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A B S T R A C T   

Platinum-based anticancer drugs, while potent, are associated with numerous and severe side effects. Hyper-
thermia therapy is an effective adjuvant in anticancer treatment, however, clinically used platinum drugs have 
not been optimised for combination with hyperthermia. The derivatisation of existing anticancer drugs with 
appropriately chosen thermoresponsive moieties results in drugs being activated only at the heated site. Per-
fluorinated chains of varying lengths were installed on carboplatin, a clinically approved drug, leading to the 
successful synthesis of a series of mono- and di- substituted platinum(IV) carboplatin prodrugs. Some of these 
complexes display relevant thermosensitivity on ovarian cancer cell lines, i.e., being inactive at 37 ◦C while 
having comparable activity to carboplatin under mild hyperthermia (42 ◦C). Nuclear magnetic resonance 
spectroscopy and mass spectrometry indicated that carboplatin is likely the active platinum(II) anticancer agent 
upon reduction and cyclic voltammetry revealed that the length of the fluorinated alkyl chain has a strong in-
fluence on the rate of carboplatin formation, regulating the subsequent cytotoxicity.   

1. Introduction 

Platinum-based complexes are extensively applied in anticancer 
chemotherapeutic regimes in the clinic [1,2]. Cisplatin, which was first 
introduced to the clinic in the 1960s [3], still remains extensively used 
despite a wide variety of side effects, including nephrotoxicity, neuro-
toxicity, myelosuppression, nausea and vomiting [4–8]. With the 
intention of reducing the side effects associated with cisplatin, carbo-
platin was developed and approved for clinical use in 1981 [9,10]. Other 
platinum(II) anticancer drugs have been approved for clinical use 
(Fig. 1) [2], although only cisplatin, carboplatin and oxaliplatin are 
approved for use worldwide, and thousands more platinum-based can-
didates have been proposed [11]. 

A common feature to all these drugs is that they have a similar mode 
of action to cisplatin, i.e. interaction with DNA [12], and hence they are 
typically applied in combination with adjuvant therapies [13–15]. To 
further improve efficacy, many drug delivery systems have been devised 
that use an external stimulus as a targeting, activation or release 

mechanisms [16–20]. An innovative strategy is the use platinum(IV) 
prodrugs that undergo reduction within cancer cell to release a platinum 
(II) drug and the functionalised axial ligands [1,21–25]. Platinum(IV) 
prodrugs allow bio-functional and targeting moieties to be appended (as 
axial ligands) [26] and some prominent examples are shown in Fig. 2. 
For example, platinum(IV) prodrugs of cisplatin containing functional-
ised arene carboxylate ligands display vastly improved uptake compared 
to cisplatin alone [23] or asymmetric platinum(IV) prodrugs of cisplatin 
containing two different functionalised axial ligands may even over-
come cisplatin resistance [27]. 

Despite the potential of platinum(IV) prodrugs, none have gained 
clinical approval and, therefore, designing these complexes to operate 
with an effective adjuvant might provide further benefits and facilitate 
their translation to the clinic. In this context, platinum(IV) prodrugs 
with photoactivated groups have been reported [28–30]. An alternative 
adjuvant is hyperthermia, with which many existing chemotherapeutic 
agents show enhanced activity despite not specifically being designed 
for use in combination therapy [31]. Hyperthermia is already used as an 
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adjuvant therapy in the clinic, and is even applied in combination with 
carboplatin [32,33]. The design of chemotherapeutic agents that have 
built-in thermoresponsive properties that are selectively activated 
within the safe hyperthermic temperature region of 40 to 43 ◦C [34,35] 
would be advantageous [36]. In this respect, a number of compounds 
were developed that display thermoresponsive properties and are acti-
vated under hyperthermia [18,37–40], including a series of complexes 
based on a trans‑platinum(II) core [41]. These thermoresponsive sys-
tems are designed to undergo chemical or structural changes under mild 
hyperthermia to change the size, shape, solubility, or biological 
behaviour of the compound in such a way as to augment their anticancer 
effect. Particularly, enhanced cell uptake under hyperthermic conditions 
is responsible for the higher anticancer effect of thermoresponsive 
ruthenium complexes [40]. Long alkyl and perfluorinated chains are 
common moieties in compounds exhibiting strong thermoresponsive 
properties [42–44], which were then translated to anticancer com-
pounds [36]. The length of the perfluorinated chains has a considerable 
impact on the thermoresponsive character of the parent drug, with 
longer chains typically showing a greater effect [40], but the optimal 
length and their behaviour remains difficult to predict. Carboplatin, 
being currently used in combination with hyperthermia but not being 
specifically designed for this purpose, represents a promising candidate 
for functionalisation with thermoresponsive fragments. Therefore, 
redox-responsive platinum(IV) prodrugs with a carboplatin core and 

