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1 Introduction

The problem of extracting maximal information from precise experimental measurements
compared with precise theoretical predictions is of prime relevance in several domains of
science. In the context of high-energy collider physics, the problem should be addressed for
the exploitation of the data collected by the Large Hadron Collider (LHC) experiments and
of those of its forthcoming High Luminosity (HL-LHC) upgrade. Precision physics is also
a major component of proposed future collider projects such as an e+e− Higgs factory or a
high-energy muon collider. The corresponding sensitivity projection studies can thus benefit
from advances in precision physics analysis methodologies.

High energy physics data sets, D = {xi}Ni=1, consist of repeated measurements of a
multi-component statistical variable x of observables. The number of data points N is also a
statistical variable, which follows a Poisson distribution with expected N . Both the probability
distribution of x and the expected number of events are controlled by the microscopic laws of
fundamental interactions, which in turn can depend on a number of parameters of interest,
c. Specifically, the differential cross section dσ(x; c) depends on the parameters of interest
and so it does the total cross section σ(c), which is the integral of dσ over the support of the
variable x. The probability density function of x is the ratio dσ(x; c)/σ(c). The total number
of expected events is N(c) = L σ(c), where the proportionality factor L — the integrated
luminosity — is determined by the properties of the collider including its run time. The
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task of the analysis is to extract information on the parameters of interest by comparing the
observed data with their parameter-dependent expected distribution.

The parameters of interest c could be free parameters of the currently established
theoretical description of fundamental interactions, the Standard Model (SM) theory. Or,
they could parametrize deformations of the SM due to additional or different interactions. In
the latter case, which is by far the most common one for LHC and HL-LHC applications,
the first goal of the analysis is to establish whether the data favor the SM point c = 0 in the
parameter space, or if instead c ̸= 0 is preferred hinting to non-SM fundamental physics laws.
In the former case, one would like to set an exclusion limit, namely to quantify the maximal
value that the c parameters can conceivably assume given that the data have not revealed
their presence. In the latter case, one would first aim at quantifying the degree of confidence
for the discovery of non-SM physical laws, i.e. the confidence level for SM exclusion. The
measurement of the value of the c parameters will become relevant at a later stage.

Regardless of the specific goal of the analysis, any classical or Bayesian statistical inference
methodology aimed at optimality1 is based on the knowledge of the likelihood function
associated with the experimental data. This is given in our case by the extended likelihood

L(c;D) = Pois[N|N(c)]
∏

x∈D
p(x|c) = LN

N ! e−N(c) ∏
x∈D

dσ(x; c) . (1.1)

More precisely, what is truly needed is the dependence of the likelihood on the c parameters,
up to a c-independent normalization factor. It is natural in our context to employ the
likelihood at the SM point c = 0 for normalization. Optimal statistical inference can thus
be attained by the knowledge of the likelihood log-ratio

λ(c;D) ≡ log L(c;D)
L(0;D) = N(0)− N(c) +

∑
x∈D

log r(x; c) , (1.2)

having defined the ratio of differential cross sections

r(x; c) = dσ(x; c)
dσ(x; 0) . (1.3)

As we will show, the knowledge of the likelihood log-ratio, allows one to optimize the
sensitivity to new-physics in a point-by-point way in the c space. In practical terms, we
propose to achieve this through a binned analysis in which the variable used for binning, as
well as the bin boundaries, are chosen on the basis of the likelihood ratio for a given value of
c. This is rather different from regular LHC binned exclusion analyses, in which the bins
are pre-specified, so that no near-optimality is guaranteed.

In high-energy physics, the theoretical comprehension of fundamental interactions is
translated into predictions for the outcome of experiments by a sophisticated chain of analytical
and numerical tools that eventually produces Monte Carlo events. In the simplest setup, the
events are unweighted. In this case, the events are statistical samples that follow the x variable
distribution dσ(x; c)/σ(c). An estimate of the total cross section σ(c) — and in turn of the
expected number of events N(c) — is also available at the end of the event generation process

1The precise notion of optimality within a frequentist approach is defined in section 4.
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as the result of the Monte Carlo integration. Equal weights are conventionally assigned to
unweighted events, given by σ(c) divided by the number of generated events. Notice that
since the differential cross section depends on c, independent sets of Monte Carlo events need
to be generated at different points in the c parameter space. This limitation can be avoided
by employing instead weighted Monte Carlo events, to be described later.

