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ABSTRACT

To obtain an accurate cosmological inference from upcoming weak lensing surveys such as the one conducted by Euclid, the shear
measurement requires calibration using galaxy image simulations. As it typically requires millions of simulated galaxy images and
consequently a substantial computational effort, seeking methods to speed the calibration up is valuable. We study the efficiency
of different noise cancellation methods that aim at reducing the simulation volume required to reach a given precision in the shear
measurement. The more efficient a method is, the faster we can estimate the relevant biases up to a required precision level. Explicitly,
we compared fit methods with different noise cancellations and a method based on responses. We used GalSim to simulate galaxies both
on a grid and at random positions in larger scenes. Placing the galaxies at random positions requires their detection, which we performed
with SExtractor. On the grid, we neglected the detection step and, therefore, the potential detection bias arising from it. The shear
of the simulated images was measured with the fast moment-based method KSB, for which we note deviations from purely linear shear
measurement biases. For the estimation of uncertainties, we used bootstrapping as an empirical method. We extended the response-
based approach to work on a wider range of shears and provide accurate estimates of selection biases. We find that each method we
studied on top of shape noise cancellation can further increase the efficiency of calibration simulations. The improvement depends on
the considered shear amplitude range and the type of simulations (grid-based or random positions). The response method on a grid for
small shears provides the biggest improvement. Here the runtime for the estimation of multiplicative biases can be lowered by a factor
of 145 compared to the benchmark simulations without any cancellation. In the more realistic case of randomly positioned galaxies,
we still find an improvement factor of 70 for small shears using the response method. Alternatively, the runtime can be lowered by a
factor of 7 already using pixel noise cancellation on top of shape noise cancellation. Furthermore, we demonstrate that the efficiency
of shape noise cancellation can be enhanced in the presence of blending if entire scenes are rotated instead of individual galaxies.
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1. Introduction

According to the dark energy task force, weak lensing is one
of the four most promising methods to constrain the equation
of state of dark energy (see Albrecht et al. 2006). In partic-
ular, weak lensing has the potential to be the most powerful
method alongside these four suggested methods if systematic
biases can be controlled with sufficient accuracy. For Euclid
(Laureijs et al. 2011), the Nancy Grace Roman Space Tele-
scope (Spergel et al. 2015), and other weak lensing surveys like
the Kilo-Degree Survey (KiDS; de Jong et al. 2013), the Dark
Energy Survey (Dark Energy Survey Collaboration 2016), and
the Hyper Suprime-cam (HSC) survey (Aihara et al. 2018), it
is therefore inevitable that calibration or validation of weak
lensing shear measurement algorithms is required. For this cal-
ibration, galaxy image simulations are used, that are as close
as possible to the real images produced by those instruments
(see Hoekstra et al. 2015, 2017). Recent image simulations for
the aforementioned surveys (see Li et al. 2023; MacCrann et al.
2022; Kannawadi et al. 2019; Mandelbaum et al. 2018) there-
fore carefully adjust their input parameters such that they match
actual observations. These image simulations require 107–1010

simulated galaxy images to achieve the desired uncertainty lev-
els on the biases (see Euclid Collaboration 2019). Since that
is computationally expensive, efforts are put into reducing the
required simulated galaxies. The main approach used in several
studies (see Massey et al. 2007; Mandelbaum et al. 2014; Pujol
et al. 2019) is shape noise cancellation. This cancellation aims
to remove the noise introduced by the intrinsic shape distribu-
tion of the input galaxy catalog. In most cases, this is done by
considering an additional image with the same galaxy rotated
by 90 degrees, but it is also possible to perform this cancella-
tion in a full ring (see Nakajima & Bernstein 2007). This kind
of cancellation does not work perfectly due to additional pixel
shot noise on the image and the pixelation itself. In particu-
lar, when the galaxies are not isolated, blending also degrades
the efficiency of this cancellation, as shown in Hoekstra et al.
(2021). Still it has proven to be useful in the simulations. In
addition the pixel noise realisation on an image might make the
galaxy look slightly rounder or more elliptical for the consid-
ered shape measurement method. Melchior & Viola (2012) show
that pixel noise gives rise to biases for the shear measurement.
This is why already Euclid Collaboration (2019) used another
cancellation, which utilised an inverted pixel noise realisation.
Having two images, where one has an inverted noise realisa-
tion, can potentially help to cancel the previously discussed
effect. The authors referred to this cancellation as background
noise cancellation, while we use the name pixel noise cancel-
lation in this paper. We studied this method in more detail
and worked out the benefits of this method in different scenar-
ios. In particular, we studied the effects of cancelling also the
shot noise from the galaxy itself and not just a white Gaussian
noise field. These mentioned cancellations are all applica-
ble when determining shear bias parameters from the com-
monly used regression of measured shear as a function of true
input shear.

Another approach is suggested by Pujol et al. (2019, hereafter
P18) requiring a different setup of the simulations, but poten-
tially for a large reward in terms of runtime improvement. In this
method, the biases were determined from the individual shear
responses of galaxies. To obtain these responses, we simulated
each galaxy with two slightly differing shears. The individual
responses are very noisy, but averaging over many of those can

yield reliable estimates of the systematic biases. As this method,
by definition, uses individual galaxies, it also makes it very easy
to study the effects of specific galaxy properties like the Sérsic
index or half-light radius on the biases. The authors’ original
approach does not account for selection effects, so we expanded
their formalism based on ideas suggested in their paper to also
account for selection effects and larger shear intervals. Also here
we accounted for the complete pixel noise including shot noise,
while P18 only used a white Gaussian noise field.

This paper scrutinises all these methods in two fundamen-
tally different scenarios, with simulations roughly mimicking
Euclid observing conditions. As a first step, we simulated iso-
lated galaxies down to 24.5 mag on a grid. Most of the galaxies
in the input catalog are also in the output catalog as no detection
step was needed and most of the galaxies have a signal-to-noise
ratio of more than 10, which was chosen as a selection criterion.
As a second step, we placed galaxies at random positions embed-
ded in a larger scene. We included galaxies down to 26.5 mag
in these scenes such that there is also blending by undetected
sources.

We summarise basic weak lensing formalism in Sect. 2.
In Sect. 3, we describe the methods studied in this paper to
reduce noise and speed up the simulations. Section 4 presents
the setup of the simulations in more detail. Section 5 describes
the uncertainty on the bias parameters, which is crucial for the
subsequent efficiency comparison. In Sect. 6, we present our
results comparing the uncertainties of the different methods with
their respective runtimes. Finally in Sect. 7, we summarise our
results and briefly discuss the implications for future calibration
simulations.

2. Weak lensing formalism

2.1. Definition and measurement of shear

In weak lensing, we can linearise the lens mapping if the angular
scale of the lensed image is smaller than the scale on which the
tidal field varies (see Schneider 2006). This lens mapping is then
given by the Jacobian A defined as

A = (1 − κ)
(
1 − g1 −g2
−g2 1 + g1

)
. (1)

Here κ is the convergence describing the change of the apparent
size and gi denotes the component i of the reduced shear g, which
is defined as

g =
γ

1 − κ
, (2)

with the true shear γ. In Eq. (2) the standard notation as a com-
plex number g = g1 + i g2 is used. We can only measure the
reduced shear directly. Still in the case of weak lensing the con-
vergence is typically small such that the reduced shear is about
the size of the true shear. Therefore we refer to the reduced shear
as just the shear for the rest of the paper. The shear and elliptic-
ity in general are invariant under rotations of π radians. Therefore
we can characterise these quantities as spin-2 (see Castro et al.
2005). Assuming that the intrinsic ellipticities have no prefer-
ential alignment, the observed ellipticities ϵobs give an unbiased
estimate of the shear:

g = ⟨ϵobs⟩. (3)
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This equation only holds for specific definitions of ellipticity. For
a light distribution with elliptical isophotes, such an ellipticity
definition is

|ϵ| =
1 − r
1 + r

, (4)

where r denotes the axis ratio b/a of the ellipse with b being
the semi-minor axis and a being the semi-major axis (see
Schneider 2006). Still an ellipticity definition, for which Eq. (3)
holds, can also be found for non-elliptical galaxies. We per-
formed the ellipticity measurement with the HSM module from
the GalSim library (see Rowe et al. 2015). The HSM module
uses algorithms from Hirata & Seljak (2003) probed on real data
from Mandelbaum et al. (2005). It also has a specific version of
the KSB (Kaiser et al. 1995; Luppino & Kaiser 1997; Hoekstra
et al. 1998) shape measurement method implemented, which
uses weighted brightness moments to estimate the ellipticity and
correct for the PSF.

For simplicity we only studied the behaviour for the first
shear component g1 and set g2 = 0. We find no significant cor-
relation between biases for the two shear components in our
analysis such that an individual study of each component is valid.

2.2. Determination of shear bias

The biases of such a shear estimator can then be studied with
different methods. To first order a linear bias model as described
in Heymans et al. (2006) is used in this analysis. Such a linear
bias model has been used for the majority of weak lensing stud-
ies to date starting from Guzik & Bernstein (2005) and Huterer
et al. (2006). The difference between a shear estimator ĝ and the
respective true shear gtrue following this model is given by

ĝi − g
true
i = µi g

true
i + ci + noise, (5)

where i = {1, 2}. The multiplicative part µ is referred to in the fol-
lowing as the multiplicative bias parameter and the additive part
c as the additive bias parameter. In general if the biases for both
shear components are independent, Eq. (5) does not conserve
spin (see Kitching & Deshpande 2022). These parameters can
be determined by simulating galaxies with different but known
true shears and then fitting a straight line to the shear estimation
residuals against the true shear. In order for this bias estimate to
be precise, we need to simulate a large sample of galaxies per
constant input shear to average out the intrinsic ellipticities.

Sheldon & Huff (2017) suggest a new formalism for the shear
bias determination based on shear responses. Assuming we have
an estimate ei for component i of the complex ellipticity e, this
estimate can be expanded in a Taylor series as

ei ≈ ei|γ=0 +

2∑
j=1

∂ei

∂γ j

∣∣∣∣∣∣
γ=0
γ j + . . . . (6)

The authors define the shear response as

Ri j =
∂ei

∂γ j

∣∣∣∣∣∣
γ=0
. (7)

In a large enough sample, the average of the intrinsic ellipticities
given by the first term in the Taylor expansion vanishes such that

⟨ei⟩ ≈

〈 2∑
j=1

Ri j γ j

〉
. (8)

The shear response matrix R is used by P18 to estimate the µ
and c biases. In the following, we refer to the response method
as RM. We sometimes append a number to this abbreviation,
which stands for the maximum amplitude of the shear used in
that specific case. The response can be measured for individual
galaxies and is a 2 × 2 matrix

R =
(
R11 R12
R21 R22

)
, (9)

where the diagonal terms directly translate to the multiplicative
bias via

1 + µi = Rii, (10)

while the cross-terms express the correlation between the two
ellipticity components. Following Kitching et al. (2023) these
off-diagonal terms represent a mixture of spin-0 and spin-4
terms. As we focus on g1 in this paper, only R11 is relevant for us
and the indices are dismissed in the following. The determination
of this response requires simulated images of the same galaxy
with a finite shear difference, as described later in Sect. 3.2.

While the additive bias c is just another fit parameter for the
linear regression technique, it is not as easy to determine from
the response method. Following Pujol et al. (2019, Eq. (3)) we
can determine individual additive biases via

ai = eobs
i − Rii gi − eI

i , (11)

where eI
i denotes the intrinsic ellipticity. The c-bias can then be

determined as the average of the ai for many simulated galaxy
images. This approach is biased since the response Rii needs to
be calculable. Thus, we do not want to use this approach in our
study. Still, we can estimate the c bias from ci = ⟨eobs

i ⟩ if the input
ellipticity vanishes on average. In Sect. 4.1, we describe how this
is ensured in more detail.

3. Methods to reduce the impact of noise

The measurement of shear is dominated by noise. The central
part of this noise is the shape noise due to the unknown intrin-
sic ellipticity of each galaxy. Furthermore an image taken by a
CCD camera contains pixel noise with at least three contribu-
tions: read-out noise (here assumed to be Gaussian), Poisson shot
noise from the sky background, and Poisson noise coming from
the galaxies’ flux. In the case of Euclid, the dominant part of the
pixel noise is the contribution from the sky background, which
is why past simulations have often only considered this station-
ary part. In this paper, however, we systematically include all the
noise sources mentioned above in our model as they affect the
shear bias estimation.

