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A B S T R A C T

This study evaluates available analytical wake models for flow prediction inside and downstream of wind
farms of different sizes and layouts using large-eddy simulation (LES), and introduces an enhanced analytical
framework. All the tested analytical wake models, based on the superposition of individual turbine wakes,
systematically overestimate the wake recovery both inside and downstream of the wind farms. The results
indicate that the overestimation is linked to the assumption of linear or quasilinear wake expansion, which does
not hold at large downstream distances. To address this issue, an enhanced analytical framework is proposed
based on the extension of a recently developed streamwise scaling model for single wakes that eliminates
the need for the linear wake expansion assumption. Since the new framework computes the wake expansion
based on the near-wake length and the local turbulence intensity, different methods for their calculation and
the superposition of turbulence intensity within wind farms are evaluated against the LES data. The identified
best methods are incorporated into the new analytical framework. The proposed framework consistently yields
more accurate power estimates and flow predictions inside and downstream of finite-size wind farms with
different sizes and configurations.
1. Introduction

The European wind energy sector is projected to experience sig-
nificant growth from 2023 to 2027, with an estimated installation of
129 GW of new wind farms [1]. This expansion aligns with the Eu-
ropean Climate Law, which has been legally enforced by the European
Commission to achieve net-zero greenhouse gas emissions by 2050 [2].
As a result, investments in renewable energies, including wind energy,
are expected to increase. To ensure the success of new and existing
wind energy projects, simple and accurate analytical wake flow models
are crucial, as they provide computationally efficient predictions that
can be used for optimizing wind farm design and control. Turbine
wakes are the primary reason behind the incurred power losses inside
a wind farm, especially when the wind direction aligns the turbines
in such a way that they are most susceptible to the wake effects
of upwind turbines [3–5]. Moreover, the individual turbine wakes
merge into one wind farm wake, whose effect can be noticeable far
downwind. Due to the clustering of wind farms starting to take place
offshore [6], farm-to-farm interactions can lead to additional power
losses in wind farms downstream. Within the wind energy community,
a large variety of wake modelling techniques is available, ranging from
large-eddy simulation (LES) to analytical models. LES is an accurate
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turbulence-resolving computational fluid dynamics tool that has been
validated and widely applied in wind farm flow studies ([7,8], and
references therein). However, despite its accuracy, LES is computation-
ally complex and costly compared to analytical models, which offer a
more cost-effective, albeit less accurate, alternative for several practi-
cal applications such as wind farm layout optimization and real-time
control. Therefore, improving the accuracy and robustness of analytical
models is considered to be essential to ensure reliable outcomes when
optimizing wind farm configuration and control. Moreover, besides
their practical value, analytical wake models provide a fundamental
understanding of the underlying physics as they are derived from
conservation equations governing basic flow properties [9–11].

Engineering wake models based on the superposition of individual
wind turbine wakes are widely used to predict the 3D spatial distribu-
tion of the flow inside and downwind of finite-size wind farms. One
prominent analytical model based on mass conservation was intro-
duced by Jensen [9]. Jensen’s model employs a top-hat distribution
to represent the wind velocity deficit in the wake of an individual
turbine and assumes a constant wake growth rate. To account for wake
superposition within a wind farm, the Park model developed by Katic
et al. [12] implements the linear superposition of energy deficit. In
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Nomenclature

Acronyms

ADM-BE Blade Element Actuator Disk Model
ADM-R Actuator Disk Model with Rotation
ALM Actuator Line Model
CNBL Conventionally Neutral Boundary-Layer
CWBL Coupled Wake Boundary-Layer Model
LES Large-eddy simulation
SGS Subgrid-scale
TurbOPark Turbulence Optimized Park Model

Key Variables

𝛥𝑈𝑖 [m/s] Wind velocity deficit induced by turbine 𝑖
in analytical models

𝛥𝑈𝑚𝑎𝑥 [m/s] Maximum wind velocity deficit
𝛿𝐵𝐿 [m] Boundary-layer height
𝛤 [K/km] Free atmosphere stratification level
𝜔 [deg] Wind direction
𝜎 Gaussian wake width
𝜃 [K] Potential temperature
𝑎 Induction factor
𝐴0 [m2] Rotor swept area
𝐴𝑤 [m2] Cross-sectional area of a turbine wake
𝐶𝑝 Power coefficient
𝐶𝑇 Thrust coefficient
𝐷 [m] Rotor diameter
𝐷𝑤 [m] Wake diameter
𝑓𝑐 Coriolis parameter
𝐺 [m/s] Geostrophic wind velocity
𝐼0 Hub height ambient flow streamwise turbu-

lence intensity
𝐼𝑈 Streamwise turbulence intensity
𝐼+𝑈 Added streamwise turbulence intensity
𝑘∗ Wake growth rate
𝑀 [m/s] Mean wind velocity magnitude from LES
𝑀∞ [m/s] Hub height ambient flow mean wind

velocity from LES
𝑃 [kW] Power output
𝑈 [m/s] Streamwise wind velocity in analytical

models
𝑢∗ [m/s] Friction velocity
𝑈0 [m/s] Inflow velocity for a wind turbine inside

the farm
𝑈∞ [m/s] Undisturbed inflow velocity for the wind

farms
𝑈𝑐 [m/s] Mean convection wind velocity
𝑢𝑐 [m/s] Relative mean convection wind velocity
𝑥′ [m] Downstream distance from the turbine

location
𝑥0 [m] Expansion region length
𝑥𝑁𝑊 [m] Near-wake length
𝑧0 [m] Surface roughness
𝑧ℎ [m] Hub height

an effort to improve the Park model and consider the variability of
the wake growth rate within the farm, Stevens et al. [13] coupled it
with the one-dimensional top-down model developed by Calaf et al.
2

[14] and introduced the Coupled Wake Boundary-Layer (CWBL) model.
The Park model has been further improved by Nygaard et al. [15],
who proposed in the Turbulence Optimized Park Model (TurbOPark)
an analytical solution for the wake width assumed to expand linearly
with the rotor-generated turbulence intensity.

Another common analytical wake model is the Gaussian model,
derived by Bastankhah and Porté-Agel [11] by assuming a Gaussian
distribution for the wind velocity deficit behind a wind turbine and
applying conservation of mass and momentum. Niayifar and Porté-Agel
[16] developed an analytical framework implementing the Gaussian
model and the principle of linear superposition of wind velocity deficit
to superimpose the turbine wakes inside a wind farm. An empirical
linear relation, derived from LES results and validated against exper-
imental data, is used in that framework to account for the variability
of wake growth rate based on incoming turbulence intensity. More
recently, Zong and Porté-Agel [17] introduced another analytical wake
modelling framework that implements the Gaussian model to predict
individual turbine wakes and a novel wake superposition method that
conserves the total momentum deficit in the streamwise direction.

Stieren and Stevens [18] tested the accuracy of some of the above-
mentioned analytical models using LES results of flow through a wind
farm in a neutrally-stratified boundary layer, and showed that they
all tend to over-predict the recovery of the wind farm wake. More
recently, Vahidi and Porté-Agel [19] demonstrated that the commonly
assumed linear relationship between the turbine wake width and the
downstream distance does not hold true for stand-alone wind tur-
bines. Moreover, Vahidi and Porté-Agel [20] found that the normalized
maximum wake velocity deficit downwind of an individual turbine,
normalized by the rotor diameter, collapsed into a single curve when
plotted against the downstream distance, normalized by the near-wake
length. Based on these results, they proposed a non-linear relation to
compute the normalized maximum wake velocity deficit downstream of
a stand-alone wind turbine as a function of the normalized downwind
distance. It should be noted that its applicability for predicting wind
farm flows remains unexplored.

Turbulence intensity is a key quantity in several analytical models,
as it is used to prescribe the wake growth rate [15–17] and to estimate
the near-wake length [19,21,22]. For stand-alone wind turbines, sev-
eral models are available to compute the streamwise variation of the
turbulence intensity in the wake. These base models can be divided
into two types: simple one-dimensional empirical models to estimate
the maximum turbulence intensity at the turbine top tip level [23,24]
and three-dimensional models to predict the radial variation of the tur-
bulence intensity in the turbine wake [25,26]. In wind farms, methods
for superposing turbulence intensity have received less attention and
validation than those for the wind velocity deficit. Recently, Li et al.
[27] examined two superposition methods (linear sum and root sum
square approaches) for turbulence intensity estimation in a column of
wind turbines while applying the three-dimensional model from [26]
as a base model. Moreover, they considered normalizing the standard
deviation of the wind velocity either by the undisturbed flow velocity
at the wind farm inlet or the local wind speed at the inlet of each
wind turbine. They found that combining the root sum square method
and the normalization by the local wind speed yielded the best results
when compared to LES data, although it led to a slight overestimation
of the turbulence intensity deep inside the column of wind turbines.
Additional analysis is needed to identify the most robust and simple
combination of base model and superposition method for the prediction
of turbulence intensity inside wind farms with different sizes and
configurations.

