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Abstract 
TimberSLAM (TSLAM) is an object-centered, tag-based visual self-localization and mapping (SLAM) system for monocular 
RGB cameras. It was specifically developed to support a robust and augmented reality pipeline for close-range, noisy, and 
cluttered fabrication sequences that involve woodworking operations, such as cutting, drilling, sawing, and screwing with 
multiple tools and end-effectors. By leveraging and combining multiple open-source projects, we obtain a functional pipeline 
that can map, three-dimensionally reconstruct, and finally provide a robust camera pose stream during fabrication time to 
overlay an execution model with its digital-twin model, even under close-range views, dynamic environments, and heavy 
scene obstructions. To benchmark the proposed navigation system under real fabrication scenarios, we produce a data set of 
1344 closeups of different woodworking operations with multiple tools, tool heads, and varying parameters (e.g., tag layout 
and density). The evaluation campaign indicates that TSLAM is satisfyingly capable of detecting the camera’s millimeter 
position and subangular rotation during the majority of fabrication sequences. The reconstruction algorithm’s accuracy is 
also gauged and yields results that demonstrate its capacity to acquire shapes of timber beams with up to two preexisting 
joints. We have made the entire source code, evaluation pipeline, and data set open to the public for reproducibility and the 
benefit of the community.
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Abbreviations
TSLAM  TimberSLAM
SLAM  Simultaneous localization and mapping
AR  Augmented reality
LiDaR  Light detection and ranging
IMU  Inertial measurement unit
VO  Visual odometry
VIO  Visual inertial odometry
ATE  Absolute trajectory error
RE  Relative (trajectory) error
GNSS  Global navigation satellite system
RTS  Robotic tracking station
MR  Mixed reality
6DoF  Six degrees of freedom
HMD  Head mounted display
AABB  Axis-aligned bounding box
FOV  Field of view
RE  Trajectory relative error metric
CFV  Coverage fabrication value

1 Introduction

1.1  Motivation

Research into the evolution of self-localization systems in 
subtractive fabrication operations in timber construction 
has received relatively limited attention compared with 
their additive counterpart. A deeper investigation into more 
accurate self-localization systems for subtractive fabrica-
tion workflows is thus warranted. Given the significance 
of prefabrication in timber construction through computer 
numerical control (CNC) machining technologies, precali-
brated robotic setups Eversmann et al. (2017), Thoma et al. 
(2018), Thoma et al. (2019), Adel et al. (2018), Adel (2020), 
Adel (2023), and controlled shop environments, the need for 
sensor-based self-localization navigation systems is under-
shadowed. By contrast, environment mapping, object and 
self-localization are inevitable core challenges to address 
early on in the design of any manufacturing processes that 
involve mobile robotics Dörfler et al. (2022) or augmented 
reality (AR). In additive augmented construction, this pre-
rogative has propelled researchers into the development of 
reliable solutions for visual navigation that obtains millim-
eter precision Sandy et al. (2016), Sandy and Buchli (2018), 
Mitterberger et al. (2020). In our previous work Settimi et al. 
(2022), we demonstrated how subtractive AR fabrication 
can become possible once ordinary tools are equipped with 
visual sensors. We also outlined the potential of tool-aware 

fabrication in the digital construction landscape. Yet, numer-
ous technical challenges remain unsolved, among which the 
most critical is the identification of a reliable visual naviga-
tion methodology for subtractive tasks. Machining vibra-
tions, a lack of geometric features, close-range sequences, 
visual noise (e.g., chips), a dynamic lighting environment, 
as well as the constant manipulation of the timber element 
contributed to poor self- and object-localization, which was 
majorly responsible for the low overhaul fabrication toler-
ance that we obtained with our first prototype(10 mm). To 
address all of the issues that we encountered, we propose a 
millimeter-accurate navigation system for augmented sub-
tractive woodworking tasks named TimberSLAM (TSLAM), 
a monocular hybrid object-oriented self-localization and 
mapping framework. It is capable of reconstructing a 3D 
model of the piece to be manufactured and robustly over-
laying it onto its physical twin via an AR interface during 
the woodworking phase. TSLAM’s efficiency under real-life 
construction conditions is gauged through an experimental 
campaign specifically created for this study.

1.2  Outline of this paper

First, in the remainder of this section, we present a review 
of the state of the art to emphasize the key research con-
tributions that form the foundation of TSLAM. Next, 
Sect. 2 presents the general function and implementa-
tion details of the proposed methodology. Next, Sect. 3 
provides an overview of the evaluation campaign design 
before presenting and discussing its experimental results. 
Then, Sect. 4 highlights the current study’s limitations and 
possible avenues for improvement. Finally, in Sect. 5, we 
draw conclusions and assess the impacts of the proposed 
software for research in subtractive augmented fabrication.

1.3  Relevant works

The following literature review is divided into two sec-
tions. The first exposes the current state-of-the-art of 
self-localization algorithms contextualized to digital fab-
rication relevance. The second offers an overview of the 
available data sets for benchmarking.

1.3.1  Self‑localization in digital fabrication

Visual navigation systems are generally solved using natural 
landmarks or optical flow. Their particularity is that they can 
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perform mapping and self-localization of a sensor’s pose 
simultaneously; these algorithms are known as simultaneous 
localization and mapping (SLAM). Hence, if an area that 
has already been mapped is tracked again, the algorithm can 
relocate the current position of the agent.

Feature-based SLAM: Among all the available approaches 
Khairuddin et al. (2015), Taheri and Xia (2021), Barros 
et al. (2022), indirect SLAM occupies a preeminent posi-
tion. Feature-based or indirect SLAMs infer landmarks or 
features from sensor measurements to determine the trajec-
tory and map of a mobile agent’s environment. The series 
of ORB–SLAMs Mur-Artal et al. (2015), Mur-Artal and 
Tardos (2017), Campos et al. (2021) represents one of the 
most implemented open-source, feature-based monocular 
systems of this genre. Klein and Murray (2007) proposed 
an indirect SLAM version tailored to tracking a hand-held 
camera specifically for small-scale workplaces. Although 
this technique may acquire a good pose with little resources 
or be able to track the target, these methods often fail to do 
so due to texture-less areas, illumination changes, or motion 
blur. Close-up views might also result in a substantial lack 
of features. Therefore, a popular approach in mobile robotic 
applications is to complement visual SLAM algorithms with 
inertial sensing. OKVIS Leutenegger et al. (2014), ROVIO 
Bloesch et al. (2015), Bloesch et al. (2017), VINS-Mono 
Qin et al. (2018) and SVO Forster et al. (2017)–MAV Lynen 
et al. (2013) are state-of-the-art examples of this strategy. 
Recently, Johns et al. (2020), adapted a graph SLAM from 
Dube et al. (2017), and fused it with Global Navigation Sat-
ellite System (GNSS) and inertial measurements to localize 
an unmanned robotic excavator Jud et al. (2021) to a target 
wall.

Direct SLAM: In contrast to feature-based algorithms, 
direct SLAMs compute the agent’s pose based on feature 
extraction from, for example, depth Shin et al. (2018), ste-
reo Engel et al. (2015), or most frequently, RGB monocular 
Engel et al. (2014), Gao et al. (2018), Li et al. (2020) sen-
sor data. Regardless of the captured raw data, they utilize 
pixel-level information directly. To estimate the camera’s 
motion and reconstruct a dense 3D map, direct SLAMs 
often minimize the photometric error between consecutive 
or across multiple frames. In environments with few distinc-
tive features, dynamic environments, or surfaces with low 
textures, direct SLAM methods are advantageous. Despite 
this, they often require substantial resources, and their per-
formance may be adversely affected by changes in lighting 
and reflectance.

