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Abstract

When two objects slide against each other, wear and friction occur at their interface.
The accumulation of wear forms what is commonly referred to as a “third-body”. Under-
standing third-body evolution has significant applications in industry, where controlling
and measuring friction and wear is essential, notably to minimize energy losses. In the
geomechanics community, the granular material localized in a fault, is known as “gouge”
and understanding its frictional properties is crucial in the study of earthquake nucle-
ation. The goal of this thesis is to develop a numerical tool that models the third-body
and its surrounding regions to improve our understanding of its evolution.

The third-body is a localized amorphous region subject to severe deformation, while
the regions surrounding the third-body, experience moderate strain and damage. We
showed that the loading conditions applied on the surrounding regions and their dis-
tance from the contact interface have an impact on the third-body thickness evolution
and frictional properties. Thus, to accurately capture the third-body behavior the sur-
rounding regions should be represented which requires modeling large domains. To do
so, a multiscale approach is developed in this thesis. The Discrete Element Method
(DEM) is used to model the third-body where discretization is required, while the Fi-
nite Element Method (FEM) is utilized to model the surrounding regions, as continuum
domains. In our model, both the FEM and DEM represent the same material.

To couple FEM and DEM, we generalized the bridging method [97] originally used for
regular lattices, to amorphous materials. This approach considers an overlapping region,
where both continuum and discrete domain are linked by means of Lagrange multipliers.
Two different types of formulations are considered: strong and weak. To test this
approach, we considered a granular system without any cohesion, subject to confinement
pressure. Several DEM sample sizes are tested to establish the minimum sample size at
which constant elastic properties are obtained. This determines the material properties
to use in the FEM and the minimum mesh size needed at the FEM/DEM interface
to match material properties across both domains. The imposed pre-stress of the FE
elements results in spurious forces, that we corrected. Then, this coupling method is
used to model crack propagation and wear formation using an adhesive contact law.

To facilitate the growth of the third-body without being restricted by the finite size
of the discrete domain, we implemented an adaptive coupling strategy. This strategy
enables regions modeled with FEM to transition to discrete regions, thereby increasing



the size of the discrete domain. The discrete expansion occurs if a criterion based
on the average change of neighbors for each particle is satisfied. Implementing this
approach requires several steps: first, adjusting coupling geometries, then, inserting a
new particle layer, and finally, deactivating a FE element layer. The efficacy of this
approach is demonstrated for both amorphous system, and a crystalline one. Lastly,
we used this method to model the evolution of a third-body involving the insertion of
elliptical rigid bodies at the contact interface.

Keywords: third-body, gouge, amorphous, multiscale, Discrete Element Method
(DEM), Finite Element Method (FEM), adaptive coupling



Résumé

Lorsque deux objets sont frottés 'un contre 'autre, des débris peuvent se former a
I'interface de contact. Cette accumulation de débris est désignée sous le terme de
“troisiéme corps”’. Comprendre I’évolution de ce troisiéme corps présente un intérét cer-
tain dans l'industrie, ot il est important de mesurer et controler le frottement et 'usure,
notamment dans l'objectif de réduire les pertes d’énergie. En géomécanique, le milieu
granulaire situé a l'interface d’une faille, appelé “gouge”, joue un réle significatif dans la
compréhension de la friction lors des séismes. L’objectif de cette thése est de développer
un model numérique qui représente le troisiéme corps et ses régions environnantes afin
d’améliorer notre compréhension de son comportement.

Le troisiéme corps est une matiére amorphe, localisée et sujette & des déformations
non uniformes, tandis que les régions qui '’entourent sont sujettes & des déformations
uniformes. Dans une premiére partie de cette thése, nous avons démontré que la distance
des conditions limites a l'interface influence 1’évolution frictionnelle du troisiéme corps.
Ainsi, pour capturer avec précision le comportement du troisiéme corps il est important
de représenter les régions environnantes ce qui nécessite de modéliser des systémes larges.
Pour ce faire, une approche multi-échelle est implémentée : la méthode des éléments
discrets (DEM) est utilisée pour modéliser le troisiéme corps, tandis que la méthode des
éléments finis (FEM) est employée pour les régions environnantes. Dans notre étude,
la FEM et la DEM représentent le méme matériau.

Pour le couplage entre la FEM et la DEM, nous avons généralisé la méthode bridging
[97], congue & origine pour des réseaux cristallins, aux matériaux amorphes et gran-
ulaires. Deux types de formulations pour le couplage ont été considérés : une forme
forte et une forme faible. Afin de tester cette approche, nous avons considéré un milieu
granulaire sans cohésion et soumis a une pression externe. Plusieurs échantillons de
DEM ont été testés pour déterminer leurs propriétés élastiques et la taille d’échantillon
a partir de laquelle nous obtenons des propriétés constantes. Cela permet de définir
les propriétés du milieu continu et la taille minimale de maillage nécessaire pour mod-
éliser le méme matériau dans les deux domaines. Le couplage est validé par des tests
de propagation d’ondes compressives et de cisaillements. Cette méthode est ensuite
utilisée pour simuler la propagation de fissures et la formation de débris en utilisant des
particules cohésives.

Afin de permettre I’évolution naturelle du troisiéme corps, indépendamment des ré-



gions continues, nous avons développé un couplage adaptatif. Cette méthode permet
d’étendre dynamiquement la région discréte en fonction des variations de voisinage des
particules. Lorsque le critére est satisfait, une région initialement continue devient dis-
créte, un processus qui se déroule en trois étapes : d’abord 'ajustement des régions de
couplage, ensuite 'ajout de nouvelles particules, et finalement, la désactivation d’une
couche d’éléments discrets. Cette méthode a été testée pour un milieu discret /amorphe,
mais aussi avec une lattice réguliére. Enfin, nous avons utilisé cette méthode pour mod-
éliser I’évolution d’un troisiéme corps, impliquant I'insertion de corps rigides elliptiques
a linterface de contact.

Mots clés: troisiéme corps, gouge, amorphe, multi-échelle, méthode des éléments
discrets, méthode des éléments finis, couplage adaptatif
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Chapter 1

Introduction

1.1 Motivation

Wear and friction are ubiquitous to everyday life and many industrial processes. In
some cases, they need to be minimized to improve reliability, prolong lifespan, and
minimize energy losses, such as for gears or bearings. However, there are also instances
where systems intentionally use friction and wear to their advantage, as seen in brakes
requiring high friction, machining relying on wear formation, or even a lighter benefiting
from both friction and wear. The science of interacting surfaces in relative motion,
and their relative phenomena such as friction, wear, and lubrication is called tribology.
Investigations [52, 59| have shown that developments in tribology could lead to a saving
of the UK gross national product between 1.3% to 1.6%. While energy losses impact
economic costs, they also contribute to environmental concerns through CO2 emissions,
becoming an urgent matter. Holmberg and Erdemir [52] state that advancements in
tribology could lead to a worldwide reduction of global CO4 emissions by 1,460 MtCO9
in the short term (8 years) and 3,140 MtCOx in the long term (15 years). For context,
the COg emissions of the EU in 2010 were approximately 4,000 MtCO2 [28].

The first documented study of friction was conducted by Leonardo da Vinci, who
discovered through his experiments that the frictional force F; between two bodies in
contact is proportional to the normal force Fj, and is independent of the apparent
contact area [53]. Later, Amontons [9] and Coulomb [31]| formulated this relationship
as Iy = pFy, introducing the concept of the coefficient of friction u. Two coefficients
of friction are distinguished: the static coefficient of friction and the dynamic one. The
static coefficient is the ratio Fi/F, required to initiate a motion between two bodies,
while the dynamic coefficient is the ratio Fy/F, when the two bodies are in motion.
The fact that the friction coefficient is independent of the apparent, or nominal, contact
area remained a mystery for centuries, which was solved by Bowden and Tabor [21].
They demonstrated that the key factor for determining friction is the real contact area
between two solids, which is only a small portion of the apparent contact area, due to
the roughness of surfaces. The real contact area is made of a the assembly of micro-
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contacts, at places where protruding asperities make junctions. While these theories
are effective in many engineering cases, they do not capture ageing mechanisms and
the complex transient dynamics of frictional systems that appear for instance during
stick-slip events. Slip weakening friction was introduced to better describe the non-
instantaneous transition from static to dynamic friction over a critical slip distance |54,
79]. In its simplest form, the coefficient of friction linearly weakens from a static to a
dynamic state as function of slip. Then, rate-and-state friction laws were introduced to
bring a dependency on slip rate of the friction coefficient, which could be either velocity
weakening or velocity strengthening, and a dependency on state, via a state parameter
representing the age of micro-contacts that captures the logarithmic ageing of the static
friction coefficient with time [35, 37, 38, 62, 82|. Rate-and-state friction laws are not
only popular in the geomechanics community but also find applications in engineering
[96].

We now shift our focus to wear. Archard was one of the first to explain the wear
process [15]. He stated that the volume of the detached material is proportional to
the product of the normal force and the sliding distance over the material’s hardness.
The value of the coefficient of proportionality is specific to every setup, and should be
determined experimentally. Rabinowicz [78] reported that wear coefficient values vary
from 1072 to 1077, and are influenced by the wear type. He distinguished two principal
forms: adhesive wear, happening between materials of similar hardness, and abrasive
wear, occurring between surfaces of differing hardness. The empirical determination
of the coefficient of proportionality makes the application of such laws non-trivial. A
limitation of Archard’s law is that it assumes newly created particles disappear from the
contact area. However, it has been demonstrated that when two objects slide against
each other, an interfacial layer can form at the interface, due to the accumulation of
wear debris. This interfacial layer is referred to as the third-body, while the original
contacting objects are termed the first bodies. The concept of the third-body was first
introduced by Godet [48, 49]. Notably, Godet [49] showed that friction is influenced
by the third-body. The concept of third-body is similar to the gouge in geomechanics.
Experimental Studies have demonstrated that the gouge influences the triggering and
amplitude of seismic events [66]. Hence, understanding the evolution of the third-body
is crucial across different scales, from the micron scale of a mechanical actuator in a
engineering application to the large scale of an earthquake occurring along a fault.

While the existence of the third-body is evident in many cases [18, 48, 49|, its evolu-
tion and behavior are still not fully understood. Pham-Ba and Molinari [74] conducted
pin-on-disc experiments to investigate the development of a third-body, as depicted in
Figure 1.1. This figure illustrates the chronological sequence of wear debris formation
on the flat discs: initial particle formation (a), accumulation into cylinders (b), and
agglomeration into larger particles forming a third-body (c). Panels (d) and (e) provide
a closer view of the third-body, while panel (f) depicts wear debris that fell outside the
wear track. These experiments demonstrate the complexity behind the wear formation
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and the amorphous nature of the third-body that is formed.

(a) 1s: formation of first wear par- (b) 30s: cylinders and aggregates (c) 1h: large flakes on the disc
ticles forming the wear track

B

(d) 1h: detail: aggregates forming (e) 1h: detail: cylinders and ag- (f) 1lh: detail: aggregated wear
a large flake gregates on top of a flake particle fallen outside the wear
track

Figure 1.1: Third-body evolution in pin-on-disc experiments. Image taken from [74],
with authors’ permission.

Dieterich [36] compared experiments considering a gouge and planar surfaces, from
which the rate and state friction law is derived. It was demonstrated that the displace-
ment required to achieve a stable strength is greater for gouge than for planar surfaces,
influenced by both particle sizes and surface roughness. Moreover, they demonstrated
a localized deformation in the gouge. Biegel et al. [19] experimentally studied the
frictional properties of Westerly granite gouge, demonstrating that particle size distri-
bution affects the coefficient of friction, especially on rough surfaces. Additionally, they
explored two gouge sizes, finding that the smaller gouge exhibited a higher coefficient
of friction. These experimental results demonstrate how gouge properties significantly
impact the coefficient of friction.

The third-body/gouge, being an amorphous material, is commonly modeled using
the Discrete Element Method (DEM), which was initially developed by Cundall and
Strack [32] for modeling granular materials. This method has been applied in both
geomechanics |1, 43, 46, 77, 93| and in engineering contexts [55, 75]. Other approaches,
such as the multibody meshfree method, can model the third-body with grain deforma-
tion [70, 102], but at a higher computational cost compared to DEM. While these models
offer valuable insights into the third-body evolution, they are generally conducted on
relatively small DEM systems, focusing solely on the third-body. The representation
of the first bodies is limited to a thin layer of particles at the border of the third-
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body. However, the characteristics of the first body, including its deformation and its
thickness, may significantly influence the formation of the third-body. Therefore, these
aspects should be accurately represented to achieve a more realistic model.

1.2 Objectives

The main objective of this thesis is to develop a numerical tool to gain a better under-
standing of the third-body evolution, by modeling both the third-body and its surround-
ing regions (first bodies). In this thesis, we will use the term third-body interchangeably
with gouge.

The third-body will be modeled using the DEM, as it is commonly used to model
the third-body/gouge, as previously described. The first part of this thesis aims to
evaluate the impact of the surrounding regions on the third-body evolution.

¢ Understand the impact of the surrounding regions: How does the thickness
of the surrounding regions impact the third-body frictional properties?

Due to the high computational cost associated with DEM, modeling the third-body
and surrounding regions exclusively with DEM is computationally expensive. Thus,
a multiscale approach is necessary, allowing DEM to model the third-body evolution
where discretization is essential, while the Finite Element Method (FEM) can be em-
ployed in the surrounding regions to model the continuum domain subject only to linear
deformation. The coupling method used is the bridging method [97], originally derived
to couple Molecular Dynamics (MD) with FEM, which we have expanded to amorphous
materials. While such FEM-DEM coupling method offers a reduction in computational
cost, it still has a limitation. The evolution of the third-body, in fact, is constrained
by the size of the discrete domain. To address this challenge, an adaptive coupling
approach, which expands the discrete domain based on a physical criterion, will be
employed. This adaptive bridging coupling approach raises several concerns:

e Multiscale approach: How can material properties be matched between FEM
and DEM, given the amorphous nature of the third-body? Which coupling for-
mulation is most appropriate? Is this coupling method effective for discontinuous
events, including crack propagation, and wear debris formation?

e Adaptive approach: What criterion should be used to determine when to extend
the discrete region? Can this approach capture complex gouge evolution and lead
to new insights regarding friction?

1.3 Outline

The thesis manuscript is structured into seven chapters, briefly described:
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e Chapter 2: Numerical methods

In this chapter, a state-of-the-art review of the numerical methods is provided. The
discrete element method, along with the contact laws that will be employed in this
thesis, are described. Different coupling approaches, including the one used in this
thesis, are also reviewed.

e Chapter 3: Boundary conditions impact on the third-body evolution

In this chapter, the impact of boundary conditions and the domain size on the third-
body is studied, showing the importance of proper boundary conditions. This study is
conducted with a pure DEM system.

e Chapter 4: Bridging coupling: application to amorphous materials

In this chapter, we extend the bridging method, originally developed for MD /FEM
coupling, to DEM/FEM. No adhesion between particles are considered, and a confine-
ment pressure is applied. Initial tests on the DEM are conducted to identify its effective
elastic properties and determine the minimum size of DEM for consistent elastic be-
havior. The coupling is implemented using the bridging method, exploring both weak
and strong formulations. The impact of the confining pressure in the FEM, leading
to ghost forces, is also investigated. To validate the coupling, transmission tests with
small-amplitude waves are performed. We demonstrate that the strong coupling, in-
corporating a force subtraction at the interface to mitigate ghost forces, is the best
coupling option for this application.

e Chapter 5: Two-scale concurrent simulations for crack propagation us-
ing FEM-DEM bridging coupling

In this chapter, we utilize the FEM-DEM bridging coupling described earlier to
model crack propagation and wear formation. A DEM contact law that takes into
account the attachment and reattachment of particles is employed. We validate the
ability of the coupling to model crack propagation and wear formation, by comparing
the coupled simulations with pure DEM simulations.

e Chapter 6: Adaptive FEM-DEM bridging coupling

In this final chapter, we discuss the implementation of the adaptive FEM-DEM
coupling. The criteria used to determine when the discrete domain must expand is based
on the average change of number of neighbors. The adaptive coupling is validated for
a FEM-DEM coupling but also on MD/FEM coupling. A final study, including elliptic
rigid bodies at the DEM interface, is conducted.

e Chapter 7: Conclusion

A summary of the main results is provided, along with a discussion on future work.
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Chapter 2

Numerical methods

Contents
2.1 Discrete Element Method . ... ................ 29
2.1.1 Imteraction force . . . . . ... .. ... . ... ... 30
2.1.2 Coarse-grained contact law . . . . .. ... ... ... ... 31
2.1.3 Third-body modeling . . . .. ... ... ... ... 34
2.2 Coupling Methods . . . . ... ... ..o 36
2.2.1 Edge-to-edge coupling . . . . . ... .. ... 36
2.2.2  Overlapping/Bridging coupling . . . . . .. ... ... .... 37

2.1 Discrete Element Method

The Discrete Element Method (DEM), was developed by Cundall and Strack [32], for
the modelling of granular material. While both DEM and Molecular Dynamics (MD)
involve calculating interaction forces, velocities, and particle positions, they differ in
their applications and scale of operation. MD is tailored for studying atomic interac-
tions at the nano-scale, employing interatomic potentials such as the Lennard Jones
potential, with atoms considered as point particles resulting in three degrees of free-
dom. Consequently, MD is not suitable for analyzing granular materials represented
by particles at larger scales. In contrast, DEM operates on a broader scale, ranging
from nano to macro, and utilizes contact laws to describe interactions among particles.
DEM considers particles with defined radii, allowing for rotational degrees of freedom,
totaling six degrees of freedom. This capability is crucial for accurately modeling the
behavior of granular materials.
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2.1.1 Interaction force

The contact force between two particles depends on a normal component Fj), a tangential
component Fi, and velocity damping terms:

F = (—Fn — Cn’Un) n -+ (—Ft - Ct’Ut) t (21)

where n and t are unit vectors in the normal and tangential directions, v, and vy are
the relative velocities between two particles in these directions, and ¢y, ¢ are damping
factors.

