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Design and in-vitro Characterization of a Wearable
Multi-Sensing System for Hydration Monitoring
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Abstract—Dehydration is a frequent condition in the elderly
and can lead to serious health complications if not compensated
timely. Early diagnosis can be problematic, as medical exam-
inations in hospital would be needed. Fully wearable low-cost
multi-sensing devices for home use could help investigate and
prevent critical conditions.

We introduce a sensing platform designed for operation in
remote healthcare for the elderly. It combines a low-cost, highly
customizable flexible inkjet-printed multi-sensor bracelet, includ-
ing sensors for body impedance, skin hydration and temperature
monitoring, with a small, low-power front-end circuit and an
embedded unit that communicates by a Low Power Wide
Area Network (LoRaWAN) transmission interface. We describe
individual system components and present in-vitro experiments
for their characterization. Reported results represent the funda-
mental proof of concept for the development of a fully operating
device that can be used satisfactorily to monitor dehydration in
a real-life application scenario.

Index Terms—Hydration monitoring; Active Aging; Inkjet
Printing; Bioelectrical Impedance Analysis; in-vitro characteri-
zation.

I. INTRODUCTION

Dehydration occurs whenever water balance in the human
body is negative, that is, water intake is less than its output. It
is a common reason why elderly patients come to emergency
departments, affecting quality of life and involving a signif-
icant economic burden for the healthcare system. Moderate
dehydration may cause headache, confusion, fatigue, dizziness,
weakness, delirium, and high heart rate correlated with low
blood pressure. If not compensated, it can develop into severe
complications and eventual death [1].

Although dehydration may be occasionally assessed at
home or during ambulatory visits, accurate medical evaluation
involves advanced instrumentation, laboratory analyses, and
specialized medical staff. In most cases it is only diagnosed
when the elderly are admitted to hospital under already severe
conditions. This problematic motivated researchers to focus
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on the development of home monitoring devices for early
detection of dehydration, requiring no specialised personnel
support [2]. A portable sensor that can simultaneously monitor
sweat rate/loss, pH, lactate, glucose, and chloride was pro-
posed in [3]. At specific time instants the user is required to
take a photo of the sensor, that is then digitally processed to
assess hydration status. However, many elders do not possess
enough skill and/or physical strength to use a smartphone.
In [4] a chemical sensor platform was proposed to measure
potassium concentration in urine. This is only limited to
urination events and not applicable to continuous monitoring.
In another example the conductance of saliva is measured to
assess the occurrence of dehydration, but saliva samples are
easily contaminated by diet and even by simply talking [5]. All
these approaches require active collaboration and some ability
by the user, therefore their suitability for elderly healthcare is
questionable [6].

In our work we aim at a compact, user-friendly and
fully autonomous Internet of Things (IoT) based system that
can reliably monitor multiple hydration-related parameters.
A wireless IoT interface can be employed to relay alerts to
health-care providers. The system should be wearable, non-
invasive, and require no active user involvement, enabling
elderly users to carry on with normal daily activities and move
freely in and out of their home environment.

Following and extending our previous literature overview
of existing technologies presented in [7], we propose here
the design and characterization of an integrated platform that
can measure physiological quantities related to body hydration
using comfortable, low-cost and customized ink-jet printed
electrodes and sensors. The sensor set is the result of a
trade-off between medical relevance and ease of non-invasive
monitoring, that led to the choice of three sensed quantities
from which full hydration parameters could be estimated: body
impedance and local surface impedance and local temperature.

In this paper, we introduce some linear approximations to
show that relationships between the previous quantities and the
global water content in the body and surface skin hydration
do exist. However, such a simplified model may easily prove
unsatisfactory in a practical application. Better results could be
expected by inferring information about global water content
and surface skin hydration through a suitable machine learning
(ML) algorithm. This part will be considered in the final
release of the proposed wearable system, while in this paper
we focus the attention on the hardware design. The final goal
of the designed sensing system is to provide early warning
of impending dehydration in the elderly. For this purpose, a
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simple ordinal scale related to the severity of dehydration (e.g.
null, moderate, significant, severe) can suffice and accurate
measurement of body water content is beyond the present
scope of our work.

Results obtained from in-vitro characterization of each sen-
sor are discussed in this work, as well as tests of the reliability
and robustness of signal conditioning and transmission. This
experimental activity is an essential prerequisite for ensuring
that the prototype system will generate quality in-vivo data
when the training database is collected. Knowledge of how
each sensor responds in a controlled and standardized envi-
ronment will enable to safely interpret in-vivo results from
the multi-sensing platform and analyze them by ML-based
approaches to produce the assessment of body hydration. The
evaluation of variability and sensitivity of the proposed printed
sensors, and the standardization of the measurement setups
and protocols developed for testing and validating the printed
sensors in-vitro aim to ensure a fair and repeatable comparison
with other future sensors realized by us or other researchers.

