
Acceptée sur proposition du jury

pour l’obtention du grade de Docteur ès Sciences

par

Understanding generalization and robustness in
modern deep learning

Maksym ANDRIUSHCHENKO

Thèse n° 10 541

2024

Présentée le 24 mai 2024

Prof. R. Guerraoui, président du jury
Prof. N. H. B. Flammarion, directeur de thèse
Prof. Z. Kolter, rapporteur
Dr S. Bubeck, rapporteur
Prof. F. Krzakala, rapporteur

Faculté informatique et communications
Laboratoire de théorie en apprentissage automatique
Programme doctoral en informatique et communications

Acknowledgements
First of all, I would like to express my deepest gratitude to my Ph.D. advisor, Nicolas
Flammarion, for his guidance, support, and encouragement throughout my five-year long
Ph.D. journey. His enthusiasm, energy, and readiness to explore new topics together
with me have been fundamental to this thesis. Nicolas not only allowed me to have the
freedom to pursue my own research interests but also provided valuable career advice,
connected me with other people in the field, gave valuable feedback on many talks and
write-ups, and otherwise was very helpful throughout the last five years. His support
was absolutely essential in navigating my research transitions from adversarial robustness
to generalization in deep learning, and then to understanding large language models and
their robustness. Thank you so much, Nicolas, for being a great advisor and mentor.

I am also immensely grateful to my master’s thesis advisor, Matthias Hein from the Uni-
versity of Tübingen, who essentially introduced me to this research field and inspired me
to pursue a Ph.D. His incredible work ethic, research vision, and ability to produce im-
pactful work—even with limited academic resources—have left a deep impression on me.
Moreover, his support, advice, and collaboration have been very important to me also
during my Ph.D.

My gratitude also extends to my Ph.D. committee members, Sebastien Bubeck, Zico
Kolter, Florent Krzakala, and Rachid Guerraoui, for finding the time in their incredibly
busy schedules and for asking very insightful questions during my defense. I appreciated
both general questions about the field and my work, but also very specific ones, such as the
one about the proof of one of the theorems presented in an appendix (I am still impressed
by that question!).

I am fortunate to have collaborated with many talented people from whom I have learned
really a lot. I owe a great deal to my frequent collaborators Francesco Croce, Marius
Mosbach, Edoardo Debenedetti, and Aditya Varre. I am especially thankful to Francesco
for many years of productive collaboration and for always providing an inspiring example
of how to get things done. I am also very grateful to Marius for countless discussions
about machine learning, natural language processing, and many other topics—it’s a shame
that we have written only two papers together! My appreciation also goes to my other
collaborators: Maximilian Müller, Dara Bahri, Hossein Mobahi, Linara Adilova, Vikash
Sehwag, Loucas Pillaud-Vivien, Klim Kireev, and Hao Zhao. Also, special thanks to
my letter writers—Bernt Schiele, Dietrich Klakow, Prateek Mittal, and again, Nicolas
Flammarion and Matthias Hein. I am also grateful to Eric Wong for his occasional advice

i

Acknowledgements

over the years which has been very valuable, and to John Collomosse, who hosted my
internship at Adobe Research in Summer 2021.

I am indebted to the EPFL doctoral program, Google, and Open Philanthropy for funding
my Ph.D., and to EPFL in general for providing an excellent academic environment. My
thanks also go out to the vibrant machine learning community at large for countless
insightful conversations with so many people, both in person at major conferences and
online on platforms like Twitter.

I would like to also acknowledge my dear friends Arnout, Dongyang, Atli, Baran, Oğuzhan,
Nastia, Thijs, Emma, Bogdan, Mariam, Guille, Tolis, Marius, Valentyn, and Rati. With-
out you, my Ph.D. journey would have been much less fun! Also, a special thanks to Bog-
dan for introducing me to EPFL back in Summer 2018. I must also thank my lab mates at
TML and our neighbors at MLO—Scott, Maria, Aditya, Francescos, Oğuz, Gizem, Hristo,
Felix, Alex, Keivan, Matteo, Praneeth, Tao, Jean-Baptiste, Sebastian, and Martin—who
made the lab a very fun place to work and hang out. I am sorry if I forgot to mention
someone here—there were so many amazing folks around!

Finally, I am incredibly grateful to my parents, Vadym and Olga, and my brother Igor for
their unwavering support and for instilling in me a passion for math, programming, and
knowledge from a very young age. I am incredibly fortunate to have such a supportive
family. This thesis, of course, would be completely impossible without their constant
support.

Lausanne, April 29, 2024 M. A.

ii

Abstract
In this thesis, we study two closely related directions: robustness and generalization in
modern deep learning. Deep learning models based on empirical risk minimization are
known to be often non-robust to small, worst-case perturbations known as adversarial
examples that can easily fool state-of-the-art deep neural networks into making wrong
predictions. Their existence can be seen as a generalization problem: despite the impres-
sive average-case performance, the deep learning models tend to learn non-robust features
that can be used for adversarial manipulations. In this thesis, we delve deeply into a range
of questions related to robustness and generalization, such as how to accurately evaluate
robustness, how to make robust training more efficient, and why some optimization algo-
rithms lead to better generalization and learn qualitatively different features.

We start the first direction from exploring computationally efficient methods to perform
adversarial training and its failure mode referred to as catastrophic overfitting when the
model suddenly loses its robustness after some point in training. Then we provide a better
understanding of the robustness evaluation and the progress in the field by proposing new
query-efficient black-box adversarial attacks based on random search that do not rely on
the gradient information and thus can complement a typical robustness evaluation based on
gradient-based methods. Finally, for the same goal, we propose a new community-driven
robustness benchmark RobustBench which aims to systematically track the progress in
the field in a standardized way.

We start the second direction from investigating reasons behind the success of sharpness-
aware minimization, a recent algorithm that increases robustness in the parameter space
during training and improves generalization for deep networks. Then we discuss why over-
parameterized models trained with stochastic gradient descent tend to generalize surpris-
ingly well even without any explicit regularization. We study the implicit regularization
induced by stochastic gradient descent with large step sizes and its effect on the features
learned by the model. Finally, we rigorously study the relationship between sharpness of
minima (i.e., robustness in the parameter space) and generalization that prior works ob-
served to correlate to each other. Our study suggests that, contrary to the common belief,
sharpness is not a good indicator of generalization and it rather tends to correlate well
with some hyperparameters like the learning rate but not inherently with generalization.

Keywords: Machine learning, deep learning, adversarial robustness, generalization, im-
plicit regularization.

iii

Résumé
Dans cette thèse, nous étudions deux directions étroitement liées : la robustesse et la gé-
néralisation dans l’apprentissage profond moderne. Les modèles d’apprentissage profond
basés sur la minimisation du risque empirique sont connus pour être souvent non robustes
aux petites perturbations dans le pire des cas, appelées exemples adversariaux, qui peuvent
facilement tromper les réseaux de neurones profonds de pointe et les amener à faire de
mauvaises prédictions. Leur existence peut être considérée comme un problème de géné-
ralisation : malgré des performances impressionnantes en moyenne, les modèles d’appren-
tissage profond ont tendance à apprendre des caractéristiques non robustes qui peuvent
être utilisées pour des manipulations adversariales. Dans cette thèse, nous approfondis-
sons une série de questions liées à la robustesse et à la généralisation, telles que comment
évaluer précisément la robustesse, comment rendre l’entraînement robuste plus efficace et
pourquoi certains algorithmes d’optimisation conduisent à une meilleure généralisation et
apprennent des caractéristiques qualitativement différentes.

Nous commençons la première direction en explorant des méthodes computationnellement
efficaces pour effectuer un entraînement adversarial et son mode d’échec appelé surappren-
tissage catastrophique lorsque le modèle perd soudainement sa robustesse après un certain
point de l’entraînement. Ensuite, nous fournissons une meilleure compréhension de l’éva-
luation de la robustesse et des progrès dans le domaine en proposant de nouvelles attaques
adversariales boite-noire efficaces en termes de requêtes, basées sur une recherche aléatoire
qui ne repose pas sur les informations de gradient et peut donc compléter une évaluation
typique de la robustesse basée sur des méthodes de gradient. Enfin, dans le même but,
nous proposons un nouveau benchmark RobustBench qui vise à suivre systématiquement
les progrès dans le domaine de la robustness de manière standardisée.

Nous commençons la deuxième direction en étudiant les raisons du succès de la minimisa-
tion sensible à la raideur, un algorithme récent qui augmente la robustesse dans l’espace des
paramètres pendant l’entraînement et améliore la généralisation pour les réseaux profonds.
Ensuite, nous discutons pourquoi les modèles surparamétrés entraînés avec une descente
de gradient stochastique ont tendance à généraliser étonnamment bien même sans régu-
larisation explicite. Nous étudions la régularisation implicite induite par la descente de
gradient stochastique avec de grands pas et son effet sur les caractéristiques apprises par
le modèle. Enfin, nous étudions rigoureusement la relation entre la raideur des minima
(c’est-à-dire la robustesse dans l’espace des paramètres) et la généralisation que les tra-
vaux antérieurs ont observé être corrélés entre eux. Notre étude suggère que, en dépit des
idées reçues, la raideur n’est pas un bon indicateur de généralisation et elle a plutôt ten-

v

Résumé

dance à bien corréler avec certains hyperparamètres comme le taux d’apprentissage mais
pas de manière inhérente avec la généralisation.
Mots-clés : Apprentissage automatique, apprentissage profond, robustesse adversariale,
généralisation, régularisation implicite.

vi

Contents
Acknowledgements i

Abstract (English/Français) iii

1 Introduction 1
1.1 Outline of the thesis . 4
1.2 Contributions beyond this thesis . 5

I Robustness in Modern Deep Learning 7

2 Understanding and Improving Fast Adversarial Training 9
2.1 Preface . 9
2.2 Introduction . 10
2.3 Problem overview and related work . 12
2.4 The role and limitations of using random initialization in FGSM training 14
2.5 Understanding catastrophic overfitting via gradient alignment 16
2.6 Increasing gradient alignment improves fast adversarial training 20
2.7 Conclusions and outlook . 22
2.8 Deferred proofs . 24

2.8.1 Proof of Lemma 1 . 24
2.8.2 Proof and discussion of Lemma 2 25

2.9 Experimental details . 29
2.10 Supporting experiments and visualizations for Sec. 2.4 and Sec. 2.5 31

2.10.1 Quality of the linear approximation for ReLU networks 31
2.10.2 Catastrophic overfitting in a single-layer CNN 32

2.11 Additional experiments for different adversarial training schemes 35
2.11.1 Stronger PGD-2 baseline . 35
2.11.2 Results with early stopping . 35
2.11.3 Results for specific ℓ∞-radii . 36
2.11.4 Ablation studies . 39
2.11.5 Comparison of GradAlign to gradient-based penalties 40

3 Square Attack: a Query-Efficient Black-Box Adversarial Attack via
Random Search 45

vii

Contents

3.1 Preface . 45
3.2 Introduction . 45
3.3 Related Work . 46
3.4 Square Attack . 48

3.4.1 Adversarial Examples in the lp-threat Model 48
3.4.2 General Algorithmic Scheme of the Square Attack 49
3.4.3 The l∞-Square Attack . 50
3.4.4 The l2-Square Attack . 51

3.5 Theoretical and Empirical Justification of the Method 53
3.5.1 Convergence Analysis of Random Search 53
3.5.2 Why Squares? . 54
3.5.3 Ablation Study . 55

3.6 Experiments . 56
3.6.1 Evaluation on ImageNet . 57
3.6.2 Square Attack Can be More Accurate than White-box Attacks . . 58

3.7 Conclusion . 60
3.8 Proofs Omitted from Section 3.4 and Section 3.5 61

3.8.1 Proof of Proposition 3.4.1 . 61
3.8.2 Proof of Proposition 3.5.1 . 61
3.8.3 Assumptions in Eq. (3.3) Do Not Hold for the Sampling Distribution

P . 62
3.8.4 Assumptions in Eq. (3.3) Hold for the Sampling Distribution Pmultiple 63
3.8.5 Why Updates of Equal Sign? . 64
3.8.6 Proof of Proposition 3.5.2 . 65

3.9 Experimental Details . 66
3.9.1 Experiments on ImageNet . 66
3.9.2 Square Attack Can be More Accurate than White-box Attacks . . 67

3.10 Ablation Study . 67
3.10.1 l∞-Square Attack . 68
3.10.2 l2-Square Attack . 68

3.11 Stability of the Attack under Different Random Seeds 69
3.12 Additional Experimental Results . 70

3.12.1 Targeted Attacks . 71
3.12.2 Success Rate on ImageNet for Different Number of Queries 72
3.12.3 Performance on Architectures with Dilated Convolutions 73
3.12.4 Imperceptible Adversarial Examples with the Square Attack 74
3.12.5 Analysis of Adversarial Examples that Require More Queries . . . 74
3.12.6 Breaking the Post-averaging Defense 77

4 RobustBench: a Standardized Adversarial Robustness Benchmark 79
4.1 Preface . 79
4.2 Introduction . 80
4.3 Background and related work . 81
4.4 Description of RobustBench . 84

viii

Contents

4.4.1 Leaderboard . 84
4.4.2 Model Zoo . 88

4.5 Analysis . 89
4.6 Outlook . 93
4.7 Broader impact . 95
4.8 Licenses . 95
4.9 Maintenance plan . 96
4.10 Details of the ImageNet leaderboards . 97
4.11 Reproducibility and runtime . 97
4.12 Additional analysis . 98
4.13 Leaderboards . 104

II Generalization in Modern Deep Learning 111

5 Towards Understanding Sharpness-Aware Minimization 113
5.1 Preface . 113
5.2 Introduction . 114
5.3 Background on SAM . 115
5.4 Challenging the Existing Understanding of SAM 117
5.5 Understanding the Generalization Benefits of SAM 119

5.5.1 Testing Two Natural Hypotheses for Why Low m in m-SAM Could
be Beneficial . 120

5.5.2 Provable Benefit of SAM for Diagonal Linear Networks 121
5.5.3 Empirical Study of the Implicit Bias in Non-Linear Networks . . . 124

5.6 Understanding the Optimization Aspects of SAM 126
5.6.1 Theoretical Analysis of Convergence of SAM 127
5.6.2 Convergence of SAM for Deep Networks 128

5.7 Conclusions . 129
5.8 Implementations of the SAM Algorithm in the Full-Batch Setting 131
5.9 Theoretical Analysis of the Implicit Bias for Diagonal Linear Networks . . 131

5.9.1 Implicit Bias of the n-SAM Algorithm. 132
5.9.2 Implicit Bias of the 1-SAM Algorithm 134
5.9.3 Comparison between 1-SAM and n-SAM 136

5.10 Convergence of the SAM Algorithm . 139
5.10.1 Convergence of Full-Batch n-SAM 139
5.10.2 Convergence of Stochastic SAM . 145

5.11 Experimental Details . 150
5.12 Additional Deep Learning Experiments . 151

5.12.1 The Effect of m in m-SAM . 151
5.12.2 The Effect of the Batch Size on SAM 152
5.12.3 The Effect of the Model Width on SAM 152
5.12.4 Sharpness for Models with Batch Normalization 153
5.12.5 Training Loss for ERM vs. SAM Models 153

ix

Contents

5.12.6 SAM with a Decreasing Perturbation Radius 154
5.12.7 Experiments with Noisy Labels . 154

6 SGD with Large Step Sizes Learns Sparse Features 157
6.1 Preface . 157
6.2 Introduction . 158

6.2.1 Our Contributions . 159
6.2.2 Related Work . 159

6.3 The Effective Dynamics of Large Step Size SGD: Sparse Feature Learning 160
6.3.1 Background: SGD is GD with Specific Label Noise 161
6.3.2 The Effective Dynamics Behind Loss Stabilization 162
6.3.3 Sparse Feature Learning . 163

6.4 Empirical Evidence of Sparse Feature Learning Driven by SGD 165
6.4.1 Sparse Feature Learning in Diagonal Linear Networks 166
6.4.2 Sparse Feature Learning in Simple ReLU Networks 167
6.4.3 Sparse Feature Learning in Deep ReLU Networks 168

6.5 Conclusions and Insights from our Understanding of the Training Dynamics 170
6.6 SGD and Label Noise GD . 172
6.7 Quadratic Parameterization in One Dimension 174
6.8 Empirical Validation of the SDE Modeling 179
6.9 Additional Experimental Results . 181

7 A Modern Look at the Relationship between Sharpness and General-
ization 185
7.1 Preface . 185
7.2 Introduction . 186
7.3 Related work . 187
7.4 Adaptive Sharpness, its Invariances, and Computation 188

7.4.1 Background on Sharpness . 188
7.4.2 Which Invariances Do We Need Sharpness to Capture for Modern

Architectures? . 190
7.4.3 How to Compute Worst-Case Sharpness Efficiently? 192

7.5 Sharpness vs. Generalization: Modern Setup 192
7.6 Why Doesn’t Sharpness Correlate Well with Generalization? 195

7.6.1 The Role of Sharpness in a Controlled Setup 195
7.6.2 Is Sharpness the Right Quantity in the First Place? Insights from

Simple Models . 198
7.7 Conclusions . 200
7.8 Omitted Proofs . 206

7.8.1 Asymptotic Analysis of Adaptive Sharpness Measures 206
7.8.2 Derivations for Diagonal Linear Networks 208

7.9 Correlation Between Sharpness and Generalization Gap 210
7.10 ImageNet-1k Models Trained from Scratch from Steiner et al. (2021): Extra

Details and Figures . 212

x

Contents

7.11 Fine-tuning of ImageNet-1k Models Pretrained on ImageNet-21k from Steiner
et al. (2021): Extra Figures and Details 218

7.12 ImageNet Models both Pretrained on ImageNet-1k and ImageNet-21k from
Steiner et al. (2021) . 223

7.13 Fine-tuning CLIP Models on ImageNet: Extra Details and Figures 226
7.14 Fine-tuning on MNLI: Extra Details and Figures 231
7.15 Training from Scratch on CIFAR-10: Extra Details and Figures 236

7.15.1 The Role of Data Used for Sharpness Evaluation 236
7.15.2 The Role of the Number of Iterations in Auto-PGD 238
7.15.3 The Role of m in m-Sharpness . 239
7.15.4 The Role of Different Sharpness Definitions and Radii 241

Conclusions 255

Bibliography 259

xi

1 Introduction

Modern deep learning has achieved remarkable progress in many areas: from healthcare
(Esteva et al., 2019) and science (Degrave et al., 2022) to conversational models that can
solve complex tasks and exhibit non-trivial reasoning capabilities (Bubeck et al., 2023).
Despite this progress, it has been observed that adversarial robustness does not automati-
cally emerge with more data or larger models. Even state-of-the-art large language models
trained on trillions of words can be relatively easily manipulated by using carefully chosen
adversarial strings (Zou et al., 2023). This clearly suggests that specialized algorithms
like adversarial training are needed to explicitly take into account worst-case examples
during training (Madry et al., 2018). Moreover, the existence of adversarial examples can
also be seen as a generalization issue and to achieve robustness, it is also necessary to
ensure generalization beyond the training set. Thus, we explore two interconnected as-
pects of modern deep learning in this thesis: robustness and generalization. To develop a
better understanding of generalization, in this thesis, we analyze the training dynamics of
gradient-based methods and features learned by deep networks. In addition, we explore
the connection between robustness in the input space and parameter space and different
notions of overfitting: catastrophic overfitting in adversarial training and overfitting in
the overparameterized regime. We start from providing a general overview of the related
areas relevant to the works presented in this thesis.

Adversarial robustness. The robustness of machine learning models based on empiri-
cal risk minimization to small worst-case perturbations has been a topic of active research
for decades (Lowd and Meek, 2005; Globerson and Roweis, 2006). However, the recent
success of deep learning has brought renewed interest in this issue, particularly due to the
discovery of adversarial examples – tiny input perturbations that can easily deceive state-
of-the-art deep neural networks into making incorrect predictions (Szegedy et al., 2014).
Adversarial perturbations are formally defined as input modifications that can alter a clas-
sifier’s prediction while staying within a predefined perturbation set, usually chosen such
that the true label of the input should remain unchanged. Robust accuracy, a common
robustness measure, represents the proportion of datapoints for which the classifier makes
correct predictions for all possible perturbations from this set. Calculating the exact robust
accuracy is computationally intractable for most models, so upper bounds are estimated

1

Chapter 1. Introduction

using adversarial attacks, which attempt to find successful adversarial perturbations. The
tightness of these bounds depends on the effectiveness of the attack method used, with
suboptimal methods potentially leading to an overestimation of the model’s robustness.
The threat model, which defines the set of allowed perturbations, is a crucial aspect of
robustness evaluation. Throughout the thesis, we will focus on ℓp-bounded perturbations
(particularly with p = ∞) due to their simplicity, although we note that it is clearly not
a sufficient definition of robustness (Gilmer et al., 2018).

Implicit regularization. The implicit regularization effect of the piece-wise constant
step size schedule introduced in He et al. (2016a), which often leads to a distinct loss
stabilization pattern, remains poorly understood. The importance of large step sizes for
generalization has been investigated from various angles, such as their potential role in
minimizing complexity measures related to the flatness of minima and guiding stochastic
gradient descent (SGD) iterates towards flatter minima (Keskar et al., 2016). However,
the appropriate flatness measure is often debated, and its relevance to understanding
generalization is questionable, as full-batch gradient descent with large step sizes can
lead to flat solutions that do not generalize well (Cohen et al., 2021). Stability analysis
provides insights into the properties of the minimum that SGD or gradient descent (GD)
can potentially reach depending on the step size, but it does not capture the full training
dynamics, such as the large step size phase where SGD only converges after the step size is
decayed. The implicit bias of SGD augmented with label noise, which shares similarities
with the standard noise in SGD, has been characterized, but only in the final stage of
training, close to a zero-loss solution set (Li et al., 2022). While the dynamics of GD with
large step sizes have received attention, particularly the edge-of-stability phenomenon and
the catapult mechanism (Lewkowycz et al., 2020), the absence of stochastic noise in the
analysis makes it unsuitable for capturing the behavior of stochastic training. The presence
of sparse features and low-rank structures in deep networks trained with large step size
SGD has also been observed and utilized in model compression, knowledge distillation,
and the lottery ticket hypothesis (Denton et al., 2014; Hinton et al., 2015; Frankle and
Carbin, 2018), suggesting that the step size schedule may play a key role in the emergence
of such hidden structures.

Robustness in the parameter space. The connection between robustness in the
weight space and generalization has been extensively studied. Random weight pertur-
bations are employed in techniques like dropout (Srivastava et al., 2014), and the perfor-
mance degradation observed when using larger batch sizes for training has been linked to
the sharpness of the obtained parameters. This has inspired the concept of minimizing
sharpness during training to enhance generalization, leading to methods such as Sharpness-
Aware Minimization (SAM) (Foret et al., 2021), which modifies SGD to take gradient steps
at worst-case points in the vicinity of the current iterate. Theoretical investigations have
also focused on the sharpness properties of minima, particularly in deep linear networks
(Mulayoff and Michaeli, 2020), and generalization bounds based on average-case sharpness
and quantities related to the optimization trajectory of SGD (Neu, 2021). Studies on the
relationship between sharpness and generalization have demonstrated a strong correlation

2

across a wide range of models and hyperparameter settings (Keskar et al., 2016; Jiang
et al., 2019). However, the experimental methodology has been criticized for potentially
masking failures of generalization measures and should be evaluated within the framework
of distributional robustness (Dziugaite et al., 2020). The notion that flat minima can ben-
efit generalization has motivated various methods that optimize for more robust minima,
using criteria ranging from random perturbations, such as in Entropy-SGD (Chaudhari
et al., 2016), to worst-case perturbations, as in SAM and its variations (Kwon et al., 2021).
Simultaneously, research on the implicit bias of SGD suggests an implicit minimization
of hidden complexity measures related to the flatness of minima, with works focusing on
the implicit regularization of SGD in terms of the gradient norm and the trace of the
Hessian matrix (Xing et al., 2018). Recent works have focused on sharpness-related quan-
tities based on the Hessian matrix, such as the maximum eigenvalue and its relation to
the learning rate in full-batch gradient descent, with the shared goal of using sharpness-
related metrics to gain a deeper understanding of optimization and generalization in deep
networks (Arora et al., 2022; Damian et al., 2023).

Research questions of the thesis. It is very important to establish strong foundations
and rigorous understanding to be able to reliably build on top of the current deep learning
algorithms. We believe that many aspects of deep learning can be understood empirically
via carefully designed experiments and theoretically via simple models. With this in mind,
we focus on the following research questions throughout the thesis:

• Why do computationally efficient adversarial training methods fail and how to re-
solve this? Standard adversarial training adds a significant computational overhead
since it requires computing adversarial examples on-the-fly using many iterations of
projected gradient descent. Instead, using only a few gradient steps is key to unlock
practical adversarial training at scale. However, this leads to a failure mode known
as catastrophic overfitting where the model completely loses its robustness after some
point in training.

• How to evaluate robustness in a more accurate and standardized way, without resort-
ing to adaptive adversarial attacks? It is well accepted that adaptive attacks, i.e.,
attacks tailored specifically to a particular defense, are gold standard for robustness
evaluation (Tramèr et al., 2020). However, it is infeasible to evaluate adaptively
all new defenses against adversarial examples since adaptive attacks require a lot
of manual trial and error. Thus, we also need some reliable automated attacks,
ideally that are not based on gradients. This is important since many defenses are
based on gradient obfuscation that only prevents gradient-based attacks but does
not inherently improve adversarial robustness.

• What does robustness in the parameter space imply for generalization? How can we
understand it via analysis of the training dynamics? Robustness in the parameter
space or sharpness has been linked to generalization, with the intuition that a model
that is robust in the parameter space is likely to generalize well to unseen data.
However, it is unclear how accurate this intuition is since it has never been verified

3

Chapter 1. Introduction

beyond small-scale settings. Moreover, by analyzing the training dynamics, i.e., the
trajectory of the model’s parameters during optimization, one can gain insights into
what methods like SAM implicitly do. Understanding these aspects can help us
design better optimization algorithms and regularization techniques that improve
generalization.

• Why certain optimization algorithms result in better generalization and the learning
of qualitatively distinct features? We are primarily interested in two specific op-
timization algorithms: SGD with large step sizes and SAM. SGD with large step
sizes has been shown to implicitly regularize the model, but it is not clear what
this implicit regularization implies on the features learned by the deep network.
By studying these optimization algorithms and drawing inspiration from a compre-
hensive understanding of the training dynamics on simple models, one can gain a
deeper understanding of how the choice of optimization algorithm can influence the
structure of the learned representations.

1.1 Outline of the thesis

The thesis is divided into two parts: Robustness in Modern Deep Learning and General-
ization in Modern Deep Learning. The first part is based on the following papers:

• Chapter 2 is based on Andriushchenko and Flammarion (2020) (NeurIPS 2020)
where we focus on the problem of computationally efficient adversarial training for
deep learning models. In particular, we analyze the phenomenon of catastrophic
overfitting, which occurs when the model quickly loses its robustness over a single
epoch of training.

• Chapter 3 is based on Andriushchenko et al. (2020) (ECCV 2020) where we focus on
the problem of adversarial attacks on image classification models in the black-box
setting, where the attacker has no access to the model’s parameters or gradients.

• Chapter 4 is based on Croce et al. (2021) (NeurIPS 2021 Datasets and Benchmarks
Track) where we focus on the problem of benchmarking adversarial robustness of
machine learning models. We introduce a standardized benchmark for adversarial
robustness, RobustBench, which aims to provide a reliable evaluation of the robust-
ness of the considered models within a reasonable computational budget.

The second part of the thesis is based on the following papers:

• Chapter 5 is based on Andriushchenko and Flammarion (2022) (ICML 2022) where
we focus on the recent training method called Sharpness-Aware Minimization (SAM)
which has been shown to significantly improve generalization in various settings. We
argue that the existing justifications for the success of SAM which are based on a
PAC-Bayes generalization bound and the idea of convergence to flat minima are

4

1.2 Contributions beyond this thesis

incomplete. Via a set of experiments and theoretical results, we provide a new
perspective on the reasons behind better generalization of SAM.

• Chapter 6 is based on Andriushchenko et al. (2023d) (ICML 2023) where we present
a study of the dynamics of the Stochastic Gradient Descent (SGD) in the training of
neural networks. We show that commonly used large step sizes may lead the iterates
to jump from one side of a valley to the other causing loss stabilization, and this
stabilization induces a hidden stochastic dynamics that biases it implicitly toward
sparse predictors.

• Chapter 7 is based on Andriushchenko et al. (2023b) (ICML 2023) where we provide a
comprehensive study of how well different definitions of sharpness of minima correlate
with generalization. We conclude that sharpness does not necessarily correlate well
with generalization but rather with some training parameters like the learning rate.

1.2 Contributions beyond this thesis

In addition to the works presented in the thesis, the author contributed to the following
papers.

Contributions in adversarial robustness. In Croce et al. (2020) (AAAI 2022), we
focus on improving black-box attacks to make robustness evaluations for ℓp-bounded and
sparse perturbations more reliable. Moreover, in Kireev et al. (2021) (UAI 2022), we
study the effect of different adversarial training schemes on the performance on natural
image corruptions. We find that even standard ℓp adversarial training can be an effective
technique against such corruptions and proposed an improved training scheme motivated
by adversarial training with perceptual distances. In Andriushchenko et al. (2022) (CVPR
2022 workshop), we study the task of adversarially robust image attribution for content
provenance as part of the Content Authenticity Initiative that aims to fight disinformation
and fake content on the internet. In Kireev et al. (2023) (NeurIPS 2023), we explore more
plausible cost-aware threat models for tabular datasets. In Debenedetti et al. (2023)
(ICLR 2024 workshop), we study scaling laws for adversarial robustness concluding that
simply scale the model size has very limited gains. Finally, in Andriushchenko (2023), we
explore the feasibility of adversarial attacks on GPT-4 using a random search technique
similar to the one discussed in this thesis (Andriushchenko et al., 2020).

Contributions in understanding generalization and training dynamics. In Mos-
bach et al. (2021) (ICLR 2021), we provide reasons behind fine-tuning instability of BERT
language models. More recently, in Andriushchenko et al. (2023a) (NeurIPS 2023), we de-
velop a better understanding of the effect of sharpness-aware minimization on the features
learned by the model. In Shin et al. (2023), we study the effect of overparameterization
on convergence and generalization of sharpness-aware minimization. In the recent work
Andriushchenko et al. (2023c) (NeurIPS 2023 workshop), we study the role of weight decay
on generalization of overparameterized deep networks and on optimization and training

5

Chapter 1. Introduction

stability of LLMs. In Adilova et al. (2024) (ICLR 2024), we study the phenomenon of
layerwise linear mode connectivity and discuss interesting connections to federated learn-
ing. The most recent work is Zhao et al. (2024) (ICLR 2024 workshop) where we study
instruction fine-tuning of LLMs and suggest a very simple but competitive baseline for
selection of the data points.

6

Part IRobustness in Modern Deep
Learning

7

2 Understanding and Improving
Fast Adversarial Training

2.1 Preface

In this chapter, based on Andriushchenko and Flammarion (2020), we focus on the problem
of computationally efficient adversarial training for deep learning models. In particular, we
analyze the phenomenon of catastrophic overfitting, which occurs when the model quickly
loses its robustness over a single epoch of training.

Summary A recent line of work focused on making adversarial training computation-
ally efficient for deep learning models. In particular, Wong et al. (2020) showed that
ℓ∞-adversarial training with fast gradient sign method (FGSM) can fail due to a phe-
nomenon called catastrophic overfitting, when the model quickly loses its robustness over
a single epoch of training. We show that adding a random step to FGSM, as proposed
in Wong et al. (2020), does not prevent catastrophic overfitting, and that randomness
is not important per se — its main role being simply to reduce the magnitude of the
perturbation. Moreover, we show that catastrophic overfitting is not inherent to deep
and overparametrized networks, but can occur in a single-layer convolutional network
with a few filters. In an extreme case, even a single filter can make the network highly
non-linear locally, which is the main reason why FGSM training fails. Based on this
observation, we propose a new regularization method, GradAlign, that prevents catas-
trophic overfitting by explicitly maximizing the gradient alignment inside the perturba-
tion set and improves the quality of the FGSM solution. As a result, GradAlign al-
lows to successfully apply FGSM training also for larger ℓ∞-perturbations and reduce
the gap to multi-step adversarial training. The code of our experiments is available at
https://github.com/tml-epfl/understanding-fast-adv-training.

Co-authors Nicolas Flammarion.

Contributions Maksym Andriushchenko made key contributions to all aspects of the
project.

9

https://github.com/tml-epfl/understanding-fast-adv-training

Chapter 2. Understanding and Improving Fast Adversarial Training

2.2 Introduction

Machine learning models based on empirical risk minimization are known to be often non-
robust to small worst-case perturbations. For decades, this has been the topic of active
research by the statistics, optimization and machine learning communities (Huber, 1981;
Ben-Tal et al., 2009; Globerson and Roweis, 2006; Biggio and Roli, 2018b). However, the
recent success of deep learning (LeCun et al., 2015; Schmidhuber, 2015) has raised the
interest in this topic. The lack of robustness in deep learning is clearly illustrated by
the existence of adversarial examples, i.e. tiny input perturbations that can easily fool
state-of-the-art deep neural networks into making wrong predictions (Szegedy et al., 2014;
Goodfellow et al., 2015).

Improving the robustness of machine learning models is motivated not only from the
security perspective (Biggio and Roli, 2018b). Adversarially robust models have better
interpretability properties (Tsipras et al., 2019; Santurkar et al., 2019) and can generalize
better (Zhu et al., 2019; Bochkovskiy et al., 2020) including also improved performance
under some distribution shifts (Xie et al., 2020) (although on some performing worse,
see Taori et al. (2020b)). In order to improve the robustness, two families of solutions
have been developed: adversarial training (AT) that amounts to training the model on
adversarial examples (Goodfellow et al., 2015; Madry et al., 2018) and provable defenses
that derive and optimize robustness certificates (Wong and Kolter, 2018; Raghunathan
et al., 2018; Cohen et al., 2019). Currently, adversarial-training based methods appear to
be preferred by practitioners since they (a) achieve higher empirical robustness (although
without providing a robustness certificate), (b) can be scaled to state-of-the-art deep
networks without affecting the inference time (unlike smoothing-based approaches (Cohen
et al., 2019)), and (c) work equally well for different threat models. Adversarial training
can be formulated as a robust optimization problem (Shaham et al., 2018; Madry et al.,
2018) which takes the form of a non-convex non-concave min-max problem. However,
computing the optimal adversarial examples is an NP-hard problem (Katz et al., 2017;
Weng et al., 2018). Thus adversarial training can only rely on approximate methods to
solve the inner maximization problem.

One popular approximation method successfully used in adversarial training is the PGD at-
tack (Madry et al., 2018) where multiple steps of projected gradient descent are performed.
It is now widely believed that models adversarially trained via the PGD attack (Madry
et al., 2018; Zhang et al., 2019c) are robust since small adversarially trained networks can
be formally verified (Carlini et al., 2017; Tjeng et al., 2019b; Wong et al., 2020), and larger
models could not be broken on public challenges (Madry et al., 2018; Zhang et al., 2019c).
Recently, (Croce and Hein, 2020b) evaluated the majority of recently published defenses
to conclude that the standard ℓ∞ PGD training achieves the best empirical robustness;
a result which can only be improved using semi-supervised approaches (Hendrycks et al.,
2019; Alayrac et al., 2019; Carmon et al., 2019). In contrast, other empirical defenses that
were claiming improvements over standard PGD training had overestimated the robust-
ness of their reported models (Croce and Hein, 2020b). These experiments imply that

10

2.2 Introduction

2 4 6 8 10 12 14 16
 used for training and evaluation

0%

20%

40%

60%

80%

PG
D-

50
-1

0
ad

ve
rs

ar
ia

l a
cc

ur
ac

y CIFAR-10 models trained without early stopping
FGSM AT
FGSM-RS AT
FGSM AT + GradAlign
AT for Free
PGD-2 AT
PGD-10 AT

2 4 6 8 10 12 14 16
 used for training and evaluation

0%

20%

40%

60%

80%

PG
D-

50
-1

0
ad

ve
rs

ar
ia

l a
cc

ur
ac

y CIFAR-10 models trained with early stopping
FGSM AT
FGSM-RS AT
FGSM AT + GradAlign
AT for Free
PGD-2 AT
PGD-10 AT

Figure 2.1: Robustness of different adversarial training (AT) methods on CIFAR-10 with ResNet-
18 trained and evaluated with different l∞-radii. The results are averaged over 5 random seeds used
for training and reported with the standard deviation. FGSM AT: standard FGSM AT, FGSM-
RS AT: FGSM AT with a random step (Wong et al., 2020), FGSM AT + GradAlign: FGSM
AT combined with our proposed regularizer GradAlign, AT for Free: recently proposed method
for fast PGD AT (Shafahi et al., 2019), PGD-2/PGD-10 AT: AT with a 2-/10-step PGD-attack.
Our proposed regularizer GradAlign prevents catastrophic overfitting in FGSM training and leads
to significantly better results which are close to the computationally demanding PGD-10 AT.

adversarial training in general is the key algorithm for robust deep learning, and thus that
performing it efficiently is of paramount importance.

Another approximation method for adversarial training is the Fast Gradient Sign Method
(FGSM) (Goodfellow et al., 2015) which is based on the linear approximation of the neural
network loss function. However, the literature is still ambiguous about the performance
of FGSM training, i.e. it remains unclear whether FGSM training can consistently lead
to robust models. For example, (Madry et al., 2018) and (Tramèr et al., 2018) claim that
FGSM training works only for small ℓ∞-perturbations, while (Wong et al., 2020) suggest
that FGSM training can lead to robust models for arbitrary ℓ∞-perturbations if one adds
uniformly random initialization before the FGSM step. Related to this, (Wong et al., 2020)
further identified a phenomenon called catastrophic overfitting where FGSM training first
leads to some robustness at the beginning of training, but then suddenly becomes non-
robust within a single training epoch. However, the reasons for such a failure remain
unknown. This motivates us to consider the following question as the main theme of the
paper:

When and why does fast adversarial training with FGSM lead to robust models?

Contributions. We first show that not only FGSM training is prone to catastrophic
overfitting, but the recently proposed fast adversarial training methods (Shafahi et al.,
2019; Wong et al., 2020) as well (see Fig. 2.1). We then analyze the reasons why us-
ing a random step in FGSM (Wong et al., 2020) helps to slightly mitigate catastrophic
overfitting and show it simply boils down to reducing the average magnitude of the pertur-
bations. Then we discuss the connection behind catastrophic overfitting and local linearity
in deep networks and in single-layer convolutional networks where we show that even a

11

Chapter 2. Understanding and Improving Fast Adversarial Training

single filter can make the network non-linear locally, and causes the failure of FGSM
training. We additionally provide for this case a theoretical explanation which helps to
explain why FGSM AT is successful at the beginning of the training. Finally, we propose
a regularization method, GradAlign, that prevents catastrophic overfitting by explicitly
maximizing the gradient alignment inside the perturbation set and therefore improves
the quality of the FGSM solution. We compare GradAlign to other adversarial training
schemes in Fig. 2.1 and point out that among all fast adversarial training methods con-
sidered only FGSM + GradAlign does not suffer from catastrophic overfitting and leads
to high robustness even for large ℓ∞-perturbations.

2.3 Problem overview and related work

Let ℓ(x, y; θ) denote the loss of a ReLU-network parametrized by θ ∈ Rm on the example
(x, y) ∼ D where D is the data generating distribution.1 Previous works (Shaham et al.,
2018; Madry et al., 2018) formalized the goal of training adversarially robust models as
the following robust optimization problem:

min
θ

E(x,y)∼D

[
max
δ∈∆

ℓ(x+ δ, y; θ)
]
. (2.1)

We focus here on the ℓ∞ threat model, i.e. ∆ = {δ ∈ Rd, ∥δ∥∞ ≤ ε}, where the adversary
can change each input coordinate xi by at most ε. Unlike classical stochastic saddle point
problems of the form minθ maxδ E[ℓ(θ, δ)] (Juditsky et al., 2011), the inner maximiza-
tion problem here is inside the expectation. Therefore the solution of each subproblem
maxδ∈∆ ℓ(x + δ, y; θ) depends on the particular example (x, y) and standard algorithms
such as gradient descent-ascent which alternate gradient descent in θ and gradient ascent
in δ cannot be used. Instead each of these non-concave maximization problems has to
be solved independently. Thus, an inherent trade-off appears between computationally
efficient approaches which aim at solving this inner problem in as few iterations as pos-
sible and approaches which aim at solving the problem more accurately but with more
iterations. In an extreme case, the PGD attack (Madry et al., 2018) uses multiple steps
of projected gradient ascent (PGD), which is accurate but computationally expensive. At
the other end of the spectrum, Fast Gradient Sign Method (FGSM) (Goodfellow et al.,
2015) performs only one iteration of gradient ascent with respect to the ℓ∞-norm:

δF GSM
def= ε sign(∇xℓ(x, y; θ)), (2.2)

followed by a projection of x + δF GSM onto the [0, 1]d to ensure it is a valid input.2
This leads to a fast algorithm which, however, does not always lead to robust models
as observed in (Madry et al., 2018; Tramèr et al., 2018). A closer look at the evolution
of the robustness during FGSM AT reveals that using FGSM can lead to a model with
some degree of robustness but only until a point where the robustness suddenly drops.

1In practice we use training samples with random data augmentation.
2Throughout the paper we will focus on image classification, i.e. inputs x will be images.

12

2.3 Problem overview and related work

This phenomenon is called catastrophic overfitting in Wong et al. (2020). As a partial
solution, the training can be stopped just before that point which leads to non-trivial but
suboptimal robustness as illustrated in Fig. 2.1. Wong et al. (2020) further notice that
initializing FGSM from a random starting point η ∼ U([−ε, ε]d), i.e. using the following
perturbation where Π[−ε,ε]d denotes the projection:

δF GSM−RS
def= Π[−ε,ε]d [η + α sign(∇xℓ(x+ η, y; θ))], (2.3)

helps to mitigate catastrophic overfitting and leads to better robustness for the considered
ε values (e.g. ε = 8/255 on CIFAR-10 in Wong et al. (2020)). Along the same lines, Vivek
and Babu (2020) observe that using dropout on all layers (including convolutional) also
helps to stabilize FGSM AT.

An alternative solution is to interpolate between FGSM and PGD AT. For example, (Wang
et al., 2019b) suggest to first use FGSM AT, and later to switch to multi-step PGD AT
which is motivated by their analysis suggesting that the inner maximization problem has
to be solved more accurately at the end of training. Shafahi et al. (2019) propose to run
PGD with step size α = ε and simultaneously update the weights of the network. On a
related note, Zhang et al. (2019a) collect the weight updates during PGD, but apply them
after PGD is completed. Additionally, Zhang et al. (2019a) update the gradients of the
first layer multiple times. However, none of these approaches are conclusive, either leading
to comparable robustness to FGSM-RS training (Wong et al., 2020) and still failing for
higher ℓ∞-radii (see Fig. 2.1 for Shafahi et al. (2019) and Wong et al. (2020)) or being in the
worst case as expensive as multi-step PGD AT (Wang et al., 2019b). Additionally, some
previous works deviate from the robust optimization formulation stated in Eq. (2.1) and
instead regularize the model to improve robustness (Simon-Gabriel et al., 2019; Moosavi-
Dezfooli et al., 2019b; Qin et al., 2019), however this does not lead to higher robustness
compared to standard adversarial training. We focus next on analyzing the FGSM-RS
training (Wong et al., 2020) as the other recent variations of fast adversarial training
(Shafahi et al., 2019; Zhang et al., 2019a; Vivek and Babu, 2020) lead to models with
similar robustness.

Experimental setup. Unless mentioned otherwise, we perform training on PreAct
ResNet-18 (He et al., 2016b) with the cyclic learning rates (Smith, 2017) and half-precision
training (Micikevicius et al., 2018) following the setup of Wong et al. (2020). We evaluate
adversarial robustness using the PGD-50-10 attack, i.e., with 50 iterations and 10 restarts
with step size α = ε/4 following Wong et al. (2020). More experimental details are specified
in Appendix 2.9.

13

Chapter 2. Understanding and Improving Fast Adversarial Training

2.4 The role and limitations of using random initialization
in FGSM training

First, we show that FGSM with a random step fails to resolve catastrophic overfitting for
larger ε. Then we provide evidence against the explanation given by Wong et al. (2020)
on the benefit of randomness for FGSM AT, and propose a new explanation based on the
linear approximation quality of FGSM.

FGSM with random step does not resolve catastrophic overfitting. Crucially,
Wong et al. (2020) observed that adding an initial random step to FGSM as in Eq. (2.3)
helps to avoid catastrophic overfitting. However, this holds only if the step size is not too
large (as illustrated in Fig. 3 of Wong et al. (2020) for ε = 8/255) and, more importantly,
only for small enough ε as we show in Fig. 2.1. Indeed, using the step size α = 1.25ε
recommended by Wong et al. (2020) extends the working regime of FGSM but only from
ε = 6/255 to ε = 9/255, with 0% adversarial accuracy for ε = 10/255. When early stopping
is applied (Fig. 2.1, right), there is still a significant gap compared to PGD-10 training,
particularly for large ℓ∞-radii. For example, for ε = 16/255, FGSM-RS AT leads to 22.24%
PGD-50-10 accuracy while PGD-10 AT obtains a much better accuracy of 30.65%.

Previous explanation: randomness diversifies the threat model. A hypothesis
stated in Wong et al. (2020) was that FGSM-RS helps to avoid catastrophic overfitting
by diversifying the threat model. Indeed, the random step allows to have perturbations
not only at the corners {−ε, ε}d like the FGSM-attack3, but rather in the whole ℓ∞-ball,
[−ε, ε]d. Here we refute this hypothesis by modifying the usual PGD training by projecting
onto {−ε, ε}d the perturbation obtained via the PGD attack. We perform experiments on
CIFAR-10 with ResNet-18 with ℓ∞-perturbations of radius ε = 8/255 over 5 random seeds.
FGSM AT leads to catastrophic overfitting achieving 0.00± 0.00% adversarial accuracy if
early stopping is not applied, while the standard PGD-10 AT and our modified PGD-10
AT schemes achieve 50.48 ± 0.20% and 50.64 ± 0.23% adversarial accuracy respectively.
Thereby similar robustness as the original PGD AT can still be achieved without training
on pertubations from the interior of the ℓ∞-ball. We conclude that diversity of adversarial
examples is not crucial here. What makes the difference is rather having an iterative
instead of a single-step procedure to find a corner of the ℓ∞-ball that sufficiently maximizes
the loss.

New explanation: a random step improves the linear approximation quality.
Using a random step in FGSM is guaranteed to decrease the expected magnitude of the
perturbation. This simple observation is formalized in the following lemma.

Lemma 1. (Effect of the random step) Let η ∼ U([−ε, ε]d) be a random starting
point, and α ∈ [0, 2ε] be the step size of FGSM-RS defined in Eq. (2.3), then

Eη [∥δF GSM−RS(η)∥2] ≤
√
Eη

[
∥δF GSM−RS(η)∥22

]
=
√
d

√
− 1

6εα
3 + 1

2α
2 + 1

3ε
2. (2.4)

3For simplicity, we ignore the projection of x + δ onto [0, 1]d in this section.

14

2.4 The role and limitations of using random initialization in FGSM training

The proof is deferred to Appendix 2.8.1. We first remark that the upper bound is in
the range [1/√

3
√
dε,
√
dε], and therefore always less or equal than ∥δF GSM∥2 =

√
dε. We

visualize our bound in Fig. 2.2 where the expectation is approximated by Monte-Carlo
sampling over 1,000 samples of η, and note that the bound becomes increasingly tight for
high-dimensional inputs.

The key observation here is that among all possible perturbations of ℓ∞-norm ε, perturba-
tions with a smaller ℓ2-norm benefit from a better linear approximation. This statement
follows from the second-order Taylor expansion for twice differentiable functions:

f(x+ δ) ≈ f(x) + ⟨∇xf(x), δ⟩+
〈
δ,∇2

xxf(x)δ
〉
,

i.e. a smaller value of ∥δ∥22 implies a smaller linear approximation error |f(x+ δ)− f(x)−
⟨∇xf(x), δ⟩ |. Moreover, the same property still holds empirically for the non-differentiable
ReLU networks (see Appendix 2.10.1). We conclude that by reducing in expectation the
length of the perturbation ∥δ∥2, the FGSM-RS approach of Wong et al. (2020) takes
advantage of a better linear approximation. This is supported by the fact that FGSM-
RS AT also leads to catastrophic overfitting if the step size α is chosen to be too large
(see Fig. 3 in Wong et al. (2020)), thus providing no benefits over FGSM AT even when
combined with early stopping. We argue this is the main improvement over the standard
FGSM AT.

Successful FGSM AT does not require randomness. If having perturbation with
a too large ℓ2-norm is indeed the key factor in catastrophic overfitting, we can expect that
just reducing the step size of the standard FGSM should work equally well as FGSM-RS.
For ε = 8/255 on CIFAR-10, Wong et al. (2020) recommend to use FGSM-RS with step size
α = 1.25ε which induces a perturbation of expected ℓ2-norm ∥δF GSM−RS∥2 ≈ 7/255

√
d.

This corresponds to using standard FGSM with a step size α ≈ 7/255 instead of α = ε =
8/255 (see the dashed line in Fig. 2.2). We report the results in Table 2.1 and observe that
simply reducing the step size of FGSM (without any randomness) leads to the same level
of robustness. We show further in Fig. 2.3 that when used with a smaller step size, the

0.0 0.4 0.8 1.2 1.6 2.0
Step size

0.4 d

0.5 d

0.6 d

0.7 d

0.8 d

0.9 d

1.0 d

E
[||

FG
SM

RS
|| 2

]

Our analytical upper bound
Empirical estimation, d = 15
Empirical estimation, d = 3
Empirical estimation, d = 1

Figure 2.2: Visualization of our upper bound
on Eη[∥δF GSM−RS∥2]. The dashed line cor-
responds to the step size α = 1.25ε recom-
mended in Wong et al. (2020).

2 4 6 8 10 12 14 16
 used for evaluation

0

20

40

60

80

Ad
ve

rs
ar

ia
l a

cc
ur

ac
y

FGSM-RS AT, train = 8
FGSM AT, train = 5
FGSM AT, train = 6
FGSM AT, train = 7
FGSM AT, train = 8

Figure 2.3: Robustness of FGSM-trained
ResNet-18 on CIFAR-10 with different εtrain

used for training compared to FGSM-RS AT
with εtrain = 8/255.

15

Chapter 2. Understanding and Improving Fast Adversarial Training

Table 2.1: Robustness of FGSM AT with a reduced step size (α = 7/255) compared to the FGSM-
RS AT proposed in Wong et al. (2020) (α = 10/255) for ε = 8/255 on CIFAR-10 for ResNet-18
trained with early stopping. The results are averaged over 5 random seeds used for training.

Accuracy
Model FGSM AT FGSM α = 7/255 AT FGSM-RS AT

PGD-50-10 36.35± 1.74% 45.35± 0.48% 45.60± 0.19%

robustness of standard FGSM training even without early stopping can generalize to much
higher ε. This contrasts with the previous literature (Madry et al., 2018; Tramèr et al.,
2018). We conclude from these experiments that a more direct way to improve FGSM AT
and to prevent it from catastrophic overfitting is to simply reduce the step size. Note that
this still leads to suboptimal robustness compared to PGD AT (see Fig. 2.1) for ε larger
than the one used during training, since in this case adversarial examples can only be
generated inside the smaller ℓ∞-ball. This motivates us to take a closer look on how and
why catastrophic overfitting occurs to be able to prevent it without reducing the FGSM
step size.

2.5 Understanding catastrophic overfitting via gradient align-
ment

First, we establish a connection between catastrophic overfitting and local linearity of the
model. Then we show that catastrophic overfitting also occurs in a single-layer convolu-
tional network, for which we analyze local linearity both empirically and theoretically.

When can the inner maximization problem be accurately solved with FGSM?
Recall that the FGSM attack (Goodfellow et al., 2015) is obtained as a closed-form solution
of the following optimization problem: δF GSM = arg max∥δ∥∞≤ε ⟨∇xℓ(x, y; θ)), δ⟩. Thus,
the FGSM attack is guaranteed to find the optimal adversarial perturbation if ∇xℓ(x, y; θ)
is constant inside the ℓ∞-ball around the input x, i.e. the loss function is locally linear.
This motivates us to study the evolution of local linearity during FGSM training and
its connection to catastrophic overfitting. With this aim, we define the following local
linearity metric of the loss function ℓ:

E(x,y)∼D, η∼U([−ε,ε]d) [cos (∇xℓ(x, y; θ),∇xℓ(x+ η, y; θ))] , (2.5)

which we refer to as gradient alignment. This quantity is easily interpretable: it is equal
to one for models linear inside the ℓ∞-ball of radius ε, and it is approximately zero when
the input gradients are nearly orthogonal to each other. Previous works also considered
local linearity of deep networks (Moosavi-Dezfooli et al., 2019b; Qin et al., 2019), however
rather with the goal of introducing regularization methods that improve robustness as
an alternative to adversarial training. More precisely, Moosavi-Dezfooli et al. (2019b)
propose to use a curvature regularization method that uses the FGSM point, and Qin
et al. (2019) find the input point where local linearity is maximally violated using an

16

2.5 Understanding catastrophic overfitting via gradient alignment

0 5 10 15 20 25 30
Epoch

0%

20%

40%

60%

80%

Ad
ve

rs
ar

ia
l a

cc
ur

ac
y

Standard: FGSM acc.
Standard: PGD acc.
FGSM AT: FGSM acc.
FGSM AT: PGD acc.
PGD AT: FGSM acc.
PGD AT: PGD acc.

0 5 10 15 20 25 30
Epoch

0

5

10

15

20

25

30

35

40

Ad
ve

rs
ar

ia
l l

os
s

Standard: FGSM loss
Standard: PGD loss
FGSM AT: FGSM loss
FGSM AT: PGD loss
PGD AT: FGSM loss
PGD AT: PGD loss

0 5 10 15 20 25 30
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Co
sin

e

Standard: cos(L(x), L(x +))
Standard: cos(FGSM, PGD)
FGSM AT: cos(L(x), L(x +))
FGSM AT: cos(FGSM, PGD)
PGD AT: cos(L(x), L(x +))
PGD AT: cos(FGSM, PGD)

Figure 2.4: Visualization of the training process of standardly trained, FGSM trained, and PGD-
10 trained ResNet-18 on CIFAR-10 with ε = 8/255. All the statistics are calculated on the test set.
Catastrophic overfitting for the FGSM AT model occurs around epoch 23 and is characterized by
a sudden drop in the PGD accuracy, a gap between the FGSM and PGD losses, and a dramatic
decrease of local linearity.

iterative method, leading to comparable computational cost as PGD AT. In contrast, we
analyze here gradient alignment to improve FGSM training without seeking an alternative
to it.

Catastrophic overfitting in deep networks. To understand the link between catas-
trophic overfitting and local linearity, we plot in Fig. 2.4 the adversarial accuracies and
the loss values obtained by FGSM and PGD AT on CIFAR-10 using ResNet-18, together
with the gradient alignment (see Eq. 2.5) and the cosine between FGSM and PGD pertur-
bations. We compute these statistics on the test set. Catastrophic overfitting occurs for
FGSM AT around epoch 23, and is characterized by the following intertwined events: (a)
There is a sudden drop in the PGD accuracy from 40.1% to 0.0%, along with an abrupt
jump of the FGSM accuracy from 43.5% to 86.7%. In contrast, before the catastrophic
overfitting, the ratio between the average PGD and FGSM losses never exceeded 1.05.
This suggests that FGSM cannot anymore accurately solve the inner maximization prob-
lem. (b) Concurrently, after catastrophic overfitting, the gradient alignment of the FGSM
model experiences a phase transition and drops significantly from 0.95 to 0.05 within an
epoch of training, i.e. the input gradients become nearly orthogonal inside the ℓ∞-ball.
We observe the same drop also for cos(δF GSM , δP GD) which means that the FGSM and
PGD directions are not aligned anymore (as also observed in Tramèr et al. (2018)). This
echoes the observation made in Nakkiran et al. (2019) that SGD on the standard loss of
a neural network learns models of increasing complexity. We observe qualitatively the
same phenomenon for FGSM AT, where the complexity is captured by the degree of local
non-linearity. The connection between local linearity and catastrophic overfitting sparks
interest for a further analysis in a simpler setting.

Catastrophic overfitting in a single-layer CNN. We show that catastrophic over-
fitting is not inherent to deep and overparametrized networks, and can be observed in a
very simple setup. For this we train a single-layer CNN with four filters on CIFAR-10
using FGSM AT with ε = 10/255 (see Sec. 2.9 for details). We observe that catastrophic
overfitting occurs in this simple model as well, and its pattern is the same as in ResNet:
a simultaneous drop of the PGD accuracy and gradient alignment (see Appendix 2.10.2).
The advantage of considering a simple model is that we can inspect the learned filters

17

Chapter 2. Understanding and Improving Fast Adversarial Training

Epoch 5 (before CO) Epoch 6 (after CO)

0.16

0.08

0.00

0.08

0.16

0.2

0.1

0.0

0.1

0.2

Figure 2.5: Filter w4 (green chan-
nel) in a single-layer CNN before
and after catastrophic overfitting
(CO).

0 5 10 15 20 25 30
Epoch

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

No
rm

 o
f t

he
 fi

lte
rs

Filter 1
Filter 2
Filter 3
Filter 4

0 5 10 15 20 25 30
Epoch

0

5

10

15

20

No
rm

 o
f t

he
 o

ut
co

m
in

g
we

ig
ht

s

Filter 1
Filter 2
Filter 3
Filter 4

Figure 2.6: Evolution of the weight norms in a
single-layer CNN before and after catastrophic overfitting
(dashed line).

and understand what causes the network to become highly non-linear locally. We observe
that after catastrophic overfitting the network has learned in filter w4 a variant of the
Laplace filter (see Fig. 2.5), an edge-detector filter which is well-known for amplifying
high-frequency noise such as uniform noise (Gonzales and Woods, 2002). Until the end of
training, filter w4 preserves its direction (see Appendix 2.10.2 for detailed visualizations),
but grows significantly in its magnitude together with its outcoming weights, in contrast
to the rest of the filters as shown in Fig. 2.5. Interestingly, if we set w4 to zero, the network
largely recovers local linearity: the gradient alignment increases from 0.08 to 0.71, recov-
ering its value before catastrophic overfitting. Thus, in this extreme case, even a single
convolutional filter can cause catastrophic overfitting. Next we analyze formally gradient
alignment in a single-layer CNN and elaborate on the connection to the noise sensitivity.

Analysis of gradient alignment in a single-layer CNN. We analyze here a single-
layer CNN with ReLU-activation. Let Z ∈ Rp×k be the matrix of k non-overlapping image
patches extracted from the image x = (Z) ∈ Rd such that zj = zj(x) ∈ Rp. The model
prediction f is parametrized by (W, b, U, c) ∈ Rp×m × Rm × Rm×k × R, and its prediction
and the input gradient are given as

f(x) =
m∑

i=1

k∑
j=1

uij max{⟨wi, zj⟩+ bi, 0}+ c, ∇xf(x) =

 m∑
i=1

k∑
j=1

uij1⟨wi,zj⟩+bi≥0wie
T
j

 .

We observe that catastrophic overfitting only happens at later stages of training. At the
beginnning of the training, the gradient alignment is very high (see Fig. 2.4 and Fig. 2.11),
and FGSM solves the inner maximization problem accurately enough. Thus, an important
aspect of FGSM training is that the model starts training from highly aligned gradient.
This motivates us to inspect closely gradient alignment at initialization.

Lemma 2. (Gradient alignment at initialization) Let z ∼ U([0, 1]p) be an image
patch for p ≥ 2, η ∼ U([−ε, ε]d) a point inside the ℓ∞-ball, the parameters of a single-layer
CNN initialized i.i.d. as w ∼ N (0, σ2

wIp) for every column of W , u ∼ N (0, σ2
uIm) for

every column of U , b := 0, then the gradient alignment is lower bounded by

lim
k,m→∞

cos (∇xℓ(x, y),∇xℓ(x+ η, y)) ≥ max
{

1−
√

2Ew,z

[
e− 1

ε2 ⟨w/∥w∥2,z⟩2
]1/2

, 0.5
}
.

18

2.5 Understanding catastrophic overfitting via gradient alignment
x x ∗ w1 + b1 x ∗ w4 + b4

0.4

0.2

0.0

0.2

0.4

0.030

0.015

0.000

0.015

0.030

x + η (x + η) ∗ w1 + b1 (x + η) ∗ w4 + b4

0.4

0.2

0.0

0.2

0.4

0.16

0.08

0.00

0.08

0.16

Figure 2.7: Feature maps of filters w1
and w4 in a single-layer CNN. A small
noise η is significantly amplified by the
Laplace filter w4 in contrast to a regular
filter w1.

The lemma implies that for randomly initial-
ized CNNs with a large enough number of im-
age patches k and filters m, gradient alignment
cannot be smaller than 0.5. This is in contrast
to the value of 0.12 that we observe after catas-
trophic overfitting when the weights are no longer
i.i.d. We note that the lower bound of 0.5 is quite
pessimistic since it holds for an arbitrarily large ε.
The lower bound is close to 1 when ε is small com-
pared to E ∥z∥2 which is typical in adversarial ro-
bustness (see Appendix 2.8.2 for the visualization
of the lower bound). High gradient alignment at
initialization also holds empirically for deep net-
works as well, e.g. for ResNet-18 (see Fig. 2.4), starting from the value of 0.85 in contrast
to 0.04 after catastrophic overfitting. Thus, it appears to be a general phenomenon that
the standard initialization scheme of neural network weights (He et al., 2015) ensures the
initial success of FGSM training.

In contrast, after some point during training, the network can learn parameters which
lead to a significant reduction of gradient alignment. For simplicity, let us consider a
single-filter CNN where the gradient alignment for a filter w and bias b at points x and
x+ η has a simple expression:

cos (∇xℓ(x, y),∇xℓ(x+ η, y)) =
∑k

i=1 u
2
i1⟨w,zi⟩+b≥01⟨w,zi+ηi⟩+b≥0√∑k

i=1 u
2
i1⟨w,zi⟩+b≥0

∑k
i=1 u

2
i1⟨w,zi+ηi⟩+b≥0

. (2.6)

Considering a single-filter CNN is also motivated by the fact that in the single-layer CNN
introduced earlier, the norms of w4 and its outcoming weights are much higher than for
the rest of the filters (see Fig. 2.6), and thus the contribution of w4 to the predictions
and gradients of the network is the most significant. We observe that when an image
x is convolved with the Laplace filter w4, even a uniformly random noise η of small
magnitude is able to significantly affect the output of (x + η) ∗ w4 (see Fig. 2.7). As a
consequence, the ReLU activations of the network change their signs which directly affects
the gradient alignment in Eq. (2.6). Namely, x∗w4+b4 has mostly negative values, and thus
many values {1⟨w4,zi⟩+b4}ki=1 are equal to 0. On the other hand, nearly half of the values
{1⟨w4,zi+ηi⟩+b4}ki=1 become 1, which significantly increases the denominator of Eq. (2.6),
and thus makes the cosine close to 0. At the same time, the output of a regular filter
w1 shown in Fig. 2.7 is only slightly affected by the random noise η. For deep networks,
however, we could not identify particular filters responsible for catastrophic overfitting,
thus we consider next a more general solution.

19

Chapter 2. Understanding and Improving Fast Adversarial Training

2.6 Increasing gradient alignment improves fast adversarial
training

Based on the importance of gradient alignment for successful FGSM training, we propose
a regularizer, GradAlign, that aims at increasing gradient alignment and preventing catas-
trophic overfitting. The core idea of GradAlign is to maximize the gradient alignment (as
defined in Eq. (2.5)) between the gradients at point x and at a randomly perturbed point
x+ η inside the ℓ∞-ball around x:

Ω(x, y, θ) def= E(x,y)∼D, η∼U([−ε,ε]d) [1− cos (∇xℓ(x, y; θ),∇xℓ(x+ η, y; θ))] . (2.7)

Crucially, GradAlign uses gradients at points x and x + η which does not require an
expensive iterative procedure unlike, e.g., the LLR method of Qin et al. (2019). Note
that the regularizer depends only on the gradient direction and it is invariant to the
gradient norm which contrasts it to the gradient penalties (Gu and Rigazio, 2015b; Hein
and Andriushchenko, 2017b; Ross and Doshi-Velez, 2018; Simon-Gabriel et al., 2019) or
CURE (Moosavi-Dezfooli et al., 2019b) (see the comparison in Appendix 2.11.5).

Experimental setup. We compare the following methods: standard FGSM AT, FGSM-
RS AT with α = 1.25ε (Wong et al., 2020), FGSM AT + GradAlign, AT for Free with
m = 8 (Shafahi et al., 2019), PGD-2 AT with 2-step PGD using α = ε/2, and PGD-10
AT with 10-step PGD using α = 2ε/10. We train these methods using PreAct ResNet-
18 (He et al., 2016b) with ℓ∞-radii ε ∈ {1/255, . . . , 16/255} on CIFAR-10 for 30 epochs
and ε ∈ {1/255, . . . , 12/255} on SVHN for 15 epochs. The only exception is AT for Free
(Shafahi et al., 2019) which we train for 96 epochs on CIFAR-10, and 45 epochs on SVHN
which was necessary to get comparable results to the other methods. Unlike Qin et al.
(2019) and Zhang et al. (2019a), with the training scheme of Wong et al. (2020) and
α = ε/2 we could successfully train a PGD-2 model with ε = 8/255 on CIFAR-10 with
robustness better than that of their methods that use the same number of PGD steps (see
Appendix 2.11.3). This also echoes the recent finding of Rice et al. (2020) that properly
tuned multi-step PGD AT outperforms more recently published methods. As before, we
evaluate robustness using PGD-50-10 with 50 iterations and 10 restarts using step size
α = ε/4 following Wong et al. (2020) for the same ε that was used for training. We train
each model with 5 random seeds since the final robustness can have a large variance for
high ε. Also, we remark that training with GradAlign leads on average to a 3× slowdown
on an NVIDA V100 GPU compared to FGSM training which is due to the use of double
backpropagation (see Etmann (2019) for a detailed analysis). We think that improving
the runtime of GradAlign is possible, but we postpone it to future work. Additional
implementation details are provided in Appendix 2.9. The code of our experiments is
available at https://github.com/tml-epfl/understanding-fast-adv-training.

Results on CIFAR-10 and SVHN. We provide the main comparison in Fig. 2.8 and
provide detailed numbers for specific values of ε in Appendix 2.11.3 which also includes an
additional evaluation of our models with AutoAttack (Croce and Hein, 2020b). First, we

20

https://github.com/tml-epfl/understanding-fast-adv-training

2.6 Increasing gradient alignment improves fast adversarial training

notice that all the methods perform almost equally well for small enough ε, i.e. ε ≤ 6/255

on CIFAR-10 and ε ≤ 4/255 on SVHN. However, the performance for larger ε varies a
lot depending on the method due to catastrophic overfitting. Importantly, GradAlign
succesfully prevents catastrophic overfitting in FGSM AT, thus allowing to successfully
apply FGSM training also for larger ℓ∞-perturbations and reduce the gap to PGD-10
training. In Appendix 2.11.4, we additionally show that FGSM + GradAlign does not
suffer from catastrophic overfitting even for ε ∈ {24/255, 32/255}. At the same time, not only
FGSM AT and FGSM-RS AT experience catastrophic overfitting, but also the recently
proposed AT for Free and PGD-2, although at higher ε values than FGSM AT. We note
that GradAlign is not only applicable to FGSM AT, but also to other methods that can
also suffer from catastrophic overfitting. In particular, combining PGD-2 with GradAlign
prevents catastrophic overfitting and leads to better robustness for ε = 16/255 on CIFAR-
10 (see Appendix 2.11.3). Although performing early stopping can lead to non-trivial
robustness, standard accuracy is often significantly sacrificed which limits the usefulness
of early stopping as we show in Appendix 2.11.2. This is in contrast to training with
GradAlign which leads to the same standard accuracy as PGD-10 AT.

Results on ImageNet. We also performed similar experiments on ImageNet in Ap-
pendix 2.11.3 to illustrate that GradAlign can be scaled to large-scale problems despite the
slowdown. However, we observed that even for standard FGSM training using the training
schedule of Wong et al. (2020), catastrophic overfitting does not occur for ε ∈ {2/255, 4/255}
considered in Shafahi et al. (2019); Wong et al. (2020), and thus there is no need to use
GradAlign as its main role is to prevent catastrophic overfitting. We observe that for these
ε values, the gradient alignment evolves similarly to that of PGD AT from the CIFAR-
10 experiments shown in Fig. 2.4, i.e. it decreases gradually over epochs but without a
sharp drop that would indicate catastrophic overfitting. For ε = 6/255, we observe that
the gradient alignment and PGD accuracy for FGSM-RS drop very early in training (af-
ter 3 epochs), but not for FGSM or FGSM + GradAlign training. This contradicts our
observations on CIFAR-10 and SVHN where we observed that FGSM-RS usually helps to
postpone catastrophic overfitting to higher ε. However, it is computationally demanding
to replicate the results on ImageNet over different random seeds as we did for CIFAR-10
and SVHN. Thus, we leave a more detailed investigation of catastrophic overfitting on
ImageNet for future work.

Robust vs. catastrophic overfitting. Recently, Rice et al. (2020) brought up the
importance of early stopping in adversarial training to mitigate the robust overfitting phe-
nomenon that is characterized by a decreasing trend of test adversarial accuracy over
training iterations. It is thus a natural question to ask whether robust and catastrophic
overfitting are related, and whether GradAlign can be beneficial to mitigate robust over-
fitting. We observed that training FGSM + GradAlign for more than 30 epochs also leads
to slightly worse robustness on the test set (see Appendix 2.11.4), thus suggesting that
catastrophic and robust overfitting are two distinct phenomena that have to be addressed
separately. As a sidenote, we also observe that FGSM training combined with GradAlign
does not lead to catastrophic overfitting even when trained up to 200 epochs.

21

Chapter 2. Understanding and Improving Fast Adversarial Training

2.7 Conclusions and outlook

We observed that catastrophic overfitting is a fundamental problem not only for standard
FGSM training, but for computationally efficient adversarial training in general. In par-
ticular, many recently proposed schemes such as FGSM AT enhanced by a random step
or AT for free are also prone to catastrophic overfitting, and simply using early stopping
leads to suboptimal models. Motivated by this, we explored the questions of when and
why FGSM adversarial training works, and how to improve it by increasing the gradi-
ent alignment, and thus the quality of the solution of the inner maximization problem.
Our proposed regularizer, GradAlign, prevents catastrophic overfitting and improves the
robustness compared to other fast adversarial training methods reducing the gap to multi-
step PGD training. However, GradAlign leads to an increased runtime due to the use of
double backpropagation. We hope that the same effect of stabilizing the gradients under
random noise can be achieved in future work with other regularization methods that do
not rely on double backpropagation.

22

2.7 Conclusions and outlook

2 4 6 8 10 12 14 16
 used for training and evaluation

0%

20%

40%

60%

80%

100%
St

an
da

rd
 a

nd
 P

GD
-5

0-
10

 a
cc

ur
ac

y Dataset: CIFAR-10

FGSM AT
FGSM-RS AT
FGSM AT + GradAlign
AT for Free
PGD-2 AT
PGD-10 AT

2 4 6 8 10 12
 used for training and evaluation

0%

20%

40%

60%

80%

100%

St
an

da
rd

 a
nd

 P
GD

-5
0-

10
 a

cc
ur

ac
y Dataset: SVHN

FGSM AT
FGSM-RS AT
FGSM AT + GradAlign
AT for Free
PGD-2 AT
PGD-10 AT

Figure 2.8: Accuracy (dashed line) and robustness (solid line) of different adversarial training
(AT) methods on CIFAR-10 and SVHN with ResNet-18 trained and evaluated with different l∞-
radii. The results are obtained without early stopping, averaged over 5 random seeds used for
training and reported with the standard deviation.

23

Chapter 2. Understanding and Improving Fast Adversarial Training

Appendix

2.8 Deferred proofs

In this section, we show the proofs omitted from Sec. 2.4 and Sec. 2.5.

2.8.1 Proof of Lemma 1

We state again Lemma 1 from Sec. 2.4 and present the proof.

Lemma 1. (Effect of the random step) Let η ∼ U([−ε, ε]d) be a random starting
point, and α ∈ [0, 2ε] be the step size of FGSM-RS defined in Eq. (2.3), then

Eη [∥δF GSM−RS(η)∥2] ≤
√
Eη

[
∥δF GSM−RS(η)∥22

]
=
√
d

√
− 1

6εα
3 + 1

2α
2 + 1

3ε
2.

Proof. First, note that due to the Jensen’s inequality, we can have a convenient upper
bound which is easier to work with:

E [∥δF GSM−RS(η)∥2] ≤
√
E
[
∥δF GSM−RS(η)∥22

]
. (2.8)

Therefore, we can focus on E
[
∥δF GSM−RS∥22

]
which can be computed analytically. Let us

denote by ∇ def= ∇xℓ(x+ η, y; θ) ∈ Rd, we then obtain:

Eη

[
∥δF GSM−RS∥22

]
= Eη

[∥∥∥Π[−ε,ε] [η + α sign(∇)]
∥∥∥2

2

]
=

d∑
i=1

Eηi

[
Π[−ε,ε] [ηi + α sign(∇i)]2

]
= dEηi

[
min{ε, |ηi + α sign(∇i)|}2

]
= dEηi

[
min{ε2, (ηi + α sign(∇i))2}

]
= dEri

[
Eηi

[
min{ε2, (ηi + α sign(∇i))2} | sign(∇i) = ri

]]
,

where in the last step we use the law of total expectation by noting that sign(∇i) is also
a random variable since it depends on ηi.

We first consider the case when sign(∇i) = 1, then the inner conditional expectation is
equal to: ∫ ε

−ε
min{ε2, (ηi + α)2} 1

2εdηi = 1
2ε

∫ ε+α

−ε+α
min{ε2, x2}dx

= 1
2ε

(∫ ε+α

ε
ε2dx+

∫ ε

−ε+α
x2dx

)
= − 1

6εα
3 + 1

2α
2 + 1

3ε
2.

24

2.8 Deferred proofs

The case when sign(∇i) = −1 leads to the same expression:∫ ε

−ε
min{ε2, (ηi − α)2} 1

2εdηi = 1
2ε

∫ ε−α

−ε−α
min{ε2, x2}dx = − 1

6εα
3 + 1

2α
2 + 1

3ε
2.

Combining these two cases together with Eq. (2.8), we have that:

Eη [∥δF GSM−RS(η)∥2] ≤
√
E
[
∥δF GSM−RS(η)∥22

]
=
√
d

√
− 1

6εα
3 + 1

2α
2 + 1

3ε
2.

2.8.2 Proof and discussion of Lemma 2

We state again Lemma 2 from Sec. 2.5 and present the proof.

Lemma 2. (Gradient alignment at initialization) Let z ∼ U([0, 1]p) be an image
patch for p ≥ 2, η ∼ U([−ε, ε]d) a point inside the ℓ∞-ball, the parameters of a single-layer
CNN initialized i.i.d. as w ∼ N (0, σ2

wIp) for every column of W , u ∼ N (0, σ2
uIm) for

every column of U , b := 0, then the gradient alignment is lower bounded by

lim
k,m→∞

cos (∇xℓ(x, y),∇xℓ(x+ η, y)) ≥ max
{

1−
√

2Ew,z

[
e− 1

ε2 ⟨w/∥w∥2,z⟩2
]1/2

, 0.5
}
.

Proof. For k and m large enough, the law of large number ensures that an empirical mean
of i.i.d. random variables can be approximated by its expectation with respect to random
variables z, η, w, u. This leads to

lim
k,m→∞

cos (∇xℓ(x, y), ∇xℓ(x + η, y))

= lim
k,m→∞

m∑
r=1

m∑
l=1

k∑
i=1

⟨wr, wl⟩ uriuli1⟨wr,zi⟩≥01⟨wl,zi+ηi⟩≥0√
m∑

r=1

m∑
l=1

k∑
i=1

⟨wr, wl⟩ uriuli1⟨wr,zi⟩≥01⟨wl,zi⟩≥0

√
m∑

r=1

m∑
l=1

k∑
i=1

⟨wr, wl⟩ uriuli1⟨wr,zi+ηi⟩≥01⟨wl,zi+ηi⟩≥0

= lim
k,m→∞

1
km

m∑
r=1

k∑
i=1

∥wr∥2
2 u2

ri1⟨wr,zi⟩≥01⟨wr,zi+ηi⟩≥0√
1

km

m∑
r=1

k∑
i=1

∥wr∥2
2 u2

ri1⟨wr,zi⟩≥01⟨wr,zi⟩≥0

√
1

km

m∑
r=1

k∑
i=1

∥wr∥2
2 u2

ri1⟨wr,zi+ηi⟩≥01⟨wr,zi+ηi⟩≥0

=
Ew,u,η,z

[
∥w∥2

2 u2
1⟨w,z⟩≥01⟨w,z+η⟩≥0

]√
Ew,u,z

[
∥w∥2

2 u21⟨w,z⟩≥0
]√

Ew,u,η,z

[
∥w∥2

2 u21⟨w,z+η⟩≥0
]

=
Ew,z,η

[
∥w∥2

2 1⟨w,z⟩≥01⟨w,z+η⟩≥0
]√

Ew,z

[
∥w∥2

2 1⟨w,z⟩≥0
]√

Ew,z,η

[
∥w∥2

2 1⟨w,z+η⟩≥0
] . (2.9)

We directly compute for the denominator:

Ew,z[∥w∥22 1⟨w,z⟩≥0] = Ew,η,z[∥w∥22 1⟨w,z+η⟩≥0] = 0.5pσ2
w.

25

Chapter 2. Understanding and Improving Fast Adversarial Training

For the numerator, by bounding Pη [⟨w, η⟩ ≥ ⟨w, z⟩] ≤ e
− ⟨z,w⟩2

2ε2∥w∥2
2 via the Hoeffding’s in-

equality, we obtain

26

2.8 Deferred proofs

Eu,w,z,η

[
∥w∥22 1⟨w,z⟩≥01⟨w,z+η⟩≥0

]
=Ew,z,η

[
∥w∥22 1⟨w,z⟩≥01⟨w,z+η⟩≥0

]
=Ew,z

[
∥w∥22 1⟨w,z⟩≥0Pη (⟨w, z + η⟩ ≥ 0)

]
=Ew,z

[
∥w∥22 1⟨w,z⟩≥0Pη (⟨w, η⟩ ≥ − ⟨w, z⟩)

]
=Ew,z

[
∥w∥22 1⟨w,z⟩≥0Pη (⟨w, η⟩ ≤ ⟨w, z⟩)

]
=Ew,z

[
∥w∥22 1⟨w,z⟩≥0 (1− Pη (⟨w, η⟩ ≥ ⟨w, z⟩))

]
≥Ew,z

∥w∥22 1⟨w,z⟩≥0

1− e
− ⟨w,z⟩2

2ε2∥w∥2
2

=Ew,z

[
∥w∥22 1⟨w,z⟩≥0

]
− Ew,z

∥w∥22 1⟨w,z⟩≥0 e
− ⟨w,z⟩2

2ε2∥w∥2
2

=0.5pσ2

w − 0.5Ew,z

∥w∥22 e− ⟨w,z⟩2

2ε2∥w∥2
2

≥0.5pσ2

w − 0.5Ew

[
∥w∥42

]1/2
Ew,z

e− ⟨w,z⟩2

ε2∥w∥2
2

1/2

=0.5pσ2
w − 0.5σ2

w

√
p2 + 2pEw,z

e− ⟨w,z⟩2

ε2∥w∥2
2

1/2

,

where the last inequality is obtained via the Cauchy-Schwarz inequality. On the other
hand, we have:

Eu,w,z,η

[
∥w∥22 1⟨w,z⟩≥01⟨w,z+η⟩≥0

]
=Ew,z

[
∥w∥22 1⟨w,z⟩≥0Pη (⟨w, η⟩ ≤ ⟨w, z⟩)

]
≥Ew,z

[
∥w∥22 1⟨w,z⟩≥00.5

]
= 0.25pσ2

w.

Now we combine both lower bounds together to establish a lower bound on Eq. (2.9):

Ew,z,η

[
∥w∥22 1⟨w,z⟩≥01⟨w,z+η⟩≥0

]
√
Ew,z

[
∥w∥22 1⟨w,z⟩≥0

]√
Ew,z,η

[
∥w∥22 1⟨w,z+η⟩≥0

]

≥

max

0.5pσ2
w − 0.5σ2

w

√
p2 + 2pEw,z

e− ⟨w,z⟩2

ε2∥w∥2
2

1/2

, 0.25pσ2
w

0.5pσ2

w

= max

1−
√

1 + 2
p
Ew,z

[
e− ⟨w/∥w∥2,z⟩2

ε2

]1/2

, 0.5

≥max

{
1−
√

2Ew,z

[
e− 1

ε2 ⟨w/∥w∥2,z⟩2
]1/2

, 0.5
}
, (2.10)

27

Chapter 2. Understanding and Improving Fast Adversarial Training

0.00 0.02 0.04 0.06 0.08 0.10

0.0

0.2

0.4

0.6

0.8

1.0

Gr
ad

ie
nt

 a
lig

nm
en

t
cos((x), (x +)) (k=100 patches, m=4 filters)
lim

k, m
 cos((x), (x +))

Our lower bound after Hoeffding's inequality
Our final lower bound

Figure 2.9: Visualization of the key quantities involved in Lemma 2.

where in the last step we used that p ≥ 2.

The main purpose of obtaining the lower bound in Lemma 2 was to get an expression that
can give us an insight into the key quantities which gradient alignment at initialization
depends on. Considering the limiting case k,m → ∞ was necessary to obtain a ratio of
expectations that allowed us to derive a simpler expression. Finally, we lower bounded the
gradient alignment from Eq. (2.9) using the Hoeffding’s and Cauchy-Schwarz inequalities
and used p ≥ 2 to obtain a dimension-independent constant in front of the expectation in
Eq. (2.10). Now we would like to provide a better understanding about the key quantities
involved in the lemma and to assess the tightness of the derived lower bound. For this
purpose, in Fig. 2.9 we plot:

• cos (∇xℓ(x, y),∇xℓ(x+ η, y)) for k = 100 patches and m = 4 filters (which resembles
the setting of the 4-filter CNN on CIFAR-10). We note that it is a random variable
since it is a function of random variables x, η,W,U .

• limk,m→∞ cos (∇xℓ(x, y),∇xℓ(x+ η, y)) evaluated via Eq. (2.9).

• Our first lower bound max
{

1− 1
pσ2

w
Ew,z

[
∥w∥22 e

− 1
2ε2 ⟨w/∥w∥2,z⟩2

]
, 0.5

}
obtained via

Hoeffding’s inequality.

• Our final lower bound max
{

1−
√

2Ew,z

[
e− 1

ε2 ⟨w/∥w∥2,z⟩2
]1/2

, 0.5
}

.

For the last three quantities we approximate the expectations by Monte-Carlo sampling
by using 1,000 samples. For all the quantities we use patches of size p = 3 × 3 × 3 = 27
as in our CIFAR-10 experiments. We plot gradient alignment values for ε ∈ [0, 0.1] since
we are interested in small ℓ∞-perturbations such as, e.g., ε = 8/255 ≈ 0.03 which is a
typical value used for CIFAR-10 (Madry et al., 2018). First, we can observe that all
the four quantities have very high values in [0.7, 1.0] for ε ∈ [0, 0.1] which is in contrast
to the gradient alignment value of 0.12 that we observe after catastrophic overfitting for

28

2.9 Experimental details

ε = 10/255 ≈ 0.04. Next, we observe that cos (∇xℓ(x, y),∇xℓ(x+ η, y)) has some noticeable
variance for the chosen parameters k = 100 patches and m = 4 filters. However, this
variance is significantly reduced when we increase the parameters k and m, especially
when considering the limiting case k,m→∞. Finally, we observe that both lower bounds
on limk,m→∞ cos (∇xℓ(x, y),∇xℓ(x+ η, y)) that we derived are empirically tight enough
to properly capture the behaviour of gradient alignment for small ε. However, we choose
to report the last one in the lemma since it is slightly more concise than the one obtained
via Hoeffding’s inequality.

2.9 Experimental details

We list detailed evaluation and training details below.

Evaluation. Throughout the paper, we use PGD-50-10 for evaluation of adversarial
accuracy which stands for the PGD attack with 50 iterations and 10 random restarts
following Wong et al. (2020). We use the step size α = ε/4. The choice of this attack is
motivated by the fact that in both public benchmarks of Madry et al. (2018) on MNIST
and CIFAR-10, the adversarial accuracy of PGD-100-50 and PGD-20-10 respectively is
only 2% away from the best entries.

Although we train our models using half precision (Micikevicius et al., 2018), we always
perform robustness evaluation using single precision since evaluation with half precision
can sometimes overestimate the robustness of the model due to limited numerical precision
in the calculation of the gradients.

We perform evaluation of standard accuracy using full test sets, but we evaluate adversarial
accuracy using 1,000 random points on each dataset.

Training details for ResNet-18. We use the implementation code of Wong et al.
(2020) with the only difference that we do not use image normalization and gradient
clipping on CIFAR-10 and SVHN since we found that they have no significant influence
on the final results. We use cyclic learning rates and half-precision training following Wong
et al. (2020). We do not use random initialization for PGD during adversarial training
as we did not find that it leads to any improvements on the considered datasets (see the
justifications in Sec. 2.11.1 below). We perform early stopping based on the PGD accuracy
on the training set following Wong et al. (2020). We observed that such a simple model
selection scheme can successfully select a model before catastrophic overfitting that has
non-trivial robustness.

On CIFAR-10, we train all the models for 30 epochs with the maximum learning rate 0.3
except AT for free (Shafahi et al., 2019) which we train for 96 epochs with the maximum
learning rate 0.04 using m = 8 minibatch replays to get comparable results to the other
methods.

29

Chapter 2. Understanding and Improving Fast Adversarial Training

On SVHN, we train all the models for 15 epochs with the maximum learning rate 0.05
except AT for free (Shafahi et al., 2019) which we train for 45 epochs with the maximum
learning rate 0.01 using m = 8 minibatch replays. Moreover, in order to prevent conver-
gence to a constant classifier on SVHN, we linearly increase the perturbation radius from
0 to ε during the first 5 epochs for all methods.

For PGD-2 AT we use for training a 2-step PGD attack with step size α = ε/2, and for
PGD-10 AT we use for training a 10-step PGD attack with α = 2ε/10.

For Fig. 2.1 and Fig. 2.8 we used the GradAlign λ values obtained via a linear interpolation
on the logarithmic scale between the best λ values that we found for ε = 8 and ε = 16
on the test sets. We perform the interpolation on the logarithmic scale since the values of
λ are non-negative, a usual linear interpolation would lead to negative values of λ. The
resulting λ values for ε ∈ {1, . . . , 16} are given in Table 2.2. We note that at the end we
do not report the results with ε > 12 for SVHN since many models have trivial robustness
close to that of a constant classifier. For the PGD-2 + GradAlign experiments reported

Table 2.2: GradAlign λ values used for the experiments on CIFAR-10 and SVHN. These values
are obtained via a linear interpolation on the logarithmic scale between successful λ values at ε = 8
and ε = 16.

ε (/255) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
λCIF AR−10 0.03 0.04 0.05 0.06 0.08 0.11 0.15 0.20 0.27 0.36 0.47 0.63 0.84 1.12 1.50 2.00
λSV HN 1.66 1.76 1.86 1.98 2.10 2.22 2.36 2.50 2.65 2.81 2.98 3.16 3.35 3.56 3.77 4.00

below in Table 2.4 and Table 2.5, we use λ = 0.1 for the CIFAR-10 and λ = 0.5 for SVHN
experiments.

Training details for the single-layer CNN. The single-layer CNN that we study in
Sec. 2.5 has 4 convolutional filters, each of them of size 3 × 3. After the convolution we
apply ReLU activation, and then we directly have a fully-connected layer, i.e. we do not
use any pooling layer. For training we use the ADAM optimizer with learning rate 0.003
for 30 epochs using the same cyclical learning rate schedule.

ImageNet experiments. We use ResNet-50 following the training scheme of Wong
et al. (2020) which includes 3 training stages on different image resolution. For GradAlign,
we slightly reduce the batch size on the second and third stages from 224 and 128 to 180
and 100 respectively in order to reduce the memory consumption. For all ε ∈ {2, 4, 6},
we train FGSM models with GradAlign using λ ∈ {0.01, 0.1}. The final λ we report are
λ ∈ {0.01, 0.01, 0.1} for ε ∈ {2, 4, 6} respectively.

Computing infrastructure. We perform all our experiments on NVIDIA V100 GPUs
with 32GB of memory.

30

2.10 Supporting experiments and visualizations for Sec. 2.4 and Sec. 2.5

a.) Standard model b.) PGD-trained model

0.25 d 0.50 d 0.75 d 1.00 d
2-norm of the perturbation

0

1

2

3

4

5

|(
x

+
)

(x
)

,
|

Start from FGSM

Start from random

0.25 d 0.50 d 0.75 d 1.00 d
2-norm of the perturbation

0.00

0.03

0.05

0.08

0.10

0.13

|L
(x

+
)

L(
x)

,
|

FGSM

random

Figure 2.10: The quality of the linear approximation of ℓ(x+ δ) for δ with different ℓ2-norm for
∥δ∥∞ fixed to ε for a standard and PGD-trained ResNet-18 on CIFAR-10.

2.10 Supporting experiments and visualizations for Sec. 2.4
and Sec. 2.5

We describe here supporting experiments and visualizations related to Sec. 2.4 and Sec. 2.5.

2.10.1 Quality of the linear approximation for ReLU networks

For the loss function ℓ of a ReLU-network, we compute empirically the quality of the linear
approximation defined as

|ℓ(x+ δ)− ℓ(x)− ⟨δ,∇xℓ(x)⟩ |,

where the dependency of the loss ℓ on the label y and parameters θ are omitted for clarity.
Then we perform the following experiment: we take a perturbation δ ∈ {−ε, ε}d, and
then zero out different fractions of its coordinates, which leads to perturbations with a
fixed ∥δ∥∞ = ε, but with different ∥δ∥2 ∈ [0,

√
dε]. As the starting δ we choose two

types of perturbations: δF GSM generated by FGSM and δrandom sampled uniformly from
the corners of the ℓ∞-ball. We plot the results in Fig. 2.10 on CIFAR-10 for ε = 8/255
averaged over 512 test points, and conclude that for both δF GSM and δrandom the validity
of the linear approximation crucially depends on ∥δ∥2 even when ∥δ∥∞ is fixed. The
phenomenon is even more pronounced for FGSM perturbations as the linearization error
is much higher there. Moreover, this observation is consistent across both standardly and
adversarially trained ResNet-18 models.

0 5 10 15 20 25 30
Epoch

0%

10%

20%

30%

40%

50%

Ad
ve

rs
ar

ia
l a

cc
ur

ac
y

FGSM AT: FGSM acc.
FGSM AT: PGD acc.

0 5 10 15 20 25 30
Epoch

2

4

6

8

10

12

14

Ad
ve

rs
ar

ia
l l

os
s

FGSM AT: FGSM loss
FGSM AT: PGD loss

0 5 10 15 20 25 30
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Co
sin

e

FGSM AT: cos(L(x), L(x +))
FGSM AT: cos(FGSM, PGD)

Figure 2.11: Visualization of the training process of an FGSM trained CNN with 4 filters with
ε = 10/255. We can observe catastrophic overfitting around epoch 6.

31

Chapter 2. Understanding and Improving Fast Adversarial Training

Epoch 3 Epoch 4 Epoch 5 Epoch 6 Epoch 7 Epoch 30

w1-R 0.30

0.15

0.00

0.15

0.30

0.30

0.15

0.00

0.15

0.30

0.2

0.1

0.0

0.1

0.2

0.2

0.1

0.0

0.1

0.2

0.16

0.08

0.00

0.08

0.16

0.12

0.06

0.00

0.06

0.12

w1-G 0.30

0.15

0.00

0.15

0.30

0.30

0.15

0.00

0.15

0.30

0.2

0.1

0.0

0.1

0.2

0.16

0.08

0.00

0.08

0.16

0.16

0.08

0.00

0.08

0.16

0.12

0.06

0.00

0.06

0.12

w1-B 0.4

0.2

0.0

0.2

0.4

0.30

0.15

0.00

0.15

0.30

0.30

0.15

0.00

0.15

0.30

0.30

0.15

0.00

0.15

0.30

0.30

0.15

0.00

0.15

0.30

0.16

0.08

0.00

0.08

0.16

w4-R 0.30

0.15

0.00

0.15

0.30

0.30

0.15

0.00

0.15

0.30

0.30

0.15

0.00

0.15

0.30

0.2

0.1

0.0

0.1

0.2

0.4

0.2

0.0

0.2

0.4

0.8

0.4

0.0

0.4

0.8

w4-G 0.30

0.15

0.00

0.15

0.30

0.2

0.1

0.0

0.1

0.2

0.16

0.08

0.00

0.08

0.16

0.2

0.1

0.0

0.1

0.2

0.30

0.15

0.00

0.15

0.30

1.2

0.6

0.0

0.6

1.2

w4-B 0.30

0.15

0.00

0.15

0.30

0.16

0.08

0.00

0.08

0.16

0.2

0.1

0.0

0.1

0.2

0.30

0.15

0.00

0.15

0.30

0.50

0.25

0.00

0.25

0.50

0.6

0.3

0.0

0.3

0.6

Figure 2.12: Evolution of the regular filter w1 and filter w4 that leads to catastrophic overfitting.
We plot red (R), green (G), and blue (B) channels of the filters. We can observe that in R and G
channels, w4 has learned a Laplace filter which is very sensitive to noise.

2.10.2 Catastrophic overfitting in a single-layer CNN

We describe here complementary figures to Sec. 2.5 which are related to the single-layer
CNN.

Training curves. In Fig. 2.11, we show the evolution of the FGSM/PGD accuracy,
FGSM/PGD loss, and gradient alignment together with cos(δF GSM , δP GD). We observe
that catastrophic overfitting occurs around epoch 6 and that its pattern is the same as
for the deep ResNet which was illustrated in Fig. 2.4. Namely, we see that concurrently
the following changes occur around epoch 6: (a) there is a sudden drop of PGD accuracy
with an increase in FGSM accuracy, (b) the PGD loss grows by an order of magnitude
while the FGSM loss decreases, (c) both gradient alignment and cos(δF GSM , δP GD) sig-
nificantly decrease. Throughout all our experiments we observe a very high correlation
between cos(δF GSM , δP GD) and gradient alignment. This motivates our proposed regu-
larizer GradAlign which relies on the cosine between ∇xℓ(x, y; θ) and ∇xℓ(x + η, y; θ),
where η is a random point. In this way, we avoid using an iterative procedure inside the
regularizer unlike, for example, the approach of Qin et al. (2019).

32

2.10 Supporting experiments and visualizations for Sec. 2.4 and Sec. 2.5

Additional filters. In Fig. 2.12, we show the evolution of the regular filter w1 and
filter w4 that leads to catastrophic overfitting for the three input channels (red, green,
blue). We can observe that in the red and green channels, w4 has learned a Laplace filter
which is very sensitive to noise. Moreover, w4 significantly increases in magnitude after
catastrophic overfitting contrary to w1 whose magnitude only decreases (see the colorbar
values in Fig. 2.12 and the plots in Fig. 2.5).

Additional feature maps. In Fig. 2.13, we show additional feature maps for images
with and without uniform random noise η ∼ U([−10/255, 10/255]d). These figures comple-
ment Fig. 2.7 shown in the main part. We clearly see that only the last filter w4 is sensitive
to the noise since the feature maps change dramatically. At the same time, other filters
w1, w2, w3 are only slightly affected by the addition of the noise. We also show the input
gradients in the last column which illustrate that after adding the noise the gradients
change drammatically which leads to small gradient alignment and, in turn, to the failure
of FGSM as the solution of the inner maximization problem.

33

Chapter 2. Understanding and Improving Fast Adversarial Training

Image Feature map #1 Feature map #2 Feature map #3 Feature map #4 Gradient

Image + noise Feature map #1 Feature map #2 Feature map #3 Feature map #4 Gradient

Image Feature map #1 Feature map #2 Feature map #3 Feature map #4 Gradient

Image + noise Feature map #1 Feature map #2 Feature map #3 Feature map #4 Gradient

Image Feature map #1 Feature map #2 Feature map #3 Feature map #4 Gradient

Image + noise Feature map #1 Feature map #2 Feature map #3 Feature map #4 Gradient

Image Feature map #1 Feature map #2 Feature map #3 Feature map #4 Gradient

Image + noise Feature map #1 Feature map #2 Feature map #3 Feature map #4 Gradient

0.4

0.2

0.0

0.2

0.4

0.00

0.05

0.10

0.15

0.00

0.05

0.10

0.15

0.20

0.035

0.030

0.025

0.020

0.015

0.010

0.005

0.000

0.4

0.2

0.0

0.2

0.4

0.05

0.00

0.05

0.10

0.15

0.20

0.00

0.05

0.10

0.15

0.20

0.2

0.1

0.0

0.1

0.2

0.2

0.1

0.0

0.1

0.2

0.00

0.05

0.10

0.15

0.00

0.02

0.04

0.06

0.08

0.08

0.06

0.04

0.02

0.00

0.02

0.2

0.1

0.0

0.1

0.2

0.00

0.05

0.10

0.15

0.00

0.02

0.04

0.06

0.08

0.20

0.15

0.10

0.05

0.00

0.05

0.10

0.15

0.4

0.3

0.2

0.1

0.0

0.1

0.2

0.3

0.15

0.10

0.05

0.00

0.05

0.10

0.15

0.025

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.3

0.2

0.1

0.0

0.1

0.3

0.2

0.1

0.0

0.1

0.2

0.3

0.20

0.15

0.10

0.05

0.00

0.05

0.10

0.15

0.025

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.4

0.3

0.2

0.1

0.0

0.1

0.2

0.4

0.3

0.2

0.1

0.0

0.1

0.2

0.3

0.075

0.050

0.025

0.000

0.025

0.050

0.075

0.100

0.125

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.15

0.10

0.05

0.00

0.05

0.10

0.4

0.3

0.2

0.1

0.0

0.1

0.2

0.3

0.05

0.00

0.05

0.10

0.15

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.2

0.1

0.0

0.1

0.2

Figure 2.13: Input images, feature maps, and gradients of the single-layer CNN trained on
CIFAR-10 at the end of training (after catastrophic overfitting). Odd row: original images. Even
row: original image plus random noise U([−10/255, 10/255]d). We observe that only the last filter w4
is highly sensitive to the small uniform noise since the feature maps change dramatically.

34

2.11 Additional experiments for different adversarial training schemes

2.11 Additional experiments for different adversarial train-
ing schemes

In this section, we describe additional experiments related to GradAlign that complement
the results shown in Sec. 2.6.

2.11.1 Stronger PGD-2 baseline

As mentioned in Sec. 2.6, the PGD-2 training baseline that we report outperforms other
similar baselines reported in the literature (Zhang et al., 2019a; Qin et al., 2019). Here
we elaborate what are likely to be the most important sources of difference. First, we
follow the cyclical learning rate schedule of Wong et al. (2020) which can work as implicit
early stopping and thus can help to prevent catastrophic overfitting observed for PGD-2
in Qin et al. (2019). Another source of difference is that Qin et al. (2019) use the ADAM
optimizer while we stick to the standard PGD updates using the sign of the gradient
(Madry et al., 2018).

The second important factor is a proper step size selection. While Zhang et al. (2019a) do
not observe catastrophic overfitting, their PGD-3 baseline achieves only 32.51% adversarial
accuracy compared to the 48.43% for our PGD-2 baseline evaluated with a stronger attack
(PGD-50-10 instead of PGD-20-1). One potential explanation for this difference lies in
the step size selection, where for PGD-2 we use α = ε/2. Related to the step size selection,
we also found that using random initialization in PGD (we will refer to as PGD-k-RS)
as suggested in Madry et al. (2018) requires a larger step size α. We show the results
in Table 2.3 where we can see that PGD-2-RS AT with α = ε/2 achieves suboptimal
robustness compared to α = ε used for training. However, we consistently observed that
PGD-2 AT with α = ε/2 and no random step performs best. Thus, we use the latter as
our PGD-2 baseline throughout the paper, thus always starting PGD-2 from the original
point, without using any random step.

Table 2.3: Robustness of different PGD-2 schemes for ε = 8/255 on CIFAR-10 for ResNet-18.
The results are averaged over 5 random seeds used for training.

Model PGD-2-RS AT, α = ε/2 PGD-2-RS AT, α = ε PGD-2 AT, α = ε/2

PGD-50-10 accuracy 45.06±0.44% 48.07±0.52% 48.43±0.40%

2.11.2 Results with early stopping

We complement the results presented in Fig. 2.8 without early stopping with the re-
sults with early stopping which we show in Fig. 2.14. For CIFAR-10, we observe that
FGSM + GradAlign leads to a good robustness and accuracy outperforming FGSM AT
and FGSM-RS AT and performing similarly to PGD-2 and slightly improving for larger ε
close to 16/255. For SVHN, GradAlign leads to better robustness than other FGSM-based

35

Chapter 2. Understanding and Improving Fast Adversarial Training

methods. We also observe that for large ε on both CIFAR-10 and SVHN, AT for Free
performs similarly to FGSM-based methods. Moreover, for ε ≥ 10/255 on SVHN, AT for
Free converges to a constant classifier.