One fundamental characteristic of DEM lies in the modeling of particles as non-
deformable spheres. The contact force between these particles is determined by their
overlap d, defined as:

6n = dij —T; — ’I”j, (22)

with d;; the distance between the two particle’s center i and j, and 7;, r; their
respective radii. In Figure 2.1 is represented the overlap between two particles. When
dn < 0, particles are in contact, while when, d, > 0, they are not. This assumption is
valid for model involving small deformations, i.e., small overlap dy,.

op <0

D A0
\/

Figure 2.1: Schematic illustrating the overlap between two particles. When d, < O,
particles are in contact, conversely, when d, > 0, they are not in contact.

Hookean interaction

In the case of a Hookean interaction, the normal component term Fj, is a linear
function of the overlap between the particles 6, and is expressed as k,d,, where ky, is
the normal stiffness of the grains. The normal damping factor ¢, is expressed as ynMef,
where 7, is the normal viscoelastic damping constant and meg = m;m;/(m; + m;)
is an effective mass. Similarly, the tangential component F; is a linear spring term,
expressed as kidy, where ki represents the tangential stiffness of the grains, and d; the
sliding distance. The tangential damping factor is ¢y = yymeg, With 7, the tangential
viscoelastic damping constant. Consequently, the formula for a Hookean interaction is:
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2.1 Discrete Element Method

F = (_kn(sn - ’Ynmeffvn) n+ (_ktét - r)/tmeﬂ”vt) t (23)

The units of ky, k¢ are expressed in N/m, and the units of ,, v are in s~

Hertzian interaction

In the case of an Hertzian-Minldin interaction, the normal component Fj, is a non-
linear function of the overlap between the particles. The general contact law is:
5T
F = \ 5n ﬁ ((_Kn5n — aneff’Un) n -+ (—Kt(st — theffvt) t) (24)
i T
where 7;, and r; are the radii of the particle ¢ and j. K, and K; are the stiffnesses
expressed in N/m?, while T, and Ty are the viscoelastic damping constants, in units
of (m-s)~!, for normal and tangential directions, respectively. The parameter K, is
computed using Hertz model [57, 101] and K using Mindlin model [65]:

(2/3)E 2F

B A () R

2.
252 (25)

Hence, the Hertzian contact law should be employed for accurately modeling the non-
linear elastic contact between two spheres, while the Hookean model can be used when
a simpler, linear approximation is sufficient.

2.1.2 Coarse-grained contact law

Aghababaei et al. [2] investigated wear mechanisms between two half-spherical asper-
ities using two-dimensional MD simulations. They showed that if the junction size
between the two asperities is larger than a critical length scale d*, a wear particle forms
from the two asperities, while if the junction size is smaller than the critical length scale
the asperities deform plastically, and exchange superficial atoms. The critical length
scale d* is derived by evaluating the balance between the adhesive energy required to
create new surfaces Fgytace and the elastic energy stored by shearing the system Fegjastic,
similarly to Griffith theory [50]. The order of the critical length scale is given by:

vE
02’

dr ~ (2.6)
with ~ the surface energy, E/ the Young’s modulus, and o, the tensile strength.
Pham-Ba and Molinari |75] developed a coarse-grained DEM contact law with cohe-
sive forces that reproduce the material length scale d* observed in MD while significantly
reducing computational time by using particles that are ten times larger. The interac-
tion forces between particles are tuned to ensure that an assembly of multiple particles
demonstrates specific material properties, including Young’s modulus F, Poisson’s ratio
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v, tensile strength oy, shear strength o, surface energy =, restitution coefficient 7, and
density p. Pham-Ba and Molinari’s simple coarse-grained contact law differs from other
DEM contact laws, such as those derived from Johnson-Kendall-Roberts theory [58] or
Derjaguin-Mullar-Toporov [33|, which also integrate adhesion, but do not characterize
the material properties of an assembly of particles.

In the following paragraphs, the coarse-grained DEM law developed by Pham-Ba
and Molinari will be detailed. For further information, refer to their original paper [75].
Similar to Section 2.1.1, the force between two particles is expressed by Eq. 2.1.

Normal force

The normal component F,, depends on the overlap between the particles d,, and
their relation is illustrated in Figure 2.2. When the particles are overlapping (J, < 0),
the normal component is expressed as a repulsive Hookean force ky matdn. Here, ky mat
is the normal stiffness chosen to match desired macroscopic elastic properties, with
the expression provided in the Material properties section. When the particles are
not in contact (6, > 0), the Hookean force is maintained until the overlap reaches
the maximum elastic distance d.. After d., the normal force decreases linearly until
reaching the fracture distance d;. Finally, if the overlap is superior to the fracture
distance (0, > J¢), the normal component is null.

Fy

kn,mat

On

0 o

OO0
00

Figure 2.2: Normal force as a function of the overlap 0, between two particles, based
on the DEM coarse-grained law from Pham-Ba and Molinari [75]. Image partially
reproduced from their paper, with the authors’ permission.

Thus, the expression for the normal force is:
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2.1 Discrete Element Method

kn,matén if 611 < 66’
Fy= _%La?e(‘sn —0¢) if G < dn < O, 27)
f — Oe
0 if 6, > o,

It should be noted that the normal force does not depend on the history of é,; hence,
the particles can detach and reattach without any weakening of the bond.

Tangential force

Fi
Fmt ______________ 5n§0
Fr/nt ---------- 0<6, <6

O

Figure 2.3: Tangential force as a function of the sliding distance §; between two par-
ticles, based on the DEM coarse-grained law from Pham-Ba and Molinari [75]. Image
reproduced from their paper with the author’s permission.

The tangential force depends on the overlap between particles 0, and the sliding
distance ;. The tangential force pattern is given in Figure 2.3. When the particles
are overlapping (9, < 0), the tangential force is expressed as k¢ matdy, with a maximum
reachable value F;. Here k¢ mat is the tangential stiffness chosen to match desire macro-
scopic properties; the expression is provided in the Material properties section. When
the particles are not in contact (6, > 0) but the overlap is inferior to the fracture dis-
tance (0, < df), the tangential force is expressed as kt matd; with a maximum achievable
value of F),, a lower value than Fy. Finally, if §,, > d¢, no tangential force is applied.
The specific expressions for Fi,, and F), are detailed in the Material properties section.

Material properties
A specificity of the Pham-Ba and Molinari contact law is that it calculates force

parameters between particles to achieve specific macroscopic properties of a particle
assembly. With this consideration, they defined the inter-particle force parameters as:
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mimj

Meff = m, Teff = min(ri, T‘]) (28)
i j
1 1—4v
An = \/Ergﬁﬁ, At = \/5’]"33(1 — 21/)(1 + ]/)7 (29)
AnE AE
R [ 2.10
n,mat et Tj 5 t,mat ;4 Tj ) ( )
2(1 — 2(1 —
Cp = (7Tn) \/ kn,matmeffa Ct = (7_(17) V kt,matmeffa (211)
(ri +7j)on 4y
0 =~ S/ 7= 0f = — 2.12
e B ) f O_n7 ( )
O — On
Foi = Acor, Y = min ( ! 5 ,1) Font (2.13)
f
Ft = min(k:tét, r/nt)7 (214)
(2.15)

with r; and r; the radii of the interacting particles, and m;, m; their masses. The
effective cross-sectional areas in the normal and tangential directions are indicated by
A, and A, Here, E is the targeted Young’s modulus, oy, the targeted tensile strength, oy
the targeted shear strength, v the targeted surface energy, and n the targeted restitution
coefficient. The expression of ¢, and the matching of all material properties is valid for
particles which respect:

4vFE
r; +1r; < dc, with the critical diameter d. = 7—2 (2.16)
O-Il
For more details, refer to [75]. Additionally, if a particle is smaller than the neighbor size
d¢, it will interact with particles beyond its closest neighbors, extending the interaction
range. Therefore, to avoid an important increase in computational cost, the minimum

particle size should be greater than the value of d:

4
drnin = 1
n

(2.17)

Hence, the particle sizes should be chosen such that dyin < 73 +1r; < de to ensure
matching all material properties and avoid unnecessary increases in computational cost.
Following this general overview of interaction forces in the Discrete Element Method
(DEM), the next section will now explore specific instances of their application.

2.1.3 Third-body modeling

FElastic properties
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2.1 Discrete Element Method

The mechanical behavior of granular materials is influenced by their heterogeneity.
Hence measuring their elastic properties has proven to be non-trivial and dependent
on multiple parameters. H. A. Makse et al. [61] conducted numerical simulations to
determine the bulk modulus and shear modulus of granular assemblies, with particles
interacting through Hertz-Mindlin contact forces in a confined system. They compared
their results with experimental data and elastic medium theory [39, 92]. Their findings
underscore the importance of considering pressure when evaluating the elastic properties
of granular materials, along with the need to account for relaxation effects following
an infinitesimal strain transformation. I. Agnolin [5] also reports the importance of
pressure when evaluating the elastic properties of granular materials. E. Somfai et al.
|86] explored wave propagation in granular media through simulations using Hertzian-
Mindlin contact law, revealing the influence of packing. H. Cheng et al. [26]| performed
static and dynamic probing with an Hertzian-Mindlin contact law, measuring elastic
moduli and emphasizing the dependence on various parameters, including stress/strain
history. Additional studies, such as the work by Schopfer et al. [83], have explored the
impact of porosity on the macroscopic properties of three-dimensional cohesive granular
media using bonded spheres.

Third-body modeling

DEM has been employed to model the gouge and study its behavior, including as-
pects such as friction, stability, stick-slip events, and gouge fluidization [1, 43, 46, 56,
77, 93]. These studies generally consider spherical particles interacting via an Hertzian
contact without cohesion. To provide a representation of the gouge that includes differ-
ent grain fragment shape, Abe and Mair [1] model each particle as an agglomerate of
smaller spherical particles. This approach allows the agglomerate of particles to break
into different fragment shape. Using this model to explore granular fault gouge fric-
tion, they demonstrated that gouge fragment angularity is an important parameter to
control the macroscopic friction. Consequently, their study underscores the limitations
of using non-adhesive spherical particles, which cannot break into smaller fragments, in
modeling fault gouge behavior.

Other approaches consider a more complex representation of the third-body. Mol-
lon modeled the third-body using cohesion between particles, but also considering de-
formable grains via a multibody meshfree strategy [67-69]. Notably, this approach
allowed him to model the flow regime of a deformable third-body and investigate the
influence of grain properties, friction, and energy dissipation [70]. Several flow regimes
were simulated: a shear band regime, a debris forming regime, and mixed regimes. The
mixed regime, being an intermediate case, where particles detach, reattach, agglom-
erate, without forming a complete debris. It was demonstrated that the third-body’s
flow regime is linked to the macroscopic friction through its ability to form mesostruc-
tures like force chains and agglomerates. Zhang et al. [102] also used the multibody
meshfree method to explore the influence of the cohesion between particles on the third-
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body rheology and friction. A soft discrete element method has also been developed to
model deformable grains while reducing computational time compared to the multibody
meshfree strategy [71].

Pham-Ba and Molinari [76] utilized their contact law (Section 2.1.2) to study the
influence of the macroscopic material properties (tensile strength, adhesion) on the
third-body regimes. Adjusting material properties, they simulated the three distinct
regimes for the third-body: debris rolling regime, a shear band regime, and a mixed
regime.

2.2 Coupling Methods

Considering a DEM box with a length of 10 cm, one million particles with a diameter
of 1 mm are required to fill the entire cube in a square lattice arrangement, resulting in
6 million degrees of freedom. Consequently, to model large domain, there arises a need
for a methodology that strikes a balance between accuracy and cost efficiency. One
effective approach is to couple continuous and discrete domains. Coupling methods,
originally developed to couple MD and FEM, are categorized in two classes: the edge-
to-edge method, which involves two distinct domains connected by mutual boundary
conditions, and the overlapping method, where the two domains coexist within a “mixed”
region.

2.2.1 Edge-to-edge coupling

The edge-to-edge coupling method involves two separate domains — the continuous
domain and the atomic domain — without any overlap. To illustrate this coupling for
MD, we consider the schematic of Figure 2.4. The mesh is refined until reaching the
atomic scale at the boundary in such a way that each node is associated to an atom.

In this method, pad atoms are introduced at the nodes of the mesh (depicted as
green atoms in Figure 2.4). The pad atoms serve as a boundary condition for the atomic
domain, ensuring equilibrium of atoms in the B’ regions. Without the introduction of
pad atoms, a surface effect would occur, as the atoms in the B’ regions would not be
equilibrated. This surface effect would lead to an undesirable displacement of the atoms
near the coupling (B’). Consequently, the potential cutoff radius Ryt determines the
size of the different regions.

Similarly to the atomic domain, the first layer of atoms ahead of the continuum do-
main is considered as pad nodes for the mesh, acting as boundary condition (depicted
as black atoms in Figure 2.4). The continuum domain is divided into two regions: C'
and €. Region C corresponds to elements of the continuum domain included in the
coupling interface, while region ' corresponds to the remaining part. Examples of
this method applied in MD-FEM are the Macroscopic, Atomistic, ab initio Dynam-
ics (MAAD) Method [23], the Quasi Continuum Method (QC) [88], and the Coarse
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Atomic domain Continuum domain
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Figure 2.4: Schematic of an edge-to-edge coupling between MD and FEM. Image from
the thesis of Dr. Anciaux [11]|, with the author’s permission.

Grained Molecular dynamics method (CGMD) [81]. An edge-to-edge approach can also
be used to couple atomistic and discrete dislocation in two dimensions [85] and in three
dimensions [14, 27, 51].

In FEM-DEM coupling, certain studies have adopted an edge-to-edge approach [47,
68|, with an implementation that differs from MD. Both studies consider a granular
material between two surrounding plates, considered as continuum. Gao et al. [47] used
the combined finite-discrete element method (FDEM) to discretize both the particles
and the surrounding plates. Consequently, no pad particles are required, and reciprocal
boundary conditions are determined by the interaction forces between the particles and
the plates. Mollon’s model [68] utilized a multibody meshfree to model the surrounding
regions as rigid bodies and the particles as either rigid or compliant bodies. Similarly, to
the previous approach [47] a fine discretization of the particles is required, which should
be considered in the computation time. Olivier et al. [20] used the approach from
Mollon to model a deformable third-body localized between a rigid top body and an
elastic bottom body. This strategy enabled them to assess large systems and determine
how third-body flow impacts the first bodies. They found minimal damage with plastic
flow, but significant damage with agglomerated granular flow.

2.2.2 Overlapping/Bridging coupling

Disclaimer
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This section is in part reproduced from the article: Manon Voisin-Leprince, Joaquin
Garcia-Suarez, Guillaume Anciaux, Jean-Francois Molinari, “Finite element method—discrete
element method bridging coupling for the modeling of gouge” (2022), International
Journal for Numerical Methods in Engineering [91]. All authors have granted their
permission.