The paper is organized as follows: preliminary considera-
tions on hydration sensing are introduced in Section II. This
is followed in Sec. III by a general overview of the system
and a description of prototype design and fabrication, focusing
on printed sensors, analog front-end, transmission interface
and network infrastructure. Finally, Sec. IV reports on in-vitro
sensor characterization and details the functional validation of
signal conditioning electronics and transmission interface.

II. HYDRATION SENSING

Among the variety of measurable parameters related with
hydration monitoring changes in electrical properties of the
human body are the most directly correlated to fluctuation
of the total body water content. Estimation by impedance
analysis has been employed in several works, mostly in the
form of whole-body Bioelectrical Impedance Analysis (BIA)
requiring specific positioning of electrodes, such as ankle-to-
ankle, wrist-to-ankle [8], or single electrodes placed on a wrist
[9] or finger [10] together with a single contact placed on the
opposite arm to broaden the area of body under test.

Whole-body BIA does not satisfy our requirements for
unobtrusive and autonomous operation, that could be met
instead by segmental BIA, where electrodes are placed over
a small area of the body (e.g., within a bracelet), with the
advantage of much reduced sizes and bulk [11]. Despite
convenient in term of portability, the main problem in such
miniaturized BIA systems is that shrinking the measurement
on a small volume increases the significance of other phys-
ical factors such as temperature, sweat or moisture due to
impaired skin transpiration under the bracelet, thus increasing
the contribution of surface currents, that affect measurement
as a whole and in particular the contact impedance between
electrodes and skin. Interference is known to be negligible
in whole-body measurements [12], but could have a more
significant impact with reduced electrode size [9], the use of a
non-transpiring bracelet, and above all, the far reduced volume
under test. Yet, although possibly less accurate, segmental BIA
is considered a useful tool for body impedance estimation [13].

In view of our aim, we decided to apply segmental BIA to
the arm, exploiting multi-sensing to detect and compensate
for impedance variations due to changes in temperature and
superficial hydration conditions. Our design relies on a bracelet
equipped with a set of printed sensors, as shown in Fig. 1. The
four electrodes for tetra-polar BIA are augmented by two other
sensing elements, targeting surface information of the subject
skin: an inter-digitated electrode (IE) providing a sensing area
for superficial hydration, and a resistance temperature detector
(RTD).

The actual placement of sensors around the arm is illustrated
in Fig. 2 , with a qualitative indication of relevant electromag-
netic field lines. Darker outer layers in the arm cross-section
represent the skin, the lighter pink part refers to body tissues,
the bone being the middle white part.

Field lines going through all skin and body tissues evidence
that BIA can be seen as a 3D system, whereas interdigitated
electrodes cover a 2D surface portion of limited depth, which
evidences their importance to help discriminate the effect of
surface currents. Careful consideration must then be given to
the problem of separating the contribution of body hydration
from that of skin hydration when impedance is measured.

The measured body impedance can be described by different
equivalent circuit models [11]. In the following, the much-
simplified circuit of Fig. 3 will be employed since it satisfies
completely the level of accuracy required for the analysis
proposed. The circuit represents BIA current through the body
by the parallel of two paths. The main path is an RC parallel
that globally accounts for characteristics of the electrodes, the
superficial skin layer and the deeper tissues. The undesired
surface current path due to sweat and surface moisture is
modelled by resistance Rsweat.

According to this model, the resistive part of the measured
body impedance is the parallel between Rbody , accounting for
body hydration, and Rsweat, which accounts instead for skin
hydration. This latter contribution once quantified will have to
be compensated, since it is influenced mainly by surface sweat
and humidity, which do not participate to the overall body hy-
dration. Changes in skin electrical properties measured thanks
to the IE sensor provide additional information regarding sweat
rate, environmental humidity and the specific water content of
the skin layers. These information will therefore complement
the picture provided by BIA electrodes for a more accurate
assessment of the body hydration status of the subject. As
shown in Fig. 4, the equivalent circuit for skin impedance
measurement is the series of Rskin and of an RC parallel
modeling the contact area of the superficial skin patch.

Resistances Rbody , Rskin and Rsweat all vary with water
content, therefore their resistivity must be assumed to vary
with the relative water content in the volume of interest,
indicated by α. This can be indicated generically by ρ(α),
it must be remembered that the value of α for body resistance
Rbody will in general differ from those applicable to skin
resistances Rskin and Rsweat.