derivatised with perfluorinated chains of different length in the axial 
position(s) were developed. The complexes were evaluated for their 
cytotoxicity and for their thermoresponsive behaviour against ovarian 
cancer cells. 

2. Experimental section 

2.1. Materials and methods 

All reagents and solvents were purchased from commercial suppliers 
and were used without further purification. K2[PtCl4] was purchased 
from Precious Metals Online. Carboplatin was synthesised according to a 
literature procedure [45–47] or was purchased from TCI Chemicals. All 
reactions were performed under an inert N2 atmosphere using Schlenk 
techniques with reactions carried out in dry solvents (stored over 4 Å 
molecular sieves) or in MilliQ water. 

Nuclear magnetic resonance (NMR) spectroscopy measurements 
were recorded on a Bruker 400 MHz spectrometer (9.4 T) equipped with 
a console Avance II at 298 K at 400 MHz (1H), 101 MHz (13C), 188 MHz 
(19F) and 86 MHz (195Pt). Chemical shifts are reported in parts per 
million (ppm) and are referenced to residual peaks in the deuterated 
solvent. Coupling constants (J) are reported in Hertz (Hz). 19F and 195Pt 
chemical shifts were indirectly referenced with the 1H signals of the 
residual protons of the deuterated solvent using the Ξ-scale (Ξ =

Fig. 1. Structures of clinically approved platinum anticancer agents.  

Fig. 2. Examples of platinum(IV) anticancer agents, a, that have undergone clinical trials, and b, bearing bio-functional axial ligands.  
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94.094011 MHz and 21.496784 MHz, respectively) with neat CFCl3 
(δ(19F) = 0 ppm) or 1.2 M K2PtCl6 in D2O (δ(195Pt) = 0 ppm) as sec-
ondary references. The splitting pattern of proton resonances in 1H NMR 
spectra are defined as follows: s = singlet, d = doublet, t = triplet, q =
quartet, p = quintet, and m = multiplet. High resolution mass spec-
trometry (HRMS) spectra were obtained on a Thermo-Finnigan LCQ 
Deca XP Plus quadrupole ion-trap instrument or a Thermo-Finnigan 
Orbitrap Elite instrument with an LTQ-Orbitrap analyser operated in 
both positive and negative mode. Elemental analysis was performed by 
the Mass spectrometry and Elemental Analysis platform at EPFL using a 
Thermo Scientific Flash 2000 Organic Elemental Analyser. 

2.2. Synthesis and characterisation 

Complexes 1 [46], 2 [48] and 3 [46] were prepared according to 
previously reported procedures (see Supporting Information). 

2.2.1. General procedure for the synthesis of monosubstituted 
perfluorinated carboplatin prodrugs (4, 5 and 6) 

A solution of 2 (100 mg, 0.198 mmol, 1 equiv.), 1-ethyl-3-(3-dime-
thylaminopropyl) carbodiimide (49 mg, 0.257 mmol, 1.3 equiv.) and 
4-dimethylaminopyridine (12 mg, 0.099 mmol, 0.5 equiv.) in dry DMSO 
(6 mL) was stirred for 1 h at room temperature and under N2. This so-
lution was added to the appropriate perfluorinated alcohol (1 equiv.), 
HO-CH2CH2-(CF2)nCF3 (n = 5, 7 or 9), and washed with dry DMSO (4 
mL). The mixture was stirred for 96 h at room temperature and pro-
tected from light. The reaction was concentrated and the residue was 
dried under vacuum. The crude was the suspended in DCM (14 mL), 
centrifuged, washed with MeCN (10 mL) and the obtained solid was 
isolated by centrifugation. The residue was dissolved in the minimum 
volume of DMSO, concentrated and dried under vacuum. 