Importantly enough, the Monte Carlo event generators in high energy physics do not
sample from the distribution of x directly. The differential cross section dσ(x; c) can never
be computed theoretically and is unknown. What is instead computed and available is the
differential cross section dσ(ξ; c) in a space of latent variables ξ. The ξ variables are in
general completely unrelated with the measured variables x. The Monte Carlo code generates
samples in the ξ space and obtains events in the x space by propagating ξ samples through a
series of steps that eventually entail dimensionality reduction. In fact, several of these steps

— such as the QCD and QED radiation showering and the simulation of the detector response
— are performed by randomized algorithms. The random variables they draw are effectively
additional components of the large latent variable vector that is ultimately projected onto
the space of observable variables x. It is normally impossible to model this complex process
analytically such as to obtain a closed form for the distribution in the x space starting from
the known distribution dσ(ξ; c) in the latent space. One should perform multiple convolutions,
and integrate over the unobserved components of the latent vector. These integrals can not
be solved analytically and numerical approaches are not viable because the integration should
be performed point-by-point in the x space. In this paper, we employ a simple Monte Carlo
generator for the validation of our method in a fully controlled “ideal” setup, described in
appendix A. This generator exemplifies in practice the role of latent variables. By design, our
ideal setup enables a simple integration — by a finite sum, since the variables are discrete

— over the latent space. In the realistic setups to be employed for real data analyses, it
is on the contrary never possible to perform the integration. The x distribution can not
be determined and consequently, we do not have access to the likelihood ratio (1.2). It is
normally possible to determine N(c) = L σ(c) by the Monte Carlo integration. What is
missing is the distribution ratio r(x; c) defined in eq. (1.3).

Several groups [1–13] recently investigated the possibility of extracting r(x; c) from Monte
Carlo simulations by employing statistical learning techniques. The goal is to address the
limitations of traditional methods such as the matrix element method [14–20] and similar
techniques [21–30]. In particular, the novel methodologies do not rely on approximate
phenomenological modeling of the distribution. Hence, they promise to be universally
applicable, simpler and faster to set up and to run, as well as systematically improvable
by employing more accurate Monte Carlo generators and larger training data sets. They
could be automated to a large extent, enabling their extensive deployment. Attempts are
MadMiner [4] and ML4EFT [10].

A striking use case for the deployment of these methodologies at the LHC and beyond is
the problem of testing new physics effects described by interaction operators of dimension
larger than four in an Effective Field Theory (EFT) framework. Most of the work performed
so far, and the one presented in the present paper, is specifically tailored to EFT applications.
A simplification emerges in this context in that EFTs can be analyzed with ‘theory aware’
learning techniques. In particular one can use quadratic classifiers [5], that encode the analytic
dependence of the differential cross sections on the EFT parameters.
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Many of the results obtained in the EFT context, including ours, are however portable
to other problems. In general, any physics effects that can be modeled through a simple
analytic dependence on a set of parameters is amenable to ‘theory aware’ techniques. For
instance, small systematic effects parametrized in terms of nuisance parameters at the linear
order, among which PDF, scale and parton shower uncertainties, could be learned with
analogous strategies.

In this paper, we demonstrate the advantages of learning r(x; c) by training the statistical
model with weighted Monte Carlo events, as obtained from generators that incorporate the
dependence on the c parameters by the technique of event reweighting. Weighted Monte
Carlo events, unlike unweighted ones, are not samples of the x variable, though they cover the
same support with a similar distribution. They come with their own weights, to be employed
for weighted sums in the calculation of expectation values. The sum of the weights in the
data set is equal to the total cross section, and the sum of the weights of those events that
fall in a certain bin (i.e., a region of the x variable space) equals the cross section in that
bin. In general, the weighted sum of any observable O(x) evaluated over the events provides
an estimate of the expectation value of the observable over x, multiplied by the total cross
section. It is often merely a matter of convenience whether to employ weighted or unweighted
events.2 Weighted events obtained by reweighting are more useful in our context.

