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ABSTRACT
Graph neural networks (GNNs) have demonstrated promising performance across various chemistry-related tasks. However, conventional
graphs only model the pairwise connectivity in molecules, failing to adequately represent higher order connections, such as multi-center
bonds and conjugated structures. To tackle this challenge, we introduce molecular hypergraphs and propose Molecular Hypergraph Neural
Networks (MHNNs) to predict the optoelectronic properties of organic semiconductors, where hyperedges represent conjugated structures. A
general algorithm is designed for irregular high-order connections, which can efficiently operate on molecular hypergraphs with hyperedges of
various orders. The results show that MHNN outperforms all baseline models on most tasks of organic photovoltaic, OCELOT chromophore
v1, and PCQM4Mv2 datasets. Notably, MHNN achieves this without any 3D geometric information, surpassing the baseline model that
utilizes atom positions. Moreover, MHNN achieves better performance than pretrained GNNs under limited training data, underscoring its
excellent data efficiency. This work provides a new strategy for more general molecular representations and property prediction tasks related
to high-order connections.

© 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(https://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0193557

I. INTRODUCTION

Graph presentation of molecular structures, also called molec-
ular graphs, finds extensive application in computational chemistry
and machine learning, where atoms are served as nodes and chem-
ical bonds as edges. Graph neural networks (GNNs) are a class of
deep learning models that can handle graph-structured data and are
related to geometric deep learning.1–5 Unlike traditional neural net-
works that operate on regular grids (e.g., images) or sequential data
(e.g., text), GNNs can handle interconnected and non-Euclidean
data, making them suitable for tasks involving graphs with complex
topologies.4 This inherent advantage enables GNNs to directly learn
the complex topological relationships of atoms and chemical bonds
through molecular graphs.6 In recent years, GNNs have demon-
strated excellent molecular representation capabilities and achieved
promising performance on many chemistry-related tasks, such
as molecular property prediction,6–8 drug design,9–11 interatomic

potentials,12–14 spectroscopic analysis,15–17 reaction prediction, and
retrosynthesis.18–20

However, ordinary graphs are limited to modeling pairwise
connectivity within molecular structures, falling short of effectively
representing higher order connections.11,21,22 A substantial number
of molecules have delocalized bonds, such as multi-center bonds23

and conjugated bonds.24 In contrast to classical chemical bonds
localized between pairs of atoms, each delocalized bond involves
three or more atoms.25 As illustrated in Fig. 1(a), two B atoms
and one H atom share two electrons to form a three-center-two-
electron bond, which cannot be represented by a pairwise edge.26

Similarly, conjugated organic molecules like porphyrin in Fig. 1(b)
possess long-range dispersed π electrons beyond the descriptive
capability of conventional edges.24 Therefore, the development of
a more comprehensive graph representation for molecular struc-
tures becomes imperative to address this limitation inherent to
conventional graphs.
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FIG. 1. (a) Diborane structure and its three-center-two-electron bond (B–H–B). (b)
Porphyrin structure and its long-range conjugated bond.

A hypergraph is a generalization of the graph where a hyper-
edge can join any number of nodes.27,28 Due to the innate ability
to capture higher order relationships, hypergraphs can powerfully
model complex topological structures, such as social networks,29

chemical reactions,30 and compound–protein interactions.11,31,32

Hypergraph Neural Networks (HGNs) belong to a category of neural
networks designed to work with hypergraphs and extend the idea of
GNNs to handle hyperedges.28,31 Several studies33,34 have employed
HGNs in the field of chemistry and depicted atoms as hyperedges
and bonds between two atoms as nodes. While these approaches
improve the validity of molecule generation and enhance edge rep-
resentation learning,33,34 they presently do not leverage hyperedges
to articulate high-order connections within molecules. For diverse
molecular structures, especially organometallic complexes, and con-
jugated molecules, hyperedges from hypergraphs are competent to
represent multi-atomic connections like delocalized bonds due to
their inherent advantages.35,36

Conjugated molecules, characterized by alternating single and
multiple bonds along a molecular backbone, play a pivotal role
in photoelectric applications, such as organic light-emitting diodes
(OLEDs) and organic solar cells (OSCs).37,38 Their distinctive advan-
tage stems from the delocalized π electrons within conjugated struc-
tures, which can facilitate charge transport and optical absorption,
establishing them as indispensable components of organic semi-
conductors.38 Although various machine learning models, especially
GNNs, have been developed for predicting optoelectronic prop-
erties and accelerating the design of organic semiconductors,39–42

high-order conjugated connections have still not been properly
modeled.