These simple models allow to show how resistance measure-
ments obtained by BIA and IE can be combined to improve
the estimation of overall body resistance, and obtain from
that an assessment of body water content. Under the sim-
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Fig. 1. Inkjet printed multi-sensing flexible bracelet with serpentine RTD, interdigitated local hydration sensors and tetra-polar BIA electrodes.

Fig. 2. Sensing with BIA electrodes and interdigitated electrodes (IE) –
illustration of electromagnetic field lines in the arm cross-section. Dark outer
layers represent the skin, lighter pink part refers to body tissues, while the
bone is represented by the middle white part.

plifying assumption that skin resistivity is homogeneous (or
considering average resistivity), measured skin resistance is:
Rskin = ρ(αskin)(lIE/SIE), where lIE/SIE is a geometric
factor for the IE sensor.

For the total resistance Rmeas measured by BIA, the
component Rsweat related to skin surface current will be
characterized by an average resistivity similar in value to that
of Rskin, but in general αskin ̸= αbody and the component
Rsweat affects only a fraction of the BIA sensing volume.
One may write:

Rsweat = ρ(αskin) · δ ·
lBIA

SBIA
, (1)

where lBIA/SBIA is the geometric factor for the BIA sensor

Fig. 3. Equivalent circuit model for BIA impedance.

Fig. 4. Equivalent circuit model for surface impedance.

and δ < 1 accounts for the fraction of the sensing volume
where the contribution of sweat is significant.

To a first approximation, therefore, one has:

Rsweat = K ·Rskin (2)

where K is a factor determined by the geometries of the two
hydration sensors in the system:

K ∼= δ · lBIA/SBIA

lIE/SIE
. (3)

More generally, K should be considered to account for all
factors related to the sensor layout in the system.

It should be remarked that accurate calibration by this
approach would only be possible if an exact relationship was
known. This short analysis evidences that quantities of interest
are indeed related, and motivates our interest in a ML-based
approach for elementary-level hydration monitoring, rather
than obtain Rbody from Req and Rsweat via equations (2) and
(5).

Finally, since temperature is related to changes in both
hydration and sweat, the temperature sensor is useful as an
indicator of possible effects of the ambient environment on
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measured impedance values. The local temperature measured
by the RTD is influenced by body core temperature, with
water content acting as a thermo-regulator. Still, most of all, it
depends on environmental temperature, whose variations can
affect hydration and, possibly, the performances of conductive
electrodes. Accurate temperature measurements serve as useful
feedback when processing the other sensed quantities, to
correct and interpret the results obtained. It represents essential
information in a multi-parametric perspective, contributing
useful data for determining the hydration status of a subject
[14].

III. SYSTEM DESIGN AND FABRICATION

The general architecture for any wearable device typically
encompasses three main sub-systems: i) sensing; ii) signal
conditioning iii) data transmission, as illustrated in Fig. 5.
The proposed prototype was designed and extensively tested to
demonstrate its functionality as a multi-sensing device, paving
the way to future miniaturization and applicability to in-vivo
test. As illustrated in the functional diagram of Fig. 6, system
hardware can be divided into seven functional blocks, three of
which refer to the RTD analog read-out path.

A. Printed Sensors

Sensor geometries are designed to optimize transduction
performances, allow wearability and ease of interfacing with
the readout electronics. The specific choice in term of sensors,
dimensions, and positioning of the device results from a
combination of the measurement we want to perform (i.e.
estimation of hydration level) with the specific requirements
imposed by the application target (Fig. 1).

Electrodes for BIA were designed in a tetrapolar configura-
tion, with dimensions for each electrode of 1×1 cm. Four-wire
measurement enables compensation for contact resistance, thus
achieving accurate results even with reduced-size electrodes,
as suggested in the literature [15].

Sensors for skin hydration monitoring were designed with
an interdigitated layout and a sensing area of 1 cm2. This
layout is the most sensitive to changes in the skin electrical
properties (i.e., dielectric permittivity and electrical conduc-
tivity) caused by small local variations of water concentration
in skin tissues.

Body temperature is sensed by a RTD contact temperature
sensor. A serpentine pattern was chosen to increase the avail-
able sensing surface in a miniaturised area and obtain good
sensitivity to temperature changes [16]. The geometry thus
compensates for the effects of the complementary materials
combined to the conductive ink to allow flexibility, that affect
sensitivity as well as producing some non-linearity in the
sensor response.

Inkjet printed technology was selected to fabricate all
sensing elements on a flexible bracelet, that can be easily
miniaturised and integrated in a wearable device. Compared to
screen-printing, inkjet printing offers high-resolution pattern-
ing, improved process flexibility and prevents waste of pre-
cious material, being a mask-less drop-on-demand technique
[17].