At the opposite of the edge-to-edge method which considers two disjoint domains,
the overlapping method considers a reconciliation zone where the two models are "mixed"
together. H. B. Dhia is a pioneer in this field with the Arlequin method [34] which glues
physical domains together by means of Lagrange multipliers. The bridging method [17,
97] is a classical overlapping method based on the Arlequin method which couples atom-
istic and continuum domains. In this thesis, we considered two different overlapping
method formulations. The first method imposes strong coupling through a Lagrange
constraint, where each particle position is constrained to the equivalent position derived
from the FEM interpolation (bridging method). The second method is a weak coupling
that enforces such a constraint in an average sense within the volume of each element.
Figure 2.5 represents the atomic and continuum with the bridging region in red, and
a boundary/pad region for the atomic domain in purple. In the following sections, the
coupling formulation occuring in the bridging region is expressed in matrix form.

Continuum domain .
e o 0/ 0 0 Boundary region
o e 06/60 0 O
® 6 060 0 O
® o 006 00 Bridging region
® 6 060 0 O

Atomic domain

Figure 2.5: Schematic of an overlapping coupling between MD and FEM. The atomic
domain is depicted with circles, and the continuum with a black mesh. The bridging
region is shown in red, and the boundary/pad region in purple.

The first step of Arlequin couplings consists in defining an energy weighting, which
permits to control the relative influence of each model. Thus, the global energy in the

system is defined using the Hamiltonian

H= / (X)EC(X) + (1 — a(X))EP(X) dX, (2.18)
Q
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where E€ and EP are the energy densities in the continuum and discrete regions. These
are weighted in the bridging zone using a scaling function o which defines the influence
of the continuum domain «(X) for a given spatial location X.

However, kinematic consistency between the coupled models cannot be enforced
by the energy weighting. Therefore, the two models are tied together by means of
Lagrange constraints. The energy weighting and the Lagrange constraint (g = 0) lead
to a Lagrangian problem which can be summarized as:

Hy, = H + \Tg, (2.19)

where H is the original Hamiltonian, Hy, its expanded version including the coupling
restrictions and A the Lagrange multiplier matrix. This leads to new equations of
motion:

Mi=F+X %
(2.20)
md=f+X 2

where u, F' and M are displacements, forces and masses of the FEM domain, and d, f
and m are the displacements, forces and masses of the particles. The energy weighting
leads to the altered masses m and M, which are defined such that m; = (1 — a(X;))m;
and M| = a(X )My with X; and X; the initial positions of particles and continuum
FEM nodes. The Verlet [8] scheme is employed to perform the time integration of the
uncoupled domains, which produces test velocities (d*, d*) not respecting the coupling

constraint.
ﬂ*,n+1/2 = "+ %M—IFTL d*,n+1/2 — d'*,n + %m_lf”
wunrtl = *n + At’ll*’n+1/2 dntl = g + Atd*’n+1/2
Computation of F"H! Computation of f7+!
arntl — ,&*,n—&—l/Q + %M_an—H d'*,n—H — d*,n—l—l/? + %m—lfn—i—l

(2.21)
The correction of the test velocities needs to be done within the reconciliation zone
thanks to the Lagrange multipliers, which gives at the n-th step the following form [97]:

entl _ ekntl _ prlogT
Wt =T - M gs A
(2.22)
i+l _ jentl _ =——10g 7T
d" =do"T —mT e - A
The velocities produced by Eq. 2.22 are chosen to satisfy the time derivative of the
Lagrange constraint g§ = 0. This choice imposes that the Lagrange multipliers A are

obtained by solving:
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g =AM, (2.23)

where A is the constraint matrix, which depends on the constraint function g and
can deliver distinct formulations of the coupling, such as the strong and weak coupling
detailed in sections 2.2.2.1 and 2.2.2.2.

In addition to the coupling region, a boundary/pad region, sets the boundary con-
ditions for the discrete domain (purple region in Figure 2.5). Here, the displacement of
particles d are constrained by the displacement of the FEM node u,

d=N"u, (2.24)

with IN the standard finite-element shape function.

2.2.2.1 Strong coupling

The strong coupling considers a Lagrange constraint, where each particle is constrained
to the position interpolated from the FEM displacement field. Therefore, the constraint
applied to the particles is expressed as:

g=NTu—-d=o, (2.25)

where NTu is the interpolated displacement for all coupled particles, computed with
the standard finite-element shape functions evaluated at each of the particles’ positions
(Xi) :

e1(X1) - oi(Xy)
N = : e : (2.26)

er(X1) -+ pr(X)
where o5 is the FEM shape function for node I employed to discretize the continuum
domain. The expression of corrected velocities from Eq. 2.22 together with the time

derivative of Eq. 2.25 allows to identify the particular form of Eq. 2.23 specific to the
strong coupling:

NI+l _ gontl — (NTﬁle _ m‘1> A, (2.27)

g

A
Additionally, to reduce the computational cost and provide a dissipative treatment
of wave reflections [11], the constraint matrix A can be lumped. Therefore, the Lagrange
multipliers can be obtained by solving Eq. 2.27. Finally, the velocities can be corrected
using the computed Lagrange multipliers, which leads to the following algorithm to be
applied in the reconciliation zone:
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&= NI+l — d*,nJrl
A=NTM 'N-m!
Optional lumping of A
A=Al

ﬂn—i—l — ,a*,n—&-l _ MﬁlN)\

(2.28)

2.2.2.2 Weak coupling

The idea behind the weak coupling is to relax the constraint so that it is respected
in an integral sense. The intended effect is that the constraint is imposed in average
over each element and not anymore point wise over the particles. For this, the standard
collocation method taken from finite elements is employed, leading to the following weak
constraint:

e = [ rXGEIX = 3 er(X)g: =0 (2.29)

where the integral becomes a discrete sum due to the discrete nature of the constraint,
which can be formally written by defining the continuous constraint G(X) =, §(X —
X;)g; with Dirac § distributions. Therefore, there are as many Lagrange constraints as
the number of coupled FEM nodes, and it takes the following matricial form:

gV =N(NTu-d)=0 (2.30)

This leads to the weak formulation of Eq. 2.23:

A
N (NTa*v"+1 - d*v"“) - N (NTM’IN + m—l) NT AW (2.31)
g AT

g

In the case of weak coupling, the constraint matrix AW cannot be lumped as it would
introduce too important approximations in the resolution of the Lagrange multipliers,
a poor control of the influence of each coupled model and a spurious time evolution.
Considering the previous developments, the algorithm employed to correct weakly for

the velocities in the reconciliation zone becomes:

gW - N (NTﬁ*,nJrl o d*,nJrl)

A=NTM 'N-m!

A" =NANT (2.32)
AW — [AW]*lg

,an—i—l —_ ,L-L*,n—l-l o MNNT)\W

dn+1 — d'*,n—i—l —i—mN)\W
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The bridging method, originally developed for MD-FEM, has been used to couple
continuum and amorphous domain. Wellmann and Wriggers [94] employed an overlap-
ping approach to couple FEM and DEM in three-dimension, while considering various
grain shapes. Yue et al. [98] used an overlapping approach to couple discrete and con-
tinuum domains in three dimensions, employing the Material Point Method (MPM) for
the continuum. This approach allows for the modeling of large deformations compared
to methods that use FEM for the continuum, making it suitable for particle flow sim-
ulations. However, it should be noted that MPM is computationally more expensive
than FEM.
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3.1 Introduction

The evolution of the third-body over time is influenced by various factors. Mollon
employed a deformable discrete element particle method [71] to investigate the impact of
the grain properties on the third-body’s flow regime, friction, and energy dissipation [70].
He demonstrated that the third-body’s flow regime is linked to the macroscopic friction
through its ability to form mesostructures like force chains and agglomerates. Zhang
et al. [102| also used the method developed by Mollon to explore the influence of the
cohesion between particles on the third-body rheology and friction. These simulations
[71, 102] depict a mixed regime of the third-body, where particles can detach, reattach,
and agglomerate without forming complete debris.

The coarse-grained contact law developed by Pham-Ba and Molinari 76|, summa-
rized in section 2.1.2, allows the determination of the interparticle force parameters
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based on the desired macroscopic material properties. This contact law enables the
replication of key wear mechanisms observed in MD simulations while significantly re-
ducing computational costs. Pham-Ba and Molinari [75] utilized this law to study
the influence of the macroscopic material properties (tensile strength, adhesion) on
the third-body regimes. Adjusting material properties, they simulated three distinct
regimes for the third-body: mixed regime, debris rolling, and shear band.

These previous studies were conducted using a relatively small DEM system, lim-
iting the ability of the third-body to evolve beyond a certain point. Additionally, the
evolution of the third-body may have been influenced by the DEM height and the im-
posed boundary conditions. Therefore, in this chapter, we modeled two material blocks
to investigate how their heights and boundary conditions affect the third-body created
at their interface during shearing. Both force control (external force applied) and dis-
placement control (rollers) boundary conditions were examined. Section 3.3 presents
results on the influence of the DEM height and the boundary condition on the evolution
of the third-body. By adjusting the material properties, we replicated the three regimes
observed in a third-body (mixed regime, debris rolling, and shear band) and examined
the impact of the boundary conditions and the DEM height on these regimes. Addi-
tionally, this section presents the boundary conditions of a subsystem. Finally, Section
3.4 offers concluding remarks.

3.2 Method

3.2.1 Discrete Domain

We employed the discrete element method, utilizing the coarse-grained contact law
developed by Pham-Ba and Molinari [76] and summarized in section 2.1.2. In this
chapter the materials properties are chosen such that the Young’s modulus E, the
density p, and the restitution coeflficient 7, correspond to the material properties of
SiO2. The Poisson’s ratio v is set to 0.25, limiting the interaction force to its normal
component (Eq. 2.9). Macroscopic shear force still exists due to the long-range property
of the normal spring force. The length of the system in the shearing direction is set to
be L, = 100dy, with dy the mean particle diameter. The critical length scale, denoted
as d* and responsible for defining the minimum size of wear debris |2| (refer to Eq. 2.6),
is set as d* = 0.1L. The minimum and maximum particle sizes, as determined by the
DEM coarse-grained law (details in Section 2.1.2), are diheory,max = 1.6nm (Eq. 2.16)
and diheory,min = 0.16nm (Eq. 2.17). Based on these values, we selected a log-normal
distribution of particle sizes with a mean grain diameter of dy = 1.3nm, a maximum
grain diameter of dyax = 1.2dg, a minimum grain diameter of dy;, = 0.8dg, and a
variance of 0.2(dmax — dmin)nm. The tensile strength will be varied during this study,
with the values set as 0.1F, 0.11F, and 0.2F. The surface energy is set consequently,

* 2
taking into account the expression for d*, resulting in the formula v = CéQ‘LE. Table 3.1
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summarizes the material properties used in this chapter.

Table 3.1: Material properties and particle size parameters.

Young’s modulus, F 73 GPa

Grain density, p 2200 kg/m?
Poisson’s ratio, v 0.25

Critical length scale d* 0.1L; nm
Restitution coefficient, n 0.9

Tensile strength, oy, [0.1, 0.11, 0.2]E GPa
Surface energy, d*o2/(32E) N/m
Mean grain diameter, dj 1.3 nm

Maximimum diameter, dyax 1.2dyp nm
Minimimum diameter, dyin 0.8dp nm

Variance, oy, 0.2(dmax — dmin) NM

3.2.2 Geometries

Multiple DEM samples were examined, all characterized by a consistent length in the
x direction (L, = 100dp) and uniform thickness in the z-direction (L, = 3dp). Various
DEM heights L were explored, ranging from 50dg to 600dy. Initially, two distinct blocks
of DEM were positioned without any interaction. The simulations proceeded through
two phases: a compression and a shearing phase. In the compression phase, an external
force is applied to bring the two DEM blocks into contact, while in the shearing phase, a
constant velocity is applied at the top of the DEM. During the shearing phase, a vertical
boundary condition was imposed, while the bottom of the DEM remained fixed. Figure
3.1 illustrates the system’s geometry, with pressure control on the left and displacement
control on the right. The system was sheared at a constant velocity of v = 0.01¢, with
¢ the wave celerity in one-dimension, and various external pressures are considered. All
simulations in this chapter were conducted using LAMMPS software [89], and visualized
with OVITO software [87].
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Figure 3.1: Schematic of the DEM system under pressure control on the left and dis-
placement control on the right.

3.3 Results

To assess the influence of boundary conditions on the evolution of the third-body, we
examine both the shear stress o,y resulting from the third-body movement, and the
evolution of the third-body thickness. The shear stress is measured at the top particles
of the system. The concept of a third-body can be defined in two ways. The first
way consists of determining the third-body as the region where voids exist, due to the
wear process. We consider that if the density drops below 5%, it signifies the presence
of a void and, consequently, defines the third-body. The thickness of the third-body
is then determined, based on the lower and upper position of the voids. We refer to
this approach as the Density based third-body measurement. The second approach
involves determining the third-body based on the rearrangement of particles. This
concept is illustrated in Figure 3.2, where boundary particles are represented in gray,
bottom particles in purple, and top particles in orange. The height of the third-body is
determined by identifying the lower position of the top (orange) region and the higher
position of the bottom (purple) region. We refer to this method as the Migration based
third-body measurement.
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(a) (b)

Figure 3.2: In both images, the particles are color-coded by type. Boundary conditions
are shown in gray, bottom particles in purple, and top particles in orange. The left side
represents an initial step, while the right side represents a final step.

3.3.1 Pressure control
3.3.1.1 Influence of tensile strength at a given pressure

A constant pressure of 100MPa is maintained on the top of the DEM while shearing
at a steady velocity v. By adjusting the tensile strength parameter, we modeled three
distinct third-body regimes as observed by Mollon [70] and Pham-Ba and Molinari [75]:
a mixed regime at a tensile strength of 0.1E (Figure 3.3 - top), a debris-rolling regime
at a tensile strength of 0.11E (Figure 3.3 - middle), and a shear-band regime at a tensile
strength of 0.2E (Figure 3.3 - bottom).
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on=0.1F

o =0.11E L,/2

Yinitial

(b) _Ly/2

()

Figure 3.3: Initial position of the particles in the y-direction for a DEM box of height
50dp. (a) shows a mixed regime at a tensile strength of 0.1F, (b) depicts a wear debris
regime at a tensile strength of 0.11F, and (c) illustrates a shear band regime at a tensile
strength of 0.2F.

In Figures 3.4a, 3.4b, and 3.4c, are represented the shear stress o, resulting from
the third-body movement for tensile strengths of 0.1F, 0.11F, and 0.2F respectively.
Notably, the peak stress 0., increases with the tensile strength o, in all cases. These
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plots show distinct stages: the initial compression phase before the vertical black line,
followed by an elastic load. Analyzing the last stage provides insights into the friction
evolution. Figure 3.4b corresponds to the scenario where debris forms without the
intermediate mixed regime, the resulting stress o, is minimal, indicating low friction.
When a mixed regime precedes wear formation (Figure 3.4a), higher final stress levels
are observed, suggesting a higher value of friction. Finally, in the case of a shear band
(Figure 3.4c), the stress maintains the elastic peak value, indicating the highest friction
among the three scenarios. This aligns with expectations: shear bands have the highest
friction, followed by mixed regimes, and then debris rolling. It can be observed that
the system’s height does not appear to influence the stress (o4,) and, consequently, the
friction within these three scenarios.
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Figure 3.4: Evolution of the shear stress 0., under force control at an external pressure
of 100MPa and different tensile strengths. (a) shows the evolution for a mixed regime
at a tensile strength of 0,, = 0.1E, (b) depicts the evolution for a debris rolling regime
at a tensile strength of o, = 0.11F, and (c) represents the evolution for a shear band

regime at a tensile strength of o, = 0.2F.