Deep-learning and semantic SLAM: In recent years, deep 
learning techniques have been integrated into SLAM algo-
rithms with promising early results, especially for monocular 
applications Li et al. (2022), Mokssit et al. (2023). They 
either replace traditional geometric filters as in LIFT–SLAM 
Bruno and Colombini (2021), inform the algorithm with 

semantic data McCormac et al. (2017), or compute the pose 
from on-the-fly inferences of depth Tateno et al. (2017), Li 
et al. (2021). Despite the precise results in some scenarios 
in the order of centimeters Li et al. (2021), such approaches 
are out of the millimetric-precision requirements typically 
necessary for woodworking operations.

Object-oriented SLAM: Additive in-situ manufacturing is 
a digital fabrication research sector where self-positioning 
is still a topic of interest Alatise and Hancke (2020), Dör-
fler et al. (2022). From static environments and preregis-
tered point cloud maps Dörfler et al. (2016), BIM models’ 
geometric data are progressively levered to develop more 
object-oriented SLAMs Sandy et al. (2016). While edge-
based object tracking Lowe (1991), Bouthemy (1989) in 
SLAMs Salas-Moreno et al. (2013) are a long-standing topic 
in computer vision, it is with Sandy and Buchli (2018), and 
the resulting demonstrator in AR bricklaying from Mitter-
berger et al. (2020) that monocular object-based localization 
systems have demonstrated their potential in digital additive 
construction. However, in subtractive fabrication scenarios, 
since the target shape dynamically changes throughout the 
fabrication sequence (e.g., top-end cutting or half-lap join-
ery), there are limitations to the reliability of such a typology 
of tracking.

Tag-based SLAM: Previously described methods often do 
not provide a scaled map of the environment. Since the scale 
is unknown, real measurements cannot be extrapolated from 
it. This can be a serious limitation, particularly for fabrica-
tion tasks. Conversely, tag-based SLAM systems, through 
the use of artificial landmarks, are capable of providing map-
ping with known scales; therefore, they can provide reliable 
measurement feedback. Not only are they more robust than 
other methods but they are also more resilient to the absence 
of textures, distinct geometric features, and dynamic scenes. 
However, tags need to be introduced in the environment 
beforehand, which generates an additional preparation phase 
before the fabrication itself. Davison et al. (2007) were the 
earliest to use fiducial markers for initialization in a monocu-
lar SLAM system. Early attempts at reconstructing wide-area 
fiducial marker maps Klopschitz and Schmalstieg (2007), and 
consequent relocalization Shaya et al. (2012) exist. Nonethe-
less, SPM–SLAM Muñoz-Salinas et al. (2019b) represents 
the first fully functional tag-based system where markers 
from the ArUco library Garrido-Jurado et al. (2014, 2016) 
simultaneously help to localize the camera pose and build a 
map with a known scale. Similarly, TagSLAM Pfrommer and 
Daniilidis (2019) provides an approach with different square 
planar tags called AprilTags Wang and Olson (2016). One 
disadvantage of this technique is that it requires a large num-
ber of markers to be placed to construct the map. The reason 
for this is that for a connection between two markers to be 
established, at least two markers must be visible in an image. 
Muñoz-Salinas et al. developed UcoSLAM Muñoz-Salinas 
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and Medina-Carnicer (2020) which addresses the aforemen-
tioned problem by fusing feature points and square fiducial 
markers Garrido-Jurado et al. (2014, 2016) in a simultaneous 
mapping and tracking method. In the current work, we pro-
pose an object-centric version of UcoSLAM Muñoz-Salinas 
and Medina-Carnicer (2020) as our main navigation system, 
with ad-hoc modifications and new features specifically 
designed for manufacturing scenarios. Although ArUco Gar-
rido-Jurado et al. (2014, 2016) are the de facto standards for 
simultaneous mapping and self-localization algorithms, the 
landscape of fiducial markers untested under SLAM scenar-
ios is significantly wider. Among all possibilities, and given 
the highly cluttered, close-ranged, and noisy scenario of 
woodworking operations, we implemented STag Benligiray 
et al. (2019) in our proposed TSLAM due to its capacity to 
perform accurate pose detection even under harsh visual con-
ditions. At the time of its publication, STag Benligiray et al. 
(2019) was benchmarked against the ArUco Garrido-Jurado 
et al. (2014, 2016), ARToolKitPlus Wagner and Schmalstieg 
(2007) and the RUNETag Bergamasco et al. (2011, 2016). 
Gains in robustness were reported against ArUco Garrido-
Jurado et al. (2014) and STag is an order of magnitude faster 
than RUNE-Tag Bergamasco et al. (2011, 2016). In more 
recent experimental comparisons Kalaitzakis et al. (2021) 
with ARTag (Fiala 2005), and AprilTag Wang and Olson 
(2016), STag has achieved excellent detection rates and 
position measurements; however, it is sensitive to larger dis-
tances, which ultimately does not represent a limitation for 
our close-range scenario. Fiducial marker-based SLAMs are 
also present in commercial woodworking products. Although 
only limited to planar operations, Shaper OriginⓇ (Shaper 
2021) is a commercial portable router powered by a monocu-
lar tag-based two-axis self-localization system. It integrates a 
spindle capable of automatically compensating for all routing 
imprecisions generated by hand-holding maneuvers. The tags 
are first mapped, and then their location is associated with 
a two-dimensional execution layout by the user. The camera 
can perform local visual odometry (VO) at fabrication time 
and display the augmented guidance feedback accordingly. A 
similar two-dimensional tag-based system was already pro-
totyped in previous research Rivers et al. (2012). We adopt a 
kindred fabrication sequencing and localization system but 
extend it to linear elements employed in carpentry operations, 
such as rectangular-section beams, either intact or with pre-
existing joinery.

Object reconstruction and locking: Besides the camera’s 
self-localization, a common practice in augmented fabrica-
tion is to employ tags as a robust reference system to link 
execution models to their physical equivalents. In a study 
by Hughes et al. (2021) ArUco markers’ poses Garrido-
Jurado et al. (2014, 2016), from the FologramⓇ ’s augmented 
framework Jahn et al. (2019), were registered to ensure 

interpolation between the physical space, headset, and build-
ing model. The same tracking toolkit was employed by Parry 
and Guy (2021) to digitize various lengths of timber offcuts 
and inform the design on the spot. Furthermore, Larsson et al. 
(2019) employed fiducial markers to detect the six degrees of 
freedom of nonstandard timber branches in a CNC operating 
space. In a previous experiment Settimi et al. (2022) with a 
Hololens2Ⓡ head-mounted display (HMD), we employed QR 
codes and LiDAR scanning techniques to ensure object lock-
ing before fabrication. Analogous investigations on QR codes 
were conducted by Kyaw et al. (2023) on glulam beams. By 
leveraging the FologramⓇ plug-in, they reported alignment 
values between static physical beams and the associated 
execution model of under 2 mm when the markers had a 
maximum interval of 0.38 m. Robotic manipulation in con-
struction has also leveraged tags’ capacity for the referencing 
and tracking of execution models in both controlled environ-
ments for timber plate insertion Rogeau et al. (2020), and for 
larger on-site robotic molding Giftthaler et al. (2017), Lussi 
et al. (2018), Dörfler et al. (2019), where studies have dem-
onstrated how to calibrate a computer-aided design (CAD) 
model to the same tags employed for the localization of the 
robotic end-effector. In a similar fashion, we also use prereg-
istered tags’ map in a dual manner in TSLAM. The tag-based 
map is used not only for three-dimensionally reconstructing 
the piece and referencing it to its execution CAD model but 
also for self-localizing the camera sensor. The rendering of 
the overlapped model over the physical object is likely to suf-
fer a smaller misalignment compared with the previous exam-
ples of disjointed AR tracking systems. In such scenarios, the 
HMD’s SLAM is not referenced or reconstructed from the 
tags calibrated to the physical object. Hence, through simi-
lar means to the planar reconstruction method proposed in 
PolyFit Nan and Wonka (2017), we exploit the map’s tags to 
generate and reference it to an accurate reconstruction of the 
three-dimensional shape of a piece of timber to be fabricated.

