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Abstract 

Proteins are foundational biomolecules of life playing a crucial role in a myriad of biological processes. 

Their function often requires interplay with other biomolecules, including proteins themselves. 

Protein-protein interactions (PPIs) are essential for maintaining cell homeostasis, but are also involved 

in the progression of several diseases, being pathogenic, neuro-degenerative or cancer related. 

Therefore, PPI engineering has always been at the basis of several protein-based therapeutics and other 

biotechnology tools. However, most PPI engineering strategies so far relied on extensive experimental 

optimization or computational tools that depend on prior knowledge. Indeed, challenges remain for 

protein targets where no structural or experimental data are available, or for interfaces that involve non-

protein components such as small molecules.  

To explore and address these limitations, this work aims to leverage machine-learning and physics-

based methods for the design of de novo protein interactions with therapeutic potential, that will 

ultimately be characterized and validated with established laboratory techniques.  

The first part of this thesis showcases the translational capabilities of PPI designs. For this purpose, we 

rationally designed switchable protein-based therapeutics by integrating a previously established 

chemically-disruptable heterodimer (CDH). To optimize this OFF-switch system, we employed in silico 

methods based on physics-driven predictions, followed by rigorous in vitro validations to enhance its 

switchability in solution. This resulted in the development of a protein therapeutic exhibiting 

significantly improved drug-based controllability in mice models. 

Nevertheless, most antibody and protein therapeutics discovered using experimental methods are 

agnostic to where and how these proteins engage their respective target. Despite recent advances, 

predicting an amino acid sequence that binds to a specific interface remains a major challenge for the 

field. To address this, a geometric deep learning framework, called MaSIF, was developed in our group 

to predict PPI interfaces and their corresponding binding partners based solely on the vectorized 

geometric and chemical features of the protein surface, also known as “fingerprints”. In this work, we 

improved MaSIF by leveraging a database of small binding motifs to design novel protein binders for 

four therapeutically relevant targets. All protein binders were validated experimentally and reached 

native-like affinities after pure in silico generation.  

Finally, we generalized our framework to design drug-bound protein complexes via the formation of 

neosurfaces that arise upon small molecule binding. The versatility of our approach allowed us to 

computationally design and experimentally validate binders against three small molecule-protein 

complexes. All designs exhibited drug-dependent binding with native-like affinities and were 

functionalized as ON-switch systems for different cell-based applications.  

Altogether, this dissertation provides new insights for the design of site-specific de novo protein 

interactions and their potential implementation in therapies by using innovative computational tools. 

On top of improving our understanding of PPI design, this work represents a new avenue for the 

development of biotechnology tools with concrete applications that can benefit patients.  



Chapter 0  Abstract 

iii 
 

Keywords: protein design, protein-protein interactions, protein engineering, machine learning, 

protein switch, protein therapeutics, computational modeling 

 

  



Chapter 0  Résumé 
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Résumé 

Les protéines sont des biomolécules de la Vie cruciales dans une myriade de procédés biologiques. Les 

interactions protéines-protéines (IPP) sont essentielles pour maintenir l’homéostasie cellulaire, mais 

sont aussi impliquées dans le développement de maladies. C’est pourquoi l’ingénierie d’IPP a toujours 

été à la base de plusieurs thérapies protéiques et d’autres biotechnologies. Cependant, la plupart des 

stratégies d’ingénierie dépendent de profondes optimisations expérimentales ou des outils 

computationnels qui se basent sur des connaissances précédentes. Des défis persistent pour des cibles 

protéiques pour lesquels aucune donnée expérimentale n’est disponible ou pour l’implication de 

composants non-protéiques. 

Pour répondre à cela, ce travail a pour but de tirer profit de méthodes basées sur la physique et 

l’apprentissage machine pour la conception d’interactions protéiques de novo avec un potentiel 

thérapeutique qui seront validées avec des techniques de laboratoire reconnues. 

La première partie de cette thèse présente les capacités transversales des conceptions d’IPP. Pour ce 

faire, nous avons rationnellement conçu une thérapie protéique interruptible en intégrant un hétéro-

dimère chimiquement perturbé. Pour optimiser ce système d’interrupteur désactivable (OFF), nous 

avons employé une méthode in silico basées sur la physique, suivie d’une validation in vitro pour 

augmenter la capacité d’interrupteur en solution. Cela résulta dans le développement d’une thérapie 

protéique démontrant une contrôlabilité augmentée dans des modèles de souris.  

Cependant, la plupart des protéines thérapeutiques découvertes en utilisant des méthodes 

expérimentales sont agnostiques de l’endroit et la façon dont elles engagent leur cible. Malgré les 

avancées, prédire une séquence d’acides aminés se liant à une interface spécifique reste un défi. Pour 

répondre à cela, un outil basé sur l’apprentissage profond, appelé MaSIF, a été développé dans notre 

groupe afin de prédire les interfaces d’IPP et leur partenaire de liaison en se basant sur les propriétés 

géométriques et chimiques de la surface des protéines, aussi appelées « empreintes ». Dans ce travail, 

nous avons amélioré MaSIF grâce à une base de données de petits motifs de liaisons pour ensuite 

concevoir de nouveaux ligands protéiques pour quatre cibles d’importance thérapeutique. Tous ces 

ligands ont été validés expérimentalement et ont atteint des affinités proches des interactions natives 

après seulement leur génération in silico.   

Enfin, nous avons généralisé notre outil pour concevoir des complexes protéine-médicament via la 

formation de néo-surfaces qui apparaissent lors de la liaison à de petites molécules. Cette polyvalence 

a permis de concevoir de manière computationnelle et de valider des ligands protéiques ciblant trois 

complexes protéines-médicaments. Toutes les conceptions ont présenté une liaison dépendante du 

médicament avec des affinités similaires à celles naturelles et ont été fonctionnalisées en tant que 

systèmes d’interrupteur activable (ON) pour des applications cellulaires.  

En somme, cette dissertation procure de nouvelles idées pour la conception de novo d’interactions 

protéines pour des sites spécifiques, ainsi que leur implémentation dans des thérapies en utilisant des 

outils computationnels innovants. En plus d’amener une meilleure compréhension, ce travail 
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représente une nouvelle piste pour le développement d’outils biotechnologiques avec des applications 

concrètes. 

Mots-clés : Conception de protéines, interactions protéine-protéine, ingénierie de protéines, 

apprentissage machine, interrupteur protéique, protéine thérapeutique, modélisation 

computationnelle 
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very house, every structure – being man-made or from Nature itself – is initiated from different 

kinds of building blocks. Each living cell representing the unit of Life is composed of four 

different basic elements: fatty acids, carbohydrates, nucleotides, and amino acids. These 

construction elements will respectively form lipids, sugar, nucleic acids, and proteins, which in turn 

can form a cell, a tissue and ultimately a living organism. Proteins play a central role in this process as 

they can fulfill a myriad of functions on their own or when they interact with other proteins, a process 

called protein-protein interactions (PPIs). Nowadays, thanks to the expansion of computational 

capabilities, scientists can predict, model and design proteins on a computer screen, and even 

interactions between proteins, which reflects one of the numerous ways to control Life. Among the tools 

available, artificial intelligence, and especially machine learning, became an indispensable asset for 

protein engineers to achieve this aim.  

In this journey through the protein universe and beyond, we will first introduce the biochemistry of 

proteins and their role in Life. Then we will look more deeply into how their mission is fulfilled by 

interacting with other protein partners and simultaneously present the recent advances in terms of 

computational protein design and engineering of novel protein-protein interactions using more 

classical approaches as well as recent deep learning tools.  

1.1 Biochemistry of proteins 

Proteins belong to the most diverse and versatile group of molecules of Life in terms of function, 

biophysical properties, and complexity. Proteins are complex structures that require four elements to 

exist: i) a construction plan, ii) some building blocks, iii) a shape, and iv) a function. 

Firstly, every construction starts with a project blueprint, which in the case of proteins is encoded in 

our genetic material composed of deoxyribonucleic acids (DNA). The human genome encodes slightly 

less than 20’000 genes and as many proteins [1]. The DNA is then transcribed into a messenger 

ribonucleic acid (mRNA) whose role is to deliver the construction plan to the protein factory within our 

cells, also called ribosomes. The mRNA is ultimately translated into a polymer called “protein”. 

E
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Scientists often refer to this sequential process as the “central dogma of molecular biology” [2], which 

was first described by Francis Crick, one of the first scientists to unravel the helical structure of DNA. 

Proteins are built by the ribosomes from a set of 20 amino acids as building blocks. Each amino acid 

consists of a common architecture, also referred to as backbone, and a more variable region that is 

specific to each amino acid, also called side chain (Figure 1.1A-B). The backbone of amino acids starts 

with an amine group (N-terminus) and ends with a carboxyl group (C-terminus). In the middle, the 

central carbon (Cα) can host different side chains that will bring particular features to each of the 20 

amino acids (Figure 1.1B). Indeed, these side chains can differ in size, polarity, and charges. For this 

reason, amino acids have been grouped in different categories, namely hydrophobic, polar uncharged, 

positively charged, negatively charged and a couple special cases (proline and cysteines) (Figure 1.1A).  

Amino acids are comparable to a pearl necklace: they can be attached one after each other, thanks to a 

peptide bond formation between a carboxyl group and an amine group of another amino acid, and so 

on (Figure 1.1B). This linear chain of amino acid is also called the “primary structure” of proteins. Each 

bond between the atoms along this chain can rotate, either on the C-terminal side (ψ), the N-terminal 

side (ϕ) or at the peptide bond itself (ω). Of note, only certain torsion angles will be energetically 

favorable, which constrains the infinite amount of folding possibilities to certain regions only, as 

exemplified by the Ramachandran plot [3] (Figure 1.1C). The polypeptide chain will exploit these 

torsion angles to fold into a three dimensional structure called a protein.  

Polar components of the amino acid backbone, namely the amine hydrogen and the carboxyl oxygen that 

are proton donors and acceptors respectively, can form local or non-local hydrogen bonds with their 

respective partner from another amino acid. This process will give rise to “secondary structures” which 

are local geometric elements such as alpha helices and beta sheets (Figure 1.1C). These repeated 

elements can be connected by flexible loops and will play a crucial role in the protein packing and folding.  

Further energy minimization will aim to reduce the contacts between hydrophobic residues and the water 

molecules, which are polar. Consequently, during the folding process, the protein will adopt a three-

dimensional structure that shields the hydrophobic residues from the solvent. This resulting 3D 

arrangement is commonly referred to as the protein's “tertiary structure” (Figure 1.1C). While most 

proteins may be already functional as a single monomer, others need to form a “quaternary structure” 

and undergo homo- or hetero-oligomerization with other protein subunits to fulfill their function, like 

antibodies or hemoglobin for example.  

Protein folding is one of the most important processes of protein biochemistry, as folding will attribute a 

specific function to a protein. The Anfinsen principle, or thermodynamic hypothesis, stipulates that the 

three dimensional structure of a native protein is found where the Gibbs free energy of the whole system 

is at its lowest [4]. From that postulate, it became evident that the linear amino acid sequence will define 

the protein structure, and in turn its structure will define its function. To reach this energy minimum, 

various driving forces are involved. The most dominant contribution comes from the hydrophobic 

interaction [5] which aims to shield the hydrophobic residues away from the surrounding aqueous solvent 
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by enclosing them within an internal hydrophobic core1. Consequently, hydrophilic amino acids will face 

the solvent to form hydrogen bonds with water molecules. To properly bury all hydrophobic residues 

within the protein core, specific backbone torsions will be provided by secondary structure elements. 

Hydrogen bonds formed within secondary structures also greatly enhance protein stability, therefore 

secondary structure can be seen as both a cause and a consequence of the protein tertiary structure [6,7]. 

Once these driving forces sampled possible paths within the funnel-shaped energy landscape and lead 

to a global minimum, the protein will have a structure that will subsequently define its cellular function 

[8]. One major category of proteins are enzymes which can fulfill a catalytic function and facilitate 

chemical reactions. Proteins can also have a structural (e.g. tubulin to form the cell cytoskeleton) or 

contractile role (e.g. myosin in our muscles). The storage of ions (e.g. iron with ferritin) or their transport 

through the cell membrane (e.g. potassium channel) is also accomplished by proteins. Immune 

defense is also a crucial role, which is ensured by antibodies. And finally, proteins are also found in 

signaling pathways (e.g. insulin, cell receptor) and cell regulation (e.g. cyclin kinase). Overall, the wide 

majority of these functions involve a binding process with another protein, a lipid, an ion, a sugar or a 

nucleic acid. Nevertheless, the most exciting route to develop innovative therapies and biotechnology 

tools remain the protein-protein interactions. 

Modulating PPIs represent a major goal for drug development as these interactions are not only 

involved in healthy cell homeostasis but also in disease progression, either pathogenic, degenerative 

or cancer-related [9]. Between 130’000-650’000 PPIs are estimated in the human interactome [10,11], 

but only a fraction of them have been targeted by drugs [12]. A wide majority remain “undruggable” 

mainly because of flat interfaces that lack a defined binding pocket for small molecules [12,13]. This 

makes however these sites promising candidate interfaces for protein-based therapeutics such as 

monoclonal antibodies [14] or de novo protein binders [15].  

As for protein folding, different driving forces are involved in protein association. It has been shown 

that Van der Waals interactions and hydrophobic patches are the major contributor for protein-protein 

binding and are less tolerant to mutations, reason why they are often referred to as hotspots [16,17]. 

These hotspots can benefit from additional surrounding hydrogen bonds and salt bridges found at the 

rim to stabilize the interaction and improve binding specificity [18,19]. However, the molecular surface 

geometry [20] and shape complementarity of both interacting partners are also critical for protein 

association [21]. Some proteins may undergo obligatory homo-oligomerization with identical subunits 

(e.g. keratin) or hetero-oligomerization with non-identical subunits (e.g. antibody heavy and light 

chains) to achieve their full functionality.  Alternatively, proteins may interact in a non-obligate way 

with other protein partners to accomplish their role (e.g. antigen-antibody complex).  

These non-obligate interactions can be only transient with affinities ranging from low micromolar to 

mid-nanomolar, or permanent with affinities ranging from low nanomolar to femtomolar (e.g. E9 

endonuclease-Im2 complex) [22,23]. 

                                                            
1 Of note, this assumption is valid for globular soluble proteins. Membrane proteins are exposing their hydrophobic 
residues to the cell membrane, which is composed of lipids and is therefore hydrophobic as well. 



Chapter 1  Introduction 

4 
 

 

Figure	1.1	:	The	biochemistry	of	amino	acids	and	proteins.	A. Schematic representation of the 20 canonical amino acids involved in protein biosynthesis grouped into four categories (hydrophobic, polar uncharged, polar acidic and polar basic) and one special case category. B. Representation of two amino acids linked by a peptide bond. The phi (ϕ) angle is found on the N-terminal side, the psi (ψ) angle on the C-terminal side, and the omega (ω) angle at the peptide linkage. All central carbon (Cα) are linked to a side chain (R) that gives a chemical property to the amino acid. C. Ramachandran plot summarizing the energetically allowed conformation of the ϕ and ψ angle of an amino acid. D. Hierarchy of the protein structure starting from the linear sequence of amino acid (primary), the local secondary structure elements (alpha helix, beta sheet or loop), the three-dimensional folded structure (tertiary), and eventually the complexation with another protein subunit (quaternary). 
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The PPI universe, also called interactome, is a complex biological collection whose prediction has 

remained a challenge over the last years [10,24]. Interactome mapping has been done primarily relying 

on experimental techniques including yeast-two-hybrid (Y2H) system, luminescence-based assays or 

co-immunoprecipitation coupled with mass spectrometry [10]. In parallel, several computational tools 

using evolution-derived structural and sequence similarities were proposed [25,26]. Nevertheless, 

purely independent PPI predictions based solely on the intrinsic surface properties without 

comparison with a homolog protein remained an ambitious aim until recently. As explained 

hereinafter, numerous computational methods have been developed for protein interaction prediction 

and, more generally, for protein modelling and design.  

1.2 Computational protein modelling and design 

With the advent of computers in the second half of the 20th century, numerous calculations and 

automations once impossible for humans, have become accessible to scientists. Since the 70’s 

computers gained computational capabilities exponentially as observed by the Moore’s law who 

posited that the number of transistors found in an integrated circuit doubles every two years [27]. This 

significant expansion enables the emergence of computational protein modeling and design since the 

mid 90’s. Numerous tools have been proposed, notably for protein dynamic simulation [28–30], protein 

structure prediction [31–34], protein docking [35,36], or protein design [37–40].  

1.2.1 Computational protein structure prediction 

Protein modeling has been driven by the desire of folding any protein computationally given a 

sequence (Figure 1.2A-D). Three approaches have been proposed: i) Template-based methods, ii) 

template-free methods (including physics-based approaches) or, most recently, iii) neural network 

predictions [41] (Figure 1.2D).  Firstly, as the three dimensional structure is intrinsically contained 

within the linear sequence of amino acid [42], it became quickly evident that searching for similarities 

between a query sequence and a database of known tertiary structure could be a rapid way to model 

the desired protein structure [43–45]. Nevertheless, this approach is hindered by the experimental data 

availability and the prior characterization of protein homologs that are evolutionary similar.  

Following the Anfinsen principle [4] that postulated that a protein folds to its lowest energy state, 

template-free protein structure prediction tools relied on the laws of physics to find this global 

minimum and the subsequent three dimensional structure where a defined amino acid sequence will 

fold (Figure 1.2B). Rosetta, one of the most popular tools exploiting this approach, takes advantage of 

small existing backbone fragments sharing sequence similarities with the query.  A Monte Carlo 

simulation [46] will introduce small conformational changes and perturbations on a randomly selected 

region. The acceptance of the move will be evaluated by a Metropolis criterion: sampled moves are 

accepted if the energy is decreased, while it might be rejected or still accepted depending on a certain 

probability criteria if the energy state is increased [39,47] (Figure 1.2C) : if E < E ∶ Accepted Otherwise accepted with probability P = e /  ; where T = Temperature 
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The conformational-energy landscape of protein folding is a complex funnel with several local minima and 

one global minimum where the energy state is at its lowest [48,49] (Figure 1.2B). By randomly accepting 

non-favorable moves, the algorithm mitigates the risk of becoming trapped in a local minimum. For the 

evaluation of the energy state, Rosetta exploits an all-atom physics-based scoring function, which has been 

continuously under improvement over the years [39,50]. The scoring function is decomposed in multiple 

weighted terms that are describing forces and potentials such as: i) Van der Waals energies (split in attractive 

and repulsive), ii) hydrogen bonds, iii) electrostatics, iv) disulfide bonds, v) residue solvation energy, vi) 

backbone torsion angles (based on Ramachandran statistics), vii) sidechain rotamer energy, and viii) a 

reference energy (average unfolded state). However, several limitations remain and notably the lack of 

consideration of the entropic contribution [51,52] or the absence of an accurate explicit water molecule 

representation [53] due to the computational cost of such simulations. 

Finally, thanks to recent advances in machine learning and the increase of computational power, new 

tools have been proposed to the protein science community. AlphaFold2 (AF2), released by DeepMind, 

has pioneered a new era for deep learning tool in protein structure prediction by winning the 14th 

Critical Assessment of protein Structure Prediction (CASP14) [54] with a median backbone accuracy of 

0.96 Å root mean square deviation (RMSD) and an all-atom accuracy of 1.5 Å, a performance that has 

never been reached formerly [31]. Since the success of AF2, other groups proposed similar structure 

prediction tools such as RoseTTAFold [32] and ESMFold (Evolutionary Scale Modeling Fold) [55] and 

many others that includes ligand and other biomolecules are about to be released [56,57].  

1.2.2 Computational protein design 

Protein design is often known as the inverse folding problem [41,58] (Figure 1.2A). While protein structure 

prediction and folding aims to search for the lowest energy state of a given protein sequence, protein 

design aims to define a sequence that will fold into a specific structure. Contrary to in vitro evolution or 

experimental optimizations, where proteins evolve or are selected from extensive mutational libraries, 

computational protein design employs methodical and rational approaches to forecast a limited number 

of sequences aligned with specific desired objectives. Computational protein design can be split into 

i) fixed-backbone design (or template-based design) and ii) de novo design [41,59].  

The early stages of computational protein design mainly focused on template-based design with the 

aim to repurpose existing protein backbones and sample different side chains to improve stability 

[60,61], to redesign specificity [62,63] or incorporate a particular function by motif grafting (e.g. binding 

to another protein, see section 1.3) [64,65]. 

A longstanding challenge for protein engineering has been to design de novo proteins without any known 

homologs and to discover novel shapes and folds that Nature didn’t explore. The protein universe is wide, 

but it is commonly stated that only a fraction of it has been explored by Nature, leaving a blank space that 

protein scientists need to uncover [59]. Though, to design a small protein of 100 amino acids without any 

knowledge, there are 20100 side chain combinations and a quasi-infinite amount of possible torsion 

angles. However, narrowing the problem to specific folds and using computational tools that combine 

sampling and scoring, such as Rosetta, made de novo protein folds possible since the early 2000’s. 
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Figure	1.2	:	Computational	protein	modeling	and	design.	A. Protein modeling has been primarily focusing on protein folding with the aim to get a structure for a given sequence. Protein design represent the inverse folding problem with the aim to obtain the sequence that will fold into a desire three dimensional structure. B. The conformational-energy landscape of protein folding is a complex funnel with several local minima (intermediate and misfolded state) and one global minimum where the energy state is at its lowest (native state). C. Rosetta modeling suite follows an iterative principle where conformation moves are sampled, introduced into a protein pose, scored with a physics-based energy function and accepted or rejected following a Metropolis criterion. 
D. Three approaches are used for protein modeling and especially protein structure prediction: Template-based, template-free (e.g. Rosetta) or neural networks (e.g. AlphaFold2). E. Various methods were proposed for protein design. More recently, deep learning tools gained popularity and can be decomposed in graph neural networks (e.g. ProteinMPNN) or language models (e.g. Inpainting) of deep generative models, which can themselves be decomposed in variational autoencoders (VAE; E: Encoder; D: Decoder), generative adversarial networks (GAN; G: Generator; D: Discriminator), or diffusion models (e.g. RFDiffusion). 
 

One of the first de novo protein designs reported to have explored the “dark space” of the protein 

universe is exemplified by the Top7 protein, proposed by Kuhlman and colleagues in 2003 [66]. By 

defining a sketch of the desired α/β-fold and leveraging the sequence design and backbone optimization 

capabilities of Rosetta, they provided a novel and stable protein fold validated experimentally. Since 

then, a myriad of de novo protein attempts were performed by using various strategies (Figure 1.2F), 

such as [67]: i) local structure assembly [66,68,69], ii) rational design (bottom-up approach) [70,71], iii) 

leveraging symmetries [72], or iv) fold family sampling [73]. As of today, multiple examples of small de 

novo protein designs displaying significant stability [74–76] and successful functionalization [77–79] 

have been reported by using high-throughput screening techniques.  
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Protein design is, however, entering a new era with the arrival of emerging machine learning algorithms 

[80]. Machine learning represents a considerable toolbox for scientists with applications in biology and 

beyond. For the field of protein design, most emerging tools are based on graph neural networks (GNN) 

[81], language models [82] or deep generative models [80] (Figure 1.2F). Proteins are the perfect 

examples of graph representation with the amino acids being the nodes, and their spatial relationship 

(bonded or not) being the edges. Thus, a subset of GNN called message passing neural networks 

(MPNN) [83], such as ProteinMPNN [37], were developed to (re)design a protein sequence given a 

defined backbone and proved to be successful in bringing highly stable molecules [84,85].   

As opposed to being represented as a graph, proteins can be considered as “words” built from an 

“alphabet” of 20 amino acids. As for conversational language models generating full sentences or filling 

missing words, protein language model were trained to generate full-length protein sequences [86] or 

filling the gap of a partial sequence (also known as “inpainting”) [87]. Finally, deep generative models 

take advantage of probability distribution to generate novel data and, notably, variational autoencoders 

(VAE) [88,89], generative adversarial neural networks (GAN) [90,91] and diffusion models [38,92–94], 

which are the most popular frameworks to generate novel molecules. Diffusion models, such as 

RFdiffusion [38], are gaining more and more popularity due to their ability to generate protein 

backbones out of a random noise distribution by following a denoising process. However, this approach 

is still in its early stages, and many diffusion tools do not currently integrate side chain prediction or 

lack all necessary experimental validations [80]. To sum up, significant advancements have been made 

in the field of computational protein design over the last two decades, but a new era driven by deep 

learning tools is set to further evolve in the upcoming years.  

1.3 Computational design of novel protein-protein interactions  

As discussed previously, multiple biological processes involve an interaction between a protein and another 

protein, a process called protein-protein interaction (PPI). Due to their wide implication in our cell but also 

in multiple disease progression, PPIs became a target of choice for designing novel protein-based 

therapeutics such as monoclonal antibodies for example. However, with the advances in terms of 

computational protein design, innovative methods have been proposed for designing novel protein-protein 

interactions that can serve as protein-based therapeutics or biotechnology tools for synthetic biology.  

This section is adapted from a review published in Current Opinion in Structural Biology in 2022 (doi: 

10.1016/j.sbi.2022.102370), as allowed by the publisher. 
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1.3.1 Abstract 

Protein-protein interactions (PPIs) govern numerous cellular functions in terms of signaling, transport, 

defense and many others. Designing novel PPIs poses a fundamental challenge to our understanding 

of molecular interactions. The capability to robustly engineer PPIs has immense potential for the 

development of novel synthetic biology tools and protein-based therapeutics. Over the last decades, 

many efforts in this area have relied purely on experimental approaches, but more recently, 

computational protein design has made important contributions. Template-based approaches utilize 

known PPIs and transplant the critical residues onto heterologous scaffolds. De novo design instead 

uses computational methods to generate novel binding motifs, allowing for a broader scope of the sites 

engaged in protein targets. Here, we review successful design cases, giving an overview of the 

methodological approaches used for templated and de novo PPI design. 

1.3.2 Introduction 

Proteins are among the most ubiquitous molecules of life and are likely the most versatile in terms of 

function, biophysical properties, and diversity. They perform primordial functions for cell signaling, 

structure, transport, catalysis, regulation, and defense, among others. Many fundamental protein 

functions involve association with other proteins, referred to as protein-protein interactions (PPIs) [16]. 

Native PPIs are involved in most cellular functions and their binding affinities span several orders of 

magnitude, with dissociation constants commonly ranging from picomolar to micromolar [95]. 

PPIs are involved in cell homeostasis processes that, if disrupted, can lead to numerous disease 

progressions, either pathogenic, degenerative or cancer-related [9]. Of the more than 645,000 disease-

relevant PPIs, few have been successfully targeted by drugs [12]. A wide majority remain “undruggable” 

mainly due to featureless interfaces that lack defined binding pockets for small molecules [12]. In 

addition to studying PPIs as a source of potential druggable targets, PPIs are at the core of novel 

biotechnology tools such as protein-based therapeutics [13,96], cell therapies [97–99], bio-sensors 

[100–102], vaccine candidates [71,103,104] and other synthetic biology applications [105–108] (Figure 

1.3A). 

Similar to protein folding processes, protein association is driven by energy minimization. This process 

has several driving forces, including Van der Waals interactions, hydrophobicity, and electrostatic 

steering (also called long-range electrostatics) [109]. Hydrogen bonds and salt bridges stabilize the 
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interaction and improve specificity [18,19,110]. The geometry of the molecular surface [20], with both 

shape and chemical complementarity of the interacting partners, plays a critical role for protein 

association [21] (Figure 1.3B).  

In order to engineer novel PPIs, approaches such as in vitro evolution have been extensively used in the 

past decades [111–113]. However, one of the most important limitations of in vitro evolution is that it is 

“site agnostic,” meaning that it is impossible to predict with certainty where the evolved binder will 

target the protein of interest. For the biological function of the binder, this is an important challenge 

that computational approaches attempt to solve. With the rise of computational methodologies 

numerous bioinformatics tools to predict, design, and engineer protein structures have been developed 

to address the limitations of the in vitro maturation techniques [31,39,114]. 

In this review, we will highlight successful design cases and discuss challenges in the computational 

design of PPIs. We group computational PPI design strategies in two categories: I) template-based design 

and II) de novo design. The first approach consists of transplanting a motif that mediates an existing PPI 

interface onto a new protein scaffold [115]. Despite its robustness and relatively high success rate, this 

strategy constrains PPI design to existing interfaces and precludes the possibility of targeting new sites. 

To explore a broader landscape of solutions, de novo design strategies aim to create completely new 

interactions starting from only the structure of the target protein[115]. However, engineering PPIs from 

scratch remains a non-trivial task requiring a detailed understanding of biomolecular interactions and 

stands as a stringent test of our understanding of the driving forces of PPIs.  

1.3.3 Template-based design of protein-protein interactions 

The template-based approach consists of transplanting the binding motif of an existing PPI into a new 

structural context (Figure 1.4). The motif is grafted onto a protein scaffold by sidechain grafting (i.e., 

backbone mimicry and then sidechain replacement) or backbone grafting (i.e., full motif 

transplantation including sidechains and backbone). Alternatively, a de novo protein scaffold can be 

built around the binding motif.  

One of the first cases of successful computational sidechain grafting design dates from the early 2000s by 

Liu and colleagues [116]. The Protein Data Bank (PDB) [117] was searched for scaffolds that contained 

three residues satisfying the geometric relationships of the Cα–Cβ vectors of the three key residues of EPO 

required for binding to the receptor EPOR. Grafting only these three residues onto an appropriate scaffold 

resulted in a binder with 24 nM affinity to EPOR, highlighting the crucial contribution of hotspot residues 

in PPIs [118]. Several years later, a similar strategy [104,119] used backbone similarity searches to find 

host protein scaffolds onto which continuous viral epitopes were transplanted. To address higher 

structural epitopes, this approach was extended to transplant discontinuous backbone segments of a viral 

epitope [120]. In both cases, the epitope transplantation gave binding affinities to the antibody in the 

nanomolar range and high structural agreement to the original epitope.  
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Figure	1.3	:	Overview	of	potential	applications	for	novel	PPIs	and	molecular	features	that	drive	protein	
association.	A.	Protein-protein interactions (PPI) have numerous applications for vaccine design, protein-based therapeutics (e.g. antibodies, inhibitors, etc.), cell-based therapies (e.g. CAR-T), bio-sensors (e.g. diagnostics), or as synthetic biology tools (e.g. ON/OFF-switch) B. Different structural features that can be designed by computational methods are necessary to engineer a strong PPI. These include good shape complementarity, hydrophobic patches, hydrogen bonds, and long-range electrostatic interactions (electrostatic steering) that stabilize the interaction and improve specificity.	 
 

 

 

 

 

 

 

Table	1.1	:	Key	terms	in	the	field	of	de	novo	PPI	design. 
Term Definition 

Binding motif Continuous or discontinuous structural segments of amino acids that 
encompass the interface in a protein-protein interaction. 

Hotspot Key residues that have a large energetic contribution for the affinity of the 
protein-protein interaction.  

One-sided design Approach where the binder is designed and the target remains constant.  

Two-sided design Approach where both interfaces involved in the protein complex are designed. 

Scaffold protein Heterologous protein used as a recipient for the grafting of hotspot residues 
and/or binding motif(s). 

De novo scaffold 
protein 

Protein scaffolds that have been designed using computational approaches that 
model protein backbones and find the best sequences to stabilize the fold.  

De novo PPI design Design of novel protein-protein interactions without using explicit information 
of binding motifs used in native protein complexes.  
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Sidechain grafting has been successfully used to transplant helical motifs onto de novo designed 

scaffolds. Successful examples include the design of candidate protein-based inhibitors against 

influenza haemagglutinin (HA) and botulinum neurotoxin B (BoNT/B), using known HA binders or 

natural BoNT/B target respectively as a helical template motif for subsequent grafting on de novo 

miniprotein scaffolds [77]. Future research efforts in protein-based therapeutics will benefit from the 

generation of highly stable de novo scaffolds presenting functional motifs.  

Recently, the sidechain grafting approach for PPI engineering demonstrated useful applications for 

synthetic biology and the design of small molecule-controlled switches. The underlying principle 

consists of repurposing an existing PPI that can be targeted by a known small molecule to control its 

dissociation. Giordano-Attianese and colleagues [97] repurposed the binding of BH3-motif to Bcl-XL 

by grafting the sidechains onto a globular scaffold protein. This led to a 3.9 pM affinity for Bcl-XL and 

created a protein switch controlled by a Bcl-XL inhibitor. The novel switch was incorporated into the 

chimeric antigen receptor (CAR) of T cells and was shown to turn off killing activity upon the addition 

of the small molecule. Work by Shui and colleagues has extended the logical behavior of this system 

creating a multidomain architecture that, upon the addition of a small molecule, triggers the 

association of the two protein subunits [105]. These applications demonstrate promising applications 

for translational research in the domain of cell engineering. 

Motif grafting by sidechain replacement faces limitations when the motif is too complex to find a 

structurally compatible protein scaffold. Grafting approaches have been described where both sidechains 

and backbone are grafted onto protein scaffolds. Azoitei and colleagues designed epitope-scaffolds by 

selecting scaffolds based on N- and C- termini alignments to identify sites in proteins where the motif was 

grafted and the connection regions were further refined and designed [121]. Such strategy was also 

successfully utilized to transplant a complex binding site from an HIV epitope, composed of two 

discontinuous segments that were required to present a precise three-dimensional structure to mediate 

productive binding to the antibody B12 [122]. The two segments of the epitope were grafted in a stepwise 

fashion and multiple rounds of in vitro evolution were performed to optimize the binding affinity of the 

designed scaffold, highlighting the difficulty of grafting complex sites onto protein scaffolds.   

To address more complex epitopes, the Fold From Loops (FFL) protocol was proposed as an alternative 

by folding de novo scaffold proteins to stabilize the binding motif of interest [103]. The FFL approach 

was first used to embed a viral epitope from RSV onto a de novo folded and designed three-helix bundle 

protein. Several of the designs bound with picomolar affinities to a site-specific monoclonal antibody 

and the designs showed, for the first time, the ability to elicit neutralizing antibodies in non-human 

primates. Further, the FFL protocol was utilized by Procko et al to design a protein inhibitor against an 

Epstein Barr-Viral (EBV) Bcl2-homolog called BHRF1 [123]. Extensive in vitro maturation was 

necessary to stabilize and improve the affinity to BHRF1 and the success rate of functional designs was 

rather low. The FFL methodology was also used by Bryan et al [124] to develop small, ultra-stable mini-

protein scaffolds designed around a five amino acid stretch of PDL-2, one of the native binding partners 

of PD-1, resulting in a 100 nM binder for PD-1. 



Chapter 1  Introduction 

13 
 

Two main shortcomings of the FFL protocol came to light: I) the lack of compatibility for multiple 

discontinuous motifs; II) the incorporation of the binding partner during the folding-design 

simulations for the optimization of additional contacts and as a constraint for the sampling the 

conformational/sequence space. Bonet et al improved FFL, by developing a Rosetta framework called 

FunFolDes, which addressed these drawbacks [125]. This novel approach successfully functionalized 

“functionless” folds by incorporating the Respiratory Syncytial Virus protein F (RSVF) site IV on a de 

novo protein called TOP7. Another intrinsic limitation of the FFL approach was its reliance on existing 

structures, either native or de novo designed. To circumvent this drawback, Sesterhenn and colleagues 

proposed the TopoBuilder, a protocol for the assembly of de novo topologies conditioned to the 

structure of the motif of interest [71]. Upon the assembly of the topologies with the embedded 

functional/binding motif, the FunFolDes folding and design protocol is used for sequence generation. 

This work contributed to the development of different candidate vaccine immunogens that elicited 

neutralizing antibodies against specific viral epitopes and created a series of functional molecules that 

were used for different synthetic biology applications [70,71]. Other methods of grafting hotspots to de 

novo scaffolds led to rapid design of a nanomolar SARS-CoV-2 binder that neutralized SARS-CoV-2 

[126] and the use of de novo peptides as a scaffold for PPI disruptors [127]. These methods highlight the 

potential uses for de novo scaffolds, albeit dependent on known interactions. 

Overall, these methods allow for PPI design with various levels of complexity, however, they are limited 

to known binding interactions. To broaden the landscape of targetable protein interfaces, de novo 

approaches to generate motifs that can mediate novel PPIs is needed. 

1.3.4 De novo design of protein-protein interactions 

In the context of this review, de novo strategies for the design of protein interactions rely only on the 

structural information of the target, which we generally refer to as one-sided design. De novo design 

strategies are subdivided in: I) dock-&-optimize; II) hotspot-centric approaches [115] (Figure 1.5). The 

dock-&-optimize approach consists of two stages. First, hundreds of protein scaffolds are 

computationally docked on the target protein to find configurations with favorable shape 

complementarities. Second, interface residues of the best candidates are computationally designed to 

improve the binding propensity. Alternatively, the hotspot-centric approach first requires the 

placement of a few clustered hotspot residues before grafting onto a suitable scaffold protein that will 

be further refined [128]. 

One of the early publications [129] in this field introduced a Rosetta-based protocol, called DDMI 

(Docking, Design, Minimization and Interface), following the dock-&-optimize approach. The DDMI 

protocol is a two-step approach which uses rigid-body docking to find a suitable orientation for the 

partner scaffold and then iterates between sequence design and energy minimization to settle the 

interface to the lowest energy state. Their best candidate, named “Spider Roll,” used a single pre-

selected scaffold to target the kinase domain of p21-activated kinase 1 (PAK1), and showed only weak  
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Figure	1.4	:	PPI	design	methods	using	the	template-based	approach. The template-based approach can be subdivided (from lowest to highest complexity) in I) side-chain grafting, II) backbone grafting, or III) use of a tailored de	novo	scaffold. Side-chain grafting transplants binding motifs from an existing PPI onto a heterologous scaffold that stabilizes the interaction between these side-chains and the binding target. In backbone grafting the transplantation involves the full backbone and side chains of the binding motif involved in a PPI onto a heterologous scaffold. Backbone grafting often poses the difficulty of modeling realistic backbones and finding suitable stabilizing sequences in the connecting segments between the grafted motif and the scaffold. Finally, in a more tailored approach, a de	 novo	 scaffold could be built around the motif of interest by specifying the arrangement of secondary structure elements to generate a three-dimensional topology. 
affinity (KD ≈ 100 μM). This study and others using a dock-&-optimize approach [130,131] were strong 

demonstrations that more accurate energy force fields are needed, as well as larger pools of scaffold 

candidates and, due to all these limitations, in vitro evolution techniques may be required to further 

optimize the putative binders. 

In an alternative route, hotspot-centric approaches were proposed. Fleishmann and colleagues were 

the first to implement a hotspot-centric method to target a conserved surface site on the stem of the 

influenza hemagglutinin (HA) [132]. The design approach consisted of docking disembodied residues, 

selecting suitable scaffolds, and refining the interface with RosettaDesign [66]. Out of 73 designs 

screened by yeast display, 2 showed binding to HA including one with an apparent affinity of 200 nM. 

Two rounds of affinity maturation were performed, providing insight into the sub-optimal features of 

the designed protein: I) void volumes at the interface should be minimized and backbone minimization 

can facilitate the choice of suitable residues; II) complementary electrostatic charges which remain 

outside of the hydrogen-bond range (~3 Å) should not be underestimated; III) the energetic cost for the 

desolvation of charged residues in close contact with non-polar amino acids should not be neglected. 

In conclusion, the hotspot-centric strategy yielded a higher affinity binder than the dock-&-optimize 

approach, noting the fact that these were optimized by in vitro evolution.  
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Later on, Procko et al [130] targeted the hen egg lysozyme (HEL) using the same approach with two 

polar hotspot residues. Scaffold candidates were docked, refined, and selected to satisfy both the 

disembodied hotspot residues and the complementarity for the target. Out of 21 designs, one showed 

a modest affinity of 7 μM and required two rounds of directed evolution and four mutations to obtain a 

final affinity of 8 nM. This experiment, as the previous one, had to rely partially on known interacting 

residues, as well as in vitro maturation techniques to improve binders to an acceptable affinity, 

although requiring only a few mutations. Despite these promising results, both studies showed that 

hotspot residue placement was a promising approach, however the need for in vitro optimization and 

the low success rates support that improved energy functions and methods are still necessary.  

Recently, computational tools such as the rotamer interaction field (RIF) docking have been proposed 

to search for de novo hotspots for PPI and protein-ligand design without prior knowledge. Briefly, 

billions of disembodied residue conformations are docked on the target interface with the aim of 

introducing hydrogen bonds and hydrophobic packing interaction to create an energetically favorable 

interface. All RIF rotamers are stored and can be rapidly sampled for scaffold matching using a docking 

grid-based search algorithm [133]. RIF docking and a miniprotein scaffold library were used for the 

rapid generation of protein-based therapeutics against SARS-CoV-2 spike protein, with de novo designs 

having affinity lower than 1 nM after in vitro evolution optimization [78].  

Ultimately, with the same strategy, the same group was also able to generalize the hotspot-centric 

approach proposed by Fleishman and colleagues [132] by generating at least one binder for 12 different 

target proteins [134]. These publications were among the first to demonstrate complete de novo hotspot 

generation for PPI engineering. Intriguingly, most binders designed so far rely on helical structures, 

limiting the landscape of binding motifs available for PPI designs, especially when working with 

disembodied residues. This approach still seems dependent on a large library screening (15’000-

100’000 designs per target), although it undoubtedly pushed the frontier in de novo PPI design. 

1.3.5 Challenges and perspectives 

The methodology for designing novel PPIs has evolved rapidly in the past years. Templated design 

approaches take advantage of known binding partners and transplant either the sidechains of hotspot 

residues or the backbone and sidechains of the region of interest. Although this method is reliable and 

has led to the design of many successful binders, it is limited by relying on known binding partners. De 

novo design does not rely on such interactions and is a more difficult problem that poses a rigorous test 

to our understanding of the principles that drive protein-protein interactions. Recently, RIFDock has 

allowed for de novo hotspots to be predicted without prior knowledge of binding partners and from 

these hotspots, high affinity binders have been developed.   

