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Abstract—Epilepsy, a major neurological disease, requires
careful diagnosis and treatment. However, the detection of
epileptic seizures remains a significant challenge. Current clinical
practice relies on expert analysis of EEG signals, a process
that is time-consuming and requires specialized knowledge. This
paper explores the potential for automated epileptic seizure
detection using deep learning techniques, with a particular
focus on personalized models based on continual learning. We
highlight the importance of adapting these models to each
patient’s unique EEG signal features, which evolve over time.
Our approach addresses the fundamental challenge of integrating
new data into existing models without losing previously acquired
information, a common issue in static deep learning models when
applied in dynamic environments. In this study, we propose a
novel continual learning algorithm for seizure detection, which
integrates a replay buffer mechanism. This mechanism is key
to retaining relevant information on past data while acquiring
new one, thus effectively enhancing the model’s performance
over time. Our methodology is designed to be resource-efficient,
making it suitable for implementation in embedded systems. We
demonstrate the effectiveness of our approach using the CHB-
MIT dataset, achieving an improvement of 35.34% in the F1 score
with respect to a fine-tuning approach that does not consider
catastrophic forgetting. Furthermore, we show that a small 1-
hour data replay buffer suffices to achieve F1 scores comparable
to that of a resource-unlimited scenario, while also decreasing the
False Alarm Rate in 24 hours by 33% compared to a resource-
unconstrained method.

Index Terms—seizure detection, continual learning, incremen-
tal learning, deep learning, personalized models, wearable devices

I. INTRODUCTION

Epilepsy is a neurological disease that affects millions of
people around the world [1]. Seizures are characterized by
sudden and unexpected discharges of large groups of neurons,
and their detection is crucial for timely intervention and treat-
ment [2]. The detection of epileptic seizures commonly relies
on analyzing electroencephalography (EEG) signals, which
capture the electrical activity of the brain. However, manual
analysis of long-term EEG signals can be time consuming and
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requires expert knowledge. Therefore, there has been growing
interest in developing automated methods for the detection of
epileptic seizures, with deep learning and machine learning
techniques showing promising results [3, 4].

Deep learning techniques, such as convolutional neural net-
works (CNN), have shown great promise in seizure detection
[5]. Unlike traditional machine learning, deep learning models
can automatically learn relevant features from raw EEG data,
eliminating the need for application-specific feature extraction
[6]. This ability to learn from raw data makes deep learning
particularly suitable for seizure detection, where the relevant
features may not be easily identifiable [7, 8].

Due to their flexibility, deep learning approaches are also
well suited for the development of personalized models [9].
Such scenarios are particularly attractive in the automated
EEG analysis domain because each patient presents unique
EEG characteristics [10], and considering them can improve
performance in the detection of seizures. Training personalized
models requires a substantial amount of data [11]. However,
these scenarios are increasingly practical, thanks to advances
in wearable devices, which allow long-term data collection
[12] and the possibility of fine-tuning existing models, rather
than training them from scratch.

A further challenge related to the personalization of deep
learning models stems from the non-stationary acquisitions
over time [13]. This is especially true in healthcare, where
physiological parameters can fluctuate, leading to changes
such as electrode impedance, variations in environmental
noise, and alterations in exercise routines of patients [10].
Deep learning models, even after personalized fine-tuning,
are inherently static and, hence, ill-equipped for dynamic
environments where data distributions change over time.

Continual learning strategies address this challenge by
proposing methodologies that enable deep learning models
to continuously adapt to new information and environments
while avoiding the need to re-train from scratch [14]. The
application of continual learning to seizure detection presents
specific challenges that require tailored solutions. Seizures
are rare events that lead to a highly imbalanced dataset,
which complicates the training process. It is therefore key to
update models according to newly acquired data, while at the
same time still retaining information on past events of high
significance (such as seizures), hence avoiding Catastrophic



Forgetting [14]. Moreover, solutions intended for personalized
healthcare should achieve these goals within the constrained
resources typical of wearable devices.