Sensors were realized by a Dimatix DMP 2850 inkjet printer
(FUJIFILM Dimatix, Inc., Santa Clara, California (USA)). A
polymide foil (i.e., Kapton, Dupont) with a thickness of 50µm
was chosen as substrate. Due to excellent thermal, electrical,
mechanical, and chemical properties, this material represents
the most suitable candidate for printed electronics applications,
enabling optimal ink adhesion during printing and stability
after curing [18]. Furthermore, its narrow thickness affords
optimal flexibility and conformability to the skin. For all
sensors a silver ink was selected (Sicrys™ I40DM-106 from
PVNanocell, Israel). It is a commercial engineered conductive
ink, based on single-crystal silver nanoparticles in diethylene
glycol monomethyl ether (DGME), designed specifically for
digital inkjet printing. After printing, all sensors were cured on
a hot plate for 30min at a temperature of 250 ◦C, as suggested
by the ink datasheet, then stored in a glove box until use.

B. Front-end Read-out Circuitry
The flexible multi-sensing element integrating BIA elec-

trodes, IE and RTD was interfaced with a custom-designed
read out front-end hardware, designed with particular attention
to low-power battery operation, as well as high measurement
resolution and sensitivity. Although the prototype circuit was
produced on a rigid board for the development stage, the
design was specifically thought for ease of miniaturization and
migration to a flexible printed circuit board substrate in future
works.

4-wire and 2-wire skin impedance spectroscopy are im-
plemented by a single commercial analog front-end chip
(Analog Devices AD5941), that provides a full stand-alone,
self-contained measurement system, thereby vastly reducing
circuit component count [19]. The chip includes an internal
high-precision AC voltage source, that is employed to excite
the sensors with a sinewave at known frequency, superposed to
a common-mode bias voltage. The resulting current waveform,
after scaling, is recorded by a 16-bit ADC, enabling to measure
sensor impedance and detect its variation by the vector ratio
of voltage across the unknown impedance to current flowing
through it. Discrete Fourier transform calculation yields the
impedance real and imaginary parts. Measured values are
forwarded to the microcontroller through a serial peripheral
interface (SPI) digital line.

Only a few peripheral passive components need to be added
to comply with IEC 60601-1 basic safety requirements, as
described in the AD5941 datasheet. A pair of capacitors and
limiting series resistors, placed close to the chip at each
impedance measurement port, provide DC isolation and limit
the maximum allowable current into the human body.

For temperature sensing, the input low-pass analog filter
stage is designed to improve common-mode rejection ratio
(CMRR). Its common-mode and differential-mode bandwidths
are Fcm = 16 kHz, Fdm = 1.5 kHz, respectively. This is
followed by the 4-wire RTD sensing unit housing an instru-
mentation amplifier set to a gain of 1000 and a highly accurate
constant RTD current source of 100± 0.5µA (Ref200, Texas
Instruments, USA).

The Texas Instruments INA122 instrumentation amplifier
is specifically designed for battery-powered applications with
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Fig. 5. Scheme representing the general system architecture of the proposed prototype.

Fig. 6. Overview of the complete device architecture: hardware-level schematic for the sensor read-out front-ends; embedded processor for data acquisition
and analysis; LoRaWAN wireless unit for secure low-power medical data transmission.

the capability of running on a single supply [20]. Its output is
further filtered by a sharp roll-off second-order Butterworth
low-pass (LP) active filter, based on Sallen–Key topology,
with unit gain and cut-off frequency of 1 kHz. A Butterworth
filter was preferred due to its smooth frequency response
and lack of pass-band ripple, while Sallen-Key topology was
preferred as it requires fewer components. This acts as an anti-
aliasing filter for the microcontroller analog to digital converter
(ADC) and further removes out-of-band high frequencies. The
operational amplifier in the low-pass filter (Texas Instruments
OPA2365) was selected due to its single-supply and rail-to-
rail features. As the group delay of the entire read-out chain is
negligible it directly translates RTD resistance into voltage at
the input of the internal 16-bit ADC to the ST Microelectronics
STM32F446 microcontroller, where the actual temperature

value is computed.

All circuits are powered by a rechargeable lithium-
ion/polymer battery connected to a Microchip MCP73831
single-cell charge management controller. A Texas Instruments
TPS61090 DC-DC boost converter and TLE2426 ”rail splitter”
were employed to provide the required supply voltage and
current, with proper virtual ground termination. Additional
buffers with higher current ratings were included in the power
management unit as a safety margin, in particular to support
the higher peak currents on the RF transceiver. Since RF bursts
are very short, this will not have a significant impact on the
overall consumption of the unit.

Fig. 6 shows a preliminary block diagram where two
different micro-controllers (STM32F446 for data acquisition
and ATtiny 1606 for data transmission) are present as a
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matter of practicality. This enables to split development and
characterization of different system blocks during prototype
validation but, of course, a single micro-controller is more than
enough, and this change will be done in the final revision of
the system, leaving only the latter.

