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A B S T R A C T   

Mass cytometry and full spectrum flow cytometry have recently emerged as new promising single cell proteomic 
analysis tools that can be exploited to decipher the extensive diversity of immune cell repertoires and their 
implication in human diseases. In this study, we evaluated the performance of mass cytometry against full 
spectrum flow cytometry using an identical 33-color antibody panel on four healthy individuals. Our data 
revealed an overall high concordance in the quantification of major immune cell populations between the two 
platforms using a semi-automated clustering approach. We further showed a strong correlation of cluster 
assignment when comparing manual and automated clustering. Both comparisons revealed minor disagreements 
in the quantification and assignment of rare cell subpopulations. Our study showed that both single cell prote-
omic technologies generate highly overlapping results and substantiate that the choice of technology is not a 
primary factor for successful biological assessment of cell profiles but must be considered in a broader design 
framework of clinical studies.   

1. Introduction 

Fundamental and clinical immunology research is highly dependent 
on the development and application of single-cell technologies to un-
ravel the complexity of immune cell compartment. Over the past ten 
years, two innovative single cell proteomic platforms have emerged as 
new powerful research tools mitigating the number of markers that can 
be analyzed simultaneously by conventional flow-cytometry due to 
spectral overlap (Roederer, 2001) and fulfilling the need for high 
dimensional analysis. Through the utilization of antibodies coupled to 
metal isotopes, cytometry by time-of-flight or mass cytometry (CyTOF), 
was the first pioneer technology to enable the simultaneous assessment 
of up to 50 markers (Bandura et al., 2009; Bendall et al., 2011). The 
recent advent of a next-generation flow cytometry technique, full 
spectrum flow cytometry (FSFC), also enables immunophenotyping on a 
high dimensional scale by the assessment of the full light spectrum 
emitted by each fluorochrome (Robinson, 2019; Robinson et al., 2015; 
Robinson et al., 2012; Robinson, 2022) and a subsequent unmixing 

algorithm discriminating each unique fluorochrome by their specific 
spectrum (Futamura et al., 2015; Novo et al., 2013; Nolan and Condello, 
2013). 

These recent technical advancements in the field of single cell pro-
teomics have provided researchers and clinicians with two similar tools 
to probe the immune system in greater depth. Their availability is a 
blessing and a curse at the same time, putting researchers and clinicians 
in front of a considerable challenge when it comes to choosing the 
appropriate technology. Given their differential technical nature, we 
aimed to proceed to a comparative study of the biological output of these 
two technologies – mass cytometry and full spectral flow cytometry – 
using an identical 33-color antibody panel. We further point out key 
considerations in the decision-making process for the appropriate 
modality. 
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2. Material and methods 

2.1. Sample preparation 

Peripheral blood mononuclear cells (PBMCs) from four different 
healthy donors were isolated using Ficoll density gradient separation 
(Gibco). Briefly, whole blood was first diluted with the equal amount of 
phosphate-buffered saline (PBS) solution, layered onto the Ficoll-Paque 
(GE healthcare) and centrifuged at 400 xg for 20–25 min at 4 ◦C. Sub-
sequently, PBMCs were isolated from the interface, washed twice with 
PBS and cryopreserved in fetal calf serum (FCS) supplemented with 10% 
DMSO. Samples were then stored in liquid nitrogen until use. For the 
assay, cryopreserved samples were rapidly thawed in a water-bath at 
37 ◦C and washed twice with warm RPMI-1640 (Gibco) supplemented 
with 10% FCS and – if required – with Pierce Universal Cell Nuclease. 
Thereafter, cells were counted, equally distributed in 5 ml poly-
propylene (PP) tubes with a total of 3–4 × 106 cells per tube and rested 
overnight at 37 ◦C in a medium consisting of RPMI 1640 supplemented 
with 10% FCS. 

