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Abstract

In this thesis, we propose to formally derive amplitude equations governing the weakly

nonlinear evolution of non-normal dynamical systems, when they respond to harmonic or

stochastic forcing, or to an initial condition. This approach reconciles the non-modal nature

of these growth mechanisms and the need for a centre manifold to project the leading-order

dynamics. Under the hypothesis of strong non-normality, small operator perturbations suffice

to make singular the inverse of the operator which is relevant to the considered problem.

The adjective “small” is relative to the choice of an induced norm, under which the operator

induces a large input-output amplification. Such operator perturbation can be encompassed

in a multiple-scale asymptotic expansion, closed by a standard compatibility condition. The

resulting amplitude equations are tested in parallel and non-parallel two-dimensional flows,

where they bring insight into the weakly nonlinear mechanisms that modify the gains as we

increase the amplitude of the harmonic or stochastic forcing, or that of the initial condition

Key words: Instability, Nonlinear Dynamical Systems.
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Résumé

Dans cette thèse, nous procédons à la dérivation formelle d’équations d’amplitude gouvernant

l’évolution faiblement nonlinéaire de systèmes dynamiques non-normaux, lorsqu’ils sont

sujets à un forcage harmonique ou stochastique, ou à une condition initiale. Notre approche

réconcilie la nature non-modale des mécanismes d’amplifications, avec la nécessité d’une

variété centrale sur laquelle projeter la dynamique à l’ordre dominant. Sous hypothèse de forte

non-normalité, une petite perturbation suffit à rendre singulier l’opérateur pertinent pour le

problème considéré. L’adjectif "petite" réfère ici au choix d’une norme induite, selon laquelle

l’opérateur provoque une forte amplification entrée-sortie. Une telle perturbation d’opérateur

peut être incorporée dans une expansion à échelles multiples, fermée par l’alternative de

Fredholm. Les équations d’amplitude résultantes sont testées sur des écoulements fluide en

deux dimensions, parallèles ou non. Il permettront d’interpréter les mécanismes faiblement

nonlinéaire à l’origine de la modification des gains tandis que nous augmentons l’amplitude

des forçages harmonique ou stochastiques, or celle de la condition initiale.

Mots clés : Instabilité, Systèmes Dynamiques Nonlinéaires.
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Riassunto

In questa tesi si propone la derivazione formale di equazioni di ampiezza che governano

l’evoluzione debolmente non lineare di sistemi dinamici non normali soggetti a una forzante

armonica o stocastica o a una condizione iniziale. L’approccio considerato concilia la natura

non modale dei meccanismi di amplificazione con la necessità di una varietà centrale su cui

proiettare la dinamica all’ordine dominante. Nell’ipotesi di non normalità forte, è sufficiente

una piccola perturbazione per rendere singolare l’operatore rilevante per il problema trattato.

L’aggettivo "piccola" è relativo alla scelta di una norma indotta, per la quale l’operatore pro-

duce una grande amplificazione tra ingresso e uscita. Tale perturbazione dell’operatore può

essere incorporata in un’espansione multi-scala, chiusa dall’alternativa di Fredholm. Le equa-

zioni dell’ampiezza risultanti vengono testate su flussi bidimensionali paralleli e non-paralleli,

in modo da interpretare i meccanismi debolmente non lineari che modificano i guadagni

all’aumentare dell’ampiezza delle forzanti armoniche o stocastiche o delle condizioni iniziali.

Parole chiave: Instabilità, Sistemi Dinamici Nonlineari.
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1 Introduction

Fluid flows have proven to be of considerable phenomenological richness, including pattern

formation, spatiotemporal chaos, turbulence, and many others. The will to order these

phenomena in a comprehensive analysis framework progressively has led to what is known

today as the hydrodynamic stability theory. Over the years, this theory has benefited from

theoretical and numerical advances in mathematics, particularly in the fields of linear algebra,

partial differential equations, and dynamical systems. Many observed phenomena could

thus find at least a partial explanation by characterising the linear response of the Navier-

Stokes equations to infinitesimally small disturbances, in a quiet surrounding or under a

sustained forcing. Such linear response, however, has sometimes proven to be too simplistic,

and substantial progress has been made in extending the hydrodynamic stability theory to

fully nonlinear regimes.

In this introductory part, we propose a review of some concepts stemming from the hy-

drodynamic stability theory, and that have been necessary in constructing this thesis. We

mostly focus on linear and weakly nonlinear techniques, but also give some elements of fully

nonlinear extensions.

1.1 Linear dynamics with nonlinear consequences

We consider the situation of a fluid flow in a spatial domain Ω, of dimension two or three. Its

velocity field U (x , t ) is governed by the incompressible Navier-Stokes equations

∂tU = −(U ·∇)U −∇p +Re−1∆U +F , subject to U (x ,0) = U 0(x), (1.1)

where p(x , t ) is the pressure field, F (x , t ) is some body forcing, and Re is the Reynolds number,

built on relevant length and velocity scales. Because of the (hypothetical) incompressibility of

the flow, the pressure field is such that the velocity field is divergence-free

∇·U = 0. (1.2)
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Chapter 1 Introduction

Both pressure and velocity fields are linked through a linear Poisson equation. Therefore, it is

understood in (1.1) that p = p[U ] (the brackets for a functional dependency) and (1.2) will not

be written explicitly in what follows. For the problem to be well-posed, appropriate boundary

conditions must be appended at the domain boundary, noted ∂Ω.

A relevant starting point in analyzing the phase space trajectories of (1.1), is to compute

exact solutions by enforcing simplifying symmetry in time and/or in space. These solutions

include exact invariant states, also called exact coherent states, which encompass equilibrium

states (fixed points and traveling waves) and periodic orbits. Often determined numerically,

invariant states correspond to generally non-trivial flow structures that may be relevant in that,

locally in the phase space, the full trajectory may project well on their associated manifolds

and/or non-normal optimal responses. To illustrate this, let us develop in this introductory

part the case of the linearized dynamic around a fixed point.

In the case of a steady body forcing F (x , t) = F b(x) in (1.1), a fixed point, also called "base

flow", solution U b(x) solves

0 = −(U b ·∇)U b −∇p +Re−1∆U b +F b. (1.3)

We assume such a solution to be accessible, at least numerically and with good accuracy, using

for instance the Newton method. The dynamics of an infinitesimal perturbation u to the base

flow, externally excited by an infinitesimal perturbation f to the body forcing, and initialized

by an infinitesimal perturbation u0 to the initial condition, is governed by

∂t u = Lu + f , subject to u(x ,0) = u0(x). (1.4)

This system is equipped with appropriate boundary conditions on u, and L is a linear operator

acting on u according to

Lu = −(u ·∇)U b − (U b ·∇)u −∇p +Re−1∆u. (1.5)

The operator L is defined over the Hilbert space L2(Ω). The field u must belong to the said

"domain" of L, a function space denoted D(L) ⊆ L2(Ω), which is characterized by boundary

and appropriate regularity conditions on u. These latter for instance consist of requiring u to

belong to the C 2(Ω) function space, as a consequence of the presence of the Laplacian in (1.5),

and generically make D(L) more restrictive than L2(Ω).

The operator L is sometimes referred to as the "direct" linearized evolution operator or more

simply the linearized evolution operator. Owing to the independence of L with respect to time,

the formal solution to (1.4) can be written as

u(x , t ) = eLt u0(x)+eLt
∫ t

0
e−Ls f (x , s)ds, (1.6)

the linear operator eLt being the operator exponential of Lt . It is also called the "propagator"

2



Introduction Chapter 1

for, in the absence of forcing in (1.6), eLt would directly map the initial condition onto its

evolution at time t .

When u was introduced as a "perturbation" to the base flow, we implicitly referred to a size

measure without specifying it. This specific measure of u must be much smaller than the one

of U b for the former to be considered as a perturbation to the latter, thereby for (1.4) to hold. A

natural choice of measure is the norm induced by the L2 inner product for continuous and

generally complex-valued functions on Ω, writing

〈ua |ub〉 =
∫
Ω

uH
a ubdΩ, (1.7)

the superscript "H" designating the Hermitian transpose. In this manner, 〈u|u〉 is directly pro-

portional to the kinetic energy of the disturbance field. The perturbation could be measured

by other norms, although, for this specific thesis work, this norm must be induced by an inner

product. In other terms, in this thesis, all fields are required to belong to a Hilbert space. This

is more restrictive than solely requiring them to belong to a Banach space and precludes, for

example, the use of Lp norm with p ̸= 2.

The choice of an inner product makes possible the construction of the adjoint operator of L,

denoted L†, and being such that

〈Lu|v〉 .
=

〈
u

∣∣∣L†v
〉

, ∀u ∈D(L), v ∈D(L†). (1.8)

The function space D(L†) ⊆ L2(Ω) is the domain of the operator L† and contains appropriate

boundary regularity conditions on the adjoint field v . The adjoint operator L† is determined

upon performing integration by part of the term at the left-hand side in (1.8). The arising

boundary terms, when they do not vanish thanks to the boundary conditions on u, are can-

celed by enforcing appropriate boundary conditions on v . Together with regularity conditions,

this fully characterizes the domain D(L†), provided the latter is chosen as large as possible.

The domain of the adjoint operator D(L†) need not be the same as the domain of the direct

one D(L), particularly because different boundary conditions may need to be imposed on the

direct and adjoint fields. The adjoint of the operator L in (1.5), under the inner product (1.7),

is such that

L†u† = (U b ·∇)u† − (∇U b)T u† − (U b ·∇)u† +∇p† +Re−1∆u†, u† ∈D(L†), (1.9)

and where p† is such that u† is divergence-free. The following terminology is recalled

• L is said to be "self-adjoint" if and only if L = L† (where the equality also implies D(L) =

D(L†)). Equivalently, L is self-adjoint if and only if D(L) = D(L†) and
〈

Lg
∣∣h〉

=
〈

g
∣∣Lh

〉
,

∀g ,h ∈D(L) = D(L†).

• L is said to be "normal" if and only if LL† = L†L (where the equality also implies that the

domains are equal). Equivalently, L is normal if and only if D(L) = D(L†) and
〈

Lg
∣∣Lh

〉
=

3



Chapter 1 Introduction

〈
L†g

∣∣L†h
〉

, ∀g ,h ∈D(L) = D(L†).

• L is said to be "non-normal" if and only if LL† ̸= L†L, either because the domains differ, or

D(L) = D(L†) holds but there exist at least one pair (g ,h) such that
〈

Lg
∣∣Lh

〉 ̸= 〈
L†g

∣∣L†h
〉

,

for g ,h ∈D(L) = D(L†).

Note that a self-adjoint operator is necessarily normal, but the reciprocal is not true. From

this classification follows properties concerning the eigenmodes and eigenvalues of the direct

and adjoint operators. We assume the spectra of L and L† not to contain a continuous part,

and denote q i ∈D(L) (with ||q i || = 1) the eigenmode of the operator L. It is associated with an

eigenvalueσi , which possesses the i th largest real part of all, such that Lq i =σi q i . Accordingly,

we denote q †
i ∈D(L†) (with ||q †

i || = 1) the eigenmode of the operator L†. It is associated with

the eigenvalue σ∗
i ("∗" the complex conjugation), such that L†q †

i =σ∗
i q †

i . Indeed, if we denote

instead by κi the eigenvalues of the adjoint operator, then we have

Lq i =σi q i ⇒
〈

q †
i

∣∣∣Lq i

〉
=σi

〈
q †

i

∣∣∣q i

〉
⇔〈

L†q †
i

∣∣∣q i

〉
=σi

〈
q †

i

∣∣∣q i

〉
⇔

κ∗i
〈

q †
i

∣∣∣q i

〉
=σi

〈
q †

i

∣∣∣q i

〉
, ∀i ,

(1.10)

thereby it is clear the eigenvalues of the adjoint operator must be the complex conjugates of

the eigenvalues of the direct one.

• If L is self-adjoint, thenσi ∈R, ∀i and the eigenmodes of L constitute an orthonormal set

under the inner product (1.7), i.e.
〈

q i

∣∣∣q j

〉
= δi j . In addition, q i also is the eigenmode

of L† associated with an eigenvalue σ∗
i , implying that for each i holds q †

i = q i .

• If L is normal, the properties mentioned above for the self-adjoint case also hold at

the only difference that eigenvalues and eigenmodes are generally complex, σi ∈C, ∀i

(which doesn’t affect the orthonormality property).

• If L is non-normal, σi ∈C, ∀i , and the eigenmodes do not form an orthogonal set under

the inner product (1.7). Furthermore, for each i the adjoint eigenmode q †
i is generally

different from q i .

In all cases, a bi-orthogonality property between the direct and adjoint eigenmode〈
q †

i

∣∣∣q j

〉
= 0 if i ̸= j . (1.11)

More generally if a mass matrix M had been included in the eigenvalue problem, specifically

if we had had instead Lq i = σi M q i and L†q †
i = σ∗

i M q †
i , then the bi-orthogonality property

would have become
〈

q †
i

∣∣∣M q j

〉
= 0 if i ̸= j .

4
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Figure 1.1: Cross-wise velocity distribution (left) for the leading eigenmode q 1 of the linearized
Navier-Stokes operator (1.5) corresponding to the two-dimensional cylinder flow at Re =
46.6 and (right) its associated leading adjoint eigenmode q †

1. Only the real parts are shown.
Reproduced form Sipp and Lebedev (2007).

The specification of the domain of the operators is essential in determining if L is normal or

not. First because if D(L) ̸= D(L†), due for instance to different boundary conditions on the

direct and adjoint fields, L must be non-normal. Indeed, it is not possible to have equality

between direct and adjoint eigenmodes if they are subject to different boundary conditions.

In addition, even in the configuration where D(L) = D(L†), the operator L could be normal in

an unbounded domain but non-normal in a bounded one. The boundary conditions would

then act as a source of non-normality. To illustrate this, Trefethen and Embree (2005) (in § 12)

proposes the example of the advection-diffusion operator Lu = u′′+u′, whose domain is the set

of functions in L2([0,1]) with absolutely continuous derivative and subject to u(0) = u(1) = 0; it

is easily shown that L†u = u′′−u′ and D(L) = D(L†). Thereby
〈

L f
∣∣Lg

〉−〈
L† f

∣∣L†g
〉

= 2
〈

f ′′∣∣g ′〉+
2
〈

f ′∣∣g ′′〉 = 2[ f ′g ′]1
0 for f , g ∈D(L) = D(L†). This last boundary term would be null in an infinite

domain (replacing [0,1] by ]−∞;∞[) for all the functions f , g , and their derivatives must

vanish at infinity, thereby making the operator L normal. However, this boundary term has no

reason to be null on a bounded domain, which makes L non-normal.

The linearized Navier-Stokes operator in (1.5) is generally non-normal under the inner product

(1.7) whenever the base flow U b is non-zero. That is because the sign of the term representing

the advection of the perturbation by the base flow has been reversed in (1.9) with respect to

(1.5). Consequently, the direct and adjoint eigenmodes present different spatial support, for

they have been advected in opposite directions. As an illustration, we reproduce from Sipp

and Lebedev (2007) in figure 1.1 the leading eigenmode q 1 of L and its associated adjoint

mode q †
1, for the cylinder wake flow at Re = 46.6. If the direct eigenmode presents oscillations

in the far wake, the adjoint eigenmode is concentrated upstream and in the separating shear

layer at the cylinder boundary. Clearly, q 1 and q †
1 are not identical (in fact they project very

poorly on each other), which indicates that the operator L must be non-normal.

The non-normality of the linearized Navier-Stokes operator has numerous and important

consequences for the flow dynamics (Chomaz, 2005; Kerswell, 2018; Reddy & Henningson,

1993; Schmid & Henningson, 2001; Trefethen et al., 1993). Some of them will be briefly recalled

in the following lines. Nonetheless, it is important to realize that the degree of non-normality of

5
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an operator depends on the choice of the (induced) norm. That is because the characterization

of non-normality involves the adjoint operator. In the context of plane parallel shear flows,

Heifetz and Methven (2005) have shown a certain measure of the flow non-normality differs

if the adjoint is constructed under the inner product (1.7), or if it is under another inner

product inducing the enstrophy norm (L2 norm of the vorticity). In what follows, only the

non-normality with respect to the energy inner product (1.7) will be discussed.

1.1.1 Response to an initial perturbation

The following section focuses on the flow response to an initial perturbation in a perfectly

quiet surrounding, where the forcing term f is null in (1.6). In other terms, we will study the

behavior of the solution

u(x , t ) = eLt u0(x), (1.12)

in the most general case where L is non-normal. Assuming that L is diagonalizable and that its

eigenmodes q i form a complete basis of D(L) (i.e. every function in D(L) can be represented

as a linear combination of the eigenmodes), we define the operator P

P =
[

q 1, q 2, ...
]

, and its inverse P−1 =



〈
q †

1

∣∣∣•〉〈
q †

1

∣∣∣q 1

〉〈
q †

2

∣∣∣•〉〈
q †

2

∣∣∣q 2

〉
...

 , (1.13)

where the operator
〈

g
∣∣•〉 applied to some h reads

〈
g
∣∣h〉

. In other terms,
〈

g
∣∣•〉 ≡ 〈g | in the

quantum mechanics formalism. The expression of P−1 in (1.13) follows directly from the

bi-orthogonality of the direct and adjoint eigenmodes

P−1P =



〈
q †

1

∣∣∣q 1

〉
〈

q †
1

∣∣∣q 1

〉
〈

q †
1

∣∣∣q 2

〉
〈

q †
1

∣∣∣q 1

〉 . . .〈
q †

2

∣∣∣q 1

〉
〈

q †
2

∣∣∣q 2

〉
〈

q †
2

∣∣∣q 2

〉
〈

q †
2

∣∣∣q 2

〉 . . .

...
...

. . .

 =


1 0 . . .

0 1 . . .
...

...
. . .

 , (1.14)

which indeed is the identity operator with domain D(L). In addition

PP−1 =
∑

j
q j

〈
q †

j

∣∣∣•〉〈
q †

j

∣∣∣q j

〉 , (1.15)
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which also must correspond to the identity operator since the eigenmodes q i constitute a

complete basis of D(L). By introducing the diagonal operator

Λ =


σ1

σ2

. . .

 , (1.16)

(σi the eigenvalues of L) such that L = PΛP−1 thus eLt = PeΛt P−1, the solution (1.12) re-writes

u = PeΛt P−1u0 =
∑

j
q j eσ j t

〈
q †

j

∣∣∣u0

〉
〈

q †
j

∣∣∣q j

〉 . (1.17)

It is associated with a kinetic energy

||u||2 =
∑

j
e2ℜ(σ j )t

∣∣∣〈q †
j

∣∣∣u0

〉∣∣∣2

∣∣∣〈q †
j

∣∣∣q j

〉∣∣∣2 +∑
j

∑
k ̸= j

e(σ∗
j +σk )t

〈
q †

j

∣∣∣u0

〉∗〈
q †

k

∣∣∣u0

〉
〈

q †
j

∣∣∣q j

〉∗〈
q †

k

∣∣∣q k

〉 〈
q j

∣∣∣q k

〉
︸ ︷︷ ︸

=0 if L is normal or if u0 = q i .

.
(1.18)

We further discuss the temporal evolution of ||u||2 making an important distinction between

the asymptotic and the finite-time regimes.

Asymptotic response

As a consequence of the exponential dependencies, the kinetic energy in (1.18) is dominated by

the term corresponding to the eigenvalue with the largest real part in the regime t →∞. This

corresponds toσ1 (as well asσ2 if we haveσ2 =σ∗
1 ). Supposing ℜ(σ1) >ℜ(σ2) (the conclusions

drawn below being easily generalizable if ℜ(σ1) = ℜ(σ2)), expression (1.18) reduces to

||u||2 ∼ e2ℜ(σ1)t

∣∣∣〈q †
1

∣∣∣u0

〉∣∣∣2

∣∣∣〈q †
1

∣∣∣q 1

〉∣∣∣2 as t →∞, (1.19)

thereby the kinetic energy of the linear perturbation eventually evolves exponentially at a rate

2ℜ(σ1).

• If ℜ(σ1) < 0, the perturbation eventually vanishes (||u||2 → 0) and the fixed point U b is

then said to be "linearly stable" or to be an "attractor". In other terms, any trajectory

initiated or passing sufficiently close to U b will end up at U b from the direction given by

q 1. Quantifying how small should the perturbation be for the trajectory to end up at U b

eventually amounts to computing the basin of attraction of U b, for which nonlinearities

have to be reintroduced.
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Figure 1.2: Selected example of emerging unsteadiness in fluid flow. Frames (a) and (b) show
experimental visualizations of single double helical vortex breakdown modes from Sarpkaya
(1971) and Escudier and Zehnder (1982), respectively. Frames (c) and (d), reproduced from
Meliga et al. (2012), imitate an experimental dye visualization and show numerically computed
dye lines transported from an analytic solution; the latter consists of a superposition of the base
flow U b and the linearly unstable mode multiplied by an amplitude determined analytically.
Frames (e) and (f) are alternative representations to (c) and (d), respectively, and depict an
isosurface of azimuthal vorticity.

• If ℜ(σ1) > 0, the linear perturbation eventually grows exponentially and the fixed point

U b is then said to be "linearly unstable". In other terms, any trajectory initiated or

passing sufficiently close to U b (but not at U b exactly) will eventually deviate from it

exponentially following the direction given by q 1. The linear perturbation u ultimately

reaches a critical size where it can’t be considered a perturbation anymore, thereby

nonlinearities can’t be neglected rigorously and have to be taken into account.

Whenever σ1 evolves from ℜ(σ1) < 0 to ℜ(σ1) > 0 (i.e. crosses the real axis), by changing

the external parameter intervening in the operator, is called a "bifurcation". Whereas

the nonlinear dynamics subsequent to the instability still bear symptoms of q 1, in terms

for instance of frequency or structure, is found to be without a general answer. As will

become clear in section 1.2, it depends on the nature of the bifurcation and on the

distance to the latter in the parameter space. In the configuration where a complex

conjugate pair of eigenvalues is unstable σ1 = σ∗
2 , it is possible that the nonlinear dy-

namics reaches a limit cycle at a prescribed frequency close to ℑ(σ1). The associated

flow topology could qualitatively match the structure of the complex unstable eigen-

mode. This scenario, although far from being generic, is illustrated in figure 1.2. In this

figure, the superposition of the base flow and the real part of the linearly most unstable

mode, multiplied by an amplitude determined analytically through weakly nonlinear

considerations (Meliga et al., 2012), shows qualitative agreement with experimental

visualizations (Escudier & Zehnder, 1982; Sarpkaya, 1971).

Note that a fixed point might still be relevant in the flow dynamics despite its linearly

unstable nature. One of the reasons is that the dimension of the unstable manifold

often is significantly lower than the dimension of the stable one; therefore a trajectory

could still spend a lot of time in the vicinity of U b, in which case the latter would

have a signature in the whole flow statistics in case of a chaotic dynamics. Another

8
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reason is that the unstable manifold tangent to q 1 in the linear regime could follow a

homo/heteroclinic orbit, which would cause the nonlinear trajectory to return to U b

cyclically.

However, even if a trajectory is initiated sufficiently close to U b, it is possible that the

exponential growth along q 1 is not observed. The reason is that, as will be elaborated

further in a moment, the double-sum term in (1.18) can’t be neglected if L is non-normal.

In fact, it may lead to transient algebraic growth of u sufficient for nonlinearities to set

in, thus for (1.18) to lose its validity even before the exponential term in contains has

time to declare.

• If ℜ(σ1) = 0, the present linear theory does not conclude as to the stability of the equi-

librium, and U b is said to be "linearly neutral". The associated neutral eigenmode q 1

is nevertheless essential in the construction of the center manifold (Guckenheimer &

Holmes, 1983), as we shall develop shortly in section 1.2.

It can be deduced from (1.19) that, in the limit t →∞, the kinetic energy of the perturbation

is maximized by selecting u0 = q †
1. Thereby, the adjoint eigenmode q †

1 can be interpreted

intuitively as the optimal manner to excite the direct eigenmode q 1. Accordingly, selecting〈
q †

1

∣∣∣u0

〉
= 0 guarantees that the asymptotic behavior of ||u||2 is not ∝ e2ℜ(σ1)t but contains

only exponential of lower growth rate or larger decay rates.

In the rest of this document, whenever the adjectives "stable", "unstable" or "neutral" are

used, they will systematically refer to linear stability analysis. Furthermore, we insist that it

characterizes a behavior that is asymptotic in time, whereas we argue thereafter that the finite

time behavior might be just as relevant if L is non-normal.

Finite time response

Coming back to expression (1.18) for the kinetic energy of the linear perturbation, the double-

sum term is identically null if L is normal; that is because
〈

q i

∣∣q k

〉
= δi k , which cancels when

summed over k ̸= j . It is also null in the specific case where u0 is purely along one of the

eigenmodes, for, by construction, dynamics initiated along an eigenmode remain along it. In

these cases, ||u||2 decays monotonously if ℜ(σ1) < 0, for it is the sum of decaying exponentials

pondered by positive coefficients.

However, precisely because the eigenmodes do not form an orthonormal set, the double sum

term in (1.18) generally is non-zero if L is non-normal (and if u0 projects over more than one

eigenmode). Thenceforth, since the coefficients multiplying the terms ∝ e(σ∗
j +σk )t can be

negative, their decreases can imply the energy ||u||2 to grow algebraically fast at finite times.

Algebraic growth means that it remains bounded by a low degree polynomial in t . Eventually,

the exponential behavior mentioned in the previous section takes over if the linearization is

still valid. This phenomenon is referred to as "transient growth".
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Figure 1.3: Schematic representation of the decomposition of an initial condition u0 in the
eigenbasis of a matrix L, in the scenario where L is a 2×2 non-normal matrix with real and
eigenvalues. Red arrows are direct eigenvectors whereas green arrows are adjoint eigenvectors.
Blue arrows are u0 (full) and its decomposition (dotted) in the eigenbasis. Black arrows are the
solution u(t ) as some consecutive times.

Let us illustrate it with a simple example, in the spirit of that proposed in Chomaz (2005). If L

is a 2×2 matrix with purely real and stable eigenvalues, the perturbation u represented in the

eigenbasis in (1.17) reduces to

u = q 1eσ1t

〈
q †

1

∣∣∣u0

〉
〈

q †
1

∣∣∣q 1

〉 +q 2eσ2t

〈
q †

2

∣∣∣u0

〉
〈

q †
2

∣∣∣q 2

〉 . (1.20)

This representation is sketched in figure 1.3 for t = 0. Since L is non-normal, q 1 and q 2 are non-

orthogonal and
〈

q †
1

∣∣∣q 1

〉
is smaller than one. As a consequence, the component of u0 along

q 1, writing. q 1

〈
q †

1

∣∣∣u0

〉
/
〈

q †
1

∣∣∣q 1

〉
, is of larger norm than u0 itself. If in addition ℜ(σ2) <ℜ(σ1),

u(t ) in (1.20) converges towards eσ1t q 1

〈
q †

1

∣∣∣u0

〉
/
〈

q †
1

∣∣∣q 1

〉
faster than it decays along it. This

must correspond to an increase in the energy of u for sufficiently small times. This can also be

seen directly by writing the energy

||u||2 = e2σ1t

∣∣∣〈q †
1

∣∣∣u0

〉∣∣∣2

∣∣∣〈q †
1

∣∣∣q 1

〉∣∣∣2 +e2σ2t

∣∣∣〈q †
2

∣∣∣u0

〉∣∣∣2

∣∣∣〈q †
2

∣∣∣q 2

〉∣∣∣2 +2e(σ1+σ2)t

〈
q †

1

∣∣∣u0

〉〈
q †

2

∣∣∣u0

〉
〈

q †
1

∣∣∣q 1

〉〈
q †

2

∣∣∣q 2

〉 〈
q 1

∣∣q 2

〉
. (1.21)

The first two terms in the right-hand side of (1.21) are decaying exponential pondered by posi-

tive coefficients. If the third term also is a decaying exponential, it is multiplied by a coefficient

that, in the configuration illustrated in figure 1.3, is negative through
〈

q †
2

∣∣∣u0

〉
/
〈

q †
2

∣∣∣q 2

〉
< 0.

If ℜ(σ2) <ℜ(σ1) the negative third term vanishes faster than the positive first one, therefore

||u||2 must increase initially.

The description proposed above suggests that particularly large transient growth is expected in
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cases where
〈

q †
1

∣∣∣q 1

〉
≪ 1, and where ℜ(σ2) ≪ℜ(σ1). Indeed, in the latter case, u(t ) converges

so rapidly towards eσ1t q 1

〈
q †

1

∣∣∣u0

〉
/
〈

q †
1

∣∣∣q 1

〉
, that the amplitude along the later did not have

time to decay much in the meantime. Note also that transient growth could as easily happen

in an unstable system.

Transient growth phenomena generalize to high (including infinite-) dimensional systems.

Contrarily to the two-dimensional example treated above, a generally vast number of eigen-

modes are then needed to characterize the transient gain. That is because the double sum

term in (1.18) involves mode-mode interactions through the inner product
〈

q j

∣∣∣q k

〉
, which

can take significant values over a large range of indices. As an example, Åkervik et al. (2007)

considered the transient growth in the energy of a fluid flow over a separated boundary-layer

flow. Using eigenmodes as a projection basis for analyzing the flow dynamics, they have shown

that about one hundred modes are required for converged results of optimal growth (see their

figure 4a).

For this reason, instead of computing directly eigenmode, the paradigm is modified to find

the initial condition that maximizes the gain in energy at a certain time to (called a "temporal

horizon"). This way, the full potential of the system for transient growth is directly revealed.

We aim to solve the maximization problem

G(to) = max
u0

||u(to)||
||u0||

= max
u0

||eLto u0||
||u0||

= ||eLto ||

= max
u0

√〈
(eLto )†eLto u0

∣∣u0
〉

〈u0|u0〉
.

(1.22)

This amounts to computing the norm of the propagator eLto , or, equivalently, the largest

eigenvalue associated with the problem

(eLto )†eLto ŭ j = κ2
j ŭ j , j = 1,2, ... (1.23)

The eigenvalue problem (1.23) is self-adjoint, implying the eigenvalues κ2
j , sorted by decreas-

ing magnitude, to be real and positive. The eigenmodes ŭ j are normalized as ||ŭ j || = 1. The

maximum transient gain G(to) = κ1, and the optimal initial condition directly corresponds to

ŭ1. The eigenmode ŭ j also coincides with the j th right "singular" mode of eLto , associated

with the singular value κ j

κ j ŭ†
j = eLto ŭ j , κ j ŭ j = (eLto )†ŭ†

j , (1.24)

where ŭ†
j (normalized as ||ŭ†

j || = 1) is the j th left singular mode of eLto . Most importantly,

inherited from the fact that the operator in (1.23) is self-adjoint, both the ŭ j and the ŭ†
j families

are orthonormal. Thereby the initial condition u0 can be decomposed as

u0 =
∑

j

〈
ŭ j

∣∣u0
〉

ŭ j , (1.25)
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leading to a response at t = to

u(to) = eLto u0 =
∑

j

〈
ŭ j

∣∣u0
〉

eLto ŭ j =
∑

j

〈
ŭ j

∣∣u0
〉
κ j ŭ†

j . (1.26)

We understand now why the change of paradigm operated from computing the eigenmodes

of L to solving (1.23) is fruitful. In doing so, we moved from a poor, non-orthogonal eigenbasis,

to two orthonormal ones into which both the initial condition and the response at t = to ,

respectively, can be projected. The component of u(to) onto ŭ†
j is directly given by the

component of u0 onto ŭ j , multiplied by the associated gain κ j . This permits to rank the

relative importance of each structure ŭ†
j in the response u(to). For instance, in a configuration

where G(to) = κ1 ≫ κ2 > κ3 > ... (i.e. where eLto is close to being of unitary rank), and where

the actual and uncontrolled initial condition u0 does not project particularly well on one of

the sub-optimal ŭ j for j ≥ 2, the response in (1.26) is well approximated by

u(to) ≈ 〈ŭ1|u0〉κ1ŭ†
1. (1.27)

This simple result has profound consequences: the structure (not the amplitude) of the

response does not depend on the structure of the initial condition, but becomes inherent

to the propagator itself. Indeed, ŭ†
1 is computed solely from the knowledge of eLto . As soon

as few structures ŭ†
j are associated with gains much larger than all the others (i.e. eLto is

low-rank), these leading structures are expected to emerge in the response, regardless of how

it was initiated. They are expected to be distinguishable at least for some times around to .

This conclusion is all the more relevant in that it permits to make predictions even in an

uncontrolled environment where u0 can’t be known or prepared. In this perspective, note that

the configuration where solely ŭ†
1 has a much larger gain than all the others, is particularly

favorable.

Some transient growth mechanisms: Orr, Lift-up, convective non-normality

Again due to the non-normality of the linearized Navier-Stokes operator (1.5), fluid flows

furnish numerous examples of transient growth phenomena. The first step in studying these

generally consists of computing the maximum gain in (1.22) and the associated sets of optimal

initial conditions and responses. This has been first carried out in the context of parallel

shear flows by Butler and Farrell (1992) and by Corbett and Bottaro (2000). The optimal

structures emerging from these calculations can be interpreted physically, and suggest two

main mechanisms for the transient growth in the flow kinetic energy: the Orr and the lift-up

mechanisms.

In the Orr mechanism (Orr, 1907), perturbative vorticity layers are initially oriented against

the base shear. As time evolves, these layers are advected by the base shear and, for purely

kinematic reasons, become more compact in doing so. In virtue of the conservation of the

circulation, this must be associated with an increase in velocity, hence the transient increase

12
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Figure 1.4: Explicative sketch of the Orr mechanism: a patch of vorticity perturbation ini-
tially oriented against the base shear flow is materially advected by the latter. In virtue
of the conservation of the circulation

∫
u ·dl ∼ U (t)L(t) = cst, (L(t) the perimeter of the

vorticity patch and U (t) some associated characteristic velocity) the kinetic energy gain
G(t) ∼ U (t)2/U (0)2 = L(0)2/L(t)2 must increase with the perimeter diminishing (between
the first and the second snapshot in the sketch). The gain will then decrease again as the
vorticity patch is reoriented and stretched in the direction of the base advection (between the
second and the third snapshot in the sketch). This sketch and the associated explanation have
been reproduced from Antkowiak (2005).

Table 1.1: Summary of the dependence of the optimal transient gain on the Reynolds number,
in wall-bounded shear flow. This table has been reproduced from Schmid and Henningson
(2001)

Flow Gmax ×10−3 tmax

plane Poiseuille (Trefethen et al., 1993) 0.20 Re2 0.076 Re
plane Couette (Trefethen et al., 1993) 1.18 Re2 0.117 Re

circular pipe (Schmid & Henningson, 1994) 0.07 Re2 0.048 Re
Blasius boundary layer (Butler & Farrell, 1992) 1.50 Re2 0.778 Re

in kinetic energy (see in figure 1.4 for a schematic representation)

In the lift-up mechanism, streamwise-invariant vortices advect the base velocity successively

upward and downward. This creates strong streamwise velocity perturbations (forming what

is called "streaks"), thus a considerable increase in the kinetic energy of the perturbation

field. In a purely linear regime, the perturbations subsequent to both the Orr and the lift-up

mechanisms will eventually vanish exponentially with time. That is because the associated

base flows, at least those considered in Butler and Farrell (1992) and Corbett and Bottaro

(2000), are linearly stable. Several years of research concerned about transient growth in

parallel shear flows have revealed the optimal gain (1.22) to be increasing with the Re number

as Re2, as summarized in table 1.1 reproduced from Schmid and Henningson (2001). Both the

Orr and the lift-up mechanisms will be analyzed in greater detail in this thesis, with special

attention paid to their effects in a weakly nonlinear regime.

Non-parallelism of the base flow, designating the fact that it varies in the streamwise direction,

was shown in Cossu and Chomaz (1997) and later in Marquet et al. (2008, 2009) to be an

additional source of non-normality. This was also formalized in Trefethen and Embree (2005)

(§11), in the more general framework of variable-coefficients operators. Cossu and Chomaz

(1997) argue that this additional source non-normality is related to the presence of a (locally)

convectively unstable pocket in the flow. This is exemplified in figure 1.5 for the backward-
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Figure 1.5: (a) Profiles of the streamwise base velocity of the backward-facing step flow at
Re = 500. The dots highlight the inflection points. (b) Temporal and (c) spatial growth rates
arising from a local stability analysis at different streamwise locations. Figure reproduced
from Boujo and Gallaire (2015)

facing step at Re = 500. There, a recirculation zone with negative streamwise velocity is created

past the discontinuous step at x = 0, creating an intense shear layer. Solving a uni-dimensional

Orr-Sommerfeld eigenvalue problem at each streamwise location x, reveals the flow to be

(locally) unstable from x = 0 to x = 27 to a shear (Kelvin-Helmholtz) instability. For each

streamwise location, the instability is further characterized as being "convective". This means

that, locally, a perturbative wavepacket is advected faster than it is growing, thereby it is

decaying if observed from a fixed spatial location. Performing a stability analysis that fully

takes into account the streamwise direction (i.e., that is two-dimensional), and does not treat it

as a parameter for local (one-dimensional) analysis, is called a "global" stability analysis. Due

to the convective nature of the local instability for each streamwise location, the global analysis

would reveal flow to be stable (Huerre & Monkewitz, 1990). And yet, as argued in Cossu and

Chomaz (1997), an initial perturbation initially located upstream, can draw energy from the

base flow and thus grow as it is advected downstream across the convectively unstable pocket.

This pocket being of finite size, the energy of the perturbation will then decay as the latter is

advected out of the pocket, and eventually be washed out of the flow domain. This scenario

is associated with a transient growth in the perturbation. It is illustrated in figure 1.6 for the

backward-facing step flow at Re = 500.

Note also in figure 1.6 the large values taken by the optimal gain in figure 1.6b. In fact,

it was found in Boujo and Gallaire (2015) to increase exponentially with the Re number

for the backward-facing step flow, thereby more rapidly than for parallel shear flows. A

considerable body of work has been devoted to the computation of transient growth properties

of non-parallel flows. Among them, could be mentioned the work of Åkervik et al. (2008) and
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(a) (b)

Figure 1.6: (a) Contour of the vorticity perturbation evolution seeded by the optimal initial
condition ŭ1 (optimized for to = 58) for the backward-facing step at Re = 500 shown in fig-
ure 1.5. As the perturbation progresses in the convectively unstable pocket from x = 0 to x = 27,
it grows in energy, to eventually decay as it leaves the pocket. (b) The circles are the "envelope",
meaning the maximum gain in the kinetic energy G(to)2, as defined (1.22), and plotted as a
function of the temporal horizon t = to . The continuous lines are the amplification of the ki-
netic energy along a trajectory, each being seeded by the optimal condition for to = [20,60,100],
respectively. At the black bullets, the optimization time equals the instantaneous time and the
continuous line seeded must collide with the envelope. Both (a) and (b) have been reproduced
from Blackburn et al. (2008).

Ehrenstein and Gallaire (2005) and Monokrousos et al. (2010) for a spatially evolving (Blasius)

boundary layer flow. The works of Ehrenstein and Gallaire (2008) and Alizard et al. (2009), for

their part, were concerned about a separated boundary layer flow.

Nonlinear effects and possible bypass transition

The relevance of linear optimal transient growth and its associated structures ŭi and ŭ†
i in

nonlinear flow regimes is a highly complicated question without a general answer. Neverthe-

less, a well-accepted specific nonlinear scenario where transient growth plays a crucial role

is illustrated in figure 1.7a. Reproduced from Trefethen et al. (1993), figure 1.7a shows the

temporal evolution of the norm of a perturbation over a linearly stable toy system. If the initial

perturbation has a very small (the linearization is still valid at the initial time) yet sufficiently

large amplitude, the gain in energy associated with the transient growth is sufficient to trigger

nonlinearities, which makes the solution escape from its original attractor. In fluid flows,

this can for instance happen as the perturbation nonlinearly feedback onto the base flow,

thus modifying it to render it unstable. This could also be due to the effects of nonlinearly

generated harmonics which feedback on the perturbation itself.

In other terms, through transient growth, the non-normality property of a linearized operator

tends to reduce the size of the basin of attraction of the stable coherent states. If figure 1.7a

shows an example where non-normality helps escape a linearly stable solution, transient
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(a) (b)

Figure 1.7: Nonlinear "bypass" transition. (a) Illustration on a toy model, reproduced from
Trefethen et al. (1993). (b) Bypass transition towards turbulence in a pipe Poiseuille flow
at Re = 1750 (the initial condition is not ŭ1 but results from a linear optimization problem).
Reproduced from Pringle et al. (2012).

growth may be as relevant in escaping a linearly unstable one by triggering nonlinearities

before the unstable mode emerges.

Figure 1.7b exemplifies the bypass transition mechanism towards turbulence in the linearly

stable pipe Poiseuille flow at Re = 1750 (Pringle et al., 2012). If the perturbation is initialized

with kinetic energies equal E0 = 7.058×10−6 and E0 = 7.077×10−6, the flow relaminarizes

after a strong transient growth episode. If it is initialized with slightly larger kinetic energy

E0 = 7.124×10−6, the transient growth is this time just sufficient to make the flow transit to a

turbulent regime. However, the initial conditions in Pringle et al. (2012) do not correspond

to ŭ1 but result from a nonlinear optimization parametrized by E0. That is why the curves

in figure 1.7b differ slightly in the initial, linear regime. This does not mean that a bypass

transition would not occur if the perturbation was initiated with ŭ1. Simply, it would require a

larger E0 (Pringle & Kerswell, 2010). The Lamb-Oseen vortex flow also is subject to a bypass

transition (Rossi et al., 1997), as will be studied in detail in this thesis.

In boundary layer flow, the non-normal lift-up mechanism is also found to be an essential

ingredient for the transition to turbulence, but also for its role played in the so-called self-

sustained cycle. In figure 1.8a the streaky structures are observable in a smoke flow. The

authors Matsubara and Alfredsson (2001) report that their initial growth is "closely related to

algebraic or transient growth theory". The streaks are linearly unstable and, further down-

stream, the flow transits to a self-sustained turbulent state. Hamilton et al. (1995) argue that

during the streaks breakdown, nonlinear interactions re-energize the streamwise vortices,

which in turn generate streaks through the lift-up mechanism (although occurring over the

non-linearly distorted mean flow). The loop is closed, proposing a scenario for the turbulent

state to self-maintain (see in figure 1.8b). In this last sense, transient growth, although linear,

can be extended into characterizing turbulent states by considering the coupling between the

mean flow and the most amplified response which feeds back on it through nonlinearities.
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(a) (b)

Figure 1.8: (a) Visualization of a smoke boundary layer flow subjected to free-stream turbu-
lence; streaky structures resulting from the lift-up mechanism are observable. Reproduced
from Matsubara and Alfredsson (2001). (b) Mechanism of self-sustained near-wall turbulence
proposed in Hamilton et al. (1995).

In the bypass mechanism presented above, the perturbation is even more amplified in a non-

linear regime than in a purely linear one, but this need not be the case. In fact, nonlinearities

can have a "saturating" effect on the energy of the perturbation, inducing a decrease in the

transient gain with the amplitude of the initial perturbation. This is for instance occurring in

the backward-facing step at Re = 500 considered in Blackburn et al. (2008) (see their figure

12). In this scenario, precisely because the flow did not transit to another structurally different

state, the nonlinear response is expected to still bear symptoms of the linear optimal response

ŭ†
1, at least in a weakly nonlinear regime. In this thesis, a method will be derived to assess a

priori (before doing the nonlinear computations) if weak nonlinearities have a saturating or

an amplifying effect on the optimal transient response.

To finalize this section concerned with the response to an initial perturbation, we propose in

figure 1.9 an iconographic, non-exhaustive summary. It is based on the simulation of a slightly

modified version of the 2×2 toy system proposed in Trefethen et al. (1993)

du

dt
= Au +||u||2B1,2u, A =

[
γR−1 1

0 −2R−1

]
, B1 = R

[
0 −1

1 0

]
, B2 = R

[
−1 0

0 −1

]
, (1.28)

and R is a constant parameter. The non-normal matrix A has eigenvalues [γR−1,−2R−1]. In

figure 1.9 are shown simulations of the linearized system (i.e. with simply Au at the right-

hand side in (1.28)) as well as fully nonlinear simulations where both B1 and B2 were used

respectively in the nonlinear terms, leading to different nonlinear behaviors. We distinguish

the results as follows

• If we select γ = −1, corresponding to figure 1.9a, both eigenvalues of A are negative

and the system is linearly stable. Therefore, the linear simulation decays exponentially

asymptotically, with a decay rate equal to the largest eigenvalue. In addition, since

A is non-normal, the linear trajectory presents a transient growth episode at a finite
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0
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0
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Figure 1.9: Linear (bold continuous lines) and fully nonlinear amplification ||u(t )||2/||u(0)||2
(y-axis in log scale) for the toy system (1.28). The nonlinear simulations were performed for
||u(0)||2 = 10−3.2, and both the matrices B1 (red continuous line) and B2 (blue continuous line)
were used, leading to different nonlinear behaviors. We set R = 25 and in (a) γ = −1, leading to
a linearly stable system, whereas in (b) γ = 1 leading to a linearly unstable system. The gray
dashed is the linear behavior that would follow a normal system with the same eigenvalues,
namely, by replacing the component A12 by 0 (instead of 1) in (1.28).

time. Triggering nonlinearities by increasing ||u(0)|| can mitigate this transient gain

(blue curve). On the contrary, it can also amplify the perturbation even more at the

point of making the solution transit to another attractor (red curve, showing the bypass

mechanism). It may also be that the amplifying or saturating character of nonlinearities

depends both on the time t for a given ||u(0)||, and/or on the amplitude ||u(0)|| for a

given time t (clearly, not all possible scenarios are shown in figure 1.9a).

• If we select γ = 1, corresponding to figure 1.9b, one eigenvalue of A is positive and

the system is linearly stable. Therefore, the linear simulation increases exponentially

asymptotically, with a growth rate equal to the largest eigenvalue. In addition, since A

is non-normal, the initial growth of the perturbation is not exponential but algebraic,

which can be faster than exponential at finite times. By re-introducing nonlinearities,

the exponential growth observable for sufficiently small ||u(0)|| will saturate eventually.

If ||u(0)|| is sufficiently large (as in figure 1.9b), the exponential growth might not even be

observable, and nonlinearities will directly be brought about by the algebraic growth, the

system then leaves the unstable fixed point not along its most unstable mode, but along

the most amplified singular one. While nonlinearities necessarily have a saturating

character at long times since the linear gain is infinite there, they might magnify the

amplification at finite times (red curve). Again, not all possible scenarios are shown in

figure 1.9b.
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1.1.2 Response to a harmonic forcing

We now proceed by studying the behavior of the linear perturbation (1.6) when subject to

an external and sustained disturbance, i.e. when f (x , t) ̸= 0. In what follows, the initial

perturbation u0 is set to zero. This falls into the so-called "receptivity analysis". We shall first

consider the response to a monochromatic, harmonic forcing. This will serve as a building

block for the ensuing analysis of the response to stochastic forcing.

A harmonic forcing at a frequency ω expresses

f (x , t ) = f̂ (x)e iωt +c.c., (1.29)

which, injected in (1.6), leads to

u(t ) = eLt
∫ t

0
e−Lse iωs f̂ ds +c.c. = eLt

∫ t

0
e(iωI−L)sds f̂ +c.c.

= eLt P
∫ t

0
e

(
iωI−Λ)

sdsP−1 f̂ +c.c..

(1.30)

where only temporal dependencies have been highlighted in the notation. We further distin-

guish between two cases: in the first (i), iω also is an eigenvalue of L, whereas in the second

(ii), it is not.

(i) If iω is an eigenvalue of L, the forcing is said to be "resonant", as it excites the system at an

eigenfrequency which is not subject to any damping (or growth). Say that iω is the kth (i.e

σk = iω) eigenvalue of L; if L is further assumed to be real, −iω is the (k +1)th eigenvalue, and

the operator e
(
iωI−Λ)

s expresses

e
(
iωI−Λ)

s = diag(. . . ,e(iω−σk−1)s ,1,e2iωs ,e(iω−σk+2)s , . . . ). (1.31)

Thereby∫ t

0
e

(
iωI−Λ)

sds = diag(. . . ,
e(iω−σk−1)t −1

(iω−σk−1)
, t ,

e2iωt −1

2iω
,

e(iω−σk+2)t −1

(iω−σk+2)
, . . . ), (1.32)

and the response (1.30) reads

u(t ) = eLt P
∫ t

0
e

(
iωI−Λ)

sdsP−1 f̂ +c.c.

= eLt

t q k

〈
q †

k

∣∣∣ f̂
〉

〈
q †

k

∣∣∣q k

〉 +q k+1
e2iωt −1

2iω

〈
q †

k+1

∣∣∣ f̂
〉

〈
q †

k+1

∣∣∣q k+1

〉 + ∑
j ̸=k,k+1

q j
e(iω−σ j )t −1

(iω−σ j )

〈
q †

j

∣∣∣ f̂
〉

〈
q †

j

∣∣∣q j

〉 +c.c.


= t q k

〈
q †

k

∣∣∣ f̂
〉

〈
q †

k

∣∣∣q k

〉 +q k+1
e iωt −e−iωt

2iω

〈
q †

k+1

∣∣∣ f̂
〉

〈
q †

k+1

∣∣∣q k+1

〉 + ∑
j ̸=k,k+1

q j
e iωt −eσ j t

(iω−σ j )

〈
q †

j

∣∣∣ f̂
〉

〈
q †

j

∣∣∣q j

〉 +c.c.

(1.33)
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where we used eLt q j = eσ j t q j , ∀ j . The first term at the right-hand side of (1.33) grows

algebraically ∝ t , such that the energy of the perturbation diverges with time limt→∞ ||u|| = ∞.

This is called a "resonance", for it is a consequence of the resonant nature of the forcing.

Specifically, the presence of this term is solely due to the fact that the forcing frequency also is

a neutral frequency of the system. Nevertheless, it appears clearly in (1.33) that the divergence

of the response can be prevented if f̂ is such that
〈

q †
k

∣∣∣ f̂
〉

= 0. In other words, the resonance

does not occur if the forcing is orthogonal to the adjoint mode associated with the neutral

frequency. This result is sometimes referred to as the "Fredholm alternative", "compatibility

condition", or even "solvability condition", and will be widely evoked along this thesis.

(ii) If iω is not an eigenvalue of L, the said "resolvent" operator R(ω) = (iω−L)−1 exists and can

be used to directly compute the integral in (1.30) as

u(t ) = eLt
∫ t

0
e(iωI−L)sds f̂ +c.c. = eLt R(ω)[e(iωI−L)s]s=t

s=0 f̂ +c.c.

= eLt R(ω)[e(iωI−L)t − I ] f̂ +c.c.

= e iωt R(ω) f̂︸ ︷︷ ︸
harmonic response

−eLt R(ω) f̂ +c.c.

(1.34)

where we used that the resolvent and the propagator operators commute (which can be

shown using their respective series or dyadic representation). Note that (1.34) and (1.33) are

completely equivalent in the absence of a resonant frequency (i.e., if the two first terms vanish

in (1.33) and the third, summation term is made over all indices j ). It is easily shown using the

dyadic representation of the resolvent

R(ω) =
∑

j
q j

1

(iω−σ j )

〈
q †

j

∣∣∣•〉〈
q †

j

∣∣∣q j

〉 . (1.35)

The second term at the right-hand side in (1.34), eLt R(ω) f̂ , involves the propagation of

R(ω) f̂ . It is understood as the non-stationary response, which must be present to enforce

that the perturbation is initially null u(0) = 0. It would be identically null upon choosing

u0 = R(ω) f̂ +c.c., for the solution is then directly initiated in the stationary regime. This non-

stationary response term diverges exponentially if L is linearly unstable. This is true regardless

of the forcing frequency. Furthermore, the exponential growth is associated with its own

eigenfrequency and eventually dominates over the harmonic response e iωt R(ω) f̂ . The latter

is the first term on the right-hand side in (1.34) and oscillates at the forcing frequency ω with

bounded energy. This capacity of an unstable system (in a global sense) to respond with its own

unstable frequency, dominating over the excitation frequency, is referred to as the "signaling

problem" in the literature (Huerre & Monkewitz, 1990). Again, the dyadic representation of

the response in (1.33) informs that the exponential divergence can be precluded if the forcing

is orthogonal to all unstable adjoint mode(s).

In the configuration where L is linearly neutral or stable, the term eLt R(ω) f̂ remains of
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bounded energy. If L is stable, it eventually decays with time and this term represents nothing

more than a transient response. As a side comment, this transient response could in fact, as

we argued in the previous section, have drastic nonlinear consequences among which the

system could transit even before the harmonic response has time to develop. Turning back to

the linear realm, after the transient response fades away, the linear response relaxes towards

its harmonic response oscillating at the forcing frequency. If the forcing is switched off, this

harmonic response also fades away and the flow relaxes towards the base state. We assume L

to be linearly stable in the following lines, and we solely consider the asymptotic response

lim
t→∞u(t ) = û(ω)e iωt +c.c., where û(ω) = R(ω) f̂ . (1.36)

It is associated with a kinetic energy ||û(ω)||2 = ||R(ω) f̂ ||2. Using the dyadic representation of

the resolvent (1.35), and remembering that in the case where L is non-normal the q j s do not

constitute an orthonormal set, the energy ||û(ω)|| again is determined by a potentially large

number of mode-mode interactions. In other words, the harmonic response of a stable system

results from the cooperation of a potentially very large number of eigenmodes. Therefore,

these latter generically constitute an inappropriate basis for the description of the flow. An

exception to this could be found in the very specific case whereω is close to an eigenfrequency

with a vanishing damping rate. Say that σ1 = iω1 +γ, with γ a negative real number with γ→ 0.

Then

û(ω) → q 1

i(ω−ω1)−γ

〈
q †

1

∣∣∣ f̂
〉

〈
q †

1

∣∣∣q 1

〉 if ω→ω1 and γ(< 0) → 0 (1.37)

which simply is a Lorentzian response, along the weakly damped eigenmode q 1. Actually,

even if in (1.37) the response is modal, non-normality plays a role through the denominator〈
q †

∣∣q 1

〉
. It is generically smaller than one for non-normal systems (see for instance figure 1.1)

thus enhancing the amplitude of the Lorentzian response.

Harmonic optimal gain

Since in all generality the harmonic response is not well described by a single are even a few

eigenmodes, we shall rely upon the same non-modal tools employed to compute the transient

growth. Specifically, we seek the largest possible response-to-forcing amplification, also called

"harmonic gain" G(ω) as

G(ω) = max
f̂

||û(ω)||
|| f̂ || = max

f̂

√√√√〈
R(ω)†R(ω) f̂

∣∣ f̂
〉〈

f̂
∣∣ f̂

〉 = ||R(ω)||. (1.38)
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Thereby the optimal gain G(ω) is the largest eigenvalue η1 (G(ω) = η1) of the self-adjoint

problem

R(ω)†R(ω)ũ j = η2
j ũ j , j = 1,2, ... (1.39)

where the strictly positive eigenvalues η2
j are sorted by decreasing values. The associated

eigenmodes ũ j (normalized as ||ũ j || = 1) constitute an orthonormal family of forcing struc-

tures. Among them, ũ1 is the most amplified one, and the rest constitutes sub-optimal forcing

structures. The mode ũ j also is j th right singular mode of R(ω), associated with eigenvalue η j

and a left singular mode ũ†
j (normalized as ||ũ†

j || = 1)

η j ũ†
j = R(ω)ũ j , η j ũ j = R(ω)†ũ†

j . (1.40)

This makes ũ†
1 the most amplified harmonic response.

Note the analogy between the problem of finding the optimal initial conditions in (1.23),

parameterized by the temporal horizon to , and the current problem of finding the optimal

forcing structures, parameterized by the frequency ω.

Decomposing a generic harmonic forcing f̂ into the orthonormal basis formed by the ũ j s,

then applying the resolvent leads to the following decomposition of û(ω)

û(ω) =
∑

j
η j

〈
ũ j

∣∣ f̂
〉

ũ†
j . (1.41)

Again, the (non-modal) decomposition of û(ω) in the singular mode basis (1.41) appears more

fruitful than the dyadic (modal) one in (1.33). The first reason is that the ũ†
j are orthonormal

thus there is no redundancy in their respective information and the sum in (1.41) is expected

to converge much faster than the one in (1.33). The second is that the contribution of each

ũ†
j is weighted by η j , and two different η j s can be separated by a ratio of several orders of

magnitude. This is again the low-rank approximation. In the most favorable case where

η1 ≫ η2 > ..., and if f̂ is sufficiently generic in the sense that it does not promote a particular

sub-optimal structure, û(ω) is well approximated by

û(ω) ≈G(ω)
〈

ũ1
∣∣ f̂

〉
ũ†

1. (1.42)

Thereby the harmonic response is along ũ†
1, regardless of the exact shape of f̂ . Only the

amplitude of the response requires the knowledge of f̂ . In other words, at a prescribed

frequency, the structure of the response becomes intrinsic to the operator itself, while the

form of the excitation is unimportant (apart from the fact that it should be non-zero).

The computation of the harmonic gain (1.38) and associated optimal structures were widely

performed in fluid mechanics literature, both for parallel (see Schmid (2007) for a review) and

non-parallel shear flows (Åkervik et al., 2007; Alizard et al., 2009; Boujo & Gallaire, 2015; Sipp,

2012). Very large values for the harmonic gain are often found. Sometimes, this can be simply
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Figure 1.10: (a) Top: harmonic gain G(ω) (= η1(ω)), as defined in (1.38), as a function of the
frequency, and for the flow past a backward-facing step at Re = 500 (shown in figure 1.5). The
first sub-optimal η2(ω) is also included as the dash-dotted line. Bottom: spectrum of the flow
in the complex plane. (b) The same figure as the top figure in (a) (just at its left) but shown in a
logarithmic scale for the y-axis to better quantify the ratio between η1 and η2.

linked to the presence of a very weakly damped eigenvalue, moreover associated with a direct

and adjoint mode having poor spatial support
〈

q †
1

∣∣∣q 1

〉
≪ 1, trough the Lorentzian response

(1.37). This scenario is exemplified in figure 4 in Symon et al. (2018), for the cylinder flow at

Re = 47. However, as argued, a huge G(ω) may not be linked to any outstanding eigenvalue

with a frequency close to ω. This last configuration is illustrated in figure 1.10 for the flow past

a backward-facing step at Re = 500.

The harmonic gain curve reaches very large values up to G = 7480 over a relatively selective

range of frequency, the most amplified being located at ω = 0.47. Over this frequency range,

the spectrum is essentially flat and reveals only largely damped eigenvalues. Therefore the

harmonic gain can’t be linked to a specific eigenmodal mechanism, but results from an

interaction between a vast amount of eigenmodes. This was also shown in Garnaud et al.

(2013b) to occur in a jet turbulent mean flow. Figure 4 in Garnaud et al. (2013b) shows large

harmonic gain up to G = 200 over a range of frequencies for which, in their figure 3, no

eigenvalues are standing out.

Convective non-normality

As for the transient gain, large values of harmonic gain in non-parallel flows can be linked to

the presence of a convectively unstable region. Under the assumption that the base flow varies

slowly in the streamwise direction, this can be quantified by a formal weakly non-parallel
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Figure 1.11: (a) Spatial growth rate at different frequencies. (b) The shaded area is the region
of local, convective instability. (c) Amplification factor in thick blue line compared with the
harmonic gain in dashed line. Reproduced from Boujo and Gallaire (2015)

(WKBJ) analysis (Huerre & Rossi, 1998). It leads to an integral amplification factor g (ω) directly

as the exponential of the integral of the spatial growth rate, over the convectively unstable

region (thus the boundaries of the integral depend on the frequency)

g (ω) = exp

(∫
−k(S)

i (ω, x)dx

)
. (1.43)

For the backward-facing step at Re = 500, the amplification factor is reported in figure 1.11,

where it is seen to compare well with the harmonic gain (whereas the latter does not make any

assumptions about the base flow weak non-parallelism). Specifically, it predicts well the most

amplified frequency ω = 0.47, which can then be interpreted as the frequency leading to the

largest integral of −k(S)
i over space. Because it is linked to a convective instability, the global

spectrum in figure 1.10a does not show any outstanding eigenvalue at this frequency.

The work of Beneddine et al. (2016) argues that if a large harmonic gain at a given frequency is

associated with a convective instability mechanism, such as in the scenario we just presented

for ω = 0.47, there is a strong gap between it and the sub-optimal gains at this frequency (i.e.

η1 ≫ η2 > ...). Figure 1.10b corroborates this conclusion, for at ω = 0.47 the ratio between

G = η1 and η2 is particularly important ≈ 200. Thereby, following (1.42), the response of the

backward-facing flow at Re = 500 to a structurally unspecified forcing, at the frequency close

to ω = 0.47, will systematically and accurately resemble the most amplified response ũ†
1. This
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is an appreciable conceptual progress: by changing the paradigm from computing eigenmode

to computing singular modes, we could reduce the dynamics of the flow to a single (singular)

mode. This is despite the fact that the spectrum in figure 1.10a reveals the dynamics to result

from the combination of a large number of eigenmodes.

A large harmonic gain over some frequency interval implies the flow to largely amplify any

sustained small external disturbance whose Fourier decomposition contains these frequencies.

Therefore, as for the transient gain, it also indicates the propensity for the flow to trigger

nonlinearities which could make it transit to another state or regime, for instance, turbulence.

This motivated the development of methods aiming at extending the resolvent analysis in

nonlinear regimes.

Going nonlinear

Among them, the "self-consistent" method outlined in Mantič-Lugo and Gallaire (2016b)

considered the effect of nonlinearities on the harmonic response to an external harmonic

forcing, under some simplifying hypothesis. The method consists of splitting the flow into

a mean (in time) component and a fluctuation. Both the mean flow and the fluctuation

are unknown to be solved for. The problem is closed by assuming the fluctuation to be

monochromatic (which can’t be exactly true in a nonlinear regime), so as to neglect the effect

of all harmonics. Under this hypothesis the fluctuation, oscillating at a pulsation ω, obeys a

linear equation. That is because the quadratic nonlinearity of the Navier-Stokes equations

generates terms oscillating at 2ω and ω−ω = 0 (forcing the mean flow), which don’t feedback

on ω. The system of equations in Mantič-Lugo and Gallaire (2016b) then consists of a linear,

externally forced, equation for the fluctuation at ω, and a nonlinear equation for the mean

flow, forced by the Reynolds stress divergence of the fluctuation. This closed system is solved

iteratively for the flow past a backward-facing step at Re = 500. It revealed the harmonic gain

to decrease with nonlinearities, as the mean flow presented a smaller recirculation region,

corresponding to a convectively unstable pocket of reduced size.

The technique advanced in Mantič-Lugo and Gallaire (2016b) can be generalized by including

an arbitrary number of harmonics, at the cost of making the equation for the fluctuations

nonlinear (Rigas et al., 2021). The work of Bengana and Tuckerman (2021) proceeds from the

same generalization of Mantič-Lugo et al. (2014) in the case of an unforced but unstable flow

(the fundamental frequency is that of the unstable mode). If for instance the 2ω harmonic is

included in the fluctuation, the nonlinear fluctuation-fluctuation term will produce in partic-

ular −ω+2ω =ω and ω+ω = 2ω interactions. Both feedback on their respective component of

the fluctuation, thus their governing equations are nonlinear. The resulting system is made of

N nonlinear coupled equations for N harmonics, and a nonlinear equation for the mean flow,

over which all perturbation feeds back through Reynolds stress divergence. Solving this system

is sometimes also referred to as the "harmonic balance" method. The number N of harmonics

to be included for an accurate description of the nonlinear flow is case-dependent and the

truncation is difficult to justify a priori. Indeed, contrary to asymptotic expansion methods,
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the self-consistent method does not formalize a hierarchical ordering between the amplitude

of the harmonics. In practice, harmonics are gradually included until the convergence of the

results (see figure 7 in Bengana and Tuckerman (2021)). Convergence curves are generally

found to be non-monotonous.

Since it describes a nonlinear response state, it can also be used for a nonlinear extension

of the problem of finding the maximum harmonic gain (1.38) (Rigas et al., 2021). Again, the

convergence of the optimal structures with the number of included harmonics needs to be

verified a posteriori. To the knowledge of the author, there are no conceptual differences

between the "harmonic balance" method and the "self-consistent" method.

In another context, the structures associated with the harmonic gain have sometimes proven

to be successful in reproducing the main feature of self-sustained, statistically steady turbulent

flows (Abreu et al., 2020; Amaral et al., 2021; McKeon & Sharma, 2010; Nogueira et al., 2019;

Pickering et al., 2020, 2021; Towne et al., 2018). In these analyses, the flow is not subject to

an external harmonic forcing but the turbulent fluctuations play the role of an endogenous

source of excitation. More precisely, the Navier-Stokes equations are reformulated as a non-

linear equation for the mean flow, forced by the Reynolds stress divergence of the turbulent

fluctuations, and an equation for the turbulent fluctuations (or several, one per wavenumber,

if written in the Fourier domain). The latter can be seen as an input-output problem through

the resolvent operator linearized around the mean flow, forced by the nonlinear fluctuations-

fluctuations term (see equations (2.11) and (2.12) in McKeon and Sharma (2010)). Say the

resolvent operator around the mean flow is close to being unit-rank for a given frequency,

which often proves to be the case for a turbulent flow with a strong mean advection. Then,

we know from (1.42) that the response is necessarily along its most amplified harmonic re-

sponse regardless of the forcing. Therefore, if only the structure (and not the amplitude) of

the response is sought, the nonlinear fluctuations-fluctuations forcing term needs not to be

computed. The amplitude of the fluctuation would remain unknown though, as it involves the

inner product between the most amplified forcing and the nonlinear fluctuations-fluctuations

forcing. This leads to a closure problem, for the mean flow equation requires knowledge of the

fluctuations through the Reynolds stress divergence term. This problem is typically contoured

by computing the mean flow with a turbulent eddy-viscosity model or reconstructing it from

data McKeon and Sharma (2010). An approximate manner to compute the amplitude of the

fluctuations from weakly nonlinear arguments has also been proposed Rosenberg et al. (2019).

In figure 1.12, are reproduced resolvent modes on a turbulent jet mean flow at M = 0.4 and

computed including an eddy-viscosity model. They are compared with the leading SPOD

modes, which optimally reproduce the flow statistics. The agreement is reasonable, partic-

ularly at St = 0.6 where the low-rank assumption was found in Pickering et al. (2020) to be

particularly well verified. The authors relate this to the fact that the large optimal response

results from a convective instability mechanism of the same (Kelvin-Helmholtz) nature as the

one presented below for the backward-facing step. This interpretation is in accordance with

the conclusions drawn in Beneddine et al. (2016).
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Figure 1.12: Streamwise velocity perturbation of a turbulent jet flow at M = 0.4 and correspond-
ing to (a) the most energetic SPOD mode and (b) the resolvent response associated with the
largest gain on an eddy-viscosity mean flow. Included azimuthal wavenumbers are m ∈ [0,1,3]
and frequencies St = [0.05,0.2,0.6]. The inner product between the SPOD and the resolvent
mode is also shown (the amplitude of the resolvent mode is chosen such as to maximize this
inner product). Reproduced from Pickering et al. (2020).

Thereby, just as transient growth has proven to be an important ingredient in the self-sustaining

of wall-bounded turbulent flow in figure 1.8b, linear non-normal mechanisms at work in the

harmonic response are here found essential in the self-sustained of a turbulent jet flow. In

both cases, the price to pay for linear analysis to be valid in a turbulent regime is that the

relevant operator (propagator or resolvent) should be constructed around a mean flow instead

of a base flow (which renders the adjective "linear" somewhat inappropriate), which goes with

a closure problem.

1.1.3 Response to a stochastic forcing

In this section, we appraise the effect of a stochastic sustained forcing on the linear perturba-

tion by solving (1.6) without an initial perturbation, but under the specific forcing

f (x , t ;θ) = f s(x)ξ(t ;θ), (1.44)

where f s(x) is a spatial structure and ξ(t ;θ) is a statistically steady scalar stochastic process,

not necessarily a white noise for the moment. The symbol θ designates a random variable,

following a certain probability law. As an example, we could have ξ(t ;θ) = sin(ωt +2πθ) with θ

a random phase following an uniform distribution θ ∼U[0,1]. We insist that the shape of the

forcing in (1.44) is far from being general, and a more complete stochastic excitation would

consist of the sum f (x , t ;θ) =
∑

j f s, j (x)ξ j (t ;θ j ) together with spatio-temporal covariance

matrices.

In order to describe the forcing and the response in a statistical sense, the ensemble averaging
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operation, denoted {•}, is introduced. It consists of averaging over all processes, each corre-

sponding to a different value of θ. The temporal averaging operation over a finite-time signal

of length T

• =
1

T

∫ T

0
•dt (1.45)

is also introduced, as well as the finite-time Fourier transform and its inverse

ξ̂(ω;θ) =
1p
T

∫ ∞

0
ξ(t ;θ)e−iωt dt , ξ(t ;θ) =

p
T

2π

∫ +∞

−∞
ξ̂(ω;θ)e iωt dω. (1.46)

The process ξ(t ;θ) being by assumption statistically steady, it is unambiguously given by its

Fourier transform without loss of information about a transient regime. The linear response

(1.6) to (1.44) (and without initial condition) reads

u(t ;θ) =

p
T eLt

2π

∫ t

0

∫ ∞

−∞
e−Ls f s ξ̂(ω;θ)e iωsdωds

=

p
T

2π

∫ ∞

−∞
eLt

∫ t

0
e(iωI−L)sdsξ̂(ω;θ)dω f s .

(1.47)

It is clear in (1.47) that if L possesses a neutral eigenvalue at a certain frequency and that ξ̂(ω;θ)

does not vanish at this same frequency, the response is subject to a resonance phenomenon,

namely, to an algebraic growth ∝ t of the neutral eigenmode. As we have shown, that is

because (iωI −L) will possess a null eigenvalue at this frequency, thus the exponential will

contain a unit term which will become t after temporal integration. In the rest of this section,

let us consider the scenario where L is stable, such that (iωI −L)−1 exists for all frequencies ω.

Thereby (1.47) becomes

u(t ;θ) =

p
T

2π

∫ ∞

−∞
eLt R(ω)

[
e(iωI−L)s]s=t

s=0 ξ̂(ω;θ)dω f s

=

p
T

2π

∫ ∞

−∞
ξ̂(ω;θ)R(ω) f se iωt dω−

p
T eLt

2π

∫ ∞

−∞
ξ̂(ω;θ)R(ω) f sdω.

(1.48)

It is also constituted of a transient response to the forcing (second term on the right-hand side

in 1.48), due to the fact that u must be initially null. Such transient response eventually decays

in a linear regime since L is assumed to be linearly stable. The first term on the right-hand

side is the steady response in which the response is characterized by its Fourier transform

û(ω;θ) = ξ̂(ω;θ)R(ω) f s . (1.49)

In line with previous approaches concerning transient growth and the harmonic response,

for a given process ξ, one can construct an orthonormal basis of forcing structure onto

which an unspecified structure f s can be projected. These structures can be ranked by the

respective contributions of their responses in the variance of the total response. This amounts

28



Introduction Chapter 1

to maximizing the variance-to-intensity gain Gs as

G2
s = max

f s

{
||u(t ;θ)||2

}
|| f s ||2

. (1.50)

The variance of the response can be expressed in the Fourier domain as (Parseval’s theorem){
||u(t ;θ)||2

}
=

T

4π2

∫ ∞

−∞

∫ ∞

−∞
{〈û(ω;θ)|û(s;θ)〉}e it (s−ω)dωds

=
1

2π

∫ ∞

−∞
{|ξ̂(ω;θ)|2}〈

f s

∣∣∣R†(ω)R(ω) f s

〉
dω

=
〈

f s

∣∣B f s

〉 (1.51)

where we used the definition of the Dirac impulse e it (s−ω) = 2πδ(s −ω)/T , and where we

defined the self-adjoint, strictly positive definite operator

B =
1

2π

∫ ∞

−∞
{|ξ̂(ω;θ)|2}R†(ω)R(ω)dω. (1.52)

Subsequently, the maximum stochastic gain (1.50) is also equal to

G2
s = max

f s

〈
f s

∣∣B f s

〉〈
f s

∣∣ f s

〉 . (1.53)

The orthonormal set of optimal and sub-optimal stochastic forcing (real) structures are then

found as the eigenmodes f̃ j (normalized as || f̃ j || = 1) of the operator B

B f̃ j =µ2
j f̃ j , j = 1,2, (1.54)

associated with real eigenvalues µ2
j . The stochastic forcing structure f̃ 1 leads to the largest

variance amplification, equal to G2
s = µ2

1. The stochastic process ξ(t ;θ) can be chosen as a

delta-correlated white noise, characterized in the temporal domain as {ξ(t ;θ)ξ(t + s;θ)} = δ(s).

Using Fourier transforms it is shown to correspond to
{|ξ̂(ω;θ)|2} = 1, ∀ω in the frequency

domain. In the latter case, the operator B in (1.52) is similar to the one derived in Farrell and

Ioannou (1993).

Once again the orthonormal family f̃ j is found to be particularly informative if the operator B

is low-rank. Say the linear system is subject to a more generic forcing

f (x , t ;θ) =
N∑

k=1
f k (x)ξ(t ;θk ) = F (x)ξ(t ;θ), with

F (x) =
[

f 1, f 2, . . . , f N

]
, and ξ(t ;θ) = [ξ(t ;θ1),ξ(t ;θ2), . . . ,ξ(t ;θN )]T .

(1.55)

where the f k s are some unspecified forcing structures. The random variables θk all follow the

same probability law but are independent of each other, such that the processes ξ(t ;θk ) are

uncorrelated (i.e.
{
ξ(t ;θi )ξ(t ;θ j )

}
= 0 if i ̸= j and same in the Fourier domain). Thereby the
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variance of the response is{
||u(t ;θ)||2

}
=

1

2π

∫ ∞

−∞

∑
k

∑
n

〈
R(ω) f k

∣∣{ξ̂(ω;θk )∗ξ̂(ω;θn)
}

R(ω) f n

〉
dω

=
1

2π

∫ ∞

−∞

∑
k

〈
f k

∣∣∣{|ξ̂(ω;θk )|2}R†(ω)R(ω) f k

〉
dω

=
∑
k

〈
f k

∣∣∣∣ 1

2π

∫ ∞

−∞
{|ξ̂(ω;θk )|2}R†(ω)R(ω)dω f k

〉
=

∑
k

〈
f k

∣∣B f k

〉
(1.56)

In addition, each f k can be decomposed in the orthonormal f̃ j family simply as

f k =
∑

j

〈
f̃ j

∣∣∣ f k

〉
f̃ j , (1.57)

which permits to write the variance of the response as{
||u(t ;θ)||2

}
=

∑
k

∑
j
µ2

j

∣∣∣〈 f̃ j

∣∣∣ f k

〉∣∣∣2
. (1.58)

If each f k does not favor a particular sub-optimal, and under the low-rank assumption for the

operator B , µ1 ≫µ2 > ..., and the variance of the response is well approached by{
||u(t ;θ)||2

}
≈µ2

1

∑
k

∣∣〈 f̃ 1

∣∣ f k

〉∣∣2
. (1.59)

Thereby, in a statistical sense (at least for the variance), the stochastic response is dominated

by the response to f̃ 1, which greatly simplifies the description of the system. Note that if in

addition the resolvent operator R(ω) also is low-rank, each ω component of the stochastic

response (1.49) is well described by the leading singular modes of R(ω).

Extracting the relevance structures can also be made directly at the response level, by com-

puting the covariance operator C (•) =
{

u(t ;θ)〈u(t ;θ)|•〉
}

of the response to the forcing (1.55).

The operator C (•) applies over some deterministic, time-independent field g = g (x) as

C
(
g
)

=
{

u(t ;θ)
〈

u(t ;θ)
∣∣g

〉}
=

1

2π

∫ ∞

−∞
R(ω)F

{
ξ̂(ω;θ)ξ̂(ω;θ)H}〈

F H R(ω)†g
〉

dω.
(1.60)

with 〈•〉 the spatial integration. It was used that û(ω;θ) = R(ω)F ξ̂(ω;θ) and ξ̂(ω;θ) does not

depend on space. In case of white noise
{
ξ̂(ω;θ)ξ̂(ω;θ)H

}
= I , leading to the same operator as

in Farrell and Ioannou (1993). Note that the operator C (•) depends on F whereas B does not.

We can postulate the following decomposition of the response

u(x , t ;θ) =
∑
k
ζ(t ;θk )φk (x) =Φ(x)ζ(t ;θ), Φ =

[
φ1,φ2, . . .

]
(1.61)
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with the φk s an orthonormal family and the ζ(t ;θk )s some a priori unknown uncorrelated (i.e.{
ζ(t ;θi )ζ(t ;θ j )

}
= 0 if i ̸= j ) stochastic processes. Decomposition (1.61) is associated with the

covariance operator applied to g

C
(
g
)

=
{

u(t ;θ)
〈

u(t ;θ)
∣∣g

〉}
=Φ

1

2π

∫ ∞

−∞
{
ζ̂(ω;θ)ζ̂(ω;θ)H}

dω︸ ︷︷ ︸
=Γ

〈
Φ†g

〉
=ΦΓ

〈
Φ†g

〉
,

(1.62)

where Γ = diag(γ2
1,γ2

2, . . .) is a diagonal operator since the ζ(t ;θk )s are uncorrelated, and where

we defined γ2
k = (2π)−1

∫ ∞
−∞

{|ζ̂(ω;θk )|2}dω, the variance of ζ(t ;θk ). Since
〈
φi

∣∣∣φ j

〉
= δi j , we

have 〈Φa|Φb〉 = 〈a|b〉 =
〈

a
∣∣Φ†Φb

〉
for all a,b. As a consequence, we directly have Φ−1 = Φ†.

From (1.62),

C
(
g
)

=ΦΓ
〈
Φ†

〉
,∀g ∈D(C ), then Cφk = γ2

kφk , k = 1,2, ... (1.63)

easily shown by selecting g = φk for k = 1,2, .... Equation (1.63) provides both φk as the kth

(real) eigenmode of the real, self-adjoint operator C , and γ2
k as kth (real) eigenvalue of C .

Ranking γ2
k in decreasing order, the response u is often found to be well approximated by

a few of the leading γ2
k (again C is found to be low-rank). In practice, C is often computed

directly from data, precisely because (1.60) requires the knowledge of the forcing structures

which is difficult to estimate in realistic situations. Then, solving (1.63) amounts to perform

the celebrated "POD" for Proper Orthogonal Decomposition (see Berkooz et al. (1993) for a

review).

The theoretical framework for a non-modal stochastic forcing analysis of the linearized Navier-

Stokes equation, as reconstituted above, was introduced in Farrell and Ioannou (1993, 1994,

1996). Taking the stochastic forcing as white noise processes, the stochastic gains µ j and the

associated forcing and response structures f̃ j and φ j , respectively, were computed for the

plane Poiseuille and Couette flow (Farrell & Ioannou, 1993). The analysis was also carried

out for the Lamb-Oseen vortex flow (Fontane et al., 2008) and the non-parallel flow past a

backward-facing step (Boujo & Gallaire, 2015; Dergham et al., 2013). In all these studies,

the stochastic gains are often found to be enormous, revealing these flows to be extremely

receptive to external stochastic disturbances.

Nonlinear extensions

Once again, the linear non-modal analysis of the receptivity to stochastic forcing can be

extended to a nonlinear regime, upon considering fluctuations around a mean flow instead of

a base flow. As mentioned, this approach is nonetheless subject to a closure problem, which

can be circumvented by either modeling are neglecting some nonlinear terms. We presented

in figure 1.12 a case where the mean flow was obtained by an eddy-viscosity model, which

amounts to modeling the Reynolds stress divergence of the fluctuations forcing the mean flow.

Around this mean flow, the structure of the most amplified perturbation can be computed. In
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the following lines, we briefly present another, and presumably non-equivalent, manner to

bypass the closure problem. This will result in a closed coupled system for both the mean flow

and its fluctuations.

It is known under the name of SSST (Stochastic Structural Stability Theory) and was introduced

in Farrell and Ioannou (2003) in the context of two-dimensional turbulent jets in a x-periodic

domain. The idea is to decompose the flow into a mean U (y), averaged in the x direction, and

the sum of fluctuations (not necessarily small) q k (y), each oscillating with wavenumber k in

x. Under some hypotheses, they evolve according to the following system

dU

dt
= −∑

k

k

2
diag

[
ℑ(q k q H

k )∆†
]
− rU ,

dq k

dt
= LU q k +

p
ϵFkξk , k = 1,2, ...

(1.64)

where LU designates the linearized Navier-Stokes operator around the mean flow U . System

(1.64) has been reproduced from Farrell and Ioannou (2019). The nonlinear Reynolds stress

divergence of the fluctuations is included in the mean flow equation (summation term).

However, in the equation for q k , the nonlinear forcing (convolution) term accounting for the

fluctuations-fluctuations interactions (generating wavenumber k) has been modeled by a

series of uncorrelated white (in time) noise processes Fkξk , parameterized by an intensity ϵ.

The covariance matrix of the fluctuation C =
{

q k q H
k

}
in the statistically steady regime obeys

dU

dt
= −∑

k

k

2
diag

[
ℑ(q k q H

k )∆†
]
− rU ,

dCk

dt
= LU Ck +Ck L†

U +ϵQk , k = 1,2, ...