Herein, we introduce the concept of molecular hypergraphs
and propose a Molecular Hypergraph Neural Network (MHNN)
based on a simple but general message-passing method. MHNN
was implemented to predict the optoelectronic properties of organic
semiconductors where hyperedges represent conjugated structures.
On three photovoltaic-related datasets, MHNN outperforms all
baseline models in most tasks. Despite not using any 3D geo-
metric information, MHNN exhibits better results than 3D-based
models like SchNet,43 which require atom coordinates as input.
Moreover, MHNN possesses high data efficiency even compared
with pretrained models, which could be useful for data-scarce
applications. This work provides a new model for the prop-
erty prediction of complex molecules containing higher order
connections.

II. METHODS
A. Molecular hypergraph

A hypergraph G = (V , E, H, L) is defined by a set of n nodes
V , a set of m hyperedges E, node features H ∈ Rn×d, and hyper-
edge features L ∈ Rm×d′ . Each hyperedge e = {v1, . . . , v∣e∣} is a
subset of V and its order ∣e∣ ≥ 2. In a molecular hypergraph,
it is natural to employ nodes to represent atoms and hyper-
edges to represent pairwise bonds, delocalized bonds, conjugated
bonds, and other higher order associations. It is worth noting
that the definition of hyperedges is important and should be
related to the prediction target. For example, conjugated struc-
tures can substantially affect the light absorption and emission of
molecules, so it is reasonable to describe conjugated bonds with
hyperedges for the prediction of optoelectronic properties (e.g.,
HOMO–LUMO gap).38 Moreover, hyperedges could be defined
by pharmacophores44 or toxicophores45 for predicting molecular
activity or toxicity, as pharmacophores/toxicophores are crucial
components within molecules determining activity/toxicity. In this
work, we show an example of using molecular hypergraphs to
describe conjugated molecules [Fig. 2(a)], where hyperedges are
constructed by pairwise bonds and conjugated bonds. Like ben-
zene (C6H6) containing 12 atoms, six C–H σ bonds, six C–C σ
bonds, and one large delocalized π bond, its molecular hypergraph
consists of 12 nodes, 12 two-order hyperedges, and one six-order
hyperedge.

B. Algorithm
The higher order relations in complex molecules are often very

diverse, that is, the orders of hyperedges in molecular hypergraphs
often vary. For example, the number of atoms contained in a conju-
gated bond can be any integer greater than four. Therefore, model
algorithms should not be limited to hyperedges of a specific order or
within a specific order range. In addition, the model should also have
good extrapolation ability for hyperedges of unseen orders. Inspired
by recent works about hypergraph diffusion algorithms,46,47 we pro-
pose the Molecular Hypergraph Neural Networks (MHNNs) based
on bipartite representations of hypergraphs, which can efficiently
operate on hypergraphs with hyperedges of various orders [Figs. 2(b)
and 2(c)].

The molecular hypergraph is initially transformed into an
equivalent bipartite graph [Fig. 2(b)], wherein two distinct sets of
vertices denote the nodes and hyperedges of the molecular hyper-
graph, respectively. The message passing of MHNN relies on the
bipartite representations converted from molecular hypergraphs.
Each message-passing layer of MHNN is defined in terms of four
differentiable functions f1, f2, f3, and f4. In the t (1 ≤ t ≤ T) step
message passing, the hidden states l(t)e of each hyperedge are updated
based on the messages m(t)v→e from the connected nodes (v ∈ e)
according to

m(t)v→e =∑
v∈e

f1(h(t−1)
v , l(t−1)

e ), (1)

l(t)e = f2(l(t−1)
e , m(t)v→e). (2)
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FIG. 2. (a) The method of constructing molecular hypergraphs for conjugated molecules. (b) The conversion from a hypergraph to an equivalent bipartite graph. (c) The
message-passing method of our MHNN model.