To the best of our knowledge, no study has yet applied
continual learning for personalized epileptic seizure detection.
We aim at filling this gap by proposing a methodology to
train adaptable seizure detection models. These can adjust to
the evolving data patterns of individual patients without losing
knowledge of previous patterns, including, but not limited to,
seizure episodes. Indeed, our experiments indicate that fine-
tuning models based solely on new data makes them prone to
forgetting, which can even diminish performance. To counter-
act this effect, our methodology employs a replay buffer [15], a
mechanism that stores and reuses past experiences to mitigate
the problem of forgetting. In more detail, important samples
are judiciously selected and stored in memory. The neural
network then retains the previous knowledge by regularly
replaying these samples, thereby improving its performance.

The main contributions of this paper are as follows:
1) We introduce a methodology for personalized epileptic

seizure detection that can adapt over time while avoiding
forgetting.

2) We propose the utilization of a replay buffer mechanism
for the strategic storage of critical data over time,
which enhances the learning efficiency of the model by
integrating new data and the information retained in the
replay buffer.

3) We show that this methodology has high performance
with notable memory and computational efficiency, mak-
ing it ideally suited for real-world implementation, par-
ticularly in resource-constrained wearable devices.

4) We validated our framework in the CHB-MIT dataset,
achieving an improvement in the F1 score of 35.34%
compared to a fine-tuning approach that does not con-
sider catastrophic forgetting. Moreover, we showcase
that a small 1-hour data replay buffer suffices to achieve
F1 scores comparable to that of a resource-unconstrained
scenario.

The rest of this paper is organized as follows. In Section
II, we review related work on seizure detection and continual
learning. In Section III, we present our proposed algorithm to
tackle the challenges of continual learning and the update of
the deep learning model for personalized seizure detection. We
evaluate the performance of the proposed method in Section
IV. Finally, we highlight the main outcomes of the work in
Section V.

II. RELATED WORKS

A. Machine Learning for Epileptic Seizure Detection

Conventional techniques for epileptic seizure detection ex-
tract features from the EEG. These features correspond both
to linear and non-linear descriptors of the signal. They relate
either to the time domain, the frequency domain, the spatial
domain (across channels), or on their combinations. This
process is aimed at extracting significant features, which are

manually crafted and then used to train a classifier in order to
differentiate between seizure and non-seizure events [16, 17].

This approach has two limitations. First, it relies on expert
knowledge and trial and error when identifying features of
interest, leading to a lack of generalizability. Moreover, it
is vulnerable to changes in seizure patterns, caused by the
inherently non-stationary nature of the EEG, which makes its
statistical components change across subjects and time [18].

Deep learning has been extensively employed for the auto-
mated processing of EEG signals in various contexts, such
as sleep analysis [19, 20], brain-computer interfacing [21,
22], epileptic seizure prediction [23] and detection [5, 24],
showcasing its ability to learn from raw data and potentially
surpass traditional feature extraction-based methods [25].

While traditional deep learning shows remarkable perfor-
mance, it often assumes that data are independent and iden-
tically distributed (i.i.d.). Such models, developed based on
static snapshots of data, may not effectively adapt to dynamic,
non-stationary environments where this i.i.d. assumption is
violated.

B. Continual Learning

Continual learning (CL, also known as incremental learning
or life-long learning), is a machine learning approach where a
model is sequentially trained on a series of tasks, addressing
the challenge of catastrophic forgetting — a phenomenon
where learning new information causes the model to for-
get previously acquired knowledge — and thereby retaining
knowledge from previous tasks even when their data is no
longer available. This approach is categorized into methods
including neural architecture modification (introducing new
neurons for new tasks), regularization strategies (controlling
the modification of model parameters), and replay buffers [14].
The latter technique relies on retaining and utilizing past data
points through a buffer in the learning phase and is often seen
as the most effective [26]. Research in continual learning has
predominantly focused on computer vision [26]. In healthcare,
the emphasis has largely been on medical imaging, as seen
in [27, 28, 29, 30, 31]. For instance, [31] demonstrates the
potential of continual learning in general-purpose, shareable
AI for medical imaging.

