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Abstract

Scattering network models play a crucial role in both photonics and condensed matter, where

they are used to describe the transport of photons and electrons in arbitrary potential land-

scapes and guided wave circuits. Among the important physical phenomena occurring in 2D

networks, topological transport has raised considerable interest as it enables back-scattering

immune point-to-point routing along topological interfaces, which is an appealing new pos-

sibility in planar electronics and integrated photonics. This Ph.D. thesis unveils the unique

topological phenomena occurring in such networks, focusing on the intricate interplay be-

tween their Floquet topology, the presence of disorder, and their unitary scattering at micro-

scopic and macroscopic scales. Using theoretical, numerical, and experimental explorations,

it uncovers: 1) the robustness of topological phases under various forms of disorder, 2) the

physical distinctions between the two possible topologically non-trivial phases in networks,

namely the anomalous Floquet insulator (AFI) and the Chern insulator (CI), and 3) a renor-

malization group method on unitary scattering systems to explain the microscopic origin of

robust macroscopic chiral transport.

We start by categorizing the Floquet topological bands, identified in honeycomb lattice scat-

tering networks with broken time-reversal symmetry (TRS), into three distinct phases: AFI,

CI, and trivial phases. The evolution of topological features when tuning the degree of dis-

order is evaluated by various means, including scattering at external ports, band structures,

eigenstates of closed networks, and topological invariants.

Based on theoretical and numerical modelling, we uncover the superior robustness of chiral

edge transport in the AFI in the presence of strong distributed disorder, imparted either on the

network phase-delay links, on its structure, or on the scattering properties of the nodes. This

remarkable robustness, connected to the physics of anomalous Floquet Anderson insulators

(AFAI), positions AFI as a promising platform for genuine unidirectional topological edge

transports robust to disorder or on-purpose reconfiguration.

A significant proportion of the work is dedicated to experimental validations performed on

photonic scattering networks at microwave frequencies, confirming the theoretical predictions.

These experiments demonstrate the robust nature of topological edge states amid a wide array

of disorder, showcasing the practical potential of AFI in real-world scenarios. Moreover, we

introduce innovative methods for measuring topological invariants within finite disordered
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networks. A specific device is designed to implement twisted boundary conditions, enabling

the direct observation and measurement of topological properties.

Finally, a unified framework is proposed to capture the topological properties of scattering

networks even in the strong disordered regime: a real-space renormalization group (RG)

theory, driven by block-scattering transformations of unitary systems, which, unlike traditional

approaches, does not rely on the renormalization of Hamiltonians or wave functions. The

resulting RG flows, RG phase diagrams, scaling analysis, and critical behavior studies, prove

and explain why chiral topological edge states exist even under the strongest available disorder

levels, providing useful guidelines for constructing robust topological photonic systems that

never localize.

In conclusion, this work establishes bridges between different concepts in condensed matter

physics and photonics, from topology to renormalization group, uncovering the unitary

topological physics of scattering networks and the important role of disorder. We envision

new opportunities for applications of these physical effects in reconfigurable electromagnetic

systems for future communication technologies.

Key words:

• Scattering network

• Topological insulator

• Anomalous Floquet topology

• Disorder

• Topological robustness

• Renormalization group

• Localization

• Photonic and condensed matter systems
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Résumé

Les modèles de réseaux de diffusion jouent un rôle crucial tant en photonique qu’en matière

condensée, où ils servent à décrire le transport de photons et d’électrons dans des paysages

potentiels arbitraires et des circuits d’ondes guidées. Parmi les phénomènes physiques im-

portants se produisant dans les réseaux 2D, le transport topologique a suscité un intérêt

considérable car il permet un routage de point à point immunisé contre la rétro-diffusion le

long des interfaces topologiques, ce qui représente une nouvelle possibilité séduisante en élec-

tronique planaire et en photonique intégrée. Cette thèse de doctorat dévoile les phénomènes

topologiques uniques se produisant dans de tels réseaux, en se concentrant sur l’interaction

complexe entre leur topologie de Floquet, la présence de désordre, et leur diffusion unitaire à

des échelles microscopiques et macroscopiques. À travers des explorations théoriques, numé-

riques et expérimentales, elle révèle : 1) la robustesse des phases topologiques sous diverses

formes de désordre, 2) les distinctions physiques entre les deux phases topologiquement non

triviales possibles dans les réseaux, à savoir l’isolant de Floquet anormal (AFI) et l’isolant de

Chern (CI), et 3) une méthode de groupe de renormalisation sur les systèmes de diffusion

unitaire pour expliquer l’origine microscopique du transport chiral macroscopique robuste.

Nous commençons par catégoriser les bandes topologiques de Floquet, identifiées dans

les réseaux de diffusion en treillis de miel avec symétrie de renversement du temps (TRS)

brisée, en trois phases distinctes : AFI, CI et phases triviales. L’évolution des caractéristiques

topologiques lors du réglage du degré de désordre est évaluée par divers moyens, y compris la

diffusion aux ports externes, les structures de bandes, les états propres des réseaux fermés et

les invariants topologiques.

Sur la base de modélisation théorique et numérique, nous découvrons la robustesse supérieure

du transport de bord chiral dans l’AFI en présence de désordre distribué fort, impartie soit sur

les liens de retard de phase du réseau, sur sa structure, ou sur les propriétés de diffusion des

nœuds. Cette robustesse remarquable, liée à la physique des isolants d’Anderson de Floquet

anormaux (AFAI), positionne l’AFI comme une plateforme prometteuse pour des transports de

bord topologiques unidirectionnels authentiques robustes au désordre ou à la reconfiguration

à dessein.

Une proportion significative du travail est dédiée aux validations expérimentales effectuées

sur des réseaux de diffusion photoniques à des fréquences micro-ondes, confirmant les

prédictions théoriques. Ces expériences démontrent la nature robuste des états de bord
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topologiques au milieu d’un large éventail de désordres, mettant en évidence le potentiel

pratique de l’AFI dans des scénarios réels. De plus, nous introduisons des méthodes innovantes

pour mesurer les invariants topologiques au sein de réseaux désordonnés finis. Un dispositif

spécifique est conçu pour mettre en œuvre des conditions aux limites tordues, permettant

l’observation directe et la mesure des propriétés topologiques.

Enfin, un cadre unifié est proposé pour capturer les propriétés topologiques des réseaux de

diffusion même dans le régime fortement désordonné : une théorie du groupe de renormalisa-

tion (RG) en espace réel, entraînée par des transformations de diffusion en blocs de systèmes

unitaires, qui, contrairement aux approches traditionnelles, ne repose pas sur la renormali-

sation des Hamiltoniens ou des fonctions d’onde. Les flux RG résultants, les diagrammes de

phase RG, l’analyse d’échelle et les études de comportement critique, prouvent et expliquent

pourquoi les états de bord chiraux topologiques existent même sous les niveaux de désordre

les plus forts disponibles, fournissant des lignes directrices utiles pour la construction de

systèmes photoniques topologiques robustes qui ne se localisent jamais.

En conclusion, ce travail établit des ponts entre différents concepts en physique de la matière

condensée et en photonique, de la topologie au groupe de renormalisation, en découvrant

la physique topologique des réseaux de diffusion et le rôle important du désordre. Nous

envisageons de nouvelles opportunités pour les applications de ces effets physiques dans

des systèmes électromagnétiques reconfigurables pour les technologies de communication

futures.

Mots clefs :

• Réseau de diffusion

• Isolant topologique

• Topologie de Floquet anormale

• Désordre

• Robustesse topologique

• Groupe de renormalisation

• Localisation

• Systèmes photoniques et de matière condensée
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1 Introduction

Exploring new phases of matter occupies a prominent place in modern physics. Traditional

paradigms have extensively categorized these phases through the lens of symmetry breaking,

a concept that underlies the structural and magnetic ordering observed in materials such

as crystals and magnets. Quintessential examples include translational symmetry breaking,

observed in the crystallization of water into ice, and rotational symmetry breaking, manifested

in the magnetic ordering of spins. These examples provide foundational insights into the

emergence of matter from the collective interactions among constituents—ions, magnetic

moments, or electrons. However, the observation of the Berezinskii-Kosterlitz–Thouless phase

transition [1] marked a decisive turning point in our understanding of matter, as we discovered

another type of phase transition, which is completely free of any symmetry breaking. This

discovery led to the climax of topological matter, beyond the symmetry-breaking paradigm,

propelled by the integer [2] and fractional quantum Hall effects [3] found in the 1980s: a two-

dimensional electron gas, subject to an external static perpendicular magnetic field, causes the

electrons to circulate in quantized orbits. In the quantum Hall effect, the electron is prohibited

from moving in the bulk but circulates along its edge in a single direction that depends on

the orientation of the external magnetic field. One of the most important breakthroughs

in the past decades is that similar topological phases can be found in crystals, systems that

remain invariant under spatially discrete translations. Band theory is conventionally applied

to classify crystals into insulators, semi-metals, or metals. These systems have been named

topological insulators, as they are insulators in the bulk but exhibit unavoidable metallic states

at their boundaries, which is a consequence of the non-trivial topology of their eigenstate

structure in momentum space [4–7].

In this chapter, we begin by introducing the concepts of topological insulators and the Chern

number in Sec. 1.1, highlighting the robustness of topological edge states against impurities

or defects. We stress on the particular reliability of the Chern insulating phase, as its existence

does not require any prerequisite on system symmetries. Next, Sec. 1.2 delves into the impact

of distributed disorder on topological systems and presents physical models for disordered

topological systems, concluding with the reason why this thesis focuses on scattering networks.
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Chapter 1 Introduction

In Sec. 1.3, starting from the state-of-the-art, we outline the basis of time-Floquet systems and

define the various Floquet topological phases, including the anomalous Floquet insulator (AFI),

which has no counterpart in Hamiltonian (Hermitian) topology, and only exist in Unitary

topology. We also introduce a recently-found topological phase occurring in disordered

Floquet systems- the anomalous Floquet Anderson insulating phase (AFAI). Sec. 1.4 establishes

a connection between scattering networks, which are static, and time-Floquet systems, which

are periodically-driven, demonstrating their potential as platforms for exploring further the

physical differences between the various topological phases, and the effects of distributed

disorder. Throughout these discussions, we weave in the motivations driving the research

presented in this thesis. We consolidate these motivations in Sec. 1.5, which outlines the

structure of the thesis and overarching questions. We use a third person narrative style, which

is more inclusive for the reader, however all results correspond to the individual work of the

author.

1.1 Topological insulator and topological robustness against disor-

der

1.1.1 Topology concept and topological insulator

When we think of two objects with distinct topology, the differences in the geometries of the

objects come first in mind, e.g. a rubber band and a Möbius strip as depicted in Fig. 1.1.

Generally speaking, the concept of topology is based on a branch of mathematics focused on

properties of objects that remain unchanged under smooth transformations, quantitatively

described by discrete values known as topological invariants. In our examples, for instance,

we cannot continuously deform a rubber band into a Möbius strip unless we cut the band at

one point (which is no longer a smooth transformation) and twist one side by 180 degrees

before gluing the two sides of the cut back together. One way to quantitatively describe this

non-continuous transformation is to rotate a vector around the band and strip. For the rubber

band (Fig. 1.1a), if one rotates a vector by 360 degrees around the band following the dashed

white line, the vector ends up with its original orientation, as opposed to the case of the

Möbius strip, in which one observes a 180-degree angle difference. The number of half turns

accumulated during this process can therefore serve as a topological invariant to distinguish

two topologically distinct ribbons. Once an observable is written as a topological invariant, it

only changes discretely, and only through discontinuous transformations. If we deform the

rubber band without cutting it, we cannot change this invariant.

Similarly, in a topological insulator, the topology emerges from the quantized collective

behaviour of eigenstates defined on dispersion bands in reciprocal (momentum) space I.

Traditionally, band theory merely focuses on the energy spectrum with eigenstates ignored.

Following the seminal work on quantum Hall conductance in periodic potentials described

IIn topological insulators, eigenstates and dispersion bands replace vectors and bases (rubber band and Möbius
strip) in the examples of panel a and b, respectively.
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Figure 1.1: Topology concept and topological insulators. a, In the rubber band example:
if we rotate a vector around the rubber band, it returns to its original direction. The gray
color gradient in the figure shows the movement path. b, Möbius strip example: when a
vector rotates 360 degrees along a Möbius strip, it surprisingly points in the opposite direction
upon completing the loop. This unique behavior of the vector encircling the Möbius strip
illustrates its non-trivial topology, distinguishing it from a rubber band, which cannot be
transformed into a Möbius strip without cutting and rejoining. c, d, Trivial (c) and non-trivial
(d) topological band structures. Similarly, band structures reveal topological concepts defined
by Chern numbers, which remain invariant unless altered by a topological phase transition
involving the closing and reopening of the band gap. e, f, A non-vanishing Chern number
signifies a band’s non-trivial topology, causing conducting states within the band gap (EF or
f0) that circulate unidirectionally along the edge, as shown in panel (f). Conversely, a trivial
topology, indicated by a Chern number of zero, results in complete insulation within the
band gap, as depicted in panel (e). Such effect is measurable and robust due to the nature of
topology.

by Thouless, Kohmoto, Nightingale, and Nijs (TKNN) [8], the well-known quantized Hall

conductance can be determined by topological invariants of bands. The topological invariant

of an isolated band, namely Chern number C , is defined over the Brillouin zone (BZ), a base

space which is a torus of the momentum. Chern number can be expressed as

C = − 1

2π

∫
B Z

F (k)dk = − 1

2π

∫
B Z

∇×A(k)dk = − i

2π

∫
B Z

dk
[
∂kx 〈ψ|∂ky |ψ〉−∂ky 〈ψ|∂kx |ψ〉

]
, (1.1)

where F (k) is the Berry curvature, defined by Berry connection A(k) as F (k) = ∇× A(k). |ψ〉 is
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the Bloch state on the band. The odd symmetry of A(k) in relation to the time reversal operator

indicates that Chern numbers vanish in time reversal symmetric (TRS) systems. However,

static magnetic fields can break TRS and induce non-zero Chern numbers of bands [8–10].

Moreover, the "cut and glue" operation on the rubber band discussed previously is now re-

placed in the topological insulator case, by the closing and reopening of band gaps, in line

with the topological band theory. Figs. 1.1 (c, d) aim to illustrate the difference between a

trivial (zero Chern number) and a non-trivial (non-zero Chern number) topological insulators

respectively. The systems with non-trivial topological bands are therefore in the Chern insulat-

ing phase. The closing and reopening of the band gap trigger a topological phase transition

between trivial and Chern insulating phases, characterized by a change in Chern numbers.

Although the concept of Chern number is not intuitively obvious, this number just counts

algebraically the number of chiral edge states that enter or leave a given bulk band. Non-trivial

Chern numbers typically lead to the existence of gapless chiral edge states in the band gap,

whose number depend on the difference of the Chern numbers of the surrounding bands, a

property known as the bulk-edge correspondence. These remarkable gapless states exhibit a

topological edge current that circulates unidirectionally around the system, exemplified by

the famous quantum Hall current [9, 11], which is measurable in experiments (Fig. 1.1 (f)).

Although topologically non-trivial bands were first discovered in electronic systems, topologi-

cal band theory fundamentally relies on the geometric phase effects of eigenstates within the

compact base space (Brillouin torus), but not on the system’s spatial scale or physical nature.

This crucial point was first highlighted by the seminal work of Haldane [10] and Raghu [12],

who demonstrated that photonic Chern insulators could be realized with electromagnetic

waves in spatially periodic structures with a broken TRS obtained from magnetically biased

magneto-optical elements. This then sparked explorations of topological phases in classical

platforms using a wide variety of waves, including photonic [6, 7, 13–22], phononic [23–26],

water wave [27], and even in geophysical and astrophysical waves [28, 29].

Topological phases are nevertheless not restricted to systems with broken time-reversal sym-

metry. Recently, topological phases were shown in systems with intrinsic symmetries (time

reversal, chiral, and particle-hole symmetries) or spatial symmetries (for example, rotational

and reflection symmetry), as indicated by the tenfold classifications [30–32] and the periodic

tables of topological crystalline insulators [33–35]. These extensions of topological band

theories have simultaneously stimulated the study of their photonic and phononic analogues

[14, 36, 37]. Note that the tenfold classification assumes a system described by a Hermitian

eigenproblem. Other systems, for example the ones based on Unitary eigenproblems used in

this thesis, possess their own classification table [38–40]. In particular, because the space of

unitary operators is not simply connected, they exhibit additional topological phases, includ-

ing the anomalous Floquet insulator mentioned throughout this thesis, which is distinct from

a Chern insulator, although it leads to similar chiral edge states. We will come back to this in

details in the following sections.
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1.1.2 Topological robustness against disorder

One of the most distinguishing features of 2D topological insulators is the presence of edge

states, guaranteed even if the system is subject to disorder and defects, as long as the bulk

invariant does not change. This is a consequence of the resilience of the invariant against

continuous deformations of the system. These topological protected edge states lead to quan-

tized currents in electronic systems [8, 9, 11, 41], enabling the high accuracy determination of

physical constants [2], and also promise robust photonic and phononic wave manipulations

against fabrication flaws or imperfections [6, 7]. Compared to their electronic counterparts,

classical topological systems offer considerable freedom for practical control of spatial and

temporal properties, thanks to recent advances in microwave, optical and acoustic compo-

nents and devices. As a result, they represent a particularly relevant platform for detecting and

harnessing topological effects that are difficult to implement in condensed matter systems.

Among all topological phases, Chern insulators in A class are to date the most reliable designs

[10, 12, 13, 17–22, 36, 42–48], as no intrinsic nor spatial symmetries are prerequisites. As

a by-product of time-reversal symmetry breaking, their edge states are unidirectional, and

break reciprocity. They are called chiral edge states, a concept that should not be mixed with

the one of chiral media in continuous electrodynamics [49], which is a class of reciprocal

magneto-electric media that unfortunately bears the same name. Chiral edge states provide

waveguides with genuine backscattering immunity to obstacles placed on the edge [50, 51].

They are attractive due to their compact planar geometries compatible with the fabrication

technologies used in modern electronics and photonics. They were reported in non-reciprocal

artificial wave media, such as externally-biased magneto-photonic crystals [17–22, 48, 52]

or mechanical systems [51, 53] with moving media or time-varying elements [23, 36, 43, 44].

Although protected from local disorder and defects by their non-trivial topology, Chern edge

modes cannot withstand distributed bulk disorder of sufficiently strong magnitude, especially

when the average fluctuation amplitude is greater than the band gap size. This behaviour

inherently limits the topological protection of Chern phases to small distributed disorder

levels. Better understanding this limitation is the first motivation for this thesis.

As we wish to study topological edge states in disordered scattering networks, we will now

examine the state-of-the art in understanding the role of disorder in topological insulators, and

how networks emerge as a cornerstone model for quantitatively describing disorder effects.

1.2 The role of disorder in topological systems

1.2.1 Why should we care about disorder in topological systems?

The interplay between disorder and topological systems is complex and challenging to analyze,

yet it remains a fascinating and widespread topic. On the one hand, disorder typically disrupts

spatial translational symmetry, rendering topological band theories ineffective due to the

absence of a well-defined momentum space. As a result, in disordered systems, it becomes
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necessary to carefully redefine topological invariants and observables to accurately identify

topological edge states. On the other hand, compared to crystalline systems, disordered

systems offer a more general framework and are inevitable in experiments and practical

applications. The concept of topology is not fundamentally limited to systems with spatial

translation symmetry, as suggested by the first observations of the quantum Hall effect in

disordered samples [54], and theoretical predictions in non-commutative geometry [55–

57]. Disorder gives birth to tremendous counter-intuitive phenomena, including Anderson

localization [58, 59] and unity transport through highly turbid media [60, 61]. A notable

example of the interplay between disorder and topological systems is the emergence of the

topological Anderson insulator, where moderate disorder turns a topologically trivial system

into a topologically non-trivial phase, although stronger disorder eventually leads to the

trivialization of the system [62–66]. Consequently, a thorough understanding of the role of

disorder in topological systems is crucial to address three key aspects of topological physics.

These aspects raise challenging questions that have rarely been explored in depth:

1. Topological robustness: How robust are topological systems, when subject to distributed

disorder? How do they react to different kinds of disorder, and to what level of perturba-

tions can we still define and use topological effects?

2. Interplay with disorder: How does microscopic disorder affect macroscopic observables,

e.g. topological edge states and edge transport?

3. Harnessing disorder: Can we utilize disorder to sustain, induce, or perhaps enhance

topological effects?

These considerations lead to the second motivation of this thesis.

1.2.2 Models for describing disordered topological systems

Interest in the effects of disorder on topological systems dates back to the early studies of the

quantum Hall effect on the theory of plateau transitions. The plateaus of the applied static

magnetic field, which exhibit quantized Hall conductance attributed to topological chiral

transports, can be stabilized due to the presence of disorder [8, 11, 67–69], as illustrated by

chiral edge states (blue lines) in Fig. 1.2a. In the absence of disorder, one expects the reap-

pearance of classical Hall conductance in pristine samples, as bulk transports overwhelm the

contributions of topological chiral edge transport. At a moderate level of disorder, the topolog-

ical edge states persist, which are responsible for transverse conductance Gx y = vG0 (G0 = e2

h )

with e the electron charge and h Planck’s constant, whereas the longitudinal conductance

Gxx disappears because disorder induces localization in bulk transports. The localization of

bulk transport makes the topological edge states obvious in the conductance and eventually

leads to quantized plateaus. However, at sufficiently high levels of disorder, the quantum

Hall sample undergoes Anderson localization, shown in Fig. 1.2b. This Anderson transition,

induced by strong disorder, occurs in Chern insulators within both photonic and phononic

6



Introduction Chapter 1

Figure 1.2: Interplay of disorder and topological systems. a, Quantum Hall sample under
disorder. Disorder plays a crucial role in stabilizing the plateaus of quantized Hall conduc-
tance. It suppresses the bulk transports (pink lines) but keeps topological chiral edge states
(blue lines), therefore broadening the Landau levels into wider bands and localizes the bulk
eigenstates at the bands’ boundaries. b, Anderson transition of Chern insulators in the strong
disorder. Disorder leads to the formation of mobility bands and gaps. They are separated
by mobility edges (red dashed lines). When increasing disorder strength, the mobility edges
approach each other. At a critical threshold, the mobility gap closes, transitioning the system
into an Anderson localized state. c- e, Various models for describing disorder in topological
systems: continuum model (c), tight-binding model (d), and network model (e).

systems. Specifically, disorder turns the definitions of band and band gap in the clean limit

into the concepts of mobility bands and gapsII [70]. The transition points between mobility

bands and gaps are known as mobility edges (Fig. 1.2b). As the strength of disorder increases,

topological edge states are eliminated when the mobility gap closes, a process which is called

pair levitation and annihilation [67, 71]. In this process, the extended states with opposite

Chern numbers move to each other and finally annihilate, leaving behind a fully localized

system characterized by completely flat bands and trivial gaps.

Several models have been developed to quantitatively model disorder in topological systems.

Among others, the continuum model, tight-binding model, and network model are the most

IIIn disordered systems, non-localized states form mobility bands, and a mobility edge is defined as the ener-
gy/frequency separating localized and non-localized states in the conduction or valence bands.
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commonly used and are illustrated on quantum Hall systems in Figs. 1.2(c-e) as examples.

The continuum description of disorder in Fig. 1.2c, which is the starting point for analytical

analysis, lies on the disordered potential [72–76]. The continuum model characterizes non-

interacting two-dimensional (2D) Dirac fermions in a static magnetic field, navigating through

a disordered potential V (r ) within the system. Dynamics of these fermions are governed by

Schrödinger equation which reads

H |ψ〉 = [H0 +V (r )]|ψ〉 = E |ψ〉, (1.2)

where H0 is the clean-limit Hamiltonian (the Landau model) formulated as

H0 :=
1

2m

(h

i
∇+eA

)2
. (1.3)

Here, A is the vector potential, with B = ∇× A representing the magnetic field. The electron

trajectory is dictated by the random potential’s contour, navigating along equipotential lines

identified at the Fermi energy EF , illustrated as yellow lines. At crossings of equi-potential

lines (saddle points), quantum tunneling can happen.

Yet, although the continuum model provides a detailed description of disordered systems,

analytically solving the Schrödinger equations with disordered potentials is rarely feasible [77,

78], especially for the analysis of critical properties at phase transitions. The tight-binding (TB)

model was thus introduced [79] to obtain a computable theory of phase transitions and to

identify topological phases in the integer quantum Hall effect, by featuring electron hopping

between discrete sites as shown in Fig. 1.2d. Sites can trap electrons and are located at the

minima of the potential function, while the hopping term is extracted from the tunnelling

strength at the saddle points of the potential. TB Hamiltonian can then be expressed as

H = − ∑
〈i j 〉

(tc†
i c j +h.c.)+∑

i
ϵi c†

i ci , (1.4)

where ϵi is the onsite energy and t is the hopping term between nearest neighbor sites.

The static magnetic field induces a complex phase in the hopping terms through Peierls

substitution. Consequently, the TB model manifests disorder through variations in onsite

energies, hopping terms, or spatial structure, encapsulating different facets of disorder within

the system [63, 65, 80–83].

Finally, network models, pioneered by Chalker and Coddington [84], represent a crucial frame-

work for analyzing phase transitions in systems with disorder. The Chalker-Coddington (CC)

network model assumes the disorder potential to be smooth at the scale of the magnetic length.

As a result, the electron’s motion can be treated within the semi-classical approximation [85].

The saddle points of the potential is transformed into scattering nodes, whose scattering

process is described by a unitary scattering matrix S0. The parameterization of S0 depends on

the unitary matrix group governed by the system’s symmetries III. Scattering nodes within this

IIIOne can simply classify them by time-reversal symmetry, unitarity, and reciprocity, see details in Sec. 2.1.2.
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model are interconnected by phase-delay links, illustrating how electrons drift along equipo-

tential lines of disordered potentials, thereby acquiring a random phase. The random phase

originates from the randomness of the length of the lines, induced by disordered potentials.

In addition, network model can be mapped back to continuum and tight-binding Hamilto-

nians. For example, the CC network model is proved to be the discretization of nonlinear

σ model [73, 77]. The equivalent TB Hamiltonian H̃ can be written by U = e−iH̃ , where U is

a unitary operator written from the network scattering process [77, 86–88]. H̃ symbolizes a

Dirac Hamiltonian, reflecting the effects of randomness in mass, scalar potential, and vector

potentialIV.

Chalker-Coddington (CC) networks, with their easy access to the conductance, have achieved

great success in quantitative descriptions of plateau transitions in QHE by providing an accu-

rate critical exponent, which is close to the experimental result [54, 84, 88–98]. Subsequently,

despite appearing specialized and limited initially, the network model has demonstrated its

ability to elucidate a broad spectrum of phenomena in a much wider class of systems, includ-

ing various disorder-induced topological phase transitions [95, 99–108]. Network models have

provided useful theoretical insights and have even been tractable analytically around a critical

point, for example the quantum critical point separating Z2 quantum spin-Hall state from

a metallic state [100]. Although in the literature, randomness is mostly introduced through

a U (1) random phase along the phase-delay links, generally speaking, network disorder can

also take the form of structural disorder [20, 109, 110], which makes the network amorphous,

as well as the randomness on the scattering properties of scattering nodes [19, 100].

Moving forward, we delve into the connection between network models and time-Floquet

topological insulators in the next two sections, discussing the various topological phase avail-

able, which surpassing those of insulators based on Hermitian eigenproblems. These Floquet

systems can exhibit unique and peculiar properties of their own, such as the coexistence of

topologically protected edge states and vanishing Chern numbers of all bands that could

normally be considered as "topologically trivial" in conventional topological band theory.

Finally, we discuss disorder effects in Floquet topological physics.

1.3 Floquet topological insulator

Even after the intensive research carried out on topological insulators over the last few decades,

topological physics still yields new surprises. Among the most astonishing developments,

certain crystals, initially deemed topologically trivial, have been shown to manifest topological

properties when subjected to periodic driving, surpassing traditional topological physics

expectations [40, 111]. Floquet theory provides a powerful framework for the analysis of such

periodic systems. Note that the terms "periodically-driven systems" and "time-Floquet sys-

tems" can be used interchangeably. Hence, we simply designate these crystals, which acquire

non-trivial topological phases under periodic driving, as Floquet topological insulators.

IVThis mapping and its further understanding will be elucidated in Sec.1.4.
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1.3.1 Floquet analysis framework

For a system described by a Hermitian Hamiltonian H , subject to temporal periodic driving

with a period T = 2π/Ω (where Ω is the driving frequency), the corresponding eigenequation

is

iℏ
d

d t
|ψ(t )〉 = H(t )|ψ(t )〉, H(t +T ) = H(t ). (1.5)

In the following, for simplicity, we set ℏ = 1. Particularly, one can also describe the state’s

evolution using the unitary time evolution operator U (t ), expressed as [40]

U (t ) = P e−i
∫ T

0 H(t )d t , (1.6)

where P denotes time ordering.

According to Floquet’s theorem, the temporal evolution of these systems can be captured

in a complete basis of orthogonal Floquet states {|ψn(t )〉}, where n is the index for the basis.

These Floquet states are the states that return to themselves after one period of time, with an

additional phase accumulation ϵn
V, satisfying

|ψn(t +T )〉 = e−iϵn T |ψn(t )〉. (1.7)

The state |ψn(t)〉 can be decomposed into a product of a plane wave e−iϵn t along temporal

dimension and a temporally periodic function |Φn(t )〉, namely

|ψn(t )〉 = e−iϵn t |Φn(t )〉, |Φn(t +T )〉 = |Φn(t )〉, (1.8)

|Φn(t )〉 can then be developed in the harmonic basis of the driving frequency Ω, expressed as

|Φn(t )〉 =
∑
m

e−imΩ·t |φ(m)
n 〉, (1.9)

where |φ(m)
n 〉 is mth Fourier component of the Floquet state.

To solve the eigenequation Eq. (1.5), one then needs to apply the Fourier expansion for

Hamiltonian due to its periodicity:

H(t ) =
∑
m

e−imΩ·t H (m), (1.10)

where H (m) = 1/T
∫ T

0 H(t )e imΩ·t d t .

Equation (1.5) can therefore be reshaped into a form in Fourier harmonic space:

(ϵn +mΩ)|φ(m)
n 〉 = H (m) ∗|φ(m)

n 〉, (1.11)

VThis can also be an amplification in parametric oscillations when there is an external driven field.

10



Introduction Chapter 1

where ∗ represents the convolution operation. Solving Eq. (1.11) then leads to the deter-

mination of ϵn and the corresponding Floquet states. The set of ϵn determines the Floquet

spectrum.

Alternatively, rather than focusing solely on Hamiltonians, one can determine the Floquet

spectrum and states by utilizing the time evolution operator. In fact, as revealed by Eq. (1.7),

these Floquet states are the eigenstates of the unitary evolution operator over one period U (T ):

U (T )|ψn(t )〉 = e−iϵn T |ψn(t )〉, (1.12)

where ϵn represents the eigenphase of U (T ), termed as quasienergy. It plays a role analogous

to the energy in a Hamiltonian eigenstate of a non-driven system. Similar to the Brillouin zone

that emerges from discrete translational invariance in space, the system’s temporal periodicity

forms a "temporal Brillouin zone" for quasienergy ϵn , defined as

−π
T

≤ ϵn < π

T
. (1.13)

The periodicity in the quasienergy dimension is also evident from the eigenvalue property of

U (T ): e−i(ϵn+·pΩ)T = e−iϵn T .

In crystals, a spatial version of Floquet’s theorem, the Bloch’s theorem, is used in the anal-

ysis, describing the Hamiltonian, the time-evolution operator, the Floquet state and the

quasienergy by H(t ,k), U (t ,k), |ψn(t ,k)〉, and ϵn(k) in the Brillouin zone.

Therefore, the Floquet spectrum is organized into bands, established on a compact Floquet-

Brillouin zone. The goal of Floquet topological band engineering is to dynamically manipulate

the system parameters to induce non-trivial topological phases, for example, by controlling

the driving frequency, the coupling strength, or the onsite energy.

In some cases, a stroboscopic dynamics point of view can also be helpful. One can imagine

that the time evolution over a period T of a periodically driven system comes from an effective

time-invariant Hamiltonian He f f
VI, that reads as

He f f (k) =
i

T
ln(U (T,k)). (1.14)

Initial attempts to describe the topology of Floquet systems based on the Hermitian classifica-

tion classes applied to He f f showed that such stroboscopic picture is not enough to predict

the existence of topological edge states, which also depends on sub-period dynamics. As

we explain in the following section, an anomalous Floquet topological phase can emerge,

although the Chern numbers of all bands of He f f (k) are zero.

VIIt should be emphasized that logarithm operation of U (T,k) makes He f f (k) not unique[112].
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1.3.2 Floquet topological phases

Figure 1.3: Topological phases in Floquet systems. Unlike the energy/frequency spectrum of
the Hamiltonian, which is defined along the real axis in an open domain as illustrated in panel
d of Fig. 1.1, the Floquet spectrum resides within a compact, periodic Floquet-Brillouin zone.
This quasienergy dimension’s periodicity uniquely allows for phase transitions through the
closing and reopening of the gap at either π/T or −π/T , a phenomenon without counterparts
in static and non-driven systems. Beginning with a Floquet Chern phase, a phase transition
occurring at the π/T band gap causes the Chern numbers of the top and bottom bands to
cancel out. Given that the topological edge state in the 0 gap remains intact, a corresponding
topological edge state in the −π/T gap must also exist to maintain bulk-edge correspondence.
This new topological phase is characterized by bands with zero Chern numbers—typically
considered topologically trivial according to conventional band theory. However, it defies
expectations by exhibiting topological edge states within every band gap. Consequently, this
phase is termed the anomalous Floquet phase. Its topological invariant is characterized by the
non-trivial winding around the Floquet- Brillouin zone, which is an integer number.

Initially, periodic driving served to induce a topological phase transition from a trivial configu-

ration (C = 0) in a non-driven system to a non-trivial state for the system’s Floquet bands under

driving (C ̸= 0). Systems with non-zero Chern numbers for their Floquet bands are therefore

in Floquet Chern phase (Fig. 1.3), which is fully captured by U (T ) or He f f defined on the BZ

torus. A typical example is the graphene irradiated by the circularly polarized light, which can

exhibit the same non-trivial topology as QHE [113–119]. Specifically, the circularly polarized

light naturally breaks time-reversal symmetry, which can replace the external static magnetic

field, leading to the quantum Hall states. Such external time-periodic field control on quantum

matter can induce topological polariton [120] by implementing interaction between light and

matter, which are, if taken separately, topologically trivial. In photonic platforms, lattices of

photonic resonators periodically driven by electro-optic modulators can realize Floquet Chern

insulator thanks to the time-driving induced synthetic magnetic field [121].

The exploration of Floquet topological physics continues to yield intriguing discoveries. What

quickly ignites the field of Floquet topological physics and makes it very active, was the

discovery of a unique topological phase in Floquet systems, the anomalous Floquet topological

12
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phase, which cannot be understood in the scope of topological band theory of Hamiltonians

[122, 123]. The anomalous Floquet phase is characterized by zero Chern numbers of bands,

yet it has topological edge states in every band gap. Its emergence is due to the periodicity of

the quasienergy, which belongs to a compact space, effectively providing an additional gap at

quasienergy ± π
T between the highest band and the lowest band. Since Chern numbers count

the net number of chiral edge states leaving and entering a given band, this additional gap

allows a new type of topological phase (anomalous) where all Chern numbers are zero, and

the same amount of edge states is present in each gap (including the new one). This leads to

a new type of topological transition, markedly different from the only possible one in static

system (the Trivial-Chern phase transition). In static systems with finely tuned parameters,

a topological phase transition between trivial and Chern insulating phases can happen by

closing and reopening the band gap around EF or f0 as shown in Fig. 1.1. In a Floquet system,

the anomalous Floquet phase can be realized starting from a Chern phase with a gap centered

at 0 quasienergy, if one manages to close the trivial gap at π/T or −π/T , and reopen it as

topological, as shown in Fig. 1.3.

Since the conventional topology characterization breaks down when applied to the anomalous

Floquet phase, a new topological invariant Wτ[U ] for Floquet systems was proposed as the

winding number (or degree) of a "periodized evolution operator" Vτ(t ,k) defined for each

spectral gap τ of U (T,k) [39, 123–132]. To be more specific, unitary time evolution operator

U (t ,k) defines a smooth mapping from [0,T ]×B Z →U (N ), where N is the finite internal de-

grees of freedom. However, the homotopy topological invariant, which depicts the topological

features of the mapping between the two manifolds, is trivial. The situation can be different

if the mapping of a unitary operator Vτ(t ,k) is 3-torus S1 ×B Z → U (N ), whose homotopy

topological invariant is the one of the group π3(U (N )) = Z. To achieve this, Vτ(t ,k) should

be periodic and constructed from the unitary time evolution operator U (t ,k). To construct

Vτ(t ,k), a method called "relative construction" was suggested [112, 123, 125, 129, 132]. The

construction begins with Hτ
e f f (k) by the branch cut τ in a spectral gap of U (T,k):

Hτ
e f f (k) =

i

T
ln−τ[U (T,k)]. (1.15)

The operation of the branch cut τ with the complex logarithm is defined as

ln−τ(e iϵT ) = iϵT for −τ−2π≤ ϵT <−τ. (1.16)

The periodized unitary time evolution operator Vτ(t ,k), is then defined as

Vτ(t ,k) = U (t ,k)e it Hτ
e f f (k), (1.17)

and the homotopy topological invariant [112, 123, 132] as

Wτ[U ] =
1

24π2

∫
[0,T ]×B Z

tr
[
(V −1

τ dVτ)3]≡ deg(Vτ(t ,k)) ∈Z, (1.18)
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where dVτ stands for ∂Vτ

∂kx
dkx + ∂Vτ

∂ky
dky + ∂Vτ

∂t
d t . The power 3 must be understood in the

language of differential forms, and the integral runs over a 3-torus. The invariant Wτ[U ] is

actually a gap invariant which is well defined until the spectral gap closes. In contrast, the

Chern numbers are band invariants inferred from the eigenstates of Hτ
e f f (k), and thus cannot

capture the anomalous Floquet topology in unitary operators of the Floquet system, owing

to the non-consideration of the temporal micromotion U (t ,k). Although Chern numbers

cannot provide the full picture for Floquet topology, the Chern number of the bands are still

significant and related with Wτ[U ]. For a band sandwiched in between top gap τ1 and bottom

gap τ2, the difference of the gap invariants Wτ1 [U ] and Wτ2 [U ] is exactly the Chern number C

of the band

C = Wτ1 [U ]−Wτ2 [U ]. (1.19)

We note that, before the work carried in this thesis, both Chern and anomalous phase seemed

to lead to the same physics, namely the existence of Chiral edge states. Their distinction seems

to be merely theoretical. We will show in subsequent chapters that this is not the case, and the

two phases do not behave similarly when disorder is imparted.