(1.65)

with Qk = Fk F H
k , Fk postulated a priori with physical arguments. In the equation for q k , mod-

eling the nonlinear fluctuations-fluctuations forcing term by white noise processes is a strong

hypothesis, often justified by the fact that LU is generically strongly non-normal. Thereby

the stochastic response q k is dominated by a few leading modes and does not depend on the

details of the excitation. The mean flow is generally stable, but the equilibrium solution(s)

of the coupled system (1.65), which includes a non-normally amplified fluctuation, has no

reason to be. A stable fixed point of (1.65) corresponds to a statistically steady turbulent state.

As represented in figure 1.13, the number and the stability of the equilibrium solution(s) (as

well as their nature, fixed point, limit cycle, etc...) may be modified by increasing the parameter

ϵ. In figure 1.13, the SSST successfully predicts the turbulent flow to reach a statistically steady

state with n = 4 zonal jets. In another context, it was also efficient in describing the interaction

between rolls and streaks appearing in the transition to turbulence in the three-dimensional

Couette flow (Farrell & Ioannou, 2012).

The fluctuations-fluctuations nonlinear interaction terms in the equation for the fluctuations,

instead of being replaced by white noise, are sometimes simply ignored. This leads to a class
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a)

b)

c)

Figure 1.13: (a) Stability diagram of the system (1.65) as a function of the number of zonal jets
n of and the normalized parameter ϵ/ϵc (ϵc the minimum value of ϵ on the dashed line). Below
the dashed curve, the homogeneous state U = 0 is stable and no jets appear. Above, U = 0 is
unstable and new statistically steady states appear as fixed points in (1.65), characterized but
the number of zonal jets n. A full (resp. empty) circle corresponds to stable (resp. unstable)
fixed points. For ϵ/ϵc = 20 and n = 4, the stable fixed point (finite amplitude equilibrium jets) is
shown as the steady regime of the Hovmöller diagram in (c), which compares well with fully
nonlinear simulations in (b). Reproduced from Farrell and Ioannou (2019).

of models called "semi-linear": nonlinear for the mean, and linear for the fluctuations. It

was recently generalized in Marston et al. (2016) such as to include fluctuations-fluctuations

interactions at the large scales only.

In considering the effect of nonlinearities on the response of the backward-facing step to

external white noise forcing, Mantič-Lugo and Gallaire (2016a) also chose to neglect the

fluctuations-fluctuations interaction terms, in the equation for the fluctuations. Specifically,

the system was rewritten as (i) an equation for the (temporal) mean flow nonlinearly forced by a

frequency (convolution) integral of the Reynolds stress divergence of the fluctuating part of the

response, and (ii) a linear equation for the latter. Indeed the equation for the fluctuating part of

the response had been linearized around the mean flow and was simply forced by the applied

external forcing. Then, by discretizing the convolution integral in the frequency domain, the

authors could solve the coupled system iteratively until the convergence of the fields and

associated nonlinear stochastic gain. The latter was found to be in good agreement with fully

nonlinear results and to significantly decrease while increasing the forcing amplitude. This

was explained by the fact that the mean flow presented an increasingly reduced convectively

unstable recirculation region.

As a summary, in the present section, we have reviewed the linear dynamics of a small pertur-

bation, both under modal and non-modal aspects. In particular, we have briefly discussed
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how non-modal analyses can lead to a greatly reduced yet accurate description of the flow

dynamics in certain regimes. Aiming at projecting the flow dynamics, many attempts to

import these linear modal and non-modal techniques in fully nonlinear regimes have been

mentioned. They generally rely on a mean-fluctuation decomposition and are subject to clo-

sure problems, circumvented by either modeling are ignoring some nonlinear terms. Different

closures between different models have no reasons to be equivalent, and, in fact, they are not

Nivarti et al. (2022).

The following section also will be concerned with nonlinear effects. Although we will allow

us a strong starting hypothesis, the procedure will enable a careful, mathematically justified,

treatment of nonlinear terms.
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1.2 Weakly nonlinear dynamics

Small amplitude disturbances over a linearly unstable system grow exponentially until nonlin-

earities can’t be neglected anymore. A "weakly nonlinear" analysis unravels the leading-order

nonlinear effects, sufficient to compute a finite-amplitude asymptotic solution in specific

regimes. We briefly recall the procedure in the following lines, focusing on the most simple

configuration. Remarkably, weakly nonlinear behaviors will be captured by solving linear

problems only.

The very first assumption to be made in performing a weakly nonlinear analysis is that the

external parameter should be asymptotically close to its "critical" value, where the system is

linearly neutral. This assumption is primordial for the procedure to find proper closure, as will

become clear in a moment. Thereby, a small quantity ϵ≪ 1 is introduced to quantify some

distance to criticality in the parameter space.

For the Navier-Stokes equations, the relevant external parameter in the Reynolds number Re.

We denote Lc as the linearized Navier-Stokes operator for Re = Rec , Rec being the critical value

at which L (assumed real) possesses a pair of (neutral) complex conjugate eigenvalues ±iω1.

We further assume that these are the only neutral eigenvalues of Lc , all the others possessing a

strictly negative growth rate.

The weakly nonlinear method imposes to consider Re numbers close to Rec , rationalized as

1

Re
=

1

Rec
−ϵ2. (1.66)

The scaling (1.66) applies to the inverse of the Reynolds numbers, as it appears in the Navier-

Stokes equations. The reason for which the small parameter ϵ is raised to power two specifically

will be clarified in a moment. At a Re number slightly larger than Rec according to (1.66), the

pair of neutral eigenvalues become unstable with a growth rate of O(ϵ2). This can be quantified

by relying on the sensitivity analysis of the eigenvalues ±iω1 to a −ϵ2∆ operator perturbation

of Lc . As a consequence, a pair of complex conjugate linearly unstable eigenmodes grow

exponentially, until nonlinearities have an effect after a long time of O(ϵ−2). If the period

2π/ω1 = O(1), the response then possesses two time scales: a time scale of O(1) over which it

oscillates, and another of O(ϵ2) over which the amplitude of the oscillations are modulated,

both linearly and nonlinearly. This separation of time scales is illustrated in figure 1.14(g) for

the cylinder flow at Re = 100 (unstable base flow shown in figure 1.14(a)), corresponding to

ϵ2 = 10−2. Oscillating eigenmodes grow exponentially until, at t = O(102), nonlinearities set in.

Thereby the flow field is thought of as depending on two independent time variables. The

first, τ, is referred to as the "fast" time and captures the phase variations. The second, T , is

referred to as the "slow" time and aims at describing amplitude modulations. The solution

will eventually depend only on t upon evaluating its two intrinsic variables τ and T over the

lines τ = t and T = ϵ2t . Under this description, the partial derivative with respect to t present
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Figure 1.14: Some flow fields for the cylinder flow at Re = 100 (past a Hopf bifurcation at
Rec = 47). (a) Base flow and (b) temporal mean flow. (c) Linearly unstable mode around the
base flow and (d) fluctuation instantaneous snapshot around the mean flow. Are also shown
the streamwise component of the Reynolds stress divergence of (e) the unstable eigenmode
and (f) the fluctuation around the mean flow. (g) Monitoring of the streamwise velocity,
revealing its transient evolution from linear instability to nonlinear saturation (the flow was
initiated along its unstable eigenmode with a small amplitude and two different phases). (h)
Associated temporal evolution of the unstable mode amplitude (black is the fully nonlinear
solution and green is the self-consistent approach). Figure reproduced from Mantič-Lugo et al.
(2015).

in the original equation becomes

∂ui (t )

∂t
=
∂τ

∂t

∂ui (τ,T )

∂τ

∣∣∣∣
(τ,T )=(t ,ϵ2t )

+ ∂T

∂t

∂ui (τ,T )

∂T

∣∣∣∣
(τ,T )=(t ,ϵ2t )

=
∂ui

∂τ
+ϵ2∂ui

∂T
.

(1.67)

By abuse of notation, τ is sometimes simply written t in the literature. Note that in all general-

ities, times scales that are even slower than T , for instance, T2 = ϵ4t , T4 = ϵ6t , etc... could be

introduced, but won’t be necessary in what follows.

Furthermore, the solution is sought as an asymptotic power series of ϵ, such that

u(τ,T ) = U b,c +ϵu1(τ,T )+ϵ2u2(τ,T )+ϵ3u3(τ,T )+O(ϵ4), (1.68)

where the spatial dependence was implied, and where U b,c is a neutral fixed point, solving the

fully nonlinear steady Navier-Stokes equations at Re = Rec . Expansion (1.68) will sometimes

be referred to as "multiple scale asymptotic expansion". The relevance of multiple scale

asymptotic expansion is well established, not only in fluid mechanics but more generally in

the field of nonlinear partial differential equations (Bender & Orszag, 1978; Glendinning, 1994;

Hinch, 1991).

Substituting (1.68), (1.67) and (1.66) in the Navier-Stokes equations (1.1), and factorizing terms
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in powers of ϵ yields a cascade of linear problems to be solved successively. At order ϵ0 the

steady, fully nonlinear Navier-Stokes equation is recovered

0 = −(U b,c ·∇)U b,c −∇p +Re−1
c ∆U b,c . (1.69)

which is satisfied by the construction of U b,c . At the next order ϵ, the equation corresponds to

the unforced linearized Navier-Stokes equation around U b,c

∂τu1 = Lc u1. (1.70)

The solution of this equation is given by (1.17), studied in more detail in the previous section.

As we have seen, it is generally subject to transient growth phenomena before relaxing to its

neutral mode, say q̂ , associated with the eigenvalue iω1 (i.e. iω1q̂ = Lc q̂). Transient growth is

avoided if the perturbation is initialized along q̂ , corresponding to the solution

u1(τ,T ) = A(T )q̂e iω1τ+c.c., (1.71)

valid for all τ. The scalar A(T ) is a complex amplitude, for the moment undetermined. It can

be included since τ and T are independent, thereby ∂τ(Au1) = A∂τu1 and A cancels out in

(1.70).

At order ϵ2, is collected a linear but forced equation

∂τu2 = Lc u2 −∆U b,c −2|A|2C [q̂ , q̂∗]− (
e2iωτA2C [q̂ , q̂]+c.c.

)
, (1.72)

where we defined the advection operator

C [ĝ , ĥ] =
1

2

[
(ĝ ·∇)ĥ + (ĥ ·∇)ĝ

]
. (1.73)

Owing to the orthogonality of Fourier modes at distinct frequencies, the particular solution to

(1.72) in the asymptotic limit τ→∞ (i.e. in the steady regime after the transients have faded

away) reads

u2(τ,T ) = u2,0 +|A(T )|2u|A|2
2 +

(
e2iω1τA(T )2û A2

2 +c.c.
)

, (1.74)

with

Lc u2,0 = −∆U b,c , Lc u|A|2
2 = −2C [q̂ , q̂∗], and (2iω1I −Lc )û A2

2 = −C [q̂ , q̂]. (1.75)

By assumption, Lc does not possess an eigenvalue at either 0 or 2iω1, thereby linear problems

in (1.75) can directly be solved for. The fields thus generated are associated with the following

physical interpretations, respectively

• In evaluating the expansion (1.68), the non-oscillating part reads U b,c+ϵ2u2,0+ϵ2|A|2u|A|2
2 .

Consequently, the field u2,0 corrects the base flow U b,c with an amplitude ϵ2. It accounts
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for the fact that we consider a Re number slightly above its critical value Rec at which

U b,c was computed.

• The field u|A|2
2 also is a correction to the base flow, with an amplitude ϵ2|A|2. It ac-

commodates the fact that the mode q̂ , of amplitude ϵA and frequency ω1, nonlinearly

interacts with its complex conjugate to bring about a non-oscillating term (iω1− iω1 = 0).

In this sense, ϵ2|A|2u|A|2
2 represents the difference between the base flow at a given Re

(approximated by U b,c +ϵ2u2,0) and the time-averaged mean flow.

In (1.75), the forcing term 2C [q̂ , q̂∗] at the origin of u|A|2
2 is called the "Reynolds stress

divergence".

• The field û A2

2 is a component of the overall solution with amplitude ϵ2 A2, that oscillates

at the first harmonic frequency 2ω1. It results from the nonlinear interaction of the

mode with itself.

At this second-order, the homogeneous solution along q with an arbitrary amplitude (say A2)

can be left apart without loss of generality (Fujimura, 1991). This way, A alone carries the

component of the flow field on q̂ , without needing to redefine the latter as A+ϵA2 +O(ϵ2).

Pursuing the computation up to order ϵ3 leads to solving the linear problem

∂τu3 = Lc u3 +
(
e3iω1τ f̂ 3,nr +e iω1τ f̂ 3,r +c.c.

)
, (1.76)

or, equivalently,

∂τu3,nr = Lc u3,nr +
(
e3iω1τ f̂ 3,nr +c.c.

)
,

∂τu3,r = Lc u3,r +
(
e iω1τ f̂ 3,r +c.c.

)
, with u3 = u3,r +u3,nr .

(1.77)

The operator Lc has no eigenvalue in 3iω1, thereby the first problem in (1.77) is non-resonant

(hence the subscript "nr "). Its solution in the asymptotic limit τ→∞, is found upon inverting

(3iω1I −Lc )û3,nr = f̂ 3,nr = −2A3C [q̂ , û A2

2 ], and u3,nr = e3iω1τû3,nr +c.c., (1.78)

yields the third harmonic component of the flow field.

However, the second problem in (1.77) leads to a resonance as described in section 1.1.2, as

the system is forced at its neutral eigenfrequency. We have shown in (1.33) that the solution

of such a linear, resonant system contains a term ∝ τ which diverges in the limit τ→∞, of

interest here. That is true except if its proportionality factor is identically null, which, according

to (1.33), amounts to imposing〈
q̂ †

∣∣∣ f̂ 3,r

〉
= 0,

where f̂ 3,r = −A∆q̂ −2AC [q̂ ,u2,0]−2A|A|2
(
C [q̂ ,u|A|2

2 ]+C [q̂∗, û A2

2 ]
)
− q̂∂T A.

(1.79)
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In other terms, the forcing structure f̂ 3,r must be orthogonal to the kernel of the adjoint

operator (−iω1I −L†
c ), which also is the adjoint neutral eigenmode q̂ †. This orthogonality

condition must be imposed under the inner product (1.7), employed for computing the adjoint

operator.

Note that, had the direct and adjoint eigenmodes been calculated by including a mass matrix

in the eigenvalue problems, the condition (1.79) would still hold without including this mass

matrix in the inner product.

The "non-resonance", "solvability", or "compatibility" condition (1.79), also sometimes called

"Fredholm alternative", leads to an ordinary differential equation for A

dA

dT
=λA− (µ0 +µ2)A|A|2, (1.80)

where we have defined

λ = −
〈

q̂ †
∣∣2C [q̂ ,u2,0]+∆q̂

〉〈
q̂ †

∣∣q̂
〉 , µ0 =

〈
q̂ †

∣∣∣2C [q̂ ,u|A|2
2 ]

〉
〈

q̂ †
∣∣q̂

〉 , and µ2 =

〈
q̂ †

∣∣∣C [q̂∗, û A2

2 ]
〉

〈
q̂ †

∣∣q̂
〉 . (1.81)

The amplitude equation (1.80) corresponds to the celebrated Stuart-Landau equation (Stuart,

1960). It can be re-expressed in terms of t by evaluating T = ϵ2t

dA(ϵ2t )

dt
= ϵ2 dA(T )

dT

∣∣∣∣
T =ϵ2t

= ϵ2λA−ϵ2(µ0 +µ2)A|A|2, (1.82)

which eventually gives for the rescaled amplitude a(ϵ2t ) = ϵA(ϵ2t )e iω1t

da

dt
= (iω1 +ϵ2λ)a − (µ0 +µ2)a|a|2. (1.83)

The asymptotic expansion (1.67) for the flow field becomes

u = U b,c + (aq̂ +c.c.)+ϵ2u2,0 +|a|2u|A|2
2 + (a2û A2

2 +c.c.)+O(ϵ3) (1.84)

with a = O(ϵ), and where we have neglected some transient, decaying terms appearing at O(ϵ2)

and O(ϵ3).

The physical interpretation of λ and µ0 in (1.81) is unraveled by noticing that an infinitesimal

displacement δσ j of an eigenvalue σ j , induced by an infinitesimal perturbation δL of the
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operator L writes

δ(Lq̂ j ) = δ(σ j q̂ j )

⇒(δL)q̂ j +Lδq̂ j = δ(σ j )q̂ j +σ jδq̂ j

⇒
〈

q̂ †
j

∣∣∣(δL)q̂ j

〉
+

〈
q̂ †

j

∣∣∣Lδq̂ j

〉
= δ(σ j )

〈
q̂ †

j

∣∣∣q̂ j

〉
+σ j

〈
q̂ †

j

∣∣∣δq̂ j

〉
⇒

〈
q̂ †

j

∣∣∣(δL)q̂ j

〉
+������〈

σ∗
j q̂ †

j

∣∣∣δq̂ j

〉
= δ(σ j )

〈
q̂ †

j

∣∣∣q̂ j

〉
+������
σ j

〈
q̂ †

j

∣∣∣δq̂ j

〉
⇒δ(σ j ) =

〈
q̂ †

j

∣∣∣(δL)q̂ j

〉
〈

q̂ †
j

∣∣∣q̂ j

〉 .

(1.85)

Furthermore, a perturbation δL of the linearized Navier-Stokes operator induced solely by a

perturbation δU b in the base flow can be written using (1.5) as

(δL)• = −2C [δU b,•]. (1.86)

It is associated with an eigenvalue perturbation

δ(σ j ) = −
〈

q̂ †
j

∣∣∣2C [δU b, q̂ j ]
〉

〈
q̂ †

j

∣∣∣q̂ j

〉 . (1.87)

The comparison between (1.87) and the expressions for λ and µ0 in (1.81) directly suggest the

following interpretations.

• The coefficient λ is the displacement (or "sensitivity") of the neutral eigenvalue iω1

induced by the modification u2,0 to the base flow. Furthermore, the term in ∆q̂ takes

into account the effect of increasing the Re number on the mode q̂ itself. In other terms,

the eigenvalue iω1 of the linearized operator at Rec , drifts to iω1 +ϵ2λ (at leading-order)

by considering a Re number slightly above Rec according to (1.66). For this reason, the

real part of λ is expected to be positive, and the linear term in (1.83) to describe a linear

instability.

• The coefficient µ0 is the displacement of the neutral eigenvalue iω1 that results from

the nonlinearly-induced mean-flow correction u|A|2
2 to the base flow. Note that µ0

enters with a negative sign in (1.83). Thereby if it has a positive real part, the mean

flow correction, with an amplitude |a|2, has a stabilizing effect on the mode which

counterbalances the linear instability when a has become sufficiently large.

• The coefficient µ2 has no eigenvalue sensitivity translation, for it involves q̂∗ instead

of q̂ . It quantifies how the second harmonic field û A2

2 nonlinearly interacts with the

complex conjugate of the mode q̂∗, which feeds back on the mode and brings about a

modification of its eigenvalue. It enters in (1.83) the same way as µ0 does, thus in effect

it is their sum µ =µ0 +µ2 that determines the weakly nonlinear behavior.
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Figure 1.15: Oscillation frequency of the flow past a cylinder (same as in figure 1.14) as a
function of the Re number. The continuous blue line is the weakly nonlinear frequency ω̄
given in (1.88), triangle markers are experimental data, circle markers are data from fully
nonlinear simulations, and square markers results from self-consistent computations (Mantič-
Lugo et al., 2014). Figure reproduced from Gallaire et al. (2016).

If µr the real part of µ is positive, equation (1.83) predicts nonlinearities to saturate the

instability towards a limit cycle with equilibrium amplitude r̄ and frequency ω̄ given by

r̄ = ϵ

√
λr

µr
∝

√
1

Rec
− 1

Re
, and ω̄ =ω1 +ϵ2λi −ϵ2µi

λr

µr
. (1.88)

In addition to the linear drift ϵ2λi due to the change in Re number, the frequency ω1 is

nonlinearly corrected by ϵ2µiλr /µr . For the flow past a cylinder, the comparison between the

weakly nonlinear frequency predicted in (1.88), and the one extracted from fully nonlinear

computations is shown in figure 1.15. The frequency predicted by a linear stability analysis

over the base flow (captured at leading order by ω1 +ϵ2λi ) is also included. The latter fails to

predict the limit cycle frequency both quantitatively and qualitatively, but the weakly nonlinear

approximation brings a substantial amelioration.

It was shown in Sipp and Lebedev (2007) that, for this specific flow, |µ0| ≫ |µ2| such that

weakly nonlinear saturating effects predominantly stem from the mean-flow correction u|A|2
2 .

That is why the self-consistent model introduced in Mantič-Lugo et al. (2014), and relying

on the assumption that harmonics have no effects, is so effective in predicting the nonlinear

frequency in figure 1.15. The saturating effect of the mean flow correction is physically

understood by comparing figure 1.14(a) and figure 1.14(b). It appears to substantially reduce

the extent of the (absolutely unstable) shear layer behind the cylinder, thereby tending to

stabilize the flow.

In this sense, computing and comparing the weakly nonlinear coefficient µ0 with µ2 is a

manner to assess a priori if the self-consistent method in its original form (Mantič-Lugo et al.,

2014) is appropriate, or if it needs to be extended (Bengana & Tuckerman, 2021; Meliga, 2017).
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Figure 1.16: Sketch of a supercritical (left) and subcritical (right) bifurcation as a function of
some external parameter (Re here). Dashed lines for unstable equilibrium solutions and full
lines for stable ones. The vertical line denotes ReRec . Figure reproduced from Schmid and
Brandt (2014a).

For the flow past cavity Sipp and Lebedev (2007) demonstrate that |µ0| ∼ |µ2|. For this reason,

the self-consistent method needs to be extended by including the effect of second harmonic,

to properly predict the nonlinear saturation (Meliga, 2017).

The equilibrium solution (1.88) characterizes a "supercritical Hopf" bifurcation. The name

"Hopf" designates the fact that it is a pair of complex conjugate eigenvalues that become

unstable, and not for instance a single real one. The adjective "supercritical" results from

the fact that µr > 0, therefore leading-order nonlinearities have a saturating effect and are

sufficient to predict a nonlinear limit cycle (see the left frame in figure 1.16). If µr < 0, the

Hopf bifurcation is qualified as "subcritical", and the weakly nonlinear procedure needs to be

pursued to O(ϵ5) (at least). This would yield a term in a|a|4 in the amplitude equation, from

which a stable equilibrium solution could be predicted. The latter, if existing, can be shown to

persist for Re inferior to Rec , implying the possibility for the flow to transit towards another

attractor before it becomes linearly unstable (see the right frame in figure 1.16). We thereby

make the distinction between a transition and a bifurcation.

A word on the scaling in ϵ2 appearing in (1.66). It is possible to replace, for instance, ϵ2 by ϵ in

(1.66). To be consistent, this requires introducing an intermediate slow time in ϵt . This results

in the field u2,0 appearing as a particular solution at first-order. At second-order, it interacts

with q̂ such as to create a resonant forcing term ∝ A oscillating at iω1, and the Fredholm

alternative needs to be imposed already. The computations then need to be pursued at third-

order to capture the cubic nonlinearity in the Stuart-Landau equation. The final amplitude

equation has the same form as (1.83), with a term in A and a term in A|A|2, but both the

computations and the ensuing expressions for the coefficients are significantly heavier. This

is a consequence of Re being a priori permitted to make a larger excursion above Rec . In

this sense, the scaling in (1.66) is motivated as being the one leading the simplest possible

expression for the coefficients, for the same minimal-order form of the amplitude equation

(which in the case of a Hopf bifurcation is a term in A and a term in A|A|2).

As reviewed in Fauve (1998) the reduction of the Navier-Stokes equations to an amplitude

equation, by using weakly nonlinear expansions in the vicinity of a bifurcation point, has been

early performed for a variety of parallel flows (Chiffaudel & Fauve, 1987; Chossat & Iooss, 1994;
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Crawford et al., 1988; Cross, 1986; Golubitsky & Stewart, 1985). The first works of this kind date

back to Gor’kov (1957) and Malkus and Veronis (1958) for thermal convection problems and to

Stuart (1958, 1960) and Watson (1960) for parallel shear flows. The amplitude equation could

systematically discriminate between the supercritical and subcritical nature of the considered

bifurcation. It was for instance shown in Chossat and Iooss (1994) that the Taylor-Couette

instability is supercritical, whereas the instability occurring in the plane Poiseuille flow at

Rec = 5772 is subcritical.

Accounting for non-parallelism in the base flow, by considering a second or even a third di-

mension, increases the size of the discretized operators and thus requires larger computational

power. As a consequence, constructing amplitude equations non-parallel base flows was only

performed recently. Among the first to do so were Sipp and Lebedev (2007), Meliga et al. (2009).

Weakly nonlinear expansions still are the object of current research and were recently found

to capture well the double crest swirling motion in a circular sloshing flow Bongarzone et al.

(2022), extended to elliptic-type container excitation in Marcotte et al. (2023). As another

example, Buza et al. (2022) recently derived an amplitude equation for the center-mode bifur-

cation of rectilinear viscoelastic shear flow, showing the nature of the bifurcation to depend

on the Reynolds and Weissenberg numbers.

There exist some other techniques than the multiple scales weakly nonlinear expansion to de-

rive amplitude equations. Among them, is the "center manifold theory", outlined for instance

in Guckenheimer and Holmes (1983) or Haragus and Iooss (2011). The center manifold is a

nonlinear invariant manifold in the phase space (W c in figure 1.17) that, at the equilibrium

point, is tangent to the neutral (linear) eigenspace (E c in figure 1.17). We consider in what

follows that the unstable manifold (E u in figure 1.17) is empty (i.e., the linearized operator has

no eigenvalues with strictly positive growth rates). The center manifold is characterized by the

graph of a smooth function, say h, that takes as arguments the coordinates along the neutral

eigenspace E c , say x , and maps it into the phase space that includes coordinates along the

stable eigenspace E s , say y . In mathematical terms

W c =
{
(x , y) ∈RN : y = h(x), 0 = h(0), Dx h|x=0 = 0.

}
, (1.89)

where N is the dimension of the system, Dx the Jacobian matrix and (x , y) = (0,0) is an

equilibrium. In other terms, all along the center manifold W c , the coordinates along the stable

eigenmodes are enslaved into the coordinates along the neutral eigenmodes.

A generic nonlinear dynamical system, diagonalized such that x and y naturally appear as

state variables, can be decomposed as

dx

dt
= Lc x +N c (x , y),

dy

dt
= Ls y +N s(x , y),

(1.90)

where Lc and Ls designate the projection of the diagonalized version of the linearized operator
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Figure 1.17: In the phase space are highlighted the stable, unstable, and center eigenspaces
(E s , E u , and E c , respectively) as well as the stable, unstable, and center manifolds (W s , W u ,
and W c , respectively). Figure reproduced from Guckenheimer and Holmes (1983).

L onto the neutral and stable eigenspaces, respectively. The symbols N c and N s designate

generic nonlinear terms, projected in the same way. By definition, W c must be an invariant of

the system thus the function h must solve the governing equations (1.90). Consequently, it is

determined by injecting y = h(x) into the second equation (1.90), leading to an equation for h

Dx h(x)
dx

dt
= Ls h(x)+N s(x ,h(x)), (1.91)

subject to the boundary conditions specified in (1.89). The ensuing dynamics along the

manifold W c is found by evaluating the first equation in y = h(x), leading to

dx

dt
= Lc x +N c (x ,h(x)). (1.92)

Such dynamics are particularly relevant to the system, for the center manifold, if not necessar-

ily unique, can be shown to be locally attracting.

Unfortunately, equation (1.91) for h generally is as difficult to solve as the original one. There-

fore its solution is typically sought as being polynomial in x

h(x) =
∑

j
A(1)

j x j +
∑

j

∑
k

A(2)
j k x j xk +

∑
j

∑
k

∑
l

A(3)
j kl x j xk xl + ... (1.93)

where A(n) is a tensor of order n that contains polynomial coefficients (unknown and to be

solved for). Expansion (1.93) typically is truncated at the minimal, relevant order, and the

polynomial coefficients are determined by identification between the left-hand and the right-

hand sides in (1.91). The amplitude equation is then found by evaluating (1.92) along this

truncated polynomial approximation of h. Indeed the coordinates x , amplitudes along the

neutral eigenspace, play the role of a and a∗ according to our previous terminology for the

44



Introduction Chapter 1

Hopf bifurcation (1.83).

As previously mentioned, the center manifold need not be unique. This motivated recent

developments from Haller and Ponsioen (2016) and Li et al. (2022) on the computation of a

"spectral submanifold" (sometimes abbreviated in "SSM"), which is the unique, smoothest

possible of all the center manifolds. This was applied for instance in the context of solid

mechanics in Jain et al. (2018) for reducing the dynamics of a Von-Karman beam. In fluids

mechanics, the SSM theory was at the basis of the numerical tools deployed in Kaszás et al.

(2022) for transitions among exact coherent states in the plane Couette flow.

The question of the equivalence between the center manifold and the weakly nonlinear meth-

ods, for the reduction of the Navier-Stokes equation, arises. In Knobloch and Guckenheimer

(1983), concerned with the convection in a horizontal layer rotating about a vertical axis, the

amplitude equations derived by using both methods were found to be identical to each other.

In addition, the paper of Fujimura (1991) has demonstrated in a more general context the

equivalence of both methods under the appropriate definition of the disturbance amplitude.

In the case of the Hopf bifurcation, x = (a, a∗) and the polynomial expansion (1.93) for h is

expected to be equivalent to that in (1.84) (for u −U b,c ). Indeed, the weakly nonlinear expan-

sion (1.84), like h, takes solely the coordinates along the neutral mode as arguments, and

the resulting field u −U b,c projects over all the stable modes through the higher-order fields.

Thereby, the expansion (1.84) also computes the leading-order nonlinear curvature of E c in

the phase space, since higher-order fields are generically not along the neutral eigenmodes.

Note that the "normal form theory" (Guckenheimer & Holmes, 1983; Haragus & Iooss, 2011) is

another technique to reduce a nonlinear dynamical system, of generic form

dx

dt
= N (x), (1.94)

to an amplitude equation. Without loss of generality, we assume x = 0 to be a fixed point of

(1.94), around which the system is expanded as

dx

dt
= Lx +∑

i

∑
j

∑
k

M (3)
i j k x j xk e i +O(||x ||3) (1.95)

where L is assumed to be diagonal, again without loss of generality upon a change of variable.

The symbol M (n) designates a tensor of order n that contains polynomial coefficients, and e i

is a unit vector in the direction xi (i.e. the eigenmode associated with the i th eigenvalue of the

diagonal operator L). The idea behind the normal form theory is to perform a sequence of

changes in variables such that, in the new variables after a change, the polynomial of smallest

degree in (1.95) has one degree more. This way, by proceeding with the sequence of change

in variables, nonlinear terms are found at higher and higher orders, i.e. are more and more

negligible in the vicinity of the equilibrium point. As a simple example, let us consider the
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following change of coordinates

y = x +∑
i

∑
j

∑
k

A(3)
i j k x j xk e i , i.e. yi = xi +

∑
j

∑
k

A(3)
i j k x j xk (1.96)

where A(n) is a tensor of order n that contains polynomial coefficients, unknown for the

moment. Then the main point of the normal form theory is that these coefficients in A(n) can

be chosen in such a way that, under the change of variable (1.96), the expansion (1.95) writes

more simply

dy

dt
= Ly +O(||y ||3). (1.97)

This is convenient since, as compared with (1.95), nonlinear effects have been mitigated

in (1.97) as long as ||x || ≪ 1. Proper coefficients in A(3)
i j k can be found upon inverting the

coordinate transform in (1.96) according to

x = y −∑
i

∑
j

∑
k

A(3)
i j k y j yk e i +O(||y ||3), i.e. xi = yi −

∑
j

∑
k

A(3)
i j k y j yk +O(||y ||3) (1.98)

Further injecting (1.98) in (1.95) leads to

dxi

dt
=σi yi −σi

∑
j

∑
k

A(3)
i j k y j yk +

∑
j

∑
k

M (3)
i j k y j yk +O(||y ||3) (1.99)

with σi the i th eigenvalue of L. On the other hand, taking the temporal derivative of (1.96)

leads to

dyi

dt
=

dxi

dt
+∑

j

∑
k

A(3)
i j k

dx j

dt
xk +

∑
j

∑
k

A(3)
i j k x j

dxk

dt

=
dxi

dt
+∑

j

∑
k

A(3)
i j k x j xk (σ j +σk )+O(||x ||3)

=
dxi

dt
+∑

j

∑
k

A(3)
i j k y j yk (σ j +σk )+O(||y ||3).

(1.100)

By identifying (1.99) with (1.100), we obtain eventually

dyi

dt
−∑

j

∑
k

A(3)
i j k y j yk (σ j +σk ) =σi yi −σi

∑
j

∑
k

A(3)
i j k y j yk +

∑
j

∑
k

M (3)
i j k y j yk +O(||y ||3)

dyi

dt
=σi yi +

∑
j

∑
k

(
M (3)

i j k − (σi − (σ j +σk ))A(3)
i j k

)
y j yk +O(||y ||3).

(1.101)

Therefore, if for the considered i the condition σi ̸=σ j +σk holds for all j ,k, then it is possible

to eliminate the quadratic nonlinear terms in the equation for yi simply by setting

A(3)
i j k =

M (3)
i j k

σi − (σ j +σk )
. (1.102)
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However, if the system is neutral and, for instance, one of the eigenvalues is null, this condition

cannot be verified. For instance if σ1 = 0, then it is clearly not possible to satisfy the condition

σi ≠σ j +σk for all j ,k, since we can always choose j = 1 and k = i . This means that for each i ,

the quadratic nonlinear term cannot be removed by a polynomial change of coordinates.

Overall, the normal form theory develops a systematic procedure to identify which terms can

and cannot be removed by successive polynomial changes of coordinates. The polynomial

terms that can’t be removed constitute the “normal form" of the system and extract the

quintessence of the nonlinear behavior of the original equation in the vicinity of a bifurcation

point. For this reason, amplitude equations, as derived by multiple scale expansions or center

manifold theory, are considered as being normal forms in this thesis. Nevertheless, whether or

not there exists strict mathematical equivalence between these two theories, and the normal

form theory present above, remains unclear to the authors.

1.3 In this thesis: deriving weakly nonlinear amplitude equations

for non-normal responses

All the reduction techniques mentioned in the previous section rely on the existence of a

(non-empty) center eigenspace, and the ensuing amplitude equations describe bifurcations.

However, as we have developed and illustrated in particular in figure 1.10a, there exist some

systems that exhibit very rich dynamics even though they are significantly stable and with-

out an outstanding eigenvalue. For this, they must be (i) non-normal and (ii) excited. The

backward-facing step, for example, has an ample response to harmonic forcing aroundω = 0.47

whereas the spectrum only shows significantly stable, densely packed eigenvalues (except

around ω = 0 but these modes are irrelevant here). Consequently, center manifold or weakly

nonlinear expansion methods cannot be applied to describing the harmonic response around

ω = 0.47, because there are no neutral or close to neutral eigenmodes around this frequency.

More fundamentally, we have shown the harmonic response to result from an interaction

between a large number of eigenmodes, such that reducing the dynamic to one or even a few

of them is the wrong paradigm. Fortunately, by focusing the analysis on the computation of

singular modes instead of eigenmodes, we have also shown in figure 1.10b that the dynamics

could be reduced to a single one of these singular modes.

These facts motivated the present thesis aiming a computing amplitude equations (normal

forms), not for amplitudes premultiplying eigenmodes, but for non-normal optimal responses

(hence its title).

For this purpose, an important property of non-normal operators is that their eigenvalues are

not robust. That is to say, a perturbation of size ϵ of the operator L can lead to the displacement

of an eigenvalue over a distance ≫ ϵ. This property, although it appeared implicitly in the

previous section, was never mentioned so far. This is illustrated in figure 1.18, considering the
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(a) (b)

Figure 1.18: Spectrum of A for (a) µ = 1, making A is non-normal and (b) µ = 0, making A
normal. In both cases, the eigenvalues of A (black dots) are the same and equal to −0.04 and
−0.01. The blue dots are the eigenvalues of A +∆A for one hundred, randomly generated
matrices ∆A, each of norm ||∆A|| = 10−2. In the gray zone, eigenvalues are unstable. Figure
reproduced from Schmid and Brandt (2014a).

spectrum of the matrix

A =

[
−0.01 0

µ −0.04

]
, (1.103)

perturbed by one hundred random matrices ∆A, each being of norm ||∆A|| = 10−2. The eigen-

values of A are independent from µ. However, the matrix is non-normal if µ ̸= 0, and normal

otherwise. This has the effect that, for µ = 1 in figure 1.18a, the eigenvalues of the perturbed

operator A+∆A can be located at significantly different positions than the eigenvalues of A.

Specifically, by perturbing A, its eigenvalues can be dislodged over a distance that appears

to be superior to 10−2. That is why perturbed eigenvalues can be found to be significantly

unstable, whereas the least stable eigenvalue of A is at −0.01.

The fact that eigenvalues of a non-normal operator are substantially dislodged by perturbing

the latter, is partially understood by the sensitivity formula in (1.85). As we have mentioned,

for non-normal operators, q̂ †
j and q̂ j are not identical and can effectively be very different

(cf figure 1.1). This renders the denominator in (1.85) potentially very small, thus the dis-

placement of the associated eigenvalue large. Note that this property is generally undesired

for numerical purposes, for it implies that eigenvalues are difficult to make converge with

the numerical discretization. This phenomenon does not occur if A is normal for µ = 0 in

figure 1.18b, and the perturbed eigenvalues remain closely around the original ones.

Quantifying how far the eigenvalues of an operator drift by perturbing it with some other

operator of norm ϵ, amounts to computing the ϵ-pseudospectrum (H. Landau, 1976; Trefethen
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& Embree, 2005). Contrarily to the sensitivity analysis in (1.85), the ϵ-pseudospectrum is

not perturbative in ϵ and thus does not require the latter to be small. Three equivalent

mathematical definitions of the pseudospectrum are given as follows (Trefethen & Embree,

2005)

Let A ∈C (X ) and ϵ≥ 0 be arbitray. The ϵ-pseudospectrum σϵ(A) of A is the set of z ∈C defined

equivalently by any of the conditions

||(z − A)−1|| > ϵ−1, (1.104)

z ∈σ(A+E) for some E ∈B(X ) with ||E || < ϵ, (1.105)

z ∈σ(A) or ||(z − A)u|| < ϵ for some u ∈D(A) with ||u|| = 1. (1.106)

If ||(z − A)u|| < ϵ as in (1.106), then z is an ϵ-pseudoeigenvalue of A and u is a corresponding

ϵ-pseudoeigenvector (or pseudoeigenfunction or pseudomode)

In this definition, σ(A) stands for the spectrum of A and C (X ) designates the set of closed

operators on X where X is a complete normed vector space over the complex field C. In

addition, B(X ) designates the set of bounded operators on X .

In figure 1.18, all the blue dots are contained in the 10−2-pseudospectrum of A (defini-

tion (1.105) has been used). For the non-normal version of A in figure 1.18a, the 10−2-

pseudospectrum is very loose around the two eigenvalues of A, such as to make large ex-

cursions of the perturbed eigenvalues possible. From its definition (1.104), it appears linked

to the fact that the resolvent gain, as introduced previously, is large. Indeed, the larger the

resolvent gain is, the wider is part of the complex plane satisfying (1.104).

In figure 1.18b for the normal version of A, on the contrary, the 10−2-pseudospectrum is

closely around the eigenvalues. That is because for a normal operator (and considering the L2

norm) ||(z − A)−1|| = 1/dist(z,σ(A)). Thereby definition (1.104) implies the ϵ-pseudospectrum

to be the set of z such that dist(z,σ(A)) < ϵ. Consequently, the displacement of an eigenvalue,

by perturbing the operator A with some operator of norm 10−2, is bounded by 10−2.

Crucially, by identifying definition (1.104) with (1.38), we deduce that iω is on the border of

the G(ω)−1 (G(ω) the harmonic gain) pseudospectrum of the operator A. By now relying on

definition (1.105), this means that an operator perturbation of norm G(ω)−1 is sufficient to

make iω a (neutral) eigenvalue. All along this thesis, this fact will make it possible to bridge

non-modality with classical techniques to derive amplitude equations. To do so, we shall

proceed as follows

• Part I is constituted of only one chapter, chapter 2. In the latter, we outline a method-

ology to derive an amplitude equation to capture the effect of weak nonlinearities on

the optimal response to a harmonic forcing. The method is applied to both a parallel

and a non-parallel flow and captures and helps understand different types of weakly

nonlinear behaviors.
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• Part II is constituted of four chapters and will deal with the response to stochastic

forcing. In the first chapter of this part, chapter 3, we show that by selecting a different

inner product, we can extend the methodology proposed in the first part to derive an

equation for the weakly nonlinear evolution of the variance of the response to stochastic

forcing. Results are illustrated on the backward-facing step flow.

In the second chapter of this part, chapter 4, we propose a more complicated procedure

to derive a "spectral envelope" equation that, not only describes the weakly nonlinear

evolution of the variance of the response, but also of its entire Fourier spectrum. The

method is first tested on a toy model, then on the same backward-facing step flow as in

the previous chapter, which makes possible a comparison between both approaches.

In the third chapter of this part, chapter 5, the classical modal approach to derive an

amplitude equation is extended to cases where the flow is stochastically forced. The

method is applied on the sudden expansion flow, subject to a supercritical pitchfork

bifurcation above which two equilibria exist. This makes possible noise-induced transi-

tions, which couldn’t occur in the previous configurations where the system had only

one global attractor. The mean return time of the transitions between one attractor to

the other is captured by the amplitude equation, at a very low numerical cost.

The fourth chapter of this part, chapter 6, aims at coupling both approaches from

chapter 3 and chapter 5, such as to derive a system of amplitude equation for both the

bifurcated mode and the non-normal response. Both equations are nonlinearly coupled,

which could help understand the role of non-normality in noise-induced transitions.

• Part III includes three chapters. In the first of them, chapter 7, we derive a weakly

nonlinear amplitude equation for the optimal response to an initial perturbation, over

a time-invariant base flow. The ensuing amplitude equation is tested both on the

backward-facing step flow and on the streamwise-invariant plane Poiseuille flow.

In the second chapter of this part, chapter 8, the method is extended to time-varying

base flows and applied to the Lamb-Oseen vortex flow, which exhibits bypass transition.

The amplitude equation predicts and helps interpret the role of nonlinearities on the

transient gain.

In the third and last chapter of this third part, chapter 9, inspired by the minimal seed

paradigm we incorporate the amplitude equation in a Lagrangian optimization, yielding

weakly nonlinear optimal structures. Their potential to trigger turbulence is tested on

the three-dimensional plane Poiseuille flow.
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2 A non-modal weakly nonlinear ampli-
tude equation for the response to a
harmonic forcing

Remark: This chapter is largely inspired by the first half of the article Ducimetière et al. (2022a),

in collaboration with Edouard Boujo and François Gallaire.

2.1 Introduction

Nonlinear dynamical systems can have one or several equilibrium solutions, which form one

of the building blocks of the phase space (Strogatz, 2015). The linear stability of an equilibrium

can be deduced from the eigenvalues of the linearised operator: linear modal analysis thus

helps to detect bifurcations and distinguish between linearly unstable, neutral (marginally

stable) and strictly stable equilibria, when the largest growth rate is positive, null and negative,

respectively. It sometimes remains too simplistic, however, and has therefore been generalised

over the last decades to account for nonlinear (Stuart, 1960) and non-modal (Trefethen et al.,

1993) effects, although these two types of correction have generally been opposed, culminating

into F. Waleffe’s paper entitled “Nonlinear normality versus non-normal linearity” (Waleffe,

1995). The objective of the present chapter is precisely to contribute to reconciling nonlinearity

and non-normality, and to rigorously derive weakly nonlinear amplitude equations ruling

non-normal systems when subject to a harmonic forcing.

2.1.1 Strong non-normality

Upon the choice of a scalar product, a linear operator is non-normal if it does not commute

with its adjoint. Consequently, its eigenmodes do not form an orthogonal set, and the response

to an initial condition or a sustained forcing may be highly non-trivial (see Trefethen and

Embree (2005) for an exhaustive presentation). In particular, non-normal systems subject

to harmonic forcing may exhibit strong amplification, much larger than the inverse of the
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Figure 1: Cartoon representation of nonlinearity and nonnormality, illustrated in the time domain (a) and
frequency domain (b), for linearly stable system (in the eigenspectrum (c), the least stable eigenvalue σ1 has
a negative growth rate). (a) In the linear regime, the energy eventually decays like exp(2σ1,rt). Nonnormal
systems can experience a very large transient growth. Nonlinearity may be stabilizing or destabilizing.
(b) Normal systems subject to external forcing respond preferentially at frequency σ1,i. Nonnormal systems
can respond at different frequencies, with an amplification much larger than predicted by 1/σr. Nonlinearity
may be stabilizing or destabilizing.

Figure 2.1: Cartoon representation of nonlinearity and non-normality, illustrated in the fre-
quency domain for a linearly stable system; the least stable eigenvalueσ1 of the eigenspectrum
in (a) has indeed a negative growth rate. Normal systems subject to external forcing respond
preferentially at frequency σ1,i . Non-normal systems can respond at different frequencies,
with an amplification much larger than predicted by σ1,r . Nonlinearity may reduce or magnify
the gain.

smallest damping rate, and at forcing frequencies unpredictable at the sight of the spectrum

(figure 2.1). Non-normal operators are encountered in various fields. In laser physics (see

Trefethen and Embree (2005) §60), H. J. Landau described non-normality by developing

the concept of the pseudospectrum, as a pertinent alternative to modal analysis (H. Landau,

1976, 1977). Non-normality in an unstable laser cavity results in a substantial increase in

the linewidth of the laser beam signal compared with a perfect resonator (Petermann, 1979).

In astrophysics, Jaramillo et al. (2021) recently used a pseudospectrum analysis to study the

stability of black holes. In network science, Asllani et al. (2018) have shown that many directed

empirical networks in various disciplines (biology, sociology, communication, transport, etc.)

present strong non-normality. For instance, the non-normality of the London Tube network

can result in the outbreak of measles epidemic, although linear stability theory predicts an

asymptotic decay of the number of contagions.

54



A non-modal amplitude equation for the harmonic response Chapter 2

In hydrodynamics, non-normality is frequent and inherited from the linearisation of the

advective term (U ·∇)U . This term gives a preferential direction to the fluid flow, which breaks

the normality of the linear operator. In the context of parallel flows, non-normality is found

for instance in the canonical plane Couette and Poiseuille flows (Butler & Farrell, 1992; Farrell

& Ioannou, 1993; Gustavsson, 1991; Reddy & Henningson, 1993; Schmid & Henningson, 2001),

in pipe flow (Schmid & Henningson, 1994) and in boundary layers (Butler & Farrell, 1992;

Corbett & Bottaro, 2000). Non-normality is also found in non-parallel flows (Cossu & Chomaz,

1997), for instance spatially developing boundary layers (Åkervik et al., 2008; Ehrenstein &

Gallaire, 2005; Monokrousos et al., 2010), jets (Garnaud et al., 2013a, 2013b) and the flow past

a backward-facing step (Blackburn et al., 2008; Boujo & Gallaire, 2015). Exhaustive reviews of

non-normality in hydrodynamics can be found in Chomaz (2005) and Schmid (2007). The

crucial role played by non-normality in the transition to turbulence has become clear over

the years (Baggett & Trefethen, 1997; Schmid, 2007; Trefethen et al., 1993). If the flow is non-

normal, low-energy perturbations such as free-stream turbulence or wall roughness can be

amplified strongly enough to lead to a regime where nonlinearities come into play, which may

lead to turbulence through a sub-critical bifurcation. The toy system presented in Trefethen

et al. (1993) is an excellent illustration of this so-called “bypass” scenario.

2.1.2 Weak nonlinearity

This illustrates the importance of combining nonlinearity and non-normality. In the bypass

transition scenario, it is the conjunction of non-normality and nonlinearity which succeeds in

shrinking the basin of attraction of a linearly strictly stable equilibrium, as strong amplifica-

tion triggers nonlinearities (figure 2.1), and may radically change the behaviour of dynamical

systems. Nonlinear effects can be introduced in the analysis either by weakly or fully nonlinear

analyses. Notwithstanding the relevance and usefulness of fully nonlinear solutions (Hof

et al., 2004; Schneider et al., 2010), as well as the existence of a fully nonlinear non-normal

stability theory able to compute nonlinear optimal initial conditions via Lagrangian optimisa-

tion (Cherubini et al., 2010, 2011; Kerswell, 2018; Pringle & Kerswell, 2010), we believe that

establishing a rigorous reduced-order model for weak nonlinearities is relevant. To the best of

our knowledge, weakly nonlinear approaches all hinge on the fact that an amplitude equation

can only be constructed close to a bifurcation point. Indeed, only linearised systems with a

neutral or weakly damped eigenmode may experience resonance, whose avoidance condition

results in the amplitude equation.

Following the insight of L. Landau, who introduced amplitude equations in analogy to phase

transitions (L. Landau and Lifshitz (1987), §26), weakly nonlinear analyses using a multiple-

scale approach were performed in some pioneering works in the context of thermal convection

(Gor’kov, 1957; Malkus & Veronis, 1958), parallel shear flows (Stuart, 1958, 1960; Watson, 1960)

and non-parallel shear flows (Sipp & Lebedev, 2007). In these studies, a so-called Stuart-

Landau equation of the form dT A =λA−κA |A|2 is obtained for the bifurcated mode amplitude

A as a condition for non-resonance. When the real part of the nonlinear coefficient is strictly
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positive, ℜ(κ) > 0, the cubic term A |A|2 is sufficient to capture the saturation amplitude, and

the Stuart-Landau equation is an accurate model for supercritical bifurcations; otherwise it

can be extended to describe subcritical bifurcations as well.

Amplitude equations can be generalised to describe slow dependence on space (see Cross

and Hohenberg (1993) for a review) and are also widely used to describe spatio-temporal

pattern formation in physical systems near the bifurcation threshold. Beyond hydrodynamics,

this occurs in plasma physics, solidification fronts, nonlinear optics, laser physics, oscillatory

chemical reactions, buckling of elastic rods, and many other fields.

While the form of the amplitude equation can often be deduced from symmetry considerations

(Crawford & Knobloch, 1991; Fauve, 1998), its coefficients (λ and κ in the case of the Stuart-

Landau equation) are evaluated with scalar products of fields computed at the bifurcation

point. Other approaches exist to deduce the normal form, i.e. the amplitude equation which

distillates the quintessence of the nonlinear behaviour in the vicinity of a bifurcation point

(Guckenheimer & Holmes, 1983; Haragus & Iooss, 2011; Manneville, 2004). Common to all

these approaches is the concept of the centre manifold, along which the dynamics is slow,

while, under a spectral gap assumption, an adiabatic elimination ensures the slaving of quickly

damped modes.

2.1.3 Amplitude equations without eigenvalues

This indicates that the application of asymptotic approaches to describe the weakly nonlinear

behaviour of non-normal systems is not straightforward, because of the absence of a neutral

bifurcation point in many non-normal systems. Note that even when a system has a neutral

or weakly damped mode, it can still exhibit large non-normality, which could jeopardise the

relevance of a classical, single-mode amplitude equation.

The present work proposes to reconcile amplitude equations and non-normality. Specifically,

a method is advanced to derive amplitude equations in the context of harmonic forcing. We

systematically vary the amplitude of a given harmonic forcing at a prescribed frequency and

predict the gain (energy growth) of the asymptotic response (§2.2). We perform an a priori

weakly nonlinear prolongation of the gain, at a very low numerical cost. The applied harmonic

forcing and initial condition are allowed to be arbitrarily different from any eigenmode. The

method does not rely on the presence of an eigenvalue close to the neutral axis; instead, it

applies to any sufficiently non-normal operator. If such an eigenvalue is nevertheless present

on the neutral axis, we recover a classical, modal amplitude equation. The method is illustrated

with two flows, the non-parallel flow past a backward-facing step (sketched in figure 2.2a)

and the parallel plane Poiseuille flow (figure 2.2b). These two non-normal flows exhibit large

harmonic forcing gains.
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Figure 2.2: Sketch of the flow configurations. (a) Two-dimensional flow over a backward-facing
step, with a fully developed parabolic profile of unit maximum centreline velocity at the inlet.
(b) Three-dimensional plane Poiseuille flow, confined between two solid walls at y = ±1, and
invariant in the x (streamwise) and z (spanwise) directions

In both contexts, a generic nonlinear dynamical system is considered,

∂tU = N (U )+F , U (0) = U 0, (2.1)

where N (∗) is a nonlinear operator and F is a forcing term. An appropriate and common step

to begin the analysis of (2.1) is to linearise it around an unforced equilibrium. The latter is

denoted U e and satisfies N (U e ) = 0. Around this equilibrium are considered small-amplitude

perturbations in velocity ϵu, forcing ϵ f and initial condition ϵu0, where ϵ≪ 1. An asymptotic

expansion of (2.1) in terms of ϵ can thus be performed, transforming the nonlinear equation

into a series of linear ones. The fields u, f and u0 are recovered at order ϵ and linked through

the linear relation

∂t u = Lu + f , u(0) = u0, (2.2)

where L results from the linearisation of N around U e . For fluid flows governed by the in-

compressible Navier-Stokes equations, Lu = −(U e ·∇)u − (u ·∇)U e +Re−1∆u −∇p(u), where

the pressure field p is such that the velocity field u is divergence free. Both fields are linked

through a linear Poisson equation. In practice, pressure is included in the state variable,

resulting in a singular mass matrix; it is omitted here, for the sake of clarity.

2.2 Response to Harmonic Forcing

We first derive an amplitude equation for the weakly nonlinear amplification of time-harmonic

forcing f (x , t) = f̂ (x)e iωo t + c.c in a linearly strictly stable system. In the long-time regime,

only the same-frequency harmonic response u(x , t) = û(x)e iωo t + c.c persists. Injecting the

expressions of f and u in (2.2) leads to û = (iωo I −L)−1 f̂ .
= R(iωo) f̂ , where R(z) = (zI −L)−1 is

the resolvent operator. In the current context, it maps a harmonic forcing structure onto its
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asymptotic linear response at the same frequency. A measure of the maximum gain is

G(iωo) = max
f̂

∥û∥∥∥∥ f̂
∥∥∥ = ∥R(iωo)∥ .

=
1

ϵo
. (2.3)

In the following, we choose the L2 norm (or “energy” norm) induced by the Hermitian in-

ner product 〈ûa , ûb〉 =
∫
Ω ûH

a ûbdΩ (the superscript H denotes the Hermitian transpose).

The operator R(iωo)† denotes the adjoint of R(iωo) under this scalar product, such that

〈R(iωo)ûa , ûb〉 =
〈

ûa ,R(iωo)†ûb
〉

, for any ûa , ûb . Among all frequencies ωo , the one leading

to the maximum amplification is noted ωo,m and associated with an optimal gain G(iωo,m) =

1/ϵo,max. The singular value decomposition of R(iωo) provides G(iωo) = ϵ−1
o as the largest

singular value, and the associated pair of right singular vector f̂ o and left singular vector ûo .

The former represents the optimal forcing, whereas the latter characterises the long-time-

harmonic response reached, after the transients fade away

R(iωo)−1ûo = ϵo f̂ o ,
[

R(iωo)†
]−1

f̂ o = ϵoûo , (2.4)

where || f̂ o || = ||ûo || = 1. Smaller singular values of R(iωo) constitute sub-optimal gains, and the

associated right singular vectors are sub-optimal forcing structures. Note that one can express

〈û, û〉 = 〈R f̂ ,R f̂ 〉 as 〈R†R f̂ , f̂ 〉, such that the singular values of R(iωo) are also the square root

of the eigenvalues of the symmetric operator R(iωo)†R(iωo). An important implication is

that the singular vectors form an orthogonal set for the scalar product 〈∗,∗〉. The practical

computation of ϵo , f̂ o and ûo is detailed for the Navier-Stokes equations in Garnaud et al.

(2013b), for instance. Note that, if the operator L possesses a neutral eigenvalue, ωo,m , f̂ o and

ûo respectively reduce to the frequency, the adjoint and the direct mode associated with this

eigenvalue.

Since L is strongly non-normal, as assumed in the rest of the present study, none of ϵo , ûo and

f̂ o are immediately determined from its spectral (modal) properties. Strong non-normality

implies ϵo ≪ 1, such that the inverse resolvent R(iωo)−1 appearing in (2.4) is almost singular.

We perturb it as

Φ
.
= R(iωo)−1 −ϵoP, with P = f̂ o 〈ûo ,∗〉 , (2.5)

where the linear operator P is such that P ĝ = f̂ o

〈
ûo , ĝ

〉
, for any field ĝ (note that 〈ûo ,∗〉 would

write more simply "〈ûo |" in the quantum mechanics formalism). This leads to Φûo = 0, such

that Φ is exactly singular. The norm of the perturbation operator is small since ||P || = 1. The

field ûo constitutes the only non-trivial part of the kernel of Φ, and its associated adjoint mode

is f̂ o . Indeed, using that P † = ûo〈 f̂ o ,∗〉, we have

Φ† f̂ o =
[
R(iωo)−1]†

f̂ o −ϵoûo
〈

f̂ o , f̂ o

〉
=

[
R(iωo)†

]−1
f̂ o −ϵoûo = 0,
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Figure 2.3: Natural and perturbed spectra of the flow past a backward-facing step (sketched in
figure 2.2a) at Re = 500. Blue circles: eigenvalues of the linearised Navier-Stokes operator L.
Red dots: eigenvalues of the linear operator perturbed with ϵoP = ϵo f̂ o 〈ûo ,∗〉. By construction,
one eigenvalue of Ln = L + ϵoP lies on the imaginary axis. Green isocontour: part of the
ϵo-pseudospectrum of L, where ||R(z)|| = 1/ϵo . By construction, the ϵo-pseudospectrum is
contained in the stable half-plane, except at iωo where it touches the neutral axis.

where we used the fact that the inverse of the adjoint is the adjoint of the inverse. We note

that Φ can be rewritten as Φ = (iωo I −Ln) where Ln
.
= L+ϵoP , such that (2.5) seems to imply

that the state operator L has been perturbed. In this process, the operator Ln has acquired an

eigenvalue equal to iωo , and therefore has become neutral. However, it has also lost its reality

and therefore does not, in general, possess an eigenvalue equal to −iωo . By construction, ϵo is

the smallest possible amplitude of the right-hand side of (2.4) for a given iωo , such that ϵoP is

the smallest perturbation of L necessary to relocate an eigenvalue of L on iωo . This fact can

be formalised with the pseudospectrum theory outlined in Trefethen and Embree (2005). In

the complex plane, z ∈C belongs to the ϵ-pseudospectrum Λϵ(L) if and only if ∥R(z)∥ ≥ 1/ϵ. If

E is an operator with ||E || = 1, eigenvalues of L−ϵE can lie anywhere inside Λϵ(L). Eigenvalues

of L and singularities of ∥R(z)∥ thus collide with the ϵ-pseudospectrum in the limit ϵ→ 0.

As ϵ increases, the ϵ-pseudospectrum may touch the imaginary axis, such that any z = iωo

can be an eigenvalue of L − ϵE if the amplitude of the perturbation is greater than or equal

to ϵ = ∥R(iωo)∥−1. We recognise ϵ as the inverse gain ϵo defined in (2.3), and thus E as P . In

particular, if ωo =ωo,m , the associated ϵo,max is referred to as the stability radius of L since the

ϵo,max-pseudospectrum is the first to touch the imaginary axis.

As an illustration of the fact that a small-amplitude perturbation can easily “neutralise” a

non-normal operator, we consider the Navier-Stokes operator linearised around the steady

flow past a backward-facing step (BFS), sketched in figure 2.2, at Re = 500. The most amplified

frequency ωo =ωo,m ≈ 0.47 is associated with ϵo ≈ 1.3 ·10−4 ≪ 1. The spectra of L and Ln are

shown in figure 2.3, together with part of the ϵo-pseudospectrum of L. Clearly, the very small
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perturbation ϵoP locates an eigenvalue exactly onto iωo , despite the strong stability of L. We

stress that neither ωo nor ϵo can be deduced only by inspecting the spectrum of L.

Nevertheless, in what follows, it is really the inverse resolvent and not the state operator L

that we propose to perturb. Indeed, L is generally a real operator whereas Ln is necessarily a

complex one, and only one side of the spectrum of Ln can generally be made neutral at a time,

depending on whether L is perturbed with P or its complex conjugate P∗.

The inverse gain ϵo ≪ 1 constitutes a natural choice of small parameter. We choose the Navier-

Stokes equations for their nonlinear term (U ·∇)U , which yields both a non-normal linearised

operator and a rich diversity of behaviours. The flow is weakly forced by F =φ
p
ϵo

3 f̂ he iωo t+c.c ,

where f̂ h is an arbitrary (not necessarily optimal) forcing structure, and φ = O(1) is a real

prefactor. Imposing || f̂ h || = 1, the forcing amplitude is F
.
=φ

p
ϵo

3. A separation of time scales

is invoked for the flow response: its envelope is assumed to vary on a slow time scale T = ϵo t

(such that dt = ∂t +ϵo∂T ). This ensures a comprehensive distinguished scaling and suggests

the following multiple-scale expansion:

U (t ,T ) = U e +p
ϵou1(t ,T )+ϵou2(t ,T )+p

ϵo
3u3(t ,T )+O(ϵ2

o). (2.6)

The velocity field at each order j is then Fourier expanded as

u j (t ,T ) = u j ,0(T )+∑
m

(u j ,m(T )e i mωo t + c.c), (2.7)

with m = 1,2,3 . . .. This decomposition is certainly justified in the permanent regime, of interest

in this analysis. The proposed slow dynamics does not aim to capture the transient regime but

flow variations around the permanent regime. Introducing (2.6)-(2.7) into the Navier-Stokes

equations and using (2.5) to perturb the operator R(iωo)−1 appearing from time derivation

yields

p
ϵo

[(
Φu1,1e iωo t + c.c

)
+ s1

]
+ϵo

[(
Φu2,1e iωo t + c.c

)
+ s2 +C (u1,u1)

]
+

p
ϵo

3
[(
Φu3,1e iωo t + c.c

)
+ s3 +2C (u1,u2)+∂T u1 +

(
Pu1,1e iωo t + c.c

)]
+O(ϵ2

o)

=φ
p
ϵo

3 f̂ he iωo t + c.c,

(2.8)

where

s j
.
= −Lu j ,0(T )+

[∑
m

(i mωo −L)u j ,m(T )e i mωo t + c.c

]
for m = 2,3, ..., and C (a,b)

.
= 1

2 ((a ·∇)b + (b ·∇)a). Note that the perturbation ϵoP modifying

R(iω0)−1 into Φ at leading order is compensated for at third order. Terms are then collected at

each order in
p
ϵo , leading to a cascade of linear problems, detailed hereafter.

At order
p
ϵo , we collect (i mωo I −L)u1,m = 0 for m = 0,2,3. . ., and Φu1,1 = 0. Since L is strictly

stable, the unforced equation for m ̸= 1 can only lead to u1,m = 0. Conversely, the kernel of
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Φ contains the optimal response ûo , therefore u1,1(T ) = A(T )ûo , where A(T ) ∈ C is a slowly

varying scalar amplitude verifying ∂t A = 0. Finally, the general solution at order
p
ϵo is written

u1(t ,T ) = A(T )ûoe iωo t + c.c. (2.9)

At order ϵo , we obtain the solution u2 = |A|2 u2,0 +
(

A2e2iωo t û2,2 + c.c
)
, where

−Lu2,0 = −2C (ûo , û∗
o ),

(2iωo I −L)û2,2 = −C (ûo , ûo).
(2.10)

The homogeneous solution of the system Φu2,1 = 0 is arbitrarily proportional to ûo , and

written A2(T )ûo . It can be ignored (u2,1 = 0) without loss of generality. It could also be kept,

provided it is included in the definition of the amplitude, which would then become A+ϵo A2.

At order
p
ϵo

3, we assemble two equations yielding the Fourier components of the solution

oscillating at ωo ,

Φu3,1 = −A|A|2 [
2C (ûo ,u2,0)+2C (û∗

o , û2,2)
]− ûo

dA

dT
− A f̂ o +φ f̂ h (2.11)

(recalling P ûo = f̂ o) and at 3ωo , (3iωo I − L)u3,3 = −2A3C (ûo , û2,2). The operator Φ being

singular, the only way for u3,1 to be non-diverging, and thus for the asymptotic expansion to

make sense, is that the right-hand side of (2.11) has a null scalar product with the kernel of Φ†,

i.e. is orthogonal to the adjoint mode f̂ o associated with ûo . This is known as the “Fredholm

alternative”. As a result, the amplitude A(T ) satisfies

1

η

dA

dT
=φγ− A− µ+ν

η
A |A|2 , (2.12)

with the coefficients

η =
1〈

f̂ o , ûo
〉 , γ =

〈
f̂ o , f̂ h

〉
,

µ

η
=

〈
f̂ o ,2C (ûo ,u2,0)

〉
,

ν

η
=

〈
f̂ o ,2C (û∗

o , û2,2)
〉

. (2.13)

The coefficient γ is the projection of the applied forcing on the optimal forcing. The coefficient

µ embeds the interaction between ûo and the static perturbation u2,0, i.e. it corrects the gain

according to the fact that ûo extracts energy from the time-averaged mean flow rather than

from the original base flow. In contrast, the coefficient ν embeds the interaction between

û∗
o and the second harmonic û2,2. We show in Appendix 2.4.1 that, in the regime of small

variations around the linear gain, the amplitude equation reduces to the standard sensitivity

of the gain Brandt et al. (2011) to a base flow modification induced by u2,0, and embeds the

effect of the second harmonic û2,2 as well. Introducing the rescaled quantities a
.
=
p
ϵo A

and F =φ
p
ϵo

3, such that the weakly nonlinear harmonic gain G =
∥∥pϵou1,1

∥∥/
∥∥φpϵo

3 f̂ h

∥∥ is
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simply = |a|/F , (2.12) becomes

1

ηϵo

da

dt
=
γF

ϵo
−a − µ+ν

ηϵo
a |a|2 . (2.14)

The gain associated with the linearised version of (2.14) is G =
∣∣γ∣∣/ϵo , as expected for the

linear prediction. We recover G = 1/ϵo when the optimal forcing is applied (γ = 1). We also

note that this expression predicts G = 0 when γ = 0, which merely indicates that the linear

response is orthogonal to ûo , without stating anything on the gains associated with sub-

optimal forcings except that they should be at most O(ϵ−1/2
o ), assuming a sufficiently large

“spectral” gap in the singular-value decomposition of the resolvent operator. For the rest of

the chapter, we set γ = 1. Expressing a in terms of an amplitude |a| ∈ R+ and a phase ρ ∈ R
such that a(t) = |a(t )|e iρ(t ), the time-independent equilibrium solutions, or fixed points, of

equation (2.14), named (|ae | ,ρe ), solve

F

ϵo
e−iρe = |ae |+ µ+ν

ηϵo
|ae |3 , (2.15)

Squaring and adding the real and imaginary parts of (2.15) leads to a third-order polynomial

for the equilibrium amplitude of (2.14):

DY 3 +2BY 2 +Y =

(
F

ϵo

)2

with D =

∣∣µ+ν∣∣2

ϵ2
o

∣∣η∣∣2 > 0 and B = ℜ
[
µ+ν
ϵoη

]
(2.16)

and where Y = |ae |2 > 0. Let p(Y ) = DY 3 +2BY 2 +Y be the left-hand side of (2.16). We further

distinguish two cases: (i) if B ≥ 0, p(Y ) is increasing monotonically with Y and can only

cross the constant line (F /ϵo)2 once. We have in addition p(Y ) > Y , thus the gain smaller

than the linear prediction and monotonically decaying while F is increasing. Conversely,

if (ii) B < 0, we have p(Y ) < Y in the interval 0 < Y < −2B/D, and the gain should then

be greater than the linear one in the corresponding range of forcing 0 < (F /ϵo)2 < −2B/D.

Furthermore, p(Y ) may vary non-monotonically over this interval and cross the constant

line (F /ϵo)2 three times (leading to three solutions for Y ); namely, p(Y ) may be decreasing

on a certain interval of Y while dominated by the negative term ∝ Y 2, bridging two other

intervals where p(Y ) is increasing due to the respective positive terms ∝ Y and ∝ Y 3. A

necessary and sufficient condition for such a case to occur is that the equation dP/dY =

3DY 2 +4BY +1 = 0 possesses two real and positive solutions. This is guaranteed if and only

if the determinant ∆
.
= 16B 2 −12D is strictly positive. Finally, for −2B/D ≤ Y , p(Y ) must be

monotonically increasing again with p(Y ) ≥ Y , resulting in a gain smaller than the linear one

and monotonically decreasing while F is increasing.

The stability of the equilibrium solution(s) (|ae | ,ρe ) can also be established from the amplitude

equation (2.14). If an equilibrium becomes unstable for a given forcing amplitude, we expect

the flow response to depart from the associated limit cycle. However, the stability of the

equilibria of the amplitude equation does not directly conclude on the stability of the limit
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cycle, for instance, to perturbations in the third dimension, which could be assessed with a

Floquet stability analysis or a direct numerical simulation. Equation (2.14) can be expressed

as a two-by-two amplitude/phase nonlinear dynamical system

d |a|
dt

= F
[
ηr cos(ρ)+ηi sin(ρ)

]−ηr ϵo |a|− (µr +νr ) |a|3 (2.17)

|a| dρ

dt
= F

[
ηi cos(ρ)−ηr sin(ρ)

]−ηi ϵo |a|− (µi +νi ) |a|3 . (2.18)

Perturbing this system around the equilibrium solution (|ae | ,ρe )+(|a|′ (t ),ρ′(t )) and neglecting

nonlinear terms leads to the following equation for the perturbation dt (|a|′ ,ρ′)T = J (|a|′ ,ρ′)T ,

where J is the Jacobian matrix expressed as

J =

[
−ϵoηr −3(µr +νr ) |ae |2 F

[
ηi cos(ρe )−ηr sin(ρe )

]
−ϵoηi |ae |−1 −3(µi +νi ) |ae | −F

[
ηi sin(ρe )+ηr cos(ρe )

] |ae |−1

]
. (2.19)

If at least one of the two eigenvalues of J has a positive real part, the associated equilibrium is

linearly unstable.

Note that equations (2.17) and (2.18), for the amplitude and the phase of the oscillating linear

response, are similar to those that would be obtained for a classical Duffing-Van der Pol

oscillator with appropriate parameters and harmonically forced around its natural frequency.

If the latter is set to one, ηr ϵo and ηi ϵo are respectively proportional to the damping ratio

and the detuning parameter. The coefficient (µi +νi ) is proportional to the cubic stiffness

parameter (Duffing nonlinearity ∝ x3), and (µr +νr ) to the nonlinear damping parameter

(Van der Pol nonlinearity ∝ ẋx2).

For the sake of completeness, Appendix 2.4.3 shows how to compute higher-order corrections

of (2.14). It is worth mentioning, in particular, that the Fredholm alternative ensures that

higher-order solutions oscillating at ωo are orthogonal to the optimal response ûo , and that

the action of Φ need not be computed explicitly and can be replaced by the action of (iωo I −L)

for all practical purposes.

2.2.1 Application case: the flow past a BFS

Equation (2.14) is the first main result of this study and will be further referred to as the

Weakly Nonlinear non-normal harmonic (WNNh) model. We discuss its performance when

the stationary flow past a BFS sketched in figure 2.2 is forced harmonically with the optimal

structure f̂ o . At Re = 500 and the optimal forcing frequency, f̂ o is shown in figure 2.4a

together with its associated response ûo in figure 2.4b (see Appendix 2.4.2 for details about

the geometry and the numerical method). As shown in Blackburn et al. (2008) and Boujo and

Gallaire (2015), the BFS flow constitutes a striking illustration of streamwise non-normality. As

seen in figure 2.4a, the optimal forcing structure is located upstream and triggers a spatially

growing response along the shear layer adjoining the recirculation region, as the result of the
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Figure 2.4: (a) Streamwise (x) component of the optimal harmonic forcing structure ℜ( f̂ o)
for the BFS (sketched in figure 2.2a) at Re = 500 and at the optimal forcing frequency
ωo/(2π) = ωo,m/(2π) = 0.075. (b) Streamwise component of the associated response ℜ(ûo).
Both structures are normalised as || f̂ o || = ||ûo || = 1.

Re ϵ0 η µ/(ϵoη) ν/(ϵoη) B
200 73.9−1 3.66− i ·0.0163 5.13− i ·1.32 0.137+ i ·1.13 5.27
500 7456.6−1 117.1− i ·0.653 8.23− i ·2.60 0.364− i ·0.396 8.59
700 148080−1 1626.7− i ·8.65 9.06− i ·4.38 −0.729− i ·1.39 8.33

Table 2.1: WNNh coefficients for the backward-facing step flow, when the optimal forcing
structure (γ = 1) is applied at the optimal frequency ωo/(2π) =ωo,m/(2π) = 0.075.

convectively unstable nature of the shear layer. We first set the Reynolds number Re between

200 and 700, and the frequency ωo = 2π×0.075 close to the most linearly amplified frequency

ωo,m , which varies only slightly with Re. The linear gain grows exponentially with Re (Boujo

and Gallaire (2015)), as seen in table 2.1. Since η scales like O(ϵ−1/2
o ), the term in dA/dT in

(2.11) is asymptotically consistent only close to equilibrium points where dA/dT = 0, which is

the regime of primary interest in the context of harmonic forcing. In accordance, the temporal

derivative dA/dT is kept in (2.12) to assess the stability of such equilibria, determined by the

analysis of the Jacobian matrix (2.19).

Predictions from the WNNh model are compared with fully nonlinear gains extracted from

direct numerical simulations (DNS) in figure 2.5a. The DNS gains are the ratio between the

temporal root-mean-square (r.m.s) of the kinetic energy of the fluctuations at ωo (extracted

through a Fourier transform) and the rms of the kinetic energy of the forcing (for instance, the

forcing F f̂ oe iωo t +c.c, with || f̂ o || = 1 corresponding to an effective forcing rms amplitude ofp
2F ). Since the coefficient B defined in (2.16) is strictly positive for all Re, the WNNh model

predicts nonlinearities to saturate the energy of the response, and thus the gain to decrease

monotonically with the forcing amplitude. This is confirmed by the comparison with DNS,

displaying an excellent overall agreement. As shown in the inset (in logarithmic scale), the

nonlinear gain transitions from a constant value in the linear regime to a −2/3 power-law

decay when nonlinearities prevail, as predicted from (2.14). This transition is delayed when the

Reynolds number (and therefore the linear gain) decreases, and compares well with DNS data.

The main plot (in linear scale) confirms the agreement with the DNS, and the improvement

over the linear model. Re-scaled WNNh curves appear similar for Re = 200 and Re = 700, and a
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Figure 2.5: Weakly and fully nonlinear harmonic gain in the BFS flow (sketched in figure 2.2a).
At each frequency and each Reynolds number, the optimal linear forcing structure f̂ o is
applied. (a) Fixed frequency ωo/(2π) = 0.075, varying Reynolds number Re = 200 and 700
(larger Re darker). Inset: log-log scale, Re = 200,300. . .700. (b) Fixed Reynolds number

Re = 500, varying forcing r.m.s amplitude F =
p

2
−1

[1,2,4,10] ·10−4 (larger amplitudes darker).

slight overestimate is observed as the forcing amplitude approaches ϵ0. Indeed, F ∼ ϵ0 implies

φ∼ 1/
p
ϵo , which jeopardises the asymptotic hierarchy. Nonetheless, the error remains small

for this flow in the considered range of forcing amplitudes. Further physical insight is gained

from the WNNh coefficients gathered in table 2.1. The nonlinear coefficients remain of order

one, which confirms the validity of the chosen scalings. The real part ofµ being larger than that

of ν, the present analysis rationalises a priori the predominance of the mean flow distortion

over the second harmonic in the saturation mechanism reported a posteriori in Mantič-Lugo

and Gallaire (2016b).

Next, we select Re = 500 and report in figure 2.5b harmonic gains as a function of the frequency,

for increasing forcing amplitudes. At each frequency, the corresponding optimal forcing

structure f̂ o is applied. The comparison between DNS and WNNh is conclusive over the whole

range of frequencies. The saturating character of nonlinearities is well captured. Such a good

agreement may appear surprising in the low-frequency regime, for instance at ωo/(2π) = 0.04

where the second harmonics at frequency 2ωo could, in principle, be amplified approximately

four times more than the fundamental. It happens, however, that the associated forcing

structure −C (ûo , ûo) is located much farther downstream than the optimal forcing at 2ωo ,

with a weak overlap region which results in a poor projection. Therefore, the second-order

contribution does not reach amplitudes of concern in this flow, as a consequence of its

streamwise non-normality. For ωo/(2π) = 0.075 the fully nonlinear and predicted weakly

nonlinear structures are compared in figure 2.6. The energy centroid of the fully nonlinear

response shows a clear migration upstream when increasing the forcing amplitude, as already

reported in Mantič-Lugo and Gallaire (2016b). It is associated with a shortening of the mean

recirculation bubble under the action of the Reynolds stresses, in turn explaining the reduction

of the gain. Although some distortion of the structures due to higher harmonics is observed
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Figure 2.6: Snapshots of the weakly (WNNh) and fully (DNS) nonlinear cross-wise (y) compo-
nent of the velocity perturbation around the mean flow in the BFS flow. The frequency is fixed
to ωo/(2π) = 0.075 and the Reynolds number to Re = 500. Three increasing forcing amplitudes
are considered: a), b) and c) correspond respectively to F = [10−5,10−4,10−3]/

p
2. The WNNh

structures are evaluated as 2ℜ(
p
ϵo Ae iωo t ûo+ϵo A2e2iωo t û2,2), with A the equilibrium solution

of (2.12); the DNS structures are obtained by taking the nωo (n = 1,2,3, ...) Fourier components
of a DNS simulation in the stationary regime, then by taking two times the real part of their
sum weighted by e i nωo t . In this manner, the phases can also be compared between WNNh
and DNS.

when increasing the forcing amplitude, the fully nonlinear structure remains dominated by

its ωo-component. The weakly nonlinear structure does not capture the upstream migration

since it does not include the O(ϵ3/2
o ) corrections of the ωo-component structure; thus, the

latter is intrinsically restricted to ûo . However, the coefficient µ+ν is constructed on forcing

terms at O(ϵ3/2
o ) and indeed embeds the nonlinear interactions responsible for the migration

and the saturation, explaining why the predicted level of energy is correct even though the

structure is not.

2.2.2 Application case: Orr mechanism in the plane Poiseuille flow

The weakly nonlinear evolution of the harmonic gain is now sought for the plane Poiseuille

flow sketched in figure 2.2, a typical flow with component-wise non-normality (Schmid (2007)

and Trefethen et al. (1993)). Periodicity is imposed in the streamwise and spanwise directions

with wavenumbers kx and kz , respectively. The set of parameters (Re,kx ,kz ) = (3000,1.2,0)
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Figure 2.7: (a) Linear harmonic (optimal) gain as a function of the optimisation frequency.
Present results are compared with those reproduced from Schmid and Henningson (2001),
where perturbations are expressed as Fourier mode of streamwise wavenumber kx . (b) Eigen-
spectra.

is selected. According to the classical work of Orszag (1971), the base flow at this Re number

is linearly stable since instability first occurs at Recr ≈ 5772 and kx,cr ≈ 1.02. In both the

linear and nonlinear computations, the spanwise invariance kz = 0 is systematically main-

tained. While the base flow U (y) has only one velocity component and depends only on

one coordinate, the perturbations are here two-dimensional (i.e, u = (ux (x, y),uy (x, y))). The

computations are performed in the streamwise-periodic box (x, y) ∈ [0,2π/1.2]× [−1,1] ≡Ω.

All the scalar products are taken upon integration inside this periodic box, in particular for

the normalisation 〈ûo , ûo〉 = 〈 f̂ o , f̂ o〉 = 1, and latter for the evaluation of the weakly nonlinear

coefficients.

The linear optimal gain (2.3) is computed in the frequency interval 0 ≤ωo ≤ 0.8 (figure 2.7a),

together with the associated optimal forcing and responses structures. Results are validated

with the one-dimensional results of Schmid and Henningson (2001) based on a Fourier expan-

sion of wavenumbers kx = 1.2 and kx = 0 in the streamwise direction. Eigenspectra are also

reported in figure 2.7(b). The SVD algorithm applied to the periodic box automatically selects

the most amplified wavenumber among all spatial harmonics n1.2 with n = 0,1,2, ... Below

ωo ≈ 0.12, the harmonic 0 ·1.2 = 0 is dominant due to the concentration of weakly damped

eigenvalues along the imaginary axis. The gain G(ωo = 0) = 1216 is equal to the inverse of

the smallest damping rate among all these spatially invariant modes. The large value of the

gain associated with those modes is understood considering that the small pressure gradient
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(a) (b)

Figure 2.8: (a) Streamwise component of the optimal forcing ℜ( fo,x ) for the plane Poiseuille
flow (sketched in figure 2.2b) for (Re,kx ,kz ) = (3000,1.2,0) and ωo = 0.3810. (b) Streamwise
component of the response ℜ(ûo,x ). Both fields are normalised as || f̂ o || = ||ûo || = 1. Only one
wavelength 0 ≤ kx x ≤ 2π is shown.

