
Technology-Aware Logic Synthesis for
Superconducting Electronics

Rassul Bairamkulov, Siang-Yun Lee, Alessandro Tempia Calvino,
Dewmini Sudara Marakkalage, Mingfei Yu, and Giovanni De Micheli

Integrated Systems Laboratory, EPFL
Lausanne, Switzerland

giovanni.demicheli@epfl.ch

Abstract—Superconducting electronics provide us with cryo-
genic digital circuits that can rival established technologies in
performance and energy consumption. Today, the lack of tools
for the design of large-scale integrated superconducting circuits
is a major obstacle to their deployment. Few research institutions
and companies have contributed to making such tools available.
This review focuses on methods, algorithms, and open-source
design tools for logic synthesis of superconducting circuits in two
major families: single-flux quantum (SFQ) circuits and adiabatic
quantum flux parametron (AQFP).

I. INTRODUCTION

Superconducting electronics (SCE) offer effective solutions
to the challenges faced by modern CMOS systems, particularly
stagnating clock frequencies and prohibitive power density.
SCE systems can achieve 100× lower operating power and
10-100× higher clock frequencies than CMOS. Furthermore,
SCE systems operate at cryogenic temperatures with millivolt-
level signals, producing minimal noise. Whereas this paper
deals with superconductive electronic digital circuits only,
superconducting sensors and communication primitives can
also be realized. These advantages have led to SCE appli-
cations in areas such as high-resolution sensors for medical
and scientific measurements, fast signal processing for wireless
communications, and interfacing with superconductive qubits
for quantum computing.

Despite these successful applications, the scope of SCE
applications remains narrow as compared to its potential. Most
circuits have been designed with abundant human intervention.
To reap the benefits of the technology by scaling circuits up
in complexity, new electronic design automation (EDA) tools
are required, as conventional EDA tools for CMOS are not
well-suited for SCE due to fundamental differences between
the two technologies.

II. BACKGROUND

Modern SCE technology is based on two major supercon-
ductive effects, namely, Josephson effect and magnetic flux
quantization. The fundamental building block of any SCE
system is a Josephson junction (JJ), consisting of supercon-
ductors separated by a barrier. A current I propagates through
the barrier without any voltage drop (Josephson effect), if
its magnitude is below the critical current Ic, determined by
the JJ dimensions and fabrication technology. Increasing the
current above Ic disrupts the superconductive mode, producing

voltage across the JJ. An example is given in Fig. 1. The
voltage pulse with an area of Φ0 = h

2e ≈ 2.07mV×ps is
produced, commonly referred to as a Single-Flux Quantum
(SFQ) pulse. These pulses encode information in Rapid Single-
Flux Quantum (RSFQ) technology, described in Section II-A.
Magnetic flux Φ through a superconducting loop only exists
as an integer multiple of Φ0. The current within such a loop
adjusts to satisfy this condition. This effect is exploited to
amplify input current in Adiabatic Quantum-Flux Parametron
(AQFP) technology described in Section II-B.

A. SFQ

The Rapid Single-Flux Quantum (RSFQ) technology was
developed in the late 1980s by K.Likharev and Semenov [1].
Information is carried by voltage pulses: a single pulse encodes
logic 1 and the absence of a pulse encodes logic 0. The
fundamental structure of RSFQ systems is a storage loop,
illustrated in Fig. 1b. The external bias current flows through
junction J0, bringing J0 close to the critical current. This state
of the loop encodes logic 0. An SFQ pulse at the terminal D
increases the current beyond the critical value. J0 becomes
resistive, redirects the bias current towards J1 and becomes
superconductive again. The magnetic flux through the loop
becomes Φ0, encoding logic 1.

•••

Ib

a)

Ib

J1J0

D

b)

clk

Q

Ib

J1J0

D

J2

c)
Fig. 1: Basic SCE structures. a) Josephson junction (JJ). If the bias
current Ib through the junction is small, no voltage drop across the
junction occurs. Increasing Ib over critical value Ic causes JJ to
switch, producing an SFQ pulse opposing the bias current. b) Storage
loop. Initially, small bias current flows through J0, denoting the
logical 0. An SFQ pulse at input D switches J0 and redirects the
bias current towards J1, storing logical 1. c) The D flip-flop operates
similarly to the storage loop. An incoming clk pulse will switch J2

if the state is 0. If the state is 1, J1 switches and produces an SFQ
pulse at Q.