Then, the hidden states h(t)v of each node are updated based on the
messages m(t)e→v from involved hyperedges (e : v ∈ e) according to

m(t)e→v =∑
e:v∈e

f3(l(t)e , h(t−1)
v ), (3)

h(t)v = f4(h(t−1)
v , m(t)e→v), (4)

where h(0)v and l(0)e are derived from initial atom features and bond
features (Appendix B), respectively. After T steps message passing,
the hypergraph-level prediction is calculated in the readout part
based on the final hidden states of nodes and hyperedges (∣e∣ > 2),
according to

ŷ =MLP(∑
v∈G

h(T)v ,∑
e∈G

l(T)e ), (5)

where MLP(⋅) is a multi-layer perceptron. The output ŷ is the
prediction target of MHNN, which can be a scalar or a vector,
depending on whether the prediction task is for a single property or
multiple properties. In this work, four MLPs are used to act as update
functions ( f1, f2, f3, and f4). The schematic diagram of MHNN
architecture is shown in Fig. 3 and Algorithm 1.

C. Input features
For 2D GNN baselines, the atoms features and bond features

designed by Open Graph Benchmark (OGB)48 are used for the ini-
tial features of models. For MHNN, initial atom features are from
OGB,48 and only bond types are used as the initial feature of all
hyperedges. For 3D GNN baselines, only atomic numbers are used
as the initial node feature. The RDKit49 software was used to calcu-
late atomic features and bond features from simplified molecular-
input line-entry system (SMILES) strings and served as input to
MHNN and baseline models. The results of all models come from
single-target regression prediction tasks. More details are listed in
Appendix B.

D. Datasets
The OPV dataset,39 named the organic photovoltaic dataset,

contains 90 823 unique molecules (monomers and soluble small
molecules) and their SMILES strings, 3D geometries, and opto-
electronic properties from density functional theory (DFT) calcu-
lations. OPV has four molecular tasks for monomers, the energy of
the highest occupied molecular orbital (εHOMO), the lowest unoc-
cupied molecular orbital (εLUMO), the HOMO–LUMO gap (Δε),
and the spectral overlap Ioverlap. In addition, OPV has four poly-
meric tasks, the polymer εHOMO, polymer εLUMO, polymer gap
Δε, and optical LUMO OLUMO.39 The more detailed descriptions
and calculation methods of the above properties can be found
in Ref. 39.

The OCELOT chromophore v1 (OCELOTv1) dataset40 com-
prises about 25 000 organic π-conjugated molecules, along with
their optoelectronic and reaction characteristics calculated by pre-
cise DFT or time-dependent DFT (TD-DFT) methods. The dataset
encompasses 15 molecular properties: vertical (VIE) and adiabatic
(AIE) ionization energy, vertical (VEA) and adiabatic (AEA) elec-
tron affinity, cation (CR) and anion (AR) relaxation energy, HOMO
and LUMO energy, HOMO–LUMO energy gap (H–L), electron
(ER) and hole (HR) reorganization energy, and lowest-lying singlet
(S0S1) and triplet (S0T1) excitation energy.

PCQM4Mv250 is based on the PubChemQC project51 and
aims to predict the HOMO–LUMO energy gap of molecules from
SMILES strings. PCQM4Mv2 is unprecedentedly large (>3.8M
graphs) compared to other labeled graph-related databases.

We follow the standard train/validation/test dataset splits from
OPV and PCQM4Mv2 and use random split for the OCELOTv1
dataset. The experimental results are derived from five separate
runs using different random seeds, except for PCQM4Mv2, which
is based on one single random seed run (Table I).

III. RESULTS AND DISCUSSION
In this section, we initially assessed the predictive perfor-

mance of MHNN on optoelectronic properties across three datasets.
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ALGORITHM 1. Algorithm of MHNN.