4: Pale yellow solid (127.7 mg, 0.150 mmol, 76%). 1H NMR (400 
MHz, DMSO‑d6) ppm: 7.21–6.67 (m, 6H, He), 3.03 (t, J = 6.2 Hz, 2H, 
Hj), 2.45–2.31 (m, 8H, Hb, Hg + Hh), 1.76–1.67 (m, 4H, Ha + Hk). 19F 
NMR (188 MHz, DMSO‑d6) ppm: δ − 80.31 (3F, Fu), − 112.56 (2F, Fl), 
− 121.74 (2F, Fn), − 122.71 (2F, Fo), − 123.33 (2F, Fm), − 125.82 (2F, Fp). 
HRMS: [M + H]+ requires m/z = 852.0800; found m/z = 852.0802. 

5: Orange solid (123.1 mg, 0.129 mmol, 64%). 1H NMR (400 MHz, 
DMSO‑d6) ppm: 7.19–6.68 (m, 6H, He), 3.05–3.03 (m, 2H, Hj), 
2.39–2.29 (m, 8H, Hb, Hg + Hh), 1.76–1.67 (m, 4H, Ha + Hk). 19F NMR 
(188 MHz, DMSO‑d6) ppm: δ − 80.94 (3F, Fu), − 112.94 (2F, Fl), − 121.96 
(6F, Fn-p), − 122.90 (2F, Fq), − 123.61 (2F, Fm), − 126.28 (2F, Fr). HRMS: 
[M + Na]+ requires m/z = 974.0523; found m/z = 974.0515. 

6: Yellow solid (130 mg, 0.124 mmol, 62%). 1H NMR (400 MHz, 
DMSO‑d6) ppm: 7.27–6.72 (m, 6H, He), 3.01–3.00 (m, 2H, Hj), 
2.30–2.26 (m, 8H, Hb, Hg + Hh), 1.95–1.89 (m, 4H, Ha + Hk). 19F NMR 
(188 MHz, DMSo-d6) ppm: δ − 80.14z (3F, Fu), − 112.48 (2F, Fl), 
− 121.45 (10F, Fn-r), − 122.38 (2F, Fs), − 123.22 (2F, Fm), − 125.66 (2F, 
Ft). HRMS: [M + H]+ requires m/z = 1052.0600; found m/z =
1053.1331. 

2.2.2. General procedure for the synthesis of disubstituted perfluorinated 
carboplatin prodrugs (7, 8 and 9) 

A solution of 3 (110 mg, 0.182 mmol, 1 equiv.), 1-ethyl-3-(3-dime-
thylaminopropyl) carbodiimide (76 mg, 0.396 mmol, 2.3 equiv.) and 
4-dimethylaminopyridine (22.1 mg, 0.181 mmol, 1 equiv.) in dry DMF 
(6 mL) was stirred for 1 h at room temperature and under N2. This so-
lution was added to the appropriate perfluorinated alcohol (2 equiv.), 
HO-CH2CH2-(CF2)nCF3 (n = 5, 7 or 9), and washed with dry DMF (4 mL). 
The mixture was stirred for 96 h at room temperature and protected 
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from light. The reaction was concentrated and the residue was dried 
under vacuum. The crude was the suspended in cold water (12 mL), 
centrifuged, washed with EtOH (10 mL) and MeCN (10 mL) and the 
obtained solid was isolated by centrifugation. The residue was dissolved 
in the minimum volume of DMF, concentrated and dried under vacuum. 

7: Pale yellow solid (90 mg, 0.069 mmol, 38%). 1H NMR (400 MHz, 
DMF-d7) ppm: 6.99–6.46 (m, 6H, He), 3.88 (t, J = 6.1 Hz, 4H, Hj), 2.63 
(t, J = 2.0 Hz, 4H, Hb), 2.55–2.51 (m, 12H, Hg + Hh + Hk), 1.91–1.85 (m, 
2H, Ha). 19F NMR (188 MHz, DMF-d7) ppm: δ − 81.20 (6F, Fu), − 113.33 
(4F, Fl), − 122.12 (4F, Fn), − 123.09 (4F, Fo), − 123.85 (4F, Fm), − 126.35 
(4F, Fp). HRMS: [M + Na]+ requires m/z = 1320.0775; found m/z =
1320.0763. 