The application of continual learning in healthcare time-
series data is also gaining attention [32, 33, 26, 34]. For exam-
ple, in [34], authors propose a multi-disease detection frame-
work using wearable medical sensors and continual learning,
which overcomes the limitations of traditional methods by
employing a multi-headed neural network and an exemplar-
replay-style algorithm for efficient, adaptable disease detection
with a single model. Moreover, a continual learning approach
with a replay buffer and novel trainable task-specific param-
eters is designed in [26] to address performance degradation
in deep learning systems due to non-i.i.d. clinical data.

One important aspect of deploying continual algorithms
for personalized monitoring is their computational efficiency.
Under limited computation resources, simpler approaches such
as uniform sampling from memory, might outperform most CL



Fig. 1. Considered personalized healthcare monitoring scenario. Initially, a subject-independent model is trained using previously collected data (left). The
model is then fine-tuned and personalized to an individual patient by incorporating information from his/her own recordings as they become available over
time (right).

methods [35]. Our methodology is inspired by these works, but
puts them in the context of our considered scenario, where data
is highly skewed towards one of the two classes (as seizure
episodes are rare).

Summing up, despite the growing interest in continual
learning in the health domain, its application to personal-
ized epileptic seizure detection remains, to the best of our
knowledge, unexplored. To this end, our novel strategy tackles
three main challenges in this scenario: non-stationarity of data,
imbalance between acquisitions of seizure/non-seizure data,
and resource constraints in personalized health monitors.

III. METHODOLOGY

A. Overview and Problem Description

As depicted in Fig. 1, our framework for continual learning
in seizure detection considers as input a subject-independent
model. This is usually derived by training a model on a
database containing signals from a large number of subjects.
This initial model is the starting point for personalized updates,
which are made progressively as new data is acquired from
a patient. Therefore, our methodology enables the patient-
specific refinement of the initial model to suit the unique and
changing physiological signals of each individual. It achieves
this goal while a) coping with a memory (or storage) constraint
(which must be accounted for in personal health monitors),
and b) retrieving information on relevant past data in order to
avoid catastrophic forgetting.

Our framework aims to improve the performance of a
model, indicated as M , while learning from the acquired
data. To this end, we divide acquisitions in chunks X =
{X1, X2, . . . , XN}, where each chunk Xi ∈ Rn×T consists
of raw EEG samples captured across channels n over a period
of time T . At the end of each time period, a fine-tuning of the
model is triggered.

In this scenario, the key challenge that our proposed
methodology tackles lies in developing an updating strategy,
where new EEG recordings are regularly introduced and older
recordings are periodically phased out. In fact, due to storage
restrictions, only a subset of previous data chunks is stored
and utilized at any given time.

B. Proposed Method

Our approach is depicted in Fig. 2. As illustrated in the
figure, at each time period T , two sources of data are con-
sidered as inputs to fine-tune the model. The first is the
data that are acquired as part of the current chunk, while

Fig. 2. Overview of the proposed fine-tuning methodology for seizure
detection, where ’S’ denotes Seizure and ’NS’ denotes Non-Seizure data.
Models Mi are refined at the boundaries of each period. Inputs for model
updates are the data acquired in the period (indicated as Xi), as well as a
buffer storing representative samples from past periods.

the second (stored in a dedicated buffer B) is a subset of
previous representative data. Hence, the first data source allows
accounting for changes in data distributions over time, while
the second counters catastrophic forgetting of past events.

When first deployed, both memory regions are empty.
During the first period (T1), the first data chunk is stored, and
at the end of this period, it is used to fine-tune/personalize the
model. These data are then transferred to the buffer B, freeing
space to store the second data chunk. Then, at the end of the
second period, both X1 and X2 are employed for the second
fine-tuning step, which results in the M2 model.

Note that, at this point, there is no more free space in
B, so it is not possible to retain the entire data in the X1

and X2 fragments while acquiring X3. Although it would be
possible to overwrite the buffer with X2 data (hence discarding
X1 data), such a solution would not retain information about



important but rare events such as seizures. Instead, when
refreshing the content of B before the start of a period, we
judiciously selected samples from all the data collected so far.