Despite these successes, there are still challenges that need to be addressed. There is a low success rate 

for de novo designs, and the designs that are successful often need rounds of in vitro evolution to 

improve the affinity. One plausible explanation could be the lack of proper energy functions to capture 
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Figure	1.5	:	PPI	design	methods	using	the	de	novo	approach. The	de	novo design approach consists of two alternative strategies: I) Dock-&-optimize or II) Hotspot-centric approach. The first is a two-step method that combines the docking of putative scaffolds and then an interface optimization aiming to minimize the binding energy between the target and the most appropriate scaffold. In the second method, hotspot residues are searched, placed on the interface of interest, and then grafted on a scaffold which is suitable for both side-chain orientations and target interface. In both methodologies, a final selection based on different metrics (binding energy, contact area, hydrogen bonds, etc.) is needed to reduce the pool of designs to be tested.  
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long-range interactions and the effect of water molecules. A study also found that poorly designed 

buried hydrogen bonds account for most of the failure in de novo PPI attempts [135]. Computational 

tools aiming to design broad hydrogen bond networks, such as HBnet [136], or the introduction of score 

penalty for buried unsatisfied polar atoms [137] may help future de novo design pipelines to tackle 

challenging polar interfaces. Additionally, more work must be done to extend these methods beyond 

helical motifs. Although helical binders can be successful, opening this strategy to more than one 

secondary structure would further increase the breadth of structural space that could be covered. 

Finally, it seems an emergent theme that most of the de novo PPI designs target known PPI interfaces, 

leaving unsolved challenges in targeting arbitrary target sites that may have low interface forming 

propensity. Despite these challenges, new tools for protein engineers are being developed that can 

address these difficulties. Newly introduced machine learning based software such as MaSIF [138] 

allows protein engineers to predict novel binding sites and possible binding partners. The introduction 

of Alphafold [31] and RoseTTAFold [32] allows for the prediction of three-dimensional protein 

structures with just the amino acid sequence. These tools and others will assist protein engineers in 

further studies. Despite the difficulty of understanding and accurately designing novel PPIs, the 

number of computational methods available is expanding steadily and will undoubtedly lead to a 

higher success rates and benefit to translational research with biomedical applications. 

1.4 Geometric deep learning for the study of protein surfaces 

As explained in chapter 1.1, the mapping of the protein interactome predominantly relied on 

experimental methods or computational prediction using prior knowledge, mostly by structural or 

sequence similarities.  Nevertheless, complicated complexes or protein lacking known homologs remain 

challenging. But three parameters made new computational approaches possible: i) the computational 

power capabilities, ii) the amount of data available, and iii) the algorithmic innovations [139]. As said 

previously, computational power has been doubling every two years, reaching computational potential 

that was previously unattainable [27]. Thanks to the experimental work done over the last decades, a 

myriad of data has been generated and can be used to train new algorithm. For instance, the number of 

entries in the Protein Data Bank (PDB) exceeded 210’000 at the end of 2023, which represent a 3-fold 

progression compared to ten years ago [117]. Finally, the promotion of open source tools and the 

contribution of the research field made new training algorithms available. Among them, geometric deep 

learning emerged as a resource to learn and predict the features of various surfaces, including protein. 

Geometric deep learning takes advantage of neural networks in high-dimensional non-Euclidean spaces, 

such as protein surfaces which involve 3D-surface and chemical characteristics [140]. 

With this novel approach in hands, Gainza et al proposed a geometric deep learning framework called 

MaSIF (Molecular Surface Interaction Fingerprinting) with the aim to capture the crucial determinants 

of biomolecular interaction. Unlike previous tools that rely on an atomistic representation, MaSIF mainly 

emphasizes a higher-level depiction of proteins, namely the molecular surface (Figure 1.6A). This 

representation, also known as the solvent-excluded surface, is derived by 'rolling' a water molecule probe 
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Figure	 1.6	 :	Overview	 of	 the	MaSIF	 framework	 and	 its	 applications.	A. A protein target of interest is represented as a molecular surface representation where different geometrical and chemical features are computed. The vectorization of these surface features in a so-called “descriptor” is comparable to a “fingerprint” that can be learned for different type of predictions. B. The molecular surface of the protein of interest is divided in overlapping patches with a geodesic radius of 12A. The patches are then described with several geometrical and chemical features mapped in space with geodesic polar coordinates. A learnable Gaussian kernels locally average the vertex-wise patch features and a convolutional neural network (CNN) is applied to produce the surface descriptors (fingerprint) that can be used for different applications. C. MaSIF-site is an application than predict the interface propensity over the protein surface. MaSIF-search is an ultrafast search algorithm to search and dock protein partners together.  
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over the protein atoms [20,141]. It notably constitutes the area of significant relevance for most 

biomolecular interactions with other molecules. MaSIF precomputes various geometrical (shape and 

curvature) and chemical features (hydrophobicity, electrostatics and proton donors/acceptors) found on 

the protein molecular surface represented as a mesh. Rather than being considered as a single object, the 

protein molecular surface is divided in overlapping patches with a radius of 12Å, which corresponds to 

the average size of a PPI interface2. Each patch is then discretized in different vertices mapped with a 

geodesic polar coordinates and assigned with the corresponding geometric and chemical feature values.  

These vectorized features are often referred to as fingerprints or descriptors (Figure 1.6B).  

MaSIF’s descriptor were processed with convolutional neural networks (CNNs) [142] for specific tasks 

and notably for PPI site prediction (MaSIF-site) and for a fast search of protein partners (MaSIF-search) 

(Figure 1.6C). Overall, MaSIF has the advantage of not being based on neither evolutionary background 

nor an explicit protein sequence, but solely on the vectorized intrinsic features of the buried interface.  

Hence, we are in principle able to predict PPIs – and by extrapolation to design novel PPIs (see chapter 

3) – even on interfaces that lack prior knowledge and documentation. 

1.5 Objectives 

With the advances made in the field of computational protein design – but considering the challenges 

that remain in terms of validation and optimization – my thesis work is found at the interface between 

the computational and experimental domains. This project aims to take advantage of state-of-the art 

computational methods, but also to develop novel machine-learning based tools, to seek out novel 

biomolecular interactions with translational capabilities. Nevertheless, experimental validation and 

optimization will be performed to endorse the effectiveness of the computational approaches being 

developed and to further improve them.  

1.5.1 Aim I: Rationally designing chemically controlled protein therapeutics 

Numerous protein-based therapeutics, such as monoclonal antibodies or cytokines, have been 

developed over the last decades to successfully fight numerous diseases, notably cancer. However, most 

of these therapies are limited by their toxicities that triggers unwanted side effects and deleterious 

complications to the patients. Therefore, my thesis work will first aim to rationally design a switchable 

protein therapeutic by incorporating and optimizing a previously developed chemically-disruptable 

heterodimer using a clinically approved drug into a potent protein therapeutic system. While this 

approach has been effectively applied to the field of cell-based therapies, namely chimeric antigen 

receptor T (CAR-T) cells, I sought here to translate this switchable system into a soluble protein therapy 

with the help of physics-based computational methods to rationally improve the switchability in 

solution. The chapter 2 presented in this dissertation illustrates how this OFF-switch system led to the 

development of a more controllable and safer therapy. 

                                                            
2 See supplementary Fig S3.2 in chapter 3 



Chapter 1  Introduction 

20 
 

1.5.2 Aim II: Designing de novo protein interactions using learned surface fingerprinting 

Despite the major breakthrough made in the field of protein-protein interaction (PPI) prediction and 

design, numerous challenges remained. A majority of the methodologies suggested thus far 

repurposed pre-existing PPIs, relied on prior interface knowledge or used physics-based methods with 

low energetic resolution as exemplified previously in chapter 1. Designing novel binders for defined 

protein targets – and especially those with no prior knowledge – requires two pieces of information: 

i) the site with the highest propensity to form an interface, and ii) the optimal motif to bind to this 

interface. With this rational, my colleagues and I sought to adapt MaSIF, a geometric deep-learning 

framework for PPI prediction (see chapter 1.4), for the design of site-specific de novo protein 

interactions. As shown in chapter 3, we hypothesized that protein fragments that show geometrical and 

chemical complementarity to a defined patch on a protein target of interest constitute the best 

candidates to design novel protein binders. By using MaSIF to predict sites with the highest interface 

propensity, and by leveraging the vectorized geometrical and chemical features of this patch (also 

known as “fingerprint”) to search for complementary binding seeds, we successfully designed and 

validated several binders for proteins of major therapeutic interest. 

1.5.3 Aim III: Targeting protein-ligand neosurfaces using a generalizable deep learning 
approach 

While a wide choice of chemically-disruptable heterodimer (CDH) systems serving as OFF-switches 

have been proposed, the number of examples of chemically-induced dimerization (CID) systems 

serving as ON-switches remains limited. Most CID systems proposed thus far have been obtained by 

experimental methods or through an extensive in vitro evolution. On the other hand, only a limited 

number of algorithms are accounting for both proteins and small molecules for the purpose of protein 

design, creating a gap in the design process of novel chemically-induced PPIs. In this last aim, 

presented in chapter 4, we hypothesized that a small molecule-bound interface constitutes a hybrid 

neosurface with a unique signature that does not exist in the unbound state. We therefore sought to 

expand and generalize the surface fingerprinting approach, developed in chapter 3, to account for the 

presence of small molecules in order to design drug-bound specific protein interactions. Thus, we can 

explore new application capabilities including biosensors, logic gates, and various other biotechnology 

tools.  

Altogether, this work presents a combination of classical and cutting-edge computational tools for the 

design of protein interactions with a potential development of innovative therapies and biotechnology 

tools. Together with this aim, this project will lead to some conclusions for a better understanding of 

computational PPI design.  
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Chapter	2 	
Rational design of chemically controlled protein therapeutics 

 

 
s explained previously in this work, recent advances in terms of computational protein design 

allowed the emergence of tools in order to repurpose existing protein interactions (template-

based approach) or to design completely novel ones (de novo approach). Template-based 

approaches such as side chain grafting have been performed over the last decade with numerous 

successful examples. The main advantage relies on the absence of extensive hotspot search and scaffold 

design, as hotspots come from a known protein interface and are grafted on an existing scaffold 

originating from a structural database. In this chapter, we will present an example of template-based 

approach that has been previously proposed for a switchable CAR T cell therapy and has been 

optimized and adapted for different switchable protein therapeutics in solution, including antibodies.  

This section is adapted from an article published in ACS Chemical Biology in 2023 (doi: 

10.1021/acschembio.3c00012), as allowed by the publisher (License CC-BY 4.0). 
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2.1 Abstract 

Protein-based therapeutics such as monoclonal antibodies and cytokines are important therapies in 

various pathophysiological conditions such as oncology, auto-immune disorders, and viral infections. 

However, the wide application of such protein therapeutics is often hindered by dose-limiting toxicities 

and adverse effects, namely cytokine storm syndrome, organ failure and others. Therefore, 

spatiotemporal control of the activities of these proteins is crucial to further expand their application. 

Here, we report the design and application of small molecule-controlled switchable protein therapeutics 

by taking advantage of a previously engineered OFF-switch system. We used Rosetta modeling suite to 

computationally optimize the affinity between B-cell lymphoma 2 (Bcl-2) protein and a previously 

developed computationally designed protein partner (LD3) to obtain a fast and efficient heterodimer 

disruption upon addition of a competing drug (Venetoclax). The incorporation of the engineered OFF-

switch system into anti-CTLA4, anti-HER2 antibodies or an Fc-fused IL-15 cytokine demonstrated an 

efficient disruption in vitro, as well as fast clearance in vivo upon addition of the competing drug 

Venetoclax. These results provide a proof-of-concept for the rational design of controllable biologics by 

introducing a drug-induced OFF-switch into existing protein-based therapeutics. 

2.2 Main text 

Protein-based therapeutics, such as monoclonal antibodies (mAbs) and cytokines, have shown to 

mediate potent antitumor effects and are the fastest growing group of therapeutics [143,144]. 

Nevertheless, their therapeutic use is limited by systemic toxicities arising from excessive immune and 

inflammatory responses, and by off-target effects [145,146]. Innovative engineering strategies have 

been applied to increase safety through localized activity of the therapeutic [147–149] or drug-induced 

ON-switch system  [150]. However, none of these approaches allows the direct OFF-switch control of 

the therapeutics’ activity with an external trigger that can be applied as desired. A system that allows 

the spatiotemporal control of biological activities upon administration of clinically-approved small 

molecules represents a promising strategy to increase protein therapeutics’ safety profile. Several prior 

studies focused on modulating  protein-protein interactions (PPIs) using small molecules to trigger 

either disruption or dimerization [151–155]. We previously reported a novel chemically-disruptable 

heterodimer composed (CDH) of a BH3-motif grafted and computationally improved protein (LD3) 

binding to B-cell lymphoma-extra large (Bcl-XL) or B-cell lymphoma 2 protein (Bcl-2) with high affinity 
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[97,105]. The heterodimers can be disrupted by A-1155463 and Venetoclax, respectively. However, this 

approach has never been used to control the activity of a soluble protein therapeutic. Here, we 

computationally optimized the interface of the CDH for enhanced drug sensitivity and faster 

disruption. We used the optimized CDH to disrupt the Fc region from a therapeutic protein to control 

its half-life. Our results demonstrate the potential of designed OFF-switches for generating biologics 

with enhanced safety and broader applications.  

To generate switchable antibodies (SwAbs), we placed the LD3:Bcl-2 complex, that can be disrupted by 

Venetoclax, between the epitope-binding region and the fragment crystallizable (Fc) region of the 

antibody (Figure 2.1A). Fc regions are crucial for antibodies as they provide important features such as: 

i) longer half-life in vivo  [156], ii) increased avidity effect due to the dimerization [157] and iii) an ability 

to trigger effector functions  [158]. We hypothesized that the addition of Venetoclax would compete for 

the LD3-binding site on Bcl-2 and trigger disruption between the two components. As a result, the 

epitope-binding domain would lose the advantages provided by the Fc-region, leading to an indirect 

OFF-switch of the biological activity. 

We first generated a switchable version of a published 𝛼 CTLA4 fragment antigen-binding region (Fab, 

Ipilimumab) [159], and tested the disruption efficiency by detecting the complex and monomeric 

components by size-exclusion chromatography combined with multi-angle light scattering (SEC-

MALS). However, Venetoclax did not trigger detectable SwAb disruption as monomeric components 

were not observed (Figure 2.1B, Supplementary table S2.1). Similar observations were obtained when 

replacing the therapeutic moiety fused to LD3 by an 𝛼 HER2 single-chain variable fragment (scFv) or a 

mouse interleukin-15 superagonist (IL15SA) (Supplementary Fig. S2.1). We therefore hypothesized 

that the low-nanomolar affinity of the LD3:Bcl-2 complex (Table 2.1) does not allow an efficient 

competition by the drug, most probably due to the slow dissociation rate (koff) that restricts the 

opportunity of the drug to displace the LD3 binder. With these considerations, we aimed to further 

engineer LD3 for reduced affinity for Bcl-2. We used the protein modeling framework Rosetta, to 

conduct a computational alanine-scan on all LD3 interface residues to highlight alanine mutants with 

increased computed binding energy (ΔΔG) (Figure 2.1C). All mutations to alanine increasing the ΔΔG 

by 2 Rosetta Energy Unit (R.E.U) were considered as potential LD3 variant candidates (v1 to v5), except 

for G137A which introduces a steric clash likely to be considerably deleterious for binding. 

The remaining five LD3 variants were expressed, purified and tested by surface plasmon resonance 

(SPR) for binding Bcl-2 compared to the original LD3 protein (Figure 2.1C-D, Table 2.1 & 

Supplementary Fig. S2.2). We sought to find variants with slightly decreased dissociation rate (koff) 

compared to the original LD3, but with unperturbed association rate (kon). Variants 2 (I136A) and 5 

(K144A) showed only minor differences to the original LD3, and were not further considered. Variant 3 

(D138A) had the highest destabilization effect, which is consistent with the high ΔΔG difference 

predicted by the alanine scan. Both variants 1 (L133A) and 4 (F140A) showed similar mild decreases in 

dissociation rates, however variant 4 had a less affected association rate and was therefore chosen as a 

lead candidate for the switchable antibody system. 
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Figure	 2.1	:	 Computational	 design	 and	 improvement	 of	 a	 switchable	 antibody	 system.	 A. Schematic representation of the switchable antibody system. A single-chain variable fragment (scFv) or fragment antigen-binding region (Fab) or interleukin (IL) is fused to a computational design (LD3) with high affinity to the Fc-fused Bcl-2. The addition of Venetoclax binds to the LD3-binding site on Bcl-2 and triggers disruption of the switchable antibody. B. SEC-MALS of an 𝛼 CTLA4 Fab fused to LD3 (Ipi-LD3, gray dashed line), a Fc-fused Bcl-2 (blue dashed line), the switchable antibody complex (pink, left part) and the switchable antibody complex incubated with Venetoclax (orange, right part). C. Computational alanine scan obtained with  Rosetta. Mutations to alanine giving an increase of the computed binding energy (∆∆G) of at least two Rosetta Energy Unit (R.E.U.) were considered as variant candidates (Orange bars). G137A mutation was not considered (Gray bar). D. Surface plasmon resonance (SPR) with Bcl-2 binding to different immobilized LD3-variants (v1 to v5). Measurements are indicated in red and fit curves in black. Highest concentration of Bcl-2 starts at 2000 nM for LD3 variant 1, 3 and 4, and starts at 500 nM for original LD3, variant 2 and 5. A 2-fold dilution factor was then applied between each concentration. 
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Table	2.1	:	Summary	table	of	the	affinities	surface	plasmon	resonance	data	of	the	different	LD3	variants. Data was collected using SPR showing the association rate (kon), dissociation rate (koff) and dissociation constant (KD) of the original LD3 and the different variants obtained by computational alanine scanning. Data represent mean ± standard deviation from three independent experiments. 
 

LD3 

(Original) 
LD3_v1 LD3_v2 LD3_v3 LD3_v4 LD3_v5 

kon [104M-1s-1] 29.1 ± 2.7 4.08 ± 0.34 36.0 ± 3.15 15.4 ± 0.26 24.0 ± 2.12 45.5 ± 3.70 

koff [10-4s-1] 1.23 ± 0.65 26.3 ± 7.75 0.89 ± 0.44 184 ± 30.4 19.7 ± 5.45 0.66 ± 0.67 

KD [nM] 1.40 ± 0.86 65.8 ± 25.1 0.74 ± 0.28 358 ± 55.8 27.3 ± 15.9 0.46 ± 0.41 

We used LD3 variant 4 (LD3_v4) to generate an improved version of the switchable Ipilimumab-based 𝛼 CTLA4 antibody by fusing the Ipilimumab Fab to LD3_v4. After complex formation with Bcl2-Fc, we 

assessed the switchability using SEC-MALS as described above. While only 3% (muncomplex/mtotal) of the 

switchable antibodies were disrupted on SEC-MALS upon Venetoclax treatment with the original LD3 

protein, more than 90% of the complex efficiently disrupted with LD3_v4 (Figure 2.2A, Supplementary 

Table S2.1). Similarly, we noticed comparable results with the 𝛼 HER2 and IL-15SA switchable 

therapeutics, demonstrating the modularity of the system (Supplementary Fig. S2.3). We evaluated 

disruption kinetics by biolayer interferometry (BLI) and detected 30% disruption at the highest tested 

concentration of Venetoclax (10 𝜇 M) after 200 seconds (Supplementary Fig. 2.2B). During that time, 

the switchable antibody complex remained stable in solution without addition of Venetoclax.  

To confirm these results in a cell-based assay, we substituted the antigen-targeting domain of the SwAb 

with an 𝛼 HER2 scFv that allowed the labeling of HER2-expressing cells. We stained MC38-HER2 cells, 

a murine colon adenocarcinoma cell line stably expressing HER2, with the switchable 𝛼 HER2 antibody 

and treated the cells with or without Venetoclax (Figure 2.2C and Supplementary Fig. S2.4). One hour 

after adding Venetoclax, the Fc fragment detected on MC38 cell surface decreased by 2-fold. Among 

other possibilities, the reduced Venetoclax-induced antibody disruption might be explained by the 

avidity provided by the two Fabs binding simultaneously, which may reduce drug sensitivity. The 

switchable 𝛼 HER2 antibody showed similar binding to MC38-HER2 cells compared to a conventional 𝛼 HER2 antibody, which did not respond to Venetoclax, and no disruption was observed when using 

the original LD3 protein (Supplementary Fig. S2.4). Altogether, these results confirm the improved 

switchability of the engineered antibody. 
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Figure	2.2	:	Disruption	efficiency	of	a	switchable	antibody	with	LD3_v4.	A. SEC-MALS of a Bcl2-Fc alone (blue dashed line), an 𝛼 CTLA4 Fab (Ipilimumab) fused to LD3 variant 4 (gray dashed line) and the switchable antibody complex in absence (pink) and presence (orange) of 100 𝜇 M Venetoclax. B. Biolayer interferometry (BLI) measurements of the switchable anti-CTLA4 antibody with increasing concentration of Venetoclax. 
C. Quantification of the mean fluorescence intensity (MFI) measured on the surface of MC38 cells unlabeled or labeled with with a switchable or conventional 𝛼 Her2 antibody (Sw-𝛼 HER2 and 𝛼 HER2-Fc respectively) treated without or with 10 𝜇 M Venetoclax. Tukey's multiple comparisons test, p<0.01 (**), non-significant (ns). Data points represent technical replicates with mean and standard deviation.  
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Figure	 2.3	 :	 Functional	 assessment	 and	 in	 vivo	 studies	 using	 an	 Fc-fused	 switchable	 cytokine.		
A.	Schematic representation of the switchable interleukin system. In IL-15SA, the sushi domain of mouse IL-15R𝛼  is fused to mIL-15 binding a mousse Fc (left). In SwIL-15SA, the sushi domain of mouse IL-15R𝛼  is fused to the optimized LD3 binding to mouse Fc-fused Bcl-2 (right). B. Activated mouse T cell proliferation in response to IL-15SA or SwIL-15SA. C. C57BL/6 mice were first injected subcutaneously (s.c.) with Venetoclax (25.0 mg/kg) and subsequently injected intraperitoneally (i.p.) with 100 pmol SwIL-15SA. Mice were bled overtime after 0.5, 1, 2, 4, 8, 24, and 48 hours after treatment. D. Pharmacokinetic properties of SwIL-15SA composed of the IL-15/IL-15R complex fused to the original LD3 with (light green) or without (dark green) the administration of Venetoclax. E. Pharmacokinetic properties of SwIL-15SA composed of the IL-15/IL-15R complex fused to LD3_v4 with (light orange) or without (dark orange) the administration of Venetoclax. 	
We next tested the function of the engineered switchable proteins in vitro and in vivo by measuring cell 

proliferation and the half-life in mice blood. To do so, we extended the strategy to the generation of 

switchable cytokines. We chose mouse IL-15 superagonist (IL-15SA) and generated switchable IL-15SA 

(SwIL-15SA) by fusing IL-15 and the IL-15 receptor 𝛼  domain (IL-15R𝛼 ) to LD3 assembled with Bcl2-

Fc (Figure 2.3A).To assess the functionality of SwIL-15SA, we stimulated primary murine T cells ex vivo 

with either IL-15SA or SwIL-15SA and measured cell proliferation. Proliferation of murine primary T 

cells induced by SwIL-15SA was comparable to conventional IL-15SA, indicating that fusing LD3 to the 

sushi domain of IL-15R𝛼  did not hinder its functionality (Figure 2.3B).  

In a second step, we assessed the switchability of SwIL-15SA in vivo. C57BL/6 mice were first injected 

subcutaneously (s.c.) with or without Venetoclax and then intraperitoneally (i.p.) with SwIL15-SA 

containing the original LD3. Mice were bled overtime after treatment and IL-15/IL15R complex 

concentration was measured by enzyme-linked immunosorbent assay (ELISA) (Figure 2.3C). IL-15/IL-

15R complex concentration in blood of mice treated with Venetoclax peaked at 64% of the maximum 

IL-15/IL15R concentration of the control group, confirming that Venetoclax administration does not 

lead to the efficient disruption of the original LD3:Bcl-2 complex, as demonstrated in in vitro 

experiments (Figure 2.3D and Supplementary Fig. S2.5). To investigate whether the affinity of the Bcl-
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2:LD3 complex could provide a parameter to tune the switchability efficiency of the system, we further 

tested a variant of SwIL-15SA being composed of the IL-15 sushi domain fused to LD3_v4. Here, blood 

concentrations in control mice peaked at 1 hour after injection and then decreased overtime (Figure 

2.3E and Supplementary Fig. S2.5). Unlike the control group, in mice treated with Venetoclax the IL-

15/IL15R complex concentration reached only about 25% of the maximum IL-15/IL15R concentration 

of the control group. This observation suggests that the disruption efficiency and the half-life of the 

system can be tuned with the affinity of the Bcl-2:LD3 complex. Overall, these results show that 

Venetoclax disrupts the interaction between Bcl-2 and LD3, leading to the fast clearance of monomeric 

IL-15/IL-15R-LD3 in vivo. 

Altogether, we show a modular and generalizable OFF-switch approach for the design of safe antibody 

and cytokine therapeutics by introducing a chemically-disruptable heterodimer between the 

therapeutic domain and the Fc moiety. Loss of the Fc-fragment leads to a decrease of the avidity effect 

and a drastic reduction of the protein half-life. We took advantage of a previously designed CDH that 

can be competed by a clinically-approved drug, Venetoclax, which makes it a good candidate for 

translational applications. Of note, one strength of our system is its modularity with the ease to adapt it 

to several therapeutic proteins by exchanging the therapeutic domain fused to LD3. But the large size 

of the protein complex (of about ~250 kDa for a switchable antibody, compared to ~150 kDa for a 

normal antibody) may limit tissue penetration [160]. However, for highly toxic therapies, such as 

immunostimulatory therapies, these limitations would be outweighed by the improved safety profile. 

Our presented workflow to reduce heterodimer affinity to increase drug sensitivity can likely be readily 

extended to other examples of CDHs. These types of switchable biologics could serve as a basis for safer 

biologics for therapeutic use. 

2.3 Methods 

Computational design 

Previously solved crystal structure of Bcl-2 in complex with LD3 was used for computational modeling 

(PDB ID: 6IWB). Using the Rosetta modeling suite, the pose was relaxed with the “FastRelax” mover, 

before the computational alanine scan was performed using an “Alascan” filter. Residues where a 

mutation to alanine lead to an increase of the computed binding energy of >2 Rosetta energy units 

(R.E.U.) were considered as potential candidates to lower the affinity of LD3 for Bcl2. Mutations 

exceeding 5 R.E.U. were not considered due to the introduction of clashes that may abrogate binding. 

Protein expression and purification 

The engineered IL-15SA construct (gWIZ-mIL-15SA) was a gift from D. J. Irvine (MIT). IL-15SA contains 

a mouse IL-15 fused at the C terminus of Sushi domain of a mouse IL-15R𝛼 , which is next fused at the 

C terminus with a mouse IgG2c Fc. A previously optimized version of Bcl-2 [108] was fused to either 

human IgG or mouse IgG2 Fc-fragment (see Supplementary Table S2.2). Switchable antibodies were 

composed of either a previously published 𝛼 CTLA4 antibody Ipilimumab [159] as a Fab or an 𝛼 HER2 
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4D5 clone [161] as an scFv fused to LD3 protein N-terminal with a (GGGS)3-linker. As a switchable 

cytokine, we used a fusion protein composed of mouse IL-15 C-terminally fused to the IL-15 receptor 𝛼  domain (IL-15R𝛼 ), itself fused to the LD3 variant C-terminal with a (GGGS)3-linker. DNA sequences 

were ordered from Twist Bioscience and Gibson cloning used to clone into bacterial (pET11) or 

mammalian (pHLSec) expression vectors. Mammalian expressions were performed using the 

Expi293TM expression system from Thermo Fisher Scientific. Supernatant was collected 6 days post 

transfection, filtered, and purified. E. coli expressions were performed using BL21 (DE3) cells and IPTG 

induction (1 mM at OD 0.6-0.8) and growth overnight at 16-18° C. Pellets were lysed in lysis buffer (50 

mM Tris, pH 7.5, 500 mM NaCl, 5% Glycerol, 1 mg/ml lysozyme, 1 mM PMSF, and 1 μg/ml DNase) with 

sonication, the lysate clarified, and purified. Proteins were then purified using an ÄKTA pure system 

(GE healthcare) with Ni-NTA affinity columns followed by size exclusion chromatography with PBS. 

Surface plasmon resonance 

SPR measurements were performed on a Biacore 8K (GE Healthcare) with HBS-EP+ as running buffer 

(10 mM HEPES pH 7.4, 150 mM NaCl, 3 mM EDTA, 0.005% v/v Surfactant P20, GE Healthcare). Original 

LD3 and mutants were immobilized on a CM5 chip (GE Healthcare # 29104988) via amine coupling. 

500-1000 response units (RU) were immobilized and Bcl-2 was injected as an analyte in serial dilutions. 

The flow rate was 30 μl/min for a contact time of 120s followed by 400s dissociation time. After each 

injection, the surface was regenerated using 50 mM NaOH. SPR Data were fit with 1:1 Langmuir binding 

model within the Biacore 8K analysis software (GE Healthcare #29310604). 

Bio-layer interferometry (BLI) 

Measurements were performed on a Gator BLI system. The running buffer was PBS. Fc-tagged Bcl-2 

were diluted to 5 𝜇 g/mL and immobilized on the anti-human IgG tips for 80 seconds (1-2 nm 

immobilized). The loaded tips were then dipped into 500 nM LD3-fused Ipilimumab Fab (or PBS for 

the reference) for 80 seconds and then in different concentrations of Venetoclax (10, 3 and 0 𝜇 M) 

diluted in PBS for 210 seconds. Each measurement was subtracted with the reference (channel with 

Fc-fused Bcl2 immobilized, no associated LD3 and a corresponding concentration of Venetoclax 

diluted in PBS). 

Size exclusion chromatography multi-angle light scattering (SEC-MALS) 

Size exclusion chromatography with an online multi-angle light scattering device (miniDAWN TREOS, 

Wyatt) was used to determine the oligomeric state and molecular weight for the switchable antibodies 

in solution. Purified LD3-Fab and Bcl2-Fc proteins were mixed with a 2:1 molar ratio and incubated at 

room temperature for 5 min to form a complex. Assembled complexes received 100 𝜇 M Venetoclax or 

PBS and incubated 1h at 37°C. Final concentration was approximately 1 mg/ml in PBS (pH 7.4), and 

100 μl of the sample was injected into a Superdex 75 300/10 GL column (GE Healthcare) with a flow 

rate of 0.5 ml/min, and UV280 and light scattering signals were recorded. Molecular weight was 

determined using the ASTRA software (version 6.1, Wyatt). 
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In vitro cell binding assay 

100’000 HER2-transduced MC38 mouse colon cancer cells were collected in a tube. Purified HER2-

specific LD3-Fab and Bcl-2-Fc proteins were mixed at a 2:1 ratio and incubated at room temperature 

for 5 minutes to form a complex. MC38-HER2+ cells were then stained with 𝛼 HER2 SwAb at 

concentrations of 100 nM and incubated at 4 °C for 30 min. An Fc-fused 𝛼 HER2 (𝛼 HER2_Fc) was used 

as a positive control. Cells were washed twice with FACS buffer (PBS containing bovine serum albumin, 

0.2% (w/v)) and 10 μM Venetoclax was added to the cells and incubated at 37 °C for 1 hour. Following, 

cells were washed and stained with anti-human Fc antibody at 4 °C fr 30 min. Cells were then washed, 

stained with 4′,6-diamidino-2-phenylindole (DAPI; Sigma-Aldrich) and analyzed by FACS. 

T-cell proliferation assay 

Activated Pmel T cells were collected by centrifugation, re-suspended in mouse T-cell media and 

seeded at a density of 10’000 T cells/well in a 96-well flat bottom tissue culture plate. T cell growth was 

stimulated by addition of serial dilutions of IL-15SA or Sw-IL15SA to a total volume of 100 μL and 

cultured for 48 hours at 37 °C. On day 2, cells were collected, washed once with FACS buffer and stained 

with DAPI. Cell counts for each condition were quantified by FACS using the Attune NxT flow cytometer 

(Invitrogen/Thermo Fisher Scientific). 

Animal studies 

6-8 week-old female C57BL/6 mice were purchased from Charles River Laboratories and maintained 

in the animal core facility [Center of Phenogenomics (CPG)] of École Polytechnique Fédérale de 

Lausanne (EPFL). All experiments were conducted according to the Swiss Federal Veterinary Office 

guidelines and were approved by the Cantonal Veterinary Office. In evaluating the switchability 

potential of SwIL-15SA, C57BL/6 mice were injected subcutaneously with 100 μl Venetoclax dissolved 

at 25 mg/kg in a solution of saline and 2% dimethyl sulfoxide (DMSO). Following, the animals were 

injected intraperitoneally with 100 pmol of Sw-IL15SA in 100 μl and bled overtime at 0.5, 1, 2, 4, 8, 24, 

and 48 hours after treatment. IL-15/IL-15R complex concentration in blood was quantified using a 

commercial enzyme-linked immunosorbent assay (ELISA) kit following manufacturer’s instructions 

(Thermo Fisher Scientific, 88-7215-88). 

Acknowledgment 

We thank the EPFL animal facility (CPG), for their support for conducting animal experiments, and the 

flow cytometry core facility (FCCF) for their assistance. We also thank the high-performance computing 

facility at EFPL – SCITAS for the computational resources. 



Chapter 2  Rational design of chemically controlled protein therapeutics 

31 
 

2.4 Supplementary materials 

 

Supplementary	 Figure	 S	 2.1	 :	 Size	 exclusion	 chromatography	 of	 anti-HER2	 antibody	 and	 mouse	
interleukin	15	fused	to	the	original	LD3	protein. Size exclusion chromatography of an 𝛼 HER2 single-chain variable fragment (A) or a mouse interleukin 15 (B) fused to the original LD3. Plots show the switchable protein therapeutic complex in absence (pink) or in presence (orange) of Venetoclax, compared to the Bcl2-Fc (blue, dashed line) or original LD3-fused moiety alone (gray, dashed line)  



Chapter 2  Rational design of chemically controlled protein therapeutics 

32 
 

 
Supplementary	Figure	S	2.2	:	Kinetic	measurements	of	the	different	LD3	variants.	Association rates (kon) are shown with blue bars and dissociation rate (koff) with red bars. Dashed lines show the mean values for the original LD3 (LD3 Ori.) for comparison. Data points represent mean ± standard deviation from three independent experiments. 
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Supplementary	Figure	S	2.3	:	Size	exclusion	chromatography	of	𝛼 HER2	antibody	and	mouse	interleukin	
15	fused	to	the	LD3_v4	protein. Size exclusion chromatography of an 𝛼 HER2 single-chain variable fragment (A) or a mouse interleukin 15 superagonist (IL-15SA) (B) fused to LD3_v4. Plots show the switchable protein therapeutic complex in absence (pink) or in presence (orange) of Venetoclax, compared to the Bcl2-Fc (blue, dashed line) or LD3_v4-fused moiety alone (gray, dashed line) 
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Supplementary	Figure	S	2.4	 :	HER2-Overexpressing	cells	MC38	 labeling	and	controls.	A. Histogram of MC38 cells labeled with switchable 𝛼 Her2 antibody (Sw-𝛼 HER2) composed of LD3_v4 in presence or absence of venetoclax (Ven.), B. Histogram of MC38 cells labeled with switchable 𝛼 Her2 antibody (Sw-𝛼 HER2) or conventional 𝛼 Her2 antibody (𝛼 HER2-Fc). C. Histogram of MC38 cells labeled with conventional 𝛼 Her2 antibody (𝛼 HER2-Fc) in presence or absence of Venetoclax (Ven.) D. Histogram of MC38 cells labeled with switchable 𝛼 Her2 antibody (Sw-𝛼 HER2) composed of the original LD3 (ori.) in presence or absence of Venetoclax (Ven.)  
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Supplementary	Figure	S	2.5	:	In	vivo	studies	using	an	Fc-fused	switchable	cytokine	(Absolute	scale)	A. Pharmacokinetic properties of SwIL-15SA composed of the IL-15/IL-15R complex fused to the original LD3 with (light green) or without (dark green) the administration of Venetoclax. B. Pharmacokinetic properties of SwIL-15SA composed of the IL-15/IL-15R complex fused to LD3_v4 with (light orange) or without (dark orange) the administration of Venetoclax. Data points represent mean ± standard deviation from three biological replicates. 
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Supplementary	Table	S	2.1	:	Mass	fraction	of	the	different	SwAb	components	measured	by	the	SEC-MALS	
upon	Venetoclax	treatment. Switchable antibody/interleukin complexes were assembled in	vitro with either the original LD3 or the variant 4 (LD3_v4), treated with venetoclax, and analyzed by size-exclusion chromatography coupled to multi-angle light scattering (SEC-MALS). The mass fraction of the different peaks shown in figures 2.1B, 2.2A, S2.1 and S2.3 were measured. 

 

Mass fraction (%) 

Full complex 
Partial 

complex 
Bcl2-Fc 

LD3-fused 
moiety 

Ipilimumab 

Original LD3 97% N/D 3% N/D 

LD3_v4 9.6% N/D 36% 54.4% 

𝛼 HER2 

Original LD3 87.6% N/D 1.4% 11% 

LD3_v4 7% N/D 65.3% 27.7% 

IL-15/IL-15R 

Original LD3 62.1% 22.1% 5.2% 10.6% 

LD3_v4 N/D N/D 62.8% 37.2% 
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Supplementary	Table	S	2.2	:	Amino	acid	sequences	of	the	different	proteins	used.	A	stabilized version of Bcl2 fused to either human IgG1 (Bcl2-hmFc) or mouse IgG2 (Bcl2-mFc), a previously defined Bcl2-binding protein (LD3), an anti-CTLA4 Fab (Ipilimumab_H and Ipilimumab_L), a mouse interleukin 15 (mIL15), an anti-HER2 single chain fragment clone 4D5 (𝛼 HER2_scFv) and the same fused to an IgG (𝛼 HER2_Fc). 
Bcl2-hmFc 
 

AHAGRTGYDNREIVMKYIHYKLSQRGYEWDAGDDAEENRTEAPEGTESEVVHRALRDAGD
DFERRYRRDFAEMSSQLHLTPDTARQRFETVVEELFRDGVNWGRIVAFFEFGGVMCVESVN
REMSPLVDNIAEWMTEYLNRHLHTWIQDNGGWDAFVELYGPSMRGGGGSGTDKTHTCP
PCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAK
TKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYT
LPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTV
DKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGKHHHHHH 

Bcl2-mFc 

AHAGRTGYDNREIVMKYIHYKLSQRGYEWDAGDDAEENRTEAPEGTESEVVHRALRDAGD
DFERRYRRDFAEMSSQLHLTPDTARQRFETVVEELFRDGVNWGRIVAFFEFGGVMCVESVN
REMSPLVDNIAEWMTEYLNRHLHTWIQDNGGWDAFVELYGPSMRGGGGSEPRVPITQNP
CPPLKECPPCAAPDLLGGPSVFIFPPKIKDVLMISLSPMVTCVVVAVSEDDPDVQISWFVNN
VEVHTAQTQTHREDYNSTLRVVSALPIQHQDWMSGKEFKCKVNNRALPSPIEKTISKPRGP
VRAPQVYVLPPPAEEMTKKEFSLTCMITGFLPAEIAVDWTSNGRTEQNYKNTATVLDSDGSY
FMYSKLRVQKSTWERGSLFACSVVHEGLHNHLTTKTISRSLGKGTKHHHHHH 

LD3 
GQRWELALGRFLEYLSWVSTLSEQVQEELLSSQVTQELRALMDETMKELKAYKSELEEQLTP
VAEETRARLSKELQAAQARLGADMEDVRGRLVQYRGEVQAMLGQSTEELRVRLASHLIALQ
LRLIGDAFDLQKRLAVYQAGA 

Ipilimumab
_H 

QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYTMHWVRQAPGKGLEWVTFISYDGNNKYY
ADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAIYYCARTGWLGPFDYWGQGTLVTVSSAST
KGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLS
SVVTVPSSSLGTQTYICNVNHKPSNTKVDKRVEPKSC 

Ipilimumab
_L 

EIVLTQSPGTLSLSPGERATLSCRASQSVGSSYLAWYQQKPGQAPRLLIYGAFSRATGIPDRFS
GSGSGTDFTLTISRLEPEDFAVYYCQQYGSSPWTFGQGTKVEIKRTVAAPSVFIFPPSDEQLKS
GTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEK
HKVYACEVTHQGLSSPVTKSFNRGEC 

mIL15 

GTTCPPPVSIEHADIRVKNYSVNSRERYVCNSGFKRKAGTSTLIECVINKNTNVAHWTTPSLK
CIRDPSLAGGSGGSGGSGGSGGSGGSGGNWIDVRYDLEKIESLIQSIHIDTTLYTDSDFHPS
CKVTAMNCFLLELQVILHEYSNMTLNETVRNVLYLANSTLSSNKNVAESGCKECEELEEKTF
TEFLQSFIRIVQMFINTSHHHHHH 

𝛼 HER2_scF
v 

EVQLVESGGGLVQPGGSLRLSCAASGFNIKDTYIHWVRQAPGKGLEWVARIYPTNGYTRYA
DSVKGRFTISADTSKNTAYLQMNSLRAEDTAVYYCSRWGGDGFYAMDYWGQGTLVTVSSG
GGGSGGGGSGGGGSDIQMTQSPSSLSASVGDRVTITCRASQDVNTAVAWYQQKPGKAPKL
LIYSASFLYSGVPSRFSGSRSGTDFTLTISSLQPEDFATYYCQQHYTTPPTFGQGTKVEIK 

𝛼 HER2_Fc 

DYKDIVMTQSPSSLSASVGDRVTITCRASQDVNTAVAWYQQKPGKAPKLLIYSASFLYSGVPS
RFSGSRSGTDFTLTISSLQPEDFATYYCQQHYTTPPTFGQGTKVELKRATPSHNSHQVPSAG
GPTANSGEVKLVESGGGLVQPGGSLRLSCATSGFNIKDTYIHWVRQAPGKGLEWVARIYPT
NGYTRYADSVKGRFTISADTSKNTAYLQMNSLRAEDTAVYYCSRWGGDGFYAMDYWGQGT
TVTVSSTGVHSEPRVPITQNPCPPLKECPPCAAPDLLGGPSVFIFPPKIKDVLMISLSPMVTC
VVVAVSEDDPDVQISWFVNNVEVHTAQTQTHREDYNSTLRVVSALPIQHQDWMSGKEFKC
KVNNRALPSPIEKTISKPRGPVRAPQVYVLPPPAEEMTKKEFSLTCMITGFLPAEIAVDWTSN
GRTEQNYKNTATVLDSDGSYFMYSKLRVQKSTWERGSLFACSVVHEGLHNHLTTKTISRSL
GKASGSRSLLANKRSEL 
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emplate-based approaches, such as the one described before, have demonstrated numerous 

successful examples but remain limited to known protein interaction motifs. Emergent virus, 

hard-to-drug onco-targets and novel synthetic biology tools often require to target novel sites 

with no native protein partner reported, which justifies the need of de novo design approaches. 