On both CIFAR-10 and SVHN, we can see that although early stopping can lead to
non-trivial robustness, standard accuracy is often significantly sacrificed which limits the
usefulness of this technique. This is in contrast to training with GradAlign which leads
to the same standard accuracy as PGD-10 training.

2.11.3 Results for specific ℓ∞-radii

Here we report results from Fig. 2.8 for specific ℓ∞-radii which are most often studied in
the literature.

CIFAR-10 results. We report robustness and accuracy in Table 2.4 for CIFAR-10
without using early stopping where we can clearly see which methods lead to catastrophic
overfitting and thus suboptimal robustness. We compare the same methods as in Fig. 2.8,
and additionally we report the results for ε = 8/255 of the CURE (Moosavi-Dezfooli

Table 2.4: Robustness and accuracy of different robust training methods on CIFAR-10. We
report results without early stopping for ResNet-18 unless specified otherwise in parentheses. The
results of all the methods reported in Fig. 2.8 are shown here with the standard deviation and
averaged over 5 random seeds used for training.

Model Accuracy Attack
Standard Adversarial
ε = 8/255

Standard 94.03% 0.00% PGD-50-10
CURE 81.20% 36.30% PGD-20-1
YOPO-3-5 82.14% 38.18% PGD-20-1
YOPO-5-3 83.99% 44.72% PGD-20-1
LLR-2 (Wide-ResNet-28-8) 90.46% 44.50% MultiTargeted
FGSM 85.16±1.3% 0.02±0.04% PGD-50-10
FGSM-RS 84.32±0.08% 45.10±0.56% PGD-50-10
FGSM + GradAlign 81.00±0.37% 47.58±0.24% PGD-50-10
AT for Free (m = 8) 77.92±0.65% 45.90±0.98% PGD-50-10
PGD-2 (α = 4/255) 82.15±0.48% 48.43±0.40% PGD-50-10
PGD-2 (α = 4/255) + GradAlign 81.16±0.39% 47.76±0.77% PGD-50-10
PGD-10 (α = 2ε/10) 81.88±0.37% 50.04±0.79% PGD-50-10

ε = 16/255
FGSM 73.76±7.4% 0.00±0.00% PGD-50-10
FGSM-RS 72.18±3.7% 0.00±0.00% PGD-50-10
FGSM + GradAlign 58.46±0.22% 28.88±0.70% PGD-50-10
AT for Free (m = 8) 48.10±9.83% 0.00±0.00% PGD-50-10
PGD-2 (α = ε/2) 68.65±5.83% 9.92±14.00% PGD-50-10
PGD-2 (α = ε/2) + GradAlign 61.38±0.71% 29.80±0.42% PGD-50-10
PGD-10 (α = 2ε/10) 60.28±0.50% 33.24±0.52% PGD-50-10

36

2.11 Additional experiments for different adversarial training schemes

et al., 2019b), YOPO (Zhang et al., 2019a), and LLR (Qin et al., 2019) approaches.
First, for ε = 8/255, we see that FGSM + GradAlign outperforms AT for Free and all
methods that use FGSM training. Then, we also observe that the model trained with
CURE (Moosavi-Dezfooli et al., 2019b) leads to robustness that is suboptimal compared
to FGSM-RS AT evaluated with a stronger attack: 36.3% vs 45.1%. YOPO-3-5 and
YOPO-5-3 (Zhang et al., 2019a) require 3 and 5 full steps of PGD respectively, thus
they are much more expensive than FGSM-RS AT, and, however, they lead to worse
adversarial accuracy: 38.18% and 44.72% vs 45.10%. Qin et al. (2019) report that LLR-
2, i.e. their approach with 2 steps of PGD, achieves 44.50% adversarial accuracy with
MultiTargeted attack (Gowal et al., 2019b) and 46.47% with their untargeted PGD attack
which uses a different loss function compared to our PGD attack. These two evaluations
are not directly comparable to other results in Table 2.4 since the attacks are different
and moreover they use a larger network (Wide-ResNet-28-8) which usually leads to better
results (Madry et al., 2018). However, we think that the gap of 3−4% adversarial accuracy
of MultiTargeted evaluation compared to that of our reported FGSM + GradAlign and
PGD-2 methods (47.58% and 48.43% resp.) is still significant since the difference between
MultiTargeted and a PGD attack with random restarts is observed to be small (e.g. around
1% between MultiTargeted and PGD-20-10 on the CIFAR-10 challenge of Madry et al.
(2018)).

For ε = 16/255, none of the one-step methods work without early stopping except FGSM
with GradAlign. We also evaluate PGD-2 + GradAlign and conclude that the benefit of
combining the two comes when PGD-2 alone leads to catastrophic overfitting which occurs
at ε = 16/255. For ε = 8/255, there is no benefit of combining the two approaches. This
is consistent with our observation regarding catastrophic overfitting for FGSM (e.g. see
Fig. 2.8 for small ε): if there is no catastrophic overfitting, there is no benefit of adding
GradAlign to FGSM training.

To further ensure that FGSM + GradAlign models do not benefit from gradient mask-
ing (Papernot et al., 2017), we additionally compare the robustness of FGSM + GradAlign
and FGSM-RS models obtained via AutoAttack (Croce and Hein, 2020b). We observe that
AutoAttack proportionally reduces the adversarial accuracy of both models: for ε = 8/255,
FGSM + GradAlign achieves 44.54±0.24% adversarial accuracy while FGSM-RS achieves
42.80±0.58%. This is consistent with the evaluation results of Croce and Hein (2020b)
where they show that AutoAttack reduces adversarial accuracy for many models by 2%-3%
for ε = 8/255 compared to the originally reported results based on the standard PGD attack
(see Table 2 in Croce and Hein (2020b)). The same tendency is observed also for higher ε,
e.g. for ε = 16/255 FGSM + GradAlign achieves 20.56±0.36% adversarial accuracy when
evaluated with AutoAttack.

SVHN results. We report robustness and accuracy in Table 2.5 for SVHN without using
early stopping. We can see that for both ε = 8/255 and ε = 16/255, GradAlign successfully
prevents catastrophic overfitting in contrast to FGSM and FGSM-RS, although there is
still a 5% gap to PGD-2 training for ε = 8/255. AT for free performs slightly better than

37

Chapter 2. Understanding and Improving Fast Adversarial Training

Table 2.5: Robustness and accuracy of different robust training methods on SVHN. We report
results without early stopping for ResNet-18. All the results are reported with the standard
deviation and averaged over 5 random seeds used for training.

Model Accuracy
Standard PGD-50-10

ε = 8/255
Standard 96.00% 1.00%
FGSM 91.40±1.64% 0.04±0.05%
FGSM-RS 95.38±0.27% 0.00±0.00%
FGSM + GradAlign 92.36±0.47% 42.08±0.25%
AT for Free (m = 8) 75.34±28.4% 43.16±12.3%
PGD-2 (α = ε/2) 92.68±0.45% 47.28±0.26%
PGD-2 + GradAlign (α = ε/2) 92.46±0.35% 47.02±0.83%
PGD-10 (α = 2ε/10) 91.92±0.40% 52.08±0.49%

ε = 12/255
FGSM 88.74±1.25% 0.00±0.00%
FGSM-RS 94.70±0.66% 0.00±0.00%
FGSM + GradAlign 88.54±0.21% 24.04±0.31%
AT for Free (m = 8) 18.50±0.00% 18.50±0.00%
PGD-2 (α = ε/2) 92.74±2.26% 14.30±13.34%
PGD-2 + GradAlign (α = ε/2) 87.14±0.26% 31.26±0.24%
PGD-10 (α = 2ε/10) 84.52±0.63% 38.32±0.38%

Table 2.6: Robustness and accuracy of different robust training methods on ImageNet. We
report results without early stopping for ResNet-50.

Model ℓ∞-radius Standard accuracy PGD-50-10 accuracy

FGSM 2/255 61.7% 42.1%
FGSM-RS 2/255 59.3% 41.1%
FGSM + GradAlign 2/255 61.8% 41.4%
FGSM 4/255 56.9% 30.6%
FGSM-RS 4/255 55.3% 27.8%
FGSM + GradAlign 4/255 57.8% 30.5%
FGSM 6/255 51.5% 20.6%
FGSM-RS 6/255 36.6% 0.1%
FGSM + GradAlign 6/255 51.5% 20.3%

FGSM + GradAlign for ε = 8/255, but it already starts to show a high variance in the
robustness and accuracy depending on the random seed. For ε = 12/255, all the 5 models
of AT for free converge to a constant classifier.

Combining PGD-2 with GradAlign does not lead to improved results for ε = 8/255 since
there is no catastrophic overfitting for PGD-2. However, for ε = 12/255, we can clearly
see that PGD-2 + GradAlign leads to better results than PGD-2 achieving 31.26± 0.24%
instead of 14.30± 13.34% adversarial accuracy.

ImageNet results. We also perform similar experiments on ImageNet in Table 2.6. We
observe that even for standard FGSM training, catastrophic overfitting does not occur for

38

2.11 Additional experiments for different adversarial training schemes

ε ∈ {2/255, 4/255} considered in Shafahi et al. (2019); Wong et al. (2020), and thus there is
no additional benefit from using GradAlign since its main role is to prevent catastrophic
overfitting. We report the results of FGSM + GradAlign for completeness to show that
GradAlign can be applied on the ImageNet scale, although it leads to approximately 3×
slowdown on ImageNet compared to standard FGSM training.

For ε = 6/255, we observe that catastrophic overfitting occurs for FGSM-RS very early
in training (around epoch 3), but not for FGSM or FGSM + GradAlign training. This
contradicts our observations on CIFAR-10 and SVHN where we observed that FGSM-RS
usually helps to postpone catastrophic overfitting to higher ε. However, it is computation-
ally demanding to replicate the results on ImageNet multiple times over different random
seeds as we did for CIFAR-10 and SVHN. Thus, we leave a more detailed investigation of
catastrophic overfitting on ImageNet for future work.

2.11.4 Ablation studies

In this section, we aim to provide more details about sensitivity of GradAlign to its
hyperparameter λ, the total number of training epochs, and also discuss training with
GradAlign for very high ε values.

Ablation study for GradAlign λ. We provide an ablation study for the regularization
parameter λ of GradAlign in Fig. 2.15, where we plot the adversarial accuracy of ResNet-
18 trained using FGSM + GradAlign with ε = 16/255 on CIFAR-10. First, we observe
that for small λ catastrophic overfitting occurs so that the average PGD-50-10 accuracy is
either 0% or greater than 0% but has a high standard deviation since only some runs are
successful while other runs fail because of catastrophic overfitting. We observe that the
best performance is achieved for λ = 2 where catastrophic overfitting does not occur and
the final adversarial accuracy is very concentrated. For larger λ values we observe a slow
decrease in the adversarial accuracy since the model becomes overregularized. We note
that the range of λ values which have close to the best performance (≥ 26% adversarial
accuracy) ranges in [0.25, 4], thus we conclude that GradAlign is robust to the exact choice
of λ. This is also confirmed by our hyperparameter selection method for Fig. 2.8, where
we performed a linear interpolation on the logarithmic scale between successful λ values
for ε = 8/255 and ε = 16/255. Even such a coarse hyperparameter selection method, could
ensure that none of the FGSM + GradAlign runs reported in Fig. 2.15 suffered from
catastrophic overfitting.

Ablation study for the total number of training epochs. Recently, Rice et al.
(2020) brought up the importance of early stopping in adversarial training. They iden-
tify the phenomenon called robust overfitting when training longer hurts the adversarial
accuracy on the test set. Thus, we check here whether training with GradAlign has some
influence on robust overfitting. We note that the authors of Rice et al. (2020) suggest that
robust and catastrophic overfitting phenomena are distinct since robust overfitting im-
plies a gap between training and test set robustness, while catastrophic overfitting implies

39

Chapter 2. Understanding and Improving Fast Adversarial Training

low robustness on both training and test sets. To explore this for FGSM + GradAlign, in
Fig. 2.16 we show the final clean and adversarial accuracies for five different models trained
with {30, 50, 100, 150, 250} epochs. We observe the same trend as Rice et al. (2020) report:
training longer slightly degrades adversarial accuracy (while in our case also the clean ac-
curacy slightly improves). Thus, this experiment also suggests that robust overfitting is
not directly connected to catastrophic overfitting and has to be addressed separately. Fi-
nally, we note based on Fig. 2.16 that when we use FGSM in combination with GradAlign,
even training up to 200 epochs does not lead to catastrophic overfitting.

Ablation study for very high ε. Here we make an additional test on whether GradAlign
prevents catastrophic overfitting for very high ε values. In Fig. 2.8 and Fig. 2.14 we showed
results for ε ≤ 16 for CIFAR-10 and for ε ≤ 12 on SVHN. For SVHN, FGSM + GradAlign
achieves 24.04±0.31% adversarial accuracy which is already close to that of a major-
ity classifier (18.50%). The effect of increasing the perturbations size ε on SVHN even
further just leads to learning a constant classifier. However, on CIFAR-10 for ε = 16,
FGSM + GradAlign achieves 28.88±0.70% adversarial accuracy which is sufficiently far
from that of a majority classifier (10.00%). Thus, a natural question is whether catas-
trophic overfitting still occurs for GradAlign on CIFAR-10, but just for higher ε values
than what we considered in the main part of the paper. To show that it is not the case,
in Table 2.7 we show the results of FGSM + GradAlign trained with ε ∈ {24/255, 32/255}
(we use λ = 2.0 and the maximum learning rate 0.1). We observe no signs of catastrophic
overfitting even for very high ε such as 32/255. Note that in this case the standard accuracy
is very low (23.07±3.35%), thus considering such large perturbations is not practically in-
teresting, but it rather serves as a sanity check that our method does not suffer from
catastrophic overfitting even for very high ε.

Table 2.7: Robustness and accuracy of FGSM + GradAlign for very high ε on CIFAR-10 without
early stopping for ResNet-18. We report results with the standard deviation and averaged over 3
random seeds used for training. We observe no catastrophic overfitting even for very high ε.

ℓ∞-radius Standard accuracy PGD-50-10 accuracy

24/255 41.80±0.36% 17.07±0.90%
32/255 23.07±3.35% 12.93±1.44%

2.11.5 Comparison of GradAlign to gradient-based penalties

In this section, we compare GradAlign to other alternatives: ℓ2 gradient norm penalization
and CURE (Moosavi-Dezfooli et al., 2019b). The motivation to study them comes from the
fact that after catastrophic overfitting, the input gradients change dramatically inside the
ℓ∞-balls around input points, and thus other gradient-based regularizers may also be able
to improve the stability of the input gradients and thus prevent catastrophic overfitting.

In Table 2.8, we present results of FGSM training with other gradient-based penalties
studied in the literature:

40

2.11 Additional experiments for different adversarial training schemes

• ℓ2 gradient norm regularization (Ross and Doshi-Velez, 2018; Simon-Gabriel et al.,
2019): λ ∥∇xℓ(x, y; θ)∥22,

• curvature regularization (CURE) (Moosavi-Dezfooli et al., 2019b):
λ ∥∇xℓ(x+ δF GSM , y; θ)−∇xℓ(x, y; θ)∥22.

First of all, we note that the originally proposed approaches (Ross and Doshi-Velez, 2018;
Simon-Gabriel et al., 2019; Moosavi-Dezfooli et al., 2019b) do not involve adversarial
training and rely only on these gradient penalties to achieve some degree of robustness. In
contrast, we combine the gradient penalties with FGSM training to see whether they can
prevent catastrophic overfitting similarly to GradAlign. For the gradient norm penalty,
we use the regularization parameters λ ∈ {1,000, 2,000} for ε ∈ {8/255, 16/255} respectively.
For CURE, we use λ ∈ {700, 20,000} for ε ∈ {8/255, 16/255} respectively. In both cases,
we found the optimal hyperparameters using a grid search over λ. We can see that for
ε = 8/255 all three approaches successfully prevent catastrophic overfitting, although the
final robustness slightly varies between 46.69% for FGSM with the ℓ2-gradient penalty and
47.58% for FGSM with GradAlign.

For ε = 16/255, both FGSM + CURE and FGSM + GradAlign prevent catastrophic overfit-
ting leading to very concentrated results with a small standard deviation (0.29% and 0.70%
respectively). However, the average adversarial accuracy is better for FGSM + GradAlign:
28.88% vs 25.38%. At the same time, FGSM with the ℓ2-gradient penalty leads to unstable
final performance: the adversarial accuracy has a high standard deviation: 13.64± 11.2%.

We think that the main difference in the performance of GradAlign compared to the
gradient penalties that we considered comes from the fact that it is invariant to the
gradient norm, and it takes into account only the directions of two gradients inside the
ℓ∞-ball around the given input.

Inspired by CURE, we also tried two additional experiments:

1. Using the FGSM point δF GSM for the gradient taken at the second input point
for GradAlign, but we observed that it does not make a substantial difference, i.e.
this version of GradAlign also prevents catastrophic overfitting and leads to similar
results. However, if we use CURE without FGSM in the cross-entropy loss, then
we observe a benefit of using δF GSM in the regularizer which is consistent with the
observations made in Moosavi-Dezfooli et al. (2019b).

2. Using GradAlign without FGSM in the cross-entropy loss. In this case, we ob-
served that the model did not significantly improve its robustness suggesting that
GradAlign is not a sufficient regularizer on its own to promote robustness and has
to be used with some adversarial training method.

We think that an interesting future direction is to explore how one can speed up GradAlign
or to come up with other regularization methods that are also able to prevent catastrophic

41

Chapter 2. Understanding and Improving Fast Adversarial Training

Table 2.8: Additional comparison of FGSM AT with GradAlign to FGSM AT with other gradient
penalties on CIFAR-10. We report results without early stopping for ResNet-18. All the results
are reported with the standard deviation and averaged over 5 random seeds used for training.

Model Accuracy
Standard PGD-50-10

ε = 8/255
FGSM + ∥∇x∥2

2 77.47±0.14% 46.69±1.27%
FGSM + CURE 80.20±0.29% 47.25±0.21%
FGSM + GradAlign 81.00±0.37% 47.58±0.24%

ε = 16/255
FGSM + ∥∇x∥2

2 56.44±2.22% 13.64±11.2%
FGSM + CURE 62.39±0.42% 25.38±0.29%
FGSM + GradAlign 58.46±0.22% 28.88±0.70%

overfitting, but avoid relying on the input gradients which lead to a slowdown in training.
We think that some potential strategies to speed up GradAlign can include parallelization
of the computations or saving some computations by subsampling the training batches for
the regularizer. We postpone a further exploration of these ideas to future work.

42

2.11 Additional experiments for different adversarial training schemes

2 4 6 8 10 12 14 16
 used for training and evaluation

0%

20%

40%

60%

80%

100%
St

an
da

rd
 a

nd
 P

GD
-5

0-
10

 a
cc

ur
ac

y Dataset: CIFAR-10

FGSM AT
FGSM-RS AT
FGSM AT + GradAlign
AT for Free
PGD-2 AT
PGD-10 AT

2 4 6 8 10 12
 used for training and evaluation

0%

20%

40%

60%

80%

100%

St
an

da
rd

 a
nd

 P
GD

-5
0-

10
 a

cc
ur

ac
y Dataset: SVHN

FGSM AT
FGSM-RS AT
FGSM AT + GradAlign
AT for Free
PGD-2 AT
PGD-10 AT

Figure 2.14: Accuracy (dashed line) and robustness (solid line) of different adversarial training
(AT) methods on CIFAR-10 and SVHN with ResNet-18 trained and evaluated with different l∞-
radii. The results are obtained with early stopping, averaged over 5 random seeds used for
training and reported with the standard deviation.

0 2 4 6 8
Regularization parameter of GradAlign

0

5

10

15

20

25

30

PG
D-

50
-1

0
ac

cu
ra

cy

Figure 2.15: Ablation study for the regular-
ization parameter λ for FGSM + GradAlign
under ε = 16/255 without early stopping. We
train ResNet-18 models on CIFAR-10. The re-
sults are averaged over 3 random seeds used for
training and reported with the standard devia-
tion.

25 50 75 100 125 150 175 200
Total number of training epochs

0

20

40

60

80

100

Ac
cu

ra
cy

Standard accuracy
PGD-50-10 accuracy

Figure 2.16: Ablation study for the
total number of training epochs for
FGSM + GradAlign under ε = 8/255 without
early stopping. We train ResNet-18 models on
CIFAR-10. The results are averaged over 3
random seeds used for training and reported
with the standard deviation.

43

3 Square Attack: a Query-Efficient
Black-Box Adversarial Attack via
Random Search

3.1 Preface

In this chapter, based on Andriushchenko et al. (2020), we focus on the problem of adver-
sarial attacks on image classification models in the black-box setting, where the attacker
has no access to the model’s parameters or gradients.

Summary We propose the Square Attack, a score-based black-box l2- and l∞-adversarial
attack that does not rely on local gradient information and thus is not affected by gradient
masking. Square Attack is based on a randomized search scheme which selects localized
square-shaped updates at random positions so that at each iteration the perturbation is
situated approximately at the boundary of the feasible set. Our method is significantly
more query efficient and achieves a higher success rate compared to the state-of-the-art
methods, especially in the untargeted setting. In particular, on ImageNet we improve
the average query efficiency in the untargeted setting for various deep networks by a
factor of at least 1.8 and up to 3 compared to the recent state-of-the-art l∞-attack of
Al-Dujaili & O’Reilly (2020). Moreover, although our attack is black-box, it can also
outperform gradient-based white-box attacks on the standard benchmarks achieving a
new state-of-the-art in terms of the success rate. The code of our method is available at
https://github.com/max-andr/square-attack.

Co-authors Francesco Croce, Nicolas Flammarion, Matthias Hein.

Contributions Maksym Andriushchenko proposed the project idea, designed and eval-
uated the l∞ attack algorithm. Francesco Croce designed and evaluated the l2 attack
algorithm.

3.2 Introduction

Adversarial examples are of particular concern when it comes to applications of machine
learning which are safety-critical. Many defenses against adversarial examples have been

45

https://github.com/max-andr/square-attack

Chapter 3. Square Attack: a Query-Efficient Black-Box Adversarial Attack
via Random Search

proposed (Gu and Rigazio, 2015a; Zheng et al., 2016; Papernot et al., 2016b; Bastani
et al., 2016; Madry et al., 2018; Akhtar and Mian, 2018; Biggio and Roli, 2018a) but
with limited success, as new more powerful attacks could break many of them (Carlini
and Wagner, 2017; Athalye et al., 2018; Mosbach et al., 2018; Chen et al., 2018; Zheng
et al., 2019). In particular, gradient obfuscation or masking (Athalye et al., 2018; Mosbach
et al., 2018) is often the reason why seemingly robust models turn out to be non-robust in
the end. Gradient-based attacks are most often affected by this phenomenon (white-box
attacks but also black-box attacks based on finite difference approximations (Mosbach
et al., 2018)). Thus it is important to have attacks which are based on different principles.
Black-box attacks have recently become more popular (Narodytska and Kasiviswanathan,
2017; Brendel et al., 2018a; Su et al., 2019) as their attack strategies are quite different
from the ones employed for adversarial training, where often PGD-type attacks (Madry
et al., 2018) are used. However, a big weakness currently is that these black-box attacks
need to query the classifier too many times before they find adversarial examples, and
their success rate is sometimes significantly lower than that of white-box attacks.

Figure 3.1: Avg. number of queries
of successful untargeted l∞-attacks on
three ImageNet models for three score-
based black-box attacks. Square Attack
outperforms all other attacks by large
margin

In this paper we propose Square Attack, a score-
based adversarial attack, i.e. it can query the prob-
ability distribution over the classes predicted by a
classifier but has no access to the underlying model.
The Square Attack exploits random search1 (Rastri-
gin, 1963; Schumer and Steiglitz, 1968) which is one
of the simplest approaches for black-box optimiza-
tion. Due to a particular sampling distribution, it
requires significantly fewer queries compared to the
state-of-the-art black-box methods (see Fig. 3.1) in
the score-based threat model while outperforming
them in terms of success rate, i.e. the percentage
of successful adversarial examples. This is achieved
by a combination of a particular initialization strat-
egy and our square-shaped updates. We motivate
why these updates are particularly suited to attack
neural networks and provide convergence guarantees for a variant of our method. In
an extensive evaluation with untargeted and targeted attacks, three datasets (MNIST,
CIFAR-10, ImageNet), normal and robust models, we show that Square Attack outper-
forms state-of-the-art methods in the l2- and l∞-threat model.

3.3 Related Work

We discuss black-box attacks with l2- and l∞-perturbations since our attack focuses on
this setting. Although attacks for other norms, e.g. l0, exist (Narodytska and Ka-
siviswanathan, 2017; Croce and Hein, 2019), they are often algorithmically different due

1It is an iterative procedure different from random sampling inside the feasible region.

46

3.3 Related Work

to the geometry of the perturbations.

l2- and l∞-score-based attacks. Score-based black-box attacks have only access to
the score predicted by a classifier for each class for a given input. Most of such attacks in
the literature are based on gradient estimation through finite differences. The first papers
in this direction Bhagoji et al. (2018); Ilyas et al. (2018); Uesato et al. (2018) propose
attacks which approximate the gradient by sampling from some noise distribution around
the point. While this approach can be successful, it requires many queries of the classifier,
particularly in high-dimensional input spaces as in image classification. Thus, improved
techniques reduce the dimension of the search space via using the principal components
of the data (Bhagoji et al., 2018), searching for perturbations in the latent space of an
auto-encoder (Tu et al., 2019) or using a low-dimensional noise distribution Ilyas et al.
(2019a). Other attacks exploit evolutionary strategies or random search, e.g., Alzantot
et al. (2019) use a genetic algorithm to generate adversarial examples and alleviate gradient
masking as they can reduce the robust accuracy on randomization- and discretization-
based defenses. The l2-attack of Guo et al. (2019b) can be seen as a variant of random
search which chooses the search directions in an orthonormal basis and tests up to two
candidate updates at each step. However, their algorithm can have suboptimal query
efficiency since it adds at every step only small (in l2-norm) modifications, and suboptimal
updates cannot be undone as they are orthogonal to each other. A recent line of work has
pursued black-box attacks which are based on the observation that successful adversarial
perturbations are attained at corners of the l∞-ball intersected with the image space [0, 1]d
(Seungyong et al., 2019; Al-Dujaili and O’Reilly, 2020; Meunier et al., 2019). Searching
over the corners allows to apply discrete optimization techniques to generate adversarial
attacks, significantly improving the query efficiency. Both Seungyong et al. (2019) and
Al-Dujaili and O’Reilly (2020) divide the image according to some coarse grid, perform
local search in this lower dimensional space allowing componentwise changes only of −ϵ
and ϵ, then refine the grid and repeat the scheme. In Al-Dujaili and O’Reilly (2020)
such a procedure is motivated as an estimation of the gradient signs. Recently, Meunier
et al. (2019) proposed several attacks based on evolutionary algorithms, using discrete
and continuous optimization, achieving nearly state-of-the-art query efficiency for the l∞-
norm. In order to reduce the dimensionality of the search space, they use the “tiling
trick” of Ilyas et al. (2019a) where they divide the perturbation into a set of squares
and modify the values in these squares with evolutionary algorithms. A related idea also
appeared earlier in Fawzi and Frossard (2016) where they introduced black rectangle-
shaped perturbations for generating adversarial occlusions. In Meunier et al. (2019), as in
Ilyas et al. (2019a), both size and position of the squares are fixed at the beginning and not
optimized. Despite their effectiveness for the l∞-norm, these discrete optimization based
attacks are not straightforward to adapt to the l2-norm. Finally, approaches based on
Bayesian optimization exist, e.g., Shukla et al. (2019), but show competitive performance
only in a low-query regime.

Different threat and knowledge models. We focus on lp-norm-bounded adversarial
perturbations (for other perturbations such as rotations, translations, occlusions in the

47

Chapter 3. Square Attack: a Query-Efficient Black-Box Adversarial Attack
via Random Search

black-box setting see, e.g., Fawzi and Frossard (2016)). Perturbations with minimal lp-
norm are considered in Chen et al. (2017); Tu et al. (2019) but require significantly more
queries than norm-bounded ones. Thus we do not compare to them, except for Guo et al.
(2019b) which has competitive query efficiency while aiming at small perturbations.

In other cases the attacker has a different knowledge of the classifier. A more restrictive
scenario, considered by decision-based attacks (Brendel et al., 2018a; Cheng et al., 2019a;
Guo et al., 2019a; Brunner et al., 2019; Chen et al., 2019), is when the attacker can
query only the decision of the classifier, but not the predicted scores. Other works use
more permissive threat models, e.g., when the attacker already has a substitute model
similar to the target one (Papernot et al., 2016a; Yan et al., 2019; Cheng et al., 2019b;
Du et al., 2020; Suya et al., 2019) and thus can generate adversarial examples for the
substitute model and then transfer them to the target model. Related to this, Yan et al.
(2019) suggest to refine this approach by running a black-box gradient estimation attack
in a subspace spanned by the gradients of substitute models. However, the gain in query
efficiency given by such extra knowledge does not account for the computational cost
required to train the substitute models, particularly high on ImageNet-scale. Finally, Li
et al. (2019b) use extra information on the target data distribution to train a model that
predicts adversarial images that are then refined by gradient estimation attacks.

3.4 Square Attack

In the following we recall the definitions of the adversarial examples in the threat model
we consider and present our black-box attacks for the l∞- and l2-norms.

3.4.1 Adversarial Examples in the lp-threat Model

Let f : [0, 1]d → RK be a classifier, where d is the input dimension, K the number of
classes and fk(x) is the predicted score that x belongs to class k. The classifier assigns
class arg maxk=1,...,K fk(x) to the input x. The goal of an untargeted attack is to change
the correctly predicted class y for the point x. A point x̂ is called an adversarial example
with an lp-norm bound of ϵ for x if

arg max
k=1,...,K

fk(x̂) ̸= y, ∥x̂− x∥p ≤ ϵ and x̂ ∈ [0, 1]d,

where we have added the additional constraint that x̂ is an image. The task of finding x̂
can be rephrased as solving the constrained optimization problem

min
x̂∈[0,1]d

L(f(x̂), y), s.t. ∥x̂− x∥p ≤ ϵ, (3.1)

for a loss L. In our experiments, we use L(f(x̂), y) = fy(x̂)−maxk ̸=y fk(x̂).

The goal of targeted attacks is instead to change the decision of the classifier to a particular

48

3.4 Square Attack

Algorithm 1: The Square Attack via random search
Input: classifier f , point x ∈ Rd, image size w, number of color channels c,

lp-radius ϵ, label y ∈ {1, . . . ,K}, number of iterations N
Output: approximate minimizer x̂ ∈ Rd of the problem stated in Eq. (3.1)

1 x̂← init(x), l∗ ← L(f(x), y), i← 1
2 while i < N and x̂ is not adversarial do
3 h(i) ← side length of the square to modify (according to some schedule)
4 δ ∼ P (ϵ, h(i), w, c, x̂, x) (see Alg. 2 and 3 for the sampling distributions)
5 x̂new ← Project x̂+ δ onto {z ∈ Rd : ∥z − x∥p ≤ ϵ} ∩ [0, 1]d
6 lnew ← L(f(x̂new), y)
7 if lnew < l∗ then x̂← x̂new, l

∗ ← lnew ;
8 i← i+ 1
9 end

class t, i.e., to find x̂ so that arg maxk fk(x̂) = t under the same constraints on x̂. We
further discuss the targeted attacks in Sup. 3.12.1.

3.4.2 General Algorithmic Scheme of the Square Attack

Square Attack is based on random search which is a well known iterative technique in
optimization introduced by Rastrigin in 1963 (Rastrigin, 1963). The main idea of the
algorithm is to sample a random update δ at each iteration, and to add this update to
the current iterate x̂ if it improves the objective function. Despite its simplicity, random
search performs well in many situations (Zabinsky, 2010) and does not depend on gradient
information from the objective function g.

Many variants of random search have been introduced (Matyas, 1965; Schumer and Stei-
glitz, 1968; Schrack and Choit, 1976), which differ mainly in how the random perturbation
is chosen at each iteration (the original scheme samples uniformly on a hypersphere of
fixed radius). For our goal of crafting adversarial examples we come up with two sampling
distributions specific to the l∞- and the l2-attack (Sec. 3.4.3 and Sec. 3.4.4), which we
integrate in the classic random search procedure. These sampling distributions are mo-
tivated by both how images are processed by neural networks with convolutional filters
and the shape of the lp-balls for different p. Additionally, since the considered objective
is non-convex when using neural networks, a good initialization is particularly important.
We then introduce a specific one for better query efficiency.

Our proposed scheme differs from classical random search by the fact that the pertur-
bations x̂ − x are constructed such that for every iteration they lie on the boundary of
the l∞- or l2-ball before projection onto the image domain [0, 1]d. Thus we are using the
perturbation budget almost maximally at each step. Moreover, the changes are localized
in the image in the sense that at each step we modify just a small fraction of contiguous
pixels shaped into squares. Our overall scheme is presented in Algorithm 1. First, the

49

Chapter 3. Square Attack: a Query-Efficient Black-Box Adversarial Attack
via Random Search

algorithm picks the side length h(i) of the square to be modified (step 3), which is decreas-
ing according to an a priori fixed schedule. This is in analogy to the step-size reduction
in gradient-based optimization. Then in step 4 we sample a new update δ and add it to
the current iterate (step 5). If the resulting loss (obtained in step 6) is smaller than the
best loss so far, the change is accepted otherwise discarded. Since we are interested in
query efficiency, the algorithm stops as soon as an adversarial example is found. The time
complexity of the algorithm is dominated by the evaluation of f(x̂new), which is performed
at most N times, with N total number of iterations. We plot the resulting adversarial
perturbations in Fig. 3.3 and additionally in Sup. 3.12 where we also show imperceptible
perturbations.

We note that previous works (Ilyas et al., 2019a; Seungyong et al., 2019; Meunier et al.,
2019) generate perturbations containing squares. However, while those use a fixed grid
on which the squares are constrained, we optimize the position of the squares as well
as the color, making our attack more flexible and effective. Moreover, unlike previous
works, we motivate squared perturbations with the structure of the convolutional filters
(see Sec. 3.5).

Size of the squares. Given images of size w × w, let p ∈ [0, 1] be the percentage of
elements of x to be modified. The length h of the side of the squares used is given by the
closest positive integer to

√
p · w2 (and h ≥ 3 for the l2-attack). Then, the initial p is the

only free parameter of our scheme. With N = 10000 iterations available, we halve the
value of p at i ∈ {10, 50, 200, 1000, 2000, 4000, 6000, 8000} iterations. For different N we
rescale the schedule accordingly.

3.4.3 The l∞-Square Attack

Initialization. As initialization we use vertical stripes of width one where the color of
each stripe is sampled uniformly at random from {−ϵ, ϵ}c (c number of color channels).
We found that convolutional networks are particularly sensitive to such perturbations, see
also Yin et al. (2019) for a detailed discussion on the sensitivity of neural networks to
various types of high frequency perturbations.

Sampling distribution. Similar to Seungyong et al. (2019) we observe that successful
l∞-perturbations usually have values ±ϵ in all the components (note that this does not
hold perfectly due to the image constraints x̂ ∈ [0, 1]d). In particular, it holds

x̂i ∈ {max{0, xi − ϵ},min{1, xi + ϵ}}.

50

3.4 Square Attack

Algorithm 2: Sampling distribution P for l∞-norm
Input: maximal norm ϵ, window size h, image size w, color channels c
Output: New update δ

1 δ ← array of zeros of size w × w × c
2 sample uniformly r, s ∈ {0, . . . , w − h} ⊂ N
3 for i = 1, . . . , c do
4 ρ← Uniform({−2ϵ, 2ϵ})
5 δr+1:r+h, s+1:s+h, i ← ρ · 1h×h

6 end

Our sampling distribution P for the l∞-norm described in Algorithm 2 selects sparse
updates of x̂ with ∥δ∥0 = h · h · c where δ ∈ {−2ϵ, 0, 2ϵ}d and the non-zero elements are
grouped to form a square. In this way, after the projection onto the l∞-ball of radius ϵ (Step
5 of Algorithm 1) all components i for which ϵ ≤ xi ≤ 1 − ϵ satisfy x̂i ∈ {xi − ϵ, xi + ϵ},
i.e. differ from the original point x in each element either by ϵ or −ϵ. Thus x̂ − x is
situated at one of the corners of the l∞-ball (modulo the components which are close
to the boundary). Note that all projections are done by clipping. Moreover, we fix the
elements of δ belonging to the same color channel to have the same sign, since we observed
that neural networks are particularly sensitive to such perturbations (see Sec. 3.5.3).

3.4.4 The l2-Square Attack

Initialization. The l2-perturbation is initialized by generating a 5×5 grid-like tiling by
squares of the image, where the perturbation on each tile has the shape described next in
the sampling distribution. The resulting perturbation x̂− x is rescaled to have l2-norm ϵ

and the resulting x̂ is projected onto [0, 1]d by clipping.

Figure 3.2: Perturbation of the l2-attack

Sampling distribution. First, let us
notice that the adversarial perturbations
typically found for the l2-norm tend to be
much more localized than those for the l∞-
norm (Tsipras et al., 2019), in the sense
that large changes are applied on some pix-
els of the original image, while many others
are minimally modified. To mimic this fea-
ture we introduce a new update η which
has two "centers" with large absolute value and opposite signs, while the other compo-
nents have lower absolute values as one gets farther away from the centers, but never
reaching zero (see Fig. 3.2 for one example with h = 8 of the resulting update η). In this
way the modifications are localized and with high contrast between the different halves,
which we found to improve the query efficiency. Concretely, we define η(h1,h2) ∈ Rh1×h2

51

Chapter 3. Square Attack: a Query-Efficient Black-Box Adversarial Attack
via Random Search

Algorithm 3: Sampling distribution P for l2-norm
Input: maximal norm ϵ, window size h, image size w, number of color channels c,

current image x̂, original image x
Output: New update δ

1 ν ← x̂− x
2 sample uniformly r1, s1, r2, s2 ∈ {0, . . . , w − h}
3 W1 := r1 + 1 : r1 + h, s1 + 1 : s1 + h, W2 := r2 + 1 : r2 + h, s2 + 1 : s2 + h

4 ϵ2unused ← ϵ2 − ∥ν∥22, η∗ ← η/∥η∥2 with η as in (3.2)
5 for i = 1, . . . , c do
6 ρ← Uniform({−1, 1})
7 νtemp ← ρη∗ + νW1,i/∥νW1,i∥2

8 ϵiavail ←
√
∥νW1∪W2,i∥22 + ϵ2

unused/c

9 νW2,i ← 0, νW1,i ← (νtemp/∥νtemp∥2)ϵiavail
10 end
11 δ ← x+ ν − x̂

original l∞-attack - ϵ∞ = 0.05 l2-attack - ϵ2 = 5

Figure 3.3: Visualization of the adversarial perturbations and examples found by the l∞- and
l2-versions of the Square Attack on ResNet-50

(for some h1, h2 ∈ N+ such that h1 ≥ h2) for every 1 ≤ r ≤ h1, 1 ≤ s ≤ h2 as

η(h1,h2)
r,s =

M(r,s)∑
k=0

1
(n+ 1− k)2 , with n =

⌊
h1
2

⌋
,

and M(r, s) = n −max{|r −
⌊

h1
2

⌋
− 1|, |s −

⌊
h2
2

⌋
− 1|}. The intermediate square update

η ∈ Rh×h is then selected uniformly at random from either

η =
(
η(h,k),−η(h,h−k)

)
, with k = ⌊h/2⌋ , (3.2)

or its transpose (corresponding to a rotation of 90◦).

Second, unlike l∞-constraints, l2-constraints do not allow to perturb each component inde-
pendently from the others as the overall l2-norm must be kept smaller than ϵ. Therefore,
to modify a perturbation x̂ − x of norm ϵ with localized changes while staying on the
hypersphere, we have to "move the mass" of x̂−x from one location to another. Thus, our
scheme consists in randomly selecting two squared windows in the current perturbation
ν = x̂ − x, namely νW1 and νW2 , setting νW2 = 0 and using the budget of ∥νW2∥2 to
increase the total perturbation of νW1 . Note that the perturbation of W1 is then a com-

52

3.5 Theoretical and Empirical Justification of the Method

bination of the existing perturbation plus the new generated η. We report the details of
this scheme in Algorithm 3 where step 4 allows to utilize the budget of l2-norm lost after
the projection onto [0, 1]d. The update δ output by the algorithm is such that the next
iterate x̂new = x̂+ δ (before projection onto [0, 1]d by clipping) belongs to the hypersphere
B2(x, ϵ) as stated in the following proposition.

Proposition 3.4.1. Let δ be the output of Algorithm 3. Then ∥x̂+ δ − x∥2 = ϵ.

3.5 Theoretical and Empirical Justification of the Method

We provide high-level theoretical justifications and empirical evidence regarding the algo-
rithmic choices in Square Attack, with focus on the l∞-version (the l2-version is signifi-
cantly harder to analyze).

3.5.1 Convergence Analysis of Random Search

First, we want to study the convergence of the random search algorithm when considering
an L-smooth objective function g (such as neural networks with activation functions like
softplus, swish, ELU, etc) on the whole space Rd (without projection2) under the following
assumptions on the update δt drawn from the sampling distribution Pt:

E∥δt∥22 ≤ γ2
tC and E|⟨δt, v⟩| ≥ C̃γt∥v∥2, ∀v ∈ Rd, (3.3)

where γt is the step size at iteration t, C, C̃ > 0 some constants and ⟨·, ·⟩ denotes the
inner product. We obtain the following result, similar to existing convergence rates for
zeroth-order methods (Nemirovsky and Yudin, 1983; Nesterov and Spokoiny, 2017; Duchi
et al., 2015):

Proposition 3.5.1. Suppose that E[δt] = 0 and the assumptions in Eq. (3.3) hold. Then
for step-sizes γt = γ/

√
T , we have

min
t=0,...,T

E∥∇g(xt)∥2≤
2

γC̃
√
T

(
g(x0)− Eg(xT +1) + γ2CL

2

)
.

This basically shows for T large enough one can make the gradient arbitrary small, meaning
that the random search algorithm converges to a critical point of g (one cannot hope for
much stronger results in non-convex optimization without stronger conditions).

Unfortunately, the second assumption in Eq. (3.3) does not directly hold for our sampling
distribution P for the l∞-norm (see Sup. 3.8.3), but holds for a similar one, Pmultiple,
where each component of the update δ is drawn uniformly at random from {−2ϵ, 2ϵ}. In

2Nonconvex constrained optimization under noisy oracles is notoriously harder (Davis and Drusvy-
atskiy, 2019).

53

Chapter 3. Square Attack: a Query-Efficient Black-Box Adversarial Attack
via Random Search

fact we show in Sup. 3.8.4, using the Khintchine inequality (Haagerup, 1981), that

E∥δt∥22 ≤ 4cε2h2 and E|⟨δt, v⟩| ≥
√

2cεh2

d
∥v∥2, ∀v ∈ Rd.

Moreover, while Pmultiple performs worse than the distribution used in Algorithm 2, we
show in Sec. 3.5.3 that it already reaches state-of-the-art results.

3.5.2 Why Squares?

Previous works (Seungyong et al., 2019; Meunier et al., 2019) build their l∞-attacks by
iteratively adding square modifications. Likewise we change square-shaped regions of the
image for both our l∞- and l2-attacks—with the difference that we can sample any square
subset of the input, while the grid of the possible squares is fixed in Seungyong et al.
(2019); Meunier et al. (2019). This leads naturally to wonder why squares are superior to
other shapes, e.g. rectangles.

Let us consider the l∞-threat model, with bound ϵ, input space Rd×d and a convolutional
filter w ∈ Rs×s with entries unknown to the attacker. Let δ ∈ Rd×d be the sparse update
with ∥δ∥0 = k ≥ s2 and ∥δ∥∞ ≤ ϵ. We denote by S(a, b) the index set of the rectangular
support of δ with |S(a, b)| = k and shape a× b. We want to provide intuition why sparse
square-shaped updates are superior to rectangular ones in the sense of reaching a maximal
change in the activations of the first convolutional layer.

Let z = δ ∗ w ∈ Rd×d denote the output of the convolutional layer for the update δ. The
l∞-norm of z is the maximal componentwise change of the convolutional layer:

∥z∥∞ = max
u,v
|zu,v| = max

u,v

∣∣∣∣ s∑
i,j=1

δu−⌊ s
2 ⌋+i,v−⌊ s

2 ⌋+j · wi,j

∣∣∣∣
≤ max

u,v
ϵ
∑
i,j

|wi,j |1(u−⌊ s
2 ⌋+i,v−⌊ s

2 ⌋+j)∈S(a,b),

where elements with indices exceeding the size of the matrix are set to zero. Note that the
indicator function attains 1 only for the non-zero elements of δ involved in the convolution
to get zu,v. Thus, to have the largest upper bound possible on |zu,v|, for some (u, v), we
need the largest possible amount of components of δ with indices in

C(u, v) =
{

(u− ⌊s2⌋+ i, v − ⌊s2⌋+ j) : i, j = 1, . . . , s
}

to be non-zero (that is in S(a, b)).

Therefore, it is desirable to have the shape S(a, b) of the perturbation δ selected so to
maximize the number N of convolutional filters w ∈ Rs×s which fit into the rectangle
a× b. Let F be the family of the objects that can be defined as the union of axis-aligned
rectangles with vertices on N2, and G ⊂ F be the squares of F of shape s× s with s ≥ 2.

54

3.5 Theoretical and Empirical Justification of the Method

Table 3.1: Ablation study of the l∞-Square Attack which shows how the individual design de-
cisions improve the performance. The fourth row corresponds to the method for which we have
shown convergence guarantees in Sec. 3.5.1. The last row corresponds to our final l∞-attack. c
indicates the number of color channels, h the length of the side of the squares, so that "# random
sign" c represents updates with constant sign for each color, while c ·h2 updates with signs sampled
independently of each other

Update # random Initialization Failure Avg. Median
shape signs rate queries queries

random c · h2 vert. stripes 0.0% 401 48
random c · h2 uniform rand. 0.0% 393 132
random c vert. stripes 0.0% 339 53
square c · h2 vert. stripes 0.0% 153 15

rectangle c vert. stripes 0.0% 93 16
square c uniform rand. 0.0% 91 26
square c vert. stripes 0.0% 73 11

We have the following proposition:

Proposition 3.5.2. Among the elements of F with area k ≥ s2, those which contain the
largest number of elements of G have

N∗ = (a− s+ 1)(b− s+ 1) + (r − s+ 1)+ (3.4)

of them, with a =
⌊√

k
⌋
, b =

⌊
k
a

⌋
, r = k − ab and z+ = max{z, 0}.

This proposition states that, if we can modify only k elements of δ, then shaping them
to form (approximately) a square allows to maximize the number of pairs (u, v) for which
|S(a, b) ∩ C(u, v)| = s2. If k = l2 then a = b = l are the optimal values for the shape of
the perturbation update, i.e. the shape is exactly a square.

3.5.3 Ablation Study

We perform an ablation study to show how the individual design decisions for the sampling
distribution of the random search improve the performance of l∞-Square Attack, confirm-
ing the theoretical arguments above. The comparison is done for an l∞-threat model of
radius ϵ = 0.05 on 1, 000 test points for a ResNet-50 model trained normally on ImageNet
(see Sec. 3.6 for details) with a query limit of 10, 000 and results are shown in Table 3.1.
Our sampling distribution is special in two aspects: i) we use localized update shapes in
form of squares and ii) the update is constant in each color channel. First, one can observe
that our update shape “square” performs better than “rectangle” as we discussed in the
previous section, and it is significantly better than “random” (the same amount of pixels
is perturbed, but selected randomly in the image). This holds both for c (constant sign
per color channel) and c · h2 (every pixel and color channel is changed independently of
each other), with an improvement in terms of average queries of 339 to 73 and 401 to
153 respectively. Moreover, with updates of the same shape, the constant sign over color
channels is better than selecting it uniformly at random (improvement in average queries:

55

Chapter 3. Square Attack: a Query-Efficient Black-Box Adversarial Attack
via Random Search

Table 3.2: Results of untargeted attacks on ImageNet with a limit of 10,000 queries. For
the l∞-attack we set the norm bound ϵ = 0.05 and for the l2-attack ϵ = 5. Models: normally
trained I: Inception v3, R: ResNet-50, V: VGG-16-BN. The Square Attack outperforms for both
threat models all other methods in terms of success rate and query efficiency. The missing entries
correspond to the results taken from the original paper where some models were not reported

Norm Attack Failure rate Avg. queries Med. queries

I R V I R V I R V

l∞

Bandits 3.4% 1.4% 2.0% 957 727 394 218 136 36
Parsimonious 1.5% - - 722 - - 237 - -
DFOc–CMA 0.8% 0.0% 0.1% 630 270 219 259 143 107

DFOd–Diag. CMA 2.3% 1.2% 0.5% 424 417 211 20 20 2
SignHunter 1.0% 0.1% 0.3% 471 129 95 95 39 43

Square Attack 0.3% 0.0% 0.0% 197 73 31 24 11 1

l2

Bandits 9.8% 6.8% 10.2% 1486 939 511 660 392 196
SimBA-DCT 35.5% 12.7% 7.9% 651 582 452 564 467 360

Square Attack 7.1% 0.7% 0.8% 1100 616 377 385 170 109

401 to 339 and 153 to 73). In total the algorithm with “square-c” needs more than 5×
less average queries than “random-c · h2”, showing that our sampling distribution is the
key to the high query efficiency of Square Attack.

The last innovation of our random search scheme is the initialization, crucial element
of every non-convex optimization algorithm. Our method (“square-c”) with the vertical
stripes initialization improves over a uniform initialization on average by ≈ 25% and,
especially, median number of queries (more than halved).

We want to also highlight that the sampling distribution “square-c·h2” for which we shown
convergence guarantees in Sec. 3.5.1 performs already better in terms of the success rate
and the median number of queries than the state of the art (see Sec. 3.6). For a more
detailed ablation, also for our l2-attack, see Sup. 3.10.

3.6 Experiments

In this section we show the effectiveness of the Square Attack. Here we concentrate on
untargeted attacks since our primary goal is query efficient robustness evaluation, while
the targeted attacks are postponed to the supplement. First, we follow the standard
setup (Ilyas et al., 2019a; Meunier et al., 2019) of comparing black-box attacks on three
ImageNet models in terms of success rate and query efficiency for the l∞- and l2-untargeted
attacks (Sec. 3.6.1). Second, we show that our black-box attack can even outperform white-
box PGD attacks on several models (Sec. 3.6.2). Finally, in the supplement we provide
more experimental details (Sup. 3.9), a stability study of our attack for different parameters
(Sup. 3.10) and random seeds (Sup. 3.11), and additional results including the experiments
for targeted attacks (Sup. 3.12).

56

3.6 Experiments

Inception v3 ResNet-50 VGG-16-BN

l∞ attacks
low query regime

l2-attacks
low query regime

Figure 3.4: Success rate in the low-query regime (up to 200 queries). ∗ denotes the results
obtained via personal communication with the authors and evaluated on 500 and 10,000 randomly
sampled points for BayesAttack (Shukla et al., 2019) and DFO (Meunier et al., 2019) methods,
respectively

3.6.1 Evaluation on ImageNet

We compare the Square Attack to state-of-the-art score-based black-box attacks (without
any extra information such as surrogate models) on three pretrained models in PyTorch
(Inception v3, ResNet-50, VGG-16-BN) using 1,000 images from the ImageNet validation
set. Unless mentioned otherwise, we use the code from the other papers with their sug-
gested parameters. As it is standard in the literature, we give a budget of 10,000 queries
per point to find an adversarial perturbation of lp-norm at most ϵ. We report the average
and median number of queries each attack requires to craft an adversarial example, to-
gether with the failure rate. All query statistics are computed only for successful attacks
on the points which were originally correctly classified.

Tables 3.2 and 3.3 show that the Square Attack, despite its simplicity, achieves in all the
cases (models and norms) the lowest failure rate, (< 1% everywhere except for the l2-
attack on Inception v3), and almost always requires fewer queries than the competitors
to succeed. Fig. 3.4 shows the progression of the success rate of the attacks over the first
200 queries. Even in the low query regime the Square Attack outperforms the competitors
for both norms. Finally, we highlight that the only hyperparameter of our attack, p,
regulating the size of the squares, is set for all the models to 0.05 for l∞ and 0.1 for
l2-perturbations.

l∞-attacks. We compare our attack to Bandits (Ilyas et al., 2019b), Parsimonious (Se-
ungyong et al., 2019), DFOc / DFOd (Meunier et al., 2019), and SignHunter (Al-Dujaili
and O’Reilly, 2020). In Table 3.2 we report the results of the l∞-attacks with norm bound
of ϵ = 0.05. The Square Attack always has the lowest failure rate, notably 0.0% in 2 out of
3 cases, and the lowest query consumption. Interestingly, our attack has median equal 1
on VGG-16-BN, meaning that the proposed initialization is particularly effective for this
model.

57

Chapter 3. Square Attack: a Query-Efficient Black-Box Adversarial Attack
via Random Search

Table 3.3: Query statistics for untargeted l2-attacks computed
for the points for which all three attacks are successful for fair
comparison

Attack Avg. queries Med. queries

I R V I R V
Bandits 536 635 398 368 314 177

SimBA-DCT 647 563 421 552 446 332
Square Attack 352 287 217 181 116 80

The closest competitor in
terms of the average number
of queries is SignHunter (Al-
Dujaili and O’Reilly, 2020),
which still needs on aver-
age between 1.8 and 3 times
more queries to find adversar-
ial examples and has a higher
failure rate than our attack.
Moreover, the median number of queries of SignHunter is much worse than for our method
(e.g. 43 vs 1 on VGG). We note that although DFOc–CMA (Meunier et al., 2019) is com-
petitive to our attack in terms of median queries, it has a significantly higher failure rate
and between 2 and 7 times worse average number of queries. Additionally, our method
is also more effective in the low-query regime (Fig. 3.4) than other methods (including
Shukla et al. (2019)) on all the models.

l2-attacks. We compare our attack to Bandits (Ilyas et al., 2019a) and SimBA (Guo
et al., 2019b) for ϵ = 5, while we do not consider SignHunter (Al-Dujaili and O’Reilly,
2020) since it is not as competitive as for the l∞-norm, and in particular worse than
Bandits on ImageNet (see Fig. 2 in Al-Dujaili and O’Reilly (2020)).

As Table 3.2 and Fig. 3.4 show, the Square Attack outperforms by a large margin the
other methods in terms of failure rate, and achieves the lowest median number of queries
for all the models and the lowest average one for VGG-16-BN. However, since it has a
significantly lower failure rate, the statistics of the Square Attack are biased by the "hard"
cases where the competitors fail. Then, we recompute the same statistics considering
only the points where all the attacks are successful (Table 3.3). In this case, our method
improves by at least 1.5× the average and by at least 2× the median number of queries.

3.6.2 Square Attack Can be More Accurate than White-box Attacks

Table 3.4: On the robust models of Madry
et al. (2018) and (Zhang et al., 2019b) on
MNIST l∞-Square Attack with ϵ = 0.3 achieves
state-of-the-art (SOTA) results outperforming
white-box attacks

Model Robust accuracy
SOTA Square

Madry et al. 88.13% 88.25%
TRADES 93.33% 92.58%

Here we test our attack on problems which
are challenging for both white-box PGD and
other black-box attacks. We use for evalu-
ation robust accuracy, defined as the worst-
case accuracy of a classifier when an attack
perturbs each input in some lp-ball. We show
that our algorithm outperforms the competi-
tors both on state-of-the-art robust models
and defenses that induce different types of
gradient masking. Thus, our attack is use-
ful to evaluate robustness without introducing adaptive attacks designed for each model
separately.

58

3.6 Experiments

Table 3.5: l2-robustness of the l∞-adversarially trained models of Madry et al. (2018) at different
thresholds ϵ. PGD is shown with 1, 10, 100 random restarts. The black-box attacks are given a
10k queries budget (see the supplement for details)

ϵ2

Robust accuracy
White-box Black-box

PGD1 PGD10 PGD100 SignHunter Bandits SimBA Square
2.0 79.6% 67.4% 59.8% 95.9% 80.1% 87.6% 16.7%
2.5 69.2% 51.3% 36.0% 94.9% 32.4% 75.8% 2.4%
3.0 57.6% 29.8% 12.7% 93.8% 12.5% 58.1% 0.6%

Outperforming white-box attacks on robust models. The models obtained with
the adversarial training of Madry et al. (2018) and TRADES (Zhang et al., 2019b) are
standard benchmarks to test adversarial attacks, which means that many papers have
tried to reduce their robust accuracy, without limit on the computational budget and
primarily via white-box attacks. We test our l∞-Square Attack on these robust models
on MNIST at ϵ = 0.3, using p = 0.8, 20k queries and 50 random restarts, i.e., we run
our attack 50 times and consider it successful if any of the runs finds an adversarial
example (Table 3.4). On the model of Madry et al (Madry et al., 2018) Square Attack
is only 0.12% far from the white-box state-of-the-art, achieving the second best result
(also outperforming the 91.47% of SignHunter (Al-Dujaili and O’Reilly, 2020) by a large
margin). On the TRADES benchmark (Zheng et al., 2019), our method obtains a new
SOTA of 92.58% robust accuracy outperforming the white-box attack of Croce and Hein
(2020a). Additionally, the subsequent work of Croce and Hein (2020b) uses the Square
Attack as part of their AutoAttack where they show that the Square Attack outperforms
other white-box attacks on 9 out of 9 MNIST models they evaluated. Thus, our black-box
attack can be also useful for robustness evaluation of new defenses in the setting where
gradient-based attacks require many restarts and iterations.

Resistance to gradient masking. In Table 3.5 we report the robust accuracy at differ-
ent thresholds ϵ of the l∞-adversarially trained models on MNIST of Madry et al. (2018)
for the l2-threat model. It is known that the PGD is ineffective since it suffers from gra-
dient masking (Tramèr and Boneh, 2019). Unlike PGD and other black-box attacks, our
Square Attack does not suffer from gradient masking and yields robust accuracy close to
zero for ϵ = 2.5, with only a single run. Moreover, the l2-version of SignHunter (Al-Dujaili
and O’Reilly, 2020) fails to accurately assess the robustness because the method optimizes
only over the extreme points of the l∞-ball of radius ϵ/

√
d embedded in the target l2-ball.

Attacking Clean Logit Pairing and Logit Squeezing. These two l∞ defenses pro-
posed in Kannan et al. (2018) were broken in Mosbach et al. (2018). However, Mosbach
et al. (2018) needed up to 10k restarts of PGD which is computationally prohibitive. Us-
ing the publicly available models from Mosbach et al. (2018), we run the Square Attack
with p = 0.3 and 20k query limit (results in Table 3.6). We obtain robust accuracy similar
to PGDR in most cases, but with a single run, i.e. without additional restarts. At the
same time, although on some models Bandits and SignHunter outperform PGD1, they on
average achieve significantly worse results than the Square Attack. This again shows the

59

Chapter 3. Square Attack: a Query-Efficient Black-Box Adversarial Attack
via Random Search

Table 3.6: l∞-robustness of Clean Logit Pairing (CLP), Logit Squeezing (LSQ) (Kannan et al.,
2018). The Square Attack is competitive to white-box PGD with many restarts (R=10,000, R=100
on MNIST, CIFAR-10 resp.) and more effective than black-box attacks (Ilyas et al., 2019a; Al-
Dujaili and O’Reilly, 2020)

ϵ∞ Model
Robust accuracy

White-box Black-box
PGD1 PGDR Bandits SignHunter Square

0.3 CLPMNIST 62.4% 4.1% 33.3% 62.1% 6.1%
LSQMNIST 70.6% 5.0% 37.3% 65.7% 2.6%

16/255 CLPCIFAR 2.8% 0.0% 14.3% 0.1% 0.2%
LSQCIFAR 27.0% 1.7% 27.7% 13.2% 7.2%

utility of the Square Attack to accurately assess robustness.

3.7 Conclusion

We have presented a simple black-box attack which outperforms by a large margin the
state-of-the-art both in terms of query efficiency and success rate. Our results suggest
that our attack is useful even in comparison to white-box attacks to better estimate the
robustness of models that exhibit gradient masking.

60

3.8 Proofs Omitted from Section 3.4 and Section 3.5

Appendix

3.8 Proofs Omitted from Section 3.4 and Section 3.5

In this section, we present the proofs omitted from Section 3.4 and Section 3.5.

3.8.1 Proof of Proposition 3.4.1

Let δ be the output of Algorithm 3. We prove here that ∥x̂+ δ − x∥2 = ϵ.

From Step 13 of Algorithm 3, we directly have the equality ∥x̂+ δ − x∥2 = ∥ν∥2. Let νold

be the update at the previous iteration, defined in Step 1 and W1 ∪W2 the indices not
belonging to W1 ∪W2. Then,

∥ν∥22 =
c∑

i=1
∥νW1∪W2,i∥22 +

c∑
i=1

∥∥∥νW1∪W2,i

∥∥∥2

2

=
c∑

i=1
∥νW1,i∥22 +

c∑
i=1

∥∥∥νW1∪W2,i

∥∥∥2

2

=
c∑

i=1
(ϵiavail)2 +

c∑
i=1

∥∥∥νW1∪W2,i

∥∥∥2

2

=
c∑

i=1

∥∥∥νold
W1∪W2,i

∥∥∥2

2
+ ϵ2unused +

c∑
i=1

∥∥∥νW1∪W2,i

∥∥∥2

2

(i)=
c∑

i=1

∥∥∥νold
W1∪W2,i

∥∥∥2

2
+ ϵ2unused +

c∑
i=1

∥∥∥νold
W1∪W2,i

∥∥∥2

2

=
∥∥∥νold

∥∥∥2

2
+ ϵ2unused

(ii)= ϵ2,

where (i) holds since νold
W1∪W2

≡ νW1∪W2
as the modifications affect only the elements in

the two windows, and (ii) holds by the definition of ϵunused in Step 4 of Algorithm 3.

3.8.2 Proof of Proposition 3.5.1

Using the L-smoothness of the function g, that is it holds for all x, y ∈ Rd,

∥∇g(x)−∇g(y)∥2 ≤ L ∥x− y∥2 .

we obtain (see e.g. Boyd and Vandenberghe (2004)):

g(xt + δt) ≤ g(xt) + ⟨∇g(xt), δt⟩+ L

2 ∥δt∥22,

61

Chapter 3. Square Attack: a Query-Efficient Black-Box Adversarial Attack
via Random Search

and by definition of xt+1 we have

g(xt+1) ≤ min{g(xt), g(xt + δt)}

≤ g(xt) + min{0, ⟨∇g(xt), δt⟩+ L

2 ∥δt∥22}.

Using the definition of the min as a function of the absolute value (2 min{a, b} = a+ b−
|a− b|) yields

g(xt+1) ≤ g(xt) + 1
2⟨∇g(xt), δt⟩+ L

4 ∥δt∥22 −
1
2 |⟨∇g(xt), δt⟩+ L

2 ∥δt∥22|.

And using the triangular inequality (|a+ b| ≥ |a| − |b|), we have

g(xt+1) ≤ g(xt) + 1
2⟨∇g(xt), δt⟩+ L

2 ∥δt∥22 −
1
2 |⟨∇g(xt), δt⟩|.

Therefore taking the expectation and using that Eδt = 0, we get

Eg(xt+1) ≤ Eg(xt)−
1
2E|⟨∇g(xt), δt⟩|+

L

2 E∥δt∥22.

Therefore, together with the assumptions in Eq. (3.3) this yields to

Eg(xt+1) ≤ Eg(xt)−
C̃γt

2 E∥∇g(xt)∥2 + LCγ2
t

2 .

and thus
E ∥∇g(xt)∥2 ≤

2
γtC̃

(
Eg(xt)− Eg(xt+1) + LCγ2

t

2

)
.

Thus for γt = γ we have summing for t = 0 : T

min
0≤i≤T

E∥∇g(xi)∥2 ≤
1
T

T∑
t=0

E∥∇g(xt)∥2

≤ 2
C̃γT

[
g(x0)− Eg(xT +1) + TLCγ2

2
]
.

We conclude setting the step-size to γ = Θ(1/
√
T).

3.8.3 Assumptions in Eq. (3.3) Do Not Hold for the Sampling Distribu-
tion P

Let us consider an update δ with a window size h = 2 and the direction v ∈ {−1, 1}w×w×c

defined as
vi

k,l = (−1)kl for all i, k, l.

62

3.8 Proofs Omitted from Section 3.4 and Section 3.5

It is easy to check that any update δ drawn from the sampling distribution P is orthogonal
to this direction v:

⟨v, δ⟩ =
c∑

i=1

r+2∑
k=r+1

s+2∑
l=s+1

(−1)kl = c(−1 + 1− 1 + 1) = 0.

Thus, E|⟨v, δ⟩| = 0 and the assumptions in Eq. (3.3) do not hold. This means that the
convergence analysis does not directly hold for the sampling distribution P .

3.8.4 Assumptions in Eq. (3.3) Hold for the Sampling Distribution P multiple

Let us consider the sampling distribution Pmultiple where different Rademacher ρk,l,i are
drawn for each pixel of the update window δr+1:r+h, s+1:s+h, i. We present it in Algorithm 4
with the convention that any subscript k > w should be understood as k−w. This technical
modification is greatly helpful to avoid side effect.

Let v ∈ Rw×w×c for which we have using the Khintchine inequality (Haagerup, 1981):

E|⟨δ, v⟩| = E|
r+h∑

k=r+1

s+h∑
l=s+1

c∑
i=1

δi
k,lv

i
k,l|

(i)= E(r,s)Eρ|
r+h∑

k=r+1

s+h∑
l=s+1

c∑
i=1

δi
k,lv

i
k,l|

(ii)
≥ 2ε√

2
E(r,s)∥V(r,s)∥2

(iii)
≥
√

2ε∥E(r,s)V(r,s)∥2

≥
√

2εh2

w2 ∥v∥2,

where we define by V(r,s) = {vi
k,l}k∈{r+1,...,r+h},l∈{s+1,...,s+h},i∈{1,...,c} and (i) follows from

the decomposition between the randomness of the Rademacher and the random window,
(ii) follows from the Khintchine inequality and (iii) follows from Jensen inequality.

Algorithm 4: Sampling distribution Pmultiple for l∞-norm
Input: maximal norm ϵ, window size h, image size w, color channels c
Output: New update δ

1 δ ← array of zeros of size w × w × c
2 sample uniformly r, s ∈ {0, . . . , w} ⊂ N
3 for i = 1, . . . , c do
4 δr+1:r+h, s+1:s+h, i ← Uniform({−2ϵ, 2ϵ}h×h)
5 end

63

Chapter 3. Square Attack: a Query-Efficient Black-Box Adversarial Attack
via Random Search

In addition we have for the variance:

E∥δ∥22 = E(r,s)

r+h∑
k=r+1

s+h∑
l=s+1

c∑
i=1

Eρ(δi
k,l)2

= E(r,s)

r+h∑
k=r+1

s+h∑
l=s+1

c∑
i=1

4ε2

= 4cε2h2.

Thus the assumptions in Eq. (3.3) hold for the sampling distribution Pmultiple.

3.8.5 Why Updates of Equal Sign?

Proposition 3.5.1 underlines the importance of a large inner product E[|⟨δt,∇g(xt)⟩|] in
the direction of the gradients. This provides some intuition explaining why the update
δsingle, where a single Rademacher is drawn for each window, is more efficient than the
update δmultiple where different Rademacher values are drawn. Following the observation
that the gradients are often approximately piecewise constant (Ilyas et al., 2019a), we
consider, as a heuristic, a piecewise constant direction v for which we will show that

E[|⟨δsingle, v⟩|] = Θ(∥v∥1) and E[|⟨δmultiple, v⟩|] = Θ(∥v∥2).

Therefore the directions sampled by our proposal are more correlated with the gradient
direction and help the algorithm to converge faster. This is also verified empirically in our
experiments (see the ablation study in Sup. 3.10).

Analysis. Let us consider the direction v ∈ Rw×w composed of different blocks

{V(r,s)}(r,s)∈{0,...,w/h}

of constant sign.

For this direction v we compare two different proposal Pmultiple and P single where we choose
uniformly one random block (r, s) and we either assign a single Rademacher ρ(r,s) to the
whole block (this is P single) or we assign multiple Rademacher values

{ρ(k,l)}k∈{rh+1,...,(r+1)h},l∈{sh+1,...,(s+1)h}

(this is Pmultiple). Using the Khintchine and Jensen inequalities similarly to Sec. 3.8.4, we
have

E|⟨δmultiple, v⟩| = E|
(r+1)h∑

k=rh+1

(s+1)h∑
l=sh+1

δk,lvk,l|

≥ 2ε√
2
E(r,s)∥V(r,s)∥2

64

3.8 Proofs Omitted from Section 3.4 and Section 3.5

≥
√

2εh2

w2 ∥v∥2.

Moreover, we can show the following upper bound using the Khintchine inequality and
the inequality between the l1- and l2-norms:

E|⟨δmultiple, v⟩| = E|
(r+1)h∑

k=rh+1

(s+1)h∑
l=sh+1

δk,lvk,l|

≤ 2εE(r,s)∥V(r,s)∥2

= 2εh2

w2

w/h∑
r=1

w/h∑
s=1
∥V(r,s)∥2

≤ 2εh
w
∥v∥2

Thus, E[|⟨δmultiple, v⟩|] = Θ(∥v∥2).

For the update δsingle we obtain

E|⟨δsingle, v⟩| = E|
(r+1)h∑

k=rh+1

(s+1)h∑
l=sh+1

δr,svk,l|

= E|δr,s

(r+1)h∑
k=rh+1

(s+1)h∑
l=sh+1

vk,l|

(i)= 2εE(r,s)∥V(r,s)∥1

= 2εh2

w2 ∥v∥1

where (i) follows from the fact the V(r,s) has a constant sign. We recover then the l1-norm
of the direction v, i.e. we conclude that E[|⟨δsingle, v⟩|] = Θ(∥v∥1).

This implies that for an approximately constant block E|⟨δsingle, v⟩| will be larger than
E|⟨δmultiple, v⟩|. For example, in the extreme case of constant binary block |V(r,s)| = 11⊤,
we have

E|⟨δsingle, v⟩| = 2εh2 >> E|⟨δmultiple, v⟩| ≍ 2εh.

3.8.6 Proof of Proposition 3.5.2

Let x ∈ F , and N(x) the number of elements of G that x contains. Let initialize x as
a square of size s × s, so that N(x) = 1. We then add iteratively the remaining k − s2

unitary squares to x so to maximize N(x).
In order to get N(x) = 2 it is necessary to increase x to have size s×(s+1). At this point,
again to get N(x) = 3 we need to add s squares to one side of x. However, if we choose
to glue them so to form a rectangle s × (s + 2), then N(x) = 3 and once more we need
other s squares to increase N , which means overall s2 + 3s to achieve N(x) = 4. If instead

65

Chapter 3. Square Attack: a Query-Efficient Black-Box Adversarial Attack
via Random Search

we glue s squares along the longer side, with only one additional unitary square we get
N(x) = 4 using s2 + 2s+ 1 < s2 + 3s unitary squares (as s ≥ 2), with x = (s+ 1)× (s+ 1).
Then, if the current shape of x is a× b with a ≥ b, the optimal option is adding a unitary
squares to have shape a× (b+ 1), increasing the count N of a− s+ 1. This strategy can
be repeated until the budget of k unitary squares is reached.
Finally, since we start from the shape s×s, then at each stage b−a ∈ {0, 1}, which means
that the final a will be

⌊√
k
⌋
. A rectangle a×b in F contains (a−s+1)(b−s+1) elements

of G. The remaining k − ab squares can be glued along the longer side, contributing to
N(x) with (k − ab− s+ 1)+.

3.9 Experimental Details

In this section, we list the main hyperparameters and various implementation details for
the experiments done in the main experiments (Sec. 3.6).

3.9.1 Experiments on ImageNet

For the untargeted Square Attack on the ImageNet models, we used p = 0.05 and p = 0.1
for the l∞- and l2- versions respectively. For Bandits, we used their code with their
suggested hyperparameters (specified in the configuration files) for both l∞ and l2. For
SignHunter, we used directly their code which does not have any hyperparameters (as-
suming that the finite difference probe δ is set to ϵ). For SimBA-DCT, we used the default
parameters of the original code apart from the following, which are the suggested ones
for each model: for ResNet-50 and VGG-16-BN "freq_dims" = 28, "order" = "strided"
and "stride" = 7, for Inception v3 "freq_dims" = 38, "order" = "strided" and "stride" = 9.
Notice that SimBA tries to minimize the l2-norm of the perturbations but it does not have
a bound on the size of the changes. Then we consider it successful when the adversarial
examples produced have norm smaller than the fixed threshold ϵ. The results for all other
methods were taken directly from the corresponding papers.

Evaluation of Bandits. The code of Bandits (Ilyas et al., 2019a) does not have image
standardization at the stage where the set of correctly points is determined (see https://
github.com/MadryLab/blackbox-bandits/issues/3). As a result, the attack is run only
on the set of points correctly classified by the network without standardization, although
the network was trained on standardized images. We fix this bug, and report the results
in Table 3.2 based on the fixed version of their code. We note that the largest difference of
our evaluation compared to the l∞ results reported in Appendix E of Ilyas et al. (2019a)
is obtained for the VGG-16-BN network: we get 2.0% failure rate while they reported
8.4% in their paper. Also, we note that the query count for Inception v3 we obtain is
also better than reported in Ilyas et al. (2019a): 957 instead of 1117 with a slightly better
failure rate. Our l2 results also differ – we obtain a significantly lower failure rate (9.8%,
6.8%, 10.2% instead of 15.5%, 9.7%, 17.2% for the Inception v3, ResNet-50, VGG-16-BN
networks respectively) with improved average number of queries (1486, 939, 511 instead

66

https://github.com/MadryLab/blackbox-bandits/issues/3
https://github.com/MadryLab/blackbox-bandits/issues/3

3.10 Ablation Study

failure rate avg. queries median queries

l∞ - ϵ = 0.05

l2 - ϵ = 5.0

Figure 3.5: Sensitivity of the Square Attack to different choices of
p ∈ {0.0125, 0.025, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4}, i.e. the initial fraction of pixels
changed by the attack, on ImageNet for a ResNet-50 model

of 1858, 993, 594).

3.9.2 Square Attack Can be More Accurate than White-box Attacks

For the l∞-Square Attack, we used p = 0.3 for all models on MNIST and CIFAR-10. For
Bandits on MNIST and CIFAR-10 adversarially trained models we used "exploration" =
0.1, "tile size" = 16, "gradient iters" = 1 following (Seungyong et al., 2019).

For the comparison of l2-attacks on the l∞-adversarially trained model of Madry et al.
(2018) we used the Square Attack with the usual parameter p = 0.1. For Bandits we used
the parameters "exploration" = 0.01, "tile size" = 28, "gradient iters" = 1, after running
a grid search over the three of them (all the other parameters are kept as set in the
original code). For SimBA we used the "pixel attack" with parameters "order" = "rand",
"freq_dims" = 28, step size of 0.50, after a grid search on all the parameters.

3.10 Ablation Study

Here we discuss in more detail the ablation study which justifies the algorithmic choices
made for our l∞- and l2-attacks. Additionally, we discuss the robustness of the attack to
the hyperparameter p, i.e. the initial fraction of pixels changed by the attack (see Fig. 3.5).
We perform all these experiments on ImageNet with a standardly trained ResNet-50 model
from the PyTorch repository.

67

Chapter 3. Square Attack: a Query-Efficient Black-Box Adversarial Attack
via Random Search

3.10.1 l∞-Square Attack

Sensitivity to the hyperparameter p. First of all, we note that for all values of p
we achieve 0.0% failure rate. Moreover, we achieve state-of-the-art query efficiency with
all considered values of p (from 0.0125 to 0.4), i.e. we have the average number of queries
below 140, and the median below 20 queries. Therefore, we conclude that the attack is
robust to a wide range of p, which is an important property of a black-box attack – since
the target model is unknown, and one aims at minimizing the number of queries needed
to fool the model, doing even an approximate grid search over p is prohibitively expensive.

Algorithmic choices. In addition to the results presented in Sec. 3.5.3, we show in
Table 3.7 the results of a few more variants of the Square Attack. We recall that “#
random signs” indicates how many different signs we sample to build the updates, with c

being the number of color channels and h the current size of the square-shaped updates.
Specifically, we test the performance of using a single random sign for all the elements
for the update, "square-1", which turns out to be comparable to “square-c · h2”, i.e. every
component of the update has sign independently sampled, but worse than keeping the sign
constant within each color channel (“square-c”).

In order to implement update shape “rectangle”, on every iteration and for every image we
sample α, β ∼ Exp(1) and take a rectangle with sides α · s and β · s, so that in expectation
its area is equal to s2, i.e. to the area of the original square. This update scheme performs
significantly better than changing a random subset of pixels (93 vs 339 queries on average),
but worse than changing squares (73 queries on average) as discussed in Sec. 3.5.2.

Finally, we show the results with two more initialization schemes: horizontal stripes (in-
stead of vertical), as well as initialization with randomly placed squares. While both
solutions lead to the state-of-the-art query efficiency (83 and 90 queries on average) com-
pared to the literature, they achieve worse results than the vertical stripes we choose for
our Square Attack.

3.10.2 l2-Square Attack

Sensitivity to the hyperparameter p. We observe that the l2-Square Attack is robust
to different choices in the range between 0.05 and 0.4 showing approximately the same
failure rate and query efficiency for all values of p in this range, while its performance
degrades slightly for very small initial squares p ∈ {0.0125, 0.025}.

Algorithmic choices. We analyze in Table 3.7 the sensitivity of the l2-attack to differ-
ent choices of the shape of the update and initialization.

In particular, we test an update with only one "center" instead of two, namely ηsingle = ηh,h

(following the notation of Eq. 3.2) and one, ηrand, where the step 7 in Algorithm 3 is
ρ ← Uniform({−1, 1}h×h) instead of ρ ← Uniform({−1, 1}), which means that each
element of η is multiplied randomly by either −1 or 1 independently (instead of all elements

68

3.11 Stability of the Attack under Different Random Seeds

Table 3.7: An ablation study for the performance of the l∞- and l2-Square Attack under various
algorithmic choices of the attack. The metrics are calculated on 1,000 ImageNet images for a
ResNet-50 model. The last row represents our recommended setting. For all experiments we used
the best performing p (0.05 for l∞ and 0.1 for l2)

l∞ ablation study
Update # random Initialization Failure Avg. Median
shape signs rate queries queries

random c · h2 vert. stripes 0.0% 401 48
random c · h2 uniform rand. 0.0% 393 132
random c vert. stripes 0.0% 339 53
square c · h2 vert. stripes 0.0% 153 15
square 1 vert. stripes 0.0% 129 18

rectangle c vert. stripes 0.0% 93 16
square c uniform rand. 0.0% 91 26
square c rand. squares 0.0% 90 20
square c horiz. stripes 0.0% 83 18
square c vert. stripes 0.0% 73 11

l2 ablation study

Update Initialization Failure Avg. Median
rate queries queries

ηrand ηrand-grid 3.3% 1050 324
ηsingle ηsingle-grid 0.7% 650 171
η gaussian 0.4% 696 189
η uniform 0.8% 660 187
η vert. stripes 0.8% 655 186
η η-grid 0.7% 616 170

multiplied by the same value). We can see that using different random signs in the update
and initialization (ηrand) significantly (1.5× factor) degrades the results for the l2-attack,
which is similar to the observation made for the l∞-attack.

Alternatively to the grid described in Sec. 3.4.4, we consider as starting perturbation
i) a random point sampled according to Uniform({−ϵ/

√
d, ϵ/
√
d}w×w×c), that is on the

corners of the largest l∞-ball contained in the l2-ball of radius ϵ (uniform initialization), ii)
a random position on the l2-ball of radius ϵ (Gaussian initialization) or iii) vertical stripes
similarly to what done for the l∞-Square Attack, but with magnitude ϵ/

√
d to fulfill

the constraints on the l2-norm of the perturbation. We note that different initialization
schemes do not have a large influence on the results of our l2-attack, unlike for the l∞-
attack.

3.11 Stability of the Attack under Different Random Seeds

Here we study the stability of the Square Attack over the randomness in the algorithm,
i.e. in the initialization, in the choice of the locations of square-shaped regions, and in
the choice of the values in the updates δ. We repeat 10 times experiments similar to the
ones reported in Sec. 3.6.1 and Sec. 3.6.2 with different random seeds for our attack, and

69

Chapter 3. Square Attack: a Query-Efficient Black-Box Adversarial Attack
via Random Search

Table 3.8: Mean and standard deviation of the main performance metrics of the Square Attack
across 10 different runs with different random seeds

ImageNet, ResNet-50
Norm ϵ Failure rate Avg. queries Median queries
l∞ 0.05 0.0%± 0.0% 72± 2 11± 1
l2 5 0.6%± 0.1% 638± 12 163± 8

MNIST, adversarially trained LeNet from (Madry et al., 2018)
Norm ϵ Robust accuracy Avg. queries Median queries
l∞ 0.3 87.0%± 0.1% 299± 47 52± 7
l2 2 16.0%± 1.4% 1454± 71 742± 78

report all the metrics with standard deviations in Table 3.8. On ImageNet, we evaluate the
failure rate (over initially correctly classified points) and query efficiency on 1,000 images
using ResNet-50. On MNIST, we evaluate the robust accuracy (i.e. the failure rate over
all points) and query efficiency on 1,000 images using the l∞-adversarially trained LeNet
from Madry et al. (2018). Note that unlike in Sec. 3.6.2 in both cases we use a single
restart for the attack on MNIST, and we compute the statistics on 1,000 points instead
of 10,000, thus the final results will differ.

On the ImageNet model, all these metrics are very concentrated for both the l∞- and the
l2-norms. Moreover, we note that the standard deviations are much smaller than the gap
between the Square Attack and the competing methods reported in Table 3.2. Thus we
conclude that the results of the attack are stable under different random seeds.

On the adversarially trained MNIST model from Madry et al. (2018), the robust accuracy
is very concentrated showing only 0.1% and 1.4% standard deviations for the l∞- and
the l2-norms respectively. Importantly, this is much less than the gaps to the nearest
competitors reported in Tables 3.4 and 3.5. We also show query efficiency for this model,
although for models with non-trivial robustness it is more important to achieve lower
robust accuracy, and query efficiency on successful adversarial examples is secondary. We
note that the standard deviation of the mean and median number of queries is higher than
for ImageNet, particularly for the l∞-ball of radius ϵ = 0.3 where the robust accuracy is
much higher than for the l2-ball of radius ϵ = 2. This is possibly due to the fact that
attacking more robust models (within a certain threat model) is a more challenging task
than, e.g., attacking standardly trained classifiers, as those used on ImageNet, which means
that a favorable random initialization or perturbation updates can have more influence on
the query efficiency.

3.12 Additional Experimental Results

This section contains results on targeted attacks, and also additional results on untargeted
attacks that complement the ImageNet results from Table 3.2. Moreover, we show that
the Square Attack is useful for evaluating the robustness of newly proposed defenses (see

70

3.12 Additional Experimental Results

Sec. 3.12.6).

3.12.1 Targeted Attacks

While in Sec. 3.6 we considered only untargeted attacks, here we report the results of the
different attacks in the targeted scenario.

Targeted Square Attack. In order to adapt our scheme to targeted attacks, where
one first choose a target class t and then tries to get the model f to classify a point x
as t, we need to modify the loss function L which is minimized (see Eq. (3.1)). For the
untargeted attacks we used the margin-based loss L(f(x), y) = fy(x)−maxk ̸=y fk(x), with
y the correct class of x. This loss could be straightforwardly adapted to the targeted case
as L(f(x), t) = −ft(x) + maxk ̸=t fk(x). However, in practice we observed that this loss
leads to suboptimal query efficiency. We hypothesize that the drawback of the margin-
based loss in this setting is that the maximum over k ̸= t is realized by different k at
different iterations, and then the changes applied to the image tend to cancel each other.
We observed this effect particularly on ImageNet which has a very high number of classes.

Instead, we use here as objective function the cross-entropy loss on the target class, defined
as

L(f(x), t) = −ft(x) + log
(

K∑
i=1

efi(x)
)
. (3.5)

Minimizing L is then equivalent to maximizing the confidence of the classifier in the target
class. Notice that in Eq. (3.5) the scores of all the classes are involved, so that it increases
the relative weight of the target class respect to the others, making the targeted attacks
more effective.

Table 3.9: Results of targeted attacks on ImageNet for Inception-v3 model using 100k query
limit for l∞, 60k for l2. The results for the competing methods for l∞ are taken from Meunier
et al. (2019), except SignHunter (Al-Dujaili and O’Reilly, 2020) which we evaluated using their
code

Norm Attack Failure rate Avg. queries Median queries

l∞

Bandits 7.5% 25341 18053
SignHunter 1.1% 8814 5481

Parsimonious 0.0% 7184 5116
DFOc – Diag. CMA 6.0% 6768 3797

DFOc – CMA 0.0% 6662 4692
Square Attack 0.0% 4584 2859

l2

Bandits 24.5% 20489 17122
SimBA-DCT 25.5% 30576 30180

Square Attack 33.5% 19794 15946

Experiments. We present the results for targeted attacks on ImageNet for Inception-
v3 model in Table 3.9. We calculate the statistics on 1,000 images (the target class is
randomly picked for each image) with query limit of 100,000 for l∞ and on 200 points

71

Chapter 3. Square Attack: a Query-Efficient Black-Box Adversarial Attack
via Random Search

and with query limit 60,000 for l2, as this one is more expensive computationally because
of the lower success rate, with the same norm bounds ϵ used in the untargeted case. We
use the Square Attack with p = 0.01 for l∞ and p = 0.02 for l2. The results for the
competing methods for l∞ are taken from Meunier et al. (2019), except SignHunter (Al-
Dujaili and O’Reilly, 2020) which was not evaluated in the targeted setting before, thus
we performed the evaluation using their code on 100 test points using the cross-entropy as
the loss function. For l2, we use Bandits (Ilyas et al., 2019a) with the standard parameters
used in the untargeted scenario, while we ran a grid search over the step size of SimBA
(we set it to 0.03) and keep the other hyperparameters as suggested for the Inception-v3
model.

The targeted l∞-Square Attack achieves 100% success rate and requires 1.5 times fewer
queries on average than the nearest competitor (Meunier et al., 2019), showing that even
in the targeted scenario our simple scheme outperforms the state-of-the-art methods. On
the other hand, our l2-attack suffers from worse higher failure rate than the competitors,
but achieves lower average and median number of queries (although on a different number
of successful points).

3.12.2 Success Rate on ImageNet for Different Number of Queries

In this section, we provide a more detailed comparison to the competitors from Table 3.2
under different query budgets and more comments about the low query regime experiment
in Fig. 3.4. We show in Fig. 3.6 the behaviour of the success rate for each attack depending
on the number queries. The success rates of the attacks from Meunier et al. (2019)
(DFOc–CMA–50 and DFOd–Diag. CMA–30) and Shukla et al. (2019) (BayesAttack) for
different number of queries were obtained via personal communication directly from the
authors, and were calculated on 500 and 10,000 randomly sampled points, respectively.
For the other attacks, as mentioned above, the success rate is calculated on 1,000 randomly
sampled points.

l∞-results. First, we observe that the Square Attack outperforms all other methods in
the standard regime with 10,000 queries. The gap in the success rate gets larger in the
range of 100-1000 queries for the more challenging Inception-v3 model, where we observe
over 10% improvement in the success rate over all other methods including SignHunter.
Our method also outperforms the BayesAttack in the low query regime, i.e. less than
200 queries, by approximately 20% on every model. We note that DFOd–Diag. CMA–30
method is also quite effective in the low query regime showing results close to BayesAttack.
However, it is also outperformed by our Square Attack.

l2-results. First, since the l2-version of SignHunter (Al-Dujaili and O’Reilly, 2020) is not
competitive to Bandits on ImageNet (see Fig. 2 in Al-Dujaili and O’Reilly (2020)), we do
not compare to them here. The l2-Square Attack outperforms both Bandits and SimBA,
and the gap is particularly large in the low query regime. We note that the success rate of
SimBA plateaus after some iteration. This happens due to the fact that their algorithm

72

3.12 Additional Experimental Results

Inception v3 ResNet-50 VGG-16-BN

l∞-attacks

l∞-attacks
low query regime

l2-attacks

l2-attacks
low query regime

Figure 3.6: Success rate vs number of queries for different attacks on ImageNet on three stan-
dardly trained models. The low query regime corresponds to up to 200 queries, while the standard
regime corresponds to 10,000 queries. ∗ denotes the results obtained via personal communication
with the authors and evaluated on 500 and 10,000 randomly sampled points for DFO (Meunier
et al., 2019) and BayesAttack (Shukla et al., 2019) methods, respectively

only adds orthogonal updates to the perturbation, and does not have any way to correct
the greedy decisions made earlier. Thus, there is no progress anymore after the norm of
the perturbation reaches the ϵ = 5 (note that we used for SimBA the same parameters
of the comparison between SimBA and Bandits in Guo et al. (2019b)). Contrary to this,
both Bandits and our attack constantly keep improving the success rate, although with a
different speed.

3.12.3 Performance on Architectures with Dilated Convolutions

In Sec. 3.5.2, we provided justifications for square-shaped updates for convolutional net-
works. Thus, a reasonable question is whether the Square Attack still works equally well
on less standard convolutional networks such as, for example, networks with dilated convo-
lutions. For this purpose, we evaluate three different architectures introduced in Yu et al.
(2017) that involve dilated convolutions: DRN-A-50, DRN-C-42 and DRN-D-38. We use
ϵ∞ = 0.05 as in the main ImageNet experiments from Table 3.2. We present the results

73

Chapter 3. Square Attack: a Query-Efficient Black-Box Adversarial Attack
via Random Search

Table 3.10: Results of untargeted l∞-perturbations produced by the Square Attack on architec-
tures with dilated convolutions

ϵ∞ Model Failure rate Avg. queries Median queries

0.05
DRN-A-50 0.0% 86 12
DRN-C-42 0.0% 57 7
DRN-D-38 0.0% 48 6

in Table 3.10 and observe that for all the three model the Square Attack achieves 100%
success rate and both average and median number of queries stay comparable to that of
VGG or ResNet-50 from Table 3.2. Thus, this experiment suggests that our attack can
be applied not only to standard convolutional networks, but also to more recent neural
network architectures.

3.12.4 Imperceptible Adversarial Examples with the Square Attack

Adversarial examples in general need not be imperceptible, for example adversarial patches
(Brown et al., 2017; Karmon et al., 2018) are clearly visible, and yet can be used to
attack machine learning systems deployed in-the-wild. However, if imperceptibility is the
goal, it can be easily ensured by adjusting the size of the allowed perturbations. In the
main ImageNet experiments in Table 3.2 we used ϵ∞ = 0.05 = 12.75/255 since this is
standard in the literature (Al-Dujaili and O’Reilly, 2020; Ilyas et al., 2019a; Meunier
et al., 2019; Seungyong et al., 2019), and for which all the considered attacks produce
visible perturbations. Below we additionally provide results on the more than 3× smaller
threshold ϵ∞ = 4/255 which leads to imperceptible perturbations (see Fig. 3.7). Our
attack still achieves almost perfect success rate requiring only a limited number of queries
as shown in Table 3.11. Thus, one can also generate imperceptibile adversarial examples
with the Square Attack simply by adjusting the perturbation size.

3.12.5 Analysis of Adversarial Examples that Require More Queries

Here we provide more visualizations of adversarial perturbations generated by the untar-
geted Square Attack for ϵ = 0.05 on ImageNet. We analyze here the inputs that require
more queries to be misclassified. We present the results in Fig. 3.8 where we plot ad-
versarial examples after 10, 100 and 500 iterations of our attack. First, we note that a
misclassification is achieved when the margin loss becomes negative. We can observe that
the loss decreases gradually over iterations, and a single update only rarely leads to a

Table 3.11: Results of untargeted imperceptible l∞-perturbations produced by the Square Attack
on standard architectures

ϵ∞ Model Failure rate Avg. queries Median queries

4/255
VGG 0.5% 424 115

ResNet-50 0.3% 652 213
Inception v3 5.4% 1013 391

74

3.12 Additional Experimental Results

Original image Perturbation Adversarial image

Figure 3.7: Visualization of the imperceptible adversarial examples found by the l∞ Square Attack
on ImageNet using ResNet-50 for ϵ∞ = 4/255. All the original images were correctly classified
while the adversarial images are misclassified by the model. The perturbations are amplified for
the visualization purpose

significant decrease of the loss. As the attack progresses over iterations, the size of the
squares is reduced according to our piecewise-constant schedule leading to more refined
perturbations since the algorithm accumulates a larger number of square-shaped updates.

75

Chapter 3. Square Attack: a Query-Efficient Black-Box Adversarial Attack
via Random Search

Margin loss 10 iterations 100 iterations 500 iterations

Class: limpkin Class: limpkin Class: dowitcher

0 100 200 300 400 500
Iteration

0

2

4

6

8

M
ar

gi
n

lo
ss

Class: tennis ball Class: tennis ball Class: fig

0 100 200 300 400 500
Iteration

0

2

4

6

M
ar

gi
n

lo
ss

Class: jinrikisha Class: jinrikisha Class: tricycle

0 100 200 300 400 500
Iteration

0

2

4

6

M
ar

gi
n

lo
ss

Figure 3.8: Visualization of adversarial examples for which the untargeted l∞ Square Attack
requires more queries. We visualize adversarial examples and perturbations after 10, 100 and 500
iterations of the attack. The experiment is done on ImageNet using ResNet-50 for ϵ∞ = 0.05.
Note that a misclassification is achieved when the margin loss becomes negative

76

3.12 Additional Experimental Results

3.12.6 Breaking the Post-averaging Defense

We investigate whether the l∞-robustness claims of Lin et al. (2019) hold (as reported in
https://www.robust-ml.org/preprints/). Their defense method is a randomized av-
eraging method similar in spirit to (Cohen et al., 2019). The difference is that (Lin et al.,
2019) sample from the surfaces of several d-dimensional spheres instead of the Gaussian
distribution, and they do not derive any robustness certificates, but rather measure ro-
bustness by the PGD attack. We use the hyperparameters specified in their code (K=15,
R=6 on CIFAR-10 and K=15, R=30 on ImageNet). We show in Table 3.12 that the pro-
posed defense can be broken by the l∞-Square Attack, which is able to reduce the robust
accuracy suggested by PGD from 88.4% to 15.8% on CIFAR-10 and from 76.1% to 0.4%
on ImageNet (we set p = 0.3 for our attack). This again highlights that straightforward
application of gradient-based white-box attacks may lead to inaccurate robustness estima-
tion, and usage of the Square Attack can prevent false robustness claims.

Table 3.12: l∞-robustness of the post-averaging randomized defense (Lin et al., 2019). The
Square Attack shows that these models are not robust

ϵ∞ Dataset Robust accuracy
Clean PGD Square

8/255 CIFAR-10 92.6% 88.4% 15.8%
ImageNet 77.3% 76.1% 0.4%

77

https://www.robust-ml.org/preprints/

4 RobustBench: a Standardized Ad-
versarial Robustness Benchmark

4.1 Preface

In this chapter, based on Croce et al. (2021), we focus on the problem of benchmarking
adversarial robustness of machine learning models. We introduce RobustBench, a stan-
dardized benchmark for adversarial robustness, which aims to provide a reliable evaluation
of the robustness of the considered models within a reasonable computational budget.

Summary As a research community, we are still lacking a systematic understanding
of the progress on adversarial robustness which often makes it hard to identify the most
promising ideas in training robust models. A key challenge in benchmarking robustness is
that its evaluation is often error-prone leading to robustness overestimation. Our goal is to
establish a standardized benchmark of adversarial robustness, which as accurately as pos-
sible reflects the robustness of the considered models within a reasonable computational
budget. To this end, we start by considering the image classification task and introduce
restrictions (possibly loosened in the future) on the allowed models. We evaluate adver-
sarial robustness with AutoAttack (Croce and Hein, 2020b), an ensemble of white- and
black-box attacks, which was recently shown in a large-scale study to improve almost all
robustness evaluations compared to the original publications. To prevent overadaptation
of new defenses to AutoAttack, we welcome external evaluations based on adaptive at-
tacks (Tramèr et al., 2020), especially where AutoAttack flags a potential overestimation
of robustness. Our leaderboard, hosted at https://robustbench.github.io/, contains
evaluations of 120+ models and aims at reflecting the current state of the art in image
classification on a set of well-defined tasks in ℓ∞- and ℓ2-threat models and on common
corruptions, with possible extensions in the future. Additionally, we open-source the li-
brary https://github.com/RobustBench/robustbench that provides unified access to
80+ robust models to facilitate their downstream applications. Finally, based on the col-
lected models, we analyze the impact of robustness on the performance on distribution
shifts, calibration, out-of-distribution detection, fairness, privacy leakage, smoothness, and
transferability.

79

https://robustbench.github.io/
https://github.com/RobustBench/robustbench

Chapter 4. RobustBench: a Standardized Adversarial Robustness Benchmark

Co-authors Francesco Croce, Vikash Sehwag, Edoardo Debenedetti, Nicolas Flammar-
ion, Mung Chiang, Prateek Mittal, Matthias Hein.

Contributions Maksym Andriushchenko, Francesco Croce, and Vikash Sehwag came
up with the project idea, implemented the RobustBench library (with the help from
Edoardo Debenedetti), and jointly conducted experiments.

4.2 Introduction

Since the finding that state-of-the-art deep learning models are vulnerable to small input
perturbations called adversarial examples (Szegedy et al., 2014), achieving adversarially
robust models has become one of the most studied topics in the machine learning com-
munity. The main difficulty of robustness evaluation is that it is a computationally hard
problem even for simple ℓp-bounded perturbations (Katz et al., 2017) and exact approaches
(Tjeng et al., 2019a) do not scale to large enough models. There are already more than
3000 papers on this topic (Carlini, 2021), but it is often unclear which defenses against
adversarial examples indeed improve robustness and which only make the typically used
attacks overestimate the actual robustness. There is an important line of work on rec-
ommendations for how to perform adaptive attacks that are selected specifically for a
particular defense (Athalye et al., 2018; Carlini et al., 2019a; Tramèr et al., 2020) which
have in turn shown that several seemingly robust defenses fail to be robust. However,
recently Tramèr et al. (2020) observe that although several recently published defenses
have tried to perform adaptive evaluations, many of them could still be broken by new
adaptive attacks. We observe that there are repeating patterns in many of these defenses
that prevent standard attacks from succeeding. This motivates us to impose restrictions
on the defenses we consider in our proposed benchmark, RobustBench, which aims at stan-
dardized adversarial robustness evaluation. Specifically, we rule out (1) classifiers which
have zero gradients with respect to the input (Buckman et al., 2018; Guo et al., 2018), (2)
randomized classifiers (Yang et al., 2019; Pang et al., 2020b), and (3) classifiers that use
an optimization loop at inference time (Samangouei et al., 2018; Li et al., 2019c). Often,
non-certified defenses that violate these three restrictions only make gradient-based at-
tacks harder but do not substantially improve robustness (Carlini et al., 2019a). However,
we will lift (some of) these constraints if a standardized reliable evaluation method for
those defenses becomes available. We start from benchmarking robustness with respect to
the ℓ∞- and ℓ2-threat models, since they are the most studied settings in the literature.
We use the recent AutoAttack (Croce and Hein, 2020b) as our current standard evalua-
tion which is an ensemble of diverse parameter-free attacks (white- and black-box) that
has shown reliable performance over a large set of models that satisfy our restrictions.
Moreover, we accept and encourage external evaluations, e.g. with adaptive attacks, to
improve our standardized evaluation, especially for the leaderboard entries whose evalu-
ation may be unreliable according to the flag that we propose. Additionally, we collect
models robust against common image corruptions (Hendrycks and Dietterich, 2019) as
these represent another important type of perturbations which should not change the

80

4.3 Background and related work

Figure 4.1: The top-3 entries of our CIFAR-10 leaderboard hosted at https://robustbench.gi
thub.io/ for the ℓ∞-perturbations of radius ε∞ = 8/255.

decision of a classifier.

Contributions. We make following key contributions with our RobustBench benchmark:

• Leaderboard (https://robustbench.github.io/): a website with the leader-
board (see Fig. 4.1) based on more than 120 evaluations where it is possible to
track the progress and the current state of the art in adversarial robustness based
on a standardized evaluation using AutoAttack complemented by (external) adap-
tive evaluations. The goal is to clearly identify the most successful ideas in training
robust models to accelerate the progress in the field.

• Model Zoo (https://github.com/RobustBench/robustbench): a collection of
the most robust models that are easy to use for any downstream applications. As
an example, we expect that this will foster the development of better adversarial
attacks by making it easier to perform evaluations on a large set of more than 80
models.

• Analysis: based on the collected models from the Model Zoo, we provide an analysis
of how robustness affects the performance on distribution shifts, calibration, out-of-
distribution detection, fairness, privacy leakage, smoothness, and transferability. In
particular, we find that robust models are significantly underconfident that leads to
worse calibration, and that not all robust models have higher privacy leakage than
standard models.

