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Abstract

Quantum optics studies how photons interact with other forms of matter, the understanding

of which was crucial for the development of quantum mechanics as a whole. Starting from

the photoelectric effect, the quantum property of light has led to the development of atomic

physics, laser science, and nonlinear optics. The interaction between quantized photons

and free electrons, as well as macroscopic mechanical objects, has only been experimentally

investigated in recent years. The journey toward observing the manifestation of the quantum

nature of photons constitutes most of this thesis, in two particular settings: optomechanical

interaction and free-electron interaction.

Quantum optomechanics studies the quantum effects when macroscopic mechanical objects

couple to an electromagnetic field. First developed for studying gravitational wave detection,

it is now a platform for exploring the limits of quantum measurements. To date, most of the

quantum effects have been demonstrated only with experiments at cryogenic temperatures.

In the first half of this thesis, we discuss our effort to establish an experiment system, using the

"membrane-in-the-middle" architecture, to demonstrate quantum optomechanical effects at

room temperature, which is beneficial to the accessibility and widespread adoption of optome-

chanical technology. Specifically, we identify the competing physical processes that emerged

at room temperature, which cause linear and nonlinear thermomechanical cavity frequency

noise, as well as photothermal mechanical instability. Having understood these effects, we

develop techniques, including phononic crystal mirrors, nonlinear noise cancellation, and

high power-handling soft-clamped membranes, to resolve these challenges, which lead to the

operation of a solid-state optomechanical system in the quantum regime at room temperature

for the first time. With the system we developed, we demonstrate optomechanical squeezing,

measurement of mechanical motion in the quantum limit, measurement-based feedback

cooling close to the quantum ground state, and optomechanical sideband asymmetry.

On the other hand, free-electron quantum optics studies the more fundamental interaction

between a flying electron and quantum optical fields. The semi-classical interaction between

free electrons and an intense laser field has been well studied, but the quantum nature of light

remains elusive. By its energy-conserved nature, coherent cathodoluminescence can reveal

the quantum nature of electron-light interaction under the right measurement setting. In

the second half of this thesis, we discuss the theoretical investigation of the quantum optical

interaction between free electrons and light and the experimental platform we developed

using integrated photonic circuits. With a classical laser field, we observe efficient stimulated

free-electron interaction with both linear and nonlinear optical fields. When the cavity is in
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Abstract

a vacuum state, the quantum nature of electron-photon interaction is revealed in the form

of coherent cathodoluminescence for the first time by analyzing the correlations of particle

coincidence, thanks to complete control over the input-output ports of the used photonic

device, as well as event-based electron detectors.

Keywords: Quantum measurement, cavity optomechanics, dissipative dynamics, integrated

photonic circuits, electron microscopy, electron energy loss spectroscopy
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Résumé

L’optique quantique étudie l’interaction des photons avec d’autres formes de matière, dont la

compréhension a été cruciale pour le développement de la mécanique quantique dans son

ensemble. À partir de l’effet photoélectrique, la propriété quantique de la lumière a conduit

au développement de la physique atomique, de la science des lasers et de l’optique non

linéaire. L’interaction entre les photons quantifiés et les électrons libres, ainsi que les objets

mécaniques macroscopiques, n’a été étudiée expérimentalement que ces dernières années. Le

voyage vers l’observation de la manifestation de la nature quantique des photons constitue la

majeure partie de cette thèse, dans deux contextes particuliers : l’interaction optomécanique

et l’interaction entre électrons libres.

L’optomécanique quantique étudie les effets quantiques lorsque des objets mécaniques ma-

croscopiques sont couplés à un champ électromagnétique. D’abord développée pour étudier

la détection des ondes gravitationnelles, elle constitue désormais une plateforme pour explo-

rer les limites des mesures quantiques. Jusqu’à présent, la plupart des effets quantiques n’ont

été démontrés que par des expériences à des températures cryogéniques. Dans la première

moitié de cette thèse, nous discutons de nos efforts pour établir un système expérimental,

en utilisant l’architecture "membrane au milieu", pour démontrer les effets optomécaniques

quantiques à température ambiante, afin de faciliter l‘accès à la technologie optomécanique

ainsi que son adoption généralisée. Plus précisément, nous identifions les processus physiques

concurrents apparaissant à température ambiante, qui provoquent un bruit de fréquence

thermomécanique linéaire et non linéaire de la cavité, ainsi qu’une instabilité mécanique pho-

tothermique. Après avoir compris ces effets, nous développons des techniques, notamment

des miroirs cristallins phononiques, l’annulation du bruit non linéaire et des membranes

à serrage souple à haute puissance, afin de résoudre ces problèmes, nous permettant de

faire fonctionner pour la première fois un système optomécanique à l’état solide dans le

régime quantique à température ambiante. Avec le système que nous avons développé, nous

démontrons la compression optomécanique, la mesure du mouvement mécanique dans la

limite quantique, le refroidissement par rétroaction basé sur la mesure à proximité de l’état

fondamental quantique et l’asymétrie de la bande latérale optomécanique.

L’optique quantique à électrons libres, quant à elle, étudie l’interaction plus fondamentale

entre un électron se propageant et des champs optiques quantiques. Bien que l’interaction

semi-classique entre des électrons libres et un champ laser intense ait été bien étudiée, la

nature quantique de la lumière reste tout autant énigmatique. La cathodoluminescence

cohérente, de par sa propriété à conserver l’énergie, peut révéler la nature quantique de l’in-
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Résumé

teraction électron-lumière dans les conditions de mesure appropriées. Dans la seconde moitié

de cette thèse, nous discutons de l’étude théorique de l’interaction optique quantique entre

les électrons libres et la lumière, ainsi que de la plateforme expérimentale que nous avons

développée en utilisant des circuits photoniques intégrés. Avec un champ laser classique,

nous observons une interaction stimulée efficace entre les électrons libres et les champs op-

tiques linéaires et non linéaires. Lorsque la cavité est vide, la nature quantique de l’interaction

électron-photon est démontrée sous la forme de cathodoluminescence cohérente pour la

première fois grâce à l’analyse des corrélations de coïncidence des particules, à un contrôle

complet des ports d’entrée-sortie du dispositif photonique utilisé, ainsi qu’à des détecteurs

d’électrons activés par événements déclencheurs.

Mots-clés : Mesure quantique, optomécanique de cavité, dynamique dissipative, circuits pho-

toniques intégrés, microscopie électronique, spectroscopie de perte d’énergie des électrons
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Introduction

We never experiment with just one electron or atom or (small) molecule.

In thought-experiments we sometimes assume that we do;

this invariably entails ridiculous consequences.

— Erwin Schrödinger 1952

This thesis is structured into two parts: Part I, Room-temperature quantum optomechanics;

and Part II, Free-electron quantum optics. Although they are two seemingly disconnected

research topics, they are all under the broader research direction of quantum optics and, to

some extent, even share similar physical effects. They also reflect the diverse topics we explore

in the Laboratory of Photonics and Quantum Measurements, as well as the collaborative

research environment. These two parts are arranged in this order not because of chronological

reasons. In fact, they are undertaken in parallel.

I started my PhD working with photonic integrated circuits, aiming to generate squeezed

light using optical Kerr nonlinearity based on the low-loss material of Si3N4. It has been a

long-standing goal in the field to generate textbook continuous-wave (CW) optical squeezing

using only a single cavity mode in microresonators, but it has had no success. During my first

year of research, we identified and characterized various noise sources and parasitic processes

in our low-loss Si3N4 photonic integrated circuit platform. I summarized our findings in

Appendix A, Dissipative dynamics in photonic integrated circuits, where the discovery of an
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unidentified noise source indicates that our platform is not yet feasible for CW-squeezed light

generation. However, the techniques we developed and the results obtained along the way

have motivated me during the early stages of my PhD. These include the measurement and

modeling of the thermorefractive noise [1], the development of the framework of dissipative

feedback [2], as well as using photothermal response measurements to anchor material

absorption rates [3, 4, 5].

After my PhD candidacy exam, we decided to pass on the Kerr squeezing project. I switched

my primary PhD project to developing an experimental platform to achieve room-temperature

quantum optomechanics. As I had extensive experience with trapped ion systems [6] during

my bachelor study, cavity optomechanics is both intuitive and straightforward, where we

replace the ion’s electronic resonance with an optical cavity and replace the ion’s harmonic

motion with the displacement of macroscopic mechanical oscillators. At the same time, I

am excited to work on the quantum control of manufactured objects for the first time in

my career, instead of a single particle I was used to, where the experimental and theoretical

considerations are much more complex and diverse. Right around the same time, Covid

happened. During the Covid lockdown period, I also started working on the theoretical

formulation of electron-photon interaction at home, using my quantum optics knowledge

from research and teaching. Even though free particles are the first thing we studied in

quantum mechanics, their properties when interacting with other particles are much less

well-known. That really interests me and presents new opportunities. These two research

directions, i.e., cavity optomechanics and free-electron quantum optics, have been my parallel

focus ever since. In particular, the encouraging results from the electron side [7, 8, 9] have

been helping me cope with the numerous technical challenges encountered in the cavity

optomechanics experiment [10]. I am glad that, in the end, both research directions were

fruitful. I have summarized a brief comparison of the two research directions in Chapter 9.

On the optomechanics side, I took over the project from a former PhD student, Sergey Federov.

I managed to develop an experiment platform [10], together with my colleague Alberto Beccari,

who helped me tremendously with device fabrication, where we observed most of the quan-

tum optomechanical effects, including optomechanical squeezing, position measurement in

the quantum limit, measurement-based feedback cooling close to the quantum ground state,

and optomechanical sideband asymmetry, demonstrating the outstanding performance of our

system. These results have been summarized in Chapter 3, which would not have been possi-

ble if not for the numerous technical advances we made in Chapter 2, which resolved many

of the challenges when operating the system at room temperature, including photothermal

mechanical instability, thermal intermodulation noise, and cavity mirror noise. I find these

advances more precious than the optomechanical effects we observed, which are essentially

the same as those investigated almost a decade ago in low-temperature systems. Resolving

every one of these technical challenges has been the central theme over the past four years

during my PhD, where the resolution of one issue typically leads to another new one. Room-

temperature operation has been a long-standing goal in the field of cavity optomechanics

since its infancy around two decades ago. During my PhD, many groups in the field have been
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actively working on this goal, many of which have given up on the project by the end due to

the challenging technical difficulties of dealing with unwanted physical processes that emerge

at room temperature. I feel fortunate that, before the end of my thesis study, we identified and

understood most aspects of the physical processes in our system and developed the necessary

techniques to achieve quantum control of a macroscopic oscillator at room temperature.

On the free-electron quantum optics side, I jumped right into the theoretical side of the

electron-photon interaction during Covid, which I found timely when the electron project

started rolling. The understanding and formulation of physics, new and old alike, have always

been encouraging to me, but it was not possible without our experiment collaborators from

Claus Roper’s group. I firmly believe that experiment and theory should guide each other, and

without either, science cannot be done properly, especially for a young and emerging field.

During these years, I have tried my best to be critical of my findings, especially ensuring that

my theory closely follows the observation and can guide the experiment. Like any theoretical

work, anything I derived can be wrong and mistaken before direct experiment evidence is

confirmed. In this thesis, I first summarize all the theory basics in Chapter 4 and proceed with

the experimental observation of semi-classical electron-light interactions in Chapter 5 in the

form of generalized PINEM [7, 11], which is well-studied in the field. The quantum optical part,

which is the most complex and easy to confuse oneself, follows in Chapters 6 and 7, where I

start with a detailed theoretical analysis of the experiment system [9] (Chapter 6), and ends

with our experiment observation of the quantum optical interaction between free-electrons

and optical waveguides [8] (Chapter 7). Even though I spent much time understanding the

observations as much as possible, to this day, some of the phenomena in the experiment still

puzzle me. Chapter 8 follows with the theoretical findings of our continuing work on free-

electron interactions with two-ring devices, where the electron energy-momentum dispersion

affects the interaction.
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Observing quantum phenomena requires precise measurement and control of the quantum

system. Even for single particles, this is not easy, as when they interact with the outside world,

they quickly lose their quantum properties. The fragile nature of quantum systems [12] renders

them susceptible to the influence of the thermal environment. This presents a significant

challenge in quantum science and technology, especially for solid-state systems strongly

coupled to their environment. Nevertheless, over the past decade, quantum control has been

extended to solid-state mechanical resonators, both with radiation pressure optomechanical

coupling [13] and piezoelectric coupling with superconducting qubits [14, 15].

Cavity optomechanics, where a macroscopic mechanical oscillator dispersively couples to an

optical cavity, has enabled numerous advances in controlling and engineering the quantum

state of the oscillator and light, including ground state cooling [16, 17], optomechanical

squeezing of light [18, 19, 20, 21, 22] and entanglement of separate mechanical oscillators

[23, 24, 25]. This architecture has also been extended to quantum transducers [26] and may

even allow macroscopic tests of quantum mechanics [27] with massive and more macroscopic

objects.

However, all these advances necessitate cryogenic cooling to reduce thermal fluctuations.

Room temperature operation, on the other hand, is beneficial to the accessibility and the

widespread adoption of technology, as witnessed in different branches of physical science [28,

29, 30]. The development of room-temperature quantum optomechanical systems would

imply a drastic reduction of experimental complexity by removing the limitations imposed by

cryocoolers, such as poor thermalization, excess acoustic noise, and limited optical access.

Room temperature operation would stimulate applications such as coupling to atomic sys-

tems [31], force microscopy [32], and variational displacement measurements [22]. From a

more fundamental perspective, even though quantum optomechanical phenomena were al-

ready demonstrated over a decade ago at cryogenic temperatures, observing similar quantum

phenomena should not be taken for granted since other physical processes outside the con-

ventional optomechanics interaction will start to dominate. These additional processes that

emerge when conducting experiments at higher temperatures are interesting by themselves

from the perspective of understanding new physics.

This part of the thesis describes our journey toward establishing an optomechanical system

operating in the quantum regime at room temperature, and contains parts adapted from

Ref [10]. We first review the theoretical basis of cavity optomechanics in Chapter 1. Then, in

Chapter 2, we discuss in detail how we overcome several challenges in a phononic-engineered

“membrane-in-the-middle” system to enter the quantum regime of cavity optomechanics

at room temperature. Specifically, we reduce the thermodynamical fluctuations of cavity

frequency, using a high-finesse cavity whose mirrors are patterned with phononic crystal

structures, by more than 700-fold (Section 2.3). In this ultra-low noise cavity, we introduce a

silicon nitride membrane oscillator whose density is modulated by silicon nano-pillars [33],

yielding both high thermal conductance and a localized mechanical mode with Q of 1.8×108

(Section 2.2). The high thermal conductance of the membrane reduces the photothermal ef-
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fect, which would otherwise prevent the operation in the quantum regime. The photothermal

effect is examined in theoretical modeling and experimental verification (Section 2.5). We also

studied the nonlinear thermomechanical noise in the cavity (Section 2.4) and developed a

single-port homodyne detection technique to mitigate this noise in many measurement set-

tings. In Chapter 3, we show that these advances enable the operation of the optomechanical

displacement sensor within a factor of 2.5 of the Heisenberg limit, leading to squeezing of

the probing laser field by 1.09 dB below the vacuum fluctuations (Section 3.1). Moreover, the

long thermal decoherence time of the membrane oscillator (more than 30 vibrational periods)

allows us to obtain conditional displaced thermal states of motion with an occupation of 0.97

phonons (Section 3.2). We also observed canonical optomechanical sideband asymmetry

when cooling the mechanical oscillator close to the quantum ground state (Section 3.4).

We also summarize some acronyms that we use in this part of the thesis below.

ALD: Atomic layer deposition

DBA: Dynamical backaction

FPGA: Field-programmable gate array

FT: Fourier transform

IIR: Infinite impulse response

MIM: Membrane-in-the-middle

PDH: Pound-Drever-Hall

PECVD: Plasma-enhanced chemical vapor deposition

PnC: Phononic crystal

QBA: Quantum backaction

QED: Quantum electrodynamics

Q: Quality factor

SNR: Signal to noise ratio

SQL: Standard quantum limit

TIN: Thermal intermodulation noise
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1 Theoretical foundations of photon-
phonon interaction

This chapter aims to set up the most fundamental theoretical basics of the quantization pro-

cedure of photons and phonons, whose properties are frequently used in the later chapters,

particularly in the part of cavity optomechanics. Since cavity optomechanics is primarily

concerned with the interaction between a single optical cavity mode and high-Q mechanical

modes, which have well-defined frequencies and field profiles, we only quantize discrete

optical modes and mechanical eigenmodes of a finite structure, as well as their Fourier com-

ponents in the frequency domain. Next, we derive the most canonical cavity optomechan-

ics model, and some basic physical effects, including dynamical backaction and quantum

backaction. More complex models and theoretical analyses are developed in later chapters,

accompanied by the associated experimental results.

Throughout the thesis, we adopt the notion that FT = ∫
e iωt d t , so that FT[Ȧ(t)] =−iωA(ω),

unless specified otherwise. We also use the following notation for the power spectral density

of quantum observables:

S ÂB̂ (ω) ≡ lim
T→∞

1

T
〈Â†

T (−ω)B̂T (ω)〉 =
Ï

T
〈Â†(t +τ)B̂(t )d t〉e iωτdτ=

∫
〈Â†(ω)B̂(ω′)〉 dω′

2π
,

(1.1)

where T is the integration time window, Â(ω) = ∫
Â(t )e iωt d t , and Â†(ω) = Â(−ω)†.

1.1 Quantization of cavity photons

The quantization of photons is covered in most quantum optics textbooks, e.g., [34]. Here, we

follow the framework of the open quantum system, where a cavity mode is coupled to bath

modes of input and output fields. In a finite space with a fully reflective boundary condition,

the optical eigenmodes Un(r) can be solved from the wave equation

∇×∇×U(r)− ω2

c2 ϵ(r,ω)U(r) = 0 (1.2)

9
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with normalization condition∫
d 3rϵ(r,ωm)Um(r) ·U∗

n(r) = δm,n . (1.3)

Here, ϵ(r,ωm) is the optical permittivity as a function of spatial coordinate and optical fre-

quency ω, and c is the speed of light. If the space is filled with only vacuum or lossless media,

the modal decomposition method [35] is often used, where the optical vector potential is

quantized as

Â(r, t ) =∑
n

√
ℏ

2ωnϵ0
Un(r)âωn ,ne−iωn t +h.c. (1.4)

such that the Hamiltonian of a single optical mode âm is simply

Ĥph = ℏωm â†
m âm (1.5)

where ℏ is the Planck constant. In this thesis, we use the quantum Langevin equation (with

rotating wave approximation) derived in Appendix B.1.2 to describe the dynamics governing

the creation and annihilation operators of the cavity mode at frequencyΩ0,

˙̂a = (−iΩ0 −κ/2)â +p
κâin (1.6)

where the input noise operator obeys

〈â†
in(t )âin(t ′)〉 = nthδ(t − t ′) (1.7)

〈âin(t )â†
in(t ′)〉 = (nth +1)δ(t − t ′) (1.8)

where the thermal occupancy nth(Ω0,T ) = 1/(exp(ℏΩ0/kB T )−1). Note that for our particular

case of optical frequencies > 100THz, we can safely set nth = 0 in most scenarios.

In the rotating frame of the laser frequencyΩlaser, we use the detuning ∆=Ω0 −Ωlaser instead,

˙̂a = (−i∆−κ/2)â +p
κâin (1.9)

In the presence of classical laser phase noise δp(t) and amplitude noise δq(t), we have the

following correlations for the laser phase and amplitude quadratures:

q̂ = âine−iθ+ â†
ine iθ

p
2

(1.10)

p̂ =−i
âine−iθ− â†

ine iθ

p
2

(1.11)(
〈δq̂(t )δq̂(t ′)〉 〈δq̂(t )δp̂(t ′)〉
〈δp̂(t )δq̂(t ′)〉 〈δp̂(t )δp̂(t ′)〉

)
= 1

2

(
1+2Cqq i +2Cqp

−i +2Cqp 1+2Cpp

)
δ(t − t ′), (1.12)

10
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with which we obtain the following relations for the input noise operator:

〈â†
in(t )âin(t ′)〉 =

(
nth +

Cqq +Cpp

2

)
δ(t − t ′) (1.13)

〈âin(t )â†
in(t ′)〉 =

(
nth +1+ Cqq +Cpp

2

)
δ(t − t ′) (1.14)

〈âin(t )âin(t ′)〉 =
(

e2iθCqq −e2iθCpp

2
+ i e iθCpq

)
δ(t − t ′) (1.15)

where θ is the mean field phase ain = |ain|e iθ. We can also define the optical susceptibility in

the Fourier domain

â(ω) =p
κχcav(ω)âin(ω) (1.16)

χcav(ω) = 1

i (∆−ω)+κ/2
(1.17)

to simplify many of the calculations in this thesis.

1.2 Quantization of macroscopic phonons

The macroscopic oscillators we treat in this thesis are the vibrational eigenmodes of a solid-

state object. Compared to the more natural quantization of elementary particles, the macro-

scopic nature of these oscillations roots in the thermodynamic limit, where a collection of

interacting particles yields a few normal modes with easy-to-access macroscopic observ-

ables, e.g., center-of-mass motion, whose quantization can be naturally extended from the

microscopic counterpart.

The details of the quantization of phonons are more complicated than that of optical photons.

For a book of reference, see Ref. [36]. For optical photons, typically losses κ are far smaller

than the optical frequencies ω, so we can always use the perturbative approach by separating

the lossless Hamiltonian containing all the eigenmodes and then introduce the bath mode

coupling using Langevin equations.

This is not easily the case for mechanical phonons unless the mechanical modes are of high

quality factors Q =Ωm/Γm ≫ 1, whereΩm is the mechanical frequency and Γm is the damping

rate. For over-damped oscillators, the perturbative approach cannot be easily justified. In

order to define a quantum oscillator, the requirement is more strict because the thermal

decoherence rate Γth = (nth(Ωm ,T )+1/2)Γm is amplified by the bath temperature T , which

is especially important for low-frequency mechanical motions. Therefore, the prerequisite

of having a quantum oscillator is that the mechanical eigenmode gives a mechanical fre-

quencyΩm that is larger than the thermal decoherence rate Γth defined atΩm , such that the

perturbative approach of Hamiltonian quantization and Langevin equations are justified.

From here, we assume to have a quantum oscillator withΩm ≫ Γth(Ωm), then we quantize

11
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the position q̂ and momentum p̂ operators in the frame of the mechanical frequency as:

q̂ = xzpf(b̂† + b̂) (1.18)

p̂ = i pzpf(b̂† − b̂) (1.19)

where xzpf =
√
ℏ/2mΩm is the zero-point position fluctuation, pzpf =

√
ℏmΩm/2 is the zero-

point momentum fluctuation, and m is the effective mass of the oscillator. This quantization

procedure is only possible whenΩm ≫ Γth(Ωm), because of the frequency-dependent nature

of the zero-point fluctuations over the Fourier bandwidth betweenΩm ±Γth.

Throughout the thesis, we will generally work with the dimensionless position Q̂ and momen-

tum P̂ operators instead, which are defined as:

Q̂ = 1p
2

q̂

xzpf
= 1p

2
(b̂† + b̂) (1.20)

P̂ = 1p
2

P̂

pzpf
= ip

2
(b̂† − b̂) (1.21)

Using the Boson commutation relation, it is clear that [Q̂, P̂ ] = i . Following this commutation

relation, we can find the position-momentum uncertainty principle

σ(Q̂)σ(P̂ ) ≤ 1

2

∣∣〈[Q̂, P̂ ]〉∣∣= 1

2
(1.22)

and their variance in thermal equilibrium

σ2(Q̂) =σ2(P̂ ) = nth +
1

2
(1.23)

In this thesis, we use the generalized quantum Langevin equation (without rotating wave

approximation) derived in Appendix B.1.1 to describe the dynamics governing the position

and momentum operators due to the lowerΩm/Γth compared to the optical one:

˙̂Q =ΩmP̂ (1.24)

˙̂P =−ΩmQ̂ −ΓmP̂ +
√

2ΓmP̂in (1.25)

with the following input noise density:

SP̂inP̂in
(ω) = ω

Ωm
(nth(ω)+1) (1.26)

SP̂inP̂in
(−ω) = ω

Ωm
nth(ω) (1.27)
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ainˆ

aoutˆ

â

q̂

m, Ωm

Γm

κ, Δ 

L

Figure 1.1: Canonical representation of a cavity optomechanical system. One of the end
mirrors of the FP cavity is the mechanical oscillator with frequencyΩm and damping rate Γm ,
whose position operator is q̂ . The cavity is at frequency ∆=Ω0 −Ωlaser detuned from the laser,
with a decay rate of κ, whose frequencyΩ0(q) is determined by the mechanical position q̂ .

It is also convenient to define the mechanical susceptibility of

˙̂Q(ω) =
√

2Γmχm(ω)P̂in (1.28)

χm(ω) = Ωm

Ω2
m −ω2 − iωΓm

(1.29)

which we will use frequently throughout this part of the thesis.

1.3 Photon-phonon coupling mediated by an optical cavity

A canonical schematic for cavity optomechanics can be found in Fig. 1.1, where the position q

of the mechanical resonator changes the resonant frequencyΩ0(q) of an optical cavity mode.

From here, we can write down the semi-classical cavity optomechanics Hamiltonian

H = p2

2m
+ mΩ2

m

2
q2 +ℏΩ0(q)â†â (1.30)

In the usual case where position fluctuation δq is small and the optomechanical coupling

strength G ≡ ∂Ω0(q)
∂q ̸= 0, we can linearly expand the optical frequency asΩ0(q +δq) =Ω0(q)+

Gδq . We can then proceed with the quantization procedure of the phonons discussed in the

previous section and set δq → q̂ to arrive at the canonical optomechanical Hamiltonian [13]

Ĥ = ℏ(Ω0 +Gq̂)â†â +ℏΩm b̂†b̂ (1.31)

= ℏΩ0â†â +ℏΩm b̂†b̂ +ℏg0â†â(b̂† + b̂) (1.32)
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Chapter 1. Theoretical foundations of photon-phonon interaction

where we defined the vacuum optomechanical coupling rate as

g0 =Gxzpf (1.33)

Following the Langevin equations derived from earlier sections, we can write out the equation

set that is essential to derive most of the dynamics associated with the results obtained in this

thesis,

˙̂a = −
[κ

2
+ i (∆+p

2g0Q̂)
]

â +p
κâin, (1.34)

˙̂Q = ΩmP̂ , (1.35)
˙̂P = −ΩmQ̂ +

√
2ΓmP̂in −ΓmP̂ −

p
2g0â†â, (1.36)

In the case where the cavity is pumped with strong laser fields, such that the intra-cavity

photon number 〈â†â〉≫ 1, we can linearize the optical field by working in a frame of the phase

space displaced by α = 〈â〉 from the origin. In this thesis, we work in an optical reference

frame where the intracavity field α= |α| has zero phase. It is then equivalent to the following

transformation:

D̂†(α)â†âD̂(α) =α(â† + â)+ â†â (1.37)

where D̂(α) = exp(αâ† −α∗â) is the displacement operator. The second term â†â on the right

side can be safely ignored in most circumstances because optical vacuum fluctuations are

small compared to stimulated fields. However, this might not be the case when the optical

fluctuations are dominated by other noise sources, e.g., the thermodynamical noises of the

mechanical resonator. In this case, this term exhibits nonlinear effects, which we discuss in

Section 2.4 of thermal intermodulation noise.

In the linear regime where photon operator nonlinearity can be safely ignored, it is conve-

nient to define the optomechanical coupling rate g = g0α, with which the frequency-domain

Langevin equations are

â(ω) =p
2i gχcav(ω)Q̂(ω)+p

κχcav(ω)âin(ω) (1.38)

Q̂(ω) =χm(ω)
(√

2ΓmP̂in(ω)−2g X̂ (ω)
)

(1.39)

In the presence of an optical drive, the cavity provides a feedback mechanism to modify the
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dynamics of the mechanical oscillator in the following way (dynamical backaction):

Q̂(ω) =χ′m(ω)
(√

2ΓmP̂in(ω)−
p

2κg (χcav(ω)âin(ω)+χcav(−ω)∗â†
in(ω))

)
(1.40)

χ′m(ω) = 1

χm(ω)−1 +2i g 2(χcav(−ω)∗−χcav(ω))
= Ωm

Ω′2
m −ω2 − iωΓ′m

(1.41)

Ω′
m =

√
Ω2

m −2g 2ΩmIm[χcav(−ω)∗−χcav(ω)] (1.42)

Γ′m = Γm −2g 2Ωm

ω
Re[χcav(−ω)∗−χcav(ω)] (1.43)

where the mechanical oscillator experiences an optical spring effect Ω′
m = Ωm +δΩm and

optical damping/amplification Γ′m = Γm +δΓm . Note that optomechanical bistability occurs

exactly whenΩ′ → 0. The above expression neglects the frequency-dependent Γm(ω), espe-

cially when the system is under structural damping instead of viscous damping. This feature

is exploited in the case of optically-stiffened cantilevers [21, 37], where a significant optical

spring effect leads to a reduction of mechanical loss.

We assume that the mechanical mode is initially thermalized to the environment with occu-

pation nth. In our experiment, we mostly work with red detuned laser in the fast cavity limit

Ωm ≪ κ. The mechanical mode is Doppler-cooled by dynamical backaction damping with

the following simplified expressions:

Γdba
m = g 2(

κ

κ2/4+ (∆+Ωm)2 − κ

κ2/4+ (∆−Ωm)2 ) ≈ −4Ωm∆κg 2

(κ2/4+∆2)2 , (1.44)

while at the same time, frequency-shifted by the optical spring effect,

δΩdba
m = g 2(

∆−Ωm

κ2/4+ (∆+Ωm)2 + ∆+Ωm

κ2/4+ (∆−Ωm)2 ) ≈ 2∆g 2

κ2/4+∆2 . (1.45)

One of the critical parameters of the system is the quantum cooperativity Cq = 4g 2

κΓth
, which

characterizes the ratio between the interaction of the oscillator with optical photons vs. that

of the environment phonon bath. The dynamical backaction effect can be used to calibrate

Cq when the pump is detuned and to calibrate all other effects that contribute to mechanical

frequency shift (e.g., thermal expansion due to heating). The optical spring shift can be used

to calibrate Cq ≈ 4p
3

δΩdba
m
Γth

at the magic detuning 2∆∗/κ= 1/
p

3 discussed in Section 2.4. The

same applies to the dynamical back-action damping rate Γdba
m ≈ 3

p
3CqΓthΩm

2κ .

Under laser cooling, the mechanical mode undergoes thermal equilibrium with two baths,

one of the thermal environment and one of the laser. The occupation of the mechanical mode

is calculated as

n = nthΓm +ndba
m Γdba

m

Γtot
m

(1.46)
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where the equivalent bath occupation of the laser for unresolved sideband cooling is

ndba
m = (Ωm +∆)2 + (κ/2)2

−4∆Ωm
(1.47)

The finite occupation of the laser bath in the unresolved sideband regime comes from quantum

backaction (QBA) forces to the mechanics, with an equivalent increase in the mechanical

thermal occupation nqba. In the resonant setting, ∆= 0, we retrieve
nqba

nth
=Cq . When the laser

is detuned, the QBA is reduced to
nqba

nth
= Cq

1+(2∆/κ)2 .

In the next chapter, we discuss the technical details of establishing an optomechanical system

capable of operating in the Cq > 1 regime at room temperature, and with quantum-noise-

limited imprecision S̄imp
xx and backaction S̄ba

F F .
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temperature quantum optomechanics

To enter the quantum regime of optomechanics, the product between the total force noise S̄tot
F F

(including environment thermal force S̄th
F F as well as measurement-induced backaction S̄ba

F F )

and the displacement measurement imprecision S̄imp
xx must approach the limit

√
S̄imp

xx S̄tot
F F ≥

ℏ/2 set by the Heisenberg uncertainty principle [13]. A necessary condition imposed by this

limit is that the quantum backaction (QBA) rate from the light field Γqba = x2
zpfS̄

qba
FF /ℏ2 (xzpf

is the oscillator’s zero-point displacement fluctuation amplitude) must exceed the thermal

decoherence rate Γth = x2
zpfS̄

th
FF/ℏ2 of the mechanical oscillator, which is determined by the

bath temperature T and by the quality factor Q as Γth = kB T /(ℏQ). In addition, the required

measurement imprecision is far below the standard quantum limit (SQL), imposing strict

limitations on tolerable cavity frequency noise.

Over the past decade, multiple pioneering approaches have been pursued to reach the ul-

tralow mechanical dissipation required to enter the quantum backaction-dominated regime at

room temperature, including levitated nanoparticles [38] and micromechanical objects whose

rigidity is controlled by an optical field [37, 39]. These methods enhance the mechanical Q by

optical trapping and have resulted in recent observations of quantum backaction [37], optome-

chanical squeezing of light [21, 40] and ground state cooling [41]—all at room temperature.

However, room temperature quantum optomechanical phenomena have not been acces-

sible with engineered ultra-coherent solid-state mechanical resonators because of thermal

intermodulation noise [42], vibrations of the cavity mirror substrates [43] and optical heating-

induced instability [44]. These thermal effects result in excess imprecision and backaction

noise, preventing their product from reaching the Heisenberg limit.

This chapter describes our experimental system and advances to mitigate the abovementioned

challenges to achieve operation in the quantum regime of cavity optomechanics. We first

start with Section 2.1.1, the design principle of the membrane-in-the-middle (MIM) system,

the device assembly procedure, and some parameters of the operating system. Section 2.2.2

discusses the membrane employed in the system, followed by a discussion of phononic crystal

mirrors in Section 2.3.1. A detailed discussion of the nonlinear thermomechanical noise is
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Figure 2.1: Setup schematic of the MIM system in the typical operating configuration used for
measurement-based feedback control of the mechanical motion of the membrane. Depending
on the specific experiments, some components in the setup are reconfigured.

provided in Section 2.4. Because of the necessity to operate at a specific laser detuning to

mitigate the aforementioned nonlinear noise, the photothermal effect arises and induces

mechanical instability, which is discussed in Section 2.5. In Section B.3, we discuss the working

principle of IIR filters used to implement mode-selective feedback cooling of unstable modes

due to the photothermal effect. A setup schematic is also shown in Fig. 2.1, where the IIR filter

programmed on an FPGA board is used to implement feedback cooling. The setup is also used

for most experiments performed in Chapters 2 and 3, with some components reconfigured

when necessary.

2.1 Membrane-in-the-middle optomechanical system

2.1.1 Theoretical modeling of the membrane-in-the-middle system

A significant optical power is required to exert enough radiation shot noise to dominate the

thermal force noise experienced by the mechanical oscillator. However, typical lasers exhibit

classical noise in both the phase and amplitude of the field, which overwhelms the laser shot

noise at high-power operation. Therefore, high-finesse optical cavities are typically used to

enhance the radiation pressure force experienced by the mechanical oscillator while keeping
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(a) (b)

holder

clamp

Figure 2.2: (a) Schematic of the MIM assembly structure and optical ports. (b) Optical micro-
scope image of the MIM assembly from the top, showing the overlapping phononic crystal
structures of the top mirror, membrane chip, and bottom mirror.

the optical power low to ensure quantum-noise-limited laser operation.

Furthermore, to access the quantum regime at room temperature for mechanical oscillators,

engineered mechanical resonators exploiting the effect of dissipation dilution (discussed in

Section 2.2.2) need to be used to achieve enough coherence to qualify as quantum oscillators.

These resonators are typically very thin in thickness to achieve high coherence and can not

serve well as an end cavity mirror for a high-finesse cavity. Membrane-in-the-middle (MIM)

architecture (schematic shown in Fig. 2.2) is one cavity-mechanics configuration that could

help to alleviate this inconvenience by placing a thin membrane inside an optical cavity to

achieve efficient optomechanical coupling while maintaining high finesse of the cavity.

In the following, we model this configuration in a simplified 1-D analysis using the transfer

matrix method [45, 46]. In the transfer matrix method, each optical element, including free-

space propagation, can be represented by a 2-by-2 matrix M for the evolution of the optical

field vector consisting of the electric and magnetic components E and B ,(
E2

B2

)
= M

(
E1

B1

)
(2.1)

For a dielectric membrane of thickness d , the matrix takes the form of

Mm =
(

cosφm i n−1
m sinφm

i nm sinφm cosφm

)
(2.2)

where φm = 2πnm d
λ , λ being the optical wavelength and nm the membrane refractive index. A

special case for free-space propagation of length L could be simplified to

Mfree =
(

cosφ0 i sinφ0

i sinφ0 cosφ0

)
(2.3)
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where φ0 = 2πL
λ . For dielectric mirrors with finite transmission and loss, the matrix reads

Mmir =
(

1 δloss/4

δloss/4 1

)(
0 i

p
Tmir/2

2i /
p

Tmir 0

)
(2.4)

where the light first interacts with the loss matrix and then the transmission matrix. The

transfer matrix of an FP cavity could then be calculated as

MFP =
(

0 i
p

T1/2

2i /
p

T1 0

)(
1 δ1/4

δ1/4 1

)(
cosφ1 i sinφ1

i sinφ1 cosφ1

)

×
(

cosφm i n−1
m sinφm

i nm sinφm cosφm

)

×
(

cosφ2 i sinφ2

i sinφ2 cosφ2

)(
1 δ2/4

δ2/4 1

)(
0 i

p
T2/2

2i /
p

T2 0

)
(2.5)

With this matrix, we can obtain the field transmission and reflection of the cavity from the

following expressions:

t = 2

M11 +M12 +M21 +M22
(2.6)

r = M11 +M12 −M21 −M22

M11 +M12 +M21 +M22
(2.7)

We can solve it numerically, as shown in Fig. 2.3. The membrane can experience a similar

optomechanical coupling rate compared to the mirrors, depending on the relative position to

the cavity mode standing wave and the membrane thickness and refractive index.

One can obtain an analytical solution [45] of the optomechanical coupling strength of the

membrane by enforcing the resonance condition Im[M11 +M12 +M21 +M22] = 0,

G = ∂Ω0

∂zm
=− Ω0

Lcav

2|rm |sin(2k0zm)√
1−|rm |2 cos2(2k0zm)

(2.8)

where zm is the position of the membrane, rm is the membrane reflectivity, k0 is the optical

free-space wave vector, and Lcav is the cavity length, used in the transfer matrix. rm can also

be expressed analytically as

rm = (1−|n|2)sinφm

(|n|2 +1)sinφm −2i |n|cosφm
(2.9)

and is approximately 0.2 for a 20-nm thick Si3N4 membrane. When comparing G to that

of the cavity mirrors, we find that the optomechanical coupling rate of the membrane is

penalized by the finite reflectivity of the membrane. In our design, we generally choose to

use membranes as thin as possible to achieve sufficiently high quality factors while avoiding

higher-order nonlinear thermomechanical noise (discussed in Section 2.4). The relatively

lower optomechanical coupling rate can be enhanced by increasing the laser power.
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Figure 2.3: Numerical simulation of cavity resonance properties with T1 = 2×10−3, T2 = 35×
10−3, δ1 = δ2 = 1.5×10−3, with a cavity length of 350µm and a membrane thickness of 20 nm.
The mirror transmission and loss are magnified by a factor of 100 compared to experimental
values to help visualize the resonances. (a) Comparison between optical resonances in an
FP cavity and those a MIM cavity. The membrane insertion modifies both the resonance
frequency and the transfer function of the cavity, depending on the membrane’s relative
position to the cavity’s standing waves. (b) Comparison between membranes’ normalized
optomechanical coupling rates and those of the two end mirrors. The membrane experiences
a similar magnitude of optomechanical coupling compared to that of the mirrors, and modifies
the coupling of the mirrors by redistributing the cavity fields between the two compartments.
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(a) (b)

(c) (d)

Figure 2.4: Photographs of the MIM assembly holder (a) top side and (b) bottom side. Pho-
tographs of the MIM assembly mounted on top of the holder (c) without and (c) with the
stainless steel clamp.

In the next section, we describe how to assemble a MIM cavity from scratch.

2.1.2 Assembly procedure of the membrane-in-the-middle system

In the following, we first describe the holder that is used to fixate the MIM stack, then the

alignment details of the MIM stack, and finally the assembly procedure of the entire device.

MIM holder

The MIM holder is a vacuum-compatible stainless steel block (schematic shown in Fig. 2.2),

with a hole in the middle to allow input optical access from the bottom to the MIM device.

The MIM device is clamped to the top of the holder using a thin stainless steel clamp (image

shown in Fig. 2.4), which also has a hole in the center to allow optical output from the cavity

top mirror.

The MIM holder is designed with a heavy cylindrical bulk at the bottom, which can fix the

holder inside the vacuum chamber by inserting the cylinder into a complementary metal

piece inside the vacuum chamber.

To fixate the MIM device, a square indentation is created centered on the top surface of the

22



2.1 Membrane-in-the-middle optomechanical system
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Figure 2.5: Photographs of the assembly procedures. (a) Top side of the holder. (b) Bottom
mirror inserted into the indentation. (c) Protective chip frame stacked on top of the bottom
mirror. (d) Membrane chip flipped upside down, resting on an indentation of the gel box. (e)
Cleaning of the membrane chip bottom, using IPA-soaked Q tip. (f ) Cleaned the backside
surface of the membrane chip. (g) Membrane chip flipped back to the usual orientation
(membrane side up) and inserted into the chip frame. (h) Protective mirror frame stacked on
top of the chip frame, suspended from the membrane surface. (i) Top mirror stacked on top of
the membrane chip, with the help of the mirror frame. (j) Clamping of the MIM stack using
metal clamps and screws. (k) Setup for imaging optical modes of the cavity and aligning the
mode position to the membrane defect center.
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holder, which is slightly larger than the size of the bottom mirror. The indentation roughly

fixes the position of the bottom mirror and allows movement freedom smaller than 1 mm. By

stacking the membrane chip and the top mirror (shown in Fig. 2.4) on top of the bottom mirror

and then clamping the entire assembly with a metal clamp and screws, sufficient mechanical

and optical stability of the MIM cavity can be achieved.

MIM stack

The MIM stack comprises a membrane chip sandwiched between the top and bottom cavity

mirrors (shown in Fig. 2.2). The direct contact between them ensures mechanical stability

and reduces the cavity length for noise performance reasons (see Section 2.4.7 for nonlinear

noise dependence on cavity linewidth). The length does not affect the mirror noise budget for

experiments such as ground-state cooling and optomechanical squeezing.

In order to achieve optimal performance of the system, optical alignment is critical in the

following three aspects:

• alignment between the membrane plane and the cavity mode wavefront to ensure

minimum scattering losses,

• alignment between the cavity mode and the membrane defect center to maximize

coupling rate to the defect mechanical mode,

• alignment between the cavity mode and the bottom mirror’s unit-cell center to maximize

the mirror noise reduction from the mirror modes’ symmetry.

In principle, the alignment between the membrane plane and the cavity mode wavefront is

only set by the cavity design. For symmetry reasons, the wavefront is completely flat at the

bottom mirror surface for the planar-concave cavity configuration. However, the wavefront

starts to curve further away from that surface. In order to avoid reflection or coupling to other

cavity modes, the membrane surface must match the curvature of the optical wavefront at the

membrane position.

The waist size and Rayleigh length of the fundamental cavity mode can be retrieved using

ω2
0 =

λR

2π

√
1− (1− 2L

R
)2 (2.10)

zR = R

2

√
1− (1− 2L

R
)2 (2.11)

where L is the cavity length, R is the top mirror’s curvature radius. For the experimental

configuration of L = 635µm, R = 5m, we have the waist of the cavity mode at ω0 = 38µm, and

Rayleigh length at zR = 5.6mm. With these parameters, one can easily calculate the single-trip

mode-matching efficiency between the beam reflected from the membrane and the optical
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mode, by comparing the field profile at the bottom mirror

u0(r ) = exp

{
− r 2

ω2
0

}
(2.12)

and the profile reflected by the membrane and back to the bottom mirror (round trip z = 2d)

u1(r ) = 1√
1+ (2d/zR )2

exp

{
i tan−1

(
2d

zR

)
− i k

(
2d + r 2

2R̃

)
− r 2

ω2

}
(2.13)

where R̃(z) = z + z2
R

z is the radius of the wavefront, and ω(z) = ω0

[
1+

(
z

zR

)2
]1/2

. The mode

matching efficiency at the position of the bottom mirror is

η=
∣∣∫ u0u∗

1

∣∣2∫ |u0|2
∫ |u1|2

= 4(1+ (2d/zR )2)

(2+ (2d/zR )2)2 + k2ω4

4R̃2

(2.14)

With experimental parameters d = 525µm (thickness of the membrane chip), the roundtrip

mode-matching efficiency η= 0.9976, with losses mostly from the wavefront phase mismatch.

This is equivalent to a full-reflection finesse of F = 2.6×103, which does not limit the current

finesse of the cavity F ∼ 1× 104, considering the membrane reflectivity of 4 %. A precise

number requires the summation of multiple roundtrip losses, but we are satisfied with this

order of magnitude estimation. We believe that most of the excess losses we observed in the

experiment are attributed to the tilting of the membrane relative to the transverse axes and

the surface roughness of the membrane.

Assembly procedure details

The assembly procedure is illustrated in Fig. 2.5. In the following, we discuss the procedure

step by step.

• The assembly procedure starts by inserting the bottom mirror into the holder’s square

indentation.

• Due to the size mismatch between the holder and the membrane chip, a chip frame

is first placed on top of the mirror to prevent large movement of the membrane chip,

after which the membrane chip is placed in the center. The membrane chip needs to be

cleaned before this step, as follows

– Flip the membrane chip and place it upside-down using an indentation carved out

of a gel pad so that the membrane will not touch any surface that could break the

membrane.

– Place a few drops of IPA onto the cleanroom Q tip, shake away excess liquid, and

carefully remove the contaminants from the chip backside in the form of white
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dots. It is suspected that these contaminants could result in excess membrane

tilting.

– Using the reflection to determine any remaining contaminants and remove them

completely.

– Pay attention not to stir particles or droplets onto the membrane during this step.

• After the membrane is placed inside the chip frame, use the Q tip to remove any visible

particles on the front side of the membrane. Here, pay attention not to touch the

membrane or transfer anything onto it.

• Rest and center the mirror frame on top of the chip frame to help position the top mirror.

• Place the top mirror into the mirror frame. Use the position of the mirror frame to infer

the centering of the top mirror. Pay attention not to displace the mirror too far away

from the center because the edge of the curved mirror could touch the membrane and

break the membrane.

• With the help of the mirror frame, center the top mirror.

• Gently hover the metal clamp on the stack without touching it. Place the four screws in

their places before gently releasing the metal clamp so that it falls onto the top mirror.

• Correct any top mirror displacement due to contact with the metal clamp.

• Gently iteratively tighten the screws until the metal clamp is gently fixed (no relative

movement with vertical shaking of the holder).

• Transfer the holder to the alignment setup for fine adjustment.

• Use extremely low intensity (<1uW) light to locate the center of the cavity modes at a

wavelength around 780 nm where the cavity is of low finesse. The low intensity prevents

the melting of the silicon pillars from optical absorption.

• Use a screwdriver to gently adjust the position of the chip frame such that the membrane

defect center aligns with the center of the bottom mirror unit cell.

• Use the screwdriver to gently adjust the position of the mirror frame such that the center

of the optical modes aligns with the center of the bottom mirror unit cell.

• Iteratively tighten the four screws by half rounds and readjust the top mirror alignment.

• Tighten the screws until a gentle push of the top mirror using the screwdriver no longer

shifts the center of the optical modes.

• Transfer the holder to the vacuum chamber and pump down the pressure. The experi-

mental test is within reach in about a day!
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Figure 2.6: Measured optical transmission traces of the cavity mode, with different levels of
cavity frequency modulation by mechanical lasing (including no-lasing case). When there
is no mechanical lasing, the cavity line shape is still blurred by the high level of thermome-
chanical cavity frequency noise, causing thermal intermodulation noise (TIN), as discussed in
Section 2.4. Once the optical cavity is broadened, it will slowly ring down in a few minutes
because of the high-Q nature of the soft-clamped mode. The cavity modulation ring-down is
also an indirect measure of the Q of the soft-clamped mode.

2.1.3 System parameters & calibration

We characterize several experimental parameters of the optomechanical cavity before the

measurements shown in the thesis and use them as pre-determined parameters for fitting the

measured mechanical spectra. We obtained cavity resonance linewidths κ at different optical

wavelengths, as shown in Fig. 2(b), by scanning our titanium:sapphire (TiSa) laser frequency

at a rate of 300 MHz/s across the optical resonances, with an optical power smaller than 1µW

to prevent significant mechanical excitation when the laser frequency crosses to the blue

side of the cavity resonance [13]. The laser is phase modulated at 211 MHz with modulation

depth ∼ 0.1 to generate two small sidebands, which serve as reference points for calibrating

the frequency axis. A measured optical transmission trace is shown in Fig. 2.6. A Lorentzian

function is fitted to the cavity transmission to extract the optical linewidth. When the optical

power is too large, optical amplification of mechanical oscillation, mainly of the soft-clamped

mechanical mode, causes mechanical lasing. Mechanical lasing broadens the optical line

shape by thousands of orders of overlapping Bessel sidebands, as shown in Fig. 2.6.

The mechanical frequency of the membrane defect mode,Ωm , is measured from the cavity

transmission spectrum at low input optical power, to limit optical spring effects due to dy-

namical backaction. The mechanical energy decay rate Γm is measured with a mechanical

ringdown measurement (see Fig. 1(d)). In the ringdown experiment, a pump laser is first tuned

to the blue side of an optical cavity mode at 845 nm (high finesse) to excite the membrane

defect mode (phonon lasing) strongly. Then, the pump laser is switched off, and a weak probe

laser is switched on near the cavity mode at 780 nm (low finesse) to measure the mechani-

cal oscillation amplitude decay through the cavity transmission signal. The exact ringdown
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measurement is repeated at multiple probe laser detuning frequencies, to ensure that no

dynamical backaction damping or amplification is present during the ringdown measurement.

The extracted damping rate is consistent with a previous measurement of the membrane in

an optical interferometer before cavity assembly, indicating that no significant mechanical

dissipation is added to the defect mode during the MIM assembly.

To obtain vacuum optomechanical coupling rates, g0, we follow the procedure described by

[47]. We phase-modulate a weak laser probe with known depth, and compare the mechanical

signal to the phase modulation tone transduced on the transmitted light intensity, which is

directly detected at the cavity output. The probe laser is stabilized at the magic detuning

to avoid heating from the intracavity TIN. We assume that the mechanical mode is initially

thermalized to room temperature, and undergoes dynamical backaction cooling by the red-

detuned probe laser. The probe power is kept relatively low (Cq ≪ 1) to avoid quantum

backaction heating, such that the thermal occupation of the defect mode can be reliably

inferred from the dynamical backaction cooling rate found by fitting the mechanical spectrum.

The probe laser is phase modulated at 1.1457 MHz with a depth of 0.1275, and at 1.19 MHz

with a depth of 0.152. The two modulation frequencies are selected to be at the edges of the

mechanical bandgap, and are symmetric to the defect mode frequency. The geometric average

of their transduced signals is calculated to cancel the OMIT frequency response [48] from the

defect mode and estimate g0. In the experiment, however, the field-enhanced optomechanical

coupling rate g = g0a is the relevant parameter, where a is the cavity field amplitude. g is left

as a free parameter in all the fittings of the measured mechanical spectra. In the experiments

shown in Chapter 3, where Cq ∼ 1, we have g /2π ∼500 kHz approaching the mechanical

frequency.

The system parameters are summarized in the table below. They are from our latest generation

device employing a density-modulated membrane with phononic crystal cavity mirrors.

System parameter Value

Ωm/2π 1.167 MHz

g0/2π 159.0 Hz

κ/2π 34.2 MHz

Γm/2π 6.41 mHz

C0 0.461

We now discuss the various contributions to the detection efficiency ηd , an essential figure

of merit for the state preparation experiment. In the experiments, we retrieve the detection

efficiency by spectral fitting of the squeezing/mechanical signal, which depends sensitively on

it. In the following, we individually identify and describe the calibration of some inefficiency

contributions in the measurement chain:

• The detector electronics noise is measured by blocking the optical beam. The elec-
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tronics noise is flat and broadband, so its inefficiency contribution can be retrieved by

comparing it with the laser shot noise.

• The transmission from the optical elements after the cavity output and before the

detector is measured with a handheld power meter. This loss term is dominated by a

series of polarizing beam splitters, a beam pick-off for generating an error signal for laser

locking, several waveplates, and the highly asymmetric beam splitter, which combines

the local oscillator with the signal beam.

• The detector quantum efficiency is calculated from the detector responsivity specified

by the manufacturer.

• The homodyne efficiency is calculated from the mode matching efficiency of 90% be-

tween the local oscillator and signal beam, given the measured interference visibility of

95%. The efficiency is only 75% in contrast to the usual 90% in conventional balanced

homodyne detection, because we are using a single detector homodyne scheme to

cancel the nonlinear mixing noise. The single detector homodyne has a quadrature

angle-dependent efficiency: the efficiency is lower when measuring mechanical motion,

and higher for optomechanical squeezing detection. The quadrature angle-dependent

homodyne efficiencies are shown in Fig. 2.21(d).

• The cavity output efficiency is hard to infer from the cavity reflection scan due to the

unknown optical input mode-matching efficiency, and from the empty cavity character-

ization due to the redistributed intra-cavity optical power in the presence of the weakly

reflective membrane. We assume a perfect cavity out-coupling efficiency of 94.8%, and

consider the added cavity inefficiency from membrane scattering and absorption as part

of the overall detection inefficiency in the measurement chain. This residual inefficiency

is retrieved from the spectral fitting of the mechanical signal.

• The defect-mode conversion to mixing sidebands at other frequencies due to the cavity

transduction nonlinearity could also reduce the linear transduction efficiency. It is, in

principle, also included in the fitted residual inefficiency. From the measured 〈δ∆2〉/κ2 <
10−3, this contribution is estimated to be less than 2% and thus excluded from the

analysis.

The various inefficiency terms degrading the SNR of the mechanical displacement records are

shown in the table below.
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Inefficiency source Value

Cavity output (ideal) 94.8 %

Detector electronics noise 86.1 %

Passive optics 66.5 %

Detector quantum efficiency 90 %

Homodyne efficiency 75 %

Fitted additional loss 83.5 %

Total efficiency 30.6 %

2.2 Membrane designs

In this section, we discuss the designs of the employed density-modulated membrane in our

latest generation of the MIM device. Then, we quickly summarize the generalized dissipation

dilution in a 3D structure, with which we simulated the mechanical properties of the density-

modulated membranes and the pillar-induced excess mechanical losses. A summary of the

detailed fabrication process flow is at the end of this section.

2.2.1 Designs of the employed devices

A suitable ultracoherent mechanical membrane resonator is vital for operating the MIM

system at room temperature. During the thesis study, we first started with soft-clamped

trampoline membranes [49], where soft-clamping is employed with a fractal structure. We

gave up on this design in the end for two reasons:

• The soft clamping effect is not substantial, and the membrane can barely maintain one

quantum coherent oscillation at room temperature.

• The above factor also leads to a substantial degradation of quality factor when the tram-

poline chip is in direct contact with the cavity mirror. We suspected the degradation

to be from the hybridization between the trampoline fundamental mode and the sil-

icon chip modes, due to redistributed stress from hard contact with the mirror. The

degradation is also consistent with what other people observed in the field [50, 51].

We then tried the typical perforated soft-clamped membranes-[52], with which ∼20 quantum

coherent oscillations can be maintained at room temperature, and we did not observe any

Q degradation due to contact with the cavity mirrors, expected from the substantial soft-

clamping effect from phononic crystal shielding structure. However, we observed a significant

photothermal-induced mechanical instability, discussed in Section 2.5. This thermal effect

is likely due to the finite optical absorption of the membrane, which leads to a considerable

dynamical temperature gradient due to perforated patterns on the membranes. We can work

with this structure by employing feedback stabilization of the unstable mechanical modes at
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Figure 2.7: Ultra-low noise phononic-engineered membrane cavity. (a) Photograph of the
membrane-in-the-middle assembly. (b) Optical microscope image of the MIM assembly from
the top, showing the overlapping square unit cells of the top and bottom phononic crystal
mirrors and the density-modulated membrane. (c) Setup schematic. (d) Mechanical ringdown
measurement of the pillar membrane’s soft clamped mode quality factor. The ringdown was
acquired with the membrane installed in the MIM cavity. (e, f, g) Overview image and details
of a pillar membrane sample at different length scales.
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Figure 2.8: Mechanical spectra in (a) wideband and (b) narrowband frequency spans, mea-
sured from the optical direct detection of the cavity transmission beam. The cavity is pumped
at the magic detuning on the red side, enacting significant optical damping on all the me-
chanical modes. The high-Q defect-mode signal after shot noise (indicated by the black line)
subtraction is highlighted in a red dashed line, whose asymmetric spectral shape indicates a
significant quantum correlation with the measurement shot noise.

high optical power, using another laser to exert feedback optical forces. Using this method, we

have improved the Cq from 0.1 to unity, though with poor long-time stability of the system.

The instability can be attributed to the spatial symmetry of these modes, due to the choice of

designing the defect right at the membrane center. We tried to make some membranes with

a defect displaced off the center to break this symmetry, but we never managed to obtain a

good sample due to the low yield of the fabrication process.

In the end, we come across the recently demonstrated phononic density-modulated mem-

branes [33] in late 2021. Compared to earlier stress-modulated, perforated, soft-clamped

membranes [52], this design maintains higher material stress, enhancing dissipation dilu-

tion. Furthermore, the unperforated membrane reduces optical losses due to scattering from

Si3N4-vacuum interfaces, and increases heat dissipation, diminishing the thermal effects due

to optical absorption. After discussing with my colleague Alberto, we decided to work on this

new design instead of the displaced-defect design of the perforated membrane we had failed

to fabricate. After reproducing this design, we found, however, that the membrane had high

optical absorption, which led to significant cavity bi-stability [53] and mechanical instability

[44]. Therefore, we developed a fabrication process that minimizes optical absorption, such

that photothermal effects are absent for the optical mode and powers used in this experi-

ment. With this design, we can operate the system beyond the Cq = 1 threshold, with some

caveat discussed in Section 2.5. However, the thermal stability of the system has improved

significantly compared to that of the perforated design.

The final design we employed in the MIM cavity consists of a Si3N4 nanomechanical mem-

brane patterned with aSi-HfO2 nanopillars (700-nm diameter) much smaller than the acoustic

wavelength, implementing phononic density modulation [33]. The consideration of this

specific material stack is discussed in detail in Section 2.2.4. Microscope images of the de-

vice at different length scales are shown in Fig. 2.7(e,f,g). The periodic density modulation

creates a mechanical bandgap ∼100 kHz, shown in Fig. 2.8, that spectrally isolates a 7-ng
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high-Q soft-clamped defect mode with a mechanical frequency ofΩm/2π= 1.16MHz and a

damping rate of Γm/2π= 6.41mHz, corresponding to a room temperature thermal occupancy

of nth = 5.3×106 and zero-point fluctuations of xzpf = 1.0fm. A ringdown measurement of

mechanical Q is shown in Fig. 2.7(d), giving Q = 1.8×108.

2.2.2 Dissipation dilution effects of 3D mechanical structures

For conventional bulk material, mechanical vibrations typically decay with a rate Γm =Ωmφ

determined by the material loss angle φ. The intrinsic mechanical quality factor Qint = 1/φ

are, therefore, mostly limited to the order of thousands at room temperature, depending on

the materials and their dominant loss mechanism. For thin film silicon nitride membranes

employed in the thesis study, the thin film surface loss contributes the most, and for 20 nm

thickness, is measured to be Qint ∼ 2500. However, these oscillators have shown quality factors

on the order of a billion [49, 52, 54, 55, 56, 57], and achieve quantum coherent oscillations

Ωm/Γm ≫ 1 even at room temperature, by exploiting the effect of dissipation dilution [58].

Intuitively speaking, dissipation dilution of mechanical structures manifests as the dilution of

mechanical loss rates by storing energy in some specific way of mechanical displacements

that does not involve stretching the material structure. For example, the elongation of a

string would involve material loss angle φ, but the rotation of an object does not involve any

mechanical loss. Therefore, by carefully designing the geometry of a mechanical structure,

one can convert most of the mechanical energy into the lossless portion in a stressed material,

and achieve dilution of the mechanical loss determined by the intrinsic material loss angle.

In the following, we derive the analytical expression for evaluating the dissipation dilution

factor of a given structure. In this section, all the repeating tensor indices are summed below.

The time-dependent displacement field of the structure Ui (x, y, z, t ) : i = x, y, z, which can be

retrieved from FEM simulation of a particular structure, determines the Green-Lagrange strain

tensor by

ei j = 1

2

(
∂Ui

∂x j
+ ∂U j

∂xi
+ ∂Ul

∂xi

∂Ul

∂x j

)
(2.15)

where the third term on the right is the geometric nonlinearity, which helps achieve lossless

potential. The stress tensor is related to the strain tensor by

σi j = E

1+ν
(
ei j + ν

1−2ν
el lδi j

)
(2.16)

where δi j is the Kronecker delta, E is the Young’s modulus, and ν is the Poisson’s ratio. As-

sume that the deformation field Ui (x, y, z, t ) can be separated into a static deformation field

U i (x, y, z) and a dynamic deformation field ∆Ui (x, y, z) as

Ui (x, y, z, t ) =U i (x, y, z)+Re[∆Ui (x, y, z)e−iΩm t ] (2.17)
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where ∆Ui (x, y, z) is the complex envelope of an eigenmode, e.g., solved from the COMSOL

Multiphysics structural damping module. We can follow the same step and separate the static

and dynamic components of the strain and stress tensors as well,

ei j (t ) = e i j +∆ei j (t ) (2.18)

σi j (t ) =σi j +∆σi j (t ) (2.19)

From here, we can calculate the elastic energy as

W = 1

2

∫
σi j (t )ei j (t )dV (2.20)

and separate it into the lossy energy, as well as the lossless dilution energy,

〈Wlossy〉 =
1

2

∫
〈∆σi j (t )∆ei j (t )〉dV (2.21)

〈Wdil〉 =
1

2

∫
〈σi j∆ei j (t )+e i j∆σi j (t )〉dV (2.22)

where 〈· · · 〉 is averaged over a vibration period. It is further convenient to list the following

expressions of averaged strain tensor products using the complex displacement envelope

obtained from COMSOL, as

〈∆ei j (t )〉 = 1

4
Re

(
∂∆Ul

∂xi

∂∆U∗
l

∂x j

)
(2.23)

〈∆ei j (t )2〉 = 1

8

∣∣∣∣∣∂∆U j

∂xi
+ ∂∆Ui

∂x j
+ ∂U l

∂xi

∂∆Ul

∂x j
+ ∂U l

∂x j

∂∆Ul

∂xi

∣∣∣∣∣
2

(2.24)

As one can see, geometric nonlinearity is solely responsible for the dilution energy, while in

general it also contributes a little bit to the lossy energy. With Virial theorem

〈Wkin〉 =
1

2

∫
Ω2

mρ|∆Ul |2dV (2.25)

one can verify numerically whether 〈Wkin〉 = 〈Wlossy〉+〈Wdil〉 for a sanity check of the modeling

and formula used for calculating dissipation dilution effects of a given structure.

The dissipation dilution factor DQ =Qm/Qint can then be evaluated as

DQ = 1+ 〈Wdil〉
〈Wlossy〉

(2.26)

with state-of-the-art achieving values on the order of a million.
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(a) (b)

(c)

Figure 2.9: (a) Displacement profile of the soft-clamped 1.5-MHz mode of the density modu-
lated membrane. (b) Effective density modulation pattern of the simulated membrane. (c) 3D
displacement profile of (a).

2.2.3 Mechanical simulations of density-modulated PnC membranes

Here, we show the design and simulation procedure of a density-modulated membrane using

COMSOL Multiphysics. Due to the clear separation of the physical dimensions between the

nanopillars (∼1µm), and the composite membrane motions (∼1 mm), we can separate the

numerical simulation in two separate steps.

First, we analyze the mechanical properties by treating the addition of pillars as an effective

density modulation of the membrane without introducing additional losses at the MHz fre-

quency range. In the second step, we will analyze the loss added by the pillars, and how they

effectively modify the membrane loss.

The effective density modulation pattern and the simulated soft-clamped mode profile are

shown in Fig. 2.9. We perform pre-stressed eigenfrequency analyses in COMSOL Multiphysics

to compute dilution factors DQ , using the “Shell” interface in the structural damping module.

This finite elements study is particularly suitable for simulating high aspect ratio nanome-

chanical objects.

The dilution factor depends strongly on the mode curvature close to the clamping points

[59]. For this reason, we refine the mesh for the finite element model close to the membrane’s

clamping boundaries (outer edges), using a typical element size around λL/30. Here, L is the
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largest lateral dimension of the membrane, λ=
√

Eh2/(12σL2) ≪ 1 is the strain parameter, E

is the membrane Young’s modulus, σ is the material stress, and h is the membrane thickness.

Fixed boundary conditions are imposed at the membrane clamping points, i.e., u⃗ = ∂u⃗/∂n⃗ = 0

(where ∂u⃗/∂n⃗ is the displacement field derivative normal to the boundary).

The dilution factors are calculated with the ratio of kinetic and linear elastic energies defined

earlier[58], and can be greatly simplified for 2D structures. For out-of-plane bending modes:

DQ = 12ρΩ2
m

Eh2 ×(
1−ν2

)∫
w2 d x d y∫ (

∂2w/∂x2 +∂2w/∂y2
)2 +2(1−ν)

((
∂2w/∂x∂y

)2 −∂2w/∂x2 ·∂2w/∂y2
)

d xd y
, (2.27)

where w is the u component in the out-of-plane direction,Ω is the mechanical frequency, ρ is

the mass density of the membrane material and ν is Poisson’s ratio. A PnC nanomechanical

structure can enhance the DQ of some flexural modes, by localizing the displacement to a

defect in the spatial-periodic modulation of the speed of sound v =
√

σ
ρ and suppressing

its curvature close to the clamping boundaries. This idea, introduced by Tsaturyan et al. in

2016 [52], was the first incarnation of the “soft clamping” effect. An example of a localized

soft-clamped mode is illustrated in Fig. 2.9(a).

In our case, the PnC is realized with a modulation of the resonator’s effective mass density,

described by ρeff(x, y) = g (x, y)ρ [33]. In practice, the density modulation is implemented by

patterning nanopillars over the nanomechanical membrane, with a thickness much larger

than that of the membrane. Pillars are confined to circular regions of diameter commensurate

with the membrane acoustic wavelength (see Fig. 2.7(f) and Fig. 2.9(b)), and are arranged in a

triangular pattern.

The second step would be to consider the loss added by the nanopillars. The nanopillars

locally mass-load the membrane to realize an effective density modulation, but also introduce

additional mechanical dissipation. When a bending wave impinges on the pillar, it induces

deformation without a significant geometrically nonlinear contribution [58]. The pillars will

thus reduce the dissipation dilution of the Si3N4 membrane, by an amount that depends

sensitively on the pillars’ geometrical dimensions and the frequency of the flexural mode.

The lower the frequency and the smaller the pillars, the lower the susceptibility of the pillar

deformation, and the lower the added dissipation induced by the individual pillars. The pillar

damping contribution can be dominant, or sufficiently low that it is negligible compared to the

finite dissipation dilution of the soft clamped mode, depending on the oscillation frequency

and the pillars’ geometry [33].

A nanopillar unit cell simulation is illustrated in Fig. 2.10, where the stationary stress distri-

bution due to the deposition of the pillars at different conditions is shown, as well as the

dissipation energy density when a bending wave impinges on the pillar. We assume that the

pillars are arranged in a triangular lattice with a lattice constant apil (separation between the
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(a) (b)

(c) (d)

Figure 2.10: Study of pillar losses at 1.5 MHz in an infinite periodic membrane. (a)(b) Static
stress and mechanical loss distribution of a membrane deposited with LPCVD silicon nitride
pillars. (c)(d) Static stress and mechanical loss distribution of a membrane deposited with
PECVD silicon nitride pillars.

nearest neighbors), and we identify the pillar diameter and height (thickness) with dpil, hpil.

Here, we effectively simulate an infinitely repeating membrane with periodically patterned

pillars. By subtracting the original membrane losses, we can obtain the effectively added

loss from the nanopillars. The effective density in the circular regions patterned with the

nanopillars is

ρeff = ρ
[

1+ π

2
p

3

ρpilhpil

ρh

(
dpil

apil

)2
]

, (2.28)

where h and ρ are the thickness and density of the membrane film (Si3N4). The periodicity

of the pillar array is embedded in the simulation by restricting the domain to a hexagon-

shaped unit cell (see Fig. 2.12(a)) with Floquet boundary conditions [u⃗ (⃗x + R⃗) = u⃗ (⃗x)e−i k⃗·R⃗ ]

on opposing sides of the hexagon. The magnitude of the elastic wavevector that defines the

boundary conditions, k, is chosen in order to produce a flexural eigenmode at the mechanical

frequency of interest (kapil ≪ 1)

k ≈Ω
√
ρeff

σ
, (2.29)

whereσ is the membrane deposition stress andΩ is the mechanical frequency in angular units.

The model is then solved for its first eigenmode, which represents the pillar displacement

upon the arrival of the flexural wave.

The dissipation dilution of an infinite pillar lattice is evaluated using the general 3D DQ
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Figure 2.11: (a) Effective mechanical quality factors in the pillar regions at 1.5 MHz as a
function of effective density and pillar height. (b) Bending loss energy participation of the
soft-clamped defect mode of the density-modulated membrane.

expression from Section 2.2.2. The results of the infinitely-extended pillar lattice’s quality

factor computation are shown in Fig. 2.12(a), as a function of different effective density

modulations and different pillar heights. Based on the loss of the pillars, we also need to

calculate the bending energy participation ratio in the pillar regions of the density-modulated

membrane, shown in Fig. 2.12(b). This ratio is typically around 40 % for soft-clamped modes,

depending on the size of the pillar regions and the effective density modulation.

After we reproduced the device from [33], we observed severe optical absorption that prevents

the usual laser operation in a cavity. The optical absorption-induced heating manifests in

cavity bistability and photothermal mechanical instability discussed in Section 2.5. As a result,

we developed a new fabrication process involving two ALD layers to shield the membrane from

plasma damages during the device fabrication, e.g., PECVD growth of pillars and dry etching

of the pillars. However, this procedure results in a potential thin undercut layer at the base of

the pillars during the removal of the ALD layers, which could lead to higher pillar-induced loss.

In this scenario, the frequency of the first bending mode of the nanopillars is decreased, as

shown by the blue dots in Fig. 2.12(c), and the pillar motion can start to hybridize with the

soft clamped membrane mode. The undercut induces a significant reduction in the overall

quality factor when the undercut covers a significant portion of the pillar base (see the yellow

dots in Fig. 2.12(c)). Note that the undercut is not visible in the figure inset, as it is carved in a

layer of only 6 nm at the pillar base, similar to the fabricated pillar geometrical parameters.

The simulation here is performed for a fixed pillar thickness of hpil = 450nm and separation

apil = 2µm, and variable diameters and mechanical frequencies.

Note that for the pillar material, HfO2-aSi in the final design, the loss angle is an unknown

parameter in the FEM simulations. We arbitrarily set it by choosing Qint = 10000. The results

in Fig. 2.12(b) do not depend sensitively on Qint,aSi; nevertheless, one should treat them as a

rough estimation of the pillar damping contribution.
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Figure 2.12: Losses induced by bending of nanopillars used to modulate ρeff. (a), Visualization
of the linear elastic energy density, which is associated with mechanical dissipation, close to
the nanopillar. The largest contribution to dissipation occurs close to the nanopillar base. (b),
Q of a uniform pillar array with infinite extent as a function of the frequency of the acoustic
flexural wave and the pillar diameter. The pillar separation apil and the pillar thickness hpil

are kept constant to the specified values. The horizontal axis is expressed in terms of the
pillar diameter and of the resulting density modulation g = ρeff/ρ. (c), Effect of an undercut at
the pillar base on the pillar Q. For this simulation, the pillar has a diameter of 600 nm and a
thickness of 1000 nm, and the separation between nearest-neighbours pillars is fixed to 1.5µm.
The undercut layer is hardly visible in the illustration, as it is only 6 nm-thick. The membrane’s
Q (ochre dots) drops significantly when the nanopillar’s first flexural resonance frequency
(blue dots, the inset illustrates the displacement field) approaches the acoustic excitation
frequency, marked by a horizontal dashed line.

For the PnC membrane device employed in these experiments, the macroscopic estimate of

the quality factor, neglecting pillar dissipation, is DQ ×Qint ≈ 6 ·108, slightly lower than the

design value due to a low-density modulation, gmax ≈ 2.9, an accidental result of fabrication

drifts. The dissipation contribution due to the nanopillars was comparable for the measured

pillar dimensions: Qpillar bend ≈ 6 ·108. Overall, the two dissipation contributions combine to

estimate the overall intrinsic loss-dominated quality factor Q ≈ 3 ·108, slightly higher than

measured with the membrane device. We also cannot exclude a small contribution to the

observed dissipation due to collisions with the residual gas molecules in the vacuum chamber

where the MIM cavity is located [60].

2.2.4 Microfabrication of density-modulated PnC membranes

The device fabrication was done by my colleague Alberto Beccari. The exact fabrication

process is discussed in detail in his thesis [61], as well as in [10] SI. Here, a few key points of

the fabrication process are summarized that are worth mentioning when comparing to work

[33].

• We implemented etch-stop layers using atomic layer deposition (ALD) to prevent plasma

damage of the Si3N4 membrane from the pillar dry etching step. Plasma damage causes

high optical absorption of the thin film with visible light.
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Figure 2.13: Simplified fabrication process for density-modulated membrane resonators [61].
Layer thicknesses and lateral dimensions are not to scale. 1 – Etch stop layer growth. 2 – aSi
pillar layer growth. 3 – Electron beam lithography and pillar pattern transfer with RIE. 4 –
Growth of PECVD nitride encapsulation layer. 5 – Chip separation and KOH membrane release.
6 – Removal of the encapsulation layer in buffered HF.

• To prevent significant undercut of the pillars during wet etching removal of the ALD

layers, we use HfO2, which has the best selectivity. Undercut of pillars results in stronger

hybridization between the pillar and membrane motions, degrading quality factors of

the soft-clamped mode.

• The presence of HfO2 prevents us from using any high-temperature process as it crystal-

izes around 500 ◦C and becomes hard to remove using wet chemistry.

• PECVD silicon is selected as the pillar material because no high-temperature process

can be used.

• ALD layers are always used whenever plasma process is used, e.g., PECVD and dry

etching, and are removed using wet etching.

In Appendix B.2, for the sake of completeness of the thesis, the detailed fabrication process

in [10] SI is reproduced, as well as in the thesis of my former coworker Alberto Beccari [61].
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2.3 Phononic crystal mirrors

2.3.1 Cavity noise budget and suppression techniques

There are typically two requirements to approach Heisenberg-limited operation required for

the observation of optomechanical squeezing and the efficient measurement of mechanical

motion.

Firstly, the quantum cooperativity Cq must approach or exceed unity. As we discussed in earlier

sections, to reach this regime, we adopt a modular approach and employ the membrane-in-

the-middle (MIM) architecture [62] using an optical Fabry-Perot cavity [see Fig. 2.7(a,b,c)]. The

high-finesse cavity (F ∼ 104) allows operation at high quantum cooperativity while keeping

the optical probe power below 1mW, where quantum-noise-limited laser operation can be

achieved.

Secondly, Heisenberg-limited operation further requires low displacement measurement

imprecision, i.e., S̄imp
xx < x2

zpf/Γth. This level of measurement imprecision is particularly chal-

lenging at room temperature, as the required imprecision scales inversely with the tem-

perature of the environment. For our device, we estimate the bound to be 10−35 m2/Hz.

The cavity frequency noise is thus required to be extremely small: the frequency noise

S̄νν( f ) = S̄imp,cav
xx ( f )× g 2

0 /(2πxzpf)
2 should satisfy S̄νν( f ) < (g0/2π)2/Γth to allow ground state

cooling [63] and significant optomechanical squeezing. This bound is well below the typical

thermomechanical fluctuations of the cavity mirrors, which also couples to the cavity dis-

persively, even with state-of-the-art mechanical resonators. In Ref. [43], a phononic shield

addressed this problem by producing a phononic bandgap that suppressed the mirror’s driven

response. In that work, the bottom mirror is fabricated by patterning a silicon wafer with

a periodic lattice of holes, and then bonding it with a Pyrex substrate on which the mirror

coating is sputtered. Because of the technical difficulty in applying the same procedure for the

curved top mirror, a fiber mirror is used instead, which also serves as the high transmission

port of the cavity. The use of a fiber mirror resulted in excess broadband cavity frequency

fluctuations. Also, the mode mismatch between the fiber and the cavity mode led to a low

cavity output efficiency of approximately 4 %.

Due to the absence of an effective way to pattern phononic crystal structures on silica mirror

substrates, we have been working on several methods to mitigate mirror noises. From the cali-

brated cavity frequency noise, we deduced that it is unlikely any of our soft-clamping designs

can reach the low thermal decoherence rate required from the mirror noise, so we started

working on feed-forward cancellation of mirror noises. The main idea comes from [64], that

by measuring the mirror noise from an auxiliary cavity mode, one can use the measurement

record to effectively cancel the cavity frequency noise on the science (main) cavity mode by

laser frequency modulation. When a homodyne measurement scheme is applied, special care

must be taken for the noise suppression on the science detection to work, e.g., proper local

oscillator delay length, and position of the phase modulation on the optical path. A detailed
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Figure 2.14: (a) Feed-forward suppression of empty-cavity frequency noise. The plot shows the
science cavity noise with (red) and without (blue) feed-forward suppression. (b) Transmission
spectrum of auxiliary mode (red) with low g0 and science mode (blue) with high g0. (c) Effects
of feed-forward of loaded-cavity frequency noise on the science mode. The lighter the color,
the higher the gain.

analysis is covered in Section. B.5.

Our first experiment iteration used an empty cavity with a spacer chip instead of the mem-

brane. We measure the cavity noise from the transmission of the auxiliary mode, amplified and

fed to a phase modulator (equivalently frequency modulation) of the science laser, and check

the noise spectrum at the science cavity transmission. We observed a significant reduction of

mirror noise shown in Fig. 2.14(a), with peak suppression around 20 dB, limited by the shot

noise impression of the auxiliary laser. One can also identify a finite suppression window due

to the phase-frequency relation −iωθ(ω) = 2π ·ν(ω). The filter response used for this purpose

is discussed in Section B.5.

Though without perfect suppression (limited by finite bandwidth and laser shot noise), we

proceed to work on a cavity loaded with a membrane chip. To separate the mirror motions

from the membrane motions, we choose a cavity mode with the lowest g0 as the auxiliary

mode, and a cavity mode with high g0 as the science mode, shown in Fig. 2.14(b). The result

of the feedback, shown in Fig. 2.14(c), is disappointing, as some of the mirror noise gets

suppressed, while the others get amplified. As is discussed in Section. 2.1.1, the presence of
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the membrane redistributes the light in both compartments of the cavity, and modifies the way

two mirrors couples to the cavity. The mismatched suppression ratio makes the feed-forward

scheme unfeasible since perfect noise suppression only happens for a flat gain profile.

Apart from the obstacle mentioned above, the application of the phase modulation also

limits the amount of power available for the measurement, since most conventional phase

modulators using lithium niobate material have a maximum input power around 25 mW, with

typical 3.5 dB insertion loss.

Ultimately, the breakthrough came when we tested our first generation of density-modulated

membranes in the MIM assembly. As these pillar membranes have no perforation on the

membrane, air gets trapped between the membrane chip and the bottom mirror. Whenever

we need to pump down the pressure of the vacuum chamber, the air breaks through the

membrane and leaks out from the gap between the top mirror and the membrane chip. To

prevent membrane breaking, we used a precision circular diamond saw (usually for dicing

silicon chips), to cut a few tranches on the bottom mirror, so that air can go through those

trances instead of the membrane. After cutting, we did not observe any optical degradation

of the mirror coating and the surface roughness, as the optical linewidth of the empty cavity

remained the same. As the pillar membrane successfully survived the pressure pump down,

we also got inspiration for patterning phononic crystal structures on the mirror substrates.

By considering the shape of the cut from the diamond saw, we designed phononic crystal

patterns for both the top and bottom mirrors [see Fig. 2.15(d,f)]. We used the precision circular

saw to pattern the phononic structure on the glass mirror substrates. The phononic unit cell

dimensions are chosen such that mechanical motion in the frequency band of 0.87 MHz to

1.2 MHz is prohibited [see Fig. 2.15(c,e)]. The thermomechanical noise density S̄νν( f ) in this

frequency band is reduced by a factor of more than 700 as shown in Fig. 2.15(a), where the

estimation of the mirror noise suppression is limited by laser noise. This noise reduction

drastically relaxes the requirements to observe quantum optomechanical effects at room

temperature. Furthermore, we also show linewidth measurements of 23 TE00 cavity resonances

with the membrane chip loaded in Fig. 2.15(b). As can be seen from the comparison with the

ideal empty cavity linewidth (dashed gray line), the phononic crystal patterning did not result

in significant excess optical losses, thereby maintaining high cavity out-coupling efficiency as

required for the observation of optomechanical squeezing and measurement-based ground

state cooling. The added loss is not observable as long as we do not clamp the cavity too hard,

which induces significant degradation of the cavity linewidth even without the membrane

loaded. We use the optical mode at 819 nm for most of the experiment, which has an out-

coupling efficiency of > 80% with an optical linewidth of κ/2π= 34.2MHz.

By clamping the density-modulated membrane chip in-between the phononic crystal mirrors,

we construct a MIM system with g0/2π = 160Hz and cavity frequency noise satisfying the

S̄νν( f ) < 0.11Hz2/Hz requirement, which allows high quantum cooperativity operation with

quantum-noise-limited measurement imprecision and backaction.
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Figure 2.15: Suppression of cavity frequency noise in the phononic bandgap. (a) Cavity
frequency/displacement noise comparison between regular mirror assembly and phononic
crystal mirror assembly, showing a 700-fold total noise reduction within the blue-shaded
region. The vertical axis is calibrated in cavity frequency noise units (left) and equivalent
mirror mechanical displacement units (right). (b) MIM cavity optical linewidth as a function
of wavelength. Blue circles: measured optical cavity linewidths. Red circle: the optical mode
used for experiments. The modulation of the cavity linewidth is due to the presence of the
membrane in the cavity. Dashed gray line: the ideal empty cavity linewidth based on the
measured mirror transmission after deposition of the high-reflectivity coating but before
definition of the PnC. (c,d) Band diagram and photograph of the top phononic crystal mirror.
(e,f ) Band diagram and photograph of the bottom phononic crystal mirror.

2.3.2 Fabrication and simulation of phononic crystal mirrors

In this section, we provide more details on the fabrication and simulation of the phononic

crystal mirrors, required to achieve high quantum cooperativity operation with quantum-

noise-limited measurement imprecision and backaction.

As mentioned in the previous section, we circumvent these problems by patterning PnC

structures on the top and bottom mirrors. The top and bottom mirror substrates are fused

silica and borosilicate glass, with a high-reflection coating sputtered on one side and an anti-

reflection layer coating on the other. We use a dicing saw for glass machining to dice a regular

array of lines into the mirror substrates. The blade is continuously cooled by a pressurized

water jet during the dicing process. The maximum cut depth allowed for our blade is 2.5 mm,

and we constrain the designed PnC accordingly. We cut the flat bottom mirror only from one

side (its thickness is only 1 mm), and the top mirror is diced symmetrically with parallel cuts

from both sides, since it is 4-mm thick. The relatively deep cuts in the top mirror need to be
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Figure 2.16: a Square lattice unit cell of the top mirror. The periodicity is along the horizontal
plane. a=1.4mm, h=4mm, d=1.88mm, w=250µm. b Square lattice unit cell of the bottom
mirror. The periodicity is along the horizontal plane. a=1.6mm, h=1mm, d=900µm, w=300µm.
c Simulated frequency noise spectra of an empty cavity with PnC top and bottom mirrors. We
show both the case of an optical mode perfectly centered on the bottom mirror (blue), and
displaced 200µm away from the center (red), accounting for a realistic assembly misalignment.

patterned over multiple passes, with gradually increasing depths. After dicing one mirror side,

the piece is flipped, and the other side is diced after aligning to the first cuts, visible through

the glass substrate. Lines are arranged in a square lattice for simplicity (see Fig. 2.15(d,f)),

although more complex patterns can be machined with the dicing saw. We simulate the band

diagrams of the unit cells of the top and the bottom mirrors in COMSOL Multiphysics with the

Structural Mechanics module. The simulation result is shown in Fig. 2.15. We optimized the

lattice constant and cut depths to maximize the bandgap width, while centering the bandgap

around 1 MHz and ensuring that the remaining glass thickness is sufficient to maintain a

reasonable level of structural stiffness.

Due to the finite size of the mirrors, we expect to observe edge modes within the mechanical

bandgap frequency range. These modes’ thermal vibrations penetrate the PnC structure with

exponentially decaying amplitudes. To account for their noise contributions, we simulated the

frequency noise spectrum of the MIM assembly, consisting of the bottom and the top mirrors

in contact with a silicon spacer chip, shown in Fig. 2.16. Displacement noise at the location

of the cavity optical mode is estimated using the fluctuation-dissipation theorem and the

eigenmode parameters obtained from the COMSOL eigenfrequency solver, then converted

to frequency noise. From previous measurements of mirror modes, we assume a uniform

quality factor of 103 for all the modes. The eigenfrequency solution confirmed the existence

of edge modes with frequencies within the mechanical bandgap. However, it did not predict

any significant contribution to the cavity frequency noise: the PnC is sufficiently large to

reduce their contribution at the cavity mode position. The bandgap noise is mainly from

the off-resonant tail of the thermomechanical noise from the modes outside the bandgap.

We also observe that the noise peaks at the upper edge of the bandgap are sensitive to the
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Figure 2.17: Measured noise density of the laser relative (a) phase and (b) frequency fluctua-
tions of the two TiSa lasers.

relative displacement of the optical mode from the mirror center (see Fig. 2.16). This effect is

attributed to the spatial symmetries of these modes.

After patterning the PnC structures on the mirrors, we assembled a cavity with a spacer

chip instead of a membrane. We observed that the TE00 linewidth with the diced mirrors is

identical to that of the original cavity. This indicates that our fabrication process does not

cause measurable excess roughness or damage to the mirror surfaces. On the other hand,

we noticed that when the assembly was clamped too tightly, excess cavity loss occurred due

to significant deformation of the PnC mirrors, with a reduced stiffness. We mitigate this

detrimental effect in the experiment by gently clamping the MIM cavity, with a spring tension

sufficient to guarantee the structural stability of the assembly. We also ensure that the cavity

mode is well-centered on the bottom mirror, to reduce the aforementioned upper band-edge

modes’ thermal noise contribution. For the MIM experiment, we did not observe any mirror

modes within the mechanical bandgap of the membrane chip. We can distinguish membrane

modes from mirror modes by exploiting the fact that the coupling rates of membrane modes

vary between different cavity resonances, while this is not the case for mirror modes.

2.3.3 TiSa laser phase noise characterization

Since the mirror noise is greatly suppressed using phononic crystal structures on the cavity

mirrors, we must understand how much the laser frequency noise limits our experiment. We

upper-bound the phase noise of the TiSa laser (Sirah Lasertechnik) used in the experiment

by beating it with another TiSa laser (M Squared) with optical power around 100µW. The

frequency difference of the two lasers is passively stable around 9 MHz, and the beating signal

is recorded digitally with a sampling rate of 56 MHz. The signal is then demodulated at 9 MHz

to retrieve the I/Q data, from which the phase noise is retrieved. The noise densities of the laser

phase and frequency are computed and shown in Fig. 2.17. At 1 MHz, where the experiment is

conducted, the measured noise density is primarily limited by the detector noise and laser shot

noise. Therefore, we upper-bound the laser frequency noise at S̄νν(1MHz) < 3×10−2 Hz2/Hz,

significantly below the frequency budget of the system.
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Figure 2.18: (a) Simulated optical spectrum as a result of nonlinear optomechanical trans-
duction, showing the laser carrier at the magic detuning ∆∗ as well as the generated optical
sidebands up to the fourth order. The higher-order sidebands tend to become uniformly
distributed within the cavity bandwidth. (b) We artificially assume in the simulation that the
membrane supports four mechanical modes with equal coupling strengths. In reality, we
have thousands of mechanical modes within the optomechanical coupling bandwidth in the
experiment.

2.4 Thermal intermodulation noise

Apart from the thermomechanical noise of mirrors, there is one unconventional noise source

in the MIM system at room temperature termed thermal intermodulation noise (TIN), first

observed by the former PhD student working on this setup [42].

Essentially, the beam spot size of the optical cavity mode determines the cut-off mechanical

frequency for efficient optomechanical coupling. Within this cutoff frequency, all the avail-

able mechanical modes will contribute to the total thermomechanical noise variance of the

membrane. For 2D membranes, the mode density can be extremely high compared to that

of a 1D structure and therefore contributes significant cavity frequency noise variance 〈∆2〉
contributed from the membrane.

As a high-finesse cavity is employed to achieve quantum-noise-limited laser operation, the

cavity mode linewidth κ can approach that of the cavity frequency noise variance
√

〈∆2〉,
even when the cavity mirrors are in direct contact with the membrane chip (cavity length

∼635µm). In this case, the nonlinearity of the cavity frequency noise transduction manifests,

leading to higher-order noise mixing processes in the cavity (shown in Fig. 2.18) and nonlinear

noise within the mechanical bandgap of the membrane. This nonlinear transduction process

generates optical fields at new frequencies, but how it manifests as noise depends on the

system observable of interest. As one will see from the analysis below, this nonlinear noise

does not fit into the conventional optical quadrature picture, and must be dealt with with

particular attention to the nonlinearity of the photon number operator.
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2.4.1 Quantum Langevin equation with nonlinear transduction

We start from the typical quantum Langevin equation (QLE) where mechanical motion is

encoded in the cavity detuning δ∆(t )1,

ȧ(t ) = [i (∆+δ∆(t )−κ/2]a(t )+√
κp ap (t )+p

κv av (t )+·· · . (2.30)

There, the operator â is simplified to a. The usual linearization procedure applied on the term

δ∆(t )a(t ) would be valid if the fluctuation δ∆(t ) is small. In the regime where δ∆(t ) induces

a sufficiently large change in a(t), the linearization becomes invalid, and a more thorough

treatment of the equation is required.

Assuming ap (t ) is the pump mode with mean amplitude ap , we can apply FT2 to the QLE and

get (for simplification we denote ∆ as ∆ directly, and ∆(ω) is the Fourier component of δ∆(t ))

a(ω) = i
∫
∆(ω−ω′)a(ω′)dω′/2π+p

κp (ap 2πδ(ω)+ap (ω))+p
κv av (ω)+·· ·

i (−ω−∆)+κ/2
. (2.31)

The above equation is exactly the Fredholm integral equation of the second kind,

f (x) =φ(x)−λ
∫ b

a
K (x, y)φ(y)d y, (2.32)

with the solution usually expressed in the Liouville-Neumann series of multiple orders

φ(x) =
∞∑

n=0
λnφn(x). (2.33)

We can easily identify each term in the QLE as

φ(ω) = a(ω) (2.34)

K (ω,ω′) = i∆(ω−ω′)/2π

i (−ω−∆)+κ/2
(2.35)

f (ω) =
p
κp (ap 2πδ(ω)+ap (ω))+p

κv av (ω)+·· ·
i (−ω−∆)+κ/2

. (2.36)

Here, for simplicity, we set λ= 1. The solution can be calculated through the integration of the

nth iterated kernel

Kn(ω,ω′) =
Ï

K (ω,ω1)K (ω1,ω2) · · ·K (ωn−1,ω′)dω1dω2 · · ·dωn−1, (2.37)

with K0(ω,ω′) = δ(ω−ω′) and K1(ω,ω′) = K (ω,ω′). The solution can be easily calculated using

the following expression

φn(ω) =
∫

Kn(ω,ω′) f (ω′)dω′. (2.38)

1In this section about TIN, we adopt the notation that ∆=Ωlaser −Ωcavity.
2Here we adopt the notation that FT = ∫

eiωt d t and FT−1 = 1
2π

∫
e−iωt dω.
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The 0th order solution is associated with the stationary solution and the vacuum fluctuations:

a0(ω) = f (ω) =
p
κp (ap 2πδ(ω)+ap (ω))+p

κv av (ω)+·· ·
i (−ω−∆)+κ/2

, (2.39)

while the 1st order solution is the conventional linear cavity transduction

a1(ω) =
∫

K (ω,ω′) f (ω′)dω′ =
∫

i∆(ω−ω′)
i (−ω−∆)+κ/2

p
κp apδ(ω′)

i (−ω′−∆)+κ/2
dω′ = a

i∆(ω)

i (−ω−∆)+κ/2
,

(2.40)

Starting from the 2nd order solution, we categorize them as TIN

a2(ω) =
Ï

K (ω,ω1)K (ω1,ω′) f (ω′)dω1dω′

= 1

2π

Ï
i∆(ω−ω1)

i (−ω−∆)+κ/2

i∆(ω1 −ω′)
i (−ω1 −∆)+κ/2

p
κp apδ(ω′)

i (−ω′−∆)+κ/2
dω1dω′

= −a
∫

∆(ω−ω′)
i (−ω−∆)+κ/2

∆(ω′)
i (−ω′−∆)+κ/2

dω′

2π
, (2.41)

and the nth order noise is expressed as

an(ω) = a
Ï

i∆(ω−ω1)

i (−ω−∆)+κ/2

i∆(ω1 −ω2)

i (−ω1 −∆)+κ/2
· · · i∆(ωn−1)

i (−ωn−1 −∆)+κ/2

dω1

2π
· · · dωn−1

2π
. (2.42)

A more complete expression, including vacuum fluctuation contributions to the higher order

solutions, can be found at Eq.(2.109-2.111).

In the following, we first analyze the results in the fast cavity limit Ω∆≪ κ, where Ω∆ is the

optomechanical coupling cutoff frequency (∼5 MHz) determined by the optical mode spot

size, as it greatly simplifies the result. A more general result is discussed in Section. 2.4.2.

In the fast cavity limit, if we only consider up to the second-order noise, the amplitude

quadrature noise measured in a balanced homodyne detection is

X (ω) = X

[
δ(ω)− 2∆/κ

1+ (2∆/κ)2

2∆(ω)

κ
− (1− (2∆/κ)2)

[1+ (2∆/κ)2]2

∫
4∆(ω−ω′)∆(ω′)

κ2

dω′

2π

]
. (2.43)

In this expression, one can observe that if a balanced homodyne detection is employed, when

the detuning 2∆/κ= 1, only linear transduction remains in the detection record. Note that

this result is different from [42] in which the detection is done with direct detection. In the

conventional quadrature picture, normally, people treat direct detection as equivalent to

amplitude quadrature detection. Here, with TIN, the equivalence is broken, as direct detection

includes photo-detection nonlinearity, whereas it is canceled out in a balanced homodyne

detection. We illustrate the difference in the following.
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In the direct detection, one detects

I = |a|2 = a†a = |a|2 +a(δa +δa†)+δa†δa (2.44)

= |a|2
[
δ(ω)− 2∆/κ

1+ (2∆/κ)2

2∆(ω)

κ
+ [−1+3(2∆/κ)2]

2[1+ (2∆/κ)2]2

∫
4∆(ω−ω′)∆(ω′)

κ2

dω′

2π

]
(2.45)

In the Fourier domain, this would result in

I (ω) = |a|2δ(ω)+
p

2aX (ω)+
∫
δa†(ω−ω′)δa(ω′)dω′/2π. (2.46)

we will still observe nonlinear noise in direct detection when 2∆/κ= 1, which will now instead

cancel out when 2∆/κ= 1/
p

3. In balanced homodyne detection, however, we only observe

linear noise as,

I = |a +β|2 −|a −β|2 = 2
p

2|β|Xθ(ω), (2.47)

where the part that involves photo-detection nonlinearity cancels out.

Since they share the same mathematical form, the photo-detection nonlinearity is essentially

the photon number nonlinearity. Since the mechanical oscillators experience radiation pres-

sure force in the form of F = Ga†a, in our experiment, we operate at 2∆/κ = 1/
p

3 (magic

detuning) to cancel out the nonlinear intra-cavity photon number fluctuation that would

otherwise cause excess classical decoherence to the mechanics. For optical detection, only

the direct detection of the cavity transmission port is a faithful verification that intra-cavity

TIN is completely canceled out.

We must clarify that canceling noise is only possible for some system observables of interest,

e.g., the photon number operator in our particular case. The nonlinear optical field generation

is always present regardless of how we choose the laser detuning or measure the signal. This

fact is evident in Fig. 2.18 that the nonlinear optical sidebands are still generated at the magic

detuning ∆∗.

Note that we only consider up to second-order noise mixing processes here. In narrow

linewidth optical mode, we also observe third-order mixing noise when the second-order

noise is completely canceled out. We discuss it in detail in Section 2.4.4.

2.4.2 Breakdown of the fast-cavity limit

Note that the above perfect cancellation at the magic detuning 2∆/κ= 1/
p

3 only happens in

the fast-cavity limit where κ/Ωm →∞. In the actual experiment setting, it is not the case, with

the mechanical frequency ω∼Ωm ∼ 2π ·1MHz and the cavity linewidth κ∼ 2π ·30MHz. This

effect is also illustrated in Fig. 2.18, that the optical sidebands obtain ω-dependent phases and

amplitudes from the cavity susceptibility, propagating down through the cascaded nonlinear

process.
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To apply a simple correction (though not accurate) to gauge the order of magnitude of the

residual noise that can not be canceled at the magic detuning, one can derive an approxima-

tion of the limit by ignoring contribution fromω′ in all the convolutions, i.e. i (−ω′−∆)+κ/2 →
−i∆+κ/2 in Eq.(2.41). One could argue that it is a minor effect since it is inside the convolution

integration of ∆(ω), and the thermomechanical spectrum has a cutoff frequency roughly at

least one order of magnitude below κ. However, here we show that those two contributions

from ω and ω′ are similar. One can visualize it through

FT
∫
∆(ω−ω′)∆(ω′)

−i∆+κ/2

−iω′− i∆−κ/2

dω′

2π

= FT
∫
∆(ω−ω′)∆(ω′)G(ω′)

dω′

2π
=∆(t )∆′(t ) (2.48)

∆′(t ) =
∫
∆(t − t ′)e(−κ/2+i∆)t ′u(t ′)(−i∆+κ/2)d t ′ =

∫
∆(t − t ′)G(t ′)d t ′, (2.49)

where G(ω) and G(t ) are a generalized substitution for frequently occurring expressions like
−i∆+κ/2

−iω′−i∆−κ/2 and e(−κ/2+i∆)t u(t)(−i∆+κ/2), which contain the frequency dependence of the

convolution, or equivalently the cavity response in either time domain or frequency domain.

Note that u(t ) is the heavy step function.

If the time scale of the fluctuation of ∆(t ) happens much slower than rate κ, then

∆′(t ) ≈
∫
∆(t − t ′)δ(t ′)d t ′ =∆(t ), (2.50)

which goes back to the fast-cavity limit result. Here, we keep the expression ∆′(t ) instead and

proceed until the calculation of the power spectral density,

FTτ
〈
∆∗

2 (t )∆1(t +τ)
〉

t = FTτ

〈Ï
∆(t − t ′′)∆(t +τ− t ′)

〉
t

G∗
2 (t ′′)G1(t ′)d t ′d t ′′ (2.51)

=
∫

S∆∆(ω)e iω(t ′−t ′′)G∗
2 (t ′′)G1(t ′)d t ′d t ′′ = S∆∆(ω)G∗

2 (ω)G1(ω), (2.52)

which is a simple modification to the spectral density by the cavity response G . The same also

happens for the variance,

〈∆2(t )∆1(t )〉t =
〈Ï

∆(t − t ′′)∆(t − t ′)
〉

t
G2(t ′′)G1(t ′)d t ′d t ′′

=
Ï

C (t ′′− t ′)G2(t ′′)G1(t ′)d t ′d t ′′ =C . (2.53)

Here, we show a more general result when cavity response can not be factorized,

FTω

∫
A(ω−ω′)B(ω′)G(ω−ω′,ω′)dω′ =

Ï
A(t − tA)B(t − tB )G(tA , tB )d tAd tB (2.54)

G(t , t ′) = FTω,ω′G(ω,ω′) (2.55)
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We can then proceed to calculate the power spectral density of the higher order mixing terms

like3

S∆2∆2 (ω) = 1

(2π)2

〈∫
∆(ω−ω′)∗∆(ω′)∗G12(ω−ω′,ω′)∗dω′∫

∆(ω−ω′′)∆(ω′′)G34(ω−ω′′,ω′′)dω′′
〉

(2.56)

=
〈

FTτ[
Ï

w
∆∗(t − t1)∆∗(t − t2)∆(t +τ− t3)∆(t +τ− t4)

G∗
12(t1, t2)G34(t3, t4)d t1d t2d t3d t4d t ]

〉
(2.57)

= δ(ω)C +
Ï

FTτ[
〈
∆∗(t − t1)∆(t +τ− t3)

〉〈
∆∗(t − t2)∆(t +τ− t4)

〉+〈
∆∗(t − t1)∆(t +τ− t4)

〉〈
∆∗(t − t2)∆(t +τ− t3)

〉
]

G∗
12(t1, t2)G34(t3, t4)d t1d t2d t3d t4 (2.58)

= ·· ·+
Ï

FTτ[C (t1 − t3 +τ)C (t2 − t4 +τ)+C (t1 − t4 +τ)C (t2 − t3 +τ)]

G∗
12(t1, t2)G34(t3, t4)d t1d t2d t3d t4 (2.59)

= ·· ·+
∫

S∆∆(ω−ω′)S∆∆(ω′)[G12(ω−ω′,ω′)∗G34(ω−ω′,ω′)

+G12(ω−ω′,ω′)∗G34(ω′,ω−ω′)]dω′/2π (2.60)

If the convolution Kernel G12 is separable into G1(ω−ω′)G2(ω′):

FTτ
〈
∆∗

1 (t )∆∗
2 (t )∆3(t +τ)∆4(t +τ)

〉
t

= FTτ
[〈
∆∗

1∆
∗
2

〉〈∆3∆4〉+
〈
∆∗

1∆3
〉〈
∆∗

2∆4
〉+〈

∆∗
1∆4

〉〈
∆∗

2∆3
〉]

= FT
Ï

C (t1 − t2)C (t3 − t4)G∗
1 (t1)G∗

2 (t2)G3(t3)G4(t4)d t1d t2d t3d t4+∫
S∆∆(ω−ω′)S∆∆(ω′)G∗

1 (ω−ω′)G∗
2 (ω′)[G3(ω−ω′)G4(ω′)+G4(ω−ω′)G3(ω′)]dω′/2π (2.61)

With the general expression in mind, now let us first examine the simplified method when we

assume ω′ → 0, we can derive the intra-cavity intensity fluctuation to be

δn(ω) =p
2aX (ω)+

∫
δa†(ω−ω′)δa(ω′)dω′/2π

≈ a2 2iω/κ+3(2∆/κ)2 −1

[(2∆/κ)2 +1]2

∫
4∆(ω−ω′)∆(ω′)

κ2

dω′

2π
, (2.62)

where at the magic detuning 2∆/κ= 1/
p

3 there is still a finite amount of fluctuation remaining

at value

δnlim(ω) = a2 9iω

2κ

∫
∆(ω−ω′)∆(ω′)

κ2

dω′

2π
, (2.63)

3See Eq.(2.84) for expansion details.
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2.4 Thermal intermodulation noise

which is a factor of [ 9Ωm
8κ ]−2 ∼ 103 smaller than the zero detuning (max) fluctuation near the

high Q mechanical frequency in terms of power spectral density.

Then, we can examine the contribution from ω′ by assuming ω→ 0, using the general expres-

sion. For simplicity, we will examine the amplitude quadrature instead (photon number too

complicated to compute by hand),

SX X (0) = |a|2
2

∫
S∆∆(−ω′)S∆∆(ω′)

∣∣−iκω′+2κ2/4−2∆2
∣∣2

[∆2 +κ2/4]2|∆2 + (κ/2− iω′)|2
dω′

2π
+·· · (2.64)

Again, we have a partial cancellation at the amplitude quadrature magic detuning |∆| = κ/2.

To simplify our life, we assume S∆∆(ω′)2 is flat until a characteristic cutoff frequencyΩ∆≪ κ

with a very fast roll-off. Then, we can easily compare two scenarios of ∆ = 0 vs. |∆| = κ/2,

corresponding to maximum intermodulation noise vs. magic detuning cancellation. One can

easily find a cancellation factor of 12κ2/Ω2
∆ ∼ 103 assumingΩ∆ ∼ 3MHz. Therefore, the effects

of ω and ω′ are causing comparable effects when the fast-cavity limit breaks down.

With the help of Mathematica, combining Eq.(2.40)(2.41)(2.46), we can find out that the

actual intra-cavity noise at magic detuning assuming a similar cutoffΩ∆ and flat mechanical

spectrum,

S I I = |a|2
∫

S∆∆(ω−ω′)S∆∆(ω′)
32(−12∆2 +κ2)2

(4∆2 +κ2)4

dω′

2π

≈ |a|2 32〈∆2〉S∆∆
κ4 (∆=0) (2.65)

δS I I ≈ |a|2 256(3κ2 −4∆2)κ2ω2

(4∆2 +κ2)5

∫
S∆∆(ω−ω′)S∆∆(ω′)

dω′

2π

≈ |a|2 256(3κ2 −4∆2)κ2ω2〈∆2〉S∆∆
(4∆2 +κ2)5 = |a|2 162〈∆2〉S∆∆ω2

κ6 (2∆=κ/
p

3) (2.66)

The actual correct cancellation factor considering all the terms is κ2

10Ω2
m
∼ 1×102, a factor of

10 less than assuming ω′ → 0. Surprisingly, the cancellation factor is almost independent

of the thermomechanical noise bandwidth Ω∆, as long as Ω∆ ≪ κ. The sensitivity of TIN

cancellation to laser detuning is visualized in Fig.2.19.

