ignore cette réalité physique est donc, en principe, inadéquate.

On voit que le propos dépassait largement le cadre du sujet précis dont traitait Terzaghi, et qu'il aurait pu s'appliquer à la mécanique des sols théorique de l'époque dans son ensemble. Il suffit pour s'en convaincre de se remémorer les hypothèses de la théorie de BOISSINESQ (1885), qui permet de calculer les contraintes et les déformations dues à une charge ponctuelle dans un corps solide non seulement continu, homogène et isotrope, mais encore parfaitement élastique, non pesant, et d'étendue infinie. Baptisons "SOL" cet étrange matériau, et nous pouvons prédire le tassement d'une fondation ! Des doutes sont permis si l'on se rend compte que d'après cette théorie, les sollicitations internes en un point de l'espace occupé par le sol seraient les mêmes dans de l'argile saturée, du sable sec, ou des enrochements, sans que l'on doive se soucier de savoir si ce point est situé dans le fluide interstitiel, à l'intérieur d'un grain, ou proche du contact de deux particules. Quant à l'élasticité, qui signifie la réversibilité complète du phénomène de déformation lors de la décharge, elle ne se justifie à la rigueur que pour le comportement des grains eux-mêmes. Or leur déformabilité propre est en général un détail négligeable comparée à celle du matériau global, sauf pour les sols surconsolidés ou fortement compactés qui posent peu de problèmes de tassement.

Certes, d'immenses progrès ont été accomplis au cours des 60 dernières années dans la connaissance et la prévision du comportement mécanique des sols. Plutôt que d'en tenter l'impossible inventaire, constatons que les fondations d'ouvrages de plus en plus complexes sont de nos jours construites avec une sécurité généralement satisfaisante, malgré des exigences de performances, de délai et d'économie toujours accrues.

On doit cependant reconnaître que les problèmes qui sont encore mal résolus par la mécanique des sols théorique sont précisément ceux où la nature discontinue du sol est le facteur gouvernant le comportement. Il s'agit par exemple de la dilatance, de l'effet du compactage
sur la poussée des terres, de l'anisotropie structurale induite par les contraintes et de ses conséquences phénoménologiques, de la génération des bandes de cisaillement, des effets d'échelle liés à la granulométrie, du profil des déflexions en surface sous l'effet de charges, etc.

Il n'est pas étonnant que ces insuffisances soient plus criantes à propos des sols grossiers pulvérulents, qu'en ce qui concerne les sols fins et argileux. En effet, dans ces derniers, la très faible dimension des particules et leur plus grande déformabilité, l'influence des fluides interstitiels et les phénomènes capillaires qui en résultent, les interactions de type électrochimique qui lient les grains, contribuent à donner au milieu une apparence continue, sinon morphologiquement, du moins mécaniquement. Dans les sols non cohérents, par contre, les interactions entre grains sont des contacts mécaniques quasi ponctuels. Les conditions de stabilité de ces contacts, leurs éventuels glissements et la permanente reconstruction de la structure du milieu qui en découle sont les éléments clés du phénomène de déformation.

Or la mécanique des sols théorique actuelle est l'aboutissement d'une habile adaptation de la mécanique des milieux continus à un matériau poreux déformable. Lorsqu'elle rend compte de l'interaction entre les phases solides et liquides qui cohabitent, elle imagine que le fluide et le squelette occupent chacun simultanément tout l'espace, comme s'il y avait deux matériaux continus liés seulement par des équations. Cette mécanique a donc conservé, pour l'essentiel, les caractéristiques d'une théorie des milieux continus, et, par conséquent, ses inaptitudes.

Ainsi, l'exhortation de Terzaghi pour une approche plus structurale de la mécanique des sols granulaires est encore, à bien des égards, d'actualité. Mentionnant dans le même article les tentatives anciennes dans cette voie et celle qu'il avait faite lui-même quelques années auparavant, il en constatait l'échec et concluait qu'il fallait pallier par l'empirisme les déficiences de la théorie. On sait avec quelle clairvoyance il conduisit dans ce sens le développement de la mécanique des sols appliquée.
La figure 1.1 montre comment deux des pionniers schématisaient un milieu granulaire. Outre la représentation bidimensionnelle, où toutes les sphères semblent se toucher dans un même plan, adoptée par l'un des auteurs, on est frappé par l'ordre qui règne dans le matériau tel qu'il est idéalisé. Les grains sont imaginés comme des particules sphériques, toutes de même diamètre, à l'assemblage géométrique parfait et uniforme dans tout le milieu. Ces deux exemples sont représentatifs de l'esprit dans lequel ont été menés jusqu'à nos jours de nombreux travaux théoriques, visant à décrire le comportement macroscopique des sols à partir d'une analyse des phénomènes à l'échelle granulaire. Il y manque avant toute chose la vision du désordre.

![Figure 1.1: Le milieu granulaire vu par les pionniers de l'approche structurale (d'après HEYMAN, 1972)](image)

Une extrême diversité de dimensions et de formes caractérise les grains d'un massif de sol, même considéré, du point de vue stratigraphique, comme homogène. Au lieu d'être ordonné, l'arrangement géométrique de ces particules relève essentiellement du hasard et varie dans l'espace de manière peu prédictible. Il en est de même pour le détail des actions mécaniques mutuelles entre grains et des déplacements qu'ils effectuent lorsque leur équilibre relatif est rompu. Non seulement il est impossible de décrire la morphologie et les mécanismes internes d'un milieu granulaire avec certitude, mais encore le désordre qui y règne à l'échelle granulaire a des conséquences décisives sur le comportement à l'échelle macroscopique. C'est là qu'il faut voir l'origine de l'échec des approches structurales traditionnelles.
Depuis que Terzaghi a écrit les lignes reproduites plus haut, deux faits nouveaux, qui ouvrent des perspectives jusqu'alors insoupçonnées, sont intervenus en géotechnique, comme dans les autres disciplines de la science et de la technologie.

- L'informatique nous a apporté les moyens de mettre en oeuvre des formulations mathématiques complexes, pour lesquelles des solutions analytiques ne sont pas accessibles.

- L'indéterminisme s'est affirmé comme principe de raisonnement constructif dans la résolution des problèmes physiques. Cette révolution des idées est étroitement liée au développement et à l'application de la théorie des probabilités, instrument mathématique de gestion de l'incertitude.

Dans notre domaine, la dispersion des données géotechniques disponibles pour l'élaboration des projets, et la nécessité de prendre en compte rationnellement les incertitudes qui en découlent, ont donné naissance à un nouveau courant. Depuis 1971, date du premier congrès international consacré à ces problèmes, une activité intense a été dévolue à l'analyse statistique de la variabilité naturelle des sols, à l'étude de la fiabilité des ouvrages de fondations, ainsi qu'à la modélisation probabiliste de l'instabilité des pentes et des écoulements souterrains. Des synthèses de ces nombreuses contributions ont été présentées par LUMB (1974), HARR (1977)\(^1\) et WHITMAN (1984). Ces travaux prennent essentiellement en considération les incertitudes provenant de la variabilité des caractéristiques des sols dans l'espace, et celles dues aux procédés d'investigation. Les méthodes de calcul proposées ont en commun le respect des principes de la mécanique des sols traditionnelle, tels que les hypothèses de continuité du milieu, de compatibilité des déformations ou encore d'équilibre limite. Leur base est donc généralement constituée par un modèle théorique de conception déterministe, dans lequel seul le flux d'information est traité de manière probabiliste.

\(^1\) Le traité de M.E. Harr est le plus souvent cité dans cette thèse. Par souci de précision chronologique, les références sont celles de l'édition originale américaine. Le lecteur francophone pourra consulter la traduction française par E. RECORDON (1981).
Mais sur le plan de la description des phénomènes, l'indéterminisme offre une autre possibilité. Elle consiste à tirer parti du désordre et de la multitude, plutôt que de les ignorer. Une démarche probabili-iste, prenant pour argument l'incertitude qui pèse sur la structure du sol et ses mécanismes internes, peut conduire à la solution de problèmes encore mal résolus par la mécanique des sols théorique.

La présente étude a l'ambition de le montrer, à propos des tassements d'un massif de sol non cohérent soumis à une charge en surface. Orienté vers la prévision du comportement des fondations superficielles, le sujet est limité au domaine de charge dit "avant rupture", c'est-à-dire aux sollicitations inférieures à la capacité portante du massif.

On peut actuellement distinguer trois grandes catégories de méthodes de calcul :

- La première groupe les méthodes purement théoriques, issues de la mécanique des milieux continus, et qui diffèrent principalement entre elles par les relations constitutives adoptées, et le mode de résolution des équations.

Les relations constitutives non linéaires, qui nécessitent la mise en œuvre de procédures de calcul approchées, incrémentales ou itératives, sont le plus souvent associées à la méthode des éléments finis. Elles permettent notamment la simulation d'un comportement élastique non linéaire ou élasto-plastique. Une description générale de ces procédures et de leurs applications est faite dans les ouvrages de DESAI et CHRISTIAN (1977) et de GUDEHUS (1977).
Indépendamment du modèle rhéologique adopté, on a recours à la méthode des éléments finis lorsque la complexité géométrique du problème et l'interaction avec la structure l'exigent.

Malgré les limitations inhérentes à toutes les procédures empiriques, provenant des conditions particulières dans lesquelles elles ont été établies, les méthodes appartenant à la dernière catégorie sont de très loin les plus utilisées dans la pratique. Les raisons techniques de ce succès sont les suivantes:

- Les essais in situ et l'observation du comportement des fondations, qui servent à l'établissement des procédures de calcul empiriques, intègrent implicitement les caractéristiques réelles du sol, même lorsque les modes de sollicitation diffèrent.

- On évite le recours à des essais en laboratoire sur des échantillons qui, dans les sols non cohérents, présenteraient un degré de remaniement leur ôtant toute représentativité.

- La faiblesse conceptuelle des méthodes théoriques les plus simples pousse, dans le but d'améliorer leur capacité de prédiction, à accroître leur complexité. Cette tendance se traduit inévitablement par l'augmentation du nombre des paramètres. Outre le fait que leur signification physique est douteuse s'ils proviennent de la
transposition de modèles rhéologiques développés pour d'autres matériaux que le sol, la détermination a priori de leur valeur devient un exercice inabordable. De ce fait, les modèles théoriquement les plus avancés restent confinés à des études paramétriques, et à des calculs a posteriori de caractère purement démonstratif.

Ce divorce entre l'art pratique de l'ingénieur et une mécanique des sols qui néglige la nature du matériau qu'elle décrit montre qu'il y a place pour une approche différente du problème. Dans ce qui ne constitue ici qu'une étape vers une solution plus générale, l'énoncé de celui-ci est restreint de la manière suivante :

On se propose d'étudier le mécanisme de déformation d'un massif de sol granulaire sec, normalement consolidé, à surface horizontale, d'étendue finie, sous des charges statiques verticales. La prévision des tassements sera limitée au cas des sols lâches, ayant un comportement contractant. Cependant, pour les besoins de la discussion, certains aspects des développements auront un caractère plus général et concerneront aussi bien les sols saturés ou les sols denses.

La thèse soutenue se résume ainsi :

a) Le sol est un matériau discontinu et désordonné, formé d'un très grand nombre de particules discrètes et de pores.

b) Les tassements consécutifs à l'application d'une charge résultent de changements de porosité, et de la propagation de ces changements dans le milieu.

c) Ces phénomènes peuvent être quantifiés par une démarche probabiliste.
2. NOTION DE CONTRAINTE DANS UN MILIEU GRANULAIRE

2.1. CONTRAINTES DANS UN MILIEU GRANULAIRE CONSIDERÉ COMME CONTINU

La mécanique des milieux continus prétend décrire et prévoir le comportement macroscopique des matériaux, en négligeant leur nature réelle, et en supposant que la matière est distribuée de façon continue dans un volume dont elle remplit tout l'espace.

Ainsi, quelle que soit l'échelle d'observation, le caractère discret de la matière est oublié au profit d'une abstraction mathématique.

La commodité d'un cadre d'étude identique pour tous les matériaux, indépendant de leur composition et de leur état physique lorsque plusieurs phases cohabitent, a justifié l'existence et assuré le succès de cette branche des mathématiques appliquées.

Le concept de contrainte, indissociable de cette théorie, quantifie le degré de sollicitation mécanique du milieu continu en chacun de ses points. Il a été formulé en 1822 par CAUCHY comme une généralisation de la notion de pression en hydrodynamique. Quelques aspects formels méritent d'en être rappelés, sous une forme moderne.

2.1.1. Contraintes dans un milieu continu

La figure 2.1a représente un corps continu soumis à des forces extérieures f_i, appliquées à sa frontière, et à des forces de masse p_i, réparties dans son volume.

Un volume intérieur V est séparé du reste du corps par une surface fermée S à travers laquelle des forces sont transmises. Si on considère une portion de dimension finie ΔS de l'interface S contenant le point P (fig. 2.1b), on peut réduire les forces transmises à travers cet élément à une résultante Δf et un moment par rapport à P, ΔM. Si on note Δf_j ($j = 1, 2, 3$) et ΔM_j les composantes de ces deux vecteurs dans la base orthonormée $\hat{e}_1, \hat{e}_2, \hat{e}_3$, leurs moyennes rapportées à ΔS sont $\frac{\Delta f_j}{\Delta S}$ et $\frac{\Delta M_j}{\Delta S}$.
Fig. 2.1 : Vecteur des contraintes et vecteur de surface en un point d'un milieu continu

Selon le principe des contraintes de Cauchy, ces quantités tendent vers des limites finies lorsque ΔS devient très petit, de telle sorte que :

$$\lim_{(\Delta S \to 0)} \left(\frac{\Delta f_j}{\Delta S} \right) = \frac{df_j}{dS} = t_j \quad (j = 1, 2, 3)$$

$$\lim_{(\Delta S \to 0)} \left(\frac{\Delta M_j}{\Delta S} \right) = \frac{dM_j}{dS} = 0$$

(2.1)

Le vecteur dont les composantes sont les trois scalaires t_j est le vecteur des contraintes relatives à la surface ΔS, au point P. On le note $\mathbf{t}^{(n)}$, en référence au vecteur normal unitaire \mathbf{n} caractérisant l'orientation de ΔS. En effet, le vecteur des contraintes dépend, en un point donné du milieu continu, de l'orientation de la surface considérée.

D'un point de vue géométrique, le tableau

$$[\sigma] = \begin{pmatrix}
\sigma_{11} & \sigma_{21} & \sigma_{31} \\
\sigma_{12} & \sigma_{22} & \sigma_{32} \\
\sigma_{13} & \sigma_{23} & \sigma_{33}
\end{pmatrix}$$
constitue la matrice de l'application linéaire qui à tout vecteur \(\hat{n} \) définissant une orientation de surface au point \(P \) fait correspondre \(t^{(n)} \) des contraintes sur cette surface.

On l'exprime par :

\[
t^{(n)} = h(\hat{n})
\]

ou :

\[
[t^{(n)}] = [\sigma] \cdot [n]
\]

ou encore, en explicitant les matrices :

\[
\begin{pmatrix}
 t^{(n)}_1 \\
 t^{(n)}_2 \\
 t^{(n)}_3
\end{pmatrix} =
\begin{pmatrix}
 \sigma_{11} & \sigma_{21} & \sigma_{31} \\
 \sigma_{12} & \sigma_{22} & \sigma_{32} \\
 \sigma_{13} & \sigma_{23} & \sigma_{33}
\end{pmatrix}
\begin{pmatrix}
 n_1 \\
 n_2 \\
 n_3
\end{pmatrix}
\]

On vérifie aisément que les vecteurs contraintes en \(P \), sur trois plans perpendiculaires aux vecteurs unitaires de la base \(\hat{e}_1, \hat{e}_2, \hat{e}_3 \) (Fig. 2.2) valent :

\[
\begin{pmatrix}
 t^{(e_1)}_1 \\
 t^{(e_1)}_2 \\
 t^{(e_1)}_3
\end{pmatrix} =
\begin{pmatrix}
 \sigma_{11} \\
 \sigma_{12} \\
 \sigma_{13}
\end{pmatrix}
\begin{pmatrix}
 1 \\
 0 \\
 0
\end{pmatrix}
\]

\[
\begin{pmatrix}
 t^{(e_2)}_1 \\
 t^{(e_2)}_2 \\
 t^{(e_2)}_3
\end{pmatrix} =
\begin{pmatrix}
 \sigma_{21} \\
 \sigma_{22} \\
 \sigma_{23}
\end{pmatrix}
\begin{pmatrix}
 1 \\
 0 \\
 0
\end{pmatrix}
\]

\[
\begin{pmatrix}
 t^{(e_3)}_1 \\
 t^{(e_3)}_2 \\
 t^{(e_3)}_3
\end{pmatrix} =
\begin{pmatrix}
 \sigma_{31} \\
 \sigma_{32} \\
 \sigma_{33}
\end{pmatrix}
\begin{pmatrix}
 0 \\
 1 \\
 0
\end{pmatrix}
\]
Fig. 2.2 : Vecteurs des contraintes au point P sur trois surfaces orthogonales à la base de l'espace

Cette situation peut être résumée par l'équilibre \(^1\) d'un cube de volume unitaire autour de P (fig. 2.3). On voit alors que la matrice de l'application \(h\) est nécessairement symétrique :

\[\sigma_{ij} = \sigma_{ji} \quad (2.4) \]

Il existe des vecteurs surfaces \(\hat{N}\) tels que

\[\tau(N) = h(N) = \sigma_N \cdot \hat{N} \quad (2.5) \]

C'est-à-dire des surfaces passant par P orientées de telle manière que le vecteur des contraintes leur soit normal (fig. 2.4).

Les vecteurs \(\hat{N}\) et les coefficients \(\sigma_N\) sont les vecteurs propres et les valeurs propres de \([\sigma]\).

\(^1\) Ceci n'implique nullement l'équilibre du point P, mais traduit seulement le principe d'action et de réaction.
Fig. 2.3 : Contraintes sur un élément cubique du milieu continu

Fig. 2.4 : Colinéarité du vecteur surface et du vecteur des contraintes sur un plan principal
L'équation (2.5) s'écrit :

\[[t(N)] = [\sigma] \cdot [N] = \sigma_N \cdot [I] \cdot [N] \]

d'où :

\[([\sigma] - \sigma_N[I]) \cdot [N] = 0 \quad (2.6) \]

avec :

\[[I] = \begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix} \]

ce qui s'exprime :

\[\begin{pmatrix}
\sigma_{11} - \sigma_N & \sigma_{21} & \sigma_{31} \\
\sigma_{12} & \sigma_{22} - \sigma_N & \sigma_{32} \\
\sigma_{13} & \sigma_{23} & \sigma_{33} - \sigma_N
\end{pmatrix} \cdot \begin{pmatrix}
N_1 \\
N_2 \\
N_3
\end{pmatrix} = 0 \quad (2.7) \]

Les solutions non triviales sont celles de l'équation caractéristique :

\[\text{det}([\sigma] - \sigma_N[I]) = 0 \quad (2.8) \]

qui s'écrit explicitement :

\[\sigma_N^3 - J_I \sigma_N^2 + J_{II} \sigma_N - J_{III} = 0 \quad (2.8') \]

avec :

\[J_I = \sigma_{11} + \sigma_{22} + \sigma_{33} \]

\[J_{II} = \text{det} \begin{pmatrix}
\sigma_{11} & \sigma_{31} \\
\sigma_{13} & \sigma_{33}
\end{pmatrix} + \text{det} \begin{pmatrix}
\sigma_{11} & \sigma_{21} \\
\sigma_{12} & \sigma_{22}
\end{pmatrix} + \text{det} \begin{pmatrix}
\sigma_{22} & \sigma_{32} \\
\sigma_{23} & \sigma_{33}
\end{pmatrix} \quad (2.9) \]

\[J_{III} = \text{det}([\sigma]) \]

Comme la matrice \([\sigma]\) est symétrique, son équation caractéristique (2.8) possède toujours trois solutions réelles \(\sigma_I, \sigma_{II}, \sigma_{III}\), auxquelles correspondent les trois vecteurs propres orthogonaux \(N_I, N_{II}, N_{III}\).
Ces derniers constituent une nouvelle base des espaces des vecteurs surfaces \(\hat{n} \) et des vecteurs contraintes \(t^{*}(n) \). On peut y exprimer l'application \(t^{*}(n) = h(\hat{n}) \) en opérant la transformation :

\[
[s]_B = [B]^{-1} \cdot [s] \cdot [B] \quad (2.10)
\]

où \([s]_B\) désigne la matrice de \(h \) exprimée dans la nouvelle base, et \([B]\) la matrice du changement de base :

\[
[B] =
\begin{pmatrix}
N_{I1} & N_{II1} & N_{III1} \\
N_{I2} & N_{II2} & N_{III2} \\
N_{I3} & N_{II3} & N_{III3}
\end{pmatrix}
\]

Comme \([B]\) est une matrice orthogonale, (2.10) s'écrit aussi :

\[
[s]_B = [B]^T \cdot [s] \cdot [B] \quad (2.10')
\]

d'où la matrice diagonale :

\[
[s]_B =
\begin{pmatrix}
\sigma_I & 0 & 0 \\
0 & \sigma_{II} & 0 \\
0 & 0 & \sigma_{III}
\end{pmatrix} \quad (2.11)
\]

Dans le langage de la mécanique du continu, le tableau symétrique \([s]\) s'appelle le tenseur des contraintes. Ses valeurs propres \(\sigma_I \), \(\sigma_{II} \), \(\sigma_{III} \) sont les contraintes principales au point considéré. Elles représentent l'intensité des vecteurs des contraintes s'exerçant normalement aux trois surfaces appelés plans principaux. L'orientation de ceux-ci est indiquée par les directions principales des contraintes, lignes d'action des vecteurs propres. Les trois coefficients \(J_I \), \(J_{II} \), \(J_{III} \) de l'équation caractéristique sont nommés invariants du tenseur des contraintes, puisque leur valeur est indépendante de la base géométrique choisie.
On pourrait naturellement introduire la notion de contrainte d'un point de vue plus physique, et d'une manière plus intuitive.

C'est délibérément qu'un parti différent est pris ici, afin d'affirmer le caractère essentiellement géométrique des définitions et des relations entre les différentes grandeurs impliquées. Leur établissement repose uniquement sur le principe d'action et de réaction (3e loi de Newton) et sur l'hypothèse de continuité du milieu.

2.1.2. Conséquences pour la mécanique des milieux granulaires

Les développements qui précèdent ont des conséquences remarquables :

- Une contrainte n'est pas une grandeur ou un phénomène physique directement observable ou mesurable, mais un objet mathématique qui joue le rôle de variable explicative lors de l'étude du comportement d'un matériau. A cet égard, son statut est très similaire à celui du concept de force en dynamique classique. Newton écrivait :

 ... "Toute la tâche de la philosophie semble consister en ceci : à partir des phénomènes du mouvement, s'enquérir des forces de la nature, puis à partir de ces forces démontrer les autres phénomènes ... " (cité par JAMMER, 1974)

 Ce commentaire pourrait s'appliquer aussi bien à la notion de contrainte qu'à celle de force.

- La mesure de la sollicitation interne du matériau est indépendante de sa structure physique. Dans un milieu granulaire comme celui schématisé par la figure 2.5, l'état de contraintes au point A situé dans un pore, c'est-à-dire dans l'air ou dans le fluide interstitiel, serait le même qu'au point B situé dans un grain. De plus, ces contraintes auraient mêmes valeurs en un point d'un milieu granulaire dense ou lâche, à charges égales et relations constitutives identiques. Pourtant, il semble que l'équilibre requière, au sein de la phase solide, des efforts beaucoup plus grands dans le second cas que dans le premier. Cette unicité du tenseur des contraintes paraît incompatible avec le caractère continu, désordonné et imprévisible d'un sol réel.
Fig. 2.5 : Milieu granulaire sollicité par une surcharge concentrée à la surface (d'après HARR, 1977)

Lorsque l'on considère le vecteur des contraintes relatif à une surface, les contraintes tangentielles sont définies par les composantes de ce vecteur selon des tangentes à la surface. On a vu que les termes figurant sur la diagonale du tenseur sont les contraintes normales à trois plans perpendiculaires à la base géométrique de référence. Les termes extérieurs à cette diagonale sont les contraintes tangentielles à ces plans.

Mais ces quantités peuvent, au gré des surfaces choisies, contribuer tour à tour aux composantes normales et aux composantes tangentielles du vecteur des contraintes. Supposons en effet que l'on connaisse le tenseur des contraintes au point P, exprimé dans une base coïncidant avec les directions x, y, z :

\[
\sigma = \begin{pmatrix}
\sigma_x & \tau_{yx} & \tau_{zx} \\
\tau_{xy} & \sigma_y & \tau_{zy} \\
\tau_{xz} & \tau_{yz} & \sigma_z
\end{pmatrix}
\]

Cherchons par exemple la valeur des contraintes sur un plan passant par P et perpendiculaire à la diagonale principale du triangle x y z (fig. 2.6). Le vecteur unitaire normal à cette surface est

\[\hat{n} = \begin{pmatrix} 1/\sqrt{3} \\ 1/\sqrt{3} \\ 1/\sqrt{3} \end{pmatrix} \]

et on peut choisir les directions tangentielles représentées par les deux vecteurs unitaires

\[\hat{n}' = \begin{pmatrix} -1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \]

\[\hat{n}'' = \begin{pmatrix} -1/\sqrt{6} \\ 0 \\ 2/\sqrt{6} \end{pmatrix} \]
Fig. 2.6 : Vecteur des contraintes sur une surface normale à la diagonale de x y z

On exprime le tenseur dans la base constituée par \hat{n}, \hat{n}' et \hat{n}''. Il suffit pour cela d'effectuer l'opération :

$$[\sigma]_B = [B]^T \cdot [\sigma] \cdot [B]$$

avec :

$$[B] = \begin{pmatrix} 1/\sqrt{3} & -1/\sqrt{2} & -1/\sqrt{6} \\ 1/\sqrt{3} & 1/\sqrt{2} & -1/\sqrt{6} \\ 1/\sqrt{3} & 0 & 2/\sqrt{6} \end{pmatrix}$$

Le vecteur $\tau^{(n)}$ des contraintes relatif à S est donné par :

$$[\tau^{(n)}] = [\sigma]_B \cdot [n]_B$$

où $[n]_B$ est la matrice du vecteur unitaire \hat{n} exprimée dans la nouvelle base : $[n]_B = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$.
On obtient finalement :

$$[t^{(n)}] = \begin{pmatrix}
\frac{\sigma_x + \sigma_y + \sigma_z + 2\tau_{xy} + 2\tau_{xz} + 2\tau_{yz}}{3} \\
- \frac{\sigma_x + \sigma_y + \tau_{xz} - \tau_{yz}}{6} \\
- \frac{\sigma_x - \sigma_y + 2\sigma_z - 2\tau_{xy} + \tau_{xz} + \tau_{yz}}{3\sqrt{2}}
\end{pmatrix} = \begin{pmatrix}
\sigma_n \\
\tau_{nn'} \\
\tau_{nn''}
\end{pmatrix}$$

Comme ce résultat l'illustre bien, la distinction entre contraintes tangentielles et normales en mécanique du continu, n'est pas de nature physique, mais seulement géométrique. Les contraintes tangentielles ainsi définies ne représentent généralement pas des interactions tangentielles, par frottement, entre les éléments constitutifs d'un matériau réel. Dès lors, on ne sera pas étonné que le frottement entre grains ne soit qu'une composante, parmi d'autres, de la résistance au cisaillement d'un sol (TAYLOR, 1948, Ch. 14, BISHOP, 1954, LEE and SEED, 1967), même au stade résiduel (ROWE, 1962, KOERNER, 1970a,b).

En dépit de ces limitations, la notion de contrainte s'est montrée d'une utilité décisive pour le développement de la mécanique des sols. La puissance de l'appareil mathématique dans lequel elle était mise en oeuvre serait bien insuffisante pour expliquer cette apparente contradiction.

On doit plutôt y voir la manifestation du pragmatisme de ceux qui, conscients du vide conceptuel qui aurait résulté de son rejet, ont su adapter l'idée de Cauchy pour faire face aux exigences de notre discipline.

Cette évolution a permis dans un premier temps de prendre en compte l'interaction entre les phases solide et fluide d'un sol. Plus récemment sont apparues des conceptions probabilistes de la notion de contrainte, reflétant le caractère discret et désordonné des milieux granulaires. La suite de ce chapitre est consacrée à ces différentes définitions afin d'en proposer une synthèse.
2.2. CONTRAINTE EFFECTIVE

C'est la carence de la notion classique de contrainte, en tant que variable explicative, qui a motivé la contribution à la mécanique des sols la plus décisive pour son essort.

En effet, dans un sol complètement ou partiellement saturé d'eau, les changements de volume ou de résistance ne dépendent pas des variations de contraintes calculées en considérant le sol comme un milieu continu et homogène (ce que nous appelons aujourd'hui les contraintes totales). Ce fait était implicitement reconnu dès la fin du XIXᵉ siècle, notamment dans les travaux de BOUSSINESQ (1876) et SHANKLAND (1896), et prouvé expérimentalement par les essais historiques de REYNOLDS sur la dilatance (1866). Mais nul avant Terzaghi n'en comprit la portée réelle et n'en tira les conséquences.

2.2.1. Le Principe des contraintes effectives de Terzaghi

Dans son remarquable article consacré à l'invention des contraintes effectives, SKEMPTON (1960) rapporte que TERZAGHI en avait établi le principe dès 1920, alors que la formulation la plus achevée date de 1936, et s'énonce ainsi:

"Les contraintes en un point quelconque d'une section à travers une masse de sol peuvent être calculées à partir des contraintes totales principales \(\sigma_I, \sigma_{II} \) et \(\sigma_{III} \) qui agissent en ce point. Si les vides du sol sont remplis d'eau sous une pression \(u_w \), les contraintes totales principales sont composées de deux parties. Une partie, \(u_w \), agit dans l'eau et dans le solide dans chaque direction avec une intensité égale. Elle est appelée la contrainte neutre.

La différence \(\sigma'_I = \sigma_I - u_w, \sigma'_II = \sigma_{II} - u_w \) et \(\sigma'_III = \sigma_{III} - u_w \) représente un excédent par rapport à la contrainte neutre et agit exclusivement dans la phase solide du sol.

Cette fraction des contraintes totales principales sera appelée les contraintes effectives principales."
... Tous les effets mesurables d'un changement de contrainte, tels que compression, distortion et un changement de la résistance au cisaillement sont dus exclusivement à des changements des contraintes effectives σ_I, σ_{II} et σ_{III} ...

La pertinence de cette définition est très bien illustrée par le résultat d'un essai de compression triaxiale non drainée au cours duquel on fait varier de manière alternée la pression de confinement. On voit sur la figure 2.7 que la relation expérimentale entre pressions et déformations n'est pas affectée par ces brusques modifications des contraintes totales. En effet, puisque celles-ci s'accompagnent des mêmes sauts de contrainte neutre, elles n'influencent pas l'état des contraintes effectives.

Fig. 2.7 : Essai de compression non drainé sur un échantillon d'argile organique fissurée (d'après PEDA, 1982)
On peut remarquer dans la citation ci-dessus que Terzaghi ne définit les contraintes effectives que sur un plan principal. Mais comme les contraintes tangentielles dans la phase fluide sont négligeables, le tenseur de contrainte neutre

\[[u_w] = \begin{pmatrix}
 u_w & 0 & 0 \\
 0 & u_w & 0 \\
 0 & 0 & u_w
\end{pmatrix} \]

est invariant. Les contraintes effectives en un point sont donc définies sous forme tensorielle par

\[\begin{pmatrix}
 \sigma'_I \\
 0 \\
 0
\end{pmatrix} = \begin{pmatrix}
 \sigma_I \\
 0 \\
 0
\end{pmatrix} - \begin{pmatrix}
 u_w \\
 0 \\
 0
\end{pmatrix} \]

\[(2.12) \]

pour les directions principales, et par

\[\begin{pmatrix}
 \sigma_x' & \tau_{yx} & \tau_{zx} \\
 \tau_{xy} & \sigma_y' & \tau_{zy} \\
 \tau_{xz} & \tau_{yz} & \sigma_z'
\end{pmatrix} = \begin{pmatrix}
 \sigma_x & \tau_{yx} & \tau_{zx} \\
 \tau_{xy} & \sigma_y & \tau_{zy} \\
 \tau_{xz} & \tau_{yz} & \sigma_z
\end{pmatrix} - \begin{pmatrix}
 u_w \\
 0 \\
 0
\end{pmatrix} \]

\[(2.12') \]

pour des directions correspondant à x, y, z.

D'où la validité, quelle que soit l'orientation de la section considérée, de la fameuse équation \(\sigma' = \sigma - u_w \), si on lui adjoint \(\tau' = \tau \).

2.2.2. Autres définitions des contraintes effectives

En 1955\(^1\), BISHOP a étendu le concept de Terzaghi au cas des sols partiellement saturés, en introduisant un coefficient \(\chi \) qui reflète la contribution relative de l'eau et de l'air à la contrainte neutre. Ce coefficient de Bishop, compris entre 0 et 1, dépend essentiellement du degré de saturation.

Une étude approfondie de cette relation a été faite par SEKER (1983).

\(^1\) Dans une conférence donnée en Norvège et dont le texte n'a été publié qu'en 1959.
Prenant en considération le comportement mécanique du matériau constitué les grains, Skempton (1960) a proposé deux expressions différentes de la contrainte effective. L'une s'applique aux problèmes de cisaillement du sol, l'autre à sa compressibilité. Dans le premier cas, la définition fait intervenir les angles de frottement internes du sol et du matériau des grains. Dans le second, ce sont les deux coefficients de compressibilité, macroscopiques et granulaire, qui figurent dans l'expression des contraintes effectives. Les caractéristiques du matériau formant les grains sont considérées comme des propriétés intrinsèques du milieu. Ainsi que le montre le tableau de la figure 2.8, les définitions générales de Skempton correspondent exactement à celles de Terzaghi et de Bishop lorsque les grains sont formés d'un matériau idéal purement cohérent et indéformable. De plus, si l'on néglige la différence entre les angles de frottement du sol et des grains, mais que l'on admet le critère de Coulomb comme loi de frottement aux contacts entre particules, Skempton montre que les contraintes effectives sont identiques aux contraintes intergranulaires. Ces dernières sont définies comme la part des contraintes totales qui se transmet dans le sol par contacts directs entre grains. Elles sont souvent assimilées aux contraintes effectives en raison de leur signification physique. Cette interprétation est confirmée lorsque les aires de contact entre grains sont négligées, puisque dans ce cas, l'expression de la contrainte intergranulaire (fig. 2.9)

$$\sigma_g = \sigma - (1 - a_s) u_w$$ \hspace{1cm} (2.13)

se ramène encore à l'équation (2.12) de Terzaghi.

Skempton reconnaît lui-même que ses expressions générales des contraintes effectives sont d'un intérêt pratique limité au domaine des très fortes pressions, et que la formule de Terzaghi est une approximation très satisfaisante pour les sols saturés. Son propos est d'ordre essentiellement conceptuel. De ce point de vue, le fait majeur est qu'il aboutisse à des formulations différentes selon le phénomène considéré : cisaillement ou compressibilité. Ceci résulte de la définition adoptée, où il pousse jusqu'à l'extrême l'idée de Terzaghi. Ainsi, il exprime la contrainte effective comme la grandeur qui, variable indépendante dans le modèle mathématique admis a priori pour
représenter un phénomène donné, rend valide ce modèle. Autrement dit, il exprime \(\sigma' \) de manière à ajuster sur la réalité les deux formules :

\[
\tau = \sigma' + \sigma' \tan \phi'
\]

pour le cisaillement,

\[
\frac{\Delta V}{V} = m_v \cdot \Delta \sigma'
\]

pour la compressibilité.

\[
\sigma' = \sigma - [u_a - \chi (u_a - u_w)] \quad \text{Bishop, 1955}
\]

\[
\sigma' = \sigma - \left(1 - \frac{m_s}{m_v}\right) u_w \quad \text{Skempton, 1960}
\]

Fig. 2.8 : Relations entre les différentes définitions des contraintes effectives

- \(u_w \) = surpression interstitielle de l'eau
- \(u_a \) = surpression interstitielle de l'air
- \(m_s \) = coefficient de compressibilité des grains
- \(m_v \) = coefficient de compressibilité du sol
- \(\phi \) = angle de frottement interne des grains
- \(\phi' \) = angle de frottement effectif du sol
- \(a_s \) = aire spécifique des surfaces de contact intergranulaires
- \(\chi \) = coefficient de Bishop
On assiste ainsi à la consécration du rôle explicatif confié à la notion de contrainte. Celui-ci a cependant des limites : nous savons par exemple que les sols granulaires, tout comme les sols argileux, subissent des modifications structurales au cours du temps, sous contraintes effectives constantes. Ce phénomène de fluage conduit lui aussi à des variations de volume et de résistance au cisaillement.

On doit noter chez les successeurs de Terzaghi la disparition de l'idée de contrainte en un point, et son remplacement par une notion plus technique appelée "contrainte sur une surface de dimension finie". Cette évolution est due d'abord à la nécessité pratique de comparer les contraintes calculées aux pressions moyennes transmises par une fondation ou appliquées sur les frontières d'une éprouvette de sol. Mais elle est également motivée par des préoccupations théoriques. Bien que Terzaghi lui-même n'en ait pas éprouvé le besoin, Skempton a justifié la formulation des contraintes effectives en examinant à l'échelle granulaire comment les contraintes totales étaient équilibrées par les contraintes intergranulaires et les pressions interstitielles (fig. 2.9).

![Diagram](image)

Fig. 2.9 : Modèle de répartition des efforts entre contrainte totale, pression interstitielle et contrainte intergranulaire (d'après Skempton 1960)

\[
\sigma = \sigma_g + (1 - a_s) u_w
\]

\[
a_s = \frac{A_s}{A} : \text{aire spécifique des contacts intergranulaires}
\]

\[
P \text{ et } T : \text{résultantes des efforts sur la section entière } A
\]

\[
P_s \text{ et } T_s : \text{forces agissant au contact sur la section } A_s
\]

\[
\sigma = \frac{P}{A} : \text{contrainte totale; } \sigma_g = \frac{P_s}{A} : \text{contrainte intergranulaire}
\]
Il y était contraint par son recours à des considérations structurales sur le comportement mécanique des grains, alors que le point de vue de Terzaghi était, lui, essentiellement phénoménologique. Or un tel équilibre n'est réalisé en aucun point d'un milieu granulaire réel, puisque par exemple dans un pore, la pression neutre n'est généralement pas égale à la contrainte totale. On ne peut donc exprimer l'équilibre que sur une aire suffisamment grande pour intercepter chacune des phases du matériau dans des proportions représentatives de celles du milieu. Les contraintes considérées sont alors des contraintes moyennes, rapportées à une surface dont la dimension dépend de la structure du sol (taille des grains, porosité, degré de saturation). Nous verrons plus loin quelle signification il faut attribuer à cette opération statistique.

2.3. CONTRAINTES EN MÉCANIQUE PROBABILISTE DES MILIEUX GRANULAIRES

Le principe des contraintes effectives est d'une importance considérable non seulement en raison des progrès de la géotechnique qui en ont résulté, mais aussi parce qu'il se situe au carrefour de différentes approches de la mécanique des milieux granulaires.

Si sa formulation initiale par Terzaghi était de caractère phénoménologique, nous avons vu qu'elle faisait pourtant référence à la constitution du milieu par différentes phases, et que l'on pouvait en effet lui donner une signification structurale. Cette dualité se retrouve dans la mise en œuvre mathématique du concept. Celle-ci est faite dans le cadre de la mécanique du continu jusqu'à ses développements les plus récents, alors que l'idée de contrainte effective contient le germe d'une rupture complète avec cette théorie.

L'un des principaux mérites d'une formulation probabiliste de la notion de contrainte est, on va le voir, de lever cette ambiguité.

2.3.1. Caractère aléatoire des sollicitations internes dans un milieu granulaire

Lorsque nous considérons la complexité de la structure interne d'un sol réel, notre esprit ne peut assimiler qu'au désordre ce qui
dépasse son entendement. La description complète d'un milieu granulaire nécessiterait la connaissance exhaustive des caractéristiques morphologiques des grains, comme leurs dimensions et leur forme. Or ces informations ne sont disponibles que sous forme de statistiques (par exemple la granulométrie) qui décrivent les tendances d'une population dans son ensemble, et non les individus. Supposons tout de même que l'analyse détaillée de chaque particule soit réalisable. Cette formidable tâche ne serait d'aucun secours vers le but poursuivi, car l'arrangement géométrique des grains — leurs positions relatives dans l'espace — est d'une infinie diversité au sein d'un massif de sol réel. Là encore, seules des tendances qualitatives ou statistiques sont décelables à l'analyse, ou prévisibles par la connaissance géologique approfondie du mode de formation du sol.

Il en est évidemment de même lors de la description des forces qui agissent aux points de contacts entre particules, le préalable à l'analyse statique de tout système mécanique étant la connaissance de sa géométrie.

On pourrait penser que cette incapacité est une situation temporaire, liée à l'insuffisance provisoire de nos moyens de calcul. Ce serait vain espoir, que d'attendre de machines ce que leurs programmeurs ne peuvent concevoir.

C'est pourquoi les études visant à reproduire, à l'échelle granulaire, un milieu formé de particules de tailles différentes et d'arrangements non prédéfinis, ont deux points en commun :

- la réalisation des empilements en simulant le déversement des particules au hasard, par voie analogique (Dantu, Oda et Konishi) ou numérique (Cundall et Strack, Auvinet).

Les résultats de ces travaux sont des indications seulement qualitatives, en raison du petit nombre de particules représentées, mais surtout par les simplifications apportées à leur géométrie, qui
impliquent en général une structure granulaire bidimensionnelle. À ce propos, on lira la judicieuse discussion de HARR et HOLTZ (1980) sur l'article de Cundall et Strack.

Tous les auteurs s'accordent cependant sur un point essentiel :

Les forces de contact entre grains sont extrêmement dispersées et d'une grande variabilité spatiale. Ainsi, les pressions appliquées aux frontières d'une épreuve se propagent selon des cheminement préférentiels et tortueux, mais imprévisibles dans leur détail, alors que des particules voisines de ces "chaînes" sont très peu chargées.

Les sollicitations internes d'un milieu granulaire sous l'effet de charges extérieures parfaitement définies apparaissent donc, à l'échelle locale, comme des grandeurs aléatoires.

L'évidence de ce fait fut révélée en 1945 par un lumineux raisonnement de TERZAGHI, à propos de la rupture en compression simple des matériaux granulaires cimentés. Quelques années plus tard, DANTU (1957) en France et WAKABAYASHI (1957) au Japon en apportaient la confirmation expérimentale, en publiant simultanément les premiers résultats d'analyses photoélastiques de milieux granulaires analogiques.

En même temps qu'ils introduisaient en mécanique des sols les notions d'incertitude et d'indéterminisme, ces travaux marquaient le début d'une ère de progrès significatifs dans la connaissance du comportement des matériaux non cohérents. Les instruments de ce progrès furent d'abord de nature expérimentale, avec l'apparition de nouvelles techniques d'observation à l'échelle granulaire (photoélasticité, fiche thermique ou par injection de résine, coupes minces).

Ils furent ensuite d'ordre mathématique : le calcul des statistiques permet de résumer les constatations effectuées, et la théorie des probabilités constitue le cadre des modélisations nécessaires.

2.3.2. Forces de contact intergranulaires et contraintes

Différents auteurs ont cherché, depuis une vingtaine d'années, à caractériser l'état de sollicitation des sols non cohérents en reliant
directement les forces de contact entre grains aux contraintes du milieu continu équivalent. Les forces de contact sont ici des grandeurs aléatoires, et les contraintes ont la signification déterministe des contraintes intergranulaires définies précédemment. On peut aussi les assimiler aux contraintes totales, puisque ces travaux portent sur des matériaux secs. Ces différentes expressions ont été développées en relation avec des essais en laboratoire, tels que l'essai de compression triaxiale. De ce fait, leur établissement repose (parfois implicitement) sur deux hypothèses générales.

La première est celle de l'homogénéité du milieu. Une définition de cette notion a été donnée, pour un matériau formé de particules discrètes, par RECORDON et DESPOND (1977).

On peut la préciser par un exemple :

Supposons que l'on coupe une éprouvette de sol par une succession de plans parallèles à une direction donnée et très proches les uns des autres. La figure 2.10 montre les variations, le long de la direction x perpendiculaire à ces plans, des paramètres d'état ou de structure du milieu granulaire. On imagine que ceux-ci soient mesurables dans un grand nombre de subdivisions de chaque surface. Par paramètres d'état, on désigne les quantités telles que l'aire de matière solide intersectée, la porosité surfacique, le nombre de grains coupés, ou le nombre de particules appartenant à une fraction granulométrique donnée. Nous dirons que l'éprouvette est homogène dans la direction x si la moyenne et l'écart type de toutes ces grandeurs sont constantes le long de x. Les paramètres d'état d'un milieu granulaire homogène sont spatialement stationnaires, ce qui n'exclut pas l'anisotropie.

La seconde hypothèse est relative à l'application de pressions uniformément réparties aux frontières de l'éprouvette, d'où une répartition également uniforme des contraintes dans toute section du milieu continu équivalent.