To this end, the buffer is equally divided between seizure
and non-seizure data, with the goal of preserving a representa-
tive amount of samples from the two classes. Such partitioning
is only enforced on a best-effort basis. In practice, at the
beginning of the recording, there will not be enough samples of
the underrepresented class (seizure). In this case, all available
space in the seizure partition (after storing seizures) will also
be filled by non-seizure data. Note that the presence of non-
seizure data in the seizure partition indicates that all seizures
up to the present time period have been entirely preserved.
This is usually the case even for the long health monitoring
sessions considered in this study1. This is beneficial for model
updates because seizures tend to have different patterns in
different subjects, hence their inclusion during fine-tuning is
key for effective personalization.

In-between time periods, buffer data is refreshed according
to the following policy:

1) An equal amount of samples in B originating from
each chunk is discarded, in order to retain an unbiased
view of past data. If a class is over-represented (e.g.,
non-seizure) in the buffer, samples are selected from it.
Otherwise, if the two classes have the same amount of
data, the same number of samples is discarded from both
classes.

2) New data, selected from the current chunk, is written in
the newly freed space in the buffer. The data is selected
on the same best-effort basis outlined above, trying to
select as much as possible the same amount of samples
from the two classes.

At the end of a buffer refresh, its content contains an
equal amount of data from each chunk, with (as much as
possible) the same amount of seizure and non-seizure samples.
Samples belonging to the same class and originating from
the same chunk are selected for inclusion in the buffer, or
discarded from it, according to a simple random strategy. We
comparatively assess the performance of random sampling
with respect to a more computationally complex alternative
in Section IV-D.

In order to fine-tune the model, data in the buffer and in
the newly acquired chunk are processed in the same way.
The imbalance between the number of seizure and non-seizure
samples is resolved by data augmentation via time-shifting and
repetition, as discussed in Section IV-A1, in order to equalize
the size of the two classes.

IV. EXPERIMENTS

A. Experimental Setup

1) Dataset Overview and Data Preparation: The database
used in this study is the CHB-MIT dataset [36, 37]. This
public dataset comprises 982 hours of EEG recordings from

1Indeed, only for one patient among the ones considered in Section IV the
seizure partition filled up completely.

24 pediatric patients suffering from intractable epilepsy. Out
of the 982 hours of recordings, only three hours contain
seizure events, representing a total of 198 seizures. This
dataset is one of the largest public datasets on the hours of
recording per patient, with an average of approximately 40
hours per patient. The EEG signals are sampled at 256 Hz
with a 16-bit resolution. Most, but not all, records feature
23 bipolar channels with electrodes placed according to the
International 10–20 system. Here, for the sake of uniformity
and comparability, we have considered only the 18 channels
present in all patients.

The EEG data for each patient are divided into 1-hour
chunks, with each chunk generating approximately 31.6 MB
of data. Three filters were applied to preprocess the data: a 0.5
Hz highpass, a 60 Hz lowpass, and a 50 Hz notch. All filters
are 4th-order Butterworth filters.

We considered a replay buffer of the same size as a
data fragment, which resulted in a storage requirement of
63.2MB for implementing our methodology. Each data chunk
is randomly divided into training and validation sets in an 80%
to 20% ratio. We arranged the EEG recording data so that the
datastream of each patient starts and finishes with a seizure
event, so that personalization on seizure data can be performed
from the first data chunk, and F1 scores can be computed on
the last chunk.

We used three-fold cross-validation to evaluate the method-
ologies, partitioning the 24 patients into three groups, each
comprising eight patients similar to [5]. In each experimental
run, one group is designated for training an initial subject-
independent model. Subsequently, this model is personalized
for the patients in the remaining two groups. Each experiment
is repeated three times using different seeds to ensure robust-
ness, and the mean of these results is considered for analysis.

Data augmentation was employed on seizure windows
in training sets, both when deriving the initial patient-
independent model and for patient-dependent fine-tuning steps,
in order to equalize the number of seizure and non-seizure
data. We used a combination of time-shifting (shifting con-
secutive windows by 1/8 of a second to generate new data
windows) and data repetition.