In Figures 3.5a, 3.5b, and 3.5¢c, are represented the third-body thickness evolution
through time for tensile strengths of 0.1F, 0.11F, and 0.2F respectively. The time axis
was shifted so that the initiation of the third-body growth is the origin, which compen-
sates the distinct starting times associated with each DEM height. In Figure 3.5a, 3.5b
the third-body thickness is evaluated using the Density based third-body measurement,
while in Figure 3.5c the third-body thickness is evaluated using the Migration based
measurement. In Figure 3.5a, 3.5b the third-body thickness evolves and grows over
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time, however the system’s height does not appear to influence the third-body thick-
ness. In Figure 3.5¢ it can be observed that for the DEM height ranging from 100dy to
600dg, the higher the DEM is, the lower the third-body thickness is. It should be noted
that the smallest DEM 50dy does not follow this trend. Thus, for a tensile strength of
0.2F, the DEM height impacts the third-body thickness evolution.

on = 0.1F, P = 100MPa on = 0.11FE, P = 100MPa
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Figure 3.5: Third-body layer (TBL) thickness evolution under force control at an exter-
nal pressure of 100MPa and different tensile strengths. Figure (a) shows the evolution
for a mixed regime at a tensile strength of o, = 0.1E. Figure (b) depicts the evolution
for a debris rolling regime at a tensile strength of o,, = 0.11F, and Figure (c) represents
the evolution for a shear band regime with a tensile strength of o, = 0.2F. For (a) and
(b), the Density based approach is used, while for (c), the Migration based approach is
employed.
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3.3.1.2 Influence of external pressure at a given tensile strength

We will now consider different external pressures at a tensile strength of 0.1E. We
examine pressures of 100MPa (shown in Figure 3.7a), 200MPa, and 500MPa. Figures
3.6a and 3.6b show the stress o, for pressures of 200MPa and 500MPa, while Figures
3.6¢ and 3.6d present the third-body thickness for the same pressures. In Figure 3.6c,
the thickness of the third-body is computed using the Density based measurement,
while in Figure 3.6d, it is evaluated using the Migration based measurement.

At 200MPa, we observe higher stress levels for larger boxes (500dy, 600dy) compared
to the smallest DEM heights (50dg, 100dp). The stress pattern at the intermediate
DEM heights does not align with an anticipated trend between the smallest and largest
DEM heights. The contrast between the smallest and highest DEM heights reveals
a distinction: a debris rolling formation occurs for the smallest DEM height, while a
mixed regime is observed for the largest one. Concerning the third-body thickness,
smaller boxes (50dy, 100dy) exhibit larger thickness, while larger boxes (500d, 600dp)
show smaller thickness.

At 500 MPa, we observe different trends for the DEM heights ranging from 50dg to
300dp, and the highest one (400dy, 500dy, 600dy). For the DEM heights ranging from
50dy to 300dy, the stress remains constant after the peak before decreasing for 50dy and
200dy after 800,000 time steps. The plateau at 200dy shows a smaller value compared
to the other smallest and intermediate DEM heights. For the highest DEM heights,
the stress decreases after the peak before increasing again. The DEM heights ranging
from 50dy to 300dy reveal a shear band regime, while the highest DEM height leads to
a mixed regime. Regarding the third-body thickness, we observe a clear dependence
of the DEM height on its evolution. For DEMs with greater heights, the third-body
thickness is higher compared to smaller DEM systems.

At a tensile strength of 0.1F, our analysis indicates that the influence of DEM height
on friction and the third-body regime is not clearly discernible at a pressure of 100MPa.
However, at pressures of 200MPa and 500MPa, there appears to be a significant impact
of DEM height on the third-body regime, height and friction. Therefore, under pressure-
controlled conditions, the DEM height can influence the behavior of the third-body.
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Figure 3.6: Third-body layer (TBL) evolution under force control at a tensile strength of
0.1E and different external pressures. (a) and (c) show the shear stress o, and third-
body thickness for an external pressure of 200 MPa, indicative of a debris-rolling or
mixed regime depending on the DEM height. (b) and (d) illustrate the evolution of shear
stress 0, and third-body thickness over time for a 500 MPa pressure, corresponding to
a mixed or shear band regime, also dependent on DEM height.

3.3.2 Displacement control

Rollers were introduced during the shearing phase instead of maintaining a constant
pressure on the top surface. Initially, the system underwent compression at a pressure
of 100MPa. Similar to the pressure control scenario, we studied the third-body behavior
at tensile strengths of 0.1F, 0.11F, and 2F. At tensile strengths of 0.1F and 0.11F,
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a continuous mixed regime persisted until the end of the simulation. However, at a
tensile strength of 0.2F, adhesion led to the formation of a crack that extended to the
boundaries, resulting in particles reaching the box size length L,. This shows the limit
of our simulation with a box length L, under these specific conditions.

In Figures 3.7a and 3.7b, the stress oy, is depicted for tensile strengths of 0.1E and
0.11F respectively. Notably, both cases exhibit high friction due to their mixed regimes.
Additionally, it can be observed that the height of the system affects the measured
shear stress o,,, with larger systems resulting in lower shear stress as particles have
more space to rearrange. The DEM configuration with a height of 500dy exhibits a
distinctive behavior not observed in other curves. At a tensile strength of 0.1F, this
configuration demonstrates zero friction. Due to the large size of the DEM, particles
were able to rearrange, creating a void between the two blocks. Under displacement
control, this void remains irreversible, unlike in a pressure-controlled scenario. Note
that the random organization of particles may also be a factor, as it is observed for a
length of 500dy.

In Figures 3.7c and 3.7d, the third-body thickness is depicted for tensile strengths
of 0.1F and 0.11F respectively. In Figure 3.7d, the third-body thickness is determined
using the Density based measurement, while in Figure 3.7d, the Migration based mea-
surement is employed. In Figure 3.7c, there is no apparent dependence of the DEM
height on third-body thickness, whereas in Figure 3.7c (excluding 500dp), a clear de-
pendence of the DEM height on third-body thickness evolution is observed. Larger
systems permit larger shear band formation.

Hence, under identical tensile strength, constant shearing velocity, and initial pres-
sure conditions, we observe different behaviors in the third-body for pressure control ver-
sus displacement control cases. In the pressure control scenario, three distinct regimes
were exclusively observed, while in the displacement control scenario, only the shear
band and mixed regimes were present. In both cases, the DEM height significantly
influences the shear stress/friction of the third-body and its thickness evolution.
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Figure 3.7: Evolution of the third-body layer (TBL) under displacement control with
an initial compression of 100MPa and different tensile strengths. (a) and (c) represent
the evolution of the shear stress (o,,) and the third-body thickness through time, at a
tensile strength of 0.1F corresponding to a debris rolling or a mixed regime depending
on the DEM height. (b) and (d) show the evolution of the shear stress (oy,) and the
third-body thickness through time, at a tensile strength of 0.11F corresponding to a
mixed or shear band regime depending on the DEM height.

3.3.3 Sub-system boundary conditions

When studying third-body formation, employing a larger system enables a more accu-
rate representation of the materials undergoing abrasion. Yet, some researchers have
opted for examining subsystems and applying the same boundary conditions as in larger
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systems, as referenced [70, 75]. Thus, assessing the viability of maintaining identical
boundary conditions in a subsystem is essential. We measured the displacement DY
and the stress o,,, within a cross-section on the upper DEM block. This cross-section
is positioned at a distance 40dy from the interface. Because the DEM height of 50dy
does not meet the necessary dimensions for this specific cross-section, it has been ex-
cluded from our study. The cross-section represents the upper boundary of the studied
subdomain. These measurements were conducted under a force control system with an
external pressure of 100MPa and a displacement control system initially compressed at
100MPa. The tensile strength considered is o, = 0.1F.

Figure 3.8a and 3.8c show the evolution of the displacement and the stress oy, in
the cross-section for the system under force control. Notably, both the stress oy, and
the displacement DY exhibit irregular patterns in this cross-section. Consequently, for
a system under pressure control, no clear interpretation of the subdomain boundary
conditions can be provided. Therefore, applying either force control or displacement
control boundary conditions to the subdomain would not be accurate.

Figures 3.8b and 3.8d depict the evolution of the displacement DY and the stress oy,
in the cross-section for the system under displacement control. Both stress and displace-
ment exhibit irregular patterns, similar to the previous case under force control. Thus,
a similar interpretation can be made. Applying either force control or displacement
control boundary conditions to the subdomain would lack accuracy.
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Figure 3.8: Evolution of a cross-section in the upper DEM block over time. (a) and
(b) illustrate the evolution of the vertical displacement (DY) under force control and
displacement control, respectively. (c) and (d) show the evolution of stress o,, under
force control and displacement control, respectively.

3.4 Conclusion

In this exploratory study, we have demonstrated the impact of boundary conditions and
DEM height on the evolution of the third-body.

In pressure control, adjusting the tensile strength for a system under a pressure of
100MPa allowed us to replicate the three distinct regimes observed in a third-body: a
mixed regime (o, = 0.1E), debris rolling (¢, = 0.11E), and a shear band (o, = 0.12F).
By varying both tensile strength and applied pressure, we noted that the DEM height
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had an impact on the shear stress/friction of the third-body, as well as its thickness.

In displacement control, with the system initially compressed at 100MPa, we repli-
cated the mixed regime and the shear band regime, although the debris rolling regime
was not reproduced. By varying the tensile strength, we observed an influence of the
DEM height and the tensile strength of the third-body.

The third-body is a complex system, and it is evident that both boundary conditions
and height play a role in influencing its evolution. However, determining the precise
manner in which they affect the third-body evolution remains challenging.

Additionally, we analyzed the boundary conditions of a subdomain within a larger
domain governed by either force or displacement control. We showed that applying force
or displacement conditions to the subdomain, similarly to the large domain, would be
inaccurate to represent the complexity happening in the subdomain.

Based on these results, modeling the entire system is essential to accurately capture
the evolution of the third-body. This may involve modeling a large system with granular
material to represent experiments, such as a pin-on-disc setup. Given the high compu-
tational cost associated with DEM, there is a need for an alternative approach that can
model large domains in order to capture the complexity of third-body evolution while
minimizing computational costs. The FEM-DEM bridging coupling, introduced in the
next chapter, proves to be a promising solution in this regard.
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Chapter 4

Bridging coupling: application to
amorphous materials

Disclaimer

This chapter is in part reproduced from the article: Manon Voisin-Leprince, Joaquin
Garcia-Suarez, Guillaume Anciaux, Jean-Francois Molinari, “Finite element method—discrete
element method bridging coupling for the modeling of gouge” (2022), International
Journal for Numerical Methods in Engineering [91]. All authors have granted their

permission.
Contents

4.1 Introduction . ... ... ... ... oo 59

4.2 Granular medium and constitutive behavior . . ... .. .. 61

4.2.1 DEM sphere packing . . . . . ... ... L. 61

4.2.2 Homogeneous elastic properties . . . . . . ... ... ... .. 62

4.3 Simulations of coupled FEM-DEM . ... ........... 65

4.3.1 Geometry . . . . ... 65

4.3.2  Strong/Weak coupling and ghost-force correction . . . . . . . 66

4.4 Waves passing through the coupling interface ... ... .. 69

4.4.1 Wave train characterization . . . . . . . .. ... ... .... 69

4.4.2 Wave propagation . . . . . . . .. .. ... L. 70

4.5 Conclusions . . . . . . . . i s e e e e e e e 75

4.1 Introduction

In Chapter 3, we illustrated how the height of the tribo-system and the chosen boundary
conditions affect the evolution of the third-body, including its regime, thickness, and
frictional properties. This highlights the need to accurately represent the surrounding
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regions for a correct third-body modeling. In the previous chapter, we employed the
DEM to model both the third-body and the surrounding regions, which proved to be
computationally expensive. To address this challenge and facilitate the modeling of
large systems, we propose a FEM-DEM coupling method. In this approach, DEM is
employed for modeling the third-body where discretization is necessary, while the FEM
is applied to represent the surrounding regions as continuum domains, thereby reducing
computational time. Unlike the previous chapter, this chapter considers a dry gouge
without any cohesion, which has also significant applications in geomechanics models
[1, 43, 46, 77, 93].

As introduced in Chapter 2, Section 2.2, several types of coupling approaches exist
and have been extensively studied for coupling Molecular Dynamics (MD) with FEM.
However, DEM /FEM coupling differs from MD/FEM coupling on several aspects and
brings unique challenges. First, the targeted particles obey different interaction laws:
atoms interact through energy potentials (leading to both attractive and repulsive forces
that are function of the distance between particle centers), while discrete particles inter-
act according to macroscopic contact laws (short range interactions), which require the
consideration of rotational degrees of freedom. A local FEM formulation, which does not
account for pointwise rotation and torques, cannot be coupled to a DEM that considers
angular velocities. To do so, one would need to use other FEM formulations, such as the
Cosserat |30]. For the sake of simplicity, this was not investigated in this chapter, where
only small deformations are considered. Second, MD is more often than not used with
a well-organized crystal structure, while DEM considers generally an amorphous struc-
ture, which leads to heterogeneous effective elastic properties. These differences make
the extension of MD/FEM to DEM/FEM a far-from-trivial task. Several approaches
have been put forward to couple continuum and discrete (DEM) domains, including
overlapping |24, 25, 94, 98| and edge-to-edge methods [16, 47, 68].

In this chapter, we consider the FEM to be an extension of the gouge. In that case,
the DEM and FEM have to behave similarly. An overlapping method allows achieving
this, even with large finite element sizes, while an edge-to-edge cannot, as the random
placement of the spheres leads to a variation of constitutive behaviors. Therefore, to
couple FEM and DEM, we utilize the bridging method [97| (see Chapter 2.2.2). Studying
a three-dimensional amorphous arrangement of DEM particles (e.g., a gouge) subjected
to a confinement pressure remains a subject to explore. The confinement pressure has
a destabilizing effect, which challenges the enforcement of Lagrange multipliers and
results in ghost forces of a new kind, which have not been previously reported in the
literature. In this chapter we demonstrate the emergence of these spurious effects, and
provide a simple modification of the bridging method allowing to cancel all ghost forces
both for a weak and a strong formulation of the constraints. As a by-product, this work
also provides simple guidelines to the multiscale modeling of a gouge at depth.

Section 2.2.2 presents two FEM-DEM coupling methods. The first one enforces a
strong coupling and is an extension of the bridging method [97] developed for MD /FEM
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to DEM/FEM. The second one considers a weak formulation of the Lagrange constraint.
In Section 4.2, the behavior of a granular material is studied to determine its effective
elastic properties and help choose the finite-element mesh size at the DEM/FEM in-
terface. Section 4.3 compares the coupling strategies in order to determine the most
appropriate one for stability. Then, in Section 4.4, the passing through of pressure and
shear waves is analyzed for different wave frequencies.

4.2 Granular medium and constitutive behavior

In order to test the presented coupling approaches, we consider a system where the
continuum and discrete domains have a matching material behavior within the range
of small (elastic) deformations. It is therefore necessary to determine the macroscopic
elastic properties of the granular ensemble.

The granular medium represents a dry gouge, with no adhesion between the particles,
and subjected to a specific confinement pressure coming from the surrounding medium.
Several tri-periodic DEM box sizes, are generated to determine if the granular material
can be considered as linear elastic, and to observe if the extracted material properties
are converging when the sample size becomes large enough. The material properties of
the FEM and the mesh size at the FEM-DEM interface will be chosen based on these
single scale DEM results, with the ambition to avoid any mismatch in the material
response between the coupled domains.

4.2.1 DEM sphere packing

Nine different box sizes, with periodic boundary conditions in the three directions, are
considered. In order to account for variability due to the random particle distribution,
twenty samples have been generated for each box size. The DEM simulations are run
using LAMMPS software [89], with DEM grains parameters corresponding to glass bead
values as described in Table 4.1. Glass beads are widely used as a model material in
simulations [5, 43] and in experiments aiming to represent the behavior of granular
materials [40, 60].

The grains interact through the Hertz-Mindlin contact law |57, 65| (details on the
contact law are given in Section 2.1.1, Eq. 2.4). Two grain sizes were considered, with an
average diameter dg = 3 mm. The dimensionless stiffness is defined as x = (E*/0y,)%/?
with E* = E/(1 — v?) [3, 4] and is characterizing the equilibrium overlap between
particles §, i.e. §/do ~ k™! [4]. To be in the so-called rigid limit, § < dp, it is necessary
to have §/dyp = k! < 1. In our case k = 495 >> 1, for which the granular assembly can
be considered fairly stiff.

Note that a too high overburden pressure could lead to a non-elastic behavior.
Agnolin and Roux [4] observed an elastic behavior until a pressure of 10 MPa. As we are
considering an overburden pressure of o, = 5 MPa, it is safe to assume an elastic contact

61



Chapter 4 — Bridging coupling: application to amorphous materials

behavior. The time step is chosen according to the criterion At < 0.14+\/Mmin/kmax [73],

with mpyi, the minimum grain mass and kp.x the maximum normal contact stiffness.