1.3.2  SLAM’s benchmark

Following the common literature, self-localization systems 
are usually benchmarked on state-of-the-art data sets. Since 
most of them traditionally target autonomous vehicle appli-
cations Chen et al. (2022), data sets are generated to include 
scenes that span from aerial contexts, such as the Zurich Aer-
ial Vehicle Data Set Majdik et al. (2013, 2014, 2015, 2017) 
visual inertial EuRoC–MAV Burri et al. (2016), UZH–FPV 
Delmerico et al. (2019), Cioffi et al. (2022), or drone-rang-
ing LiDaR system-based data sets Nguyen et al. (2021), Zhu 
et al. (2023), Kim et al. (2020). Urban scenarios are popular 
subjects in Kitti Geiger et al. (2012) and the more recent 
KITTI-360 Liao et al. (2022), which have been famously ref-
erenced as benchmarks, together with other urban data sets 
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with real kinematic ground truth Maddern et al. (2016, 2020), 
such as the MVSEC Zhu et al. (2018a, b). Moreover, natural, 
less densely urbanized data sets are also available, such as the 
North Campus Long-Term (NCLT) Carlevaris-Bianco et al. 
(2015), FinnForest Ali et al. (2020), and Cambridge Kendall 
et al. (2015) data sets. Yet, these famous data sets do not 
present any visual clues, including fabrication sequences. To 
diversify the visual scenery in data sets, researchers have also 
leveraged graphic engines to produce diversified and particu-
lar synthetic outdoor Wang et al. (2020) and indoor Handa 
et al. (2014), McCormac et al. (2017) landscapes. Although 
woodworking operations and associated visual effects (e.g., 
chipping, dusting, and end-effector motions) would most 
probably represent a challenge to obtaining a realistic level 
of detail, both in terms of physics simulation and photoreal-
ism, indoor data sets, such as the RGB-D TUM Sturm et al. 
(2012), offer a highly generic set of scenarios that are suit-
able for the majority of domestic AR deployments Golodetz 
et al. (2018), Gao et al. (2022). The most referenced data 
set for AprilTag Olson (2011)-based SLAMs is also features 
recordings from interiors Muñoz-Salinas et al. (2019b). Ter-
restrial data sets produced from hand-held devices or robotic 
platforms present dynamic transitions between indoor and 
outdoor environments as well as unstable light conditions, 
which reinforce the similarity with unstructured construction 
surroundings Recchiuto et al. (2017). They also often present 
a wide plethora of visual interferences and highly changing 
architectural environments Schubert et al. (2018), Klenk et al. 
(2021), Engel et al. (2016); yet, the context remains broadly 
urban or dwelling-related.

Nevertheless, in recent years, the digital construction 
community has become increasingly interested in testing 
and developing SLAM software specifically designed to be 
deployed for building tasks, such as robotic in-situ operations 
or construction monitoring. The HILTIⓇ data set Helmberger 
et al. (2022) is an important asset that contains multi-sensor 
recordings collected in industrial areas and at construction 
sites. The ConSLAM Trzeciak et al. (2023) contains time-
synchronized ground truth data and spatially aligned images 
from a LiDaR sensor. However, to the best of our knowledge, 
there are no suitable data sets that involve SLAM or VO/
VIO for close-range fabrication scenarios. Thus, we decided 
to create our data set of close-up woodworking operations.

2  Methodology

The current chapter illustrates each TSLAM’s components’ 
functioning and structure. TSLAM was developed on top of 
UcoSLAM Muñoz-Salinas and Medina-Carnicer (2020), 
and core features were adjusted. Additional functionalities 
and all modifications are discussed in this section. TSLAM 
was designed specifically to provide a robust and reliable 

navigation system for AR-guided subtractive processes in 
carpentry. TSLAM is written in C++, leverages only CPU 
computing, currently targets UNIX platforms, and can be 
integrated into any project as a third-party API. We tested 
our system on a portable NUC station with an Intel 4-Core 
i7-1360P processor, 32 GB RAM, and a 2D monitor as des-
ignated AR support. We have made the source code pub-
licly accessible for the benefit of the community Settimi 
and Yang (2023). The designated sensor for TSLAM is an 
RGB monocular camera RunCam (2023) (Fig. 1a) tethered 
to a computational unit. We target this category of sens-
ing devices because of their availability, reduced size, and 
large field of view (FOV; in our case 142◦ ), which could 
ultimately be adapted to the largest variety of AR devices 
and easily deployed on onboard sensing systems, such as the 
ones implemented for our manual electric tools, as shown 
in Fig. 1e, c.

The proposed SLAM is characterized by the following 
dual and sequential workflow (Fig. 2): (i) timber mapping, 
and (ii) fabrication relocalization. In the first phase (i), the 
timber (e.g., a beam) is mapped, and TSLAM performs in 
a hybrid format between tracking and mapping to obtain a 
SLAM map as well as a 3D reconstruction of the timber 
geometry. In the second phase (ii), at fabrication time, only 
the self-localization component is active, with an AR inter-
face that provides a digital overlay on the physical piece. 
The following subsections describe the two phases in detail.

Fig. 1  Overview of TSLAM’s hardware components: a tethered 
monocular RGB sensor; b sticker stripes of fiducial markers; c elec-
tric hand tool; d ad hoc 3D-printed mount to attach the sensor to the 
tool during fabrication; and e designated timber element to be fabri-
cated. In addition, an external monitor is required for visualizing the 
augmented fabrication information
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2.1  Timber mapping

The first step before fabrication consists of applying tags to 
the timber element, mapping it, and obtaining a 3D recon-
struction of its geometry.

2.1.1  Map recording

As introduced in the literature review (Sect.  1.3.1), in 
TSLAM, we opted for the STag Library HD11 Benligiray 
et al. (2019) as our designated artificial marker system. This 
library’s package consists of 22,309 different tags and has 
the lowest false positive detection rate as per the original 
paper’s test results. To simplify the tagging process on tim-
ber, we developed a generator to automatically output ready-
to-print stripes of tags. Each stripe is approximately 1 m 
long and accommodates 47 tags, resulting in a total of 474 
unique stripes. Considering the later fabrication phase, the 
camera is installed on the tool and is thus very close to the 
timber surface, to which the tags are attached. Consequently, 
the tags should be reduced in size to fit in a batch within 
the camera’s view. By contrast, if the tags are too small, the 
system may struggle to recognize them or produce additional 
errors. In our empirical investigation, we determined that 
the optimal dimensions are 2 cm × 2 cm (Fig. 3a, b). This 
close-range detection can benefit the context of workshop 
woodworking environments. The advantage arises from the 
capacity to automatically filter out extraneous tags associ-
ated with other already mapped timber elements situated in 
the background (Fig. 3c), thus limiting false tag detection. 

Once the stripes are attached to each timber face, the record-
ing for mapping can commence.

TSLAM’s map is incrementally built as the monocular 
sensor navigates around the timber element (Fig. 4a). It is 
an object-centric collection of keyframes, feature points, 
and fiducial markers (Fig. 5). The system also maintains 
a connection graph G , which is a hidden data structure 
representing the strength of each keyframe’s connectiv-
ity, alongside a keyframe recognition database storing the 
Bag-of-Word (BoW) of extracted keyframe features as 

Fig. 2  TSLAM’s workflow: in blue, the components that are uniquely active during the mapping phase; in pink, the ones in use during the fabri-
cation phase. Highlighted in hidden blue lines are the components specifically developed for our fabrication scenario

Fig. 3  TSLAM’s STags system: a a zoom of a portion of the 
1-m-long stripe composed by multiple markers; b a view of a tag 
stripe applied to a piece of timber’s face, to note that the stripe does 
not need to be straight; and c a stack of mapped or already fabricated 
beams stored in the woodworking shop
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proposed in Galvez-López and Tardos (2012). Having the 
map referent to the object and not the landscape is crucial 
for solving the problem of the continuous manipulation 
of the timber without losing track of the camera or object 
detection during the fabrication process.