However, targeting a protein surface without prior information rises two fundamental questions: i) 

which site should be targeted and ii) what motif can target this specific site. Thanks to the emergence 

of machine learning, new methods can now be leveraged for the study of protein surfaces and the 

design of novel protein interactions. In this chapter, we will repurpose a geometric deep learning 

framework called MaSIF (Molecular Surface Interaction Fingerprinting) which has initially been 

proposed for the prediction of protein interfaces and partners based solely on the molecular surface 

features. Here, MaSIF has been adapted for the design of site-specific novel protein interactions to 

provide de novo protein binders straight from a computer.  

This section is adapted from an article published in Nature in 2023 (doi: 10.1038/s41586-023-05993-x), 

as allowed by the publisher (License CC-BY 4.0). 
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3.1 Abstract 

Physical interactions between proteins are essential for most biological processes governing life [16]. 

However, the molecular determinants of such interactions have been challenging to understand, even 

as genomic, proteomic, and structural data grows. This knowledge gap has been a major obstacle for 

the comprehensive understanding of cellular protein-protein interaction (PPI) networks and for the de 

novo design of protein binders that are crucial for synthetic biology and translational applications 
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[71,132,162–167]. We exploit a geometric deep learning framework operating on protein surfaces that 

generates fingerprints to describe geometric and chemical features critical to drive PPIs [138]. We 

hypothesized these fingerprints capture the key aspects of molecular recognition that represent a new 

paradigm in the computational design of novel protein interactions. As a proof-of-principle, we 

computationally designed several de novo protein binders to engage four protein targets: SARS-CoV-2 

spike, PD-1, PD-L1, and CTLA-4. Several designs were experimentally optimized while others were 

purely generated in silico, reaching nanomolar affinity with structural and mutational characterization 

showing highly accurate predictions. Overall, our surface-centric approach captures the physical and 

chemical determinants of molecular recognition, enabling a novel approach for the de novo design of 

protein interactions and, more broadly, of artificial proteins with function. 

3.2 Introduction 

Designing novel protein-protein interactions (PPIs) remains a fundamental challenge in 

computational protein design, with broad basic and translational applications in biology. The challenge 

consists of generating amino acid sequences that engage a target site and form a quaternary complex 

with a given protein. This represents a stringent test of our understanding of the physicochemical 

determinants that drive biomolecular interactions [168]. Robust computational methods to design de 

novo PPIs could be used to rapidly engineer protein-based therapeutics such as antibodies and protein 

inhibitors or vaccines, among others, and therefore are of major interest for biomedical and 

translational applications [71,132,162–167].  

Despite recent advances in rational PPI design [132,162,166] and prediction [31], designing novel 

protein binders against specific targets is very challenging , particularly when no structural elements 

from preexisting binders are known. Current state-of-the-art methods for de novo PPI design 

[131,132,162,169], such as hotspot-centric approaches [132] and rotamer information fields [162,166], 

rely on placing disembodied residues on the target interface and then optimizing their presentation on 

a protein scaffold. Intrinsic limitations of these approaches relate to the very weak energetic signatures 

provided by scoring functions to single-side chain placements, which is compounded in flat interfaces 

that lack deep pockets. These methods also face the challenge of finding compatible protein scaffolds 

to precisely display the generated constellations of residues. To circumvent these limitations, new 

approaches are needed to design de novo binders to various surface types and protein sites.  

A long-standing model of molecular recognition postulates that PPIs form between protein molecular 

surfaces with chemical and geometric complementarity [170,171]. The complementarity features arise 

as a consequence of the energetic contributions that are critical to stabilize PPIs, including van der 

Waals interactions (geometric complementarity), hydrophobic effect, and electrostatics interactions 

(chemical complementarity) [170]. At the structural level, most protein interfaces contain surface 

regions that become inaccessible to solvent upon complex formation, which we refer to as buried or 

core interface, as well as patches that are involved in the interface but remain solvent-exposed, which 

we refer to as the interface rim. Residues within the buried areas tend to be much less tolerant to 

mutations [16,17] and have a large energetic contribution towards the PPI formation, often referred to 
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as hotspots. Rim regions are generally more polar and tolerant to mutations, giving also important 

contributions to affinity and, more notably, specificity [16,172]. Guided by these general principles of 

molecular recognition, we introduce a novel protein design approach based on the critical importance 

of the fully buried patches of the interface to drive protein interactions. We implemented these design 

principles by exploiting surface fingerprints learned from interacting protein surfaces which capture 

features that are determinant for molecular recognition. Our novel approach allows for ultra-fast and 

accurate prediction of privileged sites for PPI design, and reduces the complexity for hotspot search 

and grafting. We leveraged this design workflow to successfully engineer and characterize binders 

against four therapeutic targets of interest, namely SARS-CoV-2 spike, PD-1, PD-L1, and CTLA-4. 

3.3 Results 

3.3.1 Design strategy and in silico validation 

In previous work, we introduced a geometric deep learning framework, MaSIF (Molecular Surface 

Interaction Fingerprinting), to generate surface fingerprints from the geometric and chemical features 

of molecular surfaces and learn patterns that determine the propensity of protein interactions [138]. 

Within this framework we developed the MaSIF-site tool to predict areas with propensity to form PPIs 

on the surface of proteins. MaSIF-site receives as input a protein decomposed into patches and outputs 

a per-vertex regression score on the propensity of each surface point to become a buried site within a 

PPI. We also developed MaSIF-search, another tool to evaluate surface complementarity between 

binding partners.  MaSIF-search was designed as a Siamese neural network architecture [173] trained 

to produce similar fingerprints for the target patch vs. the binder patch, and dissimilar fingerprints for 

the target patch vs. the random patch. As MaSIF tools had robust performance in PPI-related prediction 

tasks, we hypothesized that we could leverage them to design novel PPIs by targeting sites only using 

structural information from the target protein. To address the de novo PPI design problem we devised 

a three-stage computational approach depicted in Fig. 3.1: I) prediction of target buried interface sites 

with high binding propensity using MaSIF-site (Fig. 3.1A); II) surface fingerprint-based search for 

complementary structural motifs (binding seeds) that display the required features to engage the target 

site, a protocol we refer to as MaSIF-seed (Fig. 3.1A-B); III) binding seed transplantation to protein 

scaffolds to confer stability and additional contacts on the designed interface (Fig. 3.1C) using 

established transplantation techniques [64].  

The new MaSIF-seed protocol tackles the problem of identifying binding seeds that can mediate productive 

binding interactions (Fig. 3.1, Supplementary Fig.  S3.1). This task stands as a remarkable challenge in 

protein design due to the vast space of structural possibilities to explore, as well as the required precision 

given that subtle atomic-level changes, such as misplaced methyl groups [64,104], uncoordinated water 

molecules in the interface, or incompatible charges, are sufficient to disrupt PPIs [135].  
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Figure	3.1	 :	Surface-centric	design	of	de	novo	site-specific	protein	binders.	A.	Schematic of fingerprint generation. Protein binding sites are spatially embedded as vector fingerprints. Protein surfaces are decomposed into overlapping radial patches, and a neural network trained on native interacting protein pairs learns to embed the fingerprints such that complementary fingerprints are placed in a similar region of space. We show an illustration for a subsample of the fingerprints projected in a space reduced to three dimensions. The green box highlights a region of complementary fingerprints. B. MaSIF-seed—a method to identify new binding seeds. A target patch is identified by MaSIF-site based on the propensity to form buried interfaces. Using MaSIF-seed, fingerprint complementarity is evaluated between the target patch and all fingerprints in a large database (around 402 million patches); the pairs of fingerprints are subsequently ranked. The top patches are aligned and rescored to enable a more precise evaluation of the seed candidates. C. Scaffold search, seed grafting and interface redesign. The selected seeds are transferred to protein scaffolds and the rest of the interface is redesigned using Rosetta. The top designs are selected and tested experimentally. 
 

In MaSIF-seed, protein molecular surfaces are decomposed into overlapping radial patches with a 12 Å 

radius, capturing on average nearly 400 Å2 of surface area, consistent with the buried surface areas 

observed in native interfaces (Supplementary Fig.  S3.2). For each point within the patch, we compute 

chemical and geometric features, as well as a local geodesic polar coordinate system to locate points 

within the patch relative to each other. A neural network is then trained to output vector fingerprint 

descriptors that are complementary between patches of interacting protein pairs and dissimilar between 

non-interacting pairs [138] (Fig. 3.1A, Supplementary Fig. S3.1). Matched surface patches are aligned to 

the target site and scored with a second neural network, outputting an interface post-alignment (IPA) 

score to further improve the discrimination performance of the surface descriptors (see methods).  

To benchmark our method, we assembled a test set composed of 114 dimeric complexes, which contained 

31 complexes where the binding motif was a single alpha-helical segment and 83 where the binding motif 

was composed of less than 50% helical segments (Supplementary Fig. S3.3). As decoy sets, we used 1000 

motifs (ranging from 600K-700K patches) which in the case of the helical set also had helical secondary 

structure and in the non-helical set were composed of two- and three-strand beta sheets.    
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We benchmarked MaSIF-seed relative to other docking methods to identify the true binder from the 

co-crystal structure in the correct orientation (<3 Å iRMSD) among 1000 decoys (Supplementary Fig. 

S3.4). MaSIF-seed identified the correct binding motif in the correct orientation as the top scoring result 

in 18 out of 31 cases, and 41 out of 83 cases for the helical and non-helical sets, respectively. While the 

best performing method, ZDock+ZRank2 [174–176] identified only 6 out of 31 as top results in the 

helical set, 21 out of 83 in the non-helical set. In addition to superior performances MaSIF-seed was 

considerably faster, showing speed increases between 20-200 fold, which mostly depend on the 

number of patches derived from each motif. In our benchmark we also performed comparisons with 

faster methods which showed much lower performances than ZDock+ZRank2 (Table 3.1 and 

Supplementary Table S3.1).     

An analysis of the cases where MaSIF-seed performed best showed that its success relied first on PPIs 

where the interaction site could be correctly identified by the method, and second to those where the 

majority of contacts lie on a radial patch at the interface core, and with a high shape complementarity 

in that region (Supplementary Fig. S3.5A). This is consistent with how MaSIF-seed was designed to 

capture protein interfaces using a radial geodesic patch.  

  

 

Table	3.1	:	Benchmark	of	MaSIF-seed	against	other	docking	methods.	Recovering the native binder in the correct conformation from co-crystal structures for 31 helix-receptor complexes or 83 non-helix seed-receptor complexes, discriminating between 1000 decoys. aBenchmarked method. b-dNumber of receptors for which the method recovered the native binding motif (<3 A iRMSD) within the btop 1, ctop 10, and dtop 100 results. eNumber of receptors for which the method did not recover the native binding motif  in the top 100 results.  fAverage running time in minutes, excluding pre-computation time. 	
 Methoda # in top 1b # in top 10c # in top 100d >100e Avg time (m)f 

Helical 

seeds 

MaSIF- 

seed 

18 18 20 11 15 

ZDock 3 4 8 23 2715 

ZDock+ ZRank2 6 12 21 10 2946 

Non- 

helical 

seeds 

MaSIF-seed 41 47 49 34 118 

ZDock 7 9 22 61 2206 

ZDock+ZRank2 21 33 45 38 2400 
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Encouraged by MaSIF-seed’s speed and accuracy in discriminating the true binders from decoys based 

on rich surface features, we sought to design de novo protein binders to engage challenging and 

disease-relevant protein targets. We thus assembled a motif database including approximately 640 K 

structural fragments (402 M surface patches/fingerprints) with distinct secondary structures 

(approximately 390 K and 250 K of non-helical and helical motifs, respectively), extracted from the PDB 

(see methods). We computationally designed and experimentally validated binders against four 

structurally diverse targets: the receptor binding domain (RBD) of the SARS-CoV-2 spike protein where 

we identified a neutralization-sensitive site; the two partners of the PD-1/PD-L1 complex, an important 

protein interaction in immuno-oncology that displays a flat interface considered “hard-to-drug” by 

small molecules (Supplementary Fig. S3.6); CTLA-4, another important target for immuno-oncology. 

We show that our method can be applied to a variety of structural motifs as binding seeds (helical and 

non-helical), generating functional designs directly from the computational simulations.  

3.3.2 Targeting a predicted SARS-COV2 site 

We applied our surface-centric approach to design de novo binders to target the SARS-CoV-2 RBD. First, 

we used MaSIF-site to predict surface sites on the RBD with high propensity to be engaged by protein 

binders. We selected a site distinct from the ACE2 binding region, but overlapping such that a putative 

binder could inhibit the ACE2-RBD interaction (Fig. 3.2A). At the time, there were no known binders to 

this site. We searched a subset of our database containing 140 million surface fingerprints derived from 

helical fragments to find binding seeds that could target the selected site. The 7713 binding seeds MaSIF-

seed provided showed two prominent features: I) a contact surface devoid of residues with strong binding 

hotspot features (e.g. large hydrophobic residues); II) an equivalent distribution of binding seeds in two 

distinct orientations of the helical fragment, with the seeds binding at 180° from each other (Fig. 3.2B), 

hinting that both binding modes are plausible. Remarkably, both orientations of the binding seeds 

present very similar signatures at the surface fingerprint level (Supplementary Fig. S3.7) and at the 

sequence level (Fig. 3.2B). 

We synthesized one of the top ranked binding seeds as a linear peptide, but no binding interaction was 

detected by Surface Plasmon Resonance (SPR) (Supplementary Fig. S3.8). Therefore, using the Rosetta 

MotifGraft protocol we identified several protein scaffolds compatible with both binding modes of the 

seed (Fig. 3.2C), transplanted the seed hotspot side chains from a top-ranking seed onto the scaffolds, 

and used Rosetta (v3.13) to optimize the binder interface (Fig. 3.1C). Sixty-three designs based on 

twenty scaffolds, ranging from 7 to 23 mutations relative to the native proteins, were screened with yeast 

display (Supplementary Fig. S3.9). From this initial round of designs, DBR3_01 showed weak binding 

in yeast display experiments. Moreover, binding of DBR3_01 was competitive with soluble ACE2 

(Supplementary Fig. S3.9), suggesting that the binder was targeting the correct RBD site. Furthermore, 

DBR3_01 showed slightly increased binding compared to the native scaffold protein and a double point 

mutant on the designed interface residues, further supporting that the seed residues were participating 

in the binding interaction (Supplementary Fig. S3.9, Supplementary Table S3.2).  
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Figure	3.2	:	Design	and	optimization	of	a	SARS-CoV-2	binder	targeting	the	RBD. A. MaSIF-site prediction of the interface propensity of the RBD. The ACE2-binding footprint (yellow outline) is distinct from the predicted binding site (red). B. MaSIF-seed predicts helical seeds that cluster into anti-parallel orientations, referred to as up or down configurations. Sequence logo plots highlight the similarity between the sequences of the two seed clusters, regardless of orientation. C. The scaffold (PDB: 5VNY) used to make DBR3_01 allows for binding in the up or down orientation, sharing similar footprints. D. SPR data of improved DBR3 binders with controls. DBR3_03 has an affinity of 80 nM with RBD. E. A cryo-EM structure (dark green) aligns to the AlphaFold prediction with an iRMSD of 1.4 A. The trimeric spike protein (grey) has one DBR3_03 bound per RBD (orange, pink, green). F.  Fc–DBR3_03 binds to the spike protein of most variants of concern, except for those with the L452R mutation. A list of half-maximal effective concentration (EC50) values of DBR3_03 is provided in Supplementary Table S3.3. The fits were calculated from technical replicates (n = 2) using a nonlinear four-parameter curve fitting analysis.  
G. Fc–DBR3_03 neutralizes live Omicron virus in cell-based inhibition assays with an half-maximal inhibitory concentration (IC50) of 1.7 × 10−6 g ml−1, compared with the AstraZeneca (AZD8895 and AZD1061) mix, which has an IC50 of 2.9 × 10−7 g ml−1. The fits were calculated from biological replicates (n = 2) using a nonlinear four-parameter curve fitting analysis. 
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Next, we sought to improve the binding affinity of the design by performing two mutagenesis libraries: 

first, a directed library in the designed interface was prepared (Supplementary Fig. S3.10), which 

yielded DBR3_02 with 4 mutations and a KD of 4.6 μM determined by SPR (Fig. 3.2D, Supplementary 

Fig. S3.10); second, we screened a site saturation mutagenesis (SSM) library which resulted in the 

enrichment of 3 point mutants, one of which overlapped with a mutation from the first library 

(Supplementary Fig. S3.11). Adding these 3 mutations to DBR3_02 resulted in DBR3_03 that showed a 

KD of 80 nM and was folded and stable (Fig. 3.2D, Supplementary Fig. S3.12). Here, we started from a 

computationally designed binder with very low affinity as observed with yeast display, yet undetectable 

by SPR, and after introducing 6 mutations we observed an improvement greater than 60 fold in binding 

affinity. The mutations all occurred in the binding helix of the design. Of these mutations, A17G and 

S20A, residing in the core of the interface, appear to have relieved steric clashes and reduced buried 

unsatisfied polar atoms, respectively.  

To structurally characterize the binding mode of DBR3_03 we solved a cryo-EM structure of the design 

in complex with the trimeric spike protein at 2.9 Å local resolution (Fig. 3.2E and Supplementary Fig. 

S3.13-3.15). The structure confirmed the predicted binding sites on both partners. Importantly, the 

binder adopted the orientation of the helical binding seed that was marginally less favored by MaSIF’s 

fingerprint descriptors (down-orientation) (Fig. 3.2B). Interestingly, the initial design DBR3_01 showed 

similar metrics when the interfaces were analyzed in both directions (Supplementary Fig. S3.7), 

pointing to known limitations of surface fingerprints in unbound docking type of problems10. This led 

us to attempt another state-of-the-art protein docking method, AlphaFold (AF) multimer [177] to 

predict the complex of DBR3_03 with the spike RBD and obtained a 1.4 Å iRMSD between the AF 

prediction and the experimental structure (Fig. 3.2E). This result presents a powerful demonstration of 

the synergies between machine learning techniques purely based on structural features and those that 

leveraged large sequence-structure datasets for structure prediction tasks. At the structural level 

DBR3_03 engages the RBD with a 1452 Å2 of buried interface area (surface area buried on both sides of 

the complex), which is much smaller than the average buried surface area of antibodies (approximately 

2071 ± 456 Å2 [178]), yet still results in a high affinity interaction. The designed interface lacks canonical 

hotspot residues and engages the RBD through small residues and is composed of 21% backbone and 

79% side chain contacts. Given the pandemic situation with SARS-CoV-2 and the general need for 

rational design of protein-based therapeutics to fight viral infections, we next engineered an Fc-fused 

DBR3_03 (Fc-DBR3_03) construct and tested its neutralization capacity on a panel of SARS-CoV-2 

variants in virus-free and pseudovirus surrogate assays (Fig. 3.2F-G, Supplementary Fig. S3.16, 

Supplementary Table S3.3) [179]. We compared the breadth and potency of our design to those of 

clinically approved monoclonal antibodies. In virus-free assays we observed that Fc-DBR3_03 had 

comparable potency to that of Imdevimab (REGN10987), an antibody used clinically, for the WT spike 

and bound to the omicron strain while RGN87 did not (Supplementary Fig. S3.16). Neutralization 

activity in pseudovirus assays was tested and Fc-DBR3_03 neutralized omicron, albeit less potently 

than the AstraZeneca (AZN) clinically approved antibody mix (Fig. 3.2G). A cryo-EM structure showed 

that the binding mode was nearly identical (1.4 Å backbone RMSD) between DBR3_03-WT-RBD 
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complex and DBR3_03-omicron-RBD complex (Supplementary Fig. S3.17-3.19). Importantly, Fc-

DBR3_03 showed a very broad reactivity to many SARS-CoV-2 variants (Fig. 3.2F) which is attributable 

to the sequence conservation of the targeted site and the small binding footprint of the design. The 

design was sensitive to the L452R/Q mutation present in the delta, lambda and kappa variants 

(Supplementary Fig. S3.16B, Fig. 3.2F), but introducing a single point mutation (L24G) to relieve the 

clash between L452R and the binder led to the design binding to delta (Supplementary Fig. S3.16). Our 

results highlight the value of the surface fingerprinting approach to reveal target sites in viral proteins 

and for the subsequent design of functional antivirals with broad activity. 

3.3.3 Targeting a flat surface site in PD-L1  

Surface sites presenting flat structural features are difficult to target with small molecule drugs, leading 

to their categorization as undruggable. To test our fingerprint-based approach, we sought to design 

binders to target the PD-1/PD-L1 interaction, which is central to the regulation of T-cell activity in the 

immune system [180]. We used MaSIF-site to find high propensity protein binding sites in PD-L1, and 

unsurprisingly, the identified site overlapped significantly with the native binding site engaged by PD-

1 (Fig. 3.3A). This site is extremely flat at the structural level, ranking in the 99th percentile in terms of 

interface flatness (ranked #7 among 1068 transient interfaces, details in methods) (Supplementary Fig. 

S3.20), one of the dominant structural features that makes this site hard-to-drug by small molecules. 

Next, we used MaSIF-seed to find binding motifs to engage the site, among the top results helical motifs 

clustered in both orientations packing in the beta-sheets of PD-L1 (Supplementary Fig. S3.21). In the 

most populated cluster (Supplementary Fig. S3.21), we observed sequence convergence for a 12 

residue fragment (Fig. 3.3B). We then used Rosetta MotifGraft to search for putative scaffolds to display 

this fragment and used RosettaDesign to optimize contacts at the interface. We tested 16 designs based 

on 5 different scaffolds for binding to PD-L1 on the surface of yeast. Two designs based on two different 

scaffolds showed low binding signals (Supplementary Fig. S3.22), which we refer to as DBL1_01 and 

DBL2_01 (Fig. 3.3C). The specificity of the interaction was confirmed by testing hotspot knockout 

controls of each design (Supplementary Fig. S3.22). To improve the binding affinity of DBL1_01 we 

constructed a combinatorial library with mutations in the predicted binding region, while maintaining 

the hotspot residues predicted by MaSIF-seed (Supplementary Fig. S3.23). From this library we 

selected a variant, DBL1_02 with 5 mutations found mostly in the interface rim of the design and 

improving the formation of polar contacts. The most substantial change occurred at position 53, a 

mutation of alanine to glutamine that introduces a hydrogen bond with PD-L1 (Supplementary Fig. 

S3.23). To improve the design’s expression and stability we constructed a second library targeting 

residues in the protein core to optimize core packing (Supplementary Fig. S3.23). Combining 

mutations from both libraries, we obtained DBL1_03 with 11 mutations from the starting design, which 

was folded and monomeric in solution, and showed a binding affinity of 2 μM (Fig. 3.3D, 

Supplementary Fig. S3.12), comparable to that of PD-1 (KD = 8.2 μM) [181]. 
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Figure	3.3	 :	De	novo	design	and	optimization	of	PD-L1	binders	 targeting	a	 flat	 surface. A. MaSIF-site prediction of the interface propensity of PD-L1. The predicted interface (red) overlaps with the binding site of the native interaction partner PD-1 (yellow). B. Helical seeds were predicted by MaSIF-seed and clustered. The dominant cluster showed strong amino acid preferences (Z-score > 2). Hotspot residues are underlined.  
C. Binders based on two different scaffold proteins using the selected seed were identified. D. The binding affinities of DBL1 designs after combinatorial (light green) and SSM library optimization (dark green), measured using SPR. Mutation of a hotspot residue (V12R) ablates binding of DBL1_03 (wheat). E. The binding affinities of DBL2 designs after combinatorial (light blue) and SSM library optimization (dark blue), measured using SPR. Mutation of a hotspot residue (V12R) knocks out binding of DBL2_02 (wheat). F. SSM analysis of regions of interest in the binding interface of DBL1_03. The original residue of DBL1_03 is indicated by a cross and hotspot residue positions are shown in black boxes. Enrichment in the binding population (blue) and in the non-binding population (red) is indicated. G. SSM data in the binding interface of DBL2_03. The original residue of DBL2_02 is indicated by a cross. H. The binding mode of the selected seed in comparison to the native interaction partner PD-1. I. Crystal (xtal) structure of DBL1_03 in a complex with PD-L1. The computational model (light green) is aligned with the crystal structure (dark green). Inset: the alignment of the residues in the binding seed. J. Crystal structure of DBL2_02 in a complex with PD-L1, shown by aligning the computational model (light blue) with the crystal structure (dark blue). Inset: the alignment of the residues in the binding seed represented as sticks.  
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To further assess the optimality of each residue at the interface of the designed binder we screened a 

SSM library sampling 19 positions, based on DBL1_03. The most relevant positions are shown in Figure 

3.3F (all positions in Supplementary Fig. S3.24). The SSM results revealed that the four hotspot residues 

placed by MaSIF-seed were crucial, as any other residue was deleterious for binding (Fig. 3.3F). 

However, in the interface rim many mutations could provide affinity improvements strongly suggesting 

that this region of the interface was suboptimal (Fig. 3.3F). Based on these data, we generated the 

DBL1_04 variant which resulted in a 10-fold increase of the binding affinity showing a KD of 256 nM to 

PD-L1 (Fig. 3.3D). Both DBL1_03 and DBL1_04 showed cell-surface binding, comparable to PD-1, on 

cells expressing PD-L1. The specificity of the designed interaction was confirmed by the binding 

inability of single-residue mutants at the interface (Supplementary Fig. S3.24).  

 

The second lead design, which utilizes the same seed but is based on a different scaffold, DBL2_01, 

could not be solubly expressed and therefore we designed a combinatorial library to improve 

expression and binding affinity (Supplementary Fig. S3.23). From this library we isolated the variant 

DBL2_02 which had six mutations and expressed in E. coli. From the six mutations, three were 

predicted to be in the interface (Y23K, Q35E, Q42R) and improved binding affinity by forming 

additional salt bridges with PD-L1 (Supplementary Fig. S3.23). The KD to PD-L1 determined by SPR was 

374 nM, more than 10-fold higher than the native ligand PD-1. Since both designs shared the same 

binding seed we transplanted the SSM mutations of the DBL1_04 design and generated the DBL2_03, 

which showed a 3-fold improvement in binding affinity (KD = 120 nM) (Supplementary Fig. S3.25), 

indicating that the binding seed was engaging PD-L1 in a similar fashion to that of DBL1_03. To further 

assess the influence of each residue in the designed binding interface we performed an SSM analysis 

on 19 interface residues of DBL2_03 (Fig. 3.3F, Supplementary Fig. S3.25). The SSM profile reiterated 

that the hotspot residues placed by MaSIF-seed were very restricted in variability, showing that these 

residues were accurately predicted. In contrast, several positions on the interface rim were suboptimal 

and mutations to polar amino acids resulted in affinity enhancements. Based on the SSM data, we 

generated the DBL2_04 design with additional polar mutations (Fig. 3.3G, Supplementary Fig. S3.25) 

which showed an improved KD of 65 nM (Fig. 3.3E). To experimentally validate the binding mode, we 

co-crystallized the designs with PD-L1 (Supplementary Fig. S3.26). Overall for both designs, the 

structures (Fig. 3.3I-J) showed excellent agreement with our computational models with 0.8 Å and 2.0 

Å for the overall backbone and 1.0 Å and 1.9 Å for the full atom interface RMSDs of DBL1_03 and 

DBL2_02, respectively, showing an exquisite accuracy of the predictions in the interface region. The 

buried interface area of the designs with PD-L1 was between 1424 Å2 and 1438 Å2, compared to 1648 Å2 

for the buried interface area of PD-1 (PDB ID: 4ZQK). The chemical composition of the designed 

interface is similar in both designs, ~59% of the surface area is hydrophobic and the remaining area is 

hydrophilic for DBL1_03 and correspondingly for DBL2_02. These values are comparable to those of 

the PD-1/PD-L1 interaction (52% hydrophobic surface), showing that we have designed interfaces with 

similar chemical compositions of the native interaction using a distinct backbone conformation (Fig. 

3.3H). The discovery of novel binding motifs by MaSIF-seed is striking when comparing the backbone 

motif used by the native PD-L1 binding partner, PD-1, and the designed binders. While the native PD-
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1 uses a beta-hairpin to engage the site, the designed binders do so through an alpha-helix motif, 

illustrating the capability of our approach to explore outside of the structural repertoire of native 

binding motifs. The general trend arising from the designed PD-L1 binders is that despite the accurate 

predictions of core residues in the interface, through mutagenesis studies, the designed polar 

interactions are suboptimal. To address these and other limitations of our computational approach, we 

performed additional computational design steps to improve the pipeline and tested it on the design 

of binders to target PD-1.   

3.3.4 One-shot designs with native affinities 

Despite the successes in designing site-specific binders to engage two different targets, the 

computational designs still required in vitro evolution to enable expression and detectable binding 

affinities that could be biochemically characterized. To address these issues, we used a structurally 

diverse library of binding seeds (helical and beta-sheet motifs) and assembled a more comprehensive 

design pipeline (Fig. 3.4A) performing: I) sequence optimization of selected seeds; and II) biased 

design for polar contacts in the scaffold interface [137]. To test this approach, we designed de novo 

binders to target three proteins (PD-L1, PD-1 and CTLA-4). For each of the design targets we selected 

the top 2000 designed sequences according to several structural metrics (see methods) and tested them 

using yeast display coupled with deep sequencing readout. According to our deep sequencing readout 

we obtained binders for all three targets using diverse structural motifs to mediate the binding 

interaction (Supplementary Table S3.4). Several binders were biochemically characterized to varying 

degrees. For PD-1 we found three designs based on de novo miniprotein [74,75] scaffolds with 

interfaces mediated by helical motifs (DBP13_01, DBP40_01 and DBP52_01) (Fig. 3.4B, Supplementary 

Fig. S3.27) that showed a moderate to strong binding signal on the surface of yeast.  The most promising 

candidate binding to PD-1, DBP13_01, was investigated in more detail (Fig. 3.4B-E). To confirm 

whether the binding interaction was mediated through the designed interface, we tested several control 

constructs, which included the native miniprotein scaffold and DBP13_01 variants with predicted 

knockout mutations (Fig. 3.4B), all of which abolished binding (Fig. 3.4C). The interaction site on PD-1 

was further probed via a competition assay with Nivolumab [182], which blocked the DBP13_01/PD-1 

interaction as expected due to the overlapping binding footprints (Supplementary Fig. S3.28). 

DBP13_01 did not bind to a close sequence homologue (porcine PD-1) supporting the specificity of the 

designed interactions (Supplementary Fig. S3.28). The DBP13_01/PD-1 interaction showed a KD of 4.2 

± 2 μM (n = 3, Fig. 3.4D) as determined by SPR, similar to the affinity of the native PD-L1/PD-1 

interaction (KD = 8.2 μM) [181]. This was a promising result given that the design was not subjected to 

experimental optimization by in vitro evolution. Next, we performed an SSM experiment and observed 

that mutations at the predicted core interface positions (L23, L27, I30, M31) were generally deleterious 

for binding, supporting the structural and sequence accuracy of the design (Fig. 3.4E, Supplementary 

Fig. S3.29). Moreover, we readily improved the affinity to sub-micromolar by introducing two mutations 

identified in the SSM data (M31F+H33S, DBP13_02) (Fig. 3.4D). The predicted complex structure by 

AlphaFold Multimer (AF) was in agreement with that of MaSIF, with an interface footprint that is largely 

overlapping with the designed residues, and 3.3 Å of backbone RMSD and 2.9 Å of interface full atom 
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RMSD (Supplementary Fig. S3.30). Although these results are supported by the SSM data, they are a 

predictive exercise and cannot be interpreted as absolute evidence that the designed binding mode is 

occurring, which ultimately will require an experimental structure.  

Similarly, we experimentally confirmed the specificity of a beta-sheet based-binder to PD-L1 

(DBL3_01) (Fig. 3.4F) with a predicted knock-out mutant and a competition assay with high-affinity 

PD-1 (Fig. 3.4G and Supplementary Fig. S3.28). These data were supported by an AF prediction 

matching our design model with a 0.97 Å backbone RMSD (Supplementary Fig. S3.30). Binding to PD-

L1 was further improved on yeast by mutating two exposed cysteines to serines in the scaffold, which 

may stabilize the protein and avoid unwanted disulfide bonds (DBL3_02, Fig. 3.4G and Supplementary 

Fig. S3.28). This design adopts a different backbone conformation than the native PD-1:PD-L1 

interaction which further demonstrates MaSIF-seed’s ability to generalize beyond interactions found 

in nature (Supplementary Fig. S3.28). We also estimated the affinity on a yeast display-based assay 

determining an apparent KD of 21.8 nM, 42.7-fold higher than the known high-affinity PD-1, which has 

been reported to have a true KD of  110 pM [183] (Fig. 3.4H). 

We also performed experimental characterization for two other binders targeting PD-L1 (DBL4_01) 

and CTLA-4 (DBC2_01) and observed that the binding interactions are specific to targeted sites by 

competition and mutagenesis experiments performed using yeast display (Supplementary Fig. S3.28 

and S3.31). It is important to note that for several of these binders the AF predictions were not in 

agreement with our models but that nevertheless the experimental results provide solid evidence that 

the correct interfaces are involved in the designed interactions (Supplementary Table S3.4).       

Overall, the results show that by starting the interface design process driven by surface fingerprints and 

introducing additional features of native interfaces (e.g. hotspot optimization, polar contacts) we can 

design site-specific binders, using a variety of structural motifs with native-like affinities purely by 

computational design. 

3.4 Discussion  

Physical interactions between proteins in living cells are one of the hallmarks of function [184]. Our 

incomplete understanding of the complex interplay of molecular forces that drive PPIs has greatly 

hindered the comprehension of fundamental biological processes as well as the capability to engineer 

such interactions from first principles. It has been particularly challenging for protein modeling 

methodologies that use discrete atomic representations to perform de novo design of PPIs 

[131,132,162,169]. In large part, this is due to the small number of molecular interactions involved in 

most protein interfaces and to the very small energetic contributions that determine binding affinities, 

making physics-based energy functions less reliable [185]. 
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Figure	3.4	:	Optimized	workflow	and	de	novo	binders	for	PD-1. A. Improved design computational workflow in which two steps of design are used, at the seed and at the scaffold level, with an emphasis on building new hydrogen bond networks. B. PD-1 (blue) targeted by DBP13_01 (green); hotspot residues from the binding seed (red) are highlighted. Insets: crucial residues for binding. D. Histogram of the binding signal (PE, phycoerythrin) measured by flow cytometry for DBP13_01, the native miniprotein scaffold, two variants of DBP13_01 with crucial residues mutated and a negative control with unlabelled yeast. The dashed line indicates the geometric mean of the DBP13_01 binding signal. D. Binding affinities determined by SPR of the nivolumab Fab (green squares), DBP13_01 (red diamonds) and DBP13_02 (blue triangles). The dissociation constant of DBP13_01 was obtained with three independent measurements. E. SSM heat map showing interface residues and the enrichment of each point mutation. The original amino acids in DBP13_01 are indicated by a cross. Enrichment in the binding population (blue) and in the non-binding population (red) is indicated. Hotspot residues are highlighted with a black box. F, PD-L1 (orange) targeted by DBL3_01 (purple). Insets: magnification of interface residues, including one crucial residue tested for knockout mutants (Ile43, red). G. The binding signal measured using flow cytometry for DBL3_01, DBL3_02, the native protein scaffold, one knockout mutant and a negative control with unlabelled yeast. H. PD-L1 ligand titration on yeast displaying DBL3_02 (orange triangle) or high-affinity PD-1 (HA–PD-1, purple diamonds).   
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To address this gap, we developed an enhanced data-driven framework to represent proteins as 

surfaces and learn the geometric and chemical patterns that ultimately determine the propensity of 

two molecules to interact. We proposed a new geometric deep learning tool, MaSIF-seed, to overcome 

the PPI design challenge by both identifying patches with a high propensity to form buried surfaces and 

binding seeds with complementary surfaces to those patches. By computing fingerprints from protein 

molecular surfaces, we rapidly and reliably identify complementary surface fragments that can engage 

a specific target within 402 million candidate surfaces. This, in practice, solves an important challenge 

in protein design by efficiently handling search spaces of daunting scales.  

The identified binding seeds were then used as the interface driving core to design novel binding 

proteins against challenging targets: a novel predicted interface in the SARS-CoV-2 spike protein, which 

ultimately yielded a SARS-CoV-2 inhibitor, PD-1/PD-L1 protein complex and CTLA-4, exemplifying 

sites that are difficult to target with small molecules due to its flat surface. Several designed binders 

showed close mimicry to computationally predicted models and achieved high binding affinities, 

often, after experimental optimization. In the case of purely computationally designed binders, the PD-

1 binder showed low micromolar affinity without experimental optimization, which is the range of 

many native PPIs [95], and several other binders targeting PD-L1 and CTLA-4 were shown to be specific 

to the targeted sites. By using surface fingerprints, we identified novel structural motifs that can mediate 

de novo PPIs presenting a route to expand the landscape of motifs that can be used to functionalize 

proteins and be critical for the de novo design of function. 

For all targets, the original binding seed arguably provided the principal driver of molecular recognition 

representing the design’s binding interface core (Supplementary Fig. S3.32), maintaining a high surface 

similarity in this region between the original seed and the final design (Supplementary Fig. S3.33). 

However, contacts at the buried interface region are necessary though in most cases, likely not sufficient 

for high affinity binding, and in the three designed binders for PD-L1 and RBD, optimization of the 

polar interface rim through libraries was necessary to improve binding to a biochemically detectable 

range (KD at the micromolar level). Our de novo designs agree with previous findings [130,132] that 

small changes in the polar interface rim (for example in the hydrogen bond network surrounding the 

interface) can result in substantial differences in binding affinities. Encouragingly, by using a larger and 

more structurally diverse library of binding seeds together with an optimized design pipeline we 

obtained several in silico only designed binders to a variety of targets, which represents a major step 

forward for the robust design of de novo PPIs. 

In our study several limitations of the approach became evident, namely the absence of conformational 

flexibility and adaptation of the protein backbone to mutations and the difficulty of designing polar 

interactions that balance the hydrophobic patches of the interface contributing for affinity and 

specificity, which has also been observed by other authors [129,130,135]. In future methodological 

developments, neural network architectures could be optimized to capture such features of native 

interfaces. The emergence of generative algorithms that can construct backbones conditioned to the 

target binding sites or the seed motifs, as recently described by other groups [87,186], present another 
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exciting route where our conceptual framework based on surfaces is likely to become more useful to 

overcome important challenges on the design of molecular recognition.  

Here we presented a surface-centric design approach that leveraged molecular representations of 

protein structures based on learned geometrical and chemical features. We showed that these 

structural representations can be efficiently used for the design of de novo protein binders, one of the 

most challenging problems in computational protein design. We anticipate that this conceptual 

framework for generation of rich descriptors of molecular surfaces can open possibilities in other 

important biotechnological fields like drug design, biosensing or biomaterials in addition to providing 

a means to study interaction networks in biological processes at the systems levels.  

3.5	Methods	
Computing buried surface areas  

A dataset of protein-protein interactions was downloaded from the PDBBind database [187] containing 

all interactions with a reported affinity stronger than 10 μM; since these PPIs have a reported affinity, 

all were assumed to be transient. The PDBBind database does not report the chains involved in the 

interaction with the reported affinity; thus, for simplicity, only those complexes containing exactly two 

chains in the PDB crystal structure were considered for the analysis. 

The MSMS program [141] was used to compute all molecular surfaces in this work (density = 3.0, water 

radius = 1.5 Å). Since MSMS produces molecular surfaces with highly irregular meshes, PyMESH 

(v.0.2.1) [188] was used to further regularize the meshes at a resolution of 1.0 Å. For a given protein 

subunit that appears in a complex, we define the subunit’s buried surface as the patch that becomes 

inaccessible to water molecules upon complex formation. Since in our implementation a surface is 

defined by a discretized mesh, we compute the buried surface region as follows. The buried surface of 

both the subunit and the complex are first independently computed. Then, the minimum distance 

between every subunit surface vertex and any complex surface vertex are computed. Subunit vertices 

that are farther than 2.0 Å from a vertex in the surface of the complex are labeled as part of the buried 

surface, as these vertices no longer exist in the surface of the complex. The size of buried areas was 

determined by computing the area of each vertex labeled as a buried surface vertex. 

We note that computing buried surface areas using this method can result in measurements that are 

different from those widely used in the field, which use the solvent accessible surface area and count 

the buried interface of all subunits into a single value (the buried SASA area). Here we use the molecular 

surface (also known as solvent excluded surface) and count a single subunit.  Therefore, while in 

Supplementary Fig. 3.1 we show areas computed using this method to compare to patch sizes, 

throughout the rest of this work we refer to the more widely used buried SASA areas.  

Patch generation in the MaSIF framework - Decomposing surfaces into radial patches  

In order to process protein surface information, all molecular surfaces were decomposed into 

overlapping radial patches. This means that each vertex on the surface becomes the center of a radial 
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patch of a given radius. To compute the geodesic radius of patches, throughout this work we used the 

Dijkstra algorithm [189], a fast and simple approximation to the true geodesic distance in the patch. We 

used a radius size of 12 Å for patches, limited to at most 200 points, which we found corresponds 

roughly to 400 Å2 (Supplementary Fig. S3.2), a value close to the median size of the buried interface of 

transient interactions (Supplementary Fig. S3.2). Exceptionally, for the MaSIF-site application 

(described below) we limited the patch to 9 Å or 100 points to reduce the required GPU RAM for this 

application [138]. 

Patch generation in the MaSIF framework - Computing angular and radial coordinates  

An essential geometric deep learning component in our pipeline is to compute angular and radial 

coordinates in the patch that enable MaSIF to map features in a 2D plane. The radial coordinate is 

computed using the Dijkstra algorithm, where the geodesic distance (meaning the distance taken to 

‘walk’ along the surface) from the center of the patch to every vertex is computed. To compute the 

angular coordinate, all pairwise geodesic distances between vertices in the patch are computed, and 

then the multidimensional scaling algorithm [190] in scikit-learn [191] is used to map all vertices to the 

2D plane. Then, a random direction in the 2D plane is computed as the 0o frame of reference, and the 

angle of every vertex in the plane with respect to this frame of reference is computed. Computing the 

angular and radial coordinates is the slowest step in the MaSIF precomputation. However, we have 

provided experimental code to compute these coordinates much faster in our github repository under 

a branch called “fast-masif-seed”. 

Patch generation in the MaSIF framework - Geometric and chemical features 

Each point in a patch of the computed molecular surface was assigned an array of two geometric 

features (shape index [192], distance-dependent curvature [193]), and three chemical features 

(hydrophobicity [194], Poisson-Boltzmann electrostatics [195], and a hydrogen bond potential [196]). 