JB

J0
D

A

B

JAI0

a)

Q
Jx

A

B
JB

JA
I0

b)
Fig. 2: a) Splitter gate duplicating an SFQ pulse into two branches.
b) Merger gate (confluence buffer) directing SFQ pulses towards a
common output branch. I0 denotes the bias current injection.

To determine the state of the loop, an SFQ pulse is applied
at the input clk, increasing the current through J1 and J2,
as shown in Fig. 1c. If the loop state is 0, J1 is not biased
and junction J2 reaches its critical current first, producing
no effect on the storage loop. If the loop state is 1, J1
switches, redirecting the bias current towards J0. An SFQ
pulse produced by J1 travels towards the output Q. Due to
this operating principle, this structure is called a D-flip-flop.
Note that it is equivalent to a clocked buffer.

Due to the quantized nature of an SFQ pulse, producing
multiple fanout requires a splitter, converting a single input
pulse into two identical output pulses, as shown in Fig. 2a. By
reversing the splitter, a merger structure is produced, directing
the input pulses to a single output, as shown in Fig. 2b. By
arranging the loops, splitters, and mergers, a variety of gates
can be produced, including NOT, XOR, AND, and OR [2].
Most of these gates require clock signal to produce logic
output and thus necessitate gate-level pipelining [3]. The gate-
level pipelining however significantly complicates the logic
synthesis, requiring the fanins of each gate to have equal
logic depth. This issue, called path balancing, requires dummy
DFFs to be inserted into the circuit. The number of DFFs and
spli tters can be very large, occupying a significant portion of
an SCE circuit layout. For example, in Figs. 3a-3b, a splitter
and four DFFs are required to transform the CMOS circuit to
its SFQ equivalent. A major task of EDA tools is to insert a
minimal number of elements as described in the sequel. Note
that in RSFQ the splitters are not clocked, and so balancing
and splitter insertion can be performed independently. A few
modifications of SFQ technology are in use today; particularly
ERFSQ [4] and eSFQ [5]. These technologies differ from
RSFQ [1] in their biasing structure. Therefore their logic

design principles are essentially the same and are described
in Section III.

B. AQFP

Adiabatic quantum-flux parametron (AQFP) is a supercon-
ducting electronics technology developed by N. Yoshikawa
and coworkers at Yokohama National University [6], where the
fundamental cell is a buffer and consists of two coupled loops,
as illustrated in Fig. 4. Such loops are magnetically coupled
to a clock line that serves as an adiabatic power supply to
the buffer, as well as to the output stage. The buffer input
is a current pulse and its direction corresponds to either a
logic 1 or a logic 0. Similarly the output is a current pulse.
Information is stored in either loop, and transitions happen
as clock transitions enable the circuit. By operating in the
adiabatic mode, AQFP circuits achieve very small dynamic
power consumption [7].

A majority-3 (MAJ3) logic gate can be constructed by
combining three buffer cells with a 3-to-1 branch cell, from
which other logic gates, such as the AND gate and the OR gate,
can be built with constant cells (biased buffer cells). Input
negation of logic gates is realized using a negative mutual
inductance and is of no extra cost [8]. The commonly-used
cost metric of AQFP circuits is the JJ count. A buffer costs 2
JJs, a branch cell incurs no JJ cost, and a logic gate based on
majority-3 costs 6 JJs [8].

As in RSFQ, every gate in an AQFP circuit is clocked, and
all input signals have to arrive in the same clock cycle. Thus
the circuit needs to be balanced. Moreover, the output signal
of AQFP logic gates cannot directly feed multiple fanouts.
Instead, splitters are placed at the output of multi-fanout gates
to amplify the output current. Unlike RSFQ, splitters in AQFP
circuits are clocked and so the balancing and splitter insertion
problems are intertwined, as shown in Fig 3c. Techniques for
AQFP logic synthesis are described in Section IV.