Due to its dominant role, it makes sense to think of methods
to mitigate noise and increase the efficiency of simulations. In
the following, we list possible methods studied in this paper.

3.1. Fit method

The fit method determines shear biases by fitting a model to the
estimated shears as discussed in Sect. 2.2. Here the idea is to
reduce the uncertainty on the estimated shears directly by can-
celling the most important noise components within groups of
simulated images. One is the shape noise induced by the intrin-
sic distribution of ellipticities. Typically the intrinsic ellipticity
is an order of magnitude larger than the shear signal. Thus indi-
vidual shear estimates are dominated by this intrinsic shape. The
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Fig. 1. Effect of pixel noise on three simulated faint galaxies. While
the pixel noise realisation is added in the left panel, it is inverted in the
right panel. The pixel noise realisation clearly affects the apparent shape
(especially the shape of the faint galaxy on the top right).

second essential component is pixel noise. One realisation of this
noise might make the galaxy look a bit rounder (or more ellipti-
cal) than it actually is. In Fig. 1, the effect of pixel noise is shown
for one galaxy. The cancellation of these noise components is
discussed in the following.

3.1.1. Shape noise cancellation

One popular method to reduce the impact of intrinsic shapes is
shape noise cancellation (see Massey et al. 2007; Mandelbaum
et al. 2014; Pujol et al. 2019). This method uses a second image
of the same galaxy, which is rotated by 90 degrees with respect
to the original image. Without any noise and selection effects,
this would cancel out the intrinsic shapes and the average mea-
sured ellipticity would be the shear. In reality this rotation does
not cancel out shape noise perfectly, but it still improves the per-
formance significantly. In a related effort, one can also use more
than two galaxies for the rotation. This method was suggested by
Nakajima & Bernstein (2007) as the ‘ring test’. Our study focuses
on the simplest case with just one 90 degree rotated pair. Fenech
Conti et al. (2017) find that for KiDS using four rotated versions
improves the cancellation, but Euclid Collaboration (2019) show
that using more than two versions does not yield further improve-
ments under Euclid conditions, which we adapted in this work.

3.1.2. Pixel noise cancellation

On top of shape noise cancellation, we want to evaluate what we
refer to as pixel noise cancellation. The idea is to build a second
version of each simulated image using an inverted noise field.
Using this cancellation, a noise field, which makes the galaxy
look rounder in one version, possibly has the opposite effect in
the second version. That way the impact of pixel noise on the
shear measurement might be reduced and the efficiency might
be increased. With the requirements of previous surveys, it would
have been sufficient just to subtract the exact same noise, which
was added before1. This procedure inherently assumes that the
noise is exactly symmetric. Usually this can be assumed since
the Poisson distribution approaches a Gaussian distribution for
high counts. To make sure that we do not introduce any addi-
tional bias at the level of the very tight requirements for Euclid,
we did not just subtract the noise realisation but inverted the
noise properly. For the Gaussian read-out noise, this can indeed

1 Extracting the noise can be done by subtracting the image with noise
from the image without noise using GalSim (see Rowe et al. 2015).

be done by just extracting the noise realisation and subtract-
ing it instead of adding it. For the Poisson noise, we wanted
the inverted realisation to follow the same Poisson distribution.
Since the GalSim implementation of Poisson noise shows a
chaotic behaviour when using the same seed with slightly dif-
ferent means, we implemented the Poisson noise ourselves using
the inverse transform method. For the noise in one pixel, we
generated a random number U between zero and one and then
summed up the cumulative distribution function until it exceeded
the drawn random number. The inverse noise realisation can then
be found by doing the same for 1−U. Thus, a positive noise real-
isation in the 90-th percentile of the Poisson distribution has a
negative counterpart in the 10-th percentile of the same distribu-
tion. Given that the Poisson distribution is not exactly symmetric,
these two drawn realisations are not symmetric around the mean.
Therefore our implementation does in fact not exactly ‘invert’ the
sign of the noise.

This method requires that the galaxy is at exactly the same
position in the image. For shape noise cancellation, we are free
to change for example sub-pixel shifts between the pairs. How-
ever it made the cancellation less effective, as we drew new noise
realisations anyway for the rotated stamp. But for pixel noise
cancellation, the counts in a pixel, which generated the noise
realisation in the first place, need to be still associated with their
noise realisation in the second version. Pixel noise cancellation is
relatively cheap, as no additional convolution is needed to build
a different version of the galaxy.

3.2. Response method

The shear response is determined by the difference of the
observed ellipticities for the same galaxy divided by the finite
shear difference between them. Thus this response can be esti-
mated by choosing a small interval around zero [−∆g,∆g] and
simulating one image for each margin of the interval. That way
two images are built and the response can be estimated as

R ≈
e+obs − e−obs

2∆g
, (12)

where eobs denotes the measured ellipticity from KSB (see P18,
Eq. (4)). The + or − in superscript indicates that the shear has
been increased or decreased respectively. Averaging all individ-
ual responses can then give an estimate for the multiplicative
bias, but this would not include the selection bias, as a detec-
tion or selection yields incomplete pairs for which the response
can not be computed. To include the selection bias, P18 suggest
building the response as

⟨R⟩ ≈
⟨e+obs⟩ − ⟨e

−
obs⟩

2∆g
. (13)

The ⟨eobs⟩ enclose all measurements even if their respective part-
ner was not measured. This estimate inherently accounts for the
unavoidable selection bias and needs to be considered for the
comparison with other methods.

In their original paper, P18 used the same Gaussian noise
realisation for both images, which is crucial to stabilising the
method. Indeed we find that drawing an independent realisation
of the CCD noise for each image destabilises the method so that
it is not usable anymore. To keep the noise as similar as possible
within a pair, we used the same seed for the noise generation of
the images belonging to each other. Since the same seed with
slightly different means does not produce the same noise pattern

A240, page 4 of 23



Jansen, H., et al.: A&A, 683, A240 (2024)

using the GalSim Poisson noise generator, we again used the
inverse transform method as described in Sect. 3.1.2 to generate
the noise. The mean of the distribution might then change due to
the different shear, which makes some pixel gain flux and others
lose flux. However, the noise realisation is still generated from
the same percentile of the Poisson distribution since the seed
fixes the random number used to generate the realisation.

As discussed later in this paper, the size of the used interval
starts to play a role for larger shears of several percent. Thus the
original response method with a ∆g = 0.02 can not be used when
comparing to fit methods in an interval [−0.1, 0.1], as the recov-
ered biases would differ significantly. We therefore extended
the method using 11 differently sheared images evenly spaced
between −0.1 and 0.1. In this way, we can estimate ten responses
covering the same interval as the other methods while keeping
the ∆g between two images small enough. A ∆g which is too
large distorts the results as the selection effects are more impor-
tant for larger shear differences. P18 state the upper limit for ∆g
in their analysis to be 0.05.

4. Simulated data

In this paper, we study the behaviour of different shear esti-
mation methods in two scenarios. We began with the easiest
case with galaxies on a grid without any blends. In the sec-
ond scenario, we then placed galaxies at random positions on
4000 × 4000 pixel large scenes. Thus we could also study how
blending affects the different methods. This treatment without
a grid also includes the usage of SExtractor in the detection
step as introduced by Bertin & Arnouts (1996). The highly sim-
plified simulations described in the following are solely used for
this study and should not be seen as representative of the images
expected from the Euclid VIS instrument.

4.1. Setup of the simulations

We constructed the simulations in this paper with GalSim,
which was first introduced in Rowe et al. (2015). In order to
parallelise the code, we used the Python library Ray, which
was first introduced by Moritz et al. (2017). The galaxies were
drawn from the GEMS catalog (Rix et al. 2004). This survey was
conducted using the Hubble Space Telescope (HST). We used a
comparable selection2 as Tewes et al. (2019) and refer the reader
to their paper for the details. Using their selection criteria, we
ended up with 9026 galaxies for the grid-based simulations with
the faintest galaxies having 24.5 mag and 36 438 galaxies for the
large-scene simulations with magnitudes as faint as 26.5 mag.
Only the magnitude, the Sérsic index, and the half-light radius
were taken from the GEMS catalog. The absolute values of the
intrinsic ellipticities were drawn from a truncated Rayleigh
distribution with σϵ = 0.25, where the ellipticity definition
|ϵ| = (1 − r)/(1 + r) was used. We truncated the distribution at
|ϵ| = 0.7 to avoid convolution problems with highly elliptical
galaxies. Additionally an orientation angle was drawn from a
uniform distribution. In this way, we avoided any correlation
between the half-light radius and ellipticity used as input to
our simulations. The galaxies were drawn as single Sérsic
profiles and made elliptical using the area-preserving shearing
of GalSim. We note that if accurate absolute biases shall be
determined, it is important to understand how galaxy properties

2 The single further restriction in this work is the lower limit on half-
light radius. We required the half-light radius to be at least one Euclid
pixel large, which corresponds to a little more than three GEMS pixels.

Fig. 2. Simulated PSF shown with a logarithmic grayscale. In the left
panel, the PSF is drawn on the native 0 .′′1 scale of Euclid on a 32 ×
32 pixel grid. In the right panel, the PSF is first convolved with a 0 .′′1
filter function and then drawn on a finer 160 × 160 pixel grid with a
pixel scale of 0 .′′02 as used for the measurements with a subsampling
factor of five.

and correlations from the source survey (such as GEMS) translate
into the simulations (see Kannawadi et al. 2019; Li et al. 2023).
We stress again that our simulations described above are only
created for the purpose of comparing runtime improvements of
different noise cancellation approaches.

The PSF for the simulations was kept constant and mod-
elled to be Euclid-like. Adapting to the VIS bandpass from
550 to 900 nm (see Cropper et al. 2016), we generated several
monochromatic PSFs within this bandpass using the GalSim
optical PSF function. We then stacked those monochromatic
PSFs to obtain a single PSF, which is representative of the VIS
bandpass. This stack was built from a weighted sum of the indi-
vidual PSFs, where the weights were computed from a modelled
Vega spectrum taken from Kurucz (2011). The telescope proper-
ties required for the optical PSF function were taken from Tewes
et al. (2019). In Fig. 2, the combined PSF can be seen on both the
native pixel grid of Euclid and also on the finer grid used for sub-
sampled galaxy images. We systematically simulated the galaxy
images using the VIS native pixel scale. However to improve the
reliability of the GalSim KSB implementation on undersampled
galaxies, we then subsampled all images with a factor five by
subdividing each native pixel into 5 × 5 subpixels before apply-
ing KSB. Hereby the flux of one pixel is distributed evenly among
5 × 5 new pixels and therefore the total number of image pixels
is increased by a factor of 253.

For the determination of the additive bias c, we needed to
make sure that the input ellipticities vanish on average. We intro-
duced a shape noise cancellation in the input catalog to ensure
that this holds. Since we drew an ellipticity and an orientation
angle, we could introduce this by drawing a galaxy with angle α
and the same galaxy with the same ellipticity but angle α + π/2
once more. We did this for the response method on a grid and
also on random positions. In the case of random positions, we
used the same galaxies turned by 90 degrees on new random
positions in consecutive images. That way the shape is not only
cancelled in the whole population of galaxies but also for each
galaxy of the input catalog itself. Following this setup, we are
able to estimate the additive bias without impacting the estimate
of the multiplicative bias.

3 This manipulation of the pixel data is commonly used for KSB (see
e.g. Erben et al. 2001; Heymans et al. 2006; Hernández-Martín et al.
2020) and can also be applied to real data.
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90° rotation of
intrinsic shape

inverted pixel 
noise realisation

Fig. 3. Examples for the grid-based simulations, where both cancella-
tions are used. For better identification of individual pixels, galaxies
are drawn on 32 × 32 pixel stamps here. In the horizontal direction
shape noise cancellation is applied by rotating the galaxy by 90 degrees.
Vertically pixel noise cancellation is implemented. As discussed in
Sect. 3.1.2, this only approximately corresponds to switching the sign of
the noise. The left panel shows a bright and extended galaxy for a better
visual impression, while the right panel shows a more typical galaxy in
the GEMS catalog.