1.3.3 Anomalous Floquet topological phase and its platforms

Recent research into anomalous Floquet topological insulators (AFI) has spurred numerous

experimental studies in condensed matter platforms [117, 133] and ultra-cold atoms [134–

137]. Yet, realizing and experimentally characterizing AFI faces two significant challenges.

First, while a periodic driving may lead to a non-trivial topology in Floquet band structure

for platforms of electrons or cold atoms, it is not sufficient to guarantee that one observe the

desired physical properties in the system. Finding the conditions, in which a stable stationary

state with anomalous Floquet topological characteristics emerges in a periodically driven

system, is therefore one of the central challenges in the field [111]. Therefore, platforms

and driving mechanisms, which are convenient for implementations and observations, are

desired. Second, to date, observations of unidirectional edge states in Floquet systems can be

attributed to either Chern or anomalous phases, and they can only be distinguishable when

one can access the entire Floquet band structure. For example, one needs to determine all

band gaps and check whether there is a topological edge state in every gap, or measures the

Chern numbers and gap invariants. However, accessing the entire Floquet band structure

is very difficult [138]. This leads to the third motivation for this thesis. Is there another

observable, apart from topological invariants of Wτ[U ] and C , capable of distinguishing and

detecting easily AFI from Chern phase (CI) and not require determining all information about

all band eigenstates?

To circumvent the implementation of continuous temporal driving, discrete-time dynamics

can be considered, which is both theoretically convenient and also experimentally appealing.

In fact, discrete-time dependent systems were the first models that demonstrated AFI, and
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they were later experimentally confirmed in photonic devices [139–144], as well as cold atom

platforms [145], where the discrete mechanism is often referred to as discrete-time quantum

walk [139, 146]. The discrete time manipulation mechanism can also be the building blocks

for the approximation of arbitrary continuous time driving, paving the way for the ultimate

Floquet topological control.

Moreover, since the topological properties of Floquet systems stem from the unitarity of

time-evolution operators, they are naturally applicable for any kind of platforms whose eigen-

states are described by a unitary Bloch eigenproblem [112, 147–149], including the scattering

networks models of interest in this thesis. As a result, we will use interchangeably the terms

"Floquet topology" and "Unitary topology" in the following, despite our preference would

lean towards the use of the term "Unitary topology" for all these systems. Unitary operators

could be propagators of particles or waves along a propagation coordinate which serves as

the analogue of time [147, 150–155], or scattering matrices describing the scattering process

among multiple scatterers in scattering networks [112, 148, 149]. These unitary operators

provide new platforms and mechanisms for Floquet topology and especially AFI, beyond

the topological phases defined in Hermitian operators. Several artificial systems have been

proposed to exhibit and probe anomalous Floquet phases, such as photonic and acoustic

scattering networks [112, 148, 149, 156–160], as well as in evanescently coupled helical waveg-

uide lattices [144, 147, 150, 152–155, 161, 162], with the advantage of not having to deal with

temporal modulations.

1.3.4 Disordered Floquet topological systems

Shifting our focus to disordered systems, the quasienergy dimension’s periodicity can be

leveraged to explore unique avenues in Floquet topology- the existence of an anomalous

topological phase in disordered systems when the quasienergy spectrum is completely filled

by both mobility gaps accommodating topological edge states and Anderson localized bulk

states. Such a case cannot be found for a disordered Chern phase (topological Anderson

insulators), where the delocalized bulk states at some energies are necessary for the existence

of chiral edge states [11, 112]. These phenomenaVII, known as anomalous Floquet Anderson

insulators (AFAI) [131, 132, 163–170], have been proposed based on time-dependent disorder

applied to on-site potentials [163, 164, 167, 168].

Although most proposed AFAI models tend to be trivialized via Floquet Anderson transition

[152, 171] under large parameter fluctuations, recent theories predict the possible existence of

AFAI in strongly disordered regimes [71, 132, 149, 169, 170], for example by fully randomiz-

ing the quasienergy through a time-dependent kicking on phase factors, implying that the

unique topological observable of AFI might be related to robustness against disorder. Yet,

experimental platforms for realizing disorder in Floquet systems are very scarce. Disorder type

VIIUnder strong disordered cases, the Floquet topological invariant W should be generalized to a branch cut in
the mobility gap [131, 132], and transport properties can also be applied for topological characterization [163].
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adopted in theoretical models may not be directly related with the disorder already existing in

experiments or practically applied, and the effect of disorder on topological systems might

be dependent on the type of disorder [65]. Therefore, our understanding of disorder’s role

in Floquet topological phases and exploration of anomalous Floquet topological phases in

strong disorder are still in their infancy.

Next, we will demonstrate how scattering networks offer promising avenues, for exploring and

advancing in Floquet topological physics and disorder effects on them.

1.4 Floquet topological physics in network models

As introduced in Sec. 1.2, from the original context, network models were proposed to describe

a disordered system with a static Hamiltonian— a non-interacting electron gas in a magnetic

field and disorder potential. Crucially, following the spirit of Sec. 1.3, the equivalence of

Floquet topology and unitary operators’ topology enables the definition of a unitary scattering

matrix U in the network models that behaves as a discrete time evolution operator [77, 86–88,

172].

Delplace and his colleagues further elucidated this Floquet mapping in scattering networks,

showing how U acts as a discrete-time evolution operator in scattering networks [112, 149].

To evidence it, we present two examples: discrete-time dependent tight-binding models in

the square [123] and honeycomb [122] lattices. Both lattices can exhibit anomalous Floquet

insulating phases and are widely implemented in quantum walk platforms [139–144]. For

the Floquet TB model in square lattice shown in Fig. 1.4a, the hopping term Ji represents

the coupling between nearest neighbor sites, and are cyclically switched on and off around

each plateau. The temporal switching status of Ji in a period t ∈ [0,T ) is shown in the bottom

panel, which is only turned on for a τi time slot while off for the other time during [0,T ).

Therefore, the discrete-time dependent Hamiltonian H(t ,k) is temporally piecewise, and can

be expressed as

H(t ,k) =



J1h1(k) 0 ≤ t < τ1

J2h2(k) τ1 ≤ t < τ2

J3h3(k) τ2 ≤ t < τ3

J4h4(k) τ3 ≤ t < T

, (1.20)

where k is the momentum.
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Figure 1.4: Mapping between discrete-time dependent tight-binding (TB) models and scat-
tering networks [149]. a, c, Discrete-time dependent TB models in a square lattice (a) and a
honeycomb lattice (c). Hamiltonians are temporally periodic with periodicity T , employing
time-sequential couplings Ji persisting for a time τi . The unit cells, shown in grey, are defined
by lattice vectors e1 and e2. There are two sublattice freedoms (two sites) for TB models of
both square and honeycomb lattices. b, d, Scattering networks on L lattice (b) and Kagome
(d) lattice, mapped from discrete-time dependent TB models in the square lattice (a) and
honeycomb (c) lattice, respectively. Such correspondences between Floquet TB models and
scattering networks are actually dual-graph transformations. In a transformation, Hermitian
hopping involving N0 sites in TB models during a time step is substituted with a scattering
node (marked as the same color) with N0 incoming links and N0 outgoing links, whose scatter-
ing process is described by a unitary N0 ×N0 matrix. For the L (b) and Kagome (d) lattices, the
unit cells, marked in grey, incorporate 8 and 6 sublattice sites, respectively.
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With the lattice vectors e1 and e2, we can define hi (k) for i = 1,2,3,4 as

h1(k) =

[
0 e−ik+

e ik+ 0

]
, h2(k) =

[
0 e−ik−

e ik− 0

]
,

h3(k) =

[
0 e ik+

e−ik+ 0

]
, h4(k) =

[
0 e ik−

e−ik− 0

]
,

(1.21)

where k± = k · e1+e2
2 .

The time evolution operator Ui (k) in the time slot i can be written as

Ui (k) = e−iθi hi (k) = Bi Si B †
i , (1.22)

where θi ≡ Jiτi and the second equality is obtained by unitary decomposition for hi (k). Bi

expressed as Bi = B(x)|x=− 1
2 ln[hi (k)|(2,1)]

with

B(x) =

[
0 ex

e−x 0

]
, (1.23)

which is unitary while Si is defined by

Si =

[
cosθi i sinθi

i sinθi cosθi

]
. (1.24)

Therefore, with Eq. (1.6), one can write the time evolution operator U (T ) in a whole period

t ∈ [0,T ) as

U (T,k) = U4(k)U3(k)U2(k)U1(k), (1.25)

whose detailed expression is

U (T,k) = B(−k−
2

)S4Te1 S3T−e2 S2T−e1 S1B †(
k+
2

). (1.26)

Te i is a unitary translation operator imparting phase terms along the vectors ±ei /2 and read

as

Te i =

[
e i

k ·ei
2 0

0 e−i
k ·ei

2

]
. (1.27)

In fact, as a change in the origin of time for U (T ) should not alter its topological properties,

cyclic permutation in the time-ordered multiples in Eq. (1.26) is allowed. Therefore, one can

equivalently describes the Floquet dynamics by the unitary operator

Ũ (T,k) = S4Te1 S3T−e2 S2T−e1 S1Te2 , (1.28)
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where Te2 = B †( k+
2 )B(−k−

2 ). The above expression shows that each time after a free propagation

along ±e1 or ±e2, particles or waves encounter a scatterer represented by Si . This scattering

phenomenon happens cyclically and can be clearly interpreted as a successive local scattering

process arranged in real space, resulting in a scattering network in L lattice shown in Fig.

1.4b. In this transformation from the Floquet TB model (Fig. 1.4a) to scattering network (Fig.

1.4b), the hopping Ji , which involves 2 sites in TB model and persists for a time step τi , is

equivalent to a scattering node with 2 incoming links and 2 outgoing links. Its scattering

process is described by a unitary 2×2 matrix Si with θi = Jiτi .

Generally speaking, Hermitian hopping involving N0 sites in the Floquet TB model leads to

a unitary scattering node with N0 outgoing/incoming links, described by a N0 ×N0 unitary

matrix. The scattering nodes are then unidirectionally connected via oriented links, following

the temporal order in Eq. (1.26). From a graph-theory point of view, this transformation

is a dual-graph mapping: sites (nodes) in TB ↔ links in networks; hopping (links) in TB ↔
scattering nodes (nodes) in networks. It is worth to note that in the Floquet TB model with

square lattice there is 2 sublattice degrees of freedom in the unit cell (gray area), whereas cyclic

scattering process in the unit cell of the corresponding scattering network requires 8 wave

amplitudes on the oriented links for a full description.

Following the original proposal [77, 86–88, 172], one can get another unitary operator U (k) on

the network of that form

U (k) =


0 0 0 S4Te1

S1Te2 0 0 0

0 S2T−e1 0 0

0 0 S3T−e2 0

 . (1.29)

U (k) describes the scattering process on the basis of wave amplitudes |ψ〉 = [a1,b1, . . . , a4,b4]T .

The equivalence between Floquet topology characterized by Ũ (T,k) in the view of Floquet

TB model and Floquet topology captured by U 4(k) in the view of scattering networks can be

proved by resorting to the concept of phase rotation symmetry [112]. The mapping applies

broadly, as illustrated by the correspondence in Figs. 1.4(c, d) between Floquet TB model in

honeycomb lattice and scattering network in Kagome lattice. Furthermore, the mapping can

be more complex with the possible additions in time-Floquet systems, for example complex

hopping terms and other temporal coupling statuses. Nevertheless, one can still build the

matching unitary scattering network by comprehensively parameterizing scattering nodes

and adding phase terms on the links.

In conclusion, this Floquet mapping remarkably unveils the potential of scattering networks

in Floquet topological physics. In recent years, periodic unitary scattering networks have been

shown to exhibit the anomalous Floquet insulating phase (AFI) [19–22, 71, 112, 148, 156–158,

163, 173, 174]. In addition, the use of topological scattering networks is motivated by their

precision in modeling topological waves in photonic systems, such as systems comprising

coupled resonator optical waveguides (CROWs) [14, 15, 160, 175–178] and programmable
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photonic platforms [179–181]. This privilege is attributed to the wider domain of validity for

such systems than TB methods, because scattering networks accommodate both strong and

weak coupling [112, 148], whereas TB model and coupled-mode theory (CMT) are restricted to

weakly coupled high-Q resonators (sites). Furthermore, as elucidated in Sec. 1.2, linking Flo-

quet systems to CC networks may provide essential insights into disordered systems through

quantitative analysis, revealing scaling effects, critical exponents, and universality class [90,

96, 182], which are essential for understanding the topological phases and topological phase

transitions in disordered systems. Therefore, with scattering networks, one can truly benefit

from the triple advantages of the richer topological physics rooted in Floquet topology, quanti-

tative results and scaling analysis of disorder effect on topological phases, and the potential

for experimental application and future developments.

1.5 Motivation and structure of the thesis

This thesis is driven by the key objectives that arose in previous sections, which are summa-

rized by the following overarching questions:

1. How to describe and understand the effect of distributed disorder on various kinds on

A-class topological phases, and on their chiral edge transports?

2. Can disorder induce, enhance or guarantee chiral edge transport instead of impeding it?

3. What is the physical difference between chiral transports obtained from an anomalous

or a Chern topological phase?

4. How to experimentally explore the interplay between Floquet topology and disorder by

using scattering networks, to advance the field towards realistic applications?

This thesis focuses on unitary scattering networks with broken TRS, which is a prerequisite

for genuinely operating in the A-class, and exhibiting unidirectional photonic edge states.

Working with time-reversal invariant networks is not an option. As in prior arts, one may think

of working with a TRS system with two time-reversed subspaces, however this cannot allow

for a satisfactory study on disorder, as disorder would couple the two spins together, breaking

the trick used to emulate the A-class.

This thesis is organized as follows.

• Chapter 2 lays the foundation of the work with a theoretical and numerical toolbox for

scattering networks, including clean-limit honeycomb networks, their Bloch eigenequa-

tion, and the introduction of various distributed disorders (phase-delay links, scatter-

ing nodes, and network structure). Crucially, this framework also provides clear and

mutually consistent observables for disordered systems regarding topological phase

transitions and localization. These observables include band structures in infinite and
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semi-infinite networks, finite network calculation methods, localization length and

scaling analysis, and topological invariants in disordered scattering networks.

• In Chapter 3, we study in detail the clean-limit honeycomb scattering networks intro-

duced in Ch. 2 and identify conditions to obtain the three insulating phases- AFI, CI, and

trivial. We then start to examine edge transport distinctions between the two topological

phases, AFI and CI.

• In Chapter 4, based on key observations made in Ch. 3, we study the resilience of

topological chiral edge transport in the presence of distributed disorder, in the form of

random phase-delay fluctuations or variations in the scattering properties of the nodes.

A remarkable robustness distinction is made between AFI and CI.

• Chapter 5 is dedicated to a third disorder type: the structural disorder. We will take a

deeper look at it by providing a method to measure a topological scattering invariant

in finite disordered scattering networks, and connect their non-trivial topology in the

strong disorder to the physics of the anomalous Floquet Anderson insulator (AFAI).

• After that, in Chapter 6, we propose a unified framework to describe the effect of disorder

on topology, and the crucial role of sample scaling on macroscopic scattering properties.

This theory is a real space RG on unitary scattering networks, and allows to capture

topological transports and critical behaviors in strongly disordered scattering networks.

This RG frame is the last stop of my Ph.D. journey, which I expect can answer the

questions you (readers) and I were wondering and curiosities we had about the physical

origin of robustness in disordered topological systems.
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2 Theory and analysis framework of dis-
ordered unitary scattering networks

The main results in this chapter are taken from the following published articles: (i) Zhe Zhang,

Pierre Delplace, Romain Fleury, "Superior robustness of anomalous non-reciprocal topologi-

cal edge states", Nature, 598, 293–297 (2021) (licensed under a Creative Commons Attribution

4.0 International License); (ii) Zhe Zhang, Pierre Delplace, Romain Fleury, "Anomalous topo-

logical waves in strongly amorphous scattering networks", Science Advances, 9, eadg3186

(2023) (open access, under a CC BY-NC or CC BY license); and (iii), the preprint in Zhe Zhang,

et al, "Renormalization group of topological scattering networks", arXiv:2404.15866 (2024)

(open access), with permissions of all co-authors and journals.

Since this thesis focuses on the topological phases in unitary scattering networks and the

effects of disorder, there are two clusters of topics ("maps" and "tools") we (the "explorer")

need to study before trying to find and validate new physics ("find the treasure").

The first cluster of topics contains several aspects of unitary scattering networks. Albeit we

introduce scattering networks from their history and Floquet mapping in Ch. 1, we are still

lack of knowledge regarding:

1. Which specific unitary scattering networks are we focusing on, and what constitutes

their fundamental configuration in the clean-limit case?

2. Do these unitary scattering networks obey some symmetries or not ? Modern physics

centers on symmetries. Systems preserving symmetries adhere to conservation laws, as

elucidated by Noether’s theorem. The information of network symmetries can there-

fore guide us in our theoretical and experimental efforts to understand the physics of

photonic scattering networks.

3. How do waves/particles propagate within scattering networks? Answering this question

requires detailed mathematical descriptions of their microscopic unitary scattering

processes. Such description can also provide us with control knobs in both experiments

and applications.
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4. What types of disorder do we consider, and how do we construct and quantitatively char-

acterize such disorders? These will constitute a numerical technique toolbox, central to

our explorations in disorder physics.

5. Is there a difference between oriented scattering graphs and non-oriented non-reciprocal

scattering networks? The Floquet mapping proved in Sec. 1.4 involves scattering net-

works with oriented links (CC networks). However, the scattering networks of our focus,

which we implement in practice, are built by taking bidirectional waveguides as links,

with non-reciprocal scatterers. Can we bridge the conceptual and practical gap between

these two types of scattering networks, thereby establishing a clear connection between

Floquet systems and scattering networks featuring bidirectional links?

After establishing "maps" for our exploration, namely the fundamentals of unitary scattering

networks with or without disorder, we will then turn our attention to the needed "tools",

aimed at deriving their physical properties through detailed theoretical and analytical frame-

works. Indeed, we need theories and analysis frameworks about clear and mutually consistent

physical observables, in order to capture topological characteristics, phase transitions, and

localization in disordered scattering networks. The spirit we should keep in mind is: Physically,

topological effects/invariants are linked to the transport/eigenstate response of a system when

boundary conditions are varied e.g. the quantum Hall conductance [183] and polarization

[184]. We will answer key considerations about how to study these physical observables:

1. Band structures are important as they facilitate the calculations of Chern numbers C and

gap invariants Wτ, crucial for identifying topological properties in periodic scattering

networks. They describes waves/particles’ propagation within infinite networks or

semi-infinite networks. In addition, they are helpful for checking chiral edge states and

localization, since group velocity and positions of Bloch states are accessible from band

structures.

2. While indispensable, band structures primarily serve as theoretical tools, predicated on

the idealized assumption of networks of infinite or semi-infinite extent I. In practice,

experiments pivot on real-space observables such as conductance and transmissions,

bridging the gap between theoretical predictions and tangible outcomes. Therefore,

real-space observables are crucial for both theoretical confirmations and experimental

demonstrations, including transports in finite networks with external ports and eigen-

states in finite closed networks. Transports are essential for confirming non-trivial

topological phases, as topological edge states underpin unidirectional unitary trans-

ports, which must align with the topological invariant as implied by the well-known

bulk-edge correspondence. Blocked transport is also an obvious observable related to

localization.

IOne possible experimental method to observe it is by applying twisted boundary condition.
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3. Transport properties, especially under varied boundary conditions in finite networks,

unlock insights into localization lengths, enabling us to categorize the network phase

through scaling analysis: metal, topological insulator, or trivial insulator.

4. While transport and band structures provide preliminary insights into a network’s topo-

logical phase, definitive theoretical and experimental validation of topological charac-

teristics in disordered networks demands accessible topological invariants.

In this chapter, we aim to provide the toolbox needed to elucidate all of the above points.

Equipped with the basic knowledge of unitary scattering networks and their analysis frame-

works, we will be prepared to explore the interplay among unitary topology, disorder, and

scattering in the networks, in subsequent chapters (Chs. 3-6).

Organization of the chapter: Sec. 2.1 covers the first cluster of topics regarding clean-limit

honeycomb networks and their Bloch eigenequation, symmetries in photonic scattering

networks, parameterization of unitary scattering processes, disorder types in unitary scattering

networks, and mapping between two types of scattering networks. Secs. 2.2-2.5 provide the

analysis frameworks of the second cluster of topics. Specifically, Sec. 2.2 elucidates analysis

methods on band structures for periodic honeycomb networks and disordered networks. Sec.

2.3 discusses transport through external ports and cavity eigenstates in networks isolated from

the external environment. In the ending of Sec. 2.3, we will examine an example in clean-

limit scattering networks, to exhibit how analysis methods on band structures, topological

invariants, transports, and eigenstates in finite closed networks coincide with each other.

Such correspondence also works in disordered cases. Sec. 2.4 introduces scaling analysis and

localization calculations. Finally, in Sec. 2.5, we propose a topological scattering invariant,

which is measurable and applicable for any network even in the strong disorder cases where

Anderson localization emerges.

2.1 Basics of scattering networks

This section details the configuration and basic physical context of non-reciprocal scattering

networks. At the microscopic scale, the networks we consider are formed of interconnected

unitary scatterers with three ports. This choice to work with three-port systems is motivated

by three reasons. First, at the microscopic scale, scatterers with more than two ports are

needed to construct complex networks. Second, although 2-port unitary scatterers can exhibit

transmission nonreciprocity in the form of transmission phase asymetries (on off-diagonal

elements of their 2×2 scattering matrix), they cannot exhibit nonreciprocity in transmission

magnitude. Three-port appears here as a minimal number to do soII. Third, practically, three-

port circulators are experimentally available and also the elementary component to construct

multi-port non-reciprocal devices with versatile functionalities. One could, of course, work on

a theory based on four-port unitary scatterer built networks, but this would only complicate

IIParameterization of U (N ) matrices is shown in Sec. 2.1.3.
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the associated mathematics without bringing any new advantage. We also assume that the

microscopic scatterers obey three-fold rotational (C 3) symmetryIII.

We first check the configuration of honeycomb periodic scattering networks with non-reciprocal

scatterers, regarded as pristine (clean-limit) scattering networks, and how Floquet band struc-

ture emerges. A non-reciprocal unitary scattering network is illustrated in Fig. 2.1a, which

consists of general three-port non-reciprocal scatterers connected by bidirectional links in a

honeycomb periodic structure. The links are standard monomode waveguides supporting

forward and backward propagation. The scattering elements exhibit three-fold (C3) rotational

symmetry, while the links impart a phase delay of ϕ, as represented in the zoom-in view of the

unit cell (Fig. 2.1b). The scattering process is described by a unitary 3x3 asymmetric scattering

matrix S0, where ST
0 ̸= S0 means scattering nonreciprocity.

Figure 2.1: Topological non-reciprocal scattering network in honeycomb lattice. a, We
consider a unitary scattering network made of three-port non-reciprocal elements, described
by asymmetric unitary scattering matrices. b, Unit cell of the honeycomb lattice, highlighting
the wave signals entering the non-reciprocal elements, their 120o rotational symmetry, and
the reciprocal phase delay ϕ imparted by the links. The network is described by a unitary
unit-cell scattering operator S(k), defining a Floquet unitary mapping with quasienergy ϕ.

2.1.1 Honeycomb non-reciprocal network configuration and Floquet band struc-
ture

In photonics, three-port non-reciprocal scatterers are referred to as circulators. For example,

circulators operating in microwave frequency band are formed of a C 3 symmetric resonant

(central disk) on a ferromagnetic substrate (such as Yttrium iron garnet (YIG)) and penetrated

by an external magnetic field that breaks time-reversal symmetry, as shown in Fig. 2.2a. The

three ports are placed 120o apart from each other such that they are iso-spaced. The printed

circuit board is sandwiched between two pieces of ferrite. Without magnetic fields, the Y-

junction strip line supports two degenerate modes at ω0: right and left-handed. A magnetic

field of 50 kA/m = 628 Oe, normal to the printed circuit board and polarizing the ferrite, lifts the

initial degeneracy, with chiral modes atω+ andω−. When inputted at port 1, the superposition

IIIThis is verified experimentally. On the theoretical front, this symmetry assumption will play an important role
in Ch. 6, renormalization group theory.
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Figure 2.2: Photonic honeycomb network and associated signal labelling convention in
the unit cell. a, Concrete practical implementation of 3-port circulators with a ferrite cavity
circulator biased by an internal magnet providing a static magnetic field H0. In a periodic
honeycomb scattering network (b), we define state vectors |a〉 and |b〉, which represents
signals propagating out and into the two circulators in the unit cell (c), respectively.

of the two excited modes makes a constructive interference (partial or full) at port 2 while

destructive interference (partial or full) at port 3, therefore resulting in partial or full wave

circulation from port 1 to port 2, port 2 to port 3, and port 3 to port 1. In the photonic scattering

networks, we take such circulators as the scattering nodes in the crystalline networks with

honeycomb lattice (Fig. 2.2b), where a unit cell consists of two 3-port circulators and three

links which impart phase delay with value ϕ (Fig. 2.2c).

Now, we derive the Floquet band structure in periodic honeycomb scattering networks and

recognize that the phase delay ϕ take the role of a quasienergy in the spectrum of the unitary

operator describing the Bloch eigenproblem. Following this insight, in the remainder of this

thesis, we will consistently use the terms phase-delay band structures/spectra instead of

Floquet band structures/spectra.

To derive the eigenequation from the scattering matrix of the two circulators present in a

honeycomb unit cell, we adopt the labelling scheme shown in Fig. 2.2c for the complex

amplitudes of the waves propagating in and out of the 3-port circulators, which leads to

a3

a1

a2

a5

a6

a4


=

[
0 S0

S0 0

]


b1

b2

b3

b4

b5

b6


(2.1)

We then multiply Eq. (2.1) by a unitary permutation matrix P0, which exchanges fifth row with

sixth row, fourth row with fifth row, first row with third row, and first with second row, so that

(a1, a2, a3, a4, a5, a6)T = P0(a3, a1, a2, a5, a6, a4)T . Hence, noting |b〉 = [b1,b2,b3,b4,b5,b6]T
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and |a〉 = [a1, a2, a3, a4, a5, a6]T , we get

|a〉 = Sunit cell|b〉 with Sunit cell ≡ P0

[
S0

S0

]
. (2.2)

In general, |a〉 and |b〉 are functions of the position r of the unit cell: |a〉 = |a(r )〉, |b〉 = |b(r )〉
with r = n1α1 +n2α2, where α1 and α2 are Bravais lattice vectors shown in Fig. 2.2c, and

n = {n1,n2} are integers.

With the phase-delay lines between circulators, we obtain:

b1(r +α2) = e iϕa1(r )

b2(r +α1) = e iϕa2(r )

b3(r ) = e iϕa3(r )

b4(r ) = e iϕa4(r )

b5(r ) = e iϕa5(r +α2)

b6(r ) = e iϕa6(r +α1).

(2.3)

Looking for Bloch eigenstates, we obtain

|a(k)〉 = e−iϕΛ(k)|b(k)〉, (2.4)

whereΛ(k) = diag
(
e ik ·α2 ,e ik ·α1 ,1,1,e−ik ·α2 ,e−ik ·α1

)
is a unitary matrix containing Bloch phases.

Combining Eqs. (2.2) and (2.4), we obtain the eigenequation in the momentum space, formed

by a unitary matrix S(k), as

S(k)|b(k)〉 = e−iϕ(k)|b(k)〉, (2.5)

where S(k) = Λ−1(k)Sunit cell is unitary, due to the unitarity of Λ(k) and Sunit cell, which guar-

antees a real-valued phase ϕ(k). The values of ϕ(k), defined modulo 2π, will be shown in

the range [0,2π) as a function of k , which defines the phase-delay band structure. This band

structure is the analogue of the Floquet band structure in time-Floquet lattices where the

phase delay ϕ play the role of the quasienergy in Eq. (1.12). Such mapping also indicates

that we can adjust phase-delay values in experiments to fix the operating point of practical

networksIV.

With the established eigenequation Eq. (2.5), we can compute quasienergy (Floquet) band

structures in the honeycomb scattering networks, defined in [0,2π)×B Z . But before that, let

us establish a few important considerations regarding symmetries.

IVThis enables future applications on topological wave routing (Sec. 7.2.1).
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2.1.2 Intrinsic symmetries in photonic systems

In this subsection, we focus on generalities regarding intrinsic symmetries related to time

reversal operations, reciprocity, and Hermiticity. We first review these concepts in homoge-

neous media within the context of Maxwell’s equations and scattering systems. Then, since

tight-binding Hamiltonians and coupled-mode theory are widely used to analyze photonic

systems, we also examine these concepts in Hamiltonians.

In continuous electromagnetic media [185–187], assuming time-invariance, linearity, and local

anisotropic constitutive parameters, time-reversal symmetry (TRS)V implies real permittivity

and permeability tensors: ¯̄ϵ = ¯̄ϵ∗ and ¯̄µ = ¯̄µ∗. Following Lorentz reciprocity theorem [49, 189],

reciprocity implies symmetric permittivity and permeability tensors: ¯̄ϵ = ¯̄ϵT and ¯̄µ = ¯̄µT . The

concept of Hermiticity is obtained from the lossless condition, requiring ¯̄ϵ = ¯̄ϵ† and ¯̄µ = ¯̄µ† [49].

Hence, in time-invariant systems, any two out of TRS, Hermiticity, and reciprocity can lead

to the third symmetry- only two of them are independent. Below, we take five examples of

permittivity tensor of nonmagnetic media, whose symmetries are summarized in Table. 2.1:

¯̄ϵ0 =

ϵr 0 ϵr 1 0

ϵr 1 ϵr 0 0

0 0 ϵr 0

 , ¯̄ϵ1 =

ϵr 0 + iϵi 0 0 0

0 ϵr 0 + iϵi 0 0

0 0 ϵr 0 + iϵi 0

 ,

¯̄ϵ2 =

 ϵr 0 iϵi 1 0

−iϵi 1 ϵr 0 0

0 0 ϵr 0

 , ¯̄ϵ3 =

 ϵr 0 ϵi 1 0

−ϵi 1 ϵr 0 0

0 0 ϵr 0

 , ¯̄ϵ4 =

ϵr 0 iϵi 1 0

ϵi 1 ϵr 0 0

0 0 ϵr 0

 .

(2.6)

Table 2.1: Symmetries of the five examples of Eq. (2.6).

TRS ¯̄ϵ = ¯̄ϵ∗ Reciprocity ¯̄ϵ = ¯̄ϵT Hermiticity ¯̄ϵ = ¯̄ϵ†

¯̄ϵ0 ✓ ✓ ✓
¯̄ϵ1 × ✓ ×
¯̄ϵ2 × × ✓
¯̄ϵ3 ✓ × ×
¯̄ϵ4 × × ×

For a scattering system with N channels or ports, scattering matrix S maps the vector of

the incident wave amplitudes |b〉 into the vector of the scattered wave amplitudes |a〉 = S|b〉.
Due to Onsager-Casimir relation[51, 187, 190, 191], nonreciprocity is represented by S ̸= ST .

Alternatively, the reciprocity of scattering matrix S in photonic systems can also be obtained

from the properties of dyadic Green functions (DGFs)[49, 189, 192], i.e. ¯̄Gi j = ¯̄G j i . In addition,

the concept of Hermiticity corresponds to energy flux conservation in scattering processes. In

the context of Hamiltonians, the scattering matrix S for a particle going through scattering is

VTime reversal operator T is represented by an anti-unitary operator, expressed by T = UK , where U is an
unitary operator and K is antiunitary operator (complex conjugation) [188].
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defined from its time evolution operator as

S = lim
t±→±∞U (t+, t−) = lim

t±→±∞P e−i
∫ t+

t− H(t )d t . (2.7)

Therefore, in this context, Hermiticity H = H † is clearly equivalent to the unitarity of the

scattering matrix SS† = I. In addition, such unitarity condition can also be directly proved

from flux conservation, namely 〈b|b〉 = 〈a|a〉 ≡ 〈b|S†S|b〉,∀ |b〉.

For a Hamiltonian H , TRS means H = H∗. In most cases, inducing gain, loss, and phase

differences of hopping break time-reversal symmetry VI. The reciprocity condition of H can

be read from the condition of S = ST via the exponential operation, expressed as H = H T .

Therefore, generally speaking, breaking TRS is neither a necessary nor a sufficient condition

for nonreciprocity. However, in Hermitian and time-invariant systems, the condition of TRS is

equal to the condition for reciprocity. To illustrate possible cases of Hamiltonians concerning

three symmetries, we take five examples of 2×2 Hamiltonians, where the parameter J is real:

H0 =

[
0 J

J 0

]
, H1 =

[
i J

J −i

]
,

H2 = J

[
0 i

−i 0

]
, H3 =

[
0 J

−J 0

]
, H4 = J

[
0 i

1 0

]
.

(2.8)

Their symmetries are summarized in Table. 2.2.

Table 2.2: Symmetries in photonic systems described by Hamiltonians in Eq. (2.8).

TRS H = H∗ Reciprocity H = H T Hermiticity H = H †

H0 ✓ ✓ ✓
H1 × ✓ ×
H2 × × ✓
H3 ✓ × ×
H4 × × ×

In the practical model of our photonic circulators depicted in Fig. 2.2a, a gyrotropic magnetic

material in the xoy plane is subject to a static external magnetic field H0 along the z direction,

and its permeability tensor is expressed as follows:

¯̄µ =

 µr 0 iµi 1 0

−iµi 1 µr 0 0

0 0 µ0

 , (2.9)

where µr 0 = µ0(1+ ω0ωm

ω2
0−ω2 ), µi 1 = µ0

ωωm

ω2
0−ω2 , ω0 = µ0γH0, and ωm = µ0γMs . γ is called gyromag-

netic ratio, and Ms is the (DC) saturation magnetization [193]. The static magnetic field

therefore breaks time-reversal symmetry and reciprocity, by checking ¯̄µ ̸= ¯̄µ∗ and ¯̄µ ≠ ¯̄µT , with-

VIHowever, there is a special case, alike ¯̄ϵ3, which keeps TRS but non-Hermitian and non-reciprocal.
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out breaking hermiticity. The scattering matrix of such circulators is therefore unitary and

asymmetric.

2.1.3 Parameterization of scattering nodes

Until now, the form of the unitary asymmetric scattering matrix S0 for the nodes within our

networks has not been explicited. In this part, we parameterize such scattering process as-

suming the additional condition of 120o rotational symmetry (C3 symmetry). This process is

governed by scattering matrices S0, which adhere to C 3 symmetry and can be represented

within the framework of U (3) group theory. As we are dealing with a TRS breaking system, we

firstly review known parameterization techniques for the general unitary group U (n) alongside

with the well-established Cabibbo-Kobayashi-Maskawa (CKM) model. The general parameter-

ization of U (N ) classifies parameters into angle and phase parameters, and unambiguously

provides the number of independent parameters required to describe a general U (N ) matrix.

We discuss how to parameterize C 3 and U (3) matrices in the mathematical sense, before

making the parameterization more physical using insight from coupled mode theory (CMT).

Proposed by Murnagham [194], parameterization of the n-dimensional unitary group U (n) is

the product of a unitary diagonal matrix containing n phase terms and n(n −1)/2 matrices

Ji , j |i ̸= j ∈U (N ), whose main building block is a 2×2 matrix of the form:[
Ji , j (i , i ) Ji , j (i , j )

J j ,i (i , i ) Ji , j ( j , j )

]
=

[
cos(θi , j ) −sin(θi , j )e−iϕi , j

sin(θi , j )e iϕi , j cos(θi , j )

]
, (2.10)

while the other diagonal elements {Ji , j (p, p) = 1|p ∉ {i , j }} are unity in Ji , j , and the other

non-diagonal elements {Ji , j (p, q) = 0|p ̸= q ; p, q ∉ {i , j }} are vanishing. Specifically, θi , j ∈ [0,π),

designated as the "angle parameter", controls the amplitude within the unitary matrix, while

ϕi , j ∈ [0,2π), known as the "phase parameter", dictates the phase terms. Consequently, to

parameterize U (n), there are 1
2 n(n −1) angle parameters θi , j and 1

2 n(n +1) phase parameters

ϕi , j . For instance, the general parameterization of U (2) is expressed as

S ∈U (2);S =

[
cos(θ)e iϕ1 −sin(θ)e iϕ2

sin(θ)e i(ϕ3−ϕ2) cos(θ)e i(ϕ3−ϕ1)

]
, (2.11)

where θ and ϕi are angle and phase parameters respectively.

The parameterization of the unitary matrix transcends mere mathematical interest. In mod-

ern photonic networks, it enables the crucial capability to realize arbitrary discrete unitary

transformations, facilitating arbitrary manipulation of quantum states in photonic networks,

where product operations are executed via cascading transfer matrices of network blocks,

and Eq. (2.10) is constructed using Mach–Zehnder interferometers (MZI) and tunable phase

shifters [195]. In high-energy physics, this parameterization is instrumental in extracting

the CP-violating phase from the CKM matrix, a critical component in understanding matter-
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antimatter asymmetry [196, 197]. In applying unitary matrix parameterization to physical

models, it is crucial to recognize that certain parameters hold more significance than others.

To see it, given a definite S ∈ U (N ), we can map it into another unitary matrix S′ ∈ U (N )

by multiplying it at left and at right by diagonal phase matrices DL = diag(e iϕL
1 , . . . ,e iϕL

n ) and

DR = diag(e iϕR
1 , . . . ,e iϕR

n ), respectively. This operation physically corresponds to augmenting a

unitary n-channel/port scatterer with a unitary 2-port non-reciprocal phase shifter at each

port, with a scattering matrix described by

SNPS =

[
0 e iϕA

e iϕB 0

]
. (2.12)

Within scattering networks, this principle of reduction is equally applicable due to the inter-

connection of scatterers via phase delay links. In a sum, we can reduce the parameterization

of physical systems by 2n −1 phase parameters VII. This concept is recognized as the phase

invariance property in the domain of high-energy physics [198]. For U (3) parameterization,

which in general contains three angle parameters ( 1
2 n(n −1)|n=3) and six phase parameters

( 1
2 n(n +1)|n=3) [194, 195, 199, 200], such reduction leads to the famous CKM matrix [196, 197],

comprised of four parameters: three angle parameters θ12,θ13,θ23 and one phase parameter

δ, expressed as

SC K M =

 c12 c13s12 s12s13

c23s12 −c12c13c23 −e iδs13s23 −c12c23c13 +e iδc13c23

s12s23 c23s13e iδ− c12c13s23 −c13c23e iδ− c12s13s23

 , (2.13)

where ci j = cosθi j , si j = sinθi j .