Theoretically, the system could be initialized with either 
key points or markers. However, in our scenario, initializing 

it with a marker is preferred because tags are always refer-
enced to the target beam, whereas key points might also 
appear in the background. The system adopted the marker 
initialization strategy proposed in SPM–SLAM Mũnoz-
Salinas et al. (2019a). The map will be successfully initial-
ized if a marker is unambiguously detected by one frame 
or ambiguously detected by two frames, which makes the 

Fig. 4  a Frontal view of the 
registered map of a timber 
beam—note that the camera 
poses (in blue and magenta) 
are expressed in the timber’s 
coordinate system and b view of 
the mapping interface

Fig. 5  Multiple views of different TSLAM maps: a detail of a map where a scarf join can be guessed; b map of a moderately sized timber ele-
ment with two half-lap joins; and c longer element 3 ms in length
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initialization process fast and robust. Another advantage of 
initializing the map using markers with known dimensions 
is that the system will have a scaling reference to the real 
world. Therefore, the constructed map will have a 1:1 scale 
with respect to the real world.

Once the map has been successfully initialized, the sys-
tem continuously estimates the camera pose and updates the 
map accordingly. TSLAM’s pose estimation mechanism is 
similar to UcoSLAM Muñoz-Salinas and Medina-Carnicer 
(2020), but the hyperparameters that control the weight 
of map points and markers are modified to fit our scenar-
ios. Here in Equation (1), we follow the same notation in 
Muñoz-Salinas and Medina-Carnicer (2020) to simplify the 
paragraph. If the camera pose was estimated in the previous 
frame, the system attempts to estimate the current one by 
minimizing the projection error. During the mapping phase, 
the projection error is calculated in a hybrid fashion with key 
points and markers jointly as follows: 

 where H is the function for determining the reprojection 
errors according to the observation of key points ( Υf

p
 ) and 

markers ( Υf
m

 ) in frame f with respect to the transformation 
T . The weight wf

p
 and wf

m
 control the importance of points 

and markers. The key points and markers’ weights can be 
expressed, respectively, as follows: 

 where nf is the number of valid markers in frame f , and 
�m is a threshold. That is, the system relies on markers but 
neglects the error generated by the point if there are more 
than �m markers present in a scene. The reason for this is that 
the timber is constantly manipulated during both mapping 
and fabrication, which results in an inconsistent reprojec-
tion. Since in our scenario the camera’s relative pose to the 
timber is more relevant than the background, diminishing 
the effectiveness of all points ensures that the noise created 
by detected background points does not affect the final pose 
estimation in both phases of TSLAM. Following the evalu-
ation campaign (see Sect. 3.4), we set �m = 3 based on the 
statistical result of nf across our own data set. However, pose 
estimation through key points allows TSLAM to bridge tags’ 
gaps and map longer elements that do not necessarily have a 
continuous portion of wood populated by tags (e.g., glulam 
beams with major spans, as in Fig. 6h or 7).

If the system fails to estimate the pose, it will wait until a 
known marker is present in the scene again, and only within 

(1a)fT = argmin
T

(
wf

p
H

(
Υf

p
, T

)
+ wf

m
H
(
Υf

m
, T

))

(2a)wf
p
= 1 − wf

m

(2b)wf
m
= min

(
1,

nf

�m

)

this instance would it perform relocalization. With an unam-
biguously detected marker, the pose can be estimated. Relo-
calization through key points is disabled in TSLAM because 
of its low performance as well as its low importance to our 
scenario. To scan all six faces of a timber beam, one may 
need to flip the beam during scanning. Although TSLAM is 
highly resilient to manipulation, this might occasionally lead 
to inconsistencies in the relative positions of objects within 
the scene, resulting in calculation errors and the subsequent 
creation of a defective map. TSLAM provides dedicated 
functionality for combining separately scanned maps. To 
achieve such a result, commonly shared markers are instru-
mental. Here, we calculate the affine transformation matrix 
MA ∈ ℝ

4×4 by OpenCV (v4.5.0)’s estimateAffine3D function 
(Itseez 2015) using the four corner points of the common 
markers as references. Say that one has one source map and 
a target map to combine. One can apply MA across all of the 
elements in the source map to transform it to align with the 

Fig. 6  Schematization of the mapping process: a hand-held monocu-
lar sensor; b representation of the sensor’s field of view; c piece of 
timber; d stick tags that have not yet been mapped; e ongoing pro-
cessed tags and features points in yellow and green for the tags 
registered in the map; f during the mapping, feature points are also 
detected in the scene background; g incorrect or corrupted tag poses, 
which are corrected in the latest global optimization stage; h possible 
portion of tags not registered due to human error; and i first detected 
tag’s frame becomes the global reference for the rest of the map
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target map. Since the timber is a rigid body of unchanged 
shape during the mapping procedure, one can assume that 
the same MA is used to define the transformation for each 
pair of marker corner points and can be found by the least 
squares solution, such that 

 is minimized,where �
�
 is the set of common markers, ��

�
 

is the position of the corner of the common markers in the 
target map, and ��

�
 is their corresponding position in the 

source map. Later, the transformation is applied to repo-
sition the rest of the key points, markers, and keyframes, 
effectively merging them into a unified representation. 
Throughout the mapping recording, an inevitable drift of 
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the camera occurs and must be detected and corrected. In 
UcoSLAM Muñoz-Salinas and Medina-Carnicer (2020), a 
global optimization and a simplified local optimization were 
used to correct such errors. The global optimization, which 
affects the entire map, runs when a loop closure is detected. 
On the other hand, local optimization is active when a new 
keyframe is added to the map and only affects its neighbors 
within the connection graph G . However, global optimiza-
tion is a slow process that creates undesirable latency and 
thus harms the woodworking operation with unwanted laten-
cies. In TSLAM, loop closure detection is disabled, and only 
when the mapping phase is complete does the recorded map 
undergo a global optimization process to refine and correct 
inconsistencies (Fig. 6g). The result is saved as a serialized 
file to be loaded later at fabrication time. In addition, the 
system exports supplementary metadata that contain IDs and 

Fig. 7  Dual functioning of TSLAM allows for continued mapping 
even if tags are not continuous along the timber element. It might 
often occur that only the extremities need to be processed; in this 

case, tags could indeed be limited uniquely to those areas: a–c map-
ping sequencing of the start, middle, end, and d the output map
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corner positions of markers, which are used as input for the 
reconstruction of a 3D model.

2.1.2  Model reconstruction

As carpentry interventions often involve both off-the-shelf 
squared sections and irregular elements that incorporate pre-
existing joints, TSLAM was also required to acquire these 
irregular and more complex geometries. Hence, similar 
to Nan and Wonka (2017), we designed a reconstruction 

algorithm that first obtains all possible planes from the 
geometry’s faces before selecting the best candidate poly-
gons to compose the mesh’s faces. Therefore, by detecting 
the tags’ positions during the mapping phase, the proposed 
pipeline obtains an accurate 3D reconstructed mesh of an 
irregular physical object with a simple monocular camera. 
The current multi-step algorithm is uniquely based on the 
tags’ detected poses registered during the mapping. The geo-
metric solver can be resumed as illustrated in the following 
stack flow in Algorithm 1.