C. Data Transmission and Network Infrastructure

The transmitting interface is required to be simple, yet
effective, taking into consideration all the constraints arising
from the need to monitor subjects in wide areas, and the desire
to avoid reliance on the active use of a mobile phone for data
transmission. The latter aspect turns out to be the defining
factor in the choice among IoT enabling technologies, as it
emphasizes the need for long-range coverage to allow the
monitoring of elderly people without hindering their mobility.
Long Range (LoRa) modulation and the LoRaWAN protocol
proved to be well-suited, thus being employed for the pro-
totype. LoRaWAN was found to offer a very good trade-off
between long range, low power consumption, low hardware
cost, and adequate data rates for the application scenario of
this work [21]. The protocol is characterised by data rates
of 50 kbps at most and allows a fairly limited maximum
payload size (no more than 222B or 242B, depending on
the geographic region where the technology is deployed).
Since the monitored physical quantities vary slowly over time,
neither are constraining for this application scenario.

The core of the wireless data transmission interface is a
Microchip ATtiny1606 microcontroller, that is connected via
a SPI interface to a HopeRF RFM95w LoRaWAN transceiver.
LoRaWAN allows to set up an independent, pervasive mon-
itoring infrastructure, ensuring coverage up to some km in a
single hop, by which clinicians and caregivers can remotely
monitor hydration levels of patients without requiring them to
manage data transmission. Provision of autonomous wireless
connectivity thus removes a possible source of error/failure.
The transceiver is fitted with a λ/8 whip antenna having a
2 dBi gain. Maximum current drawn during transmission is
80mA, turning out to be adequate for battery-powered systems
[22].

Digitized values measured by the three sensors are sent from
the STM32F446 microcontroller to the ATtiny1606 micro-
controller via a Universal Asynchronous Receiver Transmitter
(UART) interface port. The three sensor readings are arranged
into a LoRaWAN packet payload by the ATtiny1606 microcon-
troller, encrypting them by the Advanced Encryption Standard
(AES)-128 exploiting two keys. The packet is then sent to a
LoRaWAN gateway, employing a frequency diversity scheme
via a frequency hopping technique on 8 different channels
in the 863 − 870MHz ISM band, a Spreading Factor (SF)
7 and bandwidth of 125 kHz. The Message Queue Telemetry
Transport (MQTT) protocol is employed for forwarding data
via the Internet.

The gateway acts as a packet forwarder and conveys the
demodulated packets, along with metadata related to reception
quality indicators, to the cloud network infrastructure. The
remote network infrastructure on the cloud includes an MQTT
broker and a network server. It decrypts LoRaWAN packets,

Fig. 7. Response of BIA electrodes to different hydration levels in the
frequency range from 1 kHz to 100 kHz.

then stores all information related to both packet payloads,
containing the sensor readings, and quality indicators, related
to gateway reception, in a local database. In this way, the
network can be monitored and maintained, while data are made
available to users and caregivers, in particular clinicians, for
the follow-up of their patients.

IV. SYSTEM CHARACTERIZATION

A. Printed Sensor Characterization

Printed sensors were characterized in-vitro, in a measurable
and controlled environment ensuring standardized procedures
and repeatable results. Accurate bench-top instrumentation
was employed to reduce measurement uncertainty and provide
a reference.

Electrodes for BIA analysis were characterized exploiting
a simple test structure mimicking a human arm. Electrodes
printed on the polymide substrates were placed on a layer of
synthetic skin-like patch wrapped around a cylindrical sponge,
thus replicating the sectional layout of Fig. 3. The acquisition
front-end was replaced by a bench-top impedance analyzer
(Agilent E4990A, Precision LCR Meter). Different levels of
volumetric water content, the typical measurement unit used
to indicate hydration status, were set by injecting determined
and increasing volumes of water in the sponge with a syringe.
As the actual volume of the 3D setup was 10 cm3, injection
of water in a range from 3 ml to 10 ml resulted in volumetric
water contents ranging from 30 to 100%.

This range of values was selected assuming the average
normal ranges of hydration indicated by the clinical literature
(50-65% for males and 45-60% in females) [23], so that
conditions going from severe dehydration (< 30%) to hyper-
hydration (> 80%) were represented.

Impedance at different levels of sponge hydration was
measured in the frequency range between 1 kHz and 200 kHz
with a 4-wire layout, like the one employed by the AD5941
analog front end.