The main objective of this work is to investigate and enhance the
accuracy of analytical wake models by comparing their predictions
of the flow inside and downstream of finite wind farms to LES data.
The rest of the paper is structured as follows: The implemented LES
framework, wind farm cases, and analytical wake models are described
in Section 2. In Section 3, several analytical models are evaluated
against the LES data, and a new improved analytical framework is

introduced and tested. Finally, a summary is provided in Section 4.
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2. Numerical frameworks

2.1. LES framework

2.1.1. LES governing equations and modelling
This study implements the in-house WIRE LES code, which solves

the spatially filtered incompressible Navier–Stokes equations (Eqs. (1)–
(2)). Additionally, the filtered transport equation for potential temper-
ature is solved (Eq. (3)) to account for thermal effects.
𝜕𝑢̃𝑖
𝜕𝑥𝑖

= 0 , (1)

𝜕𝑢̃𝑖
𝜕𝑡

+ 𝜕𝑢̃𝑗
𝜕𝑢̃𝑖
𝜕𝑥𝑗

= −
𝜕𝑝̃∗

𝜕𝑥𝑖
+

𝜕𝜏𝑑𝑖𝑗
𝜕𝑥𝑗

+ 𝛿𝑖𝑗𝑔
𝜃 −

⟨

𝜃
⟩

𝜃0
−

𝑓𝑖
𝜌

+ 𝐹𝑖 , (2)

𝜕𝜃
𝜕𝑡

+ 𝑢̃𝑗
𝜕𝜃
𝜕𝑥𝑗

= −
𝜕𝑞𝑗
𝜕𝑥𝑗

. (3)

In the equations above, 𝑢̃𝑖 is the filtered wind velocity in the i-direction,
𝜃 is the filtered potential temperature, 𝜃0 is the reference temperature
and the angle brackets denote horizontal averaging. 𝜏𝑑𝑖𝑗 is the deviatoric
part of the subgrid-scale (SGS) stress tensor and 𝑞𝑗 is the SGS heat flux
vector. The SGS turbulent fluxes are modelled using a Lagrangian scale-
dependent dynamic model [28,29]. 𝑝̃∗ is the modified pressure and 𝛿𝑖𝑗
is the Kronecker delta tensor. 𝐹𝑖 represents the geostrophic forcing term
efined as 𝐹𝑖 = 𝑓𝑐𝜖𝑖𝑗3

(

𝑢̃𝑗 − 𝐺𝑗
)

, where 𝑓𝑐 is the Coriolis parameter, 𝜖𝑖𝑗3
s the Levi-Civita symbol, and 𝐺 is the geostrophic wind velocity.

The turbine-induced forces, 𝑓𝑖, are parameterized using the blade
lement actuator disk model (ADM-BE), also known as ADM with
otation (ADM-R). It is implemented to calculate the lift and drag forces
s a function of the local simulated flow and the blade characteris-
ics [30]. The ADM-BE is the most suitable method in terms of accuracy
nd computational cost for this study considering large wind farms,
ompared to the standard actuator disk model (ADM) and the actuator
ine model (ALM) [31,32]. The implemented turbines are Vestas V-
0 2 MW with a rotor diameter 𝐷 = 80 m and a hub height of

𝑧ℎ = 70 m. The power curve already validated by Wu and Porté-Agel
[33] is implemented to estimate the power output based on the local
wind velocity.

2.1.2. Numerical setup
The WIRE LES code is implemented to study the interactions be-

tween wind farms with different sizes and configurations, and the
conventionally neutral boundary layer (CNBL). The code is a modified
version of the one introduced by Albertson and Parlange [34], Porté-
Agel et al. [28], Stoll and Porté-Agel [29], and Abkar and Porté-Agel
[35]. The computational domain with dimensions 𝐿𝑥, 𝐿𝑦, and 𝐿𝑧 is
discretized into 𝑁𝑥, 𝑁𝑦 and 𝑁𝑧 evenly spaced grid points in the stream-
wise, spanwise and vertical directions, respectively. The grid planes
are staggered in the vertical direction, with the first vertical velocity
plane located at 𝛥𝑧 = 𝐿𝑧∕

(

𝑁𝑧 − 1
)

, and the lowest plane of the other
variables such as pressure, horizontal wind velocity components, and
potential temperature located at 𝛥𝑧∕2 from the surface. A second-order
Adams–Bashforth explicit scheme is executed for time advancement,
and a hybrid pseudo-spectral finite-difference scheme is applied for
spatial discretization. The spatial derivatives are evaluated using a
pseudo-spectral method in the streamwise and spanwise direction and
a second-order finite-difference approximation in the vertical direction.
Full dealiasing of the nonlinear terms is accomplished through explicit
filtering. The lateral boundary conditions are set to be periodic. A
flux-free condition is assigned to the upper boundary with a Rayleigh
damping layer of 300 m to reduce any gravity wave reflection [36,37].
The temperature gradient is fixed at 𝛤 = 1 K/km at the top boundary.
At the bottom surface, the local instantaneous shear stress is calcu-
lated as a function of the local filtered horizontal wind velocity 𝑢̃𝑟 at
the lowest vertical grid point

(

𝛥𝑧∕2
)

using Monin–Obukhov similarity
theory [38]. Even though this theory was originally formulated for
3

averaged quantities, it is a common approach in LES of atmospheric
flows [39,40] to calculate the instantaneous filtered surface momentum
flux under neutral conditions as follows:

𝜏𝑖3|𝑤 = −𝑢2∗
𝑢̃𝑖
𝑢̃𝑟

= −

(

𝑢̃𝑟
𝑙𝑛

(

𝑧∕𝑧0
)

)2
𝑢̃𝑖
𝑢̃𝑟

, (4)

where 𝜏𝑖3|𝑤 is the instantaneous wall stress, 𝑢∗ is the friction velocity,
𝑧0 is the surface roughness, and 𝜅 = 0.4 represents the von Kármán
constant. Given that we are simulating a CNBL, the surface heat flux is
set to be zero.

2.2. Suite of simulations

A suite of LES simulations is performed for the no-farm, finite-
size wind farm and infinite wind farm cases. The no-farm case acts
as a precursor simulation generating the inflow to the wind farms.
The infinite wind farm cases have wind turbines placed over the
whole domain and, owing to the periodic boundary conditions in both
horizontal directions, they represent the infinite regime of the modelled
wind farms.

All cases consider a CNBL with a weak free atmosphere stratification
level fixed at 𝛤 = 1 K/km. The flow is driven by a geostrophic wind
𝐺 = 10 m∕s and the Coriolis parameter used is 𝑓𝑐 = 1.195 × 10−4 rad/s.
In the no-farm and infinite wind farm cases, the initial temperature
profile starting from the reference temperature 𝜃0 = 293 K is kept
constant vertically up to 100 m and then follows the set lapse rate 𝛤 .
The surface roughness is set to 𝑧0 = 0.05 m. The cases are initialized
with a constant streamwise wind velocity of 10 m∕s. Additionally, to
stimulate the development of turbulence inside the ABL, small random
perturbations are added to the initial wind velocity and temperature
fields at the lowest 100 m of the domain. All the simulations are run for
a long enough duration to guarantee that quasi-stationary conditions
are achieved.

2.2.1. No-farm case
Fig. 1 shows the vertical profiles of the time- and horizontally-

averaged ambient flow characteristics of the no-farm case, where at hub
height the mean wind velocity (𝑀∞) is 7.75 m/s and the ambient flow
streamwise turbulence intensity (𝐼0) is 10%. Two different methods are
used to calculate the boundary layer height, 𝛿𝐵𝐿. In the first method,
𝛿𝐵𝐿 is defined as the height at which the total momentum flux reaches
5% of its surface value. For this definition, 𝛿𝐵𝐿 of the no-farm case
reaches 800 m as shown in Fig. 1(a). In the second method, 𝛿𝐵𝐿 is
determined as the lowest elevation at which the mean wind velocity
magnitude (𝑀) equals the geostrophic value (𝐺). Applying this method,
𝛿𝐵𝐿 is found to be 430 m, as also shown in Fig. 1(a).