Algorithm 1  The geometric solver algorithm
Input: T ← Input Tags
Input: θ ← Angle tolerance to be considered as co-plane
Input: d ← Distance tolerance to be considered as co-plane
S ← NormalBasedSegment(T )
PS ← {φ} � Set of planes formed by each segment
for all Si ∈ S do � Retrive the average plane for each segment

P St ← {φ}
for all T k ∈ Si do

P St ← P St ∪ Plane(T k)
end for
PS ← PS ∪ P st

end for

P ← {φ} � All detected planes
for all PS i ∈ PS do � Merge planes within the tolerance

for all P j ∈ P do
if ∠(PS i,P j) ≤ θ ∧D(PS i,P j) ≤ d then

P j ← merge(P j,PS i)
end if

end for
if not merged then

P ∪ PS i

end if
end for

AABB ← Axis-aligned bounding box of all tags’ corners
C ← Intersect(P , AABB) � Polygons of plane–plane intersection
F ← {φ} � Set of selected face candidates
for all Ci ∈ C do � Select face candidates based on inline tags

for all T i ∈ T do
if ∠(Plane(T i), P lane(Ci)) ≤ θ and D(pT i

, P lane(Ci)) ≤ d then
Ff ∪BoundarySurface(Ci)

end if
end for

end for
M ← Assemble(F ) � The reconstructed mesh
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The first step consists of parsing the tags T by detect-
ing the timber’s geometry. The tags’ corners are first bun-
dled into stripes S that belong to the same piece of tim-
ber’s face by applying a normal-based segmentation from 
the Cilantro library library Zampogiannis et al. (2018) 
(Fig. 8a1). For each cluster, we obtain a single plane PSt

 
defined by the average of all the cluster’s tags’ planes. 
Duplicates of the resulting planes are subsequently merged 
averagely by checking their coplanarity within a given 
angular � and distance threshold d . Ultimately, we obtain 
P , which is a set of unique planes.

Now that we have acquired the entire planar pool, we 
intersect them with the axis-aligned bounding box (AABB) 
of the tags’ corners. The obtained polygons are later inter-
sected among them, which results in a series of segments 
that link the two-point intersections for each couple of poly-
gons. Next, a tessellation is performed between the segments 
and the polygons with the arrangements2d function from the 
CGAL package Wein et al. (2023). The outcome C repre-
sents, at this stage, the pool of all possible polygons describ-
ing the subject’s faces. In the last step, the face candidates 
F are selected by testing whether, considering all tags and 
a given threshold distance, at least one projection of a tag’s 
center pT onto the polygon’s associated planes falls inside 
its perimeter (Fig. 8b2). As an additional refinement, we also 
verify that the potential candidate tag and polygon’s normals 
have the same direction. It is important to note that, for the 
success of the last step, all physical faces of the object must 
be occupied by at least one fiducial marker.

Finally, the selected faces are assembled to create a water-
tight triangular mesh M . The mesh is registered in TSLAM’s 
reference system and can be exported and processed in any 
CAD software. Later, the mesh model, which is enriched 
with fabrication data (e.g., holes, cuts, lines, and labels), 
can be reintroduced in the same TSLAM world coordinates 
to be visualized as an augmented overlay. Once the map-
ping phase is terminated, TSLAM can be initialized for the 
woodworking phase.

Fig. 8  Examples of recon-
structed mesh: a six-face 
beam; a1 if they belong to the 
same face, the tag stripes are 
clustered; b timber stud that 
presents a successfully modeled 
half-lap join

Fig. 9  Illustration of TSLAM’s self-localization during fabrication: a 
produced scraps; b AR model overlapped-object-locking is ensured 
in any portion of the beam even if severed; c electric manual tool 
embedded in d the monocular camera; e, g the tool’s end-effectors, 
clamps, and timber chips are the main source of occlusion; f, h the 
represented camera’s field of view and the detected tags employed 
to estimate the current camera pose with respect to the previously 
mapped beam. TSLAM can accommodate multiple output pieces 
within the same mapped element i 
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2.2  Fabrication relocalization

At the fabrication stage, we designed TSLAM to perform 
with the same camera employed for mapping but now 
mounted on the tool (Fig. 9d). Although this condition is 
challenging for a SLAM system, it broadens possible ave-
nues for the development of optimal AR applications in 
sub-tasks where the tool head is also monitored from the 
camera’s view. To start the fabrication, the previously cap-
tured map and reconstructed model are loaded. At this junc-
ture, TSLAM can relocalize the current camera position and 
orientation for the stored map (Fig. 9h). This implies that 
the timber piece can undergo unrestricted movement during 
fabrication, as our reference system is centered on the object 
itself rather than on the background.

The abundant tags within a single stripe also enhance 
the system’s resilience, with particular significance for the 
camera pose relocalization’s resistance to noise and shape 
alterations. Only markers are employed during the fabrica-
tion, meaning wf

p
= 0 and wf

m
= 1 . Employing feature points 

would indeed be counterproductive in this application. Here, 
the visual feed is occluded by multiple noises generated 
by, for example, timber chipping (Fig. 10a) and sawdust 
(Fig. 10b). In addition, drill bits, blades, and metal guides 

(Fig. 10c) remain constantly stationary in the camera frame 
while the background is dynamic (Fig. 11).

In addition, the redundancy present in tags, combined 
with object-centric relocalization, facilitates effective cam-
era pose estimation even in scenarios where the object 

Fig. 10  Views of fabrication sequences during tracking by TSLAM. 
Due to the tags’ redundancy, TSLAM is capable of performing self-
localization against a chips and generated blur; b accumulation of 

sawdust; and c tool attachments, such as the circular saw’s guide clut-
tering the scene and obstructing tags

Fig. 11  Merged frames from 10 s of a video sequence: a tool heads 
always remain stationary in the camera buffer since the sensor rigidly 
follows the tool’s movement, whereas b background is dynamic
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undergoes cutting, the loss of components, drilling, or altera-
tions in its original form during the fabrication process. The 
only discriminating factor is the presence of mapped tags in 
the detection FOV (Fig. 12).

While close-range does not present a problem due to the 
large view provided by the chosen fish-eye lens, vibrations 
do. In opposition to the auger drill bit in Fig. 12b, which 
produces significant vibration, rotary motored tools placed at 
a long distance, as depicted in Fig. 12a provide the optimal 
conditions for TSLAM’s relocalization.

TSLAM can tightly overlay the scanned and processed 
mesh onto the mapped object (Fig. 9b). We integrated a 
basic AR model visualizer to showcase TSLAM’s capacity 
as a suitable and applied navigation system for subtractive 
woodworking scenarios. Given the ability to accurately 
position the camera to the map, the object retains its posi-
tional stability even when subjected to movement or shape 
modifications. Furthermore, the model remains consist-
ently visualized in its correct location as long as a few 
key tags remain intact. On the other hand, we emphasize 
the fact that TSLAM’s scope of detection is tailored to 
close-range self-localizations. Hence, when a local detec-
tion occurs, one might notice that the farthest portion of 
the overlaid model could suffer minor offsets compared 
with the area closest to the sensor (Fig. 13a).