These features are identical to those described in Gainza et al [138]. 

Patch generation in the MaSIF framework - Largest circumscribed patch computation 

From each labeled interface point, we used the Dijkstra algorithm to compute the shortest distance to 

a non-interface point. The interface point with the largest distance to a non-interface point was labeled 

as the center of the interface, and the distance to the nearest non-interface point as the radius of the 

largest circumscribed patch. 

Calculation of surface planarity 

The surface planarity of all target interfaces, with respect to a database of PPIs (Supplementary Fig. 

S3.20) was calculated as follows. 690 PPIs crystallized as dimers from the PDBBind database were used 

as the dataset, resulting in 1380 interfaces as each chain was analyzed separately. Interfaces with an 

approximate area lower than 150 Å2 or more than 1000 Å2 were discarded, resulting in 1068 interfaces. 

The vertices in the buried interface area of each chain were computed, as explained in section 

Computing buried surface areas in protein complexes above, and the 3D coordinates of those vertices 
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in the interface were extracted from each chain. Then, the multidimensional scaling method[190] from 

scikit-learn [191] was used to position interface vertices in a 2D plane, with the optimization goal of 

maintaining the distances between all pairs of vertices as close as possible in the 2D embedding as they 

were in 3D space. The root mean square difference between the distances in the original 3D space vs. 

the 2D space was used as the measure of planarity. Interfaces that are very planar in 3D have small 

values under this metric as an embedding in 2D preserves the distance between vertices, while non-

planar interfaces have larger values as an embedding in 2D must significantly alter their 3D distances.   

Geometric deep learning layer in MaSIF 

Geometric deep learning enables the application of traditional techniques from deep learning to data 

that does not lie in Euclidean spaces, such as a protein molecular surface. At the core of MaSIF lies a 

mapping from a molecular surface patch to a 2D Euclidean Tensor. The mapping is performed through 

a learned soft polar grid around each patch center vertex, using the angular and radial coordinates. 

Once the mapping is performed, a traditional convolutional neural network layer is performed, with an 

angular max pooling layer, which deals with the rotation ambiguity of geodesic patches. Further details 

on these techniques are detailed in Gainza et al [138] and Monti et al [197]. 

Prediction of protein interaction sites  

The MaSIF-site tool [138] was trained to predict areas with propensity to form protein-protein 

interactions on the surface of proteins. Here, MaSIF-site was used to predict surface areas with 

propensity to form a PPI in 114 targets of our benchmark (Supplementary Fig. S3.4) and all the design 

targets (SARS-CoV-2 RBD, PD-L1, PD-1 and CTLA4). MaSIF-site receives as input a protein 

decomposed into patches and outputs a per-vertex regression score on the propensity of each point to 

become a buried surface area within a PPI. MaSIF-site computes a regression score on each point of 

the surface, yet it becomes necessary to identify the precise patch that we will use to define each 

interface. Thus, to select interface patches in target proteins, the output of MaSIF-site was decomposed 

into 12 Å overlapping patches, and the per-vertex prediction for all points in the patch are averaged to 

obtain a score for each patch. 

Training of MaSIF-site 

MaSIF-site was trained on a database of protein-protein interactions sourced from PRISM[198], 

PDBBind [187], the ZDock benchmark [199], and SabDab [200]. Proteins from these databases that 

failed to run through the MaSIF pipeline due to, for example, too many incomplete residues in the 

deposited structure, were discarded. Each instance of these databases, which we refer to as ‘subunits’ 

could consist of one or multiple chains (e.g., an antibody), and was crystallized in complex with a 

partner subunit. In total 12002 subunits from deposited structures passed the threshold. These subunits 

were then clustered by sequence identity at 30% identity and up to one representative from each cluster 

was selected, resulting in 3362 subunits. Then, a matrix of all pairwise TM-scores for this set was 

computed, and a hierarchical clustering algorithm was used on this matrix to split the dataset into 3004 

subunits for the training set and 358 for the testing set.   
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The molecular surface for each subunit was computed using MSMS [141] and the buried interface area 

was labeled as described above. The architecture of MaSIF-site (Supplementary Fig. S3.1B and further 

described in Gainza et al [138]) consisted of three layers of geodesic convolution. The network received 

as input the full surface of a protein (with batch size of 1) decomposed into overlapping patches of size 

9 Å. During training, each vertex of the input was labeled with the ground truth, with a value of 1 if the 

vertex belonged to the buried area and a label of zero otherwise. The output of the network is a per-

vertex assignment between 0 and 1 for the prediction of that vertex on whether it belongs to the buried 

surface area or not. A sigmoid activation function was used as the output layer, and a binary cross 

function as the loss function. Adam [201] was used as the optimization function. MaSIF-site was 

implemented in Tensorflow (v1.12) [202], and trained for 40 hours on a single GPU machine, which 

allowed for 43 epochs. The MaSIF-site neural network implementation in Tensorflow contains a total 

of 9267 parameters. 

Complementary surface identification 

MaSIF-search [138] was used to compute fingerprints for every overlapping patch in proteins of 

interest. MaSIF-search was trained on a dataset of 6001 protein-protein interactions (described in 

Gainza et al [138]) to receive as input the features of the target, a binder, and a random patch from a 

different protein. MaSIF-search was designed as a Siamese neural network architecture [173] trained to 

produce similar fingerprints for the target patch vs. the binder patch, and dissimilar fingerprints for the 

target patch vs. the random patch. In order to decrease training time and improve performance, the 

features of the target were multiplied by -1 (with the exception of hydropathy), turning the problem 

from one of complementarity to one of similarity. 

Training of MaSIF-search 

MaSIF-search was trained on a database of 6001 protein-protein interactions in co-crystal structures 

sourced from PRISM [198], PDBBind [187], the ZDock benchmark [199], and SabDab [200].  A split 

between the training and testing set was performed by extracting the atoms at the interface for all 6001 

PPIs and computing a TM-score between all pairs using TM-align. A hierarchical clustering algorithm 

was used to cluster the pairwise matrix, which was used to split the data into a training set of 4944 PPIs 

and a testing set of 957 PPIs. As in MaSIF-site, each side of the interaction could consist of one or 

multiple chains (e.g. an antibody), and we refer to each side as a subunit. In each PPI, pairs of surface 

vertices within 1.0 Å of each other were selected as interacting pairs.  

MaSIF-search produces fingerprints for patches with a radius of up to 12.0 Å in geodesic distance from 

a central vertex, and is trained to make these patches similar for interacting patches and dissimilar for 

non-interacting patches (Fig. 3.1A, Supplementary Fig. S3.1). We find that MaSIF-search performs best 

when trained on interacting pairs that lie in the center of highly complementary interfaces and these 

pairs were filtered to remove points outside of the interfaces or in interfaces with poor complementarity 

(further described in Gainza et al [138]).  
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The MaSIF-search network receives as input the features of a patch from one of these pairs (the 

‘binder’), the inverted input features of its interacting patch (the ‘target’), and a patch randomly chosen 

from a different interface in the training set (the ‘random’ patch) (Supplementary Fig. S3.1). The neural 

network was trained on a Siamese neural network architecture to produce fingerprints that are similar 

for the ‘binder’ and ‘target’ patches while at the same time being dissimilar between ‘target’ and 

‘random’. Similarity and dissimilarity was measured as the Euclidean distance between the fingerprints. 

A total of 85,652 true interacting pair patches and 85,652 noninteracting pair patches were used for 

training/validation, and 12,678 true interacting and 12,678 noninteracting pairs were used for the 

testing set. 

Each of the 5 input features was computed in a separate channel consisting of a MaSIF geometric deep 

learning convolutional layer.  Then the output from all channels was concatenated, and a Fully 

Connected Layer was used to output a fingerprint of size 80. In each batch, 32 pairs of interacting 

patches and 32 pairs of non-interacting patches were used. Adam was used as the optimizer, and a 

learning rate of 10-3 was used. The d-prime cost function [203] was used as the loss function. MaSIF-

search was trained for 40 hours in a GPU, after which it was automatically killed, resulting in 260,000 

iterations of the data. The MaSIF-search neural network implementation contained a total of 66080 

trainable parameters and was implemented in Tensorflow. 

Patch alignment and IPA scoring 

In the MaSIF-search pipeline, surfaces are computed for each protein of interest, and both a MaSIF-

search fingerprint and a MaSIF-site prediction are computed for each surface vertex. All fingerprints 

within a user defined threshold for similarity to a target patch (defined at 1.7 by default) are then 

selected for a second-stage alignment and rescoring. In this step, the patch is extracted from the source 

protein, along with all the fingerprints for all vertices in the patch (since they were all precomputed). 

The random sample consensus (RANSAC) algorithm implemented in Open3D [204] then uses the 

fingerprints of all the vertices in the target and matched patch to find an alignment between the 

patches. The RANSAC algorithm chooses three random points in the binder patch and computes the 

Euclidean distance of the surface MaSIF-search fingerprints between these points and all those points 

in the target patch; the most similar fingerprints provide the RANSAC algorithm with 3 

correspondences to compute a transformation between the patches.  

Once a candidate patch is aligned, the interface post-alignment (IPA) neural network (NN) is used to 

score the alignment with a score between 0 and 1 on the prediction of whether the alignment 

corresponds to a real interaction or not. Upon patch alignment, each vertex in the candidate patch is 

matched to the closest vertex in the target patch, and three features are computed per pair of vertices: 

(i) 1/(distance), the euclidean distance in 3D between the vertices; (ii) the product of the normal 

between the vertices, and (iii) 1/(fingerprint distance),  the euclidean distance between the MaSIF-

search fingerprints between the two vertices. A fourth feature, which we call ‘penetration’ is computed 

by computing the distance between each of the vertices in the candidate patch and all the atoms in the 

target. Thus, the IPA NN receives as input a vector of size Nx4, where N is the number of vertices in the 
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candidate patch (up to 200 vertices). The IPA NN consists of 5 layers of 1D convolution, followed by a 

Global Averaging Pool layer and 7 fully connected layers. The 5 layers of 1D convolution contain 16, 32, 

64, 128, and 256 filters, respectively, with a kernel size of 1 and a stride of 1, and each layer was followed 

by a batch normalization layer and a Rectified Linear Unit layer. The fully connected layers contained 

128, 64, 32, 16, 8, 4, and 2 dimensions. Each fully connected layer was also followed by a Rectified Linear 

Unit layer, with the exception of the last layer which was followed by a softmax layer. The network was 

optimized with Adam [201], with a learning rate of 10-4 and a categorical cross entropy loss function.  

The IPA NN was trained as follows. The same dataset used for MaSIF-search, containing 4944 PPIs and 

a testing set of 957 PPIs was used. For each protein pair, one protein was chosen as the target, and the 

patch at the center of the interface was selected as the target patch. Then the partner protein along with 

10 randomly chosen other proteins were aligned to it. Any alignment of the true partner within 3 Å 

RMSD of the co-crystal structure was considered as a positive. Any alignment from the true partner at 

greater than that RMSD or of any other protein was considered as a negative. Features were computed 

for all alignments and used for the IPA NN training. The IPA NN was trained with batches of 32 for 50 

epochs. 

Binding seed database - Alpha-helix seed library generation 

A snapshot of the non-redundant set of the PDB was downloaded and decomposed into alpha helices, 

removing all non-helical elements. The DSSP program [205] was used to label each residue according 

to their secondary structure. Fragments with 10 or more consecutive residues with a helical (‘H’) label 

assigned by DSSP were extracted. Each extracted helical fragment was treated as a monomeric protein, 

and surface features were computed for each one. MaSIF-search fingerprints and MaSIF-site labels 

were then computed for all extracted helices. MaSIF-seed uses both fingerprint similarity and interface 

propensity to identify suitable seeds. Ultimately, our binding seed database was composed of 

approximately 250 K helical motifs from which 140 M fingerprints were extracted. 

Binding seed database - Beta-strand seed library generation 

To collect beta-strand motifs, a snapshot of the non-redundant set of the PDB was preprocessed with 

the MASTER software [206] to allow for fast structural matches. Two template motifs, one consisting of 

two beta strands and one consisting of three beta strands, were deprived of loops and served as input 

to MASTER to find sets of structurally similar motifs that would ultimately become the motif dataset for 

MaSIF. The search allowed for a variable backbone length of 1-10 amino acids connecting the beta 

strands of the template. RMSD cutoffs were set at 2.1 Å and 3 Å for two-stranded and three-stranded 

beta sheets, respectively. Similar to the preparation of helical motifs, each beta fragment was treated as 

a monomeric protein and surface features were generated, followed by the generation of MaSIF-search 

fingerprints and MaSIF-site labels. Ultimately, our beta-strand binding seed database was composed 

of approximately 390 K motifs from which 260 M fingerprints were extracted. 
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Binding seed identification  

Based on the different modules within the MaSIF framework [138], we developed a novel pipeline to 

identify potential binding seeds to targets. For each target, first MaSIF-seed was used to label each point 

in the surface for the propensity to form a buried surface region. Then, a fingerprint was computed for 

the target site. Finally, after scanning the entire protein, the best patch was selected. In one case, the 

SARS-CoV-2 RBD, the fourth best site was selected as it was the site with the highest potential to disrupt 

binding to the natural receptor. Then, a MaSIF-search fingerprint was computed for the target patch, 

inverting the target features before inputting them to the MaSIF-search network. The Euclidean 

distances between the target fingerprint and the millions of fingerprints in the binding seed database 

were then computed, and all patches with a fingerprint distance below defined thresholds were 

accepted. In this paper the thresholds utilized were <2.0 for PD-L1, PD-1 and CTLA-4, and <1.7 for the 

RBD. 

Once fingerprints are matched, a second-stage alignment and scoring method uses the RANSAC 

algorithm as described above. After RANSAC produces an alignment, the IPA neural network classifies 

true binders vs. non-binders [138] and outputs an IPA score (described above). Those candidate 

binders with an IPA score of more than 0.90-0.97 in the neural network score were accepted. 

Computational benchmark - Helix:receptor motifs  

A set of transient interactions from PDBBind was scanned to identify proteins that bind to helical 

motifs. A binding motif was determined to be a helix if 80% of residues are helical and the total number 

of residues does not exceed 60. The selected complexes were filtered to remove pairs of PPIs with high 

homology and a set of 31 unique PPIs was used, subsequently MaSIF-search fingerprints and MaSIF-

site fingerprints were computed. MaSIF-seed was benchmarked against a hybrid pipeline of existing, 

fast, well-established docking tools on the dataset of helix:receptor proteins: PatchDock [207], ZDock 

[174,208], and ZRank2 [175]. For each helix:receptor pair, the helix from the co-crystal structure was 

placed along 1000 randomly selected helices from the motif database. Then the methods were 

benchmarked to evaluate their capacity to rank the correct helix from the co-crystal structure, with an 

alignment RMSD <3.0 Å from the conformation of the co-crystal structure, versus the remaining 1000 

helices. We note that each helix can potentially bind in many possible orientations, and in the case of 

methods that were not preceded by a MaSIF-site identification of the target site, the helix can bind on 

many sites on the receptor. The measured time for all methods included only the scoring time, except 

for MaSIF-seed where the alignment time was also included in the calculation. MaSIF-seed: All of 

MaSIF-seed’s neural networks (MaSIF-search, MaSIF-site and the IPA score) were retrained for this 

benchmark to remove helix:receptor pairs from the training set. In each case, MaSIF-site was used to 

identify the patch in the target protein with the highest interface propensity, and the fingerprint for the 

selected patch was compared to the fingerprints of all patches in the database. The rigid orientation of 

each helix in the benchmark was randomly rotated and translated prior to any alignment. Patches were 

discarded if their MaSIF-search fingerprint’s euclidean distance to that of the target site was greater 

than 1.7. After alignment, patches were further filtered if the IPA score was less than 0.96. 
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PatchDock+MaSIF-site: On each receptor protein, MaSIF-site was used to identify and label the target 

site, while PatchDock64 was used to dock all 1001 helices, setting the target site based on a specific 

residue using the ReceptorActiveSite flag in PatchDock. The PatchDock score was used to produce the 

ranking of all conformations for all 1001 helices. ZDock: Was run on standard parameters and its 

standard scoring was used similar to PatchDock. In the ZDock+MaSIF-site case, all residues outside of 

the MaSIF-site selected patch were blocked using the compute_blocked_res_list.sh provided in ZDock. 

ZDock+ZRank2: In this variant, the top 2000 results from ZDock with each of the 1001 peptides for each 

of the 31 receptors were re-scored using ZRank2. The ZRank2 score was then used to score all of the 

docking poses.  

Computational benchmark - Non-helix:receptor motifs 

The same set of transient interactions from PDBBind was filtered for proteins interacting through non-

helical motifs. The secondary structure types of the proteins were annotated with DSSP [205], followed 

by computing the contribution of helical segments (DSSP annotation of H, G, or I) to the interface. Only 

interfaces with less than 50% helical segments were selected. Additional filtering was performed by 

requiring a mean shape complementary at the interface of >0.55 and a maximum inscribed patch area 

of >150 Å2. From these native complexes, seeds were extracted by selecting residues within 4 Å distance 

to the receptor and extending the backbone of these residues on their N- and C-terminus until the DSSP 

annotation changed to capture complete secondary structure elements. In total 83 complexes were 

collected for the benchmark. 

The decoy set was constructed from 1000 randomly selected beta-strand seeds from the MaSIF-seed 

pipeline, containing 500 two-stranded and 500 three-stranded beta motifs. The benchmark was 

performed similarly to the helix:receptor benchmark described above with adapting the fingerprint’s 

euclidean distance cutoff to a value of 2.5 and allowing MaSIF-seed to evaluate the top two sites in each 

receptor. These modifications were performed for this benchmark as it increased the accuracy while 

still performing at least 20 times faster than comparable competing tools. Only ZDock and 

ZDock/ZRank2 were benchmarked in the non-helical benchmark as ZDock/ZRank2 was shown to be 

the best in the helical benchmark.  

Clustering of seed solutions 

In each design case all of the top matched seeds were clustered by first computing the root mean square 

deviation between all pairwise helices, computed on the C-alpha atoms of each pair of helices, in the 

segment overlapping over the buried surface area. The pairwise distances were then clustered using 

metric multidimensional scaling [209] implemented in scikit-learn [191]. 

Seed and interface refinement 

For the “one-shot” protocol, seed candidates proposed by MaSIF were refined using Rosetta and a 

FastDesign protocol with a penalty for buried unsatisfied polar atoms in the scoring function [137]. Beta 

sheet-based seeds containing >33% contact residues found in loop regions were discarded. 33, 200, and 
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109 refined seeds were selected based on the computed binding energy,  shape complementarity, 

number of hydrogen bonds and counts of buried unsatisfied polar atoms for PD-1, CTLA-4, and PD-

L1, respectively. 

Seed grafting and computational design 

A representative seed was selected from each solution space, and then matched using Rosetta 

MotifGraft to a database of 1300 monomeric scaffolds in the case of the RBD and PD-L1 designs. For 

the optimized protocol selected seeds were grafted to a database of 4,347 small globular proteins (<100 

amino acids), originating from the PDB [117], two computationally designed miniprotein databases 

[74,75] and one AF2 proteome prediction database [31,210]. Seeds were cropped to the minimum 

number of side chains making contact before grafting. Moreover, loop regions from beta sheet-based 

seeds were completely removed. After side-chain grafting by Rosetta (v3.13), a computational design 

protocol was used to design the remaining interface. Final designs were selected for experimental 

characterization based on the computed Rosetta binding energy, the shape complementarity, number 

of hydrogen bonds and counts of buried unsatisfied polar atoms. 

Yeast surface display of single designs 

DNA sequences of designs were purchased from Twist Bioscience containing homology overhangs for 

cloning. DNA was transformed with linearized pCTcon2 (Addgene #41843) or a modified pNTA vector 

with V5 tag into EBY-100 yeast using the Frozen-EZ Yeast Transformation II Kit (Zymo Research). 

Transformed yeast were passaged once in minimal glucose medium (SDCAA) before induction of 

surface display in minimal galactose medium (SGCAA) overnight at 30°C. Transformed cells were 

washed in cold PBS with 0.05-0.1% BSA and incubated with the binding target for 2 hours at 4°C. Cells 

were washed once and incubated for an additional 30 minutes with appropriate antibodies 

(Supplementary Table S3.5). Cells were washed and analyzed using a Gallios flow cytometer (Beckman 

Coulter). For quantitative binding measurements, binding was quantified by measuring the 

fluorescence of a PE-conjugated anti-human Fc antibody (Invitrogen) detecting the Fc-fused protein 

target. Yeast cells were gated for the displaying population only (V5, Myc or HA positive) 

(Supplementary Fig. 3.9A). 

Yeast libraries  

Combinatorial sequence libraries were constructed by assembling multiple overlapping primers 

(Supplementary Table S3.6) containing degenerate codons at selected positions for combinatorial 

sampling of the binding interface, core residues or hydrophobic surface residues. Primers were mixed 

(10 μM each) and assembled in a PCR reaction (55 °C annealing for 30 sec, 72 °C extension time for 1 

min, 25 cycles). To amplify full-length assembled products, a second PCR reaction was performed, with 

forward and reverse primers specific for the full-length product. For SSM libraries and oligo pools, DNA 

was ordered from Twist Biosciences and amplified with primers to give homology to the 

pCTcon2/pNTA backbone. In all cases, the PCR product was desalted and used for transformation.  
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Yeast surface display of libraries 

Combinatorial libraries, SSM libraries, and oligo pools were transformed as linear DNA fragments in a 

5:1 ratio with linearized pCTcon2 or pNTA_V5 vector as described previously into EBY-100 yeast [111]. 

Transformation efficiency generally yielded around 107 transformants per cuvette. Transformed yeast 

were passaged at least once in minimal glucose medium (SDCAA) before induction of surface display 

in minimal galactose medium (SGCAA) overnight at 30°C. Induced cells were labeled in the same 

manner as the single designs. Labeled cells were washed and sorted on a Sony SH800 cell sorter 

(acquired with LE-SH800SZFCPL Cell Sorter software, v2.1.5). For combinatorial libraries and oligo 

pool libraries, sorted cells were grown in SDCAA and prepared similarly for two additional rounds of 

sorting. After the third sort cells were plated on SDCAA agar and single colonies were sequenced. SSM 

libraries were sorted once, collecting both binding and nonbinding populations, and grown in liquid 

culture for plasmid preparation. For flowcytometry analysis of single clones, data were collected with a 

Galios (Beckman Coulter) cytometer using Kaluza software (Beckman Coulter, v1.1.20388.18228). 

Flowcytometry data were analyzed with FlowJo software (BD Bioscience, v10.8.1). 

MiSeq Sequencing 

After sorting, yeast cells were grown in SDCAA medium, pelleted and plasmid DNA was extracted using 

Zymoprep Yeast Plasmid Miniprep II (Zymo Research) following the manufacturer’s instructions. The 

coding sequence of the designed variants was amplified using vector-specific primer pairs, Illumina 

sequencing adapters and Nextera barcodes were attached using an additional overhang PCR, and PCR 

products were desalted with Qiaquick PCR purification kit (Qiagen) or AMPure XP selection beads 

(Beckman Coulter). Next generation sequencing was performed using Illumina MiSeq with 

appropriate read length, yielding between 0.5-1 million reads/sample. For bioinformatic analysis, 

sequences were translated in the correct reading frame, and enrichment values were computed for 

each sequence. 

Protein expression and purification 

DNA sequences were ordered from Twist Bioscience and Gibson cloning or T7 ligation used to clone 

into bacterial (pET21b) or mammalian (pHLSec) expression vectors. Protein binder and target 

constructs are listed in Supplementary Table S3.2 and S3.7 respectively. Mammalian expressions were 

performed using the Expi293TM expression system from Thermo Fisher Scientific (A14635). Cells were 

authenticated and tested negative for mycoplasma contamination (qPCR) by the provider and no 

additional authentication and tests have been done. Supernatant was collected 6 days post transfection, 

filtered, and purified. E. coli expressions were performed using BL21 (DE3) cells and IPTG induction (1 

mM at OD 0.6-0.8) and growth overnight at 16-18° C. Pellets were lysed in lysis buffer (50 mM Tris, pH 

7.5, 500 mM NaCl, 5% Glycerol, 1 mg/ml lysozyme, 1 mM PMSF, and 1 μg/ml DNase) with sonication, 

the lysate clarified, and purified. All proteins were purified using an ÄKTA pure system (GE healthcare) 

with either Ni-NTA affinity or protein A affinity columns followed by size exclusion chromatography. If 
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TEV cleavage was necessary, fused proteins were dialyzed overnight at 4°C (dialysis buffer 20 mM Tris 

pH 7.5, 150 mM NaCl, 10% glycerol) with excess TEV enzymes. 

Surface plasmon resonance 

SPR measurements were performed on a Biacore 8K (Cytiva, software v4.0.8.19879) with HBS-EP+ as 

running buffer (10 mM HEPES pH 7.4, 150 mM NaCl, 3 mM EDTA, 0.005% v/v Surfactant P20, GE 

Healthcare). Ligands were immobilized on a CM5 chip (GE Healthcare # 29104988) via amine coupling. 

500-1000 response units (RU) were immobilized and designed proteins were injected as an analyte in 

serial dilutions. The flow rate was 30 μl/min for a contact time of 120 s followed by 800 s dissociation 

time. After each injection, the surface was regenerated using 3 M magnesium chloride (for PD-L1) or 

10 mM glycine, pH 3.0 (for RBD). Data were fit with 1:1 Langmuir binding model within the Biacore 8K 

analysis software (Cytiva, v4.0.8.19879).  

Biolayer Interferometry 

BLI measurements were performed on a Gator BLI system using the GatorOne software (Gator Bio, 

v2.7.3.0728). The running buffer was 150 mM NaCl, 10 mM HEPES pH 7.5. Fc-tagged designs were 

diluted to 5 ug/mL and immobilized on the tips (1-2 nm immobilized). The loaded tips were then 

dipped into serial dilutions of either spike protein or RBD. Curves were fit using a 1:1 model on the 

Gator software after subtracting the background. 

SEC-MALS 

Size exclusion chromatography (controlled by Chromeleon software; ThermoFischer Sci, v7.2.10) with 

an online multi-angle light scattering device (miniDAWN TREOS, Wyatt) (SEC-MALS) was used to 

determine the oligomeric state and molecular weight for the protein in solution. Purified proteins were 

concentrated to 1 mg/ml in PBS (pH 7.4), and 100 μl of the sample was injected into a Superdex 75 

300/10 GL column (GE Healthcare) with a flow rate of 0.5 ml/min, and UV280 and light scattering signals 

were recorded. Molecular weight was determined using the ASTRA software (Wyatt, v8.0.2.5).  

Circular Dichroism 

Far-UV circular dichroism spectra were measured using a Chirascan™ spectrometer 

(AppliedPhotophysics) in a 1-mm path-length cuvette. The protein samples were prepared in a 10 mM 

sodium phosphate buffer at a protein concentration between 20 and 50 μM. Wavelengths between 200 

nm and 250 nm were recorded with a scanning speed of 20 nm min−1 and a response time of 0.125 secs. 

All spectra were averaged two times and corrected for buffer absorption. Temperature ramping melts 

were performed from 20 to 90°C with an increment of 2°C/min. Thermal denaturation curves were 

plotted by the change of ellipticity at the global curve minimum to calculate the melting temperature 

(Tm).  
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Cell binding analysis  

Karpas-299 cells were purchased from Sigma (06072604-1VL) with the approval of the European 

Collection of Authenticated Cell Cultures (ECACC). Cells were authenticated (PCR) and tested negative 

for mycoplasma contamination (PCR & Vero indicator) by the provider. For flow cytometry analysis of 

DBL1 designs binding to PD-L1 on Karpas-299 cells, 2x105 cells were incubated with 50 μL Fc Block (BD 

Biosciences, cat #553142) that was pre-diluted 1:50 in FACS buffer (PBS (Gibco/Thermofisher scientific, 

cat #10010-015) and 2% BSA (Sigma Aldrich, cat #A7906)) for 15 minutes on ice. Samples were 

subsequently supplemented with 50 μL of PD-L1 binders prepared as follows: high-affinity PD-1_Fc 

serially diluted 1:2 for 20 dilutions in FACS buffer, starting at 62.5 μg/ml; DBL1_03_Fc and DBL1_04_Fc 

serially diluted 1:2 for 16 dilutions in FACS buffer, starting at 125 μg/ml; DBL1_03_KO_Fc and PD-1_Fc 

serially diluted 1:2 for 14 dilutions in FACS buffer, starting at 125 μg/ml. The cell solutions were 

incubated for 30 minutes. Samples were then washed three times, resuspended in 100 μL of FACS buffer 

containing secondary R-PE Goat Anti-Human IgG antibody diluted 1:100 (Jackson ImmunoResearch, 

cat #109-117-008), and incubated for 30 minutes. Samples were then washed three times to remove 

unbound antibody, resuspended in 100 μL of FACS buffer, and analyzed using LSR Fortessa flow 

cytometer (BD Biosciences). 

Protein purification for crystallography 

PD-L1 extracellular domain fragment (Uniprot #Q9NZQ7; from F19 to R238) was over-expressed as 

inclusion bodies in the BL21 (DE3) strain of E. coli. Renaturation and purification of PD-L1 was 

performed as previously described[211]. Briefly, inclusion bodies of PD-L1 was diluted against a 

refolding buffer (100 mM Tris, pH 8.0; 400 mM L-Arginine; 5 mM EDTA-Na; 5 mM Glutathione (GSH); 

0.5 mM Glutathione disulfide (GSSG)) at 4°C for 24 h. Then the PD-L1 was concentrated and exchanged 

into a buffer of 20 mM Tris-HCl (pH 8.0) and 15 mM NaCl and further analyzed by HiLoad 16/60 

Superdex 75 pg (Cytiva) chromatography. PD-L1 binder designs, DBL1_03 and DBL2_02, were over 

expressed in E. coli as inclusion bodies. Renaturation and purification of the PD-L1 binder designs was 

performed as the PD-L1 protein. PD-L1 and binder designs were then mixed together at a molar ratio 

of 1:2 and incubated for 1h on ice. The binder/PD-L1 complex was further purified by HiLoad 16/60 

Superdex 75 pg (Cytiva) chromatography. 

Data collection and structure determination 

For crystal screening, 1 μl of binder/PD-L1 complex protein solution (10 mg/mL) was mixed with 1 μl 

of crystal growing reservoir solution. The resulting mixture was sealed and equilibrated against 100 μl 

of reservoir solution at 4° or 18°C. Crystals of the DBL1_03/PD-L1 complex were grown in 0.2 M 

potassium formate and 20% w/v PEG 3350. Crystals of the DBL2_02/PD-L1 complex were grown in 0.2 

M potassium/sodium tartrate, 0.1 M Bis Tris propane, pH 6.5 and 20 % w/v PEG 3350. Crystals were 

flash-cooled in liquid nitrogen after incubating in anti-freezing buffer (reservoir solution containing 

20% (v/v) glycerol). Diffraction data of crystals were collected at Shanghai Synchrotron Radiation 

Facility (SSRF) BL19U. The collected intensities were subsequently processed and scaled using the XDS 

package [212] (vJan 10 2022, BUILT=20220220). The structures were determined using molecular 
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replacement with the program Phaser MR in PHENIX (v1.20.1-4487), with the reported PD-L1 structure 

(PDB: 3RRQ) as the search model [213]. COOT (v0.9.5) and PHENIX (v1.20.1-4487) were used for 

subsequent model building and refinement [214,215]. The stereochemical qualities of the final model 

were assessed with MolProbity [216] (v4.5.1). Data collection details and refinement statistics are in 

Supplementary Table S3.8. 

Luminex binding assays 

Luminex beads were prepared as previously published [179]. Briefly, MagPlex beads were covalently 

coupled to SARS-CoV-2 spike proteins of different variants. The serial dilutions of the antibodies or 

design were performed and binding curves were fit using Prism (GraphPad, v9) nonlinear four 

parameter curve fitting analysis of the log(agonist) versus response. 

Live virus neutralization assays 

The virus neutralization assays were performed as previously published [179]. Briefly, VeroE6 cells were 

seeded in 96 well plates the day before the infection. The DBR3_03-Fc compound in serial dilutions was 

mixed with omicron-spike virus and incubated at 37°C for one hour before addition to the cells. The 

cells with virus were kept a further 48 hours at 37°C, then washed and fixed for crystal violet staining 

and analysis. Neutralization EC50 calculations were performed using Prism (GraphPad, v9) nonlinear 

four parameter curve fitting analysis. 

Cryo-EM preparation and data acquisition 

For cryo-electron microscopy investigations, 3.0 μl aliquots at a concentration of 0.87 or 1.0 mg/ml of 

the spikeD614G-binder sample or the spikeOmicron-binder sample were applied onto glow-discharged 

carbon-coated copper grids (Quantifoil R2/1, 400 mesh), blotted for 4.0-8.0 s, and flash-frozen in a 

liquid ethane/propane mixture cooled to liquid nitrogen temperature, using Vitrobot Mark IV (Thermo 

Fisher Scientific) with 100% humidity and the sample chamber operated at 4 °C. Grids were screened 

in a Thermo Fisher Scientific (TFS) 200kV Glacios cryo-EM instrument. Suitable grids were transferred 

to TFS Titan Krios instruments for data collection. Cryo-EM data-collection statistics of this study are 

summarized in Supplementary Table S3.9. The spikeD614G-binder data composed of 20,794 movies was 

collected on a Titan Krios G4 microscope, equipped with a cold-FEG electron source and operated at 

300 kV acceleration voltage. Movies were recorded with the automation program EPU (ThermoFisher 

Sci., v2.12.1) on a Falcon4 direct electron detector in counting mode at a physical pixel size of 0.40 Å 

per pixel and a defocus ranging from -0.8 to -2.0 μm. Exposures were collected as electron event 

recordings (EER) with a total dose of 80 e−/Å2 over approximately 3 seconds, corresponding to a dose 

rate of 4.53 e-/px/s. For spikeOmicron-binder data, 22,266 movies were recorded on a Titan Krios G4 

microscope, equipped with TFS SelectrisX imaging filter and Falcon4 camera. Exposures were collected 

at 60 e−/Å2 total dose with a physical pixel size of 0.726 Å per pixel over approximately 6 seconds, 

corresponding to a dose rate of 5.4 e-/px/s, at a defocus range of -0.8 to -2.5 μm. Data was analyzed by 

cryoSPARC (v3.3.1) [217]. 
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Cryo-EM image processing 

Details of the image processing are shown in Supplementary Figures S3.13-3.15, S3.17-3.19 and 

Supplementary Table S3.9. Recorded movies in EER format were imported into cryoSPARC (v3.3.1) 

[217] and gain-normalized, motion-corrected and dose-weighted using the cryoSPARC 

implementation of patch-based motion correction. CTF estimation was performed using the patch-

based option in cryoSPARC. A small set of particles were manually selected and followed by 2D 

classification to create a 2D template for the subsequent automatic particle picking. For the sample of 

spikeD614G in complex with the de-novo designed binder, 832,816 particles were automatically selected 

by template-based picker and subjected to three rounds of 2D classifications, resulting in a particle set 

of 184,763 particles. The particles were grouped into three classes, using the ab-initio and hetero-refine 

implementations in cryoSPARC. The best 3D class composed of 97,804 particles was further subjected 

to another round of ab-initio reconstruction and hetero-refinement. The well-resolved class consisting 

of 67 432 particles resulted in a 2.6 Å overall resolution global map in C1 symmetry. The binder-RBD 

region was refined with a soft mask, resulting in a local map at 3.1 Å resolution. For the data processing 

of the spikeOmicron-binder complex sample, 1,820,333 particles were picked with the cryoSPARC 

template-based picker. After two rounds of 2D classifications, 981,561 particles were selected and 

subjected to ab-initio reconstruction and hetero-refinement, resulting in a set of 595,599 particles. 

Subsequently, the selected particle set was classified by multiple rounds of 3D classifications in 

cryoSPARC. The best-resolved 3D class containing 50,758 particles resulted in a 2.8 Å overall resolution 

map and the binder-RBD region was further improved by performing focused refinement with a soft 

mask, resulting in a map at 3.3 Å resolution. Resolution for all 3D maps was estimated based on the 

Fourier shell correlation (FSC) with a cutoff value of 0.143.   

For model building of the spikeD614G-binder, the previous model (PDB: 7BNO, spikeD614G) was used for 

the region of spikeD614G as a starting model. The model was rigid-body fit into the cryo-EM density in 

UCSF Chimera [218] and adjusted manually in Coot 0.9.4 [219]. De novo building for the binder parts 

was performed manually in Coot 0.9.4. For building the spikeOmicron-binder structure, the model (PDB: 

7QO7, spikeOmicron) was fitted into the density and rebuilt and adjusted manually, using UCSF Chimera 

and Coot 0.9.4. After the structural rebuilding, all the atomic models were refined using the Phenix 

(v1.19.2-4158) implementation of real.space.refine with general structural restraints [220,221]. 

Comprehensive validation (cryo-EM), model quality assessment and statistics are in Supplementary 

Table S3.9. EM densities and atomic models were visualized in ChimeraX (UCSF, v1.3) [222] and Pymol 

(Schrödinger, v2.0). 