2.2.2. Finite wind farm cases
A suite of 16 LES simulations is conducted for a combination of

four different wind farm sizes, two different wind farm densities, and
two possible layouts: aligned and staggered. To ensure analysing the
operation of wind farms in a fully developed ABL, the no-farm case
acting as a precursor simulation to generate the needed inflow is run
first long enough to guarantee stationary flow conditions. The flow
generated in the no-farm simulation is then fed at the inlet of the
finite-size wind farms, and a buffer zone is used to seamlessly adjust
the flow from the far-wake wind farm flow to the inflow [33]. The
wind farms are placed 2 km from the inlet, and a long enough domain
is considered to be able to investigate the wind farm wake up to
a downstream distance of 10 km as illustrated in Fig. 2. The wind
farm is infinite in the spanwise direction due to the periodic lateral
boundary condition. A wind direction control, comparable to the one
previously implemented in the literature [41–43], is applied over the
wind velocity field to ensure that the mean wind flow velocity at
the wind turbines is always perpendicular to the rotor. Specifically, a
source term is introduced to the momentum conservation equations to
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Fig. 1. Vertical profiles of the time- and horizontally-averaged ABL flow characteristics in the precursor no-farm case: (a) wind velocity magnitude, 𝑀 (m/s); (b) streamwise
turbulence intensity, 𝐼𝑈 ; (c) wind direction, 𝜔 (◦); (d) potential temperature, 𝜃 (K).
Fig. 2. Computational domain and layout of the simulated finite-size wind farms. Note: This figure is not drawn to scale.
gradually adjust the geostrophic wind direction. The main parameters
of the different simulated cases are summarized in Table 1, where
the streamwise and spanwise turbine spacing normalized by the rotor
diameter are represented by 𝑆𝑥 and 𝑆𝑦, respectively. The implemented
grid size for the simulations covers the turbine rotor by a minimum
of eight points vertically and seven points laterally, satisfying the
requirements set in previous validation studies. Specifically, Wu and
Porté-Agel [30,44] demonstrated that the WIRE-LES code yields wind
velocity and turbulence intensity fields with low grid dependence as
long as the turbine rotor is covered by at least seven mesh points in
the vertical direction and five in the spanwise direction. All the wind
farm simulations are run for 4 h and the needed data is gathered
4

and averaged over the last 3 h when quasi-steady flow conditions are
reached.

2.2.3. Infinite wind farm cases
To evaluate the flow characteristics within large wind farms, it is

useful to establish a reference case that represents the infinite wind
farm regime. In this study, four infinite wind farms are modelled using
the periodic boundary condition in both horizontal directions and,
unlike the finite-size wind farm cases, not including the aforementioned
buffer and inflow regions. The domain comprises 12 and 14 turbine
rows, corresponding to a turbine spacing of 7D and 5D, respectively.
The flow statistics are averaged over the last 6 h of the simulations,
after a sufficiently long running time to ensure that the flow reaches
the fully-developed infinite regime.
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Table 1
Key parameters of the suite of LES finite-size wind farm simulations.

Case 𝑟𝑜𝑤𝑠 ×
𝑐𝑜𝑙𝑢𝑚𝑛𝑠

𝑆𝑥 × 𝑆𝑦 Layout 𝐿𝑥 × 𝐿𝑦 × 𝐿𝑧
(km3)

𝑁𝑥 ×𝑁𝑦 ×𝑁𝑧

Size 1

S1-A-7 9 × 7 7𝐷 × 7𝐷 Aligned 22.4 × 2.8 × 2.4 960 × 256 × 256
S1-S-7 9 × 7 7𝐷 × 7𝐷 Staggered 22.4 × 2.8 × 2.4 960 × 256 × 256
S1-A-5 9 × 5 5𝐷 × 5𝐷 Aligned 22.4 × 2.8 × 2.4 960 × 256 × 256
S1-S-5 9 × 5 5𝐷 × 5𝐷 Staggered 22.4 × 2.8 × 2.4 960 × 256 × 256

Size 2

S2-A-7 18 × 7 7𝐷 × 7𝐷 Aligned 28 × 2.8 × 2.4 1200 × 256 × 256
S2-S-7 18 × 7 7𝐷 × 7𝐷 Staggered 28 × 2.8 × 2.4 1200 × 256 × 256
S2-A-5 18 × 5 5𝐷 × 5𝐷 Aligned 22.4 × 2.8 × 2.4 960 × 256 × 256
S2-S-5 18 × 5 5𝐷 × 5𝐷 Staggered 22.4 × 2.8 × 2.4 960 × 256 × 256

Size 3

S3-A-7 27 × 7 7𝐷 × 7𝐷 Aligned 33.6 × 2.8 × 2.4 1440 × 256 × 256
S3-S-7 27 × 7 7𝐷 × 7𝐷 Staggered 33.6 × 2.8 × 2.4 1440 × 256 × 256
S3-A-5 27 × 5 5𝐷 × 5𝐷 Aligned 28 × 2.8 × 2.4 1200 × 256 × 256
S3-S-5 27 × 5 5𝐷 × 5𝐷 Staggered 28 × 2.8 × 2.4 1200 × 256 × 256

Size 4

S4-A-7 36 × 7 7𝐷 × 7𝐷 Aligned 39.2 × 2.8 × 2.4 1680 × 256 × 256
S4-S-7 36 × 7 7𝐷 × 7𝐷 Staggered 39.2 × 2.8 × 2.4 1680 × 256 × 256
S4-A-5 36 × 5 5𝐷 × 5𝐷 Aligned 33.6 × 2.8 × 2.4 1440 × 256 × 256
S4-S-5 36 × 5 5𝐷 × 5𝐷 Staggered 33.6 × 2.8 × 2.4 1440 × 256 × 256

2.3. Analytical wake models

In this section, we summarize the implemented analytical wake
models used to predict the wind speed variation inside and downstream
of the wind farms.

2.3.1. Park model
The Park model implements the top-hat model of Jensen [9] for the

prediction of the wake velocity deficit of each individual wind turbine.
That model, which assumes a top-hat shape of the wake velocity deficit
and is derived based on mass conservation, can be written as follows:

𝛥𝑈𝑖(𝑥′) = 𝑈∞ℎ𝑢𝑏

[

𝐷2

𝐷𝑤(𝑥′)2
(

1 −
√

1 − 𝐶𝑇

)

]

, (5)

where 𝛥𝑈𝑖 is the velocity deficit induced by a wind turbine (𝑖), and
defined in this model with respect to the base-flow velocity of the no-
farm case (𝑈∞), which has a value of 𝑈∞ℎ𝑢𝑏 at hub height. 𝑥′ is the
downstream distance from the turbine with a rotor diameter 𝐷 and a
thrust coefficient 𝐶𝑇 . In this model, the wake diameter 𝐷𝑤 is assumed
to grow linearly with a constant growth rate 𝑘∗, i.e.:

𝐷𝑤(𝑥′) = 2𝑘∗𝑥′ +𝐷 , (6)

In this study, 𝑘∗ is set equal to 𝑘∗ = 𝜅
𝑙𝑛(𝑧ℎ∕𝑧0)

as suggested in the
literature [45].

In the Park model, the turbine wake interactions inside a wind
farm are modelled using the linear superposition of energy deficits
introduced by Katic et al. [12]:

𝑈 (𝑥, 𝑦, 𝑧) = 𝑈∞ −
√

∑

𝑖

(

𝛥𝑈𝑖
)2 , (7)

here 𝑈 (𝑥, 𝑦, 𝑧) is the flow velocity at a point (x,y,z) in the domain.

.3.2. Turbulence optimized park model
Another widely used analytical wake model is the

urbOPark model, which was introduced by Nygaard et al. [15] as an
xtension of the Park model. This method uses also the aforementioned
ensen model (Eq. (5)) and linear superposition of energy deficits
Eq. (7)). Unlike the original Park model, the turbine wake diameter
5

𝑤 is computed as a function of the local turbulence intensity in the
ake as follows:

𝑤(𝑥′) = 𝐷 +
𝐴𝐼0𝐷
𝛽

⎡

⎢

⎢

⎢

⎣

√

(𝛼 + 𝛽𝑥′∕𝐷)2 + 1 −
√

1 + 𝛼2

−𝑙𝑛

⎡

⎢

⎢

⎢

⎣

(

√

(𝛼 + 𝛽𝑥′∕𝐷)2 + 1 + 1
)

𝛼
(
√

1 + 𝛼2 + 1
)

(𝛼 + 𝛽𝑥′∕𝐷)

⎤

⎥

⎥

⎥

⎦

⎤

⎥

⎥

⎥

⎦

, (8)

here 𝐼0 is the ambient turbulence intensity, 𝛼 = 1.5𝐼0, 𝛽 = 0.8𝐼0∕
√

𝐶𝑇 ,
and the calibration parameter 𝐴 = 0.6 [15]. The added turbulence
is computed using Frandsen’s empirical model [24] described later in
Section 3.3.1.