In the actual experiment, we can observe the noise induced by this limit at low optical power

(Section. 2.4.6), with more details shown in Section. 2.4.7 as well as the separation from

the third order nonlinear noise. At high optical power, the thermomechanical noises are

sufficiently cooled by the laser at magic detuning, and the third-order nonlinear noise is the

dominant noise source, which is discussed in detail in Section. 2.4.4
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Figure 2.19: Visualization of the thermal intermodulation noise cancellation effect across
magic detuning 2∆= κ/

p
3. In the left panel, the intermodulation noise is normalized to the

level at ∆= 0. In the right panel, the noise is normalized to the minimum noise level to better
illustrate the noise cancellation limit. A system with κ/2π= 60MHz andΩm/2π= 700kHz is
assumed.

2.4.3 Second-order nonlinear noise cancellation in a homodyne detection

In the following sections, we consider only the fast-cavity limit unless specified otherwise.

Our goal in this section is to find a way to cancel the second-order TIN in the detection with

arbitrary optical quadrature angles. Conventional balanced homodyne detection can not

satisfy this requirement, as it lacks enough degree of freedom. We draw our inspiration from

[21], where a single detector is used to perform high-efficiency quadrature measurement.

Single-port configuration provides the photodetection nonlinearity, that allows the extra

degrees of freedom provided by the local oscillator power to achieve TIN cancellation at

arbitrary quadrature angles. A similar result is also derived later independently by the former

student working on this project in a separate manuscript [42]. In the following, we describe

our formulation in detail.

The scheme is to mix the local oscillator aLO with the signal asig through a high transmission

(η→ 1) beam splitter, such that the signal in the mixed field is mainly contributed from the

signal beam δasig, while the field amplitude and phase is corrected by the local oscillator

aLO. The mixed field a is directed to the detector, and the photocurrent a†a is detected.

The linearization was done with respect to the phase of the mean fields, such that asig =
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2.4 Thermal intermodulation noise

(asig +δasig)e−iθsig , and we define θ = θLO −θsig.

a = p
ηasig + i

√
1−ηaLO (2.67)

I = |a|2 = ηnsig + (1−η)nLO − i
√
η(1−η)(asiga†

LO −a†
sigaLO) (2.68)

= ηnsig + (1−η)nLO +2sinθ
√
η(1−η)asigaLO (2.69)

+√
1−η(

√
1−ηaLO + i

p
ηasige−iθ)δaLO +h.c.

+pη(
p
ηasig − i

√
1−ηaLOe iθ)δasig +h.c.

+ηδa†
sigδasig.

Even though θ is the angle between LO and signal, there is an additional π/2 phase shift when

two beams are combined at a beam splitter. Therefore θ = 0 corresponds to the quadrature

point of the fringe instead of constructive interference. In the limit where the transmission

η→ 1, and there is no classical noise injecting from the local oscillator, the photo current can

be simplified as

I ≈ nsig +nLO
′+2sinθasigaLO

′+ [(asig − i aLO
′e iθ)δasig +h.c.]+δa†

sigδasig, (2.70)

where aLO
′ =√

1−ηaLO.

Due to the presence of intermodulation noise, we can separate δasig = δa1 +δa2 into a linear

part

δa1(ω) = i asig

−i∆+κ/2
∆(ω), (2.71)

and a nonlinear part

δa2(ω) = −asig

(−i∆+κ/2)2

∫
∆(ω′)∆(ω−ω′)dω′/2π, (2.72)

in the fast-cavity limit. If we define the combined field as a = |a|e iθ′ = asig + i aLO
′e−iθ, the

fluctuation in the photo-current (up to the second order) will be

δI (ω) = 2|a|Real[e−iθ′(δa1(ω)+δa2(ω)+δa3(ω))]

+
∫
δa†

1(ω′)δa1(ω−ω′)dω′/2π

+2Real[
∫
δa†

2(ω′)δa1(ω−ω′)dω′/2π]. (2.73)

where the nonlinear noises (δa2(ω) and
∫
δa†

1(ω′)δa1(ω−ω′)dω′) will cancel out at condition

asig

|a| = 2Real

[
e−iθ′

(−i∆+κ/2)2

]
(∆2 + (κ/2)2). (2.74)

Therefore, if we wish to observe only the linear thermomechanical signal at quadrature angle
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Figure 2.20: The required local oscillator and the combined field ratio for canceling the second
order TIN noise in single-port homodyne detection. α′ = a, α= asig, β= aLO

′. Two specific
quadrature angles are also plotted in dashed vertical lines for reference. The amplitude
quadrature here means the angle that carries minimal information about the mechanical
motion. In contrast, the phase quadrature means the angle carrying maximal mechanical
motion information. The green curves (axis right) are the calculated homodyne efficiency
based on different values of the visibility of the fringes. In our experiment, we achieved a
maximum v = 0.95.

θ′, we need to adjust the combined field |a|, done by tuning the correct local oscillator field

aLO
′ and the relative phase difference θ. This cancellation condition is illustrated in Fig. 2.20.

It is worth mentioning that even if η does not go to the limit 1, the beam splitter only effectively

introduces additional detection loss, and does not change the cancellation relation derived

here, which is great for practical reasons.

However, careful readers will notice that when calculating the actual power spectral density,

there is also the cross-correlation between terms like δa1(ω),
∫
δa†

2(ω′)δa1(ω−ω′)dω′ and

δa3(ω) that are not considered yet but will also contribute to the second order mixing noise.

They contribute because the cross terms involving them will still be even orders as Gaussian

noises ∆(t ), and they are at the same order of magnitude as the auto-correlation of terms like

δa2(ω) and
∫
δa†

1(ω′)δa1(ω−ω′)dω′ which we considered earlier.

We will show below that the noises induced by these correlations can not be canceled but will

stay proportional to the linear transduction terms. In other words, they only reduce cavity

linear transduction efficiency, as part of the signal is converted to other frequency components

from the nonlinear mixing process.

In order to calculate the complete spectra expression, one needs to use some mathematical
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2.4 Thermal intermodulation noise

tricks from [65]. First, we could recognize that for stochastic variables xi (t), the relevant

spectra that we are concerned with are

Sx y (ω) =
∫ 〈

x∗(ω)y(ω′)
〉

dω′/2π= 〈
x∗(ω)y(ω)

〉=〈
FTτ[

∫
w

x∗(t )y(t +τ)d t ]

〉
(2.75)

S∆∆(ω) = 〈
∆∗(ω)∆(ω)

〉=〈
FTτ[

∫
w
∆∗(t )∆(t +τ)d t ]

〉
(2.76)

S∆∆2 (ω) = 1

2π

〈
∆∗(ω)

∫
∆(ω−ω′)∆(ω′)dω′

〉
=

〈
FTτ[

∫
w
∆∗(t )∆2(t +τ)d t ]

〉
(2.77)

S∆∆3 (ω) = 1

(2π)2

〈
∆∗(ω)

Ï
∆(ω−ω′)∆(ω′−ω′′)∆(ω′′)dω′ω′′

〉
=

〈
FTτ[

∫
w
∆∗(t )∆3(t +τ)d t ]

〉
(2.78)

S∆2∆2 (ω) = 1

(2π)2

〈∫
∆∗(ω−ω′)∆∗(ω′)dω′

∫
∆(ω−ω′′)∆(ω′′)ω′′

〉
=

〈
FTτ[

∫
w
∆∗2(t )∆2(t +τ)d t ]

〉
, (2.79)

where 〈· · · 〉 are the average over statistical ensemble. In order to calculate these higher order

correlation functions, we could exploit the fact that ∆(t ) at different times is a set of Gaussian

random variables, whose higher order cumulants 〈〈∆(t1)∆(t2) · · ·∆(tn)〉〉 = 0 for n > 2. Further-

more, since we are concerned with fluctuation, we set 〈∆(t )〉 = 0. The first few cumulants can

be expressed as

〈〈∆1〉〉 = 〈∆1〉 = 0 (2.80)

〈〈∆1∆2〉〉 = 〈∆1∆2〉−〈∆1〉〈∆2〉 = 〈∆1∆2〉 (2.81)

〈〈∆1∆2∆3〉〉 = 〈∆1∆2∆3〉−〈∆1∆2〉〈∆3〉−〈∆1〉〈∆2∆3〉−〈∆1∆3〉〈∆2〉+2〈∆1〉〈∆2〉〈∆3〉
= 〈∆1∆2∆3〉 = 0 (2.82)

〈〈∆1∆2∆3∆4〉〉 = 〈∆1∆2∆3∆4〉−〈∆1∆2〉〈∆3∆4〉−〈∆1∆3〉〈∆2∆4〉−〈∆1∆4〉〈∆2∆3〉
= 0 (2.83)

〈〈∆1 · · ·∆n〉〉 = ∑
π

(|π|−1)!(−1)|π|−1
∏

B∈π

〈∏
i∈B
∆i

〉
, (2.84)

where π runs through the list of all partitions of {1, · · · ,n}, and |π| is the number of parts in

the partition. For the fourth cumulants all the terms with 〈∆i 〉 = 0 will vanish. We could find

that since 〈∆1∆2∆3〉 = 0, we have 〈∆∗(t)∆2(t +τ)〉 = 0 and S∆∆2 = 0. For 〈∆∗(t)∆3(t +τ)〉 and

〈∆∗2(t )∆2(t +τ)〉, we have the following relations

〈∆∗(t )∆3(t +τ)〉 = 3〈∆∗(t )∆(t +τ)〉〈∆2〉 (2.85)

〈∆∗2(t )∆2(t +τ)〉 = |〈∆2〉|2 +2〈∆∗(t )∆(t +τ)〉2, (2.86)
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from which we could derive the expressions for their power spectral density (PSD),

S∆∆3 (ω) = 3〈∆2〉S∆∆(ω) (2.87)

S∆2∆2 (ω) = 2π|〈∆2〉|2δ(ω)+2
∫

S∆∆(ω′)S∆∆(ω−ω′)dω′/2π (2.88)

For a single-port homodyne detection discussed earlier, we obtain the following expression

S I I (ω) = 4|a|2|asig|2Real

[
i e−iθ′

−i∆+κ/2

]2

S∆∆(ω)

+|asig|2
[

Real

[
−2|a|e−iθ′

(−i∆+κ/2)2

]
+ |asig|
∆2 +κ2/4

]2

×
[

2
∫

S∆∆(ω′)S∆∆(ω−ω′)dω′/2π+2π|〈∆2〉|2δ(ω)

]
−24|a||asig|3∆

(∆2 +κ2/4)2 Real

[
i e−iθ′

−i∆+κ/2

]
〈∆2〉S∆∆(ω)

−24|a|2|asig|2Real

[
i e−iθ′

−i∆+κ/2

]
Real

[
i e−iθ′

(−i∆+κ/2)3

]
〈∆2〉S∆∆(ω) (2.89)

So when 〈∆2〉 approaches the magnitude of κ2, the nonlinear mixing process will modify the

linear term. Under direct detection, the result can be simplified as

S I I (ω) = 4|asig|4 ∆2

(∆2 +κ2/4)2

[
1+12〈∆2〉 ∆2 −κ2/4

(∆2 +κ2/4)2

]
S∆∆(ω) (2.90)

+|asig|4
[

3∆2 −κ2/4

(∆2 +κ2/4)2

]2 [
2
∫

S∆∆(ω′)S∆∆(ω−ω′)/2π+2π|〈∆2〉|2δ(ω)

]
. (2.91)

One could see that this leads to a reduction of linear transduction efficiency, as well as slightly

lower calibrated g0 than the actual value by a factor of 1+12〈∆2〉 ∆2−κ2/4
(∆2+κ2/4)2 . This is true when

we operate at the magic detuning.

One could also examine the sixth-order correlations associated with the third-order nonlinear

noise using the simplified relation

〈∆1 · · ·∆6〉 =
∑〈··〉〈··〉〈··〉, (2.92)

where the summation is over all the non-repetitive arrangements, which is in a total of 15

terms. Therefore, we have the following relations

〈∆3(t )∆3(t +τ)〉 = 6〈∆(t )∆(t +τ)〉3 +9〈∆2〉2〈∆(t )∆(t +τ)〉 (2.93)

〈∆2(t )∆4(t +τ)〉 = 3〈∆2〉3 +12〈∆2〉〈∆(t )∆(t +τ)〉2 (2.94)

〈∆(t )∆5(t +τ)〉 = 15〈∆2〉2〈∆(t )∆(t +τ)〉. (2.95)

58



2.4 Thermal intermodulation noise

More details on the noise property of the third-order nonlinear noise are in Section 2.4.4.

Experimental observation of TIN in photodetection

In the experiment, to detect a certain quadrature angle while canceling nonlinear noise,

we lock the homodyne power at the corresponding combined field intensity Ihom. Then, we

continuously vary the local oscillator power using a tunable neutral density filter until the noise

in the mechanical bandgap is perfectly canceled, as is shown in Fig. 2.21(a). The level of mixing

noise is sensitive to the local oscillator power, and therefore, the cancellation point can serve

as a good indicator of the measured quadrature angle θ. Knowing the field amplitude ratios

between |ahom|, |asig|, and that ∆=−κ/(2
p

3), we can reconstruct the measured quadrature

angles as the ones satisfying the condition in 2.74. The nonlinear noise level in a frequency

band inside the mechanical bandgap as a function of local oscillator power is shown in

Fig. 2.21(b).

The detection efficiency in this setting differs from the balanced homodyne case, which is

given by the square of the interference visibility v between the signal beam and the LO beam.

In our case, the LO and signal beams have comparable optical powers. The added noise comes

from the mode-mismatched LO intensity

∆ILO = |r aLO|2(1/v2 −1), (2.96)

which results in the reduced homodyne efficiency of

ηhom = Ihom/(Ihom +∆ILO). (2.97)

Since the local oscillator power is determined by the requirement of nonlinear noise elimi-

nation (equation 2.74), the homodyne efficiency acquires a quadrature angle dependence.

We plot the efficiency at different quadrature angles in Fig. 2.21(d) given the experimentally

characterized visibility v = 95%.

2.4.4 Third-order nonlinear noise

Another concern is the third-order nonlinear noise that can not be easily decomposed into

the quadrature basis and does not get canceled at the magic detuning ∆∗. For a single-

port homodyne, we separate the photocurrent into different orders of the nonlinear mixing
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Figure 2.21: (a) When the homodyne power is locked to Ihom/Isig = 0.481, different injected lo-
cal oscillator intensities ILO result in different optical quadratures being probed, and drastically
different nonlinear noise levels in detection. When the appropriate local oscillator intensity is
injected, the nonlinear noise can be efficiently canceled (blue). (b) The averaged nonlinear
noise from 1.16 MHz to 1.18 MHz, normalized to shot noise, is plotted as a function of local
oscillator intensity ILO (theory fit in dashed line, including a 4 % noise contribution from the
third order nonlinear noise). (c) Required Ihom and ILO for nonlinear noise cancellation at dif-
ferent quadrature angles θ. The angles are displayed after subtracting the cavity-induced angle
rotation of −30◦ at the magic detuning. The red cross marks ILO/Isig = 0.150, the noise cancel-
lation condition shown in (a,b). (d) Homodyne detection efficiency at different quadrature
angles, given the experimentally characterized v = 0.95.

processes:

I = a∗a +2Re

[
a

∑
k

ak

]
+

(∑
k

a∗
k

)(∑
k

ak

)
= a∗a

+ a∗a1 +aa∗
1

+ a∗a2 +aa∗
2 +a∗

1 a1

+ a∗a3 +aa∗
3 +a∗

1 a2 +a∗
2 a1

+ a∗a4 +aa∗
4 +a∗

1 a3 +a∗
2 a2 +a∗

3 a1

+ a∗a5 +aa∗
5 +a∗

1 a4 +a∗
2 a3 +a∗

3 a2 +a∗
4 a1

+ ·· · . (2.98)
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For the third-order nonlinear noise, we are mostly concerned with the terms above with up to

∆(t )5. For all possible combination that gives a third-order nonlinear noise, we can apply the

following relations to simplify

〈∆3(t )∆3(t +τ)〉 = 6〈∆(t )∆(t +τ)〉3 +9〈∆2〉2〈∆(t )∆(t +τ)〉 (2.99)

〈∆2(t )∆4(t +τ)〉 = 3〈∆2〉3 +12〈∆2〉〈∆(t )∆(t +τ)〉2 (2.100)

〈∆(t )∆5(t +τ)〉 = 15〈∆2〉2〈∆(t )∆(t +τ)〉. (2.101)

As we are only concerned with the third-order contribution with a substantially different noise

property from the second-order and can not be canceled at the magic detuning ∆∗, only the

third-order self-correlation terms of the above expressions matter. Other terms manifest as a

correction for the first- and second-order noises. Therefore, the third-order noise density is

S(3)
I I = 6|χ3|2

Ï
S∆∆(ω−ω′)S∆∆(ω′−ω′′)S∆∆(ω′′−ω′′′)dω′dω′′ (2.102)

with susceptibility

χ3 = 2asigRe
[
−i |a|e−iθχ3

cav + i asigχcav|χ3
cav|2

]
= 2asig|χcav|3

[−sin(θ0)(asig −|a|cos(2θ0 −θ))+|a|cos(θ0)sin(2θ0 −θ)
]

(2.103)

where we set the phase reference asig = |asig|, and other relations a = |a|e iθ = asig + r aLO,

χcav = 1
−i∆+κ/2 = e iθ0 /

√
∆2 + (κ/2)2.

Since we can only observe the third-order noise when we cancel out completely the second-

order noise, we can apply the homodyne cancellation condition for the second-order noise

asig = 2cos(2θ0 −θ)|a| (2.104)

to fix the third-order susceptibility as a function of the homodyne angle

χ3 = 2|a|2|χcav|3 sin(θ0 −θ). (2.105)

Comparing this result with the linear transduction susceptibility,

S(1)
I I = |χ1|2S∆∆(ω) (2.106)

χ1 =−2asig|a||χcav|sin(θ0 −θ) (2.107)

we can see that due to the homodyne second-order noise cancellation condition, the third-

order noise has the same quadrature dependence as the first-order transduction, acting as a

phase-quadrature imprecision noise. Note that this is generally not true if we do not apply the

cancellation condition for the second-order noise.

As for the third-order intracavity photon number fluctuation, associated with the excess
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classical radiation pressure noise

χcav
3 = 4a2

sig|χcav|3 sin(θ0)cos(2θ0) (2.108)

which contributes similarly to a linear frequency noise. In summary, the third-order mixing

noise behaves approximately as a cavity frequency noise.

2.4.5 Nonlinear mixing of vacuum fluctuations

Going back to the general solution of the Langevin equation, one will realize that the effect of

the vacuum fluctuation in the 0th order term

a0(ω) = f (ω) =
p
κp (ap 2πδ(ω)+ap (ω))+p

κv av (ω)+·· ·
i (−ω−∆)+κ/2

, (2.109)

is ignored in the higher-order solutions to simplify all the calculations. Here, we investigate

the modification of the vacuum fluctuations, i.e., the shot noise level, due to the nonlinear

mixing process.

Likewise, the 1st order solution is not only the linear cavity transduction, but also a mixing of

detuning noise with the vacuum fluctuation

a1(ω) =
∫

K (ω,ω′) f (ω′)dω′ = a
i∆(ω)

i (−ω−∆)+κ/2

+
∫

i∆(ω−ω′)
i (−ω−∆)+κ/2

∑
v
p
κv av (ω′)

i (−ω′−∆)+κ/2

dω′

2π
, (2.110)

The same goes for the nth order solution

an(ω) = 1

(2π)n−1 a
Ï

i∆(ω−ω1)

i (−ω−∆)+κ/2

i∆(ω1 −ω2)

i (−ω1 −∆)+κ/2
· · · i∆(ωn−1)

i (−ωn−1 −∆)+κ/2
(2.111)

×dω1 · · ·dωn−1

+ 1

(2π)n

Ï
i∆(ω−ω1)

i (−ω−∆)+κ/2
· · · i∆(ωn−1 −ωn)

i (−ωn−1 −∆)+κ/2

∑
v
p
κv av (ωn)

i (−ωn −∆)+κ/2
dω1 · · ·dωn .

If we think hard enough, we will figure out that the first-order correction to the shot noise level

is for sure connected to the following type of correlation function

1

(2π)2

〈
a†

v (ω)
Ï

∆(ω−ω′)∆(ω′−ω′′)av (ω′′)dω′dω′′
〉

=
〈

FTτ[
∫

w
a†

v (t )av (t +τ)∆2(t +τ)d t ]

〉
= 〈
∆2〉〈

FTτ[
∫

w
a†

v (t )av (t +τ)d t ]

〉
= 〈
∆2〉〈

a†
v (ω)av (ω)

〉
, (2.112)

For the other type of correlation function, we might think it only gives a mixing term and can

be safely ignored. But do not make the mistake, since the shot noise is delta correlated, the
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2.4 Thermal intermodulation noise

term also gives a linear correction to the shot noise level,

1

(2π)2

〈∫
∆(ω−ω′)a†

v (ω′)
∫
∆(ω−ω′′)av (ω′′)dω′dω′′

〉
=

〈
FTτ[

∫
w

a†
v (t )av (t +τ)∆(t )∆(t +τ)d t ]

〉
= FTτ[

∫
w
〈∆(t )∆(t +τ)〉

〈
a†

v (t )av (t +τ)
〉

d t ]

=
∫

S∆∆(ω−ω′)
〈

a†
v (ω′)av (ω′)

〉
dω′/2π= 〈

∆2〉〈
a†

v (ω)av (ω)
〉

. (2.113)

Based on these expressions, we can now check the shot noise contributions in the photocur-

rent,

δI (ω) = |a|[e−iθ′(δa0,v (ω)+δa1,v (ω)+δa2,v (ω))]

+|a|[e iθ′(δa†
0,v (ω)+δa†

1,v (ω)+δa†
2,v (ω))]

+ ∑
i=0,1

∫
δa†

i ,v (ω′)δa2−i ,∆(ω−ω′)dω′/2π+ ∑
i=1,2

∫
δa†

i ,∆(ω′)δa2−i ,v (ω−ω′)dω′/2π

+
∫
δa†

0,v (ω′)δa1,∆(ω−ω′)dω′/2π+
∫
δa†

1,∆(ω′)δa0,v (ω−ω′)dω′/2π (2.114)

from which we could derive the photocurrent PSD,

S I I (ω) = 〈I (ω)I (ω)〉

= Sym

[〈
|a|2

(
δa0,v (ω)δa†

0,v (ω)+δa1,v (ω)δa†
1,v (ω)

+δa0,v (ω)δa†
2,v (ω)+δa2,v (ω)δa†

0,v (ω)
)

+|a|e−iθ′
[
δa0,v (ω)[

∑
i=0,1

∫
δa†

i ,v (ω′)δa2−i ,∆(ω−ω′)dω′/2π]

+δa1,v (ω)
∫
δa†

0,v (ω′)δa1,∆(ω−ω′)dω′/2π

]
+|a|e iθ′

[
[

∑
i=1,2

∫
δa†

i ,∆(ω′)δa2−i ,v (ω−ω′)dω′/2π]δa†
0,v (ω)

+
∫
δa†

1,∆(ω′)δa0,v (ω−ω′)dω′/2π]δa†
1,v (ω)

]
+

∫
δa†

1,∆(ω′)δa0,v (ω−ω′)dω′/2π
∫
δa†

0,v (ω′)δa1,∆(ω−ω′)dω′/2π

〉]
(2.115)

= |a|2χ0,v (ω)χ∗0,v (ω)+2|a|2 〈
∆2〉[

Real[χ0,v (ω)χ∗2,v (ω)]+|χ1,v (ω)|2]
+2|a|〈∆2〉Real[e−iθ′χ0,v (ω)(χ∗0,v (ω)χ2,∆(−ω)+χ∗1,v (ω)χ1,∆(−ω))]

+2|a|〈∆2〉Real[e−iθ′χ1,v (ω)χ∗0,v (ω)χ1,∆(−ω)]+〈
∆2〉 |χ0,v (ω)|2|χ1,∆(−ω)|2, (2.116)
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where the susceptibilities are defined as

χ0,v (ω) = i (−ω−∆)+κ/2−κv

i (−ω−∆)+κ/2
χ1,v (ω) = −iκv

[i (−ω−∆)+κ/2][−i∆+κ/2]

χ2,v (ω) = κv

[i (−ω−∆)+κ/2][−i∆+κ/2]2

χ1,∆(ω) = |asig| i

i (−ω−∆)+κ/2
χ2,∆(ω) = |asig| −1

[i (−ω−∆)+κ/2][−i∆+κ/2]
(2.117)

From these expressions, we can see that the level of modification of the shot noise depends on

the quadrature angle. The actual modification of the shot noise also needs to be corrected

from the DC field intensity because now the change of quadrature angle changes the pho-

tocurrent for a single-port homodyne, and the mixing process also changes the average DC

field (stationary cavity output). We examine this particular DC field correction from the noise

mixing process in the following.

DC correction from the L-N series

Here, we check whether the shot noise increases or decreases relative to the mean field after

mixing. The first thing we check is the modification on the DC field due to the nonlinear effect

since the zero-order solution

a0(ω) = f (ω) =
p
κp ap 2πδ(ω)

i (−ω−∆)+κ/2
, (2.118)

only contains the trivial mean-field solution independent of the noises in ∆. Here, we ignore

the vacuum fluctuations because they contribute negligibly to the total fluctuations. The first

order solution does not provide any DC components since ∆(ω= 0) = 0,

1

τ

∫
τ→∞

FT−1
t [a1(ω)]d t = 1

2πτ

∫
τ

e−iωt a1(ω)d tdω

= 1

τ

∫
δ(ω)a1(ω)dω= a1(0)

τ
= 0. (2.119)

The second-order correction is more interesting as

1

τ

∫
τ→∞

FT−1
t [a2(ω)]d t = a2(0)

τ
=−

∫
a

[−i∆+κ/2][−i (ω+∆)+κ/2]

|∆(ω)|2
τ

dω

2π

=− a〈∆2〉
[−i∆+κ/2]2 (2.120)

which modifies the field in a DC manner. The photocurrent nonlinear term also contributes

in the same way

1

τ

∫
τ→∞

FT−1
t [

∫
a†

1(ω−ω′)a1(ω′)dω′/2π]d t =
∫

a†
1(−ω′)a1(ω′)dω′

2πτ
= |a|2〈∆2〉
∆2 +κ2/4

. (2.121)
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Summing up the contribution from both the field nonlinearity and the photodetection nonlin-

earity, the total modification to the stationary output current is

δI = |asig|〈∆2〉
[
−2|a|Real

[
e−iθ′ 1

[−i∆+κ/2]2

]
+|asig| 1

∆2 +κ2/4

]
. (2.122)

To my surprise, when the laser is on the magic detuning, and the homodyne is operated with

second-order noise canceled out, we find that the output DC does not change (δI = 0) due to

the nonlinear mixing process. In the following, we show a more straightforward derivation of

this result using Taylor expansion.

DC correction from Taylor expansion

One can also easily obtain a similar expression of the cavity output flux using Taylor expansion

of the stationary solution around ∆,

a =
p
κp (ap +δap )+p

κvδav +·· ·
−i∆+ iδ∆(t )+κ/2

=
p
κp (ap +δap )+p

κvδav

−i∆+κ/2

[
1− iδ∆

−i∆+κ/2
+

(
iδ∆

−i∆+κ/2

)2

−
(

iδ∆

−i∆+κ/2

)3

+·· ·
]

(2.123)

aout = δav −
p
κvκp (ap +δap )+κvδav

−i∆+κ/2

×
[

1− iδ∆

−i∆+κ/2
+

(
iδ∆

−i∆+κ/2

)2

−
(

iδ∆

−i∆+κ/2

)3

+·· ·
]

(2.124)

I = a†
outaout = |a|2

[
1+ δ∆2

∆2 +κ2/4
−2Real

[
δ∆2

(−i∆+κ/2)2

]]
−2|a|2Real

[
iδ∆

−i∆+κ/2

]
+2|a|Real

[(
δav −

p
κvκpδap +κvδav

−i∆+κ/2

[
1− iδ∆

−i∆+κ/2
+

(
iδ∆

−i∆+κ/2

)2

+·· ·
])

×
[

1− iδ∆

−i∆+κ/2
+

(
iδ∆

−i∆+κ/2

)2

+·· ·
]∗]

(2.125)

By keeping only the δ∆2 terms, one arrives precisely at the direct detection case of Eq.(2.122).

For the quadrature detection, the local oscillator field is injected into the signal field, and this
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results in a new set of equations for the photocurrent

I = a†
outaout =

[
|a|2 +|asig|2 δ∆2

∆2 +κ2/4
−2|a||asig|Real

[
e−iθδ∆2

(−i∆+κ/2)2

]]

−2|a||asig|Real

[
i e−iθδ∆

−i∆+κ/2

]

+2Real

[(
δav −

p
κvκpδap +κvδav

−i∆+κ/2

[
1− iδ∆

−i∆+κ/2
+

(
iδ∆

−i∆+κ/2

)2

+·· ·
])

×
[
|a|e iθ+|asig|

(
− iδ∆

−i∆+κ/2
+

(
iδ∆

−i∆+κ/2

)2

+·· ·
)]∗]

(2.126)

By keeping only the δ∆2 terms again, one arrives exactly at Eq.(2.122). With the results derived

for the DC modification, we now analyze the vacuum noise modification due to the nonlinear

mixing noise.

Vacuum noise modification

Using the expressions derived above, we can analyze how shot noise is modified relative to the

DC modification.

It is a tedious job, but we can isolate the terms associated with the output port δav ,

2|a|2Real

[ −κv

−i∆+κ/2

i∆+κ/2−κv

i∆+κ/2

−δ∆2

(−i∆+κ/2)2

]
+|a|2

∣∣∣ −κv

−i∆+κ/2

∣∣∣2 δ∆2

∆2 +κ2/4

+|asig|2
∣∣∣∣−i∆+κ/2−κv

−i∆+κ/2

∣∣∣∣2 δ∆2

∆2 +κ2/4
+2|a||asig|

∣∣∣∣−i∆+κ/2−κv

−i∆+κ/2

∣∣∣∣2

Real

[
−e−iθδ∆2

(−i∆+κ/2)2

]

+2|a||asig|Real

[
−κv

i∆+κ/2

−i∆+κ/2−κv

−i∆+κ/2

[
e−iθδ∆2

|− i∆+κ/2|2 + −e iθδ∆2

(i∆+κ/2)2

]]
,

as well as the input port δap ,

κvκp

∆2 +κ2/4

[
2|a|2Real

[ −δ∆2

(−i∆+κ/2)2

]
+4|a||asig|Real

[
−e−iθδ∆2

(−i∆+κ/2)2

]

+
∣∣∣|a|e−iθ+|asig|

∣∣∣2 δ∆2

∆2 +κ2/4

]
We find that the correction terms associated with the shot noise do not generally coincide

with the DC correction. For the vacuum port δav , because of the interference with the input

vacuum field from the input-output relation, it generally does not coincide with the DC

correction, no matter the quadrature angle.

In the following, we analyze the modification of the shot noise from numerical simulation

using the expressions derived above. At the magic detuning and field ratio (no modification of
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Figure 2.22: Shot noise modification at, left to right: different detuning variance, Fourier
frequencies, and detection quadrature angles for (a) positive frequency, (b) negative frequency,
and (c) symmetrized spectra. Depending on laser detuning, the noise reduction happens on
one side of the Fourier frequency but can be detected neither in homodyne nor heterodyne.
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Figure 2.23: Comparison between conventional PDH signal vs. the modified PDH signal for
locking at ∆∗. The signal null point at the magic detuning ∆∗ is marked by the crossing point
of the two dashed lines. (a) Comparison of the PDH signal modulated at different frequencies
fmod = 2Ωmod/κ. The red dashed line is the first derivative of cavity transmission ∂I (∆)/∂∆.
(b) Comparison of the modified PDH signal modulated at different frequencies fmod. The red
dashed line is the second derivative of cavity transmission ∂2I (∆)/∂∆2.

detection current), we plot out the shot noise modification in Fig.2.22 at different detuning

variances 〈∆2〉, Fourier frequencies ω/κ, and detection quadrature angles θ.

Notice that the spectrum is not symmetric in Fourier frequency, because of the asymmetric

nature of the cavity susceptibility. In the experiment, we find 〈∆2〉/κ2 by locking to the magic

detuning and recording the photo-current I (t ) on the oscilloscope by direct detection. There

is an easy conversion 〈∆2〉/κ2 = 3〈δI 2〉/I 2. 〈δI 2〉 can be read out from the oscilloscope with

the correct measurement bandwidth, and for our highest coupling optical mode, at relatively

low 100 uW input power, the factor 〈∆2〉/κ2 ∼ 6×10−3, which corresponds to about 3% of shot

noise increase by direct detection. The modification is expected to be lower at higher pump

power, where the thermomechanical noise is efficiently cooled. One thing to notice is that one

can not reduce the shot noise in this particular type of mixing process.

2.4.6 Modified Pound-Drever-Hall lock for the magic detuning

To operate in a quantum-noise-limited way for the MIM experiment at room temperature, we

need to lock the laser at the magic detuning on the red side of the cavity mode. Conventional

Pound-Drever-Hall (PDH) locking scheme [66] is not convenient for this purpose since the

error signal e(∆) is roughly the derivative ∂I (∆)/∂∆ (i.e. the linear transduction function)

of the cavity transmission I (∆), and the magic detuning 2∆∗/κ = 1/
p

3 is very close to the

max/min point of the PDH signal (i.e. turning point ∂2I (∆∗)/∂∆2 = 0 of the linear transduction
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Figure 2.24: Measured signals including cavity transmission, reflection, PDH signal and
modified PDH signal for locking at ∆∗. The fmod is set to 1.1 in (a) and 2 in (b). The signal null
point at the magic detuning ∆∗ is marked by the crossing point of the two dashed lines.

). On the other hand, the PDH locking scheme loses the advantage over the conventional

side-of-the-line lock as it is now also sensitive to the amplitude fluctuation of the locking

signal, e.g., caused by the optical beam pointing error.

One could directly do a side-of-the-line lock at the cavity transmission port, but it poses an

inconvenience during an optical power sweep since the lock is not at a null point of the error

signal I (∆∗) ̸= 0. Here, we show a modified PDH lock such that magic detuning is precisely at

the null point of the error signal so that a continuous optical power sweep can be done.

The inspiration draws from the fact that the PDH signal is terrible for the lock of magic

detuning, which is on the turning point ∂2I (∆∗)/∂∆2 = 0 of the PDH signal ∂I (∆)/∂∆. If we

take one further derivative of the PDH signal and use it as the error signal, the magic detuning

would be precisely on the null point. This point is illustrated in Fig. 2.23. Note that the error

signal can be mapped closely to the first derivative ∂I (∆)/∂∆ only when the PDH modulation

frequencyΩmod ≪ κ. In most cases, there are deviations from this convenient relation.

To retrieve the second derivative of the cavity transfer function ∂2I (∆)/∂∆2, for the use as

the error signal, we phase modulate the laser at two frequencies Ωmod and 0.65Ωmod. The

selection is to prevent overlapping sum/difference frequency sidebands. Then, we demodulate

the cavity reflection signal twice, at each modulation frequency, with a specific phase offset.

The phase offsets optimize the error signal such that ∆∗ is at the null point of e(∆), with a

decent differential locking gradient. Physically, the error signal here represents the cavity’s

ability to generate sum/difference frequency sidebands of the two modulation tones, where

∆∗ corresponds precisely to the point where the cavity fails to initiate this frequency mixing
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Figure 2.25: Optical power sweep using the modified PDH lock at ∆∗. (a) Transmission spectra
at different measurement powers. (b) The averaged power spectrum density normalized to
the shot noise level at different optical powers. The average is taken at the left and right sides
of the mechanical bandgap. The power shown here is the measured power at the transmission
port of the cavity.

process.

In the experiment, we obtain all the relevant signals, including cavity transmission, reflection,

PDH signal, and the modified PDH signal, with the results shown in Fig. 2.24. With fmod = 2,

we can lock the laser precisely at ∆∗ and is not sensitive to the optical power change. To

illustrate these benefits, we conduct a continuous power sweep without any need to adjust the

locking offset, with the result shown in Fig. 2.25. From the result, we can observe the dynamical

backaction effects on the isolated soft-clamped mode in the center of the mechanical bandgap.

We also observe that the residual TIN discussed in Section 2.4.2, manifests as noisy spikes

inside the bandgap. In this sweep, we cannot access the high power level used for the quantum

optomechanical experiment, due to the limited power budget from the lithium niobate high-

speed phase modulator.

Nevertheless, we observe a steady drop of the averaged noise within the bandgap, due to

the effective dynamical backaction cooling of the mechanical modes when pumping at ∆∗.

This particular power scaling also rules out the noise origin from any linear classical noise

process. Ultimately, we resort to a side-of-the-line lock for the MIM experiment, because of

the requirement for high-power operation.
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2.4.7 Reducing cavity transduction nonlinearity

Electro-optic phase modulators (EOMs) also provide us a way to modify indirectly the cavity

transduction response, and thus help reduce the TIN inside the cavity. As discussed in the

previous section, the ability to generate the second-order nonlinear noise is critically tied to

the second derivative of the cavity transmission ∂2I (∆)/∂∆2. Using sideband modulations, we

can effectively modify the transmission response I (∆) to laser detuning, effectively suppressing

the nonlinear noise generation associated with the fast-cavity limit. The expression of the

transmission in the presence of an EOM drive is

I (∆) =
+∞∑

k=−∞
Ji (β)2L(∆+kΩmod) (2.127)

L(∆) = 1

1+ (2∆/κ)2 (2.128)

where β is the modulation depth,Ωmod the modulation frequency, and L(∆) the cavity trans-

fer function. It is assumed that the detector bandwidth and the optomechanical coupling

bandwidth are much smaller than theΩmod, so cross-talk between sidebands can be safely

ignored.

However, this method can not help the noise generated due to the breakdown of the fast-

cavity limit, as illustrated in the previous section. Therefore, it presents an effective way to

observe the residue second-order TIN due to the finite cavity response speed (discussed in

Section 2.4.2), by eliminating the third-order TIN noise induced by the fast cavity.

The effect of modification of cavity transfer function by the application of frequency modu-

lation tone fmod = 1 (chosen to avoid sideband cross-talk) at different modulation depths is

shown in Fig. 2.26, as well as the sensitivity to the applied modulation frequency and depth.

We could see that around depth β= 0.94, the linear transduction function δIli shows a very

flat plateau, where the higher-order transduction δInl shows orders of magnitude reduction

between 2∆/κ= [−1,−0.75]. This significantly suppresses not only the second-order transduc-

tion δI2nd but also all the higher-order ones, e.g., δI3rd. This modulation technique has great

benefits for the following reasons:

• The bandwidth of the ∆∗ : |δInl(∆∗)|≪ 1 is greatly improved, therefore less sensitive to

the cavity detuning drift.

• When operating at ∆∗, we are no longer limited by the third-order nonlinear noise, as all

the higher-order noises are also efficiently suppressed.

To demonstrate these effects, we conduct experiments at two optical modes with different

cavity linewidth (κ/2π= 34.2MHz at 819 nm and κ/2π= 55.3MHz at 810 nm). We calibrated

the cavity linewidth accurately as we are very sensitive to the modulation frequency ratio

fmod = 1. The modulation depth is also calibrated accurately using a heterodyne beat note of

the phase-modulated light.
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Figure 2.26: Modification of the cavity transfer function I (∆) at different modulation depth
with modulation frequency fmod = 1. (a) Cavity transmission I (∆). (b) Linear transduction
δIli = ∂I (∆)/∂∆. (c) Second-order nonlinear transduction 2δI2nd = ∂2I (∆)/∂∆2. (d) Third-
order nonlinear transduction 6δI3rd = ∂3I (∆)/∂∆3. (e,f ) The same quantities as defined above,
but with random 5 % perturbation on the modulation depth and frequency to visualize the
sensitivity to these two parameters.

The experiment results are illustrated in Fig. 2.27 and Fig. 2.28, showing consistent behavior

across different optical modes with different optical properties. The theoretical model con-

siders the effect of optical cooling of mechanical modes at different cavity detuning. When

no EOM is applied, the second order TIN is shown to correctly cancel exactly and only at

2∆∗/κ= 1/
p

3. The noise floor at the magic detuning does not reach the noise limit predicted

by the model accounting for the breakdown of the fast-cavity limit, and is limited by the

third-order nonlinear noise. When EOM is applied, the second order TIN is shown to cancel at

a different point but within a much larger span 2∆/κ= [−1,−0.75]. Since the third-order TIN

also cancels out, the noise is shown to be correctly limited by the residue second-order TIN

predicted by the model.

Note that in the end, we do not use this method for our high-power experiments, for the

following reasons:

• The application of EOM limits the optical power output to the cavity. With 25 mW input

limit and 3.5 dB insertion loss, we have around 10 mW power to split for the homodyne.
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Figure 2.27: Comparison of the nonlinear noise in the mechanical bandgap with and without
EOM assisted modification of cavity transduction response. The cavity mode is at 810 nm
with κ/2π= 55.3MHz. For the case without EOM: (a) Cavity transmission spectrum at differ-
ent detuning, showing a small region around the magic detuning 2∆∗/κ = 1/

p
3 where the

bandgap is low on spikes. (b) Averaged noise density on the left (yellow) and right (blue) of
the soft-clamped mechanical mode within the mechanical bandgap. The two’s geometric
average (green) is also shown to cancel out the effects of the mechanical susceptibility of the
soft-clamped mode. The third-order nonlinear noise on the magic detuning limits the noise
floor. For the case with EOM: (c,d) The detuning span where the nonlinear noise gets effi-
ciently reduced is greatly improved. The third-order nonlinear noise is completely canceled,
and the noise is shown to be correctly limited by the residue second-order TIN predicted by
the model where the fast-cavity limit breaks down.
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Figure 2.28: The same as the previous figure, but the cavity mode is at 819 nm with κ/2π=
34.2MHz. For the case without EOM: (a) Cavity transmission spectrum. (b) Averaged noise
density within the mechanical bandgap. On the magic detuning, the noise is also limited by
the third-order nonlinear noise. For the case with EOM: (c,d) The detuning span where the
nonlinear noise gets efficiently reduced is also greatly improved. The third-order nonlinear
noise is again completely canceled, and the noise is shown to be correctly limited by the
residue second-order TIN as well.
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Our experiment needs more power than that to reach Cq = 1.

• Due to the presence of multiple frequency sidebands from strong phase modulation,

it is hard to shape the frequency components of the local oscillator to match that of

the cavity transmission. This effectively leads to mode-mismatch and causes a loss of

measurement efficiency.

2.4.8 Cancelling second-order noise in a heterodyne detection

In Section 2.4.3, we discussed a reliable way to cancel second-order TIN in homodyne mea-

surement of arbitrary optical quadrature angles. In conventional optomechanical experiments,

homodyne measurement is enough for most experiments, except for the sideband asymmetry

of mechanical modes near ground states. Conventional measurement of sideband asymmetry

is performed using heterodyne measurement, where positive and negative frequency mechan-

ical sidebands can be efficiently separated. The proposed single-port homodyne detection

scheme will not work for heterodyne detection since the relative phase is fast scanning, and

we lose that degree of freedom for nonlinear noise cancellation.

We show in Section 3.4.2 a dual homodyne scheme to effectively separate the positive and

negative mechanical sidebands in postprocessing, by simultaneously detecting X̂ and Ŷ

optical quadratures, from which the complex field â = (X̂ + i Ŷ )/
p

2 can be reconstructed. This

section discusses what scheme could enable TIN cancellation directly in heterodyne detection

with fast-rotating local oscillator phases.

The homodyne cancellation scheme relies on the photo-detection nonlinearity

I (t ) ∝ a∗
hom[a1(t )+a2(t )]+h.c.+a†

1(t )a1(t ) (2.129)

where ahom = asig + aLO. Here the a2(t) = −asig(−i∆+ κ/2)−2δ∆2 term cancels with the

a†
1(t )a1(t ) = |asig|2|− i∆+κ/2|−2δ∆2 term, given a particular LO amplitude and phase.

In a balanced heterodyne/homodyne, the photocurrent reads

I = I+− I− = 1

2
(a†

sig − i a†
LO)(asig + i aLO)− 1

2
(−i a†

sig +a†
LO)(i asig +aLO) (2.130)

= i (a†
sigaLO −asiga†

LO) (2.131)

where all the photo-detection nonlinearity terms are canceled. Since heterodyne is averaging

over all quadrature angles, there is no way to cancel the a2(t ) terms at all quadrature angles.

In a naive extension of the single-port homodyne scheme, to the case of heterodyne, we still

have the same photocurrent expression as Eq.(2.129), except the LO field is now rotating at

frequency Ω, as in ahom = asig +|aLO|e−i (Ωt+θ). The rotation converts the a2(t) terms to fre-

quencyΩ, with the photo-detection nonlinearity term a†
1(t )a1(t ) remaining at DC. Therefore,

the components around frequencyΩ are identical to the balanced heterodyne scheme as in
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Eq.(2.131), where the nonlinear terms cannot be canceled at all quadrature angles.

Then, the first idea is to up-shift the a†
1(t)a1(t) term also to frequency Ω, which can only

be done with intensity modulation (instead of phase). For a signal light passing through a

balanced Mach-Zehnder interferometer (MZI), the photocurrent is (added vacuum noise

terms shortened as vac)

IMZ = 1+ sin
(
βcos(Ωt +θMZ)

)
2

a†a +vac ≈ 1+βcos(Ωt +θMZ)

2
a†a +vac (2.132)

which imprints the modulation to the a†
1(t )a1(t ) term. We also obtain the amplitude modula-

tion on the field level,

aMZ = 1p
2

(cos(βcos(Ωt +θMZ)/2)+ sin(βcos(Ωt +θMZ)/2))a +vac

≈ 1p
2

(1+βcos(Ωt +θMZ)/2)a +vac. (2.133)

Note that here, we neglect the positive second-order sideband (at frequency +2Ω) through the

approximation. In reality, MZI also generates higher-order sidebands when the modulation

depth β is high. The generation for the second-order sidebands can be efficiently canceled

when operating on the quadrature point of the MZI. For the higher-order sidebands, as long

as β≪ 1, they can be efficiently suppressed, or canceled with a structured LO shown later.

Now, if we implement the single-port heterodyne scheme with the MZI operating at the

quadrature point, we have

I (t ) ∝ (a∗
sig(1+βcos(Ωt +θMZ)/2)+|aLO|e i (Ωt+θ))

(1+βcos(Ωt +θMZ)/2)[a1(t )+a2(t )]+h.c.

+(1+βcos(Ωt +θMZ))a†
1(t )a1(t ). (2.134)

When we select out the components at ±Ω, which are relevant to heterodyne detection, we

have

I (t ) ∝ (βcos(Ωt +θMZ)a∗
sig +|aLO|e i (Ωt+θ))[a1(t )+a2(t )]+h.c. (2.135)

+βcos(Ωt +θMZ)a†
1(t )a1(t ). (2.136)

The result is more or less what we want. However, the term βcos(Ωt +θMZ)a∗
sig leads to non-

ideal heterodyne differentiation between the positive and negative sidebands. To illustrate this
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effect, we show below the heterodyne spectra with a small amount of the δe−iΩt component,

I = (e iΩt +δe−iΩt )a +h.c. (2.137)

S I I (ω) = Sa†a† (ω−Ω)+Saa(ω+Ω)+|δ|2(Sa†a† (ω+Ω)+Saa(ω−Ω))

+2δSa†a(ω+Ω)+2δ∗Saa† (ω−Ω) (2.138)

2S I I (ω→Ω) ≈ Sa†a† (ω−Ω)+Saa(Ω−ω))

+|δ|2(Sa†a† (Ω−ω)+Saa(ω−Ω)))

+4Re[δSa†a(Ω−ω)] (2.139)

where one can see that the presence of a counter-rotating field results in both the averaging of

the negative and positive sidebands around frequencyΩ, as well as an additional interference

term. This is not ideal for heterodyne detection, as our target observation is the asymmetry

between the negative and positive frequency sidebands.

To illustrate how we can correct this effect, we go back to the general case where we apply

modulation M1 to the signal field and M2 to the LO field,

a = M1(asig +δasig)+M2aLO (2.140)

δI = (|M1|2a∗
sig +M1M∗

2 a∗
LO)δasig +h.c.

+|M1|2δa†
sigδasig (2.141)

where we could find that as long as we convert the nonlinear term δa†
sigδasig to frequency

Ω, we will induce a counter rotation term associated with asig. Therefore, M2 provides the

degree of freedom to counter this effect. Assume that with the correct M2, we can simplify the

expression to

δI = A∗e iΩtδasig +h.c.

+βcos(Ωt +θMZ)δa†
sigδasig. (2.142)

With this result, we could arrive at the second-order TIN cancellation condition for heterodyne

detection

A = asige−iθMZ
β

2

i∆+κ/2

−i∆+κ/2
(2.143)

from which we could calculate the required modulation M2 needed for the LO,

M2aLO = β

2
asig(

2i∆

−i∆+κ/2
e−i (Ωt+θMZ) −e i (Ωt+θMZ)) (2.144)

One can immediately see that the limitation of this scheme is the low detection efficiency,

both from the insertion loss of MZI, and finite modulation depth β of the first sideband to

keep the higher-order sidebands sufficiently weak. However, the measurement efficiency is
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not of significant concern for sideband asymmetry measurement, as long as the mechanical

signal can be reliably distinguished from the background noise floor.

In Section 3.4.2, we show how to directly reconstruct field â = (X̂ + i Ŷ )/
p

2, and calculate

asymmetric Saa(ω), with a dual-homodyne scheme in post-processing, which will not be

limited by the low detection efficiency required to implement a TIN-cancelled heterodyne

detection physically. Our choice is a direct consequence of the fact that it is easy to cancel TIN

in homodyne, whereas it is hard in heterodyne.

2.5 Absorption-induced mechanical instability

In the previous Section 2.4, we establish the fact that optical pumping at 2∆∗/κ= 1/
p

3 (magic

detuning) is required to achieve quantum-limited radiation pressure force in the cavity (by

reducing TIN), as opposed to the conventional resonant pumping in most optomechanics

experiments.

In this section, we discuss the emergence of mechanical instability, due to the photothermal ef-

fect of optical absorption. This effect directly results from the need to pump at ∆∗ at very high

power to reach high Cq . We have observed this effect extensively in the previous generation of

perforated membranes due to their poor thermal dissipation from thin tethers. The optical

absorption of the Si3N4 thin film is characterized [67] to be around 0.1-1 dB/cm, or in loss rate

unit around 50-500 MHz. Contrary to what has been demonstrated in Si3N4 photonic inte-

grated circuits around 0.2 dB/m (∼1 MHz) that typically require high-temperature annealing

over a long period (∼10 hours) to reduce the impurities, our thin film is not compatible with

high-temperature annealing as it losses stress over time, which is the source of the dissipation

dilution. We observed that the stress relaxed by around 50 % at around 200 ◦C with beam

resonators. Note that these values are for the 20-nm Si3N4 thin film in our cavity, and do not

describe the cavity absorption rate. The cavity absorption rate should be bounded below

20 kHz by the energy participation ratio. However, this could still result in a significant thermal

effect as the thermal capacity of the membrane is also proportional to its thickness. Therefore,

the magnitude of the thermal effect does not depend much on the length of the cavity.

The main effect of the mechanical instability is illustrated in Fig. 2.29 and Fig. B.3, where

excitation of mechanical modes results in excess nonlinear noise within the mechanical

bandgap, and eventually also the stability of the cavity lock. In our experiment, we use an

infinite impulse response (IIR) filter implemented on a field-programmable gate array board

(discussed in Section B.3) to feedback-damp these unstable modes. From our observation,

the instability is always associated with modes that, due to symmetry reasons, always have

near-zero dispersive coupling rates, illustrated in Fig. 2.30. The low dispersive coupling rate

means that other coupling mechanisms, e.g., the photothermal effect, could start to dominate

these modes. Therefore, it is vital to understand these effects for MIM systems, as due to

symmetry reasons, many of the mechanical modes will have low dispersive couplings. This is
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Figure 2.29: Effects of photothermal mechanical instability. The spectra are recorded at few-
second intervals, with darker colors indicating earlier spectrum snapshots. We could observe
that within the mechanical bandgap [0.7,0.8]MHz, the nonlinear noise floor keeps rising. The
rising noise directly results from the mechanical lasing happening around frequency 0.52 MHz
(red circle), where a single mechanical mode experiences parametric gain instead of damping
at red detuning. The gain results from the photothermal effect interfering with the dispersive
optomechanical coupling.

illustrated in a response measurement shown in Fig. B.9, that more than half of the modes are

only weakly coupled to the cavity mode.

From the observation in the experiment, the photothermal instability happens to modes be-

tween 100 kHz-500 kHz. We can estimate the spatial scale of the temperature profile associated

with these modes, from the simplified 1D heat equation

k
∂2T

∂x2 = ρC
∂T

∂t
(2.145)

that when driven with a heat source at frequencyΩm , one obtains the heat propagation spatial

scale at x(Ωm) =
√

k
ρCΩm

∼10µm. Compared to the size of the typical wavelength at this range

∼100µm, the temperature feedback is slow and therefore effectively delayed, and results

in either damping or amplification. We modeled this effect, considering the symmetry of

these mechanical modes, as well as the unconventional mechanical amplification on the red

side of the cavity, using the formalism of dissipative feedback we developed [2] (Section A.3).

We found that the inclusion of the photothermal force into our model results in a reversed

feedback sign when the laser is detuned across a certain threshold. An illustration of the

photothermal effect as a function of optical detuning is shown in Fig. 2.31(a), as well as the

theoretical results shown in Fig. 2.31(b). We also observed the particular detuning dependence

of the amplification in our experiment, that no matter how much power is coupled to the

cavity, as long as the absolute detuning is below a certain threshold (slightly smaller than the

magic detuning in our case), the mechanical instability vanishes. This observation allows us to

estimate the unstable-mode-specific coupling ratio between these two forces as |gth/gω| ∼ 0.1.
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Figure 2.30: (a) Mechanical modes that exhibit photothermal instability, from one of the
perforated membrane samples used in the experiment. (b) Measured ring-up rates of the first
unstable mechanical modes at different optical modes. The result shows that the amplification
rates are linear to optical power, suggesting unconventional anti-damping when pumping on
the red side of the cavity.

In the following sections, we analyze the theoretical modeling of this effect and the experimen-

tal verification of the scaling of this effect concerning the membrane-field overlap.

In this section, we use the convention ∆=Ω0 −Ωlaser, such that red detuning is associated

with ∆> 0.

2.5.1 Dissipative coupling

First, we need to establish the framework of dissipative coupling, as it involves the optical bath

modes as opposed to the conventional treatments of optomechanical dispersive coupling. A

detailed derivation is also present in Section A.3.

To derive the dissipative coupling, we need to first go back to the original Hamiltonian with an
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Figure 2.31: (a) Illustration of the modification of the dynamical backaction damping rates
due to the presence of photothermal feedback force. (b) Normalized damping/amplification
rates as a function of detuning, with different coupling ratios |gth(Ωm)/gω|.

optical cavity mode coupled to a bath,

H = ℏωa†a +
∫

dΩℏΩb†(Ω)b(Ω)+ iℏ
∫

dΩρ(Ω)g (Ω)[b(Ω)a† −b†(Ω)a]. (2.146)

The optical bath modes have relation [b(Ω1),b†(Ω2)] = δ(Ω1 −Ω2), and thus we arrive at the

following solution for the cavity mode

ḃ(Ω) = i

ℏ
[H ,b(Ω)] =−iΩb(Ω)−ρ(Ω)g (Ω)a (2.147)

b(t ,Ω) = e−iΩ(t−t0)b(0,Ω)−ρ(ω)g (Ω)
∫ t

t0

e−iΩ(t−t ′)a(t ′)d t ′ (2.148)

ȧ = i

ℏ
[Hs y s , a]+

∫
dΩρ(Ω)g (Ω)b(Ω)

= i

ℏ
[Hs y s , a]+

∫
dΩρ(Ω)g (Ω)e−iΩ(t−t0)b(0,Ω) (2.149)

−
∫

dΩρ(Ω)2g (Ω)2
∫ t

t0

e−iΩ(t−t ′)a(t ′)d t ′

defining ρ(Ω)2g (Ω)2 = κ/2π, and input field operator bin(t ) = 1p
2π

∫
dΩe−iΩ(t−t0)b(0,Ω). Note

that here, we used a different notation instead of ain to help differentiate the input field a bit

more from the cavity field, as it will be treated as a separate loss channel (e.g., absorption) in

the following sections.
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In the rotating frame of the laser drive, we have

ȧ = −(
κ

2
+ i∆)a +p

κbin (2.150)

Hint = iℏ
p
κ[bina† −b†

ina]. (2.151)

Now we introduce optomechanical coupling to mechanical mode c, through both the disper-

sive coupling d∆= ∂∆
∂x d x =Gω0d x = gω0(c + c†) and the dissipative coupling dκ0 = ∂κ0

∂x d x =
Gκ0d x = gκ0(c + c†), where x = xzpf(c + c†) is the mechanical position quadrature, in the dis-

placed frame a → a +a, we have the following set of equations for the optical, mechanical

modes, as well as the radiation pressure force,

ȧ = −(
κ

2
+ i∆)a +p

κ1ain +p
κ0bin

+
[
−i agω0 +

bin/
p
κ0 −a

2
gκ0

]
(c + c†) (2.152)

ċ = (−Γm

2
− iΩm)c +p

γcin +
i xzpfF

ℏ
(2.153)

F = −d Hint

d x
= ℏ

xzpf

[
−gω0a∗a + i

gκ0

2
√

k0

(bina† +a∗bin)+h.c.

]
(2.154)

For simplicity, we define gω = gω0a∗, gκ = gκ0a∗ and set bin = 0 since it is the loss port where

vacuum is the only field input. Then, we arrive at the radiation pressure force experienced by

the mechanics,

F = ℏ
xzpf

[
−gωa + i

gκ

2
√

k0

bin +h.c.

]
(2.155)

To derive the damping/amplification rate Γ of the mechanical modes, we apply the quantum

fluctuation-dissipation theorem [36] that relates force noise density with the damping rate of

a quantum harmonic oscillator as a consequence of the detail balance. In the following, we

calculate the spectral asymmetry of the open-loop force noise density instead of a closed-loop

one. This treatment is only valid when the cavity decay κ is much faster than the rate g at

which the mechanical motion modifies the optical force fluctuation. Our system is far from

the strong coupling regime g ∼ κ, and the approximation holds well. Note that here, we work

in the RWA of the mechanical modes. However, it does not concern us since optical force noise

is a consequence of optical susceptibility. We reiterate the power spectral density of quantum

observable as

S AB (ω) ≡ lim
τ→∞

1

τ
〈A†

τ(−ω)Bτ(ω)〉 =
Ï

w
〈A†(t +τ)B(t )d t〉e iωτdτ=

∫
〈A†(ω)B(ω′)〉 dω′

2π
,

(2.156)
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2.5 Absorption-induced mechanical instability

where A(ω) = ∫
A(t )e iωt d t , and A†(ω) = A(−ω)†. The correlation of bath operators are

〈a†
in(t +τ)ain(t )〉 = ninδ(τ) (2.157)

〈ain(t +τ)a†
in(t )〉 = (nin +1)δ(τ) (2.158)

〈a†
in(ω)ain(ω′)〉 = 2πδ(ω+ω′)nin (2.159)

〈ain(ω)a†
in(ω′)〉 = 2πδ(ω+ω′)(nin +1) (2.160)

with all the other correlations equal to zero, assuming quantum-limited bath noises.

One could derive the power spectral density of the force operator F (open-loop) as

F (ω) = ℏ
xzpf

−gω
p
κ1ain(ω)+

[
−gω

√
k0 + i gκ

2
p
κ0

[i (−ω+∆)+κ/2]
]

bin(ω)

i (−ω+∆)+κ/2


+h.c. = ℏ

xzpf

[
χ1(ω)ain(ω)+χ2(ω)bin(ω)+h.c.

]
(2.161)

SF F (ω) =
∫

〈F †(ω)F (ω′)〉 dω′

2π

= ℏ2

x2
zpf

[|χ1(ω)|2(nin +1)+|χ1(−ω)|2nin +|χ2(ω)|2] (2.162)

where χ1(ω) = −gω
p
κ1

i (−ω+∆)+κ/2 and χ2(ω) = −gω
p

k0+ i gκ
2
p
κ0

[i (−ω+∆)+κ/2]

i (−ω+∆)+κ/2 . The damping rate and effec-

tive bath temperature for mechanical modeΩm is therefore

Γ=
x2

zpf

ℏ2 (SF F (Ωm)−SF F (−Ωm))

= |χ1(Ωm)|2 −|χ1(−Ωm)|2 +|χ2(Ωm)|2 −|χ2(−Ωm)|2 (2.163)

nbath = |χ1(−Ωm)|2(nin +1)+|χ1(Ωm)|2nin +|χ2(−Ωm)|2
|χ1(Ωm)|2 −|χ1(−Ωm)|2 +|χ2(Ωm)|2 −|χ2(−Ωm)|2 (2.164)

In the conventional dispersive coupling, where gκ = 0 but gω ̸= 0, the expression for the

damping rate can be simplified to

Γ= 4|gω|2κΩm∆

[(Ωm −∆)2 +κ2/4][(Ωm +∆)2 +κ2/4]
. (2.165)

With red detuning ∆> 0, the mechanics are effectively damped as expected from dynamical

backaction cooling.

In the limit gω = 0 but gκ ̸= 0, the damping rate is Γ= 0. The null damping rate means that

with only dissipative coupling, the mechanics will neither be damped nor amplified [68].

In the circumstances that dissipative coupling and dispersive coupling coexist, the interference
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Chapter 2. Experimental platform for room-temperature quantum optomechanics

of these two effects leads to the following expression

Γ= 4|gω|2κΩm∆+2g∗
ωgκΩm(∆2 −Ω2

m −κ2/4)

[(Ωm −∆)2 +κ2/4][(Ωm +∆)2 +κ2/4]
. (2.166)

In the unresolved sideband regime (Ωm ≪ κ) we operate in, we have

Γ≈ 8|gω|2Ωm(2∆/κ)

[(2∆/κ)2 +1]2 [1+ gκ0

4gω0
(
κ

2∆
− 2∆

κ
)]. (2.167)

In the case that gκ0

4gω0
( κ

2∆ − 2∆
κ ) <−1, it is possible to reverse the sign of Γ, e.g. when pumping

on the red side, the mechanics could still be amplified.

The evidence of such dissipative coupling effect (given | gκ0

gω0
| ∼ 1) could be verified by compar-

ing the mechanical signal-to-noise ratio (SNR) on the optical phase and amplitude quadra-

tures, for the modes that are unstable under a strong optical pump. When significant dissi-

pative coupling is present, the signal should sit on the amplitude quadrature as mechanical

motion modulates the amplitude to the output field.

In the experiment, we swept from the phase to amplitude quadrature. We did not observe

significant deviation from the sinθ2 relation of the mechanical signal on the mechanically

unstable modes. Here, θ is the optical quadrature angle. Therefore, we could rule out that the

dissipative coupling accounts for the observed mechanical instability.

2.5.2 Photothermal effect

Even though the mechanical instability is unlikely from the dissipative coupling widely ana-

lyzed by the optomechanics community, we can not rule out the dissipative feedback effects

from the non-radiation-pressure cause. E.g., temperature gradient force from optical ab-

sorption is a form of dissipative feedback [2], that originates from a dissipation channel. In

these types of coupling, the dissipative force can be strong without considerable signal on

the amplitude quadrature, as the coupling does not have to modulate the cavity linewidth

strongly.

We can model the photothermal effect by simply adding a feedback force

Fth =
∫

gth,0(t ′− t )b†
out(t )bout(t )d t ′ (2.168)

which in the frequency domain reads

Fth(ω) = gth,0(ω)b
∗
outbout(ω)+h.c. = gth,0(ω)

p
κtha∗bout(ω)+h.c.

= gth(ω)bout(ω)/
p
κth +h.c., (2.169)

where gth(ω) = gth,0(ω)κtha∗, and κth is the absorption rate of the cavity induced by the

membrane. Here, gth,0(t ) and gth,0(ω) represent the material response relative to the optical
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2.5 Absorption-induced mechanical instability

absorption heating. With an estimation of the time scale of the heat propagation, the response

should be slow compared to mechanical oscillation frequency, and gth,0(ω) should be mostly

imaginary.

After adding back the dispersive coupling and dissipative coupling terms, the total force now

reads

F (ω) = ℏ
xzpf

[
−(gω+ gth(ω))a(ω)+ i gκ+2gth(ω)

2
p
κth

bin(ω)+h.c.

]
= ℏ

xzpf

[
(i (−ω+∆)+κ/2)−1

(
−(gω+ gth(ω))

p
κ1ain(ω)

+
[
−(gω+ gth(ω))

p
κth +

i gκ+2gth(ω)

2
p
κth

[i (−ω+∆)+κ/2]

]
bin(ω)

)
+h.c.

]
= ℏ

xzpf

[
χ′1(ω)ain(ω)+χ′2(ω)bin(ω)+h.c.

]
(2.170)

To derive the damping/amplification rate of this process, we can follow the same procedure as

the previous section, i.e.

Γ= [(Ωm −∆)2 +κ2/4]−1[(Ωm +∆)2 +κ2/4]−1 (
4|gω+ gth(Ωm)|2κΩm∆

−2Re
[
[i (∆2 −Ω2

m)∆−κ∆Ωm](gω+ gth(Ωm))(−i g∗
κ + g∗

th(Ωm))
])

. (2.171)

Again, we can simplify the expression in the unresolved sideband limit (Ωm ≪ κ),

Γ≈ 4|gω+ gth(Ωm)|2κΩm∆−2Real
[
(i∆3 −κ∆Ωm)(gω+ gth(Ωm))(−i g∗

κ +2g∗
th(Ωm))

]
[∆2 +κ2/4]2 .

(2.172)

We check the case where the photothermal force dominates the dynamics again, with the

dispersive coupling gω = 0. We can find Γ = 0, and the coupling is purely dissipative. The

null damping rate is intuitive as the dispersive coupling is the only mechanism to transduce

the mechanical motion back into the cavity fields and thus close the feedback loop. From

another perspective of force noise density, the photothermal force originates from the optical

flux of a bath channel. It always gives a symmetric force spectral density set by the input-

output relation. On the other hand, the dispersive force originates from the cavity photon

fluctuation, whose positive and negative frequency components can be modified by the cavity

susceptibility. Note that the result here is under the open-loop approximation. A more rigorous

treatment would involve the photothermal force’s closed-loop noise density and arrive at the

following result (gκ ignored)

Γ(ω) =−2
Ωm

ω
Re

[
gω(g∗

ω+ g∗
th(ω))(χ∗cav(−ω)−χcav(ω))

]
. (2.173)

However, the open-loop approximation is sufficient for our discussion here, as |gth|≪ κ,Ωm .

In the case that we have weak dispersive coupling gω ∼ |gth(Ωm)|, as is the case from our
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Figure 2.32: Optical backaction damping rates with the photothermal effect. Curves are
plotted with different delay phase of the membrane thermal response function gth(Ωm), with
realistic system parameters (κ/2π= 30MHz,Ωm/2π= 100kHz, ∆=∆∗, |gth(Ωm)|/2π= 3kHz).
The thermal cutoff for the device at mm scale is typically <10 kHz. Therefore, the delay
phase is most likely π/2 for most mechanical modes (mostly imaginary), with lower coupling
magnitude at higher frequency. We can observe the switching of feedback signs at different
magnitudes of dispersive coupling gω.

observation, we could simplify to the following expression,

Γ≈ 4|gω+ gth(Ωm)|2κΩm∆−4∆3Im
[
gωg∗

th(Ωm)
]

[∆2 +κ2/4]2

= 4|gω|2κΩm∆

[∆2 +κ2/4]2

[
|1+ gth(Ωm)

gω
|2 + ∆2

κΩm
Im

[
gth(Ωm)

gω

]]
. (2.174)

In the case that −Im
[

gth(Ωm )
gω

]
> κΩm

∆2 , the effect we observed can happen, i.e. parametric

amplification at red detuning. However, this time, the amplitude quadrature has no significant

mechanical signal. The detuning dependence of the damping rate is illustrated in Fig. 2.31(b),

whereas the photothermal coupling rate dependence exactly on ∆∗ is shown in Fig. 2.32.

In the case where |gth(Ωm)|≳ gω, we can further simplify the expression in the fast-cavity limit

Ωm ≪ κ,

Γ≈ 4∆3

[∆2 +κ2/4]2 Im
[
gωgth(Ωm)

]
, (2.175)

where the dynamics now show a strong dependence on cavity detuning. This effect is verified

also in the experiment, that instability quickly disappears when |2∆/κ| < 1/
p

3. However, as

we need to pump at the magic detuning, detuning is not a free parameter to optimize here.

Note that the presence of this instability requires a large imaginary component from gth(ω),

which is easily the case given that the thermal time scale is longer than the mechanical period.

To illustrate the parameter regions where this effect is concerned, we plot the damping rate
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2.5 Absorption-induced mechanical instability

of the entire expression, with our system parameters as well as the operation condition, in

Fig.2.32 and Fig. 2.31(b), showing the emergence of the amplification when the photothermal

coupling rate approaches the dispersive coupling rate.

Scaling verification of photothermal effects

The photothermal effect limits the maximal Cq achievable before the onset of mechanical

instability. In the previous generation of devices using perforated membranes, thermal dissi-

pation was particularly poor and was suspected of causing high temperature gradients and

large photothermal forces. Ultimately, it limits Cq < 0.1 for most of the optical modes we

tried. In Section B.3, we discuss how to use the digital feedback to selectively stabilize these

mechanical modes in order to approach Cq ∼ 1.

Our current generation device using density-modulated membranes, with improved heat

dissipation, allows us to operate at the quantum backaction dominated regime Cq > 1 without

the need to apply digital feedback, as no mechanical modes have undergone amplification

at optical power of concern. However, in the experiment, only the optical modes showing

minimal membrane-field overlap η(zm), i.e., small g0 and low optical loss rate κ, can achieve

this regime. Modes with higher g0, which typically come with higher optical loss, still limit

Cq < 1 when mechanical instability happens. An example of this effect is illustrated in the

following table, where three optical resonances are characterized in terms of their maximal

Cq :

Wavelength (nm) κ/2π (MHz) η(zm) C max
q

843.6839 26 high 0.43

843.1020 22 low 0.80

845.8420 17.8 very low ≫ 1

In the experiments, we can operate with low g0 modes to achieve high Cq , while still achieving

quantum-limited noise operation using our ultra-low noise cavity with phononic crystal

mirrors, as discussed in Section 2.3. The utilization of the ultra-low noise cavity is crucial as

the cavity noise budget S̄νν( f ) < (g0/2π)2/Γth is extremely tight with low g0 optical modes.

During the operation, we also observed a significant increase in the soft-clamped mode

temperature, i.e., 15 K increase with a power level of Cq ∼ 1, obtained through the spectral

fitting of the heating-induced mechanical frequency shift, and comparing it to COMSOL

simulation.

From the result we derived in this section, we explain this scaling of the photothermal effect

with the membrane-field overlap observed in the experiment.

In the regime where |gth(Ωm)| ≳ gω, as well as the fast-cavity limit Ωm ≪ κ, we have the
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simplified expression for the photothermal amplification rate

Γ≈ 4∆3

[∆2 +κ2/4]2 Im
[
gωgth(Ωm)

]
(2.176)

gω = gω,0a∗ (2.177)

gω,0 ∼ g max
ω,0 sin(2k0zm) (2.178)

gth = gth,0a∗ (2.179)

gth,0 ∝ κth ∝ η(zm) = η0 sin(k0zm)2 (2.180)

where η(zm) is the field overlap between the membrane and the cavity mode. With these

expressions, we can express again the amplification rate as a function of Cq = 4g 2∗/Γthκ,

Γ≈Cq

g 2
ω,0

g 2
∗,0

Γth∆
3κ

[∆2 +κ2/4]2 Im

[
gth,0(Ωm)

gω,0

]
(2.181)

where g∗ is the dispersive coupling rate for the soft-clamped mode.

As the instability threshold is Γm +Γ= 0, we obtain the expression of the maximally achievable

Cq while the mechanical modes are stable,

C max
q ∝ Im

[
gth,0(Ωm)

gω,0

]−1

∝ cot−1(k0zm), (2.182)

where high Cq prefers minimal field overlap η(zm) → 0. This scaling agrees very well with the

experiment observation, indicating that the photothermal effect from optical absorption likely

induces mechanical instability.
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3 Measurement-based quantum control
of mechanical motion

After sorting out all the technical details of the experiment platform in Chapter 2, we can

finally discuss the measurements of quantum optomechanical effects at room temperature,

including optomechanical squeezing (Section 3.1), optimal mechanical state preparation

(Section 3.2), feedback control of mechanical motions (Section 3.3), as well as mechanical

sideband asymmetry from low phonon occupancy (Section 3.4). Observing quantum effects

with a macroscopic object is challenging but also interesting, as it paves the way towards

observing the quantum effect directly of macroscopic objects at room temperature. Note that

most of the quantum effects we observe here in this chapter can be mostly attributed to the

quantum effects of the measurement meter [69]. In other words, we are essentially observing

the quantum nature of photons. The quantum nature of macroscopic oscillators requires

measurement of non-classical correlations [70] in, e.g., single-photon counting experiments.

Some results shown here have been sorted out in manuscript [10]. Therefore, some texts and

figures might be identical to some degree.

3.1 Optomechanical squeezing

One of the most well-known and robust signatures of quantum optomechanical effects is the

generation of squeezed light [18, 19, 20, 21, 22] when the mechanical signal is dominated by

the motions driven by the quantum backaction of the light [37, 71].

We generate experimentally optomechanical squeezing to demonstrate that our MIM system,

using a density-modulated membrane sandwiched by phononic crystal mirrors, operates

in the quantum regime at room temperature. To provide more physical intuition of this

phenomenon, we explain the physical process enabling squeezed light generation. In the

textbook description of cavity optomechanics, when the cavity is driven on-resonance, the

vacuum fluctuations of the laser amplitude drive the mechanical oscillator and are imprinted

onto the mechanical motion. The linear response of the cavity also transduces the mechanical

motion into phase fluctuations of the light field. These two processes result in correlations
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Chapter 3. Measurement-based quantum control of mechanical motion

between the amplitude and phase quadratures of the cavity output field, manifesting as a

noise reduction below the shot noise level (squeezing).

In this section, we first derive the Langevin equations that lead to the optical squeezing on

the measured spectrum, then the experimental realization using the homodyne technique

discussed in Section 2.4.3.

3.1.1 Langevin equations governing optical quadrature measurements

Here, we derive the measurement noise spectral density expression from the Quantum

Langevin equations (QLE) governing the MIM system. These results are later used for cali-

brating the system parameters, e.g., measurement efficiency, membrane heating, and Cq , by

fitting the experimental data. A simplified derivation of resonant driving is also provided in

Appedix B.6, for readers who desire a cleaner physical picture without all the complications

from the detuned drive.

Using the quantities defined in Chapter 1, we write down the quantum Langevin equations in

the Heisenberg picture,

˙̂a = −
[κ

2
+ i (∆+p

2g0Q̂)
]

â + ∑
i=a,b,···

p
κi âin,i, (3.1)

for the cavity mode annihilation operator â and the input mode operators âin,i of different

input ports of the MIM cavity, where the detuning is defined as ∆=ωcav −ωlaser. We consider

three optical input modes: the low transmission input port âin,b where we pump the cavity

with the laser, the high transmission output port âin,a where the signal is leaked from the

cavity, and the cavity internal loss âin,c due to absorption or scattering.

Without using the rotating wave approximation, we write down the QLE governing the me-

chanical mode,

˙̂Q = ΩmP̂ (3.2)
˙̂P = −ΩmQ̂ +

√
2ΓmP̂in −ΓmP̂ −p

2g0â†â, (3.3)

where we defined the dimensionless mechanical position operator Q̂ = (b̂† + b̂)/
p

2 and the

momentum operator P̂ = i (b̂† − b̂)/
p

2. b̂ is the mechanical mode’s annihilation operator, and

P̂in(t) = ip
2

(
b̂†

in(t )− b̂in(t )
)

is the input momentum fluctuation. We also define the optical

quadrature operators X̂ = (â† + â)/
p

2 and Ŷ = i (â† − â)/
p

2.

Note that these quadrature definitions are only used within this section, as we have to use these

symbols for other purposes in later sections. We also define the optomechanical coupling rate

g = g0a enhanced by the cavity field.

Combining the equations for the mechanical operators, we obtain the following expressions
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3.1 Optomechanical squeezing

both in time and frequency domain,

¨̂Q +Γm
˙̂Q +Ω2

mQ̂ =
√

2ΓmΩmP̂in −2gΩm
(
X̂ +Xnl

)
(3.4)

Q̂(ω) = χm(ω)
(√

2ΓmP̂in(ω)−2g X̂ (ω)
)

, (3.5)

where we introduced the frequency-domain mechanical susceptibility

χm(ω) ≡Ωm/(Ω2
m −ω2 − iωΓm), (3.6)

and the nonlinear noise Xnl we discussed in Section 2.4, which is canceled at the magic

detuning (and set to zero for the following derivations). Note that the dimensionless input

momentum fluctuation P̂in(t ) is characterized by the following spectral correlations:

SP̂inP̂in
(ω) = ω

Ωm
(nth(ω)+1) (3.7)

SP̂inP̂in
(−ω) = ω

Ωm
nth(ω) (3.8)

For simplicity, the mean cavity field a is used as the phase reference θ = 0 for all the other

fields, such that both a and g are real-valued. Considering all optical channels âin,i, we define

the following susceptibilities to help simplify the results,

χc (ω) = 2−1/2(κ/2+ i∆− iω)−1 (3.9)

χX
c (ω) = i (χ∗c (−ω)−χc (ω)) (3.10)

χY
c (ω) = −(χ∗c (−ω)+χc (ω)) (3.11)

χX
mc (ω) = (1+2

p
2g 2χm(ω)χX

c (ω))−1 (3.12)

χX
∆ (ω) = aχX

c (ω)χX
mc (ω) (3.13)

χX
Pin

(ω) =
p

2gχm(ω)χX
c (ω)χX

mc (ω) (3.14)

χX
ain,i

(ω) = p
κiχc (ω)χX

mc (ω) (3.15)

χX
a†

in,i

(ω) = p
κiχ

∗
c (−ω)χX

mc (ω) (3.16)

χY
∆ (ω) = χY

c (ω)[a −2
p

2g 2χm(ω)χX
∆ (ω)] (3.17)

χY
Pin

(ω) = p
2gχY

c (ω)χm(ω)(1−2gχX
Pin

(ω)) (3.18)

χY
ain,i

(ω) = −i
p
κiχc (ω)−2

p
2g 2χY

c (ω)χm(ω)χX
ain,i

(ω) (3.19)

χY
a†

in,i

(ω) = i
p
κiχ

∗
c (−ω)−2

p
2g 2χY

c (ω)χm(ω)χX
a†

in,i

(ω) (3.20)

Using these susceptibilities, we obtain the following frequency-domain equations for the
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optical quadratures:

X̂ (ω) =χX
∆ (ω)∆(ω)+χX

Pin
(ω)

p
2ΓP̂in(ω)

+ ∑
i=a,b,...

(
χX

ain,i
(ω)âin,i(ω)+χX

a†
in,i

(ω)â†
in,i(ω)

)
(3.21)

Ŷ (ω) =χY
∆ (ω)∆(ω)+χY

Pin
(ω)

p
2ΓP̂in(ω)

+ ∑
i=a,b,...

(
χY

ain,i
(ω)âin,i(ω)+χY

a†
in,i

(ω)â†
in,i(ω)

)
(3.22)

We also define quadratures with arbitrary angles X̂ θ = 2−1/2(âe−iθ+ â†e iθ) = X̂ cosθ+ Ŷ sinθ.

As we discussed earlier, we pick âin,a to be the cavity output port, with âin,b, âin,c the input and

loss channels. From the input-output formalism, the output quadrature of the cavity output

port is,

X̂ θ
out = X̂ θ

in,a −
p
κa X̂ θ. (3.23)

With the following susceptibilities (k = b,c, Fourier frequency dependence omitted) defined

for arbitrary quadrature angles θ,

χθ∆ = −pκa(χX
∆ cosθ+χY

∆ sinθ) (3.24)

χθPin
= −pκa(χX

Pin
cosθ+χY

Pin
sinθ) (3.25)

χθain,a
= p

2
−1

e−iθ−p
κa(χX

ain,a
cosθ+χY

ain,a
sinθ) (3.26)

χθ
a†

in,a

=
p

2
−1

e iθ−p
κa(χX

a†
in,a

cosθ+χY
a†

in,a

sinθ) (3.27)

χθain,k
= −pκk (χX

ain,k
cosθ+χY

ain,k
sinθ) (3.28)

χθ
a†

in,k

= −pκk (χX
a†

in,k

cosθ+χY
a†

in,k

sinθ) (3.29)

and also taking into account photon collection efficiency η, the detected optical quadrature is

expressed as,

X̂ θ
det(ω) =p

η

[
χθ∆∆(ω)+χθPin

p
2ΓP̂in(ω)+ ∑

i=a,b,c

(
χθain,i

âin,i(ω)+χθ
a†

in,i

â†
in,i(ω)

)]
+i

√
1−ηX̂vac(ω). (3.30)

To calculate the power spectral density of the quadrature observable, we use the following

correlation relations for the optical input fields (more general expressions that include classical

noises are in Section 2.4),

S AB (ω) =
∫

〈A†(ω)B(ω′)〉 dω′

2π
(3.31)

〈ain(ω)a†
in(ω′)〉 = 2πδ(ω+ω′) (3.32)

〈a†
in(ω)ain(ω′)〉 = 0, (3.33)
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we can calculate the optical detection spectral densities,

S X̂ θ
det X̂ θ

det
(ω) = η

[
|χθ∆(ω)|2S∆∆(ω)+|χθPin

(ω)|22ΓSP̂inP̂in
(ω)+ ∑

i=a,b,c
|χθ

a†
in,i

(ω)|2
]
+ 1−η

2
, (3.34)

Here, due to the large difference in effective mass and quality factors between the soft-clamped

mode and the other membrane modes, we only consider the quantization of the soft-clamped

mode for the spectral fitting. The other membrane modes and mirror noises are treated as

cavity noise in S∆∆(ω).

3.1.2 Measuring optical squeezing

In this section, we describe the generation of squeezed light in our MIM system, including the

methods to avoid nonlinear force decoherence and to measure at different quadrature angles,

as well as the shot noise calibration method used to verify optical squeezing.

Experiment results

As we discussed in Section 2.4, the nonlinear transduction response of the cavity produces

nonlinear mixing products of thermomechanical noise, giving rise to excess nonlinear noise

beyond vacuum fluctuations in the measurement record that does not naturally fit in the linear

framework of optical quadratures. Due to the high number of modes of the membrane and

the large Brownian motion at room temperature, the mixing products manifest as broadband

noise, termed thermal intermodulation noise (TIN) [42]. TIN results in the generation of new

frequency components that have significant power even at frequencies within the mechanical

bandgap, thereby degrading the measurement signal-to-noise ratio (SNR), and inducing

additional mechanical decoherence [72].

To eliminate TIN intra-cavity photon number fluctuations, which would otherwise lead to

access backaction decoherence, we pump the cavity with the laser detuned by 2∆∗/κ=−1/
p

3

(magic detuning), where the quadratic term of the cavity response vanishes. In this way, as

discussed in Section 2.4, the second-order TIN can be efficiently eliminated, with only the

third-order noise (Section 2.4.4) and the residue second-order noise (Section 2.4.2) remaining.

At high power operation required to reach Cq ∼ 1, pumping the cavity at ∆∗ has the additional

effect of optically cooling all the mechanical modes. The optical cooling reduces the amount

of residual nonlinear noise well below the laser shot noise (see Fig. 2.21), together with cavity

resonances with large linewidth κ. In the experiment, we used the optical resonance at 819 nm

(κ/2π= 34.2MHz), shown in Fig. 2.15. Pumping at this resonance with Cq ∼ 1 also induces

a redshift and cools the defect mode to an occupancy n̄eff ≈ 20 phonons, via dynamical

backaction cooling [13] (lower effective phonon occupancy of n̄eff ≈ 5.7 can be achieved with

a narrower-linewidth cavity mode at 862 nm, discussed in later sections).
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Chapter 3. Measurement-based quantum control of mechanical motion

Furthermore, to eliminate second-order TIN in the optical detection, we deploy a specialized

homodyne detection scheme using only one detector (Section 2.4.3), shown in Fig. 3.1(a).

Instead of balanced homodyne detection, a single detector offers the required photodetection

nonlinearity to eliminate TIN at arbitrary optical quadrature angles. We achieve this by

carefully selecting the local oscillator power for each quadrature angle we detect.

We measure the noise of the cavity output field at optical quadrature angles ranging from

−33◦ to 33◦ [see Fig. 3.1(c)], where the 0◦ quadrature is defined as the one with no mechanical

displacement information (valid in the fast-cavity limit). Depending on the quadrature angle,

we observed optical squeezing (up to 50 kHz bandwidth) on either side of the defect mode,

whose extent is limited by the membrane modes at the edge of the bandgap [see Fig. 3.1(b) for

a representative spectrum].

For the three frequency bands that are devoid of parasitic modes and nonlinear mixing noise

peaks, we compute the average intensity noise over a bandwidth of 5 kHz, as a function of

quadrature angle [see Fig. 3.1(d)]. We observe a maximum squeezing of 22.2 % (1.09 dB) below

the shot noise level, which matches well with the theory prediction from the spectrum fitting.

To calibrate the shot noise level, we perform a separate measurement where we direct the

same amount of optical power onto the same photodetector and measure the laser intensity

noise. More details on the shot noise calibration, including an analysis of classical noise and

the detector linearity, are described in the next section.

Shot noise calibration

To calibrate the reference shot noise power spectral density for a given signal, in order to

retrieve the amount of optical squeezing generated, we use the following procedure:

1. Record the average detector voltage output during data acquisition for each optical

power level impinging on the detector,

2. Block the beam from the output of the optical cavity such that only the local oscillator

beam hits the detector,

3. Adjust the local oscillator power such that the average detector voltage output is the

same as the one recorded during the data acquisition. This can be done with accuracy

better than 1 %,

4. Record the noise power spectral density of the detector voltage output through the same

electrical signal chain as the data acquisition, which serves as the reference shot noise

power spectral density.

Since the detector voltage output is the same, the generated photocurrent flux and the optical

noise power should also be the same. However, it must be verified that the local oscillator

beam is shot-noise-limited at the Fourier frequency of interest.
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Figure 3.1: Optomechanical generation of squeezed light. (a) Homodyne detection scheme
that cancels nonlinear mixing noise δanl from the records of cavity transmission. For each
quadrature angle θ, a specific LO amplitude is needed to cancel the nonlinear mixing noise. (b)
Detected power spectral density (PSD) at the quadrature angle θ = 15.3◦ at frequencies above
the mechanical resonance, compared to the measured shot noise (SN) and detector noise.
Inset: the same PSD is displayed on broader frequency and power ranges. (c) Collection of
homodyne photocurrent spectra of the cavity output field, normalized to the shot noise level,
measured at different quadrature angles. The magnitude and bandwidth of squeezing depend
on the homodyne quadrature angle. (d) Averaged homodyne PSD within three different
frequency bands (5 kHz bandwidth) at different quadrature angles, showing a maximum
squeezing depth of 22.2 % (1.09 dB).

The TiSa laser we use is predominantly shot-noise-limited at around 1 MHz under our experi-

mental conditions, as was illustrated in Fig. B.7. We quantify this by recording the photocurrent

noise scaling as the optical power varies. The laser shot noise scales linearly with the optical

power, proportional to the detector DC voltage output, while any classical noise contribution

scales quadratically. We fit the local oscillator noise power integrated over each frequency

band as a function of detector DC voltage with a polynomial function consisting of only the 1st-

order and the 2nd-order terms, as shown in Fig. 3.2(a). We confirm that within the frequency

range of interest and optical powers used in the experiment, the classical noise contribution is

less than 1 %, as shown in Fig. 3.2(b). This measurement result is also consistent with what

we measured in Fig. B.7. Using the fit results, we correct the measured reference shot noise

by subtracting the calibrated classical noise contribution to ensure we do not overstate the

amount of squeezing. We also measured the detector DC voltage output linearity with respect

to optical power with a reference power meter and found a maximum deviation of less than

0.3 %.
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Figure 3.2: (a) Laser intensity noise power (detector noise subtracted) averaged over 1.1-
1.2 MHz frequency band, as a function of detector output voltage. A polynomial function
consisting of linear and quadratic terms is used to fit and extract the contribution of the laser
classical noise. (b) The laser classical noise fractional contribution to the intensity noise is
plotted as a function of detector voltage over three frequency bands. Most classical noise
is the high-frequency tail from the laser relaxation oscillation peak around 300 kHz. At the
frequency band of interest 1.1-1.2 MHz where the experiment is conducted, the classical noise
contribution is less than 1 %.

3.2 Quantum measurements of mechanical motions

In the previous section, we quantified the maximum squeezing of 22 %, which corresponds to

the measurement efficiency ηmeas of the system. This section discusses exploiting the high

measurement efficiency to prepare conditional mechanical states with thermal occupancy as

low as a single phonon. We establish the basic theory of conditional state preparation from the

stochastic quantum master equation, then the more complicated multi-mode model so that

all mechanical modes in the frequency span of interest can be faithfully included, and last, the

verification of the model as well as the state preparation using the retrodiction method as well

as the spectral response.

3.2.1 Continuous measurement

First, we establish the basic theory of continuous quantum measurement of mechanical

motions. In this section, we treat only the optical part of the measurement, where the pho-

tocurrent of the detector is connected to the mechanical motions and optical noises. The

interaction of the optical meter with the mechanical system is modeled in the next section

using the quantum master equations.

We work in the fast-cavity limit, so the cavity output field derived in the previous section can
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be greatly simplified as

δâout = −−κ
2 + i∆
κ
2 + i∆

δâin +
p

2i g0a
p
κ

κ
2 + i∆

Q̂ (3.35)

îdirect = δâout +δâ†
out = e iθinδâ†

in +e−iθinδâin + 2
p

2∆
p
κg

(κ2 )2 +∆2 Q̂ (3.36)

îmax = e iθoutδâ†
out +e−iθoutδâout = e iθ′inδâ†

in +e−iθ′inδâin + 2
p

2
p
κg√

(κ2 )2 +∆2
Q̂ (3.37)

In the following, since we are mostly concerned with mechanical states, we only leave the

Ô symbol for mechanical operators. After classical detection of the output field current, we

obtain the classical measurement record i (t). We rewrite the measurement record i (t) in

terms of Wiener increment to simplify our discussion,

i (t )d t = dW +
√

8Γmeas〈Q̂〉d t (3.38)

where Γmeas = ηΓqba = 4ηg 2

κ
κ2

κ2+4∆2 and η is the photon detection efficiency. With detuned

direct detection, the efficiency is bounded by ηdirect = ∆2

( κ2 )2+∆2 . Therefore, only with the most

optimal quadrature angle, zero added detection noise, and zero photon loss can we approach

η→ 1, where the backaction decoherence rate of the oscillator bounds the measurement rate.

Note that the measurement record i (t ) is not a quantum operator but rather connected only to

the expected trajectory 〈Q̂〉 of the quantum state. The details of the measurement problem will

be discussed in the next section, where we heuristically derive the quantum master equation

and connect the measurement result to the state of the oscillator and a classical Wiener

increment.

The Wiener increment [73] we use above is defined in terms of an ideal unit Gaussian white

noise process,

dW (t ) ≡W (t +d t )−W (t ) = ξ(t )d t 〈ξ(t )ξ(t ′)〉 = δ(t − t ′) (3.39)

with property 〈dW (t )dW (t ′)〉 = dW (t )dW (t ′) = δt ,t ′d t .

To simplify the analysis, we decompose Q̂ = cosΩm t X̂ + sinΩm t Ŷ into two slowly varying

quadrature observables. Since the measurement rates Γmeas are much smaller than the me-

chanical frequencyΩm , our homodyne measurement is equivalent to the heterodyne detec-

tion of these two quadratures with symmetric measurement rates.

We perform IQ demodulation at mechanical frequencyΩm to separate these two quadratures

into two independent measurement channels

iX (t )d t =
√

4Γmeas〈X̂ 〉d t +dWX (t ) (3.40)

iY (t )d t =
√

4Γmeas〈Ŷ 〉d t +dWY (t ) (3.41)
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which is equivalent to detecting both quadratures simultaneously with independent Wiener

increment and half the detection efficiencies, similar to heterodyne detection.

Therefore, in our continuous measurement of a mechanical oscillator with rate Γmeas = ηΓqba

of a system observable r̂ = (X̂ , Ŷ ) with Gaussian noise, the output measurement record i =
(iX , iY ) can be modeled as a 2-D Wiener process where

i(t )d t =
√

4Γmeas〈r̂〉(t )d t +dW(t ) (3.42)

Heuristic derivation of stochastic master equation

This section derives the quantum master equations governing the interaction between me-

chanical oscillators, environment baths, and optical measurement meters.

We establish the continuous measurement formalism in terms of POVMs [74]. For a weak

continuous position x measurement, where the state projection is not complete to a specific

measurement basis, we measure in the interval time∆t described by the generalized projection

operator

A(α) =
(

2µ∆t

π

)1/4 ∫
exp

[−µ∆t (x −α)2] |x〉〈x|d x (3.43)

where α is a measurement result in the position continuum. Essentially, the measurement

projects the position x state into a Gaussian-weighted vicinity aroundα. In the case of a strong

measurement µ→+∞, the measurement returns to a normal state projection.

For any arbitrary initial state |ψ〉 = ∫
ψ(x)|x〉d x, one can prove that 〈α〉 = 〈x̂〉ψ, with the

probability to obtain a measurement record α of

P (α) = Tr[A(α)† A(α)|ψ〉〈ψ|] ≈
(

2µ∆t

π

)1/2

exp[−µ∆t (α−〈x̂〉ψ)] (3.44)

where the approximation holds accurate in the limit ∆t → 0.

From the above probability distribution, it is clear that we can express the measurement result

α as a stochastic quantity using Wiener increment,

α= 〈x̂〉+ ∆W

(4µ)1/2∆t
. (3.45)

Here, we can identify that in our scenario of continuous measurement of mechanical motion,

µ= Γqba in the limit of unity efficiency η→ 1.

With this result, we can derive the evolution of the quantum state given the measurement

98



3.2 Quantum measurements of mechanical motions

record α, by following the rules of Ito’s calculus,

|ψ(t +∆t )〉 ∝ A(α)|ψ(t )〉
∝ exp[−µ∆t (α− x̂)2]|ψ(t )〉
∝ exp[−µ∆t x̂2 + x̂[2µ∆t〈x̂〉+p

µ∆W ]]|ψ(t )〉
∝ {1− µ∆t

2
x̂2 + x̂[2µ∆t〈x̂〉+p

µ∆W ]}|ψ(t )〉. (3.46)

After normalizing the update equation using
p

1+δ = 1+ 1
2δ− 1

8δ
2 + ·· · , we obtained the

stochastic Schrodinger equation,

d |ψ〉 = {−µ
2

(x̂ −〈x̂〉)2d t +p
µ(x̂ −〈x̂〉)dW }|ψ(t )〉, (3.47)

which directly yields the stochastic master equation for the density matrix

dρ = (d |ψ〉)〈ψ|+ |ψ〉(d〈ψ|)+ (d |ψ〉)(d〈ψ|)
= −µ

2
(x̂2ρ+ρx̂2 −2x̂ρx̂)d t +p

µ(x̂ρ+ρx̂ −2〈x̂〉ρ)dW. (3.48)

If we generalize a measurement operator
p
µx̂ → ĉ, we arrive at one of the most well known

expression

dρ = D[ĉ]ρd t +H [ĉ]ρdW (3.49)

where D and H are the Lindblad and measurement superoperators defined by

D[ĉ]ρ ≡ ĉρĉ† − 1

2

(
ĉ†ĉρ+ρĉ†ĉ

)
(3.50)

H [ĉ]ρ ≡ ĉρ+ρĉ† −〈ĉ + ĉ†〉ρ (3.51)

where D describes the measurement-induced decoherence of the system, and H describes the

state conditioning effect based on the measurement records α. We can also easily generalize

to multiple measurement channels,

dρ = ∑
ĉ

[
D[ĉ]ρd t +H [ĉ]ρdWĉ

]
. (3.52)

In the case where quantum information loss occurs for some measurement channels, e.g.,

optical photon loss or interaction with the thermal bath, we can model it with a finite detection

efficiency η by setting the loss channel 〈dWlost〉 = 0, with which we arrive at the expression

dρ = D[ĉ]ρd t +p
ηH [ĉ]ρdW. (3.53)
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Recall now the Wiener increment is connected to the measurement record as

α= 〈x̂〉+ ∆W

(4ηµ)1/2∆t
. (3.54)

We find the correspondence ηµ= Γmeas in our setting.

Evolution of covariance matrix under continuous measurements

The evolution of the density matrix ρ is also covered in [36], where for a measurement observ-

able ĉ, the stochastic master equation is

dρ =− i

ℏ
[
Ĥ ,ρ

]+Lenvρd t +D[ĉ]ρd t +p
ηH [ĉ]ρdW. (3.55)

The environmental coupling term Lenvρ describes the environment bath-coupling induced

decoherence dynamics, and under the Markov and rotating wave approximation we find

Lenvρ = Γ(n +1)D[b̂]ρ+ΓnD[b̂†]ρ. (3.56)

In the case of a continuous measurement of mechanical motion, the two measurement

observables are ĉX =√
ΓqbaX̂ and ĉY =√

ΓqbaŶ . This results in our single-mode stochastic

master equation

dρ =Lenvρ+Γqba
(
D[X̂ ]+D[Ŷ ]

)
ρ+

√
Γmeas

(
H [X̂ ]ρdWX +H [Ŷ ]ρdWY

)
(3.57)

Since the measurement is purely linear, and as the mechanical state starts from a thermal

state, the state under continuous measurement will remain a Gaussian state, entirely captured

by the first two moments of the orthogonal quadratures.

Evolution of the quadrature expectation values (first moment) and the covariance matrix

(second moment) can be derived using the following relations

Tr
[

X̂ D[b̂]ρ
]=−〈X̂ 〉/2 Tr

[
X̂ D[b̂†]ρ

]
= 〈X̂ 〉/2 (3.58)

Tr
[

X̂ D[X̂ ]ρ
]= Tr

[
Ŷ D[X̂ ]ρ

]= 0 (3.59)

Tr
[

X̂ H [X̂ ]ρ
]= 2VX Tr

[
Ŷ H [X̂ ]ρ

]= 2CX Y (3.60)

where VX = 〈X̂ 2〉−〈X̂ 〉2 and CX Y = 〈X̂ Ŷ + Ŷ X̂ 〉/2−〈X̂ 〉〈Ŷ 〉.

The quadrature expectation values are found to obey the following update equations,

d〈X̂ 〉 = −Γ
2
〈X̂ 〉d t +

√
4Γmeas[VX dWX +CX Y dWY ] (3.61)

d〈Ŷ 〉 = −Γ
2
〈Ŷ 〉d t +

√
4Γmeas[VY dWY +CX Y dWX ]. (3.62)
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The covariance matrix is slightly harder to compute as

dVX = d〈X̂ 2〉−2〈X̂ 〉d〈X̂ 〉−d〈X̂ 〉2 (3.63)

dCX Y = 1

2
d〈X̂ Ŷ + Ŷ X̂ 〉−〈X̂ 〉d〈Ŷ 〉−〈Ŷ 〉d〈X̂ 〉−d〈X̂ 〉d〈Ŷ 〉. (3.64)

To derive the update equations, we need to use the following relations,

Tr
[

X̂ 2D[b̂]ρ
]=−〈X̂ 2〉+ 1

2
Tr

[
X̂ 2D[b̂†]ρ

]
= 〈X̂ 2〉+ 1

2
(3.65)

Tr
[

X̂ 2D[Ŷ ]ρ
]= Tr

[
Ŷ 2D[X̂ ]ρ

]= 1 (3.66)

Tr
[

X̂ 2H [X̂ ]ρ
]= 2〈X̂ 3〉−2〈X̂ 2〉〈X̂ 〉 Tr

[
X̂ 2H [Ŷ ]ρ

]= 2〈X̂ Ŷ X̂ 〉−2〈X̂ 2〉〈Ŷ 〉. (3.67)

To close the equations until the second moment, we need to consider the following moment

relations for Gaussian states,

〈X̂ 3〉 = 3〈X̂ 〉VX +〈X̂ 〉3 (3.68)

〈X̂ Ŷ X̂ 〉 = 2〈X̂ 〉CX Y +〈Ŷ 〉〈X̂ 2〉, (3.69)

which leads to

Tr
[

X̂ 2H [X̂ ]ρ
]= 4〈X̂ 〉VX Tr

[
X̂ 2H [Ŷ ]ρ

]= 4〈X̂ 〉CX Y , (3.70)

as well as the other cross-correlation moments

Tr
[
[X̂ , Ŷ ]+D[b̂]ρ

]=−Tr
[

[X̂ , Ŷ ]+D[b̂†]ρ
]
= 2CX Y +2〈X̂ 〉〈Ŷ 〉 (3.71)

Tr
[
[X̂ , Ŷ ]+D[X̂ ]ρ

]= Tr
[
[X̂ , Ŷ ]+D[Ŷ ]ρ

]= 0 (3.72)

Tr
[
[X̂ , Ŷ ]+H [X̂ ]ρ

]= 4〈X̂ 〉CX Y +4〈Ŷ 〉VX Tr
[
[X̂ , Ŷ ]+H [Ŷ ]ρ

]= 4〈Ŷ 〉CX Y +4〈X̂ 〉VY .

(3.73)

With the help of all these relations derived above, we arrive at the covariance matrix update

equations

V̇X = −ΓVX +Γ
(
n + 1

2

)
+Γqba −4Γmeas

(
V 2

X +C 2
X Y

)
(3.74)

V̇Y = −ΓVY +Γ
(
n + 1

2

)
+Γqba −4Γmeas

(
V 2

Y +C 2
X Y

)
(3.75)

ĊX Y = − [Γ+4Γmeas(VX +VY )]CX Y . (3.76)

We notice that in the long time limit, any correlation between the two quadratures will vanish

as CX Y → 0. For an initial condition in the thermal state, one can set CX Y = 0 to simplify

the update equations. However, this is not generally the case when multiple oscillators are

present.
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State estimation as temporal filtering

Here, we analyze the temporal response of the state estimation and show that this is a one-pole

filter response in the frequency domain, corresponding to an exponentially decaying temporal

envelope.

The Wiener increments can be expressed using the measurement records and the quadrature

expectation values as

dW(t ) = i(t )d t −
√

4Γmeas〈r̂〉(t )d t . (3.77)

From here, it is fairly straightforward to understand this state estimation procedure as a

filtering process as

d〈X̂ 〉 = −
(
Γ

2
+4ΓmeasVX

)
〈X̂ 〉d t +

√
4ΓmeasVX iX (t )d t (3.78)

〈X̂ 〉(ω) =
p

4ΓmeasVX
Γ
2 +4ΓmeasVX − iω

iX (ω) (3.79)

which is a one pole filter response at the mechanical frequency, and with bandwidth Γse =
Γ
2 +4ΓmeasVX .

Multi-mode quantum master equation

When other mechanical modes are coupled to the light field and measured by the same

measurement channel, we must add them to our model. The reason we have to add these

modes into our model is that the derivation of the stochastic master equation relies heavily on

the Wiener increment property, so we need to make sure that through modeling, the retrieved

Wiener increment from the measurement record, by subtracting the position estimations from

different modes, is as white as possible.

We assume these other mechanical modes are at frequenciesΩi . We still perform the demod-

ulation procedure of the photocurrent at the mechanical frequencyΩm . The demodulated

photocurrent vector is

i(t )d t =
√

4Γmeas〈r̂〉(t )d t +dW(t )+∑
i

√
4Γi

measAi (t )〈r̂i 〉(t )d t , (3.80)

with Ai (t) =
[

cos(Ωi −Ωm)t sin(Ωi −Ωm)t

−sin(Ωi −Ωm)t cos(Ωi −Ωm)t

]
, which is equivalent to measuring multiple

observables at one single measurement channel simultaneously.

The measurement observable is, therefore

ĉ(t ) =
√
Γqbar̂+∑

i

√
Γi

qbaAi (t )r̂i (3.81)
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If we write it separately as ĉ(t) = ∑
i ĉi (t), and re-define the other mechanical quadratures

r̂i ⇐ Ai (t )r̂i (equivalent to a rotating frame transformation at frequencyΩm),then the D and

H becomes

D[ĉ]ρ = ∑
i

ĉiρĉ†
i −

1

2

(
ĉ†

i ĉiρ+ρĉ†
i ĉi

)
+∑

i j
ĉiρĉ†

j −
1

2

(
ĉ†

i ĉ jρ+ρĉ†
i ĉ j

)
= ∑

i
D[ĉi ]ρ+∑

i j
D2[ĉi , ĉ j ]ρ (3.82)

H [ĉ]ρ = ∑
i

ĉiρ+ρĉ†
i −〈ĉi + ĉ†

i 〉ρ

= ∑
i

H [ĉi ]ρ (3.83)

Note that D2 describes the common backaction force between two observables and only

connects either (Xi , X j ) or (Yi ,Y j ). Physically, this is due to the common radiation pressure

noise impinging on the different mechanical modes, such that their motions are correlated.