8: Orange solid (115 mg, 0.077 mmol, 46%). 1H NMR (400 MHz, 
DMF-d7) ppm: 7.04–6.52 (m, 6H, He), 3.88 (t, J = 6.1 Hz, 4H, Hj), 2.63 
(t, J = 1.9 Hz, 4H, Hb), 2.52–2.50 (m, 12H, Hg + Hh + Hk), 1.94–1.89 (m, 
2H, Ha). 19F NMR (188 MHz, DMF-d7) ppm: δ − 81.05 (6F, Fu), − 113.34 
(4F, Fl), − 121.94 (12F, Fn-p), − 122.85 (4F, Fq), − 123.68 (4F, Fm), 
− 126.25 (4F, Fr). HRMS: [M + Na]+ requires m/z = 1520.0648; found 
m/z = 1520.0654. 

9: Dark yellow solid (278 mg, 0.164 mmol, 96%). 1H NMR (400 
MHz, DMF-d7) ppm: 7.08–6.43 (m, 6H, He), 3.88 (t, J = 6.5 Hz, 4H, Hj), 
2.67–2.58 (m, 4H, Hb), 2.56–2.41 (m, 12H, Hg + Hh + Hk), 1.96–1.80 

(m, 2H, Ha). 19F NMR (188 MHz, DMF-d7) ppm: δ − 81.15 (6F, Fu), 
− 113.30 (4F, Fl), − 122.08 (20F, Fn-r), − 123.05 (4F, Fs), − 123.81 (4F, 
Fm), − 126.29 (4F, Ft). HRMS: [M + Na]+ requires m/z = 1720.0520; 
found m/z = 1720.0583. 

2.3. Cell culture and in vitro anticancer activity 

The human ovarian carcinoma cell lines, A2780 and A2780- 
cisplatin-resistant (A2780cisR) were obtained from the European 
Collection of Cell Cultures (ECACC, Salisbury, UK). The human embry-
onic kidney cell line, HEK-293, was obtained from the American Tissue 
Culture Collection (ATCC, Sigma, Switzerland). RPMI-1640 GlutaMAX, 
DMEM GlutaMAX and penicillin-streptomycin were obtained from Life 
Technologies and foetal bovine serum (FBS) was obtained from Sigma. 
A2780 and A2780cisR cells were cultured and grown routinely in RPMI- 
1640 GlutaMAX medium containing 10% FBS and 1% penicillin- 
streptomycin at 37 ◦C and 5% CO2. HEK-293 cells were cultured and 
grown routinely in DMEM GlutaMAX medium containing 10% FBS and 
1% penicillin-streptomycin at 37 ◦C and 5% CO2. Cells were grown in 
96-well plates in 100 μL of cell culture medium, to give approximately 
10,000 cells per well, for 24 h. 40 mM stock solutions of 4, 5 and 6 in 
DMSO and 7, 8 and 9 in DMF were prepared. Serial dilutions were 
performed on these stock solutions in the appropriate cell culture me-
dium, giving a concentration range of 0 μM to 200 μM for all complexes. 
Carboplatin (0 μM to 100 μM) was tested as a positive control on all cell 
lines, while RAPTA-C (200 μM) was tested on all cell lines as a negative 
control. The complexes were added to the pre-incubated 96-well plates 
in 100 μL aliquots. Thereafter, the plates were incubated for 72 h at 
37 ◦C, or 4 h at 42 ◦C, followed by 68 h at 37 ◦C. 

Cytotoxicity was determined using the MTT assay (MTT = 3-(4,5- 
dimethyl-2-thiazolyl-2,5-diphenyltetrazolium bromide) [49]. Following 
the 72 h period of incubation, a solution of MTT (20 μL, 5 mg/mL) in 
Dulbecco's Phosphate Buffered Saline (DPBS) was added to the cells and 
the plates were incubated for a further 4 h. Thereafter, the culture me-
dium was aspirated, and the purple formazan crystals, formed by the 
mitochondrial dehydrogenase activity of living cells, were dissolved in 
DMSO (100 μL per well). Since the optical density of the resulting so-
lutions was directly proportional to the number of surviving cells, the 
absorbance was quantified at 590 nm using a SpectroMax M5e multi- 
mode microplate reader (using SoftMax Pro software, Version 6.2.2). 
The fraction of surviving cells was calculated based on the absorbance of 
untreated control cells. The IC50 values that are reported were evaluated 
based on two independent experiments, each comprising four micro-
culture tests per concentration level. 

