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Abstract

Information theory has allowed us to determine the fundamental limit of various communica-

tion and algorithmic problems, e.g., the channel coding problem, the compression problem,

and the hypothesis testing problem. In this work, we revisit the assumptions underlying two of

the classical information theoretic problems: the channel coding problem and the hypothesis

testing problem.

In the first part, we study the information velocity problem. If the channel coding problem

answers the question of how much information we can send per time unit, the information

velocity problem tackles the question of the latency of communicating said information on

a communication network composed of relays. In the literature, this problem is commonly

studied in the regime of finite message size but with a growing number of relays. In this work,

we consider an asymptotic regime where we let the message size to grow to infinity. We present

a converse result and two achievability results: one for Binary Erasure Channels (BEC) and

one for Additive White Gaussian Noise (AWGN) channels with feedback. The converse result

is obtained by extending the argument given in (Rajagopalan and Schulman, 1994) using the

tools of F-divergences. The achievability results that we obtain are based on two different

ideas. In the achievability result for BEC, we exploited the property of tree codes which ensure

that all message bits can eventually be correctly decoded after a certain time delay. We use this

property to build a tape abstraction which allows for the streaming of message bits through

the relay chain. For AWGN channels, we modify the Schalkwijk-Kailath scheme to allow each

relay to focus on locally transmitting its estimate of the message bits to its neighboring relay.

We analyze the local behavior of this scheme, and show that we can prove results about the

information velocity of the whole network based on these local results.

In the second part we study the monitoring problem. This problem capture a scenario where

several regular data-generating processes maximize their own reward, with one adversarial

data-generating process hiding among these regular processes and privy to certain private

information. This model introduces an interesting trade-off where the adversarial data-

generating process aims to exploit its private information without deviating too much from

the regular data-generating processes. As by increasing its deviation, it also becomes more

distinguishable from the regular data generating processes. We will analyze this problem

using tools from information theory and characterize the extent of the advantage that can be

obtained by the adversarial data generation process. In doing so, we showed that classification

problems, which are commonly modeled as hypothesis testing problems, become more
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Abstract

complex when an adversarial data-generating process can adapt to the tester’s protocol.

Keywords : Information Velocity, Tree Codes, Feedback, Schalkwijk-Kailath Scheme, Channel

Codes, Monitoring Problem, Hypothesis Testing, Type Method
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Résumé

La théorie de l’information nous a permis de déterminer la limite fondamentale de diverses

tâches de communication et d’algorithmiques, telles que le problème de codage de canal,

le problème de codage de sources et le problème de tests d’hypothèse. Dans cette thèse,

nous revisitons les hypothèses sous-jacentes à deux problèmes classiques de la théorie de

l’information : le problème de codage de canal et le problème de tests d’hypothèse. Ce faisant,

nous explorons des modèles qui remettent en question ces hypothèses fondamentales.

Dans la première partie, nous étudions le problème de la vitesse d’information (information

velocity en anglais). Si le problème de codage de canal répond à la question de la quantité

d’information que nous pouvons envoyer par unité de temps, le problème de la vitesse d’in-

formation aborde la question de la latence de communication de cette information sur un

réseau de communication composé de relais. Dans la littérature, ce problème est couramment

étudié dans le régime de taille de message finie mais avec un nombre croissant de relais. Dans

ce travail, nous considérons un régime asymptotique où nous laissons la taille du message

croître à l’infini. Nous présentons un résultat contradictoire et deux résultats de réalisabilité :

l’un pour les canaux binaire d’effacement (BEC en anglais) et l’autre pour les canaux de bruit

additif blanc gaussien (AWGN en anglais) avec retour d’informations. Le résultat contradic-

toire est obtenu en étendant l’argument donné dans (Rajagopalan and Schulman, 1994) en

utilisant les outils des F-divergences. Les résultats de réalisabilité que nous obtenons sont

basés sur deux idées différentes. Dans le résultat de réalisabilité pour le BEC, nous avons

exploité la propriété des codes de l’arbre (tree codes en anglais) qui garantissent que tous les

bits du message peuvent finalement être décodés après un certain délai. Nous utilisons cette

propriété pour construire une abstraction de bande qui permet le transfert en continu des bits

de message à travers la chaîne de relais. Pour les canaux AWGN avec retour d’informations,

nous modifions le schéma de Schalkwijk-Kailath qui permet à chaque relais de se concentrer

sur la transmission locale de son estimation des bits de message à son relais voisin. Nous

analysons le comportement local de ce schéma et montrons que nous pouvons prouver des

résultats sur la vitesse d’information de la totalité du réseau basés sur ces résultats locaux.

Dans la deuxième partie, nous étudions le problème de surveillance. Ce problème modélise un

scénario où plusieurs processus de génération de données réguliers opèrent pour maximiser

leur propre récompense, avec un processus de génération de données adverses se cachant

parmi ces processus réguliers et ayant accès à certaines informations privées. Ce modèle in-

troduit un compromis intéressant où le processus de génération de données adverses cherche
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à exploiter ses informations privées sans s’écarter trop des processus règuliers, risquant ainsi

d’être facilement différenciable des processus réguliers. Nous analyserons ce scénario à l’aide

d’outils de la théorie de l’information et caractériserons l’étendue de l’avantage pouvant être

obtenu par le processus de génération de données adverses. Ce faisant, nous avons montré

que les problèmes de classification, souvent modélisés comme des problèmes de tests d’hypo-

thèse, deviennent plus complexes lorsque le processus de génération de données adverses

peut s’adapter au protocole du testeur.

Mots-clés : Vitesse d’Information, Codes de l’Arbre, Retour d’Informations, Schéma de

Schalkwijk-Kailath, Codage de Canaux, Problème de Surveillance, Problèmes de Tests d’Hypo-

thèse
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1 Introduction and Preliminaries

It is not an overstatement to say that information theory is one of the most important mathe-

matical theories in the 21st century. What began as an attempt to understand the limitations

and quantify the performance of the newly developed telephony systems in 1948 (Shannon,

1948) has since found applications in diverse fields such as machine learning, cryptography,

statistics, etc.

Among these applications, digital communications can be considered as the poster child of

this theory. In fact, the story of digital communications can be told as an extended journey

to achieve the performance that Shannon promised to be possible in 1948. Of course, as we

know, Shannon actually provides a constructive method on how to design communication

systems which achieve the fundamental limit he derived. If not for the very tiny problem

that a) the maximum-likelihood decoding process he proposed is exactly as hard1 as solving

the traveling salesman problem or determining the 3-SAT problem2(Berlekamp et al., 1978),

and b) his method only exhibits optimality in the regime where the size of the data grows to

infinity.

Since then, generations of researchers have attempted to find the holy grail for problem a),

namely, a cleverly constructed mathematical object that achieves the same performance as

the random codes that Shannon proposed while requiring much less computation to decode.

From these continuous effort, we have discovered many interesting mathematical objects such

as Hamming codes (Hamming, 1950), Golay codes (Golay, 1949), Reed-Solomon codes (Reed

and Solomon, 1960), Reed-Muller codes (Reed, 1954), BCH codes (Bose and Ray-Chaudhuri,

1960), convolutional codes (Massey et al., 1973), etc., which nowadays can be classified as

“classical” channel codes. Particularly interesting developments are the so-called modern

channel codes, with two of the most representative examples being the Spatially-Coupled

Low-Density Parity Check codes (Jimenez Felstrom and Zigangirov, 1999) (Gallager, 1962)

and the Polar codes (Arikan, 2009); both of which have recently been shown to achieve the

fundamental limit of performance that Shannon has derived.

1More accurately, it has been shown that the problem of decoding general linear codes is NP-complete
2Or finding the best way to flip a stack of pancakes, if one prefers a more down-to-earth comparison.
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Chapter 1. Introduction and Preliminaries

Another interesting line of research is based on developing methods to directly tackle problem

b) by refining the fundamental limits in the regime where the number of data is more “reason-

able”, with most of these results in this area found under the heading of “finite-blocklength”

information theory (Polyanskiy et al., 2010). A rather surprising result shows that the existing

channel codes are actually already very close to optimal.

Given these results, it is natural to have a sense that the problem of channel coding as a

mathematical problem is largely “solved”. However, channel coding as a practical problem is

still rich in unsolved problems.

One can argue that one of the main reasons why the channel coding problem is practically

important is because it allows us to characterize the possible performances of real-world

communication systems. The blocklength in the channel coding problem is directly propor-

tional to the number of “independence" that is consumed by a practical communication

system (whether this “independence" is achieved by transmitting through different frequency

sub-bands or different time slices). In this work, we will focus on using the blocklength as a

proxy of time. Hence, the current results in channel coding problems essentially give us a very

accurate characterization of the time needed to communicate a certain number of bits.

But seen from this light, the channel coding problem only characterizes one aspect of time in

communication problems, namely, the long-time ratio between the number of bits and the

required time to communicate the said bits. Another aspect that has recently received more

attention is the notion of delay3. There are several approaches that have been proposed to

address this notion of delay, either through designing channel codes with finite delay (Guo and

Kostina, 2023), or through defining a model to account for the cost of the delay of information

update (Kaul et al., 2012).

In this thesis, we will focus on one of the approaches to study and quantify the delays in a

network setting, namely the approach of “information velocity” where we study the delay

of propagating information through a network in terms of the ratio between the length of

transmission time vs the number of relays which intermediated the transmission. We will

present several results on this approach in the first part of this thesis.

In the second part of this thesis, we will consider a particular model of hypothesis testing

problem. Information-theoretic methods have a long history of being associated with the

analysis of hypothesis testing problems. There has been a very fruitful line of research using

the hypothesis testing problem to prove converse results for communication problems, e.g.,

(Blahut, 1974). More recently, the hypothesis testing framework is also being used to model

classification problems in machine learning, especially in the context of distributed learning,

3In fact, the author was exposed to this delay vs rate distinction while taking the Distributed System Engineering
class. It turns out that most practical communication protocols seem to choose a combination of a simple
forward-error correction and an ARQ scheme to achieve reliable communication. Simple forward error correction
schemes generally require much shorter blocklength to achieve reasonable performance compared to the more
complex capacity achieving schemes. Combined with ARQ scheme to account for hard-to-correct error events,
this combination performs surprisingly well in practices.
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1.1 Hypothesis Testing

for example (Kayaalp et al., 2023), (Lalitha et al., 2018).

An important assumption in the classical hypothesis testing problem is that the data-generating

process which we tested is not influenced by the hypothesis testing scheme itself. This as-

sumption is certainly reasonable if the hypothesis that we want to study is induced by a natural

phenomenon. However, this assumption might not hold if the data-generating process is

incentivized to increase the error rate, for example, if we assume that the hypothesis testing

problem is conducted to monitor for suspicious communication in an attempt to detect for

intrusion in a network. There has been several research in this direction, for example to deter-

mine the optimal error exponent of classification error in (Yasodharan and Loiseau, 2019), or

to design an optimal classifier and adversary, for example in (Jin and Lai, 2021). In the second

part of the thesis, we propose a model that can capture this dynamic while being amenable to

information-theoretic analysis.

But before we present these results, we will review several classical information theory results

in channel coding and hypothesis testing, for the purpose of understanding the context and

motivation for our result, while introducing mathematical notations that we will use in the

later chapters.

1.1 Hypothesis Testing

The simplest form of hypothesis testing is binary hypothesis testing. In this problem, a tester

is given an observation Y and needs to determine whether this observation is a realization of

a data-generating process in D0 or D1, i.e., PY ∈D0 or PY ∈D1.

For example, consider an environmental scientist who wants to determine whether Lau-

sanne’s autumn temperature in 2023 is warmer than the temperature in 2022. In this case, the

statistician has two hypotheses,

• H0: Lausanne’s autumn temperature in 2023 is not higher than the autumn temperature

in 2022.

• H1: Lausanne’s autumn temperature in 2023 is higher than the autumn temperature in

2022.

The scientist will base his conclusion on the average autumn 2023 temperature Y2023. To

determine the test function, the scientist needs to specify the data-generating process that

corresponds to their hypotheses. As this thesis is not a treatise in environmental science, let

us simply assume that the data-generating processes are Gaussian distributions with different

means, i.e., D0 = {N (µ,σ2) : µ ≤ y2022} and D1 = {N (µ,σ2) : µ > y2022}, where N (µ,σ) is the

Gaussian distribution with mean µ and variance σ2.

Let us model the decision process of the scientist as the test function T (·). We will consider a

test function where the scientist simply compares the observed average temperature in 2023

3



Chapter 1. Introduction and Preliminaries

against a threshold t , i.e., T (x) = 1{x > t }. Based on this test function, we can determine the set

where the scientist decides 1 as D1 = {x : x > t } and where they decide 0 as D0 = Dc
1. Now the

question is how to quantify the performance of this simplistic decision rule that the scientist

proposes. Common performance metrics in this framework are the probability of two error

events4, namely,

1. Type-I error, the probability that the scientist decides H1 even though the data-generating

process is actually in D0, i.e., maxPY ∈D0 PY (T (Y ) = 1).

2. Type-II error, the probability that the scientist decides H0 if the data-generating process

is actually in D1, i.e., maxPY ∈D1 PY (T (Y ) = 0).

In general, each choice of test function will generate a different trade-off in terms of Type-I

and Type-II errors. For example, in this case, we can see that for this example problem, we

have

Type-I Error + Type-II Error = 1. (1.1)

Although this relation does not hold for general hypothesis testing problems.

Given a family of test functions, it is reasonable to ask whether this family is “optimal”, in the

sense that given any test function with Type-I error and Type-II error (ϵI ,ϵI I ), there exists a test

function in this family with Type-I error and Type-II error (ϵ′I ,ϵ′I I ) such that ϵ′I ≤ ϵI or ϵ′I I ≤ ϵI I .

The family of test functions which fulfills this criterion is commonly referred as the universally

most powerful (UMP) tests.

One of the earliest results in this area is the existence of UMP tests for simple binary hypothesis

testing, i.e., if D0 and D1 are singleton sets(Neyman et al., 1933)5.

Theorem 1.1 (Neyman-Pearson). Consider a binary hypothesis testing problem with observa-

tion Y , and simple hypotheses such that, D0 = {PY } and D1 = {QY }. We define the likelihood-

ratio test as,

Tt (y) = 1
{

log
dQY

dP
(y) > t

}
, (1.2)

and the randomized likelihood-ratio test as the

T (y) = TtR (y) (1.3)

where (t1, t2) is a pair of threshold values and R is an integer random variable in {1,2}. The

family of randomized likelihood-ratio tests is UMP tests for binary hypothesis testing problem

with simple hypotheses.

4Indeed, this is the Frequentist approach to hypothesis testing. But the distinction between Bayesian and
Frequentist approach is irrelevant for this thesis.

5Although back then they referred to the test family which fulfills our optimality condition as “the most efficient”
test as opposed to UMP tests terminology that we use in this work.
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1.1 Hypothesis Testing

Interestingly, a modification to the randomized likelihood-ratio tests can also be shown to be

UMP for a certain subclass of binary hypothesis testing problem(Karlin and Rubin, 1956).

Theorem 1.2 (Karlin-Rubin). Consider a binary hypothesis testing problem where the data-

generating process can be parameterized by a real parameter θ i.e., Pθ
Y such that D0 = {P (θ)

Y : θ ≤
t } and D1 = {P (θ)

Y : θ > t }. Furthermore, let us assume that there exists a statistics of Y , i.e., g (y),

such that we have

f (y) = log
dP (θ2)

Y

dP (θ1)
Y

(
g (y)

)
(1.4)

is non-decreasing on g (y) for every θ1 ≤ θ2. Then the family of test functions T (y) = 1{g (y) > t }

is UMP tests for this binary hypothesis testing problem.

This theorem lends validity to the practice of taking one representative distribution from

D0 and D1, and then performing hypothesis testing using likelihood-ratio tests as if D0 and

D1 are singletons each containing their representative distribution. If we assume that the

data-generating process fulfills the condition of Karlin-Rubin theorem then these seemingly

ad-hoc tests are also UMP. Given this theorem, we can see that the scientist’s decision in the

running example is already optimal.

In practice, there might be a reason to prefer sub-optimal hypothesis testing rules if the

likelihood ratio tests are computationally intractable, for example in (Newey and West, 1987).

Nevertheless, the likelihood-ratio tests play an important role in the theoretical treatment of

hypothesis testing problems, simply by virtue of its theoretical amenability.

The setting in which likelihood-ratio tests particularly shine is if the observation is multivariate,

i.e., Y [1 : n],6 and the data-generating process in D0 and D1 are independent and identical

distributions, i.e., for every PY [1:n] ∈D0
⋃

D1, PY [1:n] =∏n
i=1 PY [i ] and for all i we have PY [i ] =

PY [1].

In the case of a simple binary hypothesis testing problem with D0 = {PY } and D1 = {QY }, we

have the log likelihood-ratio becomes,

LLR(Y [1 : n]) =
n∑

k=1
log

dQY

dPY
(Y [k]) . (1.5)

This log likelihood-ratio is interesting as it is a sum of i.i.d. random variables.Thus, provided

that the required moments exist, it is subject to the Law of Large Numbers and Central Limit

Theorem. This observation motivates the definition of KL divergence(Kullback, 1959)7.

Definition 1.1. Consider two distributions P and Q, we define KL divergence as,

D(Q;P ) =
∫

log
dQ

dP
dQ. (1.6)

6In this work, we will use Y [1 : n] to denote a vector of (Y [1], . . . ,Y [n]).
7Curiously enough Kullback refers to this quantity as discrimination-information in his book.
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Chapter 1. Introduction and Preliminaries

Furthermore, we have that

EQ [LLR(Y [1 : n])] = nD(QY ;PY ) EP [LLR(Y [1 : n])] =−nD(PY ;QY ). (1.7)

As the log likelihood-ratio factorizes neatly into a sum, astute readers might have noticed

that likelihood-ratio tests do not require precise information about the observations. It is

sufficient to record the number of occurrences of each value in the alphabet. For example, let

observation Y [1 : 5] takes values in {0,1}5, then the log likelihood-ratio of y[1 : 5] = [0,0,0,1,1] is

exactly equivalent as the log likelihood-ratio of y[1 : 5] = [0,1,0,1,0]. This insight motivates the

definition of the type of a sequence, namely the empirical distribution of that sequence. This

definition is the foundation of the type method, readers can find a comprehensive treatment

of this method in Csiszár and Körner (2011).

Definition 1.2. Given a sequence of realizations from a discrete random variable, y[1 : n], we

define the type of this sequence as a function,

Py[1:n](y ′) = 1

n

n∑
i=1

1{y[i ] = y ′}. (1.8)

We denote the set of all possible types of length n over an alphabet X can take as Pn(X ).

We also denote the set of all sequences of length n with type PX as T n
PY

.

Given a type Q, we define the neighborhood of this type as

[Q]δ,n = {
P ∈Pn(X ) : |Q −P |1 ≤ δ

}
(1.9)

and correspondingly,

T[Q]δ,n =
⋃

P∈[Q]δ,n

T n
P . (1.10)

Let us recall several basic properties of the types of sequences.

Proposition 1.1. We have,

1. The size of possible types is polynomial in n, i.e., |Pn(X )| ≤ (n +1)|X |,

2. Given a type PX ∈Pn(X ), then we have for every distribution QX ,

QX (T n
PX

) ≤ e−nD(PX ;QX ), (1.11)

3. For any discrete probability distribution PX , we have,

lim
n→∞PX (T n

[PX ]δn ,n
) = 1 (1.12)

if limn→∞ nδ2
n =∞.
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1.1 Hypothesis Testing

Proof. 1. This is a simple application of counting with stars and bars (Feller, 1968).

2. We have for all x[1 : n] ∈TPX ,

PX n (x[1 : n]) = exp
(
nEPX

[
logPX (X )

])
(1.13)

simply from the definition.

This gives us

|T n
PX

|exp
(
nEPX

[
logPX (X )

])≤ ∑
P ′

X ∈Pn (X )

|T n
P ′

X
|exp

(
nEP ′

X

[
logP ′

X (X )
])= 1 (1.14)

which implies that,

|T n
PX

| ≤ exp
(−nEPX

[
logPX (X )

])
. (1.15)

This leads to,

QX (T n
PX

) = ∑
x[1:n]∈T n

PX

QX (x[1 : n])

= |T n
PX

|enEPX [logQX (X )]

≤ e−nD(PX ;QX ). (1.16)

3. Note that,

∀x ′∈X

∣∣∣∣∣ 1

n

n∑
i=1

1
{

x ′ = x[i ]
}−PX (x ′)

∣∣∣∣∣≤ δn

|X | (1.17)

implies,

x[1 : n] ∈T[PX ]δn ,n . (1.18)

Hence we have,

Pr

( ⋂
x ′∈X

∣∣∣∣∣ 1

n

n∑
i=1

1
{

x ′ = x[i ]
}−PX (x ′)

∣∣∣∣∣≤ δn

|X |

)
≤ Pr

(
T[PX ]δn ,n

)
(1.19)

Let us consider the complement of the left-hand side; by the union bound, we have

Pr

( ⋃
x ′∈X

∣∣∣∣∣ 1

n

n∑
i=1

1
{

x ′ = x[i ]
}−PX (x ′)

∣∣∣∣∣> δn

|X |

)
≤ ∑

x ′∈X

Pr

(∣∣∣∣∣ 1

n

n∑
i=1

1
{

x ′ = x[i ]
}−PX (x ′)

∣∣∣∣∣> δn

|X |

)
.

(1.20)

Note that the indicators are Bernoulli random variables. We use Chebyshev’s inequality

(see appendix) and the fact that the variance of Bernoulli random variables is upper

bounded by 1/4 to obtain

Pr

( ⋃
x ′∈X

∣∣∣∣∣ 1

n

n∑
i=1

1
{

x ′ = x[i ]
}−PX (x ′)

∣∣∣∣∣> δn

|X |

)
≤ |X |3

4nδ2
n

. (1.21)
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Chapter 1. Introduction and Preliminaries

Hence we have,

Pr
(
T[PX ]δn ,n

)≥ 1−Pr

( ⋃
x ′∈X

∣∣∣∣∣ 1

n

n∑
i=1

1
{

x ′ = x[i ]
}−PX (x ′)

∣∣∣∣∣> δn

|X |

)
≥ 1− |X |3

4nδ2
n

(1.22)

which converges to 1 under the condition on δn .

We can directly apply this result to study the error probability of a hypothesis testing problem.

The following theorem gives us the asymptotic rate of decay for the Type-II error of any

hypothesis testing scheme if we require that the Type-I error is smaller than a certain value.

Theorem 1.3. Let us define the best Type-II error for a given binary hypothesis testing problem

between PX n and QX n while ensuring that the Type-I error is less than ϵ as,

β(PX n ,QX n ,ϵ) = min
D0:PX n (D0)≥1−ϵ

QX n (D0). (1.23)

We have for ϵ ∈ (0,1)

lim
n→∞− 1

n
logβ(PX n ,QX n ,ϵ) ≥ D(PX ;QX ). (1.24)

Proof. Let us take D0 =T[PX ]δn ,n . From point 3 in Proposition 1.1, this D0 is a feasible decision

set for a large enough n and δn which fulfills the condition of the proposition. From point 2 in

Proposition 1.1, we can also show that this D0 gives the correct exponent in eq. 1.24.

This theorem is originally proved in (Sanov, 1958), with a different proof than what we pre-

sented here. The original proof actually gives equality instead of the upper bound that we

showed here. We will delay the discussion about the corresponding lower bound to the next

section where we use it to illustrate the use of KL divergence and data processing inequality.

In this section, we have reviewed several results in hypothesis testing and introduced the basic

information measures and type method. One can directly see that the techniques introduced

in this section is designed specifically for the i.i.d. cases and under the assumption that the

data-generating process does not change with the given test function.

1.2 Information Measures

In the previous section, we gave an example of the operational importance of KL divergence

by showing a lower bound on the exponent of a binary hypothesis testing problem. In this

section, we will delve deeper into the properties of KL divergence and introduce other forms

of information measures.

Before we discuss these information measures, we recall the definition of convex functions

and Jensen’s inequality (Jensen, 1906).
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1.2 Information Measures

Definition 1.3. A function f : R→ R is said to be convex if for all x, y in the domain of the

function, then,

f
(
λx + (1−λ)y

)≤λ f (x)+ (1−λ) f
(
y
)

(1.25)

for all λ ∈ [0,1]. Function f (·) is said to be concave if x →− f (x) is convex.

Proposition 1.2 (Jensen’s Inequality). For any random variable X and convex function f (·), we

have,

f (E[X ]) ≤ E[
f (X )

]
. (1.26)

We will introduce the notion of conditional divergence and several properties of the divergence,

Definition 1.4. We define conditional KL divergence as,

D
(
WY |X ;QY |X

∣∣PX
)= EPX

[
D

(
WY |X=X ;QY |X=X

)]
. (1.27)

Proposition 1.3. We have,

1. KL Divergence is non-negative, i.e., D(P ;Q) ≥ 0,

2. Conditional KL divergence can be expressed as unconditional KL divergence,

D(PY |X ;QY |X |PX ) = D(PY |X PX ;QY |X PX ), (1.28)

3. Adding a random variable can only increase KL divergence,

D(PX ,Y ;QX ,Y ) ≥ D(PX ;QX ), (1.29)

4. Data Processing Inequality, for any PX ,QX and WY |X

D(PY ;QY ) ≤ D(PX ;QX ), (1.30)

where PY =WY |X ◦PX and QY =WY |X ◦QX ,

5. KL divergence is subject to the chain rule,

D(PX ,Y ;QX ,Y ) = D(PY |X ;QY |X |PX )+D(PX ;QX ), (1.31)

6. KL divergence can be tensorized,

D

(
n∏

j=1
PX [ j ];

n∏
j=1

QX [ j ]

)
=

n∑
j=1

D(PX [ j ];QX [ j ]), (1.32)

7. KL divergence can only increases by conditioning,

D
(
PY |X ;QY |X |PX

)≥ D (PY ;QY ) (1.33)

9



Chapter 1. Introduction and Preliminaries

where PY = PY |X ◦PX and QY =QY |X ◦PX .

Proof. Points 1 to 4 can be proven in a more general setting (F-divergences). To prevent

duplication, readers are advised to flip to chapter 3 to find the proof. We will only prove points

5-7 which are peculiar to KL divergence.

Point 5 can be shown as,

D
(
PY ,X ;QY ,X

)= EPY ,X

[
log

PY |X PX

QY |X QX

]
= EPY ,X

[
log

PY |X
QY |X

]
+EPY ,X

[
log

PX

QX

]
= D

(
PY |X ;QY |X |PX

)+D (PX ;QX ) . (1.34)

Point 6 can be shown using the chain rule,

D
(
PX1 PX2 ;QX1QX2

)= D
(
PX1 ;QX1

)+D
(
PX2 ;QX2

)
. (1.35)

Point 7 is also a consequence of the chain rule,

D
(
PY |X PX ;QY |X PX

)= D
(
PY |X ;QY |X |PX

)+D(PX ;PX )︸ ︷︷ ︸
=0

= D
(
PX |Y ;QX |Y |PY

)︸ ︷︷ ︸
≥0

+D(PY ;QY ). (1.36)

Hence we have,

D
(
PY |X ;QY |X |PX

)= D
(
PX |Y ;QX |Y |PY

)+D(PY ;QY ) ≥ D(PY ;QY ). (1.37)

One of the applications of KL divergence and data processing inequality is to give an upper

bound to the exponent of Type-II error.

Theorem 1.4. For ϵ ∈ (0,1)

lim
n→∞− 1

n
logβ(PX n ,QX n ,ϵ) ≤ 1

1−ϵD(PX ;QX ) (1.38)

Proof. Consider the data processing inequality, where we consider X [1 : n] → Y = 1{X [1 : n] ∈
D0}, we have

D (PY ;QY ) ≤ D
(
PX [1:n];QX [1:n]

)= nD (PX ;QX ) . (1.39)

Hence we have,

10



1.2 Information Measures

(1−ϵ) log
1−ϵ

β(PX n ,QX n ,ϵ)
+ϵ log

ϵ

1−β(PX n ,QX n ,ϵ)
≤ nD(PX ;QX ) (1.40)

Rearranging gives us,

− logβ(PX n ,QX n ,ϵ) ≤ n
1

1−ϵD(PX ;QX )− ϵ

1−ϵ log
ϵ

1−β(PX n ,QX n ,ϵ)
. (1.41)

As we have β(PX n ,QX n ,ϵ) → 0, dividing both sides by n and taking n →∞ gives us the desired

inequality.

Intuitively, KL divergence measures the ease of distinguishing two different hypotheses. On

the other hand, we have the notion of “entropy” which captures the “dispersion” a random

variable8. Entropy is defined as follows.

Definition 1.5. Given a distribution PX , we define

H(PX ) =−EPX [logPX (X )]. (1.42)

We also define the notion of conditional entropy for distribution PX and PY |X .

H(PY |X |PX ) =−EPY |X PX

[
logPY |X=X (Y )

]
. (1.43)

We have the following properties of entropy.

Proposition 1.4. We have

1. Entropy is non-negative: H(PX ) ≥ 0 and H(PY |X |PX ) ≥ 0.

2. Entropy is upper-bounded by the alphabet size:

H(PX ) ≤ log |X |. (1.44)

3. Chain rule:

H
(
PX [1:n]

)= n∑
j=2

H
(
PX [ j ]|X [1: j−1]

∣∣PX [1: j−1]
)+H(PX [1]). (1.45)

4. Monotonicity:

H
(
PX ,Y

)≥ H (PX ) . (1.46)

8Although we will not discuss it further in this thesis, this intuitive notion can be backed by formal results. In
the sense that we can prove a lower bound to the difficulty of “guessing” a random variable which increases as its
entropy increases (Massey, 1994). In fact, in his seminal work on cryptography (Shannon, 1949), Shannon argues
about the security of a cryptosystem in terms of the “work” needed to guess the secret key, which can be lower
bounded by a function of conditional entropy.
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Chapter 1. Introduction and Preliminaries

5. Conditioning reduces entropy:

H
(
PY |X |PX

)≤ H (PY ) . (1.47)

Proof. 1. Note that x →−x log x is a non-negative function for x ∈ [0,1].