(2/Re,0)T = (2/3000,0)T is sufficient to induce the Poiseuille base flow (equal to unity in the

centreline). Above ωo ≈ 0.12, the fundamental wavenumber 1 ·1.2 = 1.2 prevails. The cor-

responding harmonic gain presents a local and selective maximum for ωo = 0.38, certainly

linked to the presence of the weakly damped eigenvalue σ1 = −0.0103+0.380i . Nevertheless,

G(ωo = 0.38) = 416 is significantly larger than 1/0.0103 ≈ 97. This is a direct consequence of

the non-normality of the plane Poiseuille flow. Unlike the BFS flow, the non-normality at play

here is not due to the presence of a convectively unstable region but to the Orr mechanism,

suggested for the first time in Orr (1907). Namely, an initial condition or forcing field consti-

tuted of spanwise vortices tilted towards the upstream direction (fig. 2.8a), tilts downstream

under the action of the mean shear (fig. 2.8b), which leads to a significant gain in the kinetic

energy of the perturbation. The coefficient B is shown in figure 2.9a, and the associated WNNh

prolongation of the harmonic gain in figure 2.9b. The coefficient B is negative in the interval

0.378 ≤ωo ≤ 0.486, and B and D are such that three equilibrium amplitudes |ae | exist for some

values of F in the sub-interval 0.389 ≤ωo ≤ 0.428. Among them, none or only one is found to

be stable. Consequently, as the forcing amplitude is increased, the harmonic gain curve leans

toward the higher frequencies in figure 2.9b; in the meantime, a frequency interval where no

stable solution is predicted appears and grows larger.

Note that, in the absence of a stable equilibrium, it is natural to consider completing (2.14)

up to O(
p
ϵo

5). It is shown in Appendix 2.4.3, however, that such an approach is problematic

in the present case, because the non-oscillating forcing terms appearing at O(ϵ2
o) excite the

largely amplified static modes visible in figure 2.7 for ωo = 0. The associated gains being of

order 1/ϵo , the mean flow correction terms at O(ϵ2
o) break the asymptotic hierarchy. This

problem is not encountered at O(ϵo), because the forcing −2C (ûo , û∗
o ) in (2.10) projects poorly

on the optimal one for ωo = 0, and ||u2,0|| remains of order unity.

For comparison with DNS data, two different forcing frequencies with a priori distinct be-

haviours are selected: ωo = 0.3810 and ωo = 0.4025. These two frequencies are highlighted

by the vertical dashed grey lines in figure 2.9. In both cases the coefficient B is negative, and

for the case ωo = 0.4025 three equilibrium solutions exist for some values of F . The linear
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(a) (b)

Figure 2.9: (a) Coefficient B defined in (2.16) as a function of the optimisation frequency.
The superimposed bold green line indicates that B and D are such that three equilibrium
solutions to (2.14) exist. (b) Weakly nonlinear harmonic gain predicted by the WNNh model
for increasing forcing amplitude F in [0.55,1.45,2.35,3.25,4.15] ·10−4 (larger F darker). Solid
lines denote stable equilibrium solutions of (2.14) whereas bold plus markers (+) denote
the unstable ones. The vertical dashed grey lines highlight ωo = 0.3810 and ωo = 0.4025,
frequencies for which comparison with DNS data is shown in figure 2.10. The grey zone
denotes a negative B .

ωo ϵo η µ/(ϵoη) ν/(ϵoη) B
0.3810 (415.6)−1 4.06+ i ·0.218 −177.0− i ·315.6 −17.4− i ·197.8i −194.4
0.4025 (190.4)−1 2.78+ i ·3.89 −160.1+ i ·24.3 −52.3− i ·10.6 −212.4

Table 2.2: WNNh coefficients for the plane Poiseuille flow at (Re,kx ,kz ) = (3000,1.2,0), and
when the optimal forcing structure (γ = 1) is applied.

gains and weakly nonlinear coefficients are reported in table 2.2. The corresponding WNNh

prolongation of the linear gain as a function of the forcing amplitude is shown in figure 2.10,

together with DNS results. For comparison, the prediction of a ”classical” (modal) amplitude

equation constructed around the weakly damped eigenvalue σ1 and its associated direct and

adjoint modes is also added. Its derivation is briefly recalled in Appendix 2.4.4.

For ωo = 0.3810 (figure 2.10a), the WNNh gain initially increases with F due to the negativity

of B . As visible in table 2.2, this is mostly due to the contribution of ℜ[µ/(ϵoη)] which is ten

times larger than that of ℜ[ν/(ϵoη)]. Thus, at this frequency, the principal factor for the initial

increase of the WNNh gain is the Reynolds stress of the response aûo . The latter creates a

mean flow that amplifies the linear forcing f̂ o more than the base flow does. This may be

interpreted considering the displacement of the eigenvalueσ1. Let q̂ 1 (respectively â1) denote

the eigenmode (respectively adjoint mode) associated with the eigenvalue σ1. The sensibility
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(a) (b)

Figure 2.10: Evolution of the harmonic gain G with respect to F for (a) ωo = 0.3810 and
(b) ωo = 0.4025 (frequencies highlighted by vertical dashed grey lines in figure 2.9). In both,
the grey zone indicates that no harmonic gain could be properly defined, as the kinetic energy
of the perturbation ceases to converge to a constant value. In particular, the inset shows the
monitoring of uy (0,0) for the flow represented by the circle (the link is indicated by a thin line).

of the latter to the base flow deformation δU b due to the Reynolds stress of aûo is written

δσ1 = −
〈

â1,C [q̂ 1,δU b]
〉〈

â1, q̂ 1

〉 (2.20)

where δU b = |a|2u2,0. For ωo = 0.3810, we obtain δσ1 = |a|2(1.2+ i ·3.9). Since ℜ[δσ1] > 0,

the eigenvalue is moving toward the unstable part of the complex plane under the action

of the Reynolds stress. This is in accordance with the fact that the plane Poiseuille flow is

subcritical, and may explain the initial increase in the gain with F . Meanwhile, ℑ[δσ1] > 0 and

σ1 is shifting toward higher frequencies. Thus ωo ceases to be the least damped frequency,

which could shed light on the fact that increasing F further leads to a monotonic decay in the

WNNh gain at ωo . Because of the flow non-normality, however, this explanation based solely

on the location of σ1 remains qualitative.

The overall agreement with the DNS results is excellent. Nevertheless, the WNNh model

slightly underestimates the threshold in F above which a stable equilibrium does not exist

anymore. It stands at F /ϵo = 0.087 against F /ϵo = 0.11 for the DNS. This loss of a proper

harmonic response may be symptomatic of the fact that σ1 eventually crosses the neutral line

and becomes unstable. Indeed, for F /ϵo = 0.11 (blue circle in the grey zone in figure 2.10a), the

Fourier spectrum of the flow in its stationary regime presents two dominant neighbouring

frequencies: the forcing one at ω = ωo and a second “natural” one at ω ≈ 0.404. As these

two frequencies are very close, a beating behaviour is visible in the inset of figure 2.10a at a

frequency consistent with ∆ω = 0.404−0.381 = 0.023.

The classical modal amplitude equation leads to a prediction that is only qualitative. Even for

F = 0 the linear harmonic gain |〈 f̂ o , â1〉/(〈q̂ 1, â1〉σ1,r )| (see Appendix 2.4.4 for its derivation)

70



A non-modal amplitude equation for the harmonic response Chapter 2

is overestimated, as it is deduced from the modal quantities linked to σ1 only. As mentioned

earlier, in non-normal flows a high number of eigenmodes is generally necessary to describe

its harmonic response, even in the presence of a weakly damped eigenvalue. Thus, relying on

a single mode constitutes a poor description of the response to forcing.

We now consider ωo = 0.4025, and the associated results in figure 2.10b. The WNNh model

yields multiple equilibrium solutions in the range 0 < F /ϵo < 0.0264. Only the one represented

by a thick continuous line is stable, and corresponds to a monotonic growth of the gain

with F . The DNS results validate the existence of this solution. The two other solutions,

depicted by the dash-dotted and dashed lines, are unstable in one eigendirection and two

eigendirections, respectively. Above F /ϵo = 0.0264 the WNNh model predicts the loss of the

stable equilibrium solution, which is accurately confirmed by the DNS whose threshold is

located around F /ϵo = 0.0286. Slightly above, the signal of uy (0,0) in the inset suggests again

the presence of a “natural” frequency due to the subcritical destabilisation of σ1. Indeed,

uy (0,0) alternates between an algebraic growth typical of a true resonance (both natural and

forcing frequencies collapse), and a beating-like behaviour whose period is very long (the

natural frequency drifts slightly from the forcing one).

Across this threshold, the evolution of the average kinetic energy of the response appears

discontinuous. This loss of stable equilibrium is to be distinguished with its destabilisation

encountered for ω = 0.3810. Overall, the difference of behaviours between figures 2.10a and

2.10b may be explained by the difference of proximity between ωo and ℑ[σ1] of the mean

flow. As the forcing is progressively increased above F /ϵo = 0.0286, the flow response quickly

becomes chaotic, and then turbulent.

It should be mentioned that, in some situations, the amplitude equation (2.14) may be in

default. First, as just mentioned, when the optimal linear harmonic gain at frequency 2ωo

is ∼ 1/
p
ϵo or larger and projects well onto the optimal forcing, the asymptotic hierarchy is

threatened as û2,2 may be substantial enough to reach order
p
ϵo or above. It is thus important

to assess that the norm of û2,2 remains of order one. A second delicate situation arises, for the

same reason, when a sub-optimal gain at the frequency ωo is ∼ 1/ϵo . In both cases, the model

could be extended by including in the kernel of Φ the optimal response at frequency 2ωo , or

the sub-optimal response at frequency ωo , respectively.

Eventually, it should be noted that there are several manners to perturb R(iωo)−1 such as to

include ûo in the kernel. Among them, the one with the smallest amplitude, i.e. ϵo , has been

chosen in (2.5). We demonstrate in Appendix 2.4.5 that this is the only choice that leads to a

consistent amplitude equation. Choosing a higher perturbation amplitude is possible, but

implies filling the kernel with another structure than ûo .
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2.3 Conclusions

In summary, we have derived an amplitude equation for non-normal systems, describing the

asymptotic response to harmonic forcing in a weakly nonlinear regime. The presence of a

neutral or weakly damped mode was unnecessary. The approach is based on the following

observation: in non-normal systems, the resolvent operator can be made singular by per-

turbing it slightly, therefore the small distance to singularity can be used as a multiple-scale

expansion parameter. The resulting amplitude equation has been compared with fully non-

linear simulations, both in parallel and non-parallel two-dimensional flows. In all cases, it

predicts accurately the supercritical or subcritical nonlinear evolution of the response and

brings insight into the weakly nonlinear mechanisms that modify the gains as the amplitude

of the harmonic forcing varies.

For future research, we believe that the proposed amplitude equation could be employed as

a tool for a variety of different problems. (i) For instance, the efficiency of the WNNh model

in capturing a subcritical behavior may prove useful in the search for optimal paths to chaos

or turbulence. Indeed, equation (2.16) could be included as a constraint in a Lagrangian

optimisation problem, whose stationary point would constitute a weakly-nonlinear optimal.

Such an approach could complement fully nonlinear optimisations, proposed for instance in

Pringle and Kerswell (2010), by providing physical understanding at a numerical cost close to

the linear one. (ii) Amplitude equations could also be exploited for fully three-dimensional

flows, where we expect them to still be valid since the hypothesis of two dimensionality has

never been made in the developments. Again in their quality of reduced-order models, they

would be all the more relevant here because assessing the three-dimensional finite-amplitude

flow behavior from DNS is generally costly.

Furthermore, the method presents numerous possibilities for extension, in addition to higher-

order corrections. For instance, the inclusion of multiple forcing structures or trajectories:

the nonlinear interaction of multiple harmonic forcings or initial conditions is particularly

relevant when distinct structures lead to comparable gains, for instance, perturbations of

different spatial wavenumbers like in jet flows forced with different azimuthal wavenumbers

(Garnaud et al. (2013b)). The ensuing system of coupled amplitude equations may bear a

rich dynamics, such as hysteresis and chaos. Amplitude equations are useful for flow control

and optimisation, as shown for instance in Sipp (2012) in the classical context of a marginally

stable flow, displaying little non-normality, with a well-isolated eigenvalue and a sufficiently

large spectral gap. In the next chapters, we derive amplitude equations for the response to

stochastic forcing, as investigated in Farrell and Ioannou (1993) and Mantič-Lugo and Gallaire

(2016a) with linear and self-consistent models, respectively.
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2.4 Appendix

2.4.1 Harmonic gain sensitivity and comparison with the WNNh model.

Let Go = 1/ϵo designate the linear harmonic gain. Then R†R f̂ o = G2
o f̂ o holds by definition, and

implies G2
o =

〈
R†R f̂ o , f̂ o

〉
thanks to the chosen normalisation || f̂ o || = 1. We are interested in

the squared gain variation δG2
o (where this notation does not designate the square of the gain

variation) induced by a small perturbation δL of the state operator. The latter results in the

following perturbation δR of the resolvent:

δR = (iωI −L− (δL))−1 − (iωI −L)−1

= [(iωI −L)(I −R(δL))]−1 −R

≈ (I +RδL)R −R

= R(δL)R.

The gain variation is therefore

δG2
o = 〈δ(R†R) f̂ o , f̂ o〉 =

〈
(δR)†R f̂ o +R†(δR) f̂ o , f̂ o

〉
=

〈
R†(δR) f̂ o , f̂ o

〉
+ c.c

=
〈

R(δL)R f̂ o ,R f̂ o

〉+ c.c

=
〈

(δL)Goûo ,G2
o f̂ o

〉+ c.c.,

so finally

δG2
o = 2G3

oℜ
[〈

(δL)ûo , f̂ o

〉]
. (2.21)

For instance, a base flow modification δU e results in (δL)ûo = −(ûo · ∇)δU e − (δU e · ∇)ûo =

−2C (ûo ,δU e ) yielding the same formula as in Brandt et al. (2011) with a different normalisa-

tion.

On the other hand, the WNNh model predicts

Y 3

∣∣µ+ν∣∣2

ϵ2
o

∣∣η∣∣2 +2Y 2ℜ
[
µ+ν
ϵoη

]
+Y =

(
F

ϵo

)2

. (2.22)

where Y = |ā|2. We identify the weakly nonlinear harmonic gain as G2 = Y /F 2, and multiply

(2.22) by ϵ2
o/Y :

Y 2

∣∣µ+ν∣∣2∣∣η∣∣2 + 2Y

Go
ℜ

[
µ+ν
η

]
+ 1

G2
o
− 1

G2 = 0. (2.23)

Being interested in small variations around G2
o (that correspond to the linear limit Y = |ā|2 → 0),

we write G2 = G2
o +δG2

o with |δG2
o/G2

o | ≪ 1. In this manner, 1/G2
o − 1/G2 = δG2

o/G4
o +h.o.t ,
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eventually leading to

δG2
o = −2G3

oℜ
[ |ā|2(µ+ν)

η

]
+h.o.t . (2.24)

We recognise at leading-order equation (2.21) where (δL)ûo = −|ā|2[2C
(
ûo ,u2,0

)+2C
(
û∗

o , û2,2
)
].

Thus, in the small gain variation limit, the WNNh model both contains the sensitivity formula

of the harmonic gain to the base flow static perturbation |a|2u2,0, and embeds the effect of the

second harmonic û2,2 as well.

2.4.2 Applying the WNNh model to the Navier–Stokes equations.

The incompressible Navier–Stokes equations are written after linearising around the equilib-

rium velocity field U e ,

B
dq

dt
= Lq +d , (2.25)

with the state vector q = [u, p]T , the forcing d = [ f ,0]T , the singular mass matrix

B =

[
I 0

0 0

]
,

and the linearised Navier–Stokes operator

L =

[
−(U e ·∇)∗−(∗·∇)U e +Re−1∆(∗) ∇(∗)

∇· (∗) 0

]
.

Several subtleties arise from the peculiarity of the pressure variable, that ensure the instan-

taneous satisfaction of the incompressibility condition: (i) the absence of time derivative

of the pressure results in a singular mass matrix, (ii) forcing terms remain restricted to the

momentum equations as we choose to have no source/sink of mass and (iii) the pressure is

not included in the energy norm of the response. This complicates slightly the practical com-

putation of the gain. For the harmonic response model, the resolvent operator is generalised

as R(iωo) = (iωoB −L)−1, and the gain is measured according to

G2(iωo) =
〈q̂ , q̂〉B

〈d̂ , d̂ 〉 ,

where we used the following scalar products

〈q̂ a , q̂ b〉B =
∫
Ω

(
û∗

a,x ûb,x + û∗
a,y ûb,y + û∗

a,z ûb,z

)
dΩ, and

〈q̂ a , q̂ b〉 =
∫
Ω

(
û∗

a,x ûb,x + û∗
a,y ûb,y + û∗

a,z ûb,z + p̂∗
a p̂b

)
dΩ.
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The B-scalar product excludes pressure, such that the pseudonorm 〈q̂ , q̂〉B = ||q̂ ||2B is the total

kinetic energy of the response. The scalar product at the denominator includes pressure, al-

though this will not change the norm of d̂ , namely 〈d̂ , d̂ 〉 = ||d̂ ||2, since we have no source/sink

of mass. The weakly nonlinear coefficients must be considered under these scalar products.

Let q̂ o = [ûo , po]T with ||q̂ o ||B = 1, d̂ o = [ f̂ o ,0]T with ||d̂ o || = 1, and d̂ h = [ f̂ h ,0]T with ||d̂ h || = 1,

then

γ = 〈d̂ o , d̂ h〉, 1/η = 〈d̂ o ,B q̂ o〉 = 〈d̂ o , q̂ o〉B ,

µ/η = 〈d̂ o , d̂
(3)
3,1〉, ν/η = 〈d̂ o , d̂

(4)
3,1〉,

where d̂
(3)
3,1 = [ f̂

(3)
3,1,0]T , d̂

(4)
3,1 = [ f̂

(4)
3,1,0]T , f̂

(3)
3,1 = 2C (ûo ,u2,0) and f̂

(4)
3,1 = 2C (û∗

o , û2,2). The pressure

field does not influence the weakly nonlinear coefficients. For instance

1/η =
∫
Ω

(
f̂ ∗

o,x ûo,x + f̂ ∗
o,y ûo,y + f̂ ∗

o,z ûo,z

)
dΩ, and

µ/η =
∫
Ω

(
f̂ ∗

o,x f̂ (3)
(3,1),x + f̂ ∗

o,y f̂ (3)
(3,1),y + f̂ ∗

o,z f̂ (3)
(3,1),z

)
dΩ.

The linear and nonlinear Navier-Stokes equations are solved for (ux ,uy ,p) employing the Finite

Element Method with Taylor-Hood (P2, P2, P1) elements, respectively, after implementation of

the weak form in the software FreeFem++. The steady solutions of the Navier-Stokes equations

are solved using the iterative Newton–Raphson method, and the linear operators are built

thanks to a sparse solver implemented in FreeFem++. The singular-value decomposition is

performed in Matlab following directly Garnaud et al. (2013b). Finally, DNS are performed by

applying a time scheme based on the characteristic–Galerkin method as described in Benitez

and Bermudez (2011).

For the two-dimensional flow past a BFS presented in §2.2.1, we refer to Mantič-Lugo and Gal-

laire (2016b) for the validation of the codes with existing literature and the mesh convergence,

since the same codes have been used. The length of the outlet channel is chosen as Lout = 50

for Re ≤ 500 (Mantič-Lugo & Gallaire, 2016b), Lout = 65 for Re = 600, and Lout = 80 for Re = 700.

This ensures the convergence of the linear gain and weakly nonlinear coefficients. For the

plane Poiseuille studied in §2.2.2, the validation is proposed in the main text.

2.4.3 Higher-order corrections of the WNNh equation.

Recall (2.11) obtained at order
p
ϵo

3:

Φu3,1 = −A|A|2 [
2C (ûo ,u2,0)+2C (û∗

o , û2,2)
]− ûo

dA

dT
− A f̂ o +φ f̂ h , (2.26)
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After the imposition of the Fredholm alternative, leading to (2.12) for dA/dT , the relation

(2.26) becomes

Φu3,1 =A|A|2 [−2C (ûo ,u2,0)−2C (û∗
o , û2,2)+ζûo

]
+ A(− f̂ o +ηûo)+φ( f̂ h −ηγûo)

(2.27)

where ζ = (µ+ν). For higher-order corrections of the WNNh model, the field u3,1 is needed and

is solution of (2.27) where the operator Φ is singular since ûo ̸= 0 belongs to its kernel. Since

by construction f̂ o = ϵoR(iωo)†ûo , it follows immediately that 〈RHS, f̂ o〉 = ϵo〈R(iωo)RHS, ûo〉.
Thus, thanks to the (imposed) orthogonality of the RHS with f̂ o (〈RHS, f̂ o〉 = 0), solving the

equation replacing Φ by (iωo I −L) leads directly to u3,1 being orthogonal to ûo . Therefore,

Pu3,1 = 0 and (iωo I −L)u3,1 =Φu3,1, which implies that the field u3,1 computed with (iωo I −L)

instead of Φ is directly the particular solution of (2.27). Note that u3,1 appears as a true

correction to ûo in the sense of the scalar product. This property has the striking and important

consequence that the operator Φ never needs to be constructed explicitly, whatever the order

of the amplitude equation. The homogeneous part of the solution of (2.27) is arbitrarily

proportional to ûo . It can be ignored without loss of generality Fujimura (1991). Eventually,

the term Pu j ,1e iωo t + c.c collected at order O(
p
ϵo

j+2) disappears if j ≥ 2. This is due to the

nullity of u j ,1 for even j , and to the nullity of Pu j ,1 for odd j . Overall, the particular solution

at order
p
ϵo

3 is written

u3(t ,T ) =
(
φû(a)

3,1 + Aû(b)
3,1 + A |A|2 û(c)

3,1

)
e iωo t + A3e3iωo t û3,3 + c.c, (2.28)

where

(iωo I −L)û(a)
3,1 = f̂ h −ηγûo ,

(iωo I −L)û(b)
3,1 = − f̂ o +ηûo ,

(iωo I −L)û(c)
3,1 = −2C (ûo ,u2,0)−2C (û∗

o , û2,2)+ζûo

(3iωo I −L)û3,3 = −2C (ûo , û2,2)

(2.29)

The equation at order ϵ2
o is assembled as

(Φu4,1e iωo t + c.c)+ s4 = −2C (u1,u3)−C (u2,u2)−∂T u2 + (Pu2,1e iωo t + c.c) (2.30)

As mentioned, Pu2,1 = 0 since u2,1 = 0, and the forcing terms are −2C (u1,u3), −C (u2,u2) and

−∂T u2. We first develop C (u1,u3) as

C (u1,u3) =φAC (ûo , û(a)∗
3,1 )+|A|2C (ûo , û(b)∗

3,1 )+|A|4C (ûo , û(c)∗
3,1 )

+
[
φAC (ûo , û(a)

3,1)+ A2C (ûo , û(b)
3,1)+ A2|A|2

[
C (ûo , û(c)

3,1)+C (û∗
o , û33)

]]
e2iωo t

+ A4e4iωo tC (ûo , û33)+ c.c,
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then C (u2,u2) as

C (u2,u2) = |A|4[C (û2,2, û∗
2,2)+ c.c]+|A|4C (u2,0,u2,0)

+
[

2A2|A|2e2iωo tC (u2,0, û2,2)+ c.c
]
+

[
A4e4iωo tC (û2,2, û2,2)+ c.c

]
.

In addition,

∂T |A|2 = A∗∂T A+ A∂T A∗ = A∗(φη−ηA−ζA|A|2)+ A(φη∗−η∗A∗−ζ∗A∗|A|2)

=φηA∗+φη∗A− (η+η∗)|A|2 − (ζ+ζ∗)|A|4,

and

∂T A2 = 2A∂T A = 2φηA−2ηA2 −2ζA2|A|2,

such that

∂T u2 = ∂T (|A|2u2,0 + A2e2iωo t û2,2 + A∗2e−2iωo t û∗
2,2)

= (φη∗Au2,0 + c.c)− (ζ+ζ∗)|A|4u2,0 − (η+η∗)|A|2u2,0

+ [(2φηAû2,2 −2ηA2û2,2 −2ζA2|A|2û2,2)e2iωo t + c.c].

Eventually, collecting all terms leads to the following particular solution for u4

u4 = [φAû(a)
4,0 + c.c]+|A|2u(b)

4,0 +|A|4u(c)
4,0 + ...

[(φAû(a)
4,2 + A2û(b)

4,2 + A2|A|2û(c)
4,2)e2iωo t + c.c]+ [A4e4iωo t û4,4 + c.c],

with

−Lû(a)
4,0 = −η∗u2,0 −2C (ûo , û(a)∗

3,1 ),

−Lu(b)
4,0 = u2,0(η+η∗)− [2C (ûo , û(b)∗

3,1 )+ c.c],

−Lu(c)
4,0 = u2,0(ζ+ζ∗)−C (u2,0,u2,0)− [C (û2,2, û∗

2,2)+ c.c]− [2C (ûo , û(c)∗
3,1 )+ c.c],

(2iωo I −L)û(a)
4,2 = −2ηû2,2 −2C (ûo , û(a)

3,1),

(2iωo I −L)û(b)
4,2 = 2ηû2,2 −2C (ûo , û(b)

3,1),

(2iωo I −L)û(c)
4,2 = 2ζû2,2 −2C (u2,0, û2,2)−2C (ûo , û(c)

3,1)−2C (û∗
o , û3,3),

(4iωo I −L)û4,4 = −C (û2,2, û2,2)−2C (ûo , û3,3).

The norms of the particular solutions at successive orders ϵo ,
p
ϵo

3 and ϵ2
o are outlined in

table 2.3 for the plane Poiseuille flow at (Re,kx ,kz ) = (3000,1.2,0) considered in §2.2.2 and

forced at ωo = 0.3810. Despite a large harmonic gain for ω = 0 as visible in figure 2.7, the

stationary field u2,0 remains of reasonable amplitude as the associated Reynolds stress forcing

C (ûo , û∗
o ) projects poorly on the most amplified singular mode for ω = 0. However, the same

does not hold for the stationary fields û(a,b,c)
4,0 at order ϵ2

o , all of significantly large amplitudes.

This implies that the asymptotic hierarchy is only maintained until order
p
ϵo

3. Indeed, if it
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||u2,0|| ||û2,2||
11.5 2.07

||û(a)
3,1|| ||û(b)

3,1|| ||û(c)
3,1|| ||û3,3||

10.6 10.6 21.7 11.4

||û(a)
4,0|| ||u(b)

4,0|| ||u(c)
4,0|| ||û(a)

4,2|| ||û(b)
4,2|| ||û(c)

4,2||
10.5 ·104 4.2 ·104 5.3 ·104 1.6 ·102 4.0 ·102 1.6 ·102

Table 2.3: Norms of the particular solutions at O(ϵo), O(
p
ϵo

3) and O(ϵ2
o) for the plane Poiseuille

flow at (Re,kx ,kz ) = (3000,1.2,0) considered in §2.2.2, and forced at ωo = 0.3810

holds that

p
ϵo ≫ ϵo(||u2,0||, ||û2,2||) ≫p

ϵo
3(||û(a)

3,1||, ||û(b)
3,1||, ||û(c)

3,1||, ||û3,3||)

such that, until order
p
ϵo

3, each order appears as a true correction of the previous one, this

does not hold for order ϵ2
o . As ϵ2

o ||û(a)
4,0|| is of order unity, it cannot be considered as a correction

of the order
p
ϵo

3 but appears directly at the base flow level, which is asymptotically ill posed.

2.4.4 Modal amplitude equation for harmonic forcing.

The dominant eigenmode q̂ 1 satisfies Lq̂ 1 = σ1q̂ 1. Let its small damping rate σ1,r (i.e, the

real part of σ1), be scaled in terms of ϵo as σ1,r = θϵo , where θ = O(1) (and θ ≤ 0). The forcing

frequency ωo is detuned around the natural one, i.e, ωo =ω1 +βϵo where ω1 is the imaginary

part of σ1 and β = O(1). The shift-operator procedure introduced in Meliga et al. (2009, 2012)

is adopted thereafter, in order to apply the classical weakly nonlinear formalism. Namely, we

perturb L as L = L̄+ϵoS where S satisfies Sq̂ 1 = θq̂ 1 and is such that all the other eigenvectors

of L constitute its kernel (i.e, Sq̂ i = 0 for i = 2,3, ... ). In this way, the perturbed operator L̄

possesses the same eigenvector as L, only the eigenvalue σ1 associated with q̂ 1 is shifted of

−σ1,r such as to be truly neutral: L̄q̂ 1 = (L − ϵoS)q̂ 1 = Lq̂ 1 −σ1,r q̂ 1 = iω1q̂ 1. The asymptotic

multiple-scale expansion of the forced Navier-Stokes equations is expressed

p
ϵo

[
(∂t − L̄)u1

]
+ϵo

[
(∂t − L̄)u2 +C (u1,u1)

]
+ ...

+p
ϵo

3
[

(∂t − L̄)u3 +2C (u1,u2)+∂T u1 −Su1

]
+O(ϵ2

o) =φ
p
ϵo

3e iωo t f̂ o + c.c.
(2.31)

The equation at order
p
ϵo reads

(∂t − L̄)u1 = 0,
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which leads to the solution u1 = A(T )q̂ 1e iω1t + c.c. At order ϵo , we obtain for u2 the equation

(∂t − L̄)u2 = −C (u1,u1)

= −2|A|2C (q̂ 1, q̂∗
1 )−

[
A2C (q̂ 1, q̂ 1)e i 2ω1t + c.c

]
,

whose solution is u2 = |A|2 q 2,0 + [A2e2iωo t q̂ 2,2 + c.c], where

−L̄q 2,0 = −2C (q̂ 1, q̂∗
1 ),

(2iωo I − L̄)q̂ 2,2 = −C (q̂ 1, q̂ 1).

At order
p
ϵo

3 is assembled

(∂t − L̄)u3 = −2C (u1,u2)+Su1 −∂T u1 +φ(e iβT+iω1t f̂ o + c.c)

=

[
−2A|A|2 [

C (q̂ 2,2, q̂∗
1 )+C (q 2,0, q̂ 1)

]+θAq̂ 1 − q̂ 1
dA

dT
+φe iβT f̂ o

]
e iω1t

+ c.c +non-resonant terms

where we used that Su1 = θAq̂ 1e iω1t + c.c. Cancelling the projection of the resonant part of

the forcing term (inside the brackets) on the adjoint â1, results in an equation for A:

dA

dT
= θA− A|A|2 〈2C (q̂ 2,2, q̂∗

1 )+2C (q 2,0, q̂ 1), â1〉
〈q̂ 1, â1〉

+φe iβT 〈 f̂ o , â1〉
〈q̂ 1, â1〉

.

Note that, for ωo =ω1 (i.e, the detuning parameter β = 0), the amplitude in the linear regime,

Al , reads

0 = θA+φ 〈 f̂ o , â1〉
〈q̂ 1, â1〉

⇔ Al = −φ 〈 f̂ o , â1〉
〈q̂ 1, â1〉

θ−1,

which corresponds to the following linear harmonic gain:

G =

p
ϵo |Al |
φ
p
ϵo

3 =
1

ϵo

∣∣∣∣∣ 〈 f̂ o , â1〉
〈q̂ 1, â1〉

∣∣∣∣∣ ϵo

|σ1,r |
=

∣∣∣∣∣ 〈 f̂ o , â1〉
〈q̂ 1, â1〉

∣∣∣∣∣ 1

|σ1,r |
,

which is different from the norm of the resolvent operator, i.e, 1/ϵo . Thus, even the matching

with the linear regime is not guaranteed with this classical, modal approach.

2.4.5 Uniqueness of the operator perturbation

A sort of "proof by contradiction" is proposed : we will perturb R(iωo)−1 with an operator of

size larger than its minimum value ϵo and show that the subsequent amplitude equation leads

to an inconsistent result.

79



Chapter 2 A non-modal amplitude equation for the harmonic response

It follows from R(iωo)−1ûo = ϵo f̂ o in (2.4) that[
R(iωo)−1 − ϵo〈

ĝ
∣∣ûo

〉 f̂ o

〈
ĝ
∣∣∗〉]

ûo = 0 (2.32)

holds for all the possible choices of ĝ (in the main text we chose ĝ = ûo). Without loss of

generality we impose ||ĝ ||2 = 1. Let us write
〈

ĝ
∣∣ûo

〉
= |〈ĝ

∣∣ûo
〉 |e iα and define ε

.
= ϵo/|〈ĝ

∣∣ûo
〉 | ≥

ϵo , which is necessarily larger than or equal to ϵo . We pick a ĝ such that ε≪ 1, and select ε as

our new small parameter. We can define the singular operator as

Φ
.
= R(iωo)−1 −εP, where P = e−iα f̂ o

〈
ĝ
∣∣∗〉

, (2.33)

(implying ||P || = 1). We clearly still have Φûo = 0, and we can show that Φ†â = 0 with â .
=

R(iωo)†ĝ (indeed if ĝ = ûo , we have â = f̂ o). We can perform the exact same asymptotic

expansion as in the main text, replacing the small parameter ϵo by ε everywhere. In particular,

the NSEs are forced by F =
p
ε

3 f̂ he iωo t +c.c . The amplitude equation that we would eventually

obtain is

1

η

dA

dT
=φ

〈
â

∣∣ f̂ h

〉−|〈ĝ
∣∣ûo

〉 |〈â
∣∣ f̂ o

〉
A− µ+ν

η
A |A|2 , (2.34)

with the coefficients

η =
1

〈â|ûo〉
,

µ

η
=

〈
â

∣∣2C (ûo ,u2,0)
〉

,
ν

η
=

〈
â

∣∣2C (û∗
o , û2,2)

〉
(2.35)

In the linear regime, the equilibrium solution of this amplitude equation is

A =φ
〈

â
∣∣ f̂ h

〉
/(|〈ĝ

∣∣ûo
〉 |〈â

∣∣ f o

〉
), (2.36)

which leads to a linear gain of

G =

∥∥pεAûo
∥∥∥∥∥φpε3 f̂ h

∥∥∥ =
1

ε

|〈â
∣∣ f̂ h

〉 |
|〈ĝ

∣∣ûo
〉 ||〈â

∣∣ f o

〉 | =
1

ϵo

|〈â
∣∣ f̂ h

〉 |
|〈â

∣∣ f o

〉 | (2.37)

If we force the flow with the optimal forcing structure f̂ h = f̂ o , we indeed recover the linear

gain G = 1/ϵo . However, the contradiction lies in the fact if we choose to force with f̂ h = â

instead, the linear gain becomes G = (1/ϵo)/|〈â
∣∣ f o

〉 | ≥ 1/ϵo , meaning that we found a forcing

structure that led to a larger gain than f̂ o , which is by definition impossible. To guarantee the

consistency of our amplitude equation (which must predict the correct linear gain), we must

have â = f̂ o , which implies directly ĝ = ûo and ε = ϵo . As a corollary, â = f̂ o is also the only

choice that guarantees the consistency between the amplitude equation and the sensitivity

formula shown in Appendix 2.4.1.
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3 A non-modal weakly nonlinear am-
plitude equation for the variance
maintained by a stochastic forcing

3.1 Introduction

Some flows experience a transition from laminar to turbulent far below the threshold predicted

by linear stability theory, which relies on the eigenvalues of the linearised Navier-Stokes

operator. In addition, the value of the bifurcation parameter at the transition strongly depends

on the level of external noise. Among them are the canonical Couette and Poiseuille parallel

shear flows, as detailed in Schmid and Henningson (2001). Non-parallel flows such as jets

and the backward-facing step (BFS) flow, studied for instance in Garnaud et al. (2013a) and

Blackburn et al. (2008), should also be mentioned. The transition scenario advanced in

Trefethen et al. (1993) relies on the non-normality property of the linearised Navier-Stokes

operator. The latter implies that a linearly stable flow can nevertheless strongly amplify a small

initial structure or a sustained forcing term through non-modal mechanisms (see Schmid

(2007) for a review). Thereby, the response may be carried into a regime where nonlinearities

set in and the flow escapes from its linearly stable solution.

In this perspective, numerous studies have computed the small-amplitude structures that

are the most amplified by the flow: initial conditions, harmonic forcing or stochastic forcing,

resulting, respectively, in the optimal transient growth, harmonic gain and stochastic gain.

Formally, such studies generally consist in finding the singular mode of a specific linear

operator, which can be very different from the eigenmodes of the linearised Navier-Stokes

operator. For the harmonic forcing problem, one could for instance refer to the work of Schmid

and Henningson (2001) and Jovanović and Bamieh (2005) on the parallel plane Couette and

Poiseuille flows. The problem of the flow response to a stochastic forcing, studied in the rest of

this chapter, mimics more realistic situations. Indeed, unpredictable noise may arise from
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Chapter 3 A non-modal amplitude equation for the variance of the stochastic response

different sources in Nature such as residual turbulence, variation of atmospheric conditions,

acoustic disturbances, geometrical defects, and many others. The response to white noise has

for instance been considered for the plane Couette and Poiseuille flow in Farrell and Ioannou

(1993), and in Boujo and Gallaire (2015), Dergham et al. (2013), and Mantič-Lugo and Gallaire

(2016a) for the backward-facing step (BFS) flow. Owing to the non-normality of the linearised

operator, all these flows can sustain a large variance even if the noise intensity is comparatively

weak.

In the linear paradigm, however, amplifications do not depend on the amplitude of the initial

condition or forcing. The latter are assumed arbitrarily small, such that nonlinear terms are

negligible. Therefore, the nonlinear interactions involved in the subcritical transition or in the

saturation process cannot be captured by definition. For this reason, more elaborate models

accounting for a nonlinear coupling between the mean flow and the linear perturbation

have been proposed. For instance, Marston et al. (2008) considered a barotropic flow on a

rotating sphere, and performed a cumulant expansion of the vorticity statistics that was closed

by neglecting the third and higher cumulants; this amounts to neglecting the fluctuation-

fluctuation interactions while retaining the fluctuation-mean flow interactions. By comparison

with statistics accumulated directly in the direct numerical simulations (DNS), Marston et al.

(2008) showed that this truncation was well justified in certain regimes (see their fig. 5 and

6), for instance when the relaxation time towards a zonal jet was short, in which case the

fluctuations were suppressed by the strong coupling to the jet.

Instead of being neglected, the fluctuation-fluctuation interactions are sometimes replaced

by a stochastic parametrisation, for instance white noise, as originally done in Farrell and

Ioannou (2003). This led to the stochastic structural stability theory (S3T or SSST), which was,

for instance, able to describe sustained coherent structures appearing during the transition to

turbulence in two-dimensional atmospheric flows, as well as in three-dimensional parallel

Couette flow (Farrell & Ioannou, 2012). In these shear flows, the success of the SSST theory,

despite the fact that modelling the fluctuation-fluctuation interactions as white noise seems

to be an oversimplification, is explained as follows in Farrell and Ioannou (2019):

"In the case of homogeneous isotropic turbulence the stochastic excitation must be very carefully

fashioned in order to obtain approximately valid statistics using a stochastic closure [...] while

in shear flow the form of the stochastic excitation is not crucial. The reason is that in shear flow

the [Navier-Stokes] operator [linearized around the mean flow] is non-normal and a restricted

set of perturbations participate strongly in the interaction with the mean flow. As a result

the statistical state of the turbulence is primarily determined by the quasilinear interaction

between the mean and these perturbations rather than by nonlinear interaction among the

perturbations".

This "quasi-linear" approach, which consists in allowing fluctuations-mean flow interactions

and either neglecting or modelling other interactions, has been extended to a resolvent-based

approach applied to a turbulent pipe flow in McKeon and Sharma (2010). The Navier-Stokes
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equations (NSE) were re-formulated as a nonlinear equation for the mean velocity, and an

input-output equation for the fluctuation, where the latter is the linear response to a forcing

term modelling the nonlinear fluctuating term through the resolvent operator around the

mean velocity. The closure problem for the mean flow equation is avoided by knowing a priori

the mean profile from experimental data. Following an argument essentially similar to the one

quoted above from Farrell and Ioannou (2019), when the resolvent operator is low-rank, in the

sense that there exists a small set of forcing-response pairs of modes associated with gains

much larger than all the others, the fluctuation can be well approximated as a combination of

these leading response modes.

This type of mean flow-resolvent analysis has been performed by numerous authors since

then and has often proven successful in reproducing the main features of self-sustained

turbulence. This was the case for the turbulent jet studied in Pickering et al. (2020), where

the resolvent mode around a mean-flow eddy-viscosity model projected well on the spectral

proper orthogonal decomposition (SPOD) modes that optimally describe the turbulent flow

statistics from large eddy simulation (LES) data. Note that, because of the non-normality of

the resolvent operator, strong amplification may occur even in the absence of a dominant

eigenvalue in the (eigen)spectrum of the linearised Navier-Stokes operator around the mean

flow; for this reason, the question of the relevance of a stability analysis around the mean flow

is discussed in Symon et al. (2018). Recently, a resolvent-based approach was also adopted

in Rosenberg and McKeon (2019) to compute traveling waves in Couette and Poiseuille flow.

Instead of assuming the mean flow to be known a priori, the coupled system was solved

iteratively, requiring only the knowledge of the traveling wave speed and amplitude. Note that

the latter approach is conceptually very similar to that adopted in Mantič-Lugo et al. (2014).

The only difference lies in the fact that fluctuations-fluctuations interactions are neglected

in the equation for the fluctuation in Mantič-Lugo et al., 2014, whereas they are treated as

a forcing term whose response is solely along the leading resolvent mode in Rosenberg and

McKeon (2019).

The quasi-linear assumption that the dominant nonlinear mechanism is the Reynolds stress

feedback onto the mean flow excludes, for instance, systems with strong harmonic generation

and subharmonic excitation, as illustrated in Meliga (2017). It has also proven to be in default

in Tobias and Marston (2013) in the case of turbulent zonal jets that are driven too far from

equilibrium (for which the rates of forcing and dissipation go to zero). A generalisation has

been proposed in Marston et al. (2016), leading to a system constituted of a nonlinear equation

for the slowly varying part of the velocity field (instead of just the mean flow), and a linear

equation for the rapidly varying part (instead of the entire fluctuations); in this manner,

the small scales can exchange energy with each other, through their interaction with the

large scales. With a sufficiently large number of modes included in the slowly varying, this

generalised model converges and improves the predictions, at an increased numerical cost.

Amplitude equations for the response of nonlinear systems to stochastic forcing constitute

another class of modelling techniques, in principle restricted to the weakly nonlinear regime,
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but much cheaper to implement. The technique was developed for instance in Rajan and

Davies (1988) and Nayfeh and Serhan (1990) using the method of multiple scales and/or

stochastic averaging on the Duffing and Duffing-Rayleigh oscillators, respectively. Similar

to their deterministic counterparts, however, the possibility to construct these simplified

equations relies on the existence of a resonant frequency, as they describe the slowly varying

modulation of the associated eigenmode.

In chapter 2, we derived an amplitude equation to extend the linear harmonic gain curve

in a weakly nonlinear regime by increasing the forcing amplitude. The method does not

rely on modal quantities, in contrast to classical techniques, and the present chapter aims

at generalising this method to the response to stochastic forcing. Namely, by assuming the

linearized system to exhibit a large response-to-forcing variance gain, we derive an equation

for its weakly nonlinear evolution as we increase the variance of the stochastic forcing. This

amounts to adapting the method proposed in chapter 2 to a slightly more general inner

product.

No assumptions will be made on the dominant nonlinear interaction mechanisms, and

the Fourier (frequency) components of the linear response can be arbitrarily different from

eigenmodes as long as the linear operator is sufficiently non-normal. The weakly nonlinear

evolution of the variance of the flow response to stochastic forcing can be determined at a

numerical cost considerably lower than that of a direct numerical simulation (DNS).

3.2 Linear regime

Let us first characterize the stochastic response of the flow in the linear regime, whose weakly

nonlinear continuation will be studied subsequently. A perturbative flow velocity field u,

around a fixed point U e , forced also at perturbative level by f , is governed by the linear

equation

∂t u = Lu + f , (3.1)

where L results from the linearisation of the Navier-Stokes equations around U e . Specifically,

Lu = −(U e ·∇)u − (u ·∇)U e +Re−1∆u −∇p(u), where Re is the Reynolds number, and where

the pressure field p is such that the velocity field u is divergence-free. Note that both fields

are linked through a linear Poisson equation. In practice, p is included in the state variable,

resulting in a singular mass matrix, omitted here for the sake of clarity.

The specific form f (x , t ;θ) = f s(x)ξ(t ;θ) is chosen for the stochastic forcing, where f s(x) is

the forcing spatial structure and ξ(t ;θ) a scalar random process. The symbol θ designates a

random variable, following a certain probability law. Two different values taken by the random

variable θ correspond to two different realisations of the random process. The process ξ(t ;θ)

may be a delta-correlated white noise, but is not necessarily.
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We insist that the form of stochastic forcing f (x , t ;θ) = f s(x)ξ(t ;θ), considered here, describes

a very specific excitation with typically a strong spatial correlation, and there exist more general

modelisations. For instance, a more complete description of an actual stochastic forcing could

obtained by summing f (x , t ;θ) =
∑

j f s, j (x)ξ j (t ;θ j ) together with spatio-temporal covariance

matrices.

We introduce the Fourier transform F (•) of a temporal signal of length [0,T ] with T →∞, and

its inverse F−1 (•), as

û(ω) = F (u(t )) =
1p
T

∫ T

0
u(t )e−iωt dt , u(t ) = F−1 (û(ω)) =

p
T

2π

∫ ∞

−∞
û(ω)e iωt dω, (3.2)

respectively. By computing

F−1 (F (u(t ))) =

p
T

2π

∫ ∞

−∞
1p
T

∫ T

0
u(b)e−iωbdbe iωt dω

=
1

2π

∫ ∞

−∞

∫ T

0
u(b)e iω(t−b)dbdω

=
1

2π

∫ T

0
u(b)

∫ ∞

−∞
e iω(t−b)dωdb,

(3.3)

we verify that F−1 (F (u(t ))) = u(t ) if and only if we adopt the following interpretation of the

Dirac impulse δ∫ ∞

−∞
e iω(t−b)dω = 2πδ(t −b), (3.4)

where δ(t −b) has an infinite amplitude if t = b, and is null otherwise. This way,

F−1 (F (u(t ))) =
∫ T

0
u(b)δ(t −b)db = u(t ). (3.5)

We assume the stochastic process ξ(t ;θ) to be statistically steady, such that we can characterize

it in the Fourier domain as{|ξ̂(ω;θ)|2} = g (ω), (3.6)

where {•} denotes the ensemble average over the different realisations, and where g (ω) is the

given power spectral density (PSD) of the process ξ(t ;θ). We show in Appendix 3.6.1 that (3.6)

is equivalent in the temporal domain to{
ξ(t ;θ)ξ(t + s;θ)

}
=

1

2π

∫ ∞

−∞
g (ω)e i st dω, (3.7)
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where the overbar denotes the temporal ensemble average, i.e.

• =
1

T

∫ T

0
• dt . (3.8)

In the following, we denote by || · || the L2 norm induced by the Hermitian inner product

〈ûa |ûb〉 =
∫
Ω ûH

a ûbdΩ (the superscript H denotes the Hermitian transpose). A relevant mea-

sure of input-output gain of the system (3.1) under stochastic forcing, is the ratio of the mean

square (that we call "variance" in the following by abuse of language) of the statistically steady

response,
{
||u(t ;θ)||2

}
, over that of the forcing,

{
|| f sξ(t ;θ)||2

}
. Importantly, the variance can

also be seen as the norm induced by the inner product measuring the resemblance between

two stochastic fields h(t ;θ) and g (t ;θ) as

{〈
h(t ;θ)

∣∣g (t ;θ)
〉}

=

{
1

T

∫ T

0

∫
Ω

h(t ;θ)H g (t ;θ)dΩdt

}
=

{
1

2π

∫ ∞

−∞

∫
Ω

ĥ(ω;θ)H ĝ (ω;θ)dΩdω

}
=

{[〈
ĥ(ω;θ)

∣∣ĝ (ω;θ)
〉]}

,

(3.9)

where we have introduced the operation [•], a normalized integration over the frequencies as

[•] =
1

2π

∫ ∞

−∞
• dω. (3.10)

The transformation from integrating over time to integrating over the frequencies, used in (3.9),

is demonstrated in Appendix 3.6.2 and ensues from the definition of the Fourier transforms

(Parseval’s theorem).

Optimising over the forcing structure f s , the maximum variance amplification attainable by

the system reads

G = max
f s

{
||u(t ;θ)||2

}
{
|| f sξ(t ;θ)||2

} = max
f s

{[||û(ω;θ)||2]}{[|| f s ξ̂(ω;θ)||2]} =
1

ϵ2
o

, (3.11)

where we defined ϵo as the inverse of the square root of the maximum stochastic gain G .

Furthermore, in the statistically steady regime, (3.1) can be solved in the Fourier domain as

û(ω;θ) = ξ̂(ω;θ)R(ω) f s , where

R(ω)
.
= (iωI −L)−1 (3.12)

is the resolvent operator. The gain (3.11) can be re-expressed

G = max
f s

{[〈
f s

∣∣|ξ̂(ω;θ)|2R(ω)†R(ω) f s

〉]}{[〈
f s

∣∣|ξ̂(ω;θ)|2 f s

〉]} =
1[

g (ω)
] max

f s

〈
f s

∣∣B∞ f s

〉
|| f s ||2

, (3.13)
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where we have defined the operator

B∞ =
1

2π

∫ ∞

−∞
g (ω)R(ω)†R(ω)dω =

[
g (ω)R(ω)†R(ω)

]
. (3.14)

The operator R(ω)† denotes the adjoint of R(ω) under the L2 inner product, such that 〈R(ω)ûa |ûb〉 =〈
ûa

∣∣R(ω)†ûb
〉

for all ûa , ûb in the domains of R(ω) and R(ω)†, respectively. The operator B∞

is positive definite, Hermitian with positive and real eigenvalues associated with mutually

orthogonal eigenvectors.

The maximum gain (3.13) is the largest eigenvalue of B∞ divided by
[
g (ω)

]
. The associated

eigenvector, denoted f o and normalised as〈
f o

∣∣[g (ω)
]

f o

〉
= || f o ||2

[
g (ω)

]
= 1, (3.15)

is the optimal forcing structure (hence the subscript "o"), i.e. the forcing structure that leads

to the largest stochastically variance amplification. In other terms,

B∞ f o = G
[
g (ω)

]
f o =

[
g (ω)

]
ϵ2

o
f o , implying

〈
f o

∣∣B∞ f o

〉
=

1

ϵ2
o

. (3.16)

We further assume that the largest eigenvalue of B∞ is much larger than all the others, which

corresponds to sub-optimal gains. In this manner, if the actual (unknown) forcing of the

system does not promote a particular sub-optimal eigenmode of B∞, but projects comparably

on all of them, then the response to the actual forcing is expected to be dominated by the

response to the optimal forcing f o . This was demonstrated in (1.59) in the introductive part

of this thesis. This low-rank approximation is commonly done and well justified for strongly

non-normal operators (Symon et al., 2018), and explains why we restrict our analysis to the

response to ξ(t ;θ) f o and do not include additional forcing modes.

By linearity, forcing the system (3.1) with f (t ;θ) = ϵoξ(t ;θ) f o , where we recall that we have

defined ϵo
.
= 1/

p
G , leads to a response l (t ;θ) of unit variance, i.e.{

||l (t ;θ)||2
}

=
{[||l̂ (ω;θ)||2]} = ϵ2

o

〈
f o

∣∣B∞ f o

〉
= 1, (3.17)

where we used the expression of the linear response in the Fourier domain,

l̂ (ω;θ) = ϵo ξ̂(ω;θ)R(ω) f o , or, equivalently, R(ω)−1 l̂ (ω;θ) = ϵo ξ̂(ω;θ) f o . (3.18)

Since L is strongly non-normal, as assumed in the rest of the present study, none of ϵo or

f o are immediately determined from its spectral (modal) properties; furthermore, strong

non-normality typically implies ϵo ≪ 1 (Farrell & Ioannou, 1993).

It follows from the second equation in (3.18) that the inverse resolvent maps a field of unit

norm (induced by the inner product (3.9)), according to (3.17), on a field of norm ϵo , according

to (3.15). Since ϵo is by assumption very small, this suggests that the inverse resolvent is close to
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being singular, if "close" refers to the induced norm in question. Thereby, it is mathematically

justified to construct a singular operator Φ(ω;θ) as a perturbation of the inverse resolvent,

expressing

Φ(ω;θ) (•) = R(ω)−1 •−ϵoP (ω;θ) (•) , where

P (ω;θ) (•) = ξ̂(ω;θ) f o

{[〈
l̂ (ω;θ)

∣∣•〉]} ,
(3.19)

where Φ(ω;θ) (•) simply means that the operator Φ(ω;θ) is applied on some field •. The

parenthesis are included to highlight the fact that, for some scalar A(ω;θ) and some field

ĝ (ω;θ)

Φ(ω;θ)
(

A(ω;θ)ĝ (ω;θ)
) ̸= A(ω;θ)Φ(ω;θ)

(
ĝ (ω;θ)

)
, (3.20)

for the application of Φ(ω;θ) involves an integration over the frequencies and an ensemble

average. Only if A is a deterministic scalar that does not depend on the frequency, can we

write

Φ(ω;θ)
(

Aĝ (ω;θ)
)

= AΦ(ω;θ)
(
ĝ (ω;θ)

)
, (3.21)

(and same for P (ω;θ) (•)). The linear operator P (ω;θ) (•) is such that

P (ω;θ)
(
l̂ (ω;θ)

)
= ξ̂(ω;θ) f o

{[〈
l̂ (ω;θ)

∣∣l̂ (ω;θ)
〉]}︸ ︷︷ ︸

=1 by (3.17)

= ξ̂(ω;θ) f o .
(3.22)

Therefore,

Φ(ω;θ)
(
l̂ (ω;θ)

)
= R(ω)−1 l̂ (ω;θ)−ϵoP (ω)

(
l̂ (ω;θ)

)
= R(ω)−1 l̂ (ω;θ)− ξ̂(ω;θ) f o = 0. (3.23)

In other words, Φ(ω;θ) is a singular operator with l̂ (ω;θ) as a non-trivial kernel. Its adjoint

operator Φ(ω;θ)† (•), under the inner product (3.9), is such that{[〈
Φ(ω;θ)

(
ĝ (ω;θ)

)∣∣ĥ(ω;θ)
〉]}

=
{[〈

ĝ (ω;θ)
∣∣∣Φ(ω;θ)† (

ĥ(ω;θ)
)〉]}

,∀ĝ ∈D(Φ), ĥ ∈D(Φ†). (3.24)

It it written

Φ(ω;θ)† (•) =
(
R(ω)−1)† •−ϵoP (ω;θ)† (•) where

P (ω;θ)† (•) = l̂ (ω;θ)
{[〈

ξ̂(ω;θ) f o

∣∣•〉]} .
(3.25)

Furthermore, we show in appendix 3.6.4 that the stochastic field

â(ω;θ) = ϵoR(ω)† l̂ (ω;θ), is such that Φ(ω;θ)† (â(ω;θ)) = 0. (3.26)

In other terms, â(ω;θ) is the non-trivial kernel of the adjoint operator Φ(ω;θ)† (•).

Expansion (3.19) is a priori justified in the sense that the induced-norm of the operator P is{[||P ||2]} = 1 (shown in Appendix 3.6.3), and thus the operator perturbation (3.19) is of size ϵo ,
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indeed small by assumption.

Note that perturbation (3.19) is essence similar to that in (2.5), extended to a more general

inner product, involving an integration over the frequencies and an ensemble average in

addition to integrating over space. Consequently, the computations proposed in the next

section, in the weakly nonlinear regime, are close to those outlined in chapter 2.

3.3 Weakly nonlinear regime

In this section, we suggest a procedure to derive a weakly nonlinear equation for the amplitude

of the linear stochastic response. We illustrate the method directly on the incompressible

Navier-Stokes equations, which we recall to be

∂tU = −C (U ,U )−∇p +Re−1∆U +Fξ(t ;θ) f h , (3.27)

with the nonlinear, bilinear operator

C (x , y) =
1

2

(
(x ·∇)y + (y ·∇)x)

)
. (3.28)

The stochastic forcing is such that ξ(t ;θ) f h has a unit variance, i.e.{
||ξ(t ;θ) f h ||2

}
=

{[||ξ̂(ω;θ) f h ||2
]}

= || f h ||2
[
g (ω)

]
= 1. (3.29)

This way, the variance of the stochastic forcing Fξ(t ;θ) f h is directly given by F 2. The forcing

structure f h is for now unspecified. In what follows, we assume F to be small, which is

quantified by scaling

F =φ
p
ϵo

3, (3.30)

where the prefactor φ = O(1) sets the forcing variance. Thereby we seek a solution for the

response in the statistically steady regime under the form of the following multiple-scale

asymptotic expansion,

U (t ,T2,T3;θ) = U b +
p
ϵou1(t ,T2,T3;θ)+ϵou2(t ,T2,T3;θ)

+p
ϵo

3u3(t ,T2,T3;θ)+O(ϵ2
o).

(3.31)

where we introduced the slow time scales T2 =
p
ϵo t and T3 = ϵo t and where U b is a stable fixed

point of the Navier-Stokes equations. We inject both (3.30) and (3.31) in the Navier-Stokes

equations (3.27), and take the Fourier transform (with respect to t ) of the resulting expansion,
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leading to

p
ϵo

(
R−1û1

)+
ϵo

(
R−1û2 +∂T2 û1 +F (C (u1,u1))

)+
p
ϵo

3 (
R−1û3 +∂T3 û1 +∂T2 û2 +2F (C (u2,u1))−φξ̂ f h

)+O(ϵ2
o) = 0.

(3.32)

By perturbing the inverse resolvent operator as in (3.19), expansion (3.32) becomes

p
ϵo (Φ (û1))+
ϵo

(
Φ (û2)+∂T2 û1 +F (C (u1,u1))

)+
p
ϵo

3 (
Φ (û3)+∂T3 û1 +∂T2 û2 +2F (C (u2,u1))+P (û1)−φξ̂ f h

)+O(ϵ2
o) = 0.

(3.33)

At order
p
ϵo in (3.33), the following homogeneous equation as to be satisfied

Φ(ω;θ) (û1(ω,T2,T3;θ)) = 0. (3.34)

Its general solution consists of an arbitrary component on the kernel of Φ, i.e.

û1(ω,T2,T3;θ) = A(T2,T3)l̂ (ω;θ), writing in the temporal domain,

u1(t ,T2,T3;θ) = A(T2,T3)l (t ;θ),
(3.35)

where A(T2,T3) is an arbitrary scalar that solely depends on the slow times scales. It is impor-

tant to notice that A can’t depend on the stochastic argument θ, for A(T2,T3;θ)l̂ (ω;θ) does not

belong to the kernel of Φ for the reason evoked when describing (3.20).

Pursuing the development up to O(ϵo) leads to solving

Φ (û2) = −∂T2 û1 −F (C (u1,u1)) = −l̂∂T2 A− A2F (C (l , l )) . (3.36)

For û2 to yield a non-diverging particular solution, the right-hand side in (3.36) must be

orthogonal to the kernel of the adjoint operator Φ†. This orthogonality must hold under the

inner product (3.9), for it is under this inner product that Φ† was constructed in (3.24). This

leads to an equation for the partial derivative of A with respect to T2

η
∂A

∂T2
=µ2 A2, (3.37)

where we have defined the (deterministic) coefficients η and µ2 as

η =
{[〈

â(ω;θ)
∣∣l̂ (ω;θ)

〉]}
(3.38)
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and

µ2 = −{
[〈â(ω;θ)|F (C (l , l )) (ω;θ)〉]}

=
{[〈

l̂ (ω;θ)
∣∣∣û A2

2 (ω;θ)
〉]}

=
{〈

l (t ;θ)
∣∣u A2

2 (t ;θ)
〉}

.

(3.39)

In (3.39), we have introduced the field

û A2

2 (ω;θ) = −ϵoR(ω)F (C (l , l )) (ω;θ), (3.40)

which amounts to solving in the temporal domain

∂t u A2

2 = Lu A2

2 −ϵoC (l , l ) . (3.41)

Injecting (3.37) in (3.36) leads to the new system

Φ (û2) (ω;θ) = A2
(
−l̂ (ω;θ)

µ2

η
−F (C (l , l )) (ω;θ)

)
︸ ︷︷ ︸

= f̂
A2

2,⊥

= A2 f̂
A2

2,⊥(ω;θ)
(3.42)

where the forcing term f̂
A2

2,⊥ is by construction orthogonal to the adjoint{[〈
â(ω;θ)

∣∣∣ f̂
A2

2,⊥(ω;θ)
〉]}

= 0 ⇔{[〈
l̂ (ω;θ)

∣∣∣R(ω) f̂
A2

2,⊥(ω;θ)
〉]}

= 0 ⇔{[〈
l̂ (ω;θ)

∣∣∣û A2

2,⊥(ω;θ)
〉]}

= 0.

(3.43)

where we have introduced the field û A2

2,⊥ = R f̂
A2

2,⊥. The particular solution to the second-order

equation (3.42) is directly given by A2û A2

2,⊥, since

Φ(ω;θ)
(

A2û A2

2,⊥(ω;θ)
)

= A2R(ω)−1û A2

2,⊥(ω;θ)− A2ξ̂(ω;θ) f o

{[〈
l̂ (ω;θ)

∣∣∣û A2

2,⊥(ω;θ)
〉]}

︸ ︷︷ ︸
=0 by (3.43)

= A2 f̂
A2

2,⊥(ω;θ),

(3.44)

which solves (3.42) indeed. Eventually, the general solution at O(ϵo) writes in the Fourier

domain

û2(ω,T2,T3;θ) = A(T2,T3)2û A2

2,⊥(ω;θ)+ A2(T2,T3)l̂ (ω;θ), (3.45)

where A2 is another arbitrary amplitude.
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At order
p
ϵo

3, the equation

Φ (û3) = −∂T3 û1 −∂T2 û2 −2F (C (u2,u1))+φξ̂ f h −P (û1) = f̂ 3, (3.46)

is unraveled, where the field f̂ 3 was introduced. Thenceforth, we successively compute

∂û2

∂T2
= û A2

2,⊥2A
∂A

∂T2
+ l̂

∂A2

∂T2

= û A2

2,⊥
2µ2

η
A3 + l̂

∂A2

∂T2
,

(3.47)

as well as

2F (C (u2,u1)) = 2A3F
(
C

(
u A2

2,⊥, l
))
+2A A2F (C (l , l )) , (3.48)

and eventually

P (û1) = AP
(
l̂
)

= Aξ̂ f o . (3.49)

Using these results, the right-hand side f̂ 3 in (3.46) is written

f̂ 3 = −
(
∂A2

∂T2
+ ∂A

∂T3

)
l̂ − A3

(
2F

(
C

(
u A2

2,⊥, l
))
+ û A2

2,⊥
2µ2

η

)
− A A22F (C (l , l ))+ (φ− A)ξ̂ f o . (3.50)

Once again, it must be imposed that the latter is orthogonal to â under the inner product (3.9)

{[〈
â

∣∣ f̂ 3

〉]}
= 0 ⇔ η

(
∂A2

∂T2
+ ∂A

∂T3

)
= γφ− A+2µ2 A A2 +µ3 A3. (3.51)

The coefficient γ is given by the expression

γ =
{[〈

â
∣∣ξ̂ f h

〉]}
= ϵo

{[〈
R† l̂

∣∣∣ξ̂ f h

〉]}
= ϵ2

o

{[〈
|ξ̂|2R†R f o

∣∣∣ f h

〉]}
= ϵ2

o

〈
B∞ f o

∣∣ f h

〉
=

[
g
]〈

f o

∣∣ f h

〉
,

(3.52)

which, if f h is chosen as being the optimal structure f o , reduces to

γ =
{[〈

â
∣∣ξ̂ f o

〉]}
=

[
g
]〈

f o

∣∣ f o

〉
= 1, (3.53)

in virtue of (3.15). The coefficient µ3 is computed as

µ3 = −
{[〈

â

∣∣∣∣(F (
2C

(
u A2

2,⊥, l
))
+ û A2

2,⊥
2µ2

η

)〉]}
= −

{[〈
l̂

∣∣∣∣ϵoR

(
F

(
2C

(
u A2

2,⊥, l
))
+ û A2

2,⊥
2µ2

η

)〉]}
=

{[〈
l̂
∣∣∣û A3

3

〉]}
=

{〈
l
∣∣u A3

3

〉}
,

(3.54)
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where we have defined the third-order field in the Fourier domain

û A3

3 = −ϵoR

(
F

(
2C

(
u A2

2,⊥, l
))
+ û A2

2,⊥
2µ2

η

)
, (3.55)

which solves in the temporal domain the following evolution equation

∂t u A3

3 = Lu A3

3 −ϵo2C
(
u A2

2,⊥, l
)
−ϵou A2

2,⊥
2µ2

η
. (3.56)

By using (3.35) and (3.45), the overall component along the homogeneous solution l̂ is assem-

bled as

Ã(T2,T3) = A(T2,T3)+p
ϵo A2(T2,T3)+O(ϵo). (3.57)

The total derivative of Ã with respect to the actual time t is expressed

dÃ

dt
=
�
�
�∂Ã

∂t
+ ∂T2

∂t

∂Ã

∂T2
+ ∂T3

∂t

∂Ã

∂T3

=
p
ϵo

∂A

∂T2
+ϵo

(
∂A2

∂T2
+ ∂A

∂T3

)
+O(

p
ϵo

3)

=
p
ϵo
µ2

η
A2 + ϵo

η

(
γφ− A+2µ2 A A2 +µ3 A3)+O(

p
ϵo

3)

=
p
ϵo
µ2

η
Ã2 + ϵo

η

(
γφ− Ã+µ3 Ã3)+O(

p
ϵo

3).

(3.58)

By introducing the rescaled amplitude a =
p
ϵo Ã = O(

p
ϵo), this becomes

η
da

dt
= γF −ϵo a +µ2a2 +µ3a3 +O(ϵ2

o). (3.59)

The equilibrium solution to (3.59), denoted ā, characterizes the statistically steady regime of

the perturbation response, in which the expansion (3.31) becomes

U (t ;θ)−U b = āl (t ;θ)+ ā2u A2

2,⊥(t ;θ)+O(
p
ϵo

3). (3.60)

The associated response-to-forcing perturbation variance gain is computed as{
||U (t ;θ)−U b ||2

}
{
||Fξ(t ;θ) f h ||2

} =
ā2 + ā4

{
||u A2

2,⊥(t ;θ)||2
}
+O(

p
ϵo

5)

F 2

=
ā2 +O(ϵ2

o)

F 2 ,

(3.61)

where we have used
{
||l ||2

}
= 1 and

{〈
l
∣∣∣u A2

2,⊥
〉}

= 0, in virtue of (3.17) and (3.43), respectively.
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Thereby, we define the leading-order stochastic gain as

GWNN =
ā2

F 2 , (3.62)

the subscript "WNN" for Weakly Nonlinear Non-normal.

In the linear regime when F vanishes in (3.59), the equilibrium solution tends to ā = γF /ϵo ,

corresponding to a gain

lim
F→0

GWNN =
γ2F 2

ϵ2
oF 2

=
γ2

ϵ2
o

= γ2G =
{
〈uh(t ;θ)|l (t ;θ)〉

}2
. (3.63)

where the last equality is demonstrated in appendix 3.6.5, the field uh having been defined

as the linear response to ξ f h . This limit is consistent with the linear regime: if the forcing

structure f h is chosen as being the optimal one f o , then we have γ = 1 and the weakly

nonlinear gain reduces to the linear one G (defined in 3.11). On the contrary, if f h is chosen

as being orthogonal to f o , the associated linear response uh is orthogonal to l and the linear

gain is null. That is precisely because the variance gain GWNN inherently describes that of l ,

and if the linear flow is forced along f h with
〈

f h

∣∣ f o

〉
= 0, no component of the response along

l is created under the inner product (3.9).

In the following section, for a selected application case, we compare the predictions of the

weakly nonlinear stochastic gain (3.62) with fully nonlinear simulations as we increase the

forcing strength F .

3.4 Application to the backward-facing step flow

We consider as an application case the nonlinear evolution of the stochastic gain in the

two-dimensional backward-facing step (BFS) flow at Re = 500. As mentioned in chapter 2,

streamwise non-normality mechanisms make this flow particularly receptive to external

excitations (Blackburn et al., 2008). A Poiseuille profile of unit centreline velocity is imposed

at the inlet.

The stochastic process ξ(t ;θ) is chosen as a Gaussian-distributed, zero-average white noise

of unit intensity, and band-limited with a cut-off frequency ωc =π. This corresponds to the

particular case where{|ξ̂(ω;θ)|2} = g (ω) = 1, |ω| ≤ωc =π, (3.64)

and |ξ̂(ω;θ)| = 0 otherwise, implying

[
g (ω)

]
=

1

2π

∫ ωc =π

−ωc =−π
g (ω) = 1, (3.65)

The probability density function of the noise is a Gaussian centered around 0, thus {ξ} = 0.
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Figure 3.1: (a) Streamwise component of the optimal stochastic forcing f o in the BFS flow,
Re = 500. (b) DNS snapshot of the associated streamwise velocity response (perturbation
around the base flow) to Fξ(t ;θ) f o with F = 0.00025.

Furthermore, the flow is forced with its optimal forcing structure, i.e. f h = f o , such that γ = 1.

The nonlinear and linearised NSE are solved with the Finite Element Method (see details in

Appendix 3.6.6). Figure 3.1(a) shows the optimal stochastic forcing f o , which is remarkably

similar to the optimal harmonic forcing structure at the most amplified frequency ω = 0.47,

as determined via a resolvent analysis and shown in figure 2.4(a). The harmonic gain being

relatively selective in frequencies and being maximal at ω = 0.47, the associated forcing struc-

ture is naturally favored when maximising the present stochastic gain, since the selected noise

excites all frequencies with the same intensity. Figure 3.1(b) shows a DNS snapshot of the flow

response to Fξ(t ;θ) f o for F = 0.00025.

The linear problems and the coefficients µ2 and µ3 are computed in the frequency domain,

where the frequencies have been discretised in N uniformly distributed values ω ∈ [0,ωc ]

with ωc = π. The coefficient µ2 in front of the quadratic term in (3.59) is found to vanish

after performing the ensemble average. That is because the probability density function of

the noise, denoted P (ξ), is a Gaussian centered around zero, and thus it is even, such that

P (−ξ) = P (ξ). On the other hand, the coefficient µ2 in (3.39) can be re-expressed as

µ2 = −ϵ4
o

{[〈
R†R f o ξ̂

∣∣∣F (
C

(
F−1 (

R f o ξ̂
)

,F−1 (
R f o ξ̂

)))〉]}
=

{
µ̃2

}
(3.66)

Due to the linearity of the Fourier transform, the function inside the ensemble average in

(3.66), which we have defined as µ̃2, is an odd function of ξ, i.e., µ̃2(−ξ) = −µ̃2(ξ). Thereby, its

ensemble average (or expected value) writes

µ2 =
{
µ̃2

}
=

∫
µ̃2(ξ)P (ξ)dξ = 0, (3.67)

since the integrand is odd. The nullity of µ2 greatly simplifies the ensuing calculations, and

the coefficient µ3 is found upon implementing the following algorithm.

1. Choose the values for N and ωc , which sets the discretisation of the frequency interval.
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Figure 3.2: Evolution of the coefficient µ3 as a function of the number of realisations included
in the ensemble average. Each realisation results from a different, randomly drawn, white
noise process.

2. Over the discrete set of frequencies, pre-compute once for all the deterministic scalar ϵo

and fields f o and R f o .

3. Draw randomly a band-limited white noise ξ̂ and deduce l̂ = ϵo ξ̂R f o .

4. Compute l = F−1
(
l̂
)

then û A2

2,⊥ = −RF (C (l , l )).

5. Compute u A2

2,⊥ = F−1
(
û A2

2,⊥
)

then û A3

3 = −ϵoRF
(
2C

(
u A2

2,⊥, l
))

.

6. Compute µ̃3 =
[〈

l̂
∣∣∣û A3

3

〉]
and store its value.

7. Update µ3 =
{
µ̃3

}
and return to (3) until converge of µ3.

The algorithm is found to converge to the value

µ3 = −4.45×10−3, (3.68)

after 103 different realisations of the white noise (see convergence curve in figure 3.2, and a

frequency domain ω ∈ [0,ωc ] discretized in N = 27 +1 points. The coefficient η is not needed

in determining the equilibrium solutions of (3.59), therefore is not calculated.

The weakly nonlinear gain defined in (3.62) is compared with the fully nonlinear gain extracted

from a DNS of (3.27), and defined hereafter as

GDNS
.
=

{||up (t )||2}
F 2 =

{[||ûp ||2
]}

F 2 , with up (t ) = U (t )−U . (3.69)
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Figure 3.3: Weakly and fully nonlinear stochastic gains (defined respectively in (3.62) and
(3.69) ) for the BFS flow at Re = 500. Error bars around DNS points show plus or minus one
standard deviation.

Contrarily to the weakly nonlinear calculations, the DNS are performed in the time domain,

with duration T = 2049 units of times after the transients fade away, sampled at ∆t =π/ωc = 1

and ensemble-averaged over 10 realisations of the white noise (this lower number of realisa-

tions is the consequence of each one being numerically costly).

The weakly nonlinear gain as defined in (3.62), with ā the root of the polynomial at the right-

hand side of (3.59) (with µ2 = 0 for this particular Gaussian noise case) in represented in

figure 3.3 as a function of F . The evolution of the fully nonlinear gain, as defined in (3.69) is

also added, as well as the linear gain in (3.11). The comparison of the weakly nonlinear gain

with the DNS data shows good agreement: the amplitude equation (3.59) captures well the

monotonous decay of the gain with increasing F . For small F close to the linear regime, DNS

and weakly nonlinear (which collapse to the linear) approach differ slightly, which is believed

to be due to an imperfect convergence of the DNS data, due to the large standard deviation at

small F and the poor number of realisations.

Note that such good agreement in figure 3.3 is probably made possible by the frequency selec-

tivity of the BFS flow. Specifically, is apparent in figure 3.4 that, for a given noise realisation, the

L2 norm of the leading order field ||l̂ ||2 = ||ξ̂ϵoR f o ||2 is localized around ω≈ 0.47, due to the

selectivity of the forcing structure f o . The quadratic nature of the nonlinearity implies that the

L2 norm of the second-order field ||û A2

2,⊥||2 is localized around ω = 0 and ω = 2×0.47. In turns,

the L2 norm of the third-order field ||û A3

3 ||2 again is localized around the frequency ω≈ 0.47.

As a consequence, the first and third-order fields have a very similar energy distribution as a

function of the frequency in figure 3.4, which makes the coefficient µ3 in (3.54) non-negligible.

Such resemblance between the leading and third-order fields justifies all the more enforcing

their orthogonality in the sense of the inner product (3.9) (which also integrates over the
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Figure 3.4: For a given noise realisation ξ, are shown the L2 norm of the leading order field
l̂ = ϵoξR f o , of the second-order particular solution û A2

2,⊥ = R f A2

2,⊥ and of the third order field

û A3

3 given by (3.55).

frequency) such as to preserve the asymptotic hierarchy. This presumably is why the results

ensuing this orthogonality condition are so effective in capturing fully nonlinear results. Nev-

ertheless, the performances of the amplitude equation (3.59) are expected to be perhaps less

impressive in a configuration where ||l̂ ||2 is less localized in frequency, but exhibits large values

over a wide range of frequencies.

3.5 Conclusion

In this chapter, we have shown that the methodology outlined in chapter 2 for the response

to a harmonic forcing can be extended to the response to a (specific) stochastic forcing, by

selecting a more general inner product in (3.9), involving an integration over space, time

(or frequencies) and and ensemble average. The linear system experiences a large response-

to-forcing amplification of the norm induced by such an inner product. Consequently, the

resolvent operator is close to being singular and exactly is by perturbing it with a small operator

perturbation. Accordingly, the adjective "small" refers to the norm induced by the generalized

inner product. The ensuing amplitude equation predicted well the weakly nonlinear evolution

of the gain for the BFS flow at Re = 500 as the induced norm of the stochastic forcing was

increased. This good performance remains to be established in more complicated flows, less

selective in frequency.

Note that the approach could easily be extended to cases where the flow is subject to several
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(say N ) stochastic forcings, i.e. to

f (t ;θ) =
N∑

j =1
f jξ j (t ;θ j ), (3.70)

as long as the forcing processes f jξ(t ;θ j ) are orthonormal under the inner product (3.9), i.e.,

as long as{[〈
f j ξ̂ j (ω;θ j )

∣∣∣ f n ξ̂n(ω;θn)
〉]}

= δ j n . (3.71)

Indeed, in the latter case, the operator perturbation (3.19) can be straightforwardly completed

as

Φ(ω;θ) (•) = R(ω)−1 •−
N∑

j =1
ϵ j P j (ω;θ j ) (•) , with

P j (ω;θ j ) (•) = ξ̂ j (ω;θ j ) f j

{[〈
l̂ j (ω;θ j )

∣∣•〉]} ,

(3.72)

and where

l̂ j (ω;θ) = ϵ j ξ̂ j (ω;θ j )R(ω) f j , and ϵ j is such that
{[||l̂ j (ω;θ)||2]} = 1. (3.73)

Precisely due to the orthonormality property in (3.71), the operator Φ is such that

Φ(ω;θ)
(
l̂ j (ω;θ)

)
= 0 for each j = 1,2, ... (3.74)

Thenceforth, one can proceed with the nonlinear expansion to eventually obtain a system of

N nonlinear coupled amplitude equations.

Nevertheless, coming back to the simplest case where N = 1 was detailed in this chapter, the

amplitude equation is limited to the description of the variance, a simple integrated measure

of the flow response. Corollary, because the inner product selected in (3.9) is integrating

over space, frequency, and taking the expected value, the amplitude is condemned to be a

deterministic scalar that does not depend on the frequency.

For this reason, in the next chapter we consider the same problem but, for the perturbation of

the inverse resolvent, return to the simple L2 inner product considered in chapter 2. This will

have the consequence that the amplitude for the stochastic response will generically depend

on the frequency and will also be stochastic. At the cost of an operator perturbation less

well justified and analytical developments becoming substantially more complex, the weakly

nonlinear evolution of the whole Fourier spectrum of the linear response can be captured.
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3.6 Appendix

3.6.1 Link between the PSD and the auto-correlation function

Upon taking the inverse Fourier transform of (3.6), we obtain

F−1 ({|ξ̂(ω;θ)|2}) = F−1 (
g (ω)

)⇔,
p

T

2π

1

T

∫ T

0

∫ T

0
{ξ(t ;θ)ξ(b;θ)}

∫ ∞

−∞
e iω(t−b+s)dωdtdb =

p
T

2π

∫ ∞

−∞
g (ω)e i st dω⇔,

1p
T

∫ T

0

∫ T

0
{ξ(t ;θ)ξ(b;θ)}δ(t −b + s)dtdb =

p
T

2π

∫ ∞

−∞
g (ω)e i st dω⇔,

1

T

∫ T

0
{ξ(t ;θ)ξ(t + s;θ)}dt =

1

2π

∫ ∞

−∞
g (ω)e i st dω⇔,{

ξ(t ;θ)ξ(t + s;θ)
}

=
1

2π

∫ ∞

−∞
g (ω)e i st dω.

(3.75)

3.6.2 Norm in the frequency domain

〈
h(t ;θ)

∣∣g (t ;θ)
〉

=
1

T

∫ T

0

T

4π2

∫ ∞

−∞

∫ ∞

−∞
〈

ĥ(ω;θ)
∣∣ĝ (s;θ)

〉
e i t (s−ω)dωdsdt

=
1

2π

∫ ∞

−∞

∫ ∞

−∞
〈

ĥ(ω;θ)
∣∣ĝ (s;θ)

〉
δ(s −ω)dωds

=
1

2π

∫ ∞

−∞
〈

ĥ(ω;θ)
∣∣ĝ (ω;θ)

〉
dω

=
[〈

ĥ(ω;θ)
∣∣ĝ (ω;θ)

〉]
.

(3.76)

3.6.3 Norm of the perturbation operator

{[||P (ω;θ) (•) ||2]} = max
ĝ

{[||P (ω;θ)
(
ĝ (ω;θ)

) ||2]}{[||ĝ (ω;θ)||2]}
= max

ĝ

{[||ξ̂(ω;θ) f o

{[〈
l̂ (ω;θ)

∣∣ĝ (ω;θ)
〉]} ||2]}{[||ĝ (ω;θ)||2]}

=
{[||ξ̂(ω;θ) f o ||2

]}︸ ︷︷ ︸
=1 by (3.15)

max
ĝ

|{[〈l̂ (ω;θ)
∣∣ĝ (ω;θ)

〉]} |2{[||ĝ (ω;θ)||2]}
= 1,

(3.77)

where selecting ĝ (ω;θ) = l̂ (ω;θ) leads to the largest possible amplification.
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3.6.4 Kernel of the adjoint operator

Φ(ω;θ)† (â(ω;θ)) =
(
R(ω)−1)†

â(ω;θ)−ϵoP (ω)† (â(ω;θ))

= ϵo
(
R(ω)−1)†

R(ω)† l̂ (ω;θ)−ϵ2
oP (ω)†

(
R(ω)† l̂ (ω;θ)

)
= ϵo

(
R(ω)†

)−1
R(ω)† l̂ (ω;θ)−ϵ2

o l̂ (ω;θ)
{[〈

ξ̂(ω;θ) f o

∣∣∣R(ω)† l̂ (ω;θ)
〉]}

= ϵo l̂ (ω;θ)−ϵo l̂ (ω;θ)
{[〈

l̂ (ω;θ)
∣∣l̂ (ω;θ)

〉]}︸ ︷︷ ︸
=1 by (3.17)

= 0,

(3.78)

where we used that the inverse of the adjoint is the adjoint of the inverse.