C'est dans cette voie que les recherches d'une ampleur considérable ont été menées au Mexique à partir de 1960 par Marsal et ses collaborateurs, portant sur le comportement des matériaux de remblais rocheux. Ces études étaient liées à la construction de la digue El Infiernillo, et étaient motivées essentiellement par l'éventualité de

Fig. 2.10 : Homogénéité d'un milieu granulaire selon une direction x

α_i : paramètre d'état du milieu granulaire
$\alpha_{ij}(x)$: valeur mesuré de α_i dans la subdivision j de la section s'abscisse x

Considérant la transmission des sollicitations à travers un plan θ coupant un massif granulaire, Marsal introduit le concept de force intragranulaire. Il s'agit de la résultante \vec{F}_i sur le plan θ intersectant un grain i, des forces de contacts P_{ij} agissant sur ce grain d'un côté du plan (fig. 2.11).

$$\vec{F}_i = \sum_{j \text{ sup}} \vec{P}_{ij} \quad (2.14)$$
Les contraintes effectives relatives au plan \(\Theta \) valent, d'après Marsal

\[
\sigma_z^i = \frac{1}{A_t} \sum_i F_{Z_i} \\
\tau_{ZX} = \frac{1}{A_t} \sum_i F_{X_i} \\
\tau_{ZY} = \frac{1}{A_t} \sum_i F_{Y_i}
\]

(2.15)

où \(A_t \) désigne l'aire totale de la surface interceptée par le plan.

D'où :

\[
\sigma_z^i = \frac{1}{A_t} \sum_i \left(\sum_{j \text{ sup}} P_{Z_{ij}} \right) \\
\tau_{ZX} = \frac{1}{A_t} \sum_i \left(\sum_{j \text{ sup}} P_{X_{ij}} \right) \\
\tau_{ZY} = \frac{1}{A_t} \sum_i \left(\sum_{j \text{ sup}} P_{Y_{ij}} \right)
\]

(2.16)

Marsal invoque alors le théorème de la limite centrale pour justifier l'utilisation de distributions normales pour les composantes. En faisant en outre l'hypothèse d'indépendance à la fois pour les forces de contact agissant sur une particule et pour les composantes d'une même force, il applique à nouveau ce théorème aux contraintes effectives.

On arrive ainsi à la conclusion que les contraintes effectives rapportées à une section représentative d'un matériau granulaire sont des grandeurs aléatoires normalement distribuées.

Ce résultat est évidemment erroné, car les contraintes effectives \(\sigma_z^i \) ne peuvent prendre des valeurs négatives dans un milieu granulaire sec ou saturé.
Marsal tente d'expliquer cette contradiction par des effets d'échelle, ce qui implique une confusion entre les contraintes effectives et les tensions pouvant se manifester localement à l'intérieur d'un grain. Bien que de tels effets d'échelle soient d'une indéniable importance dans les milieux granulaires, cette justification ne paraît pas satisfaisante dans le cas particulier, car elle n'est pas cohérente avec le principe des contraintes effectives.

En fait, on est ici en présence d'un usage abusif du théorème de la limite centrale. Celui-ci ne s'applique strictement qu'à des sommes de variables indépendantes. Or, si l'on examine les conditions d'équilibre d'un grain par rapport à ses voisins, on voit que l'équation d'équilibre des moments rend dépendantes les forces de contact s'exerçant sur une particule, ainsi que les composantes d'une même force.

Une approche différente a été suivie par ODA (1972, 1974) qui a exprimé les composantes de la force s'exerçant au contact de deux grains en fonction des contraintes effectives principales et de la morphologie du milieu (fig. 2.12). Il propose pour la moyenne de ces composantes, dans le cas d'une sollicitation axisymétrique :

\[
\bar{P}_{1i} = k'_1 \cdot \bar{\Delta}A \cdot \sigma'_{III} \cdot | \cos \alpha \cdot \sin \alpha' | \\
\bar{P}_{2i} = k'_2 \cdot \bar{\Delta}A \cdot \sigma'_{II} \cdot | \cos \alpha \cdot \sin \alpha' | \\
\bar{P}_{3i} = k'_3 \cdot \bar{\Delta}A \cdot \sigma'_1 \cdot | \cos \alpha' |
\]

(2.17)

\(\alpha\) et \(\alpha'\) sont les deux angles caractérisant l'orientation de la normale au point de contact.

\(\bar{\Delta}A\) désigne l'aire moyenne de contact.

Les coefficients \(k'\) sont fonction de \(\bar{\Delta}A\), du nombre de contacts par particule et de la distribution de probabilité conjointe des angles \(\alpha\) et \(\alpha'.\)

Oda a en outre fait l'hypothèse d'une distribution bornée et symétrique pour les composantes \(P_{1i}, P_{2i}, P_{3i}\). Cette formulation a été reprise par CAMBOU (1981), assortie de légères modifications.
Fig. 2.12 : Décomposition d'une force de contact selon les directions des contraintes principales et distribution de probabilité des composantes (d'après ODA, 1974)

\[f(P_{X_1}) = \frac{1}{s_i'} \cos \left(\frac{P_{X_1} - \bar{P}_{X_1}}{s_i'} \right) \sqrt{\frac{4}{\pi^2 - \beta}} \]

\[s_i' = s_{P_{X_1}} \]

\[s_i' = 1 \]

\[p_{X_1} - \bar{p}_{X_1} \]

Sur la base des travaux de HILL (1967) dans le domaine des matériaux composites et cristallins, et de l'adaptation aux milieux granulaires analogues qui en avait été faite par DRESCHER et DE JOSSELINE DE JONG (1972), une relation plus générale a été établie par MEHRABADI et al. (1982). Ceux-ci définissent les contraintes comme la concentration volumique des contributions de toutes les forces de contact agissant dans le domaine. Chaque force est pondérée par son produit scalaire avec le vecteur joignant les centroïdes des deux particules qui interagissent. Une démarche semblable a été suivie par Cundall (CUNDALL et al., 1982, CUNDALL et STRACK, 1982). Ces derniers, examinant comment les forces de contact intervenaient dans les différentes contraintes, ont établi que les composantes tangentielle des forces intergranulaires contribuaient non seulement au déviateur, mais aussi
à la partie isotrope du tenseur. Ce résultat va dans le sens de la discussion présentée au paragraphe 2.1.2. Enfin, notons que les travaux de WEBER (1966), collaborateur de Dantu et précurseur de cette approche, semblent inconnus des auteurs modernes ...

La relation entre les forces de contact intergranulaires et les contraintes effectives, définies dans leur sens classique, n'est pas encore établie sous une forme qui fasse l'unanimité. On en devine cependant les grands traits, ainsi que les limites. L'expression de la moyenne et de la distribution des forces ou de leurs composantes nécessite des informations statistiques sur l'état du milieu granulaire qui ne sont généralement pas disponibles. Leur acquisition nécessiterait la mise en œuvre de méthodes de mesures applicables seulement à de très petites quantités de matériaux et dans des conditions opératoires très particulières. Les travaux menés dans ce sens par Oda et les autres membres de "l'Ecole Japonaise" ont grandement contribué à l'amélioration de nos connaissances sur le comportement des sols non cohérents. Il est cependant douteux que soient développés, en vue des applications pratiques, des modèles théoriques utilisant la distribution des forces de contacts pour caractériser les sollicitations internes du milieu granulaire.

Une approche qui nécessite à la fois moins d'hypothèses sur la morphologie du milieu, et l'emploi d'un nombre plus restreint de paramètres, est envisageable. Elle consiste à revenir à la notion classique de contrainte, tout en la généralisant dans le cas d'un ensemble désordonné de particules discrètes.

2.3.3. Contraintes dans une section d'une éprouvette de sol granulaire saturé

Considérons le cas de la figure 2.13a où une éprouvette de sol granulaire saturé est soumise à des pressions uniformes sur ses frontières. Un plan θ coupe l'éprouvette horizontalement (le choix de cette orientation particulière permet d'alléger les notations par la suite, mais n'est pas impératif). Dans la section ainsi définie, on examine une surface A_t, assez grande pour intersector plusieurs grains
(fig. 2.13b). Ces derniers sont soumis aux forces de contact qui leur sont appliquées par leurs voisins situés de part et d'autre du plan θ. La surpression interstitielle u_w agit sur l'intersection des pores par le plan, ainsi qu'à la surface des particules, si l'on néglige l'aire des contacts intergranulaires.

Fig. 2.13 : Sollicitations sur une section horizontale à travers une épreuve de matériau granulaire saturé soumise à des pressions uniformes.
Nous postulons que la mécanique des milieux continus est applicable au solide constitué par chaque grain (fig. 2.13c), et faisons les hypothèses suivantes :

- Les mouvements des particules et du fluide sont suffisamment lents pour que l'on puisse les considérer en équilibre quasi-statique.

- Le poids propre d'un grain peut être négligé par rapport aux autres forces lorsque l'on étudie ses conditions d'équilibre. En principe, ceci n'exclut pas la prise en compte du poids des terres transmis par les forces de contact.

- La surpression interstitielle u_w est constante sur tout le plan θ, ainsi que sur la hauteur des particules intersectées.

A l'intérieur d'une particule i, les forces agissant de part et d'autre du plan θ s'équilibrent. Cette interaction des deux parties du grain se traduit par l'expression des résultantes sur la section A_i.

$$
\begin{align*}
\hat{F}^{\text{sup}}_i &= \sum_{j \text{ sup}} \hat{P}_{ij} + u_w \cdot A_i \cdot \hat{n}^{\text{sup}}_\theta \\
\hat{F}^{\text{inf}}_i &= \sum_{j \text{ inf}} \hat{P}_{ij} + u_w \cdot A_i \cdot \hat{n}^{\text{inf}}_\theta
\end{align*}
$$

où $\hat{n}^{\text{sup}}_\theta$ et $\hat{n}^{\text{inf}}_\theta$ désignent les vecteurs unitaires normaux à chaque face du plan θ.

On a :

$$
\hat{F}^{\text{sup}}_i = - \hat{F}^{\text{inf}}_i
$$

et comme :

$$
\hat{n}^{\text{sup}}_\theta = - \hat{n}^{\text{inf}}_\theta
$$

on vérifie que :

$$
\sum_{j \text{ sup}} \hat{P}_{ij} = - \sum_{j \text{ inf}} \hat{P}_{ij}
$$

Ainsi exprimées, les forces \hat{F}_i ne sont autres que les forces intra-granulaires de MARSAL (1973), définies d'une manière plus générale.
Le point d'application (commun) des deux résultantes dépend de la valeur des moments résultants. Ces derniers sont liés aux caractéristiques des forces de contact, à la taille et à la forme de la particule, ainsi qu'à sa position par rapport au plan \(\Theta \). Tous ces facteurs étant imprédictibles ou incertains, les contraintes sur le plan \(\Theta \) en tout point de la section \(A_i \) du grain \(i \) sont des quantités aléatoires, fonctions des coordonnées \(x \) et \(y \).

On les nommera les contraintes locales dans le grain \(i \), notées \(R_{z_i} \), \(R_{x_i} \), \(R_{y_i} \). Si le milieu est complètement saturé (ou sec) et que les grains sont de forme convexe, toutes les forces sont dirigées vers l'intérieur de la particule. La force intragranulaire est donc une compression, bien que des contraintes locales de traction (\(R_{z_i} < 0 \)) ne puissent être exclues (fig. 2.14).

Imaginons que l'on puisse mesurer les contraintes sur l'intersection du grain \(i \) par \(\Theta \) en parcourant la surface \(A_i \). On définit ainsi une expérience, au sens statistique. Un événement consiste en l'enregistrement d'une certaine valeur, par exemple pour \(R_{z_i} \). L'espace des événements est l'ensemble de toutes les valeurs possibles pour les contraintes. Il est borné par les résistances, en traction et compression, du matériau formant le grain.

Dans ces conditions, et pour un très grand nombre de mesures, la moyenne observée de chaque composante serait égale à son espérance mathématique :

\[
E[R_{z_i}] = \frac{1}{A_i} \int_{A_i} R_{z_i} \, dA
\]

\[
E[R_{x_i}] = \frac{1}{A_i} \int_{A_i} R_{x_i} \, dA
\]

\[
E[R_{y_i}] = \frac{1}{A_i} \int_{A_i} R_{y_i} \, dA
\]

(2.19)

où :

\[dA = dx \cdot dy\]
Fig. 2.14 : Contraintes locales verticales sur la section d'un grain par le plan θ

La justification des expressions (2.19) est donnée ci-dessous pour une fonction monotone d'une seule variable. On admettra sans démonstration leur validité dans le cas de fonctions non monotones de plusieurs variables.

Soit \(\sigma(x) \) une quantité aléatoire continue monotonement décroissante (ou croissante) en fonction de \(x \), et \(f_\sigma(\sigma) \) sa fonction de densité de probabilité.

La fonction inverse \(\sigma^{-1}(x) = x(\sigma) \) est définie.

D'après la définition de l'expérience étudiée, \(x \) est une variable aléatoire distribuée uniformément. C'est aussi une fonction continue de \(\sigma \) (fig. 2.15).
Si $\Delta \sigma$ est un intervalle fini autour de la valeur σ_0, la probabilité que σ prenne une valeur située dans cet intervalle vaut:

$$\text{Prob} \left[\frac{\sigma_0 - \Delta \sigma}{2} < \sigma < \frac{\sigma_0 + \Delta \sigma}{2} \right] = \text{Prob} \left[x \left(\frac{\sigma_0 - \Delta \sigma}{2} \right) < x < x \left(\frac{\sigma_0 + \Delta \sigma}{2} \right) \right]$$

$$\text{(2.20)}$$

Puisque x est uniformément distribué:

$$\text{Prob} \left[x \left(\frac{\sigma_0 - \Delta \sigma}{2} \right) < x < x \left(\frac{\sigma_0 + \Delta \sigma}{2} \right) \right] = \frac{x \left(\frac{\sigma_0 + \Delta \sigma}{2} \right) - x \left(\frac{\sigma_0 - \Delta \sigma}{2} \right)}{L}$$

$$\text{(2.21)}$$
On a aussi, par définition :

\[
\text{Prob} \left[\frac{\sigma_0 - \Delta \sigma}{2} < \sigma < \frac{\sigma_0 + \Delta \sigma}{2} \right] = \int_{\sigma_0 - \frac{\Delta \sigma}{2}}^{\sigma_0 + \frac{\Delta \sigma}{2}} f_{\sigma}(\sigma) \, d\sigma
\]

\[= F_{\sigma}\left(\sigma_0 + \frac{\Delta \sigma}{2}\right) - F_{\sigma}\left(\sigma_0 - \frac{\Delta \sigma}{2}\right) \tag{2.22}\]

où \(F_{\sigma}\) désigne la fonction cumulée de probabilité de \(\sigma\).

En remplaçant (2.21) et (2.22) dans (2.20), et en divisant membre à membre par \(\Delta \sigma\), il vient :

\[
\frac{F_{\sigma}\left(\sigma_0 + \frac{\Delta \sigma}{2}\right) - F_{\sigma}\left(\sigma_0 - \frac{\Delta \sigma}{2}\right)}{\Delta \sigma} = \frac{1}{L} \cdot \frac{x\left(\sigma_0 + \frac{\Delta \sigma}{2}\right) - x\left(\sigma_0 - \frac{\Delta \sigma}{2}\right)}{\Delta \sigma} \tag{2.23}\]

Donc, lorsque \(\Delta \sigma \to 0\)

\[
\frac{d}{d\sigma} F_{\sigma}(\sigma_0) = \frac{1}{L} \cdot \frac{dx}{d\sigma}(\sigma_0) \tag{2.24}\]

c'est-à-dire :

\[
f_{\sigma}(\sigma) \, d\sigma = \frac{1}{L} \, dx \tag{2.24'}\]

En multipliant par \(\sigma\) et en intégrant, on obtient :

\[
E[\sigma] = \int_{\sigma_{\min}}^{\sigma_{\max}} \sigma \cdot f_{\sigma}(\sigma) \, d\sigma = \frac{1}{L} \int_{x(\sigma_{\min})}^{x(\sigma_{\max})} \sigma(x) \, dx \tag{2.25}\]

résultat qui est analogue à (2.19).
D'un point de vue mécanique, le principe des contraintes de Cauchy affirme que :

\[
\begin{align*}
\int_{A_i} R_{zi} \, dA &= F_{zi} \\
\int_{A_i} R_{xzi} \cdot dA &= F_{xi} \\
\int_{A_i} R_{zyi} \cdot dA &= F_{yi}
\end{align*}
\] (2.26)

On peut donc écrire :

\[
\begin{align*}
E [R_{zi}] &= \frac{F_{zi}}{A_i} \\
E [R_{xzi}] &= \frac{F_{xi}}{A_i} \\
E [R_{zyi}] &= \frac{F_{yi}}{A_i}
\end{align*}
\] (2.27)

Par analogie avec la définition de Marsal, nous nommerons ces quantités **contraintes intragranulaires** (notées S).

Nous allons maintenant étendre ce raisonnement à la surface \(A_t \) entière. Pour cela, nous définissons les deux fonctions aléatoires suivantes (fig. 2.16) :

\[
\begin{align*}
R_z(x, y) &= R_{zi}(x, y) \quad \text{si le point} (x, y) \text{ appartient à l'intersection } A_i \text{ du grain } i \text{ avec } \theta \\
R_z(x, y) &= u_w \quad \text{si le point} (x, y) \text{ n'est pas dans un grain}
\end{align*}
\] (2.28)

\[
\begin{align*}
S_z(x, y) &= E[R_{zi}(x, y)] \quad \text{si} (x, y) \text{ est sur } A_i \\
S_z(x, y) &= E[u_w] = u_w \quad \text{si} (x, y) \text{ n'est pas dans un grain}
\end{align*}
\] (2.29)
Les fonctions R_z et S_z sont respectivement la contrainte locale et la contrainte intragranaulaire, étendues au domaine A_t.

On peut interpréter ces définitions comme l'assimilation des pores à des "grains", dans lesquels ne régnerait que la surpression interstitielle u_w, qui n'est pas considérée comme aléatoire.

Les fonctions analogues sont créées pour les autres composantes.

L'espérance mathématique de R_z s'exprime :

$$E[R_z] = \frac{1}{A_t} \int_{A_t} R_z \cdot dA$$

$$= \frac{1}{A_t} \left[\sum_{i} \left(\int_{A_i} R_{zi} \ dA \right) + u_w \left(A_t - \sum_{i} A_i \right) \right]$$

$$= \frac{1}{A_t} \left[\sum_{i} \left(F_{zi} \right) + u_w \left(A_t - \sum_{i} A_i \right) \right]$$

$$= \frac{1}{A_t} \left[\sum_{i} \left(A_i E[R_{zi}] \right) + u_w \left(A_t - \sum_{i} A_i \right) \right]$$

d'après (2.27)

D'où :

$$E[R_z] = E[S_z]$$

(2.31)

et par un développement similaire :

$$E[R_{zx}] = E[S_{zx}]$$

$$E[R_{zy}] = E[S_{zy}]$$

Si la surface A_t couvrait toute la section de l'éprouvette, l'équilibre vertical de la partie supérieure exigerait :

$$\int_{A_t} R_z \ dA = A_t \cdot \sigma_z$$

où σ_z est la pression verticale appliquée.
Fig. 2.16 : Contraintes locales et contraintes intragranaulaires dans une section du milieu granulaire

- $R_{zi} = $ contrainte locale dans un grain i
- $R_x = $ contrainte locale étendue à la section complète
- $S_{zi} = $ contrainte intragranaulaire dans le grain i
- $S_x = $ contrainte intragranaulaire étendue à la section complète
- $u_w = $ surpression interstitielle

On aurait donc :

$$\sigma_z = E[R_z]$$ \hspace{1cm} (2.33)

Dans le milieu continu équivalent, la contrainte verticale en tout point de toute section horizontale serait égale à la valeur unique σ_z. Ce serait donc aussi cette valeur qui serait attribuée à la contrainte totale, et on obtient ainsi :

$$\sigma_z = E[R_z(x, y)] = E[S_z(x, y)]$$ \hspace{1cm} (2.34)
On peut donc en conclure que les contraintes totales, dans une éprouvette de matériau granulaire saturé, soumise à des sollicitations uniformes, sont égales à l'espérance mathématique des contraintes locales en un point. Elles représentent aussi la moyenne des contraintes intragranulaires.

Les contraintes effectives en sont déduites immédiatement.

L'équation \(\sigma'_Z = \sigma_Z - u_w \) devient :

\[
\sigma'_Z = E \left[R_Z \right] - u_w \quad (2.35)
\]

ou

\[
\sigma'_Z = E \left[S_Z \right] - u_w \quad (2.35')
\]

et

\[
\tau'_{Zx} = E \left[R_{Zx} \right] = E \left[S_{Zx} \right]
\]

\[
\tau'_{Zy} = E \left[R_{Zy} \right] = E \left[S_{Zy} \right]
\]

La signification physique de l'équation (2.35) apparaît aisément si l'on reprend la relation (2.30) :

\[
E \left[R_Z \right] = \frac{1}{A_t} \left[\sum_i \left(F_{zi} \right) + u_w \left(A_t - \sum_i A_i \right) \right]
\]

En remarquant que \(\frac{1}{A_t} \sum_i A_i \) est la porosité surfacique \(m_{A_t} \) de la section, on obtient :

\[
E \left[R_Z \right] - u_w = \frac{1}{A_t} \sum_i \left(F_{zi} \right) - u_w \left(1 - m_{A_t} \right)
\]

En faisant usage de (2.18) :

\[
E \left[R_Z \right] - u_w = \frac{1}{A_t} \sum_i \left(\sum_{j \sup} P_{zij} \right) + u_w A_i - u_w \left(1 - m_{A_t} \right)
\]

\[
= \frac{1}{A_t} \sum_i \left(\sum_{j \sup} P_{zij} \right) + u_w \left(1 - m_{A_t} \right) - u_w \left(1 - m_{A_t} \right)
\]

d'où :

\[
\sigma'_Z = E \left[R_Z \right] - u_w = \frac{1}{A_t} \sum_i \left(\sum_{j \sup} P_{zij} \right) \quad (2.36)
\]
La contrainte effective σ'_2 représente donc la concentration, par unité de surface, des composantes verticales des forces de contact entre particules. On retrouve ainsi le résultat obtenu par Marsal (équation 2.16) dans le cas d'un sol sec.

Pour que cette interprétation soit complète, nous devons encore préciser quel est le critère permettant de définir la surface A_T comme "représentative" du milieu granulaire.

Si la surface A_T était très petite, la moyenne statistiquement observable de la contrainte locale, R_z, serait certainement très différente de la pression σ_2. Avec l'augmentation des dimensions de A_T, cette moyenne subirait des fluctuations tout en se rapprochant de σ_2. Le facteur déterminant pour cette convergence est la granulométrie du matériau. A défaut d'études spécifiques aux contraintes, on peut s'inspirer des travaux effectués par divers auteurs sur les effets d'échelle géométrique relatifs à la porosité.

La figure 2.17 regroupe quelques résultats de ce type, qui peuvent être adoptés comme ordre de grandeur.

<table>
<thead>
<tr>
<th>Auteurs</th>
<th>Dimension représentative minimale pour la porosité</th>
<th>Matériau</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAMBOU 1977</td>
<td>$8 , d_{\text{max}}$</td>
<td>Cylindres</td>
</tr>
<tr>
<td></td>
<td>$7 , d_{\text{max}}$</td>
<td>$d = 1$ à $2 , \text{mm}$</td>
</tr>
<tr>
<td></td>
<td>$3 , d_{\text{max}}$</td>
<td>$d_{60}/d_{10} = 1.35$</td>
</tr>
<tr>
<td>AUVINET et BOUVARD 1983a</td>
<td>$(0.005/k)^{2/3} \cdot d_{50}$</td>
<td>Sphères</td>
</tr>
<tr>
<td></td>
<td>$k : \text{coefficient empirique}$</td>
<td>Structure lâche</td>
</tr>
<tr>
<td></td>
<td>$11 , d_{50}$</td>
<td>$(n = 0.43, k = 0.18)$</td>
</tr>
<tr>
<td></td>
<td>$8 , d_{50}$</td>
<td>Structure dense</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$(n = 0.34, k = 0.11)$</td>
</tr>
</tbody>
</table>

Fig. 2.17 : Facteur d'échelle géométrique dans des matériaux granulaires simulés numériquement
Remarque :

Sols partiellement saturés

Bien que ce cas sorte du cadre de la présente étude, on peut remarquer que les conclusions qui précèdent pour un sol complètement saturé peuvent facilement être généralisées pour un milieu partiellement saturé. Il suffit pour cela de modifier les définitions (2.28) et (2.29) comme suit :

\[
\begin{align*}
R_z(x, y) &= R_{zi}(x, y) \quad \text{si} \ (x, y) \ \text{est dans} \\
S_z(x, y) &= E[R_{zi}(x, y)] \quad \text{un grain i} \tag{2.28'}
\end{align*}
\]

\[
\begin{align*}
R_z(x, y) &= u_w \quad \text{si} \ (x, y) \ \text{est dans} \\
S_z(x, y) &= u_w \quad \text{l'eau interstitielle} \tag{2.29'}
\end{align*}
\]

\[
\begin{align*}
R_z(x, y) &= u_a \quad \text{si} \ (x, y) \ \text{est dans} \\
S_z(x, y) &= u_a \quad \text{le gaz interstitiel}
\end{align*}
\]

Le développement de l'expression (2.30) donne alors :

\[
E[R_z] = \frac{1}{A_t} \left[\sum_i \left(A_i E[R_{zi}]\right) + u_w \left(A_t - \sum_i A_i\right) S_r \right.
\]

\[
\left. + u_a \left(A_t - \sum_i A_i\right) (1 - S_r) \right]
\]

où \(S_r\) est le degré de saturation.

On trouve bien à nouveau \(E[R_z] = E[S_z]\)

Ce résultat est toutefois conditionné par l'isotropie du milieu (les porosités surfaciques sont égales aux porosités volumiques).
2.3.4. Contraintes en un point d'un massif granulaire chargé en surface

Considérons le massif semi-infini représenté à la figure 2.18, où une charge est appliquée en surface. On s'interroge sur les sollicitations internes en un point de coordonnées (x_1, y_1, z_1) définies dans une base liée au point d'application de la charge.

![Diagramme de masse granulaire](image)

Fig. 2.18 : Massif granulaire semi-infini sollicité en surface par des charges quelconques

On doit à Harr (1977, ch. 7) d'avoir résolu ce problème pour un sol sec, sur la base d'arguments purement probabilistes. Nous n'aborderons ici que le principe fondamental de sa démarche; les autres aspects de son travail étant discutés dans les chapitres suivants.

La quantité mathématique adoptée\(^1\) par Harr pour caractériser la sollicitation interne est la contrainte locale, dans le sens où nous

\(^1\) La distinction entre contrainte locale et contrainte intragranaulaire n'est toutefois pas explicite dans l'exposé de Harr.
l'avons définie précédemment, avec \(u_w = 0 \). La valeur des contraintes locales dépend des coordonnées du point (sa position par rapport aux charges) et des caractéristiques de la charge. Mais, à la différence avec un milieu continu, elle dépend aussi de la configuration physique du matériau au point \((x_1, y_1, z_1)\). C'est à dire de l'appartenance de ce point à un pore ou à un grain, et dans ce dernier cas, de la situation dans le grain, et du grain lui-même. Cette configuration relevant du hasard, les contraintes au point considéré sont des variables aléatoires. Dans un milieu granulaire statistiquement homogène, les contraintes en deux points symétriques par rapport à une charge symétrique ont la même distribution de probabilité, alors que leur valeur peut différer considérablement.

Harr a imaginé l'expérience suivante :

Si l'on déplace la charge à la surface du massif (fig. 2.5 ou fig. 2.18), et que le référentiel se déplace avec elle, le point \((x_1, y_1, z_1)\) passera successivement par tous les points matériels du sol qui se trouvent à la profondeur \(z_1 \). On verra donc se succéder en \((x_1, y_1, z_1)\) toutes les configurations physiques qui y sont possibles, sans que les facteurs qui, dans l'état de contraintes, dépendent de la charge et des coordonnées, soient jamais altérés.

Or, mathématiquement parlant, cette expérience probabiliste est strictement équivalente à celle qui consiste à parcourir une section représentative d'une éprouvette sollicitée uniformément. Nous sommes donc ramenés au problème précédent. Les résultats établis par Harr pour un sol sec sont donc généralisables en présence d'eau, ainsi que nous l'avons montré.

Les contraintes totales en un point d'un massif granulaire représentent l'espérance mathématique (ou la moyenne) des contraintes locales en ce point, ainsi que celle des contraintes intragranulaires. Les contraintes effectives sont égales à la concentration de forces de contact en ce point, rapportées à l'unité de surface. Ces résultats sont valides quelle que soit la charge et le degré de saturation du milieu.
Une conséquence remarquable de l'idée de Harr est qu'elle permet de s'affranchir des préoccupations d'échelle géométrique dans la définition des contraintes. Son concept est compatible avec le Principe des contraintes effectives, au niveau macroscopique, et repose sur le principe de Cauchy, au niveau de la particule. De ce point de vue, on peut parler de synthèse.
3. POROSITE ET DISTRIBUTION DE PROBABILITE DES CONTRAINTES

L'évolution des idées en mécanique des sols conduit à redéfinir d'un point de vue probabiliste la notion de contrainte dans un milieu granulaire. Nous avons vu que la contrainte totale, calculée en considérant le sol comme un continu, représente en fait l'espérance mathématique de la contrainte en un point. Cette interprétation garantit la cohérence de la nouvelle approche avec la mécanique des sols classique, de caractère déterministe. Elle montre aussi que seule la tendance centrale des sollicitations internes est prise en compte par une théorie déterministe.

Une telle restriction apparaît comme une lacune, lorsque l'on considère la nature des phénomènes physiques qui provoquent la déformation ou la rupture d'un milieu granulaire soumis à des charges. En effet, le comportement d'ensemble résulte d'une accumulation de déséquilibres et d'instabilités à l'échelle locale, où les forces mises en jeu sont nécessairement éloignées des valeurs moyennes.

Le problème de la rupture des particules en est une illustration particulièrement convaincante. Si l'on fait l'hypothèse de la continuité du milieu, les contraintes dans une épreuve soumise à une pression extérieure isotrope ont une valeur unique, identique en tout point. La rupture des particules ne peut donc se produire que lorsque la pression extérieure atteint une valeur critique liée à la résistance à l'écrasement du matériau formant les grains. Si ces derniers ont tous la même composition minéralogique, ils devraient donc se rompre simultanément, et sans doute à une pression très supérieure aux valeurs usuellement appliquées. Cette prédiction, si elle se vérifie assez bien pour des milieux discontinus ordonnés (BIAREZ et al., 1971) est démentie catégoriquement par les expériences sur des sols réels. LEE et SEED (1967), ainsi que MARSAL (1967, 1969) notamment, ont montré que le phénomène est progressif pendant l'augmentation de la pression, et que la granulométrie est déjà légèrement affectée sous des contraintes moyennes modérées.

Cette discordance est la manifestation de la dispersion des contraintes dans le milieu granulaire réel.
Le problème de la distribution de probabilité des contraintes en un point se pose donc. Nous l'aborderons essentiellement sur le plan des contraintes intragrana
eraires, et le problème des contraintes locales sera discuté plus brièvement. Le raisonnement sera fait pour les composantes normales, puis étendu aux contraintes tangentielles.

3.1. **DONNEES DU PROBLEME**

Considérons à nouveau le cas de la figure 2.18 où un massif de sol granulaire sec semi-infini est chargé en surface. On suppose connue l'espérance de la contrainte normale verticale en un point de coordonnées \((x, y, z)\).

Résumons les informations dont nous disposons sur les variables aléatoires \(S_z(x, y, z)\) et \(R_z(x, y, z)\), ainsi que sur leurs distributions de probabilité :

| Type de variable aléatoire | Contrainte locale \(R_z(x, y, z)\) | Contrainte intragrana
eraire \(S_z(x, y, z)\) |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Domaine de définition</td>
<td>([-\infty, +\infty[)</td>
<td>([0, +\infty[)</td>
</tr>
<tr>
<td>Moyenne</td>
<td>(E[R_z] = \bar{R}_z = \sigma_z)</td>
<td>(E[S_z] = \bar{S}_z = \sigma_z)</td>
</tr>
</tbody>
</table>

Fig. 3.1 : Caractéristiques générales des variables aléatoires \(R_z\) et \(S_z\)

Au contenu du tableau 3.1, on doit ajouter, outre la relation qui lie \(S_z\) et \(R_z\) (équation 2.29), la particularité suivante :

Bien que ces deux quantités soient des variables aléatoires continues, elles ont une probabilité finie, non nulle, de prendre la valeur zéro. Or une variable aléatoire continue a une probabilité nulle de prendre une valeur particulière de son domaine de définition.
R_z et S_z sont donc des variables aléatoires de type hybride. On les appelle des variables aléatoires mixtes (BENJAMIN et CORNELL, 1970, ch. 2). Théoriquement, elles possèdent seulement une fonction cumulative de probabilité, qui présente une discontinuité à l'origine. On peut cependant schématiser leur distribution par un artifice tel que celui de la figure 3.2, consistant à porter sur le même axe une densité f et une masse P de probabilité.

C'est par analogie avec la porosité que la notation n est utilisée sur la figure 3.2 pour désigner la probabilité d'une contrainte nulle en un point du milieu granulaire. En effet, nous avons identifié cet événement à celui : (le point de coordonnées (x, y, z) est dans un pore). Nous allons voir que dans certaines circonstances, la probabilité de cet événement est précisément égale à la porosité du milieu.

Fig. 3.2 : Représentation schématique des distributions des variables aléatoires mixtes R_z et S_z

- **F** : fonction cumulative de probabilité
- **f** : densité de probabilité
- **P** : masse de probabilité
3.2. **POROSITÉ**

La porosité d'un sol n'est pas une grandeur mathématique définie en un point d'un milieu granulaire, comme par exemple les contraintes. Il s'agit au contraire d'une grandeur technique dont la mesure est influencée par les effets d'échelle, ainsi que nous l'avons mentionné au chapitre précédent. La notion de porosité n'a donc une signification que si on précise à quelle quantité de matériau (en volume ou en surface) elle se rapporte.

Par définition :

\[n_V = \frac{V_{vides}}{V} \quad \text{et} \quad m_A = \frac{A_{vides}}{A} \]

sont respectivement la porosité volumique d'un volume \(V \) de matériau intact, et la porosité surfacique d'une section d'aire \(A \).

HARR (1977, ch. 2) a interprété la porosité volumique \(n_V \) comme la probabilité de trouver un vide en un point donné du volume \(V \). Cette probabilité est ainsi caractérisée par une valeur unique dans tout le volume, indépendamment des coordonnées du point considéré. L'interprétation de Harr repose donc, implicitement, sur l'hypothèse d'homogénéité statistique du matériau. À ce titre, elle correspond à un cas particulier.

Un résultat similaire a été obtenu par AUVINET et BOUARD (1983)\(^b\), en utilisant les propriétés des fonctions aléatoires spatiales, définies pour un milieu poreux par MATHERON (1967). De même que Harr, Auvinet ne se prononce pas lorsque l'homogénéité n'est plus assurée.

Le développement qui suit constitue, à cet égard, une généralisation de ces travaux.

Imaginons que dans un massif granulaire, on isole un cube de volume \(V \) dont les arêtes sont parallèles aux axes de coordonnées (fig. 3.3). En tout point situé à l'intérieur, on définit la fonction \(\lambda(x,y,z) \) telle que :

\[\lambda(x,y,z) = 1 \quad \text{si le point } (x, y, z) \text{ est dans un pore} \]

\[\lambda(x,y,z) = 0 \quad \text{si le point } (x, y, z) \text{ est dans un grain} \]
Fig. 3.3 : Cube de volume total \(V \) dans un massif granulaire, et section horizontale \(A \)

En général, pour un milieu qui n'est pas statistiquement homogène, la probabilité que \(\lambda \) prenne la valeur 1 plutôt que 0 dépend des coordonnées du point.

Soit
\[
 n(x, y, z) = \operatorname{Prob} [\lambda(x,y,z) = 1]
\]

Les deux événements \(\lambda = 1 \) et \(\lambda = 0 \) étant mutuellement exclusifs et exhaustifs, on a aussi :
\[
 1 - n(x, y, z) = \operatorname{Prob} [\lambda(x,y,z) = 0]
\]

La distribution de probabilité de \(\lambda \) en un point est schématisée par la figure 3.4.

L'espérance et la variance de \(\lambda(x,y,z) \) valent :
\[
 \bar{\lambda}(x,y,z) = E [\lambda(x,y,z)] = n(x,y,z) \quad (3.3)
\]
\[
 V[\lambda(x,y,z)] = E [(\lambda(x,y,z) - \bar{\lambda}(x,y,z))^2] = n(x,y,z) - n^2(x,y,z) \quad (3.4)
\]

On vérifie bien que cette dernière quantité est toujours positive, puisque \(n \) est compris entre 0 et 1.

Supposons que l'on observe la valeur de \(\lambda \) en un certain nombre de points pris au hasard dans le volume \(V \).

La moyenne des \(N \) valeurs observées peut être considérée comme une mesure, au sens statistique, de la porosité volumique. Mais comme le nombre \(N \) de points considérés est fini, on obtient une mesure différente chaque fois que l'on répète l'expérience.
Fig. 3.4 : Distribution de probabilité de la fonction λ en un point (x, y, z)

La jème de ces mesures est :

$$\tilde{n}_{ij} = \frac{1}{N} \sum_{i=1}^{N} \lambda(x_{ij}, y_{ij}, z_{ij})$$ \hspace{1cm} (3.5)

L'espérance mathématique de \tilde{n}_{ij} est :

$$E[\tilde{n}_{ij}] = E\left[\frac{1}{N} \sum_{i=1}^{N} \lambda(x_{i}, y_{i}, z_{i})\right] = \frac{1}{N} \sum_{i=1}^{N} E[\lambda(x_{i}, y_{i}, z_{i})]$$ \hspace{1cm} (3.6)

$$E[\tilde{n}_{ij}] = \frac{1}{N} \sum_{i=1}^{N} n(x_{i}, y_{i}, z_{i})$$ \hspace{1cm} (3.7)

Si le nombre N d'observations à chaque mesure est grand, l'espérance de la mesure tend vers la porosité volumique elle-même.

Par un raisonnement similaire à celui qui justifie les relations (2.19) au paragraphe 2.3.2., on obtient ainsi l'expression générale :

$$n_{ij} = \frac{1}{V} \int_{V} n(x, y, z) \, dV$$ \hspace{1cm} (3.8)

qui se réduit, dans le cas où la probabilité est indépendante des coordonnées, à :

$$n_{ij} = n$$
Considérons maintenant, au lieu du volume \(V \) entier, une section d'aire \(A \) à travers le cube. Supposons que la section soit perpendiculaire à l'axe \(z \).

Un raisonnement similaire à celui qui précède conduit à :

\[
 m_A(z) = \frac{1}{A} \int_A n(x,y,z) \, dA \tag{3.9}
\]

Dans le cas particulier où \(n \) est constant, on obtient :

\[
 m_A(z) = n = n_V
\]

En intégrant (3.9) sur la hauteur du prisme :

\[
 \int_H m_A(z) \, dz = \frac{1}{A} \int_H \left(\int_A n(x,y,z) \, dA \right) \, dz
\]

d'où :

\[
 \frac{1}{H} \int_H m_A(z) \, dz = \frac{1}{V} \int_V n(x,y,z) \, dv = n_V \tag{3.10}
\]

Les expressions (3.8) et (3.9) expriment les relations générales entre porosité et probabilité de présence des vides dans un milieu granulaire. On voit que la porosité représente la moyenne, rapportée au volume ou à la surface, de cette probabilité.

L'équation (3.10), identique à celle obtenue par Harr, lie la porosité surfacique à la porosité volumique. Il en résulte que ces deux grandeurs ne sont, en général, pas égales. Sur ce point, nous sommes en désaccord avec BOROWICKA (1973), qui semble attribuer les différences constatées expérimentalement uniquement aux erreurs de mesures.

En écrivant les relations similaires à (3.10), relatives à la porosité surfacique dans les deux autres directions, on obtient :

\[
 \frac{1}{H} \int_H m_A(z) \, dz = \frac{1}{H} \int_H m_A^*(x) \, dx = \frac{1}{H} \int_H m_A^*(y) \, dy = n_V \tag{3.11}
\]
Les trois moyennes spatiales de la porosité surfacique sont donc égales à la porosité volumique.

Lorsque le matériau est statistiquement homogène selon une direction, la porosité surfacique correspondante est constante, égale à sa moyenne. Si l'homogénéité est également assurée dans les autres directions, le milieu est nécessairement isotrope. On a alors :

\[m_A(z) = m_A'(x) = m_A''(y) \]

Corollairement, il ne peut y avoir d'anisotropie sans hétérogénéité statistique dans au moins une direction. Ainsi, un massif stratifié est toujours anisotrope, si on le considère dans son ensemble. On en déduit, réciproquement, qu'un massif granulaire anisotrope à plan isotrope, tel que celui étudié par VAN CAUWELAERT (1983), possède au moins une direction d'hétérogénéité. Une relation conceptuelle est ainsi établie entre l'isotropie et l'homogénéité statistique d'un milieu formé de particules.

Un cas intéressant en pratique est celui où la probabilité \(n(x,y,z) \) varie essentiellement selon \(z \). C'est généralement la situation rencontrée dans un sol où la compacité augmente avec la profondeur. La figure 3.5a représente une telle situation, où l'on a supposé que \(n \) décroissait linéairement avec \(z \).

Soit :

\[n(x,y,z) = n(z) = n_0 - a_n z \quad (3.12) \]

avec: \(0 < n_0 < 1, \ a_n > 0 \)

Imaginons que l'on prélève un échantillon de hauteur \(H \), à la profondeur \(z_i \) (coordonnée du centre de l'échantillon). D'après l'équation (3.8), la porosité volumique de cet élément du massif est :

\[
n_v(z_i) = \frac{1}{A \cdot H} \int_{z_i - \frac{H}{2}}^{z_i + \frac{H}{2}} \left[\int_{A} n(z) \, dA \right] \, dz = \frac{1}{H} \int_{z_i - \frac{H}{2}}^{z_i + \frac{H}{2}} n(z) \, dz
\]
et en intégrant (3.12) :

\[
n_{\nu}(z_i) = \frac{1}{H} \int_{z_i - \frac{H}{2}}^{z_i + \frac{H}{2}} (n_0 - a_n z) \, dz = n_0 - a_n z_i
\]

c'est-à-dire

\[
n_{\nu}(z_i) = n(z_i) \tag{3.13}
\]

La porosité de l'échantillon varie donc de la même manière que la probabilité \(n(z) \).

Fig. 3.5 : Variations de la probabilité \(n = \text{Prob} [\lambda = 1] \) avec la profondeur
a) linéaire; b) exponentielle

Ce résultat est cependant limité aux fonctions linéaires. Dans le cas d'une variation exponentielle, de la forme (fig. 3.5b)

\[
n(z) = n_0 \cdot e^{-a_n z} \tag{3.14}
\]
on obtient :

\[n_v(z_i) = n(z_i) \cdot \frac{e^{\left(\frac{aH}{2}\right)} - e^{-\left(\frac{aH}{2}\right)}}{a_n H} \]

(où apparaît un facteur d'échelle dépendant de la dimension de l'échantillon. Ce facteur tend vers 1 lorsque H est très petit. De plus, la figure 3.6 montre que ce terme est très proche de l'unité pour des dimensions d'échantillon usuelles et des vitesses de variation modérées de la fonction \(n(z) \).

On peut donc en conclure que la proposition de Harr

\[n_v = n \]

bien que strictement exacte seulement dans un milieu statistiquement homogène, constitue en général une excellente approximation.

<table>
<thead>
<tr>
<th>(\Delta n \ (0 \ - \ 1 \ m))</th>
<th>18 %</th>
<th>33 %</th>
<th>55 %</th>
<th>80 %</th>
<th>96 %</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a_n)</td>
<td>0.2</td>
<td>0.4</td>
<td>0.8</td>
<td>1.6</td>
<td>3.2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>H</th>
<th>0.15 m</th>
<th>0.30 m</th>
<th>0.60 m</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.00004</td>
<td>1.00015</td>
<td>1.00060</td>
</tr>
<tr>
<td></td>
<td>1.0060</td>
<td>1.0024</td>
<td>1.0024</td>
</tr>
<tr>
<td></td>
<td>1.0096</td>
<td>1.0096</td>
<td>1.0388</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.0388</td>
</tr>
</tbody>
</table>

| Fig. 3.6 : Valeur du facteur d'échelle dans la relation entre la porosité \(n_v \) d'un échantillon prélevé à la profondeur \(z_i \) et la probabilité \(n(z_i) \) pour \(n(z) = n_0 \cdot e^{-a_n z} \).

\(\Delta n \ (0-1 \ m) : \) décroissance de \(n(z) \) sur le premier mètre

\(H : \) hauteur de l'échantillon
3.3. DISTRIBUTION DE PROBABILITÉ DES CONTRAINTES INTRAGRANULAIRES

Si nous revenons au massif granulaire soumis à des charges, il est possible, en tenant compte de la discussion précédente, de définir un volume \(V \) autour du point \((x,y,z) \) tel que la probabilité \(n(x,y,z) \) soit assimilable à la porosité volumique \(n_v \).

Supposons que la section horizontale \(A_z \) à travers ce volume, à la profondeur \(z \), soit un carré de côté \(L \). On divise cette section en \(N^2 \) éléments de dimension \(L/N \), petits par rapport à la plus petite intersection de grain (fig. 3.6). Comme on l'a vu au paragraphe 2.3.4., le problème de la distribution de probabilité des contraintes en un point peut se ramener à l'étude de leurs fluctuations sur la section représentative d'une éprouvette soumises à des pressions uniformes. Une section telle que \(A_z \) remplit cette condition, si l'on suppose qu'en chacun de ses points, l'espérance de \(S_z \) est égale à \(\overline{S_z}(x,y,z) \). Dans le cas présent, on admet que cette valeur moyenne est connue, et on la considère comme un paramètre du problème. On peut alors choisir comme variable aléatoire le rapport adimensionnel \(S_z/\overline{S_z} \) plutôt que la contrainte \(S_z \) elle-même.