2. We note that x →−x log x is a concave function; hence, the optimum is achieved by a

uniform distribution on its support, which gives us H(PX ) = log |support(X )|. Hence,

the maximum is achieved at H(PX ) = log |X |.

3. We have

H
(
PX ,Y

)=−E[
logPX ,Y (X ,Y )

]
=−E[

logPY |X (Y , X )
]−E[

logPX (X )
]

= H
(
PY |X |PX

)+H (PX ) . (1.48)

Applying this equality repeatedly gives us the result.

4. We have

H
(
PX ,Y

)= H
(
PY |X |PX

)+H (PX )

≥ H (PX ) . (1.49)

5. As x →−x log x is a concave function, and EPX

[
PY |X=X

]= PY , using Jensen’s inequality,

we have

H(PY |X |PX ) =−EPX

[
EPY |X=X

[
logPY |X=X

]]≤ EPX ,Y

[
logPY

]= H(PY ). (1.50)

Entropy also plays an important role in giving a bound on the size of a type. Let us also use

this opportunity to introduce the notion of conditional type. We also define X and Y as the

input and the output alphabet respectively.

Definition 1.6. For a given realization of x[1 : n] and y[1 : n], let us define the conditional type

of Y given x[1 : n] as

Py[1:n]|x[1:n](y ′, x ′) =
∑n

i=1 1{x[i ] = x ′, y[i ] = y ′}∑n
i=1 1{x[i ] = x ′}

. (1.51)

Given a realization of x[1 : n], let us denote the set of y[1 : n] with conditional type PY |X as

T n
PY |X

(x[1 : n]).

12



1.2 Information Measures

Proposition 1.5. We have

(n +1)−|X | exp(nH(PX )) ≤
∣∣∣T n

PX

∣∣∣≤ exp(nH(PX )) (1.52)

and for all x[1 : n] with type PX

(n +1)−|Y ||X | exp
(
nH(PY |X |PX )

)≤ ∣∣∣T n
PY |X (x[1 : n])

∣∣∣≤ exp
(
nH(PY |X |PX )

)
. (1.53)

Proof. The proof for conditional type mirrors the proof for the unconditional case, with the

main difference being that we consider each conditioning value in X separately. Hence, we

will only discuss the unconditional case.

We have proof of the upper bounds in 1.15. Hence, we will only show the lower bound. Let us

consider a specific PX ,

1 = PX

( ⋃
P ′

X ∈Pn (X )

T n
P ′

X

)
= ∑

P ′
X ∈Pn (X )

PX

(
T n

P ′
X

)
. (1.54)

Note that the largest terms in the summation are given by P ′
X = PX . We have,

1 ≤ (n +1)|X |PX

(
T n

PX

)
= (n +1)|X ||T n

PX
|exp(−nH(PX )) . (1.55)

This implies that,

(n +1)−|X | exp(nH(PX )) ≤ |T n
PX

|. (1.56)

More importantly, for a given PX , the set T n
PX

forms the “core” of any high probability sets,

which can be expressed more formally by the following proposition.

Proposition 1.6. For any set A with high probability in set PX [1:n], i.e.,

PX [1:n](A ) ≥ γ, (1.57)

for all γ> 0. We have

liminf
n→∞

1

n
log |A | ≤ H(PX )−O

(
logn + logδn

n

)
. (1.58)

Proof. We have,

PX [1:n]

(
A

⋃
T n

[PX ]δn ,n

)
= PX [1:n] (A )+PX [1:n]

(
T n

[PX ]δn ,n

)
−PX [1:n]

(
A

⋂
T n

[PX ]δn ,n

)
(1.59)
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By upper bounding the LHS by 1 and using the result of Proposition 1.1, we have,

PX [1:n]

(
A

⋂
T n

[PX ]δn ,n

)
≥ γ−O

(
1

nδ2
n

)
. (1.60)

Note that for all x[1 : n] ∈A
⋂

T n
[PX ]δn ,n

, we have,

PX [1:n](x[1 : n]) ≤ exp(−n(H(PX )−O(δn))) . (1.61)

Therefore,

PX [1:n](A
⋂

T n
[PX ]δn ,n

) ≤ |A |exp(−n(H(PX )−O(δn))) . (1.62)

This gives us

|A | ≥
(
γ−O

(
1

nδ2
n

))
exp(n(H(PX )−O(δn))) (1.63)

which implies the proposition.

Now, we can define the mutual information. This quantity can be understood intuitively

through two different viewpoints: i) As the conditional KL divergence of the conditional

distribution PY |X against the marginal distribution PY , ii) As the reduction of a random

variable entropy given another random variable.

Definition 1.7. Given a distribution PX ,Y , we define mutual information as

I (PX ;PY |X ) = D(PY |X ;PY |PX ), (1.64)

with PY = PY |X ◦PX and the conditional mutual information as,

I (PX |Z ;PY |X Z |PZ ) = EPZ

[
D(PY |X ,Z=Z ;PY |Z=Z |PX |Z=Z )

]
. (1.65)

We have the following properties of mutual information.

Proposition 1.7. We have,

1. Positivity: I (PX ;PY |X ) ≥ 0,

2. Data processing inequality: consider X → Y → Z ,

I
(
PX ;PZ |X

)≤ I
(
PX ;PY |X

)
, (1.66)

3. Mutual information in terms of entropy:

I (PX ;PY |X ) = H(PY )−H(PY |X |PX ), (1.67)
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1.3 Channel Coding

4. Chain rule:

I
(
PX ;PY [1:n]|X

)= n∑
i=2

I
(
PX |Y [1:i−1];PY [i :n]|X ,Y [1:i−1]

∣∣PY [1:i−1]
)+ I

(
PX ;PY [1]|X

)
, (1.68)

5. Mutual information as the center of conditional distribution:

I (PX ;PY |X ) = D(PY |X ;QY |PX )−D(PY ;QY ). (1.69)

Proof. 1. This is a consequence of mutual information being a divergence.

2. Data processing inequality will be shown in a more general form in chapter 3.

3. We have

I (PX ;PY |X ) = EPX ,Y

[
log

PY |X
PY

]
= H(PY )−H(PY |X |PX ). (1.70)

4. We have

I (PX ;PY [1:2]|X ) = H(PY [1:2])−H(PY [1:2]|X |PX )

= H(PY [2]|Y [1]|PY [1])+H(PY [1])−H(PY [2]|X ,Y [1]|PX ,Y [1])−H(PY [1]|X |PX )

= I (PX ;PY [1]|X )+ I (PX |Y [1];PY [2]|X ,Y [1]|PY [1]) (1.71)

Repeating this equality gives us the chain rule.

5. We have

I (PX ;PY |X ) = EPX ,Y

[
log

PY |X
PY

]
= EPX ,Y

[
log

PY |X
QY

+ log
QY

PY

]
= D(PY |X ;QY |PX )−D(PY ;QY ) (1.72)

In this section, we have discussed commonly used information measures. In the next section,

we will discuss how these information measures are used to give a converse to practical

channel coding problems.

1.3 Channel Coding

In Shannon’s 1948 paper, he proposed a model of a digital communication system and derived

a result that gives us the fundamental performance that can be achieved by any communi-

cation schemes. The result is derived by considering the abstracted model of point-to-point

communication shown in Figure 1.1.
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fenc WY |X fdecB [1 : m] B̂ [1 : m]

X [1 : n] Y [1 : n]

Figure 1.1: Point-to-point communication block diagram

In Figure 1.1, we assume that B [1 : m] is i.i.d., and B [i ] ∼ Bernoulli(1/2). The result presented

in Shannon’s paper is more general as it does not require the source to be a bitstream. In fact,

there is a vibrant theory on how to represent a message in terms of a bitstream.

In this model, the transmitter wants to communicate m bits of information by using the

channel n times. In practice, each channel use “consumes” a degree of freedom9. For example,

in Orthogonal Frequency Division Multiplexing (Wu and Zou, 1995), each channel use corre-

sponds to a different sub-frequency bands; or in Time Division Multiplexing, each channel

use corresponds to a different time slices. Hence, there is a practical importance in trying to

understand the trade-off between m and n.

Let us refer to the mapping between B [1 : m] and X [1 : n] as the encoding scheme, respectively,

the mapping between Y [1 : n] and B̂ [1 : m] will be referred to as the decoding scheme. We will

refer to this pair as a channel coding scheme.

In this model, the main challenge hindering reliable communication between the transmitter

and the receiver is mathematically modeled in terms of the channel. During Shannon’s time,

these channels mainly model the thermal noise which distorts long-range wired communica-

tion 10. In this work, we will mainly deals with channel models in Figure 1.1.

0

1−δ

δ
1

1−δ

δ

0

1

(a) Binary Symmetric Channels, BSC (δ)

0
1−ϵ

ϵ

ϵ

1
1−ϵ

0

?

1

(b) Binary Erasure Channels, BEC (ϵ)

X + Y

Z ∼ N (0,σ2)

(c) Additive White Gaussian Noise Chan-
nels, AW GN (σ2)

Figure 1.2: Examples of channel models that we will use in this work.

Moreover, throughout this work, we will only consider memoryless channels, i.e., channels

9Degree of freedom in the sense of number of “independent" dimensions of the signal, not in the sense of
“independent" paths in wireless communication.

10In fact, it is a miracle that a theory built on this simplistic mathematical model manages to provide guidance
for designing real communication systems operating under the complex physical realities. But then again, the
existence of this theory surely spurs engineers to design their systems to make these channel models a reasonable
approximation of the physical dynamics of their systems.
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that fulfill,

WY [1:n]|X [1:n](y[1 : n]|x[1 : n]) =
n∏

i=1
WY [1]|X [1](y[i ]|x[i ]). (1.73)

Channel coding schemes are evaluated on their capability to send messages reliably. More

formally, for a given channel coding scheme, we define the (average block) error probability as

Pe = Pr
(
B [1 : m] ̸= B̂ [1 : m]

)
. Consider a sequence of tuples (mk ,nk ) with the corresponding

error probability P (k)
e . Classical channel coding result is concerned with finding the largest

liminfk→∞ mk /nk such that limsupk→∞ P (k)
e = 0. As an application of the information mea-

sures that we discussed in the previous section, we can give an upper bound on these mk /nk .

Before that, let us consider the inequality between error probability and its entropy; this result

is commonly known as Fano’s inequality(Fano, 1961).

Lemma 1.1. Consider discrete random variables (X , X̂ ) both defined in the same alphabet X ,

we have,

H(P X̂ |X |PX ) ≤ log(2)+Pr(X̂ ̸= X ) log |X |. (1.74)

Theorem 1.5. Given a channel WY |X , for every channel coding scheme, we have,

Pe ≥ 1− nC

m log(2)
− 1

m
, (1.75)

with C = maxPX I (PX ;WY |X ).

Proof. We have,

m log(2) = H(PB [1:m])

= I (PB [1:m];PB̂ [1:m]|B [1:m])+H(PB̂ [1:m]|B [1:m]|PB [1:m])

≤ I (PB [1:m];PB̂ [1:m]|B [1:m])+ log(2)+Pe m log(2)

≤ I (PX [1:n];WY [1:n]|X [1:n])+ log(2)+Pe m log(2)

≤
n∑

i=1
I (PX [i ];WY |X )+ log(2)+Pe m log(2)

≤ nC + log(2)+Pe m log(2) (1.76)

with

1− nC

m log(2)
− 1

m
≤ Pe . (1.77)

Surprisingly, proving the existence of a channel coding scheme that achieves this upper bound

is not difficult. There are several constructions. We will present the construction method

presented in Csiszár and Körner’s textbook(Csiszár and Körner, 2011) to illustrate the use of

the concept of types.

17



Chapter 1. Introduction and Preliminaries

Proposition 1.8. Given a channel WY |X , for any pe > 0, there exists a channel coding scheme

with an error probability pe if,

m log(2)

n
≤ sup

PX :∀x∈X PX (x)>0
I (PX ,WY |X )−O(n−1/2+ϵ) (1.78)

for any ϵ> 0.

Proof. We will design the channel coding schemes sequentially. Namely, by assigning the set

of y[1 : n]’s that will be decoded to message i , one by one. We will use the variable Bi to hold

the set of y[1 : n] that has been occupied by a codeword in the i -th step. We start with B0 =;.

At the i +1-th step, we check if we can find a codeword in T n
[PX ]δn ,n

with high decoding proba-

bility among the unoccupied y[1 : n], i.e., we are trying to find x[1 : n] such that

WY [1:n]|X [1:n]=x[1:n]

(
T[WY |X ]δ′n ,n

(x[1 : n])−Bi |x[1 : n]
)
≥ 1−pe . (1.79)

If we can find such codeword, we will augment our current encoding function and decoding

function such that fenc(i +1) = x[1 : n] and fdec(y[1 : n]) = i +1 if y[1 : n] ∈ T[WY |X ]δn ,n (x[1 :

n])−Bi . Otherwise, we stop the design process.

Note that by construction, this channel coding scheme will have an error probability of pe . We

only need to characterize the number of steps that we can perform before being stopped.

Let us assume that we stopped at time i∗, we have that for all x[1 : n] ∈T[PX ]δn ,n ,

WY [1:n]|X [1:n]=x[1:n]

(
T[WY |X ]δ′n ,n

(x[1 : n])−Bi |x[1 : n]
)
< 1−pe (1.80)

which implies that for all x[1 : n] ∈T[PX ]δn ,n

WY [1:n]|X [1:n]=x[1:n] (Bi∗ |x[1 : n]) ≥ pe −O

(
1

nδ′n
2

)
. (1.81)

This implies that

PY [1:n] (Bi∗) ≥ pe −O

(
1

nδn
2

)
−O

(
1

n2δ2
nδ

′
n

2

)
. (1.82)

Hence this Bi∗ must be a high probability set in PY , which given our previous results shows

that
1

n
log |Bi∗ | ≥ H(PY )−O

(
logn + logδn + logδ′n

n

)
(1.83)

Given the construction process, we also have that

|Bi∗ | ≤
i∗∑

j=1

∣∣∣T[WY |X ]δ′n ,n

(
fenc( j )

)∣∣∣≤ i∗ exp
(
n(H(WY |X |PX )+O(δ′+δ))

)
. (1.84)
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Combining these two bounds gives us

1

n
log i∗ ≥ H(PY )−H(WY |X |PX )−O

(
logn + logδn + logδ′n

n

)
−O(δn +δ′n). (1.85)

We only need to make sure that i∗ ≥ m. Taking δn and δ′n as O(n−0.5+ϵ) gives us the statement

of the proposition.

Combining the achievability and converse, we can conclude that the best trade-off of n and

m that one can hope for is given by I (PX ;WY |X )/ log2. Note that in the achievability part, we

have control over PX , hence we can optimize the performance of our scheme by choosing

PX that maximizes I (PX ;WY |X ). This allows us to define the notion of channel capacity

C (WY |X ) = maxPX I (PX ;WY |X ).

1.4 Thesis Outline

This work is divided into two parts covering our results in information velocity and monitoring

problems. The first composed of 4 chapters discussing our results in information velocity, and

the second part is composed of 1 chapter discussing the monitoring problems.

1. Chapter 1 (Blockwise Information Velocity): The subfield of information velocity has

only recently attracted interest; hence, it might not be familiar to most information

theory researchers. In this chapter, we will introduce the mathematical formulation of

information velocity and review several known results in this area. We will also introduce

blockwise information velocity, which studies information velocity in the regime where

the message size grows to infinity.

2. Chapter 2 (A Converse for Blockwise Information Velocity): In this chapter, we will

show how information-theoretic arguments can be used to give a converse for block-

wise information velocity. Intuitively, the idea behind the converse is to model the

flow of information through the relay chain in a similar manner to a transport differ-

ential equation, where the “amount of information” flowing at each channel use is

proportional to the difference between the information that the sender possess and the

information that the receiver already possess. To quantify this information, we will use

tools from F-divergences(Ali and Silvey, 1966)(Csiszár, 1967) and strong data processing

inequality(Ahlswede and Gacs, 1976) (Polyanskiy and Wu, 2015).

3. Chapter 3 (Blockwise Information Velocity in Binary Erasure Channels): In this chap-

ter, we will present our results on the achievability scheme for binary erasure channels.

In single-bit relaying problems for BEC, the intermediate relays only have two states,

namely whether it has received the bit or not. But in multiple bit settings, the transmis-

sion progress at each intermediate relay can be more fine-grained, making the analysis
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difficult. Here, we present a relaying scheme that achieves positive blockwise informa-

tion velocity by building a tape abstraction on top of tree codes. This scheme builds on

the previous results of using tree codes for distributed computation (Schulman, 1993).

4. Chapter 4 (Blockwise Information Velocity in AWGN Channels with Feedback): A

well-known result in information theory states that the fundamental limit of the rate of

communication cannot be improved by adding feedback (Shannon, 1961). However, it

is also known that feedback allows us to achieve this fundamental limit with a simple

scheme. One of the most striking results is presented by Schalkwijk and Kailath, which

showed that a simple linear scheme can achieve reliable communication with doubly-

exponentially decaying error probability in AWGN channels with feedback(Schalkwijk

and Kailath, 1966). In this chapter, we show that a modification to the Schalkwijk-Kailath

scheme achieves positive blockwise information velocity of AWGN with feedback, both

in the case where the relays’ noise levels are homogeneous or heterogeneous.

5. Chapter 5 (Monitoring Problem as Adversarial Hypothesis Testing Problems): As we

discussed in this chapter, the classical hypothesis testing problem relies on the fact that

the data-generating process does not react to the hypothesis testing process. In this

chapter, we will present a monitoring model where there is an adversarial relationship

between the tester and the data-generating process. In this model, an adversarial data-

generating process obtains rewards depending on the realization of its output, but

the reward will be revoked if the tester manages to differentiate the adversarial data-

generating process from a group of regular data-generating processes. We will show that

in this case, surprisingly, the “optimal” statistics in the asymptotic case are equal to the

empirical KL divergence.

Finally, at the end of this work, we will present concluding remarks on our results, and more

importantly, we will discuss several future steps that we have not managed to explore in this

work.

1.5 Appendix: Results on Random Variables

Concentration Inequalities

In this thesis, we will use several concentration results. A common foundation for a large class

of concentration inequalities is the following observation for non-negative random variable

X :

Proposition 1.9 (Markov’s Inequality). For a non-negative random variable X where E[X ]

exists,

Pr(X ≥α) ≤ E[X ]

α
. (1.86)
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Proof. We have,

Pr(X ≥α) =
∫ ∞

0
1{X ≥α}dPX

≤
∫ ∞

0

X

α
dPX

= E[X ]

α
. (1.87)

A straightforward extension to Markov’s inequality can be obtained by noting that the random

variable X can be a function of other random variables. A common extension where we bound

the deviation from the mean of any random variable (not only non-negative random variables)

is Chebyshev’s inequality.

Proposition 1.10 (Chebyshev’s Inequality). For a random variable X with finite first and

second moments, we have,

Pr(X −E[X ] ≥α) ≤ Var(X )

α2 . (1.88)

Proof. We consider the following function f (x) = (x −E[X ])2. This function is non-negative,

and plugging this function into Markov’s inequality gives us the required inequality.

This inequality gives us a way to show that the empirical average converges to the mean, even

if the distributions are not exactly similar.

Proposition 1.11. Given independent random variables X [1 : n] such that E[X [i ]] = µ and

Var(X [i ]) =σ2
i , we have

limsup
n→∞

Pr

(
n∑

i=1

X [i ]

n
−µ≥αn

)
= 0

if limn→∞ nα2
n =∞.

Proof. By Chebyshev’s inequality, we have that,

Pr

(
n∑

i=1

X [i ]

n
−µ≥αn

)
≤

n∑
i=1

σ2
i

n2α2
n

≤ maxi σ
2
i

nα2
n

. (1.89)

We can see that the upper bound vanishes as n →∞ under our hypothesis.

If the moment generating function of X exists, we can use this information to assert a faster

decay of the distribution’s tail. The following inequality is an application of Markov’s inequality
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using the function f (x) = eλx . This inequality allows us to establish an exponential upper

bound to the tail probability of the deviation.

Proposition 1.12 (Chernoff-Cramer Inequality). Given a random variable X such that E[eλX ]

is finite for λ(0,λ+) then,

Pr(X ≥α) ≤ E[eλX ]

eλα
(1.90)

for all λ ∈ (0,λ+). Consider i.i.d. random variables X [1 : n] then we have,

Pr

(
n∑

i=1

X [i ]

n
≥α

)
≤ exp

(
−n

(
λα− logE[eλX ]

))
. (1.91)

Interestingly enough, we can find a lower bound of the same form by a similar argument. The

argument for this fact is based on the notion of the tilted distribution. Given a distribution P ,

we define a tilted distribution Pγ as,

Pγ(X ) = eγX P (X )

E[eγX ]
. (1.92)

Proposition 1.13. Consider i.i.d. random variables X [1 : n] such that there exists moment

generating functions E[eλX ] for λ ∈ (0,λ+). Then the following lower bound holds for λ ∈ (0,λ+),

lim
n→∞

1

n
logPr

(
n∑

i=1

X [i ]

n
≥α

)
≥−

(
λ(α)α− logE

[
eλ(α)X

])
(1.93)

where λ(α) is such that EPλ(α) [X ] =α if α> E[X ] or 0 otherwise.

Proof. Let us denote
∑n

i=1
X [i ]

n = Z [n]. We have the following,

Pr(Z [n] ≥αn) ≥ Pr(Z [n] ≥ (α+ϵ)n) =
∫ ∞

(α+ϵ)n
dP⊗n

X . (1.94)

Let us introduce Z̃ [n] to be Z [n] under the tilted distribution P⊗n
X ,λ(α+2ϵ). By multiplying with

the change of measure variable and then truncating the integration region, we have

Pr(Z [n] ≥αn) ≥
∫ (α+3ϵ)n

(α+ϵ)n
EP⊗n

X
[eλ(α+2ϵ)Z [n]]e−λ(α+2ϵ)z dP Z̃ (z)

≥ EP⊗n
X

[eλ(α+2ϵ)Z [n]]e−λ(α+2ϵ)(α+3ϵ)
∫ (α+3ϵ)n

(α+ϵ)n
dP Z̃ (z)

= exp
(
−

(
λ(α+2ϵ)(α+3ϵ)− logEP⊗n

X
[eλ(α+2ϵ)Z [n]]

))
P Z̃ (z)

(∣∣Z̃ [n]− (α+2ϵ)
∣∣≤ ϵ) .

(1.95)

Note that because the moment generating function for X exists, it implies that the second
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moment of the tilted distribution also exists; hence, we have, by Chebyshev’s inequality,

lim
n→∞P Z̃ (z)

(∣∣Z̃ [n]− (α+2ϵ)
∣∣≤ ϵ)= 1. (1.96)

Note that the lower bound is valid for all ϵ. By taking ϵ→ 0, we have the statement of the

proposition.

Finding the tightest exponent of the upper bound using the Chernoff-Cramer’s inequality is

equal to finding λ which maximizes λα− logE[eλX ].

The first-order condition for optimality gives us,

α= E
[

X eλX
]

E
[
eλX

] = EPλ
[X ], (1.97)

and taking the second derivatives gives us −(
EPλ

[X 2]−EPλ
[X ]2

)
. Hence, for a given α, the

tightest exponent is achieved at λ(α). This shows that the upper bound given by the Chernoff-

Cramer’s inequality is exponentially tight.

A particularly useful results is the specialization of Chernoff-Cramer’s inequality for Bernoulli

random variables.

Corollary 1.1. Consider i.i.d. random variables X [1 : n] with X [i ] distributed according to

Bernoulli(β) then we have,

Pr

(
n∑

i=1

X [i ]

n
≥α

)
≤ exp

(−nd2(α;β)
)

, (1.98)

where d2(·; ·) is the binary KL divergence.

Proof. By using Chernoff-Cramer’s bound and minimizing the upper bound, we obtain the

optimal λ

λ= (1−β)α

(1−α)β
. (1.99)

Plugging the optimal value to Chernoff-Cramer’s bound gives us the corollary.

Expected Value of Maximum of Random Variables

Another result that will be useful in the later chapters is on the rate of growth of the expected

value of the maximum of a finite number of random variables.

Proposition 1.14. Let us consider m i.i.d. random variables X [1 : m], such that E[e X ] exists. We

have

E[max
i

X [i ]] ≤ logm + logE
[
e X ]

. (1.100)
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Proof. We have, by Jensen’s,

E[max
i

X [i ]] ≤ logE
[

emaxi X [i ]
]

(1.101)

≤ logE

[∑
i

e X [i ]

]
= logmE

[
e X ]

= logm + logE
[
e X ]

. (1.102)

Stochastic Dominance of Sum of Random Variables

We also need the concept stochastic dominance between random variables for our result in

chapter 4.

Definition 1.8. A random variable A stochastically dominates B if

Pr(A ≥ x) ≤ Pr(B ≥ x) (1.103)

for every x.

For our purpose, the stochastic domination relation is useful, since if B stochastically domi-

nates A, then any tail bounds for B can also be used as a tail bound for A. This is especially

useful if we can easily use concentration results on B . Moreover, because summation preserves

stochastic dominance.

Proposition 1.15. Given sequences of independent random variables A[1 : n] and B [1 : n] such

that A[i ] is stochastically dominated by B [i ] for all i , then we have
∑n

i=1 A[i ] is stochastically

dominated by
∑n

i=1 B [i ].

Proof. We can prove this statement by characterizing the stochastic dominance relation in

terms of the existence of coupling fulfilling certain criteria. Then we show the statement by

explicitly providing this coupling.

We can express the stochastic dominance as

1−FA(x) ≤ 1−FB (x) (1.104)

for all x, where FA and FB are the cumulative distribution functions of A and B respectively.

Let us define the function which is the inverse of 1−FA(x),

G A(z) = inf{x : 1−FA(x) ≤ z} , (1.105)
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for z ∈ [0,1]. By a simple change of variable, we can see that A is stochastically dominated by

B if and only if,

G A(z) ≤GB (z). (1.106)

Now, we can consider a coupling between A and B . Let us consider a random variable Z

distributed uniformly between 0 and 1. We have G A(Z ) = A and GB (Z ) = B gives us the correct

marginal. We can see that under this coupling B − A ≥ 0 almost surely. Hence we show that

A stochastically dominated by B implies that we can find a coupling for A and B such that

B − A ≥ 0 almost surely.

We show that the other direction also holds. Consider that we are given a coupling of Ã and

B̃ such that B̃ − Ã ≥ 0 almost surely. From this coupling, we have the following sequence of

inequalities,

Pr(B ≥ x) = Pr(B̃ ≥ x)

≥ Pr(Ã ≥ x)

= Pr(A ≥ x) (1.107)

where the inequality is due to the fact that Ã ≥ x implies that B̃ ≥ x due to the condition that

B̃ − Ã ≥ 0 almost surely. Hence the existence of a coupling with these properties is equivalent

to stochastic domination.

Consider the coupled version of A[n] and B [n], i.e., we have (Ã[i ], B̃ [i ]) such that B̃ [i ]− Ã[i ] ≥ 0.

Let us denote this difference as δ[i ]. We can construct a joint coupling such that the coupling

(Ã[i ], B̃ [i ]) is independent of (Ã[ j ], B̃ [ j ]) where i ̸= j . Under this joint coupling, we have

n∑
i=1

B̃ [i ]−
n∑

i=1
Ã[i ] =

n∑
i=1

δi (1.108)

where the right-hand side is almost surely non-negative. Hence this joint coupling implies

that
∑n

i=1 Ã[i ] is stochastically dominated by
∑n

i=1 B̃ [i ].

Commonly Used Inequalities

This simple result is used surprisingly often in many proofs.

Proposition 1.16. We have, log(1+x) ≤ x.

Proof. Consider f (x) = x − log(1+ x). We have f (0) = 0. We also have f ′(x) < 0 for x < 0 and

f ′(x) > 0 for x > 0. Hence the inequality.

In chapter 5, there are many cases where we need to bound the exponent of binomial coeffi-

cients. We will use the following bound.
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Proposition 1.17. We have for q ∈ (0,1),(
n

k

)
qk (1−q)n−k ≤ e−nd2(k/n;q), (1.109)

where d2(·; ·) is the binary KL divergence.

Proof. Note that
(n

k

)
is exactly |T n

PX
| for PX (1) = k/n and PX (0) = 1−k/n. If we define QX (1) = q

and QX (0) = 1−q , then we have the desired inequality by Proposition 1.1.
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2 Blockwise Information Velocity

An error does not become truth by

reason of multiplied propagation, nor

does truth become error because

nobody sees it.

Mahatma Gandhi

When Shannon proved the channel coding theorem, it is reasonable to assume that the

point-to-point model, where the transmitter directly communicates with the receiver, is the

dominating mode of communication. However, since then, the world has been subsumed

into a giant network spanning the globe. In our global network, communication between the

sender and the receiver is intermediated by several routers, repeaters, relays and gateways,

which, for the purpose of this work will be grouped together, under the term “relays”. We

argue that the following block diagram in Figure 2.1 is a more accurate model of modern

communication networks.

One complicating aspect of this model is the assumption that the communication process is

conducted “continuously”, in the sense that that for any i , the transmission of X1[i ], X2[i ], . . . Xℓ[i ]

happen at the same time.

Due to this assumption, we must be careful when defining the relaying function f (i )
relay, such

that its output at time n′ should not depend on its inputs after time n′. The constraint that we

will impose hinges on our definition of “causality” between a sequence of random variable.