4.1.1. Grid-based simulations

In the grid-based simulations, we built stamps of 64 × 64 pixels
in size with isolated galaxies. Apart from a randomly distributed
sub-pixel shift, these galaxies are centred within the stamp. No
detection step is needed for the grid-based simulations. However
for more realism we applied a selection based on a measured
signal-to-noise ratio larger than ten using the definition from
Tewes et al. (2019). We subsampled each stamp by a factor of
five and then ran KSB via the GalSim shear estimate function
directly on the subsampled stamp. Stamps for which the KSB
measurement fails were not considered for later analysis. We do
not require completeness for the cancellations. If not all versions
belonging to a cancellation could be measured, we still kept the
ones that were measured successfully. Otherwise the selection
bias would be artificially suppressed by the cancellations.

Fit method. Depending on the cancellation method used,
each galaxy has a certain number of stamps. For our shape noise
cancellation, we made use of two stamps and for each stamp
with added noise there was one with noise inverted. That way we
ended up with four stamps per galaxy if both cancellations were
applied. Two practical examples can be seen in Fig. 3. Typically
galaxies are small as in the right panel. In the left panel, the
shape noise cancellation is easier to identify. Such panels con-
sisting of several stamps were then built for 20 different shears
evenly spaced from −0.1 to 0.1 and for each shear a different
galaxy sample was used.

Response method. For the response method, one panel
consists of the same galaxy sheared n times. The original method
uses n = 2, but we extended this to n = 11 if the larger shear
interval was needed. Also a random sub-pixel shift was applied
to the galaxies, but this sub-pixel shift is the same in one spe-
cific panel. In Fig. 4, an example for the n = 11 case can be seen.
The original method corresponds to only the |g| = 0.02 stamps,
where the shear difference is barely notable by eye.

4.1.2. Galaxies at random positions

The second experiment consisted of 4000 × 4000 pixel-wide
scenes containing galaxies from the GEMS catalog with m < 26.5,

where m denotes the magnitude in the F606W filter of the HST.
This magnitude cut was chosen such that the GEMS catalog is
still complete. As shown in Hoekstra et al. (2017) and more
recently in Euclid Collaboration (2019), one has to include galax-
ies as faint as magnitude 29 to obtain accurate bias estimates
because the estimate is affected by undetected blends. Since we
are mainly interested in uncertainties of biases rather than their
absolute value, we did not include the faintest galaxies to save
computing time.

As a first step, we added Poisson noise from the sky back-
ground and read-out noise to the empty image. Then galaxies
with a constant shear were drawn again on 64 × 64 pixel-wide
stamps and only Poisson noise due to their own flux was added.
These stamps were then added at random positions in the large
scene. As a result, some regions might contain many blends,
while others are less dense. If one stamp reaches above the mar-
gins of the large image, only the overlap is added. One example
of a cut-out from one of the scenes generated in this way is shown
in Fig. 5. We generated several new realisations of the random
positions for each constant input shear. Hence for our final sim-
ulation run described in Table 4, we used 2800 (= 140 × 20)
different random position realisations for the fit method. Statis-
tical fluctuations of the amount of blending due to the specific
realisation of the random positions are therefore suppressed.
The mean density is chosen as 30 galaxies/arcmin2 brighter than
magnitude 24.5 to match the expectations of Euclid.

Once generated these scenes were analysed with
SExtractor to generate detection catalogs. We used the
default settings of SExtractor (Version 2.25.0)4. The positions
detected in this manner were then used to extract 64 × 64 pixel
large stamps. The extracted stamp’s size was chosen so that it
is large enough to cover the large galaxies and small enough to
minimise the impact of blending. Also this stamp size makes
comparing the results to the grid-based results easier. From this
point on, the procedure is the same as for the grid-based simula-
tions including selecting S/N ten and above. The detection steps
and the blends might of course change the biases. Using this
configuration of SExtractor and the extraction flags one and
two, which indicate an impact by neighbouring objects, we find
a blending fraction of 2.5% for the complete sample of galaxies.
Here we defined the blending fraction as the ratio of detected
objects, which had either one or both of the extraction flags
raised, to the total number of detected objects. Liu et al. (2023)
find the blending fraction to be about 10% for galaxies brighter
than 26 mag in the Euclid VIS band. Using their alternative
definition of blending defined as an overlap of two or more
Kron-ellipses, we find a blending fraction of 8.1% in our random
position simulations. Just as the authors we used apertures with
a size of 2.5 times the Kron-radius, which captures about 90%
of the light from the galaxy with a slight dependence on the
Sérsic index. As these two definitions of blending fractions can
be easily impacted by the SExtractor configuration and the
simulation details, we validate our blending fractions against
an alternative set of simulations that includes clustering, as
described in Sect. 6.5.

Fit method. We generated up to four versions of the same
large scene to use the different cancellation methods. We gen-
erated a second version of the scene with the same background
noise for shape noise cancellation. The cancellation can then be
implemented in different ways. One option is to keep the position

4 Essential settings are: DETECT_MINAREA = 5, DETECT_THRESH =
1.5, DEBLEND_NTHRESH = 32, DEBLEND_MINCONT = 0.005.
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Fig. 4. One panel for the response method expanded over the full shear range of the fit methods from −0.1 to 0.1. The legend above indicates the
applied shear g1 for each stamp. The shear difference ∆g is 0.02 from stamp to stamp. One can observe the virtually identical noise pattern in each
stamp, which only differs due to the Poisson noise of the galaxy itself as described in Sect. 3.2.
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Fig. 5. Cutout of 400 × 400 pixels from an exemplary larger scene.
All galaxies visible here do have the same constant shear applied.
The scene contains galaxies down to 26.5 mag and has a density of
30 galaxies (m < 24.5 mag)/arcmin2 as expected for Euclid.

of the galaxy centres constant and rotate them by 90 degrees. In
the following, this is referred to as local shape noise cancella-
tion. Still rotating the galaxies on fixed positions changes the
relative blending. Therefore shape noise cancellation is likely to
be less efficient. Another option is to rotate the whole scene
before applying shear. We refer to this as global shape noise
cancellation in the following. Thus the positions and the galax-
ies themselves are rotated by 90 degrees. That way the relative
blending stays the same apart from the differences due to the
shear. The blending level is given by the reference scene and is
therefore comparable between the two cancellation approaches.
Still the benefit of the global cancellation is that it preserves
the relative alignment of the galaxies. Thus two blended galax-
ies in the reference frame stay blended in the rotated version,
while isolated galaxies stay isolated. The local cancellation cre-
ates new blends in the rotated version while de-blending others.
As a result, the shape noise cancellation is destroyed for more
galaxies than it is the case for the global cancellation. The change
in blending fraction compared to the reference scene is a noisy
quantity for both types of shape noise cancellation, because we
draw a new pixel noise realisation for the two versions of the
scene. Since we use many different realisations of random posi-
tions, the effect of slightly varying blending fractions in the
different versions of a scene is negligible. A drawback of the
global cancellation is that it suffers from spatial variations of
detector effects. Spatial variations of the quantum efficiency, the
PSF, and other effects, like bad pixels would also have to be
rotated. In particular a global cancellation with variable shears in

the field likely causes issues and requires further exploration. We
compare both of these approaches. An example of the difference
between the two options can be seen in Fig. 6. To use both can-
cellations discussed in this paper, we generated one additional
scene for each of the two scenes used for shape noise cancella-
tion. These two additional scenes carry the same noise as their
respective partner, except that it is inverted instead of added.
Thus, one run of the fit method with both cancellations consists
of 20 (different shears) × 4 (scenes per shear) 4000 × 4000 pixel
images. Our analysis, later on, is based on several of such runs
combined.

Response method. For the response method, we need to
generate two or eleven (depending on the shear interval of inter-
est) differently sheared versions of the same scene. These scenes
are identical in background noise and read-out noise and thus
solely differ in the Poisson noise of the galaxies’ light distribu-
tion. This was again generated from the same seed utilising the
inverse transform sampling. One run here consists of a compila-
tion of almost the same scene but slightly different shear. This
can also be repeated several times for better statistics.

4.2. Definition of runtime

The comparison of different methods to estimate the shear biases
must be based on a definition of efficiency. A good proxy for effi-
ciency is the time needed by the simulations to end up at a certain
level of uncertainty. As the runtime of a simulation depends of
course on the exact implementation (e.g. parallelisation) and the
available number of CPU cores, a generic method to compare
runtimes is useful. For our setup, the largest contributions to the
overall runtime come from

– the drawing of each stamp (which includes the convolution
with the PSF);

– the KSB measurement;
– the noise generation (dominated by the inverse transform

sampling for Poisson noise);
– and the generation of a 4000 × 4000 pixel image from

individual stamps.
The latter is only relevant for the simulations with galaxies at
random positions. All the components were then timed many
times and the resulting average was used to define relative run-
times in units of one convolution. On a particular single-CPU
setup, we find that one convolution takes on average 0.14 s, one
measurement takes 0.017 s, one noise generation takes 0.013 s,
and building one large image takes 19.4 s. We normalised these
times to one convolution and approximated from the times given
above that noise generation and measurement of one stamp take
1/4 the time of a convolution and building a large image takes
140 times longer than a convolution. Expressing the latter as an
image assembly time per galaxy yields 3% of a convolution per
galaxy, which shows that this step is very efficient. With the rela-
tive runtimes it is possible to calculate theoretical runtimes only
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Fig. 6. Options for the shape noise cancellation on random positions. The left panel is shown for reference. The middle panel shows the shape
noise cancellation with constant positions but rotated galaxies. The right panel implements the cancellation by rotating the whole scene before
shearing by 90 degrees. The zoomed frames show the same pair of close-by galaxies in each version. The figure illustrates the benefit of the global
cancellation, which keeps the galaxies distinct, while the local cancellation creates a blend.

depending on the number of convolutions, the number of KSB
measurements, and the number of 4000 × 4000 pixel images a
simulation run needs. In the following, all runtimes refer to this
definition of a theoretical runtime. We want to emphasise that
even this theoretical runtime only holds for our specific setup, as
for example the stamp size changes the time KSB takes compared
to a convolution. Still the potential efficiency improvement for
most of the methods is insensitive to the exact runtime differ-
ences between the main contributors listed above because most
of the methods require all of the steps from the convolution to
the ellipticity measurement. Adding shape noise cancellation for
example always takes twice as long as using no cancellation
since the same steps are also required for the rotated galaxy.
Only the improvement of pixel noise cancellation is sensitive to
the runtime difference between a convolution and the other con-
tributors since this cancellation does not require an additional
convolution. As long as the convolution with the PSF is the
dominant part of the runtime, pixel noise cancellation has this
advantage compared to the other methods.

5. Uncertainty estimates

To assess the efficiency of different methods later on, the uncer-
tainties on µ and c need to be defined. This definition can become
non-trivial depending on the method used and we discuss our
treatment in the following.

5.1. Grid-based simulations

The gridded setup makes it possible to identify a measure-
ment with an input galaxy unequivocally. This simple mapping
between measurement and input galaxy has some advantages in
uncertainty determination.

5.1.1. Fit method

We determined uncertainties for each point of the fit method
using the bootstrap method generating 1000 samples. The boot-
strap was done over the galaxy population and not over the
individual measurements to account for the purposely introduced
correlation due to the cancellation. Afterwards µ and its respec-
tive 1σ uncertainty were determined using an implementation
of the Levenberg–Marquardt algorithm (Marquardt 1963), which

minimises the sum of squared residuals for (non-)linear func-
tions. We judge the goodness of fit by utilising the χ2 statistic.
Hereby χ2 is given as

χ2 =

N∑
i=1

( xi − µi

σi

)2
, (14)

where N denotes the number of measurements, µi is the expec-
tation value at position i given by the model to fit, and σi is the
uncertainty of the measurement i. Further χ2

red is defined as

χ2
red =

χ2

N − M
, (15)

where M denotes the number of fit parameters. The expectation
value of this χ2

red for a good fit is one. We use the estimated
uncertainties from the bootstrapping directly for the fitting and
do therefore not enforce a rescaling of the σi to yield a χ2

red
of one.

This kind of fitting with absolute error bars is also consis-
tent with a fitting, where the given error bars are only used for
weighting. Thus estimating the uncertainties via bootstrapping
for each data point is robust. Additionally we tested that an esti-
mate with MCMC allowing for a constant fraction, by which we
over- or underestimated our error bars, leads to consistent results.
The uncertainty estimate is consistent in all these cases, so we
are very confident in their value. In the following, we use the
bootstrapping ansatz as this can be consistently done for all the
methods.