2.2. Full spectral flow cytometry 

Sample were washed by pelleting with PBS at 400 x g. Viability 
staining was performed by adding 5 μl of a 1:500 diluted ViaDye Red 
viability staining solution (Cytek®) to the cells and incubated for 20 min 
at room temperature (RT) in the dark. Cells were subsequently washed 
with cell staining buffer (CSB). For Fc receptor blocking, cells were 
blocked with 10 μl of Fc-receptor blocking (Biosciences) solution for 10 
min. Thereafter, 70 μl phenotyping antibody cocktail (Table S2) were 
added to each tube and samples were incubated for another 30 min at 
4 ◦C protected from the light. Following two washes with 2 ml of CSB, 
cells were fixed and permeabilized for the intracellular staining: To this 
end, cells were resuspended in 200 μl of Fix/Perm FoxP3 Solution 
(Foxp3/Transcription Factor Staining Buffer Set, eBiosciences, Thermo 
Fischer) and left for 20 min at RT in the dark. Cells were then washed 
twice by pelleting with 2 ml of FoxP3 permeabilization buffer at 800 x g. 
After fixation and permeabilization, 10 μl of intracellular antibody 
cocktail was added to the cells and incubated for another 30 min at 4 ◦C 
protected from the light. Following the incubation time, cells were 
washed twice by pelleting with 2 ml of CSB, resuspended in a final 
volume of 400 μl CSB and finally filtered through a 35 μm nylon mesh 
filter for acquisition. Samples were acquired on a 5-Laser Aurora system 
(Cytek ®) using the SpectroFlo Software v2.2.0.2. The instrument was 
subject to daily quality control procedures using SpectroFlo® QC Beads 
(Lot 2004) as per the manufacturer recommendations. 

2.3. Time of flight mass cytometry 

Sample were washed by pelleting with PBS at 400 x g. Viability 
staining was performed by resuspending cells in cisplatin viability stain 
(Fluidigm) at a concentration of 25 μM for 1 min and quenched by 
adding 5 ml CSB. Cells were subsequently washed with CSB. For Fc re-
ceptor blocking, cells were blocked with 10 μl of Fc-receptor blocking 
(Biosciences) solution for 10 min. Thereafter, 70 μl phenotyping anti-
body cocktail (Table S1) were added to each tube and samples were 
incubated for another 30 min at 4 ◦C. Following two washes with 2 ml of 
CSB, cells were fixed and permeabilized for the intracellular staining: To 
this end, cells were resuspended in 200 μl of Fix/Perm FoxP3 Solution 
(Foxp3/Transcription Factor Staining Buffer Set, eBiosciences, Thermo 
Fischer) and left for 20 min at RT. Cells were then washed twice by 
pelleting with 2 ml of FoxP3 permeabilization buffer at 800 x g. Prior to 
the staining, samples were barcoded: each sample to be barcoded was 
resuspended in 800 μl of barcode permeabilization buffer, simulta-
neously each barcode was resuspended in 100 μl and finally transferred 
to the samples. Thereafter, 10 μl of intracellular antibody cocktail was 
added to the cells and incubated for another 30 min at 4 ◦C. Following 

the incubation time, cells were washed twice by pelleting with cell 
staining buffer, resuspended in 400 μl of intercalator solution containing 
1.6% PFA and 0.5 μM iridium-intercalator (Fluidigm) and left at 4 ◦C 
overnight. The following day, cells were washed twice by pelleting with 
2 ml CSB, followed by two washes with cell acquisition solution. For the 
acquisition, cells were mixed with EQ calibration beads at a ratio of 1:5, 
further diluted at 1:10 with cell acquisition buffer and acquired on a 
CyTOF 2.1 mass cytometry instrument (Standard Biotools). 

2.4. Quantification and statistical analysis 

The following preprocessing steps were applied to these data sets 
before further downstream analysis: (i) Spectral unmixing for FSFC data 
was done using SpectroFlo Software v2.2.0.2 (Cytek ®) (ii) Initial data 
normalization including beads and debarcoding of the CYTOF data was 
done using the CyTOF software (Standard Biotools). (iii) Both datasets 
were then uploaded in FlowJo v.10.7.2 and subject to manual filtering 
steps on debris and time evolution scale. Thereafter, samples were pre- 
gated on single, alive, CD45 + immune cells and exported for down-
stream analysis. 