Remplaçons \(S_z/\overline{S_z} \) par une approximation discrète définie par :

\[
\frac{S_z}{\overline{S_z}} = k_S \cdot a_S \tag{3.16}
\]

où \(a_S \) est une constante d'étalonnage arbitrairement petite, et \(k_S \) l'entier positif le plus proche de la valeur réelle \(S_z/(\overline{S_z} \cdot a_S) \). La variable \(k_S \) représente ainsi la quantité \(S_z/\overline{S_z} \) par un nombre entier d'unités valant chacune \(1/a_S \). On peut symboliser cette opération en plaçant dans chaque élément de surface un nombre de points égal à \(k_S \) (fig. 3.7). Les éléments situés dans les pores restent vides.

Comme l'espérance mathématique de \(S_z/\overline{S_z} \) est évidemment égale à 1, on a :

\[
\overline{k_S} = \mathbb{E} \left[\frac{S_z}{\overline{S_z}} \cdot \frac{1}{a_S} \right] = \frac{1}{a_S} \tag{3.17}
\]

Il y a donc en moyenne \(1/a_S \) points par élément de surface.
Aire totale \(A = L^2 \)

\[N \times N \text{ éléments} \]

Fig. 3.7 : Subdivision d'une section à travers un volume \(V \)

Fig. 3.8 : Représentation symbolique de la contrainte dans la section

Pour l'observateur qui parcourt la section, la présence d'un point dans un élément de surface équivaut à un événement aléatoire se produisant dans un certain intervalle du domaine.

À ce stade du développement, nous devons apporter à la définition de l'expérience deux précisions :

- Le nombre de points présents dans un même élément est une variable aléatoire. La présence d'un point n'influence pas la probabilité de présence des autres. Les événements aléatoires élémentaires sont donc indépendants.

- Chaque élément de surface n'est observé qu'une fois, et tous les éléments sont pris en considération. Mais l'ordre de parcours est quelconque, et des sauts sont autorisés. Les nombres d'événements se produisant dans deux intervalles (non nécessairement voisins) observés consécutivement sont, dans ce cas, des quantités indépendantes.

Le problème est donc celui de l'occurrence d'événements aléatoires indépendants dans l'espace, lorsque l'on en connaît le nombre moyen par intervalle.
La distribution de Poisson s'applique à cette situation. Pour une justification détaillée, on se référera à FELLER (1957, Vol. 1, ch. VI).

La fonction de masse de probabilité de k_s s'écrit :

$$ P_{k_s}(k_s) = \frac{\lambda_s^{k_s} \cdot e^{-\lambda_s}}{k_s!} \quad (3.18) $$

où le paramètre λ_s est égal à l'espérance et à la variance de k_s :

$$ \lambda_s = k_s = \mathbb{V}[k_s] = \frac{1}{\alpha_s} \quad (3.19) $$

En particulier, la probabilité que k_s soit nul est :

$$ P_{k_s}(0) = e^{-\lambda_s} = e^{-\frac{1}{\alpha_s}} $$

Or, on a aussi $P_{k_s}(0) = n = n_v$.

D'où :

$$ \lambda_s = \frac{1}{\alpha_s} = - \log n_v \quad (3.20) $$

Le paramètre de la distribution de k_s dépend donc uniquement de la porosité. On obtient ainsi, en combinant (3.16) et (3.20) avec (3.18) :

$$ \text{Prob} \left[\frac{S_z}{\bar{S}_z} = - \frac{k_s}{\log n_v} \right] = \frac{(-\log n_v)^{k_s} \cdot n_v}{k_s!} \quad k_s = 0, 1, 2 \ldots \quad (3.21) $$

La variance de S_z/\bar{S}_z résulte de celle de k_s :

$$ \mathbb{V}[k_s] = \mathbb{V} \left[- \frac{S_z}{\bar{S}_z} \log n_v \right] = - \log n_v = (\log n_v)^2 \cdot \mathbb{V} \left[\frac{S_z}{\bar{S}_z} \right] $$

d'où :

$$ \mathbb{V} \left[\frac{S_z}{\bar{S}_z} \right] = - \frac{1}{\log n_v} \quad (3.22) $$
On en tire le coefficient de variation :

$$V_{S_Z/S_Z} = \left(- \log n_Y\right)^{-1/2} \quad (3.23)$$

Mais on a aussi :

$$V\left[\frac{S_Z}{\bar{S}_Z}\right] = \frac{1}{\bar{S}_Z^2} \cdot V[\bar{S}_Z]$$

Donc la contrainte intragranaulaire a pour variance :

$$V[S_Z] = -\frac{\bar{S}_Z^2}{\log n_Y} \quad (3.24)$$

et pour coefficient de variation :

$$V_{S_Z} = \left(- \log n_Y\right)^{-1/2} \quad (3.25)$$

La figure 3.9 illustre cette relation entre la dispersion de la contrainte intragranaulaire et la porosité du milieu au voisinage du point considéré. On voit que le coefficient de variation de S_Z croît très rapidement avec n_Y et dépasse 100 % pour des valeurs usuelles de la porosité dans les sols granulaires. Cette tendance se confirme si on examine la distribution du rapport S_Z/\bar{S}_Z (fig. 3.10).
Les fonctions cumulatives représentées sont obtenues par un lissage de leur approximation discrète, afin de respecter les propriétés d'une variable mixte. La figure 3.11 résume ces résultats en montrant que la probabilité pour S_z d'être largement supérieure à la contrainte moyenne est plus grande dans les sols lâches que dans les milieux denses.
Fig. 3.11 : Probabilité de dépassement par la contrainte intragranaulaire d'une valeur $r \cdot \bar{s}$, en fonction de la porosité

Ce qui vient d'être dit au sujet des contraintes intragranulaires verticales S_z s'applique naturellement aux autres composantes normales S_x et S_y au point considéré. Il n'en est pas exactement de même pour les composantes tangentielles. En effet, celles-ci peuvent être positives ou négatives, selon l'orientation de la force intragranulaire dans chaque grain. De plus, sur un plan principal par
rapport aux contraintes moyennes, la contrainte tangentielle moyenne est nulle en chaque point alors qu'il existe des efforts de cisaillement dans les particules.

En conséquence, on ne peut étendre le modèle proposé qu'à la valeur absolue des composantes tangentielles.

Remarque :

Le raisonnement suivi pour établir la distribution de la contrainte S en un point est très proche de celui utilisé par HARR (1977, ch. 7). L'introduction de la constante d'étalonnage a_S sous une forme explicite nous a cependant conduit à une expression différente de la distribution. En particulier, Harr établit une identité stricte entre le paramètre $(-\log n_V)$ de la distribution de Poisson et la contrainte moyenne S, ce qui n'est pas le cas dans le présent travail.

On constate pourtant que les fonctions cumulatives calculées pour $n_V = 0.25$ à 0.67 (fig. 3.10) sont identiques à celles initialement données par Harr. Ces dernières, qui n'étaient pas conformes à leur expression analytique, ont été modifiées dans l'édition française de l'ouvrage (HARR, 1981, ch. 7), alors que la correction judicieux aurait dû porter plutôt sur la formulation.

3.4. DISTRIBUTION DE PROBABILITE DES CONTRAINTES LOCALES

Exprimons une contrainte locale R en un point (x,y,z) par la fonction suivante :

$$ R(x,y,z) = S(x,y,z) + \eta(x,y,z) \quad (3.26) $$

ou sous forme adimensionnelle :

$$ \frac{R(x,y,z)}{\bar{R}(x,y,z)} = \frac{S(x,y,z)}{\bar{S}(x,y,z)} + \eta'(x,y,z) \quad (3.27) $$
Les expressions (3.26) et (3.27) s'appliquant à toutes les composantes, nous pouvons nous dispenser de l'écriture des indices.

On désigne par η une variable aléatoire qui représente les fluctuations de la contrainte locale autour de la contrainte intragranulaire.

On peut écrire :

$$E[R] = E[S] + E[\eta]$$

et on doit avoir :

$$E[R] = E[S]$$

La moyenne de η est donc nulle en tout point. Ce résultat est compatible avec la définition de S et R donnée au chapitre 2. En effet, dans un vide, les contraintes locales et intragranulaires sont identiques, égales à 0 ou u_w, tandis que dans un grain, l'équation (2.27) s'écrit maintenant :

$$S = \frac{1}{A_i} \int_A R \cdot dA = \frac{1}{A_i} \int_A S \cdot dA + \frac{1}{A_i} \int_A \eta \cdot dA$$

ce qui implique nécessairement :

$$\frac{1}{A_i} \int_A \eta \cdot dA = \overline{\eta} = 0$$

L'influence de la porosité sur l'état de contrainte étant traduite par la variabilité de S, l'origine de la dispersion de η est à rechercher parmi les caractéristiques des grains. On conçoit que lorsque les particules sont de tailles et de formes très dissemblables, les aires solides intersectées par un plan et l'orientation des forces de contact deviennent plus incertaines qu'en cas d'uniformité.

Il est alors légitime de considérer S et η comme des variables aléatoires indépendantes. La variance de la contrainte locale est donc :

$$V[R] = -\frac{S^2}{\log n_v} + V[\eta]$$ \hspace{1cm} (3.28)$$

Les expressions (3.26) ou (3.27) symbolisent, de ce fait, la séparation des influences respectives de la porosité et des caractéristiques des grains sur l'état de sollicitation interne.
3.5. **PARAMETRES DE LA SOLlicitATION INTERNE**

Pour conclure cette section consacrée à la notion de contrainte dans les sols granulaires, nous reviendrons à l'objet du concept.

L'espérance des contraintes en un point, ou le tenseur des contraintes moyennes, ne constitue qu'une approximation au premier moment de la sollicitation interne. À défaut de définir celle-ci par la distribution de probabilité des contraintes locales, la distribution des contraintes intragranulaires pourrait être un compromis satisfaisant. En effet, la différence entre ces deux grandeurs semble dépendre essentiellement des caractéristiques des grains. Ce facteur peut être étalonné expérimentalement, même sur des échantillons remaniés.

Dans un milieu granulaire isotope sec, la distribution de probabilité de la contrainte intragranulaire est entièrement définie par la contrainte moyenne et la porosité volumique. Dans la suite de la présente étude, nous adopterons donc ces deux quantités comme paramètres de la sollicitation interne.

Bien qu'une justification expérimentale directe de cette proposition ne soit pas possible, les mesures de rupture de particules effectuées par MARSAL (1973) offrent l'opportunité d'un test qualitatif. En effet, la résistance des grains à l'écrasement est certainement indépendante de la porosité du milieu. Si ce paramètre intervient dans le phénomène, cela ne peut être qu'à travers la sollicitation que subissent les particules.

Supposons que les grains se rompent lorsque la contrainte normale intragranulaire atteint une valeur critique S^*, dépendant du matériau constitutif. Lorsque l'on soumet une éprouvette à des pressions croissantes, égales à S, mais restant inférieures à S^*, la probabilité d'écrasement

$$\text{Prob} \left[S > S^* \right] = \text{Prob} \left[\frac{S}{S^*} > r \right] \quad r > 1$$

augmente plus vite pour un milieu lâche que pour le même matériau dense (fig. 3.11). Cette tendance est également constatée dans les résultats expérimentaux de Marsal, si l'on fait l'analogie entre la
quantité de matière solide changeant de classe granulométrique pendant la compression et la probabilité d'écrasement (fig. 3.12). Cette similitude, sans avoir le caractère d'une preuve, est encourageante.

Fig. 3.12 : Rupture des particules en fonction de la contrainte moyenne

Valeurs recalculées d'après les essais en compression unidimensionnelle de MARSAL (1973) sur du gravier de La Soledad (diorite)

\bar{S}_Z: Contrainte verticale moyenne dans l'éprouvette

B_g: Poids total de particules rompues
4. **CHANGEMENTS DE POROSITE CONSECUTIFS A DES SOLLICITATIONS EXTERNES**

4.1. **MODES DE RUPTURE**

La plupart des traités de mécanique des sols empruntent la figure 4.1 à VESIC (1963) pour illustrer les différents modes de rupture du sol sous une fondation superficielle. Bien que dans la pratique actuelle, les problèmes de capacité portante soient traités indépendamment des tassements, chacune des trois situations représentées est l'aboutissement d'un processus physique qui ne peut se dérouler sans déformations, et en particulier sans changements de volume du sol. Ces derniers sont évidents dans le cas de la rupture par poinçonnement, où l'enfoncement de la fondation s'accompagne de légers tassements latéraux, mais ne donne pas lieu à des soulèvements de la surface.

![Diagram](image)

Fig. 4.1 : Modes de rupture et courbes charge - tassement observés pendant des essais sur modèle avec du sable (d'après VESIC, 1963)

Un tel phénomène n'est possible que grâce à un accroissement global de la compacité du matériau. Quant il s'agit d'une rupture par cisaillement généralisé, les changements de volume ne sont pas
apparents en surface, puisqu'il peut y avoir compensation entre enfoncement de la semelle et soulèvement latéral. Une observation plus détaillée est nécessaire, comme celle effectuée par LORENZ et HEINZ (1969), d'après l'atténuation des rayonnements Gamma en fonction de la densité. Pour un sable initialement dense, cette étude a montré qu'une forte dilatation prend naissance sous les angles de la fondation et, avec l'augmentation de la charge, s'étend progressivement à toute la région fortement sollicitée. Au stade ultérieur de son développement, cette zone devient le siège de discontinuités cinématiques qui, en intersectant la surface, permettent le refoulement du matériau à volume constant.

Le mode de rupture est donc une information essentielle sur le comportement général d'un sol et un précieux indicateur des mécanismes qui sont mis en jeu à l'échelle granulaire.

Parmi les facteurs déterminants, certains sont liés aux conditions géométriques et stratigraphiques, par exemple la profondeur de la fondation (DE BEER et VESIC, 1958, VESIC, 1963) ou la présence d'un substratum très compressible (DEMBICKI et ODROBINSKI, 1973). D'autres dépendent des conditions de sollicitation, comme la vitesse de chargement (SEILIG et McKEE, 1961) ou la rugosité de la semelle (MEYERHOF, 1951, DE BEER et VESIC, 1958, KIMURA et al., 1985). Mais si ces conditions sont fixées, c'est la compressibilité du matériau granulaire lui-même qui est essentielle.

Par compressibilité, il faut entendre la faculté qu'a le sol de répondre à un accroissement de charge par une augmentation de densité.

L'allure des courbes charge - enfoncement de la figure 4.1 montre en effet clairement que lorsque cette compressibilité est insuffisante, le système évolue très rapidement vers la rupture, après des tassements très faibles. Il faut noter qu'après dépassement de la capacité portante, le massif n'est plus en mesure d'en assurer l'équilibre. En termes rhéologiques, on dirait que le comportement est fragile avec ramollissement. Au contraire, si une diminution de la porosité est possible, des charges de plus en plus grandes peuvent être équilibrées sans qu'une limite soit clairement discernable sur le diagramme, et malgré sa représentation en échelle bi-logarithmique prêconisée par DE BEER (1970).
Dans la pratique de la construction sur des sols granulaires, ce second cas, auquel est consacrée la présente étude, nécessite la prévision et la maîtrise des tassements plutôt qu'un dimensionnement à la portance. Comme on le voit sur la figure 4.2, cette situation se rencontre dans les matériaux lâches.

Fig. 4.2 : Influence de la densité relative du sol, de la profondeur de fondation et de la forme de la semelle sur le mode de rupture (essais avec du sable de Chattahoochee, d'après VESIC, 1973)

4.2. MECANISMES DE DEFORMATION A L'ECHELLE GRANULAIRE

La figure 4.3 résume une récente synthèse (CLAYTON et al., 1985) des facteurs influençant la compressibilité des sols granulaires secs ou saturés. L'effet de la porosité y est confirmé, mais on note aussi le rôle majeur de l'angularité des particules, de l'histoire des contraintes et de l'intensité des efforts de cisaillement.
<table>
<thead>
<tr>
<th>Facteurs</th>
<th>Influence sur la compressibilité</th>
<th>Effet maximum</th>
<th>Références</th>
</tr>
</thead>
<tbody>
<tr>
<td>liés au matériau</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- diamètre moyen</td>
<td>si d_50</td>
<td>modéré</td>
<td>SCHULTZE et MOUSSA, 1961</td>
</tr>
<tr>
<td>- coefficient d'uniformité</td>
<td>si d_60/d_10</td>
<td>modéré</td>
<td>MAKHLOUF et STEWART, 1965</td>
</tr>
<tr>
<td>- angularité</td>
<td>si angularité</td>
<td>très grand</td>
<td>HOLUBEC et D'APPOLONIA, 1973</td>
</tr>
<tr>
<td>- composition minéralogique</td>
<td>si la résistance des minéraux</td>
<td>modéré</td>
<td>EL-SOHBY et ANDRAWES, 1972</td>
</tr>
<tr>
<td>- anisotropie naturelle</td>
<td>si les directions de charge et de sédimentation divergent</td>
<td>modéré</td>
<td>ARTHUR et MENZIES, 1972</td>
</tr>
<tr>
<td>- porosité</td>
<td>si n_v</td>
<td>très grand</td>
<td>EL-SOHBY (a,b) 1969</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>EL-SOHBY et ANDRAWES, 1972</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CORNFORTH, 1974</td>
</tr>
<tr>
<td>liés aux contraintes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- cisaillement</td>
<td>si (\sigma_1/\sigma_{III})</td>
<td>très grand</td>
<td>KARST et al., 1965</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>FRYDMAN et ZEITLEN, 1969</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>LADÉ et DUNCAN, 1976</td>
</tr>
<tr>
<td>- compression moyenne</td>
<td>si (\sigma_m)</td>
<td>grand</td>
<td>CHAPLIN, 1961</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>JANBU et HJELDNES, 1965</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CORNFORTH, 1974</td>
</tr>
<tr>
<td>- précompression ou surconsolidation</td>
<td>si surconsolidation</td>
<td>très grand</td>
<td>KARST et al., 1965</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SCOTT et KO, 1969</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>YOSHIMI et al., 1975</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>LAMBERCHTS et LEONARDS, 1978</td>
</tr>
<tr>
<td>- chemin des contraintes</td>
<td>si écrouissage cinématique</td>
<td>grand</td>
<td>KARST et al., 1965</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>LAMBERCHTS et LEONARDS, 1978</td>
</tr>
</tbody>
</table>

* estimé par les auteurs

Fig. 4.3 : Facteurs influençant la compressibilité des sols granulaires
A l'échelle granulaire, deux mécanismes distincts sont à l'origine des déformations :

- les déformations des grains eux-mêmes sous l'effet des forces de contact. Elles donnent lieu à des tassements réversibles (détente élastique) pour autant que les grains soient eux-mêmes élastiques et peu anguleux (faible taux de rupture).

- les déplacements relatifs des grains consécutifs à des glissements aux points de contact devenus instables en raison de l'accroissement de la charge. Ces mouvements localisés donnent lieu à des réarrangements des grains et conduisent à des tassements irréversibles (déflexions permanentes lors de la décharge). Les réarrangements de la structure peuvent être dilatants (comportement dense) ou contractants (comportement lâche).

L'importance relative de ces deux types de déformations est fortement dépendante de l'histoire des contraintes, et en particulier des éventuelles précompressions (fig. 4.4) auxquelles le matériau a pu être soumis. De ce point de vue, le comportement des sols granulaires pré- comprimés est phénoménologiquement semblable à celui des sols argileux surconsolidés.

\[
\text{Contrainte verticale effective } [\text{kN} \cdot \text{m}^{-2}]
\]

Fig. 4.4 : Influence relative de la densité et de l'histoire des contraintes sur la compressibilité du sable, d'après YOSHIMI et al., 1975
Une même tendance à l'écrouissage se constate sous l'effet d'un déviateur de contraintes, comme l'a montré par exemple MURAYAMA (1964).

Pour les matériaux soumis à une première surcharge, BIAREZ et al. notamment (1972) ont montré que l'accroissement de la compacité initiale (par vibration, donc isotrope) diminuait à la fois la compressibilité et le degré d'irréversibilité des déformations. Dans les sols granulaires lâches normalement consolidés, la détente élastique est très faible, voire négligeable, par rapport aux déflexions permanentes avant rupture. On peut donc affirmer que les glissements entre grains y constituent le mécanisme principal de déformation.

Remarque : On devrait encore mentionner les mouvements de rotation des grains, mais ceux-ci ne semblent jouer qu'un rôle mineur (MOLENKAMP, 1984).

Lorsque l'on assimile un comportement dilatant aux sols initialement denses, et la contraction aux sols lâches, on fait une distinction qui n'a naturellement qu'une signification statistique. En effet, dans un sol réel cohabitent des assemblages élémentaires (les arrangements géométriques d'un grain avec ses voisins) de compacités très diverses. Comme nous l'avons vu, la porosité volumique, techniquement mesurable, est une moyenne statistique des compacités locales. Il en est de même de la porosité critique, critère de séparation des sols lâches et denses. Dans les premiers, les assemblages peu compacts de grains sont plus nombreux. Lorsqu'ils deviennent instables, il gouvernent donc le comportement général, bien que des dilatances locales se produisent, ne serait-ce que pour préserver les compatibilités cinématiques. Par contre, dans les sols denses, ce sont les augmentations de volume qui dominent.

Si l'on admet le principe de cette dualité, une hypothèse s'impose sur la nature de la porosité critique d'un milieu granulaire :

Il s'agirait d'un état de compacité où, pour un état de contraintes donné, un régime de déformation à volume constant est possible, grâce à l'établissement d'un équilibre dynamique entre contractions et dilatances à l'échelle granulaire.

Nous n'explorerons pas cette voie plus avant dans le présent travail.
De nombreux auteurs, notamment ROWE (1962), MURAYAMA (1964), ODA (1972), MATSUOKA 1974, TOKIE (1978) ont étudié les conditions d'équilibre et de contact entre grains et ont proposé des modèles de leur évolution pendant la déformation.

Bien que très schématique, la figure 4.5 met en évidence les deux mécanismes essentiels d'un rearrangement granulaire. Pour des raisons de clarté graphique, la représentation est limitée à trois particules et à des contacts situés dans un seul plan.

- **Arrangement initial lâche** (fig. 4.5a)

Le contact entre les grains A et B est instable si l'inclinaison par rapport à la normale n de la force de contact \(\mathbf{F}_{BA} \), nécessaire à l'équilibre, est supérieure à \(\theta_{\mu} \). L'angle de frottement intergranulaire \(\theta_{\mu} \) est symbolisé par le cône de stabilité. Si le glissement du grain B se produit dans le sens de la densification, un nouvel équilibre peut s'établir lorsqu'un appui supplémentaire est apporté par le grain C. Grâce à la contribution de la nouvelle force de contact \(\mathbf{F}'_{BC} \), la force \(\mathbf{F}'_{BA} \) peut revenir à l'intérieur du cône de stabilité.

- **Arrangement initialement dense** (fig. 4.5b)

Dans ce cas, l'instabilité éventuelle du contact B-A conduit à la perte du contact avec le grain C. Le glissement peut s'arrêter si la force de contact \(\mathbf{F}'_{BA} \) (dont l'orientation a aussi changé) entre à nouveau dans le cône de stabilité.

Les deux types de glissement ont donc en commun une modification de l'orientation des normales aux contacts et des forces qui y agissent. Mais dans le cas de la dilatance, ce changement se fait au prix d'une diminution du nombre de contacts entre particules, alors que celui-ci augmente lors de la contraction. La relation empirique\(^1\) établie par GRIVAS et HARR (1974, 1980) entre la porosité et le nombre moyen de contacts par particules donne l'ordre de grandeur de ces variations (fig. 4.6.)

\(^1\) RUMPF a proposé en 1958 la relation \(N_C \cdot n = \pi \) qui est très proche des résultats de Grivas et Harr \((N_C \cdot n = 3)\) et, à son antériorité, ajoute le charme d'une orthographe fort scientifique.
Fig. 4.5 : Mécanismes de déformation par glissement relatif des grains

\[\bar{N}_C \cdot n_v = 3 \]

\(\bar{N}_C \) : nombre moyen de contacts par particule

\(n_v \) : porosité volumique de l'éprouvette

Fig. 4.6 : Relation empirique entre nombre moyen de contacts par particule et porosité, d'après GRIVAS et HARR, 1980
Cette description qualitative des micromécanismes permet peut-être de mieux comprendre certains aspects importants du comportement général des milieux granulaires.

- Une augmentation du nombre de contacts d'un grain avec ses voisins accroît son degré d'hyperstaticité. La redistribution des forces qui en résulte apporte une certaine "réserve de capacité" à l'assemblage. Le processus de déformation pourra donc se poursuivre sans chute brutale de la portance, ce qui est effectivement le cas dans les sols lâches.

- La diminution du nombre de contacts, au contraire, diminue le degré d'hyperstaticité. En outre, la stabilisation s'effectuant par une réorientation progressive du contact en glissement, et non par une redistribution des forces, il est probable que la nouvelle position du grain reste voisine de l'équilibre limite. On peut donc prévoir que l'apparition de la rupture du massif sera plus soudaine, comme on l'observe dans les sols denses. Cette interprétation est cohérente avec le rôle que nous avons attribué à la porosité dans la définition de la sollicitation interne : une diminution de compacité augmente l'écart-type des contraintes intragranulaires et contribue certainement aux risques d'instabilité locale.

- Les glissements relatifs de particules qui sont à l'origine de la quasi-totalité des déformations dans les sols granulaires lâches sont des phénomènes irréversibles du point de vue thermodynamique. En termes rhéologiques, ils sont la manifestation de la plasticité du matériau, sans pour autant que la résistance au cisaillement "macroscopique" soit entièrement mobilisée. On remarquera que l'utilisation d'une loi de cisaillement, comme celle de Mohr-Coulomb ou de Drucker et Prager, dans un modèle élasto-plastique en mécanique du continu, ne permet pas de refléter cet aspect du comportement. Ces lois doivent être considérées comme des critères de rupture par cisaillement et non de plastification sous compression. La simulation de ce dernier aspect du comportement en mécanique du continu ne peut se faire que par le recours à un deuxième critère de plastification, appelé "cap" (voir par exemple DIMAGGIO et SANDLER, 1971).
4.3. TASSEMENTS CONSECUTIFS À LA PROPAGATION DES MICROMECANISMES

On peut maintenant imaginer le processus physique qui, des glissements à l'échelle granulaire, conduit à des tassements à l'échelle du massif. La discussion sera limitée aux sols lâches.

Supposons qu'un massif initialement en équilibre sous l'effet de la seule gravité soit soumis à une charge par l'intermédiaire d'une fondation. On suppose que le sol est sec ou saturé, et que dans ce second cas, la vitesse de chargement est assez faible pour que l'on puisse négliger les surpressions interstitielles. Chaque fraction de la sollicitation est transmise dans le sol par l'intermédiaire des contacts entre grains. Les contraintes intragranulaires en sont une image, dépendante de l'état du matériau en chaque point.

Si tous les contacts intergranulaires pouvaient résister aux efforts qui s'y développent, les seules déformations seraient dues aux grains eux-mêmes. Cette situation est très improbable pour un sol lâche, même pour une charge très faible. Au contraire, un grand nombre de contacts sont instables et provoquent un réarrangement des assemblages dans lesquels ils se trouvent. Le nombre, la localisation et la nature de ces modifications de structure sont aléatoires, avec les tendances statistiques suivantes :

- **La proportion de particules instables** est une fonction croissante de la distance qui sépare chaque zone du matériau d'une situation d'équilibre, sous l'effet de la charge appliquée. Cette distance, pour chaque matériau, dépend de son état, des contraintes actuelles, ainsi que des contraintes passées. Pour un sol granulaire lâche normalement consolidé, on admettra que cette caractéristique est représentée par la différence entre la porosité actuelle et la porosité à laquelle un nouvel équilibre s'établirait.

- **La localisation des instabilités** dépend initialement de la distribution spatiale de la capacité et de la sollicitation des contacts intergranulaires. Cette distribution est fonction, pour un matériau donné, des variations spatiales de porosité et de contraintes. Pour un massif statistiquement homogène, ce sont donc les zones proches de la fondation où le champ de contraintes est plus intense, qui sont le siège des instabilités les plus nombreuses.
Une fois le processus de changement de porosité amorcé, la modification géométrique des assemblages granulaires initialement instables provoque une redistribution des forces de contact dans les assemblages adjacents. Ceux-ci, qui auraient peut-être été stables sans cette modification, peuvent à leur tour donner lieu à des déplacements de grains, et ainsi propager le phénomène. On peut logiquement penser que ce cheminement des perturbations dans le milieu est influencé par l'orientation du champ de forces intergranulaires, ce qui pourrait se traduire par une relation entre direction de propagation et orientation des contraintes moyennes intragranulaires principales.

Toute perturbation de la structure granulaire, qui a pris naissance à l'intérieur du massif, a donc une certaine probabilité de se propager jusqu'en surface. Si cet événement aléatoire se produit et consiste en une contraction, une déflexion localisée apparaît à la surface du massif. Les tassements observables résultent de l'effet cumulé d'un grand nombre de ces déflexions élémentaires.

Le processus physique que nous venons de décrire qualitativement peut donc se résumer en un changement de porosité, et en l'évolution de ce changement, au cours du temps, dans le milieu granulaire. Nous verrons au chapitre 5 qu'une description quantitative peut en être formulée au moyen d'une classe particulière de processus stochastiques appelée diffusion.

4.4. Changement de porosité en fonction de la sollicitation

Dans un matériau où les assemblages lâches prédominent, les modifications de structure conduisent à une diminution de porosité. Comme la compressibilité dépend non seulement des caractéristiques du matériau et de l'accroissement global de la sollicitation, mais également de son histoire (LADE et DUNCAN, 1976, LAMBRECHTS et LEONARDS, 1978), la diminution totale de porosité n'est pas liée de manière univoque à l'augmentation des contraintes moyennes. Il n'existe donc pas de loi générale, théorique ou expérimentale, permettant d'établir une telle relation. On peut cependant, au prix de certaines simplifications, en prévoir qualitativement l'allure.
Imaginons qu'un matériau sec n'ayant pas subi de précompression soit soumis à une sollicitation moyenne isotrope, par l'application de pressions hydrostatiques aux frontières d'une éprouvette. La description des mécanismes de déformation proposée plus haut, ainsi que la relation établie entre porosité et coefficient de variation des contraintes intragranulaires, suggèrent deux aspects du comportement :

• pour un même accroissement de pression moyenne, la diminution de volume de l'éprouvette sera d'autant plus importante que la porosité initiale est grande ;

• pour une porosité initiale donnée, les diminutions de porosité seront de plus en plus faibles pour des pressions croissantes.

![Diagramme de Fig. 4.7 Compressibilité sur des chemins de sollicitation à rapports de pressions constants, d'après EL-SOHBY, 1969b](image-url)
Ces considérations nous amènent à formuler l'hypothèse suivante :

Dans un sol granulaire normalement consolidé, à chaque état et chemin des contraintes intragranulaires moyennes correspond une porosité unique d'équilibre qui dépend essentiellement des caractéristiques des grains.

Cette proposition peut se traduire, dans le cas de la compression avec un rapport des pressions constant, par une famille de courbes de compressibilité ayant chacune un caractère intrinsèque. On voit alors sur la figure 4.8 que le changement de la porosité initiale équivalait à un décalage de l'origine des pressions.

Fig. 4.8 : Hypothèse de compressibilité pour des rapports de pressions constants

\[P_z = S_z : \] pression axiale appliquée
\[P_r = S_r : \] pression radiale appliquée
\[P_m : \] pression moyenne
\[P_a : \] pression atmosphérique
\[n_{V_{\text{max}}} : \] porosité maximale du matériau
\[R_1, R_2, R_3 : \] rapports constants \(p_z/p_r \)
\[P_{m_1}, P_{m_2}, P_{m_3} : \] augmentation des pressions moyennes correspondant à \(R_1, R_2, R_3 \) pour une porosité initiale \(n_{V_0} \)
\[P_{0_1}, P_{0_2}, P_{0_3} : \] origines des augmentations des pressions pour \(n_{V_0} \)
5. COMPRESSION UNIFORME D'UNE COUCHE GRANULAIRE D'ÉPAISSEUR LIMITÉE - MODELE TRANSITOIRE

Le problème que nous allons aborder est, dans sa formulation actuelle, d'un intérêt pratique limité, mais constitue une étape nécessaire à la réflexion qui doit nous conduire du simple au complexe.

Il s'agit de décrire la déformation au cours du temps d'un massif granulaire d'étendue infinie, mais limité en épaisseur, sous l'effet d'une charge verticale répartie uniformément sur toute la surface (fig. 5.1). On fera de plus les hypothèses générales suivantes :

- les paramètres d'état sont stationnaires dans tous les plans horizontaux, c'est-à-dire ne varient que dans la direction verticale,
- les limites de la couche sont horizontales,
- le matériau granulaire est sec,
- il n'y a pas de rupture des grains,
- la déformabilité propre des grains est négligeable,
- le substratum est rigide.

Fig. 5.1 : Massif granulaire reposant sur une base rigide, soumis à une compression uniforme
5.1. **RAPPEL SUR LE MOUVEMENT BROWNIENT**

Dans la théorie du mouvement Brownien, l'équation différentielle :

\[\frac{\partial f}{\partial t} = D_z \frac{\partial^2 f}{\partial z^2} - C_z \frac{\partial f}{\partial z} \] \hspace{1cm} (5.1)

exprime que la concentration \(f(t) \) des particules sédimentant dans un fluide visqueux varie au cours du temps sous l'effet de deux actions antagonistes.

D'une part, la contribution de la gravité se manifeste par une convection dont le flux à travers une surface horizontale de l'espace vaut :

\[\Phi_C = C_z \cdot f(z,t) \] \hspace{1cm} (5.2)

D'autre part, les chocs désordonnés et continuels des molécules du fluide sur les particules en suspension provoquent un flux de diffusion :

\[\Phi_D = -D_z \cdot \frac{\partial f(z,t)}{\partial z} \] \hspace{1cm} (5.3)

La relation (5.3) qui exprime que le flux de diffusion "descend" le gradient de concentration en lui étant proportionnel, est la loi de Fick.

Les conventions de signes sont les suivantes :
- axe \(z \) orienté vers le bas
- flux positif dans le sens de \(z \) croissant
- coefficients \(C_z \) et \(D_z \) positifs ou nuls

Si l'on exprime la concentration selon un nombre de particules par unité de volume, les quantités ci-dessus ont pour unités :
- concentration \(f \) \([\text{particules} \cdot \text{m}^{-3}]\)
- flux \(\Phi_C, \Phi_D \) \([\text{particules} \cdot \text{m}^{-2} \cdot \text{s}^{-1}]\)
- coefficient de diffusion \(D_z \) \([\text{m}^2 \cdot \text{s}^{-1}]\)
- coefficient de convection \(C_z \) \([\text{m} \cdot \text{s}^{-1}]\)
Lorsque le flux net à travers toute surface de coordonnée z est nul, la condition :

$$\Phi_C + \Phi_D = 0$$

implique :

$$\frac{\partial f(z,t)}{\partial t} = 0$$

Ainsi, bien que le mouvement des particules se poursuive, la concentration est stationnaire dans le temps, à la suite d'un équilibre dynamique entre convection et diffusion. On pourrait mettre en parallèle cette situation et celle décrite au paragraphe 4.2 à propos de la porosité critique. Le profil des concentrations stationnaires, atteint théoriquement après un temps infini, dépend des propriétés du milieu, représentées par les coefficients de l'équation, et des conditions aux limites du problème. Mais il est indépendant aussi bien du profil initial que de ses états intermédiaires.

On sait que l'étude du mouvement Brownien a provoqué le développement de techniques mathématiques essentielles pour l'étude des processus aléatoires. Un exposé de ce corps de connaissances sort largement du cadre de la présente étude, de même que des compétences de son auteur. On pourra se reporter pour une présentation générale et un aperçu historique à un article de LAVENDA (1985), et pour les aspects mathématiques au travail fondamental de CHANDRASEKHAR (1943). Nous nous limiterons à un rappel succinct des hypothèses ayant une indépendance importante sur les discussions qui suivent.

a) Une interprétation probabiliste de l'équation de diffusion (5.1) est permise si l'on admet l'analogie entre concentration volumique des particules à la profondeur z et densité de probabilité de présence d'une particule isolée. Cette dernière serait une particule fictive au comportement représentatif de l'ensemble. On imagine l'expérience répétée un très grand nombre de fois consistant à observer sa position après une même durée, son point de départ étant à chaque fois le même. La probabilité (au sens fréquentiel) d'occupation d'un intervalle de l'espace résultant de ces essais successifs est alors équivalente à la proportion des particules réelles qui se trouvent simultanément dans cet intervalle.
Cette hypothèse très importante, dite *ergodique* en mécanique statistique, est formulée plus rigoureusement par PAPOULIS (1965, ch. 9) et discutée d'une manière illustrative par HARR (1977, ch. 4).

b) La concentration des particules Browniennes est suffisamment faible pour que l'on puisse négliger leurs interactions. On suppose donc que les contacts entre ces particules sont des événements rares, et on considère seulement les interactions avec le fluide environnant. Il en résulte que les changements de concentration durant le processus de sédimentation n'ont pas d'influence sur les paramètres du problème.

c) Le fluide a une viscosité du type Newtonien, indépendante de la vitesse. Ainsi le mouvement d'une particule Brownienne dans chaque direction est décrit par l'équation différentielle stochastique de Langevin :

\[
\begin{align*}
\frac{d^2x}{dt^2} &= -\beta \frac{dx}{dt} + A(t) \\
\frac{d^2y}{dt^2} &= -\beta \frac{dy}{dt} + A(t) \\
\frac{d^2z}{dt^2} &= -\beta \frac{dz}{dt} + A(t) + \left(1 - \frac{\rho_f}{\rho_S}\right)g
\end{align*}
\tag{5.4}
\]

où \(\beta\) représente l'effet des frottements exercés par le fluide;

\[
\left(1 - \frac{\rho_f}{\rho_S}\right)g
\]

est l'accélération due à la gravité, en notant

- \(\rho_f\) la masse volumique du fluide, et
- \(\rho_S\) celle de la particule;

A(t) est un processus stochastique de moyenne nulle correspondant à l'accélération provoquée par les chocs aléatoires des molécules fluides sur la particule.

On voit que si l'échelle d'observation est telle que les fluctuations aléatoires ne sont pas apparentes, il existe une vitesse
limite verticale égale à \(\left(1 - \frac{\rho_x}{\rho_s}\right)/\beta \) pour laquelle l'accélération devient nulle. C'est précisément cette quantité qui est représentée par le coefficient de convection.

d) Les mouvements d'une particule dans les trois directions \(x, y, z \) sont indépendants. Cette hypothèse est cohérente avec celle énoncée sous (b), d'une faible concentration. Il en résulte que la densité conjointe de probabilité d'occupation d'une position est égale au produit des trois densités marginales:

\[
f_{x,y,z}(x,y,z; t) = f_x(x; t) \cdot f_y(y; t) \cdot f_z(z; t) \tag{5.5}
\]

Si de plus les distributions marginales selon \(x \) et \(y \) sont uniformes, l'étude de la distribution conjointe de \(x, y \) et \(z \) se ramène à celle de la distribution marginale \(f_z(z; t) \).

e) Une autre hypothèse d'indépendance porte sur les incrément de déplacements. Pour des intervalles de temps non contigus, les déplacements correspondants

\[
\Delta z_i = z(t_i + \Delta t_i) - z(t_i) \quad \Delta t_i > 0
\]

sont des variables aléatoires indépendantes. Cette condition traduit le caractère Markovien du mouvement Brownien. Elle équivaut en effet à dire que si l'on connaît \(z(t) \) comme position actuelle, des informations additionnelles sur les positions antérieures ne peuvent influencer les prédictions sur la distribution de probabilité de la future position \(x(t + \Delta t) \). Les commentaires de KARLIN (1966, ch. 10) apportent des précisions intéressantes sur ce sujet. On ne manquera pas de remarquer que l'invariance du profil de concentration à l'état stationnaire, par rapport aux profils antérieurs, confirme a posteriori cette hypothèse. La convergence des probabilités de transition pour un temps infini est en effet une propriété fondamentale des processus Markoviens.

Dans ces conditions, l'équation de diffusion (5.1) peut être posée comme modèle probabiliste du mouvement d'une particule Brownienne soumise au champ de gravité. Accompagnée de conditions aux limites adéquates, elle décrit l'évolution dans le temps de la densité de probabilité \(f_z(z; t) \), étant donnée la distribution initiale \(f_{z_0}(z; t_0) \).
Sous sa forme probabiliste, l'équation de diffusion

$$\frac{\partial f_z(z; t)}{\partial t} = D_z \frac{\partial^2 f_z(z; t)}{\partial z^2} - C_z \frac{\partial f_z(z; t)}{\partial z}$$ \hspace{1cm} (5.6)

est un cas particulier de l'équation de Fokker–Planck ou de l'équation prospective de Kolmogorov (FELLER 1971, ch. X).

En toute rigueur, on devrait noter la fonction de densité $f_z(z; t \mid z_0)$ pour marquer son conditionnement par la situation initiale. En termes Markoviens, f_z est la densité de probabilité de transition des états z_0 aux états z en une durée $(t - t_0)$.

On peut illustrer ce qui précède par un exemple classique dû à CHANDRASEKHAR (1943).

Dans une colonne de liquide au repos, on injecte une substance formée de particules qui vont sédimerter tout en étant sujettes au mouvement Brownien. On suppose que l'injection se fait ponctuellement à l'altitude z_0 à partir du fond étanche de la colonne, et instantanément. La colonne n'est pas limitée en hauteur (fig. 5.2).

Fig. 5.2 : Exemple de mouvement Brownien dans le champ de gravité. Sédimentation à la suite d'une injection ponctuelle dans une colonne de fluide. Evolution des densités de probabilité (ou des concentrations).
Avec l'équation (5.6), le problème est défini par une condition initiale :
\[z = \delta(z - z_0) \quad \text{quand} \quad t \to 0 \quad (5.7) \]
(\(\delta\) désigne le Delta de Dirac)
et une condition de bord :
\[D_z \frac{\partial f_z(0; t)}{\partial z} - C_z f_z(0; t) = 0 \quad \text{quel que soit} \quad t > 0 \quad (5.8) \]
qui exprime l'étanchéité du fond.

Remarque : Etant donnée l'orientation choisie ici pour la coordonnée z (vers le haut), le coefficient de dérive (ou de convection) \(C_z\) est négatif.

L'équation de Fokker-Planck a dans ce cas une solution analytique, qui s'écrit :
\[
f_z(z; t) = \frac{1}{2(\pi D_z t)^{0.5}} \left(\exp \left(\frac{-(z - z_0)^2}{4 D_z t} \right) + \exp \left(\frac{-(z + z_0)^2}{4 D_z t} \right) \right)
\]
\[
	imes \exp \left(\frac{C_z}{2D_z} (z - z_0) - \frac{C_z^2}{4D_z} t \right) - \frac{C_z}{D_z} \exp \left(\frac{C_z z}{D_z} \right) \int_{\frac{z + z_0 + C_z t}{2(D_z t)^{0.5}}}^{\infty} \exp(-u^2) \, du
\]
\[
(5.9)
\]
On peut vérifier aisément que lorsque \(t\) tend vers l'infini, l'expression (5.9) tend vers :
\[
f_z(z; \infty) = -\frac{C_z}{D_z} \exp(C_z z/D_z) \quad (5.10)
\]
fonction qui ne dépend pas de \(z_0\). En particulier, comme le montre la figure 5.2, la fonction de densité \(f_z\) converge vers cette distribution aussi bien pour une injection à partir du fond \((z_0 = 0)\) que pour une autre position initiale \((z_0 > 0)\).
5.2. **LE MODELE DE MARCAL (1965b)**

Cette théorie repose sur une analogie entre déformation d'un sol granulaire et mouvement Brownien. Elle nécessite donc, bien que cela n'apparaisse pas toujours explicitement, une transposition des hypothèses que nous venons d'examiner. A ce titre, elle présente un grand intérêt conceptuel, et révèle les forces, comme les faiblesses, d'une telle approche.

L'hypothèse ergodique, tout d'abord, est affirmée. Mais elle doit être transcrite en termes géotechniques appréciables. Dans ce but, Marsal établit la correspondance de la probabilité de présence d'un grain dans un intervalle non plus avec la concentration granulaire (nombre de grains par unité de volume), mais avec la concentration solide (volume solide par unité de volume total). Cette extension est réalisée en écrivant :

$$ q_V = 1 - n_V = f \cdot \bar{\nu}_S $$ \hspace{1cm} (5.10)

où f est la concentration granulaire,

$\bar{\nu}_S$ le volume moyen d'une particule

n_V la porosité volumique.

q_V la concentration solide

On effectue ainsi une approximation au premier moment du volume des grains.

Du point de vue mécanique, le parallèle avec le mouvement Brownien est justifié par une conception transitoire du processus de déformation, même en l'absence de fluide interstitiel. Marsal considère un massif tel que celui de la figure 5.1, initialement en équilibre sous une contrainte verticale uniforme. Un incrément supplémentaire de la charge va déclencher le mouvement des grains, qui se déplaceront dans le milieu sous l'effet des forces non équilibrées auxquelles ils sont soumis.