III. DESIGN OF SFQ CIRCUITS

Conventional academic and commercial design flows offer
little support for SCE design, as models, operations, cell layout
and interconnect issues are very different from CMOS. In this
section, we review some of the recent progress.

b

c

d

f

a

a)

b

c

d

f

a

s

b)

b

c

d

f

a

SPL

SPL

SPL

c)
Fig. 3: a) An example of a CMOS circuit. b) Equivalent RSFQ circuit with a splitter and four path balancing DFFs. c) Equivalent AQFP
circuit with three splitters and two buffers. The XOR gate is not available in AQFP technology and is realized with two AND gates. Note
that all AQFP gates are clocked but the clock input is typically omitted in the literature.



Ix

J0

L1 L0

LqJ1

Iin

k1 k0

Lout

kout

Lin

Fig. 4: AQFP buffer. The AC current Ix energizes the loop J1-L1-
L0-J0. The input current Iin induces a flux quantum to be stored in
the left loop (logic 1) or right loop (logic 0). A current is produced
through Lq with the same direction as Iin and is inductively coupled
to the output.

A. Modeling, physical design and simulation

Due to the peculiar information encoding, SCE intercon-
nects operate differently from the CMOS interconnects. For
example, a simple wire can only transfer an SFQ signal
over a short distance before attenuation renders the pulse
undetectable [9]. Placement and routing (P&R) tools however
require interconnects of arbitrary length [10]. Therefore, early
superconductive cell libraries, such as CONNECT [11] do not
support automated P&R. The advent of passive transmission
lines (PTL) [12] enabled reliable large-distance transfer of
SFQ signals. To ease the design process, modern SCE cell
libraries include PTL drivers and receivers in the standard
cell [9], [13], [14]. In addition, standard cell dimensions
are adjusted to support grid-based routing [15], [16]. These
innovations enabled the development of SCE-specific routing
tools, including qPlace [17] and JRouter [18], as well as the
tools for clock distribution network design [19], [20].

The core circuit simulation tool for most conventional
electronic systems, SPICE, offers limited support for JJs [21].
Based on the resistively and capacitively shunted junction
(RCSJ) model [22], [23], a number of specialized circuit
simulators have been developed, including JSIM [24], PSCAN
[25], [26], WRspice [21], and JoSIM [27]. PSCAN and WR-
spice also support more accurate (but more computationally
expensive) tunneling junction model (TJM) [28], [29] offering
superior accuracy, particularly in modern fabrication technolo-
gies with high critical current density [30].

B. Logic synthesis for SFQ

Logic synthesis optimizes a gate-level description based on
graphs properties and cost functions that correlate with the
quality of the final circuit. On the one hand, a synthesis that
is technology-aware has several advantages since it closely
reflects the underlying technology, better correlating with
quality improvements. On the other hand, synthesis should
work on simple data structures composed of a few primitives

to easily navigate the graph, extract properties, and apply
Boolean rules.

Traditional technology-independent logic synthesis for
CMOS systems is mostly based on the and-inverter
graph (AIG), due to its simplicity, versatility, and correlation
with the cost at transistor level [31]. Unlike CMOS, however,
most 2-input logic cells in SFQ have similar implementation
costs. In particular, XOR cells demonstrate a similar level
of efficiency as AND cells. Based on this observation, a
technology-independent synthesis flow for SFQ on xor-and
graphs (XAGs) was proposed in [32] to better correlate to the
technology. XAGs are more compact than AIGs since they
contain one additional primitive, which is implemented using
three 2-input AND gates in AIGs. Consequently, circuits repre-
sented by XAGs tend to be smaller and shallower. Moreover,
XAGs offer more opportunities to restructure logic through
additional rewriting rules and Boolean methods.

The performance of SFQ circuits highly depends on the
number of logic levels, since each gate is clocked. Moreover,
delay optimization helps to minimize the number of necessary
balancing DFFs. Intuitively, longer critical paths require more
DFF cells due to longer paths to balance. Consequently, logic
synthesis for SFQ needs to implement a logic restructuring
flow that primarily focuses on delay-oriented optimization.
Additionally, logic sharing needs careful evaluation since it
may produce high fanouts, which translate into high splitting
costs.