5.1.2. Response method

The response method is treated similarly. Again we can boot-
strap over the galaxy population, where one galaxy might have
two or eleven associated measurements depending on the cho-
sen interval. The average response was calculated from Eq. (13).
Each galaxy has then an e+obs and an e−obs assigned to it. Then we
can bootstrap those simultaneously by drawing galaxies (e.g. if a
galaxy is included in the ⟨e+obs⟩ calculation then it is also included
in the ⟨e−obs⟩ calculation) and build responses from these samples.
The standard deviation of those responses gives our uncertainty.

In the case of eleven versions of the same galaxy, there are
two ways to estimate the multiplicative bias. One is to assign all
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but the version with the smallest shear to the e+obs and all but
the version with the largest shear to the e−obs. Then one can pro-
ceed using Eq. (13) again. The problem here is that the inner
nine versions are included in both eobs and therefore get a too
large weight. This problem can be solved by determining the
bias using a linear fit just like in the fit method. We simulta-
neously measured µ and c by fitting the model from Eq. (5) to all
galaxies and 11 input shears. The fitting was not done for each
individual galaxy since that would be very noisy again. Since the
same galaxies are included in each point used for the fit, we need
to account for the correlation in the uncertainty estimate. This
was done by bootstrapping the fit. We built bootstrap samples
from the galaxies and fit for each bootstrap sample. The stan-
dard deviation of the fit parameters is taken as an uncertainty
estimate. Effectively the response method is equivalent to a fit
method with the same galaxies and noise for each input shear.
We used this method to estimate the bias and its uncertainty for
the response method on the large shear interval.

5.2. Random position simulations

Defining uncertainties on the randomly positioned galaxy sim-
ulations has to be done differently than before since it is not
possible anymore to identify complete cancellations or responses
of individual galaxies.

5.2.1. Fit method

For the fit method, we simulated several scenes per shear each
giving a shear estimate by taking the mean of all observed ellip-
ticities. Knowing also how many measurements went into the
shear estimate of one scene, we could afterwards determine the
combined shear estimate via a weighted average of all the indi-
vidual estimates. The uncertainty of this combined estimate can
then be obtained by bootstrapping over the individual estimates
(again accounting for the weights). This uncertainty estimate is
quite noisy for the fastest runtimes, where only a few scenes are
being accounted for. Hence we left out the uncertainty estimates
in our analysis, which were based on less than ten scenes.

5.2.2. Response method

For the response method ⟨eobs,±
i ⟩, where the index i denotes the

number of the run, can be found for each of the runs and later
on combined into one larger ⟨eobs,±⟩ to build the response as
described in Eq. (13). Recall that one run refers to one compila-
tion of scenes with slightly different shear, but essentially almost
the same noise (so either a combination of two or eleven scenes).
We used multiple runs for better statistics. The uncertainty was
determined by bootstrapping ⟨eobs,+⟩ and ⟨eobs,−⟩ simultaneously
to account for the correlation and building responses from these
samples. To do so we drew random indices with repetition and
then built the bootstrap samples by taking the ⟨eobs,±

i ⟩ at the
drawn indices to form new large ⟨eobs,±⟩ and build the response
from these. The standard deviation of those responses is taken
as the uncertainty. In the large shear interval with eleven ver-
sions we also employed the linear fit again and determined the
uncertainty by bootstrapping the fit as described in Sect. 5.1.2.

6. Results

6.1. Non-linearity of the shear measurement

In both, grid-based and non-grid-based simulations, the original
response method using only small shears yields different results
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Fig. 7. Non-linearity in the shear measurement. The standard linear-fit
method is shown in the upper panel, using gridded simulations with
160 000 galaxies. The orange line indicates the fit. On the y-axis the
difference between the average observed – or measured – shear and the
true input shear is plotted. The lower panel shows the same data, but this
time allowing for a quadratic term in the fit (fitting the function shown
in Eq. (16)). Here the additional parameter α describes the coefficient
of the quadratic term. The linear fit has 18 degrees of freedom, while
the quadratic fit has 17.

than the fit method spanning a larger shear interval. The non-
linearity of the shear measurement is clearly evident in Fig. 7.
Fitting the same data allowing for an additional antisymmetrised
quadratic term, describes the visible behaviour better and yields
a better5 χ2

red. To describe the antisymmetric behaviour we fit the
function

⟨gobs
1 ⟩ − g

t
1 = α |g

t
1| g

t
1 + µ g

t
1 + c. (16)

5 We find that allowing for an additional g2 component of the shear,
the χ2

red can be further optimised towards unity. For each galaxy, we
randomly assign an additional g2 component binned similarly to the g1
component. This increases the input ellipticity variance along the g2
axis, yielding a better χ2

red.
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Fig. 8. Comparison of the multiplicative bias estimates from the differ-
ent methods discussed in this paper on the grid. ‘Both 0.02’ stands for
the fit method using both cancellations, but in the smaller shear interval.
The triangle symbol indicates the bias of the response method calcu-
lated without fitting. On the x-axis ‘RM’ indicates estimates using the
response method.

The non-linearity can also be seen in Fig. 8, where we com-
pare the multiplicative bias values of the different methods and
specifically study the small shear interval as well by conduct-
ing the fit with 20 points in the interval [−0.02, 0.02] (see the
point ‘both 0.02’). This point contains three times more galax-
ies than the ‘both’ point for the larger shear interval does. Still
the uncertainty is way larger, illustrating the low efficiency of
the fit method when using smaller shear ranges. Thus we need
to conduct our accuracy comparison also dependent on the shear
range. This behaviour is expected because the fit methods in the
simplest form aim to estimate the slope

m =
∆y

∆x
. (17)

Using error propagation, the uncertainty on m also depends on
the ∆x. Intuitively the signal-to-noise ratio on a shear estimate is
lower at smaller shears.

This non-linearity explains why the original response
method (i.e. without fit) is always slightly less biased in the
result tables than the other methods. The overall reason for the
non-linearity, on the other hand, is not well understood, but it is
plausible that the success rate of a KSB measurement depends
on the shear. We find a slight tendency that the measurement
success rate of KSB decreases with increasing amplitude of
the shear. Additionally the fraction of complete cancellations
decreases for larger shear, while the fraction of incomplete
cancellations increases in return. The effect of higher-order
terms in the shear bias was also studied recently by Kitching &
Deshpande (2022). We find that including a quadratic term in the
shear bias improves the χ2

red a lot as seen in Fig. 7. As Kitching
& Deshpande (2022) discusses, this behaviour might be caused
by a projection of the total g1–g2 plane, but a detailed analysis
of this effect is beyond the scope of this paper. The non-linearity
can be neglected as long as the shear range is not too large

and the comparison of methods is made in the same interval.
For the comparison done in this paper it is a substantial effect,
which we accounted for by expanding the shear range of the
response method up to the range of the fit method.

6.2. Compatibility of methods

Before we can compare the efficiency of different methods, we
need to show that they can provide similar results in terms of µ
and c. We do not want to have a method that yields smaller sta-
tistical errors but is not capable of providing the correct biases.
We used the fit method without any cancellation as a benchmark
for the comparison. The reference efficiency for all methods
was therefore determined by looking only at fully independent
versions of galaxies without any cancellations. In the case of
Fig. 3, this corresponds to considering only the top left version
of all galaxies. For shape noise cancellation, we considered the
top two versions and for both noise cancellations then all four.
This was done analogously also for the simulation setup with
larger scenes. Here we also took only one of the four different
realisations of a scene into account for the reference efficiency.

6.2.1. Grid simulations

The comparison is shown for the grid-based simulations in both
Table 1 and Fig. 8. Note that we differentiate in both the table
and the plot between the two ways to estimate the multiplica-
tive bias for the response method in the large shear interval (see
Sect. 5.1.2). The direct approach using the responses is shown
with a blue triangle, while the fitting approach is shown in red.
The figure shows two important aspects of our study. Firstly
using the same range of shears for the simulation leads to com-
patible results for every method. Hence we can compare the time
it takes for a certain method to reach some accuracy. Secondly
we can observe the non-linearity in the shear measurement that
we discussed in the previous section. Changing the interval from
[−0.1, 0.1] to [−0.02, 0.02] changes the multiplicative bias esti-
mate. That is why we always denote the interval used for the
response method in the following. The fit method always uses
[−0.1, 0.1] if not stated otherwise.

6.2.2. Random positions

The same compatibility can be seen in the simulations with
randomly positioned galaxies. This is shown in Table 2 and
Fig. 9. The absolute value of the multiplicative bias becomes
larger. Comparing the difference between grid and random posi-
tions with Euclid Collaboration (2019, Table 1), we can attribute
about a third of this shift to the inclusion of fainter galaxies and
the other two-thirds to the additional detection step and in par-
ticular blending between brighter galaxies. The detection step,
which we left out for the grid, leads to a detection bias for the
fainter galaxies as shown in Hoekstra et al. (2021). Despite this
shift, the methods are still compatible within their uncertainties.
Only the methods using the smaller input shear interval devi-
ate, which is likely due to the non-linearity again. For both types
of simulations, we observe that the fit method and the response
method yield consistent biases when the same shear intervals
are employed and the bias of the response method is estimated
by fitting (in the case of larger shears, see Sect. 5.1.2). As for the
grid simulations, biases are shifted towards more positive values
(hence they are less negative) due to the non-linearity at larger
shears.
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Table 1. Method comparison on the grid.

Method µ σµ c σc Simulated galaxies Relative
[10−3] [10−3] [10−4] [10−4] [106] runtime

No cancel 12.85 2.96 5.4 1.8 3.2 1.0
Shape 10.64 0.86 7.8 0.5 6.4 2.0
Both 11.10 0.55 7.7 0.3 12.8 2.4
RM 0.1 (resp.) 8.74 0.78 8.3 1.2 10.6 3.3
RM 0.1 (fit) 11.34 0.69 8.1 1.2 10.6 3.3
Both 0.02 6.53 1.40 7.0 0.2 38.4 7.5
RM 0.02 6.84 0.85 7.4 0.7 6.4 2.0

Notes. We list the total number of simulated galaxies (including additional versions for the cancellations) for each method in the second last column.
The relative runtime is always compared to the case without any cancellation. Only galaxies brighter than 24.5 magnitudes fulfilling the S/N larger
than ten criterion are considered here. The RM in the first column denotes the response method. If the method is followed by a float number, this
denotes the used shear interval. For the differentiation between response (resp.) and fit approach for RM 0.1 see Sect. 5.1.2.

Table 2. Method comparison on random positions.

Method µ σµ c σc Simulated area Relative
[10−3] [10−3] [10−4] [10−4] [deg2] runtime

No cancel −21.30 1.74 5.7 1.1 69.14 1.00
Shape local −21.83 0.93 7.2 0.6 2 × 34.57 1.00
Both local −22.59 0.65 7.0 0.4 4 × 34.57 1.22
Shape global −23.81 0.88 7.8 0.5 2 × 34.57 1.00
Both global −23.54 0.54 8.0 0.3 4 × 34.57 1.22
Both 0.02 (g) −27.83 2.36 6.0 0.3 4 × 34.57 1.22
RM 0.1 (resp.) −25.02 1.10 10.5 2.1 11 × 4.94 0.79
RM 0.1 (fit) −21.91 1.06 10.1 2.1 11 × 4.94 0.79
RM 0.02 −27.42 1.19 5.5 0.9 2 × 24.69 0.71

Notes. The relative runtime is given for this specific example where we used 11 200 (= 140 × 20 × 4) scenes for the fit method, 4400 (= 400 × 11)
scenes for the response method in the large shear interval, and 4000 (= 2000 × 2) scenes for the response method in the small shear interval. It is
always compared to the runtime of no cancellation. In the second last column, we list the simulated area that went into each method. Indicated is
always the unique area multiplied by the required additional versions for each method. The RM in the first column denotes the response method.
The estimate for Both 0.02 also used global (g) cancellation. If the method is followed by a float number, this denotes the used shear interval. For
the differentiation between response (resp.) and fit approach for RM 0.1 see Sect. 5.1.2.

6.3. Uncertainty behaviour

In this section we want to study how the uncertainties develop
using the different methods as a function of their runtimes. To
do so, we assumed the simple dependence

σµ = a t−0.5
run , (18)

where σµ denotes the uncertainty on the multiplicative bias
and trun is the theoretical runtime defined previously. The same
behaviour does also hold for the uncertainty of the additive
bias. We expect this behaviour as the uncertainty scales with
the inverse number of measurements and the number of mea-
surements scales linearly with our runtime definition for a
sufficiently large number of galaxies.