4.3 Background and related work

Adversarial perturbations. Let x ∈ Rd be an input point and y ∈ {1, . . . , C} be its
correct label. For a classifier f : Rd → RC , we define a successful adversarial perturbation

81

https://robustbench.github.io/
https://robustbench.github.io/
https://robustbench.github.io/
https://github.com/RobustBench/robustbench

Chapter 4. RobustBench: a Standardized Adversarial Robustness Benchmark

with respect to the perturbation set ∆ ⊆ Rd as a vector δ ∈ Rd such that

arg max
c∈{1,...,C}

f(x + δ)c ̸= y and δ ∈ ∆, (4.1)

where typically the perturbation set ∆ is chosen such that all points in x + δ have y

as their true label. This motivates a typical robustness measure called robust accuracy,
which is the fraction of datapoints on which the classifier f predicts the correct class
for all possible perturbations from the set ∆. Computing the exact robust accuracy is
in general intractable and, when considering ℓp-balls as ∆, NP-hard even for single-layer
neural networks (Katz et al., 2017; Weng et al., 2018). In practice, an upper bound on
the robust accuracy is computed via some adversarial attacks which are mostly based on
optimizing some differentiable loss (e.g., cross entropy) using local search algorithms like
projected gradient descent (PGD) in order to find a successful adversarial perturbation.
The tightness of the upper bound depends on the effectiveness of the attack: unsuitable
techniques or suboptimal parameters (e.g., the step size and the number of iterations)
can make the models appear more robust than they actually are (Engstrom et al., 2018;
Mosbach et al., 2018), especially in the presence of phenomena like gradient obfuscation
(Athalye et al., 2018). Certified methods (Wong and Kolter, 2018; Gowal et al., 2019a)
instead provide lower bounds on robust accuracy which often underestimate robustness
significantly, especially if the certification was not part of the training process. Thus, in
our benchmark, we do not measure lower bounds and focus only on upper bounds which
are typically much tighter (Tjeng et al., 2019a).

Threat models. We focus on the fully white-box setting, i.e. the model f is as-
sumed to be fully known to the attacker. The threat model is defined by the set ∆
of the allowed perturbations: the most widely studied ones are the ℓp-perturbations, i.e.
∆p = {δ ∈ Rd, ∥δ∥p ≤ ε}, particularly for p =∞ (Szegedy et al., 2014; Goodfellow et al.,
2015; Madry et al., 2018). We rely on thresholds ε established in the literature which
are chosen such that the true label should stay the same for each in-distribution input
within the perturbation set. We note that robustness towards small ℓp-perturbations is
a necessary but not sufficient notion of robustness which has been criticized in the lit-
erature (Gilmer et al., 2018). It is an active area of research to develop threat models
which are more aligned with the human perception such as spatial perturbations (Fawzi
and Frossard, 2015; Engstrom et al., 2019c), Wasserstein-bounded perturbations (Wong
et al., 2019; Hu et al., 2020), perturbations of the image colors (Laidlaw and Feizi, 2019)
or ℓp-perturbations in the latent space of a neural network (Laidlaw et al., 2020; Wong and
Kolter, 2020). However, despite the simplicity of the ℓp-perturbation model, it has numer-
ous interesting applications that go beyond security considerations (Tramèr et al., 2019;
Saadatpanah et al., 2020) and span transfer learning (Salman et al., 2020; Utrera et al.,
2020), interpretability (Tsipras et al., 2019; Kaur et al., 2019; Engstrom et al., 2019b),
generalization (Xie et al., 2020; Zhu et al., 2019; Bochkovskiy et al., 2020), robustness to
unseen perturbations (Kang et al., 2019a; Xie et al., 2020; Laidlaw et al., 2020; Kireev
et al., 2021), stabilization of GAN training (Zhong et al., 2020). Thus, improvements in
ℓp-robustness have the potential to improve many of these downstream applications.

82

4.3 Background and related work

Additionally, we provide leaderboards for common image corruptions (Hendrycks and
Dietterich, 2019) that try to mimic modifications of the input images which can occur
naturally. Unlike ℓp adversarial perturbations, they are not imperceptible and evaluation
on them is done in the average-case fashion, i.e. there is no attacker who aims at changing
the classifier’s decision. In this case, the robustness of a model is evaluated as classification
accuracy on the corrupted images, averaged over corruption types and severities.

Related libraries and benchmarks. There are many libraries that focus primarily
on implementations of popular adversarial attacks such as FoolBox (Rauber et al., 2017),
Cleverhans (Papernot et al., 2018), AdverTorch (Ding et al., 2019), AdvBox (Goodman
et al., 2020), ART (Nicolae et al., 2018), SecML (Melis et al., 2019), DeepRobust Li et al.
(2020a). Some of them also provide implementations of several basic defenses, but they do
not include up-to-date state-of-the-art models. The two challenges (Kurakin et al., 2018;
Brendel et al., 2018b) hosted at NeurIPS 2017 and 2018 aimed at finding the most robust
models for specific attacks, but they had a predefined deadline, so they could capture the
best defenses only at the time of the competition. Ling et al. (2019) proposed DEEPSEC,
a benchmark that tests many combinations of attacks and defenses, but suffers from a few
shortcomings as suggested by Carlini (2019): (1) reporting average-case instead of worst-
case performance over multiple attacks, (2) evaluating robustness in threat models different
from the ones used for training, (3) using excessively large perturbations. Chen and Gu
(2020) proposed a new hard-label black-box attack, RayS, and evaluated it on a range of
models which led to a leaderboard (https://github.com/uclaml/RayS). Despite being a
state-of-the-art hard-label black-box attack, the robust accuracy in the leaderboard given
by RayS still tends to be overestimated even compared to the original evaluations.

Recently, Dong et al. (2020) have provided an evaluation of a few defenses (in partic-
ular, 3 for ℓ∞- and 2 for ℓ2-norm on CIFAR-10) against multiple commonly used at-
tacks. However, they did not include some of the best performing defenses (Hendrycks
et al., 2019; Carmon et al., 2019; Gowal et al., 2020; Rebuffi et al., 2021) and attacks
(Gowal et al., 2019b; Croce and Hein, 2020a), and in a few cases, their evaluation sug-
gests robustness higher than what was reported in the original papers. Moreover, they
do not impose any restrictions on the models they accept to the benchmark. RobustML
(https://www.robust-ml.org/) aims at collecting robustness claims for defenses together
with external evaluations. Their format does not assume running any baseline attack, so
it relies entirely on evaluations submitted by the community, which however do not occur
often enough. Thus even though RobustML has been a valuable contribution to the com-
munity, now it does not provide a comprehensive overview of the recent state of the art
in adversarial robustness.

Finally, it has become common practice to test new attacks wrt ℓ∞ on the publicly available
models from Madry et al. (2018) and Zhang et al. (2019c), since those represent widely
accepted defenses which have stood many thorough evaluations. However, having only
two models per dataset (MNIST and CIFAR-10) does not constitute a sufficiently large
testbed, and, because of the repetitive evaluations, some attacks may already overfit to

83

https://github.com/uclaml/RayS
https://www.robust-ml.org/

Chapter 4. RobustBench: a Standardized Adversarial Robustness Benchmark

those defenses.

What is different in RobustBench. Learning from these previous attempts, RobustBench
presents a few different features compared to the aforementioned benchmarks: (1) a base-
line worst-case evaluation with an ensemble of strong, standardized attacks (Croce and
Hein, 2020b) which includes both white- and black-box attacks, unlike RobustML which
is solely based on adaptive evaluations, integrated by external evaluations, (2) we add a
flag in AutoAttack raised when the evaluation might be unreliable, in which case we do
additional adaptive evaluations ourselves and encourage the community to contribute, (3)
clearly defined threat models that correspond to the ones used during training of sub-
mitted models, (4) evaluation of not only standard defenses (Madry et al., 2018; Zhang
et al., 2019c) but also of more recent improvements such as (Carmon et al., 2019; Gowal
et al., 2020; Rebuffi et al., 2021). Moreover, RobustBench is designed as an open-ended
benchmark that keeps an up-to-date leaderboard, and we welcome contributions of new
defenses and evaluations using adaptive attacks. Finally, we open source the Model Zoo
for convenient access to the 80+ most robust models from the literature which can be used
for downstream tasks and facilitate the development of new standardized attacks.

4.4 Description of RobustBench

We start by providing a detailed layout of our proposed leaderboards for ℓ∞, ℓ2, and
common corruption threat models. Next, we present the Model Zoo, which provides
unified access to most networks from our leaderboards.

4.4.1 Leaderboard

Restrictions. We argue that accurate benchmarking adversarial robustness in a stan-
dardized way requires some restrictions on the type of considered models. The goal of these
restrictions is to prevent submissions of defenses that cause some standard attacks to fail
without truly improving robustness. Specifically, we consider only classifiers f : Rd → RC

that

• have in general non-zero gradients with respect to the inputs. Models with zero
gradients, e.g., that rely on quantization of inputs (Buckman et al., 2018; Guo et al.,
2018), make gradient-based methods ineffective thus requiring zeroth-order attacks,
which do not perform as well as gradient-based attacks. Alternatively, specific adap-
tive evaluations, e.g. with Backward Pass Differentiable Approximation (Athalye
et al., 2018), can be used which, however, can hardly be standardized. Moreover,
we are not aware of existing defenses solely based on having zero gradients for large
parts of the input space which would achieve competitive robustness.

• have a fully deterministic forward pass. To evaluate defenses with stochastic com-
ponents, it is a common practice to combine standard gradient-based attacks with

84

4.4 Description of RobustBench

Expectation over Transformations (Athalye et al., 2018). While often effective it
might be not sufficient, as shown by Tramèr et al. (2020). Moreover, the classi-
fication decision of randomized models may vary over different runs for the same
input, hence even the definition of robust accuracy differs from that of deterministic
networks. We note that randomization can be useful for improving robustness and
deriving robustness certificates (Lecuyer et al., 2019; Cohen et al., 2019), but it also
introduces variance in the gradient estimators (both white- and black-box) making
standard attacks much less effective.

• do not have an optimization loop in the forward pass. This makes backpropagation
through it very difficult or extremely expensive. Usually, such defenses (Samangouei
et al., 2018; Li et al., 2019c) need to be evaluated adaptively with attacks that rely
on a combination of hand-crafted losses.

Some of these restrictions were also discussed by Brown et al. (2018) for the warm-up
phase of their challenge. We refer the reader to Appendix E therein for an illustrative ex-
ample of a trivial defense that bypasses gradient-based and some of the black-box attacks
they consider. We believe that such constraints are necessary at the moment since they
allow an accurate standardized evaluation which makes the leaderboard meaningful and
sustainable. In fact, for defenses not fulfilling the restrictions there is no standard eval-
uation which is shown to generalize and perform well across techniques, thus one has to
resort to time-consuming adaptive attacks specifically tailored for each case. In the design
of our benchmark, we thought that it is more important that the robustness evaluation is
reliable, rather than being open to all possible defenses with the risk that the robustness
is drastically overestimated. As this can lead to a potential bias in our leaderboard, we
will lift the restrictions if reliable standardized evaluation methods for these modalities
become available in the literature.

Overall setup. We set up leaderboards for the ℓ∞, ℓ2 and common corruption threat
models on CIFAR-10, CIFAR-100 (Krizhevsky and Hinton, 2009), and ImageNet Deng
et al. (2009) datasets (see Table 4.1 for details). We use the fixed budgets of ε∞ = 8/255
and ε2 = 0.5 for the ℓ∞ and ℓ2 leaderboards for CIFAR-10 and CIFAR-100. For ImageNet,
we use ε∞ = 4/255 and in App. 4.10, we discuss how we handle that different models use
different image resolutions for ImageNet. Most of the models shown in the leaderboards are
taken from papers published at top-tier machine learning and computer vision conferences
as shown in Fig. 4.2 (left). For each entry we report the reference to the original paper,
standard and robust accuracy under the specific threat model (see the next paragraph
for details), network architecture, venue where the paper appeared and possibly notes
regarding the model. We also highlight when extra data (often, the dataset introduced by
Carmon et al. (2019)) is used since it gives a clear advantage for both clean and robust
accuracy. If any other attack achieves lower robust accuracy than AutoAttack then we
also report it. Moreover, the leaderboard allows to search the entries by their metadata
(such as title, architecture, venue) which can be useful to compare different methods that
use the same architecture or to search for papers published at some conference.

85

Chapter 4. RobustBench: a Standardized Adversarial Robustness Benchmark
IC

LR
 20

18
IJC

AI
20

19
IC

ML
 20

19
CV

PR
 20

19
IC

CV
 20

19
Ne

ur
IPS

 20
19

CV
PR

 20
20

IC
LR

 20
20

IC
ML

 20
20

Ne
ur

IPS
 20

20
IC

LR
 20

21
Un

pu
bli

sh
ed

20%

30%

40%

50%

60%

70%

Au
to

At
ta

ck
 ro

bu
st

 a
cc

ur
ac

y

Models without extra data
Models with extra data

0% 10% 20% 30% 40% 50% 60% 70%
Reported robust accuracy

0%

10%

20%

30%

40%

50%

60%

70%

Au
to

At
ta

ck
 ro

bu
st

 a
cc

ur
ac

y

Models without extra data
Models with extra data

78% 80% 82% 85% 88% 90% 92% 95%
Standard accuracy

20%

30%

40%

50%

60%

70%

Au
to

At
ta

ck
 ro

bu
st

 a
cc

ur
ac

y

Models without extra data
Models with extra data

Figure 4.2: Visualization of the robustness and accuracy of 54 CIFAR-10 models from the
RobustBench ℓ∞-leaderboard. Robustness is evaluated using ℓ∞-perturbations with ε∞ = 8/255.

Evaluation of defenses. The evaluation of robust accuracy on common corruptions
(Hendrycks and Dietterich, 2019) involves simply computing the average accuracy on cor-
rupted images over different corruption types and severity levels.1 To evaluate robustness
of ℓ∞ and ℓ2 defenses, we currently use AutoAttack (Croce and Hein, 2020b). It is an
ensemble of four attacks that are run sequentially: a variation of PGD attack with au-
tomatically adjusted step sizes, with (1) the cross entropy loss and (2) the difference of
logits ratio loss, which is a rescaling-invariant margin-based loss function, (3) the targeted
version of the FAB attack (Croce and Hein, 2020a), which minimizes the ℓp-norm of the
perturbations, and (4) the black-box Square Attack (Andriushchenko et al., 2020). Each
subsequent attack is run on the points for which an adversarial example has not been
found by the preceding attacks. We choose AutoAttack as it includes both black-box and
white-box attacks, does not require hyperparameter tuning (in particular, the step size),
and consistently improves the results reported in the original papers for almost all the
models (see Fig. 4.2 (middle)). If in the future some new standardized and parameter-free
attack is shown to consistently outperform AutoAttack on a wide set of models given a
similar computational cost, we will adopt it as standard evaluation. In order to verify
the reproducibility of the results, we perform the standardized evaluation independently
of the authors of the submitted models. We encourage evaluations of the models in the
leaderboard with adaptive or external attacks to reflect the best available upper bound
on the true robust accuracy (see a pre-formatted issue template in our repository2), in
particular in the case where AutoAttack flags that it might not be reliable (see paragraph
below). For example, Gowal et al. (2020) and Rebuffi et al. (2021) evaluate their models
with a hybrid of AutoAttack and MultiTargeted attack (Gowal et al., 2019b), that in
some cases reports slightly lower robust accuracy than AutoAttack alone. We reflect the
additional evaluations in our leaderboard by reporting in a separate column the robust
accuracy for the worst case of AutoAttack and all other evaluations. Below we show an
example of how one can use our library to easily benchmark a model (either external one
or taken from the Model Zoo):

1A breakdown over corruptions and severities is also available, e.g. for CIFAR-10 models
see: https://github.com/RobustBench/robustbench/blob/master/model_info/cifar10/corruptions/unaggregat
ed_results.csv

2https://github.com/RobustBench/robustbench/issues/new/choose

86

 https://github.com/RobustBench/robustbench/blob/master/model_info/cifar10/corruptions/unaggregated_results.csv
 https://github.com/RobustBench/robustbench/blob/master/model_info/cifar10/corruptions/unaggregated_results.csv
https://github.com/RobustBench/robustbench/issues/new/choose

4.4 Description of RobustBench

from robustbench.eval import benchmark
clean_acc, robust_acc = benchmark(model, dataset='cifar10', threat_model='Linf')

Moreover, in Appendix 4.11 we also show the variability of the robust accuracy given by
AutoAttack over random seeds and report its runtime for a few models from different
threat models.

Identifying potential need for adaptive attacks. Although AutoAttack provides an
accurate estimation of robustness for most models that satisfy the restrictions mentioned
above, there might still be corner cases when AutoAttack overestimates robustness of a
model that satisfies the restrictions. Carlini et al. (2019a) suggest that one indicator of
possible overestimation of robustness is when black-box attacks are more effective than
white-box ones. We noticed that this is the case for the model from Xiao et al. (2020)
where the black-box Square Attack (Andriushchenko et al., 2020) improves by more than
10% the robust accuracy given by the previous white-box attacks in AutoAttack. We run
a simple adaptive attack: Square Attack with multiple random restarts (30 instead of 1)
decreases the robust accuracy from the 18.50% of AutoAttack to 7.40%. We note that
AutoAttack did not fail completely for this model and correctly revealed a lower level of
robustness than reported (52.4%), although the exact robust accuracy was overestimated.
Based on this case, we integrate a flag in AutoAttack: a warning is output whenever
Square Attack reduces of more than 0.2% the robust accuracy compared to the white-box
gradient-based attacks in AutoAttack. In this case, AutoAttack evaluation might be not
fully reliable and adaptive attacks might be necessary, so we flag the corresponding entries
in the leaderboard (currently, only the model of Xiao et al. (2020)). Moreover, for the
sake of convenience, we also integrate in AutoAttack flags that automatically inform the
user if the restrictions are violated.3

Adding new defenses. We believe that the leaderboard is only useful if it reflects the
latest advances in the field, so it needs to be constantly updated with new defenses. We
intend to include evaluations of new techniques and we welcome contributions from the
community which help to keep the benchmark up-to-date. We require new entries to (1)
satisfy the three restrictions stated above, (2) to be accompanied by a publicly available
paper (e.g., an arXiv preprint) describing the technique used to achieve the reported
results, and (3) share the model checkpoints (not necessarily publicly). We also allow
temporarily adding entries without providing checkpoints given that the authors evaluate
their models with AutoAttack. However, we will mark such evaluations as unverified,
and to encourage reproducibility, we reserve the right to remove an entry later on if the
corresponding model checkpoint is not provided. It is possible to add a new defense to
the leaderboard and (optionally) the Model Zoo by opening an issue with a predefined
template in our repository https://github.com/RobustBench/robustbench, where more
details about new additions can be found.

3See https://github.com/fra31/auto-attack/blob/master/flags_doc.md for details

87

https://github.com/RobustBench/robustbench
https://github.com/fra31/auto-attack/blob/master/flags_doc.md

Chapter 4. RobustBench: a Standardized Adversarial Robustness Benchmark

Table 4.1: The total number of models in the Model Zoo and leaderboards per dataset and threat
model.

CIFAR-10 CIFAR-100 ImageNet

Threat model Model Zoo Leaderboard Model Zoo Leaderboard Model Zoo Leaderboard

ℓ∞ 39 63 14 14 5 6
ℓ2 17 18 - - - -
Common corruptions 7 15 2 4 5 7

4.4.2 Model Zoo

We collect the checkpoints of many networks from the leaderboard in a single repository
hosted at https://github.com/RobustBench/robustbench after obtaining the permis-
sion of the authors (see Appendix 4.8 for the information on the licenses). The goal of
this repository, the Model Zoo, is to make the usage of robust models as simple as possible
to facilitate various downstream applications and analyses of general trends in the field.
In fact, even when the checkpoints of the proposed method are made available by the
authors, it is often time-consuming and not straightforward to integrate them in the same
framework because of many factors such as small variations in the architectures, custom
input normalizations, etc. For simplicity of implementation, at the moment we include
only models implemented in PyTorch (Paszke et al., 2017). Below we illustrate how a
model can be automatically downloaded and loaded via its identifier and threat model
within two lines of code:

from robustbench.utils import load_model
model = load_model(model_name='Ding2020MMA', dataset='cifar10', threat_model='L2')

At the moment, all models (see Table 4.1 and Appendix 4.13 for details) are variations
of ResNet (He et al., 2016a) and WideResNet architectures (Zagoruyko and Komodakis,
2016) of different depth and width. However, we note that the benchmark and Model
Zoo are not restricted only to residual or convolutional networks, and we are ready to add
any other architecture. We include the most robust models, e.g. those from Rebuffi et al.
(2021), but there are also defenses which pursue additional goals alongside adversarial
robustness at the fixed threshold we use: e.g., Sehwag et al. (2020b) consider networks
which are robust and compact, Wong et al. (2020) focus on computationally efficient
adversarial training, Ding et al. (2020) aim at input-adaptive robustness as opposed to
robustness within a single ℓp-radius. All these factors have to be taken into account when
comparing different techniques, as they have a strong influence on the final performance.
Thus, we highlight these factors in the footnotes below each paper’s title.

A testbed for new attacks. Another important use case of the Model Zoo is to simplify
comparisons between different adversarial attacks on a wide range of models. First, the
leaderboard already serves as a strong baseline for new attacks. Second, as mentioned
above, new attacks are often evaluated on the models from Madry et al. (2018) and Zhang
et al. (2019c), but this may not provide a representative picture of their effectiveness. For

88

https://github.com/RobustBench/robustbench

4.5 Analysis

example, currently the difference in robust accuracy between the first and second-best
attacks in the CIFAR-10 leaderboard of Madry et al. (2018) is only 0.03%, and between
the second and third is 0.04%. Thus, we believe that a more thorough comparison should
involve multiple models to prevent overfitting of the attack to one or two standard robust
defenses.

4.5 Analysis

With unified access to multiple models from the Model Zoo, one can easily compute various
performance metrics to see general trends. We analyze various aspects of robust classifiers,
mostly for ℓ∞-robust models on CIFAR-10. Results for other threat models and datasets
can be found in App. 4.12.

Progress on adversarial defenses. In Fig. 4.2, we plot a breakdown over conferences,
the amount of robustness overestimation reported in the original papers, and we also
visualize the robustness-accuracy trade-off for the ℓ∞-models from the Model Zoo. First,
we observe that for multiple published defenses, the reported robust accuracy is highly
overestimated. We also find that the use of extra data is able to alleviate the robustness-
accuracy trade-off as suggested in previous works (Raghunathan et al., 2020). However,
so far all models with high robustness to perturbations of ℓ∞-norm up to ε = 8/255
still suffer from noticeable degradation in clean accuracy compared to standardly trained
models. Finally, it is interesting to note that the best entries of the ℓp-leaderboards are
still variants of PGD adversarial training (Madry et al., 2018; Zhang et al., 2019c) but
with various enhancements (extra data, early stopping, weight averaging).

Performance across various distribution shifts. We test the performance of the
models from the Model Zoo on different distribution shifts ranging from common image
corruptions (CIFAR-10-C, Hendrycks and Dietterich (2019)) to dataset resampling bias
(CIFAR-10.1, Recht et al. (2019)) and image source shift (CINIC-10, Darlow et al. (2018)).
For each of these datasets, we measure standard accuracy, and Fig. 4.3 shows that improve-
ment in robust accuracy (which often comes with an improvement in standard accuracy)
on CIFAR-10 correlates with an improvement in standard accuracy across distributional
shifts. On CIFAR-10-C, robust models (particularly with respect to the ℓ2-norm) tend
to give a significant improvement which agrees with the findings in Ford et al. (2019).
Concurrently with our work, Taori et al. (2020a) study the robustness to different distri-
bution shifts of many models trained on ImageNet, including some ℓp-robust models. Our
conclusions qualitatively agree with theirs, and we hope that our collected set of models
will help to provide a more complete picture. Moreover, we measure robust accuracy, in
the same threat model used on CIFAR-10, using AutoAttack (Croce and Hein, 2020b)
(see Fig. 4.10 in Appendix 4.12), in order to see how ℓp adversarial robustness generalizes
across the datasets representing different distributions shifts, and observe a clear positive
correlation between robust accuracy on CIFAR-10 and its variations.

Calibration. A classifier is calibrated if its predicted probabilities correctly reflect the

89

Chapter 4. RobustBench: a Standardized Adversarial Robustness Benchmark

0% 5%
60%

65%

70%

75%

80%

85%

90%

95%

100%

St
an

da
rd

 a
cc

ur
ac

y

40% 45% 50% 55% 60% 65% 70%

CIFAR-10
CINIC-10

CIFAR-10.1
CIFAR-10-C

Robust accuracy (CIFAR-10,)
0% 5%

60%

65%

70%

75%

80%

85%

90%

95%

100%

St
an

da
rd

 a
cc

ur
ac

y

65% 70% 75% 80% 85%

CIFAR-10
CINIC-10

CIFAR-10.1
CIFAR-10-C

Robust accuracy (CIFAR-10, 2)
70.0 72.5 75.0 77.5 80.0 82.5 85.0 87.5 90.0

Robust accuracy (CIFAR-10, corruptions)

60

65

70

75

80

85

90

95

100

St
an

da
rd

 a
cc

ur
ac

y

CIFAR-10
CINIC-10

CIFAR-10.1
CIFAR-10-C

Figure 4.3: Standard accuracy of classifiers trained against ℓ∞ (left), ℓ2 (middle), and common
corruption (right) threat model respectively, from our Model Zoo on various distribution shifts.

actual accuracy (Guo et al., 2017). In the context of adversarial training, calibration
was considered in Hendrycks et al. (2020) who focus on improving accuracy on common
corruptions and in Augustin et al. (2020) who focus mostly on preventing overconfident
predictions on out-of-distribution inputs. We instead focus on in-distribution calibration,
and in Fig. 4.4 plot the expected calibration error (ECE) without and with temperature
rescaling (Guo et al., 2019b) to minimize the ECE (which is a simple but effective post-hoc
calibration method, see Appendix 4.12 for details) together with the optimal temperature
for a large set of ℓ∞ models. We observe that most of the ℓ∞ robust models are significantly
underconfident since the optimal calibration temperature is less than one for most models.
The only two models in Fig. 4.4 which are overconfident are the standard model and the
model of Ding et al. (2020) that aims to maximize the margin. We see that temperature
rescaling is even more important for robust models since without any rescaling the ECE is
as high as 70% for the model of Pang et al. (2020c) (and 21% on average) compared to 4%
for the standard model. Temperature rescaling significantly reduces the ECE gap between
robust and standard models but it does not fix the problem completely which suggests that
it is worth incorporating calibration techniques also during training of robust models. For
ℓ2 robust models, the models can be on the contrary more calibrated by default, although
the improvement vanishes if temperature rescaling is applied (see Appendix 4.12).

0%

20%

40%

60%

40% 50% 60% 70%
 robust accuracy

E
C

E
 (u

nc
al

ib
ra

te
d)

ECE of standard model
Models with extra data
Models without extra data

0%
1.0%

1.5%

2.0%

2.5%

3.0%

40% 50% 60% 70%
 robust accuracy

E
C

E
 (c

al
ib

ra
te

d)

ECE of standard model
Models with extra data
Models without extra data

0%
0.0

0.5

1.0

1.5

2.0

40% 50% 60% 70%
 robust accuracy

O
pt

im
al

 te
m

pe
ra

tu
re

No temperature rescaling
Models with extra data
Models without extra data

Figure 4.4: Expected calibration error (ECE) before (left) and after (middle) temperature
rescaling, and the optimal rescaling temperature (right) for the ℓ∞-robust models.

Out-of-distribution detection. Ideally, a classifier should exhibit high uncertainty in
its predictions when evaluated on out-of-distribution (OOD) inputs. One of the most
straightforward ways to extract this uncertainty information is to use some threshold on
the predicted confidence where OOD inputs are expected to have low confidence from
the model (Hendrycks and Gimpel, 2017). An emerging line of research aims at devel-

90

4.5 Analysis

oping OOD detection methods in conjunction with adversarial robustness (Hein et al.,
2019; Sehwag et al., 2019; Augustin et al., 2020). In particular, Song et al. (2020) demon-
strated that adversarial training (Madry et al., 2018) leads to degradation in the robustness
against OOD data. We further test this observation on all ℓ∞-models trained on CIFAR-10
from the Model Zoo on three OOD datasets: CIFAR-100 (Krizhevsky and Hinton, 2009),
SVHN (Netzer et al., 2011), and Describable Textures Dataset (Cimpoi et al., 2014). We
use the area under the ROC curve (AUROC) to measure the success in the detection of
OOD data, and show the results in Fig. 4.5. With ℓ∞ robust models, we find that com-
pared to standard training, various robust training methods indeed lead to degradation of
the OOD detection quality. While extra data in standard training can improve robustness
against OOD inputs, it fails to provide similar improvements with robust training. We
further find that ℓ2 robust models have in general comparable OOD detection performance
to standard models (see Fig. 4.12 in Appendix), while the model of Augustin et al. (2020)
achieves even better performance since their approach explicitly optimizes both robust
accuracy and worst-case OOD detection performance.

0% 5%
65

70

75

80

85

90

95

100

AU
RO

C

40% 45% 50% 55% 60% 65% 70%

Models without extra data
Models with extra data

Robust accuracy (CIFAR-10)
0% 5%

65

70

75

80

85

90

95

100

AU
RO

C

40% 45% 50% 55% 60% 65% 70%

Models without extra data
Models with extra data

Robust accuracy (CIFAR-10)
0% 5%

65

70

75

80

85

90

95

100

AU
RO

C

40% 45% 50% 55% 60% 65% 70%

Models without extra data
Models with extra data

Robust accuracy (CIFAR-10)

Figure 4.5: Visualization of the OOD detection quality (higher AUROC is better) for the ℓ∞-
robust models trained on CIFAR-10 on three OOD datasets: CIFAR-100 (left), SVHN (middle),
Describable Textures (right). We detect OOD inputs based on the maximum predicted confi-
dence (Hendrycks and Gimpel, 2017).

Fairness in robustness. Recent works (Benz et al., 2020; Xu et al., 2020) have noticed
that robust training Madry et al. (2018); Zhang et al. (2019c) can lead to models whose
performance varies significantly across subgroups, e.g. defined by classes. We will refer to
this performance difference as fairness, and here we study the influence of robust training
methods on fairness. In Fig. 4.6 we show the breakdown of standard and robust accuracy
for the ℓ∞ robust models, where one can see how the achieved robustness largely varies over
classes. While in general the classwise standard and robust accuracy correlate well, the
class “deer” in ℓ∞-threat model suffers a significant degradation, unlike what happens for
ℓ2 (see Appendix 4.12), which might indicate that the features of such class are particularly
sensitive to ℓ∞-bounded attacks. Moreover, we measure fairness with the relative standard
deviation (RSD), defined as the standard deviation divided over the average, of robust
accuracy over classes for which lower values mean more uniform distribution and higher
robustness. We observe that better robust accuracy generally leads to lower RSD values
which implies that the disparity among classes is reduced. (with a strong linear trend):
improving the robustness of the models has then the effect of reducing the disparities
among classes. However, some training techniques like MART Wang et al. (2020) can

91

Chapter 4. RobustBench: a Standardized Adversarial Robustness Benchmark

noticeably increase the RSD and thus increase the disparity compared to other methods
which achieve similar robustness (around 57%).

plane car bird cat deer dog frog horse ship truck

20%

40%

60%

80%

100%

Ac
cu

ra
cy

45% 50% 55% 60% 65%
Robust accuracy

0.25

0.30

0.35

0.40

0.45

RS
D

Models without extra data
Models with extra data

Figure 4.6: Fairness of ℓ∞-robust models. Left: classwise standard (dotted lines) and robust
(solid) accuracy. Right: relative standard deviation (RSD) of robust accuracy over classes vs its
average.

Privacy leakage. Deep neural networks are prone to memorizing training data Shokri
et al. (2017); Carlini et al. (2019b). Recent work has highlighted that robust training
exacerbates this problem Song et al. (2019). We benchmark privacy leakage of training
data across robust networks (Fig. 4.7). We calculate membership inference accuracy using
output confidence of adversarial images from the training and test sets (see Appendix 4.12
for more details). It measures how accurately we can infer whether a sample was present in
the training dataset. Our analysis reveals mixed trends. First, our results show that not all
robust models have a significantly higher privacy leakage than a standard model. We find
that the inference accuracy across robust models has a large variation, where some models
even have lower privacy leakage than a standard model, and there is no strong correlation
with robust accuracy. In contrast, it is largely determined by the generalization gap, as
using the classifier confidence does not lead to a much higher inference accuracy than the
baseline determined by the generalization gap (as shown in Fig. 4.7 (right)). Thus one
can expect lower privacy leakage in robust networks as previous work explicitly aimed to
reduce the generalization gap in robust training e.g. via early stopping Rice et al. (2020);
Zhang et al. (2019c); Gowal et al. (2020).

0% 5%
50%

52%

55%

57%

60%

62%

65%

68%

70%

In
fe

re
nc

e
ac

cu
ra

cy
 u

sin
g

co
nf

id
en

ce

40% 45% 50% 55% 60% 65% 70%

Models without extra data
Models with extra data

Robust accuracy (CIFAR-10)

50% 55% 60% 65% 70%
Inference accuracy Using label

[= 50 + (generalization-gap) / 2]

50%

55%

60%

65%

70%

In
fe

re
nc

e
ac

cu
ra

cy
 u

sin
g

co
nf

id
en

ce

Models without extra data
Models with extra data

Figure 4.7: Privacy leakage of ℓ∞-robust models. We measure privacy leakage of training data
in robust networks and compare it with robust accuracy (left) and generalization gap (right).

Extra experiments. In Appendix 4.12, we show extra experiments related to the points
analyzed above and describe some of the implementation details. Also, we study how

92

4.6 Outlook

adversarial perturbations transfer between different models. We find that adversarial ex-
amples strongly transfer from robust to robust, non-robust to robust, and non-robust to
non-robust networks. However, we observe poor transferability of adversarial examples
from robust to non-robust networks. Finally, since prior works Hein and Andriushchenko
(2017a); Yang et al. (2020) connected higher smoothness with better robustness, we ana-
lyze the smoothness of the models both at intermediate and output layers. This confirms
that, for a fixed architecture, standard training yields classifiers that are significantly less
smooth than robust ones. This study of properties of networks illustrates another useful
aspect of our Model Zoo.

4.6 Outlook

Conclusions. We believe that a standardized benchmark with clearly defined threat mod-
els, restrictions on submitted models, and tight upper bounds on robust accuracy is useful
to show which ideas in training robust models are the most successful. While AutoAttack
is for most models very reliable and accurate and allows a standardized comparison, we
ensure by flagging potentially unreliable evaluations and doing additional adaptive attacks
that the benchmark reflects the best possible robustness assessment with limited resources
as the exact robustness evaluation is computationally infeasible. We remark that recent
works have already referred to our leaderboards Koh et al. (2020); Yu et al. (2021); Maho
et al. (2021); Tao et al. (2021); Xu et al. (2021), in particular as reflecting the current
state of the art Rebuffi et al. (2021); Li et al. (2021); Pang et al. (2021b), and used the
networks of our Model Zoo to test new adversarial attacks Melis et al. (2019); Rony et al.
(2020); Faghri et al. (2021); Schwinn et al. (2021), evaluate test-time defenses Wang et al.
(2021) or perceptual distances derived from them Ju (2021), explore further properties of
robust models Stutz et al. (2021); Zhang and Evans (2021). Additionally, we have shown
that unified access to a large and up-to-date set of robust models can be useful to ana-
lyze multiple aspects related to robustness. First, one can easily analyze the progress of
adversarial defenses over time including the amount of robustness overestimation and the
robustness-accuracy tradeoff. Second, one can conveniently study the impact of robust-
ness on other performance metrics such as accuracy under distribution shifts, calibration,
out-of-distribution detection, fairness, privacy leakage, smoothness, and transferability.
Overall, we think that the community has to develop a better understanding of how dif-
ferent types of robustness affect other aspects of the model performance and RobustBench
can help to achieve this goal. Finally, we note that a good performance on our benchmark
does not guarantee the safety of the benchmarked model in a real-world deployment since
ℓp- and corruption robustness may not be sufficiently representative of all realistic threat
models.

Future plans. Our intention in the future is to keep the current leaderboards up-to-date
(see the maintenance plan in Appendix 4.9) and add new leaderboards for other datasets
and other threat models which become widely accepted in the community. We see as
potential candidates (1) sparse perturbations, e.g. bounded by ℓ0, ℓ1-norm or adversar-

93

Chapter 4. RobustBench: a Standardized Adversarial Robustness Benchmark

ial patches (Brown et al., 2017; Croce and Hein, 2019; Modas et al., 2019; Croce et al.,
2020), (2) multiple ℓp-norm perturbations (Tramèr and Boneh, 2019; Maini et al., 2020),
(3) adversarially optimized common corruptions (Kang et al., 2019a,b), (4) a broad set
of perturbations unseen during training (Laidlaw et al., 2020). Another possible direction
is the development of a standardized evaluation of recent defenses based on some form of
test-time adaptation (Shi et al., 2021; Wang et al., 2021), which do not fulfill the third
restriction (no optimization loop). Finally, although the benchmark currently focuses on
image classification, we think that its structure and principles should apply to other tasks
(e.g., image segmentation (Xie et al., 2017), image retrieval (Tolias et al., 2019)) and do-
mains (e.g., natural language processing (Alzantot et al., 2018), malware detection (Grosse
et al., 2017)) where adversarial robustness can be of interest. Since this direction requires
more domain-specific expertise, we welcome contributions from different communities to
expand RobustBench.

94

4.7 Broader impact

Appendix

4.7 Broader impact

We note that the restrictions we impose on the defenses allowed in our benchmark could
lead to a potential bias of the community which discourages research in certain directions.
It is certainly not our goal to discourage research in directions which violate restrictions
of the benchmark. However, without these restrictions a reliable evaluation of adversarial
robustness is not feasible and a reliable evaluation of adversarial robustness in order to
identify true advances in the field is key for further progress. Thus we think that these
restrictions are unavoidable for a benchmark but we are working on relaxing the restrictions
as much as possible.

Additionally, in motivating higher robustness against adversarial examples, our work may
leave an unwanted side effect on tasks where adversarial attacks can actually be used
for beneficial purposes Kulynych et al. (2020); Shan et al. (2020); Rahman et al. (2020).
However, this is true for any paper that aims at improving adversarial robustness (either
directly or indirectly via, e.g., a standardized benchmark).

On the positive side, in our work, we do not only perform a standardized benchmarking
of adversarial robustness but also analyze multiple other properties of robust models such
as calibration, privacy leakage, fairness, etc. In our opinion, such analyses are important
since they allow us to assess the broader impact of improving robustness on other crucial
performance metrics of neural networks.

Finally, we note that a good performance on our benchmark does not guarantee the safety
of the benchmarked model in a real-world deployment which is likely to require more
domain-specific threat models. ℓp-bounded adversarial attacks can be a realistic threat
model in applications where it is possible to input an image directly in a digital format
(Tramèr et al., 2019; Saadatpanah et al., 2020). However, attacks in-the-wild (Kurakin
et al., 2017; Evtimov et al., 2018) are usually much more involved and differ considerably
from the presented simple ℓp-perturbations. Moreover, the common corruptions we used
for evaluation from Hendrycks and Dietterich (2019) are artificially generated, and thus
may differ from the corruptions encountered in the real world. Taking this into account,
we suggest to always think critically about the robustness requirements that are necessary
for a particular application at hand.

4.8 Licenses

The code used for benchmarking is released under MIT license. The code of AutoAt-
tack (Croce and Hein, 2020b) that our benchmark relies on has been released under the
MIT license as well. The classifiers in the Model Zoo are added according to the per-

95

Chapter 4. RobustBench: a Standardized Adversarial Robustness Benchmark

mission given by the authors with the license they choose: most of the models have MIT
license, other have more restrictive ones such as Attribution-NonCommercial-ShareAlike
4.0 International, Apache License 2.0, BSD 3-Clause License. The details can be found at
https://github.com/RobustBench/robustbench/blob/master/LICENSE. The CIFAR-
10 and CIFAR-100 datasets (Krizhevsky and Hinton, 2009) are obtained via the PyTorch
loaders (Paszke et al., 2017), while CIFAR-10-C and CIFAR-100-C Hendrycks and Diet-
terich (2019), with the common corruptions, are downloaded from the official release (see
https://zenodo.org/record/2535967#.YLYf9agzaUk and https://zenodo.org/recor
d/3555552#.YLYeJagzaUk). The validation set of ImageNet is not hosted or downloaded
by our provided evaluation code, but it needs to be downloaded in advance directly by the
user.

4.9 Maintenance plan

Here we discuss the main aspects of maintaining RobustBench and the costs associated
with it:

• Hosting the website (https://robustbench.github.io/): we host our leader-
board using GitHub pages4 which is a free service.

• Hosting the library (https://github.com/RobustBench/robustbench): the code
of our library is hosted on GitHub5 which offers the basic features that we need to
maintain the library for free.

• Hosting the models: to ensure the availability of the models from the Model Zoo,
we host them in our own cloud storage on Google Drive6. At the moment, they take
around 24 GB of space which fits into the 100 GB storage plan that costs 2 USD
per month.

• Running evaluations: we run all evaluations on the GPU servers that are available
to our research groups which incurs no extra costs.

Moreover, as we mention in the outlook (Sec. 4.6), we also plan to expand the benchmark
to new datasets and threat models which can slightly increase the required maintenance
costs since we may need to upgrade the storage plan. We also expect the benchmark to be
community-driven and to encourage this we have provided instructions7 on how to submit
new entries to the leaderboard and to the Model Zoo.

4https://pages.github.com/
5https://github.com/
6https://www.google.com/drive/
7https://github.com/RobustBench/robustbench#adding-a-new-model

96

https://github.com/RobustBench/robustbench/blob/master/LICENSE
https://zenodo.org/record/2535967#.YLYf9agzaUk
https://zenodo.org/record/3555552#.YLYeJagzaUk
https://zenodo.org/record/3555552#.YLYeJagzaUk
https://robustbench.github.io/
https://github.com/RobustBench/robustbench
https://pages.github.com/
https://github.com/
https://www.google.com/drive/
https://github.com/RobustBench/robustbench#adding-a-new-model

4.10 Details of the ImageNet leaderboards

4.10 Details of the ImageNet leaderboards

Extending the benchmark to ImageNet presents some challenges compared to CIFAR-10
and CIFAR-100. First, the ImageNet validation set (usually used as the test set) contains
50’000 images which makes it infeasible to run expensive evaluations on it. Thus, we define
a fixed subset (5’000 randomly sampled images in our case) for faster evaluation, whose
image IDs we make available in the Model Zoo. Second, it is not obvious how to handle
the fact that different models may use different preprocessing techniques (e.g., different
resolution, cropping, etc) which makes the search space for an attack not fully comparable
across defenses. For this, we decide to allow models with different preprocessing steps
and input resolution, considering them yet another design choice similarly to the choice
of the network architecture which also has a large influence on the final results. Since
in the ℓ∞-threat model the constraints are componentwise independent, we use the same
threshold ε∞ = 4/255 for every classifier, regardless of the input dimensionality which is
used after preprocessing.

4.11 Reproducibility and runtime

Here we discuss the main aspects of the reproducibility of the benchmark.

First of all, the code to run the benchmark on a given model is available in our repository,
and an example of how to run it is given in the README file. The installation instructions
are also provided in the README file and the requirements will be installed automatically.

To satisfy other points from the reproducibility checklist8 which are applicable to our
benchmark, we also discuss next the variability of the robust accuracy over random seeds
and the average runtime of the benchmark. Evaluation of the accuracy on common cor-
ruptions (Hendrycks and Dietterich, 2019) is deterministic if we do not take into account
non-deterministic operations on computational accelerators such as GPUs9 which, how-
ever, do not affect the resulting accuracy. On the other hand, robustness evaluation
using AutoAttack has an element of randomness since it relies on random initialization
of the starting points and also on the randomness in the update of the Square Attack
(Andriushchenko et al., 2020). To show the effect of randomness on the robust accuracy
given by AutoAttack, we repeat evaluation over four random seeds on four models avail-
able in the Model Zoo from different threat models covering all datasets considered. In
Table 4.2, we report the average robust accuracy with its standard deviation and observe
that different seeds lead to very similar results. Moreover, we indicate the runtime of each
evaluation, which is largely influenced by the size of the model, the computing infrastruc-
ture (every run uses a single Tesla V100 GPU), and the dataset. Moreover, less robust
models require less time for evaluation which is due to the fact that AutoAttack does not
further attack a point if an adversarial example is already found by some preceding attack

8https://www.cs.mcgill.ca/~jpineau/ReproducibilityChecklist.pdf
9https://pytorch.org/docs/stable/notes/randomness.html

97

https://www.cs.mcgill.ca/~jpineau/ReproducibilityChecklist.pdf
https://pytorch.org/docs/stable/notes/randomness.html

Chapter 4. RobustBench: a Standardized Adversarial Robustness Benchmark

in the ensemble.

Additionally, as mentioned above, for ImageNet we have randomly sampled and fixed
5000 images from the validation set. We provide the IDs of those images and code to load
them in our repository. Note that we use the same set of images for ℓp-robustness and for
common corruptions, in which case for every point 15 types of corruptions at 5 severity
levels are applied, consistently with the other datasets.

Finally, when we extended the benchmark to ImageNet, we noticed that different versions
of PyTorch and torchvision may lead to small differences in the standard accuracy (up
to 0.16% on 5000 points for the same model). We suspect this is due to minor variations
in the implementation of the preprocessing functions (such as resizing). Thus, we fix in
the requirements torch==1.7.1 and torchvision==0.8.2 to ensure reproducibility. Note
that the overall ranking and level of robustness of the defenses should not be influenced
by using different versions of these libraries. We have not noticed similar issues for the
other datasets.

Table 4.2: Statistics about the standardized evaluation with AutoAttack when repeated for four
random seeds. We can see that the robust accuracy has very small fluctuations. We also report
the runtime for the different models which is much smaller for less robust models.

Dataset Norm Paper Architecture Clean acc. Robust acc. Time
CIFAR-10 ℓ∞ Gowal et al. (2020) WRN-28-10 89.48% 62.82% ± 0.016 11.8 h
CIFAR-10 ℓ2 Rebuffi et al. (2021) WRN-28-10 91.79% 78.80% ± 0.000 15.1 h
CIFAR-100 ℓ∞ Wu et al. (2020b) WRN-34-10 60.38% 28.84% ± 0.018 6.6 h
ImageNet ℓ∞ Salman et al. (2020) ResNet-18 52.92% 25.31% ± 0.010 1.6 h

4.12 Additional analysis

In this section, we show more results on different datasets and/or threat models and discuss
some implementation details related to the analysis from Sec. 4.5. We also additionally
analyze the smoothness and transferability properties of the models from the Model Zoo.

Progress on adversarial defenses. As done in the main part for the ℓ∞-robust models
on CIFAR-10, we show here the same statistics but for ℓ2-robust models on CIFAR-10 in
Fig. 4.8 and for ℓ∞-robust models on CIFAR-100 in Fig. 4.9. We observe a few differences
compared to the ℓ∞-robust models on CIFAR-10 reported in Fig. 4.2. First of all, the
amount of robustness overestimation is not large and in particular there are no models that
have zero robust accuracy. Second, we can see that the best ℓ2-robust models on CIFAR-
10 has even higher standard accuracy than a standard model (95.74% vs 94.78%) while
having a significantly higher robust accuracy (82.32% vs 0.00%) and leaving a relatively
small gap between the standard and robust accuracy. Finally, we note that the progress
on the ℓ∞-threat model on CIFAR-100 is more recent and there are only a few published
papers that report adversarial robustness on this dataset.

98

4.12 Additional analysis

CV
PR

 20
19

IC
LR

 20
20

IC
ML

 20
20

EC
CV

 20
20

Ne
ur

IPS
 20

20

Un
pu

bli
sh

ed

65%

68%

70%

72%

75%

78%

80%

82%
Au

to
At

ta
ck

 ro
bu

st
 a

cc
ur

ac
y

Models without extra data
Models with extra data

65% 68% 70% 72% 75% 78% 80% 82%
Reported robust accuracy

65%

68%

70%

72%

75%

78%

80%

82%

Au
to

At
ta

ck
 ro

bu
st

 a
cc

ur
ac

y

Models without extra data
Models with extra data

88% 90% 92% 94% 96%
Standard accuracy

65%

68%

70%

72%

75%

78%

80%

82%

Au
to

At
ta

ck
 ro

bu
st

 a
cc

ur
ac

y

Models without extra data
Models with extra data

Figure 4.8: Visualization of the robustness and accuracy of 13 CIFAR-10 models from the
RobustBench ℓ2-leaderboard. Robustness is evaluated using ℓ2-perturbations with ε2 = 0.5.

IC
ML

 20
19

IC
ML

 20
20

Ne
ur

IPS
 20

20

Un
pu

bli
sh

ed

20%

25%

30%

35%

40%

Au
to

At
ta

ck
 ro

bu
st

 a
cc

ur
ac

y

Models without extra data
Models with extra data

20% 25% 30% 35%
Reported robust accuracy

20%

25%

30%

35%

Au
to

At
ta

ck
 ro

bu
st

 a
cc

ur
ac

y

Models without extra data
Models with extra data

52% 55% 57% 60% 62% 65% 68% 70% 72%
Standard accuracy

20%

25%

30%

35%

Au
to

At
ta

ck
 ro

bu
st

 a
cc

ur
ac

y

Models without extra data
Models with extra data

Figure 4.9: Visualization of the robustness and accuracy of 12 CIFAR-100 models from the
RobustBench ℓ∞-leaderboard. Robustness is evaluated using ℓ∞-perturbations with ε∞ = 8/255.

Robustness across distribution shifts. We measure robust accuracy on various distri-
bution shifts using four dataset, namely CIFAR-10, CINIC-10, CIFAR-10.1, and CIFAR-
10-C. In particular, we compute the robust accuracy in the same threat model as for the
original CIFAR-10 dataset, and report the results in Fig. 4.10. Interestingly, one can
observe that ℓp adversarial robustness is maintained under the distribution shifts, and
it highly correlates with the robustness on the dataset the models were trained on (i.e.
CIFAR-10).

0% 5%

0%

10%

20%

30%

40%

50%

60%

70%

80%

Ro
bu

st
 a

cc
ur

ac
y

40% 45% 50% 55% 60% 65% 70%

CIFAR-10
CINIC-10

CIFAR-10.1
CIFAR-10-C

Robust accuracy (CIFAR-10,)
0% 5%

0%

10%

20%

30%

40%

50%

60%

70%

80%

Ro
bu

st
 a

cc
ur

ac
y

65% 70% 75% 80% 85%

CIFAR-10
CINIC-10

CIFAR-10.1
CIFAR-10-C

Robust accuracy (CIFAR-10, 2)

Figure 4.10: Robust accuracy of the robust classifiers, trained against ℓ∞ and ℓ2 threat model,
respectively, from our Model Zoo on various distribution shifts. The data points with 0% robust
accuracy correspond to a standardly trained model.

Calibration. We compute the expected calibration error (ECE) using the code of Guo
et al. (2017). We use their default settings to compute the calibration error which includes,
in particular, binning of the probability range onto 15 equally-sized bins. However, we
use our own implementation of the temperature rescaling algorithm which is close to that

99

Chapter 4. RobustBench: a Standardized Adversarial Robustness Benchmark

of Augustin et al. (2020). Since optimization of the ECE over the softmax temperature
is a simple one-dimensional optimization problem, we can solve it efficiently using a grid
search. Moreover, the advantage of performing a grid search is that we can optimize
directly the metric of interest, i.e. ECE, instead of the cross-entropy loss as in Guo
et al. (2017) who had to rely on a differentiable loss since they used LBFGS (Liu and
Nocedal, 1989) to optimize the temperature. We perform a grid search over the interval
t ∈ [0.001, 1.0] with a grid step 0.001 and we test both t and 1/t temperatures. Moreover,
we check that for all models the optimal temperature t is situated not at the boundary of
the grid.

We show additional calibration results for ℓ2-robust models in Fig. 4.11. The overall trend
of the ECE is the same as for ℓ∞-robust models: most of the ℓ2 models are underconfident
(since the optimal temperature is less than one) and lead to worse calibration before and
after temperature rescaling. The main difference compared to the ℓ∞ threat model is
that among the ℓ2 models there are two models that are better-calibrated: one before
(Engstrom et al. (2019a) with 1.41% ECE vs 3.71% ECE of the standard model) and
one after (Gowal et al. (2020) with 1.00% ECE vs 1.11% ECE of the standard model)
temperature rescaling. Moreover, we can see that similarly to the ℓ∞ case, the only
overconfident models are either the standard one or models that maximize the margin
instead of using norm-bounded perturbations, i.e. Ding et al. (2020) and Rony et al.
(2019).

0%

5%

10%

15%

20%

65% 70% 75% 80% 85%
2 robust accuracy

E
C

E
 (u

nc
al

ib
ra

te
d)

ECE of standard model
Models with extra data
Models without extra data

0%

1.0%

1.5%

2.0%

2.5%

65% 70% 75% 80% 85%
2 robust accuracy

E
C

E
 (c

al
ib

ra
te

d)

ECE of standard model
Models with extra data
Models without extra data

0%

0.5

1.0

1.5

2.0

65% 70% 75% 80% 85%
2 robust accuracy

O
pt

im
al

 te
m

pe
ra

tu
re

No temperature rescaling
Models with extra data
Models without extra data

Figure 4.11: Expected calibration error (ECE) before (left) and after (middle) temperature
rescaling, and the optimal rescaling temperature (right) for the ℓ2-robust models.

Out-of-distribution detection. Fig. 4.12 complements Fig. 4.5 and shows the abil-
ity of ℓ2-robust models trained on CIFAR-10 to distinguish inputs from other datasets
(CIFAR-100, SVHN, Describable Textures). We find that ℓ2 robust models have in general
comparable OOD detection performance to standardly trained models, while the model
by Augustin et al. (2020) achieves even better performance since their approach explicitly
optimizes both robust accuracy and worst-case OOD detection performance.

Fairness in robustness. We report the results about fairness for robust models in the ℓ2-
threat model in Fig. 4.13, similarly to what done for ℓ∞ above. We see that the difference
in robustness among classes is similar to what observed for the ℓ∞ models. Also, the RSD
of robustness over classes decreases, which indicates that the disparity among subgroups
is reduced, as the average robust accuracy improves. To compute the robustness for the
experiments about fairness we used APGD on the targeted DLR loss (Croce and Hein,

100

4.12 Additional analysis

0% 5%
65

70

75

80

85

90

95

100
AU

RO
C

65% 70% 75% 80% 85%

Models without extra data
Models with extra data

Robust accuracy (CIFAR-10)
0% 5%

65

70

75

80

85

90

95

100

AU
RO

C

65% 70% 75% 80% 85%

Models without extra data
Models with extra data

Robust accuracy (CIFAR-10)
0% 5%

65

70

75

80

85

90

95

100

AU
RO

C

65% 70% 75% 80% 85%

Models without extra data
Models with extra data

Robust accuracy (CIFAR-10)

Figure 4.12: Visualization of the quality of OOD detection (higher AUROC is better) for the ℓ2-
robust models on three different OOD datasets: CIFAR-100 (left), SVHN (middle), Describable
Textures (right).

2020b) with 3 target classes and 20 iterations each on the whole test set. Note that even
with this smaller budget we achieve results very close to that of the full evaluation, with
an average difference smaller than 0.5%.

plane car bird cat deer dog frog horse ship truck

40%

50%

60%

70%

80%

90%

100%

Ac
cu

ra
cy

66% 68% 70% 72% 74% 76% 78% 80%
Robust accuracy

0.12

0.14

0.16

0.18

0.20

0.22

0.24

RS
D

Models with extra data
Models without extra data

Figure 4.13: Left: classwise standard (dotted lines) and robust (solid) accuracy of ℓ2-robust
models. Right: relative standard deviation (RSD) of robust accuracy over classes vs its average.

Privacy leakage. We use membership inference accuracy, referred to as inference accu-
racy, as a measure of the leakage of training data details from pre-trained neural networks.
It measures how successfully we can identify whether a particular sample was present in
the training set. We closely follow the methodology described in Song and Mittal (2021)
to calculate inference accuracy. In particular, we measure the confidence in the correct
class for each input image with a pre-trained classifier. We measure the confidence for
both training and test set images and calculate the maximum classification accuracy be-
tween train and test images based on the confidence values. We refer to this accuracy as
inference accuracy using confidence. We also follow the recommendation from Song et al.
(2019) where they show that adversarial examples are more successful in estimating infer-
ence accuracy on robust networks. In our experiments, we also find that using adversarial
examples leads to higher inference accuracy than benign images (Figure 4.14). We also
find that robust networks in the ℓ2 threat model have relatively higher inference accuracy
than robust networks in the ℓ∞ threat model.

A key reason behind privacy leakage through membership inference is that deep neural
networks often end up overfitting on the training data. One standard metric to measure
overfitting is the generalization gap between train and test set. Naturally, this difference
in the accuracy on the train and test set is the baseline of inference accuracy. We refer to

101

Chapter 4. RobustBench: a Standardized Adversarial Robustness Benchmark

it as inference accuracy using label and report it in Figure 4.15. We consider both benign
and adversarial images. When using benign images, we find confidence information does
lead to higher inference accuracy than using only labels. However, with adversarial exam-
ples, which achieve higher inference accuracy than benign images, we find that inference
accuracy based on confidence information closely follows the inference accuracy calculate
from labels.

0% 5%
50%

52%

55%

57%

60%

62%

65%

68%

70%

In
fe

re
nc

e
ac

cu
ra

cy
 u

sin
g

co
nf

id
en

ce

40% 45% 50% 55% 60% 65% 70%

Models without extra data
Models with extra data

Robust accuracy (CIFAR-10)

(a) Benign (ℓ∞)

0% 5%
50%

52%

55%

57%

60%

62%

65%

68%

70%

In
fe

re
nc

e
ac

cu
ra

cy
 u

sin
g

co
nf

id
en

ce

40% 45% 50% 55% 60% 65% 70%

Models without extra data
Models with extra data

Robust accuracy (CIFAR-10)

(b) Adversarial (ℓ∞)

0% 5%
50%

52%

55%

57%

60%

62%

65%

68%

70%

In
fe

re
nc

e
ac

cu
ra

cy
 u

sin
g

co
nf

id
en

ce

65% 70% 75% 80% 85%

Models without extra data
Models with extra data

Robust accuracy (CIFAR-10)

(c) Benign (ℓ2)

0% 5%
50%

52%

55%

57%

60%

62%

65%

68%

70%

In
fe

re
nc

e
ac

cu
ra

cy
 u

sin
g

co
nf

id
en

ce

65% 70% 75% 80% 85%

Models without extra data
Models with extra data

Robust accuracy (CIFAR-10)

(d) Adversarial (ℓ2)

Figure 4.14: Comparing privacy leakage of different networks. We compare membership
inference accuracy from benign and adversarial images across both ℓ∞ and ℓ2 threat model.

50% 55% 60% 65% 70%
Inference accuracy Using label

[= 50 + (generalization-gap) / 2]

50%

55%

60%

65%

70%

In
fe

re
nc

e
ac

cu
ra

cy
 u

sin
g

co
nf

id
en

ce

Models without extra data
Models with extra data

(a) Benign (ℓ∞)

50% 55% 60% 65% 70%
Inference accuracy Using label

[= 50 + (generalization-gap) / 2]

50%

55%

60%

65%

70%

In
fe

re
nc

e
ac

cu
ra

cy
 u

sin
g

co
nf

id
en

ce

Models without extra data
Models with extra data

(b) Adversarial (ℓ∞)

50% 55% 60% 65% 70%
Inference accuracy Using label

[= 50 + (generalization-gap) / 2]

50%

55%

60%

65%

70%

In
fe

re
nc

e
ac

cu
ra

cy
 u

sin
g

co
nf

id
en

ce

Models without extra data
Models with extra data

(c) Benign (ℓ2)

50% 55% 60% 65% 70%
Inference accuracy Using label

[= 50 + (generalization-gap) / 2]

50%

55%

60%

65%

70%

In
fe

re
nc

e
ac

cu
ra

cy
 u

sin
g

co
nf

id
en

ce
Models without extra data
Models with extra data

(d) Adversarial (ℓ2)

Figure 4.15: Comparing privacy leakage with different output statistics. We measure
privacy leakage using membership inference accuracy, i.e., classification success between train and
test set. We measure it using two baselines 1) based on correct prediction i.e., using predicted
class label and 2) based on classification confidence in correct class. We also measure it using both
benign and adversarial images.

Smoothness. Previous work Yang et al. (2020) has shown that smoothness of a model,
together with enough separation between the classes of the dataset for which it is trained,
is necessary to achieve both natural and robust accuracy. They use local Lipschitzness
as a measure for model smoothness, and observe empirically that robust models are more
smoother than models trained in a standard way. Our Model Zoo enables us to check
this fact empirically on a wider range of robust models, trained with a more diverse set
of techniques, in particular with and without extra training data. Moreover, as we have
access to the model internals, we can also compute local Lipschitzness of the model up to
arbitrary layers, to see how smoothness changes between layers.

We compute local Lipschitzness using projected gradient descent (PGD) on the following
optimization problem:

L = 1
N

N∑
i=1

max
x1:∥x1−xi∥∞≤ε,
x2:∥x2−xi∥∞≤ε

∥f(x1)− f(x2)∥1
∥x1 − x2∥∞

, (4.2)

102

4.12 Additional analysis

where xi represents each sample around which we compute local Lipschitzness, N is the
number of samples across which we average (N = 256 in all our experiments), and f

represents the function whose Lipschitz constant we compute. As mentioned above, this
function can be either the full model, or the model up to an arbitrary intermediate layer.

Since the models can have similar smoothness behavior, but at a different scale, we also
consider normalizing the models outputs. One such normalization we use is given by the
projection of the model outputs on the unit ℓ2 ball. This normalization aims at capturing
the angular change of the output, instead of taking in consideration also its magnitude.
We compute the “angular” version of the Lipschitz constant as

L = 1
N

N∑
i=1

max
x1:∥x1−xi∥∞≤ε,
x2:∥x2−xi∥∞≤ε

∥∥∥ f(x1)
∥f(x1)∥2

− f(x2)
∥f(x2)∥2

∥∥∥
1

∥x1 − x2∥∞
. (4.3)

For both variations of Lipschitzness, we compute it with ε = 8/255, running the PDG-like
procedure for 50 steps, with a step size of ε /5.

0 2 4 6 8 10 12
Residual Block Index

102

103

104

105

106

Lo
ca

l L
ip

sc
hi

tz
 C

on
st

.

(a) No normalization
0 2 4 6 8 10 12

Residual Block Index

102

103

104

105

106

Lo
ca

l L
ip

sc
hi

tz
 C

on
st

.

Gowal2020Uncovering_28_10_extra
Wu2020Adversarial_extra
Zhang2020Geometry
Carmon2019Unlabeled
Sehwag2020Hydra
Wang2020Improving
Hendrycks2019Using
Standard
Rebuffi2021Fixing_28_10_cutmix_ddpm

0 2 4 6 8 10 12
Residual Block Index

102

103

Lo
ca

l L
ip

sc
hi

tz
 C

on
st

.

(b) ℓ2 unit ball normalization

Figure 4.16: Lipschitzness. Computation of the local Lipschitz constant of the WRN-28-10
ℓ∞-robust models in our Model Zoo with ε = 8/255. The color coding of the models is the same
across both figures. For the correspondence between model IDs (shown in the legend) and papers
that introduced them, see Appendix 4.13.

0% 5%

102

103

Lo
ca

l L
ip

sc
hi

tz
 C

on
st

.

40% 45% 50% 55% 60% 65% 70%

Models with extra data
Models without extra data

Robust accuracy (CIFAR-10)

(a) ε = 8/255, no normalization

0% 5%

102

2 × 101

3 × 101

4 × 101

6 × 101

Lo
ca

l L
ip

sc
hi

tz
 C

on
st

.

40% 45% 50% 55% 60% 65% 70%

Models with extra data
Models without extra data

Robust accuracy (CIFAR-10)

(b) ε = 8/255, ℓ2 unit ball normalization

Figure 4.17: Lipschitzness vs Robustness. Local Lipschitz constant of the output layer vs.
robust accuracy of a subset of the ℓ∞-robust models in our Model Zoo.

103

Chapter 4. RobustBench: a Standardized Adversarial Robustness Benchmark

In Fig. 4.16 we compute the layerwise Lipschitzness for all ℓ∞ models trained on CIFAR-10
from the Model Zoo that have the WRN-28-10 architecture. We observe that the standard
model is the least smooth at all the layers, and that all the robustly trained models are
smoother. Moreover, we can notice that in Fig. 4.16a there are two models in the middle
ground: these are the models by Gowal et al. (2020) and Rebuffi et al. (2021), which are
the most robust ones, up to the last layer, the smoothest. Nonetheless, in the middle
layers, they are the second and third least smooth, according to the unnormalized local
Lipschitzness. This can be due to the different activation function used in these models
(Swish vs ReLU). For this reason, we also compute “angular” Lipschitzness according to
Eq. 4.3. Indeed, in Fig. 4.16b, all the robust models are in the same order of magnitude
at all layers.

Finally, we also show the Lipschitz constants of the output layer for a larger set of ℓ∞
models from the Model Zoo that are not restricted to the same architecture. We plot the
Lipschitz constant vs. the robust accuracy for these models in Fig 4.17. We see that there
is a clear relationship between robust accuracy and Lipschitzness, hence confirming the
findings of Yang et al. (2020).

Transferability. We generate adversarial examples for a network, referred to as source
network, and measure robust accuracy of every other network, referred to as target net-
work, from the model zoo on them. We also include additional non-robust models10, to
name a few, VGG19, ResNet18, and DenseNet121, in our analysis. We consider both ten
step PGD attack and FGSM attack to generate adversarial examples as two transferability
baselines commonly used in the literature. For both attacks, we use the cross-entropy loss,
and for the PGD attack we use ten iterations and step size ε/4.

We present our results in Figure 4.18, 4.19 where the correspondence between model
IDs and papers that introduced them can be found in Appendix 4.13. We find that
transferability to each robust target network follows a similar trend where adversarial
examples transfer equally well from another robust networks. Though slight worse than
robust network, adversarial example from non-robust network also transfer equally well
to robust networks. We observe a strong transferability among non-robust networks with
adversarial examples generated from PGD attacks. Adversarial examples generated using
the FGSM attack also transfer successfully. However, they achieve lower robust accuracy
on the target network. Intriguingly, we observe the weakest transferability from a robust
to a non-robust network. This observation holds for all robust source networks across both
FGSM and PGD-attack in both ℓ∞ and ℓ2 threat model.

4.13 Leaderboards

We here report the details of all the models included in the various leaderboards, for the
ℓ∞-, ℓ2-threat models and common corruptions. In particular, we show for each model

10We train then for 200 epochs and achieve 93-95% clean accuracy for all networks on the CIFAR-10
dataset.

104

4.13 Leaderboards

Re
bu

ffi2
02

1Fi
xin

g_7
0_1

6_c
utm

ix_
ext

ra

Gow
al2

02
0U

nco
ve

rin
g_7

0_1
6_e

xtr
a

Re
bu

ffi2
02

1Fi
xin

g_1
06

_16
_cu

tm
ix_

dd
pm

Re
bu

ffi2
02

1Fi
xin

g_7
0_1

6_c
utm

ix_
dd

pm

Gow
al2

02
0U

nco
ve

rin
g_2

8_1
0_e

xtr
a

Re
bu

ffi2
02

1Fi
xin

g_2
8_1

0_c
utm

ix_
dd

pm

Wu2
02

0A
dv

ers
ari

al_
ext

ra

Zha
ng

20
20

Geo
metr

y

Carm
on

20
19

Unla
be

led

Se
hw

ag
20

21
Pro

xy

Se
hw

ag
20

20
Hyd

ra

Gow
al2

02
0U

nco
ve

rin
g_7

0_1
6

Gow
al2

02
0U

nco
ve

rin
g_3

4_2
0

Wan
g2

02
0Im

pro
vin

g

Wu2
02

0A
dv

ers
ari

al

Hen
dry

cks
20

19
Usin

g

Se
hw

ag
20

21
Pro

xy_
R18

Pan
g2

02
0B

oo
stin

g

Cui2
02

0Le
arn

ab
le_

34
_20

Zha
ng

20
20

Att
ack

s

Rice
20

20
Ove

rfit
tin

g

Hua
ng

20
20

Se
lf

Zha
ng

20
19

Th
eo

ret
ica

lly

Cui2
02

0Le
arn

ab
le_

34
_10

Che
n2

02
0A

dv
ers

ari
al

Che
n2

02
0E

ffic
ien

t

Sit
aw

ari
n2

02
0Im

pro
vin

g

En
gst

rom
20

19
Ro

bu
stn

ess

Zha
ng

20
19

You

And
riu

shc
he

nko
20

20
Und

ers
tan

din
g

Won
g2

02
0Fa

st

Ding
20

20
MMA

Sta
nd

ard
VGG19

Re
sN

et1
8

Sim
ple

DLA

Mob
ileN

etV
2

Re
gN

etX
_20

0M
F

SE
Net1

8

Den
seN

et1
21

Goo
gLe

Net

Pre
Ac

tRe
sN

et1
8

Target network (Adversarial examples are evaluated on it)

Re
bu

ffi2
02

1Fi
xin

g_7
0_1

6_c
utm

ix_
ext

ra

Gow
al2

02
0U

nco
ve

rin
g_7

0_1
6_e

xtr
a

Re
bu

ffi2
02

1Fi
xin

g_1
06

_16
_cu

tm
ix_

dd
pm

Re
bu

ffi2
02

1Fi
xin

g_7
0_1

6_c
utm

ix_
dd

pm

Gow
al2

02
0U

nco
ve

rin
g_2

8_1
0_e

xtr
a

Re
bu

ffi2
02

1Fi
xin

g_2
8_1

0_c
utm

ix_
dd

pm

Wu2
02

0A
dv

ers
ari

al_
ext

ra

Zha
ng

20
20

Geo
metr

y

Carm
on

20
19

Unla
be

led

Se
hw

ag
20

21
Pro

xy

Se
hw

ag
20

20
Hyd

ra

Gow
al2

02
0U

nco
ve

rin
g_7

0_1
6

Gow
al2

02
0U

nco
ve

rin
g_3

4_2
0

Wan
g2

02
0Im

pro
vin

g

Wu2
02

0A
dv

ers
ari

al

Hen
dry

cks
20

19
Usin

g

Se
hw

ag
20

21
Pro

xy_
R18

Pan
g2

02
0B

oo
stin

g

Cui2
02

0Le
arn

ab
le_

34
_20

Zha
ng

20
20

Att
ack

s

Rice
20

20
Ove

rfit
tin

g

Hua
ng

20
20

Se
lf

Zha
ng

20
19

Th
eo

ret
ica

lly

Cui2
02

0Le
arn

ab
le_

34
_10

Che
n2

02
0A

dv
ers

ari
al

Che
n2

02
0E

ffic
ien

t

Sit
aw

ari
n2

02
0Im

pro
vin

g

En
gst

rom
20

19
Ro

bu
stn

ess

Zha
ng

20
19

You

And
riu

shc
he

nko
20

20
Und

ers
tan

din
g

Won
g2

02
0Fa

st

Ding
20

20
MMA

Sta
nd

ard

VGG19

Re
sN

et1
8

Sim
ple

DLA

Mob
ileN

etV
2

Re
gN

etX
_20

0M
F

SE
Net1

8

Den
seN

et1
21

Goo
gLe

Net

Pre
Ac

tRe
sN

et1
8

So
ur

ce
 n

et
wo

rk
 (A

dv
er

sa
ria

l e
xa

m
pl

es
 a

re
 g

en
er

at
ed

 fr
om

 it
)

Robust accuracy on transferred adversarial examples (CIFAR-10, Linf, pgd)

0

20

40

60

80

100

Re
bu

ffi2
02

1Fi
xin

g_7
0_1

6_c
utm

ix_
ext

ra

Gow
al2

02
0U

nco
ve

rin
g_7

0_1
6_e

xtr
a

Re
bu

ffi2
02

1Fi
xin

g_1
06

_16
_cu

tm
ix_

dd
pm

Re
bu

ffi2
02

1Fi
xin

g_7
0_1

6_c
utm

ix_
dd

pm

Gow
al2

02
0U

nco
ve

rin
g_2

8_1
0_e

xtr
a

Re
bu

ffi2
02

1Fi
xin

g_2
8_1

0_c
utm

ix_
dd

pm

Wu2
02

0A
dv

ers
ari

al_
ext

ra

Zha
ng

20
20

Geo
metr

y

Carm
on

20
19

Unla
be

led

Se
hw

ag
20

21
Pro

xy

Se
hw

ag
20

20
Hyd

ra

Gow
al2

02
0U

nco
ve

rin
g_7

0_1
6

Gow
al2

02
0U

nco
ve

rin
g_3

4_2
0

Wan
g2

02
0Im

pro
vin

g

Wu2
02

0A
dv

ers
ari

al

Hen
dry

cks
20

19
Usin

g

Se
hw

ag
20

21
Pro

xy_
R18

Pan
g2

02
0B

oo
stin

g

Cui2
02

0Le
arn

ab
le_

34
_20

Zha
ng

20
20

Att
ack

s

Rice
20

20
Ove

rfit
tin

g

Hua
ng

20
20

Se
lf

Zha
ng

20
19

Th
eo

ret
ica

lly

Cui2
02

0Le
arn

ab
le_

34
_10

Che
n2

02
0A

dv
ers

ari
al

Che
n2

02
0E

ffic
ien

t

Sit
aw

ari
n2

02
0Im

pro
vin

g

En
gst

rom
20

19
Ro

bu
stn

ess

Zha
ng

20
19

You

And
riu

shc
he

nko
20

20
Und

ers
tan

din
g

Won
g2

02
0Fa

st

Ding
20

20
MMA

Sta
nd

ard
VGG19

Re
sN

et1
8

Sim
ple

DLA

Mob
ileN

etV
2

Re
gN

etX
_20

0M
F

SE
Net1

8

Den
seN

et1
21

Goo
gLe

Net

Pre
Ac

tRe
sN

et1
8

Target network (Adversarial examples are evaluated on it)

Re
bu

ffi2
02

1Fi
xin

g_7
0_1

6_c
utm

ix_
ext

ra

Gow
al2

02
0U

nco
ve

rin
g_7

0_1
6_e

xtr
a

Re
bu

ffi2
02

1Fi
xin

g_1
06

_16
_cu

tm
ix_

dd
pm

Re
bu

ffi2
02

1Fi
xin

g_7
0_1

6_c
utm

ix_
dd

pm

Gow
al2

02
0U

nco
ve

rin
g_2

8_1
0_e

xtr
a

Re
bu

ffi2
02

1Fi
xin

g_2
8_1

0_c
utm

ix_
dd

pm

Wu2
02

0A
dv

ers
ari

al_
ext

ra

Zha
ng

20
20

Geo
metr

y

Carm
on

20
19

Unla
be

led

Se
hw

ag
20

21
Pro

xy

Se
hw

ag
20

20
Hyd

ra

Gow
al2

02
0U

nco
ve

rin
g_7

0_1
6

Gow
al2

02
0U

nco
ve

rin
g_3

4_2
0

Wan
g2

02
0Im

pro
vin

g

Wu2
02

0A
dv

ers
ari

al

Hen
dry

cks
20

19
Usin

g

Se
hw

ag
20

21
Pro

xy_
R18

Pan
g2

02
0B

oo
stin

g

Cui2
02

0Le
arn

ab
le_

34
_20

Zha
ng

20
20

Att
ack

s

Rice
20

20
Ove

rfit
tin

g

Hua
ng

20
20

Se
lf

Zha
ng

20
19

Th
eo

ret
ica

lly

Cui2
02

0Le
arn

ab
le_

34
_10

Che
n2

02
0A

dv
ers

ari
al

Che
n2

02
0E

ffic
ien

t

Sit
aw

ari
n2

02
0Im

pro
vin

g

En
gst

rom
20

19
Ro

bu
stn

ess

Zha
ng

20
19

You

And
riu

shc
he

nko
20

20
Und

ers
tan

din
g

Won
g2

02
0Fa

st

Ding
20

20
MMA

Sta
nd

ard

VGG19

Re
sN

et1
8

Sim
ple

DLA

Mob
ileN

etV
2

Re
gN

etX
_20

0M
F

SE
Net1

8

Den
seN

et1
21

Goo
gLe

Net

Pre
Ac

tRe
sN

et1
8

So
ur

ce
 n

et
wo

rk
 (A

dv
er

sa
ria

l e
xa

m
pl

es
 a

re
 g

en
er

at
ed

 fr
om

 it
)

Robust accuracy on transferred adversarial examples (CIFAR-10, Linf, fgsm)

0

20

40

60

80

100

Figure 4.18: Measuring transferability of adversarial examples (ℓ∞, ϵ = 8/255). We use a ten
step PGD attack in top figure and FGSM attack in bottom figure. Lower robust accuracy implies
better transferability.

105

Chapter 4. RobustBench: a Standardized Adversarial Robustness Benchmark

Re
bu

ffi2
02

1Fi
xin

g_7
0_1

6_c
utm

ix_
ext

ra

Gow
al2

02
0U

nco
ve

rin
g_e

xtr
a

Re
bu

ffi2
02

1Fi
xin

g_7
0_1

6_c
utm

ix_
dd

pm

Re
bu

ffi2
02

1Fi
xin

g_2
8_1

0_c
utm

ix_
dd

pm

Se
hw

ag
20

21
Pro

xy

Gow
al2

02
0U

nco
ve

rin
g

Wu2
02

0A
dv

ers
ari

al

Se
hw

ag
20

21
Pro

xy_
R18

Aug
ust

in2
02

0A
dv

ers
ari

al

En
gst

rom
20

19
Ro

bu
stn

ess

Rice
20

20
Ove

rfit
tin

g

Ro
ny

20
19

Deco
up

ling

Ding
20

20
MMA

Sta
nd

ard
VGG19

Re
sN

et1
8

Sim
ple

DLA

Mob
ileN

etV
2

Re
gN

etX
_20

0M
F

SE
Net1

8

Den
seN

et1
21

Goo
gLe

Net

Pre
Ac

tRe
sN

et1
8

Target network (Adversarial examples are evaluated on it)

Re
bu

ffi2
02

1Fi
xin

g_7
0_1

6_c
utm

ix_
ext

ra

Gow
al2

02
0U

nco
ve

rin
g_e

xtr
a

Re
bu

ffi2
02

1Fi
xin

g_7
0_1

6_c
utm

ix_
dd

pm

Re
bu

ffi2
02

1Fi
xin

g_2
8_1

0_c
utm

ix_
dd

pm

Se
hw

ag
20

21
Pro

xy

Gow
al2

02
0U

nco
ve

rin
g

Wu2
02

0A
dv

ers
ari

al

Se
hw

ag
20

21
Pro

xy_
R18

Aug
ust

in2
02

0A
dv

ers
ari

al

En
gst

rom
20

19
Ro

bu
stn

ess

Rice
20

20
Ove

rfit
tin

g

Ro
ny

20
19

Deco
up

ling

Ding
20

20
MMA

Sta
nd

ard

VGG19

Re
sN

et1
8

Sim
ple

DLA

Mob
ileN

etV
2

Re
gN

etX
_20

0M
F

SE
Net1

8

Den
seN

et1
21

Goo
gLe

Net

Pre
Ac

tRe
sN

et1
8

So
ur

ce
 n

et
wo

rk
 (A

dv
er

sa
ria

l e
xa

m
pl

es
 a

re
 g

en
er

at
ed

 fr
om

 it
)

Robust accuracy on transferred adversarial examples (CIFAR-10, L2, pgd)

0

20

40

60

80

100

Re
bu

ffi2
02

1Fi
xin

g_7
0_1

6_c
utm

ix_
ext

ra

Gow
al2

02
0U

nco
ve

rin
g_e

xtr
a

Re
bu

ffi2
02

1Fi
xin

g_7
0_1

6_c
utm

ix_
dd

pm

Re
bu

ffi2
02

1Fi
xin

g_2
8_1

0_c
utm

ix_
dd

pm

Se
hw

ag
20

21
Pro

xy

Gow
al2

02
0U

nco
ve

rin
g

Wu2
02

0A
dv

ers
ari

al

Se
hw

ag
20

21
Pro

xy_
R18

Aug
ust

in2
02

0A
dv

ers
ari

al

En
gst

rom
20

19
Ro

bu
stn

ess

Rice
20

20
Ove

rfit
tin

g

Ro
ny

20
19

Deco
up

ling

Ding
20

20
MMA

Sta
nd

ard
VGG19

Re
sN

et1
8

Sim
ple

DLA

Mob
ileN

etV
2

Re
gN

etX
_20

0M
F

SE
Net1

8

Den
seN

et1
21

Goo
gLe

Net

Pre
Ac

tRe
sN

et1
8

Target network (Adversarial examples are evaluated on it)

Re
bu

ffi2
02

1Fi
xin

g_7
0_1

6_c
utm

ix_
ext

ra

Gow
al2

02
0U

nco
ve

rin
g_e

xtr
a

Re
bu

ffi2
02

1Fi
xin

g_7
0_1

6_c
utm

ix_
dd

pm

Re
bu

ffi2
02

1Fi
xin

g_2
8_1

0_c
utm

ix_
dd

pm

Se
hw

ag
20

21
Pro

xy

Gow
al2

02
0U

nco
ve

rin
g

Wu2
02

0A
dv

ers
ari

al

Se
hw

ag
20

21
Pro

xy_
R18

Aug
ust

in2
02

0A
dv

ers
ari

al

En
gst

rom
20

19
Ro

bu
stn

ess

Rice
20

20
Ove

rfit
tin

g

Ro
ny

20
19

Deco
up

ling

Ding
20

20
MMA

Sta
nd

ard

VGG19

Re
sN

et1
8

Sim
ple

DLA

Mob
ileN

etV
2

Re
gN

etX
_20

0M
F

SE
Net1

8

Den
seN

et1
21

Goo
gLe

Net

Pre
Ac

tRe
sN

et1
8

So
ur

ce
 n

et
wo

rk
 (A

dv
er

sa
ria

l e
xa

m
pl

es
 a

re
 g

en
er

at
ed

 fr
om

 it
)

Robust accuracy on transferred adversarial examples (CIFAR-10, L2, fgsm)

0

20

40

60

80

100

Figure 4.19: Measuring transferability of adversarial examples (ℓ2, ϵ = 0.5). We use a ten step
PGD attack in top figure and FGSM attack in bottom figure. Lower robust accuracy implies better
transferability.
106

4.13 Leaderboards

the clean accuracy, robust accuracy (either on adversarial attacks or corrupted images),
whether additional data is used for training, the architecture used, the venue at which it
appeared and, if available, the identifier in the Model Zoo (which is also used in some of
the experiments in Sec. 4.12).

107

Chapter 4. RobustBench: a Standardized Adversarial Robustness Benchmark

Table 4.3: Leaderboard for the ℓ∞-threat model, CIFAR-10.

Model Clean Robust Extra data Architecture Venue Model Zoo ID
1 Rebuffi et al. (2021) 92.23 66.56 Y WRN-70-16 arXiv, Mar 2021 rebuffi2021fixing_70_16_cutmix_extra
2 Gowal et al. (2020) 91.10 65.87 Y WRN-70-16 arXiv, Oct 2020 Gowal2020Uncovering_70_16_extra
3 Rebuffi et al. (2021) 88.50 64.58 N WRN-106-16 arXiv, Mar 2021 rebuffi2021fixing_106_16_cutmix_ddpm
4 Rebuffi et al. (2021) 88.54 64.20 N WRN-70-16 arXiv, Mar 2021 rebuffi2021fixing_70_16_cutmix_ddpm
5 Rade and Moosavi-Dezfooli (2021) 91.47 62.83 Y WRN-34-10 OpenReview, Jun 2021 Rade2021Helper_extra
6 Gowal et al. (2020) 89.48 62.76 Y WRN-28-10 arXiv, Oct 2020 Gowal2020Uncovering_28_10_extra
7 Rade and Moosavi-Dezfooli (2021) 88.16 60.97 N WRN-28-10 OpenReview, Jun 2021 Rade2021Helper_ddpm
8 Rebuffi et al. (2021) 87.33 60.73 N WRN-28-10 arXiv, Mar 2021 rebuffi2021fixing_28_10_cutmix_ddpm
9 Wu et al. (2020a) 87.67 60.65 Y WRN-34-15 arXiv, Oct 2020 N/A
10 Sridhar et al. (2021) 86.53 60.41 Y WRN-34-15 arXiv, Jun 2021 Sridhar2021Robust_34_15
11 Wu et al. (2020b) 88.25 60.04 Y WRN-28-10 NeurIPS 2020 Wu2020Adversarial_extra
12 Sridhar et al. (2021) 89.46 59.66 Y WRN-28-10 arXiv, Jun 2021 Sridhar2021Robust
13 Zhang et al. (2021a) 89.36 59.64 Y WRN-28-10 ICLR 2021 Zhang2020Geometry
14 Carmon et al. (2019) 89.69 59.53 Y WRN-28-10 NeurIPS 2019 carmon2019unlabeled
15 Sehwag et al. (2021) 85.85 59.09 N WRN-34-10 arXiv, Apr 2021 Sehwag2021Proxy
16 Rade and Moosavi-Dezfooli (2021) 89.02 57.67 Y PreActRN-18 OpenReview, Jun 2021 Rade2021Helper_R18_extra
17 Gowal et al. (2020) 85.29 57.14 N WRN-70-16 arXiv, Oct 2020 Gowal2020Uncovering_70_16
18 Sehwag et al. (2020a) 88.98 57.14 Y WRN-28-10 NeurIPS 2020 Sehwag2020Hydra
19 Rade and Moosavi-Dezfooli (2021) 86.86 57.09 N PreActRN-18 OpenReview, Jun 2021 Rade2021Helper_R18_ddpm
20 Gowal et al. (2020) 85.64 56.82 N WRN-34-20 arXiv, Oct 2020 Gowal2020Uncovering_34_20
21 Rebuffi et al. (2021) 83.53 56.66 N PreActRN-18 arXiv, Mar 2021 rebuffi2021fixing_R18_ddpm
22 Wang et al. (2020) 87.50 56.29 Y WRN-28-10 ICLR 2020 Wang2020Improving
23 Wu et al. (2020b) 85.36 56.17 N WRN-34-10 NeurIPS 2020 Wu2020Adversarial
24 Uesato et al. (2019) 86.46 56.03 Y WRN-28-10 NeurIPS 2019 N/A
25 Hendrycks et al. (2019) 87.11 54.92 Y WRN-28-10 ICML 2019 hendrycks2019using
26 Sehwag et al. (2021) 84.38 54.43 N RN-18 arXiv, Apr 2021 Sehwag2021Proxy_R18
27 Pang et al. (2021a) 86.43 54.39 N WRN-34-20 ICLR 2021 N/A
28 Pang et al. (2020c) 85.14 53.74 N WRN-34-20 NeurIPS 2020 Pang2020Boosting
29 Cui et al. (2021) 88.70 53.57 N WRN-34-20 ICCV 2021 Cui2020Learnable_34_20
30 Zhang et al. (2020b) 84.52 53.51 N WRN-34-10 ICML 2020 Zhang2020Attacks
31 Rice et al. (2020) 85.34 53.42 N WRN-34-20 ICML 2020 rice2020overfitting
32 Huang et al. (2020) 83.48 53.34 N WRN-34-10 NeurIPS 2020 Huang2020Self
33 Zhang et al. (2019c) 84.92 53.08 N WRN-34-10 ICML 2019 zhang2019theoretically
34 Cui et al. (2021) 88.22 52.86 N WRN-34-10 ICCV 2021 Cui2020Learnable_34_10
35 Qin et al. (2019) 86.28 52.84 N WRN-40-8 NeurIPS 2019 N/A
36 Chen et al. (2020b) 86.04 51.56 N RN-50 CVPR 2020 Chen2020Adversarial
37 Chen et al. (2020a) 85.32 51.12 N WRN-34-10 arXiv, Oct 2020 Chen2020Efficient
38 Sitawarin et al. (2020) 86.84 50.72 N WRN-34-10 arXiv, Mar 2020 Sitawarin2020Improving
39 Engstrom et al. (2019a) 87.03 49.25 N RN-50 GitHub, Oct 2019 Engstrom2019Robustness
40 Singh et al. (2019) 87.80 49.12 N WRN-34-10 IJCAI 2019 N/A
41 Mao et al. (2019) 86.21 47.41 N WRN-34-10 NeurIPS 2019 N/A
42 Zhang et al. (2019a) 87.20 44.83 N WRN-34-10 NeurIPS 2019 zhang2019propagate
43 Madry et al. (2018) 87.14 44.04 N WRN-34-10 ICLR 2018 N/A
44 Andriushchenko and Flammarion (2020) 79.84 43.93 N PreActRN-18 NeurIPS 2020 Andriushchenko2020Understanding
45 Pang et al. (2020a) 80.89 43.48 N RN-32 ICLR 2020 N/A
46 Wong et al. (2020) 83.34 43.21 N PreActRN-18 ICLR 2020 wong2020fast
47 Shafahi et al. (2019) 86.11 41.47 N WRN-34-10 NeurIPS 2019 N/A
48 Ding et al. (2020) 84.36 41.44 N WRN-28-4 ICLR 2020 Ding2020MMA
49 Kundu et al. (2021) 87.32 40.41 N RN-18 ASP-DAC 2021 N/A
50 Atzmon et al. (2019) 81.30 40.22 N RN-18 NeurIPS 2019 N/A
51 Moosavi-Dezfooli et al. (2019a) 83.11 38.50 N RN-18 CVPR 2019 N/A
52 Zhang and Wang (2019) 89.98 36.64 N WRN-28-10 NeurIPS 2019 N/A
53 Zhang and Xu (2019) 90.25 36.45 N WRN-28-10 OpenReview, Sep 2019 N/A
54 Jang et al. (2019) 78.91 34.95 N RN-20 ICCV 2019 N/A
55 Kim and Wang (2019) 91.51 34.22 N WRN-34-10 OpenReview, Sep 2019 N/A
56 Zhang et al. (2020a) 44.73 32.64 N 5-layer-CNN ICLR 2020 N/A
57 Wang and Zhang (2019) 92.80 29.35 N WRN-28-10 ICCV 2019 N/A
58 Xiao et al. (2020) 79.28 7.15 N DenseNet-121 ICLR 2020 N/A
59 Jin and Rinard (2020) 90.84 1.35 N RN-18 arXiv, Mar 2020 N/A
60 Mustafa et al. (2019) 89.16 0.28 N RN-110 ICCV 2019 N/A
61 Chan et al. (2020) 93.79 0.26 N WRN-34-10 ICLR 2020 N/A
62 Standard 94.78 0.0 N WRN-28-10 N/A N/A
63 Alfarra et al. (2020) 91.03 0.00 N WRN-28-10 arXiv, Jun 2020 N/A

108

4.13 Leaderboards

Table 4.4: Leaderboard for the ℓ2-threat model, CIFAR-10.

Model Clean Robust Extra data Architecture Venue Model Zoo ID
1 Rebuffi et al. (2021) 95.74 82.32 Y WRN-70-16 arXiv, Mar 2021 rebuffi2021fixing_70_16_cutmix_extra
2 Gowal et al. (2020) 94.74 80.53 Y WRN-70-16 arXiv, Oct 2020 Gowal2020Uncovering_extra
3 Rebuffi et al. (2021) 92.41 80.42 N WRN-70-16 arXiv, Mar 2021 rebuffi2021fixing_70_16_cutmix_ddpm
4 Rebuffi et al. (2021) 91.79 78.80 N WRN-28-10 arXiv, Mar 2021 rebuffi2021fixing_28_10_cutmix_ddpm
5 Augustin et al. (2020) 93.96 78.79 Y WRN-34-10 ECCV 2020 Augustin2020Adversarial_34_10_extra
6 Augustin et al. (2020) 92.23 76.25 Y WRN-34-10 ECCV 2020 Augustin2020Adversarial_34_10
7 Rade and Moosavi-Dezfooli

(2021)
90.57 76.15 N PreActRN-18 OpenReview, Jun 2021 Rade2021Helper_R18_ddpm

8 Sehwag et al. (2021) 90.31 76.12 N WRN-34-10 arXiv, Apr 2021 Sehwag2021Proxy
9 Rebuffi et al. (2021) 90.33 75.86 N PreActRN-18 arXiv, Mar 2021 rebuffi2021fixing_R18_cutmix_ddpm
10 Gowal et al. (2020) 90.90 74.50 N WRN-70-16 arXiv, Oct 2020 Gowal2020Uncovering
11 Wu et al. (2020b) 88.51 73.66 N WRN-34-10 NeurIPS 2020 Wu2020Adversarial
12 Sehwag et al. (2021) 89.52 73.39 N RN-18 arXiv, Apr 2021 Sehwag2021Proxy_R18
13 Augustin et al. (2020) 91.08 72.91 Y RN-50 ECCV 2020 Augustin2020Adversarial
14 Engstrom et al. (2019a) 90.83 69.24 N RN-50 GitHub, Sep 2019 Engstrom2019Robustness
15 Rice et al. (2020) 88.67 67.68 N PreActRN-18 ICML 2020 rice2020overfitting
16 Rony et al. (2019) 89.05 66.44 N WRN-28-10 CVPR 2019 Rony2019Decoupling
17 Ding et al. (2020) 88.02 66.09 N WRN-28-4 ICLR 2020 Ding2020MMA
18 Standard 94.78 0.0 N WRN-28-10 N/A Standard

Table 4.5: Leaderboard for common corruptions, CIFAR-10.

Model Clean Corr. Extra data Architecture Venue Model Zoo ID
1 Calian et al. (2021) 94.93 92.17 Y RN-50 arXiv, Apr 2021 N/A
2 Kireev et al. (2021) 94.75 89.60 N RN-18 arXiv, Mar 2021 Kireev2021Effectiveness_RLATAugMix
3 Hendrycks et al.

(2020)
95.83 89.09 N ResNeXt29_32x4d ICLR 2020 Hendrycks2020AugMix_ResNeXt

4 Hendrycks et al.
(2020)

95.08 88.82 N WRN-40-2 ICLR 2020 Hendrycks2020AugMix_WRN

5 Kireev et al. (2021) 94.77 88.53 N PreActRN-18 arXiv, Mar 2021 Kireev2021Effectiveness_RLATAugMixNoJSD
6 Rebuffi et al. (2021) 92.23 88.23 Y WRN-70-16 arXiv, Mar 2021 rebuffi2021fixing_70_16_cutmix_extra_L2
7 Gowal et al. (2020) 94.74 87.68 Y WRN-70-16 arXiv, Oct 2020 N/A
8 Kireev et al. (2021) 94.97 86.60 N PreActRN-18 arXiv, Mar 2021 Kireev2021Effectiveness_AugMixNoJSD
9 Kireev et al. (2021) 93.24 85.04 N PreActRN-18 arXiv, Mar 2021 Kireev2021Effectiveness_Gauss50percent
10 Gowal et al. (2020) 90.90 84.90 N WRN-70-16 arXiv, Oct 2020 N/A
11 Kireev et al. (2021) 93.10 84.10 N PreActRN-18 arXiv, Mar 2021 Kireev2021Effectiveness_RLAT
12 Rebuffi et al. (2021) 92.23 82.82 Y WRN-70-16 arXiv, Mar 2021 rebuffi2021fixing_70_16_cutmix_extra_Linf
13 Gowal et al. (2020) 91.10 81.84 Y WRN-70-16 arXiv, Oct 2020 N/A
14 Gowal et al. (2020) 85.29 76.37 N WRN-70-16 arXiv, Oct 2020 N/A
15 Standard 94.78 73.46 N WRN-28-10 N/A Standard

Table 4.6: Leaderboard for the ℓ∞-threat model, CIFAR-100.

Model Clean Robust Extra data Architecture Venue Model Zoo ID
1 Gowal et al. (2020) 69.15 36.88 Y WRN-70-16 arXiv, Oct 2020 Gowal2020Uncovering_extra
2 Rebuffi et al. (2021) 63.56 34.64 N WRN-70-16 arXiv, Mar 2021 rebuffi2021fixing_70_16_cutmix_ddpm
3 Rebuffi et al. (2021) 62.41 32.06 N WRN-28-10 arXiv, Mar 2021 rebuffi2021fixing_28_10_cutmix_ddpm
4 Cui et al. (2021) 62.55 30.20 N WRN-34-20 ICCV 2021 Cui2020Learnable_34_20_LBGAT6
5 Gowal et al. (2020) 60.86 30.03 N WRN-70-16 arXiv, Oct 2020 Gowal2020Uncovering
6 Cui et al. (2021) 60.64 29.33 N WRN-34-10 ICCV 2021 Cui2020Learnable_34_10_LBGAT6
7 Rade and Moosavi-Dezfooli

(2021)
61.50 28.88 N PreActRN-18 OpenReview, Jun 2021 Rade2021Helper_R18_ddpm

8 Wu et al. (2020b) 60.38 28.86 N WRN-34-10 NeurIPS 2020 Wu2020Adversarial
9 Rebuffi et al. (2021) 56.87 28.50 N PreActRN-18 arXiv, Mar 2021 rebuffi2021fixing_R18_ddpm
10 Hendrycks et al. (2019) 59.23 28.42 Y WRN-28-10 ICML 2019 hendrycks2019using
11 Cui et al. (2021) 70.25 27.16 N WRN-34-10 ICCV 2021 Cui2020Learnable_34_10_LBGAT0
12 Chen et al. (2020a) 62.15 26.94 N WRN-34-10 arXiv, Oct 2020 Chen2020Efficient
13 Sitawarin et al. (2020) 62.82 24.57 N WRN-34-10 ICML 2020 Sitawarin2020Improving
14 Rice et al. (2020) 53.83 18.95 N PreActRN-18 ICML 2020 rice2020overfitting

Table 4.7: Leaderboard for common corruptions, CIFAR-100.

Model Clean Corr. Extra data Architecture Venue Model Zoo ID
1 Hendrycks et al.

(2020)
78.90 65.14 N ResNeXt29_32x4d ICLR 2020 Hendrycks2020AugMix_ResNeXt

2 Hendrycks et al.
(2020)

76.28 64.11 N WRN-40-2 ICLR 2020 Hendrycks2020AugMix_WRN

3 Gowal et al. (2020) 69.15 56.00 Y WRN-70-16 arXiv, Oct 2020 Gowal2020Uncovering_extra_Linf
4 Gowal et al. (2020) 60.86 49.46 N WRN-70-16 arXiv, Oct 2020 Gowal2020Uncovering_Linf

109

Chapter 4. RobustBench: a Standardized Adversarial Robustness Benchmark

Table 4.8: Leaderboard for the ℓ∞-threat model, ImageNet.

Model Clean Robust Extra data Architecture Venue Model Zoo ID
1 Salman et al. (2020) 68.46 38.14 N WRN-50-2 NeurIPS 2020 Salman2020Do_50_2
2 Salman et al. (2020) 64.02 34.96 N RN-50 NeurIPS 2020 Salman2020Do_R50
3 Engstrom et al.

(2019a)
62.56 29.22 N RN-50 GitHub, Oct 2019 Engstrom2019Robustness

4 Wong et al. (2020) 55.62 26.24 N RN-18 ICLR 2020 wong2020fast
5 Salman et al. (2020) 52.92 25.32 N RN-50 NeurIPS 2020 Salman2020Do_R18
6 Standard_R50 76.52 0.0 N RN-50 N/A Standard_R50

Table 4.9: Leaderboard for common corruptions, ImageNet.

Model Clean Corr. Extra data Architecture Venue Model Zoo ID
1 Hendrycks et al.

(2021a)
76.88 51.61 N RN-50 ICCV 2021 Hendrycks2020Many

2 Hendrycks et al.
(2020)

76.98 46.91 N RN-50 ICLR 2020 Hendrycks2020AugMix

3 Geirhos et al. (2019) 74.88 44.48 N RN-50 ICLR 2019 Geirhos2018_SIN_IN
4 Geirhos et al. (2019) 77.44 40.77 N RN-50 ICLR 2019 Geirhos2018_SIN_IN_IN
5 Standard_R50 76.52 38.12 N RN-50 N/A Standard_R50
6 Geirhos et al. (2019) 60.24 37.95 N RN-50 ICLR 2019 Geirhos2018_SIN
7 Salman et al. (2020) 68.46 34.60 N WRN-50-2 NeurIPS 2020 Salman2020Do_50_2_Linf

110

Part IIGeneralization in Modern Deep
Learning

111

5 Towards Understanding
Sharpness-Aware Minimization

5.1 Preface

In this chapter, based on Andriushchenko and Flammarion (2022), we focus on the recent
training method called Sharpness-Aware Minimization (SAM) which has been shown to
significantly improve generalization in various settings. We argue that the existing justifi-
cations for the success of SAM which are based on a PAC-Bayes generalization bound and
the idea of convergence to flat minima are incomplete. Via a set of experiments and the-
oretical results, we provide a new perspective on the reasons behind better generalization
of SAM.

Summary Sharpness-Aware Minimization (SAM) is a recent training method that relies
on worst-case weight perturbations which significantly improves generalization in various
settings. We argue that the existing justifications for the success of SAM which are based
on a PAC-Bayes generalization bound and the idea of convergence to flat minima are
incomplete. Moreover, there are no explanations for the success of using m-sharpness in
SAM which has been shown as essential for generalization. To better understand this
aspect of SAM, we theoretically analyze its implicit bias for diagonal linear networks. We
prove that SAM always chooses a solution that enjoys better generalization properties
than standard gradient descent for a certain class of problems, and this effect is amplified
by using m-sharpness. We further study the properties of the implicit bias on non-linear
networks empirically, where we show that fine-tuning a standard model with SAM can
lead to significant generalization improvements. Finally, we provide convergence results
of SAM for non-convex objectives when used with stochastic gradients. We illustrate
these results empirically for deep networks and discuss their relation to the generalization
behavior of SAM. The code of our experiments is available at https://github.com/tml-e
pfl/understanding-sam.