Fig. 7 shows the real and imaginary parts of impedance
(respectively, Zreal and Zimag), plotted versus frequency as
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Fig. 8. Response of IE sensors to different hydration levels in the frequency
range from 100Hz to 100 kHz.

measured by the LCR meter. The instrument refers to a series
impedance configuration (i. e., Z = R + jX), that for the
circuit model of Fig. 3 has the mathematical expression:

R+ jX = Req

[
1

1 + (ωReqC)2
+ j

ωReqC

1 + (ωReqC)2

]
, (4)

where:

Req =
Rbody ·Rsweat

Rbody +Rsweat
. (5)

and C is the sensor capacitance.
Measurements agree with the assumed circuit model

and show well the effect of different hydration levels on
impedance. As water content increases and Req decreases
accordingly, the reactance peak value occurs at progressively
higher frequencies, showing that it is not advisable to refer to
reactance for this kind of measurement. However, up to 1 kHz
its contribution can be considered negligible (less than 5% of
magnitude |Z|) in any hydration condition.

IE sensors for skin hydration monitoring were also char-
acterized in a range of simulated skin hydration conditions.
In this case the sensing area was placed over a layer of
synthetic skin-like patch injected with controlled volumes of
water, ranging from 50µl to 200µl.

Considering a constant volume of 200 mm3 for the skin-
like patch, a range of volumetric water contents going from
25 to 100% were tested, thus including all possible conditions
that can be encountered in real scenarios including severe
dehydration (< 40%), mild dehydration (40 to 50%), normal
skin hydration (50 to 70 %), up to hyper-hydration or edema
(> 80%).

Using again the Agilent E4990A Precision LCR Meter,
impedance was measured in a frequency range between
100 Hz and 100 kHz, measurements being repeated for six
sensor specimens. The plots presented in Fig. 8 are also in the
format of an equivalent series impedance Z = R + jX , that
for the IE equivalent model of Fig. 4 yields the formula:

Rskin +R

[
1

1 + (ωRC)2
+ j

ωRC

1 + (ωRC)2

]
(6)

where R and C are electrical parameters of the interdigitated
electrode. Results confirm the ability to discriminate different
levels of hydration also in the synthetic skin-like patch. An IE
sensor responds to an increase in water content by a decrease
in both Zreal and the absolute value of Zimag , as shown in
Fig. 8, in agreement with the literature [24].

For Zreal sensitivity to hydration changes is similar
throughout the range of tested frequencies, Whereas the con-
tribution of Zimag is higher at the lower frequencies (up to
1 kHz). Although electrode capacitance is significant because
of the typical IE geometry, at frequencies of about 10 kHz or
higher its contribution is negligible and measured impedance
becomes resistive only, its value practically coinciding with
Rskin. Figs. 7 and 8 evidence that for our purposes measure-
ments are best taken as Zreal at 1 kHz for the BIA sensor and
at 10 kHz for the IE sensor.

Using these plots it is also possible to compare resistances
Req and Rskin at common uniform levels of hydration. This
provides the opportunity to check our assumption in model
(2) by considering ratios of Rbody(1kHz) to Rskin(10kHz)
at different hydration levels, although in this case δ = 1 in (3),
a condition that would hardly occur in practice. The resulting
ratio is indeed nearly constant and its average value was found
to be 7.8, with a standard deviation of 0.5, which is enough
to confirm a proportionality relationship.

Calibration curves were built from characterization plots
for Zreal similar to those reported in Figs. 7 and 8, obtained
for four set of measurements replicated on different sensors.
Extremely good results were obtained for both BIA and skin
hydration IE using a single-exponential fit, as shown in Figs. 9
and 10, with a value R2 = 0.99 in both cases. The two
resulting equations:

Rbody = 43.6e−0.03α and: Rskin = 8.9e−0.03α,

show that exponential coefficients agree, whereas in this case
Rbody/Rskin = 4.9. The difference from the result above
is mostly determined by the limited reproducibility of the
3D test set-up, namely, by the way the sponge and skin-
like patch are assembled. This is not considered an issue,
as it actually reflects the real-life situation with monitored
subjects. Additional physical features will have to be included
among the training inputs for an ML classifier, and these might
include the arm circumference where the sensor bracelet will
be located and the subject body mass index (BMI). Variability
assessed for Zreal by a relative standard deviation (RSD) lower
than 30% in BIA and than 35% in IE appears significant but
acceptable considering the aim of our design and in agreement
with RSD values shown by similar BIA analyzers [11] and by
studies dealing with IE for hydration sensing [25]. This value
can be explained with contribution of both sensor physical
realization and setup construction.

Finally, resistance changes due to temperature (0.04Ω/◦C)
within an expected temperature range < 5◦C appear to have
negligible influence compared to variations in water volume
(hundreds of Ω/%).
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Fig. 9. Calibration of Zreal evaluated at 1 kHz for BIA at different volumetric
water contents.