6.3.1. Grid simulations

On a grid, the uncertainty behaviour can be seen in Fig. 10. The
runtime improvements deduced from the fitting results for the
grid-based simulations can be seen in Table 3. The improvement
in runtime can then be calculated by squaring the improve-
ment of the fitted parameter a. Thus the definition of runtime

improvement (RI) in our case is

RI =
(

ano cancel

ai

)2

, (19)

where i denotes the method used for comparison. The table
adds the total galaxy number improvement (GI). This quantity
describes how many fewer galaxies need to be simulated with
the respective method to reach the same precision as no cancel-
lation. The total number includes all possible versions for the
different cancellation methods. Thus using for example shape
noise cancellation and pixel noise cancellation requires only a
quarter of the total number of galaxies to be unique. The GI is
independent of the runtime difference between convolution and
other contributors to the runtime that are described in Sect. 4.2.
Therefore the GI can be used as a lower limit of the efficiency
improvement if different shape measurement algorithms than
KSB are considered. For every method but both cancellations, RI
and GI are the same.

For the multiplicative bias, we find that adding pixel noise
cancellation on top of shape noise cancellation can reduce the
runtime by another factor of about 2 compared to only shape
noise cancellation. The improvement of the response method
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Fig. 9. Comparison of the multiplicative bias estimates from the differ-
ent methods discussed in this paper for galaxies on random positions.
The triangle symbol indicates the bias of the response method calcu-
lated without fitting. On the x-axis ‘RM’ indicates estimates using the
response method.

compared to no cancellation depends on the shear interval used.
This is because the fit method uncertainty depends on the shear
interval used, while the response method uncertainty is largely
insensitive to it. In the small shear interval, it can provide an
additional factor of 10 improvement in runtime compared to
both cancellations in the fit. P18 find that the number of images
can be reduced with the response method by a factor of 82
compared to shape noise cancellation and by a factor of 650
compared to no cancellation (assuming two sheared versions for
the response method). They made the comparison in terms of
simulated images and not in terms of runtime. Assuming that
both are related linearly, we find a factor of 23 in a number of
images compared to shape noise cancellation and a factor of
145 compared to no cancellation. Thus we do not exactly repro-
duce the values they found. Considering that we are using a
completely different estimation of the uncertainties and a more
realistic noise description, it is unsurprising that the estimated
improvement deviates from their results. They also used a Gaus-
sian distribution of the input shears with σ = 0.03 such that the
shear range is not entirely identical to our analysis. We also note
that matching the shear interval of the response method to the fit
method leads to a worse uncertainty behaviour again (compare
RM in the different shear intervals). This is caused by the need
to estimate multiple responses for the same galaxy. Hence there
is more shot noise due to the galaxy population in the RM 0.1
method compared to RM 0.02 at the same runtime.

For the additive bias, the improvements of the fit method are
always the same as they were for the multiplicative bias. Only the
response method shows a significant difference. The response
method is not effective at all currently when it comes to additive
bias estimation. This originates from the need to simulate
the same galaxy several times with slightly different shear. Since
the additive bias is taken to be the mean of all observed ellip-
ticities, the information gained from simulating the same galaxy
multiple times is less than from simulating different galaxies.

Table 3. Efficiency comparison for the grid-based simulations.

Method µ-bias c-bias
RI σRI GI RI σRI GI

Shear interval [−0.1, 0.1]

Shape 6.0 0.1 6.0 6.2 0.1 6.2
Both 12.8 0.2 7.7 13.9 0.3 8.3
RM 4.6 0.1 4.6 0.7 0.01 0.7

Shear interval [−0.02, 0.02]

Shape 6.3 0.1 6.3 6.3 0.1 6.3
Both 14.9 0.3 8.9 14.9 0.3 9.0
RM 145.6 2.7 145.6 3.4 0.1 3.4

Notes. This table includes galaxies with input magnitudes brighter than
24.5 and a selection of S/N ten and above. RM stands for the response
method, RI for runtime improvement, and GI for the total galaxy
number improvement. The uncertainty for the runtime improvement is
listed as σRI.

Thus the efficiency worsens when using eleven versions for the
large shear interval. P18 find larger improvement factors but
took the additive bias as the mean of individual additive biases,
which does not account for selection as discussed before. Thus
the response method can not efficiently be used for additive bias
estimation.

Nonetheless, we find two methods here that can reduce
the multiplicative bias’s runtime significantly compared to the
commonly used shape noise cancellation. Using pixel noise can-
cellation on top of shape noise cancellation helps in every shear
interval to reduce the runtime by at least a factor of 13, com-
pared to a factor of 6 for shape noise cancellation only. In a large
shear interval, the response method can not yield more improve-
ment than both cancellations. In fact, its uncertainty behaviour
with runtime is worse than that for both cancellations. But in a
smaller shear interval, the response method improves the runtime
by more than one order of magnitude. This can be very useful for
redshift-dependent blending as discussed in Li et al. (2023) since
the additive bias can also be calibrated empirically (see Hoekstra
2021). Since galaxies are not on a grid in the sky, we also check
what this behaviour looks like for randomly positioned galaxies.

6.3.2. Random positions

The uncertainty behaviour for galaxies at random positions is
shown in Fig. 11. The general trend is the same as for the grid-
based simulations. In larger shear intervals, the response method
does not further improve the efficiency compared to using both
cancellations. For small shear intervals, there is still a very sig-
nificant improvement in runtime using the response method. This
is also supported by the detailed fit results shown in Table 4. In
this table, we added the area improvement (AI), which works
analogously to the total galaxy number improvement (GI) for the
grid-based simulations. It describes how much less area needs to
be simulated with the respective method to reach the same preci-
sion as no cancellation. This area includes all possible versions
for the different methods. Thus using for instance shape noise
cancellation and pixel noise cancellation requires only a quarter
of the total simulated area to be unique. Since it does not depend
on the runtime differences between convolution and other con-
tributors to the runtime that are described in Sect. 4.2, it gives
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Fig. 10. Uncertainty behaviour for the different methods for grid-based simulations. The runtime, which is used here, is always the theoretical
runtime from Sect. 4.2 normalised to its maximum value in the respective figure. Here the large shear interval is normalised to a theoretical runtime
of 13.2 × 106 and the small shear interval to 14.4 × 106, respectively. Solid lines show fits to the data described in Sect. 6.3. The left and right
panels differ by the used shear interval, which is indicated in each column title.

a lower limit for the efficiency improvement if other shape mea-
surement methods than KSB are considered. For all methods but
both noise cancellations, RI and AI are the same.

In general, all methods are not as efficient anymore as they
were on a grid. We attribute this to blending and the inclusion
of fainter galaxies, but also due to the additional detection step
using SExtractor, which has been left out on a grid. Nonethe-
less the advantages of either adding pixel noise cancellation or
even using the response method are still present for the mul-
tiplicative bias estimation. The efficiency of the additive bias
estimation is also here very poor for the response method. Only
the fit method can provide improvements for the additive bias
estimation. We also see that the global shape noise cancellation
(and especially the global shape noise cancellation with pixel
noise cancellation) is more efficient than the local one. This
is expected since the relative blending in the global case stays
constant, as previously mentioned. Thus if the purpose of the
simulation allows it, global cancellation should be used. If that
is not possible, the local cancellation can provide a seven times
faster bias estimation than without any cancellation.

6.4. Binned comparison

In addition to looking at the uncertainty behaviour for realistic
scenes, we can also study the behaviour as a function of
magnitude. In this section, we repeat the analysis in bins of
input magnitude. The runtime improvement is always defined
compared to no cancellation in the same magnitude bin. We
focus here on the results of the multiplicative bias. The analysis
of the additive bias shows a similar qualitative behaviour and
is shown in Appendix A. Additionally we can also compare the
absolute biases in different magnitudes bins just like we did it
for the whole sample in Sect. 6.2. This is a further validity check
for the methods that we present in Appendix B.

6.4.1. Grid simulations

The grid simulations make it trivial to bin in input magni-
tude. We extend the magnitude range from 20.5 to 25.5, which

includes fainter galaxies than our previous grid analysis. This
interval is binned in five bins with a width of one magnitude.
The results can be seen in Fig. 12. We see the general trend of
all methods becoming less effective for fainter galaxies. This
is expected since signal-to-noise ratios are smaller for fainter
galaxies and magnitudes correlate with the size of the galaxies.

Fit method. The slope of this decrease with magnitude in
efficiency is almost the same for the two cancellation methods so
that using both cancellations always stays superior to using only
shape noise cancellations.

Response method. Especially in the larger shear interval,
we observe that the response method has a slower decline of
the runtime improvement with magnitude than the fit method.
While being the least efficient method for very bright galaxies,
it becomes more efficient than shape noise cancellation for the
faintest galaxies. This is probably due to the fact that pixel noise
dominates the images of the faintest galaxies and the response
method handles this kind of noise differently from the fit method.
Hints of this flatter decrease can also be seen for the smaller
shear interval, but the response method stays the most efficient
method here anyway for all magnitudes.

6.4.2. Random positions

On random positions, this behaviour looks different. Firstly
matching between the detection catalog from SExtractor
and the input catalog is required to bin in input magnitudes.
This position-based matching is of course not perfect, but
at the implemented level of blending it works sufficiently
well. It enables us to bin based on input magnitudes, which
minimises magnitude-related selection biases. Still for real
survey data only measured magnitudes are available. Therefore
we also perform the same analysis with a binning based on
the SExtractor MAG_AUTO magnitude. The magnitude range
for these simulations spans from 20.5 to 26.5. We use six bins
with each bin being one magnitude wide. The last bin from
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Fig. 11. Uncertainty behaviour for the different methods for galaxies at random positions. Here both panels are normalised to a theoretical runtime
of 46 × 106. The figure is otherwise similar to Fig. 10.

Table 4. Efficiency comparison for galaxies at random positions.

Method µ-bias c-bias
RI σRI AI RI σRI AI

Shear interval [−0.1, 0.1]

Shape local 3.6 0.3 3.6 3.8 0.2 3.8
Both local 6.3 0.6 3.9 6.8 0.5 4.2
Shape global 3.8 0.3 3.8 4.1 0.3 4.1
Both global 8.4 0.6 5.1 9.5 0.6 5.8
RM 3.7 0.3 3.7 0.3 0.02 0.3

Shear interval [−0.02, 0.02]

Shape local 3.7 0.2 3.7 3.8 0.2 3.8
Both local 6.9 0.3 4.2 7.1 0.4 4.3
Shape global 4.3 0.3 4.3 4.2 0.3 4.2
Both global 10.9 1.1 6.6 10.5 0.7 6.4
RM 69.5 3.3 69.5 1.7 0.1 1.7

Notes. This table includes galaxies with input magnitudes brighter than
26.5, and the same S/N larger than ten selection. RM stands for the
response method, RI for runtime improvement, and AI for area improve-
ment. The uncertainty for the runtime improvement is listed as σRI.

25.5 mag to 26.5 mag is usually very noisy as only very few of
these galaxies pass the signal-to-noise ratio cut. To show the
behaviour at faint magnitudes more clearly, we removed the
signal-to-noise ratio cut for the binned analysis of the random
position simulations shown in Fig. 13 (large shear interval) and
Fig. 14 (small shear interval). In general, the type of magnitude
used to define the binning seems to have the largest impact on
the brightest bin. Binning in SExtractor’s mAUTO worsens
the improvement in the brightest bin compared to the binning
against input magnitudes. For fainter galaxies, the binning has
less impact and the improvement factors agree again. Since the

brightest bin contains the fewest galaxies, it is the most sensitive
to wrong bin assignments. Especially when these wrong bin
assignments destroy the cancellation by assigning only a part
of the galaxies belonging to the cancellation to the wrong bin.
Additionally blending scenarios can only be correctly binned
in mAUTO. Our nearest neighbour assignment can only pick up
the magnitude of one of the blending partners, which results
in a fainter magnitude than the total magnitude of the blended
object. Thus blended objects tend to be in the brighter bins in
mAUTO. This wrong assignment of blended objects worsens the
runtime improvement, because blending typically results in a
noisier measurement. Furthermore, we observe that all methods
again become less efficient for fainter galaxies, as seen on
the grid.