Now, let us try to apply C 3 symmetry condition on the CKM parameterization. Yet, the

general C 3 and U (3) matrix is not a simple subset of SC K M . Starting from the definitions of C 3

symmetry- the invariance under unitary transformation of cyclic permutation matrix, one can

get

S0 =

a b c

c a b

b c a

 . (2.14)

Unitarity on S0 then leads to two kinds of equations. The first class of equations is related with

the energy conservation, namely

|a|2 +|b|2 +|c|2 = 1, (2.15)

VIIWe do not care about the overall phase. Therefore it is 2n −1 rather than 2n.
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which indicates the parameterization as
a = cos(θ1)

b = sin(θ1)sin(θ2)e iϕ1

c = sin(θ1)cos(θ2)e iϕ2 ,

(2.16)

where θi and ϕi are angle and phase parameters respectively. The second one is on the

orthogonality among different columns of S0, resulting in an equation

cos(θ1)sin(θ2)e−iϕ1 +cos(θ1)cos(θ2)e iϕ2 + sin(θ1)sin(θ2)cos(θ2)e i(ϕ1−ϕ2) = 0. (2.17)

By simplifications, we form Eq. (2.17) into

tan(θ1) = −e i(ϕ1−2ϕ2)

sin(θ2)

[
1+ tan(θ2)e i(ϕ1+ϕ2)] . (2.18)

It is crucial to note that, in the parameterization of general unitary operators, angle parameters

play a more significant role than phase parameters, since the scattering amplitude is directly

controlled by the angle parameters θi , j . As indicated by Eq. (2.18), selecting θ2 as a free

parameter necessitates fixing θ1 to specific discrete values, rendering it dependent rather than

independent. In addition, two phase parameters ϕ1 and ϕ2 are constrained by a condition

ensuring the right part of the equation to be a real number. Hence, despite the derivations

not yielding a closed form or parameterization with independent parameters for C 3 and U (3)

matrices, we get an important information that the parameterization of C 3 and U (3) matrices

should contain two parameters, in which one is an angle parameter and the other one is phase

parameter. In the following, we find an alternative physically-relevant model of such system

involving two of such independent parameters, in order to avoid dealing with the complexity

of a parameterization based on Eq. (2.18).

Let’s consider the practical physical model of lossless circulators with C 3 symmetry [19]. To

be more specific, these circulators consist of a circular resonator influenced by an external

time-odd field, along with three equidistantly placed waveguides, all identically coupled to

the resonator. Particularly, these models also contain two independent parameters. One

is the strength of the external time-odd bias, such as the amplitude of the static magnetic

field in photonic circulators [201] and the air velocity in acoustic circulators [191], while the

other one is the resonator’s quality factor. Therefore, it seems promising to obtain a simpler

parameterization of C 3 and U (3) matrices from such circulator models.

Using temporal coupled mode theory (CMT) [36, 191, 201, 202] on photonic circulators, we

consider the two resonant modes |ψ±〉 with dipolar field profiles in the ferrite resonator, whose

resonant frequencies are ω+ and ω− with quality factor Q± respectively. With the bias field,

Zeeman splitting lifts the degeneracy at ω0, inducing ω+ ̸= ω−. Through three waveguides

serving as external ports, we couple the two resonant modes |ψ±〉 with the incoming waves

(complex amplitudes bi , i = 1,2,3) and outgoing waves (complex amplitudes ai , i = 1,2,3)

33



Chapter 2 Theory and analysis framework of disordered unitary scattering networks

propagating on the waveguides, in which coupling strength is quantitatively described by

the inverse of decay times γ± = ω0
2Q±

for two modes respectively. When sending a signal with

complex amplitude bi at port i , CMT lists the equations involving bi and waves amplitudes

(A±) of the right-handed and left-handed modes, expressed as
d

d t
A+ = (−iω+−γ+)A++

√
2γ+

3
b1 +e−i2π/3

√
2γ+

3
b2 +e i2π/3

√
2γ+

3
b3

d

d t
A− = (−iω−−γ−)A−+

√
2γ−

3
b1 +e i2π/3

√
2γ−

3
b2 +e−i2π/3

√
2γ−

3
b3,

(2.19)

where the phase terms are determined by the azimuth phases e±iϕxoy of |ψ±〉 at the position

of couplings. The output wave amplitudes ai at the three waveguides are then written by

considering the interference between the direct reflection and the fields leaking out from each

mode, expressed as

a1 = −b1 +
√

2γ+
3

A++
√

2γ−
3

A−

a2 = −b2 +e i2π/3

√
2γ+

3
A++e−i2π/3

√
2γ−

3
A−

a3 = −b3 +e−i2π/3

√
2γ+

3
A++e i2π/3

√
2γ−

3
A−.

(2.20)

With the assumption of single harmonic e iωt on complex amplitudes, the scattering matrix S0

among three ports can be obtained:

S0 = −I +κ2


p
γ+

p
γ−

e iθpγ+ e−iθpγ−
e iθpγ+ e−iθpγ−




i

(ω−ω++ iγ+)
0

0
i

(ω−ω−+ iγ−)


[p

γ+ e−iθpγ+ e iθpγ+p
γ− e iθpγ− e−iθpγ−

]
,

(2.21)

where I is a 3 by 3 identity matrix, κ =
p

2/3, and θ = 2π/3. Due to C3 symmetry, we have

γ+ = γ− = γ. It can be proved that S0 is unitary. In the above expression, despite being an

important parameter for the cavity, γ just introduces a scaling factor to all the frequency

parameters (ω,ω+, andω−). In order to show a general parameterization, we transformω−ω+
andω−ω− in Eq. (2.21), into two angle variables ξ and η, by applying standard normalizations

and arctangent transformations:
ξ = arctan(

ω−ω+
γ

)

η = arctan(
ω−ω−
γ

),
(2.22)

where ξ and η are defined in [−π/2,π/2) with a periodicity of π, and characterize the normal-

ized deviation of the angular frequency ω from the right- and left-handed eigenvalues ω+ and

ω−, respectively. Specifically, the condition ξ = η corresponds to the reciprocal case, with no
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Zeeman splitting (ω+ =ω−), while ξ = −η represents the operation at the resonant frequency

ω =ω0 = (ω++ω−)/2. With the parameters (ξ,η), the scattering matrix is rewritten as

S0 = −I + 2

3


1 1

e
i
2π

3 e
−i

2π

3

e
i
2π

3 e
−i

2π

3


[

cosξe iξ 0

0 cosηe iη

]1 e
−i

2π

3 e
i
2π

3

1 e
i
2π

3 e
−i

2π

3

 . (2.23)

Therefore, a general C 3 and U (3) matrix is characterized by

S0 =

 R TCCW TCW

TCW R TCCW

TCCW TCW R

 , (2.24)

where TCW and TCCW represent chiral clockwise (CW) and counter clockwise (CCW) trans-

missions, respectively, while R is the reflection. They only depend on ξ and η [19]:
R(ξ,η) = −1+ 2

3 cosξe iξ+ 2
3 cosηe iη

TCW (ξ,η) = 2
3

[
e i 2

3π cosξe iξ+e−i 2
3π cosηe iη

]
TCCW (ξ,η) = 2

3

[
e−i 2

3π cosξe iξ+e i 2
3π cosηe iη

]
.

(2.25)

Figure 2.3: Scattering properties of S0 in (ξ,η) parameter space. Reflection (contour lines)
and nonreciprocity (color map) of S0 in its parameter space, defined by the two angle param-
eters (ξ,η) ∈ [−π/2,π/2)× [−π/2,π/2). Three special scattering matrices SR , SCW , and SCCW ,
corresponding respectively to a fully reflective scatterer, a clockwise perfect circulator, and a
counter-clockwise perfect circulator, are located on this plane.
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By varying ξ and η, we can generate C 3 symmetric U (3) scattering matrices S0(ξ,η) with

variable reflection R(ξ,η) and scattering chirality, which is quantified by the nonreciprocity

level N R(ξ,η) = TCW /TCCW . This family of matrices is represented in Fig. 2.3, where the

coloured density map represents N R(ξ,η) in decibels, and the grey contours are for R(ξ,η).

There are special scattering matrices located at global extrema of R(ξ,η) and N R(ξ,η) on this

parametric plane. They are SR , SCW , and SCCW : The fully reflection (localized) matrix SR = I

is obtained when ξ and η are equal to ±π/2, whereas the chiral transport matrix SCW (SCCW )

is achieved under ξ = −η = π/6 (−π/6), expressed as ideal clockwise and counterclockwise

circulators

SCW =

0 0 1

1 0 0

0 1 0

 ,SCCW =

0 1 0

0 0 1

1 0 0

 . (2.26)

2.1.4 Disorder in scattering networks

In this part, we move away from the periodic honeycomb networks, and consider aperiodic

macroscopic planar scattering networksVIII. These macroscopic networks are built by con-

necting the microscopic three-port scatterers (S0(ξ,η)) using bidirectional links as shown in

Fig. 2.4a, but the links may have different phases and the underlying structure may strongly

depart from the pristine honeycomb. We recall that one can think of these links as lossless

monomode waveguides characterized by the phase delayϕ that they impart to waves traveling

one time along the length of the link, which is no longer constant. An example of an arbitrary

macroscopic network is shown in Fig. 2.4b. In the Sec. 2.1.1, we already discussed periodic

honeycomb networks, for which identical phase-delay links and identical three-port scatterers

arranged in the honeycomb frame are used. We will refer to periodic honeycomb networks

as pristine or clean-limit scattering networks, because it is an archetypal case in which no

disorder is present.

In this thesis, we concentrate on types of disorder that are statistically uniform across the entire

network area. In this part, we will figure out what kinds of disorder occur in macroscopic scat-

tering networks, and how periodic honeycomb networks may be continuously transformed

into disordered scattering networks. Specifically, we identify three types of disorder affecting

macroscopic planar scattering networks. First, phase-link disorder affects the bidirectional

links, altering their phase-delay values without modifying the underlying honeycomb network

structure, and is represented by a probability distribution of phase-delay values P (ϕ). This

is illustrated in the left inset of Fig. 2.4c. Notably, there is a maximal level of phase disorder:

phase-delay value is purely random when P (ϕ) is a uniform probability distribution in [0,2π).

In fact, as phase-delay value ϕ is quasienergy in the clean limit, fully random ϕ can be re-

garded as completely randomized quasienergy, in which the statistically averaged observables

VIIIThe term "planar network" is the same concept as "plane graph" [203], where no link crosses with each other.
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Figure 2.4: Disordered scattering networks, from the microscopic to the macroscopic scale.
a, Unitary microscopic scatterers with three ports and three-fold rotational symmetry are used
as building blocks to form macroscopic networks. The scattering detected at three scattering
probes is described by the unitary matrix S0. b, Macroscopic scattering network made of
microscopic three-port scatterers S0 interconnected by bidirectional phase-delay links. Three
types of distributed disorder can be present. The macroscopic scattering properties of net-
works can be detected at three external probes, dictated by microscopic properties (disorder
levels and types). c, Phase-link disorder (left), scattering-node disorder (center), and structural
disorder (right). Phase-link disorder consists in taking a periodic network, e.g. a honeycomb
arrangement, and adding random phase-delay fluctuations on each links. The second one
is distributed disorder on scattering nodes, when keeping a honeycomb arrangement and
identical phase-delay value on links but inducing perturbations on scattering properties of
scattering nodes. Their microscopic scattering matrices are not identical, but form a set of
unitary matrices {S0(ξ,η)}. A more drastic form of disorder can take the form of deformations
of the network structure, completely breaking the hexagonal structure (numbers count the
number of sides forming each loop).
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over many realizations are independent of quasienergyIX. Second, disorder can also occur

independently at the network nodes, affecting the scatterers as depicted in the central inset.

The scattering matrices of these scatterers are not identical, but form a statistical set {S0(ξ,η)}.

They can be statistically selected to lie within a specified region in the parameter space of

(ξ,η).

Third, one can imagine changing the structure of the network, creating in it loops that are

no longer regular hexagons, but arbitrary irregular polygons (right inset in Fig. 2.4c). Such

structural disorder, referred as amorphous disorder [204], can be continuously added to the

honeycomb clean limit, following known Voronoi tessellation techniques [20, 205–207]. We

use this method to construct a continuous amorphous deformation of periodic honeycomb

non-reciprocal networks, controlled by a single parameter, the amorphous factor α.

The Voronoi tessellation is constructed from a finite set of points {g1, ..., gn} called generators.

Each generator gi corresponds to a polygonal cell Pi , which consists of all the points in a

defined metric space X whose distance to gi is less than or equal to its distances to the other

generators [208]. Therefore, it can be formally defined as

Pi = {x ∈ X |d(x, gi ) ≤ d(x, g j ), j ̸= i }, (2.27)

where d is the distance function in the metric space X .

The weighted Voronoi tessellation is a generalized version of the Voronoi tessellation, where

each generator gi is weighted by wi such that generators with higher weights induce a larger

polygonal cell by changing the local metric around them. The usual Voronoi tessellation is

recovered when all the generators have the same weights. The weighted Voronoi diagram

we adopt is known as a Power diagram, where the distance function between a point x

in the metric space X and a generator gi weighted by wi is the power distance: d(x, gi ) =

d 2
E (x, gi )−w2

i , where dE (x, gi ) is the Euclidean distance between x and gi . As shown in Figs.

2.5(a-b), we use the above tessellation to generate scattering networks made of three-port

circulators and bidirectional links, by regarding the interfaces between cells as the network. In

particular, the honeycomb network is generated, when applying the Euclidean distance, by

using equal weights and arranging the generators in a triangular lattice, as shown in Fig. 2.5a.

We obtain an amorphous network when the weights wi of the generators are taken randomly

in the range [0, M ] with a uniform probability distribution. Then, the standard deviation of

weights σ = M
2
p

3
quantifies the level of amorphism. As M is of the order of L2

0, where L0 is the

length of the links in the honeycomb network, we define the amorphous factor α = M
L2

0
as a

normalized standard deviation, expressed by

α≡ 2
p

3

L2
0

σ . (2.28)

IXOr it will depend on the specified quasienergy. This property will be key to induce AFAI and distinguish AFI
and CI without accessing the whole Floquet spectrum.
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Figure 2.5: Amorphous scattering networks generated from a weighted Voronoi tessella-
tion. The three-port circulators in scattering networks take the role of degree-3 nodes in
the weighted Voronoi tessellation, while the bidirectional links connect degree-3 nodes. The
weighted Voronoi tessellations are built by generators arranged in a triangular lattice. The
equal weights of generators form a honeycomb crystalline network (a, clean limit, α = 0), while
the unequal weights give rise to an amorphous network (b, fully amorphous, α = 6). c, We
demonstrate how scattering networks at different amorphous levels are built from weighted
generators arranged in the triangular lattice. At a given amorphous level α, the weights w
of generators are randomly selected in a range of [0,αL2

0] with a normal distribution, whose

standard deviation is σ =
αL2

0

2
p

3
. Therefore, α is the normalized standard deviation of the weight

ensemble.
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In Fig. 2.5c, we illustrate the generations of scattering networks from the weighted Voronoi

tessellation at several selected amorphous levels. To quantitatively understand what happens

for networks upon increasing the amorphous level α, we track both the link length variance

and the number of sides of each loop in the network (numbers in Figs. 2.5(a-b)), as shown

in Fig. 2.6. As α increases from 0 to 1.75, the links start to deform but the percentage of

loops with N = 6 sides stays at 100% as in the clean honeycomb limit (Fig. 2.6a). Beyond

this weakly amorphous regime, a transition occurs during which the percentage of loop 6

drops significantly as the one of loops with N ≠ 6 increases. For α above 5, we enter a fully

amorphous phase, characterized by a stabilized length variance (panel a) and a saturated

distribution of loops of various sizes (panel b).

Figure 2.6: Three amorphous stages revealed by the evolution of network statistics withα.
With the statistics of loops and length variance of links in the generated scattering networks,
three amorphous stages emerge. The networks statistics are computed from 1000 random
realizations of networks made of 1000 nodes.

In particular, fully amorphous stage (α≳ 5) mean that amorphous disorder can be maximally

strong in this regime, which is the maximal amorphism attainable on a Euclid plane. An

example of fully amorphous networks at α = 6 is exhibited in Fig. 2.5b.

It should be emphasized that amorphous networks have fluctuations on phase-delay values

proportional to the link lengths, as amorphous disorder induces fluctuations on length of links

and these links are practically constructed by lossless monomode waveguides. One can set a

wavelength λ0 of the lossless monomode waveguides and their corresponding length lc in the

clean limit. A reasonable value of lc can be lc = 0.2λ0.

2.1.5 Mapping between three-port scattering networks with bidirectional phase
links and scattering networks with oriented phase links

Up to now, we have studied the configuration of networks, their Floquet band structures,

symmetries, as well as the parameterization of their scatterers and of various disorder types.

We note that the scattering networks (CC networks) discussed in Ch. 1 consist of oriented

links and connected scatterers. Mathematically, these oriented networks represent oriented

Eulerian graphsX, which can be randomized with the same types of disorder we just study,

XIf one take scatterers as nodes and unidirectional links as links in oriented graph (Figs. 1.2 and 1.4), conservation
of flow restricts the degree of nodes to be even, shaping it as a oriented (planar) Eulerian graph.
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as pointed by Delplace [149] in a theoretical work addressing their topological classification.

The non-reciprocal scattering networks analyzed in this thesis are seemingly different, since

they feature bidirectional phase links instead of oriented ones, and three-port non-reciprocal

scatterers instead of reciprocal ones. However, we will see in this section that there exists a

one-to-one correspondence between both types of models. This is important to establish

the connection with Floquet topology, as the Floquet mapping in Sec. 1.4 is built between

time-Floquet systems and oriented CC networks. A pertinent question thus arises: "Can the

non-reciprocal scattering networks with bidirectional links be mapped with time-Floquet

systems?". The discussion in this part aims to fill this gap and establish a definitive mapping

between two types of network models. For simplicity, we equate "oriented Eulerian graph"

with "CC network", and "non-reciprocal network" with "scattering networks comprising

three-port scatterers and bidirectional phase links".

Starting with the clean limit case, there exists a formal connection between a honeycomb

lattice of circulators with bidirectional links and a Kagome network with oriented links. In

the honeycomb circulator network, the scattering events occur at the non-ideal circulators

through the scattering matrix S0, while no backscattering occurs along the non-reciprocal

links. We can equivalently consider the circulators as perfect, with the wave scattering events

occurring along the links. Such a mapping is displayed in Fig. 2.7, where we have highlighted

the different paths of the transmitted waves with different colors (these paths are defined only

for the perfect circulator case). The resulting network is a Kagome lattice with oriented links

inherited from the circulators. The scattering parameters entering the Sunit cell matrices are

now combined to enter three 2×2 scattering matrices nodes S1, S2 and S3, thus preserving

the six degrees of freedoms per unit cell. Therefore, our non-reciprocal scattering network

is formally analogous to a rigorously oriented Kagome graph, described by a unitary matrix,

which can be mapped onto the Floquet eigenproblem of a time-Floquet lattice [112, 149], as

shown in Fig. 1.4.

Figure 2.7: Mapping between a non-reciprocal scattering network in honeycomb lattice and
an oriented Eulerian graph in Kagome lattice.

To show the universality of this mapping, an algorithm for generating random oriented Eule-
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rian graphs (random CC networks) is adopted. As shown in Fig. 2.8a, a randomly generated

oriented Eulerian graph [84, 109, 110, 149] describes the wave propagating along directional

links and encountering scatterers at the nodes. For planar Eulerian graphs, Veblen theorem

states that there always exists two kinds of decomposition of the graph, which consists in

unions of disjoint simple cycles (i.e. closed walks containing as many edges as vertices). One

of those decompositions is dubbed the minimal Veblen decomposition, and consists in fully

reflected wave signals upon impinging the scatterers, i.e. analogous to the atomic limit of

trivial insulators in solid state physics. In the minimal Veblen decomposition, each simple

cycle (the uncolored polygons in Fig. 2.8a) consists in closed propagating loops of wave signals.

The other decomposition, the non-minimal Veblen decomposition, is formed when all the

wave signals are transmitted without scattering, and correspond to the non-atomic limit. For

a periodic lattice, the Bloch bands of these two Veblen decompositions are flat and cannot be

connected together without closing the bulk gap [112, 149]. Albeit the non-minimal decompo-

sition exhibits closed loops (blue triangles in Fig. 2.8a), it surprisingly leaves a unidirectional

boundary wave travelling around the whole graph (orange loop). Such a chiral wave indicates

the existence of topological edge states in amorphous networks and aperiodic time-dependent

Hamiltonians [149].

We now show how to translate a given oriented Eulerian graph (for example, Fig. 2.8a), into a

non-reciprocal network made of 3-port circulators and bidirectional phase links (Fig. 2.8b).

Since a graph can be decomposed into simple cycles, we rely on the mapping mechanisms

of simple N -cycles (Fig. 2.8c) and degree-M nodes (Fig. 2.8d), which connect the simple

cycles together. Specifically, a simple cycle corresponds to an unitary non-reciprocal N -port

scattering device, which can always be modelled by several 3-port non-reciprocal devices (i.e.

3-port circulators, light blue circles) connected by bidirectional links (deep blue lines). As

for a degree-M node, if one respectively regards the oriented links pointing to and out of a

scatterer as incident and scattered waves, one can map it onto a M/2-port scattering device

(M being an even number). For M = 4, we map it into a perfect bidirectional line, and nodes

with degrees M > 6 are modelled in the same way as in the N -cycle mapping.

In reverse, any non-reciprocal network (for example, Fig. 2.9a) can be converted into an

oriented Eulerian graph (Fig. 2.9b) where the possible chiral edge state then becomes visible

(orange oriented links). For this, we must make a choice and, for example, use exclusively the

mapping mechanism between 3-port ciculators and cycles with N = 3, and the mechanism

between bidirectional links and degree M = 4 nodes.

2.2 Momentum-space analysis for networks: Phase-delay band struc-

tures and topological invariants

Having covered the fundamentals of scattering networks, our attention shifts towards the

toolbox needed to evaluate their physical properties. Band structures are of prime importance,

since they enable Chern number C and gap invariant Wτ necessitated by the Floquet topo-
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Figure 2.8: Implementation of an oriented Eulerian graph as a non-reciprocal 3-port cir-
culators network. a, Oriented Eulerian graph, depicting scattering signals in a scattering
network. We emphasize the non-atomic limit, in which bulk signals travel in closed loops
(following the blue arrows), leaving a large unidirectional loop along the edge (orange). b,
Non-reciprocal network mapped from the oriented Eulerian graph in panel a. The network
is made of three-port circulators connected by bidirectional links. We represent the closed
loops of the non-atomic-limit as shaded blue triangles, for easy comparison. c, d, Mapping
rules. Cycles of order N (panel c) and nodes of degree M (panel d) in oriented Eulerian graphs
become specific circulator clusters in non-reciprocal networks. The mapping is defined such
that the signal flows are the same in both representations.

Figure 2.9: Systematic mapping between amorphous non-reciprocal networks of 3-port
circulators and random oriented Eulerian graphs. For an arbitrary scattering network (panel
a), we can describe the scattering process by an oriented Eulerian graph (panel b). The
mapping is based on the simplest mechanism shown in the leftmost panels in Fig. 2.8c and d
(N = 3 and M = 4).
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logical band theory. They describes waves/particles’ propagation within infinite networks or

semi-infinite ones. In addition, they are helpful for checking chiral edge states and localization,

since group velocity and positions of Bloch states are accessible from band structures.

2.2.1 Clean-limit case

In honeycomb networks extending infinitely in bothα1 andα2 directions, we identify all possi-

ble extended modes |b(k)〉 with phase delay (quasienergy) ϕ by solving the eigen-equation Eq.

(2.5). As propagating waves experience spatially periodic scatterers, continuously translational

symmetry is broken in the space, and therefore points (k ,ϕ) of all the modes form bands. Since

these modes extend throughout the network’s bulk, the resulting structure is referred to as the

bulk band structure. Figs. 2.10(a-b) showcase two examples of bulk band structures within

honeycomb networks, specifically for circulators S0(ξ,η) configured at ξ = 2.5π/12,η =π/12

and ξ = 2π/12,η = 2π/12, respectively. Adjacent bulk bands are separated by band gaps XI,

where photons are forbidden to propagate with certain phase-delay value ϕ in any directions

k .

To determine the topological phases of periodic networks, as detailed in Eq. (1.1) of Sec.

1.1, we calculate the Chern number C for phase-delay bands by substituting |ψ〉 with the

eigenstate |b(k)〉, derived from Eq. (2.5). Moreover, given the Floquet topology of scattering

networks, employing the topological gap invariant Wτ is crucial for identifying anomalous

topological characteristics in these networks [112]. We check C and Wτ of two examples in Fig.

2.10. We examine C and Wτ for two cases illustrated in Fig. 2.10. Non-zero Chern numbers in

panel (a) signify a Chern phase within the network, whereas panel (b) demonstrates a trivial

phase through zero Chern numbers and gap invariants. This topological distinction exhibits

the advantages of scattering networks: by tuning two knobs (ξ,η), we can access different

topological phases, which can be experimentally realized by reconfigurable scatterers or by

operating at different frequencies. Furthermore, based on the bulk-edge correspondence [4, 7,

130], one can expect the existences of topological chiral edge states in a finite network made

of circulators S0(ξ,η)|ξ=2.5π/12,η=π/12, which unidirectionally propagate along its boundaries.

To verify this, we consider a semi-infinite honeycomb network characterized by a ribbon-

like supercell. This supercell adheres to periodic boundary conditions along α1 = êx and

incorporates open boundary conditions (OBCs) along the α2 direction, simulating unitary

reflections at both the top and bottom edges. Applying the Bloch theorem along the α1

direction allows us to derive an eigenequation similar to Eq. (2.5), expressed as

S̃(kx )|b(kx )〉 = e−iϕ(kx )|b(kx )〉, (2.29)

whose eigenphase ϕ with momentum kx forms ribbon band structures. Their examples are

shown in Figs. 2.10 (c-d). In the plot, we color each eigenstate depending on its participation

XIWe do not discuss the Floquet winding metal case [141, 142], which has titled band gap in [0,2π)×B Z .
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Figure 2.10: Examples of bulk and ribbon band structures in the periodic honeycomb
networks. Bulk band structures for Chern (a) and trivial (b) phases in the periodic network.
We indicate the calculated Chern number above each band, as well as the gap invariant Wτ

in each gap. c, d, Ribbon band structures for the two examples. The eigenstates are colored
according to their participation ratio P .
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Figure 2.11: Ribbon band structures colored with eigenstate positions. a, b, Ribbon Band
structures of a supercell colored by positions of eigenstates. In the Chern network (panel
a), edge modes localized to the top and bottom in band gaps are shown in red and blue,
respectively, while states in the trivial network (panel b) are always in the bulk. c, Supercell
with examples of the field profiles of topological edge modes, corresponding to the markers in
panel a.

46



Theory and analysis framework of disordered unitary scattering networks Chapter 2

ratio, expressed as

P =

[∑
i |bi |2

]2

N
∑

i |bi |4
, (2.30)

where bi is the amplitude of the state |b〉 at the port i . N is the total number of wave signals

in the supercell. This metric, crucial for analyzing localization phenomena in disordered

and amorphous systems, ranges from 0 for completely localized states to values approaching

1 for fully delocalized states that encompass all sites within the sample [45, 209]. As the

only difference between semi-infinite networks and infinite networks is the implementation

of OBCs on the y directions which creates boundaries at the top and bottom in the semi-

infinite case, ribbon band structures inherit the bulk bands of bulk band structures, but

are able to capture eigenmodes localized at the top and bottom boundaries. In Fig. 2.10d,

absences of modes in band gaps confirm the trivial phase for the network made of circulators

S0(ξ,η)|ξ=2π/12,η=2π/12 in panel b. Conversely, as predicted by the topological invariants in

panel a, there are gapless edge states occupying some gaps in the ribbon band structures

(panel c). These emerged states in the band gaps with low participation ratios are localized

at the boundaries, while the bulk bands are composed of extended bulk states with high

participation ratios. However, with only participation ratio, we cannot certainly see the chiral

properties of these edge states. One way to achieve this is coloring the states in ribbon band

structures with their averaged position. The corresponding results for two examples are

shown in Fig. 2.11. Specifically, we identify two distinct types of edge states within the band

gaps: those localized at the top boundary (colored blue), exhibiting a positive group velocity

vg = ∂ϕ/∂kx , and those localized at the bottom boundary (colored red), characterized by a

negative group velocity. Such phenomenon indicates that these gapless edge states are chiral

states, which propagate unidirectionally with no backscattering in the band gaps.

2.2.2 Disordered case

Within band theory, topological invariants are traditionally defined on the Bloch manifold,

necessitating either continuous or discrete translational symmetry, as previously discussed.

However, the presence of distributed disorder disrupts translational symmetry, rendering

conventional topological band theory inadequate for capturing the system’s topological char-

acteristics. Pioneering studies on topological pumping within disordered quantum Hall effect

(QHE) samples [8, 9] offer insights: analyzing how states respond to changes in boundary

conditions reveals the system’s topological properties.

To be more specific, in the Laughlin’s pump model [9, 210, 211], the topological index of

a two-dimensional (2D) electron gas penetrated by a magnetic field counts the number of

electrons pumped per cycle which considers wrapping up the sample into a cylinder, as shown

in the right panel of Fig. 2.12a. An additional magnetic flux Φ threads the cylinder, which plays

the role of the adiabatic driven parameter in this topological pump. The effect of magnetic flux
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Figure 2.12: Twisted boundary condition in scattering networks. a, The magnetic flux Φ in
the Laughlin’s thought experiment (left) can be synthetically realized by the twisted boundary
condition (TBC, right) consisting of direction-dependent phase delay Φ. b, Illustration of a
disordered finite network with TBC. Lateral ports, marked in blue and sharing the same index,
are interconnected through TBC. In contrast, the ports at the top and bottom boundaries,
highlighted in yellow, employ open boundary conditions (OBC). Any wave outgoing from port
i at the left boundary gains a phase term of Φ and incomes to port i at the right boundary.
Conversely, a wave traversing the reverse path experiences a phase shift of −Φ. c, Honeycomb
unit cell with two TBCs. By varying phase terms Φ1 ∈ [0,2π) and Φ2 ∈ [0,2π) which serves as
k1 = k ·α1 and k2 = k ·α2 respectively, we can access the same phase-delay bulk band structure
as that obtained from Eq. (2.5).
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can be equivalently with a boundary condition, which is alike periodic boundary condition

but with a twist phase term Φ, therefore, termed as "twisted boundary condition (TBC)" (left

panel in Fig. 2.12a). TBC compels photons to acquire an additional phase of Φ when tunneling

through the boundary from left to right and to adopt a phase of −Φ when traversing from right

to left.

The implementation of TBC on a scattering network is illustrated in Fig. 2.12b. Practically,

TBC for photons is exactly a special non-reciprocal phase shifter, as the forward and backward

waves experience distinct phase delaysXII. For a disordered 2D sample with N × M unit

cells, twisted boundary conditions in two directions (Φ1 and Φ2) can restore the topological

argument in the clean limit, by|b(r +Nα1)〉 = e ik ·Nα1 |b(r )〉
|b(r +M a2)〉 = e ik ·N a2 |b(r )〉,

(2.31)

whereα1 andα2 are the primitive vectors of the clean-limit networks. By setting Φ1 = k ·Nα1

and Φ2 = k ·Nα2, we establish that a disordered finite network with TBCs mirrors a large 2D

supercell from a periodic network, effectively shrinking its Brillouin zone via the scaling of

reciprocal vectors to βi /N , where βi represents the lattice’s original reciprocal vectors. In this

sense, twist phase is related to the quasi-momentum of the eigenstates. For example, in the

clean limit, the bulk band structure of a unit cell in Fig. 2.2c can be equivalently with all the

eigenstates of this unit cell attached with two TBCs shown in Fig. 2.12c. TBCs alongα1 and

α2 directions impose Φ1 and Φ2 twist phases for waves crossing longitudinal and horizontal

boundaries, respectively. This relationship is further confirmed by demonstrating that TBCs

fulfill the role of Λ(k), as detailed in Eq. (2.4). In fact, this connection provides a way to directly

measure eigenstates and eigenvalues in the whole BZ [20, 212]. Consequently, employing the

phase-delay bulk bands as outlined in Eq. (2.31) allows for the definition of Chern number

C within disordered networks. In addition, the disordered network with TBC shown in Fig.

2.12b can provide the ribbon phase-delay band structure of this supercell, which is helpful to

check the localization of bulk states (flat bands) and to find mobility gaps accommodating

topological edge states in disordered regimes [80, 213, 214].

Furthermore it is worth to note that Chern number C in disordered networks with TBCs

[215, 216] are equivalent to the real-space topological invariants in the thermodynamic limit,

including noncommutative form XIII [55, 57, 217], Bott index [218–220], and local Chern marker

[221].

XIIThe experimental implementation of this non-reciprocal phase shifter will be described in Ch. 5.
XIIIIt transforms the partial derivative and integral in Brillouin zone to the noncommutative form of real space.
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2.3 Real space analysis of scattering networks: observables in finite

networks

Having analyzed infinite and semi-infinite networks through momentum-space methods,

we now examine real-space observables in finite networks. This includes transport through

external ports and cavity eigenstates in networks isolated from the external environment. In

the ending of this part, with an example, we show how real-space analysis, momentum-space

analysis, and gap invariants are consistent with each other.

2.3.1 Transport with external ports

Topological insulators exhibit unidirectionally unitary transports, underpinned by topologi-

cal edge states. This phenomenon aligns with the topological invariant as described by the

bulk-edge correspondence. Therefore, understanding of transport properties in "open" scat-

tering networks is crucial for theoretically confirmations of topological phases, experimental

verification and applications of topological edge states. Additionally, establishing a relation-

ship between the transport of an observable and its topological index can help explore the

robustness of topological edge states against disorder.

We consider an arbitrary unitary scattering network formed by interconnecting scattering

components. We assume that the network is now finite and open: N0 ports are exterior probes,

while the N other ports of the scattering components are either connected to each other by

phase delay lines (e.g. inside the bulk, simply connected (PBC), or TBC) or terminated with

unitary boundary conditions (full reflection, e.g. on the edge). The total number of ports is

N +N0. Accordingly, one can write

S|btot al 〉 = |atot al 〉, (2.32)

where S is a (N +N0)× (N +N0) unitary matrix composed of sub-blocks containing the scat-

tering matrices of elementary components, converting the waves incoming at ports, with

amplitude |btot al 〉, to outgoing waves with amplitude |atot al 〉. Since we can choose freely how

we order the ports in these column vectors, we can classify them, starting on the N0 first lines

with the exterior ports, and filling up the rest with the interior ones, then

S =

[
Sext Sout

Si n Snet

]
, |atot al 〉 =

[
|apr obe〉
|anet 〉

]
, |btot al 〉 =

[
|bpr obe〉
|bnet 〉

]
. (2.33)

Here, Sext is a N0 ×N0 matrix, describing a direct exterior coupling between the N0 external

probes. Sout (N0 ×N matrix) depicts the coupling of waves from the network to the probes,

while Si n (N × N0 matrix) represents the inverse process. Snet (N × N matrix) represents

the coupling between ports in the network. On the other hand, from the interconnection

information and unitary boundary conditions, we can form a unitary N × N connectivity
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matrix Cnet defined as with

Cnet |bnet 〉 = |anet 〉. (2.34)

From Eqs. (2.32) and (2.33), we get

Sext |bpr obe〉+Sout |bnet 〉 = |apr obe〉 (2.35)

Si n |bpr obe〉+Snet |bnet 〉 = |anet 〉. (2.36)

We want to characterize the relation between |apr obe〉 and |bpr obe〉 through a scattering matrix

Spr obe defined as

|apr obe〉 ≡ Spr obe |bpr obe〉 . (2.37)

Substituting Eq. (2.34) into Eqs. (2.35) and (2.36), we find the expression

Spr obe = Sext +Sout (Cnet −Snet )−1Si n . (2.38)

As shown in Eq. (2.38), the total scattering matrix Spr obe among the external ports is the

summation of two scattering terms. The first term Sext represents immediate scattering, as it is

a block matrix of S and does not contain any information about network interconnections Cnet .

Conversely, the second term, Sout (Cnet −Snet )−1Si n , depicts scattering responses attributed

to the network, in which Si n describes the channels coupled into "Network Green function"

(Cnet−Snet )−1 before Sout scatters photons out of the network. In fact, the formula in Eq. (2.38)

can be seen as the scattering network version of the Mahaux-Weidenmüller formula usually

used to express the scattering matrix of the probes in terms of a Hamiltonian description of

the couplings [222–224]. It is worth noticing that although Sout and Si n are not unitary, the

unitarity of S and Cnet guarantee that Spr obe is unitary, whenever Cnet −Snet is invertible. This

can be checked by a direct calculation, shown in Appendix. C.

The field map of the scattering network (i.e. |anet 〉 or |bnet 〉) can then be obtained for a given

excitation |bpr obe〉 at the probes, by substituting the Eq. (2.34) into Eq. (2.36), yielding

|bnet 〉 = (Cnet −Snet )−1Si n |bpr obe〉. (2.39)

In simulations and experiments, to faithfully reproduce the topological states in an infinite

system, one can determine the size of a network (even disordered one) by a simpler rule. For

2D case, the network longitudinal and transverse sizes L should follow L >>λ, where λ is the

typical decay length of the state at the phase-delay valueϕ of the network. Otherwise, the bulk

states are not insulating enough and contribute to the transports.

Furthermore, for precise evaluation of transport through networks, similar to quantum trans-

port settings where additional sections ensure smooth transitions to ideal leads [83, 225–

228], ports in the scattering network also require appropriate configurations to accurately

51



Chapter 2 Theory and analysis framework of disordered unitary scattering networks

capture the network’s intrinsic scattering properties. We assume that photons enter through

an external port i and initially encounter a scatterer in the network. If this scatterer itself

possesses a reflection at the port i , photons associated with such reflection are immediately

reflected at the port i rather than being reflected due to interfering with modes excited in the

network, as indicated by the diagonal term in Sext of Eq. (2.38). To eliminate these immediate

reflections at the external ports, one can opt for perfect circulators just at the external ports,

whose chirality is the same with that of circulators in the networks. This port setting ensures

all the inputted photons directly enter the network, which is similar to impedance matching.