Multiple synthesis algorithms and a flow based on the XAG
representation of logic have been proposed in [32]. The flow
interleaves specialized delay-oriented optimization methods
with area-oriented ones. To describe the initial logic as an
XAG, a versatile graph mapping algorithm [33] is employed.
This method maps an initial graph representation into an
arbitrary one using pre-computed structures, while optimizing
for area and delay. It has been shown that this algorithm
leads quickly to a good-quality XAG without involving many
sophisticated optimization steps. Then, delay-oriented opti-
mization is applied that combines three strategies:

• Algebraic rewriting applies the associativity, distributivity,
and commutativity axioms of Boolean algebra over the
primitives AND2 and XOR2 to minimize the depth

• ESOP balancing collapses sections of the circuit into opti-
mized exclusive-sum-of-products (ESOPs) and decomposes
them into XAGs using Huffman decomposition while min-
imizing the depth

• XAG remapping rewrites the entire network to minimize the
depth using the versatile mapper [33].

Finally, we apply area recovery based on XAG-based rewriting
and resubstitution.

The methods presented in this section lead to a solid
logic synthesis framework capable of leveraging the logic
primitives of SFQ circuits and addressing technology-specific
SFQ quality metrics early on in the EDA flow.



CB

s

CB

s

AA AS SA AA

a)

b

c

d

f

a

s

m

b)
Fig. 5: a) Generic compound gate structure. b) Compound-gate realization of a
network in Fig. 3 with no path balancing DFFs.

3

1

b

c

d

f0

a

1

2

s0

0

0

0

Fig. 6: Four-phase realization of network in Fig. 3
with no path balancing DFFs. The numbers indicate
the phase of each clocked gate.

C. Technology mapping, path balancing and splitter insertion

After technology-independent optimization, technology
mapping describes the optimized network in terms of the
connection of cells from an SFQ cell library. This process
involves 3 steps: mapping to cells, path balancing, and splitter
insertion.

One of the earliest works in this area is PBMap [34],
which roughly estimates the cost of path balancing during
mapping. The state-of-the-art method [32] adopts a direct
mapping strategy that starts from XAGs as the subject graph.
To achieve reduced latency and area, the mapper is configured
to prioritize performance. To further enhance the quality of
the mapping and minimize delays, supergates [35], i.e., pre-
computed connection of cells, or compound gates [36] have
been used in literature [3], [32], [34].

Afterwards, SFQ circuits are path-balanced by inserting
DFFs. In [3], [32], DFFs are inserted by placing them ASAP,
i.e., ensuring that the arrival times at each cell’s input are syn-
chronized (balancing constraint), while maintaining the same
delay (ASAP balancing policy). To optimize the area, DFFs
among nodes connected to the same input node at the same
clock level are shared. After initial insertion, post-optimization
of balancing DFFs has been proposed in [37] using minimum-
area retiming [38], leading to a minimal number of balancing
DFFs. Finally, any instance of multiple fanout is replaced with
a balanced tree of splitters to address the fanout constraint.

After technology mapping, technology-dependent logic syn-
thesis algorithms can further optimize the logic while account-
ing for balancing and splitting costs. For instance, in [39] the
authors extended classical synthesis algorithms to consider
balancing costs, thus applying logic transformations that re-
duce the number of balancing DFFs. Additionally, a large part
of the methods in this section are adopted in the industrial
flow for RSFQ circuits proposed in [40].

D. Gate compounding

The design of larger gates, as compositions of smaller ones,
is a way to counter the inherent limitations of path balancing
and achieve lower latency. Whereas most SFQ logic cells
are synchronous, some others operate without synchronization
mechanisms. Examples are the splitter and the merger cells.
The recent introduction of the gate compounding technique
[3], [36], leverages synchronization mechanisms of SFQ cells
to realize more complex functionalities within fewer clock

cycles. The primary innovation of this method is the classifica-
tion of gates into three types – AA, AS, and SA – depending on
whether inputs and outputs are synchronized. Asynchronous-
asynchronous (AA) gates, such as the merger and split-
ter, handle data immediately upon arrival and release the
outputs shortly afterwards. Asynchronous-synchronous (AS)
gates, such as the DFF, NOT, and XOR2, process inputs
immediately but release the computation after the clock signal.
Synchronous-asynchronous (SA) gates, such as asynchronous
AND2 and OR2 cells based on the merger, require inputs to
arrive simultaneously for immediate processing and output.