Young’s modulus, 50 GPa

Grain density, p 2500 kg/m?>
Poisson’s ratio, p 0.3

Overburden pressure, oy, 5 MPa

Grain minimal diameter, dpin 2.5-1073 m
Grain maximal diameter, dy,ax 3.5-107% m
Grain mean diameter, dg 3-103 m
Friction between grains, pg 0.5

Normal stiffness, K, 3.663 - 1019 N/m?
Tangential stiffness, K 4.5249 - 1019 N/m?
Normal viscoelastic damping constant, I'y 0.2 (m-s)~!
Tangential viscoelastic damping constant, I'y 0.1 (m-s)~?

Time step, dt 1078 s

Table 4.1: DEM grain parameters. See Section 2.1.1 for the definitions of K, K,T'y
and ['y. The damping coefficient I'y corresponds to the default value of LAMMPS
(Ty = 4T0).

To generate the DEM samples, the initial boxes are first filled with particles such that
they occupy a volume fraction of 60%. Then, the boxes are compressed in the three
directions and relaxed, iteratively, until an overburden pressure of 5MPa is reached.
During the process, the final equilibrium conditions are approached as the particles’
excess kinetic energy is dissipated via viscous damping forces. For a box size of 12d),
approximately three million time steps are necessary to reach equilibrium at the desired
overburden pressure.

4.2.2 Homogeneous elastic properties

The boxes containing the particles are then subjected to positive and negative displace-
ments equivalent to particular strain states, where each component (€5, €4y, €22, Yy
Yaez» Vyz) 18 evaluated separately (see elastic examples of LAMMPS [89]). After each
displacement, the boxes are relaxed, before measuring the overall stress. The 36 elastic
tensor coefficients (C;;) are computed with the corresponding applied strain direction
(an average of positive and negative strains is performed to get a better accuracy).
The Zener [99] anisotropy index 2Cy4/(C11 — C12) can be extracted as a measure of
anisotropy.

Figure 4.1a shows that this anisotropy coefficient is very close to unity for a box size
larger than 6dy. This implies that for a large enough box, our granular samples can be
considered isotropic. Figure 4.1b shows the elastic tensor of a box of length 12dy for
a specific realization. The structure of the elastic tensor confirms the isotropy of the
granular medium.
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Figure 4.1: (a) represents the Zener anisotropy index in terms of the number of particles
per box length L, /dy. (b) represents the elastic tensor of the box of length 12dy at a
specific realization. The vertical error bars represent the standard deviation due to the
20 box generations per box length.

The elastic properties (Young’s modulus, bulk modulus, shear modulus and Pois-
son’s ratio) are then determined. In Figure 4.2a, the Young’s modulus is shown as a
function of the number of particles per box length, and reaches a plateau for box sizes
larger than 12dy. The shear modulus (Figure 4.3a) and the bulk modulus (Figure 4.3b)
are also following the same trend, while the Poisson’s ratio (Figure 4.2b) and density
(Figure 4.3c) appear practically constant with respect to the box size. The tests con-
ducted suggest a convergence of the elastic properties for box sizes larger than 12dy.
Therefore, any linear-elastic continuum domain discretized using a characteristic mesh
size equal or larger than 12dy should display the same constitutive behavior (see Table
4.2 for numerical values) than the homogenized DEM samples.

Young’s modulus, £ 0.977 GPa
Density, p 1543 kg/m3
Poisson’s ratio, u 0.255
Overburden pressure, oy, 5 MPa

Table 4.2: Effective constitutive parameters for a granular domain. Such values will be
employed as material properties for the FE simulations.
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Figure 4.2: Convergence of elastic properties as the sample size becomes larger. (a)
shows the Young’s modulus in terms of the number of particles per box length L, /dp.
(b) shows the Poisson’s ratio in terms of the number of particles per box length L, /dy.
The vertical error bars represent the standard deviation due to the 20 box generations

per box length.
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Figure 4.3: (a) represents two shear moduli in terms of the number of particles per box
length L, /dy. The first shear modulus (in black/grey) is computed using the expression
p = Cyq and the second one (in blue) using p = (C11 — C12)/2. (b) shows the Bulk
modulus, in terms of the number of particles per box length L,/dy. (c) shows the
density, in terms of the number of particles per box length L,/dy. The vertical error
bars represent the standard deviation due to the 20 box generations per box length.

4.3 Simulations of coupled FEM-DEM

4.3.1 Geometry

The geometry considered in all the following coupled simulations is that of an elongated
3D bar of constant section, made of a DEM region surrounded by two finite-element
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meshes, as presented in Figure 4.4. According to the results from the previous section,
finite elements with a characteristic size h =~ 12dg have elastic properties matching
with DEM granular packings. The DEM dimensions are chosen to ensure at least two
elements, &~ 24dp, in the section (x and z directions), a gouge thickness ~ 20dy (the
unconstrained DEM), and two bridging regions covering the length of one element along
the y direction. The FEM dimensions are chosen in such a way that the dimensions in z
and z match the DEM region, while the length of each FEM meshes are =~ 400dg. Such
a long bar will allow studying the propagation of large wave lengths. Periodic boundary
conditions are imposed to the system in the lateral directions (x and z). As previously
stated, the DEM particles are packed with a hydrostatic confinement pressure, which
needs to be balanced with the FEM subdomains. This is achieved with eigen-strains
pre-stressing the FEM domains. The concurrent coupling will be in charge of exchanging
forces between interface nodes and particles. As will be discussed below, the efficiency
of the proposed coupling approaches differ notably.

Lpgy = 70d,
— Z
AESSSESSSEENEASANESANNNENENNNEEE T A I ;y_I z

ESSSSSSESSSSESEEEEEEEEEEEEEEEEEEEE G [ ] IIIIIIIIIIIIIIIIIIIIIII-IIIIIIII

Legay = 400d, l Legy ~ 400d,

A — A I
pad bridging bridging pad
=~ 13d, = 12d, =~ 12d, =~ 13d,

Figure 4.4: Schematic of the FEM-DEM coupling.

4.3.2 Strong/Weak coupling and ghost-force correction

The strong and weak coupling strategies (see section 2.2.2) have been implemented in
the open-source LibMultiScale software [10-13].

To determine whether the strong or weak coupling is more appropriate, this coupled
geometry is first considered with no added perturbation, and run over long simulation
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times. Three different coupling set-ups, composed of three different DEM regions, have
been tested t consider the effect of the amorphous structure. The displacement within a
chosen cross-section in the FEM (indicated in red dashed line in Figure 4.4) is monitored
in order to establish the performance of each coupling strategy. For the weak coupling,
after a simulation time of 500, 000 time steps, a displacement noise is observed to be in
the order of 107°m ~ 1072-dy (Figure 4.5b), while it is in the order of 10~%m ~ 1073-d,
(Figure 4.5d) for the strong coupling. Such spurious displacements will keep growing
as a consequence of a lack of equilibrium in the coupling region, due to the imposed
pre-stress. The applied eigen-strains, which induce forces on the free surface of the
mesh where nodes should be associated with a vanishing energy weight, are at the
origin of this issue. The approximations in the integration of the Lagrange constraint
led to the equations presented in section 2.2.2, which precludes a null weight on the
continuum interface. This becomes obvious when considering equations 2.28 and 2.32,
where a division by the weighted mass (M) is performed, forbidding a perfectly null
weight. In Anciaux [11], it was shown that an adequate, non-zero, choice of the weight
for these limiting nodes could also diminish wave reflections substantially, in the case
of crystalline structures evolving around their ground state configuration. With the
presented amorphous and pre-stressed configuration, the same coupling approach does
not compensate well the interface forces, giving rise to ghost forces.

To balance these, a strategy similar to the one used by Shenoy et al. [84] has been
employed: initial nodal forces were saved at the simulation onset, and then subtracted
throughout the entire simulation. With this force correction, the weak coupling shows
a diminished noise displacement in the order of 10~"m ~ 10™* - dy (Figure 4.5a), and
of the order 10~"'m ~ 107® - dy (Figure 4.5¢) for the strong coupling. Therefore, it
appears that the strong coupling with ghost forces correction yields the most stable
system, which will be used in the following section to study propagating waves through
the coupling interface.

67



Chapter 4 — Bridging coupling: application to amorphous materials

Weak coupling and substraction of initial force
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Figure 4.5: Testing different coupling strategies. (a, b) show the average displacement
at a specific cross-section considering the weak coupling. (c, d) show the average dis-
placement at a specific cross-section considering the strong coupling. (a, ¢) consider the
subtraction of the initial force to correct ghost forces, while (b, d) do not. The shaded
regions represent the minimum and maximum displacement values obtained through

the three different simulations.
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4.4 Waves passing through the coupling interface

4.4.1 Wave train characterization

Ricker [80] demonstrated that a seismogram can be decomposed into a succession of
wavelets, which are nowadays called Ricker wavelets. To excite our coupled system and
form a compressional wave propagating along the y direction, we impose through time
a Gaussian displacement corresponding to a ricker wavelet:

B 2
wy (1) = I exp (-é (2770(1;“))) > (41)

with ¢ the velocity of the wave, A its wavelength, I its intensity and ¢ty = A/(2c¢).
The Fourier transform is used to analyze the spectrum of the wave:

_L oo iky
Flu ) = —= [ e ay 42)

G [T () e

The Fourier transform has a Gaussian shape localized around the fundamental wave-
length A. If the fundamental wavelength A is chosen to be much larger than the mean
diameter of the particles dg, all the harmonics of significant intensity that are contained
in the spectrum will be much larger than the diameter of a particle dg. Additionally,
if a wavelength is larger than the mean diameter of the particles dy, it will be experi-
enced by the DEM grains as a smooth transition from one grain to its neighbors, and it
will not trigger rearrangements of the fabric. Therefore, the DEM portion will undergo
small deformations and will behave as a linear-elastic medium. Also, a large wavelength
reduces numerical dispersion in the FEM.

Let us now derive a condition for a compressional wave to be considered low-
amplitude. In what follows, let us note £ = 2% (y — ¢(t — to)). To quantify the maximum
value of the strain, we apply the chain rule:

Ouy(y)| _ |Ouy(y) 08|  |uye(y)]
oy | | 0¢ Oy A

1
. . (44)

The condition for the continuum to remain linear and elastic is € < 1 (small strains),
which consequently leads to I/A < 1. While this result was derived for compressional
waves, a similar approach can be pursued for shear waves with identical conclusions.
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4.4.2 Wave propagation

A wave propagation through the strong coupling system presented earlier (see Figure
4.4) will be monitored in order to characterize the artifacts produced by the coupling. A
Ricker’s wavelet is generated at the extremity of the left FEM portion, by applying the
displacement given by Eq. 4.1 as a boundary condition. The propagation of the wave is
studied for two different mesh sizes h: 12dy and 3dg, for both compressional and shear
Ricker waves. We consider two large wavelengths (200dy, 400dy) and two small strains
(8.3 -107%, 8.3-107%) for compressional and shearing waves. Table 4.3 summarizes
the wavelengths, intensities, and strains of the generated waves. Considering the small
intensities of the waves, the little friction occurring in the DEM does not influence the
propagation. For all the conducted simulations, the displacement of the wave will be
monitored within the cross-section at y = 0.138m. This cross-section is highlighted with
a dashed red line in the Figure 4.4 in the case of element size 12dj.

Wavelength A (m) 200d 200dy 400d,
Intensity I (m) 5-107* | 5.107% | 1-107*
Strain e 83-1074/83-107° [83-107°

Table 4.3: Waves characteristics.
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Figure 4.6: Waves passing through the coupling interface. (a, ¢) consider a characteristic
mesh size of 12dy, while (b, d) consider a characteristic mesh size of 3dy. The top row
figures (a, b) have been generated considering push waves, while the bottom row figures
(¢, d) have been generated considering shear waves. The red curves represent the waves
before reaching the DEM, and the blue curves correspond to the waves after passing
through the DEM. The dash vertical lines are visual guides for the location of the

FEM-DEM interfaces.

In the case of compressional and shear waves for a large mesh size of 12dy, we

observe that the intensity of the wave after passing the DEM is close to 1 for every

strain (see Figure 4.6a, Figure 4.6¢). This means that we have an almost-complete
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transmission of the wave, regardless of its strain level. Contrariwise, for a mesh size
of 3dy, we observe that the intensity of the transmitted wave is diminished by a small
factor (~ 0.88), independently of the strain (see Figure 4.6b, Figure 4.6d). The less-
accurate transmission of the wave in the case of the smallest mesh size 3dy is due to
the mismatch of material properties between FEM and DEM. In fact, it was shown in
Section 4.2, that a mesh characteristic size greater than 12dy is necessary to homogenize
the elastic properties of the DEM. If this is not the case, the constitutive behavior varies
among elements.

It can be observed that a reflected wave has been generated in all cases (see Figures
4.6a, 4.6b, 4.6¢, 4.6d). In order to determine the origin of the reflected wave we pursue an
analogy with MD/FEM coupling. It has already been observed in MD/FEM coupling
[11] that a reflected wave emerges at the coupling interface. The dispersion relation
that relates the wave frequency to its wavelength can differ between the MD and the
FEM depending on the FE mesh size (Figure 2.8 in [11]). If the mesh size is equal
to the distance between atoms, the dispersion relation will be the same. However,
when the mesh size increases, MD and FEM domains admit different wave velocities for
the same harmonic. This difference of propagation velocities (dispersion) creates the
impedance contrast that is at the origin of the reflected wave. The same mechanism is
at the origin of the reflected wave that is observed in our DEM/FEM simulations, the
main difference being that the dispersion relation of the granular medium is much more
convoluted than the simple 1D atomic chain that is used in the illustrative example of
[11]. The intensity of the reflected wave can be reduced by increasing the wavelength, as
the dispersion relation in both domains will be similar in the long-wavelength limit if the
material properties of the homogenized granular medium are assigned to the continuum.
By increasing the wavelength compared to the mesh size, we reduce the difference of
wave speeds between the two domains and therefore reduce the intensity of the reflected
wave.

In order to validate our discussion as to the origin of the reflected wave in the
DEM/FEM coupled system, we study the propagation of two compressional waves,
each with the small strain 8.3-107°, but with different wavelengths (200dy, 400d). The
considered discretization used characteristic element sizes 12dy. Figure 4.7 shows the
displacement of these two compressional waves in the system. In both cases, a reflected
wave is created during the propagation through the coupling and DEM regions. Though,
a higher reflected intensity is observed for A = 200dy, than for a wavelength A = 400d}.
This indicates that the reflected wave is due to dispersion happening at the FEM-DEM
interface, which is strongly dependent on the wavelength.
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Figure 4.7: Transmission through the coupling interface of two compressional waves with
A = 400dy (red and light-dashed red for before and after the interface) and A\ = 200d
(blue and dashed-light blue for before and after the interface). The dash vertical lines
are visual guides for the location of the FEM-DEM interfaces.

To strengthen our analysis, we plot the ct diagrams for A = 200dy. Figure 4.8 shows
the results for a large mesh size 12dy and Figure 4.9 for a small mesh size 3dg. These ct
diagrams show a better transmission of the compressional and shear waves for a large
mesh size. One can nonetheless observe reflected waves in all cases.

Note that a residual displacement at the unconstrained DEM region is observed for
a large mesh size 12dy, in the case of a compressional wave of strain 8.0 - 107, For the
smallest mesh size 3dp, a residual displacement is observed independently of the strain,
with higher values for compressional waves than for shear waves.

Overall, the propagation of compressional and shear waves confirms that a mesh size
of at least 12dy is necessary to avoid a mismatch of material properties between FEM and
DEM. It also confirms the ability of our numerical framework to satisfactorily transmit
waves of different kinds yet only for small strains, which is a standard assumption of
concurrent coupling methods.
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Figure 4.8: Wave transmission through the coupling interface for a mesh size of 12d
and A = 200dy. (a, b) represent the ct diagrams of compressional waves at different
strains. (c, d) represent the ct diagrams of shear waves at different strains.
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Figure 4.9: Wave transmission through the coupling interface for a mesh size of 3dy and
A = 200dy. (a, b) represent the ct diagrams of compressive waves at different strains.
(¢, d) represent the ct diagrams of shear waves at different strains.

4.5 Conclusions

We have investigated the transmission of elastic compression and shear waves through
a DEM/FEM interface. Two different coupling strategies have been proposed with
regard to the formulation of the kinematic constraints, termed “strong coupling” and
“weak coupling". The effect of subtracting the initial force at the FEM interface has
also been studied.

For verification purposes, we devised a simulation set-up in which both DEM and
FEM are meant to represent the same material when deforming in small strain condi-
tions. We first determined that our granular samples can be considered as homogeneous,
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linear-elastic and isotropic for sample sizes larger than 12 times the representative grain
size. This size constrains the minimum finite-element mesh size to be used in order to
match elastic properties between the continuum and the discrete domains.