Given that the reconstruction process preserves the 
coordinate system, additional alignment between the 
reconstructed mesh and the scanned map is not required. 
By employing a perspective projection based on the cam-
era matrix, points from 3D space can be mapped onto 2D 
screen coordinates. The perspective projection matrix 
Mpp concerning the camera intrinsic parameters is a 4 × 4 
matrix (Eq. 4). 

 where f x and f y is the camera’s focal length, w and h is the 
frame width and height, cx and cx is the camera’s optical 
center, and Zn and Zf is the near and far clipping plane. By 
applying the perspective project matrix Mpp to the point xw 
in the 3D world coordinate, one can obtain the 2D axis in the 
screen coordinate xs ∈ ℝ

2 by dividing w to convert it from 
homogeneous vector to position vector. The equation can be 
expressed as follows: 

After one obtains the 2D axis, lines connecting the cor-
responding points are drawn on the frame buffer to visualize 
the edges. Any other widget required for guiding the user 
can be represented similarly (Fig. 14a2, a3).We rendered the 
mesh outer contours uniquely to avoid encumbering the aug-
mented view with unnecessary visual elements (Fig. 13b). 
Moreover, because rendering basic lines requires less com-
putational power and is easier to implement, we did not rely 
on rendering engines, such as OpenGL, which keeps the sys-
tem slim and flexible for future third-party integration. The 
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Fig. 12  Fabrication segments of a a 500-mm-long auger drill bit, and b sawing with a saber saw
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subsequent chapter introduces the experimental campaign 
designed for the presented methodology.

3  Experimental campaign

In the experimental campaign presented in this section, we 
evaluated TSLAM based on contextually relevant wood-
working scenarios. We aimed to assess the performance 
of TSLAM when applied to subtractive timber-related fab-
rication processes. As part of the evaluation of TSLAM, 
we analyzed the following aspects: (i) its capability to 
accurately determine the position and orientation of a set 

of sensor-equipped tools in a dynamic fabrication environ-
ment; (ii) the algorithm’s capacity to concurrently build a 
coherent 3D reconstruction of the timber piece; and (iii) the 
required preparation time compared with traditional mark-
ing techniques. Simultaneously, we sought to identify which 
tags’ distribution results in the best tradeoff of the metrics 
described in Sect. 3.4.

3.1  Setup and parameters

To achieve the specified objectives, we designed a unique 
evaluation protocol. It resulted in an evaluation campaign 
that incorporated the following set of fixed and varying dis-
tinct variables: 

1. Timber’s dimensions: For the experimental campaign, 
we employed DUO laminated timber with an off-shelf 
square section of 14 × 14 cm . The beam’s length was 
set to 2 m. This is a limitation imposed by the cubic 
tracking volume of 3 m, as described in Sect. 3.2. The 
chosen beam was able to allocate all necessary variants 
that impact the volumetry onto the same piece, as illus-
trated in Fig. 15.

2. Joinery and fasteners: We selected the following four 
joints among the most commonly employed in timber 
truss fabrication: scarf, half-lap, cross-lap, and notched 
(e.g., between the main rafter and tie-beam) joints 
(Fig. 15a1). To test the capacity of TSLAM to model 
pre-existing joints, we introduced a variation on the 
number of joints already present on the beam before the 
fabrication began (Fig. 15b1). For drilling operations, 
we selected a set of multiple pircing trajectories ranging 
from 30◦ to 90◦ with different drill bits (auger, self-eating 
and diagonal drill bits). In addition, we used four differ-
ent screws with varying lengths—namely, 120, 100, 80, 
and 45 mm.

3. Woodworking tools: Based on a seemingly common 
carpentry practice, we limited the employed elec-
tric woodworking tools to the following: a drill with 
ø18/25 mm augers, ø50 mm self-feeding, and ø35 mm 
twist drill bits, a saber saw with a timber blade insert of 
length 300 mm and finally a circular saw with a blade of 
ø190 mm.

4. Tags’ distributions: We selected four possible combi-
nations among the multitude of possible combinations 
of tag distribution and density schemes. The empiri-
cal focus of this study mainly consisted of two differ-
ent density levels and two discrete layout arrangements 
(Fig. 16). The layouts were limited to a configuration 
of tags, either longitudinal (stripe) or perpendicular 
(rings).

Fig. 13  Preliminary developments of model alignment: a early 
object-locking tests on 2-m-long studs; and b mesh overlay onto a 
larger glulam beam
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5. Preparation time: For each fabricated beam, we timed 
the TSLAM preparation procedure, including tag appli-
cation and mapping.

The computed variation matrix for the evaluation resulted 
in a total of 20 beams to be fabricated, for a total of approxi-
mately 1344 sawing, drilling, and screwing operations.

3.2  Evaluation methodology for self‑localization

As presented in Sect. 1.3.2, the creation of an ad-hoc fabri-
cation-flavored data set was necessary for testing the accu-
racy of the proposed SLAM under construction conditions 
by evaluating the computed trajectories to its ground-truth 
counterpart. An operator is carrying out all the woodwork-
ing operations designed in Sect. 3.1 without following any 
augmented interface but rather traditional markings. This 
allowed us to restrain the scope of the current evaluation 
uniquely to the camera’s self-localization without consid-
ering any AR interface or computed guidance influence on 
the operator’s behavior. The data set is publicly available 
Settimi et al. (2023) and contains the recorded videos at 30 
fps for each frame, its associated camera’s pose ground-
truth data, and additional labels for all the carried fabrica-
tion sessions.

The OptitrackⓇ system, composed of six cameras 
(Fig. 17) of type Flex13 (Optitrack 2023) is instrumental in 
obtaining the ground-truth trajectory during fabrication. The 
chosen outside—in tracking system allows submillimetric 
positional tracking of any reflective beacons in the scene 
with a refresh rate close to 160 fps.

If preregistered in groups, the markers permit the tracking 
of the pose of any given rigid body in the capture volume, 
which in our case is the one from the monocular RGB sen-
sor mounted on each tool (Fig. 18b). The on-board sensor is 
equipped with six reflective beacons to ensure the continuity 
of the ground-truth signal even in the event of visual occlu-
sions (e.g., the operator encumbering the infrared camera’s 

Fig. 14  Preliminary implemen-
tation of an AR overlay based 
on TSLAM’s object locking: 
a1, b1 the detected tags used 
to estimate the camera pose; 
a2 visual widgets that indicate 
the model overlay’s fitness to 
the physical twin; a3 drilling 
indications; a4 overview of 
the prerecorded map from the 
current camera view; and b5, b6 
the monocular sensor attached 
to the tool and tethered to the 
computing station

Fig. 15  Overview of the designed specimen timber beam that allo-
cated all variants for the evaluation campaign and a photo of an eval-
uated specimen: a1 in cyan joints; a2 the clamps’ encumbrance; a3, 
a5 drilling emplacements; a4 the tags’ selected configurations; b1 a 
join fabricated during the fabrication session; and b2 a pre-existing 
half-lap join to test the TSLAM geometric solver
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view, timber chips, and false metal detection) and vibrations 
from the tool.

Following the mapping of the timber element, the 
TSLAM data were stored and employed later at inference 
time during the monitored fabrication sequence. At this 
stage, the monitoring system’s signal was captured for each 
of the 30 frames per second provided by the camera’s feed. 
The frame’s timestamps, together with the RGB image, were 
stored as a new entry in the data set. TSLAM was bench-
marked on the entire data set on a headless server running 
on Ubuntu 20.04.5 LTS with an AMD Ryzen 9 5950X as 
the main processor unit. The computation of the estimated 
pose based on the total 12.3 h of video footage took approxi-
mately 72 h to complete. The developed pipeline can be 
reproduced and found in the public repository of the project 
Settimi and Yang (2023).

Once all of TSLAM’s estimated poses ( Pest ) were 
obtained, the next step was to regulate both trajectories. 
Nonetheless, due to the object-centric nature of TSLAM, 
Pest were expressed in the timber’s frame of reference 
(Fig. 19a), whereas ground-truth poses ( Pgt ) were referenced 
in the global world frame system (Fig. 19b). Given the con-
stant manipulation of the timber piece during the recording, 
it was impossible to compute a global registration of the 
two trajectories as they were. Despite a possible solution to 
record the rigid body poses of the timber in the ground-truth 
data and later express Pgt in its reference frame, early tests 
indicated that this procedure causes additional errors.