2) Implementation: Our methodology is agnostic with re-
spect to the structure of the deep neural network employed.
Without loss of generality, in all experiments, we employed a
domain-specific fully convolutional network (FCN) tailored for
EEG analysis introduced in [5]. The FCN takes input windows
of 4 seconds and predicts a binary label corresponding to
a seizure or non-seizure window. It comprises three blocks,
each consisting of a convolution layer, batch normalization,
a Rectified Linear Unit (ReLU) activation function, and a
pooling layer. This is followed by two fully convolutional
layers and a concluding SoftMax layer. The network has
low resource requirements, employing approximately 300K
parameters, and hence is a representative choice in the context
of personalized health monitoring.

Training is performed for 100 epochs in all cases. Note
that, as opposed to when training the initial model, when



performing fine-tuning each epoch only processes a small
amount of data, i.e. that of the current chunk and that in the
replay buffer. The training process uses cross-entropy loss and
Adam optimizer, with an initial learning rate set at 10−4. To
optimize performance, a learning rate scheduler is incorporated
to reduce the learning rate by a factor of 5 at specified epochs,
notably at epochs 50 and 75.

3) Post Processing: The model is designed to predict a
label for each 4-second window. These windows overlap by
3 seconds, providing continuity in data analysis. However,
seizure events exhibit temporal dependencies, which means
that seizures are not random, but can be correlated over
time. Post-processing can enhance detection performance by
enforcing these temporal dependencies, taking into account the
context of seizure events over time. Therefore, first, a simple
moving average filter is applied to smooth out the predictions.
Subsequently, for a more accurate evaluation, event-based
scoring is adopted [38]. This method assesses the performance
of the model at the level of seizure episodes instead of using
sample-by-sample based metrics.

4) Metrics: In our experiments, we utilize event-based F1
Score and False Alarm Rate (FAR) to assess the dataset’s
seizure detection performance. The F1 Score, a harmonic
mean of precision and recall, evaluates the balance between
accurately identifying seizures and correctly ruling out non-
seizure events. The FAR measures the frequency of incorrect
seizure predictions, an important metric for minimizing inef-
fective seizure detection. To evaluate our methods, we examine
Remembering [39] and Future Scores:

• Remembering Score: This metric is calculated using
Backward Transfer (BWT), which measures the impact of
learning new data on previously learned data. It is defined
by the change in a metric on previously-seen data after a
model update, thus quantifying the extent of catastrophic
forgetting. BWT is calculated as:

BWT =

N∑
i=2

i−1∑
j=1

(Ri,j −Rj,j)

N(N−1)
2

, (1)

where Ri,j denotes the score of the model trained at time
step i and evaluated on the data observed at time step
j, and N is the total number of the time steps. Using
BWT, we define the Remembering metrics for both F1
score and FAR. The Rememebering F1 Score is defined
as 1 − |min(BWT, 0)|. It ranges from 0% to 100%,
with 100% meaning the model remembers everything
after learning new other data. The Remembering FAR
is defined as max(BWT, 0). This metric quantifies the
increase in FAR after learning new data.

• Future Score: Future Score measures how well the
most recently updated model performs on unseen testing
data. This metric is crucial for assessing the model’s
adaptability and current relevance in continual learning
scenarios. It is calculated as the average performance of

Fig. 3. Remembering (left) and Future (right) Scores for different seizure
detection methods. In both cases, F1 Scores (higher is better) and False Alarm
Rates per 24 hours (lower is better) are presented.

a model on the next future data chunk after a fine-tuning
step. The equation for the Future Score is given by:

Future Score =

N−1∑
i=1

Ri,i+1

N − 1
, (2)

where Ri,i+1 denotes the performance of the model
trained at time step i and evaluated in the subsequent
data chunk i+ 1, and N is the total number of the time
steps. The Future F1 Score and Future FAR are derived
in a similar way.