3.6.5 Linear gain for a generic forcing structure

Let us denote by uh(t ;θ) the response to the stochastic forcing ξ(t ;θ) f h , i.e. ûh(ω;θ) =

ξ̂(ω;θ)R(ω) f h . The projection of ûh(ω;θ) onto l̂ (ω;θ) under the inner product (3.9) reads

{[〈
ûh(ω;θ)

∣∣l̂ (ω;θ)
〉]}

= ϵo

{[〈
f h

∣∣∣|ξ̂(ω;θ)|2R(ω)†R(ω) f o

〉]}
= ϵo

〈
f h

∣∣B∞ f o

〉
=

[
g (ω)

]〈
f h

∣∣ f o

〉p
G

= γ
p

G .

(3.79)

3.6.6 Numerical implementation

The linear and nonlinear NSE are solved for (ux ,uy ,p) employing the Finite Element Method

with Taylor-Hood (P2, P2, P1) elements, respectively, after implementation of their weak

form in the software FreeFem++. The steady solution of the nonlinear NSE is found using

the iterative Newton–Raphson method, and the linear operators are built thanks to a sparse

solver available in FreeFem++. The optimal forcing structure f o is found on the software

MATLAB after discretizing the integral expression for B∞ and performing the lower-upper (LU)

decomposition of the resolvent operators to speed up their application. Finally, DNS are

performed in FreeFem++ by applying a time scheme based on the characteristic–Galerkin

method. We refer to Mantič-Lugo and Gallaire, 2016b for the validation of the codes with

existing literature when possible and for the mesh convergence analysis since the same codes

have been used.
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4 Weakly nonlinear evolution of
stochastically driven non-normal
systems

Remark: This chapter is largely inspired by the article Ducimetière et al. (2022c), in collabora-

tion with Edouard Boujo and François Gallaire.

4.1 Introduction

In this chapter, we also propose a theoretical approach to derive an amplitude equation

governing the weakly nonlinear evolution of non-normal systems subject to stochastic forcing.

As in the previous chapter, the approach does not rely on the presence of an eigenvalue close

to the neutral axis, applying instead to any sufficiently non-normal operator, and the Fourier

components of the response are allowed to be arbitrarily different from any eigenmode.

Nevertheless, the approach followed in the present chapter differs from that proposed in the

previous one, in that the amplitude equation now depends on the frequency. In that, it can be

seen as a "spectral envelope" of the Fourier spectrum of the linear response.

The methodology is outlined for a generic nonlinear dynamical system, and the application

case highlights a common non-normal mechanism in hydrodynamics: convective non-normal

amplification in the flow past a backward-facing step.

4.2 Linear regime

A generic nonlinear dynamical system is considered,

∂tU = N (U )+F , (4.1)
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where N (·) is a nonlinear operator and F a forcing term. The first step of our analysis is to

linearise (4.1) around an unforced equilibrium U e solution of N (U e ) = 0. Small-amplitude

forcing and perturbations, ϵ f and ϵu (ϵ≪ 1), are considered around U e . An asymptotic

expansion of (4.1) in terms of ϵ can thus be performed. At order ϵ, the fields u and f are linked

through the linear relation

∂t u = Lu + f , (4.2)

where L results from the linearisation of N around U e . For fluid flows governed by the incom-

pressible Navier-Stokes equations, we recall Lu = −(U e · ∇)u − (u · ∇)U e +Re−1∆u −∇p(u),

where Re is the Reynolds number, and where the pressure field p is such that the velocity field

u is divergence-free.

Exactly as in the previous chapter, the specific form f (x , t) = f s(x)ξ(t) is chosen for the

stochastic forcing. The field f s(x) is the forcing spatial structure and ξ(t) a Gaussian band-

limited white noise process with unit intensity, zero mean, and a cut-off frequency at ωc =π,

i.e. {|ξ̂(ω)|2} = 1, |ω| ≤ωc =π, {ξ(t )} = 0, (4.3)

and the cut-off frequency is such that the noise has a variance

{
ξ(t )2

}
=

{
T

4π2

∫ ∞

−∞

∫ ∞

−∞
ξ̂(ω)∗ξ̂(s)e i t (s−ω)dωds

}

=

{
T

4π2

∫ ∞

−∞

∫ ∞

−∞
ξ̂(ω)∗ξ̂(s)e i t (s−ω)dωds

}
=

1

2π

∫ ∞

−∞

∫ ∞

−∞
{
ξ̂(ω)∗ξ̂(s)

}
δ(s −ω)dωds

=
1

2π

∫ ∞

−∞
{|ξ̂(ω)|2}dω

=
1

2π

∫ ωc =−π

−ωc =π
1dω

= 1.

(4.4)

where we have used the interpretation of the Dirac impulse in (3.4). Note that the variance

(4.4) diverges in case of an actual white noise with ωc →∞. Thereby, setting a finite cutoff

frequency ωc guarantees the noise to have a finite variance.

The white noise ξ(t ) is the only source of randomness of the system. In this chapter, we omit

the dependency on the stochastic argument, to lighten the formalism.

As we saw in the previous chapter, a relevant measure of input-output gain of the system (4.2)

is the ratio of the statistically steady variance maintained by the stochastic forcing,
{
||u(t )||2

}
,
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divided by that of the forcing{
||ξ(t ) f h ||2

}
=

{
ξ(t )2

}
︸ ︷︷ ︸
=1by (4.4)

|| f h ||2 = || f h ||2 (4.5)

Optimising over the forcing structure, as in (3.13) the maximum attainable gain is

G = max
f s

{
||u(t )||2

}
|| f s ||2

.
=

1

ϵ2
o

. (4.6)

We have seen that, using the inverse Fourier transform of u(t ), we can write{||u(t )||2} =
〈

f s

∣∣B∞ f s

〉
, (4.7)

with B∞ given in (3.14), which in this particular case reduces to

B∞ =
1

2π

∫ π

−π
R(ω)†R(ω)dω =

[
g (ω)R(ω)†R(ω)

]
. (4.8)

We recall the operator B∞ to be positive definite Hermitian with positive and real eigenvalues

associated with mutually orthogonal eigenvectors. The maximum gain (4.6) is the largest

eigenvalue of B∞. The associated eigenvector, denoted f o and normalised as
〈

f o

∣∣ f o

〉
=

|| f o ||2 = 1, is the optimal forcing structure (hence the subscript "o"), i.e the forcing structure

that leads to the largest stochastically maintained variance amplification. As we said, if in

addition the largest eigenvalue of B∞ is much larger than all the others, which correspond

to suboptimal gains, and if the actual (unknown) forcing of the system does not trigger a

particular suboptimal eigenvector of B∞ but projects comparably on all the eigenvectors, then

the response to the actual forcing is expected to be dominated by the response to the optimal

forcing f o , regardless of the specific shape of the actual forcing. This low-rank approximation

explains why we restrict our analysis to the response to ξ(t ) f o and do not include additional

forcing modes.

By linearity, forcing the system (4.2) with f = ϵoξ(t ) f o , where we defined ϵ2
o

.
= 1/G , leads to a

response l (t ) of unit variance,
{
||l (t )||2

}
= ϵ2

o

〈
f o

∣∣B∞ f o

〉
= 1, and zero mean, {l (t )} = 0. In the

Fourier domain, l̂ (ω) = ϵo ξ̂(ω)R(ω) f o = ξ̂(ω)q̂(ω) where we introduced the deterministic field

q̂(ω)
.
= ϵoR(ω) f o , or

R(ω)−1q̂(ω) = ϵo f o . (4.9)

Since L is strongly non-normal, as assumed in the rest of the present study, neither of ϵo or

f o are immediately determined from its spectral (modal) properties; furthermore, strong

non-normality implies ϵo ≪ 1 (Farrell & Ioannou, 1993). It follows from (4.9) that we can
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perturb the inverse resolvent as

Φ(ω)
.
= R(ω)−1 −ϵoP (ω), where P (ω) = f o

〈
q̂(ω)

∣∣·〉
||q̂(ω)||2 , (4.10)

i.e. the linear operator P (ω) is such that P (ω)ĝ (ω) = f o

〈
q̂(ω)

∣∣ĝ (ω)
〉 ||q̂(ω)||−2, for any field

ĝ (ω). This leads to Φ(ω)q̂(ω) = 0, for all ω, such that Φ(ω) is a singular operator for each

frequency and q̂(ω) its non-trivial kernel.

Crucially, note that the perturbation of the inverse resolvent in (4.10) is different from that in

(3.19), in that the perturbation operator now only involves integration over space. That is also

why the division by ||q̂(ω)||2 is required in (4.10), because the linear response l̂ (ω) only is of

unit norm when the integration of the frequencies and the ensemble average are included.

Consequently, the well posedeness of the perturbation (4.10) is less clear than the one (3.19),

for it it not true that ||P (ω)|| = 1. Typically, for the frequencies where ||q̂(ω)||≪ 1, expansion

(4.10) is ill-posed.

Expansion (4.10) is justified a priori only over the range of frequencies for which

||R(ω)−1||≫ ϵo ||P (ω)|| = ||R(ω) f o ||−1, (4.11)

where we have used that ||P (ω)|| = ||q̂(ω)||−1. Since ||R(ω)−1|| is equal to the inverse of the

smallest singular value of R(ω), the inequality (4.11) can be re-expressed as

||R(ω) f o ||≫ min
|| f ||=1

||R(ω) f || (4.12)

In other words, the expansion is justified for all frequencies that amplify the optimal forcing

structure f o much more than the least amplified structure, which can be seen as a condition

of large “spectral” gap in the singular-values.

Note also that, contrarily to (3.19), both P (ω) and Φ(ω) are currently deterministic operators.

Using that

P (ω)† = q̂(ω)

〈
f o

∣∣·〉
||q̂(ω)||2 , (4.13)

we can show that the non-trivial kernel of the adjoint operator Φ(ω)† is

â(ω)
.
= R(ω)†q̂(ω), (4.14)

such that Φ(ω)†â(ω) = 0.
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4.3 Weakly nonlinear regime

We now develop a method to derive an amplitude equation for the weakly nonlinear amplifi-

cation of a stochastic forcing.

4.3.1 Generic nonlinear system and application to a toy model

The method is based on a multiple-scale asymptotic expansion, for which the gain inverse

ϵo ≪ 1 constitutes a natural choice of small parameter. The system (4.1) is weakly forced by

F =φϵ2
o f hξ(t ). (4.15)

In general, the spatial forcing structure f h need not be chosen as the optimal one f o . We

impose || f h ||2 = 1 such that the prefactor φ = O(1) sets the forcing effective value

F
.
=

√{
||φϵ2

o f hξ(t )||2
}

=φϵ2
o || f h | =φϵ2

o . (4.16)

A separation of time scales is assumed for the response, with the slow time scale τ1
.
= ϵo t

aiming at capturing slow variations of the response

U (t ,τ1) = U e +ϵou1(t ,τ1)+ϵ2
ou2(t ,τ1)+O(ϵ3

o) (4.17)

around the statistically steady regime. Introducing the expansion (4.17) into (4.1), isolating

the Fourier component at ω and perturbing R(ω)−1 according to (4.10) yields

ϵo [Φû1]+ϵ2
o

[
Φû2 +dτ1 û1 −F (N2(u1))−φ f h ξ̂+P û1

]+O(ϵ3
o) = 0, (4.18)

where

N (U ) = N (U e )+ϵoLu1 +ϵ2
o [Lu2 +N2(u1)]+O(ϵ3

o) (4.19)

and with ûi = ûi (τ1;ω) for i = 1,2, ...

At O(ϵo) of the expansion (4.18), we obtain

Φ(ω)û1(τ1;ω) = 0 (4.20)

Since by construction q̂(ω) is the non-trivial kernel of Φ(ω), the general solution is

û1(τ1;ω) = B̂(τ1;ω)q̂(ω), (4.21)

with B̂ a slowly varying complex scalar amplitude to be determined.
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At O(ϵ2
o), we assemble

Φû2 = −q̂dτ1 B̂ + ĝ 2[B̂ ]+φ f h ξ̂− f oB̂ , (4.22)

for which we used that PB̂ q̂ = B̂ f o and defined

ĝ 2[B̂ ]
.
= F

(
N2(F−1 (

B̂ q̂
)
)
)

. (4.23)

Note that because the slow time scales as ϵo , the term q̂dτ1 B̂ and the term ĝ 2[B̂ ], which

compute the nonlinear interaction of the O(ϵo) solution with itself, appear at the same order in

(4.22). Therefore, the slow time scale can be physically interpreted as the time scale at which

the (weak) nonlinearities are influential.

The operator Φ being singular, the only way for (4.22) to yield a non-diverging solution and

thus preserve the asymptotic hierarchy is if the right-hand side is orthogonal to â, the kernel

of Φ†. This solvability condition (or Fredholm alternative) yields an amplitude equation for

dτ1 B̂ , 〈
â

∣∣q̂
〉

dτ1 B̂ = ĝ2[B̂ ]+〈
â

∣∣ f h

〉
φξ̂−〈

â
∣∣ f o

〉
B̂ , (4.24)

where we have defined the functional

ĝ2[B̂ ]
.
=

〈
â

∣∣ĝ 2[B̂ ]
〉

. (4.25)

If f̂ 2 designates the right-hand side of (4.22), the solvability condition

0 =
〈

f̂ 2

∣∣â
〉

=
〈

R f̂ 2

∣∣q̂
〉

(4.26)

implies û2 = R f̂ 2 to be directly the particular solution. By defining u2(t )
.
= F−1 (û2), one can

easily show that the solvability condition also implies that

〈u2(t )|l (t −τ)〉 =
1

2π

∫ ∞

−∞
ξ̂
〈

f̂ 2

∣∣â
〉

e−iτωdω = 0, ∀τ. (4.27)

In words, a physical implication of the solvability condition is that, on average in the temporal

domain, the second-order field must not project on the optimal response (which exhibits the

largest possible maintained variance) or on any of its time-shifted versions. This preserves the

asymptotic hierarchy thereby guaranteeing that the expansion is well-posed.

We will refer to (4.24) as the Weakly Nonlinear Non-normal stochastic (WNNs) model. De-

pending, for instance, on the nature of the nonlinearity, it may already capture dominant

weakly nonlinear effects, without the need for higher-order correction. This will be the case

of our first application case, and in this scenario, an equilibrium solution is found by solving

(4.24) for a statistically steady regime dτ1 B̂ = 0. In any case, and by definition, an equilibrium

solution B̂(ω) does not depend on the slow time scale(s) and is associated with the weakly
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nonlinear stochastic gain

GWNNs =

{
||ϵou1(t )||2

}
F 2 =

{[||ϵoû1(ω)||2]}
F 2 =

ϵ2
o

{[〈
B̂(ω)q̂(ω)

∣∣B̂(ω)q̂(ω)
〉]}

F 2

=
ϵ2

o

[{|B̂(ω)|2}〈
q̂(ω)

∣∣q̂(ω)
〉]

F 2

=
1

2πϵ2
oφ

2

∫ ∞

−∞
{|B̂(ω)|2} ||q̂(ω)||2dω.

(4.28)

since F 2 =φ2ϵ4
o .

Note that, in the time-independent case dτ1 B̂ = 0, the method presented in this chapter is in a

certain sense more general than the method of harmonic balance, but in another sense more

restricted. More general because the nonlinear evolution captured by the amplitude equation

does not rely on the assumption that the dominant nonlinear mechanism is the Reynolds

stress feedback onto the mean flow, thus does not neglect the nonlinearity arising from the

cross-coupling between different frequencies. These cross-couplings are fully embedded

in the term ĝ2[B̂ ]. More restricted, however, because our method explicitly relies on an

asymptotic expansion, which makes it simpler to implement but in principle also limits its

validity to weak forcing. This is not the case for the harmonic balance technique, which has

been shown to work also in the strongly nonlinear regime, where the spatial structure of the

saturated response differs considerably from that of the linear regime (Mantič-Lugo & Gallaire,

2016b). Specifically, the harmonic balance technique typically retains the spatial degrees of

freedom, whereas the space-independent amplitude equation condemns the response to be

structurally close to the linear one.

In the linear regime φ→ 0, the equilibrium solution of (4.24) is simply

B̂ =φξ̂

〈
â

∣∣ f h

〉〈
â

∣∣ f o

〉 , (4.29)

implying

{〈u1(t )|l (t )〉} =φϵ2
o

〈
f h

∣∣B∞ f o

〉
=φ

〈
f h

∣∣ f o

〉
. (4.30)

Therefore if the applied forcing is orthogonal to f o , the response to the former will be in

average orthogonal to the response of the latter, which is consistent. Conversely, if the optimal

forcing is applied, the linear solution is B̂ =φξ̂ and leads to the expected gain G = 1/ϵ2
o . In the

rest of the chapter, we choose f h = f o for the sake of simplicity.

The weakly nonlinear gain defined in (4.28) will be compared with the fully nonlinear gain

extracted from a DNS of (4.1), and repeated hereafter as being

GDNS
.
=

{||up (t )||2}
F 2 =

1

2πF 2

∫ ∞

−∞
||ûp (ω)||2dω, with up (t ) = U (t )−U . (4.31)
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In constrast to the WNNs approach, the DNS are performed in the time domain for t ∈ [0,T ].

We first discuss the performance of the WNNs model on a toy model, for which our results

should be easily reproducible. We consider the 2×2 system

dU

dt
= LU +||U ||MU +Fξ(t ) f o , with L =

[
−1/Re 1

0 −2/Re

]
, M =

[
0 −1

−1 0

]
, (4.32)

thus the nonlinear operator in (4.1) is N (U ) = LU +||U ||MU . This system is a slightly modified

version of that in Trefethen et al. (1993) (where M21 = 1), such that its only stable equilibrium

solution is U e = 0 (two other equilibria exist but are unstable).

Provided Re ≫ 1, the matrix L is strongly non-normal and amplifies energy transiently, al-

though its two eigenvalues −1/Re and −2/Re are strictly stable. For Re = 160 we compute

f o = [0.0125,0.9999]T associated with the gain 1/ϵ2
o = 3.4143×105. We solve the WNNs model

numerically, with the amplitude equation (4.24) for dτ1 B̂ = 0 uniformly discretised with N

frequencies ω ∈ [0,ωc ] where ωc =π. More details are provided in the Appendix 4.5.1.

In figure 4.2, predictions from the WNNs model are compared with fully nonlinear gains,

where U (t) is extracted from a DNS of (4.32), for t ∈ [0,T ] with T = 6.6 ·105 simulated and

sampled at ∆t =π/ωc ≈ 5. For both the WNNs and the DNS approaches, the results have been

ensemble-averaged over 104 realisations of the white noise. The agreement is remarkable for

all the considered forcing amplitudes, thus we need not correct the amplitude equation with

O(ϵ3
o) terms. The WNNs model correctly predicts the monotonic decrease of the gain with the

forcing amplitude (Fig. 4.2a) and the modification of the frequency distribution (Fig. 4.2b), in

particular the significant increase of the most amplified frequency. We propose a tentative

explanation for the shift of the response peak to higher frequencies as follows

In figure 4.2b, the peak of the linear response inω = 0 is due to the presence of both eigenvalues

on the imaginary axis (although their location alone is insufficient to deduce the stochastic

gain, due to the non-normality of the operator). We explain the shift of the peak to higher

frequencies with increasing nonlinearities as follows. The equilibrium solution (dτ1 B̂ = 0) of

the amplitude equation (4.24) reads

B̂ =
ϵo

||q̂ ||2 ĝ2[B̂ ]+φξ̂, (4.33)

where we used that
〈

â
∣∣ f o

〉
=

〈
q̂

∣∣q̂
〉

/ϵo = ||q̂ ||2/ϵo . We plot in figure 4.1 the ensemble average

of the absolute value of

1. the solution :
{|B̂ |},

2. the nonlinear term : ϵo ||q̂ ||−2
{|ĝ2[B̂ ]|},

3. the same nonlinear term but replacing B̂ by its solution in the linear regime φξ̂ :

ϵo ||q̂ ||−2
{|ĝ2[φξ̂]|},
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Figure 4.1

4. the linear stochastic forcing term :
{|φξ̂|} =φ.

In the linear regime for F = 10−16 (φ→ 0) in fig. 4.1a, B̂ =φξ̂ is solution, for the nonlinear term

ĝ2 is virtually zero. However when we increase the forcing up to F = 2×10−7 in fig. 4.1b, the

nonlinear interaction of the linear (optimal) response φξ̂q̂ with itself is no more negligible and

creates a strong response peaked around ω = 0, which projects back on the optimal response

(see dash-dotted blue line in fig. 4.1b). Thereby, B̂ =φξ̂ cannot be solution anymore, and B̂

must adapt aroundω = 0 such as to enforce the solvability condition. In more physical terms, B̂

must adapt around ω = 0 such that the nonlinear interaction of B̂ q̂ with itself is less amplified

around ω = 0 that the one of φξ̂q̂ , thus preserving the asymptotic hierarchy. This is indeed

what we observe in fig. 4.1b, where the red curve (with the bullet markers) is significantly

less amplified than the dashed-blue one. Whether this new B̂ must have a larger of lower

amplitude than its linear value φ is given by the phase difference, that we call γ, between the

nonlinear and the forcing terms in (4.33). It is easy to show that |B̂ | ≤φ if and only if

−2φcos(γ) ≥ ϵo ||q̂ ||−2|ĝ2[B̂ ]| (4.34)

For this reason we show −2φ
{
cos(γ)

}
in fig. 4.1b (see the magenta dotted line). In the range

0 ≤ω≤ 0.012,
{
cos(γ)

}
decreases monotonically from−1 inω = 0 (the forcing and the nonlinear

terms are in anti-phase) to −0.2 in ω = 0.012; in addition the magenta dotted line is above

the red one, thus
{|B̂ |}≤φ and the nonlinearities are saturating in the sense that the weakly

nonlinear response is of lower amplitude than the linear one. On the contrary, for ω≥ 0.012

the phase difference between the forcing and the nonlinear terms is such that
{|B̂ |}≥φ and

the nonlinearities are desaturating. Therefore the maximum of ||B̂ q̂ || is now increased to

ω = 0.005. This tendency is conserved for all the considered F .

We have also verified that the predictions for the stochastic gain (see inset in Fig. 4.2a) and the

Fourier spectra (not shown) remain very good for different values of the small parameter ϵo ,
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Figure 4.2: (a) Weakly and fully nonlinear stochastic gains (defined respectively in (4.28) and
(4.31) ) for the toy model (4.32), Re = 160. Inset : same for Re = 20 (continuous blue line) and
Re = 1280 (dash-dotted red line), but in log-log scale with the x-axis rescaled by the linear
gain. (b) For the case Re = 160, associated ensemble-averaged Fourier spectra of the response
û (where ϵoû1 = ϵoB̂ q̂ in the WNNs approach and ûp in the DNS), normalised such that G
is twice the area under the curve. Insets: single realisations of ϵ2

o ||up (t)||2/F 2 as a function
of time in the statistically steady regime (red solid line), and ensemble average in the linear
regime (black dashed line).

namely for Re = 20 and Re = 1280.

4.3.2 Bilinear system and application to the backward-facing step flow

The weakly nonlinear evolution of the stochastic gain is now sought for the incompressible

Navier-Stokes equations (NSE). The nonlinear term C (U ,U ), where C (a,b)
.
= ((b ·∇)a + (a ·

∇)b)/2, is bilinear. Therefore, we expect essential nonlinear interactions to arise at third

order in the expansion parameter, which we want to account for in the amplitude equation.

Although it is certainly possible to correct (4.24) at order O(ϵ3
o) after introducing a slower time

scale τ2, it is simpler to rescale the forcing and the linear term such that they appear directly

at the third order. In this manner, we avoid a response at second order, which would interact

at the next order and obscure the amplitude equation unnecessarily. We propose the rescaled

multiple-scale expansion

U (t ,τ1,τ2) = U e +p
ϵou1(t ,τ1,τ2)+ϵou2(t ,τ1,τ2)+p

ϵo
3u3(t ,τ1,τ2)+O(ϵ2

o), (4.35)

where τ1 =
p
ϵo t and τ2 = ϵo t . The flow is weakly forced by

F =φ
p
ϵo

3 f oξ(t ) (4.36)
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(a second advantage of the rescaling is that the forcing amplitude

F =φ
p
ϵo

3 (4.37)

can be larger than that previously defined by a factor 1/
p
ϵo). Following the method outlined

in the previous section, we introduce (4.35) in the NSE, take the Fourier component at ω and

perturb the inverse resolvent according to (4.10). The solution at O(
p
ϵo) is again

û1(τ1,τ2;ω) = B̂(τ1,τ2;ω)q̂(ω). (4.38)

At O(ϵo) we unravel

Φû2 = −q̂∂τ1 B̂ + ĝ 2[B̂ ], (4.39)

with

ĝ 2[B̂ ] = −F
(
C (F−1 (

B̂ q̂
)

,F−1 (
B̂ q̂

)
)
)

. (4.40)

Imposing the Fredholm alternative such that the right-hand side (
.
= f̂ 2) of (4.39) is orthogonal

to â yields〈
â

∣∣q̂
〉
∂τ1 B̂ =

〈
â

∣∣ĝ 2[B̂ ]
〉

= ĝ2[B̂ ]. (4.41)

The field û⊥
2

.
= R f̂ 2 is such that〈

û⊥
2

∣∣q̂
〉

=
〈

f̂ 2

∣∣â
〉

= 0. (4.42)

thus Φû⊥
2 = R−1û⊥

2 and û⊥
2 constitutes the particular solution of (4.39). The general solution

can be written as û2 = û⊥
2 + B̂2q̂ , with an arbitrary component B̂2q̂ on the kernel. We set B̂2 = 0

in the following, such that the component on q̂ of the overall response is fully embedded in

B̂ , which can be corrected at higher order thanks to its dependence on slower time scales.

Consequently,

û2[B̂ ] = û⊥
2 [B̂ ] = R

(
ĝ 2[B̂ ]−〈

â
∣∣q̂

〉−1 ĝ2[B̂ ]q̂
)

. (4.43)

Collecting terms at O(
p
ϵo

3), injecting the expressions for û1 and û2 and using the Fredholm

alternative leads to an expression for ∂τ2 B̂ ,〈
â

∣∣q̂
〉
∂τ2 B̂ =

〈
â

∣∣ f o

〉
(φξ̂− B̂)−〈

â
∣∣∂τ1 û2[B̂ ]

〉+ ĝ3[B̂ ], (4.44)

with the functional

ĝ3[B̂ ] = −〈
â

∣∣F (
2C (F−1 (

B̂ q̂
)

,F−1 (
û2[B̂ ]

)
)
)〉

. (4.45)
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Figure 4.3: Same as Fig. 4.2 for the BFS flow, Re = 500. Error bars around DNS points show
plus or minus one standard deviation. In (a) we also reproduce as the continuous black line
the results from the equilibrium solution amplitude equation (3.59), derived in the previous
chapter, and already shown in figure 3.3.

The total slow temporal evolution of B̂ for a given frequency is found by combining partial

derivatives with respect to the slow time scales (Orchini et al., 2016) as

dB̂

dτ1

=
∂B̂

∂τ1

+ ∂τ1

∂τ2

∂B̂

∂τ2

=
∂B̂

∂τ1

+p
ϵo

∂B̂

∂τ2

. (4.46)

Eventually, it leads to an ordinary differential equation for B̂ (remember that f h = f o):〈
â

∣∣q̂
〉

dτ1 B̂ = ĝ2[B̂ ]+p
ϵo

[〈
â

∣∣ f o

〉
(φξ̂− B̂)+ ĝ3[B̂ ]−∂τ1

〈
â

∣∣û2[B̂ ]
〉]

. (4.47)

An equilibrium solution B̂(ω) of (4.47) is sought for given choices of φ and phase distribution

for ξ̂. It is associated with the statistically steady stochastic gain (4.28). In the linear regime,

φ → 0 and B̂ → φξ, so the gain reduces to G = 1/ϵ2
o as expected. All the nonlinear terms

such as ĝ2[B̂ ], ĝ3[B̂ ] and ∂τ1

〈
â

∣∣û2[B̂ ]
〉

are convolution integrals accounting for the nonlinear

interactions between the Fourier modes. They can be discretised in the frequency domain

as quadratic or cubic products of the Fourier components of B̂(ω). Detailed expressions are

given in Appendix 4.5.2, together with an algorithm to solve for the equilibrium solution.

We now consider the weakly nonlinear evolution of the stochastic gain in the two-dimensional

backward-facing step (BFS) flow at Re = 500, the same as in the previous chapter. As mentioned,

the nonlinear and linearised NSE are solved with the finite element method. Figure 3.1(a)

shows the optimal stochastic forcing f o and a DNS snapshot of the flow response to Fξ(t ) f o

for F = 0.00025.

The results of the WNNs model are reported in Fig. 4.3, where the amplitude equation (4.47)

for dτ1 B̂ = 0 was uniformly discretised with N frequencies ω ∈ [0,ωc ] with ωc = π, and the

results were ensemble-averaged over 500 realisations of the white noise. Predictions from
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the DNS are also shown, resulting from simulations of duration T = 2049 after the transients

fade away, sampled at ∆t =π/ωc = 1 and ensemble-averaged over 10 realisations of the white

noise (this lower number of realisations is the consequence of each one being numerically

costly). Unlike the toy model of section 4.3.1, the amplitude equation built from a forcing

introduced at second order and stopped at second order did not capture significant nonlinear

effects (not shown). Introducing instead the forcing at third order, as described above, the

comparison with DNS data is conclusive: the stochastic gains experience a monotonic decay

with increasing F , also associated with a decreasing standard deviation for the DNS data.

We now emphasise that the fully nonlinear stochastic gain in (4.31) considers perturbation

around the temporal mean flow, and not around the base flow U e . This distinction was unim-

portant in the previous application case since the nonlinearity did not generate a temporal

mean. The creation of non-zero temporal mean (U (t ) ̸= 0) is associated with a diverging

behaviour of the Fourier component at ω = 0, as the normalisation in (3.2) directly implies

Û (0) = U (t )
p

T →∞. Since this divergence is unlikely to be captured by B̂(0), we omitted its

contribution in the gain calculation, but noted that this did not change the gain. However, the

WNNs model certainly takes into account the effects of temporal mean flow corrections on

û1(ω), as such steady corrections are created at the next order and embedded in u2(t ).

For small F close to the linear regime, DNS and WNNs show some discrepancies (Fig. 4.3a)

that are believed to be due to an imperfect convergence of the DNS data, because of the

large standard deviation at small F and the limited number of realisations. The limit of

large F is also associated with a slight departure of the (well-converged) DNS data from the

WNNs predictions, although it is believed this time to be due solely to increasingly strong

nonlinearities. In fig.4.3b, the Fourier spectra reveal that increasing F conserves the most

amplified frequency, which may be due to the fact that the forcing structure is fixed to f o ,

extremely similar to the optimal harmonic forcing for ω = 0.47. In the inset, from the temporal

evolution of the signal ∝||u(t )||2 we recover that, for this particular flow, nonlinearities not

only saturate the average level of energy of the response, but also significantly reduce the

amplitude of the oscillations (i.e, the standard deviation).

In figure 4.3a, we also reproduce as the continuous black line the results from the equilibrium

solution amplitude equation (3.59) derived in the previous chapter, and already shown in

figure 3.3. Results are remarkably similar with the current WNNs approach. This is particularly

interesting by recalling that in (3.59), the quadratic term vanished (i.e. µ2 = 0) due to the nature

of the considered noise. Thereby, if the WNNs results were obtained by including quadratic

nonlinearities embeded in the convolution ĝ2, their effects vanish upon taking the ensemble

average.

If interested solely in the gain variation, the agreement between both weakly nonlinear ap-

proaches clearly advocate in favor of (3.59), considering its simplicity with respect to the

WNNs equation. Equation (3.59), however, would not predict well the weakly nonlinear evo-

lution of the response at each frequency in figure 4.3b, for it possesses only one degree of
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freedom and does not depend on the frequency. In other terms, it can only rescale the linear

spectrum in figure 4.3b, without modifying its shape. Yet, as we said, if it is inherently unable

to describe the details of the Fourier spectrum variation at each frequency, it predicts very well

the evolution of its integral, i.e. the stochastic gain.

Finally, note that the asymptotic expansions (4.17) and (4.35) have been scaled differently in

order for the linear (∝ B̂) and forcing (∝φξ̂) terms to appear at the last considered order. This

raises the question of how to know a priori, and for a given nonlinearity, the minimal order

that should be considered. Although a "trial and error" process is always arguably acceptable,

we postulate that it is the earliest order where the nonlinear term generates a component

oscillating at ωo , in the limit where the linear response q̂ is monochromatic and oscillating at

ωo . Indeed, if we impose the solvability condition solely at the order(s) before, B̂ will conserve

its linear value, for the nonlinear term will naturally yield a null scalar product with the adjoint

for all frequencies (both fields being non-zero at different frequencies). This scenario, which

we want to avoid, does not occur in the opposite limit where the frequency spectrum of q̂ is

flat. Of course, the linear optimal response has generally no reason to be monochromatic, but

might still show a maximum in energy at selective frequencies, as was the case in Fig. 4.2b and

Fig. 4.3b. If we express u1 = B̂ q̂e iωo t + c.c, the nonlinearity of the toy system at second order

(i.e. ||u1||Mu1) already generates terms oscillating atωo ; therefore it was sufficient to consider

only up to this second order to see an improvement over the linear prediction. For the NSE,

however, one needs to go to the third order to recover terms in ωo (specifically B̂ |B̂ |2e iωo t , as

well known for classical weakly nonlinear equations for an eigenmode amplitude).

4.4 Conclusions

By generalising the method proposed in chapter 2 to include several frequencies in the leading

order response instead of only one, we have derived an amplitude equation describing the

weakly nonlinear, statistically steady response to stochastic forcing in arbitrarily stable yet

non-normal systems.

Contrarily to the paradigm proposed in chapter 3, the inner product involved in the perturba-

tion operator remains purely over spatial dimensions despite the fact that the linear response

varies continuously over the frequencies. This has the consequence that the operator pertur-

bation is less well posed than that proposed in chapter 3. Indeed, in the previous chapter, the

operator perturbation was such that

{[||ϵoP (ω;θ)||]} = ϵo ≪ 1, (4.48)

whereas in the current chapter we have

||ϵoP (ω)|| =
ϵo

||q̂(ω)|| , (4.49)

which may be very large. This results the fact that the norm induced by the L2 inner produced
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is not the one associated with a large amplification 1/ϵo , the latter having also involved

integration over frequencies. Thereby, (4.49) can’t lead a unit perturbation of size ϵo for each

frequency. The perturbation is only valid over a certain range of frequencies, the one leading

to the largest amplification of the f o trough application of the resolvent operator (i.e., around

the peak of the linear transfer function ||R(ω) f o ||).

Nevertheless, relaxing the inner product to be solely over space gives the possibly for the

amplitude to vary over the frequencies. Thereby the amplitude equation can describe the

weakly nonlinear evolution of the Fourier spectrum of linear response over a continuous

range of frequency. This constitutes an amelioration over the equation derived in chapter 3,

condemned predict the evolution of the integral of the Fourier spectrum (i.e., the stochastic

gain). However, such amelioration is at the cost of making the computations, and the final

amplitude equation to be solved for, considerably more complex as nonlinear interactions

between frequencies are accounted for trough convolution products. One is then left to the

choice between the amplitude (3.59) whose equilibrium solution simply is the root of a third-

order polynomial but describing only an integrated quantity, and a much more complicated

but for informative amplitude equation.

The amplitude equation derived in this chapter may still save a significant amount of com-

putational resources compared to fully nonlinear simulations, where long simulated times

and/or many realisations are needed to ensure statistical convergence, which becomes rapidly

impracticable for large systems like fluid flows. The amplitude equation has been successfully

compared to fully nonlinear numerical simulations, and predicts well the variation of both the

stochastic gain and the Fourier spectrum with the forcing amplitude.

Future research may include applying the methods developed in the previous and current

chapter to realistic flows (e.g. atmospheric flows subject to weak forcing, such as zonal jets

in barotropic flows (Bouchet et al., 2013)), and developing extensions towards systems with

multiple attractors and noise-induced transitions.

The latter subject is considered in the next chapter. Specifically, we consider a stochastically

forced fluid flow past the onset of a supercritical pitchfork bifurcation, where two attractors

exist. The dynamics is reduced to a stochastically forced modal amplitude equation, from

which the statistics of the noise-induced transitions between the two attractors can be pre-

dicted. This will serve as a building block for the ultimate chapter of this second part, coupling

a modal stochastic response which transits between attractors, and a non-normal one.
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4.5 Appendix

4.5.1 discretisation of the amplitude equation in the frequency domain

We recall from the main text (Eq.(3.5) for f h = f o) that we seek the equilibrium solution of the

amplitude equation

〈
â

∣∣q̂
〉 dB̂

dτ1
= ĝ2[B̂ ]+〈

â
∣∣ f o

〉
(φξ̂− B̂) = 0. (4.50)

The first step is to discretize it, in the frequency domain. For this purpose, let ωs designates

the sampling frequency of the corresponding temporal signals, that are discretized using

2(N − 1) (a power of two) uniformly distributed points between t = 0 and t = T . In this

manner, we have in practice −ωc ≤ ω ≤ ωc where ωc = ωs/2, and the positive part of this

frequency interval is discretized with N uniformly distributed points betweenω = 0 andω =ωc .

Namely, the discrete set of positive frequencies writes ωn = (n −1)∆ω for n = 1,2, ...N and

∆ω =ωc /(N −1). The discrete Fourier transforms varying over this interval are real-valued in

ω1 = 0 and ωN =ωc , but generally complex everywhere else; for instance, B̂(ω) is discretized as

[Br,1,Br,2+i Bi ,2, ...,Br,N−1+i Bi ,N−1,Br,N ] which amounts to 2(N−2)+2 = 2(N−1) independent

components in total. Only the variation over the set of positive frequencies is needed, as the

Fourier component of a real-valued signal at a negative frequency is the complex conjugate

of the one at the opposite frequency : B̂(−ω) = B̂(ω)∗. With (4.50) discretized, the following

simple procedure is implemented in MATLAB:

Algorithm :

1. Choose the values for N and ωc , which sets the discretisation of the frequencies.

2. Over the discrete set of frequencies, pre-compute once for all the determinitic fields f o ,

q̂ , â.

3. Choose a value for φ (which sets the forcing amplitude).

4. Draw a white noise (|ξ̂(ω)| = 1 ∀ω, but random phases uniformly distributed between 0

and 2π), for instance with the commands xi = exp(1i*2*pi*rand(1,N)), then

xi(1)=real(xi(1))/abs(real(xi(1))) and

xi(N)=real(xi(N))/abs(real(xi(N))).

5. Find the B̂ that solves r (B̂ ;φ, ξ̂) = 0 where r (B̂ ;φ, ξ̂)
.
= ĝ2[B̂ ]+ 〈

â
∣∣ f o

〉
(φξ̂− B̂), using

the nonlinear solver "fsolve"; the functional ĝ2[B̂ ] is evaluated using the commands

"ifft" and "fft".

6. Update the statistics on B̂ , for instance its ensemble average, and, if not converged go

back to (4).
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Of course the convergence in terms of N and ωc must be ensured.

4.5.2 The particular case of the NSE: discretisation of the amplitude equation in
the frequency domain

We recall from the main text that

〈
â

∣∣q̂
〉 ∂B̂

∂τ1
= ĝ2[B̂ ], and

〈
â

∣∣q̂
〉 ∂B̂

∂τ2
=

〈
â

∣∣ f o

〉
(φξ̂− B̂)+ ĝ3[B̂ ]− ∂

〈
â

∣∣û2[B̂ ]
〉

∂τ1
.

(4.51)

The equilibrium solution(s) of the assembled amplitude equation solves :

dB̂

dτ1
=
∂B̂

∂τ1
+p

ϵo
∂B̂

∂τ1
= 0 ⇔

ĝ2[B̂ ]+p
ϵo

[〈
â

∣∣ f o

〉
(φξ̂− B̂)+ ĝ3[B̂ ]− ∂

〈
â

∣∣û2[B̂ ]
〉

∂τ1

]
= 0.

(4.52)

In the following, after re-expressing the nonlinear terms ĝ2[B̂ ], ĝ3[B̂ ] and ∂τ1

〈
â

∣∣û2[B̂ ]
〉

in

(4.52) as convolution integrals, we discretize them in the frequency domain. In this manner,

we make their dependency on the discrete set of B̂i (i = 1,2, ..., N ) as explicit as possible. All

the other, linear, terms are simple to discretize.

Derivation of the convolution integral

We first develop:

2C (F−1 (ûa) ,F−1 (ûb)) = ∇F−1 (ûa)F−1 (ûb)+∇F−1 (ûb)F−1 (ûa)

=
T

4π2

∫ ∞

−∞
∇ûa(p)e i pt dp

∫ ∞

−∞
ûb(s)e i st ds + T

4π2

∫ ∞

−∞
∇ûb(s)e i st ds

∫ ∞

−∞
ûa(p)e i pt dp

=
T

4π2

Ï ∞

−∞
2C (ûa(p), ûb(s))e i (p+s)t dpds

=
T

4π2

Ï ∞

−∞
2C (ûa(ω− s), ûb(s))e iωt dωds

= F−1

(p
T

2π

∫ ∞

−∞
2C (ûa(ω− s), ûb(s))ds

)
,

(4.53)
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from which it comes immediately that :

F
(
C (F−1 (ûa) ,F−1 (ûb))

)
=

p
T

2π

∫ ∞

−∞
C (ûa(ω− s), ûb(s))ds. (4.54)

Discretisation of the convolution integral

Letωs designates the sampling frequency of the temporal signals, such that we have in practice

−ωc ≤ω≤ωc where ωc =ωs/2. Over this set of frequencies, the integrand in (4.54) is defined if

and only if we have both −ωc ≤ s ≤ωc and ω−ωc ≤ s ≤ω+ωc . From now on considering only

positive frequencies, i.e 0 ≤ω≤ωc , the integrand is then defined if and only if

ω−ωc ≤ s ≤ωc . (4.55)

Thereby∫ ∞

−∞
C (ûa(ω− s), ûb(s))ds ≈

∫ ωc

ω−ωc

C (ûa(ω− s), ûb(s))ds

=
∫ 0

ω−ωc

C (ûa(ω− s), ûb(s))ds +
∫ ωc

0
C (ûa(ω− s), ûb(s))ds.

(4.56)

The first of the two terms of the sum in (4.56) is transformed as∫ 0

ω−ωc

C (ûa(ω− s), ûb(s))ds =
∫ ωc−ω

0
C (ûa(ω+ s), ûb(−s))ds

=
∫ ωc−ω

0
C (ûa(ω+ s), û∗

b (s))ds,

(4.57)

where we used that ûb(−s) = û∗
b (s) arising from the fact that all temporal signals are real-valued.

The second of the two terms of the sum in (4.56) is transformed according to∫ ωc

0
C (ûa(ω− s), ûb(s))ds

=
∫ ω

0
C (ûa(ω− s), ûb(s))ds +

∫ ωc

ω
C (ûa(ω− s), ûb(s))ds

=
∫ ω

0
C (ûa(ω− s), ûb(s))ds +

∫ ωc

ω
C (û∗

a(s −ω), ûb(s))ds

=
∫ ω

0
C (ûa(ω− s), ûb(s))ds +

∫ ωc−ω

0
C (û∗

a(s), ûb(s +ω))ds.

(4.58)

In this manner, only the knowledge of ûa and ûb over positives frequencies is required. Overall,

∫ ωc

ω−ωc

C (ûa(ω− s), ûb(s))ds =∫ ω

0
C (ûa(ω− s), ûb(s))ds +

∫ ωc−ω

0
C (ûa(ω+ s), û∗

b (s))+C (û∗
a(s), ûb(s +ω))ds.

(4.59)
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Let us now discretize (4.59). As said in the previous section, positive frequencies are discretized

using N uniformly distributed points between ω = 0 and ω = ωc (ωc the cut-off frequency).

Namely, the discrete set of positive frequencies writes ωn = (n −1)∆ω for n = 1,2, ...N and

∆ω =ωc /(N −1). Eventually, the discrete version of expression (4.54) reads

F
(
C (F−1 (ûa) ,F−1 (ûb))

)≈
p

T

2π

[
n∑

k=1
δn

k C (ûa,n−k+1, ûb,k )+
N+1−n∑

k=1
δN+1−n

k

[
C (û∗

a,k , ûb,n+k−1)+C (ûa,n+k−1, û∗
b,k )

]]
,

(4.60)

where we used for instance ûa(ωn − sk ) = ûa(∆ω(n −1−k +1)) = ûa,n−k+1. The scalar δ j
i is a

quadrature coefficient where i ∈ [1, j ] is a running index. In our computations, we used the

trapezoidal method such that

δ1
1 = 0, and δ

j
i =


ωc /(2(N −1)) if i = 1

ωc /(N −1) if 1 < i < j

ωc /(2(N −1)) if i = j

, for j > 1. (4.61)

Discretisation of the amplitude equation

Discretisation of ĝ2[B̂ ] :

Using (4.60), the functional ĝ2[B̂ ] = −〈
â

∣∣F (
C (F−1 (û1) ,F−1 (û1))

)〉
with û1 = B̂ q̂ is dis-

cretized as :

ĝ2,n =
n∑

k=1
B̂n−k+1B̂kΘnk +

N+1−n∑
k=1

B̂n+k−1B̂∗
kΞnk , (4.62)

with

Θnk = −
p

T

2π
δn

k

〈
ân

∣∣C (q̂ n−k+1, q̂ k )
〉

, 1 ≤ k ≤ n,

Ξnk = −
p

T

π
δN+1−n

k

〈
ân

∣∣C (q̂ n+k−1, q̂∗
k )

〉
, 1 ≤ k ≤ N +1−n.

(4.63)

The sums in (4.62) can also be written in matrix form :

ĝ2[B̂ ] =


Θ11B̂1 0

...
. . .

Θ1N B̂N . . . ΘN N B̂1




B̂1
...

B̂N

+


Ξ11B̂1 . . . Ξ1N B̂N

... . . .

ΞN 1B̂N 0




B̂∗
1
...

B̂∗
N

 (4.64)

Discretisation of ∂τ1

〈
â

∣∣û2[B̂ ]
〉

=
〈

â
∣∣∂τ1 û2[B̂ ]

〉
:
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Since

û2[B̂ ] = R

(
ĝ 2[B̂ ]−

〈
â

∣∣ĝ 2[B̂ ]
〉〈

â
∣∣q̂

〉 q̂

)
, (4.65)

where we recall that
〈

â
∣∣ĝ 2[B̂ ]

〉
= ĝ2[B̂ ], expression (4.62) results in the following discretisation

for the field û2[B̂ ]:

û2,m =
m∑

j =1
B̂m− j+1B̂ j d̂ m j +

N+1−m∑
j =1

B̂m+ j−1B̂∗
j ĥm j , (4.66)

with

d̂ m j = Rm

[
−
p

T

2π
δm

j C
(

q̂ m− j+1, q̂ j

)
−αm j q̂ m

]
,

ĥm j = Rm

[
−
p

T

π
δN+1−m

j C (q̂ m+ j−1, q̂∗
j )−βm j q̂ m

]
,

(4.67)

and where we defined αm j = Θm j /
〈

âm
∣∣q̂ m

〉
and βm j = Ξm j /

〈
âm

∣∣q̂ m

〉
. The fields d̂ m j and

ĥm j verify
〈

q̂ m

∣∣∣d̂ m j

〉
=

〈
q̂ m

∣∣∣ĥm j

〉
= 0, implying

〈
q̂ m

∣∣û2,m
〉

= 0; therefore, each Fourier com-

ponent generated at second order (i.e Oϵo) is orthogonal to the Fourier component of the

optimal linear solution at the same frequency. The partial derivative of û2,m with respect to τ1

follows directly from (4.66):

∂τ1 û2,n =
n∑

k=1
(∂τ1 B̂n−k+1)B̂k d̂ nk +

n∑
k=1

B̂n−k+1(∂τ1 B̂k )d̂ nk

+
N+1−n∑

k=1
(∂τ1 B̂n+k−1)B̂∗

k ĥnk +
N+1−n∑

k=1
B̂n+k−1(∂τ1 B̂∗

k )ĥnk .

(4.68)

Since ∂τ1 B̂ = ĝ2[B̂ ]/
〈

â
∣∣q̂

〉
, we can again use (4.62) and

∂τ1 B̂m =
m∑

j =1
B̂m− j+1B̂ jαm j +

N+1−m∑
j =1

B̂m+ j−1B̂∗
j βm j . (4.69)

Evaluating (4.69) in m = n −k +1, m = n +k −1 and m = k yields, respectively:

∂τ1 B̂n−k+1 =
n−k+1∑

j =1
B̂n−k− j+2B̂ jαn−k+1, j +

N−n+k∑
j =1

B̂n−k+ j B̂∗
j βn−k+1, j , (4.70)

∂τ1 B̂n+k−1 =
n+k−1∑

j =1
B̂n+k− j B̂ jαn+k−1, j +

N−n−k+2∑
j =1

B̂n+k+ j−2B̂∗
j βn+k−1, j , (4.71)
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and

∂τ1 B̂∗
k =

k∑
j =1

B̂∗
k− j+1B̂∗

j α
∗
k j +

N+1−k∑
j =1

B̂∗
k+ j−1B̂ jβ

∗
k j . (4.72)

After injecting (4.70),(4.71) and (4.72) in (4.68), and projecting on the adjoint, we end up on

〈
ân

∣∣∂τ1 û2,n
〉

=
n∑

k=1
B̂k

(
n−k+1∑

j =1
B̂n−k− j+2B̂ j Gnk j +

N−n+k∑
j =1

B̂n−k+ j B̂∗
j Hnk j

)

+
n∑

k=1
B̂n−k+1

(
k∑

j =1
B̂k− j+1B̂ j Ink j +

N+1−k∑
j =1

B̂k+ j−1B̂∗
j Jnk j

)

+
N+1−n∑

k=1
B̂∗

k

(
n+k−1∑

j =1
B̂n+k− j B̂ j Knk j +

N−n−k+2∑
j =1

B̂n+k+ j−2B̂∗
j Lnk j

)

+
N+1−n∑

k=1
B̂n+k−1

(
k∑

j =1
B̂∗

k− j+1B̂∗
j Mnk j +

N+1−k∑
j =1

B̂∗
k+ j−1B̂ j Nnk j

)
,

(4.73)

where we defined the following third-order tensors

Gnk j =αn−k+1, j

〈
ân

∣∣∣d̂ n,k

〉
, 1 ≤ j ≤ n −k +1, 1 ≤ k ≤ n

Hnk j =βn−k+1, j

〈
ân

∣∣∣d̂ n,k

〉
, 1 ≤ j ≤ N −n +k, 1 ≤ k ≤ n

Ink j =αk j

〈
ân

∣∣∣d̂ n,k

〉
, 1 ≤ j ≤ k, 1 ≤ k ≤ n

Jnk j =βk j

〈
ân

∣∣∣d̂ n,k

〉
, 1 ≤ j ≤ N +1−k, 1 ≤ k ≤ n

Knk j =αn+k−1, j

〈
ân

∣∣∣ĥn,k

〉
, 1 ≤ j ≤ n +k −1, 1 ≤ k ≤ N +1−n

Lnk j =βn+k−1, j

〈
ân

∣∣∣ĥn,k

〉
, 1 ≤ j ≤ N −n −k +2, 1 ≤ k ≤ N +1−n

Mnk j =α∗
k j

〈
ân

∣∣∣ĥn,k

〉
, 1 ≤ j ≤ k, 1 ≤ k ≤ N +1−n

Nnk j =β∗
k j

〈
ân

∣∣∣ĥn,k

〉
, 1 ≤ j ≤ N +1−k, 1 ≤ k ≤ N +1−n.

(4.74)

Discretisation of ĝ3[B̂ ] :

We recall that

ĝ3[B ] = −〈
â

∣∣F (
2C (F−1 (û1) ,F−1 (û2))

)〉
. (4.75)

Using again (4.60) leads to the following discretisation

(F
(
2C (F−1 (û1) ,F−1 (û2))

)
)n =

p
T

π

[
n∑

k=1
δn

k C (û1,n−k+1, û2,k )+
N+1−n∑

k=1
δN+1−n

k

[
C (û∗

1,k , û2,n+k−1)+C (û1,n+k−1, û∗
2,k )

]]
.

(4.76)
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In addition, using (4.66) and û1,i = B̂i q̂ i , we can further express

C (û1,n−k+1, û2,k ) = C

(
B̂n−k+1q̂ n−k+1,

k∑
j =1

B̂k− j+1B̂ j d̂ k j +
N+1−k∑

j =1
B̂k+ j−1B̂∗

j ĥk j

)

= B̂n−k+1

[
k∑

j =1
B̂k− j+1B̂ j C

(
q̂ n−k+1, d̂ k j

)
+

N+1−k∑
j =1

B̂k+ j−1B̂∗
j C

(
q̂ n−k+1, ĥk j

)]
,

(4.77)

as well as

C (û∗
1,k , û2,n+k−1) = C

(
B̂∗

k q̂∗
k ,

n+k−1∑
j =1

B̂n+k− j B̂ j d̂ n+k−1, j +
N−n−k+2∑

j =1
B̂n+k+ j−2B̂∗

j ĥn+k−1, j

)

= B̂∗
k

[
n+k−1∑

j =1
B̂n+k− j B̂ j C

(
q̂∗

k , d̂ n+k−1, j

)
+

N−n−k+2∑
j =1

B̂n+k+ j−2B̂∗
j C

(
q̂∗

k , ĥn+k−1, j

)]
,

(4.78)

and eventually

C (û1,n+k−1, û∗
2,k ) = C

(
B̂n+k−1q̂ n+k−1,

k∑
j =1

B̂∗
k− j+1B̂∗

j d̂
∗
k j +

N+1−k∑
j =1

B̂∗
k+ j−1B̂ j ĥ

∗
k j

)

= B̂n+k−1

[
k∑

j =1
B̂∗

k− j+1B̂∗
j C

(
q̂ n+k−1, d̂

∗
k j

)
+

N+1−k∑
j =1

B̂∗
k+ j−1B̂ j C

(
q̂ n+k−1, ĥ

∗
k j

)]
.

(4.79)

This results in the following discretisation for ĝ3[B ]:

ĝ3,n =
n∑

k=1
B̂n−k+1

[
k∑

j =1
B̂k− j+1B̂ j Ank j +

N+1−k∑
j =1

B̂k+ j−1B̂∗
j Bnk j

]

+
N+1−n∑

k=1
B̂∗

k

[
n+k−1∑

j =1
B̂n+k− j B̂ j Cnk j +

N−n−k+2∑
j =1

B̂n+k+ j−2B̂∗
j Dnk j

]

+
N+1−n∑

k=1
B̂n+k−1

[
k∑

j =1
B̂∗

k− j+1B̂∗
j Enk j +

N+1−k∑
j =1

B̂∗
k+ j−1B̂ j Fnk j

]
,

(4.80)
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where we defined the following third-order tensors

Ank j = −
p

T

π
δn

k

〈
ân

∣∣∣C (q̂ n−k+1, d̂ k j )
〉

, 1 ≤ j ≤ k, 1 ≤ k ≤ n

Bnk j = −
p

T

π
δn

k

〈
ân

∣∣∣C (q̂ n−k+1, ĥk j )
〉

, 1 ≤ j ≤ N +1−k, 1 ≤ k ≤ n

Cnk j = −
p

T

π
δN+1−n

k

〈
ân

∣∣∣C (q̂∗
k , d̂ n+k−1, j )

〉
, 1 ≤ j ≤ n +k −1, 1 ≤ k ≤ N +1−n

Dnk j = −
p

T

π
δN+1−n

k

〈
ân

∣∣∣C (q̂∗
k , ĥn+k−1, j )

〉
, 1 ≤ j ≤ N −n −k +2, 1 ≤ k ≤ N +1−n

Enk j = −
p

T

π
δN+1−n

k

〈
ân

∣∣∣C (q̂ n+k−1, d̂
∗
k j )

〉
, 1 ≤ j ≤ k, 1 ≤ k ≤ N +1−n

Fnk j = −
p

T

π
δN+1−n

k

〈
ân

∣∣∣C (q̂ n+k−1, ĥ
∗
k j )

〉
, 1 ≤ j ≤ N +1−k, 1 ≤ k ≤ N +1−n.

(4.81)

As a summary, upon the choice of φ and ξ̂ we are led to solve

r (B̂ ;φ, ξ̂) = 0, with

r (B̂ ;φ, ξ̂)
.
= ĝ2[B̂ ]+p

ϵo
[
γ(φξ̂− B̂)+ ĝ3[B̂ ]−〈

â
∣∣∂τ1 û2

〉]
,

(4.82)

where we defined γ =
〈

â
∣∣ f o

〉
. At the discrete level, this amounts to solving for a system of N

nonlinearly coupled equations for the N unknowns B̂n (n = 1,2, ..., N ):

rn = ĝ2,n +p
ϵo

[
γn(φξ̂n − B̂n)+ ĝ3,n −〈

ân
∣∣∂τ1 û2,n

〉]
= 0, n = 1,2, ..., N , (4.83)

where ĝ2,n , ĝ3,n and
〈

ân
∣∣∂τ1 û2,n

〉
are evaluated using respectively the simple sum (4.62) and

the double sums (4.80) and (4.73). This suggests the following procedure:

Algorithm :

1. Choose the values for N and ωc , which sets the discretisation of the frequencies.

2. Over the discrete set of frequencies, pre-compute once for all the determinitic fields f o ,

q̂ , â, the scalar γ, and the tensors Θ, Ξ, A ,B,C ,D,E ,F ,G ,H ,I ,J ,K ,L ,M ,N .

3. Choose a value for φ (which sets the forcing amplitude).

4. Draw randomly a white noise (|ξ̂(ω)| = 1 ∀ω, but random phases uniformly distributed

between 0 and 2π).

5. Solve the system (4.83) by means of a nonlinear solver, for instance fsolve on MATLAB.

6. Update the statistics on B̂ , for instance its ensemble average, and, if not converged go

back to (4).
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Of course the convergence in terms of N and ωc must be ensured.
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5 Noise-induced transitions past the
onset of a steady symmetry-breaking
bifurcation: the case of the sudden
expansion

Remark: This chapter is largely inspired by the submitted manuscript Ducimetière et al. (2024),

in collaboration with Edouard Boujo and François Gallaire.

5.1 Introduction

Fluid flows, governed by the Navier-Stokes equations, are known to exhibit an extremely

rich phenomenology, including pattern formation, spatio-temporal chaos, turbulence, etc...

Specifically, some fluid flows can reach an attracting coherent structure (e.g. fixed point) where

they appear to be locally stationary for possibly extremely long times, but, from time to time,

because of a rare fluctuation, exit the basin attraction of such coherent structure and transit

towards another one. Although possibly restricted to some specific regimes in the parameter

space, rare transitions are observed in completely different contexts. These include three- or

two-dimensional experimental turbulent flows (Sommeria, 1986), for instance, wakes behind

an Ahmed body (a simplified car model) (Grandemange et al., 2013) or an axisymmetric

(Brackston et al., 2016; Callaham et al., 2022) bluff body. Other examples are found in magneto-

hydrodynamics experiments (Berhanu et al., 2007), two-dimensional numerical turbulent

flows (Bouchet & Simonnet, 2009; Bouchet et al., 2019; Dallas et al., 2020) and atmospheric

flows (Schmeits & Dijkstra, 2001; Weeks et al., 1997).

In the framework of equilibrium statistical mechanics, steady states of the system minimize

a potential. Thenceforth, some laws describing the probability of rare transitions can be

analytically derived. The Arrhenius law, in particular, considers a bi-stable overdamped

system driven by a stochastic noise ξ(t) at temperature Γe , dt x = −dxV (x)+
√

2kBΓeξ(t),
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with V a double-well potential of potential barrier ∆V . The law predicts the expected time

{∆T } between two transitions to scale like the exponential of minus the potential barrier

separating two attractors, divided by the square of the fluctuations intensity, i.e. {∆T } ∝
exp(−∆V /(kBΓe )).

However, fluid flows are mostly out-of-equilibrium systems, for energy is constantly injected

(typically at boundaries) and dissipated by viscosity. In addition, Navier-Stokes equations have

a continuously infinite number of degrees of freedom, which, after discretization, translates

into thousands or millions of degrees of freedom, depending on the flow complexity. Therefore,

characterizing rare transitions from one basin of attraction of the Navier-Stokes equations to

another is a current scientific challenge.

There exist some specific numerical approaches in considering these transition events. All are

motivated by the fact that a direct numerical simulation of the system is inappropriate in the

statistical study of transition events, both because they occur over possibly extremely long time

scales, and because the large number of degrees of freedom makes the numerical simulations

of the Navier-Stokes equations unreasonably slow and energetically costly. Instead, the used

numerical techniques incorporate some elements of the large deviation theory (Freidlin &

Wentzell, 1998), which considers non-equilibrium dynamical systems in the limit where they

are forced by weak noise (consistent with the fact that transitions are rare). The general idea

is to compute the most likely trajectory that links two given stable and distinct states. This

specific trajectory is called an instanton, and was shown in Freidlin and Wentzell (1998) to

minimize an action in the path integral representation of the system. The probability of the

transition along the instanton can also be computed and used to estimate the expected time

between two transition events.

The instanton was numerically computed in different fluid flow modelizations, from two-

dimensional geophysical turbulence (Bouchet & Simonnet, 2009; Bouchet et al., 2011) to

one-dimensional Burgers turbulence (Grafke et al., 2013), to the transition between the plane

Poiseuille flow and a traveling wave solution in a two-dimensional periodic domain (Wan et al.,

2015). More recently, Schorlepp et al. (2022) considered the three-dimensional stochastically

forced Navier–Stokes equations, and obtained the most likely configurations for extreme

vorticity and strain events as the numerical solutions of the instanton problem. A more

indirect manner to determine the instanton is by using the adaptive multilevel splitting

algorithm (Cérou & Guyader, 2007), which is a rare event algorithm whose effect is to magnify

the number of transition events. Thereby, very large statistics of transition paths can be

produced, which are expected to concentrate around and reveal the instanton. Recently, this

method was successfully employed in Bouchet et al. (2019) for the turbulent flow obtained

from a simplified model of Jupiter troposphere’s dynamics. The work presented in Lestang et al.

(2020), concerned about extreme mechanical forces exerted by a turbulent flow impinging on

a bluff body, constitutes another example. It was also shown in a recent work Lecoanet and

Kerswell (2018) that the computation of the instanton trajectory could be linked to a more

basic nonlinear maximization problem of the flow kinetic energy (Pringle & Kerswell, 2010).
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To the knowledge of the authors, all the works mentioned so far relied on numerical tools.

In the present chapter, we shall employ a different strategy, expected to be valid at least in

some simplified situations. In the spirit of Cates and Nardini (2023), who focused on the

extension of the classical nucleation theory to an active phase-separating system, we first

aim at analytically reducing the dimensionality of a flow forced by a weak and slowly varying

stochastic noise. Then, analytical tools from statistical mechanics such as the Fokker-Planck

equation will be deployed to compute the statistics of the reduced-order system, which is

substantially easier to study and physically interpret than the original equation.

A general method for reducing the dimensionality of a nonlinear system was developed

in dynamical system theory, and is valid asymptotically close to a bifurcation point in the

parameter space, where an eigenmode of the linearized operator becomes unstable and

grows exponentially. The idea is to derive an equation for the amplitude(s) of the bifurcating

eigenmode(s). Such an equation is of minimal dimension (and nonlinear order) yet extracts

the core of the nonlinear behavior of the original equation in the vicinity of a bifurcation point

(Guckenheimer & Holmes, 1983). Its derivation relies on a clear multiple-scale asymptotic

expansion procedure, and its first use in fluid mechanics dates back to Gor’kov (1957) in

the context of thermal convection. It was used in numerous studies since then and still is

nowadays, for instance in (Buza et al., 2022; Kerswell et al., 2004; Ohm & Shelley, 2022; Shukla

& Alam, 2011; Sipp & Lebedev, 2007; Zampogna & Boujo, 2023) to cite only a few.

Of particular interest here, the analyses in Camarri and Mengali (2019), Hawa and Rusak (2001),

and Rusak and Hawa (1999) derive a Stuart-Landau weakly nonlinear amplitude equation, for

the steady symmetry-breaking eigenmode in the flow past a two-dimensional plane sudden

expansion. Thereby, the two asymmetric attractors of the flow after the bifurcation could be

approached as the equilibrium solutions of a single-degree-of-freedom equation, with good

accuracy for Reynolds numbers asymptotically close to its critical value at the bifurcation.

Note that a substantial body of work is devoted to the sudden expansion flow, due to its

common appearance in the industrial or academic context. In addition to the ones already

presented, could also be mentioned the studies in Lanzerstorfer and Kuhlmann (2012) and

Debuysschère et al. (2021), concerned with the stability of the two-dimensional plane sudden

expansion for different geometries, and inlet velocity profiles, respectively.

The construction of amplitude equations can be generalized to nonlinear dynamical systems

subject to a stochastic forcing, as shown in Rajan and Davies (1988) and Rong et al. (1998) and

Nayfeh and Serhan (1990) for the Duffing and Duffing-Rayleigh oscillators, respectively. The

inclusion of a noise term in an amplitude equation would have the effect of making its solution

transit from one of its equilibrium solutions to another, for instance when the latter equation

describes a supercritical or subcritical pitchfork or a subcritical Hopf bifurcation. The statistics

of these transitions could be obtained with low computational efforts, yet in principle apply

to the original equation, under the simplifying hypothesis made for the derivation of the

amplitude equation.
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However, if stochastic amplitude equations were found to be accurate models for some specific

flows indeed (Brackston et al., 2016; Callaham et al., 2022; Pétrélis et al., 2009), the noise term

systematically resulted from an ad-hoc addition. In other words, the rigorous method deployed

for the Duffing oscillators in Rajan and Davies (1988) and Rong et al. (1998) and Nayfeh and

Serhan (1990) to recover a noise term at the level of the amplitude equation directly from

the stochastically forced original equation, does not seem to have been yet applied to the

Navier-Stokes equations. Therefore, this will be the primary focus of the present chapter.

For this purpose, we will consider a flow experiencing a supercritical pitchfork bifurcation,

such that our method is a generalization of that outlined in Camarri and Mengali (2019) and

will result in a stochastically forced Stuart-Landau equation. Yet, the proposed method is

expected to be adaptable to other fluid flows subject to multi-stability, thus to noise-induced

transitions, closely after a bifurcation. Such situations include other flows experiencing a

supercritical pitchfork bifurcation, such as the one in a pipe junction for some junction angles

(Chen et al., 2017) or between a co-rotating disk pair for some gap ratio (Randriamampianina

et al., 2001). Supercritical pitchfork bifurcations also occur in laminar (or turbulent) three-

dimensional wakes of rectangular prisms for some aspect ratios (Zampogna & Boujo, 2023),

in the granular plane Couette flow for some parameters (Shukla & Alam, 2011), in active

suspensions of elongated swimming particles (immotile shakers or motile pullers/pushers) for

some swimming speed (Ohm & Shelley, 2022), in the two-dimensional flow past an inverted

flag if the aspect ratio is large enough and the mass ratio small enough (Tavallaeinejad et

al., 2020), etc. The method could also be extended to flows subject to a subcritical Hopf or

subcritical pitchfork bifurcation. In the latter case, three stable equilibria exist, and some

examples are found in the infinitely diverging channel (Jeffery-Hamel flow) (Kerswell et al.,

2004), in active suspensions (Ohm & Shelley, 2022), in an axisymmetric liquid bridge subjected

to axial flow (Lowry & Steen, 1997) and many others.

The method to derive a stochastically forced Stuart-Landau equation directly from the stochas-

tically forced Navier-Stokes equations is outlined in § 5.3. The probability density function

of its solution, as well as the statistics of the transition time between its two deterministic

attractors, will then be computed by means of the Fokker-Planck equation. The results are

reported and compared with direct numerical simulations in § 5.4.

5.2 Problem definition

We consider fluid flows governed by the incompressible Navier-Stokes equations (NSE)

∂tU = −C [U ,U ]−∇P +Re−1∆U +Fξ(αϵt ) f

0 = ∇·U ,
(5.1)

where U is the velocity field, P is the pressure field ensuring U to be divergence-free, and Re is

the Reynolds number. The nonlinear advection operator C [a,b]
.
= ((∇a)b + (∇b)a)/2 has been

defined. We will restrict the analysis to Re numbers asymptotically close to a critical value Rec ,
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where the flow experiences a steady and supercritical symmetry-breaking bifurcation, also

called supercritical “pitchfork" bifurcation. Note that in the rest of the chapter, the use of the

term “symmetry" will always refer to a discrete symmetry. Specifically, we will consider cases

where a distance to criticality, defined as

ϵ
.
= Re−1

c −Re−1, is such that 0 < ϵ≪ 1, (5.2)

in accordance with Camarri and Mengali (2019) and Sipp and Lebedev (2007). In other terms,

the symmetric flow at Re > Rec possesses a steady symmetry-breaking eigenmode unstable

with a growth rate of O(ϵ). In the linear regime, this mode thus grows exponentially until

nonlinearities have an effect after a long time of O(ϵ−1), implying its amplitude to be both

linearly and nonlinearly modulated over a slow time scale τ
.
= ϵt .

In addition, the flow is stochastically forced with Fξ(αϵt) f , where f = f (x) is the forcing

spatial structure. The term ξ(αϵt ), with α> 0 and α = O(1), is a random signal with zero mean.

Since ϵ is by assumption very small, this signal varies slowly as compared to ξ(t ), and according

to the same slow time τ as that of the symmetry-breaking eigenmode. The signal ξ(t) is a

Gaussian sampling-limited white noise signal. The latter has a typically large band-limiting

frequency ωd , given by the sampling time step ∆t as ωd =π/∆t .

In order to characterize these random processes, we introduce the Fourier transform F (∗) of

a temporal signal of length [0,T ] with T →∞, and its inverse F−1 (∗) as

û(ω) = F (u(t )) =
1p
T

∫ T

0
u(t )e−iωt dt , u(t ) = F−1 (û(ω)) =

p
T

2π

∫ ∞

−∞
û(ω)e iωt dω. (5.3)

In the Fourier domain, the random signal ξ̂(ω) = F (ξ(t )) is constructed as

|ξ̂(ω)| =α
p
ϵ, for |ω| ≤ωd , and |ξ̂(ω)| = 0 elsewhere. (5.4)

Note that α
p
ϵ does not depend on the frequency. The choice of this specific value for the

intensity of ξ(t) is made purposely so that the Fourier transform of the noise ξ(αϵt), when

taken over the slow time τ = ϵt , yields a unit intensity. Since α is not included in the definition

of the slow time τ, its square root is not taken in (5.4), whereas that of ϵ is. The calculations will

be provided in the next section. For each ω, the phase of ξ̂(ω) is random and drawn according

to a uniformly distributed law between 0 and 2π.

We emphasize that the stochastic forcing considered in the present chapter is not general but

specific for at least two reasons. The first is that it consists of a scalar noise process depending

solely on time, multiplying a structure that is frozen in space. The second is that the (sampling-

limited) white noise defined in (5.4) has a constant value for |ξ̂(ω)|, whereas it would be more

generally characterized by a constant value for
{|ξ̂(ω)|2}, if {∗} denotes the ensemble average.

This generalisation matters in the cases where T is finite and/or if the noise is not an ergodic

process.
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Figure 5.1: (a) Example of random signals as a function of time. The blue continuous line is a
sampling-limited white noise ξ(t ) (multiplied by a factor 10 for better visualization), whereas
the blue continuous line with bullets is the slowly varying version ξ(αϵt). (b) Module of the
Fourier transforms of the signals shown in (a). The specific values ϵ = 0.0026, α = 1/8 and a
sampling time step ∆t = 0.025 have been selected; this sets ωd = 125.7 and ωco = 0.04.

From the definition (5.3), it follows that

F (ξ(αϵt )) =
1p
T

∫ T

0
ξ(αϵt )e−iωt dt =

1

αϵ
p

T

∫ αϵT

0
ξ(s)e−i sω/(αϵ)ds =

1

αϵ
ξ̂
( ω
αϵ

)
, (5.5)

(which is a well-known property of the Fourier transform) therefore,

|F (ξ(αϵt )) | =
1p
ϵ

for |ω| ≤ωco , (5.6)

where we have defined

ωco
.
=αϵωd , and where we recall that α = O(1). (5.7)

Therefore, the frequency ωco is the cut-off frequency ( hence the subscript “co" ) of the slowly

varying noise ξ(αϵt). Although it was implicit, in (5.5) we have also used the fact that, since

we take the limit of infinitely large T and α,ϵ > 0, integrating between 0 and T or between

0 and αϵT leads to the same result. The small parameter ϵ being set by the Re number, the

parameter α gives the freedom to change ωco as long as α is of order unity. Accordingly, the

small parameter αϵ =ωco/ωd = O(ϵ) ≪ 1 takes the immediate meaning of the ratio between

the shortest measurable time scale (i.e., the sampling one =π/ωd ), and the shortest time scale

excited by ξ(αϵt ).

Some random signals ξ(t ) and ξ(αϵt ) are shown in figure 5.1 in both the temporal and Fourier

domains. We stress that, as long as the slow noise is band-limited with a cut-off frequency

around ωco , the results are not expected to depend on the specific shape of its spectrum (see

also a more detailed discussion in section IV.D.)
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Table 5.1: Characterization of the dimensionless parameters

.

Parameter Mathematical constraint Permit to fix independently ...
ϵ ≪ 1 ... the Re number, according to (5.2)
α O(1) ... the noise cut-off frequency ωc , according to (5.7)
φ O(1) ... the noise intensity F , according to (5.9)

We also introduce the Hermitian inner products

〈ua |ub〉 .
=

∫
Ω

uH
a ubdΩ and

〈[
ua

pa

]∣∣∣∣∣
[

ub

pb

]〉
p

.
=

∫
Ω

uH
a ub +pH

a pbdΩ, (5.8)

where the superscript H denotes the Hermitian transpose and the symbolΩ the spatial domain.

In (5.8) the second inner product includes the pressure (hence the subscript p) whereas the

first doesn’t. In the following, ||∗ || designates the norm induced by the first scalar product in

(5.8). The spatial structure of the forcing in velocity f has a unitary norm, i.e. || f || = 1, and we

scale the forcing amplitude F as

F
.
=φ

p
ϵ

3 ≪ 1 with φ = O(1). (5.9)

The characterization of the parameters ϵ, α, and φ is summarized in table 5.1. Their respective

presence gives sufficient freedom for the Re number, the slow noise cut-off frequencyωco , and

the forcing amplitude F , to be chosen independently of each other. For instance, a noise with

the same intensity and cut-off frequency could force flows with two different Re numbers; in

the latter case, the parameter ϵ would be different between the two flows but α and φ could be

adapted to conserve ωco and F .

5.3 Weakly nonlinear expansion

We now derive an equation for the amplitude of the bifurcated steady mode, in the presence

of a weak and slowly-varying noise. In the absence of this stochastic forcing, the calculations

would be similar in all respects to those of Camarri and Mengali (2019). Moreover, the deriva-

tion of an amplitude equation for the Duffing oscillator subject to a narrow-band noise was

proposed already in Nayfeh and Serhan (1990), Rajan and Davies (1988), and Rong et al. (1998),

among others. The rigorous procedure outlined in these latter works to include a noise term

in an amplitude equation is applied to the Navier-Stokes equation thereafter.

As already mentioned, since we consider Re numbers close to a critical value for a steady

bifurcation, as expressed in (5.2), the temporal variations of the flow perturbation around the

neutral equilibrium are assumed to occur over the slow time scale τ = ϵt . This assumption

and the ensuing scaling are consistent with the fact that the flow is forced by the slow noise
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ξ(αϵt ) = ξ(ατ). The flow field is approached by the following expansions

U = U c +
p
ϵu1(τ)+ϵu2(τ)+p

ϵ
3

u3(τ)+O(ϵ2), and

P = Pc +
p
ϵp1(τ)+ϵp2(τ)+p

ϵ
3

p3(τ)+O(ϵ2),
(5.10)

where U c(x) is a velocity field in a neutral equilibrium at Rec , symmetric in space around a

generic plane for three-dimensional flows, or around a generic axis for two-dimensional flows.

Considering a two-dimensional flow with a symmetry axis located at y = ys, the symmetry

assumption of U c implies

U c(x) =

[
Uc(x, y)

Vc(x, y)

]
=

[
Uc(x,2ys − y)

−Vc(x,2ys − y)

]
. (5.11)

By increasing the Re number above Rec , the flow U c is subject to a steady bifurcation which

breaks the symmetry of the overall flow.

Introducing the expansions (5.2) and (5.10) into (5.1) leads to a cascade of linear problems to

be solved successively. At order O(
p
ϵ), we collect[

0

0

]
= L

[
u1

p1

]
with L

.
=

[
−2C [U c,∗]+Re−1

c ∆ −∇
∇· 0

]
, therefore

[
u1(τ, x)

p1(τ, x)

]
= A(τ)

[
q(x)

pq (x)

]
,

(5.12)

where [q(x), pq ]T is the eigenmode of the linear operator L that is associated with a null

eigenvalue. We normalize it such that ||q || = 1. Note that q is also the non-trivial kernel of L. In

addition, the eigenmode q is anti-symmetric: therefore, again considering a two-dimensional

flow and a symmetry axis at y = ys, the velocity field q satisfies

q(x) =

[
qx (x, y)

qy (x, y)

]
=

[
−qx (x,2ys − y)

qy (x,2ys − y)

]
. (5.13)

In the following, the adjoint mode associated with [q , pq ]T will be denoted by [q †, p†
q ]T . In

other terms, it corresponds to the eigenmode associated with the null eigenvalue of the

operator L†, adjoint to L under the second scalar product in (5.8). The slowly varying and real

scalar amplitude A(τ) in (5.12) is for now arbitrary.

At O(ϵ) we obtain the solution u2(τ, x) = A(τ)2u A2

2 (x)+u∆2 (x), where

−L

[
u A2

2

p A2

2

]
=

[
−C [q , q]

0

]
, and −L

[
u∆2
p∆2

]
=

[
−∆U c

0

]
. (5.14)

The operator L being singular, the compatibility condition needs to be verified for the particu-

lar solutions to the systems in (5.14) to be non-diverging. The latter condition requires the

right-hand side to be orthogonal to the kernel of the adjoint of L, i.e. orthogonal to [q †, p†
q ].
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The symmetric fields C [q , q] and ∆U c yielding a null inner product with the anti-symmetric

one q †, this condition is naturally satisfied and the two systems can directly be solved for.

In practice, this can for instance be done with a pseudo-inverse algorithm. The component

of u A2

2 and u∆2 on the kernel q that stems from the homogeneous part of the solution is set

to zero according to
〈

q †
∣∣∣u A2

2

〉
=

〈
q †

∣∣∣u∆2 〉
= 0. Indeed, accounting for a non-zero homoge-

neous solution was shown in Camarri and Mengali (2019) to have no consequences on the

coefficients of the final amplitude equation.

At O(
p
ϵ

3) we assemble the system

−L

[
u3

p3

]
= −A

[
2C [q ,u∆2 ]+∆q

0

]
− A3

[
2C [q ,u A2

2 ]

0

]
− dA

dτ

[
q

0

]
+φξ(ατ)

[
f

0

]
. (5.15)

This time, the compatibility condition is not naturally satisfied but leads to an equation for

A(τ)

dA

dτ
=λA(τ)+µA(τ)3 +ηφξ(ατ) = −dV

dA
+ηφξ(ατ), (5.16)

with the coefficients

λ = −
〈

q †
∣∣∣2C [q ,u∆2 ]+∆q

〉
〈

q †
∣∣q

〉 , µ = −
〈

q †
∣∣∣2C [q ,u A2

2 ]
〉

〈
q †

∣∣q
〉 and η =

〈
q †

∣∣ f
〉〈

q †
∣∣q

〉 . (5.17)

In addition, the double-well potential

V = V [A]
.
= −λA2

2
− µA4

4
(5.18)

has been defined. Equation (5.16), for the amplitude of the anti-symmetric bifurcated mode,

is the classic Stuart-Landau equation for a real-valued amplitude, with the difference that it is

now stochastically forced. The stochastic term was not an ad hoc addition to a pre-existing

amplitude equation, but was derived rigorously from the forced Navier-Stokes equations (5.1).

The explicit formulas for the coefficients in (5.17) can be directly evaluated numerically and

do not require any a posteriori fitting. Indeed, they involve scalar products of fields that are

all known: the eigenmode q , the adjoint mode q †, the second-order fields u∆2 and u A2

2 , all

defined at Re = Rec , as well as the forcing structure f .

The Fourier transform over the slow time scale, noted Fτ (∗), of the noise ξ(ατ) reads

Fτ (ξ(ατ)) =
1p
ϵT

∫ ϵT

0
ξ(ατ)e−iωτdτ =

p
ϵp
T

∫ T

0
ξ(αϵt )e−iωϵt dt

=
1

α
p
ϵ
p

T

∫ αϵT

0
ξ(s)e−iωs/αds

=
1

α
p
ϵ
ξ̂
(ω
α

)
,

(5.19)
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therefore, following (5.4), we have that

|Fτ (ξ(ατ)) | = 1 for |ω| ≤αωd , (5.20)

and |Fτ (ξ(ατ)) | = 0 everywhere else. This profile is illustrated by the black dotted line in

figure 5.1b. It is important to notice that Fτ (ξ(ατ)) is independent of the small parameter

ϵ, which was done intentionally and explains the peculiar choice of intensity in (5.4). In this

manner, the amplitude equation (5.16) does not depend on ϵ and the ensuing results need not

be re-computed for each Re considered, if everything else is fixed.