Next, we developed a test to determine the most stable approach (in the sense of
introducing the least noise in the system). We observed that the “strong” version of
the coupling (e.g., constraints defined exactly at each grain that overlaps with FEs)
outperforms the “weak” one (which weights the constraints differently depending on the
relative position of the grains with respect to the nodes of the element that engulfs
it). Additionally, correcting the spurious forces induced by pre-stressed FEs was proved
remarkably beneficial when it comes to stabilize the DEM/FEM overlapping region.
We concluded that the strong coupling considering the subtraction of initial force is the
proper choice for the problem at hand.

Finally, longitudinal and shear waves were sent through coupled DEM/FEM model.
The results reveal the presence of a reflected wave, due to the dispersion happening at
the FEM-DEM interface, whose amplitude decreases as the wavelength increases. Addi-
tionally, the propagation of waves confirms that a mesh size of at least 12 is necessary
to avoid a mismatch of material properties between FEM and DEM. Overall, the results
confirm the aptitude of our numerical framework in the LibMultiScale software to sat-
isfactorily transmit small-strain waves of different kinds (compressional /shear) between
the two domains.

As mentioned in Section 2.1.3, in the context of a third-body evolving over time, it is
interesting to model wear formation and crack propagation in discrete regions by adding
adhesion between particles. Therefore, in the next chapter, we will use the FEM-DEM
coupling approach to model these types of material failure.
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Two-scale concurrent simulations

for crack propagation using
FEM-DEM bridging coupling
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This chapter is in part reproduced from the article: Manon Voisin-Leprince, Joaquin
Garcia-Suarez, Guillaume Anciaux, Jean-Frangois Molinari, “Two-scale concurrent sim-
ulations for crack propagation using FEM-DEM bridging coupling”, Submitted. All
authors have granted their permission.
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5.1 Introduction

In Chapter 4, we introduced a FEM-DEM bridging coupling method to model large
systems, where the same material is represented in both FEM and DEM. In this study,
the FEM and DEM were connected using an overlapping method also known as the
bridging method [97], which involves a “reconciliation zone” where the discrete and
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continuum domains coexist and where their deformation is harmonized. Various forms
of the overlapping method, including weak and strong formulations, were considered.
The study employed Hertz contact between the particles and focused on the transmission
of small-amplitude waves. Both formulations were demonstrated to be effective, with the
strong formulation exhibiting superior stability. Additionally, the effect of incorporating
a “force subtraction” method at the FEM-DEM interface to mitigate the influence of
ghost forces was investigated [84].

In this chapter, the previously described coupling method is employed to computa-
tionally investigate two material failure events in a quasi 2D simulation box: the first
case involves mode I crack propagation, while the second case involves wear leading to
debris formation. We employ the discrete element method to capture both crack propa-
gation and wear, and utilize the finite element method to save computational resources
in modeling the regions that remain linear and elastic. Both DEM and FEM represent
the third-body layer and therefore are modeled with matching material properties. To
model the material portion that undergoes failure, we use the coarse-grained discrete
element technique developed by Pham-Ba and Molinari [76] (see Section 2.1.2). The
FEM-DEM coupling is realized using the FEM-DEM bridging coupling developed by
Voisin-Leprince et al [91]. Section 5.2 presents the method used in this paper, includ-
ing the coarse-grained discrete element model, the FEM-DEM bridging coupling, and
the geometry of the simulations. Section 5.3 shows the result obtained for the two
investigated cases. Section 5.4 provides closing remarks.

5.2 Method

Based on the results from chapter 4, we employ in the next chapter a strong formulation
and a force subtraction method at the FEM-DEM interface.

5.2.1 Discrete domain

To model crack propagation and wear formation in the discrete domain, we employ the
coarse-grained approach developed by Pham-Ba and Molinari [76](see Section 2.1.2),
which enables detachment and reattachment of particles thanks to appropriate adhesive
forces. The parameters of the interaction forces between particles are determined such
that the assembly of several particles exhibits certain mechanical properties. Therefore,
employing this contact law enables controlling the macroscopic material properties ex-
hibited by the DEM. Similarly to Pham-Ba and Molinari, we considered the macroscopic
material properties of SiOy (see Table 5.1) for the DEM and FEM. The critical particle
size required by the contact law to achieve an accurate match of macroscopic material
properties is d. = 1.7 nm (see Eq. 2.16 in Section 2.1.2). The minimum particle size
determined by computational constraints is dpyin = 0.37 nm (see Eq. 2.17 in Section
2.1.2). If a particle is smaller than this value, it will interact with more particles than its
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closest neighbors, increasing the computational cost. Based on these values, we chose a
log normal distribution of particle sizes with a mean grain diameter of dy = 1.3 nm, a
maximum grain diameter of dy.x = 1.2dp, a minimum grain diameter of dy,i, = 0.8dy,
and a variance of o, = 0.2(dmax — dmin )N

Table 5.1: Amorphous silica properties (SiO2) and particle size parameters.

SiO9
Young’s modulus, E 73 GPa
Grain density, p 2200 kg/m?
Poisson’s ratio, p 0.17
Tensile strength, oy, 16 GPa
Shear strength, o 9 GPa
Surface energy, -y 1.5 N/m
Restitution coefficient, n 0.9
Mean grain diameter, dg 1.3 nm
Maximimum diameter, dmax 1.2dp nm
Minimimum diameter, dyin 0.8dp nm
Variance, oy, 0.2(dmax — dmin) NM

Considering that a DEM particle is an order of magnitude larger than the bond
lengths between atoms in silica (Si-O: 0.16nm, O-O: 0.26nm, Si-Si:0.31nm) [90|, Pham-
Ba and Molinari [76] already show a significant reduction in computational time by using
their DEM contact law compared to MD. To further reduce computational costs and
enable modeling of larger domains, a FEM-DEM bridging coupling approach is deemed
necessary. The coupled simulations in this chapter were performed using LibMultiScale
software [10-13|, and visualized with ParaView software [6].

5.3 Results

The geometries of the simulated system are shown in Figure 5.1. The left side illustrates
the geometry of the mode I crack propagation simulation, while the right side shows
the geometry of the shearing system that leads to wear debris formation. Both cases
share common geometry parameters. The systems are quasi-2D, with a thickness in
the z direction of 3dy. The FEM elements have a characteristic size in the x and y
directions of he = 20dy. The height of the bridging region (indicated in red in Figure
5.1) is chosen to be equal to the height of one FEM element, he = 20dy. The pad region,
indicated in purple in Figure 5.1, serves as boundary conditions for the DEM particles
by constraining all contained particles to the FEM displacement field. The height of
the pad region is set to hpaq = 3dp. Periodic boundary conditions are applied in the x
and z directions for both simulation setups.
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Figure 5.1: Left: scheme of the mode I crack propagation. Right: geometry of the
shearing system. Middle: illustration of the overlapping zone of the coupling method,
in red the bridging region where the coupling occurs, and in purple the pad region which
serves as boundary for the DEM particles.

5.3.1 Mode I crack propagation

The mode I crack simulations were conducted on three coupled systems with a total
height of 500dy, each having different DEM heights: small (110dp), medium (150dp), and
large (190dp). These DEM heights include the bridging and pad regions. Studying mul-
tiple DEM heights allows to assess whether the location of the coupling region/FEM
region has any influence on the DEM behavior. To ensure a fair comparison of the
coupling results, a pure DEM simulation of size 500dy was also performed. For these
simulations, a total length of L, = 400dy is considered. An imposed vertical displace-
ment induces an opening of width 2a where the bonds between opposed particles in the
upper and lower lips are disabled.

To assess the consistency of the coupling results in mode I crack propagation, the
kinetic energy per particle is evaluated. For each simulation, the kinetic energy is
evaluated within the same region corresponding to the smallest DEM portion (110dp),
excluding the bridging and pad regions (refer to Figure 5.2).
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Figure 5.2: Schematic that illustrates the three DEM cases: small DEM (hgyman =
110dp), medium DEM (hmedium = 150dp), and large DEM (hjarge = 190dp). The region
where the kinetic energy is computed in each case is indicated by a black rectangle.

The mode I crack propagation simulation is characterized by two stages. The first
stage corresponds to the opening of the crack lips in the DEM region. Then, there is a
second stage corresponding to the propagation of the crack. The kinetic energy during
these two phases is represented in Figure 5.3. It can be observed that the kinetic energy
of the three coupled systems and the pure DEM simulation are in close agreement during
both the opening phase and the crack propagation phase. Note that a perfect match
cannot be obtained for an amorphous material due to a random organization of particles
in parts of the simulation domain. This confirms that the crack initiation occurs at a
similar time in each simulation. The similar results between the coupled systems and
the pure DEM simulation validate the accuracy of the coupled systems in reproducing
the crack propagation kinetics observed in the pure DEM simulation. Additionally, it
shows that the location of the FEM region does not influence the DEM behavior.
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Figure 5.3: Kinetic energy per particle for the three coupled systems with initial DEM
heights: 110dg, 150dy, 190dy and for the pure DEM simulation 500dy. Total height of
each simulation is 500dy.

To showcase the precision of the FEM-DEM coupling in mode I crack propagation,
we visualized the velocity field. Figure 5.4a shows the velocity field for the medium DEM
size case. In Figure 5.4a, we observe a precise connection of the contour lines between
the DEM and FEM, indicating a continuity of the velocity field from one domain to the
other. In the supplementary material, several time steps are provided to display the
evolution of the crack.

While studying crack propagation, stress concentration is a key aspect. In the FEM,
the Cauchy stress tensor opgy is computed using the constitutive relation oppy = C':
€, with € the infinitesimal strain tensors and C the elastic modulus tensor. Whereas in
the DEM, the stress opgm is computed using the virial stress (see LAMMPS documen-
tation [29]). DEM stresses are averaged over a spherical volume, considering spherical
radii of: r = 3dy, r = 6dy, r = 8dy, and r = 10dy. The largest radius considered leads
to a diameter similar to the size of the FEM element. For a radius of 7 = 3dy, the stress
is not averaged over a sufficiently large region, resulting in noisy results (see Figure
5.5a). On the other hand, for a radius of r = 8dy and r = 10dy, the stress is averaged
over a region that is too extensive, leading to smoother results but blurring the stress
concentration at the crack tips (see Figure 5.5b which depicts the stress for a radius of
r = 8dp; results for a radius of r = 10dy are not shown because they are very similar
to r = 8dy). Therefore, for representing the stress, we have chosen a radius of r = 6d,
which provides a notable continuity of the isolines between the FEM and DEM domains
(see Figure 5.4b). Thus, averaging the DEM stress over a properly chosen region leads
to comparable results in FEM and DEM. Consequently, our approach can be used for

a comprehensive study of crack propagation.
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Figure 5.4: (a) Illustrates the velocity field, while (b) shows the stress field o, for the
coupled system composed of the medium DEM (150dy). The stress field is averaged
within the DEM over a spherical volume with a radius of » = 6dy. Isolines for each field
are represented in black. In (a), the top and bottom line elements have been omitted to
enhance the visualization of crack propagation over the boundary limits. Furthermore,
in (a), vertical black lines indicate the boundary between the top of the DEM and the
FEM.
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Figure 5.5: (a) and (b) represents the stress field oy, for the coupled system composed
of the medium DEM (150dp). In (a), the stress field is averaged over a spherical volume
of radius r = 3dp within the DEM, while in (b), the stress field is averaged over a
spherical volume of radius » = 8dy. The isolines of the stress field are depicted in black.

Table 5.2 presents the time duration for each simulation time step At in the three
coupled simulations (DEM height: 110dy, 150dy, 190dy) and the pure DEM simulation
(DEM height: 500dp). The computation of the time per time step was performed using
the serial version of LibMultiScale and LAMMPS. As expected, it can be observed that
the time per time step is smaller in the coupled simulations compared to the pure DEM
simulation. Additionally, the time per time step increases with the number of particles
N. Therefore, the FEM-DEM coupling accurately represents the behavior expected
from a pure DEM simulation, while significantly reducing computational time.

Table 5.2: Time per simulation time step for the mode I crack propagation simulations.
N is the number of particles and, At the time step.

DEM height N Time per At
110dy 229120 1.71s
150dy 312360 2.14s
190dy 395800 2.57s
500dy 1243050 10.23s
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5.3.2 Surface wear during relative sliding

For the shearing systems, a total length of L, = 100dy is considered, and rough surfaces
are introduced in the DEM. The roughness is characterized by two main parameters:
the Hurst exponent H and the arithmetical mean deviation of heights S,, with chosen
values for this study being H = 0.8 [63] and S, = 5dy. The choice of S, is based on the
critical junction size d* which represents the size at which two surfaces in shear motion
begin to detach and form wear particles [2]. Previous research by Pham-Ba and Molinari
[76] has demonstrated that, based on their contact law and the material properties of
SiO9, d* falls within the range of 10nm to 20nm. Thus, to facilitate wear formation
using d* as a reference, we select an arithmetical mean deviation of S, = 5dy, resulting
in a DEM junction at the start of the simulation of size d*. The DEM is carved to the
desired roughness using Tamaas code [45]. In the simulation, the system is blocked at
the bottom boundary. The top nodes of the FEM are subjected to a constant normal
pressure of 100MPa and a constant shearing velocity of vy = 0.01 m

To study the formation of wear particles, we considered three coupled systems,
each with a total height of 500dy, and different DEM heights: 110dy, 150dgy, 190dp.
These DEM heights account for both the bridging and pad regions. To make a proper
comparison of the results obtained from the coupling, a pure DEM simulation of size
500dy was also performed. Similarly to the mode I crack propagation, the kinetic energy
for each case was computed within the same specific region characterized by the smallest
DEM height, excluding the bridging and pad regions.
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Figure 5.6: Kinetic energy per particle for the five coupled systems with initial DEM
heights: 110dy, 150dy, 190dy, and for the pure DEM simulation 500dy. Total height of

each simulation is 500d.
The coupling simulations can be divided into three stages: uniform deformation be-
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fore crack formation, debris formation, and subsequent rolling wear. Figure 5.6 shows
the kinetic energy evolution of the coupled and pure DEM systems. It can be observed
that the kinetic energy maintains a consistent level throughout the simulation. Addi-
tionally, both the coupled system’s kinetic energy and that of the pure DEM simulation
closely align. This confirms that the coupled system accurately captures the velocity
field, regardless of the location of the coupling/FEM region.

To confirm that the coupling is accurately representing the expected physics of
the pure DEM, we examined the evolution of the whole domain thickness over time.
Figure 5.7 shows this evolution, with Ah = h; — hg the change in the domain thickness
through time, h; being the total domain thickness at time ¢, and hg the total domain
thickness at the initial time step. The evolution of the domain thickness, over time,
can be interpreted as the size of the created wear debris. Figure 5.7 demonstrates that
both the coupled systems and the pure DEM simulation initiate debris formation at a
similar time (at around 50,000 time steps), with the debris reaching a comparable size
of approximately 15dy. Thus, the coupling approach effectively captures the wear debris
physics of the pure DEM simulation. Furthermore, the location of the FEM region does
not affect wear formation. In other words, launching the simulation with the smallest
DEM coupled system is sufficient to represent the wear debris physics of the pure DEM
simulation while reducing computational cost.

110do

Ah/dy

T T T
0 50000 100000 150000

Timestep

Figure 5.7: Evolution of the domain thickness Ah over time, normalized by the mean
grain diameter dy. The evolution of the domain thickness was computed for the five
coupled systems with initial DEM heights: 110dg, 150dp, 190dy and for the pure DEM
simulation 500dy. Total height of each simulation is 500d).

To illustrate the precision of the coupling in the case of third-body creation, we
visualized the velocity field for an initial DEM height of 150dy (Figure 5.8). The wear
formation process introduces perturbations in the velocity field, which can be observed
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in Figure 5.8. Importantly, we observe a precise connection of the velocity field and
contour lines between the DEM and FEM, indicating that the velocity is accurately
transmitted from one domain to the other. This confirms the high level of precision
achieved by the coupling. In the supplementary material, two different time steps are
presented to illustrate the evolution of debris formation. Furthermore, we analyzed the
stress field to visualize the crack propagation during the wear formation process (see
Figure ref 5.9). Similar to the mode I crack simulation, we calculated the average stress
of particles within a sphere of radius 6dy.
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Figure 5.8: Representation of the velocity field for the coupled system with a DEM
height of 150dg. The isolines of the velocity field are indicated in black. Vertical black
lines denote the boundary between the top of the DEM and the FEM. The bottom-
line element is omitted to prioritize the visualization of wear debris formation over the
boundary limit.
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Figure 5.9: Representation of the stress field oy, for the coupled system with a DEM
height of 150dy. The isolines of the stress field are indicated in black. Vertical black
lines denote the boundary between the top of the DEM and the FEM. On the right, a
zoomed-in view of the wear debris is presented.