For the moments associated with decoherence terms, we have the following relation

Tr
[
Yi (D2[Xi ,c j ]+D2[c j , Xi ])ρ

]= Tr
[

Xi (D2[Yi ,c j ]+D2[c j ,Yi ])ρ
]= 0 (3.84)

Tr
[
Y 2

i (D2[Xi ,c j ]+D2[c j , Xi ])ρ
]= Tr

[
X 2

i (D2[Yi ,c j ]+D2[c j ,Yi ])ρ
]= 0 (3.85)

Tr
[

Xi Yi (D2[Xi ,c j ]+D2[c j , Xi ])ρ
]= Tr

[
Xi Yi (D2[Yi ,c j ]+D2[c j ,Yi ])ρ

]= 0 (3.86)

which guarantees that all the terms related to decoherence, except (Xi , X j ) and (Yi ,Y j ), stay

the same.

As we can see, the conditioning effect on the system state H is perfectly linear on the surface,

but different systems can still influence each other through cross-correlations. The moments

associated with these terms are

Tr
[
Oi H [c j ]ρ

]= 2[〈Oi c j 〉−〈Oi 〉〈c j 〉] = 2COi c j (3.87)
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which results in the update equations for the first moments,

d〈X̂i 〉 =
(
−Γi

2
〈X̂i 〉+ (Ωi −Ωm)〈Ŷi 〉

)
d t

+2

[√
Γi

measVXi +
∑
j ̸=i

√
Γ

j
measCXi X j

]
dWX

+2

[√
Γi

measCXi Yi +
∑
j ̸=i

√
Γ

j
measCXi Y j

]
dWY

d〈Ŷi 〉 =
(
−Γi

2
〈Ŷi 〉− (Ωi −Ωm)〈X̂i 〉

)
d t

+2

[√
Γi

measVYi +
∑
j ̸=i

√
Γ

j
measCYi Y j

]
dWY

+2

[√
Γi

measCYi Xi +
∑
j ̸=i

√
Γ

j
measCYi X j

]
dWX

and for the covariance matrix

V̇Xi = −Γi VXi +2(Ωi −Ωm)CXi Yi +Γi

(
n + 1

2

)
+Γi

qba

−4

(
[
√
Γi

measVXi +
∑
j ̸=i

√
Γ

j
measCXi X j ]2 + [

√
Γi

measCXi Yi +
∑
j ̸=i

√
Γ

j
measCXi Y j ]2

)

V̇Yi = −Γi VYi −2(Ωi −Ωm)CXi Yi +Γi

(
n + 1

2

)
+Γi

qba

−4

(
[
√
Γi

measVYi +
∑
j ̸=i

√
Γ

j
measCYi Y j ]2 + [

√
Γi

measCYi Xi +
∑
j ̸=i

√
Γ

j
measCYi X j ]2

)
ĊXi Yi = (Ωi −Ωm)(VYi −VXi )−Γi CXi Yi

−4

[
(
√
Γi

measVXi +
∑
j ̸=i

√
Γ

j
measCXi X j )(

√
Γi

measCXi Yi +
∑
j ̸=i

√
Γ

j
measCYi X j )

]

−4

[
(
√
Γi

measVYi +
∑
j ̸=i

√
Γ

j
measCYi Y j )(

√
Γi

measCXi Yi +
∑
j ̸=i

√
Γ

j
measCXi Y j )

]
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with the new cross terms (i ̸= j )

ĊXi Y j = (Ωi −Ωm)CYi Y j − (Ω j −Ωm)CXi X j −
Γi +Γ j

2
CXi Y j

−4

[
(
√
Γi

measVXi +
∑
k ̸=i

√
Γk

measCXi Xk )(
√
Γ

j
measCY j X j +

∑
k ̸= j

√
Γk

measCY j Xk )

]

−4

[
(
√
Γi

measCXi Yi +
∑
k ̸=i

√
Γk

measCXi Yk )(
√
Γ

j
measVY j +

∑
k ̸= j

√
Γk

measCY j Yk )

]

ĊXi X j = (Ωi −Ωm)CYi X j + (Ω j −Ωm)CXi Y j −
Γi +Γ j

2
CXi X j +

√
Γi

qbaΓ
j
qba

−4

[
(
√
Γi

measVXi +
∑
k ̸=i

√
Γk

measCXi Xk )(
√
Γ

j
measVX j +

∑
k ̸= j

√
Γk

measCX j Xk )

]

−4

[
(
√
Γi

measCXi ,Yi +
∑
k ̸=i

√
Γk

measCXi Yk )(
√
Γ

j
measCX j Y j +

∑
k ̸= j

√
Γk

measCX j Yk )

]

derived using the additional moment relations

Tr
[

Xi X j (D2[Yi ,Y j ]+D2[Y j ,Yi ])ρ
]= Tr

[
Yi Y j (D2[Xi , X j ]+D2[X j , Xi ])ρ

]= 1. (3.88)

These new cross terms are generally non-zero, which means there will be correlations between

different observables because they share the same measurement noise and backaction force.

We summarized here the most compact version of the multi-mode quantum master equation,

d〈r̂i 〉 = Ai 〈r̂i 〉d t +2Bi dW(t ), (3.89)

where

Ai =
[
−Γi

m/2 Ωi −Ωm

Ωm −Ωi −Γi
m/2

]
and

Bi =

∑
j

√
Γ

j
measC X̂i X̂ j

∑
j

√
Γ

j
measC X̂i Ŷ j∑

j

√
Γ

j
measCŶi X̂ j

∑
j

√
Γ

j
measCŶi Ŷ j

 .

The covariance matrix elements CM̂ N̂ = 〈M̂ N̂ + N̂ M̂〉/2−〈M̂〉〈N̂〉 evolve as

ĊM̂i N̂ j
=−Γ

i
m +Γ j

m

2
ĊM̂i N̂ j

+δM̂i ,N̂ j
Γi

th +δM ,N

√
Γi

qbaΓ
j
qba

+(−1)δM ,Y (Ωi −Ωm)CM̂i N̂ j
+ (−1)δN ,Y (Ω j −Ωm)CM̂i N̂ j

−4

(∑
k

√
Γk

measCM̂i X̂k

)(∑
l

√
Γl

measCN̂ j X̂l

)

−4

(∑
k

√
Γk

measCM̂i Ŷk

)(∑
l

√
Γl

measCN̂ j Ŷl

)
, (3.90)
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where M̂ and N̂ are the canonical conjugate observables of M̂ and N̂ .

Physical meaning of different terms

First, notice that in all the covariance updates, no dW is present due to the linearity of the

measurement process.

The [H ,ρ] term gives rise to the quadrature rotation terms associated with Ωi −Ωm , if the

oscillator i is not at frequencyΩm . The oscillation happens between 〈X̂i 〉 and 〈Ŷi 〉. The phase

space distribution rotates with this frequency as well, so if VXi ̸=VYi , the terms VXi , VYi and

CXi Yi will oscillate at two-times that frequency. For the cross-correlation between different os-

cillators (i , j ), since each quadrature is oscillating at its frequency, the cross-correlation COk Xi

will oscillate, together with the complimentary part COk Yi , with their frequency difference

Ωi −Ωk .

D[bi ] is responsible for the dissipation from the environment coupling. We assume no com-

mon bath between oscillators, and the term only manifests as the dissipation associated with

the intrinsic loss rate Γi . The quadratures decay with half the rate, and the variance decays

with the full rate, while also driven by the thermal force Γi (nth +1/2). The correlation CXi Yi

decays with the same rate Γi because both quadratures are dissipated with half of it. The same

thing reflects in the cross-correlation CXi Y j but with an averaged decay rate (Γi +Γ j )/2 of both

oscillators.

D[Xi ] is the measurement-induced backaction term that generally causes additional decoher-

ence. It does not steer the quadrature in a particular direction since it is random, so it does not

affect the quadrature update equations. However, the variance increases with the QBA rate

Γi
qba. The correlation CXi Yi does not depend on it because both quadratures are experiencing

independent backaction forces in our model. The cross-correlation CXi X j , however, can be

generated since the two quadratures Xi and X j are experiencing the same backaction force,

which is characterized by the geometric average of their QBA rates

√
Γi

qbaΓ
j
qba. Notice that the

(Xi ,Y j ) term has no common backaction force. Therefore, CXi Y j does not depend on QBA.

H [Xi ] gives rise to the measurement-induced steering of the state. The update strength is

proportional to the measurement rate
√
Γi

meas, and also the uncertainty of the state VXi . This

particular scaling can be understood fairly easily by considering a conditional operation with

rate µ done on the Gaussian state

exp

(
−µ∆t (〈X 〉+ ∆W√

4µ∆t
−X )2

)
exp

(
− (X −〈X 〉)2

4VX

)
∝ exp

− (X −〈X 〉− 2
p
µVX∆W

1+4µ∆tVX
)2

4VX /(1+4VXµ∆t )

 (3.91)

in which we can see that the updated quadrature value is shifted by 2
p
µVX∆W , and the vari-

ance is reduced by 4V 2
Xµ∆t . When observing multiple observables, e.g., X j , then the update

on the observables will influence each other through the covariance matrix CXi X j , with the
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measurement rate
√
Γ

j
meas. This correlation is also a well-known property of the multivari-

ate Gaussian distribution, which is of concern here. The (cross-) correlation (CXi Y j ) CXi Yi is

updated each time with the common Wiener increment terms in (d〈Xi 〉d〈Y j 〉) d〈Xi 〉d〈Yi 〉,
indirectly through quadrature cross-correlations, i.e. from the first-moment update equations.

All the linear terms related to ∆W are canceled due to the linearity of the measurement.

Interestingly, when multiple modes have slightly different frequencies, it seems possible to

generate a correlation between (Xi ,Yi ), mediated by quadrature rotation due to the finite

frequency offset. The correlations are first generated between (Xi , X j ) and (Yi ,Y j ) because

they experience the same backaction force. Then, due to the slight frequency difference, the

quadrature (Xi , X j ) will rotate to, e.g., (Xi ,Y j ) and contributes to the correlation between

(Xi ,Yi ) due to the common measurement channels between (Yi ,Y j ). This effect can also

be interpreted from the picture of Bayesian inference, that a measurement on a common

variable (c), with which other two variables (a,b) are correlated, will generate a correlation

between (a,b). Here, a nearby mode serves as the common variable c . However, this effect can

not induce a correlation between (Xi ,Yi ) in our system, as there are two common variables:

c1 = X j and c2 = Y j . The symmetry of these two common variables, in terms of measurement

rates, forbids the generation of single-mode correlation. This effect is illustrated in Fig. 3.3,

that even if CXi ,Y j can be non-zero, CXi ,Yi = 0 at all times.

Optimal multi-mode filter

Similar to the single-mode state estimation filter, we write down the photocurrent expression

in the multi-mode case,

i(t )d t = dW(t )+∑
i

√
4Γi

meas〈r̂i 〉(t )d t . (3.92)

Then, we can write the quadrature update equations in a vectorized form (notation CXi Xi =
VXi ),

d

d t



X1

Y1

X2

Y2
...

=



−Γ1
2 Ω1 0 0 · · ·

−Ω1 −Γ1
2 0 0 · · ·

0 0 −Γ2
2 Ω2 · · ·

0 0 −Ω2 −Γ2
2 · · ·

...
...

...
...





X1

Y1

X2

Y2
...



+



∑
i

√
Γi

measCX1 Xi

∑
i

√
Γi

measCX1Yi∑
i

√
Γi

measCY1 Xi

∑
i

√
Γi

measCY1Yi∑
i

√
Γi

measCX2 Xi

∑
i

√
Γi

measCX2Yi∑
i

√
Γi

measCY2 Xi

∑
i

√
Γi

measCY2Yi

...
...



2

(
iX

iY

)
−4

(
X1 X2 · · ·
Y1 Y2 · · ·

)
√
Γ1

meas√
Γ2

meas
...


 (3.93)
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Figure 3.3: Time evolution traces for covariance matrix elements. The system consists of three
identical oscillators separated by 10 kHz, at near-zero-temperature, and with measurement
rates at 10 kHz. We observe that Cxi x j first increases due to the common measurement noise.
Then, the correlation rotates to Cxi y j due to finite mechanical frequency difference. Even
though at some point Cxi y j ̸= 0, there is a pair of anti-symmetric contributions Cxi y j =−Cx j yi

that both contribute to Cxi yi , cancel with each other. The cancellation leads to a constant
Cxi yi = 0 over all the measurement times. This symmetry is induced by the symmetric mea-
surement rate at the two (X,Y) measurement channels, since Γmeas ≪ Γm .

We can solve the expression numerically in the frequency domain and get

X (ω) = HX X (ω)iX (ω)+HX Y (ω)iY (ω) (3.94)

Y (ω) =−HX Y (ω)iX (ω)+HX X (ω)iY (ω) (3.95)

from which we can reconstruct the optimal real-time multi-mode filter

Q(ω) = 1p
2

(HX X (ω−Ωm)− i HX Y (ω−Ωm)) i (ω) (3.96)

by recognizing that i (ω+) =
p

2
2 (iX (ω+−Ωm)+ i · iY (ω+−Ωm)) and Q(ω+) = 1

2 (X (ω+−Ωm)+ i ·
Y (ω+−Ωm)).

3.2.2 Retrodiction

To verify a state prepared through a conditioning procedure, one usually uses a strong mea-

surement to project the state to some measurement basis. After repeating this step multiple
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times, the population of different basis states can be retrieved, and the state can be verified.

For continuous measurement of mechanical motion, we are not in the regime where the mea-

surement is "strong" on a set of orthogonal basis (quadrature basis). The effective heterodyne

measurement of mechanical quadratures effectively projects the state into a non-orthogonal

state basis of coherent states [9] by a pair of orthogonal inefficient quadrature projections.

Therefore, if we use the "future" record of the measurement as a separate "weak" state pro-

jection for comparison with the state prepared using the "past" record, we will not retrieve

a population on a set of orthogonal basis, but a phase-space state variance of the prepared

state. Since the prepared states are Gaussian states, the phase-space variance holds complete

information to describe the property of the mechanical state.

Note that when we prepare the mechanical state using only the "past" record, the best we can

do is to prepare coherent states, i.e., phase-space variance the same as the vacuum uncertainty

of the quantum ground state, bounded by the Heisenberg uncertainty principle. However,

the Heisenberg uncertainty principle only applies to exactly forward prediction. With the

combination of backward retrodiction using the "future" record, the state estimation can be

much more precise, even beyond the Heisenberg limit. Intuitively, the state at a given time

is almost deterministic when we can access the whole measurement record. This technique

is frequently used in Wiener filtering, where the prediction uses the causal solution, and the

more precise estimation also uses the noncausal part.

In this section, we derive the framework of state retrodiction using the "future" record of the

measurement relative to the timing of state preparation. We follow the theory work [75], which

established the framework of retrodiction. In that work, the past density matrix is given by

ρp (t ) = ρ(
−→
t )E(

←−
t )/Tr(ρ(

−→
t )E(

←−
t )) (3.97)

where ρ(
−→
t ) is the predicted density matrix from the stochastic master equation using the

record before t , and E(
←−
t ) is the effect matrix evolved backward in time from some final

time T in the future following the Hilbert-Schmidt adjoint of the master equation. The trace-

preserving version of the backward master equation is

dE = i [H ,E ]d t +∑
i

(D†[ci ]E −〈[ci ,c†
i ]〉E E)d t +∑

i

p
ηi H [c†

i ]E dW E
i (t −d t ) (3.98)

where D†[c]E = c†Ec − 1
2 [c†c,E ]+ and dW E

i = ii d t −p
ηi 〈c†

i + ci 〉E d t . Note that the effect

matrix E is different from a density matrix, and the initial condition E(t = T ) = I is the

identity matrix I .

[76] solved for the case of Gaussian states by casting the action of quadrature operators on the

density matrix into Wigner functions,

X jρ =
(

X j + i

2
∂Y j

)
Wρ(r), Y jρ =

(
Y j − i

2
∂X j

)
Wρ(r). (3.99)

109



Chapter 3. Measurement-based quantum control of mechanical motion

Then, the master equation can be rewritten into a Fokker-Planck equation for the Wigner

function. In this scenario, the Wigner function always maintains a Gaussian form and can be

reduced to the evolution of its first and second moments.

Following this approach, we arrive at the update equations for the first and second moments

of the forward density matrix (〈r〉,σ) and the backward effect matrix (〈r〉E ,γ)

d〈r〉 = A〈r〉d t + (σB⊤−N⊤)
p
ηdW (3.100)

σ̇= Aσ+σA⊤+D −2(σB⊤−N⊤)η(σB⊤−N⊤)⊤ (3.101)

−d〈r〉E = 〈r〉E (t −d t )−〈r〉E (t ) =−A〈r〉E d t + (γB⊤+N⊤)
p
ηdWE (3.102)

−γ̇=−Aγ−γA⊤+D −2(γB⊤+N⊤)η(γB⊤+N⊤)⊤ (3.103)

where σ is the forward covariance matrix, and γ is the backward covariance matrix. In the case

where the observables are Hermitian, N = 0. Then, the only difference between the forward

and backward equations is that the drift terms A are sign-flipped.

In the simple case of tracking one mechanical oscillator, the backward update equations are

−d〈r〉E =
(
Γm

2
−

(
0 δω

−δω 0

))
〈r〉E (t )d t +2

√
ΓmeasVE (t )dWE (3.104)

−V̇E (t ) = ΓmVE (t )+Γm

(
nth +

1

2

)
+Γqba −4ΓmeasVE (t )2 (3.105)

where dWE = id t −2
p
Γmeas〈r〉E (t )d t . The initial condition, given E(t = T ) =I , is calculated

to be 〈r〉E (t = T ) = 0 and VE (t = T ) →+∞.

However, one important thing to pay attention to is that (〈r〉E ,γ) are not the moments for the

past quantum state ρp , but are only related to the effect matrix E . But since everything is

Gaussian, we can retrieve the correct moments for the past quantum states as

〈r〉p = 〈r〉VE +〈r〉E V

V +VE
Vp = V VE

V +VE
(3.106)

If we express the update formula in terms of (〈r〉p ,σp ), by setting initial moments (〈r〉 = 0,V =
Vbath = nth + 1

2 +Γqba/Γm) to the default thermal state similar to the forward updates, we have

the following backward update equations for the first two moments of the past density matrix

ρp ,

−d〈r〉p =
(
−Γm

2
−

(
0 δω

−δω 0

))
〈r〉p (t )d t +2

√
ΓmeasVp (t )dWp (3.107)

−V̇p (t ) =−ΓmVp (t )+Γm

(
nth +

1

2

)
+Γqba −4ΓmeasVp (t )2 (3.108)

where dWp = id t −2
p
Γmeas〈r〉p d t . Note that the backward update equations are the same as

the forward equations but backward in time. It is also true in multi-mode cases, where update
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equations are symmetric between forward and backward directions. Our result differs from

the reference [77] but is consistent with [78] which we believe is correct.

3.2.3 Conditional state preparation

This section describes the experiment procedure of numerically implementing the multi-

mode mechanical state preparation and verifying the numerical implementation. Notably,

we emphasize the importance of considering the effective modification of the filter response

by the finite sampling rate. With a correctly implemented filter, our measurement strongly

correlates different mechanical modes, with which collective motions can be defined to help

remove their correlations.

Multi-mode state estimation model

In Section 3.2.1, we derive the equations of quadrature evolution used for implementing the

multi-mode mechanical state estimation. This section briefly summarizes the results and dis-

cusses how to decouple the correlated mechanical modes through symplectic transformations

and reconstruct the covariance matrix using the prediction-retrodiction method.

We work in a parameter regime where the measurement rate Γmeas is significantly smaller than

the frequency of the mechanical mode Ωm , such that we can perform IQ demodulation of

the mechanical motion atΩm to obtain the slowly-varying X ,Y quadratures. Their evolution

is described by decoupled quantum master equations [36]. In the case where the measure-

ment rate approaches the mechanical frequency, as can be in the case of resonators with a

fundamental mode isolated in frequency from the higher order modes, the two equations can

be coupled as was in the case in [37, 41], and measurement-induced mechanical squeezing

can happen. Since both quadratures are measured with identical measurement rates, only

thermal coherent states are prepared through the measurement process.

Since we operate in the fast-cavity limit Ωm ≪ κ, the cavity dynamics is simplified in our

modeling. Before the IQ demodulation, the normalized photocurrent signal is described by:

i (t ) = dW (t )+∑
i

√
8Γi

meas〈Q̂i 〉(t ),

where multiple mechanical modes Q̂i oscillating atΩi are probed with measurement rates

Γi
meas, and the Wiener increment dW (t ) = ξ(t )d t is defined in terms of an ideal unit Gaussian

white noise process 〈ξ(t)ξ(t ′)〉 = δ(t − t ′). Since all oscillation frequencies are close to Ωm ,

we decompose the mechanical motion into two slowly varying quadrature observables as

Q̂i = cos(Ωm t )X̂i + sin(Ωm t )Ŷi , and perform IQ demodulation at frequencyΩm , which leads

to the signal in a vector form:

i(t )d t = dW(t )+∑
i

√
4Γi

meas〈r̂i 〉(t )d t (3.109)
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where i =
[

iX

iY

]
, r̂i =

[
X̂i

Ŷi

]
and dW =

[
dWX

dWY

]
. Since the measurement is purely linear, the

system stays in Gaussian state-space, and the dynamics are completely captured by the

expectation values of the quadratures 〈Xi 〉, 〈Yi 〉, and their covariance matrix C. To derive the

time evolutions of these quantities, we start from the quantum master equation for the system

density matrix ρ̂ [36]:

d ρ̂ =− i

ℏ
[
Ĥ0, ρ̂

]+Lenvρ̂d t +∑
j

D[ĉ j ]ρ̂d t +p
ηd

∑
j

H [ĉ j ]ρ̂dW j ,

where the index j is summed over X and Y measurement channels, and ηd is the total detec-

tion efficiency. The measurement observables are ĉ(t ) =∑
i

√
Γi

qbar̂i . The system Hamiltonian

Ĥ0 =∑
i ℏ(Ωi −Ωm)b†

i bi describes the oscillator unitary dynamics in theΩm rotating frame.

The environmental coupling term Lenvρ̂ describes the bath-induced decoherence dynamics,

and with the Markov approximation in the rotating frame, we have:

Lenvρ̂ =∑
i
Γi

m(ni +1)D[b̂i ]ρ̂+Γi
mni D[b̂†

i ]ρ̂.

From here, we derive the time evolution of the quadrature expectation values as:

d〈r̂i 〉 = Ai 〈r̂i 〉d t +2Bi dW(t ), (3.110)

where

Ai =
[
−Γi

m/2 Ωi −Ωm

Ωm −Ωi −Γi
m/2

]
and

Bi =

∑
j

√
Γ

j
measC X̂i X̂ j

∑
j

√
Γ

j
measC X̂i Ŷ j∑

j

√
Γ

j
measCŶi X̂ j

∑
j

√
Γ

j
measCŶi Ŷ j

 .

The covariance matrix elements CM̂ N̂ = 〈M̂ N̂ + N̂ M̂〉/2−〈M̂〉〈N̂〉 evolve as:

ĊM̂i N̂ j
=−Γ

i
m +Γ j

m

2
ĊM̂i N̂ j

+δM̂i ,N̂ j
Γi

th +δM ,N

√
Γi

qbaΓ
j
qba

+(−1)δM ,Y (Ωi −Ωm)CM̂i N̂ j
+ (−1)δN ,Y (Ω j −Ωm)CM̂i N̂ j

−4

(∑
k

√
Γk

measCM̂i X̂k

)(∑
l

√
Γl

measCN̂ j X̂l

)

−4

(∑
k

√
Γk

measCM̂i Ŷk

)(∑
l

√
Γl

measCN̂ j Ŷl

)
, (3.111)

where M̂ and N̂ are the canonical conjugate observables of M̂ and N̂ .

Eqs. 3.109,3.89,3.90 form a closed set of update equations given the measurement record i(t ),

and allow quadrature estimations of an arbitrary number of modes and their correlations.
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3.2 Quantum measurements of mechanical motions

The thermal occupancy ni
cond of a specific mechanical mode is determined by the quadrature

phase space variances VX̂i
=C X̂i X̂i

, VŶi
=CŶi Ŷi

, which are both equal to ncond,i +1/2 due to the

symmetric measurement rates of the X ,Y channels.

In the case of the evolution of a single mechanical mode, the quadrature variance approaches

a steady state described by an analytical solution,

VX ,Y =
−Γ′m +

√
Γ′m 2 +16Γmeas(Γth +Γqba)

8Γmeas
, (3.112)

where Γ′m = Γm+Γopt takes into account the optical damping rate Γopt. For a system consisting

of multiple mechanical modes that are not sufficiently separated in frequency (|Ωi −Ω j | not

significantly faster than any other rates in the system), cross-correlations between different

mechanical modes emerge due to common measurement imprecision noise and common

quantum backaction force. This generally leads to higher quadrature variance due to individ-

ual modes’ effectively reduced measurement efficiency.

To decouple the mechanical oscillators that are correlated due to the spectral overlap and

the measurement process, we define a new set of collective modes through a symplectic

(canonical) transformation U of quadrature basis that diagonalizes the steady state covariance

matrix U†CU = V [79]. Since the covariance matrix is real and symmetric, the elements of U are

always real, which is required for real observables. The transformation can be understood as a

normal mode decomposition of the collective Gaussian state that preserves the commutation

relations instead of conventional diagonalization using unitary matrices. This is represented

by the requirement of the symplectic transformation UΩU† =ΩwhereΩ=
[

0 IN

−IN 0

]
is the

N-mode symplectic form.

For the multimode estimation experiment, we extract the required system parameters of the

nearest ten mechanical modes aroundΩm by fitting the measured spectral noise density and

feed the time-series signal i(t ) to the closed update equations to retrieve all the 20 quadrature

expectations and 210 independent covariance matrix elements at different times. The signal

is normalized such that the Wiener increment gives the correct noise level in the frequency

domain, and the filtered unconditional defect mode signal has the correct laser-cooled thermal

occupancy.

The prediction-retrodiction method is used to reconstruct the covariance matrix C, which

is then used to compute the symplectic transformation needed to define the new collective

mode bases. In Section 3.2.2, we derived the retrodiction update equations and found that

they are identical to the prediction update equations [76], except with negative mechanical

frequencies. As a result, we have the following relations between covariance matrix elements
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Chapter 3. Measurement-based quantum control of mechanical motion

estimated by prediction and retrodiction (respectively identified by the superscripts p and r ):

C p

X̂i X̂ j
=C r

X̂i X̂ j
(3.113)

C p

Ŷi Ŷ j
=C r

Ŷi Ŷ j
(3.114)

C p

X̂i Ŷ j
=−C r

X̂i Ŷ j
. (3.115)

The reconstruction of the covariance matrix using the prediction-retrodiction method is

discussed in the next part of this section.

Experimental implementation of multimode state estimation

The observation of optomechanical squeezing in Section 3.1 demonstrates that we can conduct

quantum measurements with high efficiency. In fact, with quantum-limited detection, the

maximum squeezing equals the measurement efficiency ηmeas = Γmeas/(Γth +Γqba) of the

system, with Γmeas being the measurement rate [80], and quantifies how far the measurement

is from the Heisenberg uncertainty limit:
√

S̄imp
xx S̄tot

F F = ℏ/
(
2
p
ηmeas

)
. Measurement efficiency

is likewise crucial for measurement-based quantum control of mechanical motion [17]: the

measurement rate Γmeas = x2
zpf/

(
4S̄imp

xx

)
represents the rate at which information is gained and

the decoherence rate Γth +Γqba the rate at which information is lost. We prepare conditional

mechanical states by measuring the mechanical resonator at a rate close to its decoherence

rate. This demonstrates that our system is in a parameter regime where quantum control of

mechanical motion is possible at room temperature.

We proceed by locking the laser to the cavity at the magic detuning and adjust the single-

detector homodyne to measure the mechanical motion at the quadrature angle θ ≈ −90◦,

maximizing the readout efficiency of mechanical motion. We digitize the measurement signal

at a 14MHz rate over 2 s for state preparation in post-processing and measure a long-time

average of the spectrum on a real-time spectrum analyzer for system parameter calibration.

By fitting the measured noise spectrum with our model, we extract a total detection efficiency

of ηd = 31%, and Cq = 0.93. These parameters correspond to a measurement rate of Γmeas =
ηdΓqba = 2π×11kHz (equivalent imprecision noise quanta nimp = Γm/16Γmeas = 3.6×10−8),

approaching the thermal decoherence rate of Γth = 2π×34kHz and resulting in a measure-

ment efficiency of ηmeas = 16%. This efficiency corresponds to an imprecision-force noise

product 2.5 times the Heisenberg uncertainty limit. Compared to the maximum squeezing, the

degradation of the measurement efficiency mainly comes from the lower homodyne efficiency

at quadrature angle θ ≈−90◦, discussed in Section 2.4.3.

We record the voltage output from the photodetector using a UHFLI lock-in amplifier (Zurich

Instruments), for a total duration of 2 s, digitizing the signal at 14 MHz sampling rate, and

we store the data digitally for post-processing. The noise power spectrum density of the

digitized signal is compared to the one simultaneously measured on a real-time spectrum

analyzer to rule out SNR degradation from the digitization noise. Two 7th-order Butterworth
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3.2 Quantum measurements of mechanical motions

bandpass filters with passband 1.05-1.22 MHz are applied in order to reduce the influence of

the mechanical modes outside the bandgap, and around 50 notch filters are applied to these

mechanical modes until no mechanical peak is above the shot noise level. After the filtering,

only the ten mechanical modes around the defect mode frequencyΩm need to be kept for the

multimode state estimation study.

We conduct state preparation [41, 81] on the digitized and filtered signal based on the quantum

master equations of the system. As shown in Fig. 3.5(a), the mechanical mode is initially in a

thermal state with phase-space variance determined by both thermal decoherence and QBA

decoherence. Based on the continuous measurement result, the state estimation procedure

predicts the most probable values of the mechanical quadratures rp = (X p ,Y p ), and the

corresponding uncertainties in time in a theoretically-optimal fashion. However, as parasitic

modes are still near the mode of interest, single-mode state estimation underestimates the

conditional occupancy. In the estimation procedure, we prepare a multi-mode state and

include the nine nearest modes.

As discussed in the previous section, we demodulate the signal at Ωm , and implement the

discretized version of the update equation Eq. 3.89,

∆〈r̂i 〉 = A′
i 〈r̂i 〉∆t +2Bi∆W(t ) (3.116)

where A′
i =

[
−Γ′im/2 Ω′

i −Ωm

Ωm −Ω′
i −Γ′im/2

]
contains modified mechanical parameters:

Γ′im = Γi
m +2Re

[
−1−cos((Ωi −Ωm)∆t )

∆t

]
(3.117)

Ω′
i =Ωi − Im

[
i (Ωi −Ωm)− e i (Ωi−Ωm )∆t −1

∆t

]
(3.118)

to compensate for the influence of discretization on the state estimation performance com-

pared to an ideal continuous one. The effect of the naive discretization of the update equations

vs. that in the ideal continuous limit is shown in Fig. 3.4(b). Without considering the discretiza-

tion effect, the filter response deviates from the correct modeling of the system and causes

numerical instability in the data processing.

The matrix Bi evolution can be computed independently from the sampled time-domain data.

Therefore, we calculate the evolution following Eq. 3.90, with an update rate of 140 MHz to

mitigate the discretization effect, which is then used for the update equation Eq. 3.116 at the

sampling rate of 14 MHz. The correct implementation of the state estimation can be checked

from the Kalman filter response numerically calculated from the estimated i (t), Qi (t) and

W (t), and is shown in Fig. 3.4(a), as well as the white noise property shown of the spectral

density of the retrieved W (t ) from the data.

Using this set of equations, we can isolate the mechanical motion of the defect mode and miti-

gate spectral contamination between different modes. We can then compute the quadrature
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Figure 3.4: (a) Multimode state estimation spectral response. The noise density of the pho-
tocurrent signal i (t ) is shown in blue, together with the fit (dashed red), employed to extract
the system parameters for the ten mechanical modes in this frequency band. Those parame-
ters are used to construct the multimode state estimation filter, from which the mechanical
mode signals (defect mode shown in orange) and the measurement imprecision (green) are
separated. The white noise filter frequency response (gray) is numerically retrieved and
identical to the spectral fit, indicating that the multimode state estimation filter is correctly
implemented. (b) Comparison of the filter responses in the continuous acquisition limit, as
well as the naive discretization with the acquisition rate of 14 MHz used in the experiment. By
correcting for the effect of discretization on the filter response, we managed to reproduce the
ideal continuous-limit filter response in our measurement result shown in (a).

trajectory and the uncertainty of the optimally estimated defect mode [see Fig. 3.5(b)].

To estimate the quadrature variances VX ,Y , we use the displacement records in the “future”

relative to the time of state conditioning as a separate measurement result rr , shown in

Fig. 3.5(c), to reconstruct the covariance matrix. To experimentally reconstruct the covariance

matrix from the estimated quadrature data, for each time trace slice, we calculate the difference

between prediction and retrodiction results from 〈r̂〉r −〈r̂〉p , and calculate the covariance

matrix via

C = 1

2
⟪(〈r̂〉r −〈r̂〉p

) · (〈r̂〉r −〈r̂〉p
)⊺⟫ (3.119)

where ⟪· · ·⟫ is the statistical average over all the time trace slices, and r̂ =
[
· · · X̂i , Ŷi · · ·

]⊺
. The

variance of the quadrature differences between the prediction and retrodiction results should

be exactly ⟪∥rr − rp∥2⟫ = 4VX ,Y . We retrieved a thermal occupation ncond = VX ,Y − 1/2 =
1.43 of the prepared single-mode displaced thermal state, with only 3% deviation from the

theoretical value. We found that the multi-mode estimation result shows 63 % increased
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Figure 3.5: Conditional state preparation and verification. (a) Schematic of state preparation
by continuous displacement measurement. The mechanical mode is initially in a thermal state.
Given the measurement record, the state is continuously estimated and purified over time.
(b) Exemplary quantum trajectory of the mechanical quadratures rp = (X p ,Y p ). The shaded
width corresponds to one standard deviation σ of uncertainty in the estimated quadratures.
(c) Using state retrodiction rr = (X r ,Y r ) (blue), the differences with the prediction result rp

(red) at t = 0 is employed to reconstruct the covariance matrix of the multimode system. (d)
Phase space density map of the collective mode of interest, with the solid circle marking the
statistical standard deviation and the dashed circle indicating the standard deviation of a pure
coherent state as a reference.
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Chapter 3. Measurement-based quantum control of mechanical motion

thermal occupancy compared to the idealized single-mode estimation.

The degradation stems from the fact that mechanical modes, although separated in frequency,

always have finite spectral overlap and cannot be fully distinguished. This results in strong

cross-correlations between mechanical modes, whereby collective modes with enhanced

measurement rates can be defined [78]. From the reconstructed multimode covariance

matrix C (definition of the matrix elements CM ,N given in the Methods), we can quantify

the magnitude of correlations by evaluating CMi ,N j /
√

VMi VN j , where Mi and N j are arbitrary

quadratures of the corresponding modes i and j . The correlation can be as strong as −0.44

depending on the frequency separation and measurement rates. We can define a set of

uncorrelated collective modes that diagonalize C through a symplectic transformation. The

covariance matrix is then diagonalized to retrieve the symplectic transformation for the

collective modes and the thermal occupations of these modes.

In the collective mode basis, all the modes are uncorrelated and are only weakly modified

from the original basis. We conduct a similar prediction-retrodiction procedure using multi-

mode filtering and plot the quadrature differences rr − rp in Fig. 3.5(d). We find a modified

defect mode thermal occupancy of ncond,col = 0.97 in the new collective mode bases, with

a corresponding state purity of 34 %. This value is also very close to the ideal single-mode

case, limited by the measurement efficiency. The transformation coefficients for the defect

mode X̂ are shown in the following table. Note that the contributions from Ŷi are attributed to

statistical uncertainties.

Ωi −Ωm (kHz) Coefficients X̂ Coefficients Ŷ

0 0.999 5.05×10−7

15.1 1.53×10−5 −2.11×10−6

13.9 −2.54×10−7 −2.33×10−6

-17.4 2.16×10−4 5.06×10−6

-19.3 1.23×10−4 2.11×10−6

-33.3 3.04×10−4 3.14×10−6

-34.4 2.96×10−2 5.27×10−4

-36.6 1.15×10−4 −8.88×10−6

-42.1 4.18×10−2 −2.13×10−4

-43.0 1.50×10−4 3.14×10−6

Measurement preparation of entangled mechanical states

One might ponder, if we can measure the multi-mode system very close to the quantum

limit, can we prepare a multi-mode entangled state in our MIM system? In the following,

we will present some simple arguments that indicate that it is not possible in our case when

Γmeas ≪Ωm .

Let us assume the most simplified case, where two mechanical oscillators are degenerate
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Figure 3.6: Simulation of covariance matrix elements and the Duan criteria D , of continuous
measurements of two identical mechanical modes, in either degenerate condition δΩm = 0 or
nondegenerate condition δΩm = 100kHz. The measurement efficiency is set to ηmeas = 80%
with realistic system parameters, with measurement rates Γmeas = 20kHz.

at frequency Ωm , and have identical mechanical properties, e.g. Γth. We measure both

mechanical oscillators at a rate Γmeas ≫ Γth using a single optical mode. Based on the optical

measurement record, prepare conditional two-mode mechanical states, described by the

quadrature expectation values and the covariance matrix C.

Typical criteria for verifying entanglement between two continuous variable modes are the

Duan criteria [82], that we can construct collective quadrature variables e.g. X̂± = (X̂1± X̂2)/
p

2

and Ŷ± = (Ŷ1 ± Ŷ2)/
p

2. If the quantum correlation between two original quadratures is strong

enough, one could reduce the variance of the collective quadrature below vacuum noise, e.g.,

VX̂+ < 1/2, entanglement can be achieved, with the criteria D =VX̂+ +VŶ− < 1.

In our system, because Γmeas ≪Ωm , and also we are using a higher order mechanical mode

that is soft-clamped, the measurement channels between X̂ and Ŷ are independent by

the rotating wave approximation. Therefore, a lot of the covariance matrix elements are

either zero or symmetric between observables, e.g., C X̂1Ŷ2
= 0 in the long time limit and

C X̂1 X̂2
=CŶ1Ŷ2

. With the setting we layout, the lowest possible collective quadrature variance

is VX̂+ = VŶ+ =
√

(ΓmVX̂1
+Γqba)/Γmeas/2 ≥ 1/2, shown in Fig. 3.6, due to the symmetry of

the measurement channels mentioned above. Therefore, entanglement is generally impos-

sible, as strong correlation is not quick enough to establish from Γth before Ωm rotates the

quadrature to the orthogonal one. In the field, people used backaction-evasion measurement

with mechanical squeezing interaction [83], or negative mass oscillators [24, 31] to break the

quadrature symmetry, and has achieved entanglement in MIM systems [84], though with a

spin system. Fast measurement [85] is also a candidate to break the symmetry and induce

mechanical squeezing and entanglement.
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Chapter 3. Measurement-based quantum control of mechanical motion

3.3 Measurement-based feedback cooling

In the previous section, we discuss how to measure mechanical motion as precisely as possible

by the restriction from the Heisenberg uncertainty principle. The continuous measurements

of mechanical motion predict thermal coherent states of mechanical oscillators at a given time

in the measurement record, with which we can control the mechanical states using feedback

actuation in real-time of the mechanical mode. This measurement-based feedback control

can prepare states like the quantum ground state [17], with the state purity limited by the

purity of the mechanical states prepared in the continuous measurement. As shown in the

previous section, optimal state preparation can isolate mechanical motions from the nearby

parasitic modes, which can also be implemented in real-time with IIR filters discussed in

Section B.3.

In this section, even though we primarily discuss experiment results without using an optimal

multi-mode filter implemented physically on our FPGAs, our theoretical analysis remains

general as we use a generalized feedback filter function H (ω) in this section. In the experiment,

we primarily use a combination of IIR, IQ, and PID filters, which are not yet optimal for the

state inference.

3.3.1 Quantum Langevin equations of measurement-based feedback cooling

P̂in χm Q̂ χX
c X̂

χY
c

Ŷ

∆, âin, b̂in

X̂vacXnoise H

X̂ θ
out

X̂ θ
det

Ffb

Figure 3.7: System diagram of a mechanical mode undergone feedback damping. Both cavity-
assisted dynamical backaction feedback and measurement-based electronic feedback are
included. The symbols are defined in Section 3.3.1.

Generally, feedback cooling of the mechanical modes is not as trivial as how we analyzed
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3.3 Measurement-based feedback cooling

above using the resonant pump. The complication arises in the following circumstances:

• When the laser is detuned from cavity resonance (e.g., at ∆∗), the cavity also induces

intra-cavity feedback that could cool or heat the mechanical mode in the presence of

mirror noise and parasitic membrane modes modeled as cavity detuning noises ∆(ω).

Optical spring shift also occurs in this setting.

• When the detection is performed at an arbitrary optical quadrature angle θ (e.g., direct

detection), the imprecision noise ximp and the measurement-induced backaction force

Fba can be correlated and causes interference on the measurement record.

In our analysis, we need to include all these factors that influence the inference results of our

feedback cooling. We illustrate a diagram of the closed-loop system in Fig.3.7 to showcase

the connections between different parts of the system. In this section, we formally analyze

and derive the expressions of the mechanical phonon occupancy in a measurement-based

feedback experiment when the laser is detuned from cavity resonance.

In the Heisenberg picture, the Langevin equations are

˙̂a = −
[κ

2
+ i (∆+p

2g0Q̂)
]

â +p
κâin (3.120)

˙̂Q = ΩmP̂ (3.121)
˙̂P = −ΩmQ̂ +

p
2ΓP̂in −ΓP̂ −

p
2g0â†â +Ffb (3.122)

where we define the dimensionless mechanical position operator Q̂ = (b̂† + b̂)/
p

2 and the mo-

mentum operator P̂ = i (b̂† − b̂)/
p

2. Similarly, we also define the optical quadrature operators

X̂ = (â† + â)/
p

2 and Ŷ = i (â† − â)/
p

2. The detuning here is defined as ∆= νcav −νlaser. The

feedback force Ffb is also included in the equations, whose expression will be derived later.

For convenience, we also define the optomechanical coupling rate g = g0a.

The mechanical motion obeys the following set of equations in both the time and frequency

domain

¨̂Q +Γ ˙̂Q +Ω2
mQ̂ =

p
2ΓΩmP̂in −2gΩm X̂ +ΩmFfb (3.123)

Q̂(ω) = χm(ω)
(p

2ΓP̂in(ω)−2g X̂ (ω)+Ffb(ω)
)

, (3.124)

where we introduce the mechanical susceptibility χm(ω) ≡ Ωm/(Ω2
m −ω2 − iωΓ), and the

dimensionless input momentum fluctuation P̂in(t ) = ip
2

(
b̂†

in(t )− b̂in(t )
)
≡ xzpfF̂ (t )

ℏ
p
Γ

with correla-

tion

SF̂ F̂ (ω) = 2mΓ(ω)ℏω(n(ω)+1) (3.125)

SF̂ F̂ (−ω) = 2mΓ(ω)ℏωn(ω). (3.126)

For simplification, the cavity field a is set as the θ = 0 reference, such that both a and g are
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real-valued. We can then proceed to write down the expressions of the optical quadratures, as

well as the mechanical position operator in the Fourier domain,

X̂ (ω) = χX
c (ω)a∆(ω)+χX

c (ω)
p

2gQ(ω)

+ χc (ω)
p
κa âin(ω)+χ∗c (−ω)

p
κa â†

in(ω)+·· · (3.127)

Ŷ (ω) = χY
c (ω)a∆(ω)+χY

c (ω)
p

2gQ(ω)

− iχc (ω)
p
κa âin(ω)+ iχ∗c (−ω)

p
κa â†

in(ω)+·· · (3.128)

Q̂(ω) = χm(ω)
(p

2ΓP̂in(ω)−2g X̂ (ω)+Ffb(ω)
)

(3.129)

with the cavity susceptibilities defined as

χc (ω) =
p

2
−1

(κ/2+ i∆− iω)−1 (3.130)

χX
c (ω) = i (χ∗c (−ω)−χc (ω)) (3.131)

χY
c (ω) = −(χ∗c (−ω)+χc (ω)) (3.132)

After solving the cavity-assisted self-feedback loop, the quadrature expressions are

X̂ (ω) = χX
∆ (ω)∆(ω)+χX

Pin
(ω)(

p
2ΓP̂in(ω)+Ffb(ω))

+ χX
ain

(ω)âin +χX
a†

in

(ω)â†
in + ... (3.133)

Ŷ (ω) = χY
∆ (ω)∆(ω)+χY

Pin
(ω)(

p
2ΓP̂in(ω)+Ffb(ω))

+ χY
ain

(ω)âin +χY
a†

in

(ω)â†
in + ... (3.134)

Q̂(ω) = χm(ω)
[

(1−2gχX
Pin

)(
p

2ΓP̂in(ω)+Ffb(ω))

− 2g (χX
∆∆+χX

ain
(ω)âin +χX

a†
in

(ω)â†
in + ...)

]
(3.135)

with a new set of susceptibilities originate from the cavity self-feedback loop

χX
mc (ω) = (1+2

p
2g 2χm(ω)χX

c (ω))−1 (3.136)

χX
∆ (ω) = aχX

c (ω)χX
mc (ω) (3.137)

χX
Pin

(ω) =
p

2gχm(ω)χX
c (ω)χX

mc (ω) (3.138)

χX
ain

(ω) = p
κaχc (ω)χX

mc (ω) (3.139)

χX
a†

in

(ω) = p
κaχ

∗
c (−ω)χX

mc (ω) (3.140)

χY
∆ (ω) = χY

c (ω)[a −2
p

2g 2χm(ω)χX
∆ (ω)] (3.141)

χY
Pin

(ω) = p
2gχY

c (ω)χm(ω)(1−2gχX
Pin

(ω)) (3.142)

χY
ain

(ω) = −i
p
κaχc (ω)−2

p
2g 2χY

c (ω)χm(ω)χX
ain

(ω) (3.143)

χY
a†

in

(ω) = i
p
κaχ

∗
c (−ω)−2

p
2g 2χY

c (ω)χm(ω)χX
a†

in

(ω) (3.144)

We proceed to derive the expression of the detected optical quadrature operator at angle θ. We

define the quadrature with arbitrary angle X̂ θ =p
2
−1

(âe−iθ + â†e iθ) = X̂ cosθ+ Ŷ sinθ. We
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3.3 Measurement-based feedback cooling

model the cavity with three coupling ports, i.e., the laser input port b̂in, the transmission port

âin, and the internal loss port ĉin. We do optical detection on the output mode âout, with the

output quadrature defined as

X̂ θ
out = X̂ θ

in −
p
κa X̂ θ. (3.145)

We can expand this expression again into different components ((ω) not shown),

X̂ θ
out(ω) =χθ∆∆+χθPin

(
p

2ΓP̂in +Ffb)+χθain
âin +χθa†

in

â†
in +

∑
k=b,c

χθkin
kin +χθk†

in

k†
in (3.146)

with the quadrature-angle-dependent susceptibilities

χθ∆(ω) = −pκa(χX
∆ cosθ+χY

∆ sinθ) (3.147)

χθPin
(ω) = −pκa(χX

Pin
cosθ+χY

Pin
sinθ) (3.148)

χθain
(ω) = p

2
−1

e−iθ−p
κa(χX

ain
cosθ+χY

ain
sinθ) (3.149)

χθ
a†

in

(ω) =
p

2
−1

e iθ−p
κa(χX

a†
in

cosθ+χY
a†

in

sinθ) (3.150)

χθkin
(ω) = −pκk (χX

kin
cosθ+χY

kin
sinθ) (3.151)

χθ
k†

in

(ω) = −pκk (χX
k†

in

cosθ+χY
k†

in

sinθ). (3.152)

At the detector, we model all possible photon losses, e.g., detector quantum efficiency and

passive optical losses, into the detection efficiency η. Therefore, we arrive at the expression for

the detected optical quadrature as

X̂ θ
det(ω) =p

ηX̂ θ
out(ω)+ i

√
1−ηX̂vac(ω). (3.153)

Given the detection record 〈X̂ θ
det(ω)〉, we apply a feedback filter H (ω) and then use it to actuate

the mechanical mode as an optical force Ffb. Noises such as electronic noise and optical shot

noise are modeled as Xnoise(ω) that adds to the feedback force. Therefore, we can express the

feedback force to the mechanical mode as

Ffb(ω) = H(ω)X̂ θ
det(ω)+Xnoise(ω) (3.154)

with which we close the feedback loop. Note that here, the feedback force is not a quantum

observable. Physically, the feedback signal is, at some stage, just electrical current I (t ) that we

can sample classically. Therefore Ffb(t ) commutes with itself at all times, whereas X̂ θ
det(t ) does

not. Here, we have encountered a common controversial measurement problem of quantum

mechanics. Strictly written, we need to enforce the following relation

SFfbFfb (ω) = |H(ω)|2S X̂ θ
det X̂ θ

det
(ω)+SXnoise Xnoise (ω) (3.155)

where the time auto-correlation of X̂ θ
det(t ) needs to be symmetrized to become a Hermitian

observable before the structuring by the filter H (ω). For this reason, strictly speaking, Eq. 3.154
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Chapter 3. Measurement-based quantum control of mechanical motion

violates some physical laws. However, in our specific case, as the closed-loop auto-correlation

requires symmetrization to become a Hermitian observable, the treatment [17, 86] that the

feedback force is quantum does not affect the measurement outcome physically. We also

discussed this problem in detail in Appendix B.7.

By taking out the variable Ffb in the closed-loop equations, we arrive at the closed-loop

measurement record

X̂ θ
det =

(
χθ∆∆+χθPin

(
p

2ΓP̂in +Xnoise)+χθain
âin +χθa†

in

â†
in

+ ∑
k=b,c

χθkin
kin +χθk†

in

k†
in + i

√
1−η
η

X̂vac

)(p
η−1 −χθPin

H
)−1

(3.156)

as well as the mechanical position operator

Q̂(ω) = χm(ω)

[
(χFχHχ

θ
∆−2gχX

∆ )∆+ [χF (χHχ
θ
Pin

+1)](
p

2ΓP̂in +Xnoise)

+iχFχH

√
1−η
η

X̂vac + (χFχHχ
θ
ain

−2gχX
ain

)ain +
∑
k
· · ·

]
(3.157)

in which we define new susceptibilities of χF and χH associated with the feedback process,

χF = (1−2gχX
Pin

) (3.158)

χH = H
p
η−1 −χθPin

H
. (3.159)

Here, we can easily distinguish the two feedback loops present in the system, i.e., the cavity self-

feedback and the measurement-based electronic feedback, as any electronic feedback effect

is associated with the electronic filter response H(ω). With these results, we can calculate the

power spectral densities of the in-loop spectral density S X̂ θ
det X̂ θ

det
and the out-of-loop spectral

density SQ̂Q̂ ,

S X̂ θ
det X̂ θ

det
=

(
|χθ∆|2S∆∆+|χθPin

|2(2ΓSP̂inP̂in
+Snoise)+ 1−η

2η
+|χθain

|2nin +|χθ
a†

in

|2(nin +1)

+∑
k
|χθkin

|2nin +|χθ
k†

in

|2(nin +1)

)∣∣∣pη−1 −χθPin
H

∣∣∣−2
(3.160)

and

SQ̂Q̂ = |χm(ω)|2
[
|(χFχHχ

θ
∆−2gχX

∆ )|2S∆∆+|χF (χHχ
θ
Pin

+1)|2(2ΓSP̂inP̂in
+Snoise)

+|χFχH |2 1−η
2η

+|χFχHχ
θ
ain

−2gχX
ain

|2nin +|χFχHχ
θ

a†
in

−2gχX
a†

in

|2(nin +1)+∑
k
· · ·

]
(3.161)
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3.3 Measurement-based feedback cooling

in which the noise correlations defined in Section 1.1 are used.

If there is classical noise in terms of Cqq and Cpp entering from a specific channel a with a

certain susceptibility χa , then the spectral density also has these additional terms,

δS = Cqq |e−iφχa +e iφχa† |2 +Cpp |e−iφχa −e iφχa† |2
2

. (3.162)

where φ is the mean field phase of the optical input ain = |ain|e iφ. In our experiment, we are

not limited by the laser noises, so we can safely set Cqq , Cpp and nin to zero.

3.3.2 Using measurement results to infer mechanical phonon occupancy

In this subsection, we analyze one of the feedback cooling experiments we performed in

our previous generation device using conventional cavity mirrors, where mirror noise con-

taminates the measurement record and heats up the mechanical mode through internal

cavity feedback. We also compare the different results using different fitting models, i.e., the

simplified approximated model vs. the exact model analyzed in the previous section.

Our previous generation device uses a perforated membrane with a soft-clamped mode at

700 kHz, with the measured spectrum shown in Fig. 3.8(a). We pump the device at the magic

detuning ∆∗ such that the nonlinear noise disappears. Around the soft-clamped mode, we

observe two prominent mechanical noise peaks originating from the thermomechanical

motions of the mirror substrates. To circumvent the noise contamination of the mirror

motions, we implement a specific IIR feedback filter shown in Fig. 3.9 in combination with an

IQ filter, programmed on a Red Pitaya FPGA board, to reduce the feedback force contribution

from the mirror noise. Note that the IIR filter used is not theoretically optimal, and a correct

implementation in Section 3.2.1 could help better isolate the soft-clamped motion from the

mirror motions.

The measured spectrum when the feedback loop is closed is also shown in Fig. 3.8(a), fit-

ting which will yield the mechanical position noise density and the phonon occupancy. We

illustrate the differences between the exact model (Eq. 3.160-3.161) derived in this section

and the approximated model derived in Appendix B.7, in Fig. 3.8. In the panel measured, the

exact model captures better the correlation (both classical and quantum) of the imprecision

and force noise than the approximated model, especially around the mirror modes. In the

panel inferred, the exact model captures the mirror-noise-induced heating of the soft-clamped

mode due to cavity self-feedback, which results in about 7-10 added phonons in the final

mechanical occupancy. The two models also yield different gains of the feedback filter H(ω),

illustrated in the panel occupancy.

In summary, the exact model established in this section better captures the measured spectral

features from the imprecision-force noise interference, and also indicates that the cavity

self-feedback-induced heating from parasitic modes severely limits the final occupation
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Figure 3.8: Comparison between the approximated model from Appendix B.7 and the exact
model in this section by fitting the same measurement record. (a) Measured spectral of the
optical signal shown in solid lines, with (orange) and without (blue) electronic feedback. The
fits using the approximated model (blue) and the exact model (red) are shown in dashed
lines. (b) Inferred mechanical position spectra using the two fitting models, with (dashed) and
without (solid) electronic feedback. (c) The calibrated phonon occupancy using the two fitting
models as a function of the fitted feedback filter gain.
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Figure 3.10: (a) Comparison of the mechanical position spectra with (blue solid) and without
(red solid) the Hc cancellation filter. With the filter is applied, the heating contribution due to
the mirror noise (red dashed) are removed. We also show the result when a Hc is applied in
parallel with a damping filter Hfb. (b) Comparison with the cooling result using the parallel
filters vs. that of only the feedback filter Hfb, as well as the approximate model that does not
account for mirror noise heating. (c) Calibrated phonon occupancy as a function of fitted
feedback filter gain.

achievable from the electronic feedback. The following subsection analyzes the electronic

response function required to cancel the cavity self-feedback-induced heating to achieve

optimal phonon occupation.

3.3.3 Cancelling cavity response through measurement-based feedback

In the previous section, we observed that when the laser is pumped from the magic detuning

∆∗, the cavity self-feedback drives the soft-clamped mode with the mirror noise. This heating

is not preferred for achieving low phonon occupancy but is always present for off-resonant

probing.

However, it is possible to cancel the cavity effect using electronic feedback. Given the derived

expression of Eq. (3.161) for a general filter response H(ω), we find that in a special case

when H =−2g /
p
ηκa , all the effect due to laser detuning is canceled. Under such a feedback

condition, the mechanical spectrum is

S∗
Q̂Q̂

= |χm(ω)|2
[

(2ΓSP̂inP̂in
+Snoise)+ 4g 2

κa

(
1−η

2η
+nin + 1

2
+∑

k
· · ·

)]
(3.163)

where all the dynamical terms are canceled. Instead, the feedback adds only some heating

due to added imprecision from detection. Essentially, by feeding back the signal in a specific

way to actuate the mechanical mode, the dynamical backaction effect from the cavity can be

completely removed, as if the laser is probing the cavity on resonance.

We also numerically investigated this effect, illustrated in Fig. 3.10(a). The result shows the
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Chapter 3. Measurement-based quantum control of mechanical motion

correct cancellation of both the heating due to mirror modes and the cancellation of the

optical spring effect from the cavity. Given this effect, the correct strategy for achieving low

phonon occupancy is to apply two filters in parallel H = Hc +Hfb, where Hc cancels the cavity

effect, and the other Hfb does the optimal feedback cooling. As we see from Fig. 3.10(a), when

the parallel filters are applied, we circumvent the heating due to cavity self-feedback while

also achieving significant cooling of the soft-clamped mode.

We compare the result without the cancellation feedback filter Hc in Fig. 3.10(b,c). With the

addition of Hc , we can achieve a phonon occupancy as if the mirror heating was never there,

which the approximated model assumes. The finite difference is attributed to the canceled

optical spring effect that brings the soft-clamped mode closer to the right-side mirror mode

and effectively reduces the SNR.

3.4 Cooling a mechanical oscillator close to the quantum ground

state

3.4.1 Sideband cooling of mechanical oscillators

This section discusses the results of the optical sideband cooling of mechanical motions

using our current generation device, discussed in Chapter 2. Usually, sideband cooling in

the fast-cavity limitΩm ≪ κ is less efficient than measurement-based feedback cooling. In

our system, however, we have already achieved a few phonon occupancy with only sideband

cooling, which enables the observation of quantum effects such as optomechanical sideband

asymmetry that we discuss in the next section.

In our system, due to the reflectivity wavelength dependence of the dielectric coatings of the

cavity, we can choose the optical linewidth by tuning the laser to a different optical wavelength.

We test the sideband-cooling phonon-occupancy limit of our system with an optical mode at

862.2 nm with optical linewidth κ/2π= 13.5MHz, the lowest among all the optical modes we

characterized. The idealized theoretical cooling limit is:

nideal =
(Ωm +∆∗)2 + (κ/2)2

4∆∗Ωm
= 2.9, (3.164)

evaluated with the laser pump applied at the magic detuning ∆∗. We pump the cavity with

2 mW of input power and measure the output spectrum of the cavity (see Fig. 3.11(a,c)). Using

Eq. 3.160 to fit the measured spectrum, we can reliably extract all the system parameters

(Cq , η, θ), and also the noise from the nearby spurious mechanical modes S̄∆∆(ω). Using the

extracted quantities, we can reconstruct the mechanical position noise density S̄QQ (ω) using

Eq. 3.161 (see Fig. 3.11(b,d)) by setting the feedback filter H = 0.

We consider two mechanical mode bases for different purposes to estimate the lowest achiev-

able phonon occupancy. In the original mode basis, with the full model described by Eq. 3.160
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3.4 Cooling a mechanical oscillator close to the quantum ground state

and Eq. 3.161, the sideband cooling mediates a coupling between mechanical modes. As

a result, the correlation between the soft-clamped mode and the spurious modes is non-

negligible. It leads to a phonon occupancy of the defect mode larger than the theoretical ideal,

as is also analyzed in Section 3.3.1. Under our experimental conditions, the best phonon

occupancy with this optical mode was neff = 11.7 at relatively low optical powers (Cq = 1.0, see

Fig. 3.11(e)), limited by the interaction with nearby mechanical modes.

Next, we analyze the system in the framework of multi-mode optomechanics [87] where the

cavity-induced coupling between mechanical modes results in mode hybridization and a

new set of decoupled normal mode basis. In the decoupled basis, where the cooling-induced

correlations between the mechanical modes are nulled, the decoupled soft-clamped mode

achieves a phonon occupancy of neff = 5.7 at Cq = 1.6. This phonon occupancy results from

the small number of correlation quanta (∼ 10) compared to the large phonon occupancy

(≫ 10) of the spurious modes in the original basis. Such a treatment is similar to those

presented in the previous cooling experiments [43, 88], where spurious mechanical modes

near the target mode couple to the optomechanical cavity. Essentially, by fitting a Lorentzian

to the soft-clamped mode and ignoring nearby spurious modes, we attain the same phonon

occupancy as the decoupled mode.

Note that the obtained phonon occupancy in the decoupled basis is also identical to that which

would be retrieved by an independent sideband asymmetry measurement [41], shown in the

next section. We stress that the phonon occupancy evaluated this way is only associated with

the decoupled mode, defined in the cooling pump’s presence. In applications requiring the

cooling pump’s removal, the mechanical modes decouple, and the effective phonon occupancy

returns to that of the full model. However, in many applications, removing the cooling pump

is not strictly necessary. At the experimental condition of Cq = 1.6, the full model would yield

an increased phonon occupancy of neff = 21.4 (see Fig. 3.11(e)), still among the lowest phonon

occupancy achieved in nanomechanical devices. Generally, the cooling-induced multi-mode

hybridization results in higher total phonon occupancy compared to the idealized case, but in

some special cases, the decoupled modes can have lower occupancies.

We further stress that the correlated quanta evaluated from the full model do not impose any

limit on measurement-based feedback schemes. As discussed in the previous section, in the

presence of cavity-mediated optical cooling, the cooling-induced correlations to the spurious

modes can be completely canceled in a measurement-based feedback scheme. Therefore, for

any measurement-based control scheme that requires a filter H1(ω), the constructed filter

H(ω) = H0(ω)+H1(ω) achieves the desired state with no correlation to spurious modes.
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Figure 3.11: Sideband cooling limit study using the 862.2 nm optical mode. (a) Measured me-
chanical spectrum at Cq = 1.0, showing spectral overlap between membrane modes. (b) From
the fit, the position noise density of the defect mode is reconstructed and shows correlations
to the nearby auxiliary modes. (c,d) Same measurement and analysis but for Cq = 1.6. (e)
Calibrated sideband cooling phonon occupancy at different Cq .

3.4.2 Sideband asymmetry using a dual-homodyne measurement

Dual quadrature scheme

In the previous section, we described that by pumping the cavity at the magic detuning ∆∗,

we could efficiently cool the soft-clamped mode optically to an effective phonon occupancy

of neff ∼ 6. With this level of phonon occupation, the asymmetry in the mechanical force

spectral density SFtotFtot (±Ωm) is very pronounced (∼15 %), which leads to the optomechanical

sideband asymmetry of the mechanical position spectral density SQQ = |χ′m |2SFtotFtot , where

χ′m is the effective mechanical susceptibility under optical damping. In this section, we ob-

serve this mechanical sideband asymmetry using a dual quadrature measurement technique.

This specific detection scheme is implemented due to the challenge of canceling TIN in a

heterodyne detection (discussed in Section 2.4.8), which is conventionally used to separate

positive and negative frequency components.

As established in Section 2.4.3, it is possible to cancel TIN using homodyne detection with a

carefully selected local oscillator phase and amplitude. However, asymmetry of the quantum

spectrum comes from the fact that the autocorrelation function CQQ (t) = 〈Q̂(t)Q̂(0)〉 is not

a Hermitian observable and therefore can be complex. In physical measurements, only

Hermitian operators are observable, e.g., CQQ (t) = 〈Q̂(t)Q̂(0)+Q̂(0)Q̂(t)〉/2, which leads to

a symmetric spectrum SQQ (ω). Therefore, with a single homodyne that directly measures

the oscillator’s position, we can not effectively separate the negative and positive Fourier
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3.4 Cooling a mechanical oscillator close to the quantum ground state

components, which can be done in heterodyne detection. The observation of sideband

asymmetry has been controversial and complicated to analyze, as it involves the detailed

physical nature of the measurement apparatus. For reference, see [69].

To circumvent this challenge, we implement a measurement setting here to measure two

orthogonal optical quadratures simultaneously so that the complex field a(t) can be recon-

structed instead of the usual real signal with single quadrature measurement, with which

symmetrization of the correlation function has to be enforced. By doing so, the optical fields’

negative and positive frequency components relative to the optical carrier can be reliably

separated, similar to the heterodyne detection. To reconstruct the complex field, signals of

two orthogonal quadratures are required (e.g., amplitude and phase), as in

â(t ) = X̂ (t )+ i Ŷ (t )p
2

(3.165)

with the penalty of reducing detection efficiencies on both measurement operators, restrained

by the Heisenberg uncertainty principle similar to the heterodyne detection. Before we

proceed, note here our definition of the optical quadratures of arbitrary quadrature angles

X̂ = â + â†

p
2

(3.166)

Ŷ = i
â† − âp

2
(3.167)

X̂θ =
âe−iθ+ â†e iθ

p
2

(3.168)

In our experiment, we do not wish to detect two orthogonal quadrature angles directly due to

the uncertainty in the measured quadrature angles. Instead, we use two measurement settings

with well-calibrated quadrature angles such that the complex field a(t) can be faithfully

constructed. One of them is done with direct detection (θDD = θ1 = 30deg, angle rotated due

to pumping at the ∆∗), and the other one with a homodyne angle θHom = θ2 = 0deg such that

the mechanical signal is minimized on detection. These two detected quadratures hold the

following relations for the phase and the amplitude quadratures,

X̂DD = X̂1 =p
η1(cos(θ1)X̂ + sin(θ1)Ŷ )+√

1−η1X̂vac,1 (3.169)

X̂Hom = X̂2 =p
η2(cos(θ2)X̂ + sin(θ2)Ŷ +√

1−η2X̂vac,2 (3.170)

Here, any added noise and optical losses are modeled as the finite detection efficiencies η1,2,

with independently added vacuum noise from the information loss.

In order to reconstruct the amplitude and the phase quadratures of the field, we revert the
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above relations

X̂ = 1p
η1η2

(p
η2 sin(θ2)X̂1 −p

η1 sin(θ1)X̂2 −
√
η2(1−η1)sin(θ2)X̂vac,1

+√
η1(1−η2)sin(θ1)X̂vac,2

)
/(sin(θ2)cos(θ1)− sin(θ1)cos(θ2)) (3.171)

Ŷ = 1p
η1η2

(p
η2 cos(θ2)X̂1 −p

η1 cos(θ1)X̂2 −
√
η2(1−η1)cos(θ2)X̂vac,1

+√
η1(1−η2)cos(θ1)X̂vac,2

)
/(cos(θ2)sin(θ1)−cos(θ1)sin(θ2)) (3.172)

In the case of our specific measurement quadrature angles, we obtain the following relations

X̂ = X̂2 −
√

1−η2X̂vac,2p
η2

(3.173)

Ŷ = 2
X̂1 −

√
1−η1X̂vac,1p
η1

−p
3

X̂2 −
√

1−η2X̂vac,2p
η2

(3.174)

X̂ + i Ŷ = 2i
X̂1 −

√
1−η1X̂vac,1p
η1

+ (1−p
3i )

X̂2 −
√

1−η2X̂vac,2p
η2

(3.175)

2i
X̂1p
η1

+ (1−p
3i )

X̂2p
η2

= X̂ + i Ŷ +2i

√
1−η1X̂vac,1p

η1
+ (1−p

3i )

√
1−η2X̂vac,2p

η2
(3.176)

therefore, by combining signals from the two measurement channels in a specific way, i.e.,

ŝ =p
2i X̂1p

η1
+ 1−p3ip

2
X̂2p
η2

, we effectively constructed a non-Hermitian observable

ŝ = â +
√

2(
1

η1
+ 1

η2
−2)X̂vac (3.177)

which yields information on â with some added vacuum noise. In our experiment, we can

reliably retrieve the measured quadrature angles and the efficiency ratio between the two

channels by fitting the noise spectral density ratio S X̂1 X̂1
(ω)/S X̂2 X̂2

(ω) between the two chan-

nels, a function only determined by the cavity transduction susceptibility which is sensitive to

the quadrature angles and the efficiencies.

Here, we need to pay special attention to what we are measuring in the experiment, as classical

measurement results at different times commute with each other, whereas the quantum

variable does not. Therefore, symmetrization is always required for classical observables. In

this case of a non-Hermitian observable, we need to enforce the following symmetrization for

the auto-correlation function

S ŝ ŝ(ω) = 1

2
FTτ[〈ŝ†(τ)ŝ(0)+ ŝ(0)ŝ†(τ)〉]

= S ââ(ω)+S â† â† (−ω)

2
+2(

1

η1
+ 1

η2
−2)S X̂vac X̂vac

(ω) (3.178)

which is the same as what one gets from a heterodyne detection. With this in mind, we omit
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3.4 Cooling a mechanical oscillator close to the quantum ground state

the hatsˆon the quantum observables in the following subsection.

Field spectral density of dual homodyne measurement

Here, we derive the spectral density of the reconstructed complex field a(t) and show that

it exhibits sideband asymmetry of the force spectral density experienced by the mechanical

mode.

First, we start from the standard frequency-domain Langevin equations for mechanics and

the cavity mode

Q(ω) =χm(ω)(
√

2ΓmPin −2g X ) (3.179)

−iωa =−(
κ

2
+ i∆)a −

p
2i gQ(ω)+

p
kain − i a∆(ω) (3.180)

χm(ω) = Ωm

Ω2
m −ω2 − iωΓm

(3.181)

To simplify the discussion, we also define the cavity susceptibility χ−1
cav = κ/2+ i (∆−ω), and its

complex conjugate pair χ∗−1
cav :=χ∗−1

cav (−ω).

Since the interaction between the light intensity and the mechanical position couples the

conjugate pair of the field operator a, a†, we need to solve for a from the following coupled

equations

(χ−1
cav −2i g 2χm)a = −2i g

√
ΓmχmPin +2i g 2χm a† +

p
kain − i a∆(ω) (3.182)

(χ∗−1
cav +2i g 2χm)a† = 2i g

√
ΓmχmPin −2i g 2χm a +

p
ka†

in + i a∆(ω). (3.183)

After the cavity-assisted self-feedback, we arrive now at the solution of the cavity field

a = −iχcav(2g
p
ΓmPin +aχ−1

m ∆)+2i g 2
p

kχcavχ
∗
cava†

in + (χcavχ
−1
m +2i g 2χcavχ

∗
cav)

p
kain

χ−1
m +2i g 2(χ∗cav −χcav)

(3.184)

and the output field

aout = ain −
p
κa (3.185)

=
(
iχcav

p
κ(2g

√
ΓmPin +aχ−1

m ∆)−2i g 2κχcavχ
∗
cava†

in

+(
(1−κχcav)χ−1

m +2i g 2(χ∗cav −χcav −κχcavχ
∗
cav)

)
ain

)
/
(
χ−1

m +2i g 2(χ∗cav −χcav)
)

=χ′m
(
iχcav

p
κ(2g

√
ΓmPin +aχ−1

m ∆)−2i g 2κχcavχ
∗
cava†

in

)
+(

(1−κχcav)−χ′m2i g 2κχcavχcav
)

ain
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Chapter 3. Measurement-based quantum control of mechanical motion

where we define the modified mechanical susceptibility under dynamical backaction cooling

χ′m(ω) = 1

χ−1
m +2i g 2(χ∗cav −χcav)

= Ωm

Ω′2
m −ω2 − iωΓ′m

(3.186)

Ω′
m =Ωm − 2g 2∆

(κ/2)2 +∆2 (3.187)

Γ′m = Γm + 4g 2Ωm∆κ

((κ/2)2 +∆2
)2

. (3.188)

We can now calculate the power spectral density of the complex field operator, which is

(cooperativity C = 4g 2

Γm k )

Saoutaout (ω) = 4g 2Γm |χ′m |2κ|χcav|2
(

SPinPin +
C

1+ (2(∆+ω)/κ)2
Sa†

ina†
in
+ |χm |−2

4g 2
0Γm

S∆∆

)

+
(
1+4g 2Γm |χ′m |2κ|χcav|2 C

1+ (2(∆−ω)/κ)2
+2Im

[
2g 2κχ′m(1−κχ∗cav(ω))χ2

cav

])
Sainain

+2Im
[
χ′m2g 2κχcavχ

∗
cav

(
(1−κχcav)−χ′m2i g 2κχcavχcav

)∗
(ω)Saina†

in

]
(3.189)

Notice that here there is no vacuum noise in the expression, Sainain = 0 for a quantum-limited

laser input. However, since s = a +c Xvac is the actual observable, which contains the added

vacuum noise from splitting the signal to two homodyne channels. Also, shot noise naturally

emerges when calculating Sa†
outa†

out
required for symmetrization. In data processing, we can

subtract the vacuum noise out of the record by Saoutaout + Sa†
outa†

out
= 2Sss − 2|c|2SXvac Xvac , to

retrieve the field spectrum.

After accounting for the contribution from also the Sa†
outa†

out
(−ω) term, we arrive at the mea-

sured asymmetric (unitless) force spectral density

SFtotFtot (ω) = SPinPin +C

(
1

1+ (2(∆+ω)/κ)2
+ 1

1+ (2(∆−ω)/κ)2

)
Sa†

ina†
in

(3.190)

− ωΓ′m
2ΩmΓm

Sa†
ina†

in
+ |χm |−2

4g 2
0Γm

S∆∆ (3.191)

which contains four parts. The first term SPinPin is the symmetrized environment force noise at

room temperature. The second term is the symmetrized quantum backaction force noise. The

fourth term S∆∆ is associated with cavity frequency-noise-induced heating of the mechanical

mode and the background frequency noise itself. The third term is the interference between

the backaction-driven motion and the imprecision noise from the probe laser, which induces

force noise asymmetry. As discussed in [69], the sideband asymmetry in linear quadrature

measurements does not come directly from the mechanical sidebands, which are symmetrized

in our measurement, but from the backaction and imprecision interference of the optical field.

Photon counting of individual sidebands is required to measure the asymmetric mechanical
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3.4 Cooling a mechanical oscillator close to the quantum ground state

sidebands directly. However, in the case of optical measurements, both methods always yield

the same result, and we regard them as probing the same physics. Therefore, by measuring

the asymmetry of the force noise, we have a separate way to verify the phonon occupation

calibrated from the conventional homodyne measurement.

Then, we proceed to simplify the result in the case of a quantum-limited laser probe,

SFtotFtot (ω) = Γ
′
m

Γm

(
Γth +Γqba

Γ′m
− ω

2Ωm
+ |χm |−2

4g 2
0Γ

′
m

S∆∆

)
(3.192)

= Γ
′
m

Γm

(
nideal −

ω

2Ωm
+ |χm |−2

4g 2
0Γ

′
m

S∆∆

)
(3.193)

with the asymmetry ratio R

R = neff − 1
2

neff + 1
2

(3.194)

where the cavity frequency noise heats the effective phonon occupancy by neff = nideal +
|χm |−2

4g 2
0Γ

′
m

S∆∆. Note that any classical noise sources that do not originate from the measurement

meter, in this case, the probe laser, will only manifest as an effective heating of the phonon

occupancy, as the required meter-force interference is absent.

Observation of the sideband asymmetry of an oscillator cooled close to the ground state

We pump the cavity at the magic detuning ∆∗ and allow optical sideband cooling to stabilize

the soft-clamped mode to around neff ∼ 7 phonons. Then, we evenly split the cavity output

signal into two measurement channels. In the first one, we use the single-port homodyne

measurement to cancel the TIN for our quadrature measurement XHom and optimize the

measured quadrature angle to minimize the mechanical signal. In this case, we are sure the

correct homodyne angle θ = 30deg is achieved. The mechanical signal can not be completely

removed due to the finite sideband ratioΩm/κ∼ 10. The cavity susceptibility determines the

suppression ratio and can be used to retrieve a precise quadrature angle and measurement

efficiency through fitting. In the other measurement channel, we implement direct detection

XDD, in which the TIN is canceled directly at the magic detuning.

We use a digitizer to record both signals simultaneously at 14 MHz sampling rate for 2 s, and

post-processed the data to reconstruct the non-Hermitian observable s =p
2i XDDp

η1
+ 1−p3ip

2
XHomp
η2

.

The power spectral densities of the quadrature data and the complex field are illustrated in

Fig. 3.12, in which we observed a statistically significant 15 % sideband asymmetry ratio after

shot noise removal. As a comparison, all the other mechanical modes visible in the spectrum

show less than 2 % statistical variation of the asymmetric ratio. The 15 % sideband asymmetry

ratio measured is also consistent with the phonon occupancy fit from the measured quadrature

data, showing that our system is in a regime close to the quantum ground state.
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Figure 3.12: (a) Calculated spectrum of the two optical quadrature data XDD and XHom. (b)
Calculated spectrum of the non-Hermitian observable s, with asymmetric negative and posi-
tive frequency noise density. (c) Zoomed-in near the soft-clamped mode, with a low-pass filter
applied to reduce the noise variance. After shot-noise subtraction, the positive and negative
frequency components show statistically significant 15 % difference. As a comparison, the
nearby mechanical modes show less than 2 % of sideband asymmetry.

In Appendix B.8, we analyze the analyzes the case where the system is contaminated by the

laser amplitude and phase noise. This is not the case in our system, as our laser is quantum-

limited in both phase and amplitude. Note that the main noise contribution in this experiment

is likely the third-order nonlinear noise investigated in Section 2.4.4, due to the narrow cavity

linewidth. However, as the modification of sideband asymmetry requires interference between

the noise-backaction-driven mechanical motion and the original noise from the measurement

meter, the third-order nonlinear noise only contributes to the heating of the mechanical

motion and behaves similarly to the cavity-detuning noise. For this reason, the contribution

of the nonlinear noise is faithfully accounted for in the measured asymmetry result.

3.5 Future experiments

I worked on this project with my colleague Alberto from late-2019 to mid-2023, and solved

multiple technical issues (discussed in Chapter 2), including thermomechanical nonlinear

noise, photothermal mechanical instability, and cavity frequency noise, to reach the current

stage where quantum control of mechanical motion near the Heisenberg limit is possible

at room temperature. Given our device’s current performance, we demonstrated multiple

signature phenomena in the quantum regime in this chapter, including optomechanical

squeezing, conditional mechanical state preparation, measurement-based feedback cooling,

and optomechanical sideband asymmetry. We are currently still working on measurement-

based feedback cooling mentioned in section 3.3 with our current generation device to reach

phonon occupancy neff ≪ 1 in real-time. As cooling to such a low phonon occupancy requires

very high feedback gain, to mitigate the anti-damping experienced by nearby mechanical

modes during the feedback, we plan to use electrically-gated feedback such that in the long-

136



3.5 Future experiments

time limit, the anti-damped mechanical modes are still stable.

Progressing much further than we have already shown here requires a new generation of Ph.D.

students to improve upon what we have already achieved. I summarize a few points here for

reference:

• In our current density-modulated membrane, we observe a lot of low-Q membrane

modes in the mechanical bandgap that are weakly coupled to the optical modes, with no

trace of their existence in the FEM simulation. We suspect these might be the effects of

the pillars that we failed to capture in our analysis, but further investigation is required

with the testing of more samples.

• In this chapter, we conclude that with symmetric measurement channels of mechanical

quadratures, it is impossible to generate squeezed mechanical states, and therefore,

mechanical entanglement is not reachable. However, it is possible to use a soft-clamped

fundamental mode in other membrane geometries, e.g., [49] that we worked with before,

to break the symmetry between these two channels, either using fast measurement [85]

or stroboscopic probing [89]. When these symmetries are broken, mechanical squeezing

and entanglement are possible even through continuous measurements. However,

fundamental modes of mechanical structures generally suffer from Q-degradation

when the chip is in contact with the mirrors. A discussion with Jack Sankey and his

group members indicates that by using sapphire hemispheres as spacers such that the

membrane chip only has point contacts with other components, this Q-degradation

issue can be effectively mitigated. However, this would require a new design of the MIM

assembly.

• For many years, the field has used silicon nitride as the material for high-Q mechanical

resonators. New crystalline materials such as diamond [90] and silicon carbide [91]

are promising for the next generation devices, both for their high intrinsic mechanical

Q and the possibility of introducing color centers which interact with strain fields of

the mechanical modes [92]. With the introduction of the color centers and sufficiently

high-Q mechanical modes, integrated trapped-ion-like systems can be effectively fab-

ricated [93], which allows the deterministic generation of non-classical mechanical

states at room temperature, and entanglement of distant vacancy qubits mediated by a

common vibrational motion.
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The fogs of confusion throughout human history remained unresolved until people saw the

facts with their own eyes. Microscopes play an utmost important role in developing our

scientific understanding of the world, enabling the discovery of cells and microorganisms [94],

driven by our human curiosity to understand things through their finest details.

Light-matter interaction is the first tool we use in microscopes to see the details of objects.

When photons at different frequencies are deflected or absorbed by the material, the shape

and composition of the object are mapped out. The details that could be visualized were

restricted by the size of the photons for three hundred years until the invention of electron

microscopes [95] in the mid-twentieth century, which uses electrons that are 105 times smaller

than the photons. With electron microscopes, viruses [96] and even protein structures [97]

can now be visualized. As a much bigger object, photons, the tool that enabled many scientific

discoveries, also became the testing subject under the microscope.

In this part of the thesis, we use electrons to examine the properties of light, both in how

light oscillates as a wave and behaves as a particle, presenting a new facet of light that is

challenging to access through purely optical means. To understand what we see, we first need

to understand our tool. Free electrons, being one of the most elementary quantum objects [98],

have not been the most well-studied subject in the field of quantum science and technology,

where bounded electrons in atomic systems have been the most popular by far. Unlike other

quantum systems that couple to photons, free-electron-photon interaction happens on an

ultrafast timescale in a non-localized fashion and offers an extra spatial degree of freedom.

The ultrafast interaction presents an opportunity for quantum applications but also unique

challenges for reliable control [9].

During my PhD, I was involved extensively in our collaboration with the group of Claus Ropers

at the Max Planck Institute for Multidisciplinary Sciences, Göttingen, who are experts in

ultrafast electron microscopy and have performed numerous pioneering works in the field of

electron-photon coupling. We developed a platform [7, 8, 9, 11] capable of strong electron-light

interactions using an electron microscope and photonic integrated circuits based on Si3N4.

Our setup (Fig. 5.1) allows an electron beam to interact with the co-propagating evanescent

field of a microresonator waveguide in the object plane of a transmission electron microscope

(TEM). The fiber-coupled microresonator chip features strong electron-light interaction with

complete control over the input and output light. This approach establishes a versatile and

highly efficient framework for enhanced electron beam control [99, 100, 101, 102, 103, 104,

105, 106]. More fundamentally, we introduce a universal platform for exploring free-electron

quantum optics [107, 108, 109, 110], with developments in strong vacuum coupling and

electron-photon non-classical correlation, thanks to the tight confinement of the optical field.

In this part of the thesis, we start with Chapter 4, the developed theoretical framework for

studying free-electron interaction with semi-classical light, single-mode quantum field (Sec-

tion 4.2), and multi-mode optical continuum (Section 4.3). In Chapter 5, we proceed with

the experimental investigation of the interaction between free electrons with the classical
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continuous-wave (CW) field (Section 5.1), and the nonlinear optical field (Section 5.2). In

Chapter 6, we analyze the experimental feasibility of free-electron interaction with quantum

optical fields of the photonic integrated circuits (Section 6.2), as well as schemes to generate

useful photonic and electron quantum states using state heralding (Section 6.3, Section 6.4).

This is followed by Chapter 7, the experimental demonstration of the generation of electron-

photon pair states, where we observe photon generation, its non-classical correlation, and

Poisson statistics. In Chapter 8, we discuss the electron energy-momentum dispersion effect

in electron-photon interactions over a long distance of dispersive propagation (Section 8.1),

as well as applications enabled by this nonlinearity, including optical klystrons (Section 8.2),

Jaynes-Cummings interaction (Section 8.3), and the Bell test of local realism (Section 8.4).

Some sections in this part of the thesis are adapted from Refs [7, 8, 9].

We also summarize some acronyms that we use in this part of the thesis below.

CAR: Coincidence to accidental ratio

CL: Cathodoluminescence

DKS: Dissipative Kerr soliton

DLA: Dielectric laser accelerator

EELS: Electron energy-loss spectroscopy

EEGS: Electron energy-gain spectroscopy

EFTEM: Energy-filtered transmission electron microscopy

PINEM: Photon-induced near-field electron microscopy

Q: Quality factor

QED: Quantum electrodynamics

SNR: Signal to noise ratio

SPAD: Single-photon avalanche diode

SPDC: Spontaneous parametric down-conversion

UTEM: Ultrafast transmission electron microscope

TM: Transverse magnetic

ZLP: Zero-loss peak
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4 Quantum optical interaction between
free electrons and photons

In this chapter, we set up the theoretical foundations of electron-photon interaction. Com-

pared to conventional quantum optics [111] approaches that deal with low-speed particles

coupling with a cavity mode, in our physical setting, there are multiple complications. First,

the electrons travel near light speed in free space with a de-localized wavefunction and energy-

dependent velocity. Therefore, the interaction does not start or end at a specific spatial point

or moment in time [112], as different energy components arrive at the photonic structure with

a state-dependent delay time, and the energy eigenstates are spatially unbounded. Second,

the interaction happens at an ultra-fast time scale and usually only lasts some optical cycles.

Therefore, compared to the stationary counterpart in cavity QED, the electron couples to a

vast frequency band of optical modes [113], and the frequency selectivity is generally very

poor. In this case, multi-mode interaction is natural and usually needs to be accounted for

in this type of interaction. Third, the electron couples not only to cavity modes but also

generally to all the possible optical modes, guided and non-guided, supported by the optical

structure [9]. Therefore, the conventional modal-decomposition method used by the cavity

QED community is not convenient for treating these interactions, and other approaches must

be adopted [114].

In the following, we derive the theoretical formulation of our system, consisting of high-energy

free electrons coupling to our optical structures.

First, the problem will be formulated in the semi-classical picture (Section 4.2.1) where the

optical field is not quantized. This type of interaction has been the most well-studied [115]

in the field due to the selective single-mode interaction typically driven by a strong optical

pump. In this picture, the interaction can be effectively modeled as a phase modulation of the

electron wave function imprinted by light.

Then, we quantize a single optical mode (Section 4.2) and in a later Section 7 generalize it

to the multi-mode interaction in an experiment realization. Quantization based on modal

decomposition is the most conventional quantization procedure in quantum optics. It has

been successful for cavity QED systems where interaction time is substantially longer than
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Chapter 4. Quantum optical interaction between free electrons and photons

the round trip time of light in a cavity. Due to the ultrafast interaction timescale of the

electron-photon interaction, our single-mode treatment is not convenient to apply to actual

experiments.

Due to this inconvenience, last, we formulate the free-electron coupling to the optical contin-

uum (Section 4.3) and draw the correspondence to the modal-decomposition method such

that all frameworks we developed are self-consistent. These different formalisms are used in

later chapters when different types of interactions are concerned.

4.1 Quantum nature of free electrons and photons

Before we begin, we must differentiate the different quantum vs. classical pictures for electrons

and photons. They are quite different as electrons are initially classical point particles, and

photons are classical electromagnetic waves.

In our quantization, we only quantize the electron until the point of its wave properties and

do not deal with the second quantization of the wave function itself. Therefore, when we say

the quantum effect of electrons, we are primarily concerned with the wave properties, such

that in the time-energy / position-momentum phase space, the electron Wigner function can

exhibit negativity [116], which is not possible for a classical point-like particle.

For the photons, we quantize their field operator such that they exhibit particle properties

alongside their wave properties. Similarly, if we construct a phase-amplitude phase space

for the light, the Wigner function can exhibit negativity [117], which is not possible for a

classical wave. The Wigner negativity is also necessary in continuous-variable quantum

computing [118] for any quantum speedup to be possible. The particle nature can also be

probed by a photon counting correlation measurement [119], where the particle nature of

the light exhibits a correlation stronger than it would be possible for classical waves, which is

bounded by the Cauchy-Schwarz inequality.

When the two particles are involved simultaneously in an interaction, as is the case we are

treating here, the quantum-classical distinction is more delicate. We discuss the non-classical

nature of electron-photon interaction in detail in the later section 7.3.

4.2 Single-mode electron-photon interaction

While the length gauge (where the vector potential A = 0) is usually chosen for localized

quantum systems in cavity quantum electrodynamics (cQED) [111], the velocity gauge (where

the scalar potential φ= 0) is a natural choice for free electrons at finite momentum p̂ in an

electromagnetic field with vector potential Â. In the velocity gauge typically used for traveling

particles in electron-magnetic fields, the following Hamiltonian describes the electron-photon
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interaction,

H = (p+eA)2

2m
= p2

2m
+ e

m
p ·A+ e2A2

2m
(4.1)

with which we use a perturbation approach where we go to the rotating frame of the original

electron energy H0 = p2

2m , and treat all the other H1 = e
m p ·A and H2 = e2A2

2m as the interaction

terms. Here e is the electron charge, and m is the electron mass. In free space, the electron

travels slower than light speed, so the single-photon scattering term H1 = e
m p ·A does not

contribute to the interaction. Only the two-photon scattering term H2 = e2A2

2m (Compton scat-

tering) can happen. When a nearby dielectric medium slows the optical field, H1 interaction

can dominate. In our setting, where free electrons interact with the optical field in a phase-

matched fashion (electron group velocity matching light phase velocity) mediated by dielectric

media, we are mostly concerned with H1. Note that we treat the electrons in a non-relativistic

form, whereas the actual speed approaches light speed. Theorists found that as long as the

relativistic energy-momentum relation Ĥ0|p〉〉 = E (p)|p〉〉 is used, the result is compatible with

a relativistic treatment of the problem [113].

4.2.1 Electron-photon semi-classical interaction

In this section, we are treating the case where high-energy free-electrons interact with classical

optical fields. This semi-classical formulation can also be found in the method section of

ref [120]. This picture only quantizes the electron energy Ĥ0 and the momentum operator p̂.

The vector potential is scalar-valued and is chosen to be A(z) = F (z)sinωt/ω. The electron is

analyzed in the plane-wave momentum-state basis |p〉 = ∫
L−1/2e i kp z |z〉d z, where L →∞ is

the quantization volume.

In the Schrödinger picture, we can write down the time-dependent Schrödinger equation

(
Ĥ0 − i eve A(z, t )

)
ψ(z) = iℏ

∂ψ

∂t
. (4.2)

where ve is the electron group velocity. We can obtain the generalized solution [121] directly

as

ψ(z, t ) =ψ0(z, t )e−2i Im[g (z,t )e iω(t−z/ve )] (4.3)

g (z, t ) = e

2ℏω

∫ z

−∞
Fz (z ′)e−iωz ′/ve d z ′. (4.4)

As the optical field effectively modulates the phase of the electron wavefunction (illustrated in

Fig. 4.1(a)) with the periodicity of ω−1, the electron energy eigenstates involved in this process

are always spaced by ℏω due to the Fourier relation. We choose, therefore, the following state

space of the unperturbed Hamiltonian

Ĥ0|N〉 = (E0 +Nℏω)|N〉, (4.5)
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Chapter 4. Quantum optical interaction between free electrons and photons

where the system is assumed to have an initial state |0〉 with electron energy E0, and the final

state |N〉 with final electron energy E0 + Nℏω. Note that |N〉 here is not the photon Fock

state but the label for the electron energy ladder and does not involve the quantization of the

photons. The coupling matrix element can be readily calculated as

〈N +1| e

m
p̂ A|N〉 = 2ℏvN g

L
sinωt , (4.6)

where we have the unit-less coupling strength defined as

g = e

2ℏω

∫ L/2

−L/2
F (z)e−i∆k·z d z. (4.7)

Here, ∆k ≈ω/vN is the momentum change of the electron when the energy is changed by ℏω.

From here, we can see that a strong electron-light interaction requires a phase-matching con-

dition, i.e., ∆k ≈ kl , where kl is the wave vector of the light field. The model here is reduced to

one dimension where the electron travels, and the electron transverse distribution is assumed

to be point-like. The effect of the transverse wavefunction is described in Section 4.3.1.

From here, we can define the electron ladder operators as

b̂ =∑
N
|N −1〉〈N |, (4.8)

so that the coupling term can be written as

e

m
p̂ A = 2ℏv

L
(g∗b̂ + g b̂†)sinωt . (4.9)

The electron operator b̂ defined here has the following properties

|N +1〉 = b̂†|N〉 (4.10)

|N −1〉 = b̂|N〉 (4.11)

b̂b̂† = b̂†b̂ = 1 (4.12)

and is different from the usual bosonic creation and annihilation operators. In the inter-

action picture Hamiltonian (with rotating wave approximation), we obtain the interaction

Hamiltonian

Ĥint = ℏv

i L
(g∗b̂ − g b̂†). (4.13)

The scattering matrix can then be calculated as

Ŝ = exp

(
− i

ℏ

∫ L/2v

−L/2v
Ĥintd t

)
= exp

(
g b̂† − g∗b̂

)
, (4.14)

which can be viewed as a displacement operator for the electron states but with a different

property than that of the photons. The transition probabilities from the initial state |0〉 to the
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4.2 Single-mode electron-photon interaction

(a) (b)

Figure 4.1: (a) Free electron interaction with classical light field, whose wave function is phase-
modulated, equivalent to the directional acceleration or deacceleration of point electrons at
different locations. (b) Free electron interaction with quantum optical fields, ending in an
electron-photon energy-number entangled state.

final states |N〉 can be calculated to be

PN = |〈N |Ŝ|0〉|2 = JN (2|g |)2, (4.15)

which oscillates as Bessel functions as a function of the coupling strength g , expected for

any phase modulation, and is verified experimentally in ref [116]. Note that here, we are only

treating the case that the electron behaves as a wave to begin with, which then manifests

the wave properties when phase modulation is applied. When the electron wave function is

sub-optical-cycle and behaves more like a point particle, more delicate treatment is required,

as discussed in Section 5.2.2.

4.2.2 Quantization of the optical field

In the following, we proceed to derive the case when the electron interacts with a quantum

optical field (illustrated in Fig. 4.1(b)). Still, we restrict ourselves first to the one dimension

(ẑ) where the electron propagates, as 〈p̂〉 · ez is the dominant momentum component for

the high-energy electrons. Because the interaction strength scales with p̂ · Â, the transverse

components contribute negligibly to the interaction. In the modal-decomposition method,

the vector potential is quantized as

Â ·ez = Â(z) =∑
m

√
ℏ

2ϵ0ωmVm
(um(z)âm +u∗

m(z)â†
m), (4.16)

where u(z) is the z projection (along the propagation direction of electron ke ) of the vector

mode function u(r) which satisfies∫
V
ϵ(r)um(r)u∗

n(r)dr3 = δm,nVm . (4.17)

Here, ϵ0 is the optical permittivity,ωm the optical frequency of mode m, and Vm is the effective

optical mode volume. We first analyze the interaction in the single-mode case (âm → â), where
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all the other modes are neglected. We choose again the electron plane wave states as our

analysis basis,

|ke〉 =
∫

d z|z〉〈z||ke〉 = lim
L→∞

∫ L/2

−L/2
d zL−1/2 exp(i ke z) |z〉 (4.18)

1=∑
ke

|ke〉〈ke | = lim
L→∞

L

2π

∫
dke |ke〉〈ke | (4.19)

One-photon scattering

We quantize the coupling term H1 in a symmetrized fashion, and insert the identity 1 above,

Ĥ1 = e

2m
(p̂ Â+ Âp̂)

=
√

ℏ
2ϵ0ωV

e

2m

∑
ke

|ke〉〈ke | · p̂ ·
∫

Lc

d z|z〉〈z|(u(z)â +u∗(z)â†)
∑
k ′

e

|k ′
e〉〈k ′

e |+h.c.

= lim
L→∞

√
ℏ

2ϵ0ωV

e

mL

(∑
∆ke

∑
ke

ℏ(ke −∆ke /2)
∫

Lc

d ze−i∆ke ·z u(z)â|ke〉〈ke −∆ke |+h.c.

)

=
√

ℏ
2ϵ0ωV

euk0
eℏ

m

(
â

∑
ke

∫
∆ke

d∆ke
ke −∆ke /2

k0
e

Θ(∆ke )

2π
|ke〉〈ke −∆ke |+h.c.

)
= ℏg0âb̂† +ℏg∗

0 â†b̂, (4.20)

with coupling rate

g0 =
√

1

2ϵ0ℏωV

euℏk0
e

m
, (4.21)

and the electron transition operator

b̂ =∑
ke

∫
∆ke

d∆ke
ke −∆ke /2

k0
e

Θ∗(∆ke )

2π
|ke −∆ke〉〈ke |. (4.22)

Here, k0
e can be chosen arbitrarily, and we choose it to be the wave vector of the initial electron

state. Θ(∆ke ) = ∫
Lc

d ze−i∆ke ·z u(z)/u is the phase matching condition, and can be viewed as

an effective interaction length. Again, u can be chosen arbitrarily, and we choose it to be the

average field amplitude over the optical mode extend. There is no solidly defined interaction

rate and length because the electron state basis is infinitely long plane waves. Therefore, we

can not define a time or length for this interaction. It is, shown in the following, possible

to define an interaction strength gω in the case of a single scattering event that lasts for an

infinite duration τ, starting from τi →−∞ and ending at τ f →+∞.
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4.2 Single-mode electron-photon interaction

In the interaction picture, we derive the scattering matrix as

Ĥint = ℏg0â
∑
ke

∫
∆ke

d∆ke
ke −∆ke /2

k0
e

Θ(∆ke )

2π
|ke〉〈ke −∆ke |

×e−iωt e i [E(ke )−E(ke−∆ke )]t/ℏ+h.c. (4.23)

Ŝ = T exp

(
− i

ℏ

∫
τ

Ĥintd t

)
≈ exp

(
−

∫
τ

i g0â
∑
ke

∫
∆ke

d∆ke
ke −∆ke /2

k0
e

Θ(∆ke )

2π
|ke〉〈ke −∆ke |

×e i ([E(ke )−E(ke−∆ke )]/ℏ−ω)t d t −h.c.

)
= exp

(
−i g0â

∑
ke

∫
∆ke

d∆ke
ke −∆ke /2

k0
e

Θ(∆ke )|ke〉〈ke −∆ke |

×δ[
E(ke )−E(ke −∆ke )

ℏ
−ω]−h.c.

)
= exp

(
−i g0â

∑
ke

ke −∆/2

k0
e

Θ(∆)

∂pe E
|ke〉〈ke −∆|−h.c.

)

≈ exp

(
−i g0

Θ(∆)

ve
â

∑
ke∈[k0

e−ϵ,k0
e+ϵ]

|ke〉〈ke −∆|−h.c.

)
= exp

(
−i g0τintâb̂† −h.c.

)
, (4.24)

where ∆ : E(ke )−E(ke −∆) = ℏω is the electron wave-vector change due to the absorption/e-

mission of a photon, and the effective interaction time τint = Θ(∆)
ve

is defined by the effective

interaction lengthΘ(∆) which is set by the phase matching condition. We can now combine

g0 and τint to eliminate the coefficients we arbitrarily defined earlier and arrive at

gω =−i g∗
0 τ

∗
int =−i

√
e2

2ϵ0ℏωV

∫
L

d ze i∆·z u∗(z), (4.25)

such that the scattering matrix can be simplified to Ŝ = exp
(
gωâ†b̂ −h.c.

)
. The ladder operator

is approximated when the levels involved do not experience significant electron energy-

momentum dispersion. The complete expression is instead

b̂ =∑
ke

ke −∆/2

k0
e

|ke〉〈ke +∆| (4.26)

In the presence of a strong coherent optical drive |α〉, the scattering matrix reduces to a

displacement operator on the electron state S ≈ exp
(
gωα∗b̂† −h.c.

)
. If the initial electron state

is a pure momentum state with vector k0
e , the probability distribution on the Nth sideband

149



Chapter 4. Quantum optical interaction between free electrons and photons

will be

PN = |〈k0
e +N∆|S|k0

e 〉|2 = JN (2|g |)2 (4.27)

g = αg∗
ω = iα

√
e2

2ϵ0ℏωV

∫
L

d ze−i∆·z u(z). (4.28)

As expected, this result is identical to the previous section, where we treat the optical field

classically. The substitution â →α is only correct when α≪ 1, i.e., the field approaches the

classical limit.

Heuristic derivation of the electron-photon coupling strength

Last, we would like to note that there is an elegant way to heuristically derive the photon

emission strength |gω|2 = e2L2
cav

2ϵ0ℏωVeff
. We could picture the optical cavity as a capacitor being

charged by a flying electron. The work that is done to the capacitor (initial field seeded by the

vacuum fluctuation) is

dW = eE(z)d z = ϵ0VeffE(z)dE(z) (4.29)

where the right-hand side is the capacitor energy integrated by the field, which is then param-

eterized by the flying distance z of the electron. With this expression, we can easily arrive at

the coupling strength by quantizing the charged energy into individual photons,

W =
∫

e2

ϵ0Veff
zd z = e2L2

c

2ϵ0Veff
= ℏω〈a†a〉 (4.30)

|gω|2 = W

〈a†a〉 =
e2L2

cav

2ϵ0ℏωVeff
(4.31)

where we easily retrieve the same expression.

Generalization to the three-dimensional case

In the derivations above, we assumed that the longitudinal (z direction) momentum transfer

dominates the interaction. This assumption is valid primarily for directional high-energy

electrons interacting with a co-propagating optical field along the same direction. To derive a

generalized expression for the 3D phase matching, we need to use the following identity

1=∑
ke

|ke〉〈ke | = lim
L3→∞

L3

(2π)3

∫
dke |ke〉〈ke | (4.32)
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during the derivation. The Hamiltonian can be expanded by

Ĥ1 =
√

ℏ
2ϵ0ωV

e

2m

∑
ke

|ke〉〈ke |p̂ ·
∫

L3
dr|r〉〈r|(u(r)â +h.c.)

∑
k′

e

|k′
e〉〈k′

e |+h.c.

=
√

ℏ
2ϵ0ωV

eℏk0
e

m

â
∑
ke

∫
∆ke

∫
L3 dre−i∆ke ·r ke−∆ke /2

k0
e

·u(r)

(2π)3 |ke〉〈ke −∆ke |+h.c.

 (4.33)

with the scattering matrix

Ŝ = exp

−i

√
ℏ

2ϵ0ωV

ek0
e

m
â

∑
ke

∫
∆ke

∫
L3 dre−i∆ke ·r ke−∆ke /2

k0
e

·u(r)

(2π)3 |ke〉〈ke −∆ke |

×
∫
τ

e i ([E(ke )−E(ke−∆ke )]/ℏ−ω)t d t −h.c.

)

= exp

(
−i

√
ℏ

2ϵ0ωV

ek0
e

m
â

∑
ke

∫
∆ke

∫
L3

dre−i∆ke ·r ke −∆ke /2

(2π)2k0
e

·u(r)|ke〉〈ke −∆ke |

×δ
[

E(ke )−E(ke −∆ke )

ℏ
−ω

]
−h.c.

)

≈ exp

(
−i

√
ℏ

2ϵ0ωV

ek0
e

m
â

∑
ke

∫
∆ke

∫
L3

dre−i∆ke ·r ke −∆ke /2

(2π)2k0
e

·u(r)|ke〉〈ke −∆ke |

×
δ

[
∆∥− ω

|∇pE |
]

|∇pE | −h.c.

 (4.34)

≈ exp

(
−i

√
e2

2ϵ0ℏωV
â

∑
ke

∫
∆⊥

|k⊥〉〈k⊥−∆⊥|
∫

L2
dr⊥(2π)−2e−i∆⊥·r⊥

∫
L

dr∥e−i∆∥r∥

[
k∥−∆∥/2

k0
e

u∥(r)+ k⊥−∆⊥/2

k0
e

·u⊥(r)

]
|k∥〉〈k∥−∆∥|−h.c.

)
(4.35)

where Eq. 4.34 used the limit ∆ke ≪ ke , Eq. 4.35 used the approximation |∇pE | = ve and the

relation ∆∥ =ω/ve . In the limit that the transverse momentum components are much smaller

than the longitudianl momentum, i.e., |k⊥| ≪ k∥, we can ignore the contribution of k⊥ ·u⊥.

Using the following identity relation

∑
k⊥

∫
∆⊥

|k⊥〉〈k⊥−∆⊥|
∫

L2
dr⊥(2π)−2e−i∆⊥·r⊥ =

∫
L2

dr⊥|r⊥〉〈r⊥| (4.36)
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we arrive at the generalized 3D scattering matrix

Ŝ = exp

(
−i

√
e2

2ϵ0ℏωV
â

∑
k∥

∫
L2

dr⊥|r⊥〉〈r⊥|
∫

L
dr∥e−i∆∥r∥

[
k∥−∆∥/2

k0
e

u∥(r)

]
|k∥〉〈k∥−∆∥|−h.c.

)

= exp

(∫
dr⊥|r⊥〉〈r⊥|gω(r⊥)a†b −h.c.

)
(4.37)

where

gω(r⊥) =−i

√
e2

2ϵ0ℏωV

∫
L

dr∥e i∆∥r∥u∗
∥ (r∥,r⊥) (4.38)

b =∑
k∥

k∥−∆∥/2

k0
e

|k∥〉〈k∥+∆∥|. (4.39)

We observe that now the transverse position state |r⊥〉 picks up a position-dependent coupling

strength gω(r⊥). This point is of particular importance to Section 4.3.1 and Section 7.3.

Two-photon scattering

The term Ĥ2 = e2Â2

2m that we have yet undiscussed corresponds to the ponderomotive potential

and is associated with two-photon scattering due to the quadratic order of Â. Usually, this term

naturally involves interaction with at least two optical modes. For the sake of investigating

the physical consequence of this term, here we again restrict ourselves to the single-mode

interaction limit. We assume the optical mode is propagating also along the z direction. We

find that Ĥ2 results in a (cavity) optical frequency shift, as well as a two-photon generation
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process, as

Ĥ2 = e2Â2

2m

= ℏ
e2

4ϵ0ωmV

∫
|z〉〈z|d z(u(z)â +u∗(z)â†) · (u(z)â +u∗(z)â†)

= ℏ
e2

4ϵ0ωmV

∑
ke

|ke〉〈ke |
∫

|z〉〈z|d z
∑
k ′

e

|k ′
e〉〈k ′

e |(u(z)â +u∗(z)â†)2

= ℏ
e2

4ϵ0ωmV

∑
ke ,∆ke

|ke〉〈ke −∆ke | 1

L

∫
d ze−i∆ke ·z (u(z)â +u∗(z)â†)2

= ℏ
e2

4ϵ0ωmV

∑
ke

∫
∆ke

d∆ke (
Θ1(∆ke )

2π
u2â2|ke〉〈ke −∆ke |+h.c.)