Data availability 

Cryo-EM maps were deposited in the Electron Microscopy Data Bank under the access codes of EMD-

14947 (spikeD614G-binder full and spikeD614G-binder local maps), EMD-14922 (spikeOmicron-binder full), 

and EMD-14930 (spikeOmicron-binder local). Atomic models were deposited in Protein Data Bank under 

the access codes of PDB-7ZSS (spikeD614G-binder), PDB-7ZRV (spikeOmicron-binder full) and PDB-7ZSD 

(spikeOmicron-binder local). Crystal structures have been deposited in the Protein Data Bank under 
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accession codes 7XYQ (DBL1_03/PD-L1 complex) and 7XAD (DBL2_02/PD-L1 complex). The 

PDBbind database (2018 release), PRISM database, ZDock benchmark and SabDab database are 

available with the following links respectively: http://pdbbind.org.cn/index.php, 

http://cosbi.ku.edu.tr/prism,   https://zlab.umassmed.edu/benchmark/ and 

http://opig.stats.ox.ac.uk/webapps/sabdab. The scaffold database generated for grafting the seed 

provided by MaSIF-seed is available at https://zenodo.org/record/7643697#.Y-z533ZKhaQ  

Code availability 

MaSIF-seed and the Rosetta design scripts are available at https://github.com/LPDI-EPFL/masif_seed  
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3.6 Supplementary materials 

 

Supplementary	Figure	S	3.1	:	Overview	of	the	neural	network	architectures	used	in	the	MaSIF	protocols. 
A. General MaSIF framework. Molecular surfaces are decomposed into patches which are annotated with chemical and shape features. The MaSIF network translates these input features into fingerprints that describe the original surface patch. B. MaSIF-site neural network. MaSIF-site predicts partner-independent protein interface propensities based on per-vertex chemical and shape features of the protein surface. C. MaSIF-search neural network. MaSIF-search embeds protein patches into a space where complementary patches are close to each other. The network was trained on discriminating interacting patches from non-interacting protein surface patches. The network uses MaSIF fingerprints to identify which are compatible and therefore to predict likely interacting proteins. D. Interface post-alignment (IPA) scoring neural network. The IPA scoring neural network enables the scoring of protein interfaces based on several input features: fingerprint distance between contacting points, 3D distance of corresponding points, normal dot product, and the distance between surface points in the seed and the closest atom in the target, which we call ‘penetration’. 
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Supplementary	Figure	S	3.2	:	Modeling	buried	surfaces	as	radial	patches. A. Histogram of the patch areas of thousands of randomly selected protein patches with a fixed radius of 12 A. B. Histogram of the area of the buried surface area on 1380 dimeric PPIs. We note that areas are computed for only one of the proteins (i.e. each subunit in a PPI is computed separately), and that we used the solvent excluded surface area, while other authors report buried areas on the solvent accessible area that include the buried surface area of both proteins (see methods). 
C. Size of the maximum inscribed radial patch for the 1380 proteins (see methods). Patch area for the radius used here (12 A), using a set of 30,000 randomly selected patches. D. Example of the buried interface area for two well known, high affinity binders, Immunity Protein IM9 (PDB ID: 1EMV) and the protein Barnase (PDB ID: 1BRS). The buried interface of each protein when bound to its partner is shown in red. The maximum inscribed radial patch's circumference is shown in black, and the circumference of a patch with radius 12 A is shown in green.  
E. Histogram of similarities between MaSIF-search fingerprint similarity between: (blue) pairs of patches that are co-crystallized from transient PPIs, with the fingerprint computed for the patch centered on the largest inscribed radial patch, and (orange) pairs of patches where one was taken from the center of the interface of a random PPI and the other was taken from a random patch surface. 
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Supplementary	Figure	S	3.3	:	Overview	of	helical	and	non-helical	seeds	used	in	the	recovery	benchmark. Examples of A. helical seed, B. non-helical seeds that were extracted for the recovery benchmark.	
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Supplementary	Figure	S	3.4	:	MaSIF-seed	benchmarking	for	the	discrimination	of	helical	or	non-helical	
binding	motifs.	A non-redundant set of 31 helical and 83 non-helical fragments that bind to known protein receptors was selected as a benchmark set to evaluate MaSIF-seed’s capacity to recover true binding motifs from decoys, and to correctly rank them among the top results. To generate the decoy set, a non-redundant set of all protein chains in the Protein Data Bank was decomposed into continuous helical segments (left) and two/three-stranded beta sheets (right), resulting in over 250K helical and over 380K beta motifs, respectively. One thousand of these motifs each were randomly selected to act as decoys in the respective benchmarks. The surfaces for the two sets of 1000 motifs were computed and decomposed into radial patches and for each patch a fingerprint was computed. Recovered complexes were considered correct if an iRMSD < 3 A was obtained. A comparable procedure was applied to the benchmark tools.   
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Supplementary	Figure	S	3.5	 :	Analysis	of	 successful/failed	helical	benchmark	cases	and	 comparison	
between	MaSIF-seed	and	ZDock/ZRank2	performance. A-B. Plotting of Top 1, Top 10, Top 100 and failed cases for MaSIF-seed and ZDock/ZRank2, showing the maximum circumscribed patch area in the buried interface (y-axis) and the median shape complementarity for vertices of that patch (x-axis) for a, MaSIF-seed, and b, ZDock/ZRank2. C. Comparison of cases solved by only MaSIF-seed, only ZDock/ZRank2, or both MaSIF-seed and ZDock/ZRank2 in the Top 1, top 10 or Top 100 rank. D. Analysis of two cases that showed both a large circumscribed patch and high complementarity at that patch where MaSIF-seed failed. Left (Failed case 1) shows the BHRF1:Bak BH3 complex (PDB ID: 2XPX); right (Failed case 2) shows proteinase A complexed with a IA3 mutant (PDB ID: 1G0V). In both cases, MaSIF-seed failed because it identified a different site as the top site, but increasing the number of sites explored to the top two resulted in successful predictions. The white dots on the surface denote the predicted site patches.  
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Supplementary	Figure	S	3.6	 :	MaSIF-site	 target	site	prediction	on	SARS-CoV-2	RBD,	PD-L1,	PD-1,	and	
CTLA-4. Surface mode shows a MaSIF-site per-surface-vertex regression score on the propensity of each point on the surface to form an interface ranging from 0 (blue) to 1 (red) a-c, Predictions on each target, with the natural ligand of the target shown in cartoon representation as a reference. The structures highlight the predicted site and the bottom row shows a 180 degree rotation. A. MaSIF-site prediction on SARS-CoV-2 RBD (PDB ID: 6M17), with the RBD shown in surface and the ACE2 in beige. B. Prediction on PD-L1 (PDB ID: 5JDS), with PD-1 shown in purple. C. Prediction on PD-1 (PDB ID: 4ZQK) with the natural binder PD-L1 shown in cyan. D. Prediction on CTLA-4 (PDB ID: 5GGV) with the natural binding partner B7 (PDB ID: 1I8L) shown in light green.  
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Supplementary	Figure	S	3.7	:	RBD-binder	metrics	for	up-	and	down-orientations. A. Distribution of the IPA scores for the seeds of the up- and down-orientations and respective cluster sizes. B. Interface metrics (n=1) of the DBR3_01 model in complex with ACE2 for the up- and down-orientations were computed using Rosetta’s interface analyzer. The following Rosetta metrics are shown: predicted ddG = change in Rosetta energy of separated versus complexed binding partners, interface ΔSASA = solvent accessible surface area buried at the interface, hydrophobic ΔSASA = solvent accessible surface area buried at the interface that is hydrophobic, polar ΔSASA = solvent accessible surface area buried at the interface that is polar, shape complementarity = Lawrence and Coleman shape complementarity of the interface surfaces, # interface residues = number of residues at the interface, # interface Hbonds = number of hydrogen bonds across the interface, ΔunsatHbonds = number of buried, unsatisfied hydrogen bonds at the interface, interface per residue energy = average Rosetta energy of each interface residue, packstat = Rosetta’s packing statistic score for the interface ranging from 0 (low packing) to 1 (high packing).  
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Supplementary	Figure	S	3.8	:	Binding	seed	identified	by	MaSIF	tested	as	a	synthetic	peptide. A. Structure of the synthesized binding seed. B. MaSIF prediction of seed (lavender) binding to RBD (wheat). C. SPR data of high concentration of the peptide flowing over RBD. No binding signal is observed for the peptide. 
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Supplementary	Figure	S	3.9	:	RBD-binder	designs	displayed	on	yeast. A. The yeast display protocol utilizes PE to label binding and FITC to label expression. Yeast appearing in the double positive quadrant are considered potential binders and sorted for enrichment. B. Pools of approximately 30 designs were displayed on the surface of yeast and the highest binding populations (red box) sorted for further analysis.	C. Schematic of RBD (wheat) bound to the various members of the library (transparent silhouettes and purple for DBR3_01) and ACE2 (red) overlapping with the designed binders. D. Individual designs DBR1-DBR20. E. DBR3_01 design displayed on yeast binds to RBD-Fc (left panel) but the binding is blocked when the RBD-Fc is preincubated with an excess of ACE2, indicating a competitive binding mode. F. A point mutant in the binding interface (DBR3_01_RR) and the original scaffold protein (WT_scaffold) show lower binding signal than DBR3_01 with 1 μM RBD-Fc, indicating that the design is engaging the RBD with the predicted interface.  
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Supplementary	 Figure	 S	 3.10	 :	 Directed	 Library	 for	 DBR3_01. A. Position of residues included in a combinatorial library to improve binding affinity. B. Sequence logo plot of specific mutations allowed within the library. The sequences list the residues mutated in DBR3_01 (highlighted in blue) and the mutations gained through the library in DBR3_02 (green). 
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Supplementary	Figure	S	3.11	:	SSM	of	DBR3_02. A. Heat maps of DBR3_02 SSM at two concentrations of RBD-Fc. X indicates the original amino acid of DBR3_02. Red indicates an enrichment of the mutation in the binding population, blue indicates an enrichment in the non-binding population. Three positions, green box, were enriched in both concentrations. The positions of these mutations are highlighted on the DBR3_03 structure.  
B. Yeast display of DBR3_02 with mutations from the SSM introduced shows increase in affinity to RBD. 
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Supplementary	Figure	S	3.12	:	Biophysical	characterization	of	the	designed	binders. From left to right: The oligomeric status was determined via multi-angled light scattering (MALS). Folding was measured using circular dichroism. Thermal stability was determined by plotting the ellipticity at 218 nm at increasing temperatures. a, DBR3_03, b, DBL1_03, c, DBL2_02. 
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Supplementary	Figure	S	3.13	 :	Cryo-EM	data	processing	of	the	D614G	Spike-DBR3_03	complex.	Image processing workflows performed in CryoSPARC v.3.3.1. 
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Supplementary	Figure	S	3.14	:	Details	of	Cryo-EM	data	processing	for	D614G	Spike-DBR3_03	complex. 
A. A representative raw micrograph of the Cryo-EM sample for D614G Spike-binder complex. 20,794 micrographs of such similar quality were acquired for this complex. B. The 2D classes of the D614G Spike-binder complex. C. A representative 2D class. D. Direction distribution of the particle alignment and E. FSC curves of the final overall map.	F. Direction distribution and G. FSC curves of the locally refined map. H-I. Local resolution distribution of the overall and focused refined maps. 
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Supplementary	Figure	S	3.15	:	Highlights	of	the	Cryo-EM	densities	of	DBR3_03	with	D614G	spike. Cryo-EM densities are shown as surfaces. RBM (receptor binding motif) in blue with DBR3_03 in pink. The atomic model is shown as stick or ribbon representation. 
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Supplementary	Figure	S	3.16	:	DBR3_03	binding	is	sensitive	to	the	L452R	mutation	in	the	spike	protein. 
A. Luminex binding assay of DBR3_03 or Imdevimab (REGN10987) with beads functionalized with SARS-CoV-2 spike protein of indicated variants. DBR3_03 has an EC50 of 3.2e-8 g/mL with WT and 3.5e-8 g/mL with omicron. Imdevimab has an EC50 of 8.2e-8 g/mL with WT and 1.7e-7 g/mL with delta. The fits were calculated from technical replicates (n=2) using a nonlinear four parameter curve fitting analysis. B. The L452R mutation on the spike protein leads to a clash with the DBR3_03 binding. A L24G mutation is proposed to avoid the clash. C. BLI data with DBR3_03 (WT KD<0.1 nM, delta KD not detected) or DBR3_03_L24G (delta KD=6 nM, WT KD=6 nM) immobilized on the tips, dipped into spike protein of different variants.  
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Supplementary	Figure	S	3.17	:	Cryo-EM	data	processing	of	the	Omicron	Spike-DBR3_03	complex. Image processing workflows performed in CryoSPARC. 
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Supplementary	Figure	S	3.18	:	Details	of	Cryo-EM	data	processing	for	Omicron	Spike-DBR3_03	complex. 
A. A representative Cryo-EM micrograph for the D614G Spike-binder complex.  22,266 micrographs of such similar quality were acquired for this complex. B. The representative 2D classes of the omicron Spike-binder complex. C. Direction distribution of the particle alignment and D. FSC curves of the final overall map. E.	Direction distribution and F. FSC curves of the locally refined map. G-H. Local resolution distribution of the overall and focused refined maps. 
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Supplementary	Figure	S	3.19	:	Highlights	of	the	cryo-EM	densities	of	DBR3_03	with	Omicron	spike. Cryo-EM densities are shown as surfaces. RBM (receptor binding motif) in blue with DBR3_03 in orange. The atomic model is rendered as stick or ribbon representation.  
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Supplementary	Figure	S	3.20	:	Planarity	of	the	targeted	interface	sites. A.	Buried interface on PD-L1 upon complex formation with PD-1. B. (Top) PD-L1 predicted buried interface, with selected target patch marked with a green contour. (bottom) View of the selected target patch to show its planarity. C. Plotting of the planarity of each of 1068 dimeric protein interfaces. Y-axis: error in multidimensional scaling when flattening the patch from 3D to 2D. X-axis: ranking of each protein according to the planarity value with respect to the dataset of 1068 dimeric protein interfaces. The PD-L1 interface targeted in this work is marked with a red star, SARS-CoV-2 with a gold triangle, PD-1 with a blue X, and CTLA-4 with a magenta circle.  
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Supplementary	Figure	S	3.21	:	Clusters	of	putative	binding	seeds	identified	by	MaSIF-seed	docked	on	the	
PD-L1	 surface	 (PDB	 ID:	5JDS). 140 million patches from ~250,000 helices extracted from the PDB were compared and docked to the predicted interface in PD-L1 using MaSIF-seed. The top scoring seeds were selected for further processing. Twelve-amino acid fragments of these seeds that occupied the largest buried surface were then clustered using metric multidimensional scaling of all pairwise RMSDs between all seeds. A.	Histogram of clusters, showing the prevalence of each orientation. B.	Binding seed clusters in the multidimensional scaling plot. A box is drawn around the center of each cluster and the picture shows the selected helix orientation for all points inside the box. The circled binding seed cluster shows the helix orientation of the seed used for the PD-L1 designs. A star symbol shows the PD-L1 seed used for the designs. 
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Supplementary	Figure	S	3.22	:	Binding	signals	of	initial	PD-L1	binder	designs.	Binding measured on the surface of yeast with 15 µM PD-L1-Fc. Comparison of DBL1_01 and DBL2_01 with corresponding interface mutants. 
 

 

Supplementary	Figure	S	3.23	:	Composition	and	outcome	of	yeast	display	libraries. A. Position of targeted residues in the structure of DBL1_01 to improve binding affinity. Logo plot of the allowed mutations in the library and alignment of initial design with library enriched design. B. Position of targeted residues in the structure of DBL1_02 to improve core packing. Logo plot of the allowed mutations in the library and alignment of DBL1_02 with library enriched design. C. Position of targeted residues in the structure of DBL2_01 to improve binding affinity and solubility. Logo plot of the allowed mutations in the library and alignment of initial design with library enriched design. Hotspot residues red, targeted residues light blue, mutated residues dark blue. 
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Supplementary	Figure	S	3.24	 :	Complete	SSM	 library	of	DBL1_03	and	 cell	binding	data. A. Structural representation of all positions sampled in the SSM library (light blue). The four hotspot residues (red) were also sampled. Three positions were mutated in DBL1_04 (dark blue). B. Outcome of the entire SSM library. Blue indicates enrichment in the binding population, while red shows enrichment in the non-binding population.  
C. Binding of DBL1_03 and DBL1_04 to KARPAS299 cells expressing PD-L1 compared to binding of WT PD-1, a high affinity version of PD-1 (PD-1_HA)35 and a V12R mutation of DBL1_03 (KO). All proteins contained a Fc domain.  
 

 

Supplementary	Figure	S	3.25	:	Overview	of	DBL2_03	SSM	library. A. Structural representation of all positions sampled in the SSM library (light blue). The four hotspot residues (red) were also sampled. Three positions were mutated in DBL2_04 (dark blue). Position 35 was not mutated in DBL_04, because all mutations in this position led to the inability of the soluble expression of the protein. B. Outcome of the entire SSM library. Blue indicates enrichment in the binding population, while red shows enrichment in the non-binding population. C. Binding affinities measured by SPR for the different versions of DBL2.  
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Supplementary	Figure	S	3.26	:	Electron	density	map	of	the	crystalized	DBL1_03	and	DBL2_02. A.	Crystal structure of DBL1_03 (green) in complex with PD-L1 (gray). Refined 2mFo-mFc electron density map of the binder, contoured at 1.0𝜎 , is rendered as a white surface. B. Crystal structure of DBL2_02 (blue) in complex with PD-L1 (gray). Refined 2mFo-mFc electron density map of the binder, contoured at 1.0𝜎 , is rendered as a white surface  
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Supplementary	Figure	S	3.27	:	Overview	and	comparison	between	PD-1	binders. A. PD-1 surface (blue) with the region targeted by PD-L1 (red) and the overlapping region targeted by DBP13_01 (yellow contour). 
B. Histograms of the binding signal (PE) measured on 3 yeast clones displaying designed binders against PD-1. Yeast cells were labeled with 500 nM PD-1-Fc (coloured) or secondary antibodies only (gray, negative control).  
C-D. Overview and close-up of DBP40_01 (a, pink) and DBP52_01 (b, blue) models in complex with PD-1 (gray). Interface seed residues similar to DBP13_01 are highlighted in red, while residues that are different are highlighted in orange. E. Seeds used to design DBP13_01 (green), DBP40_01 (pink) and DBP52_01 (blue) aligned with interface residues numbered. F. Sequence logo of the seed interface residues for the three PD-1 binders as numbered in e. 
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Supplementary	Figure	 S	3.28	 :	Competition	 and	 specificity	binding	 assay	of	 the	different	optimized	
binders	on	the	surface	of	yeast. A.	Competition between designed binders and a known protein binder (native binder or monoclonal Fab) in complex with the target structure. B. Flow cytometry histograms showing fluorescence signals on the surface of yeast displaying the different binders. Yeast were labeled with 500 nM or their respective ligand (blue), 500 nM of blocked ligand pre-incubated with 10-fold molar excess of Fab or high-affinity PD-1 (HA-PD-1) (orange) or labeled with secondary antibodies only (gray, Neg Ctrl). C.	Flow cytometry histograms showing fluorescence signal on the surface of yeast displaying the different binders and labeled with 500 nM of unrelated protein ligand (red) or labeled with secondary antibodies only (gray, Neg Ctrl). 
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Supplementary	Figure	S	3.29	 :	SSM	of	DBP13_01.	Heatmap	covering	all	positions	of	DBP13_01. Yeast displaying point mutants were analyzed by flow cytometry and subsequently binding and non- binding populations were sorted. For each mutation the log-ratio between the enrichment in binding versus non-binding populations was computed. Mutations in red highlight a deleterious effect on binding, while mutations in blue indicate an enrichment on the binding population.  
 

 

 

 

Supplementary	 Figure	 S	 3.30	 :	 AF	 structure	 prediction	 of	 DBP13_01	 in	 complex	 with	 PD-1.  
A. Comparison of the DBP13_01 computational model (green) and the AlphaFold multimer (AF) prediction (red) on the surface of PD-1 (blue). B. Buried interfaces in both DBP13_01 model (left) and AF prediction (right) are shown in red with an overlap yellow, a yellow contour of the footprint of the original model is shown for ease of comparison. C. Comparison of the DBL3_01 computational model (purple) and the AlphaFold Multimer (AF) prediction (gray) on the surface of PD-L1 (orange). 
  



Chapter 3  De novo design of protein interactions with learned surface ingerprints 

97 
 

 

Supplementary	Figure	S	3.31	:	DBL3_01	and	DBL4_01	comparison	and	DBL4_01	and	DBC2_01	knock-out	
mutants. A. Superposition between DBL3_01 (cyan) and DBL4_01 (orange) in complex with PD-L1 (gray). Multiple sequence alignment of the two designs is shown at the bottom. B. DBL4_01 (orange) in complex with PD-L1 (gray) with knock-out mutant highlighted in red. Flow cytometry histograms showing fluorescence signals on the surface of yeast displaying DBL4_01 or the knock-out mutant, compared to unlabeled yeast (Neg Ctrl). 
C. DBC2_01 (green) in complex with CTLA-4 (blue) with two knock-out mutants highlighted in red. Flow cytometry histograms showing fluorescence signals on the surface of yeast displaying DBC2_01 or the knock-out mutants, compared to unlabeled yeast (Neg Ctrl).   
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Supplementary	 Figure	 S	 3.32	 :	 Surface	 comparison	 between	 seeds,	 designs	 and	 final/predicted	
structures. Buried interfaces of models/structures when in complex with their target are colored in red, while non-buried regions colored in blue. The contour of the buried interface of the initial binding seed is drawn in green and is shown for the initial seed, for the designs and for the final/predicted structures.  
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Supplementary	Figure	S	3.33	 :	Surface	similarity	of	the	computational	designs,	experimentally	solved	
structures	or	AF	models	relative	to	initial	binding	seeds. Each complex was aligned to the target protein (RBD, PD-L1 and PD-1), and the surface similarity of the computational design, the experimental structure or AF model to the binding seed is shown in a gradient from white to red.  The buried surface area of the initial binding seed is shown by a green contour. The surface similarity was calculated in the same way as shape complementarity but normal vectors are not inverted during the process, i.e. the normal vectors for both surfaces point outwards of the molecular surface. Briefly, pairs of nearest vertices between the surface of the design or structure/model and the initial binding seed were computed based on the nearest neighbor of the aligned model. The shape similarity was evaluated by computing the dot product of the vertex pairs normal vectors yielding the enclosed angle and scaling it with the distance of the vertex pair. The resulting values are colored in a gradient from white to red and range from 0 (colored in white) indicating no similarity, to 1 (colored in red) indicating high similarity.  
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Supplementary	 Table	 S	 3.1	 :	 Extended	 Benchmark	 of	MaSIF-seed	 against	 other	 docking	methods. Recovering the native binder in the correct conformation from co-crystal structures for 31 helix-receptor complexes or 83 non-helix seed-receptor complexes, discriminating between 1000 decoys. aBenchmarked method. b-dNumber of receptors for which the method recovered the native binding motif (<3 A iRMSD) within the btop 1, ctop 10, and dtop 100 results. eNumber of receptors for which the method did not recover the native binding motif  in the top 100 results.  fAverage running time in minutes, excluding pre-computation time.		
 Methoda # in top 1b # in top 10c # in top 

100d >100e Avg time 
(m)f 

Helical 
seeds 

MaSIF- 
seed 

18 18 20 11 15 

PatchDock
+MaSIF-

site 
3 5 11 20 86 

ZDOCK 3 4 8 23 2715 

ZDOCK+
MaSIF- 

site 
1 6 10 21 2485 

ZDOCK+ 
ZRank2 

6 12 21 10 2946 

ZDOCK+ 
ZRank2+ 
MaSIF- 

site 

5 11 19 12 2710 

Non- 
helical 
seeds 

MaSIF- 
seed 

41 47 49 34 118 

ZDock 7 9 22 61 2206 

ZDock+ 
ZRank2 

21 33 45 38 2400 
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Supplementary	Table	S	3.2	:	Sequences	of	the	designed	proteins.	

Design  Sequence  # of mutations 
from WT 

# of mutations 
from design_01 

Mutations 

DBL1 native scaffold 
(PDB ID: 3S0D) 

MTIEELKTRLHTEQSVCKTETGI
DQQKANDVIEGNIDVEDKKVQL
YCECILKNFNILDKNNVFKPQGI
KAVMELLIDENSVKQLVSDCSTIS
EENPHLKASKLVQCVSKYKTMK
SVDFL 

    

DBL1_01 

TSIESLKWTLIVEQILCQLDTGID
QQKANDVIEGNIDVEDKKVQLY
CECILKAFHILDKNNVFKPQGIK
AVMELLIDENSVKQLVSDCSTISE
ENPHLKASKLVQCVSKYKTMKS
VDFL 

14  

M1T, T2S, E5S, T8W, 
R9T, H11I, T12V, 
S15I, V16L, K18Q, 
T19L, E20D, N53A, 
N55H 

DBL1_02 

SSIESLKWSLIVQQILCQLETGID
QQKANDVIEGNIDVEDKKVQLY
CECILKQFHILDKNNVFKPQGIK
AVMELLIDENSVKQLVSDCSTISE
ENPHLKASKLVQCVSKYKTMKS
VDFL 

14 5 
T1S, T9S, E13Q, 
D20E, A53Q 

DBL1_03 

SSIESMKWSMIVQQILCQLETGI
DQQKANDVIEGNIDVEDKKVQL
YCECILKQFHILDKNNVFKPQGI
KAVMELLIDENSVKQLVSDCSTIS
EENPHLKASKLMQCISKYKTWK
SFDFL 

20 11 
L6M, L10M, V104M, 
V107I, M113W, 
V116F 

DBL1_04 

SSIESMKWSMIRQQILCQLETGI
DQQKANDVIEGNIDVEDKKVQL
YCECILKQFHILDKNNVFKPQGI
KAVMELLIDENSVKQLVSDCSTIS
EENPHLKASKLMQCISKYKTWK
SFDFL 

21 14 E4T, W8N, Q18R 

DBL2 native scaffold 
(PDB ID: 3ONJ) 

SLLISYESDFKTTLEQAKASLAEA
PSQPLSQRNTTLKHVEQQQDEL
FDLLDQMDVEVNNSIGDASERA
TYKAKLREWKKTIQSDIKRPLQS
LVDSGD 

    

DBL2_01 

SLLESYEWSFIVQLILAKLELAYA
PSQPLSQRNEQLKRVEQQQDQL
FDLLDQMDVEVNNSIGDASERA
TYKAKLREWKKTIQSDIKRPLQS
LVDSGD 

15  

I4E, S8W, D9S, K11I, 
T12V, T13Q, E15I, 
Q16L, A19L, S20E, 
E23Y, T34E, T35Q, 
H38R, E45Q 

DBL2_02 

NLLESYEWSFKVQLILAKLELAK
APSQPLSQRNEELKRVEQRQDR
LFDLLDQMDVEVNNSIGDASER
ATYKAKLREWKKTIQSDIKRPLQ
SLVDSGD 

16 6 
S1N, I11K, Y23K, 
Q35E, Q42R, Q45R 
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DBL2_03 

NLLTSYEGSFKIQLILAKLELAKA
PSQPLSQRNEELKRVEQRQDRLF
DLLDQMDVEVNNSIGDASERAT
YKAKLREWKKTIQSDIKRPLQSL
VDSGD 

16 9 E4T, W8G, V12I 

DBL2_04 

NLLRSYENSFKIQLILAKLELAHA
PSQPLSQRNEELKRVEQRQDRLF
DLLDQMDVEVNNSIGDASERAT
YKAKLREWKKTIQSDIKRPLQSL
VDSGD 

16 9 T4R, G8N, K23H 

DBR_01 
STNMLEALQQRLHKYAAVVSRA
ALENNSGKARRFGRIVKQYEDAI
KLYKAGKPVPYDELPVPPGFG 

8  

E13H, Q16A, S17A, 
E19V, A20S, A21R, 
K23A, A24L 

DBR_02 
STNMLEALQQRLQFYFGVVSRA
ALENNSGKARRFGRIVKQYEDAI
KLYKAGKPVPYDELPVPPGFG 

9 4 
H13Q, K14F, A16F, 
A17G 

DBR_03 
STNMLEALQQRLQFYHGQVARA
ALENNSGKARRFGRIVKQYEDAI
KLYKAGKPVPYDELPVPPGFG 

9 6 F16H, V18Q, S20A 

DBR_03_KO 
STNMLEALQQRLQFYHRQVRRA
ALENNSGKARRFGRIVKQYEDAI
KLYKAGKPVPYDELPVPPGFG 

9  G17R, A20R 

DBP13_01 
TCEVRCENGNRIEYPATSDLECL
HWCLDAIMSHPNYRCTCTHK 

10  

Q10N, E20L, E23L, 
R24H, R27L, K28D, 
K30I, K31M, E32S, 
F33H 

DBP13_01 (native 
scaffold) 

TCEVRCENGQRIEYPATSDEECE
RWCRKAKKEFPNYRCTCTHK     

DBP40_01 
SQVTWNGVTVTNDNPSQSAM
WADLIALLYQGEVRVKDGRWEI
H 

12  

I1S, F12N, E16S, 
E17Q, A18S, E19A, 
K20M, Y21W, K23D, 
K24L, K27L, E28L 

DBP40_01 (native 
scaffold) 

IQVTWNGVTVTFDNPEEAEKYA
KKIAKEYQGEVRVKDGRWEIH      

DBP52_01 
QKETRHCSGRSCDWWATLWCL
LCAMKGKRVRCRQHGQQVEVQ
CDK 

13  

Q10R, R11S, E13D, 
Q14W, E15W, R17T, 
R18L, E21L, E22L, 
K24A, K25M, K34Q, 
N37Q 

DBP52_01 (native 
scaffold) 

QKETRHCSGQRCEQEARRWCE
ECKKKGKRVRCRKHGNQVEVQ
CDK 
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DBL3_01 
AQTILLRLEGMDCTSCASSIERAI
AKVPGVQQCIVFFEMNLAIVTY
HGETTPQILTDAVERAGYHARVS 

11  

N5L, Q7R, S32Q,  
Q34I, N36F, A38E, 
L39M, E40N, Q41L, 
V43I, S45T 

DBL3_02 
AQTILLRLEGMDSTSSASSIERAI
AKVPGVQQCIVFFEMNLAIVTY
HGETTPQILTDAVERAGYHARVS 

13 2 

N5L, Q7R, C13S, 
C16S, S32Q,  Q34I, 
N36F, A38E, L39M, 
E40N, Q41L, V43I, 
S45T 

DBL3_01 (Native 
scaffold) 

AQTINLQLEGMDCTSCASSIERA
IAKVPGVQSCQVNFALEQAVVSY
HGETTPQILTDAVERAGYHARVL 

   

DBL4_01 
PDRWLLRIEIPADIAANEALKVRL
LETEGVKIVFINESSHAALVIIDSK
VTNRFEVEQAIRQ 

12  

Y2D, V3R, S4W, S5L, 
E32I, L34F, A36N, 
E38S, E39S, S41A, 
Y43L, K45I 

DBL4_01 (Native 
scaffold) 

PYVSSLRIEIPADIAANEALKVRLL
ETEGVKEVLIAEEEHSAYVKIDSK
VTNRFEVEQAIRQA 

   

DBC2_01 
AFITIMDGEEKARKYAKMLKKQ
NLKVIVLMANGKWIIYAK 

11  

K1A, T3I, T5I, E25K, 
H27I, R29L, V30M, 
E31A, V36I, T38Y, 
E40K 

DBC2_01 (Native 
scaffold) 

KFTTTMDGEEKARKYAKMLKK
QNLEVHVRVENGKWVITAE 
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Supplementary	Table	S	3.3	:	SARS-CoV-2	variant	mutations.		

Variant (graph label in bold) Mutations EC50 of DBR3_03 with variant: 

D614G / WT D614G 6.61e-8 g/mL 

B.1.1.7 / Alpha 

Δ69-70, Δ144, N501Y, A570D, 
D614G, P681H, T716I, S982A, 
D1118H 6.56e-8 g/mL 

B.1.351 / Beta 

L18F, D80A, D215G, Δ242-244, 
R246I, K417N, E484K, N501Y, 
D614G, A701V 6.11e-7 g/mL 

B.11.28.1 / Gamma 

L18F, T20N, P26S, D138Y, R190S, 
K417T, E484K, N501Y, D614G, 
H655Y, T1027I, V1176F 6.76e-7 g/mL 

B.1.526 / Iota 
L5F, T95I, D253G, E484K, D614G, 
A701V 4.13e-7 g/mL 

B.1.617.1 / Kappa 
E154K, L452R, E484Q, D614G, 
P681R, Q1071H NA 

B.1.617.2 / Delta 
T19R, Δ156-157, R158G, L452R, 
T478K, D614G, P681R, D950N NA 

Lambda 
G75V, T76I, R246N, Δ247-253, 
L452Q, F490S, D614G, T859N NA 

Omicron BA.1 

A67V, Δ69-70, T95I, G142D, Δ143-
145, Δ211, L212I, ins214EPE, 
G339D, S371L, S373P, S375F, 
K417N, N440K, G446S, S477N, 
T478K, E484A, Q493K, G496S, 
Q498R, N501Y, Y505H, 
T547K,D614G, H655Y, N679K, 
P681H, N764K, D796Y, N856K, 
Q954H, N969K, L981F 5.68e-8 g/mL 

Omicron BA.2 

T19I, Δ24-26, A27S, G142D, V213G 
G339D, S371F, S373P, S375F, 
T376A, D405N, R408S, K417N, 
N440K, S477N, T478K, E484A, 
Q493R, Q498R, N501Y, Y505H, 
D614G, H655Y, N679K, P681H, 
N764K, D796Y, Q954H, N969K 4.35e-8 g/mL 
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Supplementary	Table	S	3.4	:	Summary	of	binding	candidates	obtained	after	deep	sequencing	with	the	
optimized	design	pipeline. Binding seeds were helical (H) or strand (E). Deep sequencing data comprises reads from the non-binding (Neg reads) and binding population (Pos reads). The enrichment score is calculated based on the logarithm of the ratio between positive and negative reads. Computational models of the complexes were predicted by AlphaFold Multimer (AF) and aligned with respect to the target. Binding signals detected on the surface of yeast (at 500 nM ligand) were categorized as negative(-), marginal (-/+), weak (+), moderate (++) or high (+++). Marginal and weak binding signals were not further characterized (Competition assay, knock-out mutants and negative controls).  
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DBP1
3_01 

PD-1 Minipr
otein 

EEHE_
2.1_02 

H 776 27701
1 

2,552
6 

3,3 +++ OK OK OK 

DBP4
0_01 

PD-1 Minipr
otein 

EEHEE
_rd4_0
499 

H 15 18596 3,093
3 

7,1 +++ OK Not 
tested 

OK 

DBP4
8_01 

PD-1 Minipr
otein 

EHEE_
rd4_05
10 

H 225 2354 1,019
6 

16,9 - N/A N/A N/A 

DBP5
2_01 

PD-1 Minipr
otein 

EHEE_
1.7_09 

H 12 934 1,891
2 

15,5 + Not 
teste
d 

Not 
tested 

Not 
teste
d 

DBC1
_01 

CTLA
-4 

Minipr
otein 

EEHE_
2.1_06 

E 3 1107 2,567 6,2 - N/A N/A N/A 

DBC2
_01 

CTLA
-4 

Minipr
otein 

EHEE_
rd4_09
23 

E 172 39697 2,363
2 

34,6 ++ OK OK OK 

DBC3
_01 

CTLA
-4 

Minipr
otein 

EHEE_
rd4_00
42 

E 31 3797 2,088
1 

30,4 -/+ N/A N/A N/A 

DBC4
_01 

CTLA
-4 

Minipr
otein 

EHEE_
rd4_09
24 

E 55 4018 1,863
6 

34,9 -/+ N/A N/A N/A 

DBC5
_01 

CTLA
-4 

Minipr
otein 

EHEE_
rd4_04
48 

E 35 1203 1,536
2 

24,3 - N/A N/A N/A 

DBC6
_01 

CTLA
-4 

Minipr
otein 

EHEE_
rd4_03
57 

E 109 1281 1,070
1 

22,4 - N/A N/A N/A 
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DBC7
_01 

CTLA
-4 

Minipr
otein 

EHEE_
rd4_09
24 

E 114 1333 1,067
9 

38,4 - N/A N/A N/A 

DBC8
_01 

CTLA
-4 

Minipr
otein 

EHEE_
rd4_06
36 

E 3 2162 2,857
7 

33,6 - N/A N/A N/A 

DBC9
_01 

CTLA
-4 

Minipr
otein 

EHEE_
rd4_08
11 

E 44 1166 1,423
2 

32,2 - N/A N/A N/A 

DBL3
_01 

PD-
L1 

PDB 4A48 
(B) 

E 654 44391 1,831
7 

1,2 ++ OK OK OK 

DBL4
_01 

PD-
L1 

PDB 4Q2M 
(A) 

E 306 10238 1,524
5 

9,1 ++ OK OK OK 

DBL5
_01 

PD-
L1 

Minipr
otein 

EHEE_
rd4_00
17 

E 340 5443 1,204
4 

15,6 - N/A N/A N/A 
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Supplementary	Table	S	3.5	:	Antibodies	used	in	flow	cytometry	experiments.  
Antibody Catalog number Supplier Dilution 

Anti-HA, FITC A190-138F Bethyl 1:100 

Anti-V5 mouse MA5-15253 Invitrogen 1:333 

Anti-mouse, FITC F0257 Sigma 1:100 

Anti-His, PE 130-120-787 Miltenyi Biotec 1:50 

Anti-Myc, FITC SAB4700448 Sigma 1:100 

Anti-human IgG, PE 12-4998-82 Invitrogen 1:100 

Anti-Human IgG, R-PE 109-117-008 Jackson 
ImmunoResearch 

1:100 
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Supplementary	Table	S	3.6	:	Primer	sequences.  
Library: Primer name: Primer sequence: 

DBR_01 5vny_rev_1 CAGACGTTGCTGTAGGGCCTCAAGCATGTTCGTGCTGCTAGCAGCGTA
GTCTGGAACG 

DBR_01 5vny_fwd_2a GAGGCCCTACAGCAACGTCTGCWMARATACKYCRBRGTABNARSCNNS
GCGGSACTTGAGAATAATAGTGGAAAAGCAAGAAGATTTGGCAGGATC 

DBR_01 5vny_fwd_2b 
GAGGCCCTACAGCAACGTCTGCWMYWCTACKYCRBRGTABNARSCNN
SGCGGSACTTGAGAATAATAGTGGAAAAGCAAGAAGATTTGGCAGGAT
C 

DBR_01 5vny_rev_3 ACAGGTTTTCCAGCTTTATACAACTTAATTGCGTCCTCGTATTGTTTAAC
GATCCTGCCAAATCTTCTTGCTTT 

DBR_01 5vny_fwd_4 ATTAAGTTGTATAAAGCTGGAAAACCTGTACCATACGACGAACTACCTG
TCCCGCCAGGATTCGGCGGATCCCAGGAACTGACAACTATATG 

DBL1_L1 3S0D_fw1 GCCTTAGCTCAACCGGTTATTTCTACTACCGTCGGTTCCGCTGCAGAA
GGCTCTTTGGACAAGAG 

DBL1_L1 3S0D_rev1 GCTAGCAGCGTAGTCTGGAACGTCGTATGGGTAAGCTTCTCTCTTGTC
CAAAGAGCCTTCT 

DBL1_L1 3S0D_fw3a CCAGACTACGCTGCTAGCHHCTMCATTSWAAGTTTGAAGTGGAVCTTA
WTCRTASAACAAATTVTATGTCAACTTBWCACGGGGATTGACCAGCA 

DBL1_L1 3S0D_ fw3b CCAGACTACGCTGCTAGCHHCTMCATTSWAAGTTTGAAGTGGAVCTTA
WTCRTASAACAAATTVTATGTCAACTTGAAACGGGGATTGACCAGCA 

DBL1_L1 3S0D_ fw3c CCAGACTACGCTGCTAGCHHCTMCATTSWAAGTTTGAAGTGGAVCTTA
WTCRTATGGCAAATTVTATGTCAACTTBWCACGGGGATTGACCAGCA 

DBL1_L1 3S0D_ fw3d CCAGACTACGCTGCTAGCHHCTMCATTSWAAGTTTGAAGTGGAVCTTA
WTCRTATGGCAAATTVTATGTCAACTTGAAACGGGGATTGACCAGCA 

DBL1_L1 3S0D_ fw3e CAGACTACGCTGCTAGCHHCTMCATTSWAAGTTTGAAGTGGAVCTTAW
TCRTAWWCCAAATTVTATGTCAACTTBWCACGGGGATTGACCAGCA 

DBL1_L1 3S0D_ fw3f CCAGACTACGCTGCTAGCHHCTMCATTSWAAGTTTGAAGTGGAVCTTA
WTCRTAWWCCAAATTVTATGTCAACTTGAAACGGGGATTGACCAGCA 

DBL1_L1 3S0D_rev4 CATTCGCAATATAGTTGGACTTTTTTGTCCTCCACGTCAATGTTCCCCT
CAATCACGTCATTCGCCTTCTGCTGGTCAATCCCCGT 

DBL1_L1 3S0D_fw5a GTCCAACTATATTGCGAATGTATACTAAAASMATTCTGGATACTTGATAR
AAATAATGTTTTTAAGCCCCAGGGAATTAAAGC 

DBL1_L1 3S0D_fw5b GTCCAACTATATTGCGAATGTATACTAAAASMATTCYWCATACTTGATAR
AAATAATGTTTTTAAGCCCCAGGGAATTAAAGC 

DBL1_L1 3S0D_rev6 GATATAGTGCTACAGTCGGAGACAAGCTGTTTAACGCTATTTTCATCTAT
TAACAGTTCCATCACAGCTTTAATTCCCTGGGGCTT 

DBL1_L1 3S0D_fw7 CTCCGACTGTAGCACTATATCAGAAGAGAACCCACATCTTAAGGCCAGT
AAACTGGTTCAGTGCGTGAGTAAATACAAAACCATGAAAAGCGTGG 

DBL1_L1 3S0D_rev8 GAGTACGGCGTCGATTCTAAAGTTGGTGAGGGGATTTGCTCGCATATA
GTTGTCAGTTCCTGGGATCCCAAGAAGTCCACGCTTTTCATGGTTTTG 
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DBL1_L2 3S0D_core_fw
3a 

CCAGACTACGCTGCTAGCTCCTCCATTGAAAGTVTGAAGTGGAGCMTG
ATCGTACAACAAATTCTATGTCAACT 

DBL1_L2 3S0D_core_fw
3b 

CCAGACTACGCTGCTAGCTCCTCCATTGAAAGTVTGAAGTGGAGCTWC
ATCGTACAACAAATTCTATGTCAACT 

DBL1_L2 3S0D_core_re
v4 

CGTCAATGTTCCCCTCAATCACGTCATTCGCCTTCTGCTGGTCAATCCC
CGTTTCAAGTTGACATAGAATTTGTTGTACGAT 

DBL1_L2 3S0D_core_fw
5 TGATTGAGGGGAACATTGACGTGGAGGACAAAAAAGTCCAAC 

DBL1_L2 3S0D_core_re
v6a 

GGCTTAAAAACATTATTTTTATCAAGTATGTGCCATTGTTTGWRCCAAC
ATTCGCAATATAGTTGGACTT 

DBL1_L2 3S0D_core_re
v6b 

GGCTTAAAAACATTATTTTTATCAAGTATGTGGWRTTGTTTGWRCCAAC
ATTCGCAATATAGTTGGACTT 

DBL1_L2 3S0D_core_re
v6c 

GGCTTAAAAACATTATTTTTATCAAGTATGTGCCATTGTTTGWRGWWAC
ATTCGCAATATAGTTGGACTT 

DBL1_L2 3S0D_core_re
v6d 

GGCTTAAAAACATTATTTTTATCAAGTATGTGGWRTTGTTTGWRGWWA
CATTCGCAATATAGTTGGACTT 

DBL1_L2 3S0D_core_fw
7a 

CACATACTTGATAAAAATAATGTTTTTAAGCCCCAGGGAATTAAAGCTRT
GATGGAACTGACTATAGATGAAAATAGCGTTAAACAGCTT 

DBL1_L2 3S0D_core_fw
7b 

CACATACTTGATAAAAATAATGTTTTTAAGCCCCAGGGAATTAAAGCTRT
GATGGAACTGMTAATAGATGAAAATAGCGTTAAACAGCTT 

DBL1_L2 3S0D_core_re
v8 

CAGTTTACTGGCCTTAAGATGTGGGTTCTCTTCTGATATAGTGCTACAG
TCGGAGACAAGCTGTTTAACGCTATTTTCATC 

DBL1_L2 3S0D_core_fw
9a 

CACATCTTAAGGCCAGTAAACTGRYGCAGTGCVTRTMCAAGTACAAGA
CCTWCAAAAGCKKGGATTTCCTTGGATCCCAGGA 

DBL1_L2 3S0D_core_fw
9b 

CACATCTTAAGGCCAGTAAACTGRYGCAGTGCVTRTMCAAGTACAAGA
CCTWCAAAAGCTWCGATTTCCTTGGATCCCAGGA 

DBL1_L2 3S0D_core_fw
9c 

CACATCTTAAGGCCAGTAAACTGRYGCAGTGCVTRTMCAAGTACAAGA
CCWKGAAAAGCTWCGATTTCCTTGGATCCCAGGA 

DBL1_L2 3S0D_core_re
v10 

GAGTACGGCGTCGATTCTAAAGTTGGTGAGGGGATTTGCTCGCATATA
GTTGTCAGTTCCTGGGATCCAAGGAAATC 

      

DBL2_L1 3ONJ_fw1 GCCTTAGCTCAACCGGTTATTTCTACTACCGTCGGTTCCGCTGCAGAA
GGCTCTTTGGACAAGAG 

DBL2_L1 3ONJ_rev2 GCTAGCAGCGTAGTCTGGAACGTCGTATGGGTAAGCTTCTCTCTTGTC
CAAAGAGCCTTCTG 

DBL2_L1 3ONJ_fw3a 
CAGACTACGCTGCTAGCWMTCTTSDAGAGAGTTATGAATGGASCTTTR
WAGTCCRATTGAWATTGGCTAAGTTGGAMCTGGCCMRGGCGCCATCA
CAGCC 

DBL2_L1 3ONJ_fw3b 
CAGACTACGCTGCTAGCWMTCTTSDAGAGAGTTATGAATGGASCTTTR
WAGTCCRATTGAWATTGGCTAAGTTGGAMCTGGCCTATGCGCCATCAC
AGCC 
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DBL2_L1 3ONJ_fw3c 
CAGACTACGCTGCTAGCWMTCTTSDAGAGAGTTATGAATWTASCTTTR
WAGTCCRATTGAWATTGGCTAAGTTGGAMCTGGCCMRGGCGCCATCA
CAGCC 

DBL2_L1 3ONJ_fw3d 
CAGACTACGCTGCTAGCWMTCTTSDAGAGAGTTATGAATWTASCTTTR
WAGTCCRATTGAWATTGGCTAAGTTGGAMCTGGCCTATGCGCCATCAC
AGCC 

DBL2_L1 3ONJ_rev4a CATCTGGTCCAGTAAATCGAATAATYGATCTTGACGCTGTTCAACACGT
TTAAGKTSCTCATTACGTTGAGACAAAGGCTGTGATGGCGC 

DBL2_L1 3ONJ_rev4b CATCTGGTCCAGTAAATCGAATAATYGATCTTGCTBCTGTTCAACACGT
TTAAGKTSCTCATTACGTTGAGACAAAGGCTGTGATGGCGC 

DBL2_L1 3ONJ_rev4c CATCTGGTCCAGTAAATCGAATAATYGATCTTGACGCTGTTCAACCTBTT
TAAGKTSCTCATTACGTTGAGACAAAGGCTGTGATGGCGC 

DBL2_L1 3ONJ_rev4d CATCTGGTCCAGTAAATCGAATAATYGATCTTGCTBCTGTTCAACCTBTT
TAAGKTSCTCATTACGTTGAGACAAAGGCTGTGATGGCGC 

DBL2_L1 3ONJ_fw5 TTATTCGATTTACTGGACCAGATGGATGTGGAGGTTAATAACAGCATCG
GGGACGCATCAGAACGCGCCACTTATAAAG 

DBL2_L1 3ONJ_rev6 GCTTGATGTCGGACTGGATCGTTTTTTTCCACTCGCGTAACTTTGCTTT
ATAAGTGGCGCGTTCT 

DBL2_L1 3ONJ_fw7 CCAGTCCGACATCAAGCGCCCGCTTCAGAGTTTGGTTGATAGTGGCGA
TGGATCCCAGGAACTGACAA 

DBL2_L1 3ONJ_rev8 GAGTACGGCGTCGATTCTAAAGTTGGTGAGGGGATTTGCTCGCATATA
GTTGTCAGTTCCTGGGATCC 
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Supplementary	Table	S	3.7	:	Target	protein	sequences.  
Protein target: Sequence: Notes: 

PD-1 (Uniprot #Q15116) LDSPDRPWNPPTFSPALLVVTE
GDNATFTCSFSDTSESFVLNWY
RMSPSDQTDKLAAFPEDRSQPG
QDSRFRVTQLPNGRDFHMSVV
RARRNDSGTYLCGAISLAPKAQI
KESLRAELRVTERRAEVPTAHPS
PSPRPAGQFQ 

Mutated glycosylation site (N-
>D) and mutated free cysteines 
(C->S) underlined 

 

CTLA4 (Uniprot #P16410) KAMHVAQPAVVLASSRGIASFV
CEYASPGKATEVRVTVLRQADS
QVTEVCAATYMMGNELTFLDD
SICTGTSSGNQVNLTIQGLRAM
DTGLYICKVELMYPPPYYLGIGD
GTQIYVIDPEPCPDSD 

Mutated glycosylation site 
underlined (N->D) 

RBD WT (Uniprot #P0DTC2) RVQPTESIVRFPNITNLCPFGEV
FNATRFASVYAWNRKRISNCVA
DYSVLYNSASFSTFKCYGVSPTK
LNDLCFTNVYADSFVIRGDEVR
QIAPGQTGKIADYNYKLPDDFT
GCVIAWNSNNLDSKVGGNYNY
LYRLFRKSNLKPFERDISTEIYQA
GSTPCNGVEGFNCYFPLQSYGF
QPTNGVGYQPYRVVVLSFELLH
APATVCGPKKSTNLVKNKCVNF
NFNGLTGTGVLTESNKKFLPFQ
QFGRDIADTTDAVRDPQTLEIL
DITPCS 

 

PD-L1 (Uniprot #Q9NZQ7) SFTVTVPKDLYVVEYGSNMTIE
CKFPVEKQLDLAALIVYWEMED
KNIIQFVHGEEDLKVQHSSYRQ
RARLLKDQLSLGNAALQITDVK
LQDAGVYRCMISYGGADYKRIT
VKVNAPYNKINQRILVVDPVTSE
HELTCQAEGYPKAEVIWTSSDH
QVLSGKTTTTNSKREEKLFNVT
STLRINTTTNEIFYCTFRRLDPEE
NHTAELVIPELPLAHPPNERTD 
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Supplementary	Table	S	3.8	:	Crystallographic	data	collection	and	refinement	statistics.  
 DBL1_03-PD-L1 DBL2_02-PD-L1 

Data collection   

Space group P 42 21 2 P 21 21 21 

Cell dimensions   

a, b, c (Å) 97.93, 97.93, 106.11 85.41, 116.08, 149.61 

a, b, g(°) 90.00, 90.00, 90.00 90.00, 90.00, 90.00 

Wavelength (Å) 0.97889 0.97918 

Resolution (Å) 48.97 - 2.85 (2.95 - 2.85) 41.06 - 3.00 (3.11 - 3.00) 

Unique reflections 12591 (1241) 30347 (2986) 

Rmerge 0.141 (3.126) 0.165 (2.911) 

I / sI 20.7 (1.1) 12.8 (1.1) 

CC1/2 0.998  (0.554) 0.999 (0.436) 

Completeness (%) 99.9 (100.0) 99.4 (99.7) 

Redundancy 25.4 (26.9) 13.0 (13.1) 

Refinement   

Resolution (Å) 48.97 - 2.85 41.06 - 3.00 

No. reflections 12582 30282 

Rwork / Rfree 0.3005/0.3220 0.2671/0.2945 

No. atoms   

Protein 2619 9316 

Ligand/ion 0 0 
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Water 1 0 

B-factors   

Protein 124.1 134.1 

Ligand/ion - - 

Water 83.5 - 

R.m.s. deviations   

Bond lengths (Å) 0.010 0.004 

Bond angles (°) 1.250 0.700 

Ramachandran plot   

Favored (%) 93.77 96.07 

Allowed (%) 6.23 3.93 

Outliers (%) 0.00 0.00 

*Values in parentheses are for highest-resolution shell.  
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Supplementary	Table	S	3.9	:	Cryo-EM	data	collection	and	model	validation	statistics.  
Data collection and 

processing 
D614G-binder 

Omicron-binder 
full 

Omicron-binder 
local 

Microscope TFS Titan Krios G4 + E-CFEG TFS Titan Krios G4 + E-CFEG 

Detector Falcon 4 Falcon 4 

Magnification 
(nominal) 

195K 165K 

Pixel size (Å) 0.40 0.726 

Voltage (Kv) 300 300 

Electron exposure (e-
/Å²) 

80 60 

Dose rate (e-/px/s) 4.53 5.4 

Exposure times 
(seconds) 

2.82 5.85 

Defocus range (um) 0.8-2.0 0.8-2.5 

Micrographs 20 794 22 266 

Initial particle 
images (No.) 