5) Proposed and Baseline Methods: In our study, several
baseline methods are evaluated alongside our proposed ap-
proach, each offering distinct strategies:

1) Global: This method employs a subject-independent
pretrained model based on data from other patients,
without considering any personalized fine-tuning.

2) Fine-tuning: Updates the model for each new chunk
without employing a replay buffer to reduce forgetting.

3) Only-Seizure: Updates the model only on data chunks
that include a seizure, also without using a replay buffer.

4) Proposed Method: Besides the storage required for the
current chunk, it also uses a replay buffer of the same
size, following the strategy detailed in Section III.

5) History: Employs an unconstrained replay buffer, using
all past data of a patient at each fine-tuning step.

B. Experimental Results

In this section, the experimental results of our proposed
method are presented. We report the performance of the
proposed method with the evaluation metrics introduced in
Section IV-A4. F1 scores (Remembering and Future) are only
reported for data chunks with seizures, where false negatives
can occur. On the other hand, all chunks are considered in the
reported FAR data.



1) Backward Transfer: Fig. 3-left presents the results for
the Remembering metrics. The Global baseline method, in
which the model does not update over time, is excluded from
this experiment. In the top-left subfigure, the Remembering F1
Score is shown; a higher score signifies that models are less
prone to forgetting. Similarly, the Remembering FAR is shown
in the bottom-left subfigure, with a lower score indicating an
increase in only that amount of false alarms.

The Remembering Score for the Fine-Tuning method is
lower than that of other strategies, at 68.42 ± 6.35. This is
attributed to two main factors. First, the highly imbalanced
nature of seizure events often results in chunks lacking seizure
data, and fine-tuning the model predominantly with such non-
seizure data can reduce its seizure detection capabilities. More
critically, this method is susceptible to catastrophic forgetting.

The Remembering Score of the Only Seizure method is
higher, at 95.58± 0.58. In this baseline, the issue of training
on data chunks without seizures is avoided; therefore, it
updates less frequently compared to other methods. Still, this
method only remembers 95.58% (forgets 4.42%), likely due
to catastrophic forgetting, along with a 5.99 ± 1.92 increase
in FAR.

The History method represents an upper bound for these
experiments, as all available data are used for training. This
baseline has a high Remembering Score of 99.31±0.42 and a
minimal increase of 0.14±0.10 in FAR. Our proposed method
approximates these results well, presenting a Remembering F1
Score of 97.92±0.23 and only a 1.07±0.19 increase in FAR.
This indicates that the proposed method appropriately retains
past information when adapting to new data.

2) Forward Transfer: The Future Score metrics are pre-
sented in Fig. 3-right.

The Future F1 score and FAR for the Global method
are 8.17 ± 2.6 and 9.75 ± 6.80, respectively. The Global
method’s poor performance underscores the limitations of
using a subject-independent model in real-world scenarios,
emphasizing the need for personalized models.

The Fine-Tuning method achieves a Future F1 Score of
51.29±2.64 and a FAR of 6.95±2.33. As mentioned earlier, its
performance is hindered by including chunks without seizure
data and proneness to catastrophic forgetting.

The Only Seizure method achieves an impressive Future F1
score of 84.86 ± 2.83, indicating its efficacy in cases where
seizure data is present. This can be attributed to infrequent
updates, leading to less forgetting. However, it records a high
FAR of 22.54± 3.25. This is primarily due to the infrequent
updates (as only chunks with seizures trigger a model fine-
tuning), which result in extended periods without model adap-
tation and neglect the broader context of the patient’s EEG
data, thereby increasing the false alarm rate.

The History method shows a Future F1 score of 85.55±1.49
and a FAR of 7.65 ± 3.18. Interestingly, our method outper-
forms this baseline, even if it employs a constrained replay
buffer, with a Future F1 score of 86.63± 1.67 and a FAR of
5.14±1.25. This improved performance is due to our method’s

TABLE I
COMPARATIVE ANALYSIS OF REMEMBERING AND FORWARD SCORES FOR
THE PROPOSED METHOD USING EITHER RANDOM OR BOUNDARY SAMPLES

IN THE REPLAY BUFFER.