For the semi-automated analysis, cleaned fcs files from FSFC and 
CyTOF experiments were loaded and preprocessed using R v4.2.2 (R 
Core Team, 2022) package flowCore v2.10.0 (Hahne et al., 2009). Data 
from all samples were concatenated. Raw marker expression values 
were transformed using inverse hyperbolic sine (asinh) transform with 
cofactor 5 for CyTOF dataset and 3′000 for FSFC dataset. For each 
marker, transformed expression values were normalized using a linear 
transformation to map the 1st and 99th percentiles to 0 and 1 respec-
tively. Clustering was performed with FlowSOM v2.6.0 (Van Gassen 
et al., 2015) with default parameters used except for the self-organizing 
map size (xdim = 20, ydim = 20) and the number of clusters for met-
aclustering (nClus = 30). FlowSOM clustering was performed on the 
normalized expression values of the following markers: CD3, CD4, 
CD8a, CD19, CD14, CD56, CD16 and CD57. Clusters were manually 
assigned to cell populations by inspecting 1D and 2D distribution of 
marker expression values and grouped to a final of 15 distinct assigned 
cell populations: CD8+ T cells, CD4+ T cells, CD8+ CD4+ T cells, CD4- 
CD8- T cells, CD4+ NKT cells, CD8+ NKT cells, CD4- CD8- NKT cells, 
CD4+ CD8+ NKT cells, CD19+ B cells, CD14+ monocytes, CD56++ NK 
cells, CD56+ CD16+ CD57- NK cells, CD56+ CD16- CD57- NK cells, 
CD56+ CD16- CD57+ NK cell, CD56+ CD16+ CD57+ NK cells (Fig. S3). 

Uniform Manifold Approximation and Projection (UMAP) was per-
formed with uwot v0.1.14 (Melville, 2022) using CD3, CD4, CD8a, 
CD19, CD14, CD56, CD16 and CD57 normalized expression values of 
10e5 randomly sampled events. Remaining events were subsequently 
projected onto the UMAP embedding. ggplot2 v3.4.0 (Hadley, 2016) 
was used for visualization. 

For supervised analysis, cleaned fcs files were loaded in FlowJo 
10.7.2 and the 15 cell populations of interest (see above) were manually 
gated. FlowJo workspace with manual gating information was then 
loaded into R using packages CytoML v2.10.0 (Finak et al., 2018) and 
flowWorkspace v4.10.0 (Finak, 2022). The Matthews Correlation Co-
efficient (MCC) was used to compare cell populations obtained with 
semi-automated analysis and manual gating for the FSFC data. For each 
cell population MCC = (TP*TN-FP*FN)/sqrt((TP + FP)*(TP + FN)*(TN 
+ FP)*(TN + FN))) where TP, TN, FP and FN are the number of true 
positive, true negative, false positive and false negative cell assignment 
to the selected population by clustering, arbitrarily considering manu-
ally gated cell assignment as the gold-standard (MCC is invariant under 
the exchange of gold-standard) (Matthews, 1975). 