832 816 1 820 333 

Final particle images 
(No.) 

67 432 50 758 

Map resolution (Å) 2.63 2.80 3.29 

FSC threshold 
(cutoff ) 

0.143 0.143 0.143 

Symmetry C1 C1 C1 

Refinement  

Initial model used 7BNO 7QO7 --- 
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Map sharpening B 
factor (Å²) 

-33.7 -33.8 52.7 

Model composition  

Non Hydrogen atoms 

Protein residues / 
Nucleotide 

Ligands 

25948 

3236/0 

NAG:46 

28058 

3429/0 

BMA:12 

NAG:76 

2121 

261/0 

NAG:2 

B factors (Å²)  

protein 

 

Ligand 

2.00/198.38/88.48 

 

31.30/175.52/79.67 

0.11/126.79/59.39 

 

28.80/129.22/79.3
3 

33.55/111.45/61.
63 

 

58.45/64.51/61.4
8 

R.m.s.d deviations  

Bond lengths (Å) 0.004(0) 0.002(3) 0.003(0) 

bond angles (°) 0.687(35) 0.534 (18) 0.577(0) 

Validation  

MolProbity score 1.73 1.85 1.96 

Clash score 6.36 9.53 9.82 

Poor rotamers (%) 0.00 0.00 0.00 

Ramachandran plot  

Favored (%) 94.36 95.05 93.00 

Allowed (%) 5.45 4.77 7.00 

Disallowed (%) 0.19 0.18 0.00 

PDB 7ZSS 7ZRV 7ZSD 

EMDB 14947 14922 14930 
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3.7 Addendum 

In this additional section, we will briefly discuss one concrete impact and one translational perspective 

brought by my contribution to the previous work, more precisely: i) the impact of the changes made in 

the optimized pipeline, and ii) a potential agonist effect of the designed PD-1 binder.  

3.7.1 Optimized design pipeline and its consequences 

In the work presented in this chapter, one key challenge was to obtain better designed binders directly 

by computational generation. The SARS-CoV-2 binders and PD-L1 binders, presented in section 3.3.1 

and 3.3.2 respectively, required extensive in vitro optimization to achieve affinities in the range of native 

PPIs (micromolar and below). The main reasons highlighted by the site-saturation mutagenesis 

performed in this study were the presence of steric clashes, buried unsatisfied polar atoms and poor 

polar contacts on the rim of the interface. One of my contribution consisted of bringing better binding 

seeds by introducing a refinement step prior to seed grafting onto a scaffold protein. Despite its large 

size (402M surface fingerprints from 640K seed motifs), the MaSIF-seed database does not claim to offer 

a universal solution for all target patches. Taking into account the limitations that were encountered 

during the optimization of the first designed binders, I provided a refinement script using Rosetta [223] 

that combined both a structure relaxation and sequence design protocol with a modified scoring 

function that introduced a penalty for buried unsatisfied polar atoms [137]. By penalizing these 

deleterious interactions, the polar interactions on the other hand would be more rewarded and the 

computed binding energy would be more favorable.  

As exemplified for the design of binders for PD-1, the introduction of a refinement step improved the seeds 

in almost every metrics used in the design process (Supplementary Fig. S 3.34). Indeed, the number of 

buried unsatisfied polar atoms decreased and, in contrast, the number of hydrogen bonds increased 

significantly. A closer look at the change of amino acid composition showed that a transition from 

hydrophobic residues towards hydrophilic has been operated. As highly hydrophilic residues tend to be 

more elongated and have a broader accessible surface area [224], more molecular contact can be achieved 

with the protein target which is reflected by the increased of buried solvent-accessible surface area (dSASA). 

As a consequence of this broader contact and increased polar interactions, the overall change in computed 

binding free energy (ΔΔG) decreased. However, this reduction is not only quantitative – because of the 

enhanced contact area – but also qualitative as the dSASA-normalized ΔΔG also showed a significant 

decrease, which attests to the enhanced quality of binding achieved in the refinement process. Altogether, 

these improvements in every metrics can undoubtedly account for the success of the optimized pipeline 

and the design of protein binders with native-like affinities straight from the computer.  

With the introduction of an additional step in the design pipeline, the role of each component – MaSIF 

or Rosetta – becomes more convoluted than before. A deeper analysis of the refined helical seeds for 

PD-1 reveals that each seed has on average 45.5% of its residues undergoing mutation (6.6 residues per 

seed) (Supplementary Fig. S 3.34). Additionally, 66.2% of its residues that were initially in contact with 

the target prior to refinement (MaSIF-suggested “hotspots”) were converted to another amino acid 
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Supplementary	 Figure	 S	 3.34	 :	 Pre-	 and	 post-refinement	 metrics	 of	 the	 binding	 seeds	 for	 PD-1.  
A. Metrics measured for 115 helical seeds with Rosetta showing shape complementarity, Gibbs free binding energy (ΔΔG), the binding energy normalized with the buried surface area, the number of buried unsatisfied polar atoms, the number of hydrogen bonds and the buried surface area (dSASA). Independent t-test with Bonferroni correction; non-significant (n.s.); p-value < 10-4 (****) B. Number of residue refined on each entire seed (top) and among hotspot residues prior refinement (bottom). C. Ratio of residues refined among each entire seed (top) and among hotspots residues prior refinement (bottom). D. Heatmap of mutated residues prior and after refinement. Residues are ranked from most hydrophilic to most hydrophobic according to Kyte-Doolittle scale. Yellow box indicates a cluster of mutations from hydrophobics towards hydrophilics. Colored bar represents mutation counts.  E. Descriptor distance score measured by MaSIF-seed prior and after refinement.   
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(5 residues per seed in average).This suggests that MaSIF contributes to 33.8% of the contact residue of 

each seed and Rosetta for the rest. Importantly, MaSIF still plays a crucial role for the identification of 

the binding site (interface propensity prediction by MaSIF-site), the seed selection and its placement 

on the predicted interface. Rosetta operates a synergetic role by increasing the number of contact 

residues (+1.6 residue in average) and solving the constraints of the seed database which represents a 

discrete and finite number of possibilities for MaSIF despite its large size. Finally, an a posteriori 

analysis of the refined seed by MaSIF indicates a moderate increase of the descriptor distance score3 

compared to prior refinement, showing a consensus agreement between Rosetta and MaSIF 

(Supplementary Fig. S 3.34).  

Thus, while Rosetta refinement step bring a substantial contribution to the seed improvement, a 

collaborative process with MaSIF is still essential to obtain site-specific binding motifs.  

3.7.2 Translational application of the designed PD-1 binder 

On top of bringing a better understanding of PPI design, this work also aimed to provide functional protein 

binders with translational capabilities. With this rational, a collaboration with the group of Dr. Ricardo A. 

Fernandes at the University of Oxford was initiated to study the effect of our PD-1 binder, DBP13_02, to the 

PD-1 receptors found on T cells. PD-1 acts as an immune checkpoint blockade, binding to PD-L1 which is 

often aberrantly expressed on the surface of cancer cell to escape the T cell immunity [180].  

While an antagonist effect was initially expected, such as the one reported with the PD-1 blocking 

antibody Nivolumab [182] (Supplementary Fig. S 3.35), an agonist effect was observed instead when 

treating T cells with DBP13_02. Indeed, a downregulation of CD25 (also known as interleukin-2 receptor 

alpha chain) and CD137 (also known as 4-1BB) was observed on both CD4+ and CD8+ T cell populations, 

which are two known markers of T cell activation [225,226] (Supplementary Fig. S 3.36). Furthermore, a 

reduction of the secretion interleukin-2, a cytokine promoting T cell proliferation upon activation [227],  

was observed in the supernatant of PBMCs (peripheral blood mononuclear cell) treated with an 

increasing concentration DBP13_02. As a consequence, the percentage of proliferating cells also 

significantly decreased in both CD4+ and CD8+ T cell populations. Altogether, these data support the 

agonist effect of DBP13_02, which gives similar outcome as the native binder PD-L1 but more potently.  

Different hypotheses can explain the observed phenomenon. Firsty, the reported binding mode of 

Nivolumab is significantly different from the predicted one of DBP13_02. Nivolumab introduces a steric 

clash with PD-L1 while remaining slightly off PD-L1 binding site [228]. On the other hand, DBP13_02 

perfectly correlates with PD-L1 binding site and may therefore be mimicking the same inhibitory 

stimulus (Supplementary Fig. S 3.35). Secondly, the observations could be explained by the 

intermediate affinity of DBP13_02 (KD = 794 nM) which is in line with previous findings demonstrating 

that low-affinity antibody can increase receptor clustering and therefore the agonist effect [229].   

                                                            
3 Descriptor distance score (DDS) is an indicator of how close two fingerprints are: 𝐷𝐷𝑆 =  ∑ 1/𝑑  
where d is the descriptor distance between a pair of point i, with a total pair of contact points N.  
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While synthetic PD-1 agonists using known PD-L1 and PD-L2 motifs as a template were previously 

proposed [124], the DBP13_02 binder described in our work is, to our current knowledge, the first fully 

de novo protein design showing an agonist effect for PD-1. Overall, these collaboration highlighted the 

translational capabilities of the de novo protein binders designed with our surface-centric approach. 

3.7.3	Personal	contribution	

This work involved the contributions of several co-first authors and would not have been possible 

without the synergetic work between all of them. My colleagues mostly focused on developing the 

MaSIF-seed pipeline, designing, screening and characterizing the de novo protein binders against  

PD-L1 and SARS-CoV-2. Due to the extensive in vitro optimization needed to achieve binders with 

affinities in the range of native PPIs, my main contribution was the implementation of the optimized 

design pipeline for one-shot protein binders with enhanced affinities. I personally implemented the 

improved computational pipeline, designed, screened and characterized binders for PD-1, CTLA-4 and 

PD-L14. Moreover, I autonomously handled the revisions and edition of the manuscript for its 

publication in Nature.  

 

 

 

 

 

 

Supplementary	Figure	S	3.35	Comparison	between	DBP13_02,	PD-L1	and	Nivolumab.	A. Binding of PD-L1 (wheat) to PD-1 (gray) (PDB ID: 4ZQK) compared to the modeled binding mode of DBP13_02 (purple). B. Binding of Nivolumab (green) to PD-1 (gray) (PDB ID: 5WT9) compared to the modeled binding mode of DBP13_02 (purple)  

                                                            4 Together with Dr. Andreas Scheck for the computational designs of CTLA-4 and PD-L1. 
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Supplementary	Figure	S	3.36	 :	Downregulation	of	T	cell	activation	and	proliferation	upon	DBP13_02	
treatment.	A-B.	Fold change in the expression of CD25 (A) and CD137 (B) for both CD4+ (left) and CD8+ (right) T cells upon treatment with PD-L1, DBP13_02 or both combined together. C. Concentration of interleukin-2 measured in PBMC supernatant by enzyme-linked immunosorbent assay (ELISA) after 48h (left) or 72h (right). 
D. Percentage of proliferating CD8+ or CD4+ T cell measured by flowcytometry. PBMCs were pre-labelled with CFSE (Carboxyfluorescein succinimidyl ester) and mixed with Dynabeads (anti-CD3 and anti-CD28) to stimulate the proliferation. DBP13_02 or PD-L1 were added to treat PBMCs for 3 days. Experiments and data analysis were performed by Xiaonan Zheng from Dr. Ricardo A. Fernandes Lab.   
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s discussed previously, protein-protein interactions are at the basis of multiple processes in 

the regular cell homeostasis but also in disease progression. Scientists have therefore 

leveraged the power of protein interactions to design new biotechnology tools and therapies. 

Designing novel protein interactions is an efficient way to fight emergent diseases and oncogenic 

targets as exemplified in the previous chapter. But these novel interactions can also be harnessed for 

engineering innovative biotechnology tools like chemically-induced switches for cell-based therapies 

or synthetic biology in general.  However, most known chemically-induced dimerization (CID) systems 

have been exploiting existing systems, and generalizable computational tools for the design of de novo 

CID are missing to the protein science community.  In this section, we strived to further improve our 

MaSIF pipeline for the integration of small molecules and the design of protein binders that are specific 

to a defined drug-protein complex. 

The following section is taken from a preprint manuscript (doi: 10.1101/2024.03.25.585721), that could 

undergo further modifications. 
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4.1 Abstract 

Molecular recognition events between proteins drive biological processes in living systems. However, 

higher levels of mechanistic regulation have emerged, where protein-protein interactions are 

conditioned to small molecules. Here, we present a computational strategy for the design of proteins 

that target neosurfaces, i.e. surfaces arising from protein-ligand complexes. To do so, we leveraged a 

deep learning approach based on learned molecular surface representations and experimentally 

validated binders against three drug-bound protein complexes. Remarkably, surface fingerprints 

trained only on proteins can be applied to neosurfaces emerging from small molecules, serving as a 

powerful demonstration of generalizability that is uncommon in deep learning approaches. The 

designed chemically-induced protein interactions hold the potential to expand the sensing repertoire 

and the assembly of new synthetic pathways in engineered cells. 

4.2 Introduction 

Protein-protein interactions (PPIs) play an essential role in healthy cell homeostasis, but are also involved 

in numerous diseases [9,230]. For this reason, several therapies targeting PPIs have been developed over 

the last decades and multiple computational tools have been recently proposed to design novel protein 

interactions [167]. The governing principles determining the propensity of proteins to form interactions 

are intricate due to the interplay of several contributions, such as geometric and chemical 

complementarity, dynamics, and solvent interactions. Therefore it remains challenging to predict and 

design novel PPIs, especially in the absence of evolutionary constraints. Native PPIs can also be 

controlled by additional regulatory layers such as allostery [231], post-translational modifications [232], 

or direct ligand binding [233,234] Compound-bound surfaces, which we refer to as neosurfaces, are one 
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of the most fascinating and challenging types of molecular recognition instances, where relatively minor 

changes at the protein binding site can have a large impact on binding affinities. The interest in such 

interactions has been fueled by the development of new drug modalities; specifically molecular glues that 

form neosurfaces to trigger protein interactions for degradation and other applications [235,236], thus 

representing a promising route for the development of innovative therapeutics.  

In synthetic biology, molecular components that rely on small molecule-induced neosurfaces have 

been used to engineer chemically-responsive systems with precise spatio-temporal control of cellular 

activities [237]. Small molecule triggers have been used to both induce and disrupt PPIs, thereby 

functioning as ON or OFF switches for engineered cellular functions [97,105,237]. There are several 

practical advantages in using small molecules as triggers due to their simple administration, 

biodistribution, cell permeability, safety, and high affinity and specificity to their target proteins. 

Protein-based switches controlled by small molecules have already been applied to regulate 

transcription [238,239], protein degradation [240–242], and protein localization [243–245], among 

many other applications. In addition to their use in basic research, engineering molecular switches is 

becoming a more common mechanism of controlling protein-based and cellular therapeutics, whose 

activity may have to be regulated to mitigate potentially dangerous side effects [97,246,247]. While 

several chemically-disruptable heterodimer (OFF-switch) systems have been proposed [97,237,246], 

computationally designed chemically-induced dimerization (CID, ON-switch) systems remain 

challenging due to the complexity of modeling neosurfaces. Previous attempts at designing CID 

systems primarily relied on experimental methods [150,237,238,248] and, despite the emergence of 

artificial intelligence and numerous computational tools, only few tools can generalize to both proteins 

and small molecules as a target for protein design, resulting in a lack of suitable approaches for the 

design of novel chemically-induced PPIs. Computational methods to design novel CIDs mostly relied 

on transplanting an existing drug binding site to a known heterodimer interface [249] or using docking 

of putative pre-existing proteins (i.e. scaffolds) followed by interface optimization [169]. However, 

these approaches can face limitations such as the risk of drug-independent dimerization, the lack of 

suitable scaffold proteins for design, or the extensive need for in vitro maturation techniques.  

We recently reported a geometric deep learning-based framework called MaSIF (Molecular Surface 

Interaction Fingerprinting) [138] for the study of protein surface features, and for the design of novel 

protein-protein interactions [250]. In this study, we aim to test whether our surface-centric approach 

can generalize to non-protein ligands without additional training data by using a higher-level 

representation, namely the geometric and chemical features found on the molecular surface. To do so, 

we designed site-specific binders that target neosurfaces composed of a small molecule ligand and 

protein surface moieties, resulting in de novo ligand-dependent protein interactions. We successfully 

designed and characterized novel protein binders recognizing the B-cell lymphoma 2 (Bcl2) protein in 

complex with the clinically-approved inhibitor Venetoclax [251], the progesterone-binding antibody DB3 

in complex with its ligand [252], and finally the peptide deformylase 1 (PDF1) protein from Pseudomonas 

aeruginosa in complex with the antibiotic Actinonin [253]. Lastly, we show that such ligand-controlled 
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systems can be utilized in both in vitro and cellular contexts for a range of synthetic biology applications, 

unlocking possibilities for the development and regulation of novel therapeutic approaches.  

4.3 Results 

4.3.1	MaSIF	captures	interaction	propensity	of	neosurfaces	

Within our geometric deep learning framework, MaSIF [138], we previously developed two 

applications: i) MaSIF-site to accurately predict regions of the protein surface with a high propensity to 

form an interface with another protein and, ii) MaSIF-search to rapidly find and dock protein partners 

based on complementary surface patches. In MaSIF-search, we extract surface patch descriptors 

(“fingerprints”), so that patches with complementary geometry and chemistry have similar 

fingerprints, whereas non-interacting patches have low fingerprint similarity. Surface fingerprints 

allow to perform an initial ultra-fast search in an alignment-free manner using the Euclidean distances 

between them. Patches with fingerprint distances below a threshold are then further aligned in 3D and 

scored with an interface-post alignment (IPA) score to refine the selection.  

In its initial conception, MaSIF only considered canonical amino acids as part of the protein molecular 

surface and was not compatible with small molecules, glycans, and other ligands. Thus, we present here 

MaSIF-neosurf to incorporate small molecules as part of the molecular surface representation of the 

target protein to predict interfaces and partners based on the neosurface fingerprints (Fig. 4.1A, see 

Methods). MaSIF was initially trained to operate on general chemical and geometric surface properties 

of biomolecules, while abstracting the underlying structure. Thus, it is not restricted to only protein 

surfaces, but should in principle also capture the surface patterns arising from other non-protein 

surfaces. Upon generation of the molecular surface of the protein-drug complex, MaSIF-neosurf 

computes the two geometric features: shape index [192] and distance-dependent curvature [193]. In 

addition, three chemical features are also used: Poisson-Boltzmann electrostatics, which can be 

computed directly from the small molecule, and hydrogen bond donor/acceptor propensity [196] and 

hydrophobicity [194,254,255], for which we developed new featurizers tailored to capture the chemical 

properties of the small molecules (see Methods and Supplementary Fig.  S4.1). 

To assess the capabilities of MaSIF-neosurf, we benchmarked its performance on several ternary 

complexes whose interface is composed of protein and ligand surfaces. We aimed to recover known 

binding partners for proteins with small molecules at the binding interface. After assembling a list of 14 

ligand-induced protein complexes, we split each of them into two subunits, resulting in 28 independent 

benchmarking cases, and processed them with and without the small molecule bound. The ligand-free 

protein surfaces, together with 200 decoy proteins, constitute our database, which we query with 

surface patches from all 28 protein-ligand complexes. Since each of the 228 protein candidates is 

decomposed into almost 4000 patches on average, the database represents a large search space with 

more than 900’000 potential binding sites. We then evaluated whether the correct binding partner is 

retrieved and docked in the correct rigid-body orientation. When considering the protein-ligand 

complex as a docking partner, MaSIF-neosurf recovers more than 70% of the correct binding partners 

and their binding poses (Fig. 4.1B). Only a small subset of test cases could be recovered in the absence 
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of the ligand and the general trend is that in such cases the protein surface is a large contributor towards 

the overall protein interaction (Supplementary Fig. S4.2). The ability to capture the neosurface 

properties is further supported by an increased descriptor distance score between interacting partners 

(i.e. an increased complementarity between interacting fingerprints, see Methods) and an increased 

interface post-alignment (IPA, see Methods) score in the presence of the small molecule compared to 

the case without (Fig. 4.1C-D). Overall, MaSIF-neosurf captures, in many instances, features that are 

determinant for ligand-mediated protein interactions and, to further test its capabilities, we sought to 

de novo design this type of interactions. 

 

 

 

 

   

 

Figure	 4.1:	 Neosurface	 properties	 are	 captured	 to	 identify	 interface	 sites	 and	 binding	 partners.  
A. Geometric and chemical features of the ligand-protein complexes are computed, including the molecular surface representation (MSMS), hydropathy score, proton donors/acceptors and Poisson-Boltzmann electrostatics. Surface features are vectorized in a descriptor (also referred to as “fingerprint”) and used by MaSIF-neosurf for interface propensity prediction or protein partner search. The ligand-containing fingerprint is then used to find complementary fingerprints in a patch database. B. Ranking predictions using MaSIF-neosurf on a benchmark dataset of known ternary complexes and a set of 200 decoys. Complementary partner search was performed in the presence (orange) and absence (blue) of the respective small molecule ligand. C-D. Interface post-alignment score (IPA; C) and descriptor distance score (see Methods; D) of the interacting complexes in the presence (orange) and absence (blue) of the drug compared to a set of random patch alignments (gray) 
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Figure	4.2:	Design	of	ligand-induced	protein	interactions	with	MaSIF-neosurf.	A. To design novel ligand-induced protein interactions, potential interface sites are first identified on the target protein-ligand complex. The corresponding patches are then used to find complementary fingerprints in a patch database. The top patches are aligned and scored to refine the selection. Associated binding motifs (seeds) undergo sequence optimization with an emphasis on designing new hydrogen bond networks with the target protein and small 
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molecule. Seeds are then grafted on suitable scaffolds from a structural database, and the rest of the scaffold interface is redesigned using Rosetta. Finally, the top ~2000 designs, according to different structural metrics, are selected and screened experimentally. B. Target candidates in complex with their respective small molecules (top row). Neosurfaces displaying their protein binding propensity (bottom row). Sites selected for binder design are highlighted with dashed circles. C.	Seed structural diversity (top row) includes motifs that are: helical (H); two-strand beta sheets (S2); three-strand beta sheets (S3); and more complex beta sheet motifs (S+). Diversity of the ~2000 computational designs (bottom row) mapped using multidimensional scaling (MDS) of pairwise RMSDs between all designs. Experimentally confirmed binders are highlighted with a star. 
4.3.2	Designing	novel	ligand-induced	protein	interactions	

Recently, we proposed the MaSIF-seed pipeline for the design of de novo site-specific protein binders 

[250]. Given the performance of MaSIF-seed against multiple therapeutically relevant targets, we 

sought to test whether such an approach could generalize to design site-specific binders to neosurfaces 

composed of ligand and protein atoms. By doing so, we tackle the challenge of designing chemically 

controlled protein interactions and test our understanding of molecular recognition events mediated 

by neosurfaces. We therefore adapted our MaSIF-seed pipeline to our newly proposed MaSIF-neosurf 

framework (Fig. 4.2A). Once neosurfaces are computed for a given protein-ligand complex, we first take 

advantage of MaSIF-site to identify the regions most likely to become buried in an interface. Then an 

extensive fingerprint search identifies complementary structural motifs (i.e. binding seeds) from a 

database of ~640’000 structural fragments (402 million surface patches/fingerprints). Therefore, by 

focusing on the predicted buried regions of the interface and searching for highly complementary 

motifs, the vast space of patches and binding motifs is quickly reduced to the most promising 

candidates. Finally, the top seeds are refined by sequence optimization and grafted with Rosetta [223] 

on recipient proteins (i.e. scaffolds) to stabilize the binding motif. Lastly, a final round of sequence 

design is performed to improve atomic contacts at the interface. 

We designed ligand-dependent protein binders targeting ligand-bound proteins from different 

families: Bcl2 in complex with the clinically approved drug Venetoclax; an anti-progesterone antibody 

(DB3) in complex with its ligand; and peptide deformylase 1 (PDF1) from P. aeruginosa in complex with 

the antibiotic Actinonin (Fig 4.2B). We first identified a moderate to high interface propensity of these 

neosurfaces with MaSIF-neosurf, selected 1 to 3 relevant interface patches depending on the solvent-

accessible surface area exposed by the ligand (Fig. 4.2B), and searched for complementary fingerprints 

in our seed database. Top-ranking seeds were selected, refined, and grafted onto recipient scaffolds, 

and approximately 2000 designs per target complex were selected with computational filters (Fig. 4.2C 

and Supplementary Table S4.1, see Methods). Our pipeline generated designs with diverse helical and 

beta sheet-based binding motifs, as well as various protein folds, thus sampling a wide space of 

sequences and topologies (Fig. 4.2C). All selected designs were predicted to favorably engage the 

neosurface by showing increased interface structural metrics in the presence of the ligand, such as the 

predicted binding energy, the buried surface area and the number of atomic contacts (Supplementary 

Fig.  S4.3). 



Chapter 4  Targeting protein-ligand neosurfaces using a generalizable deep learning approach 

129 
 

4.3.3	Experimental	validation	of	ligand-induced	PPIs		

The computational designs were screened by yeast display [111] and, after two rounds of fluorescent-

activated cell sorting (FACS), enriched clones were deep sequenced (Supplementary Fig.  S4.4 and 

Supplementary Table S4.2). We show one binder targeting each of the selected test cases (Fig. 4.3A). 

The best designs show no binding in the absence of the corresponding small molecules, whereas 

modest to high binding signals were observed with the ligands in yeast display experiments (Fig. 

4.3B). These changes of binding signal upon small molecule addition are consistent with the 

expected behavior of a chemically induced PPI. Interestingly, small molecules contributed about 10-

12% of the predicted target buried surface area, but they improved the predicted binding energy 

(ΔΔG) of the interface compared to the ligand unbound form by 17% to 27.7%. This result 

demonstrates a small, yet critical contribution that each ligand plays in the binding event, 

highlighting the difficulty of the design problem (Supplementary Table S4.3).  

Moreover, point mutants at the interface hotspot residues abrogated binding to the target complex, 

which further supports the designed binding mode (Fig. 4.3C). No binding was observed with the 

native scaffolds used for the seed grafting and interface design, underlying the critical role of the 

interface design pipeline (Fig. 4.3C). Finally, specificity towards the desired ligand was confirmed by 

using control compounds: S55746 for Bcl2, 19-O-Benzoyl-Progesterone (OBz-Pro) for DB3 IgG and 

Tertbutyldimethylsilyl-Actinonin (TBDMS-Act) for PDF1 (Fig. 4.3D and Supplementary Fig.  S4.5). 

These analogs retained binding to the protein target (Supplementary Fig.  S4.5). However, no binding 

to the designs was observed, confirming that the correct interface on the target complex is engaged 

with high ligand specificity (Fig. 4.3D). 

4.3.4	Biochemical	characterization	and	structural	validation	

To map the binding site with high confidence and identify potential beneficial mutations, we 

performed a site-saturation mutagenesis (SSM) study (Supplementary Fig.  S4.6). To assess the effect of 

the different mutations over the designed ligand-dependent interaction, we computed the average 

enrichment score of each mutation when comparing binding versus non-binding populations on yeast 

display experiments, similar to other deep saturation mutagenesis studies [78,166]. Globally, we 

observed that such interactions have exquisite sensitivity to single-point mutants and that residues with 

high sensitivity mapped very closely to the designed interfaces, supporting the accuracy of our 

computational models (Fig. 4.4A). 

The initial successful designs were expressed and purified for further biophysical characterization. All 

designs were monomeric, folded and highly stable in solution (Supplementary Fig.  S4.7). All three 

designs showed binding affinities in the range of native transient PPIs [22], from mid-nanomolar to 

low-micromolar, after pure in silico generation (Supplementary Fig.  S4.8). Specifically, DBAct553_1 

showed a binding affinity (KD) of 542 nM, DBVen1619_1 and DBPro1156_1 showed affinities of 4 μM 

and >10 μM, respectively.  
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Figure	4.3:	De	novo	design	and	screening	of	small	molecule-dependent	binders.	A.	Models of the designed binders in complex with their respective target complexes: Bcl2:Venetoclax, DB3:Progesterone and PDF1:Actinonin B. Histograms of the binding signal (PE, phycoerythrin) measured by flow cytometry on yeast displaying the designed binders. Yeast were either unlabeled or labeled with 500 nM of their respective target protein preincubated with the ligand, or with the target protein alone. C. Histograms of the binding signal (PE, phycoerythrin) measured by flow cytometry on yeast displaying designed binders, a mutated version with a single point mutant at the predicted interface and the starting scaffold used for the design process. Yeast cells were labeled with 500 nM of their respective drug:protein complex. Dashed lines represent the geometric mean of the designed binder signal. D. Binding measured on yeast displaying DBVen1619_1, DBPro1156_1 or DBAct553_1 labeled with the target protein alone (gray), the target protein in complex with the original small molecule (blue), or the target protein in complex with the small molecule analog (magenta). Control analogs tested were S55746, Progesterone-19-O-Benzoyl (OBz-Pro) and Tertbutyldimethylsilyl-Actinonin (TBDMS-Act). 
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In the SSM scan, some mutations suggested potential improvements in affinity (Supplementary Fig.  

S4.6). Due to the large number of beneficial mutation candidates for DBVen1619_1, we created a 

combinatorial library covering 6 residues, sampling a set of favorable amino acids identified by SSM 

(Supplementary Fig.  S4.9). Three of the six positions converged into single mutations (K1Q, M3L, I13K) 

while the remaining three residues did not converge. We engineered a variant, DBVen1619_2, with the 

three beneficial mutations and confirmed the binding improvement on yeast display (Supplementary 

Fig.  S4.9). Among the favorable mutations, M3L in the core of the interface between Bcl2:Venetoclax 

and DBVen1619_2 plays a crucial role (Fig. 4.4B). The conformational rigidity of a leucine is likely to be 

preferred to the rotameric flexibility of a methionine [256], reducing the entropic cost of the binding 

interaction [257]. On the other hand, the second beneficial mutation (I13K) is likely to provide a 

favorable electrostatic interaction with a glutamate nearby. Overall, the incorporation of the three 

mutations resulted in a 42-fold improvement of the affinity (KD = 96 nM, Fig. 4.4C) 

For the progesterone-dependent binder, DBPro1156_1, four favorable mutations were identified by 

SSM and showed an increased binding on yeast display (Supplementary Fig.  S4.10). Two mutations 

(Y12W and S16G) significantly improved the binding signal and showed an additive effect in the 

resulting design, DBPro1156_2. Modeling of the two mutations suggested increased interface packing 

(Y12W) and the removal of a steric clash (S16G) (Fig. 4B, middle panel). DBPro1156_2 showed a 

binding affinity of 18 nM, which represents an improvement of three orders of magnitude, relative to 

the parent design, solely with two mutations (Fig. 4.4C).  

Several mutations were found to slightly improve binding of DBAct553_1 to Actinonin-bound PDF1 

(Supplementary Fig.  S4.11). Most of these mutations were hypothesized to result in a more elaborate 

hydrogen bond network across the interface (e.g. R7N or A8R) (Fig. 4.4B). Of note, the combination of 

I3E with R7N was found to be deleterious for binding (Supplementary Fig.  S4.11), most probably 

because of their spatial proximity that might trigger unwanted side chain rearrangement. A 

combination of the beneficial mutations (R7N and A8R) gave rise to DBAct553_2, which bound with an 

affinity of 446 nM for the Actinonin-bound PDF1 (Fig. 4.4C). 

To evaluate the structural accuracy of our computational design approach, we co-crystalized the 

ternary complex of Actinonin-bound PDF1 with DBAct553_1 (PDB: 8S1X, Fig. 4.4D). The crystal 

structure closely resembled the computational model with a Cα RMSD (Root Mean Square Deviation) 

of 2.33 Å and a full-atom interface RMSD (iRMSD) of 2.26 Å, which demonstrates the accuracy of our 

design pipeline. The deviation from our initial model can to a large extent be attributed to a misplaced 

residue (Y2) in the model of the design scaffold which induced a slight shift of the N-terminal helix 

(Supplementary Fig.  S4.12). Consequently, the Cα RMSD of our model deviates 0.93 Å from that of the 

experimental structure (Supplementary Fig.  S4.12). Of note, the AlphaFold2 [31] prediction of the 

monomeric designed binder aligned perfectly with our structure with a Cα RMSD of 0.49 Å by placing 

residue Y2 with the correct orientation. Overall, this observation together with previous findings 

suggests that an increased use of deep learning tools like AlphaFold should significantly increase the 

model accuracy and therefore success rate [85]. Finally, we solved a cryo-electron microscopy structure 

(3.23 Å local resolution) of the DBPro1156_2 in complex with DB3 Fab and progesterone that confirmed 

the designed binding mode and interface engagement with the small molecule (Fig. 4.4E, 
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Supplementary Fig. S4.13). Despite the absence of structural data for the remainder of the designs, the 

mutational sensitivity assessed by the SSM (Fig. 4.4A) and the lack of binding with the small molecule 

analogs (Fig. 4.3D) suggests that the binders engage the target interface with a binding mode in 

agreement with our computational models. 

4.3.5	Functionalization	in	cell-based	assays	

Chemically controllable components have important applications in synthetic biology and have been 

shown to be useful in modulating the activity of emerging cell-based therapies [97,237,258]. To test 

whether our computationally designed CIDs would assemble in a more complex cellular context, we 

engineered reporter proximity-based systems that were expressed in cell-free system or mammalian 

cells and that in the presence of the small molecule could activate a signaling pathway or lead to the 

reconstitution of a reporter protein. The most natural functional logic for chemically-induced protein 

interactions is to function as ON-switch systems. 

We first repurposed a previously described heterodimerization-based reporter system [259] to test the 

DB3 antibody as a single-chain variable fragment (scFv) binding to DBPro1156_2. Here, DB3 was fused 

to a zinc finger 438 transcription factor and DBPro1156_2 to a T7 RNA polymerase (Fig. 4.5A), and 

tested in a cell-free reporter system. The heterodimerization in presence of the drug induces proximity 

between the T7 RNA polymerase and the transcription factor, thus leading to the transcription of a 

reporter linear DNA template and its translation into a red fluorescent protein (mCherry). While only 

baseline fluorescence was observed in absence of progesterone, a 15.8-fold increase was observed after 

addition of progesterone (Fig. 4.5B). Similarly, a titration of progesterone demonstrated a dose-

response curve, suggesting possible utilization as a novel cell-free biosensor (Fig. 4.5C). 

To test the chemically-induced activity of the designed modules in mammalian cells, we used a 

previously described system called generalized extracellular molecule sensor (GEMS) [100]. Briefly, the 

target protein and the designed binder are both fused to an erythropoietin receptor (EpoR) linked to an 

intracellular domain of a human interleukin 6 receptor subunit B (IL6RB) (Fig. 4.5D). Transcription of 

a reporter gene (NanoLuc luciferase) [260] will be triggered upon a conformational change induced by 

the heterodimerization in presence of the drug. By incorporating Bcl2 and DBVen1619_2 in the GEMS 

system, we observed a 26.8-fold change in luminescence in the presence of Venetoclax, while minimal 

background was observed in the absence of the drug (Fig. 4.5E). These results show the desired 

behavior of an ON-switch system. Additionally, our modified GEMS system displayed a heightened 

sensitivity to the drug, with a half maximal effective concentration (EC50) of 0.31 nM, which is likely due 

to the co-localization of the sensing modules in the cell membrane (Fig. 4.5F).  

Next, we designed a cytoplasmic system to respond to Actinonin and fused PDF1 and DBAct553_1 to 

two moieties of a split NanoLuc (Fig. 4.5G). In this system we also observed a significant increase in 

signal (19.1-fold) upon dosing of the cells with Actinonin (Fig. 4.5H). This novel ON-switch system was 

also highly sensitive to the presence of the drug, as shown by the titration reporting an EC50 of 27 nM 

(Fig. 4.5I). Overall, we showed that our computationally designed CIDs can be used to functionalize 

molecular components in cellular systems, suggesting a promising route for the development of new 

modules for synthetic biology including a wide range of biosensors and cell-based applications. 
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Figure	 4.4:	 Optimization,	 characterization	 and	 functionalization	 of	 the	 designed	 binders.		
A. Computational model colored with the average enrichment score of the site-saturation mutagenesis of each amino acid position of the designed binder. Red color suggests that an amino acid position is sensitive to mutations, while blue color highlights a more tolerant amino acid position. Target proteins are shown in gray.  
B. Computational models incorporating the beneficial mutations that improved the affinity of the designed binders. Target proteins are shown in gray and designed binders in their respective color. C. Affinity measurement for DBVen1619_2, DBPro1156_2 and DBAct553_2 performed by biolayer interferometry. Each measurement was performed in presence (orange) or absence (blue) of the respective small molecule. The fits were calculated using a nonlinear four-parameter curve fitting analysis. D. Crystal (xtal) structure of DBAct553_1 in complex with 
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Actinonin-bound PDF1 (PDB: 8S1X). The computational model (light pink) is aligned with the crystal structure (magenta). Inset: the alignment of the residues at the interface. E. Cryo-electron microscopy structure obtained for DBPro1156_2 in complex with progesterone-bound DB3.The computational model (light blue) is aligned with the cryo-EM structure (dark blue). Inset: the alignment of the residues at the interface. 
 