Let us briefly discuss the deterministic regime where φ = 0. The coefficient λ contains the

sensitivity of the null eigenvalue to a base flow modification +ϵu∆2 induced by the fact that we

consider a Re > Rec . Therefore, ϵλ is directly the growth rate of the bifurcated steady mode and

is positive. Accordingly, the equilibrium solution Ā0 = 0 of (5.16), corresponding to a symmetric

flow, is unstable. The coefficient µ contains the sensitivity of the null eigenvalue to a base flow

modification +ϵA2u A2

2 , non-linearly induced by the Reynolds stress of the perturbation
p
ϵAq .

If µ is negative, then nonlinearities have a stabilizing effect that counteracts linear instability.

Therefore two additional equilibrium solutions ±Ā, with Ā
.
=

√−λ/µ> 0, exist and are stable.

They are the two minima of the potential V . On the contrary, if µ is positive, nonlinearities

included in (5.16) have a destabilizing effect and no stable equilibrium exists at that order: the

bifurcation is subcritical and the expansion must be pursued at higher orders. This latter case

will not be treated in what follows.

In the stochastically forced regime where φ ̸= 0, the amplitude A may randomly switch back

and forth between the two attractors Ā and −Ā after unpredictable and possibly long times.

Therefore, we are particularly interested in the probability distribution of A. The probability

density function (PDF) P of the amplitude A can be computed directly by means of the Fokker-

Planck equation (Risken, 1996). For this, the state space needs to be augmented in order to

account for the fact that ξ(ατ) is a band-limited white noise because of the presence of the

constant α in the argument. Following Risken (1996) (Appendix A1 and Supplement S.10),

ξ(ατ) is treated as a system variable resulting from low-pass filtering, at a cut-off frequency

of αωd , of a white noise (on the slow time scale) χ(τ) whose band-limiting frequency is the

largest achievable by the system, ωd . We insist that ωd is chosen sufficiently large for none of

the results presented in this chapter to depend on it. For the sake of simplicity, a first-order

low-pass filter of cut-off frequencyαωd is chosen and thus ξ(ατ) is approached by the solution

of the first order stochastic differential equation

dξ

dτ
+αωdξ =αωdχ, (5.21)

where χ(τ) is a white noise such that |Fτ

(
χ
) | = 1 for |ω| ≤ ωd . Equation (5.21) leads to

|Fτ (ξ) |2 = 1/(1+ω2/(αωd )2), which is a rather coarse approximation of (5.20). This mat-

ters little, however, since as mentioned, the results aren’t expected to depend too much on the

exact shape of the noise as long as they conserve the cut-off frequency. Again following Risken
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(1996) (Chapter 4.7), the Fokker-Planck equation associated with the system consisting of the

equations (5.16) and (5.21) writes

∂P

∂τ
= − ∂

∂A

[
(λA+µA3 +ηφξ)P

]+αωd
∂ (ξP )

∂ξ
+ (αωd )2

2

∂2P

∂ξ2 , (5.22)

where P = P [A,ξ,τ] vanishes for |A|, |ξ| →∞. By definition of a probability density function,

P has a unitary area:
Î ∞

−∞ PdAdξ = 1, ∀τ. We introduce P̄ = P̄ [A] the PDF of only A in a

stationary regime, reached after infinitely long τ, such that

P̄
.
=

∫ ∞

−∞

(
lim
τ→∞P [A,ξ,τ]

)
dξ. (5.23)

We also define P̄ w to be P̄ in the “pure" white noise limit where αωd →∞, which possesses

the analytical expression

P̄ w .
= lim
αωd→∞ P̄ =

1

Z
exp

(
− 2V

(φη)2

)
, Z a normalization constant. (5.24)

In the next section, the stochastically forced weakly nonlinear (WNL) amplitude A, its probabil-

ity density function P̄ , and the statistics of the escape time ∆T of A between its two attractors

±Ā will be computed for a selected flow geometry. Furthermore, results will be compared to

direct numerical simulations (DNS).

5.4 Application case: the flow past a sudden expansion

The application case is chosen as the two-dimensional plane flow past a sudden expansion

(see the non-dimensional geometry in figure 5.2a). The Reynolds number is defined as

Re = hU∞/ν, where h is the inlet channel height, U∞ the centreline (maximum) velocity of

the inlet parabolic velocity profile and ν the kinematic viscosity. The inlet is located at the

streamwise coordinate x = −5 (made non-dimensional by h). At x = 0, the flow goes through a

sudden expansion of expansion ratio ER = 3, and the outlet of the expansion is situated further

downstream at x = L = 40, where the flow re-parallelized.

The linear and nonlinear Navier–Stokes equations are solved for the velocity field U = [U ,V ]T

and the pressure by means of the finite element method with Taylor–Hood (P2, P2, P1) ele-

ments, respectively, after implementation of the weak form in the software FreeFem++. The

steady solutions of the Navier–Stokes equations are solved using the iterative Newton–Raphson

method, and the linear operators are built thanks to a sparse solver UMFPACK implemented

in FreeFem++. The mesh is constituted of approximately 4×104 triangular elements, whose

edge size varies between a minimum value of 0.015 near the expansion corners and a maximal

value of 0.15 farther upstream and downstream, leading to about 2×105 degrees of freedom

for the global flow field (velocity and pressure).
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Figure 5.2: Deterministic case φ = 0. (a) Snapshots of the streamwise velocity of the stable
steady solution(s) obtained by DNS at Re = Rec = 79.3 (top) and at Re = 100 > 79.3 (center &
bottom); in the latter case, two equilibrium solutions are found. (b) Measure M that quantifies
the asymmetry of the flow, as defined in (5.25), and computed in the steady regime for both
WNL and DNS approaches. The continuous blue line is associated with the stable equilibrium
solutions predicted by the deterministic amplitude equation ±M̄ with M̄ =

p
ϵβĀ, whereas the

dotted line corresponds to the unstable equilibrium.

5.4.1 Deterministic regime

The critical Re number before the steady bifurcation is numerically found to be Rec = 79.3,

which compares relatively well with the value Rec = 81.4 reported in Camarri and Mengali

(2019). As we checked the convergence of Rec with respect to the spatial discretization, the

slight difference is rather explained by the fact that our entrance length is half of the one

considered in Camarri and Mengali (2019). For Re ≤ Rec , the flow is symmetric in the sense of

(5.11) around the centerline axis at y = ys = 1.5, as can be seen in the uppermost snapshot in

figure 5.2a.

For Re > Rec , the symmetry of the flow is broken, as we can observe on the snapshots at the

center and the bottom of figure 5.2a. The degree of asymmetry is quantified according to a

scalar measure that we call M , and whose definition is always arguably arbitrary. Nevertheless,

we propose it to be the signed L2-norm of the cross-wise velocity component evaluated along

the symmetry axis (located at y = ys = 1.5). The sign is chosen as being that of the cross-wise

velocity along the symmetry axis and at x = 2, for it is where the cross-wise velocity component

qy of the anti-symmetric eigenmode q = [qx , qy ]T (with ||q || = 1) reaches its (chosen positive)

maximum. In other terms, qy (x = 2, ys) = maxx [qy (x, ys)] = 0.136. Eventually, M reads

M
.
= sgn[V (x = 2, ys)]

√∫ L

0
V (x, ys)2dx. (5.25)

The WNL approximation of M is given by evaluating V (x, ys) according to the expansion (5.10),

then using that Vc(x, ys) = v2(x, ys) = 0, ∀x (Vc the cross-wise velocity of the base flow and v2
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that of the second order field u2) for a symmetry reason, leading to

M = sgn[
p
ϵqy (2, ys)︸ ︷︷ ︸

>0

A+O(
p
ϵ

3
)]

√∫ L

0

(p
ϵAqy (x, ys)+O(

p
ϵ

3
)
)2

dx

= sgn(A)
p
ϵ|A|

√∫ L

0
qy (x, ys)2dx +O(

p
ϵ

3
)

=
p
ϵβA+O(

p
ϵ

3
),

(5.26)

with β =
√∫ L

0 qy (x, ys)2dx = 0.266 a proportionality constant.

The coefficients in (5.17) are found asλ = 5.984 andµ = −0.02962, leading to Ā =
√−λ/µ = 14.21.

We stress that the coefficients are evaluated from known fields, without any fitting parameters.

For a given Re number (setting ϵ), the equilibrium amplitudes ±Ā are associated with the

equilibrium asymmetry measures ±M̄ with M̄ =
p
ϵβĀ. The slope of the red dashed line

in figure 4b of Camarri and Mengali (2019) corresponds to our definition of λ. By visual

inspection, we estimate for the former a value of ≈ 5.8 which indeed agrees well with our λ; no

numerical value is given for µ in Camarri and Mengali (2019).

In the deterministic case where φ = 0, the DNS and WNL steady solutions are compared

under the measure M in figure 5.2b as a function of the Re number. Close the threshold

value Rec , both approaches are in excellent agreement, thus validating the well-posedness

of the weakly nonlinear expansion (5.10). Note that, interestingly, the latter implies the

scaling M ∝p
1/Rec −1/Re when Re is asymptotically close to Rec . The agreement between

both approaches progressively degrades as we increase Re, presumably due to higher-order

nonlinearities neglected in the expansion. Nevertheless, the relative error remains reasonable

for the considered range of Re, with a maximum value of ≈ 11% for Re = 110. Overall, the

agreement between both approaches is comparable with the one already reported (with a

different measure) in figure 5 of Hawa and Rusak (2001).

In the rest of the study, we will fix the Re number to Re = 100.

5.4.2 Stochastic regime: amplitude statistics

Let us now activate the stochastic forcing (φ ̸= 0). We choose the forcing structure to be

f = q †, which maximizes the absolute value of η in (5.17), thus the impact of the forcing.

We numerically find η = 1.492. For Re = 100, we show in figure 5.3 some temporal signals

of M for four gradually increasing forcing amplitudes φ, of the same given noise realization

ξ(αϵt). The cut-off frequency ωco of the slowly-varying noise is set at ωco = 0.04. Due to the

non-normality of the operator L, this specific choice is not arbitrary and will be detailed in

the last section of the chapter. The WNL predictions and the DNS data are compared directly,

as they are forced by the exact same noise. For both signals, under the stochastic forcing, M
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Figure 5.3: Temporal signal of M in a stochastically forced regime, with forcing amplitudes
φ ∈ [10,14,18,22]. The noise realization ξ(αϵt) is the same for all the results shown. A Re
number of Re = 100 is chosen, implying ϵ = 0.0026. A time step ∆t = 0.025 was found sufficient
for the convergence of the results, which sets ωd = 125.7. We further choose ωco = 0.04, which
determines α = 1/8 that we check to be O(1) indeed. The two deterministic attractors ±M̄
with M̄ =

p
ϵβĀ = 0.1935 are highlighted by horizontal black dotted lines. The small crosses

highlight a “transition” (see definition in text) of the WNL signal from the neighborhood of
one attractor to the neighborhood of the other.
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experiences some random oscillations in the neighborhood of one of the two attractors. After

some time, these oscillations may by chance become sufficiently strong such that M transits

to the neighborhood of the other attractor, as it overcame the potential barrier separating the

two. This scenario is increasingly likely with the forcing amplitude. With the exception of some

relatively short episodes, the agreement between WNL and DNS signals is visually excellent in

figure 5.3, at least for the considered noise realization. A small but systematic overestimation

of the WNL prediction is to be noticed though, already present at the deterministic level and

observable in figure 5.2b for Re = 100. Some discontinuities can also be noticed in the DNS

signal, due to the multiplication with the sgn function in the definition of M .

A more quantitative and systematic comparison of both approaches is performed by running,

for a given forcing amplitude, nine additional simulations to that of in figure 5.3, each cor-

responding to a different random noise realization. This generated a sufficient amount of

data for convergence of the PDF of |M |, shown in figure 5.4 for φ ∈ [10,14,18,22]. We also

show P̄ , the PDF associated with the steady solution of the Fokker-Planck equation (5.22),

defined in (5.23). Its asymptotic shape in the limit where αωd tends to infinity, P̄ w defined in

(5.24), is also visible. First, we observe that P̄ agrees poorly with P̄ w, from which we conclude

that accounting for a filtered noise in the Fokker-Planck model, at a cut-off frequency αωd

(over the slow time, thus ϵαωd over the fast), has a significant effect. The probability density

function P̄ is more localized than P̄ w around M̄ , presumably because the noise corresponding

to the former is filtered and thereby has a lower root-mean-square (by Parseval’s theorem)

than the noise of the latter, thus is less efficient is dislodging M from one of its attractors.

On the other hand, from the excellent agreement between P̄ and the PDF obtained from

direct simulations of the amplitude equation (5.16), we also conclude that the results are

robust to the order of the filter that generates the slow noise; indeed, P̄ is associated with a

first-order filtered noise whereas the noise in (5.16) is infinite-order filtered (square signal in

the frequency domain). Therefore, one does not need to be too careful in the way the slow

noise is constructed.

The agreement between P̄ and the PDF reconstructed from the DNS is globally satisfactory

when plotted over |M |/M̄ . When plotted over |M | (see inset of figure 5.5a), both PDFs are

slightly offset due to the difference between deterministic attractors. In addition, the agree-

ment seems to degrade for |M |→ 0. This is explained by the fact that M , due to its definition as

a L2 norm of the cross-wise velocity (5.25), is null if and only if the cross-wise velocity is strictly

null everywhere along the symmetry axis; because, for instance, of higher-order nonlinear

terms neglected in the expansion, this condition is very unlikely to be met in the DNS. This

effect is all the more pronounced by increasing φ.

5.4.3 Stochastic regime: escape time statistics

By considering the absolute value |M |, the transition events from the neighborhood of one

attractor to the other were not considered. However, as developed in the introduction, they are
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Figure 5.4: Probability density function of |M | for the four different forcing amplitudes consid-
ered in figure 5.3. The external parameters are also the same as for figure 5.3. For the blue dots
“WNL" and the red dashed-dotted line with the square markers “DNS", ten simulations, each
corresponding to a different noise realization and long of t = 1.1×104 units of times, were per-
formed and post-treated. The magenta line “WNL, P̄", defined in (5.23), is the steady solution
of the Fokker-Planck equation (5.22). The black dashed line “WNL, P̄ w", defined in (5.24), also
corresponds to the steady solution of the Fokker-Planck equation but in a case of “pure" white
noise where αωd →∞. The insets show to the same data as the main figures, but as a function
of |M | instead of |M |/M̄ . The vertical red dashed line is the deterministic attractor M̄ of the
DNS whereas the vertical, dotted, blue line is the one from the WNL approach (see figure 5.2b)

of great interest in practice and thus are studied thereafter. Let us first put a formal definition

of what we mean by “transition". A “transition" from the neighborhood of one attractor to the

other is decreed whenever the following scenario occurs: at some t1, M goes above −cM̄ < 0

(resp. below cM̄ > 0), and doesn’t go below (resp. above) this same threshold again before

going above (resp. below) the opposite one cM̄ (resp. −cM̄) at some t3, where the constant

c > 0 is chosen, perhaps arbitrarily, as c = 0.8; then a transition has occurred at the largest

of all time(s) in the interval [t1, t3] for which M is null. Under this definition, the transitions

are highlighted for the WNL signal by the black crosses in figure 5.3. For φ = 10 the time

interval ∆T separating two transitions, shown with an arrow in figure 5.3, sometimes called

an “escape time" or “first passage time", seems to be on average extremely long. This also

underlines the importance of using a reduced-order model. In a simulation long of τ = 30
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Figure 5.5: Probability density function of the escape time ∆T between two transition events
from the neighborhood of one attractor to the neighborhood of the other. Lighter colors
correspond to larger forcing amplitude φ where φ ∈ [10,18,26]. The parameters are the same
as for figure 5.3, specifically Re = 100 and ωco = 0.04. For the markers “WNL" (dots for φ = 10,
squares forφ = 18 and diamonds forφ = 26, ten direct simulations of (5.16), each corresponding
to a different noise realization and long of t = 1.1×106 units of times, were performed and post-
treated. The continuous lines “WNL, F.-P." (F.-P. for Fokker-Planck), are obtained by marching
in time the Fokker-Planck equation (5.22) with appropriate initial/boundary conditions (see
main text). Subfigures (a) and (b) show the same data, (a) in linear-linear scale and (b) in log-
linear scale. The thin black dashed- lines are exponential laws b exp(−b∆T ), where b = b(φ) is
a fitted parameter.

(corresponding to t = τ/ϵ = 1.1×104) units of times, only two transitions could be captured, at

a large computational cost for the DNS. By increasing φ to φ = 22, the oscillations of M around

±M̄ are more intense, and the transitions are more frequent (thirteen transitions could be

captured).

In order to approximate the PDF of the escape time ∆T between two transitions, a sufficiently

large number of these transition events has to be reported, and the simulations have to be

sufficiently long to also capture very large ∆T , constituting the tail of its PDF. For this reason,

for each of the considered forcing amplitude, ten simulations of the amplitude equation

(5.16) to an extremely large final time of τ = 3000 (corresponding to t = τ/ϵ = 1.1×106), were

performed. Each of these simulations corresponds to a different realization of the slow noise.

Some PDF of ∆T reconstructed by post-processing the so-generated data are proposed in

figure 5.5 (lin-lin scale in figure 5.5a, and log-lin scale in figure 5.5b).

Alternatively, the PDF of∆T can be computed by marching in time the Fokker-Planck equation

(5.22) with appropriate boundary and initial conditions (Bonciolini et al., 2018). The initial

condition is set as

P [A,ξ,τ = 0] = δ(A− Ā)
exp

(
− ξ2

2σ2

)
σ
p

2π
, (5.27)
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which translates the fact that trajectories are systematically started at the attractor Ā, whereas

the initial condition for the noise is random and follows a centered normal distribution of

standard deviation σ, i.e. ξ(t = 0) ∼N (0,σ2). Precisely because the noise has zero mean, the

variance σ2 is equal to the root mean square of the signal, which is expressed by Parseval’s

theorem

σ2 {ξ}=0
=

1

T

∫ T

0
ξ(αϵt )2dt =

1

2π

∫ ∞

−∞
|F (ξ(αϵt )) |2dω =

2ωco

ϵ2π
=
αωd

π
=
α

∆t
(5.28)

(i.e. two times the area below the red or black curve in figure 5.1, divided by 2π). For the

boundary condition, P = 0 for |ξ|, A →∞ is maintained, but instead of also imposing P = 0

for A → −∞, we set P [−c Ā,ξ,τ] = 0, ∀ξ,τ. As expressed in Bonciolini et al. (2018): “this

boundary condition is a probability sink, which leads to a monotonic decay in time of the

integral [
Î

P [A,ξ,τ]dAdξ, which] represents the probability of not having crossed the threshold

[−c Ā] before time t . Consequently the PDF of the escape time is the temporal derivative

of 1−Î
P [A,ξ,τ]dAdξ, for the latter expression is the probability of having escaped to the

neighborhood of the attractor −c Ā, while (5.27) guarantees that all trajectories initially were

at the other attractor Ā.

The PDFs resulting from this approach are included in figure 5.5 and compared with those

obtained by post-processing the data generated from direct simulation of (5.16). The agree-

ment between both approaches is globally good. Moreover, it is observed in figure 5.5b that

the PDF of the escape time decays exponentially for sufficiently large ∆T ; thereby it can be

thought of as following an exponential law, reading be−b∆T . The parameter b is fitted on the

PDF obtained with the Fokker-Planck equation, and gives a fair approximation, particularly

for the lowest φ considered in the figure. It is also clear that increasing the forcing amplitude

implies a faster exponential decay of the PDF. Indeed, by increasing the intensity of the external

excitation, crossing the potential barrier between the two attractors is made easier, thus large

escape times are less and less likely.

The mean escape time {∆T } and its standard deviation std(∆T ) associated with the PDFs in

figure 5.5 and those for others forcing amplitudes are shown in figure 5.6 as a function of the

forcing amplitude. The agreement between the results from the Fokker-Planck equation and

from direct simulations of the amplitude equation is good for the mean escape time. They

also collide on the value 1/b predicted by the exponential law. Although the differences are

barely visible in figure 5.6a, the value 1/b is all the closer to {∆T } obtained from Fokker-Planck

than φ is small; in other words, the PDF of ∆T tends towards an exponential law in the limit

where φ→ 0. This result is well-known from the large deviation theory.

In the “pure" white noise limit where αωd →∞, and for vanishing forcing amplitude, the

mean escape time is given by the Eyring-Kramers formula (sometimes also called Kramer’s

escape rate) according to

lim
φ→0

lim
αωd→∞ {∆T } =

1

ϵ

√
V ′′(Ā)|V ′′(0)|

2π
exp

[
− 2∆V

(ηφ)2

]
, (5.29)
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Figure 5.6: Mean value and standard deviation of ∆T . The parameters are the same as for
figure 5.3, specifically Re = 100 and ωco = 0.04. The blue dash-dotted line is obtained as
follows: for each forcing amplitude ten direct simulations of (5.16), each corresponding to
a different noise realization and long of t = 1.1× 106 units of times, were performed and
post-treated. The continuous magenta line “WNL, F.-P." (F.-P. for Fokker-Planck), is obtained
by marching in time the Fokker-Planck equation (5.22) with appropriate initial/boundary
conditions. In the subfigure (b) the inset shows the fitted parameter b of the exponential law
writing b exp(−b∆T ). The mean value and the standard deviation reconstructed from this
exponential law, both equal to 1/b, are shown by means of the blacked dashed line. The red
dotted line is the Eyring-Kramers formula as given in (5.29).

where

∆V
.
= V (Ā)−V (0) =

λ2

4µ
, V

′′
(Ā) = 2λ, and V

′′
(0) = −λ (5.30)

Expression (5.29) can be found in Risken (1996), Chapter 5.10, formula (5.111). Without the pre-

factor multiplying the exponential, (5.29) is referred to as the Arrhenius law in thermodynamics.

The relevance of the Eyring-Kramers formula here might appear surprising given the out-

of-equilibrium nature of the system (5.1). Nevertheless, it stems from the fact that, in the

specific situation considered in this chapter, the Navier-Stokes equation could be reduced

to a one-dimensional noisy dynamic, with the deterministic part deriving from a potential.

Note that the factor 1/ϵ in (5.29) accounts for the fact that the amplitude equation is written

over the slow time scale τ = ϵt . The Eyring-Kramers formula (5.29) is drawn as the red-dotted

line in figure 5.6a, and appears accurate until relatively large φ ≈ 15. Above this value, it is

interesting to notice that the parameter b increases rather linearly with φ, such that the mean

escape time decreases as a rational function, thus faster than (5.29).

The evolution of the standard deviation of ∆T with φ, shown in figure 5.6b, is quantitatively

and qualitatively similar to the one of {∆T }.

Note that the statistics of the escape time ∆T shown in figure 5.5 and figure 5.6 have not been

directly compared with those from DNS. That is because, as said, they have been produced
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over simulations long of t = 1.1×106 units of time, deliberately extremely long to capture large

∆T . We could not afford DNS of such extreme length, and this is precisely what motivated the

approach proposed in this chapter. If, as mentioned in the introduction, specific algorithms

exist in computing the escape time directly from the fully nonlinear Navier-Stokes equation in

(5.1), their implementation is out of the scope of this chapter. Note, however, that a complete

comparison between fully and weakly nonlinear escape time statistics would be necessary,

since a good agreement between the steady statistics in figure 5.4 generically does not imply

a good agreement between dynamical quantities such as ∆T . Results shown in figure 5.3,

however, suggest that such a comparison would be successful.

5.4.4 Stochastic regime: choice of the cut-off frequency

Let us now say a word about the choice of the cut-off frequency ωco . First, it is important to

notice that the band-limiting frequency ωd =π/∆t can be chosen, in theory, to be arbitrarily

large. Therefore, ωco = ϵαωd , ϵ being set by the Re number and α = O(1), could also be

arbitrarily large (as long as it is much smaller than ωd ). However, if the linearized operator L,

defined in (5.12), is non-normal, there is a specific value of ωco above which we expect the

predictions from the amplitude equation to become inaccurate. To determine it, we consider

the response of the flow linearized around the neutral, symmetric equilibrium at Rec , U c, to a

stochastic forcing f ξ(t ), where || f || = 1 and ξ(t ) is a white noise such that |ξ̂(ω)| = 1, ∀ω. In the

linear paradigm, the amplitude of the forcing term is irrelevant and is set to one for the rest of

the reasoning. In the Fourier domain, valid in the limit of large times after the transients fade

away, the response writes û(ω) = R(ω) f ξ̂(ω), the operator R(ω)
.
= (iωI −L)−1 being called the

resolvent operator. By decomposition on the basis of eigenmodes of L, the resolvent operator

has a dyadic representation (Luchini & Bottaro, 2014; Schmid & Brandt, 2014b)

R(ω) =
∞∑
j =1

1

iω−γ j

q j

〈
q †

j

∣∣∣∗〉
〈

q †
j

∣∣∣q j

〉 , (5.31)

where q j (with ||q j || = 1), q †
j (with ||q †

j || = 1) and γ j are the j th eigenmode, associated adjoint

mode and eigenvalue of L, respectively. Eigenvalues are ordered such that ℜ(γ1) ≥ℜ(γ2) ≥ ...,

implying γ1 = 0, q 1 = q and q †
1 = q †. The forcing structure considered in the chapter was

chosen to be f = q †, which generates

R(ω)q † =
1

iω

q〈
q †

∣∣q
〉 +

∞∑
j =2

1

iω−γ j

q j

〈
q †

j

∣∣∣q †
〉

〈
q †

j

∣∣∣q j

〉 . (5.32)

Had the operator L been normal, both the direct modes and the adjoint modes would form

an orthonormal basis and all the inner products
〈

q †
j

∣∣∣q †
〉

for j ≥ 2 would be identically null.

This way, the transfer function ||R(ω)q †ξ̂(ω)||/||q †ξ̂(ω)|| = ||R(ω)q †|| reduces to a classical
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Figure 5.7: The red continuous line is the (linear) transfer function ||R(ω) f || (norm of the
expression (5.32)) with f = q † of the sudden expansion flow linearized around its symmetric
neutral equilibrium at Re = Rec . The blue dashed line is the Lorentzian function (5.33) only
accounting for the response of the virtually neutral mode q , resonant at ω = 0. Both curves
would collide exactly if L was a normal operator, for q † would then excite only q . Four
horizontal black dashed-lines are drawn at ω ∈ [4,8,16,32]×10−2.

Lorentzian (resonant) response peaked around the resonant frequency ω = 0

||R(ω)q †||2 =
1

ω2
〈

q
∣∣q †

〉2 . (5.33)

However, L is generally non-normal due to the linearization of the advection term, and neither

the direct eigenmodes nor the adjoint ones constitute an orthonormal basis. Therefore the

sum in (5.32) does not vanish, and the Lorentzian (5.33) is only accurate in the limit |ω|→ 0,

where the term in 1/(iω) in (5.32) dominates the sum.

To illustrate this, we compare in figure 5.7 the transfer function ||R(ω)q †|| of the sudden

expansion (at Re = Rec ), with the Lorentzian response (5.33). As expected, both curves coincide

in the limit |ω| → 0, where the virtually neutral eigenmode enters in resonance and thus

dominates the flow response. Nevertheless, by increasing the frequency above ω = 0.04, both

curves depart from each other and the Lorentzian significantly underestimates the response.

This is the consequence of the non-normality of the operator L, which implies that q † has

a non-null projection over all the other adjoint modes, thus exciting in the response all the

associated direct modes; far from the resonant frequency, the eigenmode q has no reason

to dominate over this response. Consequently, if the noise term contains frequency above

ωco = 0.04, reducing the first-order dynamics of the system on the single mode q , which was

the case in the weakly nonlinear expansion, see (5.12), might be a poor approximation.

This is exemplified in figure 5.8, where we show the probability density function of |M |,
similarly as in figure 5.4, but for a fixed forcing amplitude φ = 12 and four increasing values of

the cut-off frequency, ωco ∈ [0.04,0.08,0.16,0.32]. The agreement between the PDF obtained

from the WNL approach (direct simulation or Fokker-Planck), and the one extracted from

DNS, seems to progressively degrade by increasing ωco . This is particularly true for M close to
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Figure 5.8: Probability density function of |M |, similarly as in figure 5.4 but for a fixed φ = 12;
to save some computational time, the ten simulations, each corresponding to a different noise
realization have been shortened to t = 1.1×103 units of times with respect to the computations
shown in figure 5.4. The data are shown for four different values of the cut-off frequency
ωco ∈ [4,8,16,32]×10−2. These four specific frequencies are highlighted with vertical black
dashed lines in figure 5.7.

zero where the weakly nonlinear PDF largely overestimates the nonlinear one. As explained

previously, that is because for too large ωco the eigenmode q , which is the only one described

by the amplitude equation, does not dominate the flow response anymore, and other modes

reveal themselves. Due to the activity of these auxiliary modes, the probability of having a null

or very low cross-wise velocity along the symmetry axis is reduced, and it becomes more and

more unlikely for |M | to take null or small values. Presumably for the same reasons, it appears

in figure 5.8d that for the largest considered ωco = 0.32, on the contrary, large values of |M |
become more likely in the DNS than in the WNL method. As a side comment, note also that

increasing ωco incidentally makes P̄ converge towards P̄ w, as expected.

5.5 Summary and perspectives

In summary, based on the existing literature we have proposed a method to derive a stochas-

tically forced equation for the amplitude of the slowly varying dominant eigenmode, after
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a steady symmetry-breaking bifurcation. To this purpose, the noise too was assumed to be

slowly varying, in other words, filtered at a certain cut-off frequency much slower than the

band-limiting frequency of the overall system. We gave a precise manner to evaluate a priori

the cut-off frequency for which the weakly nonlinear expansion, that reduces the linear dy-

namics to a single eigenmode, is justified. It is the frequency above which the transfer function

of the linearized flow departs from a Lorentzian, that only encompasses the dominant mode.

We also showed that the order of the filter, generating the slow noise from a classical white

noise, mattered little.

The probability density function of the mode amplitude obtained from the amplitude equation,

either by direct simulations or by solving the related Fokker-Planck equation, compared well

with the stochastically forced direct numerical simulations. Unsurprisingly, this is particularly

true for small forcing amplitude, as increasing the latter increases the relative importance of

higher-order nonlinear terms that have been neglected in the weakly nonlinear expansion,

and renders small values of the asymmetry measure M unlikely.

The amplitude equation has reduced the dynamics of the flow to a single coordinate whose

dynamics derive from a potential. This is particularly convenient when it comes to computing

escape time statistics. Indeed, for vanishing forcing amplitude, the waiting time between two

events where the solution transits from the neighborhood of one attractor to the other, was

found to increase as the exponential of the inverse of the forcing intensity squared. Clearly,

this precludes the utilization of direct numerical simulations. On the other hand, as a reduced-

order model, the amplitude equation can make predictions at a low numerical cost.

Nevertheless, even in different cases where the obtained amplitude equation will contain

more than one degree of freedom, therefore where generically no potential function exists, the

method proposed in this chapter can be seen as bridging a system of very high dimension, gov-

erned by the Navier-Stokes equation, with the large deviation theory and/or the Fokker-Planck

equation that are very effective in systems of low dimension. In this manner, predictions about

rare transition statistics could be made without relying on intensive numerical techniques.

For future research, the method outlined in this chapter shall be extended to more general

stochastic forcings than a single spatial structure multiplied by a slow noise. Instead, one could

consider forcing the flow as in Farrell and Ioannou (1993) with a sum of orthonormal forcing

spatial structures, multiplied by uncorrelated white noise processes. As in Farrell and Ioannou

(1993), this orthonormal family of forcing structures can be sorted in descending order from

largest to smallest maintained variance of the linear response. Because of the non-normality of

the linearized operator, it is possible that only a few of the leading forcings contribute to most

of the total variance and thus need to be included. The leading (also called “optimal") forcing

structure will be the adjoint mode, as considered in this chapter, for the associated modal

response is resonant in ω = 0 thus its variance (proportional to the integral of (5.33) over the

frequencies) diverges. The sub-optimal forcing structures, however, will be orthogonal to the

adjoint and trigger streamwise convective non-normal amplification in the flow at non-zero
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frequencies. At a nonlinear level, the modal and non-normal responses will interact with each

other, which is not taken into account in the present analysis, and knowing the role played by

the non-normal response at non-zero frequencies over the noise-induced transitions would be

of great interest. For this purpose, the method proposed in Ducimetière et al. (2022b, 2022c) to

derive amplitude equations for non-normal responses, could be coupled with that proposed

in the present chapter for the modal one. In considering noises that are not slowly varying,

one could think of splitting slowly and rapidly varying parts and consider the linear response

to the rapidly varying part in the Fourier domain at third-order.

Eventually, we believe that, although concerned with the rather specific configurations of

laminar flows past a supercritical bifurcation and subject to external stochastic forcing, the

present study could be seen as part of a more general and fundamental study on out-of-

equilibrium systems with infinitely many degrees of freedoms. This includes fluid flows in a

turbulent regime, where rare transitions are observed in numerous situations, as presented in

the introduction. It could be interesting to extend the method proposed here to transitions

between turbulent large-scale coherent structures, where the stochastic driving is endogenous

and results from nonlinear interactions of the fluctuations. For instance, the construction of a

stochastically forced amplitude equation could be done on a turbulent mean flow obtained a

priori with a quasi-linear analysis as developed in Farrell and Ioannou (2012). Indeed, such

turbulent mean flows are also subject to bifurcations and multi-stability, as clearly shown in

Constantinou et al. (2014), Farrell and Ioannou (2012), and Parker and Krommes (2013) and

many others.

The scope also covers other physical systems governed by other stochastic ordinary or partial

differential equations. This includes active matter, population dynamics, adaptive networks,

microbiological systems, climate science, and many others. As an example, it could be interest-

ing to apply the present method in the spatiotemporal system of bacteria considered in Grafke

et al. (2017) and subject to a subcritical pitchfork bifurcation above a critical mean bacterial

density. Consequently, a stable solution made of a dense bacterial colony appearing at one

boundary of the domain co-exists with another symmetrically placed at the other boundary of

the domain. It was shown in Grafke et al. (2017) that, in certain regimes, the introduction of

noise triggers rare and aperiodic transitions between these two solutions.
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6 Coupling modal and non-modal
stochastic responses past the onset of
a steady symmetry-breaking bifurca-
tion

6.1 Introduction

The present chapter aims at generalizing the developments made in the previous one, in that,

here, the noise process in the stochastic forcing term is not a priori assumed to vary over a

slow time scale. In other terms, the noise is not filtered at a very small cut-off frequency. Yet,

we show that it is still possible to formally reduce the dynamics of the bifurcated mode to a

stochastically forced amplitude equation.

As shown in the previous chapter, this is at the cost of taking into account the possibly sub-

stantial response of the system at larger frequencies and resulting from the non-normality of

the linearized operator. That is because the forcing structure, even if purely along the adjoint

of the neutral, resonant mode at the null frequency, still yields a non-zero projection on the

adjoint of all the other eigenmodes, thus making these latter contribute to the response. This

specific contribution, which decomposes in all the eigenmodes but the neutral one (in the

sense that it is triggered by the part of the forcing that is orthogonal to the adjoint of the

neutral mode), is called the "non-normal response" in the rest of this chapter. It can become

substantial if non-modal mechanisms are active. For instance, at larger frequencies, the

Kelvin-Helmholtz (convective shear instability) mechanism around ω = 0.3 was important in

the sudden expansion flow at Re = 100 considered in the previous chapter. If this non-normal

amplification is so large that the response-to-forcing amplification can be scaled in terms of

the inverse of the weakly nonlinear expansion parameter, the non-normal response threatens

the asymptotic hierarchy and has to be taken into account.

This is formally done in this chapter by proposing an operator perturbation of the inverse
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resolvent, in line with the techniques proposed in chapters 2, 3 and 4. The relevant non-

normal amplification is here sought and assumed to be very large in terms of the inner product

inducing the mean square norm, which we also call "variance" in what follows. Therefore, it is

this specific inner product that is used in the inverse resolvent perturbation, to incorporate the

non-normal response in its kernel, as done in section 6.2. Accordingly, it is under this specific

inner product that the adjoint of this singular operator is constructed. The singular operator

then contains two elements in its kernel: (i) the non-normal response by construction via

the operator perturbation, and (ii) the neutral mode, naturally present and left untouched

by the operator perturbation. As shown in section 6.3, the operator perturbation can be

encompassed in a classical weakly nonlinear expansion, closed by the Fredholm alternative.

The latter consists here in imposing orthogonality of the higher-order forcing terms with both

the adjoint eigenmode and the adjoint of the non-normal response, under the spatiotemporal

inner product. Eventually, this leads to a system of coupled equations for the amplitude of the

bifurcated mode and the non-normal response, respectively.

We purposely do not include the ensemble average in the inner product, since, from the

results of chapter 3, we anticipate that this would preclude the amplitudes to depending on

the stochastic argument (i.e., they would be deterministic) whereas these precisely are the

stochastic oscillations of the amplitudes that are sought here.

In section 6.4, the method is tested on a toy model past the onset of a supercritical pitchfork

bifurcation. The linearized model at neutrality is constructed in such a way as to show a

substantial non-normal response at larger frequencies, in addition to the resonance at zero

frequency. The probability density function of the bifurcated mode amplitude, as predicted

by the system of amplitude equations, is compared to those resulting from fully nonlinear

simulations and for increasing forcing amplitudes. The agreement is conclusive and reveals

the nonlinear coupling between the modal and the non-modal response to be an essential

ingredient.

6.2 Problem definition and linear regime

Let us consider the specific nonlinear dynamical system

∂tU = −C (U ,U )+ (L̃+ϵ2δL)U +F , (6.1)

where C (U ,U ) is a bi-linear, nonlinear operator whereas both L̃ and δL are linear ones with

0 ≤ ϵ2 ≪ 1 an external parameter. The term F denotes a body force. For ϵ = 0, the system (6.1)

possesses an unforced equilibrium denoted U e,c , satisfying

0 = −C
(
U e,c ,U e,c

)+ L̃U e,c . (6.2)
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By considering asymptotically small perturbation u around U e,c and F to also be asymptoti-

cally small and equal to f , follows the linear equation

∂t u = Lnu + f , (6.3)

where Lnu = −C
(
U e,c ,u

)−C
(
u,U e,c

)+ L̃u. We assume Ln to be a neutral, singular operator

with a null eigenvalue and denote by q , normalized as ||q || = 1, the steady, real, and neutral

eigenmode of Ln . In other terms, q is such that Ln q = 0q = 0. We also define its adjoint mode

q †, such that L†
n q † = 0. In what follows, the adjoint eigenmode is normalized such that〈

q †
∣∣∣q

〉
= 1, (6.4)

which generically implies ||q †|| ̸= 1.

We also assume the system to bifurcate to a steady, symmetry-breaking (pitchfork) bifurcation

as soon as ϵ2 > 0. As an example, in the case of the previous chapter, we identify ϵ2 = Re−1
c −Re−1

and δL = −∆ (with ∆ the Laplacian appearing in the Navier-Stokes equations).

Exactly as in chapter 3 and chapter 4, the specific form

f (x , t ) = f s(x)ξ(t ) (6.5)

is chosen for the stochastic forcing. The field f s(x) is the forcing spatial structure and ξ(t)

a Gaussian band-limited white noise process with unit intensity, zero mean, and a cut-off

frequency ωc =π. It is expressed in the Fourier domain as

|ξ̂(ω)|2 = 1, |ω| ≤ωc =π, as well as ξ(t ) = 0. (6.6)

Note that the definition of the noise above is not equivalent to that proposed in chapters 3

and 4 in (4.3), but is more restrictive, for it characterizes directly |ξ̂(ω)|2 and not its ensemble

average. As said in the introduction, in deriving the amplitude equations, the ensemble average

is not taken in this chapter since we are interested in how the amplitude of the bifurcated

eigenmode varies over time and transits from one attractor to the other. This information is

lost (integrated) upon performing the ensemble average.

The value of the cut-off frequency guarantees the noise to have a unitary variance. By "vari-

ance" of a signal, we mean its mean square, and not its mean square deviation (the mean value

is not subtracted). We also insist that, in the rest of this chapter, the term "variance" does not

involve an ensemble average, as was the case in chapters 3 and 4. Instead, is meant here that

ξ(t )2 =
1

2π

∫ ∞

−∞
|ξ̂(ω)|2dω =

1

2π

∫ π

−π
1dω = 1. (6.7)

It is again possible to optimize the stochastic gain of the system at neutrality given in (6.3),

155



Chapter 6 Coupling modal and non-modal stochastic responses

over the forcing structure f s . It amounts to solving

G = max
f s

||u(t )||2
||ξ(t ) f s ||2

= max
f s

[〈û(ω)|û(ω)〉]
ξ(t )2|| f s ||2

= max
f s

〈
f s

∣∣B∞ f s

〉
|| f s ||2

. (6.8)

where we recall the operation [•] to denote

[•] =
1

2π

∫ ∞

−∞
• dω, (6.9)

and where, in the context,

B∞ =
1

2π

∫ ωc =π

−ωc =−π
|ξ̂(ω)|2R(ω)†R(ω)dω =

1

2π

∫ π

−π
R(ω)†R(ω)dω, (6.10)

with

R(ω) = (iωI −Ln)−1. (6.11)

In the definition (6.8) of the stochastic gain, the selected inner product also does not involve

an ensemble average. The associated optimal forcing structure, denoted f o with || f o || = 1, is

the leading eigenmode of B∞. The optimal forcing structure f o can be shown to be along the

adjoint eigenmode q † (i.e. f o ∝ q †). Indeed, let us say that q and q † are associated with the

real eigenvalue δ with δ→ 0. Then, using the dyadic representation of the resolvent operator,

its application on some field f s reads

R(ω) f s =
∑

j
q j

〈
q †

j

∣∣∣ f s

〉
(iω−σ j )

〈
q †

j

∣∣∣q j

〉 (6.12)

implying in turn,

R(ω)†R(ω) f s =
∑
k

∑
j

q †
k

〈
q k

∣∣∣q j

〉〈
q †

j

∣∣∣ f s

〉
(iω−σ j )(−iω−σ∗

k )
〈

q †
j

∣∣∣q j

〉〈
q k

∣∣∣q †
k

〉 . (6.13)

Thereby, the application of B∞ on f s is dominated in the limit δ→ 0 by

B∞ f s =
1

π

∫ π

0
R(ω)†R(ω) f sdω−−−→

δ→0
q †

〈
q †

∣∣ f s

〉〈
q †

∣∣q
〉2

1

πδ
arctan

(π
δ

)
(6.14)

From (6.14), it is clear that the structure that maximizes the gain (6.8) is along q †, and that is is

associated with an diverging gain limδ→0 G = ∞. This is simply due to the resonant nature of

the system in ω = 0, making the integral over the frequencies diverge.

Let us now come back to the case where δ = 0. By using once again the dyadic representation
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of the resolvent operator, the linear response to f oξ(t ) reads in the Fourier domain,

û(ω) = R(ω) f o ξ̂(ω) = q
ξ̂(ω)

〈
q †

∣∣ f o

〉
iω

〈
q †

∣∣q
〉 + ∑

j≥2
q j

ξ̂(ω)
〈

q †
j

∣∣∣ f o

〉
(iω−σ j )

〈
q †

j

∣∣∣q j

〉 = ûL(ω)+ û⊥(ω). (6.15)

where σ1 = 0 and all σ j , j ≥ 2 have a strictly negative real part (i.e. are linearly stable). In (6.15)

we have defined

ûL(ω) = q
ξ̂(ω)

〈
q †

∣∣ f o

〉
iω

〈
q †

∣∣q
〉 (6.16)

as the Lorentzian part of the response, triggered by the fact that
〈

q †
∣∣ f o

〉
≠ 0 (i.e. the Fred-

holm alternative is not satisfied) and being solely along the neutral, resonant mode q . The

Lorentzian is associated with an infinite gain, for the integral of (iω)−1 over the frequencies

does not converge (remember that |ξ̂(ω)| = 1 for |ω| <ωc ).

We have also defined

û⊥(ω) =
∑
j≥2

q j

ξ̂(ω)
〈

q †
j

∣∣∣ f o

〉
(iω−σ j )

〈
q †

j

∣∣∣q j

〉 , (6.17)

the superscript "⊥" highlighting
〈

q †
∣∣û⊥(ω)

〉
= 0 for all ω, as the part of the response that

is induced by the non-normality of the operator Ln , in the sense that this part would be

identically null if Ln was normal. Indeed, f o is along q † by construction, and
〈

q †
j

∣∣∣q †
〉

for

j ≥ 2 is zero if and only if Ln is normal since the adjoint modes constitute then an orthogonal

family. But it is not the case if Ln is non-normal, as considered here, and forcing the system

solely along the adjoint of one of the eigenmodes also excites all the others, which contribute

to the linear response.

In the previous chapter, û⊥(ω), which describes the non-normality-induced departure of the

linear response from a Lorentzian, was undesired, for the amplitude equation we have derived

could only describe a Lorentzian along the neutral mode q . Thereby, the noise ξ̂(ω) was filtered

accordingly and û⊥(ω) became negligible. The latter approach was arguably artificial, and the

present chapter aims at more generality. In particular, both the Lorentzian response and the

non-normal one will be considered. The former will be associated with a modal amplitude

equation as in chapter 5, and the latter with a non-modal amplitude equation for the variance

as in chapter 3. Both equations will be nonlinearly coupled.

For this purpose, the first step is to decompose the forcing structure f o into the sum of two

terms: the first, ∝ q , generates solely the Lorentzian response ûL(ω), the second, denoted f ⊥
o ,
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𝒒†
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𝒇𝒐
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Figure 6.1: Schematic representation in the Euclidian space of the decomposition of the
forcing structure f o = ηq + f ⊥

o according to (6.18). Note that, by construction
〈

q †
∣∣ f ⊥

o

〉
= 0,

f o ∝ q †, || f o || = 1 and
〈

q †
∣∣q

〉
= 1.

solely the non-normal response û⊥(ω). It is easily shown that this decomposition writes

f o = q

〈
q †

∣∣ f o

〉〈
q †

∣∣q
〉︸ ︷︷ ︸

.
=η

+
(

f o −q

〈
q †

∣∣ f o

〉〈
q †

∣∣q
〉 )

︸ ︷︷ ︸
f ⊥

o

= ηq + f ⊥
o ,

(6.18)

where the superscript "⊥" again highlights the fact that
〈

q †
∣∣ f ⊥

o

〉
= 0. We check that

R(ω)ηq = ηq
ξ̂(ω)

〈
q †

∣∣q
〉

iω
〈

q †
∣∣q

〉 +η∑
j≥2

q j

ξ̂(ω)

=0︷ ︸︸ ︷〈
q †

j

∣∣∣q
〉

(iω−σ j )
〈

q †
j

∣∣∣q j

〉
= ηq

ξ̂(ω)

iω
= q

〈
q †

∣∣ f o

〉〈
q †

∣∣q
〉 ξ̂(ω)

iω
= ûL(ω),

(6.19)

owing to the bi-orthogonality of the direct and adjoint eigenmode families. In addition,

R(ω) f ⊥
o =

∑
j≥2

q j

ξ̂(ω)

=
〈

q †
j

∣∣∣ f o

〉︷ ︸︸ ︷〈
q †

j

∣∣∣ f ⊥
o

〉
(iω−σ j )

〈
q †

j

∣∣∣q j

〉 = û⊥(ω),
(6.20)

where
〈

q †
j

∣∣∣ f ⊥
o

〉
=

〈
q †

j

∣∣∣ f o

〉
for j ≥ 2 is a consequence of the fact that f ⊥

o is orthogonal to q †.

The decomposition (6.18) of the forcing f o is sketched in dimension two in figure 6.1.
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The "non-normal response" û⊥(ω) = ξ̂(ω)R(ω) f ⊥
o , although non-normality is also involved

in the Lorentzian response through the denominator
〈

q †
∣∣q

〉
, is associated with a finite gain

which can be very large. It is computed as the ratio between the variance of the non-normal

response u⊥(t ) (the inverse Fourier transform of û⊥(ω)), and the part of the forcing triggering

it, i.e. ξ(t ) f ⊥
o

||u⊥(t )||2
||ξ(t ) f ⊥

o ||2
=

[||ξ̂(ω)R(ω) f ⊥
o ||2

]
|| f ⊥

o ||2
=

〈
f ⊥

o

∣∣B∞ f ⊥
o

〉
|| f ⊥

o ||2
=

1

ϵ2
o

, (6.21)

where ϵo has been introduced. In the following, we assume the non-normal gain in (6.21) to

be very large, such that ϵo ≪ 1 can be scaled in terms of the small parameter ϵ according to

ϵo = θϵ2, with θ = O(1). (6.22)

In agreement with the line of thought proposed in chapter 2 and chapter 3, a large response-

over-forcing amplification under the inner product

〈
x(t )

∣∣y(t )
〉

=
[〈

x̂(ω)
∣∣ŷ(ω)

〉]
, (6.23)

used in (6.21) and inducing the variance norm, implies that a small perturbation ("small"

referring to the same norm) suffices to make the inverse resolvent singular. Indeed, let us

define the normalized non-normal response l⊥(t ) as

l⊥(t ) =
ϵo

|| f ⊥
o ||

u⊥(t ). (6.24)

In this way,

(∂t −Ln)u⊥(t ) = ξ(t ) f ⊥
o ⇒ (∂t −Ln)l⊥(t ) =

ϵo

|| f ⊥
o ||

ξ(t ) f ⊥
o , (6.25)

implying l⊥(t ) to have a unit variance since

〈
l⊥(t )

∣∣l⊥(t )
〉

=
ϵ2

o

|| f ⊥
o ||2

〈
u⊥(t )

∣∣u⊥(t )
〉

= 1 (6.26)

according to the definition (6.21) of ϵo .

Crucially, (6.25) indicates that the spatiotemporal operator (∂t −Ln) is close to possessing

a second non-trivial element in its kernel (the first being q), in the sense that it maps the

response l⊥(t ), of unitary spatiotemporal (variance) norm, onto the field ϵoξ(t ) f ⊥
o || f ⊥

o ||−1, of

spatiotemporal norm ϵo ≪ 1, very small by assumption. Therefore, we can perturb (∂t −Ln)

according to

Γ(t ) (•) = (∂t −Ln)•−ϵoP (t ) (•) , with P (t ) =
ξ(t ) f ⊥

o

|| f ⊥
o ||

〈
l⊥(t )

∣∣•〉, (6.27)
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where the induced norm of the perturbation operator is unitary, i.e.

||P (t )||2 = max
y

||P (t )
(

y(t )
) ||2

||y(t )||2
= 1, (6.28)

achieved for y(t) = l⊥(t). The operator Γ indeed possesses the non-normal response as a

non-trivial element in its kernel since

Γ(t )
(
l⊥(t )

)
= (∂t −Ln)l⊥(t )−P (t )

(
l⊥(t )

)
=

ϵo

|| f ⊥
o ||

(∂t −Ln)u⊥(t )− ϵo

|| f ⊥
o ||

ξ(t ) f ⊥
o

= 0

(6.29)

by definition. Furthermore, the eigenmode q , in the kernel of (∂t −Ln), also is in the kernel of

Γ since

Γ(t )
(
q

)
= ∂t q︸︷︷︸

=0

−Ln q︸︷︷︸
=0

−ϵo
ξ(t ) f ⊥

o

|| f ⊥
o ||

〈
l⊥(t )

∣∣q
〉

= −ϵo
ξ(t ) f ⊥

o

|| f ⊥
o ||

〈
l⊥(t )︸ ︷︷ ︸

=0

∣∣∣∣∣∣q

〉

= 0

, (6.30)

where we have used that the non-normal response yields a null temporal average, i.e.

l⊥(t ) = 0 (6.31)

since it is the linear response of a noise chosen to also have a zero average in (6.6). Thereby, we

insist that the non-trivial kernel of the operator Γ(t ) (•) contains two elements: l⊥(t ) and q .

The operator perturbation was performed in the temporal domain in (6.27), but, in the statisti-

cally steady regime, it is strictly equivalent to perturbing the inverse resolvent (in the Fourier

domain) as

Φ(ω) (•) = R(ω)−1 •−ϵoP (ω) (•) , with P (ω) =
ξ̂(ω) f ⊥

o

|| f ⊥
o ||

[〈
l̂
⊥

(ω)
∣∣∣•〉]

, (6.32)

whose non-trivial kernel is composed of l̂
⊥

(ω) as well as

F
(
q

)
=

1p
T

∫ T

0
qe−iωt dt =

2πδ(ω)p
T

q . (6.33)

Nevertheless, computations shall be made in the temporal domain in this chapter to avoid

carrying the term 2πδ(ω)/
p

T all along the calculations, and thus lighten the formalism.
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The adjoint operator of Γ under the inner product (6.23), writes

Γ†(t ) = (∂t −Ln)† −ϵo
l⊥(t )

|| f ⊥
o ||

〈
ξ(t ) f ⊥

o

∣∣•〉︸ ︷︷ ︸
.
=P †(•)

= −∂t −L†
n −ϵo

l⊥(t )

|| f ⊥
o ||

〈
ξ(t ) f ⊥

o

∣∣•〉,
(6.34)

where (∂t −Ln)† denotes the adjoint operator of (∂t −Ln) under the spatiotemporal inner

product (6.23), i.e.〈
(∂t −Ln)g

∣∣h〉
=

〈
g
∣∣(∂t −Ln)†h

〉
, ∀g ∈D ((∂t −Ln)) ,h ∈D

(
(∂t −Ln)†

)
(6.35)

Its non-trivial kernel is constituted of q †, together with

a(t ) =χ
(
(∂t −Ln)−1)†

l⊥(t ), (6.36)

with χ a normalization constant, or equivalently,

a(t ) = F−1 (â(ω)) , with â(ω) =χR(ω)† l̂
⊥

(ω). (6.37)

Indeed, it is easily checked that

Γ†(t ) (a(t )) =χ(∂t −Ln)† (
(∂t −Ln)−1)†

l⊥(t )−χϵo
l⊥(t )

|| f ⊥
o ||

〈
ξ(t ) f ⊥

o

∣∣∣((∂t −Ln)−1
)† l⊥(t )

〉

=χ (∂t −Ln)†
(
(∂t −Ln)†

)−1︸ ︷︷ ︸
=I

l⊥(t )−χϵo
l⊥(t )

|| f ⊥
o ||

〈
(∂t −Ln)−1ξ(t ) f ⊥

o︸ ︷︷ ︸
u⊥(t )

∣∣∣∣∣∣∣l⊥(t )

〉

=χl⊥(t )−χl⊥(t )
〈

l⊥(t )
∣∣l⊥(t )

〉
= 0,

(6.38)

where we have used that the adjoint of the inverse is the inverse of the adjoint. The scalar χ is

chosen such that

〈
a(t )

∣∣l⊥(t )
〉

= 1 ⇔χ =
(〈

l⊥(t )
∣∣(∂t −Ln)−1l⊥(t )

〉)−1
(6.39)

The kernel of Γ† also contains the adjoint eigenmode q †

Γ†(t )
(

q †
)

= −∂t q †︸ ︷︷ ︸
=0

−L†
n q †︸ ︷︷ ︸
=0

−ϵo
l⊥(t )

|| f ⊥
o ||

〈
ξ(t ) f ⊥

o

∣∣q †
〉

= −ϵo
l⊥(t )

|| f ⊥
o ||

〈
ξ(t )︸︷︷︸

=0

f ⊥
o

∣∣∣∣∣∣q †

〉
= 0. (6.40)

In the next section, a weakly nonlinear expansion is proposed for the system, which we recall
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to be past the onset of a pitchfork bifurcation for 0 < ϵ≪ 1 and subject to stochastic forcing.

The expansion will result in a system of two non-linearly coupled equations: one for the

bifurcated, symmetry-breaking eigenmode q , the other for the variance of l⊥(t ), the part of the

stochastic response constituted of all the other eigenmodes (i.e. the non-normality induced

part of the response). For this purpose, we are equipped with the forcing decomposition in

(6.18), followed by the operator perturbation in (6.27) to fill the kernel with the non-normality

induced part of the response.

6.3 Weakly nonlinear expansion

The nonlinear system (6.1) is weakly stochastically forced by

F (x , t ) = Fξ(t ) f o(x), with F ≪ 1, scaled as F =φϵ3. (6.41)

We recall ϵ2 ≪ 1 to also be a small parameter measuring the distance to the critical point in

the parameter space, where the system succumbs to a supercritical pitchfork bifurcation.

The process ξ(t ) was characterized in the previous section, and we repeat that the structure

f o ∝ q † is normalized as || f o || = 1. The prefactor φ = O(1) directly sets the variance F 2 of the

stochastic forcing.

The weak forcing variance suggests the solution to (6.1) to be sought in terms of a multiple-

scale asymptotic expansion in terms of the power of ϵ as

U = U e +ϵu1(t ,τ1,τ2)+ϵ2u2(t ,τ1,τ2)+ϵ3u3(t ,τ1,τ2)+O(ϵ4), (6.42)

with the independent variables τ1 and τ2 evaluated as τ1 = ϵt and τ2 = ϵ2t , thus corresponding

to slow times. Injecting (6.42) in (6.1) leads to the expansion

ϵ (∂t u1 −Lnu1)+
ϵ2 (

∂t u2 −Lnu2 +∂τ1 u1 −δLU e +C (u1,u1)
)+

ϵ3 (
∂t u3 −Lnu3 +∂τ1 u2 +∂τ2 u1 −δLu1 +2C (u1,u2)−φ f oξ

)+O(ϵ4) = 0,

(6.43)

The operator (∂t −Ln) in then perturbed according to (6.27), and the small parameter ϵo linked

to the expansion parameter as in (6.22) (i.e. ϵo = θϵ2 with θ = O(1)), eventually leading to the

expansion

ϵ (Γ (u1))+
ϵ2 (

Γ (u2)+∂τ1 u1 −δLU e +C (u1,u1)
)+

ϵ3 (
Γ (u3)+∂τ1 u2 +∂τ2 u1 −δLu1 +2C (u1,u2)−φ f oξ+θP (u1)

)+O(ϵ4) = 0.

(6.44)
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The equation to be satisfied at O(ϵ) reads

Γ (u1) = 0, (6.45)

whose general solution is

u1(t ,τ1,τ2) = A(τ1,τ2)q +B(τ1,τ2)l⊥(t ), (6.46)

where A and B are undetermined scalars that depend solely on the variables τ1 and τ2,

independent of t , such that A and B can be taken out of the temporal average operation and

Γ
(

Aq +B l⊥
)

= AΓ
(
q

)︸ ︷︷ ︸
=0

+B Γ
(
l⊥

)︸ ︷︷ ︸
=0

= 0
(6.47)

holds indeed. Contrarily to the developments in chapter 3, the amplitudes here are stochastic

quantities. That is made possible by the fact that the operator perturbation purposely does

not involve an ensemble average, only a temporal one. Thereby, even if stochastic, A and B

can be taken out of the inner product, leading to (6.47).

At O(ϵ2),

Γ (u2) = −q
∂A

∂τ1
− l⊥

∂B

∂τ1
− A2C

(
q , q

)−2ABC
(
q , l⊥

)−B 2C
(
l⊥, l⊥

)+δLU e

= f 2

(6.48)

must be satisfied. For this equation to yield a non-diverging particular solution, the right-hand

side must be orthogonal to the kernel of Γ† under the inner product (6.23). Specifically,〈
q †

∣∣ f 2(t )
〉

=
〈

q †
∣∣∣ f 2(t )

〉
= 0, (6.49)

as well as

〈
a(t )

∣∣ f 2(t )
〉

= 0, (6.50)

must both be enforced. In Appendix 6.6.1, we show that (6.49) leads to

∂A

∂τ1
=α1B 2, with α1 = −

〈
q †

∣∣∣C (
l⊥, l⊥

)〉
, (6.51)

then that (6.50) leads to

∂B

∂τ1
=β1 AB , with β1 = −〈

a
∣∣2C

(
q , l⊥

)〉
. (6.52)
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Injecting (6.51) and (6.52) back in (6.48) yields

Γ (u2) = −A2C
(
q , q

)− AB
(
2C

(
q , l⊥

)+ l⊥β1
)−B 2 (

C
(
l⊥, l⊥

)+α1q
)+δLU e

= A2 f A2

2 + AB f AB
2 +B 2 f B 2

2 + f δ2 ,
(6.53)

whose particular solution reads

u2 = A2u A2

2 + ABu AB
2 +B 2uB 2

2 +uδ
2 , (6.54)

with

(∂t −Ln)u A2

2 = f A2

2 = −C
(
q , q

)
(∂t −Ln)u AB

2 = f AB
2 = −2C

(
q , l⊥

)− l⊥β1

(∂t −Ln)uB 2

2 = f B 2

2 = −C
(
l⊥, l⊥

)−α1q

(∂t −Ln)uδ
2 = f δ2 = δLU e .

(6.55)

Indeed,

0 =
〈

a
∣∣∣ f A2

2

〉
=χ

〈
l⊥(t )

∣∣∣(∂t −Ln)−1 f A2

2

〉
=χ

〈
l⊥(t )

∣∣u A2

2

〉
, (6.56)

implying

Γ
(
u A2

2

)
= (∂t −Ln)u A2

2 = f A2

2 (6.57)

indeed, and the same reasoning applies to all the other components of the particular solution.

Crucially, note that both fields u A2

2 and uδ
2 tend toward a constant value, and that the field u AB

2

yields a null temporal average (i.e. u AB
2 = 0) since it is the linear response of a forcing term with

a null temporal average. The homogeneous solution is ignored in (6.54), presumably without

loss of generality.

The equation to be solved at O(ϵ3) is written

Γ (u3) = −q
∂A

∂τ2
− l⊥

∂B

∂τ2
+ AδLq +BδLl⊥−∂τ1 u2 −2C (u1,u2)+φ f oξ−θP (u1)

= f 3.
(6.58)

We make explicit

∂τ1 u2 = 2α1 AB 2u A2

2 + (α1B 3 +β1 A2B)u AB
2 +2β1 AB 2uB 2

2 , (6.59)

followed by

C (u1,u2) =AC
(

q ,uδ
2

)
+BC

(
l⊥,uδ

2

)
+ A3C

(
q ,u A2

2

)
+B 3C

(
l⊥,uB 2

2

)
A2B

(
C

(
q ,u AB

2

)+C
(
l⊥,u A2

2

))
+ AB 2

(
C

(
q ,uB 2

2

)
+C

(
l⊥,u AB

2

))
,

(6.60)
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as well as

P (u1) =
ξ(t ) f ⊥

o

|| f ⊥
o ||

〈
l⊥(t )

∣∣Aq +B l⊥(t )
〉

= A
ξ(t ) f ⊥

o

|| f ⊥
o ||

〈
l⊥(t )︸ ︷︷ ︸

=0

∣∣∣∣∣∣q

〉
+B

ξ(t ) f ⊥
o

|| f ⊥
o ||

〈
l⊥(t )

∣∣l⊥(t )
〉︸ ︷︷ ︸

=1

= B
ξ(t ) f ⊥

o

|| f ⊥
o ||

.

(6.61)

Furthermore, in (6.58), the stochastic forcing term ξ(t ) f o requires a special treatment. First,

we recall the latter to be decomposed as

f oξ(t ) = ηqξ(t )+ f ⊥
o ξ(t ), (6.62)

where, by construction, the first term at the right-hand side only excites the neutral, steady,

eigenmode q and thus generates a Lorentzian transfer function peaked around ω = 0. The

second term excites all the other eigenmodes by non-normality. Then, let us introduce the

noise process ζ(t ), defined from ξ(t ) in the Fourier domain as

F (ζ(t )) (s) = ϵ2F (ξ(t )) (ω)|ω=ϵ2s , |s| ≤ ωc

ϵ2 , or, equivalently,

ζ̂(s) = ϵ2ξ̂
(
ϵ2s

)
, |s| ≤ ωc

ϵ2 .
(6.63)

On the other hand, it was shown in (5.5) using the definition of the Fourier transform and

performing a change of variable, that

F
(
ζ(ϵ2t )

)
(ω) =

1

ϵ2 F (ζ(t )) (s)|s=ω/ϵ2 . (6.64)

As a consequence, defining ζ(t ) as in (6.63) guarantees that

F
(
ζ(ϵ2t )

)
(ω) = ϵ2 1

ϵ2 F (ξ(t )) (ω)|ω=ϵ2s=ϵ2ω/ϵ2 = F (ξ(t )) (ω) ⇔
ζ(ϵ2t ) = ξ(t ), ∀t .

(6.65)

In words, we constructed a new stochastic process ζ(t ) which varies much faster than ξ(t ), in

such a manner that taking its slow variations ζ(ϵ2t ) directly is equal to ξ(t ). This construction

is convenient, in that ζ(ϵ2t ) = ζ(τ2) varies over the slow time scale τ2, thereby can be included

as stochastic forcing term directly at the amplitude equation level.

This construction could have been made in the previous chapter but would have been useless

since the noise ξ naturally depended on the slow time scale, due to the necessity to select

a very small cut-off frequency to neutralize the non-normal response l⊥. Here, the cut-off

frequency ωc = π can’t be scaled in terms of the small parameter, and ξ(t) itself does not

naturally depend on a slow time scale as ζ(ϵ2t ) does.

In (6.62), the relation ξ(t ) = ζ(ϵ2t ) = ζ(τ2) is used solely in the first term ηqξ(t ) in the right-hand

side, whereas ξ(t ) is kept as is when multiplying f ⊥
o in the second term in the right-hand side,
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i.e.

f oξ(t ) = ηqζ(τ2)+ f ⊥
o ξ(t ). (6.66)

This way, the first term will act as a source of stochastic excitation in the equation for A,

therefore the Lorentzian part of the linear response will be carried by the amplitude A, which

must be since the latter multiplies the constant mode q . On the other hand, the amplitude

B should not be stochastically forced in the linear regime, but, on the contrary, should be a

deterministic constant. That is because B multiplies l⊥ which already encompasses the full

spectrum of the non-normal linear response.

Injecting (6.66) back in (6.58), we show in Appendix 6.6.2 that imposing〈
q †

∣∣ f 3(t )
〉

=
〈

q †
∣∣∣ f 3(t )

〉
= 0 (6.67)

yields

∂A

∂τ2
=α2 A+α3 A3 +α4 AB 2 +φηζ, (6.68)

with

α2 = −
〈

q †
∣∣∣−δLq +2C

(
q ,uδ

2

)〉
,

α3 = −
〈

q †
∣∣∣2C

(
q ,u A2

2

)〉
, and eventually

α4 = −
〈

q †
∣∣∣2β1uB 2

2 +2C
(

q ,uB 2

2

)
+2C

(
l⊥,u AB

2

)〉
.

(6.69)

Then, is shown that imposing

〈
a(t )

∣∣ f 3(t )
〉

= 0 (6.70)

leads to

∂B

∂τ2
=φ|| f ⊥

o ||−θB +β2B +β3B 3 +β4 A2B (6.71)

with

β2 = −〈
a

∣∣−δLl⊥+2C
(
l⊥,uδ

2

)〉
β3 = −〈

a
∣∣α1u AB

2 +2C
(
l⊥,uB 2

2

)〉
, and eventually

β4 = −〈
a

∣∣β1u AB
2 +2C

(
q ,u AB

2

)+2C
(
l⊥,u A2

2

)〉
.

(6.72)

The total derivatives of the re-scaled amplitudes a = ϵA and b = ϵB with respect to the time t is
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written

da

dt
= ϵ

(
∂τ1

∂t

∂A

∂τ1
+ ∂τ2

∂t

∂A

∂τ2

)∣∣∣∣
(τ1,τ2)=(ϵt ,ϵ2t )

=

(
ϵ2 ∂A

∂τ1
+ϵ3 ∂A

∂τ2

)∣∣∣∣
(τ1,τ2)=(ϵt ,ϵ2t )

(6.73)

and similarly for b, which eventually leads to the system of amplitude equations

da

dt
= ϵ2α2a +α1b2 +α3a3 +α4ab2 +Fηξ(t )

db

dt
= ϵ2β2b +F || f ⊥

o ||−ϵob +β1ab +β3b3 +β4a2b
(6.74)

where the definitions ζ(ϵ2t ) = ξ(t ), F =φϵ3 and θϵ2 = ϵo have been taken into account.

In the linear limit F → 0 the system decouples, and if further evaluated at neutrality where

ϵ = 0, reduces to

da

dt
= Fηξ(t ) ⇒ â(ω) = Fη

ξ̂(ω)

iω
, and b → b =

F || f ⊥
o ||

ϵo
= cst , (6.75)

thereby the linear response to Fξ(t ) f o reads in the Fourier domain

â(ω)q +b l̂
⊥

(ω) = Fη
ξ̂(ω)

iω
q +F

|| f ⊥
o ||
ϵo

l̂
⊥

(ω) = F

(
q

〈
q

∣∣ f o

〉〈
q †

∣∣q
〉 ξ̂(ω)

iω
+ û⊥(ω)

)
(6.76)

which is exactly as computed in (6.15) (multiplied by F by linearity since the forcing also is

multiplied by F ). Thereby, the system of amplitude equation is exact in the linear regime and

recovers the response to be the sum of a Lorentzian rescaled by F (captured by a(t)) and a

non-normal response whose entire spectrum is rescaled by F (captured by b).

Note that the coefficients in (6.74) can be physically interpreted.

• The coefficients ϵ2α2 and ϵ2β2 are the sensitivity of the neutral eigenvalue and linear

non-normal gain, respectively, to the +ϵ2δL modification of the linear operator. Thereby,

they multiply a term linear a and b, respectively.

• The coefficient α1 takes into account the fact that the nonlinear interaction of the non-

normal response with itself (∝ b2) yields a non-zero temporal average value which may

project on q thus acts as a source of a. Note that this coefficient is identically null here

since f o ∝ q † has the same spatial symmetry as q †, therefore C
(
l⊥, l⊥

)
has the opposite

symmetry and their spatial inner product is null.

• The coefficient β1 is the sensibility of the non-normal linear gain to a +aq modification

of the base flow, thus it multiplies a term ∝ ba. This coefficient also is identically null

here since f o had the same spatial symmetry as q †.
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• The coefficients α3 (resp. β3) contain the retro-action of the nonlinear interaction of the

neutral mode (resp. non-normal response) with itself, on itself.

• The coefficient α4 contains the sensibility of the neutral eigenvalue to the fact that the

mean flow has been distorted by the nonlinear interaction of the non-normal response

with itself ∝ b2 (i.e., it contains the sensibility to a +b2uB 2

2 modification of the base flow

into a mean flow). Thereby, it multiplies a cubic coupling term in ab2. This coefficient

also contains the fact that the second-order field, created by the nonlinear interaction of

the non-normal response with the mode, has a nonlinear retroaction on the non-normal

response which creates a non-zero temporal average, and projects on q † to act as a

source of a.

• The coefficient β4 contains the sensibility of the non-normal response amplitude to

the nonlinear distortion of the base flow resulting from the nonlinear interaction of the

mode with itself. In other words, it contains the sensitivity of the non-normal response

to a +a2u A2

2 modification of the base flow, hence multiplying a cubic coupling term

in ba2. It also contains the effect of the nonlinear interaction, with the mode, of the

second-order field ensuing from the nonlinear interaction of the non-normal response

with the mode.

The same system as (6.74) would be obtained in the configuration where f o was not purely

along the adjoint mode (that is why we did not replace f o = q † and did not cancel α1 and β1 in

the developments). In the latter case, b would be non-null even if Ln was a normal operator.

In the next section, we test the performances of the system (6.74) in a weakly nonlinear regime

and for a toy model. Of particular importance, is the question of the improvement of the

predicted statistics of a by the coupling with the nonlinear response b, as compared to a

configuration where the non-normal response is ignored and a considered independently (as

a traditional weakly nonlinear approach would consider).

6.4 Application to a toy model

The method outlined in the previous section is applied to the specific stochastically forced

nonlinear system writing

dU

dt
= (Ln +ϵ2δL)︸ ︷︷ ︸

=L

U +||U ||2BU +ϵ3φξ f o , (6.77)

with

Ln =

0 c c

0 −2ηsωs −ω2
s

0 1 0

 , δL =

1 1 1

0 1 1

0 1 1

 , and B = −10−1δL. (6.78)
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The symbols c > 0, ωs > 0 and 1 ≫ ηs > 0 denote free parameters, and the matrix Ln possesses

the eigenvalues

σ1 = 0, σ2 = −ηsωs + iωs

√
1−η2

s , and σ3 = −ηsωs − iωs

√
1−η2

s . (6.79)

Thereby, Ln is linearly neutral and singular, σ1 being null and σ2 and σ3 being damped. These

latter eigenvalues have an eigenfrequency close to ωs and a damping rate equal to ηsωs . The

parameter c is a coupling constant that controls the degree of non-normality of the system

but doesn’t affect the eigenvalues. The steady, neutral eigenmode q associated with σ1 reads

q =

1

0

0

 , and its adjoint q † =


1
c
ω2

s
c(2ηs−ωs )

ωs

 (6.80)

normalized as ||q ||2 =
〈

q
∣∣q

〉
= 1 and

〈
q †

∣∣q
〉

= 1, respectively. In the context, 〈•|•〉 denotes

simply 〈a|b〉 = aH b.

The unforced system (6.77) is subject to a supercritical pitchfork bifurcation at ϵ = 0, where the

unique equilibrium solution is U e,c = 0 yields a linearized operator Ln which is linearly neutral

along the eigenmode (6.80). For ϵ> 0, the equilibrium U e = 0 still exists but is unstable and

the system possesses two additional stable equilibria

U e =

±ϵ
p

10

0

0

 . (6.81)

In the rest of this section, we set rather arbitrarily

ωs = 0.2, ηs = 0.01, and c = 10. (6.82)

In figure 6.2, we show in the Fourier domain the norm squared of the linear response to f oξ(t )

of the system (6.77) for ϵ = 0, reading

||û(ω)|| = ||R(ω) f o ξ̂(ω)|| = ||R(ω) f o ||, |ω| ≤ωc =π (6.83)

where we used that |ξ̂(ω)| = 1 for |ω| ≤ωc . We recall that R(ω) = (iωI −Ln)−1, and that f o ∝ q †

with || f o || = 1. The decomposition (6.15) of the linear response into the sum of a Lorentzian

ûL(ω) around ω = 0 and a rest û⊥(ω) generated by non-normality, is also illustrated by adding

||ûL(ω)||2 and ||û⊥(ω)||2 to the figure. Even though the forcing structure f o is purely along

the adjoint of the neutral mode at ω = 0, non-normality of the matrix Ln in (6.78) implies that

f oξ(t ) also excites the two other eigenmodes of Ln . Consequently, we observe in figure 6.2 that

the system also responds substantially around ωs = 0.2 and û⊥(ω) is dominant there, whereas

negligible around ω = 0 since the Lorentzian is diverging in the latter region.
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Figure 6.2: Norm squared of the linear response ||û(ω)||2 = ||R(ω) f o ||2 = ||ûL(ω)+ û⊥(ω)||2 as a
function of the frequency, together with the squared norm of its components, ||ûL(ω)||2 and
||û⊥(ω)||2. Note that the equality ||ûL(ω)+ û⊥(ω)||2 = ||ûL(ω)||2 +||û⊥(ω)||2 generically does
not hold.

The non-normal response far from ω = 0 being significant, we expect the latter to have an

influence on the nonlinear dynamics of the bifurcated mode q for ϵ > 0, which we aim at

capturing in the weakly nonlinear regime by postulating the expansion

U = U e,c︸︷︷︸
=0

+ϵu1(t ,τ1,τ2)+ϵ2u2(t ,τ1,τ2)+ϵ3u3(t ,τ1,τ2)+O(ϵ4),
(6.84)

The nonlinear operator N (U ) = ||U ||2BU is expanded around U e,c = 0 as

N
(
0+ϵu1 +ϵ2u2 +ϵ3u3

)
= ϵ3||u1||2Bu1 +O(ϵ4) = ϵ3N3 (u1,u1)+O(ϵ4), (6.85)

with

N3 (a,b) =
1

3

(〈a|b〉B a +〈b|a〉B a +||a||2Bb
) ̸= N3 (b, a) . (6.86)

The nonlinear operator yields no contributions at O(ϵ2) and the ensuing second-order coeffi-

cients appearing in (6.51) and (6.52) also vanish. This implies that the amplitudes A and B do

not depend on τ1. The second-order particular solution u2 is also null, and we easily obtain

the following system of coupled amplitude equations by closing the expansion at third-order

dA

dτ2
=α2 A+α3 A3 +α4 AB 2 +φηζ,

dB

dτ2
=φ|| f ⊥

o ||−θB +β2B +β3B 3 +β4 A2B ,
(6.87)
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with the slightly modified coefficients

α2 =
〈

q †
∣∣∣δLq

〉
,

α3 =
〈

q †
∣∣∣N3

(
q , q

)〉
,

α4 =
〈

q †
∣∣∣3N3

(
l⊥, q

)〉
,

(6.88)

as well as

β2 =
〈

a
∣∣δLl⊥

〉
β3 =

〈
a

∣∣N3
(
l⊥, l⊥

)〉
, and eventually

β4 =
〈

a
∣∣3N3

(
q , l⊥

)〉
.

(6.89)

The re-scaled amplitudes a = ϵA and b = ϵB obey the equations

da

dt
= ϵ2α2a +α3a3 +α4ab2 +Fηξ,

db

dt
= F || f ⊥

o ||−ϵob +ϵ2β2b +β3b3 +β4ba2.
(6.90)

Again, in the system (6.90), the coefficients ϵ2α2 and ϵ2β2 are the sensitivities of the neutral

eigenvalue and the linear non-normal response amplitude, respectively, to a +ϵ2δL pertur-

bation of the operator Ln . The coefficients α3 and β3 multiply cubic terms arising from the

nonlinear interaction of the eigenmode, respectively the linear non-normal response, with

itself and retro-acting on itself. The coefficient α4 multiplies a cubic coupling term stemming

from the fact that the bifurcated mode evolves on a mean flow that has been distorted under

the action of the nonlinear interaction ∝ b2 of the non-normal response with itself. Similarly,

the coefficient β4 takes into account the mirror effect that the non-normal response evolves

over a base flow that has been distorted by the nonlinear interaction ∝ a2 of the bifurcated

eigenmode with itself.

For a given F (F 2 being the variance of stochastic forcing) and a given ϵ, both amplitudes are

determined by integrating the system (6.90) numerically with a time step ∆t = 10−1. This

way, the largest frequency captured by the numerical solution (i.e. the Nyquist frequency)

ωd =π/∆t , is ten times larger than the cut-off frequency of the noise. Each simulation lasts 108

units of time, which was found largely sufficient for the convergence of all temporal averages,

in particular for the coefficients.

The accuracy of the leading order description (6.91), denoted with the acronym "WNL" in

what follows, is compared with direct, fully nonlinear simulations ("DNS") of the original

system (6.77). Fully nonlinear simulations are also performed with a time step of ∆t = 10−1

until a final time T = 108.

We recall that the amplitudes a and b are associated with the leading order description of the
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system

U (t ) = a(ϵ2t )q +b(ϵ2t )l⊥(t )+O(ϵ3), (6.91)

with a,b = O(ϵ). Thereby, the first measure of comparison between both WNL and DNS

approaches is simply chosen as the root mean square
p

E of the respective signals

p
E =

√
||y ||2, where y =

aq +bl⊥ for the WNL approach

U for the DNS approach.
(6.92)

The results are proposed in figure 6.3 as a function of F , and for

ϵ2 = ϵo = 3.52×10−4, (6.93)

corresponding to θ = 1 (which is a way to ensure that θ = O(1) indeed). For comparison, we

also show some WNL results obtained after having artificially decoupled the equation for a

and b by setting to zero α4 and β4 in (6.90)

da

dt
= ϵ2α2a +α3a3 +����

α4ab2 +Fηξ,

db

dt
= F || f ⊥

o ||−ϵob +ϵ2β2b +β3b3 +��
��

β4ba2.
(6.94)

Still in figure 6.3, are also included some results where the amplitude b was artificially set to

zero, such that we only simulated

da

dt
= ϵ2α2a +α3a3 +Fηξ, (6.95)

as a classical (modal) amplitude equation would result in.

In the limit F → 0 where the system is unforced in figure 6.3, the r.m.s from the DNS converges

to that of the equilibrium solutions
p

E = ϵ
p

10 =
p

3.52×10−4 ×10 = 0.06. The WNL also

converges toward this exact value since b → 0 and the equilibrium solution for a, denoted ā,

reads

ā =

√−α2

α3
ϵ =

p
10ϵ, (6.96)

which occurs to be the exact solution. This is inherent to the chosen toy system and is not

expected to be generically true. By increasing the forcing amplitude F , the r.m.s of the DNS

response first slightly decreases, then substantially increases. In doing so, the WNL is revealed

to be an accurate model. Most importantly, the inclusion of the non-normal response (with

amplitude b) and its coupling with the modal one (with amplitude a) improves the agreement

with the DNS as compared to the classical (modal) case where only the amplitude equation for

a is considered. That is because the non-normal response is largely amplified by the system,

thus feeding back on the mean flow over which the bifurcated mode is evolving. From a
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Figure 6.3: Root mean square defined in (6.92) of the stochastic response of the toy system
(6.77), as (i) extracted from a DNS (continuous line with diamond markers) (ii) approached
by the weakly nonlinear system of amplitude equations (6.90) (dash-dotted line with circle
markers) (iii) approached by the weakly nonlinear system of amplitude equations in which
the coupling terms have been artificially suppressed (6.94) (dashed line with square markers)
and (iv) approached by the weakly nonlinear amplitude equation for a only and where b
not considered (6.95) (dotted line with triangle markers), as would be the case in a classical,
modal approach. We recall that ϵ2 = ϵo = 3.52×10−4, value at which the system possesses two
equilibria solution at [±0.06,0,0]T both with a root mean square

p
E = 0.06. In frame (a) the

results are shown in lin-lin scale, whereas they are shown in log-lin in frame (b).

mathematical perspective, the classical modal approach cannot capture this coupling, for the

non-normal response cannot be incorporated in the non-resonance condition; in other terms,

in a classical approach, the non-normal response is thought of as remaining at third-order,

whereas it is shown here that, precisely because it is largely amplified, it must feed back at

leading order to yield a system of coupled amplitude equation.