Table 5.3 presents the time duration for each simulation time step At in the five
coupled simulations (DEM height: 110dy, 150dy, 190dp) and the pure DEM simulation
(DEM height: 500dy). Similar to the mode I simulations, the time per time step was
computed using the serial version of LibMultiScale and LAMMPS. Consistent with the
mode I results, the time per time step is smaller in the coupled simulations compared
to the pure DEM simulation, and it increases with the number of particles V.

Table 5.3: Time per simulation time step for the wear formation simulations. N is the
number of particles and, At is the time step.

DEM height N Time per At
110dy 42039 0.17s
150dy 58687 0.22s
190dy 75375 0.28s
500dy 206481 0.55s
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5.4 Conclusion

In this exploratory study, we have demonstrated the effectiveness of the FEM-DEM
bridging coupling [91] (Chapter 4) in simulating discontinuous events involving material
failure. We investigated two scenarios: mode I crack propagation and wear debris
creation during the contact between sliding rough surfaces.

For mode I crack propagation, we observed that crack initiation occurred simultane-
ously in both the coupled system and the pure DEM system. Furthermore, by exploring
multiple DEM heights in the coupled simulations, we confirmed that the location of the
coupling/FEM region does not influence crack propagation.

In the case of wear simulations, we observed that wear initiation and the result-
ing debris size were similar for both the coupled systems and the pure DEM system.
Similarly to mode I crack propagation, studying various DEM heights in the coupled
simulations shows that the location of the coupling/FEM region has no impact on wear
formation.

In summary, we have effectively demonstrated that the coupling approach accu-
rately captures the crack propagation and wear formation physics of the pure DEM.
It is worth noting that the coupling region was intentionally positioned at a sufficient
distance from the DEM region undergoing large deformation to prevent undesired crack
propagation into the bridging region. Given that it is challenging for the FEM to pre-
cisely model the inelastic deformation of the DEM, such an arrangement would lead to
a physically inaccurate representation. Hence, to facilitate the evolution of the discrete
region without being constrained by the FEM, an adaptive coupling approach should
be implemented.
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5.5 Supplementary materials
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Figure 5.10: Representation of the velocity field for the mode I coupled system, com-
posed of the medium DEM (150dp). Isolines for the velocity field are shown in black.
To enhance the visualization of crack propagation over the boundary limits, the top and
bottom line elements have been omitted. (a) shows the system before crack propagation
at time step 100, while (b), (c), and (d) represent the system at the respective time
steps 120, 130, and 140, once the crack propagates.
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Figure 5.11: Representation of the velocity field for the sliding coupled system composed
of the medium DEM (150dy). Isolines for the velocity field are shown in black. To
enhance the visualization of wear debris formation over the boundary limits, the bottom
line elements have been omitted. (a) depicts the system prior to wear formation at time
step 430, while figures (b) shows the system at time step 1000, after the formation of
wear debris.
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Adaptive FEM-DEM bridging
coupling
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6.1 Introduction

In Chapter 3, it was shown that the evolution of the third-body is affected by both the
boundary conditions and the system dimensions. Additionally, it was demonstrated that
when using a truncated subsystem, neither force nor displacement controlled boundary
conditions permits to recover the behavior of the original, i.e. larger, system. Thus,
precisely capturing the third-body evolution requires an as large as possible system,
in order to avoid artifacts created by the presence of boundaries. Given the numerous
discrete particles present in a large system, a FEM-DEM coupling allows to substantially
decrease the computational costs. In such a case, the third-body is modeled with
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DEM particles, while the matching boundary conditions are provided by the connected
continuum-FEM regions, thus delivering the appropriate compliance.

In Chapter 4, we introduced the bridging method, a FEM-DEM coupling approach
allowing a material sample to be modeled with continuum and discrete domains simul-
taneously: the two domains coexist and are coupled within an overlapping region. In
Chapter 5 the coupling has been used to model crack propagation and wear formation
in material. However, in such models, the growth of the third-body is constrained by
the size of the discrete region, necessitating the development of an adaptive coupling
approach.

Adaptive coupling implies moving the coupling region. Determining when to extend
the discrete domain needs a specific criterion. For instance, Chen et al. [25] employed an
adaptive overlapping coupling between a continuum domain modeled with the Material
Point Method (MPM) and a discrete domain modeled with the DEM. In this study,
they started with a single continuum domain subject to shearing. To determine when
the continuum domain must be replaced by the discrete domain, they identify the
formation of shear band in the continuum domain through the detection of high strain
rate gradient. Another example, at the nanoscale and considering crystalline materials,
stands in the Quasicontinuum Method [64] which defines a criterion based on a measure
of the deformation gradient, which determines when a continuum region should be
replaced with a discretized molecular dynamics/statics model.

In what follows, the criteria will be computed within the discrete region, which will
allow capturing when a complex deformation approaches the continuum. This shall
prevent spurious forces to be generated by the continuum region (indeed, it cannot
accommodate for non-smooth deformations). However, computing a deformation tensor
from a discrete set of particles is not straightforward, as it necessitates to project discrete
displacements to an equivalent continuum manifold. Extracting the deformation tensor
field needs a projection-interpolation procedure which turns out to be computationally
expensive, since it relies on Voronoi tessellation and/or Delaunay triangulation [41, 42,
72, 100]. The present chapter will establish simpler and less costly methods to establish
when to adapt the coupling region.

A system made of two FEM blocks surrounding a central DEM /MD body, globally
subjected to loading, is considered in all the cases presented in this chapter. The
previously introduced coupling method couples the discrete and continuum domains
(see Chapters 4 and 5). In the following, Section 6.2 introduces the adaptive coupling
method - in particular the employed detecting strategy and criterion - while Section
6.3 presents several validation tests for both an amorphous structure and for a regular
crystalline lattice. Finally, Section 6.4 examines how elliptical rigid bodies placed at
the contact interface can influence the third-body thickness and friction evolution.
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6.2 Method: Adaptive coupling

6.2.1 Evolution criterion

In Figure 6.1, the discrete domain is depicted with circular particles, while the contin-
uum domain is made visible as a black grid mesh. In total, three regions are necessary to
achieve adaptive coupling: the usual bridging and boundary regions are complemented
with a detection region where the criterion for the discrete domain’s evolution is eval-
uated. The bridging region is displayed in red, the boundary region in purple, and the
detection region in blue. The coupling is realized considering a strong formulation (see
Chapter 4).

Continuum ..
domain
m Boundary region

. Bridging region
Discrete

domain o000 o000

o000 o000 Detection region
00000

eeo0 o000

Figure 6.1: Schematic of the adaptive coupling regions.The discrete domain is repre-
sented by circular particles, while the continuum domain is depicted with a black mesh.
The boundary region of the discrete domain is marked in purple, the bridging region in
red, and the detection region in blue.

An appropriate criterion triggering an extension of the discrete region should capture
when inelastic deformations of the particles occur near the bridging region. This is
to ensure that strong deformations remain distant from the bridging region, which is
important as a proper coupling is guaranteed only under assumptions of regularity of
the strain/displacement fields and of linear elastic behavior.

Thus to quantify the inelastic deformation of the particles, we evaluate the average
change of neighbors per particle. For each particle in the detection region, the list of
nearest neighbors is identified within a given radius R. Neighbor changes are detected
by comparing the current list of neighbors to a reference list. The reference list, first
established at the start of the simulation, is updated after each adaptation. Then, for
each particle i, the spatial average of the number of neighbor changes within a radius
Rnean is calculated and denoted by 7 mean (refer to Figure 6.2).
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aaaa

Figure 6.2: Schematic of the spatial average of the change of neighbors over a radius

Rmean .

We denote Nigtal, the total number of particles within the detection region. The
percentage of particles exhibiting a number of neighbor changes greater than or equal
to a specified value, 7; mean > @, is calculated. If this percentage exceeds the threshold,

€, the criterion for expanding the discrete domain is met:

total A _
e < izt H (Mimean — @) ) 00 (6.1)
Ntotal

Here H is the Heaviside step function. The selection of € depends on the scale of the
detection region, as it is influenced by Nigta. For future studies on larger systems, it
could be advantageous to assess neighbor changes within subdomains smaller than the
detection region currently used. These subdomains could, for instance, be on the scale
of an FE element.

6.2.2 Expansion of the discrete domain

Once decided, the discrete domain needs to be expanded. The size of the expansion is
equal to the size of the current bridging region, which for the setup used in this thesis
turns out to also be the characteristic height of an element. To expand the discrete
region, several steps must be followed, as illustrated in Figure 6.3.

The first step consists in shifting the boundary, bridging, and detection regions by
a distance equal to the original height of a FE element. Consequently, the second
step introduces new particles in the empty region (Step 2 in Figure 6.3). These new
particles are taken from a periodic (in the z, y, and z directions) DEM/MD sample,
having the same size distribution and material properties as those in the original and
pristine discrete domain. They are placed in a geometry matching the undeformed
bridging region.

In a third step, the coupling is re-initialized with these updated geometries (Step 3
in Figure 6.3). Then, the FEM displacement field is projected onto the new particles,
in order to account for the continuum deformations (Step 2 in Figure 6.3). Next, the
displacement of FE elements in the area transitioning from the bridging region to a
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purely discrete region is adjusted. The FEM nodes have to be constrained to the
discrete domain’s displacements, which is done by solving a least-square problem as
described by Equation 2.24. Additionally, the elements are visually disabled (Step 3 in
Figure 6.3).

Finally, a relaxation process is carried out using velocity damping to stabilize the
particles that are now in the bridging, and detection regions. Throughout this relax-
ation, all the other particles are fixed, i.e. those not in the new detection and bridging
regions. To capture the system’s dynamics, the velocity field of the FEM is then pro-
jected onto the bridging and detection regions. The adaptive coupling approach has
been implemented in the open-source LibMultiScale software [10], and visualized with
ParaView software [6].

Step 0 Step 1 Step 2 Step 3

Empty region

[ ] EE
GEEE

o000 o000 oooooo o000 oo o0 eeo0 o000
ee0o0 o000 shift ® @ e e 0 @ eee0 o000 ee0 o000

regions

Figure 6.3: Schematic of the adaptive coupling process. The discrete region is depicted
with circular particles, while the continuum domain is shown as a black mesh. The
bridging region, where the coupling occurs, is shown in red; the boundary region, where
the particles are slaved to the continuum domain, is in purple; and finally, the detection
region is depicted in blue. Step 0 illustrates the system prior to adaptation. Step 1
shows the shifting of geometries, Step 2 the addition of new particles, and Step 3 the
system’s final configuration.
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6.3 Validation

6.3.1 Adaptive FEM-DEM coupling
6.3.1.1 Geometry

To model the discrete domain, the coarse-grained contact law developed by Pham-Ba
and Molinari [76] and summarized in section 2.1.2 is employed. For reminder, this
law replicates key wear mechanisms observed in molecular dynamics, while reducing
computational costs by considering larger, and therefore fewer particles. It also enables
to choose the material macroscopic properties delivered by the DEM assembly. Hence,
we consider the material properties of SiO9, similarly to Pham-Ba and Molinari [76]
and as described in Chapter 5. The particle size distribution is Gaussian. All material
constants are detailed in Table 5.1.

We consider a system characterized by a length L, = 100dy, a total height L, =
200dp, and a thickness L, = 3dy. Periodic boundary conditions are considered in the
x and z directions. The FEM element characteristic sizes are selected to be 10dy in
the x and y directions. The thickness in the z direction is spanned by two elements.
As mentioned previously, the bridging height is chosen as one FEM element’s height,
corresponding to 10dpy, the boundary region height is set to 3dp, and the detection
region height is chosen to be 7dy. A constant normal pressure of 100MPa is applied
to the top FEM boundary surface. This upper FEM surface is also constrained to a
constant shearing velocity of v = 0.1c, where ¢ is the push-wave celerity. The bottom
FEM surface boundary is fixed. An initial junction of size of 30dy is constructed in the
central DEM region to facilitate the creation of a debris. Figure 6.4 depicts the geometry
of the system being considered. The change of neighbors is computed considering the
six closest atoms within a radius R = 2dy, and averaged over a radius Ryean = 5dg.
If more than 2% of the particles have an average change of neighbors greater than or
equal to @ = 3, then the criterion is satisfied.
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Figure 6.4: Schematic of the FEM-DEM validation setup. The bridging region is de-
picted in red, the detection region in light blue, and the boundary DEM region in dark
blue.

Three cases will be considered in order to make in-depth comparison and to validate
the usefulness of coupling adaptation. The first case is a non-adaptive coupled system
with a DEM height of 50dy (small DEM). The second case has the same initial DEM
height but employs an adaptive coupling, and the last case has an initially larger DEM
region, with height 70dy, and with an adaptive coupling which is nevertheless used.

6.3.1.2 Results

In Figure 6.5, the averaged change of neighbors for each particle is represented within
the detection regions considering an initial junction size of 20dy. A significant change
of neighbors is observed at the crack tip, where the cracks propagate to form the de-
bris. This confirms that the average change of neighbors accurately characterizes DEM
inelastic deformation, making it a reliable measure to determine the discrete domain
expansion.
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Average change of neighbors
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Figure 6.5: Average change of neighbors per particle. The DEM domain is depicted
using circular /spherical particles, and the continuum is illustrated with a black mesh.
Changes in neighbors are only observed within the detection regions.

In Figure 6.6, the displacement of the DEM in the three previously described cases
is depicted from left to right. The top illustrations represent the cases before any
adaptivity of the coupled regions, while at the bottom are shown the later situations,
which is when adaptivity was triggered if adaptive coupling was employed. At the
beginning of the simulation (top of Figure 6.6), we observe similar initiations of cracks
and debris, as expected. However, later adaptivity changes that observation (bottom
of Figure 6.6). In the first case with non-adaptive DEM, cracks propagate until the
bridging regions, causing significant FEM deformations. The generated elastic forces
are opposing the crack’s propagation, which is inaccurate and should be avoided. In
the case of the initially small DEM, but with adaptive coupling, the crack follows a
path similar to the larger DEM case (which did not trigger any adaptation), showing
the usefulness of adaptivity.

Figure 6.7 monitors the thickness of the third-body over time, somehow reflecting
the evolution of debris’ size. More precisely, the third-body thickness is here defined as
the height measure of the area where a perceivable porosity forms as a result of wear
and fracture. Therefore, the density of particles is computed in the DEM region, and
areas where it falls below 5% are considered as part of the third-body. The thickness of
the third-body is obtained by taking the highest and lowest points showing a density
drop. All the adaptive cases, small and large, show similar third-body and debris sizes.
On the contrary, the small non-adaptive coupling results in a different pattern: the
thickness first begins to grow but later decreases (closing). This difference is believed
to be due to the crack propagating in the bridging as previously mentioned. Thus,
avoiding crack propagation in the bridging region is crucial, which highlights the need
for an adaptive coupling.
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Figure 6.6: On the left, a non-adaptive coupled system is shown with a DEM height of
50dy. In the middle, an adaptive coupling system with the same DEM height of 50d
is depicted. On the right, a larger adaptive coupling system with a DEM height of
70dy is presented. Among these, only the middle system experiences a top and bottom
coupling adaptation. On the top, the systems are illustrated before any expansion of
the discrete region for the middle system, while the bottom shows the systems after the
discrete region has been expanded. The horizontal dashed black line marks the largest
discrete domain upper and lower limits, showing how the top and bottom coupling

regions adapted.
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Figure 6.7: Third-body thickness evolution for an initial junction size of 30dy. Three
scenarios are analyzed: a small DEM (50dy) with a non-adaptive coupling, an initially
small DEM (50dp) with an adaptive coupling, and a large DEM (70dy) with an adaptive
coupling.

Although the adaptive coupling cases exhibit similar behavior, they are not perfectly
identical. This is expected to result from the amorphous arrangement of DEM particles.