Si l'on considère un grain à titre individuel, les actions peuvent se subdiviser, d'après Marsal, en deux composantes. La première, qui joue le même rôle que la gravité dans la sédimentation, est constante
dans le temps en direction et en intensité. La seconde représente les fluctuations très rapides de la force non équilibrée, sous l'effet des interactions aléatoires des particules voisines. Ces dernières agissent sur le grain comme le fluide sur les particules Browniennes : elles lui transmettent des impulsions aléatoires, et en même temps lui appliquent un freinage que l'on peut symboliser par une viscosité Newtonienne. Il s'agit donc d'une "auto-diffusion" des grains au sein du milieu granulaire lui-même.

Ceci admis, Marsal considère que le phénomène est analogue au processus décrit au paragraphe 5.1 et que l'on peut appliquer l'équation de diffusion (5.1) aux concentrations solides.

\[
\frac{\partial q_v(z,t)}{\partial t} = D_Z \frac{\partial^2 q_v(z,t)}{\partial z^2} - C_Z \frac{\partial q_v(z,t)}{\partial z}
\]

(5.11)

avec :
\[C_Z > 0, \quad D_Z > 0\]

Comme les coefficients \(C_Z\) et \(D_Z\) sont constants et le volume solide total conservé, le processus est théoriquement perpétuel, comme l'est le mouvement Brownien.

Marsal complète la formulation du problème de déformation en introduisant les éléments suivants :

- condition initiale, constituée par une concentration uniforme avant l'augmentation de la charge,

- conditions aux limites selon lesquelles les concentrations en surface et à la base de la couche sont constantes et égales à une même concentration finale, dès l'établissement de l'incrément de pression.

- valeur de la concentration finale, admise uniforme et obtenue par l'intermédiaire du module de compressibilité oedémétrique, c'est-à-dire empiriquement.

Un exemple d'ajustement des prédiction théoriques avec une courbe expérimentale tassement - logarithme du temps a été publié ultérieurement par MARSAL (1973). Pour les matériaux utilisés (enrochements
d'origine granitique), on constate que si la première partie des deux courbes est proche, le modèle théorique converge plus rapidement vers l'équilibre que le phénomène réel (fig. 5.3). Marsal attribue cette divergence au taux de rupture élevé des particules, conséquence des très fortes pressions qu'il utilise.

Fig. 5.3 : Essai de compression sur des matériaux d'enrochements (d'après MARSAL, 1973)

On peut être étonné que des résultats aussi intéressants soient obtenus sur la base d'hypothèses aussi fortes. Il faut sans doute chercher la cause de ce succès dans la valeur des concepts de base, et en particulier dans les deux idées clés : le cheminement aléatoire des grains, et l'existence d'une concentration (ou d'une porosité) caractéristique de l'état d'équilibre. Ces notions sont parfaitement en accord avec les principes que nous avons énoncés au chapitre 4.

La recherche d'une amélioration du modèle de Marsal pourrait porter sur la manière dont il a transposé l'équation de diffusion, du mouvement Brownien au milieu granulaire.

L'explication du mouvement des grains par le fait qu'ils sont l'objet de forces intergranulaires non équilibrées après augmentation de la charge implique que ce déséquilibre tend à diminuer avec le temps. En effet, comme le processus accroît la compacité et ramène le système
vers un état d'équilibre, le degré d'instabilité des grains (c'est-à-dire l'intensité des forces non équilibrées) diminue certainement avec la porosité, et donc, indirectement, avec le temps. On peut donc penser que les coefficients de l'équation de diffusion ne sont pas constants, mais varient durant le processus. Le coefficient de convection, en particulier, devrait être décroissant.

On peut aussi mettre en doute la symétrie des conditions aux limites. Lorsque la pression est appliquée à partir de la surface du massif, la stabilisation prend un certain temps pour se propager jusqu'en profondeur. S'il est logique d'admettre l'établissement de la concentration d'équilibre quasi-instantanément en surface, rien n'indique qu'il en soit de même à la base de la couche.

Enfin, on doit rejeter pour le milieu granulaire l'hypothèse de faible concentration formulée pour le mouvement Brownien. Elle est en opposition avec la structure physique du matériau, où par nécessité les grains reposent les uns sur les autres de manière quasi permanente. Les interactions entre particules sont donc la règle, et non l'exception.

Il résulte de la simplification admise par Marsal une surestimation du rôle de la convection par déséquilibre local, au détriment d'une convection plus globale, due au tassement des zones sous-jacentes qui entraînent les grains supportés par elles. Ainsi, à une profondeur où le coefficient de dérive C aurait une valeur proche de zéro parce que la concentration d'équilibre est atteinte, des tassements importants peuvent se poursuivre si des déformations, combinées à l'effet de la gravité, ont lieu plus profondément. Ce phénomène n'est pas traduit par le modèle de Marsal.

5.3. UNE NOUVELLE FORMULATION DU PROBLEME

Chaque fois qu'un grain procède à un déplacement, aussi court soit-il, il se produit un mouvement du gaz ou du fluide interstitiel.

Dans un milieu granulaire sec, sans s'attacher à décrire le détail de l'écoulement d'air autour de la particule solide, on peut schématiser
ce phénomène par un échange de positions entre le grain et un volume d'air équivalent.

La description du cheminement aléatoire des grains pendant la déformation du massif peut donc être remplacée par celle des changements réciproques de position de petits volumes d'air. Si, comme Marsal, on fait pour le volume des grains une approximation au premier moment, le volume d'air déplacé sera chaque fois égal au volume moyen d'une particule solide. Comme le montre la figure 5.4, une même "particule d'air" échange successivement sa position avec un grand nombre de grains différents au cours du processus de déformation. Son champ d'action est plus large que celui d'une particule solide individualisée. Il lui est possible, par exemple, de parcourir une distance suffisante pour atteindre la surface, alors que les grains ont une liberté de mouvement plus restreinte et s'éloignent probablement peu de leur position initiale.

Fig. 5.4 : Modèle lacunaire des échanges de position entre grains et air interstitiel en excès - schéma simplifié bidimensionnel
On remarque sur le schéma 5.4 une augmentation de la compacité au voisinage du grain A, lieu d'émission de la lacune. La compacité le long du cheminement n'est, par contre, pas modifiée.

Ce concept est assez voisin de celui de la propagation des lacunes dans un réseau cristallin (ADDA et PHILIBERT, 1966). L'un de ses avantages par rapport à une approche directe du déplacement des grains réside dans l'indépendance mécanique de ces "particules d'air". Lorsque deux cheminement de lacunes se croisent, il se forme de manière tout à fait transitoire un pore de dimension plus grande, sans que le processus soit véritablement affecté. On peut donc lever l'hypothèse de faible concentration rencontrée pour le mouvement Brownien. Il faut noter que le volume d'air total concerné par le phénomène est égal au volume déplacé par les grains instables, et non au volume d'air total contenu dans le matériau.

Un autre intérêt d'un modèle fondé sur le cheminement aléatoire des "particules d'air" déplacées est constitué, comme on va le voir, par la possibilité de considérer les tassements de grande amplitude.

5.3.1. Système de coordonnées

Dans une série de publications espacées au long de deux décennies, l'équipe formée autour de Gibson et Schiffman a apporté une importante contribution à la théorie de la consolidation des sols argileux (GIBSON et al., 1967, GIBSON et al., 1981, ZNIDARCIC et al., 1984, SCHIFFMAN et al., 1984).

L'un des aspects essentiels de leur travail concerne la prise en compte de déformations finies, et non plus infinitésimales comme dans la théorie de Terzaghi. Ce résultat est obtenu grâce à l'utilisation d'un système adéquat de coordonnées et sans qu'il soit pour autant nécessaire de traiter explicitement le difficile problème d'une limite mobile. Nous allons procéder de même dans les développements qui suivent.

Sur la figure 5.1, les coordonnées x,y,z désignent la position d'un point de l'espace, mesurée à partir d'une origine placée à la surface du massif telle qu'elle se présente à l'état initial.
Fig. 5.5 a: Définition du système de coordonnées, pour la compression uniforme

\[a = \text{ coordonnée Lagrangienne } \]
\[\bar{\zeta} = \text{ coordonnée convective moyenne } \]
\[\Omega = \text{ coordonnée matérielle réduite } \]
\[n_v = \text{ porosité volumique } \]
\[t = \text{ temps } \]
\[H_0 = \text{ épaisseur initiale de la couche } \]

Fig. 5.5 b: État déformé sous compression uniforme

\[\Omega(a) = \text{ coordonnée matérielle réduite exprimée dans la base Lagrangienne } \]
\[\Omega(\bar{\zeta}(a,t)) = \text{ coordonnée matérielle réduite exprimée dans la base convective } \]
Si le massif se tasse, l'origine des coordonnées se trouvera au-dessus de la surface, dans l'air ou dans la fondation. Un tel système de coordonnées est appelé Eulérien.

En se limitant à une description des mouvements verticaux, on définit la coordonnée Lagrangienne d'un grain comme son altitude initiale (c'est-à-dire avant augmentation de la charge) mesurée à partir de la base de la couche granulaire, qui constitue une origine fixe. On note cette quantité a, et on la choisit positive vers le haut. Cette quantité est indépendante des déplacements et du temps. Un grain donné sera toujours affecté de la même coordonnée Lagrangienne, comme une étiquette qui lui serait accolée (fig. 5.5a). Par exemple, pour les grains qui se trouvent initialement en surface, cette coordonnée a est égale à l'épaisseur initiale H_0 de la couche.

La coordonnée convective du grain représente son altitude réelle à l'époque considérée, mesurée à partir du même plan de référence. C'est donc une grandeur qui, pour chaque grain, varie dans le temps. Comme les grains sont identifiés par leur position initiale, la coordonnée convective dépend à la fois de la coordonnée Lagrangienne et du temps. On la notera $\zeta(a,t)$.

Il s'agit évidemment d'une variable aléatoire, puisque telle est la nature du mouvement des grains. Nous nous limiterons ici à la coordonnée convective moyenne $\overline{\zeta}(a,t)$ qui constitue une approximation au premier moment. On admettra de plus que dans le cas de la compression uniforme, tous les grains de même coordonnée Lagrangienne ont, à une époque donnée, la même coordonnée convective moyenne.

Cette hypothèse peut aussi s'énoncer :

Des particules initialement dans un même plan horizontal occupent au temps t des altitudes qui, bien que dispersées, ont la même espérance mathématique.

On fera également usage de ce qui a été nommé la coordonnée matérielle réduite. Sa dimension est aussi une distance. Elle est en effet définie par l'intégrale :

$$\Omega(a) = \int_0^a \left(1 - n_V(a, t_0)\right) da$$

(5.12)
et peut se représenter par l'aire sous la courbe des concentrations solides limitée par la coordonnée Lagrangienne \(a \), au temps \(t_0 \).

En concept, la coordonnée matérielle réduite exprime la quantité de matière solide située sous une surface horizontale intersectant les grains situés initialement à l'altitude \(a \). Comme on le constate sur la figure 5.5b, la coordonnée \(\Omega \) est, au même titre que la coordonnée Lagrangienne, indépendante du temps.

D'après l'hypothèse admise plus haut, concernant la coordonnée convective moyenne, l'expression (5.12) est équivalente à :

\[
\Omega(a) = \int_{0}^{\bar{\zeta}(a,t)} \left(1 - n_Y(\zeta, t) \right) d\zeta
\]

(5.13)

On peut vérifier que le volume solide total contenu dans un parallélépipède de côté \(B \) est conservé lorsqu'on l'évalue avec (5.13).

En effet, d'après la définition de \(\bar{\zeta} \):

\[
\Omega(H_0) = \int_{0}^{\bar{\zeta}(H_0,t)} \left(1 - n_Y(\zeta, t) \right) d\zeta = \int_{0}^{H_0} \left(1 - n_Y(a, t_0) \right) da
\]

D'après (5.12) et (5.13), on peut écrire :

\[
\int_{0}^{a} \left(1 - n_Y(a, t_0) \right) da = \int_{0}^{\bar{\zeta}(a,t)} \left(1 - n_Y(\zeta, t) \right) d\zeta
\]

et, en dérivant les deux membres :

\[
\frac{1 - n_Y(a, t_0)}{1 - n_Y(\bar{\zeta}, t)} = \frac{\partial \bar{\zeta}(a,t)}{\partial a}
\]

(5.14)
La porosité volumique exprime la proportion de vides dans le milieu indépendamment du système de coordonnées choisi. Si on la désigne par $n'_v(a,t)$ dans la base des coordonnées Lagrangienes, à toute époque t, on a :

\[n'_v(a,t) = n_v(\zeta(a,t)) \] \hspace{1cm} (5.15)

La relation (5.14) devient donc :

\[\delta \zeta = \frac{1 - n_v(a, t_0)}{1 - n'_v(a,t)} \delta a \]

et en intégrant :

\[\zeta(a,t) = \int_0^a \frac{1 - n_v(a, t_0)}{1 - n'_v(a,t)} \, da \] \hspace{1cm} (5.16)

Le tassement moyen des particules situées initialement à la même altitude vaut :

\[\bar{w}(a,t) = a - \zeta(a, t) \] \hspace{1cm} (5.17)

c'est-à-dire :

\[\bar{w}(a,t) = \int_0^a \left(1 - \frac{1 - n'_v(a)}{1 - n'_v(a,t)} \right) \, da \] \hspace{1cm} (5.18)

Le tassement moyen de la surface horizontale est donc :

\[\Delta H(t) = \int_0^{H_0} \left(1 - \frac{1 - n'_v(a)}{1 - n'_v(a,t)} \right) \, da \] \hspace{1cm} (5.19)

On peut vérifier que ce résultat est cohérent avec celui de GIBSON et al. (1981, équation 33) si l'on interprète l'expression (5.14) comme une définition de la déformation verticale moyenne.
5.3.2. **Equation de diffusion en coordonnées Lagrangiennes**

Comme nous l'avons vu à propos du modèle de Marsal, il est souhaitable d'isoler la convection directe, due à des causes locales de déséquilibre, de celle, indirecte, provoquée par l'affaissement des zones inférieures. Cette séparation peut être obtenue en établissant l'équation de diffusion dans la base des coordonnées Lagrangiennes, puis en opérant le passage en coordonnées convectives une fois la solution obtenue.

Cette procédure présente un double avantage :

- on travaille dans l'espace Lagrangien avec des coefficients qui ne dépendent que des conditions locales;
- on prend en compte "de facto" la contribution de la gravité lors du passage en coordonnées convectives.

La figure 5.6 schématisé les échanges de position possibles entre un grain qui à l'époque t_n occuperait la position a_k et une lacune ou "particule d'air". Deux événements sont possibles :

- avec une probabilité p, le grain peut descendre et occuper la position a_{k-1} à l'époque t_{n+1};
- avec une probabilité q, le grain peut monter et se placer en a_{k+1}.

L'éventualité que le grain stationne en a_k et ne se déplace pas n'est pas envisagée comme événement possible. On a donc :

$$ p + q = 1 \quad (5.14) $$

Réciproquement, pour la lacune qui échange sa position avec le grain, on note :

$$ \text{Prob}[a = a_k; t = t_{n+1} \mid a = a_{k-1}; t = t_n] = p \quad (5.15) $$

$$ \text{Prob}[a = a_k; t = t_{n+1} \mid a = a_{k+1}; t = t_n] = q \quad (5.16) $$

Ainsi sont posées les règles d'une marche au hasard de la lacune, prototype du processus plus général de diffusion.
D'après les définitions (5.15) et (5.16), les probabilités p et q sont fonction uniquement de la position occupée par la lacune au temps \(t_n \) que l'on peut considérer comme l'époque présente. Ainsi, le futur immédiat \((t_{n+1}) \) ne dépend que du présent, et aucune information additionnelle concernant les époques antérieures ne permettrait une meilleure prédiction des événements. Nous sommes manifestement dans une situation Markoviennne, où p et q sont des probabilités de transition des états de la lacune en un pas.

Il n'est cependant pas nécessaire dans un cas aussi simple de faire davantage usage du formalisme Markovien. En effet, si p et q sont indépendantes du temps et de la position, la formule de Chapman-Kolmogorov prend la forme triviale:
\[
\text{Prob} \left[a = a_k; \ t = t_{n+1} \right] = p \cdot \text{Prob} \left[a = a_{k-1}; \ t = t_n \right] + q \cdot \text{Prob} \left[a = a_{k+1}; \ t = t_n \right]
\]

(5.17)

et constitue la règle de récurrence du problème de marche au hasard de la lacune.

Il faut noter que tous les termes de l'équation (5.17) peuvent s'interpréter comme des probabilités de transition, puisque par exemple :

\[
\text{Prob} \left[a = a_k; \ t = t_{n+1} \right]
\]

exprime la probabilité que la lacune transite en \(n+1 \) pas depuis sa position initiale \(a(t_0) \) jusqu'en \(a_k \).

Imaginons que, comme \(p \) et \(q \), la longueur des intervalles de temps \(\Delta t \) et de distance \(\Delta a \) séparant deux positions consécutives de la lacune soient constantes. On supposera de plus que les probabilités de position peuvent être représentées par des fonctions continues et dérivables par rapport à \(t \) et \(a \). Il existe donc des densités de probabilités de transition, comme par exemple \(f_a(a; t) \), illustrées par la figure 5.7.

Dans ces conditions, la formule (5.17) peut s'écrire :

\[
f_a(a; t + \delta t) \delta a = p \cdot f_a(a - \delta a; t) \delta a + q \cdot f_a(a + \delta a; t) \delta a \quad (5.18)
\]

Développons chaque terme en série de Taylor autour de \((a; t) \) jusqu'au second ordre :

\[
f_a(a; t + \delta t) = f_a(a; t) + \delta t \left(\frac{\partial f_a}{\partial t} \right)_{a,t} + \frac{1}{2} (\delta t)^2 \left(\frac{\partial^2 f_a}{\partial t^2} \right)_{a,t} + ...
\]

\[
p \cdot f_a(a - \delta a; t) = p \cdot f_a(a; t) - \delta a \cdot p \left(\frac{\partial f_a}{\partial a} \right)_{a,t} + \frac{1}{2} (\delta a)^2 \cdot p \left(\frac{\partial^2 f_a}{\partial a^2} \right)_{a,t} + ...
\]

\[
q \cdot f_a(a + \delta a; t) = q \cdot f_a(a; t) + \delta a \cdot q \left(\frac{\partial f_a}{\partial a} \right)_{a,t} + \frac{1}{2} (\delta a)^2 \cdot q \left(\frac{\partial^2 f_a}{\partial a^2} \right)_{a,t} + ...
\]
Fig. 5.7 : Densité de probabilité de transition de la lacune depuis \(a(t_0) \) jusqu'à \(a(t_n) \) en une durée \(t_n - t_0 \)

Compte tenu de (5.14), l'équation (5.18) devient :

\[
\frac{\delta f_a}{\delta t} + \frac{1}{2} \frac{\delta^2 f_a}{\delta t^2} = \frac{1}{2} \frac{\delta^2 f_a}{\delta t^2} - \frac{\delta a}{\delta t} \frac{(p - q)}{\delta t} f_a
\] (5.19)

Si les intervalles de temps \(\delta t \) sont très petits, le mouvement aléatoire de la lacune apparaît comme quasi-continu. Cette situation peut être traduite mathématiquement par un passage à la limite assujetti aux conditions :

\[
C_a = \lim \left(\frac{\delta a}{\delta t} \right) (p - q) \quad \text{est une limite finie}
\]

\[
\delta t \to 0 \\
\delta a \to 0
\] (5.20)

\[
D_a = \lim \left(\frac{(\delta a)^2}{2 \delta t} \right) \quad \text{est une limite finie}
\]

\[
\delta t \to 0 \\
\delta a \to 0
\] (5.20')
On obtient alors pour (5.19):

\[
\frac{\delta f_a(a; t)}{\delta t} = D_a \frac{\delta^2 f_a(a; t)}{\delta a^2} - C_a \frac{\delta f_a(a; t)}{\delta a} \quad (5.19')
\]

qui est à nouveau l’équation de Fokker - Planck à coefficients constants.

Lorsque les probabilités de transition \(p \) et \(q \) sont variables en fonction de la position et du temps, un raisonnement semblable conduit à:

\[
\frac{\delta f_a(a; t)}{\delta t} = D_a \frac{\delta^2 f_a(a; t)}{\delta a^2} - \frac{\delta}{\delta a} \left[C_a(a; t) \cdot f(a; t) \right] \quad (5.21)
\]

On voit que les dérivées de \(p \) et \(q \) par rapport au temps n'interviennent pas.

Plus généralement, l'intervalle de temps \(\delta t \) n'est pas celui séparant deux sauts consécutifs discrets de la lacune. Il définit la fréquence d'observation arbitraire d'un mouvement quasi continu. Si \(\delta t \) est constant, \(\delta a \) désigne alors l'amplitude du déplacement vertical que peut effectuer la lacune pendant \(\delta t \). Si on considère également les incrémentés \(\delta a \) successifs comme variables en fonction de la position de la lacune et du temps, on est conduit à l'expression :

\[
\frac{\delta f_a(a; t)}{\delta t} = \frac{\delta^2}{\delta a^2} \left[D_a(a; t) \cdot f_a(a; t) \right] - \frac{\delta}{\delta a} \left[C_a(a; t) \cdot f_a(a; t) \right] \quad (5.22)
\]

Il s'agit de l'équation de Fokker - Planck pour la diffusion unidimensionnelle sous sa forme la plus générale. On la nomme également "équation prospective de Kolmogorov", par opposition à l'équation retrospective qui, bien que d'une forme voisine, s'applique à la densité de probabilité initiale \(f_{a_0}(a; t_0) \), et non à la densité actuelle \(f_a(a; t) \). Dans les applications, la confusion est fréquente entre ces deux équations, en particulier parce que la forme rétrospective est d'un maniement plus aisé dans les calculs. On doit bien noter que les solutions des deux équations n'ont pas la même signification.
La démarche que nous avons suivie pour établir les expressions (5.20) et (5.21) consiste, par un passage à la limite approprié, à écrire l'équation différentielle d'un processus continu à partir de l'équation aux différences de son approximation discrète. Cette méthode n'est plus applicable pour établir l'expression générale (5.22). Dans ce cas, on doit faire usage de la forme continue de la formule de Chapman - Kolmogorov. La démonstration complète ne figure généralement pas dans les traités accessibles de probabilité. On pourra cependant se référer utilement à la justification approximative de PAPULIS (1965, ch. 15) et aux commentaires très clairs et détaillés de FELLER (1957, ch. XIV; 1971, ch. X).

5.3.3. Equation phénoménologique

Dans la définition du modèle discret de diffusion des lacunes, nous avons considéré les deux événements (déplacement vers le haut) et (déplacement vers le bas) comme exclusifs et exhaustifs.

Cette dernière caractéristique équivaut à dire que les objets dont nous décrivons les cheminsements aléatoires par les équations (5.20) à (5.22) sont seulement les lacunes mises en mouvement à la suite des instabilités locales et qui ne peuvent s'arrêter. Ces lacunes représentent le volume d'air en excès dans le milieu. Elles doivent en être expulsées pour qu'un nouvel équilibre s'établisse.

L'hypothèse d'ergodicité de ce modèle met donc en équivalence la probabilité de présence d'une lacune diffusée, à l'altitude \(a \), au temps \(t \), et la concentration volumique de l'air en excès sous la charge appliquée. L'équation de diffusion est donc applicable au surplus de porosité \(\Delta n_v(a, t) \).

On définit cette quantité comme la différence entre la porosité actuelle et la porosité d'équilibre. Dans la base Lagrangienne :

\[
\Delta n_v(a, t) = n'_v(a, t) - n'_v(a, t\text{équilibre})
\]
(5.23)
A l'époque t_0, on aurait:

$$\Delta n'_v(a, t_0) = n'_v(a, t_0) - n'_v(a, t_{\text{équilibre}})$$ \hspace{1cm} (5.24)

equation qui tient lieu de condition initiale.

Le phénomène de compression uniforme est donc décrit par l'équation:

$$\frac{\partial}{\partial t} [\Delta n_v(a, t)] = \frac{\partial^2}{\partial a^2} [D_a(a,t) \cdot \Delta n_v(a, t)] - \frac{\partial}{\partial a} [C_a(a,t) \cdot \Delta n_v(a, t)]$$

5.3.4. **Conditions aux limites**

Lorsqu'une lacune est amenée jusqu'à la limite supérieure de la couche par son cheminement aléatoire, elle sort du massif granulaire. Le mouvement du dernier grain avec lequel elle a échangé sa position constitue une déflexion locale de la surface. La probabilité est très faible que la lacune soit réintégrée dans le système lors d'un mouvement ultérieur du grain. On peut négliger cette éventualité et considérer que la lacune a été diffusée définitivement hors de la couche. Le processus est ainsi terminé pour elle. Ce phénomène que l'on pourrait imaginer par l'écllosion d'une bulle à la surface de l'eau, est dans la terminologie Markovienne une absorption.

Au contraire, lorsqu'une lacune se propage jusqu'à la limite inférieure de la couche, qui repose sur une base rigide et fixe, elle ne peut s'échapper du système. L'équilibre global de la couche compressible requiert la transmission des efforts intergranulaires jusqu'au substratum, et nécessite donc des contacts permanents entre les grains et celui-ci. En surface, les contacts sont maintenus par le tassement du dispositif de charge (par exemple un radier ou la plaque de charge dans un oedomètre). Par contre, une lacune atteignant la base sera renvoyée dans le jeu, lors du prochain mouvement d'un des grains adjacents. Elle devra finalement, comme toutes les autres, être absorbée à la surface pour terminer sa course. La base de la couche agit donc comme une barrière réfléchissante.
Ces deux phénomènes gouvernent les conditions aux limites du problème. Leur expression mathématique résulte de l'application du principe de réflexion initialement établi par André, puis développé par SMOLJICHOWSKI (1916) et CHANDRASEKHAR (1943). En toute rigueur, celui-ci n'a été établi que pour les processus Gaussiens à moyenne nulle, dits de Wiener-Levy. On peut considérer qu'il est également valide dans le cas présent, à condition que les vitesses de convection restent faibles.

Ce principe se traduit dans le cas d'une barrière réfléchissante par la règle suivante :

\[
a(t) = \begin{cases}
 a'(t) & \text{si } a'(t) < a_B \\
 2a_B - a'(t) & \text{si } a'(t) > a_B
\end{cases}
\]

où :
- \(a'(t) \) est le processus en l'absence de barrière (c'est-à-dire dans notre cas la coordonnée verticale d'une lacune) dans la base Lagrangienne;
- \(a(t) \) est le processus en présence de la limite réfléchissante;
- \(a_B \) est la coordonnée de la limite, égale à zéro pour la base de la couche.

Ainsi s'exprime le fait que le cheminement d'une lacune n'est pas affecté par la barrière tant que celle-ci n'a pas été rencontrée. Mais une fois que cet événement s'est produit, la trajectoire est symétrique par rapport à la limite de ce qu'elle serait en l'absence de celle-ci.

On peut donc écrire, si \(a_1 < a_B \) :

\[
\text{Prob}[a(t) < a_1] = \text{Prob}[a'(t) < a_1] + \text{Prob}[a'(t) > 2a_B - a_1]
\]

(5.26)

Le premier terme du membre de droite est la probabilité que la lacune n'ait pas encore atteint la barrière à l'époque \(t \). Le second terme représente la probabilité que la barrière, rencontrée au moins une fois entre \(t_0 \) et \(t \), ait par réflexion renvoyé la lacune sur le chemin symétrique. Les deux événements sont exclusifs et exhaustifs.
Comme \[\text{Prob}[a'(t) > 2 a_B - a_1] = 1 - F'_a(2 a_B - a_1, t), \]

l'équation (5.26) devient :

\[F_a(a_1; t) = F'_a(a_1; t) + 1 - F'_a(2 a_B - a_1; t) \quad (5.27) \]

où \(F_a \) et \(F'_a \) désignent les fonctions cumulatives de probabilité de la position \(a \), en présence et en absence de la limite réfléchissante.

On a donc :

\[
\int_{-\infty}^{a_1} f_a(a; t) \, da = \int_{-\infty}^{a_1} f'_a(a; t) \, da + 1 - \int_{-\infty}^{2a_B-a_1} f'_a(a; t) \, da
\]

et en dérivant par rapport à \(a_1 \) :

\[f_a(a_1; t) = f'_a(a_1; t) + f'_a(2 a_B - a_1; t) \quad (5.28) \]

Pour \(a_B = 0 \), la réflexion s'exprime donc :

\[f_a(a; t) = f'_a(a; t) + f'_a(-a; t) \quad (5.29) \]

relation justifiant l'appellation de la méthode des images, proposée par CHANDRASEKHar (1943).

La fonction de densité s'obtient en ajoutant aux valeurs qu'elle prendrait en l'absence de limite les symétriques de ces valeurs par rapport à la limite.

Un raisonnement du même type peut s'appliquer aux conditions d'absorption, en considérant que la barrière, au lieu de renvoyer l'image de la distribution, réfléchit son négatif.

La relation (5.26) s'écrit dans ce cas :

\[\text{Prob}[a(t) < a_1] = \text{Prob}[a'(t) < a_1] - \text{Prob} [a' > 2 a_B - a_1] \quad (5.30) \]

puisquela lacune ne peut pas revenir à une position comprise entre \(-\infty\) et \(a_1 \) après avoir franchi la limite.
En termes de densité de probabilité, on obtient alors :

\[f_a(a_1; t) = f'_a(a_1; t) - f'_a(2a_B - a_1; t) \] \hspace{1cm} (5.31)

La figure 5.8 illustre l'application de la méthode des images dans les deux cas.

Fig. 5.8 : Méthode des images dans le cas de barrières réfléchissantes et absorbantes (d'après PAPULIS, 1965)

On peut vérifier que l'intégrale de la densité de probabilité résultante est toujours égale à 1. Dans le cas de la réflexion, le cumul des valeurs de \(f'_a \) assure la conservation de la surface totale sous la courbe. Avec l'absorption, on obtient une distribution résultante du type mixte, déjà évoqué au chapitre 3. En effet, toutes les lacunes qui atteignent la limite absorbante y restent concentrées, mais existent toujours.

La méthode des images se prête particulièrement à un mode de résolution graphique ou analytique de l'équation de diffusion. Dans la perspective d'une approche numérique plus générale, nous exprimerons les conditions de réflexion et d'absorption en termes de valeur aux frontières et de flux.
On voit que dans le cas de l'absorption, l'équation (5.28) devient pour $a_1 = a_B$:

$$f_a(a_B; t) = 0 \quad (5.32)$$

D'où la condition de surface pour la porosité en excès, en coordonnées Lagrangtiennes :

$$\Delta n_v(H_0; t) = 0 \quad (5.33)$$

Ainsi l'équilibre local s'établit quasi instantanément sous la charge, lors de l'augmentation de celle-ci.

Pour un processus de Wiener-Levy, la condition de réflexion équivaut à un flux nul à travers la barrière. Cette condition est étendue par CHANDRASEKHAR (1943) au cas du mouvement Brownien dans le champ de gravité, sous la forme :

$$D_z \frac{\partial f}{\partial z} - C z \cdot f = 0 \quad (5.34)$$

avec D_z et C_z constantes.

On peut généraliser cette expression en constatant qu'elle est issue d'une intégration par rapport à z de l'équation de Fokker - Planck à coefficients constants (équation 5.1).

Lorsque les coefficients sont variables, on obtient donc :

$$\int \frac{\partial f}{\partial t} \, dz = \frac{\partial}{\partial z} \left[D_z(z; t) \cdot f(z; t) \right] - C_z(z; t) \cdot f(z; t) = 0 \quad (5.35)$$

D'où la condition de flux à la base de la couche pour la porosité en excès :

$$\frac{\partial}{\partial a} \left[D_a(a; t) \cdot \Delta n_v(a; t) \right] - C_a(a; t) \cdot \Delta n_v(a; t) \bigg|_{a=0} = 0 \quad (5.36)$$
5.3.5. Solution de l'équation de diffusion

On résout numériquement l'équation de diffusion (5.25), sous la condi-
tion initiale (5.24) et les conditions aux limites (5.33) et
(5.36). La méthode utilisée ici est celle des différences finies.
Pour des informations plus techniques, on se référera à l'annexe A1.

Les figures 5.9 à 5.14 montrent deux exemples de résultats obtenus
avec des coefficients constants.

Le premier cas pourrait s'appliquer à une couche suffisamment mince
pour que l'on puisse négliger la variation avec la profondeur de la
porosité initiale et finale. Pour la clarté de la représentation, la
compressibilité du matériau a été supposée très grande. Les courbes
iscochrones de la quantité diffusée \(\Delta n_v \) et de la porosité sont re-
présentées sur les figures 5.9 et 5.10. Leur dissymétrie est une con-
séquence à la fois des conditions aux limites et de la présence du
coefficient de dérive \(C_a \) dans l'équation de diffusion.

La seconde de ces figures, où la base géométrique est celle des coor-
données convectives, met bien en évidence la mobilité de la surface.
On y constate aussi que l'équilibre local ne s'établit que progres-
sivement à la limite inférieure, en conséquence de la condition de
réflexion, mais cependant plus rapidement que dans l'ensemble de la
couche.

Sur la figure 5.11, on a caractérisé de manière globale le phénomène
par l'évolution au cours du temps des tassements de la surface et
d'une quantité adimensionnelle appelée degré de diffusion. Nous défi-
nissons cette dernière par :

\[
\Delta U(t) = 1 - \frac{\int_0^{H_0} \Delta n_v(a,t) \, da}{\int_0^{H_0} \Delta n_v(a,t_0) \, da}
\]

(5.37)

ce qui équivaut approximativement à :

\[
\frac{\Delta H(t)/\bar{\Delta H}(t)}{\Delta H(t_0)/\bar{\Delta H}(t_0)}
\]

si l'on désigne par \(\bar{\Delta H}(t) \) l'épaisseur moyenne de la couche pendant la
période \((t_0, t) \).
COORD. LAGRANGIENNE

POROSITE EN EXCES

Fig. 5.9
RT1 v3.1 17 nov. 1985 test 07 unites: cm/sec
massif homogene, coeff. constants

NZ=91 DELTAZ=0.250 C0= 0.158
NT=321 DELTAT=0.100 D0= 0.500

Fig. 5.10
RTI v3.1 17 nov. 1985 test 07 unites: cm, sec
massif homogène, coeff. constants

<table>
<thead>
<tr>
<th>NZ</th>
<th>DELTAZ</th>
<th>CO</th>
</tr>
</thead>
<tbody>
<tr>
<td>81</td>
<td>0.250</td>
<td>0.158</td>
</tr>
<tr>
<td>NT</td>
<td>DELTAT</td>
<td>DO</td>
</tr>
<tr>
<td>321</td>
<td>0.100</td>
<td>0.500</td>
</tr>
</tbody>
</table>

Graph:
- **TASSEMENT**
- **DEGRÉ DE DIFFUSION**

$log_{10}(T)$ vs. TASSEMENT and DEGRÉ DE DIFFUSION

Fig. 5.11
Pour des tassements très faibles par rapport à l'épaisseur initiale, on aurait évidemment :

\[\Delta U(t) = 1 - \frac{\Delta H(t)}{\Delta H(t^\infty)} \] \hspace{1cm} (5.38)

Bien que le calcul n'ait pas été poursuivi au-delà de \(10^3 \) secondes, il faut noter que l'état d'équilibre (\(\Delta U = 1 \)) est théoriquement une situation asymptotique, qui correspond à un *tassement fini pour un temps infini*. Ce résultat est intuitivement plus satisfaisant que le tassement infini obtenu après un temps infini d'après la loi logarithmique de BUISMAN (1936).

Le deuxième exemple traité (figures 5.12, 5.13 et 5.14) porte sur un massif d'épaisseur plus grande, où l'on a supposé une diminution linéaire de la porosité initiale avec la profondeur. Il en serait de même à l'équilibre, après application de la surcharge, mais avec un gradient de porosité réduit.

Le modèle mathématique se prête également au traitement de variations non linéaires de porosité, ou de stratifications, ainsi qu'à la prise en compte de coefficients variables.

Des calculs répétés avec différentes combinaisons de \(H_0, C_a, D_a, \Delta n_y(t_0) \) montrent que pour une valeur donnée de \(J = C_a H_0 / D_a \), la fonction \(\Delta U = g(t H_0^2 / D_a) \) est invariante par rapport aux paramètres. Cette caractéristique, qui n'a toutefois été vérifiée que dans le cas du massif homogène, permet une représentation adimensionnelle des résultats de l'étude paramétrique. A titre d'hypothèse, celle-ci a été effectuée pour des coefficients constants et pour des coefficients décroissant linéairement avec \(\Delta n_y(a,t) \). Les résultats peuvent être comparés sur les figures 5.15a et 5.15b.
COMPRESION UNIFORME D’UN MILIEU GRANULAI RE SEC

RT1 v.3.1 20 nov. 1985 test 22 unités: cm, sec
porosité décroissante avec la profondeur, coeff. constants

NZ=101 DELTAZ=2.000 CO=0.050
NT=481 DELTAT=0.100 D0=0.500

Fig. 5.12
COMPRESSION UNIFORME D'UN MILIEU GRANULAIREE SEC

RT1 v3.1 20 nov. 1985 test 22 unités: cm, sec
porosite décroissante avec la profondeur, coeff. constants

NZ=101 DELTAZ=2.000 CO=0.050
NT=481 DELTAT=0.100 DO=0.500

COORD. CONVEXTIVE *10⁻¹

POROSITE

Fig. 5.13
COMPRESION UNIFORME D'UN MILIEU GRANULAIRE SEC

RT1 v3.1 20 nov. 1985 test 22 unités: cm, sec
porosité décroissante avec la profondeur, coeff. constants

NZ=101 DELTAZ=2.000 C0=0.050
NT=481 DELTAT=0.100 D0=0.500

Fig. 5.14
5.3.6. Coefficients de l'équation de diffusion

Revenons au modèle discret de la marche au hasard des lacunes dans le réseau granulaire avec des incrément constants. A chaque pas de temps, une variable aléatoire discrète \(x_i \) peut être définie, telle que:

\[
\begin{align*}
 x_i &= +1 \quad \text{si le mouvement vertical est vers le haut} \\
 x_i &= -1 \quad \text{si le mouvement est vers le bas}
\end{align*}
\]

On a:

\[
\begin{align*}
 \text{Prob}[x_i = +1] &= p \\
 \text{Prob}[x_i = -1] &= q
\end{align*}
\]

(5.39)

Les mouvements successifs étant indépendants, l'observation des variables \(x_1, x_2, \ldots, x_i, \ldots, x_N \) au cours de \(N \) intervalles de temps consécutifs constitue un tirage de Bernoulli.

Leur somme \(X_N = \sum_{i=1}^{N} x_i \) a donc

\[
\text{pour moyenne} : \quad \overline{X}_N = E[X_N] = (p-q) \ N
\]

et pour variance:

\[
\text{s}_{X_N}^2 = E[(X_N - \overline{X}_N)^2] = 4 \ p \ q \ N
\]

(5.40)

Pour le déplacement net de la lacune (son changement de coordonnée) \(\Delta a \cdot X_N \), ces moments valent:

\[
\begin{align*}
 E[\Delta a \cdot X_N] &= (p-q) \ N \cdot \Delta a \\
 s_{\Delta a \cdot X_N}^2 &= 4 \ p \ q \ N \cdot \Delta a^2
\end{align*}
\]

(5.41)

En rapportant ces deux valeurs à la durée du mouvement \(N \cdot \delta t \), on obtient:

\[
\begin{align*}
 \frac{E[\Delta a \cdot X_N]}{\delta t} &= (p-q) \ \frac{\Delta a}{\delta t} \\
 \frac{s_{\Delta a \cdot X_N}^2}{\delta t} &= 4 \ p \ q \ \frac{\Delta a^2}{\delta t}
\end{align*}
\]

(5.42)
ΔU = degré de diffusion

$T = \frac{t \ H_0^2}{D_a} =$ facteur de temps

$J^2 = \left(\frac{C_a \ H_0}{D_a} \right)^2$

Fig. 5.15a : Compression uniforme d'un massif granulaire sec
Evolution du degré de diffusion au cours du temps
Etude paramétrique
Coefficients constants
\[\Delta U = \text{degré de diffusion} \]

\[T = \frac{t}{H_0} \text{ = facteur de temps} \]

\[J^2 = \left(\frac{C_a H_0}{D_a} \right)^2 \]

Fig. 5.15b : Compression uniforme d'un massif granulaire sec
Evolution du degré de diffusion au cours du temps
Étude paramétrique
Coefficients décroissant linéairement avec la porosité en excès
En identifiant dans les expressions ci-dessus la quantité \(\frac{\delta a \cdot X_N}{\delta t} \) à la composante verticale de la vitesse de propagation des lacunes \(v_a \), il vient :
\[
\bar{v}_a = (p-q) \frac{\delta a}{\delta t}
\]
\[
\delta t \cdot s^2_{v_a} = 4pq \frac{\delta a^2}{\delta t}
\]
(5.43)

Si l'on compare ce résultat aux définitions (5.20), en tenant compte du fait que \(4qp \) est de l'ordre de 1 pour des valeurs modérées de \(p-q \), on peut conclure que :
\[
C_a = \lim_{\delta t \to 0, \delta a \to 0} \bar{v}_a
\]
(5.44)
\[
D_a = \lim_{\delta t \to 0, \delta a \to 0} \left(\frac{1}{2} s^2_{v_a} \cdot \delta t \right)
\]
(5.45)

Les coefficients de l'équation de diffusion sont donc étroitement liés à l'espérance et à la variance de la vitesse apparente de propagation des lacunes. On doit cependant remarquer que le coefficient de diffusion n'est pas strictement égal à la variance de \(v_a \), et n'en a d'ailleurs pas la dimension.

On retiendra de ce développement que les coefficients \(C_a \) et \(D_a \) ne sont pas indépendants, et que l'investigation du processus stochastique constitué par la vitesse de propagation \(v_a(a;t) \) pourrait amener à les expliciter et à simplifier le modèle.

Nous nous bornerons ici à indiquer les ordres de grandeur obtenus empiriquement pour deux exemples. Le premier cas porte sur l'un des essais de compression effectués par Marsal sur des matériaux d'endrochements secs dans un oedomètre de grande dimension (MARSAL, 1973).
Le second concerne un essai de compression effectué au LMS sur du limon de Biolley sec, dans un oedomètre standard. Les pressions appliquées sont fort différentes dans ces deux essais : 15 kN·m⁻² pour le limon et plus de 3000 kN·m⁻² pour les enrochements, occasionnant dans ce matériau un taux important de rupture des particules. C'est ce phénomène, comme le suggère Marsal, qui empêche probablement la stabilisation de la courbe expérimentale de tassement.

Afin de respecter une procédure systématique, l'ajustement du modèle théorique a été fait de la manière suivante :

- détermination du tassement final comme pour la consolidation primaire (méthode des tangentes de Terzaghi);
- détermination de l'épaisseur initiale d'après le tassement final pour l'incrémentation de charge précédent dans le cas de l'essai sur enrochements, et par approximation parabolique dans le cas du limon;
- ajustement de la pente de la courbe ΔH - log₁₀ t dans la zone où elle est quasi-linéaire, par le choix d'une valeur adéquate de J² sur la figure 5.15;
- ajustement de la valeur du tassement pour un degré de diffusion de 50 %, en gardant le même rapport Cₐ/Dₐ.

Les résultats de cette démarche sont représentés par les figures 5.16 et 5.17. Les valeurs obtenues avec des coefficients constants sont :

- pour les enrochements : $C_a = 3.8 \text{ mm·s}^{-1}$
 $D_a = 12.5 \text{ mm}^2\cdot\text{s}^{-1}$
- pour le limon : $C_a = 6.7 \cdot 10^{-5} \text{ mm·s}^{-1}$
 $D_a = 1.7 \cdot 10^{-4} \text{ mm}^2\cdot\text{s}^{-1}$

L'étude a également été faite avec des coefficients C_a et D_a décroissant linéairement avec Δn_v. On voit que la comparaison avec les mesures est moins favorable dans ce second cas, et que la vitesse de tassement théorique décroît trop vite. Il semble donc que l'hypothèse d'une variation linéaire des coefficients doive être rejetée au profit d'un modèle sans doute plus complexe. A défaut, on se limitera à des coefficients constants.
Fig. 5.16 : Comparaison entre prévisions théoriques et mesures pour des matériaux d'enrochements secs (mesures d'après MARSAL, 1973)

Fig. 5.17 : Comparaison entre prévisions théoriques et mesures pour du limon de Biolley sec
5.4. CONCLUSION

Nous avons abordé ce chapitre en mentionnant que le problème traité avait, dans sa formulation présente, une incidence pratique limitée. En effet, le cas de charge envisagé - massif infini chargé uniformément sur toute sa surface - est pour le moins irréaliste, et le chemin des contraintes admis (K_0) peu propice aux grandes déformations.

L'avertissement sous-entendait aussi qu'il pouvait en être autrement dans un autre contexte.

Considérons les deux faits essentiels qui résultent de la formulation proposée :

- la déformation d'un massif sec formé de particules n'est pas instantanée, mais se développe au cours du temps pour converger asymptotiquement vers un état d'équilibre;

- un massif sec qui est statistiquement homogène à l'état initial et à l'état final du processus de déformation n'est pas homogène pour les états transitoires. Ceci est en complète opposition avec les prédictions de la mécanique du continu, selon laquelle la porosité resterait uniformément distribuée à toute époque.

On peut remarquer que ces conclusions sont obtenues sans faire appel à des relations constitutives arbitraires, mais qu'au contraire elles émergent naturellement du raisonnement probabiliste.