The improvement induced by accounting for the modal and non-modal coupling is also clear

in figure 6.4, where we compare the density probability function (PDF) of a, denoted P [a],

with that where a is extracted from the DNS, P [aDNS] with

aDNS(t ) =

〈
q †

∣∣U (t )
〉〈

q †
∣∣q

〉 =
〈

q †
∣∣∣U (t )

〉
. (6.97)

The coupled system of amplitude equations shows a significantly better agreement with

the fully nonlinear probability density function than the decoupled one. In particular, from

F = 2.01×10−5 onward, the coupled system can capture that the PDF is no longer bi-modal,

presumably because the mean flow distortion by the non-normal response had restored 0 as

being the unique and stable equilibrium of the system. The decoupled system lacks the term

in ab2 and thus can’t capture the restoration of the symmetry by increasing b (ensuing from

the increase of F ) and remains bi-modal for all considered forcing amplitudes.
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Figure 6.4: Probability density function of the amplitude a of the bifurcated mode q , where a
is either extracted from a DNS according to (6.97) (continuous line), or a solution of the weakly
nonlinear system of amplitude equation (6.90) (dash-dotted line), or a solution of the weakly
nonlinear system of amplitude equations where a and b have been artificially decoupled (6.94)
(dashed line). The thin vertical lines highlight the two deterministic attractors at ±0.06.

6.5 Conclusions and perspectives

In this chapter, we have decomposed the linear response to a stochastic forcing into the

sum of (i) a modal, Lorentzian response along a neutral mode, and (ii) a response along all
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the other eigenmodes, ensuing from the non-normality of the linearized operator. The non-

normal response was assumed to experience a large response-to-forcing gain, as measured

by the mean square norm induced under the spatiotemporal inner product. Thereby, in the

lineament of the ideas advanced in the previous chapters, a perturbation operator involving

the spatiotemporal inner product was sufficient to make singular the inverse resolvent or its

equivalent in the temporal domain. The singular operator thus constructed contained both (i)

the neutral mode and (ii) the non-normal response.

A weakly nonlinear expansion encompassing the inverse resolvent perturbation led to a system

of nonlinearly coupled equations for the amplitude of the mode and the non-normal response,

respectively. These equations have been obtained by satisfying at each order the Fredholm

alternative generalized to the spatiotemporal inner product, for it is under this inner product

that the adjoint of the singular operator had to be constructed. Enforcing a spatiotemporal

orthogonality with the adjoint of the neutral mode is equivalent to saying that the temporal

mean of the forcing term must be orthogonal to the adjoint under the spatial inner product.

This is an intuitive condition that would also be found with a classical weakly nonlinear

expansion. The originality of the method lies in the fact that an amplitude equation for the

non-normal response is also derived, by enforcing a spatiotemporal orthogonality of the

forcing term with the adjoint of the non-normal response. These two orthogonality conditions

preserve the asymptotic hierarchy. The first one because it prevents resonance from occurring

at higher orders, the second because it prevents the forcing terms from being largely amplified

by non-normality, and thus emerging at leading order since the non-normal gain scales as the

inverse of the square of the small parameter.

The system of amplitude equations is exact in the linear regime. There, the stochastically

forced amplitude for the mode shows an inherent Lorentzian response, and the amplitude for

the non-normal response reduces to a deterministic constant which was the proper re-scaling

of the normalized non-normal response. The system of amplitude equation captures the

leading order nonlinear interaction between the modal and the non-modal responses, and

the coupling terms made intuitive physical senses.

The method has then been tested on a relatively caricatural toy model and has shown promis-

ing results. Specifically, the prediction of the probability density function of the mode ampli-

tude in a weakly nonlinear regime was greatly improved by the coupling with the non-normal

response, which can’t be taken into account by a classical weakly nonlinear expansion. The

coupled system of amplitude equations successfully predicted the restoration of the equilib-

rium symmetry by increasing the forcing amplitude, thereby the strength of the non-normal

response, implying the density probability function to recover a unique global maximum at

a = 0 after some threshold F .

The method remains to be applied to the Navier-Stokes equations. For this, the sudden

expansion flow considered in the previous chapter, for Re = 100 past a supercritical pitchfork

bifurcation at Rec = 79.3, has also been considered as an application case here. However,
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this corresponds to ϵ2 = Re−1
c −Re−1 = 0.0026, whereas the inverse of the square root of the

non-normal gain at Rec , ϵo , was found to be rather weak ϵo = 0.12. Consequently, the scaling

(6.22) does not hold, for we can’t say anymore that θ = O(1). Instead, it is the scaling

ϵo = θϵ, with θ = O(1), (6.98)

which is the proper one. This does not pose fundamental analytical problems, and the weakly

nonlinear expansion can be adapted to this new scaling. However, the computations are

rendered far more complex and the expressions of the coefficients are considerably heavier, to

the point where physical interpretations are obscured.

As a potential application case, one could think of selecting a sudden expansion with a

smaller aspect ratio, which is known to increase the critical Reynolds number Rec at which the

bifurcation occurs (Lanzerstorfer & Kuhlmann, 2012). Thereby, since the non-normal gain (at

Rec ) is expected to increase with Rec , there may exist an aspect ratio below which the scaling

(6.22) holds and the ensuing system of amplitude equation (6.74) is directly applicable.
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6.6 Appendix

6.6.1 Fredholm alternative imposed at second order

In deriving (6.51) from (6.49), we have used that〈
q †

∣∣∣C (
q , q

)〉
=

〈
q †

∣∣∣C (
q , q

)〉
= 0 and〈

q †
∣∣∣δLU e

〉
=

〈
q †

∣∣∣δLU e

〉
= 0 for symmetry reasons, as well as〈

q †
∣∣∣C (

q , l⊥
)〉

=
〈

q †
∣∣∣C (

q , l⊥
)〉

= 0 and〈
q †

∣∣∣l⊥〉
= 0, since by construction l⊥ = 0.

(6.99)

Then, in deriving (6.52) from (6.50) we have used that, since by construction the adjoint a(t )

as a zero average, i.e., a = 0, the following terms cancel naturally〈
a

∣∣C (
q , q

)〉
=

〈
a

∣∣C (
q , q

)〉
= 0,

〈a|δLnU e〉 =
〈

a
∣∣δLnU e

〉
= 0 and〈

a
∣∣q

〉
=

〈
a

∣∣q
〉

= 0.

(6.100)

In addition, the scalar

β̃ = −〈
a(t )

∣∣C (
l⊥(t ), l⊥(t )

)〉
= −χ

〈(
(∂t −Ln)−1)†

l⊥(t )
∣∣∣C (

l⊥(t ), l⊥(t )
)〉

(6.101)

is an odd function of l⊥, such that

β̃
(−l⊥(t )

)
= −β̃(

l⊥(t )
)

. (6.102)

By assuming that β̃ is an ergodic process, its temporal average is equal to its ensemble average.

But the ensemble average of an odd function of l⊥ must vanish since l⊥ is the linear response

of a process with a Gaussian distribution, thereby it must also have a Gaussian distribution.

Consequently, under the ergodic hypothesis for β̃, the amplitude equation (6.52) does not

contain a term in B 2.
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6.6.2 Fredholm alternative imposed at third order

In the derivation of (6.68) from (6.67), we have used successively

〈
q †

∣∣l⊥〉
=

〈
q †

∣∣∣l⊥〉
= 0,〈

q †
∣∣u AB

2

〉
=

〈
q †

∣∣∣u AB
2

〉
= 0,〈

q †
∣∣C (

l⊥,uδ
2

)〉
=

〈
q †

∣∣∣C (
l⊥,uδ

2

)〉
= 0,〈

q †
∣∣(C (

q ,u AB
2

)+C
(
l⊥,u A2

2

))〉
=

〈
q †

∣∣∣(C
(

q ,u AB
2

)
+C

(
l⊥,u A2

2

))〉
= 0,〈

q †
∣∣ξ f ⊥

o

〉
=

〈
q †

∣∣∣ξ f ⊥
o

〉
= 0

(6.103)

In virtue of l⊥ = u AB
2 = 0, ξ = 0, and that u A2

2 and uδ
2 are constant. We have also used that〈

q †
∣∣∣2α1u A2

2

〉
by symmetry, and that

〈
q †

∣∣ηqζ(τ2)
〉〈

q †
∣∣q

〉 = ηζ(τ2)

〈
q †

∣∣q
〉〈

q †
∣∣q

〉 = ηζ(τ2), (6.104)

and that the coefficient

−2
〈

q †
∣∣C (

l⊥,uB 2

2

)〉
= −2

〈
q †

∣∣∣C (
l⊥,uB 2

2

)〉
(6.105)

vanishes under the ergodic hypothesis since C
(
l⊥,uB 2

2

)
is an odd function of l⊥.

In the derivation of (6.71) from (6.70), we have used successively〈
a

∣∣q
〉

=
〈

a
∣∣q

〉
= 0,〈

a
∣∣u A2

2

〉
=

〈
a

∣∣∣u A2

2

〉
= 0,〈

a
∣∣C (

q ,uδ
2

)〉
=

〈
a

∣∣∣C (
q ,uδ

2

)〉
= 0,〈

a
∣∣C (

q ,u A2

2

)〉
=

〈
a

∣∣∣C (
q ,u A2

2

)〉
= 0

(6.106)

since a = 0. In addition

〈
a

∣∣ξ f ⊥
o

〉
= ϵo

〈(
(∂t −Ln)−1

)† l⊥
∣∣∣ξ f ⊥

o

〉
= ϵo

〈
l⊥

∣∣(∂t −Ln)−1ξ f ⊥
o

〉
= ϵo

〈
l⊥

∣∣u⊥〉
= ϵo

|| f ⊥
o ||
ϵo

〈
l⊥

∣∣l⊥〉
= || f ⊥

o ||.

(6.107)
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Eventually, the term

−〈
a

∣∣2β1uB 2

2 +2C
(
q ,uB 2

2

)+2C
(
l⊥,u AB

2

)〉
(6.108)

is odd in l⊥ thereby vanishes under the ergodic assumption.
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7 A non-modal weakly nonlinear am-
plitude equation for the transient
response

Remark: This chapter is largely inspired by the second half of the article Ducimetière et al.

(2022a), in collaboration with Edouard Boujo and François Gallaire.

7.1 Introduction

Some flows experience a transition from laminar to turbulent far below the threshold predicted

by the linear stability theory which relies on eigenvalues. Sometimes, such thresholds do

not even exist. In addition, the value of the external parameter at which the flow transits

strongly depends on the level of external noise. Among them are the canonical Couette and

Poiseuille parallel shear flows, as comprehensively reported in Schmid and Henningson (2001).

Non-parallel flows such as jets and the backward-facing step flow, documented respectively in

Garnaud et al. (2013a) and Barkley et al. (2000), could also be mentioned.

The transition scenario advanced in Trefethen et al. (1993) relies on the non-normality property

of the linearized Navier-Stokes operator. The linear response of a non-normal operator

generally results from an intricate cooperation between a large amount of eigenmodes. The

leading, i.e. least stable or most unstable eigenvalue solely provides the asymptotic (long-time)

linear behavior of the energy of the unforced system. At finite time, restriction to the leading

eigenmode is generally irrelevant. In particular, a negative growth rate for all eigenvalues is

not a guarantee that the energy decays monotonically for all initial conditions. That is because

eigenmodes of a non-normal operator are not orthogonal under the inner product that induces

the energy norm. Consequently, some small-amplitude perturbations may experience a large

transient amplification (figure 7.1). Through these non-modal mechanisms, the response may

be carried in a regime where nonlinearities set in and the flow escapes from its linearly stable

solution (figure 7.1).
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Figure 1: Cartoon representation of nonlinearity and nonnormality, illustrated in the time domain (a) and
frequency domain (b), for linearly stable system (in the eigenspectrum (c), the least stable eigenvalue σ1 has
a negative growth rate). (a) In the linear regime, the energy eventually decays like exp(2σ1,rt). Nonnormal
systems can experience a very large transient growth. Nonlinearity may be stabilizing or destabilizing.
(b) Normal systems subject to external forcing respond preferentially at frequency σ1,i. Nonnormal systems
can respond at different frequencies, with an amplification much larger than predicted by 1/σr. Nonlinearity
may be stabilizing or destabilizing.

Figure 7.1: Cartoon representation of nonlinearity and non-normality, illustrated in the time
domain (see figure 2.1 for an illustration in the frequency domain), for a linearly stable system.
In the linear regime, the amplitude of the perturbations eventually decays like exp(σ1,r t ). non-
normal systems can experience a very large transient growth. Nonlinearity may be stabilising
or destabilising.

In this perspective, numerous studies computed the initial condition structures that are the

most amplified by flow, i.e., leading to the optimal transient growth gain. Formally, such

studies generally consist of finding the singular mode of the propagator for a given temporal

horizon, and the eigenmodes of the linearized Navier-Stokes operator are mainly irrelevant.

For the transient growth problem, one could for instance refer to

In the linear paradigm adopted in all these works, quantities do not depend on the amplitude

of the initial condition. The latter is assumed arbitrarily small such that the nonlinear terms

are negligible. Thus the nonlinear interactions involved in the subcritical transition, or in the

saturation process, can’t be captured by definition.

In the vein of previous chapters concerned with responses to forcings, the current one ad-

vances a method to derive an amplitude equation for the linearly most amplified transient

response. The amplitude equation makes possible the prolongation of the transient gain, at a

selected time t = to in a weakly nonlinear regime. Specifically, at a very low numerical cost, we

predict the transient gain of the response as we increase the amplitude of the linearly optimal

initial condition (§7.2). Once again, the method does not rely on the presence of an eigenvalue

close to the neutral axis.

The analysis proposed in the present chapter can be seen as another extension of that in chap-

ter 2. However, in contrast with chapter 3, the extension does not consist of generalizing the

inner product operated by the operator perturbation of the inverse resolvent. While keeping
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the same L2 inner product as in chapter 2, it consists of perturbing the inverse propagator op-

erator instead of the inverse resolvent one. This is a consequence of the nature of the problem

considered here. The resolvent operator does not appear naturally because it characterizes

response to forcing in a time-asymptotic, statistically steady regime. The propagator, on the

contrary, naturally appears in the current problem of an unforced, finite-time response. It is

the application of the propagator operator that leads to a strong amplification, thereby, it is the

application of the inverse propagator that leads to a strong reduction. Consistently with the

logic unfolded throughout this thesis, it is then the latter operator that should be perturbed.

The method is illustrated with two flows, the nonparallel flow past a backward-facing step

(sketched in figure 7.2a) and the parallel plane Poiseuille flow (figure 7.2b). These two non-

normal flows exhibit large gains, both in the context of harmonic forcing, as we studied in

chapter 2, and transient growth (§7.2.1-7.2.2).

Let us first consider a generic nonlinear dynamical system,

∂tU = N (U )+F , U (0) = U 0, (7.1)

where N (∗) is a nonlinear operator and F is a forcing term. An appropriate and common step

to begin the analysis of (7.1) is to linearise it around an unforced equilibrium. The latter is

denoted U e and satisfies N (U e ) = 0. Around this equilibrium are considered small-amplitude

perturbations in velocity ϵu, forcing ϵ f , and initial condition ϵu0, where ϵ≪ 1. An asymptotic

expansion of (7.1) in terms of ϵ can thus be performed, transforming the nonlinear equation

into a series of linear ones. The fields u, f and u0 are recovered at order ϵ and linked through

the linear relation

∂t u = Lu + f , u(0) = u0, (7.2)

where L results from the linearisation of N around U e . For fluid flows governed by the incom-

pressible Navier-Stokes equations, Lu = −(U e ·∇)u − (u ·∇)U e +Re−1∆u −∇p(u), where the

pressure field p is such that the velocity field u is divergence-free. Both fields are linked trough

a linear Poisson equation. In practice, pressure is included in the state variable, resulting in a

singular mass matrix; it is omitted here, for the sake of clarity.

7.2 Transient Growth

Next, we derive an amplitude equation for the weakly nonlinear transient growth in an un-

forced ( f = 0) system, without restriction on its linear stability. The solution to the linearised

equation (7.2) is u(t) = eLt u(0), where eLt is the operator exponential of Lt . In an unforced

context, the propagator eLt maps an initial structure at time t = 0 onto its evolution at t ≥ 0.

The largest linear amplification at to > 0 (subscript o for “optimal”) is

G(to) = max
u(0)

∥u(to)∥
∥u(0)∥ =

∥∥eLto
∥∥ .

=
1

ϵo
. (7.3)
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Figure 7.2: Sketch of the flow configurations. (a) Two-dimensional flow over a backward-facing
step, with fully developed parabolic profile of unit maximum centerline velocity at the inlet.
(b) Three-dimensional plane Poiseuille flow, confined between two solid walls at y = ±1, and
invariant in the x (streamwise) and z (spanwise) directions

The singular-value decomposition of the propagator eLto provides the transient gain G(to)

as the largest singular value of eLto , as well as the left and right singular pair v o and uo ,

respectively,

e−Lto v o = ϵouo ,
[(

eLto
)†

]−1
uo = ϵo v o , (7.4)

where ||v o || = ||uo || = 1. The field uo is the optimal initial structure for the propagation time

t = to , and v o is its normalised evolution at to . The corresponding amplification is 1/ϵo , as

defined in (7.3). Smaller singular values are sub-optimal gains, associated with orthogonal

sub-optimal initial conditions. Their orthogonality is ensured by the fact that singular vectors

of the operator eLto also are the eigenvectors of the symmetric operator (eLto )†eLto , the singular

values of the former being the square root of the eigenvalues of the latter. Of all the to , the time

leading to the largest optimal gain will be highlighted with the subscript m (for “maximum”)

such that maxto>0 G(to) = G(to,m).

By construction, the linear gain is independent of the amplitude of the initial condition u(0).

As this amplitude increases, however, nonlinearities may come into play and the nonlinear

gain may depart from the linear gain G . Similar to the previous section on harmonic gain, we

propose a method for capturing the effect of weak nonlinearities on the transient gain.

Due to the assumed non-normality of L, the inverse gain is small, ϵo ≪ 1. While the previous

section focused on the inverse resolvent, it is now the inverse propagator e−Lto that appears

close to singular. The first equality of (7.4) can be rewritten as (e−Lto − ϵouo〈v o ,∗〉)v o = 0,

which shows that the operator (e−Lto −ϵouo〈v o ,∗〉) is singular since v o ̸= 0 belongs to its kernel.

Mirroring our previous reasoning for the WNNh model, we now wish to construct a perturbed

inverse propagator whose kernel is the linear trajectory

l (t )
.
= ϵoeLt uo (7.5)

seeded by the optimal initial condition uo and of unit norm in t = to since l (to) = v o . One

conceptual difficulty lies in the fact that the linear response is not a fixed vector field, but a
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time-dependent trajectory; therefore, the perturbed inverse propagator too should depend on

time. We propose to perturb the inverse propagator for all t ≥ 0 as

Φ(t ) = e−Lt −ϵoP (t ), where P (t )
.
= H(t )

uo〈l (t ),∗〉
∥l (t )∥2 , (7.6)

and where the Heaviside distribution H(t) satisfies H(0) = 0 and H(t > 0) = 1. As the time

t → to , the perturbation operator P → uo〈v o ,∗〉 such that ||P ||→ 1 and the expansion (7.6) is

certainly justified. The non-trivial kernel of Φ(t ) is l (t ) for all t > 0; the kernel reduces to 0 at

t = 0 since Φ(0) = I . We show in addition that, for t > 0, the non-trivial kernel of the adjoint

operator Φ(t )† is

a(t )
.
=

(
eLt )†

l (t ). (7.7)

Indeed, using that P † = l (t )〈uo ,∗〉/〈l (t ), l (t )〉 for t > 0, we have

Φ(t )†a(t ) =
(
e−Lt )†

a(t )−ϵol (t )
〈uo , a(t )〉
〈l (t ), l (t )〉

=
(
e−Lt )†

a(t )−ϵol (t )

〈
eLt uo , l (t )

〉
〈l (t ), l (t )〉

=
(
e−Lt )†

a(t )− l (t )

=
[(

eLt )†
]−1

a(t )− l (t )

= 0.

As an illustration of the singularisation of e−Lto , parts of the spectra of e−Lto and Φ(to) are

shown in figure 7.3 for the plane Poiseuille flow sketched in figure 7.2. The red dot at the origin

is the null singular eigenvalue of Φ(to) associated with l (to). Since ||P (to)|| = 1, this singular

eigenvalue lies on the ϵo-pseudospectrum of e−Lto , meaning that a perturbation of amplitude

ϵo is sufficient to make the inverse propagator singular.

Recalling that L is assumed strongly non-normal, we choose ϵo ≪ 1 as expansion parameter,

introduce the slow time scale T = ϵo t and propose the multiple-scale expansion

U (t ,T ) = U e +ϵou1(t ,T )+ϵ2
ou2(t ,T )+O(ϵ3

o). (7.8)

The square root scaling of the previous section is not made here, as resonance at second order

cannot be excluded a priori. The flow is initialised with U (0) = αϵ2
ouo , where α = O(1) is a

prefactor. After injecting this expansion in the unforced Navier-Stokes equations, we obtain

ϵo(∂t −L)u1 +ϵ2
o [(∂t −L)u2 +C (u1,u1)+∂T u1]+O(ϵ3

o) = 0, (7.9)

subject to u2(0) = αuo , and ui (0) = 0 for i ̸= 2. In its primary quality of inverse propagator,

the following property holds for e−Lt : ∂t (e−Lt ) = −e−Lt L, where the commutation of e−Lt
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Figure 7.3: Restricted spectra (fifteen least stable eigenvalues) of the natural and perturbed
inverse propagators of the plane Poiseuille flow (sketched in figure 7.2b) for t = to = 10 and
(Re,kx ,kz ) = (3000,0.5,2) (purely one-dimensional computations using the code of Schmid
and Henningson (2001) based on a Fourier expansion of wavenumbers kx and kz in x and z,
respectively). Blue circles: eigenvalues of e−Lto . Red dots: eigenvalues of Φ(to). By construc-
tion, one eigenvalue of Φ(t) lies at the origin. Thin red lines: full locus of the eigenvalues of
Φ(t ) for t ≤ to . Green line: ϵo-pseudospectrum of e−Lto , such that

∥∥(e−Lto − zI )−1
∥∥ = 1/ϵo .

and L has not been used. Thanks to this relation, we write (∂t −L)ui = eLt∂t (e−Lt ui ). As a

result, L disappears from the asymptotic expansion but e−Lt appears. The latter is perturbed

according to (7.6), leading to eLt∂t (e−Lt ui ) = eLt∂t (Φ(t )ui )+ϵoeLt∂t (P (t )ui ) for i = 1,2, .... The

asymptotic expansion (7.9) becomes

ϵoeLt∂t (Φu1)+ϵ2
o

[
eLt∂t (Φu2)+C (u1,u1)+∂T u1 +eLt∂t (P (t )u1)

]
+O(ϵ3

o) = 0. (7.10)

Note that the transformation performed from (7.9) to (7.10) is not restricted to time-independent

base flows, as the property ∂t (Ψ(t)−1) = −Ψ(t)−1L(t) holds for a time-varying operator L(t)

and the associated propagator Ψ(t ). This can be shown easily by taking the time derivative of

Ψ(t )−1u(t ) = u(0). Terms of (7.10) are then collected at each order in ϵo , leading to a succession

of linear problems, detailed hereafter.

At order ϵo , we collect ∂t (Φu1) = 0, subject to u1(0) = 0. We obtain Φu1 = Φ(0)u1(0) = 0,

therefore u1(t ,T ) is proportional to the kernel of Φ(t ) for all t ≥ 0. We choose the non-trivial

solution

u1(t ,T ) = A(T )H(t )l (t ), (7.11)

where the initial condition u1(0) = 0 is enforced by H(t ), while the slowly varying scalar ampli-

tude A(T ) is continuous in T and modulates the linear trajectory. This choice is motivated by
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the observation that, since A must be constant in time in the linear regime, we expect it to be

weakly time-dependent in the weakly nonlinear regime. We stress that A(T ) does not depend

explicitly on t , such that ∂t A = 0. Note that the choice u1(t) = A(t)H(t)l (t) would also have

been possible, and the assumption of the amplitude depending on a slow time scale is made

solely to simplify the ensuing calculations.

At order ϵ2
o , we collect

∂t (Φu2)+ A2He−LtC (l , l )+H
dA

dT
e−Lt l + Adt (HP l ) = 0, (7.12)

subject to u2(0) = αuo . We have used the property H(t)2 = H(t), which will henceforth be

understood. The particular solution of (7.12) yields

u2(t ,T ) = u(a)
2 (t )+ A(T )2u(b)

2 (t )+ dA(T )

dT
u(c)

2 (t )+ A(T )u(d)
2 (t ), (7.13)

where

dt

(
Φu(a)

2

)
= 0, dt

(
Φu(b)

2

)
= −He−LtC (l , l ),

dt

(
Φu(c)

2

)
= −He−Lt l , and dt

(
Φu(d)

2

)
= −dt (HP l ) ,

subject to the initial conditions u(a)
2 (0) =αuo and u(b)

2 (0) = u(c)
2 (0) = u(d)

2 (0) = 0. Time integra-

tion can now be performed without ambiguity as all the partial derivatives (∂t ...) have been

replaced by total derivatives (dt ...). After time integration between t = 0 and t > 0, we obtain a

series of problems for u(a)
2 , u(b)

2 , u(c)
2 and u(d)

2 :

Φ(t )u(a)
2 (t ) =Φ(0)u(a)

2 (0) =αuo ,

since Φ(0) = I ;

Φ(t )u(b)
2 (t ) = −

∫ t

0
H(s)e−LsC [l (s), l (s)]ds = e−Lt ũ2(t ),

where

dũ2

dt
= Lũ2 −C (l , l ), ũ2(0) = 0, (7.14)

and where we used that the general solution of dt x = Lx +F is x(t ) = eLt [x(0)+∫ t
0 e−Ls F (s)ds];

Φ(t )u(c)
2 (t ) = −

∫ t

0
H(s)e−Ls l (s)ds

= −
∫ t

0
H(s)ϵouods = −ϵouo t ,
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since e−Lt l (t ) = ϵouo holds by construction; and

Φ(t )u(d)
2 (t ) = − [H(t )P (t )l (t )−H(0)P (0)l (0)] = −uo ,

since, by construction, H(t )P (t )l (t ) = H(t )uo . Note that the presence of the Heaviside distri-

bution inside the integral is unimportant. Eventually,

Φu2 =αuo + A2e−Lt ũ2 −ϵo t
dA

dT
uo − Auo , t > 0. (7.15)

Invoking again the Fredholm alternative, (7.15) admits a non-diverging particular solution if

and only if its right-hand side is orthogonal to a(t ) for all t > 0. This leads to

〈uo , a(t )〉 (α− A)+ A2 〈
e−Lt ũ2(t ), a(t )

〉−ϵo t
dA

dT
〈uo , a(t )〉 = 0, t > 0. (7.16)

Dividing (7.16) by 〈uo , a(t )〉 leads to

(α− A)+ϵo A2µ2(t )−ϵo t
dA

dT
= 0, t > 0, (7.17)

where

µ2(t ) = ϵ−1
o

〈
e−Lt ũ2(t ), a(t )

〉
〈uo , a(t )〉 =

〈ũ2(t ), l (t )〉
〈l (t ), l (t )〉 . (7.18)

Equation (7.17) is re-expressed as E(t ,T ) = 0 for t > 0, where E(t ,T ) = (α− A)+ ϵo A2µ2(t)−
ϵo tdT A. Since

∫ t
t→0∂sE(s,T )ds = E(t ,T )− E(t → 0,T ), solving E(t ,T ) = 0 is equivalent to

solving ∂t E (t ,T ) = 0 for t > 0 subject to E (t → 0,T ) = 0. Thereby, the partial derivative of (7.17)

with respect to the short time scale t is taken, leading to

ϵo A2 dµ2(t )

dt
−ϵo

dA

dT
= 0, 0 < t , (7.19)

where we have used that ∂t A = 0 by construction since A = A(T ) does not explicitly depend

on t . Furthermore, the relation (7.19) is subject to E(t → 0,T ) = limt→0(α− A) = 0 where we

have used that ũ2(t → 0) = ũ2(0) = 0. To be meaningful, equation (7.19) and its initial condition

must be re-written solely in terms of t , which is done by evaluating T along T = ϵo t . The total

derivative of A, denoted dt A, is now needed, as it takes into account the implicit dependence

of A on t . By definition, dt A = ∂t A+ϵo∂T A = ϵodT A, such that the final amplitude equation

reads

dA

dt
= ϵo A2 dµ2(t )

dt
, with A(0) =α, (7.20)

as limt→0 (α− A(ϵo t )) = 0 implies A(t → 0) =α, and the amplitude A is extended by continuity

in t = 0 so as to eventually impose A(0) =α. Note that the evaluation in T = ϵo t and the passage

to the total derivative would lead to indeterminacy in its solution if performed directly in
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Figure 7.4: (a) Streamwise (x) component of the optimal initial condition uo for the BFS
(sketched in figure 7.2a) at Re = 500 and at to = to,m = 58 .(b) Streamwise component of the
evolution v o at t = to . Both structures are normalised as ||uo || = ||v o || = 1.

(7.17), since that equation is not subject to any initial condition. Indeed, at linear level for

instance, it would yield dt A = (α− A)/t , which admits the family of solutions A(t) = α+C t ,

with C an undetermined constant.

We stress that the inverse propagator is not needed to solve the amplitude equation (7.20). Just

like the original problem considered in this section, (7.20) is unforced and has a non-zero initial

condition. In the linear regime, A =α for all times, and the linear gain is ∥ϵoαl (t )∥/
∥∥αϵ2

o

∥∥ =

∥l (t )∥/ϵo . At t = to , in particular, we recover that it is equal to 1/ϵo since ∥l (to)∥ = ∥v o∥ = 1.

In the following, we call equation (7.20) the Weakly Nonlinear non-normal transient (WNNt)

model. It can be corrected with higher-order terms, which requires solving the linear singular

system (7.15), as detailed in Appendix 7.4.2. We show in particular that singular higher-order

solutions are orthogonal to the first order order solution l (t), and that the action of Φ need

not be computed explicitly but can in practice be replaced by the action of e−Lt .

7.2.1 Application case: the flow past a backward-facing step

The WNNt model is applied to the backward-facing step flow for Re = 500 and to = to,m = 58.

See Appendix 7.4.1 for details about the numerical method. For these parameters, the linear

optimal structures (fig. 7.4) and gain are validated with the results presented in Blackburn

et al. (2008). The quadratic term in (7.20), although asymptotically correct, happens to be

insufficient to capture the nonlinear saturation of the transient gain for this particular flow,

in particular because of the weak value of the coefficient µ2(t). Indeed, l (to) = v o appears

to be dominated by a specific spatial wavenumber (see figure 7.4b), thus the field ũ2, being

generated by the nonlinear interaction of l (t ) with itself, is dominated by spatial harmonics

and its projection on l (t ) is close to zero. For this flow the WNNt model therefore needs to be

extended to order ϵ3
o (see Appendix 7.4.2), yielding

dA

dt
= ϵo A2 dµ2

dt
+ϵ2

o A3 dµ3

dt
, A(0) =α, (7.21)
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Figure 7.5: Transient gain in the flow past a BFS (sketched in figure 7.2a) for Re = 500. (a)
Gain squared G(to)2 for to = to,m = 58 as a function of the amplitude of the initial condition.
(b) History of the gain squared for 0 ≤ t ≤ to,m and for three amplitudes of initial condition,
U0/ϵo = [0.025,0.08,0.25] (vertical dashed lines in (a)); larger amplitudes darker. Inset: weakly
nonlinear coefficients µ2(t ) (continuous line) and µ3(t ) (dashed-dotted line) as a function of
time.

where

µ3(t )
.
=
〈ũ3(t ), l (t )〉
〈l (t ), l (t )〉 , (7.22)

and

dũ3

dt
= Lũ3 −2

[
C (l , ũ2)−µ2C (l , l )+ µ̇2(ũ2 −µ2l )

]
, ũ3(0) = 0.

Equation (7.21) is similar to (7.20), although corrected by a cubic term. We formulate the

amplitude equation (7.21) in terms of the rescaled quantities a = ϵo A and the amplitude of the

initial condition U0 = ||U (0)|| =αϵ2
o :

da

dt
= a2 dµ2

dt
+a3 dµ3

dt
, a(0) =

U0

ϵo
. (7.23)

In this manner, the weakly nonlinear transient gain becomes G(to) = a(to)/U0. Note that in

(7.23) the amplitude a(t ) does not depend on U0 nor on ϵo independently, but on their ratio

U0/ϵo . Thus, as expected, increasingly nonlinear regimes are found when the amplitude of the

initial condition increases with respect to the linear gain.

Predictions from equation (7.23) are shown in figure 7.5 together with the linear and fully

nonlinear DNS gain evaluated as Gtot (t) = ||U (t)−U e ||/U0. In figure 7.5a, the WNNt model

extended to O(ϵ3
o) appears to capture the weakly evolution of the transient gain with satis-

factory precision. When the amplitude of the initial condition is too large, the higher-order
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Figure 7.6: (a) Optimal initial condition uo for the plane Poiseuille flow (sketched in figure 7.2b)
for (Re,kx ,kz ) = (3000,0,2) and to = to,m = 230. Arrows: cross-sectional velocity field (uo,z ,uo,y ).
Contours: streamwise component uo,x . (b) Evolution v o at t = to . Both fields are normalised
as ||uo || = ||v o || = 1. Initial vortices have a null streamwise component uo,x , and streaks at t = to

have negligible cross-sectional components (vo,z ,vo,y ). Only one wavelength −π≤ kz z ≤π is
shown.

fields ũ2, ũ3, . . . are expected to have a significant amplitude, and thus the WNNt prediction

deteriorates since it is based on an asymptotic hierarchy. In figure 7.5b, the gain history of

Gtot (t ) for all times 0 ≤ t ≤ to is successfully compared to a(t )||l (t )||/U0. The coefficient µ3(t )

is much larger than µ2(t ) (inset), and is largely dominated by the part of ũ3 generated by the

forcing term C (l , ũ2). Since µ3(t) is monotonically decreasing toward µ3(to) = −7.77, larger

times are subject to a stronger saturation. This leads to a decrease of the time for which the

specific initial condition uo leads to a maximum transient gain, consistently with the DNS

results.

7.2.2 Application case: lift-up in the plane Poiseuille flow

The WNNt is now applied to the plane Poiseuille flow. The set of parameters (Re,kx ,kz , to) =

(3000,0,2, to,m = 230) is selected. In both the linear and nonlinear computations, the wavenum-

ber kx = 0 is maintained such that the fields are constant in x, and only the dependence in

y and z is computed. Contrarily to the application case in chapter 2, perturbations can

now be fully three-dimensional (i.e. u = (ux (y, z),uy (y, z),uz (y, z)). The computations are

performed in the spanwise-periodic box (y, z) ∈ [−1,1]× [−π/2,π/2] ≡Ω. All the scalar prod-

ucts are taken upon integration inside this periodic box, in particular for the normalisation

〈uo ,uo〉 = 〈v o , v o〉 = 1, and for the evaluation of the weakly nonlinear coefficients. The linear

optimal gain is validated with the result of Schmid and Henningson (2001); the associated opti-

mal initial condition and its evolution at t = to are shown in figures 7.6a and 7.6b, respectively.

The optimal initial condition consists of vortices aligned in the streamwise direction; as these

streamwise vortices are superimposed on the parabolic base flow, they bring low-velocity

fluid from the wall towards the channel centre and high-velocity fluid from the centre of the

channel towards the walls, thus generating alternated streamwise streaks. Due to the spanwise

periodicity of the optimal initial condition uo , all the solutions at even orders ϵ2n
o (n = 1,2,3, ...)

only yield even spatial harmonics in kz and are orthogonal to l (t), such that the coefficient
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Figure 7.7: Transient gain in the plane Poiseuille flow (sketched in figure 7.2b) for (Re,kx ,kz ) =
(3000,0,2). (a) Gain squared G(to)2 for to = to,m = 230 as a function of the amplitude of
the initial condition. Streamwise invariance kx = 0 is enforced in the DNS as well. (b) His-
tory of the gain squared for 0 ≤ t ≤ to,m and for three amplitudes of initial condition,
U0/ϵo = [0.088,0.18,0.37] (vertical dashed lines in (a)); larger amplitudes darker. Inset: weakly
nonlinear coefficient µ3(t ) as a function of time.

µ2(t ) defined in (7.18) is null at all times. Therefore, (7.23) reduces to

da

dt
= a3 dµ3

dt
, a(0) =

U0

ϵo
, (7.24)

and ũ3 solves the simplified equation

dũ3

dt
= Lũ3 −2C (ũ2, l ), ũ3(0) = 0. (7.25)

The analytical solution of (7.24) is written

a(t ) =
U0

ϵo

[
1−

(
U0

ϵo

)2

2µ3(t )

]−1/2

. (7.26)

We show in Appendix 7.4.3 that, at first order in the gain variation, (7.26) reduces to the

sensitivity of the transient gain to the base flow modification (U0/ϵo)2ũ2(t ).

Predictions from equation (7.26) are shown in figure 7.7 together with the linear and fully

nonlinear DNS gains. These DNS gains are evaluated in two ways: using either the total

perturbation around the base flow, for Gtot (already defined), or using only the part of the

perturbation fluctuating at kz along z, for Gkz (in the same manner that we considered only

the component oscillating at ωo in the computation of the gain in the harmonic forcing part).

Indeed, a(t) multiplies the linear trajectory field l (t) that is purely fluctuating at kz along z.

The WNNt model predicts Gkz accurately in the weakly nonlinear regime for t = to,m , which

supports our approach (figure 7.7a). In the strongly nonlinear regime, beyond U0/ϵo ≈ 0.4, the

model overestimates Gkz . This can be interpreted by noting that Gtot is twice as large as Gkz ,
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Figure 7.8: Gain envelope in the plane Poiseuille flow for Re = 3000 and kx = 0 (maintained
in the DNS as well); the numerical box has a length of π and periodic boundary conditions
in the spanwise (z) direction, so the optimisation algorithm automatically select the most
amplified wavenumber among all harmonics kz = 2n with n = 1,2, .... Optimisation times are
to = 20,70,120, ...620: the times to = 20 (horizontal dashed line), to = 70 (horizontal dashed-
dotted line) and to ≥ 120 correspond respectively to kz = 6, kz = 4 and kz = 2 . Four amplitudes
of initial condition, U0/ϵo,m = [0.088,0.18,0.37,0.77] are selected, the larger amplitudes are
darker.

i.e. more energy is contained in the higher-order terms generated by the linear response than

in the linear response itself. Therefore, this is not the amplitude equation (7.26) that breaks

down, but the very idea of an asymptotic expansion. Whether higher-order terms remain

smaller than the fundamental is certainly flow dependent, and the WNNt model is expected to

be even more accurate when this is the case, as shown in §7.2.1 for the flow past a BFS, which

generated rather weak higher-order fields.

Figure 7.7b compares for t ≤ to the history of the approximated gain a(t )||l (t )||/U0 with that of

the DNS gain Gkz , and shows a convincing overall agreement. The coefficient µ3(t ) is negative

and decays monotonically with time until µ3(to) = −3.30 (inset), enhancing the saturation.

This results in a reduction of the approximated optimal time with the amplitude of the initial

condition, as also observed in the DNS.

The impact of the optimisation time to (and therefore the one of ϵo) on the WNNt predictions

is studied in Fig.7.8. The weakly nonlinear evolution of the gain envelope for an increasing

amplitude of the initial condition is reported together with DNS data. For each optimisation

time, the (linear) corresponding optimal initial condition is applied. The agreement between

WNNt and DNS is satisfactory over the whole range of optimisation times to , particularly

those associated with lower linear gain as they require higher U0 to reach a fully nonlinear

regime; on the contrary optimisation times for which the linear gains are large are subject to a

more pronounced degradation of the predictions in the considered range of U0. However, the

decrease of both the maximum gain and the time for which it is reached is well captured by

the WNNt model.
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7.3 Conclusions

In summary, we have derived an amplitude equation for non-normal systems, describing the

transient response to a linearly optimal initial condition, in a weakly nonlinear regime. We

shall highlight once again that, in the derivation of the amplitude equation, the presence of a

neutral or weakly damped mode was not assumed. In analogy with the approach proposed

in chapter 2, the procedure is based on the fact that the propagator operator can be made

singular by perturbing it slightly, which can be encompassed in a multiple scale asymptotic

expansion closed by a classical compatibility condition.

Predictions of the amplitude equation have been compared with fully nonlinear simulations,

both in parallel and non-parallel two-dimensional flows. In all cases, they predict accurately

the supercritical nonlinear evolution of the response as the amplitude of the initial condition

is increased.

The method presents numerous possibilities for extension. (i) Multiple trajectories could be

encompassed in the weakly nonlinear expansion, resulting in a system of coupled amplitude

equations. The nonlinear interactions of transient responses are particularly relevant when

distinct structures lead to comparable gains, for instance, optimal and sub-optimal initial

conditions (Blackburn et al., 2008; Butler and Farrell, 1992). (ii) The assumption of a time-

independent state operator and the associated operator exponential formalism is unnecessary,

and the developments can be adapted to time-varying base flows. (iii) Since the amplitude

equation characterizes the transient gain in a weakly nonlinear regime, it can be accounted

for to yield a slightly more general optimisation problem than that in (7.3). For a given

amplitude of the initial condition, this generalized optimisation problem would result in the

maximum gain attainable in the weakly nonlinear regime (at least under the approximation of

the amplitude equation). Only in the limit where the initial amplitude vanishes should the

problem be equivalent to (7.3). The ensuing structures would constitute weakly nonlinear

optimal structures, which could be compared with fully nonlinear ones Pringle and Kerswell

(2010).

Extensions (ii) will be treated in the next chapter, chapter 8, where we adapt the method

to characterize the transient response over the diffusing (time-varying) Lamb-Oseen vortex

flow. This particular flow was also selected as it is notoriously known to experience a bypass

transition. In other terms, nonlinearities have an "anti-saturating" role, in contrast with that

considered in this chapter, in figure 7.5a and figure 7.7a, and the relevance of the amplitude

equation in such case will be studied in details.

Extension (iii) will be realized in chapter 9. For a given pair of wavenumbers, the distortion

of the optimal initial condition as we account for weak nonlinearities and increase the initial

amplitude will be illustrated on the three-dimensional plane Poiseuille flow. The question

of whether this weakly nonlinear optimal is more relevant than the linear ones to trigger

turbulence will be discussed.
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Finally, it should be noted that the proposed method is not restricted to the Navier-Stokes

equations, but applies to all nonlinear systems whose linearised operator exhibits strong

non-normality (see Trefethen and Embree, 2005 §55-60 for a comprehensive discussion,

as well as the situations discussed in the introduction). For instance in ecological models

describing the temporal evolution of a population, such as the canonical Lotka-Volterra

predator-prey equations, the so-called resilience of a community (spectral abscissa of the

Jacobian of the system) is known to be sometimes a misleading or incomplete measure

(Neubert & Caswell, 1997). The conjunction of non-normality and nonlinearity is then key to

predicting a population’s extinction/survival.

7.4 Appendix

7.4.1 Applying the WNNt model to the Navier–Stokes equations.

For the transient growth model, the linearised problem writes

B
dq

dt
= Lq subject to q(0) =

[
u(0)

0

]
, (7.27)

with the state vector q = [u, p]T , the singular mass matrix

B =

[
I 0

0 0

]
,

and the linearised Navier–Stokes operator

L =

[
−(U e ·∇)∗−(∗·∇)U e +Re−1∆(∗) ∇(∗)

∇· (∗) 0

]
.

Several subtleties arise from the peculiarity of the pressure variable, that ensures the instan-

taneous satisfaction of the incompressibility condition: (i) the absence of time-derivative

of the pressure results in a singular mass matrix, (ii) forcing terms remain restricted to the

momentum equations as we choose to have no source/sink of mass and (iii) the pressure is

not included in the energy norm of the response.

The gain is measured as

G(to)2 =
〈q(to), q(to)〉B

〈q(0), q(0)〉B
, (7.28)

where the pressure component of the initial condition can be chosen as p(0) = 0. We used the

following scalar product

〈q̂ a , q̂ b〉B =
∫
Ω

(
û∗

a,x ûb,x + û∗
a,y ûb,y + û∗

a,z ûb,z

)
dΩ, where
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the B-scalar product excludes pressure, such that the pseudonorm 〈q̂ , q̂〉B = ||q̂ ||2B is the kinetic

energy.

The orthogonality properties holds under the B-scalar product, and the weakly nonlinear

coefficient µ2(t ) writes

µ2(t ) = ϵo

〈
q̃ 2(t ), q l (t )

〉
B〈

q l (t ), q l (t )
〉

B

, (7.29)

where q l (t ) = [l (t ), pl (t )]T , and where q̃ 2 = [ũ2(t ), p̃2(t )]T is solution of

B
dq̃ 2

dt
= Lq̃ 2 −

[
C (l , l )

0

]
, q̃ 2(0) = 0. (7.30)

Again, pressure does not influence the weakly nonlinear coefficient since only velocity fields

are involved in the scalar product. In particular at t = to , q l (to) = [v o , pl (to)]T thus〈
q l (to), q l (to)

〉
B = 1 (7.31)

by construction, and

µ2(to) = ϵo

∫
Ω

ũ2,x vo,x + ũ2,y vo,y + ũ2,z vo,z dΩ. (7.32)

The software FreeFem++ is again used to solve for the velocity and pressure by means of the

Finite Element Method with Taylor-Hood elements, (P2 for velocity and P1 for pressure). The

practical computation of the gain (7.28) proposed in Garnaud et al. (2013a) is followed. The

application of the propagator eLt (resp. its adjoint (eLt )†) are performed by integrating in time

the linearised problem (7.27) (resp. the adjoint problem) with the Crank-Nicolson method.

The application of the inverse propagator e−Lt is never needed.

For the transient growth past the backward-facing step studied in §7.2.1, our linear optimi-

sation codes are validated upon comparison with the results of Blackburn et al. (2008). For

(Re, to) = (500,58), we obtained G(to)2 = 62.8×103, against G(to)2 = 63.1×103 in Blackburn et al.

(2008). The ≈ 0.5% relative error could be explained by the fact that our entrance length is

Li = 5, against Li = 10 in Blackburn et al. (2008). For the plane Poiseuille flow analysed in §7.2.2,

the validation was performed thanks to the open-source results of Schmid and Henningson

(2001), obtained with a Chebyshev polynomial discretisation, and where the singular value

decomposition of the matrix exponential eLt is performed directly. For the chosen set of

parameters (Re,kx ,kz , to) = (3000,0,2,230), convergence was achieved for a squared linear

gain of G(to)2 = 1761.8, against G(to)2 = 1761.9 in Schmid and Henningson (2001).
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7.4.2 Higher-order corrections of the WNNt equation.

Recall the equation (7.15) obtained at order ϵ2
o :

Φu2 =αuo + A2e−Lt ũ2 − dA

dT
ϵouo t − Auo .

After satisfaction of the Fredholm alternative, which leads to an equation for the amplitude A,

the relation (7.15) can be re-expressed as

Φu2 = A2 (
e−Lt ũ2 −ϵoµ2uo

)
for t > 0, (7.33)

where the orthogonality of the right-hand side (RHS) with a(t ) is ensured by construction of

µ2(t ) = 〈ũ2(t ), l (t )〉/〈l (t ), l (t )〉 in (7.18). The general solution to (7.33) reads u2 = u(⊥l )
2 +A2l (t ).

The particular solution of the system, u(⊥l )
2 , is obtained by solving (7.33) after replacing Φ(t )

by e−Lt . Indeed, such u(⊥l )
2 must be orthogonal to l (t ), since 0 = 〈RHS, a(t )〉 =

〈
eLt (RHS), l (t )

〉
=

〈
u(⊥l )

2 , l (t )
〉

. On the other hand, the term A2l (t ) constitutes the homogeneous part of the

solution, where A2 is a scalar amplitude. It can be kept in further calculations, provided it is

included in the final amplitude for l (t ), which would then become ϵo A+ϵ2
o A2+O(ϵ3

o). Instead,

and without loss of generality (Fujimura (1991)), we propose to set A2 = 0 such that

u2 = u(⊥l )
2 = A2 (

ũ2 −µ2l
)

for t > 0. (7.34)

In particular, this implies that the term ∂t (Pu2) that appears at order O(ϵ3
o) actually vanishes

since Pu2 = Pu(⊥l )
2 = 0. If this is performed at each order j ≥ 3, all the terms ∂t (Pu j ) vanish. In

this way, the ”retroaction” forcing due to the operator perturbation only appears at O(ϵ2
o).

Deriving a higher-order amplitude equation for transient growth requires introducing a very

long time scale τ = ϵ2
o t , such that A = A(T,τ). The total derivative in T should then replaced as

partial derivative, and the amplitude equation derived at order ϵ2
o writes ∂T A = A2µ̇2 subject

to limt→0(α− A) = 0. One gathers at order ϵ3
o for t > 0:

∂t (Φu3) =−2A3e−LtC (l ,u2)−e−Lt∂T u2 −e−Lt∂τu1 −∂t (Pu2)

=−2A3He−Lt [
C (l , ũ2)−µ2C (l , l )

]−2A(∂T A)
(
e−Lt ũ2 −ϵoµ2uo

)−ϵouo∂τA

=−2A3e−Lt [
C (l , ũ2)−µ2C (l , l )+ µ̇2

(
ũ2 −µ2l

)]−ϵouo∂τA, (7.35)

since (i) ∂T u2 = 2A(∂T A)
(
ũ2 −µ2l

)
, (ii) Pu2 = 0, and (iii) e−Lt∂τu1 = He−Lt l∂τA = Hϵouo∂τA.

Equation (7.35) is subject to u3(0) = 0. Its particular solution yields

u3(t ,T,τ) = A(T,τ)3u(a)
3 (t )+ ∂A(T,τ)

∂τ
u(b)

3 (t ), (7.36)
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where

dt

[
Φu(a)

3

]
= −2e−Lt [

C (l , ũ2)−µ2C (l , l )+ µ̇2(ũ2 −µ2l )
]

, and

dt

[
Φu(b)

3

]
= −ϵouo ,

subject to the initial conditions u(a)
3 (0) = u(b)

3 (0) = 0. After time integration, we obtain

Φu3 = A3e−Lt ũ3 −ϵouo t∂τA, t > 0, (7.37)

where ũ3 is solution of

dũ3

dt
= Lũ3 −2

[
C (l , ũ2)−µ2C (l , l )+ µ̇2(ũ2 −µ2l )

]
, ũ3(0) = 0.

Canceling the projection of the RHS of (7.37) on a(t ), dividing the ensuing relation by 〈a(t ),uo〉,
and taking the partial derivative with respect to t leads to

ϵo A3 dµ3

dt
= ϵo

∂A

∂τ
, t > 0, (7.38)

where

µ3(t ) = ϵ−1
o

〈
e−Lt ũ3(t ), a(t )

〉
〈uo , a(t )〉 =

〈ũ3(t ), l (t )〉
〈l (t ), l (t )〉 .

To be meaningful, equation (7.38) and its initial condition must be re-written solely in terms

of t , which is done by evaluating T = ϵo t and τ = ϵ2
o t . The total derivative of A, denoted

dt A, is now needed, as it takes into account the implicit dependence of A; it reads dt A =

∂t A+ϵo∂T A+ϵ2
o∂τA = ϵo∂T A+ϵ2

o∂τA, such that

ϵo A2 dµ2(t )

dt
+ϵ2

o A3 dµ3(t )

dt
=

dA

dt
, t > 0,

subject to limt→0(α− A(ϵo t ,ϵ2
o t)) = 0 so A(t → 0) = α and the amplitude A is extended by

continuity in t = 0 so as to impose A(0) =α.

7.4.3 Transient gain sensitivity and comparison with the WNNt model.

We consider a linear system ∂t u = Lu subject to the initial condition u(0) with ||u(0)|| = 1. The

linear transient gain at t = to writes Go = ||u(to)||. A variational method is used to derive the

variation of the optimal transient gain induced by a small perturbation δL of operator. Let us

introduce the Lagrangian

L = G2
o −

∫ to

0

〈
∂t u −Lu,u†

〉
dt −β(

1−||u(0)||2) ,
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where the Lagrange multipliers u† and β enforce the constraints on the state equation and on

the norm of the initial condition, respectively. Imposing 〈∂uL ,δu〉 = 0 for all δu leads to the

adjoint equation ∂t u† = −L†u†, to be integrated backward in time from the terminal condition

u†(to) = 2u(to). Eventually, the gain variation induced by δL is

δ(G2
o) =

〈
∂L

∂L
,δL

〉
=

∫ to

0

〈
(δL)u,u†

〉
dt . (7.39)

(Note that formula (7.39) was also derived in Meliga (2018) although using a different ap-

proach). On the other hand, we derived in the main text for the WNNt model:

a(t ) =
U0

ϵo

[
1−

(
U0

ϵo

)2

2µ3(t )

]−1/2

. (7.40)

The weakly-nonlinear transient gain squared can be expressed as G(to)2 = (a(to)/U0)2, while

the linear gain squared is G2
o = (1/ϵo)2, such that

1

G(to)2 − 1

G2
o

= −U 2
0 2µ3(to).

We are interested in small variations around G2
o , thus we write G(to)2 = G2

o+δG2
o with |δG2

o/G2
o |≪

1. In this manner, 1/G2
o −1/G(to)2 = δ(G2

o)/G4
o +h.o.t , eventually leading to

δ(G2
o) = 2µ3(to)

U 2
0

ϵ4
o

.

In addition,

µ3(to) = ϵ−1
o

〈
e−Lto ũ3(to), a(to)

〉
〈uo , a(to)〉 ,

with ũ3(t ) = −eLt
∫ t

0 2e−LsC [ũ2(s), l (s)]ds. Therefore

µ3(to) = −ϵ−1
o

〈∫ to
0 2e−LsC [ũ2(s), l (s)]ds, a(to)

〉
〈uo , a(to)〉

= −ϵ−1
o

∫ to
0

〈
2e−LsC [ũ2(s), l (s)], a(to)

〉
ds

〈uo , a(to)〉 .

By definition, a(to) = (eLto )†l (to) and 〈uo , a(to)〉 =
〈

eLto uo , l (to)
〉

= 1/ϵo . In addition,
(
e−Ls

)†
(eLto )† =(

eLto e−Ls
)†

=
(
e−L(s−to )

)†
, such that

µ3(to) = −
∫ to

0

〈
2C [ũ2(s), l (s)],

(
e−L(s−to ))†

l (to)
〉

ds.
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In terms of our previous notations, we have the direct correspondence u(t) = l (t)/ϵo and

u†(s) =
(
e−L(s−to )

)†
2u(to), so we can write

δ(G2
o) =

(
2U 2

0

ϵ4
o

)(
−ϵ

2
o

2

∫ to

0

〈
2C [ũ2(s),u(s)],

(
e−L(s−to ))†

2u(to)
〉

ds

)
= −

∫ to

0

〈
2C

[
(U0/ϵo)2ũ2(s),u(s)

]
,u†(s)

〉
ds.

The sensitivity relation (7.39) is immediately recognised, where δL is here induced by the

addition of (U0/ϵo)2ũ2 to the base flow. Indeed, U0/ϵo = al i n is the linear solution of (7.40)

corresponding the limit U0 → 0, such that the flow field is described in this limit by U (t) =

U e +al i nl (t )+a2
l i nũ2(t )+O(ϵ3

o).
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8 A weakly nonlinear amplitude
equation approach to the bypass
transition in the two-dimensional
Lamb–Oseen vortex

Remark: This chapter constitutes the article Ducimetière and Gallaire (2023).

8.1 Introduction

The two-dimensional axisymmetric Lamb-Oseen (Gaussian) vortex flow, the vorticity of which

is a strictly decreasing radial function, is linearly stable: the eigenvalues of L, the linearized

Navier-Stokes operator around this flow, all possess a positive or null damping rate. In fact,

even in the absence of viscosity where all damping rates are null, linear perturbations ex-

perience an inviscid exponential decay; this phenomenon, called “Landau damping", was

observed and interpreted for instance in Schecter et al. (2000). In particular, it was analytically

derived that the Landau damping rate can be related to the vorticity gradient, at the specific

radius where the angular velocity associated with the dominant Landau pole is equal to that

of the base flow.

The Landau damping can be interpreted in mathematical terms. In an inviscid framework,

Schecter et al. (2000) consider at first a “top-hat" base vortex, for which the vorticity decreases

slowly then rapidly drops to exactly zero for r ≥ rv . This vortex supports a continuum of

modes whose critical layers are located at some r ≤ rv , where they are singular since the base

vorticity gradient is non-zero there; it also supports a discrete (“Kelvin", according to the

terminology of, for instance, Balmforth et al. (2001)) mode whose critical layer is located at

rc ≥ rv where the base vorticity gradient is exactly zero: for this reason, the discrete mode is

smooth, regular and can be interpreted as a classical eigenmode. Secondly, Schecter et al.

(2000) consider a base vortex that is equivalent to the first, with the addition of a low-vorticity
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“skirt" that extends radially to a new, larger, rv ≥ rc . This introduces a non-zero base vorticity

gradient at rc which ruins the regularity of the previously discrete mode. However, Schecter

et al. (2000) argue that symptoms of the original discrete mode remain; some of the continuum

modes closely resemble the latter in terms of structure and frequency and combine to form

what Schecter et al. (2000) call a “quasi-mode". Therefore, if the discrete mode is used as an

initial condition, it will excite the continuum following a Lorentzian distribution that is peaked

around the discrete mode frequency (see figure 3 in Schecter et al. (2000)). As time evolves, the

continuum modes disperse, and their superposition behaves like an exponentially damped

version of the original discrete mode (hence the appellation “quasi-mode").

Schecter et al. (2000) also consider the response of a Gaussian vortex, such as the one con-

sidered here, to a generic external impulse. Although the response does not behave as a

single damped wave but projects well on a very large number of structurally different modes,

the Landau damping is still found to be relevant and to dominate the initial decay of the

perturbation.

Nevertheless, Rossi et al. (1997) evidenced that the Gaussian vortex flow, despite its linear

stability, could relax to a new non-axisymmetric, called “tripolar", state when subject to an

arbitrary perturbation of sufficiently large amplitude. Such phenomenology is symptomatic

of a subcritical bifurcation. This tripolar structure is well described for instance in Nolan and

Farrell (1999) as a vortex for “which the low vorticity of the moat pools into two satellites of an

elliptically deformed central vortex, with the whole structure rotating cyclonically". It has been

observed in the laboratory experiments of Denoix et al. (1994) as well as in Kloosterziel and

van Heijst (1991), Van Heijst and Kloosterziel (1989), and Van Heijst et al. (1991), and described

in this last article as being “a very stable structure, even persisting in a highly sheared fluid

environment".

This corroborates its importance in geophysical contexts, where tropical cyclones sometimes

show rotating elliptical eyes, as was reported for instance by Kuo et al. (1999) for Typhoon

Herb, which occurred in Taiwan in 1996. A radar located on the Wu-Feng mountain could

measure the horizontal distribution of maximum reflectivity for the Typhoon, from which

we observe an elliptical eye (see their figures 1 and 2). The eye was rotating cyclonically with

a period of 144 min. Concerned with Hurricane Olivia, which was part of the 1994 Pacific

hurricane season, the work of Reasor et al. (2000) also documented an elliptical eye (see their

figure 16). The ratio of minor to major axis was approximately 0.7, and the period of (cyclonic)

rotation was found to be around 50 min.

A substantial body of theoretical work has therefore been devoted to the apparition and per-

sistence of the tripolar state. Some of them reflect on the problem in terms of the Landau

damping, for instance, Balmforth et al. (2001), Le Dizès (2000), Schecter et al. (2000), Turner

and Gilbert (2007), and Turner et al. (2008). Common to all these latter works is the following

idea: if the perturbation is large enough to nonlinearly feedback on the mean vorticity (av-

eraged in the azimuthal direction), in such a way that the mean vorticity gradient vanishes

204



Weakly nonlinear response of the Lamb-Oseen vortex Chapter 8

near the radius where the angular velocity associated with the dominant Landau pole equates

to that of the base flow, then the Landau damping is deactivated. Indeed, it was shown in

Schecter et al. (2000), Turner and Gilbert (2007), and Turner et al. (2008) that such cancelling

of the Landau damping goes with the appearance of an undamped Kelvin mode. The effects of

flattening the mean vorticity distribution have been thoroughly studied in Schecter et al. (2000)

and Turner et al. (2008), although it was introduced rather artificially to a posteriori mimic

nonlinear effects. It has, however, been rigorously quantified using a matched asymptotic

expansion in Balmforth et al. (2001), the small parameter being directly linked to the amount

of vorticity near the critical radius rc of the neutral Kelvin mode of a compact vortex, whose

vorticity there would be zero otherwise. The developments result in an amplitude equation

for the weakly nonlinear quasi-mode, that can predict a secondary instability for a sufficiently

strong disturbance amplitude.

Under certain conditions, the vorticity tripole has also been shown to be the nonlinear fate of

a shear instability (also sometimes called “barotropic" instability, in opposition to “baroclinic"

instability, this latter requiring density stratification). This was illustrated clearly for instance

in Carnevale and Kloosterziel (1994), Carton and Legras (1994), Carton et al. (1989), and Kossin

et al. (2000), and many other works. If the mean vorticity profile (averaged along the azimuthal

direction) presents a local extremum at some radius, a necessary condition for shear instability

is satisfied according to a generalization of the Rayleigh theorem of inflectional point by Billant

and Gallaire (2005). This is, for instance, the case of the family of shielded monopoles, where

the vortex core of positive vorticity is surrounded by a ring of negative vorticity. By increasing

the intensity of the shear, the shielded vortex becomes unstable with a maximum growth

rate for perturbations of azimuthal wavenumber m = 2; by increasing the shear further, m = 3

becomes even more unstable (see figure 7 in Carnevale and Kloosterziel (1994)). Inspired

by velocity measurements of Hurricane Gilbert that occurred in 1988, Kossin et al. (2000)

considered the vorticity of a piecewise-constant vorticity profile. The latter is constituted

of four distinct regions of vorticity: an inner region of very high vorticity, a moat region

of relatively low vorticity, an annular ring of positive vorticity, and an irrotational far field.

Kossin et al. (2000) then show that, by narrowing the moat, a shear instability appears with a

maximum growth rate at a wavenumber m = 2 (see their figure A1). This shear instability can

be conceptualized as resulting from a wave interaction across the moat, between two Rossby

waves riding respectively the inner edge of the annular ring, and the outer edge of the central

vortex. Note that what we designate here as a “Rossby" wave, according to the terminology of

Kossin et al. (2000), is similar to the “Kelvin" mode discussed until now. Nonlinear simulations

have then shown this instability to saturate into a tripolar state.

Furthermore, an important ingredient to the subcritical transition towards the tripolar state

was found to be the non-normality of the linear operator L. An operator is non-normal if it

does not commute with its adjoint, the expression of the latter being relative to the choice of

an inner product. The eigenvectors of a non-normal operator do not form an orthogonal basis

under this inner product, thus a negative growth rate for all eigenvalues is not a guarantee for

the associated norm to decay monotonically. In fact, some small-amplitude perturbations
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may experience a large transient amplification. In particular, the linear transient growth

analyses conducted for instance in Antkowiak (2005), Antkowiak and Brancher (2004), Heaton

and Peake (2007), Mao and Sherwin (2012), and Pradeep and Hussain (2006), have revealed

the Lamb-Oseen (and Batchelor) vortex flow to support such strong transient energy growth.

Therefore, perturbations to the base flow field, such as free-stream turbulence or acoustic

disturbances, can be amplified strongly enough through non-normal, linear, mechanisms

to lead to a regime where nonlinearities come into play; the flow may then escape from its

linearly stable solution. This conjunction of non-normality then nonlinearity corresponds to

the “by-pass" scenario proposed in (Trefethen et al., 1993) and contextualized to the Lamb-

Oseen vortex flow in Antkowiak (2005). Recently, the transient growth analysis of the Lamb-

Oseen vortex has been numerically extended in the fully nonlinear regime via a Lagrangian

optimization in Navrose et al. (2018).

The present work aims at reconciling the simplicity of a weakly nonlinear model (such as in

Balmforth et al. (2001) and Sipp (2000)), in the sense that it is easier to solve and interpret

than the original equation, with non-normality. Specifically, the objective is to construct

an amplitude equation that is not restricted to the description of close-to-neutral modes or

quasi-modes, but that extends to responses associated with optimal transient growth.

The amplitude equation analytically derived in this chapter will not restrict the shape of the

base flow in order for the latter to support a close-to-neutral mode or a quasi-mode, and

will tolerate arbitrary temporal dependence of this base flow; this is precisely because these

complexities are already incorporated in the optimal transient growth analysis of which we

study the weakly nonlinear continuation. This makes possible the weakly nonlinear analysis

of optimal responses on vortices with more realistic vorticity profiles from field measurements.

For instance, this could be applied to the profile reported in figure 1 of Kossin et al. (2000),

from flight-level radar measurement of Hurricane Gilbert.

The derivation of a weakly nonlinear reduced-order model will make it possible to distinguish

the regimes where weak nonlinearities reinforce the transient gain, from the regimes where

they cause it to decrease. It will also provide a rough criterion for the minimum amplitude

of the initial condition required to trigger a bypass transition away from the axisymmetric

state. It will also help us quantify the importance of the distortion of the flow averaged in

the azimuthal direction, called “mean flow", with respect to the importance of the second

harmonic in nonlinear effects at stake.

After a brief derivation on the linear formulation in §8.2, the method advanced to derive the

amplitude equation is outlined in §8.3; specifically, we vary the amplitude of a given initial

condition and predict, at low numerical cost, the gain of the response at a selected time t = to .

The (general) method is then illustrated with the two-dimensional Lamb-Oseen vortex flow

with azimuthal wavenumber m = 2 in §8.5, exhibiting large gain and subcritical bifurcation.
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8.2 Linear formulation

In the following subsection, the formulation of the linear transient growth problem is briefly

recalled. In the rest of the chapter, we shall consider a purely two-dimensional flow, invariant

and with zero velocity in the axial direction. This two-dimensionality implicitly assumes

the flow not to be subject to any three-dimensional instabilities, or any kind of spontaneous

axial variations. This assumption is often made in considering vortex flows, and will not be

discussed further in the present chapter. Note that the restriction to a two-dimensional flow

is not intrinsic to the analytical development proposed in the following, but is simply made

to ease the computations thus concentrating our efforts on the analysis of the subcritical

transition toward the tripolar state.

Let U b(r, t ) = [0,Ub,θ]T (r, t ) denote a reference vortex flow, satisfying the Navier-Stokes equa-

tions exactly (without body force) and supporting a small-amplitude perturbation field of the

form [
u

p

]
(r,θ, t ) =

[
û

p̂

]
(r, t )e imθ+c.c. (8.1)

and û(r, t ) = [ûr , ûθ]T (r, t ). The invariance of the base flow along the azimuthal (θ) coordinate

justifies the Fourier mode expansion of the perturbation in this direction; m ∈Z denotes the

wavenumber in the azimuthal direction. Linearizing the Navier-Stokes equations around

U b(r, t ) leads to an equation for the temporal evolution of the velocity field û(r, t )

∂t û =

[
(∆m −1/r 2)/Re − imΩ −2im/(r 2Re)+2Ω

2im/(r 2Re)−Wz (∆m −1/r 2)/Re − imΩ

]
︸ ︷︷ ︸

.
=Am (t )

û −∇̂m p̂(û)

.
= Lm(t )û

(8.2)

where ∇̂m
.
= [∂r , im/r ]T and

Ω
.
= Ub,θ/r, Wz

.
=Ω+∂r Ub,θ, ∆m

.
= ∂r r + (1/r )∂r −m2/r 2. (8.3)

The letter Ω denotes the angular velocity of the base flow, where Wz is its vorticity along the

z-axis. The operator imΩ is the advection by the base flow, and ∆m is the Laplacian associated

with viscous diffusion: it is therefore systematically multiplied by 1/Re. The presence of the

pressure term in (8.2) ensures the velocity field û to be divergence free for all times. Indeed,

the pressure is linearly linked to the velocity field according to the Poisson equation

∆m p̂(u) = −2i(m∂r Ub,θ/r )ûr +2(∂r +1/r )(Ωûθ), (8.4)

obtained by taking the divergence of the momentum equations, then enforcing the continuity

(∂r + 1/r )ûr + imûθ/r = 0. The perturbation fields are subject to the following boundary
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conditions over r ∈ [0;+∞[, valid for all timesûr |r =0 = ûθ|r =0 = 0

∂r p̂|r =0 = 0
for m even, and

∂r ûr |r =0 = ∂r ûθ|r =0 = 0

p̂|r =0 = 0
for m odd, (8.5)

as well as limr→∞ û = 0. As shown in the appendix of Kerswell and Davey (1996), by imposing

the parity conditions (8.5), “the correct axial behaviour automatically follows without need to

explicitly impose the regularity conditions".

Only the temporal dependence of the operators will be made explicit in the rest of the chapter;

for instance, Lm(t), whose temporal dependence is inherited from the base flow, is actually

Lm(t ) = Lm(r, t ;Re). Precisely due to the fact that it depends on time, the operator exponential

formalism cannot be used to solve (8.2). Instead, and given the value of the perturbation

field at a time ti , its temporal evolution at a further time t according to (8.2) formally reads

û(t) =Ψ(t , ti )û(ti ). The operator Ψ(t , ti ) is traditionally named the propagator, for its action

directly maps û(ti ) onto û(t ) (Farrell & Ioannou, 1996). If ti = 0 in particular,

û(t ) =Ψ(t ,0)û(0). (8.6)

The propagator responds to the semigroup properties

Ψ(t , ti ) =Ψ(t , s)Ψ(s, ti ), (8.7)

and Ψ(ti , ti ) = I (the identity operator). Injecting û(t ) =Ψ(t , ti )û(ti ) in (8.2), and enforcing the

equation to be satisfied for all û(ti ) leads to an evolution equation for the propagator

∂tΨ(t , ti ) = Lm(t )Ψ(t , ti ). (8.8)

By evaluating (8.7) at t = ti and s = t , it follows that

I =Ψ(ti , t )Ψ(t , ti ) thereby [Ψ(t , ti )]−1 =Ψ(ti , t ). (8.9)

Eventually, taking the temporal derivative of the first equation in (8.9) results in an evolution

equation for the inverse propagator

∂tΨ(ti , t ) = −Ψ(ti , t )Lm(t ). (8.10)

Note that in presence of a forcing term f̂ (t) at the right-hand side of the system (8.2), its

solution (8.6) generalizes into

û(t ) =Ψ(t ,0)û(0)+Ψ(t ,0)
∫ t

0
Ψ(0, s) f̂ (s)ds. (8.11)

This formula will turn out to be useful in a moment.

The transient growth analysis amounts to constructing an orthonormal basis for the initial
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flow field, with the particular feature that elements of this basis are ranked according to how

much they are amplified at a given temporal horizon to > 0. The first element of this basis is

the initial condition that is most amplified at t = to , the second is the most amplified under

the constraint that it must be orthogonal to the first, etc ... Due to the non-normality of Lm(t ),

the first few elements often lead to amplifications that are much larger than all the others. In

the case where the initial condition projects equivalently on each element of the basis, the

flow response at t = to is dominated by those stemming from the few first elements of the basis

only. In other terms, the key idea behind a transient growth (and/or a resolvent) analysis is

that the response of a system to external perturbations is intrinsic to the operator, thus the

precise form of these external perturbations matters little.

The first step is to define according to which measure the amplification is sought for. In the

following, we choose the norm induced by the Hermitian inner product

〈ûa |ûb〉 .
=

∫ ∞

0
ûH

a ûbr dr, (8.12)

the superscript ’H’ denoting the Hermitian transpose. Note that 〈û|û〉 = ||û||2 is directly the

kinetic energy of the perturbation. The largest linear amplification (or “gain") between an

initial flow structure and its evolution at t = to > 0 (subscript o for ’optimal’) reads

Go(to)
.
= max

û(0)

||û(to)||
||û(0)||

.
=

1

ϵo
. (8.13)

The optimal gain does not depend on the time itself, but only on the temporal horizon to . In

the following, Go alone implies Go(to). The propagator formalism (8.6) is used to re-write the

maximization problem (8.13) as an eigenvalue problem

G2
o = max

û(0)

〈û(to)|û(to)〉
〈û(0)|û(0)〉 = max

û(0)

〈Ψ(to ,0)û(0)|Ψ(to ,0)û(0)〉
〈û(0)|û(0)〉

= max
û(0)

〈
û(0)

∣∣Ψ(to ,0)†Ψ(to ,0)û(0)
〉

〈û(0)|û(0)〉 ,

(8.14)

where the operator Ψ(to ,0)† denotes the adjoint of Ψ(to ,0) under the inner product (8.12).

From (8.14), it is clear that G2
o is also the largest (necessary real) eigenvalue of the self-adjoint

operator Ψ(to ,0)†Ψ(to ,0), and the associated eigenvector, named ûo in what follows, is the

optimal initial condition. The latter is normalized such that 〈ûo |ûo〉 = 1. Smaller eigenvalues

and corresponding eigenmodes constitute sub-optimal gains and initial conditions, and the

family of eigenvectors is orthonormal. Let l̂ o be the unit-norm response to the optimal initial

condition ûo at t = to , such that l̂ o
.
=Ψ(to ,0)ûo/Go and

〈
l̂ o

∣∣l̂ o
〉

= 1. From this definition, and

using that Ψ(to ,0)†Ψ(to ,0)ûo = G2
oûo and that the inverse of the adjoint is the adjoint of the

inverse, two relations follow

Ψ(0, to)l̂ o = ϵoûo , and Ψ(0, to)†ûo = ϵo l̂ o (8.15)
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where we recall that ϵo is the inverse of the optimal gain. Note that these two last relations

also indicate the optimal initial condition and its associated response to be respectively the

right and left singular vectors of Ψ(to ,0), associated with its largest singular value. Since the

operator Lm(t ) is assumed in the rest of the study to be strongly non-normal, the structures

ûo and l̂ o generally project poorly each of its direct and adjoint eigenmodes (except in the

limit to →∞).

The full linear response seeded by ϵoûo and such that l̂ (to) = l̂ o reads l̂ (t) = ϵoΨ(t ,0)ûo , or

Ψ(0, t )l̂ (t ) = ϵoûo . The gain associated with this full linear response reads

G(t ; to)
.
=

||l̂ (t )||
||ϵoûo ||

=
||l̂ (t )||
ϵo

= ||Ψ(t ,0)ûo ||, (8.16)

where the parameter to after the semi-colon in G(t ; to) highlights that this gain was optimized

for the time to specifically. Therefore, the gain (8.16) evaluated in t = to equals to that defined

in (8.13), i.e., G(to ; to) = Go(to). Nevertheless, we insist that the gain (8.16) depends on the

time t and is parameterized by the temporal horizon to , whereas the optimal gain (8.13)

depends only on the temporal horizon to . In the following, the shortened notation G(t ) will

systematically imply G(t ; to), and will be sometimes used to lighten the writing.

Of all the temporal horizons to , the one leading to the largest optimal gain will be highlighted

with the subscript ‘max’ such that

max
to>0

Go(to) = Go(to,max)
.
=

1

ϵo,max
. (8.17)

8.3 Weakly nonlinear formulation

In the linear paradigm, the gain is independent of ||û(0)||, for the latter is assumed to be

arbitrarily small. In reality, ||û(0)|| may be sufficiently large for the nonlinear corrections to

the response not to be negligible anymore, thus for the transient gain to depart from its linear

prediction. Building on our previous work (Ducimetière et al., 2022a), we propose thereafter a

method for capturing weakly nonlinear effects on the transient gain over a time-varying base

flow.

In the rest of the present study, we subject the two-dimensional, unforced, Navier-Stokes

equations governing the flow field U (t ) to a small-amplitude initial perturbation around the

reference vortex flow U b(t ). The initial perturbation has an azimuthal wavenumber m and its

radial structure ûh , with ||ûh || = 1, is for now arbitrary. The strong non-normality assumption

justifies further assuming the transient gain to be large, that is to say, ϵo ≪ 1, such that ϵo

constitutes a natural choice of small parameter with which to scale the amplitude of the initial

perturbation. Specifically,

U (0)−U b(0) =α
p
ϵo

3(ûhe imθ+c.c.) = U0(ûhe imθ+c.c.), (8.18)
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where the amplitude of the initial condition, U0
.
=α

p
ϵo

3, can vary through the real prefactor

α = O(1). We intend at capturing the variation of the transient gain by increasing U0.

For this purpose, the total flow field U is developed as a multiple-scale asymptotic expansion

in terms of powers of
p
ϵo around the reference vortex flow U b(t )

U (t ,T ) = U b(t )+p
ϵou1(t ,T )+ϵou2(t ,T )+p

ϵo
3u3(t ,T )+O(ϵ2

o). (8.19)

The slow time scale T
.
= ϵo t was introduced, aiming at capturing the slow modulation of the

linear trajectory as nonlinearities progressively set in. The reason for which the expansion and

the scaling of the initial condition are made in terms of powers of
p
ϵo shall be specified later.

Injecting (8.19) in the Navier-Stokes equations, then expanding each u j as a Fourier series in

space according to

u j (t ,T ) = u(0)
j (t ,T )+∑

n
(u(n)

j (t ,T )e inmθ+c.c.) (8.20)

with n = 1,2,3, ..., yields

p
ϵo

[[
(∂t −Lm(t ))u(1)

1 e imθ+c.c.
]
+ s1

]
+

ϵo

[[
(∂t −Lm(t ))u(1)

2 e imθ+c.c.
]
+ s2 +C [u1,u1]

]
+

p
ϵo

3
[[

(∂t −Lm(t ))u(1)
3 e imθ+c.c.

]
+ s3 +∂T u1 +C [u1,u2]+C [u2,u1]

]
+

O(ϵ2
o) = 0,

(8.21)

where the nonlinear advection operator

C
[

x , y
] .

= (x ·∇)y + r−1 [−xθyθ, (xθyr +xr yθ)/2
]T , ∇ = [∂r ,r−1∂θ], (8.22)

has been defined. The fundamental field, corresponding to n = 1, has been isolated at each

order in (8.21), and the harmonics have been incorporated in s j with

s j = (∂t −L0(t ))u(0)
j +∑

n

[
(∂t −Lnm(t ))u(n)

j e inmθ+c.c.
]

(8.23)

for n = 2,3, .... From (8.18), the only field with a non-zero initial condition is the fundamental

one appearing at third order, specifically, u(1)
3 |t=0 =αûh . On the other hand, the relation

(∂t −Lm(t ))u(1)
j =Ψ(t ,0)∂t

(
Ψ(0, t )u(1)

j

)
(8.24)
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can be established using (8.10). Further injecting (8.24) in (8.21) leads to

p
ϵo

[[
Ψ(t ,0)∂t

(
Ψ(0, t )u(1)

1

)
e imθ+c.c.

]
+ s1

]
+

ϵo

[[
Ψ(t ,0)∂t

(
Ψ(0, t )u(1)

2

)
e imθ+c.c.

]
+ s2 +C [u1,u1]

]
+

p
ϵo

3
[[
Ψ(t ,0)∂t

(
Ψ(0, t )u(1)

3

)
e imθ+c.c.

]
+ s3 +∂T u1 +C [u1,u2]+C [u2,u1]

]
+

O(ϵ2
o) = 0,

(8.25)

We recall that the application of the operator Ψ(0, t) is equivalent to integrating the system

backward from t to 0, and that it maps the optimal response l̂ o on a field of very small

amplitude ϵo ≪ 1 (by assumption) in (8.15). The main idea behind our method is to take

advantage of this by perturbing the operator Ψ(0, t ) for all t ≥ 0 according to

Φ(0, t )
.
=Ψ(0, t )−ϵoP (t ), with P (t )

.
= H(t )

ûo
〈

l̂ (t )
∣∣∗〉

||l̂ (t )||2 , (8.26)

and where the Heaviside distribution H(t) is defined as H(0) = 0 and H(t > 0) = 1. The

operator
〈

l̂ (t )
∣∣∗〉

applied to any field ĝ simply results in
〈

l̂ (t )
∣∣ĝ

〉
. The operator Φ(0, t ) satisfies

Φ(0,0) = I and Φ(0, t)l̂ (t) = 0 for t > 0, and therefore is singular for all strictly positive times;

the linear trajectory l̂ (t ) constitutes its non-trivial (time-evolving) kernel. We further show in

Appendix 8.7.1 that the non-trivial kernel b̂(t) of the adjoint operator Φ(0, t)† for t > 0, such

that Φ(0, t )†b̂(t ) = 0, reads b̂(t ) =Ψ(t ,0)† l̂ (t ).

Note that

Φ(0, t ) =Ψ(0, t )

(
I − l̂ (t )

〈
l̂ (t )

∣∣∗〉
||l̂ (t )||2

)
, (8.27)

where the term in parenthesis is an orthogonal projection operator: it is self-adjoint, linear,

idempotent, and its application projects into the subspace that is complementary to l̂ (t).

Therefore (8.26), by stating that Ψ(0, t) ≈ Φ(0, t), implies that applying Ψ(0, t), or applying

Φ(0, t ) that first removes the component on l̂ (t ) then applies Ψ(0, t ), both lead to very similar

initial states. That is precisely because Ψ(0, t) maps l̂ (t) on ϵoûo of very small amplitude

ϵo ≪ 1.