3. Results 

We first designed and built a 33-color antibody panel to compre-
hensively quantify major immune and NK cell subpopulations based on 
extra- and intracellular markers (Table S1, S2; Fig. S1, S2). This panel 
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Fig. 1. Comparison between CyTOF and FSFC dataset. A. Abundances of 15 Cell populations identified with semi-automated analysis for the FCFS and CyTOF 
datasets across individual samples B. Comparison of cell population (color) abundances obtained with semi-automated analysis for the CyTOF (y-axis) and FCFS (x- 
axis) data sets, per sample (symbol). Linear regression line is shown in black with the 95% confidence interval (grey) C. Comparison of cell population (color) 
abundances limited to populations with abundance below 10% obtained with semi-automated analysis for the CyTOF (y-axis) and FCFS (x-axis) data sets, per sample 
(symbol) D. UMAP for the CyTOF data set, color-coded by cell population obtained with semi-automated analysis. Events are color - colored according to the 15 cell 
populations obtained with FlowSOM clustering. E. Same as for D for the FSFC dataset. 
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Fig. 2. Comparison between semi – supervised and supervised analysis in FSFC dataset. A. Comparison of cell population (color) abundances obtained with semi- 
automated analysis (y-axis) and manual gating (x-axis) for the FCFS data set, per sample (symbol). Correlation plots representative of the quantitative comparison 
(cluster frequencies) between FSFC and CyTOF for all 15 clusters identified by manual gating and FlowSOM clustering. Linear regression line is shown in black with 
the 95% confidence interval (grey). B. Comparison of cell population (color) abundances limited to populations with abundance below 10% obtained with semi- 
automated analysis (y-axis) and manual gating (x-axis) for the FCFS data set, per sample (symbol). C. UMAP for the FSFC data set. Events are color - colored ac-
cording to the 15 cell populations obtained with manual gating. D. UMAP for the FSFC data set, color-coded by cell population obtained with semi-automated 
analysis. Events are color - colored according to the 15 cell populations obtained with FlowSOM clustering E. Comparison of cell populations obtained with 
manual gating and semi-automated analysis using Matthews Correlation Coefficient (MCC). 
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encompasses major NK cell receptor classes such as natural cytotoxicity 
receptors (NCRs), C-type lectin like receptors (NKG2) and activation 
marker such as perforin, granzyme B and CD107a (Pegram et al., 2011; 
Mahnke et al., 2015; Vanikova et al., 2022; Kay et al., 2016). To ensure 
that a relevant comparison of the technologies could be made, we 
developed the identical panel for full spectral flow cytometry and mass 
cytometry encompassing the exact same antibodies. Due to the limited 
availability of antibodies, identical clones could only be allocated to the 
same antibody for part of the panel. The panel development and vali-
dation strategy was performed as follows: (i) We allocated antibodies to 
fluorochromes by associating low expressed targets such as KIRs to 
brighter fluorochromes and high expressed targets such as lineages 
markers to dim fluorochromes (ii) We then proceeded to antibody ti-
trations to ensure optimal staining patterns and minimize unspecific 
binding by calculating the appropriate concentration (iii) To accurately 
assess the positivity threshold of low expressed antigens and the speci-
ficity of the staining, we included a fluorescent-minus-one (FMO) con-
trol including following lineage markers: CD3, CD8a, CD4, CD19, CD14, 
CD56, CD16, CD57 (iv) We finally applied the full panel by staining non- 
stimulated and stimulated cryopreserved PBMCs derived from four 
healthy individuals. 

Comparison of cell population abundances based on a semi- 
automated approach between CyTOF and FSFC. 

We conducted the comparative study on PBMCs samples derived 
from four healthy individuals. Aliquots from each individual were 
equally labeled with the CyTOF panel and the FSFC panel prior to ma-
chine acquisition. We firstly wondered about the consensus between the 
two platforms in distinguishing major canonical immune cell subsets 
selecting eight basic lineage markers: CD3, CD4, CD8a, CD19, CD14, 
CD56, CD16, and CD57. We analyzed each dataset by a supervised im-
mune clustering labelling step using semi-automated approach based on 
unsupervised clustering with FlowSOM followed by a supervised 
assignment of clusters into 15 cell types (see methods for details). With 
this approach, 95% of CyTOF events and 96% of FSFC events were 
assigned to a cell population and only the small remaining proportion 
could not be classified. Cell frequencies varied over a wide range, from 
0.0039% to 52.1% per sample/per population. The frequency distribu-
tion of cell population abundance for each technique and sample is 
depicted in Fig. 1A. 

The proportion of each cell population derived from the two tech-
niques were highly concordant as reflected by the Pearson’s correlation 
coefficient of r = 0.967 (p-value = 1.9*10–38) stratified per cell popu-
lation and per sample (Fig. 1B). As these correlative results can be biased 
by the presence of highly abundant cell populations, we next focused our 
analysis on low abundant cell populations comprising <10% of the total 
cell repertoire. Using the same approach, we revealed an overall high 
agreement (r = 0.932, p-value = 4.6*10–24) between these platforms 
despite decreasing cell population abundance, further enhancing the 
data alignment between the two techniques (Fig. 1C). 