Require: Molecular hypergraph G = (V , E, H, L)
1: Initialization: Four MLPs ( f1, f2, f3, f4) in each MHNN block, which can share parameters across T layers or not. One MLP in

the output block.
2: for t = 1, 2, . . . , T do
3: Send messages from V to E for all e ∈ E: m(t)v→e = ∑v ∈e f1([h(t−1)

v , l(t−1)
e ])

4: Update hyperedge embeddings l(t)e = f2([l(t−1)
e , m(t)v→e])

5: Send messages from E to V : m(t)e→v = ∑e:v ∈e f3([l(t)e , h(t−1)
v ])

6: Update node embeddings h(t)v = f4([h(t−1)
v , m(t)e→v])

7: end for
8: Hypergraph embedding from nodes: gv = ∑v ∈G h(T)v

9: Hypergraph embedding from hyperedges: ge = ∑e ∈G l(T)e , ∣e∣ > 2
10: ŷ =MLP([gv, ge])

Ensure: ŷ

FIG. 3. The MHNN architecture. ∥ denotes concatenation. The embeddings of nodes and hyperedges are updated in multiple MHNN blocks that can share parameters or
not. The final embeddings of nodes and hyperedges are passed into an output block to generate predictions.

TABLE I. Overview of the datasets.

Dataset Graphs Task type Task number Metric

OPV 90 823 Regression 8 MAE
OCELOTv1 25 251 Regression 15 MAE
PCQM4Mv2 3 746 620 Regression 1 MAE

Among them, the OPV39 and OCELOTv140 datasets consist of con-
jugated molecules and their optoelectronic properties, while the
PCQM4Mv2 dataset was employed to investigate the large-scale
learning capability of MHNN. Subsequently, we explored the data
efficiency of MHNN at different training data sizes.

A. Analysis of datasets
OPV and OCELOTv1 datasets, composed of conjugated

molecules, are utilized to explore the learning ability of MHNN on
conjugated structure and its prediction performance for optoelec-
tronic properties. As shown in Fig. 4(a), the conjugated molecules in
the OPV dataset have a broader molar mass distribution (80–1800
g/mol) compared to the OCELOTv1 dataset (90–1400 g/mol). The
molecular weights in the OPV dataset are predominantly concen-
trated in the range of 500–1000, whereas the OCELOTv1 dataset
shows a concentration in the range of 200–400. Therefore, the
OPV dataset not only has more data points than the OCELOTv1
dataset but also has more large conjugated molecules. As depicted
in Fig. 4(b), molecules with larger conjugated structures are present
in the OPV dataset compared to the OCELOTv1 dataset. The num-
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FIG. 4. (a) Distribution of molecular weights for OPV and OCELOTv1 datasets. (b) Distribution of HOMO–LUMO gap and atomic number of conjugated structures for OPV
and OCELOTv1 datasets.

ber of atoms in each conjugated structure of the OPV dataset spans
a range from 4 to 120, with a concentration between 25 and 50.
In contrast, the OCELOTv1 dataset exhibits a narrower range of
atom numbers of conjugated structures (5–66), and is mainly con-
centrated between 15 and 30. Moreover, the conjugated molecules
in the OPV dataset generally have lower HOMO–LUMO gaps
(∼1.9 eV) compared to the OCELOTv1 dataset (∼6.2 eV). The dis-
tribution without obvious regularity also demonstrates the complex
relationship between the photoelectric properties and conjugated
structures.

B. Performance on OPV dataset
For the OPV dataset, we compared MHNN with multiple base-

lines: Graph Convolutional Network (GCN),52 Graph Isomorphism
Networks (GIN),53 Graph Attention Network (GAT),54 GATv2,55

MPNN,56 and SchNet.43 Table II shows the test performances of
MHNN and competitive baselines on the OPV dataset, where the
best results are marked in bold. Except for SchNet43 that uses the 3D
molecular geometries from DFT calculations, other models includ-
ing MHNN only use 2D topology information from SMILES strings.
As for molecular properties, SchNet is obviously better than the
2D baselines since 3D information is important for these proper-
ties.39 However, MHNN outperforms all baselines on three tasks
(Δε, εHOMO, and εLUMO) without any 3D information, indicating
that molecular hypergraphs with additional conjugation informa-
tion are reliable representations of organic semiconductors. The
SchNet model outperforms other models in the prediction of the tar-
get Ioverlap, indicating that the 3D molecular geometries can provide
crucial and unique insights for predicting this target. For polymer
property prediction tasks, SchNet43 cannot exhibit better perfor-
mance because only atom positions of monomers are available. It
also suggests that polymer properties could be less dependent on