Definition 2.1. A sequence of random variables T [1 : n] is causal with respect to another

f (0)
r el ay WY |X f (1)

r el ay
. . . WY |X f (ℓ)

r el ayB [1 : m] B̂ [1 : m]

X1[1 : n] Y1[1 : n] X2[1 : n] Xℓ[1 : n] Yℓ[1 : n]

Figure 2.1: Relay communication block diagram
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sequence S[1 : n] if for all 1 ≤ i ≤ n we have T [i ] ⊥⊥ S[i : n]|S[1 : i −1] .

Definition 2.2. A relaying scheme composed of a sequence of mappings
(

f (i )
r el ay

)ℓ
i=1

is said to be

admissible if for all i ∈ {1, . . . ,ℓ−1}, Xi+1[1 : n] is causal with respect to Yi [1 : n].

This model can be understood as adding another dimension to channel coding problems.

In channel coding problems, we characterized the achievable rate R ≈ m/n, i.e., how the

transmission time grows as the number of bits that we have to send increases. But now, we

add another dimension ℓ, which is the number of intermediating relays. To make an analogue

with transmission through a physical medium, we will refer to the number of relays as the

length of the relaying scheme. Given the success of information theory in characterizing the

achievable rate, one might ask whether a similar success can be achieved on determining the

optimal trade-off between the number of channel uses (time) and the number of relays (space)

that allows reliable communication.

This part of this thesis is dedicated to answering this question: what do we know about v in

the relation,

n ≈ ℓ

v
+ m

R
. (2.1)

By analogy to physics, the problem of determining v is also known as the problem of informa-

tion velocity.1

As in the channel coding problem, the reliability of communication in the relaying problem is

measured in terms of its (average block) error probability, namely Pr(B [1 : m] ̸= B̂ [1 : m]).

In previous works, e.g., (Huleihel et al., 2019) (Ling and Scarlett, 2022), the problem of in-

formation velocity is commonly posed as the problem of determining the time needed to

send a single bit of information such that the receiver can determine the value of the bit with

probability larger than a certain fixed threshold. In this work, we will refer to this quantity as

the single-bit information velocity. More generally, we can define m-bit information velocity

as follows.

Definition 2.3. For a given channel, WY |X , m-bit information velocity v ′
m is said to be achiev-

able, if there exists a function ℓ(n) :Z→Z such that,

i. There exists a sequence of admissible relaying schemes with length ℓ(n) with the proba-

bility of error p(n)
e such that,

limsup
n→∞

p(n)
e = 0, (2.2)

ii. The ratio of channel uses and the relaying scheme’s length approaches v ′
m , i.e.,

limsup
n→∞

ℓ(n)

n
= v ′

m . (2.3)

1I do wonder why it is called information velocity and not information speed, as I do not see a vectorial direction.
But this might be because, as currently stated, we only consider this problem on a chain of relay instead on a more
complex network of relays.

30



We define the m-bit information velocity of the channel, vm(WY |X ), as the supremum of achiev-

able v ′
m .

Currently, single-bit information velocity is the most studied form of information velocity, with

some results that we will discuss in the next section. The focus of this work is on a different

version of information velocity which we will refer to as the blockwise information velocity.

Definition 2.4. A blockwise information velocity v ′ is said to be achievable for channel WY |X , if

there exists a function ℓ(m,n) :Z×Z→Z such that,

i. There exists a sequence of admissible relaying schemes of length ℓ(m,n) with decaying

error probability p(n,m)
e for all m, i.e.,

limsup
n→∞

p(n,m)
e = 0, (2.4)

ii. The ratio of channel uses and the relaying scheme’s length approaches v, i.e.,

limsup
m→∞

limsup
n→∞

ℓ(m,n)

n
= v ′. (2.5)

We define the blockwise information velocity of the channel v(WY |X ) as the supremum of

achievable v ′.

Note that the order of limit on condition (ii) is important, such that 1/v captures the growth of

channel uses as the number of relays increases regardless of how many bits are being sent.

But on the other hand, m-bit information velocity allows us to bound the blockwise informa-

tion velocity.

Proposition 2.1. We have for every channel WY |X ,

1. Information velocity (blockwise or m-bit) is upper bounded by,

0 ≤ v(WY |X ) ≤ 1, (2.6)

2. Information velocity is non-increasing in m, i.e. for all m′ > m

v(WY |X ) ≤ vm′(WY |X ) ≤ vm(WY |X ) ≤ v1(WY |X ), (2.7)

3. m-bit information velocity can be lower bounded by single-bit information velocity, i.e.,

v1(WY |X )

m
≤ vm(WY |X ). (2.8)

31



Chapter 2. Blockwise Information Velocity

Proof. The non-negativity of information velocity trivially follows from the definition. The

upper bound is due to the causality constraints, where we need at least k channel uses such

that Xk [k] can start to depends on B [1 : m].

The second statement follows from the fact that we can use any relaying scheme which send

m′-bits of information to send m-bits of information.

The third statement is based on the idea of interleaving the relaying schemes. Given an

achievability scheme for single-bit information velocity, we can construct a reliability scheme

for m-bit information velocity by using time indices {i : i mod m = r } to send the r -th bit. Due

to the memorylessness of the channel, this is equivalent to having m independent relaying

schemes. Let us denote the error probability of each relaying schemes as p(n/m)
e,r we have the

error probability of the whole scheme as 1−∏m
r=1(1−p(n/m)

e,r ). This error probability goes to 0

if p(n/m)
e,r goes to 0 as n grows to infinity. From the definition of v1, for each bit we have that

there exists ℓ(·) which fulfills this requirement with,

limsup
n→∞

ℓ(n/m)

n/m
= v1. (2.9)

The same ℓ(·) implies that information velocity of v1/m is achievable.

In light of this proposition, one might guess that the blockwise information velocity for the

majority of channels is equal to 0. However, the achievability results that we will present in the

subsequent chapters show that the lower bound given by this proposition is loose.

2.1 Naive Forwarding Scheme in Binary Memoryless Symmetric

Channels

One common question is how this blockwise information velocity differs from the notion of

channel capacity or single-bit information velocity. To illustrate this difference, in this section

we will analyze the information velocity of a naive relaying scheme. In this scheme, we would

simply consider the relaying problem as a series of channel coding problems, i.e., each relay

waits until it receives the complete message before starting to transmit. The idea is to reuse

the results that we have developed in channel coding settings for the relaying setting.

Here, we will focus on the class of Binary Memoryless Symmetric (BMS) channels.

Definition 2.5. A channel WY [1:n]|X [1:n] is a Binary Memoryless Symmetric channel if i) its input

is binary, i.e., X [1 : n] is defined on {0,1}n , ii) it is a memoryless channel, i.e., WY [1:n]|X [1:n] =
W ⊗n

Y |X , iii) it is symmetric, i.e., there exists a permutation π such that WY |X (y |0) =WY |X (π(y)|1).

Consider a relaying scheme of length ℓ with n channel uses. We can divide these n channel

uses into several blocks of ni channel uses such that
∑ℓ(n)

i=1 ni . The basic idea of this scheme is

to complete the transmission between the i -th and (i +1)-th relay during the i -th block. Let us
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start on the first relay. The first relay will read the message and use a channel coding scheme

to encode the message. It will then transmit the encoded message using X1[1 : n1]. The second

relay will try to decode the message from Y1[1 : n1], it will then uses a coding scheme (possibly

the same coding scheme as the one used in the previous relay) to transmit the message that it

decodes at X2[n1 +1 : n2 +n1]. Depending of the channel coding scheme that we use, there

are many possible variations of this scheme, let us refer to these schemes as the class of NAIVE

relaying schemes.

We can see that this relaying scheme is admissible, as for any k < ℓ we have a) Xk [1 :
∑k−1

l=1 nl ]

is independent of the actual message, b) Xk [1+∑k−1
l=1 nl : n] only depends on Yk−1[1 :

∑k−1
l=1 nl ].

The main observation of this section is that the single-bit information velocity of this class of

NAIVE relaying scheme is equal to 0. But before that, let us review the lower bound on error

probability of sending 1 bit of information through BMS channels after n channel uses.

Proposition 2.2. Consider a BMS channel WY |X . Let us define a Markov chain B [1] → X [1 :

n] → Y [1 : n] → B̂ [1], with M ∼ Bernoulli(1/2) such that,

1. We have x0[1 : n] and x1[1 : n], such that

f (x) =
x0[1 : n] x = 0

x1[1 : n] x = 1
X [1 : n] = f (B [1]) (2.10)

2. There exists D1 such that,

B̂ [1] = 1{Y [1 : n] ∈D1}. (2.11)

Then we have,
1

4
e2n log Z (WY |X ) ≤ Pr(B̂ [1] ̸= B [1]) (2.12)

with

Z (WY |X ) =
∫ √

WY |X (y |0)WY |X (y |1)d y. (2.13)

Proof. This proposition is a consequence of Cauchy-Schwartz. Let us consider,

1

4
Z (WY |X )2 = 1

4

(∫ √
WY |X (y |1{y ∈D1})WY |X (y |1{y ∉D1})d y

)2

≤ 1

4

∫
WY |X (y |1{y ∈D1})d y

∫
WY |X (y ′|1{y ∉D1})d y ′

= (
1−Pr(B [1] ̸= B̂ [1])

)
Pr(B [1] ̸= B̂ [1])

≤ Pr(B [1] ̸= B̂ [1]). (2.14)

We can obtain the proposition by noting that Z (W ⊗n
Y |X ) = Z (WY |X )n .
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Proposition 2.3. Consider a BMS channel WY |X . The single-bit information velocity of scheme

in the class of NAIVE relaying schemes, v NAIVE
1 (WY |X ), is equal to 0.

Proof. We will prove by contradiction. Let us assume that there exists a length function ℓ(·)
such that 0 < v NAIVE

1 . Let us consider a fixed n (and therefore a fixed ℓ(n)).

In NAIVE relaying schemes, each relay will need to decode the message explicitly. Hence, we

can refer to the message decoded by the i -th relay as Mi . To be consistent, let us denote the

original message as M0.

Furthermore, let us define the one-hop error probability of the i -th relay as the probability

that the message decoded by the i -th relay differs from the message decoded by the (i −1)-th

relay. Due to the BMS channel properties the error event does not depend on the actual value

of the message. Note that this is not necessarily means that the message decoded by the i -th

relay differs from the original message. Let us denote this one-hop error probability for the

i -th relay as ϵi . We can also observe that the one-hop error events are independent.

It is easy to see that we have the following recurrence relation,[
PMi+1 (0)

PMi+1 (1)

]
=

[
1−ϵi ϵi

ϵi 1−ϵi

][
PMi (0)

PMi (1)

]
(2.15)

The eigenvector of this stochastic matrix is given by (1,1−2ϵi ) with the eigenvector is given

by 1p
2

[
1 1

]T
and 1p

2

[
1 −1

]T
respectively. Without loss of generality, let us assume that

M0 = 0. Given the starting probability PM0 (0) = 1 and PM0 (1) = 0, the error probability of the

whole scheme is given by,

PMℓ(n) (1) = 1−∏ℓ(n)
i=1 (1−2ϵi )

2
(2.16)

by using the standard inequality (1−x) ≤ e−x , we have

PMℓ(n) (1) ≥ 1

2
−

exp
(
−2

∑ℓ(n)
i=1 ϵi

)
2

. (2.17)

Let us consider the exponent term, given the lower bound to error probability that we have

proved, we have that,

ℓ(n)∑
i=1

ϵi ≥ 1

4

ℓ(n)∑
i=1

e2ni log Z (WY |X ) ≥ ne
2n
ℓ(n) log Z (WY |X ) = ne

2log Z (WY |X )

v NAIVE
1 (2.18)

where the second inequality is due to AM-GM inequality. We can also see that as n →∞ then

the lower bound on the exponent will also grows to infinity. This implies that

lim
n→∞PM(ℓ(n)) (1) ≥ 1

2
. (2.19)
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This contradicts the fact that ℓ(n) is a valid function to establish a strictly positive information

velocity v NAIVE
1 . Hence, the proposition.

This proposition combined with the fact that single-bit information velocity is an upper bound

to the blockwise information velocity gives us the following corollary.

Corollary 2.1. The blockwise information velocity of the naive scheme, v NAIVE, fulfills

v NAIVE = 0. (2.20)

This example gives us a reason to believe that a relaying scheme with positive information

velocity will need to either be “adaptive”, in the sense that the time taken by each hop will

need to depend on the actual realization of the channel, or be able to start transmitting before

deciding on its final value of the message. This insight also provides the rationale why we

study the tree codes in chapter 4.

Furthermore, this class of schemes will not be able to operate at positive blockwise information

velocity, even if we disregard the problem with its error probability. Let us say that we want

to transmit m-bits using this scheme; at the very least we require that each block length ni

is ≈ mC (WY |X ). If we want to transmit through a relay chain of length k, then we would

have n ≈ kmC (WY |X ). This implies that the inner limit in point ii in definition 2.4 is equal to

1/mC (WY |X ). Taking the outer limit implies that the blockwise information velocity is equal

to 0, even though the m-bit information velocity is strictly positive.

2.2 Single-Bit Information Velocity for BEC

Considering the previous example, doubts may arise about whether there exists a relaying

scheme in which we can analytically prove a positive information velocity. We will present an

example in which a positive single-bit information velocity can be easily established.

In this scheme, the relay mapping functions behave as follows,

• At the beginning of the chain, we have X1[k] = B [1] for all 1 ≤ k ≤ n.

• For the subsequent relays, the relay will default to guessing that the message is 0. How-

ever, once the relay observes 1 on its input, it will change its guess to 1. At any time, the

relay will transmit its guess. More formally, we have

X j [k] =1{∃i<k Y j−1[i ] = 1} (2.21)

for all 0 ≤ k ≤ n and 0 ≤ j ≤ ℓ.

• The decoder at the end of the chain will emit its guess.
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Chapter 2. Blockwise Information Velocity

It is easy to see that this scheme is admissible since each relay’s guess at time i depends only

on its input before time i .

An interesting feature of this scheme is that the error probability depends on the actual

message. In the sense that the error probability conditioned on B [1] = 0 is exactly 0, while the

error probability is not zero if we condition on B [1] = 1.

We can show that this scheme has a positive information velocity if the BEC erasure probability

ϵ< 1.

Proposition 2.4. The single-bit information velocity of BEC relay is lower bounded as follows,

v1 (BEC (ϵ)) ≥ 1−ϵ. (2.22)

Proof. Here we can observe an asymmetry in the error probability. As all errors in BEC are

detected errors, the final relay can be certain that M = 1 if it has received an unerased 1.

However, if it has only received an unerased 0, it is either because the correct message is

indeed 0, or it is due to the unerased 1 not being propagated to the final relay.

To study the error probability of this scheme, it is sufficient to characterize the propagation

times of the unerased message. Let us define a sequence of times, T1,T2,T3, . . . , such that

Ti = min{t : t > Ti−1,Yi [t ] ̸= ϵ} (2.23)

where we define T0 = 0. In other words, Ti is the time where the i -th relay can be said to be

sure of its reception, i.e., for all t > Ti , we have Xi+1[t ] = M . We must emphasize that if M = 0,

the i -th relay cannot determine Ti with its local information.

Due to the memorylessness of the channel, we have that Ti −Ti−1 ∼ Geometric(1− ϵ), and

Ti −Ti−1 ⊥ Ti−1. Hence, by considering the telescopic sum

Ti =
i∑

k=1
Tk −Tk−1, (2.24)

we have that

1. By linearity of expectation, we have E [Tk ] = k 1
1−ϵ ,

2. As the terms in the telescopic sum are i.i.d. random variables, the empirical average Ti /i

is subject to concentration of measure, for example Proposition 1.12. Consequently, we

have,

Pr

(
Tk −

k

1−ϵ > kγ
)
→ 0 (2.25)

where γ> 1/2.
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2.2 Single-Bit Information Velocity for BEC

Hence, in this case, let us consider ℓ(n) = (1−ϵ)n −O(n1/2+δ) for δ> 0. It fulfills the require-

ments to establish (1−ϵ) as an achievable single-bit information velocity, namely

1. We will have an error if Tℓ(n) > n. We have that

p(n)
e = Pr

(
Tℓ(n) −n > 0

)
= Pr

(
Tℓ(n) −

ℓ(n)

1−ϵ >O(n1/2+δ)

)
(2.26)

which vanishes due to the concentration.

2. We have the ratio between channel uses and the length of the relaying scheme, i.e.,

limsup
n→∞

ℓ(n)

n
= 1−ϵ. (2.27)

Hence this scheme provides us with a lower bound on the information velocity.

On the next chapter, we will show that this lower bound is in fact an equality for single-bit

information velocity by using the converse result that we will develop.

Unfortunately, this scheme cannot be used to establish a positive blockwise information

velocity for BEC. As we can see, this scheme fundamentally exploits the fact that a) all error

in BEC is detected errors (as opposed to undetected errors, which is more common to other

channel models), and b) the message set only contains two possible messages.

Using the argument in proposition 2.1, this scheme also establishes the positivity of informa-

tion velocity for any m-bit information velocity. However, this method does not imply the

positivity of the blockwise information velocity.

As we can see in the proof of the previous proposition, the time that is taken for the message

to traverse a single hop is not fixed. The transmission time taken by each hop will depends

on the actual realization of the erasures. In a sense, this scheme overcomes the result that we

showed in the previous section as the scheme adaptively lengthen the transmission time in

the face of more erasures. As our analysis shows, we rely on the fact that the length of these

transmission times is independent, and therefore the empirical average of these transmission

times exhibit concentration to the expected value. In this regards, the fact that the deviation

from the long-time behavior is in the order of o(k) is essential to our argument. We will see

the same pattern in the later chapter where we developed a scheme with positive blockwise

information velocity for BEC relaying problems.
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2.3 Related Works

To our knowledge, the first work that attempts to quantify the relation between the “spatial”

dimension in a network and the number of channel uses is (Rajagopalan and Schulman, 1994).

In this work, the authors attempted to study the consequences of noisy communication chan-

nels in the context of distributed computation. The inherent unreliability of communication

channels contradicts the commonly used abstract model of computation (i.e., Turing machine,

distributed state machine, etc.). To bridge this gap, the authors introduced a communication

scheme based on tree codes, allowing diverse computation units to agree on the system’s state,

assuming feedback exists between each computation unit.

In their work, they also introduced an ad-hoc scheme which they refer to as "Broadcasting on

a chain", we will discuss this scheme in the appendix as it represents another important line

of thought in designing a relaying scheme.

But their main concern is mainly in solving the problem of distributed computing, which

explains the simplicity of their discussion of trade-off between time and spatial dimension. In

contrast to their ad-hoc scheme for relaying, the scheme that we will develop in chapter 4, can

be understood as an extension of their idea of using tree code to simulate a tape abstraction

(in our case we use this tape to track the transmission of message bits), which surprisingly

achieves positive information velocity in BEC relaying problems2.

The work that can be said to revive the interest in the question of information velocity is

(Huleihel et al., 2019). The authors studied the problem of tandem relaying for BSC with

finite number of relays. The setting in their paper, where the number of relays is fixed, is

characteristically different than our asymptotic formulation of the problem. In fact, this the

first paper which presents a conjecture on the nature of (single-bit) information velocity,

namely that information velocity is equal to the channel capacity. Although this relation holds

for BEC, it turns out that the conjecture is incorrect for other channels.

The subsequent progress is on the asymptotic formulation of this problem, which is given in

the work of (Domanovitz et al., 2022). The author studied the problem of relaying on packet

erasure channels with feedback, which the analysis is closely similar to BEC with feedback. In

this paper, we first see the treatment of information velocity problems in terms of the ratio

between the number of relays and the number of channel uses. Another innovation in this

paper is the use of the notion of streaming sources, where the packets arrive with geometric

interarrival, as opposed to previous study which considers a transmission of a single bit.

Another notable work is the line of research given in (Ling and Scarlett, 2022). In this paper,

the authors presented a simple relaying scheme which achieves positive information velocity

by modifying the "Broadcasting on a chain" scheme presented in (Rajagopalan and Schulman,

2In fact, I wonder why they choose to define an ad-hoc scheme instead of conducting a more careful error
analysis of their tree codes scheme. But then again, maybe their focus on distributed computing precludes this
consideration.
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1994). In our view, their main insight is on the use of more powerful error correction codes, i.e.,

Maximum Distance Separation codes (namely Hamming codes), as opposed to the abstracted

channel coding scheme used in the original scheme. They also optimize the parameter of the

original scheme to achieve a probability of error upper bounded by a constant (although not

decaying, hence does not fulfill our definition of information velocity), with the number of

channel uses scaling linearly with the number of relays.

We would be remiss if we did not mention a recent result by (Domanovitz et al., 2023) which

independently achieves the same result as ours regarding the information velocity for AWGN

channels with feedback. We will elaborate on our presentation of this scheme later on chapter

5.

2.4 Appendix : Rajagopalan’s Relaying Scheme

The scheme proposed by Rajagopalan is defined recursively. The first iteration of this scheme,

which we will refer to level 1 scheme, is designed for two relays (a single hop) to send a single

bit by repeating the message bit R times. We will keep track of three parameters of the i -th

iteration of the scheme (as a shorthand we will refer this as the i -th scheme), namely

• The number of hop traversed by the scheme ki ,

• The number of bits that it sends mi ,

• The time elapsed between the transmission by the first relay to the reception by the final

relay ni .

Hence, we have k1 = 1, m1 = 1, and ni = R.

Given the i -th scheme with parameter (ki ,mi ,ni ), the i +1-th scheme is designed to operate

at parameter (4ki ,2mi , (3+α2mi /mi )ni ), namely,

1. Given 2mi bits that we want to send, we divide it into 2mi /mi blocks.

2. We apply channel coding to correct for 1/4 error. Let us denote the rate of this code by

1/α hence we have α2mi /mi coded blocks.

3. We sent these blocks by using the i -th scheme 4 times. Hence, we can send these blocks

through 4ki hops. Note that we can send blocks in streaming manner; i.e., after receiving

the first i -th scheme’s block, the endpoint of the i -th scheme can start running the i -th

scheme for the next hop while simultaneously receiving the subsequent i -th scheme’s

block from the previous hop. Hence, the time spent by this relaying scheme is equal to

3ni +niα×2mi /mi . (2.28)
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First, let us analyze the error probability of this scheme. Let us denote the error probability

of the i -th scheme as qi . By the design of our channel code, the error event of the (i +1)-th

scheme can be upper bounded by the event where a quarter of i -th scheme blocks are in error.

The error probability of each block can be upper bounded by union bound to be equal to

qi 2mi /mi
3. Hence we have by Chernoff bounds for Bernoulli random variables,

qi+1 ≤ e−αd2(1/4;4qi )2mi /mi

≤ e−2αd2(1/4;4qi ) (2.29)

Regardless of qi , we can increase α, i.e., reduce the channel code’s rate, such that qi+1 ≤ qi .

Hence, we can achieve reliable communication using this scheme.

We can also study the scaling of number of hops and the number of bits transmitted, where

we can see that to design a relaying scheme for ℓ hops and m bits, then we need to repeat the

iteration schemes i∗ times with i∗ = max(log2ℓ, log∗2 (m)). Finally, we can see that the number

of channel uses for the i -th scheme can be upper bounded by (2α)i exp∗
2 (i ) where exp∗

2 (i ) is

defined as exp∗
2 (0) = 1 and exp∗

2 (i +1) = 2exp∗
2 (i+1). Assuming that log∗2 (m) > log2ℓ, we have

the number of channel uses is equal m(2α)log∗
2 (m). We can see that this scheme also fails to

achieve positive information velocity, as the information velocity of this scheme is equal to

4i∗/2αi∗ exp∗(i∗) which vanishes as i∗ →∞.

3The original analysis in (Rajagopalan and Schulman, 1994) contains an error whereas the error probability of
the block at the i +1-th scheme is mistakenly replaced with the error probability of a single application of the i -th
scheme, instead of being properly upper bounded using union bound. This also explains why our parameter here
deviates from the original analysis to make the whole scheme work.
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3 A Converse for Blockwise Information
Velocity

In the time-honored tradition of information theory, we will start our study of information

velocity by gaining insights into the fundamental limit that can be achieved by arbitrary

relaying scheme. The argument for our converse for information velocity is driven by the

intuition that the amount of information conveyed in a single channel use is limited. Moreover,

we can upper bound the amount of information that a relay can send as a fixed proportion

of the difference of information between the relay’s observations and the subsequent relay’s

observations. This restriction introduces a “transport equation”-like structure, dictating the

speed of information propagation through the relay chain.

In this chapter, we will begin by discussing F-divergences, with the main focus on defining the

objects used for our converse result and on establishing connections between F-divergences

and the decoding error of communication schemes. Afterwards, we will delve into the notion

of information transfer curves, that characterizes the amount of information that can be

propagated at each channel use as a function of the difference in information between the

transmitter and the receiver in a single hop. We will also review the concept of channel

contraction coefficient which can be understood as the maximum slope of the information

transfer curve.

We will then use the local bound that we have developed for a single channel use between two

relays in a single hop to develop a bound on the information velocity of the entire relay chain.

Originally, an early form of this method is presented in (Rajagopalan and Schulman, 1994)1.

Our main contribution lies in connecting the method with the notion of F-divergences, hence

allowing the method to be used with greater class of information measures. Through this

connection, we demonstrate that we can analytically derive an upper bound on information

velocity for BMS channels. For more general channels, the upper bound on information

velocity will depend on our ability to evaluate the channel contraction coefficient.

1Actually, we developed this argument as an offshoot of the achievability argument for AWGN channels with
feedback, which we will discuss in chapter 5. Later on, we realized that the same technique can be used to prove a
converse result.
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3.1 F-Divergences

The notion of F-divergences generalizes the notion of KL divergence while maintaining the

desirable property of being subject to a data processing inequality.

Definition 3.1. Given a convex function f :R+ →Rwith f (1) = 0, we define

D f (Q;P ) = EP

[
f

(
dQ

dP

)]
(3.1)

for any Q and P are probability distributions satisfying P ≪Q.

We will refer to D f (·; ·) as the F-divergence induced by the convex function f .

Three particular F-divergences of interest are:

• KL divergence, where f (x) = x log x,

• TV divergence, where f (x) = 1
2 |x −1|,

• χ2 divergence, where f (x) = (x −1)2.

We can prove several properties of F-divergences.

Proposition 3.1. We have,

1. D f (Q;P ) ≥ 0 with equality if Q = P,

2. D f (QX PY |X ;PX PY |X ) = D f (QX ;PX ),

3. D f (QX ,Y ;PX ,Y ) ≥ D f (QX ;PX ).

4. D f (QX ;PX ) ≥ D f (QY ;PY ) if QY = WY |X ◦QX and PY = WY |X ◦ PX (Data Processing

Inequality).

Proof. The second property is obvious from the definition. The first and third properties are

consequence of Jensen’s inequality. We have

D f (Q;P ) = EP

[
f

(
dQ

dP

)]
≥ f

(
EP

[
dQ

dP

])
= f (1)

= 0 (3.2)
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and,

D f
(
QX ,Y ;PX ,Y

)= EPX

[
EPY |X

[
f

(
QX ,Y

PX ,Y

)]]
≥ EPX

[
f

(
EPY |X

[
QX ,Y

PX ,Y

])]
= EPX

[
f

(
EQY |X

[
QX

PX

])]
= EPX

[
f

(
QX

PX

)]
= D f (QX ;PX ). (3.3)

The last property can be shown by combining the second and the third property, namely,

D f (QX ;PX ) = D f (QX WY |X ;PX WY |X )

≥ D f (QY ;PY ). (3.4)

Although all F-divergences roughly measure the difficulty of distinguishing two distributions,

it is not obvious how to transfer an estimate on the divergence induced by convex function f to

an estimate on the divergence induced by another convex function g , for example, how to find

an estimate of total variation distance (which is operationally important) from an estimate on

KL divergence. The reader is suggested to consult (Harremoës and Vajda, 2010) for a general

method of solving this problem, and (Sason and Verdú, 2016) for a compendium of results on

F-divergences inequalities.

However, for our purpose, we are more interested in a qualitative result which asserts that

F-divergences tending to 0 implies that the distribution is hard to distinguish in a binary

hypothesis testing setting.

Proposition 3.2. Let f be a convex function which is thrice differentiable on 1 and f ′′(1) > 0.

Consider a family of binary distributions
{

Q(n)
X

}
and a family of binary distributions

{
P (n)

X

}
,

then we have

lim
n→∞D f

(
Q(n)

X ;P (n)
X

)
= 0 (3.5)

if and only if

lim
n→∞T V (Q(n)

X ,P (n)
X ) = 0. (3.6)

Proof. Note that for any convex function f we can consider a modified function

f̃ (x) = f (x)− f ′(1)(x −1), (3.7)
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such that f̃ (x) ≥ 0 for all x, and f̃ ′(1) = 0. We also have that

D f̃ (QX ;PX ) = EPX

[
f

(
dQX

dPX

)]
− f ′(1)EPX

[
dQX

dPX
−1

]
= EPX

[
f

(
dQX

dPX

)]
= D f (QX ;PX ). (3.8)

As we are considering binary distribution, let us consider the edge case where PX (0) or

PX (1) is equal to 0. Without loss of generality, let us assume that PX (0) = 0. For this edge

case, we have that D f̃ (QX ;PX ) = f̃ (QX (1)), and T V (QX ,PX ) = 2(1−QX (1)). In other words,

D f̃ (QX ,PX ) = f̃ (1−T V (QX ,PX )/2). We also know that due to the hypothesis, we have that

f̃ (x) is continuous at x = 1. This implies the statement of the proposition.