Fig. 10. Calibration of Zreal evaluated at 10 kHz for IE sensors at different
volumetric water contents.

Temperature sensors were characterized by means of a hot
plate with manual temperature control. To ensure a more
homogeneous heat distribution, a layer of synthetic skin-like
patch was placed between the sensor and the hot plate. The
temperature on the patch surface in contact with the RTD was
measured by a commercial thermometer (Hanna Instruments
HI 98501 Digital Thermometer [26], accuracy 0.3 ◦C, reso-
lution 0.1 ◦C). The resistance between the terminals of the
serpentine RTD was measured using a bench top multimeter
(Keysight Technologies, 34401A Digital Multimeter, 6½ digit
resolution).

In a preliminary test the response of a single sensor was
evaluated while temperature was changing rapidly, in a phys-
iological range typically experienced on the surface of the
skin. To enable rapid and controlled temperature variation, the
sensor was attached onto a hot plate, the temperature control
of the plate was switched from Room Temperature to 45 ◦C,
and as soon as the temperature of the plate reached 32 ◦C,
plate temperature and RTD resistance were simultaneously
recorded every 10 s, in the range between 32 ◦C and 42 ◦C.
This experiment provided the temperature to resistance transfer
characteristic reported in part A of Fig. 11, that shows good
linearity (R2 = 0.99) and a sensitivity of 0.044Ω/◦C.

To investigate variability six different printed sensor speci-
mens were tested in the range of temperatures between 33 ◦C
and 42 ◦C with temperature steps of 1 ◦C. At each step,
resistance was measured after temperature reached a steady
state. All sensors showed a linear characteristic (R2 = 0.99)
with average sensitivity, in terms of absolute resistance values,
of 0.039 ± 0.015 Ω/◦C. Variability observed among sensor
units (RSD = 38%) can be mainly related to process variabil-
ity that characterizes fast prototyping sensor fabrication, as
highlighted in a recent literature review for printed resistive
sensors [17], and to some degree of variability in the setup

Fig. 11. Response of temperature sensors to temperature variations: A. Re-
sponse of a single sensor to temperature variation: sample time 10 s, sensitivity
0.044Ω/◦C and R2 = 0.99; B. Average transfer characteristic of six sensors
to change in steady state temperature: sensitivity of 0.247 ± 0.056%/◦C,
TCR of 0.002 and R2 = 0.99

assembly.
Relative Resistive Variation is plotted in part B of Fig. 11

instead of absolute resistance values, to better highlight the
common trend. Here, average sensitivity is 0.247±0.056%/◦C
and average RSD is reduced to 22%. The corresponding value
of the Temperature Coefficient of Resistance (TCR) is 0.0025,
which appears in agreement with the literature on printed
temperature sensors [27].

B. Read-out Circuits

Tests where sensor read-out electronics was included repli-
cated the experiments reported in the previous Section. For
BIA electrodes, the same 3D test set-up previously detailed
in Sec. IV-A was used, where the human arm is mimicked
by a synthetic skin-like patch wrapped around a cylindrical
sponge. Controlled hydration levels ranging from 20µl/cm2 to
200µl/cm2 with steps of 10µl/cm2 were obtained by injecting
increasing volumes of deionized (DI) water. After allowing
sufficient time to reach a uniform water distribution within
the material, the four BIA electrodes in the bracelet were
connected to the read-out electronics and impedance values
were recorded at a frequency of 1 kHz. These were acquired
for 30 s, then averaged to obtain one point in the calibration
curve (Fig. 12).

To validate the IE sensor, controlled hydration levels be-
tween 10µl/cm2 and 200µl/cm2 were likewise obtained by
injecting DI water into the skin-like patch. Impedance was
recorded by the two-wire read-out circuit after each injection
at a frequency of 100Hz, at steps of 10µl/cm2, for 30 s, then
averaged to obtain one point in the calibration curve (Fig. 13).

Results obtained in both cases show trends that agree with
those obtained during the printed sensors characterization ac-
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Fig. 12. Response of 4-wire BIA obtained with the portable read-out circuit.

Fig. 13. Response of 2-wire impedance measurement for the skin hydration
IE sensor obtained with the portable read-out circuit.

tivity described in Sec. IV-A. As the sensor transfer character-
istics are non-linear, higher sensitivities are obtained at lower
hydration levels (below 60µl/cm3 for BIA and 60µl/cm2 for
skin hydration), whereas saturation can be observed at the
higher hydration levels (higher than 160µl/cm3 for BIA and
140µl/cm2 for skin hydration). This means sensitivity gets
better when dehydration is approached, which fits with the
aims of the system.