2.3.3. Niayifar and Porté-Agel model
The analytical framework presented by Niayifar and Porté-Agel [16]

uses the Gaussian model of Bastankhah and Porté-Agel [11] as a base
model to predict the velocity deficit of each individual wind turbine.
That model, which assumes a two-dimensional Gaussian shape for the
velocity deficit and is derived based on the conservation of mass and
momentum, can be written as follows:

𝛥𝑈𝑖(𝑥′, 𝑦′, 𝑧′) = 𝑈0

⎛

⎜

⎜

⎝

1 −

√

1 −
𝐶𝑇𝐷2

8𝜎2

⎞

⎟

⎟

⎠

𝑒𝑥𝑝
(

−
𝑧′2 + 𝑦′2

2𝜎2

)

, (9)

here 𝛥𝑈𝑖 is defined here with respect to the flow velocity inside the
ind farm at the position of turbine (𝑖), but not including it. 𝑈0 is

he rotor-averaged value of that flow velocity. The three directional
oordinates with respect to the centre of turbine (𝑖) are 𝑥′, 𝑦′, and
′. The wake width (𝜎) is assumed to grow linearly and computed as
ollows Bastankhah and Porté-Agel [22]: 𝜎

𝐷 = 𝑘∗ (𝑥′−𝑥𝑁𝑊 )
𝐷 +

√

1
8 , where

𝑥𝑁𝑊 is the near-wake length calculated using the model from [22], and
𝑘∗ is the wake growth rate computed as a function of the streamwise
turbulence intensity using the following empirical linear relation: 𝑘∗ =
.38𝐼𝑈 + 0.004, which is valid for 𝐶𝑇 = 0.8 and 0.065 < 𝐼𝑈 <
.15 [16]. 𝐼𝑈 is calculated as a function of the ambient turbulence
ntensity 𝐼0 and the added streamwise turbulence intensity 𝐼+𝑈 as such:

𝑈 =
√

𝐼20 + 𝐼+𝑈
2. The added turbulence intensity (𝐼+𝑈 ) is found using

he empirical relation developed by Crespo and Hernández [23], and
nly the maximum added turbulence from the closest upwind turbine
s considered, as described later in Section 3.3.1. The turbine wake
uperposition model implemented is the linear superposition of wind
elocity deficits as developed by Niayifar and Porté-Agel [16]:

(𝑥, 𝑦, 𝑧) = 𝑈∞ −
∑

𝑖
𝛥𝑈𝑖 . (10)

.3.4. Zong and Porté-Agel model
Zong and Porté-Agel [17] developed a wake superposition model

hat guarantees the conservation of the total momentum deficit in the
treamwise direction. The individual wind turbine wakes are calculated
sing the Gaussian model of Bastankhah and Porté-Agel [11] (Eq. (9)).
he wake width is calculated using the quasi-linear function of [46].
t is simplified here since no yaw angle is considered: 𝜎∕𝐷 = 0.35 +
∗𝑙𝑛

[

1 + 𝑒𝑥𝑝
(

𝑥−𝑥𝑁𝑊
𝐷

)]

, where 𝑥𝑁𝑊 and 𝑘∗ are computed as detailed

in the previous model description. The wake superposition is calculated
using the following equations:

𝑈 (𝑥, 𝑦, 𝑧) = 𝑈∞ −
∑

𝑖

𝑢𝑖𝑐 (𝑥)
𝑈𝑐 (𝑥)

𝛥𝑈𝑖 , (11)

𝑈𝑐 (𝑥) =
∬

(

𝑈∞ − 𝑈 (𝑥, 𝑦, 𝑧)
)

.𝑈 (𝑥, 𝑦, 𝑧)𝑑𝑦𝑑𝑧

∬
(

𝑈∞ − 𝑈 (𝑥, 𝑦, 𝑧)
)

𝑑𝑦𝑑𝑧
, (12)

where 𝑢𝑖𝑐 is the relative mean convection velocity of the wake of
each upstream turbine 𝑖, while 𝑈𝑐 is the mean convection flow veloc-

ity for the combined wake of all upstream turbines. 𝑈𝑐 is obtained
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through iterations between Eqs. (11) and (12) and initialized to be
the maximum value of 𝑢𝑖𝑐 . Eq. (11) models the total velocity deficit
s a weighted sum of the individual wake velocity deficits 𝛥𝑈𝑖, where
he weights are the ratio of 𝑢𝑖𝑐 to 𝑈𝑐 . When merging two wakes with
quivalent velocity deficit levels, the one with a higher convection
elocity bears a greater momentum deficit, and should consequently
e assigned a higher weight. In the special case of dealing with small
ake velocity deficits (e.g., if turbine spacing is large), the weight may
e approximated as 1, which then transforms Eq. (11) into Eq. (10) of
he linear superposition of wind velocity deficits.

. Results

.1. Wind farm size and configuration effects

In previous studies, the wind flow properties inside and above wind
arms have been extensively investigated ([8], and references therein),
et the effect of the wind farm size and configuration on the wind farm
ake region has received less attention. In this section, we use the LES

esults to investigate the flow characteristics in the wind farm exit and
ake regions for the different sizes and configurations considered in

his study.
Fig. 3 presents the time-averaged hub height wind velocity dis-

ribution in the wake of the simulated wind farms along with the
orizontally-averaged hub height wind velocity level reached by the re-
pective infinite cases. Specifically, Fig. 3(a) shows streamwise profiles
f the spanwise-averaged mean wind velocity as well as the row-
veraged wind speed over the last wind farm rows, while Fig. 3(b)
epicts the evolution of the mean hub height wind speed at the column
entre. All the wind velocity profiles are normalized by the hub height
ind velocity from the no-farm case. From Fig. 3(b), we can observe

hat the wind farm size has a relatively small effect on the maximum
ind velocity deficit, since the column-centred wind velocity plots

or all considered farm sizes overlap. On the contrary, the spanwise
veraged profiles exhibit significant variation across different wind
arm sizes. This is demonstrated by a decrease in the mean wind speed
ith increasing wind farm size at any considered streamwise position

elative to the wind farm exit. These changes become smaller with
ncreasing wind farm size. At the downstream end of the wind farm,
he row-averaged mean wind speed drops by around 5% from the 9-row
ases to the 18-row cases. Considering that these sizes are within the
ypical range of sizes of existing and planned wind farms, these results
ighlight the importance of accounting for size effects on the prediction
f wind speed deep inside the wind farm as well as the wind farm wake.
n larger wind farm cases of 27 and 36 rows, the decrease in the exit
ind velocity is around 1%, which is less significant. Compared to the
orizontally averaged wind velocity obtained from the infinite wind
arm cases, the largest wind farms approach this infinite asymptotic
imit at the end of the farm albeit not reaching it.

It is worth mentioning that the hub height spanwise-averaged mean
ind speed deficit in the wind farm wakes remains noticeable at a
ownwind distance of 10 km. It still shows some dependence on wind
arm size and configuration, and its value ranges from 2% to 5%.
his observation aligns with the findings of Christiansen and Hasager
47] and Wu and Porté-Agel [43]. Similar results were also discussed
y Stieren and Stevens [18], who investigated the interaction between
wo wind farms. The wind farm positioned 10 km downstream expe-
ienced an 11% reduction in power at their first row compared to the
pstream wind farm.

Figs. 4 and 5 show the contour plots of the time-averaged wind
peed and streamwise turbulence intensity, respectively, on a horizon-
al plane at hub height showing the simulated wind farm exit and wind
arm wake regions. In the shortest considered farms (9 and 18 rows)
ith the lowest density (7𝐷 cases) and aligned configuration, which are

ommonly encountered offshore for certain wind directions [48–51] the
6

low is highly heterogeneous in the spanwise direction within the entire l
wind farm. This is due to the fact that the wind turbine wake effects
remain constrained to localized regions around the turbine columns,
which are separated by channels of high-speed wind flow. According
to Wu and Porté-Agel [43], the high-speed channels in aligned cases
were identified as a significant factor contributing to the increased
flow heterogeneity observed in these configurations. In those cases, the
spanwise heterogeneity of the mean wind speed is evident in the wind
farm exit region and in the farm wake up to a distance of about 5 km. At
longer downstream distances, the lateral expansion and interaction of
the wind turbine wakes lead to a more homogeneous wind farm wake
flow.

For the wind farm cases with staggered configuration, the lateral
flow heterogeneity at the wind farm exit becomes smaller compared
to their aligned counterparts and extends for shorter distances down-
stream, as illustrated by both the wind velocity and turbulence intensity
contour plots. This is due to the larger spanwise wake interactions
associated with the relatively smaller lateral distance between adjacent
wind turbine wakes as a result of staggering. Likewise, for a given wind
farm layout, increasing the wind farm size leads to smaller flow hetero-
geneity at the wind farm exit and wake regions, owing to the increased
spanwise expansion of the cumulated wakes. It is noteworthy that
greater maximum turbulence intensity levels are found in aligned wind
farms when compared to their staggered counterparts. This finding is
consistent with the results of Markfort et al. [52], Wu and Porté-Agel
[53,54]. Similar to the wind speed deficit, the turbulence intensity also
increases as the size and/or density of the wind farm increases.