 
Figure	4.5:	Computationally	designed	CIDs	are	functional	in	cell-based	systems.	A.	Schematic of the cell free-expression system with single chain variable fragment (scFv) DB3-fused to a zinc finger transcription factor and DBPro1156_2 fused to T7 RNA polymerase. B. Fluorescence (Relative fluorescence unit; RFU) measured in wells containing each monomeric component or mixed, without or with 20 μM progesterone. C. Progesterone dose-dependent responses performed in a cell free system containing both components. D. Schematic of the GEMS reporter system functionalizing Bcl2-based CID. Both protein components of the CID are individually fused to erythropoietin receptor (EpoR) chains linked to an intracellular human IL6RB domain, which induces the expression of a reporter gene (secreted NanoLuc luciferase) when activated. E. NanoLuc luminescence of HEK293 cells transfected with Bcl2-GEMS only, DBVen1619_2 only or both together without or with 1 μM Venetoclax.  
F. Venetoclax dose-dependent responses performed on HEK293 transfected with Bcl2 and DBV1619 GEMS receptors. G. Schematic of the split NanoLuc system functionalizing DBAct553_1 and PDF1. H. Intracellular NanoLuc luminescence of HEK293 transfected with C-term split NanoLuc-fused PDF1 only, N-term split NanoLuc-fused DBAct553_1 only or both together without or with 25μM Actinonin. I. Actinonin dose-dependent responses performed on HEK293 transfected with split-NanoLuc PDF1 and DBAct553_1. p<0.0001 (****), non-significant (ns).	 
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4.4 Discussion 

Current deep learning-based protein design pipelines are primarily conditioned on the natural amino 

acid repertoire [37,38,80] and therefore lack generalization to the design of interactions involving small 

molecules. This gap is mainly due to the scarcity of protein-ligand structural data, and especially ternary 

complexes, within the training sets based on the PDB, where such complexes are limited [261–263]. 

Geometric deep learning approaches principled in the physical and chemical features of the molecular 

surface can overcome these limitations, and provide joint representations for protein and small 

molecule complexes. The resulting neosurfaces capture and present generalizable molecular features 

that enable the challenging task of designing protein binders targeting these hybrid interfaces. Utilizing 

the MaSIF-neosurf framework, we successfully designed three specific binders against Bcl2:Venetoclax, 

DB3:Progesterone and PDF1:Actinonin complexes. All designed binders showed high stability, 

specificity and native-like affinity for their target complexes by pure in silico generation. The affinities 

were experimentally optimized to nanomolar range and their binding mode was confirmed through 

mutational and structural characterization, showcasing the accuracy of our design pipeline. Notably, 

our pipeline managed to capture the subtle, yet crucial contributions of each ligand (10-12% of the 

buried SASA only; Supplementary Table S4.3) to induce protein interactions. This sensitivity represents 

an additional layer of complexity to the task of designing highly sensitive CIDs, compared to previous 

attempts targeting large ligand interfaces [169]. 

To demonstrate the functionality of our designed CID systems, we probed their efficiency and 

specificity in the context of a complex cellular environment. They exhibited robust ON-switch behavior 

in both cytoplasmic and membrane-bound circuits, showcasing their potentially wide applicability in 

mammalian systems as logic gates, synthetic circuits, or new biosensors for detecting specific 

metabolites [100,237]. This relevance is further underscored by our use of the FDA-approved drug 

Venetoclax for treating leukemia [251] the natural product Actinonin with potentially 

chemotherapeutic effects [253] or the endogenous hormone progesterone [264]. These can be utilized 

for combined anti-cancer therapies with chimeric antigen receptor (CAR) T cells, which are often 

hindered by off-target toxicities [97,265]. The addition of synthetic small molecule activators could 

allow finer control of their activity and elevate their safety profile. 

While the design of specific protein-ligand interactions remains challenging, the presented results lay 

a strong foundation for further innovations. Incorporation of deep learning-based structure validation 

methods, such as AlphaFold2 [31,266] (Supplementary Fig.  S4.14) or RoseTTAFold [57], or generative 

models complemented with surface fingerprints [38] could improve design success rates. Additionally, 

accounting for conformational flexibility and dynamics at the surface could pave the way for more 

complex interaction types, such as intrinsically disordered proteins. Overall, we envision that surface-

based representation can contribute to solving molecular design problems in low-data regimens, such 

as the design of protein-based molecules with non-natural amino acids. The capability of extracting 

expressive fingerprints from protein:ligand complexes opens up the tantalizing possibility of rationally 

designing innovative drug modalities, such as on-command cell-based therapies [97,242], controllable 

biologics [150,246], or molecular glues, which thus far remains an outstanding challenge in drug 

development [235,236]. 
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4.5 Methods 

Incorporation of small molecules in MaSIF-seed 

Molecular surface meshes were triangulated using the MSMS program [141] and radial patches 

(geodesic radius 12Å) computed following the original MaSIF preprocessing scripts [138]. Before 

applying MaSIF’s geodesic convolutional layers, five input features are computed for each patch: shape 

index [192], distance-dependent curvature [193], Poisson-Boltzmann continuum electrostatics, 

hydrogen bond donor and acceptor potential [196], and hydropathy [194,254,255]. The first two features 

are purely geometric and are calculated analogously to protein surfaces alone. Moreover, the APBS 

program [195] used for computing the Poisson-Boltzmann electrostatics on the surface supports small 

molecules in the MOL2 file format and hence does not require us to treat them in a conceptually 

different way. The remaining two chemical input features are computed as described below. 

Hydrogen bond donors and acceptors 

The hydrogen bond propensity feature assigns a positive value to points on the molecular surface near 

the optimal direction in which a hydrogen could be formed with an acceptor atom. It is determined by 

the direction of the covalent bond between a donor atom and its hydrogen (Supplementary Fig. S4.1B-

C). Likewise, a negative value is assigned to points corresponding to hydrogen bond acceptors. For 

different acceptor types, the theoretically optimal position for forming a hydrogen bond can either lie 

on a cone (Supplementary Fig. S4.1D-F) or in a small number of specific directions that can be derived 

from the molecular geometry. We assign different magnitudes of the donor/acceptor feature based on 

the angular deviation from the ideal hydrogen bond geometry according to a quadratic function. 

The optimal direction of the hydrogen bond is determined using the RDKit software package [267] and 

surface points are assigned positive (donor) or negative (acceptor) values between -1 and +1 based on 

their angular deviation from the ideal direction. For potential acceptors, RDKit was also used to 

determine whether the idealized location of the hydrogen bond lies on a cone or in one or more discrete 

directions. 

Hydropathy 

MaSIF’s hydrophobicity feature makes use of the Kyte-Doolittle scale [194] which is exclusively defined 

for amino acids. Equivalent values for small molecules thus need to be approximated based on a more 

general hydrophobicity measure that can be estimated computationally, such as the logarithm of the 

octanol−water partition coefficient (LogP) [254]. To this end, we develop a nonlinear function that 

maps LogP values to the KD scale. We fit the parameters of this function to find an optimal match for 

the KD and LogP values of all twenty amino acids. Since the best functional form of this mapping is not 

immediately obvious from the raw values (Supplementary Fig. S4.1L), we experimented with different 

hydrophobicity scales as intermediates and found that the Eisenberg scale [255] has approximately 

linear and exponential relationships with LogP and KD-values of amino acids, respectively. We first 

compute the optimal parameters of the mappings from LogP to Eisenberg scale (Supplementary Fig. 
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S4.1G) and Eisenberg scale to Kyte-Doolittle scale (Supplementary Fig. S4.1H) and then compose these 

two functions to establish the desired relationship between LogP and KD values (Supplementary Fig. 

S4.1H). Finally, we also restrict the outputs to the valid interval of KD values [-4.5, 4.5] to ensure that 

the feature does not leave the domain MaSIF was trained on. 

Furthermore, since some ligands can cover large surface patches, we aim to respect local variations of 

the hydrophobicity by fragmenting the molecules prior to calculating their hydrophobicity score. We 

employ the BRICS algorithm [268] to decompose molecules, and compute estimates of each fragment’s 

logP value with RDKit. The resulting fragments are more similar in size to amino acids and tend to have 

less extreme hydrophobicity scores than whole ligands, moving the distribution of this feature closer to 

that expected on protein surfaces (Supplementary Fig. S4.1K-L). To translate from logP to the Kyte-

Doolittle scale, we parameterize a function so that it approximates the relationship between these 

hydrophobicity values for the 20 amino acids. KD and Eisenberg values of all amino acids are available 

in tabular form, whereas we compute their LogP with RDKit to fit the curves. The final function is 𝐾𝐷 =  𝑐𝑙𝑖𝑝 (−6.2786 + 𝑒𝑥𝑝 (0.4772 ∗  𝑙𝑜𝑔𝑃 +  1.8491),𝑚𝑖𝑛 = −4.5,𝑚𝑎𝑥 = 4.5). 
After computing equivalent KD values for all small molecule fragments, we assign the resulting 

hydrophobicity score of the closest fragment to each surface vertex. 

To create the histograms in Supplementary Fig. S4.1G, we extracted 20,363 unique small molecule 

ligands from the Binding MOAD [269] dataset, fragmented each, and removed duplicates. This resulted 

in 9,362 unique fragments that are compared to the set of ligands and the twenty standard amino acids. 

Binding site identification 

MaSIF-site [138] was trained on a dataset of known PPIs to predict regions on protein surfaces with high 

propensity for forming a buried interface. The neural network takes a protein-ligand complex 

decomposed into 12 Å (geodesic radius) overlapping patches as input and generates a per-vertex 

regression score, indicating the propensity of each point to become a buried surface area within a 

protein interaction. In this study, we employed MaSIF-site to predict interfaces and guide the selection 

of target patches both in our computational benchmark and for all three target complexes for design 

(Bcl2:Venetoclax, DB3:Progesterone and PDF1:Actinonin). In the computational benchmark, we 

conducted the search only for the three patches with the highest interface propensity near the center 

of the binding site. For design, the number of targeted sites overlapping with the protein-ligand 

neosurface depended on the solvent-accessible surface area of each ligand to ensure that all the ligand-

exposed surface was covered during the complementary motif search: 1 for PDF1:Actinonin, 2 for 

DB3:Progesterone and 3 for Bcl2:Venetoclax.  

Binding seed identification 

The fingerprints of the predicted 12 Å (geodesic radius) patches comprising both protein target and 

bound drug were used to find a complementary fingerprint in the MaSIF-seed database [250] which 

consists of ~640’000 continuous structural fragments (seeds) amounting to 402 million surface 
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patches/fingerprints. The seed database covers distinct secondary structures with approximately 

390’000 sheet-based and 250’000 helical motifs respectively. The MaSIF-search algorithm was trained 

to make patch fingerprints similar for interacting patches and dissimilar for non-interacting patches. 

Seeds with interface propensity scores above the defined threshold and with fingerprint distances 

(Euclidean distance between target and seed fingerprint) below the defined thresholds were selected. 

In a second-stage alignment and scoring using the RANSAC algorithm, seeds were selected based on 

interface post-alignment (IPA) score. Cutoffs used for the seed selection are summarized in 

Supplementary Table S4.1. 

Scoring aligned structures 

We consider two descriptor-based post-alignment scores. The descriptor distance score (DDS) is a 

simple heuristic that aggregates descriptor distances across the predicted binding interface. DDS is 

based on the squared Euclidean distances between interacting patches on both sides of the interface. 

Two patches are considered interacting with each other if their center points are less than 1.5Å apart. 

The descriptor distance score is computed according to the following formula 

𝐷𝐷𝑆 = 1|| 𝑏𝑖𝑛𝑑𝑒𝑟_𝑑𝑒𝑠𝑐(𝑖)  −  𝑡𝑎𝑟𝑔𝑒𝑡_𝑑𝑒𝑠𝑐(𝑁𝑁(𝑖)) ||  

where i indexes interacting patches of the first protein and NN(i) returns the index of the spatially 

nearest neighbor on the other protein. Higher scores mean higher complementarity. 

The interface post-alignment score (IPA) is computed by a neural network that was trained to 

discriminate between near-native and high-RMSD poses of docked proteins [138]. The inputs of this 

predictor are 3D Euclidean distances, descriptor distances and dot products between surface normals 

of up to 200 pairs of corresponding patches at the predicted interface. It outputs values between zero 

and one where larger values indicate higher confidence in the presented interface. 

Computational binder recovery benchmark 

The binder recovery experiment was performed for 14 known ligand-induced protein complexes, 

where both proteins involved in the interaction are considered as separate items, resulting in 28 search 

queries. Additionally, we included 200 decoys (based on 100 PPIs) in the database. All benchmark 

complexes and decoys are listed in Supplementary Table S4.4. After triangulating and featurizing all 

protein surfaces with and without ligands, we screen the database and dock candidates analogously to 

the binding seed search. Here, we assume the location of the binding site on the target protein is known 

and select the three surface vertices with the largest predicted surface propensity within 10Å of the 

center of this site as input patches. The center of the binding site was approximated with a simple 

heuristic. We first identify interface atoms as those within 4Å of any atom from the binding protein in 

the original complex structure. This can and typically will include atoms belonging to the small 

molecule. Then we define the average of the coordinates of all interface atoms of the target protein as 

the center of the binding site. Furthermore, we declare a binder correctly recovered if its interface 
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RMSD (iRMSD) compared to the ground truth structure of the same protein is less than 5Å, where 

iRMSD considers only heavy atoms in the immediate vicinity of the target protein (<5Å). 

Seed and interface refinement 

To optimize binding energy of the seed for the target complex, seeds were refined using a FastDesign 

protocol on Rosetta [223] with a penalty for buried unsatisfied polar atoms in the scoring function [137]. 

Refined seeds were then selected based on the computed binding energy (ddG), shape 

complementarity, number of interface hydrogen bonds, number of buried unsatisfied polar atoms and 

number of atoms in contact with the small molecule. Beta sheet-based motifs making >33% contact 

with the target complex using loop regions were discarded. Moreover, uniqueness of each seed was 

assessed by doing a pairwise alignment of the hotspot residues. For seeds showing >70% hotspot 

identity with another seed, only the one with the best surface-normalized ddG was kept. 

Seed grafting and computational design 

Selected seeds were subsequently grafted with a Rosetta MotifGraft [64] protocol for stabilizing the 

binding motif and bringing additional contacts with the target complex. Each seed was match with a 

database of ~6500 small protein scaffolds (<90 amino acids) originating from small globular 

monomeric protein from the protein data bank (PDB) [117] and four computationally designed 

miniprotein databases that were experimentally validated [74–76,79]. Prior grafting, seeds were 

cropped to the minimum number of residues making contact with the target, and loop motifs were 

removed from beta sheet-based seeds for optimizing the grafting success rate. Once grafting was 

performed, scaffolds underwent sequence optimization using a FastDesign protocol on Rosetta with a 

penalty for buried unsatisfied polar atoms in the scoring function. Final designs were selected based 

on the computed binding energy (ddG), shape complementarity, number of interface hydrogen bonds 

and count of buried unsatisfied polar atoms. A similar number of designs per seed was ensured by 

setting dynamic cutoffs of these metrics adjusted for each seed. 

Library screening 

For each target complex, around ~2000 designs were reverse-translated into DNA and purchased from 

Twist Bioscience as oligo pools with 18bp homology overhangs. Oligo pools underwent two rounds of 

PCR : i) for the amplification of the library using the 18bp overhangs and ii) for adding 45bp homology 

with the yeast display vector (57.5 °C annealing for 30 s, 72 °C extension time for 1 min, 15 cycles). EBY-

100 yeast were transformed by electroporation using the amplified inserts and linearized HA-tagged 

pCTcon2 vector as described previously [111]. A similar approach was done for site-saturation 

mutagenesis (SSM) library of single designs. Transformed yeast cells were grown in minimal glucose 

medium (SDCAA) medium at 30°C and induced with minimal galactose medium (SGCAA) medium 

overnight prior sorting. 
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Yeast surface display of single designs 

Genes encoding for single designs were purchased from Twist Bioscience with a ~25bp homology 

overhang for cloning. Each design was cloned into HA-tagged pCTcon2 plasmid using Gibson assembly 

and transformed into XL10-Gold or HB101 bacteria for DNA production. The purified and sequence-

approved DNA was then used to transform competent EBY-100 yeast using the Frozen-EZ Yeast 

Transformation II Kit (Zymo Research). As for libraries, transformed yeast cells were grown in minimal 

glucose medium (SDCAA) medium at 30°C and induced with minimal galactose medium (SGCAA) 

medium overnight prior flow cytometry analysis. 

Flow cytometry analysis and sorting 

Induced yeast cells were washed with PBS supplemented with 0.1% BSA and then labeled with the 

respective binding target for 2 hours at 4°C. Prior to labeling, protein-drug complexes were pre-

incubated at room temperature for 5 min with a 1:5-10 ratio. Cells were then washed and labeled with 

a FITC-conjugated goat anti-HA tag antibody (Bethyl; ref: A190-138F; display tag; 1:100 dilution) and a 

PE-conjugated goat anti-human Fc antibody (Invitrogen; ref: 12-4317-87; binding tag; 1:100 dilution) 

for 30 min at 4°C. Cells were washed, resuspended in an appropriate volume of buffer and analyzed on 

a Gallios flow cytometer (Beckman Coulter), or sorted with a Sony SH800 cell sorter. Kaluza software 

(Beckman Coulter, v.1.1.20388.18228) and LE-SH800SZFCPL Cell Sorter (Sony, v.2.1.5) were 

respectively used for the data acquisition. In the case of cell sorting, each designed library was sorted 

for binding and non-binding populations separately. Flow cytometry data were then analyzed using 

FlowJo (BD Biosciences, v.10.8.1). 

Library sequencing 

Sorted yeast were cultured and plasmids encoding protein designs were extracted using the Zymoprep 

Yeast Plasmid Miniprep II (Zymo Research) following the manufacturer’s protocol.The sequence of 

interest was then amplified by PCR with vector-specific primers flanking the protein design gene. A 

second PCR was performed to add Illumina adapters and Nextera barcodes, and the PCR product was 

desalted and purified using the Qiaquick PCR purification kit (Qiagen). Illumina MiSeq system with 

500 cycles was used for the next generation sequencing. Around 0.8-1.2 millions reads per sample were 

obtained, translated into the appropriate reading frame and matched with expected input sequences 

from the libraries. The enrichment of each design was calculated by normalizing the counts in the 

binding population with the counts in the non-binding populations. Hits were identified if the 

enrichment was >10-fold and the number of counts in the binding population was >10’000.  

Protein expression and purification 

A list of protein sequences can be found in Supplementary Table S4.5. Genes encoding the 6xHis-

tagged and/or human Fc-tagged protein of interest were purchased to Twist Bioscience cloned into 

pET11 (bacteria vector) or pHLSec (mammalian vector) by Gibson assembly and transformed into 

XL10-Gold or HB101 bacteria. Plasmids were extracted using a GeneJET plasmid Miniprep kit 
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(Thermofisher, for bacteria vector) or a PureLink Fast Low-Endotoxin Midi plasmid purification kit 

(Invitrogen, for mammalian vector) and checked by Sanger sequencing. Proteins were purified by 

bacteria or mammalian expression systems. Mammalian expressions were performed using the 

Expi293 expression system (ThermoFisher; ref: A14635). Supernatants were collected after 6 days, 

filtered and purified as explained below. For bacteria expression, BL21(DE3) or T7 Express Competent 

E. coli were transformed with the plasmid of interest and grown as a pre-culture overnight. Pre-cultures 

were inoculated 1:50 in Terrific Broth medium and incubated at 37°C until they reached a density ~0.7 

at OD600. Then, bacteria were induced with 1mM IPTG and incubated overnight at 18-20°C. Cells were 

collected by centrifugation at 4000g for 10 min, resuspended in lysis buffer (50 mM Tris, pH 7.5, 500 mM 

NaCl, 5% glycerol, 1 mg ml−1 lysozyme, 1 mM PMSF and 1 μg ml−1 DNase) and lysed by sonication. 

Lysates were then clarified by centrifugation at 30’000g for 30 min and filtered.  

All 6xHis-tagged protein are purified using the ÄKTA pure system (GE healthcare) Ni-NTA HisTrap 

affinity column followed by a size exclusion chromatography on a Superdex HiLoad 16/600 75pg or 

200pg depending on the size of the protein. All proteins were concentrated in PBS as a final buffer. 

Surface plasmon resonance 

Affinity measurements were done on a Biacore 8K (GE Healthcare) using HBS-EP+ as a running buffer 

(10 mM HEPES at pH 7.4, 150 mM NaCl, 3 mM EDTA, 0.005% v/v Surfactant P20, GE Healthcare). All 

proteins were immobilized on a CM5 chip (GE Healthcare #29104988) via amine coupling to reach 500–

1000 response units (RU). Analytes were then injected in serial dilutions using the running buffer. The 

flow rate was 30 μL/min for a contact time of 120 s followed by 400 s of dissociation time. SPR data were 

either fit with a 1:1 Langmuir binding model within the Biacore 8K analysis software (GE Healthcare 

#29310604) or done in steady-state affinity mode by reporting the relative RU for each concentration. 

Biolayer interferometry 

Biolayer Interferometry (BLI) measurements were performed on the Gator BLI system using the 

GatorOne software (Gator Bio, v.2.7.3.0728). Running buffer consisted of 500mM NaCl and 50mM Tris 

pH 7.5 or HPS-P+ buffer (10 mM HEPES pH 7.4, 150 mM NaCl, 1μM NiSO4, 0.005% v/v Surfactant P20, 

GE Healthcare), supplemented by 100nM Venetoclax or 5μM Actinonin if needed. Fc-tagged proteins 

were immobilized at a concentration of 7μg/ml on protein A probes (1.5 to 2.5nm immobilized) and 

dipped into serial dilutions of the ligand. Steady state responses were normalized with the maximum 

value and plotted using a nonlinear four-parameter curve fitting analysis. 

Grating-Coupled Interferometry 

Grating-Coupled Interferometry (GCI) measurements were performed on a Creoptix WAVE system 

(Malvern Panalytical) using the Creoptix WAVE control software (Malvern Panalytical, v. 4.5.18). 

Running buffer consisted of HPS-P+ buffer (10 mM HEPES pH 7.4, 150 mM NaCl, 0.005% v/v Surfactant 

P20, GE Healthcare). All protein targets were immobilized on a 4PCH chip (Malvern Panalytical) via 

amine coupling to reach 7’000-10’000 pg/mm2 . An intermediate injection with 1μM NiSO4 was used 
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for PDF1 protein. S55746, 19-O-Benzoyl-Progesterone (OBz-Progesterone) and Tertbutyldimethylsilyl-

Actinonin (TBDMS-Actinonin) were then injected sequentially as analytes at a concentration of 2, 2.5 

and 5 μM respectively using the waveRAPID (Repeated Analyte Pulses of Increasing Duration) kinetic 

assay [270]. The flow rate was 100 μL/min for an injection duration of 25s followed by 300s of 

dissociation time for TBDMS-Actinonin, while an injection duration of 50s followed by 600s of 

dissociation time was used for S55746 and OBz-Progesterone. Measurements were either fitted with a 

1:1 model for Bcl2:S55746 and PDF1:TBDMS-Actinonin, or with a mass transport model for BD3:OBz-

Progesterone. 

Size-exclusion chromatography–multi-angle light scattering 

Size exclusion chromatography combined to multiangle light scattering device (miniDAWN TREOS, 

Wyatt) was performed to determine the molecular weight of the purified designs. The final 

concentration was approximately 1 mg/ml in PBS (pH 7.4), and 100 μl of the sample was injected into 

a Superdex 75 10/300 GL column (GE Healthcare) with a flow rate of 0.5 ml/min. UV280, refractive 

index (dRI) and light scattering signals were recorded. Molecular weight was determined using the 

ASTRA software (version 6.1, Wyatt). 

Circular dichroism 

Far-ultraviolet circular dichroism spectra were carried with a Chirascan spectrometer 

(AppliedPhotophysics). Protein samples were prepared diluted in PBS at a protein concentration 300 

μg/ml and placed in 1 mm path-length cuvette. Wavelengths between 200 nm and 250 nm were 

recorded with a scanning speed of 20 nm min−1 and a response time of 0.125 s. All spectra were 

corrected for buffer absorption. Temperature ramping melts were performed from 20 to 90 °C with an 

increment of 2 °C min−1. Thermal denaturation curves were plotted by the change of ellipticity at the 

global curve minimum. If possible, melting temperature (Tm) were determined after fitting the data 

with a sigmoid curve equation on GraphPad Prism. 

Cell transfection and induction 

Human Embryonic Kidney (HEK293T; RRID: CVCL_0063) cells were cultured in Dulbecco’s Modified 

Eagle Medium (41966-029, Gibco) supplemented with 10% (v/v) FBS (A5256701, Gibco) and 1%(v/v) 

antibiotic penicillin/streptomycin (15140-122, Gibco). Cells were maintained at 37°C with 5% CO2 and 

passaged every two to three days at around 80% confluency. Cells were seeded into the inner 60 wells 

of a 96 well plate, at 10’000 cells per well, 24 hours prior to transfection. Cells were transfected by 

layering 50uL from a mixture of 330uL DMEM, 825ng-850ng total DNA, and 4.125ug PEI (24765-1, 

Polysciences) on top of the media in each well, enough for each 6 well column with a 10% extra margin, 

as described previously [100]. Cells were left to incubate overnight, for a minimum of 12 hours. The next 

morning media was replaced with fresh media including the respective dilutions of the inducing agent.  
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Cellular detection assay 

For secreted NanoLuc assays, cells were plated on clear 96 well cell culture plates (655-180, Greiner Bio-

One). The next day cells were transfected with STAT3 (100ng), STAT3-NanoLuc reporter (150ng), and 

either a single GEMS receptor chain containing Bcl2 or DBVen 1619_V2 (600ng) or both chains together 

(300ng each). The following day cells were induced with different dilutions of the inducing agent 

Venetoclax. After 24 hours of induction, 5uL media was transferred to a black 384 well plate (3820, 

Corning) and mixed with 5uL diluted substrate from the Nano-Glo Luciferase Assay kit (N1120, 

Promega). After gentle shaking, plates were measured on a Tecan Spark plate reader with an integration 

time of 1000ms. 

For intracellular NanoLuc assays, cells were plated in black 96 well cell culture plates (655086, Greiner). 

The next day cells were transfected with either a single chain of PDF1-C-term-NanoLuc or DBAct553_1-

N-term-NanoLuc (825ng) or both chains together (412.5ng each). The following day cells were induced 

with different dilutions of the inducing agent Actinonin. After 24 hours of induction, intracellular 

Nanoluciferase activity was measured using the Nano-Glo Live Cell Assay kit (N2012, Promega). Media 

was aspirated and replaced with 24uL RPMI Medium (52400-025, Gibco) containing 10% v/v FBS and 

6uL diluted substrate was added to each well. After gentle shaking, plates were measured on a Tecan 

Spark plate reader with an integration time of 1000 ms. All cell-based fits presented in Figure 4.5 were 

calculated from technical replicates (n = 3) using a nonlinear four-parameter curve fitting analysis. All 

statistical analyses are based on a two way ANOVA with multiple comparisons. Data points represent 

technical replicates (n = 3) with mean and standard deviation. 

Cell-free reporter system 

The gene encoding the 6xHis-DBPro1156_2 protein fused to T7 RNA Polymerase (T7RNAP) was cloned 

into a pQE30 plasmid using Gibson assembly. The plasmid was then transformed into NEBExpress Iq 

competent E. coli (NEB; ref: C3037I) for protein expression. Bacteria were pre-cultured overnight and 

inoculated to a 500 ml LB-medium culture, grown until the OD600~0.7, and then induced with 0.1 mM 

IPTG for 3 hours. The cells were collected by centrifugation at 4000 g and lysed by sonication. Proteins 

were purified using Ni-NTA IMAC sepharose gravity columns.  

The ZF438-DB3 scFv (VH/VL) fusion protein was expressed using a PURExpress kit from NEB (E6800S) 

with the addition of a disulfide bond enhancer (E6820S). The reaction volume was 10 μl, containing 4 

μl of solution A, 3 μl of solution B, 0.4 μl of NEB disulfide bond enhancer 1, 0.4 μl of NEB disulfide bond 

enhancer 2, 2 μl of DNA template (10 ng/μl), and 0.2 μl of water. The reaction was incubated at 34 ˚C for 

3 hours and used for the following reporter reaction. 

PURExpress kit from NEB (E6800S) with disulfide bond enhancer (E6820S) was used to set up the 

mCherry reporter expression as well. The reporter-expressing reaction additionally includes 100 nM 

purified DBPro1156_2-T7RNAP and ZF438-DB3 scFv pre-expressed with PURExpress. DNA template 

for the mCherry gene is set to 4 nM, the mCherry gene is transcribed under the regulation of a truncated 

T7 promoter downstream of the zinc finger 438 protein binding site, which requires a zinc finger protein 
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for activating transcription. Progesterone was dissolved in 2% DMSO. 10 μl reactions with different 

conditions are loaded into a 384-well plate. The mCherry fluorescent intensity is measured on a BioTek 

Synergy H1 Multimode Reader (Agilent) with an excitation wavelength of 565 nm and an emission 

wavelength of 615 nm at 34 ̊ C for 8 hours with 2-minute intervals. All cell-based fits presented in Figure 

4.5 were calculated from technical replicates (n = 3) using a nonlinear four-parameter curve fitting 

analysis. All statistical analyses are based on a two way ANOVA with multiple comparisons. Data points 

represent technical replicates (n = 3) with mean and standard deviation. 

Protein purification for crystallography 

6xHis-tagged PDF1 from Pseudomonas aeruginosa and DBAct553_1 were expressed in E. coli (BL21 T7 

Express). Amino acid sequences of both proteins are shown in Supplementary Table S4.5. For PDF1, 

cells were grown in Luria-Bertani (LB) medium supplemented with 100mM NiSO4 up to an OD600 of 

0.7 at 37°C, induced with 1mM IPTG and continued growing overnight at 18°C. For DBAct553_2, cells 

were grown in auto-induction medium (AIM) up to OD600 of 0.7 at 37°C and then overnight at 18°C. 

Cells were collected by centrifugation at 4000g for 10 min, resuspended in lysis buffer (50 mM Tris, 

pH 7.5, 500 mM NaCl, 5% glycerol, 1 mg ml−1 lysozyme, 1 mM PMSF and 1 μg ml−1 DNase) and lysed 

by sonication. Lysates were then clarified by centrifugation at 30’000g for 30 min and filtered. Proteins 

were purified using the ÄKTA pure system (GE healthcare) Ni-NTA HisTrap affinity column followed 

by a size exclusion chromatography on a Superdex HiLoad 16/600 75pg with TBS (50mM Tris pH 7.5, 

250mM NaCl, 10μM NiSO4) as a final buffer. PDF1, DBAct553_2 and Actinonin were mixed at a final 

concentration of 35μM, 105μM and 300μM respectively and incubated on ice for 1 hour. Proteins were 

then concentrated by centrifugation prior to crystallization. 

Crystallographic data collection and structure determination 

The Actinonin-bound PDF1:DBAct553_1 complex (5 mg/ml) was crystallized using the sitting drop 

vapor diffusion setup at 18°C with 200nl of protein and 200nl crystallization solution consisting of 0.2M 

sodium formate, 0.1M sodium phosphate pH 6.2, 20% (v/v) PEG and 10% (v/v) glycerol. Crystals were 

cryoprotected with 25% glycerol and flash-cooled in liquid nitrogen. Diffraction data were collected at 

a temperature of 100K at the European Synchrotron Radiation Facility (ESRF Grenoble, France). Raw 

data were processed and scaled with XDS, and then processed using the autoPROC package [212]. 

Phases were obtained by molecular replacement using the Phaser module of the Phenix package and a 

model from PDB 1LRY in complex with our designed binder DBAct553_1 [213]. Atomic model 

adjustment and refinement was completed using COOT and Phenix.refine [214,215]. Finally, 

MolProbity [216] was used to assess the quality of the refined model. Details of data collection and 

refinement statistics are shown in Supplementary Table S4.6. 

Cryo-EM preparation and data acquisition 

A chimeric DB3 Fab (see Supplementary Table S4.5) was produced using the Expi293 expression system 

from Thermo Fisher Scientific (A14635). An anti-kappa light chain Fab [271] (see Supplementary Table 

S4.5) was produced using the ExpiCHO-S cells (Thermo Fisher Scientific, ref: A29127) growing in a 



Chapter 4  Targeting protein-ligand neosurfaces using a generalizable deep learning approach 

145 
 

ProCHO-5 medium (Lonza) supplemented with 2% DMSO. Supernatants were collected 6 and 7 days 

respectively after transfection, filtered and purified by Ni-NTA affinity chromatography followed by a 

size exclusion chromatography on a Superdex HiLoad 16/600 75pg. All proteins were concentrated in 

PBS as a final buffer. DBPro1156_2 was purified as indicated previously in the “protein expression and 

purification” section. 

DB3 Fab, anti-kappa light chain Fab, DBPro1156_2 and progesterone were mixed with a molar ratio of 

1 : 0.9 : 3 : 2 respectively, supplemented with 0.1% n-dodecyl-ß-D-maltoside (DDM) and concentrated 

to 3.87 mg/ml. Proteins were applied to a glow discharged 300-mesh holey carbon grid (Au 1.2/1.3 

Quantifoil Micro Tools), blotted for 4 s at 95% humidity, 10 °C, plunge frozen in liquid ethane (Vitrobot, 

Thermo Fisher Scientific(TFS)) and stored in liquid nitrogen. Data collection was performed on a 

300 kV FEI Titan Krios G4 microscope equipped with a FEI Falcon IV detector. Micrographs were 

recorded at a calibrated magnification of 120’000× with a pixel size of 0.658 Å and a nominal defocus 

ranging from -1.0 μm to -1.7 μm. 

Cryo-EM image processing 

Acquired cryo-EM data was processed (Supplementary Fig. S4.13) using cryoSPARC v4.4.1. Gain-

corrected micrographs were imported, and micrographs with a resolution estimation worse than 5.5 Å 

were discarded after patch CTF estimation. Initial particles were picked using blob picker with 90-150 Å 

particle size. Particles were extracted with a box size of 360 × 360 pixels, downsampled to 140 x 140. 

After 2D classification, clean particles were used for ab initio 3D reconstruction. After several rounds of 

2D and 3D classification, the class with most detailed features was re-extracted using full box size and 

subjected to non-uniform and local refinement to generate high-resolution reconstructions. The local 

resolution was calculated and visualized using ChimeraX [222]. 

For structure building, we used ColabFold [266] re-predictions of the anti-Kappa and DB3 Fabs, as well 

as the designed binder. Subsequent manual model adjustment and refinement was completed using 

Coot [214]. Atomic model refinement was performed using Phenix.real_space_refine [215]. quality of 

the refined model was assessed using MolProbity [216]. 

Chemical synthesis 

All chemical reagents and solvents for synthesis were purchased from commercial suppliers (Sigma-

Aldrich, Fluka, Acros) and were used without further purification or distillation. The composition of 

mixed solvents is given by the volume ratio (v/v). 1H nuclear magnetic resonance (NMR) spectra were 

recorded on a Bruker DPX 400 (400 MHz for 1H) with chemical shifts (δ) reported in ppm relative to the 

solvent residual signals (7.26 ppm for of CDCl3; 3.31 ppm for MeOD) (Supplementary Fig. S4.15). 

Coupling constants are reported in Hz. LC-MS was performed on a Shimadzu MS2020 connected to a 

Nexerra UHPLC system equipped with a Waters ACQUITY UPLC BEH Phenyl 1.7μm 2.1x50mm 

column. Buffer A: 0.05% HCOOH in H2O Buffer B: 0.05% HCOOH in acetonitrile. LC gradient: 10% to 

90% B within 6.0 min with 0.5 ml/min flow. Preparative HPLC was performed on a Dionex system 

equipped with an UltiMate 3000 diode array detector for product visualization on a Waters 
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SymmetryPrep C18 column (7 μm, 7.8 x 300 mm). Buffer A: 0.1% v/v TFA in H2O; Buffer B: acetonitrile. 

Gradient was from 25% to 90% B within 30 min with 3 ml/min flow.  

19-O-benzoylprogesterone 

19-hydroxyprogesterone (2.0 mg, 6.1 μmol, 1 eq.) was dissolved in pyridine (0.5 ml) and benzoyl 

chloride (0.9 ul, 7.9 μmol, 1.3 eq) was added. The reaction mixture was stirred for 3h. LC-MS analysis 

showed reaction completion and 10 μl methanol were added. After 30 minutes, the solvents were 

evaporated under reduced pressure. The residue was dissolved in a minimum of acetonitrile and 

subjected to preparative HPLC. The fractions containing the product were pooled and lyophilized. 

Yield: 1.1 mg (41%). 1H NMR (400 MHz, CDCl3) δ 7.89 (d, J = 8.4 Hz, 2H), 7.56 (t, J = 7.4 Hz, 1H), 7.42 (t, 

J = 7.8 Hz, 2H), 5.98 (s, 1H), 4.81 (d, J = 11.3 Hz, 1H), 4.46 (d, J = 11.3 Hz, 1H), 2.68 (ddd, J = 17.0, 13.8, 5.9 

Hz, 1H), 2.57 – 2.32 (m, 4H), 2.26 – 2.06 (m, 5H), 2.03 – 1.63 (m, 6H), 1.55 – 1.37 (m, 2H), 1.36 – 1.06 (m, 

5H), 0.69 (s, 3H). HRMS (ESI/QTOF) m/z: [M+H]+ Calcd for C28H35O4
+ 435.2530; Found 435.2528. 

TBDMS-Actinonin 

Actinonin (2.0 mg, 5.2 μmol, 1 eq.) and 4-dimethylaminopyridine (3.8 mg, 31.2 μmol, 6 eq.) were 

suspended in DCM (0.5 ml). TBDMS-Cl (2.5 mg, 16.6 μmol, 3.2 eq.) was added and the reaction was 

stirred for 5h at r.t. The solvent was evaporated under reduced pressure, the residue was dissolved in 

MeOH (0.5 ml), water (50 μl) was added and the reaction was heated to 60°C for 5h. The solvents were 

evaporated again, the residue was dissolved in a minimum of DCM and subjected to preparative TLC 

using DCM/MeOH 9:1 as the eluent. Yield: 2.0 mg (77%). 1H NMR (400 MHz, MeOD) δ 4.38 (d, J = 8.5 

Hz, 1H), 4.13 (s, 1H), 3.89 (dt, J = 10.0, 6.8 Hz, 1H), 3.79 (dd, J = 9.9, 5.3 Hz, 1H), 3.68 (dd, J = 9.9, 2.8 Hz, 

1H), 3.63 – 3.42 (m, 1H), 2.83 – 2.75 (m, 1H), 2.34 (dd, J = 14.5, 8.0 Hz, 1H), 2.24 – 1.84 (m, 6H), 1.67 – 

1.48 (m, 1H), 1.46 – 1.18 (m, 6H), 1.02 – 0.94 (m, 7H), 0.93 – 0.86 (m, 12H), 0.07 (s, 3H), 0.05 (s, 3H). 

HRMS (ESI/QTOF) m/z: [M+Na]+ Calcd for C25H49N3NaO5Si+ 522.3334; Found 522.3342.  

Data and material availability 

Crystal structure of DBAct553_2 in complex with Actinonin-bound PDF1 has been deposited at the 

PDB under the accession code 8S1X (DOI: https://doi.org/10.2210/pdb8S1X/pdb). MaSIF-neosurf and 

the Rosetta design scripts are available on GitHub (https://github.com/LPDI-EPFL/masif-neosurf). 

The scaffold database generated for grafting the seed provided by MaSIF-neosurf is partly available at 

Zenodo (https://zenodo.org/records/7643697#.Y-z533ZKhaQ) and partly on Github 

(https://github.com/strauchlab/DBP and https://github.com/strauchlab/scaffold_design/). All other 

data needed to evaluate the conclusions in this paper are present either in the main text or the 

supplementary materials. 
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4.6 Supplementary materials 

 
Supplementary	Figure	S	4.1:	MaSIF	feature	computation	for	small	molecule	ligands.	A-F. Hydrogen bond propensity is assigned in a direction-dependent manner [196]. Surface points are assigned positive (donor) or negative (acceptor) values based on their distance to the ideal direction (C, F). The optimal position for an acceptor can either lie anywhere on a cone (D) or in one or more unique directions (E). G-I. For hydropathy, we convert computational LogP values to the protein-specific Kyte-Doolittle (KD) scale required by MaSIF using the Eisenberg scale as an intermediate. We also restrict the outputs to be between the minimum and maximum KD values after the mapping leading to the relationship shown in panel (I). J-L. Ligands were fragmented into smaller objects (J). The reason is that most ligands are significantly larger than any amino acid (K) and exhibit more extreme LogP values (L). We therefore compute hydrophobicity values based on fragments. This procedure ensures that the new hydropathy feature remains “in-distribution” of the pre-trained MaSIF model.  
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Supplementary	Figure	S	4.2:	Ligand	interface	area	contribution	in	the	benchmark	dataset.	A-B. Buried solvent-accessible surface area (SASA) contribution of the ligand in absolute value (A) or in percentage of the total interface surface area (B) for the 28 protein-ligand complexes used in the benchmark dataset of known ternary complexes. Complexes were categorized based on the benchmark outcome, namely successfully solved complexes with the ligand (orange), unsolved complexes with the ligand (gray) or solved without the ligand (blue). 
  