2.4. Stability studies 

The stability of 4–9 was studied in solution (0.1 mM in a DMF:H2O 
mixture, 1:1) by UV–Vis spectroscopy under the mild hyperthermic 
conditions used in the cytotoxicity assay.: 4 h at 42 ◦C followed by 68 h 
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at 37 ◦C. Furthermore, the stability of 7 was studied by 1H and 19F NMR 
spectroscopy. 

2.5. Cyclic voltammetry 

The redox behaviour of 7, 8 and 9 was investigated via electro-
chemical analysis according to known procedures [46]. Cyclic voltam-
metry (CV) experiments were measured using a custom-made glass 
electrochemical cell. The three-electrode cell consisted of a 5 mm 
diameter glassy carbon disk working electrode, a Pt wire counter elec-
trode and a custom-made Ag/AgCl quasi-reference electrode. The Ag 
reference electrode was prepared by the polarisation of a Ag wire in 2 M 
HCl. The potential of the reference electrode was calibrated using an 
internal standard of ferrocenium/ferrocene. All measurements were 
performed at room temperature using a Bio-Logic SP200 potentiostat. 
Prior to each experiment, the working electrode was polished with an 
Al2O3 slurry (1 μm), washed with MilliQ H2O via sonication and dried 
under a stream of air. Furthermore, before every measurement the 
experimental setup was flushed with Ar for 10 min, with stirring. A 
solution of Bu4NPF6 (0.1 M) in dry DMF (5 mL) was used as the sup-
porting electrolyte. In each experiment, the concentration of the com-
plexes being used was 0.01 M. In all experiments, all three electrodes 
were set at the same positions in the electrochemical cell in order to 
ensure ohmic losses remained constant. The potentials of 7, 8 and 9 were 
measured at a scan rate of 100 mV s− 1. 

3. Results and discussion 

3.1. Synthesis of thermosensitive platinum(IV) carboplatin prodrugs 

A series of redox-responsive carboplatin prodrugs, functionalised 
with thermoresponsive perfluorinated chains, were prepared (Scheme 
1) and characterised (see Supplementary Information). In the first step, 
the dihydroxido platinum(IV) species, 1, was prepared by the oxidation 
of carboplatin using a slightly adapted literature method in which the 
reaction was heated to 45 ◦C rather than conducting it at room tem-
perature [46]. 

Next, derivatives with one, 2 [48], or two, 3 [50], axial succinato 
groups, were prepared using literature methods. After isolation, 2 was 
reacted with one equivalent of the appropriate perfluorinated alcohol to 

afford the mono-substituted carboplatin prodrugs, 4, 5 and 6 in 
acceptable yields. The 1H NMR spectra of 4–6 are very similar (see 
Supplementary Information), which is as expected since these com-
plexes differ only in the length of the perfluorinated chain. The electron 
withdrawing effect of each fluorinated chain has minimal effect on 
deshielding the 1H NMR signals, which may be attributed to the effec-
tiveness of the succinato spacer, which insulates the parent platinum 
complex from the electron withdrawing effects of the perfluorinated 
chains. The formation of 4–6 is supported by their 19F NMR spectra 
which show similarities to the spectra of their respective perfluorinated 
chain starting material, i.e. 1H,1H,2H,2H-perfluoro-1-octanol (4 and 7, 
n = 5), 1H,1H,2H,2H-perfluoro-1-decanol (5 and 8, n = 7), and 
1H,1H,2H,2H-perfluoro-1-dodecanol (6 and 9, n = 9) (Scheme 1): the 
number of peaks and their associated chemical shift range is the same 
within each spectrum. HRMS of 4–6 exhibit the distinctive platinum 
isotopic pattern with the most abundant peak observed for 4 and 6 
corresponding to the [M + H]+ ion at m/z = 852.0802 and 1053.1331, 
respectively. The most abundant peak in the spectrum of 5 was observed 
for the [M + Na]+ ion at m/z = 974.0515. 