Co-authors Nicolas Flammarion.

Contributions Maksym Andriushchenko made key contributions to all aspects of the
project.

113

https://github.com/tml-epfl/understanding-sam
https://github.com/tml-epfl/understanding-sam

Chapter 5. Towards Understanding Sharpness-Aware Minimization

5.2 Introduction

Understanding generalization of overparametrized deep neural networks is a central topic
of machine learning. Training objective has many global optima where the training data
are perfectly fitted (Zhang et al., 2017a), but different global optima lead to dramatically
different generalization performance (Liu et al., 2019). However, it has been observed that
stochastic gradient descent (SGD) tends to converge to well-generalizing solutions, even
without any explicit regularization methods (Zhang et al., 2017a). This suggests that the
leading role is played by the implicit bias of the optimization algorithms used (Neyshabur
et al., 2015): when the training objective is minimized using a particular algorithm and
initialization method, it converges to a specific solution with favorable generalization prop-
erties. However, even though SGD has a very beneficial implicit bias, significant overfitting
can still occur, particularly in the presence of label noise (Nakkiran et al., 2020) and ad-
versarial perturbations (Rice et al., 2020).

Recently it has been observed that the sharpness of the training loss, i.e., how quickly it
changes in some neighborhood around the parameters of the model, correlates well with
the generalization error (Keskar et al., 2016; Jiang et al., 2019), and generalization bounds
related to the sharpness have been derived (Dziugaite and Roy, 2018). The idea of mini-
mizing the sharpness to improve generalization has motivated recent works of Foret et al.
(2021), Zheng et al. (2021), and Wu et al. (2020b) which propose to use worst-case per-
turbations of the weights on every iteration of training in order to improve generalization.
We refer to this method as Sharpness-Aware Minimization (SAM) and focus mainly on
the version proposed in Foret et al. (2021) that performs only one step of gradient ascent
to approximately solve the weight perturbation problem before updating the weights.

Despite the fact that SAM significantly improves generalization in various settings, the
existing justifications based on the generalization bounds provided by Foret et al. (2021)
and Wu et al. (2020b) do not seem conclusive. The main reason is that their general-
ization bounds do not distinguish the robustness to worst-case weight perturbation from
average-case robustness to Gaussian noise. However the latter does not sufficiently im-
prove generalization as both Foret et al. (2021) and Wu et al. (2020b) report. Furthermore,
their analysis does not distinguish whether the worst-case weight perturbation is computed
based on some or on all training examples. As we will discuss, this feature has a crucial
impact on generalization.

In our paper, we aim to further investigate the reasons for SAM’s success and make the
following contributions:

• We discuss why the current understanding of the success of SAM which is based on
a PAC-Bayesian generalization bound and on convergence to a flatter minimum is
incomplete.

• We test hypotheses regarding why maximization in SAM taken over fewer training
points can lead to better generalization and conclude that the benefit is likely to

114

5.3 Background on SAM

come from the better objective.

• We study the implicit bias of this objective theoretically for diagonal linear networks.
For non-linear networks, we study the implicit bias empirically and relate it to the
theoretical model.

• We prove convergence of SAM for non-convex objectives in the stochastic setting. We
check convergence empirically for deep networks and relate it to the generalization
behavior of SAM.

5.3 Background on SAM

Related work. Here we discuss relevant works on robustness in the weight space and
its relation to generalization. Works on weight-space robustness of neural networks date
back at least to the 1990s (Murray and Edwards, 1993; Hochreiter and Schmidhuber,
1995). Random perturbations of the weights are used extensively in deep learning (Jim
et al., 1996; Graves et al., 2013), and most prominently in approaches such as dropout
(Srivastava et al., 2014). Many practitioners have observed that using SGD with larger
batches for training leads to worse generalization (LeCun et al., 2012), and Keskar et al.
(2016) have shown that this degradation of performance is correlated with the sharpness
of the found parameters. This observation has motivated many further works which focus
on closing the generalization gap between small-batch and large-batch SGD (Wen et al.,
2018; Haruki et al., 2019; Lin et al., 2020). More recently, Jiang et al. (2019) have shown
a strong correlation between the sharpness and the generalization error on a large set of
models under a variety of different settings hyperparameters, beyond the batch size. This
has motivated the idea of minimizing the sharpness during training to improve standard
generalization, leading to Sharpness-Aware Minimization (SAM) (Foret et al., 2021). SAM
modifies SGD such that on every iteration of training, the gradient is taken not at the
current iterate but rather at a worst-case point in its vicinity. Zheng et al. (2021) con-
currently propose a similar weight perturbation method which also successfully improves
standard generalization on multiple deep learning benchmarks. Wu et al. (2020b) have
also proposed an almost identical algorithm with the same motivation, but with the focus
on improving robust generalization of adversarial training. On the theoretical side, Mulay-
off and Michaeli (2020) study the sharpness properties of minima of deep linear network,
and Neu (2021); Wang and Mao (2022) study generalization bounds based on average-case
sharpness and quantities related to the optimization trajectory of SGD.

Sharpness. Let Strain = {xi, yi}ni=1 be the training data and ℓi(w) be the loss of a
classifier parametrized by weights w ∈ R|w| and evaluated at point (xi, yi). Then the
sharpness on a set of points S ⊆ Strain is defined as:

s(w,S) ≜ max
∥δ∥2≤ρ

1
|S|

∑
i:(xi,yi)∈S

ℓi(w + δ)− ℓi(w). (5.1)

115

Chapter 5. Towards Understanding Sharpness-Aware Minimization

(a) ResNet-18 on CIFAR-10

10 2 10 1 100 101 102

Perturbation radius used for training

4.0%

4.2%

4.5%

4.8%

5.0%

5.2%

5.5%

5.8%

6.0%

Te
st

 e
rro

r

Weight perturbations
None (ERM)
Random
n-SAM
128-SAM

(b) ResNet-34 on CIFAR-100

10 2 10 1 100 101 102

Perturbation radius used for training

20.0%

21.0%

22.0%

23.0%

24.0%

25.0%

Te
st

 e
rro

r

Weight perturbations
None (ERM)
Random
n-SAM
128-SAM

Figure 5.1: Comparison of different weight perturbation methods: no perturbations (ERM),
random perturbations prior to taking the gradient on each iteration, n-SAM, and 128-SAM (see
Sec. 5.3 for the notation). All models are trained with standard data augmentation and small batch
sizes (128). We observe that among these methods only m-SAM with a low m (i.e., 128-SAM)
substantially improves generalization.

In most of the past literature, sharpness is defined for S = Strain (Keskar et al., 2016;
Neyshabur et al., 2017; Jiang et al., 2019). However, Foret et al. (2021) recently introduced
the notion of m-sharpness which is the average of the sharpness computed over all the
batches S of size m from the training set Strain.

Lower sharpness is correlated with lower test error (Keskar et al., 2016), however, the
correlation is not always perfect (Neyshabur et al., 2017; Jiang et al., 2019). Moreover, the
sharpness definition itself can be problematic since rescaling of incoming and outcoming
weights of a node that leads to the same function can lead to very different sharpness
values (Dinh et al., 2017). Kwon et al. (2021) suggest a sharpness definition that fixes
this rescaling problem but other problems still exist such as the sensitivity of classification
losses to the scale of the parameters (Neyshabur et al., 2017).

Sharpness-aware minimization. Foret et al. (2021) theoretically base the SAM algo-
rithm on the following objective:

n-SAM: min
w∈R|w|

max
∥δ∥2≤ρ

n∑
i=1

ℓi(w + δ), (5.2)

which we denote as n-SAM since it is based on maximization of the sum of the losses
over the n training points. They justify this objective via a PAC-Bayesian generalization
bound, although they show empirically (see Fig. 3 therein) that the following objective
leads to better generalization:

m-SAM: min
w∈R|w|

∑
S⊂Strain,

|S|=m

max
∥δ∥2≤ρ

∑
i∈S

ℓi(w + δ), (5.3)

which we denote as m-SAM since it is based on maximization of the sum of the losses
over batches of m training points and therefore related to the m-sharpness.

116

5.4 Challenging the Existing Understanding of SAM

To make SAM practical, Foret et al. (2021) propose to minimize the m-SAM objective
with stochastic gradients. Denoting the batch indices at time t by It (|It| = m), this leads
to the following update rule on each iteration of training:

wt+1 = wt −
γt

|It|
∑
i∈It

∇ℓi
(
wt + ρt

|It|
∑
j∈It

∇ℓj(wt)
)
. (5.4)

Importantly, the same batch It is used for the inner and outer gradient steps. We note
that ρt can optionally include the gradient normalization suggested in Foret et al. (2021),
i.e., ρt := ρ/∥ 1

|It|
∑

j∈It
∇ℓj(wt)∥2. However, we show in Sec. 5.6 that its usage is not

necessary for improving generalization, so we will omit it from our theoretical analysis.

Importance of low-m, worst-case perturbations. In order to improve upon ERM,
Foret et al. (2021) use SAM with low-m and worst-case perturbations. To clearly illus-
trate the importance of these two choices, we show the performance of the following weight
perturbation methods: no perturbations (ERM), random perturbations (prior to taking
the gradient on each iteration), n-SAM, and 128-SAM. We use ResNet-18 on CIFAR-10
and ResNet-34 on CIFAR-100 (Krizhevsky and Hinton, 2009) with standard data augmen-
tation and batch size 128 and refer to App. 5.11 for full experimental details, including
our implementation of n-SAM. Fig. 5.1 clearly suggests that (1) the improvement from
random perturbations is marginal, and (2) the only method that substantially improves
generalization is low-m SAM (i.e., 128-SAM). Thus, worst-case perturbations and the use
of m-sharpness in SAM are essential for the generalization improvement (which depends
continuously on m as noted by Foret et al. (2021), see Fig. 5.16 in App. 5.12.1). We also
note that using too low m is inefficient in practice since it does not fully utilize the com-
putational accelerators such as GPUs. Thus, using higher m values (such as 128) helps
to balance the generalization improvement with the computational efficiency. Finally, we
note that using SAM with large batch sizes without using a smaller m leads to suboptimal
generalization (see Fig. 5.17 in App. 5.12.2).

5.4 Challenging the Existing Understanding of SAM

In this section, we show the limitations of the current understanding of SAM. In particular,
we discuss that the generalization bounds on which its only formal justification relies on
(such as those presented in Foret et al. (2021); Wu et al. (2020b); Kwon et al. (2021))
cannot explain its success. Second, we argue that contrary to a common belief, convergence
of SAM to flatter minima measured in terms of m-sharpness does not always translate to
better generalization.

The existing generalization bound does not explain the success of SAM. The
main theoretical justification for SAM comes from the PAC-Bayesian generalization bound
presented, e.g., in Theorem 2 of Foret et al. (2021). However, the bound is derived for
random perturbations of the parameters, i.e. the leading term of the bound is equal to
Eδ∼N (0,σ)

∑n
i=1 ℓi(w+δ). The extension to worst-case perturbations max∥δ∥2≤ρ

∑n
i=1 ℓi(w+

117

Chapter 5. Towards Understanding Sharpness-Aware Minimization

δ), is done post hoc and only makes the bound less tight. Moreover, we can see empirically
(Fig. 5.1) that both training methods suggested by the derivation of this bound (random
perturbations and n-SAM) do not substantially improve generalization. This generaliza-
tion bound can be similarly extended to m-SAM by upper bounding the leading term via
the maximum taken over mini-batches. However, this bound would incorrectly suggest that
128-SAM should have the worst generalization among all the three weight-perturbation
methods while it is the only method that successfully improves generalization.

We note that coming up with tight generalization bounds even for well-established ERM
for overparametrized models is an open research question (Nagarajan and Kolter, 2019).
One could expect, however, that at least the relative tightness of the bounds could reflect
the correct ranking between the three methods, but it is not the case. Thus, we conclude
that the existing generalization bound cannot explain the generalization improvement of
low-m SAM.

A flatter minimum does not always lead to better generalization. One could
assume that although the generalization bound that relies on m-sharpness is loose, m-
sharpness can still be an important quantity for generalization. This is suggested by its
better correlation with the test error compared to the sharpness computed on the whole
training set (Foret et al., 2021). In particular, we could expect that convergence of SAM to
better-generalizing minima can be explained by a lower m-sharpness of these minima. To
check this hypothesis, we select multiple models trained with group normalization1 that
achieve zero training error and measure their m-sharpness for m = 128 and different per-
turbation radii ρ in Fig. 5.2. We note that the considered networks are not reparametrized
in an adversarial way (Dinh et al., 2017) and they all use the same weight decay param-
eters which makes them more comparable to each other. First of all, we observe that
none of the radii ρ gives the correct ranking between the methods according to their test
error, although m-sharpness ranks correctly SAM and ERM for the same batch size. In
particular, we see that the minimum found by SAM with a large batch size (1024) is flat-
ter than the minimum found by ERM with a small batch size (128) although the ERM
model leads to a better test error: 6.17% vs. 6.80% on CIFAR-10 and 25.06% vs. 28.31%
on CIFAR-100. This shows that it is easy to find counterexamples where flatter minima
generalize worse.

We further note that there are simple examples that illustrate that m-sharpness cannot
be a universal quantity at distinguishing well-generalizing minima. E.g., consider a linear
model fx(w) = ⟨w, x⟩ and a decreasing margin-based loss ℓ, then the 1-sharpness has a
closed-form solution:

n∑
i=1

max
∥δ∥2≤ρ

ℓ (yi ⟨w + δ,xi⟩)− ℓ (yi ⟨w,xi⟩) =
n∑

i=1
ℓ (yi ⟨w,xi⟩ − ρ ∥xi∥2)− ℓ (yi ⟨w,xi⟩) .

1We consider networks with group normalization (Wu and He, 2018) instead of the more common
batch normalization (Ioffe and Szegedy, 2015) since we observed a large discrepancy between m-sharpness
computed with the training-time vs. test-time batch normalization (see the experiment in Fig. 5.19 in
App. 5.12.4).

118

5.5 Understanding the Generalization Benefits of SAM

(a) ResNet-18 on CIFAR-10

0.01 0.02 0.04 0.08 0.16 0.32 0.64
Perturbation radius

10 2

10 1

100

101
m

=1
28

 sh
ar

pn
es

s

Large-batch ERM: 7.14% test err
Large-batch SAM: 6.80% test err
Small-batch ERM: 6.17% test err
Small-batch SAM: 5.16% test err

(b) ResNet-34 on CIFAR-100

0.01 0.02 0.04 0.08 0.16 0.32 0.64
Perturbation radius

10 2

10 1

100

101

m
=1

28
 sh

ar
pn

es
s

Large-batch ERM: 29.53% test err
Large-batch SAM: 28.31% test err
Small-batch ERM: 25.06% test err
Small-batch SAM: 23.61% test err

Figure 5.2: m = 128 sharpness computed over different perturbation radii ρ at the minima of
ERM and SAM models trained with large (1024) and small batches (128). All models are trained
with group normalization and achieve zero training error.

The 1-sharpness is influenced only by the term −ρ ∥xi∥2 which does not depend on a
specific w. In particular, it implies that all global minimizers w∗ of the training loss
are equally sharp according to the 1-sharpness which, thus, cannot suggest which global
minima generalize better.

Since (m-)sharpness does not always distinguish better- from worse-generalizing minima,
the common intuition about sharp vs. flat minima (Keskar et al., 2016) can be incomplete.
This suggests that it is likely that some other quantity is responsible for generalization
which can be correlated with (m-)sharpness in some cases, but not always. This motivates
us to develop a better understanding of the role of m in m-SAM, particularly on simpler
models which are amenable for a theoretical study.

5.5 Understanding the Generalization Benefits of SAM

In this section, we first check empirically whether the advantage of lower m in m-SAM
comes from a more accurate solution of the inner maximization problem or from specific
properties of batch normalization. We conclude that it is not the case and hypothesize
that the advantage comes rather from a better implicit bias of gradient descent induced by
m-SAM. We characterize this implicit bias for diagonal linear networks showing that SAM
can provably improve generalization, and the improvement is larger for 1-SAM than for
n-SAM. Then we complement the theoretical results with experiments on deep networks
showing a few intriguing properties of SAM.

119

Chapter 5. Towards Understanding Sharpness-Aware Minimization

(a) ResNet-18 on CIFAR-10

4 16 64 256 1024
m in m-sharpness

2

4

6

8

10

Su
bo

pt
im

al
ity

 fa
ct

or ERM model
SAM model

(b) ResNet-34 on CIFAR-100

4 16 64 256 1024
m in m-sharpness

2.0

2.2

2.4

2.6

2.8

3.0

3.2

Su
bo

pt
im

al
ity

 fa
ct

or ERM model
SAM model

Figure 5.3: Suboptimality factor of m-sharpness (ρ = 0.1) computed using 100 steps of projected
gradient ascent compared to only 1 step for ERM and SAM models with group normalization.

(a) ResNet-18 on CIFAR-10

0.00 0.05 0.10 0.15 0.20 0.25 0.30
 used for training

5.0%

5.5%

6.0%

6.5%

7.0%

Te
st

 e
rro

r

m = 256, 10 steps
m = 256, 1 step
m = 4, 1 step

(b) ResNet-34 on CIFAR-100

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
 used for training

23.0%

24.0%

25.0%

26.0%

27.0%

Te
st

 e
rro

r

m = 256, 10 steps
m = 256, 1 step
m = 4, 1 step

Figure 5.4: Test error of SAM models with group normalization trained with different numbers
of projected gradient ascent steps (10 vs. 1) for m-SAM and different m values (256 vs. 4) using
batch size 256.

5.5.1 Testing Two Natural Hypotheses for Why Low m in m-SAM Could
be Beneficial

As illustrated in Fig. 5.1, the success of m-SAM fully relies on the effect of low m which
is, however, remains unexplained in the current literature. As a starting point, we could
consider the following two natural hypotheses for why low m could be beneficial.

Hypothesis 1: lower m leads to more accurate maximization. Since m-SAM relies
only on a single step of projected gradient ascent for the inner maximization problem
in Eq. (5.3), it is unclear in advance how accurately this problem is solved. One could
assume that using a lower m can make the single-step solution more accurate as intuitively
the function which is being optimized might become “simpler” due to fewer terms in
the summation. Indeed, there is evidence towards this hypothesis: Fig. 5.3 shows the
suboptimality factor betweenm-sharpness computed using 100 steps vs. 1 step of projected
gradient ascent for ρ = 0.1 (the optimal ρ for 256-SAM in terms of generalization) for
ERM and SAM models. We can see that the suboptimality factor tends to increase over
m and can be as large as 10× for the ERM model on CIFAR-10 for m = 1024. This
finding suggests that the standard single-step m-SAM can indeed fail to find an accurate

120

5.5 Understanding the Generalization Benefits of SAM

maximizer and the value of m can have a significant impact on it. However, despite
this fact, using multiple steps in SAM does not improve generalization as we show in
Fig. 5.4. E.g., on CIFAR-10 it merely leads to a shift of the optimal ρ from 0.1 to 0.05,
without noticeable improvements of the test error. This is also in agreement with the
observation from Foret et al. (2021) on why including second-order terms can slightly hurt
generalization: solving the inner maximization problem more accurately leads to the fact
that the same radius ρ can become effectively too large (as on CIFAR-10) leading to worse
performance.

Hypothesis 2: lower m results in a better regularizing effect of batch normal-
ization. As pointed out in Hoffer et al. (2017) and Goyal et al. (2017), batch normalization
(BN) has a beneficial regularization effect that depends on the mini-batch size. In particu-
lar, using the BN statistics from a smaller subbatch is coined as ghost batch normalization
(Hoffer et al., 2017) and tends to improve generalization. Thus, it could be the case that
the generalization improvement of m-SAM is due to this effect as its implementation as-
sumes using a smaller subbatch of size m. To test this hypothesis, in Fig. 5.4, we show
results of networks trained instead with group normalization that does not lead to any
extra dependency on the effective batch size. We can see that a significant generalization
improvement by m-SAM is still achieved for low m (m = 4 for batch size 256), and this
holds for both datasets. Thus, the generalization improvement of m-SAM is not specific
to BN.

We hypothesize instead that low-m SAM leads to a better implicit bias of gradient descent
for commonly used neural network architectures, meaning that some important complexity
measure of the model gets implicitly minimized over training that may not be obviously
linked to m-sharpness.

5.5.2 Provable Benefit of SAM for Diagonal Linear Networks

Here we theoretically study the implicit bias of full-batch 1-SAM and n-SAM for diagonal
linear networks on a sparse regression problem. We show that 1-SAM has a better implicit
bias than ERM and n-SAM which explains its improved generalization in this setting.

Implicit bias of 1-SAM and n-SAM. The implicit bias of gradient methods is well
understood for overparametrized linear models where all gradient-based algorithms enjoy
the same implicit bias towards minimization of the ℓ2-norm of the parameters. For diagonal
linear neural networks, where a linear predictor ⟨β, x⟩ can be parametrized via β = w2

+ −
w2

−
2 with a parameter vector w =

[w+
w−

]
∈ R2d, first-order algorithms have a richer implicit

bias. We consider here an overparametrized sparse regression problem, meaning that the
ground truth β∗ is a sparse vector, with the squared loss:

2See Woodworth et al. (2020) for why this parametrization is equivalent to a diagonal network β = u⊙v.
Moreover, the signs of ui and vi will not change throughout training, hence the use of the notation w+
and w−.

121

Chapter 5. Towards Understanding Sharpness-Aware Minimization

−5 0 5
β1

−5

0

5

β
2

α1 = α2 = 0.01

−5 0 5
β1

−5

0

5

β
2

α1 = α2 = 0.1

−5 0 5
β1

−5

0

5

β
2

α1 = α2 = 1.0

Figure 5.5: Illustration of the hyperbolic entropy ϕα(β) for β ∈ R2 that interpolates between
∥β∥1 for small α and ∥β∥2 for large α.

L(w) := 1
4n

n∑
i=1

(⟨w2
+ − w2

−, xi⟩ − yi)2, (5.5)

where overparametrization means that n≪ d and there exist many w such that L(w) = 0.
We note that in our setting, any global minimizer w∗ of L(w∗) is also a global minimizer for
the m-SAM algorithm for any m ∈ {1, . . . , n} since all per-example gradients are zero and
hence the ascent step of SAM will not modify w∗. Thus, any difference in generalization
between m-SAM and ERM has to be attributed rather to the implicit bias of each of these
algorithms.

We first recall the seminal result of Woodworth et al. (2020) and refer the readers to
App. 5.9 for further details. Assuming global convergence, the solution selected by the
gradient flow initialized as w+ = w− = α ∈ Rd

>0 and denoted βα
∞ solves the following

constrained optimization problem:

βα
∞ = arg min

β∈Rd s.t. Xβ=y

ϕα(β), (5.6)

where the potential ϕα is given as ϕα(β) = ∑d
i=1 α

2
i q(βi/α

2
i) with q(z) = 2 −

√
4 + z2 +

z arcsinh(z/2). As illustrated in Fig. 5.5, ϕα interpolates between the ℓ1 and the ℓ2 norms
of β according to the initialization scale α. Large α’s lead to low ℓ2-type solutions, while
small α’s lead to low ℓ1-type solutions which are known to induce good generalization
properties for sparse problems (Woodworth et al., 2020).

Our main theoretical result is that both 1-SAM and n-SAM dynamics, when considered
in their full-batch version (see Sec. 5.8 for details), bias the flow towards solutions which
minimize the potential ϕα but with effective parameters α1-SAM and αn-SAM which are
strictly smaller than α for a suitable inner step size ρ. In addition, typically ∥α1-SAM∥1 <
∥αn-SAM∥1 and, therefore, the solution chosen by 1-SAM has better sparsity-inducing
properties than the solution of n-SAM and standard ERM.

Theorem 5.5.1 (Informal). Assuming global convergence, the solutions selected by the
full-batch versions of the 1-SAM and n-SAM algorithms taken with infinitesimally small

122

5.5 Understanding the Generalization Benefits of SAM

100 102 104 106

Number of iterations

10 -4

10 -2

100
T
es

t
L
os

s

ERM
n-SAM
1-SAM

100 102 104 106

Number of iterations

10 -20

10 -10

100

T
ra

in
L
os

s

ERM
n-SAM
1-SAM

Figure 5.6: Implicit bias of 1-SAM and n-SAM compared to ERM for a diagonal linear network
on a sparse regression problem. We can see that 1-SAM generalizes significantly better than n-
SAM and ERM.

step sizes and initialized at w+ = w− = α ∈ Rd
>0, solve the optimization problem (5.6)

with effective parameters:

α1-SAM = α⊙ e−ρ∆1-SAM+O(ρ2), αn-SAM = α⊙ e−ρ∆n-SAM+O(ρ2),

where ∆1-SAM,∆n-SAM ∈ Rd
+ for which typically:

∥∆1-SAM∥1 ≈ d
∫ ∞

0
L(w(s))ds and

∥∆n-SAM∥1 ≈
d

n

∫ ∞

0
L(w(s))ds.

The results are formally stated in Theorem 5.9.2 and 5.9.3 in App. 5.9. 1-SAM has better
implicit bias properties since its effective scale of α is considerably smaller than the one
of n-SAM due to the lack of the 1

n factor in the exponent. It is worth noting that the
vectors ∆1-SAM and ∆n-SAM are linked with the integral of the loss function along the
flow. Thereby, the speed of convergence of the training loss impacts the magnitude of the
biasing effect: the slower the convergence, the better the bias, similarly to what is observed
for SGD in Pesme et al. (2021). Extending this result to stochastic implementations of
1-SAM and n-SAM algorithms could be done following Pesme et al. (2021) but is outside
of the scope of this paper.

Empirical evidence for the implicit bias. We compare the training and test loss of
ERM, 1-SAM, and n-SAM in Fig. 5.6 for the same perturbation radius ρ, and for different ρ
in App. 5.9.3 (Fig. 5.14). As predicted, the methods show different generalization abilities:
ERM and n-SAM achieve approximately the same performance whereas 1-SAM clearly
benefits from a better implicit bias. This is coherent with the deep learning experiments
presented in Fig. 5.1 on CIFAR-10 and CIFAR-100. We also note that the training loss of
all the variants is converging to zero but the convergence of 1-SAM is slower. Additionally,
we show a similar experiment with stochastic variants of the algorithms in App. 5.9.3

123

Chapter 5. Towards Understanding Sharpness-Aware Minimization

(a) ERM

Input

Pr
ed

ict
io

n
(b) SAM

Input

Pr
ed

ict
io

n

Figure 5.7: The effect of the implicit bias of ERM vs. SAM for a one hidden layer ReLU network
trained with full-batch gradient descent. Each run is replicated over five random initializations.

(Fig. 5.13) where their performance is, as expected, better compared to their deterministic
counterparts.

5.5.3 Empirical Study of the Implicit Bias in Non-Linear Networks

Here we conduct a series of experiments to characterize the implicit bias of SAM on non-
linear networks.

The sparsity-inducing bias of SAM for a simple ReLU network. We start from
the simplest non-linear network: a one hidden layer ReLU network applied to a simple 1D
regression problem from Blanc et al. (2020). We use it to illustrate the implicit bias of SAM
in terms of the geometry of the learned function. For this, we train ReLU networks with
100 hidden units using full-batch gradient descent on the quadratic loss with ERM and
SAM3 over five different random initializations. We plot the resulting functions in Fig. 5.7.
We observe that SAM leads to simpler interpolations of the data points than ERM, and
it is much more stable over random initializations. In particular, SAM seems to be biased
toward a sparse combination of ReLUs which is reminiscent of Chizat and Bach (2020b)
who show that the limits of the gradient flow can be described as a max-margin classifier
that favors hidden low-dimensional structures by implicitly regularizing the F1 variation
norm. Moreover, this also relates to our Theorem 5.5.1 where sparsity rather shows up in
terms of the lower ℓ1-norm of the resulting linear predictor. This further illustrates that
there can exist multiple ways in which one can describe the beneficial effect of SAM. For
deep non-linear networks, however, the effect of SAM is hard to visualize, but we can still
characterize some of its important properties.

The effect of SAM for deep networks at different stages of training. To develop
a better understanding of the implicit bias of SAM for deep networks, we can analyze at
which stages of training using SAM is necessary to get generalization benefits. One could
assume, for example, that its effect is important only early in training so that the first
updates of SAM steer the optimization trajectory towards a better-generalizing minimum.

3Since n = 12 for this task, we observed no substantial difference between 1-SAM and n-SAM.

124

5.5 Understanding the Generalization Benefits of SAM

(a) ResNet-18 on CIFAR-10

0% 20% 40% 60% 80% 100%
Switch SAM ERM or ERM SAM at this % of epochs

3.8%

4.0%

4.2%

4.4%

4.6%

4.8%

5.0%

5.2%

Te
st

 e
rro

r

SAM ERM
ERM SAM

(b) ResNet-34 on CIFAR-100

0% 20% 40% 60% 80% 100%
Switch SAM ERM or ERM SAM at this % of epochs

18.5%

19.0%

19.5%

20.0%

20.5%

21.0%

21.5%

Te
st

 e
rro

r

SAM ERM
ERM SAM

Figure 5.8: Test error of SAM → ERM and ERM → SAM when the methods are switched
at different % of epochs. For example, for SAM → ERM, 0% corresponds to ERM and 100%
corresponds to SAM. We observe that a method which is run at the beginning of training has little
influence on the final performance.

(a) ResNet-18 on CIFAR-10

700 750 800 850 900 950 1000 1050 1100
Epoch

4.0%

4.5%

5.0%

5.5%

6.0%

Te
st

 e
rro

r

ERM
ERM SAM
SAM ERM

(b) ResNet-34 on CIFAR-100

700 750 800 850 900 950 1000 1050 1100
Epoch

18.0%

19.0%

20.0%

21.0%

22.0%

23.0%

24.0%

25.0%

Te
st

 e
rro

r
ERM
ERM SAM
SAM ERM

Figure 5.9: Test error over epochs for ERM compared to ERM → SAM and SAM → ERM
training where the methods are switched only at the end of training. In particular, we can see that
SAM can gradually escape the worse-generalizing minimum found by ERM.

In that case, switching from SAM to ERM would not degrade the performance. To
better understand this, we train models first with SAM and then switch to ERM for the
remaining epochs (SAM → ERM) and also do a complementary experiment by switching
from ERM to SAM (ERM→ SAM) and show results in Fig. 5.8. Interestingly, we observe
that a method that is used at the beginning of training has little influence on the final
performance. E.g., when SAM is switched to ERM within the first 70% epochs on CIFAR-
100, the resulting model generalizes as well as ERM. Furthermore, we note a high degree
of continuity of the test error with respect to the number of epochs at which we switch the
methods. This does not support the idea that the models converge to some entirely distinct
minima and instead suggests convergence to different minima in a connected valley where
some directions generalize progressively better. Another intriguing observation is that
enabling SAM only towards the end of training is sufficient to get a significant improvement
in terms of generalization. We discuss this phenomenon next in more detail.

The importance of the implicit bias of SAM at the end of training. We take
a closer look on the performance of ERM → SAM and SAM → ERM when we switch
between the methods only for the last ≈ 10% of epochs in Fig. 5.9 where we plot the
test error over epochs. First, we see that for SAM → ERM, once SAM converges to a

125

Chapter 5. Towards Understanding Sharpness-Aware Minimization

1.0 0.5 0.0 0.5 1.0 1.5 2.0
Interpolation between model weights

0.0

0.5

1.0

Cr
os

s-
en

tro
py Test loss

Train loss
Test loss of ERM SAM
Test loss of ERM

Figure 5.10: Loss interpolations between wERM→SAM and wERM for a ResNet-18 trained on
CIFAR-10.

well-generalizing minimum thanks to its implicit bias, then it is not important whether
we continue optimization with SAM or with ERM, and we do not observe significant
overfitting when switching to ERM. At the same time, for ERM → SAM we observe a
different behavior: the test error clearly improves when switching from ERM to SAM. This
suggests that SAM (using a higher ρ than the standard value, see App. 5.11) can gradually
escape the worse-generalizing minimum which ERM converged to. This phenomenon
is interesting since it suggests a practically relevant fine-tuning scheme that can save
computations as we can start from any pre-trained model and substantially improve its
generalization. Moreover, interestingly, the final point of the ERM → SAM model is
situated in the same basin as the original ERM model as we show in Fig. 5.10 which
resembles the asymmetric loss interpolations observed previously for stochastic weight
averaging (He et al., 2019).

We make very similar observations regarding fine-tuning with SAM and linear connectivity
also on a diagonal linear network as shown in App. 5.9.3 (Fig. 5.15). We believe the
observations from Fig. 5.9 can be explained by our Theorem 5.5.1 which shows that for
diagonal linear networks, the key quantity determining the magnitude of the implicit bias
for SAM is the integral of the loss over the optimization trajectory w(s). In the case of
ERM→ SAM, the integral is taken only over the last epochs but this can still be sufficient
to improve the biasing effect. At the same time, for SAM → ERM, the integral is already
large enough due to the first 1000 epochs with SAM and switching back to ERM preserves
the implicit bias. We discuss it in more detail in App. 5.9.3.

5.6 Understanding the Optimization Aspects of SAM

The results on the implicit bias of SAM presented above require that the algorithm con-
verges to zero training error. In the current literature, however, a convergence analysis
(even to a stationary point) is missing for SAM. In particular, we do not know what are
the conditions on the training ERM loss, inner step size γt, and perturbation radius ρt so
that SAM is guaranteed to converge. We also do not know whether SAM converges to
a stationary point of the ERM objective. To fill in this gap, we first theoretically study
convergence of SAM and then relate the theoretical findings with empirical observations

126

5.6 Understanding the Optimization Aspects of SAM

on deep networks.

5.6.1 Theoretical Analysis of Convergence of SAM

Here we show that SAM leads to convergence guarantees in terms of the standard training
loss. In the following, we analyze the convergence of the m-SAM algorithm whose update
rule is defined in Eq. (5.4). We make the following assumptions on the training loss
L(w) = 1

n

∑n
i=1 ℓi(w):

(A1) (Bounded variance). There exists σ ≥ 0 s.t. E[∥∇ℓi(w) − ∇L(w)∥2] ≤ σ2 for all
i ∼ U([[1, n]]) and w ∈ Rd.

(A2) (Individual β-smoothness). There exists β ≥ 0 s.t. ∥∇ℓi(w)−∇ℓi(v)∥ ≤ β∥w − v∥
for all w, v ∈ Rd and i ∈ [[1, n]].

(A3) (Polyak-Lojasiewicz). There exists µ > 0 s.t. 1
2∥∇L(w)∥2 ≥ µ(L(w) − L∗) for all

w, v ∈ Rd.

Both assumptions (A1) and (A2) are standard in the optimization literature and should
hold for neural networks with smooth activations and losses (such as cross-entropy). The
assumption (A2) requires the inputs to be bounded but this is typically satisfied (e.g.,
images are all in [0, 1]d). The assumption (A3) corresponds to easier problems (e.g.,
strongly convex ones) for which global convergence can be proven. We have the following
convergence result:

Theorem 5.6.1. Assume (A1) and (A2) for the iterates (5.4). Then for any number of
iterations T ≥ 0, batch size b, and step sizes γt = 1√

T β
and ρt = 1

T 1/4β
, we have:

1
T
E
[

T −1∑
t=0
∥∇L(wt)∥2

]
≤ 4β√

T
(L(w0)− L∗) + 8σ2

b
√
T
,

In addition, under (A3), with step sizes γt = min{ 8t+4
3µ(t+1)2 ,

1
2β} and ρt =

√
γt/β:

E [L(wT)]− L∗ ≤
3β2(L(w0)− L∗)

µ2T 2 + 22βσ2

µ2bT
.

We provide the proof in App. 5.10.2 and make several remarks:

• We recover the rates of SGD with the usual condition on the step size γt (Ghadimi
and Lan, 2013; Karimi et al., 2016).

• The ascent step size ρt, however, has to be O(√γt) to ensure convergence, i.e., it
tolerates a slower decrease than γt. This finding is aligned with the observation that
the ascent step size should not be decreased as drastically as the descent step size
when training neural networks (see Fig. 5.21 in App. 5.12.6).

127

Chapter 5. Towards Understanding Sharpness-Aware Minimization

(a) ResNet-18 on CIFAR-10

0 200 400 600 800 1000
Epoch

0%

5%

10%

15%

20%
Er

ro
r

Test, ERM
Train, ERM
Test, standard SAM
Train, standard SAM
Test, const- SAM
Train, const- SAM

(b) ResNet-34 on CIFAR-100

0 200 400 600 800 1000
Epoch

0%

10%

20%

30%

40%

50%

60%

Er
ro

r

Test, ERM
Train, ERM
Test, standard SAM
Train, standard SAM
Test, const- SAM
Train, const- SAM

Figure 5.11: Training and test error of ERM, standard SAM, and SAM with a constant step
size ρ (i.e., without gradient normalization) over epochs. We can see that both ERM and SAM
converge to zero training error and the gradient normalization is not crucial for SAM.

• On the technical side, the proof relies on the bound ⟨∇L(wt +η∇L(wt)),∇L(wt)⟩ ≥
(1 − ηβ)∥∇L(wt)∥2 which shows that SAM-step is well aligned with the gradient
step (see Lemma 7 in App. 5.10.2).

5.6.2 Convergence of SAM for Deep Networks

Here we relate the convergence analysis to empirical observations for deep learning tasks.

Both ERM and SAM converge for deep networks. We compare the behavior of
ERM and SAM by training a ResNet-18 on CIFAR-10 and CIFAR-100 for 1000 epochs
(see App. 5.11 for experimental details) and plot the results over epochs in Fig. 5.11. We
observe that not only the ERM model but also the model trained with SAM fits all the
training points and converges to a nearly zero training loss: 0.0013± 0.00002 for ERM vs
0.0034± 0.0004 for SAM on CIFAR-10. However, the SAM model has significantly better
generalization performance due to its implicit bias: 4.75%± 0.14% vs. 3.94%± 0.09% test
error. Moreover, we observe no noticeable overfitting throughout training: the best and
last model differ by at most 0.1% test error for both methods. Finally, we note that the
behavior of ERM vs. SAM on CIFAR-100 is qualitatively similar.

Performance of SAM with constant step sizes ρt. Our convergence proof in Sec. 5.6.1
for non-convex objectives relies on constant step sizes ρt. However, the standard SAM al-
gorithm as introduced in Foret et al. (2021) uses step sizes ρt inversely proportional to
the gradient norm. Thus, one can wonder if such step sizes are important for achieving
better convergence or generalization. Fig. 5.11 shows that on CIFAR-10 and CIFAR-100,
both methods converge to zero training error at a similar speed. Moreover, they achieve
similar improvements in terms of generalization: 3.94% ± 0.09% test error for standard
SAM vs. 4.15% ± 0.16% for SAM with constant ρt on CIFAR-10. For CIFAR-100, the
test error matches almost exactly: 19.22% ± 0.38% vs. 19.30% ± 0.38%. We also note
that the optimal ρ differs for both formulations: ρt = 0.2/ ∥∇∥2 with normalization vs.
ρt = 0.3 without normalization, so simply removing the gradient normalization without
doing a new grid search over ρt can lead to suboptimal results.

128

5.7 Conclusions

(a) ResNet-18 on CIFAR-10

0 200 400 600 800 1000
Epoch

0%

20%

40%

60%

80%

100%
Er

ro
r

Test error, ERM
Train error on noisy samples, ERM
Test error, SAM
Train error on noisy samples, SAM

(b) ResNet-34 on CIFAR-100

0 200 400 600 800 1000
Epoch

0%

20%

40%

60%

80%

100%

Er
ro

r

Test error, ERM
Train error on noisy samples, ERM
Test error, SAM
Train error on noisy samples, SAM

Figure 5.12: Error rates of ERM and SAM over epochs on CIFAR-10 and CIFAR-100 with 60%
label noise. We see that the test error increases when the models fit the noisy samples.

Is it always beneficial for SAM to converge to zero loss? Here we consider the
setting of uniform label noise, i.e., when a fraction of the training labels is changed to
random labels and kept fixed throughout the training. This setting differs from the stan-
dard noiseless case (typical for many vision datasets such as CIFAR-10) as converging to
nearly zero training loss is harmful for ERM and leads to substantial overfitting. Thus, one
could assume that the beneficial effect of SAM in this setting can come from preventing
convergence and avoiding fitting the label noise. We plot test error and training error on
noisy samples for a ResNet-18 trained on CIFAR-10 and CIFAR-100 with 60% label noise
in Fig. 5.12. We see that SAM noticeably improves generalization over ERM, although
later in training SAM also starts to fit the noisy points which is in agreement with the
convergence analysis. In App. 5.12.7, we confirm the same findings for SAM with constant
ρt. Thus, SAM also requires early stopping either explicitly via a validation set or im-
plicitly via restricting the number of training epochs as done, e.g., in Foret et al. (2021).
Interestingly, this experiment also suggests that the beneficial effect of SAM is observed
not only close to a minimum but also along the whole optimization trajectory. Overall,
we conclude that SAM can easily overfit and its convergence in terms of the training loss
can be a negative feature for datasets with noisy labels.

5.7 Conclusions

We showed why the existing justifications for the success ofm-SAM based on generalization
bounds and the idea of convergence to flat minima are incomplete. We hypothesized that
there exists some other quantity which is responsible for the improved generalization of
m-SAM which is implicitly minimized. We analyzed the implicit bias of 1-SAM and n-
SAM for diagonal linear networks showing that the implicit quantity which is minimized
is related to the ℓ1-norm of the resulting linear predictor, and it is stronger for 1-SAM
than for n-SAM. We further studied the properties of the implicit bias on non-linear
networks empirically where we showed that fine-tuning an ERM model with SAM can
lead to significant generalization improvements. Finally, we provided convergence results
of SAM for non-convex objectives when used with stochastic gradient which we confirmed
empirically for deep networks and discussed its relation to the generalization behavior of

129

Chapter 5. Towards Understanding Sharpness-Aware Minimization

SAM.

130

5.8 Implementations of the SAM Algorithm in the Full-Batch Setting

Appendix

5.8 Implementations of the SAM Algorithm in the Full-
Batch Setting

We define here the implementations of the m-SAM algorithm in the full-batch setting for
the two extreme values of m we consider, i.e., m = 1 and m = n. They correspond to the
following objectives:

n-SAM: min
w∈R|w|

max
∥δ∥2≤ρ

1
n

n∑
i=1

ℓi(w + δ), 1-SAM: min
w∈R|w|

1
n

n∑
i=1

max
∥δ∥2≤ρ

ℓi(w + δ). (5.7)

The update rule of the SAM algorithm for these objectives amounts to a variant of gradient
descent with step size γt where the gradients are taken at intermediate points wi

t+1/2, i.e.,
wt+1 = wt − γt

n

∑n
i=1∇ℓi(wi

t+1/2). The updates, however, differ in how the points wi
t+1/2

are computed since they approximately maximize different functions with inner step sizes
ρt:

n-SAM: wi
t+1/2 = wt + ρt

n

n∑
j=1
∇ℓj(wt), 1-SAM: wi

t+1/2 = wt + ρt∇ℓi(wt). (5.8)

To make the SAM algorithm practical, Foret et al. (2021) propose to combine SAM with
stochastic gradients which corresponds to the m-SAM algorithm defined in Eq. (5.4) in
the main part.

5.9 Theoretical Analysis of the Implicit Bias for Diagonal
Linear Networks

To understand why m-SAM is generalizing better than ERM, we consider the simpler
problem of noiseless regression with 2-layer diagonal linear network for which we can
precisely characterize the implicit bias of different optimization algorithms.

Optimization algorithms. We consider minimizing the training loss L(w) using the
following optimization algorithms:

• Gradient descent with an infinitesimally small step size, i.e., the gradient flow limit:

ẇt = −∇L(wt). (5.9)

131

Chapter 5. Towards Understanding Sharpness-Aware Minimization

• The n-SAM algorithm from Eq. (5.8) taken with an infinitesimally small outer step
size and inner step size ρ ≥ 0:

ẇt = −∇L(wt + ρ∇L(wt)). (5.10)

• The 1-SAM algorithm from Eq. (5.8) taken with an infinitesimally small outer step
size and inner step size ρ ≥ 0:

ẇt = − 1
n

n∑
i=1
∇ℓi(wt + ρ∇ℓi(wt)). (5.11)

Previous work: implicit bias of the gradient flow. We first define the function
ϕα for α ∈ Rd which will be very useful to precisely characterize the implicit bias of the
optimization algorithms we consider:

ϕα(β) =
d∑

i=1
α2

i q(βi/α
2
i) where q(z) =

∫ z

0
arcsinh(u/2)du = 2−

√
4 + z2 + z arcsinh(z/2).

(5.12)
Following Woodworth et al. (2020), one can show the following result for the gradient flow
dynamics in Eq. (5.9).

Theorem 5.9.1 (Theorem 1 of Woodworth et al. (2020)). If the solution β∞ of the
gradient flow (5.9) started from w+ = w− = α ∈ Rd

>0 for the squared parameter problem
in Eq. (5.5) satisfies Xβ∞ = y, then

β∞ = arg min
β∈Rd

ϕα(β) s.t. Xβ = y, (5.13)

where ϕα is defined in Eq. (5.12).

It is worth noting that the implicit regularizer ϕα interpolates between the ℓ1 and ℓ2 norms
(see Woodworth et al., 2020, Theorem 2). Therefore the scale of the initialization deter-
mines the implicit bias of the gradient flow. The algorithm, started from α, converges to
the minimum ℓ1-norm interpolator for small α and to the minimum ℓ2-norm interpolator
for large α. The proof follows from (a) the KKT condition for the optimization prob-
lem (5.13): ∇ϕα(w) = X⊤ν for a Lagrange multiplier ν and (b) the closed form solution
obtained by integrating the gradient flow, w = b(X⊤ν) for some function b and some
vector ν. Identifying ∇ϕα(w) = b−1(w) leads to the solution. Considering the same proof
technique, we now derive the implicit bias for the n-SAM and 1-SAM algorithms.

5.9.1 Implicit Bias of the n-SAM Algorithm.

We start from characterizing the implicit bias of the n-SAM dynamics (5.10) in the fol-
lowing theorem using the function ϕα defined in Eq. (5.12). We will also make use
of this notation: a parameter vector w =

[w+
w−

]
∈ R2d, a concatenation of matrices

X̃ = [X −X] ∈ Rn×2d and a residual vector r(t) = X̃w(t)2 − y.

132

5.9 Theoretical Analysis of the Implicit Bias for Diagonal Linear Networks

Theorem 5.9.2. If the solution β∞ of the n-SAM gradient flow (5.10) started from w+ =
w− = α ∈ Rd

>0 for the squared parameter problem in Eq. (5.5) satisfies Xβ∞ = y, then

β∞ = arg min
β
ϕαn-SAM(β) s.t. Xβ = y,

where αn-SAM = α⊙ exp
(
− 2ρ

n2
∫∞

0 (X⊤rs)2ds+O(ρ2)
)
.

We note that for a small enough ρ, the implicit bias parameter αn-SAM is smaller than α.
The scale of the vector 1

n2
∫∞

0 (X⊤rs)2ds which influences the implicit bias effect is related
to the loss integral d

n

∫∞
0 L(w(s))ds since ∥rs∥2 = nL(w(s)) (see intuition in Eq. (5.19)).

Thereby the speed of convergence of the loss controls the magnitude of the biasing effect.
However in the case of n-SAM, as explained in Sec. 5.9.3, this effect is typically negligible
because of the extra prefactor d

n and this implementation behaves similarly as ERM as
shown in the experiments in Sec. 5.5.2.

Proof. We follow the proof technique of Woodworth et al. (2020). We denote the inter-
mediate step of n-SAM as wsam(t) = w(t) + ρ∇L(w(t)) and the residual of wsam(t) as
rsam(t) = X̃wsam(t)2 − y. We start from deriving the equation satisfied by the flow

ẇ(t) = −∇L(wsam(t))

= − 1
n
X̃⊤rsam(t)⊙ wsam(t)

= − 1
n
X̃⊤rsam(t)⊙

(
w(t) + ρ

n

(
X̃⊤r(t)

)
⊙ w(t)

)
.

Now we can directly integrate this ODE to obtain an expression for w(t):

w(t) = w(0)⊙ exp
(
− 1
n
X̃⊤

∫ t

0
rsam(s)ds

)
⊙ exp

(
− ρ

n2

∫ t

0

(
X̃⊤rsam(s)

)
⊙
(
X̃⊤r(s)

)
ds

)
.

Using that the flow is initialized at w(0) = α and the definition of β(t) yields to

β(t) = w+(t)2 − w−(t)2

= α2 ⊙ exp
(
− 2
n
X⊤

∫ t

0
rsam(s)ds

)
⊙ exp

(
−2ρ
n2

∫ t

0

(
X⊤rsam(s)

)
⊙
(
X⊤r(s)

)
ds

)
− α2 ⊙ exp

(2
n
X⊤

∫ t

0
rsam(s)ds

)
⊙ exp

(
−2ρ
n2

∫ t

0

(
X⊤rsam(s)

)
⊙
(
X⊤r(s)

)
ds

)
= 2α2 ⊙ exp

(
−2ρ
n2

∫ t

0

(
X⊤rsam(s)

)
⊙
(
X⊤r(s)

)
ds

)
⊙ sinh

(
− 2
n
X⊤

∫ t

0
rsam(s)ds

)
.

Recall that we are assuming that β∞ is a global minimum of the loss, i.e., Xβ∞ = y.
Thus, β∞ has to simultaneously satisfy

Xβ∞ = y and β∞ = bαn-SAM(X⊤ν),

133

Chapter 5. Towards Understanding Sharpness-Aware Minimization

where bα(z) = 2α2 ⊙ sinh(z) and ν = − 2
n

∫∞
0 rsam(s)ds, and

αn-SAM = α⊙ exp
(
−2ρ
n2

∫ ∞

0
(X⊤rsam(s))⊙ (X⊤r(s))ds

)
. (5.14)

Next we combine the flow expression b−1
αn-SAM(β∞) = X⊤ν with a KKT condition∇ϕα(w) =

X⊤ν and get that
∇ϕα(β) = b−1

α (β) = arcsinh
(1

2α2 ⊙ β
)
.

Integration of this equation leads to ϕα(β) = ∑d
i=1 α

2
i q(βi/α

2
i) where q(z) =

∫ z
0 arcsinh(u/2)du =

2−
√

4 + z2+z arcsinh(z/2), i.e., exactly the potential function defined in Eq. (5.12). Thus,
we conclude that β∞ satisfies the KKT conditions Xβ∞ = y and ∇ϕα(β∞) = X⊤ν for
the minimum norm interpolator problem:

min
β∈Rd

ϕα(β) s.t. Xβ = y,

which proves the first part of the result.

Now to get the expression for αn-SAM, we apply the definition of rsam(s) and obtain

rsam(t) = X̃wsam(t)2 − y

= X̃

(
w(t) + ρ

n

(
X̃⊤r(t)

)
⊙ w(t)

)2
− y

= r(t) + 2ρ
n
X̃
(
X̃⊤r(t)

)
⊙ w(t) + ρ2

n2 X̃
(
X̃⊤r(t)

)2
⊙ w(t)2

= r(t) + 2ρ
n
X
(
X⊤r(t)

)
⊙ (w+(t) + w−(t)) + ρ2

n2X
(
X⊤r(t)

)2
⊙ (w+(t)2 + w−(t)2).

Thus we conclude that X⊤rsam(t) = X⊤r(t) +O(ρ) which we plug in Eq. (5.14) to obtain
the second part of the theorem:

αn-SAM = α⊙ exp
(
−2ρ
n2

∫ ∞

0
(X⊤rs)2ds+O(ρ2)

)
.

5.9.2 Implicit Bias of the 1-SAM Algorithm

We characterize similarly the implicit bias of the 1-SAM dynamics (5.11) in the following
theorem using the function ϕα defined in Eq. (5.12).

Theorem 5.9.3. If the solution β∞ of the 1-SAM gradient flow (5.11) started from w+ =
w− = α ∈ Rd

>0 for the squared parameter problem in Eq. (5.5) satisfies Xβ∞ = y, then

β∞ = arg min
β
ϕα1-SAM(β) s.t. Xβ = y,

134

5.9 Theoretical Analysis of the Implicit Bias for Diagonal Linear Networks

where α1-SAM = α⊙ exp
(
−8ρ

n

∫∞
0
∑n

i=1 x
2
i (x⊤

i β(s)− yi)2ds+O(ρ2)
)
.

In addition, assume that there exist R,B ≥ 0 such that almost surely (1) the inputs are
bounded ∥x∥2 ≤ R and (2) the trajectory of the flow is bounded ∥β(t)∥2 ≤ B for all t ≥ 0.
Then for all ρ ≤ 1

4R2
√

B(B+∥β∗∥2)
, we have that α1-SAM,i ≤ αi for i ∈ {1, . . . , d}.

Proof. The proof follows the same lines as the proof of Theorem 5.9.2. We denote a
concatenation of positive and negative copies of the i-th training example as x̃i =

[xi
−xi

]
∈

R2d, the intermediate step of 1-SAM based on the i-th training example as w(i)
sam(t) ∈ Rd,

the residuals of w(t) and w(i)
sam(t) on the i-th training example as ri(t) = x̃⊤

i w(t)2− yi and
rsam,i(t) = x̃⊤

i w
(i)
sam(t)2 − yi. Then we have that the dynamics of the flow (5.11) satisfies

ẇ(t) = − 1
n

n∑
i=1
∇ℓi(w(i)

sam(t))

= − 1
n

n∑
i=1

rsam,i(t) · x̃i ⊙ w(i)
sam(t)

= − 1
n

n∑
i=1

rsam,i(t) · x̃i ⊙ w(t)⊙ (1 + 4ρri(t)x̃i) .

Integration of this ODE leads to

w(t) = w(0)⊙ exp
(
− 1
n
X̃⊤

∫ t

0
rsam(s)ds

)
⊙ exp

(
−4ρ
n

n∑
i=1

x̃2
i

∫ t

0
rsam,i(s)ri(s)ds

)
.

The rest of the proof is similar to the one of Theorem 5.9.2 and we directly obtain that

α1-SAM = α⊙ exp
(
−8ρ
n

n∑
i=1

x̃2
i

∫ t

0
rsam,i(s)ri(s)ds

)
. (5.15)

Using the definition of rsam,i(t) we have

rsam,i(t) = x̃⊤
i wsam(t)2 − yi

= x̃⊤
i w(t)2 ⊙ (1 + 4ρri(t)x̃i)2 − yi

= x̃⊤
i w(t)2 ⊙

(
1 + 8ρri(t)x̃i + 16ρ2ri(t)2x̃2

i

)
− yi

= ri(t) + 8ρri(t)
(
w+(t)2 + w−(t)2

)⊤
x2

i + 16ρ2ri(t)2
(
w+(t)2 − w−(t)2

)⊤
x3

i

= ri(t) + 8ρri(t)
(
w+(t)2 + w−(t)2

)⊤
x2

i + 16ρ2ri(t)2β(t)⊤x3
i

And therefore

x2
i rsam,i(t)ri(t) = ri(t)2x2

i ⊙
(

1 + 8ρ
(
w+(t)2 + w−(t)2

)⊤
x2

i + 16ρ2ri(t)β(t)⊤x3
i

)
(5.16)

135

Chapter 5. Towards Understanding Sharpness-Aware Minimization

This leads to the result stated in the theorem

α1-SAM = α⊙ exp
(
−8ρ
n

∫ ∞

0

n∑
i=1

x2
i (x⊤

i β(s)− yi)2ds+O(ρ2)
)
. (5.17)

Additionally, from Eq. (5.16) we can conclude that having ρ such that 1+16ρ2ri(t)β(t)⊤x3
i ≥

0 is sufficient to guarantee that α1-SAM,i ≤ αi for every i. We can use Cauchy-Schwarz
inequality twice to upper bound |ri(t)β(t)⊤x3

i |:

|ri(t)β(t)⊤x3
i | = |x⊤

i (β − β∗)β(t)⊤x3
i | ≤ ∥xi∥2∥β(t)− β∗∥2∥β(t)∥2∥x3

i ∥2
≤ ∥xi∥42(∥β(t)∥2 + ∥β∗∥2)∥β(t)∥2 ≤ R4(B + ∥β∗∥2)B

Thus, we have that ρ2ri(t)β(t)⊤x3
i ≥ −ρ2R4(B+∥β∗∥2)B ≥ − 1

16 which leads to the upper
bound stated in the theorem ρ ≤ 1

4R2
√

B(B+∥β∗∥2)
.

5.9.3 Comparison between 1-SAM and n-SAM

Theoretical comparison. We wish to compare the two leading terms of the exponents
in αn-SAM and α1-SAM:

In-SAM(t) = 1
n2

(
X⊤r(t)

)2
= 1
n2

(
n∑

i=1
xiri(t)

)2

and I1-SAM(t) = 1
n

n∑
i=1

x2
i ri(t)2,

and relate them to the loss values at w(t).

We first note that using Cauchy-Schwarz inequality can directly imply that I1-SAM,i(t) ≥
In-SAM,i(t). However, we aim at obtaining a more quantitative result, even though the
following derivations will be informal. Comparing the ℓ1-norms of In-SAM(t) and I1-SAM(t)
amounts to compare the following two quantities:

∥In-SAM(t)∥1 = (w(t)− w∗)⊤
[

1
n

n∑
i=1

xix
⊤
i

]2

(w(t)− w∗),

∥I1-SAM(t)∥1 = (w(t)− w∗)⊤
[

1
n

n∑
i=1
∥xi∥22xix

⊤
i

]
(w(t)− w∗).

We can compare the typical operator norms of the random matrices that define the two
quadratic forms. If we assume that xi ∼ N (0, Id), then following the Bai-Yin’s law, the
operator norm of a Wishart matrix is with high probability ∥ 1

n

∑n
i=1 xix

⊤
i ∥op ≈ d

n and that
with high probability, the squared norm of a Gaussian vector is ∥xi∥22 ≈ d. Therefore we
obtain that ∥∥∥∥∥∥

[
1
n

n∑
i=1

xix
⊤
i

]2
∥∥∥∥∥∥

op

=
∥∥∥∥∥ 1
n

n∑
i=1

xix
⊤
i

∥∥∥∥∥
2

op

≈ d2

n2 ,

136

5.9 Theoretical Analysis of the Implicit Bias for Diagonal Linear Networks

∥∥∥∥∥ 1
n

n∑
i=1
∥xi∥2xix

⊤
i

∥∥∥∥∥
op

≈ d
∥∥∥∥∥ 1
n

n∑
i=1

xix
⊤
i

∥∥∥∥∥
op

≈ d2

n
.

Therefore in the overparametrized regime (d >> n), we typically have that ∥I1-SAM(t)∥1
∥In-SAM(t)∥1

≈ n
and the biasing effect of 1-SAM would tend to be O(n) times better compared to n-SAM.

However, this first insight only enables to compare In-SAM(t) and I1-SAM(t). It is not
informative on the intrinsic biasing effect of n-SAM and 1-SAM. With this aim, we would
like to relate the quantities In-SAM(t) and I1-SAM(t) to the loss function evaluated in w(t).
Using the concentration of Wishart matrices, i.e., 1

d [XX⊤] ≈ I for large dimension d, we
have with high probability

∥In-SAM(t)∥1 = 1
n2 (w(t)− w∗)⊤X⊤XX⊤X(w(t)− w∗)

= d

n2 (w(t)− w∗)⊤X⊤ 1
d

[XX⊤]X(w(t)− w∗)

≈ d

n
(w(t)− w∗)⊤ 1

n
[X⊤X](w(t)− w∗)

= d

n
L(w(t)). (5.18)

And using the concentration of Gaussian vectors, we also have that

∥I1-SAM(t)∥1 = (w(t)− w∗)⊤ 1
n

n∑
i=1
∥xi∥2xix

⊤
i (w(t)− w∗)

≈ d(w(t)− w∗)⊤ 1
n

n∑
i=1

xix
⊤
i (w(t)− w∗)

= dL(w(t)). (5.19)

These approximations provide some intuition on why the biasing effect of 1-SAM and
n-SAM can be related to the integral of the loss and that typically the difference is on the
order of n. We let a formal derivation of these results as future work.

Experiments with stochastic ERM, n-SAM, 1-SAM. We provide an additional
experiment to investigate the performance of stochastic implementations of the ERM, n-
SAM and 1-SAM. As explained by Pesme et al. (2021), we observe in Fig. 5.13 that the
stochastic implementations enjoy a better implicit bias than their deterministic counter-
parts. We note that the fact that small batch versions generalize better than full batch
version is commonly observed in practice for deep networks Keskar et al. (2016). We
let the characterization of the implicit bias of these stochastic implementations as future
works.

Grid search over ρ for n-SAM vs. 1-SAM. We note that for Fig. 5.6 and Fig. 5.13,
we used a fixed ρ which was the same for both n-SAM and 1-SAM. Tuning ρ for each
method separately can help to achieve a better test loss for both methods as shown in
Fig. 5.14. We can see that 1-SAM still significantly outperforms ERM and n-SAM for the

137

Chapter 5. Towards Understanding Sharpness-Aware Minimization

100 102 104 106

100

100 102 104 106

10-20

10-10

100

Figure 5.13: Implicit bias of SAM on a sparse regression problem using a diagonal linear network
with d = 30, n = 20, xi ∼ N (0, I), κ = ∥β∗∥0 = 3, yi = x⊤

i β∗. All methods are initialized at
α = 0.01 and used with step size γ = 1/d and ρ = 1/d. We can see that 1-SAM (SumMax) SGD
converges to a solution which generalizes better (left plot) and enjoys a different implicit bias from
the other methods. At the same time, all algorithms converge to a global minimum of f at linear
rate (right plot). The convergence speed is inversely proportional to the biasing effect.

10−3 10−2 10−1 100

Perturbation radius used for training

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

T
es

t
lo

ss

Training method

ERM

n-SAM

1-SAM

Figure 5.14: A grid search over ρ for full-batch n-SAM vs. 1-SAM (α = 0.05, γ = 15/d for all
methods). We can see that even with the optimal ρ, n-SAM generalizes much worse than 1-SAM
which is coherent with our deep learning experiments in Fig. 5.1.

optimally chosen radius ρ and that n-SAM leads only to marginal improvements.

Connection to the ERM → SAM and SAM → ERM experiment. Here we
provide further details on the connection between Theorem 5.5.1 and the empirical results
in Fig. 5.9. First of all, we show in Fig. 5.15 that the same observations as we observed
for deep networks also hold on a diagonal linear network. In this experiment, we used the
initialization scale α = 0.05, ρ1-SAM = 0.175, and ρGD→1-SAM = 10.0. We note that we had
to take ρGD→1-SAM significantly larger than ρ1-SAM since after running GD, we are already
near a global minimum where the gradients (which are also used for the ascent step of
SAM) are very small so we need to increase the inner step size ρGD→1-SAM to observe a
difference. In addition, a loss interpolation between wGD→1-SAM and wGD reveals linear
connectivity between the two found minima suggesting that both minima are situated in
the same asymmetric basin, similarly to what we observed for deep networks in Fig. 5.10.

First we note that Theorem 5.5.1 can be trivially adapted to the case where SAM is
used with varying inner step size ρt, and would therefore show that for diagonal lin-
ear networks, the key quantity determining the magnitude of the implicit bias for SAM

138

5.10 Convergence of the SAM Algorithm

0 2000 4000 6000 8000 10000 12000 14000

Iteration

10−4

10−3

10−2

10−1

T
es

t
lo

ss
ERM

ERM → 1-SAM

1-SAM → ERM

(a) (a) Test loss over epochs

0 2000 4000 6000 8000 10000 12000 14000

Iteration

10−6

10−5

10−4

10−3

10−2

10−1

T
ra

in
lo

ss

ERM

ERM → 1-SAM

1-SAM → ERM

(b) (b) Training loss over epochs

−1.0 −0.5 0.0 0.5 1.0 1.5 2.0

Interpolation between model weights

0.00

0.02

0.04

0.06

0.08

0.10

0.12

S
qu

ar
ed

lo
ss

Test loss

Train loss

Test loss of ERM → 1-SAM

Test loss of ERM

(c) (c) Loss interpolations

Figure 5.15: Test loss (a) and training loss (b) for full-batch ERM compared to ERM → 1-SAM
and 1-SAM → ERM on a diagonal linear network where we switch between the methods after 10k
iterations. We can see that 1-SAM can quickly escape the worse-generalizing minimum found by
ERM. Moreover, in (c) we show loss interpolations between ERM → 1-SAM and ERM that show
that they are linearly connected and situated in the same basin.

is the integral of the step size ρs times the loss over the optimization trajectory w(s),
i.e., ∥∆1-SAM-ρs∥1 ≈ d

∫∞
0 ρsL(w(s))ds which leads to a smaller value in the exponent

α1-SAM-ρs = αe−ρ∆1-SAM-ρs +O(ρ2), thus decreasing the effective α and biasing the flow to a
sparser solution.

In the case of ERM → 1-SAM, it amounts to consider a step size ρs = 0 if s < t and
ρs = ρ after the switch. Therefore the integral is taken only over the last epochs, and
∥∆1-SAM-t-∞∥1 ≈ d

∫∞
t L(w(s))ds where the integral starts at the time step t. The resulting

∥∆1-SAM-t-∞∥1 is smaller than ∥∆1-SAM∥1 but it can still be sufficient (especially, when
using a higher ρ as we do for Fig. 5.15) to improve the biasing effect so that it leads to
noticeable improvements in generalization.

At the same time, for 1-SAM → ERM, which amounts to consider a step size ρs = ρ if
s < t and ρs = 0 after the switch, the integral is already large enough due to the first 1000
epochs with SAM, leading to a term ∥∆1-SAM-0-t∥1 ≈ d

∫ t
0 L(w(s))ds and switching back

to ERM preserves the implicit bias due to a low enough effective α. This explains why
switching back to ERM does not negatively affect generalization of the model.

5.10 Convergence of the SAM Algorithm

In this section we provide proofs of convergence for SAM. We consider first the full-batch
SAM algorithm and then its stochastic version.

5.10.1 Convergence of Full-Batch n-SAM

We first consider the full-batch version of SAM, i.e., the following update rule:

wt+1 = wt − γ∇L (wt + ρ∇L(wt)) . (5.20)

139

Chapter 5. Towards Understanding Sharpness-Aware Minimization

We note that this update rule is reminiscent of the extra-gradient algorithm (Korpelevich,
1977) but with an ascent in the inner step instead of a descent. Moreover, this update rule
can also be seen as a realization of the general extrapolated gradient descent framework
suggested in Lin et al. (2020). However, taking an ascent step for extrapolation is not
discussed there, and the convergence properties of the update rule from Eq. (5.20), to the
best of our knowledge, have not been proven.

Summary of the convergence results. Let us first recall the definition of β-smoothness
which we will use in our proofs.

(A2’) (β-smoothness). There exists β > 0 such that ∥∇L(w) − ∇L(v)∥ ≤ β∥w − v∥ for
all w, v ∈ Rd.

When the function L is β-smooth, convergence to stationary points can be obtained.

Theorem 5.10.1. Assume (A2’). For any γ < 1/β and ρ < 1/β, the iterates (5.20)
satisfy for all T ≥ 0:

1
T

T −1∑
t=0
∥∇L(wt)∥2 ≤

2
γ(1− ρβ)T (L(w0)− L∗),

If, in addition, the function L satisfies (A3), then:

L(wT)− L∗ ≤
(

1− γ(1− ρβ)µ
2

)T

(L(w0)− L∗).

We can make the following remarks:

• We recover the rates of gradient descent but with constants increasing with the
ascent step size ρ.

• The condition ρ < 1/β is necessary since the point w + 1/β∇L(w) can be a local
maximum of L. Such w would be a fixed point of the algorithm without being a
stationary point of L.

• The proof crucially relies on the bound ⟨∇L(wt+ρ∇L(wt)),∇L(wt)⟩ ≥ (1−ρβ)∥∇L(wt)∥2
which shows that the SAM step is well-aligned with the gradient step (see Lemma 3)
and on a descent inequality similar to the classical one for gradient descent (see
Lemma 4).

• For non-convex functions, full details are provided in Theorem 5.10.2. When the
function satisfies in addition Polyak-Lojasiewicz inequality, a stronger result holds
which is stated in Theorem 5.10.3.

• For convex functions, ⟨∇L(wt + ρ∇L(wt)),∇L(wt)⟩ ≥ ∥∇L(wt)∥2 and convergence
holds for any step size ρ given that γρ is small enough. Details are provided in
Theorem 5.10.4.

140

5.10 Convergence of the SAM Algorithm

Auxiliary Lemmas. The following lemma shows that the SAM update is well correlated
with the gradient ∇L(w) and will be a cornerstone to our proof.

Lemma 3. Let L be a differentiable function and w ∈ Rd. We have the following bound
for any ρ ≥ 0:

⟨∇L(w + ρ∇L(w)),∇L(w)⟩ ≥ (1 + αρ)∥∇L(w)∥2 where α =

−β if L is β-smooth,
0 if L is convex
µ if L is µ-strongly convex.

Proof. We simply add and subtract a term ∥∇L(w)∥2 in order to make use of classical
inequalities bounding ⟨∇L(w1) −∇L(w2), w1 − w2⟩ by ∥w1 − w2∥2 for smooth or convex
functions and w1, w2 ∈ Rd.

⟨∇L(w + ρ∇L(w)),∇L(w)⟩ = ⟨∇L(w + ρ∇L(w))−∇L(w),∇L(w)⟩) + ∥∇L(w)∥2

= 1/ρ⟨∇L(w + ρ∇L(w))−∇L(w), ρ∇L(w)⟩+ ∥∇L(w)∥2

≥ (1 + αρ)∥∇L(w)∥2,

where the last inequality is using that

⟨∇L(w1)−∇L(w2), w1 − w2⟩ ≥ α∥w2 − w1∥2, where α =

−β if L is β-smooth,
0 if L is convex
µ if L is µ-strongly convex.

The next lemma shows that the decrease of function values of the SAM algorithm defined
in Eq. (5.20) can be controlled similarly as in the case of gradient descent (Nesterov, 2004).

Lemma 4. Assume (A2’). For any γ ≤ 1/β, the iterates (5.20) satisfy for all t ≥ 0:

L(wt+1) ≤ L(wt)− γ(1− ρβ)
(

1− γβ

2 (1− ρβ)
)
∥∇L(wt)∥2.

If, in addition, the function L satisfies (A3) with potentially µ = 0, then for all γ, ρ ≥ 0
such that γβ(2− ρβ) ≤ 2, we have

L(wt+1) ≤ L(wt)− γ
(

1− γβ

2 + ρµ
(
1− γβ − γρβ2

2
))
∥∇L(wt)∥2.

We note that the constraints on the step size are different depending on the assumptions
on the function L. In the non-convex case, ρ has to be smaller than 1/β, whereas in the
convex case, it has to be smaller than 2/β.

141

Chapter 5. Towards Understanding Sharpness-Aware Minimization

Proof. Let us define by wt+1/2 = wt+ρ∇L(wt) the SAM ascent step. Using the smoothness
of the function L (Assumption (A2’)), we obtain

L(wt+1) ≤ L(wt)− γ⟨∇L(wt+1/2),∇L(wt)⟩+ γ2β

2 ∥∇L(wt+1/2)∥2.

The main trick is to use the binomial squares

∥∇L(wt+1/2)∥2 = −∥∇L(wt)∥2 + ∥∇L(wt+1/2)−∇L(wt)∥2 + 2⟨∇L(wt+1/2),∇L(wt)⟩,

to bound

L(wt+1) ≤ L(wt)− γ⟨∇L(wt+1/2),∇L(wt)⟩+ γ2β

2 ∥∇L(wt+1/2)∥2

= L(wt)−
γ2β

2 ∥∇L(wt)∥2 + γ2β

2 ∥∇L(wt+1/2)−∇L(wt)∥2 − γ(1− γβ)⟨∇L(wt+1/2),∇L(wt)⟩

≤ L(wt)− γ[1− ρβ − γβ

2 (1− ρβ)2]∥∇L(wt)∥2,

where we have used Lemma 3 and that ∥∇L(wt+1/2) − ∇L(wt)∥2 ≤ β2∥wt+1/2 − wt∥2 ≤
β2ρ2∥∇L(wt)∥2.

If, in addition, the function L is convex then we can use its co-coercivity (Nesterov, 2004)
to bound ∥∇L(wt+1/2)−∇L(wt)∥2 ≤ β⟨∇L(wt+1/2)−∇L(wt), wt+1/2 −wt⟩ and obtain a
tighter bound:

L(wt+1) ≤ L(wt)− γ⟨∇L(wt+1/2),∇L(wt)⟩+ γ2β

2 ∥∇L(wt+1/2)∥2

= L(wt)−
γ2β

2 ∥∇L(wt)∥2 + γ2β

2 ∥∇L(wt+1/2)−∇L(wt)∥2 − γ(1− γβ)⟨∇L(wt+1/2),∇L(wt)⟩

≤ L(wt)− γ(1− γβ

2)∥∇L(wt)∥2 − γ(1− γβ − γρβ2

2)⟨∇L(wt+1/2)−∇L(wt),∇L(wt)⟩

≤ L(wt)− γ(1− γβ

2 + ρµ(1− γβ − γρβ2

2))∥∇L(wt)∥2,

where we have used Lemma 3.

Convergence proofs. Using the previous Lemma 4 recursively, we can bound the av-
erage gradient value of the iterates (5.20) of SAM algorithm and ensure convergence to
stationary points.

Theorem 5.10.2. Assume (A2’). For any γ < 1/β and ρ < 1/β, the iterates (5.20)
satisfies for all T ≥ 0:

1
T

T∑
t=0
∥∇L(wt)∥2 ≤

L(w0)− L(wT)
Tγ(1− ρβ)[1− γβ

2 (1− ρβ)]
.

142

5.10 Convergence of the SAM Algorithm

Proof. Using the Lemma 4 we obtain

γ(1− ρβ)
(

1− γβ

2 (1− ρβ)
)
∥∇L(wt)∥2 ≤ L(wt)− L(wt+1).

And summing these inequalities for t = 0, . . . , T − 1 yields

1
T

T −1∑
t=0
∥∇L(wt)∥2 ≤

L(w0)− L(wT)
Tγ(1− ρβ)[1− γβ

2 (1− ρβ)]
.

When the function L additionally satisfies a Polyak-Lojasiewicz condition (A3), linear
convergence of the function value to the minimum function value can be obtained. This
is the object of the following theorem:

Theorem 5.10.3. Assume (A2’) and (A3). For any γ < 1/β and ρ < 1/β, the iter-
ates (5.20) satisfies for all T ≥ 0:

L(wt)− L∗ ≤
(

1− 2γµ(1− ρβ)
(

1− γβ

2 (1− ρβ)
))t

(L(w0)− L∗).

Proof. Using the Lemma 4 and that the function L is µ Polyak-Lojasiewicz (Assumption
(A3)) we obtain

L(wt+1) ≤ L(wt)− 2µγ(1− ρL)
(

1− γβ

2 (1− ρL)
)

(L(wt)− L∗).

And subtracting the optimal value L∗ we get

L(wt)− L∗ ≤
(

1− 2γµ(1− ρβ)
(

1− γβ

2 (1− ρβ)
))

(L(wt−1)− L∗)

≤
(

1− 2γµ(1− ρβ)
(

1− γβ

2 (1− ρβ)
))t

(L(w0)− L∗).

When the function L is convex, convergence of the average of the iterates can be proved.

Theorem 5.10.4. Assume (A2’) and L convex. For any step sizes γ and ρ such that
γβ(1 + ρβ) < 2, then the averaged w̄T = 1

T

∑T −1
t=0 wt of the iterates (5.20) satisfies for all

T ≥ 0:

L(w̄T)− L∗ ≤
2ρβ + 1

γ(2− γβ(1 + ρβ))T ∥w0 − w∗∥2,

If, in addition, the function L is µ-strongly convex, then:

∥wT − w∗∥2 ≤
(
1− γµ(2− γβ(1 + ρβ))

)T
(2ρ+ 1)∥w0 − w∗∥2.

143

Chapter 5. Towards Understanding Sharpness-Aware Minimization

The proof is using a different astute Lyapunov function which works for the non-strongly
convex case.

Proof. Let us define by Vt = [L(wt)−L(w∗)]+ 1
2ρ∥wt−w∗∥2 and by wt+1/2 = wt +ρ∇L(wt)

the SAM ascent step.

Vt+1 − Vt ≤ −
γ

ρ
⟨∇L(wt+1/2), wt − w∗⟩ − γ⟨∇L(wt+1/2),∇L(wt)⟩+ γ2

2ρ(1 + ρβ)∥∇L(wt+1/2)∥2

= −γ
ρ
⟨∇L(wt+1/2), wt + ρ∇L(wt)− w∗⟩+ γ2

2ρ(1 + ρβ)∥∇L(wt+1/2)∥2

= −γ
ρ
⟨∇L(wt+1/2), wt+1/2 − w∗⟩+ γ2

2ρ(1 + ρβ)∥∇L(wt+1/2)∥2

≤ −γ
ρ

(1− γβ

2 (1 + ρβ))⟨∇L(wt+1/2), wt+1/2 − w∗⟩.

If L is convex then L(wt+1/2)−L(w∗) ≤ ⟨∇L(wt+1/2), wt+1/2−w∗⟩ and therefore we obtain

γ

ρ

(
1− γβ

2 (1 + ρβ)
)(

L(wt+1/2)− L(w∗)
)
≤ Vt − Vt+1.

Using the definition of wt+1/2 we always have that L(wt+1/2) ≥ L(wt) + ρ∥∇L(wt)∥2
therefore

γ

ρ

(
1− γβ

2 (1 + ρβ)
)

(L(wt)− L(w∗)) ≤ Vt − Vt+1.

And taking the sum and using Jensen inequality we finally obtain:

L(1
T

T∑
t=0

wt)− L(w∗) ≤ V0 − VT +1

T γ
ρ (1− γβ

2 (1 + ρβ))
.

If L is µ-strongly convex, we use that ⟨∇L(wt+1/2), wt+1/2 − w∗⟩ ≥ µ∥wt+1/2 − w∗∥2 to
obtain

∥wt+1/2 − w∗∥2 = ∥wt + ρ∇L(wt)− w∗∥2 = ∥wt − w∗∥2 + 2ρ⟨∇L(wt), wt − w∗⟩+ ρ2∥∇L(wt)∥2

≥ ∥wt − w∗∥2 + 2ρ⟨∇L(wt), wt − w∗⟩
≥ ∥wt − w∗∥2 + 2ρ[L(wt)− L(w∗)]
≥ 2ρVt.

Therefore we have

Vt+1 ≤ (1− γµ(2− γβ(1 + ρβ)))Vt ≤ (1− γµ(2− γβ(1 + ρβ)))t+1 V0.

144

5.10 Convergence of the SAM Algorithm

5.10.2 Convergence of Stochastic SAM

Convergence of n-SAM

When the SAM algorithm is implemented with the n-SAM objective as optimization ob-
jective, two different batches are used in the ascent and descent steps. We obtain the
n-SAM algorithm defined as

wt+1 = wt −
γt

b

∑
i∈It

∇ℓi
(
wt + ρt

b

∑
i∈Jt

∇ℓi(wt)
)
, (5.21)

where It and Jt are two different mini-batches of data of size b. For this variant of the
SAM algorithm, we obtain the following convergence result.

Theorem 5.10.5. Assume (A1), (A2’) for the iterates (5.21). For any T ≥ 0 and for
step sizes γt = 1√

T β
and ρt = 1

T 1/4β
, we have:

1
T
E
[

T −1∑
t=0
∥∇L(wt)∥2

]
≤ 4
β
√
T

(L(w0)− L∗) + 8σ2

b
√
T
,

In addition, under (A2), with step sizes γt = min{ 8t+4
3µ(t+1)2 ,

1
2β} and ρt =

√
γt/β:

E [L(wT)]− L∗ ≤
3β2(L(w0)− L∗)

µ2T 2 + 22βσ2

bµ2T

We obtain the same convergence result as in Theorem 5.6.1, but under the relaxed smooth-
ness assumption (A2’).

As in the deterministic case, the proof relies on two lemmas which shows that the SAM
update is well correlated with the gradient and that the decrease of function values can
be controlled.

Auxiliary lemmas. The following lemma shows that the SAM update is well correlated
with the gradient ∇L(wt). Let us denote by ∇Lt+1(w) = 1

b

∑
i∈It
∇ℓi(w), ∇Lt+1/2(w) =

1
b

∑
i∈Jt
∇ℓi(w), and wt+1/2 = wt + ρ∇Lt+1/2(wt) the SAM ascent step.

Lemma 5. Assume (A1) and (A2). Then for all ρ ≥ 0, t ≥ 0 and w ∈ Rd,

E⟨∇Lt+1(w + ρ∇Lt+1/2(w)),∇L(w)⟩ ≥ (1/2− βρ)∥∇L(w)∥2 − β2ρ2σ2

2 .

The proof is similar to the proof of Lemma 3. Only the stochasticity of the noisy gradients
has to be taken into account. For this goal, we consider instead the update which would
have been obtained without noise, and bound the remainder using the bounded variance
assumption (A1).

145

Chapter 5. Towards Understanding Sharpness-Aware Minimization

Proof. Let us denote by ŵ = w + ρ∇L(w), the true gradient step. We first add and
subtract ∇Lt+1/2(ŵ)

⟨∇Lt+1(w + ρ∇Lt+1/2(w)),∇L(w)⟩ = ⟨∇Lt+1(w + ρ∇Lt+1/2(w))−∇Lt+1(ŵ),∇L(w)⟩ − ⟨∇Lt+1(ŵ),∇L(w)⟩.

We bound the two terms separately. We use the smoothness of L (Assumption (A2’)) to
bound the first term:

− E⟨∇Lt+1(w + ρ∇Lt+1/2(w))−∇Lt+1(ŵ),∇L(w)⟩
= −E⟨∇L(w + ρ∇Lt+1/2(w))−∇L(ŵ),∇L(w)⟩

≤ 1
2 E ∥∇L(w + ρ∇Lt+1/2(w))−∇L(ŵ)∥2 + 1

2∥∇L(w)∥2

≤ β2

2 E ∥w + ρ∇Lt+1/2(w)− ŵ∥2 + 1
2∥∇L(w)∥2

≤ β2ρ2

2 E ∥∇Lt+1/2(w)−∇L(w)∥2 + 1
2∥∇L(wt)∥2

≤ β2ρ2σ2

2b + 1
2 ∥∇L(w)∥2,

where we have used that the variance of a mini-batch of size b is bounded by σ2/b. Note
that this term can be equivalently bounded by βρσ/

√
b∥∇L(w)∥ if needed. For the second

term, we directly apply Lemma 3 to obtain

E⟨∇Lt+1(ŵ),∇L(w)⟩ = E⟨∇L(ŵ),∇L(w)⟩ ≥ (1− βρ)∥∇L(w)∥2.

The next lemma shows that the decrease of function values of stochastic n-SAM can be
controlled similarly as for standard stochastic gradient descent.

Lemma 6. Let us assume (A1, A2’) then for all γ ≤ 1
2β and ρ ≤ 1

2β , the iterates (5.21)
satisfies

EL(wt+1) ≤ EL(wt)−
γ

4 E ∥∇L(wt)∥2 + γβσ2(γ + ρ2β).

This lemma is analogous to Lemma 4 in the stochastic case. The proof is very similar,
with the slight difference that Lemma 5 is used instead of Lemma 3.

Proof. Let us define by wt+1/2 = wt +ρ∇Lt+1/2(wt). Using the smoothness of the function
L (A2), we obtain

L(wt+1) ≤ L(wt)− γ⟨∇Lt+1(wt+1/2),∇L(wt)⟩+ γ2β

2 ∥∇Lt+1(wt+1/2)∥2.

146

5.10 Convergence of the SAM Algorithm

Taking the expectation and using that the variance is bounded (A1) yields to

EL(wt+1) ≤ EL(wt)− γ E⟨∇L(wt+1/2),∇L(wt)⟩+ γ2β

2 E ∥∇Lt+1(wt+1/2)∥2

≤ EL(wt)− γ E⟨∇L(wt+1/2),∇L(wt)⟩+ γ2β E ∥∇Lt+1(wt+1/2)−∇L(wt+1/2)∥2

+ γ2β E ∥∇L(wt+1/2)∥2

≤ EL(wt)− γ E⟨∇L(wt+1/2),∇L(wt)⟩+ γ2β
σ2

b
+ γ2β E ∥∇L(wt+1/2)∥2.

The main trick is still to use the binomial squares

∥∇L(wt+1/2)∥2 = −∥∇L(wt)∥2 + ∥∇L(wt+1/2)−∇L(wt)∥2 + 2⟨∇L(wt+1/2),∇L(wt)⟩

to bound

EL(wt+1) ≤ EL(wt)− γ E⟨∇L(wt+1/2),∇L(wt)⟩+ γ2β

2 E ∥∇L(wt+1/2)∥2 + γ2σ2β/b

= EL(wt)− γ2LE ∥∇L(wt)∥2 + γ2β E ∥∇L(wt+1/2)−∇L(wt)∥2

− γ(1− 2γβ)E⟨∇L(wt+1/2),∇L(wt)⟩+ γ2σ2β/b

= EL(wt)− γ2β E ∥∇L(wt)∥2 + γ2L3 E ∥wt+1/2 − wt∥2

− γ(1− 2γβ)(1/2 + αρ)E ∥∇L(wt)∥2 + γ(1− 2γL)σ2ρ2β2/2 + γ2σ2β/b

= EL(wt)− γ2β E ∥∇L(wt)∥2 + γ2β3ρ2 E ∥∇Lt+1/2(wt)∥2

− γ(1− 2γβ)(1/2 + αρ)E ∥∇L(wt)∥2 + γ(1− 2γβ)σ2/bρ2β2/2 + γ2σ2β/b

= EL(wt)− γ2β E ∥∇L(wt)∥2 + 2γ2β3ρ2 E ∥∇L(wt)∥2 + 2γ2β3ρ2σ2/b

− γ(1− 2γβ)(1/2 + αρ)E ∥∇L(wt)∥2 + γ(1− 2γβ)σ2ρ2β2/2 + γ2σ2β/b

≤ L(wt)−
γ

2 [1− 2ρβ(1− 2γβ(1− ρβ))]E ∥∇L(wt)∥2 + γσ2β/b[γ + ρ2L/2(1 + 2γβ)]

where we have used Lemma 5 and that ∥∇L(wt+1/2)−∇L(wt)∥2 ≤ β2∥wt+1/2−wt∥2.

Using Lemma 6 we directly obtain the following convergence result.

Theorem 5.10.6. Assume (A1) and (A2’). For γ ≤ 1/(2β) and ρ ≤ 1/(2β), the
iterates (5.4) satisfies:

1
T

T −1∑
t=0

E ∥∇L(wt)∥2 ≤ 4L(w0)− EL(wT)
Tγ

+ 4Tσ2β(γ + ρ2β)/b.

This theorem gives the first part of Theorem 5.10.5. The proof of the stronger result
obtained when the function is in addition PL (Assumption (A3)) is similar to the proof
of Theorem 3.2 of Gower et al. (2019), only the constants are changing.

147

Chapter 5. Towards Understanding Sharpness-Aware Minimization

Convergence of m-SAM

In the m-SAM algorithm, the same batch is used in the ascent and descent steps unlike
in the n-SAM algorithm analyzed above. We obtain then iterates (5.4) for which we
have stated the convergence result in Theorem 5.6.1 in the main part. The proof follows
the same lines as above with the minor difference that we are assuming the individual
gradients ∇ft are Lipschitz (Assumption (A2)) to control the alignment of the expected
SAM direction. Let us denote by ∇Lt(w) = 1

b

∑
i∈Jt
∇ℓi(w).

Lemma 7. Assume (A1-2). Then we have for all w ∈ Rd, ρ ≥ 0 and t ≥ 0

E⟨∇Lt(w + ρ∇Lt(w)),∇L(w)⟩ ≥ (1/2− ρβ)∥∇L(w)∥2 − β2ρ2σ2

2b .

The proof is very similar to the proof of Lemma 5. The only difference is that the As-
sumption (A2) is used instead of (A2’).

Proof. Let us denote by ŵ = w + ρ∇L(w), the true gradient step. We first add and
subtract ∇Lt(ŵ)

⟨∇Lt(w + ρ∇Lt(w)),∇L(w)⟩ = ⟨∇Lt(w + ρ∇Lt(w))−∇Lt(ŵ),∇L(w)⟩ − ⟨∇Lt(ŵ),∇L(w)⟩.

We bound the two terms separately. We use the smoothness of Lt to bound the first term
(Assumption (A2)):

−⟨∇Lt(w + ρ∇Lt(w))−∇Lt(ŵ),∇L(w)⟩ ≤ 1
2∥∇Lt(w + ρ∇Lt(w))−∇Lt(ŵ)∥2 + 1

2∥∇L(w)∥2

≤ β2

2 E ∥w + ρ∇Lt(w)− ŵ∥2 + 1
2∥∇L(w)∥2

≤ β2ρ2

2 ∥∇Lt(w)−∇L(w)∥2 + 1
2∥∇L(w)∥2.

And taking the expectation, we obtain:

−E⟨∇Lt(w + ρ∇Lt(w))−∇Lt(ŵ),∇L(w)⟩ ≤ β2ρ2σ2

2b + 1
2 E ∥∇L(w)∥2.

For the second term, we apply directly Lemma 3

E⟨∇Lt(ŵ),∇L(wt)⟩ = ⟨∇L(ŵ),∇L(w)⟩ ≥ (1− βρ)∥∇L(w)∥2.

Assembling the two inequalities yields the result.

The next lemma shows that the decrease of function values of the m-SAM algorithm can
be controlled similarly as in the case of gradient descent. It is analogous to Lemma 6
where different batches are used in both the ascent and descent steps of SAM algorithm.

148

5.10 Convergence of the SAM Algorithm

Lemma 8. Assume (A1-2). For all γ ≤ 1
β and ρ ≤ 1

4β , the iterates (5.4) satisfy

EL(wt+1) ≤ EL(wt)−
3γ
8 E ∥∇L(wt)∥2 + γβ

σ2

b
(γ + 2ρ2β).

Proof. Let us define by wt+1/2 = wt + ρ∇Lt+1(wt). Using the smoothness of the function
L which is implied by (A2), we obtain

L(wt+1) ≤ L(wt)− γ⟨∇Lt+1(wt+1/2),∇L(wt)⟩+ γ2β

2 ∥∇Lt+1(wt+1/2)∥2.

We still use the binomial squares

∥∇Lt+1(wt+1/2)∥2 = −∥∇L(wt)∥2 + ∥∇Lt+1(wt+1/2)−∇L(wt)∥2 + 2⟨∇Lt+1(wt+1/2),∇L(wt)⟩

and bound L(wt+1) by

L(wt+1) ≤ L(wt)−
γ2β

2 ∥∇L(wt)∥2 + γ2β

2 ∥∇Lt+1(wt+1/2)−∇L(wt)∥2 − γ(1− γβ)⟨∇Lt+1(wt+1/2),∇L(wt)⟩

≤ L(wt)−
γ2β

2 ∥∇L(wt)∥2 + γ2β∥∇Lt+1(wt+1/2)−∇Lt+1(wt)∥2 + γ2β∥∇Lt+1(wt)−∇L(wt)∥2

− γ(1− γβ)⟨∇Lt+1(wt+1/2),∇L(wt)⟩

≤ L(wt)−
γ2β

2 ∥∇L(wt)∥2 + γ2ββ2∥wt+1/2 − wt∥2 + γ2β∥∇Lt+1(wt)−∇L(wt)∥2

− γ(1− γβ)⟨∇Lt+1(wt+1/2),∇L(wt)⟩

= L(wt)−
γ2β

2 ∥∇L(wt)∥2 + γ2β3ρ2∥∇Lt+1(wt)∥2 + γ2β∥∇Lt+1(wt)−∇L(wt)∥2

− γ(1− γβ)⟨∇Lt+1(wt+1/2),∇L(wt)⟩

= L(wt)−
γ2β

2 (1− 4β2ρ2)∥∇L(wt)∥2 + γ2β(1 + 2β2ρ2)∥∇Lt+1(wt)−∇L(wt)∥2

− γ(1− γβ)⟨∇Lt+1(wt+1/2),∇L(wt)⟩

Taking the expectation and using Lemma 7, we obtain

EL(wt+1) ≤ EL(wt)−
γ2β

2 (1− 4β2ρ2)E ∥∇L(wt)∥2 + γ2β(1 + 2β2ρ2)E ∥∇Lt+1(wt)−∇L(wt)∥2

− γ(1− γβ)E⟨∇Lt+1(wt+1/2),∇L(wt)⟩

≤ EL(wt)−
γ2β

2 (1− 4β2ρ2)E ∥∇L(wt)∥2 + γ2β(1 + 2β2ρ2)σ2/b

− γ(1− γβ)(1/2− βρ)E ∥∇L(wt)∥2 + γ(1− γβ)ρ
2σ2β2

2b

≤ EL(wt)−
γ2β

2 (1− 4β2ρ2)E ∥∇L(wt)∥2 + γ2β(1 + 2β2ρ2)σ2/b

149

Chapter 5. Towards Understanding Sharpness-Aware Minimization

− γ

2 (1− 2βρ(1− γ(β − 2ρβ2)))E ∥∇L(wt)∥2 + γσ2/b[γβ + ρ2β2

2 (1 + 3γβ)].

Using Lemma 8 we directly obtain the main convergence result for m-SAM.

Theorem 5.10.7. Assume (A1-2). For γ ≤ 1
β and ρ ≤ 1

4β , the iterates (5.4) satisfy:

1
T
E
[

T −1∑
t=0
∥∇L(wt)∥2

]
≤ 8

3Tγ (L(w0)− EL(wT)) + 8σ2β(γ + ρ2β)
3b .

In addition, under (A3), with step sizes γt = min{ 8t+4
3µ(t+1)2 ,

1
2β} and ρt =

√
γt/β:

E[L(wT)]− L∗ ≤
3β2(L(w0)− L∗)

µ2T 2 + 22βσ2

µ2bT
.

Proof. The first bound directly comes from Lemma 8. The second bound is similar to the
proof of Theorem 3.2 of Gower et al. (2019), only the constants are changing.

Finally, we note that Theorem 5.6.1 is a direct consequence of Theorem 5.10.7 with γt =
1√
T β

, ρt = 1
T 1/4β

and slightly simplified constants.

5.11 Experimental Details

Training details for deep networks. In all experiments, we train deep networks using
SGD with step size 0.1, momentum 0.9, and ℓ2-regularization parameter λ = 0.0005. We
perform experiments on CIFAR-10 and CIFAR-100 (Krizhevsky and Hinton, 2009) where
for all experiments we apply basic data augmentations: random image crops and mirroring.
We use batch size 128 for most experiments except when it is mentioned otherwise. We use
a pre-activation ResNet-18 (He et al., 2016b) for CIFAR-10 and ResNet-34 on CIFAR-100
with a width factor 64 and piece-wise constant learning rates (with a 10-times decay at
50% and 75% epochs). We train all models for 200 epochs except those in Sec. 5.5.3 and
Sec. 5.6.2 for which we use 1000 epochs. We use batch normalization for most experiments,
except when it is explicitly mentioned otherwise as, for example, in the experiments where
we aim to compute sharpness and for this we use networks with group normalization.

For all experiments involving SAM, we select the best perturbation radius ρ based on a
grid search over ρ ∈ {0.025, 0.05, 0.1, 0.2, 0.3, 0.4}. In most cases, the optimal ρ is equal to
0.1 while in the ERM→ SAM experiment, it is equal to ρ = 0.4 for CIFAR-10 and ρ = 0.2
for CIFAR-100. We note that using a higher ρ in this case is coherent with the experiments
on diagonal linear networks which also required a higher ρ. For all experiments with SAM,
we use a single GPU, so we do not implicitly rely on lower m-sharpness in m-SAM. The
only exception where m is smaller than the batch size is the experiments shown in Fig. 5.4

150

5.12 Additional Deep Learning Experiments

and Fig. 5.16. Regarding n-SAM in Fig. 5.1, we implement it by doing the ascent step
on a different batch compared to the descent step, i.e., as described in our convergence
analysis part in Eq. (5.21).

Sharpness computation. We compute m-sharpness on 1024 training points (i.e., by
averaging over ⌈1024/m⌉) of CIFAR-10 or CIFAR-100 using 100 iterations of projected
gradient ascent using a step size α = 0.1 · ρ. For each iteration, we normalize the updates
by the ℓ2 gradient norm.

Confidence intervals on plots. Many experimental results are replicated over different
random seeds used for training. We show the results using the mean and 95% bootstrap
confidence intervals which is the standard way to show such results in the seaborn library
Waskom (2021).

Code and computing infrastructure. The code of our experiments is publicly avail-
able.4 We perform all our experiments with deep networks on a single NVIDIA V100
GPU with 32GB of memory. Since most of our experiments involved a grid search over
the perturbation radius ρ and replication over multiple random seeds, we could not do the
same at the ImageNet scale due to our limited computational resources.

5.12 Additional Deep Learning Experiments

In this section, we show additional experimental results complementary to those presented
in the main part. In particular, we provide multiple ablation study related to the role of m
in m-SAM, batch size, and model width. We also provide additional experiments on the
evolution of sharpness over training using training time and test time batch normalization,
training loss of ERM vs. SAM models, and the performance under label noise for standard
and unnormalized SAM.

5.12.1 The Effect of m in m-SAM

We show the results of SAM for different m in m-SAM (with a fixed batch size 256) in
Fig. 5.16. We note that in this experiment, we used group normalization instead of batch
normalization like, for example, in Fig. 5.1, so the exact test error values should not be
compared between these two figures. We observe from Fig. 5.16, that the generalization
improvement is larger for smaller m and it is continuous in m. We also note that a
similar experiment has been done in the original SAM paper (Foret et al., 2021). Here, we
additionally verified this finding on an additional dataset (CIFAR-100) and for networks
trained without batch normalization (which may have had an extra regularization effect
as we discussed in Sec. 5.5.1).

4https://github.com/tml-epfl/understanding-sam

151

https://github.com/tml-epfl/understanding-sam

Chapter 5. Towards Understanding Sharpness-Aware Minimization

(a) ResNet-18 on CIFAR-10

0.00 0.05 0.10 0.15 0.20 0.25 0.30
 used for training

5.0%

5.5%

6.0%

6.5%

7.0%
Te

st
 e

rro
r

m = 256
m = 64
m = 16
m = 4

(b) ResNet-34 on CIFAR-100

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
 used for training

23.0%

24.0%

25.0%

26.0%

27.0%

Te
st

 e
rro

r

m = 256
m = 64
m = 16
m = 4

Figure 5.16: Test error of models trained with group normalization and different m in m-SAM
using batch size 256.

5.12.2 The Effect of the Batch Size on SAM

We show the results of SAM for different batch sizes in Fig. 5.17 where we use m equal to
the batch size. Note that a too high m leads to marginal improvements in generalization
(≈ 0.2%) and is not able to bridge the gap between large-batch (1024) and small-batch
(256 or 128) SGD.

(a) ResNet-18 on CIFAR-10

0.00 0.05 0.10 0.15 0.20 0.25 0.30
 used for training

5.0%

5.5%

6.0%

6.5%

7.0%

7.5%

8.0%

8.5%

Te
st

 e
rro

r

Batch size 1024
Batch size 256
Batch size 128

(b) ResNet-34 on CIFAR-100

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
 used for training

23.0%

24.0%

25.0%

26.0%

27.0%

28.0%

29.0%

30.0%

Te
st

 e
rro

r

Batch size 1024
Batch size 256
Batch size 128

Figure 5.17: Test error of models trained with group normalization and different batch sizes
for the same number of epochs (200). Note that for all models, we use m in m-SAM equal to the
batch size.

5.12.3 The Effect of the Model Width on SAM

We show in Fig. 5.18 test error improvements of SAM over ERM for different model
width factors. For comparison, in all other experiments we use model width factor 64.
As expected, there is little improvement (or even no improvement as on CIFAR-10) from
SAM for small networks where extra regularization is not needed. However, interestingly,
the generalization improvement is the largest not for the widest models, but rather for
intermediate model widths, such as model width 16.

152

5.12 Additional Deep Learning Experiments

(a) ResNet-18 on CIFAR-10

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
 used for training

0.0%

0.2%

0.4%

0.6%

0.8%

1.0%

1.2%

Te
st

 e
rro

r i
m

pr
ov

em
en

t

width factor 4
width factor 8
width factor 16
width factor 32
width factor 64

(b) ResNet-34 on CIFAR-100

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
 used for training

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

3.0%

Te
st

 e
rro

r i
m

pr
ov

em
en

t

width factor 4
width factor 8
width factor 16
width factor 32
width factor 64

Figure 5.18: Test error improvements of SAM over ERM for different model width factors.

5.12.4 Sharpness for Models with Batch Normalization

The main problem of measuring sharpness for networks with BatchNorm is the discrepancy
between training and test-time behaviour. Fig. 5.19 illustrates this issue: the maximum
loss computed over radius ρ is substantially different depending on whether we use training-
time vs. test-time BatchNorm. This is an important discrepancy since the training-time
BatchNorm is effectively used by SAM while the test-time BatchNorm is used by default
for post-hoc sharpness computation. To avoid this discrepancy, we presented the results in
the main part only on models trained with GroupNorm which does not have this problem.