Hence, we proposed evaluating each subtrajectory framed 
in the timeframe of a single operation (Fig. 19c). To accom-
plish this, we conducted a comprehensive assessment of 
each operation within the entire data set by manually anno-
tating the commencement and conclusion points for every 
working fabrication. All of the couples of trajectories were 
individually registered by leveraging the Umeyama (1991) 
transformation in its rigid variant but with a custom filter to 
limit the candidate points as follows:

where �ni>3 is the filtering of the employed points detected 
with at least three tags. This modification resulted in a more 
robust registration since the employed reference points were 
culled from potential false or inaccurate detections, such as 
one fiducial marker only. As a result, for each set of opera-
tions (Fig. 20), the subtrajectories were now aligned.

The computed metrics are relative for each subsequence, 
computed per frame, and applied only to the previously fil-
tered points (see Eq. 6 and Fig. 21c). Besides the relative 
state-of-the-art trajectory error metrics (RE) as described by 
Zhang and Scaramuzza (2018) (Fig. 21), we also introduced 
an index that indicated the frequency of tag detection as 
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Fig. 16  Top view of the four selected tag configurations indicated by 
the hatched surface: a low density and stripe layout; b high density 
and stripe layout; c low density and ring layout; and d high density 

and ring layout. In the low densities, the ratio of occupied timber by 
the stickers was 17%, whereas the higher density version presented a 
35% coverage
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well as a novel metric called the coverage fabrication value 
(CFV). The CFV gauges the signal coverage during different 
phases of a woodworking operation, specifically the begin-
ning, middle, and end. It is expressed as a percentage of the 
outputted TSLAM’s valid camera poses per frame over the 
quintiles of the timelapse of the woodworking operation. In 
essence, it provides a measure of how well the system cap-
tures and represents relevant signals across different stages 
of the woodworking operation. Through introducing this 
last parameter, we were interested not only in benchmarking 
the accuracy of individual components (position, rotation, 
and tag detection) but also in the temporal dynamics and 

coverage of the system’s output throughout the entire dura-
tion of the augmented fabrication operation.

3.3  Evaluation methodology for 3D reconstruction

We estimated the accuracy of each of TSLAM’s recon-
structed models, which also present different pre-existing 
joints according to the variation matrix (see Sect. 3.2), by 
comparing it with the ground-truth point cloud of the physi-
cal piece illustrated in Fig. 22. These referential data were 
obtained using a high-resolution, industrial-grade, hand-held 
3D scanner (FARO Freestyle2Ⓡ).

Fig. 17  a Capture of the evalua-
tion setup: a1, a2 two of the six 
outside—in tracking sensors; a3 
the computing station to which 
both the monocular sensor 
and the OptitrackⓇ ’s sensors 
are connected; and a4 the 
3 × 3 × 3m tracking volume. 
b Infrared views from each of 
the six cameras pointing to the 
fabrication area; the infrared 
sensors need to be calibrated 
and are sensitive to reflective 
metal parts that are preemp-
tively painted or masked to 
avoid any false detection
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Initially, the reconstructed mesh was uniformly subsam-
pled into a point cloud of 100,000 points. Next, a manual 
alignment was performed to coarsely align the two point 
clouds before running an iterative closest point (ICP) regis-
tration Rusinkiewicz and Levoy (2001). This method auto-
matically applied a rigid transformation to the source point 
cloud to minimize the error w.r.t. the target point cloud. 
Once aligned, the point cloud underwent a 5 mm voxel 
downsampling by aggregating the constituent points into a 
singular point for every occupied voxel. For each point in the 
reconstructed point cloud, denoted as pr , its nearest coun-
terpart in the ground-truth point cloud, pgt , was identified. 
The 3D Euclidean distance between these points was then 
calculated (Fig. 23), and this distance was averaged across 
all points to derive the error. Thus, the reconstruction error, 
represented by Er , can be expressed as follows:

where N is the number of points in the reconstructed point 
cloud after voxel downsampling.

3.4  Results

To identify the optimal tag layout and density to adopt 
for TSLAM, we regrouped the computed results into four 

(8)Er =
1

N

N∑
i=1

Dist(pr, pgt),

Fig. 18  Six reflective beacons b installed on the camera d allow the 
tracking of a rigid body in scenarios where at most four of the mark-
ers are occluded; e the camera tethered to the computing unit also 
collects the ground-truth data from the outside—in monitoring sys-
tem; c current tool head; and a fabricated timber element

Fig. 19  a This graph represents the estimated TSLAM trajectory. To 
note that the output is object-centric and expressed to the tag map 
(the timber piece is represented in grey here), b reports the ground-
truth trajectory referenced in world coordinates. c This graph shows 
how single operations’ trajectories (e.g., circular sawing of a half-lap 
joint) can be extracted and eventually compared
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categories following the evaluated combinations of tag lay-
outs and densities (see Fig. 16). First, the overview, taken 
together, highlights positional (Fig. 24a) and rotational 
(Fig. 24b) error means of 1 mm and 0.1◦ (see Table 1) with 
minor differences between tags’ distribution categories. For 
the average tag detection score (Fig. 24c) only the high-den-
sity stripe distribution performed substantially better, espe-
cially compared with the ring alternative. In addition, the 
recorded data concerning the timing of TSLAM’s prepara-
tion prior to fabrication indicated that the single low-density 
stripe could be set up approximately twice as fast as manual 
marking and equally as fast as using templates (Fig. 25).

TSLAM’s capability to mesh the object is dependent on 
the number of joints and the correct positioning of tags. 
Despite higher densities for the stripe layout (Fig. 26b), the 
same cannot be said for the ring (Fig. 26d). The most rel-
evant factor for the success of the reconstruction algorithm 
is the tags’ coverage of timber portions rather than their 
densities. The least performance was the single-stripe layout 
(Fig. 26a), which is a configuration that can perform a recon-
struction on intact beams as well as ones with pre-existing 
joints; however, it failed at meshing in the other scenarios.

Hence, we observed that the low-density stripe is the 
configuration that strikes the optimal tradeoff between 
self-localization accuracy and logistical performance. 
Nevertheless, its 3D-reconstruction capabilities, given 
the current state of the software, are limited to off-shelf 
beams but without predictable limitations in dimensions.

When we limited our analysis to results that corre-
spond to the candidate tags’ configuration, we obtained 
excellent and consistent submillimetric camera pose esti-
mation for the majority of circumstances (see Table 2). 

We could also confirm that, besides woodworking opera-
tions involving the saber saw, TSLAM is capable of per-
forming self-localization on a monocular sensor in all 
the fabrication scenarios contained in the data set with a 
positional and angular mean error of 1 mm and 0.3◦ for 
all tools (Fig. 27a, b). In addition, the graph 27c dem-
onstrates how the mean number of detected tags for all 
tools is approximately 6. This affirms that adopting tag 
redundancy serves as an effective strategy when dealing 
with noise, such as instances where chipping and saw-
dust partially obscure the tag stripes but rarely entirely. 
TSLAM’s tracking for the saber saw scored a mean value 
of 1.58 mm with consistently higher variance. This can 
be explained by the high vibrations of the motor gener-
ated by the oscillating movement of the blade, which are 
absent in rotary sawing devices like circular saws. This 
was confirmed by the novel metric that we introduced for 
the coverage value, namely, the CFV (Fig. 28). In addi-
tion, we noted that drilling operations with self-feeding 
bits experienced a signal of lesser quality than longer drill 
bits, which is because of the significantly close distance 
to the timber surface at the end of the operations.

In the following chapter, we expose the current limita-
tions and foreseeable improvements for TSLAM.