Gate compounding combines these three gate types to
produce complex functionalities while minimizing the number
of synchronization mechanisms required, with benefits in
performance and sometimes also in area. The compound gate
is composed of four stages of logic as shown in Figure 5.
According to this structure, an AS gate synchronizes the inputs
arriving at the SA gate, as required by the latter. Traditional
SFQ systems ensure this requirement by adding input DFFs
to SA cells. In gate compounding, AS cells replace DFFs,
expanding the range of logic functions possible in a single
clock cycle. This enables the creation of complex gates such as
XNOR2 and NIMPLY2. Applications of compound gates have
been shown to produce up to 53% faster circuits compared to
the conventional SFQ ones [3].

E. Multiphase clocking

Multi-phase clocking (MPC) is a synchronization technique
that uses multiple clock signals with an identical clock period.
This approach was first effectively demonstrated for path
balancing in SFQ systems by Li et al. [41]. In an n-phase
system, periodic signals ti, with i ∈ [0, n − 1], operate
at the same frequency but with different phases, typically
uniformly spaced as 2πi

n . Each clocked element g is assigned
to a phase φ(g). Utilizing this strategy, a new logic synthesis
flow supporting multi-phase clocking was introduced in [42].
This framework extends MPC to compound gates and supports
retiming and DFF insertion. This novel approach complements
the state-of-the-art SFQ logic synthesis methods achieving
superior area.

A major advantage provided by multi-phase clocking is
the finer control of the signal arrival time. This capability
enables the use of highly-expressive SFQ gates that rely on
the precise order of input arrival. For instance, a full-adder,
frequently occurring in practical logic networks [43], can be



realized using the SFQ T1-flip-flop, requiring 60% smaller
area compared to its regular realization. The T1-flip-flop,
however, requires the inputs to never arrive simultaneously,
greatly complicating its use. This condition can be efficiently
satisfied using multi-phase clocking, as demonstrated in [44],
where the area of arithmetic circuits is reduced by up to 25%.

IV. SYNTHESIS OF AQFP CIRCUITS

AQFP design requires both path balancing and splitter
insertion. As mentioned before, AQFP splitters are clocked,
making the two design problems entangled. Moreover, the
basic computing element in AQFP is the majority gate, and
complementation is achieved with zero cost. This makes the
majority-inverter graph (MIG) [45] a perfect logic represen-
tation for AQFP synthesis.

A. MAJ-based logic synthesis

The MIG is a homogeneous logic network where each
node represents a MAJ3 gate and optional inverters can be
placed on edges. MIGs have been used for the optimization of
both CMOS-based and emerging technologies, either for their
advantage in depth optimization or because the underlying
technology is majority-based, like AQFP. An MIG can be
translated directly from an AIG by replacing each AND2 gate
with a MAJ3 gate with a constant-0 input. Alternatively, in
[33], a versatile graph mapping algorithm is proposed, which is
capable of mapping from and to any network types, including
MIGs, while optimizing for depth and/or size in the process
and leveraging Boolean don’t cares [46].

Similar to XAG discussed in the previous section, many
logic optimization algorithms tailored for MIGs have been pro-
posed. Algebraic rewriting applies special Boolean algebraic
rules to reduce MIG depth [45]. MIG-based resubstitution
resynthesizes a small part of the network using majority gates
to reduce MIG size [47]. Boolean rewriting [46] replaces small
sections of the network with size-optimum implementations. In
[48], these algorithms are first combined to form a MAJ-based
logic synthesis flow for AQFP synthesis. By using MIGs, there
is no need for an extra step of technology mapping for AQFP
circuits. Instead, only buffer and splitter insertion is needed
before physical design. Furthermore, in [49], optimal databases
consisting of MAJ3, MAJ5, buffers, and splitters are used to
optimize AQFP circuits considering the technology constraints
at the same time.

B. Fanout-bounded synthesis

Given a logic network, as well as fanout bounds and area
costs of different gate/buffer types, the goal of Fanout Bounded
Synthesis (FBS) is to synthesize the network through dupli-
cations of gates and insertion of buffers such that all fanout
constraints are met. Considering AQFP splitters as buffers with
bounded fanout capacity, in [50], the buffer and splitter (B/S)
insertion problem is considered as an FBS problem in the unit
delay model with the additional requirement of path-balancing.

For a given target delay, considering 1) the number of
duplicates of each gate in each level, and 2) the number

of buffers associated with each gate at each level as integer
variables, an integer linear program (ILP) formulation is
presented in [50] to obtain the optimum area solutions. The
results obtained from the exact method show that it is possible
to simultaneously achieve better delays and area by allowing
duplication of gates. Additionally, [50] also introduced a
scalable heuristic FBS algorithm for AQFP synthesis using
a top-down approach, where gate and buffer counts of each
level are decided, starting from the primary output side and
continuing towards primary inputs.