ResNet-18 on CIFAR-10

0 25 50 75 100 125 150 175 200
Epoch

0

1

2

3

4

5

12
8-

sh
ar

pn
es

s (
=

0.
1)

Train-time BatchNorm
Test-time BatchNorm

Figure 5.19: 128-sharpness (ρ = 0.1) over training for a network with batch normalization when
measured with the training-time and test-time batch normalization. The model is trained with
SAM using ρ = 0.1.

5.12.5 Training Loss for ERM vs. SAM Models

Fig. 5.11 in the main part shows that both training and test errors have a slight increasing
trend after the first learning rate decay at 500 epochs. As a sanity check, in Fig. 5.20,
we plot the total objective value (including the ℓ2 regularization term) which shows a
consistent decreasing trend. Thus, we conclude that the increasing training error is not
some anomaly connected to a failure of optimizing the training objective.

153

Chapter 5. Towards Understanding Sharpness-Aware Minimization

(a) ResNet-18 on CIFAR-10

0 200 400 600 800 1000
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

1.2
Ob

je
ct

iv
e

Training objective, ERM
Training objective, SAM

(b) ResNet-34 on CIFAR-100

0 200 400 600 800 1000
Epoch

0

1

2

3

4

Ob
je

ct
iv

e

Training objective, ERM
Training objective, SAM

Figure 5.20: Training objective of ERM vs. SAM over epochs. For both models, we observe a
clear decreasing trend.

5.12.6 SAM with a Decreasing Perturbation Radius

In Fig. 5.21, we plot the test error over different ρt where we decay the ρt using the
same schedule as for the outer learning rate γt. We denote this as SAM with decreasing ρ
contrary to the standard SAM for which ρ is constant throughout training. We note that
in both cases, we use the ℓ2-normalized updates as in the original SAM. The results suggest
that decreasing the perturbation radius ρt over epochs is detrimental to generalization.
This observation is relevant in the context of the convergence analysis that suggests that
SAM converges even if ρt is significantly larger than the outer step size γt which is the
case when we decay γt over epochs while keeping ρt constant.

(a) ResNet-18 on CIFAR-10

0.0 0.2 0.4 0.6 0.8 1.0
Perturbation radius used for training

4.0%

4.2%

4.5%

4.8%

5.0%

5.3%

5.5%

5.8%

6.0%

Te
st

 e
rro

r

Weight perturbations
None (ERM)
SAM with decreasing
SAM with constant

(b) ResNet-34 on CIFAR-100

0.0 0.2 0.4 0.6 0.8 1.0
Perturbation radius used for training

20.0%

21.0%

22.0%

23.0%

24.0%

25.0%

Te
st

 e
rro

r

Weight perturbations
None (ERM)
SAM with decreasing
SAM with constant

Figure 5.21: Test error of SAM with a constant perturbation radius ρ (i.e., standard SAM)
compared to SAM with decreasing perturbation radii ρt. The decrease of ρt follows the same
piecewise constant schedule as the learning rate γt. We note that in both cases, we use the ℓ2-
normalized updates as in the original SAM.

5.12.7 Experiments with Noisy Labels

In Fig. 5.22, we show experiments with CIFAR-10 and CIFAR-100 with 60% of noisy
labels for SAM with a fixed inner step size ρ that does not include gradient normalization
(denoted as unnormalized SAM). We did a prior grid search to determine the best fixed
ρ for this case which we show in the figure. We can observe that the best test error taken
over epochs almost exactly matches that of the standard SAM.

154

5.12 Additional Deep Learning Experiments

(a) ResNet-18 on CIFAR-10

0 200 400 600 800 1000
Epoch

0%

5%

10%

15%

20%

25%

30%

Er
ro

r

Test error, standard SAM, = 0.2
Train error, standard SAM, = 0.2
Test error, unnormalized SAM, = 0.4
Train error, unnormalized SAM, = 0.4

(b) ResNet-34 on CIFAR-100

0 200 400 600 800 1000
Epoch

0%

10%

20%

30%

40%

50%

60%

70%

Er
ro

r

Test error, standard SAM, = 0.2
Train error, standard SAM, = 0.2
Test error, unnormalized SAM, = 0.3
Train error, unnormalized SAM, = 0.3

Figure 5.22: Plots over training for a ResNet-18 trained on CIFAR-10 with 60% label noise for
SAM with and without gradient normalization.

155

6 SGD with Large Step Sizes Learns
Sparse Features

6.1 Preface

In this chapter, based on Andriushchenko et al. (2023d) we present a study of the dynamics
of the Stochastic Gradient Descent (SGD) in the training of neural networks. We show
that commonly used large step sizes may lead the iterates to jump from one side of a valley
to the other causing loss stabilization, and this stabilization induces a hidden stochastic
dynamics that biases it implicitly toward sparse predictors.

Summary We showcase important features of the dynamics of the Stochastic Gradient
Descent (SGD) in the training of neural networks. We present empirical observations
that commonly used large step sizes (i) may lead the iterates to jump from one side of a
valley to the other causing loss stabilization, and (ii) this stabilization induces a hidden
stochastic dynamics that biases it implicitly toward sparse predictors. Furthermore, we
show empirically that the longer large step sizes keep SGD high in the loss landscape
valleys, the better the implicit regularization can operate and find sparse representations.
Notably, no explicit regularization is used: the regularization effect comes solely from the
SGD dynamics influenced by the large step sizes schedule. Therefore, these observations
unveil how, through the step size schedules, both gradient and noise drive together the
SGD dynamics through the loss landscape of neural networks. We justify these findings
theoretically through the study of simple neural network models as well as qualitative
arguments inspired from stochastic processes. This analysis allows us to shed new light on
some common practices and observed phenomena when training deep networks. The code
of our paper is available at https://github.com/tml-epfl/sgd-sparse-features.

Co-authors Aditya Varre, Loucas Pillaud-Vivien, Nicolas Flammarion.

Contributions Maksym Andriushchenko proposed the project and performed all ex-
periments. Aditya Varre performed the theoretical analysis.

157

https://github.com/tml-epfl/sgd-sparse-features

Chapter 6. SGD with Large Step Sizes Learns Sparse Features

0 20 40 60 80 100
Epoch

10 3

10 2

10 1

100

Tr
ai

ni
ng

 lo
ss

= 0.007
= 1.5, decay at 10% epochs
= 1.5, decay at 30% epochs
= 1.5, decay at 50% epochs

0 20 40 60 80 100
Epoch

15%

20%

25%

30%

35%

40%

Te
st

 e
rro

r = 0.007
= 1.5, decay at 10% epochs
= 1.5, decay at 30% epochs
= 1.5, decay at 50% epochs

Figure 6.1: A typical training dynamics for a ResNet-18 trained on CIFAR-10. We use
weight decay but no momentum or data augmentation for this experiment. We see a substantial
difference in generalization (as large as 12% vs. 35% test error) depending on the step size η and
its schedule. When the training loss stabilizes, there is a hidden progress occurring which we aim
to characterize.

6.2 Introduction

Deep neural networks have accomplished remarkable achievements on a wide variety of
tasks. Yet, the understanding of their remarkable effectiveness remains incomplete. From
an optimization perspective, stochastic training procedures challenge many insights drawn
from convex models. Notably, large step size schedules used in practice lead to unexpected
patterns of stabilizations and sudden drops in the training loss (He et al., 2016a). From
a generalization perspective, overparametrized deep nets generalize well while fitting per-
fectly the data and without any explicit regularizers (Zhang et al., 2017a). This suggests
that optimization and generalization are tightly intertwined: neural networks find solu-
tions that generalize well thanks to the optimization procedure used to train them. This
property, known as implicit bias or algorithmic regularization, has been studied both for
regression (Li et al., 2018; Woodworth et al., 2020) and classification (Soudry et al., 2018;
Lyu and Li, 2020; Chizat and Bach, 2020a). However, for these theoretical results, it is
also shown that typical timescales needed to enter the beneficial feature learning regimes
are prohibitively long (Woodworth et al., 2020; Moroshko et al., 2020).

In this paper, we aim at staying closer to the experimental practice and consider the
SGD schedules from the ResNet paper (He et al., 2016a) where the large step size is first
kept constant and then decayed, potentially multiple times. We illustrate this behavior
in Fig. 6.1 where we reproduce a minimal setting without data augmentation or momen-
tum, and with only one step size decrease. We draw attention to two key observations
regarding the large step size phase: (a) quickly after the start of training, the loss remains
approximately constant on average and (b) despite no progress on the training loss, run-
ning this phase for longer leads to better generalization. We refer to such large step size
phase as loss stabilization. The better generalization hints at some hidden dynamics in
the parameter space not captured by the loss curves in Fig. 6.1. Our main contribution
is to unveil the hidden dynamics behind this phase: loss stabilization helps to amplify the
noise of SGD that drives the network towards a solution with sparser features, meaning
that for a feature vector ψ(x), only a few unique features are active for a given input x.

158

6.2 Introduction

6.2.1 Our Contributions

The effective dynamics behind loss stabilization. We characterize two main com-
ponents of the SGD dynamics with large step sizes: (i) a fast movement determined by
the bouncing directions causing loss stabilization, (ii) a slow dynamics driven by the com-
bination of the gradient and the multiplicative noise—which is non-vanishing due to the
loss stabilization.

SDE model and sparse feature learning. We model the effective slow dynamics
during loss stabilization by a stochastic differential equation (SDE) whose multiplicative
noise is related to the neural tangent kernel features, and validate this modeling experi-
mentally. Building on the existing theory on diagonal linear networks, which shows that
this noise structure leads to sparse predictors, we conjecture a similar “sparsifying” effect
on the features of more complex architectures. We experimentally confirm this on neural
networks of increasing complexity.

Insights from our understanding. We draw a clear general picture: the hidden opti-
mization dynamics induced by large step sizes and loss stabilization enable the transition
to a sparse feature learning regime. We argue that after a short initial phase of training,
SGD first identifies sparse features of the training data and eventually fits the data when
the step size is decreased. Finally, we discuss informally how many deep learning regular-
ization methods (weight decay, BatchNorm, SAM) may also fit into the same picture.

6.2.2 Related Work

He et al. (2016a) popularized the piece-wise constant step size schedule which often ex-
hibits a clear loss stabilization pattern which was later characterized theoretically in Li
et al. (2020b) from the optimization point of view. However, the regularization effect of
this phase induced by the underlying hidden stochastic dynamics is still unclear. Li et al.
(2019d) analyzed the role of loss stabilization for a synthetic distribution containing dif-
ferent patterns, but it is not clear how this analysis can be extended to general problems.
Jastrzebski et al. (2021) suggest that large step sizes prevent the increase of local curvature
during the early phase of training. However, they do not provide an explanation for this
phenomenon.

The importance of large step sizes for generalization has been investigated with diverse
motivations. Many works conjectured that large step sizes induce minimization of some
complexity measures related to the flatness of minima (Keskar et al., 2016; Smith and Le,
2018; Smith et al., 2021; Yang et al., 2022). Notably, Xing et al. (2018) point out that SGD
moves through the loss landscape bouncing between the walls of a valley where the role
of large step sizes is to guide the SGD iterates towards a flatter minimum. However, the
correct flatness measure is often disputed (Dinh et al., 2017) and its role in understanding
generalization is questionable since full-batch GD with large step sizes (unlike SGD) can
lead to flat solutions which don’t generalize well (Kaur et al., 2022)

159

Chapter 6. SGD with Large Step Sizes Learns Sparse Features

The attempts to explain the effect of large step size on strongly convex models (Nakkiran,
2020; Wu et al., 2021; Beugnot et al., 2022) are inherently incomplete since it is a phe-
nomenon related to the existence of many zero solutions with very different generalization
properties. Works based on stability analysis characterize the properties of the minimum
that SGD or GD can potentially converge depending on the step size (Wu et al., 2018;
Mulayoff et al., 2021; Ma and Ying, 2021; Nacson et al., 2022). However, these approaches
do not capture the entire training dynamics such as the large step size phase that we
consider where SGD converges only after the step size is decayed.

To grasp the generalization of SGD, research has focused on SGD augmented with label
noise due to its beneficial regularization properties and resemblance to the standard noise
of SGD. Its implicit bias has been first characterized by Blanc et al. (2020) and extended
by Li et al. (2022). However, their analysis only holds in the final phase of the training,
close to a zero-loss manifold. Our work instead is closer in spirit to Pillaud-Vivien et al.
(2022) where the label noise dynamics is analyzed in the central phase of the training, i.e.,
when the loss is still substantially above zero.

The dynamics of GD with large step sizes have received a lot of attention in recent times,
particularly the edge-of-stability phenomenon Cohen et al. (2021) and the catapult mech-
anism (Lewkowycz et al., 2020; Wang et al., 2022). However, the lack of stochastic noise
in their analysis renders them incapable of capturing stochastic training. Note that it
is possible to bridge the gap between GD and SGD by using explicit regularization as
in Geiping et al. (2022). We instead focus on the implicit regularization of SGD which
remains the most practical approach for training deep nets.

Finally, sparse features and low-rank structures in deep networks have been commonly
used for model compression, knowledge distillation, and lottery ticket hypothesis (Denton
et al., 2014; Hinton et al., 2015; Frankle and Carbin, 2018). A common theme of all these
works is the presence of hidden structure in the networks learned by SGD which allows
one to come up with a much smaller network that approximates well the original one.
In particular, Hoefler et al. (2021) note that ReLU activations in deep networks trained
with SGD are typically much sparser than 50%. Our findings suggest that the step size
schedule can be the key component behind emergence of such sparsity.

6.3 The Effective Dynamics of Large Step Size SGD: Sparse
Feature Learning

In this section, we show that large step sizes may lead the loss to stabilize by making
SGD bounce above a valley. We then unveil the effective dynamics induced by this loss
stabilization. To clarify our exposition we showcase our results for the mean square error
but other losses like the cross-entropy carry the same key properties in terms of the noise
covariance (Wojtowytsch, 2021b, Lemma 2.14). We consider a generic parameterized
family of prediction functions H := {x → hθ(x), θ ∈ Rp}, a setting which encompasses

160

6.3 The Effective Dynamics of Large Step Size SGD: Sparse Feature Learning

neural networks. In this case, the training loss on input/output samples (xi, yi)1≤i≤n ∈
Rd × R is equal to

L(θ) := 1
2n

n∑
i=1

(hθ(xi)− yi)2 . (6.1)

We consider the overparameterized setting, i.e. p ≫ n, hence, there shall exists many
parameters θ∗ that lead to zero loss, i.e., perfectly interpolate the dataset. Therefore, the
question of which interpolator the algorithm converges to is of paramount importance in
terms of generalization. We focus on the SGD recursion with step size η > 0, initialized
at θ0 ∈ Rp: for all t ∈ N,

θt+1 = θt − η(hθt(xit)− yit)∇θhθt(xit), (6.2)

where it ∼ U ([[1, n]]) is the uniform distribution over the sample indices. In the following,
note that SGD with mini batches of size B > 1 would lead to similar analysis but with
η/B instead of η.

6.3.1 Background: SGD is GD with Specific Label Noise

To emphasize the combined roles of gradient and noise, we highlight the connection be-
tween the SGD dynamics and that of full-batch GD plus a specific label noise. Such
manner of reformulating the dynamics has already been used in previous works attempt-
ing to understand the specificity of the SGD noise (HaoChen et al., 2020; Ziyin et al.,
2022). We formalize it in the following proposition.

Proposition 6.3.1. Let (θt)t≥0 follow the SGD dynamics (6.2) with the random sampling
function (it)t≥0. For t ≥ 0, define the random vector ξt ∈ Rn such that

[ξt]i := (hθt(xi)− yi)(1− n1i=it), (6.3)

for i ∈ [[1, n]] and where 1A is the indicator of the event A. Then (θt)t≥0 follows the
full-batch gradient dynamics on L with label noise (ξt)t≥0, that is

θt+1 = θt −
η

n

n∑
i=1

(hθt(xi)− yt
i)∇θhθt(xi), (6.4)

where we define the random labels yt := y + ξt. Furthermore, ξt is a mean zero random
vector with variance such that 1

n(n−1) E ∥ξt∥2 = 2L(θt).

This reformulation shows two crucial aspects of the SGD noise: (i) the noisy part at state θ
always belongs to the linear space spanned by {∇θhθ(x1), . . . ,∇θhθ(xn)}, and (ii) it scales
as the training loss. Going further on (ii), we highlight in the following section that the
loss can stabilize because of large step sizes: this may lead to a constant effective scale of
label noise. These two features are of paramount importance when modelling the effective
dynamics that take place during loss stabilization.

161

Chapter 6. SGD with Large Step Sizes Learns Sparse Features

6.3.2 The Effective Dynamics Behind Loss Stabilization

On loss stabilization. For generic quadratic costs, e.g., F (β) := ∥Xβ − y∥2, gradient
descent with step size η is convergent for η < 2/λmax, divergent for η > 2/λmax and
converges to a bouncing 2-periodic dynamics for η = 2/λmax, where λmax is the largest
eigenvalue of the Hessian. However, the practitioner is not likely to hit perfectly this
unstable step size and, almost surely, the dynamics shall either converge or diverge. Yet,
non-quadratic costs bring to this picture a particular complexity: it has been shown that,
even for non-convex toy models, there exist an open interval of step sizes for which the
gradient descent neither converge nor diverge (Ma et al., 2022; Chen and Bruna, 2022). As
we are interested in SGD, we complement this result by presenting an example in which
loss stabilization occurs almost surely in the case of stochastic updates. Indeed, consider a
regression problem with quadratic parameterization on one-dimensional data inputs xi’s,
coming from a distribution ρ̂, and outputs generated by the linear model yi = xiθ

2
∗. The

loss writes F (θ) := 1
4Eρ̂

(
y − xθ2)2, and the SGD iterates with step size η > 0 follow, for

any t ∈ N,

θt+1 = θt + η θt xit

(
yit − xitθ

2
t

)
where xit ∼ ρ̂. (6.5)

For the sake of clarity, suppose that θ∗ = 1 and supp(ρ̂) = [a, b], we have the following
proposition (a more general result is presented in Proposition 6.7.1 of the Appendix).

Proposition 6.3.2. For any η ∈ (a−2, 1.25 · b−2) and initialization θ0 ∈ (0, 1), for all
t > 0,

δ1 < F (θt) < δ2 almost surely, and (6.6)
∃T > 0,∀k > T, θt+2k < 1 < θt+2k+1 almost surely. (6.7)

where δ1, δ2, T > 0 are constant given in the Appendix.

The proposition is divided in two parts: if the step size is large enough, (6.6) the loss
stabilizes in between level sets δ1 and δ2 and (6.7) shows that after some initial phase, the
iterates bounce from one side of the loss valley to the other one. Note that despite the
stochasticity of the process, the results hold almost surely.

The effective dynamics. As observed in the prototypical SGD training dynamics of
Fig. 6.1 and proved in the non-convex toy model of Proposition 6.3.2, large step sizes
lead the loss to stabilize around some level set. To further understand the effect of this
loss stabilization in parameter space, we shall assume perfect stabilization. Then, from
Proposition 6.3.1, we conjecture the following behaviour

During loss stabilization, SGD is well modelled by GD with constant label noise.

Label noise dynamics have been studied recently (Blanc et al., 2020; Damian et al., 2021;
Li et al., 2022) thanks to their connection with Stochastic Differential Equations (SDEs).

162

6.3 The Effective Dynamics of Large Step Size SGD: Sparse Feature Learning

To properly write a SDE model, the drift should match the gradient descent and the
noise should have the correct covariance structure (Li et al., 2019a; Wojtowytsch, 2021a).
Proposition 6.3.1 implies that the noise at state θ is spanned by the gradient vectors
{∇θhθ(x1), . . . ,∇θhθ(xn)} and has a constant intensity corresponding to the loss stabi-
lization at a level δ > 0. Hence, we propose the following SDE model

dθt = −∇θL(θt)dt+
√
ηδ ϕθt(X)⊤dBt, (6.8)

where (Bt)t≥0 is a standard Brownian motion in Rn and ϕθ(X) := [∇θhθ(xi)⊤]ni=1 ∈ Rn×p

referred to as the Jacobian (which is also the Neural Tangent Kernel (NTK) feature matrix
(Jacot et al., 2018)). This SDE can be seen as the effective slow dynamics that drives the
iterates while they bounce rapidly in some directions at the level set δ. It highlights the
combination of the deterministic part of the full-batch gradient and the noise induced by
SGD. Beyond the theoretical justification and consistency of this SDE model, we validate
it empirically in Sec. 6.8 showing that it indeed captures the dynamics of large step size
SGD. In the next section, we leverage the SDE (6.8) to understand the implicit bias of
such learning dynamics.

6.3.3 Sparse Feature Learning

We begin with a simple model of diagonal linear networks that showcase a sparsity inducing
dynamics and further disclose our general message about the overall implicit bias promoted
by the effective dynamics.

A warm-up: diagonal linear networks

An appealing example of simple non-linear networks that help in forging an intuition
for more complicated architectures is diagonal linear networks (Vaskevicius et al., 2019;
Woodworth et al., 2020; HaoChen et al., 2020; Pesme et al., 2021). They are two-layer
linear networks with only diagonal connections: the prediction function writes hu,v(x) =
⟨u, v ⊙ x⟩ = ⟨u⊙ v, x⟩ where ⊙ denotes elementwise multiplication. Even though the loss
is convex in the associated linear predictor β := u ⊙ v ∈ Rd, it is not in (u, v), hence the
training of such simple models already exhibit a rich non-convex dynamics. In this case,
∇uhu,v(x) = v ⊙ x, and the SDE model (6.8) writes

dut = −∇uL(ut, vt) dt +
√
ηδ vt ⊙

[
X⊤dBt

]
, (6.9)

where (Bt)t≥0 is a standard Brownian motion in Rn. Equations are symmetric for (vt)t≥0.

What is the behaviour of this effective dynamics? Pillaud-Vivien et al. (2022)
answered this question by analyzing a similar stochastic dynamics and unveiled the sparse
nature of the resulting solutions. Indeed, under sparse recovery assumptions, denoting
β∗ the sparsest linear predictor that interpolates the data, it is shown that the associated
linear predictor βt = ut⊙vt: (i) converges exponentially fast to zero outside of the support

163

Chapter 6. SGD with Large Step Sizes Learns Sparse Features

of β∗ (ii) is with high probability in a O(
√
ηδ) neighborhood of β∗ in its support after a

time O(δ−1).

Overall conclusion on the model. During a first phase, SGD with large step sizes
η decreases the training loss until stabilization at some level set δ > 0. During this loss
stabilization, an effective noise-driven dynamics takes place. It shrinks the coordinates
outside of the support of the sparsest signal and oscillates in parameter space at level
O(
√
ηδ) on its support. Hence, decreasing later the step size leads to perfect recovery of

the sparsest predictor. This behaviour is illustrated in our experiments in Figure 6.2.

The Sparse Feature Learning Conjecture for More General Models

Results for diagonal linear nets recalled in the previous paragraph show that the noisy
dynamics (6.9) induce a sparsity bias. As emphasized in HaoChen et al. (2020), this effect
is largely due to the multiplicative structure of the noise v⊙[X⊤dBt] that, in this case, has
a shrinking effect on the coordinates (because of the coordinate-wise multiplication with
v). In the general case, we see, thanks to (6.8), that the same multiplicative structure
of the noise still happens but this time with respect to the Jacobian ϕθ(X). Hence, this
suggests that similarly to the diagonal linear network case, the implicit bias of the noise
can lead to a shrinkage effect applied to ϕθ(X). This effect depends on the noise intensity
δ and the step size of SGD. Indeed, an interesting property of Brownian motion is that, for
v ∈ Rp, ⟨v,Bt⟩ = ∥v∥2Wt, where the equality holds in law and (Wt)t≥0 is a one-dimensional
Brownian motion. Hence, the process (6.8) is equivalent to a process whose i-th coordinate
is driven by a noise proportional to ∥ϕi∥dW i

t , where ϕi is the i-th column of ϕθ(X) and
(W i

t)t≥0 is a Brownian motion. This SDE structure, similar to the geometric Brownian
motion, is expected to induce the shrinkage of each multiplicative factor (Oksendal, 2013,
Section 5.1), i.e., in our case (∥∇θh(xi)∥)n

i=1. Thus, we conjecture:

The noise part of (6.8) seeks to minimize the ℓ2-norm of the columns of ϕθ(X).

Note that the fitting part of the dynamics prevents the Jacobian to collapse totally to
zero, but as soon as they are not needed to fit the signal, columns can be reduced to
zero. Remarkably, from a stability perspective, Blanc et al. (2020) showed a similar bias:
locally around a minimum, the SGD dynamics implicitly tries to minimize the Frobenius
norm ∥ϕθ(X)∥F = ∑n

i=1 ∥∇θhθ(xi)∥2. Resolving the above conjecture and characterizing
the implicit bias along the trajectory of SGD remains an exciting avenue for future work.
Now, we provide a specification of this implicit bias for different architectures:

• Diagonal linear networks: For hu,v(x) = ⟨u ⊙ v, x⟩, we have ∇u,vhu,v(x) = [v ⊙
x, u ⊙ x]. Thus, for a generic data matrix X, minimizing the norm of each column of
ϕu,v(X) amounts to put the maximal number of zero coordinates and hence to minimize
∥u⊙ v∥0.

• ReLU networks: We take the prototypical one hidden layer to exhibit the sparsifica-
tion effect. Let ha,W (x) = ⟨a, σ(Wx)⟩, then ∇aha,W (x) = σ(Wx) and ∇wjha,W (x) =

164

6.4 Empirical Evidence of Sparse Feature Learning Driven by SGD

0 20000 40000 60000 80000 100000

Iteration

10−5

10−4

10−3

10−2

10−1

100
T

ra
in

lo
ss

0 20000 40000 60000 80000 100000

Iteration

10−4

10−3

10−2

10−1

100

T
es

t
lo

ss

0 20000 40000 60000 80000 100000

Iteration

60

80

100

120

140

160

180

200

ra
n
k

(φ
θ
(X

))

0 20000 40000 60000 80000 100000

Iteration

0

50

100

150

200

‖u
�
v
‖ 0

SGD η=0.25 SGD η=0.28, decay at 10% iterations SGD η=0.28, decay at 30% iterations SGD η=0.28, decay at 50% iterations

Figure 6.2: Diagonal linear networks. We observe loss stabilization, better generalization for
longer schedules, minimization of the rank of ϕθ(X) and sparsity of the predictor u⊙ v.

ajx1⟨wj ,x⟩>0. Note that the ℓ2-norm of the column corresponding to the neuron is re-
duced when it is activated at a minimal number of training points, hence the implicit
bias enables the learning of sparse data-active features. Finally, when some directions
are needed to fit the data, similarly activated neurons align to fit, reducing the rank of
ϕθ(X).

Feature sparsity. Our main insight is that the Jacobian could be significantly simplified
during the loss stabilization phase. Indeed, while the gradient part tries to fit the data
and align neurons (see e.g. Fig. 6.10), the noise part of (6.8) intends to minimize the
ℓ2-norm of the columns of ϕ(X). Hence, in combination, this motivates us to count the
average number of distinct (i.e., counting a group of aligned neurons as one), non-zero
activations over the training set. We refer to this as the feature sparsity coefficient (see
the next section for a detailed description). Note that the aforementioned sparsity comes
both in the number of distinct neurons and their activation.

We show next that the conjectured sparsity is indeed observed empirically for a variety of
models. Remark that both the feature sparsity coefficient and the rank of ϕθ(X) can be
used as a good proxy to track the hidden progress during the loss stabilization phase.

6.4 Empirical Evidence of Sparse Feature Learning Driven
by SGD

Here we present empirical results for neural networks of increasing complexity: from diag-
onal linear networks to deep DenseNets on CIFAR-10, CIFAR-100, and Tiny ImageNet.
We make the following common observations for all these networks trained using SGD
schedules with large step sizes:

(O1) Loss stabilization: training loss stabilizes around a high level set until step size is
decayed,

(O2) Generalization benefit: longer loss stabilization leads to better generalization,
(O3) Sparse feature learning: longer loss stabilization leads to sparser features.

Importantly, we use no explicit regularization (in particular, no weight decay) in our
experiments so that the training dynamics is driven purely by SGD and the step size

165

Chapter 6. SGD with Large Step Sizes Learns Sparse Features

schedule. Additionally, in some cases, we cannot find a single large step size that would
lead to loss stabilization. In such cases, whenever explicitly mentioned, we use a warmup
step size schedule—i.e., increasing step sizes according to some schedule—to make sure
that the loss stabilizes around some level set. Warmup is commonly used in practice
(He et al., 2016a; Devlin et al., 2018) and often motivated purely from the optimization
perspective as a way to accelerate training (Agarwal et al., 2021), but we suggest that it
is also a way to amplify the regularization effect of the SGD noise which is proportional
to the step size.

Measuring sparse feature learning. We track the simplification of the Jacobian by
measuring both the feature sparsity and the rank of ϕθ(X). We compute the rank over
iterations for each model (except deep networks for which it is prohibitively expensive) by
using a fixed threshold on the singular values of ϕθ(X) normalized by the largest singular
value. In this way, we ensure that the difference in the rank that we detect is not simply
due to different scales of ϕθ(X). Moreover, we always compute ϕθ(X) on the number of
fresh samples equal to the number of parameters |θ| to make sure that rank deficiency is
not coming from n ≪ |θ| which is the case in the overparametrized settings we consider.
To compute the feature sparsity coefficient, we count the average fraction of distinct
(i.e., counting a group of highly correlated activations as one), non-zero activations at
some layer over the training set. Note that the value of 100% means a completely dense
feature vector and 0% means a feature vector with all zeros. We count a pair of activations
i and j as highly correlated if their Pearson’s correlation coefficient is at least 0.95. Unlike
rank(ϕθ(X)), the feature sparsity coefficient scales to deep networks and has an easy-to-
grasp meaning.

6.4.1 Sparse Feature Learning in Diagonal Linear Networks

Setup. The inputs x1, . . . , xn with n = 80 are sampled from N (0, Id) where Id is an
identity matrix with d = 200, and the outputs are generated as yi = ⟨β∗, xi⟩ where
β∗ ∈ Rd is r = 20 sparse. We consider four different SGD runs (started from ui = 0.1,
vi = 0 for each i): one with a small step size and three other with initial large step size
decayed after 10%, 30%, 50% iterations, respectively.

Observations. We show the results in Fig. 6.2 and note that (O1)–(O3) hold even in
this simple model trained with vanilla SGD without any explicit regularization or layer
normalization schemes. We observe that the training loss stabilizes around 10−1.5, the
test loss improves for longer schedules, both rank(ϕθ(X)) and ∥u ⊙ v∥0 decrease during
the loss stabilization phase leading to a sparse final predictor. While the training loss has
seemingly converged to 10−1.5, a hidden dynamics suggested by (6.9) occurs which slowly
drifts the iterates to a sparse solution. This implicit sparsification explains the dependence
of the final test loss on the time when the large step size is decayed, similarly to what has
been observed for deep networks in Fig. 6.1. Interestingly, we also note that SGD with
large step-size schedules encounters saddle points after we decay the step size (see the
training loss curves in Fig. 6.2) which resembles the saddle-to-saddle regime described in

166

6.4 Empirical Evidence of Sparse Feature Learning Driven by SGD

0 5000 10000 15000 20000 25000 30000

Iteration

10−4

10−3

10−2

10−1

100

101
T

ra
in

lo
ss

−1.0 −0.5 0.0 0.5 1.0 1.5

x

−2

−1

0

1

2

y

0 5000 10000 15000 20000 25000 30000

Iteration

20

40

60

80

100

ra
n
k

(φ
θ
(X

))

0 5000 10000 15000 20000 25000 30000

Iteration

5%

10%

15%

20%

25%

F
ea

tu
re

sp
ar

si
ty

co
ef

.

SGD, η=0.0002, decay at 2% iterations SGD, η=0.0002, decay at 50% iterations

Figure 6.4: Two-layer ReLU networks for 1D regression. We observe loss stabilization,
simplification of the model trained with a longer schedule, lower rank of ϕθ(X), and much sparser
features.

0 2000 4000 6000 8000 10000

Iteration

10−3

10−2

10−1

100

T
ra

in
lo

ss

0 2000 4000 6000 8000 10000

Iteration

10−1

100

T
es

t
lo

ss

0 2000 4000 6000 8000 10000

Iteration

100

110

120

130

140

150

ra
n
k

(φ
θ
(X

))

0 2000 4000 6000 8000 10000

Iteration

35%

40%

45%

50%

55%

F
ea

tu
re

sp
ar

si
ty

co
ef

.,
la

ye
r

1

0 2000 4000 6000 8000 10000

Iteration

15%

20%

25%

30%

35%

40%

45%

50%

F
ea

tu
re

sp
ar

si
ty

co
ef

.,
la

ye
r

2

SGD η=0.011 SGD η=0.040→0.06 warmup + decay at 10% iterations SGD η=0.040→0.10 warmup + decay at 30% iterations SGD η=0.040→0.14 warmup + decay at 50% iterations

Figure 6.5: Three-layer ReLU networks in a teacher-student setup. We observe loss
stabilization, lower rank of the Jacobian and lower feature sparsity coefficient on both hidden
layers.

Jacot et al. (2021) which does not occur in the large-initialization lazy training regime.

winit

wflow

w?

Training loss over a 2D subspace

GD

SGD

10−6

10−4

10−2

100

Figure 6.3: Diagonal linear net-
works. GD and SGD take different tra-
jectories.

SGD and GD have different implicit biases.
Since we observe from Fig. 6.2 that for loss sta-
bilization, stochasticity alone does not suffice and
large step sizes are necessary, one may wonder if
conversely, only large step sizes can be sufficient to
have a sparsifying effect. Even if special instances
can be found for which large step sizes are sufficient
(such as for non-centered input features as in Nac-
son et al. (2022)), we answer this negatively showing
that gradient descent in general does not go to the
sparsest solution as demonstrated in Fig. 6.11 in the
Appendix. Moreover, in Fig. 6.3, we visualize the dif-
ference in trajectory between the two methods taken
with large step sizes over a 2D subspace spanned by w⋆ − winit and wflow − winit, where
w⋆ is the ground truth, wflow is the result of gradient flow, and winit is the initializa-
tion. This example provides an intuition that loss stabilization alone is not sufficient for
sparsification and that the role of noise described earlier is crucial.

6.4.2 Sparse Feature Learning in Simple ReLU Networks

Two-layer ReLU network in 1D. We consider the 1D regression task from Blanc
et al. (2020) with 12 points, where label noise SGD has been shown to learn a simple

167

Chapter 6. SGD with Large Step Sizes Learns Sparse Features

model. We show that similar results can be achieved with large-step-size SGD via loss
stabilization. We train a ReLU network with 100 neurons with SGD with a long linear
warmup (otherwise, we were unable to achieve approximate loss stabilization), directly
followed by a step size decay. The two plots correspond to a warmup/decay transition
at 2% and 50% of iterations, respectively. The results shown in Fig. 6.4 confirm that
(O1)–(O3) hold: the training loss stabilizes around 10−0.5, the predictor becomes much
simpler and is expected to generalize better, and both rank(ϕθ(X)) and the feature sparsity
coefficient substantially decrease during the loss stabilization phase. Interestingly, the rank
reduction of ϕθ(X) occurs because of zero activations, and not because of zero weights.
For this one-dimensional task, we can directly observe the final predictor which is sparse in
terms of the number of distinct ReLU kinks (i.e., having a few piecewise-linear segments)
as captured by the feature sparsity coefficient and the rank of the Jacobian. Interestingly,
we also observed overregularization for even larger step sizes when we cannot fit all the
training points (see Fig. 6.12 in Appendix). This phenomenon clearly illustrates how the
capacity control is induced by the optimization algorithm: the function class over which
we optimize depends on the step size schedule. Additionally, Fig. 6.13 in App. shows the
evolution of the predictor over iterations. The general picture is confirmed: first the model
is simplified during the loss stabilization phase and only then fits the data.

Deeper ReLU networks. We use a teacher-student setup with a random three-layer
teacher ReLU network having 2 neurons on each hidden layer. The student network is
overparametrized with 10 neurons on each layer and is trained on 50 examples. Such
teacher-student setup is useful since we know that the student network can implement the
ground truth function but might not find it due to the small sample size. We train models
using SGD with a medium constant step size and a large step size with warmup decayed
after 10%, 30%, 50% iterations, respectively. The results shown in Fig. 6.5 confirm that
(O1)–(O3) hold: the training loss stabilizes around 10−1.5, the test loss is smaller for
longer schedules, and both rank(ϕθ(X)) and the feature sparsity coefficient substantially
decrease during the loss stabilization phase. All methods have the same value of the
training loss (10−3) after 104 iterations but different generalization. Moreover, we see
that the feature sparsity coefficient decreases on each layer which makes this metric a
promising one to consider for deeper networks.

6.4.3 Sparse Feature Learning in Deep ReLU Networks

Setup. We consider here an image classification task and train a DenseNet-100-12 on
CIFAR-10, CIFAR-100, and Tiny ImageNet using SGD with batch size 256 and different
step size schedules. We use an exponentially increasing warmup schedule with exponent
1.05 to stabilize the training loss. We cannot measure the rank of ϕ(X) here since this
matrix is too large (≈ (5 × 104) × (2 × 107)) so we measure only the feature sparsity
coefficient taken at two layers: at the end of super-block 3 (i.e., in the middle of the
network) and super-block 4 (i.e., right before global average pooling at the end of the
network) of DenseNets. We test two settings: a basic setting and a state-of-the-art setting

168

6.4 Empirical Evidence of Sparse Feature Learning Driven by SGD

DenseNet-100 on CIFAR-10, basic setting (no momentum and augmentations)

0 25 50 75 100 125 150 175 200
Epoch

10 4

10 3

10 2

10 1

100

101

Tr
ai

ni
ng

 lo
ss

0 25 50 75 100 125 150 175 200
Epoch

20%

40%

60%

80%

Te
st

 e
rro

r

0 25 50 75 100 125 150 175 200
Epoch

35%

38%

40%

43%

45%

48%

50%

Fe
at

ur
e

sp
ar

sit
y

co
ef

.,
bl

oc
k

3

0 25 50 75 100 125 150 175 200
Epoch

10%

20%

30%

40%

50%

Fe
at

ur
e

sp
ar

sit
y

co
ef

.,
bl

oc
k

4

= 0.04 = 0.75, warmup, decay at 10% = 0.75, warmup, decay at 30% = 0.75, warmup, decay at 50%

DenseNet-100 on CIFAR-100, basic setting (no momentum and augmentations)

0 25 50 75 100 125 150 175 200
Epoch

10 4

10 3

10 2

10 1

100

101

Tr
ai

ni
ng

 lo
ss

0 25 50 75 100 125 150 175 200
Epoch

40%

50%

60%

70%

80%

90%

100%

Te
st

 e
rro

r

0 25 50 75 100 125 150 175 200
Epoch

33%

35%

38%

40%

43%

45%

48%

50%

Fe
at

ur
e

sp
ar

sit
y

co
ef

.,
bl

oc
k

3

0 25 50 75 100 125 150 175 200
Epoch

20%

30%

40%

50%

Fe
at

ur
e

sp
ar

sit
y

co
ef

.,
bl

oc
k

4

= 0.07 = 0.75, warmup, decay at 10% = 0.75, warmup, decay at 30% = 0.75, warmup, decay at 50%

DenseNet-100 on Tiny ImageNet, basic setting (no momentum and augmentations)

0 20 40 60 80 100
Epoch

10 3

10 2

10 1

100

101

Tr
ai

ni
ng

 lo
ss

0 20 40 60 80 100
Epoch

50%

60%

70%

80%

90%

100%

Te
st

 e
rro

r

0 20 40 60 80 100
Epoch

35%

40%

45%

50%
Fe

at
ur

e
sp

ar
sit

y
co

ef
.,

bl
oc

k
3

0 20 40 60 80 100
Epoch

10%

20%

30%

40%

50%

Fe
at

ur
e

sp
ar

sit
y

co
ef

.,
bl

oc
k

4

= 0.07 = 0.4, warmup, decay at 10% = 0.4, warmup, decay at 30% = 0.4, warmup, decay at 50%

Figure 6.6: Experiments with DenseNet-100 in the basic setting. We can see that the
training loss stabilizes, the test error noticeably depends on the length of the schedule, and the
feature sparsity coefficient is minimized during the large step size phase.

with momentum and standard augmentations.

Observations. The results shown in Fig. 6.6 and 6.7 confirm that our main findings also
hold for deep convolutional networks used in practice: the training loss approximately sta-
bilizes, the test error is becoming progressively better for longer schedules, and the feature
sparsity coefficient gradually decreases at both super blocks 3 and 4 until the step size is
decayed. We also see that small step sizes consistently lead to suboptimal generalization,
e.g., 60% vs. 35% in the basic setting on CIFAR-100. This poor performance confirms
that it is crucial to leverage the implicit bias of large step sizes. The difference in the
feature sparsity coefficient is also substantial: typically 50%-60% for small step sizes vs.
10%-20% for larger step sizes at block 4. The observations are similar for the state-of-the-
art setting as well where we also see a noticeable difference in generalization and feature
sparsity depending on the step size and schedule. Finally, we note that while both the
feature sparsity coefficient and test error decrease together, it remains to be seen whether
they are causally related on natural datasets.

We show the results with similar findings for other architectures (ResNets-18 and ResNets-
34) on CIFAR-10 and CIFAR-100 in Fig. 6.15 and Fig. 6.16 in Appendix. Additionally,
Fig. 6.17 illustrates that for small step sizes, the early and middle layers stay very close

169

Chapter 6. SGD with Large Step Sizes Learns Sparse Features

DenseNet-100 on CIFAR-10, state-of-the-art setting (with momentum and augmentations)

0 25 50 75 100 125 150 175 200
Epoch

10 4

10 3

10 2

10 1

100

101

Tr
ai

ni
ng

 lo
ss

0 25 50 75 100 125 150 175 200
Epoch

20%

40%

60%

80%

Te
st

 e
rro

r

0 25 50 75 100 125 150 175 200
Epoch

38%

40%

43%

45%

48%

50%

52%

Fe
at

ur
e

sp
ar

sit
y

co
ef

.,
bl

oc
k

3

0 25 50 75 100 125 150 175 200
Epoch

20%

30%

40%

50%

Fe
at

ur
e

sp
ar

sit
y

co
ef

.,
bl

oc
k

4

= 0.01 = 0.1, warmup, decay at 10% = 0.1, warmup, decay at 30% = 0.1, warmup, decay at 50%

DenseNet-100 on CIFAR-100, state-of-the-art setting (with momentum and augmentations)

0 25 50 75 100 125 150 175 200
Epoch

10 3

10 2

10 1

100

101

Tr
ai

ni
ng

 lo
ss

0 25 50 75 100 125 150 175 200
Epoch

30%

40%

50%

60%

70%

80%

90%

100%

Te
st

 e
rro

r

0 25 50 75 100 125 150 175 200
Epoch

38%

40%

43%

45%

48%

50%

52%

Fe
at

ur
e

sp
ar

sit
y

co
ef

.,
bl

oc
k

3

0 25 50 75 100 125 150 175 200
Epoch

20%

30%

40%

50%

60%

Fe
at

ur
e

sp
ar

sit
y

co
ef

.,
bl

oc
k

4

= 0.01 = 0.1, warmup, decay at 10% = 0.1, warmup, decay at 30% = 0.1, warmup, decay at 50%

DenseNet-100 on Tiny ImageNet, state-of-the-art setting (with momentum and augmentations)

0 20 40 60 80 100
Epoch

10 1

100

101

Tr
ai

ni
ng

 lo
ss

0 20 40 60 80 100
Epoch

40%

50%

60%

70%

80%

90%

100%

Te
st

 e
rro

r

0 20 40 60 80 100
Epoch

38%

40%

43%

45%

48%

50%

52%

Fe
at

ur
e

sp
ar

sit
y

co
ef

.,
bl

oc
k

3

0 20 40 60 80 100
Epoch

10%

20%

30%

40%

50%

Fe
at

ur
e

sp
ar

sit
y

co
ef

.,
bl

oc
k

4

= 0.005 = 0.05, warmup, decay at 10% = 0.05, warmup, decay at 30% = 0.05, warmup, decay at 50%

Figure 6.7: Experiments with DenseNet-100 in the state-of-the-art setting. We can see
that the training loss stabilizes, the test error noticeably depends on the length of the schedule,
and the feature sparsity coefficient is minimized during the large step size phase.

to their random initialization which indicates the absence of feature learning similarly
to what is suggested by the neuron movement plot in Fig. 6.10 in the Appendix for a
two-layer network in a teacher-student setup.

6.5 Conclusions and Insights from our Understanding of the
Training Dynamics

Here we provide an extended discussion on the training dynamics of neural networks
resulting from our theoretical and empirical findings.

The multiple stages of the SGD training dynamics. As analyzed and shown em-
pirically, the training dynamics we considered can be split onto three distinct phases:
(i) an initial phase of reducing the loss down to some level where stabilization can oc-
cur, (ii) a loss stabilization phase where noise and gradient directions combine to find
architecture-dependent sparse representations of the data, (iii) a final phase when the step
size is decreased to fit the training data. This typology clearly disentangles the effect of
the stabilization phase (ii) which relies on the implicit bias of SGD to simplify the model.
Note that phases (ii) and (iii) can be repeated until final convergence (He et al., 2016a).
Moreover, in some training schedules, (ii) does not explicitly occur, and the effect of loss

170

6.5 Conclusions and Insights from our Understanding of the Training
Dynamics

stabilization (ii) and data fitting (iii) can occur simultaneously (Loshchilov and Hutter,
2019).

From lazy training to feature learning. Similar sparse implicit biases have been
shown for regression with infinitely small initialization (Boursier et al., 2022) and for
classification (Chizat and Bach, 2020a; Lyu and Li, 2020). However, both approaches are
not practical from the computational point of view since (i) the origin is a saddle point
for regression leading to the vanishing gradient problem (especially, for deep networks),
and (ii) max-margin bias for classification is only expected to happen in the asymptotic
phase (Moroshko et al., 2020). On the contrary, large step sizes enable to initialize far
from the origin, while allowing to efficiently transition from a regime close to the lazy
NTK regime (Jacot et al., 2018) to the rich feature learning regime.

Common patterns in the existing techniques. Tuning the step size to obtain loss
stabilization can be difficult. To prevent early divergence caused by too large step sizes, we
sometimes had to rely on an increasing step size schedule (known as warmup). Interpreting
such schedules as a tool to favor implicit regularization provides a new explanation to their
success and popularity. Additionally, normalization schemes like batch normalization or
weight decay, beyond carrying their own implicit or explicit regularization properties, can
be analyzed from a similar lens: they allow to use larger step sizes that boost further
the implicit bias effect of SGD while preventing divergence (Bjorck et al., 2018; Zhang
et al., 2018; Li and Arora, 2019). Note also that we derived our analysis with batch
size equal to one for the sake of clarity, but an arbitrary batch size B would simply
be equivalent to replacing γ ← γ/B. Similarly to the consequence of large step sizes,
preferring smaller batch sizes (Keskar et al., 2016) while avoiding divergence seem key to
benefit from the implicit bias of SGD. Finally, the effect of large step sizes or small batches
is often connected to measures of flatness of the loss surface via stability analysis (Wu
et al., 2018) and some methods like the Hessian regularization (Damian et al., 2021) or
SAM (Foret et al., 2021) explicitly optimize it. Such methods resemble the implicit bias
of SGD with loss stabilization implied by the label noise equation ((6.8)) where matrix
ϕθ(X) is the key component of the Hessian. However, an important practical difference is
that the regularization strength in these methods is explicit and decoupled from the step
size schedule which may be harder to properly tune since it is simultaneously responsible
for optimization and generalization.

171

Chapter 6. SGD with Large Step Sizes Learns Sparse Features

Appendix

In Section 6.6, we show Proposition 6.3.1 on the equivalence between SGD and GD with
added noise. In Section 6.7, we provide the proof that loss stabilization occurs as written
in Proposition 6.3.2. In Section 6.8, we show experimentally that the proposed SDE model
matches well the SDE dynamics. Finally, we present additional experiments in Section
6.9.

Figure 6.8: Three-dimensional visualisation of the SGD dynamics in a non-convex loss landscape.
The SGD dynamics (blue points) is bouncing side-to-side to the bottom of the valley (the dotted
green line). A slow movement occurs pushing the iterates in the direction given by the green
arrows.

To begin this appendix, we provide in Figure 6.8 a toy visualization in which we showcase
a typical SGD dynamics when loss stabilization occurs. We run SGD on the diagonal
linear network with one sample in two dimensions (n = 1, d = 2) adding label noise of the
shape given by equation (6.9), with balanced layers u = v. The blue points corresponds
to iterates of the dynamics (that are linked with the orange dotted lines). The green line
corresponds to the global minimum of the loss, what can be called the “bottom of the
valley”. This hopefully will serve the reader forge a visual intuition on (i) the bouncing
dynamics side-to-side to the bottom of the valley (in green), and (ii) the slow stochastic
movement (in the direction of the green arrows).

6.6 SGD and Label Noise GD

For the sake of clarity we recall below the statement of the Proposition 6.3.1 which we
prove in this section.

172

6.6 SGD and Label Noise GD

Proposition 6.3.1. Let (θt)t≥0 follow the SGD dynamics (6.2) with sampling function
(it)t≥0. Let 1i=it be indicator function, define for t ≥ 0, the random vector ξt ∈ Rn such
that for all i ∈ [[1, n]],

[ξt]i := (hθt(xi)− yi)(1− n1i=it). (6.10)

Then (θt)t≥0 follows the full-batch gradient dynamics on L with label noise (ξt)t≥0, that is

θt+1 = θt −
η

n

n∑
i=1

(hθt(xi)− yt
i)∇θhθt(xi), (6.11)

where we define the random labels yt := y + ξt. Furthermore, ξt is a mean zero random
vector with variance such that 1

n(n−1) E ∥ξt∥2 = 2L(θt).

Proof. Note that

n∑
i=1

(hθt(xi)− yt
i)∇θhθt(xi) =

n∑
i=1

(hθt(xi)− yi − [ξt]i)∇θhθt(xi). (6.12)

Using [ξt]i := (hθt(xi)− yi)(1− n1i=it),

= 1
n

n∑
i=1

(hθt(xi)− yi − (hθt(xi)− yi)(1− n1i=it))∇θhθt(xi), (6.13)

=
n∑

i=1
1i=it(hθt(xi)− yi)∇θhθt(xi) = (hθt(xit)− yit)∇θhθt(xit). (6.14)

which is exactly the stochastic gradient wrt to sample (xit , yit).

Now we prove the latter part of the proposition regarding the scale of the noise. Recall
that, for all i ⩽ n, we have [ξt]i = (hθt(xi) − yi)(1 − n1i=it), where it ∼ U ([[1, n]]). Now
taking the expectation,

E[ξt]i = E [(hθt(xi)− yi)(1− n1i=it)] = (hθt(xi)− yi)(1− nE [1i=it]) = 0, (6.15)

as E [1i=it] = 1/n. Coming to the variance,

E ∥ξt∥2 = E
[

n∑
i=1

[ξt]i2
]

=
n∑

i=1
E [ξt]i2 (6.16)

=
n∑

i=1
(hθt(xi)− yi)2E

[
(1− n1i=it)2

]
(6.17)

=
n∑

i=1
(hθt(xi)− yi)2E

[
(1− 2n1i=it + n21i=it)

]
(6.18)

=
n∑

i=1
(hθt(xi)− yi)2(1− 2 + n) (6.19)

173

Chapter 6. SGD with Large Step Sizes Learns Sparse Features

= (n− 1)
n∑

i=1
(hθt(xi)− yi)2 = 2n(n− 1)L(θt), (6.20)

and this concludes the proof of the proposition.

6.7 Quadratic Parameterization in One Dimension

Again, for the Appendix to be self-contained, we recall the setup of the Proposition 6.3.2
on loss stabilization. We consider a regression problem with quadratic parameterization
on one-dimensional data inputs xi’s, coming from a distribution ρ̂, and outputs generated
by the linear model yi = xiθ

2
∗. The loss writes F (θ) := 1

4Eρ̂

(
y − xθ2)2, and the SGD

iterates with step size η > 0 follow, for any t ∈ N,

θt+1 = θt + η θt xit

(
yit − xitθ

2
t

)
where xit ∼ ρ̂. (6.21)

We rewrite the proposition here.

Proposition 6.7.1. (Extended version of Proposition 6.3.2) Assume ∃ xmin, xmax >

0 such that supp(ρ̂) ⊂ [xmin, xmax]. Then for any η ∈ ((θ∗xmin)−2, 1.25(θ∗xmax)−2), any
initialization in θ0 ∈ (0, θ∗), for t ∈ N, we have almost surely

F (θt) ∈
(
ϵ2o θ

2
∗, 0.17 θ2

∗

)
. (6.22)

where ϵo = min
{
(η(θ∗xmin)2 − 1)/3, 0.02

}
. Also, almost surely, there exists t, k > 0 such

that θt+2k ∈ (0.65 θ∗, (1− ϵo) θ∗) and θt+2k+1 ∈ ((1 + ϵo) θ∗, 1.162 θ∗).

Proof. Consider SGD recursion (6.21) and note that y = xθ2
∗.

θt+1 = θt + η θt x(xθ2
∗ − xθ2

t) (6.23)
θt+1 = θt + η θt x

2 (θ2
∗ − θ2

t) (6.24)

For the clarity of exposition, we consider the rescaled recursion of the original SGD recur-
sion.

θt+1/θ∗ = θt/θ∗ + η θ2
∗ x

2 θt/θ∗

(
1− (θt/θ∗)2

)
, (6.25)

and, by making the benign change θt ← θt/θ∗, we focus on the stochastic recursion instead,

θt+1 = θt + γθt(1− θ2
t), (6.26)

where γ ∼ ρ̂γ the pushforward of ρ̂ under the application z → η θ2
∗ z

2. Let Γ := supp(ρ̂γ),
the support of the distribution of γ. From the range of η, it can be verified that Γ ⊆
(1, 1.25). Now the proof of the theorem follows from Lemma 10.

Lemma 9 (Bounded Region). Consider the recursion (6.26), for Γ ⊆ (1, 1.25) and 0 <
θ0 < 1, then for all t > 0, θt ∈ (0, 1.162).

174

6.7 Quadratic Parameterization in One Dimension

Proof. Consider a single step of (6.26), for some γ ∈ (1, 1.25),

θ+ = θ + γθ(1− θ2)

The aim is to show that θ+ stays in the interval (0, 1.162). In order to show this, we do a
casewise analysis.

For θ ∈ (0, 1]: Since 0 < θ ≤ 1, we have θ+ ≥ θ > 0. To prove the bound above, consider
the following quantity,

θmax = max
γ∈(1,1.25)

max
θ∈(0,1]

θ + γθ(1− θ2) (6.27)

Say hγ(θ) = θ+γθ(1−θ2), note that h′
γ(θ) = 1+γ−3γθ2 and h′′

γ(θ) = −6γθ < 0. Hence, for
any γ in our domain, the maximum is attained at θγ = 1√

3

√
1
γ + 1 and hγ(θγ) = 2(1+γ)3/2

3
√

3γ
.

max
γ∈(1,1.25)

max
θ∈(0,1]

θ + γθ(1− θ2) = max
γ∈(.5,1.25)

2(1 + γ)3/2

3
√

3γ (6.28)

It can be verified that 2(1+γ)3/2

3
√

3γ
is increasing with gamma in the interval (1, 1.25). Hence,

max
γ∈(1,1.25)

2(1 + γ)3/2

3
√

3γ ≤ 2(1 + γ)3/2

3
√

3γ

∣∣∣∣∣
γ=1.25

< 1.162 (6.29)

Combining them, we get,

θ+ ≤ max
γ∈(0,1.25)

max
θ∈(0,1]

θ + γθ(1− θ2) < 1.162 (6.30)

For θ ∈ (1, 1.162): Since θ > 1, we have, θ+ < θ < 1.162. For lower bound, note that for
θ+ to be less than 0, we need 1 + γ − γθ2 < 0. But for γ ∈ (1, 1.25) and θ ∈ (1, 1.162),

γ(θ2 − 1) < 1.25((1.162)2 − 1) < 1. (6.31)

Hence, it never goes below 0.

Lemma 10. Consider the recursion (6.26) with Γ ⊆ (1, 1.25) and θ0 initialized uniformly
in (0, 1). Then, there exists ϵ0 > 0, such that for all ϵ < ϵ0 there exists t > 0 such that for
any k > 0,

θt+2k ∈ (0.65, 1− ϵ) and θt+2k+1 ∈ (1 + ϵ, 1.162) (6.32)

almost surely.

175

Chapter 6. SGD with Large Step Sizes Learns Sparse Features

Proof. Define γmin > 1 as the infimum of the support Γ. Let ϵo = min{(γmin−1)/3, 0.02}.
Note that ϵ0 > 0 as γmin > 1. Now for any 0 < ϵ < ϵo, we have γmin(2− ϵ)(1− ϵ) > 2.

Divide the interval (0,1.162) into 4 regions, I0 = (0, 0.65], I1 = (0.65, 1−ϵ), I2 = [1−ϵ, 1),
I3 = (1, 1.162). The strategy of the proof is that the iterates will eventually end up in I1
and that once it ends up in I1, it comes back to I1 in 2 steps.

Let θ0 be initialized uniformly random in (0, 1). Consider the sequence (θt)t≥0 generated
by

θt+1 = hγt(θt) := θt + γtθt(1− θ2
t) where γt ∼ ρ̂γ . (6.33)

We prove the following facts (P1)-(P4):

(P1) There exists t ≥ 0 such that the θt ∈ I1 ∪ I2 ∪ I3.

(P2) Let θt ∈ I3, then θt+1 ∈ I1 ∪ I2.

(P3) Let θt ∈ I2, there exists k > 0 such that for k′ < k, θt+2k′ ∈ I2 and θt+2k ∈ I1.

(P4) When θt ∈ I1, then for all k ≥ 0, θt+2k ∈ I1 and θt+2k+1 ∈ (1 + ϵ, 1.162).

Proof of (P1)-(P4): Let t ∈ N, note first that the event {θt = 1} = ∪k⩽t{θk = 1|θk−1 ̸=
1} and hence a finite union of zero measure sets. Hence {θt = 1} is a zero measure set
and therefore we do not consider it below. For any other sequence, from the above four
properties, we can conclude that the lemma holds.

Proof of P1: Assume that until time t > 0, the iterates are all in I0, then we have

θt = θt−1(1 + γ(1− θ2
t−1)) ≥ θt−1(2− θ2

t−1) > 1.5 θt−1 > 1.5t θ0 (6.34)

Hence, the sequence eventually exits I0. We know that it will stay bounded from Lemma 9,
hence it will end up in I1 ∪ I2 ∪ I3.

Proof of P2: For any θt ∈ (1, 1.162), 1 < γ < 1.25, since hγ(.) is decreasing in (1,1.162),
we have hγ(1.162) < hγ(θt) < hγ(1). Also hγ(θ) is linear in gamma with negative coefficient
for θ > 1. Hence it decreases as γ increases. Using this,

.652 = h1.25(1.162) < hγ(1.162) < hγ(θt) < hγ(1) = 1. (6.35)

Hence, θt+1 ∈ I1 ∪ I2.

Proof of P3: The proof of this follows from Lemma 12.

Proof of P4: The proof of this follows from Lemma 14.

Lemma 11. For any θ ∈ I1 ∪ I2 and any a, b ∈ Γ, ha(hb(θ)) ∈ I1 ∪ I2,

hγmax(hγmax(θ)) ≤ ha(hb(θ)) ≤ hγmin(hγmin(θ)). (6.36)

176

6.7 Quadratic Parameterization in One Dimension

Proof. For any γ ∈ Γ, recall

hγ(θ) = θ + γθ(1− θ2) = 1 + (1− θ)(γθ(1 + θ)− 1). (6.37)

Note that for θ ∈ I1 ∪ I2, θ(1 + θ) > 1, Hence γθ(1 + θ) > 1. This gives us that hγ(θ) > 1.
Now we will track where θ ∈ I1 ∪ I2 can end up after two stochastic gradient steps.

• For any b ∈ Γ, as θ ∈ I1 ∪ I2, we have

hγmax(θ) ≥ hb(θ) ≥ hγmin(θ) > 1,

note hγmax(θ) ≥ hb(θ) ≥ hγmin(θ) holds since θ < 1.

• Now for any a ∈ Γ and x > 1, ha(x) is a decreasing function in x. Hence

ha(hγmax(θ)) ≤ ha(hb(θ)) ≤ ha(hγmin(θ)).

Using γmin ≤ a, ha(hγmin(θ)) ≤ hγmin(hγmin(θ)), Similarly using γmax > a, we have,
hγmax(hγmax(θ)) ≤ ha(hγmax(θ)). Combining them we get,

hγmax(hγmax(θ)) ≤ ha(hb(θ)) ≤ hγmin(hγmin(θ)). (6.38)

Similar argument can extend it to,

h1.25(h1.25(θ)) < ha(hb(θ)) < h1(h1(θ)). (6.39)

Lemma 12. Let θt ∈ I2, there exists k > 0 such that θt+2k ∈ I1.

Proof. For any γ ∈ Γ, let θ+ = hγ(θ), then we have

hγ(hγ(θ))− θ = hγ(θ+)− θ = γθ(1− θ2) + γθ+(1− θ2
+). (6.40)

Furthermore,

θ+ = θ + γθ(1− θ2) = θ(1 + γ(1− θ2)), (6.41)
1 + θ+ = 1 + θ + γθ(1− θ2) = (1 + θ)(1 + γθ(1− θ)), (6.42)
1− θ+ = 1− θ − γθ(1− θ2) = (1− θ)(1− γθ(1 + θ)). (6.43)

And multiplying the above three terms and adding θ(1− θ2), we get,

θ+(1− θ2
+) + θ(1− θ2) = θ(1− θ2){1 +

[
(1 + γ(1− θ2))(1 + γθ(1− θ))(1− γθ(1 + θ))

]
︸ ︷︷ ︸

P (θ)

}

(6.44)

177

Chapter 6. SGD with Large Step Sizes Learns Sparse Features

For θ ∈ I2, using γmin(2− ϵ)(1− ϵ) > 2, we have the inequalities

(1 + γ(1− θ2))(1 + γθ(1− θ)) > 1, (6.45)
(1− γθ(1 + θ)) < 1− γmin(2− ϵ)(1− ϵ) < −1, (6.46)

P (θ) < −1. (6.47)

Hence,

hγ(hγ(θ))− θ = γ(1− θ2)(1 + P (θ)) < 0. (6.48)

Therefore, for [1 − ϵ, 1), for any γ ∈ Γ, hγ(hγ(θ)) < θ. Hence for any two stochastic
gradient step with a, b ∈ Γ, from (6.36), θt+2 = ha(hb(θt)) ≤ hγmin(hγmin(θt)) < θt. From
any point in I2, we have |θt+2 − 1| > |θt − 1|, for any a, b ∈ Γ. Intutively this means that
in two gradient steps the iterates move further away from 1 until it eventually leaves the
interval I2 as the sequence {θt+2k}k≥0 is strictly decreasing with no limit point in I2. From
Lemma 13 , we know that in two steps the iterates will never leave I1 ∪ I2. Hence they
will eventually end up in I1 leaving I2.

Property 6.7.1. Define gγ(θ) := hγ(hγ(θ)) for the sake of brevity. The followings prop-
erties hold for θ ∈ I1 ∪ I2, γ ∈ Γ and θγ the root of h′

γ(θ):

Q1 gγ(θ) ≥ gγ(θγ).

Q2 The function gγ(.) is decreasing in [0.65, θγ) and increasing in (θγ , 1].

Proof. Note h′
γ(θ) = 1 + γ − γ3θ2 has at most one root θγ ∈ (0, 1). Note that for all

γ ∈ Γ, θγ ∈ I1 ∪ I2. For any γ, g′
γ(θ) = h′

γ(hγ(θ))h′
γ(θ). For any θ ∈ I1 ∪ I2, we have,

hγ(θ) > 1 =⇒ h′
γ(hγ(θ)) < 0. Therefore, g′

γ(θ) has only one root in I1 ∪ I2. Since
θγ ∈ I1 ∪ I2, note g′′

γ(θγ) = h′
γ(hγ(θγ))h′′

γ(θγ) > 0. Therefore, gγ(.) attains its minimum at
θγ and this shows the desired properties.

Lemma 13. For any θ ∈ I1 ∪ I2 and any a, b ∈ Γ, ha(hb(θ)) ∈ I1 ∪ I2.

Proof. Lower Bound: From (6.39), we know

h1.25(h1.25(θ)) < ha(hb(θ)) (6.49)

We know that from property Q1 that gγ(θ) ≥ gγ(θγ). Hence

g1.25(θ1.25) < g1.25(θ) < ha(hb(θ)) (6.50)

It can be quickly checked that .65 < g1.25(θ1.25). Hence the lower bound holds.

Upper Bound: From (6.39), we know

ha(hb(θ)) < h1(h1(θ)) (6.51)

178

6.8 Empirical Validation of the SDE Modeling

We know that from property Q2 that g1(θ) ≤ max{g1(1), g1(0.65)}. It can be easily
verified that g1(0.65) < 0.98. Hence g1(θ) < 1.

Lemma 14. For any θ ∈ I1 and any a, b ∈ Γ, ha(hb(θ)) ∈ I1 and ha(θ) ∈ (1 + ϵ, 1.162).

Proof. The lower bound in Lemma 13 holds here. For the upper bound, from and (6.36),

ha(hb(θ)) ≤ hγmin(hγmin(θ)). (6.52)

Using property Q2,

hγmin(hγmin(θ)) ≤ max{gγmin(1− ϵ), gγmin(0.65)} (6.53)

From (6.48), gγmin(1 − ϵ) < 1 − ϵ. From (6.39), gγmin(0.65) < g1(0.65) < 0.98 < 1 − ϵ. In
I1, the function ha(.) first increases reaches maximum and decreases. Hence for θ ∈ I1,
ha(θ) ≥ min{ha(0.65), ha(1− ϵ)} .

ha(1− ϵ) ≥ 1− ϵ+ a(1− (1− ϵ)2)(1− ϵ), (6.54)
= 1− ϵ+ a(2ϵ− ϵ2)(1− ϵ), (6.55)
≥ 1− ϵ+ γmin(2ϵ− ϵ2)(1− ϵ), (6.56)
= 1 + ϵ+ ϵ (γmin(2− ϵ)(1− ϵ)− 2) > 1 + ϵ. (6.57)

Also ha(0.65) > h1(0.65) > 1.02 > 1 + ϵ, therefore ha(θ) > 1 + ϵ and this completes the
proof.

6.8 Empirical Validation of the SDE Modeling

In this section, we experimentally check the validity of the SDE modeling of SGD in (6.8)
in terms of the key metrics: training loss, test loss, rank of the Jacobian, and feature
sparsity.

SDE discretization. Let γt be the SDE discretization step size, ηt the step size of the
corresponding SGD that we aim to validate, δt the noise intensity level, and Zt ∼ N (0, In).
Then we discretize the SDE from (6.8) as follows:

θt+1 = θt − γt∇θL(θt) +√γt

√
ηtδt ϕθt(X)⊤Zt. (6.58)

To approximate continuous time, we use a small discretization step size γt := ηt/10 and
run the discretization for 10× longer than the corresponding SGD run. We use ηt := ηSGD

⌊t/10⌋
and δt := c · L(θSGD

⌊t/10⌋) where c is a constant that we select for each setting separately to
match the training dynamics of the corresponding SGD run. In addition, we also evaluate

179

Chapter 6. SGD with Large Step Sizes Learns Sparse Features

Diagonal linear networks

0 20000 40000 60000 80000 100000

Iteration

10−5

10−4

10−3

10−2

10−1

100

T
ra

in
lo

ss

0 20000 40000 60000 80000 100000

Iteration

10−4

10−3

10−2

10−1

T
es

t
lo

ss
0 20000 40000 60000 80000 100000

Iteration

50

75

100

125

150

175

200

ra
n
k

(φ
θ
(X

))

0 20000 40000 60000 80000 100000

Iteration

0

50

100

150

200

‖u
�
v
‖ 0

Gradient flow discretization (γ = 0.03) SGD η = 0.28, decay at 50% iterations SDE discretization with η and δt from the SGD run (γ = 0.03)

Two-layer ReLU networks on 1D regression

0 5000 10000 15000 20000 25000 30000

Iteration

10−4

10−3

10−2

10−1

100

101

T
ra

in
lo

ss

−1.0 −0.5 0.0 0.5 1.0 1.5

x

−2

−1

0

1

2

y

0 50000 100000 150000 200000 250000 300000

Iteration

20

30

40

50

60

70

80

90

ra
n
k

(φ
θ
(X

))
0 5000 10000 15000 20000 25000 30000

Iteration

5%

10%

15%

20%

25%

F
ea

tu
re

sp
ar

si
ty

co
ef

.

Gradient flow discretization (γ = 0.00002) SGD η = 0.00020, decay at 50% iterations SDE discretization with η and δt from the SGD run (γ = 0.00002)

Two-layer ReLU networks in a teacher-student setup

0 2000 4000 6000 8000 10000 12000 14000

Iterations (rescaled)

10−5

10−4

10−3

10−2

10−1

100

T
ra

in
lo

ss

0 2000 4000 6000 8000 10000 12000 14000

Iterations (rescaled)

10−4

10−3

10−2

10−1

100

T
es

t
lo

ss

0 2000 4000 6000 8000 10000 12000 14000

Iterations (rescaled)

10

15

20

25

30

ra
n
k

(φ
θ
(X

))

0 2000 4000 6000 8000 10000 12000 14000

Iterations (rescaled)

10%

15%

20%

25%

30%

F
ea

tu
re

sp
ar

si
ty

Gradient flow discretization (γ = 0.05) SGD η = 0.46, decay at 50% iterations SDE discretization with η and δt from the SGD run (γ = 0.05)

Three-layer ReLU networks in a teacher-student setup

0 2000 4000 6000 8000 10000

Iteration

10−3

10−2

10−1

100

T
ra

in
lo

ss

0 2000 4000 6000 8000 10000

Iteration

10−2

10−1

100

T
es

t
lo

ss

0 2000 4000 6000 8000 10000

Iteration

100

110

120

130

140

150

ra
n
k

(φ
θ
(X

))

0 2000 4000 6000 8000 10000

Iteration

30%

35%

40%

45%

50%

55%

60%

F
ea

tu
re

sp
ar

si
ty

co
ef

.,
la

ye
r

1

0 2000 4000 6000 8000 10000

Iteration

15%

20%

25%

30%

35%

40%

45%

50%

F
ea

tu
re

sp
ar

si
ty

co
ef

.,
la

ye
r

2

Gradient flow discretization (γ = 0.004) SGD η = 0.040, decay at 50% iterations SDE discretization with η and δt from the SGD run (γ = 0.004)

Figure 6.9: Empirical validation of the SDE modeling. In all cases, the dynamics of the
SDE discretization qualitatively matches the dynamics of the corresponding SGD run. Moreover,
gradient flow discretization exhibits no rank minimization or feature sparsity which suggests that
the presence of the noise plays a key role in learning sparse features.

a discretization of gradient flow (i.e., (6.58) without the noise term) which helps to draw
conclusions about the role of the noise term.

Experimental results. We present the discretization results in Fig. 6.9 for all models
considered in the paper except deep networks for which computing the Jacobian ϕθt on
each iteration of the SDE discretization is too costly. In all cases, the dynamics of the
SDE discretization qualitatively matches the dynamics of the corresponding SGD run. In
particular, we observe similar levels of decrease in the rank of the Jacobian and feature
sparsity coefficient. We note that the match between SDE and SGD curves is not expected
to be precise due to the inherent randomness of the process. Finally, we observe that gra-
dient flow discretization exhibits no rank minimization or feature sparsity which suggests

180

6.9 Additional Experimental Results

that the presence of the noise (either from the original SGD or its SDE discretization)
plays a key role in learning sparse features.

6.9 Additional Experimental Results

This section of the appendix presents additional experiments complementing the ones
presented in the main text.

w?
1

w?
2

w?
3

SGD, η=0.13

wi randomly initialized

wi after training

w?
1

w?
2

w?
3

SGD, η=0.46, decay at 50% iterations

wi randomly initialized

wi after training

Figure 6.10: Only for a large step size, the neu-
rons wi cluster along the teacher neurons w⋆

i lead-
ing to a model that uses a sparse set of features.

Illustration of neuron dynamics. We
illustrate the change of neurons during
training of two-layer ReLU networks (with-
out biases) in the teacher-student setup of
Chizat et al. (2019) (see Fig. 1 therein)
using a large initialization scale for which
small step sizes of GD or SGD lead to
lazy training. We illustrate (O1)–(O3)
in Fig. 6.14 and show neuron dynamics in
Fig. 6.10. We see that for SGD with a
small step size, the neurons wi stay close
to their initialization, while for a large step
size, there is a clear clustering of directions wi along the teacher directions w⋆

i . The overall
picture is very similar to Fig. 1 of Chizat et al. (2019) where the same feature learning
effect is achieved via gradient flow from a small initialization which is, however, much
more computationally expensive due to the saddle point at zero. Finally, we note that the
clustering phenomenon of neurons wi motivates the removal of highly correlated activa-
tions in the feature sparsity coefficient: although the corresponding activations are often
non-zero, many of them in fact implement the same feature and thus should be counted
only once.

Further results. We give a short overview of additional figures referred to in the main
text. More details can be found in the captions.

• Figure 6.11 shows that even if loss stabilization occurs in diagonal linear networks,
the implicit bias towards sparsity is largely weaker than that of SGD and general-
ization is poor.

• Figures 6.12 and 6.13 demonstrate that the implicit bias resulting from high-loss
stabilization makes the neural nets learn first a simple model then eventually fits
the data.

• Figure 6.14 presents the sparsifying effect corresponding to the neurons’ movements
exhibited in Figure 6.10.

• Figures 6.15 and 6.16 exhibit the feature sparsity in ResNet-18 / ResNet-34 archi-
tectures on CIFAR-10 and CIFAR-100 in the basic and state-of-the-art settings.

181

Chapter 6. SGD with Large Step Sizes Learns Sparse Features

• Figure 6.17 showcases the features learning induced by large step sizes for different
layers of ResNets-18 when trained on CIFAR-10.

0 20000 40000 60000 80000 100000

Iteration

10−5

10−4

10−3

10−2

10−1

100

T
ra

in
lo

ss

0 20000 40000 60000 80000 100000

Iteration

10−1T
es

t
lo

ss

0 20000 40000 60000 80000 100000

Iteration

0

20

40

60

80

100

‖u
�
v
‖ 0

GD γ=2.00 GD η=3.53, decay at 10% iterations GD η=3.53, decay at 30% iterations GD η=3.53, decay at 50% iterations SGD η=0.27, decay at 50% iterations

Figure 6.11: Diagonal linear networks. Loss stabilization also occurs for full-batch gradient
descent but does not lead to a similar level of sparsity as SGD and also does not improve the test
loss.

0 5000 10000 15000 20000 25000 30000

Iteration

10−4

10−3

10−2

10−1

100

101

T
ra

in
lo

ss

−1.0 −0.5 0.0 0.5 1.0 1.5

x

−2

−1

0

1

2

y

0 5000 10000 15000 20000 25000 30000

Iteration

20

40

60

80

100

ra
n
k

(φ
θ
(X

))

0 5000 10000 15000 20000 25000 30000

Iteration

5%

10%

15%

20%

25%

30%

F
ea

tu
re

sp
ar

si
ty

co
ef

.

SGD, η=0.0002, decay at 2% iterations SGD, η=0.0002, decay at 50% iterations

Figure 6.12: Two-layer ReLU networks for 1D regression. Unlike for Fig. 6.4, here we
use a larger warmup coefficient (500× vs. 400×) which leads to overregularization such that the
50%-schedule run fails to fit all the training points and gets stuck at a too high value of the training
loss (≈ 10−0.5).

−1.0 −0.5 0.0 0.5 1.0 1.5

x

−2

−1

0

1

2

y

Iteration 99

−1.0 −0.5 0.0 0.5 1.0 1.5

x

−2

−1

0

1

2

y

Iteration 420

−1.0 −0.5 0.0 0.5 1.0 1.5

x

−2

−1

0

1

2

y

Iteration 1300

−1.0 −0.5 0.0 0.5 1.0 1.5

x

−2

−1

0

1

2

y

Iteration 6500

−1.0 −0.5 0.0 0.5 1.0 1.5

x

−2

−1

0

1

2

y

Iteration 15000

−1.0 −0.5 0.0 0.5 1.0 1.5

x

−2

−1

0

1

2

y

Iteration 31000

SGD, decay at 2% iterations SGD, decay at 50% iterations

Figure 6.13: Two-layer ReLU networks for 1D regression. Illustration of the resulting
models from Fig. 6.4 over training iterations. We can see that first the model is simplified and
only then it fits the training data.

182

6.9 Additional Experimental Results

0 2000 4000 6000 8000 10000 12000 14000

Iteration

10−5

10−4

10−3

10−2

10−1

100
T

ra
in

lo
ss

0 2000 4000 6000 8000 10000 12000 14000

Iteration

10−4

10−3

10−2

10−1

100

T
es

t
lo

ss

0 2000 4000 6000 8000 10000 12000 14000

Iteration

10

15

20

25

30

35

ra
n
k

(φ
θ
(X

))

0 2000 4000 6000 8000 10000 12000 14000

Iteration

5%

10%

15%

20%

25%

30%

35%

40%

F
ea

tu
re

sp
ar

si
ty

co
ef

.

SGD, η=0.13 SGD, η=0.46, decay at 10% iterations SGD, η=0.46, decay at 30% iterations SGD, η=0.46, decay at 50% iterations

Figure 6.14: Two-layer ReLU networks in a teacher-student setup. Loss stabilization
for two-layer ReLU nets in the teacher-student setup with input dimension d = 2. We observe
loss stabilization, better test loss for longer schedules and sparser features due to simplification of
ϕ(X).

ResNet-18 on CIFAR-10, basic setting (no momentum and augmentations)

0 20 40 60 80 100
Epoch

10 5

10 3

10 1

101

Tr
ai

ni
ng

 lo
ss

0 20 40 60 80 100
Epoch

15%

20%

25%

30%

35%

40%

Te
st

 e
rro

r

0 20 40 60 80 100
Epoch

60%

65%

70%

75%

Fe
at

ur
e

sp
ar

sit
y

co
ef

.,
bl

oc
k

3

0 20 40 60 80 100
Epoch

20%

30%

40%

50%

60%

70%

Fe
at

ur
e

sp
ar

sit
y

co
ef

.,
bl

oc
k

4

= 0.01 = 0.3, warmup, decay at 10% = 0.3, warmup, decay at 30% = 0.3, warmup, decay at 50%

ResNet-18 on CIFAR-10, state-of-the-art setting (with momentum and augmentations)

0 20 40 60 80 100
Epoch

10 3

10 2

10 1

100

Tr
ai

ni
ng

 lo
ss

0 20 40 60 80 100
Epoch

6%

8%

10%

12%

14%

16%

18%

Te
st

 e
rro

r

0 20 40 60 80 100
Epoch

30%

40%

50%

60%

70%

80%

Fe
at

ur
e

sp
ar

sit
y

co
ef

.,
bl

oc
k

3

0 20 40 60 80 100
Epoch

45%

50%

55%

60%

65%

70%

75%

Fe
at

ur
e

sp
ar

sit
y

co
ef

.,
bl

oc
k

4

= 0.002 = 0.05, decay at 10% = 0.05, decay at 30% = 0.05, decay at 50%

Figure 6.15: ResNet-18 trained on CIFAR-10. Both in the basic and state-of-the-art set-
tings, the training loss stabilizes, the test loss noticeably depends on the length of the schedule,
and the feature sparsity coefficient is minimized over iterations.

183

Chapter 6. SGD with Large Step Sizes Learns Sparse Features

ResNet-34 on CIFAR-100, basic setting (no momentum and augmentations)

0 20 40 60 80 100
Epoch

10 4

10 3

10 2

10 1

100

Tr
ai

ni
ng

 lo
ss

0 20 40 60 80 100
Epoch

60%

70%

80%

90%

100%

Te
st

 e
rro

r
0 20 40 60 80 100

Epoch
30%

40%

50%

60%

70%

80%

Fe
at

ur
e

sp
ar

sit
y

co
ef

.,
bl

oc
k

3

0 20 40 60 80 100
Epoch

30%

40%

50%

60%

70%

Fe
at

ur
e

sp
ar

sit
y

co
ef

.,
bl

oc
k

4

= 0.01 = 0.75, warmup, decay at 10% = 0.75, warmup, decay at 30% = 0.75, warmup, decay at 50%

ResNet-34 on CIFAR-100, state-of-the-art setting (with momentum and
augmentations)

0 20 40 60 80 100
Epoch

10 2

10 1

100

Tr
ai

ni
ng

 lo
ss

0 20 40 60 80 100
Epoch

25%

30%

35%

40%

45%

50%

Te
st

 e
rro

r

0 20 40 60 80 100
Epoch

50%

55%

60%

65%

70%

75%

Fe
at

ur
e

sp
ar

sit
y

co
ef

.,
bl

oc
k

3

0 20 40 60 80 100
Epoch

50%

55%

60%

65%

70%

75%

Fe
at

ur
e

sp
ar

sit
y

co
ef

.,
bl

oc
k

4

= 0.004 = 0.05, decay at 10% = 0.05, decay at 30% = 0.05, decay at 50%

Figure 6.16: ResNet-34 trained on CIFAR-100. Both in the basic and state-of-the-art
settings, the training loss stabilizes, the test loss significantly depends on the length of the schedule,
and feature sparsity is minimized over iterations. However, differently from the plots on CIFAR-
10, here without explicit regularization we observe oscillating behavior after the step size decay
(although at a very low level between 10−4 and 10−2).

(a) Early layer
Initial Small η Large η

(b) Middle layer
Initial Small η Large η

(c) Last layer
Initial Small η Large η

Figure 6.17: Visualization on four sets of convolutional filters taken from different layers of
ResNets-18 trained on CIFAR-10 with small vs. large step size η (the 50% decay schedule). For
small step sizes, the early and middle layers stay very close to randomly initialized ones which
indicates the absence of feature learning.

184

7 A Modern Look at the Rela-
tionship between Sharpness and
Generalization

7.1 Preface

In this chapter, based on Andriushchenko et al. (2023b), we provide a comprehensive study
of how well different definitions of sharpness of minima correlate with generalization. We
conclude that sharpness does not necessarily correlate well with generalization but rather
with some training parameters like the learning rate.

Summary Sharpness of minima is a promising quantity that can positively correlate
with test error for deep networks, and its minimization during training can improve gener-
alization. However, standard sharpness is not invariant under reparametrizations of neural
networks, and, to fix this, reparametrization-invariant sharpness definitions have been pro-
posed, most prominently adaptive sharpness (Kwon et al., 2021). But does it really capture
generalization in modern practical settings? We comprehensively explore this question in
a detailed study of various definitions of adaptive sharpness in settings ranging from train-
ing from scratch on ImageNet and CIFAR-10 to fine-tuning CLIP on ImageNet and BERT
on MNLI. We focus mostly on transformers for which little is known in terms of sharp-
ness despite their widespread usage. Overall, we observe that sharpness does not correlate
well with generalization but rather with some training parameters like the learning rate
that can be positively or negatively correlated with generalization depending on the setup.
Interestingly, in multiple cases, we observe a consistent negative correlation of sharpness
with out-of-distribution error implying that sharper minima can generalize better. Finally,
we illustrate on a simple model that the right sharpness measure is highly data-dependent,
and that we do not understand well this aspect for realistic data distributions. Our code
is available at https://github.com/tml-epfl/sharpness-vs-generalization.

Co-authors Francesco Croce, Maximilian Müller, Matthias Hein, Nicolas Flammarion.

Contributions Maksym Andriushchenko proposed the project, performed most of the
experiments, and provided the theoretical analysis. Francesco Croce and Maximilian
Müller contributed to the experiments.

185

https://github.com/tml-epfl/sharpness-vs-generalization

Chapter 7. A Modern Look at the Relationship between Sharpness and
Generalization

7.2 Introduction

Considering the sharpness of the training objective at a minimum has intuitive appeal:
if the loss surface is slightly perturbed due to a train vs. test or out-of-distribution
(OOD) discrepancy, flat minima of deep networks should still have low loss (Hochreiter
and Schmidhuber, 1995; Keskar et al., 2016). On the theoretical side, sharpness appears
in generalization bounds (Neyshabur et al., 2017; Dziugaite and Roy, 2018; Foret et al.,
2021) but this fact alone is not necessarily informative for practical settings. For example,
quantities like the VC-dimension typically correlate negatively with generalization con-
trary to what the generalization bound might suggest (Jiang et al., 2019). Importantly,
it has been shown empirically that sharpness can also correlate well with generalization
in common deep learning setups (Keskar et al., 2016; Jiang et al., 2019) which makes it
a promising generalization measure that can potentially distinguish well-generalizing so-
lutions. Additionally, empirical success of training methods that minimize sharpness such
as sharpness-aware minimization (SAM) (Zheng et al., 2021; Wu et al., 2020b; Foret et al.,
2021) further suggests that sharpness can be an important quantity for generalization.

Motivation: why revisiting sharpness? Many works imply or conjecture that flatter
minima should generalize better (Xing et al., 2018; Zhou et al., 2020; Cha et al., 2021; Park
and Kim, 2022; Lyu et al., 2022) for standard or OOD data. However, standard sharpness
definitions do not correlate well with generalization (Jiang et al., 2019; Kaur et al., 2022)
which can be partially due to their lack of invariance under reparametrizations that leave
the model unchanged (Dinh et al., 2017; Granziol, 2020; Zhang et al., 2021b). Adaptive
sharpness appears to be more promising since it fixes the reparametrization issue and is
shown to empirically correlate better with generalization (Kwon et al., 2021). However, the
empirical evidence in Kwon et al. (2021) and other works that discuss sharpness (Keskar
et al., 2016; Jiang et al., 2019; Dziugaite et al., 2020; Bisla et al., 2022) is restricted
to small datasets like CIFAR-10 or SVHN. In addition, SAM appears to be particularly
useful for new architectures like vision transformers (Chen et al., 2022) for which there has
been no systematic studies of sharpness vs. generalization. Moreover, transfer learning is
becoming the default option for vision and language tasks but not much is known about
sharpness there. Finally, the relationship between sharpness and OOD generalization is
also underexplored. These new developments motivate us to revisit the role of sharpness
in these new settings.

Contributions. We aim to provide a comprehensive study focusing specifically on adap-
tive sharpness in order to answer the following fundamental question:

Can reparametrization-invariant sharpness capture generalization
in modern practical settings?

Towards this goal, we make the following contributions:

• We provide extensive evaluations of multiple reparametrization-invariant sharpness

186

7.3 Related work

measures for (1) training from scratch on ImageNet and CIFAR-10 using transformers
and ConvNets, and (2) fine-tuning CLIP and BERT transformers on ImageNet and
MNLI.

• We observe that sharpness does not correlate well with generalization but rather with
some training parameters like the learning rate which can be positively or negatively
correlated with generalization depending on the setup.

• Interestingly, in multiple cases, we observe a consistent negative correlation of sharpness
with OOD generalization implying that sharper minima can generalize better.

• Finally, we provide an analysis on a simple model where we know the measure respon-
sible for generalization. Our analysis suggests that (1) different sharpness definitions
can capture totally different trends, and (2) the right sharpness measure is highly data-
dependent.

7.3 Related work

Here we discuss the most related papers to our work.

Systematic studies on sharpness vs. generalization. The seminal work of Keskar
et al. (2016) shows that the performance degradation of large-batch SGD (LeCun et al.,
2012) is correlated with sharpness of minima. Neyshabur et al. (2017) explore differ-
ent generalization measure that may explain generalization for deep networks suggesting
that sharpness can be a promising measure. Jiang et al. (2019) perform a systematic
study that shows a strong correlation between sharpness and generalization on a large
set of CIFAR-10/SVHN models trained with many different hyperparameters. Their ex-
perimental protocol is, however, criticized in Dziugaite et al. (2020) since it can obscure
failures of generalization measures and instead should be evaluated within the framework
of distributional robustness. Vedantam et al. (2021) discuss OOD generalization on small
datasets and evaluate a definition of sharpness which, however, does not correlate well with
OOD generalization. Stutz et al. (2021) study the relationship between sharpness and gen-
eralization under ℓp-bounded adversarial perturbations. Andriushchenko and Flammarion
(2022) study reasons behind the success of SAM and highlight the importance of using
sharpness computed on a small subset of training points. Kaur et al. (2022) discuss that
the maximum eigenvalue of the Hessian is not always predictive to generalization even for
models obtained via standard training methods.

Reparametrization-invariant sharpness definitions. The magnitude-aware sharp-
ness of Keskar et al. (2016) mitigates but does not completely resolve reparametrization
invariance. Liang et al. (2019) consider the Fisher-Rao metric related to sharpness and
invariant to network reparametrization. Petzka et al. (2021) propose a sharpness measure
based on the trace of the Hessian and show correlation for a small ConvNet on CIFAR-10.
Tsuzuku et al. (2020) suggest to use a specifically rescaled sharpness inspired by the PAC-
Bayes theory and report high correlation with generalization for ResNets on CIFAR-10.

187

Chapter 7. A Modern Look at the Relationship between Sharpness and
Generalization

Most importantly for our work, Kwon et al. (2021) introduce adaptive sharpness which is
reparametrization invariant, correlates well with generalization, and generalizes multiple
existing sharpness definitions.

Explicit and implicit sharpness minimization. The idea that flat minima can be
beneficial for generalization dates back to Hochreiter and Schmidhuber (1995) and inspires
multiple methods that optimize for more robust minima. These methods optimize different
criteria ranging from random perturbations such as dropout (Srivastava et al., 2014) and
Entropy-SGD (Chaudhari et al., 2016) to worst-case perturbations such as SAM (Foret
et al., 2021) and its variations (Kwon et al., 2021; Zhuang et al., 2022; Du et al., 2022).
Notably, Chen et al. (2022) suggest that SAM is particularly helpful for vision transformers
on ImageNet scale and that standard transformers by default converge to very sharp
minima. Concurrently, works on the implicit bias of SGD suggest implicit minimization of
some hidden complexity measures related to flatness of minima (Keskar et al., 2016; Smith
and Le, 2018; Xing et al., 2018). Izmailov et al. (2018) propose to average weights during
SGD to improve generalization and motivate it by sharpness reduction. Smith et al. (2021)
derive an implicit regularization term of SGD based on the gradient norm. Sharpness-
related quantities based on the Hessian have been a focus of many recent works. E.g.,
Cohen et al. (2021); Arora et al. (2022); Damian et al. (2023) empirically and theoretically
characterize the regime of full-batch gradient descent where the maximum eigenvalue of the
Hessian becomes inversely proportional to the learning rate used for training. Blanc et al.
(2020); Li et al. (2022); Damian et al. (2021) discover implicit minimization of the trace
of the Hessian for label-noise SGD used as a proxy of standard SGD. The common theme
behind these works is a focus on sharpness-related metrics as a tool to better understand
generalization for deep networks.

7.4 Adaptive Sharpness, its Invariances, and Computation

In this section, we first provide background on adaptive sharpness, then discuss its in-
variance properties for modern architectures, and propose a way to compute worst-case
sharpness efficiently.

7.4.1 Background on Sharpness

Sharpness definitions. We denote the loss on a set of training points S as LS(w) =
1

|S|
∑

(x,y)∈S ℓxy(w), where ℓxy(w) ∈ R+ represents some loss function (e.g., cross-entropy)
on the training pair (x,y) ∈ S computed with the network weights w. For arbitrary
w ∈ Rp (i.e., not necessarily a minimum), we define the adaptive average-case and adaptive
worst-case m-sharpness with radius ρ and with respect to a vector c ∈ Rp as:

Sρ
avg(w, c) ≜ E S∼Pm

δ∼N (0,ρ2diag(c2))
LS(w + δ)− LS(w), (7.1)

Sρ
max(w, c) ≜ ES∼Pm max

∥δ⊙c−1∥p≤ρ
LS(w + δ)− LS(w),

188

7.4 Adaptive Sharpness, its Invariances, and Computation

where ⊙/−1 denotes elementwise multiplication/inversion and Pm is the data distribution
that returns m training pairs (x,y). Both average-case and worst-case sharpness have
often been considered in the literature, and worst-case sharpness is mostly determined
to correlate better with generalization (Jiang et al., 2019; Dziugaite et al., 2020; Kwon
et al., 2021), especially with a small m (i.e., |S|) in worst-case sharpness (Foret et al.,
2021). Using c = |w| leads to elementwise adaptive sharpness (Kwon et al., 2021) and
makes the sharpness invariant under multiplicative reparametrizations that preserve the
network, i.e., for any c ∈ Rp such that f(w ⊙ c) = f(w) we have:

Sρ
max(w ⊙ c, |w ⊙ c|) =
ES max

∥δ⊙(|w|⊙c)−1∥p≤ρ
LS(w ⊙ c + δ)− LS(w ⊙ c) =

ES max
∥δ′⊙|w|−1∥p≤ρ

LS((w + δ′)⊙ c)− LS(w ⊙ c) =

ES max
∥δ′⊙|w|−1∥p≤ρ

LS(w + δ′)− LS(w) = Sρ
max(w, |w|),

where we used the substitution δ′ := δ ⊙ c−1. Similarly, one can show that Sρ
avg(w ⊙

c, |w ⊙ c|) = Sρ
avg(w, |w|). Thus, this illustrates that the criticism of sharpness stated in

Dinh et al. (2017) does not apply to adaptive sharpness, and there is no need to “balance”
the network in a pre-processing step like, e.g., done in Bisla et al. (2022).

Connections between different sharpness definitions. Here we generalize the an-
alytical expressions of standard sharpness for radius ρ → 0 that depend on the first- or
second-order terms which are frequently used in the literature (Blanc et al., 2020; Tsuzuku
et al., 2020; Li et al., 2022; Damian et al., 2021). For a thrice differentiable loss L(w),
the average-case elementwise adaptive sharpness can be computed as (see App. 7.8.1 for
proofs):

Sρ
avg(w, |w|) =ES∼Pm

ρ2

2 tr(∇2LS(w)⊙ |w||w|⊤) +O(ρ3). (7.2)

We note that the first-order term cancels out completely and plays no role. This is not
the case for worst-case adaptive sharpness where we get for p = 2 the following expression
for every critical point that is not a local maximum:

Sρ
max(w, |w|) =ES∼Pm

ρ2

2 λmax(∇2LS(w)⊙ |w||w|⊤) +O(ρ3), (7.3)

otherwise the first-order term dominates and we get ρES∼Pm ∥∇L(w) ⊙ |w|∥2, which
resembles the implicit gradient regularization of Smith et al. (2021). Thus, worst-case
sharpness with a small radius captures different properties of the loss surface depending
on whether w is close to a minimum or not. We make use of these quantities in the last
section to discuss insights from simple models. For the experiments, however, we evaluate
a range of ρ where the smallest ρ well-approximates the above quantities.

189

Chapter 7. A Modern Look at the Relationship between Sharpness and
Generalization

What do we expect sharpness to capture? We are looking for a sharpness mea-
sure that can be predictive for generalization meaning that it satisfies either of these two
hypotheses:

• Strong hypothesis: sharpness is highly correlated with generalization suggesting a
possibility of a causal relation.

• Weak hypothesis: models with the lowest sharpness generalize well suggesting that
sharpness might be sufficient but not necessary for generalization.

To detect correlation, we follow the previous works by Jiang et al. (2019); Dziugaite et al.
(2020); Kwon et al. (2021) and use the Kendall rank correlation coefficient:

τ(t, s) = 2
M(M − 1)

∑
i<j

sign(ti − tj) sign(si − sj) (7.4)

where t, s ∈ RM are vectors of test error and sharpness values for M different models.
We adopt a less demanding setting than in the previous works of Neyshabur et al. (2017);
Jiang et al. (2019); Dziugaite et al. (2020), and only compare models within the same loss
surface motivated by the geometric motivation behind sharpness. This restriction rules
out comparing models with different architectures (including different width and depth)
or measuring sharpness on a different set of points since both changes would change the
loss surface. According to the same reason, we also do not consider the ability of sharpness
to capture robustness to different amounts of noisy labels (unlike, e.g., Neyshabur et al.
(2017)). We always evaluate sharpness on the same training points taken without any
data augmentations. Moreover, we always compare models trained with exactly the same
training sets but, at the same time, we allow the usage of algorithmic techniques such as
data augmentation or mixup for training.

7.4.2 Which Invariances Do We Need Sharpness to Capture for Modern
Architectures?

Throughout the paper, we focus on elementwise adaptive sharpness which, as we show,
satisfies the main reparametrization invariances for ResNets and ViTs. Let us denote
fw : Rd → RK a network with parameters w, which returns the logits fw(x) ∈ RK for an
input x ∈ Rd. By a reparametrization invariance we mean a function T : Rp → Rp such
that for every w ∈ Rp and x ∈ Rd it holds fw(x) = fT (w)(x). We briefly discuss here
that adaptive sharpness also stays invariant for modern architectures like ResNets and
ViTs involving normalization layers and self-attention. Finally, we discuss how to treat
the scale-sensitivity of classification losses.

Adaptive sharpness for ResNets. A typical block of a pre-activation ResNet between
skip connections includes the following sequence of operations: BN→ReLU→conv→BN→
ReLU→conv where BN denotes BatchNorm. So we need to make sure that the sharpness

190

7.4 Adaptive Sharpness, its Invariances, and Computation

10 3 10 2 10 1 100 101 102 103

Weight scaling coefficient

0.00

0.05

0.10

0.15

0.20

Sh
ar

pn
es

s

Adaptive sharpness, = 0.5
Adaptive sharpness, = 0.25
Adaptive sharpness, = 0.1

Figure 7.1: Sensitivity of adaptive sharpness to weight scaling for a linear model that achieves
zero training error.

definition we use is invariant to transformations that leave the network unchanged: (1)
multiplication of the affine BatchNorm parameters by α ∈ R+ and division of the subse-
quent convolutional parameters by the same α (since ReLU is positive one-homogeneous
and ReLU(αz)/α = ReLU(z)), and (2) multiplying the convolutional layer by any α ∈ R+
due to scale-invariance of the subsequent BatchNorm layer. Both multiplicative invariances
are satisfied by elementwise adaptive sharpness since Sρ

max(w⊙c, |w⊙c|) = Sρ
max(w, |w|)

as shown above.

Adaptive sharpness for ViTs. A typical MLP block of ViTs contains the following
operations: LN→Linear →GELU→Linear where LN denotes LayerNorm, and pre-softmax
self-attention weights are computed as ZWQW

⊤
KZ

⊤ where Z ∈ RP ×D is the matrix of
P D-dimensional tokens. The network thus has the following invariances to multipli-
cation/division by α: (1) between LN and Linear in MLP, (2) between WQ in WK

in self-attention, (3) between two Linear layers that have GELU in-between for which
GELU(αz)/α ≈ GELU(z). Moreover, at the beginning of the network there is a part of
the network which is invariant to the scale of the Linear layer (Linear→LN). Similarly to
ResNets, all these invariances are multiplicative, so the argument about the invariance of
elementwise adaptive sharpness is the same.

Scale-sensitivity for classification losses. However, adaptive sharpness remains sen-
sitive to the scale of the classifier, meaning that the sharpness together with the cross-
entropy loss keep decreasing to zero after reaching zero training error. This can be seen
even for linear models for which scaling the weight vector by a constant changes the adap-
tive sharpness as shown in Fig. 7.1. To fix this issue, Tsuzuku et al. (2020) propose to use
normalization of the logits fw, i.e.:

f̃w(x) ≜ fw(x)√
1
K

∑K
i=1(fw(x)i − favg(x))2

, (7.5)

where favg(x) = 1
K

∑K
j=1 fw(x)j . This provably fixes the scaling issue meaning that scaling

the output layer by α ∈ R+ does not affect the logits. Moreover, this change can make
models having different training loss more comparable to each other.

191

Chapter 7. A Modern Look at the Relationship between Sharpness and
Generalization

With logit normalization

0.10 0.12 0.14 0.16 0.18 0.20
Worst-case adaptive sharpness

0.25

0.30

0.35

Te
st

 e
rro

r

ImageNet, = 0.08

0.10 0.12 0.14 0.16 0.18 0.20
Worst-case adaptive sharpness

0.65

0.70

0.75

0.80

ImageNet-R, = 0.09

0.10 0.12 0.14 0.16 0.18 0.20
Worst-case adaptive sharpness

0.75

0.80

0.85

0.90

ImageNet-Sketch, = 0.09

0.10 0.12 0.14 0.16 0.18 0.20
Worst-case adaptive sharpness

0.850

0.875

0.900

0.925

0.950

ImageNet-A, = 0.07 sd/do
0.0
0.1
Aug
none
light
medium
strong
wd
0.03
0.1

Without logit normalization

1.0 1.5 2.0
Worst-case adaptive sharpness

0.25

0.30

0.35

Te
st

 e
rro

r

ImageNet, = 0.42

1.0 1.5 2.0
Worst-case adaptive sharpness

0.65

0.70

0.75

0.80

ImageNet-R, = 0.27

1.0 1.5 2.0
Worst-case adaptive sharpness

0.75

0.80

0.85

0.90

ImageNet-Sketch, = 0.27

1.0 1.5 2.0
Worst-case adaptive sharpness

0.850

0.875

0.900

0.925

0.950

ImageNet-A, = 0.41 sd/do
0.0
0.1
Aug
none
light
medium
strong
wd
0.03
0.1

Figure 7.2: ViT-B/16 trained from scratch on ImageNet-1k. We show for 56 models
from Steiner et al. (2021) the test error on ImageNet and its OOD variants vs. worst-case ℓ∞
sharpness with (top) or without (bottom) normalization at ρ = 0.002. The color indicates models
trained with stochastic depth (sd) and dropout (do), markers and their size indicate the strength
of weight decay (wd) and augmentations (aug), and τ indicates the rank correlation coefficient
from Eq. (7.4). Overall, the correlation of sharpness with test error is either close to zero or even
negative.