In principle, expansion (8.26) requires

||Ψ(0, t )||≫ ϵo ||P (t )|| =
ϵo

||l̂ (t )|| =
1

||Ψ(t ,0)ûo ||
. (8.28)

By using that the norm of the inverse of an operator is the inverse of its minimum singular

value

||Ψ(0, t )|| =

(
min

û(0),||û(0)||=1
||Ψ(t ,0)û(0)||

)−1

, (8.29)
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the condition above is equivalent to

min
û(0),||û(0)||=1

||Ψ(t ,0)û(0)||≪ ||Ψ(t ,0)ûo ||. (8.30)

In other terms, the operator perturbation a priori holds for the times t such that the response

to the initial condition that is the least amplified at t , is much smaller than the response to

ûo that is the most amplified at to . This is certainly verified for times around t = to , which is

appropriate, for the response l̂ (t ) is expected to be nonlinearly modified at first at these times.

By then perturbing the operator Ψ(0, t ) in (8.25) according to (8.26), we are left with

p
ϵo

[[
Ψ(t ,0)∂t

(
Φ(0, t )u(1)

1

)
e imθ+c.c.

]
+ s1

]
+

ϵo

[[
Ψ(t ,0)∂t

(
Φ(0, t )u(1)

2

)
e imθ+c.c.

]
+ s2 +C [u1,u1]

]
+

p
ϵo

3
[[
Ψ(t ,0)∂t

(
Φ(0, t )u(1)

3

)
e imθ+c.c.

]
+ s3 +∂T u1 +C [u1,u2]+C [u2,u1]+[

Ψ(t ,0)∂t

(
P (t )u(1)

1

)
e imθ+c.c.

]]
+O(ϵ2

o) = 0.

(8.31)

Note that the perturbation operator ϵoP (t ), modifying Ψ(0, t ) in Φ(0, t ) at leading order O(
p
ϵo),

is compensated for at third order O(
p
ϵo

3) specifically. This was made purposely and explains

a posteriori why the asymptotic expansion was outlined in terms of integer powers of
p
ϵo ,

instead of being for instance in terms of integer powers of ϵo . More precisely, we anticipated

the forcing term C [u1,u2]+C [u2,u1] appearing at third order, to have a non-zero component

on the fundamental wavenumber m, due to the bi-linearity of the operator C [∗,∗]; therefore,

making the term in P (t) appear at third order as well, was a way of putting all forcing terms

oscillating at m at the same order.

Note also that only the propagator associated with the wavenumber m was perturbed, al-

though harmonics may equally lead to significant transient gains. This selective perturbation

is justified a priori by the fact these harmonics are not externally excited like the fundamental

pair is through the initial condition, but are only generated nonlinearly at higher orders. If,

however, the harmonic responses are a posteriori found to endanger the asymptotic hierarchy,

they can always be included in the kernel of their associated propagators in the manner of

(8.26).

Terms in (8.31) are collected at each order in
p
ϵo , yielding a cascade of linear problems. At

order
p
ϵo we assemble (∂t −Lnm(t ))u(n)

1 = 0 with u(n)
1 |t=0 = 0 for n = 0,2,3, ... and

Ψ(t ,0)∂t

(
Φ(0, t )u(1)

1

)
= 0 with u(1)

1 |t=0 = 0. (8.32)

This leads to u(n)
1 = 0 for all times and n ̸= 1. In addition, multiplying (8.32) by Ψ(0, t), then

integrating in time and using Φ(0,0) = I , gives Φ(0, t )u(1)
1 = 0. The kernel of Φ(0, t ) being equal
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to H(t )l̂ (t ) for t ≥ 0, the solution for u(1)
1 reads

u(1)
1 (t ,T ) = A(T )H(t )l̂ (t ) for t ≥ 0, (8.33)

where A(T ) ∈C is a slowly varying scalar amplitude verifying ∂t A = 0. Eventually, the general

solution at
p
ϵo is written

u1(t ,T ) = A(T )H(t )l̂ (t )e imθ+c.c. for t ≥ 0. (8.34)

In the linear regime, A would be constant over time; therefore, by continuity, we expect its

variation to be small in the weakly nonlinear regime. This is what is implied in the fact that A

depends on the slow time T , since dt A = ∂t A+ (∂t T )∂T A = ϵo∂T A = O(ϵo) ≪ 1.

At order ϵo , the solution is

u2(t ,T ) = |A(T )|2u(0)
2 (t )+

(
A(T )2û(2)

2 (t )e i2mθ+c.c.
)

(8.35)

for t ≥ 0, where

(∂t −L0(t ))u(0)
2 = −Cm

[
l̂
∗

, l̂
]
+c.c., u(0)

2 (0) = 0, and

(∂t −L2m(t ))û(2)
2 = −Cm

[
l̂ , l̂

]
, û(2)

2 (0) = 0.
(8.36)

The advection operator in the Fourier space Cm
[

x̂ , ŷ
]

is as (8.22), excepted that ∇ is replaced

by ∇̂m ; it computes the transport, by the field x̂ , of the field ŷ oscillating at m. In principle,

the Heaviside distribution H(t) multiplies the forcing terms in (8.36). However, it can be

ignored here without loss of generality, for the forcing terms appear inside an integral between

0 and t in the formal expression of the solution, where the presence of a Heaviside distribu-

tion is unimportant. In (8.35), the homogeneous solution A2(T )H(t )l̂ (t ), solving the system

Φ(0, t )u(1)
2 = 0 for t ≥ 0, was ignored. In this manner, the component of the overall solution on

l̂ (t ) is fully embedded in A, without needing to be corrected.

At order
p
ϵo

3 in (8.31) are gathered two equations: the first yields the Fourier component of

the solution oscillating at m

Ψ(t ,0)∂t

(
Φ(0, t )u(1)

3

)
= −A|A|2H f̃ − (dT A)H l̂ − AΨ(t ,0)∂t

(
P (t )H l̂

)
, (8.37)

subject to u(1)
3 |t=0 =αûh and where we defined

f̃ .
= C2m

[
l̂
∗

, û(2)
2

]
+C−m

[
û(2)

2 , l̂
∗]

+C0

[
l̂ ,u(0)

2

]
+Cm

[
u(0)

2 , l̂
]

, (8.38)

depending only on the fast time scale t . The second equation governs the Fourier component

oscillating at 3m

(∂t −L3m(t ))u(3)
3 = −A3

(
C2m

[
l̂ , û(2)

2

]
+Cm

[
û(2)

2 , l̂
])

, (8.39)
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subject to u(3)
3 |t=0 = 0. Noticing that P (t )H l̂ = H 2ûo = H ûo , that Ψ(0, t )l̂ = ϵoûo (by definition)

and multiplying (8.37) by Ψ(0, t ) results in

∂t

(
Φ(0, t )u(1)

3

)
= −A|A|2HΨ(0, t ) f̃ − (dT A)Hϵoûo − A∂t (H ûo) . (8.40)

Integration over the time t , detailed in Appendix 8.7.2, leads to

Φ(0, t )u(1)
3 =αûh + A|A|2Ψ(0, t )ũ − (dT A)ϵo t ûo − AH ûo , (8.41)

where

(∂t −Lm(t ))ũ = − f̃ , subject to ũ(0) = 0. (8.42)

Evaluating (8.41) in t = 0 in particular, we check that u(1)
3 |t=0 =αûh indeed. The operator Φ(0, t )

being singular for strictly positive time, (8.41) admits a non-diverging particular solution if

and only if its right-hand side is orthogonal to b̂(t) for all t > 0 (Fredholm alternative). This

condition results in

ϵo t
dA

dT
=α

〈
b̂
∣∣ûh

〉〈
b̂
∣∣ûo

〉 − A+ A|A|2
〈

b̂
∣∣Ψ(0, t )ũ

〉〈
b̂
∣∣ûo

〉 (8.43)

for t > 0. The adjoint field b̂(t) = Ψ(t ,0)† l̂ (t) tends towards b̂(0) = l̂ (0) = ϵoûo when t tends

towards 0. Therefore, in this limit, (8.43) reduces to

lim
t→0

A =α〈ûo |ûh〉 , (8.44)

where we also used that the limits of both the left-hand side and the nonlinear term in (8.43)

are 0 when t goes to 0; the former because of the presence of the factor t , and the latter because

ũ(0) = 0. Solving (8.43) is equivalent to solving its partial derivative with respect to the fast

time scale t , reading

ϵo
dA

dT
=α

d

dt

(〈
b̂
∣∣ûh

〉〈
b̂
∣∣ûo

〉 )
+ A|A|2 d

dt

(〈
b̂
∣∣Ψ(0, t )ũ

〉〈
b̂
∣∣ûo

〉 )
, (8.45)

subject to the initial condition (8.44). The system is written solely in terms of t by evaluating

(8.44) and (8.45) at T = ϵo t , and remembering that dt A = ϵodT A|T =ϵo t , leading to

dA

dt
=α

d

dt

(〈
b̂
∣∣ûh

〉〈
b̂
∣∣ûo

〉 )
+ A|A|2 d

dt

(〈
b̂
∣∣Ψ(0, t )ũ

〉〈
b̂
∣∣ûo

〉 )
, with A(0) =α〈ûo |ûh〉 . (8.46)

The amplitude A, previously undefined at t = 0, was prolonged by continuity there by stating

A(0) = limt→0 A(t ). Note that such rewriting of the amplitude equation in terms of t was not

done directly for (8.43), since it would have given an ode without an initial condition, (8.44)

being intrinsically satisfied.

Introducing the rescaled amplitude a
.
=
p
ϵo A and remembering the amplitude of the initial
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condition to be U0 =α
p
ϵo

3, equation (8.46) writes

da

dt
=

U0

ϵo

d

dt

(〈
b̂
∣∣ûh

〉〈
b̂
∣∣ûo

〉 )
+a|a|2 dµ

dt
, with a(0) =

U0

ϵo
〈ûo |ûh〉 , (8.47)

and where we defined the nonlinear coefficient

µ(t )
.
=

1

ϵo

〈
b̂(t )

∣∣Ψ(0, t )ũ(t )
〉〈

b̂(t )
∣∣ûo

〉 =
1

ϵo

〈
Ψ(t ,0)† l̂ (t )

∣∣Ψ(0, t )ũ(t )
〉〈

Ψ(t ,0)† l̂ (t )
∣∣ûo

〉 =

〈
l̂ (t )

∣∣ũ(t )
〉

||l̂ (t )||2 . (8.48)

From here, the weakly nonlinear transient gain corresponding to the wavenumber m for t > 0

is simply

Gw(t ; to) =
||pϵo u(1)

1 (t )||
||U0ûh ||

=
|a(t )|||l̂ (t )||

U0
. (8.49)

The parameter to after the semi-colon in Gw(t ; to) underlines that it is the weakly nonlinear

prolongation of a gain that was linearly optimized for t = to . Again, in what follows, the

shortened notation Gw(t ) will systematically imply Gw(t ; to). Note that Gw(to) = |a(to)|/U0.

The linear regime corresponds to the limit U0/ϵo → 0, or simply U0 → 0, since if the amplitude

of the initial condition is much smaller than the linear gain, then the amplitude of its response

is much smaller than one. In this limit, the nonlinear terms in (8.47) becomes negligible, and

the solution tends towards

a(t ) =
U0

ϵo

〈
b̂(t )

∣∣ûh
〉〈

b̂(t )
∣∣ûo

〉 =

〈
l̂ (t )

∣∣U0Ψ(t ,0)ûh
〉

||l̂ (t )||2 , (8.50)

which is the properly normalized projection on l̂ (t) of the response to the initial condition

U0ûh , as expected at a linear level since a(t ) is the amplitude along l̂ (t ).

Note that in (8.26) any other perturbation operator of the form P = H ûo 〈x̂ |∗〉/
〈

x̂
∣∣l̂〉, with x̂

any trajectory, would also have led to a singular operator with l̂ as a non-trivial kernel, but

with b̂ =Ψ(t ,0)†x̂ as a non-trivial kernel of its adjoint. Choosing x̂ = l̂ implying b̂ =Ψ(t ,0)† l̂ , as

was done so far, is the only choice leading to a coherent result in (8.50), thereby guaranteeing

the uniqueness of P in (8.26); as a side comment, it should be noted that among all x̂ , x̂ = l̂

also leads to the P of the smallest possible norm.

For the gain at t = to , (8.50) corresponds to

lim
U0→0

Gw(to) =
1

ϵo

|〈b̂(to)
∣∣ûh

〉 |
|〈b̂(to)

∣∣ûo
〉 | =

1

ϵo
| 〈ûo |ûh〉 |, (8.51)

since b̂(to) = ϵoΨ(to ,0)†Ψ(to ,0)ûo = ûo . The result (8.51) also is as expected from the linear

prediction. In particular, we recover limU0→0 Gw(to) = 1/ϵo = Go when the optimal initial

condition is applied (ûh = ûo). It also predicts the gain to be null when ûh is orthogonal to ûo ,
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indicating the linear response at t = to to be orthogonal to l̂ o without taking into account the

gains associated with sub-optimal forcings. Therefore, these latter should be O(1/
p
ϵo) to be

mathematically consistent.

For the rest of the chapter, we set ûh = ûo . In physical terms, this choice, although very specific,

is found to be the most natural in the absence of information regarding the structure of the

actual initial condition ûh . Note, however, that ûh might project very poorly on ûo , and in the

latter case reducing the dynamics to the response to ûo would give inaccurate results.

Further expressing a(t) in terms of an amplitude |a(t)| ∈ R+ and a phase φ(t) ∈ R such that

a(t )
.
= |a(t )|e iφ(t ), the amplitude equation (8.47) becomes

d|a|
dt

= |a|3 dµr

dt
, with |a(0)| =

U0

ϵo
, and

dφ

dt
= |a|2 dµi

dt
, with φ(0) = 0.

(8.52)

the subscripts “r " and “i " denoting the real and imaginary parts, respectively. The equation

for |a|, in particular, bears the following analytical solution

|a(t )| =
U0

ϵo

1√
1−2

(
U0
ϵo

)2
µr (t )

, thus Gw(t ) =
G(t )√

1−2
(

U0
ϵo

)2
µr (t )

.
(8.53)

For any time t , the gain decreases strictly monotonically with U0 if µr (t ) < 0, thus is maximum

in the linear regime. Moreover, the gain stays constant with U0 if µr (t) = 0, and increases

strictly monotonically if µr (t) > 0. In the latter case, by increasing U0 the gain eventually

becomes singular (tending towards +∞ at time t ) for

U0 =
ϵo√

2µr (t )
, defined if µr (t ) > 0. (8.54)

In the following, we call (8.53) the Weakly Nonlinear Non-normal transient (WNNt) model.

In Appendix 8.7.3 we show that at first order in the gain variation, (8.53) partly reduces to

the sensitivity of the gain G(t ) to the axisymmetric base flow modification +a2
l u(0)

2 (t ), where

al
.
= (U0/ϵo) is the amplitude of the response in the linear regime. In this sense, our model

states that small gain modifications by increasing U0, are partly due to the fact that the

perturbation now evolves over a base flow that is distorted through the action of the Reynolds

stress forcing −Cm

[
al l̂

∗
, al l̂

]
+c.c. of this very same perturbation (nonlinear feedback). In

addition, (8.53) also includes the effects of the second harmonic oscillating at 2m.

In Appendix 8.7.4, a second method that is more immediate, although perhaps less rigor-

ous, is proposed to derive the amplitude equation (8.43). This method does not rely on the

singularization of the propagator, and was named the “pseudo-forcing method".
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8.4 Linear and fully nonlinear transient growth in the diffusing, two-

dimensional, Lamb-Oseen vortex

Equation (8.53) is employed thereafter for the analysis of the transient gain experienced by a

two-dimensional Gaussian vortex in a weakly nonlinear regime.

8.4.1 Flow geometry

Vortices are flows combining rotation and shear, and the majority of them possess a localized

distribution of vorticity. The Lamb-Oseen vortex is perhaps the simpler solution of the Navier-

Stokes equation containing these ingredients, thus is adopted in the rest of this chapter. It

expresses

Ub,r (r, t ) = 0, Ub,θ(r, t ) =
1−e−r 2/(1+4t/Re)

r
. (8.55)

The associated vorticity field, Wz , has a Gaussian radial profile

Wz (r, t ) =
Ub,θ

r
+ ∂Ub,θ

∂r
=

2

1+4t/Re
e−r 2/(1+4t/Re), (8.56)

that diffuses with time for finite Re values. For the linear velocity perturbation, we select the

azimuthal wavenumber m = 2, since it is the wavenumber associated with the subcritical

bifurcation towards the tripolar state described in the introduction (see for instance Rossi et al.

(1997)). Only the response to an initial condition with m = 2 will be considered in this chapter.

8.4.2 Numerical methods

In practice, the Poisson equation (8.4) for the pressure is never solved directly, the latter being

included in the state space instead:

M∂t

[
û

p̂

]
=

[
Am(t ) −∇̂m

∇̂m · 0

][
û

p̂

]
.
= Bm(t )

[
û

p̂

]
, with M

.
=

[
I 0

0 0

]
. (8.57)

Systems (8.57) and (8.2) lead to the same solution for the velocity field, and (8.2) was se-

lected for the analytical development only because it does not contain the singular mass

matrix, which lightens the writing. To produce the linear and weakly nonlinear results, (8.57)

is discretized on Matlab by means of the pseudospectral Chebyshev collocation method.

Specifically, the variables are collocated at the N Gauss-Lobatto nodes s = cos( jπ/(N −1)),

with j = 0,1, ..., N −1, which includes the endpoints s = −1 and s = 1. This grid is mapped

on the physical domain 0 ≤ r ≤ Rmax using an algebraic mapping with domain truncation

r = L(1+ s)/(smax − s), where L is a mapping parameter to cluster the points close to the origin,

and is set equal to 3. The parameter smax is defined as smax
.
= (2L+Rmax )/Rmax (see Canuto

et al. (2007) and Viola et al. (2016)). In the present work, Rmax = 50 and N = 300 proved to be
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sufficient for the convergence of all results. The lines corresponding to r = 0 and r = Rmax

in the discretized version of (8.57) are replaced by those enforcing the boundary conditions

there; this also avoids the problem of the singularity in r = 0.

The action of the propagator Ψ(t ,0) is computed in practice by marching (8.57) in time using a

Crank-Nicholson scheme. Specifically, if the pressure and the velocity field are known and

equal to [û(n), p̂(n)]T at a time tn , their values at tn+1 = tn +∆t are obtained upon inverting the

system(
M

∆t
− 1

2
Bm(tn+1)

)[
û(n+1)

p̂(n+1)

]
=

(
M

∆t
+ 1

2
Bm(tn)

)[
û(n)

p̂(n)

]
, (8.58)

which is done employing the command backslash on Matlab. The solutions to the other linear

time-dependent systems at higher orders are also approximated upon discretizing in time

with a Crank-Nicholson scheme. The adjoint system to (8.57) reads

−M∂t

[
û†

p̂†

]
= Bm(t )†

[
û†

p̂†

]
, (8.59)

where we used M † = M , and where the expression of Bm(t )† and the boundary conditions for

the adjoint field are derived in Appendix 8.7.5. The action of the adjoint propagator Ψ(t ,0)†,

necessary for the linear optimization, is determined by time marching (8.59) backward. That is,

from known adjoint velocity and pressure fields at a time tn+1, their evolution at tn = tn+1−∆t

are obtained by solving(
M

∆t
− 1

2
B †

m(tn)

)[
û†,(n)

p̂†,(n)

]
=

(
M

∆t
+ 1

2
B †

m(tn+1)

)[
û†,(n+1)

p̂†,(n+1)

]
. (8.60)

A time step of ∆t = 0.02 was selected and was found sufficient to guarantee convergence of

the results.

The fully nonlinear simulations (DNS) were performed using the spectral element solver

Nek5000. A two-dimensional square grid (x, y) ∈ [−Rmax ,Rmax ]× [−Rmax ,Rmax ] was used,

with a particularly high density of elements near the vortex core region where the flow gradients

are intense. Convergence of the results by refining the mesh and extending the size of the

computational domain has been checked.

8.4.3 Linear results

The results of the linear transient growth analysis for m = 2 and varying Re ∈ [1.25,2.5,5,10]×
103 are presented below. The optimal gain Go(to) defined in (8.13), also called “envelope", is

shown as a function of to in figure 8.1a and for different Re. For all considered Re values, Go(to)

reaches a clear maximum at relatively small to , before decreasing and plateauing by further

increasing to . The values Go(to,max) of these maxima, and of the corresponding temporal
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Figure 8.1: Linear transient growth in the two-dimensional, time-dependent Lamb-Oseen
vortex flow for varying Re number ∈ [1.25,2.5,5,10]×103, larger Re corresponding to lighter
colours. The perturbation has wavenumber m = 2. (a) Optimal gain as defined in (8.13) as a
function of the temporal horizon to . The star marker corresponds to its maximum value over
to and for a given Re, that is, to Go(to,max) = 1/ϵo,max. (b) Top panel : ϵo,max multiplied by Re1/3

and plotted as a function of Re; bottom panel : to,max multiplied by Re−1/3 and shown as a
function of Re.

horizons to,max, seem to increase monotonically with the Re number.

The type of dependence is made explicit in figure 8.1b, where we propose in the top panel

to plot ϵo,max multiplied by Re1/3 as a function of Re, demonstrating that Go(to,max) ∝ Re1/3.

In the bottom panel, to,max multiplied by Re−1/3 is also shown as a function of Re: while the

data align slightly less well on a constant line, the agreement remains correct and stating

to,max ∝ Re1/3 is a fair approximation. All these results are in excellent agreement with those

presented in chapter 3 of Antkowiak (2005). In particular, the power-law dependencies of both

Go(to,max) and to,max have already been observed and interpreted physically, and discussed

next.

In figure 8.2, by fixing Re = 5000, the optimal gain Go(to) over to is reproduced from figure 8.1,

as well as the gain G(t) associated with the linear trajectory optimized for to = to,max = 35

specifically. We check that G(0) = 1, that G(35) = Go(35) and that G is below Go everywhere else.

At the times corresponding to the black dots, the axial vorticity structure, expressed as

ω̂ = (1/r +∂r )ûθ− (im/r )ûr , (8.61)

is shown in figure 8.3. For the panel in the top-left corner, we observe that the optimal

initial condition consists of an arrangement of vorticity sheets, or “spirals", orientated in

counter-shear with respect to the base flow. As time increases, the sheets unfold under the

effect of advection by the base flow, in analogy with the Orr mechanism. Antkowiak and

Brancher (2004) and Antkowiak (2005) also argue that a Kelvin wave (corresponding to a core

mode) is transitorily excited in the heart of the vortex, by induction of the vorticity spirals.
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Figure 8.2: The continuous line is the reproduction of the envelope shown in figure 8.1a for
Re = 5000. The dash-dotted line is the gain G(t ) associated with the linear trajectory optimized
for to = to,max = 35, defined in (8.16). By definition, both curves collapse at t = 35. The black
dots correspond to t = 0,15,30, ...,105, for which the corresponding vorticity structures are
shown in figure 8.3.

Figure 8.3: Temporal evolution of the vorticity structure ω̂(r, t ) of the optimal linear response,
shown at the specific times corresponding to by the black dots in figure 8.2. Each subfigure
shows only [x, y] ∈ [−4,4]× [−4,4]. The plus sign denotes the origin, the dotted circle is the
unit circle, and the dashed circle highlights the radius rq as defined in (8.63).

By “induction" is meant that a radial velocity perturbation is induced in the heart of the

vortex as the spirals unfold, and advects the base vorticity which is large here, thus acting

as a source for the vorticity perturbation. The core mode is particularly visible in the heart

of the vortex in the top-right panel corresponding to t = 45. However, it quickly disappears
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for later times, as the vorticity spirals roll up in the other direction, this time in line with the

base advection (see the panel for t = 60). Doing so, the vorticity perturbation decays with

time due to a shear-diffusion averaging mechanism studied by Rhines and Young (1983) for a

passive scalar and in Lundgren (1982) for vorticity. In particular, Lundgren (1982) concludes

that, as long as the vorticity perturbations are rapidly radially varying, the shear-diffusion

homogenization mechanism is qualitatively identical to the passive scalar case. This was

confirmed numerically a few years later in Bernoff and Lingevitch (1994), where is further

demonstrated that the decay of the perturbation vorticity spirals acts on a Re1/3 time scale.

From here, Antkowiak (2005) argues that, in the limit of vanishing viscosity, the evolution

equation for the perturbation vorticity ω̂ becomes time reversible; therefore the unfolding

(Orr) amplification mechanism can be seen as the “mirror" of the shear diffusion, a damping

one. Indeed, the curve for G(t) is fairly symmetric around t = to in figure 8.2, and would be

even more for larger Re values. In this sense, the Orr mechanism has an “anti-mixing" effect.

This explains why the temporal horizon leading to the largest amplification is also in Re1/3,

because it is the “natural" amplification time scale of the vortex. It should be noted that this

conception of the Orr and shear-diffusion mechanism as “mirroring" each other was already

present in Farrell (1987) in the context of plane shear flows. As a side comment, Antkowiak

(2005) also derives the Re1/3 dependence of to,max by simply balancing the unfolding and the

diffusion (in the radial direction) time scales.

We insist that, apart from a tenuous transient excitation of a core mode by vortex induction,

the amplification mechanism of the perturbation is essentially the Orr mechanism. Farrell

and Ioannou (1993) have shown that this mechanism was associated with the scaling law

Go(to) ∝ to (note that the gain defined in Farrell and Ioannou (1993) is the square of the gain

presently defined). From here, the scaling law Go(to,max) ∝ Re1/3 follows immediately.

The shear-diffusion (thus the Orr) mechanism is in essence non-viscous. The only role played

by viscosity is to select the radial length scale of the initial vorticity structure (which would

tend to be infinitely thin in the absence of viscosity, and the optimal gain and associated

temporal horizon follow). Indeed, vorticity sheets that are too thin will be smoothed out

by viscosity. If both the optimal gain and the decay time are ∝ Re1/3, then the decay rate is

independent of Re. In fact, the decay of the vorticity moments associated with the structures

observable in figure 8.3 after t = 35, can also be interpreted in terms of the Landau damping

phenomenon, which is purely inviscid (Schecter et al., 2000), as developed in the introduction.

More precisely, the exponential decay rate of the vorticity moments can be obtained from a

Landau pole of the vortex base profile, as first demonstrated in Briggs et al. (1970). For this,

one first needs to define the m-th multipole moment of the vorticity perturbation as

Q(m)(t ) =
∫ ∞

0
r m+1ω̂(r, t )dr = [r m+1(ûθ− iûr )]r→∞. (8.62)

Then, to quote Schecter et al. (2000), “A Landau pole is a complex frequency ωq − iγ at which

the Laplace transform of Q(m)(t ) is singular [...]. A Landau pole contributes a term to Q(m)(t ) of
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Figure 8.4: Temporal evolution of the vorticity moment Q(2)(t) corresponding to the linear
response shown in figure 8.2 and figure 8.3; the black dots again denote the specific times
where the vorticity field is shown in figure 8.3. (a) Phase φ(t) divided by 2π. (b) Amplitude
|Q(2)(t)|. The black dashed lines correspond to a pure Landau damping Q(2)(t) = e−iωq t−γt ,
where we use fitted values for ωq and γ.

the form e−γt−iωq t ". A Landau pole, like an eigenvalue, is a property of some specific linear

operator acting on a perturbation and, in this sense, depends on the base profile and the

wavenumber of the perturbation, but not on the specific radial shape of the latter. A Landau

pole is generally not unique, and its calculation amounts to solving an eigenvalue problem

along a radial contour that was deformed in the complex plane (see the appendix in Schecter

et al. (2000)); however, one can reasonably expect one of these potentially multiple Landau

poles to dominate over the others.

In considering the response of an inviscid Gaussian vortex to a generic external impulse with

m = 2, Schecter et al. (2000) indeed find that the quadrupole moment Q(2)(t ) of the vorticity

perturbation “decays exponentially, and the decay rate is given by a Landau pole". In addition,

is also mentioned that “the vorticity perturbation [...] is poorly described by a single damped

wave [...] Rather, the vorticity perturbation is rapidly dominated by spiral filament". This is

also the structure observed from t = 60 in figure 8.3, which closely resembles the figure 9 in

Schecter et al. (2000). In other terms, the response excites a very large number of structurally

different eigenmodes, yet it does not invalidate the relevance of the dominant Landau pole.

By writing the quadrupole in terms of amplitude and phase, Q(2)(t ) = |Q(2)(t )|e iφ(t ), we display

in figure 8.4a the temporal evolution of the phase φ(t ) normalized by 2π and corresponding to

the response shown in figure 8.3. The amplitude |Q(2)(t )| is also shown in figure 8.4b. The best

fit of the form of a pure Landau damping Q(2)(t ) = e−iωq t−γt is also proposed. Clearly, the phase

changes at a constant rate in figure 8.4a for 15 ≤ t ≤ 65, and |Q(2)(t)| decays exponentially

in figure 8.4b for 40 ≤ t ≤ 65. Therefore, we confirm that the quadrupole moment Q(2)(t),

associated with the linear response in figure 8.3, is well approximated by a Landau pole in its

decaying part, although we consider a viscous flow over a time-dependent base vortex, which

is not the case in Schecter et al. (2000). The Reynolds number Re = 5000, however, seems
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sufficiently large for the conclusions drawn in Schecter et al. (2000) to also hold here. In the

following, reference will be made to the Landau pole to qualitatively interpret the nonlinear

effects, even if the fact that Re is finite possibly makes it less rigorous. The precise value of γ in

figure 8.4b is unimportant, for the comparison with any analytical prediction of the Landau

pole is outside the scope of this chapter. Note that the exponential decay is followed by an

algebraic one for large times, which is also observed in Schecter et al. (2000). The fitted value

ωq = 0.42 in figure 8.4a is, however, important, for it gives the location rq of the radius where

the angular velocity ωq /m associated with the Landau pole is equal to that of the base flow

mΩ(rq (t ), t ) =ωq . (8.63)

The radius solving (8.63) at each time is highlighted by a dashed circle in figure 8.3. It takes the

value rq ≈ 2.16, very weakly dependent on time.

It can be shown that the decay rate of the Landau pole is linked to the radial derivative of the

base vorticity at rq specifically. In fact, as demonstrated in Schecter et al. (2000), Turner and

Gilbert (2007), and Turner et al. (2008), the exponential damping mechanism can be removed

from any vortex, in particular a Gaussian one, by cancelling such derivative at rq .

The poor modal description of a perturbation evolution over a Gaussian vortex, mentioned in

Schecter et al. (2000) and confirmed in figure 8.3, is the reason for which non-modal analytical

tools are deployed in the present study, in particular for studying nonlinear effects. We address

these latter now.

8.4.4 Fully nonlinear results

We introduce the fully nonlinear results obtained from DNS in the present section. Let us

define up as being the perturbation between the fully nonlinear solution U obtained from a

DNS, and the reference Lamb-Oseen solution U b in (8.55); in other terms, up
.
= U −U b. We

recall that this perturbation is initialized along the wavenumber m = 2 with the linear optimal

initial condition with an amplitude U0, such that

up |t=0 = U0ûoe imθ+c.c.. (8.64)

Owing to nonlinear effects, up generally does not oscillate purely along m for strictly positive

times. For this reason we need to further extract û(1)
p , the component of up oscillating at the

fundamental wavenumber m, hence the superscript ‘(1)’. For this, a Fourier series is naturally

used as

û(1)
p (r )

.
=

1

2π

∫ 2π

0
up (r,θ)cos(mθ)dθ− i

2π

∫ 2π

0
up (r,θ)sin(mθ)dθ, such that

u(1)
p (r,θ)

.
= û(1)

p (r )e imθ+c.c.

(8.65)
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Figure 8.5: (a) Amplitude of the fully nonlinear fundamental perturbation û(1)
p as defined in

(8.65), initialized with the linear optimal condition for (Re,m, to) = (5000,2,35). Larger U0

values correspond to lighter colours. (b) The same data are divided by their corresponding U0,
yielding the nonlinear gains as defined in (8.66). For the largest considered U0 = 2.82×10−2,
black dots are located at t = 0,30,60, ...,210, for which the corresponding vorticity structures
are shown in figure 8.6.

From here, the fully nonlinear gain (associated with the fundamental pair) is immediately

defined as

GDNS
.
=
||û(1)

p ||
U0

. (8.66)

By fixing Re = 5000 and to = 35, we report in figure 8.5a the fully nonlinear evolution of

the perturbation amplitude ||û(1)
p ||, for different amplitudes of the initial condition U0. The

associated gain, that is, the same data divided by the corresponding U0, is shown in figure 8.5b.

Figure 8.5a illustrates well a bypass transition, also called “bootstrapping effect" in Trefethen

et al. (1993), where linear transient growth and nonlinear mechanisms interact to bring about a

transition to a new state, distinct from the reference one. Indeed, as we increase the amplitude

of the initial condition (linearly in log scale), the transient growth of the perturbation, initiated

by the linear Orr mechanism as we have seen, becomes sufficient to trigger nonlinear terms;

for the two largest considered U0, this prevents the flow to re-axisymmetrize to the Lamb-

Oseen vortex. Interestingly, for the third and fourth largest considered U0, the flow seems to

temporarily approach a new state but nevertheless relaxes towards the reference one.

For the largest considered U0 = 2.82×10−2 and the set of times highlighted by the black dots,

we report in figure 8.6 the structure of the vorticity perturbation. From t = 60, the flow has

reached a new nonlinear quasi-equilibrium state, that diffuses very slowly due to viscous

effects, and rotates counterclockwise with a period of approximately 45 units of times. The

corresponding total vorticity field, which is obtained by adding to figure 8.6 the Gaussian
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Figure 8.6: Temporal evolution of the vorticity structure of the fully nonlinear perturbation for
U0 = 2.82×10−2, shown at the specific times highlighted by the black dots in figure 8.5. Each
panel shows only [x, y] ∈ [−4,4]× [−4,4], the plus sign denotes the origin, and the dashed line
is the unit circle.

reference vorticity (8.56), takes a tripolar shape. This is shown in figure 8.7 for t ≥ 120, where

the heart of the vortex takes an elliptical shape that is surrounded by two satellite vortices of

low and negative vorticities (corresponding to the two blues spots in figure 8.6 from t = 60).

As developed in the introduction, this tripolar state was already largely reported in a variety

of contexts. In particular, its spatial structure compares well with the one reported in figure

2 of Antkowiak and Brancher (2007) for Re = 1000, or with the experimental visualization in

Kloosterziel and van Heijst (1991).

In terms of the gain in figure 8.5b, we notice that all the curves corresponding to different U0

collapse for small times, confirming the linearity of the initial growth mechanism. However,

they significantly depart from each other at larger times. If nonlinearities seem to saturate the

gain for times around to = 35, they clearly increase the latter up to three orders of magnitude

for large times; as said, that is because the flow bifurcated to another state, thereby the

perturbation that is measured around the reference vortex remains large.

The weakly nonlinear model is now employed to assess the gain evolution with U0 shown in

figure 8.5b.
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Figure 8.7: Same as in figure 8.6 but the reference vorticity field (8.56) has been added, so as to
visualize the total, fully nonlinear, vorticity field; some isolines are also shown to better expose
the elliptical deformation of the vortex core.

8.5 Weakly nonlinear transient growth in the diffusing Lamb-Oseen

vortex in dimension two

In the weakly nonlinear paradigm, the perturbation field up is approached by up =
p
ϵou1 +

ϵou2 +p
ϵo

3u3 +O(ϵ2
o), as can been seen in (8.19). Consequently û(1)

p is approximated byp
ϵo u(1)

1 +p
ϵo

3u(1)
3 +O(

p
ϵo

5), therefore the fully nonlinear gain GDNS defined in (8.66) is

expected to reduce to the weakly nonlinear one Gw defined in (8.49), since ϵo ≪ 1. These

two quantities are compared in this section. Note that we checked that for all considered Re

values the first sub-optimal transient gain was O(1/
p
ϵo), in contrast to 1/ϵo for the optimal

one, which mathematically justifies focusing on the response to ûo only.

8.5.1 Transient change from nonlinear saturation to nonlinear amplification

The real part of the weakly nonlinear coefficient, defined in (8.48), is shown in figure 8.8a

for Re = 5000 and to = to,max = 35. It is further split into the sum of a mean flow distortion

contribution, µ(0)
r , arising from u(0)

2 only, and second harmonic contribution, µ(2)
r , arising from

û(2)
2 only. In this manner, µr =µ(0)

r +µ(2)
r .

Remarkably, after having significantly decreased until reaching a minimum at t = 59, the

coefficient µr increases again and changes sign at t = 87. It then reaches its maximum at

t = 107, and decreases again until plateauing around zero for t ≥ 150. A change of sign

in µr brings diversity to the behaviours reported in Ducimetière et al. (2022a), concerning

transient growths in the streamwise-invariant Poiseuille flow, and in the flow past a backward-

facing step. There, only negative coefficients, corresponding to saturating nonlinearities, were

observed. In the present work, however, nonlinearities appear to reinforce the gain for some

time. When it is negative, the behaviour of µr seems largely dominated by the contribution

from the mean flow distortion µ(0)
r . When the former is positive, however, µ(0)

r is reduced and

the second harmonics appear to contribute as much to the sum.

Upon taking the derivative of the square the weakly nonlinear gain in (8.53) with respect to
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Figure 8.8: (a) Real part of the weakly nonlinear coefficient µ defined in (8.48) (black continu-
ous line). It is further split as the sum of a contribution from of a mean flow distortion (red
dash-dotted line), plus a contribution from the second harmonic (blue dotted line). In the
grey zone, the weakly nonlinear gain Gw defined in (8.49) increases monotonically with U0,
since µr > 0. In the white zone, it decreases monotonically. (b) The coefficient µr is compared
with its reconstruction from DNS data (magenta dashed line) according to (8.68).

U 2
0 , we obtain

∂(G2
w)

∂(U 2
0 )

=
2µr

ϵ2
o −2U 2

0µr
G2

w. (8.67)

Therefore, the coefficient µr relates directly to the rate of change of G2
w with respect to U 2

0 in

the limit where U0 tends towards zero as

µr =
ϵ2

o

2

(
lim

U0→0

1

G2
w

∂(G2
w)

∂(U 2
0 )

)
. (8.68)

By using (8.68), the coefficient µr can be reconstructed directly from DNS data. For this, the

derivative in (8.68) is estimated by using a first-order finite difference approximation between

DNS data for the gain squared, corresponding to the two lowest considered U0 = 2.26×10−4

and U0 = 2.82×10−4. The result is shown as the magenta dotted line in 8.8b, and compared

with the actual µr . The good agreement between both curves for t ≤ 130 a posteriori validates

for these times our weakly nonlinear expansion, a least in the limit of small U0. However,

both curves depart significantly after t = 130, presumably due to the violation of the condition

(8.30) ensuring that the asymptotic expansion is well posed. Indeed, the response to the initial

condition optimized for t = to = 35 was shown to rapidly decay in amplitude for larger times

in figure 8.2; therefore the norm of the perturbation operator, ||P (t)|| = 1/||l̂ (t)||, increases

accordingly.
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Figure 8.9: Weakly and fully nonlinear gains as defined in (8.49) and (8.66), respectively. Larger
U0 ∈ [0.03,0.45,1.12,2.82]×10−2 correspond to lighter colours (direction of increasing U0 is
also indicated by the arrow). The continuous line stands for DNS data whereas the dash-dotted
is for the weakly nonlinear model. Temporal horizons are to = to,max = [25,30,35,40] (times at
which a black star is shown) for Re = [1.25,2.5,5,10]×103, respectively.

8.5.2 Comparison of fully and weakly nonlinear gains

In figure 8.9 the weakly nonlinear gain, associated with the coefficient in figure 8.8, is compared

with the fully nonlinear one. For the moment, only short times where the gains are large are

shown. The later evolution, being associated with orders of magnitude smaller gains, will be

considered in figure 8.10 in log scale. On the time interval chosen for figure 8.9, the coefficient

µr is negative, thereby the model predicts the gain to decrease monotonically with U0. For

values of U0 small enough so that the linear gain (black curves in 8.9) is only slightly modulated,

the agreement with DNS data is excellent. By increasing U0, the agreement degrades only

slowly and remains very good for these relatively small times, for instance over 0 ≤ t ≤ 40 in

the panel corresponding to Re = 104. This corresponds to times when the nonlinear structure

remains symptomatic of the linear one, in the sense that the flow has not yet reached the
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Figure 8.10: Weakly and fully nonlinear gains for Re = 5000 and increasing amplitude of the
initial condition U0 ∈ [4.5,7.1,11.2,17.8]×10−3. Each panel corresponds to a different U0. The
grey box denotes the time interval (8.69) over which the weakly nonlinear gain is undefined.
The latter is singular at the boundaries of this interval.

tripolar state (temporarily or not, as shown in figure 8.5). Indeed, the amplitude equation

(8.52) is independent of space, which condemns the response to be structurally close to the

linear one. For later times and large U0, as soon as the fully nonlinear gain begins to oscillate

and to bear a non-monotonic behaviour, the agreement with our weakly nonlinear model

rapidly degrades. The reason is precisely that, the response whose nonlinear evolution is

approached by our model, is not selected by the flow anymore, which has reached another

state, temporarily or not, and that is structurally completely different; about this new state,

the amplitude equation has no information.

Nevertheless, while the proposed amplitude equation fails to predict the gain and the structure

of the flow when at the tripolar state, it does predict a bifurcation threshold. This is illustrated

in figure 8.10, where the same data as in figure 8.9 for Re = 5000 is shown, although the time

interval is extended until t = 150 to include the time interval where the real part of the weakly

nonlinear coefficient becomes positive, indicating “anti-saturation". The weakly nonlinear
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gain is undefined on the time interval where

µr (t ) ≥ 1

2

(
ϵo

U0

)2

> 0, (8.69)

which widens by increasing U0. The gain is singular (tends to infinity) at the times corre-

sponding to the boundaries of this interval. The latter is highlighted by the grey zones in

figure 8.10.

8.5.3 Bifurcation thresholds

By looking at the panels corresponding to U0 = 1.12×10−2 and U0 = 1.78×10−2, we observe

that over the time interval where the equation has no solution, i.e. the grey zone, the fully

nonlinear simulation seems to have reached the tripolar state (although for U0 = 1.12×10−2 it

is only temporary as it eventually relaxes towards the reference state). In this sense, a loss of

solution in the amplitude equation could indicate that the DNS has left the state around which

the weakly nonlinear expansion was constructed. The minimum U0 for which the weakly

nonlinear gain becomes singular may then be considered as an approximation of the actual

bifurcation threshold. Such minimal U0, named U s
0 is what follows, reads

U s
0 =

ϵo√
2µr (ts)

, where µr (ts) = max
t
µr (t ), (8.70)

and is defined if and only if µr (ts) > 0.

A bifurcation threshold in the DNS solutions must also be defined and compared directly with

(8.70). To the knowledge of the authors, there is no clear and universal subcritical bifurcation

criterion, and the choice made is always arguably arbitrary. Nevertheless, we will opt for the

criterion proposed in Antkowiak (2005), based on the observation that the tripolar state is

characterized by a deformed, non-axisymmetric, heart. Therefore a characteristic aspect ratio

λ of the heart is established as

λ2 .
=

J +R

J −R
, with J = (J20 + J02), R =

√
(J20 − J02)2 +4J 2

11 and (8.71)

Jmn
.
=

∫
Ω xm ynω̂(x, y)dxdy a vorticity moment. A characteristic eccentricity is further defined

as e
.
=
p

1−1/λ2. From here, Antkowiak (2005) computes the typical half-life time (that is

where the criterion is rather arbitrary) of the heart deformation as

τ, such that
∫ τ

0
e(t )dt =

1

2

∫ t f

0
e(t )dt , (8.72)

where t f = 500 is the final time of the fully nonlinear simulations.

We report the half-life time as a function of U0 and for different Re values in figure 8.11a. For

each Re number, we also highlight an inflection point in τ at a certain U0, and we declare the
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Figure 8.11: (a) Typical half-life time of the heart deformation defined in (8.72), as a function of
the amplitude of the initial condition U0. Larger Re = [1.25,2.5,5,10]×103 correspond to lighter
colours. A star highlights an inflection point, for which the corresponding U0 is declared as
being the threshold amplitude for the subcritical bifurcation. Such thresholds U0 are reported
in (b) as a function of Re (also with a star symbol). The prediction from the weakly nonlinear
model, U s

0 defined in (8.70) is also shown. The thin continuous line is a power law fitted on
the DNS data for the first three considered Re, with ∝ Re−0.88, whereas the thin dashed line is
fitted on the weakly nonlinear data with ∝ Re−0.66. The inset shows the same in log-log scale.

latter as being the subcritical bifurcation threshold. It is reported directly as a function of Re

in figure 8.11b, and compared with the weakly nonlinear prediction U s
0 , in both linear and log

scales. Both approaches clearly highlight a decreasing power-law dependence of the subcritical

bifurcation threshold with the Re number. For the fully nonlinear data, the fitted exponent

−0.88 found in the present study, agrees relatively well with the one reported in Antkowiak

and Brancher (2007), which is −0.8. However, since little information is given regarding how

the threshold amplitude was computed in Antkowiak and Brancher (2007), the agreement

with our results is perhaps fortunate. In any case, the negative power-law dependence with Re

implies that the threshold amplitude above which the flow goes into the basin of attraction of

the tripolar state, and in the direction given by the linear optimal, vanishes for increasing Re.

This may explain the formation and persistence of elliptical vortex eyewalls in some tropical

cyclones (Kuo et al., 1999; Reasor et al., 2000). We insist that we only consider perturbations

in the direction of the linear optimal, whereas nonlinear optimal perturbations can also be

found by relying on the techniques presented in Pringle and Kerswell (2010). The latter would

be associated with a threshold amplitude U0 for a subcritical bifurcation even smaller than

the one shown in figure 8.11. The fitted exponent for the weakly nonlinear model is found as

being −0.66, thereby the threshold amplitudes between both models differ significantly by

decreasing Re in figure 8.11b.

This discrepancy between exponents may be explained as follows. For the DNS, our bifurca-

tion criterion aims at computing the threshold above which the flow has definitely bifurcated,

whereas the loss of solution in the amplitude equation refers to a specific time interval. The
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Figure 8.12: Same as in figure 8.11, although the inflection point is sought in GDNS(t = ts),
where ts , defined in (8.70), is the first time for which the amplitude equation predicts a loss of
solution. In (a), the inset shows the same data in linear scale. In (b), the thin continuous line is
a power law fitted on the DNS data with ∝ Re−0.69, whereas the thin dashed line ∝ Re−0.66 is
similar to figure 8.11.

importance of this conceptual difference is well illustrated in the bottom-left panel in fig-

ure 8.10 for U0 = 1.12×10−2. Here, the amplitude equation predicts that no solution exists over

some time interval; thus, according to the criterion (8.70), the flow has bifurcated. However, if

the DNS data seem indeed to have reached the tripolar state over this time interval, it relaxes

to the reference state at longer times; thus, the criterion based on τ concludes that the flow

has not yet bifurcated.

For this reason, we propose another criterion, rather artificial, for which both “bifurcation"

refer to the same specific time ts , the first time for which the amplitude equation predicts a loss

of solution (see (8.70)). The threshold U0 in the DNS is decreed as being the one corresponding

to an inflection point in GDNS(t = ts), as shown in figure 8.12a despite a quite coarse resolution.

The agreement with U s
0 improves significantly in figure 8.12b (as compared with figure 8.11b).

Note that, for both models, the power-law dependence of the threshold amplitude cannot be

only explained by the power-law dependence of the linear optimal transient gain, for the latter

was shown to be in −1/3.

8.5.4 Physical interpretation of the nonlinear “anti-saturation": mean flow distor-
tion and inversion of the vorticity gradient

We now propose to interpret physically the behaviour of the coefficient associated with the

(azimuthal) mean flow distortion, µ(0)
r shown in figure 8.8, and attempt to discuss the reason

why it changes sign and leads to the subcritical behaviour discussed above. In the following

discussion, we will focus on the case Re = 5000. First, the energy of the mean flow distortion

u(0)
2 is shown as the red curve in figure 8.13a.
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Figure 8.13: (a) For Re = 5000, the evolution of the energy || ∗ ||2 of the linear response l̂
(black dashed line), of the second harmonic û(2)

2 (blue dashed-dotted line) and, mainly, of

the mean flow distortion u(0)
2 (red continuous line). The red dots correspond to the specific

times t = 30,40, ...,100, for which the vorticity structure of u(0)
2 is reported in figure 8.14. Two

horizontal dotted lines are drawn at t = 35 and t = 85. (b) Slope of the vorticity at the radius rq ,

i.e. ∂rω
(0)
2 |r =rq , as a function of time.

For comparison, the energies of the linear response and of the second harmonic are also

shown. As written in (8.36), the mean flow distortion is forced by

f (0)
2 = −Cm

[
l̂
∗

, l̂
]
+c.c., (8.73)

which is the Reynolds stress of the linear response. Under its action, the energy of u(0)
2 increases

until reaching a maximum around t = to = 35, before decaying until t = 65. From here, the

energy rebounds very slightly, then decays extremely slowly for t ≥ 85. It is striking to notice

in figure 8.13a that u(0)
2 can persist for extremely long times, even when the linear response,

whose nonlinear interactions force u(0)
2 , has vanished. This suggests that u(0)

2 can persist even

in the absence of sustained forcing. This is also illustrated in figure 8.14, where we show ω(0)
2 ,

the vorticity structure associated with u(0)
2 , for the different times highlighted by the red dots

in figure 8.13a. If we observe a transient regime until the panel for t = 70, the vorticity field

does not seem to evolve afterward, except by slow diffusion.

It will simplify the rest of the analysis to notice that u(0)
2 only possesses an azimuthal com-

ponent, i.e. u(0)
2 = u(0)

2,θeθ. That is because u(0)
2 is associated with the wavenumber m = 0, for

which the equation for the radial perturbation is ∂r (r u(0)
2,r ) = 0 from the continuity. This leads

to u(0)
2,r = 0 and a forced diffusion equation for u(0)

2,θ, reading

∂t u(0)
2,θ = Re−1(∆0 −1/r 2)u(0)

2,θ+ f (0)
2,θ . (8.74)

The panels in the first row in figure 8.15 show the evolution of f (0)
2,θ (left) and u(0)

2,θ (right) over
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Figure 8.14: Temporal evolution ofω(0)
2 , the vorticity structure of u(0)

2 , the mean flow distortion
induced by the Reynolds stress of the linear response shown at the specific times correspond-
ing to the red dots in figure 8.13a. Each panel shows only [x, y] ∈ [−4,4]× [−4,4]. The plus
sign denotes the origin, the dotted circle is the unit circle, and the dashed circle highlights the
radius rq solving (8.63) with ωq = 0.42.

0 ≤ t ≤ 35. The Reynolds stress forcing f (0)
2,θ grows in amplitude (since l̂ does) while roughly

conserving its shape, which u(0)
2,θ seems to imitate closely, although logically with some delay.

This direct structural link between the forcing and the response is certainly due to the absence

of an advection term in (8.74).

The panels in the second row in figure 8.15 show the evolution over the times 35 ≤ t ≤ 85.

Notice that the forcing f (0)
2,θ has shapes at t = 30 and t = 40 that are similar but have opposite

signs. As developed in section 8.4.3, this is because the spiral structures in l̂ , that unroll in one

direction until t = 35, roll up symmetrically in the other direction afterward. Under the action

of this forcing that is now adverse, the velocity u(0)
2,θ tends to invert in the bottom-right panel of

figure 8.15, which implies its momentary flattening, therefore u(0)
2,θ rapidly loses energy. This

energy would have grown again (which it does shortly after t = 65 in figure figure 8.13a) if the

forcing could maintain its intensity, but the latter decays rapidly with the one of l̂ .

After t = 85 the velocity u(0)
2,θ evolves freely, for f (0)

2,θ is negligible. The persistence of u(0)
2,θ is

then easily understood once it is realized that the diffusion operator in (8.74) possesses a

continuum of orthogonal Bessel eigenfunctions (the domain is infinite). They are associated

with eigenvalues spanning the strictly negative part of the imaginary axis. Accordingly, after

discretization, we found an extremely dense packing of eigenvalues all along the negative

part of the imaginary axis, increasingly dense with the number of discretization points. The
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Figure 8.15: Temporal evolution of the forcing f (0)
2,θ (panels at the left) and of the velocity

response u(0)
2,θ (panels at the right). Panels at the top and the bottom lines correspond to two

different and successive time intervals. The top line is for t = 0,5, ...,35 (on the left of the first
vertical line in figure 8.13a) and the second for t = 35,40, ...,85 (between the two vertical lines
in figure 8.13a). Larger times correspond to lighter colours.

velocity structure left by the forcing that has vanished at t = 85, projects over a significant

number of these Bessel eigenfunctions, including some with very low damping rates of the

order of 10−4. It is therefore not surprising to see this structure subject to very slow diffusion

in figure 8.13a and figure 8.14.

After having proposed some elements to understand the evolution of u(0)
2,θ, let us study now

how it feeds back on the response. We show in figure 8.13b the slope of ω(0)
2 at the specific

radius rq where the angular velocity ωq /m associated with the Landau pole is equal to that

of the base flow. We recall this specific radius to be found by solving (8.63) with the fit value

ωq = 0.42, resulting in rq ≈ 2.16, very weakly time dependent.

The slope is negative until t = 60, where it changes sign. As a consequence, from t = 60 onward,
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the addition of ω(0)
2 to the reference vorticity has a positive contribution to the total vorticity

slope at rq . In parallel, we recall that µ(0)
r can be directly interpreted as the sensibility at a time

t of the transient gain to the addition of u(0)
2,θ to the reference flow. For this, µ(0)

r computes the

integrated effect of this addition between 0 and t (see formula 8.94). Therefore, the decreasing

tendency of µ(0)
r until t = 60 in figure 8.8, results from the negativity of the slope of ω(0)

2 at

rq , which enhances the Landau damping rate of the response, whose integrated effect is to

reduce the gain. Such an effect of the mean vorticity slope at rq on the Landau damping was

reported in Schecter et al. (2000), Turner and Gilbert (2007), and Turner et al. (2008). On the

contrary, from t = 60 onward the coefficient µ(0)
r increases, for the presence ofω(0)

2 now reduces

the Landau damping rate; the integrated effect of such mitigation of the Landau damping

rate over time leads to a coefficient that becomes positive, traducing a weakly nonlinear gain

larger than the linear one. In other words, we interpret the subcritical behaviour of our am-

plitude equation as being partially because the mean flow distortion reminiscence, shown in

figure 8.14 for large time, tends to erase the vorticity slope at the specific radius rq , therefore

letting the perturbation persist. This conclusion is comparable to the one drawn in Balmforth

et al. (2001). In addition, the present amplitude equation leads to the conclusion that, when

µr is at its maximum, the effect of the second harmonic is just as important as the one of the

mean flow, although it is harder to interpret.

We insist that the conclusions drawn below relate only to predictions of the amplitude equa-

tion, thereby possibly explaining DNS behaviour only when both approaches agree. However,

precisely because they do not at large U0 and after increasingly short times in figures 8.9

and 8.10, the departure between weakly and fully nonlinear responses there remains to be

interpreted. This can still be done by using the amplitude equation, although in an indirect

manner.

In figure 8.16, we compare the linear stability to m = 2 perturbations of the (azimuthal) mean

flow extracted from the DNS, and the one predicted by the weakly nonlinear approach. This is

done for U0 = 2.82×10−2, the largest considered initial condition amplitude in figure 8.9. The

weakly nonlinear mean flow is simply obtained by evaluating the weakly nonlinear expansion

as Ub,θ + a2u(0)
2,θ, where a solves the amplitude equation. The linear stability is assessed by

replacing the reference flow by the mean one in (8.2), then assuming a temporal dependence

as û(r, t)
.
= ŭ(r )eσt , and solving the subsequent eigenvalue problem. The azimuthal mean

is linearly unstable if and only if there exists an eigenvalue σ such that Re(σ) = σr > 0, and

the corresponding eigenmode grows exponentially to the extent that the growth rate is much

smaller than the rate of change of the base flow. The mean vorticity profiles are also shown in

figure 8.17.

For 10 ≤ t ≤ 20 in figure 8.16, both DNS and weakly nonlinear mean flows appear unstable, with

an excellent agreement between the growth rates, and between the corresponding vorticity

profiles in figure 8.17. For t = 15 and t = 20 in figure 8.17, these profiles consist of a central

region of large vorticity, surrounded by a ring of locally enhanced but relatively smaller vorticity.
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Figure 8.16: Left: maximum growth rate of the eigenvalues of the Navier-Stokes operator
at Re = 5000 and linearized around the (azimuthal) mean flow, in order to describe m = 2
perturbations. Mean flows corresponding to U0 = 2.82×10−2 are obtained either from DNS
data (continuous line linking red dots) or by evaluating the weakly nonlinear expansion (dash-
dotted line linking blue diamonds). Positive growth rate values imply linear instability. At the
right, is shown the eigenmode corresponding to the most unstable eigenvalue of the operator
linearized around the DNS mean flow, at t = 20. The radius of the dotted circle is equal to
one, the radius of the dashed circle is equal to rq , and the radii of the continuous-line circle
highlight the extrema of the mean vorticity profile. The color scale is arbitrary.

A local minimum is to be noticed at r = 1.6 between these two regions, as well as a second

one a little further at r = 2.5. Note the qualitative resemblance with the profiles considered in

Kossin et al. (2000) (see their figures 1 and 12). The structure of the most unstable eigenmode

supported by the DNS mean vorticity profile at t = 20 is shown at the right of figure 8.16. It

bears several characteristics of a shear instability. Specifically, its phase velocity is very close

to the angular velocity of the mean flow at the radius of the vorticity extremum (see the largest

dot in figure 8.17). This radius, highlighted by the first black continuous circle in figure 8.16, is

also the zero amplitude isoline of the eigenmode structure. Tightly around, the eigenmode

reaches its largest amplitude under the form of four external lobes, rotated of ≈ π/2 in the

anticlockwise direction with respect to four internal ones. This structure is similar to the

one shown in figure 2 of Carton and Legras (1994), who interpret it under the Rossby-wave

interaction paradigm. In words, the mean vorticity profile can be thought of as supporting

Rossby (vorticity) waves at the “edges" (sharp slope) at one side and the other of the local

minima. These two vorticity waves are precisely the internal and external series of lobes of the

eigenmode structures. The velocity perturbation induced by a vorticity wave has a phase lag

of π/2 with respect to the latter. Therefore, since the lobe series are also rotated of ≈π/2 with

respect to each other, the velocity perturbation induced by one is in phase with the vorticity

perturbation of the other, thus reinforcing its growth. In addition, Carton and Legras (1994)

mentions that both waves interact in such a way as to travel with the same phase speed, thus

the reinforcement of the one by the other is preserved in time, eventually leading to instability.

238



Weakly nonlinear response of the Lamb-Oseen vortex Chapter 8

0 1 2 3 4

-0.1

0

0.1

0.2

0.3

0.4

0 1 2 3 4

-0.1

0

0.1

0.2

0.3

0.4

0 1 2 3 4

-0.1

0

0.1

0.2

0.3

0.4

0 1 2 3 4

-0.1

0

0.1

0.2

0.3

0.4

Figure 8.17: Mean (axisymmetric) vorticity profiles corresponding to U0 = 2.82×10−2, extracted
from DNS data (red continuous) and reconstituted from the weakly nonlinear expansion as
Wz +a2ω(0)

2 , where a solves the amplitude equation (blue dashed-dotted line). The largest dot
(respectively diamond) is located at the radius for which −mΩ =σi where σi is the imaginary
part of the most unstable eigenvalue of the DNS (respectively weakly nonlinear) profile. This
also corresponds to the critical radius of the most unstable mode. The respectively smaller dot
or diamond (if exists) stands for the second most unstable mode.

From 20 ≤ t in figure 8.16, growth rates determined with both approaches depart significantly

from each other, and so do the mean vorticities profiles in figure 8.17. This is because the

unstable mode grows and evolves in the DNS and feeds back on the mean flow, whereas in our

weakly nonlinear approach, the structure of the mean flow distortion is fully determined by

the Reynolds stress of the linear response.

Overall, it is plausible to think of the departure of the fully nonlinear solution from the weakly

nonlinear one, observable in figure 8.9 for large U0, as resulting from a shear instability. This

instability reaches its maximum growth rate around t = 20, and requires some time for the

unstable mode to gain in amplitude and for its nonlinear evolution, taking a tripolar shape, to

dominate the energy of the response from t = 40 and for U0 = 2.82×10−2 in figure 8.9. This goes
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in the sense of Carton and Legras (1994) and Kossin et al. (2000), who have also shown shear

instability modes to saturate into a tripolar state. The weakly nonlinear expansion does not

predict an amplitude for the unstable mode, for the latter only declares as a “secondary" mode,

on the top of the optimal response. Therefore the predictions from the amplitude equation,

for the optimal response, depart from DNS results after the time needed for the shear-driven

unstable mode to become dominant.

8.6 Summary and perspectives

In conclusion, we believe our work to have brought a twofold generalization to existing

literature. The first lies on a purely methodological level. We have derived an amplitude

equation for non-normal systems, describing the transient response to an initial condition, in

a weakly nonlinear regime. Unlike in Ducimetière et al. (2022a), the reference state of these

systems can now depend arbitrarily on times, owing to the propagator formalism, without

the need for this latter to take its particular operator exponential shape. This offers numerous

possibilities of applications, and weak nonlinearities could be modelled, for instance, in

pulsating pipe flows, which play a key role in the hemodynamic system of many species (Pier

& Schmid, 2017, 2021); it could also be applied to time-dependent stratified shear flows, which

have revealed to support strong transient growth, for instance in Arratia et al. (2013) and Parker

et al. (2021). Not only could the weakly nonlinear evolution of the gain associated with the

linear optimal perturbation be captured, but the amplitude equation could also be included

in a Lagrangian optimization problem whose stationary conditions would constitute a weakly

nonlinear optimal, parameterized by the amplitude of the initial condition.

The method does not rely on any modal (“eigenmodal") quantities, therefore the existence of a

continuous spectrum and/or the absence of discrete eigenmode is not problematic. Corollary,

the shape of the reference flow is not constrained, apart from the fact that it should lead to

strong energy growth at some finite time. The equation is derived for the amplitude of the

time-dependent (linear) optimal response, whose computation already encompassed the

entirety of the spectrum, regardless of its precise nature. This was particularly convenient

when applied to the two-dimensional Lamb-Oseen (Gaussian) vortex flow, the linear optimal

response of which is characterized by vorticity filaments under constant shear by the reference

flow. The work of Schecter et al. (2000) has shown this response to project well onto a very large

number of eigenmodes constituting the continuum, all with different shapes and frequencies.

Therefore it was extremely poorly described as a single eigenmode, which invalidates the use

of classical weakly nonlinear methods.

Instead, by using the amplitude equation (8.52), we could correctly predict for different Re

values the nonlinear evolution of the response for 0 ≤ t ≤ 130, and for small amplitudes of

the initial condition. In this specific regime, at Re = 5000 as an example, nonlinearities have

been found to reduce the transient gain for 0 ≤ t ≤ 87, but to enhance it for 87 ≤ t ≤ 130,

as confirmed by DNS. Owing to the simplicity of the amplitude equation and its link to the
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sensitivity formula, this could be further related to the creation of an azimuthal mean flow

distortion from the Reynolds stress of the linear response, which affects the Landau damping

controlling the non-viscous dissipation of the response. The second harmonic effect has also

been found to be important over the time interval where nonlinearities reinforce the gain.

However, for relatively large amplitudes of the initial condition, the predictions of the ampli-

tude equation are found to remain accurate at small times only. After a well-captured episode

of diminution of the gain, the DNS simulations with the largest considered initial condition

amplitudes depart from the weakly nonlinear prediction and evidence a bifurcation towards a

tripolar state. By performing a mean flow stability analysis, this departure can be related to

the emergence of a shear instability. Specifically, the mean flow distortion by the Reynolds

stress of the linear response, at the same time that it enhances the Landau damping by its

effect at the radius rq , generates a vorticity ring closely around the central part of the vortex.

A shear instability results from an interaction between the inner “edge" (sharp slope) of this

annular ring and the outer edge of the central region. The weakly nonlinear approach does

not predict an equation for the unstable mode that emerges on the mean flow. Therefore, as

soon as the unstable mode dominates the response, around t = 40 for the largest considered

U0 = 2.82×10−2 and Re = 5000, the weakly nonlinear description rapidly degrades in terms of

both energy and structure.

Nevertheless, at larger times, the amplitude equation can still give indirect information about

the fully nonlinear response. Specifically, for Re = 5000, for a given and above a certain value

for the amplitude of the initial condition, the amplitude equation has no solution over a finite

time interval contained in 87 ≤ t ≤ 130, where the coefficient µr is positive. The non-existence

of any solution over a time interval may imply that, at least over the same time interval, the

fully nonlinear solution must have reached another nonlinear state. This seems confirmed by

the DNS. In this sense, the threshold initial condition amplitude predicted by the amplitude

equation could be a reasonable approximation of the fully nonlinear one, even if a direct

comparison between the former and the latter is found to be delicate.

For future research, the nonlinear self-sustaining mechanism(s) of the tripolar state remain

to be clarified. In this perspective, a semi-linear approach such as the one deployed in Yim

et al. (2020) could be appropriate. This approach relies on the assumption that the dominant

nonlinear mechanism is the Reynolds stress feedback onto the mean flow, thus neglecting the

nonlinearity arising from the cross-coupling between different frequencies. In this sense, it

is less rigorous than the weakly nonlinear expansion proposed here. Nevertheless, the semi-

linear model does not assume the fluctuation over the mean flow to be small and typically

retains its spatial degrees of freedom. Therefore the nonlinear structure it predicts is possibly

considerably different from that of the linear regime and could evolve towards a tripole.

Eventually, we believe that the fact that the proposed method does not make assumptions on

the shape of the base profile, nor on the values of external parameters, only that the reference

flow should lead to some energy growth, could be exploited further. For instance, the proposed
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amplitude equation could be employed to assess and interpret weakly nonlinear effects on the

optimal response on vorticity profiles from actual field measurements such as those reported

in Kossin and Schubert (2001), Kossin et al. (2000), Kuo et al. (1999), and Reasor et al. (2000).

Indeed, the mean vorticity profile predicted in figure 8.17 of this work is qualitatively very

similar to the one of Hurricane Gilbert shown in figure 1 of Kossin et al. (2000). This raises

the question of the relevance of non-normal mechanisms combined with nonlinear effects in

tropical cyclones.

8.7 Appendix

8.7.1 Kernel of the adjoint of the perturbed inverse propagator

We demonstrate in the following that the non-trivial kernel b̂(t ) of the adjoint operator Φ(0, t )†

for t > 0 reads b̂(t ) =Ψ(t ,0)† l̂ (t ).

Φ(0, t )†b̂(t ) =

[
Ψ(0, t )

(
I − l̂ (t )

〈
l̂ (t )

∣∣∗〉
||l̂ (t )||2

)]†

b̂(t )

=

(
I − l̂ (t )

〈
l̂ (t )

∣∣∗〉
||l̂ (t )||2

)
Ψ(0, t )†b̂(t )

=

(
I − l̂ (t )

〈
l̂ (t )

∣∣∗〉
||l̂ (t )||2

)
[Ψ(t ,0)Ψ(0, t )]† l̂ (t )

=

(
I − l̂ (t )

〈
l̂ (t )

∣∣∗〉
||l̂ (t )||2

)
l̂ (t )

= 0.

(8.75)

8.7.2 Temporal integration of the third-order equation.

From (8.40) The particular solution for u(1)
3 reads

u(1)
3 (t ,T ) = û(1)

3a (t )+ A(T )|A(T )|2û(1)
3b (t )+ (dT A(T ))û(1)

3c (t )+ A(T )û(1)
3d (t ) (8.76)

where

∂t

(
Φ(0, t )û(1)

3a

)
= 0 with û(1)

3a (0) =αûh ,

∂t

(
Φ(0, t )û(1)

3b

)
= −HΨ(0, t ) f̃ with û(1)

3b (0) = 0,

∂t

(
Φ(0, t )û(1)

3c

)
= −Hϵoûo with û(1)

3c (0) = 0,

∂t

(
Φ(0, t )û(1)

3d

)
= −∂t (H ûo) with û(1)

3d (0) = 0,

(8.77)
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Integrating in time the first equation in (8.77) and using Φ(0,0) = I yields

Φ(0, t )û(1)
3a (t ) =Φ(0,0)û(1)

3a (0) =αûh . (8.78)

Integrating the second gives

Φ(0, t )û(1)
3b (t ) = −

∫ t

0
H(s)Ψ(0, s) f̃ (s)ds = −

∫ t

0
Ψ(0, s) f̃ (s)ds =Ψ(0, t )ũ(t ) (8.79)

where we have defined

ũ(t )
.
= −Ψ(t ,0)

∫ t

0
Ψ(0, s) f̃ (s)ds, (8.80)

or, equivalently using (8.11), ũ solves

(∂t −Lm(t ))ũ = − f̃ , subject to ũ(0) = 0. (8.81)

By integrating the third

Φ(0, t )û(1)
3c (t ) = −

∫ t

0
H(s)ϵoûods = −[H(s)ϵo sûo]s=t

s=0 +
∫ t

0
δ(s)ϵo sûods

= −ϵo t ûo ,
(8.82)

and eventually the fourth

Φ(0, t )û(1)
3d (t ) = −H(t )ûo . (8.83)

Injecting these four solutions in (8.76) and combining it with (8.40) leads to

Φ(0, t )u(1)
3 =αûh + A|A|2Ψ(0, t )ũ − (dT A)ϵo t ûo − AH ûo . (8.84)

8.7.3 Transient gain sensitivity in time-varying base flow and comparison with
the amplitude equation.

We recall that the gain squared associated with the linear trajectory optimized for t = to ,

through the choice of the initial condition ûo , reads

G(t ; to)2 = ||Ψ(t ,0)ûo ||2 =
〈

ûo

∣∣∣Ψ(t ,0)†Ψ(t ,0)ûo

〉
. (8.85)

Note that, by definition, G(to ; to) = Go(to) = 1/ϵo as defined in (8.13). We recall as well that G(t )

is used as a shortened notation for G(t ; to). We derive thereafter the variation δ(G(t )2) of this
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linear gain induced by a variation δLm(t ) of the operator Lm(t ). We first compute

δ(G(t )2) =
〈

ûo

∣∣∣δ(Ψ(t ,0)†Ψ(t ,0))ûo

〉
=

〈
ûo

∣∣∣δ(Ψ(t ,0)†)Ψ(t ,0)ûo +Ψ(t ,0)†δΨ(t ,0)ûo

〉
= 〈δΨ(t ,0)ûo |Ψ(t ,0)ûo〉+〈Ψ(t ,0)ûo |δΨ(t ,0)ûo〉
= 2ℜ (〈Ψ(t ,0)ûo |δΨ(t ,0)ûo〉)
= 2ϵ−1

o Re
(〈

l̂ (t )
∣∣δΨ(t ,0)ûo

〉)
,

(8.86)

where we used that δ(Ψ(t ,0)†) = (δΨ(t ,0))†: the variation of the adjoint is the adjoint of the

variation, as easily shown by using the definition of the adjoint operator. Next, we link δΨ(t ,0)

with δLm(t ) by taking the variation of (8.8), which leads to

∂t (δΨ(t ,0)) = (δLm(t ))Ψ(t ,0)+Lm(t )δΨ(t ,0). (8.87)

Multiplying (8.87) by Ψ(0, t ) and using (8.10), stating that Lm(t ) = −Ψ(t ,0)∂tΨ(0, t ), leads to

Ψ(0, t )∂t (δΨ(t ,0)) =Ψ(0, t )(δLm(t ))Ψ(t ,0)− (∂tΨ(0, t ))δΨ(t ,0), thus

∂t (Ψ(0, t )δΨ(t ,0)) =Ψ(0, t )(δLm(t ))Ψ(t ,0).
(8.88)

Integrating (8.88) in time and imposing δΨ(0,0) to be null results in

δΨ(t ,0) =Ψ(t ,0)
∫ t

0
Ψ(0, s)(δLm(s))Ψ(s,0)ds

=
∫ t

0
Ψ(t , s)(δLm(s))Ψ(s,0)ds.

(8.89)

In the particular case where Lm does not depend on time the propagator writes Ψ(t ,0) = eLm t ,

and relation (8.89) reduces to the formula (6) at p.175 of Bellman (1997). By injecting (8.89) in

(8.86) we obtain

δ(G(t )2) = 2ϵ−1
o Re

(〈
l̂ (t )

∣∣∣∣∫ t

0
Ψ(t , s)(δLm(s))Ψ(s,0)ûods

〉)
= 2ϵ−2

o Re

(∫ t

0

〈
Ψ(t , s)† l̂ (t )

∣∣∣δLm(s)l̂ (s)
〉

ds

)
.

(8.90)

On the other hand, by re-formulating (8.53), the weakly nonlinear gain Gw is found to satisfy

1− G(t )2

Gw(t )2 = 2

(
U0

ϵo

)2

µr (t ). (8.91)

Considering small variations around the linear gain Gw(t )2 = G(t )2+δ(G(t )2) withδ(G(t )2)/G(t )2 ≪
1, (8.91) reduces to

δ(G(t )2) = 2G(t )2
(

U0

ϵo

)2

µr (t ), (8.92)
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but

µ(t ) =

〈
l̂ (t )

∣∣ũ(t )
〉

||l̂ (t )||2 = −
〈

l̂ (t )
∣∣Ψ(t ,0)

∫ t
0 Ψ(0, s) f̃ (s)ds

〉
||l̂ (t )||2

= −
∫ t

0

〈
Ψ(t , s)† l̂ (t )

∣∣ f̃ (s)
〉

ds

||l̂ (t )||2

= − 1

(ϵoG(t ))2

∫ t

0

〈
Ψ(t , s)† l̂ (t )

∣∣∣ f̃ (s)
〉

ds.

(8.93)

Combining (8.92) with (8.93) results in

δ(G(t )2) = −2ϵ−2
o

(
U0

ϵo

)2

Re

(∫ t

0

〈
Ψ(t , s)† l̂ (t )

∣∣∣ f̃ (s)
〉

ds

)
. (8.94)

Identifying (8.90) with (8.94) leads us to conclude that the small variation of the weakly

nonlinear gain around the linear one, as predicted by our model, reduces to the sensitivity of

this linear gain to a perturbation δLm(t ) satisfying

δLm(t )l̂ (t ) = −
(

U0

ϵo

)2

f̃ (t ). (8.95)

From the definition of f̃ (t ) in (8.38), such δLm corresponds to an axisymmetric perturbation of

the base flow from U b to U b+(U0/ϵo)2u(0)
2 , and also embeds the effect of the second harmonics

û(2)
2 . Note that (U0/ϵo) is the amplitude of the response in the linear regime.

8.7.4 The pseudo-forcing method

We add to the asymptotic expansion (8.21) the trivial equality

0 =
[p

ϵo(ϵo A(T )δ(t )ûo)−p
ϵo

3(A(T )δ(t )ûo)
]

e imθ+c.c. (8.96)

where δ(t ) = dH(t )/dt such that
∫ t>0

0 δ(t )dt = H(t > 0)−H(0) = 1. The terms are then directly

collected at each order without ever perturbing the propagator. According to (8.96), the term

ϵo A(T )δ(t)ûo will act as a forcing at order
p
ϵo , whereas the term −A(T )δ(t)ûo will act as a

forcing at order
p
ϵo

3.

The equation assembled at
p
ϵo is therefore

(∂t −Lm(t ))u(1)
1 = Aδϵoûo , with u(1)

1 |t=0 = 0. (8.97)

By postulating u(1)
1 (t ,T ) = A(T )û(1)

1 (t ), the field û(1)
1 solves

û(1)
1 (t ) =Ψ(t ,0)

∫ t

0
Ψ(0, s)δ(s)ϵoûods =

0 if t = 0

Ψ(t ,0)ϵoûo = l̂ (t ) if t > 0,
(8.98)
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thereby û(1)
1 (t) = H(t)l̂ (t) and u(1)

1 (t ,T ) = A(T )H(t)l̂ (t) for t ≥ 0 exactly as in (8.33). The

equations and their solutions at order ϵo are the same as in the main text. At order
p
ϵo

3, the

equation for the Fourier component at (m) reads

(∂t −Lm(t ))u(1)
3 = −A|A|2H f̃ − (dT A)H l̂ − Aδûo , with u(1)

3 |t=0 =αûh , (8.99)

where A is still undetermined. The Fredholm alternative cannot be invoked since (8.99) is

directly solvable, but is replaced by an asymptotic-preserving argument of the same nature.

As u(1)
3 oscillates at m and is subject to a non-zero initial condition, it is susceptible to be

amplified of a factor 1/ϵo at t = to , thus conveying the response at order
p
ϵo ; to avoid this

scenario ruining the asymptotic hierarchy, we impose the orthogonality of u(1)
3 with the linear

response that is the most amplified at t = to , that is l̂ (t), which closes the system. Is it easily

shown that the solution to (8.99) reads

u(1)
3 =Ψ(t ,0)αûh + A|A|2ũ − t (dT A)l̂ −ϵ−1

o AH l̂ (8.100)

whose condition of orthogonality with l̂ (t ) for all t > 0 results in〈
l̂
∣∣∣u(1)

3

〉
=α

〈
l̂
∣∣Ψ(t ,0)ûh

〉+ A|A|2 〈
l̂
∣∣ũ〉− t (dT A)||l̂ ||2 −ϵ−1

o AH ||l̂ ||2 = 0. (8.101)

Multiplying (8.101) by ϵo/||l̂ ||2 = 1/
〈

b̂
∣∣ûo

〉
gives eventually

ϵo t
dA

dT
=α

〈
b̂
∣∣ûh

〉〈
b̂
∣∣ûo

〉 + A|A|2
〈

b̂
∣∣Ψ(0, t )ũ

〉〈
b̂
∣∣ûo

〉 − A. (8.102)

which is exactly the amplitude equation (8.43) derived in the main text by perturbing the

propagator.

As a side comment, note that u(1)
3 in (8.100) is also the particular solution of (8.41). Indeed, the

orthogonality condition guarantees
〈

l̂
∣∣∣u(1)

3

〉
= 0 such that Φ(0, t )u(1)

3 =Ψ(0, t )u(1)
3 and (8.41) is

automatically satisfied. Therefore, not only are the amplitude equations the same for both

methods, but also the higher-order terms of the development, requiring knowledge of the

field u(1)
3 . This holds as long as the homogeneous solution on u(1)

3 , not necessarily null for the

method of the singularization of the propagator, is ignored.

8.7.5 Expression of the adjoint operator

The adjoint of the operator Bm(t) under the scalar product defined in (8.12) is such that〈
Bm q̂ a

∣∣q̂ b

〉
=

〈
q̂ a

∣∣∣B †
m q̂ b

〉
for any q̂ a

.
= [ûa , p̂a] and q̂ b

.
= [ûb , p̂b]. By performing integrations

by parts, the following relations are easily demonstrated

〈∂r ûa |ûb〉 = (r ûH
a ûb)|r→∞−〈ûa |(∂r +1/r )ûb〉 ,

〈∆mûa |ûb〉 = [(∂r ûH
a )ûbr − ûH

a (r∂r ûb)]r→∞+〈ûa |∆mûb〉 .
(8.103)
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From here, the explicit expression of Bm(t ) is derived immediately as being

Bm(t )† =

(∆m −1/r 2)/Re+ imΩ −2im/(r 2Re)−Wz −∂r

2im/(r 2Re)+2Ω (∆m −1/r 2)/Re+ imΩ −im/r

∂r +1/r im/r 0

 (8.104)

and the cancellation of the boundary terms resulting from the integration by part imposes

−(r p̂∗û†)+ (r û∗p̂†)+ r (û†∂r û∗− û∗∂r û†)+ r (v̂†∂r v̂∗− v̂∗∂r v̂†) = 0 (8.105)

to hold at r →∞. Using the far-field condition on the direct field, stating û|r→∞ = 0, condition

(8.105) implies the adjoint velocity field to also vanish at infinity, i.e., û†|r→∞ = 0.
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9 Weakly nonlinear optimization

9.1 Introduction

The work of Reddy et al. (1998) numerically considered the response of the three-dimensional

plane Poiseuille flow, to different initial perturbations. They found that streamwise vortices

and oblique wave initial perturbations require less energy density to induce a transition to

turbulence than random noise, or than the linearly unstable mode (known as the "Tollmien-

Schliching" wave). This result is reproduced in Fig. 9.1a.

(a) From Reddy et al. (1998)

(b) From Shimizu and Manneville (2019)

Figure 9.1: (a) Threshold initial perturbation energy density, for the transition to turbulence in
the three-dimensional plane Poiseuille flow. Initial perturbations take the form of Tollmien-
Schlichting waves (TS), random three-dimensional noise (N), streamwise vortices (SV) and
oblique waves (OW). The circles correspond to data from simulations. (b) One-sided Laminar-
Turbulent" regime in Poiseuille flow at Re = 850.

The irrelevance of the linearly most unstable mode, in this specific context, motivated instead

linear transient growth analyses which identified streamwise vortices as being the initial

perturbation leading to the largest energy growth. In this, transient growth analyses led to a
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more realistic prediction than the linear stability analysis, as can be deduced by comparing

the curves for (TS) and (SV) in Fig. 9.1a).