Il apparaît ainsi que la voie ouverte par Marsal peut conduire à une solution directe du problème très mal résolu jusqu'ici de la compression secondaire. À la condition de justifier sa validité pour les sols fins, le modèle présenté ici pourrait être un élément important d'une théorie générale de la consolidation pour les milieux saturés faisant l'objet de déformations finies.

Plus modestement, il constitue dans la présente étude la base conceptuelle et mathématique sur laquelle nous allons construire un modèle de la déformation des milieux granulaires sous des conditions de charges plus générales, mais à l'état stationnaire.
6. **DEFORMATIONS A L'ETAT STATIONNAIRE SOUS L'EFFET D'UNE FONDATION SUPERFICIELLE - ETUDE EXPERIMENTALE**

Dans l'étude du phénomène transitoire que constitue la compression d'une masse granulaire sèche, nous avons jusqu'ici montré comment le matériau peut évoluer vers un équilibre macroscopique, tout en supposant connues les caractéristiques de cet état final.

Ce dernier est une situation vers laquelle le processus de déformation conduit asymptotiquement. Théoriquement, il n'est donc jamais atteint. On peut cependant constater, d'après les résultats présentés au chapitre 5, ainsi que par la pratique des essais de chargement in situ sur des sols grossiers, que la durée pendant laquelle se produit la majeure partie des déformations est de l'ordre de quelques minutes à quelques heures. Passé ce délai, les déplacements observables, c'est-à-dire significatifs compte tenu de la précision et de la fréquence des mesures, deviennent très faibles et très lents. Cet équilibre apparent peut être assimilé à l'état stationnaire de déformation dont nous abordons maintenant la description en vue de sa prévision.

6.1. **DEFINITION DU PROBLEME**

La figure 6.1 schématiser la problème posé.

On considère un massif de sol initialement en équilibre, et dont on connaît certaines caractéristiques. Supposons que l'on applique une charge en surface par l'intermédiaire d'une fondation, et qu'un nouvel équilibre puisse s'établir.

Par quelles modifications de la géométrie du massif se traduira ce passage d'un état d'équilibre à un autre ? De la solution du problème doit résulter la connaissance des déplacements en surface et à l'intérieur du massif.

Les informations qui doivent être acquises a priori, c'est-à-dire les données, sont réparties en deux catégories:
Fig. 6.1 : Problème de la déformation finale d'un massif granulaire sous l'effet d'une fondation superficielle

- La première concerne le sol lui-même avant l'application de la charge. Il s'agit d'un ensemble de paramètres relatifs aux grains, à leurs assemblages et au massif dans son ensemble. Cette classification permet, comme l'a montré FAVRE (1980), de distinguer les caractéristiques intrinsèques de celles qui sont liées à l'état provisoire du matériau. La figure 6.2 dresse la liste, limitée aux besoins de la présente analyse, de ces propriétés. Le tableau indique, en regard de chacune de celles-ci, une grandeur technique qui permet de l'étalonner. Rappelons que l'on se limite ici au cas d'un sol granulaire lâche, normalement consolidé (c'est-à-dire n'ayant pas subi de précompression) et sec.

Les anisotropies de comportement qui témoignent d'une éventuelle anisotropie de la structure granulaire, résultent elles-mêmes d'une anisotropie des sollicitations anciennes. On conçoit que ce phénomène soit beaucoup moins accentué dans un sol normalement consolidé que pour un massif ayant subi une précompression. Il a cependant été mis en évidence également dans le premier cas (ARTHUR et MENZIES, 1972, ODA et al., 1978, KONISHI et al., 1982, OCHIAI et LADE, 1983, MIURA et TOKI, 1984). C'est pourquoi, par souci de généralité, il y est fait référence dans le tableau.
Les conditions aux limites dont il est fait mention sont celles ayant une signification purement physique ou géométrique, comme la présence d'un substratum rigide ou de parois. Il n'est pas fait état de conditions supplémentaires qui pourraient être introduites pour les besoins d'une solution mathématique, telles que, par exemple, des conditions d'interface entre couches.

<table>
<thead>
<tr>
<th>Type d'information</th>
<th>Propriétés</th>
<th>Grandeur technique d'étalonnage</th>
</tr>
</thead>
</table>
| Caractéristiques des grains | - taille
- forme
- angularité
- rugosité | Courbe granulométrique
Angle de frottement résiduel |
| Caractéristiques des assemblages granulaires | - Nombre de contacts par grain
- Disposition géométrique des contacts (anisotropie de structure) | Porosité volumique ou densité relative
Anisotropies naturelles du comportement |
| Caractéristiques du massif | - Géométrie
- Conditions aux limites
- Hétérogénéités statistiques | Dimensions générales
Particularités mécaniques ou cinématiques des frontières
Stratifications
Variations spatiales à l'intérieur des couches des caractéristiques des assemblages et des grains |

Fig. 6.2 : Données relatives au sol dans le cas d'un massif granulaire sec et lâche, normalement consolidé
Les données appartenant à la seconde catégorie décrivent la manière dont l'énergie mécanique est introduite dans le système. Elles sont relatives à la charge et à la fondation, et sont énumérées à la figure 6.3.

| Caractéristiques de la charge | - direction
| | - orientation
| | - intensité
| | - excentricité
| | - scénario du chargement |
| Caractéristiques de la fondation | - position (et nombre)
| | - dimensions
| | - poids propre |
| Conditions aux limites | - rigidité de la fondation ou
| | répartition des pressions
| | - rugosité de la fondation |

Fig. 6.3 : Données relatives au chargement

6.2. SCHEMA GENERAL DU MODELE THEORIQUE ET IMPLICATIONS EXPERIMENTALES

Au chapitre 4, le phénomène de déformation consécutif à un accroissement des sollicitations internes a été décrit comme une propagation dans le milieu des mouvements de particules. Ces déplacements élémentaires ont pour origine la nécessité pour un matériau lâche d'accroître sa compacité, afin d'améliorer sa stabilité interne.

Les déformations permanentes, à l'état stationnaire, constituent l'aboutissement de ce phénomène transitoire. Leur modélisation doit donc comporter trois étapes essentielles :
- La prévision de l'accroissement des sollicitations internes résultant, en tout point du milieu, de l'application de la charge. Comme nous l'avons vu au chapitre 3, ce problème se ramène, compte tenu de la porosité initiale, à l'estimation des contraintes intragranulaires moyennes.

- La quantification des changements de porosité qui résulteront de cet accroissement de contraintes.

- La description des déplacements qui vont accompagner le transport de volume d'air en excès jusqu'aux frontières du massif.

La première et la troisième étape doivent constituer des développements théoriques. La connaissance des changements de porosité, par contre, résulte nécessairement d'une démarche expérimentale associée à la modélisation théorique de l'état de contraintes. La compressibilité du matériau ne peut donc figurer au rang des données disponibles a priori. Elle devra faire l'objet de mesures, après une estimation des chemins de contraintes typiques suivis dans le massif. Le principe d'une telle démarche n'est pas nouveau, puisqu'il est à la base d'une méthode pratique de calcul désormais classique évoquée au chapitre 1. Le rôle central que joue cet élément dans le phénomène physique, ainsi que dans sa représentation théorique, doit naturellement être respecté dans l'investigation expérimentale et en orienter la conception. En effet, les contraintes n'étant pas des grandeurs mesurables, il importe, afin d'en vérifier la prévision, d'en observer les conséquences les plus directes que sont les changements de porosité à l'intérieur du massif. Cet impératif s'ajoute à celui du contrôle des déplacements.

De plus, la définition de l'expérience doit minimiser le nombre des paramètres intervenant, notamment par la réduction du nombre de variables géométriques et des dimensions du problème.

6.3. **MODELE PHYSIQUE ET PROCEDURE EXPERIMENTALE**

L'expérience réalisée consiste à charger par l'intermédiaire d'une plaque rigide appliquée sur une partie de la surface un massif de sol
granulaire sec d'étendue latérale et d'épaisseur finies. Le dispositif est conçu de manière à simuler un état de déformations planes, et à permettre un chargement par étapes, afin que le champ des déplacements puisse être observé à chaque palier de sollicitation.

Le principe de l'expérimentation est représenté par la figure 6.4. Les figures 6.5a et 6.5b indiquent les caractéristiques de la cuve d'essai et du dispositif de charge.

![Diagramme de la radiographie des déplacements locaux](image)

Fig. 6.4 : Principe de la mesure des déplacements locaux par radiographie
Fig. 6.5a : Cuve d'essai et dispositif de charge pour l'expérimentation en déformations planes

Elévation
Fig. 6.5b :
Cuve d'essai et dispositif de charge pour l'expérimentation en déformations planes
Coupe
6.3.1. Matériaux testés

Deux types de sol ont été utilisés :

- un sable siliceux à granulométrie uniforme et à grains semi-anguleux (sable de fonderie VBCG APA 52.58),
- un limon bien gradué provenant de la carrière de Biolley-Orjulaz, auquel on a soustrait la fraction graveleuse.

Ces deux matériaux se présentent sous une forme complètement remaniée.

Les figures 6.6 à 6.8 rassemblent les informations relatives aux caractéristiques des grains et à la résistance au cisaillement.

Le calcul des deux premiers moments statistiques du diamètre équivalent des particules permet de mieux apprécier la signification des descriptor tude traditionnellement utilisés en granulométrie. Ainsi, malgré un coefficient d'uniformité très faible et une courbe très abrup te accentuée par la représentation logarithmique, le coefficient de variation pour le sable est supérieur à 30 %. Pour un sol bien gradué comme le limon, la dispersion de la taille des particules est supérieure à celle de tout autre paramètre géotechnique.

Les résultats des essais de cisaillement varient logiquement selon le type d'essai et la compacité initiale. On constate cependant que les valeurs des angles de frottement du sable, mesurées en compression triaxiale, sont supérieures d'environ 3° à celles obtenues par VUILLEUMIER (1978) avec un matériau similaire. Les cohésions observées au cours de ces mêmes essais triaxiaux sont des valeurs fictives. Ce phénomène est dû à la pente plus forte de la courbe intrinsèque de cisaillement dans le domaine des faibles pressions, (PONCE et BELL, 1971), à l'influence de la membrane et à la saturation imparfaite des épreuves.

Tous les essais ont montré une cohésion effective nulle pour le limon. Lorsqu'il est sec, ce matériau se comporte qualitativement comme un sable fin bien gradué.
a) Sable de fonderie

b) Limon de Bioley-Orjulaz

Fig. 6.6 : Granulométrie des matériaux d'essai
<table>
<thead>
<tr>
<th>Granulométrie</th>
<th>Sable</th>
<th>Limon</th>
</tr>
</thead>
<tbody>
<tr>
<td>d_{10} [mm]</td>
<td>0.2</td>
<td>< 0.001</td>
</tr>
<tr>
<td>d_{30} [mm]</td>
<td>0.25</td>
<td>0.0045</td>
</tr>
<tr>
<td>d_{60} [mm]</td>
<td>0.3</td>
<td>0.02</td>
</tr>
<tr>
<td>d_{60}/d_{10}</td>
<td>1.5</td>
<td>> 20</td>
</tr>
<tr>
<td>$(d_{30})^2/(d_{60} \cdot d_{10})$</td>
<td>1.0</td>
<td>> 1.0</td>
</tr>
<tr>
<td>\bar{d} [mm]</td>
<td>0.3</td>
<td>0.04</td>
</tr>
<tr>
<td>s_d [mm]</td>
<td>0.10</td>
<td>0.10</td>
</tr>
<tr>
<td>V_d [mm]</td>
<td>34</td>
<td>250</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Limites de consistance</th>
</tr>
</thead>
<tbody>
<tr>
<td>w_L [%]</td>
</tr>
<tr>
<td>w_p [%]</td>
</tr>
<tr>
<td>I_p [%]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Classification USCS</th>
<th>SP (sable propre)</th>
<th>CL (limon argileux avec sable)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Composition minéralogique</td>
<td>Quartz 99 %</td>
<td>Quartz 15 - 20 %</td>
</tr>
<tr>
<td></td>
<td>Carbonates 60 %</td>
<td>Muscovite et chlorite 20 - 25 %</td>
</tr>
<tr>
<td>$\gamma_s \ [kN \cdot m^{-3}]$</td>
<td>25.9</td>
<td>27.1</td>
</tr>
</tbody>
</table>

Fig. 6.7 : Caractéristiques granulaires des sols testés

On peut compléter ces données par quelques indications sur l'aptitude au compactage des deux sols considérés. Les valeurs des densités maximales du tableau 6.9 ne représentent cependant pas les valeurs extrêmes mesurables. Ces dernières devraient être déterminées selon la procédure prévue par la norme ASTM D2049, ce qui n'a pas été possible dans le cadre de la présente étude. La densité relative ne devra donc pas être considérée ici comme un indicateur très précis de la compacité.
<table>
<thead>
<tr>
<th>Type d'essai</th>
<th>Conditions d'essai</th>
<th>Résultats</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisaillement direct (Boîte de Casagrande)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CD</td>
<td>Echantillon sec, lâche</td>
<td>$\phi'_{pic} = 31^\circ$</td>
</tr>
<tr>
<td></td>
<td>Pressions : 50 - 400 kN·m$^{-2}$</td>
<td>c' = 0</td>
</tr>
<tr>
<td></td>
<td>$Y_d = 14.6$ kN·m$^{-3}$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$n_V = 43.6$ %</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Echantillon sec, dense</td>
<td>$\phi'_{res} = 38^\circ$</td>
</tr>
<tr>
<td></td>
<td>Pressions : 50 - 400 kN·m$^{-2}$</td>
<td>$\phi'_{res} = 33^\circ$</td>
</tr>
<tr>
<td></td>
<td>$Y_d = 15.6$ kN·m$^{-3}$</td>
<td>c' = 0</td>
</tr>
<tr>
<td></td>
<td>$n_V = 39.9$ %</td>
<td></td>
</tr>
<tr>
<td>Cisaillement simple (GEONOR H12)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CD</td>
<td>Echantillon saturé, dense consolide, drainé</td>
<td>$\phi'_{pic} = 41^\circ$</td>
</tr>
<tr>
<td></td>
<td>Pressions : 50 - 200 kN·m$^{-2}$</td>
<td>$\phi'_{res} = 34^\circ$</td>
</tr>
<tr>
<td></td>
<td>Vitesse de cisaillage : 0.127 mm·min$^{-1}$</td>
<td>c' = 0</td>
</tr>
<tr>
<td></td>
<td>$Y_d = 16.7$ - 16.9 kN·m$^{-3}$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$n_V = 34.8$ - 35.6$ %</td>
<td></td>
</tr>
<tr>
<td>Compression triaxiale</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CD</td>
<td>Echantillon sec, moyennement dense, Ø 55 mm</td>
<td>$\phi'_{pic} = 36^\circ$</td>
</tr>
<tr>
<td></td>
<td>Pression de confinement : 100 à 400 kN·m$^{-2}$</td>
<td>c' = 24 kN·m$^{-2}$</td>
</tr>
<tr>
<td></td>
<td>$Y_d = 15.0$ kN·m$^{-3}$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$n_V = 42$ %</td>
<td></td>
</tr>
<tr>
<td>CU</td>
<td>Echantillon saturé, dense, consolide, non drainé, Ø 55 mm</td>
<td>$\phi'_{pic} = 40^\circ$</td>
</tr>
<tr>
<td></td>
<td>Pressions de confinement : 100 - 400 kN·m$^{-2}$</td>
<td>$\phi'_{pic} = 40^\circ$</td>
</tr>
<tr>
<td></td>
<td>$Y_d = 16.8$ kN·m$^{-3}$</td>
<td>c' = 42 kN·m$^{-2}$</td>
</tr>
<tr>
<td></td>
<td>$n_V = 35.2$ %</td>
<td></td>
</tr>
<tr>
<td>CD</td>
<td>Echantillon saturé, dense, consolide, drainé, Ø 55 mm</td>
<td>$\phi'_{pic} = 40^\circ$</td>
</tr>
<tr>
<td></td>
<td>Pressions de confinement : 100 - 400 kN·m$^{-2}$</td>
<td>c' = 29 kN·m$^{-2}$</td>
</tr>
<tr>
<td></td>
<td>Vitesse de compression : 0.06 mm·min$^{-2}$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$Y_d = 16.7$ kN·m$^{-3}$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$n_V = 35.6$ %</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 6.8a : Essais de cisaillement - Sable de fonderie
<table>
<thead>
<tr>
<th>Type d'essai</th>
<th>Conditions d'essai</th>
<th>Résultats</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisaillement direct
(Boîte de Casagrande)</td>
<td>Echantillon humide, moyennement dense, non consolidé
Pressions : 50 - 300 kN•m⁻²
Vitesse de cisaillement : 0.63 mm•min⁻¹
(w₀ = 25.3 %)
(\gamma = 19.8 \text{ kN}•\text{m}⁻³)</td>
<td>(\phi = \phi = 29^\circ)
c = 0</td>
</tr>
<tr>
<td></td>
<td>Echantillon saturé, moyennement dense, consolidé
Pressions : 50 - 300 kN•m⁻²
Vitesse de cisaillement : 0.63 mm•min⁻¹
(\gamma d₀ = 15.6 - 16.0 \text{ kN}•\text{m}⁻³)
(n_{v₀} = 38.9 - 40.8 %)</td>
<td>(\phi' \text{pic} = \phi' \text{res} = 28.5^\circ)
c = 0</td>
</tr>
<tr>
<td>Cisaillement simple
(GEONOR H12)</td>
<td>Echantillon saturé, moyennement dense, consolidé, drainé
Vitesse de cisaillement : 0.086 mm•min⁻¹
(\gamma d₀ = 15.7 \text{ kN}•\text{m}⁻³)
(n_{v₀} = 42.1 %)</td>
<td>(\phi' \text{pic} = \phi' \text{res} = 30.5^\circ)
c' = 0</td>
</tr>
<tr>
<td>CD</td>
<td>Compression triaxiale</td>
<td>Echantillon saturé, dense, consolidé, drainé, (\emptyset 55 \text{ mm})
Pression de confinement : 100 à 400 kN•m⁻²
Vitesse de cisaillement : 0.004 mm•min⁻¹
(\gamma d₀ = 18.0 \text{ kN}•\text{m}⁻³)
(n_{v₀} = 30 %)</td>
</tr>
<tr>
<td>CD</td>
<td>Echantillon saturé, dense, consolidé, non drainé, (\emptyset 55 \text{ mm})
Pressions de confinement : 200 - 600 kN•m⁻²
(\gamma d₀ = 19.0 \text{ kN}•\text{m}⁻³)
(n_{v₀} = 29 %)</td>
<td>(\phi' \text{pic} = 33^\circ)
c' = 0</td>
</tr>
<tr>
<td>CU</td>
<td>Echantillon saturé, dense, consolidé, non drainé, (\emptyset 80 \text{ mm})
Pressions de confinement : 100 - 400 kN•m⁻²
(\gamma d₀ = 17.7 \text{ kN}•\text{m}⁻³)
(n_{v₀} = 32 %)</td>
<td>(\phi' \text{pic} = 34^\circ)
c' = 0</td>
</tr>
</tbody>
</table>

Fig. 6.8b : Essais de cisaillement - Limon de Biolley-Orjulaz
<table>
<thead>
<tr>
<th></th>
<th>Sable</th>
<th>Limon</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\gamma_{d_{\text{min}}} \ [\text{kN} \cdot \text{m}^{-3}])</td>
<td>14.57</td>
<td>11.92</td>
</tr>
<tr>
<td>(e_{\text{max}})</td>
<td>0.78</td>
<td>1.27</td>
</tr>
<tr>
<td>(n_{\gamma_{\text{max}}} \ [%])</td>
<td>43.7</td>
<td>56.1</td>
</tr>
<tr>
<td>(\gamma_{d_{\text{max}}} \ [\text{kN} \cdot \text{m}^{-3}])</td>
<td>16.87</td>
<td>17.85</td>
</tr>
<tr>
<td>(e_{\text{min}})</td>
<td>0.53</td>
<td>0.52</td>
</tr>
<tr>
<td>(n_{\gamma_{\text{min}}} \ [%])</td>
<td>34.6</td>
<td>34.2</td>
</tr>
</tbody>
</table>

\(\gamma_{d_{\text{min}}} \) : selon ASTM D2049 \\
\(\gamma_{d_{\text{max}}} \) (sable) : compactage par vibration sans surcharge \\
\(\gamma_{d_{\text{max}}} \) (limon) : optimum Proctor (\(w_{\text{opt}} = 17 \ % \))

Fig. 6.9 : Caractéristiques de compactage des sols testés

6.3.2. Déroulement des essais sur modèle

6.3.2.1 Préparation

Les deux sols, séchés, se présentent à l'état pulvéruent. Afin de se placer dans une situation conforme aux hypothèses du modèle et d'assurer la reproductibilité des expériences, on a cherché à obtenir pour chaque massif construit une densité proche du minimum. Pour cela, le sable (ou le limon) était saupoudré dans la cuve avec une hauteur de chute quasi-nulle, et ne faisait l'objet d'aucun compactage. On procédait ainsi par petites couches de 30 à 40 mm d'épaisseur, dont la surface était arrasée à la palette, afin de permettre la mise en place des billes de plomb (diamètre 2.5 mm).

Pour la précision de l'interprétation, il est important que ces billes soient situées aussi proches que possible du plan vertical de symétrie perpendiculaire à la direction d'exposition radiographique. Par contre, la régularité de leur maillage n'est pas absolument
impérative. A cette fin, on a utilisé un gabarit de pose constitué par la superposition de deux règles coulissantes percées à intervalles réguliers de 12.5 mm.

La masse totale de matériau utilisé et les dimensions du modèle permettent de calculer la densité moyenne du massif.

6.3.2.2 Application de la charge

Deux semelles de largeur différente ont été employées :

120 mm pour le sable,
150 mm pour le limon.

Dans les deux cas, la semelle était rigide et rugueuse (papier de verre collé). De plus, elle avait la même longueur que le massif de sol (190 mm), afin de simuler un état plan de déformation.

Après une radiographie du modèle à l'état initial, la charge était appliquée par étapes d'environ 200 à 300 N, jusqu'au delà de la rupture. Un cycle de décharge puis recharge a été opéré une fois par essai.

Après un accroissement de la charge, celle-ci était gardée aussi constante que possible par maintien de la pression d'huile dans le vérin, jusqu'à stabilisation des tassements en surface. On considérait l'équilibre atteint lorsque tous les comparateurs disposés sur la semelle et à la surface du massif indiquaient des mouvements inférieurs à 0.02 mm/min. (Ce critère est équivalent à celui qui était préconisé avant 1981 par la norme suisse SN 670'327 relative à l'essai de plaque Mg.)

L'exposition radiographique du modèle pouvait alors avoir lieu, avant le passage au palier suivant, et toujours en maintenant la charge.
6.3.2.3 Technique radiographique

Le film enfermé dans une cassette rigide, doit être fixé à la face arrière de la cuve durant l'exposition. Etant donné son format (350 x 430 mm), il n'est pas possible de radiographier tout le massif. La symétrie du modèle physique (en admettant l'homogénéité statistique du sol dans la direction horizontale) permet de s'affranchir de cette difficulté. Tous les clichés ont donc été pris sur une portion couvrant la moitié de la longueur du massif et incluant l'axe de la charge.

Le tableau de la figure 6.10 regroupe les principaux paramètres d'exposition.

<table>
<thead>
<tr>
<th>Emetteur de Rx</th>
<th>Type : Philips MG150</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tube : MÖD 151/Be</td>
<td></td>
</tr>
<tr>
<td>Foyer : 3 x 3 mm</td>
<td></td>
</tr>
<tr>
<td>Paramètres géométriques</td>
<td>Epaisseur de sol = 190 mm</td>
</tr>
<tr>
<td></td>
<td>Epaisseur de verre = 30 mm</td>
</tr>
<tr>
<td></td>
<td>Distance foyer-film = ~ 600 mm</td>
</tr>
<tr>
<td>Paramètres d'exposition</td>
<td>Film : Kodak Industrex CX</td>
</tr>
<tr>
<td></td>
<td>Tension : 120 kVolts</td>
</tr>
<tr>
<td></td>
<td>Intensité : 28 mA</td>
</tr>
<tr>
<td></td>
<td>Durée : 10 min.</td>
</tr>
</tbody>
</table>

Fig. 6.10 : Données radiographiques

L'un des problèmes de technique radiographique n'a été résolu que tardivement. Il s'agit de la représentation sur les clichés de la surface du massif. Il s'est en effet avéré très difficile d'obtenir une image des billes très proches de la surface, en raison des rayonnements parasites qui se manifestent dans cette région. C'est pourquoi seuls les derniers essais effectués ont apporté ces informations locales.
6.3.3. Traitement numérique des radiographies

En comparant la position de chaque bille de plomb sur une radiographie prise pendant l'essai, à sa position initiale, il est possible d'estimer son déplacement consécutif à l'application de la charge. Cette information est alors interprétée en termes de déplacements des particules de sol, et de changements de porosité. Les facteurs suivants doivent être pris en compte :

- Les positions respectives de la source, du réseau des billes et du film sont à l'origine d'un agrandissement et d'une distorsion des images (fig. 6.11).

Fig. 6.11 : Effets géométriques parasites sur les images radiographiques

- Les billes de plomb ne sont pas des particules du matériau, mais constituent seulement des témoins imparfaits du mouvement de ces particules.

- Le sol est un matériau tridimensionnel dont les grains se déplacent dans l'espace, et non dans un plan, quelle que soit la géométrie du massif.
- Les deux parois vitrées limitant le massif à l'avant et à l'arrière ne sont pas parfaitement lisses et rigides. L'état de déformations planes n'est donc assuré qu'approximativement, et les frottements influencent probablement les tassements. Enfin, la présence de parois est en elle-même une perturbation, puisque le mouvement tridimensionnel des grains est modifié au voisinage des limites.

6.3.3.1 Hypothèses

La méthode de traitement numérique des radiographies repose sur les hypothèses suivantes :

- Une bille de plomb est entraîné par les grains qui lui sont contigus et son déplacement reflète le mouvement d'ensemble de ces particules. On admet que le déplacement d'une bille est égal au déplacement moyen des grains qui occuperaient initialement son volume. Cette quantité équivaut à l'espérance mathématique du déplacement d'un grain qui serait situé au centre de gravité de la bille.

- Le massif est symétrique et statistiquement homogène dans les directions horizontales. Il en résulte que les déplacements transversaux des grains situés dans le plan du réseau de billes (plan de symétrie vertical) sont en moyenne nuls. La projection de la position des billes sur un plan vertical parallèle au réseau est donc suffisante pour l'évaluation des déplacements et des changements de volume du sol.

- Les changements de volume et de porosité peuvent être déduits des changements de surface d'un quadrilatère défini par quatre billes. Ceci suppose que le massif ne soit pas le siège de surfaces de rupture ou de discontinuités cinématiques.

- Les perturbations de l'état plan de déformation sont négligeables dans le plan du réseau de billes. On suppose donc que les parois sont suffisamment rigides pour que leur déflexion soit sans effet notable, ainsi que l'a vérifié COSTOPOULOS (1981) avec un modèle comparable. Les frottements sur les parois ont, par contre, une
influence plus difficile à estimer et qui varie avec les charges appliquées. Diverses études (ROWE, 1971, KERISEL, 1972, BRANDSBY and SMITH, 1975) ont montré que l'importance des effets de parois dans les modèles physiques était grandement dépendante des dimensions adoptées, mais qu'elle n'était en général pas négligeable. Nous verrons comment il en est tenu compte dans l'interprétation théorique des essais.

6.3.3.2 Méthode de traitement

En collaboration avec l'Institut de Génie Rural de l'EPFL, il a d'abord été envisagé d'effectuer une exploitation automatique des radiographies, basée sur la technique du traitement d'image par classification (MORZIER et al., 1979). Cette tentative s'est révélée infructueuse en raison des qualités de contraste insuffisantes des radiographies (BOURDEAU, 1980). Il a donc fallu revenir au procédé semi-automatique consistant à relever les coordonnées de chaque bille, pour chaque cliché, à l'aide d'un coordinatographe. Les deux équipements qui ont été utilisés, selon l'époque d'expérimentation (Service du Cadastre du Canton de Vaud et Institut de Photogrammétrie de l'EPFL) ont des caractéristiques voisines et une résolution de 0.02 mm.

Comme le montre la figure 6.11, le réseau de billes apparaît agrandi sur son image radiographique. Cet agrandissement correspond théoriquement à une homothétie de rapport $\frac{d+d'}{d}$ constant et unique pour toutes les images relatives à un même essai.

Cependant, d'autres déformations, fictives, de l'image sont causées par des phénomènes parasites, tels que :

- modification des distances d et d' entre deux clichés (déformations de la cuve),
- différences de positionnement du film lors de clichés successifs,
- non-parallélisme entre le plan du réseau de billes et le film,
- présence ou mouvement de certaines billes hors du plan théorique du réseau,
- déformations du film lors de sa manipulation (tensions, changements de température).

Ces phénomènes sont de caractère aléatoire, et les erreurs qui leurs sont liées ont les conséquences suivantes :
- le rapport de l'homothétie ne peut être connu de manière déterministe,
- l'image subit d'autres déformations qu'une homothétie (rotations, translations).

Lors de la restitution au coordinatographe, on commet également des erreurs. Elles ont trois origines :

- positionnement variable des clichés sur la table (même effet que les variations de position du film sur le modèle),
- pointage par l'opérateur du centre de l'image de chaque bille (habileté de l'opérateur, définition optique des images, forme et taille des billes),
- résolution de l'appareil de mesure (coordinatographe et électronique associée).

Il est possible de compenser l'agrandissement et une partie des erreurs, de manière statistique et globale, par une transformation géométrique du plan. La transformation d'Helmert (BACHMANN, 1975) est le produit d'une rotation, d'une homothétie et d'une translation telles que la somme des carrés des distances joignant des points fixes à la restitution de leurs images soit, après transformation, minimale. L'ensemble de points fixes, base de l'ajustement, est constitué par des billes de plomb (neuf dans le modèle considéré ici) fixées à la cuve dans le plan du réseau des billes mobiles, et visibles sur chaque radiographie. Si on connaît leurs coordonnées réelles dans un repère arbitrairement choisi, on peut déterminer pour chaque cliché les paramètres de la transformation d'Helmert respectant le critère
des moindres carrés, et appliquer cette transformation à l'ensemble des points du réseau, dans le repère de la base d'ajustement. Ce calcul est développé analytiquement dans un rapport déjà mentionné (BOURDEAU, 1980).

Naturellement, toutes ces opérations, ainsi que le calcul des déplacements et des changements de volumes, doivent être effectuées à l'aide d'un d'ordinateur.

6.3.4. Précision des résultats

L'application de la transformation d'Helmert décrite ci-dessus est un procédé d'optimisation visant à réduire les erreurs dues à la méthode de mesure. Celles-ci, bien qu'atténuées, n'en subsistent pas moins, et sont difficilement quantifiables de manière objective. En particulier, l'efficacité de la transformation d'Helmert dépend de la position des repères fixes par rapport à l'ensemble des billes mobiles. L'idéal serait en effet que le barycentre des points fixes soit confondu avec celui des points mobiles. Or il est impossible en pratique de remplir cette condition sans perturber gravement le déroulement des essais. Dans le cas présent, les repères fixes sont situés près de la limite inférieure du réseau des billes mobiles. L'effet compensateur de la transformation géométrique n'est donc pas homogène et favorise la précision des résultats en profondeur plutôt qu'en surface.

Sur la base de sa propre expérience et des travaux rapportés par JAMES (1973), COSTOPOULOS (1981) indique :

"... l'imprécision de la technique de mesure varie entre 0.05 et 0.10 mm ..."

Si l'on s'autorise une interprétation de ces termes, on peut en déduire que l'erreur sur la valeur mesurée d'une coordonnée a une probabilité très faible d'être supérieure à 0.10 mm.

Faisons les hypothèses suivantes :

- l'erreur a une moyenne nulle,
- l'erreur est normalement distribuée,
- la valeur indiquée ci-dessus représente la limite de l'intervalle de confiance à 95 %.
On obtient alors 0.05 mm pour l'écart type de l'erreur de mesure d'une coordonnée. Cette situation est schématisée par la figure 6.12.

Ce résultat semble cependant optimiste, si l'on considère la répartition défavorable des repères fixes pour la transformation d'Helmert. A défaut d'une étude plus approfondie, les figures 6.13a et 6.13b montrent l'influence de la précision avec laquelle sont mesurées les coordonnées sur les autres résultats. (Pour les calculs justificatifs, on se reportera à l'annexe A2.) On voit en particulier que l'espacement des billes influence considérablement la précision avec laquelle sont déterminés les changements de volume.

\[4 \cdot s_{\delta x_i} \]

Intervalle de confiance à 95 %

Distribution normale

\[0.95 \]

Erreur de mesure sur une coordonnée d'une bille

\[X_i = x_i + \delta x_i \]
\[X_i = \text{valeur mesurée} \]
\[x_i = \text{valeur réelle} \]
\[\delta x_i = \text{erreur de mesure} \]
\[s_{\delta x_i} = \text{écart type de } \Delta x_i \]

Fig. 6.12 : Intervalle de confiance de la mesure de coordonnée d'une bille
a) Influence sur les déplacements

\[s_\delta x_i = \text{Ecart type de l'erreur sur la coordonnée } x_i \]
\[s_\delta w_i = \text{Ecart type de l'erreur sur le déplacement } w_i \]

b) Influence sur les changements de volume

\[s_\delta \varepsilon_V = \text{Ecart type de l'erreur sur la variation relative de volume } \varepsilon_V \]

b = Espacement moyen de deux billes voisines

Fig. 6.13 : Influence de l'erreur de mesure sur les coordonnées des billes de plomb
6.4. RESULTATS DES ESSAIS EN DEFORMATION PLANE

Sur six essais réalisés, trois n'ont pas donné lieu à des incidents opératoires majeurs et sont présentés ici. Les figures 6.14 et 6.15 en indiquent les conditions générales et les diagrammes de chargement. Pour les deux essais sur monocouches, les diagrammes sont complétés par la valeur théorique (selon la formule de Terzaghi) de la pression de poinçonement.

<table>
<thead>
<tr>
<th>No essai</th>
<th>CS04</th>
<th>CL05</th>
<th>CLS06</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>monocouche</td>
<td>monocouche</td>
<td>bicouche</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>c inf.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>limon sec</td>
</tr>
<tr>
<td>Sol</td>
<td>sable sec</td>
<td>limon sec</td>
<td>limon sec</td>
</tr>
<tr>
<td>Hauteur initiale [cm]</td>
<td>37.7</td>
<td>37.5</td>
<td>28.0</td>
</tr>
<tr>
<td>$\bar{\gamma}_0$ [kN·m$^{-3}$]</td>
<td>15.41</td>
<td>12.43</td>
<td>12.55</td>
</tr>
<tr>
<td>D_{r_0} [%]</td>
<td>~ 36</td>
<td>~ 9</td>
<td>~ 9</td>
</tr>
<tr>
<td>\bar{n}_{v_0} [%]</td>
<td>40.5</td>
<td>54.1</td>
<td>53.7</td>
</tr>
<tr>
<td>Largeur plaque [cm]</td>
<td>12</td>
<td>15</td>
<td>15</td>
</tr>
</tbody>
</table>

Fig. 6.14 : Conditions générales des trois essais présentés

On remarque la très nette différence de forme entre la courbe relative au limon (CL05) et celle relative au sable (CS04). Pour le limon, les tassements s'accroissent très rapidement et quasi-linéairement en fonction de la charge, avec une légère tendance au raidissement, même au delà de la capacité portante théorique q_p. Le massif de sable est nettement moins compressible avant poinçonnement, mais son diagramme s'infléchit ensuite très nettement. Le massif stratifié donne lieu à des tassements dont les valeurs sont intermédiaires, mais la courbe présente qualitativement les mêmes caractéristiques que celle du limon, ce qui semble indiquer que ce dernier gouverne le comportement d'ensemble. Pour les trois essais, la détente élastique mesurée en décharge est pratiquement nulle.
Fig. 6.15 : Diagrammes de chargement des essais sur modèle
Les figures suivantes sont un exemple des modes de représentation graphique des résultats, pour un palier de charge :

- vue d'ensemble du champ de déplacements (fig. 6.16),
- profils de tassements à différentes profondeurs (fig. 6.17),
- vue d'ensemble des changements de volume, mettant en évidence la nature de la déformation volumique (dilatance ou contraction), ainsi que son ordre de grandeur (fig. 6.18),
- vue perspective et courbes d'isovaleurs des déplacements verticaux et horizontaux (fig. 6.19 et 6.20), obtenues par interpolation entre les valeurs discrètes.

Il faut noter que les mesures ne couvrent pas toute l'étendue du massif, ni en largeur, ni en profondeur.

L'ensemble des résultats, pour les trois essais, est réuni à l'annexe A3, et appelle quelques commentaires.

Fig. 6.16 : Champ de déplacements
Fig 6.17 :
Déplacements verticaux - profils à différentes profondeurs

Fig. 6.18 : Changements de volume
Fig. 6.19a : Déplacements verticaux - vue perspective

Fig. 6.19b : Déplacements horizontaux - vue perspective
Fig. 6.20a : Déplacements verticaux - courbes isovaleurs

Fig. 6.20b : Déplacements horizontaux - courbes isovaleurs
Les constatations effectuées avec le massif monocouche de limon sont en tous points conformes à ce que l'on peut attendre d'un matériau lâche et compressible, en absence de fluide ou de surpressions interstitielles :

- tassements importants et concentrés sous la fondation,
- absence totale de soulèvements latéraux, quelle que soit la charge,
- prédominance des déplacements verticaux sur les déplacements horizontaux,
- fort accroissement de la compacté dans tout le massif pour les faibles charges, puis limité à la zone située sous la fondation lorsque la capacité portante théorique est dépassée.

Ce dernier point semble indiquer qu'à partir d'un certain stade, une modification se produit dans le comportement d'ensemble, puisque seule une partie du massif continue de répondre aux accroissements de sollicitation.

Les résultats obtenus avec le sable sont, par contre, plus inattendus. En effet, on n'y voit pas nettement apparaître les conséquences de la faible compacité du matériau. Au contraire, certains aspects du comportement sont semblables à celui d'un sol dense :

- Déplacements horizontaux du même ordre que les déplacements verticaux dans les zones latérales, et apparition de légers soulèvements lorsque la charge s'accroît. Ce mécanisme est caractéristique d'un mode de rupture par refoulement latéral, propre aux sols moyennement denses, plutôt que d'un poinçonnement.

- Dilatance d'une partie importante du massif, répartie de manière apparemment désordonnée pour les faibles charges, puis se concentrant dans une zone plus étroite partant de l'angle de la fondation.

Ce comportement en apparence paradoxal pour un sol qui n'a subi aucun compactage, hors l'effet de son propre poids, nécessite un examen plus approfondi.
Il faut d'abord s'interroger sur la signification des valeurs obtenues pour les changements de volume, compte tenu de la précision des mesures. Supposons, comme il a été proposé au paragraphe 6.3.4., que l'erreur sur les coordonnées d'une bille ait une moyenne nulle et un écart type de l'ordre de 0.1 mm. Avec une maille du réseau d'environ 20 mm, la figure 6.13b indique un écart type de 1 % pour l'erreur sur la déformation volumique (assimilée au rapport de la variation de surface d'une maille définie par quatre billes à sa surface initiale). Cela signifie que l'intervalle de confiance à 95 % s'étendrait sur une bande de 4 % (2 × 2σ), ce qui est grand par rapport aux valeurs déduites des mesures, souvent elles-mêmes inférieures à 1 %.

Il serait donc excessif d'accorder à ces résultats une signification quantitative très précise. Néanmoins, la tendance générale au regroupement des dilatances dans la zone fortement sollicitée en cisaillement est qualitativement cohérente avec les schémas classiques d'analyse pour les sols moyennement denses (voir paragraphe 4.1). Comme l'écart type de l'erreur diminue fortement avec l'augmentation de la taille de la maille, une indication intéressante est apportée par la variation totale du volume dans l'ensemble de la zone de mesure. Ce calcul donne, pour les trois premiers paliers de charge, les valeurs cumulées suivantes :

\[\frac{\Delta V}{V_0} = 0.7 \cdot 10^{-3}, \; 1.6 \cdot 10^{-3}, \; 1.8 \cdot 10^{-3} \]

qui correspondent à des contractions moyennes inférieures à 0.2 %. La déformation se produit donc avec un changement global de compacité très faible dans la zone où sont faites les mesures. Il est ainsi tout à fait plausible que des dilatances se manifestent localement, en proportion comparable aux contractions.

Par ailleurs, on peut constater sur les courbes de tassement que le volume déplacé par la fondation est plus important que la diminution de volume totale du sol dans la zone de mesures. Ceci n'est possible qu'à la condition d'un accroissement de compacité en profondeur, dans la zone qui échappe à l'observation. Les déplacements verticaux notables qui se manifestent encore au niveau de la rangée de billes inférieure attestent de la validité de cette hypothèse.
On est donc en présence d'un matériau qui, bien que non compacté, se déforme à volume pratiquement constant dans la zone supérieure du massif, où les contraintes dues à la gravité sont pratiquement nulles et celles dues à la surcharge sont concentrées, puis se contracte en profondeur, lorsque la surcharge s'est suffisamment répartie et que la gravité commence à se faire sentir. Un comportement de ce type est rapporté par LEE (1965), SEED et LEE (1967) et discuté par HOLTZ et KOVACS (1981, ch. 11), sur la base d'essais de compression triaxiale. Ces auteurs montrent qu'un sable initialement lâche peut se comporter comme un sable dense, c'est-à-dire dilater, si la pression de confinement est suffisamment faible. Ils en déduisent que la porosité critique d'un matériau granulaire donné, qui sépare ses deux modes possibles de déformation, n'est pas un paramètre intrinsèque prenant une valeur unique, mais qu'elle dépend de la pression moyenne. Ainsi, la porosité critique augmente lorsque la pression moyenne diminue. C'est précisément ce qui semble se produire ici avec l'essai de charge CS04.

Une vérification de cette théorie a été tentée dans la présente étude au moyen d'une série d'essais de cisaillement direct effectués sur le sable de fonderie placé à différentes compactés initiales. Pour chaque cas, on a mesuré le volume initial après consolidation et le changement de volume après rupture. Les résultats (fig. 6.21) montrent effectivement que la porosité critique est plus élevée pour une pression de 50 kN·m⁻² que pour 250 kN·m⁻². Compte tenu du caractère approximatif de la procédure suivie (effets d'échelle dans la zone de cisaillement), ces valeurs sont du même ordre que la porosité moyenne initiale du massif d'essai CS04.

On peut en conclure que les résultats obtenus pour l'essai CS04 reflètent bien, d'une manière essentiellement qualitative, le comportement réel du matériau. Celui-ci, sans être compacté, se place spontanément à un état voisin de l'état critique, dans la zone de faible confinement. La déformation s'y produit à volume pratiquement constant et les tassements observés sont la conséquence des accroissements de compacité dans la partie plus profonde du massif. Ce dernier phénomène n'étant pas accessible aux mesures, la modélisation mathématique ne pourra être tentée qu'avec la prudence qui s'impose en pareille circonstance.
Fig. 6.21 : Détermination de la porosité critique du sable par une série d'essais de cisaillement direct
Il est certain que les constatations faites ici mettent en évidence l'influence des caractéristiques des particules, et en particulier de la granulométrie, sur les propriétés d'ensemble du matériau. On remarquera le contraste entre le comportement du sable à granulométrie serrée et celui du limon beaucoup mieux gradué.

Ce contraste se retrouve dans les résultats de l'essai CLS06 sur massif bicouche :

- déformations volumiques en moyenne très faibles dans le sable,
 avec une cohabitation de contractions et de dilatances localisées,
- fort accroissement de la compacité dans le limon, à l'origine des tassements de la surface du massif.

Dans ce cas, on ne constate pas de soulèvement de la surface du sable et les déplacements horizontaux restent faibles, comparés aux déplacements verticaux. Ceci est naturellement une conséquence des tassements au niveau de l'interface, qui provoquent la déflexion de l'ensemble de la couche de sable. Mais il est visible que le comportement du massif est dicté par la compressibilité de la couche inférieure de limon et que la couche supérieure de sable agit seulement comme un diffuseur, à la fois pour la charge et pour les déplacements.
7. DEFORMATIONS A L'ETAT STATIONNAIRE SOUS L'EFFET D'UNE FONDATION SUPERFICIELLE - MODELE THEORIQUE EN DEFORMATIONS PLANES

7.1. APERCU HISTORIQUE

La notion de diffusion n'est pas nouvelle en mécanique des sols, comme en témoigne l'équation de dissipation des surpressions interstielles lors de la consolidation. Plus récente est la reconnaissance du caractère probabiliste de ce concept, en vue de décrire la transmission des charges et la propagation des déplacements dans les milieux granulaires.

Le premier indice d'une solution nouvelle, fondée sur cette idée, des problèmes de valeurs aux frontières, fut décelé indépendamment par POKROVSKY en 1937 et par KOEGLER et SCHEIDIG en 1938. Ces auteurs remarquèrent que la répartition sur un plan horizontal des contraintes verticales dans un massif de sol chargé en surface avait la forme d'une distribution de probabilité normale dont l'étalement irait croissant avec la profondeur. Le résultat d'un calcul élastique représenté sur la figure 7.1 illustre cette analogie.

Cette constatation suggérait naturellement un processus de diffusion où le temps serait remplacé par la profondeur comme variable d'évolution.

L'affaire en resta là, malgré la quasi-certitude que les contraintes évaluées par la théorie de l'élasticité conduisent à une prévision erronée des déplacements, aussi bien en surface qu'en profondeur (FOEPPL und POEPPL, 1897, FROEHLICH, 1934, TURNBULL et al., 1961, FEDA et al., 1977).