7.4.3 How to Compute Worst-Case Sharpness Efficiently?

Estimation of worst-case sharpness involves solving a constrained maximization problem
typically using projected gradient ascent which can be sensitive to its hyperparameters,
primarily the step size. To avoid doing extensive grid searches over the hyperparameters of
gradient ascent for each model, we choose to use Auto-PGD (Croce and Hein, 2020b) (see
Algorithm 5 in Appendix for the precise formulation). Auto-PGD is a hyperparameter-
free method designed to accurately estimate adversarial robustness by solving a similar
optimization problem to worst-case sharpness but over the input space instead of the
parameter space. As in ℓ∞ and ℓ2 versions of Auto-PGD, for each gradient step, we use
gradient-sign and plain-gradient updates, respectively, but we make them proportional to
|w|, to better take into account the geometry induced by elementwise adaptive sharpness.
We show in Sec. 7.15.2 in Appendix that as few as 20 steps are typically sufficient to
converge with Auto-PGD.

7.5 Sharpness vs. Generalization: Modern Setup

The current understanding of the relationship between sharpness and generalization is
based on experiments on non-residual convolution networks and small datasets like CIFAR-
10 and SVHN (Jiang et al., 2019). We revisit here this relationship for state-of-the-
art transformers trained from scratch on ImageNet-1k and CLIP / BERT fine-tuned on
ImageNet-1k / MNLI. We explore both in-distribution (ID) and out-of-distribution (OOD)
generalization due to the common intuition that flatter models are expected to be more
robust (Cha et al., 2021). We focus on worst-case ℓ∞ adaptive sharpness with low m

192

7.5 Sharpness vs. Generalization: Modern Setup

(256) since it appears to be one of the most promising sharpness definitions (Kwon et al.,
2021). We compute sharpness with and without logit normalization, and provide average-
case sharpness for different radii ρ in Appendix. We focus primarily on the relationship
between sharpness and test error but we also discuss sharpness vs. generalization gap in
Sec. 7.9 in Appendix.

Training on ImageNet-1k from scratch. To investigate the relationship between
sharpness and generalization for large-scale settings, we evaluate ViT models from Steiner
et al. (2021), using ViT-B/16-224 weights. Those were trained from scratch on ImageNet-
1k for 300 epochs with different hyperparameter settings, and subsequently fine-tuned on
the same dataset for 20.000 steps with 2 different learning rates. The different hyperpa-
rameters include augmentations, weight decay, and stochastic depth / dropout, leading
to a rich pool of 56 models with test errors ranging from 21.8% to 37.2%. As shown
in Figure 7.2 (first column), neither the sharpness measure computed with nor without
logit normalization can effectively distinguish model performance. Logit-normalized sharp-
ness effectively separates models with stochastic depth / dropout (sd/do from now on)
from those without by grouping them into two distinct clusters (blue and orange). How-
ever, these clusters do not correspond to a separation by test error. For the OOD tasks
(ImageNet-R, ImageNet-Sketch, ImageNet-A), within each cluster, the models trained
with higher weight decay yield lower test error fairly consistently. However, this ranking
is not captured by sharpness, which only disentangles the sd/do clusters. For sharpness
without logit normalization, the sd/do clusters are not well-separated. Surprisingly, there
is a consistent negative correlation between sharpness and test error, both on ID and OOD
data, i.e. the flattest models tend to have the largest test error. Evaluation for other radii,
average-case sharpness measures (App. 7.10) and for ViTs pretrained on IN-21k and fine-
tuned on IN-1k (App. 7.11) similarly suggest that sharpness does not consistently capture
generalization properties. When considering IN-1k and IN-21k pre-trained models together
(App. 7.12) we even find similar or higher sharpness for significantly better-generalizing
models. Then, for none of the settings studied, we can confirm either the strong or weak
hypotheses.

Fine-tuning on ImageNet-1k from CLIP. We investigate fine-tuning from CLIP (Rad-
ford et al., 2021), which is a crucial approach due to the popularity of CLIP features (Ramesh
et al., 2022), its fast training time, and its ability to achieve higher accuracy. We study the
pool of classifiers obtained by Wortsman et al. (2022a) who fine-tuned a CLIP ViT-B/32
model on ImageNet multiple times by randomly selecting training hyperparameters such as
learning rate, number of epochs, weight decay, label smoothing and augmentations. This
set of 71 fine-tuned models, along with the base model, allows us to study how well gener-
alization and training hyperparameters are captured by sharpness. The leftmost column
of Fig. 7.3 illustrates that worst-case ℓ∞ adaptive sharpness does not effectively predict
which classifiers have the lowest test error on ImageNet. Furthermore, there is a consistent
negative correlation between sharpness and test error when evaluating classifiers on the
distribution shifts ImageNet-R (Hendrycks et al., 2021b), ImageNet-Sketch (Wang et al.,
2019a) and ImageNet-A (Hendrycks et al., 2021c) (second to fourth columns). We further

193

Chapter 7. A Modern Look at the Relationship between Sharpness and
Generalization

With logit normalization

0.05 0.10 0.15 0.20 0.25 0.30
Worst-case adaptive sharpness

0.20

0.21

0.22

0.23

0.24

0.25

Te
st

 e
rro

r

ImageNet =0.04

0.05 0.10 0.15 0.20 0.25 0.30
Worst-case adaptive sharpness

0.35

0.40

0.45

0.50

0.55
ImageNet-R =-0.39

0.05 0.10 0.15 0.20 0.25 0.30
Worst-case adaptive sharpness

0.56
0.58
0.60
0.62
0.64
0.66
0.68

ImageNet-Sketch =-0.28

0.05 0.10 0.15 0.20 0.25 0.30
Worst-case adaptive sharpness

0.70

0.75

0.80

0.85

0.90
ImageNet-A =-0.41

5.75
5.50
5.25
5.00
4.75
4.50
4.25

le
ar

ni
ng

 ra
te

 (l
og

)

Without logit normalization

2 4 6 8 10
Worst-case adaptive sharpness

0.20

0.21

0.22

0.23

0.24

0.25

Te
st

 e
rro

r

ImageNet =0.20

2 4 6 8 10
Worst-case adaptive sharpness

0.35

0.40

0.45

0.50

0.55
ImageNet-R =-0.51

2 4 6 8 10
Worst-case adaptive sharpness

0.56
0.58
0.60
0.62
0.64
0.66
0.68

ImageNet-Sketch =-0.18

2 4 6 8 10
Worst-case adaptive sharpness

0.70

0.75

0.80

0.85

0.90
ImageNet-A =-0.58

5.75
5.50
5.25
5.00
4.75
4.50
4.25

Le
ar

ni
ng

 ra
te

 (l
og

)

Figure 7.3: Fine-tuning CLIP ViT-B/32 on ImageNet-1k. We show for 72 models from
Wortsman et al. (2022a) the test error on ImageNet or its variants (distribution shifts) vs worst-case
ℓ∞ sharpness with (top) or without (bottom) normalization at ρ = 0.002. Darker color indicates
larger learning rate used for fine-tuning.

With logit normalization

0.070 0.072 0.074 0.076 0.078 0.080
Worst-case adaptive sharpness

0.152

0.154

0.156

0.158

0.160

0.162

Te
st

 e
rro

r

MNLI =0.04

0.070 0.072 0.074 0.076 0.078 0.080
Worst-case adaptive sharpness

0.5

0.6

0.7

0.8

0.9

HANS lexical =-0.09

0.070 0.072 0.074 0.076 0.078 0.080
Worst-case adaptive sharpness

0.90

0.92

0.94

0.96

0.98

HANS subsequence =-0.14

0.070 0.072 0.074 0.076 0.078 0.080
Worst-case adaptive sharpness

0.80

0.85

0.90

0.95

HANS constituent =-0.21

0.154

0.156

0.158

0.160

0.162

M
NL

I t
es

t e
rro

r

Without logit normalization

0.19 0.20 0.21 0.22 0.23
Worst-case adaptive sharpness

0.152

0.154

0.156

0.158

0.160

0.162

Te
st

 e
rro

r

MNLI =0.04

0.19 0.20 0.21 0.22 0.23
Worst-case adaptive sharpness

0.5

0.6

0.7

0.8

0.9

HANS lexical =-0.24

0.19 0.20 0.21 0.22 0.23
Worst-case adaptive sharpness

0.90

0.92

0.94

0.96

0.98

HANS subsequence =-0.22

0.19 0.20 0.21 0.22 0.23
Worst-case adaptive sharpness

0.80

0.85

0.90

0.95

HANS constituent =-0.07

0.154

0.156

0.158

0.160

0.162

M
NL

I t
es

t e
rro

r

Figure 7.4: Fine-tuning BERT on MNLI. We show for 50 models the error on MNLI or
out-of-distribution domains (HANS subsets) vs worst-case ℓ∞ sharpness with (top) or without
(bottom) normalization at ρ = 0.0005. Darker color indicates higher test error on MNLI.

notice that, in contrast with ImageNet, higher test errors on these datasets go in parallel
with higher learning rates used for fine-tuning (darker color in the plots). Indeed, smaller
learning rates lead to smaller changes in the features of the base CLIP model which are
more robust to distribution shifts since they were obtained from a much larger dataset
than ImageNet. Finally, similar observations hold for the other sharpness definition and
radii (App. 7.13).

Fine-tuning on MNLI from BERT. We explore fine-tuning from BERT (Devlin
et al., 2019), to expand our analysis beyond vision tasks. To study the linguistic general-
ization of multiple classifiers trained on the same dataset, McCoy et al. (2020) have fine-

194

7.6 Why Doesn’t Sharpness Correlate Well with Generalization?

tuned BERT 100 times on the Multi-genre Natural Language Inference (MNLI) dataset
(Williams et al., 2018) varying exclusively the random seed across runs. These random
seeds affect the initialization of the classifier and the scanning order of the training data
for SGD. All these classifiers achieve very similar in-distribution generalization, i.e. on
MNLI test points, but behave differently on the out-of-distribution tasks represented by
the HANS dataset (McCoy et al., 2019). For example, in one of HANS sub-domains the
accuracy of the models ranges from 5% to 55%. We randomly choose 50 of the 100 avail-
able classifiers, and compute the different measures of sharpness for various radii. Fig. 7.4
shows how the worst-case ℓ∞ adaptive sharpness, with and without logit normalization,
correlates with test error on MNLI and three HANS tasks. We observe that the correlation
is weak and does not exceed 0.04, even for datasets like HANS lexical (second column)
where test errors vary significantly (between 45% and 95%). Moreover, in some cases the
correlation is weakly negative suggesting that on average sharper models tend to generalize
slightly better. Results for other radii can be found in App. 7.14.

Summary of the findings. To conclude, none of the settings studied above support
either the strong or weak hypotheses about the role of sharpness. Contrary to our expec-
tations, CLIP models fine-tuned on ImageNet suggest that flatter solutions consistently
generalize worse on OOD data. Finally, sharpness is not useful to distinguish different so-
lutions found by fine-tuning BERT on MNLI. All this evidence suggests that the intuitive
ideas about the generalization benefits of flat minima are not supported in the modern
settings.

7.6 Why Doesn’t Sharpness Correlate Well with General-
ization?

The goal of this section is to clarify the disconnect between sharpness and generalization
in the modern setup. We first revisit sharpness in a controlled environment on CIFAR-10,
then explore the different sharpness definitions for a simple model where generalization is
well understood.

7.6.1 The Role of Sharpness in a Controlled Setup

Motivation. We consider three potential explanations for why sharpness does not corre-
late well with generalization in the previous section: (1) the use of transformers instead of
typical convolutional networks, (2) the use of much larger datasets (ImageNet vs. CIFAR-
10), (3) the need to measure sharpness closer to a global minimum. We thus train 200
ResNets-18 and 200 ViTs on CIFAR-10 in a setting similar to Jiang et al. (2019) and
Kwon et al. (2021), and evaluate sharpness only for models that reach at most 1% train-
ing error. This is in contrast to the ImageNet models from the previous section that are
not necessarily trained to ≈ 0% training error as it is usually not necessary in practice.
Being closer to a global minimum ensures that the worst-case sharpness captures more

195

Chapter 7. A Modern Look at the Relationship between Sharpness and
Generalization

ResNets-18 with logit normalization ViTs with logit normalization

10 2 10 1

Adaptive worst-case sharpness (normalized)

0.04

0.06

0.08

0.10

0.12

0.14

0.16

Te
st

 e
rro

r

= 0.001, = 0.30
log2 LR

3.0
1.5

0.0
1.5

Augment.
False
True

Mixup
False
True

10 2 10 1

Adaptive worst-case sharpness (normalized)

0.275

0.300

0.325

0.350

0.375

0.400

0.425

0.450

Te
st

 e
rro

r (
co

rru
pt

io
ns

)

= 0.001, = 0.18
log2 LR

3.0
1.5

0.0
1.5

Augment.
False
True

Mixup
False
True

10 24 × 10 3 6 × 10 3 2 × 10 2

Adaptive worst-case sharpness (normalized)

0.100

0.125

0.150

0.175

0.200

0.225

0.250

0.275

Te
st

 e
rro

r

= 0.0005, = 0.20
log2 LR

7.5
6.0
4.5
3.0
1.5

Augment.
False
True

Mixup
False
True

10 24 × 10 3 6 × 10 3 2 × 10 2

Adaptive worst-case sharpness (normalized)

0.36

0.38

0.40

0.42

0.44

0.46

Te
st

 e
rro

r (
co

rru
pt

io
ns

)

= 0.0005, = 0.23
log2 LR

7.5
6.0
4.5
3.0
1.5

Augment.
False
True

Mixup
False
True

ResNets-18 without logit normalization ViTs without logit normalization

10 3 10 2 10 1

Adaptive worst-case sharpness

0.04

0.06

0.08

0.10

0.12

0.14

0.16

Te
st

 e
rro

r

= 0.001, = 0.36
log2 LR

3.0
1.5

0.0
1.5

Augment.
False
True

Mixup
False
True

10 3 10 2 10 1

Adaptive worst-case sharpness

0.275

0.300

0.325

0.350

0.375

0.400

0.425

0.450

Te
st

 e
rro

r (
co

rru
pt

io
ns

)

= 0.001, = 0.42
log2 LR

3.0
1.5

0.0
1.5

Augment.
False
True

Mixup
False
True

10 4 10 3 10 2 10 1

Adaptive worst-case sharpness

0.100

0.125

0.150

0.175

0.200

0.225

0.250

0.275

Te
st

 e
rro

r

= 0.0005, = 0.68
log2 LR

7.5
6.0
4.5
3.0
1.5

Augment.
False
True

Mixup
False
True

10 4 10 3 10 2 10 1

Adaptive worst-case sharpness

0.36

0.38

0.40

0.42

0.44

0.46

Te
st

 e
rro

r (
co

rru
pt

io
ns

)

= 0.0005, = 0.63
log2 LR

7.5
6.0
4.5
3.0
1.5

Augment.
False
True

Mixup
False
True

Figure 7.5: Training from scratch on CIFAR-10. Normalized and unnormalized ℓ∞ adaptive
sharpness vs. standard and OOD test error on common corruptions for ResNets-18 and ViTs. For
other sharpness definitions (ℓ2/ℓ∞, average-/worst-case, etc) and multiple sharpness radii ρ, see
App. 7.15.4.

the curvature by preventing first-order terms from dominating in Eq. 7.3.

Setup. We train models for 200 epochs using SGD with momentum and linearly de-
creasing learning rates after a linear warm-up for the first 40% iterations. We use the
SimpleViT architecture from the vit-pytorch library which is a modification of the stan-
dard ViT (Dosovitskiy et al., 2021) with a fixed positional embedding and global average
pooling instead of the CLS embedding. We vary the learning rate, ρ ∈ {0, 0.05, 0.1} of
SAM (Foret et al., 2021), mixup (α = 0.5) (Zhang et al., 2017b), and standard augmenta-
tions combined with RandAugment (Cubuk et al., 2020). We only show models that have
≤ 1% training error.

Observations. We benchmark 12 different sharpness definitions: ℓ2 vs. ℓ∞, average-
vs. worst-case, standard vs. adaptive, with vs. without logit normalization, and consider
different perturbation radii ρ. We report most of these results in App. 7.15 and here
highlight only ℓ∞ adaptive sharpness in Fig. 7.5. We observe that for ResNets, there
is a strong correlation between sharpness and test error but only within each subgroup
of training parameters such as augmentations and mixup. Importantly, sharpness does
not correctly capture generalization between different subgroups leading to low positive
or negative correlation (0.30 and −0.36). For ViTs, we do not observe strong positive
correlation even within each subgroup (in fact, without logit normalization the correlation
is noticeably negative −0.68), and many models with an order of magnitude difference in
sharpness can have the same test error. Moreover, we do not consistently observe that
models with the lowest sharpness generalize best. For OOD generalization on common
image corruptions (Hendrycks and Dietterich, 2019), the trend is even less clear and the
subgroups are mixed. We note that similar conclusions hold for other sharpness radii ρ
and definitions which we show in App. 7.15.4. Moreover, in App. 7.15 we also analyze
the role of data points used to evaluate sharpness (with and without augmentations),

196

7.6 Why Doesn’t Sharpness Correlate Well with Generalization?

ResNets-18 Vision transformers

10 2 10 1

Adaptive worst-case sharpness (normalized)

10 1

100
Le

ar
ni

ng
 ra

te

= 0.001, = 0.28
 of SAM

0.0
0.05
0.1

Augment.
False
True

Mixup
False
True

10 24 × 10 3 6 × 10 3 2 × 10 2

Adaptive worst-case sharpness (normalized)

10 2

10 1

Le
ar

ni
ng

 ra
te

= 0.0005, = 0.50
 of SAM

0.0
0.05
0.1

Augment.
False
True

Mixup
False
True

100 101

Adaptive worst-case sharpness

10 1

100

Le
ar

ni
ng

 ra
te

= 0.004, = 0.63
 of SAM

0.0
0.05
0.1

Augment.
False
True

Mixup
False
True

100

Adaptive worst-case sharpness

10 2

10 1

Le
ar

ni
ng

 ra
te

= 0.004, = 0.50
 of SAM

0.0
0.05
0.1

Augment.
False
True

Mixup
False
True

Figure 7.6: Training from scratch on CIFAR-10. Sharpness negatively correlates with the
learning rate, especially within each subgroup defined by the same values of augment × mixup.

number of iterations of Auto-PGD for worst-case sharpness, and different m in worst-case
m-sharpness (Foret et al., 2021). In conclusion, even in this controlled small-scale setup
that includes more established architectures like ResNets, we find no empirical support to
either the strong or weak hypothesis.

Sharpness captures the learning rate even when it is not helpful to predict
generalization. Prior works have shown a robust link between the learning rate of first-
order methods and standard sharpness definitions such as λmax(∇2L(w)) and tr(∇2L(w))
(Cohen et al., 2021; Wu et al., 2022). However, the connection between the learning rate
and adaptive sharpness remains elusive, so we investigate it empirically in Fig. 7.6. For
both ResNets and ViTs, we observe a significant negative correlation, especially within
each subgroup defined by the same values of augment × mixup. This is however not
always a desirable property for predicting generalization. On the one hand, monotonically
capturing the learning rates can be useful in setting like training ResNets from scratch (Li
et al., 2019d). On the other hand, large learning rates do not preserve the original features
and can significantly harm OOD generalization for fine-tuning (Wortsman et al., 2022b).
We also see a negative correlation between sharpness and learning rate for CLIP models
fine-tuned on ImageNet in Fig. 7.20, shown in App. 7.13. However, for these models, we
do not have subgroups as clearly defined as for the CIFAR-10 models so we cannot see a
more fine-grained trend. Finally, we note that whenever learning rates have a beneficial
regularization effect, it is closely tied to the amount of stochastic noise in SGD (Jastrzebski
et al., 2017; Andriushchenko et al., 2023d). This amount is equally determined by other
hyperparameters like batch size, momentum coefficient, or weight decay for normalized
networks (see Li et al. (2020b) for a discussion on the intrinsic learning rate). These

197

Chapter 7. A Modern Look at the Relationship between Sharpness and
Generalization

parameters are commonly varied in studies on sharpness vs. generalization (Jiang et al.,
2019; Kwon et al., 2021; Bisla et al., 2022) but all reflect essentially the same underlying
trend.

7.6.2 Is Sharpness the Right Quantity in the First Place? Insights from
Simple Models

Here, we study the link between sharpness and generalization for sparse regression with
diagonal linear networks for which the ℓ1 norm of the solution is predictive of generaliza-
tion. This simple model suggests that sharpness measures which are universally correlated
with better generalization across all possible data distributions simply do not exist.

Diagonal linear networks are defined as predictors ⟨x,β⟩ with parameterization β = u⊙
v for weights w = [u

v] ∈ R2d. They have been widely studied as the simplest non-
trivial neural network (Woodworth et al., 2020; Pesme et al., 2021). We consider an
overparametrized sparse regression problem for a data matrix X ∈ Rn×d and label vector
y:

L(w) := ∥X(u⊙ v)− y∥22, (7.6)

for which the ground truth β∗ is a sparse vector (i.e., most coordinates are zeros) and
there exist many solutions w such that L(w) = 0. Assuming whitened data X⊤X = I

and that w is a global minimum, the Hessian of the loss L simplifies to

∇2L(w) =
[

diag(v ⊙ v) diag(u⊙ v)
diag(u⊙ v) diag(u⊙ u)

]
.

We first consider standard definitions of local (i.e., ρ → 0) sharpness for which we have
a closed-form expression. The average-case local sharpness is equal to tr(∇2L(w)) =∑d

i=1 u
2
i + v2

i while the worst-case local sharpness at a minimum is λmax(∇2L(w)) =
max
1≤i≤d

v2
i + u2

i (see Sec. 7.8.2 for details). Importantly, both average- and worst-case local
sharpness are not invariant under α-reparametrization (αu,v/α) while the predictor β =
u ⊙ v is. This fact emphasizes the need for a measure of the sharpness that adjusts to
the changing scale of the parameters as the adaptive sharpness. Indeed, with the carefully
selected elementwise scaling ci =

√
|vi|/|ui| for 1 ≤ i ≤ d and ci =

√
|ui|/|vi| for d < i ≤ 2d,

we obtain for the average-case and worst-case adaptive local sharpness

Sρ
avg(w, c) = 1

2

d∑
i=1
u2

i |vi|/|ui|+
1
2

d∑
i=1
v2

i |ui|/|vi| = ∥β∥1,

Sρ
max(w, c) = max

1≤i≤d
|ui||vi| = ∥β∥∞.

We first note that both definitions of adaptive sharpness are invariant under α-reparametrization
as they only depend on the predictor β. However, average and worst-case sharpness do
not capture the same properties of β. In particular, ∥β∥1 is a generalization measure

198

7.6 Why Doesn’t Sharpness Correlate Well with Generalization?

3.25 3.50 3.75 4.00 4.25 4.50 4.75 5.00

‖u� v‖1

0.00

0.05

0.10

0.15

0.20

0.25

T
es

t
lo

ss

τ = 0.803

3.25 3.50 3.75 4.00 4.25 4.50 4.75 5.00

Adaptive average-case sharpness (1
2 Tr(∇̃2))

0.00

0.05

0.10

0.15

0.20

0.25

T
es

t
lo

ss

τ = 0.794

3.25 3.50 3.75 4.00 4.25 4.50 4.75 5.00 5.25

Standard average-case sharpness (1
2 Tr(∇2))

0.00

0.05

0.10

0.15

0.20

0.25

T
es

t
lo

ss

τ = 0.668

1.1 1.2 1.3 1.4 1.5

Adaptive worst-case sharpness (λmax(∇2))

0.00

0.05

0.10

0.15

0.20

0.25

T
es

t
lo

ss

τ = −0.532

Figure 7.7: Different generalization measures for diagonal linear networks. ∇̃2 denotes
the rescaled Hessian corresponding to adaptive sharpness.

that correctly captures the sparsity of the linear predictor which is a good indicator of
generalization for a sparse β∗. In contrast, ∥β∥∞ is a generalization measure that is more
suitable to capture how uniform the weights of β are which is a good predictor of gener-
alization for a dense β∗. Finally, we note that using c = w in adaptive sharpness would
instead lead to ∥β∥22 and ∥β∥2∞ that would have a different interpretation. This simple
model highlights that the sharpness definition that correlates well with generalization is
data-dependent and in general Savg and Smax capture very different trends.

To further illustrate this point, we train 200 diagonal linear networks to 10−5 training
loss on a sparse regression task (d = 200 with 90% sparsity) with different learning rates
and random initializations. We show the results in Fig. 7.7 which illustrate that (1)
∥u ⊙ v∥1 is approximated well by 1

2tr(∇̃2L(w)), (2) tr(∇̃2L(w)) correlates better than
tr(∇2L(w)) so the adaptive part is important, (3) the relationship between tr(∇̃2L(w))
and λmax(∇̃2L(w)) can be even reverse showing that different sharpness definitions capture
totally different trends. We also note that even with the right definition of sharpness,
the correlation is not perfect (around τ = 0.8) and there is always some non-negligible
gap in predicting the test loss. Overall, we conclude that finding a sharpness definition
that correlates well with generalization requires understanding both the role of the data
distribution and its interaction with the architecture. It is possible in very simple cases
but appears extremely challenging for complex architectures like vision transformers on
complex real-world datasets like ImageNet.

199

Chapter 7. A Modern Look at the Relationship between Sharpness and
Generalization

7.7 Conclusions

Our results suggest that even reparametrization-invariant sharpness is not a good indicator
of generalization in the modern setting. While there definitely exist restricted settings
where correlation between sharpness and generalization is significantly positive (e.g., for
ResNets on CIFAR-10 with a specific combination of augmentations and mixup), it is not
true anymore when we compare all models jointly. Moreover, the correlation, even within
subgroups of models defined by augmentations, is much lower for vision transformers.
Thus, we believe it is important to rethink the intuitive understanding of sharpness based
on the geometric intuition about the shift of the loss surface. Moreover, our findings
suggest that one should avoid blanket statements like “flatter minima generalize better”
since even when they are only intended to imply correlation, their correctness still depends
on a number of factors such as data distribution, model family, or initialization schemes
(i.e., random vs. from pretrained weights).

200

7.7 Conclusions

Appendix

The appendix is organized as follows:

• Sec. 7.8: omitted derivations for sharpness when ρ → 0, first for the general case
and then specifically for diagonal linear networks.

• Sec. 7.9: figures with correlation between sharpness and generalization gap. We ob-
serve a similar trend between sharpness and generalization gap as between sharpness
and test error which is reported in the main part.

• Sec. 7.10: additional figures about ViTs from Steiner et al. (2021) trained with dif-
ferent hyperparameter settings on ImageNet-1k. We observe that different sharpness
variants are not predictive of the performance on ImageNet and the OOD datasets,
typically only separating models by stochastic depth / dropout, but not ranking
them according to generalization, and often even yielding a negative correlation
with OOD test error.

• Sec. 7.11: figures about ViTs from Steiner et al. (2021) pre-trained on ImageNet-21k
and then fine-tuned on ImageNet-1k. The observations are very similar to those for
training on ImageNet-1k from scratch: sharpness variants are not predictive of the
performance on ImageNet, and they often lead to a negative correlation with OOD
test error.

• Sec. 7.12: figures for combined analysis of ViTs from Steiner et al. (2021) both with
and without ImageNet-21k pre-training. We find the better-generalizing models
pretrained on ImageNet-21k to have significantly higher worst-case sharpness and
roughly equal or higher logit-normalized average-case adaptive sharpness, underlin-
ing that the models’ generalization properties resulting from different pretraining
datasets are not captured.

• Sec. 7.13: additional details and figures for CLIP models fine-tuned on ImageNet. We
observe that sharpness variants are not predictive of the performance on ImageNet
and ImageNet-V2. Moreover, there is in most cases a negative correlation with test
error in presence of distribution shifts which is likely to be related to the influence
that the learning rate has on sharpness.

• Sec. 7.14: additional details and figures for BERT models fine-tuned on MNLI. We
find that all sharpness variants we consider are not predictive of the generalization
performance of the model, and in some cases there is rather a weak negative corre-
lation between sharpness and test error on out-of-distribution tasks from HANS.

• Sec. 7.15: additional details and ablation studies for CIFAR-10 models. We analyze
the role of data used to evaluate sharpness, the role of the number of iterations

201

Chapter 7. A Modern Look at the Relationship between Sharpness and
Generalization

in Auto-PGD, the role of m in m-sharpness, and the influence of different sharp-
ness definitions and radii on correlation with generalization. Overall, we conclude
that none of the considered sharpness definitions or radii correlates positively with
generalization nor that low sharpness implies good performance of the model.

Also, for the sake of convenience, we provide in Table 7.1, Table 7.2, Table 7.3, and
Table 7.4 a summary of correlation coefficients τ between sharpness and generalization for
all our experiments (except ablation studies).

Table 7.1: A summary of correlation between sharpness and generalization for all experiments
on ImageNet. We boldface entries with |τ | > 0.5 suggesting a reasonably strong correlation.
LogitNorm stands for logit normalization and IN stands for ImageNet.

ImageNet-1k models trained from scratch
Rank correlation coefficient τ

Sharpness LogitNorm ρ IN IN-v2 IN-R IN-Sketch IN-A ObjectNet
Worst-case ℓ∞ Yes 0.001 0.09 0.08 0.10 0.10 -0.06 0.04
Worst-case ℓ∞ Yes 0.002 0.08 0.08 0.09 0.09 -0.07 0.03
Worst-case ℓ∞ Yes 0.004 -0.11 -0.11 -0.06 -0.06 -0.23 -0.16
Worst-case ℓ∞ No 0.001 -0.42 -0.43 -0.27 -0.28 -0.45 -0.45
Worst-case ℓ∞ No 0.002 -0.42 -0.42 -0.27 -0.27 -0.41 -0.45
Worst-case ℓ∞ No 0.004 -0.34 -0.34 -0.20 -0.20 -0.36 -0.36
Avg-case ℓ∞ Yes 0.05 0.46 0.44 0.38 0.42 0.31 0.39
Avg-case ℓ∞ Yes 0.1 0.44 0.43 0.39 0.43 0.29 0.39
Avg-case ℓ∞ Yes 0.2 0.42 0.42 0.39 0.42 0.29 0.38
Avg-case ℓ∞ No 0.05 -0.55 -0.56 -0.40 -0.42 -0.57 -0.60
Avg-case ℓ∞ No 0.1 -0.44 -0.43 -0.28 -0.32 -0.47 -0.47
Avg-case ℓ∞ No 0.2 0.13 0.15 0.26 0.23 0.05 0.11

ImageNet-1k models fine-tuned from IN-21k
Rank correlation coefficient τ

Sharpness LogitNorm ρ IN IN-v2 IN-R IN-Sketch IN-A ObjectNet
Worst-case ℓ∞ Yes 0.001 -0.49 -0.49 -0.44 -0.33 -0.53 -0.46
Worst-case ℓ∞ Yes 0.002 -0.48 -0.48 -0.46 -0.33 -0.51 -0.44
Worst-case ℓ∞ Yes 0.004 -0.45 -0.43 -0.41 -0.33 -0.45 -0.42
Worst-case ℓ∞ No 0.001 -0.13 -0.09 -0.05 0.05 -0.13 -0.09
Worst-case ℓ∞ No 0.002 -0.10 -0.03 -0.01 0.11 -0.07 -0.02
Worst-case ℓ∞ No 0.004 -0.10 -0.01 -0.01 0.11 -0.06 0.00
Avg-case ℓ∞ Yes 0.05 -0.11 -0.08 -0.11 -0.07 -0.06 -0.06
Avg-case ℓ∞ Yes 0.1 -0.12 -0.11 -0.14 -0.10 -0.09 -0.08
Avg-case ℓ∞ Yes 0.2 -0.25 -0.24 -0.25 -0.23 -0.25 -0.24
Avg-case ℓ∞ No 0.05 -0.02 -0.04 -0.03 -0.02 -0.05 -0.06
Avg-case ℓ∞ No 0.1 -0.07 -0.10 -0.08 -0.08 -0.11 -0.10
Avg-case ℓ∞ No 0.2 -0.11 -0.11 -0.10 -0.11 -0.12 -0.13

ImageNet-1k models fine-tuned from CLIP
Rank correlation coefficient τ

Sharpness LogitNorm ρ IN IN-v2 IN-R IN-Sketch IN-A ObjectNet
Worst-case ℓ∞ Yes 0.001 -0.04 -0.16 -0.23 -0.26 -0.25 -0.36
Worst-case ℓ∞ Yes 0.002 0.04 -0.10 -0.39 -0.28 -0.41 -0.47
Worst-case ℓ∞ Yes 0.004 -0.08 -0.19 -0.12 -0.16 -0.17 -0.27
Worst-case ℓ∞ No 0.001 0.19 0.09 -0.37 -0.06 -0.57 -0.48
Worst-case ℓ∞ No 0.002 0.20 0.08 -0.51 -0.18 -0.58 -0.51
Worst-case ℓ∞ No 0.004 0.02 -0.05 -0.51 -0.27 -0.45 -0.33
Avg-case ℓ∞ Yes 0.001 -0.03 -0.18 -0.36 -0.34 -0.33 -0.46
Avg-case ℓ∞ Yes 0.002 -0.21 -0.32 -0.02 -0.27 -0.06 -0.21
Avg-case ℓ∞ Yes 0.004 -0.19 -0.21 0.26 -0.03 0.23 0.06
Avg-case ℓ∞ No 0.001 0.13 -0.01 -0.62 -0.26 -0.67 -0.60
Avg-case ℓ∞ No 0.002 0.06 0.03 -0.34 -0.12 -0.50 -0.37
Avg-case ℓ∞ No 0.004 0.19 0.21 -0.12 0.09 -0.21 -0.08

202

7.7 Conclusions

Table 7.2: A summary of correlation between sharpness and generalization for all experiments
on MNLI for models fine-tuned from BERT. We boldface entries with |τ | > 0.5 suggesting a
reasonably strong correlation. LogitNorm stands for logit normalization.

MNLI models fine-tuned from BERT
Rank correlation coefficient τ

Sharpness LogitNorm ρ MNLI HANS-L HANS-S HANS-C
Worst-case ℓ∞ Yes 0.0005 0.04 -0.09 -0.14 -0.21
Worst-case ℓ∞ Yes 0.001 -0.09 -0.09 -0.13 -0.18
Worst-case ℓ∞ Yes 0.002 0.05 -0.09 -0.14 -0.17
Worst-case ℓ∞ No 0.0005 0.04 -0.24 -0.22 -0.07
Worst-case ℓ∞ No 0.001 0.04 -0.13 -0.15 -0.15
Worst-case ℓ∞ No 0.002 -0.11 -0.15 -0.12 -0.13
Avg-case ℓ∞ Yes 0.1 -0.35 -0.46 -0.28 0.17
Avg-case ℓ∞ Yes 0.2 -0.37 -0.48 -0.28 0.24
Avg-case ℓ∞ Yes 0.4 0.01 -0.29 -0.27 0.05
Avg-case ℓ∞ No 0.1 -0.34 -0.31 -0.23 0.13
Avg-case ℓ∞ No 0.2 -0.34 -0.58 -0.39 0.16
Avg-case ℓ∞ No 0.4 0.04 -0.16 -0.09 0.05

203

Chapter 7. A Modern Look at the Relationship between Sharpness and
Generalization

Table 7.3: A summary of correlation between sharpness and generalization for all experiments
on CIFAR-10 for ResNets-18 trained from scratch. We boldface entries with |τ | > 0.5 suggesting
a reasonably strong correlation. LogitNorm stands for logit normalization.

ResNets-18 trained from scratch on CIFAR-10
Rank correlation coefficient τ

Sharpness LogitNorm ρ CIFAR-10 CIFAR-10-C
Standard avg-case ℓ2 No 0.05 0.14 0.04
Standard avg-case ℓ2 No 0.1 0.26 0.19
Standard avg-case ℓ2 No 0.2 0.28 0.21
Standard avg-case ℓ2 No 0.4 0.28 0.20
Standard worst-case ℓ2 No 0.25 0.17 0.10
Standard worst-case ℓ2 No 0.5 0.24 0.16
Standard worst-case ℓ2 No 1.0 0.25 0.18
Standard worst-case ℓ2 No 2.0 0.22 0.14
Adaptive avg-case ℓ2 No 0.05 -0.37 -0.46
Adaptive avg-case ℓ2 No 0.1 -0.50 -0.53
Adaptive avg-case ℓ2 No 0.2 -0.42 -0.41
Adaptive avg-case ℓ2 No 0.4 -0.31 -0.31
Adaptive worst-case ℓ2 No 0.25 -0.36 -0.39
Adaptive worst-case ℓ2 No 0.5 -0.42 -0.36
Adaptive worst-case ℓ2 No 1.0 -0.27 -0.17
Adaptive worst-case ℓ2 No 2.0 -0.17 -0.07
Adaptive avg-case ℓ2 Yes 0.05 0.18 0.07
Adaptive avg-case ℓ2 Yes 0.1 0.07 -0.04
Adaptive avg-case ℓ2 Yes 0.2 -0.14 -0.26
Adaptive avg-case ℓ2 Yes 0.4 -0.43 -0.58
Adaptive worst-case ℓ2 Yes 0.25 0.19 0.14
Adaptive worst-case ℓ2 Yes 0.5 0.07 0.00
Adaptive worst-case ℓ2 Yes 1.0 -0.13 -0.22
Adaptive worst-case ℓ2 Yes 2.0 -0.52 -0.58
Standard avg-case ℓ∞ No 0.1 0.16 0.08
Standard avg-case ℓ∞ No 0.2 0.28 0.21
Standard avg-case ℓ∞ No 0.4 0.28 0.20
Standard avg-case ℓ∞ No 0.8 0.28 0.20
Standard worst-case ℓ∞ No 0.0005 0.29 0.23
Standard worst-case ℓ∞ No 0.001 0.30 0.24
Standard worst-case ℓ∞ No 0.002 0.30 0.24
Standard worst-case ℓ∞ No 0.004 0.29 0.23
Adaptive avg-case ℓ∞ No 0.1 -0.36 -0.47
Adaptive avg-case ℓ∞ No 0.2 -0.53 -0.56
Adaptive avg-case ℓ∞ No 0.4 -0.41 -0.41
Adaptive avg-case ℓ∞ No 0.8 -0.20 -0.18
Adaptive worst-case ℓ∞ No 0.001 -0.36 -0.42
Adaptive worst-case ℓ∞ No 0.002 -0.05 -0.10
Adaptive worst-case ℓ∞ No 0.004 0.25 0.20
Adaptive worst-case ℓ∞ No 0.008 0.26 0.24
Adaptive avg-case ℓ∞ Yes 0.1 0.18 0.07
Adaptive avg-case ℓ∞ Yes 0.2 0.05 -0.06
Adaptive avg-case ℓ∞ Yes 0.4 -0.23 -0.37
Adaptive avg-case ℓ∞ Yes 0.8 -0.46 -0.62
Adaptive worst-case ℓ∞ Yes 0.001 0.30 0.18
Adaptive worst-case ℓ∞ Yes 0.002 0.29 0.16
Adaptive worst-case ℓ∞ Yes 0.004 0.21 0.07
Adaptive worst-case ℓ∞ Yes 0.008 -0.04 -0.19

204

7.7 Conclusions

Table 7.4: A summary of correlation between sharpness and generalization for all experiments
on CIFAR-10 for ViTs trained from scratch. We boldface entries with |τ | > 0.5 suggesting a
reasonably strong correlation. LogitNorm stands for logit normalization.

Vision transformers trained from scratch on CIFAR-10
Rank correlation coefficient τ

Sharpness LogitNorm ρ CIFAR-10 CIFAR-10-C
Standard avg-case ℓ2 No 0.005 -0.45 -0.54
Standard avg-case ℓ2 No 0.01 -0.39 -0.49
Standard avg-case ℓ2 No 0.02 -0.20 -0.31
Standard avg-case ℓ2 No 0.04 -0.08 -0.20
Standard worst-case ℓ2 No 0.025 -0.59 -0.62
Standard worst-case ℓ2 No 0.05 -0.37 -0.43
Standard worst-case ℓ2 No 0.1 -0.16 -0.24
Standard worst-case ℓ2 No 0.2 -0.12 -0.20
Adaptive avg-case ℓ2 No 0.1 -0.45 -0.50
Adaptive avg-case ℓ2 No 0.2 -0.45 -0.45
Adaptive avg-case ℓ2 No 0.4 -0.42 -0.47
Adaptive avg-case ℓ2 No 0.8 -0.10 0.08
Adaptive worst-case ℓ2 No 0.5 -0.64 -0.53
Adaptive worst-case ℓ2 No 1.0 -0.32 -0.19
Adaptive worst-case ℓ2 No 2.0 -0.11 -0.01
Adaptive worst-case ℓ2 No 4.0 -0.07 -0.03
Adaptive avg-case ℓ2 Yes 0.1 -0.18 -0.31
Adaptive avg-case ℓ2 Yes 0.2 -0.28 -0.40
Adaptive avg-case ℓ2 Yes 0.4 -0.39 -0.46
Adaptive avg-case ℓ2 Yes 0.8 -0.44 -0.52
Adaptive worst-case ℓ2 Yes 0.25 -0.21 -0.12
Adaptive worst-case ℓ2 Yes 0.5 -0.24 -0.17
Adaptive worst-case ℓ2 Yes 1.0 -0.22 -0.19
Adaptive worst-case ℓ2 Yes 2.0 -0.14 -0.11
Standard avg-case ℓ∞ No 0.01 -0.44 -0.54
Standard avg-case ℓ∞ No 0.02 -0.35 -0.45
Standard avg-case ℓ∞ No 0.04 -0.17 -0.28
Standard avg-case ℓ∞ No 0.08 -0.04 -0.14
Standard worst-case ℓ∞ No 0.00001 -0.61 -0.63
Standard worst-case ℓ∞ No 0.00002 -0.46 -0.51
Standard worst-case ℓ∞ No 0.00004 -0.25 -0.31
Standard worst-case ℓ∞ No 0.00008 -0.16 -0.22
Adaptive avg-case ℓ∞ No 0.1 -0.45 -0.53
Adaptive avg-case ℓ∞ No 0.2 -0.46 -0.50
Adaptive avg-case ℓ∞ No 0.4 -0.45 -0.44
Adaptive avg-case ℓ∞ No 0.8 -0.41 -0.47
Adaptive worst-case ℓ∞ No 0.0005 -0.68 -0.63
Adaptive worst-case ℓ∞ No 0.001 -0.43 -0.40
Adaptive worst-case ℓ∞ No 0.002 -0.26 -0.23
Adaptive worst-case ℓ∞ No 0.004 -0.18 -0.18
Adaptive avg-case ℓ∞ Yes 0.1 -0.11 -0.23
Adaptive avg-case ℓ∞ Yes 0.2 -0.16 -0.29
Adaptive avg-case ℓ∞ Yes 0.4 -0.31 -0.42
Adaptive avg-case ℓ∞ Yes 0.8 -0.40 -0.47
Adaptive worst-case ℓ∞ Yes 0.0005 -0.20 -0.23
Adaptive worst-case ℓ∞ Yes 0.001 -0.22 -0.26
Adaptive worst-case ℓ∞ Yes 0.002 -0.29 -0.34
Adaptive worst-case ℓ∞ Yes 0.004 -0.39 -0.44

205

Chapter 7. A Modern Look at the Relationship between Sharpness and
Generalization

7.8 Omitted Proofs

7.8.1 Asymptotic Analysis of Adaptive Sharpness Measures

For the convenience of the reader we repeat here quickly the definitions of adaptive sharp-
ness measures. Let LS(w) = 1

|S|
∑

(x,y)∈S ℓxy(w) be the loss on a set of training points
S. For arbitrary weights w (i.e., not necessarily a minimum), then the average-case and
worst-case m-sharpness is defined as:

Sρ
avg,p(w, c) ≜ E S∼Pm

δ∼N (0,ρ2diag(c2))
LS(w + δ)− LS(w) (7.7)

Sρ
max,p(w, c) ≜ ES∼Pm max

∥δ⊙c−1∥p≤ρ
LS(w + δ)− LS(w),

where ⊙/−1 denotes elementwise multiplication/inversion and Pm is the data distribution
that returns m training pairs (x,y).

If c = |w| then the perturbation set is
∥∥δ ⊙ |w|−1∥∥

p ≤ ρ. We first introduce a new variable
γ = δ ⊙ |w|−1 and do a Taylor expansion around w:

LS(w + δ) = LS(w + γ ⊙ |w|) = LS(w) + ⟨∇LS(w), |w| ⊙ γ⟩

+ 1
2
〈
γ ⊙ |w|,∇2LS(w)γ ⊙ |w|

〉
+O(∥γ∥3p),

where ∇2LS(w) denotes the Hessian of LS at w.

Proposition 7.8.1. Let LS ∈ C3(Rs), S be a finite sample of training points (xi, yi)n
i=1

and let Pm denote the uniform distribution over subsamples of size m ≤ n from S. Then
we define for p ≥ 1, q ∈ R such that 1

p + 1
q = 1, then it holds

lim
ρ→0

Sρ
max,p(w, |w|)

=ES∼Pm

∥∇LS(w)⊙ |w|∥q ρ+O(ρ2) if ∇LS(w)⊙ |w| ≠ 0,

ρ2

2 max
γ ̸=0

〈
γ,

(
∇2LS(w)⊙(|w||w|T)

)
γ

〉
∥γ∥2

p

+O(ρ3) if ∇LS(w)⊙ |w| = 0 and

∇2LS(w)⊙ (|w||w|T) not negative definite

O(ρ3) if ∇LS(w)⊙ |w| = 0 and
∇2LS(w)⊙ (|w||w|T) is negative definite

Proof. We get

max
∥γ∥p≤ρ

LS(w + γ ⊙ |w|)− LS(w)

206

7.8 Omitted Proofs

= max
∥γ∥p≤ρ

⟨∇LS(w), |w| ⊙ γ⟩+ 1
2
〈
γ ⊙ |w|,∇2LS(w)γ ⊙ |w|

〉
+O(∥γ∥3p)

= max
∥γ∥p≤ρ

⟨∇LS(w)⊙ |w|,γ⟩+ 1
2

〈
γ,

(
∇2LS(w)⊙ (|w||w|T)

)
γ

〉
+O(∥γ∥3p)

If ∇LS(w)⊙ |w| ̸= 0, then the first order term dominates for ρ sufficiently small and we
get

max
∥γ∥p≤ρ

⟨∇LS(w)⊙ |w|,γ⟩ = max
∥γ∥p≤ρ

∥∇LS(w)⊙ |w|∥q ∥γ∥p = ρ ∥∇LS(w)⊙ |w|∥q .

Otherwise we have to consider

max
∥γ∥p≤ρ

1
2

〈
γ,

(
∇2LS(w)⊙ (|w||w|T)

)
γ

〉
.

If ∇2L(w)⊙ (|w||w|T) is negative definite, then the maximum is zero attained at γ = 0.
In the other case, we get

max
∥γ∥p≤ρ

1
2

〈
γ,

(
∇2LS(w)⊙ (|w||w|T)

)
γ

〉
= ρ2

2 max
γ ̸=0

〈
γ,

(
∇2LS(w)⊙ (|w||w|T)

)
γ

〉
∥γ∥2p

.

This almost finishes the proof. Finally, it holds

lim
ρ→0

Sρ
max,p(w, |w|) = lim

ρ→0
ES∼Pm

[
max

∥γ∥p≤ρ
LS(w + γ ⊙ |w|)− LS(w)

]
,

= ES∼Pm

[
lim
ρ→0

max
∥γ∥p≤ρ

LS(w + γ ⊙ |w|)− LS(w)
]

where for the last step we have used that ES∼Pm is the expectation over all possible
subsamples of size m and thus boils down to a finite sum for which we can drag the limit
inside.

We note that for p = 2 it holds q = 2 and

max
γ ̸=0

〈
γ,

(
∇2LS(w)⊙ (|w||w|T)

)
γ

〉
∥γ∥22

= λmax

(
∇2LS(w)⊙ (|w||w|T)

)
,

which is the result used in the main paper.

Proposition 7.8.2. Let LS ∈ C3(Rs), S be a finite sample of training points (xi, yi)n
i=1

and let Pm denote the uniform distribution over subsamples of size m ≤ n from S. Then

lim
ρ→0

2
ρ2S

ρ
avg(w, |w|) = ES∼Pm

[
tr(∇2LS(w)⊙ |w||w|⊤)

]
+O(ρ)

207

Chapter 7. A Modern Look at the Relationship between Sharpness and
Generalization

Proof. Let us consider the loss without the subcript for clarity. Then we consider

Eδ∼N (0,ρ2diag(c2)) LS(w + δ)− LS(w)

When plugging in the Taylor expansion of the loss, we see that

Eδ∼N (0,ρ2diag(c2))LS(w + δ)− LS(w)

=Eγ∈N (0,ρ2I)

[
⟨∇LS(w), |w| ⊙ γ⟩+ 1

2
〈
γ ⊙ |w|,∇2LS(w)γ ⊙ |w|

〉
+O(∥γ∥32)

]
=1

2 Eγ∈N (0,ρ2I)

[〈
γ ⊙ |w|,∇2LS(w)γ ⊙ |w|

〉]
+O(ρ3)

=1
2 Eγ∈N (0,ρ2I)

[〈
γ,
(
∇2LS(w)⊙ |w||w|T

)
γ
〉]

+O(ρ3)

=ρ2

2 tr(∇2LS(w)⊙ |w||w|⊤) +O(ρ3)

where we use that the components of γ are independent and have zero mean and thus the
first order term vanishes and for the second order term only the diagonal entries remain
which are equal to the variance ρ2. Finally, we take the expectation with respect to Pm.
As in the proof of Proposition 7.8.1 we can drag the limit inside as the expectation with
respect to Pm corresponds to a finite sum.

7.8.2 Derivations for Diagonal Linear Networks

Hessian for diagonal linear networks. Denote r = X(u ⊙ v) − y, V = diag(v),
U = diag(u), then the Hessian of the loss ∇2L(w) for diagonal linear networks is given
by:

L(w) =
[

V X⊤XV V X⊤XU + diag(X⊤r)
V X⊤XU + diag(X⊤r) UX⊤XU

]
. (7.8)

It is easy to verify that the data-dependent terms disappear due to the assumption of
whitened data X⊤X = I and zero residuals r at a minimum. Thus, we arrive at a much
simpler expression for the Hessian:

L(w) =
[

diag(v ⊙ v) diag(v ⊙ u)
diag(v ⊙ u) diag(u⊙ u)

]
, (7.9)

Maximum eigenvalue for diagonal linear networks. Since the Hessian has a sim-
ple block structure, we can rearrange the rows and columns coherently and get a block-

208

7.8 Omitted Proofs

diagonal structure as follows

v2
1 v1u1 0 . . . 0

v1u1 u2
1 0 . . . 0

0 0 0
.

0 . . . 0 v2
d vdud

0 . . . 0 vdud u2
d

(7.10)

where eigenvalues of each 2× 2 submatrix are u2
i + v2

i and 0. Thus, λmax = max
1≤i≤d

v2
i + u2

i

by using the property of block-diagonal matrices.

209

Chapter 7. A Modern Look at the Relationship between Sharpness and
Generalization

7.9 Correlation Between Sharpness and Generalization Gap

Throughout the paper we focused on correlation between sharpness and test error, but
it is natural to ask if the picture differs if we consider correlation between sharpness and
generalization gap, i.e., the difference between the test error and training error. We note
that in the experiments on CIFAR-10 in Section 7.6.1, since we consider only models with
≤ 1% training error and since the test error is significantly larger than 1%, the behavior
of generalization gap vs. sharpness has to be almost identical to that of test error vs.
sharpness. For other datasets, however, the training error is not necessarily close to 0,
thus in Figure 7.8 and Figure 7.9, we additionally plot the generalization gap vs. sharpness
(and side-by-side the test error vs. sharpness for the sake of convenience) for the ImageNet
experiments. We observe only small differences in the correlation values which do not alter
the conclusions about the relationship of sharpness and generalization.

With logit normalization

0.10 0.12 0.14 0.16 0.18 0.20
Worst-case adaptive sharpness

0.25

0.30

0.35

Te
st

 e
rro

r

ImageNet, = 0.08

0.10 0.12 0.14 0.16 0.18 0.20
Worst-case adaptive sharpness

0.65

0.70

0.75

0.80

ImageNet-R, = 0.09

0.10 0.12 0.14 0.16 0.18 0.20
Worst-case adaptive sharpness

0.75

0.80

0.85

0.90

ImageNet-Sketch, = 0.09

0.10 0.12 0.14 0.16 0.18 0.20
Worst-case adaptive sharpness

0.850

0.875

0.900

0.925

0.950

ImageNet-A, = 0.07
sd/do
0.0
0.1
Aug
none
light
medium
strong
wd
0.03
0.1

0.10 0.12 0.14 0.16 0.18 0.20
Worst-case adaptive sharpness

0.15

0.20

0.25

0.30

0.35

Ge
n.

 G
ap

ImageNet, = 0.09

0.10 0.12 0.14 0.16 0.18 0.20
Worst-case adaptive sharpness

0.6

0.7

0.8

ImageNet-R, = 0.12

0.10 0.12 0.14 0.16 0.18 0.20
Worst-case adaptive sharpness

0.65

0.70

0.75

0.80

0.85

0.90

ImageNet-Sketch, = 0.13

0.10 0.12 0.14 0.16 0.18 0.20
Worst-case adaptive sharpness

0.80

0.85

0.90

0.95
ImageNet-A, = 0.03

sd/do
0.0
0.1
Aug
none
light
medium
strong
wd
0.03
0.1

Without logit normalization

1.0 1.5 2.0
Worst-case adaptive sharpness

0.25

0.30

0.35

Te
st

 e
rro

r

ImageNet, = 0.42

1.0 1.5 2.0
Worst-case adaptive sharpness

0.65

0.70

0.75

0.80

ImageNet-R, = 0.27

1.0 1.5 2.0
Worst-case adaptive sharpness

0.75

0.80

0.85

0.90

ImageNet-Sketch, = 0.27

1.0 1.5 2.0
Worst-case adaptive sharpness

0.850

0.875

0.900

0.925

0.950

ImageNet-A, = 0.41
sd/do
0.0
0.1
Aug
none
light
medium
strong
wd
0.03
0.1

1.0 1.5 2.0
Worst-case adaptive sharpness

0.15

0.20

0.25

0.30

0.35

Ge
n.

 G
ap

ImageNet, = 0.48

1.0 1.5 2.0
Worst-case adaptive sharpness

0.6

0.7

0.8

ImageNet-R, = 0.36

1.0 1.5 2.0
Worst-case adaptive sharpness

0.65

0.70

0.75

0.80

0.85

0.90

ImageNet-Sketch, = 0.35

1.0 1.5 2.0
Worst-case adaptive sharpness

0.80

0.85

0.90

0.95
ImageNet-A, = 0.47

sd/do
0.0
0.1
Aug
none
light
medium
strong
wd
0.03
0.1

Figure 7.8: ViT-B/16 trained from scratch on ImageNet-1k. We show side-by-side the test
error and generalization gap (Gen. Gap) for 56 models from Steiner et al. (2021) on ImageNet
and its OOD variants vs. worst-case ℓ∞ sharpness with (top) or without (bottom) normalization
at ρ = 0.002. The color indicates models trained with stochastic depth (sd) and dropout (do),
markers and their size indicate the strength of weight decay (wd) and augmentations (aug), and τ
indicates the rank correlation coefficient.

210

7.9 Correlation Between Sharpness and Generalization Gap

With logit normalization

0.05 0.10 0.15 0.20 0.25 0.30

0.20

0.21

0.22

0.23

0.24

0.25

Te
st

 e
rro

r
ImageNet =0.04

0.05 0.10 0.15 0.20 0.25 0.30
0.350

0.375

0.400

0.425

0.450

0.475

0.500

0.525

0.550
ImageNet-R =-0.39

0.05 0.10 0.15 0.20 0.25 0.30

0.56

0.58

0.60

0.62

0.64

0.66

0.68

ImageNet-Sketch =-0.28

0.05 0.10 0.15 0.20 0.25 0.30

0.70

0.75

0.80

0.85

0.90
ImageNet-A =-0.41

0.05 0.10 0.15 0.20 0.25 0.30
Worst-case adaptive sharpness

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

Ge
n.

 g
ap

ImageNet gen. gap =0.16

0.05 0.10 0.15 0.20 0.25 0.30
Worst-case adaptive sharpness

0.250

0.275

0.300

0.325

0.350

0.375

0.400

ImageNet-R =-0.24

0.05 0.10 0.15 0.20 0.25 0.30
Worst-case adaptive sharpness

0.42

0.44

0.46

0.48

0.50

0.52

0.54

ImageNet-Sketch =-0.09

0.05 0.10 0.15 0.20 0.25 0.30
Worst-case adaptive sharpness

0.60

0.65

0.70

0.75

ImageNet-A =-0.21

5.75

5.50

5.25

5.00

4.75

4.50

4.25

le
ar

ni
ng

 ra
te

 (l
og

)

5.75

5.50

5.25

5.00

4.75

4.50

4.25

le
ar

ni
ng

 ra
te

 (l
og

)

Without logit normalization

2 4 6 8 10

0.20

0.21

0.22

0.23

0.24

0.25

Te
st

 e
rro

r

ImageNet =0.20

2 4 6 8 10
0.350

0.375

0.400

0.425

0.450

0.475

0.500

0.525

0.550
ImageNet-R =-0.51

2 4 6 8 10

0.56

0.58

0.60

0.62

0.64

0.66

0.68

ImageNet-Sketch =-0.18

2 4 6 8 10

0.70

0.75

0.80

0.85

0.90
ImageNet-A =-0.58

2 4 6 8 10
Worst-case adaptive sharpness

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

Ge
n.

 g
ap

ImageNet gen. gap =0.23

2 4 6 8 10
Worst-case adaptive sharpness

0.250

0.275

0.300

0.325

0.350

0.375

0.400

ImageNet-R =-0.36

2 4 6 8 10
Worst-case adaptive sharpness

0.42

0.44

0.46

0.48

0.50

0.52

0.54

ImageNet-Sketch =-0.02

2 4 6 8 10
Worst-case adaptive sharpness

0.60

0.65

0.70

0.75

ImageNet-A =-0.32

5.75

5.50

5.25

5.00

4.75

4.50

4.25

le
ar

ni
ng

 ra
te

 (l
og

)

5.75

5.50

5.25

5.00

4.75

4.50

4.25

le
ar

ni
ng

 ra
te

 (l
og

)

Figure 7.9: Fine-tuning CLIP ViT-B/32 on ImageNet-1k. We show side-by-side the test
error and generalization gap (Gen. gap) for 72 models from Wortsman et al. (2022) on
ImageNet and its OOD variants vs. worst-case ℓ∞ sharpness with (top) or without (bottom)
normalization at ρ = 0.002. Darker color indicates larger learning rate used for fine-tuning.

211

Chapter 7. A Modern Look at the Relationship between Sharpness and
Generalization

7.10 ImageNet-1k Models Trained from Scratch from Steiner
et al. (2021): Extra Details and Figures

Experimental details. As explained in the main paper, the ViT-B/16-224 weights
were trained on ImageNet-1k for 300 epochs with different hyperparameter settings, and
subsequently fine-tuned on the same dataset for 20.000 steps with 2 different learning
rates (0.01 and 0.03). The pretraining hyperparameters include 7 augmentation types
(none, light0, light1, medium0, medium1, strong0, strong1), which we group into (none,
light, medium, strong) in the plots. Weight decay was either 0.1 or 0.03, and dropout and
stochastic depth were either both set to 0 or both set to 0.1. We evaluated the resulting
56 configurations. The model weights can be obtained from https://github.com/googl
e-research/vision_transformer.

Sharpness evaluation. For sharpness evaluation we use 2048 data points from the
training set split in 8 batches: we compute sharpness on each of them and report the aver-
age. For worst-case sharpness we use Auto-PGD for 20 steps (for each batch) with random
uniform initialization in the feasible set, while for average-case sharpness we sample 100
different weights perturbations for every batch. We use the same sharpness evaluation for
all ImageNet-1k and MNLI models. For convenience we restate the algorithm of Auto-
PGD in Algorithm 5: it follows the original version presented in Croce and Hein (2020b)
while using the network weights w as optimization variables instead of the input image
components. In Alg. 5 we denote f the target objective function (cross-entropy loss on
the batch of images in our experiments), S the feasible set of perturbations and PS the
projection onto it. Also, η and W are fixed hyperparameters (we keep the original values),
and the two conditions in Line 13 can be found in Croce and Hein (2020b).

Algorithm 5: Auto-PGD
1: Input: objective function f , perturbation set S, w(0), η, Niter, W = {w0, . . . , wn}
2: Output: wmax, fmax
3: w(1) ← PS

(
w(0) + η∇f(w(0))

)
4: fmax ← max{f(w(0)), f(w(1))}
5: wmax ← w(0) if fmax ≡ f(w(0)) else wmax ← w(1)

6: for k = 1 to Niter − 1 do
7: z(k+1) ← PS

(
w(k) + η∇f(w(k))

)
8: w(k+1) ← PS

(
w(k) + α(z(k+1) −w(k)) + (1− α)(w(k) −w(k−1))

)
9: if f(w(k+1)) > fmax then

10: wmax ← w(k+1) and fmax ← f(w(k+1))
11: end if
12: if k ∈W then
13: if Condition 1 or Condition 2 then
14: η ← η/2 and w(k+1) ← wmax
15: end if
16: end if
17: end for

212

https://github.com/google-research/vision_transformer
https://github.com/google-research/vision_transformer

7.10 ImageNet-1k Models Trained from Scratch from Steiner et al. (2021):
Extra Details and Figures

Extra figures. For each sharpness definition we show for three values of ρ the corre-
lation between test error on ImageNet (in-distribution) and on the various distribution
shifts. In particular, we use worst-case ℓ∞ adaptive sharpness with (Fig. 7.10) and with-
out (Fig. 7.11) logit normalization, and average-case adaptive sharpness with (Fig. 7.12)
and without (Fig. 7.13) logit normalization. For all figures the color shows stochastic
depth / dropout, the marker size corresponds to augmentation strength, and the marker
type to weight decay. In addition to the OOD-datasets from the main paper, we here re-
port the results for ImageNet-V2 (Recht et al., 2019) and ObjectNet (Barbu et al., 2019).
ImageNet-V2 consists in a new test set for ImageNet models and is sampled from the same
image distribution as the existing validation set: then, the performance of the classifiers
on it are highly correlated to that on ImageNet validation set, and ImageNet-V2 cannot
be considered a distribution shift in the same sense as the other datasets. In general,
we observe that sharpness variants are not predictive of the performance on ImageNet
and the OOD datasets, typically only separating models by stochastic depth / dropout,
but not ranking them according to generalization properties, and often even yielding a
negative correlation with OOD test error. The only case where low sharpness indicates
low test-error is for logit-normalized average-case adaptive sharpness on ImageNet and
ImageNet-v2. For the remaining OOD datasets, however, there are always models with
low sharpness and larger test error.

213

Chapter 7. A Modern Look at the Relationship between Sharpness and
Generalization

Worst-case ℓ∞ adaptive sharpness with logit normalization

0.05 0.06 0.07 0.08 0.09

0.22

0.24

0.26

0.28

0.30

0.32

0.34

0.36

Im
ag

eN
et

 te
st

 e
rro

r
= 0.001, = 0.09

0.10 0.12 0.14 0.16 0.18 0.20

0.22

0.24

0.26

0.28

0.30

0.32

0.34

0.36

= 0.002, = 0.08

0.25 0.30 0.35 0.40 0.45

0.22

0.24

0.26

0.28

0.30

0.32

0.34

0.36

= 0.004, = 0.11

sd/do
0.0
0.1
Aug
none
light
medium
strong
wd
0.03
0.1

0.05 0.06 0.07 0.08 0.09
0.325

0.350

0.375

0.400

0.425

0.450

0.475

0.500

0.525

Im
ag

eN
et

 V
2

te
st

 e
rro

r

= 0.001, = 0.08

0.10 0.12 0.14 0.16 0.18 0.20
0.325

0.350

0.375

0.400

0.425

0.450

0.475

0.500

0.525
= 0.002, = 0.08

0.25 0.30 0.35 0.40 0.45
0.325

0.350

0.375

0.400

0.425

0.450

0.475

0.500

0.525
= 0.004, = 0.11

sd/do
0.0
0.1
Aug
none
light
medium
strong
wd
0.03
0.1

0.05 0.06 0.07 0.08 0.09

0.65

0.70

0.75

0.80

Im
ag

eN
et

-R
 te

st
 e

rro
r

= 0.001, = 0.1

0.10 0.12 0.14 0.16 0.18 0.20

0.65

0.70

0.75

0.80

= 0.002, = 0.09

0.25 0.30 0.35 0.40 0.45

0.65

0.70

0.75

0.80

= 0.004, = 0.06

sd/do
0.0
0.1
Aug
none
light
medium
strong
wd
0.03
0.1

0.05 0.06 0.07 0.08 0.09
0.84

0.86

0.88

0.90

0.92

0.94

0.96

Im
ag

eN
et

-A
 te

st
 e

rro
r

= 0.001, = 0.06

0.10 0.12 0.14 0.16 0.18 0.20
0.84

0.86

0.88

0.90

0.92

0.94

0.96
= 0.002, = 0.07

0.25 0.30 0.35 0.40 0.45
0.84

0.86

0.88

0.90

0.92

0.94

0.96
= 0.004, = 0.23

sd/do
0.0
0.1
Aug
none
light
medium
strong
wd
0.03
0.1

0.05 0.06 0.07 0.08 0.09

0.725
0.750
0.775
0.800
0.825
0.850
0.875
0.900
0.925

Im
ag

eN
et

-S
ke

tc
h

te
st

 e
rro

r

= 0.001, = 0.1

0.10 0.12 0.14 0.16 0.18 0.20

0.725
0.750
0.775
0.800
0.825
0.850
0.875
0.900
0.925

= 0.002, = 0.09

0.25 0.30 0.35 0.40 0.45

0.725
0.750
0.775
0.800
0.825
0.850
0.875
0.900
0.925

= 0.004, = 0.06

sd/do
0.0
0.1
Aug
none
light
medium
strong
wd
0.03
0.1

0.05 0.06 0.07 0.08 0.09
Worst-case adaptive sharpness

0.65

0.70

0.75

0.80

0.85

Ob
je

cN
et

 te
st

 e
rro

r

= 0.001, = 0.04

0.10 0.12 0.14 0.16 0.18 0.20
Worst-case adaptive sharpness

0.65

0.70

0.75

0.80

0.85

= 0.002, = 0.03

0.25 0.30 0.35 0.40 0.45
Worst-case adaptive sharpness

0.65

0.70

0.75

0.80

0.85

= 0.004, = 0.16

sd/do
0.0
0.1
Aug
none
light
medium
strong
wd
0.03
0.1

Figure 7.10: Correlation of sharpness with generalization on ImageNet for different ρ and for
different distribution shifts.

214

7.10 ImageNet-1k Models Trained from Scratch from Steiner et al. (2021):
Extra Details and Figures

Worst-case ℓ∞ adaptive sharpness without logit normalization

0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.22

0.24

0.26

0.28

0.30

0.32

0.34

0.36

Im
ag

eN
et

 te
st

 e
rro

r

= 0.001, = 0.42

1.00 1.25 1.50 1.75 2.00 2.25

0.22

0.24

0.26

0.28

0.30

0.32

0.34

0.36

= 0.002, = 0.42

3 4 5

0.22

0.24

0.26

0.28

0.30

0.32

0.34

0.36

= 0.004, = 0.34

sd/do
0.0
0.1
Aug
none
light
medium
strong
wd
0.03
0.1

0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.325

0.350

0.375

0.400

0.425

0.450

0.475

0.500

0.525

Im
ag

eN
et

 V
2

te
st

 e
rro

r

= 0.001, = 0.43

1.00 1.25 1.50 1.75 2.00 2.25
0.325

0.350

0.375

0.400

0.425

0.450

0.475

0.500

0.525
= 0.002, = 0.42

3 4 5
0.325

0.350

0.375

0.400

0.425

0.450

0.475

0.500

0.525
= 0.004, = 0.34

sd/do
0.0
0.1
Aug
none
light
medium
strong
wd
0.03
0.1

0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.65

0.70

0.75

0.80

Im
ag

eN
et

-R
 te

st
 e

rro
r

= 0.001, = 0.27

1.00 1.25 1.50 1.75 2.00 2.25

0.65

0.70

0.75

0.80

= 0.002, = 0.27

3 4 5

0.65

0.70

0.75

0.80

= 0.004, = 0.2

sd/do
0.0
0.1
Aug
none
light
medium
strong
wd
0.03
0.1

0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.84

0.86

0.88

0.90

0.92

0.94

0.96

Im
ag

eN
et

-A
 te

st
 e

rro
r

= 0.001, = 0.45

1.00 1.25 1.50 1.75 2.00 2.25
0.84

0.86

0.88

0.90

0.92

0.94

0.96
= 0.002, = 0.41

3 4 5
0.84

0.86

0.88

0.90

0.92

0.94

0.96
= 0.004, = 0.36

sd/do
0.0
0.1
Aug
none
light
medium
strong
wd
0.03
0.1

0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.725
0.750
0.775
0.800
0.825
0.850
0.875
0.900
0.925

Im
ag

eN
et

-S
ke

tc
h

te
st

 e
rro

r

= 0.001, = 0.28

1.00 1.25 1.50 1.75 2.00 2.25

0.725
0.750
0.775
0.800
0.825
0.850
0.875
0.900
0.925

= 0.002, = 0.27

3 4 5

0.725
0.750
0.775
0.800
0.825
0.850
0.875
0.900
0.925

= 0.004, = 0.2

sd/do
0.0
0.1
Aug
none
light
medium
strong
wd
0.03
0.1

0.4 0.5 0.6 0.7 0.8 0.9 1.0
Worst-case adaptive sharpness

0.65

0.70

0.75

0.80

0.85

Ob
je

cN
et

 te
st

 e
rro

r

= 0.001, = 0.45

1.00 1.25 1.50 1.75 2.00 2.25
Worst-case adaptive sharpness

0.65

0.70

0.75

0.80

0.85

= 0.002, = 0.45

3 4 5
Worst-case adaptive sharpness

0.65

0.70

0.75

0.80

0.85

= 0.004, = 0.36

sd/do
0.0
0.1
Aug
none
light
medium
strong
wd
0.03
0.1

Figure 7.11: Correlation of sharpness with generalization on ImageNet for different ρ and for
different distribution shifts.

215

Chapter 7. A Modern Look at the Relationship between Sharpness and
Generalization

Average-case adaptive sharpness with logit normalization

0.004 0.006 0.008

0.22

0.24

0.26

0.28

0.30

0.32

0.34

0.36

Im
ag

eN
et

 te
st

 e
rro

r
= 0.05, = 0.46

0.015 0.020 0.025 0.030 0.035

0.22

0.24

0.26

0.28

0.30

0.32

0.34

0.36

= 0.1, = 0.44

0.075 0.100 0.125 0.150 0.175

0.22

0.24

0.26

0.28

0.30

0.32

0.34

0.36

= 0.2, = 0.42

sd/do
0.0
0.1
Aug
none
light
medium
strong
wd
0.03
0.1

0.004 0.006 0.008
0.325

0.350

0.375

0.400

0.425

0.450

0.475

0.500

0.525

Im
ag

eN
et

 V
2

te
st

 e
rro

r

= 0.05, = 0.44

0.015 0.020 0.025 0.030 0.035
0.325

0.350

0.375

0.400

0.425

0.450

0.475

0.500

0.525
= 0.1, = 0.43

0.075 0.100 0.125 0.150 0.175
0.325

0.350

0.375

0.400

0.425

0.450

0.475

0.500

0.525
= 0.2, = 0.42

sd/do
0.0
0.1
Aug
none
light
medium
strong
wd
0.03
0.1

0.004 0.006 0.008

0.65

0.70

0.75

0.80

Im
ag

eN
et

-R
 te

st
 e

rro
r

= 0.05, = 0.38

0.015 0.020 0.025 0.030 0.035

0.65

0.70

0.75

0.80

= 0.1, = 0.39

0.075 0.100 0.125 0.150 0.175

0.65

0.70

0.75

0.80

= 0.2, = 0.39

sd/do
0.0
0.1
Aug
none
light
medium
strong
wd
0.03
0.1

0.004 0.006 0.008
0.84

0.86

0.88

0.90

0.92

0.94

0.96

Im
ag

eN
et

-A
 te

st
 e

rro
r

= 0.05, = 0.31

0.015 0.020 0.025 0.030 0.035
0.84

0.86

0.88

0.90

0.92

0.94

0.96
= 0.1, = 0.29

0.075 0.100 0.125 0.150 0.175
0.84

0.86

0.88

0.90

0.92

0.94

0.96
= 0.2, = 0.29

sd/do
0.0
0.1
Aug
none
light
medium
strong
wd
0.03
0.1

0.004 0.006 0.008

0.725
0.750
0.775
0.800
0.825
0.850
0.875
0.900
0.925

Im
ag

eN
et

-S
ke

tc
h

te
st

 e
rro

r

= 0.05, = 0.42

0.015 0.020 0.025 0.030 0.035

0.725
0.750
0.775
0.800
0.825
0.850
0.875
0.900
0.925

= 0.1, = 0.43

0.075 0.100 0.125 0.150 0.175

0.725
0.750
0.775
0.800
0.825
0.850
0.875
0.900
0.925

= 0.2, = 0.42

sd/do
0.0
0.1
Aug
none
light
medium
strong
wd
0.03
0.1

0.004 0.006 0.008
Average-case adaptive sharpness

0.65

0.70

0.75

0.80

0.85

Ob
je

cN
et

 te
st

 e
rro

r

= 0.05, = 0.39

0.015 0.020 0.025 0.030 0.035
Average-case adaptive sharpness

0.65

0.70

0.75

0.80

0.85

= 0.1, = 0.39

0.075 0.100 0.125 0.150 0.175
Average-case adaptive sharpness

0.65

0.70

0.75

0.80

0.85

= 0.2, = 0.38

sd/do
0.0
0.1
Aug
none
light
medium
strong
wd
0.03
0.1

Figure 7.12: Correlation of sharpness with generalization on ImageNet for different ρ and for
different distribution shifts.

216

7.10 ImageNet-1k Models Trained from Scratch from Steiner et al. (2021):
Extra Details and Figures

Average-case adaptive sharpness without logit normalization

0.000 0.005 0.010 0.015

0.22

0.24

0.26

0.28

0.30

0.32

0.34

0.36

Im
ag

eN
et

 te
st

 e
rro

r

= 0.05, = 0.55

0.00 0.02 0.04 0.06 0.08 0.10

0.22

0.24

0.26

0.28

0.30

0.32

0.34

0.36

= 0.1, = 0.44

0.25 0.50 0.75 1.00 1.25 1.50

0.22

0.24

0.26

0.28

0.30

0.32

0.34

0.36

= 0.2, = 0.13

sd/do
0.0
0.1
Aug
none
light
medium
strong
wd
0.03
0.1

0.000 0.005 0.010 0.015
0.325

0.350

0.375

0.400

0.425

0.450

0.475

0.500

0.525

Im
ag

eN
et

 V
2

te
st

 e
rro

r

= 0.05, = 0.56

0.00 0.02 0.04 0.06 0.08 0.10
0.325

0.350

0.375

0.400

0.425

0.450

0.475

0.500

0.525
= 0.1, = 0.43

0.25 0.50 0.75 1.00 1.25 1.50
0.325

0.350

0.375

0.400

0.425

0.450

0.475

0.500

0.525
= 0.2, = 0.15

sd/do
0.0
0.1
Aug
none
light
medium
strong
wd
0.03
0.1

0.000 0.005 0.010 0.015

0.65

0.70

0.75

0.80

Im
ag

eN
et

-R
 te

st
 e

rro
r

= 0.05, = 0.4

0.00 0.02 0.04 0.06 0.08 0.10

0.65

0.70

0.75

0.80

= 0.1, = 0.28

0.25 0.50 0.75 1.00 1.25 1.50

0.65

0.70

0.75

0.80

= 0.2, = 0.26

sd/do
0.0
0.1
Aug
none
light
medium
strong
wd
0.03
0.1

0.000 0.005 0.010 0.015
0.84

0.86

0.88

0.90

0.92

0.94

0.96

Im
ag

eN
et

-A
 te

st
 e

rro
r

= 0.05, = 0.57

0.00 0.02 0.04 0.06 0.08 0.10
0.84

0.86

0.88

0.90

0.92

0.94

0.96
= 0.1, = 0.47

0.25 0.50 0.75 1.00 1.25 1.50
0.84

0.86

0.88

0.90

0.92

0.94

0.96
= 0.2, = 0.05

sd/do
0.0
0.1
Aug
none
light
medium
strong
wd
0.03
0.1

0.000 0.005 0.010 0.015

0.725
0.750
0.775
0.800
0.825
0.850
0.875
0.900
0.925

Im
ag

eN
et

-S
ke

tc
h

te
st

 e
rro

r

= 0.05, = 0.42

0.00 0.02 0.04 0.06 0.08 0.10

0.725
0.750
0.775
0.800
0.825
0.850
0.875
0.900
0.925

= 0.1, = 0.32

0.25 0.50 0.75 1.00 1.25 1.50

0.725
0.750
0.775
0.800
0.825
0.850
0.875
0.900
0.925

= 0.2, = 0.23

sd/do
0.0
0.1
Aug
none
light
medium
strong
wd
0.03
0.1

0.000 0.005 0.010 0.015
Average-case adaptive sharpness

0.65

0.70

0.75

0.80

0.85

Ob
je

cN
et

 te
st

 e
rro

r

= 0.05, = 0.6

0.00 0.02 0.04 0.06 0.08 0.10
Average-case adaptive sharpness

0.65

0.70

0.75

0.80

0.85

= 0.1, = 0.47

0.25 0.50 0.75 1.00 1.25 1.50
Average-case adaptive sharpness

0.65

0.70

0.75

0.80

0.85

= 0.2, = 0.11

sd/do
0.0
0.1
Aug
none
light
medium
strong
wd
0.03
0.1

Figure 7.13: Correlation of sharpness with generalization on ImageNet for different ρ and for
different distribution shifts.

217

Chapter 7. A Modern Look at the Relationship between Sharpness and
Generalization

7.11 Fine-tuning of ImageNet-1k Models Pretrained on ImageNet-
21k from Steiner et al. (2021): Extra Figures and De-
tails

Experimental details. All hyperparameter settings are identical to those explained
in Appendix 7.10, only the pretraining dataset is ImageNet-21k instead of ImageNet-
1k. Since two of the models showed close to 100% test error, we did not evaluate them,
resulting in 54 instead of 56 models.

Extra figures. Like in Appendix 7.10 we show each sharpness definition for three values
of ρ and its the correlation to test error on ImageNet (in-distribution) and on the various
distribution shifts. The observations are very similar to those on ImageNet-1k pretraining:
sharpness variants are not predictive of the performance on ImageNet and the distribution
shift datasets, typically only separating models by stochastic depth / dropout, and often
even yielding a negative correlation with OOD test error.

218

7.11 Fine-tuning of ImageNet-1k Models Pretrained on ImageNet-21k from
Steiner et al. (2021): Extra Figures and Details

Worst-case ℓ∞ adaptive sharpness with logit normalization

0.03 0.04 0.05 0.06

0.16

0.17

0.18

0.19

0.20

0.21

0.22

Im
ag

eN
et

 te
st

 e
rro

r

= 0.001, = 0.49

0.06 0.08 0.10 0.12 0.14 0.16

0.16

0.17

0.18

0.19

0.20

0.21

0.22

= 0.002, = 0.48

0.150 0.175 0.200 0.225 0.250 0.275 0.300

0.16

0.17

0.18

0.19

0.20

0.21

0.22

= 0.004, = 0.45

sd/do
0.0
0.1
Aug
none
light
medium
strong
wd
0.03
0.1

0.03 0.04 0.05 0.06

0.26

0.28

0.30

0.32

0.34

Im
ag

eN
et

 V
2

te
st

 e
rro

r

= 0.001, = 0.49

0.06 0.08 0.10 0.12 0.14 0.16

0.26

0.28

0.30

0.32

0.34

= 0.002, = 0.48

0.150 0.175 0.200 0.225 0.250 0.275 0.300

0.26

0.28

0.30

0.32

0.34

= 0.004, = 0.43

sd/do
0.0
0.1
Aug
none
light
medium
strong
wd
0.03
0.1

0.03 0.04 0.05 0.06
0.425

0.450

0.475

0.500

0.525

0.550

0.575

0.600

0.625

Im
ag

eN
et

-R
 te

st
 e

rro
r

= 0.001, = 0.44

0.06 0.08 0.10 0.12 0.14 0.16
0.425

0.450

0.475

0.500

0.525

0.550

0.575

0.600

0.625
= 0.002, = 0.46

0.150 0.175 0.200 0.225 0.250 0.275 0.300
0.425

0.450

0.475

0.500

0.525

0.550

0.575

0.600

0.625
= 0.004, = 0.41

sd/do
0.0
0.1
Aug
none
light
medium
strong
wd
0.03
0.1

0.03 0.04 0.05 0.06
0.55

0.60

0.65

0.70

0.75

0.80

Im
ag

eN
et

-A
 te

st
 e

rro
r

= 0.001, = 0.53

0.06 0.08 0.10 0.12 0.14 0.16
0.55

0.60

0.65

0.70

0.75

0.80

= 0.002, = 0.51

0.150 0.175 0.200 0.225 0.250 0.275 0.300
0.55

0.60

0.65

0.70

0.75

0.80

= 0.004, = 0.45

sd/do
0.0
0.1
Aug
none
light
medium
strong
wd
0.03
0.1

0.03 0.04 0.05 0.06

0.575

0.600

0.625

0.650

0.675

0.700

0.725

0.750

Im
ag

eN
et

-S
ke

tc
h

te
st

 e
rro

r

= 0.001, = 0.33

0.06 0.08 0.10 0.12 0.14 0.16

0.575

0.600

0.625

0.650

0.675

0.700

0.725

0.750
= 0.002, = 0.33

0.150 0.175 0.200 0.225 0.250 0.275 0.300

0.575

0.600

0.625

0.650

0.675

0.700

0.725

0.750
= 0.004, = 0.33

sd/do
0.0
0.1
Aug
none
light
medium
strong
wd
0.03
0.1

0.03 0.04 0.05 0.06
Worst-case adaptive sharpness

0.48

0.50

0.52

0.54

0.56

0.58

0.60

0.62

Ob
je

cN
et

 te
st

 e
rro

r

= 0.001, = 0.46

0.06 0.08 0.10 0.12 0.14 0.16
Worst-case adaptive sharpness

0.48

0.50

0.52

0.54

0.56

0.58

0.60

0.62

= 0.002, = 0.44

0.150 0.175 0.200 0.225 0.250 0.275 0.300
Worst-case adaptive sharpness

0.48

0.50

0.52

0.54

0.56

0.58

0.60

0.62

= 0.004, = 0.42

sd/do
0.0
0.1
Aug
none
light
medium
strong
wd
0.03
0.1

Figure 7.14: Correlation of sharpness with generalization on ImageNet for different ρ and for
different distribution shifts.

219

Chapter 7. A Modern Look at the Relationship between Sharpness and
Generalization

Worst-case ℓ∞ adaptive sharpness without logit normalization

0.8 1.0 1.2 1.4 1.6 1.8

0.16

0.17

0.18

0.19

0.20

0.21

0.22

Im
ag

eN
et

 te
st

 e
rro

r
= 0.001, = 0.13

2.0 2.5 3.0 3.5 4.0

0.16

0.17

0.18

0.19

0.20

0.21

0.22

= 0.002, = 0.1

4 6 8

0.16

0.17

0.18

0.19

0.20

0.21

0.22

= 0.004, = 0.1

sd/do
0.0
0.1
Aug
none
light
medium
strong
wd
0.03
0.1

0.8 1.0 1.2 1.4 1.6 1.8

0.26

0.28

0.30

0.32

0.34

Im
ag

eN
et

 V
2

te
st

 e
rro

r

= 0.001, = 0.09

2.0 2.5 3.0 3.5 4.0

0.26

0.28

0.30

0.32

0.34

= 0.002, = 0.03

4 6 8

0.26

0.28

0.30

0.32

0.34

= 0.004, = 0.01

sd/do
0.0
0.1
Aug
none
light
medium
strong
wd
0.03
0.1

0.8 1.0 1.2 1.4 1.6 1.8
0.425

0.450

0.475

0.500

0.525

0.550

0.575

0.600

0.625

Im
ag

eN
et

-R
 te

st
 e

rro
r

= 0.001, = 0.05

2.0 2.5 3.0 3.5 4.0
0.425

0.450

0.475

0.500

0.525

0.550

0.575

0.600

0.625
= 0.002, = 0.01

4 6 8
0.425

0.450

0.475

0.500

0.525

0.550

0.575

0.600

0.625
= 0.004, = 0.01

sd/do
0.0
0.1
Aug
none
light
medium
strong
wd
0.03
0.1

0.8 1.0 1.2 1.4 1.6 1.8
0.55

0.60

0.65

0.70

0.75

0.80

Im
ag

eN
et

-A
 te

st
 e

rro
r

= 0.001, = 0.13

2.0 2.5 3.0 3.5 4.0
0.55

0.60

0.65

0.70

0.75

0.80

= 0.002, = 0.07

4 6 8
0.55

0.60

0.65

0.70

0.75

0.80

= 0.004, = 0.06

sd/do
0.0
0.1
Aug
none
light
medium
strong
wd
0.03
0.1

0.8 1.0 1.2 1.4 1.6 1.8

0.575

0.600

0.625

0.650

0.675

0.700

0.725

0.750

Im
ag

eN
et

-S
ke

tc
h

te
st

 e
rro

r

= 0.001, = 0.05

2.0 2.5 3.0 3.5 4.0

0.575

0.600

0.625

0.650

0.675

0.700

0.725

0.750
= 0.002, = 0.11

4 6 8

0.575

0.600

0.625

0.650

0.675

0.700

0.725

0.750
= 0.004, = 0.11

sd/do
0.0
0.1
Aug
none
light
medium
strong
wd
0.03
0.1

0.8 1.0 1.2 1.4 1.6 1.8
Worst-case adaptive sharpness

0.48

0.50

0.52

0.54

0.56

0.58

0.60

0.62

Ob
je

cN
et

 te
st

 e
rro

r

= 0.001, = 0.09

2.0 2.5 3.0 3.5 4.0
Worst-case adaptive sharpness

0.48

0.50

0.52

0.54

0.56

0.58

0.60

0.62

= 0.002, = 0.02

4 6 8
Worst-case adaptive sharpness

0.48

0.50

0.52

0.54

0.56

0.58

0.60

0.62

= 0.004, = 0.0

sd/do
0.0
0.1
Aug
none
light
medium
strong
wd
0.03
0.1

Figure 7.15: Correlation of sharpness with generalization on ImageNet for different ρ and for
different distribution shifts.

220

7.11 Fine-tuning of ImageNet-1k Models Pretrained on ImageNet-21k from
Steiner et al. (2021): Extra Figures and Details

Average-case adaptive sharpness with logit normalization

0.00250.00500.00750.01000.01250.0150

0.16

0.17

0.18

0.19

0.20

0.21

0.22

Im
ag

eN
et

 te
st

 e
rro

r

= 0.05, = 0.11

0.02 0.04 0.06 0.08

0.16

0.17

0.18

0.19

0.20

0.21

0.22

= 0.1, = 0.12

0.10 0.15 0.20 0.25

0.16

0.17

0.18

0.19

0.20

0.21

0.22

= 0.2, = 0.25

sd/do
0.0
0.1
Aug
none
light
medium
strong
wd
0.03
0.1

0.00250.00500.00750.01000.01250.0150

0.26

0.28

0.30

0.32

0.34

Im
ag

eN
et

 V
2

te
st

 e
rro

r

= 0.05, = 0.08

0.02 0.04 0.06 0.08

0.26

0.28

0.30

0.32

0.34

= 0.1, = 0.11

0.10 0.15 0.20 0.25

0.26

0.28

0.30

0.32

0.34

= 0.2, = 0.24

sd/do
0.0
0.1
Aug
none
light
medium
strong
wd
0.03
0.1

0.00250.00500.00750.01000.01250.0150
0.425

0.450

0.475

0.500

0.525

0.550

0.575

0.600

0.625

Im
ag

eN
et

-R
 te

st
 e

rro
r

= 0.05, = 0.11

0.02 0.04 0.06 0.08
0.425

0.450

0.475

0.500

0.525

0.550

0.575

0.600

0.625
= 0.1, = 0.14

0.10 0.15 0.20 0.25
0.425

0.450

0.475

0.500

0.525

0.550

0.575

0.600

0.625
= 0.2, = 0.25

sd/do
0.0
0.1
Aug
none
light
medium
strong
wd
0.03
0.1

0.00250.00500.00750.01000.01250.0150
0.55

0.60

0.65

0.70

0.75

0.80

Im
ag

eN
et

-A
 te

st
 e

rro
r

= 0.05, = 0.06

0.02 0.04 0.06 0.08
0.55

0.60

0.65

0.70

0.75

0.80

= 0.1, = 0.09

0.10 0.15 0.20 0.25
0.55

0.60

0.65

0.70

0.75

0.80

= 0.2, = 0.25

sd/do
0.0
0.1
Aug
none
light
medium
strong
wd
0.03
0.1

0.00250.00500.00750.01000.01250.0150

0.575

0.600

0.625

0.650

0.675

0.700

0.725

0.750

Im
ag

eN
et

-S
ke

tc
h

te
st

 e
rro

r

= 0.05, = 0.07

0.02 0.04 0.06 0.08

0.575

0.600

0.625

0.650

0.675

0.700

0.725

0.750
= 0.1, = 0.1

0.10 0.15 0.20 0.25

0.575

0.600

0.625

0.650

0.675

0.700

0.725

0.750
= 0.2, = 0.23

sd/do
0.0
0.1
Aug
none
light
medium
strong
wd
0.03
0.1

0.00250.00500.00750.01000.01250.0150
Average-case adaptive sharpness

0.48

0.50

0.52

0.54

0.56

0.58

0.60

0.62

Ob
je

cN
et

 te
st

 e
rro

r

= 0.05, = 0.06

0.02 0.04 0.06 0.08
Average-case adaptive sharpness

0.48

0.50

0.52

0.54

0.56

0.58

0.60

0.62

= 0.1, = 0.08

0.10 0.15 0.20 0.25
Average-case adaptive sharpness

0.48

0.50

0.52

0.54

0.56

0.58

0.60

0.62

= 0.2, = 0.24

sd/do
0.0
0.1
Aug
none
light
medium
strong
wd
0.03
0.1

Figure 7.16: Correlation of sharpness with generalization on ImageNet for different ρ and for
different distribution shifts.

221

Chapter 7. A Modern Look at the Relationship between Sharpness and
Generalization

Average-case adaptive sharpness without logit normalization

0.02 0.04 0.06 0.08 0.10

0.16

0.17

0.18

0.19

0.20

0.21

0.22

Im
ag

eN
et

 te
st

 e
rro

r
= 0.05, = 0.02

0.2 0.4 0.6 0.8 1.0

0.16

0.17

0.18

0.19

0.20

0.21

0.22

= 0.1, = 0.07

2 3 4 5 6 7 8

0.16

0.17

0.18

0.19

0.20

0.21

0.22

= 0.2, = 0.11

sd/do
0.0
0.1
Aug
none
light
medium
strong
wd
0.03
0.1

0.02 0.04 0.06 0.08 0.10

0.26

0.28

0.30

0.32

0.34

Im
ag

eN
et

 V
2

te
st

 e
rro

r

= 0.05, = 0.04

0.2 0.4 0.6 0.8 1.0

0.26

0.28

0.30

0.32

0.34

= 0.1, = 0.1

2 3 4 5 6 7 8

0.26

0.28

0.30

0.32

0.34

= 0.2, = 0.11

sd/do
0.0
0.1
Aug
none
light
medium
strong
wd
0.03
0.1

0.02 0.04 0.06 0.08 0.10
0.425

0.450

0.475

0.500

0.525

0.550

0.575

0.600

0.625

Im
ag

eN
et

-R
 te

st
 e

rro
r

= 0.05, = 0.03

0.2 0.4 0.6 0.8 1.0
0.425

0.450

0.475

0.500

0.525

0.550

0.575

0.600

0.625
= 0.1, = 0.08

2 3 4 5 6 7 8
0.425

0.450

0.475

0.500

0.525

0.550

0.575

0.600

0.625
= 0.2, = 0.1

sd/do
0.0
0.1
Aug
none
light
medium
strong
wd
0.03
0.1

0.02 0.04 0.06 0.08 0.10
0.55

0.60

0.65

0.70

0.75

0.80

Im
ag

eN
et

-A
 te

st
 e

rro
r

= 0.05, = 0.05

0.2 0.4 0.6 0.8 1.0
0.55

0.60

0.65

0.70

0.75

0.80

= 0.1, = 0.11

2 3 4 5 6 7 8
0.55

0.60

0.65

0.70

0.75

0.80

= 0.2, = 0.12

sd/do
0.0
0.1
Aug
none
light
medium
strong
wd
0.03
0.1

0.02 0.04 0.06 0.08 0.10

0.575

0.600

0.625

0.650

0.675

0.700

0.725

0.750

Im
ag

eN
et

-S
ke

tc
h

te
st

 e
rro

r

= 0.05, = 0.02

0.2 0.4 0.6 0.8 1.0

0.575

0.600

0.625

0.650

0.675

0.700

0.725

0.750
= 0.1, = 0.08

2 3 4 5 6 7 8

0.575

0.600

0.625

0.650

0.675

0.700

0.725

0.750
= 0.2, = 0.11

sd/do
0.0
0.1
Aug
none
light
medium
strong
wd
0.03
0.1

0.02 0.04 0.06 0.08 0.10
Average-case adaptive sharpness

0.48

0.50

0.52

0.54

0.56

0.58

0.60

0.62

Ob
je

cN
et

 te
st

 e
rro

r

= 0.05, = 0.06

0.2 0.4 0.6 0.8 1.0
Average-case adaptive sharpness

0.48

0.50

0.52

0.54

0.56

0.58

0.60

0.62

= 0.1, = 0.1

2 3 4 5 6 7 8
Average-case adaptive sharpness

0.48

0.50

0.52

0.54

0.56

0.58

0.60

0.62

= 0.2, = 0.13

sd/do
0.0
0.1
Aug
none
light
medium
strong
wd
0.03
0.1

Figure 7.17: Correlation of sharpness with generalization on ImageNet for different ρ and for
different distribution shifts.

222

7.12 ImageNet Models both Pretrained on ImageNet-1k and ImageNet-21k
from Steiner et al. (2021)

7.12 ImageNet Models both Pretrained on ImageNet-1k and
ImageNet-21k from Steiner et al. (2021)

For completeness, we here show for two sharpness definitions the models pretrained on
ImageNet-21k and ImageNet-1k together. We find the better-generalizing models pre-
trained on ImageNet-21k to have significantly higher worst-case sharpness, and roughly
equal or higher logit-normalized average-case adaptive sharpness, underlining that the
models generalization properties resulting from different pretraining datasets are not cap-
tured.

223

Chapter 7. A Modern Look at the Relationship between Sharpness and
Generalization

Worst-case ℓ∞ adaptive sharpness without logit normalization

0.50 0.75 1.00 1.25 1.50 1.75
0.15

0.20

0.25

0.30

0.35

Im
ag

eN
et

 te
st

 e
rro

r
= 0.001, = 0.51

1 2 3 4
0.15

0.20

0.25

0.30

0.35

= 0.002, = 0.48

2 4 6 8
0.15

0.20

0.25

0.30

0.35

= 0.004, = 0.48

Dset
IN21k
IN1k
Aug
none
light
medium
strong
sd/do
0.0
0.1

0.50 0.75 1.00 1.25 1.50 1.75
0.25

0.30

0.35

0.40

0.45

0.50

Im
ag

eN
et

 V
2

te
st

 e
rro

r

= 0.001, = 0.5

1 2 3 4
0.25

0.30

0.35

0.40

0.45

0.50

= 0.002, = 0.46

2 4 6 8
0.25

0.30

0.35

0.40

0.45

0.50

= 0.004, = 0.46

Dset
IN21k
IN1k
Aug
none
light
medium
strong
sd/do
0.0
0.1

0.50 0.75 1.00 1.25 1.50 1.75

0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80

Im
ag

eN
et

-R
 te

st
 e

rro
r

= 0.001, = 0.46

1 2 3 4

0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80

= 0.002, = 0.42

2 4 6 8

0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80

= 0.004, = 0.42

Dset
IN21k
IN1k
Aug
none
light
medium
strong
sd/do
0.0
0.1

0.50 0.75 1.00 1.25 1.50 1.75
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95

Im
ag

eN
et

-A
 te

st
 e

rro
r

= 0.001, = 0.52

1 2 3 4
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95

= 0.002, = 0.48

2 4 6 8
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95

= 0.004, = 0.48

Dset
IN21k
IN1k
Aug
none
light
medium
strong
sd/do
0.0
0.1

0.50 0.75 1.00 1.25 1.50 1.75
0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

Im
ag

eN
et

-S
ke

tc
h

te
st

 e
rro

r

= 0.001, = 0.43

1 2 3 4
0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

= 0.002, = 0.39

2 4 6 8
0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

= 0.004, = 0.39

Dset
IN21k
IN1k
Aug
none
light
medium
strong
sd/do
0.0
0.1

0.50 0.75 1.00 1.25 1.50 1.75
Worst-case adaptive sharpness

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

Ob
je

cN
et

 te
st

 e
rro

r

= 0.001, = 0.51

1 2 3 4
Worst-case adaptive sharpness

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

= 0.002, = 0.47

2 4 6 8
Worst-case adaptive sharpness

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

= 0.004, = 0.46

Dset
IN21k
IN1k
Aug
none
light
medium
strong
sd/do
0.0
0.1

Figure 7.18: Correlation of sharpness with generalization on ImageNet-1k for different ρ and for
different distribution shifts.

224

7.12 ImageNet Models both Pretrained on ImageNet-1k and ImageNet-21k
from Steiner et al. (2021)

Average-case adaptive sharpness with logit normalization

0.00250.00500.00750.01000.01250.0150
0.15

0.20

0.25

0.30

0.35

Im
ag

eN
et

 te
st

 e
rro

r

= 0.05, = 0.03

0.02 0.04 0.06 0.08
0.15

0.20

0.25

0.30

0.35

= 0.1, = 0.04

0.05 0.10 0.15 0.20 0.25
0.15

0.20

0.25

0.30

0.35

= 0.2, = 0.32

Dset
IN21k
IN1k
Aug
none
light
medium
strong
sd/do
0.0
0.1

0.00250.00500.00750.01000.01250.0150
0.25

0.30

0.35

0.40

0.45

0.50

Im
ag

eN
et

 V
2

te
st

 e
rro

r

= 0.05, = 0.03

0.02 0.04 0.06 0.08
0.25

0.30

0.35

0.40

0.45

0.50

= 0.1, = 0.04

0.05 0.10 0.15 0.20 0.25
0.25

0.30

0.35

0.40

0.45

0.50

= 0.2, = 0.32

Dset
IN21k
IN1k
Aug
none
light
medium
strong
sd/do
0.0
0.1

0.00250.00500.00750.01000.01250.0150

0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80

Im
ag

eN
et

-R
 te

st
 e

rro
r

= 0.05, = 0.0

0.02 0.04 0.06 0.08

0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80

= 0.1, = 0.06

0.05 0.10 0.15 0.20 0.25

0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80

= 0.2, = 0.33

Dset
IN21k
IN1k
Aug
none
light
medium
strong
sd/do
0.0
0.1

0.00250.00500.00750.01000.01250.0150
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95

Im
ag

eN
et

-A
 te

st
 e

rro
r

= 0.05, = 0.0

0.02 0.04 0.06 0.08
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95

= 0.1, = 0.08

0.05 0.10 0.15 0.20 0.25
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95

= 0.2, = 0.36

Dset
IN21k
IN1k
Aug
none
light
medium
strong
sd/do
0.0
0.1

0.00250.00500.00750.01000.01250.0150
0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

Im
ag

eN
et

-S
ke

tc
h

te
st

 e
rro

r

= 0.05, = 0.03

0.02 0.04 0.06 0.08
0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

= 0.1, = 0.04

0.05 0.10 0.15 0.20 0.25
0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

= 0.2, = 0.31

Dset
IN21k
IN1k
Aug
none
light
medium
strong
sd/do
0.0
0.1

0.00250.00500.00750.01000.01250.0150
Average-case adaptive sharpness

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

Ob
je

cN
et

 te
st

 e
rro

r

= 0.05, = 0.02

0.02 0.04 0.06 0.08
Average-case adaptive sharpness

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

= 0.1, = 0.05

0.05 0.10 0.15 0.20 0.25
Average-case adaptive sharpness

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

= 0.2, = 0.33

Dset
IN21k
IN1k
Aug
none
light
medium
strong
sd/do
0.0
0.1

Figure 7.19: Correlation of sharpness with generalization on ImageNet-1k for different ρ and for
different distribution shifts.