It is also helpful to derive transfer matrix between two sides, which leads to the concept of

conductance in scattering networks. Assume there are N0 external ports at both left and right

sides of a finite network. We represent the incoming and outgoing waves for left (right) side by

|bL〉 (|bR〉 ) and |aL〉 (|aR〉), respectively. With Eq. (2.38), one get

S

[
|bL〉
|bR〉

]
=

[
|aL〉
|aR〉

]
. (2.40)

We then form the following block representation of the scattering matrix S, as

S =

[
S11 S12

S21 S22

]
. (2.41)

The conductance is defined as

G = Tr
[

S†
12S12

]
. (2.42)

By assuming S12 is invertible, we get|bL〉 = S21 −S22S−1
12 S11|aR〉+S22S−1

12 |bR〉
|aL〉 = −S−1

12 S11|aR〉+S−1
12 |bR〉.

(2.43)

Therefore, we can define the transfer matrix T , which transfers waves at left external ports to

waves at right external ports, as

T

[
|bL〉
|aL〉

]
=

[
|aR〉
|bR〉

]
, T =

[
S21 −S22S−1

12 S11 S22S−1
12

−S−1
12 S11 S−1

12

]
. (2.44)

2.3.2 Cavity without external ports

When there are no external ports, a finite scattering networks becomes a cavity. To figure out

its cavity eigenstates which forms a phase-delay spectrum, we look back at the Eqs. (2.32) and
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(2.34), where zero external port means |atot al 〉 = |anet 〉 and |btot al 〉 = |bnet 〉, formingS|btot al 〉 = |atot al 〉
Cnet |btot al 〉 = |atot al 〉.

(2.45)

We can assume that there is a phase-delay term ϕ on each interconnection and each unitary

reflection XIV. As a result, Cnet can be decomposed into the multiple of a common phase term

e−iϕ and a connectivity matrix C̃net . This leads to an eigenequation for the cavity-like network,

expressed as

C̃−1
net S|btot al 〉 = e−iϕ|btot al 〉. (2.46)

The eigenphases and eigenstates of C̃−1
net S construct the phase-delay spectrum. It is worth to

noting that the phase-delay band structure of disordered networks with TBCs in Sec. 2.2 can

be obtained by solving Eq. (2.46), in which Cnet is decorated with twisted phase terms Φ1 and

Φ2 from TBCs. With the phase-delay spectrum, density of states can be obtained by following

Appendix. A.

2.3.3 Mutually consistent observables in analysis

We already elucidated two main types of observables: band structures and topological in-

variants in momentum space for infinite or semi-infinite networks; transports and cavity

eigenstates in finite networks. In the ending of this section, we take an example of a finite

honeycomb network in the clean limit to show how to utilize them for analyzing topological

features and localization-delocalization phenomena. In this example, the used circulators are

of ξ = −η = 3.5π/12. Figure 2.13 examines the connections among topological invariants, band

structures, edge transport across two external ports, and eigenstates in a closed network. When

ϕ falls in a topological band gap indicated by a non-vanishing gap invariant Wτ, transmission

is unity and mediated by the edge modes (top panel in Fig. 2.13b), and spectrum shows DOS,

skin distance ds , and participation ratio P reaching low values, confirming the boundary

localized states. Conversely, if ϕ belongs to a trivial band gap, transmission is impeded due to

vanishing DOS. Finally, if ϕ falls in a bulk band, the transmission fluctuates with ϕ, depending

on the excited bulk modal superposition interference at the output port, and their eigenstates

in the close network are extended in the bulk (bottom panel in Fig. 2.13b).

Briefly, in a network with a phase-delay ϕ, transport between external ports—where some

are with signals inputted and others are matchedXV, are governed by the superposition of

eigenstates within the ϕ−δϕ/2 to ϕ+δϕ/2 range in the closed network. Moreover, when

the size of the closed network approaches the thermodynamic limit, DOS(ϕ) derived from

its spectrum matches that calculated from the bulk band structure, and one can recover the

bulk band structure by performing spatial Fourier transformation on all the eigenstates of

XIVUnder disordered cases, ϕ is an additional common term for all phase links.
XVAt matched ports, photons can leave the network but no photon is inputted there.
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Figure 2.13: Connections between momentum-space observables and real-space observ-
ables. a, We take a clean-limit honeycomb network built by circulators of ξ = −η = 3.5π/12.
The left panel displays invariants for infinite networks—Chern number C in blue and gap
invariant Wτ in red—alongside the band structures of a semi-infinite network. For each phase-
delay ϕ, we correlate these momentum-space observables with transport metrics between
two boundary ports in open networks (center panel) and the DOS of eigenstates in closed
networks (right panel), highlighted by their skin distances. b, Profiles of eigenstate fields at
two specific phase-delay values. The top profile represents topological eigenstates localized at
the boundary in the closed network (low P ), indicating unidirectional transport underpinned
by non-trivial topology (C ≠ 0,Wτ = 1). Conversely, bottom profile shows a bulk eigenstate
extending throughout in the network, characterized by a high P .

the closed network. This principle is utilized in photonic experiments through the design of

sufficiently large structures (at least 10×10 unit cells) to measure DOS and bulk band structure

[229–232].

These observables in infinite, semi-infinite, open, and closed networks are essential for charac-

terizing the localization and delocalization phenomena in disordered scattering networks. For

example, nonzero transport, with large P of eigenstates and non-flat bulk bands for supercell,

indicates the existence of delocalized states. Transport can vanish with flat bulk bands in band

structures and low P of eigenstates, if the randomness strength is sufficiently strong due to

Anderson localization. This transport does not disappear abruptly; rather, it gradually shifts
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upward before annihilating within the spectrum XVI [233].

2.4 Localization length calculations and scaling analysis

Localization and correlation lengths play a central role in analyzing phase transitions and

critical behaviors in disordered condensed matter systems [95, 101–104, 106–108, 234] and

photonics [60, 61, 235–237]. Benefiting from the direct availability of transfer matrices, net-

work models are particularly suited to quantitative scaling analysis and describing phase

transitions. Early arts focused on scaling theory of localization [238, 239] and the study of

metal-insulator transitions in QHE [84, 97, 98], exhibiting precise critical exponents. In recent

years, these networks have been widely applied on disordered topological systems, to quantita-

tively characterize topological phase boundaries and their universality, including topological

systems protected by time-reversal symmetry [99, 100, 103], in 2D or 3D [105]. In this section,

we detail the transfer matrix method to study localization processes and topological phase

transitions in unitary disordered scattering networks. We will apply this method in Ch. 6.

To derive the localization length, we work on a quasi one-dimensional (1D) network, whose

total longitudinal size Mx is much larger than its transverse size Ly . Both lengths are defined

by counting the number of ports on the x and y directions, respectively. The number of ports

on any opposite sides are equal. We look at the properties of the transfer matrix T connecting

the fields of the ports on the right boundary to the fields of the ports on the left boundary,

i.e. in the x direction. T is then a 2Ly × 2Ly pseudo unitary matrix [240], defined by the

scattering relations among the 2Ly ports located on on the lateral sides (Eq. (2.44) in Sec. 2.3).

Due to the pseudo unitarity of T , the eigenvalues of the 2Ly ×2Ly Hermitian matrix T †T can

be written as exp(±2X j ) with eigenstates |Ψ±
j 〉, where X j are Lyapunov exponents such that

0 < X1 < X2 < ·· · < XLy . As the wave transport counted over 2Ly eigenchannels is dominated

by the contribution of the smallest Lyapunov exponent X1 = 〈Ψ−
1 |T †T |Ψ−

1 〉, the localization

length λ is defined as the inverse of the smallest Lyapunov exponent [95, 101, 239] as

λ = lim
Mx→∞

Mx

X1
. (2.47)

Yet, calculating and decomposing T leads to large numerical errors when Mx is large (>20),

yet Mx should be at least millions to ensure Mx > λ. To reduce numerical errors in the

determination of the localization length, we uniformly slice the long quasi-1D network along

the x direction, with a slice width Lx , and get slices indexed from i = 1 to Mx /Lx . We calculate

the transfer matrix Ti of each slice, and then multiply them by iterative QR decomposition

XVIA phenomenon called levitation and annihilation [67, 71].
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[241]: 
T =

Mx /Lx∏
i

Ti ;

T1 = Q1R1;

Ti+1Qi = Qi+1Ri+1, i > 1.

(2.48)

Therefore, we get

T = QMx /Lx

[
Mx /Lx∏

i
Ri

]
≡QT RT , (2.49)

where RT ≡ ∏Mx /Lx

i Ri and QT ≡ QMx /Lx . As Lyapunov exponents are exactly the diagonal

elements of the upper triangular matrix RT , we can therefore get

λ = lim
Mx→∞

Mx

min
j

|ln RT ( j , j )| . (2.50)

In this way, we maintain a good accuracy on the eigenvalue with modulus closest to unity.

Generally, the smaller Lx is, the more accurate T is. Here, we take Lx ∈ {4,8,12,16}. In Fig.

2.14a, we show a slice of such a system of length Lx = 4 (Lx ≪ Mx ), and of transverse size Ly = 8.

We consider open boundary conditions (OBC) in the y-direction (Fig. 2.14a), namely edges

with unitary reflection. As indicated by Eq. (2.50), calculating the exact localization length

λ requires taking Mx to infinity. Also, in disordered networks, Ti is taken from a statistical

ensemble of finite quasi-1D network slices which are composed of specified microscopic

scatterers and under prescribed disorder statistics. Therefore, it seems that one should take

Mx very large and average λ over many calculations. Fortunately, as localization length λ is a

finite and self-averaging quantity, we can approximate λ by only one calculation on a finite,

but long enough, quasi-1D network with Mx ∈ [5×105,2×106].

One can identify whether a system is in an insulating or metallic phase by analysing how

normalized localization length Λ(Ly ) =λ/Ly scales when increasing the width Ly , as demon-

strated in prior arts [242]. This is traditionally done by checking the dependence of Λ(Ly ) on

the transverse width Ly , when applying periodic boundary condition (PBC) in the y direction

(Fig. 2.14c, thus in a setting with no top and bottom edges). For a metal, Λ(Ly ) increases with

Ly , and Λ(Ly ) →∞ as Ly →∞. On the contrary, for an insulator, Λ(Ly ) decreases upon scaling

Ly , and Λ(Ly ) → 0 as Ly →∞. At a critical transition, Λ should be invariant upon scaling. This

method, however, is not sufficient to distinguish topological and trivial insulators. To this end,

one should repeat the study in the presence of edges, namely with PBC replaced by OBC [11].

Since non-trivial topology manifests itself by the existence of chiral edge states, Λ(Ly ) should

increase monotonically, like for a metal. On the other hand, a topologically trivial insulating

phase would be insensitive to the modification of the boundary condition [11], due to the

absence of edge states. An example of this scaling analysis near a topological transition is
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Figure 2.14: Topological phase transitions by scaling analysis of the localization length. a, c,
A slice of a quasi-1D network with width Ly = 8 is used for iteratively calculating the transfer
matrix. The longitudinal dimension contains four elementary slices, therefore Lx = 4. In panel
a, we consider open boundary conditions (OBC) in the y-direction, namely edges with unitary
reflection, while in panel c we apply periodic boundary condition (PBC) in the y direction by
wrapping the network into a cylinder. b, d, Example for scaling analysis. Consider evolution
of the normalized localization length Λ(Ly ) = λ/Ly on the segment of p ∈ [0.73,1.18] under
y-OBC (panel b) and y-PBC (panel d). p is just a meaningless parameter to represent a line
in the parameter space. Ly is increased from 8 to 128. The left and right parts of the plot are
topological and trivial phases, respectively, and are separated by the critical point p ≈ 0.93
(dashed lines) characterized by scale invariance.

shown in Figs. 2.14(b, d), where the left part of the plot corresponds to a topological phase and

the right part to a trivial insulating phase.

2.5 Topological scattering invariant in disordered scattering net-

works.

2.5.1 Topological invariants in disordered systems

Different theoretical approaches have been developed to tackle the topology of disordered

systems, where the Brillouin zone cannot be used anymore. Various invariants have been

identified, such as topological invariants with TBCs [215, 216] in the shrunken momentum

space (in Sec. 2.2) and real-space topological invariants (noncommutative form [55, 57, 217],

Bott index [218–220], and local Chern marker [221]).

However, these indices, based on the band invariant- Chern number, cannot capture anoma-

lous topological phases in the context of disordered unitary systems. Other works addressed

the topological characterizations of disordered unitary systems where anomalous phases

may emerge, such as time-Floquet systems and scattering networks [132, 149, 163], but their

potential experimental measurement remains elusive. Here, we introduce a novel topological
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index derived from the response of scattering matrices to twisted boundary conditions in

our photonic scattering network, inspired by Laughlin’s pump argument [173]. This index,

therefore termed as "Topological scattering invariant", is accessible for any network and

measurable in our experiments, via scattering measurements involving an exterior probe.

2.5.2 Topological scattering invariant

Physically, topological invariants are linked to the transport response of a disordered system

when boundary conditions are varied e.g. the quantum Hall conductance [183] and polar-

ization [184]. For instance, in disordered quantum Hall samples, the topological invariant

with twisted boundary condition (TBC) is related with the number of pumped electrons by

adiabatically changing magnetic flux piercing the system [9].

Transposed to scattering networks, this idea suggests the network setting shown in Fig. 2.15b,

where the network with TBC in Fig. 2.12b is enclosed with N0 external probes. With TBC,

the wave is phase shifted by Φ (−Φ) when propagating from the left to right (right to left)

boundaries, respectively. At fixedΦ, say for instanceΦ = 0, such non-reciprocal phase emulates

a Bloch periodic boundary condition, guaranteeing that the eigenstates and eigenvalues of the

system form a discretization of the band structure of an infinite strip in the x direction, but

finite in y . Such a discretization is schematically represented in 2.15c, for two bulk bands and

one chiral edge state. The discrete set of eigenvalues (dots) sit on the band structure of the

infinite strip, sampling it at a discrete number of points. Now, imagine that we increase the

flux Φ adiabatically from 0 to 2π (we call this a cycle). Naturally, the discretized band structure

must be the same at the beginning and end of this process. However, during this process, the

points all move to the right, along the bands, since the increase of the Bloch phase imparts

one quantum of momentum in the x direction. Therefore, each point replaces its right-hand

neighbor at the end of this adiabatic cycle.

The crux is now the following: Imagine that after fixing the phase delay ϕ (for example at one

of the dashed-yellow lines in the Fig. 2.15c), one is able to algebraically count the number of

states which, during a cycle, cross this value of ϕ. For a bulk band (ϕ=ϕ0), there must be as

many states crossing it in one direction (upwards) than in reverse (downwards). Thus, one

would find a zero net number of crossings. The situation would, however, be different for a

situation where one would cross one or several chiral edge state bands (ϕ=ϕ1), and counting

the number of crossing would be the same as counting the number of edge states. Finally,

in a spectral range where both bulk and edge states exist (ϕ=ϕ2), the contributions of all the

crossings with bulk states would compensate, leaving only those of the edge states. Thus,

counting the number of crossings during a cycle is a direct count of the number of chiral edge

states.

To perform this count in practice, we need an extra trick. The crossing of an eigenstate

is a resonance: for a particular value of Φ, we can maximally couple to an eigenstateXVII.

XVIIWe cannot give the exact value for the maximal coupling Φ; but from Fig. 2.15c there must be a crossing
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Fortunately, resonances would influence a scattering measurement performed during the

adiabatic cycle [223, 224, 243–246], as shown in Fig. 2.15b. Thus, we put N0 external probes in

Fig. 2.12, and assume that the system is large enough such that the weakly-coupled probes

will not significantly disturb the states. It is possible that a given probe cannot detect all the

resonances, as the amplitude of a state can vanish at the specific location of the probe. For

example, the probe at the bottom edge cannot detect an edge state localized at the top. Thus,

if we put probes at the bottom side, we can probe only the bottom edge states and almost all

the bulk states.

In the following, we characterize the topological non-trivial pump in arbitrary scattering

networks by the winding number of the determinant of Spr obe upon varying Φ from 0 to 2π,

as those windings count the resonances of Spr obe at a given ϕ [223]. Indeed, the eigenvalues{
e iθ1 , · · · ,e iθN0

}
of Spr obe are distributed on the unity circle. As Spr obe recovers after one cycle of

Φ, the trajectories of eigenphase θ j (Φ) exhibit 2π normalized quantized phase accumulations

[223, 224, 247]. Therefore, the winding number W
[
ϕ

]
can be defined by the homotopy

invariant (π1(U (N0)) =Z)

W
[
ϕ

]
=

1

2π

∫
dθ(Φ) =

1

2πi

∫
dΦ

(d lndet(Spr obe )

dΦ

)
=

1

2πi

∫
dΦTr

(
S†

pr obe

dSpr obe

dΦ

)
, (2.51)

where θ(Φ) is the sum of eigenphases of Spr obe , given as

θ(Φ) =
N0∑
i =1
θ j (Φ). (2.52)

Considering one exterior probe only (N0 = 1), the eigenphase θ1 of Spr obe is exactly the probe

reflection phase, due to the unitarity of Spr obe .

Note that generally, a resonance induces a π phase shift in the scattering states, therefore a

2π phase shift in the reflection phase (N0 = 1), or in the phase of determinant of Spr obe (i.e.

θ(Φ)). For a topologically non-trivial winding [9, 163, 223], the emergence of resonances in the

course of varying Φ cannot be eliminated by a smooth deformation of the scattering matrix

Spr obe of the system. It corresponds to the non-contractible loop, or non-trivial winding, of

θ(Φ), for which the resonance condition, wherever it sits on the circle, cannot be avoided, as

shown in Fig. 2.15d. We can also define the fluctuation θF of θ(Φ), expressed as

θF = max
{Φ1,Φ2}

[∫ Φ2

Φ1

dθ(Φ)
]
. (2.53)

Taking a finite honeycomb network in a Chern phase as an example, whose ribbon band

structure is shown in Fig. 2.15e, we compute θ(Φ) and the winding numbers W [ϕ] at ϕ = 1.1

(topological band gap, Fig. 2.15f), ϕ = 0.5 (bulk band, Fig. 2.15g) and ϕ = 3 (trivial band gap,

between the phase-delay (quasi-energy) line ϕ =ϕ0 with the eigenstate movement from nk → nk+1 induced by
adiabatic cycle of Φ.
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Fig. 2.15h). As expected, a non-zero winding of the reflection coefficient is accompanied with

a topological edge state, while bulk states and band gaps do not yield any winding. Yet, despite

the absence of winding for W [ϕ = 0.5] = W [ϕ = 3] = 0 their fluctuations θF are very different,

which could be used to distinguish the effect of bulk states from band gaps.

2.5.3 Relation with Wigner- Smith operator

To bring a deeper insight, the above physics and formula involving θ(Φ) imply a relation

between dθ(Φ)
dΦ

= Tr(S†
pr obe

dSpr obe

dΦ
) and the Wigner-Smith operator [60, 248–250] Q = −i S† dS

dE

with density of states (DOS) ρ(ω) = c
2πTr(Q). As known, the time of resonances is directly

related with density of states at a given ϕ [60, 251]. The fluctuation θF of θ(Φ) depicts the

movement of the averaged center (expectation value of horizontal position operator) of wave

packets during the pumping cycle. Therefore, we can identify the difference between the bulk

bands (W [ϕ] = 0) with delocalized states and the trivial band (W [ϕ] = 0) by non-zero and zero

θF , respectively. Clearly, the above physics is universal and is valid for any system, in particular

that we are not limited to the periodic ones. Consequently, the presented winding number of

probe scatting matrices works for any planar network, even in the strong disorder cases where

Anderson localization emerges.

To sum up, the main advantages of the proposed topological scattering index are that it

provides a measurable and quantized value, defined on solid ground and applicable for

any network even in the strong disorder cases where Anderson localization emerges. This

topological scattering index just detects what happens at the very end of the sample. It is an

observable which is easy to measure in the practice, via extracting the scattering matrix of N0

external probes (we use N0 = 2 in experiments).
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Figure 2.15: Topological invariant in scattering networks. a, The magnetic flux Φ in the
Laughlin’s thought experiment (left) can be synthetically realized by the twisted boundary
condition (right) consisting of direction-dependent phase delay Φ. b, We probe the closed
system by N0 exterior probes, forming the scattering matrix Spr obe . The topological index W
is then defined by the winding of the determinant of Spr obe in the complex plane, which is the
winding of the probed reflection upon N0 = 1. c, Schematic band structure in the thermody-
namic limit and eigenphases of finite networks with the twisted boundary condition defined
on discrete momentum kB . The adiabatic cycle of Φ induces the successive replacements
of eigenvalues from nk to nk+1. d, The noncontractible and contractible windings. The con-
tractible one (green) can be continuously deformed to a point which is topologically trivial,
while the noncontractible one (blue) cannot be deformed to a point in a continuous way. e- h,
The illustration of topological winding number W [ϕ] for a finite Chern honeycomb network.
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3 Topological scattering networks in
honeycomb lattice

The main results in this chapter are taken from the published article in Zhe Zhang, Pierre

Delplace, Romain Fleury, "Superior robustness of anomalous non-reciprocal topological

edge states", Nature, 598, 293–297 (2021) (licensed under a Creative Commons Attribution 4.0

International License).

In this chapter, armed with solid foundations for describing scattering networks and their

physical properties (Ch. 2), we begin our exploration with scattering networks in the clean-

limit honeycomb lattice. We study under which circumstances the anomalous Floquet in-

sulating phase (AFI) and Chern insulating phase (CI) exist in such clean-limit networks. We

then explore the possible differences in edge transport between anomalous topological edge

states and Chern edge states, in finite scattering networks. By inducing an abrupt change in

phase links, we evidence a possible distinction in terms of robustness to phase fluctuations,

motivating the study of the robustness of anomalous edge transport over the Chern one in

distributed disordered cases, which is performed in the next chapter.

Organization of the chapter: The introduction in Sec. 3.1 aims to motivate the choice for topo-

logical unitary non-reciprocal scattering networks, namely the advantages of nonreciprocity

and unitary topology. Sec. 3.2 will then exhibit the topological phases supported in scattering

networks and their phase diagram. In Sec. 3.3, we numerically and experimentally examine

differences between anomalous and Chern phases by studying transports in finite networks.

In the end of this section, we explore the robust anomalous edge transport when an abrupt

phase-link jump is introduced in the network. Finally, we show the experimental setups in Sec.

3.3.3.

Notice: Our studies in this chapter involve parameterization (Sec. 2.1.3), band structures (Sec.

2.2) and transports in open networks (Sec. 2.3).
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Chapter 3 Topological scattering networks in honeycomb lattice

3.1 Introduction

In the literature, topological unitary scattering networks have primarily been implemented in

reciprocal photonic and phononic systems [14, 15, 148, 156–158, 160, 173, 175–178], exploiting

two time-reversed subspaces. Yet, these subspaces cannot be completely decoupled and are

severely affected by local defects and weak disorder. Therefore, robust topological photonic

edge transport with genuine backscattering immunity is only achievable in systems that

break time-reversal symmetry (TRS). On the contrary, our non-reciprocal scattering network

is formally analogous to a rigorously oriented Kagome graph (Sec. 2.1.5), described by a

unitary matrix S(k), which can be mapped [112, 149] onto the Floquet eigenproblem of a

time-Floquet lattice [111, 122, 123, 147, 252], with the phase delay of bidirectional links ϕ

taking the role of the quasi-energy. Consequently, we can truly benefit from the advantages of

both nonreciprocity [253], and the potentially richer topological physics of Floquet systems

[111]. This Kagome network is indeed known to display trivial, Chern and anomalous phases

[112, 149].

In particular, it was shown that the existence of the anomalous phase is homotopically related

to a critical symmetry point, called a phase rotation symmetric point [112], where the bands

are perfectly flat and equidistant in quasi-energy. Such remarkable points are reached when

the scattering nodes S1, S2, and S3 are perfect transmitters so that trajectories in the Kagome

network decompose into isolated oriented loops (Fig. 2.7). One of these configurations

consists of isolated hexagons, that correspond to the blue point SCW in the parameter space

(ξ,η) in Fig. 2.3 for the non-reciprocal network in honeycomb. In fact, this unambiguously

predicts that the topological phase surrounding these special points is anomalous, as long as

the band gap remains open. This mapping motivates the exploration in the following section

of the topological phase diagram in non-reciprocal scattering networks, which opens the

possibility of an experimental implementation.

3.2 Anomalous topological phase and topological phase diagram

We use the model of Eq. (2.5) and theory in Sec. 2.2 to explore the parameters influencing

potential topological phase transitions in the network. The individual reflection coefficient

|R| of non-reciprocal scatterers is found to be the main control lever for the closure of phase-

delay ϕ (quasi-energy) band gaps, as shown by the evolution of the bulk band structures

for increasing values of |R| in Fig. 3.1. Our model shows a systematic closing of two of the

band gaps at |R| = 1/3 (denoted type 2, in red) while the others (type 1, in blue) vary only

slightly, thus suggesting that topological phase transitions may be controlled by the individual

scatterer reflectance.

To confirm this intuition, we probe the existence of edge modes for each of these situations by

numerically calculating the band structure of a ribbon terminated by full-reflection boundary

conditions at top and bottom. As depicted in Fig. 3.2a, both the low and high reflection cases
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Figure 3.1: Gap closing and reopening in phase-delay band structure at |R| = 1/3:
Evolution of the phase-delay band structure with the increase of the non-reciprocal elements’
reflection from |R| = 0.16, (left, ξ = −η = 2.5π/12) to |R| = 0.51, (right, ξ = −η = 3.5π/12). At
|R| = 1/3, (center, ξ = −η =π/4), the type 2 band gap closes, symptomatic of a topological phase
transition.

(respectively on the left/right panels) exhibit chiral edge modes located at the walls either

at the top (red line) or bottom (blue line), with profiles represented in Fig. 3.2b. The main

difference is that the low reflection case has edge modes in every quasi-energy band gap,

whereas at high reflection, they are found only in band gaps type 1. This low- |R| behaviour

is the hallmark of anomalous Floquet insulators (AFI)[111, 112, 123, 160], which possess

topological edge states despite the Chern number of all surrounding bands being zero. In

contrast, the high reflection case corresponds to the Chern insulator (CI). We map out in Fig.

3.2c the complete topological phase diagram for every possible realization of the scattering

matrix S0, represented by the angle parameters ξ and η (See details in Sec. 2.1.3 and Fig. 2.3).

The CI and AFI regimes are shaded in red and blue, respectively. To connect this phase diagram

with physically meaningful quantities, we plot it twice in the same parameter space, together

with contour lines depicting the reflectance (Fig. 3.2c, left) and non-reciprocal isolation (right).

Remarkably, the phase diagram unambiguously demonstrates the coincidence between the

1/3 reflection contours with the topological phase transition. Its centre and middle points of

four sides, depicted by red triangles, correspond to a semi-metallic phase as shown in Figs.

3.3(b, d), with all band gaps closed, whereas the blue (SCW ) and purple (SCCW ) points are

the perfect circulator case with |R| = 0 and infinite isolation, for which the bulk bands are

flat and the edge modes are dispersionless (Fig. 3.3(a, c) for the blue point). Such critical

condition corresponds to a phase rotation symmetric point [112], which can only occur in the

anomalous (or trivial) phases.

For completeness, we provide the band gap map of the network together with the values of the

homotopy invariant Wτ (Sec. 1.3) in Fig. 3.4. The white areas represent bulk bands. We focus

on a segment ξ = −η ∈ [π/6,π/2] in the parameter space, in which the reflection coefficient R

of the individual circulators correspondingly varies from 0 to 1. The blue areas represent band
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Figure 3.2: Anomalous and Chern topological phases in non-reciprocal scattering networks.
a, Phase-delay band structures of a supercell with periodic boundary conditions along x
and unitary reflections at the top and bottom. The parameters are the same as in Fig. 3.1.
The low reflection case is the anomalous topological phase, which features an edge mode
in every quasi-energy gap. Conversely, the high reflection case supports edge modes only
inside the type 1 band gaps, consistent with the Chern insulator phase. Edge modes localized
to the top and bottom are shown in red and blue, respectively. b, Supercell with examples
of Chern and anomalous topological edge modes profiles, corresponding to the markers in
panel a. c, Topological phase diagram in the (ξ,η) plane. The blue-shaded area corresponds
to the anomalous phase, and the red one to the Chern phase. Left: comparison with the
iso-reflection contours of the individual scatterers, demonstrating the coincidence between
the topological phase transition and the |R| = 1/3 contour. Right: Comparison with the non-
reciprocal isolation level of the individual scatterers |S0(2,1)/S0(1,2)|. On the thick gray lines,
the scatterers are reciprocal. At the triangular red point, all band gaps close indicating a
semi-metal, where phase transitions among AFI, CI and trivial phase happen. The blue and
purple spheres represent the perfect circulator cases (SCW and SCCW ).
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Figure 3.3: Phase-delay band structures at two special points of the topological phase
diagram. a, b, Bulk band structures at the blue sphere (a) and red triangles (b) of the phase
diagram of Fig. 3.2c. The blue and purple spheres correspond to a phase-rotation symmetric
network of perfect matched circulators, thus in AFI phase. The red triangles represent a
network of reciprocal resonant scatterers, with all band gaps closed. c, d, Ribbon band
structures corresponding to panel a and b, respectively. The perfect circulator network features
flat bulk band with dispersionless edge modes regardless of the value of the quasi-energy ϕ,
which can only occur in the AFI phase.

67



Chapter 3 Topological scattering networks in honeycomb lattice

gaps with values of the homotopy invariant Wτ = 1, whereas red areas correspond to band

gaps with a zero value of Wτ.

Figure 3.4: Band gap map of the network. We project the band structures on the segment
of ξ = −η ∈ [π/6,π/2] in the parameter plane. The band gaps are marked with gap invariant
Wτ: blue for 1 and red for 0, whereas white parts represent bulk bands. The topological phase
transition at |R| = 1/3 is coincidence with the changes of gap invariants. Band structures in Fig.
3.2 (|R| = 0.16,1/3 and 0.51) and Fig. 3.3 (|R| = 0 and 1) can be found in this band-projection
map.

3.3 Transport distinctions in anomalous and Chern topological scat-

tering networks

In this section, we focus on the transport properties for finite scattering networks with external

ports and examine the associated difference between anomalous and Chern phases. To begin

with, we consider a hexagonal finite scattering network in honeycomb lattice as shown in Fig.

3.5. To probe transport through this network, we assign three external ports at the network

boundary, represented by green stars. The remaining boundary ports are configured for

unitary reflection. In the scope of this section, we keep all the circulators in the network

identical.

3.3.1 Transport distinctions of AFI and CI in the clean-limit network

First, we numerically examine how the distinctions in band structures for AFI and CI lead to

different transport phenomena in the clean limit. In the finite open network constructed from

identical circulators S0(ξ,η) and characterized by phase-delay ϕ, we initiate a wave signal
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at port 1 and check the amplitude of the signal received at port 2. In Fig. 3.6, we plot this

transmission from port 1 to port 2 as a function of ϕ and compare it with the phase-delay

ribbon band structure of S0(ξ,η).

The parameters (ξ,η) for AFI and CI are the same as those in Fig. 3.1, respectively. In the

anomalous scattering network (panel a), the transmission in the phase-delay spectrum either

reaches unity or exhibits non-zero values characteristic of metallic behavior, never being

completely blocked at any phase-delay value, since AFI lacks trivial gaps. In contrast, the

network in the Chern phase, despite showing unity and metal-like transmissions in certain

phase-delay ranges, experiences complete transport blockages due to trivial band gaps.

Figure 3.5: Finite honeycomb scattering network with circulators S0(ξ,η) with three external
ports. Three ports are arranged at the boundary to examine transports through finite networks.

3.3.2 Experimental realizations for AFI and CI

Experiments were designed with the goal of being able to access both phases in samples

allowing for extensive characterization, including field maps and scattering parameters. The

non-reciprocal networks are designed and fabricated on 0.508 mm thick Rogers RT/duroid

5880 substrate (dielectric loss tan δ = 0.0009 at 10 GHz) with 35 µm thick copper on each

side. Here, the non-reciprocal element is a surface mount microwave circulator UIYSC9B55T6

from UIY company, designed from a Y-shaped strip line on a printed circuit board [193].

Microstrip lines serve as phase delay links, with a width of 1.65 mm, corresponding to a

standard 50 Ohms characteristic impedance. Microstrip transmission lines are known to

behave as pure phase delays in this frequency range, since the propagation losses over so short

distances are negligible (we indeed measured them to be 0.0167 dB/cm). In our experiment,

we measure an individual circulator and retrieve its scattering matrix SU versus frequency f .

Then we set the frequency bands for AFI and CI operations, by checking the position of the

measured SU ( f ) in the topological phase diagram on (ξ,η) plane (Fig. 3.2).
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Figure 3.6: Comparison between boundary-port transport properties and the ribbon band
structures of anomalous and Chern phases. We plot the simulated transmission between
two boundary ports (port 1 and 2) through the hexagonal network (Fig. 3.5) as a function of
ϕ, and compare it with the ribbon band structure. We assume a uniform distribution for the
phase delay ϕ and the circulator S0(ξ,η). a, Case of the anomalous phase in Fig. 3.1. b, Case of
the Chern phase shown in Fig. 3.1.
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Figure 3.7: Experimental validation of the model assumptions. a, Validation of the C 3
symmetry hypothesis. C 3 symmetry holds when S0(1,2) = S0(2,3) = S0(3,1), as well as S0(1,1) =
S0(2,2) = S0(3,3), which is the case in the considered frequency range. b, Validation of the
unitary scattering properties: eigenvalues of the measured scattering matrix, with nearly-
unitary behavior over the entire experimental bandwidth. c, ξ and η parameters used to
approximate the real scattering matrix with a C 3- symmetric unitary matrix. The red and blue
areas are the Chern and anomalous phases respectively. d, Error in % made by approximating
the real scattering matrix with Eq. (3.1) over the entire bandwidth.
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We start by checking the validity of C 3 symmetry and U (3) assumptions made in Sec. 2.1.3,

namely that the three-port scatterers have three-fold rotational symmetry (C3 symmetry), and

that they are unitary. To do this, we measured the 3×3 scattering matrix SM of our circulators.

We start with checking C 3 symmetry, which implies that SM (1,2) = SM (2,3) = SM (3,1), as

well as SM (1,1) = SM (2,2) = SM (3,3)I. Fig. 3.7a plots the moduli and arguments of all these

quantities in the considered frequency range f ∈ [3.5,5.5] GHz. From these plots, we see that

although some small deviations from C 3 symmetry are observed in the reflection coefficients,

they correspond to fluctuations of reflection below −20 dB. We can then conclude that C 3

symmetry is a valid assumption. Next, we check unitarity. Fig. 3.7b plots the eigenvalues

of the measured scattering matrix versus frequency, in the complex plane. We can see that

they are always very close to the unit circle, meaning that unitarity is also a very reasonable

assumption. This is expected since we used a substrate with a small loss tangent of 10−4 and

circulators with low insertion losses of 0.2 dB. Absorption is therefore not expected to alter the

prediction of the unitary theory, but simply add an exponential decay that is most noticeable

for large samples.

Now, we estimate the error that we make by modeling the real matrix SM with S0(ξ,η) in Eq.

(2.25). To do this, we find the C3-symmetric unitary scattering matrix SU that is the closest to

SM . We get SU by rescaling the eigenvalues of SM to make them exactly unitary, keeping their

arguments. We then determine the parameters ξ and η of SU , which we plot against frequency

in Fig. 3.7c. We then define a s-parameter error metric as

ϵdi f f =

√
1

3

[
[SM (1,1)−|SU (1,1)|]2 + [SM (1,2)−|SU (1,2)|]2 + [SM (2,1)−|SU (2,1)|]2

]
. (3.1)

This quantity, depicted in Fig. 3.7d, represents the error that we make by using Eq. (2.25). We

see that this error is below 5% for the whole frequency range, which unambiguously validates

the relevance of Eq. (2.25). Furthermore, this mapping indicates that the topological phase

of a scattering network can vary with its operation frequency f , if scattering matrices of

scattering nodes are the functions of frequency f . This allows us to access both anomalous

(3.9 < f < 5.5 GHz) and Chern phases (3.5 < f < 3.9 GHz) in only one fabricated scattering

network by operating at different frequencies.

3.3.3 Experimental setups

The scattering parameters and field maps for circulators and fabricated networks are measured

by a vector network analyser (VNA) R&S ZNB20, as illustrated in Fig. 3.8a. For the scattering

parameter measurements for example results in Fig. 3.7, as they are multiport, we connect

the two ports of the VNA to two ports of the measured devices, with the other ports perfectly

matched with 50-ohm terminations (no reflection). For the field map measurements, we

connect the signal input port of the measured network to VNA port 1, while perfectly matching

the other ports of the network. We manually probe the field at the middle of the microstrip

ISM (2,1) = SM (3,2) = SM (1,3) is not checked as their amplitudes are quite small.
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lines by using a coaxial probe, which is connected to VNA port 2, as shown in Fig. 3.8b.

Figure 3.8: Experimental setups for scattering parameter and field distribution measure-
ments. a, The setup consists of a vector network analyser (VNA) and two microwave non-
reciprocal networks: N1 (left) and N2 (right). b, Field map measurement with a coaxial probe
for measuring fields on the microstrip lines.

3.3.4 Robust anomalous edge states against an abrupt phase-delay jump

From the band structures in Fig. 3.1 and the transport results in Fig. 3.6, we can already

intuitively expect the AFI edge transmission to be much more robust than the CI transmission

to phase-delay (quasi-energy) fluctuations, even much larger than the band gap size. Indeed,

the AFI phase occurs in the ballistic regime, in which reflections at nodes are low (Fig. 3.2),

yielding relatively flat (slow) bulk bands and large topological band gaps. An abrupt jump of ϕ

within the lattice is very likely to land in a topological band gap, which necessarily carries an

edge mode. Conversely, in the CI phase, the probability of an edge mode being destroyed by

fluctuations larger than the band gap is much higher, due to the increased width of the bulk

bands and the occurrence of trivial band gaps II.

As an example of such a situation, let us consider the transport properties of edge modes in

a finite non-reciprocal network with an abrupt phase-delay jump in the middle (Fig. 3.9a,

right). As a reference, we also include the case of a uniform sample (left panel). The two

hexagonal-shaped networks with three input/output ports follow the finite network in Fig.