In Fig. 15, the blending fractions in different magnitude bins
can be seen. It becomes evident that the brightest bins are more
affected by blending and therefore also by objects scattering up
into brighter bins as described before. Still this only affects the
exact binning. The total number of detected galaxies is nearly the
same for both magnitude definitions. Thus the difference blend-
ing makes for the runtime improvement can only be quantified
by comparing Tables 3 and 4. There one can read off that the
amount of blending implemented in our simulations lowers the
runtime improvements by at most a factor 1.5.

Fit method. For the fit methods, we observe that the global
shape noise cancellations are always more effective than their
local counterparts for magnitudes brighter than 24.5. At fainter
magnitudes, global and local cancellations have roughly the
same efficiency. This behaviour is observed for both mAUTO
and mGEMS binning, which is why it is likely not related to
wrong bin assignments due to the blending. Shape noise can-
cellation is not significantly faster than no cancellation in the
two faintest bins, making it irrelevant if this cancellation is
performed globally or locally. Since both cancellations include
shape noise cancellations, we observe the same behaviour.
Still using both cancellations is in every magnitude bin more
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Fig. 12. Magnitude-binned runtime improvement of the multiplicative bias for the grid-based simulations. The position of the points marks the
center of each bin. The runtime improvement is always compared to the fit method without any cancellation. Error bars are smaller than the symbols
and therefore omitted for better visibility.

Fig. 13. Magnitude-binned runtime improvement of the multiplicative bias for the galaxies on random positions in the large shear interval. In the
left panel, the data is binned in mAUTO from SExtractor, while the input magnitude is used for the binning in the right panel to point out the
differences. The position of the points marks the center of each bin. The runtime improvement is always compared to the fit method without any
cancellation. For this figure no signal-to-noise cut is applied. Error bars are smaller than the symbols and therefore omitted for better visibility.

efficient than only shape noise cancellation. This behaviour can
be observed for both shear intervals.

Response method. The response method on the large
shear interval is the least effective method for the brightest
galaxies. For magnitudes fainter than 23.5, it becomes about as
effective as shape noise cancellation and also yields a similar
performance at fainter magnitudes. This trend is also reflected in
the combined results, where we see that the response method is
less effective than both noise cancellations, but just as effective

as only shape noise cancellations on this shear interval (see
Table 4). In the smaller shear interval, the response method con-
stantly dominates the runtime improvement over the fit method.

6.5. Comparison with Flagship

Our simulation setup, which cuts the magnitude distribution
at 26.5 mag and uses randomly positioned galaxies, is only
a simplified picture of the expected images from Euclid. To
quantify the impact of more realistic clustering and the inclusion
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Fig. 14. Magnitude-binned runtime improvement of the multiplicative bias for the galaxies at random positions in the small shear interval. In the
left panel, the data is binned in mAUTO from SExtractor, while the input magnitude is used for the binning in the right panel to point out the
differences. The position of the points marks the center of each bin. The runtime improvement is always compared to the fit method without any
cancellation. For this figure, no signal-to-noise cut is applied. Error bars are smaller than the symbols and therefore omitted for better visibility.
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Fig. 15. Magnitude-binned blending fraction as seen using the ran-
dom position simulations and the positions from the Flagship catalogue.
Dashed lines show blending as defined by the raising of SExtractor
flag one or two, while solid lines indicate the blending as an overlap of
the Kron-ellipses of neighbouring galaxies.

of fainter galaxies into the simulation, we made use of the Flag-
ship simulation mock galaxy catalogue (Euclid Collaboration:
Castander et al., in prep.), which was obtained from CosmoHub
(Carretero et al. 2017; Tallada et al. 2020). The catalogue was
generated by painting galaxies to an N-body simulation (Potter
et al. 2017), which only includes dark matter. This painting
was done using a combination of a halo occupation model
and abundance matching. The morphology of the galaxies
was then modelled with a similar approach as followed in
Hoffmann et al. (2022). We use from this catalogue both the
galaxy positions on the sky and the galaxy morphology. Instead
of single-Sérsic profiles, we adopted the double-Sérsic profile
description available in the Flagship catalogue. Apart from

the more realistic positions and the adapted morphology, we
setup the simulations in the same way as the random position
simulations. In particular the noise properties, the PSF, and the
detection configuration of SExtractor are the same.

6.5.1. Blending fractions

We adapted the blending fraction definitions from Liu et al.
(2023). Thus the blending fraction is defined as the ratio of
detected objects that are classified as blends to the total number
of detected objects. If one galaxy is blended is determined in
two ways. One option is to check if SExtractor raised one
or both of the extraction flags one and two, which indicate an
impact from neighbouring objects. The second option is to
check if the Kron-ellipses, which SExtractor determined,
overlap. In Fig. 15, we show both of these definitions binned
against magauto for our random position setup and for galaxies
placed according to the Flagship catalogue.

We find that the blending fraction within Flagship is always
higher than for random positions for the relevant magnitudes up
to 24.5, which shall be used for the cosmological analysis of
Euclid. For the complete sample we find blending fractions of
2.5% (8.1%) for random positions and 4.7% (10%) for Flagship,
defined via the SExtractor flags (Kron-ellipses). Thus by plac-
ing galaxies randomly we underestimate the blending fraction by
about 2% compared to a realistically clustered case.

6.5.2. Runtime improvements

To test the impact that this more realistic clustering has on the
runtime improvements, we use our pipeline to study the runtime
improvements for our Flagship-based image simulation. We
conducted this analysis only for the large shear interval since a
similar behaviour is expected for the smaller shear interval as
well. In Table 5 the improvements in runtime and area for this
new simulation setup are listed. Comparing this with Table 4 we
find that all runtimes improvements worsen a little. In absolute
terms we find that pixel noise cancellation is more affected
than only shape noise cancellation. Also limiting the Flagship

A240, page 16 of 23



Jansen, H., et al.: A&A, 683, A240 (2024)

Table 5. Efficiency comparison for galaxies positioned according to the
Flagship mock galaxy catalogue.

Method µ-bias c-bias
RI σRI AI RI σRI AI

Shear interval [−0.1, 0.1]

Shape local 3.5 0.3 3.5 3.0 0.3 3.0
Both local 5.8 0.6 3.5 5.3 0.4 3.2
Shape global 3.5 0.3 3.5 3.6 0.3 3.6
Both global 7.2 0.4 4.3 7.3 0.5 4.4
RM 2.5 0.2 2.5 0.1 0.01 0.1

Notes. This table includes galaxies with input magnitudes brighter than
26.5, and the same S/N larger than ten selection. RM stands for the
response method, RI for runtime improvement, and AI for area improve-
ment. The uncertainty for the runtime improvement is listed as σRI.

catalogue to magnitudes 26.5 and brighter, we find very similar
runtime improvements to our random position simulations.
Thus we conclude that the reason for the worsening are mainly
the additional faint galaxies, which are not detected, but add
correlated noise in the background. This mostly affects the pixel
noise cancellation, since this additional form of correlated noise
by faint galaxies does not get cancelled. In relative terms the
response method worsens the most, which we attribute mostly
to the absence of the variant of shape noise cancellation we
described in Sect. 4.1. The shape noise cancellation we used
for the response method on random positions used newly drawn
random positions for the rotated galaxies, which made it a softer
version of the cancellation compared to local and global can-
cellation. For the Flagship simulations we omitted this since the
shapes and orientations at a certain position in the sky are given
by the catalogue. We nevertheless see that our qualitative state-
ments about the most efficient methods still hold. Here we find
that both cancellations, especially with the ‘global’ scene rota-
tion, still provide the best runtime improvement. Thus including
clustering and fainter galaxies has only a minor impact on the
estimated runtime improvements. Most of the difference that the
inclusion of these additional effects causes, is likely absorbed in
the simultaneous worsening of the reference efficiency.

7. Summary and conclusions

This paper presents two possibilities to improve the efficiency of
shear bias calibration simulations, which are indispensable for
the scientific analysis of upcoming cosmic shear surveys. One of
the methods is pixel noise cancellation, which can be used on top
of shape noise cancellation in order to reduce the uncertainties
of bias estimation via a fit. This cancellation uses images with
an almost exactly inverted noise field in order to cancel noise
in the shape estimates caused by the pixel noise realisation.
This method is computationally cheap as no further convolution
is needed to build the pair image used for cancellation. This
advantage can only be fully exploited if the generation of a
galaxy image (including the convolution) dominates the runtime
compared to the measurement of a galaxy. The advantage
therefore depends on the shape measurement methods used for
the analysis. A completely different approach follows P18 in
their suggestion to use responses for the bias estimation. We use
their ideas to expand their formalism to account for selection
bias. We additionally adapt the method to accurately use Poisson
noise and make it applicable for larger shear intervals. We

compare these two methods with the commonly used fitting of a
linear function without any cancellation and the fit using shape
noise cancellation. The performance of each method depends
on both the chosen shear interval and the type of simulation.
Hence we present results in two shear intervals [−0.1, 0.1]
and [−0.02, 0.02] for both grid-based and random-position
simulations.

In both kinds of simulations, we find that pixel noise cancel-
lation and the response method are very useful for multiplicative
bias estimation. Their efficiency is almost the same in the
large shear interval, while in small shear intervals the response
method has the advantage. The fit naturally depends on the given
shear interval, while the response method is largely insensitive
to it. Consistently all methods are less effective in the second
kind of simulation, where galaxies are placed randomly. We
find the largest improvement for the response method on small
shear intervals compared to using no cancellation. In this case,
the method can improve the runtime by a factor of 145. In
the same shear interval for randomly positioned galaxies, this
factor decreases to 70. Still, this improvement by two orders of
magnitude can be beneficial for future bias constraints. In the
larger shear interval, we find improvement factors of 13 (grid)
and 8 (random positions) for both cancellations and factors of 5
(grid) and 4 (random positions) for the response method. For the
additive bias estimation, only the fit method is useful. There the
additive bias improvement is the same as the multiplicative bias
improvement. The additive bias estimation with the response
method is just as good or even worse than using no cancellation.
That is because no information for the additive bias can be
gained from simulating the same galaxy multiple times with
almost the same noise. Implementing pixel noise cancellation
for the response method might help improve the capabilities
of additive bias estimation. This idea is left for further work.
Also an empirical additive bias estimation as suggested in
Hoekstra (2021) might be possible. In that case, the response
method would not need to be capable of accurately determining
the additive bias.

Our studies of the runtime improvement as a function of
magnitude also show that there is no reason not to use pixel noise
cancellation on top of shape noise cancellation in any case. It is
always at least as efficient as shape noise cancellation, but mostly
more efficient. We also find that the advantage of the response
method on the small shear interval does not largely depend on
the magnitude of the galaxies. This method provides the largest
runtime improvement for every magnitude bin on the grid and at
random positions. It is solely on the larger shear interval that one
must carefully decide if using the response method makes sense.

Another intriguing effect that we find is the significant
dependency of the absolute multiplicative bias estimate on the
chosen shear interval. For the particular KSB shape measurement
method used in this study, the multiplicative bias seems to be
higher for small shear intervals. This behaviour hints at non-
linear bias terms, that are not accounted for by the simple fitting
of a linear function. Allowing for an additional quadratic term
in the fit, the multiplicative bias changes by an absolute value
of 8 × 10−3. Very recently, this effect of quadratic terms has
also been studied by Kitching & Deshpande (2022). Thus, our
current methods of shear bias estimation might not be complete
and we may need to quantify biases in the full g1-g2 plane.

With our findings of potential efficiency improvements for
the random position simulations, we highly recommend using
pixel noise cancellation. This kind of cancellation is rela-
tively easy to implement and can already reduce the simulation
volume needed to reach desired requirements regarding bias
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uncertainties. Especially in the case of small shear fields, it also
makes sense to consider using the response method. Although
harder to implement, improving more than two orders of magni-
tude in runtime can be worth it.

When moving to simulations including clustering, we want
to highlight the need to quantify the dominant contribution to
the runtime for a particular shape measurement method and sim-
ulation pipeline in order to decide if it is worth to implement
pixel noise cancellation also on top of shape noise cancella-
tion. This is because our simulations with positions drawn from
the Flagship catalogue (including clustering) have shown that
the area improvements for these simulations are very compa-
rable with and without the additional pixel noise cancellation
for our setups with local shape noise cancellation at least. How-
ever since Euclid has a complex PSF that has to be simulated
with a higher degree of detail as conducted in our work, it might
well be that the PSF generation and convolution becomes a more
dominant contribution to the overall runtime, in which case the
addition of pixel noise cancellation would provide larger runtime
improvements.