225

Chapter 7. A Modern Look at the Relationship between Sharpness and
Generalization

7.13 Fine-tuning CLIP Models on ImageNet: Extra Details
and Figures

With logit normalization Without logit normalization

0.05 0.10 0.15 0.20 0.25 0.30
Worst-case adaptive sharpness

10 6

10 5

10 4

Le
ar

ni
g

ra
te

w/ Logits Normalization =-0.33

0.02 0.04 0.06 0.08 0.10 0.12
Average-case adaptive sharpness

10 6

10 5

10 4

Le
ar

ni
g

ra
te

w/ Logits Normalization =-0.24

2 4 6 8 10
Worst-case adaptive sharpness

10 6

10 5

10 4

Le
ar

ni
g

ra
te

wo/ Logits Normalization =-0.54

0.5 1.0 1.5 2.0 2.5
Average-case adaptive sharpness

10 6

10 5

10 4

Le
ar

ni
g

ra
te

wo/ Logits Normalization =-0.60

Figure 7.20: Fine-tuning CLIP ViT-B/32 on ImageNet-1k. Sharpness negatively correlates
with the size of learning rate for fine-tuning, both with (left) and without (right) using logit
normalization. For worst-case sharpness ρ = 0.002 is used, for average-case sharpness ρ = 0.1.

Experimental details. We take advantage of the models fine-tuned by Wortsman et al.
(2022a) from a pre-trained CLIP ViT-B/32, with randomly sampled training hyperparam-
eters (see random search setup in Wortsman et al. (2022a)), for which the evaluation of
ImageNet validation set and distribution shifts are provided.

Extra figures. For each sharpness definition we show for three values of ρ the cor-
relation between test error on ImageNet (in-distribution) and on the various distribution
shifts. In particular, we use worst-case ℓ∞ adaptive sharpness with (Fig. 7.21) and without
(Fig. 7.22) logit normalization, and average-case adaptive sharpness with (Fig. 7.23) and
without (Fig. 7.24) logit normalization. For all figures we represent with colors represent
the size of the learning rate used for fine-tuning (darker color means larger learning rate).
In addition to the datasets shown in Sec. 7.5, we here report the results for ImageNet-V2
(Recht et al., 2019) and ObjectNet (Barbu et al., 2019). ImageNet-V2 consists in a new
test set for ImageNet models and is sampled from the same image distribution as the
existing validation set: then, the performance of the classifiers on it are highly correlated
to that on ImageNet validation set, and ImageNet-V2 cannot be considered a distribution
shift in the same sense as the other datasets. In general, we observe that sharpness variants
are not predictive of the performance on ImageNet and ImageNet-V2. Moreover, there is
in most cases a negative correlation with test error in presence of distribution shifts. We
hypothesize that this is related to the influence that the learning rate has on sharpness
(see Fig. 7.20), i.e. lower values lead to sharper models.

226

7.13 Fine-tuning CLIP Models on ImageNet: Extra Details and Figures

Worst-case ℓ∞ adaptive sharpness with logit normalization

0.02 0.04 0.06 0.08 0.10 0.12

0.20

0.21

0.22

0.23

0.24

0.25

Im
ag

eN
et

 te
st

 e
rro

r

rho=0.001 =-0.04

0.05 0.10 0.15 0.20 0.25 0.30

0.20

0.21

0.22

0.23

0.24

0.25
rho=0.002 =0.04

0.1 0.2 0.3 0.4

0.20

0.21

0.22

0.23

0.24

0.25
rho=0.004 =-0.08

0.02 0.04 0.06 0.08 0.10 0.12

0.32

0.33

0.34

0.35

0.36

0.37

Im
ag

eN
et

-V
2

te
st

 e
rro

r

rho=0.001 =-0.16

0.05 0.10 0.15 0.20 0.25 0.30

0.32

0.33

0.34

0.35

0.36

0.37

rho=0.002 =-0.10

0.1 0.2 0.3 0.4

0.32

0.33

0.34

0.35

0.36

0.37

rho=0.004 =-0.19

0.02 0.04 0.06 0.08 0.10 0.12
0.350

0.375

0.400

0.425

0.450

0.475

0.500

0.525

0.550

Im
ag

eN
et

-R
 te

st
 e

rro
r

rho=0.001 =-0.23

0.05 0.10 0.15 0.20 0.25 0.30
0.350

0.375

0.400

0.425

0.450

0.475

0.500

0.525

0.550
rho=0.002 =-0.39

0.1 0.2 0.3 0.4
0.350

0.375

0.400

0.425

0.450

0.475

0.500

0.525

0.550
rho=0.004 =-0.12

0.02 0.04 0.06 0.08 0.10 0.12

0.70

0.75

0.80

0.85

0.90

Im
ag

eN
et

-A
 te

st
 e

rro
r

rho=0.001 =-0.25

0.05 0.10 0.15 0.20 0.25 0.30

0.70

0.75

0.80

0.85

0.90
rho=0.002 =-0.41

0.1 0.2 0.3 0.4

0.70

0.75

0.80

0.85

0.90
rho=0.004 =-0.17

0.02 0.04 0.06 0.08 0.10 0.12

0.56

0.58

0.60

0.62

0.64

0.66

0.68

Im
ag

eN
et

-S
ke

tc
h

te
st

 e
rro

r

rho=0.001 =-0.26

0.05 0.10 0.15 0.20 0.25 0.30

0.56

0.58

0.60

0.62

0.64

0.66

0.68

rho=0.002 =-0.28

0.1 0.2 0.3 0.4

0.56

0.58

0.60

0.62

0.64

0.66

0.68

rho=0.004 =-0.16

0.02 0.04 0.06 0.08 0.10 0.12
Worst-case adaptive sharpness

0.54

0.56

0.58

0.60

0.62

0.64

0.66

0.68

Ob
je

ct
Ne

t t
es

t e
rro

r

rho=0.001 =-0.36

0.05 0.10 0.15 0.20 0.25 0.30
Worst-case adaptive sharpness

0.54

0.56

0.58

0.60

0.62

0.64

0.66

0.68
rho=0.002 =-0.47

0.1 0.2 0.3 0.4
Worst-case adaptive sharpness

0.54

0.56

0.58

0.60

0.62

0.64

0.66

0.68
rho=0.004 =-0.27

5.75

5.50

5.25

5.00

4.75

4.50

4.25

Le
ar

ni
ng

 ra
te

 (l
og

)

5.75

5.50

5.25

5.00

4.75

4.50

4.25

Le
ar

ni
ng

 ra
te

 (l
og

)

5.75

5.50

5.25

5.00

4.75

4.50

4.25

Le
ar

ni
ng

 ra
te

 (l
og

)

5.75

5.50

5.25

5.00

4.75

4.50

4.25

Le
ar

ni
ng

 ra
te

 (l
og

)

5.75

5.50

5.25

5.00

4.75

4.50

4.25

Le
ar

ni
ng

 ra
te

 (l
og

)

5.75

5.50

5.25

5.00

4.75

4.50

4.25

Le
ar

ni
ng

 ra
te

 (l
og

)

Figure 7.21: Correlation of sharpness with varying ρ with generalization on ImageNet for different
distribution shifts.

227

Chapter 7. A Modern Look at the Relationship between Sharpness and
Generalization

Worst-case ℓ∞ adaptive sharpness without logit normalization

1.0 1.5 2.0 2.5 3.0 3.5

0.20

0.21

0.22

0.23

0.24

0.25
Im

ag
eN

et
 te

st
 e

rro
r

rho=0.001 =0.19

2 4 6 8 10

0.20

0.21

0.22

0.23

0.24

0.25
rho=0.002 =0.20

10 20 30 40 50

0.20

0.21

0.22

0.23

0.24

0.25
rho=0.004 =0.02

1.0 1.5 2.0 2.5 3.0 3.5

0.32

0.33

0.34

0.35

0.36

0.37

Im
ag

eN
et

-V
2

te
st

 e
rro

r

rho=0.001 =0.09

2 4 6 8 10

0.32

0.33

0.34

0.35

0.36

0.37

rho=0.002 =0.08

10 20 30 40 50

0.32

0.33

0.34

0.35

0.36

0.37

rho=0.004 =-0.05

1.0 1.5 2.0 2.5 3.0 3.5
0.350

0.375

0.400

0.425

0.450

0.475

0.500

0.525

0.550

Im
ag

eN
et

-R
 te

st
 e

rro
r

rho=0.001 =-0.37

2 4 6 8 10
0.350

0.375

0.400

0.425

0.450

0.475

0.500

0.525

0.550
rho=0.002 =-0.51

10 20 30 40 50
0.350

0.375

0.400

0.425

0.450

0.475

0.500

0.525

0.550
rho=0.004 =-0.51

1.0 1.5 2.0 2.5 3.0 3.5

0.70

0.75

0.80

0.85

0.90

Im
ag

eN
et

-A
 te

st
 e

rro
r

rho=0.001 =-0.57

2 4 6 8 10

0.70

0.75

0.80

0.85

0.90
rho=0.002 =-0.58

10 20 30 40 50

0.70

0.75

0.80

0.85

0.90
rho=0.004 =-0.45

1.0 1.5 2.0 2.5 3.0 3.5

0.56

0.58

0.60

0.62

0.64

0.66

0.68

Im
ag

eN
et

-S
ke

tc
h

te
st

 e
rro

r

rho=0.001 =-0.06

2 4 6 8 10

0.56

0.58

0.60

0.62

0.64

0.66

0.68

rho=0.002 =-0.18

10 20 30 40 50

0.56

0.58

0.60

0.62

0.64

0.66

0.68

rho=0.004 =-0.27

1.0 1.5 2.0 2.5 3.0 3.5
Worst-case adaptive sharpness

0.54

0.56

0.58

0.60

0.62

0.64

0.66

0.68

Ob
je

ct
Ne

t t
es

t e
rro

r

rho=0.001 =-0.48

2 4 6 8 10
Worst-case adaptive sharpness

0.54

0.56

0.58

0.60

0.62

0.64

0.66

0.68
rho=0.002 =-0.51

10 20 30 40 50
Worst-case adaptive sharpness

0.54

0.56

0.58

0.60

0.62

0.64

0.66

0.68
rho=0.004 =-0.33

5.75

5.50

5.25

5.00

4.75

4.50

4.25

Le
ar

ni
ng

 ra
te

 (l
og

)

5.75

5.50

5.25

5.00

4.75

4.50

4.25

Le
ar

ni
ng

 ra
te

 (l
og

)

5.75

5.50

5.25

5.00

4.75

4.50

4.25

Le
ar

ni
ng

 ra
te

 (l
og

)

5.75

5.50

5.25

5.00

4.75

4.50

4.25

Le
ar

ni
ng

 ra
te

 (l
og

)

5.75

5.50

5.25

5.00

4.75

4.50

4.25

Le
ar

ni
ng

 ra
te

 (l
og

)

5.75

5.50

5.25

5.00

4.75

4.50

4.25

Le
ar

ni
ng

 ra
te

 (l
og

)

Figure 7.22: Correlation of sharpness with varying ρ with generalization on ImageNet for different
distribution shifts.

228

7.13 Fine-tuning CLIP Models on ImageNet: Extra Details and Figures

Average-case adaptive sharpness with logit normalization

0.02 0.04 0.06 0.08 0.10 0.12

0.20

0.21

0.22

0.23

0.24

0.25

Im
ag

eN
et

 te
st

 e
rro

r

rho=0.1 =-0.03

0.10 0.15 0.20 0.25 0.30 0.35

0.20

0.21

0.22

0.23

0.24

0.25
rho=0.2 =-0.21

0.20 0.25 0.30 0.35 0.40

0.20

0.21

0.22

0.23

0.24

0.25
rho=0.4 =-0.19

0.02 0.04 0.06 0.08 0.10 0.12

0.32

0.33

0.34

0.35

0.36

0.37

Im
ag

eN
et

-V
2

te
st

 e
rro

r

rho=0.1 =-0.18

0.10 0.15 0.20 0.25 0.30 0.35

0.32

0.33

0.34

0.35

0.36

0.37

rho=0.2 =-0.32

0.20 0.25 0.30 0.35 0.40

0.32

0.33

0.34

0.35

0.36

0.37

rho=0.4 =-0.21

0.02 0.04 0.06 0.08 0.10 0.12
0.350

0.375

0.400

0.425

0.450

0.475

0.500

0.525

0.550

Im
ag

eN
et

-R
 te

st
 e

rro
r

rho=0.1 =-0.36

0.10 0.15 0.20 0.25 0.30 0.35
0.350

0.375

0.400

0.425

0.450

0.475

0.500

0.525

0.550
rho=0.2 =-0.02

0.20 0.25 0.30 0.35 0.40
0.350

0.375

0.400

0.425

0.450

0.475

0.500

0.525

0.550
rho=0.4 =0.26

0.02 0.04 0.06 0.08 0.10 0.12

0.70

0.75

0.80

0.85

0.90

Im
ag

eN
et

-A
 te

st
 e

rro
r

rho=0.1 =-0.33

0.10 0.15 0.20 0.25 0.30 0.35

0.70

0.75

0.80

0.85

0.90
rho=0.2 =-0.06

0.20 0.25 0.30 0.35 0.40

0.70

0.75

0.80

0.85

0.90
rho=0.4 =0.23

0.02 0.04 0.06 0.08 0.10 0.12

0.56

0.58

0.60

0.62

0.64

0.66

0.68

Im
ag

eN
et

-S
ke

tc
h

te
st

 e
rro

r

rho=0.1 =-0.34

0.10 0.15 0.20 0.25 0.30 0.35

0.56

0.58

0.60

0.62

0.64

0.66

0.68

rho=0.2 =-0.27

0.20 0.25 0.30 0.35 0.40

0.56

0.58

0.60

0.62

0.64

0.66

0.68

rho=0.4 =-0.03

0.02 0.04 0.06 0.08 0.10 0.12
Average-case adaptive sharpness

0.54

0.56

0.58

0.60

0.62

0.64

0.66

0.68

Ob
je

ct
Ne

t t
es

t e
rro

r

rho=0.1 =-0.46

0.10 0.15 0.20 0.25 0.30 0.35
Average-case adaptive sharpness

0.54

0.56

0.58

0.60

0.62

0.64

0.66

0.68
rho=0.2 =-0.21

0.20 0.25 0.30 0.35 0.40
Average-case adaptive sharpness

0.54

0.56

0.58

0.60

0.62

0.64

0.66

0.68
rho=0.4 =0.06

5.75

5.50

5.25

5.00

4.75

4.50

4.25

Le
ar

ni
ng

 ra
te

 (l
og

)

5.75

5.50

5.25

5.00

4.75

4.50

4.25

Le
ar

ni
ng

 ra
te

 (l
og

)

5.75

5.50

5.25

5.00

4.75

4.50

4.25

Le
ar

ni
ng

 ra
te

 (l
og

)

5.75

5.50

5.25

5.00

4.75

4.50

4.25

Le
ar

ni
ng

 ra
te

 (l
og

)

5.75

5.50

5.25

5.00

4.75

4.50

4.25

Le
ar

ni
ng

 ra
te

 (l
og

)

5.75

5.50

5.25

5.00

4.75

4.50

4.25

Le
ar

ni
ng

 ra
te

 (l
og

)

Figure 7.23: Correlation of sharpness with varying ρ with generalization on ImageNet for different
distribution shifts.

229

Chapter 7. A Modern Look at the Relationship between Sharpness and
Generalization

Average-case adaptive sharpness without logit normalization

0.5 1.0 1.5 2.0 2.5

0.20

0.21

0.22

0.23

0.24

0.25
Im

ag
eN

et
 te

st
 e

rro
r

rho=0.1 =0.13

2 4 6 8

0.20

0.21

0.22

0.23

0.24

0.25
rho=0.2 =0.06

7.5 8.0 8.5 9.0 9.5 10.0 10.5

0.20

0.21

0.22

0.23

0.24

0.25
rho=0.4 =0.19

0.5 1.0 1.5 2.0 2.5

0.32

0.33

0.34

0.35

0.36

0.37

Im
ag

eN
et

-V
2

te
st

 e
rro

r

rho=0.1 =-0.01

2 4 6 8

0.32

0.33

0.34

0.35

0.36

0.37

rho=0.2 =0.03

7.5 8.0 8.5 9.0 9.5 10.0 10.5

0.32

0.33

0.34

0.35

0.36

0.37

rho=0.4 =0.21

0.5 1.0 1.5 2.0 2.5
0.350

0.375

0.400

0.425

0.450

0.475

0.500

0.525

0.550

Im
ag

eN
et

-R
 te

st
 e

rro
r

rho=0.1 =-0.62

2 4 6 8
0.350

0.375

0.400

0.425

0.450

0.475

0.500

0.525

0.550
rho=0.2 =-0.34

7.5 8.0 8.5 9.0 9.5 10.0 10.5
0.350

0.375

0.400

0.425

0.450

0.475

0.500

0.525

0.550
rho=0.4 =-0.12

0.5 1.0 1.5 2.0 2.5

0.70

0.75

0.80

0.85

0.90

Im
ag

eN
et

-A
 te

st
 e

rro
r

rho=0.1 =-0.67

2 4 6 8

0.70

0.75

0.80

0.85

0.90
rho=0.2 =-0.50

7.5 8.0 8.5 9.0 9.5 10.0 10.5

0.70

0.75

0.80

0.85

0.90
rho=0.4 =-0.21

0.5 1.0 1.5 2.0 2.5

0.56

0.58

0.60

0.62

0.64

0.66

0.68

Im
ag

eN
et

-S
ke

tc
h

te
st

 e
rro

r

rho=0.1 =-0.26

2 4 6 8

0.56

0.58

0.60

0.62

0.64

0.66

0.68

rho=0.2 =-0.12

7.5 8.0 8.5 9.0 9.5 10.0 10.5

0.56

0.58

0.60

0.62

0.64

0.66

0.68

rho=0.4 =0.09

0.5 1.0 1.5 2.0 2.5
Average-case adaptive sharpness

0.54

0.56

0.58

0.60

0.62

0.64

0.66

0.68

Ob
je

ct
Ne

t t
es

t e
rro

r

rho=0.1 =-0.60

2 4 6 8
Average-case adaptive sharpness

0.54

0.56

0.58

0.60

0.62

0.64

0.66

0.68
rho=0.2 =-0.37

7.5 8.0 8.5 9.0 9.5 10.0 10.5
Average-case adaptive sharpness

0.54

0.56

0.58

0.60

0.62

0.64

0.66

0.68
rho=0.4 =-0.08

5.75

5.50

5.25

5.00

4.75

4.50

4.25

Le
ar

ni
ng

 ra
te

 (l
og

)

5.75

5.50

5.25

5.00

4.75

4.50

4.25

Le
ar

ni
ng

 ra
te

 (l
og

)

5.75

5.50

5.25

5.00

4.75

4.50

4.25

Le
ar

ni
ng

 ra
te

 (l
og

)

5.75

5.50

5.25

5.00

4.75

4.50

4.25

Le
ar

ni
ng

 ra
te

 (l
og

)

5.75

5.50

5.25

5.00

4.75

4.50

4.25

Le
ar

ni
ng

 ra
te

 (l
og

)

5.75

5.50

5.25

5.00

4.75

4.50

4.25

Le
ar

ni
ng

 ra
te

 (l
og

)

Figure 7.24: Correlation of sharpness with varying ρ with generalization on ImageNet for different
distribution shifts.

230

7.14 Fine-tuning on MNLI: Extra Details and Figures

7.14 Fine-tuning on MNLI: Extra Details and Figures

Experimental details. The models from McCoy et al. (2020) we use are BERT fine-
tuned with initialization weights of bert-case-uncased. The in-distribution test error
is computed on the MNLI matched development set, that is a classification task with
three classes. As out-of-distribution datasets we use three categories of HANS considered
“Inconsistent with heuristic” (see McCoy et al. (2020): Lexical overlap, on which the
classifiers show the largest variance in test error, Subsequence and Constituent. In this
case, there are only two possible classes.

Extra figures. For each sharpness definition we show for three values of ρ the corre-
lation between test error on MNLI (in-distribution) and on various HANS subsets (out-
of-distribution). In particular, we use worst-case ℓ∞ adaptive sharpness with (Fig. 7.25)
and without (Fig. 7.26) logit normalization, and average-case adaptive sharpness with
(Fig. 7.27) and without (Fig. 7.28) logit normalization. For all figures we represent with
darker colors the models with higher test error on MNLI. In general, all sharpness variants
we consider are not predictive of the generalization performance of the model, and in some
cases (e.g. Fig. 7.28) there is rather a weak negative correlation between sharpness and
test error on out-of-distribution tasks.

231

Chapter 7. A Modern Look at the Relationship between Sharpness and
Generalization

Worst-case ℓ∞ adaptive sharpness with logit normalization

0.070 0.072 0.074 0.076 0.078 0.080
0.152

0.154

0.156

0.158

0.160

0.162

M
NL

I t
es

t e
rro

r
rho=0.0005 =0.04

0.155 0.160 0.165 0.170
0.152

0.154

0.156

0.158

0.160

0.162

rho=0.001 =-0.09

0.36 0.37 0.38 0.39 0.40
0.152

0.154

0.156

0.158

0.160

0.162

rho=0.002 =0.05

0.070 0.072 0.074 0.076 0.078 0.080

0.5

0.6

0.7

0.8

0.9

HA
NS

 le
xi

ca
l t

es
t e

rro
r

rho=0.0005 =-0.09

0.155 0.160 0.165 0.170

0.5

0.6

0.7

0.8

0.9

rho=0.001 =-0.09

0.36 0.37 0.38 0.39 0.40

0.5

0.6

0.7

0.8

0.9

rho=0.002 =-0.09

0.070 0.072 0.074 0.076 0.078 0.080

0.90

0.92

0.94

0.96

0.98

HA
NS

 su
bs

eq
ue

nc
e

te
st

 e
rro

r rho=0.0005 =-0.14

0.155 0.160 0.165 0.170

0.90

0.92

0.94

0.96

0.98

rho=0.001 =-0.13

0.36 0.37 0.38 0.39 0.40

0.90

0.92

0.94

0.96

0.98

rho=0.002 =-0.14

0.070 0.072 0.074 0.076 0.078 0.080
Worst-case adaptive sharpness

0.80

0.85

0.90

0.95

HA
NS

 c
on

st
itu

en
t t

es
t e

rro
r

rho=0.0005 =-0.21

0.155 0.160 0.165 0.170
Worst-case adaptive sharpness

0.80

0.85

0.90

0.95

rho=0.001 =-0.18

0.36 0.37 0.38 0.39 0.40
Worst-case adaptive sharpness

0.80

0.85

0.90

0.95

rho=0.002 =-0.17

0.154

0.156

0.158

0.160

0.162

M
NL

I t
es

t e
rro

r

0.154

0.156

0.158

0.160

0.162

M
NL

I t
es

t e
rro

r

0.154

0.156

0.158

0.160

0.162

M
NL

I t
es

t e
rro

r

0.154

0.156

0.158

0.160

0.162

M
NL

I t
es

t e
rro

r

Figure 7.25: Correlation of sharpness with varying ρ with generalization on MNLI for different
distribution shifts.

232

7.14 Fine-tuning on MNLI: Extra Details and Figures

Worst-case ℓ∞ adaptive sharpness without logit normalization

0.19 0.20 0.21 0.22 0.23
0.152

0.154

0.156

0.158

0.160

0.162

M
NL

I t
es

t e
rro

r

rho=0.0005 =0.04

0.48 0.50 0.52 0.54 0.56 0.58
0.152

0.154

0.156

0.158

0.160

0.162

rho=0.001 =0.04

1.30 1.35 1.40 1.45 1.50 1.55
0.152

0.154

0.156

0.158

0.160

0.162

rho=0.002 =-0.11

0.19 0.20 0.21 0.22 0.23

0.5

0.6

0.7

0.8

0.9

HA
NS

 le
xi

ca
l t

es
t e

rro
r

rho=0.0005 =-0.24

0.48 0.50 0.52 0.54 0.56 0.58

0.5

0.6

0.7

0.8

0.9

rho=0.001 =-0.13

1.30 1.35 1.40 1.45 1.50 1.55

0.5

0.6

0.7

0.8

0.9

rho=0.002 =-0.15

0.19 0.20 0.21 0.22 0.23

0.90

0.92

0.94

0.96

0.98

HA
NS

 su
bs

eq
ue

nc
e

te
st

 e
rro

r rho=0.0005 =-0.22

0.48 0.50 0.52 0.54 0.56 0.58

0.90

0.92

0.94

0.96

0.98

rho=0.001 =-0.15

1.30 1.35 1.40 1.45 1.50 1.55

0.90

0.92

0.94

0.96

0.98

rho=0.002 =-0.12

0.19 0.20 0.21 0.22 0.23
Worst-case adaptive sharpness

0.80

0.85

0.90

0.95

HA
NS

 c
on

st
itu

en
t t

es
t e

rro
r

rho=0.0005 =-0.07

0.48 0.50 0.52 0.54 0.56 0.58
Worst-case adaptive sharpness

0.80

0.85

0.90

0.95

rho=0.001 =-0.15

1.30 1.35 1.40 1.45 1.50 1.55
Worst-case adaptive sharpness

0.80

0.85

0.90

0.95

rho=0.002 =-0.13

0.154

0.156

0.158

0.160

0.162

M
NL

I t
es

t e
rro

r

0.154

0.156

0.158

0.160

0.162

M
NL

I t
es

t e
rro

r

0.154

0.156

0.158

0.160

0.162

M
NL

I t
es

t e
rro

r

0.154

0.156

0.158

0.160

0.162

M
NL

I t
es

t e
rro

r

Figure 7.26: Correlation of sharpness with varying ρ with generalization on MNLI for different
distribution shifts.

233

Chapter 7. A Modern Look at the Relationship between Sharpness and
Generalization

Average-case adaptive sharpness with logit normalization

0.026 0.028 0.030 0.032
0.152

0.154

0.156

0.158

0.160

0.162

M
NL

I t
es

t e
rro

r
rho=0.1 =-0.35

0.24 0.26 0.28 0.30
0.152

0.154

0.156

0.158

0.160

0.162

rho=0.2 =-0.37

0.72 0.73 0.74 0.75 0.76
0.152

0.154

0.156

0.158

0.160

0.162

rho=0.4 =0.01

0.026 0.028 0.030 0.032

0.5

0.6

0.7

0.8

0.9

HA
NS

 le
xi

ca
l t

es
t e

rro
r

rho=0.1 =-0.46

0.24 0.26 0.28 0.30

0.5

0.6

0.7

0.8

0.9

rho=0.2 =-0.48

0.72 0.73 0.74 0.75 0.76

0.5

0.6

0.7

0.8

0.9

rho=0.4 =-0.29

0.026 0.028 0.030 0.032

0.90

0.92

0.94

0.96

0.98

HA
NS

 su
bs

eq
ue

nc
e

te
st

 e
rro

r rho=0.1 =-0.28

0.24 0.26 0.28 0.30

0.90

0.92

0.94

0.96

0.98

rho=0.2 =-0.28

0.72 0.73 0.74 0.75 0.76

0.90

0.92

0.94

0.96

0.98

rho=0.4 =-0.27

0.026 0.028 0.030 0.032
Average-case adaptive sharpness

0.80

0.85

0.90

0.95

HA
NS

 c
on

st
itu

en
t t

es
t e

rro
r

rho=0.1 =0.17

0.24 0.26 0.28 0.30
Average-case adaptive sharpness

0.80

0.85

0.90

0.95

rho=0.2 =0.24

0.72 0.73 0.74 0.75 0.76
Average-case adaptive sharpness

0.80

0.85

0.90

0.95

rho=0.4 =0.05

0.154

0.156

0.158

0.160

0.162

M
NL

I t
es

t e
rro

r

0.154

0.156

0.158

0.160

0.162

M
NL

I t
es

t e
rro

r

0.154

0.156

0.158

0.160

0.162

M
NL

I t
es

t e
rro

r

0.154

0.156

0.158

0.160

0.162

M
NL

I t
es

t e
rro

r

Figure 7.27: Correlation of sharpness with varying ρ with generalization on MNLI for different
distribution shifts.

234

7.14 Fine-tuning on MNLI: Extra Details and Figures

Average-case adaptive sharpness without logit normalization

0.0625 0.0650 0.0675 0.0700 0.0725 0.0750
0.152

0.154

0.156

0.158

0.160

0.162

M
NL

I t
es

t e
rro

r

rho=0.1 =-0.34

0.55 0.60 0.65
0.152

0.154

0.156

0.158

0.160

0.162

rho=0.2 =-0.34

1.10 1.15 1.20 1.25 1.30 1.35
0.152

0.154

0.156

0.158

0.160

0.162

rho=0.4 =0.04

0.0625 0.0650 0.0675 0.0700 0.0725 0.0750

0.5

0.6

0.7

0.8

0.9

HA
NS

 le
xi

ca
l t

es
t e

rro
r

rho=0.1 =-0.31

0.55 0.60 0.65

0.5

0.6

0.7

0.8

0.9

rho=0.2 =-0.58

1.10 1.15 1.20 1.25 1.30 1.35

0.5

0.6

0.7

0.8

0.9

rho=0.4 =-0.16

0.0625 0.0650 0.0675 0.0700 0.0725 0.0750

0.90

0.92

0.94

0.96

0.98

HA
NS

 su
bs

eq
ue

nc
e

te
st

 e
rro

r rho=0.1 =-0.23

0.55 0.60 0.65

0.90

0.92

0.94

0.96

0.98

rho=0.2 =-0.39

1.10 1.15 1.20 1.25 1.30 1.35

0.90

0.92

0.94

0.96

0.98

rho=0.4 =-0.09

0.0625 0.0650 0.0675 0.0700 0.0725 0.0750
Average adaptive sharpness

0.80

0.85

0.90

0.95

HA
NS

 c
on

st
itu

en
t t

es
t e

rro
r

rho=0.1 =0.13

0.55 0.60 0.65
Average adaptive sharpness

0.80

0.85

0.90

0.95

rho=0.2 =0.16

1.10 1.15 1.20 1.25 1.30 1.35
Average adaptive sharpness

0.80

0.85

0.90

0.95

rho=0.4 =0.05

0.154

0.156

0.158

0.160

0.162

M
NL

I t
es

t e
rro

r

0.154

0.156

0.158

0.160

0.162

M
NL

I t
es

t e
rro

r

0.154

0.156

0.158

0.160

0.162

M
NL

I t
es

t e
rro

r

0.154

0.156

0.158

0.160

0.162

M
NL

I t
es

t e
rro

r

Figure 7.28: Correlation of sharpness with varying ρ with generalization on MNLI for different
distribution shifts.

235

Chapter 7. A Modern Look at the Relationship between Sharpness and
Generalization

7.15 Training from Scratch on CIFAR-10: Extra Details
and Figures

Extra details. We train 200 ResNet-18 and 200 ViT models for 200 epochs using SGD
with momentum and linearly decreasing learning rates after a linear warm-up for the first
40% iterations. We found that adding such warm-up to SGD allows us to bridge the
gap between SGD and Adam training for ViTs. We use the SimpleViT architecture from
the vit-pytorch library which is a modification of the standard ViT (Dosovitskiy et al.,
2021) with a fixed positional embedding and global average pooling instead of the CLS
embedding. We use a ViT model with 4 × 4 patches, depth of 6 blocks, with 16 heads,
embedding size 512, and MLP dimension of 1024. We sample the learning rate from the
log-uniform distribution in the range [0.005, 0.5] for ViTs and [0.05, 5.0] for ResNets. We
sample uniformly ρ ∈ {0, 0.05, 0.1} of SAM (Foret et al., 2021), with probability 50%
mixup (α = 0.5) (Zhang et al., 2017b), and with probability 50% standard augmentations
combined with RandAugment (with parameters N = 2, M = 14) (Cubuk et al., 2020). We
use 2× repeated augmentations to reduce the augmentation variance from RandAugment
(Fort et al., 2021). For CIFAR-10 models, we only show sharpness for well-trained models
that have ≤ 1% training error. We note that this selection criterion leaves more ResNets
than ViTs on the figures below.

Sharpness evaluation. For sharpness evaluation we use 1024 data points from the
training set split in 8 batches: we compute sharpness on each of them and report the aver-
age. For worst-case sharpness we use Auto-PGD for 20 steps (for each batch) with random
uniform / Gaussian initialization in the feasible set depending on the ℓ∞ vs. ℓ2 norm of
sharpness. For average-case sharpness, we sample 100 different weights perturbations for
every batch.

Extra figures. We present additional figures in Sec. 7.15.1 on the role of data used to
evaluate sharpness, in Sec. 7.15.2 on the role of the number of iterations in Auto-PGD to
estimate sharpness, in Sec. 7.15.3 on the role of m in m-sharpness, and in Sec. 7.15.4 on
the influence of different sharpness definitions and radii on correlation with generalization.

7.15.1 The Role of Data Used for Sharpness Evaluation

We emphasize that for all experiments, we evaluate sharpness on the original training set
(CIFAR-10, ImageNet or MNLI) without augmentations. However, one may wonder how
sensitive this choice is compared to evaluation on the augmented training set, particularly
in presence of strong data augmentations such as RandAugment (Cubuk et al., 2020) used
for training of some models. To test this, in Fig. 7.29, we compare adaptive average-
case sharpness computed on the original training set and on augmented training set of
CIFAR-10 for ResNets-18. We find that the overall trend is nearly the same for small
ρ and differs more strongly for larger ρ where the overall correlation with generalization
becomes significantly negative (−0.74 for the largest ρ) on augmented data. In addition,

236

7.15 Training from Scratch on CIFAR-10: Extra Details and Figures

a side-by-side comparison of sharpness on standard vs. augmented training shows that
the relationship between them does not deviate too much from a linear trend, especially
when considering separately models trained with and without augmentations.

Adaptive average-case ℓ∞ (uniform perturbations) sharpness (normalized) for
ResNets-18 on original training data

10 23 × 10 34 × 10 3 6 × 10 3 2 × 10 2

Adaptive avg-case sharpness (normalized)

0.04

0.06

0.08

0.10

0.12

0.14

0.16

Te
st

 e
rro

r

 = 0.1 (= 0.18)

2 × 10 2 3 × 10 2 4 × 10 2 6 × 10 2

Adaptive avg-case sharpness (normalized)

0.04

0.06

0.08

0.10

0.12

0.14

0.16

 = 0.2 (= 0.05)

10 1 2 × 10 1 3 × 10 14 × 10 1

Adaptive avg-case sharpness (normalized)

0.04

0.06

0.08

0.10

0.12

0.14

0.16

 = 0.4 (= 0.23)

4 × 10 1 6 × 10 1

Adaptive avg-case sharpness (normalized)

0.04

0.06

0.08

0.10

0.12

0.14

0.16

 = 0.8 (= 0.46)

log2 LR
3.0
1.5

0.0
1.5

Augment.
False
True

Mixup
False
True

Adaptive average-case ℓ∞ (uniform perturbations) sharpness (normalized) for
ResNets-18 on augmented training data

10 23 × 10 34 × 10 3 6 × 10 3

Adaptive avg-case sharpness (normalized)

0.04

0.06

0.08

0.10

0.12

0.14

0.16

Te
st

 e
rro

r

 = 0.1 (= 0.14)

2 × 10 2 3 × 10 24 × 10 2 6 × 10 2

Adaptive avg-case sharpness (normalized)

0.04

0.06

0.08

0.10

0.12

0.14

0.16

 = 0.2 (= 0.23)

10 16 × 10 2 2 × 10 1

Adaptive avg-case sharpness (normalized)

0.04

0.06

0.08

0.10

0.12

0.14

0.16

 = 0.4 (= 0.63)

2 × 10 1 3 × 10 1 4 × 10 1 6 × 10 1

Adaptive avg-case sharpness (normalized)

0.04

0.06

0.08

0.10

0.12

0.14

0.16

 = 0.8 (= 0.74)

log2 LR
3.0
1.5

0.0
1.5

Augment.
False
True

Mixup
False
True

A side-by-side comparison of sharpness on original vs. augmented training
data

0.0025 0.0050 0.0075 0.0100 0.0125 0.0150 0.0175 0.0200
Sharpness on original data

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

0.018

Sh
ar

pn
es

s o
n

au
gm

en
te

d
da

ta

= 0.1
Trained with augment.
Trained without augment.

0.02 0.03 0.04 0.05 0.06 0.07
Sharpness on original data

0.01

0.02

0.03

0.04

0.05

0.06

Sh
ar

pn
es

s o
n

au
gm

en
te

d
da

ta

= 0.2
Trained with augment.
Trained without augment.

0.10 0.15 0.20 0.25 0.30 0.35 0.40
Sharpness on original data

0.05

0.10

0.15

0.20

0.25

0.30

Sh
ar

pn
es

s o
n

au
gm

en
te

d
da

ta

= 0.4

Trained with augment.
Trained without augment.

0.4 0.5 0.6 0.7 0.8
Sharpness on original data

0.2

0.3

0.4

0.5

0.6

Sh
ar

pn
es

s o
n

au
gm

en
te

d
da

ta

= 0.8
Trained with augment.
Trained without augment.

Figure 7.29: Adaptive average-case ℓ∞ (uniform perturbations) sharpness (normalized) for
ResNets-18 on original vs. augmented CIFAR-10 training data for ResNets-18 for different radii
ρ.

237

Chapter 7. A Modern Look at the Relationship between Sharpness and
Generalization

7.15.2 The Role of the Number of Iterations in Auto-PGD

Here we aim to justify the choice of 20 iterations of Auto-PGD in our experiments.
In Fig. 7.30, we present results for adaptive worst-case ℓ∞ sharpness (normalized) for
ResNets-18 on CIFAR-10 for 20, 50, 100, and 200 iterations. We can see that the sharp-
ness values are not visibly affected by increasing the number of iterations and the overall
trend stays exactly the same.

Adaptive worst-case ℓ∞ sharpness (normalized) for ResNets-18 (20 iterations)

10 2 10 1

Adaptive worst-case sharpness (normalized)

0.04

0.06

0.08

0.10

0.12

0.14

0.16

Te
st

 e
rro

r

 = 0.001 (= 0.30)

10 1

Adaptive worst-case sharpness (normalized)

0.04

0.06

0.08

0.10

0.12

0.14

0.16

 = 0.002 (= 0.29)

10 1

Adaptive worst-case sharpness (normalized)

0.04

0.06

0.08

0.10

0.12

0.14

0.16

 = 0.004 (= 0.21)

3 × 10 1 4 × 10 1 6 × 10 1

Adaptive worst-case sharpness (normalized)

0.04

0.06

0.08

0.10

0.12

0.14

0.16

 = 0.008 (= 0.04)

log2 LR
3.0
1.5

0.0
1.5

Augment.
False
True

Mixup
False
True

Adaptive worst-case ℓ∞ sharpness (normalized) for ResNets-18 (50 iterations)

10 2 10 1

Adaptive worst-case sharpness (normalized)

0.04

0.06

0.08

0.10

0.12

0.14

0.16

Te
st

 e
rro

r

 = 0.001 (= 0.30)

10 1

Adaptive worst-case sharpness (normalized)

0.04

0.06

0.08

0.10

0.12

0.14

0.16

 = 0.002 (= 0.29)

10 1

Adaptive worst-case sharpness (normalized)

0.04

0.06

0.08

0.10

0.12

0.14

0.16

 = 0.004 (= 0.22)

3 × 10 1 4 × 10 1 6 × 10 1

Adaptive worst-case sharpness (normalized)

0.04

0.06

0.08

0.10

0.12

0.14

0.16

 = 0.008 (= 0.08)

log2 LR
3.0
1.5

0.0
1.5

Augment.
False
True

Mixup
False
True

Adaptive worst-case ℓ∞ sharpness (normalized) for ResNets-18 (100
iterations)

10 2 10 1

Adaptive worst-case sharpness (normalized)

0.04

0.06

0.08

0.10

0.12

0.14

0.16

Te
st

 e
rro

r

 = 0.001 (= 0.30)

10 1

Adaptive worst-case sharpness (normalized)

0.04

0.06

0.08

0.10

0.12

0.14

0.16

 = 0.002 (= 0.29)

10 1

Adaptive worst-case sharpness (normalized)

0.04

0.06

0.08

0.10

0.12

0.14

0.16

 = 0.004 (= 0.22)

1003 × 10 1 4 × 10 1 6 × 10 1

Adaptive worst-case sharpness (normalized)

0.04

0.06

0.08

0.10

0.12

0.14

0.16

 = 0.008 (= 0.09)

log2 LR
3.0
1.5

0.0
1.5

Augment.
False
True

Mixup
False
True

Adaptive worst-case ℓ∞ sharpness (normalized) for ResNets-18 (200
iterations)

10 2 10 1

Adaptive worst-case sharpness (normalized)

0.04

0.06

0.08

0.10

0.12

0.14

0.16

Te
st

 e
rro

r

 = 0.001 (= 0.30)

10 1

Adaptive worst-case sharpness (normalized)

0.04

0.06

0.08

0.10

0.12

0.14

0.16

 = 0.002 (= 0.29)

10 1

Adaptive worst-case sharpness (normalized)

0.04

0.06

0.08

0.10

0.12

0.14

0.16

 = 0.004 (= 0.22)

1003 × 10 1 4 × 10 1 6 × 10 1

Adaptive worst-case sharpness (normalized)

0.04

0.06

0.08

0.10

0.12

0.14

0.16

 = 0.008 (= 0.09)

log2 LR
3.0
1.5

0.0
1.5

Augment.
False
True

Mixup
False
True

Figure 7.30: Adaptive worst-case ℓ∞ sharpness (normalized) for different number of itera-
tions in Auto-PGD vs. test error on CIFAR-10 for ResNets-18 for different radii ρ.

238

7.15 Training from Scratch on CIFAR-10: Extra Details and Figures

7.15.3 The Role of m in m-Sharpness

Foret et al. (2021) suggested that a lower m in m-sharpness, i.e., the batch size used for
maximizing sharpness, can lead to a higher correlation with generalization in some settings.
We note that we have already used a small m for all our experiments (m = 128 on CIFAR-
10 and m = 256 on ImageNet and MNLI), but here we check additionally whether even
smaller m change the trend. Fig. 7.31 shows the results sharpness for adaptive worst-case
ℓ∞ sharpness (normalized) for ResNets-18 and ViTs on CIFAR-10 for m ∈ {16, 32, 64, 128}.
We can see that different m only slightly affects the sharpness values and the overall trend
stays unaffected.

Adaptive worst-case ℓ∞ sharpness (normalized) for ResNets-18 (m = 16)

10 1

Adaptive worst-case sharpness (normalized)

0.04

0.06

0.08

0.10

0.12

0.14

0.16

Te
st

 e
rro

r

m=16, = 0.001 (= 0.29)

10 1

Adaptive worst-case sharpness (normalized)

0.04

0.06

0.08

0.10

0.12

0.14

0.16

m=16, = 0.002 (= 0.21)

2 × 10 1 3 × 10 14 × 10 1 6 × 10 1

Adaptive worst-case sharpness (normalized)

0.04

0.06

0.08

0.10

0.12

0.14

0.16

m=16, = 0.004 (= 0.14)

1006 × 10 1

Adaptive worst-case sharpness (normalized)

0.04

0.06

0.08

0.10

0.12

0.14

0.16

m=16, = 0.008 (= 0.05)

log2 LR
3.0
1.5

0.0
1.5

Augment.
False
True

Mixup
False
True

Adaptive worst-case ℓ∞ sharpness (normalized) for ResNets-18 (m = 32)

10 1

Adaptive worst-case sharpness (normalized)

0.04

0.06

0.08

0.10

0.12

0.14

0.16

Te
st

 e
rro

r

m=32, = 0.001 (= 0.29)

10 1

Adaptive worst-case sharpness (normalized)

0.04

0.06

0.08

0.10

0.12

0.14

0.16

m=32, = 0.002 (= 0.25)

10 1 2 × 10 1 3 × 10 14 × 10 1 6 × 10 1

Adaptive worst-case sharpness (normalized)

0.04

0.06

0.08

0.10

0.12

0.14

0.16

m=32, = 0.004 (= 0.19)

1004 × 10 1 6 × 10 1

Adaptive worst-case sharpness (normalized)

0.04

0.06

0.08

0.10

0.12

0.14

0.16

m=32, = 0.008 (= 0.06)

log2 LR
3.0
1.5

0.0
1.5

Augment.
False
True

Mixup
False
True

Adaptive worst-case ℓ∞ sharpness (normalized) for ResNets-18 (m = 64)

10 2 10 1

Adaptive worst-case sharpness (normalized)

0.04

0.06

0.08

0.10

0.12

0.14

0.16

Te
st

 e
rro

r

m=64, = 0.001 (= 0.30)

10 1

Adaptive worst-case sharpness (normalized)

0.04

0.06

0.08

0.10

0.12

0.14

0.16

m=64, = 0.002 (= 0.28)

10 1 2 × 10 1 3 × 10 14 × 10 1 6 × 10 1

Adaptive worst-case sharpness (normalized)

0.04

0.06

0.08

0.10

0.12

0.14

0.16

m=64, = 0.004 (= 0.21)

3 × 10 1 4 × 10 1 6 × 10 1

Adaptive worst-case sharpness (normalized)

0.04

0.06

0.08

0.10

0.12

0.14

0.16

m=64, = 0.008 (= 0.05)

log2 LR
3.0
1.5

0.0
1.5

Augment.
False
True

Mixup
False
True

Adaptive worst-case ℓ∞ sharpness (normalized) for ResNets-18 (m = 128)

10 2 10 1

Adaptive worst-case sharpness (normalized)

0.04

0.06

0.08

0.10

0.12

0.14

0.16

Te
st

 e
rro

r

m=128, = 0.001 (= 0.30)

10 1

Adaptive worst-case sharpness (normalized)

0.04

0.06

0.08

0.10

0.12

0.14

0.16

m=128, = 0.002 (= 0.29)

10 1

Adaptive worst-case sharpness (normalized)

0.04

0.06

0.08

0.10

0.12

0.14

0.16

m=128, = 0.004 (= 0.21)

3 × 10 1 4 × 10 1 6 × 10 1

Adaptive worst-case sharpness (normalized)

0.04

0.06

0.08

0.10

0.12

0.14

0.16

m=128, = 0.008 (= 0.04)

log2 LR
3.0
1.5

0.0
1.5

Augment.
False
True

Mixup
False
True

Figure 7.31: Adaptive worst-case ℓ∞ sharpness (normalized) for different m in m-sharpness
vs. test error on CIFAR-10 for ResNets-18 for different radii ρ.

239

Chapter 7. A Modern Look at the Relationship between Sharpness and
Generalization

Adaptive worst-case ℓ∞ sharpness (normalized) for ViTs (m = 16)

10 2 2 × 10 2 3 × 10 24 × 10 2 6 × 10 2

Adaptive worst-case sharpness (normalized)

0.100

0.125

0.150

0.175

0.200

0.225

0.250

0.275

Te
st

 e
rro

r

m=16, = 0.0005 (= 0.17)

10 12 × 10 2 3 × 10 24 × 10 2 6 × 10 2

Adaptive worst-case sharpness (normalized)

0.100

0.125

0.150

0.175

0.200

0.225

0.250

0.275

m=16, = 0.001 (= 0.22)

10 16 × 10 2 2 × 10 1 3 × 10 14 × 10 1

Adaptive worst-case sharpness (normalized)

0.100

0.125

0.150

0.175

0.200

0.225

0.250

0.275

m=16, = 0.002 (= 0.33)

1002 × 10 1 3 × 10 14 × 10 1 6 × 10 1

Adaptive worst-case sharpness (normalized)

0.100

0.125

0.150

0.175

0.200

0.225

0.250

0.275

m=16, = 0.004 (= 0.34)

log2 LR
7.5
6.0
4.5
3.0
1.5

Augment.
False
True

Mixup
False
True

Adaptive worst-case ℓ∞ sharpness (normalized) for ViTs (m = 32)

10 2 2 × 10 2 3 × 10 24 × 10 2

Adaptive worst-case sharpness (normalized)

0.100

0.125

0.150

0.175

0.200

0.225

0.250

0.275

Te
st

 e
rro

r

m=32, = 0.0005 (= 0.17)

10 12 × 10 2 3 × 10 24 × 10 2 6 × 10 2

Adaptive worst-case sharpness (normalized)

0.100

0.125

0.150

0.175

0.200

0.225

0.250

0.275

m=32, = 0.001 (= 0.21)

10 14 × 10 2 6 × 10 2 2 × 10 1 3 × 10 1

Adaptive worst-case sharpness (normalized)

0.100

0.125

0.150

0.175

0.200

0.225

0.250

0.275

m=32, = 0.002 (= 0.31)

10 1 2 × 10 1 3 × 10 14 × 10 1 6 × 10 1

Adaptive worst-case sharpness (normalized)

0.100

0.125

0.150

0.175

0.200

0.225

0.250

0.275

m=32, = 0.004 (= 0.36)

log2 LR
7.5
6.0
4.5
3.0
1.5

Augment.
False
True

Mixup
False
True

Adaptive worst-case ℓ∞ sharpness (normalized) for ViTs (m = 64)

10 26 × 10 3 2 × 10 2 3 × 10 2

Adaptive worst-case sharpness (normalized)

0.100

0.125

0.150

0.175

0.200

0.225

0.250

0.275

Te
st

 e
rro

r

m=64, = 0.0005 (= 0.18)

10 2 2 × 10 2 3 × 10 24 × 10 2 6 × 10 2

Adaptive worst-case sharpness (normalized)

0.100

0.125

0.150

0.175

0.200

0.225

0.250

0.275

m=64, = 0.001 (= 0.21)

10 13 × 10 24 × 10 2 6 × 10 2 2 × 10 1

Adaptive worst-case sharpness (normalized)

0.100

0.125

0.150

0.175

0.200

0.225

0.250

0.275

m=64, = 0.002 (= 0.29)

10 1

Adaptive worst-case sharpness (normalized)

0.100

0.125

0.150

0.175

0.200

0.225

0.250

0.275

m=64, = 0.004 (= 0.37)

log2 LR
7.5
6.0
4.5
3.0
1.5

Augment.
False
True

Mixup
False
True

Adaptive worst-case ℓ∞ sharpness (normalized) for ViTs (m = 128)

10 24 × 10 3 6 × 10 3 2 × 10 2

Adaptive worst-case sharpness (normalized)

0.100

0.125

0.150

0.175

0.200

0.225

0.250

0.275

Te
st

 e
rro

r

m=128, = 0.0005 (= 0.20)

10 2 2 × 10 2 3 × 10 24 × 10 2 6 × 10 2

Adaptive worst-case sharpness (normalized)

0.100

0.125

0.150

0.175

0.200

0.225

0.250

0.275

m=128, = 0.001 (= 0.22)

10 1

Adaptive worst-case sharpness (normalized)

0.100

0.125

0.150

0.175

0.200

0.225

0.250

0.275

m=128, = 0.002 (= 0.29)

10 1

Adaptive worst-case sharpness (normalized)

0.100

0.125

0.150

0.175

0.200

0.225

0.250

0.275

m=128, = 0.004 (= 0.39)

log2 LR
7.5
6.0
4.5
3.0
1.5

Augment.
False
True

Mixup
False
True

Figure 7.32: Adaptive worst-case ℓ∞ sharpness (normalized) for different m in m-sharpness
vs. test error on CIFAR-10 for ViTs for different radii ρ.

240

7.15 Training from Scratch on CIFAR-10: Extra Details and Figures

7.15.4 The Role of Different Sharpness Definitions and Radii

Here we present results for 12 different sharpness definitions:

• standard average-case ℓ2 (Gaussian perturbations) sharpness without logit normal-
ization,

• standard worst-case ℓ2 sharpness without logit normalization,

• adaptive average-case ℓ2 (Gaussian perturbations) sharpness without logit normal-
ization,

• adaptive worst-case ℓ2 sharpness without logit normalization,

• adaptive average-case ℓ2 (Gaussian perturbations) sharpness with logit normaliza-
tion,

• adaptive worst-case ℓ2 sharpness with logit normalization,

• standard average-case ℓ∞ (uniform perturbations) sharpness without logit normal-
ization,

• standard worst-case ℓ∞ sharpness without logit normalization,

• adaptive average-case ℓ∞ (uniform perturbations) sharpness without logit normal-
ization,

• adaptive worst-case ℓ∞ sharpness without logit normalization (shown in the main
part for a single ρ),

• adaptive average-case ℓ∞ (uniform perturbations) sharpness with logit normaliza-
tion,

• adaptive worst-case ℓ∞ sharpness with logit normalization (shown in the main part
for a single ρ).

We evaluate a wide range of radii for each sharpness definition to make sure that we do
not miss the right scale of sharpness. We present results first for ResNets and then for
ViTs.

Observations for ResNets. For ResNets, we observe that many sharpness definitions
can successfully capture correlation with standard generalization within each subgroup
defined by the values of augment × mixup. In particular, on average, adaptive sharpness
shows a better correlation with generalization within each subgroup, and the best corre-
lation within each subgroup is achieved by ℓ∞ adaptive worst-case sharpness with logit
normalization for a small ρ. In many cases, the correlation of sharpness with OOD gener-
alization on CIFAR-10-C is noticeably lower compared to the correlation of sharpness with
standard generalization. Overall, we see that there is no coherent global trend of correla-
tion with generalization that would apply to all models at once. We also observe that for

241

Chapter 7. A Modern Look at the Relationship between Sharpness and
Generalization

some sharpness definitions, the flattest models generalize best (for adaptive worst-case ℓ2
sharpness with normalization for the smallest ρ and for adaptive worst-case ℓ∞ sharpness
without normalization for the largest ρ) but this appears to be unsystematic and there
exist nearly equally flat solutions that generalize much worse.

Observations for ViTs. For ViTs, in contrast to ResNets, we do not observe a con-
sistent correlation with generalization even within subgroups. The only exception is the
subgroup of points with augmentations where multiple definitions of sharpness tend to
correlate with generalization and capture the effect of larger learning rate. We think it
is likely due to the fact that with heavy augmentations optimizing the training objective
to smaller values is helpful for generalization, while without augmentations all runs have
converged within 200 epochs and the learning rate plays no visible role for generalization
there. Globally, when taken over all models, the correlation with standard generalization is
close to 0 and tends to slightly decrease when we measure OOD generalization on CIFAR-
10-C. Finally, we note that there are no cases where the flattest ViT models achieve the
best generalization. Thus, even our weak hypothesis about the role of sharpness is not
confirmed here.

242

7.15 Training from Scratch on CIFAR-10: Extra Details and Figures

Standard average-case ℓ2 (Gaussian perturbations) sharpness (unnormalized)
for ResNets-18

10 6 10 4 10 2 100 102

Standard avg-case sharpness

0.04

0.06

0.08

0.10

0.12

0.14

0.16

Te
st

 e
rro

r

 = 0.05 (= 0.14)

10 5 10 3 10 1 101 103

Standard avg-case sharpness

0.04

0.06

0.08

0.10

0.12

0.14

0.16

 = 0.1 (= 0.26)

10 2 100 102 104 106 108

Standard avg-case sharpness

0.04

0.06

0.08

0.10

0.12

0.14

0.16

 = 0.2 (= 0.28)

101 103 105 107 109 1011 1013

Standard avg-case sharpness

0.04

0.06

0.08

0.10

0.12

0.14

0.16

 = 0.4 (= 0.28)

log2 LR
3.0
1.5

0.0
1.5

Augment.
False
True

Mixup
False
True

10 6 10 4 10 2 100 102

Standard avg-case sharpness

0.275

0.300

0.325

0.350

0.375

0.400

0.425

0.450

Te
st

 e
rro

r (
co

rru
pt

io
ns

)

 = 0.05 (= 0.04)

10 5 10 3 10 1 101 103

Standard avg-case sharpness

0.275

0.300

0.325

0.350

0.375

0.400

0.425

0.450
 = 0.1 (= 0.19)

10 2 100 102 104 106 108

Standard avg-case sharpness

0.275

0.300

0.325

0.350

0.375

0.400

0.425

0.450
 = 0.2 (= 0.21)

101 103 105 107 109 1011 1013

Standard avg-case sharpness

0.275

0.300

0.325

0.350

0.375

0.400

0.425

0.450
 = 0.4 (= 0.20)

log2 LR
3.0
1.5

0.0
1.5

Augment.
False
True

Mixup
False
True

Standard worst-case ℓ2 sharpness (unnormalized) for ResNets-18

10 5 10 4 10 3 10 2 10 1 100 101

Standard 2 worst-case sharpness

0.04

0.06

0.08

0.10

0.12

0.14

0.16

Te
st

 e
rro

r

 = 0.25 (= 0.17)

10 2 10 1 100 101 102

Standard 2 worst-case sharpness

0.04

0.06

0.08

0.10

0.12

0.14

0.16

 = 0.5 (= 0.24)

10 1 100 101 102 103

Standard 2 worst-case sharpness

0.04

0.06

0.08

0.10

0.12

0.14

0.16

 = 1.0 (= 0.25)

100 101 102 103 104 105

Standard 2 worst-case sharpness

0.04

0.06

0.08

0.10

0.12

0.14

0.16

 = 2.0 (= 0.22)

log2 LR
3.0
1.5

0.0
1.5

Augment.
False
True

Mixup
False
True

10 5 10 4 10 3 10 2 10 1 100 101

Standard 2 worst-case sharpness

0.275

0.300

0.325

0.350

0.375

0.400

0.425

0.450

Te
st

 e
rro

r (
co

rru
pt

io
ns

)

 = 0.25 (= 0.10)

10 2 10 1 100 101 102

Standard 2 worst-case sharpness

0.275

0.300

0.325

0.350

0.375

0.400

0.425

0.450
 = 0.5 (= 0.16)

10 1 100 101 102 103

Standard 2 worst-case sharpness

0.275

0.300

0.325

0.350

0.375

0.400

0.425

0.450
 = 1.0 (= 0.18)

100 101 102 103 104 105

Standard 2 worst-case sharpness

0.275

0.300

0.325

0.350

0.375

0.400

0.425

0.450
 = 2.0 (= 0.14)

log2 LR
3.0
1.5

0.0
1.5

Augment.
False
True

Mixup
False
True

Figure 7.33: Average and worst-case ℓ2 standard sharpness definitions (unnormalized) vs. test
error and OOD test error (common corruptions) on CIFAR-10 for ResNets-18 for different radii ρ.

243

Chapter 7. A Modern Look at the Relationship between Sharpness and
Generalization

Adaptive average-case ℓ2 (Gaussian perturbations) sharpness (unnormalized)
for ResNets-18

10 6 10 5 10 4 10 3

Adaptive avg-case sharpness

0.04

0.06

0.08

0.10

0.12

0.14

0.16

Te
st

 e
rro

r

 = 0.05 (= 0.37)

10 5 10 4 10 3 10 2

Adaptive avg-case sharpness

0.04

0.06

0.08

0.10

0.12

0.14

0.16

 = 0.1 (= 0.50)

10 2 10 1

Adaptive avg-case sharpness

0.04

0.06

0.08

0.10

0.12

0.14

0.16

 = 0.2 (= 0.42)

101

Adaptive avg-case sharpness

0.04

0.06

0.08

0.10

0.12

0.14

0.16

 = 0.4 (= 0.31)

log2 LR
3.0
1.5

0.0
1.5

Augment.
False
True

Mixup
False
True

10 6 10 5 10 4 10 3

Adaptive avg-case sharpness

0.275

0.300

0.325

0.350

0.375

0.400

0.425

0.450

Te
st

 e
rro

r (
co

rru
pt

io
ns

)

 = 0.05 (= 0.46)

10 5 10 4 10 3 10 2

Adaptive avg-case sharpness

0.275

0.300

0.325

0.350

0.375

0.400

0.425

0.450
 = 0.1 (= 0.53)

10 2 10 1

Adaptive avg-case sharpness

0.275

0.300

0.325

0.350

0.375

0.400

0.425

0.450
 = 0.2 (= 0.41)

101

Adaptive avg-case sharpness

0.275

0.300

0.325

0.350

0.375

0.400

0.425

0.450
 = 0.4 (= 0.31)

log2 LR
3.0
1.5

0.0
1.5

Augment.
False
True

Mixup
False
True

Adaptive worst-case ℓ2 sharpness (unnormalized) for ResNets-18

10 5 10 4 10 3 10 2

Adaptive 2 worst-case sharpness

0.04

0.06

0.08

0.10

0.12

0.14

0.16

Te
st

 e
rro

r

 = 0.25 (= 0.36)

10 3 10 2 10 1

Adaptive 2 worst-case sharpness

0.04

0.06

0.08

0.10

0.12

0.14

0.16

 = 0.5 (= 0.42)

10 1 100

Adaptive 2 worst-case sharpness

0.04

0.06

0.08

0.10

0.12

0.14

0.16

 = 1.0 (= 0.27)

100 101 102

Adaptive 2 worst-case sharpness

0.04

0.06

0.08

0.10

0.12

0.14

0.16

 = 2.0 (= 0.17)

log2 LR
3.0
1.5

0.0
1.5

Augment.
False
True

Mixup
False
True

10 5 10 4 10 3 10 2

Adaptive 2 worst-case sharpness

0.275

0.300

0.325

0.350

0.375

0.400

0.425

0.450

Te
st

 e
rro

r (
co

rru
pt

io
ns

)

 = 0.25 (= 0.39)

10 3 10 2 10 1

Adaptive 2 worst-case sharpness

0.275

0.300

0.325

0.350

0.375

0.400

0.425

0.450
 = 0.5 (= 0.36)

10 1 100

Adaptive 2 worst-case sharpness

0.275

0.300

0.325

0.350

0.375

0.400

0.425

0.450
 = 1.0 (= 0.17)

100 101 102

Adaptive 2 worst-case sharpness

0.275

0.300

0.325

0.350

0.375

0.400

0.425

0.450
 = 2.0 (= 0.07)

log2 LR
3.0
1.5

0.0
1.5

Augment.
False
True

Mixup
False
True

Figure 7.34: Average and worst-case ℓ2 adaptive sharpness definitions (unnormalized) vs. test
error and OOD test error (common corruptions) on CIFAR-10 for ResNets-18 for different radii ρ.

244

7.15 Training from Scratch on CIFAR-10: Extra Details and Figures

Adaptive average-case ℓ2 (Gaussian perturbations) sharpness (normalized)
for ResNets-18

10 23 × 10 34 × 10 3 6 × 10 3

Adaptive avg-case sharpness (normalized)

0.04

0.06

0.08

0.10

0.12

0.14

0.16

Te
st

 e
rro

r

 = 0.05 (= 0.18)

10 2 2 × 10 2 3 × 10 2 4 × 10 2

Adaptive avg-case sharpness (normalized)

0.04

0.06

0.08

0.10

0.12

0.14

0.16

 = 0.1 (= 0.07)

10 16 × 10 2 2 × 10 1 3 × 10 1

Adaptive avg-case sharpness (normalized)

0.04

0.06

0.08

0.10

0.12

0.14

0.16

 = 0.2 (= 0.14)

3 × 10 1 4 × 10 1 6 × 10 1

Adaptive avg-case sharpness (normalized)

0.04

0.06

0.08

0.10

0.12

0.14

0.16

 = 0.4 (= 0.43)

log2 LR
3.0
1.5

0.0
1.5

Augment.
False
True

Mixup
False
True

10 23 × 10 34 × 10 3 6 × 10 3

Adaptive avg-case sharpness (normalized)

0.275

0.300

0.325

0.350

0.375

0.400

0.425

0.450

Te
st

 e
rro

r (
co

rru
pt

io
ns

)

 = 0.05 (= 0.07)

10 2 2 × 10 2 3 × 10 2 4 × 10 2

Adaptive avg-case sharpness (normalized)

0.275

0.300

0.325

0.350

0.375

0.400

0.425

0.450
 = 0.1 (= 0.04)

10 16 × 10 2 2 × 10 1 3 × 10 1

Adaptive avg-case sharpness (normalized)

0.275

0.300

0.325

0.350

0.375

0.400

0.425

0.450
 = 0.2 (= 0.26)

3 × 10 1 4 × 10 1 6 × 10 1

Adaptive avg-case sharpness (normalized)

0.275

0.300

0.325

0.350

0.375

0.400

0.425

0.450
 = 0.4 (= 0.58)

log2 LR
3.0
1.5

0.0
1.5

Augment.
False
True

Mixup
False
True

Adaptive worst-case ℓ2 sharpness (normalized) for ResNets-18

10 2

Adaptive 2 worst-case sharpness (normalized)

0.04

0.06

0.08

0.10

0.12

0.14

0.16

Te
st

 e
rro

r

 = 0.25 (= 0.19)

10 1

Adaptive 2 worst-case sharpness (normalized)

0.04

0.06

0.08

0.10

0.12

0.14

0.16

 = 0.5 (= 0.07)

10 1 2 × 10 1 3 × 10 14 × 10 1 6 × 10 1

Adaptive 2 worst-case sharpness (normalized)

0.04

0.06

0.08

0.10

0.12

0.14

0.16

 = 1.0 (= 0.13)

1004 × 10 1 6 × 10 1

Adaptive 2 worst-case sharpness (normalized)

0.04

0.06

0.08

0.10

0.12

0.14

0.16

 = 2.0 (= 0.52)

log2 LR
3.0
1.5

0.0
1.5

Augment.
False
True

Mixup
False
True

10 2

Adaptive 2 worst-case sharpness (normalized)

0.275

0.300

0.325

0.350

0.375

0.400

0.425

0.450

Te
st

 e
rro

r (
co

rru
pt

io
ns

)

 = 0.25 (= 0.14)

10 1

Adaptive 2 worst-case sharpness (normalized)

0.275

0.300

0.325

0.350

0.375

0.400

0.425

0.450
 = 0.5 (= 0.00)

10 1 2 × 10 1 3 × 10 14 × 10 1 6 × 10 1

Adaptive 2 worst-case sharpness (normalized)

0.275

0.300

0.325

0.350

0.375

0.400

0.425

0.450
 = 1.0 (= 0.22)

1004 × 10 1 6 × 10 1

Adaptive 2 worst-case sharpness (normalized)

0.275

0.300

0.325

0.350

0.375

0.400

0.425

0.450
 = 2.0 (= 0.58)

log2 LR
3.0
1.5

0.0
1.5

Augment.
False
True

Mixup
False
True

Figure 7.35: Average and worst-case ℓ2 adaptive sharpness definitions (normalized) vs. test error
and OOD test error (common corruptions) on CIFAR-10 for ResNets-18 for different radii ρ.

245

Chapter 7. A Modern Look at the Relationship between Sharpness and
Generalization

Standard average-case ℓ∞ (uniform perturbations) sharpness (unnormalized)
for ResNets-18

10 6 10 4 10 2 100 102

Standard avg-case sharpness

0.04

0.06

0.08

0.10

0.12

0.14

0.16

Te
st

 e
rro

r

 = 0.1 (= 0.16)

10 4 10 2 100 102 104

Standard avg-case sharpness

0.04

0.06

0.08

0.10

0.12

0.14

0.16

 = 0.2 (= 0.28)

10 1 101 103 105 107 109

Standard avg-case sharpness

0.04

0.06

0.08

0.10

0.12

0.14

0.16

 = 0.4 (= 0.28)

101 103 105 107 109 1011 1013 1015

Standard avg-case sharpness

0.04

0.06

0.08

0.10

0.12

0.14

0.16

 = 0.8 (= 0.28)

log2 LR
3.0
1.5

0.0
1.5

Augment.
False
True

Mixup
False
True

10 6 10 4 10 2 100 102

Standard avg-case sharpness

0.275

0.300

0.325

0.350

0.375

0.400

0.425

0.450

Te
st

 e
rro

r (
co

rru
pt

io
ns

)

 = 0.1 (= 0.08)

10 4 10 2 100 102 104

Standard avg-case sharpness

0.275

0.300

0.325

0.350

0.375

0.400

0.425

0.450
 = 0.2 (= 0.21)

10 1 101 103 105 107 109

Standard avg-case sharpness

0.275

0.300

0.325

0.350

0.375

0.400

0.425

0.450
 = 0.4 (= 0.20)

102 105 108 1011 1014

Standard avg-case sharpness

0.275

0.300

0.325

0.350

0.375

0.400

0.425

0.450
 = 0.8 (= 0.20)

log2 LR
3.0
1.5

0.0
1.5

Augment.
False
True

Mixup
False
True

Standard worst-case ℓ∞ sharpness (unnormalized) for ResNets-18

10 2 10 1 100 101 102

Standard worst-case sharpness

0.04

0.06

0.08

0.10

0.12

0.14

0.16

Te
st

 e
rro

r

 = 0.0005 (= 0.29)

10 1 100 101 102 103

Standard worst-case sharpness

0.04

0.06

0.08

0.10

0.12

0.14

0.16

 = 0.001 (= 0.30)

100 101 102 103 104 105

Standard worst-case sharpness

0.04

0.06

0.08

0.10

0.12

0.14

0.16

 = 0.002 (= 0.30)

101 102 103 104 105 106 107

Standard worst-case sharpness

0.04

0.06

0.08

0.10

0.12

0.14

0.16

 = 0.004 (= 0.29)

log2 LR
3.0
1.5

0.0
1.5

Augment.
False
True

Mixup
False
True

10 2 10 1 100 101 102

Standard worst-case sharpness

0.275

0.300

0.325

0.350

0.375

0.400

0.425

0.450

Te
st

 e
rro

r (
co

rru
pt

io
ns

)

 = 0.0005 (= 0.23)

10 1 100 101 102 103

Standard worst-case sharpness

0.275

0.300

0.325

0.350

0.375

0.400

0.425

0.450
 = 0.001 (= 0.24)

100 101 102 103 104 105

Standard worst-case sharpness

0.275

0.300

0.325

0.350

0.375

0.400

0.425

0.450
 = 0.002 (= 0.24)

101 102 103 104 105 106 107

Standard worst-case sharpness

0.275

0.300

0.325

0.350

0.375

0.400

0.425

0.450
 = 0.004 (= 0.23)

log2 LR
3.0
1.5

0.0
1.5

Augment.
False
True

Mixup
False
True

Figure 7.36: Average and worst-case ℓ∞ standard sharpness definitions (unnormalized) vs. test
error and OOD test error (common corruptions) on CIFAR-10 for ResNets-18 for different radii ρ.

246

7.15 Training from Scratch on CIFAR-10: Extra Details and Figures

Adaptive average-case ℓ∞ (uniform perturbations) sharpness (unnormalized)
for ResNets-18

10 6 10 5 10 4 10 3 10 2

Adaptive avg-case sharpness

0.04

0.06

0.08

0.10

0.12

0.14

0.16

Te
st

 e
rro

r

 = 0.1 (= 0.36)

10 4 10 3 10 2

Adaptive avg-case sharpness

0.04

0.06

0.08

0.10

0.12

0.14

0.16

 = 0.2 (= 0.53)

10 1 100

Adaptive avg-case sharpness

0.04

0.06

0.08

0.10

0.12

0.14

0.16

 = 0.4 (= 0.41)

101

Adaptive avg-case sharpness

0.04

0.06

0.08

0.10

0.12

0.14

0.16

 = 0.8 (= 0.20)

log2 LR
3.0
1.5

0.0
1.5

Augment.
False
True

Mixup
False
True

10 6 10 5 10 4 10 3 10 2

Adaptive avg-case sharpness

0.275

0.300

0.325

0.350

0.375

0.400

0.425

0.450

Te
st

 e
rro

r (
co

rru
pt

io
ns

)

 = 0.1 (= 0.47)

10 4 10 3 10 2

Adaptive avg-case sharpness

0.275

0.300

0.325

0.350

0.375

0.400

0.425

0.450
 = 0.2 (= 0.56)

10 1 100

Adaptive avg-case sharpness

0.275

0.300

0.325

0.350

0.375

0.400

0.425

0.450
 = 0.4 (= 0.41)

101

Adaptive avg-case sharpness

0.275

0.300

0.325

0.350

0.375

0.400

0.425

0.450
 = 0.8 (= 0.18)

log2 LR
3.0
1.5

0.0
1.5

Augment.
False
True

Mixup
False
True

Adaptive worst-case ℓ∞ sharpness (unnormalized) for ResNets-18

10 3 10 2 10 1

Adaptive worst-case sharpness

0.04

0.06

0.08

0.10

0.12

0.14

0.16

Te
st

 e
rro

r

 = 0.001 (= 0.36)

10 1 100

Adaptive worst-case sharpness

0.04

0.06

0.08

0.10

0.12

0.14

0.16

 = 0.002 (= 0.05)

100 101

Adaptive worst-case sharpness

0.04

0.06

0.08

0.10

0.12

0.14

0.16

 = 0.004 (= 0.25)

101 102

Adaptive worst-case sharpness

0.04

0.06

0.08

0.10

0.12

0.14

0.16

 = 0.008 (= 0.26)

log2 LR
3.0
1.5

0.0
1.5

Augment.
False
True

Mixup
False
True

10 3 10 2 10 1

Adaptive worst-case sharpness

0.275

0.300

0.325

0.350

0.375

0.400

0.425

0.450

Te
st

 e
rro

r (
co

rru
pt

io
ns

)

 = 0.001 (= 0.42)

10 1 100

Adaptive worst-case sharpness

0.275

0.300

0.325

0.350

0.375

0.400

0.425

0.450
 = 0.002 (= 0.10)

100 101

Adaptive worst-case sharpness

0.275

0.300

0.325

0.350

0.375

0.400

0.425

0.450
 = 0.004 (= 0.20)

101 102

Adaptive worst-case sharpness

0.275

0.300

0.325

0.350

0.375

0.400

0.425

0.450
 = 0.008 (= 0.24)

log2 LR
3.0
1.5

0.0
1.5

Augment.
False
True

Mixup
False
True

Figure 7.37: Average and worst-case ℓ∞ adaptive sharpness definitions (unnormalized) vs. test
error and OOD test error (common corruptions) on CIFAR-10 for ResNets-18 for different radii ρ.

247

Chapter 7. A Modern Look at the Relationship between Sharpness and
Generalization

Adaptive average-case ℓ∞ (uniform perturbations) sharpness (normalized) for
ResNets-18

10 23 × 10 34 × 10 3 6 × 10 3 2 × 10 2

Adaptive avg-case sharpness (normalized)

0.04

0.06

0.08

0.10

0.12

0.14

0.16

Te
st

 e
rro

r

 = 0.1 (= 0.18)

2 × 10 2 3 × 10 2 4 × 10 2 6 × 10 2

Adaptive avg-case sharpness (normalized)

0.04

0.06

0.08

0.10

0.12

0.14

0.16

 = 0.2 (= 0.05)

10 1 2 × 10 1 3 × 10 14 × 10 1

Adaptive avg-case sharpness (normalized)

0.04

0.06

0.08

0.10

0.12

0.14

0.16

 = 0.4 (= 0.23)

4 × 10 1 6 × 10 1

Adaptive avg-case sharpness (normalized)

0.04

0.06

0.08

0.10

0.12

0.14

0.16

 = 0.8 (= 0.46)

log2 LR
3.0
1.5

0.0
1.5

Augment.
False
True

Mixup
False
True

10 23 × 10 34 × 10 3 6 × 10 3 2 × 10 2

Adaptive avg-case sharpness (normalized)

0.275

0.300

0.325

0.350

0.375

0.400

0.425

0.450

Te
st

 e
rro

r (
co

rru
pt

io
ns

)

 = 0.1 (= 0.07)

2 × 10 2 3 × 10 24 × 10 2 6 × 10 2

Adaptive avg-case sharpness (normalized)

0.275

0.300

0.325

0.350

0.375

0.400

0.425

0.450
 = 0.2 (= 0.06)

10 1 2 × 10 1 3 × 10 14 × 10 1

Adaptive avg-case sharpness (normalized)

0.275

0.300

0.325

0.350

0.375

0.400

0.425

0.450
 = 0.4 (= 0.37)

4 × 10 1 6 × 10 1

Adaptive avg-case sharpness (normalized)

0.275

0.300

0.325

0.350

0.375

0.400

0.425

0.450
 = 0.8 (= 0.62)

log2 LR
3.0
1.5

0.0
1.5

Augment.
False
True

Mixup
False
True

Adaptive worst-case ℓ∞ sharpness (normalized) for ResNets-18

10 2 10 1

Adaptive worst-case sharpness (normalized)

0.04

0.06

0.08

0.10

0.12

0.14

0.16

Te
st

 e
rro

r

 = 0.001 (= 0.30)

10 1

Adaptive worst-case sharpness (normalized)

0.04

0.06

0.08

0.10

0.12

0.14

0.16

 = 0.002 (= 0.29)

10 1

Adaptive worst-case sharpness (normalized)

0.04

0.06

0.08

0.10

0.12

0.14

0.16

 = 0.004 (= 0.21)

3 × 10 1 4 × 10 1 6 × 10 1

Adaptive worst-case sharpness (normalized)

0.04

0.06

0.08

0.10

0.12

0.14

0.16

 = 0.008 (= 0.04)

log2 LR
3.0
1.5

0.0
1.5

Augment.
False
True

Mixup
False
True

10 2 10 1

Adaptive worst-case sharpness (normalized)

0.275

0.300

0.325

0.350

0.375

0.400

0.425

0.450

Te
st

 e
rro

r (
co

rru
pt

io
ns

)

 = 0.001 (= 0.18)

10 1

Adaptive worst-case sharpness (normalized)

0.275

0.300

0.325

0.350

0.375

0.400

0.425

0.450
 = 0.002 (= 0.16)

10 1

Adaptive worst-case sharpness (normalized)

0.275

0.300

0.325

0.350

0.375

0.400

0.425

0.450
 = 0.004 (= 0.07)

3 × 10 1 4 × 10 1 6 × 10 1

Adaptive worst-case sharpness (normalized)

0.275

0.300

0.325

0.350

0.375

0.400

0.425

0.450
 = 0.008 (= 0.19)

log2 LR
3.0
1.5

0.0
1.5

Augment.
False
True

Mixup
False
True

Figure 7.38: Average and worst-case ℓ∞ adaptive sharpness definitions (normalized) vs. test
error and OOD test error (common corruptions) on CIFAR-10 for ResNets-18 for different radii ρ.

248

7.15 Training from Scratch on CIFAR-10: Extra Details and Figures

Standard average-case ℓ2 (Gaussian perturbations) sharpness (unnormalized)
for ViTs

10 6 10 5 10 4 10 3 10 2

Standard avg-case sharpness

0.100

0.125

0.150

0.175

0.200

0.225

0.250

0.275

Te
st

 e
rro

r

 = 0.005 (= 0.45)

10 6 10 5 10 4 10 3 10 2 10 1

Standard avg-case sharpness

0.100

0.125

0.150

0.175

0.200

0.225

0.250

0.275

 = 0.01 (= 0.39)

10 5 10 4 10 3 10 2 10 1 100

Standard avg-case sharpness

0.100

0.125

0.150

0.175

0.200

0.225

0.250

0.275

 = 0.02 (= 0.20)

10 3 10 2 10 1 100

Standard avg-case sharpness

0.100

0.125

0.150

0.175

0.200

0.225

0.250

0.275

 = 0.04 (= 0.08)

log2 LR
7.5
6.0
4.5
3.0
1.5

Augment.
False
True

Mixup
False
True

10 6 10 5 10 4 10 3 10 2

Standard avg-case sharpness

0.36

0.38

0.40

0.42

0.44

0.46

Te
st

 e
rro

r (
co

rru
pt

io
ns

)

 = 0.005 (= 0.54)

10 6 10 5 10 4 10 3 10 2 10 1

Standard avg-case sharpness

0.36

0.38

0.40

0.42

0.44

0.46

 = 0.01 (= 0.49)

10 5 10 4 10 3 10 2 10 1 100

Standard avg-case sharpness

0.36

0.38

0.40

0.42

0.44

0.46

 = 0.02 (= 0.31)

10 3 10 2 10 1 100

Standard avg-case sharpness

0.36

0.38

0.40

0.42

0.44

0.46

 = 0.04 (= 0.20)

log2 LR
7.5
6.0
4.5
3.0
1.5

Augment.
False
True

Mixup
False
True

Standard worst-case ℓ2 sharpness (unnormalized) for ViTs

10 5 10 4 10 3 10 2 10 1

Standard 2 worst-case sharpness

0.100

0.125

0.150

0.175

0.200

0.225

0.250

0.275

Te
st

 e
rro

r

 = 0.025 (= 0.59)

10 4 10 3 10 2 10 1

Standard 2 worst-case sharpness

0.100

0.125

0.150

0.175

0.200

0.225

0.250

0.275

 = 0.05 (= 0.37)

10 2 10 1

Standard 2 worst-case sharpness

0.100

0.125

0.150

0.175

0.200

0.225

0.250

0.275

 = 0.1 (= 0.16)

10 1 100

Standard 2 worst-case sharpness

0.100

0.125

0.150

0.175

0.200

0.225

0.250

0.275

 = 0.2 (= 0.12)

log2 LR
7.5
6.0
4.5
3.0
1.5

Augment.
False
True

Mixup
False
True

10 5 10 4 10 3 10 2 10 1

Standard 2 worst-case sharpness

0.36

0.38

0.40

0.42

0.44

0.46

Te
st

 e
rro

r (
co

rru
pt

io
ns

)

 = 0.025 (= 0.62)

10 4 10 3 10 2 10 1

Standard 2 worst-case sharpness

0.36

0.38

0.40

0.42

0.44

0.46

 = 0.05 (= 0.43)

10 2 10 1

Standard 2 worst-case sharpness

0.36

0.38

0.40

0.42

0.44

0.46

 = 0.1 (= 0.24)

10 1 100

Standard 2 worst-case sharpness

0.36

0.38

0.40

0.42

0.44

0.46

 = 0.2 (= 0.20)

log2 LR
7.5
6.0
4.5
3.0
1.5

Augment.
False
True

Mixup
False
True

Figure 7.39: Average and worst-case ℓ2 standard sharpness definitions (unnormalized) vs. test
error and OOD test error (common corruptions) on CIFAR-10 for ViTs for different radii ρ.

249

Chapter 7. A Modern Look at the Relationship between Sharpness and
Generalization

Adaptive average-case ℓ2 (Gaussian perturbations) sharpness (unnormalized)
for ViTs

10 5 10 4 10 3 10 2

Adaptive avg-case sharpness

0.100

0.125

0.150

0.175

0.200

0.225

0.250

0.275

Te
st

 e
rro

r

 = 0.1 (= 0.45)

10 3 10 2 10 1

Adaptive avg-case sharpness

0.100

0.125

0.150

0.175

0.200

0.225

0.250

0.275

 = 0.2 (= 0.45)

10 1 100

Adaptive avg-case sharpness

0.100

0.125

0.150

0.175

0.200

0.225

0.250

0.275

 = 0.4 (= 0.42)

2 × 100 3 × 100 4 × 100 6 × 100

Adaptive avg-case sharpness

0.100

0.125

0.150

0.175

0.200

0.225

0.250

0.275

 = 0.8 (= 0.10)

log2 LR
7.5
6.0
4.5
3.0
1.5

Augment.
False
True

Mixup
False
True

10 5 10 4 10 3 10 2

Adaptive avg-case sharpness

0.36

0.38

0.40

0.42

0.44

0.46

Te
st

 e
rro

r (
co

rru
pt

io
ns

)

 = 0.1 (= 0.50)

10 3 10 2 10 1

Adaptive avg-case sharpness

0.36

0.38

0.40

0.42

0.44

0.46

 = 0.2 (= 0.45)

10 1 100

Adaptive avg-case sharpness

0.36

0.38

0.40

0.42

0.44

0.46

 = 0.4 (= 0.47)

2 × 100 3 × 100 4 × 100 6 × 100

Adaptive avg-case sharpness

0.36

0.38

0.40

0.42

0.44

0.46

 = 0.8 (= 0.08)

log2 LR
7.5
6.0
4.5
3.0
1.5

Augment.
False
True

Mixup
False
True

Adaptive worst-case ℓ2 sharpness (unnormalized) for ViTs

10 3 10 2

Adaptive 2 worst-case sharpness

0.100

0.125

0.150

0.175

0.200

0.225

0.250

0.275

Te
st

 e
rro

r

 = 0.5 (= 0.64)

10 2 10 1

Adaptive 2 worst-case sharpness

0.100

0.125

0.150

0.175

0.200

0.225

0.250

0.275

 = 1.0 (= 0.32)

10 1 100

Adaptive 2 worst-case sharpness

0.100

0.125

0.150

0.175

0.200

0.225

0.250

0.275

 = 2.0 (= 0.11)

100

Adaptive 2 worst-case sharpness

0.100

0.125

0.150

0.175

0.200

0.225

0.250

0.275

 = 4.0 (= 0.07)

log2 LR
7.5
6.0
4.5
3.0
1.5

Augment.
False
True

Mixup
False
True

10 3 10 2

Adaptive 2 worst-case sharpness

0.36

0.38

0.40

0.42

0.44

0.46

Te
st

 e
rro

r (
co

rru
pt

io
ns

)

 = 0.5 (= 0.53)

10 2 10 1

Adaptive 2 worst-case sharpness

0.38

0.40

0.42

0.44

0.46

 = 1.0 (= 0.19)

10 1 100

Adaptive 2 worst-case sharpness

0.36

0.38

0.40

0.42

0.44

0.46

 = 2.0 (= 0.01)

100

Adaptive 2 worst-case sharpness

0.36

0.38

0.40

0.42

0.44

0.46

 = 4.0 (= 0.03)

log2 LR
7.5
6.0
4.5
3.0
1.5

Augment.
False
True

Mixup
False
True

Figure 7.40: Average and worst-case ℓ2 adaptive sharpness definitions (unnormalized) vs. test
error and OOD test error (common corruptions) on CIFAR-10 for ViTs for different radii ρ.

250

7.15 Training from Scratch on CIFAR-10: Extra Details and Figures

Adaptive average-case ℓ2 (Gaussian perturbations) sharpness (normalized)
for ViTs

10 24 × 10 3 6 × 10 3

Adaptive avg-case sharpness (normalized)

0.100

0.125

0.150

0.175

0.200

0.225

0.250

0.275

Te
st

 e
rro

r

 = 0.1 (= 0.18)

2 × 10 2 3 × 10 2 4 × 10 2 6 × 10 2

Adaptive avg-case sharpness (normalized)

0.100

0.125

0.150

0.175

0.200

0.225

0.250

0.275

 = 0.2 (= 0.28)

10 1 2 × 10 1 3 × 10 14 × 10 1

Adaptive avg-case sharpness (normalized)

0.100

0.125

0.150

0.175

0.200

0.225

0.250

0.275

 = 0.4 (= 0.39)

4 × 10 1 5 × 10 1 6 × 10 1 7 × 10 18 × 10 1

Adaptive avg-case sharpness (normalized)

0.100

0.125

0.150

0.175

0.200

0.225

0.250

0.275

 = 0.8 (= 0.44)

log2 LR
7.5
6.0
4.5
3.0
1.5

Augment.
False
True

Mixup
False
True

10 24 × 10 3 6 × 10 3

Adaptive avg-case sharpness (normalized)

0.36

0.38

0.40

0.42

0.44

0.46

Te
st

 e
rro

r (
co

rru
pt

io
ns

)

 = 0.1 (= 0.31)

2 × 10 2 3 × 10 2 4 × 10 2 6 × 10 2

Adaptive avg-case sharpness (normalized)

0.36

0.38

0.40

0.42

0.44

0.46

 = 0.2 (= 0.40)

10 1 2 × 10 1 3 × 10 14 × 10 1

Adaptive avg-case sharpness (normalized)

0.36

0.38

0.40

0.42

0.44

0.46

 = 0.4 (= 0.46)

4 × 10 1 5 × 10 1 6 × 10 1 7 × 10 18 × 10 1

Adaptive avg-case sharpness (normalized)

0.36

0.38

0.40

0.42

0.44

0.46

 = 0.8 (= 0.52)

log2 LR
7.5
6.0
4.5
3.0
1.5

Augment.
False
True

Mixup
False
True

Adaptive worst-case ℓ2 sharpness (normalized) for ViTs

10 27 × 10 38 × 10 39 × 10 3

Adaptive 2 worst-case sharpness (normalized)

0.100

0.125

0.150

0.175

0.200

0.225

0.250

0.275

Te
st

 e
rro

r

 = 0.5 (= 0.21)

2 × 10 2 3 × 10 2 4 × 10 2

Adaptive 2 worst-case sharpness (normalized)

0.100

0.125

0.150

0.175

0.200

0.225

0.250

0.275

 = 1.0 (= 0.24)

10 16 × 10 2 2 × 10 1 3 × 10 1

Adaptive 2 worst-case sharpness (normalized)

0.100

0.125

0.150

0.175

0.200

0.225

0.250

0.275

 = 2.0 (= 0.22)

2 × 10 1 3 × 10 14 × 10 1 6 × 10 1

Adaptive 2 worst-case sharpness (normalized)

0.100

0.125

0.150

0.175

0.200

0.225

0.250

0.275

 = 4.0 (= 0.14)

log2 LR
7.5
6.0
4.5
3.0
1.5

Augment.
False
True

Mixup
False
True

10 27 × 10 38 × 10 39 × 10 3

Adaptive 2 worst-case sharpness (normalized)

0.36

0.38

0.40

0.42

0.44

0.46

Te
st

 e
rro

r (
co

rru
pt

io
ns

)

 = 0.5 (= 0.12)

2 × 10 2 3 × 10 2 4 × 10 2

Adaptive 2 worst-case sharpness (normalized)

0.36

0.38

0.40

0.42

0.44

0.46

 = 1.0 (= 0.17)

10 16 × 10 2 2 × 10 1 3 × 10 1

Adaptive 2 worst-case sharpness (normalized)

0.36

0.38

0.40

0.42

0.44

0.46

 = 2.0 (= 0.19)

2 × 10 1 3 × 10 1 4 × 10 1 6 × 10 1

Adaptive 2 worst-case sharpness (normalized)

0.36

0.38

0.40

0.42

0.44

0.46

 = 4.0 (= 0.11)

log2 LR
7.5
6.0
4.5
3.0
1.5

Augment.
False
True

Mixup
False
True

Figure 7.41: Average and worst-case ℓ2 adaptive sharpness definitions (normalized) vs. test error
and OOD test error (common corruptions) on CIFAR-10 for ViTs for different radii ρ.

251

Chapter 7. A Modern Look at the Relationship between Sharpness and
Generalization

Standard average-case ℓ∞ (uniform perturbations) sharpness (unnormalized)
for ViTs

10 6 10 5 10 4 10 3 10 2

Standard avg-case sharpness

0.100

0.125

0.150

0.175

0.200

0.225

0.250

0.275

Te
st

 e
rro

r

 = 0.01 (= 0.44)

10 6 10 5 10 4 10 3 10 2 10 1

Standard avg-case sharpness

0.100

0.125

0.150

0.175

0.200

0.225

0.250

0.275

 = 0.02 (= 0.35)

10 5 10 4 10 3 10 2 10 1 100

Standard avg-case sharpness

0.100

0.125

0.150

0.175

0.200

0.225

0.250

0.275

 = 0.04 (= 0.17)

10 2 10 1 100

Standard avg-case sharpness

0.100

0.125

0.150

0.175

0.200

0.225

0.250

0.275

 = 0.08 (= 0.04)

log2 LR
7.5
6.0
4.5
3.0
1.5

Augment.
False
True

Mixup
False
True

10 6 10 5 10 4 10 3 10 2

Standard avg-case sharpness

0.36

0.38

0.40

0.42

0.44

0.46

Te
st

 e
rro

r (
co

rru
pt

io
ns

)

 = 0.01 (= 0.54)

10 6 10 5 10 4 10 3 10 2 10 1

Standard avg-case sharpness

0.36

0.38

0.40

0.42

0.44

0.46

 = 0.02 (= 0.45)

10 5 10 4 10 3 10 2 10 1 100

Standard avg-case sharpness

0.36

0.38

0.40

0.42

0.44

0.46

 = 0.04 (= 0.28)

10 2 10 1 100

Standard avg-case sharpness

0.36

0.38

0.40

0.42

0.44

0.46

 = 0.08 (= 0.14)

log2 LR
7.5
6.0
4.5
3.0
1.5

Augment.
False
True

Mixup
False
True

Standard worst-case ℓ∞ sharpness (unnormalized) for ViTs

10 5 10 4 10 3 10 2 10 1

Standard worst-case sharpness

0.100

0.125

0.150

0.175

0.200

0.225

0.250

0.275

Te
st

 e
rro

r

 = 1e-05 (= 0.61)

10 5 10 4 10 3 10 2 10 1

Standard worst-case sharpness

0.100

0.125

0.150

0.175

0.200

0.225

0.250

0.275

 = 2e-05 (= 0.46)

10 3 10 2 10 1 100

Standard worst-case sharpness

0.100

0.125

0.150

0.175

0.200

0.225

0.250

0.275

 = 4e-05 (= 0.25)

10 1 100

Standard worst-case sharpness

0.100

0.125

0.150

0.175

0.200

0.225

0.250

0.275

 = 8e-05 (= 0.16)

log2 LR
7.5
6.0
4.5
3.0
1.5

Augment.
False
True

Mixup
False
True

10 5 10 4 10 3 10 2 10 1

Standard worst-case sharpness

0.36

0.38

0.40

0.42

0.44

0.46

Te
st

 e
rro

r (
co

rru
pt

io
ns

)

 = 1e-05 (= 0.63)

10 5 10 4 10 3 10 2 10 1

Standard worst-case sharpness

0.36

0.38

0.40

0.42

0.44

0.46

 = 2e-05 (= 0.51)

10 3 10 2 10 1 100

Standard worst-case sharpness

0.36

0.38

0.40

0.42

0.44

0.46

 = 4e-05 (= 0.31)

10 1 100

Standard worst-case sharpness

0.36

0.38

0.40

0.42

0.44

0.46

 = 8e-05 (= 0.22)

log2 LR
7.5
6.0
4.5
3.0
1.5

Augment.
False
True

Mixup
False
True

Figure 7.42: Average and worst-case ℓ∞ standard sharpness definitions (unnormalized) vs. test
error and OOD test error (common corruptions) on CIFAR-10 for ViTs for different radii ρ.

252

7.15 Training from Scratch on CIFAR-10: Extra Details and Figures

Adaptive average-case ℓ∞ (uniform perturbations) sharpness (unnormalized)
for ViTs

10 6 10 5 10 4 10 3

Adaptive avg-case sharpness

0.100

0.125

0.150

0.175

0.200

0.225

0.250

0.275

Te
st

 e
rro

r

 = 0.1 (= 0.45)

10 5 10 4 10 3 10 2

Adaptive avg-case sharpness

0.100

0.125

0.150

0.175

0.200

0.225

0.250

0.275

 = 0.2 (= 0.46)

10 3 10 2 10 1

Adaptive avg-case sharpness

0.100

0.125

0.150

0.175

0.200

0.225

0.250

0.275

 = 0.4 (= 0.45)

100

Adaptive avg-case sharpness

0.100

0.125

0.150

0.175

0.200

0.225

0.250

0.275

 = 0.8 (= 0.41)

log2 LR
7.5
6.0
4.5
3.0
1.5

Augment.
False
True

Mixup
False
True

10 6 10 5 10 4 10 3

Adaptive avg-case sharpness

0.36

0.38

0.40

0.42

0.44

0.46

Te
st

 e
rro

r (
co

rru
pt

io
ns

)

 = 0.1 (= 0.53)

10 5 10 4 10 3 10 2

Adaptive avg-case sharpness

0.36

0.38

0.40

0.42

0.44

0.46

 = 0.2 (= 0.50)

10 3 10 2 10 1

Adaptive avg-case sharpness

0.36

0.38

0.40

0.42

0.44

0.46

 = 0.4 (= 0.44)

100

Adaptive avg-case sharpness

0.36

0.38

0.40

0.42

0.44

0.46

 = 0.8 (= 0.47)

log2 LR
7.5
6.0
4.5
3.0
1.5

Augment.
False
True

Mixup
False
True

Adaptive worst-case ℓ∞ sharpness (unnormalized) for ViTs

10 4 10 3 10 2 10 1

Adaptive worst-case sharpness

0.100

0.125

0.150

0.175

0.200

0.225

0.250

0.275

Te
st

 e
rro

r

 = 0.0005 (= 0.68)

10 3 10 2 10 1

Adaptive worst-case sharpness

0.100

0.125

0.150

0.175

0.200

0.225

0.250

0.275

 = 0.001 (= 0.43)

10 1 100

Adaptive worst-case sharpness

0.100

0.125

0.150

0.175

0.200

0.225

0.250

0.275

 = 0.002 (= 0.26)

100

Adaptive worst-case sharpness

0.100

0.125

0.150

0.175

0.200

0.225

0.250

0.275

 = 0.004 (= 0.18)

log2 LR
7.5
6.0
4.5
3.0
1.5

Augment.
False
True

Mixup
False
True

10 4 10 3 10 2 10 1

Adaptive worst-case sharpness

0.36

0.38

0.40

0.42

0.44

0.46

Te
st

 e
rro

r (
co

rru
pt

io
ns

)

 = 0.0005 (= 0.63)

10 3 10 2 10 1

Adaptive worst-case sharpness

0.36

0.38

0.40

0.42

0.44

0.46

 = 0.001 (= 0.40)

10 1 100

Adaptive worst-case sharpness

0.36

0.38

0.40

0.42

0.44

0.46

 = 0.002 (= 0.23)

100

Adaptive worst-case sharpness

0.36

0.38

0.40

0.42

0.44

0.46

 = 0.004 (= 0.18)

log2 LR
7.5
6.0
4.5
3.0
1.5

Augment.
False
True

Mixup
False
True

Figure 7.43: Average and worst-case ℓ∞ adaptive sharpness definitions (unnormalized) and OOD
test error (common corruptions) on CIFAR-10 for ViTs for different radii ρ.

253

Chapter 7. A Modern Look at the Relationship between Sharpness and
Generalization

Adaptive average-case ℓ∞ (uniform perturbations) sharpness (normalized) for
ViTs

2 × 10 3 3 × 10 3 4 × 10 3

Adaptive avg-case sharpness (normalized)

0.100

0.125

0.150

0.175

0.200

0.225

0.250

0.275

Te
st

 e
rro

r

 = 0.1 (= 0.11)

10 26 × 10 3 2 × 10 2

Adaptive avg-case sharpness (normalized)

0.100

0.125

0.150

0.175

0.200

0.225

0.250

0.275

 = 0.2 (= 0.16)

10 13 × 10 24 × 10 2 6 × 10 2

Adaptive avg-case sharpness (normalized)

0.100

0.125

0.150

0.175

0.200

0.225

0.250

0.275

 = 0.4 (= 0.31)

10 1 2 × 10 1 3 × 10 1 4 × 10 1

Adaptive avg-case sharpness (normalized)

0.100

0.125

0.150

0.175

0.200

0.225

0.250

0.275

 = 0.8 (= 0.40)

log2 LR
7.5
6.0
4.5
3.0
1.5

Augment.
False
True

Mixup
False
True

2 × 10 3 3 × 10 3 4 × 10 3

Adaptive avg-case sharpness (normalized)

0.36

0.38

0.40

0.42

0.44

0.46

Te
st

 e
rro

r (
co

rru
pt

io
ns

)

 = 0.1 (= 0.23)

10 26 × 10 3 2 × 10 2

Adaptive avg-case sharpness (normalized)

0.36

0.38

0.40

0.42

0.44

0.46

 = 0.2 (= 0.29)

10 13 × 10 24 × 10 2 6 × 10 2

Adaptive avg-case sharpness (normalized)

0.36

0.38

0.40

0.42

0.44

0.46

 = 0.4 (= 0.42)

10 1 2 × 10 1 3 × 10 1 4 × 10 1

Adaptive avg-case sharpness (normalized)

0.36

0.38

0.40

0.42

0.44

0.46

 = 0.8 (= 0.47)

log2 LR
7.5
6.0
4.5
3.0
1.5

Augment.
False
True

Mixup
False
True

Adaptive worst-case ℓ∞ sharpness (normalized) for ViTs

10 24 × 10 3 6 × 10 3 2 × 10 2

Adaptive worst-case sharpness (normalized)

0.100

0.125

0.150

0.175

0.200

0.225

0.250

0.275

Te
st

 e
rro

r

 = 0.0005 (= 0.20)

10 2 2 × 10 2 3 × 10 24 × 10 2 6 × 10 2

Adaptive worst-case sharpness (normalized)

0.100

0.125

0.150

0.175

0.200

0.225

0.250

0.275

 = 0.001 (= 0.22)

10 1

Adaptive worst-case sharpness (normalized)

0.100

0.125

0.150

0.175

0.200

0.225

0.250

0.275

 = 0.002 (= 0.29)

10 1

Adaptive worst-case sharpness (normalized)

0.100

0.125

0.150

0.175

0.200

0.225

0.250

0.275

 = 0.004 (= 0.39)

log2 LR
7.5
6.0
4.5
3.0
1.5

Augment.
False
True

Mixup
False
True

10 24 × 10 3 6 × 10 3 2 × 10 2

Adaptive worst-case sharpness (normalized)

0.36

0.38

0.40

0.42

0.44

0.46

Te
st

 e
rro

r (
co

rru
pt

io
ns

)

 = 0.0005 (= 0.23)

10 2 2 × 10 2 3 × 10 24 × 10 2 6 × 10 2

Adaptive worst-case sharpness (normalized)

0.36

0.38

0.40

0.42

0.44

0.46

 = 0.001 (= 0.26)

10 1

Adaptive worst-case sharpness (normalized)

0.36

0.38

0.40

0.42

0.44

0.46

 = 0.002 (= 0.34)

10 1

Adaptive worst-case sharpness (normalized)

0.36

0.38

0.40

0.42

0.44

0.46

 = 0.004 (= 0.44)

log2 LR
7.5
6.0
4.5
3.0
1.5

Augment.
False
True

Mixup
False
True

Figure 7.44: Average and worst-case ℓ∞ adaptive sharpness definitions (normalized) vs. test
error and OOD test error (common corruptions) on CIFAR-10 for ViTs for different radii ρ.