3.5, as shown in the top row of Fig. 3.9a. Network 1 (N1) consists of uniformly distributed

phase links ϕ =π/8, while for network 2 (N2), a phase-delay jump is introduced by changing

all phase links in the bottom part to ϕ =π/2. With numerical simulations, we then compare

the propagation of the anomalous and Chern edge modes, when exciting from port 1. The

anomalous phase finds itself in topological band gaps at both ϕ =π/8 and ϕ =π/2 (Fig. 3.2a,

left), whereas the Chern phase possesses a non-trivial band gap only at ϕ = π/8 (Fig. 3.2a,

right). As shown in Fig. 3.9a, the anomalous edge mode crosses the interface completely

unperturbed. In stark contrast, the Chern edge mode is unable to transmit to port 2 in the

presence of the interface, and all the energy is guided to port 3.

IISuch difference roots in the phase rotation symmetry [112], of which the clean-limit networks possess total flat
bulk bands and can only be in anomalous or trivial phase.
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Figure 3.9: Robustness of anomalous non-reciprocal topological edge transmission against
abrupt phase-delay jump. a, Numerical simulation of the steady-state energy propagation in
finite non-reciprocal networks with different phase-link distributions. The signal is incident
from port 1. The parameters used to generate the anomalous (center) and Chern (bottom)
phases are the same as in Figs. 3.1 and 3.2. On the left, the phase-link distribution is uniform,
with ϕ =π/8, and the energy can be transmitted to port 2 in both the anomalous and Chern
phases. On the right, we introduce an interface and abruptly change the value of ϕ =π/2 for
the bottom part. Only the anomalous phase is robust to this change, and keep transmitting to
port 2. In the Chern phase, the edge mode travels along the interface and reaches port 3. b,
Experimental validation at microwaves in a network made of ferrite circulators.
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We validate experimentally this fundamental distinction between the anomalous and Chern

phases by designing a non-reciprocal network operating at microwave frequencies. The

scatterers are ferrite circulators connected with microstrip lines. Our experimental design,

which takes into account both the frequency dispersion of the scatterers and delay lines, finds

itself in the anomalous and Chern phases at 4.9 and 3.6 GHz, respectively. Modification of the

phase delays of the links is induced by changing the total lengths of the microstrip lines with

serpentine paths, whose phase delay ϕ under a length L at the frequency f is expressed as

ϕ =
2π f L

p
ϵe f f

c , with ϵe f f being the effective permittivity of the microstrip, obtained from an

empirical microwave design formulas [193].

As shown in Fig. 3.9b, the measured field amplitude profiles confirm the resilience of the

anomalous edge state to the phase jump, in perfect agreement with the numerical predictions.

We also check the field maps upon exciting ports 2 and 3 as shown in Figs. 3.10 and 3.11. Their

simulations and measured results are very well consistent with each other, exhibiting a robust

anomalous edge transport circulating the whole hexagonal scattering network.

Figure 3.10: Numerical and experimental field maps for excitation at port 2. a, Numerical
predictions for excitation at port 2 for the same system as in Fig. 3.9. While the anomalous
phase supports transmission to port 3 regardless of the phase link distribution, the Chern
phase possesses a trivial band gap at ϕ = π/2, and reflects all the energy incident from port
2, see bottom right plot (the field distribution exhibits exponential decay). b, Corresponding
experimental data.

Further evidence is provided by the measured changes in scattering parameters over a fre-

quency band. Indeed, as illustrated in Fig. 3.7c, the dispersion of circulators enables us to

access the frequency bands in which networks operate in anomalous phase or Chern phase. As
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Figure 3.11: Numerical and experimental field maps for excitation at port 3. a, Numerical
predictions for excitation at port 3 for the same system as in Fig. 3.9. Both the anomalous
and Chern phases fall in topological band gap at ϕ =π/8, leading to transmission to port 1. b,
Corresponding experimental data.

AFI and CI regimes are segregated by the reflection contour of |R| = 1/3 in the parameter space,

this classification can also be simply achieved by checking the reflection of single scatterers,

as shown in Fig. 3.12a. The blue-shaded area represents the bandwidth of the anomalous

phase, indicating low reflection, where |R| < −9.5 dB, equivalent to 20 · log10(1/3). By contrast,

the red-shaded area shows the Chern phase with high reflection (|R| < −9.5 dB).

However, just because two topologically non-trivial phases are present doesn’t guarantee the

manifestation of topological edge states for a scattering network with a specified length L of

microstrip line operating at frequency f . Taking into account the frequency dispersion of

the lines and circulators, we construct a more practical topological band gap map, shown

in Fig. 3.12b, as a function of the effective length of the microstrip lines L and the operating

frequency f . In Fig. 3.12b, the blue and red regions correspond to band gaps with and without

topological edge modes, respectively. The white regions represent bulk bands. Topological

phase transitions happen at around 3.9 GHz and 7 GHz. With the aid of the map, we select

L1 = 26.5 mm and L2 = 37.5 mm, which produce the conditions ϕ = π/8 and ϕ = π/2 in the

simulations (Figs. 3.9a, 3.10a and 3.11a), respectively. As exhibited in Fig. 3.12c, the fabricated

networks show the microstrip lines of L1 (blue dashed region) and L2 (red dashed region).

Network 1 (N1) has a uniform length distribution of microstrip lines with L = L1. For network

2 (N2), we introduce an interface and replace the bottom part with lines of different length L2.
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Figure 3.12: Experimental network design and measured scattering parameters in bands
of Chern and anomalous phases. a, Measured reflection spectrum of an individual ferrite
circulator. b, Topological band gap map predicted from the scattering data of individual
circulators, when varying the length of the microstrip connections and the operating frequency.
The frequency dispersion of the lines and circulators is taken into account. c, Design details of
the experimental networks with/without the abrupt phase jump. d, Measured amplitudes of
the scattering parameters S21 (left), S31 (mid), and S22 (right) in the Chern-phase frequency
band (green dashed box in panel b). e, Measured scattering parameters in the anomalous-
phase frequency band (yellow dashed box in panel b).

We compare the changes of measured S parameters within anomalous and Chern phase

frequency bands, when inducing the abrupt phase jump in the scattering network, as shown

in panels d and e of Fig. 3.12, respectively. Fig. 3.12d shows considerable differences between

Chern-phase network 1 (N1) and network 2 (N2), from 3.5 GHz to 3.9 GHz for transmission

from port 1 to port 2 (S21, left), transmission from port 1 to port 3 (S31, mid), and reflection at
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port 2 (S22, right). These differences imply that Chern phases are not robust against strong

perturbations of phase links. To be more specific, regarding N1, we see a high S21 and a low

S31 denoting an edge mode from port 1 to port 2. Conversely, regarding N2, a low S21 and a

high S31 imply a change of its wave propagation path due to the perturbation of phase links in

the bottom part. The high S22 (around −1 dB) of N2 indicates a trivial band gap for the bottom

part of N2. In Fig. 3.12e, between anomalous-phase network 1 (N1) and network 2 (N2), in

contrast to panel d, there are little differences of S parameter (S21, left; S31, mid; S22, right)

between N1 and N2 under anomalous phases. It therefore provides additional evidences of

the superior robustness of anomalous phases over Chern phases.

3.4 Conclusions

In this chapter, we investigated the anomalous Floquet topological phase (AFI) and the Chern

insulating phase within a unitary wave network. This network was constructed from lossless

three-port non-reciprocal scatterers interconnected by reciprocal phase-delay lines, analo-

gously mapping to an oriented Kagome graph. By drawing parallels to the Floquet eigen-

problem of a time-Floquet lattice, we delineated the topological phase diagram for periodic

honeycomb scattering networks across the parameter plane of (ξ,η), with the quasi-energy

signified by phase delay ϕ. This diagram reveals three distinct phases: AFI, Chern phase (CI),

and trivial phase. Both theoretical insights and experimental evidence based on introducing

domains with different values of ϕ suggest a potential superior robustness of anomalous

transport against discrete variations in the phase imparted by the links. Motivated by such

observations, the subsequent chapter aims at establishing quantitatively and statistically the

superior robustness of AFI transport in situations where phase disorder is distributed across

the sample and fully random.
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4 Superior robustness of anomalous
topological transport

The main results in this chapter are taken from the published article in Zhe Zhang, Pierre

Delplace, Romain Fleury, "Superior robustness of anomalous non-reciprocal topological

edge states", Nature, 598, 293–297 (2021) (licensed under a Creative Commons Attribution 4.0

International License).

In the previous chapter, we have discussed numerical simulations and experiments that

suggest that the absence of trivial band gaps in the anomalous phase, contrary to the Chern

phase, may lead to a superior resilience for anomalous chiral transport to phase fluctuations.

This remains to be confirmed in more stringent situations where phase disorder takes the form

of random fluctuations distributed over the sample. The question of other forms of disorder,

such as disorder on the scattering properties of the circulators, also remains open.

In this chapter, we focus on the effect of distributed phase-delay and scattering-node disorder

on topological scattering networks. It establishes the superior robustness against distributed

disorder of anomalous topological transport over Chern topological transport. Our microwave

experiments validate the existence of a stronger edge transmission channel in the anomalous

phase. We apply our findings by prototyping and characterizing various prototypes with phase

disorder and/or irregular shapes.

Organization of the chapter: In Sec. 4.1, we introduce the concept of topological robustness.

In Sec. 4.2, we introduce random phase-delay disorder in the networks and compare the

transport robustness of anomalous edge states with the Chern edge states, establishing the

remarkable resilience of anomalous edge states. Sec. 4.3 demonstrates the superiority of

the anomalous edge states in the case of scattering disorder. In Sec. 4.4, we experimentally

confirm the exceptional resilience of the anomalous phase and demonstrate its operation

by building a 6 port topological circulator with arbitrary shape. Sec. 4.5 further verifies the

superior transmission robustness of anomalous phase by additional comparisons with other

Chern phases characterized by various types of band structures. Sec. 4.6 concludes this

chapter.
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Notice: The investigations in this chapter employ the disorder realization and discussions

from Chapter 2 on phase-delay disorder, scattering matrix disorder on nodes (in Sec. 2.1.4),

and transports in open networks (Sec. 2.3).

4.1 Introduction

Among the unique and counterintuitive attributes of topological systems, topological robust-

ness [4] against disorder and flaws is undoubtedly one of the most remarkable. This property

shows ground-breaking application potential by relaxing the drastic constraints imparted by

fabrication tolerances, and provides a way to seamlessly route energy and information in a

wide variety of two-dimensional (2D) platforms [6, 7, 10, 13–15, 17, 23–25, 36, 37, 42–47, 51,

254–258], from quantum electronics [47] to classical photonic [6, 7] and phononic devices

[23–25]. Topological edge states were found in systems with broken time-reversal symmetry,

such as Chern insulators [10, 259], and then extended to time-reversal invariant scenarios,

including the Z2 [260] and other symmetry-protected schemes [35], simultaneously stimulat-

ing their classical analogues [13, 15, 36, 37, 147]. So far, Chern topological edge modes [10,

13, 17, 23, 36, 43–47, 258] undeniably represent the most reliable solution for point-to-point

energy guiding, as they provide truly unidirectional, backscattering-immune wave transport

at their boundaries [50]. They were reported in non-reciprocal artificial wave media, such as

externally-biased magneto-photonic crystals [13] or mechanical systems [51] with moving

[23, 36, 43, 44] or time-dependent [254, 258] elements. Albeit protected from the presence of

local defects by the Chern number, the edge modes cannot survive the presence of distributed

disorder of sufficiently strong magnitude [4, 6, 7, 10, 42], especially when the average ampli-

tude of frequency fluctuations gets larger than the band gap size. This behaviour inherently

confines the topological protection of Chern phases to small distributed disorder levels.

In this chapter, we demonstrate that in the case of the anomalous non-reciprocal topological

phase, the edge transmission is quantitatively stronger than for the Chern phase, surviving

parametric fluctuations of the phase much larger than the band gap size. We find such

anomalous robustness in unitary scattering networks made of interconnected non-reciprocal

resonant scatterers coupled by non-directed phase links. We compare quantitatively the

robustness of transmission through the anomalous and Chern channels to phase-link disorder

and scattering disorder on nodes, by statistical averaging over many disorder realizations.

Our experiments at microwave frequencies confirm the superior resilience of the anomalous

transmission channel over the Chern one. We apply our findings to the design of ideally robust

networks with arbitrarily located ports and irregular shapes, including a 6-port circulator.

4.2 Superior robustness of AFI against random phase-delay disorder

From the results revealed in the last Chapter, the resilience of anomalous edge transport in

interface scenarios, involving two periodic networks, raises the question of its generalization to
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distributed non-uniform phase-delay (quasi-energy) perturbations. To answer quantitatively,

we consider the same hexagonal network as in the left of Fig. 3.9a, and impose site-dependent

disorder to the phase links, with fluctuations of strength δϕ randomly drawn with uniform

probability in the interval π/8+ [−δϕ/2,δϕ/2
]
. We then numerically extract the transmission

from ports 1 to 2 for 1000 realizations of disorder, and plot its magnitude versus δϕ in the top

panel of Fig. 4.1. The solid lines represent the ensemble average, and the dashed lines are

the first and last quartiles (Q1 and Q3). In the clean limit (δϕ = 0), both AFI and CI phases

show high transmission, since the edge states exist in both cases and are unperturbed (Fig.

3.9a). We now turn on the disorder, up to the maximal possible strength, which corresponds

to randomly drawn values in the entire 2π phase-delay (quasi-energy) range, much larger

than the band gap size of both AFI and CI phases (roughly π/4). Upon increasing δϕ, the

average transmission in the Chern case quickly drops to low values. Remarkably, the AFI

transmission shows a markedly different behaviour, remaining near 90% even when δϕ reaches

2π (fully random case). Note that this exceptional robustness does not require to reach the

critical condition |R| = 0, since the figure is generated for |R| = 16%. Such statistically stable

transmission constitutes a solid evidence of the superiority of anomalous non-reciprocal

topological networks, which survive phase disorder levels arbitrarily larger than their band gap

size. The subtle physics behind this exceptional resilience will be elucidated in an upcoming

chapter, with the help of a renormalization group theory in Ch.6.

Figure 4.1: Superior robustness of anomalous non-reciprocal topological edge transmis-
sion against phase-delay disorder. Transmission between ports 1 and 2 in a disordered
system with randomly-generated phase delays. The phases are uniformly drawn in an interval[−δϕ/2,δϕ/2

]
around ϕc =π/8. Solid lines represent the value of transmission averaged over

1000 realizations of disorder, and the dashed lines are the first and last quartiles (Q1 and
Q3). The anomalous edge transmission channel can survive disorder strengths up to a full 2π
rotation.

To check how wave propagates through disordered network via anomalous edge states, we

check field maps for several selected phase-link disorder levels: the clean limit δϕ = 0 (left),

weak fluctuation δϕ =π/4 (mid) , and the fully random case δϕ = 2π (right), as shown in Fig. 4.2.

In both panels, the top row shows the numerically predicted field map, and the bottom row

provides information about the considered particular disorder realization. The left column
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shows the perfectly ordered system, the middle column shows a realization of random phase

delays with strength of fluctuations δϕ =π/4, and the last column is the fully disordered case,

δϕ = 2π. Only the anomalous edge mode in panel (a) survives full random phase disorder.

Figure 4.2: Field maps anomalous (a) and Chern (b) edge mode transmissions at several
phase-delay disorder levels.

We now delve deeper into the exceptional resilience of anomalous edge transport against

distributed phase-delay disorder ϕ. We analyze networks formed by circulators within the

parameter range ξ = −η ∈ [π/6,π/2], previously examined in Fig. 3.4, where the reflection

coefficient |R| shifts from 0 to 1, marking a topological phase transition at |R| = 1/3. Utilizing

the configurations and disorder models outlined in Fig. 4.1, we evaluate the mean transmission

from port 1 to port 2 across these networks as the disorder intensity δϕ in the phase links

increases, depicted in the left panel of Fig. 4.3. Initially, for a uniform phase-delay ϕc =π/8,

both Chern and anomalous networks contain high transmissions due to stable edge states,
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even under mild disorder. Yet, as the disorder reaches δϕ =π/2, Chern network transmissions

significantly diminish, virtually disappearing at δϕ =π. In stark contrast, anomalous networks

maintain near-perfect edge transmission, demonstrating their remarkable robustness, even

under the highest disorder intensity δϕ = 2π.

Figure 4.3: Superior robustness of anomalous edge transport regardless of the center of
disorderedϕ. The phase-delay value in the clean-limit networks is termed as ϕc , which is also
the center of disordered phase delay, since disordered phase delay ϕ is randomly drawn from
ϕc + [−δϕ/2,δϕ/2] in a uniform probability distribution.

Furthermore, we change the center of disordered ϕ from ϕc =π/8 to ϕc = 1.1 (Fig. 4.3, mid)

and ϕc =π/2 (Fig. 4.3, right); we then increase the disorder intensity continuously from the

clean-limit condition to the fully disordered stage. As demonstrated in Fig. 4.3, although

clean limit and associated transitions observed in the weak disorder regime depend on ϕc ,

the transmission in Chern phases invariably diminishes to negligible levels under moderate

disorder intensity. In contrast, while transmissions in anomalous networks may fluctuate

due to bulk states in the clean limit and weak disorder case, they ultimately exhibit high edge

transmissions in the strong disorder regime. Focusing on the fully disordered phase-link

scenario to analyze the average transmission through the network is physically relevant, as

the phenomena at δϕ = 2π demonstrate independence from the central values of disordered

phase delays.

We computed the average transmission for fully-random phase-link disorder at each point of

our phase diagram, i.e. for all possible tunings of the band structure (Fig. 4.4b). Intuitively, in

the fully-random (2π strength) phase-link disorder, the value of the transmission depends on

the ratio in amplitude between the bandwidths of all the bulk bands, the trivial gaps, and the

gaps hosting chiral edge modes. In particular, by reducing the band widths, one increases the

transmission, even for the Chern phase.

Note that this mechanism is nonetheless more efficient for the anomalous phase than for

the Chern phase. Indeed, the anomalous phases are related by a continuous deformation
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Figure 4.4: Average transmission in the fully disordered phase-link case for all possible
networks in the parameter space. a, Reminder of the topological phase diagram for all
possible S-matrix, parameterized by ξ and η. b, Corresponding averaged transmission in the
fully-disordered case. The average transmission in the Chern phase is much lower than the
average transmission in the anomalous phase.

(that does not close a gap) to a phase-rotation symmetric point, where all the bulk bands are

flat [112]. Owing to the topological nature of the Chern numbers and of the Wτ indices, the

Chern phases in scattering networks cannot be continuously deformed to such a special point,

otherwise the Chern numbers would be zero. Therefore, their band widths have a minimal

finite value that always reduces the transmission compared to the contribution of an edge

mode. This favors the anomalous phases that can reach a perfect T = 1 transmission even in

the fully-random phase link disorder, by tuning the scattering parameters at the blue/purple

points in Fig. 4.4a.

Owing to this impossibility to flatten all the bulk bands, and of course to the existence of trivial

gaps, it is thus clear that even an optimized Chern phase - i.e. by fine tuning the scattering

parameters to maximize the topological gaps and to minimize at the same time both the

trivial gaps and the band widths- cannot reach the perfect transmission T = 1 in the fully-

random phase-link disorder configuration. This said, there is of course nothing that prevents

this optimized Chern phase to have a higher transmission than the worse fine-tuned "anti-

optimized" anomalous phase (i.e. with band widths as large as possible). The question is then:

is this comparison, between the best optimized Chern phase and the worse "anti-optimized"

anomalous phase, representative of the average Chern and anomalous cases?

Fig. 4.4b answers this question. In Fig. 4.4b, we find that the anomalous phases have a typical

transmission much higher than the Chern ones, and that the average transmission (over

scattering parameters of the phase diagram) of the anomalous regime is also mush higher

than that of the Chern phase. We also find that there are very small regions where we can
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pick parameters so that the transmission of the anomalous phase is smaller than the highest

possible transmission of the Chern phases. However, such regions only appear close to the

transition lines where the gaps are small, and both the optimized Chern and "anti-optimized"

anomalous systems collapse to a nearly insulating phase. Elsewhere, when the gaps are well

resolved, the transmission in the anomalous phase is close to 1 while the transmission in

the Chern phase is close to 0. In Ch. 6, we will deeply understand such distinct behaviors

for anomalous and Chern phases in strong disorder regime, by using RG theory and scaling

analysis on scattering networks.

4.3 Superior robustness of AFI against distributed disorder on scat-

tering nodes

Besides disorder on the phase links, one could indeed imagine another type of physically

relevant disorder: on the S matrices of the scatterers themselves (on the network nodes). Scat-

tering matrix disorder altogether includes fluctuations of the circulator matching (reflection

coefficient) and nonreciprocity level, which could occur due to finite geometrical tolerances

in the circulator fabrication process.

We start with the Chern phase, for which the scattering matrices must belong to the bottom

right red triangle shown in the ξ and η plane in Fig. 4.5. We consider the same hexagonal

sample as in the studies of phase-delay disorder (Sec. 4.2), with the same input and output

ports on the top right and bottom right corner, respectively. The clean-limit network is made

from uniform scatterers (ξc ,ηc ) that are precisely in the middle of the Chern phase (Figs.

4.5(a,b), left). When setting ϕ = π/8, this network exhibits an edge mode along its edge,

connecting the two ports (Fig. 4.5c, left).

For disorder on the scattering matrices of the nodes, we pick S0(ξ,η) randomly within the

Chern or anomalous phases, with the phase delay ϕ held constant at π/8. S0(ξ,η) is chosen at

random from a parametric region centered around the clean-limit parameters (ξc ,ηc ). The

extent of this region, and thus the intensity of disorder, is determined by the parameter δs ,

which therefore serves as the disorder strength. We now consider the same hexagonal network

as in Fig. 3.9 (left), but now each scatterer can have a different scattering matrix. Turning on

the disorder level to δs = 50%, we allow the S matrices of the individual circulators to fill up

50% of the triangular area of the Chern phase. Note that this corresponds not only to reflection

disorder (mismatch) but also to disorder in the degree of nonreciprocity (the isolation), as

shown in Fig. 4.6(a,b) (middle column). The edge mode is already completely destroyed. The

situation is even worse for fully random disorder that covers δs = 100% of the triangular Chern

phase.

Now, let us compare with the anomalous phase, for which the scattering matrices belong to

the upper left blue triangle shown in the ξ and η plane in Fig. 4.6. By checking the excited field

maps of Fig. 4.6c, we see a totally different behavior: the anomalous edge mode transmission is
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Figure 4.5: Effect of scattering matrix disorder on the Chern edge mode transmission. We
take the same hexagonal network as in Fig. 4.2, but now each scatterer is randomly selected
from a region in the parameter plane, an area whose size depends on the disorder level δs .
The left column shows the perfectly ordered system, the middle column shows a realization
of random scattering disorder filling 50% of the Chern phase, and the right column shows a
realization with 100% disorder, namely with scattering matrices anywhere inside the Chern
phase. a, b, Repartition of the scattering matrices within the Chern phase (bottom right red
triangle). The color map shows the corresponding reflection (panel a) and non-reciprocal
isolation (panel b) values. c, Corresponding field maps, showing the sensitivity of Chern edge
modes to scattering disorder.

not affected much and is robust even for 100% disorder in S-parameters within the anomalous

phase.

The superiority of the anomalous phase over the Chern one in the case of scattering disorder

can be quantitatively demonstrated by exploring many realizations, and performing ensemble

averaging. The transmission statistics are shown in the bottom panel of Fig. 4.7. We see that

the anomalous transmission can tolerate 100% disorder in the choice of scattering matrices,

whereas the Chern one falls after 25%. The reason for this surprising behavior is that in a

disordered Chern phase (random |R| > 1/3), transmission is mediated by both bulk and edge

modes, but is blocked by trivial gaps, whereas in the anomalous case (random |R| < 1/3), those

trivial gaps are absent. This shows that the superior robustness of the anomalous phase is not
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Figure 4.6: Effect of scattering matrix disorder on the anomalous edge mode transmission.
Same as Fig. 4.5 but the study is performed for the anomalous phase (top left blue triangle).
Unlike the Chern one, the anomalous edge mode transmission is very robust even for fully
random scattering matrix disorder.

restricted to phase-link disorder, but also to the other possible source of disorder: fluctuations

of the scattering matrices.
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Figure 4.7: Superior robustness of the AFI phase to scattering disorder. We impose scattering
matrix disorder on the scatterers with a given phase-delay value (ϕ =π/8). Transmission in
the anomalous channel is also more resilient to this disorder type.

4.4 Experiments

Figure 4.8: Experiments on irregularly shaped and disordered networks. a, We consider a
network shaped like the map of Switzerland, and placed six ports on the external boundary at
six city locations. b, Photograph of the associated prototype. c, Experimental field maps upon
sequential excitation of this 6-port system. d, Experimental validation of robust anomalous
transmission in a two-port system with randomly-disordered phase links under the largest
possible disorder strength (δϕ = 2π). Top: photograph of one of our prototypes. Bottom:
Measured field maps in the AFI and CI cases. The AFI edge mode reaches port 2, while the
Chern one is blocked.

We validate the extraordinary resilience of the anomalous transmission by performing experi-

ments on irregularly shaped disordered networks. First, we demonstrate the use of anomalous
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phases in a practical scenario, where an anomalous non-reciprocal topological network is

used to create a robust 6-port circulator with arbitrary shape and port locations. The proto-

type is shaped like Switzerland, and we place 6 ports at the locations of six boundary cities

(Fig. 4.8a). We aim at connecting each city to its clockwise closest neighbour, with strong

non-reciprocal isolation to any other city. A picture of the fabricated prototype is shown in Fig.

4.8b. We sequentially excite each input of this six-port non-reciprocal network, and report

the measured experimental field maps in the AFI band (Fig. 4.8c). Despite the presence of

finite fabrication tolerances, such as the inaccuracy in the surface mounting process of the

elements, and shrinking effects due to the employed reflow oven method, and regardless of the

tortuous shape of the border, we observe the expected clockwise non-reciprocal circulation of

the energy.

Second, we provide an experimental validation of the superiority of the anomalous trans-

mission in the presence of fully random phase delays. We built five new prototypes with

randomly drawn realizations of phase link disorder (fully random case), implemented by

varying the length of the serpentine paths connecting the scattering nodes. The two-port

disordered networks (DN) are numbered from 1 to 5, and have an irregular external shape.

DN1 is shown in Fig. 4.8d. The measured field maps in the AFI and CI phases show that only

the anomalous channel survives such strong distributed perturbations, consistent with our

statistical studies. Fig. 4.9 shows the other four results. Furthermore, this superior robust

transport of anomalous edge states is observed in the whole anomalous frequency bands.

Fig. 4.10 shows the averaged transmissions counted over measured results on five prototypes.

Anomalous transports (panel b) are 15 dB higher transports in the Chern bands (panel a). This

difference cannot be attributed to the minor loss difference of circulators in the two frequency

bands (Fig. 3.7b), and is consistent with the field maps showing a clear edge transport only in

the anomalous band.
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Figure 4.9: Experimental validation of anomalous phase disorder robustness in four other
prototypes with distinct disorder realizations. a, Pictures of the prototypes, having the same
irregular shape but different phase delay distributions implemented by varying the geometry
of the serpentine links. b, Measured field maps in the AFI phase. c, Measured field maps in the
CI phase.

Figure 4.10: Measured transports averaged over five prototypes in anomalous and Chern
frequency bands. Anomalous edge transports (a) are 15 dB higher than transports in the
Chern frequency band (b).
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4.5 Robustness comparisons with other Chern phases

Here, we further verify the superior transmission robustness of the anomalous phase by extra

comparisons with other Chern phases characterized by various types of band structures. Our

extra study shows that even by working with Chern phases with less trivial band gaps or more

edge states in the topological gaps, we cannot reach the same level of robustness than the

anomalous phase. For easy reference, we note M the number of trivial band gaps of a band

structure.

We firstly study the case of Chern phase with a single trivial band gap (M = 1), which is less

than the number of trivial band gaps of the Chern phase shown in Fig. 3.1 (M = 2). In our

network, such a phase cannot be directly obtained, because the matrix S(k) satisfies the

relation PS(k)P † = −S(k), where P = diag(I3×3,−I3×3). The relation implies that the bulk band

structures have π-translation symmetry, forcing the gaps to close and open by pairs. This

π-translation symmetry can be broken if we introduce an extra unitary 2-port reciprocal

scatterer in the middle of the connecting links.

Specifically, by setting the reflection of this extra scatterer to 0, we recover the previous

network discussed in the above sections. However, playing with the reflection level of this

extra scatterer allows us to extend our parameter space and reach even the cases where M is

even. We generate the cases M = 0,1, and 3 with their ribbon band structures shown in Fig.

4.11. The phase M = 0 is the anomalous phase, and M = 2 is the Chern phase already reported

in Fig. 3.2a in Sec. 3.2. Next, we perform a statistical transmission analysis on a finite network

with 1000 different realizations of phase link disorder, with range up to 2π. Panel b shows the

results. Clearly, even the M = 1 case, despite having a small trivial band gap (its size is around

π/6), is largely affected by the disorder. M = 3 is worse than the case M = 2 presented in Fig.

4.1, as expected.

In addition, we considered the three cases shown in Fig. 4.12, whose band structures are

characterized by Chern numbers with absolute values of 1, 2, and 3 respectively (to increase

the Chern numbers, we stacked several networks with Chern phases with C = 1 together and

coupled adjacent layers weakly with unitary directional couplers). The Chern gaps have,

consequently, 1, 2 and 3 edge modes per edge (the band structure is for a ribbon, as Fig. 3.1,

with edge modes at both top, in red, and bottom, in blue). Next, we consider the transmission

averaged over 1000 realizations of phase link disorder for the three cases (panel b). We observe

that an increase of the number of edge modes does not improve the transmission. This

is actually expected: the input power has to split over the various available transmission

channels. Each transmission channel will contribute to transport and undergo a different

phase shift when disorder is imparted, before interfering at the output port. This interference

is statistically detrimental to power transmission, a phenomenon known as multi-mode

interference, as exploited for example in multi-mode fiber optical sensors.
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Figure 4.11: Effect of the number of trivial band gaps (noted M) on the robustness of the
edge mode transmission to phase link disorder. a, Ribbon band structures. We compare the
case of the anomalous phase (left), in which all band gaps exhibit edge modes, to the case of
a Chern phase with a single trivial gap (M = 1, center), which is the most favorable scenario
for Chern. For a complete comparison, we also take the case M = 3 (right). The case M = 2 is
already studied in Fig. 4.1. b, Transmission statistics (average, Q1 and Q3) for the three cases
for 1000 realizations of random disorder.
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Figure 4.12: Effect of the number of Chern edge modes on the transmission robustness.
a, Band structures. We compare three different Chern phases with one (left), two (center)
and three edge modes (right) in the non-trivial gaps. b, Transmission averages for 1000
realizations of random phase disorder. As for transmission between two antennas in a multi-
mode environment, the input power has to split over the various transmission channels which
interfere at the output. Disorder creates random interference between the different channels
at the output, which is statistically detrimental to transmission.
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4.6 Conclusion

We showed that the difference between anomalous and Chern non-reciprocal topological

networks is more than a mere theoretical distinction: there exists a physically observable

difference when they are subject to distributed disorder in terms of the resilience of the edge

transmission channel. We studied the general conditions to obtain such an unusual effect

in systems made of unitary three-port scattering matrices connected by phase links and

established the superior robustness of the anomalous edge transmission over the Chern ones

to phase link disorder of arbitrarily large values. We confirmed experimentally the exceptional

resilience of the anomalous phase, and demonstrate its operation in various arbitrarily-shaped

disordered multi-port prototypes. Our results pave the way to efficient, arbitrary planar energy

transport on 2D substrates for wave devices with full protection against large fabrication flaws

or imperfections.

Consequently, networks in anomalous phase can be differentiated from those in the Chern

phase by introducing strong disorder into the phase links and examining the edge transport.

In sufficiently large disordered networks, high transmission through edge states indicates the

presence of the anomalous phase; otherwise, the network is either in the Chern phase or close

to a phase transition (Finite size effect). In this way, the topological phase can be directly

and briefly characterized from transports without requiring the entire phase-delay spectrum

(quasi-energy) measurement, thus easing the characterization process.

With the maximum phase-link disorder (δϕ = 2π), the phase-delay values on links adhere to a

uniform probability distribution across the interval [0,2π), regardless of the central value of

the disordered phase delay ϕc , attributed to the periodic nature of phase terms. Indeed, ϕc

acts as an additional, uniformly applied phase-delay value across all disordered phase links.

Crucially, ϕc is therefore related with the spectrum of a closed network discussed in Sec. 2.3.

As a result, the nearly unity anomalous edge transport, regardless of ϕc in strong disorder

regime for anomalous phase, implies that there are topological edge states throughout the

phase-delay spectrum- a signature of anomalous Floquet Anderson insulator (AFAI). In the

next Chapter, we continue to discuss the distinct resilience of anomalous topological phase

against amorphous disorder, i.e., a disorder that breaks the honeycomb structure. We will

theoretically and experimentally confirm their relation with AFAI through supercell band

structure, transport, and measurements of topological scattering invariants.
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5 Anomalous topological waves in
strongly amorphous scattering net-
works
The main results in this chapter are taken from the published article in Zhe Zhang, Pierre

Delplace, Romain Fleury, "Anomalous topological waves in strongly amorphous scattering

networks", Science Advances, 9, eadg3186 (2023) (open access, under a CC BY-NC or CC BY

license).

Ch. 4 focused on the effects of phase-delay disorder and scattering nodes disorder in topo-

logical unitary scattering networks with a honeycomb arrangement. We discovered that

anomalous topological edge states survives within these disordered networks, even at the

highest levels of disorder, while Chern edge states collapse and are obstructed. In Ch. 4, we

confirmed experimentally the exceptional resilience of the anomalous phase, and demon-

strated it in various devices.

However, structural disorder (amorphism), a type of disorder prevalent in nature, remains

largely unexplored in topological physics. This disorder breaks the hexagonal loops in hon-

eycomb networks as introduced in Sec. 2.1.4. We are intrigued by how amorphous networks

evolve under continuous increase in structural disorder. Furthermore, in Ch. 4, we only

examined the transport properties in a finite network, but without rigorously evaluating their

potential topological origins. Moreover, concerning disorder-induced localization, we are

keen to determine whether Chern networks succumb to Anderson localization. To unveil

all the above mysteries, we need to exploit all the analysis methods for disordered networks

prepared in Ch.2.

In this chapter, we predict and demonstrate a novel topological photonic phase that with-

stands arbitrarily high levels of amorphism in scattering networks. This topological phase’s

resilience to strong disorder can only be comprehended within the Floquet topological frame-

work, as it exhibits completely flat bulk bands but possesses topological edge states at any

phase-delay (quasi-energy) value, therefore an anomalous Floquet Anderson Insulator (AFAI).

The interplay between amorphism and topology triggers, enhances and guarantees the nucle-

ation of robust topological wave energy transport.
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Organization of the chapter: In Sec. 5.1, we introduce amorphous topological insulators and

briefly discuss about findings in this chapter. In Sec. 5.2, we start from oriented scattering

graphs and exploit a simple non-atomic limit displaying an unidirectional boundary state

to construct anomalous topological edge states that are immune to Anderson localization

regardless of the level of amorphism. Sec. 5.3 shows the remarkable resilience of anomalous

edge states, by numerically and experimentally comparing its transports in irregular interfaces

with the usual edge states of the Chern phase (which are trivialized by strong amorphism). In

Sec. 5.4, we utilize transports, eigenstate in closed finite networks, supercell band structures,

and topological scattering invariants, and find that topological networks surviving in the

strong disorder are actually an AFAI. In Sec. 5.5, we implement our strategy for electromagnetic

waves, by constructing non-reciprocal scattering networks operating in the GHz range. We

experimentally show the topological edge transport in samples with maximal amorphism, by

combining transmission and topological invariant measurements. Sec. 5.6 draws a conclusion

for this chapter.

Notice: Without the loss of generality, in numerical studies, we take the Chern network

(ξ = 2.5π/12,η =π/12) and trivial network (ξ = 2π/12,η = 2π/12) shown in Fig. 2.10 (Sec. 2.2),

as well as the anomalous network (ξ = 2.5π/12,η = −2.5π/12) shown in Figs. 3.1 and 3.2. They

are used as typical examples for three phases in scattering networks, to show the phenomena

unveiled in this Chapter.

Our studies in this chapter involves the disorder realizations of amorphous disorder in Sec.

2.1.4 and mapping shown in Sec. 2.1.5. The applied observables in disordered networks

include supercell band structures (Sec. 2.2), transports in open networks and eigenmodes in

closed networks (Sec. 2.3), and the topological scattering invariant (Sec. 2.5).

5.1 Introduction

Amorphous solids [204], materials that do not exhibit any structural long-range order, repre-

sent the majority of the solids found on Earth. Amorphous materials such as glasses, metals,

plastics and semiconductors provide unique mechanical [261], electrical [262] and optical

[263] properties. Yet, the physics traditionally associated with periodic structures often breaks

in amorphous systems. An important example is the topological classification of matter [34,

112, 264], which inherently applies to periodic insulating structures based on their intrinsic

and crystalline symmetries, and has recently stimulated the exploration of fascinating phe-

nomena, including robust energy transport in electronic [4, 265] and classical wave [18, 19, 36,

160] systems. Actually, the concept of topology is not fundamentally limited to systems with

spatial translation symmetry, as implied by early observations of the quantum Hall effect in

disordered samples [54], and theoretical predictions in non-commutative geometry [55, 57].

Recently, topological edge states were shown to be robust to small structural disorder until

the close of mobility gaps [219, 266–268]. Recent works have theorized amorphism-induced

topology in random fermionic tight-binding lattices [163, 205, 269–272] and quantum spin
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liquids [206, 207], and performed experiments with mechanical systems [45]. However, all

these prior arts were limited to weak levels of amorphism, as stronger levels of amorphism un-

avoidably close the mobility gaps via Anderson localization, and destroy the topological phase.

In addition, the non-trivial topology of amorphous phases has so far only been numerically

confirmed using either local Chern markers [221] or Bott index [269] calculations, and a direct

experimental measurement of an amorphous topological invariant is still crucially missing.