+ℏ e2

4ϵ0ωmV

∑
ke

∫
∆ke

d∆ke (
Θ2(∆ke )

2π
|u|2ââ†|ke〉〈ke −∆ke |+h.c.)

= ℏ(g1â2
∑
ke

∫
∆ke

d∆ke
Θ1(∆ke )

2π
|ke〉〈ke −∆ke |+h.c.)

+ℏ(g2ââ†
∑
ke

∫
∆ke

d∆ke
Θ2(∆ke )

2π
|ke〉〈ke −∆ke |+h.c.), (4.40)

where the phase-matching functions are

Θ1(∆ke ) =
∫

Lc

d ze−i∆ke ·z u(z) ·u(z)/u2 (4.41)

Θ2(∆ke ) =
∫

Lc

d ze−i∆ke ·z |u(z)|2/|u|2 (4.42)

with the coupling rates g1 = e2u2

4ϵ0ωmV and g2 = e2|u|2
4ϵ0ωmV .

Note that for interaction with a dielectric cavity, the magnitude of H2
H1

∼ e|u|
ω

√
1

ϵ0mV ∼ 10−6 even

for a cavity with mode volume of ∼ 10−16 m3. In our case of interaction with a ring resonator,

we believe these two-photon processes can be neglected. This process usually only happens in

free-space coupling with two different photons, i.e., the Compton scattering we are all familiar

with. Nevertheless, we would like to understand what the effects are if the interaction is in free

space.

To simplify the discussion, we examine the limit of very long interaction length where the

phase-matching conditions are Θ2(∆ke )/2π→ δ(∆ke ). In this limit, we obtain a cavity fre-

quency shift of δω= g2.

The term associated with g1 is effectively a two-photon exchange Kapitza-Dirac effect [122]

with a phase matching conditionΘ1. In the following, we proceed to calculate the scattering
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matrix for this specific term,

Ĥint = ℏg1
∑
ke

∫
∆ke

d∆keΘ1(∆ke )â2|ke〉〈ke −∆ke |

×e−2iωt e i [E(ke )−E(ke−∆ke )]t/ℏ+h.c. (4.43)

Ŝ = T exp

(
− i

ℏ

∫
τ

Ĥintd t

)
= exp

(
−i g1

∑
ke

∫
∆ke

d∆keΘ1(∆ke )â2|ke〉〈ke −∆ke |

×δ[
E(ke )−E(ke −∆ke )

ℏ
−2ω]−h.c.

)
= exp

(
−i g1

∑
E

Θ1(∆)

∂pe E
|E〉〈E −2ℏω|â2 −h.c.

)

≈ exp

(
−i g1

Θ1(∆)

ve

∑
E
|E〉〈E −2ℏω|â2 −h.c.

)
= exp

(
−i g1τintâ2b̂†2 −h.c.

)
, (4.44)

which is essentially a two-photon generation process. This process is not the same as optical

squeezing, as the optical number states are entangled with the electron energy. The generation

of squeezed light is only possible if the initial electron state energy uncertainty ∆E ≫ ℏω,

such that the optical states are effectively disentangled from the electron energy state space.

Generally, to disentangle the electron state space from that of the photon, we need to invoke

the eigenstates of the ladder operator that we discuss below.

4.2.3 Electron ladder operator eigenstate

Suppose we like to effectively disentangle the electron state space from the interaction and

use it as a classical point particle. In that case, we need to find the eigenstate |βe〉e for the

electron ladder operator b̂ with the eigenvalue of βe . Calling it an electron coherent state, we

can simplify the scattering matrix by

Ŝ = exp
(
gωβe â† − g∗

ωβ
∗
e â)

)
= D̂(−g∗

ωβ
∗
e ), (4.45)

where D̂(α) is the optical displacement operator. This operation is essential when generating

phase-coherent light from this interaction; see Section 8.2. If the electron is, e.g., in an energy

eigenstate instead, the interaction will only lead to incoherent photon emission, as the photon

number is entangled with the electron energy.

We find that the electron eigenstate is structured in the momentum space as, e.g., illustrated

in Fig. 4.2, a comb-like density function, where βe =p
ne e iφ is a complex number containing

an amplitude
p

ne and a phase φ, just like an optical coherent state in the number basis.

154



4.2 Single-mode electron-photon interaction

75 80 85 90 95 100 105 110 115 120 125

1

2

3

4

5

M
om

en
tu

m
 d

en
si

ty
 |c

k|2

10-3

Comb
Wave-packet
Gaussian

Figure 4.2: Electron momentum density for eigenstates |β〉e of the ladder operator b̂, cen-
tered around a center momentum k0

e = 200∆k, either in a comb-like shape or a continuum
wave-packet. We can see that the distribution almost perfectly overlaps with the Gaussian
approximation. The comb-like coherent state here is not normalized to be easier compared to
the continuum case.

In the following, we derive the expression of the electron coherent state. We start with an

arbitrary state composition |ψe〉 =
√

L
2π

∫
ck |k〉dk, by applying the ladder operator b̂ that con-

tains the weak momentum nonlinearity (Eq. 4.26), and mediates interaction with neighboring

momentum states spaced by momentum difference ∆k =∆,

b|ψe〉 =β|ψe〉

= 1

k0
e

∫
L

2π
dke ke |ke〉〈ke +∆k|

√
L

2π

∫
ck |k〉dk

= 1

k0
e

√
L

2π

Ï
ck dkdke ke |ke〉δ(k −ke −∆k)

= 1

k0
e

√
L

2π

∫
ck (k −∆k)|k −∆k〉dk =

√
L

2π

∫
βck |k〉dk, (4.46)

One can easily conclude the relation ck+∆k /ck =βk0
e /k for state |ψe〉 to be an eigenstate of b.

One can further simplify this relation using the Stirling approximation to

ck+∆k /c∼∆k =
(
β

k0
e
∆k

) k
∆k

k
∆k

k−∆k
∆k · · ·1

Stirling∼
√
∆k

2πk

(
eβ

k0
e

k

) k
∆k

. (4.47)

We can therefore simply assume ck = c̃k

√
∆k

2πk

(
eβ

k0
e

k

) k
∆k

, where c̃k is a periodic function with

period ∆k.

To derive the expressions for some specific states, we set |β| = 1 for simplicity so that the
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distribution centers around k0
e . We can first assume a uniform distribution c̃k = c, therefore

1 =
∫

dk|c|2 ∆k

2πk

(
k

ek0
e

)− 2k
∆k

. (4.48)

This integral does not give a trivial distribution, and the normalization factor |c| could be

solved numerically. However, when k ≫∆k, we can safely approximate this distribution with

a normal distribution

|ck |2 = PDFN (k,µ= k0
e ,2σ2 = k0

e∆k)

= 1√
πk0

e∆k
exp

(
− (k −k0

e )2

k0
e∆k

)
(4.49)

ck = 1

(πk0
e∆k)1/4

exp

(
− (k −k0

e )2

2k0
e∆k

)
e i arg[β] k

∆k (4.50)

cz =
∫

1p
2π

ck e i kz dk

=
(

k0
e∆k

π

)1/4

exp

(
−k0

e∆k

2
(z − arg[β]

∆k
)2

)
e i k0

e (z− arg[β]
∆k ) (4.51)

|cz |2 =
√

k0
e∆k

π
exp

(
−k0

e∆k(z − arg[β]

∆k
)2

)
= PDFN (z,µ= arg[β]

∆k
,2σ2 = 1

k0
e∆k

) (4.52)

which resembles the continuous limit of a Poissonian distribution. Fig. 4.2 features two special

examples, the comb-like and the wave-packet-like coherent states when the momentum

distribution is centered around k0
e . The statistical properties of these states are very similar to

an optical coherent state with a large displacement from the origin.

The time evolution of the electron coherent state |β(t )〉 is also not hard to analyze. We could

start first from the Heisenberg picture, as b(t )|β〉 = e−iωt b(0)|β〉 =βe−iωt |β〉. As the eigenvalue

is the same both in the Schrodinger picture and the Heisenberg picture, such that b|β(t)〉 =
βe−iωt |β(t )〉. Therefore, the electron coherent state evolves just like an optical coherent state,

as |β(t)〉 = |βe−iωt 〉. From here, we can simply plug arg[β] = ωt and |β| = 1 into Eq. 4.51 to

obtain a simplified expression

ψe (z) =
(

k0
e∆k

π

)1/4

exp

(
−k0

e∆k

2
(z − ve t )2

)
e i k0

e (z−ve t ), (4.53)

which is simply an electron pulse propagating in the z direction with a Gaussian density profile

of σ= 1p
2k0

e∆k
.

In the following, we illustrate what benefits the electron ladder eigenstate |βe〉 could bring

to our toolbox. If we have a pure momentum state |k0
e 〉 of the electron, which is typically
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4.2 Single-mode electron-photon interaction

accessible in a TEM, and initially the cavity is in its vacuum state |0〉, the interaction will lead

to the energy-number entangled state (electron-photon pair state)

|ψe ,ψph〉 =
∑
n

e−|gω|
2/2 (−g∗

ωβ
∗
e )n

p
n!

|k0
e −n∆k,n〉. (4.54)

If we trace over the electron state space, we will get the optical state as a mixed state following

a Poisson distribution

ρph =∑
n

e−|gω|
2 |gω|2n

n!
|n〉〈n|. (4.55)

However, with the electron ladder eigenstate |βe〉, we would instead have

|ψe ,ψph〉 = |βe〉e
∑
n

e−|gω|
2/2 (−g∗

ωβ
∗
e )n

p
n!

|n〉ph, (4.56)

where an optical coherent state is generated, and the electron state is completely decoupled.

Physically, what we have here is an analogy to a classical particle generating a classical optical

field, as the electron now has a much smaller spatial extend (k0
e∆k)−1 compared to the optical

wavelength, and the coherent state is the closet quantum state to a classical optical wave.

There are still two subtle differences: The electron is not a point particle, and the light is not

a classical wave. The electron has a well-defined envelope determined by the momentum

nonlinearity, whereas the coherent state still has phase and amplitude uncertainty.

The comparison between these two initial electron states is shown in Fig. 4.3 using a low-

dimension Qutip simulation. We could see that the generated optical mixed state follows

a Poissonian distribution for an initial pure momentum state. However, the process is not

quantum coherent as the Wigner function shows that the phase information is lost. However,

if the electron is initially structured in a ladder eigenstate state, the generated optical state

preserves the phase relation, which is indeed an optical coherent state.

The simulation here is somewhat of an exaggeration as single-mode coupling strength |gω|2
can hardly approach unity. A reasonable photon generation probability when a single electron

passes through the evanescent field of a 10-GHz Si3N4 microring with an impact distance

of 50 nm is shown in Fig. 4.4. Even though the excitation probability for each optical mode

is small, the electron-photon phase-matching bandwidth ∆ω usually covers at least tens of

modes. We can define a spatial-temporal mode (Section 4.3.3) that covers all these frequency

components, of which the photon emission probability can approach unity.

Now, one might ask, how exactly can we generate such a ladder eigenstate in the first place?

Generally, the initial electron emitted from the emission tip can, in principle, exhibit sub-

optical-cycle spatial extend if it is driven by an intense ultrashort optical pulse. However,

(k0
e∆k)−1 is typically a hundredth of the optical wavelength, and a more delicate scheme is

required to generate such an ultrashort electron pulse. The usual interaction between an

electron and a classical optical field (PINEM) can achieve a very broad comb-like structure.

However, the energy distribution follows the Bessel functions instead of Gaussian. Also, as
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Chapter 4. Quantum optical interaction between free electrons and photons

(a)

(b)

Figure 4.3: Simulation of an electron interacting with a vacuum optical cavity, with the electron
being initially in (a) a plane-wave momentum state, and (b) a ladder eigenstate state. Here,
we set k0

e ∼ 40∆k to reduce the computational space. In reality, k0
e ∼ 105∆k. The x-axis is

either in the electron’s ∆k unit or the cavity field’s photon number. We could see that in both
cases, the photon number follows a Poisson distribution. However, with the momentum state
electron, the light generated is in a mixed state and thus is not phase-coherent. For the ladder
eigenstate state electron, the generated light is in a coherent state.
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Figure 4.4: Photon generation probability for a single optical mode when each electron passes
through the evanescent field of a 10-GHz Si3N4 ring resonator, with the impact distance of
50 nm marked in black dashed line.

PINEM effectively only modulates the phase of the electron wavefunction, we do not expect

a change in the electron envelope. However, the electron wavefunction can be effectively

compressed with dispersive propagation using the electron energy-momentum dispersion.

A more detailed discussion of this effect is discussed in Section 8.1. It has been shown in

numerical simulation [103] that the combination of multiple modulation and propagation

stages can create a decent Gaussian-shaped electron wavefunction that approaches nicely the

electron ladder eigenstate by |〈b〉| = 0.998.

Note that all the results derived in this section are only valid for interaction between an electron

and a single optical mode, which is hardly the case for a realistic physical setting where the

interaction time is shorter than an optical round-trip time of the cavity. We formulated the

case where an electron interacts with multiple cavity modes of a ring resonator in Section 7.1.

In the following section, we derive the multi-mode interaction in a more general case of

the optical continuum, considering both the guided and non-guided modes, and draw the

connection to the modal-decomposition method discussed in this section.

4.3 Electron-photon interaction in the continuum

In the previous sections, we have treated the particular case where the electron interacts with

a single cavity mode that has a well-defined mode function u(z). The interaction is governed

by the coupling strength gω∝ ∫
d ze i∆k·z u∗(z), where ∆k ≈ω/ve is the electron wave vector

change when it absorbs or emits a photon. This phase-matching condition, in combination

with material dispersion, results in a coupling bandwidth ∆ω∼∆νFSR/|ng −neff| of the optical

cavity, and typically covers 5-20 azimuthal modes. The electron also couples to numerous

higher-order mode families of the cavity. On a different note, the electron could also interact

with the non-guided modes traveling in free space or bulk materials, not captured well by

the modal decomposition method. In this section, we quantize the electromagnetic fields in
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Figure 4.5: Illustration of electron-photon inelastic scattering process mediated by a dielectric
media. When an electron flies by a nearby dielectric structure with refractive index distribution
n(x, y), the polarized dipoles exert a backaction field (force) on the electron, resulting in
electron energy loss and optical field emission at the dielectric material. Here, ω is not the
frequency of a cavity mode but one frequency component of the optical continuum. As a result
of the coupling bandwidth, the uncertainty of the energy ladder increases as more transitions
are made.

the three-dimensional space and derive the optical mode that the electron couples to in the

optical continuum.

4.3.1 3D quantization of the electromagnetic field in dispersive dielectric media

The interaction between free electrons and optical modes at a dielectric surface can be un-

derstood in a microscopic picture as follows: When an electron passes near the surface of a

dielectric structure, the electric field of the flying electron polarizes the dipoles in the structure

(see Fig.4.5). As a result, these dipoles generate oscillating electromagnetic fields that cause

backaction Coulomb forces on the electron, changing the electron energy. In the conven-

tional quantum optical modal decomposition picture commonly used in the cavity quantum

electrodynamics (QED) community, this can be interpreted as the interaction between the

free electrons and the optical vacuum fields of the modes supported by the dielectric struc-

ture [123].

Here, we no longer restrict ourselves to one spatial dimension and keep everything in the

general vector format. We consider an electron beam with a narrow momentum spread around

wavevector k0 and assume that the photon energies involved in the interaction are much

smaller than the electron relativistic energy E0 = c
√

c2m2 +ℏ2k2
0 (i.e. the no-recoil regime),

such that we can linearly expand the electron Hamiltonian in term of electron momentum
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4.3 Electron-photon interaction in the continuum

states. In the velocity gauge, the Hamiltonian is described as [124, 125]

Ĥ = Ĥel + Ĥph + Ĥint (4.57)

Ĥel =
∑

k
[E0 +ℏv · (k−k0)]ĉ†

kĉk (4.58)

Ĥph =
∫

dω
∫

d 3rℏωf̂†(r,ω) · f̂(r,ω) (4.59)

Ĥint =−
∫

d 3rĴ(r) · Â(r) (4.60)

where we defined the electron current operator Ĵ(r) = (−ev/V )
∑

k,q e i q·rĉ†
kĉk+q using the

Fermionic ladder operators ĉk and the relativistic electron group velocity v = ℏc2k0/E0, and a

linear electron energy dispersion is assumed. The vector potential Â(r, t ) = ∫ dω
2π Â(r,ω)e iωt +

h.c. is associated with the noise current operator ĵnoise(r,ω) through the quantized three-

dimensional Maxwell equation [114] and has a formal solution

Â(r,ω) =−4π
∫

d 3r′G(r,r′,ω) · ĵnoise(r′,ω) (4.61)

where G(r,r′,ω) is the dyadic Green function (Green tensor) of the classical problem satisfying

the equation

∇×∇×G(r,r′,ω)− ω2

c2 ϵ(r,ω)G(r,r′,ω) =−µ0δ(r− r′) (4.62)

which describes the field response at r to a point current excitation at r′. Since we are dealing

with non-magnetic materials, we assume a relative permeability µ(r) = 1. The noise operator

is bosonic and was chosen to be

ĵnoise(r,ω) =ω
√
ℏϵ0Im{ϵ(r,ω)}f̂(r,ω) (4.63)

in order to satisfy the fluctuation-dissipation theorem due to material dissipation, with

the bosonic ladder operators f̂(r,ω) satisfying commutation relation
[

f̂i (r,ω), f̂ ′
i (r′,ω′)

] =
δi ,i ′δ(r− r′)δ(ω−ω′). Note that in the limiting case of a dispersive material (assumed in

our analysis, characterized by its instantaneous electronic response), Im{ϵ(r,ω)} → 0. However,

this imposes no problem for our formalism here, which is shown to correctly reduce to the

mode decomposition method used in the quantized vacuum field [126] due to Kramers-Kronig

relations.

When projecting to the direction of the electron trajectory ẑ with transverse coordinate R0, the
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scattering matrix is shown to be

Ŝ = e i χ̂Û (4.64)

Û = exp

{[
−i e

2πℏV 2/3

∑
k,q⊥

∫
dω

∫
d 3re i q⊥·Re−iωz/ve

Âz (r,ω)ĉ†
kĉk+q⊥−(ω/v)ẑ

]
−h.c.

}
(4.65)

where q⊥ is the transverse component of the exchanged electron wave vector. The phase

operator χ̂ is associated with the Aharonov-Bohm effect of the vector potential [127]. We can

further simplify the expression by disregarding the phase operator χ̂ and assuming a point-like

electron distribution over the transverse direction to obtain

Û = exp

[∫
dωgωb̂†

ωâω−h.c.

]
(4.66)

where the continuum photon and electron operators are introduced

âω =− i e

2πℏgω

∫
d ze−iωz/ve Âz (R0, z,ω) (4.67)

b̂ω =∑
kz

ĉ†
kz

ĉkz+ω/v (4.68)

with vacuum coupling strength gω associated with the electron energy loss (EELS) probability

Γ(R0,ω)

|gω|2 = Γ(R0,ω) = 4e2

ℏ

Ï
d zd z ′Re{i e iω(z−z ′)/vGzz (R0, z;R0, z ′;ω)}. (4.69)

The operators are defined in this way so that the quantum optical commutation relations are

preserved [âω, â†
ω′ ] = δ(ω−ω′), and can be easily proven using the identity

∑
i ′′

∫
d 3r′′Im{ϵ(r′′,ω)}Gi ,i ′′(r,r′′,ω)G∗

i ′,i ′′(r′,r′′,ω) =− 1

ϵ0ω2 Im{Gi ,i ′(r,r′,ω)}. (4.70)

Note that âω contains contributions from all the spatial modes at ω, and is not a specific

pre-defined spatial mode âω,m which is frequently used in cavity QED systems.

To find the spatial mode function of âω, we use the following relations [128] for an arbitrary

set of orthogonal basis âi ,ω

âi ,ω =
∫

d 3rVi (r,ω) · f̂(r,ω) (4.71)

f̂(r,ω) =∑
i

V†
i (r,ω)âi ,ω (4.72)
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4.3 Electron-photon interaction in the continuum

where the weight functions obey the following normalization condition∫
d 3rVi (r,ω) ·V†

j (r,ω) = δi , j . (4.73)

From here, we can re-express the field operator in terms of the set of orthogonal bases as

Â(r,ω) =−4πω
∫

d 3r′
√
ℏϵ0Im{ϵ(r′,ω)}G(r,r′,ω) ·∑

i
V†

i (r′,ω)âi ,ω. (4.74)

By choosing one of the spatial modes âi=0,ω as our mode of interest âω with the weight function

Vâω(r,ω) =−2i eω

gω

√
ϵ0

ℏ

∫
d ze−iωz/ve

∫
d 3r′

√
Im{ϵ(r′,ω)}ẑ ·G(R0, z;r′;ω), (4.75)

we can find the mode function of our interested optical mode as

Ââω(r,ω) = 2π

√
ℏ

2ωϵ0
Uâω(r,ω)âω (4.76)

Uâω(r) = −4e

g∗
ω

√
2ϵ0ω

ℏ

∫
d ze iωz/ve Im[G(r;R0, z;ω) · ẑ], (4.77)

which is a mode specifically defined for this interaction. This mode construction corresponds

to a linear transformation of the original structure-supported optical spatial modes, such

that only one principal optical mode is involved in the interaction. In contrast, all the other

transformed modes are dark and invisible to the electron. In this way, it is advantageous to

use this formalism to account for the infinite number of spatial modes of the optical structure

the electron couples to. This mode function converges to one of the waveguide modes in the

limit of unity coupling ideality (defined in Section 6.2). If the electron transverse spread is

significant, the EELS probability is shown [129] to be an average over the transverse electron

wavefunction

Γ(ω) =
∫

d 2R|ψ⊥(R)|2Γ(R,ω). (4.78)

However, this type of averaging is not quantum coherent. The coupling coefficients are

different at different transverse positions, evident from Eq. 4.37. Therefore, we have to modify

the scattering matrix to

Ŝ = exp

[∫
dωd 2Rgω(R)b̂†

ω|R〉〈R|âω−h.c.

]
. (4.79)

Suppose the part of the longitudinal optical field that overlaps with the electron transverse

wavefunction has considerable inhomogeneity. In that case, the different transverse position

components of the electron will be entangled with different longitudinal electron-photon

pair states, characterized by their different coupling strengths. Therefore, information loss

occurs when tracing out the transverse degrees of freedom of the electron, leading to state
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purity degradation. Since nm-scale electron beam focuses are routinely used in electron

microscopes, this is not a significant limitation for near-field coupling to optical waveguides,

which have a typical decay length of ∼100 nm. In our experiment, we observed the state

thermalization effect when the electron transverse distribution is significant. We discuss it in

detail in Section 7.3.

4.3.2 Equivalence to the semi-classical result

The electron energy loss at a dielectric surface can be interpreted classically (on the optical

side) in a microscopic picture [130], see Fig. 6.1(a): if an electron passes near the surface of a

dielectric structure, the dipoles in the structures are polarized (equivalently classical current),

induced by the electric field from the flying electron, and generates a backaction field E(re (t ), t )

to the electron at re (t ) that induces electron energy loss. This effect is similar to the analogy

we discussed before (charging a capacitor). The total energy loss can be expressed in the time

domain and frequency domain as

∆E = e
∫

d tv ·E(re (t ), t ) =
∫
ℏωdωΓ(ω) (4.80)

where the frequency domain energy loss function Γ(ω) is expressed as

Γ(ω) = e

πℏω

∫
d tRe

[
e−iωt v ·E(re (t ),ω)

]
(4.81)

which can be easily verified if one plugs it back into the energy loss expression and the correct

time integral is retrieved. Notice that here E(re (t),ω) is not the direct Fourier transform of

E(re (t), t). The Fourier transform applies only on the time dependence of the electric field

function, not explicitly depending on the electron trajectory function re (t). The frequency

domain components depend explicitly on the current induced from a given electron trajectory

but do not consider the field’s sampling at different positions re (t) at different time t . This

treatment ensures that the total energy loss is consistent but renders the formalism non-

local. It is consistent with the quantum formalism when the electron is a wave and can be

decomposed into perfect momentum states where the wave-packet length is infinite, as one

can see from the fact that even though a classical electron only interacts with the structure

locally, our resulting energy loss spectrum will show, e.g., discrete mode structure (a non-local

property). It is the result of this particular Fourier expansion procedure, given that the electron

is a wave instead of a particle. It has been shown [129] that a full quantum treatment also gives

the same EELS result.

Using the no-recoil approximation, which assumes that the radiation of electron into the

surrounding substrates does not change the trajectory re (t ) of the electron significantly, we

can directly calculate the induced electric field E(re (t), t) from the electron current j(r, t)
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through the Green tensor of the whole dielectric structure,

E(r,ω) =−4πiω
∫

d 3r′G(r,r′,ω) · j(r′,ω) (4.82)

where the Green tensor G(r,r′,ω) is the elementary solution of the full Maxwell equation

∇×∇×G(r,r′,ω)− ω2

c2 ϵ(r,ω)G(r,r′,ω) =−µ0δ(r− r′) (4.83)

with a point current at position r′ in frequency domain. A flying electron is equivalent to a

broadband evanescent source, and here we consider an electron beam at ẑ direction and a

transverse coordinate R0, for which the frequency domain electron current density is

j(r,ω) =−e ẑδ(R−R0)e iω(z−z0)/v . (4.84)

From here, we can express the frequency domain loss rate in terms of the Green function as

Γ(ω) = 4e2

ℏ

∫
d zd z ′Re[i e i ω(z−z′)

v Gzz (R0, z;R0, z ′;ω)], (4.85)

which coincides with the result of a full QED treatment. We should keep in mind that the

Green tensor here has two contributions, one from vacuum G0 when there is no structure

around, and the other component from the backaction field Gind that is induced from the

dielectric dipoles. Only the backaction field Gind contributes to electron energy loss because

the electron does not emit light in vacuum; the contribution from the vacuum G0 vanishes in

the integral.

4.3.3 Modal decomposition and spatial-temporal modes

The correspondence between the 3D macroscopic quantization method in a dispersive mate-

rial with the conventional quantum optics quantization procedure using modal decomposi-

tion has been demonstrated for the 1D case [126]. Here, we show the correspondence with the

quantum optical formalism we derived in earlier sections. To account for all the spatial modes

at a given frequency ω, the quantization of the vector potential was chosen as

Â(r,ω) =−4πω
∫

d 3r′
√
ℏϵ0Im{ϵ(r′,ω)}G(r,r′,ω) · f̂(r′,ω) (4.86)

to fulfill the canonical field commutation relations. However, in vacuum or lossless media, the

modal decomposition method [35] is often used instead, with

Â(r, t ) =∑
m

√
ℏ

2ωmϵ0
Um(r)âωm ,me−iωm t +h.c. (4.87)
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where the profile function Um(r) of each mode defined in a frequency window ∆ωm satisfies

the wave equation

∇×∇×Um(r)− ω2

c2 ϵ(r,ωm)Um(r) = 0 (4.88)

with the normalization condition∫
d 3rϵ(r,ωm)Um(r) ·U∗

n(r) = δm,n . (4.89)

From here, we can easily find the correspondence between the spatial mode ladder operators

âω,m and the bosonic ladder operators f̂(r′,ω) as

âωm ,m =−4π
∫
∆ωm

dω
Ï

d 3rd 3r′ (4.90)√
2ω2ωmIm{ϵ(r′,ω)}ϵ0ϵ(r,ω)U∗

m(r) ·G(r,r′,ω) · f̂(r′,ω), (4.91)

with their vacuum coupling strength to the electron as

gωm ,m(R0) =−i

√
e2

2ϵ0ℏωm

∫
d ze−iωm z/veUm,z (R0, z). (4.92)

In this formalism, we can rewrite the scattering matrix in its modal decomposition form

Ŝ = e i χ̂ exp

[∫
dωgωb̂†

ωâω−h.c.

]
= e i χ̂′

exp

[∑
m

gωm ,m b̂†
ωm

âωm ,m −h.c.

]
(4.93)

where the optical mode operators âωm ,m are no longer continuum mode operators and now

satisfy [âωm ,m , â†
ωn ,n] = δm,n .

In the case of an optical cavity, the optical modes are well-defined bosonic modes. The

treatment is valid as long as the electron energy resolution does not resolve the frequency

components of the optical mode, i.e., ∆EZLP > ℏκ where κ is the cavity linewidth. For an

open waveguide, the modes coupled to the electron are instead traveling modes in a contin-

uum [131]. This is the most general case and can also include the open cavity modes. The

vacuum coupling strength of a continuum frequency mode in a spatial mode family is

gω,m(R0) =−i

√
e2

2ϵ0ℏω

∫
d ze−iωz/veŨm,z (R0, z,ω), (4.94)

where the profile function Ũm(r,ω) satisfies the wave equation as well, but with the normaliza-

tion condition ∫
d 3rϵ(r,ω)Ũm(r,ω) · Ũ∗

n(r,ω′) = δm,nδ(ω,ω′). (4.95)
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Index m represents different spatial mode families. However, when the electron energy

resolution does not resolve the frequency structure of the coupling strength to any given mode

family, we can still define the corresponding non-continuous operators for different mode

families (spatial-temporal modes),

âm =
∫

dωφ∗
m(ω)âω (4.96)

âω =∑
m
φm(ω)âm (4.97)

where φm(ω) is the Fourier component of the temporal field profile functions [132, 133]

φm(r, t ) = i
∫

dω

√
ℏω
2ϵ0

φm(ω)Ũm(r,ω)e−iωt (4.98)

Ê(r, t ) =∑
m
φm(r, t )âm +h.c. (4.99)

of the defined mode families. It is a complete orthogonal set of functions on ω,∫
dωφm(ω)φ∗

n(ω) = δm,n (4.100)∑
m
φm(ω)φ∗

m(ω′) = δ(ω−ω′) (4.101)

found through the Gramm-Schmit orthonormalization procedure, such that the commutation

relation [âm , â†
n] = δm,n is satisfied for these field operators in the context of quantum field

theory, introduced to avoid using operator-valued distributions. One can, therefore, rewrite

the scattering matrix in the new mode-family field-operator basis

Ŝ = e i χ̂ exp

[∑
m

gm b̂†
m âm −h.c.

]
(4.102)

where gm = ∫
dωgωφm(ω). The total coupling strength would be

|gm |2 =
Ï

dωdω′gωg∗
ω′φm(ω)φ∗

m(ω′). (4.103)

Here, when the frequency bands of different mode families with non-negligible coupling

strength gω are sufficiently separated, we choose the profile function φm(ω) = Iω∈∆ωm g∗
ω/g∗

m ,

where ∆ωm is the frequency window within which we define the field operator for the corre-

sponding mode family, and |gm |2 = ∫
∆ωm

dω|gω|2. Note that when the coupling to bulk modes

is significant, one can use the coupling strength gω,m from the conventional modal decomposi-

tion method or directly calculate the mode overlap between Uâω(r) and Um(r), to quantitatively

isolate the coupling to a mode family from background bulk mode contributions.

The cavity mode decomposition is actually the narrow-band approximation of the Gramm-

Schmit orthonormalization procedure, where φm(ω) is strongly peaked around the mode

center frequency since all optical modes, though narrow, still have a finite linewidth due to
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the coupling to outside channels (e.g., bus waveguide and cavity losses). The profile function

can be found through the input-output formalism [73] of an optical cavity âm , assuming unity

coupling efficiency to the bus waveguide mode âout with coupling rate κ, which results in a

profile function of φm(ω) ∝
p
κ

− κ
2 +i (ωm−ω) , where the bus waveguide is part of the resonator and

forms the continuum modes in the frequency domain.

Until now, we have derived the basic theory of electron-photon interaction. The physical

consequences of these interactions will be discussed in later chapters with the associated

experimental results.
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5 Photon-induced near-field electron
microscopy

In recent years, integrated photonics have facilitated extensive control over fundamental light-

matter interactions in quantum systems, including neutral atoms [134], trapped ions [135, 136],

quantum dots [137], and defect centers [138]. Ultrafast electron microscopy has made free-

electron beams also the subject of laser-based quantum manipulation and characterization

[113, 139], enabling the observation of free-electron quantum walks [120, 140, 141] and at-

tosecond electron pulses [116, 142, 143, 144]. In this category, integrated photonics [104, 105]

promises unique applications in nanoscale quantum control and sensing [145], that remain

to be realized in electron microscopy.

However, harnessing coherent electron-light interactions for scientific and technological ap-

plications is hampered by its usual limitation to the ultrafast and semi-classical regime. To

achieve semi-classical continuous-wave interaction, some studies have implemented IELS

[146, 147], a ponderomotive laser phase plate [99] and an attosecond modulator [100] at high

optical powers. To date, low coupling efficiencies and material damage have limited the inter-

action strength. Despite the use of phase matching and resonant amplification in dielectric

laser accelerators[104], prism geometries [121, 148] or free-space-coupled whispering-gallery-

mode microresonators[149], achieving strong electron-light interactions, both quantum and

semi-classical, has remained out of reach for regular electron microscopes.

This chapter shows the experiment results of using a ring resonator inside a TEM to enable

efficient electron wavefunction phase modulation. The optical field here is strongly driven

by a laser and can be treated classically. Even though we call the process photon-induced

near-field electron microscopy (PINEM) due to historical reasons, the optical field here does

not exhibit any particle feature in the measurable results. When the field consists of only a

single optical frequency, or in other words, continuous wave (CW), the interaction can be

reduced to the single-mode semi-classical interaction we derived in Section 4.2.1. When the

optical field consists of multiple frequencies, e.g., generated through optical Kerr nonlinearity

discussed in Appendix B.9, the interaction effectively becomes multi-mode or nonlinear, and

a more delicate treatment is needed. We discuss both of these two cases in the following

sections.
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Chapter 5. Photon-induced near-field electron microscopy

5.1 Continuous-wave driven semi-classical electron-light interac-

tion

In this section, we show the experiment result where we use a high-Q integrated photonic

silicon nitride resonator in an electron microscope, demonstrating efficient coherent phase

modulation of a continuous electron beam. The high-finesse (F = 5×103 for a 1-THz ring

with Q0 ∼ 106) cavity enhancement, and a waveguide specifically designed for phase matching

at the 120-keV electron energy, lead to efficient electron-light interaction at unprecedentedly

low, continuous-wave optical powers. Note that here the cavity optical nonlinearity does

not generate new frequency components yet due to its dispersion properties, and further

investigation of nonlinear optical states are described in Section 5.2.3.

To state quantitatively how efficient the interaction is, we fully deplete the initial electron

energy state component at a cavity-coupled power of only 5.35µW, and generate>500 electron-

energy sidebands for several milliwatts. Moreover, we probe unidirectional intracavity fields

with a record µeV resolution in electron-energy-gain-spectroscopy [150].

Semi-classical electron-photon interaction

The electron-photon interaction at the photonic chip (schematic in Fig. 5.1) is described by

the Hamiltonian that we derived in Chapter 4,

Hint = e

2m
(p̂ · Â+ Â · p̂) = ℏg0âb̂† +ℏg∗

0 â†b̂. (5.1)

In this setting, we assume a heuristic interaction time τ= L/ve , where L is the physical length

of the interaction region. The interaction between the optical mode (â: annihilation operator)

and an electron (b̂: electron-energy ladder operator) is then characterized by the vacuum

coupling rate g0, determined by the mode distribution and the matching of electron group

and optical phase velocities:

g0 = η
√

e2v2
e

2ϵℏωV
. (5.2)

Here again e is the electron charge, ve the electron group velocity, ϵ the optical permittivity,

ω the optical frequency, and V the effective optical mode volume. The phase matching

condition is manifested in the coefficient η= ∫
d ze−i∆k·z u(z)/L defined by the optical mode

profile function u(z) describing the electric field component along the electron trajectory,

linked to the vector potential by Â = Â(z) =
√

ℏ
2ϵωV (u(z)â +u∗(z)â†), and the electron wave

vector change ∆k =ω/ve upon photon absorption and emission.

The scattering matrix, summarizing the effect of the interaction on both the electron and

the cavity, is given by S = exp
(−i g0τâb̂† −h.c.

)
. Populated by a coherent state |α(t )〉 from a

laser, the free-electron-photon interaction reduces to a dimensionless coupling parameter

g = −iταg0, where |α|2 = nc is the mean intracavity photon number, and the scattering
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5.1 Continuous-wave driven semi-classical electron-light interaction

operator becomes a displacement operator acting on the electron state.

The interaction produces electron energy sidebands separated from the initial energy E0 by

integer multiples of the photon energy Nℏω (N ∈Z), with populations following the Bessel

functions of the first kind, PN = JN (2|g |)2. In a position representation, the interaction im-

prints a sinusoidal phase modulation onto the electron wavefunction, with which upon

dispersive propagation will result in a density modulation of the electron beam [116, 143, 144].

5.1.1 Photonic chip-integration in an electron microscope

To facilitate high interaction strengths, we use photonic chip-based Si3N4 microresonators, a

platform with many important features including radiation-hardness, high power handling

[151], extremely low propagation losses [3] and flexibility to engineer dispersion for phase

matching. The chip was fabricated using the photonic Damascene process [3, 152] without

top oxide cladding to allow for efficient free-electron-light interaction with the evanescent

field. The ring microresonator of 20µm radius is coupled to a bus waveguide and placed

close to a triangular edge of the chip to minimize undesired electron-substrate interactions,

see Fig. 5.1(d). For operation in the TEM, the photonic structure is packaged via ultrahigh

numerical aperture (UHNA) fibers, see Fig. 5.1(c). The Si3N4 microresonators employed here

enable phase matching at different electron energies by modifying the waveguide geometry in

design, see Fig. 5.1(e), while various established integrated platforms can further extend the

phase matching range in electron energy and optical frequency.

In this experiment, we design a ring microresonator (cross-section: 2µm × 650 nm) to provide

phase matching at an optical frequency of ∼193 THz (λ ∼ 1549-nm) for a target electron

energy of 115 keV. Fig. 5.1(f) shows a finite-element method (FEM)simulation of the quasi-TM

mode profile in terms of its major contributing longitudinal field component Eϕ along the

electron propagation direction. Owing to the small mode area and considerable evanescent

field component, we predict a vacuum coupling rate of g0/2π∼ 1011 Hz over an interaction

time of τ∼ 10−13 s (interaction length: L ∼ 19µm). The microresonator’s high-Q factor enables

a unity coupling strength g ∼ 11 at a coupled optical power of P = ncℏωκ ∼ 1µW, where

κ/2π = 390MHz is the measured cavity decay rate inside of the electron microscope (the

intrinsic quality-factor of Q0 ∼ 0.74×106 is slightly degraded in microscope due to high-energy

electron damage of the waveguide material).

5.1.2 Simultaneous optical and electron spectroscopy

In the experiments, the fiber-coupled microresonator is driven by a 1550-nm CW laser via

the bus waveguide. It is mounted on a custom-designed sample holder and placed in the

object plane of the field-emission TEM, see Fig. 5.1(a). Parallel to the surface, the electron

beam passes by the waveguide and interacts with the confined optical mode (Fig. 5.1(a) inset).

1The coupling constant g is a complex number; for simplicity, in the following, we use g in place of |g |.
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Figure 5.1: Principle of continuous-wave (CW) photonic-chip-based optical phase modula-
tion of free-electron beams. (a) Rendering of the experimental setup including the electron
microscope and a fiber-coupled Si3N4 photonic chip-based microresonator. (b) After the
interaction with the light field, the initially narrow electron spectrum (black) develops discrete
sidebands at integer multiples of the photon energy (red). (c) Photograph of the fiber-coupled
Si3N4 photonic chip mounted on a customized TEM holder. The triangular-shaped chip
edge minimizes undesired electron-substrate interactions. (inset: optical fiber glued to the
input waveguide). (d) Optical microscope image of the photonic chip showing the bus waveg-
uide and the microresonator. The electron beam (green path, not to scale) traverses the
microresonator parallel to the chip surface. (e) Frequency-dependent effective index of the
fundamental quasi-TM microresonator mode (red). The integrated on-chip platform allows
for achieving phase matching at different electron kinetic energies (blue, 90-145 keV) either by
changing the dimensions of the Si3N4 waveguide or operating at different optical frequencies.
For the waveguide shown in (f), phase matching is achieved between the optical mode at
∼ 193.5 THz (corresponding to a wavelength of ∼ 1550 nm) and the free electrons at ∼ 115 keV.
(f ) Finite element simulation of the Eϕ distribution of the fundamental quasi-TM mode of
microresonator (green dot: exemplary electron trajectory pointing into the page).

After traversing the structure, the electron kinetic energy distribution is characterized with an

imaging electron spectrometer in two different ways. Specifically, electron energy spectra are

recorded using a spectrometer when positioning a sharply focused electron beam in front of

the microresonator at a specific location. Alternatively, energy-filtered transmission electron

microscopy (EFTEM) using collimated (not sharply focused) TEM-illumination is used to

image the interaction uniformly across the entire cavity mode near-field. While the former

yields the complete electron spectra for varying experimental parameters (Fig. 5.2), the EFTEM

enables imaging of a specific sideband population with high spatial resolution and span. The

EFTEM method is briefly discussed in the next section; here, we primarily focus on the first

measurement method.

We investigate the strength of the coupling parameter g using a focused electron probe, record-

ing electron spectra while scanning the laser over a resonator resonance. The transmission
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Figure 5.2: Simultaneous optical and electron spectroscopy of a high-Q microresonator
mode. (a) A continuous-wave (CW) is used to excite the quasi-TM mode of the Si3N4 mi-
croresonator by using a polarization controller (PC). The relative optical frequency is cali-
brated by imparting sidebands (±2GHz) via an electro-optic phase modulator (EOM). The
total transmitted and back-reflected light is detected to calibrate the power coupled into
the clockwise propagating mode (CIR: circulator, PD: photodiode, OSC: oscilloscope, TEM:
transmission electron microscope, RF: radio-frequency synthesizer). (b) Normalized trans-
mission scan of the microresonator quasi-TM mode measured outside of the TEM with a
Q-factor of ∼ 0.77×106 (κ0/2π= 112 MHz, κex/2π= 139 MHz) and a free spectral range (FSR)
of ∼ 1.090 THz. (c) Simultaneously measured optical transmission at the output waveguide
(top) and |g |2 retrieved from the electron energy spectra (bottom) during interaction of the
electron-beam with the evanescent cavity field. The measured |g |2 trace follows the power
coupled to the clockwise mode and a slight splitting is present due to modal coupling. (d)
Example electron energy spectra for low (top; g = 0 (black), g ≈ 3.5 (red) and g ≈ 6.7 (blue))
and high (bottom, g ≈ 125) optical power. (e) |g |2 varies linearly with optical power coupled to
the clockwise mode of the cavity (slope: |g |2 = P/3.70µW).

spectrum, displayed in Fig. 5.2(b), shows the quasi-TM microresonator modes spaced by a

free spectral range (FSR) of 1.090 THz. Figure 5.2(c) shows the laser-excited microresonator

mode’s simultaneous optical and in-situ electron spectroscopy. An electro-optical modulator

(EOM, driven at 2.0 GHz) generates sidebands that can be observed in the transmission spec-

trum to calibrate the relative optical frequency. The laser is tuned to a single optical mode at

∼1549.4 nm (κ/2π= 390 MHz), and the focused electron beam (120-keV beam energy, 25-nm

focal spot size, 1-mrad convergence semi-angle, which is a factor of approximately 10 from the

position-momentum limit that reduces the transverse spatial coherence, but does not affect

our results) is centered just above the surface of the microresonator to record the electron

spectra for the stationary e-beam. Harnessing the high-finesse intra-cavity enhancement,

we observe populations PN in multiple photon orders N , reaching a previously inaccessible

regime for a continuous laser light source and electron beam, see Fig. 5.2(d). The coupling

parameter g is retrieved from the electron spectra. At the same time, the optical power coupled
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Chapter 5. Photon-induced near-field electron microscopy

to the clockwise-propagating mode is determined from the recorded optical transmission and

reflection data, see Fig. 5.2(e). We observe the expected linear dependence |g |2 = P/3.70µW of

the coupling on the coupled clockwise optical power by calibrating the optical power coupled

to the clockwise mode from the measured optical transmission record. From this, we find a

value of 5.35µW required for suppression of the electron zero energy-loss peak at g ∼ 1.2 and

a value of g ∼ 40 for an optical power of about 6mW. Note that as the coupling strength g is

proportional to the field amplitude, it requires a quadratic increase of optical power to achieve

a linear increase in g . For an optical power of ∼ 38mW in the bus waveguide we generate

> 500 photon sidebands with g ∼ 125, see Fig. 5.2(d).

While state-of-the-art dielectric laser accelerators (DLAs) achieve the highest peak acceleration

gradients for sub-relativistic electron beams using femtosecond lasers [104, 153], our approach

enables continuous acceleration with 330 keV/(m ·mW) of micro-bunched electron beams

[103, 116]. Regarding the input peak optical power required, this is a 4-orders-of-magnitude

improvement in efficiency over free-space coupled dielectric structures [121, 149].

The optical resonance’s spectral line shape is analyzed by recording the transmitted optical

power and the extracted g for varying laser detuning; see Fig. 5.2(c). The optical transmis-

sion trace, formed by the interference of the input light with the light coupled out from the

clockwise-propagating resonator mode, exhibits a full-width-half-maximum of 560 MHz (total

line width κ/2π = 390 MHz). Interestingly, the electron spectra, sensitive only to the intra-

cavity field in the clockwise direction, display a double-peaked structure originating from

coupling power to the frequency degenerate counterclockwise mode [154]. The differences in

width and shape between the optical and electron spectroscopic measurements are explained

by the interference in the optical transmission channel with the input field, and both curves

can be fitted consistently in one model as presented below, as well as in Fig. 5.3. These data

demonstrate continuous-wave electron energy gain spectroscopy (EEGS) [150, 155] at a spec-

tral feature of only 3.2µeV in width (FWHM; 1µeV peak separation). In the following, we detail

the analysis of the coupling between the clockwise and the counter-clockwise modes and how

we calibrate the coupled power to the clockwise mode using the optical transmission trace.

Coupling between clockwise and counter-clockwise resonator modes

The surface Rayleigh or bulk scattering in the microresonator leads to the coupling of clockwise

(acw) and counter-clockwise (accw) modes [156]. Assuming both modes have degenerate

frequencies ω, due to the time-reversal symmetry, with modal coupling rate γ due to field

overlap, the Hamiltonian of the microresonator system reads

H = ℏω(a†
cwacw +a†

ccwaccw)+ℏγ(acw +a†
cw)(accw +a†

ccw). (5.3)
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5.1 Continuous-wave driven semi-classical electron-light interaction

Going to the laser’s frame with frequencyωlaser =ω+∆, under the rotating wave approximation,

the Hamiltonian reads

H =−ℏ∆(a†
cwacw +a†

ccwaccw)+ℏγ(acwa†
ccw +a†

cwaccw). (5.4)

After considering coupling to the bus waveguide with rate κex and losses to the environment

with rate κ0, we arrive at the following Langevin equations (ignoring vacuum fluctuation)

ȧcw = (−κ/2+ i∆)acw − iγaccw +p
ηκacw,in (5.5)

ȧccw = (−κ/2+ i∆)accw − iγacw, (5.6)

where κ = κex +κ0 describes the total optical loss rate and η = κex/κ denotes the coupling

efficiency. As the laser scan is sufficiently slow, we can use the stationary solution of the

intracavity fields, which can be easily obtained as

acw = −pηκacw,in

−κ/2+ i∆+ γ2

−κ/2+i∆

(5.7)

accw = −iγacw

−κ/2+ i∆
. (5.8)

The cavity transmission, reflection, and dissipation are then obtained from the input-output

formalism Oout =Oin −p
κexO for any field operator O ,

Pt/ℏω = |acw,out|2 = |acw,in −p
ηκacw|2 (5.9)

Pr/ℏω = |accw,out|2 = |−p
ηκaccw|2 (5.10)

Pdiss/ℏω = |−√
(1−η)κacw|2 +|−√

(1−η)κaccw|2. (5.11)

as well as the intracavity photon numbers

ncw =
∣∣∣∣∣∣ −pηκ
−κ/2+ i∆+ γ2

−κ/2+i∆

∣∣∣∣∣∣
2

ṅcw,in (5.12)

nccw =
∣∣∣∣ −iγ

−κ/2+ i∆

∣∣∣∣2

ncw. (5.13)

Eq.(5.9) and (5.12) are used for fitting the frequency sweep of the optical transmission Pt (∆).

The frequency sweep fitting was done using the Markov chain Monte Carlo (MCMC) meth-

ods [157], with the optical sidebands at ±Ωsb and an absorption-induced cavity frequency

shift χthPdiss(∆) included in the models. The fitting function is thus Ffit(∆) =∑
n=−1,0,1 Fi (∆+

nΩsb +χthPdiss(∆)), where Fi is either Pt for optical measurement or ncw for the inferred

electron-light coupling strength g from the electron spectra. The fitting results are shown in

Fig.5.3, and the fitted system parameters show great consistency between the two distinct

measurements.

For the power sweep calibration, Eq.(5.9), (5.12) and (5.13) are used for calibrating the clock-
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Figure 5.3: (a) An optical transmission scan measured at the output of the chip is fitted using
Eq. (5.9). The sidebands generated via an electro-optic modulator are used to calibrate the
frequency. (b) Fitting to the fitted g frequency sweep using Eq. (5.12). Note that the fre-
quency sweep line shape difference near the resonance is due to the coupling to the frequency
degenerate counter-clockwise optical mode. (c,d) The Markov chain Monte Carlo random
walk corner plot of the fitting to the optical data and the fitted g data. The fitted system key
parameters (cavity decay rate κ, splitting ratio γ/κ, sideband ratio Asb) of the two frequency
sweeps are all within 7% discrepancy, indicating great consistency between the optical and
electron spectroscopic measurements. Also, a strong correlation between the fitted γ and κ is
observed for both fittings, indicating the necessity of applying the coupled modes model to
extract the cavity decay rate correctly.
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5.2 Free-electron interaction with optical continuum

wise dissipated power P̃diss,cw(t). The detuning ∆̃(t) was extracted from the experimentally

measured P̃t(t ) (Fig.5.4(b), suffers the least from background noise and etalon interference)

using the fitted resonator parameters (κ,η,γ) from the frequency sweep (Fig.5.4(a)(c)). Then,

the clockwise dissipated power P̃diss,cw(t ) (Fig.5.4(e)) was calibrated from the experimentally

measured transmission power P̃t(t ) and the calibrated ∆̃(t ) by P̃diss,cw(t ) = Pdiss,cw(∆(t ))
Pt(∆(t )) P̃t(t ). We

later calculate the characteristic coupled optical power P = ncwℏωκ by scaling the dissipated

power P = κ
κ0

× P̃diss,cw, and plot it against the fitted coupling constant |g (t)|2 (fig. 5.4(f)),

one could find the linear relation to optical power as is expected in theory. The observable

oscillations in the linear dependence of |g |2 on the clockwise dissipated power are related to a

50Hz noise in the beam position, leading to variations in the measured electron-light coupling

strength. To eliminate this 50Hz noise, we binned the retrieved coupling strength in time

intervals of 20ms. Fig. 5.2(e) shows the resulting power dependence. Note that the calibrated

cavity response trace is highly oscillatory and unsuitable for calibrating intracavity power. This

behavior is because of the background etalon formed by the weak reflection of the chip facets.

We detail the physics of this etalon-type split resonance response in Appendix B.12.

Mode imaging and phase matching condition

As I am not heavily involved in the data analysis of the EFTEM for the direct mode and sideband

population imaging, this section only briefly discusses the results. Please refer to ref [7] for the

more detailed experiment results.

Using a collimated electron beam and an imaging energy filter (800-meV energy passband) to

obtain the energy sideband population, spatial maps of the discrete sideband populations PN

can be imaged. One important feature we observed is an oscillatory modulation of g along the

chip surface, as the e-beam interacts twice with the ring resonator (geometrical configuration

shown in Fig. 5.11 (a)) and results in Ramsey-type constructive or destructive interference that

depends on the relative phase of both individual interactions [140]. We also observed varying

coupling strength with electron energy, which peaked at the periphery of the ring (tangent

line) with the correct phase-matching electron energy of 115 keV. These results are expected

and confirmed by the theoretical and numerical simulations. The Ramsey-type inference is

particularly useful for studying the spatial amplitude-phase correlation between the nonlinear

optical fields at two different spatial points, detailed in our recent result [11].

This section only examined the case when the optical field driving the electron-light interaction

is a continuous wave. In the following section, we analyze the case when the optical field is

nonlinear and composed of multiple frequency components.

5.2 Free-electron interaction with optical continuum

In the previous chapter, we established the theoretical background of how to treat the free-

electron interaction with classical optical fields, single-mode quantized optical mode, and the
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Figure 5.4: (a) Simulated power distribution in the optical system when the pump is along
the clockwise direction, generated using parameters fitted from the frequency sweep mea-
surement shown in Fig.5.3. (b) |g|2 scan where each point is obtained after fitting the electron
energy distribution. (c) Experimentally measured optical signal of the cavity transmission
(blue), reflection (red), and dissipation (green). The resonance-shaped (black dashed) curve
shows the inferred cold cavity transmission without thermal absorption and Kerr nonlinearity-
induced cavity frequency shift, which is present in the triangular-shaped (blue) curve due
to high input power (∼ > 50µW ). (d) Calibrated detuning ∆(t) based on the experimentally
measured optical signal in (c). (e) Calibrated correction factor Pdiss,cw/Pdiss from the detuning
plot (d). The reflection calibration is empirically erroneous. This effect can be attributed to
the etalon formed by the chip facets, by which the transmission signal is less affected. (f )
The calibrated dissipated power in the clockwise mode shows a linear relation with |g |2 from
different measurement channels (transmission and dissipation).

quantized optical continuum. We also established an experiment platform for free-electron

interaction with the near field of a photonic integrated resonator. As discussed in Appendix B.9,

these resonators exhibit optical Kerr nonlinearity and generate new frequency components

and different families of nonlinear optical states, e.g., dissipative Kerr solitons, at high oper-

ating power. Therefore, we would also like to understand electrons’ interaction with these

nonlinear optical fields.

In this section, we first establish the general theory of free-electron interaction with a gen-

eral nonlinear optical state. Later, we illustrate some experiment results obtained with free

electrons interacting with nonlinear optical fields in our resonator.
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5.2 Free-electron interaction with optical continuum

5.2.1 Free-electron interaction with nonlinear optical fields

Here, we derive the general result of free electrons interacting with optical fields consisting

of multiple frequency components, both in the optical continuum and the discrete mode

basis, and show that in either case, we arrive at one consistent result, which is effectively a

position-dependent phase modulation of the electron wavefunction.

Interaction with optical continuum

The interaction with the optical continuum is the most general picture. In principle, it also

covers the case with optical resonators, which exhibit discrete modes in frequency, since the

coupling to the bus waveguide effectively converts the discrete modes into the continuum

traveling modes. We start from the scattering matrix derived earlier in Section 4.3.1,

Ŝ = exp

(
−

∫
dωg∗

ωb̂ωâ†
ω−h.c.

)
(5.14)

where

gω =
√

e2

2ℏωϵ0

∫
d ze−i ωv zUz (r,ω) (5.15)

Note that we are concerned with the interaction with an intentionally stimulated field. There-

fore, we describe the interaction by only considering a specific waveguide mode family m that

we excite with laser inputs. The field function Uz (r,ω) = Um(r,ω) · êz is the z component of

the normalized electric field functions Um(r,ω) which satisfies the wave equation

∇×∇×Um(r,ω)− ω2

c2 ϵ(r,ω)Um(r,ω) = 0 (5.16)

and the normalization condition∫
d 3rϵ(r,ω)Um(r,ω) ·U∗

n(r,ω′) = δm,nδ(ω,ω′). (5.17)

When ignoring the electron energy-momentum dispersion, we can approximate the electron

energy ladder operators b̂ωas e−i ωv z |z〉〈z|. In the following derivations, |z〉〈z| is hidden for

simplicity. When the scattering matrix acts on the electron |ψe〉 and a nonlinear optical state

(coherent waves)
∏
ω |αω〉, we have

Ŝ|ψe ,ψph〉 = exp

(
−

∫
dωg∗

ωb̂ωâ†
ω−h.c.

)
|ψe〉

∏
ω
|αω〉

≈ exp

(
−

∫
dωg∗

ωα
∗
ωe−i ωv z −h.c.

)
|ψe〉 (5.18)
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Chapter 5. Photon-induced near-field electron microscopy

As the electric field operator in time domain is

Ê(r, t ) =
∫

dω · i

√
ℏω
2ϵ0

U(r,ω)e−iωt âω+h.c. (5.19)

Â(r, t ) = Â−(r, t )+ Â+(r, t ) =
∫

dω

√
ℏ

2ωϵ0
U(r,ω)e−iωt âω+h.c., (5.20)

we can easily write out the classical counterpart whose time-domain waveform can be re-

trieved from, e.g., numerical simulation of the LLE,

A−(r, t ) =
∫

dω

√
ℏ

2ωϵ0
U(r,ω)e−iωtαω. (5.21)

With this expression for the optical field A(r, t ), we can derive the scattering matrix when an

electron interacts with a nonlinear optical state as

Ŝ|ψe ,ψph〉 ≈ exp

(
− e

ℏ

∫
d z ′A+,z

(
R0, z ′,T = z ′− z

v

)
−h.c.

)
|ψe〉

= exp

(
−2i Im

[
e

ℏ

∫
d z ′A+,z

(
R0, z ′,T = z ′− z

v

)])
|ψe〉 (5.22)

which is essentially a position-z-dependent phase modulation of the electron wavefunction.

Interaction with discrete multi-mode fields

The discrete mode picture is uniquely applied to the case of an optical resonator. The formula-

tion does not change much, as we start with the scattering matrix

Ŝ = exp

(
−∑

m
g∗

m b̂m â†
m −h.c.

)
(5.23)

where

gm =
√

e2

2ℏωϵ0

∫
d ze−i ωv zUm,z (r) (5.24)

and the normalized electric field functions Um(r) of mode family m (that we excite) satisfy the

wave equation

∇×∇×Um(r)− ω2

c2 ϵ(r,ωm)Um(r) = 0 (5.25)

with the normalization condition∫
d 3rϵ(r,ωm)Um(r) ·U∗

n(r) = δm,n . (5.26)
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5.2 Free-electron interaction with optical continuum

Again, we can write out the electric field operator in the time domain

Â(r, t ) = Â−(r, t )+ Â+(r, t ) =∑
m

√
ℏ

2ωϵ0
Um(r)e−iωm t âm +h.c. (5.27)

Upon substituting gm with A+,z in the classical limit (large coherent fields), we arrive at the

same scattering matrix as we derived earlier,

Ŝ|ψe ,ψph〉 = exp

(
−2i Im

[
e

ℏ

∫
d z ′A+,z

(
R0, z ′,T = z ′− z

v

)])
|ψe〉. (5.28)

Electron energy spectrum

From previous subsections, we understand that the interaction with a classical field imprints a

phase modulation on the electron wave function. In reality, we can measure quantities like the

electron energy change after the interaction in the experiment. Therefore, in this subsection,

we aim to understand the effect on the electron energy distribution.

We start with a general initial electron state |ψe〉 =
∫

dkψ(k)|k〉, and ψ(z) = ∫
dkψ(k)e i kz in

the spatial domain. We can derive the scattered electron energy spectrum as

P (k) = ∣∣〈k|Ŝ|ψe ,ψph〉
∣∣2

=
∣∣∣∣Ï d zdk ′ exp

(
−2i Im

[
e

ℏ

∫
d z ′A+,z

(
R0, z ′,T = z ′− z

v

)])
ψ(k ′)e−i (k−k ′)z

∣∣∣∣2

=
∣∣∣∣Ï d zdk ′ exp

(
−2i Im

[
e

ℏ

∫
d z ′A+,z

(
R0, z ′,T = z ′− z

v

)])
ψ(z)e−i kz

∣∣∣∣2

(5.29)

which is essentially the Fourier components of the phase-modulated electron wavefunction

ψ′(z) in the spatial domain.

To simplify the result further, we can assume that the optical envelope is time-invariant. The

optical time-dependent waveform can be further expanded as

A+,z (z, t ) = e i (ωt−keff(z)z+φ1)U (z)A(ωt −kg z +φ2), (5.30)

where U (z) includes the spatial dependence (e.g., waveguide routing) of the envelope, and

A(ωt −kg z +φ2) is the time-invariant optical envelope along the waveguide direction. There

keff and kg are the optical phase and group wave vectors. Generally, U is frequency/time

dependent as well due to optical dispersion during the propagation. We restrict ourselves in

the case where the dispersion during the propagation can be neglected, especially during the

interaction. The dispersion is perfectly balanced in the case of a dissipative Kerr soliton (DKS).

We further assume that the electron state is also a plane wave with a time-invariant envelope,

ψ(z) ∝ e i k0zψ(z), during the interaction. With these simplifications, we can further simplify
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Chapter 5. Photon-induced near-field electron microscopy

Figure 5.5: Illustration of electron interaction with a nonlinear optical field with a time-
invariant envelope. Right: The electron wavefunction is in the rest frame, where the wavefunc-
tion is stationary. A blue slice ψ(z) is highlighted, whose phase modulation is to be analyzed
in Left: the accumulated electron phase modulation on ψ(z), at different physical coordinates
z ′ near the optical structure, when the electron co-propagates with an optical pulse (five
instances in time is shown). When the interaction accumulates over various coordinates z ′,
the electron experiences the phase-velocity and group-velocity mismatch.

the electron-light interaction as

P (K = k −k0) ∝=
∣∣∣∣FTz→K exp

(
−2i Im

[
e

ℏ

∫
d z ′e i (ωv −keff)z ′

U (z ′)

× A
(
(
ω

v
−kg )z ′− ω

v
z +φ2

)
e−i ωv z+iφ1

])
ψ(z)

∣∣∣∣2

(5.31)

here, φ1 is one degree of freedom relative between the optical carrier phase and the electron.

If the electron and the optical carrier fields are not synchronized, this phase will average

out. However, if the electron arrival and the optical phase are synchronized, and when the

electron pulse is sub-optical cycle long, different φ1 will lead to directional acceleration or

de-acceleration of the electron. φ2, on the other hand, is related to the arrival timing of

the electron relative to the optical pulse envelope and changes the envelope of the phase

modulation applied to the electron wave function.

5.2.2 Generalized electron modulation dependence on field properties

To understand the physical picture of this interaction better, we rewrite the electron energy

distribution in another way

P (K = k −k0) ∝
∣∣∣FTz→K exp

(
−2i Im

[
g (z)e−i ωv z+iφ1

])
ψ(z)

∣∣∣2
(5.32)

g (z) = e

ℏ

∫
d z ′e i (ωv −keff)z ′

U (z ′)A
(
(
ω

v
−kg )z ′− ω

v
z +φ2

)
(5.33)

With these expressions, the physical meaning of the interaction is clear, as is illustrated

in Fig. 5.5. Since it is the interaction picture, we are looking at the electron’s rest frame

ψ(z). The interaction adds an effective position-z-dependent spatial phase modulation
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5.2 Free-electron interaction with optical continuum

exp
(
−2i Im

[
g (z)e−i ωv z+iφ1

])
on the electron wavefunction.

When driven with a CW light source, the optical envelope profile A loses time dependence. As

a result, g (z) loses z dependence and becomes a constant g . Then, the Bessel sidebands are

natural from the Bessel expansion of a sinusoidal phase modulation exp
(
2i |g |sin(ωv z +φ)

)
.

Effects of relative pulse width and arrival timing

When the optical envelope co-propagates with the electron, the electron wavefunction ψ(z)

experiences a position-z dependent inhomogeneous phase modulation due to light intensity

and phase variation. In the energy domain, the sideband distribution also generally deviates

from Bessel functions that were for homogeneous phase modulation.

When the group velocity of the light matches that of the electron kg = ω
v , the relative position of

the optical envelope and the electron pulse is synchronized. Therefore, the phase modulation

depth is precisely proportional to the optical envelope as in g (z) ∝ A(−ω
v z +φ2), revealing

the intuitive physical picture. We show in Fig. 5.6 the case where the optical group and phase

velocities are perfectly matched with the electron velocity (artificial), with varying relative

pulse width ratio and relative arrival timing (determined by φ2). As we can see, the more non-

uniformity g (z) has relative to ψ(z), the electron spectrum deviates more from the standard

Bessel distribution.

Effects of group and phase velocity mismatch

With the group velocity mismatch, the optical field envelope catches an extra term, A((ωv −
kg )z ′− ω

v z +φ2), capturing the effect of relative position slip due to the pulse speed mismatch

during the whole interaction length
∫

d z ′. As a result, the g (z) integral of z ′ involves the Fourier

components of both the phase velocity mismatch ω
v −keff, the group velocity mismatch from

A
(
(ωv −kg )z ′− ω

v z +φ2
)
, as well as the structure spatial dependence U (z ′). For some z they

can compensate each other, while for some other z, they reduce the depth of the phase

modulation.

We simulate the case where the group and the phase velocities are mismatched with the

electron group velocity, shown in Fig. 5.7. As we can see, the group velocity mismatch results

in generally broader g (z) due to the effect of the envelope moving average. The broader the

g (z), the more Bessel-like the electron spectrum is. On the other hand, a phase mismatch

introduces oscillatory behavior of g (z) due to the interference mentioned above between

different Fourier components.
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Chapter 5. Photon-induced near-field electron microscopy

(b)

(a)

Figure 5.6: Electron energy spectrum after interaction with an optical pulse with perfect phase
and group velocity matching. The optical field envelope, the electron wavefunction, and the
phase modulation depth g (z) are plotted. (a) Changing relative electron-optical pulse width
ratio. (b) Changing relative arrival timing between electron and optical pulses. Both result in a
non-Bessel-shaped electron energy spectrum when the optical waveform is not CW. Note that
all the electron spectra are offset by integers of 0.25 for visualization purposes.
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5.2 Free-electron interaction with optical continuum

(b)

(a)

Figure 5.7: Electron energy spectrum after interaction with an optical pulse with phase and
group velocity mismatch. The optical field envelope, the electron wavefunction, and the phase
modulation depth g (z) are plotted. (a) Changing electron group velocity from perfect group-
velocity matching (100 kev) to 200 kev. Phase velocity is perfectly matched here to isolate the
effect of group-velocity mismatch. We can see that the group-velocity mismatch results in a
wider g (z) width due to the moving-average effect. (b) Same electron group velocity sweep,
but phase velocity is also mismatched here. This results in the oscillatory behavior of g (z).
Note that the optical field amplitude is scaled to compensate for the reduced interaction
strength due to phase mismatch. All the electron spectra are also offset by integers of 0.25 for
visualization purposes.
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Chapter 5. Photon-induced near-field electron microscopy

(b)

(a)

Figure 5.8: Electron energy spectra after interaction with an optical pulse, under perfect phase-
and group-velocity matching. Ten electron energy spectra are shown with swept φ1 in a full
cycle and the φ1-averaged energy density. (a) Sub-optical-cycle electron pulse, results in
φ1-dependent asymmetric shift of the electron energy. (b) Electron pulse spanning multiple
optical cycles, results in φ1-independent symmetric electron spectra. All the electron spectra
are offset by integers of 0.25 for visualization purposes.

186



5.2 Free-electron interaction with optical continuum

Effect of the relative phase between optical carrier and electron

As discussed, the relative phaseφ1 leads to asymmetric electron energy shift when the electron

wavefunction span is sub-optical-cycle. This effect is illustrated in Fig. 5.8. When the electron

is more point-like (sub-optical-cycle, energy span larger than ℏω), the electron experiences

a sub-optical-cycle field, which results in phase-dependent directional energy gain/loss.

However, if this relative phase is not synchronized, it will have an averaging effect, leading to

a symmetric averaged spectrum. In the experiment, to obtain a stable relative phase φ, the

electron pulse has to be compressed first by the same (or phase-synchronized) optical field

so that the position of the electron pulse is synchronized with the phase of the subsequent

optical field, which is used for directional acceleration. When the electron wavefunction is

sufficiently large (multiple optical-cycle, energy span smaller than ℏω), the spectrum tends to

be phase independent, and the electron behaves more wave-like.

Note that any phase averaging, either φ1 or φ2, in the experiment will lead to the decoherence

of the electron state. I.e., the end state of the electron will be a mixed state instead of a coherent

one.

Frequency-domain picture

We can also understand the physics from a frequency-domain picture by recasting g (z) into

g (z) = e

ℏ

∫
dk̃Ũ

(
(
ω

v
−keff)− k̃

)
Ã

(
k̃

ω
v −kg

)
exp

(
i

k̃
ω
v −kg

(
ω

v
z −φ2)

)
|ω

v
−kg |−1. (5.34)

Here, k̃ is the electron wave-vector offset from the optical carrier keff, and we are summing

up all these optical Fourier components. The three terms here have clear physical meanings.

Ũ
(
(ωv −keff)− k̃

)
is the Fourier component contributed by the waveguide routing geometry.

Ã
(

k̃
ω
v −kg

)
is the Fourier component contributed by the moving optical envelope relative to

the electron. Furthermore, exp
(
i k̃
ω
v −kg

(ωv z −φ2)
)

is the relative phase accumulation of these

Fourier components from the arrival timing of the pulse φ2.

5.2.3 Continuous electron-soliton interaction

In our experiment, one of the particular nonlinear optical states we generated is the dissipative

Kerr soliton (DKS), discussed in Appendix B.9. In most UTEM experiments, a mode-locked

laser is used to drive the electron emission process and interact with the electron later with

a fixed delay determined by the optical path length. In our experiment, although DKS is

an optical pulse, we can not use it to drive the electron emission because of its wavelength.

Since our electron field emission process is dominated by one-photon absorption, the photon

energy needs to exceed the work function of the tip material. Therefore, first, we must convert

the wavelength using third harmonic generation. Second, the soliton pulses’ optical power

187



Chapter 5. Photon-induced near-field electron microscopy

(20 fJ) is low compared to that of the frequency-doubled mode-locked lasers [158] (10 nJ).

Because of the above reasons, we do not have a synchronization between the optical pulses

(DKS) and the electron arrival at the sample. Because of this, the generated electron state is

a mixed state, and we have to treat the arrival timing φ2 as a uniformly distributed random

variable. Also, our electron intrinsic energy uncertainty ∆E < 0.6eV < ℏω, therefore the

specific value of φ1 does not matter as well, and the electron spectrum will be symmetric.

Consequently, the measured spectra will be averaged over different relative timing φ2. Due

to the different arrival timing, as well as the relatively narrow DKS timing width, the electron

most of the time interacts with the CW background of the laser drive and only interacts with

the DKS pulses with small probability, shown in Fig. 5.11 (b). Because of this reason, we need

to look at the electron spectrum in log-scale to observe the effect of interaction with the optical

pulses.

Another important consideration is that our DKS envelope generated in the experiment (e.g.

∼20µm) is relatively long compared to the electron spatial extent (∼1µm). As a result, the

electron wavefunction does not experience significantly the non-uniform phase modulation

g (z). Therefore, we hypothesized that for each arrival time φ2, we can approximate g (z,φ2)

with a uniform g (φ2). Consequently, for each φ2, the electron spectrum can be approximated

with a Bessel distribution. This simplification could greatly reduce the computational time by

removing one layer of integral, the Fourier transform that needs to be performed to retrieve the

electron spectrum, and replacing it with Bessel functions that can be directly called. Further,

when there is no phase- or group-velocity mismatch, evident from Eq. 5.33, we can further

approximate g (φ2) ∼ A(φ2), removing another layer of numerical integral. In the following, we

analyze the physical effects induced by these several approximation steps.

First, we assume perfect phase- and group-velocity matching and analyze the approximation

of g (z,φ2) → g (φ2). A comparison between the general and approximated models is shown in

Fig. 5.9. As we can see, the two models give visually similar results for each φ2 spectrum and

the averaged spectrum.

However, when there is phase- and group-velocity mismatch, which is generally true in our

case, the approximation g (φ2) ∼ A(φ2) breaks down. As we analyzed in the previous section,

these two effects, together with the waveguide routing, will lead to the oscillatory behavior

of g (z). As shown in Fig. 5.10, because of this behavior, even though the electron spectrum

is still Bessel distributed for each arrival time φ2, the effective modulation depth is modified

significantly. In this case, the full expression of Eq. 5.33 needs to be used.

To avoid significant influence from the group- and phase-velocity mismatch, in our exper-

iment, we choose to minimize the waveguide routing function U (z) → δ(z) by positioning

the e-beam far away from the peripheral of the ring resonator (small radio distance shown in

Fig. 5.11 (a)), and only interact with the optical field close to the center with a large between

the propagation directions, such that the interaction length is minimized to the width of the

waveguide. In such a condition, we can simplify the phase modulation to g (φ2) ∼ A(φ2).
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(b)

(a)

Figure 5.9: φ2 averaged electron spectrum assuming perfect phase- and group-velocity match-
ing. The DKS width is set to ∼20µm, with a 1/6 peak amplitude CW background. Electron
zero-loss-peak (ZLP) width is 0.5 eV. (a) General model considering z-dependent g (z,φ2). (b)
Approximated model with z-independent g (φ2). All the electron spectra with different φ2 are
offset by integers of 0.25 for visualization. Due to the relatively long optical envelope, little
difference is observed in either the φ2 dependent spectra or the averaged one.
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(b)

(a)

Figure 5.10: φ2 averaged electron spectrum under realistic phase- and group-velocity mis-
match. The DKS width is set to ∼20µm, with a 1/6 peak amplitude CW background. Elec-
tron zero-loss-peak (ZLP) width is 0.5 eV. (a) Exact model. (b) Approximated model where
g (φ2) ∼ A(φ2). All the electron spectra with different φ2 are offset by integers of 0.25 for visual-
ization. The characteristic difference in modulation span and amplitude is observed in the
averaged spectrum and φ2-dependent ones, even with broad optical envelopes. This effect
is from the effectively broadened g (z) compared to the optical envelope due to group- and
phase-velocity mismatch.
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5.2 Free-electron interaction with optical continuum

In our visit to the MPI to help them generate DKS in the electron microscope, we used a

200-GHz ring with a cavity loss rate of κ/2π= 38.8MHz. This level of quality factor is enough

for the generation of DKS, as we tested outside the electron microscope. After the e-beam

valve is open and the e-beam is positioned next to the waveguide, we observe a slow increase

of cavity linewidth and a frequency shift of the resonance in tens of seconds. Afterward, we

found that the linewidth of the cavity is broadened to κ/2π= 272.6MHz due to an increase in

optical loss. It is suspected that the high-energy electron beam (200 kHz) bombardment on

the waveguide induces material damage [159]. Usually, with this level of cavity linewidth, it is

impossible to generate DKS due to insufficient optical power. However, as we start pumping

the resonator with around 200 mW of on-chip power, we observe that the cavity slowly drifted

back to around the original frequency, with a narrower linewidth at κ/2π= 39.9MHz, with a

slightly different mode splitting and line shape. High power pumping is suspected to lead to

significant heating at the spots of material damage and recovers from the damage through

thermal annealing. With the restored cavity linewidth, we generated DKS inside the electron

microscope, with one of the characteristic electron spectra shown in Fig. 5.11 (c), showing

a significant deviation from the conventional Bessel distribution. Using our approximated

fitting model, we can reliably fit all kinds of electron spectra after interaction with the DKS.

Specifically, the electron spectrum would typically consist of a CW component with a narrow

span, whereas the DKS component achieves a much broader span due to the much larger

peak field of the pulse, though with much lower probability.

One thing to emphasize again is that our experiment does not involve synchronizing the

electron arrival time and the DKS pulse. Therefore, these spectra that deviate from the usual

Bessel distribution result from the incoherent average of φ2 instead of an actual electron wave-

function that experiences non-uniform phase modulation. Therefore, each single electron

effectively interacts only with an almost linear optical field, given our broad optical pulse

envelope. The feature of the nonlinear field only appears after averaging different electrons

with a random arrival time. Therefore, generating the same averaged electron spectrum is

possible using an optical intensity modulator that slowly modulates the intra-cavity field

amplitude according to the CW-DKS envelope.

To measure an actual inhomogeneous phase modulation, like the one shown in Ref. [121], syn-

chronization between the optical pulse and the electron arrival time is required. Though tech-

nically much harder, it might be possible to phase-synchronize the DKS with the mode-locked

laser that drives the electron emission process through pulse pumping the ring resonator [160].

On the other hand, even though no synchronization in our experiment is achieved, we can

imagine that the periodic interaction with the soliton pulse can achieve fast periodic modu-

lation of the CW electron beam at hundreds of GHz of repetition rate, which is not typically

possible with conventional methods.

After understanding the most general case of free-electron interaction with a classical optical

field, we investigate the case when the free electron interacts with quantum optical fields in

the next chapter.
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Figure 5.11: (a) Geometric configuration of electron-soliton interaction. When interacting
with the soliton pulse, we keep the radial distance small. Hence, the electrons only interact
with the optical field in a point-like fashion to reduce the effect of group velocity mismatch. (b)
Cavity field consisting of a CW background and a soliton pulse. (c) Electron spectrum fitting
using the approximated model, showing the dominant contributions from the CW background
and a low probability contribution from the DKS. We define the contribution from the DKS by
considering the field around the soliton peak with a maximum distance of 2 times the soliton
width. In the fitting, a detector background noise is also assumed.
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6 Free-electron quantum optical in-
teraction with photonic integrated
circuits

Quantum coherent coupling between distinct physical systems harnesses the advantages and

strengths of the different systems to explore new physical phenomena better and potentially

develop novel quantum technologies [161, 162]. Optical photons [163] are most commonly

used to connect different systems due to the potential for long-range transmission through

optical fibers and robustness to decoherence from thermal environments, and have been

realized in systems ranging from superconducting qubits [164, 165], solid-state spins [138,

166], ultra coherent mechanics [23, 167], and atomic systems [168, 169, 170, 171, 172], where

each offers unique features and advantages to be utilized in a hybrid quantum system. One

key aspect of all these systems is the ability to enact high-fidelity quantum control of the

interaction with well-defined optical modes in few-photon states.

In the field of electron microscopy, interactions between free electrons and photons have

been widely explored in both stimulated [105, 113, 116, 120, 139, 173, 174, 175, 176, 177, 178,

179, 180] and spontaneous processes [113, 145, 181, 182, 183] enhanced by phase-matched

interactions and optical resonances [7, 106, 149, 155, 184, 185]. There have also been many

proposals that explore the unique quantum properties of electron-photon states [107, 108, 110,

186], assuming the feasibility of coupling electrons to only one optical cavity mode. However,

it is still an open question whether high-fidelity quantum control and the strong coupling of

this hybrid quantum system can be realized.

High-fidelity quantum control requires high coupling strength between free electrons and

optical vacuum fields and low dissipation to keep decoherence at a minimum. The interaction

mechanisms and their coupling strengths differ substantially between different physical plat-

forms, which can be categorized into metallic [120] and dielectric structures [7, 105, 121, 148,

149, 175, 176, 178]. For nanophotonic particles, the short attosecond-long interaction time

promotes the use of dissipative materials, such as plasmonic structures [187]. The collective

electronic response amplifies the interaction while at the same time bringing retardation and

dissipation, which is not ideal for quantum-coherent manipulation of electrons with optical

states. On the other hand, transparent dielectrics, for which an extended interaction length

enhances the coupling, offer a paradigm shift in free-electron quantum optics due to their
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low optical dissipation and practically instant electronic response. Instead of enhancing the

interaction by lossy media, optical modes supported by dielectric structures interact with the

free electron by a geometric effect through the relativistic field retardation [188], which results

in a purely parametric interaction ideally suited for high-fidelity quantum control.

Photonic integrated circuits have only entered the picture very recently [7, 8] in our experi-

ment and have several advantages for free-electron quantum optical experiments. Firstly, inte-

grated photonics enables exquisite control of the optical properties of waveguides [189, 190].

The nearly lossless guided modes [3] and high-efficiency output fiber coupling [191] fa-

cilitate coupling to both on-chip [23, 138, 166, 167] and fiber-coupled quantum systems

[164, 169, 170, 171, 172]. Additional capabilities are provided by well-established on-chip

optical elements such as tunable beam splitters and phase shifters [192], spectral filters [193]

and photon counters [194], which offer high-fidelity optical state manipulation and character-

ization [195]. With the versatile on-chip structures and demonstrated efficient electron phase

modulation [7] and electron-photon correlation [8], it is possible to use heralding schemes to

shape useful electron and optical states[103, 110, 124, 186] in various application scenarios

with photonic integrated circuits.

To transfer the advantages mentioned above to the scenario of generating high-quality quan-

tum states through electron-photon interaction, high-ideality coupling to a single well-defined

optical mode is required. However, as we discussed earlier in Section 4.3, due to the complex

waveguide structures, parasitic couplings to auxiliary spatial modes cause decoherence of the

system, see Fig.6.1(a). In Section 6.2, we first quantitatively investigate this limitation in a real-

istic experimental scenario and show that with a single-mode waveguide, bigger gap distance,

and long interaction length, near-unity coupling ideality and strong coupling [107, 196] can

be achieved to the waveguide quasi-TM00 spatial-temporal mode.

Next, we show that even in the limit of single-mode interaction, a state subspace correlation

still imposes a fundamental limit to the state fidelity and purity. To address the electron-

photon interaction in the conventional quantum optics description, a synthetic ladder state

space [103, 107, 108, 110, 116, 186] is usually used (Section 4.2), shown in Fig.6.1(b). This

treatment greatly eases the analysis of the interaction between two systems that are actually

continuum systems. However, within the subspace of a ladder level, energy conservation

enforces a strong correlation between the electron energy loss and the frequency of the

photon created. When one neglects the underlying correlation, information loss occurs. This

process can be characterized by the state purity P , which captures both the distance to a

pure quantum state and the degree of electron-photon entanglement through the Rényi-2

entropy [197].

Last, in Section 6.3 and Section 6.4, we also propose applications that exploit this underlying

correlation to their advantage, e.g., imprinting electron wavefunctions onto optical states, and

later examine the state fidelity and purity in quantum state heralding schemes. We find that

electrons in particle-like states with high purity are required to generate pure heralded states,
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Figure 6.1: (a) Illustration of the electron-photon inelastic scattering process mediated by
a dielectric waveguide. In an electron microscope, when the high-energy electron passes
by a dielectric waveguide structure with a given dielectric permittivity distribution ϵ(x, y, z),
the material dielectric dipoles exert a backaction field (force) on the electron, resulting in
correlated electron energy loss and optical emission in both the guided waveguide modes and
non-guided bulk modes. High-ideality coupling to a low-loss waveguide mode is required for
high-fidelity state preparation and interaction with other quantum systems through optical
links. (b) Synthetic electron-photon state ladder of the pair state generation through Ŝe-ph.
Within each ladder state, an underlying subspace still maintains a correlation between electron
energy and photon frequencies. For any two optical frequency components (shown in dark
red), the correlated electron energy states (shown in dark blue) are only partially degenerate.
This correlation can lead to new types of applications but generally leads to degradation of
fidelity and purity of the interaction.

and the purity limits are greatly reduced with experimentally feasible interaction length using

photonic integrated circuits.

6.1 Electron-photon interactions with dielectric media

In this section, we first recap the theoretical basis we developed in Section 4.3 of free-electron

interaction with the optical continuum of a dielectric structure. Here, we formulate the

problem as the interaction between propagating free electrons and one single interaction-

specific optical spatial mode Â(r,ω) (see Section 4.3.1 for the field profile) at frequencies ω in

the continuum, instead of pre-determined discrete optical modes of the dielectric structure

(see Section 4.3.3 for its correspondence to modal decomposition), with the scattering matrix

in the interaction picture

Ŝe-ph = e i χ̂ exp

[∫
dωgωb̂†

ωâω−h.c.

]
, (6.1)
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Figure 6.2: Illustration of different parameter regimes of electron-photon interactions. The
electron (blue) and photon (red/orange) spatial waveforms as a function of T = t−z/ve , where
z is the longitudinal coordinate, are shown in the upper panels, and the corresponding energy
(frequency) domain picture is shown in the lower panels. The phase-matching mechanism
determines the frequency bandwidth of the generated photon. Two optical frequency com-
ponents (ω1, ω2) and their correlated electron states are shown in the spatial and energy
domain representations to illustrate the qualitative differences between different regimes.
The arrows in the panels indicate the direction of the scattering processes. (a) Wave-like
regime where distinguishable electron states are generated from the emission of photons with
the corresponding frequencies. As a result, the optical frequency components can not be
coherently combined to form a single-mode field. Therefore, this regime is accompanied by
mixed optical ladder states ρph,N , and incoherent photon emission. (b) Particle-like regime
where the photon emission at different frequencies generates indistinguishable electron states.
The optical state space is sufficiently decoupled from the electron state space and can be
described as a single-mode field. This regime has pure optical ladder states ρph,N , where the
synthetic electron-photon state ladder is a valid approximation. (c) Classical regime where
different photon-sidebands of the electron overlap well, and classical optical field emission
with non-zero 〈Â〉 is achieved. In the spatial representation, the classical waves are plotted
orange to distinguish them from the quantum counterparts in the other regimes.
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where the phase operator χ̂ acts only on the electron degrees of freedom (ignored in the

remaining discussion) and is associated with the Aharonov-Bohm effect of the vector poten-

tial [127]. Continuum photon ladder operators âω and electron operators b̂ω characterize

the energy exchanges between the electron and the optical field at a given optical frequency

ω in an energy-conserving manner. The interaction with the vacuum optical fields results

in transitions into lower electron energy states with energy differences of ℏω. We define the

electron-photon coupling strength at a given photon energy ℏω in terms of the vacuum cou-

pling strength gω as Γ(ω) = |gω|2. The phase matching condition gives the vacuum coupling

strength a finite bandwidth. In the limit where Γ(ω) ≪ 1, Γ(ω) is equivalent to the electron

energy loss probability per unit optical frequency of dielectric media measured in electron

energy loss spectroscopy (EELS) and can be derived classically in a simplified picture (See Sec-

tion 4.3.2). To simplify the discussion here, we also assume a point-like transverse distribution

for the electron (see Section 4.3.1 for the discussion on the transverse effect), and the vacuum

coupling strength gω is derived at a corresponding transverse position R0.

The interaction with the optical continuum, as opposed to the conventional discrete energy-

ladder levels illustrated in Fig.6.1(b), results in a continuum electron-photon pair state

|ψe ,ψph〉 = exp

(
−

∫
dω|gω|2

2

)
×

∑
N

(
−∫

dωg∗
ωb̂ωâ†

ω

)N

N !

∫
dEψ(E)|E〉|0〉

 , (6.2)

where ψ(E ) is the electron wavefunction in the energy domain. In this chapter, to simplify the

notation, we use zero-loss peak (ZLP) to refer to this quantum coherent energy distribution

ψ(E) of the electron, whereas in other chapters, ZLP typically includes also the classical

statistical uncertainty of the electron energy. We show in Fig. 6.2 that depending on the size of

the electron wave-packet [109, 198, 199], the electron-photon interaction can be categorized

into three regimes. The classical regime has been explored [110, 124], and is accessible through

laser modulation schemes [103, 116, 143, 200]. Some electron-microscopes equipped with a

monochromator fall into the wave-like regime [185, 201], while others with longer interaction

length, including our experiment demonstration [8], are in an intermediate wave-particle-like

regime. The simplified electron-photon ladder picture is only partially valid in both cases.

In the wave-particle-like regime, the ladder state

|ψe ,ψph〉N ∝
∫

dEψ(E)

(∫
dωg∗

ωb̂ωâ†
ω

)N

|E〉|0〉 (6.3)

maintains a correlation between electron energies E and photon frequencies ω. To go back

to the simplified ladder picture, one traces out the continuum of electron states within each

ladder as

ρ̂ph,N = TrE
[|ψe ,ψph〉N 〈ψe ,ψph|N

]
, (6.4)
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which results in a degradation of the optical state purity

P = Tr
[
ρ̂2

ph,N

]
. (6.5)

A narrower phase-matching bandwidth relative to the electron energy uncertainty is generally

required to reduce the degree of correlation and reach the particle-like regime.

In later sections, we show that in photonic integrated circuits, the prolonged interaction

length can help reduce the phase-matching bandwidth and lower the energy correlation for

a single waveguide mode, pushing the system parameters well into the particle-like regime.

However, the complex dielectric environment generally results in multi-mode electron-photon

interactions, e.g., parasitic coupling to other optical mode families and other non-guided

spatial modes supported by open-ended dielectric substrates. The effective phase-matching

bandwidth of the multi-mode coupling is generally large, and a longer interaction length

can not suppress the corresponding electron-photon correlation. Therefore, we will first

quantitatively analyze how to constrain the interaction to the single-mode case effectively.

Designing and fabricating waveguide structures that achieve 100% spatial overlap between a

waveguide mode and the electron optical emission over the whole optical frequency range is

generally hard. Therefore, instead of mode-matching, our strategy to achieve single-mode in-

teraction is to exploit a combination of effects resulting from the phase-matching mechanism.

To quantitatively account for the infinite number of interacting spatial optical modes, it is

generally impractical to use the conventional modal decomposition method [120]. Instead, as

mentioned before, we combine all the possible coupling contributions from different modes

into one single interaction-specific spatial mode, following a three-dimensional QED treat-

ment [114]. This formalism, derived using the fluctuation-dissipation theorem, was previously

used when analyzing electron energy loss probabilities with dissipative materials [113] that ex-

hibit a delayed material response, the dominant contribution to the main electron energy loss

channels. The dielectric materials we study here are transparent in the optical frequency bands

of interest. In this sense, we can set Im{ϵ(r,ω)} → 0, which corresponds to an instantaneous

dielectric dipole response and further simplifies the analysis. For materials with sufficiently

low absorption, which are used for integrated waveguides designed to guide optical fields,

the interaction is purely contributed from the relativistic field retardation effect [188] and

prohibits energy and momentum transfer to the material, avoiding loss of coherence. In this

sense, the whole process of an electron interacting with a dielectric waveguide is parametric

in nature.

6.2 Coupling ideality

In this section, we show how to achieve ideal single-mode electron-photon coupling with

photonic integrated circuits. As an example, here we quantitatively investigate the electron-

photon coupling mediated by an integrated Si3N4waveguide embedded in a silica substrate
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Figure 6.3: (a) Illustration of the waveguide structure studied, consisting of a Si3N4 waveguide
embedded in a silica substrate. The free electron passes by the top surface of the waveguide
and generates correlated optical emission. (b-c) Electron-photon coupling strength Γ(ω)
spectrum for different waveguide geometries and electron positioning. The coupling spectrum
is plotted as a function of electron velocity ve and optical frequency ω. The waveguides have a
thickness of 650 nm, and widths of (b) 2.1µm and (c) 800 nm. Coupling to different waveguide
mode families appears as multiple coupling bands, and their phase-matching bandwidth
is kept constant for better visualization. (d) Total coupling strength of TM00 mode vs. non-
conditional and conditional coupling idealities (I and I∗ respectively), as a function of gap
distance between the electron beam and the waveguide surface, with 800 nm waveguide width,
100µm interaction length and ve /c = 0.65 electron velocity.

without top cladding (the bottom silicon substrate is not considered), shown in Fig. 6.3(a). This

type of structure has been used in our experimental investigations of both stimulated phase-

matched interactions [7] and spontaneous inelastic scattering [8] between free electrons and

the evanescent field of a photonic-chip-based optical microresonator, and features ultra-low

material-limited loss of 0.15 dB/m [3]. We calculate the electron-photon vacuum coupling

strength (numerical details in Section 6.2.1) and plot it in Fig. 6.3(b-c) as a function of electron

velocity for optical wavelengths ranging from 780 nm to 2.5µm (where all relevant material

properties are well known), which covers most of the frequency bands that are of general

interest.

Under the optimal phase-matching condition, the interaction strength of the waveguide trans-

verse modes scales quadratically to the interaction length since they co-propagate with the

electron, in contrast to the linear relation of bulk modes. In reality, waveguide-mode phase ve-

locity differs at different optical frequencies. Through the phase-matching mechanism, linear

chromatic dispersion limits the coupling bandwidths to scale inversely proportional to the in-

teraction length. With prolonged interaction length, coupling strengths to different waveguide

transverse mode families are isolated in optical frequencies and exhibit peak features shown

in Fig. 6.3(b-c). Dispersion-free systems are generally feasible in higher dimensions and have

been realized in specially structured photonic lattices [202, 203, 204], where the optical modes

of interest are generally unguided. In integrated photonics, advances in dispersion engineer-

ing have enabled waveguide designs that tailor the modal dispersion [190, 205], promising

dispersion-free quadratic coupling enhancement over a broad frequency range. Our study

focuses on translation-invariant straight waveguides, which exhibit chromatic dispersion

determined by the waveguide materials and geometry.
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Chapter 6. Free-electron quantum optical interaction with photonic integrated circuits

The waveguide mode families have finite coupling bandwidths and are well isolated from

each other. Therefore, we define discrete spatial-temporal optical modes âm ∝ ∫
dωgm,ωâω

associated with different waveguide mode families from the optical continuum based on the

vacuum coupling strengths gm,ω of the interaction (details see Section 4.3.3). The coupling

strength of a given mode family âm ,

|gm |2 =
∫

dω|gω,m |2, (6.6)

scales linearly with interaction length and inversely with chromatic dispersion. We quantita-

tively evaluate the coupling strengths |gm |2 to different spatial-temporal modes âm based on

the fitted interaction strength |gm,ω|2 from the simulation results. As an example, for the quasi-

TM00 mode of the 800 nm wide waveguide shown in Fig. 6.3(c), for an electron-waveguide

gap of 100 nm, a strong coupling strength [196] of |gTM00 |2 ∼ 1 can be achieved with 200µm of

interaction length at an electron velocity of ve /c = 0.65 (a kinetic energy of 160 keV). A 100-nm

gap and a 100-µm length of e-beam propagation is experimentally feasible and demonstrated

in our experiment [8] with a gradient d |gTM00 |2/d z ∼ 5mm−1.

Using the procedure described in the previous paragraph, we quantitatively investigate the

influence of competing waveguide modes for a given waveguide configuration and how we can

approach unity coupling ideality by properly choosing waveguide geometry and material, as

well as electron beam positioning and velocity. Since the lowest order TM00 mode is generally

the most strongly coupled and is the most spectrally isolated mode, and can couple efficiently

out of the photonic chip using fiber coupling, we target unity coupling ideality, defined by the

coupling fraction

I ≡ |gTM00 |2/
∫

dω|gω|2, (6.7)

to the TM00 mode.

From the numerical result shown in Fig. 6.3(b-c), we find that reduced waveguide cross-section

(to single-mode dimension) enhances the mode index contrast and results in more spectrally

isolated fundamental modes. With better frequency isolation, the evanescent field of the

coupled higher-order modes decays much faster than that of the fundamental mode in the

near field due to their higher optical frequencies. Therefore, we can enhance the ideality by

increasing the gap distance to the waveguide surface, with 1− I decreasing exponentially with

gap distance (details in Section 6.2.1).

In addition to coupling to higher-order waveguide mode families, we can also identify a rising

background in the high-velocity region. It can be attributed to strong coupling to the substrate

modes in the Cherenkov regime (v ≳ 0.7c), where the charged particle velocity exceeds the

phase velocity of light in dielectric media (here: silica). In Section 6.2.2, we quantify the

contribution of the substrate bulk modes. This contribution can be suppressed by either

choosing an electron velocity well below the Cherenkov regime of the substrate or by using a
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low-index material as the substrate (e.g., by suspending the structure in the vacuum).

Here, we quantitatively analyze the coupling idealities in different application scenarios and

show the results in Fig. 6.3(d). First, we consider state heralding applications, e.g., heralded

single-photon sources by photon-energy loss selection with EELS. We assume an initial elec-

tron state with a fitted 0.6-eV Voigt zero-loss-peak (ZLP) profile, and show that by conditioning

on the first energy-loss sideband, one can easily achieve more than 99 % conditional coupling

ideality I∗ to the TM00 mode outside the Cherenkov regime (ve ≲ 0.7c) with a single-mode

waveguide and the electron beam positioned ≳ 100nm above the surface (details in Sec-

tion 6.2.1). For a general application that is sensitive to the full optical spectrum, we show

that more than 95 % non-conditional coupling ideality I can be achieved with the electron

beam placed ≳ 300nm above the surface, limited by the parasitic coupling to the higher-order

waveguide modes. The coupling to the higher-order waveguide modes is not a fundamental

limitation, as one can always increase the gap distance from the waveguide surface to achieve

higher ideality at the expense of reduced coupling strength. This trade-off is also illustrated in

Fig. 6.3(d), where the total coupling strength |gTM00 |2 is plotted against the coupling ideality.

However, this effect can generally be compensated with longer interaction length L. As a result,

given a fixed waveguide geometry and a target total coupling strength, the deviation from

unity is given by 1− I ∝ L−1.

In the particular case where the waveguide loops and forms a resonator, such as our experi-

ment platform, the result of the open-ended waveguide studied here can equally apply (see

Section 6.2.3). In most scenarios, where the electron longitudinal wavefunction is shorter than

the cavity round trip length, or in the frequency domain picture where the electron zero-loss-

peak (ZLP) width is broader than the cavity free-spectral-range, there is no difference in terms

of coupling ideality betweeen a straight waveguide and a resonator. The physical picture is

that when the emitted optical pulse does not interact with the electron a second time, the

emission is only determined by the local structure around the electron and any non-local

emission enhancement, e.g., Purcell effect [206] in atom-cavity systems, is absent. In the case

of a resonator, the pulse will circulate multiple times and exit the cavity as a pulse train, and

exhibit in the frequency domain as a comb-structure, as was shown in [184, 185] and also our

experiment [8] in Section 7.

Note that the experimentally measured ZLP width consists of a coherent energy spread of

a single-electron wavefunction, e.g., inherited from the driving laser pulses in the cold field

electron emission process, and also an incoherent broadening due to, e.g., the statistical

imprecision of the electron acceleration voltage and the measurement instrument. In this

thesis, we primarily use ZLP width to refer to the coherent energy width unless otherwise

specified.

Generally, residual coupling to the higher-order modes can be further mitigated with heralding

schemes. For example, we can place a bandpass spectral filter [193] around the frequency

band of the target mode. Upon conditioning on photon-absence events at the dark port of the
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Figure 6.4: Spatial pattern of Im[Gzz (r,r0,ω)] for the case of a Si3N4waveguide embedded in a
silica substrate. In addition to emission into the substrate and free space, some guided modes
in the waveguide are also excited by the oscillating electric current dipole and form a beating
spatial pattern amongst guided modes along the waveguide direction.

filter, we can further approach unity ideality and eventually be limited by the background bulk

contribution. As long as the velocity is far from the Cherenkov regime of the substrate material,

we estimate this contribution to be far less than 1%. With near-unity coupling ideality, the

fidelity and purity of the interaction will be limited to the correlation between electron energy

and the optical frequency components of a single spatial-temporal optical mode within the

ladder state space. In Section 6.3 and Section 6.4, we discuss this fundamental limitation in

the cases of state heralding schemes.

6.2.1 Finite element method simulation of Green functions

Since all the physical quantities we are interested in can be related to the Green tensor of the

classical Maxwell equation given the dielectric structure of interest, we numerically solved

the relevant Green tensor component Gzz (r,r′,ω) of an infinitely long optical waveguide with

finite element method (FEM). The spatial map of the imaginary part of the Green function

is illustrated in Fig. 6.4. The Green function can be understood intuitively as the Fourier

component of the optical field at frequency ω that is excited at position r by the propagating

electron at position r′. Then, the phase-matching condition determines whether this field

constructively or destructively builds up at a given electron velocity.

The Green tensor solution of the Maxwell equation is not directly supported in COMSOL

but can be retrieved by Frequency domain study with the radio frequency (RF) module. The

waveguide is an air-cladded Si3N4slab embedded in a SiO2 substrate with different geometries

mentioned in the previous section. Perfect matching layers at boundaries are used to prevent

boundary reflections and, in turn, allow us to simulate an infinitely long waveguide. In

order to solve for the Green function G(r,r′,ω), a point oscillating electric current dipole

J(ω) = p(ω)δ(r−r0) is placed above the waveguide surface at position r0 (typically 100 nm or
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(a) (b)

Figure 6.5: (a) Examples of the Green function Im[Gzz (r,r0,ω)] along the trajectory of the
electron at different optical frequencies, and (b) the corresponding vacuum coupling strength
at different electron velocities, for a 50µm interaction length. The spatial beating of many
mode families is visible in the Green functions and the coupling strength. The coupling to
different mode families is phase-matched at different electron velocities at a given optical
frequency. When the electron velocity is in the Cherenkov regime (v ≳ 0.7c), the energy loss is
eventually dominated by the substrate loss.

300 nm). COMSOL solves the electric field, which relates to the Green tensor as

E(r,ω) =−4πiωG(r,r0,ω) ·p(ω) (6.8)

and thus if one wishes to retrieve Gzz component one needs to orient the electric dipole p = p ẑ

along the z direction ẑ, and look at the electric field z component Ez , such that

Gzz (r,r′,ω) = Ez (r,ω)

−4πiωp(r′,ω)
(6.9)

The results are illustrated in Fig. 6.4. The imaginary part of the Green function can be thought

of as the spatial pattern of electron emission in the waveguide (or surrounding substrates) be-

fore the application of phase-matching condition. Given the electron velocity, the application

of phase-matching

Uâω(r) ∝
∫

d ze iωz/ve Im[G(r;R0, z;ω) · ẑ], (6.10)

retrieves the field function of the excited optical mode. The Green function along the electron

trajectory is shown in Fig. 6.5(a), where one can clearly see the bulk mode contribution near

the dipole position and spatial beatings of different waveguide modes under some conditions.

With the optimal phase-matching condition, the coupling strength at a given optical frequency

(or a discrete cavity mode) scales quadratically with the interaction length, a unique feature of

203



Chapter 6. Free-electron quantum optical interaction with photonic integrated circuits

(a) (b) (c) (d)

TM00
TM01

TM00
TM012100nm

e- at edge
2100nm

e- at center
800nm

e- 100nm from surface
800nm

e- 300nm from surface

TM00
TM01

TM00
TM01

Figure 6.6: Electron-photon coupling spectrum with 50µm interaction length for different
waveguide geometries and electron positioning. The coupling spectrum is plotted as a func-
tion of electron velocity ve and optical frequency ω. The waveguides have a thickness of
650 nm, and widths of (a-b) 2.1µm and (c-d) 800 nm, and are embedded in a silica substrate.
Coupling to different waveguide mode families appears as multiple coupling bands. Coupling
ideality to the target TM00 mode is improved by changing the electron beam transverse posi-
tion from waveguide edge (100 nm from surface) (a) to waveguide center (b), from multimode
waveguide (b) to single mode waveguide (c), and moving further away (300 nm from surface)
(d) from the waveguide surface. The waveguide widths and the relative positions of the elec-
tron beam are also labeled at the lower right corner of the panels.

guided modes co-propagating with the flying electron. For the spatial modes in the substrate

bulk, the excited field is localized around the electron position. Without the benefit of con-

structive interference from co-propagation with the flying electron, their intensity only scales

linearly to the interaction length.

The total coupling strength is related to the Green function through a spatial Fourier transform

and shown in Fig. 6.5(b), where one can identify several prominent peaks, mainly contributed

from the waveguide modes, and a rising background in the Cherenkov regime (v ≳ 0.7c) of

the silica substrate due to the enhanced bulk mode coupling. The Blackman window is used

to eliminate the ripples from the Fourier transform due to finite simulation length and shapes

each coupling band to a near-Gaussian shape for easier fitting of the coupling strength with a

Gaussian function. The center velocity of the peaks corresponds to the optical mode phase

velocity, and the interaction length determines the bandwidth. To improve visualization,

we set the interaction length to 30 wavelengths to keep the bandwidths at different optical

frequencies uniform. By sweeping the optical frequency in the simulation across the range

where we have access to material permittivity, one retrieves the 2D maps shown in Fig. 6.6.

With a multi-mode waveguide, shown in Fig. 6.6(a-b), the effective mode index difference

between the fundamental mode and higher-order modes is relatively weak at the same optical

frequency, which leads to multi-mode electron-photon interaction within a given frequency

band. When the waveguide cross-section is reduced (referred to as single-mode waveguide),

shown in Fig. 6.6(c), one can enhance the mode index contrast. As a result, the mode frequency

spacing is increased, such that the coupled fundamental modes are better isolated from the

other mode families. Since most transmission electron microscopes (TEMs) have an energy

resolution around 0.5 eV (120 THz in optical frequency), it is crucial to create a large frequency

spacing between the phase-matched optical modes so that the interaction with individual
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modes can be energy resolved.

The difference between multi-mode and single-mode waveguides in fiber optics is usually

quantified by a V-number, a normalized frequency parameter that determines the number of

modes of a step-index fiber, as

V = 2πr

λ

√
n2

1 −n2
2 (6.11)

where r is the radial size of the core, n1 is the core material index, and n2 is the cladding

material index. The single-mode guiding criteria V < 2.4 is satisfied by our single-mode

waveguide dimension. Such a criterion is crucial for single-mode guiding when used in fiber-

optic applications. Here, our design goal is to increase the mode frequency spacing between

mode families. Therefore, we only use it as a guiding principle, not a strict criterion.

Due to the higher optical frequency, the evanescent field of the coupled higher-order modes

decays faster than that of the coupled fundamental mode. In Fig. 6.6(d), we show that one

can further enhance the coupling contrast between the fundamental mode and higher-order

modes by placing the electron beam further away (200 nm) from the waveguide surface. In

this way, the interaction exponentially favors the fundamental mode at the expense of weaker

interaction strength |gTM00 |2, which can be compensated for with a longer interaction length

(5 times longer for the shown example).