254

Conclusions

In this thesis, we have focused almost entirely on the setting where we train new task-
specific models from scratch. However, during last few years, foundation models such as
large language models (LLMs) (Bubeck et al., 2023) and vision-language models (VLMs)
(Yang et al., 2023) have demonstrated exceptional capabilities in a wide range of natural
language processing and computer vision tasks. Despite this, they are still often produc-
ing factually incorrect outputs (McKenna et al., 2023), tend to be overconfident (OpenAI,
2023), and are very susceptible to adversarial perturbations (Schlarmann and Hein, 2023),
which undermines their reliability and trustworthiness. In particular, all efforts invested
in improving the alignment and built-in safety filters of these models can be bypassed by
transferable adversarial examples (Zou et al., 2023) or even manually crafted prompts (Wei
et al., 2023). These weaknesses of generative models pose significant societal risks, encom-
passing threats such as cyber warfare and the proliferation of disinformation campaigns.
These concerns have garnered recognition at both national and international levels, with
an increasing number of regulations now mandating a prescribed level of transparency.
For instance, the EU AI Act highlights the imperative of designing models to proactively
prevent the generation of illegal content,1 underscoring the urgency of addressing these
challenges. By leveraging lessons from the works presented in this thesis, as future work,
we plan to address these critical weaknesses in modern generative models by deepening
our understanding of their generalization, more thorough automated evaluation, and en-
hancing their robustness.

Direction 1: Understanding the detrimental effects of the alignment
training stage

The alignment phase is absolutely necessary to turn an LLM into a helpful assistant that
supports dialogue-based interaction. Except making the LLM follow user’s intent, it is
also crucial to add a safety filter that refuses to provide harmful or hateful content to the
user. However, the growing evidence suggests that this approach is detrimental at least to
some capabilities present in the base model. As illustrated in the GPT-4 technical report
(OpenAI, 2023), the alignment phase can significantly degrade calibration which is nearly
perfect for the base model. This suggests that the model loses important capabilities,

1https://www.europarl.europa.eu/news/en/headlines/society/20230601STO93804/eu-ai-act-
first-regulation-on-artificial-intelligence

255

https://www.europarl.europa.eu/news/en/headlines/society/20230601STO93804/eu-ai-act-first-regulation-on-artificial-intelligence
https://www.europarl.europa.eu/news/en/headlines/society/20230601STO93804/eu-ai-act-first-regulation-on-artificial-intelligence

Conclusions

such as judging about its own uncertainty, during the alignment phase. This can be seen
as an additional evidence of implicit overoptimization or overfitting to the reward signal
(Gao et al., 2023). Some of the deficiencies of aligned generative models such as factually
incorrect outputs and overconfidence can partially stem from the alignment phase.

Direction 2: Developing automated safety evaluation methods

A precisely defined threat model, identifying the goals of potential attackers and the tools
they may employ in each scenario (LLMs, VLMs, etc.), is essential for assessing model’s
robustness and safety. Without a clear metric to optimize, it becomes impossible to com-
pare the performance of various systems and the effectiveness of attack algorithms. Once
the threat models of interest are defined, we can focus on developing strong and efficient al-
gorithms for adversarial perturbations. These attacks play a crucial role in benchmarking
the field’s progress towards safer systems. The absence of a well-defined threat model for
text inputs stands in contrast to the relatively clear guidelines existing for image domains
(Croce et al., 2021). In the context of text inputs, there is currently no established method
for determining which perturbations, such as adding, removing, or modifying characters or
words, are permissible to attackers. Furthermore, it remains unclear whether two different
inputs should produce the same output under certain conditions. Moreover, the discrete
nature of text input spaces complicates the application of gradient-based optimization,
a common strategy in popular attacks. However, this inherent limitation may also be
leveraged as an advantage, given the smaller attack space compared to vision-based tasks.

Direction 3: Developing trustworthy generative models

The overarching objective is to enhance the safety and robustness of foundation models,
preventing their misuse in generating harmful content, while also ideally improving their
interpretability. Adversarial training has emerged as the primary approach for enhancing
the robustness of image classifiers against adversarial perturbations (Madry et al., 2018).
This methodology can be readily extended to systems that incorporate an image encoder,
such as CLIP (Radford et al., 2021). Moreover, training models with ℓp-bounded pertur-
bations not only strengthens their resilience to these attacks but also imparts desirable
side-effects, including better interpretability and generative capabilities (Tsipras et al.,
2019). Thus, adversarial training is a natural candidate for improving the robustness
and reliability of modern LLMs and VLMs. A crucial prerequisite is the adaptation of
its framework for text inputs. In particular, an efficient algorithm for generating adver-
sarial inputs at training time is needed. Initial attempts in this direction have proven
unsuccessful (Jain et al., 2023), necessitating exploration of alternative defense strategies.

256

Conclusions

Outlook

If we extrapolate the remarkable progress achieved in the machine learning field during
the last few years, the next years should showcase even more impressive capabilities of
large models. LLM-powered agents are already capable of calling external functions suit-
able to the context, and this capability is expected to improve rapidly in the next years.
Even with the current generative models such as GPT-4, significant improvements can be
unlocked by incorporating external logic and orchestrating LLM calls in a more effective
way. In light of these remarkable developments, it is very important to ensure safety
and robustness of these systems for deployment in the real world. Since we know how to
adversarially manipulate all kinds of machine learning models, including LLMs, manip-
ulations of autonomous agents operating in the wild and being responsible for sensitive
decisions will have a high incentive. In addition, it is also important to make sure that
we understand sufficiently well the effect of learning algorithms and data used by them on
generalization of these models and capabilities that they unlock. In summary, we need to
make research progress in all these directions to ensure that these technologies are ready
for responsible and safe deployment.

257

Bibliography

Linara Adilova, Maksym Andriushchenko, Michael Kamp, Asja Fischer, and Martin Jaggi.
Layerwise linear mode connectivity. In ICLR, 2024.

Naman Agarwal, Surbhi Goel, and Cyril Zhang. Acceleration via fractal learning rate
schedules. In International Conference on Machine Learning, pages 87–99. PMLR,
2021.

N. Akhtar and A. Mian. Threat of adversarial attacks on deep learning in computer vision:
A survey. IEEE Access, 6:14410–14430, 2018.

A. Al-Dujaili and U.-M. O’Reilly. There are no bit parts for sign bits in black-box attacks.
In ICLR, 2020.

Jean-Baptiste Alayrac, Jonathan Uesato, Po-Sen Huang, Robert Stanforth, Alhussein
Fawzi, and Pushmeet Kohli. Are labels required for improving adversarial robustness?
NeurIPS, 2019.

Motasem Alfarra, Juan C. Perez, Adel Bibi, Ali Thabet, Pablo Arbelaez, and Bernard
Ghanem. Clustr: Clustering training for robustness. arXiv preprint arXiv:2006.07682,
2020.

M. Alzantot, Y. Sharma, S. Chakraborty, and M. Srivastava. Genattack: practical black-
box attacks with gradient-free optimization. In Genetic and Evolutionary Computation
Conference (GECCO), 2019.

Moustafa Alzantot, Yash Sharma, Ahmed Elgohary, Bo-Jhang Ho, Mani Srivastava, and
Kai-Wei Chang. Generating natural language adversarial examples. In EMNLP, 2018.

Maksym Andriushchenko. Adversarial attacks on gpt-4 via simple random search, 2023.
URL https://www.andriushchenko.me/gpt4adv.pdf.

Maksym Andriushchenko and Nicolas Flammarion. Understanding and improving fast
adversarial training. In NeurIPS, 2020.

Maksym Andriushchenko and Nicolas Flammarion. Towards understanding sharpness-
aware minimization. In ICML, 2022.

Maksym Andriushchenko, Francesco Croce, Nicolas Flammarion, and Matthias Hein.
Square attack: a query-efficient black-box adversarial attack via random search. In
ECCV, 2020.

Maksym Andriushchenko, Xiaoyang Rebecca Li, Geoffrey Oxholm, Thomas Gittings,
Tu Bui, Nicolas Flammarion, and John Collomosse. Aria: Adversarially robust im-
age attribution for content provenance. In CVPR Workshop on Media Forensics, 2022.

259

https://www.andriushchenko.me/gpt4adv.pdf

Bibliography

Maksym Andriushchenko, Dara Bahri, Hossein Mobahi, and Nicolas Flammarion.
Sharpness-aware minimization leads to low-rank features. In NeurIPS, 2023a.

Maksym Andriushchenko, Francesco Croce, Maximilian Müller, Matthias Hein, and Nico-
las Flammarion. A modern look at the relationship between sharpness and generaliza-
tion. In ICML, 2023b.

Maksym Andriushchenko, Francesco D’Angelo, Aditya Varre, and Nicolas Flammarion.
Why do we need weight decay in modern deep learning? NeurIPS 2023 Workshop on
Mathematics of Modern Machine Learning, 2023c.

Maksym Andriushchenko, Aditya Varre, Loucas Pillaud-Vivien, and Nicolas Flammarion.
SGD with large step sizes learns sparse features. In ICML, 2023d.

Sanjeev Arora, Zhiyuan Li, and Abhishek Panigrahi. Understanding gradient descent on
edge of stability in deep learning. ICML, 2022.

Anish Athalye, Nicholas Carlini, and David Wagner. Obfuscated gradients give a false
sense of security: Circumventing defenses to adversarial examples. In ICML, 2018.

Matan Atzmon, Niv Haim, Lior Yariv, Ofer Israelov, Haggai Maron, and Yaron Lipman.
Controlling neural level sets. NeurIPS, 2019.

Maximilian Augustin, Alexander Meinke, and Matthias Hein. Adversarial robustness on
in- and out-distribution improves explainability. ECCV, 2020.

Andrei Barbu, David Mayo, Julian Alverio, William Luo, Christopher Wang, Dan Gutfre-
und, Josh Tenenbaum, and Boris Katz. Objectnet: A large-scale bias-controlled dataset
for pushing the limits of object recognition models. In NeurIPS, 2019.

O. Bastani, Y. Ioannou, L. Lampropoulos, D. Vytiniotis, A. Nori, and A. Criminisi. Mea-
suring neural net robustness with constraints. In NeurIPS, 2016.

Aharon Ben-Tal, Laurent El Ghaoui, and Arkadi Nemirovski. Robust optimization. Prince-
ton Series in Applied Mathematics. Princeton University Press, Princeton, NJ, 2009.

Philipp Benz, Chaoning Zhang, Adil Karjauv, and In So Kweon. Robustness may be
at odds with fairness: An empirical study on class-wise accuracy. arXiv preprint
arXiv:2010.13365, 2020.

Gaspard Beugnot, Julien Mairal, and Alessandro Rudi. On the benefits of large learning
rates for kernel methods. arXiv preprint arXiv:2202.13733, 2022.

A. N. Bhagoji, W. He, B. Li, and D. Song. Practical black-box attacks on deep neural
networks using efficient query mechanisms. In ECCV, 2018.

B. Biggio and F. Roli. Wild patterns: Ten years after the rise of adversarial machine
learning. Pattern Recognition, 84:317–331, 2018a.

Battista Biggio and Fabio Roli. Wild patterns: ten years after the rise of adversarial
machine learning. Pattern Recognition, 2018b.

Devansh Bisla, Jing Wang, and Anna Choromanska. Low-pass filtering sgd for recovering
flat optima in the deep learning optimization landscape. AISTATS, 2022.

Nils Bjorck, Carla P Gomes, Bart Selman, and Kilian Q Weinberger. Understanding batch
normalization. Advances in neural information processing systems, 31, 2018.

Guy Blanc, Neha Gupta, Gregory Valiant, and Paul Valiant. Implicit regularization for
deep neural networks driven by an ornstein-uhlenbeck like process. In Conference on
learning theory, pages 483–513. PMLR, 2020.

260

Bibliography

Alexey Bochkovskiy, Chien-Yao Wang, and Hong-Yuan Mark Liao. Yolov4: Optimal speed
and accuracy of object detection. arXiv preprint aXiv:2004.10934, 2020.

Etienne Boursier, Loucas Pillaud-Vivien, and Nicolas Flammarion. Gradient flow dy-
namics of shallow relu networks for square loss and orthogonal inputs. arXiv preprint
arXiv:2206.00939, 2022.

S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, Cam-
bridge, 2004.

W. Brendel, J. Rauber, and M. Bethge. Decision-based adversarial attacks: Reliable
attacks against black-box machine learning models. In ICLR, 2018a.

Wieland Brendel, Jonas Rauber, Alexey Kurakin, Nicolas Papernot, Behar Veliqi, Marcel
Salathé, Sharada P Mohanty, and Matthias Bethge. Adversarial vision challenge. In
NeurIPS Competition Track, 2018b.

T. B. Brown, D. Mané, A. Roy, M. Abadi, and J. Gilmer. Adversarial patch. In NeurIPS
2017 Workshop on Machine Learning and Computer Security, 2017.

Tom B Brown, Nicholas Carlini, Chiyuan Zhang, Catherine Olsson, Paul Christiano, and
Ian Goodfellow. Unrestricted adversarial examples. arXiv preprint arXiv:1809.08352,
2018.

T. Brunner, F. Diehl, M. T. Le, and A. Knoll. Guessing smart: biased sampling for
efficient black-box adversarial attacks. In ICCV, 2019.

Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric Horvitz,
Ece Kamar, Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg, et al. Sparks
of artificial general intelligence: Early experiments with gpt-4. arXiv preprint
arXiv:2303.12712, 2023.

Jacob Buckman, Aurko Roy, Colin Raffel, and Ian Goodfellow. Thermometer encoding:
One hot way to resist adversarial examples. In ICLR, 2018.

Dan A. Calian, Florian Stimberg, Olivia Wiles, Sylvestre-Alvise Rebuffi, Andras Gyorgy,
Timothy Mann, and Sven Gowal. Defending against image corruptions through adver-
sarial augmentations. arXiv, 2021.

N. Carlini and D. Wagner. Adversarial examples are not easily detected: Bypassing ten
detection methods. In ACM Workshop on Artificial Intelligence and Security, 2017.

Nicholas Carlini. A critique of the deepsec platform for security analysis of deep learning
models. arXiv preprint arXiv:1905.07112, 2019.

Nicholas Carlini. A complete list of all (arxiv) adversarial example papers. https://nich
olas.carlini.com/writing/2019/all-adversarial-example-papers.html, 2021.
Accessed: 2021-06-08.

Nicholas Carlini, Guy Katz, Clark Barrett, and David L Dill. Provably minimally-distorted
adversarial examples. arXiv preprint arXiv:1709.10207, 2017.

Nicholas Carlini, Anish Athalye, Nicolas Papernot, Wieland Brendel, Jonas Rauber, Dim-
itris Tsipras, Ian Goodfellow, Aleksander Madry, and Alexey Kurakin. On evaluating
adversarial robustness. arXiv preprint arXiv:1902.06705, 2019a.

Nicholas Carlini, Chang Liu, Úlfar Erlingsson, Jernej Kos, and Dawn Song. The secret
sharer: Evaluating and testing unintended memorization in neural networks. In 28th
USENIX Security Symposium (USENIX Security 19), pages 267–284, 2019b.

261

https://nicholas.carlini.com/writing/2019/all-adversarial-example-papers.html
https://nicholas.carlini.com/writing/2019/all-adversarial-example-papers.html

Bibliography

Yair Carmon, Aditi Raghunathan, Ludwig Schmidt, John C Duchi, and Percy S Liang.
Unlabeled data improves adversarial robustness. In NeurIPS, 2019.

Junbum Cha, Sanghyuk Chun, Kyungjae Lee, Han-Cheol Cho, Seunghyun Park, Yunsung
Lee, and Sungrae Park. Swad: Domain generalization by seeking flat minima. NeurIPS,
34:22405–22418, 2021.

Alvin Chan, Yi Tay, Yew Soon Ong, and Jie Fu. Jacobian adversarially regularized net-
works for robustness. ICLR, 2020.

Pratik Chaudhari, Anna Choromanska, Stefano Soatto, Yann LeCun, Carlo Baldassi,
Christian Borgs, Jennifer Chayes, Levent Sagun, and Riccardo Zecchina. Entropy-SGD:
Biasing gradient descent into wide valleys. Journal of Statistical Mechanics: Theory
and Experiment, 2019(12):124018, 2016.

J. Chen, M. I Jordan, and Wainwright M. J. HopSkipJumpAttack: a query-efficient
decision-based attack. arXiv preprint arXiv:1904.02144, 2019.

Jinghui Chen and Quanquan Gu. Rays: A ray searching method for hard-label adversarial
attack. In KDD, 2020.

Jinghui Chen, Yu Cheng, Zhe Gan, Quanquan Gu, and Jingjing Liu. Efficient robust
training via backward smoothing. arXiv, 2020a.

Lei Chen and Joan Bruna. On gradient descent convergence beyond the edge of stability.
arXiv preprint arXiv:2206.04172, 2022.

P. Chen, Y. Sharma, H. Zhang, J. Yi, and C. Hsieh. Ead: Elastic-net attacks to deep
neural networks via adversarial examples. In AAAI, 2018.

Pin-Yu Chen, Huan Zhang, Yash Sharma, Jinfeng Yi, and Cho-Jui Hsieh. Zoo: Zeroth
order optimization based black-box attacks to deep neural networks without training
substitute models. In 10th ACM Workshop on Artificial Intelligence and Security -
AISec ’17. ACM Press, 2017. ISBN 9781450352024.

Tianlong Chen, Sijia Liu, Shiyu Chang, Yu Cheng, Lisa Amini, and Zhangyang Wang.
Adversarial robustness: From self-supervised pre-training to fine-tuning. In CVPR,
2020b.

Xiangning Chen, Cho-Jui Hsieh, and Boqing Gong. When vision transformers outperform
resnets without pre-training or strong data augmentations? ICLR, 2022.

M. Cheng, T. Le, P.-Y. Chen, J. Yi, H. Zhang, and C.-J. Hsieh. Query-efficient hard-label
black-box attack: An optimization-based approach. In ICLR, 2019a.

S. Cheng, Y. Dong, T. Pang, H. Su, and J. Zhu. Improving black-box adversarial attacks
with a transfer-based prior. In NeurIPS, 2019b.

Lenaic Chizat and Francis Bach. Implicit bias of gradient descent for wide two-layer
neural networks trained with the logistic loss. In Conference on Learning Theory, pages
1305–1338. PMLR, 2020a.

Lénaïc Chizat and Francis Bach. Implicit bias of gradient descent for wide two-layer neural
networks trained with the logistic loss. In COLT, 2020b.

Lenaic Chizat, Edouard Oyallon, and Francis Bach. On lazy training in differentiable
programming. Advances in Neural Information Processing Systems, 32, 2019.

Mircea Cimpoi, Subhransu Maji, Iasonas Kokkinos, Sammy Mohamed, and Andrea
Vedaldi. Describing textures in the wild. In CVPR, 2014.

262

Bibliography

Jeremy M Cohen, Elan Rosenfeld, and J Zico Kolter. Certified adversarial robustness via
randomized smoothing. ICML, 2019.

Jeremy M Cohen, Simran Kaur, Yuanzhi Li, J Zico Kolter, and Ameet Talwalkar. Gradient
descent on neural networks typically occurs at the edge of stability. arXiv preprint
arXiv:2103.00065, 2021.

F. Croce and M. Hein. Sparse and imperceivable adversarial attacks. In ICCV, 2019.
F. Croce and M. Hein. Minimally distorted adversarial examples with a fast adaptive

boundary attack. In ICML, 2020a.
Francesco Croce and Matthias Hein. Reliable evaluation of adversarial robustness with an

ensemble of diverse parameter-free attacks. ICML, 2020b.
Francesco Croce, Maksym Andriushchenko, Naman D Singh, Nicolas Flammarion, and

Matthias Hein. Sparse-rs: a versatile framework for query-efficient sparse black-box
adversarial attacks. In ECCV Workshop on Adversarial Robustness in the Real World,
2020.

Francesco Croce, Maksym Andriushchenko, Vikash Sehwag, Edoardo Debenedetti, Nico-
las Flammarion, Mung Chiang, Prateek Mittal, and Matthias Hein. Robustbench: a
standardized adversarial robustness benchmark. NeurIPS Datasets and Benchmarks
Track, 2021.

Ekin D Cubuk, Barret Zoph, Jonathon Shlens, and Quoc V Le. Randaugment: Practical
automated data augmentation with a reduced search space. NeurIPS, 2020.

Jiequan Cui, Shu Liu, Liwei Wang, and Jiaya Jia. Learnable boundary guided adversarial
training. ICCV, 2021.

Alex Damian, Tengyu Ma, and Jason D Lee. Label noise sgd provably prefers flat global
minimizers. Advances in Neural Information Processing Systems, 34:27449–27461, 2021.

Alex Damian, Eshaan Nichani, and Jason D Lee. Self-stabilization: The implicit bias of
gradient descent at the edge of stability. ICLR, 2023.

Luke N Darlow, Elliot J Crowley, Antreas Antoniou, and Amos J Storkey. Cinic-10 is not
imagenet or cifar-10. arXiv preprint arXiv:1810.03505, 2018.

D. Davis and D. Drusvyatskiy. Stochastic model-based minimization of weakly convex
functions. SIAM Journal on Optimization, 29(1):207–239, 2019.

Edoardo Debenedetti, Zishen Wan, Maksym Andriushchenko, Vikash Sehwag, Kshitij
Bhardwaj, and Bhavya Kailkhura. Scaling compute is not all you need for adversarial
robustness. ICLR 2024 Workshop on Reliable and Responsible Foundation Models, 2023.

Jonas Degrave, Federico Felici, Jonas Buchli, Michael Neunert, Brendan Tracey, Francesco
Carpanese, Timo Ewalds, Roland Hafner, Abbas Abdolmaleki, Diego de Las Casas, et al.
Magnetic control of tokamak plasmas through deep reinforcement learning. Nature, 602
(7897):414–419, 2022.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A
large-scale hierarchical image database. In 2009 IEEE conference on computer vision
and pattern recognition, pages 248–255. Ieee, 2009.

Emily L Denton, Wojciech Zaremba, Joan Bruna, Yann LeCun, and Rob Fergus. Exploit-
ing linear structure within convolutional networks for efficient evaluation. Advances in
neural information processing systems, 27, 2014.

263

Bibliography

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-
training of deep bidirectional transformers for language understanding. arXiv preprint
arXiv:1810.04805, 2018.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training
of deep bidirectional transformers for language understanding. In NAACL, 2019.

Gavin Weiguang Ding, Luyu Wang, and Xiaomeng Jin. AdverTorch v0.1: An adversarial
robustness toolbox based on pytorch. arXiv preprint arXiv:1902.07623, 2019.

Gavin Weiguang Ding, Yash Sharma, Kry Yik Chau Lui, and Ruitong Huang. Mma
training: Direct input space margin maximization through adversarial training. In
ICLR, 2020.

Laurent Dinh, Razvan Pascanu, Samy Bengio, and Yoshua Bengio. Sharp minima can
generalize for deep nets. In ICML, pages 1019–1028. PMLR, 2017.

Yinpeng Dong, Qi-An Fu, Xiao Yang, Tianyu Pang, Hang Su, Zihao Xiao, and Jun Zhu.
Benchmarking adversarial robustness on image classification. In CVPR, 2020.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain
Gelly, et al. An image is worth 16x16 words: Transformers for image recognition at
scale. ICLR, 2021.

J. Du, H. Zhang, J. T. Zhou, Y. Yang, and J. Feng. Query-efficient meta attack to deep
neural networks. In ICLR, 2020.

Jiawei Du, Zhou Daquan, Jiashi Feng, Vincent Tan, and Joey Tianyi Zhou. Sharpness-
aware training for free. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and
Kyunghyun Cho, editors, Advances in Neural Information Processing Systems, 2022.
URL https://openreview.net/forum?id=xK6wRfL2mv7.

J. Duchi, M. Jordan, M. Wainwright, and A. Wibisono. Optimal rates for zero-order
convex optimization: The power of two function evaluations. IEEE Transactions on
Information Theory, 61(5):2788–2806, 2015.

Gintare Karolina Dziugaite and Daniel Roy. Entropy-sgd optimizes the prior of a pac-
bayes bound: Generalization properties of entropy-sgd and data-dependent priors. In
ICML, 2018.

Gintare Karolina Dziugaite, Alexandre Drouin, Brady Neal, Nitarshan Rajkumar, Ethan
Caballero, Linbo Wang, Ioannis Mitliagkas, and Daniel M Roy. In search of robust
measures of generalization. arXiv preprint arXiv:2010.11924, 2020.

Logan Engstrom, Andrew Ilyas, and Anish Athalye. Evaluating and understanding the
robustness of adversarial logit pairing. NeurIPS 2018 Workshop on Security in Machine
Learning, 2018.

Logan Engstrom, Andrew Ilyas, Hadi Salman, Shibani Santurkar, and Dimitris Tsipras.
Robustness (python library), 2019a. URL https://github.com/MadryLab/robustne
ss.

Logan Engstrom, Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Brandon Tran, and
Aleksander Madry. Adversarial robustness as a prior for learned representations. arXiv
preprint arXiv:1906.00945, 2019b.

Logan Engstrom, Brandon Tran, Dimitris Tsipras, Ludwig Schmidt, and Aleksander
Madry. Exploring the landscape of spatial robustness. In ICML, 2019c.

264

https://openreview.net/forum?id=xK6wRfL2mv7
https://github.com/MadryLab/robustness
https://github.com/MadryLab/robustness

Bibliography

Andre Esteva, Alexandre Robicquet, Bharath Ramsundar, Volodymyr Kuleshov, Mark
DePristo, Katherine Chou, Claire Cui, Greg Corrado, Sebastian Thrun, and Jeff Dean.
A guide to deep learning in healthcare. Nature medicine, 25(1):24–29, 2019.

Christian Etmann. A closer look at double backpropagation. arXiv preprint
ArXiv:1906.06637, 2019.

Ivan Evtimov, Kevin Eykholt, Earlence Fernandes, Tadayoshi Kohno, Bo Li, Atul Prakash,
Amir Rahmati, and Dawn Song. Robust physical-world attacks on machine learning
models. In CVPR, 2018.

Fartash Faghri, Cristina Vasconcelos, David J Fleet, Fabian Pedregosa, and Nicolas Le
Roux. Bridging the gap between adversarial robustness and optimization bias. arXiv
preprint arXiv:2102.08868, 2021.

Alhussein Fawzi and Pascal Frossard. Manitest: Are classifiers really invariant? In BMVC,
2015.

Alhussein Fawzi and Pascal Frossard. Measuring the effect of nuisance variables on clas-
sifiers. In British Machine Vision Conference (BMVC), 2016.

Nicolas Ford, Justin Gilmer, Nicolas Carlini, and Dogus Cubuk. Adversarial examples are
a natural consequence of test error in noise. In ICML, 2019.

Pierre Foret, Ariel Kleiner, Hossein Mobahi, and Behnam Neyshabur. Sharpness-aware
minimization for efficiently improving generalization. In ICLR, 2021.

Stanislav Fort, Andrew Brock, Razvan Pascanu, Soham De, and Samuel L Smith. Drawing
multiple augmentation samples per image during training efficiently decreases test error.
arXiv preprint arXiv:2105.13343, 2021.

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse,
trainable neural networks. arXiv preprint arXiv:1803.03635, 2018.

Leo Gao, John Schulman, and Jacob Hilton. Scaling laws for reward model overoptimiza-
tion. In International Conference on Machine Learning, pages 10835–10866. PMLR,
2023.

Jonas Geiping, Micah Goldblum, Phillip E Pope, Michael Moeller, and Tom Goldstein.
Stochastic training is not necessary for generalization. In International Conference on
Learning Representations, 2022.

Robert Geirhos, Patricia Rubisch, Claudio Michaelis, Matthias Bethge, Felix A. Wich-
mann, and Wieland Brendel. Imagenet-trained cnns are biased towards texture; in-
creasing shape bias improves accuracy and robustness. ICLR, 2019.

Saeed Ghadimi and Guanghui Lan. Stochastic first- and zeroth-order methods for noncon-
vex stochastic programming. SIAM Journal on Optimization, 23(4):2341–2368, 2013.

Justin Gilmer, Ryan P Adams, Ian Goodfellow, David Andersen, and George E Dahl.
Motivating the rules of the game for adversarial example research. arXiv preprint
arXiv:1807.06732, 2018.

Amir Globerson and Sam Roweis. Nightmare at test time: robust learning by feature
deletion. ICML, 2006.

Rafael C Gonzales and Richard E Woods. Digital image processing (2nd edition). Prentice
Hall New Jersey, 2002.

Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing
adversarial examples. ICLR, 2015.

265

Bibliography

Dou Goodman, Hao Xin, Wang Yang, Wu Yuesheng, Xiong Junfeng, and Zhang Huan.
Advbox: a toolbox to generate adversarial examples that fool neural networks. arXiv
preprint arXiv:2001.05574, 2020.

Sven Gowal, Krishnamurthy (Dj) Dvijotham, Robert Stanforth, Rudy Bunel, Chongli Qin,
Jonathan Uesato, Relja Arandjelovic, Timothy Mann, and Pushmeet Kohli. Scalable
verified training for provably robust image classification. In ICCV, 2019a.

Sven Gowal, Jonathan Uesato, Chongli Qin, Po-Sen Huang, Timothy Mann, and Pushmeet
Kohli. An alternative surrogate loss for pgd-based adversarial testing. arXiv preprint
arXiv:1910.09338, 2019b.

Sven Gowal, Chongli Qin, Jonathan Uesato, Timothy Mann, and Pushmeet Kohli. Un-
covering the limits of adversarial training against norm-bounded adversarial examples.
arXiv, 2020.

Robert Mansel Gower, Nicolas Loizou, Xun Qian, Alibek Sailanbayev, Egor Shulgin, and
Peter Richtárik. SGD: General analysis and improved rates. In ICML, 2019.

Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo
Kyrola, Andrew Tulloch, Yangqing Jia, and Kaiming He. Accurate, large minibatch
sgd: Training imagenet in 1 hour. arXiv preprint arXiv:1706.02677, 2017.

Diego Granziol. Flatness is a false friend. arXiv preprint arXiv:2006.09091, 2020.
Alex Graves, Abdel-rahman Mohamed, and Geoffrey Hinton. Speech recognition with

deep recurrent neural networks. In 2013 IEEE ICASSP, 2013.
Kathrin Grosse, Nicolas Papernot, Praveen Manoharan, Michael Backes, and Patrick Mc-

Daniel. Adversarial examples for malware detection. In European symposium on research
in computer security, 2017.

S. Gu and L. Rigazio. Towards deep neural network architectures robust to adversarial
examples. In ICLR Workshop, 2015a.

Shixiang Gu and Luca Rigazio. Towards deep neural network architectures robust to
adversarial examples. ICLR workshops, 2015b.

C. Guo, J. S Frank, and K. Q Weinberger. Low frequency adversarial perturbation. In
UAI, 2019a.

C. Guo, J. R Gardner, Y. You, A. G. Wilson, and K. Q. Weinberger. Simple black-box
adversarial attacks. In ICML, 2019b.

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Weinberger. On calibration of modern
neural networks. In International Conference on Machine Learning, pages 1321–1330.
PMLR, 2017.

Chuan Guo, Mayank Rana, Moustapha Cisse, and Laurens van der Maaten. Countering
adversarial images using input transformations. In ICLR, 2018.

U. Haagerup. The best constants in the Khintchine inequality. Studia Math., 70(3):
231–283, 1981.

Jeff Z HaoChen, Colin Wei, Jason D Lee, and Tengyu Ma. Shape matters: Understanding
the implicit bias of the noise covariance. arXiv preprint arXiv:2006.08680, 2020.

Kosuke Haruki, Taiji Suzuki, Yohei Hamakawa, Takeshi Toda, Ryuji Sakai, Masahiro
Ozawa, and Mitsuhiro Kimura. Gradient noise convolution (gnc): Smoothing loss func-
tion for distributed large-batch sgd. arXiv preprint arXiv:1906.10822, 2019.

266

Bibliography

Haowei He, Gao Huang, and Yang Yuan. Asymmetric valleys: Beyond sharp and flat local
minima. In NeurIPS, 2019.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification. ICCV, 2015.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for
image recognition. In CVPR, 2016a.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings in deep
residual networks. ECCV, 2016b.

M. Hein and M. Andriushchenko. Formal guarantees on the robustness of a classifier
against adversarial manipulation. In NeurIPS, 2017a.

Matthias Hein and Maksym Andriushchenko. Formal guarantees on the robustness of a
classifier against adversarial manipulation. NeurIPS, 2017b.

Matthias Hein, Maksym Andriushchenko, and Julian Bitterwolf. Why relu networks yield
high-confidence predictions far away from the training data and how to mitigate the
problem. In CVPR, 2019.

Dan Hendrycks and Thomas Dietterich. Benchmarking neural network robustness to
common corruptions and perturbations. In ICLR, 2019.

Dan Hendrycks and Kevin Gimpel. A baseline for detecting misclassified and out-of-
distribution examples in neural networks. In ICLR, 2017.

Dan Hendrycks, Kimin Lee, and Mantas Mazeika. Using pre-training can improve model
robustness and uncertainty. In ICML, 2019.

Dan Hendrycks, Norman Mu, Ekin D. Cubuk, Barret Zoph, Justin Gilmer, and Balaji
Lakshminarayanan. Augmix: A simple data processing method to improve robustness
and uncertainty. ICLR, 2020.

Dan Hendrycks, Steven Basart, Norman Mu, Saurav Kadavath, Frank Wang, Evan
Dorundo, Rahul Desai, Tyler Zhu, Samyak Parajuli, Mike Guo, Dawn Song, Jacob
Steinhardt, and Justin Gilmer. The many faces of robustness: A critical analysis of
out-of-distribution generalization. ICCV, 2021a.

Dan Hendrycks, Steven Basart, Norman Mu, Saurav Kadavath, Frank Wang, Evan
Dorundo, Rahul Desai, Tyler Zhu, Samyak Parajuli, Mike Guo, Dawn Song, Jacob
Steinhardt, and Justin Gilmer. The many faces of robustness: A critical analysis of
out-of-distribution generalization. ICCV, 2021b.

Dan Hendrycks, Kevin Zhao, Steven Basart, Jacob Steinhardt, and Dawn Song. Natural
adversarial examples. CVPR, 2021c.

Geoffrey Hinton, Oriol Vinyals, Jeff Dean, et al. Distilling the knowledge in a neural
network. arXiv preprint arXiv:1503.02531, 2(7), 2015.

Sepp Hochreiter and Jürgen Schmidhuber. Simplifying neural nets by discovering flat
minima. In NeurIPS, 1995.

Torsten Hoefler, Dan Alistarh, Tal Ben-Nun, Nikoli Dryden, and Alexandra Peste. Sparsity
in deep learning: Pruning and growth for efficient inference and training in neural
networks. JMLR, 22(241):1–124, 2021.

Elad Hoffer, Itay Hubara, and Daniel Soudry. Train longer, generalize better: closing the
generalization gap in large batch training of neural networks. In NeurIPS, 2017.

267

Bibliography

J Edward Hu, Adith Swaminathan, Hadi Salman, and Greg Yang. Improved image wasser-
stein attacks and defenses. ICLR Workshop: Towards Trustworthy ML: Rethinking
Security and Privacy for ML, 2020.

Lang Huang, Chao Zhang, and Hongyang Zhang. Self-adaptive training: beyond empirical
risk minimization. NeurIPS, 2020.

Peter J. Huber. Robust statistics. John Wiley & Sons, Inc., New York, 1981.
A. Ilyas, L. Engstrom, A. Athalye, and J. Lin. Black-box adversarial attacks with limited

queries and information. In ICML, 2018.
A. Ilyas, L. Engstrom, and A. Madry. Prior convictions: Black-box adversarial attacks

with bandits and priors. In ICLR, 2019a.
A. Ilyas, S. Santurkar, D. Tsipras, L. Engstrom, B. Tran, and A. Madry. Adversarial

examples are not bugs, they are features. NeurIPS, 2019b.
Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network

training by reducing internal covariate shift. In ICML, 2015.
Pavel Izmailov, Dmitrii Podoprikhin, Timur Garipov, Dmitry Vetrov, and Andrew Gordon

Wilson. Averaging weights leads to wider optima and better generalization. In UAI,
2018.

Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Conver-
gence and generalization in neural networks. Advances in neural information processing
systems, 31, 2018.

Arthur Jacot, François Ged, Berfin Şimşek, Clément Hongler, and Franck Gabriel. Saddle-
to-saddle dynamics in deep linear networks: Small initialization training, symmetry, and
sparsity. In International Conference on Machine Learning, 2021.

Neel Jain, Avi Schwarzschild, Yuxin Wen, Gowthami Somepalli, John Kirchenbauer, Ping-
yeh Chiang, Micah Goldblum, Aniruddha Saha, Jonas Geiping, and Tom Goldstein.
Baseline defenses for adversarial attacks against aligned language models. arXiv preprint
arXiv:2309.00614, 2023.

Yunseok Jang, Tianchen Zhao, Seunghoon Hong, and Honglak Lee. Adversarial defense
via learning to generate diverse attacks. ICCV, 2019.

Stanislaw Jastrzebski, Zachary Kenton, Devansh Arpit, Nicolas Ballas, Asja Fischer,
Yoshua Bengio, and Amos Storkey. Three factors influencing minima in sgd. arXiv
preprint arXiv:1711.04623, 2017.

Stanislaw Jastrzebski, Devansh Arpit, Oliver Astrand, Giancarlo B Kerg, Huan Wang,
Caiming Xiong, Richard Socher, Kyunghyun Cho, and Krzysztof J Geras. Catastrophic
fisher explosion: Early phase fisher matrix impacts generalization. In Proceedings of the
38th International Conference on Machine Learning. PMLR, 2021.

Yiding Jiang, Behnam Neyshabur, Hossein Mobahi, Dilip Krishnan, and Samy Bengio.
Fantastic generalization measures and where to find them. In ICLR, 2019.

Kam-Chuen Jim, C Lee Giles, and Bill G Horne. An analysis of noise in recurrent neural
networks: convergence and generalization. In IEEE Transactions on Neural Networks,
1996.

Charles Jin and Martin Rinard. Manifold regularization for adversarial robustness. arXiv,
2020.

268

Bibliography

An Ju. Generative models as a robust alternative for image classification: Progress and
challenges. PhD thesis, UC Berkeley, 2021.

Anatoli Juditsky, Arkadi Nemirovski, and Claire Tauvel. Solving variational inequalities
with stochastic mirror-prox algorithm. Stochastic Systems, 2011.

Daniel Kang, Yi Sun, Tom Brown, Dan Hendrycks, and Jacob Steinhardt. Transfer of
adversarial robustness between perturbation types. arXiv preprint arXiv:1905.01034,
2019a.

Daniel Kang, Yi Sun, Dan Hendrycks, Tom Brown, and Jacob Steinhardt. Testing robust-
ness against unforeseen adversaries. arXiv preprint arXiv:1908.08016, 2019b.

H. Kannan, A. Kurakin, and I. Goodfellow. Adversarial logit pairing. arXiv preprint
arXiv:1803.06373, 2018.

Hamed Karimi, Julie Nutini, and Mark Schmidt. Linear convergence of gradient and
proximal-gradient methods under the Polyak-Lojasiewicz condition. In Joint European
Conference on Machine Learning and Knowledge Discovery in Databases, 2016.

Danny Karmon, Daniel Zoran, and Yoav Goldberg. Lavan: Localized and visible adver-
sarial noise. In ICML, 2018.

Guy Katz, Clark Barrett, David L Dill, Kyle Julian, and Mykel J Kochenderfer. Reluplex:
an efficient smt solver for verifying deep neural networks. ICCAV, 2017.

Simran Kaur, Jeremy Cohen, and Zachary C Lipton. Are perceptually-aligned gradients a
general property of robust classifiers? In NeurIPS Workshop: Science Meets Engineering
of Deep Learning, 2019.

Simran Kaur, Jeremy Cohen, and Zachary C Lipton. On the maximum hessian eigenvalue
and generalization. arXiv preprint arXiv:2206.10654, 2022.

Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and
Ping Tak Peter Tang. On large-batch training for deep learning: Generalization gap
and sharp minima. In ICLR, 2016.

Jungeum Kim and Xiao Wang. Sensible adversarial learning. OpenReview, 2019.
Klim Kireev, Maksym Andriushchenko, and Nicolas Flammarion. On the effectiveness of

adversarial training against common corruptions. arXiv, 2021.
Klim Kireev, Maksym Andriushchenko, Carmela Troncoso, and Nicolas Flammarion.

Transferable adversarial robustness for categorical data via universal robust embed-
dings. In NeurIPS, 2023.

Pang Wei Koh, Shiori Sagawa, Henrik Marklund, Sang Michael Xie, Marvin Zhang, Ak-
shay Balsubramani, Weihua Hu, Michihiro Yasunaga, Richard Lanas Phillips, Irena
Gao, et al. Wilds: A benchmark of in-the-wild distribution shifts. arXiv preprint
arXiv:2012.07421, 2020.

Galina Korpelevich. Extragradient method for finding saddle points and other problems.
In Matekon, 1977.

Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny
images. Technical Report, 2009.

Bogdan Kulynych, Rebekah Overdorf, Carmela Troncoso, and Seda Gürses. Pots: pro-
tective optimization technologies. In Proceedings of the 2020 Conference on Fairness,
Accountability, and Transparency, pages 177–188, 2020.

269

Bibliography

Souvik Kundu, Mahdi Nazemi, Peter A Beerel, and Massoud Pedram. A tunable robust
pruning framework through dynamic network rewiring of dnns. ASP-DAC, 2021.

Alexey Kurakin, Ian Goodfellow, and Samy Bengio. Adversarial examples in the physical
world. ICLR Workshop, 2017. URL https://openreview.net/forum?id=HJGU3Rodl.

Alexey Kurakin, Ian Goodfellow, Samy Bengio, Yinpeng Dong, Fangzhou Liao, Ming
Liang, Tianyu Pang, Jun Zhu, Xiaolin Hu, Cihang Xie, et al. Adversarial attacks and
defences competition. In NeurIPS Competition Track, 2018.

Jungmin Kwon, Jeongseop Kim, Hyunseo Park, and In Kwon Choi. ASAM: Adaptive
sharpness-aware minimization for scale-invariant learning of deep neural networks. In
ICML, 2021.

Cassidy Laidlaw and Soheil Feizi. Functional adversarial attacks. In NeurIPS, 2019.
Cassidy Laidlaw, Sahil Singla, and Soheil Feizi. Perceptual adversarial robustness: Defense

against unseen threat models. arXiv preprint arXiv:2006.12655, 2020.
Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature, 521(7553),

2015.
Yann A LeCun, Léon Bottou, Genevieve B Orr, and Klaus-Robert Müller. Efficient back-

prop. In Neural networks: Tricks of the trade, pages 9–48. Springer, 2012.
Mathias Lecuyer, Vaggelis Atlidakis, Roxana Geambasu, Daniel Hsu, and Suman Jana.

Certified robustness to adversarial examples with differential privacy. In 2019 IEEE
S&P, 2019.

Aitor Lewkowycz, Yasaman Bahri, Ethan Dyer, Jascha Sohl-Dickstein, and Guy Gur-Ari.
The large learning rate phase of deep learning: the catapult mechanism. arXiv preprint
arXiv:2003.02218, 2020.

Linyi Li, Maurice Weber, Xiaojun Xu, Luka Rimanic, Bhavya Kailkhura, Tao Xie,
Ce Zhang, and Bo Li. Tss: Transformation-specific smoothing for robustness certifi-
cation. In ACM CCS, 2021.

Qianxiao Li, Cheng Tai, and E Weinan. Stochastic modified equations and dynamics of
stochastic gradient algorithms i: Mathematical foundations. The Journal of Machine
Learning Research, 20(1):1474–1520, 2019a.

Y. Li, L. Li, L. Wang, T. Zhang, and B. Gong. Nattack: Learning the distributions of
adversarial examples for an improved black-box attack on deep neural networks. In
ICML, 2019b.

Yaxin Li, Wei Jin, Han Xu, and Jiliang Tang. Deeprobust: A pytorch library for adversarial
attacks and defenses. arXiv preprint arXiv:2005.06149, 2020a.

Yingzhen Li, John Bradshaw, and Yash Sharma. Are generative classifiers more robust to
adversarial attacks? In ICML, 2019c.

Yuanzhi Li, Tengyu Ma, and Hongyang Zhang. Algorithmic regularization in over-
parameterized matrix sensing and neural networks with quadratic activations. In Con-
ference On Learning Theory, pages 2–47. PMLR, 2018.

Yuanzhi Li, Colin Wei, and Tengyu Ma. Towards explaining the regularization effect of
initial large learning rate in training neural networks. In Advances in Neural Information
Processing Systems, pages 11674–11685, 2019d.

Zhiyuan Li and Sanjeev Arora. An exponential learning rate schedule for deep learning.
arXiv preprint arXiv:1910.07454, 2019.

270

https://openreview.net/forum?id=HJGU3Rodl

Bibliography

Zhiyuan Li, Kaifeng Lyu, and Sanjeev Arora. Reconciling modern deep learning with
traditional optimization analyses: The intrinsic learning rate. In Advances in Neural
Information Processing Systems, volume 33, pages 14544–14555, 2020b.

Zhiyuan Li, Tianhao Wang, and Sanjeev Arora. What happens after sgd reaches zero loss?–
a mathematical framework. In International Conference on Learning Representations,
2022.

Tengyuan Liang, Tomaso Poggio, Alexander Rakhlin, and James Stokes. Fisher-rao metric,
geometry, and complexity of neural networks. In The 22nd International Conference on
Artificial Intelligence and Statistics, pages 888–896. PMLR, 2019.

Tao Lin, Lingjing Kong, Sebastian Stich, and Martin Jaggi. Extrapolation for large-batch
training in deep learning. In ICML, 2020.

Y. Lin, H. Jiang, and H. Jiang. Bandlimiting neural networks against adversarial attacks.
arXiv preprint arXiv:1905.12797, 2019.

Xiang Ling, Shouling Ji, Jiaxu Zou, Jiannan Wang, Chunming Wu, Bo Li, and Ting
Wang. Deepsec: A uniform platform for security analysis of deep learning model. In
IEEE S&P, 2019.

Dong C Liu and Jorge Nocedal. On the limited memory bfgs method for large scale
optimization. Mathematical programming, 45(1):503–528, 1989.

Shengchao Liu, Dimitris Papailiopoulos, and Dimitris Achlioptas. Bad global minima exist
and SGD can reach them. In NeurIPS, 2019.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International
Conference on Learning Representations, 2019.

Daniel Lowd and Christopher Meek. Adversarial learning. In KDD, 2005.
Kaifeng Lyu and Jian Li. Gradient descent maximizes the margin of homogeneous neural

networks. In International Conference on Learning Representations, 2020.
Kaifeng Lyu, Zhiyuan Li, and Sanjeev Arora. Understanding the generalization benefit of

normalization layers: Sharpness reduction. NeurIPS, 2022.
Chao Ma and Lexing Ying. The Sobolev regularization effect of stochastic gradient descent.

arXiv preprint arXiv:2105.13462, 2021.
Chao Ma, Lei Wu, and Lexing Ying. The multiscale structure of neural network loss

functions: The effect on optimization and origin. arXiv preprint arXiv:2204.11326,
2022.

A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu. Towards deep learning
models resistant to adversarial attacks. In ICLR, 2018.

Thibault Maho, Benoît Bonnet, Teddy Furon, and Erwan Le Merrer. Robic: A benchmark
suite for assessing classifiers robustness. arXiv preprint arXiv:2102.05368, 2021.

Pratyush Maini, Eric Wong, and J Zico Kolter. Adversarial robustness against the union
of multiple perturbation models. In ICML, 2020.

Chengzhi Mao, Ziyuan Zhong, Junfeng Yang, Carl Vondrick, and Baishakhi Ray. Metric
learning for adversarial robustness. NeurIPS, 2019.

J. Matyas. Random optimization. Automation and Remote control, 26(2):246–253, 1965.
R. Thomas McCoy, Junghyun Min, and Tal Linzen. BERTs of a feather do not gener-

alize together: Large variability in generalization across models with similar test set

271

Bibliography

performance. In Proceedings of the Third BlackboxNLP Workshop on Analyzing and
Interpreting Neural Networks for NLP, November 2020.

Tom McCoy, Ellie Pavlick, and Tal Linzen. Right for the wrong reasons: Diagnosing
syntactic heuristics in natural language inference. In ACL, 2019.

Nick McKenna, Tianyi Li, Liang Cheng, Mohammad Javad Hosseini, Mark Johnson, and
Mark Steedman. Sources of hallucination by large language models on inference tasks.
arXiv preprint arXiv:2305.14552, 2023.

Marco Melis, Ambra Demontis, Maura Pintor, Angelo Sotgiu, and Battista Biggio.
secml: A python library for secure and explainable machine learning. arXiv preprint
arXiv:1912.10013, 2019.

L. Meunier, J. Atif, and O. Teytaud. Yet another but more efficient black-box adversarial
attack: tiling and evolution strategies. arXiv preprint, arXiv:1910.02244, 2019.

Paulius Micikevicius, Sharan Narang, Jonah Alben, Gregory Diamos, Erich Elsen, David
Garcia, Boris Ginsburg, Michael Houston, Oleksii Kuchaiev, Ganesh Venkatesh, et al.
Mixed precision training. ICLR, 2018.

Apostolos Modas, Seyed-Mohsen Moosavi-Dezfooli, and Pascal Frossard. Sparsefool: a
few pixels make a big difference. In CVPR, 2019.

Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, Jonathan Uesato, and Pascal Frossard.
Robustness via curvature regularization, and vice versa. CVPR, 2019a.

Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, Jonathan Uesato, and Pascal Frossard.
Robustness via curvature regularization, and vice versa. CVPR, 2019b.

Edward Moroshko, Blake E Woodworth, Suriya Gunasekar, Jason D Lee, Nati Srebro,
and Daniel Soudry. Implicit bias in deep linear classification: Initialization scale vs
training accuracy. In Advances in Neural Information Processing Systems, volume 33,
pages 22182–22193, 2020.

M. Mosbach, M. Andriushchenko, T. Trost, M. Hein, and D. Klakow. Logit pairing
methods can fool gradient-based attacks. In NeurIPS 2018 Workshop on Security in
Machine Learning, 2018.

Marius Mosbach, Maksym Andriushchenko, and Dietrich Klakow. On the stability of
fine-tuning bert: Misconceptions, explanations, and strong baselines. In ICLR, 2021.

Rotem Mulayoff and Tomer Michaeli. Unique properties of flat minima in deep networks.
In ICML, 2020.

Rotem Mulayoff, Tomer Michaeli, and Daniel Soudry. The implicit bias of minima stability:
A view from function space. Advances in Neural Information Processing Systems, 34:
17749–17761, 2021.

Alan F Murray and Peter J Edwards. Synaptic weight noise during MLP learning enhances
fault-tolerance, generalization and learning trajectory. In NeurIPS, 1993.

Aamir Mustafa, Salman Khan, Munawar Hayat, Roland Goecke, Jianbing Shen, and Ling
Shao. Adversarial defense by restricting the hidden space of deep neural networks.
ICCV, 2019.

Mor Shpigel Nacson, Kavya Ravichandran, Nathan Srebro, and Daniel Soudry. Implicit
bias of the step size in linear diagonal neural networks. In International Conference on
Machine Learning, pages 16270–16295. PMLR, 2022.

272

Bibliography

Vaishnavh Nagarajan and J Zico Kolter. Uniform convergence may be unable to explain
generalization in deep learning. In NeurIPS, 2019.

Preetum Nakkiran. Learning rate annealing can provably help generalization, even for
convex problems. arXiv preprint arXiv:2005.07360, 2020.

Preetum Nakkiran, Gal Kaplun, Dimitris Kalimeris, Tristan Yang, Benjamin L Edelman,
Fred Zhang, and Boaz Barak. Sgd on neural networks learns functions of increasing
complexity. arXiv preprint arXiv:1905.11604, 2019.

Preetum Nakkiran, Gal Kaplun, Yamini Bansal, Tristan Yang, Boaz Barak, and Ilya
Sutskever. Deep double descent: Where bigger models and more data hurt. In ICLR,
2020.

N. Narodytska and S. Kasiviswanathan. Simple black-box adversarial attacks on deep
neural networks. In CVPR Workshops, 2017.

A. S. Nemirovsky and D. B. Yudin. Problem Complexity and Method Efficiency in Opti-
mization. Wiley-Interscience Series in Discrete Mathematics. John Wiley & Sons, 1983.

Y. Nesterov and V. Spokoiny. Random gradient-free minimization of convex functions.
Foundations of Computational Mathematics, 17(2):527–566, 2017.

Yurii Nesterov. Introductory Lectures on Convex Optimization. Kluwer Academic, 2004.
Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y Ng.

Reading digits in natural images with unsupervised feature learning. Technical Report,
2011.

Gergely Neu. Information-theoretic generalization bounds for stochastic gradient descent.
In COLT, 2021.

Behnam Neyshabur, Ryota Tomioka, and Nathan Srebro. In search of the real inductive
bias: On the role of implicit regularization in deep learning. In ICLR workshops, 2015.

Behnam Neyshabur, Srinadh Bhojanapalli, David McAllester, and Nati Srebro. Exploring
generalization in deep learning. In NeurIPS, 2017.

Maria-Irina Nicolae, Mathieu Sinn, Minh Ngoc Tran, Beat Buesser, Ambrish Rawat, Mar-
tin Wistuba, Valentina Zantedeschi, Nathalie Baracaldo, Bryant Chen, Heiko Ludwig,
Ian Molloy, and Ben Edwards. Adversarial robustness toolbox v1.2.0. arXiv preprint
arXiv:1807.01069, 2018.

Bernt Oksendal. Stochastic differential equations: an introduction with applications.
Springer Science & Business Media, 2013.

OpenAI. Gpt-4 technical report. arXiv: 2303.08774, 2023.
Tianyu Pang, Kun Xu, Yinpeng Dong, Chao Du, Ning Chen, and Jun Zhu. Rethinking

softmax cross-entropy loss for adversarial robustness. ICLR, 2020a.
Tianyu Pang, Kun Xu, and Jun Zhu. Mixup inference: Better exploiting mixup to defend

adversarial attacks. In ICLR, 2020b.
Tianyu Pang, Xiao Yang, Yinpeng Dong, Kun Xu, Hang Su, and Jun Zhu. Boosting

adversarial training with hypersphere embedding. NeurIPS, 2020c.
Tianyu Pang, Xiao Yang, Yinpeng Dong, Hang Su, and Jun Zhu. Bag of tricks for

adversarial training. ICLR, 2021a.
Tianyu Pang, Huishuai Zhang, Di He, Yinpeng Dong, Hang Su, Wei Chen, Jun

Zhu, and Tie-Yan Liu. Adversarial training with rectified rejection. arXiv preprint
arXiv:2105.14785, 2021b.

273

Bibliography

N. Papernot, P. McDaniel, and I. Goodfellow. Transferability in machine learning:
from phenomena to black-box attacks using adversarial samples. arXiv preprint
arXiv:1605.07277, 2016a.

N. Papernot, P. McDaniel, X. Wu, S. Jha, and A. Swami. Distillation as a defense to
adversarial perturbations against deep networks. In IEEE Symposium on Security &
Privacy, 2016b.

Nicolas Papernot, Patrick McDaniel, Ian Goodfellow, Somesh Jha, Z Berkay Celik, and
Ananthram Swami. Practical black-box attacks against machine learning. ASIA
CCS’17, 2017.

Nicolas Papernot, Fartash Faghri, Nicholas Carlini, Ian Goodfellow, Reuben Feinman,
Alexey Kurakin, Cihang Xie, Yash Sharma, Tom Brown, Aurko Roy, Alexander
Matyasko, Vahid Behzadan, Karen Hambardzumyan, Zhishuai Zhang, Yi-Lin Juang,
Zhi Li, Ryan Sheatsley, Abhibhav Garg, Jonathan Uesato, Willi Gierke, Yinpeng Dong,
David Berthelot, Paul Hendricks, Jonas Rauber, and Rujun Long. Technical report on
the cleverhans v2.1.0 adversarial examples library. arXiv preprint arXiv:1610.00768,
2018.

Namuk Park and Songkuk Kim. How do vision transformers work? ICLR, 2022.
Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary

DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic
differentiation in pytorch. Technical Report, 2017.

Scott Pesme, Loucas Pillaud-Vivien, and Nicolas Flammarion. Implicit bias of sgd for
diagonal linear networks: a provable benefit of stochasticity. In NeurIPS, 2021.

Henning Petzka, Michael Kamp, Linara Adilova, Cristian Sminchisescu, and Mario Boley.
Relative flatness and generalization. NeurIPS, 34:18420–18432, 2021.

Loucas Pillaud-Vivien, Julien Reygner, and Nicolas Flammarion. Label noise (stochastic)
gradient descent implicitly solves the lasso for quadratic parametrisation. In Conference
on Learning Theory, 2022.

Chongli Qin, James Martens, Sven Gowal, Dilip Krishnan, Krishnamurthy Dvijotham,
Alhussein Fawzi, Soham De, Robert Stanforth, and Pushmeet Kohli. Adversarial ro-
bustness through local linearization. NeurIPS, 2019.

Rahul Rade and Seyed-Mohsen Moosavi-Dezfooli. Helper-based adversarial training: Re-
ducing excessive margin to achieve a better accuracy vs. robustness trade-off. OpenRe-
view, 2021.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini
Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning
transferable visual models from natural language supervision. In International Confer-
ence on Machine Learning, pages 8748–8763. PMLR, 2021.

Aditi Raghunathan, Jacob Steinhardt, and Percy Liang. Certified defenses against adver-
sarial examples. ICLR, 2018.

Aditi Raghunathan, Sang Michael Xie, Fanny Yang, John Duchi, and Percy Liang. Un-
derstanding and mitigating the tradeoff between robustness and accuracy. In ICML,
2020.

Mohammad Saidur Rahman, Mohsen Imani, Nate Mathews, and Matthew Wright. Mock-
ingbird: Defending against deep-learning-based website fingerprinting attacks with ad-

274

Bibliography

versarial traces. IEEE Transactions on Information Forensics and Security, 16:1594–
1609, 2020.

Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical
text-conditional image generation with CLIP latents. arXiv preprint arXiv:2204.06125,
2022.

L. Rastrigin. The convergence of the random search method in the extremal control of a
many parameter system. Automaton & Remote Control, 24:1337–1342, 1963.

J. Rauber, W. Brendel, and M. Bethge. Foolbox: A python toolbox to benchmark the
robustness of machine learning models. In ICML Reliable Machine Learning in the Wild
Workshop, 2017.

Sylvestre-Alvise Rebuffi, Sven Gowal, Dan Andrei Calian, Florian Stimberg, Olivia Wiles,
and Timothy A Mann. Data augmentation can improve robustness. In NeurIPS, 2021.

Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt, and Vaishaal Shankar. Do imagenet
classifiers generalize to imagenet? In ICML, 2019.

Leslie Rice, Eric Wong, and J. Zico Kolter. Overfitting in adversarially robust deep learn-
ing. ICML, 2020.

Jérôme Rony, Eric Granger, Marco Pedersoli, and Ismail Ben Ayed. Augmented lagrangian
adversarial attacks. arXiv preprint arXiv:2011.11857, 2020.

Jérôme Rony, Luiz G. Hafemann, Luiz S. Oliveira, Ismail Ben Ayed, Robert Sabourin, and
Eric Granger. Decoupling direction and norm for efficient gradient-based l2 adversarial
attacks and defenses. CVPR, 2019.

Andrew Slavin Ross and Finale Doshi-Velez. Improving the adversarial robustness and
interpretability of deep neural networks by regularizing their input gradients. AAAI,
2018.

Parsa Saadatpanah, Ali Shafahi, and Tom Goldstein. Adversarial attacks on copyright
detection systems. In ICML, 2020.

Hadi Salman, Andrew Ilyas, Logan Engstrom, Ashish Kapoor, and Aleksander Madry. Do
adversarially robust imagenet models transfer better? NeurIPS, 2020.

Pouya Samangouei, Maya Kabkab, and Rama Chellappa. Defense-GAN: Protecting clas-
sifiers against adversarial attacks using generative models. In ICLR, 2018.

Shibani Santurkar, Dimitris Tsipras, Brandon Tran, Andrew Ilyas, Logan Engstrom, and
Aleksander Madry. Image synthesis with a single (robust) classifier. NeurIPS, 2019.

Christian Schlarmann and Matthias Hein. On the adversarial robustness of multi-modal
foundation models. arXiv preprint arXiv:2308.10741, 2023.

Jürgen Schmidhuber. Deep learning in neural networks: An overview. Neural networks,
61:85–117, 2015.

G. Schrack and M. Choit. Optimized relative step size random searches. Mathematical
Programming, 10:230–244, 1976.

M. Schumer and K. Steiglitz. Adaptive step size random search. IEEE Transactions on
Automatic Control, 13(3):270–276, 1968.

Leo Schwinn, René Raab, An Nguyen, Dario Zanca, and Bjoern Eskofier. Exploring robust
misclassifications of neural networks to enhance adversarial attacks. arXiv preprint
arXiv:2105.10304, 2021.

275

Bibliography

Vikash Sehwag, Arjun Nitin Bhagoji, Liwei Song, Chawin Sitawarin, Daniel Cullina, Mung
Chiang, and Prateek Mittal. Analyzing the robustness of open-world machine learning.
In 12th ACM Workshop on Artificial Intelligence and Security, 2019.

Vikash Sehwag, Shiqi Wang, Prateek Mittal, and Suman Jana. Hydra: Pruning adversar-
ially robust neural networks. NeurIPS, 2020a.

Vikash Sehwag, Shiqi Wang, Prateek Mittal, and Suman Jana. On pruning adversarially
robust neural networks. NeurIPS, 2020b.

Vikash Sehwag, Saeed Mahloujifar, Tinashe Handina, Sihui Dai, Chong Xiang, Mung
Chiang, and Prateek Mittal. Improving adversarial robustness using proxy distributions.
arXiv, 2021.

M. Seungyong, A. Gaon, and O. S. Hyun. Parsimonious black-box adversarial attacks via
efficient combinatorial optimization. In ICML, 2019.

Ali Shafahi, Mahyar Najibi, Amin Ghiasi, Zheng Xu, John Dickerson, Christoph Studer,
Larry S. Davis, Gavin Taylor, and Tom Goldstein. Adversarial training for free!
NeurIPS, 2019.

Uri Shaham, Yutaro Yamada, and Sahand Negahban. Understanding adversarial training:
Increasing local stability of supervised models through robust optimization. Neurocom-
puting, 2018.

Shawn Shan, Emily Wenger, Jiayun Zhang, Huiying Li, Haitao Zheng, and Ben Y Zhao.
Fawkes: Protecting privacy against unauthorized deep learning models. In 29th USENIX
Security Symposium (USENIX Security 20), pages 1589–1604, 2020.

Changhao Shi, Chester Holtz, and Gal Mishne. Online adversarial purification based on
self-supervised learning. In International Conference on Learning Representations, 2021.
URL https://openreview.net/forum?id=_i3ASPp12WS.

Sungbin Shin, Dongyeop Lee, Maksym Andriushchenko, and Namhoon Lee. The effects
of overparameterization on sharpness-aware minimization: An empirical and theoretical
analysis. ICML 2023 Workshop on High-dimensional Learning Dynamics, 2023.

Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. Membership infer-
ence attacks against machine learning models. In 2017 IEEE Symposium on Security
and Privacy (SP), pages 3–18. IEEE, 2017.

S. N. Shukla, A. K. Sahu, D. Willmott, and Z. Kolter. Black-box adversarial attacks with
Bayesian optimization. arXiv preprint arXiv:1909.13857, 2019.

Carl-Johann Simon-Gabriel, Yann Ollivier, Leon Bottou, Bernhard Schölkopf, and David
Lopez-Paz. First-order adversarial vulnerability of neural networks and input dimension.
ICML, 2019.

Mayank Singh, Abhishek Sinha, Nupur Kumari, Harshitha Machiraju, Balaji Krishna-
murthy, and Vineeth N Balasubramanian. Harnessing the vulnerability of latent layers
in adversarially trained models. IJCAI, 2019.

Chawin Sitawarin, Supriyo Chakraborty, and David Wagner. Improving adversarial ro-
bustness through progressive hardening. arXiv, 2020.

Leslie N Smith. Cyclical learning rates for training neural networks. WACV, 2017.
Samuel L. Smith and Quoc V. Le. A Bayesian perspective on generalization and stochastic

gradient descent. In International Conference on Learning Representations, 2018.

276

https://openreview.net/forum?id=_i3ASPp12WS

Bibliography

Samuel L Smith, Benoit Dherin, David GT Barrett, and Soham De. On the origin of
implicit regularization in stochastic gradient descent. arXiv preprint arXiv:2101.12176,
2021.

Liwei Song and Prateek Mittal. Systematic evaluation of privacy risks of machine learning
models. In 30th USENIX Security Symposium (USENIX Security 21), 2021.

Liwei Song, Reza Shokri, and Prateek Mittal. Privacy risks of securing machine learn-
ing models against adversarial examples. In Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Security, pages 241–257, 2019.

Liwei Song, Vikash Sehwag, Arjun Nitin Bhagoji, and Prateek Mittal. A critical evaluation
of open-world machine learning. arXiv preprint arXiv:2007.04391, 2020.

Daniel Soudry, Elad Hoffer, Mor Shpigel Nacson, Suriya Gunasekar, and Nathan Sre-
bro. The implicit bias of gradient descent on separable data. The Journal of Machine
Learning Research, 19(1):2822–2878, 2018.

Kaustubh Sridhar, Oleg Sokolsky, Insup Lee, and James Weimer. Robust learning via
persistency of excitation. arXiv, 2021.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhut-
dinov. Dropout: a simple way to prevent neural networks from overfitting. JMLR, 2014.

Andreas Steiner, Alexander Kolesnikov, Xiaohua Zhai, Ross Wightman, Jakob Uszkoreit,
and Lucas Beyer. How to train your vit? data, augmentation, and regularization in
vision transformers. TMLR, 2021.

David Stutz, Matthias Hein, and Bernt Schiele. Relating adversarially robust generaliza-
tion to flat minima. In ICCV, 2021.

J. Su, D. V. Vargas, and K. Sakurai. One pixel attack for fooling deep neural networks.
IEEE Transactions on Evolutionary Computation, 2019.

Fnu Suya, Jianfeng Chi, David Evans, and Yuan Tian. Hybrid batch attacks: Finding
black-box adversarial examples with limited queries. arXiv preprint, arXiv:1908.07000,
2019.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian
Goodfellow, and Rob Fergus. Intriguing properties of neural networks. ICLR, 2014.

Lue Tao, Lei Feng, Jinfeng Yi, Sheng-Jun Huang, and Songcan Chen. Provable defense
against delusive poisoning. arXiv preprint arXiv:2102.04716, 2021.

Rohan Taori, Achal Dave, Vaishaal Shankar, Nicholas Carlini, Benjamin Recht, and Lud-
wig Schmidt. Measuring robustness to natural distribution shifts in image classification.
arXiv preprint arXiv:2007.00644, 2020a.

Rohan Taori, Achal Dave, Vaishaal Shankar, Nicholas Carlini, Benjamin Recht, and Lud-
wig Schmidt. Measuring robustness to natural distribution shifts in image classification.
NeurIPS, 2020b.

V. Tjeng, K. Xiao, and R. Tedrake. Evaluating robustness of neural networks with mixed
integer programming. In ICLR, 2019a.

Vincent Tjeng, Kai Xiao, and Russ Tedrake. Evaluating robustness of neural networks
with mixed integer programming. ICLR, 2019b.

Giorgos Tolias, Filip Radenovic, and Ondrej Chum. Targeted mismatch adversarial attack:
Query with a flower to retrieve the tower. In ICCV, 2019.

277

Bibliography

Florian Tramèr and Dan Boneh. Adversarial training and robustness for multiple pertur-
bations. In NeurIPS, 2019.

Florian Tramèr, Pascal Dupré, Gili Rusak, Giancarlo Pellegrino, and Dan Boneh. Adver-
sarial: Perceptual ad blocking meets adversarial machine learning. In ACM SIGSAC
CCS, 2019.

Florian Tramèr, Nicholas Carlini, Wieland Brendel, and Aleksander Madry. On adaptive
attacks to adversarial example defenses. In NeurIPS, 2020.

F. Tramèr and D. Boneh. Adversarial training and robustness for multiple perturbations.
In NeurIPS, 2019.

Florian Tramèr, Alexey Kurakin, Nicolas Papernot, Ian Goodfellow, Dan Boneh, and
Patrick McDaniel. Ensemble adversarial training: Attacks and defenses. ICLR, 2018.

Dimitris Tsipras, Shibani Santurkar, Logan Engstrom, Alexander Turner, and Aleksander
Madry. Robustness may be at odds with accuracy. ICLR, 2019.

Yusuke Tsuzuku, Issei Sato, and Masashi Sugiyama. Normalized flat minima: Exploring
scale invariant definition of flat minima for neural networks using pac-bayesian analysis.
In International Conference on Machine Learning, pages 9636–9647. PMLR, 2020.

C.-C. Tu, P. Ting, P.-Y. Chen, S. Liu, H. Zhang, J. Yi, C.-J. Hsieh, and S.-M. Cheng.
Autozoom: Autoencoder-based zeroth order optimization method for attacking black-
box neural networks. In AAAI Conference on Artificial Intelligence, 2019.

J. Uesato, B. O’Donoghue, A. Van den Oord, and P. Kohli. Adversarial risk and the
dangers of evaluating against weak attacks. In ICML, 2018.

Jonathan Uesato, Jean-Baptiste Alayrac, Po-Sen Huang, Robert Stanforth, Alhussein
Fawzi, and Pushmeet Kohli. Are labels required for improving adversarial robustness?
NeurIPS, 2019.

Francisco Utrera, Evan Kravitz, N Benjamin Erichson, Rajiv Khanna, and Michael W Ma-
honey. Adversarially-trained deep nets transfer better. arXiv preprint arXiv:2007.05869,
2020.

Tomas Vaskevicius, Varun Kanade, and Patrick Rebeschini. Implicit regularization for
optimal sparse recovery. Advances in Neural Information Processing Systems, 32, 2019.

Shanmukha Ramakrishna Vedantam, David Lopez-Paz, and David J. Schwab. An empiri-
cal investigation of domain generalization with empirical risk minimizers. In A. Beygelz-
imer, Y. Dauphin, P. Liang, and J. Wortman Vaughan, editors, NeurIPS, 2021.

B. S. Vivek and R. Venkatesh Babu. Single-step adversarial training with dropout schedul-
ing. CVPR, 2020.

Dequan Wang, An Ju, Evan Shelhamer, David Wagner, and Trevor Darrell. Fighting
gradients with gradients: Dynamic defenses against adversarial attacks. arXiv preprint
arXiv:2105.08714, 2021.

Haohan Wang, Songwei Ge, Zachary Lipton, and Eric P Xing. Learning robust global
representations by penalizing local predictive power. In NeurIPS, pages 10506–10518,
2019a.

Jianyu Wang and Haichao Zhang. Bilateral adversarial training: Towards fast training of
more robust models against adversarial attacks. ICCV, 2019.

Yisen Wang, Xingjun Ma, James Bailey, Jinfeng Yi, Bowen Zhou, and Quanquan Gu. On
the convergence and robustness of adversarial training. ICML, 2019b.

278

Bibliography

Yisen Wang, Difan Zou, Jinfeng Yi, James Bailey, Xingjun Ma, and Quanquan Gu. Im-
proving adversarial robustness requires revisiting misclassified examples. ICLR, 2020.

Yuqing Wang, Minshuo Chen, Tuo Zhao, and Molei Tao. Large learning rate tames ho-
mogeneity: Convergence and balancing effect. In International Conference on Learning
Representations, 2022. URL https://openreview.net/forum?id=3tbDrs77LJ5.

Ziqiao Wang and Yongyi Mao. On the generalization of models trained with SGD:
Information-theoretic bounds and implications. In ICLR, 2022.

Michael L. Waskom. Seaborn: statistical data visualization. Journal of Open Source Soft-
ware, 6(60):3021, 2021. doi: 10.21105/joss.03021. URL https://doi.org/10.21105/
joss.03021.

Alexander Wei, Nika Haghtalab, and Jacob Steinhardt. Jailbroken: How does llm safety
training fail? In NeurIPS, 2023.

Wei Wen, Yandan Wang, Feng Yan, Cong Xu, Chunpeng Wu, Yiran Chen, and Hai Li.
Smoothout: Smoothing out sharp minima to improve generalization in deep learning.
arXiv preprint arXiv:1805.07898, 2018.

Tsui-Wei Weng, Huan Zhang, Hongge Chen, Zhao Song, Cho-Jui Hsieh, Duane Boning,
Inderjit S. Dhillon, and Luca Daniel. Towards fast computation of certified robustness
for relu networks. ICML, 2018.

Adina Williams, Nikita Nangia, and Samuel Bowman. A broad-coverage challenge corpus
for sentence understanding through inference. In NAACL, 2018.

Stephan Wojtowytsch. Stochastic gradient descent with noise of machine learning type.
Part II: Continuous time analysis. arXiv preprint arXiv:2106.02588, 2021a.

Stephan Wojtowytsch. Stochastic gradient descent with noise of machine learning type.
Part I: Discrete time analysis. arXiv preprint arXiv:2105.01650, 2021b.

Eric Wong and J Zico Kolter. Learning perturbation sets for robust machine learning.
arXiv preprint arXiv:2007.08450, 2020.

Eric Wong and Zico Kolter. Provable defenses against adversarial examples via the convex
outer adversarial polytope. ICML, 2018.

Eric Wong, Frank R Schmidt, and J Zico Kolter. Wasserstein adversarial examples via
projected sinkhorn iterations. In ICML, 2019.

Eric Wong, Leslie Rice, and J. Zico Kolter. Fast is better than free: Revisiting adversarial
training. ICLR, 2020.

Blake Woodworth, Suriya Gunasekar, Jason D. Lee, Edward Moroshko, Pedro Savarese,
Itay Golan, Daniel Soudry, and Nathan Srebro. Kernel and rich regimes in over-
parametrized models. In COLT, 2020.

Mitchell Wortsman, Gabriel Ilharco, Samir Ya Gadre, Rebecca Roelofs, Raphael Gontijo-
Lopes, Ari S Morcos, Hongseok Namkoong, Ali Farhadi, Yair Carmon, Simon Kornblith,
et al. Model soups: averaging weights of multiple fine-tuned models improves accuracy
without increasing inference time. In ICML, pages 23965–23998. PMLR, 2022a.

Mitchell Wortsman, Gabriel Ilharco, Jong Wook Kim, Mike Li, Simon Kornblith, Re-
becca Roelofs, Raphael Gontijo Lopes, Hannaneh Hajishirzi, Ali Farhadi, Hongseok
Namkoong, et al. Robust fine-tuning of zero-shot models. In CVPR, pages 7959–7971,
2022b.

279

https://openreview.net/forum?id=3tbDrs77LJ5
https://doi.org/10.21105/joss.03021
https://doi.org/10.21105/joss.03021

Bibliography

Boxi Wu, Jinghui Chen, Deng Cai, Xiaofei He, and Quanquan Gu. Do wider neural
networks really help adversarial robustness? arXiv, 2020a.

Dongxian Wu, Shu tao Xia, and Yisen Wang. Adversarial weight perturbation helps robust
generalization. NeurIPS, 2020b.

Jingfeng Wu, Difan Zou, Vladimir Braverman, and Quanquan Gu. Direction matters: On
the implicit bias of stochastic gradient descent with moderate learning rate. Interna-
tional Conference on Learning Representations, 2021.

Lei Wu, Chao Ma, et al. How sgd selects the global minima in over-parameterized learning:
A dynamical stability perspective. Advances in Neural Information Processing Systems,
31, 2018.

Lei Wu, Mingze Wang, and Weijie Su. When does sgd favor flat minima? a quantitative
characterization via linear stability. NeurIPS, 2022.

Yuxin Wu and Kaiming He. Group normalization. In ECCV, 2018.
Chang Xiao, Peilin Zhong, and Changxi Zheng. Enhancing adversarial defense by k-

winners-take-all. ICLR, 2020.
Cihang Xie, Jianyu Wang, Zhishuai Zhang, Yuyin Zhou, Lingxi Xie, and Alan Yuille.

Adversarial examples for semantic segmentation and object detection. In ICCV, 2017.
Cihang Xie, Mingxing Tan, Boqing Gong, Jiang Wang, Alan L Yuille, and Quoc V Le.

Adversarial examples improve image recognition. In CVPR, 2020.
Chen Xing, Devansh Arpit, Christos Tsirigotis, and Yoshua Bengio. A walk with sgd.

arXiv preprint arXiv:1802.08770, 2018.
Cong Xu, Xiang Li, and Min Yang. An orthogonal classifier for improving the adversarial

robustness of neural networks. arXiv preprint arXiv:2105.09109, 2021.
Han Xu, Xiaorui Liu, Yaxin Li, and Jiliang Tang. To be robust or to be fair: Towards

fairness in adversarial training. arXiv preprint arXiv:2010.06121, 2020.
Z. Yan, Y. Guo, and C. Zhang. Subspace attack: Exploiting promising subspaces for

query-efficient black-box attacks. In NeurIPS, 2019.
Ning Yang, Chao Tang, and Yuhai Tu. Stochastic gradient descent introduces an

effective landscape-dependent regularization favoring flat solutions. arXiv preprint
arXiv:2206.01246, 2022.

Yao-Yuan Yang, Cyrus Rashtchian, Hongyang Zhang, Ruslan Salakhutdinov, and Kama-
lika Chaudhuri. A closer look at accuracy vs. robustness. Advances in Neural Informa-
tion Processing Systems, 33, 2020.

Yuzhe Yang, Guo Zhang, Dina Katabi, and Zhi Xu. Me-net: Towards effective adversarial
robustness with matrix estimation. In ICML, 2019.

Zhengyuan Yang, Linjie Li, Kevin Lin, Jianfeng Wang, Chung-Ching Lin, Zicheng Liu,
and Lijuan Wang. The dawn of lmms: Preliminary explorations with gpt-4v (ision).
arXiv preprint arXiv:2309.17421, 2023.

D Yin, R. G. Lopes, J. Shlens, E. D Cubuk, and J. Gilmer. A Fourier perspective on
model robustness in computer vision. In NeurIPS, 2019.

Fisher Yu, Vladlen Koltun, and Thomas Funkhouser. Dilated residual networks. In CVPR,
2017.

280

Bibliography

Yaodong Yu, Zitong Yang, Edgar Dobriban, Jacob Steinhardt, and Yi Ma. Understanding
generalization in adversarial training via the bias-variance decomposition. arXiv preprint
arXiv:2103.09947, 2021.

Zelda B Zabinsky. Random search algorithms. Wiley encyclopedia of operations research
and management science, 2010.

Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. In BMVC, 2016.
Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Under-

standing deep learning requires rethinking generalization. In ICLR, 2017a.
Dinghuai Zhang, Tianyuan Zhang, Yiping Lu, Zhanxing Zhu, and Bin Dong. You only

propagate once: Accelerating adversarial training via maximal principle. NeurIPS,
2019a.

Guodong Zhang, Chaoqi Wang, Bowen Xu, and Roger Grosse. Three mechanisms of
weight decay regularization. In International Conference on Learning Representations,
2018.

H. Zhang, Y. Yu, J. Jiao, E. P. Xing, L. El Ghaoui, and M. I. Jordan. Theoretically
principled trade-off between robustness and accuracy. In ICML, 2019b.

Haichao Zhang and Jianyu Wang. Defense against adversarial attacks using feature
scattering-based adversarial training. NeurIPS, 2019.

Haichao Zhang and Wei Xu. Adversarial interpolation training: A simple approach for
improving model robustness. OpenReview, 2019.

Hongyang Zhang, Yaodong Yu, Jiantao Jiao, Eric P. Xing, Laurent El Ghaoui, and
Michael I. Jordan. Theoretically principled trade-off between robustness and accuracy.
In ICML, 2019c.

Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-Paz. mixup: Beyond
empirical risk minimization. arXiv preprint arXiv:1710.09412, 2017b.

Huan Zhang, Hongge Chen, Chaowei Xiao, Sven Gowal, Robert Stanforth, Bo Li, Duane
Boning, and Cho-Jui Hsieh. Towards stable and efficient training of verifiably robust
neural networks. ICLR, 2020a.

Jingfeng Zhang, Xilie Xu, Bo Han, Gang Niu, Lizhen Cui, Masashi Sugiyama, and Mohan
Kankanhalli. Attacks which do not kill training make adversarial learning stronger.
ICML, 2020b.

Jingfeng Zhang, Jianing Zhu, Gang Niu, Bo Han, Masashi Sugiyama, and Mohan Kankan-
halli. Geometry-aware instance-reweighted adversarial training. ICLR, 2021a.

Shuofeng Zhang, Isaac Reid, Guillermo Valle Pérez, and Ard Louis. Why flatness does
and does not correlate with generalization for deep neural networks. arXiv preprint
arXiv:2103.06219, 2021b.

Xiao Zhang and David Evans. Incorporating label uncertainty in understanding adversarial
robustness. arXiv preprint arXiv:2107.03250, 2021.

Hao Zhao, Maksym Andriushchenko, Francesco Croce, and Nicolas Flammarion. Long
is more for alignment: A simple but tough-to-beat baseline for instruction fine-tuning.
ICLR 2024 Data-Centric Machine Learning Research Workshop, 2024.

S. Zheng, Y. Song, T. Leung, and I. J. Goodfellow. Improving the robustness of deep
neural networks via stability training. In CVPR, 2016.

T. Zheng, C. Chen, and K. Ren. Distributionally adversarial attack. In AAAI, 2019.

281

Bibliography

Yaowei Zheng, Richong Zhang, and Yongyi Mao. Regularizing neural networks via adver-
sarial model perturbation. In CVPR, 2021.

Jiachen Zhong, Xuanqing Liu, and Cho-Jui Hsieh. Improving the speed and quality of
gan by adversarial training. arXiv preprint arXiv:2008.03364, 2020.

Pan Zhou, Jiashi Feng, Chao Ma, Caiming Xiong, Steven Chu Hong Hoi, et al. Towards
theoretically understanding why SGD generalizes better than Adam in deep learning.
NeurIPS, 2020.

Chen Zhu, Yu Cheng, Zhe Gan, Siqi Sun, Tom Goldstein, and Jingjing Liu. Freelb:
Enhanced adversarial training for natural language understanding. ICLR, 2019.

Juntang Zhuang, Boqing Gong, Liangzhe Yuan, Yin Cui, Hartwig Adam, Nicha C
Dvornek, sekhar tatikonda, James s Duncan, and Ting Liu. Surrogate gap minimization
improves sharpness-aware training. In International Conference on Learning Represen-
tations, 2022. URL https://openreview.net/forum?id=edONMAnhLu-.

Liu Ziyin, Kangqiao Liu, Takashi Mori, and Masahito Ueda. Strength of minibatch noise
in sgd. In International Conference on Learning Representations, 2022.

Andy Zou, Zifan Wang, J Zico Kolter, and Matt Fredrikson. Universal and transferable
adversarial attacks on aligned language models. arXiv preprint arXiv:2307.15043, 2023.

282

https://openreview.net/forum?id=edONMAnhLu-

Maksym Andriushchenko – Curriculum Vitae

PERSONAL DATA

Site: https://andriushchenko.me/
Email: maksym@andriushchenko.me

Scholar: https://scholar.google.com/citations?user=ZNtuJYoAAAAJ
Github: https://github.com/max-andr/

EDUCATION

École Polytechnique Fédérale de Lausanne (EPFL), Switzerland (Sep 2019 - now)
PhD student in Computer Science advised by Nicolas Flammarion

Saarland University, Germany (Oct 2016 – Aug 2019)
Master’s Degree in Computer Science advised by Matthias Hein from the University of Tübingen

Dnipro National University of Railway Transport, Ukraine (Sep 2012 – June 2016)
Bachelor’s Degree in Software Engineering — with honors

EMPLOYMENT

Adobe Research, Media
Intelligence Lab, remote

Time: July 2021 – October 2021
Role: Research internship supervised by John Collomosse

PrivatBank, Dnipro,
Ukraine

Time: November 2015 – June 2016
Role: Part-time data scientist (predictive modeling, e-commerce personalization)

AWARDS

Grant and
scholarship
awards

Google PhD fellowship 2022-2025 ($80k per year for 3 years)
Open Philanthropy AI PhD Fellowship 2022-2024 ($10k per year for travel/equipment)
Google Research Collab 2022-2023 ($80k for one year + $20k in cloud compute)
EDIC PhD fellowship from EPFL for the first year ($60k)
DAAD MSc scholarship for 2 years to study at Saarland University ($20k)

Awards for
papers and
competitions

Swiss AI Safety Prize (2024): award for one of the top paper submissions
Joint Conference of Korean AI Association (2023): best paper award
ICLR Workshop on Security & Safety in ML Systems (2021): best paper honorable mention
Swiss Machine Learning Day (2019): best paper award

ACADEMIC SERVICE

Participant Red teaming of the OpenAI fine-tuning service as an external expert (October 2023)
Robust AI 4-day workshop organized by AirBus AI Research and TNO (January 2021)

Reviewer NeurIPS'23, ICML'23, NeurIPS'22 (top reviewer), ICML'22, NeurIPS'21, ICML'21, CVPR'21,
ICLR'21 (outstanding reviewer), NeurIPS'20 (top 10% reviewers)

Program
committee in
workshops

NeurIPS'23 “R0-FoMo Workshop on Robustness of Few-shot and Zero-shot Learning in
Foundation Models”, NeurIPS'23 “Workshop on Distribution Shifts: New Frontiers with
Foundation Models”, ICML'23 “2nd ICML Workshop on New Frontiers in Adversarial ML”,
ICLR'23 “Workshop on Pitfalls of Limited Data and Computation for Trustworthy ML”,
NeurIPS'22 “Workshop on Distribution Shifts”, NeurIPS'22 “ML Safety Workshop”,
ICML'22 “New Frontiers in Adversarial Machine Learning”, ICML'22 “Principles of
Distribution Shift”, NeurIPS'21: “Distribution Shifts: Connecting Methods and Applications”,
ICML'21 “Uncertainty and Robustness in Deep Learning”, CVPR'21 “Adversarial ML in
Real-World Computer Vision Systems”, ICLR'21 “Robust and Reliable ML in the Real
World”, “Security and Safety in ML Systems”, ICML'20 “Uncertainty and Robustness in
Deep Learning”, CVPR'20 “Adversarial ML in Computer Vision”, ICLR'20 “Towards
Trustworthy ML” (best reviewer award)

Outreach
activities

National coordinator for Switzerland at #ScienceForUkraine
Coordinator for Switzerland and admission officer at the Ukrainian Global University
AI and STEM workshop at a summer camp for displaced Ukrainian children in Romania

/1 3

STUDENT SUPERVISION

Hao Zhao MSc thesis (2023): “Long Is More for Alignment: A Simple but Tough-to-Beat Baseline
for Instruction Fine-Tuning”

Hichem Hadhri MSc project (2023): “Understanding overfitting in large language models”

Tiberiu Musat BSc project (2023): “Investigating key components for fast optimization of deep
networks”

Francesco d'Angelo PhD semester project (2023): “Understanding the role of weight decay in deep learning”

Théau Vannier MSc project (2023): “Understanding the training instability of transformers”

Joshua Freeman BSc project (2022, unofficial): “Automatic recognition of unexploded ordnance using
transfer learning”

Jana Vuckovic MSc project (2022): “Rethinking the relationship between sharpness and generalization”
(follow-up work is published at ICML'23)

Mehrdad Saberi Summer internship (2021): “Wasserstein adversarial training and perceptual robustness”

Edoardo
Debenedetti

MSc project (2021): “RobustBench: a standardized adversarial robustness benchmark”
(published at NeurIPS'21 Datasets and Benchmarks Track)

Klim Kireev PhD semester project (2020): “On the effectiveness of adversarial training against
common corruptions” (published at UAI'22)

Etienne Bonvin MSc project (2020): “Adversarial robustness of kernel methods”

Oriol Barbany MSc project (2019): “Affine-invariant robust training”

TEACHING EXPERIENCE

EPFL Probability & Statistics 2021, 2022 (by E. Abbé), Machine Learning 2020, 2021, 2022,
2023 (by M. Jaggi, N. Flammarion), Advanced Algorithms 2020 (by M. Kapralov)

MPI for Informatics Machine Learning 2018-2019 (lecturer: B. Schiele)

Saarland University Neural Networks: Implementation and Application 2017 (lecturer: D. Klakow)

SELECTED PUBLICATIONS

H. Zhao, M. Andriushchenko, F. Croce, N. Flammarion. Long Is More for Alignment: A Simple but Tough-to-Beat
Baseline for Instruction Fine-Tuning (ICLR 2024 Data-Centric Machine Learning Research Workshop) [paper]

M. Andriushchenko. Adversarial Attacks on GPT-4 via Simple Random Search (December 2023, one of the top
submissions for Swiss AI Safety Prize) [paper]

M. Andriushchenko, F. Croce, M. Müller, M. Hein, N. Flammarion. A Modern Look at the Relationship between Sharpness
and Generalization (ICML 2023) [paper]

M. Andriushchenko, A. Varre, L. Pillaud-Vivien, N. Flammarion. SGD with Large Step Sizes Learns Sparse Features
(ICML 2023) [paper]

F. Croce*, M. Andriushchenko*, V. Sehwag*, E. Debenedetti*, N. Flammarion, M. Chiang, P. Mittal, M. Hein.
RobustBench: a standardized adversarial robustness benchmark (NeurIPS 2021 Datasets and Benchmarks Track, Best Paper
Honorable Mention Prize at ICLR 2021 Workshop on Security and Safety in Machine Learning Systems) [paper]

M. Andriushchenko, N. Flammarion. Understanding and Improving Fast Adversarial Training (NeurIPS 2020) [paper]

M. Andriushchenko*, F. Croce*, N. Flammarion, M. Hein. Square Attack: a Query-Efficient Black-Box Adversarial Attack
via Random Search (ECCV 2020) [paper]

FULL PUBLICATION LIST

H. Zhao, M. Andriushchenko, F. Croce, N. Flammarion. Long Is More for Alignment: A Simple but Tough-to-Beat
Baseline for Instruction Fine-Tuning (ICLR 2024 Data-Centric Machine Learning Research Workshop) [paper]

M. Andriushchenko. Adversarial Attacks on GPT-4 via Simple Random Search (December 2023, one of the top
submissions for Swiss AI Safety Prize) [paper]

/2 3

E. Debenedetti, Z. Wan, M. Andriushchenko, V. Sehwag, K. Bhardwaj, B. Kailkhura. Scaling Compute Is Not All You
Need for Adversarial Robustness (ICLR 2024 Workshop on Reliable and Responsible Foundation Models) [paper]

M. Andriushchenko*, F. D'Angelo*, A. Varre, N. Flammarion. Why Do We Need Weight Decay in Modern Deep
Learning? (NeurIPS 2023 Workshop on Mathematics of Modern Machine Learning) [paper]

L. Adilova, M. Andriushchenko, M. Kamp, A. Fischer, M. Jaggi. Layer-Wise Linear Mode Connectivity (ICLR 2024)
[paper]

S. Shin, D. Lee, M. Andriushchenko, N. Lee. The Effects of Overparameterization on Sharpness-Aware Minimization: An
Empirical and Theoretical Analysis (September 2023, best paper award at the Joint Conference of Korean Artificial
Intelligence Association (2023) [paper])

M. Andriushchenko, D. Bahri, H. Mobahi, N. Flammarion. Sharpness-Aware Minimization Leads to Low-Rank Features
(NeurIPS 2023) [paper]

K. Kireev, M. Andriushchenko, C. Troncoso, N. Flammarion. Transferable Adversarial Robustness for Categorical Data via
Universal Robust Embeddings (NeurIPS 2023) [paper]

M. Andriushchenko, F. Croce, M. Müller, M. Hein, N. Flammarion. A modern look at the relationship between sharpness
and generalization. (ICML 2023) [paper]

M. Andriushchenko, A. Varre, L. Pillaud-Vivien, N. Flammarion. SGD with large step sizes learns sparse features (ICML
2023) [paper]

K. Kireev*, M. Andriushchenko*, N. Flammarion. On the effectiveness of adversarial training against common corruptions
(UAI 2022, ICLR'21 Workshop on Robust and Reliable Machine Learning in the Real World) [paper]

Michael Rose, Sanita Reinsone, Maksym Andriushchenko, Marcin Bartosiak, Anna Bobak et al. #ScienceForUkraine: an
Initiative to Support the Ukrainian Academic Community. “3 Months Since Russia’s Invasion in Ukraine”, February 26 –
May 31, 2022 (SSRN, 2022) [paper]

M. Andriushchenko, N. Flammarion. Towards Understanding Sharpness-Aware Minimization (ICML 2022) [paper]

M. Andriushchenko, X. Rebecca Li, Geoffrey Oxholm, Thomas Gittings, Tu Bui, Nicolas Flammarion, John Collomosse.
ARIA: Adversarially Robust Image Attribution for Content Provenance (CVPR 2022 Workshop on Media Forensics) [paper]

F. Croce, M. Andriushchenko, N. Singh, N. Flammarion, M. Hein. Sparse-RS: a versatile framework for query-efficient
sparse black-box adversarial attacks (AAAI 2022) [paper]

F. Croce*, M. Andriushchenko*, V. Sehwag*, E. Debenedetti*, N. Flammarion, M. Chiang, P. Mittal, M. Hein.
RobustBench: a standardized adversarial robustness benchmark (NeurIPS 2021 Datasets and Benchmarks Track, Best
Paper Honorable Mention Prize at ICLR 2021 Workshop on Security and Safety in Machine Learning Systems) [paper]

M. Mosbach, M. Andriushchenko, D. Klakow. On the Stability of Fine-tuning BERT: Misconceptions, Explanations, and
Strong Baselines (ICLR 2021) [paper]

M. Andriushchenko*, F. Croce*, N. Flammarion, M. Hein. Square Attack: a query-efficient black-box adversarial attack
via random search (ECCV 2020) [paper]

M. Andriushchenko, N. Flammarion. Understanding and Improving Fast Adversarial Training (NeurIPS 2020) [paper]

M. Andriushchenko, M. Hein. Provably Robust Boosted Decision Stumps and Trees against Adversarial Attacks (NeurIPS
2019, contributed talk at Workshop on Machine Learning with Guarantees; best paper award at Swiss Machine Learning
Day (2019)) [paper]

M. Hein, M. Andriushchenko, J. Bitterwolf. Why ReLU networks yield high-confidence predictions far away from the
training data and how to mitigate the problem (oral at CVPR 2019, 5.6% acceptance rate, contributed talk at ICML 2019
Uncertainty and Robustness in Deep Learning Workshop) [paper]

F. Croce*, M. Andriushchenko*, M. Hein. Provable Robustness of ReLU Networks via Maximization of Linear Regions
(AISTATS 2019) [paper]

M. Mosbach*, M. Andriushchenko*, T. Trost, M. Hein, D. Klakow. Logit Pairing Methods Can Fool Gradient-Based
Attacks (NeurIPS 2018 Workshop on Security in ML) [paper]

M. Hein and M. Andriushchenko. Formal Guarantees on the Robustness of a Classifier Against Adversarial Manipulation
(NeurIPS 2017) [paper]

/3 3

	Acknowledgements
	Abstract (English/Français)
	Contents
	Introduction
	Outline of the thesis
	Contributions beyond this thesis

	I Robustness in Modern Deep Learning
	Understanding and Improving Fast Adversarial Training
	Preface
	Introduction
	Problem overview and related work
	The role and limitations of using random initialization in FGSM training
	Understanding catastrophic overfitting via gradient alignment
	Increasing gradient alignment improves fast adversarial training
	Conclusions and outlook
	Deferred proofs
	Proof of Lemma 1
	Proof and discussion of Lemma 2

	Experimental details
	Supporting experiments and visualizations for Sec. 2.4 and Sec. 2.5
	Quality of the linear approximation for ReLU networks
	Catastrophic overfitting in a single-layer CNN

	Additional experiments for different adversarial training schemes
	Stronger PGD-2 baseline
	Results with early stopping
	Results for specific Linf-radii
	Ablation studies
	Comparison of GradAlign to gradient-based penalties

	Square Attack: a Query-Efficient Black-Box Adversarial Attack via Random Search
	Preface
	Introduction
	Related Work
	Square Attack
	Adversarial Examples in the Lp-threat Model
	General Algorithmic Scheme of the Square Attack
	The Linf-Square Attack
	The L2-Square Attack

	Theoretical and Empirical Justification of the Method
	Convergence Analysis of Random Search
	Why Squares?
	Ablation Study

	Experiments
	Evaluation on ImageNet
	Square Attack Can be More Accurate than White-box Attacks

	Conclusion
	Proofs Omitted from Section 3.4 and Section 3.5
	Proof of Proposition 3.4.1
	Proof of Proposition 3.5.1
	Assumptions Above Do Not Hold for the Sampling Distribution P
	Assumptions Above Hold for the Sampling Distribution P-multiple
	Why Updates of Equal Sign?
	Proof of Proposition 3.5.2

	Experimental Details
	Experiments on ImageNet
	Square Attack Can be More Accurate than White-box Attacks

	Ablation Study
	Linf-Square Attack
	L2-Square Attack

	Stability of the Attack under Different Random Seeds
	Additional Experimental Results
	Targeted Attacks
	Success Rate on ImageNet for Different Number of Queries
	Performance on Architectures with Dilated Convolutions
	Imperceptible Adversarial Examples with the Square Attack
	Analysis of Adversarial Examples that Require More Queries
	Breaking the Post-averaging Defense

	RobustBench: a Standardized Adversarial Robustness Benchmark
	Preface
	Introduction
	Background and related work
	Description of RobustBench
	Leaderboard
	Model Zoo

	Analysis
	Outlook
	Broader impact
	Licenses
	Maintenance plan
	Details of the ImageNet leaderboards
	Reproducibility and runtime
	Additional analysis
	Leaderboards

	II Generalization in Modern Deep Learning
	Towards Understanding Sharpness-Aware Minimization
	Preface
	Introduction
	Background on SAM
	Challenging the Existing Understanding of SAM
	Understanding the Generalization Benefits of SAM
	Testing Two Natural Hypotheses for Why Low m in m-SAM Could be Beneficial
	Provable Benefit of SAM for Diagonal Linear Networks
	Empirical Study of the Implicit Bias in Non-Linear Networks

	Understanding the Optimization Aspects of SAM
	Theoretical Analysis of Convergence of SAM
	Convergence of SAM for Deep Networks

	Conclusions
	Implementations of the SAM Algorithm in the Full-Batch Setting
	Theoretical Analysis of the Implicit Bias for Diagonal Linear Networks
	Implicit Bias of the n-SAM Algorithm.
	Implicit Bias of the 1-SAM Algorithm
	Comparison between 1-SAM and n-SAM

	Convergence of the SAM Algorithm
	Convergence of Full-Batch n-SAM
	Convergence of Stochastic SAM

	Experimental Details
	Additional Deep Learning Experiments
	The Effect of m in m-SAM
	The Effect of the Batch Size on SAM
	The Effect of the Model Width on SAM
	Sharpness for Models with Batch Normalization
	Training Loss for ERM vs. SAM Models
	SAM with a Decreasing Perturbation Radius
	Experiments with Noisy Labels

	SGD with Large Step Sizes Learns Sparse Features
	Preface
	Introduction
	Our Contributions
	Related Work

	The Effective Dynamics of Large Step Size SGD: Sparse Feature Learning
	Background: SGD is GD with Specific Label Noise
	The Effective Dynamics Behind Loss Stabilization
	Sparse Feature Learning

	Empirical Evidence of Sparse Feature Learning Driven by SGD
	Sparse Feature Learning in Diagonal Linear Networks
	Sparse Feature Learning in Simple ReLU Networks
	Sparse Feature Learning in Deep ReLU Networks

	Conclusions and Insights from our Understanding of the Training Dynamics
	SGD and Label Noise GD
	Quadratic Parameterization in One Dimension
	Empirical Validation of the SDE Modeling
	Additional Experimental Results

	A Modern Look at the Relationship between Sharpness and Generalization
	Preface
	Introduction
	Related work
	Adaptive Sharpness, its Invariances, and Computation
	Background on Sharpness
	Which Invariances Do We Need Sharpness to Capture for Modern Architectures?
	How to Compute Worst-Case Sharpness Efficiently?

	Sharpness vs. Generalization: Modern Setup
	Why Doesn't Sharpness Correlate Well with Generalization?
	The Role of Sharpness in a Controlled Setup
	Is Sharpness the Right Quantity in the First Place? Insights from Simple Models

	Conclusions
	Omitted Proofs
	Asymptotic Analysis of Adaptive Sharpness Measures
	Derivations for Diagonal Linear Networks

	Correlation Between Sharpness and Generalization Gap
	ImageNet-1k Models Trained from Scratch from Steiner et al. (2021): Extra Details and Figures
	Fine-tuning of ImageNet-1k Models Pretrained on ImageNet-21k from Steiner et al. (2021): Extra Figures and Details
	ImageNet Models both Pretrained on ImageNet-1k and ImageNet-21k from Steiner et al. (2021)
	Fine-tuning CLIP Models on ImageNet: Extra Details and Figures
	Fine-tuning on MNLI: Extra Details and Figures
	Training from Scratch on CIFAR-10: Extra Details and Figures
	The Role of Data Used for Sharpness Evaluation
	The Role of the Number of Iterations in Auto-PGD
	The Role of m in m-Sharpness
	The Role of Different Sharpness Definitions and Radii

	Conclusions

	Bibliography