In this chapter, we investigate, design and experimentally demonstrate a topological regime

surviving arbitrarily large levels of amorphism, and prove its topological origin by direct topo-

logical invariant measurements. Starting from oriented scattering graphs, we exploit a simple

non-atomic limit displaying an unidirectional boundary state to construct anomalous topolog-

ical edge states that are immune to Anderson localization regardless of the level of amorphism.

We implement our strategy for electromagnetic waves, by building non-reciprocal scattering

networks operated in the GHz range. We experimentally show the topological edge transport

in samples with maximal amorphism, by combining transmission and topological invariant

measurements. Those direct measurements are substantiated with numerical studies on

supercell band structure, transport, eigenstates in closed network, and topological invariant.

They together unveil a striking transition mechanism- the evolution from anomalous topo-

logical insulator in the clean limit to anomalous Floquet Anderson insulator (AFAI) driven by

strong amorphism. Within this mechanism, the interplay between amorphism and topology

triggers, enhances and guarantees the nucleation of robust topological wave energy transport.

5.2 Amorphous non-reciprocal networks

The existence of anomalous chiral edge states in networks, periodic or amorphous, can be

easily understood from the oriented graphs picture (See mapping details in Sec. 2.1.5): the

wave propagates along the oriented links of the graph in a given direction and scatters at the

nodes (Fig. 5.1a). If one tunes the scattering parameters of each node such that the wave is

fully transmitted into only one link, one can end up with a configuration where the wave is

trapped around minimal circuits in the bulk (blue loops), but can circulate around the system

through the outermost exterior links (orange loop). Such a configuration is a two-dimensional

analog of the non-atomic limit of the Su–Schrieffer–Heeger (SSH) model where the atoms in

the bulk of the chain pair to form uncoupled diatomic molecules, leaving an isolated single

atom at each extremity of the chain. In our case, it turns out that this surrounding circuit

precisely corresponds to an ideal anomalous chiral edge state that decouples from the rest of

the bulk, as opposed to more conventional edge states of Chern phases that do not support a

similar graph interpretation [112]. The existence of such unidirectional surrounding circuits is

guaranteed for planar oriented graphs [149] with equal numbers of incoming and outgoing

modes at each node, known as Eulerian graphs (Sec. 2.1.5). Remarkably, it does not depend on

the spatial arrangement of the nodes of the graph nor on the length of the links. This suggests

that the anomalous chiral edge states of scattering networks are robust to arbitrarily large

amorphism (Fig. 5.1a, bottom panel).
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Figure 5.1: Anomalous edge states can survive any level of amorphism. a, Random oriented
scattering networks. Anomalous topological edge states occur in any scattering signal graphs,
when a limit can be found in which bulk signals travel in closed loops (in blue), leaving a
large signal loop on the edge (in orange). This picture is valid not only for periodic systems
(top row, honeycomb case), but should also be true for any level of amorphism (bottom
row). We validate this idea by mapping the oriented graphs (panel a) to practical scattering
networks made of three-port circulators linked with reciprocal connections (panel b). We built
prototypes (panel c) operating around 5.7 GHz and experimentally observed the resilience of
anomalous edge states to strong levels of amorphism (panel d).

Guided by this insight, we propose a physical realization of such amorphous insulators in Fig.

5.1b, by the complete mapping between oriented graphs and non-reciprocal networks made

of circulators. The circulator networks are generated using a weighted Voronoi tessellation,

picking random weights on a triangular generator set lattice (see Sec. 2.1.4 for details). The

weight standard deviation defines a dimensionless amorphous factor α that allows us to

describe the continuous deformation from the clean-limit honeycomb lattice (top row, α = 0),

to a highly amorphous regime (bottom row, α = 6). We implemented this strategy into two

electromagnetic prototypes made of GHz circulators connected by microstrip lines (panel c).

The measured electric field maps (panel d) confirm the existence of the anomalous edge state

even when α = 6. The level of amorphism used in this experiment is very strong, as evidenced

from the evolution of network statistics with α, shown in Fig. 2.6.
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5.3 Exceptional resilience of anomalous edge states to strong amor-

phism

In order to evidence the remarkable resilience of anomalous edge states to a high level of

amorphism, we now compare them with the usual edge states of the Chern phase regarding

transports in irregular interfaces. We then confirm it experimentally.

5.3.1 Transport comparison

In the clean limit of the honeycomb lattice, trivial, Chern and anomalous phases can be

engineered according to the degree of reflection and nonreciprocity of the circulators (Sec. 3.2).

We use this property to numerically investigate the fate of wave propagation along anomalous-

trivial and Chern-trivial interfaces, comparing the clean case to the strong amorphous limit

(Fig. 5.2a).

While in the clean limit (α = 0, top row), the two configurations both display the expected

chiral mode along the interface, in the strong amorphous regime (α = 8, bottom row) the

anomalous edge state is the only one to survive. The Chern-trivial interface configuration no

longer benefits from a topological protection, as the input wave has localized. In other words,

both topologically trivial and Chern insulators transit toward a topologically trivial Anderson

insulator in the strongly amorphous regime, in sharp contrast with the anomalous phase,

suggesting the existence of a topological amorphous phase immune to Anderson localization.

We confirm experimentally the topological distinction between the two amorphous phases,

respectively obtained by building an amorphous network in the regime α = 6, made of two

domains that respectively correspond to Chern and anomalous phases in the clean limit

(Fig. 5.2b). We observe the unidirectional propagation of an interface state, from the top to

the bottom (Fig. 5.2c), and a chiral edge state circulating the anomalous part (Fig. 5.2d), in

agreement with a difference of topology between the two strongly amorphous networks.

5.3.2 Design of Chern network

Here, we discuss about the design of the Chern network used in the interface configuration of

Fig. 5.2, which is achieved by inserting additional scatterers between the circulators. This trick

is necessitated by the impossibility to obtain the Chern and anomalous phase with the same

circulators at the same frequency (indeed, until now, the main control knob to switch from

the Chern to the Anomalous phase has been the operating frequency). In Fig. 5.3, we show

how we design a Chern honeycomb network starting from the anomalous one, by adding a

reciprocal unitary scatterer in the middle of the phase delay link (design used in Fig. 5.2b).

Following our method in Sec. 2.1.1, we gather all the wave signals into four signal vectors

|a〉 (waves leaving the circulators), |b〉 (waves coming into the circulators), |c〉 (wave coming

into the scatterers) and |d〉 (wave leaving the scatterers). This leads to an eigenequation and

with examples of band structures shown in Figs. 5.3(b-d). The scatterers scattering matrix is
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Figure 5.2: Exceptional resilience of anomalous edge states to strong amorphism. We
compare the resilience of the anomalous edge mode to amorphism with the one of a standard
Chern edge mode, when propagating along a domain wall with a trivial insulator. a, In the clean
limit (α = 0, first row), both anomalous and Chern phases provide a robust channel with unitary
transmission. Then, we impart strong amorphism (α = 8, second row). Only the anomalous
interface state survives. Conversely, the Chern case undergoes Anderson localization. b,
Experimental demonstration of the topological distinction between anomalous (left) and
trivialized Chern (right) phases in the strong amorphous limit (α = 6). The trivialized Chern
phase is obtained by adding amorphism to a Chern crystal, which differs from an anomalous
phase only by the presence of extra scatterers between the circulators. c, d, Measured field
map when exciting the interface from the top (panel c) and bottom (panel d), confirming the
existence of a topological state at the interface and its chiral circulation around the anomalous
network domain.
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Figure 5.3: Design of a Chern network by adding reciprocal scatterers in the middle of the
phase delay lines of an anomalous network. a, Unit cell with extra scatterer at the center of
each phase delay line. We parameterize its scattering matrix by θa . The case of θa = 0 reduces
to the no scatterer configuration shown in Fig. 2.2c. b-d, Examples of ribbon band structures
for scatterers with θa = 0 (panel b, repeat the left panel in Fig. 3.2a), π/12 (panel c) and π/6
(panel d) with circulators parameterized by ξ = −η = 2.5π

12 . Starting from the no scatterer case
in anomalous phase (panel b), scatterers with higher reflection in θa =π/6 result in a Chern
phase (panel c), mediated by a phase transition at θa =π/12 (panel b). e, The practical design
of the scatterer with θa = π/6. f, Simulated field map when exciting the wave at port 1. The
lower field amplitude at port 2 is consistent with a power reflection of 25% induced by the
scatterer.

parameterized by the angle θa , where sinθa controls the reflection level. When the scatterers

do not contribute the reflection (θa = 0), the honeycomb network is in an anomalous phase

(one edge mode in each gap). However, switching θa to π/6, which corresponds to reflecting

25% of the power results in a Chern honeycomb network (at least one gap is trivial). We then
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design and simulate a simple scatterer satisfying this condition using full-wave simulations

(ANSYS HFSS), as shown in Figs. 5.3(e-f). This scatterer satisfies θa =π/6.

5.4 Amorphism-enhanced anomalous topological phase: AFAI

To shed light on how this amorphous anomalous phase emerges from the clean limit, we com-

pute the evolution of the transmission coefficient between two ports in open finite networks,

evolution of spectra in closed finite networks, supercell band structures, and evolution of

topological invariant, when increasing the amorphous factor α from the clean limit to the fully

amorphous regime. With the analysis on these observables, we confirm that strongly amor-

phous networks with anomalous edge states have blocked bulk transports consistent with their

flat bulk bands but nearly unity edge transports confronting with topological edge states at

any phase-delay value in a spectrum. Consequently, they are in anomalous Floquet Anderson

insulating (AFAI) phase. This unique Floquet topological phase, proposed Rudner and his

colleagues [123], has no counterpart in Hamiltonian topological insulators, and has been only

theoretically analyzed in the context of quantum systems. Disorder flatten bulk bands and

gapless unidirectional edge states in an AFAI system [71, 132, 149, 169, 170] indicates the latent

relations with topological robustness. On the other hand, from the view of phase rotation

symmetry [112], systems with flat bulk bands can only be AFI at the perfect circulator points

or trivial one at the perfect reflection point. In the strong disorder regime, all transports via

bulk states are suppressed therefore making bulk bands flat in the thermodynamic limit. As

a result, phase rotation symmetry also points out a possibility of AFAI in the strong disorder

regime.

5.4.1 Transports through amorphous networks

To begin with, we check the transmission between two ports of a finite anomalous network

when increasing the amorphous factor α (Fig. 5.4). The ports are located either both on

the edge (top) or both inside the bulk (bottom). In the clean limit (α = 0), the bulk band

structure is well defined in terms of the link phase delay ϕ between the nodes whose possible

values form bands (see left panel of Figs. 3.1 and 3.2a). For a given value of ϕ, the network is

either in a topological gap with a chiral edge state or in a bulk band (blue and light orange

regions near the vertical axes in Fig. 5.4a, respectively). In the weakly amorphous range, the

transmission remains consistent with that of the clean limit: edge transmission is always unity

in the anomalous topological gaps, and fluctuates within bands, whereas bulk transmission

vanishes in the gaps but remains finite in the bulk bands. This reminiscence of the clean limit

band structure completely disappears in the fully amorphous regime, which is characterized

by unitary edge transmission and zero bulk transmission, regardless of ϕ. This is the smoking

gun of anomalous Floquet Anderson insulator (AFAI) [131, 132, 163–170]. It shows that strong

amorphism drives a global enhancement of the edge transmission and of the bulk insulation

when compared to the clean limit.
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The transition of the bulk bands into topological amorphous insulators is by no mean trivial.

Fixing ϕ = 1.1, we now track the evolution of the excited field by plotting its distribution at

selected values of α (Fig. 5.4b). In the clean limit (top row), the field is delocalized regardless

of the position of the ports, consistently with the existence of a bulk band. This clean-limit

picture remains valid when α is increased a little, within the weakly amorphous regime. For

α = 2, we reach a transition where the bulk transmission has been reduced and the field map

shows that the states excited by the bulk and edge probes are much less delocalized. Keeping

increasing α, the field excited in the bulk localizes around the input port, whereas the edge

scenario exhibits a robust chiral edge channel, with enhanced edge localization under strong

amorphism.

The nucleation of amorphism-enhanced anomalous topological phase (AFAI) in anomalous

scattering networks is markedly different from the behavior of trivial and Chern insulators,

which both undergo a trivial Anderson localization transition, both with nearly zero edge and

bulk transmissions. Here, we complete the picture by repeating the study for the Chern and

trivial insulating phases. The results are shown in Figs. 5.5 and 5.6. Similarly to the anomalous

case, Chern and trivial networks in the weakly amorphous regime inherit the properties of

the clean limit: the bulk transmission remains finite in the bands, and the edge transmission

vanishes in a trivial gap. However, contrary to the anomalous phase, they both end up not

transmitting anything under strong amorphism.
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Figure 5.4: Amorphism-enhanced edge transmission and bulk insulation of the anomalous
phase. We consider the evolution of the anomalous edge and bulk transmissions when
increasing the level of amorphism, for any value of the phase delay ϕ ∈ [0,2π] of the reciprocal
links, defined in the clean limit. Each point corresponds to an average over 200 realizations
of randomly generated scattering networks, with some examples shown in panel (b). a, In
the weakly amorphous regime, the edge (top) and bulk (bottom) transmissions are consistent
with the clean limit band structures, with large edge transmission only in the topological
gaps, and non-zero bulk transmission only in the bulk bands. After the transition stage, the
edge transmission is enhanced to 1 and the bulk transmission is pinned to zero regardless
of the value of ϕ. This confirms the nucleation of a single amorphism-enhanced anomalous
topological phase (AFAI), which now spans the full 2π range.
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Figure 5.5: Chern networks become trivial when networks are strongly amorphous. We
calculate the evolution of edge and bulk transmissions for Chern networks upon increasing
the level of amorphism, while keeping the other settings of numerical calculations as in AFI
case (Fig. 5.4). a, In the weakly amorphous regime, the edge and bulk transmissions stay
consistent with the clean-limit band structures, with some of the gaps being trivial and other
topological. However, in the transition stage, the bulk and edge transmissions gradually go
to zero, due to the close of all topological band gaps. Under strong amorphism, the Chern
network becomes a trivial insulator. b, Examples of amorphous networks and simulated fields
of edge and bulk transmissions at ϕ = 1.1 (dashed line marked with stars in panel a), located
in a topological band gap in the clean limit. Starting from the clean limit (first row) to the
intermediate amorphous level (α = 3, third row), edge channels show unitary transmission
with fields localized at the boundary albeit degrading a little due to amorphism. However, the
edge state collapses and gets localized at the input port. The examples in the panels confirm
the Anderson transition of Chern networks induced by strong structural disorder.
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Figure 5.6: Trivial insulating networks under amorphism. We consider the evolution of
edge and bulk transmissions for trivial networks upon increasing the level of amorphism,
while keeping the other settings of numerical calculations as in AFI case (Fig. 5.4). a, For
trivial networks in clean limit, there are distinct bulk bands, corresponding to the non-zero
edge and bulk transmissions. This persists in the weakly amorphous regime. However, in
the transition stage, localization starts regardless of ϕ, accompanied by suppressed edge and
bulk transmission. b, Examples of amorphous networks and simulated fields of edge and bulk
transmissions at ϕ = 1.1 (dashed line marked with stars in panel a, which finds itself in a bulk
band in the clean limit. The field profiles gradually localize when increasing the amorphous
factor (from top row to bottom row).
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5.4.2 Spectra of closed amorphous networks

After the analysis of wave transports between external ports in finite networks, we remove

the ports and report phase-delay spectra in closed finite networks. We look at properties

related to eigenstates, including the density of states (DOS), participation ratio P defined

in Eq. (2.30), skin distance ds defined in Eq. (A.2), and classify the states between bulk or

edge. The results in this part unveil that with increasing amorphous level, bulk states do not

disappear but populate the whole spectrum. However, these bulk states do not contribute

to any transport in strongly amorphous networks, as they become localized. For anomalous

networks, strong amorphism transforms a bit of bulk states into edge states, which therefore

fill in all the phase-delay values in the spectrum.

In Fig. 5.7, we compute the density of states (DOS) and the participation ratio P (defined in

Eq. (2.30)) for the three possible topological phases of honeycomb networks, and then we

increase the amorphous factor α. The phase delay ϕ ∈ [0,2π), well defined in the clean limit,

can be seen as the additional phase term, which is uniformly applied on each phase link. We

normalize density of states DOS(ϕ) by the DOS(ϕ0) of the clean limit, where ϕ0 finds itself

in a topological band gap. In the clean limit, DOS and P are consistent with the transports

(Sec. 5.4.1) and band structures in Figs. 2.10 and 3.2a (left panel). Continuously increasing the

amorphous factor, we observe that the states spread out to occupy the full ϕ spectral range,

ultimately occupying all values in [0,2π) with low participation ratio.

Figure 5.7: Amorphism localizes the states and populates them in the entire phase delay
spectrum. We solve the eigenstates of finite anomalous (left, a and d), Chern (middle, b
and e) and trivial (right, c and f) networks when increasing the level of amorphism, whose
eigenphases are phase delay ϕ. We calculate the density of states (top row, in logarithmic
scale) and participation ratio P (bottom row). As a result of strong amorphism, states populate
the whole ϕ spectrum and become localized for all three kinds of networks.

However, distinct transitions happen for three kinds of networks, if one studies the details

107



Chapter 5 Anomalous topological waves in strongly amorphous scattering networks

of the eigenstates. As defined in Eq. ((A.2)), we can calculate the skin distance ds(|b〉) of an

eigenstate |b〉, which captures the averaged position of an eigenstate |b〉. In Fig. 5.8a, we

consider the percentage of skin distance counted over all states for amorphous level α ∈ [0,8].

Surprisingly, there is a huge difference between the peak of the weakly amorphous distribution

and the peak of the fully amorphous one, mediated by a transition from bulk states to edge

states during α ∈ [1.75,5]. As a comparison, we perform the same statistics for Chern and

trivial networks, and report them in Figs. 5.8(c-d). It clearly shows that in the fully amorphous

regime, both Chern and trivial networks end up with trivial amorphous networks, with large

skin distances, in stark contrast with the anomalous case, whose states are localized near the

edge.

Figure 5.8: Unique transition in anomalous networks driven by strong amorphism. a, We
consider the evolution of skin distances for eigenstates in finite anomalous networks upon
increasing α. At a given value of α, 200 realizations of amorphous networks are randomly
generated with a network thickness around 16. In the clean limit, most of the states are in the
bulk with skin distance around 9. A few of them have a skin distance of 3, corresponding to
the edge states. With strong amorphism, the bulk peak disappears, leaving only one peak with
skin depth centered around 5, i.e. close to the edge. b-d, Comparison of skin distances among
anomalous (b), Chern (c) and trivial (d) networks under strong amorphism. We perform
the same calculations in Chern and trivial networks as that in panel a. For Chern and trivial
networks, strong amorphism leaves the states in the bulk, and never creates additional edge
states.

In addition, we can classify edge states or bulk states by looking at the skin distance. Based on

Fig. 5.8, we decided to adopt a threshold τb = 5. A state |b〉 can be regarded as an edge state, if

ds(|b〉) < τb and P (|b〉) < 0.05 (localized at the boundary). Otherwise, it is classified as a bulk

state. Following this rule, we calculate the percentage of edge states and percentage of bulk
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states upon increasing the amorphous factor α. As shown in Fig. 5.9, it is clear that Chern

and trivial networks experience the same localization process, ultimately exhibiting trivial

networks with all states localized by strong amorphism. However, despite the localization of

states, anomalous networks show a different localization transition: they keep gaining more

edge states at the expense of the number of bulk states. This striking phenomenon highlights

a unique process of conversion from bulk states to edge states that occurs in anomalous

networks under the effect of amorphism.

Figure 5.9: Strong amorphism creates new edge states in anomalous networks. We classify
eigenstates in finite networks to be bulk or edge state, and color them with their averaged
participation ratio P . We perform the calculations for anomalous (a), Chern (b) and trivial (c)
networks when increasing amorphous factorα. Only the anomalous networks own edge states
in the full amorphous regime, while Chern and trivial networks become trivial amorphous
insulator. The number of anomalous edge states increase with α, at the expense of the bulk
states.

5.4.3 Supercell band structures of amorphous networks

Up to now, in anomalous amorphous networks, transports tell us that there is unitary edge

transport for any value of phase delay throughout the spectra, along with suppressed bulk

transports. Eigenstates in closed networks confirms that the eigenstates populating the whole

spectra driven by amorphous disorder, and some bulk states can gradually turn into edge states

upon increasing its disorder level, while the other bulk states get localized. However, it will be

great if we could confirm that these edge states in the anomalous amorphous networks are

really chiral, and the bulk states are localized with nearly vanishing group velocity. As discussed

in Sec. 2.2, these phenomena can be visualized by putting twisted boundary condition on the

lateral sides for the closed networks, forming supercell band structures.

We consider a finite network with twisted boundary condition (TBC) in the x direction and

open boundary conditions in the y direction, as shown in Fig. 2.12b. The non-reciprocal Φ

or the synthetic magnetic flux through the cylinder flux Φ plays the same role as momentum

kx in the x direction. Therefore, we use kx here as the horizontal axis. In the clean limit

(α = 0), the band structures for the anomalous, Chern and trivial honeycomb networks are

shown in Figs. 5.10(a-c). In this clean limit, we recover band structures consistent with that
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computed previously in Figs. 2.10 and 3.2a (left panel), but folded and projected due to the

longer length of the unit cell in the x direction (Details discussed in Sec. 2.2). Then, we switch

on the amorphous disorder to the level of α = 6 (fully amorphous regime, Figs. 5.10(d-f)). The

eigenvalues now occupy all the possible values of ϕ and all the states have a low participation

ratio, which is consistent with the participation ratio of the eigenstates of finite systems shown

in Fig. 5.7.

We now show the differences of behavior of anomalous, Chern and trivial networks, when

we impart strong amorphism, namely: (i) the unique transition of anomalous networks to

enhanced chiral edge states which populate the phase-delay spectrum, and (ii) the trivial

Anderson localization of Chern and trivial networks. To be more precise, we zoom in Figure

5.10 and focus on the band structures around some typical values of phase delay ϕ marked by

hexagons, rhombuses and triangles in the anomalous, Chern and trivial networks, respectively.

The blue markers are in the band gaps of the clean limit, while the red ones find are in the

bulk bands. In the zoomed band structures shown in Figs. 5.11-5.13, we repeat the same

plots but color the states according to three metrics: their averaged position in the y direction,

participation ratio P and skin distance ds .

Fig. 5.11 focus on the anomalous case. Regardless of the range of ϕ in the clean limit, the

spectra in the fully amorphous case exhibit flat bands whose gaps are occupied by chiral

edge states (Fig. 5.11). It means that all the bulk states are localized, while chiral edge states

populate all the phase delay ϕ spectrum, confirming the enhanced anomalous edge transport

and bulk insulation in Fig. 5.4. In contrast, band structures for Chern (Fig. 5.12) and trivial

(Fig. 5.13) networks only display isolated flat bands in the strong amorphous limit, indicating

the transition to topologically trivial amorphous insulators. The above spectral calculations

confirm and supplement the transport, eigenstates results in Secs. 5.4.1 and 5.4.2.
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Figure 5.10: Band structures of networks in clean limit and in fully amorphous regime in
the cylinder geometry. We regard a finite network as a super unit cell and assume Bloch
wave with momentum kx along the x direction. The cylinder band structures are computed
by solving the formed eigenproblem, whose eigenphase is the phase delay ϕ. We consider
anomalous networks in the honeycomb (α = 0, a) and fully amorphous (α = 6, d) cases with
network thickness of 9. As references, we calculate the cylinder band structures of Chern
(b and e) and trivial (c and f) networks in the clean (top row) and strong amorphous limits
(bottom row).
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Figure 5.11: Strong amorphism enhanced anomalous topology: AFAI. a, The cylinder band
structure in Fig. 5.10a, zoomed in the phase delay range ϕ ∈ [0.7,0.8], supports chiral edge
states in the clean limit. We color states with averaged positions regarding the y (non-periodic)
direction (leftmost panel), participation ratios (middle panel) and skin distances (rightmost
panel). b, Zoomed cylinder band structure (Fig. 5.10d) in the same phase delay range as in
panel a. The spectrum of ϕ ∈ [0.7,0.8] is filled with several nearly flat bands, consisting of
states with high skin distances (namely in the bulk). Surprisingly, these flat bands are linked
by gapless states, which are localized at the top (blue) or bottom (red) edge depending on
the slope sign of the gapless states. This means that the gapless states are chiral edge states
persisting in the strong amorphous regime, while bulk states are localized. c, The cylinder
band structure in Fig. 5.10a for a honeycomb network zoomed in the phase delay range
ϕ ∈ [1.05,1.15], where bulk states dwell. d, The cylinder band structure in Fig. 5.10d zoomed
in the phase delay range ϕ ∈ [1.05,1.15]. The gapless chiral edge states between flat bands
indicate a non-trivial transition driven by strong amorphism.
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Figure 5.12: Trivialization and localization in Chern networks induced by a strong amor-
phous disorder. a, The cylinder band structure in Fig. 5.10b, zoomed in the phase delay
ϕ ∈ [1.05,1.15], supports topological edge states in the clean limit. b, Zoomed cylinder band
structure (Fig. 5.10e) in the same phase delay range as panel a. The spectrum ofϕ ∈ [1.05,1.15]
is filled with many flat bands, consisting of states localized in the bulk. However, unlike the
anomalous case, there is no gapless states, indicating the trivialization of Chern network. c,
Cylinder band structure of Fig. 5.10b for a honeycomb network, zoomed in the phase delay
range ϕ ∈ [0.7,0.8], where bulk states dwell. d, Cylinder band structure of Fig. 5.10e zoomed in
the same phase delay range as panel c. The flat bands comprising localized bulk states are
isolated in the ϕ spectrum, suggesting a strong amorphism induced Anderson localization of
states.
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Figure 5.13: Localization in trivial networks in the fully amorphous regime. a, The cylinder
band structure in Fig. 5.10c, zoomed in the phase delay ϕ ∈ [1.05,1.15], supports bulk states in
the clean limit. b, Zoomed cylinder band structure (Fig. 5.10f) in the same phase delay range as
panel a. The spectrum in the range ϕ ∈ [1.05,1.15] is filled with isolated flat bands, consisting
of states localized in the bulk. It suggests the strong amorphism induced localization in trivial
networks.

5.4.4 Topological scattering invariant for amorphous networks

After studying transports in open networks, eigenstates of closed networks, and supercell

band structures for disordered scattering networks, one can believe that anomalous scattering

networks in strongly amorphous regime are of AFAI, with a high degree of certainty. To

complete the picture, we propose to confirm the topological origin of the chiral edge states by

calculating the topological scattering invariant. To do so, we utilize the theory introduced in

Sec. 2.5.

Fig. 5.14 shows the numerically calculated winding numbers of randomly generated networks

for all levels of amorphism and values of ϕ. For anomalous networks (panel a), the phase

diagram suggests that the effect of amorphism is first to localize the bulk states, creating a

topological mobility gap. This is confirmed by participation ratio of eigenstate calculations in

closed networks (Fig. 5.7). Besides, we also find that the anomalous supercell band structure

displays flat bulk bands with topological gapless chiral edge states in between (Figs. 5.11 and

5.14). Therefore, one can be convinced that anomalous networks in fully amorphous regime

are in anomalous Floquet Anderson insulating phase. In contrast, when starting from a Chern

phase (panel b), the topological gaps close as both bulk and edge states localize, creating a

trivial amorphous insulator. Performing a statistical study at ϕ = 1.1 with 200 realizations,

Fig. 5.14c shows that topological transitions have to be understood in a statistical sense: the

proportion of realizations with non-trivial winding number changes smoothly when increasing

α through the transition stage.
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In a sum, the non-trivial topological edge states and transports in anomalous networks are

induced, enhanced and guaranteed by strong amorphism.

Figure 5.14: Emergence of anomalous Floquet Anderson insulating phase (AFAI) in anoma-
lous scattering networks when inducing strong amorphism. a, b, Amorphism-induced
topological phase transitions. For each amorphous level α and phase delay ϕ, we calculate
the winding number W of a randomly generated network. In the weakly amorphous regime,
the bulk bands of the anomalous network (a) persist with trivial windings, while the Chern
networks (b) exhibit a robust non-trivial topology only near the Chern gaps already present
in the clean limit. Under moderate levels of amorphism, opposite transitions occur for the
two phases. The occurrence of Chern networks (b) with non-zero winding decreases to zero,
consistent with a trivial Anderson insulator. Very differently, anomalous networks (a) undergo
a topologically non-trivial Anderson transition to be AFAI, as the entire spectrum becomes
topological and bulk bands are flatten by strong amorphism. c, Statistical study of the propor-
tion of realizations with non-trivial winding versus α, performed on 200 random realizations
of amorphous networks with phase delay ϕ = 1.1.
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5.5 Measurement of topological scattering invariant in the strongly

amorphous regime

In this section, we introduce the experimental methods involved in the measurement of

the scattering topological invariant. We then exhibit the design and measured scattering

properties of the non-reciprocal phase shifter implementing the twisted boundary condition

used in our direct measurements of the topological scattering invariant. With experiments on

edge and bulk transports, we examine the trivial scattering networks, where strong amorphism

induces Anderson localization. Finally, we report the results of the direct measurements of

topological invariants. We could observe the distinct transitions happens for anomalous and

Chern networks when inducing strong amorphism consistent with the statistical study in Fig.

5.14c.

5.5.1 Measurement methods and bulk ports

The scattering parameters and field maps of fabricated honeycomb and amorphous networks

are measured by a vector network analyzer (VNA; ZNB20, R&S). For field map measurements,

we connect the signal input port of the measured device to VNA port 1 and measure the

transmission by the near-field probe connected with VNA port 2. As shown in Figs. 5.15(a-b),

the field probe made from coaxial lines couples with the vertically polarized near field of

microstrip lines, due to the guided mode of quasi-TEM on the line. The bulk excitation is

achieved by designing a port at the back, which transits the wave from the coaxial cable to

microstrip line (Figs. 5.15(c-d)). In the fabricated networks, we drill a metalized hole, in which

we insert the inner connector of the coaxial cable.

5.5.2 Experimental realization of twisted boundary conditions

Our reconfigurable non-reciprocal phase shifter prototype is shown in Fig. 5.16a. It consists

of two identical reconfigurable reciprocal phase shifters, put in parallel, connected at the

two junction points by two circulators. External voltages exerted on the anodes control

the reciprocal phase shifters, altering the capacitance of varactors. Radial stubs are used

as low-pass filter to isolate the microwave frequency wave from the static voltage control

circuits. With high-pass filters to isolate the static voltages from each other, V1 (top one) and

V2 (bottom one) independently adjust the phase-shift values in transmission from port 1 to

2 and transmission from port 2 to 1, respectively. All the components are built on 1.016mm

thick Rogers RO4350B laminates with 1oz copper layers on the top and bottom sides. The

varactors are SMV2020-079LF of silicon hyperabrupt junction varactor diode (Skywork Co.).

To synthetically achieve the adiabatic cycle of magnetic flux Φ in such photonic platform,

each reciprocal reconfigurable phase shifter should cover a continuous phase shift range of at

least 2π, when tuning the static voltage in the operating frequency band of our non-reciprocal

networks ( f ∈ [5.4,7] GHz). To reach this goal, we adopt a reconfigurable reflective-type
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Figure 5.15: Measurement method and bulk port design. a, We use the coaxial probe to
couple with the near field of microstrip line. b, The near field of microstrip line. c, The design
of the port used for bulk excitation and field map upon feeding the port. d, Zoomed in view of
the bulk port in the prototype.

analogue phase shifter, which is compact and able to continuously shift phase values. The

designed single reconfigurable phase shifter is composed of three parts: two high pass filters,

a 90 degree hybrid coupler and two reflective loads. We input microwave at port 1 and show

the simulated field map of the phase shifter in Fig. 5.16b. The 90 degree hybrid coupler is used

for wide-band impedance matching. In addition, the field shows that the designed low pass

filter exhibits nice isolation between the microwave frequency wave and static voltage control

source. The reflective loads contribute to having an access to a large range of phase shifts.

The basic phase-shift mechanism is the following: taking a typical resonator with resonant

frequency f0 as a example, when tuning the resonant frequency from f1 to f4, the phase

reaction at f0 = ( f2+ f3)/2 can be nearly altered by π (Fig. 5.16c) [273, 274]. For a reflective load,

when the resonant frequency is tuned by changing the capacitance of varactors, the range

of phase shift can be around 2π. One can further increase the range by combining several

resonators (here we use two).

Based on the measured scattering matrix of the fabricated reconfigurable non-reciprocal

phase shifter, Fig. 5.16d shows how to set the applied voltages V1 and V2 for realizing a given

non-reciprocal phase Φ. As shown in Fig. 5.16e, the measured maximal phase-shift range in

the operating frequency band of networks is beyond 2π, which enable the topological invariant

measurement in the whole band. To wrap the networks to be a cylinder in the topological

invariant measurements, we fabricate eight reconfigurable non-reciprocal phase shifters. The

standard deviation of the measured phase shifts for these 8 devices is close to zero (Fig. 5.16f).
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Figure 5.16: Design and measurement of our reconfigurable non-reciprocal phase shifter
(twisted boundary condition). a, Prototype of a reconfigurable non-reciprocal phase shifter.
b, Simulated field map (input at port 1) of the reconfigurable phase shifter. It comprises
three parts: two high pass filters, one 90-degree hybrid coupler and two reflective loads with
four varactors controlled by static voltages. c, Mechanism of phase shift induced by resonant
frequency shifts. For a typical resonator, when tuning the resonant frequency from f1 to f4,
the phase reaction at f0 = ( f2 + f3)/2 can be nearly altered by π. A reflective load therefore
exhibits a 2π range of phase shifts. d, Applied voltages V1 and V2 to realize a given synthetic
magnetic flux Φ, used in our winding number measurements. e, Measured phase-shift range
in f ∈ [5.4,7] GHz. f, Standard deviation of the measured phase shifts for the 8 phase shifters
involved in the twisted boundary condition, at 5.6 GHz.
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5.5.3 Experimental observation of Anderson localization in trivial scattering net-
works induced by the strong amorphism

In this part, as a reference, we performed experiments for trivial networks to check the wave

localization induced by the strong amorphism, as revealed in Fig. 5.17. The zoomed-in

inset shows a 3-port resonator, achieving the parameters ξ = η =π/6, whose band structures

are shown in Fig. 2.10(b, d). The measurements show that regardless of the states in the

clean limit, the trivial network always turns to insulating through the whole structure. The

blocked transports for excitation at edge or bulk ports indicate trivial localization induced by

amorphism, validating numerical results in Figs. 5.6 and 5.13.

Figure 5.17: Measured field maps of trivial networks. a, Prototype of trivial network in the
clean limit. b, Prototype of trivial network in the fully amorphous regime. We keep the same
network but replacing the 3-port circulators to be 3-port resonators. c-f, We measured the
field maps excited at the edge port (panel c and e) and bulk port (panel d and f) starting from
bulk state (panel c and d) or band gap (panel e and f) in the clean limit.

5.5.4 Direct measurement of topological indices for anomalous topological net-
works in the strongly amorphous regime.

We now provide a direct experimental evidence of the topological character of the anomalous

amorphous insulating phase. We start from a finite strongly amorphous network and endow it

with a twisted boundary condition on its lateral sides, effectively wrapping it up into a cylinder
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Figure 5.18: Direct measurement of topological indices in the strongly amorphous regime. a,
Scheme for measuring the topological index of amorphous scattering networks. We impart a
twisted boundary condition to the scattering network, wrapping up the sample into a cylinder.
The boundary condition links the left and right boundaries with a non-reciprocal phase
Φ. The topological index W is the winding of the reflection coefficient R measured at the
external probe, when Φ is varied over all angles. b, Picture of the experimental setup, with the
microwave non-reciprocal phase shifter shown in the inset. The value of Φ is controlled by
external d.c. voltages V1 and V2. c, d, Measured winding numbers and corresponding field
maps, when starting from different situations in the clean limit. In panel c, we start with
anomalous and Chern networks in a topological gap, whereas in panel d, we start inside bulk
bands. The measurements show that regardless of the starting point in the clean limit, the
anomalous network is always topological under strong amorphism. Conversely, the Chern
network always becomes a trivial insulator.

(Fig. 5.18a). The twisted boundary condition imposes a direction-dependent phase delay (Φ

from left to right, and -Φ in reverse), which plays, in this photonic system, the same role as the

synthetic magnetic flux Φ threading the cylindrical electronic sample considered in Laughlin’s

thought experiment [9, 16, 173, 210]. The system is then probed through one external port

at the bottom edge. The topological invariant W is defined as the winding number of the

probe’s reflection coefficient R when Φ is adiabatically varied from 0 to 2π [223, 224, 247],

that is W = 1
2πi

∫ 2π
0 dΦ R∗ ∂R

∂Φ
. The twisted boundary conditions is implemented by the non-

reciprocal phase shifter described previously (Fig. 5.18b), in which the direction-dependent

phase delays are set by external voltages V1 and V2.

Figure 5.18c reports the measurement of the reflection coefficient’s winding for the anomalous

phase in the clean limit, and compares it with the one obtained in the strongly amorphous

regime (α = 6). As a reference, we also performed a measurement starting from a Chern

insulator. For clarity, we plot as well the field maps measured when disconnecting the twisted
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boundary condition. Whereas both anomalous and Chern phases do wind in the clean limit,

only the anomalous phase shows a nonzero winding when strong amorphism is present. Such

non-zero winding is always accompanied with edge transport. In Fig. 5.18d, we repeat the

experiment but starting from non-insulating samples. In the clean limit, W is zero in both

cases as expected for bulk bands. Turning on strong amorphism, the Chern sample remains

topologically trivial, whereas we now measure a non-zero winding for the anomalous one.

Such opposite topological transitions for both the Chern and anomalous cases are consistent

with our theoretical prediction in Fig. 5.14. Our measurements prove the topological origin of

the edge states, and the emergence of a topological phase under very strong amorphism.

Figure 5.19: Experimental validation of the chiral edge state in the amorphous anomalous
network. Keeping the measurement setting in Figs. 5.18(c- d), We change the position of input
port to the port located at the bottom edge (a, b) or in the bulk (c, d).

We now supplement the edge transports in Fig. 5.18 with edge transports excited from a

bottom port and bulk transport cases with excitation inside the network, as shown in Fig. 5.19.

The measurements show that regardless of port positions for wave excitation, for any state in

the clean limit, anomalous networks always exhibit edge states in the fully amorphous regime

with bulk insulation. However, Chern networks always get localized under strong amorphous

disorder, ending up as trivial amorphous insulators.