Given the assumption on f , the set of binary probability such that D f̃ (QX ;PX ) ≤ ϵ is compact

and due to Taylor’s theorem there exists a constant Kϵ with 1
2 f ′′(1) < Kϵ < f ′′(1) for small

enough ϵ such that,

D f̃ (QX ;PX ) ≥ f̃ (1)+ f̃ ′(1)EPX

[
QX (X )

PX (X )
−1

]
+ Kϵ

2
EPX

[
(PX (X )−QX (X ))2

PX (X )2

]
≥Kϵ

2
EPX

[ |PX (X )−QX (X )|
PX (X )

]2

≥Kϵ

2

( ∑
x∈X

|PX (x)−QX (x)|
)2

=2KϵT V (PX ,QX )2 (3.9)

which implies

T V (QX ,PX ) ≤
√

1

f ′′(1)
D f̃ (QX ;PX ). (3.10)

This implies that if

lim
n→∞D f

(
Q(n)

X ;P (n)
X

)
= 0 (3.11)

then

lim
n→∞T V (Q(n)

X ,P (n)
X ) = 0. (3.12)
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On the other hand, we have that,

D f̃ (QX ;PX ) ≤ EP

[
f̃

(
1− PX −QX

PX

)]
≤ EP

[
max

{
f̃

(
1− |PX −QX |

PX

)
, f̃

(
1+ |PX −QX |

PX

)}]
≤ EP

[
max

{
f̃

(
1− T V (PX ,QX )

PX

)
, f̃

(
1+ T V (PX ,QX )

PX

)}]
≤ max

{
f̃

(
1− T V (PX ,QX )

minx PX (x)

)
, f̃

(
1+ T V (PX ,QX )

minx PX (x)

)}
(3.13)

This implies the other direction by continuity, i.e.,

lim
n→∞T V (Q(n)

X ,P (n)
X ) = 0 (3.14)

then

lim
n→∞D f

(
Q(n)

X ;P (n)
X

)
= 0. (3.15)

Fortunately, most of the interesting F-divergences fulfill the condition of this proposition . For

example, we have for KL divergence, f ′′(1) = 1, and for χ2 divergence, f ′′(1) = 2.

We will also define the analogue of mutual information for F-divergences as follows.

Definition 3.2. Given a convex function f , we define the F-information between random

variable X and observation Y as,

I f (QX ;WY |X ) = EQX

[
D f

(
WY |X=X ;QY

)]
. (3.16)

We note that there are many alternatives for extending mutual information in the F-divergences

framework; see (Csiszár, 1974). The definition used here is the definition proposed in (Csiszár,

1967)2. This specific definition is suitable for our purpose, as we can show results with similar

flavor to i) data processing inequality, ii) hypothesis testing converse.

Proposition 3.3. We have,

I f (QX ;WY |X ) ≥ 0. (3.17)

Proof. This obvious due to the non-negativity of F-divergences.

2Please be cautious as the notation used in that paper differs from the notation of this thesis. They used I f to
denote F-divergences, instead of D f that we used in this work. However, we agree with the sentiment expressed in
the paper that emphasizes the operational characteristic of the proposed generalization of mutual information (in
our case: its ability to produce results similar to the data processing inequality).
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Proposition 3.4. Given X → Y → Z we have,

I f (QX ;WY |X ) ≥ I f (QX ;WZ |X ). (3.18)

Proof. This proposition follows from the data processing inequality for F-divergences. We

have,

I f (QX ;WY |X ) = EQX

[
D f

(
WY |X=X ;QY

)]
≥ EQX

[
D f

(
WZ |X=X ;QZ

)]
= I f (QX ;WZ |X ). (3.19)

The following proposition justifies the use of F-information to study the qualitative behavior

of a hypothesis testing scheme (and consequently, the feasibility of reliable communication).

Proposition 3.5. Let f be a convex function which fulfills the conditions of Proposition 3.2.

Consider a discrete distribution QX with the size of support is at least 2. Let us consider a

sequence of channels W (n)
Y |X and an optimal decoding function with conditional distribution

sequence Q(n)
X̃ |Y such that EQ (n)

X̃ |Y W (n)
Y |X QX

[
1{X̃ ̸= X }

]
is minimized. If

lim
n→∞ I f

(
QX ;W (n)

Y |X
)
→ 0 (3.20)

then

lim
n→∞EQ (n)

X̃ |Y W (n)
Y |X QX

[
1{X̃ ̸= X }

]≥ 1−maxx QX (x)

2
. (3.21)

Proof. The condition of the proposition implies that there exists n(ϵ) such that

I f (QX ;W (n)
Y |X ) ≤ ϵ (3.22)

for all n ≥ n(ϵ). Consider the following set

E =
{

x : D f (W (n)
Y |X=x ;Q(n)

Y ) ≤p
ϵ
}

. (3.23)

Then the definition of I f (·, ·) implies that we have

QX (E ) ≥ 1−p
ϵ and QX (E c ) <p

ϵ. (3.24)

Hence the probability of set E is close to 1 under the hypothesis as n goes infinity. Let us

define the event Jx ′ as the event where the decoder output x ′, i.e., Jx ′ = 1{X̃ = x ′}. We have

D f (W (n)
Y |X=x ;Q(n)

Y ) = D f (Q(n)
X̃ |Y W (n)

Y |X=x ;Q(n)
X̃ Y

) ≥ D f (Q(n)
J x̃ |X=x ;Q(n)

J x̃
) (3.25)
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3.1 F-Divergences

which imply that, for all x ∈ E and any x̃, we have

D f (Q(n)
J x̃ |X=x ;Q(n)

J x̃
) ≤p

ϵ. (3.26)

Let us denote the error probability, EQ (n)
X̃ |Y W (n)

Y |X QX
[1{X̃ ̸= X }] as Pe , we have

1−Pe =
∑
x

QX (x)Q(n)
JX |X=(1)

= ∑
x∈E

QX (x)Q(n)
JX |X=(1)+ ∑

x∉E

QX (x)Q(n)
Jx |X=x (1)

≤ ∑
x∈E

QX (x)Q(n)
Jx |X=x (1)+p

ϵ

≤QX (x ′)Q(n)
Jx′ |X=x ′(1)+ ∑

x∈E ,x ̸=x ′
QX (x)Q(n)

Jx |X=x (1)+p
ϵ (3.27)

for any x ′ ∈ E . We then have,

1−Pe ≤QX (x ′)Q(n)
Jx′ |X=x ′(1)+ ∑

x∈E ,x ̸=x ′
QX (x)

(
Q(n)

Jx′ |X=x (1)+ max
x,x ′∈E

T V
(
Q(n)

Jx′ |X=x ,Q(n)
Jx′ |X=x

))
+p

ϵ

≤QX (x ′)Q(n)
Jx′ |X=x ′(1)+ ∑

x∈E ,x ̸=x ′
QX (x)Q(n)

Jx′ |X=x (1)+ max
x,x ′∈E

T V
(
Q(n)

Jx′ |X=x ,Q(n)
Jx′ |X=x

)
+p

ϵ

≤QX (x ′)Q(n)
Jx′ |X=x ′(1)+PE + max

x,x ′∈E
T V

(
Q(n)

Jx′ |X=x ,Q(n)
Jx′ |X=x

)
+p

ϵ

≤QX (x ′)Q(n)
Jx′ |X=x ′(1)+PE +2max

x ′∈E
T V

(
Q(n)

Jx′ |X=x ,Q(n)
Jx′

)
+p

ϵ

≤ max
x ′ QX (x ′)+PE +2max

x ′∈E
T V

(
Q(n)

Jx′ |X=x ,Q(n)
Jx′

)
+p

ϵ (3.28)

which implies that,

1−maxx QX (x)−2maxx ′∈E T V
(
Q(n)

Jx′ |X=x ,Q(n)
Jx′

)
−p

ϵ

2
≤ Pe . (3.29)

Taking the limit, we have ϵ→ 0 and the maximization terms goes to 0 due to the Proposition

3.2.

The previous proposition allows us to assert that the error probability of any communica-

tion scheme is strictly bounded away from 0 if the F-information between the message and

decoder’s observations vanishes.

Finally, we will introduce the concept of α-tilted F-divergence.

Definition 3.3. Let f be a convex function. We define the α-tilted F-divergence as,

D (α)
f (QX ;PX ) =

EP

[
f
(
α

dQX
dPX

)
− f (α)

]
α

(3.30)

47



Chapter 3. A Converse for Blockwise Information Velocity

for α> 0.

Note that α-tilted F-divergence is a valid F-divergence as it is a perspective transformation on

the convex function f . It is also obvious that if α= 1, the F-tilted divergence reduces to the

original F-divergence.

For example, we have the tilted version of the KL divergence and the χ2 divergence as,

• KL Divergence,

Dα
K L(QX ;PX ) =

EP

[
α

dQX
dPX

log
(
α

dQX
dPX

)]
−α logα

α

= EQ

[
log

(
α

dQX

dPX

)]
− logα

= EQ

[
log

(
dQX

dPX

)]
= DK L(QX ,PX ) (3.31)

• χ2 Divergence,

χ2(α)(QX ;PX ) =
EQ

[(
α

dQX
dPX

−1
)2

]
− (α−1)2

α

= EQ

[
α

(
dQX

dPX

)2

−2

(
dQX

dPX

)]
− (α−2)

=αEQ

[(
dQX

dPX

)2

−1

]
=αEQ

[(
dQX

dPX

)2

−2
dQX

dPX
+1

]
=αEQ

[(
dQX

dPX
−1

)2]
=αχ2(QX ,PX ) (3.32)

In essence, the tilting operation changes the “center” of the convex function that induced the

F-divergence from 1 to α.

3.2 Channel Contraction Coefficients and Information Transfer Curves

For the purpose of determining the information velocity, the most crucial characteristic of a

channel is the amount of information that can be transferred to the receiver given the amount

of information available at the sender. More formally, we define an information transfer curve
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of the channel3 as follows,

Definition 3.4. For a channel WY |X , the information transfer curve for F-divergence induced

by a convex function f is defined as,

FI f (γ;WY |X ) = sup
QM ,X :I f (QM ,QX |M )≤γ

I f (QM ,QY |M ) (3.33)

where QY |M =WY |X ◦QX |M .

Information transfer curves fulfill the following properties.

Proposition 3.6. For any channel WY |X ,

1. We have,

0 ≤ FI f (γ;WY |X ) ≤ γ (3.34)

2. Forγ> 0 we have FI f (γ;WY |X )/γ is a decreasing function in x. In other words, supx FI f (x;WY |X )/x =
limx→0+

dFI f
(x;WY |X )

d x .

Proof. 1. The lower bound is due to the non-negativity of F-information. The upper bound

is a consequence of data processing inequality.

2. We only need to show that for 0 < γ< x, we have

γ

x
FI f (x;WY |X ) ≤ FI f (γ;WY |X ). (3.35)

Consider the sequence Q(n)
X ,M which achieves FI f (x;WY |X ). We consider a modified

sequence

Q̃(n)
X ,A,M =

λQ(n)
X ,M if A = 1

(1−λ)Q(n)
X Q(n)

M , if A = 0.
(3.36)

Note that we have augmented M with A, such that M is decoupled from X if A = 0,

otherwise, it is distributed according to Q(n)
X ,M . As we augment M , the Markov chain that

we should study is (M , A) → X → Y . We have,

I f (Q̃(n)
A,M ;Q̃(n)

X |A,M ) = EA,M
[
D f (Q̃X |A,M=A,M ;Q̃X )

]=λI f (Q(n)
M ;Q(n)

X |M ) (3.37)

and

I f (Q̃(n)
A,M ;Q̃(n)

Y |A,M ) = EA,M
[
D f (Q̃Y |A,M=A,M ;Q̃Y )

]=λI f (Q(n)
M ;Q(n)

Y |M ) (3.38)

We have shown that FI f (λx;WY |X ) is lower bounded by λI f (Q(n)
M ;Q(n)

Y |M ). Taking λ= γ/x

gives us our desired inequality.

3Some literature refer to this curve as the FI curve.
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Figure 3.1: KL Information Curve for Binary Symmetric Channel with 0.1 flipping probability.
The axes are denoted in bits as opposed to nats.

An example of numerical evaluation of the information transfer curve for the BSC is given in

Figure 3.1. In this case, we can see that the curve is concave and strictly increasing, although

this is not necessarily true for general channels.

Later on, we will see that the important quantity is the multiplicative reduction factor on

information. We will refer to this quantity as the contraction coefficient of the channel. In the

literature, the contraction coefficient is more commonly measured for F-divergence, and is

defined as follows.

Definition 3.5. Given a channel WY |X , the channel contraction coefficient for the F-divergence

induced by a convex function f is defined as,

η f (WY |X ) = sup
QX ,PX :0<D f (P ;Q)<∞

D f (WY |X ◦QX ;WY |X ◦PX )

D f (QX ;PX )
. (3.39)

Even though the channel contraction coefficient is defined in terms of divergences, one can

show that for certain choices of F -divergences, the channel contraction coefficient in terms of

divergences is equivalent to the corresponding ratio in terms of F-information. This proof is a

specific case of results presented in (Polyanskiy and Wu, 2015).

Proposition 3.7. Let f be a convex function which fulfills the conditions of Proposition 3.2.

Then we have,

η f (WY |X ) = sup
QM ,X

I f (QM ;QY |M )

I f (QM ;QX |M )
(3.40)
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where QY |M =WY |X ◦QX |M .

Proof. First, let us prove the easy direction. We have,

sup
QM ,X

I f (QM ,QY |M )

I f (QM ,QX |M )
= sup

QM ,X

E [D f (QY |M=M ;QY )]

E [D f (QX |M=M ;QX )]

≤ sup
QM ,X

max
m

D f (QY |M=m ;QY )

D f (QX |M=m ;QX )

≤ sup
QX ,PX :0<D f (P ;Q)≤∞

D f (WY |X ◦QX ;WY |X ◦PX )

D f (QX ;PX )
. (3.41)

For the other direction, consider any pair QX ,PX such that dQX
dPX

<∞. We will define a distribu-

tion,

P̃M ,X (m, x) =
 ϵ

1+ϵQX m = 1
1

1+ϵ (PX +ϵ(PX −QX )) m = 0.
(3.42)

We note that this family of distribution is a valid probability distribution with P̃X = PX if

ϵ< 1

supx
dQX
dPX

(x)−1
. (3.43)

Let us define PY |M =WY |X ◦PX |M , then we have,

I f (P̃M ,WY |X ◦ P̃X |M )

I f (P̃M , P̃X |M )
= ϵ−1D f (QY |X ◦ P̃X |M=0;PY )+D f (QY |M=1;PY )

ϵ−1D f (P̃X |M=0;PX )+D f (QX |M=1;PX )

= ϵ−1D f (QY |X ◦ P̃X |M=0;PY )+D f (QY ;PY )

ϵ−1D f (P̃X |M=0;PX )+D f (QX ;PX )
. (3.44)

Hence, we can prove our assertion if we can show that ϵ−1D f (QY |X ◦ P̃X |M=0;PY ) → 0 and

ϵ−1D f (P̃X |M=0;PX ) → 0. We will only show this fact for P̃X |M=0 and PX but the argument also

holds for the output divergence. We have,

1

ϵ
D f (P̃X |M=0;PX ) =1

ϵ
E

[
f

(
1+ϵ

(
1− dQX

dPx

))]
= 1

ϵ
E

[
f (1)

]+O(1)E

[
1− dQX

dPX

]
+O(ϵ)

=O(ϵ). (3.45)

This shows that for any pair of distributions QX ,PX which achieves the supremum for the

channel contraction coefficient, we can design another sequence P̃M ,X which also achieves

the same value for F-information, hence proving the proposition.
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In principle, the channel contraction coefficient of a channel might depend on the F-divergence

that we use to measure the contraction. A natural question would be to ask: what is the f

which minimizes the channel contraction coefficient? The following proposition is interesting,

as we can prove that the worst measure among F-divergences which fulfills the condition of

Proposition 3.2 is precisely the χ2 divergence.

Proposition 3.8. Let f be a convex function which fulfills the conditions of Proposition 3.2.

Then we have,

η f (WY |X ) ≥ ηχ2 (WY |X ) (3.46)

Proof. Consider any pair QX ,PX . We define another distribution Q̃X = (1−ϵ)PX +ϵQX . Under

our choice of f we have,

D f (Q̃X ,PX ) = E[ f (1)]+O(1)ϵE

[(
dQX

dPx
−1

)]
+ ∂2 f (x)

∂x2

∣∣∣∣
x=1

ϵ2E

[(
dQX

dPx
−1

)2]
+O(ϵ3)

= ∂2 f (x)

∂x2

∣∣∣∣
x=1

ϵ2Dχ2 (QX ,PX )+O(ϵ3). (3.47)

Therefore, consider the sequence Q(n)
X ,P (n)

X which achieves the supremum for χ2 divergence.

Then, we can construct another sequence of distributions Q̃(n)
X = (1− ϵn)P (n)

X + ϵnQ(n)
X with

ϵn → 0 such that,
D f (Q̃(n)

Y ;P (n)
Y )

D f (Q̃(n)
X ;P (n)

X )
→ ηχ2 (QY |X ). (3.48)

Hence proving the proposition.

3.3 Upper Bound on Information Velocity

In relaying problems, the F-information between the i +1-th relay’s observations and the

message cannot be larger than the information that the i -th relay has, as the relays themselves

form a Markov chain. Thus, at each time increment, the gain in information on the (i +1)-th

relay in the n-th channel use cannot be larger than their difference in information after the

(n −1)-th channel use4. So we have,

I f (QM ;QYi+1[1:n]|M )− I f (QM ;QYi+1[1:n−1]|M )

≤ (
I f (QM ;QYi [1:n−1]|M )− I f (QM ;QYi+1[1:n−1]|M )

)
. (3.49)

As currently stated, this inequality is just a convoluted restatement of the data processing

inequality. At this point there is no reason to believe that the information velocity is finite, as

given this inequality, there is no limit of information that the i -th relay can convey as long as

4Due to our assumption on the causality structure, the output of the i -th relay at time n can only depend on its
information at time n −1.
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there is an information difference between the relays. In fact, the characteristic of the channel

does not come into consideration for this inequality.

The information velocity only comes into play if we can show that at each time step, the i -th

relay cannot convey its whole information. In fact, for the majority of the channels, it can

only convey at most a fixed fraction of its information due to the channel noise. Here, the

contraction coefficient of the channel comes into play.

Proposition 3.9. We have,

I f (QM ;QYi+1[1:n]|M )− I f (QM ;QYi+1[1:n−1]|M )

≤ γ(
I f (QM ;QYi [1:n−1]|M )− I f (QM ;QYi+1[1:n−1]|M )

)
. (3.50)

where

γ= sup
α
η(α)

f (QY |X ) (3.51)

with η(α)
f (QY |X ) = supC ,M

D (α)
f (QZout |C ,M ,QZout |C )

D (α)
f

(
QZi n |C ,M ,QZi n |C

) for any convex function f which fulfills the con-

ditions of Proposition 3.2.

Proof. In this case, we will have,

I f (QM ;QYi+1[1:n]|M )− I f (QM ;QYi+1[1:n−1]|M )

I f (QM ;QYi [1:n−1]|M )− I f (QM ;QYi+1[1:n−1]|M )

≤ I f (QM ;QZout ,C |M )− I f (QM ;QC |M )

I f (QM ;QZi n ,C |M )− I f (QM ;QC |M )
. (3.52)

where for the ease of notation we define,

Zi n = Xi+1[n], Zout = Yi+1[n], C = Yi+1[1 : n −1] (3.53)

and the inequality is due to the fact that

M → Yi [1 : n −1] → (Zi n , Xi+1[1 : n −1]) → (Zout ,C ), (3.54)

which implies that I f (QM ;QYi [1:n−1]|M ) ≥ I f (QM ;QZi n ,C |M ).

Focusing on the numerator, we have,

I f (QM ;QZout ,C |M )− I f (QM ;QC |M ) = EQM QC

[
EQZout |C

[
f

(
dQZout |C ,M

dQZout |C
dQC |M

dQC

)]
− f

(
dQC |M

dQC

)]

= EQMC

EQZout |C

[
f
(

dQZout |C ,M

dQZout |C
dQC |M

dQC

)]
− f

(
dQC |M

dQC

)
dQC |M

dQC

 . (3.55)
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Using the definition of the tilted F-divergences, we have,

I f (QM ;QZout ,C |M )− I f (QM ;QC |M ) = EQMC

[
D

(
dQC |M

dQC

)
f

(
QZout |C ,M ,QZout |C

)]
. (3.56)

We can perform similar steps for the denumerator, hence we have,

I f (QM ;QYi+1[1:n]|M )− I f (QM ;QYi+1[1:n−1]|M )

I f (QM ;QYi [1:n−1]|M )− I f (QM ;QYi+1[1:n−1]|M )
≤
EQMC

[
D

(
dQC |M

dQC

)
f

(
QZout |C ,M ,QZo |C

)]

EQMC

[
D

(
dQC |M

dQC

)
f

(
QZi n |C ,M ,QZi |C

)]

≤ sup
α

sup
C ,M

D (α)
f

(
QZout |C ,M ,QZout |C

)
D (α)

f

(
QZi n |C ,M ,QZi n |C

)
≤ sup

α
η(α)

f (WY |X ). (3.57)

Thus proving the preposition.

The main idea of the next proposition can be traced back to (Rajagopalan and Schulman,

1994). Our main contribution here is extending the proof to any F-divergences which fulfills

the condition of Proposition 3.2.

Proposition 3.10. For any convex function f that fulfills the conditions of proposition 3.2, the

following holds,

v1 ≤ γ (3.58)

where,

γ= sup
α
η(α)

f (WY |X ). (3.59)

Proof. The general idea of the proof is to form an upper bounding function g (i ,n) such that

I f (QM ;QYi [1:n+i ]|M ) ≤ g (i ,n) (3.60)

for all i and n. Then we show that this upper bound goes to 0 if i is growing faster than n. By

Proposition 3.5, this implies that the average error probability of a decoder is strictly away

from 0.

We will define g (i ,n) recursively as,

g (i ,n) =


0 n = 0

f (|M |) i = 0

γg (i −1,n)+ (1−γ)g (i ,n −1) otherwise

(3.61)
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The exact initial value for g (0,n) is inconsequential for the proof, as the argument still holds

for any finite positive value of g (0,n). It is simply chosen to ensure that it is a valid upper

bound for I f (QM ;Q{Y0[ j ]} j≤n |M ).

From Proposition 3.9, we have,5

I f (QM ;QYi [1:n+i ]|M ) ≤ γI f (QM ;QYi−1[1:n+i−1]|M )+ (1−γ)I f (QM ;QYi [1:n+i−1]|M )

≤ γg (i −1,n)+ (1−γ)g (i ,n −1)

= g (i ,n). (3.62)

Let us note that the boundaries, i.e., the g (i ,0)’s and g (0,n)’s is true by the definition of the

F-divergences. Note that in inequality eq. 3.62 the g (i ,n) with i +n = k only depends on

g (i −1,n) and g (i ,n−1), namely the terms of g where the sum of its first and second argument

is equal to k −1. This observations allows us to structure an induction argument, where we

first prove the inequality for n + i = 0 by appealing to the boundary conditions. Thereafter,

we apply the inequality for g (n, i )’s with n + i = k assuming that it holds for g (n′, i ′)’s with

n′+ i ′ = k −1. Hence by induction we have

I f (QM ;QYi [1:n+i ]|M ) ≤ g (i ,n) (3.63)

for all i and n.

Finally, we want to show that for any v > γ
1−γ ,

lim
n→∞g (vn,n) = 0. (3.64)

The crucial observation here is that the recursion for g (·, ·) forms a linear system. Hence by the

superposition principle, we can decompose the value of g (k,n) into a sum of gi (k,n) for i < n,

where gi (k,n) is the value of g (k,n) with boundary condition g (k,0) = 0 for k > 0, g (0,n) = 0

for n ̸= i and g (0, i ) = f (|M |). We have,

gi (k,n) =
(

k +n − i

k

)
γk (1−γ)n−i (3.65)

and therefore

g (k,n) =
n∑

i=1
gi (k,n). (3.66)

To prove eq. 3.64 we will use the estimate of the exponent of g (k,n), here we will use prop. 1.17

5Under our model, teh
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in the appendix of chapter 1. We have,

lim
n→∞

1

n
log g (⌊v⌋n,n) = max

0≤i≤n
−DK L

(
v

v +1− i
n

,γ

)
≤ max

0≤x≤1
−DK L

( v

v +1−x
,γ

)
. (3.67)

The upper bound can be explicitly computed, which gives the optimal x as,

x =
[

1− v
1−γ
γ

]
+

(3.68)

and implies that,

lim
n→∞

1

n
log g (⌊v⌋n,n) ≤

0 v ≤ γ
1−γ

−DK L
( v

1+v ,γ
)

v > γ
1−γ .

(3.69)

Due to this bound on the exponent, we have eq. 3.64. Which also implies that

lim
n→∞ I f (QM ;QY⌊v⌋n [1:n]|M ) = 0 (3.70)

for v > γ/(1−γ). Converting this value in terms of the ratio between the number of relays and

the number of channel uses gives us the following upper bound,

v1 ≤
γ

1−γ
1− γ

1−γ
= γ. (3.71)

Hence proving the proposition.

A natural question arises regarding whether the upper bound that we developed can be

easily evaluated. In general, the answer is negative. The channel contraction coefficient for

general channel and general F-divergences is generally hard to compute, since the resulting

optimization problem is generally not convex, which leads to a great interest in developing

bounds for this problem.

However, we will show that for BMS channels, we have a simple characterization of the

channel contraction coefficient under the χ2 divergence. The χ2 divergence is an important

F-divergence as we have shown in the previous section that the channel contraction coefficient

under χ2 divergence is a lower bound on any channel contraction coefficient. Hence, the

following proposition essentially gives the tightest bound for BMS channels that we can prove

using this proof technique.

56



3.3 Upper Bound on Information Velocity

Proposition 3.11. For BMS channels, we have,

ηχ2 (WY |X ) = 1

2

∑
y∈Y

(WY |X=1(y)−WY |X=0(y))2

(WY |X=1(y)+WY |X=0(y))
. (3.72)

Proof. From the result in Proposition 3.6, we have that Fχ2 (x;WY |X )/x is a non-increasing

function. Hence, we know that the optimal coefficient can be achieved by the sequence where

Dχ2 (QX ;PX ) → 0. We would only consider QX and PX as perturbed version of each other.

In this case, we can parameterize QX (1) = PX (1)+ ϵ and QX (0) = PX (0)− ϵ, let us denote

PX (1) = p. We have,

Dχ2 (QX ;PX ) = ∑
x∈{0,1}

(QX (x)−PX (x))2

PX (x)
= ϵ2

p
+ ϵ2

p̄
= ϵ2

pp̄
. (3.73)

We have

Dχ2 (WY |X ◦PX ;WY |X ◦QX ) = ∑
y∈Y

(WY |X=1(y)ϵ−WY |X=0(y)ϵ)2

WY |X=1(y)p +WY |X=0(y)p̄
. (3.74)

Hence we have,

Dχ2 (WY |X ◦PX ;WY |X ◦QX )

Dχ2 (PX ;QX )
= pp̄

∑
y∈Y

(WY |X=1(y)−WY |X=0(y))2

WY |X=1(y)p +WY |X=0(y)p̄
. (3.75)

As we are having BMS channel, we can find π as the BMS permutation such that,

Dχ2 (WY |X ◦PX ;WY |X ◦QX )

Dχ2 (PX ;QX )
= pp̄

2

∑
y∈Y

(WY |X=1(y)−WY |X=0(y))2

WY |X=1(y)p +WY |X=0(y)p̄
+ (WY |X=1(π(y))−WY |X=0(π(y)))2

WY |X=1(π(y))p +WY |X=0(π(y))p̄

= pp̄

2

∑
y∈Y

(WY |X=1(y)−WY |X=0(y))2

WY |X=1(y)p +WY |X=0(y)p̄
+ (WY |X=0(y)−WY |X=1(y))2

WY |X=0(y)p +WY |X=1(y)p̄

= 1

2

∑
y∈Y

(WY |X=1(y)−WY |X=0(y))2(WY |X=1(y)+WY |X=0(y))

WY |X=1(y)2 +WY |X=0(y)2 +WY |X=1(y)WY |X=0(y)
(

p̄
p + p

p̄

) .

(3.76)

We can minimize the denumerator by taking p = p̄. Taking p = 1/2 gives us the proposition.
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3.4 Discussions

3.4.1 Single-Bit Information Velocity of BEC

In chapter 2, we have shown a lower bound for single-bit information velocity of the BEC. With

the converse that we have developed, we can show that the lower bound is in fact tight.

Proposition 3.12. The single-bit information velocity of BEC with erasure probability ϵ, v1, is

given by

v1 = 1−ϵ. (3.77)

Proof. The lower bound has been established in the previous chapter, we will only focus on

the upper bound. We will use Proposition 3.10, by taking the contraction coefficient under the

KL divergence.

v1 ≤ sup
QX ,M

I (M ,Y )

I (M , X )
= sup

QX ,M

(1−ϵ)I (M , X )

I (M , X )
= 1−ϵ. (3.78)

3.4.2 Information Velocity through Information Transfer Curves?

In this chapter, we introduced the notion of information transfer curves to motivates the

definition of the channel contraction coefficient. We also used the property that the channel

contraction coefficient is achieved at the point where the input information is approaching 0

to characterize the channel contraction coefficient for BMS channels.