L'idée ne fut reprise que 30 ans plus tard, d'un point de vue structural mais encore déterministe, par KANDAUROV (1959) et MUELLER (1962). Leurs résultats théoriques, où une contrainte en un point restait cependant définie par une valeur unique, mettaient à nouveau en évidence une analogie formelle avec la distribution normale.
Fig. 7.1 : Evolution des contraintes verticales avec la profondeur dans un massif élastique semi-infini soumis à une pression verticale conique en surface (d'après GIROUD, 1975)

En 1967, SMOLTCZYK exprimait l'état de contraintes tridimensionnel dans un massif granulaire par la fonction de densité d'une distribution de Gauss bivariée. Il montrait dans quelles conditions sa solution était comparable à celle donnée par l'élasticité linéaire, pour les deux problèmes classiques de Boussinesq et de Cerrutti, et l'étendait à des cas de charges plus complexes. L'article de Smoltczyk marquait une double rupture avec la tradition élastique :

- les résultats n'étaient plus conditionnés par l'hypothèse de réversibilité des déformations;
- la dispersion spatiale des contraintes était gouvernée par un coefficient reflétant l'état du matériau (notion absente de la formule de Boussinesq) appelé "paramètre de concentration". Celui-ci ne doit pas être confondu avec le facteur de concentration de Fröhlich, qui résulte d'une modification de la théorie de l'élasticité par l'introduction d'une hypothèse supplémentaire de nature purement géométrique.

Mais l'essentiel du développement - l'adoption d'une distribution de Gauss pour exprimer les contraintes verticales - ne reposait pas encore sur une base théorique solide. Cette étape décisive fut franchie par Sergeev en 1969. Il établit dans le cas bidimensionnel, à partir d'un modèle de cheminement au hasard des forces transmises par les contacts entre grains, une équation différentielle parabolique de la forme :

\[
\frac{\partial \sigma_z(x,z)}{\partial z} = D^\sigma_x(z) \cdot \frac{\partial^2 \sigma_z(x,z)}{\partial x^2}
\] (7.1)

Cette équation est analogue à une équation de diffusion unidimensionnelle telle que (5.1). Cette interprétation nécessite que l'on assimile la contrainte \(\sigma_z\) à la concentration par unité de surface d'une substance diffusée dans la direction \(x\) (horizontale) au cours d'un processus évoluant selon la profondeur \(z\). Le coefficient de diffusion \(D^\sigma_x\), qui dépend du paramètre de concentration, est fonction de \(z\) uniquement. Pour une charge concentrée, la solution confirmait l'hypothèse avancée par les prédecesseurs de Sergeev.

En 1977, Harr (ch. 7 et 8) présentait une théorie probabiliste cohérente de la diffusion des charges dans les milieux granulaires, par un raisonnement basé également sur le modèle de la marche au hasard, mais différant de celui de Sergeev sur un point essentiel. Alors que jusqu'ici une contrainte prenait une valeur unique, parfaitement déterminée, en chaque point, Harr a montré que l'équation de diffusion (7.1) devait s'appliquer à \(\overline{S}_z(x,z)\), espérance mathématique de la contrainte intra-granulaire \(S_z(x,z)\). Il introduisait ainsi dans le problème un indéterminisme de nature intrinsèque où la porosité du milieu joue, comme nous l'avons vu, un rôle prépondérant.
Par ailleurs, le travail de Harr constituait la première investigation approfondie sur le paramètre de concentration apparu chez les précurseurs, et sa relation avec les grandeurs géotechniques classiques.

Enfin, l'intégration à la théorie de la notion d'épaisseur équivalente ouvrait une nouvelle voie vers l'étude des milieux stratifiés.

À l'époque où paraissait l'ouvrage de Harr, ENDLEY et PEYROT (1977) reprenaient l'idée de DANTU (1957) selon laquelle une charge se transmet dans un milieu granulaire par des cheminement préférentiels de forme arborescente et dont l'efficacité dépend de la tortuosité (fig. 7.2). Mettant en œuvre un processus de diffusion tridimensionnel, alors que chez les autres auteurs, il est uni- ou bidimensionnel, leur modèle aboutit dans le cas d'une charge concentrée à un résultat identique à celui de Boussinesq. Le travail d'unification des deux approches probabilistes effectué par GOLDEN (1984) montre qu'un tel résultat, considéré peut-être abusivement comme une garantie de cohérence, s'obtient en incorporant au modèle des hypothèses restrictives.

La théorie de la diffusion des contraintes était orientée principalement vers l'étude des fondations superficielles. Durant la même période, environ 25 ans, une toute autre catégorie de problèmes a, indépendamment, généré des recherches mettant en œuvre des concepts très proches dans un cadre mathématique similaire. Il s'agit de la prévision des tassements en surface consécutifs aux excavations souterraines (PECK, 1969). Comme l'expose KANJI (1979), le phénomène,
souvent appelé "subsidence" par assimilation du terme anglais, se manifeste lors du creusement de galeries en terrain meuble, à la suite d'activités minières, ou encore d'extraction de gaz ou de pétrole. Il résulte de la propagation jusqu'en surface d'une perturbation du sol née en profondeur. Cette perturbation a pour origine un déplacement local de matériau (convergence des parois d'une galerie, intrusion au front de taille ou dans des hors-profits, effondrement de piliers abandonnés lors de l'exploitation d'un filon). Un volume d'air équivalent à celui des grains qui ont pénétré dans la cavité s'introduit alors dans le milieu granulaire où il peut cheminer jusqu'en surface. L'agent de la propagation est naturellement la gravité.

Fig. 7.2 : Visualisation par photoélasticité de la propagation des contraintes dans un milieu granulaire analogique (d'après DANTU, 1957)

Qualitativement, ce scénario est identique, pour une source de déplacement localisée, à celui exposé aux chapitres 4 et 5 dans le cas de changements de porosité répartis dans tout le massif. Mais le problème est ici singulièrement plus complexe, puisque l'on ne bénéficie pas des symétries qui permettraient de le ramener à une diffusion unidimensionnelle au cours du temps. C'est pourquoi les solutions de ce type qui lui ont été apportées se limitent généralement à l'état stationnaire (ou final) des déformations. On est alors en présence, comme pour les contraintes, d'équations de diffusion où le temps est remplacé comme variable d'évolution par la coordonnée verticale, orientée cette fois vers le haut.
Dès 1955, Litwiniszyn jetait les bases de ce modèle, dont le développement allait justifier plus de quinze importantes contributions dues aux chercheurs polonais. Deux phases peuvent être distinguées dans cette longue évolution de la théorie :

- La figure 7.3a représente le diagramme des transitions possibles pour une lacune échangeant sa position avec un grain dans la première version du modèle (LITWINISZYN, 1955, 1956, 1957). Si on substitue z' au temps, ce schéma ne diffère pas de celui que nous avons examiné au chapitre 5 (fig. 5.6). Il va de pair avec les hypothèses suivantes :

 - L'éventualité de déplacements de grains vers le haut est négligée, à l'état stationnaire. Les lacunes ne peuvent donc pas transiter vers le bas.

 - La propagation des lacunes n'occasionne pas de changements de compacité dans le matériau.

 - Le milieu est statistiquement homogène en dehors de la source de déplacements.

 - Le problème est symétrique par rapport à l'axe vertical.

 - La marche au hasard est symétrique.

 - Le principe de superposition des effets est assuré, ce qui suppose l'ergodicité du processus.

 - La position de la lacune dans un futur immédiat ne dépend que de sa position actuelle (caractère Markovien).

Le développement mathématique était semblable à celui que nous avons décrit au paragraphe 5.3.2. Il conduisait à une équation de diffusion de type parabolique :

$$\frac{\partial f_x(x; z')}{\partial z'} = \frac{\partial^2 (D_x(x, z') \cdot f_x(x; z'))}{\partial x^2}$$ (7.2)

où $f_x(x; z')$ est la densité de probabilité de transition d'une lacune, émise en x_0 au niveau z_0', pendant son ascension jusqu'à l'altitude z'.
Fig. 7.3 : Schémas de transition dans la marche au hasard d'une lacune, pour les deux variantes du modèle de Litwiniszyn.

\[p, q, p', q' : \text{probabilités de transition} \]

Le principe de superposition des effets implique la proportionnalité entre le déplacement vertical moyen d'un grain situé en \((x, z')\) et la densité de probabilité \(f_X(x; z')\). En admettant de plus que le coefficient de diffusion est indépendant des coordonnées, Litwiniszyn proposait de décrire l'évolution spatiale des tassements par l'équation de diffusion :

\[
\frac{\delta' \overline{W}(x, z')}{\delta z'} = D_X \cdot \frac{\delta^2 \overline{W}(x, z')}{\delta x^2}
\]

(7.3)

où \(\overline{W}(x, z')\) désigne l'espérance mathématique du déplacement vertical d'une particule de coordonnées \((x, z')\). Notons que les coordonnées après déformation n'étaient pas distinguées des coordonnées initiales, ce qui suppose de petits déplacements. L'approximation des tassements par leur premier moment avait également un caractère implicite.
Pour une source ponctuelle dans un massif semi-infini en déformations planes, les solutions de l'équation (7.3) sont des distributions normales. Le résultat était en accord avec les mesures faites par KNOTHE (1959) lors d'une étude de cas dans la région minière de Haute Silésie. Des essais en laboratoire (BODZIONY et SMOLARSKI, 1960; KRZYZSTON, 1963; SMOLARSKI, 1964) montraient cependant que la validité du modèle était limitée au domaine des petits volumes déplacés, observés loin de la source. À proximité de celle-ci, ou bien lorsque l'amplitude de la perturbation s'accroît, les profils de tassement présentent des discontinuités (fig. 7.4a)

![Image](image.png)

a) Expérimentation
 d'après LITWINISZYN, 1983

b) Théorie
 d'après LITWINISZYN, 1964b

Fig. 7.4 : Allure des profils de tassements au-dessus d'une perturbation ponctuelle de grande amplitude

- Ces constatations conduisirent LITWINISZYN à une nouvelle formulation du modèle (1963, 1964b, 1964b), différant de sa première version par le schéma des transitions. Comme le montre la figure 7.3b, les événements aléatoires considérés n'étaient plus le déplacement de la lacune dans l'une des deux directions possibles, mais le maintien ou le changement d'une direction acquise au pas
précédent. Cette modification consistait donc à introduire dans le processus une "mémoire" de certains événements passés, quantifiable par le paramètre :

$$\rho = p' - q'$$ \hspace{1cm} (7.4)

où p' et q' sont respectivement les probabilités de maintien de la direction acquise et de son changement. D'un point de vue statistique, ρ peut être interprété comme le coefficient de corrélation linéaire des angles servant à repérer les directions de deux pas consécutifs. L'équation de diffusion décrivant le processus continu correspondant est de type hyperbolique. Elle est analogue à l'équation du télégraphe (GOLDSTEIN, 1951), et s'écrit pour les tassements moyens :

$$\frac{\delta^2 \overline{W}(x, z')}{\delta z'^2} + E_1 \frac{\delta \overline{W}(x, z')}{\delta z'} = (E_2)^2 \frac{\delta^2 \overline{W}(x, z')}{\delta x^2}$$ \hspace{1cm} (7.5)

avec :

$$E_1 = \lim_{\delta z' \to 0} \frac{1 - \rho}{\delta z'} \quad \rho \to 1$$

$$(E_2)^2 = \lim_{\delta z' \to 0} \frac{\delta x^2}{\delta z'^2} \quad \delta x \to 0$$

La figure 7.4b montre l'allure des solutions pour une source ponctuelle. On y remarque que les discontinuités s'atténuent lorsque l'on progresse vers la surface et peuvent même disparaître si le massif est suffisamment épais.

Si le coefficient de corrélation ρ est égal à 1, la lacune se déplace toujours dans la même direction et son mouvement n'est plus aléatoire. L'équation (7.5) dégénère alors en :

$$\frac{\delta^2 \overline{W}(x, z')}{\delta z'^2} = (E_2)^2 \frac{\delta^2 \overline{W}(x, z')}{\delta x^2}$$ \hspace{1cm} (7.6)

Par contre, lorsque $\rho = 0$, on a :

$$p' = q' = \frac{1}{2}$$
Le processus se ramène alors au cas où il n'y a pas de mémoire. La seconde version du modèle de Litwiniszyn constitue donc une généralisation de la première.

GRIVAS et HARR (1975) ont montré quelles perspectives ouvrait le concept de marche au hasard avec mémoire, en vue d'une meilleure compréhension de la génération des surfaces de rupture dans les milieux granulaires.

Cependant, c'est sous sa forme la plus simple que le travail de Litwiniszyn a trouvé audience en occident, parfois dans d'autres domaines que le génie civil.

L'étude de SWEET et BOGDANOFF (1965), centrée sur le caractère intrinsèquement aléatoire du tassement, est assez symétrique de celle de Harr au sujet des contraintes. Elle a en effet apporté la confirmation que l'équation de diffusion (7.3) ne s'appliquait qu'à la moyenne du déplacement vertical en un point.

D'après ces auteurs, la variance devrait, théoriquement, augmenter avec la quantité totale de matériau déplacée, avec la taille des grains, ainsi qu'avec l'angle de talus naturel du matériau. La vérification expérimentale de cette prédiction n'est malheureusement pas concluante. En effet, Les essais effectués par SWEET (1965) consistaient à mesurer le profil d'une dépression en surface provoquée par l'ouverture d'une trappe aménagée au fond d'un réservoir (trap door test). Ils furent répétés 20 fois pour chaque matériau utilisé. La dispersion observée des valeurs de W en un point de coordonnée (x, z') n'était donc pas seulement de nature intrinsèque, mais était surtout affectée par l'incertitude de nature paramétrique provoquée lors de la reconstitution du massif à chaque essai, et par les erreurs de mesures. Outre le fait que l'expérience effectuée ne pouvait donc pas apporter la réponse à la question posée par la théorie, on aurait dû observer des variances beaucoup plus grandes que celles calculées. Or ce serait la tendance contraire qu'indiquent les résultats publiés par Sweet. Par contre, la concordance était excellente en ce qui concerne les moyennes.
Un autre aspect du travail de Sweet et Bogdanoff portait sur le coefficient de diffusion des déplacements. La relation qu'ils ont établie entre celui-ci et la granulométrie du matériau laisse prévoir un effet d'échelle dans le phénomène. C'est également dans ce sens que concluait MULLINS (1972, 1974a, 1974b, 1979), à l'issue d'une approche plus générale, et d'une synthèse de résultats expérimentaux publiés en relation avec la technologie des poudres. Sa formulation mathématique, largement inspirée des travaux de CHANDRASEKHAR (1943), introduisait plusieurs éléments nouveaux dans la théorie :

- le traitement était fait en coordonnées Euleriennes, et donc en termes de flux à travers des surfaces fixes de l'espace;
- la solution, dans le cas d'une source ponctuelle, était donnée pour les états transitoires du phénomène, ainsi qu'avec une géométrie axisymétrique.

Plus récemment, Attewell et ses collaborateurs ont étendu la solution théorique au problème tridimensionnel de l'avancement du front lors de l'exécution d'une galerie en terrain meuble (ATTEWELL et WOODMAN, 1982, ATTEWELL et HURRELL, 1985). Ce dernier développement montre que les ressources de cette approche sont sans doute loin d'être épuisées.

En considérant la perspective historique tracée ci-dessus, un sentiment s'impose. C'est que les deux théories de diffusion, celle des contraintes et celle des déplacements, si proches par leur esprit et si parallèles dans leur développement, doivent être complémentaires. Branches d'un même arbre, elles se nourrissent du même concept selon lequel, dans un milieu désordonné formé d'un très grand nombre de particules en contact, l'énergie se propage au hasard de ces contacts.

L'identité des formulations mathématiques consacre cette unicité.

L'idée d'une telle synthèse, dans le but d'évaluer les déformations d'un massif granulaire soumis à des forces extérieurs, a été émise en 1983 par BIERNATOWSKI et BRZAKALA. Bien que limitée à l'esquisse d'une solution dans le cas d'une charge concentrée, leur contribution a ouvert la voie aux développements qui suivent.
7.2. FORMULATION DU MODÈLE

7.2.1. Définition d'un processus aléatoire

Considérons le massif granulaire sec et statistiquement homogène dans toutes les directions horizontales schématisé à la figure 7.5, et reprendons l'expérience probabiliste imaginée au paragraphe 2.3.4, en complétant son énoncé.

Fig. 7.5 : Massif granulaire sec soumis à une charge verticale concentrée

Une force verticale d'intensité connue est appliquée en surface sur un grain occupant l'origine du système de coordonnées. La force se transmet en profondeur par l'intermédiaire des contacts entre particules. Si l'on pouvait tracer, à la manière des images obtenues par Dantu (fig. 7.2) en photoélasticité, les voies qu'emprunte cette force dans un milieu réel tridimensionnel, on verrait qu'en général, une particule se trouve à l'intersection de plusieurs de ces chemins. On peut même prédire que le nombre des trajectoires qui transportent une fraction de la sollicitation vers un grain augmentera avec la compacité du milieu, puisqu'il dépend directement du nombre de contacts par particules. Or, d'une part la nature désordonnée et infiniment complexe du milieu granulaire nous interdit une description déterministe de ce réseau de trajectoires, d'autre part, seules ses conséquences en termes de déplacements finaux, et en particulier de tassements, nous intéressent. Nous allons donc substituer à la
réalité un modèle théorique simpliste dont la réponse devra être, sur l'essentiel, équivalente à celle du modèle physique décrit au chapitre précédent.

Supposons que la force verticale appliquée en surface puisse se transmettre d'un grain à l'un de ses voisins avec les règles suivantes :

- la force ne peut pas être absorbée si le massif est infini,
- la progression se fait toujours vers les bas,
- la force se transmet intégralement d'un grain à l'autre, c'est-à-dire sans être fractionnée.

Nous reviendrons plus loin sur la signification physique de ces hypothèses.

Dans ces conditions, la force verticale se propage selon un itinéraire dont le tracé est inconnu, mais unique, tel que celui représenté sur la figure 7.6.

Au cours de ce cheminement, chaque fois que la force est transmise à un grain qui n'est pas assez stable pour supporter cette sollicitation, le réarrangement nécessaire des particules provoque un accroissement local de compacité équivalent à l'émission d'une lacune dans le réseau granulaire. Ce processus a été décrit en détail aux chapitres 4 et 5. La génération d'une telle lacune, et son chemin de propagation jusqu'en surface, sont également schématisés sur la figure 7.6. Il va de soi que ce phénomène peut prendre naissance un grand nombre de fois, tout au long du cheminement de la force. Pour la clarté de l'exposé, le raisonnement est limité ici aux lacunes générées à une profondeur \(z_1 \). On pose pour la propagation de la lacune les mêmes hypothèses que pour la force, à cela près que la progression se fait vers le haut, au lieu de se faire vers le bas.

Comme on peut le voir sur la figure 7.6, le cycle (propagation de la force - génération d'une lacune - propagation de la lacune - absorption de celle-ci en surface) conduit à une déflexion locale de la surface en un point de coordonnées \((x = x_2, y = y_2, z = 0) \) généralement différent du point d'application de la charge \((x = 0, y = 0, \)
z = 0). Ce phénomène, qui constitue la réponse élémentaire du milieu à l'énergie qui y est apportée, est par nature soumis au hasard. Seul le point d'application de la charge est en effet connu a priori avec certitude.

Les événements aléatoires sont :

A : le passage du chemin de transmission de la force par un point de coordonnées \(x = x_1, y = y_1 \) à la profondeur \(z_1 \),

B : l'émission d'une lacune dans le réseau granulaire en ce point

C : l'aboutissement de la propagation de la lacune au point de coordonnées \(x = x_2, y = y_2 \) en surface, où elle est absorbée.

Ces événements ne sont pas indépendants, mais conditionnés, le second par le premier, et le troisième par le second.

Fig. 7.6 : Modèle de déformation à l'état stationnaire
Définition des événements aléatoires élémentaires
Imaginons maintenant que l'on répète un très grand nombre de fois l'application de la même charge, en des points différents de la surface, suffisamment éloignés pour que l'on puisse négliger les influences mutuelles de ces tentatives successives. Pour toutes ces opérations, le système de coordonnées \((x,y,z)\) reste lié au point d'application de la charge, et se déplace avec lui. A chaque occasion, on observe la réalisation des événements définis ci-dessus en faisant la statistique des variables aléatoires suivantes :

- coordonnées d'intersection de la trajectoire de propagation de la force avec le plan \(z = z_i\),
- nombre de lacunes générées en chaque point du plan \(z = z_i\),
- coordonnées du point d'absorption des lacunes en surface.

La figure 7.7 schématisé cette procédure, ainsi que son résultat.

Fig. 7.7 : Modèle de déformation plane à l'état stationnaire

Statistique des événements
Pour la clarté de graphisme, seules deux dimensions sont représentées, et les axes des fonctions \(f_B \) et \(f_C \) sont inversés.

On peut interpréter les fréquences relatives observées en termes de probabilités lorsque le nombre \(N \) de tentatives tend vers l'infini.

On définit trois fonctions de densité de probabilités conjointes :

- \(f_A(x,y; z_i) \) pour les coordonnées du point de passage de la force à la profondeur \(z_i \),
- \(f_B(x,y; z_i) \) pour les coordonnées du point d'émission d'une lacune,
- \(f_C(x,y; 0) \) pour les coordonnées du point d'absorption en surface de la lacune.

Les coordonnées de position \(x, y \) sont des variables aléatoires continues.

Si l'on admet que toutes les tentatives constituant l'expérience définie ci-dessus peuvent être remplacées par une seule, représentative de l'ensemble, on a défini un processus aléatoire\(^1\) ayant la propriété d'ergodicité. Compte tenu des autres hypothèses formulées plus haut, on voit que deux des trois étapes qui composent ce processus, le cheminement de la force et celui de la lacune, sont formellement analogues aux processus stochastiques décrits au chapitre 5. Ce sont deux processus de diffusion que l'on décrit, d'une manière générale, par l'équation différentielle de Fokker-Planck.

Pour que les coordonnées verticales puissent être substituées au temps comme variable d'évolution des processus de diffusion, il faut qu'elles soient continuellement et monotonement croissantes. Tel est le sens des hypothèses faites pour la progression de la transmission de la force, ainsi que pour le déplacement de la lacune.

\(^1\) Le terme "processus aléatoire" est utilisé ici au lieu de "processus stochastique", pour marquer l'indépendance par rapport au temps.
Ces hypothèses ont une signification physique précise : elles interdisent en effet qu'une charge, dirigée vers le bas et appliquée en surface, donne lieu en quelque endroit que ce soit du massif à l'état stationnaire de déformation, à des efforts intragranulaires et des déplacements de grains dirigés vers le haut. Ceci revient à dire que le matériau se comporte comme un milieu granulaire lâche, ne donnant lieu à aucune dilatance. Comme nous l'avons exposé précédemment, une telle supposition, irréaliste au niveau granulaire local, ne peut traduire qu'une tendance globale.

L'hypothèse de non-absorption des quantités diffusées au cours du processus est une hypothèse de conservation. Pour la force, elle implique un état d'équilibre général du massif à chaque profondeur, ce qui est justifié à l'état stationnaire.

Pour la diffusion de la lacune, elle signifie qu'en dehors du lieu d'émission de celle-ci, les déplacements se font à compacité constante, ce qui a déjà été admis pour le modèle non-stationnaire.

Une autre simplification a consisté à exclure l'éventualité d'un fractionnement des quantités diffusées le long d'un cheminement élémentaire. Cette hypothèse n'est pas contradictoire avec le fait que plusieurs chemins de forces peuvent aboutir en un même grain, ou que plusieurs itinéraires de lacunes en partent. Ces faits résultent naturellement de la modélisation par un processus de diffusion. Par contre, l'hypothèse ne rend pas compte de la division de la force entre plusieurs particules, sous l'effet des frottements et du confinement latéral. On verra comment la définition du coefficient de diffusion de la charge permet la prise en considération implicite de ce phénomène.

7.2.2. Equation de diffusion de la charge en déformations planes

Quelles que soient les conditions géométriques du problème, la diffusion des charges dans un milieu granulaire est un phénomène physique tridimensionnel. Mais le modèle qui en est proposé ici est, mathématiquement parlant, un processus de diffusion bidimensionnel, puisque les fluctuations se font dans un plan horizontal. La coordonnée z,
qui est la variable d'évolution substituée au temps, n'est pas une variable aléatoire. Dans le cas d'un état plan de déformation, qui caractérise théoriquement un massif statistiquement homogène horizontalement, chargé par une fondation de longueur infinie (fig. 7.8), on peut encore abaisser le nombre de dimensions du modèle mathématique. Pour cela, une condition est requise, déjà énoncée au chapitre 5 : l'indépendance mutuelle des fluctuations dans les deux directions x et y. La densité conjointe de probabilité \(f_A(x,y;z) \) est alors égale au produit des deux densités marginales \(f_A(x;z) \) et \(f_A(y;z) \).

![Diagram](image)

Fig. 7.8 : Massif soumis à une charge répartie sur une ligne de longueur infinie
Modèle pour l'état plan de déformation

Comme la distribution marginale dans la direction parallèle à la fondation est uniforme, la densité \(f_A(y;z) \) est une constante qui s'élimine du problème. On est donc ramené à un modèle mathématique de diffusion unidimensionnelle selon x, avec z pour variable d'évolution.

Compte tenu de l'homogénéité statistique horizontale et de l'orientation verticale de la charge, on doit admettre, en accord avec HARR (1977, ch. 7.2) que la diffusion est symétrique. Une démarche formellement identique à celle suivie ici au paragraphe 5.3.2. conduit, dans ce cas particulier, à l'équation de diffusion:
\[
\frac{\delta f_A(x; z)}{\delta z} = \frac{\delta^2 [D^S_x(x; z) \cdot f_A(x; z)]}{\delta x^2}
\]

(7.1)

où \(D^S_x(x; z)\) est le coefficient de diffusion de la force dans la direction \(x\).

Si l'on considère un intervalle \(\delta x\) grand par rapport aux particules, la quantité \(f_A(x_1; z) \cdot \delta x\) est une approximation de la probabilité :

\[
\text{Prob}_A[x_1|z_i] = \text{Prob}_A\left[x_1 - \frac{\delta x}{2} < x < x_1 + \frac{\delta x}{2} \bigg| z = z_i\right]
\]

\[
= \int_{x_1 - \frac{\delta x}{2}}^{x_1 + \frac{\delta x}{2}} f_A(x; z_i) \, dx
\]

(7.2)

que le cheminement de la force intercepte le plan \(z = z_i\) dans un intervalle de largeur \(\delta x\) autour de \(x = x_1\). (Le fait que l'on travaille avec la densité marginale rend cette probabilité indépendante de la coordonnée \(y\), ce qui ne serait pas le cas dans un état général de déformation.)

En surface, autour de la ligne d'application de la charge, on a évidemment :

\[
\text{Prob}_A \left[0|0\right] = 1
\]

(7.3)

Compte tenu de la définition du processus aléatoire utilisé, une interprétation fréquentielle des probabilités \(\text{Prob}_A\) conduit à :

\[
\frac{\text{Prob}_A \left[x_1|z_i\right]}{\text{Prob}_A \left[0|0\right]} = \frac{F}{Q \cdot \delta y}
\]

(7.4)

\(Q\) désigne la densité linéaire de la charge appliquée, \(\delta y\) un intervalle de longueur arbitraire et \(F\) la résultante des forces intragrana-

nulaires verticales dans l'intervalle \(\delta x \cdot \delta y\) centré sur \(x_1\).
Au chapitre 2, il a été montré que la concentration par unité de surface des forces intragranulaires est égale à l'espérance de la contrainte intragranulaire \overline{S}.

On peut donc écrire, d'après (7.2), (7.3) et (7.4) :

$$ Q \cdot \delta y \cdot \int_{x_1 - \frac{\delta x}{2}}^{x_1 + \frac{\delta x}{2}} f_A(x; z_1) \, dx = \delta y \cdot \int_{x_1 - \frac{\delta x}{2}}^{x_1 + \frac{\delta x}{2}} \overline{S}_z(x, z_1) \, dx \tag{7.5} $$

et en dérivant :

$$ Q \cdot f_A(x; z_1) = \overline{S}_z(x, z_1) \tag{7.6} $$

On peut vérifier que le premier membre a bien la dimension d'une contrainte. En effet, Q s'exprime en $[\text{kN} \cdot \text{m}^{-1}]$, et la densité de probabilité f_A en $[\text{m}^{-1}]$, puisque la variable aléatoire x est une coordonnée spatiale.

La densité de charge Q étant une constante, (7.1) s'écrit également en termes de contraintes :

$$ \frac{\partial \overline{S}_z(x, z)}{\partial z} = \frac{\partial^2}{\partial x^2} \left[D_x(x; z) \cdot \overline{S}_z(x, z) \right] \tag{7.7} $$

On voit ainsi apparaître la forme phénoménologique de l'équation de diffusion de la charge, où la contrainte \overline{S}_z représente la concentration par unité de surface de la substance diffusée.

La démarche suivie ici pour une charge linéaire concentrée peut être facilement généralisée pour une répartition quelconque des pressions appliquées en surface. L'équation de diffusion est inchangée, et il suffit de lui adjoindre une condition de surface, jouant le rôle de condition initiale, adéquate. Par analogie avec ce qui a été exposé au chapitre 5, cette condition est exprimée par une densité de probabilité des coordonnées du point d'application d'une force concentrée à la profondeur $z = 0$:

$$ f_{A_0}(x) = f_A(x; 0) \tag{7.8} $$
Comme on a :
\[\int_{-\infty}^{+\infty} f_{A_0}(x) \, dx = 1 \]
la pression verticale appliquée en surface vaut :
\[p_z(x) = Q \cdot f_{A_0}(x) = \bar{S}_z(x, 0) \quad (7.9) \]

7.2.3. Coefficient de diffusion de la charge

Le coefficient de diffusion relatif aux contraintes \(D^S_x(x, z) \) n'est pas, en général, une constante indépendante des coordonnées \(x \) et \(z \). Nous avons cependant admis que le massif étudié était statistiquement homogène dans les directions horizontales avant application de la charge. En admettant qu'il l'est toujours à l'équilibre, on voit que le coefficient de diffusion est indépendant de \(x \).

On a alors :
\[\frac{\partial D^S_x}{\partial x} = 0 \]
et l'équation de diffusion (7.7) s'écrit :
\[\frac{\partial \bar{S}_z(x, z)}{\partial z} = D^S_x(z) \frac{\partial^2 \bar{S}_z(x, z)}{\partial x^2} \quad (7.10) \]

Cette importante simplification équivaut à négliger l'effet des modifications de structure induites par la charge sur la manière dont les contraintes sont distribuées dans le massif à l'équilibre. Elle est admise par SMOLTZYK (1967), SERGEEV (1969), HARR (1977), CHIKWENDU et ALIMBA (1979), et nous ferons de même au stade actuel de développement du modèle.
La situation est différente en ce qui concerne la dépendance entre le coefficient de diffusion et la profondeur, pour laquelle ces auteurs préconisent un accroissement de D_x^S, généralement linéaire, avec z. Un faisceau de présomptions semble en effet conduire à cette hypothèse.

Tout d'abord, le souci d'obtenir des solutions comparables à celles de la théorie de l'élasticité.

Considérons le cas le plus simple d'une charge linéaire, concentrée à la surface d'un massif en déformations planes. L'équation de diffusion (7.10) avec un coefficient indépendant de z aurait pour solution le produit de la densité linéaire de charge et d'une fonction de densité de probabilité normalisée :

$$S_z(x, z) = Q \cdot \frac{1}{s_x \sqrt{2\pi}} \cdot e^{-\frac{1}{2} \left(\frac{x}{s_x}\right)^2}$$

où l'écart type de x vaut :

$$s_x = \sqrt{2D_x^S \cdot z}$$

La variance serait donc proportionnelle à la profondeur, conformément à la théorie classique de la diffusion avec coefficient constant.

Dans l'axe de la charge, on aurait :

$$S_z(0, z) = \frac{1}{\sqrt{4\pi D_x^S \cdot z}}$$

montrant une décroissance de la contrainte selon $z^{-1/2}$. Or la solution de FLAMANT (1892) indique en élasticité linéaire une variation proportionnelle à z^{-1}. Il suffit, pour obtenir la concordance entre les deux théories sur ce point, de poser :

$$D_x^S = \nu \cdot z$$ (7.11)

où ν est un coefficient sans dimension.
La solution de l'équation de diffusion est alors :

\[\overline{S}_x (x, z) = Q \cdot \frac{1}{z \sqrt{2\pi v}} \cdot e^{\frac{-x^2}{2z^2}} \]

(7.12)

où la variance de x est maintenant proportionnelle à \(z^2 \), et son écart type vaut :

\[s_x = z \sqrt{v} \]

(7.13)

La base d'une telle argumentation peut sembler bien arbitraire, et même paradoxale, si l'on se souvient que ce sont notamment les insuffisances de la théorie de l'élasticité qui ont motivé le développement de la nouvelle approche. On doit pourtant convenir que dans les rares cas où des mesures fiables de pression moyenne étaient disponibles, en particulier ceux rapportés par HARR (1977, ch. 8) ou MORGAN et GERRARD (1971), l'hypothèse semble trouver approximativement confirmation.

- L'analyse dimensionnelle de l'équation de diffusion (7.10) montre que le coefficient de diffusion a le caractère d'une longueur. Ceci est conforme à sa signification physique pour le processus aléatoire considéré. En effet, si dans l'expression (5.19'), on substitue \(\delta x \) et \(\delta z \) respectivement à \(\delta a \) et \(\delta t \), on obtient :

\[D_x^S = \lim_{\delta z} \frac{(\delta x)^2}{2 \delta z} \]

(7.13)

Si l'on s'en tenait à une définition structurale des incrément \(\delta x \) et \(\delta z \), dans le cadre des règles adoptées pour le processus aléatoire au paragraphe 7.2.1, \(D_x^S \) devrait être de l'ordre de grandeur du diamètre d'un grain. Mais, comme nous l'avons souligné, la règle qui exclut le fractionnement de la force doit être assouplie afin que, du point de vue phénoménologique, les effets de frottement et de confinement latéral des particules soient pris en considération. Ceci revient à dire que la longueur effective \(\delta x \) d'une fluctuation horizontale de la force, au cours de sa marche au hasard, doit être généralement supérieure à \(\delta z \), et sans rapport avec le diamètre des particules.
Cette notion traduit qu'une part des forces verticales est transmise latéralement grâce au frottement mobilisable entre particules, et non seulement par compression. On en déduit que le coefficient de diffusion est d'autant plus grand que le confinement latéral des grains sous l'effet de la gravité est important.

Il est donc logique que D_x^S augmente avec la profondeur, et il faut voir dans la relation linéaire (7.13) une approximation au premier ordre de cette variation. Cette conception rejoint celle de GOLDEN (1984), mais s'éloigne de l'opinion de SERGEEV (1964) qui voyait dans la variation du coefficient de diffusion la conséquence d'un accroissement de compacité avec la profondeur.

En admettant que dans la relation (7.13), le coefficient adimensionnel ν est indépendant des coordonnées, les conditions d'équilibre interne du massif, écrites en termes de contraintes intragranulaires moyennes, permettent d'exprimer les composantes S_x et S_{xz} en fonction de S_z (HARR, 1977, ch. 7).

$$S_x(x, z) = \nu \cdot S_z(x, z) + \nu^2 z^2 \frac{\partial^2 S_z(x, z)}{\partial x^2} \quad (7.14)$$

$$S_{xz} = -S_{zx} = -\nu z \frac{\partial S_z(x, z)}{\partial x} \quad (7.15)$$

Si la contrainte verticale S_z varie linéairement en fonction de x, l'expression (7.14) s'écrit :

$$\nu = \frac{S_x(x, z)}{S_z(x, z)} \quad (7.16)$$

C'est sur cette base que HARR (1977, ch.) propose d'assimiler le coefficient ν à un coefficient de contrainte latérale, analogue au coefficient de pression des terres K, et borné par les valeurs d'états actif et passif K_A et K_p. L'intérêt de cette solution est de faire apparaître dans l'expression des contraintes un paramètre géotechnique, contenant l'essentiel des informations relatives aux propriétés mécaniques du matériau et à son état. Il s'agit
là du troisième argument en faveur d'un coefficient de diffusion croissant linéairement avec la profondeur.

On doit cependant y apporter quelques réserves. Pour que v soit égal au coefficient K de pression des terres, il faut non seulement que la contrainte S_z varie linéairement avec x, mais aussi que les contraintes verticales et horizontales soient les contraintes principales.

Or aucune de ces deux conditions n'est, en général, remplie dans un massif chargé sur une partie limitée de sa surface.

En particulier, dans l'axe de la charge, la seconde dérivée de S_z par rapport à x peut prendre des valeurs très grandes. Quant à la contrainte principale majeure S_1, elle n'est orientée verticalement que sur un axe de symétrie ou très loin de la charge.

On voit donc que l'analogie entre v et K est une approximation à laquelle on n'accordera pas une signification quantitative stricte.

Il faut également observer, comme le notait déjà PEDA (1978, ch. 1) que le rapport des contraintes en chaque point du massif ne peut être déterminée a priori et que le coefficient v n'est donc pas un paramètre caractérisant le sol de manière intrinsèque.

Compte tenu de ces limitations théoriques et pratiques, nous adopterons, dans l'actuelle formulation du modèle, une valeur uniforme de v égale au coefficient K_0 de pression des terres au repos.

Le coefficient de diffusion de la charge s'écrira donc :

$$D_x^S = K_0 \cdot z$$

(7.17)

Cette solution offre plusieurs avantages :

- elle constitue une bonne approximation dans le domaine des faibles charges, et représente la situation initiale dans les autres cas;
- 188 -

- elle se situe à l'intérieur des limites proposées par Harr et contient implicitement les caractéristiques mécaniques essentielles du matériau;

- elle peut être estimée aisément en fonction de l'angle de frottement interne, par exemple à l'aide de la formule empirique de JAKY (1944):

\[K_0 = 0.9 \left(1 - \sin \phi'\right) \] (7.18)

Remarque : Dans le cas d'un massif stratifié, z doit être remplacée dans (7.17) par une valeur fictive, égale à \(z - H_1 + \tilde{H}_1 \), où \(H_1 \) est l'épaisseur réelle de la couche supérieure, et \(\tilde{H}_1 \) son épaisseur équivalente dans le sens défini par HARR (1977, ch. 7, p. 233).

Enfin, il est intéressant de faire une comparaison avec la relation théorique proposée par CHIKWENDU (1981), qui exprime le coefficient \(v \) en fonction de la densité relative dans le cas d'un matériau idéal formé de sphères de même diamètre. Pour les valeurs extrêmes de \(D_r \), Chikwendu obtient :

\[v = 0.50 \quad (D_r = 0) \]
\[v = 0.20 \quad (D_r = 100\%) \]

En posant \(K_0 = v \), la formule de Jaky serait satisfaite pour un angle de frottement de 27° dans le cas de la compacité minimale, et 51° avec la compacité maximale.

La variation logique de ces valeurs est un test positif pour l'hypothèse simplificatrice adoptée. On remarque que l'augmentation de l'angle de frottement interne, en relation avec la compacité, conduit
à une diminution du coefficient de diffusion, et donc à une répartition plus concentrée des contraintes sous la charge. Rappelons qu'il s'agit ici d'un matériau normalement consolidé, où la densité élevée n'est pas obtenue par précompression. Cette tendance peut s'expliquer en considérant que pour assurer son équilibre, un milieu dense isotrope mobilise moins sa résistance au cisaillement qu'un milieu lâche soumis à la même charge. Dans le sol dense, la dispersion latérale des sollicitations est donc plus faible, puisqu'il suffit d'une plus petite quantité de matériau pour équilibrer la charge. Dans un matériau précomprimé, la situation serait différente, car le comportement serait alors gouverné par l'anisotropie de la structure, induite par le compactage.

7.2.4. Equation de diffusion des déplacements

Au chapitre 4, nous avons mentionné le lien entre la direction de propagation des lacunes générées dans le milieu granulaire et le champ des sollicitations internes. Étant donné les variations locales très importantes que subissent les contraintes, et le caractère désordonné du mouvement des particules, une telle relation n'a de sens que du point de vue statistique.

Les sollicitations internes moyennes sont représentées par l'espérance des contraintes intragranulaires. Si l'on doit définir par une direction particulière en chaque point l'orientation essentielle des forces qui s'exercent sur les particules, il est logique de choisir la direction de la contrainte principale majeure. Généralisant les notions exposées au chapitre 2, nous définissons cette quantité comme l'orientation du vecteur propre \(\hat{\mathbf{N}_r} \) relatif à la plus grande des valeurs propres \(\overline{\mathbf{S}}_r \) du tenseur \(\overline{\mathbf{S}} \) des contraintes intragranulaires moyennes.

Du point de vue de la cinématique des mouvements, c'est la direction principale de propagation des lacunes échangeant leurs positions avec les grains qui constitue la référence, les autres mouvements étant des fluctuations autour de cette direction.
La relation mécanique entre les deux tendances directionnelles se traduit par une corrélation statistique entre elles. À titre d'hypothèse, nous admettons que cette corrélation est parfaite, c'est-à-dire que la direction de propagation des lacunes en chaque point du milieu est confondue avec la direction de la contrainte principale majeure. Les orientations sont évidemment opposées, puisque les lacunes "remontent" le champ de contraintes, si l'on ne considère que l'état stationnaire de déformation. Un cas particulier est celui de la compression uniforme d'un massif statistiquement homogène, où ces directions sont en tout point confondues avec la verticale.

Précisons que la direction de la contrainte intragranaulaire principale majeure considérée ici inclut la contribution de la gravité. Elle ne peut être déterminée que d'après les valeurs des contraintes cumulant l'effet du poids propre à celui de la charge.

On est donc en présence d'un processus de diffusion beaucoup plus complexe que celui de la charge, puisque la direction de propagation et celle de fluctuation qui lui est perpendiculaire, varient spatialement en fonction du champ de contraintes.

Comme pour la diffusion de la charge, les hypothèses d'indépendance et de déformation plane permettent de se ramener à un problème plan.

Afin de simplifier la formulation mathématique, nous allons substituer à ce processus un modèle dans lequel les directions sont constantes, confondues avec les axes de coordonnées verticales et horizontales, et qui lui est approximativement équivalent. La figure 7.9 schématise cette substitution pour la marche aléatoire discrète qui sert de base au raisonnement.

On suppose qu'une lacune occupe initialement l'origine des coordonnées locales \(\eta \) et \(\xi \), orientées selon la direction de \(\vec{S}_I \), avec la probabilité 1. Sans nuire à la généralité du résultat, on se limite ici à une zone où les variations d'orientation de \(\vec{S}_I \) sont négligeables. La marche au hasard originale de la lacune serait symétrique selon \(\eta \), avec \(\xi \) comme variable d'évolution, et les incréments \(\delta \eta \) et \(\delta \xi \). La figure 7.9 représente les sites qui peuvent être occupés, ainsi que les probabilités correspondantes.
Fig. 7.9 : Modèle stationnaire de déformation — Marche au hasard des lacunes (vue bidimensionnelle simplifiée)

Le modèle modifié a les caractéristiques suivantes :

- les directions de diffusion et de propagation sont respectivement l'horizontale x' et la verticale z';

- la marche au hasard est dissymétrique, de manière à ce que les coordonnées horizontales des sites soient les mêmes que dans le modèle original. Ceci équivaut à faire coïncider les directions moyennes des déplacements avec l'orientation de \bar{S}_I, mais provoque une erreur sur les coordonnées verticales des positions possibles de la lacune. Ce choix arbitraire est guidé par le souci de préserver une bonne précision dans la modélisation des profils de tassement, de préférence aux déplacements horizontaux. On voit que
les deux marches aléatoires sont strictement équivalentes lorsque la contrainte principale majeure est orientée verticalement. Comme nous l'avons vu au chapitre 5, le processus continu de diffusion, issu d'une marche aléatoire unidimensionnelle dissymétrique, est décrit par l'équation de Fokker-Planck. Dans le cas présent, en remplaçant le temps par la variable d'évolution \(z' \), elle s'écrit :

\[
\frac{\delta f_C(x'; z')}{\delta z'} = \frac{\delta^2 \left[D_x^W(x'; z') \cdot f_C(x'; z') \right]}{\delta x' \delta x'^2} - \frac{\delta \left[c_x^W(x'; z') \cdot f_C(x'; z') \right]}{\delta x'}
\]

(7.19)

Par analogie avec les résultats obtenus précédemment (équations 5.43, 5.44, 5.45) :

\[
C_x^W = \lim \left(\overline{v_x} \right) = tg \theta \tag{7.20}
\]

\[
\delta z' \to 0
\]

\[
\delta x' \to 0
\]

où \(\overline{v_x} \) est la célérité moyenne de propagation, et \(\theta \) l'angle de \(\overline{S_I} \) avec la verticale au point \((x', z') \).

\[
D_x^W = \lim \left(\frac{1}{2} \frac{(\delta x')^2}{\delta z'} \right) \tag{7.21}
\]

\[
\delta z' \to 0
\]

\[
\delta x' \to 0
\]

Dans le processus dérivant de la marche au hasard initiale, selon \(\xi \) et \(\eta \), on aurait :

\[
D^W = \lim \left(\frac{1}{2} \frac{(\delta \eta)^2}{\delta \xi} \right) \tag{7.22}
\]

\[
\delta \eta' \to 0
\]

\[
\delta \xi' \to 0
\]

D'après la figure 7.9, les deux systèmes de coordonnées locales sont liés par :

\[
\delta z' = \cos \theta \cdot \delta \xi
\]

\[
\delta x' = \cos \theta \cdot \delta \eta
\]

(7.23)
En remplaçant dans (7.21) :
\[C_{x'}^W = \lim \left(\frac{1}{2} \cos \theta \frac{\delta y^2}{\delta \xi} \right) \]
D'où :
\[D_{x'}^W (x'; z') = \cos [\theta(x'; z')] \cdot D_{\eta}^W (x'; z') \quad (7.24) \]

Les deux coefficients apparaissant dans l'équation du processus de diffusion simplifié (7.19) sont donc exprimés en fonction de l'orientation des contraintes principales, et d'un coefficient de diffusion indépendant, caractérisant le matériau. C'est à ce paramètre \(D_{\eta}^W \) qu'il faut attribuer une signification physique, puisque \(D_{x'}^W \) est un coefficient fictif, dépendant étroitement des simplifications mathématiques apportées, de même que le coefficient de dérivé \(C_{x'}^W \).