Di-substituted carboplatin prodrugs, 7, 8 and 9 were synthesised by 
the esterification of 3 with 2 equivalents of the appropriate per-
fluorinated chain following activation with EDC/DMAP in DMF. Yields 
ranged from 38% for 7 to 96% for 9 (Scheme 1). 1H NMR spectra of 7–9 
are very similar (see Supplementary Information), as observed for 4–6 
(see above). The 19F NMR spectra of 7–9 exhibit clear similarities to each 
other, to their respective mono-substituted analogues 4–6 and to the 
parent perfluorinated alcohol. HRMS spectra corroborate the expected 
structures of 7–9 with the distinctive platinum isotopic pattern for the 
[M + Na]+ ion observed at m/z = 1320.0763 for 7, 1520.0654 for 8 and 
m/z = 1720.0583 for 9. 

The stability of 4–9 in DMF:H2O was studied by UV–Vis spectroscopy 
under the mild hyperthermic conditions used in the cytotoxicity assay: 4 
h at 42 ◦C followed by 68 h at 37 ◦C. No major changes were observed in 
the intensity or position of the bands, highlighting the remarkable sta-
bility of the complexes, common in Pt(IV) complexes (Supplementary 
Fig. 1). Additionally, the stability of 7 was further confirmed by 1H and 
19F NMR spectroscopy (Supplementary Fig. 2). 

Scheme 1. Synthesis to the mono- and di-substituted perfluorinated carboplatin prodrugs 4–9 (n = 5, 7 and 9).  
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3.2. Cytotoxicity studies 

The cytotoxicity of the target complexes, i.e. 4–9, was evaluated 
against the A2780 ovarian cancer cell line, A2780cisR cells which have 
acquired resistance to cisplatin and healthy human embryonic HEK-293 
cells (Table 1), using the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H- 
tetrazolium bromide (MTT) assay [51]. The cytotoxicity was evaluated 
at 37 ◦C for 72 h and under mild hyperthermic conditions of 42 ◦C for 4 h 
followed by incubation at 37 ◦C for 68 h. Carboplatin was included as a 
positive control, as it is known to show a strong enhancement in activity 
when used in combination with thermotherapy [32,33], whereas 
RAPTA-C was used as a negative control given its limited cytotoxicity 
[52]. Note that under both sets of conditions, 4–6, 8 and 9 are all 
inactive (IC50 > 200 μM) in the HEK-293 cell line. 

As expected, the cytotoxicity of the positive control, carboplatin, 
increases under mild hyperthermia in both the A2780 and HEK-293 cell 
lines, e.g. changing from 52 ± 6 to 21 ± 2 μM upon the application of 
hyperthermia, but is inactive in the cisplatin resistant A2780cisR cells 
(Table 1). Note that the cytotoxicity of carboplatin also increases in the 
non-tumorigenic HEK-293 cell line. Similar thermoresponsive character 
is also observed in 4–9 with the level of cancer cell selectivity for some of 
these complexes being superior to that of carboplatin. The thermal 
enhancement of the cytotoxicity of complexes 4–6 and 9 is limited, with 
4 having an IC50 value of 86 ± 20 μM in A2780 cells under hyperther-
mia. However, 7 shows a pronounced enhancement in cytotoxicity to 
A2789 cells under hyperthermia, changing from >200 μM under normal 
conditions to 29 ± 6 μM, i.e. approaching an order of magnitude in-
crease in cytotoxicity compared to carboplatin which exhibits approxi-
mately twice the cytotoxicity under mild hyperthermia compared to 
normothermic conditions. 7 is also the only complex to show any 

activity, albeit rather limited, towards A2780cisR cells, with an IC50 
value of 94 ± 22 μM when applied in combination with hyperthermia 
(note that all other complexes, particularly carboplatin, are inactive to 
this cell line under both sets of conditions). 