the precise 3D structures of monomers.39 Overall, MHNN achieves
the best results on seven out of eight tasks compared to base-
lines, which demonstrates the significance of molecular hypergraphs
and the excellent performance of MHNN for property prediction
of conjugated molecules. The prominence of MHNN could come
from the molecular hypergraph and its algorithm. The molecular
hypergraph can help MHNN understand that conjugated structures
are important components, and guide MHNN to learn the corre-
lation between conjugated structures and photoelectric properties.
Moreover, MHNN’s message passing occurs between nodes and
hyperedges, which involves atoms, chemical bonds, and conjugated
structures. Then, the embeddings of both nodes and hyperedges
representing conjugate structures are used to compute the model
output. Therefore, MHNN’s algorithm essentially enables it to learn
the relationship between conjugated structures and optoelectronic
properties, thereby enhancing its predictive performance.

C. Performance on OCELOTv1 dataset
All models from the original paper40 were selected as baseline

models to compare the performance of MHNN on the OCELOTv1
dataset. Extended connectivity fingerprint (ECFP2) and 266 molec-
ular descriptors were calculated from SMILES strings and used
as the input for ridge regression (RR), support vector machine
(SVM), kernel ridge regression (KRR), and feed-forward network
(FFN).40 For the MPNN + MolDes model, the graph embed-
dings computed by MPNN are concatenated with the vectors of
molecular descriptors and employed for predicting molecular prop-
erties through an FFN.40 More details about the baseline models
can be found in Ref. 40. Table III shows the test performances
of MHNN and baselines, where the best results are marked in
bold. On the tasks, such as AIE, AEA, S0S1, and S0T1, MPNN
exhibits better performance than models (RR, SVM, KRR, and FFN)
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TABLE II. MAE results on OPV testing set. The unit of Ioverlap target is W/mol, and the unit of other targets is meV. ∗ represents using DFT-optimized atom coordinates during
model training. The results of MPNN and SchNet are from Ref. 39. Standard deviation is used to evaluate the error in test results. The best results for each target are marked in
bold.

Methods

Molecular Polymer

Δε εHOMO εLUMO Ioverlap Δε εHOMO εLUMO OLUMO

GCN 66.7± 1.0 38.7± 0.8 53.8± 1.8 268.1± 3.9 77.0± 0.4 54.1± 0.6 62.2± 0.8 61.4± 0.7
GIN 48.8± 0.6 29.3± 0.2 38.9± 0.3 187.3± 2.6 67.0± 1.2 48.4± 0.3 54.5± 0.7 53.7± 1.1
GAT 54.4± 1.1 33.7± 0.7 43.1± 1.3 203.8± 6.9 72.1± 1.4 51.7± 1.2 58.8± 0.7 57.8± 0.9
GATv2 57.2± 2.1 32.8± 1.4 44.2± 1.8 199.8± 1.2 72.8± 0.9 51.8± 0.5 57.5± 0.8 58.1± 0.8
MPNN 36.9± 0.4 32.1± 0.8 27.9± 0.7 149.3± 2.3 57.1± 0.5 49.1± 0.8 47.8± 0.7 47.8± 0.5
SchNet∗ 32.7± 0.5 27.0± 0.4 24.8± 0.4 96.6± 0.9 69.8± 0.6 56.9± 0.3 56.8± 0.5 57.2± 0.3
MHNN 28.5± 0.2 21.9± 0.1 21.1± 0.3 112.9± 0.8 56.9± 0.3 46.0± 0.6 45.3± 0.5 44.7± 0.2

TABLE III. MAE results of baselines and MHNN on OCELOTv1 testing set. The unit of all targets is eV. The results of baselines are from Ref. 40. Standard deviation is used to
evaluate the error in test results. The best results for each target are marked in bold.