Finally, as a confirmation for the striking phenomena of strong amorphism enhanced anoma-
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Figure 5.20: Measured topological invariant in the operating band for honeycomb and fully
amorphous networks. Measured topological invariants versus frequency in the clean limit
(a), and in fully amorphous networks (b). From the measurement of the reflectance of a single
circulator, we obtained the theoretical frequency ranges of anomalous (5.4−6.05 GHz) and
Chern (6.05−7 GHz) phases in the clean limit. In these ranges, both anomalous and Chern
phase can wind in the topological gaps), and do not wind in bulk band (and in trivial gaps, for
the Chern phase). However, remarkably, after inducing strong amorphism, the anomalous
phase always winds, and the Chern one became completely trivial.

lous network and trivialized Chern network, we provide the measured topological scattering

invariants over a broad frequency range, both for the clean limit and the fully amorphous

cases (Fig. 5.20) . In the clean limit (panel c), both the anomalous and Chern phases support

frequency ranges with trivial or non-trivial windings. Indeed, the anomalous phase winds in

every gap, and does not wind in bulk bands, whereas the Chern winds in Chern gaps, but does

not wind in trivial gaps or bulk bands. However, in the amorphous case (panel d), the anoma-

lous phase always winds, while the amorphous phase coming from the Chern case is always

trivial. This clearly confirms the enhancement of the anomalous phase due to amorphism,

and the destruction of the Chern phase.
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5.6 Conclusion

We reported the resilience of the anomalous topological phase even in amorphous networks,

demonstrating resilience against high degrees of amorphism, evading Anderson localization,

and reaching anomalous Floquet Anderson insulating phase. The robustness of this phase is

elucidated through intuitive arguments grounded in graph theory. Through detailed analy-

ses—including transport studies, supercell band structures, eigenstates in closed networks,

and topological scattering invariants—we unravel the intricate localization mechanisms un-

derpinning the emergence of anomalous amorphous topological insulators, affirming their

classification as AFAI. We implemented it for electromagnetic waves in non-reciprocal scatter-

ing networks and experimentally demonstrated the existence of unidirectional edge transport

in the strong amorphous limit. We proposed a practical method to perform direct topological

invariant measurements in finite aperiodic samples.

Although Chapter 4 primarily focused on transport studies for examining anomalous topo-

logical scattering networks under strong disorder, the analytical framework, localization

mechanism, and the conclusion that these networks exhibit AFAI characteristics are broadly

applicable, encompassing networks with disorder in phase-delay links or scattering nodes. By

performing the same analysis in this chapter, one can find that the anomalous topological

networks robust to maximal phase-link disorder and scattering matrix disorder are also of

AFAI, in which topological edge states occupy all the spectrum and bulk bands are totally flat

(not shown for "brevity"). We envision a new class of topological systems in which strong

disorder including all types of disorder-phase links, amorphism, and scattering matrices on

nodes- is no longer a hindrance, but can be used as a new degree of freedom to induce, control

and strengthen the robustness of unidirectional wave energy transport.

In a sum, we now have noticed that transitions happen differently for some scattering networks

in the parameter space, when inducing strong disorder into networks. We performed extensive

experiments and numerical studies on several examples, via observables from transports,

supercell band structures, eigenstates in closed network, and topological invariants. In the

next chapter, we try to unify all our observations with a unique framework, to define precise

topological phase diagrams in the presence of disorder and elucidate the critical behaviors

occurring in the strong disordered regime, which are not accessible in our analysis so far,

due to computational limitations and finite-size effects. In addition, we will delve into phase

transition occurring in disordered networks, examining their critical phenomena.
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6 Real-space renormalization group
scheme

This chapter contains adapted text and results from the following preprint: Zhe Zhang, et al,

"Renormalization group of topological scattering networks", arXiv:2404.15866 (2024), with

permissions of all co-authors.

Ch. 3 made a thorough discussion about how the anomalous Floquet topological phase and

the Chern phase emerge in non-reciprocal scattering networks made of three-port circulators

interconnected by bidirectional phase-delay links. Ch. 4 and Ch. 5 demonstrated that some

chiral topological edge states, most of which are in the anomalous topological phase, can

survive the addition of strong levels of distributed disorder in the network, in the form of

arbitrary phase fluctuations, disordered scattering matrices on nodes, or even a randomization

of its structure [19–22, 170]. These topological scattering networks in the strong disorder

regime are confirmed to be of anomalous Floquet Anderson insulating phase (AFAI). These

observations were validated by direct transport evaluation and measurements of topological

invariants in strongly amorphous cases [19, 20].

Yet, predicting whether a given periodic network will be topological or not when disorder

is imparted remains a challenge, because the reason why networks can retain a non-trivial

topological nature in drastically aperiodic settings is still not completely understood. For

example, some honeycomb topological networks supporting chiral edge states in this clean

limit remain topological when adding disorder, whereas some others do not and trivially

localize. This behavior seems to be related to the networks being either in the anomalous

or Chern phases in the clean periodic limit, although counter-examples can be found near

topological phase transition boundaries. Such phenomena appear to indicate the existence of

unexplored critical topological transitions in disordered networks, which by essence cannot

be understood from standard approaches relying on topological band theories.

In this chapter, we explore a general real-space renormalization group (RG) approach for

scattering models, which is capable of dealing with strong distributed disorder without relying

on the renormalization of Hamiltonians or wave functions. Such scheme, based on a block-

scattering transformation combined with a replica strategy, is applied for a comprehensive
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study of strongly disordered unitary scattering networks with localized bulk states, uncovering

a unique connection between topological physics and critical behavior. Our RG theory leads

to topological flow diagrams that unveil how the microscopic competition between reflection

and nonreciprocity leads to the large-scale emergence of macroscopic scattering attractors,

corresponding to trivial and topological insulators. Our findings are confirmed by a scaling

analysis of the localization length (LL) and critical exponents, and experimentally validated.

The results not only shed light on the fundamental understanding of topological phase transi-

tions and scaling properties in strongly disordered regimes, but also pave the way for practical

applications in modern topological condensed-matter and photonics, where disorder may be

seen as a useful design degree of freedom, and no longer as a hindrance.

Organization of the chapter: In Sec. 6.1, we introduce renormalization group approach and

briefly discuss about our RG theory. In Sec. 6.2, we show examples introducing the problem

of predicting the emergence of chiral edge states upon scaling. Secs. 6.3, 6.4, and 6.5 focus

on networks with strong phase-link disorder, elucidating our scattering RG theory, replica

method and results (Sec. 6.3), its validation by scaling analysis of the localization length (Sec.

6.4), and an experimental validation of RG flows (Sec. 6.5). In Sec. 6.6, we extend the RG

analysis to structural network disorder (amorphism). In Sec. 6.7, we conclude our results and

discuss their implications.

Notice: The studied disordered scattering networks in this chapter contain phase-link disorder

or structural disorder (amorphism). We fix scattering matrices for all scattering nodes to be

identical, therefore excluding scattering matrix disorder on nodes. The reason is two-fold: the

parametrization of these scattering matrices constitutes the parameter space; one can still use

RG and scaling analysis on networks with disorder on scattering nodes, which won’t alters our

conclusion on critical distributions. This chapter include the parameterization in Sec. 2.1.3

and disorder realizations of phase-delay disorder and amorphous disorder in Sec. 2.1.4. The

applied observables in disordered networks are transports in open networks (Sec. 2.3) and

localization length and scaling analysis (Sec. 2.4).

6.1 Introduction of renormalization group

The renormalization group (RG) [275–278], which offers valuable insights on the connection

between physical phenomena occurring at very different scales, may provide a way to probe

the uncharted connection between scattering processes occurring at the microscopic scale,

and macroscopic transport properties of large samples, which are related to the scaling of

insulating phases and their topology [79, 92, 94, 279, 280] in periodic or aperiodic scenarios

[1]. RG is a conceptual frame: it catches large-scale behavior, predicting macroscopic physical

observables while smearing out local fluctuations. Conceptual advances in the use of RG

in condensed matter physics have led to important developments. For instance, recent

works applied tensor-networks RG on state entanglement to describe symmetry-protected

topological order [281, 282], perturbative RG on Hamiltonians to deduce the topological phase
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diagrams under local disorder [283], and momentum space-RG on Berry curvatures to identify

topological transitions in periodic structures [284]. However, RG approaches proposed in the

context of topological physics have focused on either periodic systems, or systems with local

disorder by renormalizing the Hamiltonians or the wave function. The case of topological

transitions and scaling effects in systems with very strong non-local disorder, i.e. disorder of

arbitrary strength distributed over their entire area, is still largely unexplored [56, 132, 285,

286]. Moreover, despite much interest in topological scattering networks and their potential

applications in photonics [14, 15, 160, 175–180] and electromagnetic systems [157, 287–289], a

unifying RG theory to understand these topological systems is still crucially lacking. RG on

strongly disordered networks is expected to shed light on the competition between localization

and topology in a broad range of scenarios, by revealing how microscopic scattering properties

affect macroscopic topological transport.

Figure 6.1: Block scattering transformations for a renormalization group of unitary scatter-
ing networks. Starting with an arbitrary scattering network composed of three-port unitary
scatterers connected by reciprocal phase links (left), we perform block-scattering transforma-
tions to extract the key scattering properties of each triangular sub-blocks, which are replaced
by a three-port unitary scattering matrix (center). This results in a coarse-grained network. By
iteratively applying this transformation, we finally get to a single three-port scatterer described
by a unitary 3 by 3 matrix SF , which we call the scattering attractor of the network (right). If
the RG procedure is successful, the scattering attractor SF summarizes whether the initial
network is a trivial insulator (if SF is a full reflection matrix) or a topological insulator (SF is a
circulator).

Our real-space renormalization group focuses on unitary scattering networks. It unveils the

intricate physical mechanisms behind the persistence of topological edge states in systems

with strong distributed disorder. Instead of playing with Hamiltonians or wave functions, we

focus on network models and propose block-scattering transformations that preserve the

key scattering properties of each block during scaling, namely flux conservation, reflection

level, and scattering chirality. The block-scattering transformation (Fig. 6.1) is composed of

three steps: partitioning the original network triangularly, replacing each block subnetwork
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by a simpler three-port scatterer, and interconnecting together these three-port scatterers

into a new coarse-grained network, on which the procedure can be repeated. The goal of

the RG theory is therefore to leverage iterative block-scattering transformations until one

converges to a three-port scattering attractor that captures the essential information about

the macroscopic scattering of the network, namely whether chiral transport occurs on the

edges or if incident waves coupled to the edge are just reflected. Intuitively, we expect three

possible scattering attractors (Fig. 6.2). Chiral topological systems would be attracted to

unitary scattering matrices that describe clockwise or counter clockwise perfect circulation.

The clockwise circulator SCW (matrix shown in the figure inset), and its transpose SCCW are the

only two possibilities compatible with edge transport (we ignore transmission phases for now).

On the other hand, systems that trivially localize would be attracted to the identity matrix SR ,

if we ignore reflection phases. This later case corresponds to full reflection as the input waves

excite localized modes. We apply this RG theory on two examples of fully disordered networks,

either with a honeycomb structure subject to arbitrary phase fluctuations on the hexagonal

links, or a fully random structure with arbitrary planar connectivity. We obtain RG topological

phase diagrams that elucidate the intricate competition between microscopic reflection and

chirality. We unveil the critical phenomena occurring at the transition between trivial and

topological disordered networks, by exploring the evolution of RG flows upon scaling and

studying the critical probability distributions of microscopic scattering matrices. This block-

scattering RG approach leads to a better understanding of topological phase transitions and

scaling properties in scattering networks models with strong disorder, broadening the scope

of renormalization group approaches to topological unitary systems.

Figure 6.2: Trivial and topological systems and their scattering attractors. We consider three
matched probes (in yellow) placed at arbitrary positions on the boundary of a 2D insulator.
This is the minimal number of probes allowing the detection of chiral edge transport. For a
topological insulator (left, blue), we expect that as the system size increases, the scattering
matrix at the probes converges to the one of a clockwise (SCW ) or counter clockwise (SCCW )
unitary circulator. On the other hand, the probe scattering matrix for an ideal trivial insulator
(right, gray) would converge to a full reflection matrix SR . Therefore, we expect SCW (SCCW )
and SR to represent possible scattering attractors in any valid RG theory.
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6.2 Two examples of disordered scattering networks: from micro-

scopic to macroscopic scale

At the microscopic scale, the networks we consider are formed of interconnected unitary

scatterers with three ports as shown in Fig. 2.4b. Such structure is maintained through

renormalization iterations until converging to the attractor, which is again a three-port unitary

scatterer. This choice to work with three-port systems is motivated by two reasons. First, at

the microscopic scale, scatterers with more than two ports are needed to construct complex

networks. Second, at the macroscopic scale of the attractor, it wouldn’t be possible to detect

chiral edge transport with only two ports, and three-port appears here as a minimal number to

do so [290]. One could, of course, build a theory based on four-port unitary scattering, but this

would only complicate the associated mathematics without bringing any new advantage. Yet,

one could object the following: what if the initial network contains scatterers with arbitrary

numbers of ports? Well, in this case, we can always make a first coarse-grained iteration, and

this operation would reduce all subsequent iterations back to the three-port case. We will

also assume that the scatterers that compose the initial networks obey three-fold rotational

(C 3) symmetry. However, we will assume that C 3 symmetry is not in general enforced on

the entire network, and the connections between the scatterers do not fulfill this symmetry.

This means that after the first RG iteration, the scattering matrices in the coarse grain picture

are no longer C 3 symmetric. Nevertheless, for representing the evolution of these matrices

during RG iterations, we will perform ensemble averaging, which will restore C 3 symmetry for

sufficiently large statistical ensembles. For all these reasons, three-port scatterers described

by a C 3 and unitary (U (3)) scattering matrix S0 play a crucial role in our scheme. In panels

a and b of Fig. 6.3, We show two examples of microscopic building blocks, whose scattering

matrices S1 and S2 are given in the figure.

Macroscopic planar networks are then built in the usual way, namely by connecting such S0

scatterers using bidirectional links with phase delay ϕ. In the pristine or clean-limit scattering

networks, as shown in the Fig. 6.4a, the clean-limit networks made of S1 is in the Chern phase,

due to the non-zero Chern number of several bands. Its bulk bands in specified ranges of ϕ

are consistent with the finite two-port transmissions and high density of states (DOS) in the

finite network, while the topological band gaps are consistent with the unity transports and

DOS. Its trivial band gap is represented by blocked transmission and zero DOS. Contrarily, the

periodic S2 network (Fig. 6.4b) is in the anomalous phase, evidenced by the vanishing Chern

numbers and the existences of topological edge states in every band gap. There is no trivial

gap in the anomalous phase. In a sum, although periodic S1 network and periodic S2 network

are of distinct topological phases, whose difference featured by vanishing trivial band gaps,

both networks can support diffusive waves in the bulk, and most importantly both exhibit

topological unidirectional edge waves.

We focus instead on network models subject to distributed disorder including phase-link dis-

order (Figs. 6.3(c-d)) and amorphism (network structure disorder, Figs. 6.3(e-f)). The networks

we work with in this chapter are always at maximally strong levels. The macroscopic scattering
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Figure 6.3: Examples leading to trivial and topological macroscopic properties, under
phase-link disorder and structural disorder (amorphism). a, b, We choose two microscopic
scattering matrices S1 (a) and S2 (b), located at ξ = −η = 2.8π/12 (gray triangle) and ξ = −η =
3.8π/12 (blue triangle). Scattering flows are shown by coloured arrows, illustrating TCW (blue),
TCCW (purple), and R (green), when a unity wave is incident from port 1 (yellow arrow). S1

and S2 both exhibit clockwise chirality with some reflection, and are relatively close to each
other on the parameter plane (Fig. 2.3). These matrices are then used to form networks with
maximal phase-link disorder (c- d) or structural disorder (e- f). We computed field maps when
inputting a signal at port 1, and calculated the associated macroscopic scattering matrices. S1

always leads to a trivial insulator with full external reflection, whereas S2 exhibits topological
edge states in both cases.

networks are then probed via three external scattering probes, defining a macroscopic unitary

scattering matrix S
′
0 exemplified by S

′
1 and S

′
2 shown in Figs. 6.3(c-f). The first goal of RG is to

establish a link between the microscopic scattering S0 and the macroscopic one S
′
0, and unveil

the role of disorder in this mapping. The second goal of RG is identifying the limit of S
′
0 when

the macroscopic system gets infinitely large (we call this limit the thermodynamic limit), to

unveil the relation between scattering attractors and topological phases. This is made possible

by the fact that S
′
0 can contain the signature of topological edge transport, even under strong

disorder [224, 244, 291].

The connection between S0 and S
′
0 is by no mean trivial. Some numerically tractable examples
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Figure 6.4: Topological phases and observables. Band structures of a supercell, two-port
transmissions, density of states (DOS) for the periodic S1 (panel a) and S2 (panel b) networks.
The blue and red numbers on the bands represent the calculated Chern numbers C and
gap invariants Wτ, respectively. S2 network is of anomalous phase, which features the zero
Chern numbers and topological gapless edge states Wτ ̸= 0 accommodated in each band
gap. As a contrary, S1 network is in Chern phase, as demonstrated by the non-zero Chern
numbers. In the finite honeycomb networks, we can identify the band structure by checking
DOS (rightmost) and two-port transmission (center) versus quasi-energy (namely, phase delay
value, ϕ). The unity transmission is mediated by topological edge states with low DOS, while
the vibrating finite transmission along with high DOS indicates bulk states in bands.

with relatively large sizes are shown in Fig. 6.3. Field maps are computed numerically assuming

input from the bottom port. Note that S1 and S2 are both of the same chirality and differ

only slightly in their level of reflection and nonreciprocity. Despite of this, we observe a

completely opposite macroscopic scattering behavior in the networks originating from S1

and S2. In the case of S1 (Figs. 6.3(c,e)), the input wave seems to localize around the input

port and end up being reflected. Conversely, with S2 a clear edge transport channel appears

and connects the input port to the next port on the left. If we could numerically access the

thermodynamic limit, we would expect a convergence of the macroscopic scattering matrices

S
′
1 and S

′
2 to SR and SCW (the values of S1 and S2 for the finite systems considered here are

shown within the figure). We also found even more surprising examples of systems behaving

totally differently for the two types of disorder, when starting from scattering matrices with

reflectance slightly lower than 1/3 (not shown for brevity). Explaining the emergence or

non-emergence of unidirectional edge states in networks with distributed disorder requires a

unified scheme capable of accessing the macroscopic properties of arbitrarily large systems

with no additional computational cost. In the next section, we describe a RG theory that
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sheds light on these examples and unveils a microscopic competition between reflection

and chirality, that translates into a macroscopic competition between disorder and topology,

explaining the emergence of critical behaviors associated to topological transitions in the

thermodynamic limit.

6.3 RG on scattering networks with phase-link disorder

6.3.1 Iterative block-scattering transformations

Figure 6.5: Renormalization group of a unitary scattering network with phase-link disorder.
a, Schematic of the block-scattering transformation. b, Procedure for the replacement of a
triangular block scattering network (described by a large unitary scattering matrix S ∈U (M))
by a single three-port scatterer (described by a 3×3 scattering matrix S′ ∈U (3)). The reduction
of matrix size is performed by partitioning S into nine 3×3 blocks according to the three sides,
then summarizing some key dimensionless quantities, namely nonreciprocity and reflection
into an energy matrix ES (center panel). Ai (i = 1,2,3) are variables to be determined in order
to restore unitarity. This is done using CKM matrix parameterization, and we recover the
corresponding unitary matrix S′ ∈U (3) (rightmost panel).

The type of phase-disordered networks we focus on in this section is shown in Fig. 6.5. They

are composed of identical scattering matrices S0(ξ,η) connected in a honeycomb structure

with phase-link disorder. The phase ϕ of each link is drawn from a uniform distribution in the

range [ϕ0 −∆ϕ/2,ϕ0 +∆ϕ/2] (Fig. 6.5). We also focus on the case of the strongest possible

disorder level ∆ϕ = 2π, although any other range is in principle accessible. As discussed in the

introduction, the RG theory contains three steps. First, we subdivide the original network into

triangular blocks by applying a standard Delaunay triangulation, whose generators are on a
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triangular lattice. Second, each triangular block is replaced by a single three-port scatterer,

whose scattering matrix S′ ∈U (3) must be deduced from the scattering properties of the block.

In the final step, by considering the dual graph of the triangulation graph, we can form a

coarse-grained network by arranging the matrices S′ on the nodes, and connect them with

new phase links randomly drawn from the same uniform distribution as the original ones.

The RG transformation is then iterated, replacing the original network by the coarse-grained

one. Each iteration reduces the size of the network by a scaling factor equal to the number

of scatterers P in the triangular blocks (P= 25 in panel a). After n iterative transformations, a

3-port scatterer therefore represents 25n scatterers in the original network. At the end, we get

a single three-port attractor SF ∈U (3).

The backbone of the RG theory is therefore the block-scattering transformation, namely the

protocol of replacing the large unitary scattering matrix of a triangular block by a small one.

Two pivotal questions arise when trying to define such a protocol: "What scattering matrix

should be associated to a triangular block ?" and "What kind of physical information should

be preserved when this block scattering matrix is compressed into a 3×3 matrix?". To address

the first question, we note that a triangular block may have a large number of ports on its

edges, which at the end should be concatenated into a single one. A simple proposition to

achieve this concatenation would be to close all edge ports with full-reflections, leaving only

three of them, one on each edge. However, such a solution would not consider the fact that

the connections between adjacent triangular blocks are actually distributed over many ports

along the edge, allowing to couple together various modes of such triangles. To take this

into account, we do not select only one, but Mi ports along the boundary of the i th side of

the triangle, as shown on the left of Fig. 6.5b. On each side, these open ports are chosen

to be adjacent, and we avoid choosing the ones around the corners. All the other ports are

closed with a fully reflective boundary condition. This allows defining a unitary scattering

matrix S ∈U (M), with M =
∑

Mi , which summarizes the transport and reflection at the scale

of a block. Therefore, the problem of replacing the block scattering network by a three-port

scatterer is equivalent to reducing the large unitary matrix S ∈U (M) to a much smaller one,

S′ ∈U (3).

This takes us to our second pivotal question. To preserve the important physics while smear-

ing out microscopic details, such reduction of scale must carefully maintain the scattering

properties that matter in the trivial or topological localization processes occurring during

scaling. Intuitively, the level of nonreciprocity and reflection of a triangular block are important.

We evidence these two properties in S by partitioning it into nine 3×3 blocks, according to the

side of the triangle,

S =

SB
11 SB

12 SB
13

SB
21 SB

22 SB
23

SB
31 SB

32 SB
33

 . (6.1)

Next, we note that the reduction of S ∈U (M) to S′ ∈U (3) should follow a few principles. The
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first one is the fact that the quantities that we are trying to keep during the reduction should

not depend on the size of the block network or the number of probes we choose. The second

principle is that we should reflect accurately the way with which energy incident on one side

of the triangular block is reflected and transmitted to the other two sides. One may start,

following Landauer-Büttiker formalism [60, 225], by expressing the overall energy transport

from side i to side j as

T j i = Tr(SB
i j (SB

i j )†), (6.2)

however this quantity depends on block size and number of probes. Instead, we can consider

the overall nonreciprocity of the energy transport between side i and j , represented by

N R j i = T j i /Ti j . (6.3)

The overall reflection Ri for the side i of a triangular block may be represented by the quadratic

mean of all the reflection of the probes on this side, expressed as

Ri =

√√√√ Mi∑
p=1

|SB
i i (p, p)|2/Mi . (6.4)

After extracting the nonreciprocity and reflection of the block, N R j i and Ri , we can summarize

this information about S into a 3×3 matrix ES (Fig. 6.5b, center), defined as

ES =

 R1 A1 A3 ·N R13

A1 ·N R21 R2 A2

A3 A2 ·N R32 R3

 , (6.5)

where N R j i and Ri serve as the non-diagonal and diagonal terms respectively. Here, Ai (i =

1,2,3) are variables to be determined so that we can recover a genuine unitarity scattering

matrix from ES . Note that ES , by itself, is not unitary and contains only amplitude information.

The recovery of a unitary matrix from the matrix ES is not a trivial task. Indeed, the general

parameterization of U (3) matrices implies that we have to recover in general three angle

parameters ( 1
2 n(n −1)|n=3) and six phase parameters ( 1

2 n(n +1)|n=3) [194, 195, 199, 200]) (see

details in Sec. 2.1.3). Fortunately, the problem of recovering a unitary scattering matrix

from amplitude measurements is a known problem in high energy physics, solved by the

Cabibbo–Kobayashi–Maskawa (CKM) matrix parameterization [196, 197]. This method implies

that the recovery of a unitary matrix from an energy-related matrix can focus on finding four

parameters (three angle parameters θ12,θ13,θ23 and one phase parameter δ), as exemplified

by the successful recovery of the quark-mixing matrix from experimental measurements.

Appendix. D details how to adapt CKM parametrization to the recovery of one possible

candidate of a 3×3 unitary matrix S′ ∈U (3), by first transforming ES to a double stochastic

matrix. We stress that many different choices for S′ ∈ U (3) are possible. However, they all

differ by different phases, whose particular choice does not matter for RG due to the fact that
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random phase disorder is anyways present in the network (Fig. 6.5b rightmost).

6.3.2 Replica scheme

Having explained how the block scattering transformation is implemented, we are in principle

ready to look at results from applying RG to large networks. Before doing so, however, one

needs to think about two important practical aspects: (i) how to best describe the state of

the network at a given iteration; and (ii), how to ensure that the iterative RG algorithm is

computationally efficient. The first point is addressed by remembering that we want to track

the convergence to a potential scattering attractor. Therefore, what matters is to monitor

the evolution of the set of U (3) scattering matrices
{
S′

n

}
during RG. This can be performed

by averaging them over the network. This average is trivial to take for the initial network,

which is composed of identical C 3 and U (3) matrices S0. At any other iteration number n, the

S′
n in the network are in principle all different and no longer obey C 3 symmetry. However,

we remark that averaging over a sufficiently large set would restore C 3 symmetry, since the

choice of the port labels (1 , 2 and 3) for each S′
n is arbitrary (when labeling them clockwisely),

eventually allowing for the data to be tripled, making the average invariant with respect to

120-degree rotations. Thus, a first way to represent the state of the network at a given iteration

is a point representing this average in the (ξ,η) parameter plane. This is equivalent to say that

the statistic average of the scattering properties
{
S′

n

}
in the nth coarse-grained network takes

the form of a C 3 symmetric unitary matrix, namely

〈S′
n〉 ≡

 〈Rn〉 〈TCCW,n〉 〈TCW,n〉
〈TCW,n〉 〈Rn〉 〈TCCW,n〉
〈TCCW,n〉 〈TCW,n〉 〈Rn〉

 . (6.6)

During the iterative RG procedure, the block-scattering transformation of the system from one

scattering state 〈S′
n−1〉 to the next 〈S′

n〉 can thus be represented by the motion of this point,

discretely jumping on the (ξ,η) plane of Fig. 2.3. Starting from the point representing the

original scatterer S0 on the (ξ,η) plane, we can watch the trajectory formed by the successive

locations of 〈S′
n〉, which defines a renormalization-group flow [275]. Such flow can either

lead the system towards a stable fixed point (a scattering attractor), the only exceptions being

the cases that start on unstable fixed points. Such fixed points reveal themselves by looking

at the probability distributions of TCW,n , TCCW,n , and Rn , denoted by P (TCW,n), P (TCCW,n),

and P (Rn). For example, if P (TCW ), P (TCCW ), and P (R) remain invariant under the block-

scattering transformation, we know that we have reached a scale invariant point. An attentive

reader may object that such an averaging procedure performed on the RG theory of Fig. 6.5

may be unpractical: since the size of the system shrinks at each iteration, the size of the set{
S′

n

}
depends on n, which is problematic to develop a rigorous statistical study of the flow over

many iterations. At the same time, the numerical calculations of block networks and unitary

matrix transformations increase exponentially with system’s size, preventing us from working

with very large systems. To be more specific, the number of calculations grows exponentially
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in P0 ·P n as a function of RG iterations n. P and P0 are defined as the number of microscopic

scatterers in a block network and that in the final coarse-grained network, respectively. P

serves as the scaling factor, and P0 is required to be in a large scale close to the thermodynamic

limit [275, 276, 292, 293]. The problem of developing a consistent statistical description of the

network and the one of computational efficiency are therefore intertwined.

Figure 6.6: Numerical RG scheme of disordered scattering networks. We assume that scatter-
ing networks is under a kind of disorder (phase-link one or structure one, left inset) described
by a specified statistics Pdi sor der . To start with, by taking the microscopic three-port scatterer
S0(ξ,η) as building blocks, we construct L replicas of triangular block networks (red triangles)
for the RG iteration 1. Each replica is in the same network disorder statistics Pdi sor der , and
contains P (P ≪ L) microscopic scatterers. Secondly, we apply block scattering transforma-
tions, which turn each block network into a U (3) scatterer (blue triangles). The scattering
matrix set

{
S′

1

}
of these U (3) scatterers represents the scattering properties of RG iteration 1.

Thirdly, to generate block scattering networks of the iteration 2, we construct L replicas of tri-
angular block networks in the disorder statistics Pdi sor der , and most importantly each replica
is composed by P scatterers randomly selected from the set

{
S′

1

}
. By iteratively performing the

above three-step process, we obtain the sequence of
{
S′

n

}
, the flow of probability distributions

(P (TCW,n), P (TCCW,n), and P (Rn)), and the averaged scattering properties 〈S′
n〉.

We handle this issue by enhancing the RG theory with a well-known strategy, which is able

to successfully depict the effect of disorder especially in spin glass, and known as the replica

scheme [30, 294–297]. As shown in Fig. 6.6, our numerical RG scheme is based on the

transformation of the U (3) scatterer set
{
S′

n

}
, each element of which is transformed from one

of L replicas of triangular block networks by applying block-scattering transformations. To
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be more specific, let us assume: the disorder (phase-link one or structure one) in scattering

networks conforms to a specified statistics denoted as Pdi sor der . For the first RG iteration, we

generate L triangular networks- namely block networks, each of which contains P microscopic

scatterers described by S0(ξ,η) and are generated as a replica following the statistics Pdi sor der .

Each replica of block scattering networks is then transformed into a U (3) scatterer, by applying

block-scattering transformations. The scattering matrix set of these L scatterers forms the

U (3) matrix set
{
S′

1

}
. To construct a block scattering network of the next iteration, we generate

a network in the same statistics of disorder (Pdi sor der ), whose P microscopic scatterers are

randomly selected from the set
{
S′

1

}
. Repeating such construction L times, we obtain L replicas

of block networks for the second iteration. To make sure the sampling is random enough, we

follow the condition L ≫ P . Now, RG calculation proceeds by starting all over again, with the

block scattering networks of iteration 2 as the block scattering networks of iteration 1.

In a sum, conceptually, what our numerical RG scheme performs is horizontally taking the

statistic average of replicas and vertically sustaining the system close to the thermodynamic

limit (under large enough P ). As we keep the constant replicas for each iteration, the number

of calculations is reduced to the linear function of n, expressed as nL. The constant size of

the set
{
S′

n

}
also allows us to perform the evolution of probability distributions with enough

samples for statistics, which describes how the scattering properties of disordered network are

transformed when networks are scaled up. The size P can be maintained relatively smallI, as

long as accurate statistics can be performed, making it possible to look at arbitrarily large num-

bers of RG iterations at relatively low computational cost, and explore the physics occurring at

very different scales.

6.3.3 Results for random phase-link disorder

Taking the matrices S1 and S2 used in Fig. 6.3 as examples, we use the replica scheme and

go through seven RG iterations. The results are presented in Fig. 6.7. Consistent with the

finite-size simulations of Fig. 6.3, S1 and S2 are found to converge to opposite attractors: SR for

S1 (Fig. 6.7a), indicating a trivial insulator, and SCW for S2 (Fig. 6.7e), indicating a topological

insulator. To see how the macroscopic scattering properties change upon scaling up the

disordered networks, we track the evolution of P (TCW ), P (TCCW ), and P (R) during iterations.

As shown in Figs. 6.7(b, f), after five iterations the attractors are almost reached: although

both systems are initially clockwise chiral, only disordered systems based on S2 maintain

high values of TCW at large scales. Conversely, for large enough disordered networks based

on S1, TCW and TCCW gradually disappear, while the probability of observing full reflection

is close to unity after the fifth iteration. These distinct behaviors are further confirmed by

the evolution of the averages 〈TCW 〉, 〈TCCW 〉, and 〈R〉, exhibited in Figs. 6.7(c, g). A visual

summary of this process is obtained by plotting the RG flows, starting from the initial point S2

IThe numerical RG results shown in this chapter are under the setting with L = 4000,P = 100 and M1 = M2 =
M3 = 3 or 5. The only restriction for P is guaranteeing that the block network has a bulk, namely network depth at
least 3, as the topological effect needs a definition of bulk. The selections of P and L only affect the resolution of
boundary.
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(S1) in the parameter space, and going through a discrete trajectory to reach SCW (SR ).

Figure 6.7: Two examples of RG on scattering networks with random phase-link disorder. a,
e, Two opposite scattering attractors are reached for S1 (a) and S2 (e). During RG, macroscopic
disordered networks built from S1 and S2 converge to the trivial attractor SR , and the clockwise
chiral one SCW , respectively. b, f, Evolution of the distributions P (TCW ), P (TCCW ), and P (R)
upon RG, for the case of S1 (b) and the case of S2 (f). These distributions represent how the
macroscopic scattering properties continuously evolve when scaling up the networks. c, g,
We summarize the distinct behaviors of S1 and S2 networks by plotting the statistic averages
of these distributions upon scaling, 〈TCW 〉, 〈TCCW 〉, and 〈R〉. d, h, RG flows. The averaged
scattering properties of networks at each iteration are mapped to a point on the parameter
space introduced in Fig. 2.3. The trajectory of the point forms the RG flow, showing the
evolution of the macroscopic scattering properties as the network is repeatedly scaled up
during RG.

This procedure, performed so far for only two initial scatterers S1 and S2, can be repeated

for all possible initial scatterers that belong to the (ξ,η) plane, obtaining a RG phase diagram

for phase-link disorder. The RG phase diagram summarizes, for each S0(ξ,η), the attractor

reached by large disordered networks built from S0 (Fig. 6.8a). There are two topological

phases of opposite chirality, depending on whether large systems converge to SCW or SCCW .

They are separated by the trivial phase, composed of systems that converge towards the full-

reflection attractor SR upon scaling. At the interfaces between systems converging to SCW (or

SCCW ), and systems converging to SR , a topological phase transition occurs, which is related

to the presence of a critical metal with infinitely long correlations. As a result, the RG approach

requires more iterations around these transition lines to start choosing an attractor, consistent

with the observation of a extremum of the number of RG iterations required for convergence
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Figure 6.8: RG phase diagram. a, Phase diagram obtained by summarizing, for each network
built from S0(ξ,η), which RG scattering attractor is reached in the thermodynamic limit or
large systems. b, Number of RG iterations required to reach a fixed level of convergence to the
scattering attractor. Local maxima are obtained at the phase transition, which is a signature of
scaling invariant behaviors.

at the boundary, as shown in Fig. 6.8b.

To better represent the process of converging towards stable fixed points, we plot the associated

RG flow diagram, shown in Fig. 6.9. Any initial value of (ξ,η) in the blue (purple) region leads

to a trajectory heading to the clockwise chiral attractor SCW (SCCW ). However, any point

starting in the grey region goes to the fully reflective attractor SR . The interface between the

two regions are critical lines connecting six unstable fixed points (saddle points) of the RG

flow. Any point with arbitrary small deviations from the critical lines will flow away from the

critical condition, and eventually converge to a stable fixed point. In such disordered systems,

a topological phase transition is equivalent to the crossing of a critical line, which represent

systems that reach an exact balance between nonreciprocity and reflection upon scaling.

To complete the picture, we explore RG as close as possible to the critical scattering matrix lo-

cated on the line between S1 and S2 in the parameter space. Note that we cannot exactly locate

the exactly the critical scattering matrix, thus we choose a point very close to the critical scat-

tering matrix Sc , but on the side of SCW . We expect that such a point would behave similarly

as Sc during RG, at least during the first iterations, before it starts moving toward the attractor.

As shown in Fig. 6.10, the probability distributions P (TCW ), P (TCCW ), and P (R) are invariant

in the first eleven iterations, which is indeed a symptom of the scale invariance expected

for critical phenomena. Furthermore, the critical probability distributions of TCW ,TCCW ,R

represented in Fig. 6.10d establish a reference to determine whether a disordered network

with arbitrary disorder will be topological or trivial in the thermodynamic limit.
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Figure 6.9: RG flow diagram. Arrows in the flow diagram indicate the effect of successive RG
transformations on the macroscopic scattering properties of scaled networks. Non-zero flow
divergence confirm that the points SCW , SCCW , and SR located at the centers of three phases
are stable fixed points (a zoomed in view is provided by the two bottom insets). Six saddle
points (green) define unstable fixed points located on the topological phase boundary.
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Figure 6.10: Critical scattering properties. a-c, Evolution of P (TCW ), P (TCCW ), and P (R) of the
scattering matrix at the point ξ = −η = 0.92, which is close to the critical point between S1 and
S2, but on the side of SCW . The probability distributions of TCW ,TCCW ,R are invariant over
the first ten RG scaling iterations, consistent with critical behavior. d, Corresponding critical
probability distributions at the topological phase transition in phase-disordered honeycomb
scattering networks.

It should be emphasized that the above critical distributions for phase transitions between

trivial and topological insulators describe a totally different physical situation from the metal-

insulator transition of quantum Hall effect already captured by CC networks [84, 88, 89, 91–95].

For CC networks governed by quantum percolation, the phase diagram consists instead of

two phases, metal and insulator, and is described by a single scalar quantity T . In contrast,

disordered topological scattering networks are described by the distributions of the three

quantities TCW ,TCCW ,R required to describe the topological criticality, which would no be

possible with a single scalar quantity T that contains no information about the chirality of the

transport.