However, there might be a suspicion that we can enhance the converse by directly using

the information transfer curve. After all, by taking a point on the curve where the input

information is away from 0, the ratio between the input and the output information can be

decreased. In the argument of the converse, the following inequality plays an important role

I f (QM ;QYi+1[1:n]|M )− I f (QM ;QYi+1[1:n−1]|M )

≤ γ(
I f (QM ;QYi [1:n−1]|M )− I f (QM ;QYi+1[1:n−1]|M )

)
. (3.79)

Instead of taking a static γ, could we improve the inequality by varying γ to take into account

the input information on the information transfer curve? For example, could we map

I f (QM ;QYi+1[1:n]|M )− I f (QM ;QYi+1[1:n−1]|M ). (3.80)

to a point on the x-axis in the information transfer curve to find the corresponding upper

bound on the output information, á la the EXIT curve argument?6

Let us assume that we have the FI curve, i.e., the information transfer curve of the KL diver-

6I hope the reader is familiar with LDPC analysis to get the reference, one of the most authoritative source is
(Richardson and Urbanke, 2008). But this analogue is not crucial to our discussion.
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Figure 3.2: Information gap between relays as a function of time for BSC(0.1). We directly use
information transfer curve evaluated in Figure 3.1 to calculate the upper bound g (·, ·).

gence, of the channel (or any upper bound on this curve, such that the upper bound is concave

and non-decreasing). We can construct an upper bounds on the information between the

relays’ observations and the message given the following recursive relation,

FI
(
min

{
g (k −1,n)− g (k,n), H(X )

})+ g (k,n) = g (k +1,n). (3.81)

As promising as this might sound, unfortunately, a closer investigation will reveal that this

approach will not lead to a better bound. The reason is that most of the time the information

gap between the relays is close to 0, so the system will spend most of its time operating on the

region where the ratio of information that it can transmit in a single channel use is dictated by

the channel contraction coefficient. To give an empirical support to this claim, let us consider

the numerical result given in Figure 3.2. As we can see, there are basically two forces operating

on the curve. It is true that the center of the mass of the curve is moving with respect to time.

However, we can also see that the curve itself is dispersed over an increasingly larger region as

the time increases.

We can formalize this intuition as follows.

Proposition 3.13. Given a FI curve of a channel, we have,

I (QM ;QYk [1:n]|M ) ≤ g (k,n) (3.82)
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such that,

g (k,0) =


0 k > 0

H(QM ) n > 0

F̃I
(
g (k −1,n)− g (k,n)

)+ g (k,n) otherwise

where F̃I is any concave and non-decreasing upper bound on FI . Let us assume that x∗ = inf{x :

F̃I (x)/x < 1}. Then we have,

lim
n→∞max

k

(
g (k,n)− g (k +1,n)

)≤ x∗. (3.83)

Proof. We will show that g (k,n) is a valid upper bound through induction. The base case is

simply from the fact that the sender has complete information of the message at the beginning.

We have the following inequalities,

I (QM ;QYk+1[1:n+1]) = I (QM ;QYk+1[1:n])+ I (QM ;QYk+1[n+1]|QYk+1[1:n])

≤ I (QM ;QYk+1[1:n])+EYk+1[1:n]
[
FI

(
I (QM ;QXk+1[n+1]|QYk+1[1:n])

)]
≤ I (QM ;QYk+1[1:n])+ F̃I

(
I (QM ;QXk+1[n+1]|QYk+1[1:n])

)
(3.84)

where the first inequality is due to the definition of FI , the second inequality due to concavity

of FI . Due to data processing inequality and the fact that FI is non-decreasing, we have,

I (QM ;QYk+1[1:n+1]) ≤ I (QM ;QYk+1[1:n])+ F̃I
(
I (QM ;QYk [1:n]|QYk+1[1:n])

)
= I (QM ;QYk+1[1:n])+ F̃I

(
I (QM ;QYk [1:n],QYk+1[1:n])− I (QM ;QYk+1[1:n])

)
= I (QM ;QYk+1[1:n])+ F̃I

(
I (QM ;QYk [1:n])− I (QM ;QYk+1[1:n])

)
. (3.85)

The last equality due to the fact that M −Yk [1 : n]−Yk+1[1 : n] forms a Markov chain.

As concavity implies subadditivity, we also have,

F̃I
(
I (QM ;QYk [1:n])− I (QM ;QYk+1[1:n])

)≤ F̃I
(
I f (QM ;QYk [1:n])− g (k +1,n)

)+ F̃I
(
g (k +1,n)− I (QM ;QYk+1[1:n])

)
≤ F̃I

(
I (QM ;QYk [1:n])− g (k +1,n)

)+ g (k +1,n)− I (QM ;QYk+1[1:n])

(3.86)

where the last inequality is due to the fact that FI (x) ≤ x. Hence we have,

I (QM ;QYk+1[1:n+1]) ≤ g (k +1,n)+ F̃I
(
I (QM ;QYk [1:n])− g (k +1,n))

)
≤ g (k +1,n)+ F̃I

(
g (k,n)− g (k +1,n))

)
(3.87)

as F̃I f is non-decreasing, which implies the induction step.

Let us denote g (k,n)− g (k +1,n) as ∆(k,n). Therefore we have,

∆(k +1,n +1) =∆(k +1,n)+ F̃I (∆(k,n))− F̃I (∆(k +1,n)). (3.88)
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Consider a sequence x(1), x(2), . . . which converges to x∗ from above, from this sequence we

can define a sequence γ(1),γ(2), . . . as F̃I (x(i ))/x = γ(i ). Consider T(i ) to be the smallest n such

that maxk∆(k,n) ≤ x(i ). We have the following inequality to hold for n ≤ T(i ),

∆(k,n +1) ≤∆(k,n)+γ(i ) (∆(k −1,n)−∆(k,n)) . (3.89)

Hence, we have that,

max
k
∆(k,n) ≤ max

k

(
k +n

k

)(
1−γ(i )

)n
γk

(i ). (3.90)

By Stirling’s inequality, we have that,

max
k
∆(k,n) ≤ 1p

2en

nnkk

(n +k)n+k

(
1−γ(i )

)n
γk

(i ). (3.91)

The optimal is achieved such that k/(n +k) ≈ 1−γ(i ). Hence, we have that

max
k
∆(k,n) ∼O

(
1p
n

)
, (3.92)

and there must exists a finite T(i ) such that this maximum is less than x(i ). This proves the

proposition.

Hence, the only region of FI curve which determines the information velocity is in the neigh-

borhood 0, which exactly corresponds to the region where the slope of the curve is equal to

the channel contraction coefficient.
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4 Blockwise Information Velocity in
Binary Erasure Channels

Wovon man nicht sprechen kann,

darüber muss man schweigen.

Ludwig Wittgenstein

In chapter 2, we discussed a relaying scheme which achieves positive single-bit information

velocity for BEC without feedback. We have also discussed the challenges of extending this

scheme to achieve positive blockwise information velocity.

In this chapter, we present an achievability scheme based on tree codes which achieves positive

blockwise information velocity. This method is inspired by (Rajagopalan and Schulman, 1994),

which uses tree codes to synchronize a state in distributed system. In the first section, we will

introduce the ensemble of tree codes that we will use. In the second section, we specify the

relaying scheme built on top of the tree codes and prove that a positive blockwise information

velocity is achieved by this scheme. Additionally, we support our findings with numerical

results.

4.1 Tree Code Ensemble

Before we describe the relaying scheme, we will discuss how we use a tree code for single

hop communication. For ease of exposition, let us consider a case where the sender already

has the whole data to be sent D[1 : m]. For reasons that will become obvious in the next

section, instead of assuming that D[1 : m] is only composed of bits, let us assume that D[1 : m]

uniformly takes value from {0,1,?}M .

Let us define a sequence of times T [1],T [2] . . . which we will refer as “speaking” times. This

sequence is such that T [1] ∼ Geometric(ps) and T [i +1]−T [i ] ∼ Geometric(ps), with the

interspeaking times are i.i.d. and independent of other quantities. These speaking times

denote the time indices at which the relay will attempt to send a message symbol.
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Figure 4.1: A possible realization from the tree code ensemble conditioned on T [1] = 2,T [2] = 3.
Each label on the nodes represent the symbol being sent through the channel, which is
sampled independently and uniformly from {0,1}. Each label on the edge represents possible
values of input sequence D[1 : 2]. The red edges represents the path that the encoding process
takes assuming D[1 : 2] = (0,1) in this case we have T (1 : 4;D[1 : 2]) = (0,1,1,0,0).

We build a tree, which will function as our codebook, based on these speaking times. Starting

at the root of the tree, there are two possibilities: a) T [1] = 1, in this case the root will split

into three different branches (each branch representing a different message symbol) with

each branch is given a unique label from {0,1,?}, or b) T [1] ̸= 1, in this case the relay will not

attempt to sent any message symbol, in other words the root will only grow to a single branch.

At the second level of the tree, the process is repeated, if 2 (the current height of the tree) is a

speaking time then each node will grow into three different branches, otherwise the node will

only grow into a single branch.

Once we define the structure of the tree, we will assign a label to each node by uniformly

sampling from {0,1}. The sampling process of the speaking times sequence and the labels of

each node defines an ensemble of tree codes. An example realization of this ensemble is given

in Figure 4.1.

Given a sampled tree and the sequence of symbols D[1 : m], we can find the corresponding

relay’s emissions by tracing a path in the sampled tree. Imagine that we have a marker that

tracks our position in the tree. At the beginning, the marker is placed at the root of the tree.

If the marker visits a node which corresponds to a speaking time, for example the current

time index is at Ti , the marker will take the branch which corresponds to the message symbol

D[i ], otherwise, there is only a single outgoing branch in that node and the marker will simply
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take the branch. Once the marker arrives at a node, the relay will emit the label of the said

node. Given a tree T , let us denote the message that the relay emits at time n given a message

sequence D[1 : m] as T (n ;D[1 : m]). 1

As we are working with BEC, given a received sequence Y [1 : n], we can define a set of message

sequences which are compatible with the received sequence. More formally, given a tree T

let us define,

D(Y [1 : n] ;T ) = {
D[1 : n] : ∀n:Y [n] ̸=?Y [n] =T (n ;D[1 : m])

}
(4.1)

namely the set of message sequences where all unerased parts of the received sequence agree

with the output of the tree given the message sequence.

The receiving relay is able to measure the length of the correct message that it received by

taking the longest common prefix among all compatible sequences. Due to the property of the

BEC, this longest common prefix is also necessarily a prefix of the correct message sequence.

Let us define a sequence T (r )[i ] as the first time where all the compatible sequences in the

tree agree on the i -th bit, i.e.,

T (r )[i ] = min{n : LLC P (D(Y [1 : n];T )) ≥ i } (4.2)

where LLC P (·) is the function which returns the length of the longest common prefix of its

argument. Note that T (r )[i ] is the time that the i -th bit is “received”.

An important notion for this tree code ensemble is the difference between the speaking time

and the receiving time, i.e.,

∆[i ] = T (r )[i ]−T [i ]. (4.3)

To make the discussion more concrete, let us return to the tree code presented in Figure

4.1. Here we have the true sequence sent by the receiver T (1 : 4,(0,1)) = (0,1,1,0,0). Let us

assume that due to the erasures, the receiver observes Y [1 : 5] = (0,1,1,0,?). Hence we have

D(Y [1 : 5];T ) = {(0,1), (0,?)}. This implies that at this point in time, the receiver has received

the first message symbol while still in doubt about the second message symbol. Furthermore,

we can also see that T (r )[1] = 2 and ∆[1] = 0.

Given this example, there might be doubt whether ∆[i ] is a properly defined random variables,

in the sense that we want to ensure Pr(∆[i ] =∞) = 0. The following proposition shows that

this worry is unfounded if the speaking probability is sufficiently low, i.e., if the rate at which

1Most works in the literature seem to credit Schulman’s work (Schulman, 1993) as the seminal work on tree
codes. But we can also see the idea of encoding trees and decoding trees in the work of Wozencraft (Wozencraft,
1957). The ensemble that we discussed here is more closely related to the tree codes construction presented in
(Sahai and Mitter, 2006), and the propositions that we presented here are in the same spirit as the results that they
developed for anytime capacity. Although, as far as our knowledge, the notion of using “speaking times” to control
the branching of the tree is new and, to be fair, is unnecessary for standard channel coding or control applications.
However, as we can see later, this notion is important to decouple the communication process between each hop
in our scheme.
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we send the message symbols is sufficiently low.

Proposition 4.1. The ensemble average of ∆[i ] satisfies,

E[∆[i ]] ≤ 1+ 6ps(1+2ps)(1+ϵ)2

(2− (1+2ps)(1+ϵ))(1−ϵ)
(4.4)

if ps ≤ 1
1+ϵ − 1

2 . We refer to a tree code ensemble which fulfills this condition as a stable tree code

ensemble.

Proof. Consider the path that is taken by the correct message sequence in the tree. At each

speaking time, we have two other trees branching from the siblings of the correct branch. Let

us define Si→ j as the number of paths in these branching trees that starts at time index i and

are compatible with the received output sequence up to time j . If i is a speaking time then we

have Si→i = 2, otherwise Si→i = 0. We have,

E[∆[i ]] = 1+
∞∑

j=1
Pr

(
i⋃

k=1

{
Sk→i+ j > 0

}∣∣∣∣∣Si→i = 2

)
. (4.5)

By the union bound we have,

E[∆[i ]] ≤ 1+
∞∑

j=1

i∑
k=1

Pr
(
Sk→i+ j > 0

∣∣Si→i = 2
)

. (4.6)

The probability term can be further upper bounded by considering each leaf in the branch-

ing tree separately and applying the union bound on the probability that each such leaf is

compatible with the received output sequence, i.e.,

Pr
(
Sk→i+ j > 0

∣∣Si→i = 2
)≤ 6p

i−k∑
l=0

(
i −k

l

)
3l (1−ps)i−k−l p l

s

i+ j−k∑
r=0

(
i + j −k

r

)
2−r (1−ϵ)r ϵi+ j−k−r

= 6ps

(
(1+2ps)

1+ϵ
2

)i−k (
1+ϵ

2

) j

. (4.7)

By plugging this upper bound to the sum, and extending the sum indexed by k to infinity gives

us the desired upper bound.

In the next proposition, we will show that the expected delay is non-decreasing. Intuitively,

the decoder has an easier time decoding the nodes closer to the root of the tree as they have to

contend with fewer competing branches than the later nodes.

Proposition 4.2. For stable tree code ensembles, we have,

E[∆[i ]] ≤ E[∆[i ′]] (4.8)

for i ≤ i ′.
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Proof. Consider the decomposition of the expectation in eq. 4.5, we can see by the memory-

lessness of the channel and the speaking time distribution that the probability term is shift

invariant, i.e.,

Pr

(
i⋃

k=1

{
Sk→i+ j > 0

}∣∣∣∣∣Si→i = 2

)
= Pr

(
i⋃

k=1

{
Sk+l→i+ j+l > 0

}∣∣∣∣∣Si+l→i+l = 2

)
(4.9)

for l ≥ 0. Hence, we have,

Pr

(
i⋃

k=1

{
Sk→i+ j > 0

}∣∣∣∣∣Si→i = 2

)
= Pr

(
i⋃

k=1

{
Sk+(i ′−i )→i+ j+(i ′−i ) > 0

}∣∣∣∣∣Si+(i ′−i )→i+(i ′−i ) = 2

)

= Pr

(
i ′⋃

k=1+(i ′−i )

{
Sk→i ′+ j > 0

}∣∣∣∣∣Si ′→i ′ = 2

)

≤ Pr

(
i ′⋃

k=1

{
Sk→i ′+ j > 0

}∣∣∣∣∣Si ′→i ′ = 2

)
. (4.10)

This implies that all probability terms in the decomposition in eq. 4.2 is larger for E[∆[i ′]] than

the decomposition for E[∆[i ]]. Hence, the desired inequality.

The main utility of these propositions is to show that the expected delay converges to a certain

value if the rate of message sequence transmission is sufficiently slow (ps is low enough).

4.2 A Relaying Scheme for BEC

In the relaying scheme that we will develop, the transmitting and the receiving relay at each

hop shares a single realization of a tree code that they will use to communicate.

The chain relaying scheme that we will develop is based on the concept of “tape” abstraction.

All relays in the chain maintain an internal tape, we will denote the tape of k relay as Dk [1 : n],

where each Dk [i ] takes a value in {0,1,?}, hence the reason why we use this alphabet in the

previous section. We will refer to ? as the erasure symbol, and the other symbols as the non-

erased symbols. The k-th relay will communicates the content of its tape to the k-th using

tree codes, i.e., the channel symbol that it emits corresponds to the edge label traced by its

tape content Dk [1 : n]

Imagine that the relay maintains a pointer to its tape. At the beginning, the pointer points to

Dk [0]. After each speaking time Tk [i ], the relay moves its pointer to Dk [i ] and is allowed to

write the value to Dk [i ]. We would also like to emphasize that we now have two notions of

time. The first notion is of the “physical clock”, i.e., the index of the current channel use which

is synchronized across all relays. The second notion is of the “logical clock”, i.e., the number of

speaking times that have passed which dictates how many symbols have been written to a

relay’s tape. These logical clocks are not synchronized across all relays and only shared by two

relays in a single hop due to the virtue of them sharing a single tree code.
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Let us start at the first hop. In this hop, the transmitting relay is also acting as the source and

has a complete information of B [1 : m]. At each speaking time, the transmitting relay has the

opportunity to write a single value to its tape, which it will use according to the following rule

D1[i ] =
B [i ] i ≤ m

? otherwise
(4.11)

i.e., the transmitting relay copies the content of B [1 : m] to its tape. The transmitting relay will

emit channel symbol based on its tape and its realization of tree code T1,

X1[n] =T1(n,D1[1 : ∞]). (4.12)

Although the expression in the LHS depends on D1[1 : ∞], note that this operation still

maintains causality as T1(n,D1[1 : ∞]) for n < T1[k] only depends on D1[1 : k −1]. At time n,

the receiving relay in this hop has access to Y1[1 : n]. Based on this information, it also has

access to a prefix of D1[1 : ∞], which we define as,

D (n)
1 [1 :] = LC P (D(Y [1 : n];T1)) ,

where LC P is a function which returns the longest common prefix function given a set. We

also omit the explicit length of the sequence in D (n)
1 [1 :] as this length is also a random variable

depending on the realization of erasures in the channel. Note that due to its construction, we

have that D (n)
1 [1 :] is a prefix of D (n′)

1 [1 :] for all n < n′. 2

Now, let us define the relaying process for subsequent hops, i.e., between the k-th relay and

(k +1)-th relay for k > 1. At time Tk [i ], the transmitting relay has access to D (Tk [i ])
k−1 [1 :] and

has to decide what to write to its tape at Dk [i ]. The main principle is for the relay to act as a

queue, with the non-erased symbols in D (Tk [i ])
k−1 [1 :] act as its input. It will compute the number

of unerased symbols that it retrieves, i.e.,
∑len

(
D

(Tk [i ])

k−1 [1:]
)

j=1 1

{
D (Tk [ j ])

k−1 [1 :] =?
}

, and the number of

unerased symbols that it has sent, i.e.,
∑i−1

j=11
{
Dk [ j ] =?

}
.

If the number of unerased input symbols is larger, it takes the oldest unerased input symbol

that it has not sent, let’s say D (Tk [i ])
k−1 [s] and it writes the symbol to its tape, i.e, Dk [i ] = D (Tk [i ])

k−1 [s].

Otherwise, the relay will write ? on its tape to signify that it currently has no new information.

We will denote the time when the i -th bit is written on the tape by the k-th relay as

Rk [i ] = min

{
Tk [ j ] : j ∈Z+,

j∑
l=1

1{Dk [l ] ̸= ?} = i

}
. (4.13)

Let us define the delay component ∆k [i ] as the difference between the time when the i -th bit

2In other words, the relay can explicitly measure its communication’s progress. The inability of doing so is the
main obstacle in extending this scheme to other channels which allow for undetected error.
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is written to the k-th relay tape and when it is received by k +1-th relay, i.e., it is equivalent to

∆k [i ] =∆
[

min

{
j : j ∈Z+,

j∑
l=1

1{Dk [l ] ̸= ?} = i

}]
(4.14)

if we use the definition of ∆[i ] in eq. 4.3 under the tree code of the k-th relay.

The main difficulty in analyzing Rk [i ] lies in the fact that it is not independent of Rk [i ′]
for i ′ < i . But despite this dependence, we can show that there exists a “self-regulating”

behavior, namely that the delays tend to increasingly behave like independent variables as the

separations between Rk [m]’s increase. Consequently, we can state the following fact about the

expected delays.

Proposition 4.3. For stable tree code ensembles, we have,

E[∆k [i +1]−∆k [i ] |Rk [i +1] = n2,Rk [i ] = n1] ≤ e−Oϵ,ps (n2−n1) +e−Oϵ,ps (n1) (4.15)

for m ≥ 1. We use f (n) ∈Ox (g (n)) to denote that limn→∞ g (n)/ f (n) = c(x), i.e., the multiplica-

tive factor is a function of x.

Proof. Care must be taken as the indexing for Rk [·]’s is different from the indexing for Tk [·].
Let us define i1 and i2 such that Tk [i1] = Rk [i ] and Tk [i2] = Rk [i +1]. We note that the sum in

eq. 4.5 absolutely converges, hence we can decompose the expectation such that,

E[∆k [i +1]−∆k [i ] |Rk [i +1] = n2,Rk [i ] = n1]

=
∞∑

j=1
Pr

(
i2⋃

l=1

{
STk [l ]→Tk [i2]+ j > 0

}∣∣∣∣∣C
)
−Pr

(
i1⋃

l=1

{
STk [l ]→Tk [i1]+ j > 0

}∣∣∣∣∣C
)

≤
∞∑

j=1
Pr

 ⋃
l :

Tk [l ]≤n2−n1

{
STk [l ]→Tk [i2]+ j > 0

}∣∣∣∣∣∣∣C
+Pr

({
STk [i1]→Tk [i2]+ j > 0

}∣∣C )

+Pr


⋃
l :

i ̸=i1
l≤i2

Tk [i ]>n2−n1

{
STk [l ]→Tk [i2]+ j > 0

}
∣∣∣∣∣∣∣∣∣∣∣∣∣
C

−Pr

(
i1⋃

l=1

{
STk [l ]→Tk [i1]+ j > 0

}∣∣∣∣∣C
)

(4.16)

with the conditioning event

C = {Rk [i +1] = n2,Rk [i ] = n1}. (4.17)

Let us focus on the last two terms in the expression. First of all, we note that by shift invariance
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property, we have,

Pr

 ⋃
l :

l≤i2
Tk [l ]>n2−n1

{
STk [l ]→Tk [i2]+ j > 0

}
∣∣∣∣∣∣∣∣∣∣
Rk [i +1] = n2

= Pr

(
i1⋃

l=1

{
STk [l ]→Tk [i1]+ j > 0

}∣∣∣∣∣Rk [i ] = n1

)
.

(4.18)

Using this equality, we can then expand the last two terms in eq. 4.16 into,

Pr


⋃
l :

l ̸=i1
i≤i2

Tk [l ]>n2−n1

{
STk [l ]→Tk [i2]+ j > 0

}
∣∣∣∣∣∣∣∣∣∣∣∣∣
C

−Pr

 ⋃
l :

l≤i2
Tk [l ]>n2−n1

{
STk [l ]→Tk [i2]+ j > 0

}
∣∣∣∣∣∣∣∣∣∣
Rk [i +1] = n2


(4.19)

and

Pr

(
i1⋃

l=1

{
STk [l ]→Tk [i1]+ j > 0

}∣∣∣∣∣Rk [i ] = n1

)
−Pr

(
i1⋃

l=1

{
STk [l ]→Tk [i1]+ j > 0

}∣∣∣∣∣C
)

. (4.20)

We can show that eq. 4.19 is non-positive, as the event in both probability terms covers exactly

the same time indices, with the difference that in the positive term, n2 is guaranteed to not

contain a speaking time. Hence one can couple the tree realization (except at n2) and the

erasure events in both probability terms. We can see that in this coupling, the event in the

negative term is a superset of the event in the positive term. Hence this quantity is always

non-positive.

A similar argument can be used for showing that eq. 4.20 is non-positive. But now the argument

is based on the fact that n1 is guaranteed to be a speaking time in the negative term.

As eq. 4.19 and eq. 4.20 are both non-positive, we can drop these terms from eq. 4.16. Hence

we have,

E[∆k [i +1]−∆k [i ] |Rk [i +1] = n2,Rk [i ] = n1]

≤
∞∑

j=1
Pr

 ⋃
l :

Tk [l ]≤n2−n1

{
STk [l ]→Tk [i2]+ j > 0

}∣∣∣∣∣∣∣C


︸ ︷︷ ︸
≤e−Oϵ,ps (n1)

+
∞∑

j=1
Pr

({
STk [i1]→Tk [i2]+ j > 0

}∣∣C )
︸ ︷︷ ︸

≤e−Oϵ,ps (n2−n1)

, (4.21)

where the estimate is obtained in similar manner as in eq. 4.7.
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Now, we can state the main result of this chapter, which gives the asymptotic trade-off between

Rk [m] and k.

Theorem 4.1. We have,

E[Rk [1]] ≤ k

(
µ+ 1

ps

)
(4.22)

and

E[Rk [m]]−E[Rk [1]] ∼Om(
p

k), (4.23)

with µ= E[∆∞].

Proof. We will start by the case of Rk [1], where we do not have to worry about the dependence

of the delays. Due to the behavior of the first relay, we have R1[i ] = T1[i ]. For k ≥ 1, we can

write Rk [1] as,

Rk+1[1] = min
{
Tk+1[ j ] : j ∈Z+,Tk+1[ j ] > Rk [1]+∆k [1]

}
. (4.24)

We can also express Rk+1[1] as,

Rk+1[1] = Rk [1]+∆k [1]+Nk (Rk [1]+∆k [1]) , (4.25)

for k ≥ 1, where

Nk (l ) = min
j

{
Tk+1[ j ]− l : Tk+1[ j ] > l

}
. (4.26)

Due to the memorylessness of the speaking times and the result in Proposition 4.2, we can

upper bound the expectation as,

E[Rk+1[1]] ≤ E[Rk [1]]+µ+ 1

ps
(4.27)

as E[Nk (·)] = 1/ps . Repeatedly applying this inequality gives us,

E[Rk [1]] ≤ k

(
µ+ 1

ps

)
. (4.28)

Our goal now is to show that,

E[Rk [m]−Rk [1]] ∼Om(
p

k). (4.29)

To do so, we will show that

E[(Rk [i +1]−Rk [i ])2] ∼Om(k), (4.30)

which implies our goal as,

E[Rk [m]−Rk [1]] =
M−1∑
i=1

E [Rk [i +1]−Rk [i ]] ≤
M−1∑
i=1

√
E
[
(Rk [i +1]−Rk [i ])2

]
. (4.31)
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Hence, we have

E[Rk [m]−Rk [1]] ∼Om(
p

k). (4.32)

To show eq. 4.30, note that we have

Rk+1[m] = max
0<i≤m

Rk [i ]+∆k [i ]+N ◦M+1−i

k (Rk [i ]+∆k [i ]) (4.33)

where N ◦l

k (x) = Nk ◦ · · · ◦Nk︸ ︷︷ ︸
l times

(x). Hence we have

Rk+1[m]−Rk+1[m −1] = max
m⋃

i=1

{
Rk [i ]+∆k [i ]+N ◦m+1−i

k (Rk [i ]+∆k [i ])
}

−max
m−1⋃
i=1

{
Rk [i ]+∆k [i ]+N ◦m−i

k (Rk [i ]+∆k [i ])
}

(4.34)

Let us recall the following fact about the difference of max functions,

max{x1, . . . , xnx }−max{y1, . . . , yny } = max{x1 −max{y1, . . . , yny }, . . . , xnx −max{y1, . . . , yny }}

≤ max{x1 − yπ(1), . . . , xnx − yπ(nx )} (4.35)

where π is any mapping from {1, . . . ,nx } to {1, . . . ,ny }.

By choosing the following mapping

π(i ) =
i 1 ≤ i ≤ m −1

m −1 i = m
(4.36)

and squaring both sides, we have

(Rk+1[m]−Rk+1[m −1])2 ≤ maxGe ∪ {(G1 +G2 +G3)2}

≤ (maxGe )+ (
G2

1 +G2
2 +G3

3 +2G1G2 +2G3(G1 +G2)
)

(4.37)

where

Ge =
m−1⋃
i=1

{(
N ◦m+1−i

k (Rk [i ]+∆k [i ])−N ◦m−i

k (Rk [i ]+∆k [i ])
)2

}
G1 = Rk [m]−Rk [m −1]

G2 =∆k [m]−∆k [m −1]

G3 = Nk (Rk [m]+∆k [m])−Nk (Rk [m −1]+∆k [m −1]). (4.38)

Note that squaring operation preserves the direction of the inequality, as Rk+1[m]−Rk+1[m−1]
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is guaranteed to be non-negative.

As geometric distributions are memoryless and have a finite moment generating function,

we can show that, E[maxGe ] ∼O(logm), see appendix in chapter 1. Furthermore, it is easy to

show that, E[G2
2] ∼O(1) and E[G2

3] ∼O(1).

Let us consider the G3(G1 +G2) term. Observe that regardless of the value of G1 and G2, due to

the memorylessness of geometric distribution and the fact that Nk only depends on the tree

structure of the (k +1)-th relay, G3 is independent of G1 and G2. Furthermore we have,

E
[
Nk (x1)−Nk (x2)

∣∣x1 −x2 = y
]= E[

Nk (y)−Nk (0)
]= 0. (4.39)

This implies that E[G3(G1 +G2)] = 0.

Finally, we consider the G1G2 term. We have

E[G1G2] = E[G1E[G2|G1]]

≤ E[G1e−Oϵ,ps (Rk [m−1]) +G1e−Oϵ,ps (G1)]

≤ E[G1e−Oϵ,ps (Rk [1])]+O(1)

≤ E[G2
1]e−Oϵ,ps (Rk [1]) +O(1)

(4.40)

where pG1 is the PMF of G1 and we used Proposition 4.3 for the inequality.

Combining all of these terms gives us,

E
[
(Rk+1[m]−Rk+1[m −1])2]≤ E[

(Rk [m]−Rk [m −1])2](
1+e−Oϵ,ps (Rk [1]))+O(logm). (4.41)

Note that we have Rk [1] ∼O(k), hence we have,

E
[
(Rk [m]−Rk [m −1])2]≤ k∑

j=2

j∏
l=2

(1+e−O(l ))O(logm)

∼O(k logm) (4.42)

which proved eq. 4.30 and completed the proof.