Fig. 6 presents the normalized power output averaged over each
row. It is shown that, for any given wind farm density and configura-
tion, the streamwise evolution of the power output is not affected by
wind farm size. In all the considered cases, the power output of the last
rows remains greater by 5% on average than the power output level of
the infinite wind farm cases. This observation is similar to the results
presented by Wu and Porté-Agel [43], where the power output inside
the wind farm simulated in a CNBL with a weak stratification level
remained steady and larger than the infinite wind farm power level.
The power output exceeding the infinite wind farm level is consistent
with the fact that the spanwise averaged wind speed does not reach the
infinite wind farm limit, as previously discussed. These results indicate
that the atmospheric boundary layer flow is not yet fully developed
and does not reach the infinite wind farm regime, even for the largest
farms considered in this study. Wind farm density and configuration
are found to have an important effect on the distribution of power
output in the simulated wind farms. The power output stabilizes faster
in aligned wind farms compared to the more gradual decrease observed
in staggered cases. In the aligned wind farm cases, a sharp decrease
in power output is observed in the second row, followed by a slight
improvement in subsequent rows. This trend is consistent with the
findings of Wu and Porté-Agel [33], who attribute the power increase
at the third row to the enhanced turbulence level in the wake of
the first row, leading to a relatively faster wake recovery after the
second row. In the staggered configuration, where the turbine wakes
have longer distances to recover before they interact with the closest
downstream wind turbine, this behaviour is not observed. The power
output gradually decreases within the staggered wind farm, as similarly
reported in previous studies showing the power variation inside the
Horns Rev wind farm for different wind direction [3,55]. Comparing
the two considered wind farm densities, the stabilized power output
levels in the low-density wind farms (7𝐷 cases) are about 10% higher
han the level reached in the high-density wind farms (5𝐷 cases) for all
onsidered wind farm configurations and sizes. This can be explained
y the fact that in wind farms with higher density of turbines (5𝐷 cases)
he turbine wakes have a shorter distance to recover before encounter-
ng a downstream turbine, thus leading to larger wake-induced power

osses.
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Fig. 3. Normalized wind velocity magnitude variation in the streamwise direction for all considered LES cases.
3.2. Analytical wake models assessment

The previously described analytical wake models are used here to
predict the wind velocity inside and downstream of all the wind farms
under consideration. Figs. 7 and 8 show the streamwise profiles of the
time- and rotor-averaged wind speed at hub height as simulated by LES
and predicted by the considered analytical wake models. From these
figures, it is clear that all the implemented models tend to overestimate
the wake recovery inside and downstream of the wind farms, which is
consistent with the results of Stieren and Stevens [18]. Overall, for all
the wind farm cases, the Park model gives the largest overestimation
of the wind speed in the wind farm wakes for downstream distances
larger than about 1 km. This could be related to the fact that the
models assume a constant wake growth rate throughout the wind farm,
regardless of the variation of turbulence intensity inside the farm.
7

Fig. 7 shows the simulated and modelled wind velocity fields inside
and downstream of the 36-row wind farm, in order to evaluate the
capacity of the tested analytical models to capture the effects of wind
farm configuration and density. In the staggered cases, regardless of
wind farm density, the models of Niayifar and Porté-Agel [16] and Zong
and Porté-Agel [17] show the best performance, although still over-
estimating the mean wind speed in the farm wake. It is important
to note that the flow in the near-wake region is not predicted by
both Niayifar and Porté-Agel [16] and Zong and Porté-Agel [17], since
they are based on the Gaussian model, which is strictly only valid in
the far-wake region. Also in the staggered configuration, both the Park
and TurbOPark models yield the largest wind speed overestimation.
This over-prediction can be attributed to the constant wake growth
rate throughout the wind farm in the Park model, and to the method
described in Section 2.3 for calculating the wake width in the Tur-
bOPark model. This model takes into account the added turbulence
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Fig. 4. Contours of the time-averaged mean wind velocity magnitude of the wind farm exit and wake regions at a horizontal plane at hub height for all the considered cases.

Fig. 5. Contours of the streamwise turbulence intensity at the wind farm exit and wake regions on a horizontal plane at hub height for all the considered cases.

Fig. 6. Power output of different turbine rows inside the wind farms normalized by the power output of the first row.
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Fig. 7. Rotor-averaged wind speed variation in the entrance, exit and wake regions of the 36-row wind farms of different configurations, as simulated by LES and predicted by
all the considered analytical wake models: NPA model [16], ZPA model [17], Park model [12] and TurbOPark model [15].
from the same turbine being modelled, leading to an enhanced level
of turbulence intensity, hence a faster wake recovery. In the aligned
configuration, the TurbOPark, Niayifar and Porté-Agel [16] and Zong
and Porté-Agel [17] models show the best performance albeit their
wind speed over-prediction. The TurbOPark model yields the fastest
wake recovery behind the first row of wind turbines. This unrealistic
overestimation of the wake expansion points to a limitation of the dis-
tinct method used by TurbOPark to compute the wake diameter based
on the total turbulence in the wake flow (Eq. (8)), instead of only that in
the base-flow. This is consistent with the fact that the overestimation
in wake recovery is less important in the staggered cases, where the
effective streamwise inter-turbine distance is larger, thus allowing the
added turbulence levels and the associated wake expansion rate to
decay to smaller values before encountering a downstream turbine.
The wind speed overprediction in the wake of the first turbine row
leads to an overestimation of the power output at the second row by
that model, as shown later in Fig. 9. It is worth noting that all the
considered analytical wake models are unable to predict the wind speed
reduction characteristic of the induction region immediately upstream
of the wind turbines. This explains the discrepancies displayed by the
models in that region. Yet, this does not affect the power prediction by
the models, as they compute the turbine power extraction based on the
wind speed of the base flow (i.e., the flow unaffected by the turbine
under consideration).

In order to evaluate the ability of the tested analytical wake models
to capture the effect of wind farms size, Fig. 8 shows the simulated
9

and modelled wind velocity fields inside and downstream of the 7𝐷
staggered cases for the four considered wind farm sizes. It is shown that
the wind speed overestimation introduced by the models of Niayifar
and Porté-Agel [16] and Zong and Porté-Agel [17] remain at a similar
level for all the wind farm sizes. On the other hand, the overestima-
tion of the wind speed by the Park and TurbOPark models increases
with increasing wind farm size. Therefore, these models are unable to
capture the decrease of spanwise-averaged wind speed at any given
downstream distance associated with the increase in wind farm size.

The normalized power output over the rows of the wind farm, as
simulated by LES and predicted by all models under consideration, are
presented in Fig. 9. It is important to note that the observations on
the power output are consistent with the rotor-averaged wind velocity
estimation within the wind farm as the turbine power output prediction
is calculated based on the estimated rotor-averaged wind speed. It is
worth noting that a constant 𝐶𝑝 of 0.44, derived from the characteristic
curves presented by Wu and Porté-Agel [33], is used in all the con-
sidered analytical models. The comparison between the power output
from LES and the tested analytical models in Fig. 9 depicts that, in the
aligned cases, the model of Zong and Porté-Agel [17] gives the most
accurate power estimation. The model of Niayifar and Porté-Agel [16]
gives a comparable power prediction, yet it delivers an underestimation
notably near the end of the high density wind farm (5𝐷 case). The
discrepancy in power estimates is consistent with the model underes-
timating the wind speed near the exit of the aligned wind farms. This
outcome is consistent with the findings of Zong and Porté-Agel [17]
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Fig. 8. Rotor-averaged wind speed variation in the entrance, exit and wake regions of the 7𝐷 staggered wind farms of different sizes, as simulated by LES and predicted by all
the considered analytical wake models: NPA model [16], ZPA model [17], Park model [12] and TurbOPark model [15].
who showed that the two models are very similar when the streamwise
distance between the turbines is sufficiently large (𝑥 > 13𝐷). In fact, the
power predictions of both models in the 7𝐷 staggered wind farm with
the largest streamwise distance between the turbines (𝑥 = 14𝐷) are very
similar, as opposed to the remaining cases where the difference starts
to gradually increase going from a streamwise distance of 𝑥 = 10𝐷, in
the 5𝐷 staggered wind farm, to a distance of 𝑥 = 5𝐷, in the 5𝐷 aligned
case. Additionally, Zong and Porté-Agel [17] accurately predicts the
sharp drop behind the first row and then the slight increase at the third
row in the aligned cases. In contrast, the observed sharp reduction in
power behind the first row is not accurately captured by TurbOPark as
discussed before with the observed overestimation of the wake growth
rate in Fig. 7 at the wind farm entrance. After the fourth row, however,
TurbOPark provides a good power prediction in the aligned cases. As
for the Park model, it predicts well the drop in power at the second
row, but fails to reproduce the slight recovery at the third row, thus
leading to an overall underestimation of the power throughout the rest
of the aligned wind farm. The power underestimation introduced by the
Park model is consistent with the model’s tendency to underestimate
the wind speed within aligned wind farms.