Target RR SVM KRR FFN MPNN MPNN +MolDes MHNN

HOMO 0.345± 0.005 0.317± 0.003 0.337± 0.003 0.354± 0.012 0.796± 0.446 0.330± 0.028 0.309± 0.004
LUMO 0.340± 0.006 0.277± 0.005 0.306± 0.002 0.297± 0.004 0.291± 0.044 0.289± 0.028 0.259± 0.002
H–L 0.580± 0.005 0.604± 0.006 0.561± 0.004 0.578± 0.011 1.264± 0.696 0.548± 0.029 0.522± 0.009
VIE 0.231± 0.004 0.204± 0.002 0.241± 0.004 0.219± 0.001 0.202± 0.043 0.191± 0.024 0.176± 0.003
AIE 0.222± 0.002 0.193± 0.002 0.222± 0.004 0.207± 0.003 0.176± 0.015 0.173± 0.006 0.163± 0.003
CR1 0.058± 0.001 0.059± 0.001 0.057± 0.001 0.063± 0.001 0.054± 0.001 0.055± 0.002 0.053± 0.001
CR2 0.059± 0.001 0.061± 0.001 0.056± 0.001 0.059± 0.001 0.061± 0.001 0.053± 0.001 0.052± 0.001
HR 0.112± 0.001 0.114± 0.001 0.113± 0.001 0.110± 0.002 0.126± 0.022 0.133± 0.019 0.100± 0.002
VEA 0.218± 0.004 0.172± 0.002 0.231± 0.004 0.186± 0.002 0.193± 0.052 0.157± 0.018 0.139± 0.002
AEA 0.210± 0.001 0.182± 0.002 0.219± 0.002 0.176± 0.002 0.160± 0.027 0.154± 0.027 0.126± 0.002
AR1 0.057± 0.001 0.053± 0.001 0.057± 0.001 0.062± 0.002 0.057± 0.002 0.051± 0.001 0.050± 0.001
AR2 0.052± 0.001 0.051± 0.001 0.053± 0.000 0.051± 0.001 0.048± 0.002 0.052± 0.001 0.046± 0.001
ER 0.104± 0.020 0.099± 0.002 0.105± 0.002 0.101± 0.002 0.093± 0.002 0.098± 0.006 0.093± 0.002
S0S1 0.307± 0.006 0.275± 0.004 0.307± 0.002 0.282± 0.003 0.252± 0.017 0.249± 0.013 0.243± 0.003
S0T1 0.230± 0.003 0.183± 0.003 0.235± 0.004 0.194± 0.003 0.148± 0.012 0.150± 0.028 0.145± 0.003

TABLE IV. Validate MAE results of MHNN and other message-passing GNN base-
lines on the PCQM4Mv2. The results of baselines are from Refs. 50 and 56. This
dataset does not publish its test set. VN represents the use of virtual nodes to improve
performance. The best result is marked in bold.

Model Parameters (M) Validate MAE (eV)

GCN 2.0 0.1379
GIN 3.8 0.1195
GAT 6.7 0.1302
GCN-VN 4.9 0.1153
GAT-VN 6.7 0.1192
MHNN 2.1 0.1120

using molecular descriptors. However, the models using molecular
descriptors show superior performance than MPNN in the tasks,
such as HOMO, H–L, and HR. Moreover, with the assistance of
extra molecular descriptors, the MPNN + MolDes model demon-

strates greater predictive performance across most tasks compared
to other models. It indicates that both molecular graphs and molec-
ular descriptors can provide important and specific information
for the optoelectronic property prediction, respectively. Despite not
using molecular descriptors, MHNN outperforms all baseline mod-
els in 15 tasks, demonstrating its excellent prediction performance.
This illustrates that molecular hypergraphs are strong representa-
tions of conjugated molecules and MHNN can extract important
information related to optoelectronic properties from conjugated
structures.

D. Performance on PCQM4Mv2 dataset
To explore the learning ability on a large-scale dataset, MHNN

is compared with GNN baselines with a message-passing mecha-
nism on the PCQM4Mv2 dataset (Table IV). It should be pointed
out that there are a large number of small molecules without con-
jugated structures in this dataset even though the prediction target
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FIG. 5. The test results of different models on the HOMO–LUMO gap, HOMO and LUMO tasks of OPV dataset under different amounts of training data. The green lines
represent the results of pretrained GIN by self-supervised learning,57 while the blue and red lines show the results from GIN and MHNN without pretraining, respectively.
Except for the MHNN model, all data are from Ref. 57.

is the HOMO–LUMO gap, which is one of the optoelectronic prop-
erties. As given in Table IV, MHNN can obtain lower MAE results
with fewer model parameters, which proves its high learning effi-
ciency. This also shows that MHNN has reliable large-scale learning
ability and could reduce the training cost on huge datasets.