As discussed in the previous section, the Cherenkov radiation contributes to a rising back-

ground in the high-velocity region. In Section 6.2.2, we isolate the contribution of the substrate

bulk modes.

We now quantitatively evaluate the coupling ideality to the TM00 mode as a function of electron

velocity. We fit the coupling spectra with Gaussian functions, illustrated in Fig. 6.7(a), and

calculate the conditional and non-conditional idealities as a function of electron velocities,

shown in Fig. 6.7(b-c).

6.2.2 Substrate and thin film losses

Though not discussed in the main section, there are different scaling of Γ(ω) for bulk substrate

(∝ L), thin film (∝ L logL), and guided modes (∝ L2), see Fig. 6.8. We show their coupling

spectrum characteristics in Fig. 6.9 with an electron 100 nm above the dielectric surface. It is

shown that for a given frequency component ω, the quadratic scaling of a guided mode will

dominate the interaction. However, for a waveguide structure with linear dispersion (e.g., the

one shown in Fig.6.9(a)), the phase-matching condition will enforce a linear scaling of the total

deposited quanta into one particular waveguide mode. However, due to the relatively weak

dispersion of the waveguide modes, the coupling contribution from the waveguide modes

dominates over substrate losses, where the latter accounts for far less than 1% of the total

coupling strength over a 0.6-eV band with electron velocity ve /c ≤ 0.6. For unpatterned thin
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Figure 6.7: (a) An example fitting of the coupling spectrum to extract the coupling idealities.
Calculated coupling ideality deviations from unity with (b) sideband-conditioned (1− I∗)
and (c) non-conditional (1− I ), shown with different waveguide/electron configurations
(WG1:2.1µm width; WG2:800 nm width; WG2*:electron beam 200 nm further away from the
waveguide surface), as a function of electron velocity.

Figure 6.8: Comparison of CL emission patterns at different dielectric environments. In the
cases of bulk and thin film dielectric environments, the optical excitation decays over the spa-
tial extent, resulting in a mostly linear scaling of interaction strength to the interaction length.
In the cases of waveguide and waveguide resonator, the optical excitation co-propagates with
the electron, resulting in a quadratic length dependence of interaction strength (the resonator
case is also enhanced by cavity finesse (F) when on resonance).
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(a) (b) (c)

Figure 6.9: Electron energy loss spectrum for a 50µm interaction distance with (a) waveguides,
(b) silica substrate, and (c) Si3N4thin film on silica substrate. Notice that for a waveguide,
the scaling is quadratic to distance and more structured, whereas for substrate and thin film,
the scaling is mostly linear, and the emission is more broadband. The interaction with the
waveguide mode will prevail over the substrate and thin film over an interaction length of just
a few wavelengths. The dashed gray lines are guides to the eye, showing Cherenkov regime
boundaries for silica and Si3N4.

films, the total photon emission is 70% lower than for a waveguide, and the emission is less

structured and hard to collect. Note that due to chromatic dispersion, the total coupling

strengths of different spatial-temporal optical modes are linearly dependent on distance.

Therefore, the ratio of different coupling contributions is distance-independent and depends

only on waveguide dispersion, routing, and e-beam positioning.

6.2.3 Interaction with optical resonators

We only discussed results for open-ended waveguides so far. However, most of our current

experiments [7, 8] use optical resonators with a discrete set of well-defined frequency modes

instead of a continuum of frequency modes in the case of a waveguide. These well-defined

modes in state-of-the-art resonators typically have optical line widths of tens of MHz [3],

and it is difficult to resolve their Green functions by sweeping the optical frequencies in FEM

simulations. Nonetheless, their Green functions can be easily related to the one of open-ended

optical waveguides by their optical susceptibility function χ(ω) = 2
π

F
1+4(ω−ω0)2/κ2 enforced by

the resonator periodic boundary conditions, describing an optical resonance with center

frequency ω and Finesse F = ∆νFSR
κ , where the cavity free-spectral-range (FSR) is used. We can

retrieve the resonator Green function G(ω) by separating the open waveguide Green function

into contributions from different cavity modes (with mode field function Um(r), details see

Section 4.3.3)

Gm(r,r′,ω) = Um(r′)
∫

d 3r′′ϵ(r′′,ω)U∗
m(r′′)G(r,r′′,ω), (6.12)

and multiplying the resonance susceptibilities G(ω) = ∑
m Gm(ω)χm(ω). For a closed-loop

resonator structure, the corresponding interaction strength Γ(ω) will have a narrow-linewidth

comb-like structure (Section 7.2) instead in frequency space, compared to the continuum case

of an open-ended waveguide, with the peak intensity enhanced by a factor of 2F
π .
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A comparison between a waveguide and a resonator coupling to free electrons ( Γ and Γr

respectively) is illustrated in Fig. 6.10. The comb-like structure in the electron energy-loss

spectrum results from the spectral property of the resonator that is non-local to the interaction

region, and is only accessible since the interaction is analyzed in the electron energy basis,

whose state is also non-local in nature. However, to access these comb-like features in an EELS

experiment, the electron-cavity characteristic interaction time (determined by the measured

electron ZLP) has to be longer than the round trip time of the resonator, thus satisfying

the energy-time uncertainty principle. Nonetheless, the comb-like structure can always be

accessed from the optical side with a measurement time longer than the round trip time, as

was shown in Section 7.2.

There is also no difference in the total coupling strength in a given mode family for the open

waveguide case and the resonator case, as long as the phase-matching bandwidth ∆ν is much

larger than∆νFSR. The resonator structure will considerably alter the total interaction strength

|gm |2 of a mode family when the phase-matching bandwidth ∆ν is on the frequency scale

of one FSR. The minimum number of modes inside the phase-matching bandwidth can be

estimated with N ∼ 1
|ng−neff| (for common dielectric materials ∼ 5−20), so in order to access the

regime where the phase-matching bandwidth is smaller than the FSR, one requires |ng −neff| >
1, which is generally very difficult to achieve with structures using only dielectric materials.

However, with common dielectric structures and careful mode dispersion engineering, the

regime N =O (1) where the resonance structure has a small impact is accessible.

The motivation for using a resonator instead of an open waveguide is that the optical resonance

frequencies are more passively stable, and the wavepackets generated from each resonator

mode are generally much longer than the optical pulse length enforced by the phase-matching

bandwidth from an open waveguide and have energy density enhanced by the cavity finesse

at resonant frequencies. Therefore, resonators have advantages in experiments where optical

excitation needs to interfere with a reference local oscillator, and good mode-matching is

required. Resonators also provide advantages in experiments where optical frequency filtering

is required since the optical density of the excitation is concentrated in frequency. We show a

frequency conversion example in Section 6.4.2 to exploit this advantage of optical resonators to

convert THz broad optical excitation to MHz broad optical or microwave excitation, useful for

bridging interactions with superconducting qubits, mechanical oscillators, and long-life-time

optical qubits.

6.3 Shaping optical states from measurements on electron energy

In this section, we consider the case of heralding a general optical state by measuring the

electron energy. To simplify the discussion here and capture the main features of the physics

considered, we assume coupling to a single spatial-temporal optical mode with I = 1 and a

coherent electron wavefunction ψ(E) prepared before the interaction. The effect of electron

sideband overlaps (with expression shown in Section B.14) is not considered since they can be
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Figure 6.10: Comparison between free electron coupling to waveguides vs. resonators. (a) Cou-
pling spectrum for the pulse inside the resonator, indistinguishable from the one generated
inside a waveguide with the same geometry. (b) Illustration of electron-photon interaction
mediated by an optical cavity. An optical pulse is first generated inside the cavity. Then, the
pulse circulates inside the cavity and couples out as a pulse train with a repetition rate of
FSR and an exponentially decaying envelope. (c) Coupling spectrum for the out-coupled
pulse trains exhibits a comb-like feature with frequency spacing matching the resonator FSR,
peak width matching the pulse train envelope, and comb envelope matching the spectral
components of each pulse.

efficiently eliminated experimentally and are thus not a fundamental limitation.

We first investigate the consequences of electron-photon correlation in the state subspace

in some general state preparation schemes. We consider a projection M̂ = |Ec〉〈Ec | on the

electron’s first photon sideband (general case in Section B.14). This results in a pure single-

photon optical state with frequency components φω ∝ g∗
ωψ(Ec +ℏω), a product between

the electron wavefunction and the vacuum coupling strength, reflecting the fact that the

electron energy loss is intrinsically correlated with the frequency of the photon created. The

strength of the correlation depends on the initial energy uncertainty of the electron, which

determines how well measurements of the electron state can distinguish the photon frequency

components. In stark contrast, we will see in Section 6.4 that this is not the case for the

electron state heralded by photon counting since the frequency of the photon created does

not depend on the electron’s energy in the no-recoil limit. In this section, we consider two

regimes of interest: The wave-like regime that exploits the correlation to its advantage, and

the particle-like regime that aims for high-purity state heralding.

6.3.1 Wave-like regime

In the wave-like regime, the electron ZLP width is much narrower than the phase-matching

bandwidth, as shown in Fig. 6.11(a), where the electron behaves more wave-like to different

optical frequency components. This regime exploits the strong correlation in the subspace

between electron energy and optical frequency. This is compatible with the experimentally

achieved [201] 4 meV ZLP width using a monochromator [185] combined with the recently

demonstrated ∼100 meV phase-matching bandwidth [8]. In this regime, we show the expres-
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Ŝe-ph|E0

|0

|Ec Ec|

|ψph

ψ(E)

ψ(T )

wave-like regime

particle-like regime

electron

photon

spatial waveform

electron

photon

spatial waveform

coupling 
bandwidthcondition 

window

Stages:

Stages:

no “which mode” 
information

heralding complex photonic states

photonic “electron wave” interferometer

creation of electron-
multi-photonic-mode

entangled state

creation of
electron-photon

pair state

shaping of 
measurement 

basis

creation of
spatially

entangled 
photonic state

e−

e−

Figure 6.11: (a-b) Shaping optical waveforms by measuring electron energy. In the limit of (a)
strong correlation with narrow zero-loss-peak (ZLP, blue) and broad phase-matching band-
width (red), heralding results in printing electron wavefunction onto the optical waveform.
In the limit of (b) weak correlation with broad ZLP and narrow phase-matching bandwidth,
the heralded optical waveform is determined by waveguide routing and material dispersion.
(c-d) Optical state heralding schematics where electron wavefunctions in time (ψ(T )) and
energy (ψ(E)) domains are drawn before and after interaction stages (marked by red crosses).
(c) Scheme for an electron-mediated self-mode-matched optical interferometer with non-
classical states, enables measurement of interferometer imbalance to the order of optical
wavelength, and electron wavefunction tomography. (d) Scheme for heralding a general
optical state by measuring electron energy, consisting of one stage for pair state preparation
with Ŝe-ph and one stage for measurement basis selection with ŜPINEM. (e-f ) Investigation
of subspace correlation induced degradation of fidelity and purity of different Fock state
components as a function of interaction length.

sion for the heralded single-photon Fock state as

|ψph〉∝
∫

dωψ(Ec +ℏω)â†
ω|0〉 (6.13)

In this scenario, ignoring the waveguide dispersion during propagation, as well as electron

energy dispersion, we effectively imprint the electron spatial wavefunction ψ̃(T = t − z/ve )

onto the optical waveform φ(T ) of the generated single-photon Fock state of spatial-temporal

mode â ∝ ∫
dωψ∗(Ec +ℏω)âω, with

φ(T ) = ψ̃(T )e iωc T (6.14)

and a center frequency ωc = Ec /ℏ matching the conditioned electron energy Ec . Therefore,

by shaping the electron wavefunction (e.g., pre-compression into THz pulse trains) and
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conditioning on a specific sideband energy, one can transfer the arbitrarily shaped electron

spatial wavefunction to the optical domain at a desired optical frequency. As for higher-order

conditional Fock states |N〉, they cannot be addressed into the N -photon excitation of a single

spatial-temporal mode (see Section B.14) because the optical frequency components are

highly correlated. But in any photon counting scheme, the multi-mode optical profile is still

shaped as |φ(T )|2 and contains N photons.

We illustrate in Fig. 6.11(c) an application example in this regime. When an electron passes

through two waveguides and is measured at the first photon sideband on the detector (single

photon excitation), the measurement does not resolve in which waveguide the photons are

created. In this scenario, the measurement creates a spatial entanglement of photon excitation

in the two spatially separated waveguides,

Ŝ ∝
∫

dωψ(Ec +ℏω)
(
â†

1,ω+e iω∆t â†
2,ω

)
(6.15)

with naturally mode-matched waveform φ(T ) and a controlled phase depending on the

effective delay ∆t from the electron trajectory, essential for generating path entangled NOON

states [207]. If we interfere the two entangled modes at a balanced beam splitter, there is

coherent quantum inference between the two waveguide excitations (see later discussion). In

this way, we effectively constructed an optical interferometer with a non-classical optical state

mediated by free electrons, with output differential photon flux

f (t ) ∝ Re
[
ψ̃(t )ψ̃∗(t +∆t )e iωc∆t

]
. (6.16)

Notice that due to the nature of broadband optical coupling, when conditioning on different

electron energy Ec , we are effectively scanning the probing optical frequency of the interferom-

eterωc , enabling accurate extraction of the time imbalance∆t to the order of only a few optical

cycles. When sweeping the optical path length difference to induce mode-mismatch, one

can also retrieve electron spectral density based on interference visibility, similar to what was

realized in matter interferometers [208]. The electron wavefunction can also be reconstructed

through spectral shearing interferometry [209], answering an important question that is both

fundamental and practical: how much of the measured electron energy uncertainty is quan-

tum coherent [199]. In the following, we discuss the theoretical details of this path-entangled

photon state generation.

Imprinting electron wavefunction onto the optical waveform in an interferometric fashion

In the regime where the electron energy spread is much narrower than the phase-matching

bandwidth, the spatial-temporal mode is defined completely by the electron wavefunction,

with a phase contribution from the coupling coefficient gωc=−Ec /(Nℏ), where N is the sideband

order. Whenever an electron interacts with an optical mode and is measured on the N th

electron energy sideband at the energy Ec , it is equivalent to applying an operator Ŝ ∝ψ(Ec +
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ℏω)
(
e iθg â†

ω

)N
onto the optical state. When the electron interacts with two waveguides in a

sequential manner (identical geometry), the operator is

Ŝ ∝
∫

dωψ(E +ℏω)
(
e iθg1 â†

1,ω+e iθg2 â†
2,ω

)N
(6.17)

where ai is the spatial-temporal mode on waveguide i = 1,2, and the phase is determined by

the reference point from both the optical side and the electron side. When the two interaction

regimes (positions of waveguides) are separated by a spatial distance that corresponds to an

electron propagation time∆t , we have the following phase relation of the coupling coefficients

e−i Ĥ0∆t Ŝe-ph(gω)e−i Ĥ0∆t = Ŝe-ph(gωe iω∆t ). (6.18)

where Ĥ0 is the electron free-evolution Hamiltonian. If we assume the optical phase references

are set to 0, we can rewrite the scattering as

Ŝ ∝
∫

dωψ(E +ℏω)
(
â†

1,ω+e iω∆t â†
2,ω

)N
. (6.19)

As we can see, this interaction projects the optical state into a quantum coherent spatial

superposition state of two spatially separated waveguides. In the case that the two waveguides

are connected to a 50:50 beam splitter to form an interferometer, the photon flux difference

f (t ) can be expressed as

f (t ) ∝ Re
[
ψ̃(t )ψ̃∗(t +∆t )e iωc∆t

]
, (6.20)

which forms an effective optical interferometer of the time delay the electron experiences

between two interaction stages but can also be induced by an external potential. Here, to

extract the delay time, one can simply look at the photon counting record at different elec-

tron energy records Ec , which determines ωc . Therefore, compared to conventional optical

interferometry, where one has to scan the laser frequency over a vast range to resolve length

differences to the order of a few wavelengths, here, we exploit the broad electron emission

bandwidth to get an accurate length difference, just by looking at different electron energy

records. Note that the imprinted electron wavefunction only provides a profile function with

an effective optical delay (convenient for automatic mode matching between the two arms),

with its original fast-evolving phase unobservable. Therefore, for a phase object positioned

between the two waveguides, the interferometer sensitivity is on the optical wavelength scale,

not on the scale of the de Broglie wavelength of the electrons.

6.3.2 Particle-like regime

In the particle-like regime, typically associated with a long interaction length, the phase-

matching bandwidth is narrow compared to the electron energy uncertainty, and the coupling

strength becomes large, as shown in Fig. 6.11(b). Without on-chip electron guiding structures
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[106, 210], we expect the longest interaction length to be limited to 1 mm with |gTM00 |2 ∼ 5

given a beam divergence angle ∼ 0.2mrad [211] with a 100 nm gap. The electron behaves more

particle-like in this regime and can hardly distinguish different optical frequency components;

therefore, the spatial-temporal optical modes defined in Section 6.2 can be correctly applied.

In this limit, the subspace correlation can be greatly suppressed. When conditioning on

the N th energy sideband, we can simplify the state to photon excitations of an electron-

measurement-independent spatial-temporal mode â ∝ ∫
dωgωâω as

|ψph〉∝
(∫

dωg∗
ωâ†

ω

)N

|0〉, (6.21)

φ(T ) ∝
∫

d zŨ∗
z (z,T ), (6.22)

where the optical waveform φ(T ) is connected to the Fourier transform of the optical mode

profile Ũz (z,T ) = FTω [Uz (z,ω)] along the electron propagation trajectory, determined by

waveguide routing, and is generally much longer than the spatial extent of the electron wave-

function. For the case that includes propagation dispersion, see the next subsection. Since

the electron travels in a straight path, by using a tailor-made waveguide structure with proper

dispersion and routing, most types of optical waveforms can be generated. The conditioned

electron energy does not determine the center frequency of the optical excitation. However, it

can be easily tuned by selecting the appropriate electron velocity, evident in the results shown

in Fig. 6.3(b-c).

In the following, we restrict ourselves to the regime of long interaction length since it is most

versatile for heralding more complex optical states with higher photon numbers, and the

ladder subspace correlation is weaker due to narrow phase-matching bandwidth. Heralding

optical states by measuring electron energies has been explored [110, 186], and here we show

an example of how to generate highly complex optical states, with the scheme shown in

Fig. 6.11(d). The scheme consists of two stages: the first stage entangles the free electron with

the waveguide mode, and the second stage selects the effective measurement basis for the

electron energy. Specifically, the first stage of the interaction is the same pair-state generation

discussed in previous sections. While direct conditioning on the electron energy measurement

generates optical Fock states, in order to generate more general optical states, we can select a

more general measurement basis by having a second stage to apply a unitary transformation

Û on the electron state before the measurement. Starting from the physical measurement

basis 〈M |, with the correct unitary transformation Û , the desired measurement basis 〈M |Û
can be generated. An arbitrary quantum state can be heralded if an arbitrary measurement

basis can be constructed. Such a scheme exploits the time-reversal symmetry in quantum

mechanics and has been used to demonstrate optical super-resolving phase measurement

using only classical lasers [212].

In the illustrated case, shown in Fig. 6.11(d), we apply a standard photon-induced near-field

electron-microscopy (PINEM) operation that we demonstrated experimentally in the previous
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chapter,

ŜPINEM(g ,ω) = exp
(
g b̂†

ω−h.c.
)

(6.23)

at the same optical frequency (served as the phase reference for any follow-up optical state

characterization) before detection, which effectively transforms the measurement basis from

〈Ec | to 〈Ec |ŜPINEM =∑
N cN 〈Ec +Nℏω| with Bessel coefficients cN . Upon heralding, the gener-

ated optical state is

|ψph〉∝
∑
N

c−(Ec /ℏω+N )g N

p
N !

|N〉 (6.24)

with coefficients modified by the selected electron measurement basis. Following this scheme,

if at the second stage we select a more general measurement basis by modulating the electron

with an optical waveform consisting of multiple harmonics [213] of the base optical frequency

Ŝ = ∏
n ŜPINEM(gn ,nω), one can in principle generate any general optical state e.g. Cat and

GKP state [186]. Note that in the no-recoil limit, any operation on the electron wavefunction

commutes with the entangling operation Ŝe-ph. Therefore, it does not matter whether the

operation is applied post-entanglement or pre-entanglement. The commutation will break

down when the electron state exhibits dispersion during long-distance propagation, though

typically ignored for few photon states.

Until here, we restricted ourselves to state generation in the ideal scenario where electron and

photon are completely disentangled in the synthetic electron-photon energy ladder subspace.

However, as is discussed in Section 6.1, there are still correlations between electron energy

and optical frequency within the subspace. When tracing out the subspace continuum states,

this leads to a degradation of state purity P = Tr
[
ρ̂2

]
and fidelity F = ∣∣〈ψprepared|ψtarget〉

∣∣2

of the synthesized quantum state ρ̂. We analyze these effects in our state heralding scheme

(expressions for P and F derived in Appendix B.14, calculated using Monte Carlo sampling

due to high dimensionality). We first stress that when conditioning on an electron energy

with perfect energy resolution, the purity of the state is always unity, and we define the state

fidelity in that limit. However, the relative heralding bandwidth γ = ∆E/∆EZLP determines

the heralding rate and is lower-bounded by the experimental energy resolution. At finite

bandwidth, it always results in finite purity of the state. To illustrate the impact of relative

heralding bandwidth on state purity, we show the overall scaling of 1−P ∝ γ2 in the limit of

small heralding bandwidth in Fig. 6.12.

We assume a ZLP width ∆EZLP = 0.6eV with fitted Voigt lineshape from our experimental data.

Given a relative heralding bandwidth γ= 1, we show in Fig. 6.11(e-f) both the purity P of the

state and the fidelity F compared to the target state. As the purity is only a function of the

occupancy at different Fock state components, we only plot the scheme/state-independent

purity at these components. Due to more scrambled correlations between electron energy

and photon frequency at higher ladder state subspace |ψe , N〉, their purity is lower, with

impurity 1−P ∝p
N . We also see that fidelity and purity increase with longer interaction
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Figure 6.12: (a) Illustration of heralding Fock states by selecting a specific electron energy-loss
window at different orders of sideband. (b) Heralded optical state purity vs relative heralding
bandwidth at different Fock state basis. Here we assume 20µm interaction length.

distance L, with 1−F ∝ L−4 and 1−P ∝ L−2. This scaling is expected from the narrower

phase-matching bandwidth at a longer interaction length and aligns well with the prolonged

interaction targeted by the photonic integrated circuits. To help the readers grasp the inverse

quadratic scaling to interaction length, we point out that for relatively short interaction length

at 10µm (demonstrated in the previous chapter [7]), the state purity is < 90% for Fock state

components |3〉 and above, but for an interaction length at 100µm (demonstrated later in this

chapter [8]), the state purity > 98% even for |10〉, with fidelity exceeding 99.9%.

Note that any contribution from the experimental uncertainty of electron energy will lead to

the degradation of the electron state purity and increase the relative heralding bandwidth.

Therefore, the experimentally measured ZLP width ∼0.6 eV [158] can only serve as the upper

bound of the quantum coherent energy uncertainty. Experimentally, the coherent energy

uncertainty can be at least lower bounded at ∼0.1 eV by the measured single-electron pulse

duration [214], which is in fact still far from the Fourier limit. In the limiting case when the

electron energy density matrix is completely incoherent, P → 0. Furthermore, as the exper-

imentally measured purity of the heralded optical state through Wigner tomography [215]

scales as 1−P ∝∆E−2
coherent, the purity characterization can also serve as a probe of the coher-

ence property of the free electron. Even though the coherent electron energy width is hard

to determine experimentally, it is fundamentally determined by the electron field-emission

mechanism that generates the electron pulse. We can conclude that in order to be quantum

coherent, the frequency spread of the heralded optical state must be much smaller than that

of the laser pulses used in the electron field emission.

In the following subsections, we discuss the detailed derivations that lead to the result shown

in this section.
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Optical waveform generated from the electron-photon interaction

In this subsection, we derive the waveform of the conditional optical state when considering

the waveguide dispersion. The composite quantum state after the electron-photon interaction

is

|ψ〉 = exp

(∫
dωgωb̂†

ωâω−h.c.

)
|ψe〉|0〉 = e−

∫
dω|gω |2

2 e−
∫

dωg∗
ωb̂ω â†

ωe
∫

dωgωb̂†
ω âω |ψe〉|0〉

= e−
∫

dω|gω |2
2 e−

∫
dωg∗

ωb̂ω â†
ω |ψe〉|0〉 = e−

∫
dω|gω |2

2
∑
N

(
−∫

dωg∗
ωb̂ωâ†

ω

)N

N !
|ψe〉|0〉 (6.25)

when conditioned on the nth energy sideband of the electron state (with electron ZLP much

wider than the coupling bandwidth to the optical modes), the heralded optical state is

|ψph〉 ∼
(
−

∫
dωg∗

ωâ†
ω

)N

|0〉. (6.26)

When the interaction is dominated by the coupling to a single optical mode family, we can

generate the Fock state of a well-defined spatial-temporal mode as

|ψph〉 ∼
(
â†

m

)N |0〉 (6.27)

âm =
∫
∆ωm

dωφm(ω)âω (6.28)

φm(ω) = g∗
ω,m

g∗
m

(6.29)

From these results, we can derive this spatial-temporal mode’s temporal field profile function,

as it may concern experiments that require waveform shaping. Straight from the definition,

we get

φm(r, t ) ∝
Ï

d zdωe iω(z/ve−t )Ũ∗
m,z (R0, z,ω)Ũm(r,ω). (6.30)

When chromatic dispersion of the frequency modes is ignored, we retrieve the waveform

shown in Eq. 6.22. When dispersion is considered, we can further remove the frequency

dependence of the mode profile functions by assuming an open waveguide (i.e., no sharp

frequency response in the phase-matched region) and up to second-order dispersion β,

Ũm(r,ω) ≈ Ũm(r,ωm)e i (ω−ωm )r∥/vg e iβ(ω−ωm )2r∥/vg , (6.31)

where ωm is the center frequency of the pulse, selected so that the phase velocity at ωm

matches the electron velocity v , vg ≲ v is the corresponding group velocity, and r∥ is the

longitudinal coordinate along the waveguide trajectory. We can then rewrite the expression as
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φm(r, t ) ∝
Ï

d zdωe
i (ω−ωm )

v

(
z− v

vg
(R∥(z)−r∥)−v t

)

×e
iβ (ω−ωm )2

vg (r∥−R∥(z))e iωm (z/ve−t )Ũ∗
m,z (R0, z,ωm)Ũm(r,ωm)

∝
∫

d ze
i

(
z− v

vg (R∥(z)−r̃∥)
)2

4β(r∥−R∥(z))v2/vg
e i π4 sgn(β(r∥−R∥(z)))√

|β(
r∥−R∥(z)

) | e iωm (z/ve−t )Ũ∗
m,z (R0, z,ωm)Ũm(r,ωm)

∝
∫

d zK (z,r, t )Ũ
∗
m,z (R0, z,ωm)Ũm(r,ωm)e−iωm t (6.32)

where r̃∥ ≡ r∥− vg t is the waveform coordinate in the optical pulse frame with group velocity

vg . Ũ
∗
m,z (R0, z,ωm) is the mode envelope profile at wave vector ωm/v . The integral kernel

K (z,r, t ) ≡ e
i

(
z− v

vg (R∥(z)−r̃∥)
)2

4β(r∥−R∥(z))v2/vg
e i π4 sgn(β(r∥−R∥(z)))√
|β(

r∥−R∥(z)
) | (6.33)

represents a phase scrambling around the waveform coordinate r̃∥ with a bandwidth of

∼ |β(r∥)v2/vg |, due to the presence of second order dispersion. We can get physical intuition

of the waveform in the limit of weak dispersion (β→ 0), where we can approximate the integral

kernel with a Dirac delta function,

φm(r, t ) ∝
∫

d zδ

(
z − v

vg

(
R∥(z)− r̃∥

))
Ũ

∗
m,z (R0, z,ωm)Ũm(r,ωm)e−iωm t

∝∑
i

Ũ
∗
m,z (R0, zi ,ωm)∣∣∣R∥∂z (zi )− vg

v

∣∣∣ Ũm(r,ωm)e−iωm t (6.34)

where zi (r, t ) : zi
v − 1

vg

(
R∥(zi )− r̃∥

)= 0 are the spatial z coordinates where the vacuum field

contributes the most through the phase-matching condition to the generated field at r coordi-

nate at time t . Therefore, the excited optical profile in the time domain is easily connected

to the envelope of the optical mode field profile Ũm,z (R0, z,ωm) along the electron propa-

gation direction, when the mode dispersion is sufficiently weak. In the exact limit β = 0,

there can be unphysical scenarios when |R∥∂z (zi )− vg

v | = 0, which corresponds to the infinite

phase-matching bandwidth. However, in physical materials, the phase-matching bandwidth

is always finite.

The mode dispersion β during pulse propagation will cause pulse shortening or broadening by

shifting the phase of different frequency components and leaving the amplitude unchanged.

This effect can be easily corrected and is not a fundamental limit to constructing an arbitrary

waveform. Therefore, we can structure any desired optical waveform φ(r, t) by positioning
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Figure 6.13: (a) The carrier envelope and (b) the phase-matching bandwidth of the free-
electron-coupled spatial-temporal optical modes, with the straight waveguide lengths of
40µm. The electron velocity ve is set to match the optical phase velocity of approximately
v = 0.6c at 1550 nm, with an optical group velocity of vg = 0.5c.

the electron beam trajectory on an optical waveguide with a tailor-made waveguide structure.

In Fig. 6.13, we show some of the characteristic envelopes of the spatial-temporal optical

modes when coupling free electrons to straight waveguides, while neglecting the second-order

dispersion β that causes pulse envelope evolution over a long propagation distance.

6.4 Shaping electron states from optical detection

Here, we consider the reciprocal operation of the previous section, which is to generate

a complex electron energy superposition state by conditioning on photon counting. This

procedure enables the generation of a much broader set of electron states not accessible by

conventional PINEM-type phase modulation, e.g., direct amplitude modulation of electron

wavefunction. Note that with the no-recoil approximation, here, the heralded spatial-temporal

electron wavefunction is not shaped directly by the optical detection and the optical waveform,

in sharp contrast to the heralding optical state by measuring electron energy. Therefore, the

fidelity F of the heralded electron wavefunction does not depend on interaction length, but

the state purity still does.

In Fig. 6.14(a), we illustrate a similar scheme to that shown in the previous section to generate

complex electron states with multiple stages of operations but on the optical side. The

principle is the same: a pair-state is generated, then we select an effective measurement basis

on the optical side to project the electron state into the desired form. As an example, before

the detection, we can use a displacement operation D̂(α), realized by a high-ratio on-chip

beam splitter [216], to modify the effective photon number counting [217, 218] measurement

basis from 〈N | to 〈N |D̂(α) =∑
N ′ cN ′〈N ′|. Based on a photon counting record, a conditional
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Figure 6.14: (a) Scheme for heralding an arbitrary electron state by optical detection, consist-
ing of one stage for pair state preparation with Ŝe-ph and one stage for measurement basis
selection with on-chip optical operations. (b) Scheme to convert the original THz-broad
optical excitation to a MHz-broad microwave excitation, with frequency width limited by
the linewidth of the optical cavity, using a χ2 optical-to-microwave transducer. The narrow-
linewidth down-converted microwave excitation is useful for interacting with GHz-frequency
quantum systems at low temperatures. (c) Investigation of subspace correlation induced
degradation of purity of different electron ladder state components |N〉 as a function of inter-
action length.
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electron state is prepared at

|ψe〉∝
∫

dEψ(E)
∑
N

cN g N

p
N !

|E −Nℏω〉 (6.35)

In the special case of the coherent state measurement basis 〈α|, which can also be constructed

by simultaneously detecting both orthogonal optical quadratures in a homodyne setting

(derivation see Section 6.4.1), the heralding operation is equivalent to applying a direct density

modulation exp
(
2|gα∗|cos(ωv z +θα)

)
on the electron wavefunction. In the limit of large

modulation depth |gα∗| ≫ 1, the width of the electron wavefunction is compressed down

to ∆z ∼ 1.7v
ω
p|gα∗| . The magnitude of pulse compression is similar to what is possible with

PINEM-type interaction, but without the required additional dispersive propagation with a

modulation-depth-dependent distance [120].

The projection into a sharply density-modulated electron wavefunction by measuring in

the basis of optical coherent states can be understood intuitively. Since classical coherent

optical excitation can only be generated by point-like electrons, the measurement of coherent

states serves as a position measurement of the electrons, projecting them into the possible

periodic positions that would give the correct classical phase of the measured optical coherent

state. However, since the coherent states are not completely orthogonal to each other, the

uncertainty of the projected electron position is determined by the magnitude of the measured

field amplitude |α|.

We can also prepare an even parity electron energy state to halve the spatial modulation period,

useful for generating coherent second harmonic optical emission [124]. This can be achievde

by applying conditional optical parity operation P̂ (P ) using two-level systems [138, 219, 220]

or photon-number-resolving counting [221] which modifies the measurement basis to cat

states 〈catα|∝ 〈α|+〈−α|. Higher harmonic spatial modulation can be generated by detecting

in a higher-order cat state basis. Of course, structuring these measurement bases is much

more challenging than the coherent state.

On the optical side, most unitary operations or state characterizations require mode matching

to a reference spatial-temporal optical mode, which is difficult to achieve for the emitted THz-

broad optical pulses. Here, we discuss two experimentally feasible options. The first option is

to reshape the emitted optical spatial-temporal profile through frequency filtering, e.g., using

an on-chip photonic crystal filter cavity [138]. When the frequency width is narrow enough

to be resolved by the detector, we can choose a continuous wave local oscillator and gate

on the detector time sequence [222] synchronized with the electron pulses. To prevent any

loss of information that may lead to the degradation of state purity, we need to collect all the

optical excitations rejected from the filter and condition on a zero-count event from the dark

port. At a single-photon level of optical emission, the relative heralding rate is determined by

the filtered optical bandwidth vs. the original optical phase-matching bandwidth. Therefore,

such a frequency filtering scheme limits the heralding rate significantly due to the large

phase-matching bandwidth (e.g., 1-THz width at 1-cm interaction length). The second option
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6.4 Shaping electron states from optical detection

is to directly mode-match with a specifically shaped reference optical pulse. Such pulse

shaping with individual control at all the frequency components is generally hard in straight

waveguides. Therefore, it requires optical resonators instead of waveguides, as was the case

for our experimental demonstration. The reference optical mode can then be generated in an

identical resonator [223], e.g., as a dissipative Kerr soliton [224] or an electro-optic frequency

comb [225] with control over each frequency component [205, 226]. The time gating resolution

required on the optical detection would then be relaxed to the optical cavity lifetime, which

can be achieved at the level of 20 ns [3] for materials and structures studied in this thesis. In

integrated photonics, cavity life time approaching 1µs is also demonstrated [4, 5, 227].

Optical resonators offer the unique advantage of the concentrated optical density of states

due to their narrow optical linewidth. We show a frequency conversion example in Fig. 6.14(b)

(details of the scheme see Section 6.4.2) to exploit this advantage of optical resonators to con-

vert the THz-broad optical excitation from the electron-photon interaction to a MHz-broad

microwave excitation using a χ2 optical-to-microwave converter [228, 229]. Using a structured

local oscillator pump field, the conversion effectively serves as a multi-mode demodulation

of the entangled photons. The frequency width of the microwave photon is determined by

the linewidth of the optical cavity mediating the electron-photon interaction. Compared to

the original THz-broad optical excitation, this frequency conversion is particularly useful to

bridge interactions of eV-broad free electrons with quantum systems at GHz frequencies, e.g.

superconducting qubits, electron spin qubits and mechanical oscillators. Generally, with the

coupling to well-controlled two-level systems in the strong coupling regime, any photon mea-

surement basis can be constructed [230]. As arbitrary quantum state synthesis of microwave

photons was experimentally demonstrated in superconducting qubit systems [231], we can

construct an arbitrary measurement basis 〈ψ| = 〈0|Û by applying the unitary operation Û

on the converted microwave field and then conditioning on the microwave ground state 〈0|
with photon-number resolving measurement [232] using a superconducting qubit, promising

arbitrary electron state generation. Optical-to-microwave converters and superconducting

qubits mostly require mK temperatures due to their GHz-frequencies and usually operate

in a dilution refrigerator. Therefore, optical excitations must be guided out of the electron

microscope through optical fibers, stressing the importance of high-efficiency fiber-to-chip

couplings [191].

Note that due to multiple stages of operations, the optical measurement event will usually

occur after the electron detection due to the high electron velocity. However, a delayed

measurement on the optics side does not impair our scheme, as the measurement operators

on the two parties commute [233]. Therefore, no real-time action is required.

Here, we show the full bandwidth state purity (expressions derived in Appendix B.15) as a

function of interaction length in Fig. 6.14(c). As expected, it follows the same 1−P ∝ L−2
p

N

scaling and favors longer interaction length. We point out again that for a relatively short

interaction length at 10µm, the electron ladder |10〉 state purity is 50%, but for an interaction

length at 200µm, the state purity reaches 99%. Note that the state purity is completely de-
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Figure 6.15: Scheme for heralding a density-modulated electron state by optical detection in
the coherent state basis using two orthogonal homodyne measurements. This operation is
equivalently an electron position measurement.

termined by the electron-photon interaction and does not depend on specific schemes, e.g.,

optical-to-microwave conversion.

Here, a lower purity of the initial electron state will also result in purity degradation of the

heralded electron wavefunction, similar to the case of the heralded optical state discussed

in the previous section. However, effects like heralded density modulation are robust as the

electron position projections are always valid given optical measurement records, even with

mixed electron states.

In the following subsections, we discuss the detailed derivations that lead to the result shown

in this section.

6.4.1 Optical detection in coherent state basis

As we discussed earlier when measuring in a coherent state basis

|α〉 =∑
N

c∗N |N〉 = e−|α|
2/2

∑
N

αN

p
N !

|N〉, (6.36)

we effectively performed a position measurement on the electron that collapse the electron

wavefunction into density waves. We can derive the effective modulation applied to the

electron wavefunction as

A(z) =∑
N

cN g N

p
N !

e i N ω
v z ∝∑

N

(gα∗e i ωv z )N

N !
= egα∗e i ωv z

(6.37)

which is effectively a direct density modulation of

|A(z)|2 ∝ e2|gα∗|cos(ωv z+θgα) (6.38)

The scheme to conduct optical detection in the coherent state basis is illustrated in Fig. 6.15.
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Somehow, I could not find anything in the past literature that shows a detailed derivation of

this scheme, except only a concept figure in ref [212]. We describe it as follows: an arbitrary

optical state |ψ〉 is passed to the input port 1 of a 50:50 beam splitter ÛBS, with two output

ports 1 and 2. Each output port is passed to a homodyne detection stage where orthogonal

quadratures are measured. This two-quadrature measurement is equivalent to projecting

the input state into a coherent state. This projection shares the same physics of projecting a

mechanical state into a coherent state by measuring the orthogonal mechanical quadratures

with the same rate, as was discussed in Section 3.2. In the following, we first briefly review the

quadrature projection in homodyne measurements and then prove this claim.

Projection into quadrature states using homodyne measurement

The homodyne measurement consists of a beam splitter that combines a strong LO field

|α=−A〉 and a signal field |ψ〉 =∑
nψn |n〉. The two output ports are passed to photodetectors,

where the photon number at each port is counted. We parameterize the detection result as

| j ,m〉 = | j −m〉⊗ | j +m〉, where j is the averaged photon number of both detectors and m is

the deviation from the averaged value. We work in experimental settings where the input state

is a few-photon state, and the photon number uncertainty of the LO field coherent state is

much larger. Because of this, we have the following conditions m ≪ j , n ≪√
j .

We can proceed to calculate the projection amplitude of the state as

M j
m = 〈 j ,m|ÛBS|− A〉|ψ〉 = e−A2/2

2 j∑
n=0

ψn
(−A)2 j−n√

(2 j −n)!
d j

m, j−n(
π

2
) (6.39)

where d j
m′,m(φ) = 〈 j ,m′|e− φ

2 (â†
1 â2−â†

2 â1)| j ,m〉 is the SU(2) Wigner function which has an asymp-

totic expression

d j
m, j−n(

π

2
) ≈ (−1)n j−1/4un(m/

√
j ) (6.40)

where un(x) = 〈x|p |n〉 is the nth Hermite Gaussian function, which is also the Fock state

projection into the quadrature basis |x〉p . In the following, we use the mapping x = m/
√

j to

connect the measurement photon record ( j ,m) with the measured quadrature value x.

We also use the asymptotic Gaussian expression for the Poisson distribution

(−A)2 j−n√
(2 j −n)!

≈ (−1)2 j−n

(4π j )1/4
e A2/2−(2 j−A2)2/4A2

(6.41)

Last, we simplify the expression by considering the fact that j mostly peaks around A2/2,

M j
m ≈ e−(2 j−A2)2/4A2+2iπ j

π1/4 A

∞∑
n=0

un(x)ψn = e−(2 j−A2)2/4A2+2iπ j

π1/4 A
〈x|p |ψ〉 (6.42)
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with the corresponding measurement POVM defined by Tr(ρ̂Π̂ j
m) = |M j

m |2

Π̂
j
m = e−(2 j−A2)2/2A2

p
πA2

|x〉p〈x|p (6.43)

When the information on j is ignored (since its distribution is highly peaked) and only the

differential current m is considered, the measurement POVM is

Π̂m =∑
j
Π̂

j
m =

p
2

A
|x〉p〈x|p (6.44)

where the mapping is now x =p
2m/A. The prefactor

p
2/A comes from the Jacobian of the

mapping, as

∑
m
Π̂m =

∫
d x|x〉p〈x|p = 1 (6.45)

Equivalence to a conditional coherent state

Homodyne detection is conducted by interfering the signal field with a strong local oscillator

field |A〉 at a balanced beam splitter, and the differential photon number at the two output

ports is measured. It has been shown [234] that this type of detection can be simplified as

a quadrature state projection, where there is a unique mapping x = m/
p

2|A| between the

differential photon number m and the measured quadrature state |x〉p . The mapping requires

the photon number variance of the local oscillator field |A〉 to be much bigger than that of the

optical state |ψ〉.

Therefore, the scheme effectively states that two orthogonal quadrature projections |x1〉p ⊗
|x2〉p at the two output ports of a beam splitter projects the input state into a coherent state

|α〉. We prove it by expressing a quadrature state as a function of creation operators acting on

the vacuum state [235], as in

|x〉p = e−x2/2

π1/4
e−

â†2

2 +p2xâ† |0〉. (6.46)

We also use the following relations of the actions of the beam splitter

Û †
BSâ†

1ÛBS =
â†

1 + i â†
2p

2
, Û †

BSâ†
2ÛBS =

i â†
1 + â†

2p
2

. (6.47)

Given the measurement results that the output ports are states |x1〉p and |x2〉p , and a vacuum
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state |02〉 at the second input port, the conditional state at the first input port will be

|ψc〉 = 〈02|Û †
BS|x1〉p |x2〉p = 〈02|Û †

BS

e−(x1+x2)2/2

π1/2
e−

â†
1

2+â†
2

2

2 +p2(x1 â†
1+x2 â†

2)ÛBSÛ †
BS|01〉|02〉

= e−(x1+x2)2/2

π1/2
〈02|e−i â†

1a†
2+(x1+i x2)â†

1+(i x1+x2)â†
2 |01〉|02〉

= e−(x1+x2)2/2

π1/2
e(x1+i x2)â†

1 |01〉 =π−1/2D̂(x1 + i x2)|01〉
=π−1/2|α1 = x1 + i x2〉. (6.48)

The factor of π−1/2 comes from the overcompleteness of the coherent state basis, as in

1 = 〈02|Û †
BS

(∫
d x1d x2|x1〉p〈x1|p |x2〉p〈x2|p

)
ÛBS|02〉

=
∫

d x1d x2π
−1|α1 = x1 + i x2〉〈α1 = x1 + i x2| = 1. (6.49)

As we can see, the conditioning of a coherent state comes from the cancellation of the second

order term â†2 due to the even splitting ratio of the beam splitter and a correct phase relation.

If this requirement is not met, it will result in a squeezed coherent state as the conditional

state, e.g. for a beam splitter with a transmission of η,

|ψc〉 = e−(x1+x2)2/2

π1/2
e

(2η−1)â†
1

2

2 +p2(
p
ηx1+i

p
1−ηx2)â†

1 |01〉. (6.50)

6.4.2 Frequency conversion using resonator structures

As discussed in Section 6.4, optical resonators provide unique advantages over straight waveg-

uides regarding the concentrated optical density. Here, we show an example scheme to

use on-chip ring resonator structures to convert the THz-broad optical excitation from the

electron-photon interaction to a MHz-broad optical/electrical excitation, limited by the opti-

cal resonator linewidth. Here we define the spatial-temporal mode for the optical excitation

of a resonator as â† = ∫
dω

∑
i φi (ω)â†

ω, where each φi (ω) is a Lorentzian centered around

ωi +ωm with ωi the pump center frequency. We also define the microwave excitation as

ĉ† ∝ ∫
dωφ(ω)ĉ†

ω, centered around ωm . In the ideal case that all the optical azimuthal modes

are identical in their frequency components, we have φi (ω+ωi ) =φ(ω).

Near-unity-efficiency optical to microwave conversion was demonstrated in χ2 type materi-

als [228, 229]. We assume a ring structure optical resonator (conversion ring) with a strong χ2

nonlinearity and a relatively high optical quality factor, with identical cavity azimuthal modes

of two orthogonal polarizations (e.g., TE and TM fundamental modes) with approximately

the same FSR, and a frequency spacing ∼ωm between these two mode families that match

the microwave mode frequency ωm . Practically, frequency matching is only required between

a few optical resonances since the electron-photon optical excitation from a ring resonator
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can, in principle, only cover about 5-20 azimuthal modes. We use this resonator for frequency

down-conversion of the broadband photon excitation â† at frequencies ωi +ωm from the

electron-photon interaction, with a specially structured local oscillator pump at frequencies

ωi . We further assume that two more rings are on the chip, with matched optical frequencies

of the modes of interest. We use one of the rings for electron-photon interaction, where the

photon excitation is generated on the TM polarization at frequencies ωi +ωm (signal field).

This ring should be designed with the highest quality factor possible since its linewidth de-

termines the microwave linewidth φ(ω), and should be narrower than the linewidth of the

conversion ring. We use the other ring for generating or filtering a structured continuous wave

(CW) optical pump on the TE polarization with frequencies ωi (LO field). We combine LO and

signal field through a polarization beam splitter and send them into the conversion ring for

frequency down-conversion.

Theoretically, the signal and LO fields do not have to be orthogonal in polarization to enable

efficient and low-noise frequency conversion. The orthogonal polarizations considered here

are intended to prevent spectral leakage of the LO field to the signal mode, even though they

can be sufficiently separated in frequency.

When the conversion ring is pumped by the LO field with cooperativity C = 1 in each pump-

field mode pair, the signal frequency component φi (ω) at the azimuthal mode at frequency

ωi +ωm is converted to a microwave photon at frequencyωm with frequency component φ(ω)

and conversion efficiency η= 100%. When all the azimuthal modes of the conversion ring

convert their signal field components down to the same microwave frequency ωm with unity

efficiencies, the original signal pulse with THz-broad frequency components from the electron-

photon interaction will be converted to a single microwave mode excitation at frequency ωm

with frequency width down to MHz with a unity efficiency, and at the same time generate a

pump field photon with THz-broad frequency component due to the energy conservation.

Here, we formally analyze this conversion process. We define the scattering matrix of the

conversion process with a multi-mode three-wave mixing operator

ŜTWM = e
∑

i

∫
βi (ω,ωi )âω+ωi ĉ†

ωd̂ †
ωi
−h.c. (6.51)

where ωi is the frequency of each CW pump comb tooth, and βi is the coupling constant am-

plified by the pump field. The coupling constant βi (ω,ωi ) contains the conversion frequency

response of each pump-signal mode pair, including effects such as phase-matching, cavity

responses of the signal and pump field, and microwave cavity response. The operators are

the signal field annihilation âω, the microwave field creation operator ĉ†
ω, and the pump field

operator d̂ †
ωi

= ∑
Nωi

|Nωi +1〉〈Nωi | which is specially defined high-up in the photon ladder,

similar to the electron ladder operator in the no-recoil limit, that represents the addition of

a photon to the classical coherent pump field |αi 〉 with frequency ωi . In the single-mode

conversion case, d̂ † can be ignored. However, in the multi-mode conversion considered here,

neglecting d̂ † leads to non-unitary operations. Under such a scattering matrix, the state of the
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6.4 Shaping electron states from optical detection

system changes to

ŜTWM|ψph,ψm ,ψpump〉 = ŜTWMF (â†)|0a ,0c ,αi 〉
= F (ŜTWMâ†Ŝ†

TWM)ŜTWM|0a ,0c ,αi 〉 = F (ŜTWMâ†Ŝ†
TWM)|0a ,0c ,αi 〉 (6.52)

ŜTWMâ†Ŝ†
TWM =∑

i
φi (ω+ωi )sin(|βi (ω,ωi )|)e iθi d̂ †

ωi
ĉ†
ω

+∑
i
φi (ω)cos(|βi (ω−ωi ,ωi )|)â†

ω (6.53)

where â† = ∫
dω

∑
i φi (ω)â†

ω is used, θi = arg[βi (ω,ωi )], and also |ψph〉 = F (â†)|0a〉 is assumed

to be a general optical state. In the ideal case where φi (ω+ωi ) =φ(ω)Gi is separated to the

cavity density of states φ(ω) and the electron-photon phase-matching coefficient Gi at signal

mode i , with unity cooperativity βi (ω,ωi ) = π/2 at every pump-signal mode pair over the

frequency components of interest, the state is simplified to

|ψm ,ψpump〉 = F (ĉ†d̂ †)|0c ,αi 〉 (6.54)

where

ĉ† =
∫

dω
√∑

i
|Gi |2φ(ω)ĉ†

ω (6.55)

d̂ † =∑
i

Gi√∑
i |Gi |2

e iθi d̂ †
ωi

(6.56)

Since the pump field is a strong coherent field and maintains a unity overlap with a photon-

added state, we can trace out the pump field state space, and arrive at

|ψm〉 = F (ĉ†)|0c〉 (6.57)

where the state of the signal field |ψph〉 = F (â†)|0a〉 is transferred to the microwave field, with

frequency components limited by the signal’s cavity mode density-of-states ∝φ(ω).

Practically, the amplitude and frequency components of the LO field have to be precisely

shaped. However, since the optical excitation from the electron-photon interaction can be

limited to only 5-20 optical modes with the maximum interaction length achievable with a

racetrack resonator geometry, it is possible to shape a reasonably accurate LO field with a

soliton [224] or an electro-optic comb [225] source and a frequency shaper [226] to correct the

amplitude and phase of each frequency component.

There are currently two types of main-stream optical-to-microwave converters [163]. One

type uses χ2 optical nonlinearity to directly convert signals from the optical domain to the

microwave domain, as is considered here. The other type [236] uses a mechanical oscilla-

tor as an intermediate stage to first convert the optical signal to a mechanical signal using

optomechanical couplings, and then from the mechanical signal to a microwave signal us-

ing electro-mechanical couplings. Both types of systems have shown near-unity conversion
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Chapter 6. Free-electron quantum optical interaction with photonic integrated circuits

efficiency and low added noise. However, the mechanical one suffers from the low conver-

sion bandwidth typically at kHz level (not possible to achieve βi (ω,ωi ) ∼π/2 over the cavity

bandwidth ∼MHz), limited by the electro-mechanical and optomechanical coupling rates.

Therefore, we only consider the χ2-type optical-to-microwave converters for our scheme since

they offer broadband transductions, essential to convert all the frequency components of the

optical excitation to the microwave domain. For a realistic lithium niobate ring resonators with

50µm radius, the microwave frequency at 4 GHz, with optical and microwave cavity linewidths

at κph/m/2π∼ 10MHz, the estimated required pump power to reach Ci = 1 is reasonable at

Pi ∼ 100µW [237].

Similar schemes can also down-convert the signal to an optical excitation with MHz linewidth.

However, a relatively uniform mode spacing over multiple azimuthal modes at the optical

frequency scale is generally challenging to design for triply resonant schemes.

6.5 Theoretical and experimental limitations

Until now, we have analyzed the fundamental limits of integrated photonic circuits as a plat-

form for synthesizing high-quality quantum states with free electrons. We show in Section 6.2

that near-unity coupling ideality to the target TM00 spatial-temporal waveguide mode can be

achieved by suppressing parasitic couplings through the control of electron beam position-

ing, velocity, and waveguide design. We also investigate the underlying correlation between

electron energy and photon frequency in the energy ladder subspace and the induced fun-

damental limitation as a trade-off between heralding rate and state purity. In Section 6.3, we

found that particle-like electrons with coherent energy uncertainty are required to generate

pure heralded states, and the purity limit can be greatly relaxed with experimentally feasible

interaction length with integrated waveguides. We also show that these correlations can be

exploited to shape the optical waveforms, e.g., to map the electron wavefunction to the optical

domain and construct an effective optical interferometer mediated by free electrons. However,

the spatial sensitivity of such an interferometer remains at the optical-wavelength scale and

does not inherit the superior spatial sensitivity of electron waves. It is still an open question

whether phase-object-induced electron phases can be transferred to the optical domain,

accumulate, and be detected optically, which is relevant for quantum-enhanced phase-object

imaging applications [238, 239]. The maximum feasible coupling strength |gTM00 |2 can also be

further enhanced through waveguide dispersion engineering [190], with the trade-off of lower

state purity due to larger phase-matching bandwidth.

Note that in our discussion, we omit detailed analysis of some experimental limitations, e.g.,

finite detection efficiencies, primarily on the optical side. The heralded optical state is robust,

given the high energy of the electrons. However, the heralded electron state purity is most

sensitive to the optical detector efficiencies and other limiting factors, such as optical mode-

matching. We discuss the heralded electron state with a finite optical detection efficiency in

Section 7.5. We anticipate that there are schemes or parameter regimes that are less prone
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to detection inefficiencies. We also restrict our discussion mainly to the interaction picture,

except that the electron and optical waveforms are defined in the Schrödinger picture. We

remind the reader that in the Schrödinger picture, though not the main focus of the paper, long-

distance propagation significantly modifies the electron and optical density profile |ψ̃(T )|2
and |φ(T )|2, leading to effects like electron [103, 112, 116, 143, 200] and optical [240] pulse

compression. More details on the effect of free-electron dispersive propagation can be found

in Chapter 8.

Moreover, in the no-recoil limit, all the electron operations commute with each other. This

approximation, though practically valid for few-photon single-chip interactions, limits the

controllable degrees of freedom of the heralded optical states to the order of the harmon-

ics of the PINEM field used to shape the electron wavefunction [213]. In the platform of

Si3N4microresonators, efficient generation of second [241] and third [242, 243] harmonics are

supported with estimated maximum |g2| ∼ 100 and |g3| ∼ 10, offering a total of 8 degrees of

freedom on the heralded optical state. The Si3N4 integrated photonics platform also provides

an ultra-wide transparency window from 400 nm to 4.5µm [244], supporting at most ten har-

monic components with an externally driven optical source. Beyond the no-recoil limit [112],

electron energy transitions significantly modify the velocity due to energy dispersion. When

interaction regions are far apart, the recoil effect results in an energy-dependent phase accu-

mulation between different stages (details see Appendix 8.1). The recoil effect can be safely

neglected in discussing few-photon single-chip interaction. However, it could be necessary for

a broader range of experimental schemes [102, 103, 116, 124, 245], e.g., when multiple chips

are involved with significant separation distance.

Furthermore, our analysis is purely in the framework of macroscopic QED[114], where elec-

trons interact with the medium-assisted electromagnetic fields. In optical media like the

Si3N4material we discuss here, optical phonons typically exist and result in Raman scattering

of optical fields [246]. However, due to their short spatial extent and low energy [247, 248],

we do not consider their contribution in long-distance phase-matched interaction with the

high-energy free electrons. The same reasoning also excludes higher electron energy loss

processes, e.g., valence and inner-shell ionization around 50 eV [249].

Our analysis and results indicate that the photonic integrated circuit platform is ideal for free-

electron quantum optics with manageable limitations and promises a pathway to high-fidelity

and high-purity quantum state heralding, entanglement of free electrons with other quantum

systems, and quantum-enhanced sensing and imaging. In the next section, we discuss our

experiment of observing the free-electron interaction with the evanescent quantum optical

vacuum fields of a Si3N4microresonator and the electron-photon non-classical correlation

generated in this process.
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7 Cavity-mediated electron-photon
pairs

Optical parametric processes generate quantum correlations of photons without chang-

ing the state of the optical medium involved. Entangled photons from parametric down-

conversion [250] are an essential resource for heralded single-photon sources, quantum com-

munication, and quantum teleportation [251]. Spatially separated entanglement afforded by

such "twin-beam" pairs was extended to various physical contexts, with examples in atomic

beams [252], electron spins [253], and photon-phonon correlations in micro-mechanical

systems [23].

Free-electron beams are an emerging target for quantum manipulation and sensing, promis-

ing quantum-enhanced imaging [238, 254], spectroscopy [108, 255, 256], and excitation [102,

109, 110, 124]. Using the quantum optical measurement techniques, photon statistics are used

to reveal single quantum emitters [257] and photon bunching [258, 259]. Recent experiments

also studied the electron-induced optical excitation of whispering gallery modes [184, 185] and

optical fibers [260]. However, impeded by a lack of mode-specific and sufficiently strong cou-

pling, correlations between single electrons and well-defined photonic states have remained

elusive before our work.

In this chapter, within the theoretical framework we developed in the previous chapter, we

discuss our first experiment effort [8] to observe free-electron interaction with the evanescent

vacuum fields of a high-Q Si3N4 200-GHz optical microresonator to generate free-electron

cavity-photon pair states. In this platform, we observe single-photon generation (Section 7.2)

from the resonator when the free electron passes by the waveguide surface and demonstrate a

non-classical electron-photon correlation (Section 7.3), the quantum optical feature that is

long sought after. We also demonstrate coincidence imaging (Section 7.4) of the cavity mode

with drastic background suppression. Last, we observe the decoherence of the electron state

due to interaction with parasitic optical modes and the verification of the Poisson statistics of

the generated photons (Section 7.5).
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Chapter 7. Cavity-mediated electron-photon pairs

7.1 Free-electron interaction with cavity modes

The interaction of electron beams with cavities and resonant structures represents a universal

scheme for generating electromagnetic radiation. In the quantum optical description, the

inelastic scattering can be modeled as a coupling of free electrons to optical vacuum fields.

Scattering with the evanescent field of the optical microresonator, an electron at energy E

generates intracavity photons at frequencies ω in an energy-conserving manner (Fig. 7.1A),

described by the scattering matrix Ŝ = exp
(
g â†b̂ −h.c.

)
. Here, â† is the creation operator of

the cavity spatial-temporal mode, and g is the vacuum coupling strength. The ladder operator

b̂ reduces the energy of an electron by that of one photon. Here, we measured our phase-

matching bandwidth of the optical modes to be 50 meV, much smaller than the ZLP of the

electron energy (0.6 eV), and thus sufficiently in the particle-like regime of the interaction

discussed in Section 6.3.2.

The interaction induces entanglement between the electron energy and the cavity population

and results in the state

|ψe,ψph〉 =
∞∑

n=0
cn |E −nℏω〉|n〉, (7.1)

with the coefficients cn = exp(− |g |2
2 ) g n

p
n!

corresponding to Poissonian scattering probabilities,

under the no-recoil approximation. In our experiment, we are still in the regime of a relatively

weak vacuum coupling strength |g |2 ∼ 0.1, and the state is dominated by the zero- and one-

photon contributions:

|ψe,ψph〉∝ |E〉|0〉+ g |E −ℏω〉|1〉+O (g 2). (7.2)

Our measurements are designed to probe this state by detecting single photons (non-photon-

number-resolving) in coincidence with inelastically scattered electrons by one photon energy.

In the experiment, the continuous electron beam of a transmission electron microscope (120-

keV beam energy, 25-nm focal diameter) passes by a photonic chip-based microresonator

(Fig. 7.1C) and interacts with the evanescent vacuum fields to excite the empty cavity modes.

The Si3N4 microresonator [152] is designed for low optical loss, efficient fiber coupling, and

free-space near-field access. Constrained by electron-photon phase matching, we engineered

the resonator cross-section (2.1µm × 650 nm, not single mode) for a maximum photon gen-

eration probability per electron, up to 7% around 0.8-eV photon energy (a wavelength of

1.55µm).

Cavity photons generated in the clockwise propagating modes (Fig. 7.1A) are coupled out to a

bus waveguide and further guided by optical fibers to a single-photon avalanche diode (SPAD).

The energy and arrival time of each electron are measured with an event-based detector

behind a magnetic prism spectrometer (Fig. 7.1B), allowing for electron-photon coincidence

experiments.
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Figure 7.1: Coincidence detection of electron-photon pairs generated at a photonic chip.
(A) High-energy electrons traverse a fiber-coupled Si3N4 microring resonator, generating
intracavity photons. Single photons and inelastically scattered electrons are detected in
coincidence. (B) Electron spectrum after interaction. (C) Optical microscope image of the
photonic chip with a sketch of the passing electron beam.

In the following, we analyze the generated state in detail, starting from the discrete cavity

mode basis, and show that the interaction leads to the generation of a single-mode excitation

of a well-defined spatial-temporal mode.

Discrete mode description

Here, we present the theoretical description of coupling electrons to multiple cavity modes.

We work in the no-recoil approximation regime, where the electron energy dispersion does not

affect the interaction. When an electron is interacting with multiple optical modes (indexed by

µ), as we are only considering the one-photon interaction H1 =∑
µ Hµ

1 (two-photon process

H2 neglected), our interaction is linear to the field operator Âµ. As a consequence, it is easy to

generalize the scattering matrix we derived in Eq. 4.24 to

S = exp

(
−∑

µ
g∗
µτaµb†

µ−h.c.

)
, (7.3)

with the single-mode coupling strength

gµ =
√

e2

2ϵ0ℏωµVµ

∫
L

d ze−iωµ·z/ve uµ(z), (7.4)

where the optical-mode-specific quantities are used.

233



Chapter 7. Cavity-mediated electron-photon pairs

Electron-cavity interaction in the particle-like regime

The state entanglement between electron-photon interaction has been analyzed in the litera-

ture in the presumed single-cavity-mode case [107, 261, 262]. However, electrons are generally

coupled to multiple cavity modes. Without the definition of a collective spatial-temporal

mode, it is not possible to realize single-mode interaction. Here, we first analyze the case

where the electron interacts with multiple cavity modes of the resonator. We derive the in-

teraction in the wave-like regime in Appendix. B.16, as well as a detailed derivation of how

to mathematically treat this interaction. In this section, we show that we can simplify it to a

single spatial-temporal mode in the particle-like regime.

We start with the electron wavefunction |ψe〉 =
∫

dEψ(E)|E〉 (a factor of
p

L/2π is neglected

for simplicity) with an energy (momentum) spread. After the interaction, the final state is

|ψe , {ψµ}〉 = exp

(
−1

2

∑
µ
|gµ|2

) ∑
{nµ}

∏
µ(−i g∗

µ )nµ√∏
µnµ!

∫
dEψ(E)|E −∑

µ
nµℏωµ〉

∏
µ
|nµ〉 (7.5)

while the reduced electron density matrix becomes

ρe = exp

(
−∑

µ
|gµ|2

) ∑
{nµ}

∏
µ |gµ|2nµ∏
µnµ!

∫
dEψ(E)|E −∑

µ
nµℏωµ〉

∫
dE ′ψ∗(E ′)〈E ′−∑

µ
nµℏωµ|.

(7.6)

From this, we can find the redistributed electron energy density function f (E) in terms of the

zero-loss-peak density function fZLP(E) as

f (E) = 〈E |ρe |E〉 = exp

(
−∑

µ
|gµ|2

) ∑
{nµ}

∏
µ |gµ|2nµ∏
µnµ!

|ψ(E +∑
µ

nµℏωµ)|2

= ∑
{nµ}

∏
µ

exp
(−|gµ|2) |gµ|2nµ

nµ!
fZLP(E +∑

µ
nµℏωµ). (7.7)

In the particle-like regime where optical modes with reasonable gµ are centered at ω= 〈ωµ〉
with phase-matching bandwidth ∆ω ≪ (∆ fZLP,ω), we can approximate the redistributed

electron energy density as

f (E) =∑
n

exp

(
−∑

µ
|gµ|2

)
(
∑
µ |gµ|2)n

n!
fZLP(E +nℏω) (7.8)

which consists of multiple electron energy-loss sidebands at −nℏω energy with a Poisson

distribution at rate
∑
µ |gµ|2. This distribution hints that a spatial-temporal mode can be

defined in this regime. We can verify that for our device, we are well within the particle-like

regime by considering the parameters of our system and comparing analytical and numerical

results (Fig. 7.2) until the fourth sideband order.
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Figure 7.2: (a) Electron energy zero-loss-peak distribution and |gµ|2 distribution for different
optical modes, calculated with parameters of the experiment system. (b) Calculated electron
energy loss spectrum with exact numerical and approximated analytical results. One can
see that the analytical result only starts to deviate at higher order sidebands, hints at the
breakdown of the particle-like regime.

We can further calculate the reduced photon density matrix,

ρo = exp

(
−∑

µ
|gµ|2

)∫
E

dE

∑
{nµ}

∏
µ(−i g∗

µ )nµ√∏
µnµ!

ψ(E +∑
µ

nµℏωµ)
∏
µ
|nµ〉


×

∑
{nµ}

∏
µ(i gµ)nµ√∏

µnµ!
ψ∗(E +∑

µ
nµℏωµ)

∏
µ
〈nµ|

 , (7.9)

When we only look at the probability of having the |nν〉 state in a specific optical mode ν,

P (nν) = exp

(
−∑

µ
|gµ|2

) ∑
{nµ}/nν

(∏
µ |gµ|2nµ∏
µnµ!

∫
E

dE |ψ(E +∑
µ

nµℏωµ)|2
)

= exp

(
−∑

µ
|gµ|2

) ∑
{nµ}/nν

∏
µ |gµ|2nµ∏
µnµ!

= exp
(−|gν|2) |gν|2nν

nν!

∏
µ̸=ν

(∑
nµ

exp
(−|gµ|2) |gµ|2nµ

nµ!

)

= exp
(−|gν|2) |gν|2nν

nν!
. (7.10)

Therefore, each optical mode still follows a Poisson distribution, even though the electron

couples to many optical modes.

Again, in the limit where the optical modes with reasonable gµ are centered at ω= 〈ωµ〉 with

small phase-matching bandwidth ∆ω compared to the zero-loss-peak spread ∆ fZLP, we can
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approximate the reduced photon density matrix as

ρo = exp

(
−∑

µ
|gµ|2

)∫
E

dE

(∑
n

(−∑
µ i g∗

µa†
µ)n

n!
ψ(E +nℏω)

∏
µ
|0µ〉

)

×
(∏
µ
〈0µ|

∑
n

(
∑
µ i gµaµ)n

n!
ψ∗(E +nℏω)

)
(7.11)

and when the zero-loss peak spread ∆ fZLP is much smaller than the sideband energy ℏω, the

density matrix can be further simplified as,

ρo = exp

(
−∑

µ
|gµ|2

)∑
n

(
(−∑

µ i g∗
µa†

µ)n

n!

∏
µ
|0µ〉

)(∏
µ
〈0µ|

(
∑
µ i gµaµ)n

n!

)
(7.12)

where we can define the spatial-temporal mode

a =
∑
µ i gµaµ√∑
µ |gµ|2

. (7.13)

with the coupling strength |g |2 =∑
µ |gµ|2. Upon conditioning on an electron nth sideband

loss event, the optical system collapses to an entangled state between different optical modes

aµ, but at the same time, also a Fock state for the cavity spatial-temporal mode a,

|{ψo}〉c =
(−∑

µ i g∗
µa†

µ)n√
n!(

∑
µ |gµ|2)n

∏
µ
|0µ〉 = (g∗a†)n√

n!|g |2n
|0〉. (7.14)

If we do not go to the spatial-temporal mode basis, the original multi-mode state is a large-

scale W state[263, 264, 265] with a general interest in quantum information processing. The

intuition of generating such a large-scale superposition state is that due to the broad zero-loss

peak of the electron state, the detection on nth sideband does not resolve the which-mode

information, rendering all the modes in a superposition state.

7.2 Coherent cathodoluminescence

After finding that the electron is expected to interact with a spatial-temporal mode consisting of

multiple cavity modes, we seek to observe this effect by first measuring photon excitation from

the optical side. First, we spatially and spectrally map the electron-induced cavity excitation

by placing the electron beam in the proximity of the resonator (Fig. 7.3A and B). Measured

with an optical spectrometer, the overall spectral range of the detected radiation spans from

1520-1620 nm, primarily limited by the bandwidth of electron-light phase matching, and in

good agreement with numerical simulations (Fig. 7.3C). The spectrum exhibits a comb-like

structure (Fig. 7.3D) due to free-electron coupling to the individual microresonator modes

âµ. The 1.58-nm spacing of the emission peaks matches the optically characterized quasi-TM
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Figure 7.3: Spatial and spectral mapping of intracavity photon generation. (A) and (B)
Schematic of the measurement geometry. The electron beam (green) passes parallel to the
chip surface (grey) and interacts twice (red dots) with the ring resonator (dark red). (C) Optical
emission spectrum (electron beam passes resonator tangentially) and simulated spectral
envelope (grey). (D) Close-up of the spectral mode comb and a selected single cavity mode
(red). (E) Raster-scanned photon-generation maps (saturation-corrected, see Section 7.3)
for the selected mode and the full spectrum (intensity patterns illustrated in (A) with red
and blue). (F) Signals from panel (E) integrated along the white arrow. (G) Simulation of
the position-dependent electron scattering probability (50-nm distance). (H) Full-spectrum
/ spatial-temporal-mode picture of the double interaction. (I) Single-mode picture of the
double interaction.
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free-spectral range and confirms the predominant photon extraction from this mode family.

Spatial characterization of the intracavity excitation is obtained by raster-scanning the electron

beam (Fig. 7.3A and B) and detecting the emitted light with a SPAD. Fig. 7.3E displays the

obtained single-mode (top) and spectrally-integrated (bottom, corresponding to our spatial-

temporal mode â) photon rates, which decay exponentially with distance from the structure,

mapping out the near-field mode profile in this spectral range. The most substantial photon

generation is observed for electrons passing the ring resonator tangentially, as expected for

the long interaction length.

Fig. 7.3F shows the photon generation rates along the chip surface. The single-mode count

rate shows a pronounced oscillation in the radial distance to the center of the ring resonator.

The oscillation is caused by the interference between sequential interactions (Fig. 7.3A and I)

of an electron with the cavity mode vacuum field [266], proving the conservation of mutual

coherence in the scattering process. Similar Ramsey-type interference is also observed in our

PINEM experiment.

Integrating the full mode spectrum of the cathodoluminescence averages out the oscillatory

pattern, in agreement with numerical simulations (Fig. 7.3G). Intuitively, when the spatial-

temporal mode is excited, the spatial extend of the optical pulse (∼10µm), as well as the finite

group velocity, is much shorter than the spatial separation between the two interaction region,

in contrast to the single-mode case where the spatial extend covers the whole ring. Therefore,

for the excited spatial-temporal mode, the sequential interaction with the same optical pulse

is not possible (see Fig. 7.3H), therefore, showing no interference-induced oscillatory behavior.

Here, the total scattering probability of the spatial-temporal mode is P=∑
µ |gµ|2, as the sum

of the individual mode contributions gµ, and can be up to 7 %.

7.3 Electron-photon non-classical correlation

7.3.1 Time- and energy-correlated electron-photon pairs

The spontaneous creation of photons by single electrons satisfies energy-momentum conserva-

tion, lowering the energy of an electron by ℏω and transferring the corresponding momentum

to the cavity photon. In this section, we probe the correlation of the electron-photon pair state

by coincidence measurements of both particles (Fig. 7.4). The electron beam is held fixed

in the near field of the cavity at a ∼ 160-nm distance from the surface. At this position, we

detect photons with a probability of 4.6×10−5 per electron passing the structure. Considering

coupling and detection losses, this corresponds to an intrinsic generation probability of about

∼ 2.5%.

The arrival time and kinetic energy of each electron are measured by event-based spectroscopy,

using the stream of photon events recorded by the SPAD for time-tagging (Fig. 7.1A). Fig. 7.4A

shows the energy- and time-dependent histogram of electron arrivals relative to the photon
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Figure 7.4: Time- and energy-correlated electron-photon pairs. (A) Two-dimensional cor-
relation histogram over the electron energy and relative photon timing (30-s integration,
0.65-pA electron current on the detector) showing a strong coincidence peak. (B) Spectral
distributions of the uncorrelated and correlated electrons (background subtracted). (C) and
(D) Close-up of correlation histogram (ZLP blocked, 60-s integration, 46-pA beam current at
sample) with coincidence time trace (white) and fraction of true coincidences. (E) Illustration
of cavity-mediated inelastic electron-photon scattering and coincidence measurement.

event closest in time. Two main features observed are a time-independent background of

accidental coincidences around zero energy loss, and an anticipated sharp correlation peak

around 0.8-eV energy loss and 0-ns time delay. The spectrum of the correlated electrons

(Fig. 7.4B, red) is downshifted by one photon energy relative to the zero-loss-peak (ZLP)

(black). As a result of the narrow electron-light phase-matching bandwidth of ∼ 50 meV, they

closely match in broadening and shape (∼ 0.5 eV width), as is expected in the particle-like

regime. Note that we only observe the most prominent feature in the linear scale of the record.

In log-scale, higher order scattering sidebands are present, whose response to the photon

counting event is analyzed in detail in Section 7.5.

Next, we insert a mechanical slit in the electron spectrometer (Fig. 7.4C) to reject electrons

that were not scattered, allowing for higher total electron flux, and also photon generation

rates, without the electron detector saturation. The background-corrected time profile (inset)

shows the precise temporal structure of the correlated electron-photon pairs with a width of

3.91 ns. In principle, the temporal correlation trace should reproduce the cavity decay time,

but it is not resolved in the present experiments (current device: ∼0.5-ns lifetime for a quality

factor of Q ∼ 5.5×105). Without significant optical pump power inside the cavity to recover
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Chapter 7. Cavity-mediated electron-photon pairs

the high-energy electron-induced material damage, we observe a significant degradation of

the optical quality factor as we put the electron beam in the near-field of the waveguide.

We identify correlated events on a single-particle basis by selecting loss-scattered electrons

within a specific time window. In contrast to conventional optical spontaneous parametric

down-conversion, the measurement of the electron energy for each event presents a direct

measure of the energy quanta n deposited in the optical cavity. The single-electron energy

detection at the first energy loss sideband represents an optical state projection from the

entangled state (Eq. 7.2) onto the (non-classical) single-photon intracavity Fock state of the

spatial-temporal mode â. This general principle, illustrated in the schematic of Fig. 7.4E,

enables inter-particle heralding schemes for either electrons or photons. Notably, interac-

tions with multiple electrons—relevant for studying electron-electron correlations—can be

excluded, considering the multi-hit capability of the detector.

Such heralded particle sources are quantified in terms of the measured rates of electrons

(Re), photons (Rp), correlated events (Rpe), and the Klyshko heralding efficiencies ηi
K = Rpe/R j

(i , j =e,p, i ̸= j ) which describe the conditional probability of experimentally detecting a

heralded particle. For the data shown in Fig. 7.4C, we measure ηp
K ∼ 0.11% and ηe

K ∼ 57% for

photons and electrons, respectively.

The less efficient heralding of photons follows from considerably higher losses in their output

coupling and detection (details see later subsections). Not being a fundamental physical

limitation, we expect appreciable improvements in the photon collection efficiency with

technical optimizations, including the use of superconducting detectors and strongly over-

coupled resonators. Taking into account particle losses in transmission and detection, we

estimate intrinsic heralding efficiencies ηi
I of approximately 50% (see detailed estimate of ηi

I

in later subsections). As discussed in earlier sections, intrinsic heralding efficiencies can be

achieved near unity with an optimal waveguide geometry and e-beam position.

In the following subsections, we detail the analysis processes leading to the results in this

section.

Quantitative estimate of heralding efficiencies

Bright sources of single photons [267] and their integration in photonics [268] are essential

for future quantum technology. In our approach, inelastic electron scattering at optical fibers

can generate light in various geometries [184, 260, 269] and is shown to produce correlated

electron-photon pairs. In principle, this scheme enables near-unity intrinsic heralding efficien-

cies. Accounting for imperfections in the current setup, we quantitatively estimate the various

loss channels occurring after photon generation. While the wavelength- and mode-dependent

coupling efficiency from the resonator into the bus waveguide can be simulated, other fiber

connection losses and backscattering probabilities are estimated by additional measurements.

Apart from that, we experienced deviations in the measurement results from the simulations
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7.3 Electron-photon non-classical correlation

Photon loss channels efficiencies
SPAD peak detection efficiency 31(5)%

SPAD CL bandwidth overlap 26(2)%
SPAD saturation 82(2)%

Effective resonator-bus coupling efficiency originally 27%, degrade to 17(6)%
Directional output efficiency 88(1)%

Holder-fiber coupling efficiency 39(5)%
Fiber propagation/connection transmission 85(4)%

TM mode CL contribution 62(25)%
Electron ZLP accident events >99%

Electron loss channels efficiencies
Electron detection efficiency of spectrometer 94(10)%

Detector saturation 96(1)%
Electron propagation loss unknown

Particle type predicted chain efficiency
Photon 0.16(13)%

Electron > 86(10)%
Particle type measured Klyshko efficiency

Photon 0.11%
Electron 57%

Table 7.1: Efficiency budgets for photon/electron heralding experiments.

due to changes in the resonator properties in the presence of the electron beam, which we

also observed in our soliton experiment. We collect all simulated and measured loss channels

for photons and electrons in Table 7.1 and give detailed information on selected parts.

Coupling efficiency and optical transmission

To check whether the coupling efficiency from the resonator to the bus waveguide degraded

during the experiment, we connected a continuous-wave tunable laser and a photodiode to

the chip and analyzed the transmission profile when scanning the laser wavelength through a

TM00 resonance. A slight increase of around 130 MHz in internal loss rate could be observed

after around one hour of exposure to the electron beam. We attribute it to the potential depo-

sition of carbon nanoparticles on the chip surface and electron-beam radiation damage [159].

This results in a degradation of the Q factor and also the coupling efficiency.

Another auxiliary experiment with the electron beam on/off the same resonator chip is shown

in Fig. 7.5 to demonstrate this coupling efficiency degradation effect. The transmission signal

of the optical resonance from laser wavelength scans allows the quantitative estimation

of internal loss rate and coupling efficiency from the resonator to the bus waveguide. We

conducted the measurement for one TM00 mode at 1548 nm only, estimating the coupling

efficiencies of different optical modes during the experiment using the previously measured

optical properties.
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Figure 7.5: Comparison of optical resonance coupling efficiency (visibility) without (a) and
with (b) the electron beam directly on the resonator. One can observe a decrease in resonance
visibility, indicating an increase in resonator internal loss (by ∼50 MHz) with the presence of
the electron beam. The observed asymmetry in the mode transmission shape is due to bus
waveguide facet reflection and is included in the cavity parameter fitting.

Saturation correction

The single photon detector used in the experiments (IDQ ID230) was operated in the Geiger

mode to increase its single photon sensitivity. This leads to the detector’s recovery time (dead

time) after each detection event, in which it is blind to incoming photons. We changed this

dead time for estimating the photon generation rate to reduce the fraction of undetected

photons and, at the same time, keep the intrinsic noise of the detector, which increases

drastically with shorter dead time, at a minimum. In a simplified model, we assume that the

photons have a Poissonian distribution of their arrival time and correct for lost photons by

calculating the fraction of events with timing distances shorter than the dead time considering

the mean generation rate. Computing this ratio for different mean generation rates, or event

rates, (Fig. 7.6) allows us to estimate the initially generated photon number from the number

of the experimentally detected photons based on this model.

Photon generation direction

As the photonic chip is inherently symmetric in its geometry and coupling, there are two

directions in which the photons can propagate to leave the bus waveguide. Comparing the

measured CL signal from both fibers connected to the chip (cf. Fig 7.1C) shows a substantial

imbalance in the number of photons. Over 10× more photons are generated in the clockwise

direction (cf. Fig 7.1A) than in the counterclockwise one, suggesting that most photons are

generated in the direction of the electron beam. The weak signal from the counterclockwise

direction would then stem from photons either generated in the opposite direction of the

electron beam, which is highly unlikely considering the momentum conservation during

photon generation, or scattered inside the microring. This scattering behavior can be observed
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Figure 7.6: (a) Detected photon rate as a function of photon rate before the single photon
detector (event rate), assuming a Poissonian timing distribution. The saturation limited curve
(blue) considers a dead time after detection of 50 us, discarding the events with a smaller delay.
Without saturation limit (red), the detected photon rate will stay equivalent to the event rate.
(b) Comparison between saturation corrected and non-saturation corrected photon rates.
Data is the horizontal sum of Fig 7.3C.

as mode splitting in a transmission response measurement and is the most likely explanation.

CL emission center frequency

The overlap efficiency between the CL bandwidth and the SPAD bandwidth strongly depends

on the CL emission center wavelength, which has a gradient of about 20 nm/keV to the

electron velocity and 7 nm/nm to the waveguide thickness changes. Due to imperfections

in the fabrication process, the exact effective mode index of the waveguide is unknown.

Therefore, we conclude the emission center frequency from a simplified fitting of the optical

emission spectrum shown in Fig. 7.7. The fitting incorporates the fact that the CL emission

center frequency can vary due to the uncertainty in the mode index and the possibility that

the SPAD cutoff and the spectrometer frequency axis are not synchronized. The inclusion

of the synchronization correction is supported by the model preference with a log-scale

Bayesian factor (likelihood ratio) of 90 to prevent the possibility of over-fitting. Generally,

a factor > 5 is considered decisive evidence for the preferred model. From this fitting, we

extract the corrections to the CL emission frequency and the SPAD cutoff, leading to a CL

emission frequency shift from our initial expectation by about 70(5)nm towards the higher

wavelengths. Given the fitted CL frequency distribution, we estimate a CL-SPAD bandwidth

overlap efficiency of 26(2)% (Fig. 7.9).
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Figure 7.7: (b) Optical spectrum of the CL emission (red) and the fit (black). We use the fitting
to extract the corrections to the CL emission frequency and the SPAD cutoff. (a),(d) The
marginal distribution plots of these parameters. (c) Their correlation.

TM mode emission efficiency

In principle, the electron emits to an infinite amount of optical modes supported or not

supported by the waveguide. In order to calculate the emission efficiency of CL into the TM00

mode, which is supported by the waveguide and is coupled out most efficiently, we conducted

an electron energy loss simulation of the waveguide structure shown in Section 6.2. Such an

approach yields electron-energy loss at different optical frequencies without summing up all

the optical modes at that particular frequency. We observe in our simulation that due to the

geometry of our waveguide (width of 2.1µm), the electron couples to many other waveguide

modes in a large frequency band between 780 nm to 2.5µm, illustrated in Fig. 6.6.

In our experiment, we obtain electron energy loss spectrum at various impact distances to the

waveguide surface, with some examples shown in Fig. 7.8. Even though TM00 mode dominates

the emission process for the first few sideband orders, we can extract a significant contribution

of emission into other optical modes in the form of a distorted ZLP with a semi-exponential tail

towards the lower energy direction. Here, the ZLP deviates from the original 0.6-eV Gaussian-

shaped peak and exhibits a Voigt-like shape towards the higher energy loss, primarily due to

the first-order sideband emission of denser optical modes with exponential-decaying coupling
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7.3 Electron-photon non-classical correlation

strength towards higher optical frequency (quicker evanescent field decay), observed in our

simulation illustrated in Fig. 6.6. The fitting of the electron spectrum in Fig. 7.8 also takes

into account a possible transverse position distribution of the e-beam, which accounts for a

non-Poissonian distributed sideband populations even when emission into other modes is

taken into account.

When comparing the loss to the energy loss caused by the TM00 mode, we extract a CL emission

efficiency into the TM00 mode of 62%, with the additional loss event contribution from higher

order waveguide modes at higher frequencies but could not be distinguished due to the finite

electron energy loss resolution. In principle, this is the only efficiency that should limit the

intrinsic heralding efficiency, and the emission into the substrate bulk is estimated to be less

than 2%. This efficiency can be improved by optimizing over the waveguide geometry, e.g.,

taking a 0.75µm waveguide width instead of the 2.1µm used in the experiment, allowing for a

near unity efficiency given our electron energy loss resolution. Further improvement requires

a more careful geometric optimization. In the inference of the intrinsic heralding efficiency,

the TM mode emission efficiency is set with a uniform distribution, assuming no knowledge

due to the uncertainty of e-beam positioning and waveguide geometry from fabrication.

Heralding Efficiency

The Klyshko heralding efficiencies for photons and electrons can be calculated, following

Ref. [268], from the detection rates for the coincidence events Rep , the electrons Re and the

photons Rp , using

η
p(e)
K = Rpe

Re(p)
(7.15)

If taking into account the respective detector’s detection efficiencies ηp(e)
d as well as the trans-

mission losses of both particles through their setup Tp(e), we arrive at the respective intrinsic

heralding efficiency [268]

η
p(e)
I = η

p(e)
H

η
p(e)
d Tp(e)

, (7.16)

which indicates the efficiency of the generation process in producing a particle pair. The

Klyshko heralding efficiency, on the other hand, is deemed to be very small for the photons

due to the multiple loss channels of the setup, as discussed above.

Specifically, from the measurement record, we define coincidence events Rpe as the total

electron events within the correlation time window and a specific energy window. The photon

event rate Rp is taken directly from the SPAD count. The electron event rate Re detected by

the electron detector is limited to the energy window of the coincidence events to reduce

the influence of electrons that did not interact with the resonator. The energy window of

the coincidence events was chosen to be between 0.5-eV and 1.15-eV electron energy loss

for electron heralding efficiency calculation. For the photon heralding efficiency, the energy

window of the electrons and coincidence events was reduced to a thin slice around 0.97eV
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Figure 7.8: Electron energy loss spectra at different impact distances. (a) Large impact distance
with ∼2.5 % emission probability into the TM00 mode, used in the correlation experiment.
We can extract the broadened ZLP (not original) using a fitting algorithm that considers the
size of the electron transverse distribution. The broadening is due to the parasitic coupling
to higher-order optical modes with exponentially decaying coupling strengths due to their
optical frequencies. From this data, we can extract a CL emission efficiency into the TM00

mode of 62%. Note that the fitting of the ZLP is highly sensitive to the model and the fitting
procedure, which can only be verified when compared to the n-photon-conditional electron
energy spectrum (e.g., explained in Fig. 7.16). Therefore, the results presented here can only
serve as an order-of-magnitude estimation. (b) Electron spectra measured in STEM mode
with varying impact distance but with lower number of averaging and sideband orders, with
up to ∼7 % emission probability into the TM00 mode. As the coupling ideality of the TM00

mode decreases with smaller impact distance, i.e. the electron couples relatively stronger to
higher order optical modes, we also observed a broader ZLP shape compared to the original
ZLP measured far away from the waveguide, as well as a diminishing feature of the higher
order photon sidebands of the TM00 mode.

246



7.3 Electron-photon non-classical correlation

0.2 0.4 0.6
efficiency

0
2
4
6

de
ns

ity

SPAD efficiency

0.20 0.25 0.30 0.35
efficiency

0

10

20

de
ns

ity

CL SPAD overlap

0.70 0.75 0.80 0.85 0.90
efficiency

0

5

10

15

de
ns

ity

SPAD saturation

0.0 0.2 0.4 0.6
efficiency

0

2

4

de
ns

ity

Coupling efficiency

0.80 0.85 0.90 0.95
efficiency

0

10

20

de
ns

ity

Directional coupling

0.2 0.3 0.4 0.5 0.6
efficiency

0.0

2.5

5.0

7.5

de
ns

ity

Chip to fiber

0.6 0.7 0.8 0.9
efficiency

0

5

10
de

ns
ity

Fiber propagation

0.00 0.25 0.50 0.75 1.00
efficiency

0.0

0.5

1.0

de
ns

ity

TM emission efficiency

0.000 0.005 0.010 0.015
efficiency

0

200

400

de
ns

ity

Heralding efficiency

0.25 0.50 0.75 1.00
efficiency

0

1

2

de
ns

ity

Inferred intrinsic efficiency

Figure 7.9: Statistical distribution of the sampling results of efficiencies ηi of different loss
channels using approximated Beta distribution. A uniform intrinsic heralding efficiency (TM
emission efficiency) is assumed here. The total heralding efficiency ηH =∏

i ηi is a product
(assuming independence of different loss channels) of efficiencies of all the loss channels. By
conditioning on a thin slice in the sampled total heralding efficiency based on measurement
result 0.11%, the conditioned samples (labeled inferred intrinsic efficiency) are effectively
drawn from the target posterior distribution of the intrinsic heralding efficiency.

electron energy loss. This choice maximizes the heralding efficiency, as the contribution from

electrons in the ZLP and higher-order transition events are suppressed.

Using the measured data depicted in Fig. 7.4C, we retrieve the Klyshko heralding efficiencies

for photons and electrons to be around ηp
K = 0.11% and ηe

K = 57%.

Electron losses due to the setup were analyzed for the spectrometer and detector by comparing

the electron current at the beginning of the spectrometer with the detected electron number.

Further loss channels are still possible between the interaction region on the photonic chip

and the spectrometer due to beam-clipping at the chip and apertures and deflection due

to charging effects. This is why the calculated intrinsic heralding efficiency for electrons

ηe
I = 63(10)% can be seen as a lower limit.

Inferring intrinsic photon heralding efficiency

The posterior probability distribution of the intrinsic heralding efficiency (takes into account

mode emission efficiency and other unknown factors) can be retrieved from the Bayes theo-

rem,

P (ηI |ηH ) = P (ηH |ηI )P (ηI )

P (ηH )
∝ P (ηH ,ηI ) =∏

i
P (ηi ) (7.17)

where the probability distribution of efficiencies of different loss channels (except CL SPAD

overlap efficiency and prior intrinsic heralding efficiency) are approximated by independent

Beta distribution, which is commonly used to model the distribution of event probabilities.

Due to the nature of its high dimensionality, the marginalization over seven variables is hard

to perform numerically. Instead, we extract the distribution of intrinsic heralding efficiency

through sampling (Fig. 7.9), which scales only linearly with the number of variables. We

sample the probability distribution P (ηH ,ηI ) from the product of efficiencies
∏

i ηi of different
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Figure 7.10: Contributions to correlation background: Sketch of electron and photon arrival
time and the resulting classification due to photon loss, SPAD dead time, and intrinsic dark
counts. The electrons are separated energy-wise in zero-loss (no interaction) and sideband
(interaction with cavity) electrons.

loss channels, each drawn from their Beta distributions P (ηi ). When conditioning on the

measured heralding efficiency ηp
H = 0.11% from the correlation experiment, we sample the

posterior probability distribution P (ηp
I |ηH ) at ηH = 0.110±0.005% and obtained the intrinsic

photon heralding efficiency with a uniform prior probability distribution P (ηI ) =U[0,1] (with

no knowledge of intrinsic efficiency),

〈ηp
I 〉P (ηp

I |ηH ) = 49(21)%. (7.18)

When conditioning on the measured heralding efficiency ηp
H = 0.33% from the correlation

imaging method, we obtain the intrinsic photon heralding efficiency

〈ηp
I 〉P (ηp

I |ηH ) = 77(16)%. (7.19)

Given our experiment configuration, the calibrated intrinsic efficiency is on the expected

order of magnitude. Its precision and value could be further increased by carefully measuring

the individual loss channels.

Correlation background-event contributions

Different types of coincidences contribute to the correlation peak’s background, which we

will now describe in more detail, together with the visualization in Figure 7.10. The figure

describes the possible electron (blue) and photon (green) arrivals on the detectors as a random

event in time (x-axis). Many generated photons are not detected due to various loss channels,

as described in many previous subsections (orange dots with a black cross). Additional losses

can occur due to the photon detector’s dead time (light green region), which prevents a second

photon detection at smaller delay (orange dot with green cross).

248



7.3 Electron-photon non-classical correlation

The electron arrival time is now analyzed concerning the nearest photon, defining a coinci-

dence as a small time window around the photon arrival time (corrected for fixed delays), in

which the electron arrival has to occur (dark green region). The types of false coincidences

arising from this analysis are the following:

Electrons that did not scatter inelastically are distributed evenly in their arrival time concern-

ing the next photon and make up most of the background at∆E = 0eV. (blue dots in the upper

row), as they have not transferred energy to a photon. When arriving near a correlated event,

these electrons seemingly increase the number of coincidences (brown dot in the upper row);

however, they show the wrong energy. Therefore, they can be filtered out by correct selection

of the electron energy.

The second type of coincidence is the electrons that interacted with the optical mode, but the

photon was lost in the process. These electrons can be separated from the first type by energy

loss (blue dots in the second row). Most of them are measured as uncorrelated events, which

reduce the photon heralding efficiency but can be accounted for by correcting the correlated

events for these losses (see previous sections).

Thirdly, a false coincidence is possible when electrons correlate with a dark count (cf. Fig 7.10

green region around black dot) or a different photon generated at a similar time. These can not

be distinguished from the true coincidences. However, one can reduce its probability by, for

example, keeping the number of dark counts far below the number of true photon detections.

7.3.2 Violation of Cauchy-Schwarz inequality

Despite the envisioned utilities of the correlations between electron energies and photon

numbers, to prove that the correlation we observe is non-classical, we have to analyze in detail

what the classical and non-classical pictures are. For the light, we assume that the classical

picture is the classical field theory, where the photoelectric effect produces discrete charges

whose probabilities are linked to the stochastic classical field intensities. The non-classical

correlation between light fields has been tested decades ago [119] using two-port photon

coincidence detection, as classical field correlations are constrained by the Cauchy-Schwarz

inequality. Breaking the Cauchy-Schwarz inequality falsified the stochastic classical field

theory, and the light field has to be quantized irrespective of the detector model. Spontaneous

parametric down-conversion (SPDC) is generally used for these experiments, where two

optical beams are generated with correlated photon numbers between them. However, as we

have electrons on one of the scattering branches, the situation is more delicate, as electrons

are individual particles instead of a classical field. Compared to an SPDC process, the particle

number in one frequency of an optical beam can not be mapped to the particle numbers

in the electron beam at a given energy, as there is intrinsically only one electron. However,

it is possible to map the classical amplitude of the SPDC light field to the electron energy,

as the pair states we generated are correlated between photon number and electron energy.

Even though electron numbers are classically quantized, the classical picture we have in
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Figure 7.11: (a) Classical picture of free-electron radiation of light. Measurement records
are quantized based on the classical stochastic electron energy and light amplitude values.
The classical correlation generated in this way is bounded by the Cauchy-Schwarz inequality
(Eq. 7.28). (b) Measured electron-photon correlation function gep(ø) as a function of relative
delay time ø between the electron and photon detection.

mind is not the particle number, as our measurement observable is actually the continuum-
valued electron energy for each electron. Therefore, the picture that each electron has a
continuum-valued energy after the scattering event is, in our case, classical. Of course, this
picture contradicts our observation that the electron energy change is not single-valued but
stochastic and quantized to discrete energy levels. Therefore, we assume that at some stage of
the interaction, similar to the optical counterpart, the electron energy and the optical fields are
correlated stochastically in a classical way. Finally, we summarize that in the classical picture
of electron-light interaction, the classical electron generates a classical light with stochastically
correlated energy and fields. This picture is also illustrated in Fig. 7.11(a).

In the classical stochastic field theory [271], given stochastic observables i , j , · · · , we can define
the following second-order correlation functions

gi j (ø) = hIi (t +ø)I j (t )i/hIi ihI j i (7.20)

hIi i=
Z

P (≤i )Ii (≤i )d≤i (7.21)

hIi Ii i=
Z

P (≤i )Ii (≤i )2d≤i (7.22)

hIi I j i=
Z

P (≤i ,≤ j )Ii (≤i )I j (≤ j )d≤i d≤ j (7.23)

where the ≤i are fluctuating stochastic complex field amplitudes, and P (≤i ) is a probability
distribution in the complex plane. There are a few inequalities that we can derive from this
definition. First, as the variance of a random distribution is always positive, we have

hI 2
i i°hIi i2 ∏ 0 (7.24)

gi i (0) ∏ 1 (7.25)
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zero delay. The photon bunching effect is expected to have originated from the multi-photon
generation events of the same electron [260] of coherent cathodoluminescence. (b,c) Apart
from the contribution from incoherent cathodoluminescence [270], the explicit photon statis-
tics from a single electron can also exhibit a thermal-like distribution due to the incoherent
averaging of the electron transverse distribution, equivalent to an intensity modulation of the
generated photon flux. We illustrate the electron beam configuration that might cause the
substantial g averaging.

Also, we can apply the Cauchy-Schwarz inequality

〈Ii I j 〉2 ≤ 〈I 2
i 〉〈I 2

j 〉 (7.26)

gi j (0) ≤
√

gi i (0)g j j (0) (7.27)

where the bound is satisfied when ϵi and ϵ j are linearly dependent.

To show that our experiment falsifies this classical picture of the electron-photon interaction,

we only need to calculate the second-order correlations of the coincidences and show that it

breaks a similar Cauchy-Schwarz inequality, i.e.,

γ= gep(0)√
gee(0)gpp(0)

≤ 1 (7.28)

where gep(τ) = 〈Ê (t+τ)Î (t )〉/〈Ê〉〈Î 〉 is the electron-photon cross-correlation function, whereas

gee(0) = 〈Ê(t)2〉/〈Ê〉2 and gpp(τ) = 〈Î1(t +τ)Î2(t)〉/〈Î1〉〈Î2〉 are the auto-correlation functions.

gep(τ) is already measured in our coincidence experiment, and we illustrate it in Fig. 7.11,

showing a maximum gep(0) = 28. To use for the evaluation of the Cauchy-Schwarz inequality,

to simplify the calculation, we adjust the time-bin width to 3.6 ns such that in each window

on average there is one electron. With the new bin width, we obtain the cross-correlation

function g ′
ep(0) = 15.
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Chapter 7. Cavity-mediated electron-photon pairs

For optical auto-correlation, historically, people typically equally divide the optical beam

into two detectors and measure the correlations between their measured intensities. In the

quantum picture, this procedure measures a different observable, and the correlation results

differ from that of a single port measurement. However, it measures the same classical second-

order correlation function, as the two ports will show identical fluctuations I1 = I2 = I /2 in the

classical theory so that we have the following relations

〈I1I2〉 = 1

2

∫
P (ϵ)I (ϵ)2dϵ (7.29)

〈I1I2〉/〈I1〉〈I2〉 = 〈I 2〉/〈I 〉2 = gpp(0). (7.30)

This is an elegant trick on the optical side as this measurement procedure significantly sup-

presses the contribution from the single-photon events of 〈Î (t)2〉, which would otherwise

dominate the single port measurement and lead to a much bigger measured gpp(0) ≫ 1 in

the quantum result. We emphasize again that even though the single-port and double-port

measurement settings measure the same classical correlation function, they measure dras-

tically different quantum results in the experiment due to the operator ordering, and it is

generally preferred to use the two-port schemes to suppress the single-photon events. In fact,

if we use single-port detection on both sides, at best with unity detection efficiency, we can

saturate the Cauchy-Schwarz bound but not violate it. The two-port detection also makes

the measurement result loss-independent. We will see later that the inability to perform a

two-port measurement on the electron side results in a gee(0) ≫ 1.

We proceed to measure the optical correlation function using two single-photon detectors,

shown in Fig. 7.13(a). Contrary to the SPDC process where the signal photons follow a thermal

distribution, and therefore gpp = 2. In electron-photon interaction, gpp is associated with a

Poissonian photon generation/electron energy loss process and is ideally unity. However, this

Poissonian generation process is only limited to every single electron during the fs interaction

time and the cavity leakage. The two-photon events can also come from different electrons

for our measurement setting. In our experiment, our collaborator Germain Arend measured

gpp(0) = 3.2, shown in Fig. 7.12(a) with a prominent bunching peak with a width on the order

of the cavity decay time. We have not yet completely quantified the different contributions

leading to this bunching peak.

We found that the background events probability [260] within a time-bin window when

|τ|≫ τph, where τph is the temporal duration of the optical pulse, is Pτ = η1η2|g |4P 2
e /4 where

ηi is the measurement efficiency of a detection channel i , Pe = 1−exp(−Γ∆t ) is the probability

of finding at least one electron within the time-bin window (∆t ≈ 260ns bin with 500 ps

uncertainty due to the optical pulse length and the detector timing jitter) with electron flux

rate Γ ≈ 20MHz. With these rates, we are looking at the photon statistics with, on average,

0.005 electrons in each time-bin window. Essentially, the background accidental events are

dominated by the single-photon events of two different electrons. When τ≈ 0, the contribution

also comes from the two-photon events of the same electron, with the probability of P0 =
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7.3 Electron-photon non-classical correlation

η1η2α|g |4Pe /4, where α captures the second-order photon statistics and should be ideally α=
1 for a Poisson distributed photon pulse from the same electron. Therefore, the bunching peak

ratio should be gpp(τ) = 1+ f (τ)α/Pe , where f (τ) is a form factor with property
∫

f (τ)dτ= 1

which takes in to account the hardware uncertainty of the detection event timing. A detailed

derivation of the correlation function is provided in Appendix B.17. To compensate for the

relatively low average electron counts within our time-bin window, such that we are comparing

with the same average electron counts as that of the electron-photon correlation results (one

electron per window), we need to increase the bin width here to ∆t ′ = 50ns, with which we

obtain the peak g ′
pp(0) = 1.02 to use for the Cauchy-Schwarz inequality. Note that the HBT-type

measurement is not sensitive to optical losses, so we are not concerned with the specific values

of the average photon counts.

The photon statistics α can be modified in some scenarios. Apart from a possible contribution

from the incoherent cathodoluminescence process [270], we found out that it might also come

from the incoherent averaging of the electron transverse position (shown in Fig. 7.12(b)), dis-

cussed in Section 4.3.1 Eq. 4.79, which would lead to a thermal-distributed optical state given

the Gaussian-distributed beam shape. This is also equivalent to a white-noise intensity modu-

lation of the generated photon flux (insensitive to loss) induced by the drifting of the e-beam

position, which yields approximately a biased-thermal state [272] with gpp ≈ 3 in conventional

continuous wave photon flux measurements. In our case, as we do not know precisely the

electron flux rate Γ and the time-bin window jittering, we can not reliably retrieve Pe and

also the photon statistics α of the generated photons of a single electron in this type of HBT

measurement. We could only roughly predict a bunching ratio of gpp(0) ≈ 100 based on the

estimated∆t and Γ in the experiment. The discrepancy between the measured data and theory

prediction can be explained by the contributions of incoherent cathodoluminescence [260]

by high-energy electrons hitting the waveguide, where the estimated photoemission ratio is

nin/ncoh ≈ 5. We verified the Poisson distribution in Section 7.5 in a different way using the

electron energy record conditioned on photon counting, such that the results are insensitive

to contributions from incoherent cathodoluminescence.

On the electron side, we observe that the electron energy loss does not clearly obey a Poisson

distribution, shown in Fig. 7.15 and also Fig. 7.8, but tends towards a thermal-like distribution.

We can attribute this effect to two possible factors: first, the broadened ZLP due to the coupling

to other optical modes in the structure (discussed in Section 6.2 and verified in Figure. 7.16),

and second, the incoherent averaging of the electron transverse position due to the large

convergence angle of the e-beam (shown in Fig. 7.12(b)). These experiment complications,

however, do not affect the measurement of the electron auto-correlation function, as we

only have a single-port measurement of the electron energy. Because the electron is a single

particle, we do not have a practical way to divide its energy losses and measure them at two

electron detectors, as we did with the optical side. Therefore, the quantum measurement

result of the electron auto-correlation function is dominated by the single-photon-loss events,

and contributions from the higher-order-loss events are negligible. Because of this, we can

derive analytically gee ≈ |g |−2, substantially larger than unity. Here, |g |2 is approximately
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Figure 7.13: (a) Hanbury-Brown-Twiss (HBT) measurement of the photon statistics in con-
junction with the time-stamped electron energy loss records. (b) Preliminary measurement of
the auto-correlation function of the heralded single photons.

the probability of a single-photon generation in the electron-photon interaction. Using the

measured electron energy-loss spectrum together with Γ ≈ 3× 108 Hz and ∆t ≈ 3.5ns, we

retrieve the auto-correlation function gee = 17, given the measured photon-loss probability of

P∆t ≈ 1−exp(−Γ∆t (1−exp(−Ploss))) =5.7 % in this window.

By combining all the measured correlation results, the Cauchy-Schwarz inequality bound is

violated by γ= 3.6 > 1. The clear violation falsified the classical picture of the electron-light

interaction, where the measured correlation has to be non-classical, even with the significant

disadvantage of the electron energy measurement. This result is not possible without the

strong coupling strength |g |2 ∼ 0.1 we achieved in this experiment, and the ability to perform

two-port measurement on the optical side.

To prove that electrons and photons are also quantum by themselves, we must measure a

less-than-unity auto-correlation function gii,heralded using heralding schemes. We expect the

gpp,heralded = (2gep −1+1/Pe )/g 2
ep for the heralded single photons (a detailed derivation of the

correlation function is provided in Appendix B.17), which should be as low as 7 % given the

same experiment setting (Γ≈ 3×108 Hz and ∆t ≈ 4ns). Our collaborator is still currently in

the process of measuring the heralded single-photon auto-correlation function using the HBT

setup illustrated in Fig. 7.13(a). From a preliminary measurement obtained using a longer

straight waveguide as well as superconducting nanowire single-photon detectors, we observed

that the achieved gpp,heralded ≈ 6% < 1, shown in Fig. 7.13, proving that the optical field itself

is non-classical. The same procedure can also be performed on the electron side, where

we measured a gee,heralded = 1.05 by heralding on photodetection events. Even though it is

substantially smaller than the original auto-correlation function gee, breaking the classical

bound on the electron side is generally not possible, restricted by the single-port setting.
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Figure 7.14: Correlation-enhanced cavity mode imaging. Spatial distributions of (A) loss-
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7.4 Mode imaging enhanced by correlation

Employing both particle channels facilitates correlation-enhanced measurements, isolating

physical scattering events from uncorrelated noise such as detector dark counts. As a figure

of merit for noise suppression, the fraction of true coincidences Rpe/(Rpe −Racc), with the

uncorrelated (accidental) background rate Racc, is defined for selecting a specific time-delay

and energy-loss window (Fig. 7.4D), reaching 98.6%, i.e., a coincidence-to-accidental-ratio of

CAR ∼ 75 . This demonstrates the high-fidelity generation of correlated electron-photon pairs,

promising quantum enhanced imaging.