But it is not sufficient to show that the expectation has the correct scaling; we also need to

show that Rk [M ] concentrates to this expectation.

Proposition 4.4. We have,

Pr

(
RK [1] >

(
E [∆∞]+ 1

ps
+δ1

)
K

)
→ 0 (4.43)

for any δ1 > 0.

73



Chapter 4. Blockwise Information Velocity in Binary Erasure Channels

Proof. We can expand Rk [1] as

Rk [1] =
k−1∑
j=1
∆ j [1]+Nk

(
k−1∑
j=1
∆ j [1]

)
. (4.44)

Now consider k −1 random variables {∆∞,i }k−1
i=1 such that these random variables are i.i.d.

copies of ∆∞. One could note that regardless of the values of {∆ j ′ [1]} j ′< j the random variable

∆ j [1] is stochastically dominated by ∆∞, j , see appendix in chapter 1. Hence, we can consider

a surrogate version of Rk [1], namely,

R̃k [1] =
k−1∑
j=1
∆∞, j +Nk

(
k−1∑
j=1
∆ j [1]

)
(4.45)

such that R̃k [1] stochastically dominates Rk [1]. We can see that R̃k [1] is composed of i.i.d.

random variables, hence it is subject to the law of large number, such that we have

Pr

(
R̃k [1] >

(
E[∆∞]+ 1

ps
+δ1

)
k

)
→ 0, (4.46)

for any positive δ1. Due to the stochastic domination, this tail bound on R̃k [1] also applies to

Rk [1].

Hence by combining these results, we can show that the blockwise information velocity of this

scheme is strictly bounded away from 0.3

Corollary 4.1. We have,

v (BEC (ϵ)) ≥ sup
0≤ps< 1

1+ϵ− 1
2

vtree
(
BEC (ϵ); ps

)
(4.47)

with vtree
(
BEC (ϵ); ps

)= 1
µ+ 1

ps

where µ= E[∆∞].

Proof. With N = K (µ+1/ps +δ1 +δ2), δ1,δ2 > 0, the decoding scheme succeeds if (i) RK [1] ≤
K (µ+1/ps +δ1) and (ii) RK [M ]−RK [1] ≤ δ2K , as these imply that RK [M ] ≥ N . Using Propo-

sition 4.4, we show that the complement of (i) has vanishing probability as K gets large. By

Theorem 4.1 and Markov’s inequality, the complement of (ii) also vanishes. As δ1 and δ2 are

arbitrary positive numbers, this proves the lower bound.

3During author’s discussion with his colleague in physics, the colleague has brought to our attention the
similarity of the process analyzed here and the problem of determining the speed of asymmetric simple exclusion
process, for example results in (Aggarwal et al., 2023). Unfortunately, this discussion happens late enough into the
writing process and we do not have the time to properly assess the connection or whether there are techniques
that can be adapted to our problem.
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Figure 4.2: Trade-off between the ensemble speaking probability vs the achievability result
in eq. 4.47. This result is obtained through monte-carlo simulations, hence we plot the 95%
confidence interval range.

4.3 Discussion

4.3.1 Optimizing the Tree Code Ensemble

The results of this chapter show that the information velocity term is dominated by the

transmission delay of the first bit.

In Proposition 4.1, we present an upper bound to the expectation of this delay. As we later

remarked, this upper bound is pretty loose. As far as we know, there is no closed-form formula

for the expected delay. Hence the maximization must be done numerically. To gain some

insights to this quantity, we used Monte Carlo simulations to estimate this expectation, the

result can be seen in Figure 4.2 for BEC(0.4).

The concave shaped of the curve can be explained by the trade-off between two phenomena:

i) as ps decreases the difference between the time when an unerased bit is received at the

relay and the closest future speaking time increases, ii) as ps increases, the effective rate of the

tree codes increased and therefore the number of competing branches during the decoding

process also increased, leading to longer delay.

4.3.2 Numerical Results

To corroborate our theoretical results, we also conducted Monte Carlo simulations of our

scheme for BEC(0.4).

Our main results gives an upper bound which scales as O(
p

k) for the expected time difference
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Figure 4.3: Time difference between the first and last message bit reception normalized by
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for ps = 0.15.
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4.3 Discussion

between the receipt of the first and the last bit. However, this leaves the question on whether

the order of this upper bound is tight. Surprisingly, we can see in Figure 4.3 that it seems that

the order of our upper bound is most likely tight. This could motivate further research in

finding the matching lower bound.

In Figure 4.4 we show the scaling of the receiption time of the first and the last bit also tends

to agree with our result in eq. 4.47. In our previous section, we showed that for ps = 0.15 we

would expect that the designed information velocity i.e., 1/(1/ps +E[∆∞]) is roughly around

0.07.

4.3.3 Feasibility of Applying Tree Codes in Practical Setting

One of the main concerns in applying tree codes to a practical setting is the amount of memory

needed to store the codebook for the encoding process and to store the candidate paths for

the decoding process. For the decoding process, this problem is not a significant concern as

it can be shown that the expected number of candidate paths is bounded for BEC, but this

might be a concern if we want to generalize the scheme to other channels. There have been

several attempts to circumvent this problem. For example, in regular tree codes, there has

been an attempt to assign the label of the edges based on LTI codes with a sequential decoding

algorithm, e.g., (Khina et al., 2016), to reduce complexity. But we cannot adopt this technique

for the tree codes in our scheme as the branching process is randomized in our code.

Another commonly used approximation is to approximate tree codes by using convolutional

codes with finite memory. However, this approach is also not suitable for our scheme. In

our scheme, each bit is transmitted sequentially. Hence any error induced in the tape can

cause catastrophic errors as all bit positions are now shifted. Tree codes ensembles have an

advantage in this regard, as any decoding error will cause the decoded branch to differ from

the transmitted branch, hence eventually the receiver can correct the decoding error. This

behavior cannot be replicated by any channel codes with finite memory.

Hence the question of the feasibility of applying this scheme in a practical setting is still open.

77





5 Blockwise Information Velocity in
AWGN Channels with Feedback

When the facts change, I change my

mind. What do you do, sir?

John Maynard Keynes

In channel coding problems, it is well known that feedback does not increase the capacity

of memoryless channels. However, it significantly reduces the complexity of achievability

scheme. For example, Horstein’s method (Horstein, 1963), or Schalkwijk-Kailath scheme

(Schalkwijk and Kailath, 1966) achieve the channel capacity with a relatively simple scheme.

In fact, an even simpler scheme, where the feedback is only used to send a “terminating”

message, is also shown to achieve the full benefit of having a noiseless feedback channel

(Polyanskiy et al., 2011).

The apparent ease of finding a good scheme for channels with feedback motivates us to study

the problem of information velocity for channels with feedback, more specifically for the

Additive White Gaussian Noise channels.

In this chapter, we will define the relaying problems with feedback. We will then define and

analyze our modification to Schalkwijk-Kailath (SK) scheme. We will show that this scheme

achieves an information velocity of 1/(1+σ2). A similar result is also derived independently

in (Domanovitz et al., 2023). We will then review the information velocity that we obtained

against what we know about the contraction coefficient of AWGN channels. Finally, we will

discuss what we will refer to as heterogeneous AWGN relaying problems with feedback, namely

the relaying problems where the channel between each hop is an AWGN channel with variance

that might be different for each hop.
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f (0)
r el ay WY |X f (1)

r el ay
. . .

. . .

f (ℓ−1)
r el ay WY |X f (ℓ)

r el ayB [1 : m] B̂ [1 : m]

X1[1 : n] Y1[1 : n] Xℓ[1 : n] Yℓ[1 : n]

Figure 5.1: AWGN relaying problem with feedback. Here, WY |X is AW GN (σ2).

5.1 Schalkwijk-Kailath Scheme on AWGN Relaying Problems with

Feedback

Let us consider a relaying problem where the channel in each hop is an AWGN(σ2). We

introduce noiseless feedback at each hop, such that the k-th relay at time n has access to

Yk [1 : n −1]. The illustration of the relaying problem that we will consider is given in Figure

5.1.

Our method to show achievability is based on the Schalkwijk-Kailath scheme for point-to-

point communication with feedback.

In the SK scheme, the sender maps the message to equidistant points in the real line, while

still respecting the power constraint. The transmitter sends this point at its first channel

use, and the receiver recovers the Mean Mean Square Error (MMSE) estimate of the the

transmitter’s transmission. This estimate is of course noisy. At the subsequent transmissions,

the transmitter sends the difference between its actual transmission at the previous time

instant and receiver’s estimate of its transmission at the previous time instant (which it can

recreate due to the noiseless feedback). One can show that the variance of this difference

decays doubly exponential with respect to the number of channel uses.

Let us define a random variable Ui [n] to represent the value that the i -th relay wants to

transmit at time t . For the first relay (i.e., the source), this random variable is completely

equivalent to the SK scheme on point-to-point channel, i.e.,

U1[1] = fenc (B [1 : m])

U1[n] =U1[n −1]−Ũ1[n −1], for i > 1. (5.1)

The transmitter scales these values and transmit them through the channel, and the receiver

forms the following estimates of the transmitted values,

X1[n] = U1[n]p
Var(U1[n])

Ũ1[n] =
√

Var(U1[n])
Y1[n]

1+σ2 . (5.2)

The function fenc : {0,1}m →R is chosen such that the message point is mapped in an equidis-

tant manner, while fulfilling E[U1[1]] = 0 and Var(U1[1]) = 1.
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However, for the second relay onward, we introduce a small modification to the SK scheme,

namely we change the value that the relay transmits as,

Uk [i ] = Ũk−1[i −1]+Uk [i −1]−Ũk [i −1]. (5.3)

Finally, for our decoding function, we decode by finding the message point that is closest to∑n−1
i=1 Ũℓ[i ].

Proposition 5.1. Given a sequence ℓ(1), . . . ,ℓ(n) such that

lim
n→∞

ℓ(n)

n
= 1−α (5.4)

for (1+1/σ2)−1 <α< 1, then,

lim
n→∞− 1

n
logVar

(
fenc (B [1 : m])−

n−1∑
i=1

Ũℓ(n)[i ]

)
≥ d2(α; (1+1/σ2)−1). (5.5)

Before we show the proof, we need the following fact about the independence structure of the

error terms in the SK scheme.

Lemma 5.1. For all n, we have (Ui [n]−Ũi [n]) ⊥ (U j [n]−Ũ j [n]) where i ̸= j .

Proof. We will prove by induction. First, we want to prove the relation Ui [n] ⊥U j [n] if i ̸= j .

By construction, the property holds for n = 1.

Let us assume that the statement is true for {Ui [n − 1]}ℓi=1. To show that it also holds for

{Ui [n]}ℓi=1, we will show that the components of Ui [n] and U j [n] for i ̸= j , i.e., (Ũi−1[n −
1],Ui [n −1]−Ũi [n −1]) and (Ũ j−1[n −1],U j [n −1]−Ũ j [n −1]), are also independent.

We have Ũi−1[n − 1] ⊥ Ũ j−1[n − 1] as the induction hypothesis implies that Ui−1[n − 1] ⊥
U j−1[n − 1]. This also implies that Ui−1[n − 1]−Ũi−1[n − 1] ⊥ U j [n − 1] if i − 1 ̸= j . In the

case that i −1 = j , we also have Ui−1[n −1]−Ũi−1[n −1] ⊥ Ũ j [n −1] due to the property of

minimum mean square error estimate for values transmitted through AWGN. Finally, we also

have Ui−1[n −1]−Ũi−1[n −1] ⊥U j−1[n −1]−Ũ j−1[n −1] due to the induction assumption, as

Ũi [n]’s is linear combination of Ui [n]’s with independent noises. Hence this completes the

induction, while also showing that this induction implies the proposition.

Now, we are ready to give a proof of Proposition 5.1.

Proof. First of all, let us analyze the scheme for a fixed ℓ. From the definition of Uk [i ], we

have,

Ũk [i −1] = Ũk−1[i −1]− (Uk [i ]−Uk [i −1]). (5.6)
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Summing both sides from i = 1 to i = n yields,

n−1∑
i=1

Ũk [i ] =
n−1∑
i=1

Ũk−1[i ]−Uk [n]

=
n−2∑
i=1

Ũk−1[i ]− (Uk [n]−Ũk−1[n −1]). (5.7)

We also have from the definition of Uk [i ],

Uk [i ]−Ũk−1[i −1] =Uk [i −1]−Ũk [i −1]. (5.8)

Hence, we have

n−1∑
i=1

Ũk [i ] =
n−2∑
i=1

Ũk−1[i ]− (Uk [n]−Ũk−1[n −1])

=
n−2∑
i=1

Ũk−1[i ]− (Uk [n −1]−Ũk [n −1]). (5.9)

Repeatedly substituting
∑n−2

i=1 Ũk−1[i ] in this recurrence relation gives us,

n−1∑
i=1

Ũℓ[i ] =
n−ℓ∑
i=1

Ũ1[i ]−
ℓ∑

k=2
(Uk [n −ℓ+k −1]−Ũk [n −ℓ+k −1]). (5.10)

Substituting fenc (B [1 : m])−U1[n −ℓ+1] for
∑n−ℓ

i=1 Ũ1[i ] gives us,

n−1∑
i=1

Ũℓ[i ] = fenc (B [1 : m])−U1[n −ℓ+1]−
ℓ∑

k=2
(Uk [n −ℓ+k −1]−Ũk [n −ℓ+k −1])

= fenc (B [1 : m])−
ℓ∑

k=1
(Uk [n −ℓ+k −1]−Ũk [n −ℓ+k −1]). (5.11)

Therefore, we have,

fenc (B [1 : m])−
n−1∑
i=1

Ũℓ[i ] =
ℓ∑

k=1
(Uk [n −ℓ+k −1]−Ũk [n −ℓ+k −1]). (5.12)

As all Uk [i ] are linear combinations of Gaussians, it is easy to see that the error term, i.e.,

fenc (B [1 : M ])−∑n−1
i=1 Ũℓ[i ], is also distributed as a Gaussian. Furthermore, taking expectation

on both sides of the equation implies that the error term is a zero-centered Gaussian. Thus,

we only need to understand the variance of this quantity.

Due to this independence structure in Lemma 5.1, we have,

fenc (B [1 : M ])−
n−1∑
i=1

Ũℓ[i ] =
ℓ∑

k=1
Var

(
(Uk [n −ℓ+k −1]−Ũk [n −ℓ+k −1])

)
(5.13)
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and the following relations between the variance terms,

Var(Uk [t ]) =


1 k = 1, t = 1

0 t < k

Var(Ũk−1[t −1])+Var(Uk [t −1]−Ũk [t −1]) otherwise

(5.14)

where,

Var(Uk [t ]−Ũk [t ]) = σ2

1+σ2 Var(Uk [t ])

Var(Ũk [t ]) = 1

1+σ2 Var(Uk [t ]). (5.15)

To ease notation and simplify the boundary condition, let us denote Sk [t ] = Var(Uk [t +k]). So

we have,

Sk [t ] =


1 k = 1, t = 0

0 k > 1, t < 0
1

1+σ2 Sk−1[t ]+ σ2

1+σ2 Sk [t −1] otherwise.

(5.16)

Playing around with small values of k and t , one quickly notices that this summation is a

similar summation that defines the Pascal’s Triangle. Hence the solution to this recurrence

relation is given by,

Sk [n] =
(

k +n

n

)
σ2n(1+σ2)−(k+n). (5.17)

A more formal argument can be obtained by using induction. Therefore we have that

Var

(
fenc (B [1 : m])−

n−1∑
i=1

Ũℓ[i ]

)
= σ2

1+σ2

ℓ∑
k=1

Var(Uk [n −ℓ−1+k])

= σ2

1+σ2

ℓ∑
k=1

Sk [n −ℓ−1] (5.18)

and correspondingly,

logVar

(
fenc (B [1 : m])−

n−1∑
i=1

Ũℓ[i ]

)
=−(n −ℓ) log(1+1/σ2)+ logσ2 + log

ℓ∑
k=1

(
k +n −ℓ−1

n −ℓ−1

)(
1+σ2)−k

.

(5.19)

Now let us assume that n and ℓ(n) also grows with the following proportion,

lim
n→∞

ℓ(n)

n
= 1−α (5.20)

with 0 <α< 1.
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Then we have,

lim
n→∞

1

n
logVar

(
fenc (B [1 : m])−

n−1∑
i=1

Ũℓn [i ]

)

≤−α log(1+1/σ2)+ sup
0<β<1−α

(α+β)h2

(
α

α+β
)
−β log

(
1+σ2) . (5.21)

The variational problem is concave, so we can find the maximum by taking the derivative.

This gives us the value of optimal β= min{σ2α,1−α}. Plugging β=σ2α, we can see that the

upper bound is equal to 0. On the other hand, if we plug β= 1−α, the upper bound is equal to

−d2(α;1/(1+1/σ2)).

In essence, Proposition 5.1 gives a threshold on the growth rate of the relaying channel length

if we want to ensure that the error of the receiver estimates decays exponentially. This implies

a lower bound on the information velocity of the Gaussian channel.

Corollary 5.1. We have a lower bound on the information velocity of AWGN channels with

feedback, i.e.,

v
(

AW GN (σ2)
)≥ 1

1+σ2 . (5.22)

Proof. If the distance of each message point is ∆=O(2−|m|), then the error probability is given

by,

Pr(B [1 : m] ̸= B̂ [1 : m]) = Pr

(∣∣∣∣∣ fenc (B [1 : m −
n−1∑
i=1

Ũℓn [i ]

∣∣∣∣∣≥ ∆2
)

≤ 2exp

(
− ∆2

8σ2
e

)
(5.23)

where σ2
e is the variance of

∣∣ fenc (B [1 : M ])−∑n−1
i=1 Ũℓn [i ]

∣∣. From the previous proposition, we

know that if (1+σ2)−1 <α and

lim
n→∞

ℓ(m,n)

n
= 1−α (5.24)

then the upper bound can be expressed as,

Pr(B [1 : M ] ̸= B̂ [1 : M ]) ≤ 2exp

(
−∆

2ed2(α;(1+1/σ2)−1)n

8

)
(5.25)

We can see that this implies that that the upper bound to the error probability vanishes as

n →∞ provided that,

lim
n→∞

ℓ(m,n)

n
< 1/σ2

1+ 1
σ2

. (5.26)

This implies that this scheme is a valid achievability scheme. Thus proving the proposition.
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5.2 Comparison of Achievability Result with Converse Result

Astute readers might feel a sense of déjà vu here. Indeed, the structure of the argument

for Proposition 5.1 is closesly related to the argument that we used to prove the converse

in chapter 3. In fact, structurally, the main difference between these two lies only on the

boundary conditions. For proving the converse, we held the boundary of k = 0 to be equal to

a positive value (representing the condition where the source has complete information at

the beginning of the transmission) and the boundary of n = 0,k > 0 is equal to 0 (representing

the condition where all other relays begin with no information). However, in this case, the

boundary k = 0 (representing the condition that the message point at the source has zero

variance at the beginning of the transmission), and the other relays have non-zero variance at

the beginning of the transmission.

5.2 Comparison of Achievability Result with Converse Result

Having established an achievability result on the information velocity of a Gaussian channel

with feedback, it is natural to ask about the relationship between this result and the converse

result developed in chapter 3.1

At first glance, the result from chapter 3 merely provides a trivial bound on the information

velocity. As we know that the channel contraction coefficient of AWGN is equal to 1 for KL

divergence (Polyanskiy and Wu, 2016).

However, we can argue that the information velocity of our scheme is optimal if we consider

the set of relaying schemes where the distribution of the relay output is a Gaussian random

variable. More formally, we have the following proposition.

Proposition 5.2. Consider a AWGN relaying problem with feedbacks, for all k and n > 1,

QXi [n]|Yi−1[1:n−1] ∼ N (0,1), then

v
(

AW GN (σ2)
)≤ 1

1+σ2 . (5.27)

In other words, if the hypothesis of the proposition holds, namely if the distribution of the

relay’s emission conditioned on its observations at the previous times is Gaussian, then our

achievability scheme is optimal. In general, we would expect that this condition holds for every

schemes which communicates at channel capacity; as Gaussian is the capacity-achieving

distribution for AWGN2.

Proposition 5.2 can be thought as a corollary of Proposition 3.10, as long as we can prove

that the channel contraction coefficient under the condition of the proposition is equal to

1Readers might have doubts regarding applicability of the converse result to relaying problems with feedback.
But the converse is indeed valid. After all, the motivation behind the tilting operation is to allow us to upper bound
the k-th relay’s information over the conditioning by the k +1-th relay’s observations on the previous time indices.

2For schemes with discrete message alphabet, this statement is not entirely accurate, as proven by the ongoing
research on constellation design.
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1/(1+σ2). We will show this fact on the following proposition. This proposition is originally

proved in (Makur and Zheng, 2015) which we modify for our purpose. The original result is

more general and applies to any marginal distribution in the exponential family with moment

constraints.

Proposition 5.3. Consider a Markov chain M → X → Y where the channel WY |X is an AWGN

channel, Y = X +Z , Z ⊥⊥ X , Z ∼ N (0,σ2
Z ). Let A bet the set of admissible distributions QX ,M

such that QX ∼ N (0,σ2
X ). Then we have,

sup
QX ,M∈A

I f (QM ,QY |M )

I f (QM ,QX |M )
≤ σ2

X

σ2
X +σ2

Z

. (5.28)

Proof. We have,

sup
QX ,M∈A

I f (QM ;QY |M )

I f (QM ;QX |M )
= sup

QX ,M∈A

EQM [D f (QY |M ;QY )]

EQM [D f (QX |M ;QX )]

≤ sup
PX ,EPX [X 2]<∞

D f (WY |X ◦PX ;QY )

D f (PX ;QX )
(5.29)

Let PY =WY |X ◦PX . Expanding the divergence terms, we have for all PX ,

D(PX ;QX ) = 1

2
log(2πσ2

X )+ 1

2

EPX [X 2]

σ2
X

−h(PX )

= h(N (0,σ2
X ))−h(PX )+ 1

2

(
EPX [X 2]

σ2
X

−1

)
,

D(PY ;QY ) = 1

2
log(2π(σ2

X +σ2
Z ))+ 1

2

EPX [X 2]+σ2
Z

σ2
X +σ2

Z

−h(PY )

= h(N (0,σ2
X +σ2

Z ))−h(PY )+ 1

2

(
EPX [X 2]+σ2

Z

σ2
X +σ2

Z

−1

)
. (5.30)

We want to show that

(σ2
X +σ2

Z )D(PY ;QY )
?≤σ2

X D(PX ;QX ). (5.31)

If we expand the divergence terms explicitly, we obtain

(σ2
X +σ2

Z )
[
h(N (0,σ2

X +σ2
Z ))−h(PY )

]+ EP [X 2]−σ2
X

2
?≤σ2

X

[
h(N (0,σ2

X ))−h(PX )
]+ EP [X 2]−σ2

X

2
. (5.32)

By removing identical terms on both sides gives us,

(σ2
X +σ2

Z )
[
h(N (0,σ2

X +σ2
Z ))−h(PY )

] ?≤σ2
X

[
h(N (0,σ2

X )−h(PX )
]

. (5.33)
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The next step is to transform this inequality such that we can use the entropy-power inequality.

We have, (
eh(N (0,σ2

X +σ2
Z ))

eh(PY )

)(σ2
X +σ2

Z )
?≤

(
eh(N (0,σ2

X ))

eh(PX )

)(σ2
X )

(5.34)

By plugging the differential entropy of the Gaussian, we have,

(
2eπ(σ2

X +σ2
Z )

eh(PY )

)σ2
X +σ2

Z
?≤

(
2eπσ2

X

eh(PX )

)σ2
X

. (5.35)

Note that this equation is equivalent with eq. 5.31, in the sense that we have not loosen the

inequality so far. To prove this inequality, we will divide this inequality into two inequalities,

(
2eπ(σ2

X +σ2
Z )

eh(PY )

)σ2
X +σ2

Z (i )≤
(

2eπ(σ2
X +σ2

Z )

eh(PX ) +2eπσ2
Z

)σ2
X +σ2

Z (i i )≤
(

2eπσ2
X

eh(PX )

)σ2
X

. (5.36)

Note that we have inequality (i), i.e.,

(
2eπ(σ2

X +σ2
Z )

eh(PY )

)σ2
X +σ2

Z

≤
(

2eπ(σ2
X +σ2

Z )

eh(PX ) +2eπσ2
Z

)σ2
X +σ2

Z

(5.37)

by the entropy-power inequality, i.e.,

eh(X ) +eh(Z ) ≤ eh(X+Z ). (5.38)

Namely that we can ensure that the denominator at the RHS is smaller than the LHS.

Therefore, we only need to show inequality (ii), i.e.,

(
2eπ(σ2

X +σ2
Z )

eh(PX ) +2eπσ2
Z

)σ2
X +σ2

Z

≤
(

2eπσ2
X

eh(PX )

)σ2
X

, (5.39)

then we proved the proposition for all PX . This inequality is equivalent to showing that(
a +γ
b +γ

)a+γ
≤

( a

b

)a
(5.40)

where a,b, and γ are positive values. Let us define a function

f (γ) =
(

a +γ
b +γ

)a+γ
. (5.41)

Our goal is to show,
∂ f

∂γ
≤ 0 (5.42)
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for γ≥ 0. We have
∂ f

∂γ
= f (γ)

[
log

a +γ
b +γ +

(
1− a +γ

b +γ
)]

(5.43)

which is always non-positive as f (γ) > 0 due to log x ≤ x −1.

5.3 Information Velocity on Heterogeneous AWGN Relaying Prob-

lems with Feedback

We can extend the model in the previous section such that the noise power of the AWGN

channel at each hop is different. To adapt this model to our analysis in the previous section,

we also need to assume that each relay has complete knowledge of the variance of all channels.

Due to this assumption, each relay can track the variance of Ui [k]’s and therefore it can

compute the optimal combining weight. Hence, Lemma 5.1 holds for this model.

More formally, we will consider a heterogeneous AWGN relaying model, where we have

Yi [t ] = Xi [t ]+Zi [t ] (5.44)

where Zi [t ] is independent of all other random variables and distributed according to the

distribution N (0,σ2
i ). However, the {σ2

i }ℓi=1 are i.i.d. discrete random variables on a finite

alphabet. Let us denote the distribution of this random variable as Pσ2 . We still use the SK

scheme where we have

U1[1] = fenc (B [1 : m])

U1[i ] =U1[i −1]−Ũ1[i −1], for i > 1

X1[i ] = U1[i ]p
Var(U1[i ])

, (5.45)

and for k > 1,

Uk [i ] = Ũk−1[i −1]+Uk [i −1]−Ũk [i −1]

Xk [i ] = Uk [i ]√
Var(Uk [i ])

. (5.46)

The only difference being that Ũk [i ] denotes E[Uk [i ] | Yk [i ], {σ2
j }k

j=1].

As in the previous section, we will also use Sk [t ] = Var(Uk [t +k]). So we have,

Sk [t ] =


1 k = 1, t = 1

0 k > 1, t <= 1

1
1+σ2

k−1
Sk−1[t ]+ σ2

k

1+σ2
k

Sk [t −1] otherwise.

(5.47)

The structure of this system of equations is given in Figure 5.2. We can also express the closed
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form of Sk [n]’s in a more concise manner using the notion of composition from combinatorics.

Definition 5.1. A k-composition of an integer n is defined as

Comp(k,n) =
{

(x1, . . . , xk ) ∈Zk
≥0 :

k∑
i=1

xi = n

}
. (5.48)

Proposition 5.4. We have

Sk [t ] = (1+σ2
k )

∑
(xi )k

i=1∈Comp(k,t )

k∏
i=1

(
σ2

i

1+σ2
i

)xi
(

1

1+σ2
i

)
. (5.49)

Proof. We will prove by induction. The base case is trivial, hence we only need to prove the

recurrence relation.

Let us introduce the following notation,

Comp(0)(k −1,n) =
{

(x1, . . . , xk−1,0) ∈Zk
≥0 :

k−1∑
i=1

xi = n

}
(5.50)

and

Comp(1)(k,n −1) =
{

(x1, . . . , xk +1) ∈Zk
≥0 :

k∑
i=1

xi = n −1

}
. (5.51)

We then have,

Comp(k,n) = Comp(0)(k −1,n)+Comp(1)(k,n −1). (5.52)

Assuming that the relation holds for Sk [t −1] and Sk−1[t ], then we have,

σ2
k

1+σ2
k

Sk [t −1] = (1+σ2
k )

∑
(xi )k

i=1∈Comp(1)(k,t−1)

k∏
i=1

(
σ2

i

1+σ2
i

)xi
(

1

1+σ2
i

)
(5.53)

and
1

1+σ2
k

Sk−1[t ] = (1+σ2
k )

∑
(xi )k

i=1∈Comp(0)(k−1,t )

k∏
i=1

(
σ2

i

1+σ2
i

)xi
(

1

1+σ2
i

)
. (5.54)

Adding these two terms and using eq. 5.3 gives us the recurrence relation.

Our analysis is based on the analytical combinatorics approach, especially the following

saddle-point bound lemma. Our proof approach follows the exposition in (Flajolet and

Sedgewick, 2009), albeit highly simplified as we are only interested in using the result for

proving bounds on generating functions.

Definition 5.2. For a sequence of non-negative numbers {ck }∞k=0, the generating function of this
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sequence is given by

G(z) =
∞∑

k=0
ck zk (5.55)

for complex z. The region of convergence of G(z) is the subset of complex number where the RHS

exists. It is said to be polynomial if there exists k such that c j = 0 for all k ≤ j .

Furthermore, we will define an operator [zn] such that [zn]G(z) for G(z) =∑∞
n=0 cn zn is equal

to cn . The following result is a classical result in complex analysis.