In addition to the quantitative comparison, Uniform Manifold 
Approximation and Projection (UMAP) was used for dimension reduc-
tion for data structure visualization. UMAP plots of CyTOF (Fig. 1D) and 
FSFC (Fig. 1E) datasets show a remarkably similar distribution of cell 
subsets although not localized at the exact same localization. Some 
clusters populations were more delineated when looking at the FSFC 
dataset such as the CD16 -, CD57- NK cells and the CD4− , CD8− NKT 
subset than in the CyTOF dataset (Fig. 1D, E). 

Comparison of cell population assignment between manual and 
automated approach based on the FSFC dataset. 

There is an increasing tendency to shift towards more sophisticated 
automated or semi – automated methods to analyze and interpretate 
high-dimensional datasets that comes at a cost of data accuracy. Herein, 
we assessed the concordance of cell population assignment and quan-
tification between the manual gating and semi-automated analysis for 
the newly emerged spectral flow cytometry technique. We manually 
gated the cells to assign them to the 15 clusters of interest defined 

previously and imported the dataset in R environment for downstream 
analysis. The agreement between both approaches was highly signifi-
cant, reaching a correlation of r = 0.998 (p-value = 5.88*10–77) for all 
cell populations (Fig. 2A) and r = 0.969 (p-value = 9.17*10–33) for low 
frequent cell populations (<10%) (Fig. 2B). In line, UMAP plots of semi- 
automated and manual gated cell populations show a highly similar 
projection in terms of distance and localization (Fig. 2C, D). 

We further thought to separately investigate the overlap between the 
different cell populations obtained with semi-automated and with 
manual gating by applying the Matthew’s correlation coefficient (MCC). 
Analysis across all samples revealed accurate assignment for highly 
abundant population such as CD4+, CD8+, CD19+ and CD14+ cell 
population with a median matthew’s correlation factor r above 0.9. 
Suboptimal scorings were found for small populations such as NK cell 
subsets and more drastically in NKT populations with the lowest cor-
relation factor reaching 0.45 (Fig. 2E). We thus searched to quantify and 
investigate the origin of the non-concordant assignment of these pop-
ulations based on a contingency table (Fig. S4). Enhanced leakages of 
cells were found between CD4+/CD8+ T cells and CD4+/CD8+ NKT 
subsets and in-between CD56/CD16/CD57 combinatorial NK subsets. 
This reflects the non-dichotomous staining pattern of these subsets 
leading to false cluster allocation with the potential to impact the 
downstream statistical analysis and biological interpretation (Fig. S4). 

4. Discussion 

The recently emerging mass cytometry and full spectrum flow 
cytometry techniques have greatly enhanced our capacity to probe 
biological systems at a high resolution and scalability with their capacity 
to measure several parameters simultaneously in one assay (Mahnke 
et al., 2015; Vanikova et al., 2022; Rahim, 2016; Chattopadhyay et al., 
2019; Barcenilla et al., 2019; Horowitz et al., 2013). In clinical studies, 
samples are often derived from precious, limited and non-replaceable 
sources, frequently yielding low cell number. Thus, a thoughtful ex-
amination of the appropriate analysis tool needs to be undertaken to 
maximize data output. In this proof-of-concept study, we set out a bio-
logical comparative analysis of the two state-of-the art single cell pro-
teomic technologies, cytometry by time-of-flight and full spectrum flow 
cytometry using an identical panel of 33 markers. Our results first 
revealed a high agreement between the two datasets in the quantifica-
tion of major canonical immune cell subsets using a semi-automated 
computational approach and which is in concordance with recent 
findings (Ferrer-Font et al., 2020; Jaimes et al., 2022; Oetjen et al., 2018; 
Gadalla et al., 2019; van der Pan et al., 2023). Rare subpopulations 
showed minor disagreements between both techniques that can be 
attributed to their low frequency abundance and the acquired cell 
number. 