4  Current limitations and improvements

The efficacy of the system is contingent on precise cam-
era calibration, particularly concerning the undistortion 
matrix. Failure to achieve accuracy in this calibration may 
yield unsatisfactory outcomes, characterized by a warped 

Fig. 20  Overview of some of the evaluated TSLAM trajectories of the total 1344 woodworking operations
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appearance in the scanned output. This constraint imposes 
limitations on the selection of suitable cameras and may 
necessitate additional efforts to acquire the optimal camera 
matrix. Furthermore, in the use of a fisheye camera, the 
accurate undistortion of objects is compromised if they are 
situated near the camera or at its periphery. Consequently, 
in the context of timber mapping with a fisheye camera, 
adherence to a consistent distance and perpendicular ori-
entation is imperative. This practice ensures that the target 
object remains as centrally positioned as possible, thereby 
guaranteeing optimal results.

When we tested the timber mapping, there were instances 
where the map became distorted, which required us to 
terminate the process and restart it. We believe that the 
primary cause of this problem was the ambiguity in the 
marker’s pose. While the system is designed to address 
ambiguous marker poses by minimizing the reprojection 
error across all frames, it sometimes fails to achieve the 
expected outcome. Regrettably, no known algorithm can 
perfectly resolve this challenge. Fortunately, however, this 
problem does not always arise, and the outcome can be eas-
ily detected.

Finally, in augmented fabrications, it is not uncommon 
for the user to want to inspect the overhaul model overlay 
from a further distance for a broader overview. This func-
tionality is currently possible in TSLAM to the extent that 
the sensor can detect tags. Since TSLAM is voluntarily 
calibrated and dedicated to close-range camera self-local-
izations, it allows the user to zoom out only to approxi-
mately 60 cm. The integration of dual functioning with 
feature-point detection during fabrication could enhance 
the visualization distance from the beam; however, it 
would require the masking of tool heads that obstruct the 
scene constantly.

5  Conclusions

In conclusion, we have presented a solution to the challenges 
inherent in AR self-localization for augmented subtractive 
woodworking tasks through the introduction of TSLAM. 
TSLAM stands as a submillimetrically accurate navigation 
system that employs a monocular hybrid object-oriented 
SLAM C++ framework on top of ad-hoc features tailored 
to fabrication scenarios. This innovative system demon-
strated its capabilities by reconstructing a precise 3D model 
of common timber beams’ sections and seamlessly overlay-
ing it onto its physical counterpart through an AR interface, 

Fig. 21  a Positional and b rotational drift were the two major compo-
nents evaluated for each set of subsequences. They represent the error 
distance from the ground-truth trajectory of TSLAM. In c, we depict 
the candidate points used in the transformation and evaluation

Fig. 22  Raw point cloud of the scanned preprocessed timber piece 
to compare with the mesh reconstructed by TSLAM. The object was 
scanned twice on both sides and then aligned and combined
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reaching millimetric accuracy. The robust performance of 
TSLAM was validated under real-life construction condi-
tions through a dedicated experimental campaign that we 
tailored for this study. Said campaign showcased TSLAM’s 
effectiveness in diverse woodworking scenarios involving 
various tools commonly used in carpentry. We highlighted 
the correct use and distribution of tags for striking the 
optimal tradeoff between fabrication and pose estimation 
accuracy.

An adapted SLAM represents the very first foundational 
requirement for any AR application. TSLAM represents 
a reliable, robust, and precise approach to effectively per-
forming AR-guided operations with manual tools in timber 

Fig. 23  Overview of a selection 
of the reconstructed and evalu-
ated models: a–d, h represent 
the successfully reconstructed 
model with limited or anodyne 
distance error to the ground 
truth, while e, g, i illustrate 
models where our method failed 
due to the absence of tags

Table 1  Table resuming the error metrics for all 1344 operations of 
the data sets grouped by category of tags’ layers and densities where 
P is the positional error, R is the angular error, and T is the average 
detection of tags

∗The errors are represented in mean ± standard deviation

Low density (–) High density (–)

Stripe layout P ∶ 0.11 ± 0.73 (mm) P ∶ 0.03 ± 0.64 (mm)
R ∶ 0.01 ± 0.01 ( ◦) R ∶ 0.01 ± 0.01 ( ◦)
T ∶ 7 ± 2 (–) T ∶ 7 ± 2 (–)

Ring layout P ∶ 0.03 ± 0.52 (mm) P ∶ 0.33 ± 0.97 (mm)
R ∶ 0.01 ± 0.01 ( ◦) R ∶ 0.01 ± 0.01 ( ◦)
T ∶ 9 ± 5 (–) R ∶ 15 ± 2 (–)
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carpentry. With the proposed system, the piece can be 
manipulated at any time, under all light conditions, and 
with noise; moreover, its shape can be modified through-
out the process, but the camera is constantly localized. We 
also demonstrated how the preparatory phase consumes less 
time than traditional hand-marking and tracing on the timber 
piece.

Nevertheless, TSLAM does not offer other equally impor-
tant features like object detection, which would eventually 
complete a fully operational and state-of-the-art AR fabri-
cation system for subtractive tasks. This is the subject of 
TSLAM’s ongoing development. Coupled with the sys-
tem’s robust camera localization and timber reconstruction, 
a fully operational and reliable AR integration of tool head 
detection and localization will be proposed. In addition, we 
intend to expand the variety of geometries and lengths of 
sections that TSLAM can effectively reconstruct, such as 
round wood, curved elements, and longer glulam beams that 
are widely diffused in timber construction.

Fig. 24  Violin plot of the sum-
mary metrics grouped by tag 
density and distribution. The 
values were computed across all 
tools and beams, and the green 
segment indicates the mean: 
a positional error distribution, 
b rotational error distribution, 
and c average of tag detection. 
The elongated flaps might be 
explained by the presence of 
noise in the form of pose detec-
tion outliers for graphs a, b 

Fig. 25  Beam’s preparation and mapping for the stripe with low-den-
sity tag distribution is indicated to require half the time of hand mark-
ing and an equivalent time to a pre-fab preparation with templates
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Fig. 26  Graphs that present the reconstruction accuracy for the four categories of tag distribution: a low-density stripe, b high-density stripe,  
c low-density ring, and d high-density layout

Table 2  Table resuming 
the error metrics for the 
one fabrication session on a 
beam with low density and 
single-stripe layout as tags’ 
distribution

∗ The errors are represented in mean ± interquartile range (IQR = Q3 − Q1)

Tool name (–) Number of 
operations (–)

Mean position 
error* (mm)

Mean orienta-
tion error* ( ◦)

Mean tags 
detection* (–)

Mean cover-
age index 
(%)

Circular sawblade saber 32 0.15 ± 0.09 0.01 ± 0.01 3 ± 2 72.30
Sawblade drill 3 1.58 ± 8.54 0.01 ± 0.07 7 ± 7 21.57
Hing (ø50) 7 0.18 ± 4.32 0.01 ± 0.04 6 ± 5 68.75
Auger (ø20) drill 19 0.15 ± 3.77 0.07 ± 0.03 6 ± 4 93.12
Auger (ø25) drill 2 0.37 ± 0.61 0.04 ± 0.02 8 ± 6 98.51
Oblique (ø40) screw 2 0.22 ± 0.47 0.21 ± 0.11 8 ± 3 99.28
(120) screw 8 0.16 ± 1.87 0.18 ± 0.09 6 ± 4 95.23
(100) screw 8 0.29 ± 2.04 0.12 ± 0.06 7 ± 4 97.99
(80) screw 8 0.01 ± 3.16 0.21 ± 0.10 8 ± 3 97.77
(45) 8 0.01 ± 1.19 0.04 ± 0.02 6 ± 3 97.50
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Fig. 27  Overview of the 
positional (a) and rotational 
(b) errors, as well as the tags’ 
average detection (c) per tool 
type and for a regular beam 
with a low-density tag distri-
bution. The high number of 
outliers in the representation 
can be interpreted as possible 
noise and minor drifting events 
that occurred during tracking. 
Means are indicated in green
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