In the interest of repeatability and transparency, we make the
code publicly available6. These scripts are not a product of the
Euclid Consortium Science Ground Segment. They are created
exclusively for the present analysis and made public for repro-
ducibility of the results presented in this paper. We also provide
the scripts and data to generate each plot in this paper under the
same address.

Acknowledgements. We thank Andy Taylor, Shun-Sheng Li, and the anonymous
referee for their useful comments and discussions about this work. H.J. and T.S.
acknowledge support provided by the Austrian Research Promotion Agency
(FFG) and the Federal Ministry of the Republic of Austria for Climate Action,
Environment, Energy, Mobility, Innovation and Technology (BMK) via the Aus-
trian Space Applications Programme with grant numbers 899537 and 900565,
as well as the German Research Foundation (DFG) under grant 415537506. M.T.
acknowledges support from the German Federal Ministry for Economic Affairs
and Climate Action (BMWK) provided by DLR under projects nos. 50QE2002
and 50QE2302. The Euclid Consortium acknowledges the European Space
Agency and a number of agencies and institutes that have supported the devel-
opment of Euclid, in particular the Academy of Finland, the Agenzia Spaziale
Italiana, the Belgian Science Policy, the Canadian Euclid Consortium, the French
Centre National d’Etudes Spatiales, the Deutsches Zentrum für Luft- und Raum-
fahrt, the Danish Space Research Institute, the Fundação para a Ciência e a
Tecnologia, the Ministerio de Ciencia e Innovación, the National Aeronautics
and Space Administration, the National Astronomical Observatory of Japan, the
Netherlandse Onderzoekschool Voor Astronomie, the Norwegian Space Agency,
the Romanian Space Agency, the State Secretariat for Education, Research and
Innovation (SERI) at the Swiss Space Office (SSO), and the United Kingdom
Space Agency. A complete and detailed list is available on the Euclid web site
(http://www.euclid-ec.org).

References
Aihara, H., Arimoto, N., Armstrong, R., et al. 2018, PASJ, 70, S4
Albrecht, A., Bernstein, G., Cahn, R., et al. 2006, arXiv e-prints

[arXiv:astro-ph/0609591]
Bertin, E., & Arnouts, S. 1996, A&AS, 117, 393
Carretero, J., Tallada, P., Casals, J., et al. 2017, in Proc. Eur. Phys. Soc. Conf. on

High Energy Physics, 488
Castro, P. G., Heavens, A. F., & Kitching, T. D. 2005, Phys. Rev. D, 72, 023516
Cropper, M., Pottinger, S., Niemi, S., et al. 2016, Space Telescopes and Instru-

mentation 2016: Optical, Infrared, and Millimeter Wave, 9904, 99040Q
Dark Energy Survey Collaboration (Abbott, T., et al.) 2016, MNRAS, 460, 1270
de Jong, J. T. A., Kuijken, K., Applegate, D., et al. 2013, The Messenger, 154, 44
Erben, T., Van Waerbeke, L., Bertin, E., Mellier, Y., & Schneider, P. 2001, A&A,

366, 717
Euclid Collaboration (Martinet, N., et al.) 2019, A&A, 627, A59
Fenech Conti, I., Herbonnet, R., Hoekstra, H., et al. 2017, MNRAS, 467, 1627
Guzik, J., & Bernstein, G. 2005, Phys. Rev. D, 72, 043503
Hernández-Martín, B., Schrabback, T., Hoekstra, H., et al. 2020, A&A, 640,

A117

6 https://github.com/HenningJ99/noise_mitigation_code

Heymans, C., Van Waerbeke, L., Bacon, D., et al. 2006, MNRAS, 368, 1323
Hirata, C., & Seljak, U. 2003, MNRAS, 343, 459
Hoekstra, H. 2021, A&A, 656, A135
Hoekstra, H., Franx, M., Kuijken, K., & Squires, G. 1998, ApJ, 504, 636
Hoekstra, H., Herbonnet, R., Muzzin, A., et al. 2015, MNRAS, 449, 685
Hoekstra, H., Viola, M., & Herbonnet, R. 2017, MNRAS, 468, 3295
Hoekstra, H., Kannawadi, A., & Kitching, T. D. 2021, A&A, 646, A124
Hoffmann, K., Secco, L. F., Blazek, J., et al. 2022, Phys. Rev. D, 106, 123510
Huterer, D., Takada, M., Bernstein, G., & Jain, B. 2006, MNRAS, 366, 101
Kaiser, N., Squires, G., & Broadhurst, T. 1995, ApJ, 449, 460
Kannawadi, A., Hoekstra, H., Miller, L., et al. 2019, A&A, 624, A92
Kitching, T. D. & Deshpande, A. C. 2022, Open J. Astrophys., 5, 6
Kitching, T. D., Tessore, N., & Taylor, P. L. 2023, Open J. Astrophys., submitted

[arXiv:2302.14656]
Kurucz, R. L. 2011, Modelled spectra for Vega, http://kurucz.harvard.
edu/stars/vega/

Laureijs, R., Amiaux, J., Arduini, S., et al. 2011, arXiv e-prints
[arXiv:1110.3193]

Li, S.-S., Kuijken, K., Hoekstra, H., et al. 2023, A&A, 670, A100
Liu, D. Z., Meng, X. M., Er, X. Z., et al. 2023, A&A, 669, A128
Luppino, G. A., & Kaiser, N. 1997, ApJ, 475, 20
MacCrann, N., Becker, M. R., McCullough, J., et al. 2022, MNRAS, 509, 3371
Mandelbaum, R., Hirata, C. M., Seljak, U., et al. 2005, MNRAS, 361, 1287
Mandelbaum, R., Rowe, B., Bosch, J., et al. 2014, ApJS, 212, 5
Mandelbaum, R., Lanusse, F., Leauthaud, A., et al. 2018, MNRAS, 481, 3170
Marquardt, D. W. 1963, J. Soc. Ind. Appl. Math., 11, 431
Massey, R., Heymans, C., Bergé, J., et al. 2007, MNRAS, 376, 13
Melchior, P., & Viola, M. 2012, MNRAS, 424, 2757
Moritz, P., Nishihara, R., Wang, S., et al. 2017, arXiv e-prints

[arXiv:1712.05889]
Nakajima, R., & Bernstein, G. 2007, AJ, 133, 1763
Potter, D., Stadel, J., & Teyssier, R. 2017, Comput. Astrophys. Cosmol., 4, 2
Pujol, A., Kilbinger, M., Sureau, F., & Bobin, J. 2019, A&A, 621, A2
Rix, H.-W., Barden, M., Beckwith, S. V. W., et al. 2004, ApJS, 152, 163
Rowe, B. T. P., Jarvis, M., Mandelbaum, R., et al. 2015, Astron. Comput., 10, 121
Schneider, P. 2006, in Saas-Fee Advanced Courses (Springer Berlin Heidelberg),

269
Sheldon, E. S., & Huff, E. M. 2017, ApJ, 841, 24
Spergel, D., Gehrels, N., Baltay, C., et al. 2015, arXiv e-prints

[arXiv:1503.03757]
Tallada, P., Carretero, J., Casals, J., et al. 2020, Astron. Comput., 32, 100391
Tewes, M., Kuntzer, T., Nakajima, R., et al. 2019, A&A, 621, A36

1 Universität Bonn, Argelander-Institut für Astronomie, Auf dem
Hügel 71, 53121 Bonn, Germany

2 Universität Innsbruck, Institut für Astro- und Teilchenphysik,
Technikerstr. 25/8, 6020 Innsbruck, Austria
e-mail: Henning.Jansen@uibk.ac.at

3 Université Paris-Saclay, CNRS, Institut d’astrophysique spatiale,
91405 Orsay, France

4 Institute of Cosmology and Gravitation, University of Portsmouth,
Portsmouth PO1 3FX, UK

5 INAF-Osservatorio Astronomico di Brera, Via Brera 28, 20122
Milano, Italy

6 INAF-Osservatorio di Astrofisica e Scienza dello Spazio di
Bologna, Via Piero Gobetti 93/3, 40129 Bologna, Italy

7 Dipartimento di Fisica e Astronomia, Universitá di Bologna, Via
Gobetti 93/2, 40129 Bologna, Italy

8 INFN-Sezione di Bologna, Viale Berti Pichat 6/2, 40127 Bologna,
Italy

9 Dipartimento di Fisica, Universitá di Genova, Via Dodecaneso 33,
16146, Genova, Italy

10 INFN-Sezione di Genova, Via Dodecaneso 33, 16146, Genova, Italy
11 Department of Physics “E. Pancini”, University Federico II, Via

Cinthia 6, 80126, Napoli, Italy
12 INAF-Osservatorio Astronomico di Capodimonte, Via Moiariello

16, 80131 Napoli, Italy
13 Instituto de Astrofísica e Ciências do Espaço, Universidade do Porto,

CAUP, Rua das Estrelas, 4150-762 Porto, Portugal
14 Dipartimento di Fisica, Universitá degli Studi di Torino, Via P.

Giuria 1, 10125 Torino, Italy
15 INFN-Sezione di Torino, Via P. Giuria 1, 10125 Torino, Italy
16 INAF-Osservatorio Astrofisico di Torino, Via Osservatorio 20,

10025 Pino Torinese (TO), Italy
A240, page 18 of 23

http://www.euclid-ec.org
http://linker.aanda.org/10.1051/0004-6361/202347833/1
https://arxiv.org/abs/astro-ph/0609591
http://linker.aanda.org/10.1051/0004-6361/202347833/3
http://linker.aanda.org/10.1051/0004-6361/202347833/4
http://linker.aanda.org/10.1051/0004-6361/202347833/4
http://linker.aanda.org/10.1051/0004-6361/202347833/5
http://linker.aanda.org/10.1051/0004-6361/202347833/6
http://linker.aanda.org/10.1051/0004-6361/202347833/6
http://linker.aanda.org/10.1051/0004-6361/202347833/7
http://linker.aanda.org/10.1051/0004-6361/202347833/8
http://linker.aanda.org/10.1051/0004-6361/202347833/9
http://linker.aanda.org/10.1051/0004-6361/202347833/9
http://linker.aanda.org/10.1051/0004-6361/202347833/10
http://linker.aanda.org/10.1051/0004-6361/202347833/11
http://linker.aanda.org/10.1051/0004-6361/202347833/12
http://linker.aanda.org/10.1051/0004-6361/202347833/13
http://linker.aanda.org/10.1051/0004-6361/202347833/13
https://github.com/HenningJ99/noise_mitigation_code
http://linker.aanda.org/10.1051/0004-6361/202347833/14
http://linker.aanda.org/10.1051/0004-6361/202347833/15
http://linker.aanda.org/10.1051/0004-6361/202347833/16
http://linker.aanda.org/10.1051/0004-6361/202347833/17
http://linker.aanda.org/10.1051/0004-6361/202347833/18
http://linker.aanda.org/10.1051/0004-6361/202347833/19
http://linker.aanda.org/10.1051/0004-6361/202347833/20
http://linker.aanda.org/10.1051/0004-6361/202347833/21
http://linker.aanda.org/10.1051/0004-6361/202347833/22
http://linker.aanda.org/10.1051/0004-6361/202347833/23
http://linker.aanda.org/10.1051/0004-6361/202347833/24
http://linker.aanda.org/10.1051/0004-6361/202347833/25
https://arxiv.org/abs/2302.14656
http://kurucz.harvard.edu/stars/vega/
http://kurucz.harvard.edu/stars/vega/
https://arxiv.org/abs/1110.3193
http://linker.aanda.org/10.1051/0004-6361/202347833/29
http://linker.aanda.org/10.1051/0004-6361/202347833/30
http://linker.aanda.org/10.1051/0004-6361/202347833/31
http://linker.aanda.org/10.1051/0004-6361/202347833/32
http://linker.aanda.org/10.1051/0004-6361/202347833/33
http://linker.aanda.org/10.1051/0004-6361/202347833/34
http://linker.aanda.org/10.1051/0004-6361/202347833/35
http://linker.aanda.org/10.1051/0004-6361/202347833/36
http://linker.aanda.org/10.1051/0004-6361/202347833/37
http://linker.aanda.org/10.1051/0004-6361/202347833/38
https://arxiv.org/abs/1712.05889
http://linker.aanda.org/10.1051/0004-6361/202347833/40
http://linker.aanda.org/10.1051/0004-6361/202347833/41
http://linker.aanda.org/10.1051/0004-6361/202347833/42
http://linker.aanda.org/10.1051/0004-6361/202347833/43
http://linker.aanda.org/10.1051/0004-6361/202347833/44
http://linker.aanda.org/10.1051/0004-6361/202347833/45
http://linker.aanda.org/10.1051/0004-6361/202347833/46
https://arxiv.org/abs/1503.03757
http://linker.aanda.org/10.1051/0004-6361/202347833/48
http://linker.aanda.org/10.1051/0004-6361/202347833/49
mailto:Henning.Jansen@uibk.ac.at