C. Buffer and splitter insertion

In [51], it is shown that the AQFP B/S insertion problem
is a scheduling problem. A schedule is a level assignment to
each node in the network. With the proposal of an irredundant
B/S insertion algorithm that is size-optimal subject to a given
schedule, the B/S insertion problem is equivalent to finding
a legal schedule and optimizing the schedule. In [52], a
depth-optimal, linear-time scheduling algorithm is proposed.
Using a depth-optimal legal schedule as the starting point, two
orthogonal heuristic optimization algorithms can be applied to
further optimize the B/S count: chunked movement tries to
move groups of tightly connected nodes together [51], and
retiming [52] leverages an existing register retiming algorithm
to reduce the number of buffers. These algorithms form
an AQFP legalization and optimization flow, consisting of
first obtaining a depth-optimal schedule and then iteratively
optimizing it.

D. Sequential designs and constraint relaxation

In [53], an overview of AQFP sequential circuit design is
presented, and the authors discuss how architectural clocking
and register design affect the technology constraints. The
commonly-adopted constraint formulation is sometimes too
conservative and relaxations to the constraints are proposed.
To be more specific, the path-balancing constraint, which
requires all inputs ni to a gate n to be placed at exactly
one level below (l(ni) = l(n) − 1), can be relaxed to the
phase alignment constraint, which only asks for a similar
relation for the clock phases assigned to each gate. In other
words, the modulus of pclk, the number of phases per (gate-
level) clock cycle decided by the clocking scheme (usually
3 or 4), is taken on both sides of the constraint equation
(l(ni) mod pclk = (l(n)−1) mod pclk). This means long chains
of buffers can be removed. Experiments show that adopting
the relaxed constraints reduces 73% of buffers on average,
and up to 90% in some particularly imbalanced benchmarks.
Trade-offs are possible when the constraints are relaxed.

V. CONCLUSIONS

This paper has described SCE technologies for digital
design, with a major emphasis on RSFQ and AQFP, as well
as highlighting some recent methods for logic synthesis of
these circuits in a brief and comparative way. The methods
described are fully detailed in the literature. In particular, the
software packages produced by the Authors are available at



[54] as open source, and detailed results are presented in [3],
[32], [33], [36], [42]–[53], [55], [56] and not reported here
for lack of space. Overall, these tools do not yet provide a
comprehensive flow for digital SCE design, but show already
how far can EDA support the solution of key point problems
for SCE design. We consider this area as quite timely and
challenging and as an enabler for the realization of fast data
processing systems.

VI. ACKNOWLEDGMENTS

This work was supported in part by the SNF grant “Super-
cool: Design methods and tools for superconducting electron-
ics”, 200021 1920981 and by Synopsys Inc.

REFERENCES

[1] K. K. Likharev and V. K. Semenov, “RSFQ Logic/Memory Fam-
ily: A New Josephson-Junction Technology for Sub-Terahertz-Clock-
Frequency Digital Systems,” IEEE TASC, 1991.

[2] P. Bunyk, K. Likharev, and D. Zinoviev, “RSFQ Technology: Physics
and Devices,” Int. J. High Speed Electron. Syst., 2001.

[3] R. Bairamkulov, A. Tempia Calvino, and G. De Micheli, “Synthesis of
SFQ Circuits with Compound Gates,” Proc. VLSI-SoC, 2023.

[4] D. Kirichenko, A. Kirichenko, and S. Sarwana, “No Static Power
Dissipation Biasing of RSFQ Circuits,” IEEE TASC, 2010.

[5] O. A. Mukhanov, “Energy-Efficient Single Flux Quantum Technology,”
IEEE TASC, 2011.

[6] N. Yoshikawa, D. Ozawa, and Y. Yamanashi, “Ultra-Low-Power Super-
conducting Logic Devices Using Adiabatic Quantum Flux Parametron,”
Proc. SSDM, 2011.

[7] N. Takeuchi et al., “An Adiabatic Quantum Flux Parametron as an
Ultra-Low-Power Logic Device,” Supercond. Sci. Technol., 2013.