6.3.2 Adaptive FEM-MD coupling
6.3.2.1 Geometry

The adaptive coupling is now further studied with a three-dimensional MD-FEM setup.
A face-centered cubic aluminum crystal is assembled with primitive lattice vectors given
by az = V/2a, ay = V3a, a, = v/6a, where a = 4.045 A is the lattice length characteristic
of ground state aluminum. Each atom within the crystal has a mass of 26.981 g/mol.
The used inter-atomic potential is the classical generalized EAM potential from Finnis
and Sinclair [44]. The MD region is characterized by a length of L, = 20a,, a height of
Ly vp = 100a,, and a thickness of L, = 2a,. The top and bottom FEM regions have a
height of L, ppv = 150a,, with 8 elements in x direction, 9 elements in the y direction,
and 2 elements in the z direction. The height of the bridging and boundary MD regions
are chosen to be equal to the height of an element: 2a,, and the height of the detection
region is set to 4a,. A void is created at the center of the MD region by removing
a square region of atoms. Similarly to previous (amorphous) simulations, compressive
forces are then applied to the FEM top surface, while the bottom surface is maintained
fixed. Figure 6.8 shows a schematic of the simulated system. Two simulations are
compared, one with adaptive coupling and the other without.

The change of neighbors is now computed slightly differently in the MD case. The
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change of neighbors is evaluated considering the twelve closest atoms within a radius
R = av/2, without averaging this value. The criterion is met, if more than 1% of the
particles have an average change of neighbors of at least a = 3.
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Ly pEM
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Figure 6.8: Schematic of the MD-FEM validation setup.

6.3.2.2 Results

A dislocation can be detected by examining potential energy. In the top of Figure
6.9, the per-atom potential energy is depicted for the non-adaptive case, while on the
bottom the equivalent measure is shown for adaptive coupling. Three timesteps are
displayed, time progressing from left to right, to show the evolution of dislocation posi-
tions and the interaction with the bridging region. In the non-adaptive coupling case,
the dislocation joins the bridging region and then gets stuck within it. On the other
end, having an adaptive coupling method allows the atomic region to expand, which
let the dislocation propagate further without ever reaching the bridging region. Figure
6.10 summarizes this observation, by representing the vertical position of dislocations
(where the potential energy is the largest) over time.
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(d) (e) ()

Figure 6.9: Potential energy in the MD, highlighting dislocation propagation. At the
top, the non-adaptive coupling is represented, while at the bottom, the adaptive cou-
pling is represented. In both cases, three timesteps are displayed: on the left, the 50th
timestep; in the middle, the 60th timestep; and on the right, the 70th timestep.
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Figure 6.10: Dislocation position in the y direction for adaptive and non-adaptive cou-

pling.

This improvement is made possible because of the capability of the detection cri-
terion, based on the average change of neighbors, to accurately capture the trace of
the dislocations within the detection region. To illustrate this, the measure of neighbor
change is displayed for a non-adaptive coupling in Figure 6.11. Clearly, the dislocation
traces can be extracted with atomic precision, allowing to let the detection band trigger

adaptation at the right instant.
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Figure 6.11: Change of neighbors in an MD-FEM non-adaptive coupling. The MD
domain is in full gray, the continuum is shown with a black mesh, and the detection

regions are marked by points.
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6.4 Application: Third-body abrasive wear with lubricat-
ing elliptic rigid bodies

6.4.1 Model

Experimentally, it has been demonstrated that solid particles can influence abrasive
wear [95]. In this section, we aim to explore the effects of introducing solid elliptical
particles serving as lubricant between two sliding bodies. A system with a length of
L, = 200dy, a thickness of L. = 3dp, and a height of L, = 200dy, employing periodic
conditions in the x and z directions, is considered. FEM elements sizes are 10dy in both
x and y directions, with two elements along the z axis. The heights for the bridging
and boundary regions are chosen to be equal to the height of a FE element. The initial
DEM height is 70dg including bridging and boundary regions. The top of the system
is subject to a normal pressure of 500MPa and a constant shearing velocity v = 0.03c,
while the bottom of the system is fixed. The setup of the system is depicted in Figure
6.12.

The discrete domain is modeled using the coarse-grained DEM law of Pham-Ba
and Molinari [76] (refer to Section 2.1.2). Material properties are selected in line with
Chapter 3, Section 3.2, featuring a Young’s modulus F, a density p, and a restitution
coefficient 7 typical for SiOs. The Poisson’s ratio v is fixed at 0.25, which restricts the
interaction forces to the normal direction (see Eq 2.9). The critical length scale d*, i.e.
the junction size where debris begins to form, is 10dg. The tensile strength oy, will be
varied in this section in order to create different gouge regimes, similarly to [75] and
Chapter 3. Strengths of 0.14F, 0.16F, and 0.18F are considered, with such changes
also affecting surface energies as v = (é;—UE‘%. Finally, the particle sizes follow a Gaussian
distribution with the parameters given in Table 3.1

In our model, elliptic bodies are assigned a Young’s modulus of Fy = 5F, making
them significantly more rigid than the surrounding regions. Therefore, in the remainder
of this text we will refer to them as rigid bodies. Adhesion between elliptical rigid bodies
and the surrounding particles is null, leading to the treatment of these rigid bodies as
friction-less. The ellipsoids are equally spaced, with a major axis of 10dy and a minor
axis of 5dy. The influence of the number of ellipses n will be studied. In Figure 6.12,
top DEM particles are displayed in gray (particle type: 1), bottom DEM particles are
shown in blue (particle type: 2), and elliptic rigid bodies are depicted in red (particle
type: 3). An initial spacing of dy/2 is introduced between the top and bottom DEM
particles. No gravity is considered.
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Figure 6.12: Schematic of elliptic rigid bodies in the adaptive FEM-DEM coupling.
The top particles are shown in gray (particle type: 1), bottom particles in blue (particle
type: 2), and elliptical rigid bodies in red (particle type: 3).

6.4.2 Results

To assess the influence of elliptic particles on the third-body, we analyze the shear stress
02y Which is measured at the top of the FEM. The third-body thickness evolution will
also be measured as it was done previously.

Figure 6.13b shows the shear stress o, for different tensile strengths and numbers
of rigid bodies. It can be observed that for four rigid bodies, a higher tensile strength,
implying greater adhesion according to v = %ﬁ’ leads to more friction, which was
expected. This same idea applies when considering two rigid bodies. Figure 6.13b also
demonstrates that, more rigid bodies always results in reduced friction, which shows
the expected lubrication effect provided by adding friction-less rigid body particles.

In Figure 6.13a, the third-body thickness evolution is shown. For all tensile strengths,
the number of rigid bodies influence the gouge thickness. When considering four rigid
bodies, the gouge thickness is smaller than for two rigid bodies, due to the lubricant
effect. For tensile strengths of 0.14F and 0.16 F, with two rigid bodies, the gouge thick-
ness shows a moderate increase, indicating a mixed regime where particles agglomerate

107



do)

TBL thickness (x

Chapter 6 — Adaptive FEM-DEM bridging coupling

without forming complete wear debris, as observed in Figures 6.14a and 6.14c. How-
ever, when four rigid bodies are considered, the gouge thickness remains relatively small,
corresponding to a more lubricated regime, as seen in Figures 6.14b and 6.14d.

In the case with the highest tensile strength (0.18E) and two ellipses, there is a
noticeable increase in third-body thickness. At the same tensile strength with four rigid
bodies, the third body exhibits a smaller thickness due to the formation of a lubricant
regime, as depicted in Figure 6.14f. In reality, when only two rigid bodies are placed
with the largest adhesion, the conditions are met to initial a crack propagation which
would lead to a debris formation. This is then perceived as the important growth of
the gouge thickness visible in Figure 6.14e.

Thus, the number of rigid bodies and the material’s tensile strength both influence
the thickness of the third-body as well as the friction resistance. In Figure 6.15, the
velocity field for the higher tensile strength 0.18F with four rigid bodies is shown in
the final configuration which allows highlighting the continuity of inertial exchanges
through the discrete-continuum coupling interfaces.
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Figure 6.13: (a) represents the evolution of third-body layer (TBL) thickness, while (b)
shows the evolution of shear stress o.,. Several tensile strengths are considered: 0.14F,
0.16F, and 0.18F, along with either two or four elliptic rigid bodies.
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Figure 6.14: Final timestep of the coupled FEM-DEM system with elliptical rigid bodies
at the interface. Continuum regions are displayed with a black grid. Top DEM particles
are in gray, bottom DEM particles in blue, and elliptic rigid bodies are shown in red.
Periodicity is replicated in the x direction for visualization purposes. (a) and (b) feature
a tensile strength of 14F, (c) and (d) exhibit a tensile strength of 16F, while (e) and
(f) present a tensile strength of 18 E. Configurations with two rigid bodies are depicted
on the left, and those with four rigid bodies are shown on the right.
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Figure 6.15: Velocity field at the final timestep of the coupled FEM-DEM simulation
with elliptical rigid bodies at the interface, with a tensile strength of 0.18E and four
rigid bodies. Black isolines depict the velocity field, while vertical black lines mark the
distinction between continuum and discrete regions. To enhance visualization, period-
icity is replicated in the x direction.

6.5 Conclusion

We developed an adaptive Finite Element Method-Discrete Element Method (FEM-
DEM) coupling approach that enables the discrete region to dynamically expand in
response to third-body deformation. This coupling employs the bridging method, ini-
tially designed for regular lattices and extended to amorphous materials as detailed in
Chapters 4 and 5. Expansion of the discrete region occurs when severe deformation
happens near the bridging zone. To determine whether the discrete region should be
expanded, a criterion based on the changes of the per-particle neighborhood is computed
within a detection zone placed ahead of the bridging region.

If the criterion is met, the boundary, bridging, and detection regions shift by a
distance equal to the size of an FE element. Following this, new particles are introduced
from a predefined DEM/MD box. In a next step, the coupling is re-initialized with
these updated geometries. The FEM’s displacement is then projected onto the newly
inserted particles to account for the continuum deformation. FE elements transitioning
to the discrete state are visually disabled, and their displacement is constrained by the
discrete region. Subsequently, a relaxation process is carried out for the particles in the
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new detection and bridging regions. Finally, the FEM’s velocity is projected onto the
particles in the new detection and bridging regions.

This adaptive coupling approach has been tested on an amorphous material (DEM)
with an initial junction introduced to facilitate wear formation. Three cases were stud-
ied: a non-adaptive coupling with a small DEM, an adaptive coupling with an initially
small DEM, and an adaptive coupling with an initially large DEM. In non-adaptive
coupling, cracks were arrested in the bridging region, leading to invalid mechanical be-
havior. This demonstrated the necessity and accuracy of the proposed adaptive coupling
approach. Additionally, the adaptive coupling was tested while coupling an aluminum
crystal in classical MD. But using a different adaptation criterion it was possible to
follow dislocation propagations.

Finally, the study considering the introduction of elliptic rigid bodies at the DEM
interface reveals that both the number of rigid bodies and the material’s tensile strength
impact the evolution of third-body thickness and friction. As expected, the friction was

lower for four rigid bodies than for two.
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Chapter 7

Conclusion

7.1 Summary

The objective of this thesis was to develop a numerical tool to model the evolution of
the third-body, including crack propagation and wear formation.

In chapter 3 we examined how boundary conditions and their proximity to the con-
tact interface influence the evolution of the third-body. Pure Discrete Element Method
(DEM) simulations were conducted, considering both force and displacement control
boundary conditions. By adjusting the material properties of the DEM, we modeled
various gouge regimes to explore their evolution in response to different boundary con-
ditions and system heights. We demonstrated that both the boundary conditions and
their proximity to the contact interface affect the third-body evolution. We also exam-
ined the displacement and stress at the border of a smaller domain within a larger one.
Our findings indicated that applying the boundary conditions of the larger domain to
the smaller domain does not adequately capture the complexity observed at the border.
Thus, based on chapter 3 results, we concluded that there is a need to model the regions
surrounding the third-body.

In chapter 4, we investigated the use of a FEM-DEM coupling to reduce compu-
tational costs: The DEM is utilized to model regions requiring particle discretization,
while the surrounding areas, which remain linearly elastic, are modeled as a continuum
using FEM. We extended the bridging method, originally developed for Molecular Dy-
namics (MD), to granular materials. While the original bridging method employed a
strong formulation for coupling, we investigated both strong and weak formulations for
granular materials. In all chapters of this thesis that discuss coupling, both the FEM
and DEM domains represent the same material. A non-cohesive granular material was
considered, with Hertzian contact between particles. We determined the minimum DEM
sample size that ensure constant macroscopic properties. This establishes the minimum
mesh size and the properties to be used in the FEM to ensure a match in material
properties between the continuum and the discrete domains. Because the DEM has no
cohesion, pre-stress needs to be introduced into the FE elements, resulting in spurious
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forces. Correcting for these spurious forces improves the coupling stability. Hence, it
was demonstrated that a strong coupling with subtraction of initial forces at the inter-
face, exhibits superior stability. This coupling approach was validated via simulations
featuring smooth wave propagation. While these setups can have many applications in
geomechanics, where such particles are considered, modeling complex third-body evo-
lution requires the inclusion of cohesion between particles. In a third part, we validated
our coupling approach for modeling complex events such as crack propagation and wear
formation, incorporating cohesion between particles. Coupled simulations were com-
pared to pure DEM simulations, showing similar results but at a faster computational
pace.

While this coupling method is efficient in many situations, it has a drawback: the
evolution of the third-body is limited by the size of the discrete domain. To address this
challenge, the last part of the thesis introduces an adaptive coupling method that allows
the discrete domain to dynamically expand based on its deformation. This expansion
happens when significant deformation occurs near the bridging region. To decide when
to expand the domain, a criterion based on the average change of neighbors for each
particle is implemented, in a detection region located ahead of the coupling region. A
challenging aspect of this adaptive approach is the introduction of new particles.

The approach was tested using three models: a first model considering a small DEM
region with a non-adaptive coupling, a second model considering a small DEM region
with an adaptive coupling, and a third model featuring a large DEM region with an
adaptive coupling. In the case of a small DEM domain with a non-adaptive coupling, a
crack propagated in the bridging region, leading to unrealistic results, and emphasizing
the importance of adaptivity. Additionally, the model with a small DEM domain and
an adaptive coupling performs similarly to the one with a large DEM domain and an
adaptive coupling, validating our adaptive strategy. This adaptive method was also
applied to a Molecular Dynamics (MD) domain. Finally, this approach was used to
investigate the impact of elliptical rigid bodies on the evolution of third-body thickness
and frictional properties. As expected, if enough rigid bodies are introduced at the
interface, they behave as solid lubricant.

7.2 Perspectives

The main goal of this thesis was to develop an adaptive FEM-DEM coupling to model
the evolution of third bodies. The following discussion centers on future work and
perspectives.

While the code operates in three dimensions, the evolution of the third-body has
primarily been studied in quasi-2D, with a minimal dimension along the third axis (only
Chapter 4 addresses a true three-dimensional system). To enable modeling of larger
domains, especially for a three-dimensional system, the code’s parallelization needs to
be implemented. The code LibMultiScale (LM) [10] realizes the coupling between the
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discrete and continuum domains, using LAMMPS [89] for discrete domain calculations
and Akantu [7]| for the continuum domain calculations. Given that both LAMMPS
and Akantu are already parallelized, making LM’s parallelization functional should be
achievable.

Brink et al. |22] demonstrated through MD simulations that the third-body evolves
in unique ways in three dimensions. They showed how quasi-spherical particles grow
from material detaching from the surfaces, leading to the formation of cylinders, that
later bridge together.

Hence, one of the primary applications of our approach could be to investigate the
evolution of the third-body in three dimensions. This exploration would allow us to
understand how frictional properties and the third-body regime vary between 2D and
3D settings, and to determine if specific particle formations occur in 3D. Additionally,
a parametric study could be conducted to explore variations in parameters, including
the material properties of the third-body.

Several industrial applications can benefit from this methodology, such as machining.
In machining, an important aspect is the cutting of the surface while sliding. The
evolution of the microstructure of the surface, caused by sliding and cutting, has been
studied using MD [103]; however, due to the high computational cost of MD, only
small-scale studies are feasible. Using our FEM-DEM coupling, larger systems can be
modeled with accurate boundary conditions that more closely resemble actual industrial
processes. Additionally, the adaptivity of the method would allow crack propagation to
be accurately captured and at a lower computational cost. Other applications, including
the insertion of solid lubricants at the contact interface, could further extend the work
presented in Chapter 6. Exploring various shapes and sizes of solid lubricants could be
part of this investigation. Finally, applications relevant to the geomechanics community,
such as gouge response to stick slip events, could be explored with specific loading
conditions and material properties.
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