However, Reddy et al. (1998) identified oblique waves as requiring slightly less energy than

streamwise vortices to initiate the transition, which was not captured by the linear transient

growth analyses. This was later confirmed by the computations of the nonlinear optimal

perturbations Farano et al. (2015), as well as by many fully nonlinear simulations performed

in very large channels, which uncovered oblique turbulent bands in the transitional flow

regime (see Fig. 9.1b for an example). These results suggested that both non-normality and

nonlinearity were necessary ingredients to capture the spontaneous oblique patterns. They all

were, however, obtained at a substantial numerical cost.

In the previous chapters of this part, chapter 7 and chapter 8, we have suggested a method to

reconcile non-normality, at the origin of the non-normal transient response, with nonlinearity.

This was done at a low computational cost, by restricting the analysis to a weakly nonlinear

regime. It resulted in a scalar equation that could account for the influence of leading order

nonlinearities on the amplitude of the linearly optimal structure.

The objective of the present chapter is to compute, for the plane Poiseuille flow, initial per-

turbation structures that lead to the largest possible energy growth in the weakly nonlinear

regime. We hope that such weakly nonlinear optimal structures will be more efficient than

the linear ones also in triggering turbulence, although there are a priori no mathematical

reasons for that. In other terms, by accounting for leading order nonlinearities only, we aim to

approach the minimal seed structures (Kerswell, 2018; Pringle & Kerswell, 2010; Pringle et al.,

2012) at a low numerical cost. Indeed, minimal seed structures also ensue from maximizing

the kinetic energy of the flow in a fully nonlinear regime, and for a sufficiently large temporal

horizon. The latter aspect is important since, as seen, perturbation over a stable base flow

can yield a very large transient growth in energy at finite times, and yet decay afterward. In

the case where the flow has only one global attractor, the maximal transient gain at a certain

temporal horizon can only vanish by increasing the temporal horizon, since perturbations

must decay asymptotically with time. If, however, the flow possesses another attracting state

(e.g. a turbulent attractor) the transient gain does not vanish with the temporal horizon if the

perturbed flow has transited toward this other state. That is because the perturbation is taken

as the difference between the current flow and its initial attractor. Therefore, in maximizing

the transient gain for a sufficiently large temporal horizon, the scenario where the initial

perturbation leads to a transition (thus a finite transient gain due to a persistent perturbation)

is logically favored over the scenario that leads to a re-laminarisation towards the base state

(thus a vanishing transient gain).

After having briefly introduced the flow configuration and recalled the weakly nonlinear am-

plitude equation in section 9.2, we outline an optimisation algorithm in section 9.3. The latter

results from the cancellation of the first-order variations of a Lagrangian, where the amplitude

equation has been included under the form of a constraint. This requires also including as
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constraints the linear equations governing the higher-order fields, involved in the inner prod-

uct for the coefficient of the amplitude equation. In section 9.4, we implement the algorithm

to compute the weakly nonlinear initial condition that yields the largest energy growth in the

plane Poiseuille flow, for a given streamwise-spanwise wavenumbers pair, temporal horizon,

and initial amplitude. We then compare the efficiency of the weakly nonlinear optimal initial

conditions with that of the linear ones, in triggering turbulence.

9.2 Flow configuration and governing equations

Let U b(y, t ) = [Ub(y, t ),0,0]T (r, t ) denotes a three-dimensional plane channel base flow, bounded

in the y (crosswise) direction but invariant in the x (streamwise) and z (spanwise) ones. We

refer for instance to the Poiseuille flow sketched in figure 2.2, and satisfying the Navier-Stokes

equations (NSE) subject to a constant pressure gradient. It supports an infinitesimal perturba-

tion field of the form

ŭ1(x, y, z, t ) = û1(y, t )e i(αx+βz) +c.c.. (9.1)

The invariance of the base flow along the x and z coordinates justifies the Fourier mode

expansion of the perturbation in these two directions. Linearizing the Navier-Stokes equations

around U b(y, t ) leads to a linear equation for the temporal evolution of the perturbation field

û1. written as

∂t û1 = Lû1, or, equivalently, û1(t ) =Ψ(t ,0)û1(0). (9.2)

The operator Ψ(t ,0) is called the "propagator", associated with the linearized Navier-Stokes

operator L. It maps the field at time 0 onto that at t . Without loss of generality, the initial

condition for the perturbation is normalized as ||û1(0)|| = 1. The linear trajectory is associated

with a transient gain

G(t ) =
||û1(t )||
||û1(0)|| = ||û1(t )||, (9.3)

where || • || here denotes norm induced by the L2 inner product over y

||û1||2 = 〈û1|û1〉 =
∫ 1

−1
|û1,x |2 +|û1,y |2 +|û1,z |2dy. (9.4)

In the previous chapter, we studied the effect of perturbing the NSE initially with the same

initial condition û1(0), but multiplied by an amplitude U0 which is small but non-vanishing.

We have shown analytically that the linear gain could be prolonged in a weakly nonlinear

regime, such as to take into account leading-orders nonlinearities affecting the response.

Specifically, upon proposing an asymptotic expansion of the flow in terms of powers of
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G(to)−1/2, to being the temporal horizon of interest, we have derived

Gw(t ) =
B(t )||û1(t )||

U0
, (9.5)

where B(t ) is a scalar given by

B(t ) = U0
1√

1−2U 2
0µr (t )

. (9.6)

The time-varying coefficient µr that appears in (9.6) is the real part of

µ =
〈û1(t )|û3(t )〉
〈û1(t )|û1(t )〉 , (9.7)

where the field û3 is induced by linear interactions stemming from û1. It is found by solving

successively (9.2) for û1, followed by

∂t û(2)
2 = L(2)û(2)

2 −C [û1, û1] , with û(2)
2 (0) = 0,

∂t u(0)
2 = L(0)u(0)

2 −2C
[
û∗

1 , û1
]

, with u(0)
2 (0) = 0

∂t û3 = Lû3 −2C
[

û∗
1 , û(2)

2

]
−2C

[
û1,u(0)

2

]
, with û(0)

3 (0) = 0.

(9.8)

The superscript "∗" denotes complex conjugation and C is the nonlinear, bilinear advection

operator. It describes the transport by some field ĝ , associated with the wavenumber pair

(mα,mβ), of some other field ĥ, associated with the wavenumber pair (nα,nβ), such that

C
[

ĝ , ĥ
] .

=
1

2

(
(ĝ · ∇̃n)ĥ + (ĥ · ∇̃m)ĝ

)
, with ∇̃p = [ipα,∂y , ipβ], (9.9)

In (9.8) the field û(2)
2 is the second harmonic associated with the wavenumbers pair (2α,2β).

By the application of spatial derivatives, the linearized Navier-Stokes operators depend on the

wavenumber pairs and L(2), associated with (2α,2β), governs the dynamics of û(2)
2 . The field

u(0)
2 is the mean flow correction associated with a non-oscillating field in space with wavenum-

bers pair (0,0) (hence its designation of "mean flow") and whose dynamics is governed by the

operator L(0). The field û3 is associated with the same wavenumbers pair (α,β) as û1, and the

weakly nonlinear behavior is determined by their normalized inner product in (9.7).

In the linear limit where U0 → 0, the amplitude B in (9.6) tends towards U0 and the gain

Gw in (9.5) reduces indeed to the linear one G in (9.3). By selecting the specific trajectory

û1(t ) = l̂ (t )/ϵo =Ψ(t ,0)ûo , where the initial condition ûo leads to the largest possible gain at to ,

G(to), and where ϵo = 1/G(to), results of the previous chapter are recovered exactly.

Crucially, note that any other choices of trajectory presumably degrade the prediction stem-

ming from the asymptotic expansion in terms of G(to)−1/2, precisely because the truncation

errors of the expansion scale in terms of some power of G(to)−1/2. In particular, the perturba-
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tion making the inverse propagator singular along a generic trajectory is written

Ψ(0, t )−P (t ), with P (t ) = H(t )
û1(0)〈û1(t )|∗〉
〈û1(t )|û1(t )〉 . (9.10)

For a given temporal horizon to , the perturbation operator P has a norm

||P (to)|| =
1

||û(to)|| =
1

G(to)
, (9.11)

which is minimized by selecting û1(0) = ûo . Trajectories seeded by any other initial condi-

tions lead to a larger perturbation operator size ||P (to)||, possibly to the point of making the

expansion (9.10) questionable.

In the next section, we propose a variational approach to maximize the weakly nonlinear

gain Gw in (9.5), for a given initial amplitude U0, and by acting on the structure of the initial

condition.

9.3 Weakly nonlinear Lagrangian optimization

In the linear regime, maximising the gain (9.3) at some temporal horizon to , or its square G2,

amounts to canceling the first-order variations of the Lagrangian

L = G2 − I1, (9.12)

where I1 enforces the constraints that û1 must solve the linear evolution equation (9.2), with a

unit-norm initial condition. Specifically,

I1 = I1

[
û1, û†

1,α; to

]
=

∫ to

0

〈
∂t û1 −Lû1

∣∣∣û†
1

〉
dt +α(

1−||û1(0)||2)+c.c., (9.13)

the field û†
1 being Lagrange multiplier. In the weakly nonlinear regime, the Lagrangian (9.12)

is augmented as

L = G2
w − I1 − I (2)

2 − I (0)
2 − I3 −γ f , (9.14)

where

G2
w = Gw [B , û1; to ,U0]2 =

B(to)2||û1(to)||2
U 2

0

(9.15)

is the gain (squared) at t = to , to be maximized. Note that including nonlinear effects implies a

parametric dependency of the gain in the amplitude of the initial condition U0. Expression

(9.6) evaluated at t = to gives B(to), the weakly nonlinear amplitude of the response at time to ,

and is included as a constraint in the Lagrangian through the term −γ f . Indeed, the scalar γ is

253



Chapter 9 Weakly nonlinear optimization

a Lagrange multiplier enforcing the equation f = 0, where

f = f [B , û1, û3; to ,U0] =
1

2

(
1

U 2
0

− 1

B(to)2

)
−µr [û1(to), û3(to)] (9.16)

so that f = 0 is equivalent to (9.6). Through the coefficient µr , the amplitude B(to) requires

the knowledge of the field û3, which itself depends on û(2)
2 and u(0)

2 . Thereby their evolution

equations (9.8) also must be included as constraints in the Lagrangian, which is done according

to the terms

I (2)
2 =

∫ to

0

〈
∂t û(2)

2 −L(2)û(2)
2 +C [û1, û1]

∣∣∣û(2),†
2

〉
dt +c.c. (9.17)

for û(2)
2 associated with the Lagrange multiplier û(2),†

2 ,

I (0)
2 =

∫ to

0

〈
∂t u(0)

2 −L(0)u(0)
2 +2C

[
û∗

1 , û1
]∣∣∣u(0),†

2

〉
dt (9.18)

for u(0)
2 associated with the Lagrange multiplier u(0),†

2 and eventually

I3 =
∫ to

0

〈
∂t û3 −Lû3 +2C

[
û∗

1 , û(2)
2

]
+2C

[
û1,u(0)

2

]∣∣∣û†
3

〉
dt +c.c. (9.19)

for û3 associated with the Lagrange multiplier û†
3. The dependencies of the Lagrangian (9.14)

are made explicit as

L = L
[

B , û1, û†
1,α, û(2)

2 , û(2),†
2 ,u(0)

2 ,u(0),†
2 , û3, û†

3,γ; to ,U0

]
. (9.20)

Optimality conditions are classically found by canceling all first-order variations of the La-

grangian. If L depends on some function ĝ appearing inside a spatiotemporal inner product,

the first-order variation of L with respect to ĝ reads∫ to

0

〈
δL

δĝ

∣∣∣∣g̃
〉

dt = lim
ϵ→0

L (..., ĝ +ϵg̃ , ...)−L (..., ĝ , ...)

ϵ
(9.21)

(where the dots imply the other functions to remain unperturbed, as for a partial derivative).

By computing the variation of L with respect to the Lagrange multipliers û†
1, α, û(2),†

2 , u(0),†
2 ,

û†
3 and γ, the respective corresponding constraint equations are recovered. Canceling the

variations with respect to B , û1, û(2)
2 , u(0)

2 and û3, in contrast, leads to non-trivial equations for

the Lagrange multipliers. We first compute

δL

δB
B̃ =

δG2
w

δB
B̃ −γδ f

δB
B̃ = 2BB̃

||û1(to)||2
U 2

0

−γ B̃

B 3 (9.22)
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(where B is evaluated at t = to). Thereby, imposing

δL

δB
B̃ = 0, ∀B̃ implies γ =

2B(to)4||û1(to)||2
U 2

0

, (9.23)

which determines the Lagrange multiplier γ. Then,

∫ to

0

〈
δL

δû1

∣∣∣∣ũ1

〉
dt =

〈
δG2

w

δû1

∣∣∣∣ũ1

〉∣∣∣∣
t=to

−
∫ to

0

〈
δI1

δû1

∣∣∣∣ũ1

〉
dt −

∫ to

0

〈
δI (2)

2

δû1

∣∣∣∣∣ũ1

〉
dt

−
∫ to

0

〈
δI (0)

2

δû1

∣∣∣∣∣ũ1

〉
dt −

∫ to

0

〈
δI3

δû1

∣∣∣∣ũ1

〉
dt +γ

〈
δµr

δû1

∣∣∣∣ũ1

〉∣∣∣∣
t=to

.

(9.24)

All the variations with respect to û1 involved in (9.24) are computed explicitly in Appendix 9.6.1,

from which we can show that∫ to

0

〈
δL

δû1

∣∣∣∣ũ1

〉
dt = 0, ∀ũ1 ⇒

B(to)2

U 2
0

〈ũ1(to)|û1(to)〉−
〈

ũ1(to)
∣∣∣û†

1(to)
〉
+

〈
ũ1(0)

∣∣∣û†
1(0)+αû1(0)

〉
+

∫ to

0

〈
ũ1

∣∣∣∂t û†
1 +L†û†

1

〉
dt −

∫ to

0

〈
ũ1

∣∣∣2C †
[

û1, û(2),†
2

]〉
dt

−
∫ to

0

〈
ũ1

∣∣∣2C †
[

û∗
1 ,u(0),†

2

]〉
dt −

∫ to

0

〈
ũ1

∣∣∣2C †
[

û(2),∗
2 , û†,∗

3

]
+2C †

[
u(0)

2 , û†
3

]〉
dt

+ γ

2
〈ũ1(to)|F (û1(to), û3(to))〉+c.c. = 0, ∀ũ1.

(9.25)

This leads to three equations, one valid at t = to ,

B(to)2

U 2
0

û1(to)− û†
1(to)+ γ

2
F (û1(to), û3(to)) = 0 ⇒

û1(to)† =
B(to)2

U 2
0

û1(to)+ γ

2
F (û1(to), û3(to)) ,

(9.26)

another valid at t = 0,

û†
1(0)+αû1(0) = 0

||û1(0)||=1⇒ û1(0) =
û†

1(0)

||û†
1(0)||2

(9.27)

and, eventually, a third one valid for all times between 0 and to ,

∂t û†
1 = −L†û†

1 +2C †
[

û1, û(2),†
2

]
+2C †

[
û∗

1 ,u(0),†
2

]
+2C †

[
û(2),∗

2 , û†,∗
3

]
+2C †

[
u(0)

2 , û†
3

]
(9.28)

The latter evolution equation needs to be integrated backward from the knowledge of û†
1(to).
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We proceed with the calculations by imposing that the variation of L with respect to û(2)
2 must

also be null at optimality. In mathematical terms,

∫ to

0

〈
δL

δû(2)
2

∣∣∣∣∣ũ(2)
2

〉
dt = −

∫ to

0

〈
δI (2)

2

δû(2)
2

∣∣∣∣∣ũ(2)
2

〉
dt −

∫ to

0

〈
δI3

δû(2)
2

∣∣∣∣∣ũ(2)
2

〉
dt = 0, ∀ũ(2)

2 ⇒

−
〈

ũ(2)
2 (to)

∣∣∣û(2),†
2 (to)

〉
+

∫ to

0

〈
ũ(2)

2

∣∣∣∂t û(2),†
2 +L(2),†û(2),†

2 −2C †[û∗
1 , û†

3]
〉

dt +c.c. = 0, ∀ũ(2)
2

(9.29)

where results from Appendix 9.6.2 have been utilized. This leads to two new equations, the

first being valid at t = to ,

û(2),†
2 (to) = 0 , (9.30)

and the second for all times between 0 and to ,

∂t û(2),†
2 = −L(2),†û(2),†

2 +2C †
[

û∗
1 , û†

3

]
, (9.31)

to be integrated backward from the knowledge of û(2),†
2 (to). Similarly,

∫ to

0

〈
δL

δu(0)
2

∣∣∣∣∣ũ(0)
2

〉
dt = −

∫ to

0

〈
δI (0)

2

δu(0)
2

∣∣∣∣∣ũ(0)
2

〉
dt −

∫ to

0

〈
δI3

δu(0)
2

∣∣∣∣∣ũ(0)
2

〉
dt = 0, ∀ũ(0)

2 ⇒

−
〈

ũ(0)
2 (to)

∣∣∣u(0),†
2 (to)

〉
+

∫ to

0

〈
ũ(0)

2

∣∣∣∂t u(0),†
2 +L(0),†u(0),†

2 −2C †
[

û1, û†
3

]
−2C †

[
û∗

1 , û†,∗
3

]〉
dt = 0, ∀ũ(0)

2

(9.32)

using the developments in Appendix 9.6.2. This implies directly

u(0),†
2 (to) = 0 , (9.33)

as well as

∂t u(0),†
2 = −L(0),†u(0),†

2 +2C †
[

û1, û†
3

]
+2C †

[
û∗

1 , û†,∗
3

]
, (9.34)

to be integrated backward from u(0),†
2 (to). Eventually,∫ to

0

〈
δL

δû3

∣∣∣∣ũ3

〉
dt = −

∫ to

0

〈
δI3

δû3

∣∣∣∣ũ3

〉
dt +γ

〈
δµr

δû3

∣∣∣∣ũ3

〉∣∣∣∣
t=to

= 0, ∀ũ3 ⇒

−
〈

ũ3(to)
∣∣∣û†

3(to)
〉
+

∫ to

0

〈
ũ3

∣∣∣∂t û†
3 +L†û†

3

〉
dt

+ γ

2

〈ũ3(to)|û1(to)〉
〈û1(to)|û1(to)〉 +c.c. = 0, ∀ũ3

(9.35)
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from Appendix 9.6.4, implying

û†
3(to) =

γ

2

û1(to)

〈û1(to)|û1(to)〉 , (9.36)

as well as

∂t û†
3 = −L†û3 (9.37)

for 0 ≤ t ≤ to , to be integrated backward from û†
3(to). All the computations done so far can be

assembled into the following optimization algorithm,

1. Choose a temporal horizon to and an initial amplitude U0.

2. Pick an initial guess for û1(0) (for instance, the linear optimal corresponding to that to).

3. From the knowledge of û1(0), integrate the evolution equations (9.2) and (9.8) from t = 0

to t = to to obtain the fields û1(t ), û(2)
2 (t ), u(0)

2 (t ) and û3(t ) over t ∈ [0, to].

4. From the knowledge of û1(to) and û3(to), compute the weakly nonlinear amplitude

B(to) with (9.6), and evaluate the associated weakly nonlinear gain according to (9.15).

5. From the knowledge of û1(to) and B(to), compute the Lagrange multiplier γ using (9.23).

6. Compute û†
3(t ) over t ∈ [0, to] by integrating (9.37) backward from its condition at t = to

given in (9.36) (and which requires the knowledge of γ).

7. From the knowledge û†
3(t), compute û(2),†

2 (t) and u(0),†
2 (t) over t ∈ [0, to] by integrat-

ing (9.31) and (9.34) backward from their conditions at t = to , given (9.30) and (9.33),

respectively.

8. From the knowledge û†
3(t), û(2),†

2 (t) and u(0),†
2 (t) compute û†

1(t) over t ∈ [0, to] by inte-

grating (9.28) backward from its condition at t = to given in (9.26).

9. From the knowledge of û†
1(to), choose the new initial condition û1(0) according to (9.27),

possibly with some relaxation factors, and go back to step 3 until convergence of the

weakly nonlinear gain.

10. To check for other existing maxima, it is appropriate to restart the algorithm with a

completely different initial guess for û1(0).

The algorithm proposed above is implemented for the plan Poiseuille flow in the following

section.
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Figure 9.2: Optimal linear transient gain as a function of the temporal horizon to , for the plane
Poiseuille flow shown in figure 2.2 and for Re = 3000. Two different pairs of wavenumbers (α,β)
are considered. Optimal transient gains produced by the open source codes given in Schmid
(2007) are also shown. The black bullets for to ∈ [22,45,68,90] highlight the temporal horizons
that will be further studied.

9.4 Application case: the plane Poiseuille flow

In this section, initial perturbations along a given wavenumber pair that are optimal in the

sense of the weakly nonlinear amplitude equation, are computed for the three-dimensional

plane Poiseuille flow. Their relevance in a fully nonlinear regime, as compared with the linearly

optimal ones, is then studied.

In the linear regime, the perturbation possesses a single wavenumbers pair (α,β), thereby

is periodic in x and z with a wavelength 2π/α and 2π/β, respectively, and no harmonics

are generated. In the fully nonlinear regime, simulations are performed inside the three-

dimensional domain with coordinates

x ∈ [0,2π/α], y ∈ [−1,1], z ∈ [−π/β,π/β], (9.38)

with periodic boundary conditions in x and z. This makes possible the nonlinear production

of harmonics (nα, pβ), n = 0,1,2, ... and, independently, p = 0,1,2, ....

In figure 9.2, we show the maximal linear transient gain for the plane Poiseuille flow at Re =

3000 as a function of the temporal horizon to , and for two different wavenumbers pairs.

Results from the Schmid and Henningson (2001) are recovered. Motivated by the work of

Reddy et al. (1998), showing that oblique perturbations are more efficient than streamwise

ones in triggering turbulence in the plane Poiseuille flow, in what follows, we will restrict the

analysis to the case (α,β) = (1,1) shown in figure 9.2b. In addition, the temporal horizons

to ∈ [22,45,68,90] (black bullets in figure 9.2b) are selected for a more detailed study.

Let U (x, y, z, t) be a fully nonlinear solution, obtained from a DNS in the x-and-z periodic
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three-dimensional domain (9.38). This solution can be decomposed as the sum of pertur-

bation up (x, y, z, t) plus a mean flow (over space) U (y, t). The latter and the former field are

extracted according to

U (y, t ) =
α

2π

β

2π

∫ 2π/α

0

∫ π/β

−π/β
U (x, y, z, t )dzdx, then

up (x, y, z, t ) = U (x, y, z, t )−U (y, t ).

(9.39)

In all generalities, the perturbation does not oscillate purely along the pair (α,β) but contains

harmonics. Thereby, the component of the perturbation along (α,β), denoted uα,β, needs to

be extracted as

uα,β(x, y, z, t ) = ûα,β(y)e i(αx+βz) +c.c., with

ûα,β(y, t ) =
αβ

4π2

∫ 2π/α

0

∫ π/β

−π/β
up cos(αx +βz)dzdx

− i
αβ

4π2

∫ 2π/α

0

∫ π/β

−π/β
up sin(αx +βz)dzdx.

(9.40)

(Note that, in the linear regime no harmonics exist and up reduces to uα,β). The perturbation

up is associated with an energy Ep , computed as

Ep =
αβ

8π2

∫ π/β

−π/β

∫ 1

−1

∫ 2π/α

0
u2

p,x +u2
p,y +u2

p,z dxdydz. (9.41)

The normalization prefactor in front of the integral guarantees the consistency with the

induced norm || • ||2 introduced in (9.4) and used in the previous section. Indeed, the energy

of uα,β is computed as

Eα,β =
αβ

8π2

∫ π/β

−π/β

∫ 1

−1

∫ 2π/α

0
u2
α,β,x +u2

α,β,y +u2
α,β,z dxdydz,

=
αβ

8π2

∫ π/β

−π/β

∫ 1

−1

∫ 2π/α

0
2|ûα,β,x |2 +2|ûα,β,y |2 +2|ûα,β,z |2dxdydz,

=
∫ 1

−1
|ûα,β,x |2 +|ûα,β,y |2 +|ûα,β,z |2dy,

=
〈

ûα,β
∣∣ûα,β

〉
= ||ûα,β||2.

(9.42)

We show in figure 9.3 the energy Ep of the (total) perturbation up as a function of time, for

the plane Poiseuille flow. The flow was initiated with the optimal linear initial condition for

(α,β, to) = (1,1,45) with an energy Ep (0) = Eα,β(0) = 10−3. The energies Ep and Eα,β are initially

equal since the flow is initiated solely along its (α,β) component. However, they generally

depart from each other due to nonlinearities as time evolves and Eα,β is also represented.

At the specific times corresponding to the black crosses in figure 9.3, the structure of up is

shown in figure 9.4. At this Re value and for this wavenumber, the flow is linearly stable.

Yet, the initial perturbation experiences a transient growth episode with a peak in energy
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Figure 9.3: For the plane Poiseuille flow at Re = 3000 in a three-dimensional x-and-z periodic
box (9.38), are shown the energy Ep of (total) perturbations up (thick lines) as well as the
energy Eα,β contained in the (α,β)-component (thin lines). It was initiated with the linear
optimal initial condition for (α,β, to) = (1,1,45). The energy of the initial condition is Ep (0) =
Eα,β(0) = U 2

0 = 10−3. The black crosses highlight t ∈ [1,31,61,91,121,151,181,211], times at
which the flow is shown in figure 9.4

around t = 15, as the initial thin vorticity layers oriented against the main shear unfold in

figure 9.4 (Orr mechanism). The perturbation decays only but slightly afterward, and thin

wavy structures seem to develop on the top of unfolded vorticity rolls, as visible on the frames

corresponding to t = 61,91 and 121 in figure 9.4. These wavy structures appear to break down

in the frame corresponding to t = 151 in figure 9.4, and the flow becomes turbulent rather

abruptly, as visible in the frame corresponding to t = 181 in figure 9.4. This is associated with a

strong surge of perturbation energy in figure 9.3. By becoming turbulent from t = 151 onward,

the flow develops many length scales, and Ep and Eα,β depart from each other in figure 9.3

(whereas the energy was dominated by the (α,β) oblique wave before). This phenomenology,

which consists of a perturbation that initially grows according to a non-modal mechanism, in

turn bringing about nonlinearities that make the flow escape from its attractor, is typical of a

bypass transition. It says nothing more than, in the phase space, the initial optimal condition

for (α,β, to) = (1,1,45), with an amplitude U0, is outside the basin of attraction of the plane

Poiseuille flow.

In the following, we implement the weakly nonlinear optimization algorithm outlined in the

previous section. In the spirit of Pringle and Kerswell (2010) and Pringle et al. (2012), we hope

to compute, for a given set (α,β, to), an initial condition structure that is more efficient in

triggering turbulence that the linear optimal one. Here, being more efficient means that the

weakly nonlinear initial condition would trigger turbulence for a lower amplitude U0 than the

linear one.
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(a) t = 1 (b) t = 121

(c) t = 31 (d) t = 151

(e) t = 61 (f) t = 181

(g) t = 91 (h) t = 211

Figure 9.4: The plane Poiseuille flow at Re = 3000, initiated by the linear optimal initial con-
dition for the parameters (α,β, to) = (1,1,45) and with an initial amplitude U0 = 10−1.5. The
±10−2 isocontours of the crosswise velocity are shown. The energy of the perturbation at the
corresponding times is shown with black crosses over the continuous line curve in figure 9.3.
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Figure 9.5: For the set of parameters (α,β, to) = (1,1,22), is shown the weakly nonlinear tran-
sient gain Gw(to) as a function of U0, the amplitude of the linear optimal initial condition (red
dashed line) or of the weakly nonlinear ones associated with U o

0 = 10−3 (black continuous)
and U o

0 = 10−1.5 (yellow continuous). A star marker is placed at U0 = U o
0 , i.e. when the initial

amplitude is equal to that for which the structure was optimized. The corresponding struc-
tures (isocontours of the cross-wise velocity) are also shown.

Let us first consider the set of parameters (α,β, to) = (1,1,22) and different optimization

amplitude of the initial condition, denoted U o
0 in what follows. The latter enters as a parameter

in the weakly nonlinear optimization algorithm, in the same manner that α, β, or to do. By

definition, when computing the evolution of Gw(to) as a function of U0, that associated with

the structure optimized for U o
0 should be larger than all the others at U0 = U o

0 specifically.

Some results are shown in figure 9.5, where we compare the linear optimal initial structures,

with the weakly nonlinear ones for U o
0 = 10−3 and U o

0 = 10−1.5. It appears that the optimization

amplitude U o
0 = 10−3 is sufficiently low to yield the same results as the linear optimization

algorithm (which simply consists of a singular value decomposition of the propagator, without

the initial amplitude entering into the calculations). Selecting the optimization amplitude

U o
0 = 10−1.5, however, significantly distorts the optimal initial structure. We check that the

transient gain that was optimized for U o
0 = 10−1.5 is larger than the linearly optimal one when

U0 = U o
0 = 10−1.5 (i.e. the yellow curve is above the red-dashed one at the location of the yellow

star).

We further consider three larger values for the temporal horizon, such that to ∈ [22,45,68,90]

(black bullets in figure 9.2). For each value of to , we gradually increase the optimization

amplitude of the initial condition U o
0 , and report the results in figure 9.6. For all the considered

parameters, the optimization algorithm seems to be effective in maximizing the gain, in
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Figure 9.6: Each frame shows the evolution of the weakly nonlinear transient gain Gw(to) with
U0, and for several values of the optimization initial amplitude U o

0 . Different colors correspond
to different values of U o

0 , and a star is placed when U0 = U o
0 . Different frames correspond to

different to . For t0 = 22, some results are redundant with those shown in figure 9.5.

that the Gw(to) curve, corresponding to a given U o
0 , is above all the others at U0 = U o

0 . More

prosaically, in figure 9.6, the curve associated with a star is above all the others at the location

of the star. This is particularly visible in figure 9.6a, corresponding to to = 22, where optimizing

over increasing U o
0 seems to lead to significantly different gain variations over U0. Particularly,

it modifies the optimal structure in a way that substantially decreases the linear gain (in the

limit U0 → 0).

As seen in the previous chapter, the weakly nonlinear gain Gw(to) is subject to a singular

explosion for a sufficiently large initial amplitude U0. Thereby, the optimization algorithm will

select the initial structure that leads to such singularity whenever the optimization amplitude

U o
0 is sufficiently large to make it possible. We interpret this singularity (loss of solution) as

a conservative indication that the flow has transited to another structurally different state.

Otherwise, the weakly nonlinear prediction would still yield a solution. Therefore, in figure

9.6, we interpret the U o
0 at which the gain curves become singular as the minimal initial

amplitude at which the flow has transited to turbulence at t = to (i.e., the weakly nonlinear
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approximation of the minimal seed energy in Pringle et al. (2012)). Such minimal U o
0 , at which

the gain becomes singular and the flow presumably has bifurcated, is denoted by U o,s
0 , the

superscript s for "singular". Figure 9.6 also reveals that U o,s
0 is a decreasing function of the

temporal horizon, supposedly because the initial perturbation had more time to be effective

for larger to , thereby its amplitude can be smaller. We obtain U o,s
0 = 10−1.25,10−1.5,10−2 and

10−2 for to = 22,45,68 and 90, respectively. Note the coarse discretization in U o,s
0 , due to the

rather large numerical cost of the optimization algorithm.

Note in figure 9.6 that the structures optimized for U o,s
0 are associated with a poor linear gain

close to unity, thus the asymptotic expansion used to determine the weakly nonlinear gain

prolongation is hardly justified. These weakly nonlinear optimal structures, optimized for

U o
0 = U o,s

0 are shown in figure 9.7 together with the linear optimal ones (just to their respective

left).

Let us now study in figure 9.10 to which extent the weakly nonlinear optimal initial per-

turbations are more efficient than the linear optimal ones in bringing about the transi-

tion to turbulence. To this end, we initiate a DNS with the weakly nonlinear optimal for

(α,β, to ,U o
0 ) = (1,1,45,10−1.5 = U o,s

0 ). We then compare the results with those already shown

in figure 9.3, where the DNS was initiated with the linear optimal initial perturbation for the

same parameters (except for U o
0 which doesn’t apply). Both DNS were initiated with the same

amplitude U0 = U o
0 = U o,s

0 = 10−1.5, for which the weakly nonlinear optimal initial condition

should by definition lead to a larger amplification at t = to = 45 in a weakly nonlinear regime.

We hope this to hold also in a fully nonlinear regime, although there are no a priori reasons

for that. A comparison of the energies Ep and Eα,β, as extracted from the DNS, is proposed in

figure 9.8. The results are not conclusive: all along its evolution, the perturbation seeded by the

weakly nonlinear optimal yields much lower energy than that seeded by the linear optimal one.

In particular, the former never breaks down to turbulence whereas the latter does. We further

illustrate in figure 9.9 the evolution of the perturbation flow field initiated with the weakly

nonlinear optimal. If the initial evolution resembles the Orr mechanism, and the unfolded

structure at t = 61 also tends to develop wavy structures, these latter and not energetic enough

to grow and break down to turbulence as in figure 9.4, but rather relaminarize towards the

plane Poiseuille flow.

We further study how generic these bad results are, by launching two fully nonlinear simu-

lations for each of the four to considered. Again, the first is initiated with the linear optimal

structure, shown at a given line in figure 9.7, left column. The second, with the weakly non-

linear one, at the same given line in figure 9.7, but right column. Both initial conditions have

an initial amplitude U0 = U o
0 = U o,s

0 , for which the weakly nonlinear initial condition has in

principle a larger (singular) gain at t = to . The resulting gains are reported in figure 9.10,

where the DNS gains relevant for the comparison are computed as Eα,β(t )/Eα,β(0), since the

amplitude equation only describes the evolution of the (α,β) component.

The results are generally not convincing, in the sense that the weakly nonlinear optimal initial
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(a) to = 22, linear (b) to = 22, U o
0 = U o,s

0 = 10−1.25

(c) to = 45, linear (d) to = 45, U o
0 = U o,s

0 = 10−1.5

(e) to = 68, linear (f) to = 68, U o
0 = U o,s

0 = 10−2

(g) to = 90, linear (h) to = 90, U o
0 = U o,s

0 = 10−2

Figure 9.7: Optimal initial conditions in a linear regime (left column) and a weakly nonlinear
one (right column)
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Figure 9.8: For the plane Poiseuille flow at Re = 3000 in a three-dimensional x-and-z periodic
box (9.38), are shown the fully nonlinear energy Ep of (total) perturbations up (thick lines) as
well as the energy Eα,β contained in the (α,β)-component (thin lines). The continuous lines are
the same as in figure 9.3 (now shown in lin-log scale). For the dashed-dotted lines, the flow was
initiated with the weakly nonlinear optimal initial condition, for the same parameters together
with an optimization initial amplitude of U o

0 = 10−1.5 (the same as the initial amplitude U0). In
all cases, the energy of the initial condition is Ep (0) = Eα,β(0) = U 2

0 = 10−3. The black crosses
highlight t ∈ [1,31,61,91,121,151,181,211], times at which the flow is shown in figure 9.4
(when initiated by the linear optimal) and in figure 9.9 (when initiated by the weakly nonlinear
optimal)

conditions almost systematically yield a lower gain than the linear optimal ones. In other

terms, in figure 9.10, the black continuous line almost systematically is above the red one.

An exception is found for the frame corresponding to to = 22 in figure 9.10a, where the DNS

initiated with the weakly nonlinear optimal (red continuous line) seems to yield slightly larger

gain values than the DNS initiated with the linear optimal (black continuous line), for short

time episodes.

Is also observed that the agreement between the DNS and the weakly nonlinear predictions,

i.e. between the continuous and the dashed line for a given color, rapidly degrades as time

increases. This seems particularly true for the weakly nonlinear prediction of the trajectory

seeded by the weakly nonlinear optimal (i.e. the dashed red line compares particularly poorly

with the continuous red line). The quick degradation of the weakly nonlinear prediction in a

subcritical flow regime was also found to occur in the previous chapter in figure 8.9. It was

explained by the fact that, if the considered U0 is too large, the nonlinearly distorted mean flow

became unstable to a mode that the amplitude equation was inherently unable to account for.

This seriously calls into question the approach adopted here, for the relevance of the weakly

nonlinear optimal structures implicitly is based on the assumption that the weakly nonlinear

amplitude equation (9.6) is an accurate model even for U0 that are not too small. If (9.6) fails
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(a) t = 1 (b) t = 121

(c) t = 31 (d) t = 151

(e) t = 61 (f) t = 181

(g) t = 91 (h) t = 211

Figure 9.9: The plane Poiseuille flow at Re = 3000, initiated by the weakly nonlinear optimal
initial condition for the parameters (α,β, to ,U o

0 ) = (1,1,45,10−1.5 = U o,s
0 ) and with an initial am-

plitude U0 = U o
0 = U o,s

0 =
√

Eα,β(0) =
√

Ep (0) = 10−1.5. The ±10−4 isocontours of the crosswise
velocity are shown. The energy of the perturbation at the corresponding times is shown with
black crosses over the dashed-dotted line curve in figure 9.3.
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(c) to = 68, U0 = U o
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Figure 9.10: The black dotted line is the linear trajectory seeded with the linear optimal struc-
ture, with a star at the temporal horizon to . The continuous black line is the DNS initiated with
the linear optimal and an amplitude U0. The dashed black line is the prediction of the weakly
nonlinear amplitude equation concerning the trajectory initiated with the linear optimal. The
continuous red line is the DNS initiated with the weakly nonlinear optimal and an amplitude
U0 = U o

0 = U o,s
0 for which it was optimized, and lead to a singular explosion of the gain in

figure 9.6. The dashed red line is the prediction of the weakly nonlinear amplitude equation
concerning the trajectory initiated with the weakly nonlinear optimal (by construction, it
should explode at the star where t = to). The DNS gain is computed on Eα,β, after extraction of
the (α,β)=(1,1) component.

to propose an accurate description for some times and/or initial amplitude U0, it is clear that

the results of an optimization algorithm based on this model are not encouraging.

As in the previous chapter, the agreement between weakly and fully nonlinear models seems

to remain good for small times, at least for the considered U0. Consequently, the weakly

nonlinear optimal structure for to = 22, in figure 9.10a, gives the most convincing result as

compared to larger to .
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9.5 Conclusions

In this chapter, we have developed an optimization algorithm to maximize the transient gain

in a weakly nonlinear regime. Specifically, the algorithm results from a Lagrangian where an

amplitude equation, that describes the evolution of a linear trajectory in a weakly nonlinear

regime, was included as a constraint. In its framework, the algorithm succeeds in finding a

structure that yields a larger transient gain for some U o
0 than the linear one, as computed by

the amplitude equation. Nevertheless, this structure was then found to be mostly irrelevant in

a fully nonlinear regime of a subcritical flow. Many reasons could be advanced to explain this

failure, some listed thereafter

• If the temporal horizon to and/or the initial amplitude U0 are chosen too large, the

predictions of the amplitude equation are found to be mostly irrelevant, for the fully

nonlinear trajectory has already bifurcated at early times. Thereby, for large to and/or

U0, since there the amplitude equation is an inaccurate model, the results from an

optimization algorithm based on it logically also give inaccurate results. This suggests

that the optimization procedure should mostly be used for small to , where the amplitude

equation remains a good model.

• For large to , the weakly nonlinear initial conditions, optimized at U o,s
0 , thought of as

being close to the smallest possible amplitude for the flow to nonlinearly transit, are

associated with linear gains that are close to unity (see in figure 9.6 the value for the

singular curve crosses the y-axis, corresponding to the limit U0 → 0). Thereby the

asymptotic expansion with small parameter ϵo = 1/G(to) (the inverse of the linear gain),

has no mathematical justification and the truncation error is likely to be large.

• Turbulence generates many length scales, and figure 9.3 has shown that the (α,β) Fourier

component of the perturbation does not dominate the turbulence spectrum. With the

current approach, however, the weakly nonlinear optimal only can optimize the y

profile for a given (α,β) pair. In other terms, even is relevant in a fully nonlinear regime,

the algorithm optimizes Eα,β(t)/Eα,β(0) and not Ep (t)/Ep (0), whereas it is the latter

gain that matters in a turbulent regime. It is possible to compute three-dimensional

weakly nonlinear optimals, that do not enforce a particular wavenumber pair for the

perturbation, but this would require a computational time substantially larger.

As a perspective, the structures computed by the optimization algorithm are believed to be

more relevant in supercritical flows, where the amplitude equation was found in chapter 7

and 8 to remain a good model even for large t and/or U0. This is simply because the fully

nonlinear flow structure remained symptomatic of the linear one over which the amplitude

equation was constructed.

For subcritical flows, we believe the weakly nonlinear structures to only be valid when opti-

mized for small temporal horizons. In the spirit of Mannix et al. (2022), this could be automati-
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cally coupled to a DNS routine that performs a time-marching of the flow for very large times.

If it is thus found that the flow re-laminarizes, the routine repeats the optimisation procedure

for a slightly larger initial condition parameter U o
0 . The procedure is stopped whenever the

DNS confirms the flow to have reached turbulence.
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9.6 Appendix

9.6.1 Variations with respect to the first order field.

We successively compute〈
δG2

w

δû1

∣∣∣∣ũ1

〉
=

B 2

U 2
0

(〈ũ1|û1〉+〈û1|ũ1〉) =
B 2

U 2
0

〈ũ1|û1〉+c.c., (9.43)

followed by∫ to

0

〈
δI1

δû1

∣∣∣∣ũ1

〉
dt

=

[∫ to

0

〈
∂t ũ1 −Lũ1

∣∣∣û†
1

〉
dt +c.c.

]
−α〈ũ1(0)|û1(0)〉−α〈û1(0)|ũ1(0)〉

=

[〈
ũ1(to)

∣∣∣û†
1(to)

〉
−

〈
ũ1(0)

∣∣∣û†
1(0)

〉
−

∫ to

0

〈
ũ1

∣∣∣∂t û†
1 +L†û†

1

〉
dt +c.c.

]
−α〈ũ1(0)|û1(0)〉−α〈û1(0)|ũ1(0)〉

=
〈

ũ1(to)
∣∣∣û†

1(to)
〉
−

〈
ũ1(0)

∣∣∣û†
1(0)+αû1(0)

〉
−

∫ to

0

〈
ũ1

∣∣∣∂t û†
1 +L†û†

1

〉
dt +c.c.,

(9.44)

and by

∫ to

0

〈
δI (2)

2

δû1

∣∣∣∣∣ũ1

〉
dt =

∫ to

0

〈
C [û1, ũ1]+C [ũ1, û1]

∣∣∣û(2),†
2

〉
dt +c.c.

=
∫ to

0

〈
2C [ũ1, û1]

∣∣∣û(2),†
2

〉
dt +c.c.

=
∫ to

0

〈
ũ1

∣∣∣2C †
[

û1, û(2),†
2

]〉
dt +c.c.,

(9.45)

where we have computed the adjoint advection operator, C † [•,•], in Appendix 9.6.5. We

proceed with

∫ to

0

〈
δI (0)

2

δû1

∣∣∣∣∣ũ1

〉
dt =

∫ to

0

〈
2C

[
û∗

1 , ũ1
]+2C

[
ũ∗

1 , û1
]∣∣∣u(0),†

2

〉
dt

=
∫ to

0

〈
2C

[
ũ1, û∗

1

]∣∣∣u(0),†
2

〉
dt +

∫ to

0

〈
2C

[
ũ∗

1 , û1
]∣∣∣u(0),†

2

〉
dt

=
∫ to

0

〈
ũ1

∣∣∣2C †
[

û∗
1 ,u(0),†

2

]〉
dt +c.c.,

(9.46)
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as well as∫ to

0

〈
δI3

δû1

∣∣∣∣ũ1

〉
dt =

∫ to

0

〈
2C

[
ũ∗

1 , û(2)
2

]
+2C

[
ũ1,u(0)

2

]∣∣∣û†
3

〉
dt +c.c.

=
∫ to

0

〈
2C

[
ũ1, û(2),∗

2

]∣∣∣û†,∗
3

〉
dt +

∫ to

0

〈
2C

[
ũ1,u(0)

2

]∣∣∣û†
3

〉
dt +c.c.

=
∫ to

0

〈
ũ1

∣∣∣2C †
[

û(2),∗
2 , û†,∗

3

]
+2C †

[
u(0)

2 , û†
3

]〉
dt +c.c.

(9.47)

and, eventually,

2

〈
δµr

δû1

∣∣∣∣ũ1

〉
= lim
ϵ→0

2

ϵ

(
ℜ

[ 〈û1 +ϵũ1|û3〉
〈û1 +ϵũ1|û1 +ϵũ1〉

]
−ℜ

[ 〈û1|û3〉
〈û1|û1〉

])
= lim
ϵ→0

2

ϵ

(
ℜ

[ 〈û1|û3〉+ϵ〈ũ1|û3〉
〈û1|û1〉+ϵ〈û1|ũ1〉+ϵ〈ũ1|û1〉+O(ϵ2)

]
−ℜ

[ 〈û1|û3〉
〈û1|û1〉

])
= lim
ϵ→0

2

ϵ

(
ℜ

[ 〈û1|û3〉+ϵ〈ũ1|û3〉
〈û1|û1〉

1

1+ϵ〈û1|ũ1〉/〈û1|û1〉+ϵ〈ũ1|û1〉/〈û1|û1〉+O(ϵ2)

]
−ℜ

[ 〈û1|û3〉
〈û1|û1〉

])
= lim
ϵ→0

2

ϵ

(
ℜ

[( 〈û1|û3〉
〈û1|û1〉

+ϵ 〈ũ1|û3〉
〈û1|û1〉

)(
1−ϵ 〈û1|ũ1〉

〈û1|û1〉
−ϵ 〈ũ1|û1〉

〈û1|û1〉
+O(ϵ2)

)]
−ℜ

[ 〈û1|û3〉
〈û1|û1〉

])
= 2ℜ

[ 〈ũ1|û3〉
〈û1|û1〉

− 〈û1|û3〉
〈û1|û1〉

( 〈û1|ũ1〉
〈û1|û1〉

+ 〈ũ1|û1〉
〈û1|û1〉

)]
=

[ 〈ũ1|û3〉
〈û1|û1〉

− 〈û1|û3〉
〈û1|û1〉

( 〈û1|ũ1〉
〈û1|û1〉

+ 〈ũ1|û1〉
〈û1|û1〉

)]
+

[〈
ũ∗

1

∣∣û∗
3

〉
〈û1|û1〉

−
〈

û∗
1

∣∣û∗
3

〉
〈û1|û1〉

(〈
û∗

1

∣∣ũ∗
1

〉
〈û1|û1〉

+
〈

ũ∗
1

∣∣û∗
1

〉
〈û1|û1〉

)]

=
〈ũ1|û3〉
〈û1|û1〉

− 〈ũ1|û1〉
〈û1|û1〉

(
〈û1|û3〉
〈û1|û1〉

+
〈

û∗
1

∣∣û∗
3

〉
〈û1|û1〉

)
+c.c.

= 〈ũ1|F (û1, û3)〉+c.c.

(9.48)

with

F (û1, û3) =
û3

〈û1|û1〉
− û1

〈û1|û1〉

(
〈û1|û3〉
〈û1|û1〉

+
〈

û∗
1

∣∣û∗
3

〉
〈û1|û1〉

)
. (9.49)
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9.6.2 Variations with respect to the second harmonic order field.

We compute

∫ to

0

〈
δI (2)

2

δû(2)
2

∣∣∣∣∣ũ(2)
2

〉
dt =

〈
ũ(2)

2 (to)
∣∣∣û(2),†

2 (to)
〉
−

〈
ũ(2)

2 (0)
∣∣∣û(2),†

2 (0)
〉

−
∫ to

0

〈
ũ(2)

2

∣∣∣∂t û(2),†
2 +L(2),†û(2),†

2

〉
dt +c.c.

=
〈

ũ(2)
2 (to)

∣∣∣û(2),†
2 (to)

〉
−

∫ to

0

〈
ũ(2)

2

∣∣∣∂t û(2),†
2 +L(2),†û(2),†

2

〉
dt +c.c.,

(9.50)

where we used that ũ(2)
2 (0) = 0 in virtue of the initial condition û(2)

2 (0) = 0. Variation of I3 with

respect to û(2)
2 reads

∫ to

0

〈
δI3

δû(2)
2

∣∣∣∣∣ũ(2)
2

〉
dt =

∫ to

0

〈
2C

[
û∗

1 , ũ(2)
2

]∣∣∣û†
3

〉
dt +c.c.

=
∫ to

0

〈
ũ(2)

2

∣∣∣2C †
[

û∗
1 , û†

3

]〉
dt +c.c..

(9.51)

9.6.3 Variations with respect to the mean flow distortion field.

We compute

∫ to

0

〈
δI (0)

2

δu(0)
2

∣∣∣∣∣ũ(0)
2

〉
dt =

〈
ũ(0)

2 (to)
∣∣∣u(0),†

2 (to)
〉
−

∫ to

0

〈
ũ(0)

2

∣∣∣∂t u(0),†
2 +L(0),†u(0),†

2

〉
dt . (9.52)

where it is implicit that ũ(2)
2 (0) = 0 in virtue of the initial condition û(2)

2 (0) = 0. In addition

∫ to

0

〈
δI3

δu(0)
2

∣∣∣∣∣ũ(0)
2

〉
dt =

∫ to

0

〈
2C

[
û1, ũ(0)

2

]∣∣∣û†
3

〉
dt +

∫ to

0

〈
2C

[
û∗

1 , ũ(0)
2

]∣∣∣û†,∗
3

〉
dt

=
∫ to

0

〈
2C

[
ũ(0)

2 , û1

]∣∣∣û†
3

〉
dt +

∫ to

0

〈
2C

[
ũ(0)

2 , û∗
1

]∣∣∣û†,∗
3

〉
dt

=
∫ to

0

〈
ũ(0)

2

∣∣∣2C †
[

û1, û†
3

]
+2C †

[
û∗

1 , û†,∗
3

]〉
dt .

(9.53)

9.6.4 Variations with respect to the third order field.

We compute∫ to

0

〈
δI3

δû3

∣∣∣∣ũ3

〉
dt =

〈
ũ3(to)

∣∣∣û†
3(to)

〉
−

∫ to

0

〈
ũ3

∣∣∣∂t û†
3 +L†û†

3

〉
dt +c.c., (9.54)

273



Chapter 9 Weakly nonlinear optimization

in virtue of ũ3(0) = 0 inherited from û3(0) = 0. Furthermore,

2

〈
δµr

δû3

∣∣∣∣ũ3

〉
=
〈ũ3|û1〉
〈û1|û1〉

+c.c.. (9.55)

9.6.5 Adjoint advection operator

In the context, the bi-linear advection operator is

2C [a,b] = (b · ∇̃nα,nβ)a + (a · ∇̃pα,pβ)b, (9.56)

with ∇̃α,β = (iα,∂y , iβ), and where n and p are the harmonic indices of a and b, respectively.

For instance, it is equal to 1,−1,0,2 for û1, û∗
1 , u(0)

2 and û(2)
2 , respectively. We define the adjoint

of C as

〈C [a,b]|c〉 .
=

〈
a

∣∣∣C †[b,c]
〉

, ∀a,b,c . (9.57)

We can compute 〈C [a,b]|c〉 explicitely as

〈2C [a,b]|c〉 =
∫ 1

−1
2C [a,b]H cdy

=
∫ 1

−1

[
i nαbx a +by∂y a + i nβbz a + (∇̃pα,pβb)a

]H cdy

=
∫ 1

−1

[
−i nαb∗

x aH +b∗
y∂y aH − i nβb∗

z aH +aH (∇̃pα,pβb)H )
]

cdy.

(9.58)

In particular,∫ 1

−1
(b∗

y∂y aH )cdy =������
[aH b∗

y c]1
−1 −

∫ 1

−1
aH

(
c∂y b∗

y +b∗
y∂y c

)
dy

= −
∫ 1

−1
aH

(
c∂y b∗

y +b∗
y∂y c

)
dy.

(9.59)

where the boundary terms vanish under the no-slip boundary condition at the rigid walls.

Eventually,

〈2C [a,b]|c〉 =
∫ 1

−1
aH

[
−i nαb∗

x −
(
∂y b∗

y +b∗
y∂y

)
− i nβb∗

z + (∇̃pα,pβb)H
]

cdy

=
∫ 1

−1
aH

[
−∂y b∗

y − (b∗ · ∇̃nα,nβ)+ (∇̃pα,pβb)H
]

cdy,

(9.60)

which implies

2C [b,c]† = −c∂y b∗
y − (b∗ · ∇̃nα,nβ)c + (∇̃pα,pβb)H c . (9.61)
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The methods proposed in the three parts of this thesis, each being concerned with an excitation

of a different nature, can be seen a particular cases of the same backbone principle. We state it

as follows

• The choice of the nature of the external excitation to the system suggests a choice of an

inner product whose induced norm measures the input-output amplification.

In part I, the applied excitation was a monochromatic sustained forcing, thereby the

inner product naturally was chosen as the spatiotemporal inner product, consisting of

the L2(Ω) inner product over the spatial domain Ω, then taking the temporal average.

Since the excitation was monochromatic, this was equivalent to considering solely the

L2(Ω) inner product of the Fourier component at the forcing frequency.

In part II, the applied excitation was a stochastic sustained forcing, thereby the inner

product, whose induced norm was a relevant measure of the system state, was also

selected as the spatiotemporal inner product. Generally, it also included an ensemble

average over the different realizations of the stochastic forcing process.

In part III, the applied excitation took the form of an initial perturbation, leading to

a transient response that does not persist in time. Thereby we were interested in an

instantaneous measure of the system, and the inner product was selected as being

simply the L2(Ω) inner product over the spatial domain, without temporal integration.

• If the excited system is non-normal, it is reasonable to expect the largest attainable

amplification (or "gain"), under the norm induced by the properly selected inner prod-

uct, to be large. This generically results from interactions between a large number of

eigenmodes of the linearized system and does not require the presence of a neutral or

close-to-neutral one.

Each problem can thus be explicitly rewritten as being the excitation greatly amplified

by the application of a specific operator. The latter operator typically is the resolvent for

statistically steady systems subject to a sustained forcing, whereas it is the propagator for
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arbitrarily time-varying systems subject to an initial perturbation. This naturally implies

that the application of the inverse of this specific operator, mapping the response on its

forcing, induces great mitigation under the selected induced norm.

For instance, in part I we have rewritten the input-output problem as

R(iω)−1 ûo︸︷︷︸
||•||=1

= ϵo f̂ o︸ ︷︷ ︸
||•||=ϵo

.
(10.1)

Therefore, the inverse resolvent generates a strong reduction under the norm induced

by the L2(Ω) inner product, since ûo with ||ûo || = 1, is mapped on ϵo f̂ o with ||ϵo f̂ o || =

ϵo ≪ 1.

In part II, chapter 3, we have rewritten the input-output problem as

R(iω)−1 l̂ (ω;θ)︸ ︷︷ ︸p
{[||•||2]}=1

= ϵo f o ξ̂(ω;θ)︸ ︷︷ ︸p
{[||•||2]}=ϵo

.
(10.2)

In other terms, the inverse resolvent also generates a strong reduction under the

norm induced by the spatio-ensemblo-frequential inner product, since l̂ (ω;θ) with√{[||l̂ (ω;θ)||2]} = 1, is mapped on ϵo f o ξ̂(ω;θ) with
√{[||ϵo f o ξ̂(ω;θ)||2]} = ϵo ≪ 1.

In part III we have rewritten the input-output problem as

Ψ(0, to) l̂ (to)︸︷︷︸
||•||=1

= ϵoûo︸ ︷︷ ︸
||•||=ϵo

,
(10.3)

which stipulates that the inverse propagator brings about a strong reduction under the

norm induced by the L2(Ω) inner product, since l̂ (to) with ||l̂ (to)|| = 1, is mapped on

ϵoûo with ||ϵoûo || = ϵo ≪ 1.

• From here, the key idea, largely exploited in this thesis, is based on the following mathe-

matical fact: if the application of an operator on a structure maps it to another with a

much smaller size, "size" measured under some norm, then an operator perturbation

that is small under this same norm is sufficient to make the operator singular.

In part I, we thus built the singular operator by manipulating (10.1) as

Φ(iω) (•) = R(iω)−1 •−ϵo f̂ o 〈ûo |•〉︸ ︷︷ ︸
||•||=ϵo

, with Φ(iω) (Aûo) = 0,
(10.4)

for any scalar A that does not depend on space.

In part II the singular operator, suggested by (10.2), took the form of

Φ(ω;θ) (•) = R(iω)−1 •−ϵo f o ξ̂(ω;θ)
{[〈

l̂ (ω;θ)
∣∣•〉]}︸ ︷︷ ︸p

{[||•||2]}=ϵo

, with Φ(ω;θ)
(

Al̂ (ω;θ)
)

= 0,
(10.5)
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for any scalar A that depends neither on space, nor on the frequency, nor on the stochas-

tic argument.

In part III the expression of the singular operator at t = to comes from (10.3) as

Φ(0, to) (•) =Ψ(0, to)•−ϵoûo
〈

l̂ (to)
∣∣•〉︸ ︷︷ ︸

||•||=ϵo

, with Φ(0, to)
(

Al̂ (to)
)

= 0,
(10.6)

for any scalar A that does not depend on space.

• The construction of a singular operator, for which the response to the excitation consti-

tutes the non-trivial kernel, makes it possible to bridge the gap with traditional weakly

nonlinear expansion methods even in the absence of a neutral mode. It is indeed key

that the operator characterizing the input-output dynamics is singular to rigorously

derive an amplitude equation, for the latter precisely ensues from a non-resonance

condition.

Due to the generic lack of a bifurcation point, we do not immediately have the small

expansion parameter as the distance to the critical parameter. Nevertheless, due to the

strong non-normality, we do have a large parameter as the gain under some induced

norm. Thereby, we simply define the small parameter as the inverse of the large pa-

rameter. As shown in (10.4), (10.5) and (10.6), the former coincides with the distance to

criticality, in the sense that it also is the size of an operator perturbation sufficient to

make singular the operator characterising the input-output dynamics.

In each of the three parts, a multiple-scale asymptotic expansion was thus performed in

terms of some power of the gain inverse. The expansion was systematically rewritten

such as to make appear, at each order, the inverse of the operator characterising the

input-output dynamics. The latter was then perturbed according to (10.4), (10.5) and

(10.6) in part I, part II and part III, respectively, which could be rigorously encompassed

in the expansion. Consequently, the leading order was constituted of the linearly optimal

response, multiplied by some undetermined scalar that was constant with respect to

the variable(s) over which the selected inner product made the integral(s). (Note that

the latter fact led in chapter 4 to consider, for the perturbation operator, an inner

product different from that yielding a large gain). The problem was then closed at higher

orders by satisfying the Fredholm alternative. In this context, the latter stipulated that

the resonant forcing terms must be orthogonal, under the selected inner product, to

the adjoint of the leading-order (optimal) response. This led to an equation for the

amplitude of the optimal response, which describes the weakly nonlinear evolution

of the gain under the selected induced norm, while the amplitude of the excitation is

increased.

The satisfaction of the Fredholm alternative had an intuitive physical interpretation in

this context: to build a solution in the form of an asymptotic expansion, each of the

higher-order responses must be orthogonal to the optimal (leading-order) one, under

the inner product measuring a large amplification. If this is not the case, and precisely
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because the expansion is made in terms of the inverse of the optimal amplification

measured by such inner product, the higher-orders go up the orders of the expansion

so as to find themselves at an order that is lower than that postulated. This breaks the

validity of the ansatz, and must be avoided for the latter to remain relevant.

In table 10.1 we propose an exhaustive, chapter-by-chapter summary of which operator was

perturbed up to singularity, according to which operator perturbation, and we also report the

resulting kernel.

Table 10.1: Summary table of the operator perturbations carried out in this thesis. Each color
denotes a different type of external excitation: harmonic forcing (green), stochastic forcing
(lavender), and initial condition (cream).

Chap.
Perturbed
operator

Gain, ϵ−1
o =

Perturbation
operator ...

...of norm Kernel

2 (iωI −L)−1 max
f̂

||û||
|| f̂ || ϵo f̂ o 〈ûo |•〉 ϵo A(τ)ûo

3 (iωI −L)−1

√√√√max
f

{[||û(ω;θ)||2]}{[|| f ξ̂(ω;θ)||2]} ϵo ξ̂(ω;θ) f o

{[〈
l̂ (ω;θ)

∣∣•〉]} ϵo A(τ)l̂ (ω;θ)

4 (iωI −L)−1

√√√√max
f

[||û(ω;θ)||2][|| f ξ̂(ω;θ)||2] ϵo
f o

||q̂(ω)||2
〈

q̂(ω)
∣∣•〉 ϵo

||q(ω)|| A(τ;ω,θ)q̂(ω)

5 (∂t −Ln) Ø Ø Ø A(τ)q

6 (∂t −Ln)

√√√√ ||u⊥(t ;θ)||2
|| f ⊥

o ξ(t ;θ)||2
ϵo
ξ(t ) f ⊥

o

|| f ⊥
o ||

〈
l⊥(t )

∣∣•〉 ϵo A(τ)q & B(τ)l⊥(t )

7 Ψ(0, t ) = exp(−Lt ) max
u(0)

||u(to)||
||u(0)|| ϵo

H(t )uo

||l (t )||2 〈l (t )|•〉 ϵo

||l (t )|| A(τ)l (t )

8 Ψ(0, t ) ̸= exp(−Lt ) max
û(0)

||û(to)||
||û(0)|| ϵo

H(t )ûo

||l̂ (t )||2
〈

l̂ (t )
∣∣•〉 ϵo

||l̂ (t )|| A(τ)l̂ (t )

In some sense, this thesis operated a change of paradigm from assuming a large spectral gap,

making it possible to reduce the weakly nonlinear dynamics of the system to a few neutral
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or close to neutral eigenmodes, to assuming a large singular value gap, making it possible to

reduce the weakly nonlinear dynamics to a few largely amplified responses.

As perspectives, we sketch in sections 10.1 and 10.2 some other relevant configurations where

the general principle outlined above could be applied, and we highlight in sections 10.3 and

10.4 some fundamental interrogations that the method raises, and which shall need to be

clarified in the future.

10.1 Application to a harmonic resolvent analysis

A natural extension of the method outlined in chapter 2 would consist of deriving an amplitude

equation for the optimal response associated with the harmonic resolvent operator (Padovan

& Rowley, 2022; Padovan et al., 2020). The latter operator results from the linearization of

the system around a time-periodic base flow, such that the resulting L can be expanded as a

Fourier series

L = L(t ) =
∑

k∈Ω̃
L̂k e ikt , Ω̃ = {...,−2,−1,0,1,2, ...} . (10.7)

The harmonic resolvent applies on the whole set of Fourier components
{

f̂ α
}
α∈Ω of the

perturbative forcing f (t ), the latter being such that

f (t ) =
∑
α∈Ω

f̂ αe iαt , Ω =

{
...,− 2

n
,− 1

n
,0,

1

n
,

2

n
, ...

}
, (10.8)

with n a natural number, and whose choice sets the fundamental forcing frequency 1/n.

Application of the harmonic resolvent gives as an output the whole set of Fourier components

{ûα}α∈Ω of the perturbative forcing u(t ), the latter being such that

u(t ) =
∑
α∈Ω

ûαe iαt . (10.9)

Note that, in this sense, it necessarily is of a higher dimension than the original system. It is

generically not block diagonal, as it encompasses the convolution of the base flow frequencies

with those of the perturbation.

Upon perturbing the inverse harmonic resolvent operator, the weakly nonlinear equation

would not be for the amplitude of the optimal response structure oscillating at a single fre-

quency, but more generally for the amplitude of the left singular mode of the harmonic

resolvent operator. As said, the latter is a block vector collecting all structures {ûα}α∈Ω con-

stituting the optimal response. Thereby, the amplitude equation could predict the weakly

nonlinear evolution of the harmonic resolvent gain as the amplitude of the linearly optimal

f (t ) is increased.
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10.2 Application to a wavelet-based resolvent analysis

Although motivated by the pragmatic reason that it lightens the formalism in chapter 6,

performing the computations in the temporal domain has another substantial advantage:

they can be rather straightforwardly adapted to a configuration where the base flow evolves

with time. This is particularly relevant in a case where the base flow is not statistically steady,

thus where the Fourier transform is not appropriate, and the resolvent operator does not

appear as the relevant one in the calculations. In other terms, the version of the method that

consists of perturbing (∂t −L) using a spatiotemporal inner product, is more general than that

perturbing (iωI −L) using a spatiofrequential inner product, precisely because moving from

the temporal to the Fourier domain implies a statistically steady regime.

A forced system linearized around a time-dependent base flow writes

∂t u(t )−L(t )u(t ) = f (t ) (10.10)

where L(t) highlights the temporal dependency of the linearized operator (inherited from

that of the base flow). In the context where the statistics of the latter depend on time, the

recent works proposed by Ballouz et al. (2022, 2023) suggest decomposing the forcing and its

responses on a wavelet orthonormal basis. The wavelet transform is two-dimensional and can

capture the temporal evolution of the frequency content of a signal. That is because wavelets

are typically localized wavepackets, thus containing both frequency information conveyed by

the carrier wave, as well as temporal information since it is localized at a specific time. This

is in stark contrast with the Fourier transform, which is one-dimensional and only extracts

a frequency content of the signal, precisely because it aims at capturing the persistence of a

given frequency all along the signal. In this sense, wavelet transforms are well indicated for

capturing intermittency (bursting events) in a signal, typical to some turbulent flows (Lucas &

Kerswell, 2014), whereas Fourier transform is inherently unable to do so.

Let us define a wavelet family{
ψ j n(t ) =

1p
2 j
ψ

(
t −2 j n

2 j

)}
( j ,n)∈Z2

, (10.11)

constituting an orthonormal basis of L2(R). Each memberψ j n(t ) stems from a mother wavelet

ψ(t) (typically resembling a wavepacket) that is shifted according to the parameter n and

dilated according to the parameter j . The forcing f (t ), even if not statistically steady, can be
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decomposed in this wavelet family according to

f (x , t ) =
M∑

j =−M

N∑
n=−N

f j n(x)ψ j n(t ), with f j n(x) =
∫ ∞

0
f (x , t )ψ j n(t )dt =

[
f (x , t )ψ j n(t )

]
,

=
[
ψ−M ,−N I ,ψ−M+1,−N I , . . . ,ψM ,N I

]
(t )︸ ︷︷ ︸

=Ψ(t )


f −M ,−N

f −M+1,−N
...

f M ,N

 (x)

︸ ︷︷ ︸
= f̃ (x)

=Ψ(t ) f̃ (x),

(10.12)

where in this context [•] denotes the temporal integration. The response can be decomposed

accordingly

u(x , t ) =
M∑

j =−M

N∑
n=−N

u j n(x)ψ j n(t ), with u j n(x) =
[
u(x , t )ψ j n(t )

]
,

=Ψ(t )ũ(x),

(10.13)

Under these decompositions, system (10.10) becomes

∂tΨ(t )ũ −L(t )Ψ(t )ũ =Ψ(t ) f̃ . (10.14)

Equation (10.14) is multiplied from the left by Ψ(t )H and integrated over time, which, owing to

the orthonormality property of the wavelet basis gives

[
Ψ(t )HΨ(t )

]
=


I

I
. . .

I

 , (10.15)

eventually leading to[
Ψ(t )H∂tΨ(t )

]
ũ − [

Ψ(t )H L(t )Ψ(t )
]

ũ = f̃ , or, equivalently

ũ =
([
Ψ(t )H∂tΨ(t )

]− [
Ψ(t )H L(t )Ψ(t )

])−1︸ ︷︷ ︸
H̃

f̃

ũ = H̃ f̃ .

(10.16)

where we recognize equation (8) in Ballouz et al. (2022).

After discretisation, system (10.16) typically remains of very large dimension, for ũ and f̃ are

not response and forcing structures associated to a single wavelet pair ( j ,n), respectively, but
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a collection of them all according to the definition (10.12). The number of included wavelets is

set by the temporal discretization. Even if the the forcing is chosen such as to only contain a

single wavelet pair ( j ,n), the response generically decomposes in all the other pairs. That is

because the operator L(t ) is time-dependent and thus frequencies have no reason to uncouple.

Let us simplify the problem and force the system with the single wavelet pair, say ( j ,n) = (a,b),

such that (10.10) becomes

∂t u(t )−L(t )u(t ) = f abψab(t ) = f ab
1p
2a
ψ

(
t −2ab

2a

)
(10.17)

This amounts to considering the specific case f̃ = P T f ab in (10.16) where P is the relevant

projector mapping all the wavelet component on solely f ab (and P T has the reverse action,

augmenting the dimension of f ab to that of f̃ with the inclusion of null vectors). We are

interested in optimising the structure f ab such as to maximise the response-to-forcing spa-

tiotemporal induced norm

G2
w = max

f ab

||u(t )||2
|| f abψab(t )||2

= max
f ab

||Ψ(t )ũ||2
|| f ab ||2

= max
f ab

||ũ||2
|| f ab ||2

= max
f ab

||H̃ P T f ab ||2
|| f ab ||2

=
1

ϵ2
o

,

(10.18)

where once again the orthonormality of the wavelet family was invoked. It is clear that the

optimal wavelet structure f ab is the leading singular vector of H̃ P T , and that the associated

leading singular value is the largest wavelet gain under the spatiotemporal norm, as defined

in (10.18)

We defined in (10.18) the parameter ϵo as the inverse of the wavelet gain. By assuming once

again ϵo ≪ 1, the developments of chapter 6 can be adapted to derive an equation for the

slowly varying amplitude of the normalized wavelet optimal response, denoted l (t ), solving

∂t l (t )−L(t )l (t ) = ϵo f abψab(t ), (10.19)

and being such that ||l (t )||2. Equation (10.19) suggests perturbing (∂t −L(t )) according to

Γ(t ) = ∂t −L(t )−ϵoP (t ), with P (t ) =ψab(t ) f ab〈l (t )|•〉 (10.20)

and P (t ) is an operator with unitary spatiotemporal norm. Proceeding with the weakly nonlin-

ear expansion and imposing spatiotemporal orthogonality of higher-order nonlinear forcing

terms with the adjoint of the optimal wavelet response, is expected to lead to an equation for

the slow-time variation of the amplitude of l (t ).

In a statistically steady regime, forcing with a single wavelet that is infinitely peaked in fre-

quency is equivalent to applying a harmonic forcing. Thereby, it should be checked that

the amplitude equation that would be obtained with the procedure sketched above gives
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equivalent results as that derived in chapter 2.

10.3 Some methodological clarifications

In some situations, even if not externally excited, responses along a sub-optimal structure for a

given temporal basis function, and/or that project along other members of the temporal basis,

can be excited via nonlinear interactions of the leading-order response. For instance, in the

case of the harmonic forcing treated in part I, the selected temporal basis was constituted of

time harmonic functions. There, if the leading order response was structurally optimal for the

frequency ωo , nonlinearities excited multiples of this frequency and the higher-order forcing

terms projected into other members of the Fourier basis, each being associated with its own,

potentially large, harmonic gain. Similarly, in the stochastic forcing part II, the higher-order

responses had no reason to be purely along the same stochastic process as the leading-order

one but generically decomposed into many other, uncorrelated, stochastic processes. Each of

these processes is associated with its own stochastic gain that is potentially very large.

This fact may be problematic in a situation where these sub-optimal or "orthogonal" (in the

sense that projects into other members of the orthogonal basis) gains are comparable to that

of the optimal response. Indeed, in the latter case, the asymptotic hierarchy is threatened not

only by the optimal response but also by the nonlinearly, endogenously excited sub-optimal

or "orthogonal" ones.

This could presumably be prevented by extending the Fredholm alternative such as to also

enforce orthogonality with these sub-optimal and "orthogonal" responses. For this to be

formally possible, the latter responses have to be a priori included in the kernel of their

respective operator (even though they are not externally excited). For the moment, we do

not know to what extent such an extension of the Fredholm alternative, to also prevent the

nonlinear excitation of largely amplified responses that are not the optimal one, improves

the accuracy of the weakly nonlinear model. Indeed, if it makes sense a priori to derive an

equation for the optimal response, since it is by construction the only one that is excited by

the forcing, it is less clear to us if the other responses that it nonlinearly excites should also be

included from the beginning in the analysis.

We give concrete examples in the two following subsections.

10.3.1 Coupling with sub-optimal responses

In the thesis, the question of whether or not sub-optimal responses should be included in the

kernel was systematically circumvented. To do so, we assumed that the first sub-optimal gain

was one order smaller in terms of the relevant power of the small parameter (the one used in

the expansion), than the optimal one. For instance, in chapter 2, the optimal gain was equal to

1/ϵo and the expansion was proposed in terms of an integer power of
p
ϵo . Thereby the first
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sub-optimal was assumed to scale like O(1/
p
ϵo). This assumption justifies the non-inclusion

of the first sub-optimal mode. Indeed, the projection of the resonant forcing appearing for the

first time at O(
p
ϵo

3) on the sub-optimal structure yields a response potentially at O(ϵo). In

contrast, projection on its optimal structure yields a response potentially at O(
p
ϵo), which is

the leading order. Thereby, it is primarily the latter scenario that should be avoided, for it is

the one that is the most threatening to the asymptotic hierarchy.

Nevertheless, let us consider a scenario where the first sub-optimal scales like the optimal

one, and yet it is only the optimal structure that is externally forced. The inclusion of the

first sub-optimal response mode in the kernel, by summing two operator perturbations (the

second not affecting the first since the responses are orthogonal) would lead to a system of

two coupled amplitude equations that we can anticipate to be of the form

dA

dT
= a1 A+a2 A|A|2 +a3 A|B |2 +a4φ,

dB

dT
= b1B +b2B |B |2 +b3B |A|2,

(10.21)

with A the amplitude of the optimal response and B that of the sub-optimal one. The equation

for B is excited only through its nonlinear coupling with A, the latter being also externally

excited. Whether or not the coupling with B ameliorates the predictions for A, as compared to

a case where only an equation for A is derived (which also makes sense since it is only A that

is externally forced), is a question that remains to be clarified.

10.3.2 Coupling with harmonic optimal responses

Along the same line of thinking, we recall that in chapter 2, in studying the response to a

harmonic forcing of the BFS flow at Re = 500, we have considered in particular the forcing

frequency ωo/(2π) = 0.04. For the latter frequency, the linear harmonic gain of the second

harmonic (at 2ωo) is larger than that of the fundamental, although of the same order of

magnitude. Therefore, it would make mathematical sense to perturb (i2ωo I −L) to singularity

in addition to doing so for the inverse resolvent of the fundamental. One can then proceed

with the nonlinear expansion, where the inverse of the optimal gain of the second harmonic

frequency is scaled in terms of that of the fundamental, and both operator perturbations can

be encompassed in the same expansion. Doing so, the leading-order response is along both

the optimal response at ωo and the optimal response at 2ωo . The second order is already

resonant, as the nonlinear interaction of the optimal response at ωo with itself generates

a forcing oscillating at 2ωo (whose operator was made singular as well). Furthermore, the

interaction of the optimal response at 2ωo , with the complex conjugate of the optimal response

at ωo , produces a forcing at ωo . Imposing the Fredholm alternative there and pursuing the

calculations up to the third order would lead to a system of coupled amplitude equations of
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the form

dA

dT
= a1B A∗+a2 A+a3 A|A|2 +a4 A|B |2 +a4φ

dB

dT
= b1 A2 +b2B +b3B |B |2 +b4B |A|2,

(10.22)

with A the amplitude of the optimal response at the fundamental frequency ωo , and B the

amplitude of the optimal response at the second harmonic frequency 2ωo . At the cost of

increasing the dimensionality of the system, having included an equation for B guarantees

that the large gain at the second harmonic frequency does break the asymptotic hierarchy, as

the latter is nonlinearly excited by the interaction of the fundamental with itself.

And yet, in the (convincing) results shown in figure 2.5b, only an independent equation for A

was derived, as B was not included in the expansion. The agreement with the DNS remained

very good. This was explained by the naturally poor spatial projection of the second harmonic

nonlinearly generated forcing on its optimal structure at 2ωo . To what extent is that generic,

and to what extent does the coupling with B improve the agreement of A with DNS results, is

a question that was not addressed in this thesis despite its fundamental importance.

The same question would certainly arise in considering the response to stochastic forcing or

wavelet forcing, sketched in section 10.2. In the latter case, the Fredholm alternative would

solely prevent the projection of the higher-order fields on the optimal response associated

with the member ψab(t) of the wavelet basis. Yet, these higher-order responses generically

energize other wavelet members whose respective gains, as defined in (10.18), might also be

large and invalidate the asymptotic expansion ansatz.

10.4 Mathematical clarification

This project perspective aims at linking the method proposed in this thesis, based on multiple

scale expansions, with the center manifold theory, presumably more mathematically rigorous.

If the equivalence between both methods has been ruled in Fujimura (1991) in the reduction

of Navier-Stokes equations to modal amplitude equations, this equivalence remains to be

shown for the non-modal amplitude equations derived in this thesis.

The simplest case would be to try to re-derive the simple Stuart-Landau-like amplitude equa-

tion for the non-modal response to a harmonic forcing in (2.12), by using the center manifold

theory. The linearized operator being strictly (and significantly, without outstanding eigen-

value) stable, the operator perturbation would also need to be included somewhere in the

calculations, for the center manifold, by definition, must be tangent to the center (neutral)

subspace at the location of the fixed point in the phase space. In doing so, one could extend

the works proposed in Breunung and Haller (2018), Li and Haller (2022), Li et al. (2022), and

Ponsioen et al. (2020) to non-normal harmonic responses that are not directly linked to the

presence of neutral or weakly damped modes.
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Gallaire, F., Boujo, E., Mantič-Lugo, V., Arratia, C., Thiria, B., & Meliga, P. (2016). Pushing ampli-

tude equations far from threshold: application to the supercritical Hopf bifurcation in

the cylinder wake. Fluid Dynamics Research, 48(6), 061401.

Garnaud, X., Lesshafft, L., Schmid, P., & Huerre, P. (2013a). Modal and transient dynamics of

jet flows. Phys. Fluids, 25.

Garnaud, X., Lesshafft, L., Schmid, P., & Huerre, P. (2013b). The preferred mode of incompress-

ible jets: linear frequency response analysis. J. Fluid Mech., 716, 189–202.

Glendinning, P. (1994). Stability, instability and chaos: an introduction to the theory of nonlinear

differential equations. Cambridge University Press.

Golubitsky, M., & Stewart, I. (1985). Hopf bifurcation in the presence of symmetry. Arch. Ration.

Mech. and Anal., 87, 107–165.

Gor’kov, L. (1957). Stationary convection in a plane liquid layer near the critical heat transfer

point. Zh. Eksp. Teor. Fiz., 6, 311–15.

Grafke, T., Cates, M., & Vanden-Eijnden, E. (2017). Spatiotemporal self-organization of fluctu-

ating bacterial colonies. Phys. Rev. Lett., 119, 188003.

Grafke, T., Grauer, R., & Schäfer, T. (2013). Instanton filtering for the stochastic Burgers equa-

tion. Journal of Physics A: Mathematical and Theoretical, 46(6), 062002.

Grandemange, M., Gohlke, M., & Cadot, O. (2013). Turbulent wake past a three-dimensional

blunt body. Part 1. Global modes and bi-stability. Journal of Fluid Mechanics, 722,

51–84.

293



Chapter 10 BIBLIOGRAPHY

Guckenheimer, J., & Holmes, P. (1983). Nonlinear oscillations, dynamical systems, and bifurca-

tions of vector fields. Springer, New York, NY.

Gustavsson, L. (1991). Energy growth of three-dimensional disturbances in plane Poiseuille

flow. J. Fluid Mech., 224, 241–260.

Haller, G., & Ponsioen, S. (2016). Nonlinear normal modes and spectral submanifolds: exis-

tence, uniqueness and use in model reduction. Nonlinear Dynamics, 86, 1493–1534.

Hamilton, J., Kim, J., & Waleffe, F. (1995). Regeneration mechanisms of near-wall turbulence

structures. Journal of Fluid Mechanics, 287, 317–348.

Haragus, M., & Iooss, G. (2011). Local bifurcations, center manifolds, and normal forms in

infinite-dimensional dynamical systems. Springer-Verlag London.

Hawa, T., & Rusak, Z. (2001). The dynamics of a laminar flow in a symmetric channel with a

sudden expansion. Journal of Fluid Mechanics, 436, 283–320.

Heaton, C., & Peake, N. (2007). Transient growth in vortices with axial flow. Journal of Fluid

Mechanics, 587, 271–301.

Heifetz, E., & Methven, J. (2005). Relating optimal growth to counterpropagating Rossby waves

in shear instability. Physics of Fluids, 17(6), 064107.

Hinch, E. (1991). Perturbation methods. Cambridge University Press.

Hof, B., van Doorne, C., Westerweel, J., Nieuwstadt, F., Faisst, H., Eckhardt, B., Wedin, H.,

Kerswell, R., & Waleffe, F. (2004). Experimental observation of nonlinear traveling

waves in turbulent pipe flow. Science, 305(5690), 1594–1598.

Huerre, P., & Monkewitz, P. (1990). Local and global instabilities in spatially developing flows.

Annual Review of Fluid Mechanics, 22(1), 473–537.

Huerre, P., & Rossi, M. (1998). In C. Godrèche & P. Manneville (Eds.), Hydrodynamics and

nonlinear instabilities (pp. 81–294). Cambridge University Press.

Jain, S., Tiso, P., & Haller, G. (2018). Exact nonlinear model reduction for a von Kármán beam:

slow-fast decomposition and spectral submanifolds. Journal of Sound and Vibration,

423, 195–211.

Jaramillo, J., Macedo, R., & Sheikh, L. (2021). Pseudospectrum and black hole quasinormal

mode instability. Phys. Rev. X, 11, 031003.
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