[8] N. Takeuchi, Y. Yamanashi, and N. Yoshikawa, “Adiabatic Quantum-
Flux-Parametron Cell Library Adopting Minimalist Design,” J. Appl.
Phys., 2015.

[9] Y. Kameda, S. Yorozu, and Y. Hashimoto, “A New Design Method-
ology for Single-Flux-Quantum (SFQ) Logic Circuits Using Passive-
Transmission-Line (PTL) Wiring,” IEEE TASC, 2007.

[10] C. J. Fourie et al., “Design and Characterization of Track Routing
Architecture for RSFQ and AQFP Circuits in a Multilayer Process,”
IEEE TASC, 2020.

[11] S. Yorozu et al., “A Single Flux Quantum Standard Logic Cell Library,”
Physica C Supercond., 2002.

[12] T. Jabbari et al., “Interconnect Routing for Large-Scale RSFQ Circuits,”
IEEE TASC, 2019.

[13] S. Rylov et al., “Superconducting VLSI Logic Cell Library Using
DC-Powered Clockless Dynamic SFQ Gates and ASIC-Style Layout
Template,” IEEE TASC, 2023.

[14] H. Akaike et al., “Design of Single Flux Quantum Cells for a 10-Nb-
Layer Process,” Physica C Supercond., 2009.

[15] S. Nath et al., “An Automated Place and Route Methodology for
Asynchronous SFQ Circuit Design,” Proc. ISEC, 2019.

[16] S. K. Tolpygo et al., “Properties of Unshunted and Resistively Shunted
Nb/AlOx-Al/Nb Josephson Junctions with Critical Current Densities
from 0.1 to 1 mA/µm2,” IEEE TASC, 2017.

[17] M. Pedram, “Superconductive Single Flux Quantum Logic Devices and
Circuits: Status, Challenges, and Opportunities,” Proc. IEDM, 2020.

[18] X. Chen et al., “JRouter: A Multi-Terminal Hierarchical Length-
Matching Router under Planar Manhattan Routing Model for RSFQ
Circuits,” Proc. GLSVLSI, 2023.

[19] R. Bairamkulov, T. Jabbari, and E. G. Friedman, “QuCTS — Single-
Flux Quantum Clock Tree Synthesis,” IEEE TCAD, 2022.

[20] C.-C. Wang and W.-K. Mak, “A Novel Clock Tree Aware Placement
Methodology for Single Flux Quantum (SFQ) Logic Circuits,” Proc.
ICCAD, 2021.

[21] S Whiteley, “WRspice Circuit Simulator,” 2017.
[22] W. C. Stewart, “Current-Voltage Characteristics of Josephson Junctions,”

Appl. Phys. Lett., 1968.
[23] D. E. McCumber, “Effect of AC Impedance on DC Voltage-Current

Characteristics of Superconductor Weak-Link Junctions,” J. Appl. Phys.,
1968.

[24] E. S. Fang and T. Van Duzer, “A Josephson Integrated Circuit Simulator
(JSIM) for Superconductive Electronics Application,” Proc. ISEC, 1989.

[25] S. Polonsky, V. Semenov, and P. Shevchenko, “PSCAN: Personal
Superconductor Circuit Analyser,” Supercond. Sci. Technol., 1991.

[26] S. Polonsky et al., “PSCAN’96: New Software for Simulation and
Optimization of Complex RSFQ Circuits,” IEEE TASC, 1997.

[27] J. A. Delport et al., “JoSIM—Superconductor SPICE Simulator,” IEEE
TASC, 2019.

[28] A. Odintsov, V. Semenov, and A. Zorin, “Specific Problems of
Numerical Analysis of the Josephson Junction Circuits,” IEEE Trans.
Magn., 1987.

[29] D. R. Gulevich, “MiTMoJCo: Microscopic Tunneling Model for
Josephson Contacts,” Comput. Phys. Commun., 2020.

[30] S. Whiteley et al., “Observations in Use of a Tunnel Junction Model in
Simulations of Josephson Digital Circuits,” IEEE TASC, 2022.

[31] A. Tempia Calvino et al., “Improving Standard-Cell Design Flow Using
Factored Form Optimization,” Proc. DAC, 2023.