In the following, we give a proof-of-concept demonstration of coincidence-gated raster map-

ping of the resonator mode. Specifically, Figs. 7.14A and B show the time-integrated electron

and photon signals, respectively, and Fig. 7.14C displays the correlated events only. To quantify

the correlation-induced improvement in image contrast, Fig. 7.14D compares the respective

count rates for the individual and correlated signals on a logarithmic scale. Both the pho-

ton and electron signals trace the exponential decay of the evanescent field away from the

structure, leveling off at constant values for larger distances. These background offsets limit

the dynamical range of the mode imaging, and are determined by the uncorrelated noise

rates, i.e., the photodetector dark counts (130 cts/s) and residual overlap of the ZLP with

the energetic gate (1.5×104 cts/s), respectively. Rejecting the uncorrelated background, the

correlated signal (Fig. 7.14D, yellow curve) resolves the evanescent decay of the cavity field

over longer distances. Despite a slightly smaller signal (ηe
K < 1), we improve the dynamic

range (DR) by two orders of magnitude. In the following subsection, we discuss in detail the
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Chapter 7. Cavity-mediated electron-photon pairs

improvement of DR concerning the system parameters.

From a broader perspective, harnessing correlations of electrons with radiative emission [273]

shows promise for enhancing contrast and resolution, as recently shown in the study of

core-level [274] and valence electronic excitations in nanostructured materials [145]. Using

post-selection in the electronic and photonic degrees of freedom [110, 255], such schemes

can be generalized to trace state-specific scattering cross-sections and create heralded pair

states as a function of linear or angular momentum, polarization/spin, or frequency/energy.

Imaging dynamic range improvement using correlated electron-photon pairs

Coincidence detection of electrons and photons enables noise-suppression in X-ray spec-

troscopy [274, 275] and enhanced imaging of valence electronic excitations in nanomate-

rials [145], and was recently proposed for mode-specific ghost-imaging of optical excita-

tions [255]. In Fig. 7.14, we compare the photonic mode imaging achieved by employing

correlated events using either the electron or photon channel alone.

The background noise contribution of imaging, using only the electron energy sideband, is

from the contribution of the ZLP tail at the first-order sideband energy. For convenience, we

define P∆E = ∫
∆E dE |ψe (E )|2 as the ZLP leakage probability to the coincidence energy window.

Given Ne the electron flux passing through the sample, with detection efficiency (includes all

loss channels) ηe , the accident event rate is therefore Re,acc = Neηe P∆E , where ∆E is the first

sideband window. The real first sideband event rate is Re = Neηe |g |2, giving a signal to noise

ratio (SNR) of

De = |g |2
P∆E

. (7.31)

For the photon detection imaging method, the noise contribution is mainly from the detector

dark count rate Rd . The real signal rate is Rph = Ne |g |2ηph, where ηph is the optical detection

efficiency. This gives an SNR of

Dph = Ne |g |2ηph

Rd
. (7.32)

When the detector saturates at event rate Rmax, the SNR will reach its theoretical maximum

(dynamical range), at Dph = Rmax
Rd

.

For imaging using correlated electron-photon pairs, the accident events are still mainly from

the electron ZLP. However, they are conditioned on a photon detection dark count and the elec-

tron in the correlation time window Tc . Therefore, the accident rate is Re,ph,acc = Ne Tcηe Rd P∆E .

The real correlated signal event rate is Re,ph = Ne |g |2ηphηe . The SNR is therefore

De,ph = |g |2ηph

Tc Rd P∆E

. (7.33)

In the case of optical detector saturation, one has De,ph = Rmax
Ne Tc Rd P∆E

instead.
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We are interested in the regime where correlated electron-photon pairs can enhance the

imaging dynamical range. When compared to the electron imaging method, the ratio

De,ph

De
= ηph

Tc Rd
or

Rmax

Ne |g |2Tc Rd
, (7.34)

where the correlated method reduces the background noise by a factor of Tc Rd by using the

correlation window, but also the maximum signal level by the optical detection efficiency

ηph. Given our detector dark count rate of 130 Hz, 10 ns of correlation window, and ηph ∼0.1%

optical detection efficiency, we estimate a dynamical range enhancement of 103. When

compared to the optical imaging method, the ratio

De,ph

Dph
= 1

Ne Tc P∆E

, (7.35)

where the accident rate is reduced, since the record also conditions on the electron sideband

even, by a factor of Ne Tcηe P∆E , at the cost of reducing the maximum signal level by the

electron detection efficiency ηe . This leads to a dynamical range enhancement of 103, given

our electron flux Ne ∼108, and ZLP leakage of P∆E ∼0.1%. In the current experiment, the

contrast is also limited by the low event counts shot noise when the electron is far from the

resonator surface, which can be improved with a longer integration time.

Note that for Fig. 7.14, the energy windows for the EELS and correlation methods are different

and optimized for each method. Therefore, the predicted dynamical range enhancement here

does not apply accurately and is about ten times smaller. Given the same energy window, the

prediction matches pretty well but is not the optimal case for comparing the best performance

of different imaging methods.

Further enhancement can be made with a narrower correlation window Tc , lower electron

flux Ne , higher optical detection efficiency ηph, and longer integration time. For a better

absolute dynamical range of correlation method, we mainly need to improve optical detection

efficiency ηph, where each optical element can be optimized individually and a factor of 103

more improvement is likely achievable.

7.5 Conditional electron state by photon counting

Here, we investigate the electron state generated when conditioned on photon counting

events, e.g., detecting a single photon. Contrary to a straightforward result of either a perfect

1-photon energy-loss state or a simple removal of the zero-loss-peak with photon-number

non-resolving detectors, the state generated is not trivial when we have a finite detection

efficiency η. In this section, we first theoretically derive the conditional electron state and the

corresponding photon state with a generalized distribution, given that the electron energy

distribution we observed in the experiment seemingly deviates substantially from the ideal

Poisson distribution. Next, using the result we derived, we test the photon statistics of the
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generated photons using the electron energy as QND photon number detectors. We observe

that even though the electron energy distribution is highly nontrivial, we can infer that the

generated photons follow Poisson statistics by comparing uncorrelated and photon-correlated

electron energy spectra.

Detection of one photon

We set up our model in the following way. After the electron-photon interaction, a photonic

state is generated with the reduced density matrix

ρ̂1 = c0|0〉1〈0|1 + c1|1〉1〈1|1 + c2|2〉1〈2|1 +·· · =∑
ck |k〉1〈k|1 (7.36)

that belongs to optical mode â1. We aim to derive the conditional optical state ρ̂ after detecting

one photon, which can be regarded as the same as the conditional electron state due to the

energy-conserved nature of this interaction: |N〉1〈N |1 = |N〉ph〈N |phb̂N ρ̂e b̂†N , where ρe is the

reduced density matrix of the electron after interacting with the other auxiliary optical modes.

We model the optical loss as scattering mode â1 into a different optical mode â2 that we never

detect, with an initial density matrix of ρ̂2 = |0〉2〈0|2. The loss mechanism can be modeled as a

single beam splitter operator

Ŝ = e
iθ

(
â†

1 â2+â1 â†
2

)
(7.37)

which has the following property

Ŝ â†
1Ŝ† = cosθâ†

1 + i sinθâ†
2 (7.38)

Ŝ†â†
1Ŝ = cosθâ†

1 − i sinθâ†
2. (7.39)

When the optical loss occurs, and our effective detection of mode â1 is limited to a finite

measurement efficiency η, we can rewrite the relation to

Ŝ â†
1Ŝ† =p

ηâ†
1 + i

√
1−ηâ†

2. (7.40)

After scattering into mode â2, we perform optical detection on mode â1 with unity efficiency.

When we detect the single photon state |1〉1, we obtain the new density matrix of mode â2

(photons we did not detect that would contribute to the electron energy loss following the first
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photon sideband)

ρ̂′
2 = 〈1|1Ŝρ̂1ρ̂2Ŝ†|1〉1

= 〈1|1Ŝ
(
c0|0〉1〈0|1 + c1â†

1|0〉1〈0|1â1 + c2

2!
â†2

1 |0〉1〈0|1â2
1 +·· ·

)
|0〉2〈0|2Ŝ†|1〉1

=∑
k

ck

k !
〈0|1â1Ŝ â†k

1 Ŝ†|0〉1〈0|1|0〉2〈0|2Ŝ âk
1 Ŝ†â†

1|0〉1

=∑
k

ck

k !
〈0|1â1(

p
ηâ†

1 + i
√

1−ηâ†
2)k |0〉1〈0|1|0〉2〈0|2(

p
ηâ1 − i

√
1−ηâ2)k â†

1|0〉1

= η∑
k

k(1−η)k−1ck

(k −1)!
â†(k−1)

2 |0〉2〈0|2âk−1
2

= η∑
k

k(1−η)k−1ck |k −1〉2〈k −1|2 (7.41)

where k = 1,2, · · · . If we sum up the photons that are in both modes, we have

ρ̂ = η∑
k

k(1−η)k−1ck |k〉〈k| (7.42)

Note that this density matrix is not normalized yet and is proportional to the detection proba-

bility of a single photon.

We can see that in the limit of unity detection efficiency η→ 1, the post-selected state is

ρ̂ = c1|1〉〈1|, which is indeed the single photon state. In the limit of very low detection effi-

ciency η→ 0, the post-selected state is ρ̂ = η
∑

k kck |k〉〈k|, where the Fock state population

is redistributed. Therefore, higher-order photon sidebands are amplified by the number of

photons compared to the unconditional state.

Detection of n photon

In a realistic experiment setting, the detection of photons is generally photon-number non-

resolving. Therefore, if we label the density matrix generated by counting n photons as ρ̂n , we

have the end state

ρ̂ =
∞∑

k=1
ρ̂k (7.43)

upon detection of a single photon in the experiment using a photon-number non-resolving

detector.
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To derive ρ̂n , we can easily generalize the single-photon result to the n-photon detection, as in

ρ̂′
2 = 〈n|1Ŝρ̂1ρ̂2Ŝ†|n〉1

= 1

n!

∑
k

ck

k !
〈0|1ân

1 (
p
ηâ†

1 + i
√

1−ηâ†
2)k |0〉1〈0|1|0〉2〈0|2(

p
ηâ1 − i

√
1−ηâ2)k â†n

1 |0〉1

= n!ηn
∑
k

C n2
k (1−η)k−nck

k !
â†(k−n)

2 |0〉2〈0|2âk−n
2

= ηn
∑
k

C n
k (1−η)k−nck |k −n〉2〈k −n|2 (7.44)

where C n
k = k !

n!(k−n)! is the binomial coefficient of selecting n terms in k total. Here, k ≥ n. Sum

up all the photons again, and we have the total density matrix

ρ̂ = ηn
∑
k

C n
k (1−η)k−nck |k〉〈k| (7.45)

Again, in the limit of unity detection efficiency η→ 1, the post-selected state is ρ̂ = cn |n〉〈n|,
which is indeed the n photon state. In the limit of very low detection efficiency η→ 0, the post-

selected state is ρ̂ = ηn ∑
k C n

k ck |k〉〈k|, where the Fock state population is again redistributed

and amplified by C n
k . However, given our very low detection efficiency η→ 0, we will most

likely only observe the distribution of the n = 1 case in our experiment.

7.5.1 Verifying photon statistics

Here, we investigate the photon statistics using the unconditional and conditional electron en-

ergy spectra upon detecting a single photon and two photons. For one of the electron-photon

correlation data obtained by our collaborator Germaine Arend from a straight waveguide

device (not ring resonator from previous sections), we plot the photon-correlated and the

uncorrelated electron spectra in Fig. 7.15.

In the low detection efficiency limit η→ 0, one of the consequences of Eq. 7.42 is that, if the

photon statistics ck obeys the Poisson statistics, then the correlated and the uncorrelated

electron spectrum should be almost identical, only differ by a 1-ℏω energy offset. To prove it,

we write out the ratio of adjacent sidebands of a n-photon-conditional electron state

c ′k+1

c ′k
= C n

k+1

C n
k

ck+1

ck
= k +1

k +1−n

ck+1

ck
. (7.46)

For an initial Poisson distribution, ck+1/ck = |g |2/(k +1). This leads to a conditional sideband

ratio of c ′k+1/c ′k = |g |2/(k +1−n). If we shift the electron energy spectrum downward by n-

photon energy (k−n → k ′), we have a new form c ′k ′+1/c ′k ′ = |g |2/(k ′+1) that is exactly the ratio

for a Poisson distribution. Therefore, the correlated and the uncorrelated electron spectrum

should be identical, except with a slight broadening of each sideband due to the convolution

with the phase-matching bandwidth (similarly to Fig. 7.2(b)).
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Figure 7.15: (a) Electron one-photon-correlated (red, shifted by one quantum), two-photon-
correlated (green, shifted by two quanta) and uncorrelated (blue) spectra in solid curves. The
predicted correlated spectrum with thermal photon statistics is shown in a dashed curve, while
the one with Poisson statistics is the same as the uncorrelated spectrum. The data is integrated
over an hour of measurement time, with the correlated spectrum slightly deviating from that
of the Poisson statistics. (b) Same data but integrated only over one minute, reducing the
effect of g averaging (that would lead towards thermal-like distribution), with the correlated
spectrum matching closer to that of the Poisson statistics. The two-photon-correlated data is
not shown due to insufficient electron counts.
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If the photon statistics ck obey the thermal statistics, these two spectrums should differ

significantly. By shifting the one-photon-correlated electron spectrum by one quantum ,

indeed, we observe that for our system, even though the electron spectrum is very hard to

analyze due to the exponential tail as well as the broadening of ZLP, the energy spectrum can

approach that of a Poisson statistics instead of a thermal one, demonstrating the Poisson

statistics of the generated photons from a straight waveguide. Note that the prediction for

the thermal state at the high-order sidebands (n > 2) can only serve as an upper bound as we

do not know whether the primary contribution is from the tail of the low-order sidebands or

the high-order sidebands themselves. For the low-order sidebands (n ≤ 2), we are confident

that the populations are from the sidebands themselves, and the prediction of the thermal

distribution should be faithful.

In fact, using the fitted mean photon numbers from the electron’s first energy sideband

recorded during the experiment, we can even retrieve the zero-loss-peak (ZLP) of the electron

due to the interaction with other spatial modes, shown in Fig. 7.16(a). Using the retrieved ZLP

and the fitted mean photon numbers, we can predict the one-photon conditional electron

spectrum, which shows good agreement with the measured one-photon conditional electron

spectrum. From these results, we find that only the first and the second peaks of the electron

spectrum are partially due to the coupling to the spatial-temporal mode that we detect. The

other energy losses are due to the coupling to other spatial modes or material excitations that

we do not detect. E.g., for residue energy loss peaks around 2 eV and 2.5 eV, we suspect them

to be from the plasmonic resonances due to gold nanoparticles [276] on our chip surface and

edges. For the rising tail from 3 eV of 1-photon data compared to the non-correlated data, it is

expected to have occurred due to the excitation of quasiparticles (excitons) in the material as

these energy components are larger than the material bandgap. The reason that the 1-photon

data has a higher contribution in this energy range could be that some photons are generated

during the quasiparticle relaxation, that coupled out through the waveguide and triggered the

optical detector.

7.6 Future improvements

We have demonstrated efficient electron-photon pair state generation in an optical ring

resonator. However, as expected from our theoretical analysis, we have several limitations to

address before moving forward.

We have shown up to |g 2| ∼7 % photon generation probability for the spatial-temporal mode

of the ring cavity, as well as |g 2| ∼20 % for a long straight waveguide. However, as detailed

in Section 6.2, there is a trade-off between the coupling strength and the ideality of the

single-mode interaction, even under the ideal waveguide geometry. Non-ideal interaction

also involves the entanglement with the higher-order waveguide modes, shown in Fig. 7.8,

leading to effective thermalization/decoherence of the composite electron-photon pair state.

Because of this effect, high-purity higher-order photon Fock state, as well as a more general
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Figure 7.16: (a) Non-correlated electron spectrum averaged over 1 hour. Using the mean
photon numbers shown in (c), the incoherent averaging of the electron-photon coupling
strength is calculated and used to retrieve the zero-loss-peak (ZLP). The theoretical prediction
of the 1-photon-loss curve, the 2-photon-loss curve, and the total-loss curve are shown using
the retrieved ZLP and the fitted mean photon numbers. (b) One-photon conditional electron
spectrum down-shifted by one photon energy. The theory prediction using the fitted ZLP from
the non-correlated electron spectrum in (a) and mean photon numbers in (c) shows good
agreement with the measurement data. (c) Fitted mean photon numbers as a function of time
during the experiment.
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class of photonic states, are challenging to access in our current data set. On the other hand,

much of the observed complexity of our data comes from the fact that our electron energy

resolution is only at the level of 0.6 eV, similar to that of the photon energy around 0.8 eV.

Many of our questions and doubts might be answered with the possibility of employing a

monochromator [185].

To improve the ideality, as well as push towards strong coupling |g 2| > 1, we need to utilize

the single-mode waveguide (e.g., 800-nm width), keep the e-beam far from the waveguide

surface with a small convergence angle, and drastically increase the interaction length. In

our current implementation, we have effectively ∼40µm of interaction length, but we already

observed significant charging of the dielectric substrate that leads to degradation of e-beam

quality. For longer interaction lengths up to 1-mm interaction length, we are in the process of

trying a new straight waveguide design with a thin layer (∼10 nm) of indium tin oxide (ITO)

coating on the waveguide surface. The ITO coating greatly increases the material’s electrical

conductivity, and thus is expected to reduce the charging effect and drastically increase the

feasible interaction length. However, significant optical loss occurs, and resonator designs

are no longer favorable. Using a straight waveguide instead (shown in the previous section)

circumvents this problem, as the electron couples similarly to a ring or straight waveguide,

as the coupled spatial-temporal mode is an ultra-short optical pulse to begin with. With

these improvements, we expect to achieve high coupling ideality and thus enable high-purity

multi-photon state generation and more sophisticated schemes.

On the application side, we have not yet developed a scheme to achieve a useful enhance-

ment of sensitivity in electron microscopy, exploiting the electron-photon correlation. Apart

from the demonstration of Ref. [145], a significant advance in the theoretical research of

correlation-enhanced electron microscopy imaging is required, which might lead to a much

more significant impact beyond the physical science, e.g., biological imaging using a cryo-

electron microscope. In our current study, any form of electron-photon interaction only

involves energy/spatial dimension on the scale of optical waves. Therefore, it is not suited

for phase-object imaging. The optical heralding of individual electrons is also not useful for

phase-object imaging enhancement, as the measurement shot noise comes from the fun-

damental low scattering probability of the investigated sample. Schemes that can strongly

correlate subsequent electrons quantum mechanically on the electron-energy scale remain to

be explored in optical systems.
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8 Electron energy-dispersion effects

In the previous chapters, we have been investigating electron-photon interaction with the no-

recoil approximation, i.e., the electron velocity does not change due to absorption or emission

of photons. This approximation leads to the much easier modeling of the interaction and the

characteristic Poisson statistics of the electron-photon interaction. The approximation holds

when the electron-photon interaction covers only a finite spatial extent, so the recoil effect

does not manifest significantly. Note that this threshold distance is highly state-dependent,

and for all the experiments we discussed earlier, the recoil effect is only remotely relevant for

the PINEM experiment, that for the 10th photon sideband, the relevant distance is around 1 cm.

However, when the recoil effect is significant, the electron-photon interaction is modified and

can enable a branch of new classical and quantum applications [102, 103, 116, 124, 245].

The velocity change originates from the electron energy-momentum dispersion. As the single-

photon energy is considerably smaller than the electron energy, we can usually treat the

dispersion using perturbations. The typical effect of the energy second-order dispersion can

be described in the Schrodinger picture in terms of the Talbot effect, where the wavefunction

of the electron changes its shape periodically over a long distance of propagation [103, 112,

116, 143, 200], with analogy in dispersive propagation of optical waves [240].

This outlook chapter analyzes the case where the electron dispersively propagates between

two interaction stages spatially separated by large physical distances, and also serves as a

proposal for our future experiments. We start with the derivation of the scattering matrix of

the recoil effect in Section 8.1. One thing to pay special attention to in these traveling quantum

systems is that the starting time of the interaction at a particular physical location is highly

state-dependent. Therefore, the definition of the time of interaction needs to be treated with

care. Using this result, we analyze some potential future experiment candidates using the

scattering matrix we derived to showcase the recoil effect in later sections.

First, we propose the application of electron-driven optical klystron (Section 8.2), the optical

analogy of the microwave klystron that uses free electrons to provide gain and amplify optical

fields. Due to the recoil effect, the collective and coherent radiation behavior of many bunched
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electrons can exhibit superradiance behavior in experimentally accessible parameter regimes.

Next, we exploit the recoil effect as a resource of nonlinearity to induce the free-electron

blockade effect. As an analogy to the photon blockade effect, this nonlinearity can bound the

dimension of the electron states to a finite space (similar to free-electron qubit [277, 278]) and

induce free-electron Rabi oscillation and JC interaction(Section 8.3).

Last, we explore the possibility of using electron-photon pair states for a more fundamental

study of quantum mechanics in the case of performing a Bell test (Section 8.4). We find that

the typical pair state realized in Section 7 that follows a Poisson distribution does not generate

enough entanglement entropy to break the Bell inequality, whereas states accessible through

recoil effects can induce Bell violation.

8.1 Dispersive propagation

In the no-recoil limit, the coupling coefficient gω is not state-dependent and is generally the

case for our experiments performed so far. However, the recoil effect will be significant in

multi-stage operations with sufficient spatial separation, where the effect of electron energy-

momentum dispersion manifests itself.

To derive the effect of the dispersive propagation, we consider two interaction stages separated

by a distance ∆L, each with a point-like interaction length. The coupling coefficient for the

first stage is

g1,ω∝
∫

d ze−i ωv zU1,z (z) (8.1)

where U1,z (z) is the optical mode function along the propagation ẑ direction. In the first

stage, the recoil effect does not play a significant role yet, as the interaction is almost point-

like. However, at the second stage that is ∆L away, the electron energy dispersion ℏk =p
E 2/c2 −m2c2 changes the phase-matching integral of the off-diagonal element |E +ℏω〉〈E |

of the interaction to

g2,ω(∆E = E −E0) ∝
∫

d ze
−i

(
ω
v −2π

(
2∆E
ℏω +1

)
1

zT

)
z
U2,z (z)

≈ e
i 2π

(
2∆E
ℏω +1

)
∆L
zT

∫
d ze−i ωv zU2,z (z) (8.2)

where now the coupling coefficient accumulates an energy-dependent phase

e iθ(∆E) = e
i 2π( 2∆E

ℏω +1) ∆L
zT . (8.3)

Here zT = 4πmv3γ3/ℏω2 is the Talbot distance [279] and γ= 1/
p

1− v2/c2 is the Lorentz factor.

∆E is the energy difference to the reference electron energy E0 where we choose to do the

quadratic expansion of the electron energy-momentum relation. In optical systems, Talbot
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8.1 Dispersive propagation

distance quantifies specific spatial points where optical waves bunch into periodic pulses due

to second-order dispersion. The optical waveform will replicate itself when the two points

are spaced exactly by the Talbot distance. Due to the similarity between the electron wave

function and optical waves, we also have the bunching of electron pulses after a certain delay.

In our experiment settings, the electron velocity is about v/c ∼ 0.65, and the optical frequency

is about ω∼ 2π ·2×1014 Hz. With these values, the Talbot distance is around zT ∼ 1m. Even

for the photon order |N = 10〉, and a typical photonic chip length ∆L ∼ 5mm, the phase

accumulation of the sideband state is still only θ = 0.1 ·2π, therefore negligible in our most

of our discussion in earlier chapters. We anticipate the effect to dominate even for single-

photon energy states, e.g., when two photonic chips are involved and with sufficient separation

∆L ∼ 1m. When that is indeed the case, we can still use all the scattering matrices we derived so

far with the no-recoil approximation at the sequential stages, but we need to add a propagation

matrix

Ŝprop =
∫

dE exp

[−i∆L(E −E0)2

2ℏmv3γ3

]
|E〉〈E | =

∫
dE exp

[−2πi∆L(E −E0)2

ℏ2ω2zT

]
|E〉〈E |, (8.4)

in between the stages to account for the recoil-induced phase accumulation of different energy

components of the electron during propagation in free space. The phases accumulate differ-

ently between different energy components due to their different velocities. Therefore, there

is an effective timing difference in their arrival at later stages treated as point interactions with

the no-recoil approximation. This approach is consistent with literature that uses Schrödinger

equations to solve for the wavefunction evolution between two interaction stages [103] and

can also explain effects observed in double-PINEM-type experiment [116].

However, our assumption of the point-like interaction will break down when a single inter-

action stage is sufficiently long, e.g., L > 10cm, and with transitions involving photon-order

|N > 10〉. Then, a single scattering matrix that includes the recoil effect must account for the

dispersive phase accumulation during the interaction. We derive the scattering matrix to be

˜̂Se-ph = exp

[∫
dωgω

˜̂b†
ωâω−h.c.

]
(8.5)

where the modified electron energy lowering operator is

˜̂bω =
∫

dE |E〉〈E +ℏω|
∫

d ze
i
(
ω
v −2π

(
2(E−E0)

ℏω +1
)

1
zT

)
z
U∗

z (z)∫
d ze i ωv zU∗

z (z)
(8.6)

and the no-recoil coupling coefficient gω is used. We observe that the electron transition

elements can exhibit oscillatory behavior when the interaction length L approaches zT , and

the interaction becomes highly nonlinear. When using a classical phase-matched optical drive

at frequency ω and L = zT /4, all the even-order transition elements can be perfectly canceled

in the case of a plane-wave optical envelope, thus enabling applications such as free-electron

qubits [277, 278].
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Figure 8.1: The first PINEM cavity â0 is used to modulate the electron wavefunction, forming
pulses at the second CL cavity â1 and generating coherent emission. The output field of the
second CL cavity is feedback to the first cavity to either dampen or amplify the whole process.

For a non-guided electron beam with a divergence angle around 0.2 mrad and an electron-

surface gap 100 nm, the longest propagation on a chip is restricted to about 1 mm to avoid

significant e-beam clipping loss. To achieve a long enough distance such that the recoil effect

is significant, an on-chip electron guiding structure [106, 210] is required.

In the following sections, we restrict ourselves to the case where each interaction stage can be

treated point-like such that the discussions are greatly simplified.

8.2 Cavity-mediated optical klystron

Klystrons are originally invented to amplify radio waves using electron beams. The electron

beam first interacts with a cavity and gets phase-modulated. After some propagation, the

electron beam bunches into density waves with the same modulation periodicity and emits

radio waves with the same frequency into a second cavity. When the signal from the second

cavity connects to the first cavity, a feedback loop is formed, and amplification of the first

cavity can happen, with gain as high as 60 dB and output up to tens of megawatts.

In Fig. 8.1, we illustrate an optical counterpart of the Klystron that we investigate in this section,

with the aim of producing optical gain using the free electrons of a TEM. The system consists

of two sequential cavities. The electron interacts with the first cavity (PINEM), which was

excited by a weak coherent state |β〉. After dispersive propagation, the electron interacts with

the second cavity (CL), which was initially empty. The excitation collected from the second

cavity is then guided to the first ring to achieve optical amplification or suppression. Based on

the phase relation between the two cavities and the bus waveguide delay, the coherent field in

the first ring can be amplified until it reaches a steady state due to intrinsic nonlinearity in the

system, a mechanism similar to optical lasing.
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8.2 Cavity-mediated optical klystron

Unlike the theoretical basics we covered previously, here we are dealing with not only dis-

persive propagation of free electrons, but also a large number of sequential electrons and

interference between optical fields. In the following, we list some important relations we

often use to formulate our model. We assume that the sequential electrons are sufficiently

separated from each other so that we can treat their scattering matrix with the optical field â1

independently. For the electron indexed by j , the scattering matrix is

Ŝ j ,e-ph = eg b̂†
j â1−h.c.. (8.7)

Using the Baker-Campbell-Hausdorff (BCH) formula,

e B̂ Âe−B̂ = Â+ [B̂ , Â]

1!
+ [B̂ , [B̂ , Â]]

2!
+·· · , (8.8)

we have the following relation for the field operator â1

Ŝ†
j ,e-phâ1Ŝ j ,e-ph = â1 − g∗b̂ j (8.9)

where higher-order terms are perfectly canceled in the no-recoil limit. We still consider the

recoil effects during the dispersive propagation between the two stages, even though we treat

each interaction as point-like. We are interested in the mean fields’ evolution and coherence

properties.

8.2.1 Coherent field amplification

As we expect to achieve coherent emission at the cavity mode â1, we proceed to calculate the

field operator’s first-order moment. The cavity mean field after the interaction with electron j

is updated as

〈â1〉 j = Trph
[
ρ̂ j ,phâ1

]= Tr
[
ρ̂ j ,e ρ̂ j−1,phŜ†

j ,e-phâ1Ŝ j ,e-ph

]
= Tr

[
ρ̂ j ,e ρ̂ j−1,ph(â1 − g∗b̂ j )

]= 〈â1〉 j−1 − g∗〈b̂〉 j ,e . (8.10)

where ρ̂ j ,ph is the optical density matrix after interacting with the jth electron, and ρ̂ j ,e is the

density matrix of the jth electron before the interaction with the CL cavity. Note that the result

can be easily generalized to cases where multiple cavity modes of the CL cavity are excited.

However, as we see later that these cavity modes are effectively driven by the electron at the

PINEM cavity frequency, we only consider one near-resonant CL cavity mode, as contributions

from other modes can be neglected. Furthermore, we assume that our system is still in the

weak coupling regime, i.e., |g | < 1. We need a constant stream of electrons with flux rate

Γ≫ κ1/2π of the optical cavity to achieve coherent field buildup. We also assume that the

CL cavity decay time is much longer than the time to travel to the PINEM ring (such that the

change of 〈b̂〉e is adiabatic), which is easily achievable with any high-Q resonators.

We can write out the mean-field equation of the CL cavity and the PINEM cavity, using the
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QLE of the optical cavities in the rotating frame of the drive laser

〈 ˙̂a1〉 = (−i∆− κ1

2
)〈â1〉− g∗Γ〈b̂〉e (8.11)

〈 ˙̂a0〉 =−κ0〈â0〉+κ0β+p
κ0κ1e iθ01〈â1〉 (8.12)

where ∆ is the detuning of the CL cavity relative to the laser resonantly driving the PINEM

cavity, κ1 is the coupling rate of the CL cavity to the bus waveguide, and κ0 is the coupling rate

of the PINEM cavity (symmetrically coupled with two ports). The configuration is illustrated

in Fig. 8.1, chosen such that pumping the PINEM cavity does not excite the CL cavity. θ01 is

the phase delay induced by the bus waveguide between the two cavities. Here, in Eq. 8.12,

we have no contribution from the electron since we assume the initial electron state ρ0,e

before the interaction with the PINEM cavity is a pure momentum state, and has the relation

Tr[ρ̂0,e b̂] = 0. The physical picture is very clear. After interacting with the PINEM cavity, the

electron bunches at the CL cavity and behaves like a classical particle. Therefore, the electron

charges the optical field in the CL cavity in a classical way while de-accelerating.

To calculate 〈b̂〉e (how classical the electron is) that arrives at the CL cavity â1 after a dispersive

propagation, we have the following result

〈b̂〉e = Tre
[
ρ̂e b̂

]= Tr
[
ρ̂0,e ρ̂0,phŜ†

e-phŜ†
propb̂ŜpropŜe-ph

]
(8.13)

Ŝprop =∑
n

e−i n2θ|nℏω〉〈nℏω|, θ = ℏω2∆L

2mv3γ3 = 2π∆L

zT
(8.14)

˜̂b = Ŝ†
propb̂Ŝprop =∑

n
e−i (2n−1)θ|(n −1)ℏω〉〈nℏω| (8.15)

Ŝe-ph = eg0b̂† â0−h.c. (8.16)

Note that Ŝe-ph and Ŝprop do not commute with each other, so the correct ordering is required.

We further use the BCH formula to continue the derivation,

Ŝ†
e-ph

˜̂bŜe-ph = ˜̂b + [−g0b̂†â0 −h.c., ˜̂b]+·· · (8.17)

[−g0b̂†â0 −h.c., ˜̂b] =−g0(1−e−2iθ)
∑
n

e−i (2n−1)θ|nℏω〉〈nℏω|â0

+g∗
0 (1−e2iθ)

∑
n

e−i (2n−1)θ|(n −2)ℏω〉〈nℏω|â†
0 (8.18)

...

Since the initial electron state is assumed to be a pure energy state ρ̂0,e = |0ℏω〉〈0ℏω|, only the

electron transition elements associated with this particular element will contribute to the first

moment. We assume the PINEM cavity is initially driven to a coherent state with sufficiently

large amplitude so that we can apply the semi-classical approximation â0 → 〈â0〉, with the
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defined g̃0 = g0〈â0〉, and arrive at

〈b̂〉e =−g̃0e iθ(1−e−2iθ)

(
1+ −4|g̃0|2 sin2θ

1!2!
+ (−4|g̃0|2 sin2θ)2

2!3!
+·· ·

)
(8.19)

We use the Bessel function expansion and properties of the Gamma function,

Jα(x) =
∞∑

n=0

(−1)n

n!Γ(n +α+1)

( x

2

)2n+α
(8.20)

Γ(n ≥ 1) = (n −1)! (8.21)

to simplify the result to

〈b̂〉e =−i e i arg[g0〈â0〉] J1
(
4|g0〈â0〉|sinθ

)
(8.22)

With this result, identical to Ref. [102], we now closed Eq. 8.11,Eq. 8.12 and Eq. 8.22.

There is a natural question: Why does the electron dynamics not have a corresponding decay

term in the Langevin equation, like the cavity mode? The answer is that each electron interacts

with the optical mode only once at an ultra-fast timescale and, therefore, lacks any feedback

mechanism for further damping or amplification. However, when the equations are closed,

the coupling between the PINEM mode and the CL mode provides this necessary feedback

mechanism that changes 〈b̂〉e for the sequential electrons. Note that the change of 〈b̂〉e over

time is not associated with a single electron but rather the averaged value of many sequential

electrons.

Another natural question is, when does the approximation â0 →〈â0〉 we used in our derivation

fail? Even though a coherent state initially populates the PINEM cavity, the input from the

CL cavity can significantly modify the photonic states in the PINEM cavity. By assuming

|〈â0〉|≫ 1, we can rigorously arrive at the following relation

〈b̂〉e =−g0e iθ(1−e−2iθ)

×
(
〈â0〉+ −4|g̃0|2 sin2θ

1!2!
〈â0â†

0â0〉+ (−4|g̃0|2 sin2θ)2

2!3!
〈â0â†

0â0â†
0â0〉+ · · ·

)
(8.23)

Therefore, we need to consider the values of these higher-order correlation functions and how

far they are from the semi-classical limit. Initially, the PINEM cavity is populated by a coherent

state |β〉, and later updated by the CL cavity feedback. Using linear expansion (assuming

|g |≪ |〈b〉|), the higher order correlation functions 〈 f (â1, â†
1)〉 from the CL cavity are updated

after each passing electron as

〈 f (â1, â†
1)〉 j = Trph

[
ρ̂ j ,ph f (â1, â†

1)
]
= Tr

[
ρ̂ j ,e ρ̂ j−1,phŜ†

j ,e-ph f (â1, â†
1)Ŝ j ,e-ph

]
= Tr

[
ρ̂ j ,e ρ̂ j−1,ph f (â1 − g∗b̂ j , â†

1 − g b̂†
j )

]
≈ Trph

[
ρ̂ j−1,ph f (â1 − g∗〈b̂ j 〉, â†

1 − g 〈b̂†
j 〉)

]
= Trph

[
D̂(−g∗〈b̂ j 〉)ρ̂ j−1,phD̂†(−g∗〈b̂ j 〉) f (â1, â†

1)
]

. (8.24)
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Figure 8.2: Simulation of the first moments’ evolution over time for the mean field of both
cavities and the first moment of the electron ladder operator. Legend corresponds to different
electron flux rates Γ. We set two cavity modes with κ0 = κ1 = 10MHz ·2π, and the ring spacing
at 500µm in the simulation. The optical frequency is set to 780 nm, and the PINEM cavity â0

is initially populated with a coherent state of |β= 20〉.

Therefore, the higher-order correlation functions for both cavities would update as if the

optical state is displaced by each electron and follows the statistics of a coherent state in the

large electron number limit.

This result means that the closed equations of the first-order moments we derived earlier

are exact enough to describe the dynamics of the whole system in the regime |〈â0〉|≫ 1 and

|g |≪ 1. The approximations will break down when the PINEM cavity is not driven to a strong

amplitude, or the CL cavity is strongly coupled to each electron such that |g | ∼ 1. In our current

experimental configuration, we only have |g | ∼ 0.03 for each cavity mode, so we are well within

the regime of |g |≪ 1.

We numerically simulate these update equations and plot the real-time first moments in

Fig. 8.2 as a function of time at different electron flux rates, as well as the equilibrium first

moments as a function of electron flux rate in Fig. 8.3. We observe that when the electron flux

rate is relatively low, even though the CL cavity is populated with a coherent field, the PINEM

cavity field is not significantly modified. When the flux rate crosses some threshold, we observe

amplification of the PINEM cavity field driven by the CL cavity coherent emission, as well as

a modification of the coherence property of the electron through 〈b̂〉. When the flux rate is

further increased, we observe a gain saturation and oscillations due to the nonlinear behavior

of 〈b̂〉. Note that a 1-THz rate of electron flux is roughly 160 nA in current, which is challenging

to achieve in UTEM due to the trade-off between current and beam quality. On the other hand,

a 20-pA of current is possible from some initial testing by our experiment collaborator. In the

following, we proceed to analyze the evolution of the second-order moments, showing that

the observation of free-electron super-radiance is possible with this current level.
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Figure 8.3: Simulation of the steady-state first moments as a function of the electron flux
rates Γ. We set two cavity modes with κ0 = κ1 = 10MHz ·2π, and the ring spacing at 500µm
in the simulation. The optical frequency is set to 780 nm, and the PINEM cavity â0 is initially
populated with a coherent state of |β= 20〉.

8.2.2 Free-electron superradiance

Using the same method that we used to derive the first-order moments, we can find the

following closed equations for all the relevant second-order moments

d

d t
〈â†

1â1〉 =−κ1〈â†
1â1〉−Γ(g 〈b̂†〉e〈â1〉+ g∗〈b̂〉e〈â†

1〉)+|g |2Γ(1−|〈b̂〉e |2) (8.25)

d

d t
〈â†

0â0〉 =−2κ0〈â†
0â0〉+κ0(β∗〈â0〉+β〈â†

0〉)−
√

k0k1〈e−iθ01 â†
1â0 +e iθ01 â†

0â1〉 (8.26)

d

d t
〈â†

1â0〉 = (i∆− κ1

2
−κ0)〈â†

1â0〉+κ0β〈â†
1〉+

√
k0k1e iθ01〈â†

1â1〉− gΓ〈b̂†〉e〈â0〉 (8.27)

From these equations, one particular term that we need to pay close attention to is the

competition between the incoherent photo-emission (photons entangled with the electron

states)

|g |2Γ(1−|〈b̂〉e |2), (8.28)

and the bunched-electron-driven coherent emission

Γ(g 〈b̂†〉e〈â1〉+ g∗〈b̂〉e〈â†
1〉). (8.29)

We can see that the criteria for achieving super-radiance, i.e., the scaling of CL cavity photon

number with respect to the electron flux rate is at least quadratic, is 〈|〈b̂†〉e〈â1〉| ≫ |g |(1−
|〈b̂†〉e |2)〉 ∼ 0.03. So it not too challenging to achieve the super-radiance regime as soon as

|〈b̂†〉e | > 0.1 and |〈â1〉| > 1. Intuitively, due to the buildup of the coherent field in the CL

cavity, electron-photon pair state generation (entanglement) is efficiently suppressed, and

the interaction is dominated by each single electron displacing the optical field by a small

amount g∗〈b̂〉e . The interaction approaches the semi-classical limit at a high flux rate, where
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Figure 8.4: Transition into the regime of free-electron super-radiance with a sufficiently high
electron current. In the simulation, we set the CL cavity with a κ1 = 10MHz ·2π, and a ring
spacing to the PINEM cavity at 400µm. The optical frequency is set to 1550 nm, and the first
cavity is initially populated with a coherent state of |β= 3500〉. We observe that around 5 pA of
electron current, the CL cavity photon number exhibits a quadratic scaling with respect to the
electron flux Γ.

the optical field fully disentangles with the electron state space, approaching a pure coherent

state, and can be treated as classical waves. This regime is basically the regime where the

microwave klystrons operate.

We numerically simulate the equilibrium values of the second-order moment as a function

of different electron flux rates Γ, plotted in Fig. 8.4. The transition into the super-radiance

regime can be achieved with a reasonably low electron flux rate ∼ 30MHz, which corresponds

to 5 pA of current. Here, the first ring is pumped by a strong coherent state, and the feedback

mechanism between the two cavities is negligible. Note that when the flux is strong enough

that the PINEM cavity experiences amplification, the CL cavity photon number can even

exceed quadratic scaling with respect to the electron flux rate Γ.

8.3 Free-electron recoil blockade

In this section, we discuss the potential application of using the recoil effect as a source of

nonlinearity to form an effective two-level system and thus construct free-electron qubits. We

also discuss the physical limitation of using the recoil effect to form the Jaynes-Cummings

(JC) model.
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8.3 Free-electron recoil blockade

8.3.1 Free-electron Rabi oscillation and JC interaction

The electron-photon vacuum coupling coefficient for the off-diagonal element |E〉〈E −ℏω|â†

(E : energy difference from the reference energy) is

gω(E) ∝
∫

d ze−i (k(E)−k(E−ℏω))zUz (z). (8.30)

As the electron energy-momentum dispersion ℏk =
p

E 2/c2 −m2c2 provides nonlinearity, we

can expand it and keep up to the quadratic terms to arrive at

gω(E) ∝
∫

d ze
2πi ( 2E

ℏω−1) z
zT e−i ωv zUz (z). (8.31)

where zT = 4πmv3γ3/ℏω2 is the Talbot distance. In the case of our experiment condition

v/c ∼ 0.65, when we target optical wavelength 1550nm, zT ∼ 1m; when we target optical

wavelength 780nm, zT ∼ 25cm.

One interesting case is when the electron interacts with an optical mode over an extended

spatial region such that the recoil effect manifests at the single-photon level. We find that this

case is also equivalent to interacting with a de-localized optical mode â at two far-separated

regions (with their separate profile Ui=1,2). To simplify the discussion, we focus our analysis

on the latter case, where the physical effects of optical dispersion are easier to analyze. We

assume the spatial separation ∆L ∼ zT ≫ the interaction length in each region. Thus, we can

simplify the coupling coefficient to the following two terms

gω(E) = g1,ω+ g2,ω×e
2πi ( 2E

ℏω−1) ∆L
zT , (8.32)

where gi ,ω ∝ d ze−i ωv zUi ,z (z) is the vacuum coupling coefficient in each region calculated

using the no-recoil approximation.

The above result can be equally applied to the case of interacting with an optical mode

over a prolonged region, where the phases between gi ,ω can be removed by the reference

electron energy. We target the relation g = 2g1,ω =−2i g2,ω with a specific energy reference,

and ∆L = zT /4, such that we can absorb the energy dependence into the electron operator b̂

as in

Ŝe-ph = eg∗b̂â†−h.c. (8.33)

b̂ = ∑
N=0,2,4,···

|− (N +1)ℏω〉〈−Nℏω| (8.34)

with the following properties

b̂b̂ = b̂†b̂† = 0 (8.35)

b̂b̂† + b̂†b̂ = 1. (8.36)
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Due to the missing odd transition elements, if the initial electron energy is in energy state

|0ℏω〉, it can not make transitions except to |−1ℏω〉.

As an example, the conventional electron-photon pair-state generation will experience block-

ade on the electron energy,

Ŝe-ph|0ℏω〉|0〉 =
∑
k

(
g∗b̂â† −h.c.

)k

k !
|0ℏω〉|0〉

= ∑
k=0,2,4,···

|g |k
k !

|0ℏω〉|0〉+e−i arg(g )
∑

k=1,3,5,···

|g |k
k !

|−ℏω〉|1〉

= cos(|g |)|0ℏω〉|0〉+e−i arg(g ) sin(|g |)|−ℏω〉|1〉 (8.37)

which is equivalent to a JC model that swaps one photon energy between the optical mode

and the effective free-electron qubit.

A similar result goes for the PINEM interaction

ŜPINEM(α)|0ℏω〉 =∑
k

(
(αg )∗b̂ −h.c.

)k

k !
|0ℏω〉

= ∑
k=0,2,4,···

|αg |k
k !

|0ℏω〉+e−i arg(αg )
∑

k=1,3,5,···

|αg |k
k !

|−ℏω〉

= cos(|αg |)|0ℏω〉+e−i arg(αg ) sin(|αg |)|−ℏω〉 (8.38)

which is effectively a Rabi oscillation between the two electron-energy levels. As we have

control over the optical phase and amplitude of α, we can access anywhere on the Bloch

sphere by using two separated PINEM stages with a delay line between them.

In the following, we analyze if these two hypothetical scenarios can be achieved when con-

sidering the phase-matching bandwidth of the optical mode, as the assumption and the

free-electron blockade effect break down if the electron interacts with multiple optical modes.

8.3.2 Physical limitations

First, regardless of the achievable coupling coefficient g in the pair-state generation, or αg in

PINEM, the cancellation of the odd transitions is sensitive to the energy spread of E in ZLP,

as the application is enabled by the energy-momentum nonlinearity on the single-photon

energy level. The requirement for a sufficient cancellation of the odd transitions would be

∆E ≪ ℏω/max(1, |g | or |αg |). In electron microscopes with monochromators [185], ZLP as

low as 4 meV [201] can in principle be achieved, which compares favorably to a typical photon

energy around 1 eV. Therefore, this factor does not impose a hard physical limitation.

The electron state-space isolation requires the electron to interact only with one specific

optical mode with tailored properties and a particular physical length. This is intrinsically not
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a problem for PINEM-type interaction since the CW-driven mode at high photon occupation

dominates the interaction. However, it is challenging to achieve the desired recoil effect for

interaction with a vacuum optical mode. This is because the electron generally interacts with

many optical modes over a large frequency band, and the optical dispersion of the optical

fields is hard to control when multiple modes are involved. When multi-mode interaction

happens, leakage to the higher-order energy levels will occur, breaking the electron blockade

effect. Even in the limit of unity coupling ideality (discussed in Section 6.2), as the spatial-

temporal mode has a finite frequency span, we have a ω-dependent phase accumulation

δφg = δω∆L(1/vg −1/v) on the optical side over a propagation distance of ∆L, as well as that

of the electron dispersive phase δφe =−2π(δω/ω0), where ω0 is the center optical frequency,

vg is the optical group velocity, and v is the electron group velocity. Due to these relations, we

require the following condition

ω0∆L(
1

vg
− 1

v
) = 1 (8.39)

to compensate for the dispersion on both the electron side and the optical side such that the

free-electron blockade effect is broadband over ω. This is equivalently

πmv2γ3

ℏω0

(
v

vg
−1

)
= 1 (8.40)

which is generally hard as it requires a careful balancing of
(

v
vg

−1
)
∼ 10−4. Assume a ∼1 mm

of interaction length that would result in a typical phase matching bandwidth of 1 THz, the

relative coupling-phase oscillation period between two optical frequencies separated by

1 THz is as small as 3 mm, given realistic optical waveguide properties. The intrinsic mismatch

between the optical group velocity and the electron group velocity, as phase-matching requires

the optical phase velocity to match the electron group velocity, imposes a substantial limitation

of achieving single-mode JC interaction between a straight waveguide and free electrons.

The above limitation, however, can potentially be lifted by using two optical cavities connected

by a bus waveguide (common bath) in place of a long, straight waveguide (same configuration

as in Fig. 8.1). This coupling results in bright- and dark-mode pairs of the cavity. The electron

would interact with only the bright modes, in which the bus waveguide defines the relative

phase between the optical fields of the two cavities. As the resonant condition significantly

reduces the span of frequency components of each cavity mode, even though the electron

will still interact with multiple cavity modes (5-20), it is feasible to tailor the frequency ωi of

each resonance pair of the two rings, demonstrated in Ref [205, 226] such that the following

condition can be met,

(ωi −ω0)∆L(
1

vg
− 1

v
) mod 2π= 0 (8.41)

or equivalently
∆L

Lcav
(

v

vg
−1) mod 2π= 0 (8.42)

With this condition, the effective phase accumulation is correctly canceled for all the bright
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cavity modes the electron couples to. As ∆L is generally much larger than the cavity length

Lcav, fine frequency tuning is generally possible. In this setting, the electron effectively couples

to a bright spatial-temporal mode de-localized in two cavities and still maintains the blockade

effect because of the phase correction.

Last, UV light and low-velocity electrons can reduce the required spatial separation between

the two stages. Assuming wavelength λ=400 nm and velocity 0.1c (2.5 keV in SEM), we have a

extremely short ∆L = zT /4 ∼130µm. UV operation is compatible with, e.g., Si3N4 [243], AlN

and GaN [280] waveguides.

8.4 Bell test using electron-photon pair states

In this section, we analyze the prospect of using the electron-photon vacuum interaction,

as well as post-interaction shaping of the measurement basis, to construct an experiment

where the entanglement between the electron and photon state space can be used to test the

violation of Bell inequality and local realism.

8.4.1 Bell inequality of a general d-dimensional state space

As the electron-photon state space is generally unbounded, we aim to analyze, in this section,

the Bell inequality violation in a high-dimensional state space that covers most of the non-

negligible state population.

We first review the general construction of the Bell inequality of a high-dimensional state

space. First, we define the probability of a detection event (Aα = N ,Bβ = n) given a state as

P (Aα = N ,Bβ = n)

where α= 1,2, β= 1,2 mark the chosen measurement basis sets, and N , n mark the measure-

ment results. For a d-dimensional state space, we can define a cyclic detection probability

P (Aα = Bβ+ i ) =
d−1∑
j=0

P (Aα = j ,Bβ = j + i mod d) (8.43)

with which we can define the Bell inequality [281] to be tested

2 ≥ Id =
[d/2]−1∑

i=0

(
1− 2i

d −1

)
(8.44)

[P (A1 = B1 + i )−P (A1 = B1 − i −1)+P (A2 = B2 + i )−P (A2 = B2 − i −1)

+P (B1 = A2 + i +1)−P (B1 = A2 − i )+P (B2 = A1 + i )−P (B2 = A1 − i −1)]
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Maximizing the violation

The amount of inequality violation achievable with a quantum state |ψ〉 and two sets of

measurement operators (Aα=1,2, Bβ=1,2) can be qualitatively understood through the following

criteria:

• In both measurement operator sets (Ai , Bi ), the state needs to be close to a maximally

entangled state |ψ〉 ∼ 1p
d

∑
k |Ai = k,Bi = k〉 which maximizes the entropy of the entan-

glement.

• The two measurement sets are almost uncorrelated |〈A1 = i |A2 = j 〉|2 ∼ 1
d , i.e., the

measurement in one basis gives almost no information on what to expect on the other

basis using classical probability theory.

The above criteria give the guiding principle for achieving qualitatively the best contrast

between classical and Bell correlation.

Violation in a bounded d-dimensional electron-photon ladder state space

Let us first not restrict ourselves to the types of measurement basis feasible in the experiment

and investigate the maximum Bell violation of the electron-photon pair state under an optimal

measurement basis. We show that breaking the Bell inequality is impossible in the limit of

infinite state dimension, even with optimal measurement basis sets. This result is because the

Poisson distributed state is not maximally entangled.

The state we are concerned with is from a plane-wave electron interacting with a vacuum

optical mode,

|ψ(g )〉 = Ŝe-ph(g )|N = 0,n = 0〉 =
∞∑

k=0
e−|g |

2/2 g k

p
k !
|N = k,n =−k〉, (8.45)

which is not a maximally entangled state. Therefore, we can expect a lower violation than the

optimal violation around Id ∼ 2.7−2.9 > 2 depending on the system dimension d .

Since the state coefficients |ck |2 obey Poisson distribution, we initially truncate the state

space to a neighboring d-dimension space centered around the mean photon number |g |2.

The centering procedure ensures that the truncated state is optimal in terms of achievable

entanglement entropy and closer to the maximally entangled state in that space. Note that

this operation is artificial and is not supposed to be feasible in the experiment.

The measurement operators we select are within the bounded d-dimensional space, and the
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quantum Fourier transform of the electron-photon ladder states |N〉, |En〉

|N ′〉 = 1p
d

∑
N

exp

(
i

2π

d
N (N ′+α)

)
|N〉 (8.46)

|n′〉 = 1p
d

∑
n

exp

(
i

2π

d
n(−n′+β)

)
|n〉. (8.47)

These choices gave optimal Bell violation for a maximally entangled state with some values

of α and β. Here, we find the optimal values numerically in different dimensions d, through

numerical optimization of α and β. From these definitions, and a coupling strength |g | = 2 for

the pair state, we find that

• when d = 2, the truncated state is almost maximally entangled, and I max
d = 2.83 with

[α1 = 0,α2 = 0.5,β1 =−0.25,β2 = 0.25], consistent with literature values;

• when d = 3, the truncated state does not maximize entanglement entropy and leads to a

lower I max
d = 2.34 with [α1 = 0,α2 = 0.4,β1 =−0.2,β2 = 0.2];

• when d →∞, I max
d = 1.96 with [α1 = 0,α2 = 0.61,β1 =−0.30,β2 = 0.31].

Notice that when dimension d is low, where we truncate some state space, the entanglement

could lead to the Bell violation. In reality, the accessible operations on the electron and

the optical sides are not bounded. Therefore, we need to look at Id→∞, which is below the

classical bound, even given the optimal measurement sets. This means the state we start

with is not entangled enough to break the classical bound. Therefore, we need to construct

an electron-photon state space with finite dimension and maximal entanglement, which we

discuss below.

8.4.2 Bell violation in a synthetic 2D state space using electron ladder eigenstates

When the initial electron state is in a pure momentum state, the interaction with an optical

mode only results in a partially entangled electron-photon pair state. However, achieving

a maximum entangled state in a synthetic dimension is possible using the electron ladder

operator eigenstate we discussed in Section 4.2.3.

The motivation is that when the electron state exhibits some periodicity b̂d
ω|ψe〉 = |ψe〉, the

constructed measurement basis on the electron can be bounded in a d-dimension space

as F̂ (b̂ω)|ψe〉 = ∑d−1
k=0 ck b̂k

ω|ψe〉. These states |ψe〉 are the eigenstates of b̂d
ω ≈ b̂d×ω ladder

operators.

As discussed in Section 4.2.3, such an eigenstate can be prepared with multiple stages of PINEM

interaction with dispersive propagations, but with the optical pump at the d-harmonics of

the target optical frequency ω. Shown in [103], the preparation of the electron eigenstate can

achieve sufficiently high fidelity with 3 PINEM stages and gPINEM = 20, with 〈bd×ω〉 = 0.998.
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In the following, we aim to bound the dimension to d = 2 to simplify the discussion. We

assume the electron ladder eigenstate is prepared at the second harmonic frequency 2ω before

the e-ph entanglement operation, such that b̂2ω|ψe,2ω〉 = |ψe,2ω〉. With the entanglement

operation where the structured electron interacts with the optical mode in a vacuum state at

ω, we have the following properties

b̂ω|ψe,2ω(even)〉 = |ψe,2ω(odd)〉 (8.48)

b̂ω|ψe,2ω(odd)〉 = |ψe,2ω(even)〉. (8.49)

After the entanglement operation, the ensemble state becomes

Ŝe-ph(g )|N = 0,ψe,2ω(even)〉 = e−|g |
2/2(|0〉+ g 2

p
2!
|2〉+ g 4

p
4!
|4〉+ · · · )|ψe,2ω(even)〉

+(g |1〉+ g 3

p
3!
|3〉+ · · · )|ψe,2ω(odd)〉

=
√

1+e−2|g |2

2
|cateven〉|ψe,2ω(even)〉+

√
1−e−2|g |2

2
|catodd〉|ψe,2ω(odd)〉. (8.50)

This exact way of expressing the state indicates the first type of state measurement basis set

we are interested in, as it shows maximal entanglement when g ≫ 1.

To find the second set of measurement basis, we can add a delay length of ∆L = zT /4 and a

follow-up PINEM operation to rotate the electron states by

|ψe,2ω(even)〉→ |ψe,2ω(even)〉+ i |ψe,2ω(odd)〉 (8.51)

|ψe,2ω(odd)〉→−|ψe,2ω(even)〉+ i |ψe,2ω(odd)〉 (8.52)

such that the new state is

Ŝe-ph(g )|N = 0,ψe,2ω(even)〉

=
(√

1+e−2|g |2

2
|cateven〉−

√
1−e−2|g |2

2
|catodd〉

)
|ψe,2ω(even)〉

+i

(√
1+e−2|g |2

2
|cateven〉+

√
1−e−2|g |2

2
|catodd〉

)
|ψe,2ω(odd)〉

∼ 1p
2
|− g 〉|ψe,2ω(even)〉+ ip

2
|g 〉|ψe,2ω(odd)〉 (8.53)

the operation effectively selects a new set of measurement bases for the electron that yields the

least correlation with the first set of measurement bases and, therefore, should maximize the

Bell violation. It is also intuitive to understand this state’s formation, as illustrated in Fig. 8.5,

that depends on the position of the electron pulses (half the period of the optical wavelength),

optical coherent states with an electron-position dependent opposite phases are generated.

Even though the two optical states (entangled with the electron states) are not orthogonal as
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Chapter 8. Electron energy-dispersion effects

they are coherent states, when g is sufficiently large, they are sufficiently separated in phase

space and can be reliably distinguished with homodyne detection.
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Figure 8.5: Illustration of electron-photon position-phase state generation. Depending on the
electron position (red or blue), coherent states with opposite phases are generated, forming
the position-phase entangled electron-photon state in a synthetic d = 2 dimension space.

On the optical side, we can conduct photon counting to retrieve the parity of the optical state

and homodyne measurement to obtain the phase space distribution. On the electron’s side,

any linear combination of the even and odd bases are accessible through delay and PINEM

operations [277].

As for physical limitations, in an optical homodyne measurement, the two opposite coherent

states |α〉 and |−α〉 are not sufficiently separated in phase space, and the measurement results

|β〉 will not be completely orthogonal with either state. It is still possible to separate the

measurement state space, even though the measured states are not orthogonal to each other,

into two halves given the angle θα−β. If the measured result |θ| ≤ π/2, we group it as state

|Aα = 0〉, otherwise, we group it as state |Aα = 1〉. This operation is routinely performed in

the dispersive readout of superconducting qubits, where qubit states are entangled with two

opposing coherent states.

However, there is a simpler counting method to discriminate between |α〉 and |−α〉, e.g., by

displacing the field by α as

D(α)|α〉 = |2α〉 (8.54)

D(α)|−α〉 = |0〉. (8.55)
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and map the measurement of the |−α〉 state to a null event for a photon counting measurement.

We proceed to define our two sets of measurement bases

|A0 = 0〉 = |cateven〉 |A0 = 1〉 = |catodd〉 (8.56)

|A1 = 0〉 = D̂(−g )|0〉 |A1 = 1〉 = D̂(−g )
√

1−e−4|g |2 (|2g 〉− |0〉) (8.57)

with the following relations

|A0 = 0〉 = 1p
2

(√
1+e−2|g |2 |A1 = 0〉+

√
1−e−2|g |2 |A1 = 1〉

)
(8.58)

|A0 = 1〉 = 1p
2

(
−

√
1−e−2|g |2 |A1 = 0〉+

√
1+e−2|g |2 |A1 = 1〉

)
(8.59)

|A1 = 0〉 = 1p
2

(√
1+e−2|g |2 |A0 = 0〉−

√
1−e−2|g |2 |A0 = 1〉

)
(8.60)

|A1 = 1〉 = 1p
2

(√
1−e−2|g |2 |A0 = 0〉+

√
1+e−2|g |2 |A0 = 1〉

)
. (8.61)

We can also recast the original state into the new measurement basis,

Ŝe-ph(g )|N = 0,ψe,2ω(even)〉

=
√

1+e−2|g |2

2
|A0 = 0〉|ψe,2ω(even)〉+

√
1−e−2|g |2

2
|A0 = 1〉|ψe,2ω(odd)〉 (8.62)

= 1

2
|A1 = 0〉

[
(1+e−2|g |2 )|ψe,2ω(even)〉− (1−e−2|g |2 )|ψe,2ω(odd)〉

]
+

√
1−e−4|g |2

2

1

2
|A1 = 1〉[|ψe,2ω(even)〉+ |ψe,2ω(odd)〉] (8.63)

We show in Fig. 8.6 the maximally achievable Id for different g and optical detection efficiency

η, numerically optimized over the electron measurement basis. With unity η, we observe a

significant violation of the classical bound even for coupling strength as low as |g |2 ∼ 0.1, at

the level we already demonstrated experimentally in Section 7.3. Note that different types of

measurement inefficiency, especially on the optical side, will degrade the level of measurable

Id −2. Therefore, it is of utmost importance to keep optimizing the optical collection efficiency

of the setup. Using straight waveguides and SNSPDs, we expect the achievable detection

efficiency to be around 70%, within the budget to observe Bell violation given |g |2 = 0.1.
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Figure 8.6: (a) Maximally achievable Id with different coupling strength g , compared to the
classical bound (CM) and the quantum bound (QM). The optical detection efficiency is set to
η= 1. With |g |2 ∼ 1, the electron-photon entangled state can saturate the quantum bound,
while it is always above the classical bound even with relatively low coupling strength. (b)
Maximally achievable Id with different optical detection efficiency η, compared to the classical
bound (CM) and the quantum bound (QM). The coupling strength is set to |g |2 = 0.1.

284



9 Epilogue

Through this thesis, I have summarized most of my PhD journey, on the topics of establishing

a cavity optomechanics platform that operates in the quantum regime at room-temperature

environment, and observing quantum optical effects of free-electron-photon interactions me-

diated by photonic integrated circuits. These two seemingly disconnected research directions

are unified under the overall framework of quantum optics, as both quantum optomechan-

ics and free-electron quantum optics involve the quantum nature of photons, i.e. they are

discretized particles that can not be further divided. However, we will illustrate below from

several perspectives, i.e. coupling bandwidth, decoherence mechanisms, locality of interac-

tion, and difference of their quantum effects, to showcase their rather different regimes for

photon interactions.

The coupling dynamics is common in the sense of the generation of quantized photons in

optical frequency modes, which are continuum modes in either free space or waveguide. The

bandwidths, however, are drastically different, so we need to employ different theoretical

frameworks to better describe their dynamics. For a typical value, the bandwidth for optome-

chanics is on the order of kHz-GHz, determined by the property of the mechanical oscillators,

with which the nonlinear interaction only concerns one optical cavity mode that is selectively

excited using an optical laser. The bandwidth for electron-photon interaction, even with a

very long interaction length of 1 mm, the optical bandwidth is still on the order of THz with

ultrafast timescale, as the high-energy electron is intrinsically a broadband radiation source

that couples to everything and it is a linear energy exchange process (no selectivity through

the external pump in the case of optomechanics). Because of these intrinsic differences, we

typically employ the cavity QED framework for optomechanics, where the rate of interaction

is very small with pre-defined optical and mechanical modes. In contrast, we employ a more

general 3D QED framework for the electron-photon interaction, to find out what is the optical

mode in the continuum of frequency and space that the electron is coupling to.

In terms of decoherence mechanisms, both are due to the coupling to auxiliary channels.

For optomechanics, it is mostly the coupling of mechanical or optical oscillators to the en-

vironment where the information of quantum states gets lost. These are losses that can be
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engineered, especially for the mechanical oscillator where the loss can be diluted by almost

a factor of a million with the right geometries and material composition. For the electron-

photon interaction, apart from external optical losses (including losses from coupling to

unguided modes), there are decoherence channels that are fundamentally tied to the optical

response of the material. As the interaction is intrinsically broadband, only optical frequencies

in the material transparency window are in principle quantum coherent (parametric), i.e. the

interaction is only mediated by the material and no material excitations are produced. For the

optical frequencies that go beyond the material bandgap, the optical response of the material

will excite a valence electron into the conduction band as a quasiparticle (exciton), after which

the relaxation starts and ends into phonon excitations of the lattice and photon excitations

at different frequencies. As this is a multi-partite entangled state between electron-photons-

phonons at different frequencies, the optical state space is intrinsically incoherent. In the

transparency band, the optical photons can in principle co-propagate with the electron and

return the energy to the electron, thus reducing the effective optical bandwidth through the

phase-matching mechanism. This is not possible for frequency components in the conduction

band, as quasiparticles are localized and their excitation energies can not be returned to the

electron by the phase-matching mechanism. Therefore the decoherence mechanism can not

be effectively modified by the length of the interaction but can be mitigated by how far the

electron is to the surface of the material (similarly to the electron-photon coupling ideality

concerning higher-order waveguide modes).

In terms of the locality of the interaction, these two systems are also quite different. In

our optomechanics model, the mechanical oscillator is a classically bounded acoustic wave,

but in terms of its quantum mechanical wave function, it is extremely localized (xzpf about

the size of a proton), due to its heavy mass. Therefore, the interaction is modeled between

an almost point mass and optical fields that are nonlocalized continuous waves. In other

words, it is a stationary object and the interaction with it has a well-defined start-to-end

timing defined by the envelope of the optical pump, or the measurement time-window. For

free electrons, the wave function is determined by the way the electron emission process

is initiated. For either thermal emission or field emission, the coherence length of the free

electron is much larger than an optical wavelength, and therefore the electron generally has

a delocalized wave function compared to that of the optical wave. Also, when analyzing

the interaction naturally in the momentum state basis, the plane wave states are infinite

in spatial dimensions. Therefore, the interaction’s start-to-end timing is not well defined,

especially considering that the electron state’s different energy components propagate at

different velocities. So, the timings of electron-photon interactions that happen at multiple

locations with significant spatial separations are highly state-dependent. In this case, we

generally integrate the interaction time from minus infinity to plus infinity, and use a single-

pass scattering matrix to describe the interaction.

For both systems, even though the quantum effects can be attributed to the quantized nature

of photons, they are of very different physical manifestations. For free electrons, the interaction

results in linear energy exchange between the electron and the optical fields, mediated by
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the dielectric dipoles inside the material. This results in the generation and absorption of

discretized photons each with an extremely broad optical frequency bandwidth (>THz). For

optomechanics, the interaction is naturally dispersive (mechanical position couples to the

frequency of cavity modes), so effectively when the cavity is in the vacuum state, there is no

energy exchange for this type of dispersive coupling. The energy exchange only happens when

the cavity is populated with an external optical pump that selectively enhances the interaction

between the mechanics and the optical spatial mode being pumped. This breaks the closed

system into an open system, where the cavity mode evolution is governed by the CW mode

of the laser, and the mechanical mode couples to the nearby frequency modes of the laser

excitation. Here, the quantum effects of the photons, e.g., radiation pressure shot noise, are

from the highly populated cavity mode. These quantized effects are substantially different

from the electron-photon interaction where there are very few photons present that are not

associated with any particular cavity modes.

It is not yet clear how to conveniently bridge these two interactions with such drastically differ-

ent energy or frequency landscapes. One scheme I came up with during my thesis study, which

I illustrated in Section 6.4.2, uses nonlinear optical interactions at a frequency transducer to

greatly reduce the optical bandwidth of the CL. The nonlinear process essentially demodulates

the pulsed CL emissions from optical resonators with an equally broad optical local oscillator

to convert the THz-broad optical pulses to MHz-broad microwave pulses. Once the excitation

is coherently converted to the microwave domain, further spatial-temporal manipulations are

feasible that could lead to the entanglement between mechanical oscillators, which typically

come with kHz-MHz bandwidths, and high-energy free electrons through electromechanical

interactions.
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A Dissipative dynamics in photonic inte-
grated circuits

The distribution of this thesis is mainly through the internet, which involves data communica-

tion enabled by the ultralow-loss optical fiber transmission over long distances [282]. Photonic

integrated circuits (PICs), which gained traction by the 1980s [283], have been an indispens-

able component in fiber optic communications due to their miniaturization and portability.

In these circuits, photons or light is used to replace applications previously achieved using

electronics. The light is detected, generated [284, 285], transported, and processed [286] by the

optical waveguiding components on a photonic chip. In recent years, PICs have also received

tremendous interest due to their broad range of applications outside optical communications

while being compatible with large-scale fabrication using CMOS technologies. These include

optical frequency combs [224], laser-based ranging [287], and optical amplifiers [288].

Integrated photonics have also found themselves in quantum optical applications [289], in-

cluding quantum communication [251], computation [290], and metrology [291], aiming to

replicate and boost the utility and widespread usage of the bulk counterparts [292, 293]. Due

to the fragile nature of the quantum states, understanding the dissipation dynamics at the

microscopic scale, typically more significant than the bulk systems, is crucial for performance-

demanding quantum applications. The same can be said for some classical applications,

particularly nonlinear optics [224, 294, 295, 296], where loss and nonlinearity play a signif-

icant role. In this part of the thesis, in the context of Kerr squeezing [297], we investigate

the dissipative dynamics in photonic integrated circuits, including thermodynamic fluctu-

ations [1] and dissipative feedback [2] at the microscopic scale that is particularly strong at

room temperature. We also illustrate some exciting interplay and elucidate misunderstandings

surrounding the material dissipation-induced and quantum coherent nonlinearities. With the

spectroscopy techniques we developed [3, 4, 5], material dissipation can further be categorized

and quantified to help guide device optimization. Some sections in this part of the thesis are

adapted from Refs [1, 2, 3, 4].

Though not as confined as electrons in modern electronic integrated circuits due to the large

size of the photons, the optical field is still shrunk to its minimum size at the wavelength scale.

Due to the field enhancement, besides its application in nonlinear optics, photonic integrated
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circuits allow the scientific study of some of the most fundamental light-matter interactions,

facilitate the development of nonlinear photonics [224], cavity optomechanics [13], and

coupling to elementary particles [8, 138].

In our research, we use chip-based microresonators to enhance numerous physical phenom-

ena by exploiting the small mode volume of the cavity mode, including nonlinear optics [224],

cavity optomechanics [13], and coupling to elementary particles [8, 138].

In particular, most of our research applications utilize integrated photonic circuits based

on silicon nitride (Si3N4, image shown in Fig. A.3), which is a radiation-hard [298], CMOS-

compatible material [299] with a significant Kerr nonlinearity, an absence of two-photon

absorption in the telecommunication window, ultralow losses [152, 300, 301], and a wide

transparency window from visible to mid-infrared. These properties have in particular enabled

chip-scale frequency combs [189, 224, 302, 303, 304], cavity optomechanics [88], as well as

coupling with high-energy free-electrons [7, 8].

Recent advances [300, 305, 306] in fabrication of integrated Si3N4 microresonators have en-

abled optical quality factors Q > 107, for which many applications are enabled, especially

ultra-low-power, robust generation of dissipative Kerr solitons (Section B.9). Squeezed light

generation using Kerr nonlinearity on a high-Q integrated chip is also proposed [307] (Sec-

tion A.2.1). In this Chapter, we primarily focus on the investigation of single-mode Kerr

squeezing [307], which is influenced by many parasitic dynamics, including thermal fluctua-

tions and photothermal feedback.

In particular, the thermorefractive noise (TRN) studied in Section A.1 will impose a fundamen-

tal limit on the frequency noise of the Si3N4 microresonator and can therefore be a limiting

factor for Kerr squeezing where the classical noise budget is very tight. It is also considered a

limiting factor for classical applications such as microwave generation [294, 295]. Although

measurements of the carrier-envelope-offset (CEO) frequency noise of microcombs [296]

have already shown clear evidence that thermal noise limits the performance of specific

applications, TRN has mostly been directly measured in simple geometries (notably silica mi-

crospheres and microtoroids [308, 309]), and has not been systematically studied in photonic

integrated microresonators. In this part, we study this noise in both numerical simulation and

experimental characterization, and show that this noise plays a vital role in the Kerr squeezing

noise budget.

Furthermore, material dissipation, in the form of optical absorption, can lead to competing

nonlinear processes along with Kerr nonlinearity. For integrated photonic circuits, the pho-

tothermal effect is of the same magnitude as the Kerr effect [3, 4, 5], even for state-of-the-art

material purity achieved. However, there is a lack of theoretical and experimental investigation

of the consequences of these competing nonlinearities from the perspective of generating

squeezed light using Kerr nonlinearity. Some coworkers in the field even suspected that these

parasitic nonlinearities, e.g., the photothermal effect, can also squeeze light. In this chapter,

we develop a theoretical framework to elucidate the dynamics of cavity dissipation-induced
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nonlinearity, and show the intricate interplay between the photothermal and Kerr effect in

squeezed light generation. Based on a comprehensive understanding of these dissipative

dynamics, measurement techniques (Section A.4) are developed here to help determine these

dissipation rates, and thus help guide device performance optimization.

A.1 Fundamental thermal noises

The small mode volume of microresonators enables strong optical nonlinearities, harnessed

in emerging technologies such as microcombs [224], and also enhances sensing capabilities

used in fundamental research, e.g. cavity quantum optomechanics [13]. However, the small

mode volume comes at a cost: limitations on the microresonator’s frequency stability arise

from thermal fluctuations such as thermo-refractive (TRN) and dimensional fluctuation

thermal noise (thermoelastic and elasto-optic [310]). These fluctuations were first theoretically

described in the context of laser interferometer gravitational-wave detection [311], and place

limits on the frequency stability of an interferometer. The cavity frequency noise we observed

and mitigated using phononic crystal structures in the MIM system (Section. 2.3) belongs to

the category of thermoelastic noise.

Thermal fluctuations are particularly strong in small mode volume optical resonators and

place fundamental limits on applications that require high frequency stability, e.g., optical

sensing [312], optomechanical displacement sensing [313], dissipative Kerr soliton microcomb

generation [224], electro-optical modulators [314], opto-electronic oscillators [315] and Kerr

squeezing [307]. Therefore, different kinds of thermal noises have been extensively studied

[309, 311, 316, 317]. However, theoretical analyses show inconsistencies between different

platforms [318] and rely on auxiliary measurements of material parameters that are not always

well-known. Therefore, experimental characterization is essential to understanding a specific

system’s limitations. Therefore, refined theoretical and modeling approaches are required to

analyze TRN in photonic integrated circuits composed of multiple materials with complex

geometry.

Here, in the context of understanding the dissipative dynamics of our system, we present the

characterization of TRN in Si3N4 microresonators and compare finite element method (FEM)

simulations with measurements of TRN using balanced homodyne detection. The results

show that TRN is the dominant thermal noise source over frequencies ranging from 10 kHz

to 10 MHz. We also simulate the feasibility of using a composite material structure to reduce

TRN and discuss the experimental complications.

A.1.1 Theoretical treatment of thermorefractive noise

In an optical resonator, thermo-refractive noise leads to fluctuations of the resonance fre-

quency due to fluctuations of the effective refractive index, n, of the optical mode, caused by

the local thermodynamic fluctuations of temperature, δT , whose variance in a given volume
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V is:

〈δT 2〉 = kB T 2

ρCV
(A.1)

where T is the temperature of the heat bath, kB the Boltzmann constant, ρ the density, C

the specific heat. Using the material parameters of Si3N4 and the optical mode volume of a

typical 1 THz free-spectral-range (FSR) microresonator, we can obtain a value of the standard

deviation of the heat bath temperature as
√

〈δT 2〉 ∼ 60µK. Combined with the measured

thermo-optic coefficient, dn/dT = 2.45×10−5 K−1, of Si3N4 [319], the fractional frequency

fluctuation can be estimated as[309]
√

〈δ f 2〉/ f =
p

〈δT 2〉
n

dn
dT ∼ 7× 10−10, and the absolute

frequency fluctuation
√
〈δ f 2〉 is around 150 kHz, which is up to 1% of the cavity linewidth in

Si3N4 microresonators [306]. Though this is a rough estimate of the noise property, we can see

that this magnitude will be of concern for many applications.

The thermo-refractive noise and the thermo-elastic noise, which are both consequences of

thermodynamic temperature fluctuations, were previously experimentally observed in silica

microspheres [309] and theoretically analyzed (but not observed) in crystalline resonators

[316]. In most cases of integrated photonic circuits, where light travels mostly in a solid-state

material, thermo-refractive noise is the largest among the thermal noises. For chip-based

Si3N4 microresonators, TRN is also expected to be the most significant noise source, as the

temperature fluctuations, which give rise to dimensional fluctuation thermal noises, are

averaged over the entire resonator chip rather than the optical mode volume. However, the

different modeling approaches taken in the analysis of the two previously mentioned platforms

result in different predictions for the geometric dependency of TRN and its magnitude at low

offset frequencies [318].

We now describe the two approaches taken for modeling TRN in microresonators: the first

model assumes a homogeneous microresonator in an infinite heat bath, yielding the following

expression for the effective temperature fluctuations [318]:

SδT (ω) = kB T 2√
π3κρCω

√
1

2p +1

1

R
√

d 2
r −d 2

z

1

(1+ (ωτd )3/4)2
(A.2)

where R is the ring radius of the microcavity (geometry shown in Fig. A.3(a)), dz and dr

are halfwidths of the fundamental mode for the intensity, with orbital number l , azimuthal

number m, meridional mode number p = l −m, τd = π1/3

41/3
ρC
κ d 2

r , and the definitions of the

other parameters can be found in Table A.1. The key features are the ω−1/2 dependence at low

frequency, the ω−2 dependence at high frequency, and the R−1 overall scaling. This model

gave satisfactory agreements with experimental measurements in microspheres [309].

The second model [316] uses the thermal decomposition method, which does not consider the

interaction with the environment. As a consequence, there is a low-frequency cut-off due to

the finite dimension of the resonator, which results in the following (single-sided) temperature
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Figure A.1: Comparison of FEM simulation results of thermo-refractive noise with the
theoretical predictions (infinite heat bath and thermal decomposition). The graphs show
the cavity frequency noise spectral density of a Si3N4 microresonator with a free spectral range
(FSR) of 1 THz, 99 GHz and 20 GHz. At high frequencies, the simulation curves match better
with the infinite heat bath assumption. At low frequencies, the simulation curves experience
a cut-off because of the finite size of the modeled chip, which behaves more similarly to the
thermal decomposition method.

noise spectral density:

SδT (ω) = kB T 2R2

12κVeff

(
1+

(
R2ρCω

35/2κ

)3/2

+ 1

6

(
R2ρCω

8l 1/3κ

)2)−1

(A.3)

where Veff is the effective mode volume. Here the expression still has a ω2 dependence at high

frequency but features an overall scaling with R between R−3 and R−4 depending on how Veff

scales with radius (spherical resonator Veff ∝ R11/6 or ring resonator Veff ∝ R).

The temperature fluctuations can be converted into a frequency noise spectral density through

Sδ f = ( f0
1

n0

dn
dT )2SδT , where f0 is the resonance frequency. However, Eq. (A.2) and Eq. (A.3) are

both idealized cases assuming homogeneous materials and either the infinite heat bath or

isolated model. These assumptions do not match the geometry of integrated Si3N4 resonators

of complex waveguide structures comprising different materials, invalidating the homogeneity

assumption. We therefore performed an FEM simulation based on the fluctuation-dissipation

theorem [317, 318], where we simulate the thermo-refractive noise of a Si3N4 microresonator

embedded in a SiO2 substrate, using the actual geometry.

The Fluctuation-Dissipation Theorem (FDT) is a valuable tool for studying stationary thermal

noises. To simulate thermorefractive noise (TRN), we closely follow the treatment of Ref. [318]1.

1The treatment is pedagogically explained in this YouTube video: COMSOL simulation tutorial: Thermal Noise
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Table A.1: Physical properties used for both the theoretical models and FEM simulations of
the thermo-refractive noise of Si3N4 micoresonators

Physical properties Values
Density (ρ) 3.29×103 kgm−3

Refractive index (n0) 1.996
Thermo-optic coefficient (dn/dT ) 2.45×10−5 K−1

Thermal expansion coefficient 1/l (dl/dT ) 3.30×10−6 K−1

Thermal conductivity (κ) 30 Wm−1 K−1

Specific heat capacity (C ) 800 Jkg−1 K−1

Consider a physical quantity that one wants to investigate, y = ∫
x (⃗r )×q (⃗r )d 3r , where x is the

generalized coordinate of this given system and is driven by a small, harmonic, generalized

probe force f = F0 cos(ωt)q (⃗r ) conjugated with x. Then, the dissipated energy Wdiss of the

system can be calculated over one period of the force oscillation. Last, the fluctuation (one-

sided power spectral density) of the observable y can be expressed as

Sy (ω) = 2ℏ
Wdiss

πF 2
0

coth(
ℏω

2kB T
). (A.4)

In our case, as we want to simulate the frequency fluctuation of the resonator, we choose our

fluctuation observable as δω
ω ≈−∫

δΘ(⃗r )ϵ0
√
ϵ1(⃗r )β(⃗r )|e (⃗r )|2, where the temperature fluctua-

tion δΘ(⃗r ) is chosen as our generalized coordinate. Here, β links the permittivity ϵ= ϵ0 +ϵ1 to

the temperature fluctuation through δϵ= 2nβδΘ, and e⃗ (⃗r ) = E⃗ (⃗r )/
p

WWGM. The generalized

force (which is entropy) is set to S = F0 cos(ωt )ϵ0
√
ϵ1(⃗r )β(⃗r )|e (⃗r )|2. We solve the heat transfer

function iωρCv Θ̃(⃗r ,ω)+κ∇2Θ̃(⃗r ,ω) = iωT S̃ (⃗r ,ω) of the optical structure in the frequency

domain, and calculate the dissipated energy according to Wdiss =
∫

πκ
ωT |gradΘ̃(⃗r ,ω)|2d 3r . The

fluctuation density Sδω/ω(ω) can thus be calculated by inserting Wdiss into Eq. A.4.

The simulation was performed using FEM software in the axial symmetry case. We modeled

our resonator geometry as a ring waveguide embedded inside the SiO2 cladding, with air as the

top boundary. First, the eigenfrequency problem for the electromagnetic waves in the chosen

geometry was solved for different azimuthal numbers to find the eigenfrequencies and their

corresponding optical mode profiles. Then, the mode profile of one chosen eigenmode was

used as a parameter for the probe force, which is added as a heat source in the heat transfer

problem. The frequency of the probe force is scanned, and for each frequency, Sδω/ω(ω) is

calculated following Eq. A.4 from the dissipated energy of the system solved from the heat

transfer problem.

We can now compare the FEM simulation results with the theoretical expressions (see Fig. A.1).

Because the thermal properties of Si3N4 depend on the material characteristics and the

fabrication process, they can exhibit significant variation. We use the median values of

the physical properties reported in the literature for both the theoretical predictions and

in Whispering Gallery Mode Resonators
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A.1 Fundamental thermal noises

the FEM simulations (see Table A.1). The optical mode parameters used in Eq. (A.2) and

Eq. (A.3) are retrieved from FEM simulations of the Si3N4 microresonators. We work with

fundamental TE modes of waveguide ring resonators (l = m). For the scaling with ring radius,

the simulation curves match the infinite heat bath theory Eq. (A.2) well. At the same time, the

deviation from the thermal decomposition method becomes more significant as the radius

increases. It indicates that, according to FEM simulations, Si3N4 microresonators experience

thermo-refractive noise more similar to microspheres at high frequency. In contrast, at low

frequencies, the noise is reduced due to the cladding region (SiO2) and the chip geometry. The

measurement results, the simulation curves, and the infinite heat bath curves are compared

in Fig. A.3.

Due to the R−1 scaling and the strong light confinement the Si3N4 waveguide offers, the com-

puted spectral density of thermo-refractive frequency noise for resonators with FSR ranging

from 20 GHz and 1 THz is sufficiently high to be probed without a highly pure and stable laser.

In crystalline microresonators, the much larger mode volume and smaller thermo-optic coef-

ficient (dn/dT ) make it much more challenging to measure TRN [320], and correspondingly it

is typically not a practical limit.

A.1.2 Measurement of thermorefractive noise

The measurement scheme here (illustrated in Fig. A.2(a)) employs a balanced homodyne setup

to measure the phase fluctuations of the transmitted light caused by the cavity frequency

noise. The cavity frequency noise is calibrated using a calibration tone. The laser (external

cavity diode laser at 1550nm with a linewidth of ∼ 30 kHz) is locked to the cavity resonance

via the Pound-Drever-Hall (PDH) locking method [66] with a feedback bandwidth of a few

kilohertz. The power level is sufficiently low to avoid unwanted thermal and nonlinear optical

effects.

In order to provide an absolute calibration of our measurement, we use a calibration tone

generated by phase modulating the RF tone applied to the acousto-optic modulator (AOM). We

find that at low modulation frequency <1 MHz, conventional EOM exhibits residual amplitude

modulation. A modulation depth of 1.14 rad is calibrated by sideband fitting using heterodyne

detection. The calibration tone induces an extra phase modulation of the light, transduced

by the cavity, and results in a narrow peak in the frequency noise spectrum. Because the

frequency modulation depth is known for the calibration peak, we can use it to calibrate the

absolute magnitude of the corresponding homodyne signal. The same technique (but with

EOM at high modulation frequency) is also used to measure the frequency noise of FP cavity

in Section 2.3.1. The modulation frequency and the modulation depth are chosen at 50 kHz

and 1.14 rad to be outside the PDH locking bandwidth and to keep the frequency modulation

depth smaller than the cavity linewidth.

The characterized samples are integrated Si3N4 microresonators with radius R ∼ 23−1200µm,

and FSR ranging from 1 THz to 20 GHz. The Q-factors of these microresonators fabricated by
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Figure A.2: (a) Balanced homodyne setup for measuring thermo-refractive noise of the Si3N4

microresonator. The electro-optic modulator (EOM) phase modulates the light at 140 MHz to
generate the PDH error signal for locking the laser to the cavity mode. The AOM is modulated
with an RF tone with a central frequency of 80 MHz. The RF tone is then phase modulated at
50 kHz with a 1.14 rad modulation depth, which provides an absolute calibration peak for the
noise measurements. A piezo mirror is used in the local oscillator path to lock the homodyne
at the phase quadrature. The measurement bandwidth is limited by the detector bandwidth
of 80 MHz. (b) Calibrated thermo-refractive frequency noise spectra measured using different
probing power. A Si3N4 microresonator with free spectral range of 1 THz was probed with
1µW to 120µW of optical power. The bottom line shows the shot noise level with 1µW of input
optical power. The normalized units utilized in the inset figure are obtained by integrating
over 200 kHz to 2 MHz and dividing by the average of the integrated values. It indicates that
the probe is weak enough to avoid other laser-induced thermal effects (e.g., photothermal
noise) and reveals the power-independence expected for thermo-refractive noise.

296



A.1 Fundamental thermal noises

the photonic Damascene reflow process [305, 306] are typically Q > 107. The measured noise

spectrum is thus filtered by the cavity resonance at high offset frequencies. The resonance

linewidth of each microresonator and the response function of the bias tee before the spectrum

analyzer are measured and compensated for through data post-processing.

The first thing we did was to verify that the noise we measured was not stimulated by the

probe laser, that is indeed fundamental thermal fluctuation of the resonator itself. We verified

the power-independent nature of thermo-refractive noise (as expected from Eqs.1-3) by per-

forming an input power sweep (shown in Fig. A.2(b)). The frequency noise level remains the

same when varying the laser power of the probe signal by more than two orders of magnitude

(from 1µW to 120µW), showing that photothermal noise (frequency noise driven by optical

absorption) is not making a significant contribution.

We next investigated the dependence on the optical mode volume. Fig. A.3 (c) presents the

measurement results for four different cavity radii, together with the corresponding theoretical

curves and FEM simulation curves. The observable background noise sources arise from

local oscillator shot noise, several technical spikes, and the calibration peak at 50 kHz. The

calibration peaks in the off-resonance noise spectrum and the LO shot noise spectrum result

from residual amplitude modulation from the AOM. However, by utilizing phase modulation

of the AOM RF tone, a signal-to-noise ratio of 20 dB can be obtained for the calibration peak.

Good agreement of the measured spectra with the simulation curves for both frequency

dependence (∝ω−1/2) and radius dependence (∝ R−1) is observed, which also confirms the

validity of Eq. (A.2) as a theoretical prediction of TRN (at frequencies above 10 kHz) in the Si3N4

microresonator platform. By assuming that the spectrum matches the FEM simulation in the

low-frequency range, the total frequency fluctuations due to TRN could be retrieved through

integration over the high-frequency experimental data and the low-frequency FEM curves (the

latter contributes less than 1% of the total frequency variance), e.g. the 1 THz microresonator

has a resonance frequency instability of around 240 kHz, which agrees well with our previous

rough estimation of 150 kHz. The agreement further indicates that the heat exchange with the

surrounding environment is mainly responsible for generating thermo-refractive noise in this

system. However, in the low-frequency range, the approximation of a homogeneous medium

in Eq. (A.2) will break down due to heat exchange with the media outside the waveguide, as

is indicated by the multiple saturation steps of the FEM simulation curves at low frequency

shown in Fig. A.1. Though the heat exchange with the outer layer makes it difficult to derive

a simple expression for the thermo-refractive noise in Si3N4 microresonators, it offers a

possibility to bypass the thermal limit [321], which we will discuss in the next section. The

design of such a thermal-noise-reduced photonic microresonator will be more critical when

more applications truly reach the thermal limit of their performance, e.g., to realize integrated

ultra-narrow linewidth lasers.
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Figure A.3: Verification of the size dependence of thermo-refractive noise in integrated
Si3N4 microresonators. (a) SEM image of a 1 THz-FSR Si3N4 microresonator ring (dark blue).
(b) SEM image of the waveguide cross-section. The cross-section image is color-shaded
to help identify different regions. (c) Thermo-refractive noise measured in integrated Si3N4

microresonators with free spectral ranges of 1 THz, 200 GHz, 100 GHz and 88 GHz. The 88 GHz-
FSR sample has a bigger width (2.0µm) compared to other samples (1.5µm) and there is some
run to run variation in sidewall angles. A 30-point moving average was applied to the data.
The dotted lines show the FEM simulation results, and the dashed lines show the theoretical
predictions from Eq. (A.2). Data below 10kHz were truncated due to the excess locking noises,
and also data above 10 MHz due to the detector’s nonlinear response.

A.1.3 Thermal noise cancellation

We have also investigated the possibility of using TiO2 as a thin cladding layer to reduce

the TRN of the waveguide mode. In the literature, TiO2 exhibits a negative thermo-optic

coefficient dn/dT ∼−10−4 K−1. By counter balancing the positive thermo-optic coefficients of

Si3N4 (dn/dT = 2.45×10−5 K−1) and SiO2 (dn/dT = 1.29×10−5 K−1), TRN can be suppressed

at low frequencies ω (< 100kHz) where the thermal wavelength λ∼
√

k
ρCω > 10µm is much

larger than the waveguide cross-section dimensions.

We simulated the TRN of a structure with a thin layer of TiO2 grown directly on top of the

Damascene Si3N4 waveguide (height 850 nm, width 2µm), shown in Fig. A.4. We find a sweet

spot where low-frequency TRN can be efficiently canceled by changing the thickness of the

TiO2 layer. When the frequency/thermal wavelength approaches that of the waveguide cross-

section dimension, the TRN can be enhanced due to the more significant heat dissipation due

to the temperature gradient at the boundary. Therefore, the TRN behaves like white noise at

the perfect cancellation point, with a cutoff frequency when the thermal wavelength is much

smaller than the TiO2 structure.

We fabricated some structure with TiO2 grown on a Damascene Si3N4 wafer to measure
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Figure A.4: FEM simulation results of thermo-refractive noise of varying TiO2 cladding
thickness on top of a 100-GHz FSR Si3N4 ring resonator. (a) TRN spectra of different TiO2

cladding thickness, showing a reduced low-frequency noise with the correct thickness of TiO2,
while the high-frequency noise always increases. (b) Mode profile of the fundamental TE
mode of the waveguide. (c-f ) Frequency-domain temperature distribution given a unity probe
entropy force, solved at different drive frequencies.
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modified TRN. However, the home-grown TiO2 layer exhibits polycrystalline property and

introduces significant optical loss. The quality factor of these resonators is reduced by more

than 100-fold, with a typical optical linewidth κ/2π∼ 5GHz. The added loss prevents us from

observing TRN, as the thermal noise is well below the shot noise level of the laser.

In our recent experiment [322], instead of using a heterogeneous structure to cancel TRN, we

observed a frequency-independent reduction of the TRN due to the pyroelectric effect in a

ferroelectric material lithium niobate (LN). The results were measured on a TE mode of the

Z-cut LN ring resonator. Essentially, the pyroelectric effect modifies the material response to a

temperature change in the following way,

dn

dT

∣∣∣∣
Pyro

= n3r13p

2ϵ
=−1.74×10−5 K−1 (A.5)

where r13 is the Pockels coefficient acting on the light field, and p =−8.3×10−5 CK−1m−1 is

the pyroelectric constant, which is due to the spontaneous polarization generated inside the

material when the temperature changes. The benefit of this approach is that the reduction of

TRN is frequency-independent, as it effectively modifies the material property. The downside

is the emergence of a new form of thermal charge noise [322] and the loss of engineering

degrees of freedom.

A.2 Kerr nonlinearity

High-quality-factor microresonators have been widely used for nonlinear optics applications.

These nonlinear effects include photothermal nonlinearity, Kerr-nonlinearity, electro-optic

effect, and stimulated Raman- and Brillouin-scattering. In the material platform of Si3N4, the

Kerr nonlinearity has been widely studied, which gives rise to optical parametric oscillations

that generate optical frequency combs. Before the onset of parametric oscillation, single-mode

nonlinear interaction can also generate squeezed optical states discussed in Section 3.1.

During the thesis study, I worked on both the generation of microcombs for the experiment of

electron-photon interaction and the generation of optical squeezing using Kerr nonlinearity.

Having understood the fundamental noise limit in our microresonator platform, we continue

to discuss the Kerr nonlinearity that could enable on-chip optical squeezers at radio frequency

bands. In Appendix B.9, we briefly summarize the theory of generating dissipative Kerr solitons

in microresonators. In this section, we discuss in detail the Kerr squeezing dynamics and how

different system noises influence the optical squeezing generation.

A.2.1 Single-mode Kerr squeezing

Heisenberg’s uncertainty relation sets the lower bound on the electric fields’ uncertainty

product at orthogonal phases, thus imposing quantum noise on all optical measurements.

However, nonlinear optics enables a path to circumvent this limitation by generating squeezed
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light, where the quantum uncertainty is redistributed. Not only does squeezed light enhance

precision measurements such as LIGO [323], it is also an essential component for continuous

variable quantum information and communication protocals [324].

The generation of squeezed light can be realized in various physical systems, from the very

first demonstrations with nondegenerate four-wave mixing using Na atomic vapors [325],

and optical fibers [326] to the recent demonstration of ponderomotive squeezing using op-

tomechanical interaction [327], all the way to the state of the art squeezed light source in

bulk nonlinear crystals [328] using parametric down-conversion. The system complexity of

these quantum light sources has been a significant barrier to their application to quantum

technologies. In particular, none of those mentioned above proof-of-principle experiments

are compatible with lithographically defined photonic integrated circuits, which are orders of

magnitude smaller in system size and significantly reduce implementation complexity.

Kerr squeezing relies on self-phase modulation to generate broadband squeezed light. In its

essence, the third-order optical nonlinearity imprints the intensity fluctuation of the light to

the phase fluctuation, reducing vacuum fluctuation in some quadrature angles (illustrated in

Fig. A.5). The physical principle is similar to that of the optomechanical squeezing that we

discussed in Section 3.1, except in the Kerr effect, the light drives the electrical dipoles of the

material, and in the optomechanical squeezing, the center-of-mass motion of the mechanical

object is driven.

Kerr squeezing has been realized in optical fibers [329], where optical pulses enhance the Kerr

nonlinear phase shift by reaching extremely high peak intensities. However, operating at a

power with quantum-limited noise in the continuous wave regime has been challenging to

reach the threshold. Recent advances [306] in the fabrication of integrated Si3N4 microres-

onators have enabled optical quality factors Q > 107, which means the parametric threshold

power is reduced to tens of µW for squeezed light generation [307]. The low threshold power

is directly related to the ultra-high optical quality factor and reduces the requirements for

laser noise. Further increases in the quality factor would enable squeezed light generation

at even lower powers, thereby increasing the prospects for fully on-chip photonic quantum

information application.

In this section, we discuss the theoretical consideration of observing Kerr squeezing in Si3N4

microresonators, including the nonlinear quantum optical equations that generate squeez-

ing, as well as the classical noise contributions, followed by the next sections on dissipative

quantum feedback, as well as a new thermal noise source we identified.

Linearized quantum Langevin equations

We omit theˆsymbols in this section because there are too many quantum operators. The

Hamiltonian of the system consisting of a single optical mode exhibiting Kerr nonlinearity is
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expressed by

H = ℏω0a†a + ℏg

2
a†2a2, (A.6)

where a is the cavity photon annihilation operator. The self phase modulation strength g is

given by [307]

g = n2cℏω2

2n2Vmode
, (A.7)

the same as the one we defined in the previous section. Then, we can write down the Langevin

equations
d a

d t
=− i

ℏ
[a, H ]− κ

2
a +p

κexain +p
κ0bin. (A.8)

where we also include the internal loss channel bin. Going to the rotating frame of the laser

frequency ωlaser, we get

d a

d t
=−(κ/2+ i∆)a − i g a†a2 +p

κexain +p
κ0bin (A.9)

where ∆=ω0 −ωlaser is the laser detuning to the resonance frequency. We can see here that

g a†a is the Kerr-induced cavity frequency shift.

The mean field solution α could be solved by the steady-state equation

α(κ/2+ i (∆+ g |α|2)) =p
κexαin, (A.10)

which exhibits bi-stability upon reaching the parametric instability. This section assumes that

the laser is feedback-stabilized to the shifted resonance frequency, i.e., ∆+ g |α|2 ≈ 0.

Given the mean-field solution α, we can go to the new reference frame in the phase space

displaced by α, which essentially linearizes the equation using a →α+δa. By keeping only

the first-order fluctuations,

da

d t
=

[
M − κ

2
I
]

a+p
κexain +p

κ0b (A.11)

M − κ

2
I =

(
−κ/2− i (2|ϵ|+∆) −iϵ

iϵ∗ −κ/2+ i (2|ϵ|+∆)

)
(A.12)

ai =
(
δai

δa†
i

)
(A.13)

where we define the effective Kerr shift as ϵ= gα2. The eigenvalues for this matrix are

λ± =−κ/2±
√

|ϵ|2 − (∆+2|ϵ|)2. (A.14)

The onset of parametric instability occurs when Re(λ) > 0, which corresponds to a stability

region ||ϵ|+ 2∆
3 | ≤

p
∆2−3κ2/4

3 . However, when we lock the laser to the shifted cavity resonance

as ∆+|ϵ|, the eigenvalues become λ± =−κ/2, which means the system is always stable.
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A.2 Kerr nonlinearity

QLE in the quadrature basis

As optical squeezing manifests as reduced quadrature variances, we proceed with the analysis

by casting the QLE in the quadrature basis. We introduce two orthogonal quadrature operators

with an arbitrary quadrature angle θ

Y1 = (ae−iθ+a†e iθ)/
p

2 (A.15)

Y2 = −i (ae−iθ−a†e iθ)/
p

2. (A.16)

Here we use the intra-cavity mean field α as the phase reference, such that α= |α| and ϵ= |ϵ|.
The defined quadratures are the amplitude and phase quadratures of the light, with θ being

the phase of the mean field a = |a|e iθ.

We define here also the inverse relation between the quadrature operators and field operators,(
a

a†

)
= [T ]

(
Y1

Y2

)
=

 e iθp
2

i e iθp
2

e−iθp
2

−i e−iθp
2

(
Y1

Y2

)
. (A.17)

By putting (A.17) into (A.11), and left multiply by T −1 =
 e−iθp

2
e iθp

2
−i e−iθp

2
i e iθp

2

, we have the equation

of fluctuation in the quadrature bases

d

d t

(
δY1

δY2

)
=

(
G1 H1

H2 G2

)(
δY1

δY2

)
+

(
J1

J2

)
(A.18)

where

Gi = −(κ/2± i
g

2
[α2e−2iθ−α∗2e2iθ]) (A.19)

Hi = ±(∆+2g |α|2)− g

2
[α2e−2iθ+α∗2e2iθ] (A.20)

Ji = p
κexδY in

i +p
κ0δY b

i . (A.21)

From here, we can perform Fourier transformation2 on (A.18) and obtain the Fourier-domain

solution Ỹi ,

Ỹi =
Hi J̃ j − J̃i (G j + iω)

(Gi + iω)(G j + iω)−Hi H j
. (A.22)

As we are using the same port to couple in and out the signal, according to the input-output

relation, we have

Ỹ out
i = Ỹ in

i −p
κexỸi =

(
[(G j + iω)(κex +Gi + iω)−Hi H j ]Ỹ in

i −Hi (κexỸ in
j +p

κexκ0Ỹ b
j )

+pκexκ0Ỹ b
i (G j + iω)

)
/
(
(Gi + iω)(G j + iω)−Hi H j

)
. (A.23)

2Note that here the sign of ω is opposite to the rest of the thesis chapters
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Here, Y out and Y in do not share the same quadrature angles, as their field phase changes when

combined with the cavity mean field. If we define Y out(θ) as the e.g. amplitude quadrature,

then that for Y in would be Y in(θ−∆θαin/αout ).

Also note that from here, the SX X (ω) denotes the double-sided spectrum and the SX (ω) =
SX (ω)+SX (−ω) denotes the single sided spectrum. The noise spectrum could be obtained by

taking a self-correlation of Eq. A.23,

Sout
Yi

(ω) =
(
|(G j + iω)(κex +Gi + iω)−Hi H j |2Sin

Yi
(ω)+κ2

ex|Hi |2Sin
Y j

(ω)

+κexκ0(|G j + iω|2Sb
Yi
+|Hi |2Sb

Y j
)−2κexHi (G j (κex +Gi )−Hi H j −ω2)S

in
Yi Y j

(ω)
)

/
∣∣(Gi + iω)(G j + iω)−Hi H j

∣∣2 . (A.24)

assuming Sin
Y1Y2

= i
2 +SYi Y j and Sin

Y2Y1
=− i

2 +SYi Y j . The i
2 terms come from the fundamental

quantum fluctuation and result in a ±κexκ0Hiω term of the probe field, which cancels each

other in symmetrized detection.

One thing to notice is that the vacuum field contribution Sb
Y that comes from cavity internal

loss differs from that of the the input field Sin
Y . Optical squeezing results from interference

between the cavity field and the vacuum input at the cavity coupling port. Therefore, vacuum

contribution from the loss channel will not contribute to squeezing due to the absence of field

interference.

The quadrature variance at different pump power is plotted in Fig. A.5, when other classical

noise sources are not considered.

In Appendix B.10, we discuss in detail how classical noise, including thermorefractive and

laser noise, affects the observation of squeezing. We show the simulated spectrum in Fig. A.6,

considering all the classical noise sources and the homodyne response, showing that the Kerr

nonlinearity with the presence of classical noise sources can still generate squeezing near the

cavity bandwidth frequency.

A.3 Absorption-induced dissipative feedback

Having understood how classical system noises influence the generation of optical squeezing,

we analyze the dissipative dynamics in the system dominated by the optical absorption-

induced dissipative feedback, a nonlinearity that we measured to be as strong as Kerr nonlin-

earity. The understanding of this mechanism, as well as its interplay with the Kerr nonlinearity,

is essential for quantifying the feasibility of observing optical squeezing.
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Figure A.5: (a) Concept of generating squeezed light using Kerr nonlinearity in chip-based
Si3N4 ring resonators. (b) Simulated quadrature variances in dB scale (shot noise 0dB), as a
function of quadrature angles and nonlinear cavity shift ϵ= gα2. The laser is initially detuned
by ∆=−2κ.
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Figure A.6: (a) Simulated Kerr squeezing spectrum taking cavity frequency noise (TRN), laser
phase and amplitude noise, and homodyne response into account, showing squeezing near
the cavity bandwidth edge. The ring resonator has a FSR of 40 GHz, with a quality factor of
27×106, and is pumped at the shifted cavity resonance. (b) 2D map of the quadrature variance
at 10-MHz Fourier frequency offset.
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δas,in
aex,in δaa,in

aa,out Ia

aex,out

Out-of-Loop In-Loop

Dissipative Feedbacka

ˆ
ˆ ˆ

ˆ ˆ
ˆ

ˆ

κex

κs

κa

Figure A.7: Scheme for dissipative feedback in an optical cavity. The intracavity field â is
coupled to several different reservoirs, i.e. the laser input âin, the vacuum noise from the
intrinsic optical loss δâ0 and the dissipative absorption δâa . The in-loop measurement of
absorption field δâa , results in the absorption flux Îa, which is fed back to the optical cavity
(black dashed curve). The out-of-loop measurement of âout is accessible to observers for
coherent and incoherent spectroscopy.