Sampling Remembering Forward
F1-Score ↑ FAR(/24hr) ↓ F1-Score ↑ FAR(/24hr) ↓

Random 97.92± 0.23 1.07± 0.19 86.63± 1.67 5.14± 1.25
Boundary 98.89± 0.69 0.44± 0.16 85.16± 1.53 5.07± 1.52

ability to prioritize recent data, as only the most recent past
chunk is used entirely for fine-tuning.

C. Memory requirements and Computational Complexity

The Fine-Tuning, Only Seizure baselines, as well as the
proposed method, have a fixed-size memory footprint. In this
regard, our method is at a slight disadvantage, as it requires
additional storage to host the replay buffer. Nevertheless, as
shown above, a reasonably sized replay buffer hosting one
chunk of data suffices to counter forgetting. Conversely, the
History baseline stores all acquired data, hence its memory re-
quirements linearly increase with the length of the acquisition.

Similar considerations apply to the computational complex-
ity of the strategies considered. The training process run-time
is proportional to the number of training samples. Therefore,
the complexity of our methods is almost four times that of
the Fine-tuning baselines. A doubling factor arises from the
use of the replay buffer. A second (almost) 2X increase in
run time is instead due to the performed data augmentation,
which results in rare seizure windows (and their time-shifted
variations) being employed multiple times at each epoch.

As for the History method, its computational cost increases
linearly with the number of chunks. Therefore, it is impractical
in the long-term personalized monitoring scenario.

D. Ablation Study

This section explores the efficacy of retaining boundary
samples in the replay buffer for continual learning. Retaining
boundary samples in the replay buffer has been shown to be
beneficial [40]. Our study aims to demonstrate the effects of
retaining boundary samples instead of random samples for
non-seizure data in the replay buffer.

To conduct this study, at the end of each learning phase
at a given time step, we used the recently trained model to
select new samples and updated the replay buffer by choosing
the most uncertain samples. Uncertainty was measured using
the loss function’s value. Table I presents the results. The
Remembering F1 score and FAR for the boundary sampling
are 98.89 ± 0.69 and 0.44 ± 0.16 respectively. These results
suggest that the model performs better in terms of remem-
bering previous data compared to the scenario where random
samples are stored, likely due to the maintained accuracy of
the classifier by replaying boundary samples. However, the
Forward F1 Score degrades by 1.47% with a similar FAR when
using boundary samples. This degradation is likely caused by
the model starting to overfit previous data by focusing on
outliers from previous data.

Fig. 4 illustrates this phenomenon. The four 4-second EEG
excerpts (all originating from the same recording: patient 13,



Fig. 4. Comparison of boundary and typical samples from patient 13,
recording 58. Displayed are one non-seizure and one seizure alongside two
uncertain (boundary) samples within 4-second windows.

recording 58) report a seizure window, a non-seizure one,
alongside two uncertain (boundary) samples, including one
artifact and another seizure-like activity. For simplicity and
clarity, only six of the most relevant channels are depicted.
Empirically, such examples show that boundary samples are
often not representative, and may even be misleading. Hence,
their selection for storage in the buffer often results in perfor-
mance degradation.

V. CONCLUSIONS

Physiological patterns vary from patient to patient and
tend to change over time, even for the same patient. These
characteristics pose a challenge for their automated analysis.

In this paper, we have tackled it from multiple perspectives.
Focusing on the concrete scenario of seizure detection from
EEG data, we first showed that deep learning models can
be effectively fine-tuned on a patient-specific basis, taking
into account novel information as it is acquired. Then, we
showed that an approach that only looks at new acquisitions
is prone to forgetting past knowledge, especially regarding rare
events such as seizures. Finally, we have introduced a novel
strategy to retain historical data over the long term in a size-
constrained replay buffer, and employ it in conjunction with
new acquisitions to adapt models while limiting forgetting.

The experimental results show that our methodology not
only achieves high performance, but also reduces FAR in 24
hours by 33% compared to an unrealistic baseline assuming
infinite storage.
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