Jansen, H., et al.: A&A, 683, A240 (2024)

17 INAF-IASF Milano, Via Alfonso Corti 12, 20133 Milano, Italy
18 INAF-Osservatorio Astronomico di Roma, Via Frascati 33, 00078

Monteporzio Catone, Italy
19 INFN-Sezione di Roma, Piazzale Aldo Moro 2, c/o Dipartimento di

Fisica, Edificio G. Marconi, 00185 Roma, Italy
20 Institut de Física d’Altes Energies (IFAE), The Barcelona Insti-

tute of Science and Technology, Campus UAB, 08193 Bellaterra
(Barcelona), Spain

21 Port d’Informació Científica, Campus UAB, C. Albareda s/n, 08193
Bellaterra (Barcelona), Spain

22 Institute for Theoretical Particle Physics and Cosmology (TTK),
RWTH Aachen University, 52056 Aachen, Germany

23 INFN section of Naples, Via Cinthia 6, 80126 Napoli, Italy
24 Dipartimento di Fisica e Astronomia “Augusto Righi” – Alma Mater

Studiorum Universitá di Bologna, Viale Berti Pichat 6/2, 40127
Bologna, Italy

25 Institute for Astronomy, University of Edinburgh, Royal Observa-
tory, Blackford Hill, Edinburgh EH9 3HJ, UK

26 European Space Agency/ESRIN, Largo Galileo Galilei 1, 00044
Frascati, Roma, Italy

27 ESAC/ESA, Camino Bajo del Castillo, s/n., Urb. Villafranca del
Castillo, 28692 Villanueva de la Cañada, Madrid, Spain

28 University of Lyon, Univ Claude Bernard Lyon 1, CNRS/IN2P3,
IP2I Lyon, UMR 5822, 69622 Villeurbanne, France

29 Institute of Physics, Laboratory of Astrophysics, Ecole Polytech-
nique Fédérale de Lausanne (EPFL), Observatoire de Sauverny,
1290 Versoix, Switzerland

30 UCB Lyon 1, CNRS/IN2P3, IUF, IP2I Lyon, 4 rue Enrico Fermi,
69622 Villeurbanne, France

31 Departamento de Física, Faculdade de Ciências, Universidade de
Lisboa, Edifício C8, Campo Grande, 1749-016 Lisboa, Portugal

32 Instituto de Astrofísica e Ciências do Espaço, Faculdade de Ciên-
cias, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa,
Portugal

33 Department of Astronomy, University of Geneva, ch. d’Ecogia 16,
1290 Versoix, Switzerland

34 INAF-Istituto di Astrofisica e Planetologia Spaziali, via del Fosso
del Cavaliere, 100, 00100 Roma, Italy

35 Université Paris-Saclay, Université Paris Cité, CEA, CNRS, AIM,
91191 Gif-sur-Yvette, France

36 INAF-Osservatorio Astronomico di Trieste, Via G. B. Tiepolo 11,
34143 Trieste, Italy

37 INAF-Osservatorio Astronomico di Padova, Via dell’Osservatorio
5, 35122 Padova, Italy

38 Max Planck Institute for Extraterrestrial Physics, Giessenbachstr. 1,
85748 Garching, Germany

39 University Observatory, Faculty of Physics, Ludwig-Maximilians-
Universität, Scheinerstr. 1, 81679 Munich, Germany

40 Institute of Theoretical Astrophysics, University of Oslo, PO Box
1029 Blindern, 0315 Oslo, Norway

41 Leiden Observatory, Leiden University, Niels Bohrweg 2, 2333 CA
Leiden, The Netherlands

42 Jet Propulsion Laboratory, California Institute of Technology, 4800
Oak Grove Drive, Pasadena, CA, 91109, USA

43 von Hoerner & Sulger GmbH, SchloßPlatz 8, 68723 Schwetzingen,
Germany

44 Technical University of Denmark, Elektrovej 327, 2800 Kgs.
Lyngby, Denmark

45 Cosmic Dawn Center (DAWN), Copenhagen, Denmark
46 Institut d’Astrophysique de Paris, UMR 7095, CNRS, and Sorbonne

Université, 98 bis boulevard Arago, 75014 Paris, France
47 Max-Planck-Institut für Astronomie, Königstuhl 17, 69117

Heidelberg, Germany
48 Department of Physics and Astronomy, University College London,

Gower Street, London WC1E 6BT, UK
49 Aix-Marseille Université, CNRS/IN2P3, CPPM, Marseille, France
50 Université Paris-Saclay, Université Paris Cité, CEA, CNRS, Astro-

physique, Instrumentation et Modélisation Paris-Saclay, 91191
Gif-sur-Yvette, France

51 Mullard Space Science Laboratory, University College London,
Holmbury St Mary, Dorking, Surrey RH5 6NT, UK

52 Department of Physics, PO Box 64, 00014 University of Helsinki,
Finland

53 Helsinki Institute of Physics, Gustaf Hällströmin katu 2, University
of Helsinki, Helsinki, Finland

54 NOVA optical infrared instrumentation group at ASTRON, Oude
Hoogeveensedijk 4, 7991PD, Dwingeloo, The Netherlands

55 Aix-Marseille Université, CNRS, CNES, LAM, Marseille,
France

56 Dipartimento di Fisica e Astronomia “Augusto Righi” – Alma Mater
Studiorum Universitá di Bologna, via Piero Gobetti 93/2, 40129
Bologna, Italy

57 Department of Physics, Institute for Computational Cosmology,
Durham University, South Road, DH1 3LE, UK

58 Université Paris Cité, CNRS, Astroparticule et Cosmologie, 75013
Paris, France

59 University of Applied Sciences and Arts of Northwestern
Switzerland, School of Engineering, 5210 Windisch, Switzerland

60 Institut d’Astrophysique de Paris, 98bis Boulevard Arago, 75014
Paris, France

61 CEA Saclay, DFR/IRFU, Service d’Astrophysique, Bat. 709, 91191
Gif-sur-Yvette, France

62 Department of Physics, Oxford University, Keble Road, Oxford OX1
3RH, UK

63 European Space Agency/ESTEC, Keplerlaan 1, 2201 AZ Noordwijk,
The Netherlands

64 Department of Physics and Astronomy, University of Aarhus, Ny
Munkegade 120, 8000 Aarhus C, Denmark

65 Space Science Data Center, Italian Space Agency, via del Politec-
nico snc, 00133 Roma, Italy

66 Centre National d’Etudes Spatiales – Centre spatial de Toulouse, 18
avenue Edouard Belin, 31401 Toulouse Cedex 9, France

67 Dipartimento di Fisica e Astronomia “G. Galilei”, Università di
Padova, Via Marzolo 8, 35131 Padova, Italy

68 INFN-Padova, Via Marzolo 8, 35131 Padova, Italy
69 Universitäts-Sternwarte München, Fakultät für Physik, Ludwig-

Maximilians-Universität München, Scheinerstrasse 1, 81679
München, Germany

70 Departamento de Física, FCFM, Universidad de Chile, Blanco
Encalada 2008, Santiago, Chile

71 Institut d’Estudis Espacials de Catalunya (IEEC), Carrer Gran
Capitá 2–4, 08034 Barcelona, Spain

72 Institute of Space Sciences (ICE, CSIC), Campus UAB, Carrer de
Can Magrans, s/n, 08193 Barcelona, Spain

73 Satlantis, University Science Park, Sede Bld 48940, Leioa-Bilbao,
Spain

74 Centre for Electronic Imaging, Open University, Walton Hall, Milton
Keynes, MK7 6AA, UK

75 Centro de Investigaciones Energéticas, Medioambientales y Tec-
nológicas (CIEMAT), Avenida Complutense 40, 28040 Madrid,
Spain

76 Instituto de Astrofísica e Ciências do Espaço, Faculdade de Ciên-
cias, Universidade de Lisboa, Tapada da Ajuda, 1349-018 Lisboa,
Portugal

77 Universidad Politécnica de Cartagena, Departamento de Elec-
trónica y Tecnología de Computadoras, Plaza del Hospital 1, 30202
Cartagena, Spain

78 Institut de Recherche en Astrophysique et Planétologie (IRAP), Uni-
versité de Toulouse, CNRS, UPS, CNES, 14 Av. Edouard Belin,
31400 Toulouse, France

79 Kapteyn Astronomical Institute, University of Groningen, PO Box
800, 9700 AV Groningen, The Netherlands

80 INFN-Bologna, Via Irnerio 46, 40126 Bologna, Italy
81 Infrared Processing and Analysis Center, California Institute of

Technology, Pasadena, CA 91125, USA
82 Instituto de Astrofísica de Canarias, Calle Vía Láctea s/n, 38204,

San Cristóbal de La Laguna, Tenerife, Spain
83 Junia, EPA department, 41 Bd Vauban, 59800 Lille, France

A240, page 19 of 23



Jansen, H., et al.: A&A, 683, A240 (2024)

Appendix A: Binned improvements additive bias

The binned improvements can also be studied for the additive bias. In Fig. A.1, these are shown for the grid simulations and
in Figs. A.2 and A.3 for random positions.

Fig. A.1. Magnitude-binned runtime improvement of the additive bias for the grid-based simulations. The position of the points marks the center
of each bin. The runtime improvement is always compared to the fit method without any cancellation. Error bars are smaller than the symbols and
therefore omitted for better visibility.

Fig. A.2. Magnitude-binned runtime improvement of the additive bias for the random position simulations in the large shear interval. In the
left panel, the data is binned in mAUTO from SExtractor, while the input magnitude is used for the binning in the right panel to point out the
differences. The position of the points marks the center of each bin. The runtime improvement is always compared to the fit method without any
cancellation. For this figure, no signal-to-noise cut is applied. Error bars are smaller than the symbols and therefore omitted for better visibility.
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Fig. A.3. Magnitude-binned runtime improvement of the additive bias for the random position simulations in the small shear interval. In the
left panel, the data is binned in mAUTO from SExtractor, while the input magnitude is used for the binning in the right panel to point out the
differences. The position of the points marks the center of each bin. The runtime improvement is always compared to the fit method without any
cancellation. For this figure, no signal-to-noise cut is applied. Error bars are smaller than the symbols and therefore omitted for better visibility.

Appendix B: Binned absolute biases

In order to test if the different methods yield accurate bias estimates, we compare the outcome of the absolute bias measurements
for each method in each bin. For the multiplicative bias these comparisons can be seen in Fig. B.1 and Fig. B.2 for the large and the
small input shear interval, respectively. For the additive bias they are shown in Fig. B.3 and Fig. B.4. We observe that the methods
are compatible in every magnitude bin, ensuring that every method can be used to determine the biases. The decision of which
method to choose only depends on the efficiency of the method.

Fig. B.1. Absolute multiplicative bias comparison in the large shear interval. The general trend of the multiplicative bias at different magnitudes is
presented in the main plot. An additional zoomed version of each magnitude bin is shown to better compare the bias estimates since the error bars
are too small to be visible in the main plot. For the left panel, no signal-to-noise cut is applied.
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Fig. B.2. Absolute multiplicative bias comparison in the small shear interval. The general trend of the multiplicative bias at different magnitudes is
presented in the main plot. An additional zoomed version of each magnitude bin is shown to better compare the bias estimates since the error bars
are too small to be visible in the main plot. For the left panel, no signal-to-noise cut is applied.

Fig. B.3. Absolute additive bias comparison in the large shear interval. For the left panel, no signal-to-noise cut is applied.
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Fig. B.4. Absolute additive bias comparison in the small shear interval. For the left panel, no signal-to-noise cut is applied.
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