Photothermal cavity frequency shift

When a cavity is pumped by laser light, the optical absorption provides a similar nonlinearity as

the Kerr frequency shift and even shares the same scaling to optical power. In most integrated

photonics platforms [3, 4, 5], even with state-of-the-art devices, photothermal nonlinearity is

on the same order of magnitude as the Kerr nonlinearity and is typically larger. Therefore, it

has been speculated that absorption-induced thermal nonlinearity can also serve as a resource

in squeezing generation.

Our theoretical analysis shows that thermal nonlinearity alone can not produce optical squeez-

ing, but it could help enhance the Kerr squeezing in some frequency bands when coexisting

with Kerr nonlinearity. In this section, we derive the formalism of absorption-induced dissipa-

tive feedback to analyze these effects quantitatively.

First, we need to understand the absorption phenomenon conceptually. One could imagine a

point defect on the ring resonator, which absorbs a small portion η of light for each round trip.

We model it as a beam splitter. If we denote the cavity mode as a, the second input vacuum

port mode as b, the absorption field as b′, and the remaining cavity field as a′, then we will

have

a′ = √
1−ηa + i

p
ηb (A.25)

b′ = i
p
ηa +√

1−ηb. (A.26)

Therefore, we can write the update function of the cavity field as

d

d t
a = νFSR · [(

√
1−η−1)a + i

p
ηb] =−νFSR · η

2
a +νFSR · i

p
ηb. (A.27)

With this expression, we can identify that −νFSR · η2 =−κabs
2 , and νFSR · i

p
ηb =p

κabsbin, using
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A.3 Absorption-induced dissipative feedback

the following relations: η= κabs
νFSR

and b =− ip
νFSR

bin. These correspondences can be mapped

precisely to a Langevin equation that introduces the absorption as an additional loss channel.

The absorption-induced cavity frequency shift ∆th(t) can be expressed as a function of the

absorbed light intensity operator b′†b′ as

∆th = g ∗νFSR ·b′†b′ = g ∗[κabsa†a+(νFSR−κabs)b†b+i
√
κabs(νFSR −κabs)(ab†−a†b)]. (A.28)

Here, ∗ represents the convolution operation, and g (t ) is the cavity frequency response to a

single photon absorption. Note that the cavity frequency detuning is a classical observable,

but we treat it as a quantum operator in the equation above. The details of the validity of this

treatment are discussed in Appendix B.7. The fluctuation of the cavity frequency shift can be

further simplified to

δ∆th = g ∗ [κabs(αδa† +α∗δa)+ i
√
κabs(νFSR −κabs)(αδb† −α∗δb)]

= g ∗ [κabs(αδa† +α∗δa)−p
κabs(αδb†

in +α∗δbin)] (A.29)

Compared to the Kerr frequency shift ∆= g a†a, we can easily identify an equivalent thermal

coefficient gth = gκabs. With this new definition, we can rewrite the thermal frequency shift as

∆th = gth|α|2 (A.30)

δ∆th = gth ∗ [(αδa† +α∗δa)− 1p
κabs

(αδb†
in +α∗δbin)]. (A.31)

With these results, we can write down the linearized QLE for the cavity field a in the presence

of an absorption channel bin,

d

d t
a = [−κ/2− i [(2g + gth + gth∗)|α2|−∆]

]
a − i (g + gth∗)α2a†

+i
gthp
κabs

∗ (α2δb†
in +|α|2δbin)+p

κc ain +p
κ0b0 +p

κabsbin + iαδ∆TRN. (A.32)

Here, the ∗ represents the convolution operations again, and we neglect δ of the field fluctua-

tion operator δa.

There is actually an easier way to derive this QLE. We can treat the absorption as another

input-output port for the cavity with rate κabs. The absorption traveling field operator can be

easily written as

b′
abs = bin −p

κabsa. (A.33)

With this relation, there is no need to introduce mode b as was done in Eq.(A.25).

Back to the thermal response gth(t ) of the cavity, here we discuss a simplified modeling of this

function. The general modeling and simulation of this response function are discussed in

Section A.3.2. We assume the effective temperature T of the optical mode obeys a first-order
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Appendix A. Dissipative dynamics in photonic integrated circuits

diffusion equation with a linear damping with rate γth,

∆Ṫ (t ) = −γthT (t )+ g1b′†b′ (A.34)

∆T (t ) =
∫ t

−∞
g1e−γth(t−s)b′†(s)b′(s)d s (A.35)

δ∆th(t ) = g2δ∆T (t ) =
∫ t

−∞
g1g2e−γth(t−s)(βδb′†(s)+β∗δb′(s))d s (A.36)

= gth ∗ [(αδa† +α∗δa)− 1p
κabs

(αδb†
in +α∗δbin)], (A.37)

where gth(t) = g1g2e−γtht . Note that here, it is an oversimplification of the cavity response.

Using a VNA, we can directly measure this response in the experiment and retrieve gth(ω) in

the frequency domain. In the following, we assume a general gth(ω).

Next, we take the FT of Eq.(A.3) and solve the QLE in the frequency domain,

a(ω) =
(
−i [g + gth(ω)]α2a† + i

gth(ω)p
κabs

(α2δb†
in +|α|2δbin)+p

κc ain +p
κ0b0 +p

κabsbin

+ iαδ∆TRN(ω)

)
/
(
i (ω+ [(2g + gth + gth(ω))|α2|−∆])+κ/2

)
= Θa(ω)a† +Θb†

in
(ω)b†

in +Θbin (ω)bin +Θain (ω)ain +Θb0 (ω)b0 +Θ∆(ω)δ∆TRN

= χbin (ω)bin +χb†
in

(ω)b†
in +χain (ω)ain +χa†

in
(ω)a†

in

+χb0 (ω)b0 +χb†
0
(ω)b†

0 +χ∆(ω)δ∆TRN (A.38)

where we defined the following susceptibilities

χi (ω) = Θi (ω)

1−Θa(ω)Θ∗
a(−ω)

, i = ain,b0 (A.39)

χ j (ω) =
Θa(ω)Θ∗

j † (−ω)

1−Θa(ω)Θ∗
a(−ω)

, j = a†
in,b†

0 (A.40)

χk (ω) =
Θk (ω)+Θa(ω)Θ∗

k† (−ω)

1−Θa(ω)Θ∗
a(−ω)

, k = bin,b†
in,δ∆TRN. (A.41)

By a simple examination of Eq. A.38, the introduction of photothermal effect modifies all of

the susceptibilities, but especiallyΘa ,Θb†
in

, andΘbin . It is tough to analyze the final effect of

photothermal frequency shift directly; thus, we resort to numerical simulation first. Conceptu-

ally, introducing the photothermal effect results in an intra-cavity dissipative feedback loop,

illustrated in Fig. A.7, and modifies the noise properties inside the cavity.

However, as our measurement is on the cavity output field, we proceed to calculate both the

in-loop absorption field signal and the out-of-loop cavity output field signal by

aout = ain −p
κc a (A.42)

bout = bin −p
κabsa. (A.43)
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A.3 Absorption-induced dissipative feedback

Based on which signal sout (s = a,b) we want to analyze, we need to update all the previously

defined susceptibility by χi (ω) ← δi ,sin −
p
κc/absχi (ω).

When looking at a specific quadrature angle Xθ = soute−iθ+s†
oute

iθ

p
2

, we have the following expres-

sions

sout(ω) = χbin (ω)bin +χb†
in

(ω)b†
in +χain (ω)ain +χa†

in
(ω)a†

in

+χb0 (ω)b0 +χb†
0
(ω)b†

0 +χ∆(ω)δ∆TRN (A.44)

Xθ(ω) = 1

2

∑
i=ain,bin,b0

[
(χi (ω)+χi † (ω))e−iθ+ (χ∗i † (−ω)+χ∗i (−ω))e iθ

]
q i

+ i

2

∑
i=ain,bin,b0

[
(χi (ω)−χi † (ω))e−iθ+ (χ∗i † (−ω)−χ∗i (−ω))e iθ

]
p i

+(χ∆(ω)e−iθ+χ∗∆(−ω)e iθ)δ∆TRN (A.45)

= 1

2

∑
i=ain,bin,b0

[χq i q i + iχp i p i ]+ 1p
2

(χ∆(ω)e−iθ+χ∗∆(−ω)e iθ)δ∆TRN.

We need to pay special attention again to the definition of quadrature phases when the laser is

detuned. It does not impose a problem when the laser is on resonance. We can proceed to

calculate the power spectral density as

SXθ(ω) = 1

4

∑
i=ain,bin,b0

[|χq i |2Sq i +|χp i |2Sp i +2Re
[

iχp iχ∗q i Sq i p i

]
]

+1

2
|χ∆(ω)e−iθ+χ∗∆(−ω)e iθ|2STRN. (A.46)

If we proceed with the derivation by removing classical laser noises, Kerr nonlinearity, and

keeping only the photothermal term and the cavity TRN, with the help of Mathematica, there

is a simplified expression for the cavity output field when the laser is on resonance,

SXθ
(ω) = 1

2
+ 2|α|2κc sin2θ

(ω2 + κ2

4 )

(
STRN + |gth(ω)|2|α|2

κabs

)
. (A.47)

which is an incoherent summation of the fundamental thermal noise of the cavity (TRN) and

the laser-driven photothermal frequency noise proportional to the laser power.

We plotted the simulated spectrum of the cavity output field and the absorbed field in Fig.A.8(a)

with only the photothermal effect, and in Fig.A.8(b) with both the photothermal and Kerr effect.

The in-loop absorbed field is efficiently squeezed with the photothermal effect. Squeezing

is completely absent for the out-of-loop cavity output field when only the photothermal

effect is present. When the Kerr effect is present, the squeezing is present but is limited to

the high-frequency band. In the next section, we detail the effect of the coexistence of Kerr

and photothermal nonlinearity and how thermal nonlinearity can help improve the Kerr

squeezing.
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Cavity output �eld Absorption �eld
(a)

(b)

100 kHz

1 MHz

Cavity output �eld Absorption �eld

Figure A.8: Spectra of the cavity output field and the absorption field when considering (a)
only the photothermal effect, and (b) both the photothermal and Kerr nonlinearity. The
absorption field generally exhibits in-loop squeezing, whereas the cavity output field only
shows squeezing with the Kerr effect. The 2D plots are evaluated at Fourier frequency of
100 kHz for (a) and 1 MHz for (b).
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A.3 Absorption-induced dissipative feedback

A.3.1 Absorption enhanced Kerr squeezing

In this section, we consider first only the photothermal effect and later also the Kerr effect.

To illustrate the physical effects cleanly, we neglect classical noise sources such as TRN and

laser noise. In this simplified setting, we aim to analytically derive the effect of photothermal

feedback, showcasing that dissipative feedback can sometimes be useful.

As we discussed in the previous section, we consider again an optical cavity coupled to the

input field âex,in = (āin +δain) at a rate of κex, the internal scattering field δâs,in at a rate of κs,

and the absorption field δâa,in at a rate of κa. Considering the photon absorption-induced

temperature change δT , we have

˙̂a = [i (∆−∆th)− κ

2
]â +p

κexâex,in +p
κsδâs,in +p

κaδâa,in (A.48)

with ∆ =ωL −ωc , and ∆th = g2δT the cavity frequency shift via optical absorption induced

temperature change δT with coefficient g2.

The input-output relation of the absorption field is,

âa,out = δâa,in −p
κaâ, (A.49)

with corresponding absorbed photon flux,

Îa = â†
a,outâa,out. (A.50)

The absorption photon flux is composed of two terms, i.e., a DC term Īa = κa|ā|2, and a

fluctuating term,

δÎa = κa(āδâ† + ā∗δâ)−p
κa(ā∗δâa,in +δâ†

a,inā). (A.51)

The dynamics of the temperature change due to the optical absorption is simplified by the

following diffusion equation, δṪ (t ) =−γthδT (t )+ g1 Îa, where g1 Îa is the rate of the tempera-

ture change due to the optical absorption, and γth is the thermal decay rate. The macroscopic

apparatus, i.e., δT , is not a quantum operator. Our treatment here is similar to that of the

measurement-based feedback of mechanical oscillator in Section B.7, that a quantum descrip-

tion is identical to that of a proper symmetrized formalism. The QLE of the linearized optical

field fluctuations can be obtained in the frequency domain,

δâ =χc,0(ω)
(
σd (ω)κa(δâ +δâ†)+p

κaδâd +p
κexδâex,in +p

κsδâs,in

)
, (A.52)

with the intrinsic optical susceptibility,

χc,0(ω) = 1

κ/2− i (ω+ ∆̄)
, (A.53)

and ∆̄=∆− g1g2κan̄c /γth, incorporating the additional static cavity frequency shift. As we
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defined in the previous section, in the following, we use gth(ω) = g1g2/(−iω+γth) to represent

a general thermal response of the structure whenever possible. The mean intracavity photon

number here is n̄c = |ā|2 = κex|āin|2/(κ2/4+ ∆̄2). We note that the intracavity field is now

coupled to an effective dissipative reservoir,

δâd = (1−σd (ω))δâa,in −σd (ω)δâ†
a,in, (A.54)

where we introduce a unitless photon number enhanced dissipation coefficient,

σd (ω) =−i gth(ω)n̄c , (A.55)

with σ∗
d (−ω) =−σd (ω). A constant single photon dissipation coefficient is given by σ0(ω) =

σd (ω)/n̄c .

Novel dynamics arise in the cavity field (cf. Eq. A.52), which can be interpreted as a closed-

loop dissipative feedback to the optical cavity as shown in Fig. A.7. The photon absorption

manifests as an in-loop photodetection, resulting in a feedback path to the optical cavity, i.e.,

by changing the cavity frequency via photothermal effects. The noise spectral density of the

in-loop photon flux fluctuation δIa, when normalized to shot noise, is given by

SδIa (ω) = ∣∣1−χfb(ω)
∣∣−2 , (A.56)

where

χfb(ω) =σd (ω)κa
(
χc,0(ω)−χ∗c,0(−ω)

)
. (A.57)

The dissipative feedback results in a squashed or anti-squashed in-loop optical field. We can

obtain the modified optical susceptibility

χc,eff(ω) =χc,0(ω)/(1−χfb(ω)). (A.58)

In the case of ∆̄≪−κ , the PSD of the in-loop photon flux at ω∼ |∆̄| is,

SδIa (ω) ≃
∣∣∣∣1+ 2n̄cκa

Im[gth(ω)−1]κ

∣∣∣∣−2

, (A.59)

and the effective optical susceptibility can be further simplified,

χc,eff(ω) = 1

κeff/2− i (∆̄eff +ω)
, (A.60)

with a modified effective cavity linewidth

κeff = κ−2κa Re(σd (ω)), (A.61)

312



A.3 Absorption-induced dissipative feedback

and a modified effective detuning

∆̄eff = ∆̄+κa Im(σd (ω)), (A.62)

where ∆̄=∆−n̄cκa gth(0). Due to the squashed or anti-squashed absorbed photon fluctuations,

the dissipative feedback leads to modified cavity susceptibility for the input probing field.

In practice, the photothermal coefficient g2 can have different signs at room and cryogenic

temperatures for different materials, e.g., silicon. For g2 < 0, we have κeff > κ and ∆̄eff > ∆̄;

while for g2 > 0, we have κeff < κ and ∆̄eff < ∆̄.

As shown in Eq. A.52, the intracavity field is coupled to an effective dissipative reservoir δâd .

Different from the vacuum noise, the noise operator for the dissipative reservoir δâd satisfies

the following correlations,

〈δâ†
d (ω)δâd (ω′)〉 =−σd (ω)σd (ω′)δ(ω+ω′)2π

〈δâd (ω)δâ†
d (ω′)〉 =(1−σd (ω))(1+σd (ω′))δ(ω+ω′)2π,

(A.63)

which may result in incoherent excess noise and noise correlation for the intracavity field.

Here, we see that dissipative feedback modifies both the cavity response and the bath noise.

These effects have been observed in optomechanical systems using microresonators [2, 330],

and manifest as a Kerr-type nonlinearity, where the cavity frequency shift is proportional

to the intracavity photon number. Kerr medium has been suggested as a quantum non-

demolition (QND) device in a feedback loop to generate optical squeezing [331, 332]. In such

QND feedback, the intensity of the in-loop optical field is measured and feedback to the

phase. The dissipative feedback is fundamentally different from a QND feedback, e.g., Kerr

squeezing [331, 332], as excess noise always arises in the out-of-loop field we detect due to

uncorrelated noise from the in-loop field âa,in, i.e., photon absorption.

In the following, we consider a cavity with coexisting dissipative feedback via photothermal

effects and Kerr nonlinearity to explore the interplay between them. We can obtain the

quantum Langevin equations of the field fluctuation in the frequency domain again,

δâ =χc,0(ω)
((

n̄cσ0(ω)κa − i n̄c gKerr
)

(δâ +δâ†)+p
κaδâd +√

κexδâex,in +p
κsδâs,in

)
(A.64)

where gKerr is the single photon nonlinear Kerr coupling rate [333] and χc,0(ω) is given by

Eq. A.53 with ∆̄ = ∆− (
κa gth(0)+ gKerr

)
n̄c . We are concerned with the symmetrized PSD of

the out-of-loop field quadrature, X̂θ = δâex,oute−iθ+δâ†
ex,oute

iθ. We focus on the simple case

where the laser detuning ∆̄= 0. For Kerr squeezing, i.e. gth = 0, the PSD takes the form,

SI,Kerr(ω) = 1− 16n̄cηcκsin(θ)gKerr
(
(κ2 +4ω2)cos(θ)−4n̄cκsin(θ)gKerr

)
(κ2 +4ω2)2 . (A.65)

where we assume an ideal detection and ηc = κex/κ. As expected, Kerr squeezing results in an

output field with minimum variance below the vacuum noise at an optimal angle.
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In contrast, for dissipative dynamics only, i.e., gKerr = 0, as we derived before in the previous

section, the PSD takes the form, SI,a(ω) = 1+Sex
I,a(ω), where the incoherent optical absorption

always results in excess noise, i.e., the photothermal noise,

Sex
I,a(ω) = 16n̄cκaκex sin(θ)2|gth(ω)|2

(κ2 +4ω2)
≥ 0. (A.66)

We note that this coincides with earlier experimental and theoretical works in optical systems

with intensity feedback, where in-loop photocurrent can be squashed while the out-of-loop

photocurrent always becomes anti-squashed [334, 335, 336]. Kerr nonlinearity, on the other

hand, demonstrates a QND detection of the in-loop optical field, which enables the Kerr

squeezing in the out-of-loop field, as expected [331, 332].

When Kerr nonlinearity and dissipative dynamics coexist, the total PSD is given by S I (ω) =
SI,Kerr(ω)+Sex

I,tot(ω), with total excess noise Sex
I,tot(ω) = Sex

I,a(ω)+Sex
I,c(ω) due to the dissipative

dynamics. The coherent dissipative dynamics result in an interference with the Kerr effect

Sex
I,c(ω) = 64n̄2

cκaκex sin2(θ)(
κ2 +4ω2

) Re

[
gth(ω)g∗

Kerr

κ−2iω

]
. (A.67)

We note that when |gth(ω)|2 +4Re[gth(ω)g∗
Kerr/(κ−2iω)] < 0, the total excess noise Sex

I,tot < 0,

which opens an interesting regime for dissipation improved Kerr squeezing. Such a regime is

independent of the intracavity photon number and the squeezing angle.

In Fig. A.9(a), we show the theoretical curves of estimated Kerr squeezing in a state-of-art

Si3N4 micro-ring resonators at optimal squeezing angles with realistic parameters [3]. Kerr

nonlinearity in such micro-ring resonator can lead to frequency comb and dissipative soliton

generation at low pumping powers (∼mW) [337], due to the extremely low optical loss (κ/2π<
20MHz). The red curve includes only Kerr nonlinearity, while the green curve considers

both the Kerr nonlinearity and the photothermal dynamics without other classical noise

sources such as TRN. As shown in Fig. A.9(a), the green curve exhibits excess noise at low

frequencies due to the incoherent dissipative dynamics while showing slight improvement

of Kerr squeezing at frequencies between 2MHz∼10MHz due to the coherent interference

between the dissipative dynamics and Kerr nonlinearity, in a very similar way of photothermal

mechanical instability discussed in Section 2.5. In practice, the Kerr squeezing is limited by

the detection efficiency and the thermorefractive noise [1, 311, 338].

A.3.2 Photothermal response simulation

In the earlier sections, we assumed a simplified one-pole thermal response in the theoretical

treatment of the temperature dynamics. In practice, the thermal response can be rather

complex as dissipative absorption in the microcavities can dissipate via different mechanisms,

such as radiation, conduction, and convection.
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Figure A.9: (a) Estimated Kerr squeezing with dissipative dynamics at optimal angles in a
Si3N4 micro-cavity. The noise spectral density is normalized to the shot noise floor (black
dashed line). The red curve corresponds to the case where the dissipative dynamics are
absent, while the green curve corresponds to the case where Kerr nonlinearity and dissipative
dynamics coexist. The green and red shade areas correspond to the excess noise and improved
squeezing due to dissipative feedback. (Parameters: κ/2π= 15MHz, κex/2π= 8MHz, κa/2π=
6MHz, κs/2π = 1MHz, γth/2π = 20kHz, g1g2/2π = −0.05Hz, gKerr/2π = −0.5Hz, and n̄c =
107) (b) Simulated cavity frequency response of different micro-cavities from finite element
simulations at room temperature, including a silicon OMC [339], silica micro-toroid [340], and
SiN ring resonator [3]. The detailed parameters in the FEM simulation are listed in Tab. A.2.

The thermal response can be obtained with finite element methods (FEM) simulations. We

first simulate the electric field distribution of the optical mode E⃗ (⃗r ). The bulk absorption

heating

P (⃗r ) = Pabsϵ0E⃗ (⃗r )× ϵ̂E⃗ (⃗r )/WE , (A.68)

can be added as a heat source in the heat transfer model, with ϵ̂ = ϵ̂0 + ϵ̂1 the permittivity,

and WE = ∫
ϵ0E⃗ (⃗r )× ϵ̂E⃗ (⃗r )dV the optical mode energy. The frequency component of the

temperature distribution T̃ (ω, r⃗ ) can be solved in the Fourier-domain heat equation,

iωρC T̃ +k∆T̃ = P̃ , (A.69)

where ρ is the density, C the heat capacity, and k the thermal conductivity. The cavity shift

frequency takes the form,

δωc (ω)

ωc
=− 1

WE

∫
T̃ (ω, r⃗ )ϵ0

√
ϵ(⃗r )

dn

dT
(⃗r )|E⃗ (⃗r )|2dV. (A.70)

In Fig. A.9(b), we show the cavity frequency responses of three different micro-cavities, i.e.,

silicon OMC, silica micro-toroid and Si3N4 ring resonator, at room temperature with an

absorption power P̃ (ω) = 1µW . The cavity frequency responses deviate from the single-pole

model that we used earlier. Multiple-pole models are typically required to fit the response [330].

The OMC has a much more significant relative frequency shift at DC than the other two types

of cavities due to the small mode volume, resulting in high-frequency poles in the MHz range.
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Table A.2: Physical properties used for the FEM simulations of the cavity frequency thermal
responses.

Physical properties Si3N4 Si SiO2

Density ρ (kgm−3) 3290 2329 2203
Refractive index n0 2.00 3.48 1.50

Thermo-optic dn/dT (10−5 K−1) 2.45 16.0 1.29
Thermal conductivity k (Wm−1 K−1) 30 130 1.38
Specific heat capacity C (Jkg−1 K−1) 800 700 703

Despite the large size of micro-toroids, their thermal bandwidth can be around MHz, e.g., in

Ref. [341]. For SiN micro-resonator, the bandwidth is typically in the kHz range, e.g., in Ref. [1].

The relevant material coefficients used in the FEM simulations are shown in Table A.2. In

addition to the geometric dependence, the device surroundings sometimes can even have

a more significant impact on the cavity frequency thermal response, e.g., gaseous Helium,

vacuum or liquid [330, 341].

A.4 Absorption spectroscopy

The framework of the photothermal dissipative feedback we developed can also be useful in

some classical applications. In this section, we show that with the framework we developed

in Section A.3, we can use the measured cavity nonlinear response function to calibrate the

cavity absorption rate κabs, which was previously hard to retrieve. In Appendix B.11, we also

detail the derived fitting function for the measured cavity response in a pump-probe scheme.

We performed this measurement [3] in the Si3N4 PIC platform where the nonlinear index

n2 is well known, such that the absorption rate can be easily retrieved. We also developed a

measurement technique [4] in the LiNbO3 (LN) PIC platform where the nonlinear index is

not well known, such that absorption rate and the nonlinear index can both be retrieved. We

describe the measurement techniques in the following sections and show that this technique

offers valuable insights to guide the optimization of PIC fabrication.

A.4.1 Silicon nitride microrings

Quantitative analysis of absorption loss rate

Like in the previous section, we distinguish two loss mechanisms, the intrinsic absorption and

scattering losses of our Si3N4 waveguides. The optical losses in the telecommunication band

have two main contributions: the Rayleigh scattering loss caused mainly by the waveguide

sidewall roughness and the absorption loss due to defects, e.g., hydrogen impurities. While

the hydrogen absorption loss can be efficiently eliminated via repeated thermal annealing of

Si3N4 at high temperature ∼ 1200◦C, efforts on loss reduction have mainly focused on reducing

waveguide roughness via optimized dry etching, wet etching, and etchless process. In addition,
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Figure A.10: Probing the absorption loss of Si3N4 microresonators via Kerr-nonlinearity-
calibrated thermal response measurements. (a) Experiment setup. ECDL: external-cavity
diode lasers. IM: intensity modulator. VNA: vector network analyzer. PBS: polarization
beam splitter. (b) Thermal simulation of the temperature distribution in the waveguide
structures. (c) Comparison of the loss values measured using the response measurement
and frequency-comb-assisted diode laser spectroscopy on a partially annealed sample with
prominent hydrogen absorption losses. This comparison reveals an approximate, wavelength-
independent, 12 MHz loss difference between the two datasets, which is presumed to be due
to intrinsic scattering loss. (d) For the two resonances at 1514 nm and 1618 nm shown in (c),
the measured (red) and fitted (black) frequency response χ(ω) normalized to χKerr. The fitted
cavity cutoff frequencies are, κ/4π= 22.7 MHz (λ= 1514 nm), and κ/4π= 17.1 MHz (λ= 1618).
(e) Calibrated absorption loss κabs/2π of different resonances from different samples. (f) For
the two resonances at 1515 nm and 1577 nm of the 40-GHz-FSR samples shown in (e), the
measured frequency response χ(ω) normalized to χKerr (red and black). The fitted cavity cutoff
frequencies are, κ/4π = 7.4 MHz (λ = 1515 nm), and κ/4π = 10.8 MHz (λ = 1577). In (d, f),
we show the fitted Kerr (blue) and thermal (green) responses, and the gray areas mark the
modulation frequency range from 1 kHz to 10 kHz (the measured response within this range is
not included in the response fitting). The fitted values of γ= χtherm(0)

χKerr(0) are shown in (d, f). The

fitted thermal response |χtherm(ω)
χKerr(0) |2 is not shown in (f) as it is mostly below 10−1. The error bars

in (c, e) account for fitting errors (95% confidence interval).

the large mode area of thin-core Si3N4 waveguides results in reduced optical mode interaction
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with waveguide sidewall roughness, thereby reducing scattering losses.

We perform a modulation response measurement to quantify the photothermal absorption

loss of our Si3N4 waveguides. The experimental setup is shown in Fig. A.10(a), with two lasers,

the pump and the probe. The pump laser is tuned to an optical resonance whose frequency is

fm , and the thermal absorption loss κabs in this resonance is to be characterized. Meanwhile,

the pump laser is intensity-modulated with frequency ω. The probe laser is loosely locked (i.e.,

low-bandwidth locking) to another optical resonance whose frequency is f ′
m .

The principle of the nonlinear microresonator response measurement is to characterize the

resonance frequency shift δ fm′ = χ(ω)δnph of the probe mode fm′ induced by the intensity

modulation δnph of the pump mode fm . This intensity modulation changes the resonance

frequency of the probe mode fm′ via both the Kerr and the photothermal nonlinearities. The

frequency response δ fm′ to the pump modulation is transduced into the probe laser’s phase

modulation, measured using a balanced homodyne detection, with the pump laser being

filtered out before detection. The pump power is maintained sufficiently low, such that the

steady-state frequency shift of the probe mode is small compared to the resonance linewidth

κ, i.e., δ fm′ ≪ κ. In this linear regime, the frequency response to the modulating pump power

is given by

χ(ω) = δ fm′

δnph
=χtherm(ω)+χKerr(ω) (A.71)

The total response χ(ω) consists of two parts: the Kerr response χKerr(ω) with almost infinite

bandwidth, and the thermal response χtherm(ω) with a typical bandwidth below 20 kHz.

Therefore, by calibrating the response χ(ω) as a function of the modulation frequency ω,

χtherm(ω) and χKerr(ω) can be individually identified by fitting the measurement result. Using

the values of χtherm(ω) and χKerr(ω) at DC (ω= 0), the absorption rate is calculated as

κabs =
2cn2

neffng Veff
dT

dPabs

dnmat
nmatdT

χtherm(0)

χKerr(0)
(A.72)

where Veff is the effective optical mode volume, n2 = 2.4×10−19m2/W is the nonlinear index of

Si3N4, neffng = 3.8 is the mode averaged effective and group index, nmat = 2.0 is the material

index and dnmat/dT = 2.5×10−5/K is the thermo-optic coefficient, and Pabs is the absorbed

power.

Finite-element simulations of optical mode profiles and bulk absorption heating (see Figure

A.10(b)) are performed to calculate the coefficients Veff and to retrieve the frequency domain

thermal response function dT
dPabs

(ω) used in the fitting. The simulation model we use to extract

the thermal response function is validated by our measurement [1] of the thermorefractive

noise in these Si3N4 devices. Figure A.10(d, f) presents four examples of the measured and

the fitted χ(ω).

To validate our method, we first benchmark the linear response measurement by characteriz-
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ing a partially annealed Si3N4 sample whose resonance linewidth data have been published

in ref.[306]. We characterize this particular sample using both the response measurement

and frequency-comb-assisted diode laser spectroscopy and compare the results using both

methods in Fig. A.10(c). Assuming a wavelength-independent scattering loss of 12 MHz,

the measured absorption loss using the response measurement agrees with the total loss

measured spectroscopically.

Figure A.10(e) shows the calculated absorption rates κabs/2π of different resonances from four

40-GHz-FSR Si3N4 samples featuring Q0 > 30×106, in comparison with 10-GHz-FSR samples

(used in ref.[295], κ0/2π= 8.5 MHz) and 100-GHz-FSR samples (used in ref.[306], κ0/2π= 13.5

MHz) fabricated using the same process but from different wafers. All samples show similar

trends and present two conclusions. First, the mean absorption loss for 40-GHz-FSR samples

is κabs/2π∼ 1 MHz, corresponding to an absorption-loss-limited Q factor of approximately

2×108. Therefore, the optical losses of our Si3N4 waveguides (κ/2π= 6.5 MHz) are currently

dominated by scattering losses. Second, for all the samples studied, κabs/2π is higher around

1520 nm, compared to the value at 1600 nm. This difference is caused by the residual hydrogen

impurities in our thermally annealed Si3N4. Note that only standard LPCVD Si3N4 / SiO2 films

and thermal annealing are used in our fabrication to achieve such low absorption losses.

Thermal simulations

Section A.3.2 discusses the specific steps of simulating a structure’s thermal response. We use

COMSOL Multiphysics to simulate the thermal response due to bulk absorption heating of our

Si3N4 waveguides. The leading material property coefficients of interest used in the current

simulation are identical to the ones used in ref. [1] for simulating the Si3N4 thermorefractive

noise. The thermo-optic coefficientof Si3N4, dnmat/dT = 2.5×10−5 K−1, is used here. We first

simulate the waveguide optical mode profile (TE00 mode), from which the effective mode

volume Veff is calculated. Bulk absorption heating is introduced, whose power distribution is

proportional to the intensity distribution of the optical mode νm . By solving the frequency-

domain heat transfer equation, the response of the effective temperature to the modulated

absorbed power, dT
dPabs

(ω), is retrieved from a Fourier frequency sweep. The combined value

of Veff ·dT /dPabs is calculated as 3.60×10−13 K·m3·W−1 in the case of full SiO2 cladding for

samples used in Fig. A.10(e, f), and is 4.63×10−13 K·m3·W−1 in the case without top SiO2

cladding for samples used in Fig. A.10(c, d).

Response calibration

To extract the actual microresonator response χ(ω) from the experimentally photodetected

χ′(ω), the frequency response χdet(ω) of our entire experiment setup and detection chain

needs to be calibrated first. The calibration is realized by direct detection of the pump power

modulation δP (ω) ∝ χdet(ω) in the absence of the probe laser and the pump filter. The

measured response χ′(ω) is normalized to the setup response χdet(ω), and thus the actual mi-

croresonator response χ(ω) =χ′(ω)/χdet(ω) is retrieved, with a constant factor. This constant

factor is removed when retrieving χtherm(0)/χKerr(0) from the fitting of χ(ω) using a fitting
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function

χ(ω) =χKerr(0) ·
(
1+ χtherm(0)

χKerr(0)

χtherm(ω)

χtherm(0)

)
1

1+2iω/κprobe

1

1+2iω/κpump
(A.73)

with κprobe, pump/4π being the cavity cutoff frequencies for the pump and probe fields, re-

spectively. The normalized thermal response function χtherm(ω)/χtherm(0) used in the fit-

ting is retrieved from COMSOL simulation. In Fig. A.10(d, f), only the normalized response

χ(ω)/χKerr(0) is shown, with the constant factor removed.

A.4.2 Lithium niobate microrings

In the previous section, we used the well-known Kerr nonlinear coefficients in Si3N4 PIC

platform to calibrate the absorption rate of the structure. However, the nonlinear index n2

in other material platforms is not as accurate in the literature. In this section, we show an

example of how to calibrate both the n2 and the absorption rate κabs in the thin-film lithium

niobate platform.

The thin-film lithium niobate (TFLN) platform has enabled many classical and quantum appli-

cations [342], many of which crucially rely on low optical loss. For instance, the bandwidth of

electro-optic (EO) frequency combs [225] and the efficiency of microwave-to-optical transduc-

ers [343, 344] are proportional to the resonator quality factor Q or (loss rate)-1. Currently, the

lowest-reported optical loss in ion-sliced TFLN waveguides is ∼ 3 dB/m [345], which compares

favorably to many photonic platforms. At the same time, a loss of ∼ 0.2 dB/m was measured

using whispering gallery mode resonators created by polishing bulk congruent LN [346]. It

is currently an open question if TFLN can reach this, and ideally even lower, loss rates. For

example, it has been speculated that the ion slicing process used to create TFLN from bulk LN

[347] may result in implantation damage that could yield higher optical absorption in TFLN

than in polished bulk LN.

Here, we first develop a post-fabrication process based on annealing in O2 atmosphere to

reduce material absorption rate κabs of the TFLN platform. The absorption rate κabs con-

tributes to the intrinsic loss rate κint of the resonator, together with the scattering loss rate

κsca. To quantify the reduction of material absorption rate in our samples, we apply the same

linear response measurements to the TFLN platform. The method exploits the coexistence

of absorption-induced photothermal effect and material Kerr effect and has shown great

accuracy in other integrated photonics platforms [3, 5]. The calibration of absorption rate

requires parameters such as the nonlinear refractive index n2 as well as the ratio between the

photothermal and Kerr-induced cross-phase modulation (XPM) responses (at bandwidths <10

MHz) γ=χtherm/χKerr of TFLN. These and other parameters are determined by performing

laser pump-probe measurements on timescales shorter than the response time of deleterious

photorefractive (PR) effects in LN [348]. Using these pump-probe techniques, we determine

that the material limited loss in ion-sliced LN is ∼1.5 dB/m and demonstrate an annealing
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Figure A.11: Low material loss in TFLN micro-ring resonators using thermal annealing. (a)
Conceptual representation of optical loss in a waveguide at low powers. Energy from an
optical mode (profile cross-section shown) is dissipated due to photothermal absorption and
sidewall roughness-induced losses, which can generate heat and light scattering, respectively.
(b) A scanning electron microscope image of a fabricated (bus) waveguide. (c) Statistics of
intrinsic loss rates (Q-factors) for the three resonators, denoted as Samples A-C, created by
different fabrication methods. The vertical axis represents the fraction of the total number of
resonances measured for the TE mode in each resonator for wavelengths between 1480 nm
and 1680 nm. Left insets: Schematized wafer cross-sections for Samples A-C. Right inset: A
split resonance observed from an annealed resonator, with extracted intrinsic loss rate. The
horizontal axis denotes laser detuning from resonance.

process that reduces this to ∼0.2 dB/m that approaches the limit of the bulk LN.

The micro-rings are fabricated on a 600 nm-thick x-cut LN thin-film bonded to a 4.7µm-thick

layer of thermal oxide on a silicon wafer (NanoLN). Electron-beam lithography followed

by physical reactive Ar+ ion etching, with target etch-depth of 300 nm, yields micro-ring

resonators of 140µm radius (Free spectral range of ∼ 150 GHz) and a waveguide top-width of

2.4µm (Fig A.11(b)). We prepare three sets of resonators from this wafer in the same fabrication

run: cladded (Sample-A), annealed (Sample-B), and annealed-cladded-annealed (Sample-C)

resonators. All resonators are designed to be undercoupled, with a symmetric point coupling

between the bus waveguide and the ring resonator. Sample-A is fabricated with the process

reported in Ref. [345]. That is, the resonators are cladded with an 800 nm-thick layer of SiO2

using plasma-enhanced chemical vapor deposition with substrate temperature of 300◦C. For

Samples B and C, the resonators are annealed at atmospheric pressures in O2 at 520◦C for

two hours. The annealing step is used to improve the crystallinity of TFLN, thereby repairing

potential damages [349] caused by ion slicing [350]. We clad Sample C with an 800-nm thick

layer of SiO2 deposited using inductively coupled plasma chemical vapor deposition (ICPCVD)

at 80◦C, and then re-anneal it under the same conditions. We emphasize the low-temperature

nature (80◦C) of the ICPCVD process, which we found to be essential to maintain the benefits

of the annealing step. We measure a mean Qint of 1.5, 2.5, and 5.0 million in Samples A, B, and

C, respectively (Fig. A.11c). All Samples B and C resonances achieve low enough intrinsic loss

to exhibit visible asymmetric mode splitting due to Rayleigh back-scattering (Fig. A.11c). We

attribute the lower intrinsic quality factors of the current set of devices (compared to results

presented in ref. 5) to the possible fabrication variations. We note that Q−factors as high as 12
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million can be measured using the optimized process.
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Figure A.12: (a) The laser pump-probe setup for a step-response measurement to characterize
the timescale of photorefractive effects. (b) Dynamics of step excitation-induced cavity reso-
nance shift (normalized to Kerr shift) of the probe after switching off the pump. Measurement
is referenced to a thermally stabilized Fabry-Perot cavity. The pump is switched off at slightly
different times for Samples A-C. The timing resolution is 1 ms. IM: Intensity Modulator, OSC:
Oscilloscope

Before the Kerr-calibrated response measurements, we determine the timescale of photore-

fractive effects in the micro-rings since PR-induced resonance frequency change could distort

the inferred material response at low modulation frequencies. [348]. To do this, we optically

pump a micro-ring, then, after extinguishing the pump, we repeatedly measure one of its

resonances with a probe, monitoring the time-dependence of the detuning of the resonance

(Fig. A.12(a)). The detuning is normalized to the Kerr shift (discussed later) for convenient

comparison. For Sample-A, we observe a blue shift with a time constant of ∼ 100s, indicative

of photorefractive effects. We did not observe photorefractive behavior for Samples-B and

-C over time scales of up to a minute (Fig. A.12(b)). Thus, the photorefractive effect can be

ignored for measurements at timescales significantly shorter than 100 s (bandwidths >> 0.01

Hz).

To calibrate the absorption rate of different devices, we need to evaluate

κabs =
2cνn2γ

ng neffV dν/dPabs
, (A.74)

where V the optical mode volume, ng the group index, neff the effective index, and dν/dPabs

the photothermal frequency shift gradient at pump frequency ν, mainly determined by the

material thermo-optic coefficients [351] and is determined from simulation (See Table A.4).

The response ratio γ is the DC offset of the measured response function γ(ω) in the Fourier

domain and is obtained through fitting. The material absorption rate also requires a good

knowledge of n2 from TFLN. We did an auxiliary pump-probe measurement to obtain n2 =
1.67×10−19 m2W−1 for our TFLN (see later sections). We did not employ the commonly-used

thermal triangle technique[5] to determine n2 to avoid photorefractive effects.

To separate the photothermal and Kerr effect in our samples and thereby measure γ, we exploit

the finite response bandwidth of the photothermal effect. The measurement is accomplished

by modulating an optical pump and measuring the resultant side-of-fringe modulation of a

probe, as induced by the material response of TFLN (see Fig. A.13a). The pump modulation
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frequency is varied to elucidate photothermal and Kerr-induced XPM on the probe, which can

be distinguished at low (<10 kHz) and high (>1 MHz) modulation frequencies, respectively [3].

The responses of all the devices were measured, and all yielded two plateaus corresponding

to either predominantly Kerr-induced (χKerr) or photothermal-induced (χtherm) responses.

The plateaus ratios γ are 11.0, 2.5, and 1.5 for Samples A, B, and C, respectively, indicating

that thermal annealing reduces the magnitude of photothermal response. Note that cascaded

sum-frequency generation of the pump with the probe will contribute an additional XPM

indistinguishable from the Kerr contribution. Given our system parameters, we expect this

change to be ∼ 10%. For all measurements, the wavelength of the pump is ∼1550 nm while

the probe is at wavelengths detuned several free-spectral ranges of the resonator away, both

in TE polarization. The pump power is kept low (<1 mW) to avoid nonlinearity-induced

self-feedback.

Finally, using Eq. A.74 we calculate κabs/2π to be 9.2 MHz, 2.0 MHz, and 1.2 MHz for Samples

-A, -B, and -C, respectively. The absorption rates corresponding to each sample are calibrated

individually. All the measured values for different samples are listed in Table A.3 in the form

of quality factors, with Sample-C yielding a material-limited quality factor of 163 million

( 0.2 dB/m) which is among the highest within integrated photonic platforms, see Table A.4.

Our results suggest that the main source of loss in our high-confinement LN waveguides

(sample C) is line-edge roughness-induced scattering, which limits the average intrinsic

quality factor κint/2π of resonances around 1550 nm to 34 MHz (Fig. A.11c).

Table A.3: Comparison of intrinsic quality factors and material limited quality factors of
different samples

Sample post-processes Qint (106) Qabs (106)
A PECVD 1.5 21
B anneal 2.5 97
C anneal + ICPCVD + anneal 5.0 163

To summarize, using our newly developed absorption calibration method, we find that the
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Table A.4: Comparison of material-limited properties among state-of-the-art integrated
photonics platforms at 1.5 µm wavelength[5]

Platform n χ2(pm/V) n2(10−20m2/W) Q-factor (106)
SiO2 1.45 0 2.2 3900
SiN 2.0 0 24 290

Ta2O5 2.0 0 62 2.4
Al0.2Ga0.8As 3.3 119 2600 2.0

TFLN (this work) 2.2 30 17 163

post-fabrication annealing and low-temperature oxide cladding can significantly reduce

optical absorption in TFLN waveguides. Absorption at telecommunication wavelengths is

reduced by removing damage potentially caused by ion implantation and reactive-ion etching

even at temperatures in which other chemical bonds (e.g., Si-H and O-H) are still present.

Consequently, annealing significantly reduces material absorption loss over a broad frequency

range [349]. Our annealing technique yielded absorption-limited loss on par with ∼0.2 dB/m

measured in bulk LN [346], corresponding to a material-limited Q-factor of 163 million. It is

speculated that by improving TFLN fabrication strategies, Q-factors approaching the material

limit might be achievable, reaching the low-loss regime required for some performance

demanding applications, e.g., deterministic room-temperature single-photon source with

periodically-poled TFLN micro-ring [352].

In the following subsection, we describe how to calibrate the nonlinear index n2.

n2 calibration method

The material absorption rate requires the evaluation of n2. We measure an auxiliary z-cut

sample with similar waveguide geometry to determine n2. We chose this specific crystal

direction to minimize the error of the cascaded χ2 calculation and mitigate the impact of

adiabatic evolution of the modes from TE to TM during propagation in the x-cut sample due

to birefringence. Even though anisotropy of χ(3) nonlinearity was not reported in TFLN, the n2

might be crystal-orientation dependent. Therefore, we characterized the value for both TE

and TM modes in the Z-cut sample, which are aligned to the ordinary and extraordinary axes.

The measurement results show little difference of n2 along these two axes.

Due to the presence of the photorefractive (PR) effect, the commonly-used thermal triangle

technique [5] that uses high optical power to determine n2 is not suitable for thin film lithium

niobate (TFLN) platform. Here, we use a pump-probe scheme (setup see Fig. A.14a) similar

to the one used in earlier sections (for calibrating the loss) to determine the value of n2 in

TFLN at low optical powers. The main idea of this measurement is to precisely calibrate the

impact of the pump intracavity power density modulation δρ on the probe’s cavity frequency

modulation δν mediated by the Kerr effect. Our technique allows us to evaluate the value of
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Table A.5: Simulated parameters for n2 measurement and absorption calibration

TE parameters values
ng n 4.53

V 7.47×10−16 m3

TM parameters values
ng n 4.14

V 9.11×10−16 m3

abs parameters values

cladded V dν
νdPabs

2.82×10−18 m3/W

uncladded V dν
νdPabs

4.05×10−18 m3/W

n2 from

δν=−2νcn2

ng n
δρ (A.75)

where x are the mode intensity weighted average of the corresponding physical quantities

retrieved from the simulation. Table.A.5 contains the simulated numbers required for the n2

and absorption calibration (COMSOL).

The intracavity power density modulation δρ is determined by the intensity modulation depth

α and the waveguide circulating power PWG,

δρ =αρ(PWG). (A.76)

We intensity modulate the pump intensity I (t ) = I0[1+αcos(2πΩIMt )] atΩIM = 10 MHz and

determine the modulation-depth α using heterodyne measurements (Fig. A.14b red spec-

trum), frequency offset by 100 MHz using acousto-optic modulators. The intracavity power

density ρ(PWG) as a function of waveguide circulating power PWG depends on many param-

eters. Apart from cavity coupling rates, the power is also affected by the background etalon

formed due to the chip facet reflections. Therefore, the measured cavity transmission trace

from the laser scan consists of a sinusoidal background modulation and a Fano-shaped cavity

resonance dip. We detail the physics of this Fano-type resonance response in Appendix B.12.

We express the intracavity power density considering all these effects as

ρ(P ) =
∣∣∣∣ χcav(∆)

1−R(1−p
κexχcav(∆))2e iθFP(∆)

∣∣∣∣2

extr:∆

P

V
, (A.77)

θFP(∆) =−2π
∆

∆νFP
+∆θFP, (A.78)

χcav(∆) =
p
κex

(κ2 + i∆)
, (A.79)

with κex the cavity external coupling rate, κ the cavity linewdith, ∆ the laser detuning, ∆νFP

the waveguide background etalon fringe periodicity, ∆θFP the etalon phase offset, R the
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characteristic etalon reflectivity, and V the mode volume of the pump mode. Here, power P is

the waveguide circulating power at the quadrature point of the waveguide background etalon

fringe. All the parameters used in the power density function are fitted from the pump mode

transmission profile shown in Fig.A.14d (TM mode result), using a fitting function,

F (∆) =
∣∣∣∣ 1−p

κexχcav(∆)

1−R(1−p
κexχcav(∆))2e iθFP(∆)

∣∣∣∣2

. (A.80)

Laser frequency sidebands at 300 MHz are applied to calibrate the laser detuning. The fitting

results are shown in the following table:

mode κex/2π κ/2π R ∆νFP/2π ∆θFP

TM 14.2 MHz 47.8 MHz 0.152 11.0 GHz −0.57 rad

TE 87.8 MHz 302 MHz 0.107 9.05 GHz −1.42 rad
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Figure A.14: (a) Laser pump-probe setup for measuring n2 with calibrated intensity modu-
lation and phase reference tones. (b) Power spectral density of heterodyne measurement
at 100 MHz offset frequency to calibrate pump intensity modulation and probe phase refer-
ence for the XPM-induced modulation. (c) Measured XPM signals at 10 MHz along with the
phase modulation reference tone at 9 MHz. Forward and backward coupling directions are
measured to account for facet losses. (d) Parameter extraction by fitting a resonance profile
of a micro-ring. (e) XPM frequency modulation response function. A vertical dashed line
shows the intensity modulation frequency used to calculate n2. The horizontal dashed line
indicates the pure Kerr XPM response. IM: Intensity Modulation, PM: Phase-Modulation,
AOM: Acousto-optic Modulation, RSA: real-time spectrum analyzer, VNA: Vector Network
Analyzer
After the intracavity power density function is determined by fitting the cavity transmission

trace, we need to calibrate how much Kerr frequency modulation δν on the probe cavity is
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induced from a given waveguide circulating power P . To calibrate the cavity frequency modu-

lation depths, we use the method from Ref [47] by comparing the Kerr frequency modulation

signal to a reference phase modulation with known depth β (calibrated also using heterodyne

measurements, Fig. A.14(b) blue spectrum). The phase modulation E(t) = E0e iβcos(2πΩPMt )

is applied to the probe laser at ΩPM = 9MHz, and is visible in Fig. A.14(c) right next to the

cavity frequency modulation signal atΩIM = 10MHz. The reference phase modulation acts as

a ruler, allowing us to compare and retrieve the cavity frequency modulation depth at different

optical powers. To isolate the cavity frequency modulation contributed by the Kerr effect

from the one from the thermal effect, we also measured the XPM response at different pump

modulation frequencies using a vector network analyzer. We retrieved the fraction of pure

Kerr contribution to the total XPM signal Γ(ΩIM) =χKerr(ΩIM)/χXPM(ΩIM) = 0.60 for TM mode

and 1.00 for TE mode atΩIM = 10 MHz by fitting the measured response (TM result shown in

Fig. A.14(e)). We also observed the pyroelectric effect on the TE response, discussed in Sec-

tion A.1.3 [322]. However, this is only a special case for Z-cut TE mode from the extraordinarily

low thermo-optic coefficients at the ordinary axes and does not affect the calibration of n2

and the loss rate calibration of X-cut modes. After that, the Kerr-induced cavity frequency

modulation can be expressed as

δν=βΩPMΓ(ΩIM)ξ1/2 (A.81)

where ξ = SXPM/Sref is the power spectral density ratio between the XPM total signal SXPM

measured on the real-time spectrum analyzer and the reference phase modulation signal Sref.

Since we do not have direct access to the on-chip waveguide circulating power, and the

coupling efficiencies at the chip facets can be different, we mitigate the uncertainties by

taking the geometry average of the input power Pin and output power Pout of the chip as the

waveguide circulating power P = p
PinPout, measured at the etalon quadrature point. We

measure the XPM ratio ξF at the given setting and repeat the measurement (measure ratio ξR )

after reversing the input and output of the micro-ring in order to take into account different

coupling efficiencies at the chip facets. The spectrum of TM mode when measuring both ξF

and ξR are shown in Fig. A.14(c), and we take their geometric average as well ξ=√
ξFξR .

For all measurements, the wavelength of the pump is ∼1550 nm while the probe is at wave-

lengths detuned several free-spectral ranges of the resonator away. The on-chip pump power

is kept low (<1 mW) to avoid nonlinearity-induced self-feedback. With all relevant parameters

measured/fitted, by inverting Eq.A.75, our measurements allow calibrating n2 using

n2 =
βΩPMΓ(ΩIM)[ξFξR ]1/4ng n

2cναρ([PinPout]1/2)
, (A.82)

and we find a material nonlinear refractive index of n2 = 1.61×10−19 m2W−1 for TE mode

(aligned to ordinary axis) and n2 = 1.74×10−19 m2W−1 for TM mode (aligned to extraordinary

axis). For the TE mode in the X-cut samples we characterized, an averaged value of n2 =
1.67×10−19 m2W−1 is used.
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Table A.6: Measured values and derived fitting parameters for n2 calibration

parameters TM values TE values
Γ(ΩIM) 0.60 1.00

ξ 44.07 12.44
ξR 1.915 6.383
Pin 680µW 2550µW

Pout 6.0µW 184µW
ρ([PinPout]1/2) 47.0 J/m3 91.7 J/m3

α 0.1619 0.1619
β 0.1245 0.1245

Note that cascaded sum-frequency generation of the pump with the probe will contribute an

additional XPM indistinguishable from the Kerr contribution. Given our system parameters,

we expect this change to be ∼ 10%.

All the physical quantities measured/fitted for the n2 calibration are shown in Table. A.6

A.5 Unidentified thermal noise in silicon nitride microresonators

In previous sections, we have identified the TRN as the dominant cavity frequency noise

source (Section A.1) and analyzed the classical noise contributions to the observation of

Kerr squeezing (Section A.2.1), as well as the effect of photothermal dissipative feedback

(Section A.3). Even with so many parasitic effects, it is still expected to observe Kerr squeezing

near the cavity cut-off frequency. In this section, we describe our attempt to observe Kerr

squeezing in silicon nitride microresonators, the emergence of new thermal noise, and our

efforts to identify the source by going through the remaining parasitic processes in our system.

We work with a 40-GHz-FSR resonator from [3] using a resonance around 1560 nm with

intrinsic loss rate κ0/2π= 8MHz, external coupling rate κex/2π= 7MHz, and characterized

gth(0)/gKerr = 0.5. Given these system parameters, we expect to observe Kerr squeezing at

∼ 500µW of pump power around Fourier frequency 10 MHz. We have characterized our

laser amplitude noise in Fig. B.12 and found that at the power level of interest, Cqq ∼ 10−2,

which does not pose any limitation. We are aware that laser phase noise might affect our

measurement. Therefore, we built a custom optical filter cavity (details in Appendix B.13) with

a linewidth of 70 kHz to filter out the laser noise at high Fourier frequencies passively. With

this filter cavity, we expect the laser frequency noise at 10-MHz frequency offset to be around

2×10−2 Hz2/Hz (3 orders of magnitude reduction), sufficiently low for our need.

In our experiment, we PDH-lock the laser on resonance with the filter cavity and use the

transmission light to pump the ring resonator. The filter cavity is actuated with a piezo ring

to lock it directly to the ring resonator optical resonance. The setup schematic is shown in

Fig. B.22. In this way, we can pump the resonator with an on-chip power of 500µW (slightly
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Figure A.15: (a) Homodyne photocurrent spectrum at different quadrature angles, normalized
to the shot noise of the local oscillator. (b) Noise density at 1-MHz offset normalized to the
shot noise, recorded at different pump power. A fit to the power scaling shows an unidentified
classical noise on the amplitude quadrature that’s not associated with Kerr or a photothermal
effect.

below the cavity bi-stability threshold) while still able to supply 8 mW of power for the LO.

We measured homodyne photocurrent signal at multiple quadrature angles, with the results

shown in Fig. A.15(a). We found that TRN is the dominant noise source at the phase quadra-

ture (θ = 90◦). Around the amplitude quadrature (θ = 0◦), where we expect to observe Kerr

squeezing, we observed an unidentified noise that contaminates the quadrature squeezing. In

the following, we refer to this noise as the amplitude noise. To ensure this is not due to the

imperfect quadrature angle, we confirmed that this noise is always there using direct detection

while continuously tuning the laser detuning across the optical resonance. To understand

the property of this noise better in order to identify it, we conducted a power sweep to check

the power scaling of this noise, shown in Fig. A.15(b), and found that this noise is simply a

classical cavity noise that does not associate with Kerr nor photothermal effect. To this day,

we still have not figured out the exact origin of this noise. However, we have ruled out the

following candidates: thermodynamical fluctuation of the cavity coupling rate, nonlinear

cavity transduction, and cavity mode-splitting. In the following, we analyze each of these

individual causes. Even though the origin of the noise has been elusive so far, we can, in

principle, check its thermal origin by cooling the resonator to cryogenic temperature, where

most of the thermal coefficients of Si3N4 go to near zero. In the end, we put this project on

hold to leave time for other projects.
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Thermodynamical fluctuation of the cavity coupling rate

As we analyzed earlier in Section 2.5.1, some form of dissipative coupling can print the noise

directly onto the amplitude quadrature of the light field. For ring resonators, we assume

the dominant noise source is the thermodynamical fluctuation of the temperature, which

can both dispersively and dissipatively couple to the ring resonator. However, it has been

known in cavity optomechanics that it is tough to engineer systems such that the dissipative

coupling rate can approach that of the dispersive coupling. The discrepency between these

two mechanisms is because they result in fractional rate fluctuation, i.e., δT → δ f / f . For

high-Q ring resonators we have κ≪ Ωcavity (Q ∼ 107), such that we expect the dissipative

coupling signal Sδκδκ to be much smaller than the dispersive coupling signal SδΩcavityδΩcavity ,

even accounting for the different thermal volume. Therefore, we do not expect the noise to

originate from the fluctuation of the cavity coupling rate.

Nonlinear cavity transduction

In Section 2.4, we have discussed the case of nonlinear cavity transduction when the cavity

frequency noise variance
√
〈∆2〉 approaches the cavity linewidth κ. The nonlinear cavity

transduction is possible with ultra-high-Q microresonators, where thermodynamical fluctua-

tion of the cavity frequency can be relatively large when the mode volume is small. For the

40-GHz-FSR resonator we used in our experiment, we calculated the second-order nonlinear

noise, which is the dominant nonlinear noise when pumping on cavity resonance. We com-

pared it with the linear noise in Fig. A.16(a). Even though the nonlinear transduction can be

significant, in our experiment, we expect laser shot noise to still dominate at around 10-MHz

offset, shown in Fig. A.16(b). Therefore, we do not expect the nonlinear cavity transduction to

be the primary source of the unidentified noise we observed.

Note that the detuning dependence we examined in Section 2.4.7 is not possible to check here.

As the first-order transduction noise does not exhibit a bandgap, the spectral separation with

the second-order noise is not feasible.

Cavity mode splitting

Another complication in the experiment arises from the fact that ring resonators typically host

clockwise and counter-clockwise propagating modes at the same eigenfrequency. When there

are geometric imperfections, these two degenerate modes couple to each other, which causes

mode splitting by the coupling rate γ (can be complex-valued) between the degenerate modes.

For the high-Q resonators we use, the frequency splitting can be on the order of cavity decay

rate and affect cavity frequency noise’s transduction. Here, we analyze this effect at an offset

frequency around 1 MHz where we observe classical noise contamination and show that there

is still a quiet point where classical noise vanishes, which does not fit our observation of the

unidentified noise.
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Figure A.17: Physical model describing the coupling γ between the clock-wise a+ and the
counter-clock-wise a−. In the experiment, we have access to the coupling of the clock-wise
mode a+, by the input and output bus waveguide channels s+in and s+out. The noise inputs of
s+vac, s−in, s−out, and s−vac are not accessible and are assumed to be vacuum noise.
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Our modeling of the coupled optical modes is illustrated in Fig. A.17, where we couple directly

(with efficiency η, linewidth κ) to the clock-wise mode a+, which also couples with the counter-

clock-wise mode a− with the coupling rate γ. The corresponding QLEs are

ȧ+ = (i∆0 − κ

2
)a++ iγ

2
a−+p

ηκs+in +
√

(1−η)κs+vac (A.83)

ȧ− = (i∆0 − κ

2
)a−+ iγ

2
a++p

ηκs−in +
√

(1−η)κs−vac (A.84)

s+out = s+in −
p
ηκa+ (A.85)

Note that the splitting coefficient γ could be a complex number, where the real part contributes

to the frequency splitting and the imaginary part contributes to the emergence of bright and

dark modes with different loss rates. The real part is generally from the direct energy exchange

between the two modes. In contrast, the imaginary part comes from a bath mode (e.g., the

bus waveguide) that mediates the coupling (with a delay) between the ± modes. Here ∆0 is

the detuning to the original + mode resonance. From now on, we use ∆=∆0 to simplify the

expressions.

We first linearize the equations and obtain the stationary solution

a− = −iγ/2

i∆− κ
2

a+ (A.86)

a+ =−pηκ i∆− κ
2

(i∆− κ
2 )2 +γ2/4

s+in (A.87)

s+out =
[

1+ ηκ(i∆− κ
2 )

(i∆− κ
2 )2 +γ2/4

]
s+in (A.88)

as well as the fluctuation part

δȧ+ = i a+δ∆++ (i∆− κ

2
)δa++ iγ

2
δa−+p

ηκδs+in +
√

(1−η)κδs+vac (A.89)

δȧ− = i a−δ∆−+ (i∆− κ

2
)δa−+ iγ

2
δa++p

ηκδs−in +
√

(1−η)κδs−vac (A.90)

Note that there are both δ∆+ and δ∆− because, in principle, the two modes could have

different spatial distributions, such that the cavity frequency noise, e.g., TRN, can be partially

uncorrelated. The spatial distribution is identical in our case, but we keep a separate notation

such that the result is general. After the FT δai ⇒ ãi (ω) (denoted by ai in the following), we

obtain the Fourier domain result

a+ =
(
i [i (ω−∆)+ κ

2
]a+δ∆+− γ

2
a−δ∆−+ iγ

2
(
p
ηκs−in +

√
(1−η)κs−vac)

+[i (ω−∆)+ κ

2
](
p
ηκs+in +

√
(1−η)κs+vac)

)
/

(
[i (ω−∆)+ κ

2
]2 + γ2

4

)
(A.91)
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Next, we plug in the stationary solutions of Eq. A.86 and Eq. A.87,

s∆ =
iηκ

[
[i (ω−∆)+ κ

2 ]δ∆++ γ2/4

i∆−κ/2
δ∆−

]
[i (ω−∆)+ κ

2 ]2 + γ2

4

i∆−κ/2

(i∆−κ/2)2 +γ2/4+ηκ(i∆−κ/2)
s+out (A.92)

sin =
(

1− [i (ω−∆)+ κ
2 ]ηκ

[i (ω−∆)+ κ
2 ]2 + γ2

4

)
s+in (A.93)

svac =−pηκ
iγ
2 (

p
ηκs−in +

√
(1−η)κs−vac)+ [i (ω−∆)+ κ

2 ]
√

(1−η)κs+vac

[i (ω−∆)+ κ
2 ]2 + γ2

4

(A.94)

s+out = s∆+ sin + svac (A.95)

Here we define optical quadrature of the output mode as X +
θ
= (se−iθ+ s†e iθ)/

p
2, where the

amplitude quadrature corresponds to X +
θ=0 so that the optical phase of the output mode is

0. The input quadrature is, therefore, Y +
θ

= (se−i (θ+φ) + s†e i (θ+φ))/
p

2, where φ = angle[1+
ηκ(i∆− κ

2 )

(i∆− κ
2 )2+γ2/4

]. Before converting to the quadrature basis, we define some susceptibilities

χ+∆ = iηκ[i (ω−∆)+ κ
2 ]

[i (ω−∆)+ κ
2 ]2 + γ2

4

(i∆−κ/2)

∣∣∣∣1+ ηκ(i∆− κ
2 )

(i∆− κ
2 )2+γ2/4

∣∣∣∣ ∣∣s+in∣∣
(i∆−κ/2)2 +γ2/4+ηκ(i∆−κ/2)

(A.96)

χ−∆ =
iηκ[ γ2/4

i∆−κ/2
]

[i (ω−∆)+ κ
2 ]2 + γ2

4

(i∆−κ/2)

∣∣∣∣1+ ηκ(i∆− κ
2 )

(i∆− κ
2 )2+γ2/4

∣∣∣∣ ∣∣s+in∣∣
(i∆−κ/2)2 +γ2/4+ηκ(i∆−κ/2)

(A.97)

χc = 1− [i (ω−∆)+ κ
2 ]ηκ

[i (ω−∆)+ κ
2 ]2 + γ2

4

(A.98)

χi=1,2,3 =−κ
[

iγ
2 η, iγ

2

√
η(1−η), [i (ω−∆)+ κ

2 ]
√
η(1−η)

]
[i (ω−∆)+ κ

2 ]2 + γ2

4

(A.99)

s∆ =χ+∆δ∆++χ−∆δ∆− (A.100)

sin =χc s+in (A.101)

svac =χi
[
s−in, s−vac, s+vac

]T (A.102)

s+out = s∆+ sin + svac (A.103)

to simplify the expression, where s+out =
∣∣∣∣1+ ηκ(i∆− κ

2 )

(i∆− κ
2 )2+γ2/4

∣∣∣∣ ∣∣s+in∣∣ is set to the phase reference

θout = 0. If we assume s+in only consists of vacuum fluctuation, which is indeed our case after
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passing the laser through the filter cavity, we can simplify the output quadrature to

X∆ = [χ+∆(ω)e−iθ+χ+∗∆ (−ω)e iθ]δ∆++ [χ−∆(ω)e−iθ+χ−∗∆ (−ω)e iθ]δ∆− (A.104)

Xin = χc (ω)+χ∗c (−ω)

2
Yθ′ + i

χc (ω)−χ∗c (−ω)

2
Yθ′+π/2 (A.105)

Xvac =
χi (ω)±χ∗i (−ω)

2

[
X −

in, X −
vac, X +

vac

]T
θi+π/2 (A.106)

X +
θ = X∆+Xin +Xvac (A.107)

From here, we obtain the quadrature PSD (double-sided) as

S∆ =
∣∣∣χ+∆(ω)e−iθ+χ+∗∆ (−ω)e iθ

∣∣∣2
S∆+ +

∣∣∣χ−∆(ω)e−iθ+χ−∗∆ (−ω)e iθ
∣∣∣2

S∆− (A.108)

+2Real
[

(χ+∆(ω)e−iθ+χ+∗∆ (−ω)e iθ)∗ (χ−∆(−ω)e−iθ+χ−∗∆ (ω)e iθ)
]

S∆+∆− (A.109)

Sin =
∣∣∣∣χc (−ω)

2

∣∣∣∣2

(A.110)

Svac =
∑

i=1,2,3

∣∣∣∣χi (−ω)

2

∣∣∣∣2

(A.111)

S+
θ = S∆+Sin +Svac (A.112)

With these results, we investigate the cavity frequency noise transduction (only S∆) as il-

lustrated in Fig. A.18. We plot both the cavity transmission response and the transduction

response at 1-MHz offset with various γ and show that there is always a quiet point where

transduction vanishes. We can see from these plots that even with the emergence of bright

and dark modes, there is always a detuning with zero transduction. Some of the quiet points

do not reach precisely zero because the ∆ in the plot is not sampled enough, but they always

reach zero with some specific ∆.

During the investigation, we also found that with a proper ratio between γreal and γim for a

given η, there is a critical point at which the transduction dip is so narrow that the Q of such a

feature diverges. This effect is illustrated in Fig. A.19. In principle, even though there is always

a quiet point at which the transduction vanishes, reaching it is not practical if the feature is too

narrow. To rule out this effect, we tested multiple optical resonances with different splitting

features. We found no quiet point at the amplitude quadrature on all the tested resonances.

Therefore, we can completely rule out mode splitting as the cause of the unidentified noise.
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Figure A.18: Cavity frequency noise transduction as well as the transmission response function,
of coupled modes with different configurations (γ, η, and noise correlation 〈∆+∆−〉) at the
offset frequency 1 MHz. There is always a detuning (quiet point) that the noise transduction
vanishes.
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Figure A.19: (a,b) Critical feature of cavity frequency transduction. As one can see from these
panels, the quiet point is so narrow that the detuning sweep can barely resolve the feature.
It turns out that for each γreal there is a γim that gives rise to this critical feature, visualized
as a 2D map in (c), with γreal = 0.5. (d) For each γreal, we show the γim and the detuning ∆ to
achieve this feature, in the bottom right panel.
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B Appendix

B.1 Different forms of Langevin equations and interpretations of

spectral asymmetry

Much of the derivations here are covered in the book [36]. It is only reproduced here, so the

readers do not have to find them in the book, as they are very particular technical details. We

aim to distinguish the two forms of the Langevin equations: one that uses the rotating wave

approximation (RWA) and the other that does not. In the main body, we use the one with

RWA for the optical field and the one without RWA for the mechanical oscillators. These two

treatments result in very different equation sets and noise correlations, as well as the physical

interpretation of the spectral asymmetry of quantum observables.

B.1.1 General quantum Langevin equation

Here, we derive the quantum Langevin equation without the rotating wave approximation.

We consider a quantum system in a potential V̂ (q̂) that is spring-coupled an ensemble of

independent bath oscillators (independent-oscillator model). The total Hamiltonian is

Ĥ = Ĥsys + Ĥsys−bath (B.1)

Ĥsys = p̂2

2m
+ V̂ (q̂) (B.2)

Ĥsys−bath = ∑
j

[
p̂2

j

2m j
+ k j

2
(q̂ j − q̂)2

]
(B.3)

where p̂ and q̂ are the momentum and position of the quantum oscillator, and those indexed

by j are the ones of the bath oscillators. The Heisenberg equation of motion for the system
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and bath position operators are

m ¨̂q = −∂V̂ (q̂)

∂q̂
+∑

j
k j (q̂ j − q̂) (B.4)

m j
¨̂q j = −k j (q̂ j − q̂) (B.5)

The Eq.(B.5) is a typical driven oscillator and could be solved easily with Laplace transforma-

tion,

q̂ j = q̂h
j (t )+ q̂(t )−

∫ t

−∞
d t ′ cos[Ω j (t − t ′)] ˙̂q(t ′) (B.6)

q̂h
k (t ) = q̂ j (0)cos(Ω j t )+ p̂ j (0)

Ω j m j
sin(Ω j t ) (B.7)

Plugging it back to Eq.(B.4), one arrives at the quantum Langevin equation

m ¨̂q +∫ t
−∞ d t ′µ(t − t ′) ˙̂q(t ′)+ ∂V̂ (q̂)

∂q̂ = F̂ (t ) (B.8)

F̂ (t ) =∑
j k j q̂h

k (t ) (B.9)

µ(t ) =∑
j k j cos(Ω j t ) = ∫ ∞

0 dΩρ(Ω)k(Ω)cos(Ωt ) (B.10)

Define a frequency-dependent damping rate γ(ω) = ρ(ω)k(ω)
4m , and one could find

µ(t ) =
∫ ∞

0
dΩ4mγ(Ω)cos(Ωt ) =

∫ ∞

0
dΩ2mγ(Ω)(e iΩt +e−iΩt ) = 2mγ(t ), (B.11)

and the quantum Langevin equation now reads

m ¨̂q +2m
∫ t

−∞
d t ′γ(t − t ′) ˙̂q(t ′)+ ∂V̂ (q̂)

∂q̂
= F̂ (t ). (B.12)

Applying the first Markov approximation so that γ(t ) = γδ(t ), we arrive at

m ¨̂q +mγ ˙̂q + ∂V̂ (q̂)

∂q̂
= F̂ (t ), (B.13)

which is the well-known result of the harmonic oscillation equation of motion.

One could also calculate the thermal force F̂ = f̂ + f̂ † correlation

f = ∑
j

k j x j
zpa j (0)e−iΩ j t (B.14)

〈 f̂ †(t ) f̂ (t ′)〉 = =
∫ ∞

0
dΩρ(Ω)k2(Ω)x2

zp(Ω)n(Ω)e iΩ(t−t ′) (B.15)

〈 f̂ (t ) f̂ †(t ′)〉 = =
∫ ∞

0
dΩρ(Ω)k2(Ω)x2

zp(Ω)(n(Ω)+1)e−iΩ(t−t ′) (B.16)

〈F̂ (t )F̂ (t ′)〉 =
∫ ∞

0
dΩρ(Ω)k2(Ω)x2

zp(Ω)
[

n(Ω)e iΩ(t−t ′) + (n(Ω)+1)e−iΩ(t−t ′)
]

(B.17)
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The corresponding spectrum is therefore

SF F (ω) =
∫ ∞

−∞
〈F̂ (t +τ)F̂ (t )〉e iωτdτ

= ρ(ω)k2(ω)x2
zp(ω)

[
Θ(−ω)n(−ω)+Θ(ω)(n(ω)+1)

]
= 2mγ(ω)ℏω

[
Θ(−ω)n(−ω)+Θ(ω)(n(ω)+1)

]
(B.18)

which is asymmetric in frequency as was shown in Eq.(B.93) and Eq.(B.94). Here, Θ is the

heavy step function.

For an arbitrary operator Ô, the Heisenberg equation of motion is

˙̂O = 1

iℏ
[
Ô, Ĥsys

]+ 1

iℏ
[
Ô, Ĥsys−bath

]
(B.19)

= 1

iℏ
[
Ô, Ĥsys

]− 1

2iℏ
∑

j
k j

{[
Ô, q̂

]
, q̂ j − q̂

}
+ (B.20)

= 1

iℏ
[
Ô, Ĥsys

]− 1

iℏ
[
Ô, q̂

]
F̂ (t )+ m

iℏ

{[
Ô, q̂

]
,
∫ t

−∞
d t ′γ(t − t ′) ˙̂q(t ′)

}
+

(B.21)

= 1

iℏ
[
Ô, Ĥsys

]− 1

iℏ
[
Ô, q̂

]
F̂ (t )+ m

2iℏ
{[

Ô, q̂
]

,γ ˙̂q(t )
}
+ . (B.22)

It is generally convenient to re-express the quantum Langevin equation in terms of the di-

mensionless position operator Q̂ and the dimensionless input momentum fluctuations P̂in

defined previously. The quantum Langevin equation is then

˙̂O = 1

iℏ
[
Ô, Ĥsys

]+ i
√

2γ
[
Ô,Q̂

]
P̂in + γ

2iΩ

{[
Ô,Q̂

]
, ˙̂Q

}
+ . (B.23)

Applying the QLE to the annihilation operator b yields

ḃ = iΩb + γ

2
(b† −b)−

√
γ

2
(b†

in −bin) (B.24)

˙̂Q = ΩP̂ (B.25)
˙̂P = −ΩQ̂ +√

2γP̂in −γP̂ (B.26)

from which one could find that the mechanical susceptibility χ(ω) defined as

Q(ω) =χ(ω)
√

2γP̂in(ω) (B.27)

χ(ω) ≡ Ω

Ω2 −ω2 − iωγ
(B.28)

is symmetric in frequency. Therefore, the result of asymmetry in the mechanical power spectral

density is the result of asymmetry in thermal force fluctuations.
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B.1.2 Quantum Langevin equation within the rotating wave approximation

The quantum Langevin equation with rotating wave approximation is derived by neglecting

all the counter-rotating terms in the coupling (as was generally taught in a quantum optics

course) when the coupling rate to the bath g j is much smaller compared to other relevant

rates in the system. The Hamiltonian under the RWA is therefore

ĤRWA = Ĥsys +
∑

j

[
ℏΩ j b†

j b j + iℏg j

(
b j b† −b†

j b
)]

(B.29)

The resulting equation of motion for operator Ô is thus

˙̂O = 1

iℏ
[
Ô, Ĥsys

]−[
Ô,b†

](κ
2

b −p
κbin

)
+

(κ
2

b† −p
κb†

in

)[
Ô,b†

]
(B.30)

with the force term expressed as an input noise operator

bin(t ) ≡ 1

2π

∫ ∞

−∞
dωe−iω(t−t0)b0(ω). (B.31)

with the well-known correlation relations for the annihilation operator and the dimensionless

bath position and momentum operators Q̂in = (b†
in +bin)/

p
2 and P̂in = i (b†

in −bin)/
p

2〈
b†

in(t )bin(t ′)
〉

= nthδ(t − t ′) (B.32)〈
bin(t )b†

in(t ′)
〉

= (nth +1)δ(t − t ′) (B.33)〈
Qin(t )Qin(t ′)

〉= 〈
Pin(t )Pin(t ′)

〉 = (nth +
1

2
)δ(t − t ′) (B.34)〈

Qin(t )Pin(t ′)
〉=−〈

Pin(t )Qin(t ′)
〉 = i

2
δ(t − t ′). (B.35)

Starting from the RWA QLE, one can easily write down the equation for mechanics annihilation

operator b and quadrature operators Q̂ and P̂ ,

ḃ = −iΩb − γ

2
b +p

γbin (B.36)

˙̂Q = ΩP̂ − γ

2
Q̂ +p

γQ̂in (B.37)

˙̂P = −ΩQ̂ − γ

2
P̂ +p

γP̂in (B.38)

From here one could define susceptibility χ(ω) = 1
i (Ω−ω)+γ/2 , such that

b(ω) = p
γχ(ω)bin (B.39)

Q(ω) = (b +b†)/
p

2 =√
γ/2(χ(ω)bin +χ∗(−ω)b†

in) (B.40)
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The double-sided displacement noise spectral density is

SQQ (ω) =
∫

〈Q(ω)Q(ω′)〉 dω′

2π
= γ

2
(|χ(ω)|2(nth +1)+|χ(−ω)|2nth), (B.41)

where the spectral asymmetry at positive and negative mechanical frequency is the result of

the asymmetry of susceptibility χ(ω) under the RWA, while the force spectrum SQinQin and

SPinPin are symmetric.

B.2 Fabrication process flow of density-modulated PnC membranes

We implement density-modulated PnC membranes by fabricating amorphous silicon (aSi)

nanopillars on a high aspect ratio Si3N4 membrane. This method has some advantages over

the original density-modulated membrane samples [33], where the pillars are made of plasma-

enhanced chemical vapor deposition (PECVD) silicon nitride. For example, the dimensional

accuracy of the fabricated nanopillars is improved. We also found that density-modulated

membranes with PECVD nitride pillars caused significant optical bistability of the MIM cavity

[53], probably due to excess optical absorption induced in the Si3N4 layer during our particular

PECVD process. This experimental obstacle seemingly disappeared, when we adopted new

membrane samples with aSi pillars. However, the process becomes more laborious, due to the

need to protect the pillars during the membrane undercut. The aSi pillars and the substrate

have a very similar chemical composition, and they will be dissolved during the undercut

process, if exposed to the etchant (KOH). We devised a PECVD SixNy encapsulation layer for

the protection of aSi pillars, that can be removed selectively to the pillars and the membrane

as the last step of microfabrication. As previously mentioned, we observed that the optical

absorption of the Si3N4 membrane layer is significantly increased when the Si3N4 is directly

exposed to plasma. Therefore, the fabrication process was adapted to prevent this.

In our PnC membranes, we fabricated pillars with diameters between dpil =300 nm to 800 nm

and nearest-neighbor distances between apil =1.0µm to 2.0µm. We chose to use electron

beam lithography to pattern the pillars, for the highest versatility of prototyping. Dry etching

transfers the mask pattern to the underlying film, while maintaining smooth and vertical

sidewalls and keeping the pattern dimensions faithful to the original design. However, there

are few dry etching recipes with a good selectivity between Si3N4 and Si; as soon as the ∼ 20nm

Si3N4 membrane is uncovered, it would rapidly get consumed by the etching process. One

solution is to stop the dry etching step just short of uncovering the Si3N4 layer, and finishing

with a high-selectivity step such as wet etching [33]. Unfortunately, wet etching is typically

isotropic, and would shrink the pillar dimensions from the design values, bringing forth issues

in the reproducibility and control of the effective density and pillar damping. We decided to

instead employ an etch-stop layer, much more resistant to dry etching than Si3N4, on top of

the membrane film, which allows for adequate over-etching and process tolerances. Such an

etch-stop material is not difficult to find: for SF6-based processes, oxides such as SiO2, Al2O3

or HfO2 (hafnium oxide) have been tested and found to provide a suitable selectivity. However,
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another critical requirement is that subsequent microfabrication steps create no significant

undercut in the etch-stop layer. Undercut at the pillar base can dramatically reduce the pillar

bending resonance frequency, thus increasing the pillar dissipation at MHz frequencies. HfO2

proved to satisfy this requirement, as a thin layer with thickness < 5nm can completely block

the dry etching step for a sufficient amount of time, and it is dissolved in many acid and base

solutions.

The process starts with (100)-oriented silicon wafers on which a ∼ 20-nm layer of stoichio-

metric, high stress Si3N4 has been grown via low-pressure chemical vapor deposition. After

cleaning and dehydrating the wafer with an O2 plasma, we proceed to grow with atomic layer

deposition (ALD) a ∼6-nm HfO2 etch-stop film (step 1 in Fig. 2.13). The growth takes place

with a reactor temperature of 200 ◦C, using H2O and Tetrakis(ethylmethylamido)hafnium

(TEMAHf) as precursors. TEMAHf is pre-heated to 80 ◦C before the deposition begins. We

then proceed with the deposition of the aSi pillar layer. We employ a PECVD tool (Oxford

PlasmaLabSystem 100), with silane (SiH4) as the only precursor (step 2 of Fig. 2.13). The

chamber temperature is set to 300 ◦C during the deposition, and a 2% SiH4:N2 mixture is

flowed in the chamber at 1000 sccm; plasma is generated using 30 W of RF power. The pressure

in the chamber is kept around 1500 mtorr during the process. The typical pillar thickness we

target is about 600nm.

We then proceed to define the nanopillar pattern with electron beam lithography. We spin-

coat flowable oxide FOx16 resist (a formulation of HSQ) at 2000 RPM, resulting in a mask

layer approximately 800-nm thick. FOx is exposed with a dose of about 1400µC/cm2 and

developed with TMAH25% (2 minutes of immersion with agitation). Before the e-beam writing,

the pattern is corrected for proximity effects in electron beam exposure that would lead to

nonuniformity within the pillar lattice regions. The pattern is transferred to the aSi layer with

reactive ion etching (step 3 in Fig. 2.13), using a recipe in which SF6 and C4F8 gases flow

simultaneously in the plasma chamber, where the wafer is kept at 20 ◦C. The etch is monitored

in situ using a 670-nm laser beam reflected from the thin film stack: as the aSi layer is gradually

thinned down, fringes are observed, due to thin film interference. When the HfO2 layer is

exposed, the endpoint is visible from the sudden dip of the interference signal slope. We let

the dry etching process run for about 30 s after the endpoint to ensure that the pillars are fully

defined on the whole wafer, then we stop the process. Finally, we remove the FOx mask and

the residual etch-stop layer by dipping the wafer in HF 1% for about 3.5 min.

After patterning the pillars, we encapsulate them in a dielectric layer to protect them during the

silicon deep etching step (step 4 in Fig. 2.13). We require a layer that can conformally cover the

pillar topography, without defects or pinholes and with tensile deposition strain, so it does not

destructively buckle when suspended. Owing to previous experience in other microfabrication

projects [353], we employ PECVD SixNy. We first grow a thin (∼ 20nm), protective layer of

Al2O3 with ALD, to shield the membrane layer from plasma bombardment during PECVD.

Then, approximately 125 nm of SixNy is grown in our Oxford PlasmalabSystem100 PECVD with

2% SiH4:N2 and NH3 as the precursors. The flow rates are set to 975 and 30 sccm. The chamber
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pressure is 800 mtorr, and the reactor temperature is kept to 300 ◦C during the deposition.

40W of RF power excites the plasma during deposition, and the deposited layer has been

characterized to have a tensile stress of around +300MPa at room temperature. This PECVD

layer has perfectly sealed the nanopillars and withstands several hours of immersion in hot

KOH without significant consumption.

The process proceeds analogously to conventional stress-modulated PnC membranes, see

the Supplementary Material of [42]. A thick (∼ 3µm) layer of positive tone photoresist is spun

on the frontside for protection during the backside lithography process that we perform with

an MLA150 laser writer (Heidelberg Instruments), with alignment to 8 frontside markers.

Membrane windows must be appropriately resized in order to account for the KOH slow-

etching 〈111〉 planes. UV lithography is followed by Si3N4 dry etching with a plasma of CHF3

and SF6. After the resist mask and protection layer removal with N-Methyl-2-Pyrrolidone

(NMP) and O2 plasma, we deep-etch with KOH from the membrane windows while keeping

the frontside protected, by installing the wafer in a watertight PEEK holder where only the

backside is exposed (see [42, 52]). KOH40% at 70 ◦C is employed, and the etching is interrupted

when about 30-40µm of silicon remain. The wafer is then rinsed and cleaned with hot HCl

of the residues formed during KOH etching. Then, the wafer is separated into individual

dies before concluding the process: a protective layer of positive-tone resist is coated on

the frontside before cutting the wafer with a dicing saw, and the process continues chipwise.

Chips are again cleaned with NMP and O2 plasma, and the deep-etch is concluded with a

second immersion in KOH 40% at a lower temperature of 55 ◦C (step 5 in Fig. 2.13), followed

by cleaning in HCl. From the end of the KOH etching step, the composite membranes are

suspended, and great care must be adopted in displacing and immersing the samples in liquid;

nevertheless, the presence of a relatively thick PECVD nitride layer ensures that the survival

yield is quite high after this step (> 90%). We dry the samples by moving them to an ultrapure

isopropyl alcohol (IPA) bath after water rinsing. IPA has a low surface tension and a high vapor

pressure, therefore, it can be easily dried off the membranes after a few minutes of immersion,

with the help of a (cautiously operated) N2 gun.

Finally, the PECVD nitride and Al2O3 layers can be removed selectively with wet etching in

buffered HF (BHF; step 6 in Fig. 2.13). The etch rates of the encapsulation layers in BHF are

orders of magnitude higher than the etch rate of stoichiometric Si3N4 and HfO2, therefore

even though the membrane backside is exposed, the membrane thinning during this step

remains limited (few nanometers). Chips are loaded in a Teflon carrier where they are vertically

mounted, and immersed for about 3 min 20 s in BHF 7:1. It is crucial not to over-etch more

than necessary to remove the encapsulation films completely: membranes become extremely

fragile, and the survival yield drops sharply when their thickness is reduced below ∼ 15nm.

The membranes are then carefully rinsed, transferred in an ethanol bath, and dried in a critical

point dryer, where the liquids can be evacuated gently and with little contamination.
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B.3 Infinite impulse response filters

In this section, we discuss the implementation of an infinite impulse response (IIR) filter to

help suppress the mechanical instabilities from the photothermal effects when pumping at

the magic detuning. These digital filters implemented on fast field programmable gate array

(FPGA) boards [354] can realize sharp and versatile spectral responses to individually address

mechanical modes that have undergone parametric gain in a forest of mechanical signals.

In this section, we first discuss the basic theories of IIR, the physical implementations, the

filter stability criteria, and a few implementations in the experiments. We use FPGAs from Red

Pitaya for their amazingly short delay for digital-analog signal conversions (∼50 ns each side

for the analog-to-digital converter (ADC) and the digital-to-analog converter (DAC)).

IIR filter theory

An infinite impulse response filter is a linear time-invariant system with an infinitely long

impulse response function h(n), such that the action of the filter h on the input signal x

outputs a signal y given by

y(n) =
∞∑

i=−∞
x(i )h(n − i ) = x(n)∗h(n). (B.42)

We are interested in a filter for real-time signal processing, for which causality is required.

Therefore, h(n < 0) = 0 is required so that the output signal at any given time does not depend

on any future input signal that has not yet arrived. Also, for any given input signal, we require

a bounded output, which is equivalent to the condition
∑∞

i=−∞ |h(i )| <∞. These causality and

stability requirements also have their counterparts for any response functions in a continuous

system, which we will discuss in section B.3.

A straightforward way to implement any filter of response h(n) is to store the last nFIR samples

of the input signal in a physical memory. This type of digital filter is known as a finite impulse

response (FIR) filter because of the finite length of non-zero elements of the impulse response

function. The advantages of such filters are the ease of implementation and stability by

design. The output will always be bounded since only a finite length of h(n) is nonzero.

The disadvantage of FIR filters is the limited frequency resolution δ f = fsample/nFIR. This

resolution is not ideal for achieving sharp features in the spectral response due to the limited

hardware resources on Red Pitaya, given which there is always a trade-off between frequency

resolution δ f and bandwidth fsample = 1/T , where T is the clock period for the sampling.

An IIR filter, on the other hand, uses the output records stored in the memory in addition to

the input records and outputs the following result

y(n) =
M∑

i=0
bi x(n − i )−

N∑
j=1

a j y(n − j ). (B.43)
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By inserting the expression of y(n − j ) recursively into the right-hand side of the expression,

we will find that the system’s impulse response indeed has an infinite length for nonzero a j .

Such an implementation is very resource efficient, with excellent frequency resolution, at the

expense of design complexity.

To analyze the frequency domain response of this discrete-time system, we use the z-transform

(equivalent to the Laplace transform in the continuous time domain) defined below

ζ[x(n)] ≡ X (z) =
∞∑

n=−∞
x(n)z−n , (B.44)

where z is the complex-valued discrete frequency and can be converted to the Laplace domain

using the bilinear transformation

z = e sT ≈ 1+ sT /2

1− sT /2
s = 2

T

z −1

z +1
(B.45)

From these definitions, it is straightforward to derive the time-shifted expression ζ[x(n+n0)] =
zn0 X (z), using which we can easily derive the discrete-frequency domain response function

H(z) = Y (z)

X (z)
=

∑M
i=0 bi z−i∑N
i=0 a j z− j

= K

∏M
i=0(z−1 − z−1

i )∏N
i=0(z−1 −p−1

j )
(B.46)

where the numerator and the denominator are decomposed into their roots (zeros zi and

poles p j ) of the M th and N th polynomials. Note that the zeros and poles here are not the same

as those in the s-domain, which are connected through the bilinear transformation. Because

of such differences, the stability criteria of the filter are different for the z and s domains.

When physically implementing the digital filter, we first fix the design with a set of zeros and

poles (zi , p j ), then compute the coefficients (a j , bi ) of Eq.B.43. However, finite numerical

precision from the round-off errors in the physical implementation will lead to arbitrarily large

errors for the positions of the implemented poles and zeros. Such errors will grow with more

complex filter designs when the orders M and N increase, eventually leading to unstable filters.

Therefore, when designing IIR filters, filters up to only the second order are implemented, with

which the round-off errors are manageable. Then, several second-order filters are connected in

series or parallel to reconstruct the target higher-order IIR filter. The parallel implementation

reduces the digital processing time and improves the noise performance, but also leads to

drawbacks such as the feasibility problem of realizing the same poles or zeros of multiple

orders.

With these design constraints in mind, we show how to convert a target analog transfer

function into digital coefficients for physical implementations. We first start in the Laplace

domain with a target analog transfer function

Ha(s) = K

∏M
i=0(s − zi )∏N
i=0(s −p j )

= D +
N∑

j=1

r j

s −p j
(B.47)

345



Appendix B. Appendix

with designed zeros and poles (zi , p j ). Note again that the zeros and poles here are in the

s-domain and differ from those in the z-domain. In order to implement the partial fraction

expansion, it is required not to have any pair of identical poles, as well as poles that are too

close to each other, to prevent large numerical errors. Then, to find the correct form in the

z-domain, we need to first go to the continuous-time domain through the inverse Laplace

transform

ha(t ) = Dδ(t )+
N∑

j=1
r j ep j t u(t ) (B.48)

where u(t ) is again the heavy step function. Discretizing the time variable t = nT leads to the

discretized version of the impulse response

h(n) = Dδ(nT )+
N∑

j=1
r j ep j nT u(n), (B.49)

from which we arrive at the response in the z-domain as

H(z) = D +
N∑

j=1

r j e−p j T

e−p j T − z−1
. (B.50)

In order to cast these parallel sections into physically realizable (real) coefficients (a j , bi )

in Eq.B.43, we have to pair each section (if p j or r j has non-zero imaginary part) with their

complex conjugate pairs

r j

1−ep j T z−1
+conj. = 2Re[r j ]+2Re[r j ep∗

j T ]z−1

1−2Re[ep j T ]z−1 +|ep j T |2z−2
(B.51)

from which one can readily read out the coefficients (a0 = 1, a1 = −2Re[ep j T ], a2 = |ep j T |2,

b0 = Re[r j ], b1 = 2Re[r j ep∗
j T ] ) for physically implementing the IIR filters. As for D there is one

parallel filter with coefficients (a0 = 1, b0 = D) for the implementation. The conjugate pairing

of complex poles is not artificial since real-world systems well modeled by linear differential

equations always have poles in conjugate pairs. If conjugate pairs of zeros and poles are

already present in the initial design, then we need to pair them, and such a pairing process

does not change the positions of the designed (zi , p j ) up to some numerical errors. Therefore,

for physical implementation, any unpaired complex zeros or poles will require additional

insertion of their complex conjugate pairs in the continuous time domain design.

Even though different second-order filters of Eq.B.50 are in a parallel form, currently, in

the PyRPL package [354] we use, they are realized in series physically. For each clock cycle,

the coefficients are updated, and the outputs are computed and added sequentially. Since

the delay time is different for sequential second-order filters, the high-frequency ones are

implemented last (with newer input data), so the delay time and the overall effect of clock

delay on the implemented filter are minimized. The onboard crystal oscillator provides a clock

frequency at 125 MHz to match the ADC and DAC speed. One can estimate the delay of the

designed filter, e.g., for a filter with five pairs of complex conjugate poles, the maximum delay
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Figure B.1: Spectral response comparison of the designed filter (dashed green) vs. the physi-
cally implemented filter (solid blue). There is a large discrepancy between them, explained by
the clock delay-induced modification of the filter response, with the theoretical prediction
(dashed red) perfectly overlapping the measured response.

for the lowest frequency component is about 40 ns. Therefore, for a more complicated filter

designed, depending on specific application bandwidths, it might be worthwhile to implement

it in a parallel fashion. The effect of clock delays on different pole sections is illustrated in

Fig. B.1, where the analog design function is compared to the physical response measured

from the FPGA.

Response stability

Since most systems are usually well-modeled by an ordinary linear differential equation or a

set of them, the Laplace transform of the system response can be written as a rational function

H(s) = K

∏M
i=1(s − zi )∏N
j=1(s −p j )

(B.52)

where K is a constant scaling factor, p j the complex poles and zi the complex zeros of the

transfer function. Any transfer function is connected to the impulse response of the system
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through the Laplace transform

H(s) =
∫ ∞

0
h(t )e−st d t (B.53)

h(t ) = 1

2πi
lim

T→∞

∫ γ+i T

γ−i T
e st H(s)d s (B.54)

where γ is bigger than any real part of all the singularities (poles) of H(s). Stability requires

bounded outputs with bounded inputs, which leads to a bounded integral of the impulse

response function
∫ |h(t )|d t . This requires the number of zeros to be equal to or less than the

number of poles; otherwise, H (s) will blow up at infinity s →∞. Somehow, this is also partially

connected to the causality of the impulse response function, such that h(t < 0) = 0. There is

also another requirement on the position of the poles. If there is a pole pk on the right side of

the imaginary axis (positive real part), we can always decompose H(s) like

H(s) = ·· ·+ Ak

s −pk
(B.55)

h(t ) = ·· ·+ Ak epk t (B.56)

which results in unbounded integral of impulse response function
∫ |h(t)|d t because |h(t)|

diverges at large t. Therefore, any stable system requires the transfer function poles to be

placed on the left side of the imaginary axis. The z-domain requirement counterpart is easily

derived through the bilinear transformation, which transforms the left half of the s-plane into

the unit circle in the z-plane, having the imaginary axis in the s-plane transformed into the

unit circle in the z-plane. The requirement of Re[pk ] < 0 in the s-plane will thus correspond

to |p ′
k | = eRe[pk ]T < 1, which means that the z-plane poles need to be inside the unit circle (in

unit eT ).

Applications of IIR filters

In this section, we discuss a few applications of IIR filters in our experiment. We typically use

these IIR filters when narrow-band addressing of individual mechanical modes is required,

e.g., in measurement-based feedback cooling applications. Many filters with valuable func-

tionalities can be implemented with just one pair of zero and pole, with their gain and phase

frequency response shown in Fig.B.2. In the following (also in Appendix B.4), we will discuss

their applications in a few scenarios with more complex filter functions.

Photothermal effect

One problem that is frequently observed in the MIM system is the photothermal effects of

low-frequency modes (<1 MHz). We discuss it in detail in Section 2.5.2. Due to the interference

between photothermal force and radiation pressure force, the sign of the optical backaction

feedback can be reversed for modes with low dispersive coupling rates, usually caused by
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Figure B.2: Transfer functions of basic poles (▲) and zeros (▼), and some constructed filter
functions from pole-zero pairs. Note that for plots with zeros, there is always at least an equal
amount of poles in the design, such that the filter remains causal and stable. The plotted
transfer function does not perfectly correspond to the designed pole-zero positions, which is
again the effect of clock delays of different pole sections.

little spatial overlap with the optical mode for symmetry reasons. At high optical power,

these modes tend to become unstable. They cannot be efficiently cooled from broadband

measurement-based feedback cooling for the same reason they can not be optically damped

from Doppler cooling. They are typically about 3-10 kHz apart from the nearby modes and

can be efficiently addressed with IIR filters.

In the experiment, we use a series of anti-notch filters

H(s) = s − (iω0 +Γ)

s − (iω0 −Γ/G)
, (B.57)

illustrated in Fig.B.2 as well as Fig.B.2(b), to efficiently damp all the mechanical modes that

are unstable. Here ω0 is the center frequency of the feedback filter, Γ the feedback bandwidth,

and G the feedback gain. Such a filter has a sharp phase flip within Γ bandwidth around the
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Figure B.3: (a) Comparison of the mechanical spectrum with and without the IIR feedback on
a mechanical mode at 331 kHz. The instability of the mode is displayed, which also causes an
increase in the nonlinear mixing noise inside the mechanical bandgap. (b) Applied IIR filter
function for simultaneously damping the mechanical modes at 68 kHz, 168 kHz, 187 kHz, and
331 kHz.

mechanical frequency ω0 for implementing the correct feedback phase for velocity damping

and an accompanied peak in gain magnitude to compensate for low optomechanical coupling.

We illustrate one comparison of the mechanical spectra in Fig. B.3(a) to show the effect of

the feedback. When the anti-notch filter on mode 331 kHz is turned off, one can see a rising

peak at that frequency and the increase of nonlinear noise in the mechanical bandgap. We

can reliably implement IIR filters with up to 6 anti-notch filters without significant deviation

from the design due to clock delays. This technique improved the Cq from 0.1 to 1.0 with the

previous generation device using perforated membranes. We could not improve much further

due to the substantially large amount of unstable modes that require individual addressing.

Feedback filter phase correction

In either MIM system or any other multi-mode optomechanical system, feedback damping of

an isolated high Q mode to the quantum ground state usually requires very high feedback gain.

However, soft-clamped modes enabled by phononic crystal structures usually accompany

forests of mechanical modes outside the designed mechanical bandgap. As was reported from

earlier MIM ground state cooling experiment [17], even at 10 K temperature and with tailored

IQ filter function inside the mechanical bandgap, when the feedback gain ramped up, some

modes will become unstable due to the feedback-induced anti-damping. They are usually due

to either the flipped phase response of the filter far-off resonance or the delay-induced phase

flip at high frequency. In their work, the solution to such a problem was to use many IQ filters

physically implemented in parallel to correct the feedback phase of the total filter response at

these unstable modes. Their implementation is similar to what we did for the photothermal

instabilities, where individual modes must be addressed. For us, we implemented IIR anti-
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notch filters such that the physical resources required for addressing the same number of

mechanical modes are much less, as these Red Pitaya FPGA boards are only programmed with

three IQ filters each.

For other approaches, e.g. [88], IIR notch filters suppress the feedback gain at these modes.

The bode plot of such a filter is illustrated in Fig.B.2 next to the anti-notch filter discussed

above.

However, as the complexity of the filters grows with more included feedback modes, the

accuracy of the implemented spectral response will take a hit. One way to circumvent this issue

is to physically implement multiple parallel IIR filters on several FPGA boards to help reduce

the on-board gate delays. Therefore, it is more convenient to implement the phase-correcting

anti-notch filters with high peak gain, as we implemented for suppressing photothermal gains,

with no need to worry about interference between parallel filter functions.

Optimal quantum control of mechanical motions

As discussed in Section 3.2, optimal inference of mechanical motion from the measurement

record requires implementing a set of first-order differential equations (quantum master

equations) to isolate the mechanical motion from the measurement noise properly. The

implementation of this equation set, as well as its update in real time, is the prerequisite for

real-time optimal quantum control of mechanical motions.

Even though it is not apparent at first glance, but the quantum master equations represent

an infinite impulse response filter, where the present input signal x(t ) is combined with the

prediction record in the past y(t ′ < t ) to predict the present mechanical motion y(t ). Therefore,

it has a direct mapping to a set of zeros and poles that can be physically implemented on an

FPGA, as long as discretization effects are corrected (details discussed in Section 3.2 as well).

As gate delays happen between the implementation of different sections of individual poles, it

is preferred to physically implement the optimal filter in parallel with any other digital filters

in the system to help retrieve a faithful implementation of the designed spectral response.

B.4 Broadband feedback cooling using a digital IIR filter

At some point during the thesis study, implementing a broadband digital feedback filter with-

out the limitation of finite damping bandwidth limited by the closed-loop delay is considered.

The motivation is to remove the nonlinear mixing noise by simply cooling the mechanical

motions. It was observed in the past that broadband analog feedback cooling can reduce the

third-order TIN in the bandgap by a factor of 2 but can not improve much further. With analog

feedback, see Fig. B.4(a), the cooling is primarily limited to low-frequency modes below 3 MHz,

primarily due to the delay in the system. These complications limit the maximum reduction

of total thermomechanical noise to around 20 %.
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Figure B.4: Broadband feedback cooling comparison between (a) analogue feedback and (b)
digital feedback.

The design consideration of a digital filter here is to mitigate the delay-induced linear phase lag

with some very sharp poles to make 180◦ phase flips, such that mechanical modes in a much

wider frequency region are being damped (0 > θ >−180◦), see Fig. B.5. The pole bandwidths

are designed to be narrow enough to avoid overlap with nearby mechanical modes.

However, there is a trade-off between the sharpness of the transition and the cooling rates,

which leads to only modest cooling using the digital filter shown in Fig. B.4(b). The problem

is that the sharper the phase flip, the higher the gain peak around that frequency. High peak

gain will eventually saturate the linear transduction range of the intensity modulator used for

modulating the optical force. There is little way around this, which originates from the gain-

phase relations. Because of this limitation, the suppression of the total thermomechanical

noise is limited to around 10 %.

In the end, we did not find an efficient way to cool the total thermomechanical noise optically

in order to reduce nonlinear noise in the mechanical bandgap. We must increase cavity

linewidth κ in the experiment using optical resonances with lower finesse.

B.5 Classical measurement noise and suppressions in interferome-

ters

In this section, we discuss various classical measurement noises that we characterized in our

MIM setup. These include acousto-optic modulator (AOM) noise, laser noise, mirror noise,

interferometer phase noise, and signal cross-talk during feedback. We also discuss the choice

of interferometer length balancing to cancel out different types of classical measurement

noises.
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Figure B.5: Designed and measured transfer functions for broadband feedback cooling of
mechanical modes spanning from 0.1 MHz to 6 MHz.

Acousto-optic modulator noise

For our previous generation optical setup, we used two sequential AOMs, both driven by

voltage-controlled oscillators (VCOs) around ∼100 MHz. We first pick the +1 order sideband

after the first AOM and then the −1 order sideband after the second AOM, such that the

end frequency of the laser is shifted by a small frequency δ f determined by the frequency

difference of the two VCOs. This cascaded structure allows us to conveniently actuate the

frequency of the local oscillator of the interferometer. For the feedback stabilization of the

interferometer phase, the direct actuation of the LO frequency is equivalently a physical

integrator lock.

This method is advantageous compared to the conventional LO path length actuation using

a piezo mirror, as the piezo has a finite actuation range as far as a few optical wavelengths.

Therefore, AOMs significantly improve the long-term stability of the interferometer phase lock.
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Figure B.6: Laser direct detection photocurrent noise measured at 100µW. (a) Noise compari-
son when the laser is frequency shifted by two AOMs, which are driven by electrically tunable
VCOs (socket or battery powered) and thermally tunable VCOs. (b) Noise comparison when
the laser is frequency-shifted by either one or two AOMs driven by electrically tunable VCOs.

This benefit, however, comes at a price in the form of added phase and amplitude noise on the

LO. Here, we quantify just the amplitude noise added to the LO and show that the added noise

on the amplitude quadrature of the LO is already beyond the noise budget of our experiment.

We use VCOs to drive the AOMs for their excellent RF phase noise. However, from the mea-

surement shown in Fig. B.6, at the experimentally relevant optical power level of 100µW, the

AOMs add a substantial amount of excess noise to the intensity noise of the laser. In Fig. B.6(a),

we find that when the laser is frequency-shifted by two electrically tunable VCOs, the laser

intensity picks up many noise peaks. We discovered that the noise level also changes when the

VCOs are placed at different physical locations in the lab. We expect this noise to originate from

the lab’s radio-frequency (RF) noise pickup, as the school’s electronic workshop assembles the

VCO box, and they do not have the perfect electrical isolation. To reduce this noise pickup,

we switched to the thermally tunable VCOs, where the frequency of the VCOs is tuned by

temperature change and is not expected to pick up noise from the lab. Indeed, we observed

that all the noise peaks disappeared; instead, a smooth excess intensity noise remained. As the

power of the AOM sidebands is determined by the driving RF power, we expect the intensity

noise of the VCOs to be printed onto the light.

We also found that when only one AOM is used, shown in Fig. B.6(b), driven by the electrically

tunable VCO, the excess intensity noise is reduced, compared to that of the thermally tunable

VCO. However, when we combine two AOMs, the excess noise is much larger than the sum of

the two individuals. We found this is due to the cross-talk between the two AOM drives, with

which VCO phase noise transduces to laser amplitude noise.

Due to the above reasons, we did not employ this double-AOM interferometer lock in our

system and used conventional piezo mirror actuation instead.
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Figure B.7: (a) Relative intensity noise (RIN) of the two TiSa lasers used in our experiment.
The laser shot noise is calibrated and subtracted from the measured spectra. At 1 MHz, and
at optical power 100µW, the Matisse RIN noise is ∼0.5 % of the laser shot noise. The large
equidistant noise spikes were found to be the electrical noise of the Matisse intra-cavity EOM,
which can be removed if the electrical connections are severed. (b) RIN noise (2.5 mW on the
detector) of Matisse operating at different laser emission powers (shown in the legend). The
overlapping relaxation oscillation tails show that RIN is not sensitive to the operating power of
TiSa.