Let us now compare the power performance of the various analytical
wake models to the LES data in the staggered cases, as shown in the
right panels of Fig. 9. In this configuration, the simulated power shows
a more gradual decrease with downstream distance, which is consistent
with previous studies [43,56]. This relates to the effective downstream
distance between adjacent wind turbines, which is double in staggered
10
wind farms compared to aligned ones. This results in longer distances
for wake flows to recover. The figure illustrates that, except for the
second row of turbines, whose power output is accurately predicted by
most of the models (excluding the Park model for the aforementioned
reasons), all models systematically overestimate the power output fur-
ther inside the wind farm. The Park and TurbOPark models exhibit a
notably large overprediction deep into the wind farm. These results
indicate that the performance of the models is affected by the wind
farm configuration, and more specifically by the effective downstream
distance between adjacent wind turbines. One possible reason for this
dependence is the assumption of linear or quasi-linear expansion of
the turbine wakes, which is likely to break down and overestimate
the wake recovery at long downstream distances, as recently discussed
by Vahidi and Porté-Agel [19]. That would explain why the prediction
by some models like the one of Zong and Porté-Agel [17] is good
for relatively short effective inter-turbine distances (5𝐷 and 7𝐷 in the
aligned cases), but it deteriorates with increasing distances (10𝐷 and
14𝐷 in the staggered configurations). This observation can also be
inferred from the predicted wind velocity fields plotted in Fig. 7.

3.3. Turbulence intensity prediction

3.3.1. Base model for a single turbine added turbulence intensity
Considering the importance of turbulence intensity on the wake

growth rate estimation, in this section, we evaluate two common empir-
ical relations for estimating the added streamwise turbulence intensity
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Fig. 9. Power output of different turbine rows inside the 36-row wind farms of different configurations normalized by the power output of the first row, as simulated by LES and
predicted by all the considered analytical wake models: NPA model [16], ZPA model [17], Park model [12] and TurbOPark model [15].
Fig. 10. Variation of the maximum streamwise added turbulence intensity (𝐼+
𝑈 𝑚𝑎𝑥)

behind the first row of the 7𝐷 staggered 9-row wind farm as simulated by LES, and
predicted by Frandsen, and Crespo’s models.

(𝐼+𝑈 ) by an individual turbine. The first empirical equation, proposed
by Crespo and Hernández [23], estimates 𝐼+𝑈 as:

𝐼+𝑈 = 0.73𝑎0.8325𝐼−0.03250

( 𝑥
𝐷

)−0.32
. (13)

This equation is valid for 5 < 𝑥
𝐷 < 15, with 0.07 < 𝐼0 < 0.14 and

0.1 < 𝑎 < 0.4, where 𝑎 represents the induction factor.
The second empirical relation, developed by Frandsen [24] for the

far wake region, is as follows:

𝐼+𝑈 =

√

𝐶𝑇

1.5
√

𝐶𝑇 + 0.3
√

7
(

𝑥
𝐷

) . (14)

In Fig. 10, the results of the considered added turbulence intensity
models are compared to the LES output taken behind the first row of
the staggered 9-row wind farm with a turbine spacing of 7𝐷. As shown
by the LES results, the decay of 𝐼+𝑈 is more significant than predicted by
Crespo’s model. The comparison shows that Frandsen’s model provides
more accurate predictions of added turbulence intensity in the far wake
compared to Crespo’s model. Since we are interested in the far-wake
region, Frandsen’s relation is selected as the base model for estimating
the added turbulence intensity by a given turbine in the new analytical
model proposed in Section 3.6.
11
3.3.2. Turbulence intensity superposition method
In this section, we evaluate different methods to account for the

effect of wake superposition on the turbulence intensity inside wind
farms. As discussed by Li et al. [27], the existing superposition methods
consider either the cumulative effect of the added turbulence from all
upstream turbines or only the prevalent effect of the closest upstream
turbine. Previous studies claimed that the turbulence intensity inside
a wind farm can be approximated by the added turbulence from the
closest adjacent upstream turbine [57]. This observation led to a non-
cumulative approach, as implemented by Niayifar and Porté-Agel [16]
and later also applied by Zong and Porté-Agel [17]:

𝐼𝑈
+
𝑗 = 𝑚𝑎𝑥

(

𝐴𝑤
𝐴0

𝐼𝑈
+
𝑘𝑗

)

, (15)

where 𝐴𝑤 is the cross-sectional area of the wake, 𝐴0 the rotor swept
area, 𝐼𝑈+

𝑘𝑗 is the added streamwise turbulence intensity generated by
an upstream turbine 𝑘 at the location of a given turbine 𝑗 inside a wind
farm, and 𝐼𝑈+

𝑗 is the added streamwise turbulence intensity at the inlet
of turbine 𝑗. The total turbulence intensity is calculated as:

𝐼𝑈 𝑗 =
√

𝐼20 + 𝐼𝑈+
𝑗
2 . (16)

Another approach consists of applying the sum square method to
superpose the added turbulence intensity, considering the effect of all
the upstream turbines, instead of just the closest upstream one [27].
Specifically, the added turbulence intensity at the location of turbine 𝑗
can be calculated as:

𝐼𝑈
+
𝑗
2 =

∑

𝑘

(

𝐴𝑤
𝐴0

𝐼𝑈
+
𝑘𝑗

)2
. (17)

The main difference between the method implemented here and the
one of Li et al. [27] lies in their implementation of the 3D model
developed by Li et al. [26] to estimate the individual turbine-added
turbulence intensity. Here, we have opted for the simpler 1𝐷 model
of Frandsen [24] since it provides reasonable predictions, as shown in
Section 3.3.1.

3.3.3. Effect of wind speed used for normalization
The turbulence intensity is defined as the ratio of the standard

deviation of wind speed fluctuations to the mean wind speed, and it is
constituted of the undisturbed flow turbulence intensity and the added
turbulence intensity generated by the turbine. As pointed out by Li et al.
[27], the mean wind velocity used for the normalization can be either
the undisturbed wind speed at the wind farm inlet or the local wind
velocity inside the wind farm. In the context of a wind farm, using the
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Fig. 11. Variation of the maximum added standard deviation of the streamwise wind velocity for the 9-row cases at the top-tip level of the turbines as simulated by LES and
predicted by the various superposition methods considered.
local hub height wind speed for the normalization allows the analytical
model to account for the local turbulence intensity, which is crucial for
turbine load evaluation and provides a more representative estimation
of wake losses as emphasized by Göçmen and Giebel [58].

Next, we evaluate different combinations of the two aforementioned
superposition techniques (cumulative, Eq. (17) and non-cumulative,
Eq. (15)) coupled with the two normalization approaches (using the
local turbine inlet wind velocity and the farm inlet wind speed).
Fig. 11 shows the standard deviation of the streamwise wind velocity
component added to the undisturbed flow, obtained using the four
resulting combinations of methods, as well as the corresponding values
obtained from the LES simulations for the nine-row wind farms. The
most accurate method, which closely matches the LES results across all
wind farm configurations, is the one that uses the cumulatively added
turbulence intensity equation (Eq. (17)) and utilizes the local wind
velocity. The slight overestimation in the added turbulence intensity
near the end of the six turbines column case observed by Li et al. [27]
is not witnessed in the results shown in Fig. 11. On the contrary, the
calculated standard deviation using the cumulative method with the
local wind speed remains accurate even at the 9th row, the last row of
the considered wind farm.

After analysing multiple combinations, the model presented in Sec-
tion 3.6 computes the turbulence intensity within a wind farm using the
most precise techniques identified. Specifically, we select the above-
described Frandsen’s model (Eq. (14)) as the base model for a single
turbine added turbulence intensity 𝐼𝑈+

𝑘𝑗 , the cumulative technique for
the superposition of the added turbulence from all upstream turbines
(Eq. (17)), and the local wind velocity 𝑈𝑗 at a turbine inlet for the
normalization. Consequently, the turbulence intensity is calculated as
follows:

𝐼𝑈 𝑗 =

√

√

√

√𝐼20
𝑈∞
𝑈𝑗

+
∑

𝑘

(

𝐴𝑤
𝐴0

𝐼𝑈+
𝑘𝑗
𝑈𝑘
𝑈𝑗

)2
. (18)

3.4. Streamwise scaling for improved wake expansion modelling

As discussed in Section 3.2, the fact that most of the tested analytical
wake models overestimate the wake recovery inside and downwind of
the wind farms, particularly over relatively long effective streamwise
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inter-turbine distances, could be related to their assumption of linear
or quasi-linear wake expansion. Vahidi and Porté-Agel [19] showed
that, for a stand-alone wind turbine wake, this assumption does not
hold at relatively long downstream distances. In a follow-up study,
they proposed a simple new streamwise scaling model based on the
observation that the wake width of an individual turbine, normalized
by the rotor diameter, collapses into a single curve if plotted against
the downstream distance, normalized by the near-wake length [20].
The model computes the normalized maximum velocity deficit 𝛥𝑈𝑚𝑎𝑥
based on its universal relation with respect to the downstream distance
normalized by the near-wake length, as follows:

𝛥𝑈𝑚𝑎𝑥

𝑈∞

(

1 −
√

1 − 𝐶𝑇

) = 1.75
(

𝑥
𝑥𝑁𝑊

+ 0.5
)−1.37

. (19)

After computing 𝛥𝑈𝑚𝑎𝑥, one can calculate the wake width 𝜎 based on
the following equation derived from momentum conservation [11]:

𝛥𝑈𝑚𝑎𝑥
𝑈∞

= 1 −

√

1 −
𝐶𝑇

8(𝜎∕𝐷)2
. (20)

Fig. 12(a) shows a comparison of the wake width normalized by the
rotor diameter computed from the streamwise scaling model of Vahidi
and Porté-Agel [20], the wake growth rate relations proposed by Ni-
ayifar and Porté-Agel [16] and Shapiro et al. [46], and that obtained
from the LES data, as a function of the streamwise distance normalized
by the near-wake length, at the first row of a 7𝐷 staggered case, where
the streamwise distance between turbines is the largest. From LES, the
𝜎 values are obtained by fitting the wind velocity deficit profiles down-
wind of the turbine using a Gaussian function. We define the near-wake
length as the distance between the wind turbine and the downstream
location where the linear correlation coefficient of the Gaussian fit ex-
ceeds the commonly assumed value of 0.99 [19,20,59,60]. The results
in Fig. 12(a) confirm the findings of Vahidi and Porté-Agel [19], who
showed that 𝜎 does not vary linearly with the downstream distance.
Both the linear function of Niayifar and Porté-Agel [16] and the quasi-
linear function of Shapiro et al. [46] overestimate the wake width
beyond a normalized downwind distance of 8𝐷.

In Fig. 12(b) the normalized maximum wind velocity deficit vari-
ation obtained from the four different methods is represented with
respect to the streamwise distance normalized by the near-wake length.
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Fig. 12. (a) The wake width as a function of streamwise distance normalized by the
rotor diameter. (b) The normalized maximum wake velocity deficit as a function of
the streamwise distance normalized by the near-wake length. Both plots are taken
downstream of a turbine at the first row of the 9-row 7D staggered case. The black
circles indicate the LES results and the solid blue line is the solution obtained from
the streamwise scaling model of VPA [20]. The prediction by the wake growth rate
relation of NPA model [16] is shown in a dashed red line and of Shapiro et al. [46]
in green.

The results are accurately predicted by the streamwise scaling model.
On the other hand, using the 𝜎 values obtained from the relation
of Bastankhah and Porté-Agel [22], in which the wake growth rate
equation of Niayifar and Porté-Agel [16] is implemented, and the
relation of Shapiro et al. [46] in the Gaussian model leads to an
underestimation of the actual maximum wind velocity deficit, which
is consistent with the previously identified overestimation of the wake
recovery rate. Specifically, the fact that the largest errors were detected
in staggered wind farms could be attributed to the relatively large
effective streamwise distance between wind turbines (exceeding 8𝐷) in
those cases. Based on the aforementioned observations, the streamwise
scaling method offers the most accurate representation of turbine wake
expansion, especially at far downwind distances and high turbulence
intensity levels that are commonly encountered inside wind farms. As
a result, the streamwise scaling method is implemented and extended
to account for the interaction of multiple turbine wakes within and
downstream of wind farms in the analytical wake modelling framework
proposed in Section 3.6.

3.5. Near-wake length model

The near-wake length is a key parameter in several analytical wake
models. Here we evaluate the performance of three available near-wake
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length parameterizations. The first tested model is the one proposed
by Vermeulen [21]:

𝑥𝑁𝑊 = 𝐷
2

√

𝑚 + 1
2

(

1 −
√

0.134 + 0.124𝑚
)
√

0.214 + 0.144𝑚
(

1 −
√

0.214 + 0.144𝑚
)
√

0.134 + 0.124𝑚
(𝑘∗)−1 ,

𝑘∗ =
√

(𝑘∗)2𝛼 + (𝑘∗)2𝑠 + (𝑘∗)2𝜆 ,

(𝑘∗)𝛼 = 2.5𝐼0 + 0.005 ,

(𝑘∗)𝑠 =
(1 − 𝑚)

√

1.49 + 𝑚
9.76(1 + 𝑚)

,

(𝑘∗)𝜆 = 0.012𝑁𝑏𝛬 .

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎭

(21)

In this model, the wake growth rate (𝑘∗) is decomposed into the
contribution of three turbulence components: ambient turbulence (𝛼),
shear-generated turbulence (𝑠), and turbine-generated turbulence (𝜆).
The parameter 𝑚 is set equal to 𝑚 = 1

√

1−𝐶𝑇
, 𝑁𝑏 is the number of blades

and 𝛬 is the tip speed ratio.
The second model is a semi-empirical relationship derived by Bas-

tankhah and Porté-Agel [22], which is based on an analogy with round
co-flowing jets:

𝑥𝑁𝑊 =
𝐷(1 +

√

1 − 𝐶𝑇 )
√

2
[

4𝛼𝐼𝑈 + 2𝛽
(

1 −
√

1 − 𝐶𝑇

)] , (22)

where 𝛽 = 0.154 is an analytical constant and 𝛼 = 2.32 is an empirical
parameter.

The third model considered here is the model of Vahidi and Porté-
Agel [19], which is based on the analogy between wind turbine wake
expansion and scalar diffusion from a disk source. For the case of near-
neutral atmospheric conditions, which are applicable to this study, it
can be written as follows:

𝑥𝑁𝑊 = 𝑥0 + 𝜎𝑒
𝐷
(

1 +
√

1 − 𝐶𝑇

)

2
[

√

𝑆𝑐𝑡
(

0.63𝐼𝑈
)

+ 𝑆′
(

1 −
√

1 − 𝐶𝑇

)] , (23)

where standard values are adopted for the turbulence Schmidt number
𝑆𝑐𝑡 = 0.5, the mixing layer characteristic length spreading rate 𝑆′ =
0.043, and the threshold for the onset of the far-wake 𝜎𝑒 = 0.18. In
the expansion region of length (𝑥0), pressure builds up to reach the
ambient pressure with negligible shear layer growth compared to the
rotor diameter [61]. It is assumed that this region spans over one
rotor diameter based on experimental findings [62] and 1D momentum
theory [63] for a turbine operating at its optimal tip speed ratio.

It is worth noting that the two latter models require the turbulence
intensity at the turbine inlet (𝐼𝑈 ) as an input. As discussed in Sec-
tion 3.3, the locally calculated turbulence intensity is utilized. On the
other hand, the model by Vermeulen [21] considers each source of tur-
bulence separately. Instead of relying on the local turbulence intensity
as in the other two models, this allows the use of the undisturbed flow
turbulence intensity level (𝐼0) for the ambient turbulence component
[

(𝑘∗)𝛼
]

across the wind farm, normalized by the local wind speed at
the turbine inlet.

The findings from the three tested near-wake length models are
shown in Fig. 13 and compared with the corresponding LES results.
It is observed that the near-wake length of the turbines at the first row
is accurately predicted by the model developed by Vahidi and Porté-
Agel [19]. Inside a wind farm, the near-wake length decreases sharply
in waked conditions. Yet, none of the considered models accurately
predict the near-wake length inside the wind farm. Based on our
results, and considering that the model of Vahidi and Porté-Agel [19]
systematically overestimates the near-wake length in waked conditions
by about 0.5𝐷, a modified version of this model is proposed that
employs an expansion region of 0.5𝐷 (instead of 1𝐷) in waked wind
turbines within the wind farm. As shown in Fig. 13 when comparing the
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Fig. 13. Near-wake length variation inside all the 36-row wind farms: Comparison of LES results with predictions by the models of Vermeulen [21], BPA [22], and VPA [19] in
both its original and modified version.
original near-wake model to the modified one, the new implementation
with the shorter expansion region yields a better prediction for the
largest 36-row wind farm. Based on these results, it is recommended
to use two distinct expansion region lengths: 𝑥0 = 1𝐷 for the turbines
at the first row in unwaked conditions and 𝑥0 = 0.5𝐷 for the waked
turbines inside the wind farm. Additional research is necessary to gain
a better understanding of the physical causes behind the change in the
expansion region inside wind farms.