Le principe de l'interprétation phénoménologique de l'équation de diffusion des lacunes est très similaire à celui adopté pour la diffusion de la charge. Seule la nature physique des quantités représentées est différente.

Au chapitre 5, nous avons défini par le terme "lacune" une fraction du volume des pores en excès dans le milieu granulaire, qui se comporterait, à la façon d'une particule, comme une entité individuelle. La propagation des lacunes équivaut donc à des déplacements de volumes de matériau.

Supposons qu'une lacune soit émise à l'intérieur du massif en un point où nous fixerons l'origine des coordonnées \(x', z' \) (fig. 7.10). Le volume d'air correspondant à cette lacune entreprend avec elle sa diffusion selon \(x' \), avec l'altitude \(z' \) comme variable d'évolution. La probabilité qu'a la lacune d'atteindre un intervalle de largeur \(\delta x' \) autour d'un point d'abscisse \(x'_1 \) à l'altitude \(z'_1 \) est proportionnelle à une fraction du volume émis. Cette quantité représente le volume de matériau déplacé autour de \((x'_1, z'_1) \). Elle est égale au volume de la dépression causée par le déplacement des grains qui se trouvaient initialement dans l'intervalle \(\delta x'_1 \). Le volume total de la dépression est égal au volume émis, et représente en surface la cuvette apparente de tassement. Dans le cas d'un état de déformations planes,
avec une densité linéaire de volume émis \(V_\lambda(0;0) \) la densité linéaire de volume déplacé autour de \((x'_1, z'_1) \) vaut :

\[
V_\lambda(x'_1; z'_1) = V_\lambda(0;0) \int_{x'_1 - \frac{\delta x'}{2}}^{x'_1 + \frac{\delta x'}{2}} f_C(x'; z'_1) \, dx'
\]

(7.25)

\[\text{Fig. 7.10 : Modèle stationnaire - Diffusion d'un volume d'air, d'origine localisée, jusqu'en surface (État plan de déformation)}\]
Comme on le voit sur la figure 7.10, cette densité de volume représente l'aire comprise entre le plan $z' = z_1'$ et le profil de la dépression, dans l'intervalle $δx'$ autour de x_1'.

La dérivée de $V_δ(x_1'; z_1')$ par rapport à x' est donc égale à l'espérance mathématique du déplacement d'un grain qui serait situé initialement en (x_1', z_1'). Et en général :

$$\overline{W}(x', z_1') = V_δ(0, 0) \cdot f_C(x'; z_1') \quad (7.26)$$

$V_δ$ étant exprimée en $[m^3 \cdot m^{-1}]$ et la densité de probabilité f_C en $[m^{-1}]$, on vérifie bien que \overline{W} a la dimension d'une longueur.

On peut donc écrire l'équation de diffusion (7.19) en termes de déplacements :

$$\frac{∂ \overline{W}(x', z')}{∂z'} = \frac{∂^2[D_{x_1}(x', z') \cdot \overline{W}(x', z')]}{∂^2x'} - \frac{∂[C_{x_1}(x', z') \cdot \overline{W}(x', z')]}{∂x'} \quad (7.27)$$

où le déplacement moyen \overline{W} joue le rôle de la concentration par unité de surface de la substance diffusée, qui elle est un volume.

De la même manière que pour les contraintes, on généralise le modèle au cas d'une répartition quelconque du volume émis en écrivant la condition à l'origine

$$W_0(x') = V_δ \cdot f_{C_0}(x') \quad (7.28)$$

où $f_{C_0}(x')$ est la densité marginale de probabilité de position d'une lacune émise, à l'altitude $z' = 0$.

$V_δ$ est la densité linéaire totale de volume émis en $z' = 0$.

$\overline{W}_0(x')$ est le déplacement moyen équivalent à l'altitude $z' = 0$.

Comme dans le cas des contraintes, on remarquera que l'équation de diffusion des déplacements ne porte que sur une approximation au premier moment. Le profil de dépression, analogue à la densité marginale
de probabilité sur la figure 7.10, n'est en effet qu'une moyenne, représentative d'une infinité de profils différents que l'on obtiendrait par une succession de coupes verticales parallèles. La prédiction de cette variabilité intrinsèque, liée à la nature du matériau granulaire, sort du cadre de la présente étude.

La direction du déplacement moyen en chaque point est, comme nous l'avons admis, confondue avec la direction de la contrainte principale majeure. Les composantes verticales et horizontales de ce déplacement sont donc respectivement :

\[
\bar{W}_{z'}(x', z') = \cos \left[\theta(x', z') \right] \cdot \bar{W}(x', z') \quad (7.29)
\]

\[
\bar{W}_{x'}(x', z') = \sin \left[\theta(x', z') \right] \cdot \bar{W}(x', z') \quad (7.30)
\]

On voit d'après ces expressions que les déplacements moyens sont nuls dans les directions perpendiculaires aux contraintes principales majeures. Ce résultat, qui n'est pas conforme au comportement réel d'un sol granulaire, constitue une limitation du modèle dans sa formulation actuelle. Il est la conséquence de l'hypothèse extrême que représente une corrélation parfaite entre la direction de propagation des lacunes et celle des contraintes principales majeures.

7.2.5. Coefficient de diffusion des déplacements

D'après la définition qui en a été donnée (équation 7.22), le coefficient de diffusion est une limite algébrique, fonction des incréments de distance séparant les sites successifs occupés par une lacune.

Sur la base du modèle discret de marche au hasard, utilisé pour établir l'équation de diffusion, on peut supposer que le rapport

\[
\frac{(\delta \eta)^2}{\delta \xi}
\]

est du même ordre de grandeur que la distance séparant le centre de deux particules voisines. À partir des travaux de Hertz (1909), une estimation théorique de cette distance a été faite par Grivas et Harr
(1975, 1979). Ils ont montré que la moyenne de cette quantité aléatoire pouvait s'exprimer, en fonction des caractéristiques des grains et de l'état du milieu, par :

$$\bar{\lambda} = 0.554 \cdot \bar{d} \cdot \left(\frac{6(1-n_v)}{n_v \cdot S_F} \right)^{-1/3}$$ \hspace{1cm} (7.31)

où :

- \bar{d} est le diamètre moyen des grains assimilés à des sphères
- n_v la porosité volumique
- S_F un facteur de forme des grains compris entre 0 (particules plates) et 1 (particules sphériques)

Pour $S_F = 1$, dans la gamme des porosités usuelles, $\bar{\lambda}$ vaudrait environ $0.3 \bar{d}$. Cette valeur est proche de celles obtenues pour le coefficient de diffusion lui-même par différents auteurs, dans le cas du tassement gravitaire ("subsidence"). Ainsi, sur une base théorique, SWEET et BOGDANOV (1965) proposent :

$$D_{\eta}^W = \bar{d} \left(\tan \phi_{\text{res}}' \left(1 + \tan 2 \phi_{\text{res}}' \right) \right)^{-1/2}$$ \hspace{1cm} (7.32)

où ϕ_{res}' est l'angle de frottement résiduel. Pour $\phi_{\text{res}}' = 35^\circ$, on obtiendrait par exemple $D_{\eta}^W = 0.6 \bar{d}$.

MULLINS (1974b) mentionne la valeur expérimentale de $D_{\eta}^W = 0.024''$ pour un sol dont le diamètre des particules varie entre $0.016''$ et $0.032''$. Il estime que le coefficient de diffusion est du même ordre de grandeur que le diamètre moyen des grains.

Cette convergence d'information semble suffisamment concluante pour que l'on puisse, en première approximation, se ranger à l'avis de Mullins.
7.2.6. **Conditions aux limites**

Trois catégories de conditions aux limites doivent être discutées :

- conditions aux limites latérales du massif,
- conditions aux limites de couches et éventuellement sur la base,
- conditions en surface,

et ceci à la fois pour les contraintes et les déplacements.

7.2.6.1 Conditions aux limites latérales

On considère que le massif est limité par des parois verticales, parfaitement rigides, et on envisage les deux cas extrêmes d'adhérence nulle ou parfaite. La solution de ce problème fait de nouveau appel aux notions de barrières absorbantes et réfléchissantes.

- Le cas d'une paroi parfaitement lisse se traduit par un phénomène de réflexion pour les contraintes verticales. On peut appliquer la méthode des images ou écrire, conformément à l'équation (5.35) :

\[
\frac{\partial}{\partial x} \left[D_x^S(x; z) \cdot \varepsilon_A(x; z) \right] = 0 \quad (7.33)
\]

en tenant compte de l'indépendance de \(D_x^S \) par rapport à \(x \), on obtient :

\[
\left[\frac{\partial S_Z(x, z)}{\partial x} \right]_{x = x_L} = 0 \quad (7.34)
\]

où \(x_L \) est l'abscisse de la paroi.

D'après (7.14) et (7.15), le autres composantes des contraintes intragranaulaires moyennes deviennent :

\[
\overline{S}_{xz}(x_L, z) = 0 \quad (7.35)
\]

\[
\overline{S}_x(x_L, z) = \nu \cdot \overline{S}_z(x_L, z) = K_0 \cdot S_z(x_L, z) \quad (7.36)
\]
Ces résultats sont conforme aux conditions usuelles admises au voisinage d'une paroi rigide et lisse.

Il est également aisé de vérifier par la méthode des images (fig. 5.8) qu'en présence de deux barrières réfléchissantes, l'intégralité de la charge doit être équilibrée par les contraintes verticales, à toute profondeur. En effet, aucune fraction de cette charge ne peut être dissipée par le frottement sur les parois.

Une autre condition de réflexion doit être imposée aux déplacements. Elle garantit que la totalité des changements de volume qui se produisent dans le massif se propage jusqu'en surface.

On doit alors écrire :

\[
\left[\frac{\partial}{\partial x'} \left(D^W_{x'}(x',z') \cdot \overline{W}(x',z') \right) - C^W_{x'}(x',z') \cdot \overline{W}(x',z') \right]_{x' = x_L} = 0
\]

(7.35)

Mais d'après (7.35) et (7.36), la contrainte principale majeure est verticale au contact de la paroi. Le coefficient de dérive des déplacements est donc nul, et (7.35) devient :

\[
\left[\frac{\partial}{\partial x'} \left(D^W_{x'}(x',z') \cdot \overline{W}(x',z') \right) \right]_{x' = x_L} = 0
\]

(7.36)

Notons que cette expression a le caractère d'une équation de conservation, et que la condition sur les contraintes serait, en vertu de (7.30) et (7.35), suffisante pour assurer que les déplacements horizontaux moyens soient nuls près de la paroi.

- En présence d'une paroi rigide et d'une adhérence parfaite, tous les déplacements doivent être nuls à la frontière. On doit alors prescrire une condition d'absorbtion dans la diffusion des déplacement. Elle s'écrit simplement :

\[
\overline{W}(x'_L, z') = 0
\]

(7.37)
Les contraintes ne sont pas soumises à une condition particulière. On voit alors une partie de la charge diffuser au-delà de la limite. Cette fraction de la sollicitation ne doit pas être supportée par le sol. Elle représente la part de la charge transmise aux parois.

Les autres composantes des contraintes intragranulaires ne sont pas non plus affectées. On doit noter que dans ce cas, les contraintes moyennes horizontales à la frontière ne sont plus égales à $K_0 \sqrt{S_z}$, malgré la rigidité de la paroi. Il n'y a là rien de contradictoire, puisqu'en raison des contraintes tangentielles qui peuvent s'y développer librement, le plan de contact avec la paroi n'est plus un plan principal.

L'hypothèse d'absorption fournit également, à condition de placer les limites suffisamment loin de la charge, l'approximation la plus simple d'un massif d'étendue infinie.

7.2.6.2 Conditions aux limites de couches

Dans la théorie élastique des multicouches (BURMISTER, 1945), la transmission des contraintes et des déformations d'une couche à l'autre est gouvernée par des conditions d'intégration appelées conditions d'interfaces. Elle correspondent le plus souvent à une situation d'adhérence parfaite (pas de déplacement horizontal relatif entre les deux couches) ou de glissement parfait (contraintes tangentielles nulles à l'interface). Dans certains modèles analytiques plus récents, il est fait appel à une relation linéaire liant le déplacement relatif à la contrainte tangentielle (DE JONG et al., 1973).

Mécaniquement, les deux hypothèses classiques sont équivalentes à celles que nous avons admises pour les conditions aux limites latérales du massif granulaire. Mais, alors que ces dernières modélisent une interaction entre le sol discontinu et une structure continue qui lui est étrangère, les conditions d'interfaces dont il est question ici concernent l'interaction entre deux milieux discontinus, formés de particules discrètes, se distinguant essentiellement par les caractéristiques des grains (taille, forme, etc.) et la compacité.
La transition d'une couche à l'autre n'est pas une discontinuité géométrique. Dans ces conditions, et pour un problème où les sollicitations sont généralement perpendiculaires aux stratifications, on peut se demander s'il est judicieux de caractériser aussi explicitement sur le plan mathématique des particularités locales mal définies physiquement. Même dans le cadre de la mécanique du continu, il a été montré que les plastifications dans la fondation granulaire d'une chaussée souple n'étaient pas prévisibles au voisinage des interfaces avant de se développer dans l'ensemble de la couche (DYSLI et BOURDEAU, 1984).

En fait, dans la théorie des multicouches, la définition de conditions d'interfaces répond surtout à la nécessité de rendre mathématiquement déterminé un système d'équations qui expriment qu'en tout point l'équilibre, la compatibilité des déformations et la continuité sont satisfaits.

En mécanique probabiliste des milieux granulaires, HARR (1977, ch. 7) a montré que la théorie de la diffusion permettait, pour le calcul des contraintes, de s'affranchir de telles conditions, qui n'avaient plus d'utilité. Ce résultat a notamment conduit à une estimation théorique des coefficients d'équivalence des matériaux dans les chaussées souples (BOURDEAU et RECOR DON, 1983), qui est en bon accord avec les résultats des essais AASHO (H.R.B., 1962).

Cette importante simplification est autorisée par le fait que la théorie de la diffusion modélise un phénomène de transport d'une substance à travers un milieu, et non un comportement mécanique soumis à des conditions de compatibilité et de continuité. Cette caractéristique, qui permet une résolution séquentielle des équations différentielles, pour les valeurs successives de la variable d'évolution, est commune à la diffusion des contraintes et à celle des déplacements.

Aucune condition d'interface n'est donc spécifiée dans le modèle proposé ici.
7.2.6.3 Conditions de surface

La répartition des pressions verticales en surface tient lieu de condition initiale pour le processus de diffusion des contraintes. Elle doit donc être connue a priori, au même titre que les autres données du problème.

Parallèlement, la rigidité de la structure qui transmet la charge au sol impose d'autres conditions de surface, qui portent sur les déplacements. Or, ces derniers sont les résultats du calcul. Ils sont liés, entre autres paramètres, à la répartition des pressions en surface, et ne peuvent donc pas être spécifiés comme conditions initiales.

La difficulté de ce problème n'est pas propre à la voie qui est suivie ici, mais se présente également en mécanique du continu.

Seuls les deux cas extrêmes d'une fondation parfaitement souple ou parfaitement rigide sont traités dans la présente étude.

Avec une fondation parfaitement souple, la solution est immédiate. Il suffit de considérer une répartition uniforme des pressions de contact sous la semelle.

Si la fondation est parfaitement rigide, les déplacements verticaux doivent être uniformes sous la semelle. Une solution approchée peut être obtenue par une procédure itérative, au cours de laquelle on répète tout le calcul, en modifiant à chaque fois la distribution des pressions en surface. L'ajustement des pressions est fait en fonction des déplacements résultant de la tentative précédente.

Afin d'accélérer la convergence, il a été fait l'hypothèse d'une répartition parabolique des pressions de contact. L'intégrale de cette fonction devant être égale à la charge, on voit que si l'on fait porter l'itération sur l'un des deux coefficients de la parabole, l'autre est déterminé de manière univoque.
7.2.7. **Interprétation probabiliste de la déformation volumétrique**

Au paragraphe 7.2.1, trois événements aléatoires élémentaires ont été définis, pour construire le processus qui sert de base au raisonnement théorique. Deux de ces événements concernent la transmission des forces et celle des lacunes, décrites par les équations de diffusion.

Le troisième, qui consiste en l'émission (ou la non émission) d'une lacune par le milieu au point de propagation de la force, doit permettre le couplage des deux processus de diffusion. Sa quantification doit tenir compte de la solution de l'équation de diffusion des contraintes, et fournir les conditions initiales pour la diffusion des déplacements.

D'un point de vue phénoménologique, il s'agit des changements de porosité locaux résultant de l'accroissement des sollicitations internes. Les principes physiques généraux de ce comportement ont été décrits au chapitre 4, et il a été reconnu que seules des informations d'origine expérimentale pouvaient permettre de le quantifier, pour un sol particulier.

La théorie probabiliste apporte cependant des précisions sur la signification de cette démarche.

Soit \(\text{Prob}[A] \) la probabilité que la force transmise par le contact entre les grains, dans l'expérience théorique imaginée au paragraphe 7.2.1, passe par un point de coordonnées \((x,y,z)\).

L'événement \(B \) consiste en l'émission d'une lacune au point \((x,y,z)\).

\(\text{Prob}[BA] \) est la probabilité d'occurrence simultanée des deux événements \(A \) et \(B \).

\(\text{Prob}[B|A] \) désigne la probabilité conditionnelle que \(B \) se produise si l'on sait que \(A \) s'est produit.

Considérons maintenant une éprouvette de sol granulaire de section \(A_t \) et de volume initial \(V_0 \). Supposons que le matériau contenu dans cette éprouvette soit statistiquement homogène, et que l'on applique des pressions uniformes à ses frontières. Cette situation est une idéalisation d'un essai de compression triaxiale.
Dans ce cas, les trois probabilités définies ci-dessus prennent les mêmes valeurs en tout point du milieu, et, compte tenu de leur interprétation fréquentielle, l'observation des variations de volume de l'éprouvette permet de les mesurer.

On a en effet :

\[\text{Prob } [BA] = \text{Prob}[A] \cdot \text{Prob}[B|A] \]

(7.38)

qui a pour équivalent phénoménologique :

\[\varepsilon_V = \sigma_m \cdot \left(\frac{1}{\beta_V}\right) \]

(7.39)

où \(\varepsilon_V \) est la déformation volumétrique

\[\sigma_m \]

la pression moyenne, égale à \(\frac{1}{3} (\bar{S}_I + \bar{S}_{II} + \bar{S}_{III}) \)

\(\beta_V \) est un module de déformation volumétrique

Il y a donc analogie entre la probabilité conditionnelle d'émission d'une lacune en un point et le coefficient de compressibilité du matériau.

7.2.8. Organisation des calculs

Comme pour le problème transitoire de la compression uniforme, c'est la méthode des différences finies qui est utilisée ici pour la résolution des équations de diffusion. On donne à l'annexe A1 des précisions sur l'algorithme utilisé.

L'organisation générale des calculs, schématisée par les figures 7.11 et 7.12, est calquée sur celle des phénomènes décrits par le modèle. On procède d'abord au calcul des contraintes et des changements de volumes qui en résultent à chaque profondeur, en progressant vers le bas. Dans une seconde phase, on résoud l'équation de diffusion des déplacements, en remontant vers la surface, et en définissant à chaque altitude de nouvelles conditions initiales pour le niveau suivant. Celles-ci sont obtenues par le cumul des déplacements calculés à chaque noeud et de déplacements nodule fictifs définis par :
\[\Delta \bar{W}(x_i', z_j') = \varepsilon_v(x_i'; z_j') \cdot \Delta z \] (7.40)

\(\varepsilon_v(x', z') \) est la déformation volumétrique moyenne dans un élément de volume \(\Delta x \cdot \Delta z \cdot 1 \) centré sur le noyau \((i,j)\).

La discrétisation géométrique est la même pour les deux phases de diffusion, avec les incréments \(\Delta x \) et \(\Delta z \).

La procédure permet le traitement des géométries dissymétriques et des stratifications, avec un nombre de couches pratiquement illimité.

Remarque : Contrairement à la solution du problème transitoire de compression uniforme, il n'est pas fait ici de distinction entre les coordonnées des grains avant et après déformation. Les calculs sont menés uniquement en termes de coordonnées initiales \((x,z)\) ou \((x',z')\), ce qui correspondrait aux coordonnées Lagranggiennes définies au chapitre 5.

Fig. 7.11 : Modèle mathématique pour l'état stationnaire
Schéma général
Fig. 7.12 : Modèle mathématique pour l'état stationnaire - Succession des calculs
7.3. **EXEMPLES ET ÉTUDE PARAMÉTRIQUE**

La figure 7.13 schématise le cas présenté comme exemple théorique. Les paramètres, y compris le module β_v de compressibilité volumétrique, y prennent les mêmes valeurs en tout point du massif. On néglige donc la non-linéarité des courbes de compressibilité représentées sur la figure 4.8, ainsi que leur relation avec le rapport des contraintes principales. La pression en surface est uniforme.

![Diagram](image)

Pression : 83 kN·m$^{-2}$
γ_d : 18 kN·m$^{-3}$
ϕ' : 35°
p_w^γ : 2 mm
ν : 0.40 ≈ K_0
β_v : 10,000 kN·m$^{-2}$

Fig. 7.13 : Étude paramétrique - modèle stationnaire pour l'état plan de déformation - Cas de référence

Les résultats sont reportés sous forme graphique à l'annexe A4. La présentation adoptée permet d'observer l'évolution théorique de chaque variable avec la profondeur. On peut vérifier que les distributions de contraintes verticales sont conformes aux valeurs obtenues par HARR (1977, ch. 7, p. 231) par une voie analytique.

Les déplacements horizontaux présentent une variation extrêmement rapide à faible profondeur, puisqu'ils apparaissent nuls en surface
et que leur maximum est situé immédiatement au-dessous, à proximité des angles de la fondation. Ils décroissent ensuite régulièrement avec la profondeur. Ces tendances sont qualitativement proches de ce que l'on peut observer dans la réalité, mais la localisation théorique des valeurs maximales est trop proche de la surface.

L'allure des déplacements verticaux met nettement en évidence leur étalement latéral avec la profondeur, mais aussi - ce qui en est une caractéristique essentielle - la diminution progressive des volumes totaux déplacés. Une autre prédiction théorique, en accord avec les phénomènes physiques observés, est la forme très abrupte de la cuvette de tassement en surface, aux limites de la zone chargée. On remarque dans cette région que les tassements maxima ne sont pas, théoriquement, ceux de la surface. Cette singularité ne doit pas être considérée comme une anomalie, mais comme une conséquence logique de la prédominance des déplacements horizontaux à cet endroit. Le phénomène est donc compatible avec des diminutions de volume.

Dans le second exemple étudié, on a introduit une stratification sous la forme d'une couche inférieure plus compressible. On peut voir à l'annexe A4 les effets théoriques de cette modification, et notamment la brutale discontinuité qui en résulte pour les déformations volumétriques.

Le premier cas traité a également servi de référence dans le but d'examiner la sensibilité du modèle aux principaux paramètres, et de juger de l'importance relative de ceux-ci. Le critère de comparaison adopté pour cette étude paramétrique est la valeur du tassement en surface, au centre de la zone chargée. La figure 7.14 en rassemble les résultats.

On constate, ce qui était prévisible, que les plus grandes variations de tassement sont dues à l'intensité de la charge, à la compressibilité du sol et à l'épaisseur de la couche. La relation charge - tassement est pratiquement linéaire, mais on ne doit pas attribuer à cette conclusion un caractère général, en raison de l'hypothèse simplificatrice, faite dans ce calcul particulier, d'une compressibilité linéaire et uniforme. La courbe montrant l'influence du module volumétrique est fortement non-linéaire, présentant un accroissement très
rapide des tassements pour les faibles valeurs de β_v. La variation
avec l'épaisseur de la couche est également non-linéaire, et il
existe certainement une asymptote pour le massif d'épaisseur infinie.

La densité du sol, considérée indépendamment de la compressibilité,
influence la direction des contraintes principales et la direction de
propagation des mouvements. Elle intervient donc indirectement dans
le modèle par l'intermédiaire du coefficient de dérive C_x^W, qu'elle
tend à atténuer par rapport à D_x^W qui en est indépendant. Cet effet
se manifeste par une légère réduction des tassements de la fondation
(et une légère augmentation des déflexions en dehors de la zone char-
gée) lorsque la densité augmente. Une tendance semblable est observée
avec le rôle du coefficient de diffusion des déplacements, mais si
l'on considère l'échelle de granulométrie placée en regard de celle
de D_η^W, on voit que l'influence de ce paramètre est très faible à
l'intérieur d'une classe de sol. Ces deux résultats, bien que d'une
importance quantitative modérée, sont spécifiques au modèle proposé
et à la mécanique d'un matériau qui n'est pas considéré comme continu
et "non-pesant".

En pratique, une estimation de l'ordre de grandeur du coefficient D_η^W
est amplement suffisante, ce qui justifie l'approximation faite au
paragraphe 7.2.5.

La relation théorique entre le tassement au centre de la fondation et
le coefficient v de diffusivité des contraintes peut paraître, au
premier examen, paradoxale. On s'attendrait en effet à ce qu'une at-
ténuation plus rapide des contraintes verticales dans l'axe de la
charge, résultant d'un plus grand coefficient de diffusion, contribue
à réduire les tassements, indépendamment de la compressibilité du ma-
tériau. Or c'est la tendance inverse qui est indiquée par le modèle,
en ce qui concerne les tassements au centre de la fondation. Mais si
l'on admet l'hypothèse assimilant le coefficient v au coefficient de
pression latérale au repos K_0, l'expression de ce dernier en fonction
de l'angle de frottement effectif explique logiquement le résultat.

Comme le montre l'échelle de ϕ' juxtaposée à celle de v sur la figure
7.14f, le tassement maximum en surface diminue lorsque la résistance
Fig. 7.14 : Etude paramétrique - Modèle stationnaire pour l'état plan de déformation
au cisaillement augmente. Ce résultat ne tient pas compte d'une éventuelle liaison entre résistance au cisaillement et compressibilité, puisque l'étude paramétrique est faite en étudiant l'influence des paramètres indépendamment les uns des autres. Le volume total de pores diffusé jusqu'à la surface du massif est donc le même pour toutes les valeurs de \(v \) représentées sur la courbe de la figure 7.14f.

Lorsque \(\phi' \) augmente, la réduction des tassements sous la fondation s'accompagne donc d'une augmentation de ceux-ci à l'extérieur, et d'une cuvette de tassement plus étalée. Pour les sols normalement consolidés, objets de la présente étude, ce sont les caractéristiques des grains qui sont ici reflétées par le modèle.

7.4. COMPARAISON AVEC LES ESSAIS

7.4.1. Essai sur limon CL05

D'après le théorème de la limite centrale (PARZEN, 1960), la somme d'un grand nombre de variables aléatoires indépendantes tend à être normalement distribuée. C'est pourquoi, en l'absence d'effets de parois, un processus de diffusion conduit, après une évolution suffisamment longue, à une distribution des concentrations de forme Gaussienne.

La diffusion des charges dans un milieu granulaire n'échappe pas à cette règle, comme le montrent les figures illustrant l'exemple précédent, réunies à l'annexe A4. Rappelons que ces résultats sont issus d'un processus aléatoire où la variable \(x \) (abscisse de la force après une transition jusqu'à \(z \)) est la somme de toutes les fluctuations élémentaires de position subies jusqu'à cette profondeur. Donc, si l'on se place suffisamment loin du point d'application de la charge, la distribution des contraintes est indépendante de la répartition des pressions en surface. En mécanique des milieux continus, le principe de St-Venant est le substitut déterministe de ce raisonnement probabiliste.

Harr a montré qu'une telle démarche conduisait à une solution analytique du problème de diffusion des contraintes, dans les massifs
d'étendue latérale infinie, même avec des cas de charges complexes tridimensionnels. Nous allons également en tirer parti, afin d'évaluer le module de compressibilité volumétrique du matériau d'essai.

En effet, dans les essais réalisés, la charge est transmise par une plaque rigide, et l'on ne connaît ni la répartition exacte des pressions en surface, ni la solution analytique correspondante pour les changements de volume qui en résultent. Mais d'après ce qui précède, la répartition des contraintes verticales est très proche de celle qui résulterait de l'application d'une pression uniforme, dès qu'une profondeur suffisante est atteinte.

Pour un matériau dont la taille des grains est de quelques fractions de millimètre, on peut estimer cette distance à quelques centimètres.

Dans l'axe de la charge, les contraintes moyennes verticales valent selon HARR (1977, ch. 7) :

$$\bar{S}_z(0,z) = 2 q_z \phi \left(\frac{B}{2z} \right)$$ \hspace{1cm} (7.40)

où :
- q_z est la pression uniforme appliquée
- B la largeur de la fondation
- ν le coefficient de diffusivité des contraintes

La fonction

$$\psi(t) = \frac{1}{\sqrt{2\pi}} \int_{0}^{t} e^{-\frac{u^2}{2}} du$$ \hspace{1cm} (7.41)

est tabulée par HARR (1977, table A3).

En approximant la contrainte isotope en un point par

$$\frac{\bar{S}_z (1 + 2 \nu)}{3}$$

on peut écrire la déformation volumétrique :

$$\varepsilon_v = \frac{1}{\beta_v} \cdot \frac{\bar{S}_z (1 + 2 \nu)}{3}$$ \hspace{1cm} (7.42)
En tenant compte de (7.40), on obtient une expression approchée de la déformation volumétrique dans l'axe de la charge :

\[
\varepsilon_v(0,z) = \frac{2q_z \cdot (1 + 2v)}{3 \beta_v} \frac{B}{2z^v} \psi
\]

(7.43)

ou encore :

\[
\varepsilon_v(0,z) = \frac{S_z(0,z)}{q_z} \cdot I
\]

(7.44)

avec :

\[
I = \frac{q_z}{\beta_v} \cdot \frac{1 + 2v}{3}
\]

(7.45)

Ce résultat est représenté sous la forme d'une famille de courbes \(\varepsilon = f(z) \), construites chacune pour une valeur du facteur adimensionnel I (fig. 7.15). Si l'on reporte sur ce diagramme les mesures de changement de volume dans l'axe de la charge, en supposant connu le coefficient de diffusivité \(v \), la valeur de I correspondante permet d'estimer le module \(\beta_v \). Cette procédure est reproduite sur la figure 7.15 pour les quatre premières étapes de chargement de l'essai CL05, avec différentes valeurs du coefficient \(v \).

Le choix de cette méthode, rendu possible par les mesures radiographiques, offre deux avantages :

- On évite le recours à des essais de compression triaxiale. La mesure des changements de volume y serait très imprécise, en raison des difficultés que présente la manipulation d'éprouvettes de sol non cohérent et l'application de faibles pressions.

- On effectue une détermination "in situ" de la compressibilité. Comme les valeurs obtenues dérivent des déplacements mesurés au sein de la cuve d'essai, elles tiennent compte implicitement des frottements sur les parois. On n'aura donc plus à se préoccuper de ce phénomène parasite dans la suite de l'étude.

Le tableau accompagnant la figure 7.15 indique une nette tendance au raidissement du matériau lorsqu'on augmente la charge. Le module \(\beta_v \) double environ sa valeur entre le premier et le quatrième palier. Ainsi se traduit le caractère non-linéaire de la compressibilité d'un sol granulaire lâche, déjà évoqué au chapitre 4.
Fig. 7.15 : Estimation du module de compressibilité pour l'essai CL05, d'après les mesures de variation de volume dans l'axe de la charge.
Pour chaque étape de chargement, les valeurs de β_v obtenues sont peu dépendantes du coefficient de diffusivité v. Avec un angle de frottement résiduel de 30° (voir figure 6.8b), la gamme couverte ici va environ de K_a à K_0. En se reportant à la figure 4.8, et en remarquant que le rapport R des contraintes principales est approximativement égal à $1/v$, on peut vérifier que dans le domaine des grandes porosités et des faibles pressions, ce facteur affecte peu la compressibilité.

Tous les calculs ont été faits pour des parois latérales parfaitement lisses et une plaque rigide, avec la géométrie décrite au chapitre 6. Les résultats complets pour l'un des paliers de charge considérés figurent à l'annexe A5. Nous limiterons la discussion à la comparaison des tassements calculés et mesurés, dans l'axe de la charge, et en surface, pour les trois premières étapes de chargement. La figure 7.16 résume les hypothèses de diffusion et de compressibilité adoptées.

<table>
<thead>
<tr>
<th>Calcul No</th>
<th>CL05-02A</th>
<th>CL05-02B</th>
<th>CL05-03A</th>
<th>CL05-03B</th>
<th>CL05-04</th>
</tr>
</thead>
<tbody>
<tr>
<td>q_z [kN.m$^{-2}$]</td>
<td>12</td>
<td>12</td>
<td>18</td>
<td>18</td>
<td>31</td>
</tr>
<tr>
<td>D_w [mm]</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>v</td>
<td>0.45</td>
<td>0.30</td>
<td>0.45</td>
<td>0.30</td>
<td>0.45</td>
</tr>
<tr>
<td>β_v [kN.m$^{-2}$]</td>
<td>250</td>
<td>250</td>
<td>300</td>
<td>300</td>
<td>415</td>
</tr>
</tbody>
</table>

Fig. 7.16 : Application du modèle mathématique au cas de l'essai CL05 sur limon monocouche. Données des calculs (pour la géométrie voir chapitre 6)

Pour la première charge (fig. 7.17a et b), la comparaison est satisfaisante, aussi bien pour l'évolution des tassements avec la profondeur, dans l'axe de la charge, que pour le profil des déflexions en
surface. La concordance est particulièrement bonne pour la variante A du calcul, où le coefficient de diffusivité des contraintes v est égal à K_0. On peut vérifier que l'estimation de la compressibilité était correcte, puisque les valeurs mesurées des déformations volumétriques dans l'axe sont reproduites par le calcul.

Fig. 7.17a : Modélisation théorique de l'essai CL05 (limon monocouche)

Pression moyenne : 12 KN·m^{-2}

Déformations volumétriques et tassements dans l'axe de la fondation
Lorsque l'on augmente la charge (fig. 7.18a et b), le modèle mathématique sous-estime les tassements dans l'axe de la fondation d'environ 25 %, malgré une concordance des changements de volume toujours très bonne. Ce comportement est limité à la zone située sous la fondation. En dehors de celle-ci, les tassements mesurés en surface sont reproduits fidèlement. La figure 7.19 montre que cette tendance s'accentue encore si la charge s'accroît.

Si on exclut la responsabilité du module de compressibilité, dont le mode de détermination paraît fiable, les éléments suivants peuvent contribuer à la sous-estimation des tassements :
Fig. 7.18a : Modélisation théorique de l'essai CL05 (limon monocouche)
Pression moyenne : 18 KN·m⁻²
Déformations volumétriques et tassements dans l'axe de la fondation

- le voisinage de la rupture du massif. Rappelons que la charge de poinçonnement théorique correspond à une pression moyenne de 25 kN·m⁻² et se situe donc entre les deuxième et troisième étapes de chargement. La rupture étant un phénomène progressif dans les sols granulaires lâches, et compte tenu des incertitudes qui pèsent sur sa détermination théorique, il est probable qu'une
modification graduelle du comportement se manifeste à son approche. La modélisation n'a pas été envisagée de ce point de vue.

Fig. 7.18b : Modélisation théorique de l'essai CL05 (limon monocouche)
Pression moyenne : 18 KN·m⁻²
Profil des tassements en surface

- les hypothèses simplificatrices faites dans le développement théorique. Elles portent essentiellement sur l'estimation du coefficient de diffusion des contraintes, et celle du coefficient de dérive des déplacements. Il est en effet douteux que, lorsque la charge augmente et que des modifications de structure se produisent dans les zones les plus sollicitées, le coefficient de diffusivité v reste indépendant des coordonnées x et z. On devrait alors lui assigner une valeur variable spatialement.
Il en est de même pour la relation admise entre la direction de propagation des mouvements et celle de la contrainte principale majeure. Ces deux restrictions limitent certainement, dans l'état actuel de sa formulation mathématique, la validité du modèle aux déformations relativement faibles. Mais dans ce domaine, la confrontation avec la réalité est positive, de même qu'avec la théorie de l'élasticité.

\[\text{Calcul tassement CL05.04} \]

\[\text{Calcul } \varepsilon_\nu \]

\[\text{CL05.04} \]

\[\text{Mesures tassements} \]

\[\text{Mesures } \varepsilon_\nu \]

\[z [\text{mm}] \]

\[\varepsilon_\nu [%] \]

Fig. 7.19 : Modélisation théorique de l'essai CL05 (limon monocouche)

Pression moyenne : 31 KN.m^{-2}

Déformations volumétriques et tassements dans l'axe de la fondation
7.4.2. **Essai sur sable CS04**

Nous avons constaté au chapitre 6 que l'essai CS04 sur sable se pré-\tait mal à une modélisation mathématique contrôlable, puisque la zone dans laquelle les déplacements prennent naissance est située en pro-\fondeur, hors du champ d'observation.

Cette opération est toutefois tentée, avec des réserves sur la vali-\dité des conclusions qui pourront en être tirées. Il est en effet néces-saire d'estimer l'ordre de grandeur du module de compressibilité du matériau dans les conditions d'essai, afin de pouvoir ensuite traiter le cas du massif stratifié. Après avoir fixé les valeurs des autres paramètres, on fait donc varier le module β_v afin d'en ob-\tenir, par comparaison avec les mesures de tassements, une valeur équivalente, représentative du comportement global du massif.

Les résultats de cette démarche représentés sur la figure 7.20, mon-\trent que l'on obtient une bonne concordance pour β_v compris entre 3500 et 4500 kN\cdot m$^{-2}$.

7.4.3. **Essai sur sol bicouche CLSO6**

La figure 7.21 indique les conditions des calculs relatifs aux deux premiers paliers de charge. Les valeurs des coefficients de diffusion et de la compressibilité dérivent de l'étude des massifs homogènes.

Les résultats, portant sur les tassements calculés dans l'axe de la charge, en surface, et à l'interface des deux couches, sont rassem-\blés sur les figures 7.22 et 7.23. Ils ont la même allure pour les deux charges.

On y observe, comme pour l'essai CL05, une bonne concordance avec les mesures dans la couche de limon, aussi bien pour les variations avec la profondeur que pour le profil de déflexion à l'interface. Ces constatations, qui sont relatives à une situation complexe, mais con-\forme aux hypothèses et au cadre du modèle théorique, constituent un second test positif pour celui-ci.
Fig. 7.20 : Modélisation théorique de l'essai CS04 (sable monocouche)

Pression moyenne : 13 KN·m⁻²
Tassements dans l'axe de la fondation et en surface

Les tassements dans la couche de sable sont légèrement surestimés sous la fondation, et sous-estimés en dehors de celle-ci. La variante C du calcul CLS06-01, où l'on a augmenté le module β_v du sable, donne pratiquement le même résultat que la variante B.
Il semble donc à nouveau que la compressibilité ne soit pas en cause ici, mais plutôt la manière dont sont transmis les déplacements à travers le sable. On voit en effet que l'on part d'une situation correcte à l'interface, et que les déformations qui prennent naissance dans le sable lui-même sont très faibles par rapport à celles qui proviennent du limon. C'est donc à nouveau l'hypothèse de directionnalité qu'il faudrait réexaminer.

<table>
<thead>
<tr>
<th>Calcul No</th>
<th>CLS06-01A</th>
<th>CLS06-01B</th>
<th>CLS06-01C</th>
<th>CLS06-02</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pression moyenne appliquée</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>q_z [kN·m$^{-2}$]</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>12</td>
</tr>
<tr>
<td>D_η^W sable [mm]</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>v sable</td>
<td>0.37</td>
<td>0.37</td>
<td>0.37</td>
<td>0.37</td>
</tr>
<tr>
<td>β_V sable [kN·m$^{-2}$]</td>
<td>4500</td>
<td>4500</td>
<td>5000</td>
<td>4500</td>
</tr>
<tr>
<td>D_η^W limon [mm]</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>v limon</td>
<td>0.45</td>
<td>0.45</td>
<td>0.45</td>
<td>0.45</td>
</tr>
<tr>
<td>β_V limon [kN·m$^{-2}$]</td>
<td>250</td>
<td>300</td>
<td>300</td>
<td>350</td>
</tr>
</tbody>
</table>

Fig. 7.21 : Application du modèle mathématique au cas de l'essai CLS06 (bicouche sable/limon). Données des calculs (pour la géométrie voir chapitre 6)
Fig. 7.22 : Modélisation théorique de l'essai CLS06 (sable/limon)
Pression moyenne : 7 KN·m⁻²
Tassements dans l'axe de la charge, en surface et à l'interface
Fig. 7.23 : Modélisation théorique de l'essai CLS06 (sable/limon)

Pression moyenne : 12 kN·m⁻²

Tassements dans l'axe de la charge, en surface et à l'interface
8. **LES NOUVEAUX HORIZONS**

Il a été démontré que la déformation d'un massif de sol granulaire, sous l'effet de sollicitations externes, résulte de modifications locales de la porosité, et de la propagation dans le milieu des micro-mécanismes qui les accompagnent.

Les tassements observables sont la conséquence de la diffusion jusqu'en surface des volumes interstitiels en excès.

L'établissement des équations décrivant ces phénomènes à l'échelle macroscopique repose sur l'analyse probabiliste de la transmission des charges et des mouvements dans un système désordonné, formé d'un très grand nombre de particules discrètes.

Ces conclusions sont valides dans les conditions générales suivantes :

- Les grains sont peu déformables par rapport au matériau considéré dans son ensemble, et leur taux de rupture est négligeable.

- Les interactions entre grains sont des contacts purement mécaniques, résistant uniquement à la compression et au frottement. Des contacts résistant à la traction, qui donneraient lieu à une cohésion, sont exclus. On a donc affaire à un matériau pulvéruent, sec ou parfaitement saturé.

- Si le milieu est saturé, on doit supposer qu'il est parfaitement drainé, et qu'il ne s'y développe pas de surpression interstitielle influençant le comportement.

- Le mode de chargement est de type statique, et les sollicitations restent inférieures à la capacité portante du massif.

- Le comportement du milieu est conforme à celui d'un sol lâche, c'est-à-dire un matériau dont la porosité est supérieure à sa valeur critique. Les changements de volume sont donc en général des contractions, bien que certains assemblages de particules puissent, localement, donner lieu à des dilatances.
Le matériau est normalement consolidé, ce qui exclut les précompressions dues au compactage. En d'autres termes, les forces appliquées constituent un premier chargement.

Ce cadre physique de l'étude justifie les hypothèses fondamentales de la modélisation théorique proposée :

- La déformation élastique des grains est négligée.

- Le comportement est gouverné par les glissements aux contacts entre grains, qui donnent lieu à des déformations irréversibles.

- Les modifications de la structure du milieu, consécutives à l'accroissement des sollicitations, se traduisent essentiellement par une augmentation du nombre moyen de contacts par grain. La réorientation des contacts dans l'espace, en fonction de la direction des sollicitations, est considérée dans les sols lâches comme un facteur secondaire. Ce sont donc les changements de porosité, plutôt que l'induction par des charges d'une anisotropie structurale qui sont considérés comme le moteur du comportement.

- Les contraintes effectives et les contraintes totales sont confondues.

- Le développement de discontinuités cinématiques à l'échelle macroscopique (surfaces de glissement) n'est pas intégré au modèle.

Il s'y ajoute un second groupe d'hypothèses, liées au contexte mathématique ou expérimental, mais indépendantes des concepts. Elles portent sur la géométrie particulière des problèmes discutés, la confusion entre coordonnées convectives et Lagrangiennes dans le modèle stationnaire, l'homogénéité statistique dans les directions horizontales, et l'absence de variation des paramètres avec l'augmentation de la charge. On peut envisager de les lever à court terme, en vue d'applications.

Certaines hypothèses de base pourraient également être réexaminées. C'est le cas notamment de la prise en compte des précompressions dues au compactage, et des surpressions interstitielles.
La première de ces extensions nécessiterait la mémorisation de l'histoire du chargement avec un traitement numérique incrémental des équations, et l'affectation au coefficient de diffusivité des contraintes \(v \) d'une valeur appropriée. Ce dernier point, qui se situe aux limites actuelles de la connaissance en mécanique des sols, a fait l'objet de deux propositions relativement simples à mettre en œuvre (paragraphe 7.2.3, et BOURDEAU et RECORDON, 1983).

Si l'on reste dans le domaine des chargements statiques, excluant les risques de liquéfaction, les surpressions interstitielles n'interviennent que dans les états transitoires de déformation, en différant l'augmentation des contraintes effectives. Un couplage du processus de diffusion des porosités en excès avec celui de la dissipation des surpressions est envisageable, au moins dans le cas de la compression uniforme.