Laser noises

The classical noise from the laser is complicated to analyze for two reasons. First, we are

employing a specialized single-port homodyne to cancel nonlinear noise. Second, we also have

a cavity inside the interferometer loop, as the cavity correlates noises on different quadratures

of the light, making the noise property different from that of the local oscillator.

We assume the laser noise of the signal mode (cavity output) is connected to the cavity input

mode through a (cavity) response δasig(ω) = χ(ω)δain(ω). We can analyze the laser noise

contribution for a single-port homodyne as,

δI (ω) = (aLO + i asige−iθ)δaLO +h.c.+ (asig − i aLOe iθ)δasig +h.c.

= (aLO + i asige−iθ)(δaLO − i e iθχ(ω)δain)+h.c. (B.58)

Note that we have used the notations of the mean fields after they have passed the beam

splitter. Now we expand the field fluctuation linearly δa = |a|(δA + iδφ) into its amplitude

δA and phase δφ noise. For the simplification of the expression, we also define the following

susceptibilities χ+(ω) = χ(ω)+χ∗(−ω)
2χ(0) and χ−(ω) = χ(ω)−χ∗(−ω)

2iχ(0) . In the case of a cavity response,

χ+(ω) = 1+ i ωκ/2
∆2+(κ/2)2 and χ−(ω) =−i ω∆

∆2+(κ/2)2 (1+ i ωκ
∆2+(κ/2)2 ). Then, we can express the inter-
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ferometer noise in terms of the amplitude and phase noise of the laser as

δI (ω) = (aLO + i asige−iθ)(aLO − i e iθχ(ω)ain)(δA+ iδφ)+h.c.

= 2[nLO +nsigχ++aLOasig(sinθ(1+χ+)+cosθχ−)]δA

−2[nsigχ−+aLOasig(cosθ(1−χ+)+ sinθχ−)]δφ. (B.59)

Note that the effective cavity (time) delay effect for the χ+ and χ− components are different,

with one at τ+ =− κ/2
∆2+(κ/2)2 and the other at τ− =− κ

∆2+(κ/2)2 .

For our discussion, we are primarily concerned with laser phase noise (characterized in

Section 2.3.3) as it is equivalently a cavity displacement noise in the fast-cavity limit. For the

laser amplitude noise, illustrated in Fig. B.7, we can easily avoid it by using high-frequency soft-

clamped oscillators far away from the laser relaxation oscillation peak, as well as a high-finesse

cavity to reduce the photon flux required to reach Cq ∼ 1.

For the trivial case when the laser is resonant with the cavity ∆ = 0, the phase noise does

not contribute to the photocurrent since χ− = 0, except for the delay effect of the cavity

1−χ+ =−2iω/κ appearing on the side of the fringe (cosθ ̸= 0).

Note that our expression now corresponds to a length-balanced interferometer, where the

signal and the LO paths are of equal length, excluding the cavity delay. However, it is not

evident that length balancing is the optimal setting with the cavity, as it induces an effective

length delay on the signal path.

If we apply a response function χLO(ω) to the LO, which could be a length/time delay χτ(ω) =
e−iωτ, since FTω[a(t −τ)] = e−iωτFTω[a(t )], we effectively modified the interferometer signal

to

δI (ω) = 2[nLOχ
LO
+ +nsigχ++aLOasig(sinθ(χ++χLO

+ )+cosθ(χ−−χLO
− ))]δA

−2[nLOχ
LO
− +nsigχ−+aLOasig(cosθ(χLO

+ −χ+)+ sinθ(χLO
− +χ−))]δφ. (B.60)

At the obvious choice of matching the cavity delay time τ = − κ/2
∆2+(κ/2)2 , the phase induced

fluctuation reduced to

δIφ =−2[nsig +aLOasig sinθ]χ−δφ, (B.61)

where one is left with the cavity detuning effect, which can also be canceled at the quadrature

angle sinθ =−
√

nsig

nLO
. Note that by doing this, the thermomechanical signal of the cavity is also

canceled, which is not what we want. However, one could imagine that by playing with the

delay time τ, one could cancel out the laser phase noise at arbitrary quadrature angles, where

the thermomechanical signal of the cavity can, in principle, be maximized.
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Feedback signal cancellation

In the case where one is not concerned with laser noises but with feedforward signals δA and

δφ only on the signal path (e.g., for mirror noise cancellation or feedback cooling), the result

would be

δIsi g (ω) = (aLO + i asige−iθ)(−i e iθχ(ω)ain)(δA+ iδφ)+h.c.

= 2[nsigχ++aLOasig(sinθχ++cosθχ−)]δA

−2[nsigχ−+aLOasig(−cosθχ++ sinθχ−)]δφ. (B.62)

In this setting, as the modulation is only on the signal path instead of both, it is possible

to cancel out the amplitude modulation (e.g., from feedback cooling) at the local oscillator

angle sinθ =−
√

nsig

nLO
. This angle corresponds to the phase quadrature of the combined field

where the thermomechanical signal is maximized, and there is a corresponding LO amplitude

to cancel the TIN simultaneously. This arrangement is used in an earlier iteration of the

experiment, where an auxiliary laser (M squared) is used to measure the thermomechanical

signal and perform feedback cooling to suppress photothermal mechanical instabilities while

avoiding cross-talk between measurement and feedback.

Mirror noise cancellation

The mirror motions can be modeled as an effective phase noise δφ(ω) = ∆(ω)/iω on the

signal path with susceptibilities χ+(ω) = −i ωκ/2
∆2+(κ/2)2 and χ−(ω) = i ω∆

∆2+(κ/2)2 . Section 2.3.1

discussed a scheme to cancel the mirror noise by feedforwarding the measurement record

from an auxiliary laser to the science laser. We must apply the feedforward signal to the

interferometer’s signal and the LO arms for mirror noise cancellation. Otherwise, there is no

way to cancel the mirror noise in detection.

An easy choice is to cancel out both the cavity delay and transduction on the signal path by

picking the laser phase modulation δφ(ω) =−∆(ω)/iω, leaving the combined (laser + mirror)

susceptibility χ+(ω) = 1 and χ−(ω) = 0. With this choice of phase modulation, we arrive at the

photocurrent expression as

δI (ω) = 2[nLOχ
LO
+ +nsig +aLOasig(sinθ(1+χLO

+ )+cosθ(−χLO
− ))]δA

−2[nLOχ
LO
− +aLOasig(cosθ(χLO

+ −1)+ sinθ(χLO
− ))]δφ, (B.63)

where we are left with the choice of a proper LO delay. The right choice is to balance the LO

without considering the cavity delay, i.e., χLO+ = 1 and χLO− = 0. In this case, we can not cancel

the intrinsic laser phase noise on the photocurrent, but since the characterized laser noise

(Section 2.3.3) is sufficiently low, we do not mind that much.

Now, let us consider what feedback filter function we must apply to cancel out the mirror

noise over a large frequency band, e.g., 100 kHz. Taking the loop delay τ into consideration,
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we can write down the EOM frequency modulation δν(t) given the actuation voltage δV (t),

which is from the measurement data δ∆ filtered by the response g (t ).

δν(t ) = δθ̇(t ) = d

d t

∫
gmod(t ′− t )δV (t )d t ′ (B.64)

δV (t ) =
∫

g (t ′− t )δ∆(t −τ) (B.65)

ν(ω) = −iωgmod(ω)g (ω)e−iωτ∆(ω), (B.66)

where g (ω) is the feedback frequency response, and gmod(ω) the modulator frequency re-

sponse.

In the hypothetical sense, we can set ν(ω) =∆(ω) to allow a perfect mirror noise cancellation,

but would require a non-causal filter response of

g (ω) = e−iωτ

iωgmod(ω)
. (B.67)

Nonetheless, we can approach this response using an analog PID controller with the following

filter functions

g lp(ω) = 1

1− i ω
ωlp

(B.68)

ghp(ω) = 1

1+ i
ωhp

ω

(B.69)

gPID(ω) = Kp +Ki
1

−iω
+Kd (−iω) (B.70)

We got the best filter response illustrated in Fig.B.8 through numerical optimization and

implemented in Section 2.3.1.

Closed-loop feedback response

In order to effectively cool the mechanical modes or damp unstable modes, we need to

engineer the chain response from the mechanical modes, to optical detection, and then to the

feedback force. Usually, either an external delay line or analog and digital filters are used such

that the feedback damping is efficient,

Γeff(ω) = Γm[1+ gfb(ω)cosδφ(Ω)] (B.71)

Ωeff(ω) = Ωm[1− gfb(ω)
ωΓm

Ω2
m

sinδφ(ω)] (B.72)

where δφ(ω) =φ(ω)+π/2 is the residual phase shift from the ideal feedback phase −π/2.

The total feedback response χfb = F /xm consists of many components. The open loop re-

sponse starts from thermal forces δFth to mechanical response χm , then cavity transduction
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Figure B.8: Optimized mirror noise suppression around 1 MHz. The optimization is done by
tuning the feedback delay and the PID gains.

χcav,m , interferometer detection χcav→DET, detection to intensity modulation χDET→IM, at

which point we arrives at the light intensity signal δA,

δA = xm ·χcav,mχcav→DETχDET→IM

1− gχIM→cavχcav,Aχcav→DETχDET→IM
δFth (B.73)

where we also considered the finite isolation between the optical feedback signal and the

optical measurement, quantified by gain coefficient g . A small g can be detrimental for

experiments requiring high feedback gain. In the experiment, we separate these two signals

using edge-pass optical filters that can separate two optical wavelengths (of science and

auxiliary lasers) with at least 120 dB isolation. In this case, we can safely set g = 0. The passive

polarization isolation is insufficient as we measured only a maximum of 45 dB isolation over a

long time.
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The force actuated on the mechanical mode needs to go through the cavity input response

χIM→cav, as well as the optical force response χcav,F , at which point we finally closed the

mechanical actuation feedback loop,

F = χIM→cavχcav,FδA (B.74)

F = xm ·χcav,Fχcav,mχcav→DETχDET→IMχIM→cav

1− gχcav,Aχcav→DETχDET→IMχIM→cav
δFth (B.75)

We show here the expressions of a few important response functions discussed above

χm→DET = I (ω)

Qm(ω)
∝−2[nsigχ

m
− +aLOasig(−cosθχm

+ + sinθχm
− )] (B.76)

χcav,F = n(ω)

A(ω)
∝ 1+ i

ωκ/2

∆2 + (κ/2)2 (B.77)

χA→DET = I (ω)

Qm(ω)
∝ 2[nsigχ

A
++aLOasig(sinθχA

++cosθχA
−)] (B.78)

χm
+ = κ/2

∆2 + (κ/2)2 (1+ iω(−∆2 + (κ/2)2)

κ/2(∆2 + (κ/2)2)
) (B.79)

χm
− = −∆

∆2 + (κ/2)2 (1+ i
ωκ

∆2 + (κ/2)2 ) (B.80)

χA
+ = 1+ i

ωκ/2

∆2 + (κ/2)2 (B.81)

χA
− = −i

ω∆

∆2 + (κ/2)2 (1+ i
ωκ

∆2 + (κ/2)2 ) (B.82)

Here, we can see that the effective cavity delay on the symmetric and anti-symmetric field

components, characterized by χ+ and χ−, are different. Therefore, the effective cavity delay

will also differ in homodyne detection of different quadrature angles. However, this is not a

physical delay length. More accurately, this is cavity-induced linear phase response for Fourier

frequency ω in the fast-cavity limit ω≪ κ.

In the experiment, we do not have direct access to this feedback response, but we do have

the following two chain responses accessible using phase modulation (PM) and intensity

modulation (IM) driven by the Red Pitaya (RP) FPGA network analyzer,

χP M = χRP→PMχPM→cavχcav,mχcav→DETχDET→RP

1− gχIM→cavχcav,Aχcav→DETχDET→IM
(B.83)

χI M = χIM→cavχcav,Aχcav→DETχDET→IM

1− gχIM→cavχcav,Aχcav→DETχDET→IM
. (B.84)

By comparing them with the chain response of mechanical actuation, the best way to mimic

the actual feedback response χfb = F /xm is to use the phase modulation scheme χP M and try

to match the delay length, either physically or in post-processing, such that χRP→PMχPM→cav =
χRP→IMχIM→cavχcav,F .

We show in Fig. B.9 a few measurements of the system chain responses measured by the VNA

without a tailored digital or analog filter. The auxiliary laser intensity is modulated, and the
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Figure B.9: MIM response measurements using modulation on the auxiliary laser, and detec-
tion on both the auxiliary and the science lasers. The open loop feedback response is shown
in red, and cross-talk leakage between the two lasers, isolated using polarization isolation, is
shown in blue. Compared to the auxiliary laser measurement (green), the isolation achieved is
around 40 dB. The mechanical spectrum is also shown as a guide to the eye for comparison to
the measured responses.
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aux-aux response is measured using direct detection, showing the dispersive features due

to mechanical responses. The leakage to the science detection is also measured, showing

40 dB isolation in polarization. In the feedback cooling experiment, the isolation required is

much higher than this, and chromatic filters are needed to achieve more isolation of 120 dB.

The aux-science response is shown as well. Together with the mechanical spectrum, we can

distinguish the soft-clamped mode (700 kHz), other membrane modes with different levels of

optomechanical couplings due to spatial symmetries, as well as mirror modes that can not be

driven at all.

B.6 Simplified derivation of optomechanical squeezing

Here, we go through the simplified derivation of optomechanical squeezing when the cavity

is driven on resonance. In the following, we omit the quantum operator hat on the optical

annihilation operator â and the mechanical annihilation operator b̂. The optomechanical

Hamiltonian is

Ĥ = ℏ(∆+Gq̂)a†a +ℏΩb†b

= ℏ∆a†a +ℏΩb†b +ℏg0a†a(b† +b) (B.85)

where the vacuum optomechanical coupling rate is related to the cavity pulling factor by

g0 ≡Gxzp, and the position operator can be expressed as q̂ = xzp(b† +b), with the zero-point

motion xzp =
√

ℏ
2mΩ . Using the RWA Langevin equation

˙̂O = 1

iℏ
[
Ô, Ĥsys

]−[
Ô, a†

](κ
2

a −p
κain

)
+

(κ
2

a† −p
κa†

in

)[
Ô, a†

]
(B.86)

for the optical field and the general Langevin equation (see section B.1.1 for the general QLE,

and section B.1.2 for the QLE with the rotating wave approximation.)

˙̂O = 1

iℏ
[
Ô, Ĥsys

]+ i
p

2Γ
[
Ô,Q̂

]
P̂in + Γ

2iΩ

{[
Ô,Q̂

]
, ˙̂Q

}
+ (B.87)

for the mechanical oscillator, we have the following set of coupled equations

ȧ = −
[κ

2
+ i (∆+

p
2g0Q̂)

]
a +p

κain (B.88)

˙̂Q = ΩP̂ (B.89)
˙̂P = −ΩQ̂ +

p
2ΓP̂in −ΓP̂ −p

2g0a†a (B.90)

where we define dimentionless mechanical position operator Q̂ = (b†+b)/
p

2 and momentum

operator P̂ = i (b† −b)/
p

2. We could also define the optical quadrature operators X̂ = (a† +
a)/

p
2 and Ŷ = i (a† −a)/

p
2. From here, it is also convenient to define the optomechanical
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coupling rate g = g0a. The Mechanical motion obeys

¨̂Q +Γ ˙̂Q +Ω2Q̂ =
p

2ΓΩP̂in −2gΩX̂ (B.91)

Q̂(ω) = χ(ω)
(p

2ΓP̂in(ω)−2g X̂ (ω)
)

, (B.92)

where we introduce the mechanical susceptibility χ(ω) ≡Ω/(Ω2 −ω2 − iωΓ), and the dimen-

sionless input momentum fluctuation P̂in(t ) = ip
2

(
b†

in(t )−bin(t )
)
≡ xzpF̂ (t )

ℏ
p
Γ

with correlation

SF F (ω) = 2mΓ(ω)ℏω(n(ω)+1) (B.93)

SF F (−ω) = 2mΓ(ω)ℏωn(ω). (B.94)

The asymmetry is the result of operators not generally commuting at different frequencies[
Ô(ω),Ô(ω′)

] ̸= 0, though not measurable in linear quadrature measurements. However, if

one starts from the RWA QLE for the mechanics, then the force will be symmetric, and the

mechanical susceptibility will be asymmetric instead.

The coupling from the mechanical oscillator to the optical field is modeled in the Fourier

domain as

X̂ (ω) =
p
κX̂in(ω)

κ/2− iω
(B.95)

Ŷ (ω) =
p
κŶin(ω)−2gQ̂(ω)

κ/2− iω
(B.96)

where we assume zero detuning (∆= 0) such that the mechanical motion only couples to the

optical phase quadrature Ŷ . Substituting (B.95) into (B.92), we arrive at the expression for the

mechanical position

Q̂(ω) =
p

2Γχ(ω)
(
P̂in(ω)−

√
2CeffX̂ (ω)in

)
, (B.97)

where we introduce the optomechanical cooperativity C = 4g 2

κΓ and the effective optomechani-

cal cooperativity Ceff ≡ C
(1−2iω/κ)2 . Using the input-output relation, one can arrive at the output

field quadrature expressions

X̂out(ω) = −κ/2+ iω

κ/2− iω
X̂in(ω) (B.98)

Ŷout(ω) = −κ/2+ iω

κ/2− iω
Ŷin(ω)− 2

p
κgQ̂(ω)

κ/2− iω

= −κ/2+ iω

κ/2− iω
Ŷin(ω)−2

√
ΓCeffQ̂(ω) (B.99)

X̂ θ
out(ω) = X̂ cosθ+ Ŷ sinθ

= −
[
κ/2+ iω

κ/2− iω
cosθ+4ΓCeffχ(ω)sinθ

]
X̂in(ω) (B.100)

−κ/2+ iω

κ/2− iω
sinθŶin(ω)+2Γ

√
2Ceffχ(ω)sinθP̂in(ω)

The symmetrized power spectral density that the homodyne detection would measure is then
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given by

SX θ
out X θ

out
(ω) = 1

2
+8Γ2|χ(ω)|2|Ceff|

(
nth +|Ceff|+

1

2

)
sin2θ

+Γ|Ceff|(χ(ω)+χ∗(ω))sin2θ (B.101)

From here on could recognize the backaction quanta nba ≡ |Ceff|. The first term is the original

quantum noise on the optical quadrature without any optomechanical interaction. The second

term is the mechanical motion, which is always positive in the presence of radiation pressure

driving. The third term is the correlation between the optical amplitude quadrature and the

driven mechanical motion printed on the optical phase quadrature, which is responsible for

ponderomotive squeezing and giving the power spectral density an asymmetric shape. The

necessary and sufficient condition for observing squeezing SX θ
out X θ

out
(ω) < 1

2 is

nth +nba +
1

2
< Ω2 −ω2

2ΓΩ tanθ
. (B.102)

We can see that squeezing can not occur precisely on the mechanical resonance ω=Ω, but

is always present for some range of optical quadrature angles θ, since the right side goes to

infinity when |θ|→ 0. And the Fourier frequency range that one could observe squeezing is

roughly |Ω−ω| ∼ Γ(nth +nba), and the magnitude of the quantum squeezing relative to the

optical shot noise is ∼ nba
nth+nba

.

B.7 Simplified picture of measurement-based feedback cooling

F̂tot χm x̂

ŷ

x̂impxadd

H

Ffb

Figure B.10: Measurement-based feedback cooling diagram when the fast optical cavity is
driven on resonance.

The complete picture of our system under continuous feedback is illustrated in Fig. 3.7. In this

section, we first discuss a simplified picture for measurement-based feedback cooling, shown

in Fig. B.10, which corresponds to the limiting case when the cavity is pumped by a laser on

resonance ∆= 0. In our experiment, we pump the cavity at the magic detuning ∆∗ discussed

in Section 2.4.

The feedback loop equations are covered in [17, 86]. Here, we cover the most essential
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equations for a resonantly driven optical cavity. Note that here we enforce the treatment

that the feedback force Ffb is quantum, though it is strictly classical. This treatment is also

applied in many other sections of this thesis, especially when dissipations are involved (e.g.,

Section A.3 and Section 2.5). A formal treatment requires symmetrization of the quantum

observable in the form of auto/cross-correlations in measurements,

2S ÂB̂ (ω) = FTτ[〈Â†(τ)B̂(0)+ B̂(0)Â†(τ)〉] = S ÂB̂ (ω)+SB̂ † Â† (−ω). (B.103)

In the following, we make a simple argument that there is no difference in the measurement

result, whether the feedback force is classical or quantum. We write down the set of equations

that describes the simplest feedback problem

(Ffb + F̂ )χm(ω)+ x̂imp = ŷ (B.104)

Ffb = H(ω)ŷ (B.105)

where we marked ŷ such that its auto-correlation function requires symmetrization. We can

now calculate the spectral density as in

F̂χm(ω)+ x̂imp = ŷ −H(ω)χm(ω)ŷ (B.106)

SF̂ F̂ |χm(ω)|2 +S x̂imp x̂imp

|1−H(ω)χm(ω)|2 = S ŷ ŷ + |H(ω)χm(ω)|2
|1−H(ω)χm(ω)|2 (S ŷ ŷ −S ŷ ŷ )

−
H(ω)χm(ω)(S ŷ ŷ −S ŷ ŷ )+H(−ω)χm(−ω)(S ŷ ŷ −S ŷ ŷ )

|1−H(ω)χm(ω)|2 (B.107)

SF̂ F̂ |χm(ω)|2 +S x̂imp x̂imp

|1−H(ω)χm(ω)|2 = S ŷ ŷ (B.108)

where the relation that S ŷ ŷ (ω)+S ŷ ŷ (−ω) = 2S ŷ ŷ (ω) is used. The result is the same as treating

the force as quantum. Therefore, in the following, we treat everything as if they are quantum

observables (ˆomitted).

Following the feedback diagram, we derive the closed-loop results

Ftot(ω) = Fth(ω)+FBA(ω) (B.109)

Ffb(ω) = (Ftot(ω)χm(ω)+ximp +xadd)H(ω)

1−χm(ω)H(ω)
(B.110)

y(ω) = (Ftot(ω)+Ffb(ω))χm(ω)+ximp(ω) (B.111)

= χm(ω)

1−χm(ω)H(ω)
Ftot(ω)+ 1

1−χm(ω)H(ω)
ximp(ω)+ χm(ω)H(ω)

1−χm(ω)H(ω)
xadd(ω)

x(ω) = (Ftot(ω)+Ffb(ω))χm(ω) (B.112)

= χm(ω)

1−χm(ω)H(ω)
Ftot(ω)+ χm(ω)H(ω)

1−χm(ω)H(ω)
(ximp(ω)+xadd(ω))

where Ftot is the total force fluctuations experienced by the mechanical mode, including

the thermal force Fth and the quantum backaction force FBA. The mechanical mode also
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experiences a feedback force Ffb, which is determined by the measurement record y(ω) as well

as the feedback filter response H(ω). The mechanical position x(ω) describes the mechanical

motion to be cooled.

We can derive the corresponding spectral densities of the in-loop measurement record y , as

well as the out-of-loop mechanical position x,

Sy y (ω) =
∣∣∣∣ χm(ω)

1−χm(ω)H(ω)

∣∣∣∣2

Stot
F F (ω)+ 1

|1−χm(ω)H(ω)|2 Simp
xx (ω)

+
∣∣∣∣ χm(ω)H(ω)

1−χm(ω)H(ω)

∣∣∣∣2

Sadd
xx (ω) (B.113)

Sxx (ω) =
∣∣∣∣ χm(ω)

1−χm(ω)H(ω)

∣∣∣∣2

Stot
F F (ω)+

∣∣∣∣ χm(ω)H(ω)

1−χm(ω)H(ω)

∣∣∣∣2

(Simp
xx (ω)+Sadd

xx (ω)) (B.114)

We can analyze how the feedback filter H selection influences the mechanical phonon occu-

pancy with these expressions.

Note that an approximation is used here, that FBA is uncorrelated with ximp. The approxima-

tion is only valid for resonant probing (∆= 0) and optical phase quadrature detection. In the

general case, there is a correlation between the backaction force FBA and the measurement

imprecision ximp, which leads to measurement beyond SQL and ponderomotive squeezing.

However, we can rotate the measurement quadrature angle so that the force-imprecision

correlation will vanish when the mechanical SNR is maximized. However, measurement im-

precision other than that of the quantum optical origin, e.g., cavity frequency noise, requires a

more delicate treatment, which is covered in Fig. 3.7.

Optimal filter through functional minimization

With the expressions of these spectral density functions in mind, one might think that we can

optimize the mechanical phonon occupation
∫

Sxx (ω)dω through functional minimization

using the feedback filter response H(ω). This approach was investigated in the thesis [86].

Here, we show that the feedback filter obtained through functional minimization is not stable

and can not be used for real-time feedback cooling experiments, and that the filter covered in

Section 3.2.1 is the only correct one.

The optimal filter design can be obtained by functional minimization over the final phonon
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occupancy by introducing a perturbation function ϵη(ω),

n ∝
∫

Sxx (ω)dω (B.115)

n(ϵ→ 0) ∝
∫

dω
Stot

F F (ω)+|H(ω)+ϵη(ω)|2Simp
xx (ω)∣∣χ−1

m (ω)− (H(ω)+ϵη(ω))
∣∣2

=
∫

dω
Stot

F F (ω)+ (|H(ω)|2 +2ϵRe[H(ω)η∗(ω)])Simp
xx (ω)∣∣χ−1

m (ω)−H(ω)
∣∣2 −2ϵRe[(χ−1

m (ω)−H(ω))η∗(ω)]
(B.116)

ϵ∂ϵn = n(ϵ)−n(0) ∝
∫

dω2ϵRe

[
η∗(ω)

Stot
F F (ω)+χ∗−1

m (ω)H(ω)Simp
xx (ω)

(χ−1
m (ω)−H(ω))−1

∣∣χ−1
m (ω)−H(ω)

∣∣4

]
(B.117)

which leads to the "optimal" feedback filter response

Hopt(ω) =−χ∗m(ω)
Stot

F F (ω)

Simp
xx (ω)

. (B.118)

We show below that this filter is unstable.

Stability analysis

The stability of the closed-loop system with the filter H(s) analyzed above, is essentially the

stability of the following response functions

χm(s)

1−χm(s)H(s)
or

χm(s)H(s)

1−χm(s)H(s)
. (B.119)

Since it is a closed-loop system, it does not matter whether χm or H are stable. The relevant

response is actually

L(s) = 1

χ−1
m (s)H−1(s)−1

(B.120)

which can be stable if either χm or H is stable. In the following, we analyze the stability of this

response by checking if the time-domain function diverges in the long time limit.

In the case of the derived optimal filter, we have the following responses

χm(s) = Ω

s2 + sΓ+Ω2 H(s) =− A > 0

s2 − sΓ+Ω2 . (B.121)

We can proceed to factorize the denominator of the closed-loop response to different poles

L(s) ∝ 1

(s2 + sΓ+Ω2)(s2 − sΓ+Ω2)+ A

= (
s4 + (2Ω2 −Γ2)s2 +Ω4 + A

)−1
(B.122)
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(a) (b) (c)

Figure B.11: Stability analysis of the "optimal filter" derived from minimizing integral of
spectral density under three different feedback gain settings. (a) Effective mechanical sus-
ceptibilities (magnitude as the solid lines, phase as the dashed line) under feedback damping
using the "optimal filter". (b) Poles of the closed-loop response in the complex domain. (c)
Time domain response of the closed-loop system, showing an exponential increase of the
output signal.

with the solutions

s2 = −2Ω2 +Γ2 ± i
√

(4Ω2 −Γ2)Γ2 +4A

2
≈−Ω2 ±2i B (B.123)

Assume the solution to the poles is separated into real and imaginary parts s = R + i I , we can

derive the solution of the real part of the filter:

RI =±B

R2 − I 2 =−Ω2

⇒ R =±
√

−Ω2 +
p
Ω4 +4B 2

2
. (B.124)

The result shows that there is always at least a positive real pole. After Fourier-transform

back into the time-domain filter response, the positive real part will lead to an exponentially

increasing temporal envelope, which leads to divergence. The divergence means the closed-

loop system is unstable. When minimizing the integral of spectral density, the stability criteria

of the system response is not considered so it can lead to unphysical results. This effect is

also analyzed numerically, shown in Fig. B.11, where we observed the filter’s instability in the

time-domain response.

B.8 Classical laser noise effects on sideband asymmetry

This section analyzes the case where the system is contaminated by the laser amplitude and

phase noise (cavity frequency noise ignored here). This is not the case in our system, as our
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laser is quantum-limited in both phase and amplitude. Nevertheless, we would like to know

the effect of laser noise on the measured sideband asymmetry.

We assume the input field is injected from an auxiliary port that is not the main output port of

the cavity and define Cqq and Cpp (set Cpq = 0) for the field intensity at the output port. Recall

the field correlations in terms of classical noise density,

Sainain =
Cqq +Cpp

2
(B.125)

Sa†
ina†

in
= 1+ Cqq +Cpp

2
(B.126)

Saina†
in
= e−2iφCqq −e−2iφCpp

2
− i e−iφCpq (B.127)

φ= arg(1+2i∆/κ) (B.128)

with which we derive again the output field spectral density

Saoutaout (ω) = 4g 2Γm |χ′m |2κ|χcav|2
(
nth +

C

1+ (2(∆+ω)/κ)2

)

+κ2|χcav|2
∣∣∣∣∣1+4i g 2χ′mχcav(1+ iωκ/2

(κ/2)2 +∆2 )

∣∣∣∣∣
2

Cqq

2

+κ2|χcav|2
∣∣∣∣∣1+4g 2χ′mχcav

∆ω

(κ/2)2 +∆2

∣∣∣∣∣
2

Cpp

2
(B.129)

where we have the classical-noise-induced heating (taking ω≪ κ)

neff = nideal +
2g 2κ|χcav|2

Γ′m

(
Cqq +Cpp

∆
2
Ω2

m

((κ/2)2 +∆2
)2

)
(B.130)

as well as the output field interference with the classical backaction.

To simplify the discussion, we analyze the interference effect at the peak of the mechanical

mode and find that the asymmetry quanta and the phonon quanta are modified by

1

2
→ 1

2

(
1+ 2

1+ (2∆/κ)2
Cqq

)
(B.131)

neff → neff −Cpp
2

1+ (2∆/κ)2

(2∆/κ)(2Ωm/κ)

1+ (2∆/κ)2
(B.132)

Modifying the sideband asymmetry factor 1/2 is only possible when the classical noise is

present on the probe laser. For any noise originating from the cavity, this is not possible.

One thing to remember is that the results derived here assume a noiseless local oscillator. In

reality, phase and amplitude noise are present on both the probe and local oscillator beams.

When they combine to form a homodyne, noise interferes. Therefore, the result derived here
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does not directly apply to experimental realizations and only provides a magnitude estimation

of these effects. To account for the noise interference, physical details of the interferometers

need to be considered, e.g., whether it is a balanced homodyne and how the interferometer

length is balanced. The laser noises measured at higher power, shown in Fig. 2.17 and Fig. 3.2,

indicate that at the power level of the asymmetry measurement (50µW) Cpp ≪ 1 and Cqq ≪ 1.

Therefore, we can safely ignore the classical noise contributions.

B.9 Theory of dissipative Kerr solitons

The physical theory of generating nonlinear optical states in microresonators [224] is rich

and we will not be able to cover them in the context of this thesis. In our experiments, we

routinely generate nonlinear states, including primary comb, secondary comb, modulation

instability, and dissipative solitons. In the following, we list some essential equations, closely

following [355], describing the generation of solitons and their optical properties. These results

are used to study soliton interaction with free electrons in Section 5.2.

The internal optical field evolution in a microresonator (with only Kerr nonlinearity) can be

described by the Lugiato-Lefever equation (LLE),

∂A

∂t
− i

D2

2

∂2 A

∂φ2 − i g |A|2 A =−(
κ

2
+ i∆)A+

√
κηPin

ℏω0
(B.133)

where A(φ, t ) is the slowing varying field amplitude of the carrier, and φ ∈ [0,2π] is the angular

coordinate inside the ring resonator with a periodic boundary condition. η = κex/κ is the

resonator coupling efficiency. ∆=ω0 −ωlaser is the laser detuning relative to the pump cavity

resonance. Pin is the optical input power to the resonator. Most importantly, g = ℏω2cn2
n2V is the

nonlinear coupling constant (self-Kerr resonance frequency shift per photon), and D2 is the

second order dispersion of the cavity resonance frequenciesωµ ≈ω0+D1µ+D2µ
2/2+·· · . The

above equation can be further cast into a dimensionless nonlinear Schrödinger equation with

a driving and a damping term,

i
∂ψ

∂τ
+ 1

2

∂2ψ

∂θ2 +|ψ|2ψ= (−i +ξ0)ψ+ i f , (B.134)

where ψ is again the dimensionless field envelope, θ =φ/
p

2D2/κ is the dimensionless lon-

gitudinal coordinate, τ = κt/2 is the dimensionless slow time, ξ0 = 2∆/κ is the normalized

detuning, and f =
√

8g /κ3
√
κηPin/ℏω0 is the normalized pump power relative to the required

power to achieve nonlinear process.

An approximate solution for the dissipative solitons, accounting for a flat continuous-wave

(CW) background, is given by

ψ= f

ξ2
0

− i
f

ξ0
+

√
2ξ0e iφ0 sech(

√
2ξ0θ) (B.135)
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with the stability requirement
p

3 < ξ0 ≤π2 f 2/8 and a large detuning f 2 < 2
27ξ0(ξ2

0 +9). Here,

the soliton phase cosφ0 = √
8ξ0/π f . As we see, the soliton exhibits a sech shape on top of

the CW drive field background. At very large detuning ξ0, the soliton-CW peak ratio can be

greatly enhanced and typically achieves a factor of 10-100. We use these waveforms to study

electron-photon interaction with nonlinear optical states in Section 5.2.

B.10 Classical noise contributions in the Kerr squeezing experiment

Here, we discuss a few noise contributions, including the laser phase and amplitude noise and

the inclusion of TRN in our model. How homodyne length balancing influences the classical

noises is also analyzed.

Laser noise contributions

Modeling the laser phase and amplitude noise correlations as [356](
〈δq(t )δq(t ′)〉 〈δq(t )δp(t ′)〉
〈δp(t )δq(t ′)〉 〈δp(t )δp(t ′)〉

)
= 1

2

(
1+2Cqq i +2Cqp

−i +2Cqp 1+2Cpp

)
δ(t − t ′) (B.136)(

Sqq Sqp

Spq Spp

)
= 1

2

(
1 i

−i 1

)
+

(
Cqq Cqp

Cqp Cpp

)
(B.137)

The amplitude noise spectrum S I (ω) can be measured using direct photodetection. We can

characterize the excess amplitude noise Cqq by checking the deviation of the noise variance

from the shot noise, either by directly comparing noise variance difference or based on their

different scaling on power. In the end, we can convert between Cqq and S I using

Cqq = 1

2
(

S I

SSN
−1). (B.138)

For the phase noise Sφφ of the laser, we can measure it by the method described in Section 2.3.3,

but here we beat the 1550-nm ECDL with a reference laser with much lower phase noise. For

this purpose, we use an ultra-low noise laser stabilized to a filter cavity (Appendix B.13). The

excess phase quadrature noise of the laser can be converted from the measured laser phase

noise by

Cpp = 2〈ṅ〉Sφφ, (B.139)

where 〈ṅ〉 is the photon flux rate of the input light. From our measurement, Cpp drops as ω

increases and is quantum limited at around 10MHz. The measured phase and amplitude laser

noise of the ECDL used for our measurements are shown in Fig. B.12.

As for the quadrature cross-correlations, we have the bound Cqp ≤√
CqqCpp from the Cauchy-

Schwarz inequality. And if we consider that the noise arises from a quantum state ρ, we have
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Figure B.12: (a) Measured Toptica ECDL laser phase noise by beating with other low noise
laser sources [357]. (b) Measured ECDL amplitude noise at different Fourier frequency bands
by an optical power sweep.
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the covariance matrix

det

(
1
2 +Cqq Cqp

Cqp
1
2 +Cpp

)
≥ 0, (B.140)

which results in a larger bound

C 2
qp ≤CqqCpp

(
1+ 1√

CqqCpp

)
. (B.141)

In most experiments, as long as CqqCpp ≪ 1, it is safe to ignore Cqp . Otherwise, we must

use this bond to approximate Cqp . We know that the amplitude and laser phase noise have

drastically different spectral features, so we are not concerned with their correlations.

Cavity frequency noise

Apart from the laser’s classical noise, the cavity’s thermo-refractive noise causes classical

detuning noise in the measurement. In the case of a balanced homodyne measurement, the

laser phase noise and cavity frequency noise contribute to the measurement equivalently

when the cavity is pumped on resonance and obeys the following conversion relation

Sφφ =
(

4κex

κ2
ex −κ2

0

)2

Sδ f . (B.142)

According to this equation, if we consider the TRN as an input phase quadrature noise from

the laser, an over-coupled 1-THz Si3N4 ring resonator usually has Cpp at the level of 104 near

the optimized squeezing power.

Generally, there is a difference in the cavity frequency and laser phase noise. Here, we derive

the cavity noise transduction by adding a perturbation δ∆ term into Eq.A.9 as

d a

d t
=−(κ/2+ i (∆+δ∆))a − i g a†a2 +p

κexain +p
κ0bin. (B.143)

This adds an additional term in the linearized equation

da

d t
= [M − κ

2
I ]a+p

κexain +p
κ0b+δ∆iα, (B.144)

where iα=
(

i 〈A〉
−i 〈A∗〉

)
. In the quadrature basis, we have

d

d t

(
δY1

δY2

)
=

(
G1 H1

H2 G2

)(
δY1

δY2

)
+

(
J1

J2

)
+ iδ∆

(
〈Y2〉
〈Y1〉

)
. (B.145)
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The output quadrature equation now obtains a new term,

Ỹ out
i = [old terms]− i

p
κex(Hi 〈Yi 〉+ (iω+G j )〈Y j 〉)∆̃

(Gi + iω)(G j + iω)−Hi H j
. (B.146)

The output spectrum also obtains a new term that comes from cavity frequency noise

Sout
Yi Yi

= [old terms]+ κex|Hi 〈Yi 〉− (iω+G j )〈Y j 〉|2S∆∆
|(Gi + iω)(G j + iω)−Hi H j |2

, (B.147)

in which S∆∆ is the TRN spectrum STRN measured in Section A.1. It is worth noticing that this

expression is different from adding the TRN noise as the laser phase noise.

We can easily verify this expression by taking the limit g → 0 and ∆→ 0, which results in the

expression

S∆Yi
(g = 0,∆= 0) =

|κex −κ/2+ iω|2Sin
Yi
+κexκ0Sb

Yi
+κex|〈Y j 〉|2S∆

|−κ/2+ iω|2 . (B.148)

It consists of the input field, the vacuum field from the loss port, and the TRN transduction

of the cavity. Sharp eyes might notice that the TRN term does not have the same ratio as

Eq. B.142. However, they are the same if we consider the input-output mean-field solution

|α|2 = 4κex

(κex −κ0)2 |αout|2. (B.149)

We show one of the simulated Kerr squeezing spectra at the optimal quadrature angle in

Fig. A.6. Given the spectral property of the TRN, it dominates at low frequency. The squeezing

band is thus restricted to high frequency, penalized by the cavity cut-off effect.

Homodyne detection response

Our experiment uses homodyne detection to measure the quadrature variance at offset fre-

quencies. As homodyne detection requires an interferometer, laser noise interference, i.e.,

when the signal is combined with the local oscillator, will affect how the laser noise enters the

measurement record. For example, a length balancing of the signal and LO arms would par-

tially cancel out the laser phase noise contribution on the measurement record. To correctly

account for these effects, we include the interferometer response in the system model derived

in previous sections.

We define the homodyne measurement variable as a combination of the signal and the local

oscillator added noise

δH = δqθsig +
√

〈nsig〉/〈nLO〉δq−θ
LO (B.150)

where we relate the signal flux to the input flux through
nsig

nin
= (κex−κ0)2/4+∆2

eff

(κex+κ0)2/4+∆2
eff

. When ∆ is big,
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B.10 Classical noise contributions in the Kerr squeezing experiment

the classical noise in the interferometer gets canceled if it is length balanced.

Recall a few terms we defined earlier when only considering the cavity nonlinearity,

Gi = −(κ/2± i
g

2
[α2e−2iθ−α∗2e2iθ])

Hi = ±(∆+2g |α|2)− g

2
[α2e−2iθ+α∗2e2iθ]

Ji = p
κexδY in

i +p
κ0δY b

i ,

on top of which we also define the following terms to help us simplify the final expression

when considering the interferometer response,

A = [(G2 + iω)(κex +G1 + iω)−H1H2] (B.151)

B = −H1κex (B.152)

C = −H1
p
κexκ0 (B.153)

D = −pκexκ0(G2 + iω) (B.154)

E = (G1 + iω)(G2 + iω)−H1H2. (B.155)

With these terms, we rewrite the homodyne observable δH as

δH =
(
(A cosθ′−B sinθ′)δq + (A sinθ′+B cosθ′)δp

+E
√

〈nsig〉/〈nLO〉(cosθδqLO − sinθδpLO)+CδY b
2 +DδY b

1

)
/E . (B.156)

Here, we define θ′ = θ−∆θαin/αout to account for the signal field phase rotation relative to the

input laser field. As for the quadrature noises δp and δq , we have the following relations

δq = p
2δα+δq0 (B.157)

δp = p
2|〈a〉|δφ+δp0 (B.158)

to separate the classical fluctuations δα and δφ from the quantum fluctuations. It is possible

to separate the homodyne observable also into a quantum term and a classical term δH =
δH0 +δHc , where

δH0 =
(
(A cosθ′−B sinθ′)δq0 + (A sinθ′+B cosθ′)δp0+

E

√
〈nsig〉
〈nLO〉

(cosθδqLO
0 − sinθδpLO

0 )+CδY b
2 +DδY b

1

)
/E (B.159)
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denotes the vacuum fluctuation and

δHc =
(

((A cosθ′−B sinθ′)+E cosθ

√
〈nsig〉
〈nin〉

)
p

2δα+ ((A sinθ′+B cosθ′)

−E sinθ

√
〈nsig〉
〈nin〉

)
p

2|〈ain〉|δφ
)

/E (B.160)

denotes the classical fluctuation.

Therefore, we can write out the final expression SHH(θ) = SH0 H0 +SHc Hc +STRN, taking into

account the vacuum fluctuations SH0 H0 , classical laser noises SHc Hc , as well as the cavity

frequency noise STRN,

SH0 H0 =
(
|A cosθ′−B sinθ′|2S0

q +|A sinθ′+B cosθ′|2S0
p +|C |2Sb

2 +|D|2Sb
1 (B.161)

+2Re[DC∗Sb
pq ]+2Re[(A cosθ′−B sinθ′)(A sinθ′+B cosθ′)∗S0

pq ]
)

/|E |2 + 〈nsig〉
〈nLO〉

S0
LO

SHc Hc =
∣∣∣∣∣(A cosθ′−B sinθ′)+E cosθ

√
〈nsig〉
〈nin〉

∣∣∣∣∣
2

Cqq +
∣∣∣∣(A sinθ′+B cosθ′)

−E sinθ

√
〈nsig〉
〈nin〉

∣∣∣∣∣
2

Cpp +2Re

[(
(A cosθ′−B sinθ′)+E cosθ

√
〈nsig〉
〈nin〉

)
(

(A sinθ′+B cosθ′)−E sinθ

√
〈nsig〉
〈nin〉

)∗Cpq

/|E |2 (B.162)

STRN = κex|H1〈Y1〉− (iω+G2)〈Y2〉|2S∆∆
|E |2 (B.163)

Again, we must remember that quadrature angles have relative rotation, e.g., between Y out/sig

and Y . Since we define the quadrature angle with respect to Y out
i (θ), we need to use Yi (θ−

∆θαcav/αout ).

To account for the finite detection efficiency η, we can replace E with Eη−1/2, such that the

signal is attenuated. Also,
〈nsig〉
〈nin〉 is replaced by η

〈nsig〉
〈nin〉 , such that the signal classical noise is also

adjusted for the reduced power. Besides the change in classical noise, vacuum noise 1
2 −η

must also be added.

We illustrate the result of the classical laser phase noise δφ(ω) cancellation by the interferome-

ter in Fig. B.13. One important thing to notice about the length balancing is that the laser phase

noise is only well canceled when the laser is far off the cavity resonance (Fig. B.13(b)). When

the laser is on resonance, only noise within the cavity bandwidth is well canceled (Fig. B.13(a)).

If the laser is slightly detuned from the cavity resonance, the carrier frequency noise is not

well canceled because of cavity transduction and quadrature rotation (Fig. B.13(c)). As the

sideband phase noise δφ(ω) acquires a phase shift when the Fourier frequency ω approaches

the cavity bandwidth, even when the laser is on resonance. Therefore, these noise components
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Figure B.13: Classical laser phase noise cancellation in a length-balanced homodyne. Classi-
cal phase noise spectral response when (a) laser is resonant with the cavity, (b) laser is far off
resonance from the cavity, and (c) the laser is side-of-the-line of the cavity resonance. The
phase noise is only well canceled in detection when the laser is far off the cavity response
((b)). When the laser is within the cavity bandwidth ((a,b)), the phase noise cancellation is im-
peded by the cavity response of the phase noise Fourier components, which modifies both the
phase and the amplitude of the laser phase noise. (d) Simulated SHc Hc with a length-balanced
homodyne with a resonantly driven cavity.

get amplified instead. We expect Kerr squeezing near the cavity bandwidth edgeω∼ κ, as TRN

dominates the low-frequency span ω≪ κ. So, it is vital to account for the laser phase noise as

the length balancing of the homodyne actually amplifies the phase noise in the frequency span

of interest for the Kerr squeezing application. We should in Fig. A.6 the simulated spectrum,

considering all the classical noise sources and the homodyne response.

B.11 Cavity nonlinearity-induced pump-probe response

In microresonators, the pump light can cause cross-Kerr, heating, and even charge carrier

effects that change the probe resonance frequency. Using a pump-probe scheme, we can

probe these responses in both time and frequency domains and separate them using their

distinct features. System parameters, e.g., absorption rate κabs and nonlinear index n2 can be
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retrieved by careful calibration.

Here, we have the first equation to define the cavity frequency linear response function

δ∆(t ) =
∫ t

−∞
µ(t − t ′)n(t ′)d t ′, (B.164)

where δ∆(t) is the intracavity photon n(t) induced cavity frequency shift and µ(t ≥ 0) is the

cavity response function, in which at different time scales, different effects dominate, e.g.,

the photorefractive effect at sub-Hz frequencies, the thermal effect at kHz frequencies, and

the Kerr effect around MHz frequencies. Mathematically, the easiest thing one could do to

measure the response function is by setting the intracavity photon number to be a delta

function n(t) = δ(t) and by measuring cavity detuning δ∆(t) = ∫
µ(t − t ′)δ(t ′)d t ′ = µ(t) one

directly gets the response function µ(t ).

In reality, δn(t) changes to an external drive, as well as the readout of δ∆(t), is limited by

the cavity bandwidth. Therefore, for fast frequency response concerning the thermal and

Kerr effects, we use frequency domain response measurement to account for the finite cavity

response bandwidth.

Response of probe laser to cavity frequency shifts

The cavity detuning is not directly accessibl e, and the accessible physical quantity is instead

cavity transmission/reflection measured by an auxiliary probe laser a with a very weak in-

tensity so that cavity nonlinear effects can be ignored. In this setting, we have the following

Langevin equations (vacuum noise omitted)

aout = ain −p
κexa (B.165)

ȧ(t ) = (−κ
2
+ i∆(t ))a(t )+p

κexain. (B.166)

In the limit of small perturbation, the system can be treated linearly, and the output probe

intensity can be expressed as

δ|aout(t )|2 =
∫ t

−∞
χ(t − t ′)δ∆(t ′)d t ′ (B.167)

where χ(t ) = FT−1χ(ω) in frequency domain is

χ(ω) = 2∆κex[κ0 − iω]|ain|2
[κ2/4+∆2

][(κ/2− iω)2 +∆2
]
. (B.168)

With these results, we proceed to calculate how cavity nonlinearity transduces pump intensity

modulation to probe cavity frequency shift.
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Response of cavity to pump intensity modulation

Intracavity photon number under the modulation of the pump mode (b) is tricky to analyze

due to the cavity nonlinear effects. In the weak modulation limit, we have the following

Langevin equations describing the pump cavity photon number and the detuning,

n(ω) = 2κex|bin|2 −∆∆(ω)+ [κ2/4− iωκ/2+∆2
]A(ω)

[κ2/4+∆2
][(κ/2− iω)2 +∆2

]
(B.169)

∆(ω) = µb(ω)n(ω) (B.170)

where all the parameters refer to the pump optical mode, and the field amplitude modulation

coefficient A(t) is defined as bin(t) = bin(1+ A(t)). Here, µb = ·· ·+χSPM consists of the Kerr

self-phase-modulation response. One could see that at non-zero detuning ∆ ̸= 0, the two

equations are coupled. The resulting response relation is modified to

∆(ω) = 2κex|bin|2[κ2/4− iωκ/2+∆2
]µb(ω)

[κ2/4+∆2
][(κ/2− iω)2 +∆2

]+2κex|bin|2∆µb(ω)
A(ω) (B.171)

n(ω) = 2κex|bin|2[κ2/4− iωκ/2+∆2
]

[κ2/4+∆2
][(κ/2− iω)2 +∆2

]+2κex|bin|2∆µb(ω)
A(ω). (B.172)

where cavity induces self-feedback from the term 2κex|bin|2∆µb(ω), which should be avoided

in the pump-probe scheme.

Pump-probe chain response

Given the results derived above, we can write down the pump-probe chain response as

δ|aout|(ω) =χa(ω)µa(ω)nb(ω) (B.173)

χa(ω) = 2∆aκa,ex[κa,0 − iω]|ain|2
[κ2

a/4+∆a
2

][(κa/2− iω)2 +∆a
2

]
(B.174)

nb(ω) = 2κb,ex|bin|2[κ2
b/4− iωκb/2+∆2

b]

[κ2
b/4+∆2

b][(κb/2− iω)2 +∆2
b]+2κb,ex|bin|2∆bµb(ω)

A(ω) (B.175)

where µa = ·· ·+χXPM consists of the Kerr cross-phase-modulation response, and is ideality

twice the self-phase-modulation response.

When the pump is on resonance ∆= 0, we can simplify the above result to

δ|aout|(ω) = 8µa(ω)∆aκa,ex[κa,0 − iω]|ain|2
[κ2

a/4+∆a
2

][(κa/2− iω)2 +∆a
2

]

κb,ex|bin|2
κb[κb/2− iω]

A(ω) (B.176)

which we use as our fitting function.
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B.12 Fano and split resonances in ring resonators

Split resonances are relatively common in microresonators. They are usually the result of

inter-mode coupling between two optical modes, sometimes degenerate in frequency (e.g.,

whispering gallery clockwise and counter-clockwise modes), and sometimes non-degenerate

(e.g., a fundamental mode hybridized with a higher order mode). Our experiment primarily

concerns the degenerate case, with examples in these references [345, 358, 359]. Some even

use the measured splitting as a particle sensor [360].

There are two common mechanisms for degenerate mode splitting. First is the weak mode

overlap between the clockwise and counter-clockwise modes due to imperfect resonator

geometry. Such a coupling generally results in symmetric splitting, and does not modify the

dissipation. The second one can be summarised as bath coupling, that a shared coupled

bath mediates the coupling between two modes. The bath in our experiment is mostly the

bus waveguide. However, generally, it can be, e.g., a tiny particle and happens mostly at

wavelength scale. It is usually characterized by a coupling rate κ and an effective phase φ from

propagation delay in the bath channel. A heuristic derivation using Langevin equations can

illustrate this effect:

ȧ1 = (−κ
2
− i∆)a1 +

p
κa1,in (B.177)

a2,in = e iφa1,out = e iφ(−a1,in +
p
κa1) (B.178)

ȧ2 = (−κ
2
− i∆)a2 +

p
κa2,in (B.179)

= (−κ
2
− i∆)a2 +e iφκa1 −e iφpκa1,in (B.180)

where the equations describe a common waveguide coupling between two degenerate modes,

where the input channel of mode a2 is connected to the output channel of mode a1 with some

delay. This coupling usually results in a complex coupling coefficient e iφκ and a correlated

bath a1,in, and are generally nonreciprocal. Also, such a coupling generally modifies dissipa-

tion in the system. Because of the complex coupling coefficient that’s phase dependent, apart

from frequency splitting, dark and bright modes also emerge with asymmetric linewidths.

Fano resonances are another typical feature of microresonators, e.g., anti-resonances. They

are usually the result of external etalons formed due to some weak reflections back from the

waveguide and fiber facets. The mechanism is similar to the bath coupling, as it forms a

feedback loop due to back reflection, except the shared bath input a1,in can be excited by the

laser instead of the vacuum. In integrated circuits, back reflection is typically about a few % at

the chip facet due to refractive index mismatch. It is typically characterized by the oscillating

background of the laser transmission when sweeping the laser frequencies, as it is equivalently

a weak etalon. The Fano effect is significant for highly overcoupled resonances due to their

significant phase wrapping across the resonance. Thus, correctly modeling the Fano effect

is particularly important for calibrations such as retrieving external coupling efficiencies for

highly over-coupled resonances.
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Figure B.14: Illustration of field relations of a ring resonator with chip facet reflections.

The resonance splitting and Fano shape affect the system calibrations with these resonators.

One typical case is accurately extracting different resonances’ loss and coupling rates. In

our most recent characterizations [4, 5], accurate modeling is essential in calibrating the

intracavity field strength to accurately retrieve the nonlinear index n2. In this section, we are

primarily concerned with this task: how to accurately extract the resonators’ loss rates and

coupling rates from various accessible physical quantities one can measure in the lab.

Theory basics

Fano-shaped microresonator transmissions generally result from the field interference effect

with the waveguide etalon due to small chip facet reflectivity. Here, we briefly discuss mod-

eling this effect in microresonator systems and how one can accurately extract the system

parameters from fitting a Fano-shaped resonance.

Consider a ring resonator with total linewidth κ coupled to a bus waveguide with coupling

rate κex. The ring also supports a degenerate pair of clockwise and counter-clockwise modes

that couples to each other. The Langevin equations of such a system can be expressed as:

a1,out = a1,in −p
κexa1 (B.181)

a2,out = a2,in −p
κexa2 (B.182)

ȧ1 = (−κ
2
− i∆)a1 + g21a2 +p

κexa1,in (B.183)

ȧ2 = (−κ
2
− i∆)a2 + g12a1 +p

κexa2,in, (B.184)

where ∆=ωcavity −ωlaser, with complex parameter gij = (γRe,ij + iγIm,ij) quantifying the clock-

wise counter-clockwise coupling. Here, the coupling between the two optical modes can

be non-reciprocal due to the possibility of bath coupling and dissipation. Therefore, we

distinguish them at this stage of the calculation.

After the field is coupled out of the resonator and enters the waveguide, the light is partially

reflected from the waveguide facets (field reflectivity ri and transmission ti) and couples back

to the resonator again. This process forms a feedback loop and is visualized in Fig.B.14. The
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field relations of different input-output fields are

a1,in = t1bin + r1a2,oute
2iθ1 (B.185)

a2,in = r2a1,oute
2iθ2 (B.186)

bout = t2a1,oute
iθ2 , (B.187)

where θi =−k(∆)Li is the optical phase accumulated when light propagates in the bus waveg-

uide. The loss in the waveguide propagation is not considered here but can generally also be

included as an effective modification of the facet reflection and transmission.

In most of the experimental settings, we care about the laser transmission response in the

steady state limit when scanning the detuning across the optical resonance, i.e., χ(∆) = bout(∆)
bin

.

One can easily derive the expression of these quantities using the equations we listed above.

As an example, the expressions for the facet-to-facet reflection and transmission are

bout =χ(∆)bin (B.188)

bref =χ′(∆)bin (B.189)

χ(∆) =
t1t2e i (θ1+θ2)(χ11 + r2χ11χ12e2iθ2

1−r2χ12e2iθ2
)

1− r1(χ12e2iθ1 + r2χ
2
11e2i (θ1+θ2)

1−r2χ12e2iθ2
)

(B.190)

χ′(∆) =
−r1 + (χ12e2iθ1 + r2χ

2
11e2i (θ1+θ2)

1−r2χ12e2iθ2
)

1− r1(χ12e2iθ1 + r2χ
2
11e2i (θ1+θ2)

1−r2χ12e2iθ2
)

(B.191)

χ11(∆) = (i∆+ κ
2 )2 − g12g21 −κex(i∆+ κ

2 )

(i∆+ κ
2 )2 − g12g21

(B.192)

χ12(∆) = −g12κex

(i∆+ κ
2 )2 − g12g21

. (B.193)

The expressions above are for the most general case, where all the system parameters are

considered. However, it is generally not easy to fit all the parameters accurately, with only the

knowledge of the transmission response of the chip. Some coefficients are only sensitive to

other measurement results, e.g., the reflection response, and can yield unphysical results if

not fitted properly.

In the most commonly encountered microresonator cases, the optical mode splitting g /κ∼ 0
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B.13 Filter cavity assembly for the Kerr squeezing experiment

is unresolved. In this limit, the fitting can be greatly simplified to

bout = t1t2χcave i (θ1+θ2)

1− r1r2χ
2
cave2i (θ1+θ2)

bin (B.194)

bref =
−r1 + r2χ

2
cave2i (θ1+θ2)

1− r1r2χ
2
cave2i (θ1+θ2)

bin (B.195)

χcav =
i∆+ κ

2 −κex

i∆+ κ
2

(B.196)

where the transmission function only depends on the cavity response, facet reflectivity, and

round-trip phase delay. For example, a fitting result of a typical Fano-shaped transmission

trace is illustrated in Fig.A.14, together with the inferred cavity power and the waveguide

circulating power. This fitting procedure is also used in recent papers [4, 5].

For more complicated fittings involving Fano and split resonances, one usually needs access

to both the reflection and transmission traces since the back-reflection is more sensitive to the

split coupling. Therefore, we implemented the general fitting function when characterizing

optical resonances with resolved splitting by fitting the transmission and reflection together.

B.13 Filter cavity assembly for the Kerr squeezing experiment

The formulation that I adopted in this note is mainly from this textbook called Quantum

Electronics for Atomic Physics [46] that I used during my Bachelor’s study.

By the time this section is written, we were in the process of conducting the Kerr squeezing

experiment. After numerous trials, we were convinced that we were primarily limited by the

laser noise (Toptica) over the frequency band near the resonator bandwidth. As Nils and Scott

Papp advised, we built a narrow-linewidth filtering cavity for passive laser noise filtering.

Wave optics basics

Here I list some of the most useful guidelines for building a narrow linewidth filter cavity.

Wave optics

We first define Rayleigh length zR = nπω2
0

λ which is quiet useful, and then write down the wave

propagation equations:

ω2 =ω2
0

[
1+

(
z

zR

)]
(B.197)

R(z) = z + z2
R

z . (B.198)
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Figure B.15: An example usage of complex beam parameter q updating formula, consisting of
two lenses with focal length fi , and free propagation distances di .

where ω is the beam waist and R is the radius of curvature of the Gaussian beam. The complex

beam parameter q is then defined as

1

q
= 1

R
− i

λ

nπω2 . (B.199)

which is useful for calculating the beam property evolution over several optical elements.

Here, I attach an exemplary usage of the beam parameter q in the setting shown in Fig. B.15

by considering the propagation matrix:(
A B

C D

)
=

(
1 0
−1
f2

1

)(
1 d3

0 1

)(
1 0
−1
f1

1

)(
1 d1

0 1

)
(B.200)

with which the complex beam parameter q is updated as

q2 = Aq1 +B

C q1 +D
+d2. (B.201)

Using this method, we can derive the beam size at the mirrors and the waist of the cavity.

Assuming a symmetric cavity, we can write down the waist of the cavity mode and the spot

size at the mirror:

At mirror : ω2 = λR

nπ

√
d

2R −d
(B.202)

Waist : ω2
0 =

λ

nπ

√
dR

2
− d 2

4
(B.203)

where d is the cavity length, R is the radius of curvature of the mirrors, λ is the wavelength of

the light, and n is the refractive index of the medium inside the cavity.
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B.13 Filter cavity assembly for the Kerr squeezing experiment

Figure B.16: A simplified model of cavity field relation, consisting of two planar mirrors with
field reflectivity ri and transmission ti , and a lossy medium with transmission t .

Frequency response

The resonant frequencies of a cavity, including higher-order modes, are:

vnmq =
(

q + (n +m +1)
cos−1±pg1g2

π

)
c

2d
, (B.204)

where the higher-order factor
cos−1 ±pg1g2

π is valued between 0 ∼ 1 and has the following ten-

dency at different cavity geometrical configurations:

0 : near-plannar,

1/2 : near-confocal,

1 : near-spherical.

From here, we can define the free spectral range (FSR) for the azimuthal modes (different q)

as FSR = c/2d .

To derive the frequency response of these different modes, we use a simplified cavity model

shown in Fig. B.16 (from the book [46]), from which we can derive the reflected, circulating,

and transmitted light intensity as

Reflecting : Ir = I0
(r2t 2 − r1)2(F∆ν1/2/π)2 +4(ν−∆ν1/2)2

(∆ν1/2)2 +4(ν−∆ν1/2)2 (B.205)

Circulating : Ic = I0
(t1F∆ν1/2/π)2

(∆ν1/2)2 +4(ν−∆ν1/2)2 (B.206)

Transmission : It = I0
(t1t2F∆ν1/2/π)2

(∆ν1/2)2 +4(ν−∆ν1/2)2 (B.207)

where we define the full width at half maximum (FWHM), finesse, and quality factor with their
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relation:

FWHM(phase) : ∆ν1/2 = 2(1− r1r2t 2)√
r1r2t 2

(B.208)

Finesse : F = 2π

∆ν1/2
= π

√
r1r2t 2

1− r1r2t 2 (B.209)

Qualityfactor : Q = roundtrip ·F

λ
(B.210)

where v is the optical detuning from the cavity resonance, and ti and ri are the field transmis-

sion and reflectivity of the mirrors and the lossy medium inside the cavity.

To obtain maximum optical transmission through the cavity, we use a symmetric mirror

configuration, with which the impedance matching condition is quantified by

It

I0
= t 2

1 t 2
2

(1− r1r2t 2)2 =
(

t1t2

(t 2
1 + t 2

2 )/2+ (1− t 2)

)2
sym≈

(
T

T +L

)2
L≪T≈ 1− 2L

T +L
(B.211)

where the total transmission is primarily limited by the cavity loss L.

Cavity design

The design goal is to have a narrow-linewidth, high-transmission cavity at 1550 nm to stabilize

the laser frequency and filter the high-frequency noise. The transmitted light should have

sufficiently low noise at the frequency band in which Kerr squeezing might be achievable. The

cavity resonance is supposed to be tunable to tune the filtered laser into the microresonator

resonance to conduct the squeezing experiment. We must also ensure high transmission out

of the cavity because we were already power-starving for this experiment. In this case, we

design our cavity to be a symmetric, impedance-matched cavity with two identical mirrors

with high reflectivity and low loss over transmission ratio.

We purchased the 10CV00SR.70F High-Performance Concave SuperMirrors™ from Newport™

because they offer the quickest delivery service (received in one week). We planned to glue the

mirrors to the ZERODUR® ultralow expansion (ULE) glass spacer with the coating at the inner

side to form a stable symmetric optical cavity. The ULE glass is used to ensure the thermal

stability of the cavity length because the cavity length fluctuation would be printed on the

laser. A piezo was also integrated into this assembly to tune the cavity resonance frequency by

changing the cavity length.

The mirror specification is shown in Fig. B.17. The reflection is roughly 99.99%, and the

transmission is roughly 00.01%, indicating a relatively low loss. These are concave mirrors and

the radius of curvature is 1 m, and with the 6 cm ZERODUR spacer we have, they would form a

very planar cavity with Finesse roughly at 3×104, FSR 2.5 GHz and linewidth ∆ν1/2 = 80kHz.

The mirror diameter is 25.4 mm, which well matches the ZERODUR ULE’s ID=20 mm and

386



B.13 Filter cavity assembly for the Kerr squeezing experiment

Figure B.17: Reflection and transmission for the 10CV00SR.70F model. The reflection of this
model is shown in the legend as the F series.

OD=50 mm.

The piezos actuators HH1-2515-07 are ordered from PiezosystemJena. It is the only type of

piezo we found online that matches the geometry of the mirror with OD=25 mm ID=15 mm,

and the smallest thickness of 9 mm. This piezo offers about 1.5 um stroke at a relatively low

voltage at 100 V, allowing roughly a 2-FSR tuning range for the cavity optical resonances.

However, they needed to make these piezos from scratch, so the delivery time was around four

weeks.

With the piezo added, the cavity length would change to 7 cm, with the corresponding free

spectral range FSR=2.14 GHz and ∆ν1/2 = 71.4kHz. The calculated cavity waist is ω0 = 296um,

and the beam spot size at the mirror is ω = 301um. The Rayleigh length of such cavity is

18.8 cm at which distance the beam size is increased by
p

2 relative to the waist.

The mirror gluing method and cavity holder design take reference from [361] and [362]. We

eventually decided to use a V-groove holder with a 120-degree opening. The V-groove is used

such that when gravity pulls down the cavity, the mirrors are still parallel to each other. One

can also use the Airy points to achieve the same effect and probably better vibration isolation.

The design of the cavity holder and the shielding box is shown in Fig. B.18. The cavity is softly

clamped to the cavity holder, and the shield box is used to prevent dust from entering the

spacer to prevent mirror burning when circulating high optical power.

The mechanical and thermal property of the cavity is also simulated using COMSOL. For the

thermal property, we simulated the frequency shift of the cavity resonance frequency caused

by laser heating. The simulation result is shown in Fig. B.19. The primary contribution of the

thermal expansion is from the piezo, which is expected. With a reasonable power input at

10 mW, assuming a 10 % power absorption, the cavity frequency shift will be about 2 MHz,

which is acceptable for our experiment with microresonator linewidth around 15 MHz. For

the mechanical property shown in Fig. B.20, a piezo is attached to the side of the cavity holder
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Figure B.18: Holder and shield design for the optical cavity. The holder is designed to pre-
vent gravity-induced bending of the cavity, and the shield is designed to prevent particle
contamination.

Figure B.19: Thermal property of the cavity simulated in COMSOL. The heat source is located
at the presumed beam spot on the mirrors.
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B.13 Filter cavity assembly for the Kerr squeezing experiment

Figure B.20: Mechanical property of the cavity simulated in COMSOL and the experimentally
measured response data using a VNA and a vibrometer. The background noise of the vibrome-
ter is also measured. We did not observe a good matching between the mechanical modes but
did observe the characteristic mode density distribution in this frequency window.

and drives the cavity. Then, the cavity resonance frequency response relative to the piezo drive

is studied in COMSOL simulation and recorded experimentally using a vibrometer. However,

very poor correspondence between experimental data and the simulation profile is observed.

From the simulation side, we are happy with the different properties of this optical cavity we

planned to build, but the simulation was only done after the cavity was assembled.

Cavity assembly procedure

The cavity was first assembled without the integration of piezo nor any gluing element but by

fixing the mirror to the spacer through three steel clamps shown in the left panel of Fig. B.21.

We first tried this simple configuration with easily removable clamps to test the mirrors and

the basic cavity property. When we found that everything was working as expected, we glued

the mirrors and integrated a piezo actuator, as shown in the right panel of Fig. B.21.

The piezo integration was successful without changing the optical mode position too much,

and no noticeable degradation of the optical linewidth was observed. We orient the ULE cavity

stack vertically during the curing process, after aligning the piezo actuator and the mirror

horizontally, such that gravity does not displace the components during the curing process. A

200 g post was also put on top of the mirror and piezo stack to apply compressive pressure

to keep them in close contact. For gluing, we used the Norland Optical Adhesive 63. It is a

type of UV glue that cures pretty hard after a 3s to 2min exposure. As recommended by my
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Figure B.21: Assembly of the cavity, showing the cavity without the piezo (left) and the one
with the piezo (right). The glues are placed triangularly, after which the clamps are removed.

30MHz
λ
4

λ
2

λ
4

λ
2

10 kHz

Figure B.22: The experiment setup for the Kerr squeezing experiment (left) and an image of the
filtering cavity setup (right), showing two fiber collimators and two sets of alignment mirrors.

colleague Arslan, I used a fiber tip first to get a drop of glue, cure it on the tip, and use it as a

transporter of the glue to the mirror edges. As soon as a drop about 1 mm3 is attached to the

connecting edges of between components, quickly use a 3s UV light exposure to pre-cure it,

such that it does not flow around. Then, a 1min exposure on each side, and 30s on each side

again to uniformly apply pressure to the mirror and piezo so that directional tilting is unlikely

to happen. We first glued the side with the piezo and clamped the other mirror without the

piezo for a quick test run. As the optical cavity seems to work fine, we glue the remaining side

with the clamp.

Before the assembly, we were worried about the mirror tilting due to the imperfection of

surface orientation of the piezo because our mirror focus f = 50cm is considerably more

significant than the cavity linewidth, so the optical mode position will be susceptible to the

mirror orientation. However, everything seems to be working just fine.
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Figure B.23: Toptica laser PDH locking signal to the optical cavity and the transmission signal
(left). The in-loop noise near the modulation frequency is also shown on the right.

Cavity characterization

Coupling to the cavity modes

The optical setup used to couple to the optical cavity and receive the transmitted light is

illustrated in Fig. B.22. The light is incident onto the cavity mirror facet and coupled to the

input fiber collimator. The reflected light is isolated by an optical isolator and monitored using

a 125MHz low-noise photo detector. It is expected that the optical mode at the mirror surface

should also be perpendicular to the mirror surface so it will overlap with the directly reflected

light. In this way, the optical mode search can be realized by keeping a good coupling of the

back-reflected light and, simultaneously, scanning the position of the optical beam on the

mirror facet. It is expected to see many high-order modes with very weak coupling and small

spacing relative to FSR as indicated from Eq. B.204 as we are at the near-planar case. The

coupling to the higher-order modes is exhibited as many small dips on the reflection signal

when the laser is scanned through a reasonably large frequency span. As the fundamental

mode has the lowest optical frequency, we can optimize the coupling to the fundamental mode

by improving the coupling to lower and lower frequency modes step by step and eventually

find one mode with high coupling and no modes below its frequency.

Locking system

After the fundamental mode is well coupled, we can use the reflected signal to realize the PDH

locking of the laser to the optical cavity, of which the signal is illustrated in Fig. B.23. We used

a 30 MHz modulation through EOM to create the illustrated PDH signal. A bias-T separated

the DC and AC parts of the reflected signal. The DC part was put into the oscilloscope to

monitor the cavity reflection (left panel, yellow), and the AC part was fed to the mixer to be

demodulated to get the PDH signal we see on the scope (left panel, blue). A directional coupler

was also used to get 10% of the AC signal to monitor the noise at modulation frequency on the

spectrum analyzer (right panel).

As we can see from the spectrum signal illustrated at the right panel of Fig. B.23, the locking is
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Figure B.24: Vescent lock box (left) and the lock guard functionality (right). After detection
of a strong disturbance in the lock signal (blue), the lock disengages for 8 ms (yellow) before
reapplying the lock for the vibration to decay.

affected by a strong modulation roughly at 30 kHz. It appears when the mirrors are clamped

but not glued and still there after they are glued. We suspected it could be a mechanical

motion of the optical cavity that was excited by some external drive. To check such a possibil-

ity, a COMSOL simulation of its mechanical response with the setup’s actual configuration

(including the piezo driving position and two driving directions) was first conducted as shown

in Fig. B.20, and we also glued a sheer piezo onto the cavity holder in order to excite the cavity

mechanical modes. However, no particular peak was observed at the frequency where the

noise appeared. The highest peak is around 47 kHz, near the mirror’s vibrational fundamental

mode. To rule out the possibility that the noise is just the table violently vibrating, we used

a vibra-meter to measure the acoustic noise from the optical table and did not observe any

noticeable signal. After the investigation, we are certain it is electronic noise feeding on the

laser current. However, we are not able to identify the noise source. We can observe more

peaks when the diamond milling machine in the lab is turned on, so we suspect the noise is

from one of the high-power transformers.

The lock box that we used is Vescent D2-125, which has up to 10 MHz locking bandwidth,

auxiliary feedback output, and lock guard function. We feedback the servo output directly to

the laser current for tight laser locking and the auxiliary servo output to the laser controller to

do feedback on the piezo. The auxiliary servo output signal is integrated from the servo output

so that the laser current does not change during long-term locking.

In order to have the best locking condition, we need to identify the system’s phase flip point

and ensure that it lands on the proportional gain frequency range with gain < 1. The phase flip

point can be identified by having a very high gain on the feedback and looking for the first

peak that emerged from the overgain. The old configuration was to set fPI = 20kHz when the

phase flip frequency was at 70 kHz, and no derivative module was used. Our current phase

flip frequency is actually at 500 kHz, so the fPI can be further increased to achieve better noise

suppression at 30 kHz, which is right now the most prominent noise preventing tight locking.
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However, it turns out that when fPI increases, the phase flip point frequency also gets lower

and lower, such that it does not get better. After a few tests, the best locking condition is still

at 20 kHz, with the first integration gain turned off. The overall system gain fixes the second

integration gain slope, so if the first integration gain is too high, it could leave the lock unstable

against low-frequency environmental noise such as lab-door slamming.

The lock guard function ensures long-term locking stability against spiked environmental

noise. It monitors the feedback signal and holds the lock for 8 ms when the feedback signal

changes too quickly. After the hold, it will try to relock the system, as illustrated from Fig. B.24,

which is usually successful because the spiked noise should already decay significantly by the

time. However, if relock is unsuccessful, it will repeat several times with a longer hold time.

Using the lock guard, the longest locking record is around 5 hours until I have to leave the lab.

Cavity transmission

The collimator lens is selected with f = 5mm, such that at a relatively long distance ∼ 16.5cm,

we can achieve nearly perfect mode matching from cavity mode to fiber mode with >93 %

coupling efficiency. Considering the 4 % reflection loss from the fiber facet, it is almost perfect

mode matching. After the mode matching was realized at the output port, we used it as the

input port to check the actual transmission of the cavity mode, which is around 82.3 %, from

which, together with the cavity ringdown measurement, we derived the 100 ppm transmission

and 10 ppm loss of the supermirrors. Then, we use the transmitted light from the cavity mode

to optimize the mode matching of the input port until both ports achieved coupling efficiency

>93 %, with the transmission of the whole setup >70 %.

Cavity ring down

As the cavity linewidth is too narrow to be measured using the sideband fitting method,

the cavity ring-down measurement was conducted to determine the cavity linewidth. The

transmission of the optical cavity was monitored by a 125 MHz low noise photodetector on

the oscilloscope, and the input light was periodically switched using an AOM. The RF signal

applied to the AOM is switched by a 100 Hz periodic pulse with 50 us pulse duration (shut

down), such that the lock is not affected during the switching and the ring down slopes can be

averaged many times. The pulse TTL signal is used as the oscilloscope’s trigger source, and the

ring down slope is averaged 1000 times. The result is illustrated in Fig. B.25(a), from which a

linewidth of 68.4 kHz can be obtained with a quality factor around 3 billion, which is more or

less consistent with our expectation from the mirror specs.

High optical power operation

A quick trial with over 1.2 mW transmission was tested, and no locking problem was observed.

However, we need another reference laser for the cavity frequency thermal shifting. From
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Figure B.25: (a) Cavity ring down measurement using an AOM to shutter the input light,
showing a cavity linewidth of κ/2π= 68.4kHz and a quality factor of Q = 2.82×109. (b) Laser
phase noise comparison with and without the filter cavity, using unbalanced heterodyne
detection. Based on the raw measurement signal in blue and red, the original phase noise is
reconstructed in green, and the frequency noise is converted to the right y-axis.

COMSOL simulation, when the cavity is running at 10 mW of input power with 1 mW optical

absorption, the resonance frequency will be shifted by about 2 MHz, which is negligible in

our experiment setting. However, it still needs experimental verification. The mirror surface’s

optical intensity is about ten times higher than the mirror damaging threshold. However, we

observed no performance degradation over an extended usage period.

Laser noise filtering

Using a self-heterodyne detection with a 7.7m imbalance, we measured the laser phase noise

before and after the filter cavity. One arm is up-shifted by 100MHz using an AOM, and the

combined fiber is connected to a 1-GHz photodetector, in which phase noise is exhibited

as noises centered around the 100-MHz beating signal. We recorded the laser noise with

and without the filtering in Fig. B.25(b), and observed at 1-MHz offset frequency a noise

suppression of at least 20dB, and expect 40dB noise reduction at 10-MHz offset frequency,

where Kerr squeezing is supposed to be observed.

B.14 Purity and fidelity of heralded optical states by measurements

of electron energy

In this section, we derive the heralded optical states by measuring electron energy, and

calculate the state fidelity and purity. The optical state generated when there is no higher-order

sideband overlap (not a fundamental limit) and when conditioning on a narrow bandwidth
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around an energy slice Ec ∼ Nℏω is

|ψph〉 =
∫ ∏N

k=1 dωk g∗
ωk
ψ

(
E +ℏ(

∑
k ωk )

)
â†
ωk
|0〉√∫ ∏N

k=1 dωk |gωk |2|ψ
(
E +ℏ(

∑
k ωk )

) |2(N !)2
(B.212)

As we can see, the coefficient is a product between the electron wavefunction and the coupling

coefficient. This reflects the fact that the electron energy distribution is correlated with

the frequency at which the photon is created. We will see later that this is not the case for

conditional electron states since in the no-recoil limit, the frequency of the photon does not

depend on the electron’s energy.

In the first limit, when electron ZLP is much narrower than phase-matching bandwidth, we

can simplify the expression to

|ψph〉 =
∫ ∏N

k=1 dωkψ
(
E +ℏ(

∑
k ωk )

)
â†
ωk
|0〉√∫ ∏N

k=1 dωk |ψ
(
E +ℏ(

∑
k ωk )

) |2(N !)2
. (B.213)

for single-photon states. The frequency components of the generated state are directly linked

to φ(ω) ∝ψ(Ec +ℏω). Ignoring the waveguide dispersion during propagation, we have the

optical waveform

φ(T = t − z∥/v) = ψ̃(T )e iωc T (B.214)

where it has a center frequency determined by the conditional electron energy and an envelope

profile that is exactly the time domain electron spatial profile ψ̃(T ). Therefore, by shaping

electron wavefunctions and conditioning on the selected sideband energy, we can transfer

the electron spatial wavefunction to the optical waveform of the photonic state at a desired

optical frequency. For readers familiar with optical spontaneous parametric down-conversion,

a similar technique is also used in heralded single-photon sources [363] to imprint the

waveform of the pump field onto the signal field.

For conditional multi-photon optical states, as we can immediately see from the expression,

since the electron wavefunction generally can not be factorized to N components ψ(E +
ℏ(

∑
k ωk )) ̸= ∏

k ψk (E ,ωk ), the conditional state can not be addressed into a Fock state of a

well defined spatial-temporal mode, but since high phase-matching bandwidth usually comes

with low g , we restrict ourselves to single-photon states in this limit. We derive the fidelity of

the heralded single-photon state as

F =
∣∣∣〈ψ′

ph|ψph〉
∣∣∣2 =

∣∣∫ dωgω|ψ(E +ℏω)|2∣∣2(∫
dω|gω|2|ψ(E +ℏω)|2)(∫ dω|ψ(E +ℏω)|2) . (B.215)

For the case of long propagation, we usually end up with very narrow phase-matching band-

width and high interaction g . In this case, when conditioning on the Nth energy sideband, we
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can simplify the expression to

|ψph〉 =
∫ ∏N

k=1 dωk g∗
ωk

â†
ωk
|0〉√∫ ∏N

k=1 dωk |gωk |2(N !)2
(B.216)

where it is a well-defined N -photon Fock state with mode profile φ(t) (see Section 6.3.2),

which is determined by both the waveguide routing and the material dispersion. To this end,

one can adapt the electron positioning and velocity to shape the optical waveform. We derive

the fidelity to this state as

F =
∣∣∣〈ψ′

ph|ψph〉
∣∣∣2 =

∣∣∫ ∏N
k=1 dωk |gωk |2ψ

(
E +ℏ(

∑
k ωk )

)∣∣2(∫ ∏N
k=1 dωk |gωk |2

)(∫ ∏N
k=1 dωk |gωk |2|ψ

(
E +ℏ(

∑
k ωk )

) |2) (B.217)

With more electron operation stages, we can select the electron measurement basis. After

the pair-state generation, if we pass the electron through, e.g., a PINEM interaction stage

characterized by the scattering matrix Ŝ(α), by conditioning on the energy sideband |E〉, we

are effectively measuring under the basis Ŝ†(α)|E〉 =∑
i c∗i |Ei 〉. Formally, we write down the

conditional optical state as

|ψph〉∝
∑
N

cN g N

p
N !

|N〉 (B.218)

ρ̂ph = 〈E |Ŝ(α)ρ̂Ŝ†(α)|E〉 (B.219)

where |g |2 = ∫
dω|gω|2. This operation effectively projects the optical state into a more general

state other than Fock states if we directly measure the electron energy after the pair-state

preparation. For these general states, the corresponding heralded state fidelity is an average of

all the involved Fock states with a correct weight

F =
∣∣∣〈ψ′

ph|ψph〉
∣∣∣2

(B.220)

=

∣∣∣∣∣∣∣e−|g |
2 ∑

N

|cN |2|g |2N

N !

∫ ∏N
k=1 dωk |gωk |2ψ

(
EN +ℏ(

∑
k ωk )

)√(∫ ∏N
k=1 dωk |gωk |2

)(∫ ∏N
k=1 dωk |gωk |2|ψ

(
EN +ℏ(

∑
k ωk )

) |2)
∣∣∣∣∣∣∣
2

and the same kind of weighted averaging also needs to be applied to the heralded state purity.

Two main effects can degrade the single-photon state purity. First, the spectral overlap be-

tween different sideband orders. Second, the relative bandwidth ratio between ZLP and

phase-matching bandwidth. For higher-order Fock states, it is further affected by the spectral

distribution of the other optical mode families, e.g., the electron might not be able to distin-

guish between a two-photon transition of the fundamental optical mode and a single-photon

transition of a higher-order mode. Here, we categorize this case into the spectral overlap

between electron sidebands.
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First, let us investigate the purity degradation of the conditional photonic Fock state due to

the sideband spectral overlap. In the limit of narrow phase-matching bandwidth, the optical

density matrix after detection at electron energy band ∆E electron energy event is

ρ̂ph = 1∑
N

(
∫

dω|gω|2)N

N !

∫
∆E dE |ψ(E +Nℏω)|2

(B.221)

×
∫
∆E

dE

(∑
N

(−∫
dωg∗

ωâ†
ω)N

N !

∏
ω
|0ω〉ψ(E +Nℏω)

)(∑
N
ψ∗(E +Nℏω)

∏
ω
〈0ω|

(−∫
dωgωâω)N

N !

)

The purity of this state is

Tr
[
ρ̂2

ph

]
= 1(∑

N
(
∫

dω|gω|2)N

N !

∫
∆E dE |ψ(E +Nℏω)|2

)2 (B.222)

× ∑
N ,N ′

(
∫

dω|gω|2)N+N ′

N !N ′!

Ï
∆E

dE dE ′ψ(E +Nℏω)ψ∗(E +N ′ℏω)ψ∗(E ′+Nℏω)ψ(E ′+N ′ℏω)

Then, we investigate the effect of finite phase-matching bandwidth, and in the limit where

there is no photon sideband overlap, the conditional single-photon Fock state is

ρ̂ph = 1Î
∆E dE dω|gω|2|ψ(E +ℏω)|2 (B.223)

×
∫
∆E

dE

(∫
dωg∗

ωψ(E +ℏω)â†
ω|0〉

)(∫
dωgωψ

∗(E +ℏω)〈0|âω
)

with corresponding state purity

Tr
[
ρ̂2

ph

]
=

Î
∆E dE dE ′dωdω′|gω|2|gω′ |2ψ(E +ℏω)ψ∗(E +ℏω′)ψ∗(E ′+ℏω)ψ(E ′+ℏω′)(Î

∆E dE dω|gω|2|ψ(E +ℏω)|2)2

(B.224)

In the limit of perfect electron energy resolution ∆E → 0, Tr
[
ρ̂2

ph

]
→ 1. However, experimen-

tally, either the ZLP contains a statistical uncertainty, or the conditioning window ∆E can not

be set arbitrarily small due to its effect on the heralding rate. As a result, the purity is limited

by both the phase-matching bandwidth and the relative heralding bandwidth.

For a general N -photon Fock state, the density matrix of the heralded state is

ρ̂ph = 1Î
∆E dE

∏N
k=1 dωk |gωk |2|ψ

(
E +ℏ(

∑
k ωk )

) |2(N !)2
(B.225)

×
∫
∆E

dE

(∫ N∏
k=1

dωk g∗
ωk
ψ

(
E +ℏ(

∑
k
ωk )

)
â†
ωk
|0〉

)(∫ N∏
k=1

dωk gωkψ
∗
(

E +ℏ(
∑
k
ωk )

)
〈0|âωk

)
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with the corresponding state purity

Tr
[
ρ̂2

ph

]
=

(Ï
∆E

dE
N∏

i=1
dωi |gωi |2|ψ

(
E +ℏ(

∑
i
ωi )

)
|2

)−2 Ï
∆E

dE dE ′ N∏
i , j=1

dωi dω′
j

×|gωi |2|gω′
j
|2ψ

(
E +ℏ(

∑
i
ωi )

)
ψ∗

(
E +ℏ(

∑
j
ω′

j )

)
ψ∗

(
E ′+ℏ(

∑
i
ωi )

)
ψ

(
E ′+ℏ(

∑
j
ω′

j )

)
(B.226)

To illustrate the impact of relative heralding bandwidth on state purity, we show the overall

scaling of 1−P ∝ γ2 in the limit of small heralding bandwidth in Fig. 6.12. For a general state

|ψph〉 =
∑

cN |N〉, which consists of a coherent superposition of different Fock states |N〉, as

discussed before in the state fidelity calculation, the purity is a |cN |2 weighted average of each

Fock state component, shown as

Tr
[
ρ̂2

ph

]
=∑

N
|cN |4PN + ∑

N ,N ′
|cN |2|c ′N |2PN ,N ′ (B.227)

PN ,N ′ =
Ï
∆E

dE dE ′ N∏
i=1

N ′∏
j=1

dωi dω′
j |gωi |2|gω′

j
|2

×ψ
(

E +ℏ(
∑

i
ωi −Nω)

)
ψ∗

(
E +ℏ(

∑
j
ω′

j −N ′ω)

)

ψ∗
(

E ′+ℏ(
∑

i
ωi −Nω)

)
ψ

(
E ′+ℏ(

∑
j
ω′

j −N ′ω)

)

×
(Ï

∆E
dE

N∏
i=1

dωi |gωi |2|ψ
(

E +ℏ(
∑

i
ωi −Nω)

)
|2

)−1

(Ï
∆E

dE
N ′∏
j=1

dω′
j |gω′

j
|2|ψ

(
E +ℏ(

∑
j
ω′

j −N ′ω)

)
|2

)−1

, (B.228)

where PN is the purity of the N th Fock state component, PN ,N ′ is the purity of the off-diagonal

terms, and ω is the center frequency of the optical state.

B.15 Purity of heralded electron states by measurements of optical

state

In this section, we consider heralding schemes that generate complex electron states, and

derive the expression of purity of the heralded electron state by the optical measurement.

With multiple single-photon detectors, if one conditions on a N -photon counting event,

one projects the electron into a corresponding energy state that loses an equal amount of

energy. However, these types of photon counting measurements can not project the electron

into a coherent superposition of multiple sideband states. This restriction results from the

chosen measurement operator a†a, whose eigenstates are Fock states. However, we can select
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a measurement basis to project the electron onto a more general state. These operations

require high detection efficiencies (no information loss), which must be considered carefully

when applying optical elements, e.g., spectral filters. The first simple method to change the

measurement basis would be to combine the signal with a strong local oscillator through a

high aspect ratio beam splitter. This interference modifies the detection from photon-number

detection to field detection in the basis of displaced Fock states. With the ability to mode-

match to an optical reference field, homodyne types of detection can also be realized. In the

setting where the signal field is split and detected by two homodyne in orthogonal quadratures,

the measurement is effectively under the coherent state basis. More sophisticated operations

can be done with an atomic system to provide an arbitrary measurement basis.

Now, we consider a general heralded electron state, with the N th sideband density matrix

component as

ρ̂e = 1Î
∆ωdE

∏N
k=1 dωk |gωk |2|ψ

(
E +ℏ(

∑
k ωk )

) |2 (B.229)

∫
∆ω

N∏
k=1

dωk |gωk |2
(∫

dEψ(E)|E −ℏ(
∑
k
ωk )〉

)(∫
dEψ∗(E)〈E −ℏ(

∑
k
ωk )|

)

Note that the corresponding electron wavefunction for each sideband state is not shaped

by the optical detection and maintains the original shape. This effect is in sharp contrast to

the heralded optical state by measuring electron energies. The difference is that the electron

energy loss heavily depends on optical frequency, but the optical frequency does not depend

on electron energy under the no-recoil approximation. Therefore, any measurement of the

frequency of the created photons translates the original electron energy state down by a

corresponding photon energy. Because of that, we do not define the fidelity of the electron

wavefunction in the limit of perfect photon frequency resolution.

We proceed to calculate the state purity of the N th electron sideband component as

Tr
[
ρ̂2

e

]= (Ï
∆ω

dE
N∏

i=1
dωi |gωi |2|ψ

(
E +ℏ(

∑
i
ωi )

)
|2

)−2

Ï
∆ω

dE dE ′ N∏
i , j=1

dωi dω′
j |gωi |2|gω′

j
|2 (B.230)

ψ

(
E +ℏ(

∑
i
ωi )

)
ψ∗

(
E +ℏ(

∑
j
ω′

j )

)
ψ∗

(
E ′+ℏ(

∑
i
ωi )

)
ψ

(
E ′+ℏ(

∑
j
ω′

j )

)

where the same weighted average needs to be applied for a general state with weights |cN |2,

similar to the case of heralded optical states.
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B.16 Electron-photon entangled states in the wave-like regime

Starting with the optical cavity modes in their vacuum states
∏
µ |0µ〉, and the electron state at

initial energy E0 (ideal energy eigenstate, wave-like regime), the interaction results in

|ψe , {ψµ}〉 = exp

(
−i

∑
µ

gµaµb†
µ−h.c.

)
|E0〉

∏
µ
|0µ〉. (B.231)

To proceed with the calculation, we have to take into account the commutation relations

[a†
µ, aν] =−δµ,ν for optical modes, and [b†

µ,bν] = 0 for electrons. Therefore, using the Baker-

Campbell-Hausdorff formula

e Â+B̂ = e Âe B̂ e−[Â,B̂ ]/2e(2[B̂ ,[Â,B̂ ]]+[Â,[Â,B̂ ]])/6 · · · (B.232)

we have

|ψe , {ψµ}〉 = exp

(
−1

2

∑
µ
|gµ|2

)
exp

(
−i

∑
µ

g∗
µa†

µbµ

)
exp

(
−i

∑
µ

gµaµb†
µ

)
|E0〉

∏
µ
|0µ〉

= exp

(
−1

2

∑
µ
|gµ|2

)
exp

(
−i

∑
µ

g∗
µa†

µbµ

)
|E0〉

∏
µ
|0µ〉

= exp

(
−1

2

∑
µ
|gµ|2

) ∑
{nµ}

∏
µ(−i g∗

µ )nµ√∏
µnµ!

|E0 −
∑
µ

nµℏωµ〉
∏
µ
|nµ〉. (B.233)

The expression above is a highly entangled state between the electron and the photons from

different optical modes with distinguishable frequencies. If one traces out the optical system,

the reduced electron density matrix will be a mixed state

ρe = exp

(
−∑

µ
|gµ|2

) ∑
{nµ}

∏
µ |gµ|2nµ∏
µnµ!

|E0 −
∑
µ

nµℏωµ〉〈E0 −
∑
µ

nµℏωµ| (B.234)

while tracing out the electron system produces the reduced optical density matrix of

ρo = exp

(
−∑

µ
|gµ|2

)∑
δE

 ∑∑
µnµℏωµ=δE

∏
µ(−i g∗

µ )nµ√∏
µnµ!

∏
µ
|nµ〉


 ∑∑

µnµℏωµ=δE

∏
µ(i gµ)nµ√∏

µnµ!

∏
µ
〈nµ|

 .

(B.235)

In this current form, it is not possible to define a single spatial-temporal mode on the optical

side, as expected from the wave-like regime.
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B.17 Second-order correlation functions of photons generated by

electrons

Statistical properties of the continuous-wave electrons and the generated photons

We assume at the timescale of our experiment, i.e. slightly less than a ns, the arrival timing

of the electrons (which also behaves as point-particles at this timescale considering their

coherence time) follows a Poisson point process. The anti-correlations of the electrons by their

fermionic nature can only be resolved with correlation measurements using two electron de-

tectors [364], and preferably using spin-polarized beams. With a flux rate of Γ, the probability

of finding N electrons in a time-bin window ∆t ∼ 200ps follows a Poisson distribution

Pe(N ) = e−Γ∆t (Γ∆t )N

N !
, (B.236)

and is independent from the records in other time-bin windows. This process results in

randomly but also uniformly distributed electron events in time, with the arrival time interval

τ between sequential electrons following a distribution

Pτ(t ) = Γ2e−Γt t . (B.237)

Each electron also accompanies a photon emission process following a Poisson distribution

of photon numbers n, with the probability distribution of

Pph(n) = e−g g n

n!
, (B.238)

where g is the expectation of photon number.

Statistics of unheralded photon correlations

In this section, we start with analyzing the probabilities of two-photon events P0 = Pn=0 (no

correlation or condition on zero-loss) with different delays. In the configuration of an HBT

measurement, two-photon correlation g2(τ1,τ2) as a function of the two detectors’ delays

τ1,τ2 are analyzed using these probabilities. When |τ = τ1 − τ2| is much larger than the

temporal duration τph ∼ 1ps of the optical pulse that is associated with a single electron,

and also the time-bin width ∆t such that |τ| ≥∆t , coincidences only consist of two photons

each coming from a different and independent electron. Note that our ∆t ∼ 200ps ≫ τph,

and we neglect the case when two electrons interact with the same spatial-temporal mode

of the waveguide (coherence length approximately 10µm). We also assume perfect timing

uncertainty δpp between the two photon detectors for now, i.e. δpp ≪∆t , but later take it into

account using a form factor f (τ). The probability of observing such an event in a time-bin

401



Appendix B. Appendix

with width ∆t , identical to that of conditioning on no electron-energy loss, is

P0(|τ|≫∆t ) =
(

1−
∞∑

k=0
e−Γ∆t (Γ∆t )k

k !
e−kηg

)2

=
(
1−e−Γ∆t (1−e−ηg )

)2 ≈ (Γ∆tηg )2 (B.239)

where η is the optical detection efficiency from the point of interaction to the photon counting

at one of the detectors. The approximation ≈ is valid when Γ∆t ≪ 1 and ηg ≪ 1, i.e. in this

time-bin there is only a small probability of having one electron and also a small probability

of observing one photon.

When |τ| ≪ ∆t , we are looking at the same time-bin window from the two detectors. The

photons can be either from the same electron or two different ones. The probability of

observing such an event is

P0(|τ|≪∆t ) =
∞∑

k=1
e−Γ∆t (Γ∆t )k

k !
(1−e−kηg )2

= (1−e−Γ∆t )−2e−Γ∆t (eΓ∆te−ηg −1)+e−Γ∆t (eΓ∆te−2ηg −1)

= 1+e−Γ∆t (eΓ∆te−2ηg −2eΓ∆te−ηg
) ≈ η2g 2Γ∆t (1+Γ∆t ), (B.240)

using the preservation of Poisson statistics of photons when beam splitters are applied. Also,

we used the fact that the summation of Poisson variables is also a Poisson variable. Therefore,

the bunching factor should be

g2,unheralded(τ) = P0(τ1,τ2 = τ1 +τ)

P0,i=1(τ1)P0,i=2(τ1 +τ)
≈ 1+ δ(τ1,τ2)

Γ∆t
(B.241)

Note that function δ(τ1,τ2) can be broadened to a form factor f (τ1 −τ2) if the timing uncer-

tainty δtpp between the two optical detectors is large, i.e. δtpp >∆t . The form factor has the

property of
∫

f (t )d t = 1.

When the electron states are post-selected with one-photon or multi-photon sidebands, the

generated photon statistics are effectively modified and deviate from a Poissonian distribution.

Therefore, a lot of the nice tricks that we do here are not possible for the heralded electrons,

but still can be applied to the stray electrons.

Statistics of one-photon-loss heralded photon correlations

In this section, we start with analyzing the probability of two-photon events P1 = Pn=1 (condi-

tion on one-photon-loss on the electron energy) with different delays. In the following, we

first assume perfect electron sideband isolation, so when we herald on a single-photon-loss

sideband, the heralded electron generates only one photon. However, stray electrons can still

arrive at the same time-bin window as they follow a Poisson point process and therefore can
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generate Poisson-distributed photons. In the following, we analyze the probability of different

two-photon events when two detectors are with different delays τi .

When two detectors are both delayed differently by |τi | ≫ ∆t , such that the photons are

unlikely from the heralded electron, we have the probability

P1(|τ1|, |τ2|≫∆t ,τ1 ̸= τ2) = P0(|τ|≫∆t ) =
(
1−e−Γ∆t (1−e−ηg )

)2 ≈ (Γ∆tηg )2. (B.242)

When the delays are the same, we have the probability

P1(|τ1|, |τ2|≫∆t ,τ1 = τ2) = P0(|τ|≪∆t ) = 1+e−Γ∆t (eΓ∆te−2ηg −2eΓ∆te−ηg
) ≈ η2g 2Γ∆t (1+Γ∆t ).

(B.243)

Therefore, we expect to see photon bunching when matching the relative delay τ between the

two detectors.

When one of the detectors’ delay is close to zero, let’s say τ1 = 0, one of the photons can be

from the heralded electron, and also stray electrons, while the other is only from the stray

electrons. The probability of such an event is

P1(|τ1| = 0, |τ2|≫∆t ) = ηPcorr(τ= 0)e−Γ∆t (1−e−ηg )(1−e−Γ∆t (1−e−ηg ))+P0(|τ|≫∆t )

≈ ηPcorr(τ= 0)Γ∆tηg + (Γ∆tηg )2 (B.244)

where Pcorr(0) ≈ ∆t/δtep is due to the spreading of the correlated photon arrival due to

the hardware timing uncertainty δtep >∆t of the electron-photon correlation. It is directly

connected to the experimentally measured electron-photon correlation gep(τ) by Pcorr(τ) =
Γ∆t g (gep(τ)−1). When the uncertainty δtep is very small, i.e. δtep ≪∆t , Pcorr(τ) = δ(τ,0).

When the delays of both detectors are close to zero, i.e. τi = 0, the two photons cannot be

both from the heralded electron, since there is only one-photon electron-energy loss. The

possible cases are one from the heralded electron or both from the stray electrons. We retrieve

the probability of this case as

P1(|τ1 = τ2|≪∆t ) = 2
(
ηPcorre−Γ∆t (1−e−ηg )(1−e−Γ∆t (1−e−ηg ))

)
+P0(|τ|≪∆t )

≈ 2ηPcorrΓ∆tηg +η2g 2Γ∆t (1+Γ∆t ) (B.245)

To calculate g2(n = 1,τ) = P1(τ1=0,τ2=τ)
P1,i=1(0)P1,i=2(τ) , we need to know the photon detection probability for

each detector at different τ. We have the following results

P1,i (τ= 0) = 1− (1−ηPcorr)e−Γ∆t (1−e−ηg ) ≈ ηPcorr +Γ∆tηg (B.246)

P1,i (|τ|≫ δtep) = 1−e−Γ∆t (1−e−ηg ) ≈ Γ∆tηg (B.247)
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Therefore,

g2(n = 1,τ= 0) = P1(τ1 = 0,τ2 = 0)

P1,i=1(0)P1,i=2(0)
≈ 2PcorrΓ∆t g + g 2Γ∆t (1+Γ∆t )

(Pcorr +Γ∆t g )2 = 2gep −1+ 1
Γ∆t

g 2
ep

(B.248)

where gep(τ= 0) = Pcorr+Γ∆t g
Γ∆t g ∼ 30 is the electron-photon correlation SNR in our experiment.

Here, the effect of photon bunching 1
Γ∆t from stray electrons is diluted away by the SNR

squared.

More generally with finite τ ̸= 0, we have

g2(n = 1,τ) = P1(τ1 = 0,τ2 = τ)

P1,i=1(0)P1,i=2(τ)
≈ (Pcorr(0)+Pcorr(τ))Γ∆t g + g 2Γ∆t (δ(τ,τ1)+Γ∆t )

(Pcorr(0)+Γ∆t g )(Pcorr(τ)+Γ∆t g )

= gep(0)+ gep(τ)−1+ δ(τ,τ1)
Γ∆t

gep(0)gep(τ)
(B.249)

Note again that function δ(τ,τ1) can be broadened to a form factor f (τ−τ1) if the timing

uncertainty δtpp between the two optical detectors is large, i.e. δtpp >∆t .

Statistics of two-photon-loss heralded photon correlations

In this section, we start with analyzing the probability of two-photon events P2 = Pn=2 (con-

dition on two-photon-loss on the electron energy) with different delays. Following similar

treatment, we have the following probabilities that are the same as that of the one-photon-loss

case,

P2(|τ1|, |τ2|≫∆t ,τ1 ̸= τ2) = P1(|τ1|, |τ2|≫∆t ,τ1 ̸= τ2) (B.250)

P2(|τ1|, |τ2|≫∆t ,τ1 = τ2) = P1(|τ1|, |τ2|≫∆t ,τ1 = τ2), (B.251)

since they are only associated with stray electrons.

When one of the detectors’ delay τ1 is close to zero, there, one of the photons can be from the

heralded electron. Following a similar treatment, we arrive at the probability of

P2(|τ1| = 0, |τ2|≫∆t ) = (2η−η2)Pcorre−Γ∆t (1−e−ηg )(1−e−Γ∆t (1−e−ηg ))+P0(|τ|≫∆t )

≈ (2η−η2)PcorrΓ∆tηg + (Γ∆tηg )2. (B.252)

Then, when two detectors are both of zero delay, in addition to what we analyzed in the one-

photon-loss case, we have the situation where the two photons are both from the heralded
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electron. Because of this, we have the probability of

P2(|τ1 = τ2|≪∆t ) = η2

2
Pcorre−2Γ∆t (1−e−ηg )

+2
(
(2η−η2)Pcorre−Γ∆t (1−e−ηg )(1−e−Γ∆t (1−e−ηg ))

)
+P0(|τ|≪∆t )

≈ η2

2
Pcorr +2(2η−η2)PcorrΓ∆tηg +η2g 2Γ∆t (1+Γ∆t ). (B.253)

Again, we calculate the unconditional probabilities of both detectors

P2,i (τ= 0) = 1− (1− (2η−η2)Pcorr)e−Γ∆t (1−e−ηg ) ≈ (2η−η2)Pcorr +Γ∆tηg (B.254)

P2,i (|τ|≫ δtep) = 1−e−Γ∆t (1−e−ηg ) ≈ Γ∆tηg . (B.255)

Therefore, the second-order correlation is

g2(n = 2,τ= 0) = P2(τ1 = 0,τ2 = 0)

P2,i=1(0)P2,i=2(0)
≈

1
2 Pcorr +2(2−η)PcorrΓ∆t g + g 2Γ∆t (1+Γ∆t )

((2−η)Pcorr +Γ∆t g )2

=
(gep−1)2

2Pcorr
+2(2−η)gep +2η−3+ 1

Γ∆t

((2−η)gep +η−1)2 (B.256)

In the limit when the electron-photon correlation SNR gep(τ = 0) ≫ 1, we can simplify the

second-order correlation to g2(n = 2,τ = 0) ≈ 1/(8Pcorr(0)). When the time-bin width ∆t is

much smaller than the correlation time uncertainty δtep, Pcorr(0) ≪ 1 and we would expect

photon bunching. Note that this two-photon-loss conditioned photon bunching is from

photons of a coincidence electron, whereas the bunching of the unconditional case is from

photons of an accident electron.

More generally, Pcorr and gep are a function of τ, with the properties of Pcorr(|τ|≫ δtep) → 0

and gep(|τ| ≫ δtep) = Pcorr(τ)/(Γ∆t g )+1 → 1. With these in mind, we have a more general

second-order correlation function as a function of τ,

g2(n = 2,τ) = P2(τ1 = 0,τ2 = τ)

P2,i=1(0)P2,i=2(τ2 = τ)

≈
1
2 Pcorr(τ)δ(τ,τ1)+ (2−η)(Pcorr(0)+Pcorr(τ))Γ∆t g + g 2Γ∆t (δ(τ,τ1)+Γ∆t )

((2−η)Pcorr(0)+Γ∆t g )((2−η)Pcorr(τ)+Γ∆t g )

=
(gep(τ)−1)2

2Pcorr(τ) δ(τ,τ1)+ (2−η)(gep(0)+ gep(τ))+2η−3+ δ(τ,τ1)
Γ∆t

((2−η)gep(0)+η−1)((2−η)gep(τ)+η−1)
(B.257)

Therefore, g2 should show bunching g2 ≈ 1/(8Pcorr(0)) when τ1 = τ2 = 0, and anti-bunching

g2 ≈ (4gep(0)− 3)/(2gep(0)− 1)2 when ∆t ,δtpp < |τ1 − τ2| < δtep. Note again that function

δ(τ,τ1) can be broadened to a form factor f (τ−τ1) if the timing uncertainty δtpp between the

two optical detectors is large, i.e. δtpp >∆t .
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