[32] A. Tempia Calvino and G. De Micheli, “Algebraic and Boolean Methods
for SFQ Superconducting Circuits,” Proc. ASP-DAC, 2024.

[33] A. Tempia Calvino et al., “A Versatile Mapping Approach for Technol-
ogy Mapping and Graph Optimization,” Proc. ASP-DAC, 2022.

[34] G. Pasandi and M. Pedram, “PBMap: A Path Balancing Technology
Mapping Algorithm for Single Flux Quantum Logic Circuits,” IEEE
TASC, 2019.

[35] S. Chatterjee et al., “Reducing Structural Bias in Technology Mapping,”
Proc. ICCAD, 2005.

[36] R. Bairamkulov and G. De Micheli, “Compound Logic Gates for
Pipeline Depth Minimization in Single Flux Quantum Integrated Sys-
tems,” Proc. GLSVLSI, 2023.

[37] N. K. Katam and M. Pedram, “Logic Optimization, Complex Cell
Design, and Retiming of Single Flux Quantum Circuits,” IEEE TASC,
2018.

[38] C. E. Leiserson and J. B. Saxe, “Retiming Synchronous Circuitry,”
Algorithmica, 1991.

[39] G. Pasandi and M. Pedram, “Balanced Factorization and Rewriting
Algorithms for Synthesizing Single Flux Quantum Logic Circuits,” Proc.
GLSVLSI, 2019.

[40] E. Mlinar et al., “An RTL-to-GDSII Flow for Single Flux Quantum
Circuits Based on an Industrial EDA Toolchain,” IEEE TASC, 2023.

[41] X. Li et al., “Multi-Phase Clocking for Multi-Threaded Gate-Level-
Pipelined Superconductive Logic,” Proc. ISVLSI, 2022.

[42] R. Bairamkulov and G. D. Micheli, “Towards Multiphase Clocking in
Single-Flux Quantum Systems,” Proc. ASP-DAC, 2024.

[43] A. Tempia Calvino and G. De Micheli, “Technology Mapping Using
Multi-Output Library Cells,” Proc. ICCAD, 2023.

[44] R. Bairamkulov, M. Yu, and G. De Micheli, “Efficient Full Adders in
SFQ Arithmetic Circuits,” Proc. DATE, 2024.

[45] L. G. Amarù, P.-E. Gaillardon, and G. De Micheli, “Majority-Inverter
Graph: A New Paradigm for Logic Optimization,” IEEE TCAD, 2016.

[46] A. Tempia Calvino and G. De Micheli, “Scalable Logic Rewriting Using
Don’t Cares,” Proc. DATE, 2024.

[47] S.-Y. Lee and G. De Micheli, “Heuristic Logic Resynthesis Algorithms
at the Core of Peephole Optimization,” IEEE TCAD, 2023.

[48] E. Testa et al., “Algebraic and Boolean Optimization Methods for AQFP
Superconducting Circuits,” Proc. ASP-DAC, 2021.

[49] D. S. Marakkalage, H. Riener, and G. De Micheli, “Optimizing
Adiabatic Quantum-Flux-Parametron (AQFP) Circuits Using an Exact
Database,” Proc. NANOARCH, 2021.

[50] D. S. Marakkalage and G. De Micheli, “Fanout-Bounded Logic
Synthesis for Emerging Technologies,” IEEE TCAD, 2023.

[51] S.-Y. Lee, H. Riener, and G. De Micheli, “Beyond Local Optimality of
Buffer and Splitter Insertion for AQFP Circuits,” Proc. DATE, 2022.

[52] A. Tempia Calvino and G. De Micheli, “Depth-Optimal Buffer and
Splitter Insertion and Optimization in AQFP Circuits,” Proc. ASP-DAC,
2023.

[53] S.-Y. Lee, C. L. Ayala, and G. De Micheli, “Impact of Sequential Design
on The Cost of Adiabatic Quantum-Flux Parametron Circuits,” IEEE
TASC, 2023.

[54] M. Soeken et al., “The EPFL Logic Synthesis Libraries,”
https://github.com/lsils/mockturtle arXiv:1805.05121v3, 2018.

[55] G. De Micheli, “Logic Synthesis for Emerging Technologies,” Proc.
ASICON, 2023.

[56] G. Meuli et al., “Majority-Based Design Flow for AQFP Superconduct-
ing Family,” Proc. DATE, 2022.