E. Data efficiency
To explore the data efficiency of MHNN, we compare it

to GIN with or without pretraining on the three most impor-
tant tasks of the OPV dataset under the same data partition. All
80 823 unlabeled molecules in the training set were used to pretrain
the GIN model using the self-supervised learning (SSL) strategy.57

Different amounts of data were randomly selected from the train-
ing set to directly train GIN and MHNN or finetune the pretrained
GIN. As shown in Fig. 5, MHNN exhibits better results on three
tasks than GIN and pretrained GIN at the different training data
sizes. For instance, using 1000 labeled training data, MHNN sur-
passes pretrained GIN by 31% and 25% on the εHOMO and εLUMO
tasks, respectively. In addition, directly trained GIN needs 4–6 times
more training data to attain performance equivalent to MHNN. All
the results show that MHNN is highly data-efficient and could be
useful for applications without abundant labeled data.

IV. CONCLUSION
The molecular hypergraph and corresponding MHNN were

designed to overcome the limitations of traditional molecular graphs
when it comes to representing high-order connections within
complex molecules. The photoelectric property prediction task of
organic semiconductors was selected to evaluate its prediction
performance. The definition of molecular hyperedges is specified
to focus on conjugated structures of molecules, which relies on
human knowledge of relevant connections rather than learning
directly from data. Across all three datasets (OPV, OCELOTv1,
and PCQM4Mv2), MHNN exhibits superior performance to the
baselines on most tasks. Impressively, even in the absence of 3D geo-
metric information, MHNN surpasses SchNet that relies on atom
positions. Moreover, MHNN demonstrates higher data efficiency

compared to pretrained models, making it valuable for applica-
tions where labeled data are scarce. When specific parts of molec-
ular structures substantially contribute to the target properties,
MHNN can use hyperedges to describe and learn these higher order
interactions. For instance, pharmacophores/toxicophores are cru-
cial components within molecules that determine activity/toxicity,
and thus, they can be represented by hyperedges to facilitate the
activity/toxicity prediction of MHNN. Molecular hypergraphs and
MHNN provide a new strategy for property prediction involving
higher order connections.
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and PCQM4Mv250 datasets can be found on GitHub at
https://github.com/schwallergroup/mhnn.

This work uses three open-source datasets, OPV,39

OCELOTv1,40 and PCQM4Mv2.50 The data that support
the findings of this study are openly available on GitHub at
https://github.com/schwallergroup/mhnn, including the scripts to
download and process the datasets.

APPENDIX A: IMPLEMENTATION DETAILS

Our implementation is based on PyTorch and PyG.58,59 The
code of 2D GNN baselines is from OGB.48 The experiments were
conducted in a collaborative computing cluster setting, featuring
diverse central processing unit (CPU) and graphics processing unit
(GPU) architectures. This included a combination of NVidia V100
(32 GB) and RTX3090 (24 GB) GPUs. For a fair comparison, the
same training recipe was used for all the models on the same dataset.
For baseline models, the hyperparameters were adopted from
Refs. 39 and 50.

APPENDIX B: INPUT FEATURES

Tables V–VII describe the input features for atoms, pair-wise
edges, and hyperedges.

TABLE V. Atom (node) features for MHNN and 2D GNN baselines.

Feature Description

Atom type Type of atom (e.g., C, N, O), by atomic number
Chirality Unspecified, tetrahedral CW/CCW, or other
Degree Number of bonds the atom is involved in
Formal charge Integer electronic charge assigned to atom
Hydrogens Number of bonded hydrogen atoms
Radical electrons The number of unpaired electrons
Hybridization sp, sp2, sp3, sp3d, or sp3d2
Aromaticity Whether this atom is part of an aromatic system
Is in ring Whether the atom is in a ring

TABLE VI. Bond (edge) features for 2D GNN baselines.

Feature Description

Bond type Single, double, triple, or aromatic
Bond stereo None, any, E/Z or cis/trans
Is conjugated Whether the bond is conjugated

TABLE VII. Using bond type as the hyperedge feature of MHNN.

Edge order Feature

= 2 Bond type: Single, double, triple, or aromatic
>2 Conjugated bonds
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