Theorem 5.1 (Cauchy’s Coefficient Formula). For a generating function G(z), then we have

[zk ]G(z) = 1

2πi

∮
G(z)

zk+1
d z (5.56)

where the integral is taken over any counterclockwise contour in the region of convergence of

G(z) which encircles the origin.

S1[1]

S1[2]

S1[3]

S1[4]

S2[1]

S2[2]

S2[3]

S2[4]

S3[1]

S3[2]

S3[3]

S3[4]

S4[1]

S4[2]

S4[3]

S4[4]

S5[1]

S5[2]

S5[3]

S5[4]

... ... ... ... ...

...

...

...

...

γ1

γ1

γ1

γ1

γ2

γ2

γ2

γ2

γ3

γ3

γ3

γ3

γ4

γ4

γ4

γ4

γ5

γ5

γ5

γ5

1−γ1 1−γ2 1−γ3 1−γ4 1−γ5

1−γ1 1−γ2 1−γ3 1−γ4 1−γ5

1−γ1 1−γ2 1−γ3 1−γ4 1−γ5

1−γ1 1−γ2 1−γ3 1−γ4 1−γ5

Figure 5.2: Lattice structure induced by eq. 5.47 with γk = 1
1+σ2

k
. Note that the value of node

Sk [n] in the interior of this latice can be calculated as the sum of the weights of all paths taken
from S1[1] to Sk [n], where the weight of a path is defined as the product of the weight of all
edges in the path.

Lemma 5.2 (Saddle-point Bound). Given a generating function G(z) of a sequence ck
∞
k=0 such

that ck ≥ 0 for all k, then we have,

[zn]G(z) ≤ G(ξ)

2πξn (5.57)

for 0 < ξ< R, where R is the radius of convergence of G(z).
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Proof. It is easy to see the following,

[zn]G(z) = 1

2πi

∮
G(z)

zn+1 d z ≤ 1

2π

∮ ∣∣∣∣G(z)

zn+1

∣∣∣∣d z (5.58)

As this holds for any contour, let us consider a contour C where C is a counterclockwise circle

of radius ξ centered on the origin. From the definition of radius of convergence, this circle is a

valid contour. We have the following,

[zk ]G(z) ≤ 1

2π

∮ ∣∣∣∣G(z)

zn+1

∣∣∣∣d z ≤ |C |
2πξn+1 sup

z∈C
|G(z)| (5.59)

Finally, as G(z) is a generating function, it can be expressed as

G(ξe iθ) =
∞∑

k=0
cnξ

neniθ (5.60)

for non-negative cn , hence its supremum is attained at θ = 0. Hence the upper bound.

We understand that there are many version of saddle point bounds, and this version is might

not be the most commonly used by information theorist, but it seems that this form is what

commonly referred to as the saddle-point bound in analytical combinatorics.

Proposition 5.5. Let us assume that the variance of the heterogeneous AWGN relaying problems

with feedback is given by random variable {σ2
1, . . . ,σ2

ℓ(n)} which is upper bounded by a constant

A. Then we have,

lim
n→∞

1

n
logE

[
Var

(
fenc (B [1 : m])−

n−1∑
i=1

Ũℓ(n)[i ]

)]
≤ sup

0<α<β
inf

0<z<1+ 1
A

α logG(z)− (1−β) log z

(5.61)

where,

lim
n→∞

ℓ(n)

n
=β. (5.62)

Proof. Consider the expectation of Sk [t ] where the expectation is taken with respect to the

randomness due to σ2
i ’s.

Sk [n] = (1+σ2
k )

∑
(xi )k

i=1∈Comp(k,n)

k∏
i=1

(
σ2

i

1+σ2
i

)xi
1

1+σ2
i

. (5.63)

For each i , let us consider the generating function, which is valid for 0 < z < 1+1/A,

∞∑
i=0

(
σ2

i

1+σ2
i

)i
1

1+σ2
i

zi = 1

1+σ2
i (1− z)

. (5.64)
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It is easy to see that this function does not depend on i except through σ2
i . Hence we have the

following bound,

Sk [n] ≤ (1+σ2
k )[zn]

k∏
i=1

∞∑
i=0

(
σ2

i

1+σ2
i

)i
1

1+σ2
i

zi

≤ (1+σ2
k )[zn]

k∏
i=1

(
1

1+σ2
i (1− z)

)

≤ (1+σ2
k )

2π

∏k
i=1

(
1

1+σ2
i (1−z)

)
zn . (5.65)

With similar argument as in the proof of Proposition 5.1, we have

Var

(
fenc (B [1 : m])−

n−1∑
i=1

Ũℓ[i ]

)
=

ℓ∑
k=1

σ2
k

1+σ2
k

Sk [n −ℓ−1]. (5.66)

Taking the expectation and using upper bound in 5.3, we have,

E

[
Var

(
fenc (B [1 : m])−

n−1∑
i=1

Ũℓ[i ]

)]
≤ E

 ℓ∑
k=1

A

∏k
i=1

(
1

1+σ2
i (1−z)

)
zn−ℓ−1


= A

ℓ∑
k=1

∏k
i=1E

[(
1

1+σ2
i (1−z)

)]
zn−ℓ−1

(5.67)

Let us define,

G(z) = E
[

1

1+σ2(1− z)

]
. (5.68)

We then have,

logE

[
Var

(
fenc (B [1 : m])−

n−1∑
i=1

Ũℓ[i ]

)]
≤ max

1≤k≤ℓ
k logG(z)− (n −ℓ−1)log z +O(1). (5.69)

Hence the proposition.

An important consequence of this preposition is a lower bound to the information velocity.

Corollary 5.2. We have a lower bound to information velocity of heterogeneous AWGN channels

with feedback, i.e.,

v(AW GN (σ2)) ≥ 1

1+E[σ2]
. (5.70)

Proof. Let us denote the optimal point in the inner infimization in eq. 5.61 at α as z∗(α).
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Consider the first-order condition,

z
∂ logG(z)

∂z
= 1−β

α
. (5.71)

Hence, we have,

z
E
[

σ2

(1+σ2(1−z))2

]
E
[

1
1+σ2(1−z)

] = 1−β
α

. (5.72)

We note that z∗(α) = 1 if α= 1−β
E[σ2] , z∗(α) = 1 also implies that the exponent is equal to 0. We

also note that z∗(0) = 1+ 1
A . By eq. 5.72, we also have that ∂z∗(α)

∂α < 0. Hence we know that

z∗(α) ∈ (1,1+ 1
A ) for α ∈ (0, 1−β

E[σ2] ). Let us take the derivative of exponent with respect to α,

dE(α)

α
= ∂E(α)

∂α
+ ∂E(α)

∂z∗(α)

d z∗(α)

dα
= logG(z∗(α)) (5.73)

where the second term is equal to zero due to z∗(α) is the minimizer of the exponent. Fur-

thermore, note that z∗(α) ∈ (1,1+ 1
A ) implies that G(z∗(α)) > 1, which implies that 0 ≤ dE(α)

α if

α ∈ (0, 1−β
E[σ2] ). Hence, we have E(α) < 0 if α ∈ (0, 1−β

E[σ2] ).

Note that if β< 1−β
E[σ2] , then E(α) < 0 in the supremum domain of the exponent. This implies

that,

lim
n→∞

1

n
logE

[
Var

(
fenc (B [1 : m])−

n−1∑
i=1

Ũℓ(n)[i ]

)]
< 0 (5.74)

if β< 1
1+E[σ2] . Hence proving the proposition by using the same argument as in the proof of

Corollary 5.1.

5.4 Numerical Results

To corroborate the theoretical results obtained in this chapter, we conduct Monte Carlo

simulations of the scheme. We simulate a heterogeneous AWGN relaying problem where σ2
i

is uniformly sampled from {0.1,0.2} and the initial value U1[n] is sampled from N (0,1). The

result of this simulation is given in Figure 5.3.

An interesting feature of this scheme is the fact that the relays are actually only effectively

transmitting on a small time window. This phenomenon can be seen in Figure 5.3, where the

transition only happened between 50 to 70 channel uses. The reason for this phenomenon is

due to the fact that the variance of Uk [n] tends to 0 most of the time, as we can see in Figure

5.4.
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Figure 5.3: Paths generated by the Monte Carlo simulations. We can see that the value esti-
mated by the relay converges to the correct value, with the transition happening between 50
to 70 channel uses, which is close to the value predicted by Corollary 5.2.
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Figure 5.4: The variance of Uk [t ]. We can see that for each relay, the variance is only significant
for a small part of the transmission times.
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6 Monitoring Problems as Adversarial
Hypothesis Testing Problems

As discussed in the first chapter, one of the main assumptions of the hypothesis testing

problem is that the data-generating process is assumed to be oblivious to the testing process.

This assumption might not hold if the data-generating process has some incentives to adapt

its behavior to the testing process.

In this chapter, we will examine a specific form of hypothesis testing. We introduce a setting

with multiple players and a hidden random variable. In this case, the tester aims to determine

whether a player possesses certain side-information about the hidden random variable, es-

sentially testing whether the player’s behavior is independent of the hidden random variable.

But here, we add a twist where the player with the side-information can alter its behavior to

maximize the error probability.

We will present a model which captures the dynamics between the player with side-information

exploiting its advantage, and the tester reducing its error probability. Several settings where

this might arise include:

• In financial markets, where a regulator aims to prevent financial actors from benefiting

from non-public information. In this case, these actors might want to deliberately avoid

the regulator suspicions while exploiting the non-public information.

• In cybersecurity, where an intruder wants to blend in with regular users. In this case, the

intruder is incentivized to imitate the behavior of regular users.

Furthermore, we will show that there is a concise representation of the strategies employed

by the player with side-information and the tester under particular assumptions on the

distributions of the random variables in the model.
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6.1 Model Formulation

Consider a scenario where the state of an environment X is observed by M +1 players. Among

these players, there are M regular players and a cheating player. The index of the cheating

player will be denoted by H which is distributed uniformly in {0, . . . , M }.1

Let us denote the players’ observations as Z0, . . . , ZM . For the i -th player, conditioned on

X and H , the observation Zi is independent of {Z j } j ̸=i . These observations are noisy. For

the regular players, i.e., i ̸= H , these observations are obtained through identical channels

characterized by VZ (r )|X . We assume that the cheating player benefits from a certain “infor-

mation advantage”, hence its observation is obtained through a different channel VZ (c)|X . We

denote the distribution of X as VX . We use superscripts (c) and (r ) to differentiate the random

variables of the cheating player and the regular player.

Each player uses its observation Zi as a basis to take an action Yi . In this model, the action of

the i -th player can only depend on Zi . This allows us to characterize the players’ policies as

(possibly probabilistic) mappings fi for each player, so that Yi = fi (Zi ).

A player obtains a reward from its action depending on the state of the environment. The

reward that the players obtain is determined by a bounded reward function R(X ,Y ). All players,

regular and cheating, have the same reward function. We assume that sup f (r ) E
[
R(X ,Y (r ))

]≤
sup f (c) E

[
R(X ,Y (c))

]
, i.e., the cheating player can obtain a greater expected reward if it is

allowed to act without any constraint.

The cheating player is constrained by a monitoring entity who gets to observe X and noisy

observations of the players’ actions. Let us denote the monitor observations of the i -th player

action as Ỹi . We also assume that conditioned on Yi , the observation Ỹi is independent of{
Z j

}M
j=0 ,

{
Y j

}M
j ̸=i and

{
Ỹ j

}M
j ̸=i . We assume that this observation is distributed as VỸi |Yi

. Based

on
(

X ,
{
Ỹi

}M
i=0

)
, the monitor gives a guess of the cheating player’s index. Let us denote this

guess as Ĥ .

We assume that the regular players disregard the possibility of being falsely accused. Hence the

reward of a regular player is independent of Ĥ and is given by E
[
R(X ,Y (r ))

]
. For the cheating

player, it can only reap its reward if it is not detected. So its reward is E[1{Ĥ ̸= H }R(X ,YH )].

The cheating player wants to maximize its reward; this typically requires a small probability of

being caught. On the other hand, the monitoring entity aims to minimize the reward of the

cheating player. The probabilistic model can be illustrated as in Figure 6.1. Let us assume that

all variables have finite alphabets.

Assuming that the monitor and the cheater are rational and that they both know about the

reward structure, then the expected reward will be a minimax value.

1The author apologizes for reusing M with different meaning than in the previous part.
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X

Z0 Y0 Ỹ0

ZM YM ỸM

Ĥ

Figure 6.1: Illustration of the monitoring problem.

Definition 6.1. We define the minimax reward of the cheating player, R(c), as,

min
Ĥ∈Ĥ

max
f (c)

E
[
1{Ĥ ̸= H }R

(
X ,YH

)]
. (6.1)

At first glance, one would think that the formulation of reward is specific to the case where the

decision rule is taken before the cheating player decides on its policy. But this is not the case.

This is a consequence of Von Neumann’s minimax theorem (section 17.6 in von Neumann

et al. (1944)).

Proposition 6.1. We have

min
Ĥ∈Ĥ

max
f (c)

E
[
1{Ĥ ̸= H }R

(
X ,YH

)]= max
f (c)

min
Ĥ∈Ĥ

E[1{Ĥ ̸= H }R(X ,YH )] (6.2)

Proof. This is a consequence of the Von Neumann’s minimax theorem (see section 17.6 in von

Neumann et al. (1944)). Due to our assumption that the alphabet of the random variables are

finite, then the set of deterministic policies of the cheater and the set of deterministic decision

rules of the monitor are finite. By the linearity of expectation, one can express the reward

function as a bilinear form. Hence this problem fulfils the hypothesis of Von Neumann’s

minimax theorem. The fact that we allow the policy f (c) to be probabilistic is essential to the

proof of proposition 1.

The minimax characterization of hypothesis testing problem has been studied since the

time of Hoeffding (Hoeffding, 1965). There has been several information-theoretic studies

of hypothesis testing problems with an adversary (Barni and Tondi, 2013; Feder and Merhav,

2002; Tondi et al., 2015). The main difference between the setting of our work and the literature

on universal hypothesis testing lies on our assumption that there is a reward function which

the cheating player wants to maximize.

There is also a recent interest on a related problem in the context of adversarial classification,

e.g., (Yasodharan and Loiseau, 2019; Dritsoula et al., 2017), which shares a similar concern

of an adversary behaving strategically to maximize a reward function. Our work is different
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in that we are mainly interested in the asymptotic behavior of the sequences of decision

strategies instead of characterizing the equilibrium for a one-shot instance.

6.2 One Shot Case

Before we consider the asymptotic setting, it is useful to examine the one-shot version of the

problem and establish several properties of the set of decision rules and the set of cheating

policies. It is easy to see that we can characterize the behaviour of a regular player as follows.

Proposition 6.2. For the optimal f (r ), we have, f (r )(z) ∈ argmaxy E
[
R(X , y) |Z (r ) = z

]
. where

the expectation is taken with respect to the regular player probability model.

Furthermore, even if the set Ĥ is uncountable due to randomization, one can characterize a

subset which attains the minimum in (6.1). We will refer to this subset as the metric-based

decision rules.

Definition 6.2. We say that Ĥ is a metric-based decision rule if there exists a g : (X ×Ỹ ) →R≥0

such that Ĥ
(
(x, (ỹi )M

i=0)
) ∈ argmaxi g (x, ỹi ). In this case, we say that Ĥ is induced by g . Let Ĥm

be the set of all metric-based decision rules.

Proposition 6.3. Given a deterministic policy f (c) , there exists a Ĥ ∈ Ĥm which attains the

minimum of the optimization problem, minĤ∈Ĥ E
[
1{Ĥ ̸= H }R

(
X ,YH

)]
.

Proof. If for a certain i , (x, ỹi ) has probability 0 under the regular player probabilistic model,

then the monitor can choose that player and incur no error probability. Hence, such (x, ỹi )

pairs do not contribute to the reward calculation.

Hence, let us only consider the case where the probabilities of all pairs (x, ỹi ) are non-zero

under the regular player probabilistic model. Note that we can write

E[1{Ĥ ̸= H }R(X ,YH )] = E[R(X ,YH )]−E[1{Ĥ = H }R(X ,YH )]. (6.3)

The goal of the monitor decision rule is equivalent to maximizing the second term in the RHS.

E[1{Ĥ = H }R(X ,YH )] = E[
E[R(X ,YH )|1{Ĥ = H }]

]
(6.4)

= ∑
x,(ỹ[k])M

k=0

VX (x)

M +1

M∏
j=0

VỸ (r )|X (ỹ j |x)E

[
VỸ (c)|X (ỹĤ |x)

VỸ (r )|X (ỹĤ |x)
E[R(x,Y (c))|X = x, Ỹ (c) = ỹĤ ]

]
.

(6.5)

This quantity is maximized if Ĥ is chosen to maximize the following metric,

g (x, ỹ) = VỸ (c)|X (ỹ |x)

VỸ (r )|X (ỹ |x)
E[R(x,Y (c))|X = x, Ỹ (c) = ỹ] (6.6)

for (x, ỹ) with non-zero probability in VỸ (r )|X , and ∞ otherwise.

100



6.2 One Shot Case

Due to Proposition 6.3, we can define an equivalence class on the set of all possible mappings

g from X ,Ỹ to R≥0, where we say that g1 and g2 are equivalent if they induce the same Ĥ . We

can also see that although the space of g is uncountable, but the set of Hm is of finite size.

Proposition 6.4. Given a decision rule Ĥ , consider a deterministic policy, f (c) such that

f (c)(z) ∈argmax
y

E[1{Ĥ ̸= H }R(X , y)|Z (c) = z] (6.7)

where the expectation is taken under the cheater’s probabilistic model. This policy attains the

maximum of optimization problem,

max
f (c)

E[1{Ĥ ̸= H }R(X ,YH )]. (6.8)

I.e., one can restrict the feasible set of cheating player’s policies to a set of deterministic cheating

policies.

As a consequence of the previous propositions, the class of randomized metric-based decision

rules and the class of deterministic cheating policy is sufficient to characterize the minimax

value. We state this formally below by using P (Ĥm) and Fd to denote the class of randomized

metric-based decision rule and the set of deterministic mapping from Z to Y .

Proposition 6.5. We have

max
f (c)

min
Ĥ∈Ĥ

E[1{Ĥ ̸= H }R(X ,YH )] = min
Ĥ∈P (Ĥm )

max
f (c)∈Fd

E[1{Ĥ ̸= H }R(X ,YH )]. (6.9)

Proof. Consider,

max
f (c)

min
Ĥ
E[1{Ĥ ̸= H }R(X ,YH )] = max

f (c)
min

Ĥ∈Ĥm

E[1{Ĥ ̸= H }R(X ,YH )]

= max
f (c)

min
Ĥ∈P (Ĥm )

E[1{Ĥ ̸= H }R(X ,YH )]

= min
Ĥ∈P (Ĥm )

max
f (c)

E[1{Ĥ ̸= H }R(X ,YH )]

= min
Ĥ∈P (Ĥm )

max
f (c)∈Fd

E[1{Ĥ ̸= H }R(X ,YH )] (6.10)

where the extension to randomized strategies on the second line is necessary so that we can

use the minimax theorem.

However, note that we cannot exchange the minimum and the maximum after we constrain

the admissible sets. This is due to the fact that the set of all possible deterministic policies is

not a convex set. One must be careful to note that constraining the inner maximization only

on the deterministic policy is merely a calculation device (à la theorem 17:A in (von Neumann

et al., 1944)). In general, the optimal cheater strategy will not correspond to a deterministic
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policy, but it is the case that the reward of the optimal (randomized) policy is equal to the

reward of a certain deterministic policy.

By only considering metric-based decision rules, we transform the problem of optimizing a

decision rule Ĥ over all possible realizations of (X , {Ỹi }M
i=0) into an easier problem of whether

the cheating player metric is larger than the maximum of the regular players’ metric. We

present a restatement of Proposition 6.4 which will be useful in the next section.

Corollary 6.1. Given a decision rule in P (Hm), which is composed of (Ĥ1, . . . , Ĥk ) with a

probability distribution (p1, . . . , pk ), the deterministic policy for f (c) is given by,

f (c)(z) ∈argmax
y∈Y

∑
x

VX |Z (c) (x|z)R(x, y)
k∑

i=1
pi Pr(g̃i (x) ≤ gi (x, Ỹ (c)) |Y (c) = y) (6.11)

where gi is a metric which induces Ĥi , and g̃i (x) is the maximum value of the metric gi among

the regular players given the realization of X .

6.3 Memoryless Channels and Product Distributions

Consider a version of the monitoring problem where (X , Z ,Y , Ỹ ) are replaced by n-vectors

X [1 : n], Z [1 : n],Y [1 : n], Ỹ [1 : n]. We study a special case where,

• (X [1 : n], Z [1 : n]) is distributed according to V ⊗n
Z |X and V ⊗n

X .

• Probabilistic mapping between Y [1 : n] and Ỹ [1 : n] is given by multiple uses of memo-

ryless channel VỸ |Y , i.e., it is described by V ⊗n
Ỹ |Y .

• Both the regular players and the cheating player get to observe the whole realization of

their respective Z [1 : n] before forming their action.

Furthermore, we will take the number of regular players M to scale as M = ⌊
enK

⌋
. We also

assume that the reward function is additive, i.e., R(X [1 : n],Y [1 : n]) =∑n
i=1 R(X [i ],Y [i ]).

We are interested in studying the normalized reward of the cheating player,

limsup
n→∞

1

n
max

f (c)
min
Ĥ∈Ĥ

E
[
1{Ĥ ̸= H }R

(
X [1 : n],YH [1 : n]

)]
. (6.12)

We need to emphasize that this setting only captures the linear growth rate of an increasingly

larger single-stage game, as opposed to a repeated game in the game theory setting.

We will refer to the setting which fulfills these requirements as the product-regime. Under this

regime, the regular players’ random variables fulfill a permutation symmetry. Hence, it is not

very surprising that we can simplify the problem by only considering a class of “permutation-

invariant” Ĥ and f (c).

102



6.3 Memoryless Channels and Product Distributions

In the subsequent discussion, we will heavily use the notion of type that we discussed in

chapter 1. In this chapter, we will use P to denote an arbitrary type or distribution, while V is

used to denote the distribution in our model or the distribution that is induced by the policies.

Definition 6.3. We say that Ĥ is a permutation-invariant metric decision rule if there exists a

metric g (X [1 : n], Ỹ [1 : n]) which induces Ĥ and this metric depends on X [1 : n], Ỹ [1 : n] only

through its joint type i.e., g (X [1 : n], Ỹ [1 : n]) = g (PX ,Ỹ ) where PX ,Ỹ is the empirical probability

of realization (X [1 : n], Ỹ [1 : n]). Let us denote the set of permutation-invariant metric decision

rules as ĤT .

Definition 6.4. For a given n, we say that f (c), is a permutation-invariant policy if for every z

and type PY ,Z ∈P (Y ×Z ) we have PrY [1:n]|Z [1:n](.|z[1 : n]) is uniform on TPY |Z (z[1 : n]). Let us

denote the set of permutation-invariant policies as FT .

The analogue of Proposition 6.5 for the product-regime is:

Proposition 6.6. Under the product-regime, we have

max
f (c)

min
Ĥ∈Ĥ

E
[
1{Ĥ ̸= H }R

(
X [1 : n],YH [1 : n]

)]= max
f (c)∈FT

min
Ĥ∈ĤT

E[1{Ĥ ̸= H }R(X ,YH [1 : n])] (6.13)

Proof. First we show that,

max
f (c)

min
Ĥ
E[1{Ĥ ̸= H }R(X [1 : n],YH [1 : n])] = max

f (c)∈FT

min
Ĥ
E[1{Ĥ ̸= H }R(X [1 : n],YH [1 : n])].

(6.14)

Given a f (c), let us consider the permutation-invariant version which takes a permutation π

from the set of permutationΠ uniformly at random, such that f̃ (c)(z[1 : n]) =π−1( f (c)(π(z[1 :

n]))). Let us denote the distribution induced by this permutation-invariant version as P̃ .

We have

min
Ĥ
EP̃ [1{Ĥ ̸= H }R(X ,YH [1 : n])] = min

Ĥ

∑
π

1

|Π|EP̃ [1{Ĥ ̸= H }R(X [1 : n],YH [1 : n])|π]

≥∑
π

1

|Π| min
Ĥ
EP̃ [1{Ĥ ̸= H }R(X [1 : n],YH [1 : n])|π]

(1)= ∑
π

1

|Π| min
Ĥ
E[1{Ĥ ̸= H }R(π−1(X [1 : n]),π−1(YH [1 : n]))]

(2)= min
Ĥ
E[1{Ĥ ̸= H }R(X [1 : n],YH [1 : n])]. (6.15)

We require the facts that the channel is memoryless in (1), and that the reward is additive in

(2). This inequality implies that there exists f̃ (c) ∈Ft which is as good as any f (c) ∉Ft .
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Finally, we show that,

max
f (c)∈FT

min
Ĥ
E[1{Ĥ ̸= H }R(X ,YH [1 : n])] = max

f (c)∈FT

min
Ĥ∈ĤT

E[1{Ĥ ̸= H }R(X ,YH [1 : n])]. (6.16)

We can show this by showing that the optimal metric that we established in eq. (6.6) is a

permutation-invariant decision rule under the assumption that f (c) is permutation-invariant.

More formally, consider two tuples (x[1 : n], ỹ[1 : n]) and (x ′[1 : n], ỹ ′[1 : n]) both of the same

joint type. This implies that there exists a permutation π such that (x ′[1 : n], ỹ ′[1 : n]) = (π(x[1 :

n]),π(ỹ[1 : n])). Notice that for any π ∈Π, thenΠ=∪π′∈Π{π◦π′}. We have,

VỸ (c)[1:n]|X [1:n](ỹ ′[1 : n], x ′[1 : n])

= ∑
y ′[1:n]

VY [1:n],Ỹ (c)[1:n]|X [1:n](y, ỹ ′[1 : n], x ′[1 : n])

= ∑
y ′[1:n]

VỸ (c)[1:n]|Y (c)[1:n](ỹ ′[1 : n], y ′[1 : n])VY (c)[1:n]|X [1:n](y ′[1 : n], x ′[1 : n])

(1)= ∑
y ′[1:n]

VỸ (c)[1:n]|Y (c) [1 : n](ỹ ′[1 : n], y ′[1 : n])
∑
π′

VY (c)[1:n]|X [1:n](π
′(y ′[1 : n]),π′(x ′[1 : n]))

|Π|
(2)= ∑

y ′[1:n]
VỸ (c)[1:n]|Y (c) [1 : n](π(ỹ[1 : n]),π(y[1 : n]))

∑
π′

VY [1:n](c)|X [1:n](π
′ ◦π(y[1 : n]),π′ ◦π(x[1 : n]))

|Π|

= ∑
y ′[1:n]

VỸ (c)[1:n]|Y (c) [1 : n](ỹ[1 : n], y[1 : n])
∑
π′

VY (c)[1:n]|X [1 : n](π′(y[1 : n]),π′(x[1 : n]))

|Π|
=VỸ (c)[1:n]|X [1:n](ỹ[1 : n], x[1 : n]) (6.17)

We used the fact that f (c) is permutation-invariant in (1), and the fact that we are on the

product-regime in (2). We can use the same argument to show that E[R(x[1 : n],Y (c)[1 :

n])|X [1 : n] = x[1 : n], Ỹ (c)[1 : n] = ỹ[1 : n]] also has the same property. As every term of the

optimal metric only depends on the joint type, the optimal metric also only depends only on

the joint-type.

Given an x[1 : n] each permutation-invariant metric decision rule essentially ranks each

possible type PX ,Ỹ ∈ P (X × Ỹ ) which is compatible with Px[1:n]. Therefore, the probability

that the monitor makes an error is equivalent to the probability that one of the realizations of

{Ỹi [1 : n]}i ̸=H is such that the joint type of (X [1 : n], Ỹi [1 : n]) is ranked higher than the joint

type of (X , ỸH [1 : n]).

For asymptotic analysis, there is a technical subtlety that the decision metrics that the monitor

chooses can depend on n. It is reasonable to worry whether the ordering of types induced by

the metrics will be preserved across the values of n. Hence, we need to introduce a formulation

that take this concern into account.

Consider a sequence of metrics g1, g2, . . . such that the monitoring entity uses gn to form its

decision rule for length n.
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Let us define the sets,

P∞(X ) =
∞⋃

i=1
P i (X ) P∞(X × Ỹ ) =

∞⋃
i=1

P i (X × Ỹ ). (6.18)

Given any joint type PX ,Ỹ ∈P∞(X × Ỹ ), we can define a set

Un(PX ,Ỹ ) =
{

P ′
X ,Ỹ

∈Pn(X × Ỹ ) |PX = P ′
X , gn(P ′

X ,Ỹ
) > gn(PX ,Ỹ )

}
(6.19)

if PX ,Ỹ ∈Pn(X × Ỹ ) , otherwise Un(PX ,PX ,Ỹ ) =∅. Let us define

U
(
PX ,Ỹ

)= limsup
n→∞

Un
(
PX ,Ỹ

)
. (6.20)

An intuitive explanation of U (PX ,Ỹ ) is that it corresponds to “level sets” on the probability

simplex in which infinitely many gn ’s agrees that the distribution on this set is ranked higher

than PX ,Ỹ .

We also define

G
(
PX ,Ỹ

)= inf
P ′

X ,Ỹ
∈U (PX ,Ỹ )

D
(
P ′

X ,Ỹ
;VX ,Ỹ (r )

)
(6.21)

i.e., G(PX ,Ỹ ) is the distance between the regular player joint distribution VX ,Ỹ (r ) and the set

U (PX ,Ỹ ) in KL divergence.