The temperature read-out chain for the flexible RTD was
calibrated using an ultra-stable PI controller (WTC3243HB,
Wavelength Electronics, USA) was acquired and coupled to
a thermoelectric cooler (TEC 1.4-6, Thorlabs, USA) and a
commercial (TH10K, Thorlabs, USA) negative temperature
coefficient thermistor (NTC). The flexible RTD was connected
to the read-out chain we developed and placed on the TEC,
which is connected to the PI controller and the NTC to
complete the control loop. The set temperature of TEC was
programmed via the PI controller to step up quickly (in ∼ 30 s)
from 27 to 45 ◦C. Then, both the sensed temperature values
from RTD front-end and the reading from the commercial
NTC were recorded in a triplicated experiment. A very good
linear range (R2 = 0.9973) was achieved with sensitivity of
0.0384Ω/◦C, TCR of 0.00272 and RSD of 12% (Fig. 14).

Fig. 14. Response of 4-wire RTD front-end connected to the flexible
temperature sensor in dynamic experiment where the temperature changed
swiftly from 27 to 45 ◦C in ∼ 30 s. The R2 value is 0.9973, sensitivity
is 0.0384Ω/°C, CV is 11.93%, and three measurements were recorded to
compute the error bars.

C. Transmission Validation

System validation was completed by a second test assessing
overall system functionality, including the transmitting inter-
face. The test was performed in the laboratory by forwarding
the digitized values coming from the read-out electronics
during the validation measurement campaign to the network
infrastructure. The LoRaWAN gateway is a Dragino LG308,
that is a multi-channel gateway capable of receiving and
demodulating up to 8 LoRaWAN packets at the same time even
if they were broadcast exploiting different SFs on multiple
channels. Gateway sensitivity varies depending on the adopted
transmission parameters, and in this case (i.e., SF= 7 and
bandwidth 125 kHz) it reaches values down to −126 dBm, thus
hinting at the long range coverage capability. The gateway is
provided with the same type of antenna as the LoRaWAN
transceiver of the transmitting interface.

The transmitting interface sampled data with a sampling
period of 10 s, then sent information related to the three
sensors via LoRaWAN. The network infrastructure on the
cloud converted the digitized values into the related sensor
measurements. Since the test was carried out in a laboratory,
no packet loss occurred. In the light of experience from
previous works (e.g., [28]) the same outcome is highly likely
also when the receiver is remotely placed (e.g., hospitals).
Nonetheless, for this application even a moderate loss of
packets can be tolerated, since measured physical quantities
are slowly varying over time [29], [30].

Within its application scenario the proposed system will not
perform continuous transmission due to two main reasons:
(i) targeted parameters are not changing very rapidly over
time, thus a transmission period of, e.g., 30min would be
enough; (ii) applications enabled by LoRaWAN protocol must
abide by regional regulations related to fair usage of frequency
bands [31], limiting temporal occupancy to 1% (at least
in Europe). An extended interval between transmissions is
beneficial from the point of view of power consumption,
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translating into an increase of battery lifetime.
The aim of this test was to assess the proper operation of

the transmission interface and of the network infrastructure,
therefore its duration was only limited to 500 s, transmitting
data with an interval of 10 s. Test results confirmed that the
transmission interface and the network infrastructure imple-
ment transparent transfer of data.

V. CONCLUSIONS

The aim of this paper is to propose and characterize in-
vitro a proof-of-concept prototype of a multi sensing device
for monitoring hydration, integrating flexible printed sensors,
portable electronics and a LoRaWAN transmitting interface.
Characterization of the low-cost printed multi-sensing bracelet
showed that each sensor can detect controlled changes of the
targeted variable in-vitro. Testing performed with the cus-
tomized electronics showed the ability to reproduce the same
experiments performed with bench-top instrumentation, with
good accuracy and repeatability. Finally, integration testing of
the electronic read-out circuits with the transmission module
confirmed the possibility to effectively transmit a package of
data from the three sensor every 10 s, which is satisfactory for
real-time hydration monitoring.

Results obtained with the prototype discussed in this paper
represent a promising start in the development of a fully
miniaturized device, to be tested and employed in a real-
life application scenario. Future work will focus on in-vivo
characterization of the printed sensors to test variability and
reproducibility, and on the acquisition of different targeted
parameters in different hydration conditions.

An essential step to enable a ML-approach will consist
of adequately training the algorithm for which gathering a
suitable training dataset is necessary. During this phase, the
ordinal scale will be employed to associate proper labels to the
different hydration levels acquired during in-vivo acquisition
tests. This will be an essential part since publicly available
databases hardly exist and, in any case, they would not be
specific to the proposed sensor configuration. The full working
prototype here developed will enable the acquisition of reliable
and robust training information.
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