Although the presence of fluorinated chains has an significant effect 
on the thermoresponsive properties of complexes 4–9, a clear correla-
tion between the length of the chain and the hyperthermia-induced 
cytotoxicity for this series of Pt(IV) complexes was not observed. This 
is not the case for other studies [37,40], where compounds bearing 
longer perfluorinated chains were more cytotoxic due to being intern-
alised more efficiently under hyperthermic conditions. However, in 
these studies, the tested compounds were readily active (i.e., they were 
not prodrugs) and did not need to undergo activation. In the present 
study, the prodrugs with the shortest perfluorinated chains, i.e. 4 and 7, 
show the highest increase in hyperthermia-induced cytotoxicity against 
the A2780 cell line. Partition coefficient (logPOW) values of 4–9, esti-
mated using a previously developed model for Pt(II) and Pt(IV) com-
plexes [53], indicate that the lipophilicity increases with the number of 
fluorinated chains and their length (Supporting Table S1). This would 
result in more efficient cellular uptake for 6 and 9. Nevertheless, a clear 
correlation between the logPOW and the IC50 values of the complexes is 
not present, indicating that the cytotoxicity might be influenced by other 
properties, such as the reduction of the Pt(IV) prodrug. Cyclic voltam-
metry was used to determine the reduction potentials, i.e. Pt(IV) to Pt 
(II), of 7–9 (Supplementary Figs. 3–5), with 7 having the least negative 
reduction potential (− 1.29 V). There is a direct correlation between the 
length of the fluorinated chain and a more negative reduction potential, 
with values of − 1.35 V for 8 and − 1.75 V for 9. The reduction potential 
of Pt(IV) complexes can be roughly correlated with the rate of reduction 
of the complex [54], which relates to the higher presence of active Pt(II) 
species and, therefore, to a higher degree of cytotoxicity [55]. The 
product from the reduction of 7 were studied by 195Pt and 19F NMR 
spectroscopy and by HRMS. After reaction of 7 with sodium ascorbate, a 
new peak in the 195Pt NMR spectrum with the same chemical shift as 
carboplatin (− 1707 ppm) was observed (Fig. 3b), and a slight shift in the 
peaks of the 19F NMR spectrum indicated the release of the axial ligands 
(Supplementary Fig. 6). Furthermore, ions arising from carboplatin (m/ 
z = 370.03667 for [carboPt – H]− ) and oxidised ascorbate (m/z =
173.00898 for [oxAsc – H]− ) were observed in the mass spectrum after 
the reduction (Fig. 3c and Supplementary Fig. 7), confirming that car-
boplatin is formed upon reduction of the platinum(IV) prodrug. Hence, 
the higher cytotoxicity of 7 under hyperthermia may be attributed, at 
least in part, to the lower reduction potential and, in this case, to an 
easier and more efficient generation in situ of carboplatin. 

Table 1 
IC50 values of 4–9 in A2780, A2780cisR and HEK-293 cell lines. Cells were 
incubated either at 37 ◦C for 72 h or under mild hyperthermia (42 ◦C for 4 h 
followed by 37 ◦C for 68 h – labelled as 42 ◦C in the table).   

IC50 (μM) (average ± standard deviation) after 72 h 

Complex A2780 (μM) A2780cisR (μM) HEK-293 (μM) 

37 ◦C 42 ◦C 37 ◦C 42 ◦C 37 ◦C 42 ◦C 

4 >200 86 ± 20 >200 >200 >200 115 ± 10 
5 >200 163 ± 39 >200 >200 >200 147 ± 22 
6 >200 145 ± 25 >200 >200 >200 133 ± 17 
7 >200 29 ± 6 >200 94 ± 22 44 ± 6 33 ± 3 
8 >200 >200 >200 >200 >200 66 ± 11 
9 >200 168 ± 23 >200 >200 >200 >200 
CarboPt 52 ± 6 21 ± 2 >200 >200 95 ± 17 34 ± 3 
RAPTA-C >200 >200 >200 >200 >200 >200  

Fig. 3. a, Proposed reduction of 7. b, 195Pt NMR spectra of 7 (top), 7 after the addition of sodium ascorbate (middle), and carboplatin (bottom). c, Mass spectrum of 7 
after reduction with sodium ascorbate. 
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4. Conclusions 

A series of platinum(IV) complexes with fluorinated chains that 
potentially undergo reduction in vitro to release carboplatin were suc-
cessfully synthesised. The expectation that these complexes would be 
endowed with thermoresponsive character, and show enhanced cyto-
toxicity when applied in combination with mild hyperthermia, was 
realised. In contrast to other studies, however, the complexes containing 
the shortest perfluorinated chains exhibited the strongest thermores-
ponsive behaviour, suggesting a more sophisticated relationship be-
tween the length of the fluorous chain and thermosensitivity is in 
operation, i.e. the reduction potential also appears to play a key role. 
Notably, 7 exhibits remarkable hyperthermia-induced cytotoxicity 
against all tested cell lines, even showing activity against cisplatin 
resistant A2780cisR cells. As such, 7 may be an alternative agent to 
carboplatin in certain chemothermotherapy regimens. 
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