Compte tenu de ces limitations, la théorie apporte, sous sa forme actuelle, des résultats spécifiques :

- La définition adoptée pour les contraintes dans un milieu granulaire, cohérente avec l'évolution historique de ce concept, confirme le rôle tenu par la porosité dans la sollicitation interne du matériau.

- La quantification de l'évolution dans le temps des mouvements montre que même en l'absence de fluide interstitiel, les états transitoires de déformation ne sont pas spatialement homogènes.

- La connection est établie entre la théorie de la diffusion des contraintes et celle des effondrements consécutifs aux perturbations souterraines. Cette synthèse conduit à une prédiction satisfaisante des tassements sous des charges appliquées à la surface d'un massif. Ce résultat est obtenu en dépit d'une simplification discutable portant sur la relation entre la direction de propagation des mouvements et celle des contraintes principales. La poursuite des investigations sur ce point précis devrait amener de nouveaux progrès.
La description du comportement des massifs stratifiés est grandement simplifiée par l'absence de conditions d'interfaces déjà annoncée par les travaux de Harr, ainsi que par le mode séquentiel de résolution des équations. Le cas particulier étudié met en évidence l'influence déterminante que peut avoir une couche inférieure compressible sur les déflexions en surface. Ce résultat est à mettre en relation avec les rôles prépondérants que jouent les couches granulaires et l'infrastructure dans la mécanique d'une chaussée.

La mécanique des sols théorique traditionnelle, dérivée de la mécanique des milieux continus, exige de longs détours en vue d'aborder ces problèmes.

La démarche suivie ici conduit à leur solution d'une manière directe, à partir de la simple constatation que le sol est formé de grains, et en ne faisant usage que d'un nombre restreint de paramètres dont la signification physique est évidente.

Ce contraste laisse présager la découverte de nouveaux territoires.

D'un point de vue général, la compréhension du milieu granulaire est encore conditionnée par la solution de quelques problèmes clés. Parmi ceux-ci, une description plus structurale de l'état de compacité critique devrait être tentée, afin d'expliciter sa relation avec les caractéristiques des particules et l'état de contraintes.

Une autre question actuellement sans réponse est celle des conditions d'apparition des discontinuités cinématiques. On a vu que pour Litwiniszyn, ce phénomène équivalait à l'acquisition d'une mémoire des mouvements précédents par les particules. Ce que recouvre cette "mémoire" est une soudaine conspiration des grains à adopter une conduite plus ordonnée et à suivre des trajectoires tracées par une main déterministe. Il est de fait que cette situation apparaît spontanément lorsque les ressources des modifications structurales décrites dans la présente étude (chapitre 4) ont été épuisées. Le matériau est alors incapable de revenir à un état d'équilibre.
Une telle bifurcation du comportement, qui voit surgir l'ordre du chaos, est la caractéristique des systèmes dissipatifs, selon PRIGOGINE et STENGERS (1979). L'éclaircissement de son mécanisme serait une modeste contribution de la mécanique des sols au dialogue de l'homme avec la nature.

Lausanne, le 6 mai 1986
REFERENCES BIBLIOGRAPHIQUES

CAMBOU, B. (1972). Compressibilité d'un milieu pulverulent. Influence de la forme et de la dimension des particules sur les propriétés d'un milieu pulverulent. These de spécialité. Université de Grenoble

DEMBICKI. E. and ODRONSKII. W.. (1973). A contribution to the tests on the bearing capacity of stratified subsoil under the foundations. Proc. 8th ICSMFE. Moscow

FOEPPL A. und FOEPPL L.. (1697). Drang und Zwang, R. Oldenburg. Muenchen und Berlin

GERBER, E.. (1929). Untersuchungen über die Druckverteilung im oerlich belasteten sand. These de Doctorat en Sc. Techn., ETH. Zurich

récérences

LITWINISZYN, J. (1964). An application of the random walk argument to the mechanics of granular media. IUTAM Symposium, Grenoble.

références

SEKER, E., (1963), Etude de la déformation d'un massif de sol non saturé. Thèse de Doctorat ès Sciences Techniques no 492, EPFL. Lausanne

ANNEXE A1

Traitement numérique des équations de diffusion
TRAITEMENT NUMERIQUE DES EQUATIONS DE DIFFUSION

Les équations de diffusion à résoudre sont des équations aux dérivées partielles, de type parabolique, avec une variable spatiale (la direction de diffusion a ou x) et une variable d'évolution (le temps ou la coordonnée z). En général, les coefficients sont variables.

Pour tous les problèmes traités (diffusion transitoire unidimensionnelle, diffusion des contraintes, diffusion stationnaire bidimensionnelle des déplacements), la forme commune à ces équations est :

\[
\frac{\partial U}{\partial T} = \frac{\partial^2 (DU)}{\partial x^2} + \frac{\partial (CU)}{\partial x}
\]

(A1-1)

où :

- \(U = U(X,T)\) est la fonction inconnue
- \(T\) la variable d'évolution
- \(X\) la variable spatiale
- \(C = C(X,T)\) le coefficient de dérive
- \(D = D(X,T)\) le coefficient de diffusion

Cette unicité autorise l'emploi d'un algorithme unique pour leur résolution.

La procédure choisie est la méthode des lignes de Gear (GEAR, 1971; MADSEN et SINCOVEC, 1974; SINCOVEC et MADSEN, 1975), sous la forme du sous-programme DO3PAF de la bibliothèque NAG-Mark 11 (Numerical Algorithms Group, 1984). Ce logiciel FORTRAN est supporté par le calculateur DEC VAX11/785 du Département de Génie Civil de l'EFPL et est assemblé aux programmes RT1 et RS2 développés pour la présente étude.

Mise en forme des équations

En coordonnées cartésiennes, DO3PAF accepte la forme :

\[
\frac{\partial U}{\partial T} = \frac{\partial}{\partial x} \left[G(X, T, U) \frac{\partial U}{\partial x} \right] + F \left(X, T, U \frac{\partial U}{\partial x} \right)
\]

(A1-2)
En développant les dérivées de l'équation de diffusion, on a :

\[
\frac{\partial^2(DU)}{\partial x^2} = U \cdot \frac{\partial^2 D}{\partial x^2} + \frac{\partial D}{\partial x} \cdot \frac{\partial U}{\partial x} + \frac{\partial}{\partial x} \left(D \cdot \frac{\partial U}{\partial x} \right)
\]

\[
\frac{\partial (CU)}{\partial x} = U \cdot \frac{\partial C}{\partial x} + C \cdot \frac{\partial U}{\partial x}
\]

On peut donc écrire l'équation :

\[
\frac{\partial U}{\partial T} = \frac{\partial}{\partial x} \left(D \cdot \frac{\partial U}{\partial x} \right) + \left(D \cdot \frac{\partial D}{\partial x} - C \right) \frac{\partial U}{\partial x} + \left(\frac{\partial^2 D}{\partial x^2} - \frac{\partial C}{\partial x} \right) U \quad \text{(A1-3)}
\]

En identifiant les formes (A1-2) et (A1-3), on a donc :

\[
G(x, T, U) = D \frac{\partial U}{\partial x} \quad \text{(A1-4)}
\]

\[
F \left(x, T, U, \frac{\partial U}{\partial x} \right) = \left(D \cdot \frac{\partial D}{\partial x} - C \right) \frac{\partial U}{\partial x} + \left(\frac{\partial^2 D}{\partial x^2} - \frac{\partial C}{\partial x} \right) U \quad \text{(A1-5)}
\]

Ces coefficients peuvent être exprimées aisément en termes de valeurs nodales et de différences finies.

Les conditions aux limites doivent être écrites sous la forme :

\[
P(T) \cdot U + Q(T) \frac{\partial U}{\partial x} = R(T, U) \quad \text{(A1-6)}
\]

Pour une barrière absorbante, on a simplement :

\[
U(x_B, T) = 0
\]

d'où :

\[
P(T) = 1
\]

\[
Q(T) = 0
\]

\[
R(T, U) = 0
\]
La condition de réflexion s'exprime en général :

\[\int \frac{\partial U}{\partial T} \, dx = 0 \]

c'est-à-dire :

\[\int \frac{\partial^2 U}{\partial x^2} \, dx - \int \frac{\partial C U}{\partial x} \, dx = 0 \]

et en dérivant par rapport à \(x \) :

\[\left(\frac{\partial D}{\partial x} - C \right) \cdot U + D \cdot \frac{\partial U}{\partial x} = 0 \quad \text{(A1-8)} \]

On doit donc programmer :

\[
P(T) = \left[\frac{\partial D(x, T)}{\partial x} - C(x, T) \right]_{x=x_B}^{x=x_B} \\
Q(T) = D(x_B', T) \\
R(T, U) = 0
\]
Annexe A2

Calculs d'erreurs pour la mesure des déplacements et des changements de volume
CALCULS D'ERREURS POUR LA MESURE DES DEPLACEMENTS ET DES CHANGEMENTS DE VOLUME

Incertitude sur les déplacements

Soit X_i la valeur mesurée de la coordonnée dans la direction x de la bille de plomb i.

On a: \[X_i = x_i + \delta x_i \]

où : x_i est la valeur réelle de cette coordonnée
δx_i l'erreur faite sur la mesure.

On admet que l'erreur est sans biais, c'est-à-dire que δx_i est une variable aléatoire à moyenne nulle.

La composante selon x du déplacement de la bille entre deux radiographies a pour valeur réelle :

\[w_i = x_{i2} - x_{i1} \]

et pour mesure :
\[\bar{w}_i = X_{i2} - X_{i1} \]

L'erreur faite sur cette mesure est :

\[\delta w_{x_i} = \bar{w}_i - w_i = x_{i2} - x_{i1} - (x_{i2} - x_{i1}) = \delta x_{i2} - \delta x_{i1} \]

où δx_{i1} et δx_{i2} sont les erreurs faites sur la mesure de la coordonnée à chaque radiographie.

En supposant de plus que ces deux quantités sont indépendantes (ce qui n'est pas tout à fait vrai si elles sont dues au même opérateur !), la moyenne et la variance de la mesure de déplacement valent :

\[\bar{\delta w}_i = 0 \]
\[V[\delta w_i] = V[\delta x_{i2}] + V[\delta x_{i1}] \]
A2.2

Si les variances sont les mêmes pour chaque radiographie :

\[V[\delta w_i] = 2 V[\delta x_i] \]

L'erreur de mesure du déplacement d'une bille selon la direction x a donc une moyenne nulle et pour écart type :

\[s_{\delta w_i} = \sqrt{2} s_{\delta x_i} \]

Incertitude sur les changements de volume

Considérons le changement de surface d'un quadrilatère défini par quatre billes. En faisant l'hypothèse de déformations planes, on peut assimiler la variation relative de surface à la déformation volumétrique.

\[\varepsilon_V = \frac{A_1 - A_0}{A_0} \quad A_0 = \text{Surface initiale} \]
\[A_1 = \text{Surface après déformation} \]

soit :

\[\delta \varepsilon_V \quad \text{l'erreur due aux mesures sur } \varepsilon_V \]

En faisant les mêmes hypothèses que précédemment, et en appliquant l'équation vectorielle de Harr, on obtient pour un quadrilatère, approximativement carré, de côté b :

\[\overline{\delta \varepsilon_V} = 0 \]

\[s_{\delta \varepsilon_V} = \frac{2 s_{x_i}}{b} \]
ANNEXE A3

Résultats des essais en déformations planes à l'état stationnaire

Essai sur limon CL05 A3.1
Essai sur sable CS04 A3.21
Essai sur bicouche sable/limon CLS06 A3.38
RESULTATS DES ESSAIS EN DEFORMATIONS PLANES
A L'ETAT STATIONNAIRE

Essai sur limon CL05 - Nomenclature des figures

<table>
<thead>
<tr>
<th>Code radiographie</th>
<th>Déplacements bruts</th>
<th>Courbes iso-déplacements</th>
<th>Profils tassements</th>
<th>Changements volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>CL05-01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(q_Z = 0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CL05-02</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(q_Z = 12)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CL05-03</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(q_Z = 18)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CL05-04</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(q_Z = 31)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CL05-06</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(q_Z = 42)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Limón - Essai CL05
Déplacements CL05.01 à CL05.02

Pression moyenne appliquée : 12 kN·m⁻²
Facteur d'échelle des longueurs : 0.40
Facteur d'échelle des déplacements : 1.00
Limon – Essai CL05
Déplacements CL05.01 à CL05.03

Pression moyenne appliquée : 18 kN·m$^{-2}$
Facteur d'échelle des longueurs : 0.40
Facteur d'échelle des déplacements : 1.00
Limon - Essai CL05
Déplacements CL05.01 à CL05.04

Pression moyenne appliquée : 31 kN·m⁻²
Facteur d'échelle des longueurs : 0.40
Facteur d'échelle des déplacements : 1.00
Limon - Essai CL05
Déplacements CL05.01 à CL05.06

Pression moyenne appliquée : 42 kN·m⁻²
Facteur d'échelle des longueurs : 0.40
Facteur d'échelle des déplacements : 1.00
Limone - Essai CL05 - CL05.01 à CL05.02
Courbes iso-valeurs des déplacements verticaux
Pression moyenne appliquée : 12 kN·m⁻²
Limon - Essai CL05 - CL05.01 à CL05.03
Courbes iso-valeurs des déplacements verticaux
Pression moyenne appliquée : 18 kN·m⁻²
Limon - Essai CL05 - CL05.01 à CL05.04
Courbes iso-valeurs des déplacements verticaux
Pression moyenne appliquée : 31 kN·m⁻²
Pression moyenne appliquée : 42 kN·m⁻²

Limon - Essai CL05 - CL05.01 à CL05.06

Courbes iso-valeurs des déplacements verticaux
Limon - Essai CL05 - CL05.01 à CL05.02
Courbes iso-valeurs des déplacements horizontaux Pression moyenne appliquée : 12 kN·m⁻²
Limon - Essai CL05 - CL05.01 à CL05.04
Courbes iso-valeurs des déplacements horizontaux Pression moyenne appliquée : 31 kN·m⁻²
Limon - Essai CL05 - CL05.01 à CL05.06
Courbes iso-valeurs des déplacements horizontaux Pression moyenne appliquée : 42 kN·m⁻²
Limon - Essai CL05

Profils des déplacements verticaux pour différentes profondeurs z

Déplacements CL05.01 à CL05.02
Pression moyenne appliquée : 12 kN·m⁻²
Limon - Essai CL05

Profils des déplacements verticaux pour différentes profondeurs z

Déplacements CL05.01 à CL05.03
Pression moyenne appliquée : 18 kN·m⁻²
Limon - Essai CL05

Profils des déplacements verticaux pour différentes profondeurs z

Déplacements CL05.01 à CL05.04
Pression moyenne appliquée : 31 kN·m$^{-2}$
Limon - Essai CL05

Profils des déplacements verticaux pour différentes profondeurs z

Déplacements CL05.01 à CL05.06
Pression moyenne appliquée : 42 kN·m⁻²
Limone - Essai CL05

Changements de volume
(ε_V : moyenne en % dans une maille)

Déplacements CL05.01 à CL05.02
Pression moyenne appliquée : 12 kN·m$^{-2}$
Limone - Essai CL05

Changements de volume
(ε_V : moyenne en % dans une maille)

Déplacements CL05.01 à CL05.03
Pression moyenne appliquée : 18 kN.m$^{-2}$

Note : A la suite d'une erreur de manipulation, les valeurs relatives au premier niveau sont manquantes.
Limone - Essai CL05

Changements de volume
\(\varepsilon_v \) : moyenne en % dans une maille

Déplacements CL05.01 à CL05.04
Pression moyenne appliquée : 31 kN·m\(^{-2}\)
Limon - Essai CL05

Changements de volume
(ε_v : moyenne en % dans une maille)

Déplacements CL05.01 à CL05.06
Pression moyenne appliquée : 42 kN•m$^{-2}$
RESULTATS DES ESSAIS EN DEFORMATIONS PLANES
A L'ETAT STATIONNAIRE

Essai sur sable CS04 - Nomenclature des figures

<table>
<thead>
<tr>
<th>Code radiographie</th>
<th>Déplacements bruts</th>
<th>Courbes iso-déplacements</th>
<th>Profils tassements</th>
<th>Changements volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS04-02</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(q_z = 0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CS04-03</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(q_z = 13)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CS04-04</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(q_z = 44)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CS04-05</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(q_z = 66)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CS04-06</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(q_z = 88)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CS04-07</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(q_z = 110)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Sable - Essai CS04
Déplacements CS04 a CS04.04
Pression moyenne appliquée : 44 kN/m²
Facteur d'échelle des déplacements : 5.00

(les déplacements dus au premier pas de charge ne sont pas représentés)
Sable - Essai CS04
Déplacements CS04.03 à CS04.05

Pression moyenne appliquée : 66 kN•m⁻²
Facteur d'échelle des longueurs : 0.40
Facteur d'échelle des déplacements : 5.00

(Les déplacements dus au premier pas de charge de 33 kN•m⁻² ne sont pas représentés.)
Sable - Essai CS04
Déplacements CS04.03 à CS04.06

Pression moyenne appliquée : 88 kN·m$^{-2}$
Facteur d'échelle des longueurs : 0.40
Facteur d'échelle des déplacements : 5.00

(Les déplacements dus au premier pas de charge de 33 kN·m$^{-2}$ ne sont pas représentés.)
Sable - Essai CS04
Déplacements CS04.03 à CS04.07

Pression moyenne appliquée : 110 kN.m⁻²
Facteur d'échelle des longueurs : 0.40
Facteur d'échelle des déplacements : 5.00

(Les déplacements dus au premier pas de charge de 33 kN.m⁻² ne sont pas représentés.)
Sable - Essai CS04 - CS04.02 à CS04.03
Courbes iso-valeurs des déplacements verticaux
Pression moyenne appliquée : 13 kN·m⁻²
Sable - Essai CS04 - CS04.02 à CS04.04
Courbes iso-valeurs des déplacements verticaux
Pression moyenne appliquée : 44 kN·m⁻²
Sable - Essai CS04 - CS04.02 à CS04.05
Pression moyenne appliquée : 66 kPa m⁻²

Courbes iso-valeurs des déplacements verticaux
Sable - Essai CS04 - CS04.02 à CS04.03
Pression moyenne appliquée : 13 kN/m²
Courbes iso-valeurs des déplacements horizontaux
Sable - Essai CS04 - CS04.02 à CS04.04
Courbes iso-valeurs des déplacements horizontaux Pression moyenne appliquée : 44 kN·m^{-2}
Sable - Essai CS04 - CS04.02 à CS04.05
Courbes iso-valeurs des déplacements horizontaux
Pression moyenne appliquée : 66 kN.m²
Sable - Essai CS04

Profils des déplacements verticaux pour différentes profondeurs z

Déplacements CS04.02 à CS04.03

Pression moyenne appliquée : 13 kN⋅m⁻²
Sable - Essai CS04

Profils des déplacements verticaux pour différentes profondeurs z

Déplacements CS04.02 à CS04.04

Pression moyenne appliquée : 44 kN·m⁻²
Sable - Essai CS04

Profils des déplacements verticaux pour différentes profondeurs z

Déplacements CS04.02 à CS04.05
Pression moyenne appliquée : 66 kN·m⁻²
Limon - Essai CS04

Changements de volume
(ε_v: moyenne en % dans une maille)

Déplacements CS04.02 à CS04.03
Pression moyenne appliquée: 13 kN·m⁻²
Limon - Essai CS04

Changements de volume
(ε_V : moyenne en % dans une maille)

Déplacements CS04.02 à CS04.04
Pression moyenne appliquée : 44 kN·m$^{-2}$
Limon - Essai CS04

Changements de volume
(ε_v : moyenne en % dans une maille)

Déplacements CS04.02 à CS04.05
Pression moyenne appliquée : 66 kN·m$^{-2}$
RESULTATS DES ESSAIS EN DEFORMATIONS PLANES
A L'ETAT STATIONNAIRE

Essai sur bicouche sable/limon CLS06 - Nomenclature des figures

<table>
<thead>
<tr>
<th>Code radiographie</th>
<th>Déplacements bruts</th>
<th>Courbes iso-déplacements</th>
<th>Profils tassements</th>
<th>Changements volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLS06-00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(qz = 0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CLS06-01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(qz = 7)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CLS06-02</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(qz = 12)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CLS06-03</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(qz = 22)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CLS06-04</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(qz = 38)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CLS06-05</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(qz = 51.5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CLS06-06</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(qz = 65)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Bicouche sable/limon - Essai CLS06
Déplacements CLS06.01 à CLS06.02

Pression moyenne appliquée : 12 kN·m⁻²
Facteur d'échelle des longueurs : 0.40
Facteur d'échelle des déplacements : 2.00

(les déplacements dus au premier pas de charge de 7 kN·m⁻² ne sont pas représentés.)
Bicouche sable/limon - Essai CLS06
Déplacements CLS06.01 à CLS06.03

Pression moyenne appliquée : 22 kN·m⁻²
Facteur d'échelle des longueurs : 0.40
Facteur d'échelle des déplacements : 2.00

(Les déplacements dus au premier pas de charge de 7 kN·m⁻² ne sont pas représentés.)
Bicouche sable/limon - Essai CLS06
Déplacements CLS06.01 à CLS06.04

Pression moyenne appliquée : 38 kN·m$^{-2}$
Facteur d'échelle des longueurs : 0.40
Facteur d'échelle des déplacements : 2.00

(Les déplacements dus au premier pas de charge de 7 kN·m$^{-2}$ ne sont pas représentés.)
Bicouche sable/limon - Essai CLS06
Déplacements CLS06.01 à CLS06.05

Pression moyenne appliquée : 51.5 kN·m$^{-2}$
Facteur d'échelle des longueurs : 0.40
Facteur d'échelle des déplacements : 2.00

(Les déplacements dus au premier pas de charge de 7 kN·m$^{-2}$ ne sont pas représentés.)
Bicouche sable_limon - Essai CLS06
Déplacements CLS06.01 à CLS06.06

Pression moyenne appliquée : 65 kN·m⁻²
Facteur d'échelle des longueurs : 0.40
Facteur d'échelle des déplacements : 2.00

(Les déplacements dus au premier pas de charge de 7 kN·m⁻² ne sont pas représentés.)
Bicouche sable/limon - Essai CLS06
Courbes iso-valeurs des déplacements verticaux

Déplacements CLS06.01 à CLS06.02
Pression moyenne appliquée : 12 kN·m⁻²

(Les déplacements dus au premier pas de charge de 7 kN·m⁻² ne sont pas représentés.)
Bicouche sable/limon - Essai CLS06

Courbes iso-valeurs des déplacements verticaux

Déplacements CLS06.01 à CLS06.03

Pression moyenne appliquée : 22 kN·m⁻²

(Les déplacements dus au premier pas de charge de 7 kN·m⁻² ne sont pas représentés.)
Bicouche sable/limon - Essai CLS06
Courbes iso-valeurs des déplacements verticaux

Déplacements CLS06.01 à CLS06.04
Pression moyenne appliquée : 38 kN·m⁻²

(Les déplacements dus au premier pas de charge de 7 kN·m⁻² ne sont pas représentés.)
Bicouche sable/limon - Essai CLS06
Courbes iso-valeurs des déplacements verticaux

Déplacements CLS06.01 à CLS06.05
Pression moyenne appliquée : 51.5 kN·m⁻²

(Les déplacements dus au premier pas de charge de 7 kN·m⁻² ne sont pas représentés.)
Bicouche sable/limon - Essai CLS06
Courbes iso-valeurs des déplacements horizontaux
Déplacements CLS06.01 à CLS06.02
Pression moyenne appliquée : 12 kN·m⁻²
(Les déplacements dus au premier pas de charge de 7 kN·m⁻² ne sont pas représentés.)
Bicouche sable/limon - Essai CLS06
Courbes iso-valeurs des déplacements horizontaux

Déplacements CLS06.01 à CLS06.03
Pression moyenne appliquée : 22 kN·m⁻²

(Les déplacements dus au premier pas de charge de 7 kN·m⁻² ne sont pas représentés.)
Bicouche sable/limon - Essai CLS06
Courbes iso-valeurs des déplacements horizontaux
Déplacements CLS06.01 à CLS06.04
Pression moyenne appliquée : 38 kN⋅m⁻²
(Les déplacements dus au premier pas de charge de 7 kN⋅m⁻² ne sont pas représentés.)
Bicouche sable/limon - Essai CLS06
Courbes iso-valeurs des déplacements horizontaux
Déplacements CLS06.01 à CLS06.05
Pression moyenne appliquée : 51.5 kN·m⁻²
(Les déplacements dus au premier pas de charge de 7 kN·m⁻² ne sont pas représentés.)
Bicouche sable/limon - Essai CLS06

Profils des déplacements verticaux pour différentes profondeurs z

Déplacements CSL06.00 à CSL06.01
Pression moyenne appliquée : $7 \text{kN} \cdot \text{m}^{-2}$
Bicouche sable/limon - Essai CLS06

Profils des déplacements verticaux pour différentes profondeurs z

Déplacements CSL06.00 à CSL06.02
Pression moyenne appliquée : 12 kN·m⁻²
Bicouche sable/limon - Essai CLS06

Profils des déplacements verticaux pour différentes profondeurs z

Déplacements CSL06.00 à CSL06.03

Pression moyenne appliquée : 22 kN·m$^{-2}$
Bicouche sable/limon - Essai CLS06

Profils des déplacements verticaux pour différentes profondeurs z

Déplacements CSL06.00' à CLS06.04
Pression moyenne appliquée : 38 kN·m⁻²
Bicouche sable/limon - Essai CLS06

Profils des déplacements verticaux pour différentes profondeurs z

Déplacements CSL06.00 à CLS06.05

Pression moyenne appliquée : $51.5 \text{ kN} \cdot \text{m}^{-2}$
Bicouche sable/limon - Essai CLS06

Changements de volume
(ε_v : moyenne en % dans une maille)

Déplacements CSL06.00 à CSL06.01
Pression moyenne appliquée : 7 kN·m$^{-2}$
Bicouche sable/limon - Essai CLS06

Changements de volume
(ε_V : moyenne en % dans une maille)

Déplacements CSL06.00 à CSL06.02
Pression moyenne appliquée : 12 kN·m$^{-2}$
Bicouche sable/limon - Essai CLS06

Changements de volume
(ε_v : moyenne en % dans une maille)

Déplacements CSL06.00 à CSL06.03
Pression moyenne appliquée : 22 kN·m$^{-2}$
Bicouche sable/limon - Essai CLS06

Changements de volume
(ε_v : moyenne en % dans une maille)

Déplacements CSL06.00 à CLS06.04
Pression moyenne appliquée : 38 kN•m$^{-2}$
Bicouche sable/limon - Essai CLS06

Changements de volume
(ε_v : moyenne en % dans une maille)

Déplacements CSL06.00 à CLS06.05
Pression moyenne appliquée : 51.5 kN\cdot m^{-2}
ANNEXE A4

Modèle théorique pour l'état stationnaire en déformations planes

Exemples

Exemple 1 : Massif homogène sur base rigide A4.1
Exemple 2 : Massif bicouche sur base rigide A4.7
MODELE THEORIQUE POUR L'ETAT STATIONNAIRE EN DEFORMATIONS PLANES

Exemple 1 : Massif homogène sur base rigide

Pression : 83 kN·m⁻²
γ_d : 18 kN·m⁻³
φ' : 35°
D_W : 2 mm
ν : 0.40 ≈ k₀
β_V : 10'000 kN·m⁻²
ETUDE PARAMETRIQUE cas de reference Massif homogene Plaque souple
pres 83 kN.m-2 module Betav 10000 kN.m-2

NX=51 DELTAX= 0.200 G1=18.0 NU1= 0.40 PHI1= 35 D01= 0.00200
NZ=21 DELTAZ= 0.200
Q=100.000

unites: [m] [kN] [kN.m-2] [degres]
ETUDE PARAMETRIQUE cas de reference Massif homogene Plaque souple press. 83 kN.m-2 module Betav 10000 kN.m-2

NX=51 DELTAX=0.200 G1=18.0 NU1=0.40 PHI1=35 DOI=0.00200
NZ=21 DELTAZ=0.200
Q=100.000

unites: [m] [kN] [kN.m-2] [degres]

echelle — 108.420 kN.m-2

[Diagram showing material properties and stress distribution graphically]
ETUDE PARAMETRIQUE cas de reference Massif homogene Plaque souple pr"ess. 83 kN.m-2 module Betav 10000 kN.m-2

NX=51 DELTAX= 0.200 G1=18.0 NU1= 0.40 PHI1= 35 DOI= 0.00200
NZ=21 DELTAZ= 0.200
Q=100.000

unites: [m] [kN] [kN.m-2] [degres]
ETUDE PARAMETRIQUE cas de reference Massif homogene Plaque souple press. 83 kN/m-2 module Betav 10000 kN/m-2

NX=51 DELTAX= 0.200 G1=18.0 NU1= 0.40 PHI1= 35 DOI= 0.00200
NZ=21 DELTAZ= 0.200
Q=100.000

unites: [m] [kN] [kN.m-2] [degres]
ETUDE PARAMETRIQUE cas de reference Massif homogene Plaque souple
press. 83 kN.m-2 module Betav 10000 kN.m-2

NX=51 DELTAX= 0.200 G1=18.0 NUI= 0.40 PHI1= 35 D01= 0.00200
NZ=21 DELTAZ= 0.200
Q=100.000

unités: [m] [kN] [kN.m-2] [degrés]
Exemple 2 : Massif bicouche sur base rigide

Pression $3.3 \text{kN} \cdot \text{m}^{-2}$

Couche supérieure
- $\gamma_d = 20 \text{kN} \cdot \text{m}^{-3}$
- $\phi' = 37^\circ$
- $D_w = 10 \text{ mm}$
- $\nu = 0.36$

Couche inférieure
- $\gamma_d = 20 \text{kN} \cdot \text{m}^{-3}$
- $\phi' = 30^\circ$
- $D_w = 5 \text{ mm}$
- $\nu = 0.45$
test 36 29 JANVIER 86 massif bicouche
charge entre x=0.70 et x=1.30 Q=5.0 kN/m en 1 iter.
NX=41 DELTAX= 0.050 G1=20.0 NO1= 0.50 PHI1= 37 DO1= 0.0100
NZ=21 DELTAZ= 0.050 G2=20.0 NO2= 0.55 PHI2= 30 DO1= 0.0050
Q=5.000 unites: [m] [kN] [kN.m-2] [degres]
test 36 29 JANVIER 86 massif bicouche
charge entre x=0.70 et x=1.30 Q=5.0 kN/m en 1 iter.

NX=41 DELTAX= 0.050 G1=20.0 NO1= 0.50 PHI1= 37 DOI= 0.0100
NZ=21 DELTAZ= 0.050 G2=20.0 NO2= 0.55 PHI2= 30 DOI= 0.0050
Q=5.000 unites: [m] [kN] [kN.m-2] [degres]

\[\begin{array}{c|c|c|c|c|c|c|c|c|}
\hline
X [m] & 0.00 & 0.30 & 0.60 & 0.90 & 1.20 & 1.50 & 1.80 & 2.10 \\
\hline
\end{array} \]
test 36 29 JANVIER 86 massif bicouche
charge entre x=0.70 et x=1.30 Q=5.0 kN/m en 1 iter.

NX=41 DELTAX= 0.050 G1=20.0 NO1= 0.50 PHI1= 37 DOI= 0.0100
NZ=21 DELTAZ= 0.050 G2=20.0 NO2= 0.55 PHI2= 30 DOI= 0.0050
Q=5.000

unites: [m] [kN] [kN.m-2] [deg]

Diagramme montrant des déformations volumétriques et planes.
test 36 29 JANVIER 86 massif bicouche
charge entre $x=0.70$ et $x=1.30$ $Q=5.0$ kN/m en 1 iter.

$NX=41$ $DELTAX=0.050$ $G1=20.0$ $NO1=0.50$ $PH1=37$ $DO1=0.0100$
$NZ=21$ $DELTAZ=0.050$ $G2=20.0$ $NO2=0.55$ $PH2=30$ $DO2=0.0050$
$Q=5.000$

units: [m] [kN] [kN.m-2] [deg]

Diagram showing deformation plots with axes labeled.
test 36 29 JANVIER 86 massif bicouche
charge entre x=0.70 et x=1.30 Q=5.0 kN/m en 1 iter.

NX=41 DELTAX= 0.050 G1=20.0 NO1= 0.50 PH11= 37 D01= 0.0100
NZ=21 DELTAX= 0.050 G2=20.0 NO2= 0.55 PH12= 30 D01= 0.0050
Q=5.000

unités: [m] [kN] [kN.m-2] [degrés]
ANNEXE A5

Modèle théorique appliquée aux cas des essais

(état stationnaire de déformations planes)
MODELE THEORIQUE APPLIQUE AUX CAS DES ESSAIS
(ETAT STATIONNAIRE DE DEFORMATIONS PLANES)

Cas de l'essai CL05 (limon)
(CL05.01 à CL05.02 - 12 kN·m⁻²)
CL05.F021-04 6 FEVR. 86 massif homogene plaque rigide 15cm charge 1.8kN.m-2 module=250kN.m-2 Nu=0.45

NX=33 DELTAX= 0.025 G1=12.4 NU1= 0.45 PHI1= 30 DOI= 0.0002
NZ=16 DELTAZ= 0.025
Q=1.800

unités: [m] [kN] [kN.m-2] [degrés]
CL05.F021-04 6 FEVR. 86 massif homogene plaque rigide 15cm
crage 1.8kN.m-2 module=250kN.m-2 Nu=0.45

NX=33 DELTAX= 0.025 G1=12.4 NU1= 0.45 PH11= 30 DOI= 0.9002
NZ=16 DELTAZ= 0.025
Q=1.800
unites: [m] [kN] [kN.m-2] [degres]

20.0 kN.m-2
CL05.F021-04 6 FEVR. 86 massif homogène plaque rigide 15cm charge 1.8kN.m-2 module=250kN.m-2 Nu=0.45

NX=33 DELTAX= 0.025 G1=12.4 NU1= 0.45 PHI1= 30 DO1= 0.0002
NZ=16 DELTAZ= 0.025
Q=1.800

unités: [m] [kN] [kN.m-2] [degrés]
CL05.F021-04 6 FEVR. 86 massif homogene plaque rigide 15cm
charge 1.8kN.m-2 module=250kN.m-2 Nu=0.45
NX=33 DELTAX= 0.025 G1=12.4 NU1= 0.45 PHI1= 30 DO1= 0.0002
NZ=16 DELTAZ= 0.025
Q=1.500

unités: [m] [kN] [kN.m-2] [degrés]
CL05.F021-04 6 FEVR. 86 massif homogene plaque rigide 15cm
charge 1.8kN.m⁻² module=250kN.m⁻² Nu=0.45

NX=33 DELTAX= 0.025 G1=12.4 NU1= 0.45 PHI1= 30 001= 0 0002
NZ=16 DELTAZ= 0.025

Q=1.800

unites: [m] [kN] [kN.m⁻²] [deg.]

Diagram showing displacements in a plane with X and Y axes labeled [m].
MODELE THEORIQUE APPLIQUE AUX CAS DES ESSAIS
(ETAT STATIONNAIRE DE DEFORMATIONS PLANES)

Cas de l'essai CS04 (sable)
(CS04.02 à CS04.03 - 13 kN·m⁻²)
CS04.F02110 9 FEVR. 86 massif homogene plaque rigide 12cm
charge 1.56kN.m-2 module=4000kN.m-2 Nu=0.37

NX=41 DELTAX= 0.020 GI=15.7 NU1= 0.37 PHI1= 36 DOI= 0.0003
NZ=16 DELTAZ= 0.025
Q=1.560 units: [m] [kN] [kN.m-2] [deg]

Diagram showing a vertical diffusion pattern with various lines indicating stress or displacement values at different depths (Z) and locations (X) on a vertical section.
CS04 F021109 FEVR. 86 massif homogène plaque rigide 12cm
charge 1.56kN.m-2 module=4000kN.m-2 Nu=0.37

NX=41 DELTAX=0.020 G1=15.7 NU1=0.37 TH1=36 DN1=0.0005
NZ=16 DELTAZ=0.025
C=1.560

unites: [m] [kN] [kN.m-2] [degres]

--- 20.0 kN.m-2

X [m]

0.000 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80

CS04.F02110 y FEVR. 86 massif homogène plaque rigide 12.1
charge 1.56kN.m² module=4000kN.m² Nu=0.37

NX=41 DELTAX=0.020 GI=15.7 NU1=0.37 PHI1=35 30=0.005
NZ=16 DELTAZ=0.025

D=1.560

Unités : [m] [kN] [kN.m²] [degrès]
CS04.02110 9 FEVR. 86 massif homogene plaque rigide 12cm
charge 1.56kN.m-2 module=4000kN.m-2 Nu=0.37
NX=41 DELTAX=0.020 G1=15.7 NU1=0.37 PHI1=38 DO1=0.0003
NZ=16 DELTAZ=0.025
0=1.560
unités: [m] [kN] [kN.m-2] [degrés]
G304, F02110 9 FEVR. 86 massif homogène plaque rigide 12 cm
charge 1.56 kN/m² module=4000 kN/m² Nu=0.37

NX=41 DELTAX=0.020 GI=15.7 NUi=0.37 PHI1=36 DOI=0.9003
NZ=16 DELTAZ=0.025
O=1.560 unites: [m] [kN] [kN/m²] [dgrs]

DEPLACEMENT HORIZONTAL [m] ×10³
MODELE THEORIQUE APPLIQUE AUX CAS DES ESSAIS
(ETAT STATIONNAIRE DE DEFORMATIONS PLANES)

Cas de l'essai CLS06 (bicouche sable/limon)

(CL506.00 à CL506.01 - 7 kN⋅m⁻²)
LE06.021-01 11 FEVRIER 86 massif bicauche plaque rigide 15 cm charge 1.05 kN/m² (1) : B = 4500 kN/m² Nu = 0.37 (2) : B = 300 N = 0.45

NX = 33 DELTAX = 0.025 G1 = 15.7 NU1 = 0.37 PH11 = 36 D01 = 0.00030
NZ = 17 DELTAZ = 0.025 G2 = 12.4 NU2 = 0.45 PH12 = 30 D02 = 0.00002
0 = 1.050

unités : [m] [kN] [kN/m²] [dégres]
CLS06.F021-01 11 FEVR. 86 massif bicouche plaque rigide 15cm
charge 1.05 kN.m-2 (1): B=4500 kN.m-2 Nu=0.37 (2): B=300 Nu=0.45

NX=33 DELTAX= 0.025 GI=15.7 NU1= 0.37 PHI1 = 36 DO1= 0.00030
NZ=17 DELTAZ= 0.025 G2=12.4 NU2= 0.45 PHI2 = 30 DO2= 0.00020
Q=1.050

unités: [m] [kN] [kN.m-2] [degrés]

Echelle: 10.000 kN.m-2
CLS06.F021-02 : FEVR. 86 massif blocsche pileque rigide 15cm charge 1.05kN.m-2 (1) 9=4500kN.m-2 Nu=0.37 (2) B=300 Nu=0.45

NX=33 DELTAX=0.025 GI=15.7 NU1=0.37 PH1=36 DO1=0.05002
NZ=17 DELTAZ=0.025 GZ=12.4 NU2=0.45 PH2=30 DO2=0.00002
0=1.050

unités: [m] [kN] [kN.m-2] [degrés]
CLS06.F021-01 11 FEVR. 86 massif bicauche plaque rigide 15 cm
charge 1.05kN.m-2 (1) : 9=4500kN.m-2 Nu=0.37 (2) : B=300 Nu=0.45

NX=33 DELTAX= 0.025 G1=15.7 NU1= 0.37 PHI1=36 O1=0.00030
NZ=17 DELTAZ= 0.025 G2=12.4 NU2= 0.45 PHI2=30 O2=0.00002
O=1.050

unités: [m] [kN] [kN.m-2] [deg]
CLS06.F021-01 11 FEVR. 86 massif bicauche plaque rigide 15cm
charge 1.05kN.m-2 (1) B=4500kN.m-2 Nu=0.37 (2) B=300 Nu=0.45

NX=33 DELTAx=0.025 G1=15.7 NU1=0.37 PHI1=36 D01=0.00030
NZ=17 DELTAz=0.025 G2=12.4 NU2=0.45 PHI2=30 D02=0.00002
O=1.050

unites: [m] [kN] [kN.m-2] [deg-m]
CURRICULUM VITAE

Nom et prénoms BOURDEAU Philippe Louis
Date et lieu de naissance 6 février 1951 à GUEUGNON (France)
Nationalité Français
Adresse actuelle ISRF - Laboratoire de mécanique des sols
 Département de génie civil
 EPFL - Ecublens
 CH - 1015 LAUSANNE
 (Tél. : 021/47 23 15)

DIPLOMES

- Baccalauréat scientifique (série C) à Lyon, en 1969
- Certificat d'études postgrades en géotechnique par l'EPFL, en 1979

ACTIVITES PROFESSIONNELLES

Juin 1976 - septembre 1977 Municipalité de Meknes (Maroc) : Travaux publi-
 cks, chef de département, dans le cadre du Service national français pour la coopération
 technique

Octobre 1977 - avril 1979 Société PBTP, Gueugnon (France) : Ingénieur
 responsable des études de ponts et fondations.
 Principaux projets réalisés :
 • fondations des laminoirs pour MEXINOX Company, usine de San Luis Potosi, Mexique
 • pont-rail à Mâcon pour la Société National des Chemins de Fer Français (SNCF), nouvelle
 ligne entre Paris et Lyon pour trafic à grande vitesse (TGV)
 • fondations du pont levant sur le Canal du Centre, à Montceau-les-Mines, France
 • divers ouvrages routiers pour le Département de Saône et Loire
 Pendant la même période :
 • Études postgrades en géotechnique à l'EPFL
Mai 1979 - décembre 1981
EPFL : Chercheur au Laboratoire de mécanique des sols. Domaines d'investigation :
- stabilité des pentes
- essais de fluage sur des sols argileux en relation avec la stabilité des pentes
- essais de consolidation à vitesse de déformation contrôlée (CRS)
- Comportement des remblais sur sols compres-sibles

Janvier 1981 - mai 1981
Université Purdue, West Lafayette, Indiana (USA) : Stagiaire au Département de Génie Civil, études postgrages et recherche en géotechnique :
- méthodes probabilistes en géotechnique (Prof. M.E. Harr)
- pathologie des fondations (Prof. G.A. Leonards)
- dynamique des sols (Prof. J.L. Chameau)
- investigation sur l'interaction mécanique entre sols et géotextiles (en collaboration avec les professeur M.E. Harr et R.D. Holtz)

Depuis juin 1981
EPFL : Chercheur au Laboratoire de mécanique des sols. Champs d'investigation :
- application de la méthode des éléments finis au comportement des chaussées souples
- développement de méthodes probabilistes dans les domaines suivants :
 - comportement des chaussées souples
 - renforcement des sols par géotextiles
 - stabilité des pentes
 - stabilité des bajoyers d'écluses
 - tassement des fondations superficielles
 - risques liés aux évacuateurs de crues
- Travail de thèse dans le domaine de la méca-nique des milieux granulaires
 Directeur : Prof. E. Recordon
 Conseiller scientifique : Prof. M.E. Harr
- Depuis 1986 : animateur du groupe d'étude sur la fiabilité des ouvrages, au Départe-ment de Génie civil de l'EPFL

Affiliations : International Geotextile Society (IGS)
PUBLICATIONS

Articles et communications

- BOURDEAU P.L., RECORDON E., Dimensionnement des superstructures de chaussées souples. CR 2ème Séminaire sur les méthodes probabilistes en géotechnique, EPFL, Lausanne, mars 1983

- OBONI F., BOURDEAU P.L., Recherche de la surface de glissement la plus probable dans un massif stratifié. CR 2ème Séminaire sur les méthodes probabilistes en géotechnique, EPFL, Lausanne, mars 1983

- OBONI F., BOURDEAU P.L., Développements dans les analyses de stabilité de pente. CR Séminaire sur la Détecton et l'Utilisation des Terrains Instables (DUTI), EPFL, Lausanne, décembre 1983

- BOURDEAU P.L., OBONI F., La distribution Bêta et son utilisation pratique dans les méthodes de calcul probabilistes. Ingénieurs et Architectes Suisses No 5, Lausanne, 1985, pp. 65-71

Rapports de recherche

- Glissement de Villarbeney, 1ère rapport intermédiaire, GX59. EPFL, Laboratoire de géotechnique, Lausanne, juillet 1979 (en collaboration avec M. Dysli)

- Glissement de Villarbeney, 2ème rapport intermédiaire, GX59, EPFL, Laboratoire de géotechnique, Lausanne, août 1980 (en collaboration avec M. Dysli)

- Méthodes d'exploitation numérique des radiographies d'un massif de sol bidimensionnel à déformations planes, GX75. EPFL, ISRF, Laboratoire de mécanique des sols, Lausanne, décembre 1980

- Le concept d'épaisseur équivalent dans les méthodes empiriques de dimensionnement des chaussées souples, GX75. EPFL, ISRF, Laboratoire de mécanique des sols, Lausanne, septembre 1982

- Recherche de la surface de glissement à fiabilité minimale dans un massif stratifié, EPFL, DUTI - Laboratoire de mécanique des sols, Lausanne, novembre 1980 (en collaboration avec F. Oboni)

- Influence du milieu ambiant sur la force portante d'une chaussée, Rapport final, 3ème partie. No 79, Département fédéral des transports, des communications et de l'énergie, Office fédéral des routes, EPFL, ISRF, Laboratoire de mécanique des sols, Lausanne, avril 1984 (en collaboration avec M. Dysli)