Chapter 4  Targeting protein-ligand neosurfaces using a generalizable deep learning approach 

150 
 

 
Supplementary	Figure	S	4.3:	Neosurface	properties	captured	by	the	designed	binders.	A-B. Computed binding energy (ΔΔG, A) and number of atomic contacts (B) for all designs targeting Bcl2:Venetoclax (left), DB3:Progesterone (middle) and PDF1:Actinonin (right) complexes. Calculations were done in absence (blue) and presence (orange) of the respective small molecules. Atom contacts were defined based on the Van der Waals radii (rVdW + 0.2A tolerance) of each pair of atoms. Vertical lines represent the identified binder for each targeted complex. C-D. Buried solvent-accessible surface area (SASA) of the ligand (C) and ligand contribution with respect to the total buried SASA (D) for each target protein-ligand complex. Dashed lines represent the identified binder for each targeted complex.     
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Supplementary	Figure	S	4.4:	Representative	flow	cytometry	graphs	of	the	binder	screening.	Yeast surface display screening of the first and second sort of the library against DB3:Progesterone in presence (+Prog) and absence of the small molecule. Yeasts labeled with secondary antibodies but without any ligand were used as a negative control to set the gates. In sort 1, binding population from the selected gates was used for a second sort. In sort 2, yeasts were sorted for both binding (upper gate) and non-binding (lower gate) populations and used for next-generation sequencing. 
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Supplementary	Figure	S	4.5:	Binding	control	of	small	molecules	analogs.	A.	Original small molecule used for each drug:protein complex. B.	Small molecule derivative binding to the same target but introducing a clash with the designed binder. Steric clashes are indicated with red dashed circles. C. Crystal structure (S55746; PDB: 6GL8) or computational models (19-O-Benzoyl Progesterone and Tertbutyldimethylsilyl-Actinonin) of the small molecule analogs relaxed by Gnina(80) with their respective target protein in absence of the designed binders. Complexes were then overlapped with the computational model of the designed binders to identify clashing regions. D. WaveRAPID binding kinetics of each small molecule analog to their respective target protein performed by Grating-Coupled Interferometry (GCI). Measurements are indicated in red and fit curves in black. 
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Supplementary	Figure	S	4.6:	Full	data	of	 the	site-saturation	mutagenesis.	A-C.	Heatmaps represent the logarithmic value of the enrichment score (Counts in binding population divided by counts in non-binding population) of each mutation at every position. Sorting has been performed following the gating strategy presented in fig. S2. Native amino acids are marked with a cross (X) and near-interface positions are highlighted with a red box. Sortings were performed with a high concentration and a low concentration of target complex to focus on deleterious and beneficial mutations respectively. Site saturation mutagenesis were performed on DBVen1619_1 for the the Bcl2:Venetoclax complex (A), DBPro1156_1 for the DB3:Progesterone complex (B) and DBAct553_1 for the PDF1:Actinonin complex (C). 
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Supplementary	Figure	S	4.7:	Biophysical	characterization	of	purified	binders.	A. Protein folding of the purified binder measured by circular dichroism at 20°C (blue) or 90°C (orange). B. Thermal stability determined by measuring the ellipticity at 218nm at increasing temperature. C.  Oligomeric state determined by size-exclusion multi-angle light scattering (SEC-MALS)   
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Supplementary	 Figure	 S	 4.8:	 Affinity	 measurements	 of	 first-generation	 purified	 binders.	 Affinity measurement for DBVen1619_1, DBPro1156_1 and DBAct553_1 performed by surface plasmon resonance (DBVen1619_1) or biolayer interferometry (DBPro1156_1 and DBAct1156_1). Each measurement was performed in presence (orange) or absence (blue) of the respective small molecule. The fits were calculated using a nonlinear four-parameter curve fitting analysis.  	
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Supplementary	 Figure	 S	 4.9:	 Experimental	 optimization	 of	 DBVen1619.	 A.	 Computational model of DBVen1619_1 (green) in complex with Bcl2 (gray) and Venetoclax (Magenta). Potential beneficial mutations obtained from site-saturation mutagenesis (SSM) data and subsequent degenerate codons are found in black boxes for each mutated position. B.	Sequence logo plot of the combinatorial library sorted twice with yeast display. Mutated positions are highlighted with a red asterisk. Mutations selected to constitute DBVen1619_2 are highlighted with a red square. C. Comparison of unlabeled yeast (gray), or yeasts displaying DBVen1619_1 (blue), DBVen1619_2 (green, K1Q+M3L+I13K) or the top 3 most enriched sequences of the combinatorial library (orange). All yeasts were labeled with 3nM Bcl2:Venetoclax complex.
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Supplementary	 Figure	 S	 4.10:	 Experimental	 optimization	 of	 DBPro1156.	 A.	 Computational model of DBPro1156_1 (blue) in complex with DB3 IgG (gray) and Progesterone (yellow). Potential beneficial mutations obtained from site-saturation mutagenesis (SSM) data are found in black boxes for each mutated position.	B.	Binding signal measured by flowcytometry for yeasts displaying DBPro1156_1 (blue) or the corresponding mutant (orange). All yeasts were labeled with 50nM DB3:Progesterone complex. C. Binding signal measured by flowcytometry measured for yeasts displaying DBPro1156_1 (blue) compared to DBPro1156_2 (green, Y12W+S16G). Yeasts were labeled with 3nM DB3:Progesterone complex. Negative control performed on yeast displaying DBPro1156_2 labeled with DB3 only.  
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Supplementary	 Figure	 S	 4.11:	 Experimental	 optimization	 of	 DBAct553.	 A. Computational model of DBAct553_1 (pink) in complex with PDF1 (gray) and Actinonin (orange). Potential beneficial mutations obtained from site-saturation mutagenesis (SSM) data are found in black boxes for each mutated position. B. Binding signal measured by flowcytometry for yeasts displaying DBAct553_1 (blue) or the corresponding mutant (orange). All yeasts were labeled with 10nM PDF1:Actinonin complex. C. Binding signal measured by flowcytometry measured for yeasts displaying DBAct553_1 (blue) compared to DBAct553_2 (green, R7N+A8R). Yeasts were labeled with 10nM PDF1:Actinonin complex. Negative control performed on yeast displaying DBAct553_2 labeled with DB3 only. Combination of mutants I3E+R7N was deleterious for binding as compared to unlabeled yeasts. 
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Supplementary	Figure	S	4.12:	Comparison	between	crystallographic	data	and	AlphaFold2	predictions.	A. Computational model of DBAct553_1 (light pink) aligned with its crystal structure (magenta) with a close-up on tyrosine-2. B. AlphaFold2 (AF2) prediction of DBAct553_1 (gray) aligned with its crystal structure (magenta) with a close-up on tyrosine-2. C-D. Comparison between computational models of DBPro1156_1 (C) and DBVen1619_1 (D) and their respective AlphaFold2 prediction as monomers 
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Supplementary	Figure	S	4.13:	Details	of	Cryo-EM	data	processing	for	DBPro1153_2	in	complex	with	DB3.	
A. The cryo-EM map of anti-Kappa IgG:DB3:DBPro1156_2 used for model building. Views of the unsharpened cryo-EM density maps colored by local resolution. B. Gold-standard FSC curve with resolution cutoff indicated at 0.143. C. Particle distribution heatmap of the final reconstruction. D. Representative 2D classes of the anti-Kappa IgG:DB3:DBPro1156_2 complex.  



Chapter 4  Targeting protein-ligand neosurfaces using a generalizable deep learning approach 

162 
 

 

Supplementary	Figure	S	4.14:	AlphaFold	prediction	and	post-filtering	of	generated	designs.	A.	AlphaFold monomer prediction (single sequence mode) of the ~2000 designs generated against each drug:protein complex. Prediction confidence (pLDDT) and root mean square deviation (RMSD) from the computational models are plotted. Designs that would pass a strict filtering (RMSD ≤ 1A and pLDDT ≥ 87) are colored in green, while ones that failed filtering are colored in red. Validated binders are colored in orange. B-C. Counts (B) and percentage (C) of generated designs that failed (red) or passed (green) the strict AlphaFold2 filtering. D. Experimental success rate obtained with the current data (orange) compared to the hypothetical success rate (blue) if a strict filtering with AlphaFold2 (RMSD ≤ 1A and pLDDT ≥ 87) was used prior screening.   
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Supplementary	Figure	S	4.15:	Chemical	synthesis	and	1H	NMR	spectra	validation.	A.	Chemical synthesis reaction of 19-O-Benzoyl-Progesterone (OBz-Progesterone, top) and Tertbutyldimethylsilyl-Actinonin (TBDMS-Actinonin, bottom). B. 1H NMR spectra of OBz-Progesterone (top) and TBDMS-Actinonin (bottom). 
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Supplementary	Table	S	4.1: Metrics	and	cutoffs	for	binder	design	with	MaSIF-seed. 

Target Motif Site 
Interface 

cutoff 

NN 
score 
cutoff 

Descriptor 
distance 

cutoff 
#seeds 

#selected 
seeds 

#designs 
(#grafted 

seeds) 
 

#select 
designs 
(#seeds) 

 

Total 
design 

Bcl2: 
Ven S 

1 0.65 0.9 2.0 1743 78 28396 
(69) 

1456 
(67) 

1995 2 0.65 0.87 2.2 1048 33 7485 
(29) 

464 
(27) 

3 0.6 0.85 2.3 1012 11 1073 
(8) 

75 
(8) 

DB3: 
Pro 

H 

1 0.75 0.9 1.8 995 49 160488 
(49) 

975 
(44) 

1998 2 0.65 0.9 2.1 1046 36 147940 
(36) 

548 
(34) 

S 1 0.8 0.9 1.7 1775 98 10097 
(39) 

475 
(37) 

PDF1:
Act 

H 1 0.65 0.87 2.2 1272 74 56813 
(67) 

1447 
(66) 

1997 

S 1 0.65 0.85 2.3 1373 98 3711 
(56) 

550 
(55) 
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Supplementary	Table	S	4.2: Deep	sequencing	analysis	of	FACS-enriched	populations. 

Target Design Original 
scaffold 

Scaffold 
set Topology Binding 

counts 

Non-
binding 
counts 

Enrichment 

Bcl2 DBVen1619 3hC_242_0001 Ref30 EEHEE 459449 15561 1.47 

DB3 DBPro1156 bGC_85 Ref29 HHH 134116 652 2.31 

PDF1 DBAct553 3hC_605_0001 Ref30 HHH 35195 557 1.80 

 

 

Supplementary	Table	S	4.3:	Computational	analysis	of	ligand	contributions.	Summary of different metrics in absence or presence of ligands. The buried solvent-accessible surface area (SASA) of the protein-ligand target complex, the percentage of ligand contribution to this buried SASA, computed binding energy (ddG) in Rosetta Energy Unit (R.E.U.) and the number of atoms in contact with the target complex have been measured. Atom contacts were calculated based on the Van der Waals radii (rVdW + 0.2A tolerance) of each pair of atoms. N/A: Not applicable. 
Design Ligand 

Target 
buried 

SASA [Å2] 

Ligand 
contribution 

ddG  
[R.E.U] 

ddG  
shift 

Atom 
contact 

[Counts] 

Atom cont. 
shift 

DBVen1619_1 

- N/A N/A -25.94 

-17.04% 

94 

+7 

+ 672 9.98% -30.36 101 

DBPro1156_1 

- N/A N/A -28.59 

-18.46% 

117 

+7 

+ 702 10.57% -33.87 124 

DBAct553_1 

- N/A N/A -32.18 

-27.72% 

123 

+26 

+ 886 12.13% -41.10 149 
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Supplementary	Table	S	4.4: Docking	benchmark	complexes.	List of 14 protein-ligand complexes and 200 decoys used in the binding partner recovery experiment. Search parameters: interface cutoff = 0.0; NN score cutoff = 0.8; descriptor distance cutoff = 3.0; #sites = 3; selection radius = 10A. 
Protein-protein-ligand complex 

PDB ID Protein 1 Protein 2 Ligand 

1A7X FKBP12 (chain A) FKBP12 (chain B) BENZYL-CARBAMIC ACID [8-
DEETHYL-ASCOMYCIN-8-
YL]ETHYL ESTER (FKA) 

1S9D ADP-Ribosylation Factor 1 
(chain A) 

Arno (chain E) 1,6,7,8,9,11A,12,13,14,14A-
DECAHYDRO-1,13-DIHYDROXY-
6-METHYL-4H-
CYCLOPENT[F]OXACYCLOTRIDE
CIN-4-ONE (AFB) 

1TCO SERINE/THREONINE 
PHOSPHATASE B2 (chains A 
and B) 

FK506-BINDING PROTEIN 
(chain C) 

8-DEETHYL-8-[BUT-3-ENYL]-
ASCOMYCIN (FK5) 

3QEL NMDA glutamate receptor 
subunit (chain A) 

Glutamate [NMDA] receptor 
subunit epsilon-2 (chain B) 

4-[(1R,2S)-2-(4-benzylpiperidin-1-
yl)-1-hydroxypropyl]phenol (QEL) 

4DRI Peptidyl-prolyl cis-trans 
isomerase FKBP5 (chain A) 

Serine/threonine-protein kinase 
mTOR (chain B) 

RAPAMYCIN 
IMMUNOSUPPRESSANT DRUG 
(RAP) 

4MDK Ubiquitin-conjugating 
enzyme E2 R1 (chain A) 

Ubiquitin (chain E) 4,5-dideoxy-5-(3',5'-
dichlorobiphenyl-4-yl)-4-
[(methoxyacetyl)amino]-L-
arabinonic acid (U94) 

6ENG DNA gyrase subunit B (chain 
A) 

DNA gyrase subunit B (chain B) Coumermycin A1 (BHW) 

6H0F Protein cereblon (chain B) DNA-binding protein Ikaros 
(chain C) 

S-Pomalidomide (Y70) 

6N4N NS3 protease (chain A) Rosetta-designed 
danoprevir/NS3a complex 
reader 2 (chain F) 

(2R,6S,12Z,13aS,14aR,16aS)-6-
[(tert-butoxycarbonyl)amino]-14a-
[(cyclopropylsulfonyl)carbamoyl]-
5,16-dioxo-1,2,3,5,6,7,8 
,9,10,11,13a,14,14a,15,16,16a-
hexadecahydrocyclopropa[e]pyrro
lo[1,2-
a][1,4]diazacyclopentadecin-2-yl 
4-fluoro-2H-isoindole-2-
carboxylate (TSV) 

6OB5 Maltodextrin-binding 
protein (chain B) 

Ankyrin Repeat Domain (AR), 
S3-2D variant (chain D) 

FARNESYL DIPHOSPHATE (FPP) 

6QTL VHH (chain A) VHH (chain C) CAFFEINE (CFF) 
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6SJ7 DDB1- and CUL4-associated 
factor 15 (chain A) 

RNA binding protein 39 (chain 
C) 

N~1~-(3-chloro-1H-indol-7-
yl)benzene-1,4-disulfonamide 
(EF6) 

7DC8 Switch Ab Fab light & heavy 
chain (chains A and B) 

Interleukin-6 receptor subunit 
alpha (chains C and F) 

ADENOSINE-5'-TRIPHOSPHATE 
(ATP) 

7TE8 DB21 (chain A) CA14 (chain C) cannabidiol (P0T) 

Decoys 

1A2K_AB, 1A2K_C, 1AVX_A, 1AVX_B, 1BRS_A, 1BRS_D, 1ERN_A, 1ERN_B, 1H6K_B, 1H6K_Y, 1I07_A, 1I07_B, 
1I4O_B, 1I4O_D, 1ID5_H, 1ID5_L, 1JKG_A, 1JKG_B, 1JZO_A, 1JZO_B, 1LQM_E, 1LQM_F, 1NPO_A, 1NPO_C, 
1O9Y_A, 1O9Y_D, 1PXV_A, 1PXV_C, 1Q5H_A, 1Q5H_B, 1SHY_A, 1SHY_B, 1SOT_A, 1SOT_C, 1T0F_A, 1T0F_B, 
1TQ9_A, 1TQ9_B, 1UGH_E, 1UGH_I, 1UUG_A, 1UUG_B, 1XDT_R, 1XDT_T, 1XPJ_A, 1XPJ_D, 1XT9_A, 1XT9_B, 
1XUA_A, 1XUA_B, 1YC0_A, 1YC0_I, 1YLQ_A, 1YLQ_B, 1YY9_A, 1YY9_D, 1Z0K_A, 1Z0K_C, 1ZR0_A, 1ZR0_B, 
1ZVN_A, 1ZVN_B, 2A2L_B, 2A2L_C, 2AQX_A, 2AQX_B, 2B3Z_C, 2B3Z_D, 2B42_A, 2B42_B, 2FE8_A, 2FE8_C, 
2G2W_A, 2G2W_B, 2GD4_B, 2GD4_C, 2GKW_A, 2GKW_B, 2HDP_A, 2HDP_B, 2HEK_A, 2HEK_B, 2I32_A, 2I32_E, 
2J12_A, 2J12_B, 2JI1_C, 2JI1_D, 2LBU_D, 2LBU_E, 2O8Q_A, 2O8Q_B, 2P45_A, 2P45_B, 2P47_A, 2P47_B, 2QLC_B, 
2QLC_C, 2WAM_A, 2WAM_C, 2WQ4_A, 2WQ4_C, 2Y32_B, 2Y32_D, 2YZJ_A, 2YZJ_C, 2Z0P_C, 2Z0P_D, 2Z29_A, 
2Z29_B, 2Z7F_E, 2Z7F_I, 3AXY_B, 3AXY_D, 3B5U_J, 3B5U_L, 3BTV_A, 3BTV_B, 3CDW_A, 3CDW_H, 3CEW_C, 
3CEW_D, 3CG8_B, 3CG8_C, 3CHW_A, 3CHW_P, 3E2U_A, 3E2U_E, 3ECY_A, 3ECY_B, 3EYD_C, 3EYD_D, 3F74_A, 
3F74_B, 3FJS_C, 3FJS_D, 3HCG_A, 3HCG_C, 3HN6_B, 3HN6_D, 3HRD_E, 3HRD_H, 3IBM_A, 3IBM_B, 3ISM_A, 
3ISM_B, 3K3C_A, 3K3C_B, 3KMT_A, 3KMT_B, 3KZH_A, 3KZH_B, 3M85_B, 3M85_E, 3OGF_A, 3OGF_B, 3P71_C, 
3P71_T, 3P8B_C, 3P8B_D, 3PGA_1, 3PGA_4, 3Q0Y_B, 3Q0Y_C, 3Q87_A, 3Q87_B, 3Q9U_A, 3Q9U_C, 3QWN_I, 
3QWN_J, 3QWQ_A, 3QWQ_B, 3RDZ_A, 3RDZ_C, 3S8V_A, 3S8V_X, 3S9C_A, 3S9C_B, 3SGB_E, 3SGB_I, 3SLH_A, 
3SLH_B, 3TND_B, 3TND_D, 3WN7_A, 3WN7_B, 4AG2_A, 4AG2_C, 4CJ0_A, 4CJ0_B, 4KGG_A, 4KGG_C, 4M5F_A, 
4M5F_B, 4TQ1_A, 4TQ1_B, 4YDJ_G, 4YDJ_HL, 5GPG_A, 5GPG_B 
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Supplementary	Table	S	4.5: Target	protein	and	binder	sequences.	
Design Sequence Mutations from 

native 

DBVen1619_1 KYMLVVKGPNVTIFRWVDSSSEAETLARKIAKKLGLEVKSVEKKGNAVRVEIG  

DBVen1619_2 QYLLVVKGPNVTKFRWVDSSSEAETLARKIAKKLGLEVKSVEKKGNAVRVEIG K1Q, M3L, I13K 

DBPro1156_1 DEKAKTAETLIYQLFSKAMQQSDPNEAEKLLKKAEELAKKANDPRLEQVVRQ
HQVVVRFLV 

 

DBPro1156_2 DEKAKTAETLIWQLFGKAMQQSDPNEAEKLLKKAEELAKKANDPRLEQVVR
QHQVVVRFLV 

Y12W, S16G 

DBAct553_1 DYIRELRAALILLALKKQHAEDPDAQRVADELMKKLFDAAHRNDKDKVKKV
VEEAKKVVSTY 

 

DBAct553_2 DYIRELNRALILLALKKQHAEDPDAQRVADELMKKLFDAAHRNDKDKVKKV
VEEAKKVVSTY 

R7N, A8R 

DB3_H QIQLVQSGPELKKPGETVKISCKASGYAFTNYGVNWVKEAPGKELKWMGWI
NIYTGEPTYVDDFKGRFAFSLETSASTAYLEINNLKNEDTATYFCTRGDYVNW
YFDVWGAGTTVTVSSAKTTPPSVYPLAPGSAAQTNSMVTLGCLVKGYFPEPV
TVTWNSGSLSSGVHTFPAVLQSDLYTLSSSVTVPSSPRPSETVTCNVAHPASST
KVDKKIVPR 

 

DB3_L DVVMTQIPLSLPVNLGDQASISCRSSQSLIHSNGNTYLHWYLQKPGQSPKLL
MYKVSNRFYGVPDRFSGSGSGTDFTLKISRVEAEDLGIYFCSQSSHVPPTFGG
GTKLEIKRADAAPTVSIFPPSSEQLTSGGASVVCFLNNFYPKDINVKWKIDGSE
RQNGVLNSWTDQDSKDSTYSMSSTLTLTKDEYERHNSYTCEATHKTSTSPIV
KSFNR 

 

DB3_H 
(Chimeric) 

QIQLVQSGPELKKPGETVKISCKASGYAFTNYGVNWVKEAPGKELKWMGWI
NIYTGEPTYVDDFKGRFAFSLETSASTAYLEINNLKNEDTATYFCTRGDYVNW
YFDVWGAGTTVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVT
VSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNT
KVDKKVEPKSCDKTHT 

 

DB3_L 
(Chimeric) 

DVVMTQIPLSLPVSLGEQASISCRSSQSLIHSNGNTYLHWYLQKPGQSPKLLM
YKVSNRFYGVPDRFSGSGSGTDFTLKISRVEAEDLGIYFCSQSSHVPPTFGGGT
KLEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQ
SGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKS
FNRGEC 

 

Anti-kappa_H EVKLLESGGGLVQPGRSLRLSCIASGFDFSGYWMTWVRQAPGKGLEWIGDIN
PDSSTINSTPSLKDKVIISRDNAKNTLFLQMSKVRSEDTALYYCAQRGNYVPFP
YWGQGTLVTVSAAKTTPPSVYPLAPGSAAQTNSMVTLGCLVKGYFPEPVTVT
WNSGSLSSGVHTFPAVLQSDLYTLSSSVTVPSSTWPSETVTCNVAHPASSTKV
DKKIVPRDCGCK 

 

Anti-kappa_L SIVMTQTPKFLFVSAGDRVTITCKASQSVSNDVEWYQQKPGQSPKLMIYFASK
RYNGVPDRFTGSGFGTEFTFTISTVQAEDLAVYFCQQDYSSPWTFGGGTKLEI
KRADAAPTVSIFPPSSEQLTSGGASVVCFLNNFYPKDINVKWKIDGSERQNGV
LNSWTDQDSKDSTYSMSSTLTLTKDEYERHNSYTCEATHKTSTSPIVKSFNRG
EC 

 

Bcl2 MAHAGRTGYDNREIVMKYIHYKLSQRGYEWDAGDDAEENRTEAPEGTESEV
VHRALRDAGDDFERRYRRDFAEMSSQLHLTPDTARQRFETVVEELFRDGVN
WGRIVAFFEFGGVMCVESVNREMSPLVDNIAEWMTEYLNRHLHTWIQDNG
GWDAFVELYGPSMR 

 

PDF1 AILNILEFPDPRLRTIAKPVEVVDDAVRQLIDDMFETMYEAPGIGLAATQVNV
HKRIVVMDLSEDKSEPRVFINPEFEPLTEDMDQYQEGCLSVPGFYENVDRPQ
KVRIKALDRDGNPFEEVAEGLLAVCIQHECDHLNGKLFVDYLSTLKRDRIRKK
LEKQHRQQA 
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 Supplementary Table S 4.6 : Crystallographic data collection and refinement statistics. 

DBAct553_1:Actinonin:PDF1 (PDB: 8S1X) 

Data collection 

Space group P212121 

Cell dimensions   

a, b, c (Å) 49.44, 75.01, 83.16 

a, b, g(°) 90.0, 90.0, 90.0 

Wavelength (Å) 0.87313 

Resolution (Å) 55.7 - 1.88 (1.96 - 1.88) 

Unique reflections 24990 (1266) 

Rmerge 0.044 (1.125) 

I / sI 15.0 (1.3) 

CC1/2 0.999 (0.426) 

Completeness (%) 96.9 (99.6) 

Redundancy 4.3 (4.4) 

Refinement 

Resolution (Å) 55.7 - 1.88 

No. reflections 24982 (2801) 

Rwork / Rfree 0.1838/0.2030 

No. atoms 1999  

 Protein 1850 

 Ligand/ion 73 

 Water 76 

B-factors (Å2) 57.2  

 Protein 56.9 

 Ligand/ion 66.7 

 Water 55.3 

R.m.s. deviations   

 Bond lengths (Å) 0.007 

 Bond angles (°) 0.730 

Ramachandran plot   
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Favored (%) 99.11 

Allowed (%) 0.89 

Outliers (%) 0.00   
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Chapter 5  

Conclusions and perspectives 

 

 

 

his work presented some of my contributions made to the field of computational protein 

design and more specifically for the engineering of novel protein interactions. In addition to 

introducing novel computational tools approaches enhancing our comprehension of PPI 

engineering, a particular emphasis was placed on ensuring translational applications for all the cases 

that were discussed. From my perspective, biomedical research should strive to address unsolved 

scientific questions, while maintaining a constant awareness of how its progress can ultimately benefit 

to a broad range of the population, including the patients. In the following sections, we will discuss the 

conclusions that were made in the three projects discussed hereinbefore and bring an overall 

perspective to this work (Figure 5.1).  

5.1 Controlling protein therapeutics with a drug-responsive switch 

Monoclonal antibodies, and other protein-based therapeutic such as cytokines, represent a growing 

market with promising outcomes in the clinics [143,144,147]. However, their development is hindered 

by the presence of systemic toxicities that can induce deleterious side effects, namely cytokine storm 

syndromes leading to organ failures [145,146]. Several engineering strategies using ON-switch systems 

were proposed to control their localization and activity in vivo, but these approaches are depending on 

internal stimuli that lacks external monitoring [149], or have a slow OFF turnover following the 

cessation of the stimulus [150]. Chemically-disruptable heterodimers can act as OFF-switch systems 

upon the addition of a small molecule for a rapid stop of the therapeutic effect. Yet, the number of 

successful examples of soluble protein therapeutic using OFF-switch systems is limited. Numerous 

attempts of engineering novel chemically-responsive switches were made in the past years [237], but a 

number of them were not using proteins of human origin [155] or were shown to have a low affinity 

[152]. Though, to design a soluble therapeutic for use in human patients, there are two parameters that 

are crucial to ensure safety and efficacy: i) The lack of immunogenicity and ii) the binding stability of 

the switchable moieties. Another consideration would be to use safe, well-characterized and 

deliverable molecules as a switch trigger, such as a clinically approved drug.  

T
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In chapter 2, we leveraged a high-affinity CDH – previously developed in our lab for CAR-T cell therapy 

[165] – composed of the human Bcl2 protein and the computationally designed LD3 that originates 

from a human globular protein. This CDH was incorporated into a protein therapeutic such as an 

antibody or an Fc-fused cytokines to act as a drug-responsive OFF-switch system. We hypothesized that 

the loss of the Fc moiety upon switching can lead to a rapid OFF-state due to the decreased half-life in 

vivo, the reduced avidity and the loss of effector function [156–158].  

However, this CDH complex was initially designed for a cell-based therapy and a significantly different 

switchability was observed when the chemical switch was tested in solution. Firstly, molecular 

crowding in cells can lead to very different behaviors and protein dynamic in solutions compared to 

cell assays [272]. Secondly, proteins have a continuous turnover and are repeatedly expressed and 

degraded to maintain cell homeostasis [273]. The successful switchability of Bcl2:LD3 system in CAR T 

cells could be explained by a pre-blocking of Bcl2 by Venetoclax directly after its synthesis but prior 

complexation with LD3, thus locking Bcl2 in an LD3-unbound state. However, once Bcl2 is bound to 

LD3, the probabilities for the drug to compete are very low. Indeed, an extremely low dissociation rate 

was measured in vitro, which highly restricts the opportunity of the drug to displace the LD3 binder.  

We therefore hypothesized that slightly reducing the affinity by increase the dissociation rate could lead 

to a better switchability. 

Similarly to alanine scanning performed experimentally to assess binding contribution at the single 

amino acid level [274], we used a computational alanine scan tool on Rosetta modelling suite to predict 

mutations that can decrease the computed binding energy. With this approach, we then focused our 

screening on 5 residue positions, which considerably reduced the experimental work. After 

experimental validation, we selected a mutation that slightly increased the dissociation rate (koff) while 

maintaining the association rate (kon) as similar as possible to ensure a good LD3:Bcl2 complex stability. 

Of note, no clear correlation between the predicted ΔΔG decrease and changes of binding kinetic was 

observed, which further supports the low energetic resolution of physics-based scoring function and 

the need of computational tools with better sensitivity in future works [275,276].  

Overall, the integration of the predicted mutation lead to a better switchability in vitro and in vivo, while 

maintaining the complex stability and efficacy in absence of the small molecule. However, the overall 

molecular weight of the switchable complex (250 kDa) could represent a potential limitation. Although this 

size might be suitable for targets within the bloodstream, it could impede tissue penetration, for example in 

solid tumors [160]. Future engineering could incorporate smaller CDH systems or directly incorporating 

some binding motifs within the protein therapeutic moieties by motif grafting and design [277].  

In summary, the first aim of this dissertation proposed a rational blueprint to design drug-responsive 

protein therapeutics in order to increase safety and control of protein-based therapies. We exemplified 

the translation of protein interactions into tangible biomedical applications, achieved through the 

utilization of computational tools for a better switchability.  
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Figure	5.1	:	Summary	of	the	different	technologies,	applications	and	translations. The three aims presented in this dissertation are summarized with the computational technologies that were used or developed, the experimental applications and their translation into potential biomedical systems. Overall, this work aimed to take advantage of existing tools or to develop novel computational methods for the design of novel protein-protein interactions with translational capabilities, such as protein-based therapeutics or chemical-responsive switches.   
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5.2 Designing novel protein interactions straight from a computer 

The design of novel protein-protein interaction has remained a challenge for the field of protein 

science. Most engineering strategies have relied on template-based approaches that repurpose existing 

interfaces – such as in chapter 2 [97] and in other works [104,116,118] – but this method is inefficient 

for targeting sites where no experimental or structural data are available. Scientists have therefore 

generated monoclonal antibodies [14] or screened among libraries with millions of variants [278], but 

the outcomes are often agnostic to where and how the respective targets are engaged. Among the de 

novo design methods, the dock-&-optimize approach demonstrated only low affinity and specificity 

[129–131], while the hotspot-centric approach has so far been dependent on known hotspots or 

extensive experimental screening and optimization [132,162,166]. Of note, in order to design de novo 

PPIs, two key aspects need to be solved: i) the binding site, and ii) the binding partner. 

With the advent of machine learning, novel tools are available to study protein interfaces and 

interactions. Among them, MaSIF has been proposed to use vectorized chemical and geometrical 

features found on the protein molecular surface to predict PPI site and partners based solely on these 

fingerprints, without any co-evolutionary signature. In chapter 3, we took advantage of MaSIF 

capabilities to find high-propensity interfaces and search for binding motifs displaying highly 

complementary fingerprints for four therapeutically-relevant targets: SARS-CoV-2, PD-L1, PD-1 and 

CTLA-4. With our surface-centric approach, we successfully obtained highly specific binders for each 

of these “undruggable” targets with affinities ranging from nanomolar to low-micromolar.  

However, in the first attempts, we faced limitations in terms of i) binding affinity and ii) scaffold 

stability. Firstly, the early designs always required extensive in vitro maturation to obtain binding 

affinities in the range of native PPIs. The causes were mostly originating from a suboptimal polar 

interactions at the rim of the interface, the presence of buried unsatisfied polar atoms and steric clashes 

at the core of the interface, all contributing to inadequate protein interactions also reported in previous 

findings [130,132,135,279,280]. To address these downsides, a seed refinement step was added prior 

grafting with the aim to relax the structure and perform sequence optimization emphasizing the 

establishment of a more robust polar network thanks to a penalization of buried unsatisfied polar 

atoms [137]. Secondly, as exemplified by DBL1_02, some designs originating from natural protein 

scaffolds were not readily expressible and stable, and required some further optimization. Natural 

proteins can often be unstable, difficult to express and less tolerant to mutations [281,282]. Nowadays, 

evolution-based or deep learning tools can greatly enhance expressibility and solubility of natural 

proteins [283,284]. However, to avoid the addition of another layer of computational design in the 

current pipeline, we opted for the direct integration of hyperstable de novo miniproteins in our scaffold 

database [74,75]. With this optimized pipeline in hands, we successfully obtained another set of binders 

with native-like affinities by pure in silico generation and with high accurate prediction proved by 

mutational characterizations. One of these binders, DBP13_02 binding to PD-1, demonstrated 

translational capabilities as a potent agonist and T cell inhibitor.  
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However, some limitations are inherent to our current pipeline, such as the need for an external database 

for the search of complementary binding seeds and scaffolds. Despite their large size, they do not 

represent a universal answer to all design cases. Nowadays, new deep learning tools, such as hallucination 

or diffusion models, are emerging as a solution for scaffolding binding motifs [38,87] or for a full binder 

design [38,285]. Considering the success of surface fingerprinting for PPI prediction and design, we can 

anticipate that these novel deep learning approaches could benefit from the incorporation of fingerprint 

descriptors in their loss function for an enhanced success rate. Moreover, the MaSIF-seed framework and 

its synergy with other tools would greatly benefit from the transition to a lighter architecture, such as 

dMaSIF (differentiable molecular surface interaction fingerprinting) [286], that removes input 

precomputation and reduces computational time or memory requirements. This adaptation would 

enable an on-the-fly utilization without the necessity of heavy pre-computation steps. 

An additional challenge persists in addressing sites characterized by high flexibility or polarity. MaSIF’s 

input only use a snapshot of the protein conformational space that might not be representative of highly 

flexible region in experimental conditions (e.g. loops). A synergistic combination of MaSIF with other 

machine learning-based conformation predictors [287,288] would greatly enhance the designability of 

flexible sites, however with an associated computational cost. The second main challenge to address 

involves polar sites that lack large hydrophobic patches. Indeed, MaSIF has been primarily trained on 

a set of PPI characterized by a hydrophobic patch at the core of the interface, in line with the classical 

representation of these interactions [18,110]. Success rates are also highly correlated with the 

hydrophobicity of the target site as it contributes to a large part of the binding energy [166,170]. 

However, to generalize to a broader range of sites, akin to antibodies, overcoming challenges associated 

with accurate polar network [289], water molecule modelling [53,110,290] and interface desolvation 

energy [132,291] becomes imperative.  

Finally, the surface fingerprinting approach focuses on a 12Å-radius patch assuming that most crucial 

biomolecular interactions will occur within this defined area. Nevertheless, this oversimplification 

towards local interactions will often neglect long-range electrostatics which play a crucial role in 

protein binding, notably for the association phase (kon) [292]. A novel framework leveraging a 

multimodal architecture with inputs from structure, sequence and surfaces features together, could 

potentially address this concern.  

Altogether, the second aim of this thesis proposed to leverage surface fingerprints to successfully design 

de novo protein binders against four therapeutically-relevant targets, with applications as protein-based 

therapeutics. By using a higher-level representation, namely the protein molecular surface, our approach 

represents a new paradigm and is the only one to leverage surface features for the design of novel PPIs. 

While some limitations became evident, the success rate and accuracy achieved in this work reflect a 

crucial milestone achieved in the field compared to previous experimental and computational methods. 

Therefore, this approach still represents an exciting route to design novel protein interactions and will 

benefit from a synergy with novel deep learning tools.  
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5.3 Generalizing surface fingerprinting towards drug-induced protein 
interactions 

Protein-protein interactions is often regulated by various chemical stimuli such as post-translational 

modification [293] and ligand binding [105,237], or other biophysical stimuli (pH, light, temperature 

etc.) [148,149,294,295]. Small molecules rapidly became attractive candidates in the field of synthetic 

biology for the spatiotemporal control of protein interactions thanks to their fast responsiveness and 

delivery. Several research groups successfully reported OFF-switch system leveraging chemically-

disruptable heterodimer with numerous applications [165], such as the switchable protein therapeutics 

exemplified in chapter 2. On the other hand, only a limited number of computational approaches for 

the development of chemically-induced dimerization that can be functionalized into ON-switch 

system have been proposed. Indeed, the wide majority of CID systems elaborated so far were 

engineered using extensive experimental methods. The avenue of new methods that incorporate small 

molecules in the protein design pipeline would expand the engineering landscape for novel synthetic 

biology tools.  

In chapter 4, we took advantage of the surface fingerprinting approach developed in chapter 3 for the 

design of protein binders that target neosurfaces, i.e. surfaces arising from the protein-ligand complex. 

We hypothesized that small molecules bound on protein surfaces may display similar features and 

fingerprints as any canonical protein amino acids. The MaSIF prediction framework was therefore 

adapted to incorporate small molecules in the molecular surface representation and descriptors of the 

target protein. After demonstrating that this new tool can successfully generalize to small molecules, 

but also predict and recover known CID systems, we successfully validated three designed binders for 

three small molecule-bound protein complexes: Bcl-2:Venetoclax, DB3-IgG:Progesterone and 

PDF1:Actinonin. All designs showed highly accurate prediction by mutational characterization, 

reached native-like affinities after pure in silico generation and were readily optimized to nanomolar 

affinities with only few mutations. Ultimately, our designs were functionalized as drug-inducible ON-

switch systems in cell-based assays which opens the door to a broader range of therapeutic applications 

like CAR-T cells.  

Nevertheless, some of the limitations encountered previously, namely the use of constrained databases, 

the challenges of flexible sites or polar interfaces, were not yet solved in this new framework. The success 

rate (0.05%) is still a major drawback, but a deeper analysis of machine-learning and physics-based scores 

provided in this work will allow a better discrimination and filtering in future applications. Of note, the 

affinities and accuracies exhibited by the successful binders counterbalance the modest success rate, 

which remains encouraging considering the inherent difficulty of the chosen task.  

As for previous computational methods, our approach partially took advantage of well-characterized 

drug binding sites to design novel CIDs [169,249]. Targeting existing drug-protein complexes to design 

a binding partner significantly reduces complexity.  Yet it hinders the diversity of potential partners 

involved in the CID system and constrains the approach to complexes where the ligand is solvent-

accessible. Innovative approaches involving deep learning – and more specifically generative 
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modelling – could constitute a new paradigm for developing fully de novo CIDs in the near future. Apart 

from a couple previous cases [169,249], our generalizable framework is one of the rare specifically 

tailored to design novel CIDs computationally. Structure prediction tools integrating small molecules 

[56,57] or generative models including nucleic acid components are about to be released [93], but a gap 

persists for the design of multimeric protein complexes binding to defined small molecules [296,297]. 

Message passing neural networks (MPNN) for the sequence design of drug-binding protein were 

recently suggested, but still need the placement of a putative backbone structure [298]. This strategy 

could however constitute a new way to consider the dock-and-optimize approach (see chapter 1.3) 

whose early attempts were limited by the absence of accurate energy force fields and the limited 

number of scaffolds available at that time [129–131]. Our surface-centric approach, could also greatly 

benefit from MPNN tools that includes small molecules for the seed and scaffold refinement steps.  

Altogether, we showed that our surface fingerprinting approach was generalizable to small molecule-

bound interfaces without any new training required, which is uncommon in deep learning methods. 

The subsequent designed binders demonstrated a drug-specific ON-switch behavior that was 

functionalized in cells. We anticipate that this work could have some applications in the field of cell-

based therapies, for instance, CAR-T cell therapies, which possess a great potential to fight various types 

of cancers [299], yet numerous off-target and deleterious effects have been reported [265]. Molecular 

switches upon internal and external stimuli can bring a better spatiotemporal control and safety 

[148,149,165]. Therefore, we foresee that our approach could be used for the design of CIDs involving 

tumor microenvironment-specific ligands (e.g. ATP) or punctual triggers (e.g. drug) and lead to safer 

and more specific treatment in the future.  

5.4 Overall outlook and perspectives 

Taken together, this dissertation provided new computational tools for the design of novel protein-

protein interactions and their applications in various therapeutic strategies. While experimental 

methods – and notably the generation of monoclonal antibodies – are still preferred for the 

development of novel protein-based therapeutics, computational protein design is emerging as new 

avenue for pharmaceutical industry with multiple assets in terms of i) specificity, ii) applicability, iii) 

modularity, and iv) costs. First, computational methods, such as the ones proposed in this work, can 

rationally design protein binders for a specific site while experimentally-generated antibodies are often 

agnostic to where and how they bind their target immunogen. Secondly, computational protein design 

can provide molecules which have been optimized for solubility and stability [283], like the hyperstable 

miniprotein databases used in this work [74–76,79], which would facilitate manufacturing and 

handling processes. Third, a broader landscape of proteins in terms of folds, biochemical compositions, 

and sizes are possible and can be tailored for specific applications. Notably, the generation of low 

molecular weight binders could greatly enhance the tissue penetration of certain protein-based 

therapeutics [160]. Finally, the generation and screening of a limited number of protein designs could 

reduce R&D costs. Moreover, most protein designs were tailored for bacteria expression, which makes 
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their manufacturing more cost-effective than antibodies which need mammalian cell expression 

systems [300].   

However, two major challenges persist for a greater expansion of the field: the immunogenicity of the 

engineered proteins and a better data-driven energetic resolution of the machine learning algorithms. 

As showed throughout this dissertation, de novo protein designs can be functionalized in a wide range 

of therapeutic applications. However, major concerns remain for these proteins which are by definition 

de novo and potentially recognized as “non-self” by the immune system. Immunogenicity is also a 

concern for more traditional biologics [301], but the lack of wide in vivo studies with de novo protein 

designs restrain their use in the clinics. As of today, and to our current knowledge, only two in vivo 

experiments demonstrated only little or no immunogenicity of these de novo protein binders, most 

probably due to their small size and hyperstability [77,163]. Nevertheless, further investigation about 

safety should be conducted for a broader application of these innovative biologics in pharmaceutical 

industry.    

Despite the improvement of the predictions made in the field protein design, most computational 

models fail to accurately capture crucial energetic information at the single amino acid level [302,303]. 

Therefore, the experimental screening of hundreds of protein variants is often required to perform full 

characterization when engineering enzymes or PPIs. Low-throughput processes represents a limiting 

factor for the generation of experimental data that could benefit to the training of energetically high-

resolution algorithm (e.g. point mutation binding energy prediction). Therefore, while lots of efforts 

have already been made for increasing computational resources, lab automation currently in progress 

should be pursued [304]. The generation of data at the single amino acid level, coupled with 

experimental metrics, will greatly enhance the training of next-generation algorithms. 

Altogether, this work provided new insights for the design of novel protein-protein interactions with 

therapeutic potentials using cutting-edge physics-based and machine learning tools. While the 

number of deep learning tools available is expanding every month, this dissertation took part in this 

coming era of protein design and marked a step towards the generation of better and safer therapeutics.  
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