Proposition 6.7. For a sequence of metrics g1, g2, . . . and any distribution PX ,Ỹ ∈P∞(X ×Ỹ ),we

have

• if K >G(PX ,Ỹ ) then

limsup
n→∞

Pr
(
Ĥ ̸= H

∣∣ (X [1 : n], ỸH [1 : n]) ∈ TPX ,Ỹ (c)

)= 1, (6.22)

• if K <G(PX ,Ỹ ) then

limsup
n→∞

− 1

n
logPr

(
Ĥ ̸= H

∣∣ (X [1 : n], ỸH [1 : n]) ∈ TPX ,Ỹ (c)

)> 0. (6.23)

Proof. For P ′
Ỹ ,X

such that P ′
X ̸= PX , the conditioning event is a null event, hence we can ignore

this event as we are working with discrete variables. So we will only focus on n such that

P ′
X = PX . We have,

Pr
(
Ĥ = H

∣∣ (X [1 : n], ỸH [1 : n]) ∈ TPX ,Ỹ

)= (
1−Pr(gn(X , Ỹ (r )) > gn(PX ,Ỹ )|(X [1 : n], ỸH [1 : n]) ∈ TPX ,Ỹ

)enK

(6.24)
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By using type estimates, we have,

Pr
(
Ĥ = H

∣∣ (X [1 : n], ỸH [1 : n]) ∈ TPX ,Ỹ

) (a)≤ (1−e
−n minP ′

X ,Ỹ
∈Un (PX ,Ỹ ) D(P ′

X ,Ỹ
;VX ,Ỹ (r ) )+o(n)

)enK

(b)≤ exp

(
−e

n(K−minP ′
X ,Ỹ

∈Un (PX ,Ỹ ) D(P ′
X ,Ỹ

;VX ,Ỹ (r ) )+o(n)
)

(c)≤ exp
(
−en(K−D(P ′

X ,Ỹ
;VX ,Ỹ (r ) )+o(n)

)
(6.25)

where the last inequality holds for any P ′
X ,Ỹ

∈Un(PX ,Ỹ ). For inequality (a), we use the method

of type estimate of the probability. For inequality (b), we use (1−x) ≤ exp(−x). For inequality

(c), we possibly choose a non-minimizer of the upper bound. Note that if a type P ′
X ,Ỹ

is

included in U (PX ,Ỹ ), it is included in Un(PX ,Ỹ ) for infinitely many n. Hence, for any K and

P ′
X ,Ỹ

∈U (PX ,Ỹ ), we have

liminf
n→∞ Pr

(
Ĥ = H

∣∣ (X [1 : n], ỸH [1 : n]) ∈ TPX ,Ỹ (c)

)≤ liminf
n→∞ exp

(
−en(K−D(P ′

X ,Ỹ
;VX ,Ỹ (r ) )+o(n)

)
,

(6.26)

and thus,

liminf
n→∞ Pr

(
Ĥ = H

∣∣ (X [1 : n], ỸH [1 : n]) ∈ TPX ,Ỹ (c)

)≤ liminf
n→∞ exp

(
−en(K−G(PX ,Ỹ (c) ))+o(n)

)
, (6.27)

by the definition of G(PX ,Ỹ (c) ). Where K > G(PX ,Ỹ ), eq. (6.27) proves the first part of the

proposition.

For the second part, it is sufficient to use the union bound. We have,

Pr
(
Ĥ ̸= H

∣∣ (X [1 : n], ỸH [1 : n]) ∈ TPX ,Ỹ

)
≤ enK Pr(gn(X [1 : n], Ỹ (r )[1 : n]) > gn(PX ,Ỹ )|(X [1 : n], ỸH [1 : n]) ∈ TPX ,Ỹ

)

≤ e
n(K−minP ′

X ,Ỹ
∈Un (PX ,Ỹ ) D(P ′

X ,Ỹ
;VX ,Ỹ (r ) )+o(n)

≤ e
n(K−minP ′

X ,Ỹ
∈∪i≥nUi (PX ,Ỹ ) D(P ′

X ,Ỹ
;VX ,Ỹ (r ) )+o(n)

(6.28)

This upper bound is valid for all n. Since ∪i≥nUi (PX ,Ỹ ) is a decreasing sequence of sets in n

with limit U (PX ,Ỹ ), for all ϵ> 0 there exists n∗ such that for all n > n∗

min
P ′

X ,Ỹ
∈∪i≥nUi (PX ,Ỹ )

D(P ′
X ,Ỹ

;VX ,Ỹ ) ≥G(PX ,Ỹ )−ϵ (6.29)

due to the definition of G(PX ,Ỹ ) and the continuity of the KL divergence. Hence,

limsup
n→∞

− 1

n
logPr

(
Ĥ ̸= H

∣∣ (X [1 : n], ỸH [1 : n]) ∈ TPX ,Ỹ (c)

)> 0 (6.30)

if K <G(PX ,Ỹ ).
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Proposition 6.7 is the main technical result of this work. This proposition asserts that there is a

qualitative change depending on whether G(PX ,Ỹ ) is smaller or larger than K . Hence, given K

we can determine the set of joint types of cheater’s realization for which the monitoring entity

will make an error with high probability. Let us define for PX ∈P∞(X )

G−1
(gn )∞i=1

(PX ,K ) = limsup
i→∞

G−1
n (6.31)

where

G−1
n = {PX ,Ỹ ∈Pn(X , Ỹ ) : PX = P ′

X gn(P ′
X ,Ỹ

) ≤ max
P ′

X ,Ỹ
:

D(P ′
X ,Ỹ

;VX ,Ỹ (r ) )<K

gn(P ′
X ,Ỹ

)}, (6.32)

and

G−1
(gn )∞n=1

(K ) = ⋂
ϵ>0

⋃
PX ∈T ∞

X|VX −PX |≤ϵ

G−1
(gn )∞n=1

(PX ,K ). (6.33)

Using Proposition 6.7, we can give upper and lower bound on the expected linear growth of

cheating player’s reward.

Proposition 6.8. Given a sequence of type-invariant metrics (gn)∞n=1, we have,

limsup
n→∞

1

n
max

f (c)∈FT

E
[
1{Ĥ ̸= H }R

(
X [1 : n],YH [1 : n]

)]≥ sup
PY (c) |Z (c) :

VX ,Ỹ (c)∈IntCl(G−1
(gn )∞n=1

(K ))

E[R(X ,Y (c))],

(6.34)

where IntCl(G−1
(gn )∞n=1

(K )) is the interior of the closure of G−1
(gn )∞n=1

(K ) under the total variation

metric. We also have,

limsup
n→∞

1

n
max

f (c)∈FT

E
[
1{Ĥ ̸= H }R

(
X [1 : n],YH [1 : n]

)]≤ max
PY (c) |Z (c) :

VX ,Ỹ (c)∈Cl(G−1
(gn )∞n=1

(K ))

E[R(X ,Y (c))], (6.35)

where Cl(G−1
(gn )∞n=1

(K )) is the closure of G−1
(gn )∞n=1

(K ) and VX ,Ỹ (c) is the induced distributed on the

monitoring problem given PY (c)|Z (c) .

Proof. To show the first part namely eq. (6.34), fix ϵ > 0 and consider a PY (c)|Z (c) such that

VX ,Ỹ (c) ∈ IntCl(G−1
(gn )∞n=1

(K )) and EPX ,Y (c) [R(X ,Y (c))] is ϵ-close to the supremum on the RHS of eq.

(6.34).

Now fix n. Let us construct our f (c) by sampling from the distribution PY (c)|Z given the

realization of Z [1 : n]. From results in chapter 1 we know that for every δ> 0, PX (X [1 : n] ∈
T[PX ]δ) ≥ 1−Ae−nδ2

and VỸ |X (Ỹ [1 : n] ∈ T[VỸ |X ]2δ(X [1 : n])|X [1 : n] ∈ T[PX ]δ) ≥ 1−A′e−nδ2
(A and

A′ only depend on the sizes of the alphabets of X and Ỹ ), where T[VX ,Ỹ (c) ]δ is the set of all types
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with total variation distance at most δ from VX ,Ỹ (c) . As the VX ,Ỹ (c) is in the IntCl(G−1
(gn )∞n=1

(K )),

then for small enough δ we have,

T[VX ,Ỹ (c) ]2δ ⊆ IntCl(G−1
(gn )∞n=1

(K )) (6.36)

Let us define the event Qn as {X ∈ T[PX ]δ , ỸH [1 : n] ∈ T[VỸ (c) |X ]2δ(X )}. We note that limn→∞ Pr(Qn) =
1. So we have under VX ,Ỹ (c) ,

E[R(X [1 : n],YH [1 : n])|Qn]Pr(Qn)

= E[R(X [1 : n],YH [1 : n])]−E[R(X [1 : n],YH [1 : n])|QC
n ](1−Pr(Qn))

≥ E[R(X [1 : n],YH [1 : n])]−O(ne−nδ2
). (6.37)

We also have,

1

n
E[1{Ĥ ̸= H }R(X [1 : n],YH [1 : n])] ≥ 1

n
E[1{Ĥ ̸= H }R(X [1 : n],YH [1 : n])|Qn]Pr(Qn) (6.38)

Conditioned on Qn , we have,

1

n
R(X [1 : n],YH [1 : n]) ≥ EV [R(X [1 : n],Y (c)[1 : n])](1−O(δ)). (6.39)

Therefore

1

n
E[1{Ĥ ̸= H }R(X [1 : n],YH [1 : n])] ≥ EV [R(X [1 : n],Y (c)[1 : n])](1−O(δ))Pr(Ĥ ̸= H |Qn)Pr(Qn).

(6.40)

Note that

Pr(Ĥ ̸= H |Qn) ≥ bn (6.41)

where

bn = min
P ′

Ỹ |X ∈T[VỸ |X ]2δ

Pr(Ĥ ̸= H |X [1 : n] ∈ T[PX ]δ , Ỹ [1 : n] ∈ TP ′
Ỹ |X

(X )).

Combining these terms give us,

limsup
n→∞

1

n
E[1{Ĥ ̸= H }R(X [1 : n],YH [1 : n])]

≥ (EV [R(X [1 : n],Y (c)[1 : n])](1−O(δ)) limsup
n→∞

Pr(Qn)bn

=(EV [R(X [1 : n],Y (c)[1 : n])](1−O(δ)) limsup
n→∞

bn

(∗)= EV [R(X [1 : n],Y (c)[1 : n])](1−O(δ)) (6.42)

for equality (∗) we used the fact that T[VỸ (c) |X ]2δ ⊆ IntCl(G−1
(gn )∞n=1

(K )), therefore limsupn→∞ bn =
1 due to the first part of Proposition 6.7. Since EV [R(X [1 : n],Y (c)[1 : n])] is ϵ-close to the
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supremum and δ is arbitrary, eq. (6.34) follows.

Now we will show eq. (6.35). As in the previous part, for any δ> 0, let us define, Qn = {(X [1 :

n], Z [1 : n]) ∈ T[VX ,Z (c) ]δ}. So we have

1

n
E[1{Ĥ ̸= H }R(X [1 : n],YH [1 : n])]

≤ 1

n
E[1{Ĥ ̸= H }R(X [1 : n],YH [1 : n])|Qn]Pr(Qn)+O(exp(−nδ2)) (6.43)

where we used the fact that Pr
(
(X [1 : n], Z [1 : n]) ∉ T[VX ,Z (c) ]δ

)
≤ exp(−nδ2). Note that f (c) ∈FT

can be parametrized by set of tuples {(PZ ,PY |Z ) : PZ ∈P (Z )} i.e., the policy chooses a single

conditional type PY |Z for each PZ that it observes. One can use this parametrization to further

upper bound the non-vanishing part of eq. (6.43) as

1

n
E[1{Ĥ ̸= H }R(X ,YH [1 : n])|Qn]Pr(Qn)

≤ ∑
PX ,Z∈T[V

X ,Z (c) ]δ

max
PY |Z

1

n
E[1{Ĥ ̸= H }R(X ,YH [1 : n])|(X [1 : n], Z [1 : n]) ∈ TPX ,Z ]

Pr((X [1 : n], Z [1 : n]) ∈ TPX ,Z ). (6.44)

We will use the fact that PX ,Z ∈ T[VX ,Z (c) ]δ to note that (X [1 : n], Z [1 : n],Y [1 : n]) ∈ T[VX ,Z (c)◦PY |Z ]2δ

with probability of 1, as given Z [1 : n] the policy takes Y [1 : n] ∈ TPY |Z (Z [1 : n]). Finally, Ỹ [1 : n]

fulfils (X [1 : n], Z [1 : n],Y [1 : n], Ỹ [1 : n]) ∈ T[VX ,Z (c)◦PY |Z ◦VỸ |Y ]Aδ (A is a constant that depends

on the size of the alphabet of Y ) with high probability since the channel VỸ |Y is memoryless.

Note that VX ,Z (c) ◦PY |Z ◦VỸ |Y is the definition of VX ,Ỹ (c) , i.e., the distribution of X , Ỹ (c) under

the cheating player probabilistic model. Hence we have,

1

n
E[1{Ĥ ̸= H }R(X [1 : n],YH [1 : n])|Qn]Pr(Qn)

≤ max
PY |Z

(1+O(δ))EV [R(X ,Y (c))]cn,δ(VX ,Ỹ (c) )+O(−n A2δ2) (6.45)

where,

cn,δ(VX ,Ỹ (c) ) =
∑

PX ,Ỹ ∈T[V
X ,Ỹ (c) ]A′δ

Pr(Ĥ ̸= H , (X [1 : n], Ỹ [1 : n]) ∈ TPX ,Ỹ
) (6.46)

with A′ is a constant which only depends on the size of the alphabets.

This allows us to give an upper bound,

limsup
n→∞

1

n
max

f (c)∈FT

E[1{Ĥ ̸= H }R(X [1 : n],YH [1 : n])]

≤ limsup
n→∞

max
PY |Z

(1+O(δ))EV [R(X ,Y (c))]cn,δ(VX ,Ỹ (c) ).
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We can decompose the region of the maximization into,

limsup
n→∞

1

n
max

f (c)∈FT

E[1{Ĥ ̸= H }R(X [1 : n],YH [1 : n])] ≤ limsup
n→∞

max{un , vn}

= max{limsup
n→∞

un , limsup
n→∞

vn} (6.47)

with,

un = max
PY |Z :

VX ,Y (c)∈Dδ

(1+O(δ))EV [R(X ,Y (c))]cn,δ(VX ,Ỹ (c) )

vn = max
PY |Z :

VX ,Y (c)∉Dδ

(1+O(δ))EV [R(X ,Y (c))]cn,δ(VX ,Ỹ (c) ) (6.48)

where

Dδ = {VX ,Y (c) : |VX ,Y (c) −G−1
(gn )∞n=1

(K )| ≤ 2A′δ}, (6.49)

i.e., Dδ is the 2A′δ neighborhood of G−1
(gn )∞n=1

(K ) in total variation distance.

By the second part of preposition 6.7, we have that

lim
n→∞cn,δ(VX ,Ỹ (c) ) = 0 (6.50)

if VX ,Ỹ (c) ∉ Int(Dδ). Hence, vn vanishes as n →∞. For the un , we can upper bound cn,δ(·) by 1.
This gives us,

limsup
n→∞

1

n
max

f (c)∈FT

E[1{Ĥ ̸= H }R(X ,YH [1 : n])] ≤ max
PY |Z :

VX ,Y (c)∈Dδ

(1+O(δ))EV [R(X ,Y (c))]. (6.51)

Finally, note that this upper bound holds for arbitrary δ and we have

Cl(G−1
(gn )∞n=1

(K )) = ⋂
δ>0

Dδ. (6.52)

Combined with the fact that expectation is continuous under total variation distance, this

upper bound establishes the second part of Proposition 6.8.

We have to split the proposition into two cases to take into account the effect of isolated

points in Cl
(
G−1

(gn )∞n=1
(K )

)
. Our achievability method requires the existence of a non-empty

neighborhood around the sequence that approximates the optimal point. Note that this

kind of separation also exists in several large deviation principle theorems given in (Dembo

and Zeitouni, 1998), hence it might be non-trivial to remove the influence of isolated points.

However, as we discuss later on, the sequence that induces the optimal strategy will not have

isolated points, hence obviating the need for this consideration.

The interpretation of U as level sets is useful when we try to compare the asymptotic behaviour

of two sequences of decision rules. In fact this notion allows us to argue that the empirical
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divergence decision rule is as good as any other sequence of decision rules.

To formalize this claim, let us denote the normalized reward of the cheating player under the

sequence of decision rules (gn)∞n=1 as R((gn)∞n=1). Let us also define the sequence of empirical

divergence metrics as, g ed
n (X [1 : n], Ỹ [1 : n]) = D(PX ,Ỹ ;VX ,Ỹ (r ) ) where PX [1:n],Ỹ [1:n] is the type

of the realization (X [1 : n], Ỹ [1 : n]).

The following proposition guarantees the asymptotic optimality of the empirical divergence

decision rule.

Proposition 6.9. For any sequence of metrics (gn)∞i=1,

R((g ed
n )∞n=1) ≤ R((gn)∞n=1). (6.53)

Proof. From proposition 6.8, one way to prove the statement is to show that,

Cl(G−1
(g ed

n )∞n=1
(K )) ⊆ ClInCl(G−1

(gn )∞n=1
(K )). (6.54)

The ClInCl(A) is the closure of the interior of closure of set A. If the inclusion holds, then the

upper bound part of proposition 6.8 applied on R((g ed
n )∞n=1) is smaller than the lower bound

part of proposition 6.8 applied on R((gn)∞n=1). This is the approach that we will take.

First, observe that for every n and PX we have,

{P ′
X ,Ỹ

: P ′
X = PX , g ed

n (P ′
X ,Ỹ

) ≤ sup
P∗

X ,Ỹ
:

D(P∗
X ,Ỹ

;VX ,Ỹ (r ) )<K

g ed
n (P∗

X ,Ỹ
)}

(∗)= {P ′
X ,Ỹ

: P ′
X = PX ,D(P ′

X ,Ỹ
;VX ,Ỹ (r ) ) < K }

⊆ {P ′
X ,Ỹ

: P ′
X = PX , gn(P ′

X ,Ỹ
)

≤ sup
P∗

X ,Ỹ
:

D(P∗
X ,Ỹ

;VX ,Ỹ (r ) )<K

gn(P∗
X ,Ỹ

)}. (6.55)

Which imply that for every PX ,

G−1
(g ed

n )∞n=1
(PX ,K ) ⊆G−1

(gn )∞n=1
(PX ,K ) (6.56)

and taking the appropriate lim gives us,

G−1
(g ed

n )∞n=1
(K ) = lim

ϵ→0

⋃
PX :

|VX −PX |<ϵ

G−1
(g ed

n )∞n=1
(PX ,K ) ⊆ lim

ϵ→0

⋃
PX :

|VX −PX |<ϵ

G−1
(gn )∞n=1

(PX ,K ) =G−1
(gn )∞n=1

(K ) (6.57)

Furthermore, taking the ClIntCl in both sides gives us,

ClIntCl(G−1
(g ed

n )∞n=1
(K )) ⊆ ClIntCl(G−1

(gn )∞n=1
(K )). (6.58)
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So we only need to show that,

ClIntCl(G−1
(g ed

n )∞n=1
(K )) = Cl(G−1

(g ed
n )∞n=1

(K )) (6.59)

which is equivalent to showing that Cl(G−1
(g ed

n )∞n=1

(K )) does not contain any isolated points. Let

A = {P ′
X ,Ỹ

: D(P ′
X ,Ỹ

;VX ,Ỹ (r ) ) < K }.

So we have G−1
(g ed

n )∞n=1

(K ) = P∞
⋂

A . As P∞ is dense, then Cl(G−1
(g ed

n )∞n=1

(K )) = Cl(A ) = {P ′
X ,Ỹ

:

D(P ′
X ,Ỹ

;VX ,Ỹ (r ) ) ≤ K } which is a closed convex set with no isolated points.

Corollary 6.2. We have

R((g ed
n )∞n=1) = max

VY (c) |Z (c) :
D(VX ,Ỹ (c) ;VX ,Ỹ (r ) )≤K

E[R(X ,Y (c))]. (6.60)

Proof. Due to the continuity of divergence function and D(·;VX ,Ỹ (r ) ) is a convex function, the

closure of G−1
(g ed

n )∞n=1

(K ) does not have isolated points. Hence the lower bound and the upper

bound in Proposition 6.8 coincide. Finally, one obtains the RHS by substituting the empirical

divergence metric to the definition of G−1
(g ed

n )∞n=1

(K ).

Proposition 6.9 not only gives us the minimizing metric. It also shows that this minimizing

metric is independent of the policy of the cheating player. For the purpose of summarizing

the results, we state the following theorem.

Theorem 6.1. For the product-regime, we have,

limsup
n→∞

1

n
max

f (c)
min
Ĥ∈Ĥ

E[1{Ĥ ̸= H }R(X [1 : n],YH [1 : n])] = max
VY (c) |Z (c) :

D(VX ,Ỹ (c) ;VX ,Ỹ (r ) )≤K

E[R(X ,Y (c))]. (6.61)

This result does not necessarily imply that the empirical divergence metric induces the monitor

decision strategy at the Nash equilibrium for every finite value of n. But one can deduce that

the difference between the normalized reward of the Nash equilibrium strategy and the

empirical divergence strategy is sub-linear in n.

6.4 A Coin Guessing Game

As an illustration, let us consider a specific instance of the problem. In this instance, X [1 : n]

is a sequence of i.i.d. binary Bernoulli(1/2) random variables. These are observed by the
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Figure 6.2: Trade-off between the normalized reward and the growth rate K of the number of
players. The plots are for pc = 0.1 and pr = 0.2.

cheating player and the regular players through different memoryless channels. The regular

player channel VZ (r )|X is BSC (pr ). The cheating player has a stochastically upgraded channel

BSC (pc ) with pc < pr ≤ 1/2. The monitoring channel is BSC (pm), pm ≤ 1/2. The goal of the

players is to guess the values of X [i ]’s, so we have R(X [1 : n],Y [1 : n]) =∑n
i=11{X [i ] = Y [i ]}.

The optimization problem in Theorem 6.1 is a convex optimization problem, as the objective

function is a linear function of PY (c)|Z (c) . The constraint is also convex as VỸ (c)|X is linear w.r.t.

to PY (c)|Z (c) , while D(·;VỸ (r )|X |VX ) is also convex.

For the regular player, the optimal strategy is to assign Y (r ) = Z (r ). This strategy leads to the

expected reward of E[R(X ,Y (r ))] = 1−pr . We can see that this problem is symmetric with

respect to X , so the optimal PY (c)|Z (c) is also BSC with certain flip probability. For this problem,

we can express the optimal reward of cheating player in Theorem 6.1 as

max
p∈[0,1]:

d2

(
pc∗p∗pm ;pr ∗pm

)
≤K

1− (p ∗pc ) (6.62)

where p ∗p ′ := p(1−p ′)+p ′(1−p) and d2(·; ·) is the binary KL divergence.

A numerical example of the trade-off for a specific value of pc and pr is given in Figure 6.2. We

can observe several properties,

• Even if pm = 0 (i.e., the monitor has perfect knowledge of all players’ actions), the

cheating player can still improve its normalized reward by exploiting its information

advantage if the number of regular players is large enough.

• There is a cut-off K ∗, after which the cheating player does not get any further advantage

from larger K . This K ∗ corresponds to the conditional KL divergence between the

optimal distribution of cheating player and the regular player.
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7 Conclusion and Future Works

In the first part of this thesis, we delved into the problem of information velocity. We showed

that the strong data processing inequality enforced a recurrence relation on the F-information

between the relays’ observations and the original message. To build this recurrence relation, we

also introduced the notion of tilted F-divergences. We proved a converse result by modifying

standard converse arguments in information theory to bound the error probability of any

relaying scheme strictly away from 0 if the F-information vanishes. We showed that if the

asymptotic ratio between the length of an arbitrary relaying scheme and the number of its

channel uses is above the channel contraction coefficient, then the F-information between the

final relay’s observations and the original message vanishes. Hence, it establishes the channel

contraction coefficient as an upper bound to the information velocity of arbitrary relaying

scheme.

We also introduced two achievability schemes which achieve positive information velocity.

These schemes capture two different intuitions on how to prove a positive information velocity

on the entire chain based on proving single-hop results.

The first idea is based on the notion of eventual reliability, namely the property of a channel

coding scheme which ensures that each channel use improves the reliability of all past trans-

missions. This notion has some connections with the idea of anytime capacity, where we can

bound the error probability of a communication scheme based on the delay that we are willing

to accept. Using tree codes on BEC channels, we achieved eventual reliability while controlling

the average delay needed to transmit each bit through a single hop. We then proved that the

total transmission time, which can be decomposed into the transmission time of the first bit

and the time interval between the reception of the first bit and the last bit, is dominated by

the former term. Hence, we managed to bound the number of channel uses by the relaying

scheme based on the concentration of the sum of realized delays at each hop.

The second idea is what we call a “control” perspective of information velocity. Intuitively,

the idea is for each relay to maintain an estimate of the message, and the role of the com-

munication scheme at each hop is simply to reduce the difference between the transmitter’s
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estimate of the message and the receiver’s estimate of the message. The aim is to ensure that

we can control the difference between the estimate of the final relay and the actual message

by controlling the difference at each hops. In our case, we exploited this idea for AWGN chan-

nels with feedback using Schalkwijk-Kailath(SK) scheme, where the goal of the SK scheme is

simply to reduce the L2 difference between the transmitter’s and the receiver’s estimates of

the message at each hop.

However, there are several directions that we did not manage to pursue, especially in the area

around information velocity.

1. In chapter 3, we repeatedly drew the analogue between the bound that we derived and

the transport equations; as we cannot help but notice that the equation that arises

in the upper bound closely resembles the discretized version of transport equations

under the finite-element method. An interesting line of investigation would be to see

whether this connection can inspire a method to upper bound information velocity in

other network topologies (think of a regular grid or Rényi graph for example). We expect

that we can use the results of previous research on bounding the end-to-end channel

contraction coefficient in a network. Several of the open questions here would be on:

how to properly define the notion of information velocity in a network of relays, how

to define the “direction” of data processing inequality in this network, and what is the

correct asymptotic regime such that an approximation by some differential-equation-

like structure is feasible.

2. In chapter 4, we leaned heavily on the fact that the relays can measure their local

progress in BEC, hence it can simulate a queueing model on its tape abstraction. It

would be interesting to study what can be done if the relays do not have this information,

especially for channels with undetected errors such as BSC or AWGN channels. One idea

that comes to mind is for the relay to use some kind of reliability criterion to measure

its decoding progress, e.g., it decides that a particular branch in its tree code is the

correct branch if the sum of its posterior probability and its closest siblings’ posterior

probability is above a certain threshold.

3. In chapter 5, the role of the communication scheme is to reduce the local difference

of the transmitter’s and the receiver’s message estimates at each hop. An interesting

line of research would be to study whether the posterior matching approach (Shayevitz

and Feder, 2007) allows us to develop similar communication scheme for more general

channels. This might not be a far-fetched idea, as previously there has been an analysis

of posterior matching scheme in terms of the reduction in KL divergence between the

transmitter’s and receiver’s estimates of the message (Coleman, 2009). The main chal-

lenge here is on how to adapt the posterior matching scheme to the relaying problem. In

posterior matching, it is assumed that the transmitter has a complete information about

the message, whereas in relaying problems, the transmitter only has “soft” information

about the message. Hence it is not clear what is the correct divergence metric that
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we should be tracking, and how to incorporate this “soft” information in a posterior

matching scheme.

4. Also in chapter 5, we remarked that the scheme that we developed is most likely to be

optimal if we assume that the relaying scheme is communicating at channel capacity.

This raises a question on the nature of the trade-off between channel capacity and

information velocity, e.g., does it ever makes sense to communicate at a rate less than

channel capacity if it allows for larger information velocity? On the converse side, we

expect that the answer to this question is related to the notion of the channel’s input-

dependent mutual contraction coefficient. The achievability side is more complicated

as there is currently a big gap between the achievability results and the converse results

for information velocity.

In the second part of the thesis, we explored an adversarial version of hypothesis testing prob-

lem where an adversarial data-generating process is hidden among regular data-generating

processes. This adversarial data-generating process has to navigate the trade-off between

deviating from the regular data-generating processes to exploit its private information and

trying to be indistinguishable from the regular data-generating process from the perspective

of the tester. We showed that classical information-theoretic arguments, such as arguments

based on type method, is powerful enough to allow us to derive a non-trivial bound of what

can be achieved by the adversarial data-generating process in this problem. Surprisingly, we

can even recover the optimal testing metric, which is the empirical KL divergence.

Currently, our results only hold for the regime where the deviation of the adversarial data-

generating process is “constant”(in the sense that that the total variation distance between

the adversarial data-generating process and regular data-generating processes converges to a

constant). It will be interesting to study other asymptotic regimes of the problem where the

deviation in terms of total variation distance vanishes as the number of observations increases,

which might pave the way for the case where the number of regular data-generating processes

scales sub-exponentially.
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École Polytechnique Fédérale de Lausanne Lausanne, Switzerland
MSc in Communication Systems Feb. 2015 – Sep. 2017

Universitas Gadjah Mada Yogyakarta, Indonesia
BSc in Electrical Engineering Aug. 2009 – May 2014

Experiences
Academic Assistant Nov. 2017 – Jun. 2018
Universitas Gadjah Mada Yogyakarta, Indonesia
Research Assistant Nov. 2017 – Jan. 2018
Universitas Telkom Bandung, Indonesia
R&D Intern Aug 2016 – Aug 2017
Sony Europe Technology Center Stuttgart, Germany

Awards
• MSc. Fellowship from Indonesia Endownment Fund for Education

• Fellowship Ph.D. candidate at EPFL IC doctoral school

Teaching Assistant Experiences
• EPFL : Foundation of Data Science (2021), Information Theory and Coding (2019, 2020),

Principles of Digital Communications (2019, 2021, 2022)

• UGM : Linear Algebra (2018), Optimization (2018)

Publications and Preprints
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