6.4 Scaling analysis of the localization length

In this section, we confront the phase transition boundary obtained from RG in the previous

section to the one obtained from a different, computationally more intensive method based

on calculating the localization length. The agreement between these independent results

confirm the quantitative accuracy of the RG theory. As a by-product of the localization length

study, we obtain insights on the topological phase diagram of phase-disordered networks and

shed light on the associated critical phenomena.
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6.4.1 Localization length and critical exponents

In this part, we utilize transfer matrix method on finite quasi-1D network discussed in Sec. 2.4,

and perform localization length calculations and scaling analysis, to quantitatively character-

ize topological phase boundaries and their critical behaviors. In Fig. 6.11a, we show a slice

of quasi-1D network with Lx = 4 and Ly = 8. In Fig. 6.11b, we show the results of such scaling

analysis, with OBC applied in the y direction (Fig. 6.11a). We vary the network parameters

along the line ξ = −η, ranging from 0.73 to 1.18, expecting to cross the phase transition. We

observe a monotonically increasing Λ(Ly ) in the range 0.73 < ξ< ξc ≈ 0.93, where ξc denotes

the critical value for which Λ(Ly ) is scale-invariant, marked by a dashed line. Conversely,

ξc < ξ < 1.2 exhibits an insulator behavior. To determine whether the range 0.73 < ξ < ξc

corresponds to a metal or a topological insulator, we changed the boundary conditions to PBC

as shown in Fig. 6.12. which reversed the scaling behavior of the localization length, excluding

the metal. Therefore, we conclude that disordered networks with 0.73 < ξ< ξc are topological

insulators, whereas ξc < ξ< 1.2 are trivial insulators. Numerically, the topological criticality at

ξc ≈ 0.93 can be identified by a local minimum in the standard deviation of Λ(Ly ) for a set of

Ly , represented as σΛ(Ly ) in Fig. 6.11c.

To extract the critical exponent v , we focus on a smaller range around the transition, shaded in

orange in Fig. 6.11c. The scaling of Λ in the vicinity of the critical point ξ = ξc ≈ 0.93 is shown

in Fig. 6.11d. If the localization length λ diverges following the power law

λ∼ |ξ−ξc |−v , (6.7)

with the scaling ansatz, the normalized localization length Λ(Ly ,ξ) can be expanded as

Λ =Λc +
Q1∑
q=1

aq

[
(ξ−ξc )L

1
v
y

]q

+
Q2∑
q=0

bq

[
(ξ−ξc )L

1
v
y

]q

Lz
y , (6.8)

where the third term is a finite effect correction [298], with z defined as a negative exponent.

Therefore, in the limit of Ly →∞, Eq. (6.8) recovers the standard form of single-parameter

scaling as

lim
Ly→∞

Λ :=Λc +
Q1∑
q=1

aq

[
(ξ−ξc )L

1
v
y

]q

. (6.9)

With the help of Eq. (6.8) and using Q1 = 5 and Q2 = 2, we fit the data in Fig. 6.11d and obtain

all the parameters v,ξc ,Λc , z, as well as the coefficients a1, a2, a3, a4, a5,b0,b1,b2. To reduce

the statistical error, we averaged the result over 100 disorder realizations. Fig. 6.11e plots

the single parameter scaling function Λ(Ly ,ξ) (solid line) together with the data (dots) as a

function of Ly . Our estimation lead to the critical exponent v1 = 2.4246±0.0970 and critical

length Λc = 0.7020±0.0077 for the critical boundary at ξ = −η≈ 0.9301. We observe that the

value of v1 and and Λc are very close to the ones reported for QHE [97], which is not surprising

since they are both topological insulators belonging to class A [97, 98, 106].
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Figure 6.11: Topological phase transitions and critical behaviors by a scaling analysis of the
localization length. a, A slice of a quasi-1D network with width Ly = 8 is used for iteratively
calculating the transfer matrix. The longitudinal dimension contains four elementary slices,
therefore Lx = 4. b, Evolution of the normalized localization length Λ(Ly ) = λ/Ly with the
width Ly on the segment of ξ = −η ∈ [0.73,1.18]. Ly is increased from 8 to 128. Error bars are
smaller than the markers. The left and right parts of the plot are topological and trivial phases,
respectively, and are separated by the critical point ξc ≈ 0.93 (dashed lines) characterized
by scale invariance. c, Criticality can be numerically identified as the local minimum of the
standard deviation of the normalized localization length, σΛ(Ly ). d, Zoomed-in results of

Λ(Ly ) scaling in the vicinity of ξ = −η = ξc (marked as yellow region in panel c). The dashed
view near the critical point ξ = −η = ξc = 0.9301 and Λc = 0.7020. e, Single parameter scaling
function Λ fitted from the data in panel d. We obtain a critical exponent v1 = 2.4246±0.0970.
The error bars correspond to the 95% confidence intervals estimated from the Monte Carlo
simulations.
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Figure 6.12: Scaling of Λ(Ly ) under y-periodic boundary conditions in the vicinity of the
critical point ξc ≈ 0.93 on the line of ξ = −η. a, Periodic boundary condition along y direction
eliminates edge effects including topological edge states. b, Two sides of the dashed line both
show decreasing Λ(Ly ) when increasing width Ly from 8 to 128, a hall marker of insulating
phases, indicating an insulator-insulator transition.

6.4.2 Topological phase diagrams comparisons and two critical exponent values

The study of the previous section can be repeated for any point of the phase diagram, in

order to directly confront the topological boundary predicted by RG to the one obtained

from the scaling analysis of the localization length. The later can be obtained by looking at

the location of local minima of σΛ(Ly ) in the parameter space, plotted in Fig. 6.13a. In Fig.

6.13b, we show the direct comparison of the phase boundaries obtained from localization

length calculations (dashed line) and from RG (solid lines). We observe a very good agreement

between the two, validating the validity of our RG theory, with percent-level quantitative

accuracy. In terms of numerical efficiency, the time cost of RG calculation for one point of the

phase diagrams is a few seconds, (minutes very close to critical points), versus several hours

for the corresponding localization length calculations, performed on the Intel(R) Xeon(R)

Platinum 8360Y processors.

Surprisingly, we found that the critical behaviors vary discretely on the topological phase

boundaries. More specifically, they are of two kinds, and change at the RG flow saddle points.

The values of the two distinct critical exponents are v1 ≈ 2.43 and v2 ≈ 3.33, and their locations

are shown in Fig. 6.13c. A detailed example for v2 ≈ 3.33 in the vicinity of ξ = −η≈ 0.0947 is

shown in Fig. 6.14, which is also found on the segment ξ = −η ∈ [0,π], on the other side of the

phase diagram. A given segment connecting two unstable fixed points (saddle points) in the

RG flow diagram exhibits a constant critical exponent value, which changes when crossing

saddle points. We conjecture that such distinct critical behaviors originate from distinct types
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Figure 6.13: Comparisons of the topological phase diagrams and critical behaviors obtained
from RG and LL analysis. a, In LL analysis, the boundaries of topological phases are revealed
by the local mimima of σΛ(Ly ). b, Direct comparison of the RG and LL topological phase

diagrams. They agree with percent-level accuracy. c, Critical exponent distribution on the
phase boundaries. Two values of critical exponents - ≈ 2.43 (orange) and ≈ 3.33 (red)- emerge
along the critical boundary, and change only at the RG unstable fixed points, which are saddle
points of the RG flow.
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Figure 6.14: Scaling analysis in the vicinity of another type critical point: ξc ≈ 0.0947 on the
line of ξ = −η. a, Λ(Ly ) at different parameters versus Ly , changing from 8 to 64. b, Fitted
curved and critical parameters with the ansatz of single parameter scaling. Critical exponent
v2 is estimated to be 3.3138 with critical Λc ≈ 0.9500, distinct with the critical exponent v1 in
the vicinity of ξc ≈ 0.9301.

of topological phase transitions, which we can clearly see on the clean-limit topological phase

diagram. The critical segments with v1 are associated to the topological phase transition

between the anomalous and Chern phases in the clean limit (Fig. 3.2), whereas the ones with

v2 can be attributed to more complex phases transitions at the semi-metal points in the clean

limit, where three topological phases meet: anomalous, Chern, and trivial insulators.

6.5 Experiments

We performed experiments by using again our prototypes DN1-5 with random phase link

disorder. We added a port on the edge to make the prototypes three port networks, and

show a picture of one of them in Fig. 6.15a. At each frequency, we can not only measure

the microscopic scattering properties of a single circulator S0( f ), but also the macroscopic

scattering properties of the networks S′
1( f ), taken at three external probes located on the

boundary. The difference between S0( f ) and S′
1( f ) is the experimental RG flow, shown by

coloured arrows in Fig. 6.15c. As the measurements of networks involve one probe per side, we

compare the measured flow with the numerical RG flow obtained for Mi = 1, i = 1,2,3, shown

by smaller arrows in the background. Clearly, the measured RG flow in the blue region points

toward the center of blue region, namely the SCW attractor, consistent with the numerical RG

predictions. On the contrary, the flow measured in the grey region heads to the fixed point of

SR , as expected from theory. Slight discrepancies between measured and predicted flows are

observed nearby the critical boundary. They are attributed to the limited number of disorder

realizations, as well as the limited size of the networks, which is not large enough to capture

accurately the thermodynamic limit near critical boundaries. Nevertheless, our experiments

substantiate the predicted RG flow and the convergence of large networks towards scattering

attractors by confirming experimentally the accuracy of block-scattering transformations.
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Figure 6.15: Experimental validation of renormalization group flow. a, Photograph of one
of our 5 prototypes. We experimentally validate the scattering RG flow by using microwave
networks made of ferrite circulators interconnected by microstrip lines. The ferrite circulators
serve as microscopic three-port scatterers, and their scattering matrix depends continuously
on frequency, allowing us to access a continuous family of networks with different attractors
simply by varying the frequency of operation. The random phase-link disorder is realized
by varying the length of the meandering microstrips that connect the circulators together.
The 5 prototypes correspond to different realizations of disorder. At each frequency, we can
measure the microscopic scattering properties of a single circulator, as well as the macroscopic
scattering properties of the networks, taken at three external probes located on the boundary.
This allows us to experimentally extract the RG flow. b, Experimentally measured eigenvalues
of the scattering matrix of the circulators, confirming the quasi-unitarity of the microscopic
scattering process over the experimental frequency band (3.5−5 GHz). c, Measured RG flow
(colored arrows) averaged over the five different disorder realizations. The arrows composing
the background are numerical predictions of the RG flow (Mi = 1, i = 1,2,3).

We are able to confirm that the presence of phase-link disorder enhances the chirality of the

transport when comparing S′
1( f ) to S0( f ), when the networks fall in the region of attraction of

SCW . Such results shed light on the origin of topological chiral edge states in samples with

strong distributed disorder.

6.6 RG on scattering networks with structural disorder

In this section, we therefore turn our attention to another type of disordered scattering net-

works with structural disorder. We implement our RG theory to explore topological phase

diagram and RG flows in such amorphous scattering networks. In the following, we focus on

scattering networks at the strongest level of structural disorder α = 8. More information about

network statistics as a function of α can be found in Sec. 2.1.4.

The RG of amorphous networks is essentially similar to the one of phase-disordered honey-

comb lattices. The implementation of the RG theory on structurally disordered networks still

relies on the same three steps (block division, transformation, and reconstruction). However,

the Delaunay triangulation yielding the block division comes with a twist. Since we are dealing

with networks with structural disorder at level α, the Delaunay triangulation is no longer
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Figure 6.16: Renormalization group of a unitary scattering network with structural disorder.
As for the case of phase-disorder, the block-scattering transformation follows the three key
steps of block division, transformation and reconstruction. The only difference is that the
Delaunay triangulation is no longer regular. The transformation is used iteratively until one
obtains a U (3) attractor SF . In practice, this scheme is implemented via the replica scheme
described in the section 6.3.2.

regular, but also at level α (Fig. 6.16, leftmost). Following this, the dual graph that is used to

interconnect the newly generated scatterers into a coarse-grained network (Fig. 6.16, center),

is also at disorder level α.

The topological phase diagram obtained from RG is shown in Fig. 6.17a. It exhibits smaller

topological phases than the phase diagram observed in honeycomb networks with random

phase-link disorder (Fig. 6.8). The phase boundary is confirmed by looking at the number of

RG iterations needed for convergence into SF (Fig. 6.17b), whose local maxima indicates the

scale invariance of networks located at the phase transition. Albeit with a slightly different

topological range, the structure of the RG flow is very similar to the one found in the previous

section, and exhibits the same landscape of stable and unstable fixed points as in Fig. 6.9,

highlighting some for of critical universality between the two different kinds of disordered

networks.

6.7 Conclusion

We have presented a real-space renormalization group (RG) theory for unitary scattering net-

work models, which offers significant insights into the emergence of topological edge states

in large systems with strong distributed disorder. The method can reduce the microscopic

scattering processes occurring in any unitary network into a 3×3 unitary scattering attractor

that summarizes the key macroscopic scattering properties emerging at large scales. By intro-

ducing the block-scattering transformation, we focus on preserving key information about

transport chirality and reflection, smearing out microscopic fluctuations into a macroscopic

description of the scattering process. The combination of block scattering transformations
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Figure 6.17: RG topological phase diagram and flow diagram for networks under the
strongest structural disorder. a, Topological phase diagram obtained from RG, representing
the RG scattering attractor SF for all possible choices for the microscopic scattering matrix
in the parameter space. b, Corresponding number of RG iterations required to converge to
the attractor. c, RG flow diagram, showing the transformation of networks upon iterative
application of RG.

and the replica strategy was shown to lead to a numerically-efficient RG theory, capable of

handling simultaneously an arbitrary number of RG iterations while performing Monte-Carlo

simulations on disorder realizations. Our RG theory is capable of discerning between topolog-

ical and trivial disordered networks, since their correspond to distinct scattering attractors. Its

implementation on two types of disordered networks not only clarifies the necessary micro-

scopic conditions for constructing macroscopic topological networks, but also uncovers the

unique critical phenomena occurring at topological phase boundaries, as well as the physics

of disorder-resilient chiral edge transport. In addition, the quantitative accuracy of our RG

framework is demonstrated through an independent scaling analysis of the localization length

of quasi-1D networks, which predicts the same topological phase diagram as the RG theory,

with percent-level accuracy. As a by-product, we were able to elucidate the intricate critical

phenomena occurring at the transition between disordered topological and trivial insulators,

with critical exponents that take discrete values on the boundary, only changing at the RG flow

saddle points. Finally, these theoretical advancements are complemented by experimental

verifications performed on microwave scattering networks, which are consistent with the

calculated RG flow.
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7 Conclusion and outlook

7.1 Conclusions

In this thesis, we undertook a comprehensive exploration of topological scattering networks,

focusing specifically on unitary (Floquet) topology and the significant impacts of disorder.

These scattering networks are made of three-port non-reciprocal unitary scatterers intercon-

nected by bidirectional phase-delay links. Through a combination of theoretical analysis,

numerical simulations, and experimental validations, the conducted investigations revealed

the robustness of topological phases, particularly emphasizing the resilience of chiral transport

in anomalous Floquet insulators (AFI) against various types of distributed disorder.

Results summary

The journey began with a general introduction presenting the motivation of the thesis and

global aspects of topological insulators. Following up the introduction, we have assembled and

discussed in Chapter 2 practical and mutually consistent concepts, including band structures

for infinite and semi-infinite networks, transports and eigenstates in finite networks, scaling

analysis with localization length calculations, and topological scattering invariants, to be ready

to tackle the adventurous study of the topological properties of disordered network systems.

The major achievements of this thesis include:

1. Identification of Floquet topological bands in honeycomb scattering networks with

broken TRS, where phase-delay mirrors quasienergy. Their topological phase diagram

contains three phases: anomalous Floquet topological phase (AFI), Chern phase (CI),

and trivial phase.

2. Distinction between AFI and CI lies on the topological robustness against strong dis-

tributed disorder. Anomalous topological edge transports show superior robustness

over Chern edge states, under disorder in any type- disorder on phase-delay values

(randomized quasienergy), structural disorder (amorphism), and disorder on scattering
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nodes. Anomalous topological waves can persist against the strongest disorder on phase

delays and amorphism. These topological networks under strong disorder are of AFAI,

where topological edge states are ubiquitous in the quasienergy spectrum and bulk

states are fully localized. Such a phenomenon can only be understood in the Floquet

topology frame.

3. Findings are experimentally validated by photonic scattering networks operating in

microwave frequency bands by probing transports and scattering matrices. Various

types of disorders are implemented and examined. Topological invariants are measured

even in disordered networks by implementing a designated device realizing twisted

boundary conditions.

4. Definition of a real-space renormalization group (RG) driven by block-scattering trans-

formations on unitary scattering networks. Such a unified theory unveils the intricate

physical mechanisms behind the persistence of topological edge states in systems with

strong distributed disorder, substantiated by RG topological phase and flow diagrams.

The obtained critical probability distributions of microscopic scattering properties are

the boundary between AFAI and trivial Anderson insulators, which can be the guideline

for practically constructing topological networks. RG theory is further validated by scal-

ing analysis of the localization length (LL) and critical exponents, and experimentally

confirmed by building microwave scattering networks with fully disordered phase links.

7.1.1 Theoretical contributions

The theoretical framework developed in this manuscript has considerably contributed to

the understanding of topological robustness in scattering networks. In Chapters 3-5, by

implementing the analysis tools described in Chapter 2, we established the superior robustness

of the anomalous topological phase in unitary scattering networks. In addition, we have

evidenced the persistence of topological edge states within the anomalous topological phase,

even under severe disorder conditions, by developing a novel real-space RG approach. This

methodology not only diverges from traditional Hamiltonian renormalization techniques

but also provides practical guidelines for the design of robust topological photonic systems.

The critical probability distribution can serve as a guideline for the practical construction of

topological networks.

7.1.2 Experimental realizations and implications

The experimental aspect of this thesis not only validated the theoretical predictions, but also

demonstrated how topological invariants can be observed and measured in disordered net-

works. The implementation of the twisted boundary conditions via a specially designed device

played a key role in this achievement, enabling the direct observation of the topological prop-

erties. These experiments underline the practical potential of AFIs in real-world applications,

ranging from photonic devices to quantum computing platforms.
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7.2 Future directions

We now outline possible future directions for the presented work.

7.2.1 Applications: robust and versatile topological photonic manipulations

Traditionally, Chern insulators can be used to guide an edge mode between two domains

having different Chern numbers. However, when the disorder is larger than the band gap, such

insulators can be trivialized. In addition, changing Chern numbers require local control of the

external magnetic polarization (e.g., by reversing the magnetic field) [299–301]. Non-reciprocal

unitary scattering networks unlock opportunities to exploit the anomalous phase as an extra

degree of freedom, forming edge states at Chern-anomalous boundaries that do not require

a modification of the magnetic bias, but simply a contrast in the scattering properties. This

makes it possible to harness the rich topological features of Floquet systems, thus leveraging

non-reciprocal advantages for genuine back-scattering immune wave manipulations.

Figure 7.1: Wave routing with superior topological protection. By using domain walls be-
tween AFI (blue) and CI/trivial insulator (red), one can build dynamically reconfigurable
unidirectional photonic paths from any input to any output on a 2D photonic chip, despite
using a uniform magnetic bias.

As illustrated in Fig. 7.1, the first envisaged application is the topological routing of a given

wave. The essence of topological wave routing lies in the creation of a domain wall. On

either side of the boundary, network domains find themselves in gaps (band gaps or mobility

gaps) and have different gap invariants, the difference of which is exactly the number of

topologically protected edge states accommodated at the domain wall. The reconfigurability

of wave routing relies on the tunable phase-delay links or scatterers. Looking at the tuning of

the phase delay spectrum under a fixed phase delay band structure, the phase-delay links can

be adjusted in a first domain exactly in the trivial band gaps, while the phase-delays links are

maintained in the topological band gap in the other domain. This approach modifies the band

structure in a specific domain of the network, as illustrated in Fig. 5.3, resulting in a trivial
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Figure 7.2: Topological filters and multiplexers. Unidirectional filters and multiplexers may
find applications in protected communication systems. They can be based on topological
domain walls among anomalous, Chern, and trivial phases occurring in non-reciprocal scat-
tering networks.

band gap at a predetermined phase-delay value. Moreover, by taking advantage of the unique

effects of disorder on topological phase, disorder on phase-links or additional scatterers can

also be used to trivialize Chern networks, while maintaining the other domain of the network

in the anomalous phase.

Building on the fundamental functionality of topological waveguiding, Fig. 7.2 shows an

example of topological filters and multiplexers. Anomalous topological networks uniquely

allow the adjustment of local phases and impedance mismatches without disturbing the

unidirectional flow of energy, providing an ideal platform for engineering poles and zeros

in order to challenge traditional filter design paradigms, including the trade-offs between

performance and complexity.

Beyond traditional wave phenomena, the results and frameworks presented in this thesis also

offer promising future for topologically robust operations in quantum photonic networks

[177, 178, 302–305], as these networks are also constructed by multiple unitary scattering

processes. For instance, anomalous topological edge states can be harnessed to protect

entanglements [306], quantum information processing [307, 308], and communication [309,

310], against any disorder in the quantum networks [288, 311, 312]. Furthermore, in the realm

of quantum photonic networks, the experimental realization of arbitrary U (N ) operators is

essential to perform various state operations, for which the transfer matrix method proposed

by Reck et al [195] is widely used. It incorporates a 2N × 2N unitary scattering matrix S

with zero diagonal blocked matrices S(1 : N ,1 : N ) = 0 and S
[
(N +1) : 2N , (N +1) : 2N

]
= 0.

Consequently, the transfer matrix on the off-diagonal block T = S
[
1 : N , (N + 1) : 2N

]
can

be of U (N ) group. However, this approach depends heavily on the assumption that the

diagonal blocks of the matrices are zero, which implies the absence of reflections in Mach-
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Zehnder interferometers (MZI). A mathematical and physical question arises: "Is it possible to

implement arbitrary U (N ) operators within non-reciprocal scattering networks?". We believe

that a completely new parameterization of the U (N ) matrices will first be required, in order to

create the corresponding scattering network block by block.

7.2.2 Further explorations on network models

We focused during this thesis on 2D planar networks characterized by unitary scattering

processes. Generalizing the network models beyond these conditions opens new research

avenues. Firstly, although practical continuum structures are confined to 3D, network models

enable the exploration of higher-dimensional structures, by constructing appropriate con-

nections [313–315]. Non-reciprocal scattering networks allow us to study higher-dimensional

Floquet topological states and their localization properties. Since systems of different dimen-

sions exhibit distinct localization-delocalization transitions [316], it would be interesting to

unveil new disorder-induced phase transition phenomena in the higher dimensional non-

reciprocal networks. Alternatively, three phase-delay links in a unitcell can have independent

phase terms- ϕ1, ϕ2, andϕ3- which synthetically form a five-dimensional compact space for a

2D planar scattering networks [317–321]. Secondly, by keeping the positions and scattering

properties of scattering nodes, non-planar connections can be integrated into scattering

networks and can therefore potentially lead to topological phase transitions as they act as

disorder. For example, to model the practical radiation couplings between scatterers in a

given distance range, non-planar connections are placed among scatterers [322–324]. Finally,

breaking the unitary conditions opens the way to the exploration of the interplay between

non-Hermitian physics, Floquet topology, and non-reciprocal scattering, where intriguing

phenomena such as skin effect and exceptional points could be of research interest.

7.2.3 Disorder effects on topological phases for non-interaction electron and time-
driven systems

The history and motivations of scattering network models reveal two distinct trajectories: one

focuses on modelling disorder in non-interacting electron systems, while the other draws

parallels with Floquet topology. The interplay between unitary topological phases and various

types of disorder, as discussed through scattering network models in this thesis, offer the

possibility to elucidate the counter-intuitive effects of disorder in electronic systems. For

example, network models have recently been applied to explain flat bands in twisted bilayer

graphene (TBG) [325–329].

Returning to unitary topology, one of the most intriguing prospects for time-driven systems is

the further investigation of the Floquet topological robustness against disorder. The synergy be-

tween Floquet engineering and disorder unveils new avenues for discovering disorder-induced

topological phases, including the potential emergence of anomalous Floquet topological in-

sulators in highly disordered regimes. Understanding these phenomena could lead to the
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design of Floquet photonic systems that maintain topological edge states and functionalities

even under significant structural imperfections or environmental fluctuations. Currently, the

realm of disorder in time-driven systems [330, 331] and their topological phases [131, 132,

163–170] remain largely unexplored. In addition, the advancement of experimental tech-

niques to realize and manipulate disordered Floquet topological photonic systems is crucial.

Challenges include, but are not limited to, non-quantized transport, which is non-unitary due

to the frequency conversions induced by the time modulation, as well as the lack of platforms

capable of tuning various parameters in the time-driven mechanism, etc. The development of

versatile and programmable photonic platforms able to dynamically tune disorder and Floquet

parameters would indeed enable the experimental exploration of theoretical predictions and

practical applications of anomalous topological phase and AFAI in devices ranging from lasers

and sensors to communication technologies. In summary, observational studies of topological

time-driven photonic systems are still lacking, and their AFAI awaits for a suitable platform to

be probed.

7.2.4 Potentials for scattering RG theory

We believe that the proposed scattering-based RG is general and broadly extends a theoretical

toolbox that may find direct applications in network models used in condensed-matter and

disordered topological physics. In the longer term, we envisage that the block scattering

transformation introduced in this work may also be useful in the study and understanding of

large network models in communication systems, or in the development of physical neural

networks based on scattering. With our methodologies and numerical framework, a potentially

interesting future direction may be to explore other complex systems in the spirit of scattering,

by grid discretization into networks or even by developing a continuous form of scattering

RG that would address physical systems beyond networks. This could potentially unravel

new aspects of the intricate interplay between topology, disorder, and scaling. Practically,

conducting research in that direction would pave the way to the design of more resilient

and efficient devices in photonic, electromagnetic, and quantum computing networks, by

establishing disorder as a general degree of freedom instead of a hindrance in the management

and design of topological properties.

7.3 Conclusion

In this thesis, we systematically studied the interplay between unitary topology and disorder in

unitary non-reciprocal scattering networks through various but consistent analysis methods

designated for disordered networks. We theoretically unveiled and experimentally validated

the superior robust topological phase in unitary scattering networks, namely the anomalous

Floquet topological phase, and proposed a unified scattering-based RG theory for the determi-

nation of the topological properties in disordered unitary scattering networks. The knowledge

acquired here not only deepens our comprehension of topological matter but also paves the
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way for the development of robust and efficient electronic, photonic, and quantum devices.

As we venture into the future, I hope that the foundations laid by this work may inspire other

researchers on continued innovation and exploration in the fascinating interplay between

topological physics and disorder.
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A Density of states and skin distance
definitions

For a large enough network without external ports, we can obtain the density of states (DOS)

directly from the network spectrum (Details of spectrum discussion in Sec. 2.3.2). The density

of states DOS(ϕ) for a given phase delayϕ is defined as N (ϕ)/δϕ, where N (ϕ) is the number of

states whose eigenphases lie in the range [ϕ, ϕ+δϕ]. We can normalize DOS(ϕ) by the clean

limit one, DOS(ϕ0), for which ϕ0 lies in a topological band gap.

To identify the localization properties of an eigenstate |b〉, one can calculate its participation

ratio (defined in Eq. (2.30)). However, participation ratio cannot differentiate a localized

state in the bulk from an edge state. Therefore, we have to define a quantity called the skin

distance ds(|b〉), which captures the averaged position of an eigenstate |b〉. To define skin

distance, we first review the definition of node distance d(i , j ) between node i and node j in

the graph theory [203]: it is defined as the number of edges in a shortest path (also called a

graph geodesic) connecting them. After that, we define the skin distance ds(i ) of node i in the

network as the minimal distance between node i and all the boundary nodes:

ds(i ) = min
j

d(i , j )| j ∈ Set of boundary nodes. (A.1)

Taking the network in Fig. A.1 as an example, we can define skin distances of nodes going from

1 to the network thickness, i.e. 9 in this case. Skin distance ds = 1 corresponds to any node

on the boundary of the network while the highest value of ds , here ds = 9, corresponds to the

nodes at the center of the network. Then, we can define the skin distance of an eigenstate |b〉
as

ds(|b〉) =

∑
i ds(i )|bi |2∑

i |bi |2
, (A.2)

where bi is the amplitude of |b〉 at the port i . A state with a small (resp. large) skin distance

will be located in the vicinity of the boundary (resp. in the deep bulk).
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Chapter A Density of states and skin distance definitions

Figure A.1: Definition of the skin distance. We define the skin distance of a node in the
network by the minimal graph distance between the node and all the boundary nodes.
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B Distinction between frequency and
phase-delay (Floquet) band structures

In this part, we illustrate the distinction between frequency band structure and phase-delay

band structure in a scattering network. The phase-delay (Floquet) band structure is formed

at a single frequency, which implies that the network links should be scaled in length to vary

the value of ϕ. In the frequency band structure, the dispersion of both the phase links and

the scattering nodes plays a major role, since the length of the links are kept constant, but

the phase evolves as frequency is varied. Both points of view are valid, however only one of

them (the phase-delay band structure) is able to distinguish between Chern and anomalous

chiral edge states, and explain differences in robustness when distributed disorder is imparted.

Therefore, adopting the Floquet point of view leads to a more appropriate description of the

physics, by revealing the existence of the anomalous phase [19, 112, 123, 148].

Let us consider two non-reciprocal networks consisting of circulators. The dispersive scatter-

ing matrices of the circulators are modeled by coupled mode theory described by Eq. (2.21).

The circulators of these two networks are chosen with slightly distinct reflection coefficients |R|
at f = f0, and their resulting frequency band structures are shown in Fig. B.1 for |R f = f0 | = 0.24

(left), |R f = f0 | = 0.51 (right). A direct calculation of the Chern numbers for each frequency band,

in agreement with the computation of chiral edge states in the projected frequency spectrum

for a strip geometry with top and bottom edges (panels c and d of Fig. B.1), indicates that the

wave topology is supposed to be equivalent in these two networks. Indeed, the frequency point

of view cannot distinguish between a Chern and an anomalous insulator: Chern numbers

just count the number of edge states leaving and entering the bands in this frequency picture,

whereas at different frequency the phase-delay spectra can be of Chern or anomalous types.

To show the hidden physical difference between these two networks, strong phase or structural

disorder should be imparted. We evidence this by fixing the frequency in one of the frequency

gaps hosting a chiral edge state and performing the edge transmissions for finite networks

(Fig. B.2). When the amorphism becomes high enough (α = 8), only the edge state in the case

|R f = f0 | = 0.24 is preserved, while the chiral edge state for |R f = f0 | = 0.51 is destroyed and the

network is insulating. This unveils that these two networks actually correspond to two distinct

topological phases from the Floquet point of view, which are not resolved by their frequency
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spectrum, but only by their phase-delay spectrum (Fig. B.3). Indeed, the case |R f = f0 | = 0.51

corresponds to a phase-delay Chern regime while |R f = f0 | = 0.24 corresponds to a phase-delay

anomalous regime, although both correspond to a frequency Chern phase.

Figure B.1: Frequency band structures of our networks in the clean limit. a, b, Bulk frequency
band structures for two different reflection coefficients |R| = 0.24 (a) and |R| = 0.51 (b) that
characterize the circulators at frequency f0. We calculate the corresponding Chern number C
for each bulk band. Two cases have the same Chern number for any band. We mark the region
to blue or red as when we look at the phase delay band structure. c, d, Ribbon band structures
for |R| = 0.24 (c) and |R| = 0.51 (d)
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Figure B.2: Field maps of wave transmissions in the clean limit (α = 0) and fully amorphous
regime (α = 8) for |R| = 0.24 and |R| = 0.51 at f = f0. We can distinguish two networks in
the same frequency Chern bands by introducing strong amorphous disorder. Only network
built by |R f = f0 | = 0.24 survives with a unidirectional edge state, attributed to its anomalous
topological phase.
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Figure B.3: Phase-delay spectra for |R| = 0.24 and |R| = 0.51 at f = f0. a, b, Bulk phase-delay
band structures for two different reflection coefficients |R| = 0.24 (a) and |R| = 0.51 (b) at
frequency f0. We calculate the corresponding Chern number C for each bulk band and gap
invariant Wg ap for each gap. Two cases have the same Chern number for any band. We mark
the region to blue or red as when we look at the phase delay band structure. c, d, Ribbon
phase-delay band structures for |R| = 0.24 (c) and |R| = 0.51 (d).
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C Unitarity of Spr obe upon invertible
Cnet −Snet

Here, we prove the unitarity of the external network scattering matrix Spr obe defined in Eq.

(2.38) when the matrix Cnet −Snet is invertible, as claimed in Sec. 2.3.1. We recall that S is a

(N +N0)× (N +N0) unitary matrix, and C is a N ×N unitary matrix. For simplicity, let us call

Cnet as C , Sext as S1, Sout as S2, Si n as S3, and Snet as S4. Therefore, we represent S in the

form of block matrix as S =

[
S1 S2

S3 S4

]
, where S1 and S4 are N0 ×N0 and N ×N square matrices,

respectively.

Claim: If C −S4 is invertible, the N0 ×N0 square matrix Spr obe = S1 +S2(C −S4)−1S3 is unitary.

Proof: From the unitarity of S: S†S = I (I is the identity matrix), we get

S†
1S1 +S†

3S3 = I

S†
2S2 +S†

4S4 = I

S†
1S2 +S†

3S4 = 0

S†
2S1 +S†

4S3 = 0

(C.1)

The spirit of the proof is to replace S1 and S2 matrices by S3, S4 and C matrices. When gather-

ing the terms of S†
pr obe Spr obe , we hope that they finally cancel each other to eventually yield I.
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S†
pr obe Spr obe =

[
S†

1 +S†
3(C † −S†

4)−1S†
2

][
S1 +S2(C −S4)−1S3

]
= S†

1S1 +S†
1S2(C −S4)−1S3 +S†

3(C † −S†
4)−1S†

2S1

+S†
3(C † −S†

4)−1S†
2S2(C −S4)−1S3

= I−S†
3S3 −S†

3S4(C −S4)−1S3 −S†
3(C † −S†

4)−1S†
4S3

+S†
3(C † −S†

4)−1(I−S†
4S4)(C −S4)−1S3

= I−S†
3

[
I+S4(C −S4)−1 + (C † −S†

4)−1S†
4

− (C † −S†
4)−1(I−S†

4S4)(C −S4)−1]S3

= I−S†
3

[
I+S4(C −S4)−1 + (C † −S†

4)−1S†
4

+ (C † −S†
4)−1S†

4S4(C −S4)−1 − (C † −S†
4)−1(C −S4)−1]S3

= I−S†
3

{[
I+ (C † −S†

4)−1S†
4

][
I+S4(C −S4)−1]

− (C † −S†
4)−1(C −S4)−1

}
S3

= I−S†
3

{[
(C † −S†

4)−1C †][C (C −S4)−1]
− (C † −S†

4)−1(C −S4)−1
}

S3

= I

Q.E .D.

(C.2)
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D Recovery of one S ′ ∈ U (3) from 3 by 3
non-negative matrix ES

In the Sec. 6.3.1, we replace a large unitary matrix S ∈U (M) to a much smaller one, S′ ∈U (3).

As discussed in Sec. 6.3.1, we first blocklize S into Eq. (6.1), then utilize Landauer-Büttiker

formalism and averaged reflections, and finally obtain a non-negative 3×3 matrix ES . This part

bridges the gap between ES and a unitary 3×3 matrix S′.

As the key step of transformation from S ∈U (M) to S′ ∈U (3) in the block-scattering transfor-

mations (Sec. 6.3.1), we now elucidate the approach of recovering one corresponding unitary

matrix S′ from non-negative matrix ES , by keeping the information of nonreciprocity and

reflection. As indicated by the recovery of quark-mixing matrix from the experimental data

[196, 197], the prerequisite of the U (3) matrix recovery is a double stochastic matrix ADS ,

defined as

ADS(i , j ) ≥ 0,
3∑

i =1
ADS(i , j ) = 1,

3∑
j =1

ADS(i , j ) = 1, (D.1)

which forms Birkhoff’s polytope. The matrix AU with AU (i , j ) :=
∣∣S′(i , j )

∣∣2, defined as the

energy part of a unitary matrix S′, belongs to the set of double stochastic matrices {ADS}.

As a result, our recovery contains two steps. Firstly, with ES in Eq. (6.5), we obtain the

corresponding ADS . Secondly, with the recovery method from CKM parameterization [197],

we transform ADS into a desired unitary matrix S′.

For the first step, as there are three variables A1, A2, and A3 in ES and six equations from

double stochastic matrices, we form underdetermined system of equations

M A⃗ = R⃗. (D.2)
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where

M =



1 0 N R2
13

N R2
21 1 0

0 N R2
32 1

N R2
21 0 1

1 N R2
32 0

0 1 N R2
13


, (D.3)

A⃗ =

A2
1

A2
2

A2
3

 , R⃗ =



1−R2
1

1−R2
2

1−R2
3

1−R2
1

1−R2
2

1−R2
3


. (D.4)

To minimize the differences min
A⃗

∥M A⃗− R⃗∥, we adopt the ordinary least square solution

A⃗a = (M †M)−1M †R⃗. (D.5)

With A⃗a , we define the energy part of new matrix ES |A⃗=A⃗a
as AE

AE (i , j ) := |ES |A⃗=A⃗a
(i , j )|2. (D.6)

Due to the underdetermined property, AE in most instances is not a double stochastic matrix,

but much close to ADS . Therefore, we do perturbations on AES by a perturbation matrix

ϵ, which satisfies AE − ϵ ∈ {ADS}. To keep the information of nonreciprocity and reflection,

perturbation matrix ϵ should be small enough. As a result, we reshape the goal into a simple

optimization problem:

min
ϵ

∥ϵ∥2 (D.7)

s.t . AE −ϵ ∈ {ADS}. (D.8)

With the solved ϵa , we reach one ADS corresponding to ES .

In the second step, since CKM matrix SC K M is parameterized by c12 c13s12 s12s13

c23s12 −c12c13c23 −e iδs13s23 −c12c23c13 +e iδc13c23

s12s23 c23s13e iδ− c12c13s23 −c13c23e iδ− c12s13s23

 , (D.9)

where ci j = cosθi j , si j = sinθi j , three angle θ12,θ13,θ23 along with one phase δ are parame-

ters to be determined by ADS . For simplicity, we define a :=
p

ADS(1,1),b :=
p

ADS(1,2),c :=
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p
ADS(2,1), and d :=

p
ADS(2,2).

After that, the four parameters are recovered by [197]

cosθ12 = a (D.10)

cosθ13 =
bp

1−a2
(D.11)

cosθ23 =
cp

1−a2
(D.12)

and

cosδ =
−(1−a2)2(1−d 2)

2abc
p

1−a2 −b2
p

1−a2 − c2
+ (1−a2)(b2 + c2)−b2c2(1+a2)

2abc
p

1−a2 −b2
p

1−a2 − c2
. (D.13)

In a few cases, cosδ > 1/ < −1, we can choose δ = 0/π solution. In practical, the averaged

perturbation of ∥ϵ∥2 is less than 0.05.
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