3.6. Proposed analytical framework for wind farm flow predictions

Based on the results presented in the previous sections, here we
propose an analytical framework for wind farm flow modelling. It is
based on the extension of the model of Vahidi and Porté-Agel [20]
for single turbines to a wind farm. The method for wake superposi-
tion considered is the momentum conserving superposition technique
developed by Zong and Porté-Agel [17]. The methods to calculate key
components of the model, including the turbulence intensity and its
superposition inside the wind farm, the near-wake length, and the wake
width, are summarized below:

• The normalized maximum wind velocity deficit in the turbine
wake is calculated using the streamwise scaling method intro-
duced by Vahidi and Porté-Agel [20] represented by the following
equation resulting from rearranging Eq. (19):

𝛥𝑈𝑚𝑎𝑥
𝑈∞

= 1.75
(

𝑥
𝑥𝑁𝑊

+ 0.5
)−1.37

⋅
(

1 −
√

1 − 𝐶𝑇

)

• The turbine wake width (𝜎) (standard deviation of the Gaus-
sian velocity deficit) is computed from the normalized maximum
velocity deficit using the model of Bastankhah and Porté-Agel
[11] to guarantee the conservation of momentum. Specifically,
rearranging Eq. (20) yields:

𝜎∕𝐷 =

√

√

√

√

√

√

𝐶𝑇

8
[

1 −
(

1 − 𝛥𝑈𝑚𝑎𝑥
𝑈

)2
]

14

∞

• The near-wake length is estimated using the model proposed
by Vahidi and Porté-Agel [19] with an expansion region length
of 𝑥0 = 1𝐷 for turbines in unwaked conditions and 𝑥0 = 0.5𝐷 for
waked turbines inside the wind farm. It is given by Eq. (23):

𝑥𝑁𝑊 = 𝑥0 + 𝜎𝑒
𝐷
(

1 +
√

1 − 𝐶𝑇

)

2
[

√

𝑆𝑐𝑡
(

0.63𝐼𝑈
)

+ 𝑆′
(

1 −
√

1 − 𝐶𝑇

)]

• The turbulence intensity superposition method uses the local
wind velocity at the inlet of each turbine and incorporates the
cumulative effect of added turbulence from all upstream tur-
bines. The selected superposition and normalization techniques
are represented by Eq. (18):

𝐼𝑈 𝑗 =

√

√

√

√𝐼20
𝑈∞
𝑈𝑗

+
∑

𝑘

(

𝐴𝑤
𝐴0

𝐼𝑈+
𝑘𝑗
𝑈𝑘
𝑈𝑗

)2

• The added turbulence intensity behind each turbine is determined
using the model developed by Frandsen [24] (Eq.: (14)):

𝐼𝑈
+
𝑘𝑗 =

√

𝐶𝑇

1.5
√

𝐶𝑇 + 0.3
√

7
(

𝑥
𝐷

)

The proposed analytical framework is tested for all the considered
wind farm sizes and configurations in this study. Fig. 14 shows the
power output from LES and the power computed by implementing
the proposed model, as well as the model of Zong and Porté-Agel
[17]. Only the largest wind farm results are presented here since
in Section 3.1 it is shown that the power output variation inside a
wind farm remains the same for all the considered sizes. Overall, the
proposed model yields more accurate power predictions, and it is able
to rectify the systematic overestimation obtained with all the previously
tested analytical models shown in Fig. 9.

Consistent with the improved power prediction, the new model
yields also enhanced predictions of the mean wind speed. Fig. 15
shows the streamwise variation of the rotor-averaged wind speed at
hub height inside and in the wake region of the wind farms with 36
rows and all considered configurations. Comparing the output from the
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Fig. 14. Normalized row power output of the 36 rows wind farms of different configurations, as simulated by LES and predicted by the proposed model and ZPA model [17].
implemented models to the LES data, it is concluded that the proposed
framework yields the most accurate wind velocity estimation inside the
wind farm as well as in the wind farm wake, notably near the exit of the
wind farm where all the previously evaluated models overestimated the
wind velocity. The same improvement is observed with all the tested
configurations, showing that the proposed model is robust and accurate
for all wind farm layouts and densities. In Fig. 16, we present the
streamwise variation of the rotor-averaged wind speed at hub height
inside and in the wake region of the 7𝐷 staggered wind farms for
all considered sizes. Similarly, a comparison of the outputs from the
analytical models against LES data reveals that the proposed framework
consistently provides the most accurate wind velocity estimations both
in the inter-turbine regions and within the wind farm wake. Hence,
the proposed model can also yield accurate wind speed predictions
inside and downwind of the wind farm irrespective of its size. The
improved wake prediction by the proposed model can also be observed
in Fig. 17. It depicts contour plots of the time-averaged wind speed at
hub height within and downstream of the 9-row wind farms from LES,
the analytical wake models of Niayifar and Porté-Agel [16] and Zong
and Porté-Agel [17], and the proposed model. It is shown that the
proposed model improves the wake prediction inside and downstream
of the wind farm. Overall, the extent of the turbine wakes and their
spanwise interactions inside the wind farm and in the wake region
are better predicted by the new model. These enhancements can be
attributed to the new approach for calculating the wake width using the
streamwise scaling technique and the modified method for accounting
for the superposition of turbulence intensity inside the wind farm.
These features of the new model allow it to mitigate the overestimation
of the wake growth rate exhibited by the tested analytical wake models.

4. Summary

This study presents a comprehensive evaluation of available ana-
lytical wake models and proposes an enhanced modelling framework
for flow prediction inside and downstream of wind farms using LES
data of sixteen different wind farms with varying sizes and layouts
15
within a CNBL. The LES results reveal a clear effect of wind farm
size, layout and density on the flow in the wind farm exit and wind
farm wake regions. For the typical size range of existing and planned
wind farms, and for a particular layout, increasing the wind farm
size leads to a reduction in the spanwise-averaged mean wind speed
at any given distance relative to the wind farm exit. For the largest
considered wind farms, the flow and power output deep inside the
wind farm show less variability with farm size and become closer
to those found in infinite wind farms, albeit not reaching them. As
expected, increasing wind farm density leads to a decrease in wind
speed, thus power output per turbine, deep inside the wind farms
and in their wakes. As for the effect of changing the layout, fully
aligned configurations, characterized by relatively shorter streamwise
and longer spanwise effective inter-turbine distances, produce larger
spanwise flow heterogeneity than their staggered counterparts. This
explains the fact that they lead to larger power losses while yielding
larger spanwise-averaged wind speed in the wind farm exit and wake
region.

The following analytical models are evaluated against the LES data:
the Park model, the TurbOPark model, the framework of Niayifar and
Porté-Agel [16], and the momentum conserving framework of Zong
and Porté-Agel [17]. All the tested models tend to over-predict the
wake recovery behind the turbines inside and downstream of the
wind farms for all the considered sizes and layouts. As a result, the
power output over the wind farm rows is not well predicted. Our
results show that an important factor contributing to the overestima-
tion of the wake recovery by some of the analytical models is the
assumption of a linear or quasi-linear wake expansion rate. Analysis
of the LES data reveals that this linear relationship is not valid at
relatively long distances downwind of wind turbines, which is con-
sistent with the findings of Vahidi and Porté-Agel [19] for a single
turbine.

To address the aforementioned wake recovery overestimation, we
propose a new analytical framework extending the recently developed
model by Vahidi and Porté-Agel [20] for stand-alone wind turbines,

which does not rely on the linear wake expansion assumption, to
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Fig. 15. Rotor-averaged wind velocity variation near the entrance and exit of the 36 rows wind farms of different configurations and their wake region, as simulated by LES and

predicted by the proposed model and the ZPA model [17].
the flow prediction inside and downstream of wind farms. The pro-
posed framework depends on estimating the near-wake length and
turbulence intensity within a wind farm, crucial for prescribing the
non-linear growth rate. In this context, various methods for calculating
the near-wake length, turbulence intensity and its superposition are
assessed against the LES data. For the near-wake length, the method
developed by Vahidi and Porté-Agel [19] is found to yield the most
accurate predictions. For the added turbulence intensity by a single
turbine, the relation of Frandsen [24] is shown to be the most accu-
rate. Furthermore, the study establishes the necessity of adopting a
cumulative superposition methodology to account for the combined
effect of the added turbulence intensity from all the wind turbines
upstream. Additionally, it is recommended to normalize the standard
deviation of wind velocity with the local wind speed within the wind
farm instead of using the undisturbed flow velocity at the wind farm
inlet.

Compared with LES, the proposed analytical modelling framework
yields improved power estimates and wind speed predictions both
inside and downstream of wind farms with respect to the other tested
analytical wake models. The improved framework also exhibits robust-
ness by achieving the same level of accuracy in the wake prediction
for all considered cases regardless of the wind farm size, density and
configuration. In future work, we aim to study the effects of surface-
layer thermal stratification on wind farm wakes and assess the ability
16
of different analytical wake models (including the newly developed
framework) to predict those impacts.
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Fig. 16. Rotor-averaged wind velocity variation near the entrance and exit of the 7𝐷 staggered wind farms of different sizes and their wake region, as simulated by LES and
predicted by the proposed model and the ZPA model [17].

Fig. 17. Contours of the time-averaged mean wind velocity magnitude at a horizontal plane at hub height in the 9-row wind farm cases, aligned and staggered, with 7𝐷 turbine
spacing from (a) LES, (b) the model of Zong and Porté-Agel [17], and (d) the proposed model implementing the momentum conserving superposition method.
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