The increasing number of bioinformatics tools emerging alongside 
the increasing output of biological data substantiate the need for vali-
dation of cell phenotypes and accuracy in assignment. While distinct 
populations with a clear separation of negative and positive such as 
CD8+ T cells and CD19+ B cells could be accurately captured by both 
semi-automated analysis and manual gating in our analysis, populations 
that were more subject to spreading such as NKT cells showed more 
discrepancies in the assignment. Thus, despite their explorative and 
multi-dimensional analysis ability, clustering tools (FlowSOM) bear the 
potential to over-estimate or under-estimate cell populations even with 
supposedly basic markers such as CD56 and CD16 and need to be 
applied with cautions for non-bimodal markers. 

The choice of technology is highly dependent on the study design and 
not primarily on the biological output, as shown to be highly over-
lapping in our analysis. Indeed, each of these technologies have their 
strengths and weaknesses regarding their technical performance. With a 
theoretical acquisition of 100 parameters simultaneously and the min-
imal spillover inherent to the use of metal isotopes, Mass Cytometry 
represent a great tool to investigate the breadth of cellular systems 
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without autofluorescence or the need to compensate spectral overlap 
(Kashima et al., 2022; Lo Tartaro et al., 2022). The minimal overlap 
between metal isotopes offers furthermore a higher flexibility in the 
translation and customization of panels then for spectral flow cytometry 
and which can be of great benefit in various clinical settings. However 
substantial constrains exist with the mass cytometry technique: slow 
acquisition speed, low cell throughput and it remains considerably 
expensive (Leipold and Maecker, 2012; Spitzer and Nolan, 2016). Full 
spectral flow cytometry is a direct response to these drawbacks, enabling 
acquisition of a large amount of data in reduced runtimes and with a 
considerably higher cell throughput (Chattopadhyay et al., 2019; 
Bonilla et al., 2020). Full spectral flow cytometry provides the greatest 
benefit in terms of time to cost efficiency which is very valuable in 

clinical studies encompassing a large amount of samples. It allows 
simultaneously to rapidly extract as much data as possible, essential 
when detecting and monitoring the frequency of rare subpopulations. 
Finally, full-spectrum flow cytometry now offers the possibility to sort 
sub-populations of cells for subsequent and future applications. We 
summarized key considerations and questions in Table 1 that needs to be 
consciously interrogated when setting out a new clinical study. In 
conclusion, both tools can interchangeably be used to capture single cell 
data from a biological perspective as set out by our comparative anal-
ysis. Both modalities are valuable and complementary tools on the 
market for addressing research questions in immunophenotyping 
studies. 
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and Maecker, 2012; Maecker and Harari, 2015; Ornatsky et al., 2010).  

Theme Parameter CyTOF FSFC Study 

Technical 

Number of 
parameters 43 40  

Throughput 
(cells/s) 

500 10–15′000 
How many 
samples are 
included? 
What is the 
timeframe of 
the study? Are 
rare subsets a 
special focus 
of the study? 

i.e., 60 x 10e6 ~ 30 h ~ 1, 5 h 

Cell transmission 
efficiency 30–60% > 95% 

What kind of 
samples are 
included? 
According to 
the study 
design is there 
a possibility of 
barcoding? 

Cell size/ 
complexity 

No Yes  

Autofluorescence No Yes Will there be 
several 
sample 
batches of 
acquisition? 
Pre – 
knowledge 
about the 
staining 
pattern of 
antibodies? 

Compensation No Yes 

Sensitivity 300–400 < 40 

Cell sorting No Yes  

Logistical 

Panel flexibility High Medium 
Are there 
specific clones 
that need to 
be 
considered? 

Panel extension High Limited 

Antibody 
availability 

Single 
vendor – in 
house 
conjugation 

Many vendors 
– company 
customization 

Training 
investment High Low  

Barcoding Yes No 

Is there a need 
of the samples 
to be freshly 
stained and 
acquired? 

Financial 

Antibody costs 
(100 tests, CHF) 550 300–600 

What is the 
overall 
financial 
budget for the 
study? 

Infrastructure 
and maintenance 
costs 

2 32 A plugs 
+ Argon 
supply + Air 
extraction 

MilliQ water 
+1 12 A plug 

Data acquisition 
costs (1e6 cells) 

15 CHF 1–2 CHF 

CyTOF: Cytometry by time-of-flight, FSFC: Full spectrum flow cytometry. 
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