Event reweighting exploits the knowledge of the differential cross section dσ(ξ; c) in
the latent space. The generator code has access to this function, as well as to the value of
the ξ variables for each event that is sampled. After the sampling in the ξ space, all the
steps performed by the generator code — including QCD and QED radiation showering and
detector simulation, and the projection from the latent to the x space — are independent of
the value assumed by the c parameters. One can thus proceed as follows. First, generate
a set of Monte Carlo events at the point c = 0 in the parameter space. We denote as
we(0) the weight of each event “e” in this set. The c = 0 data set could be an unweighted
one, in which case the we(0) weights are all equal, or be a weighted set with non-trivial
we(0) weights. Next, run through the list of generated events and assign them a weight
we(c) = we(0) dσ(ξ; c)/dσ(ξ; 0). These weights account for the dependence on c of the ξ

sampling, which in turn captures the entire dependence on c of the observables because
all the subsequent steps of the generation are independent of c. The single event data set
S = {ei}n(S)

i=1 — where each event is a pair e = (xe, we(c)) — generated by reweighting a
single run of the Monte Carlo code with c equal to zero, as previously described, is thus a
valid weighted set that enables the prediction of expectation values for arbitrary c.

It must be noticed that the use of weighted events can have some drawbacks on the
accuracy of the Monte Carlo simulations, which need to be carefully monitored. On the
one hand, reweighting relies on the assumption that all the relevant kinematic regions
are populated by the original data-set, so that reweighting can successfully cover all the
configurations whose cross section is enhanced by the change of parameters. On the other
hand, in the presence of large reweighting factors, the statistical accuracy of the reweighted

2Notice however that weighted events are a necessity for precise Monte Carlo generators that include
radiative loop corrections because the function to be sampled is not manifestly positive by an artifact of the
loop expansion. Therefore, the weights can assume negative values and the events cannot be unweighted.
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sample can be significantly reduced. These two issues can be monitored through some
standard diagnostic tools, such as using the effective number of events (

∑
we(c))2/

∑
we(c)2

to estimate the statistical error, and ensuring that, for the values of the EFT coefficients
used in the training process and in the analysis, the reweighting factors are not to large,
i.e.

∑
we(c)/

∑
we(0) does not differ too much from unity.

Event reweighting entails enormous practical advantages, which are well recognized in the
literature [31–37]. The advantages are particularly striking for EFT applications. Therefore,
event reweighting is well-developed in this context and is now fully automated. In particular,
the MadGraph framework enables to generate EFT reweighted Monte Carlo samples also
at the Next to Leading Order (NLO) accuracy in the QCD loop expansion [36, 38, 39].

The advantages of event reweighting are straightforwardly portable to the likelihood
learning problem. The generation of the Monte Carlo data sets employed for training —
rather than training itself — is a major or dominant component of the computational cost,
especially at NLO. Event reweighting reduces this computational cost strongly because
only one Monte Carlo data set is needed instead of the several data sets that are required
to populate the c parameter space in the unweighted approach. In fact, unweighted event
generation could become unfeasible in certain EFT applications where a large number of c

parameters — denoted as Wilson coefficients in the EFT context — has to be considered
because the number of required simulations grows rapidly with the dimensionality of c.

If the effect of the c parameters on the distribution is small, event reweighting is also
beneficial for the accuracy of the predictions. More specifically, it improves the determination
of the dependence on c of the predictions. In the unweighted approach, this dependence
is extracted by comparing the SM prediction, for c = 0, with the one for c ̸= 0 estimated
from two independent sets of Monte Carlo events. The uncertainties on these predictions are
ultimately determined by the resources that are invested in the generation, and in particular
by the number of events in the Monte Carlo data set, which controls the Monte Carlo
statistical uncertainties. The effect of the parameters is typically small in EFT analyses for
realistic values of the Wilson coefficients. Very small uncertainties are thus needed in order to
be sensitive to the dependence on c of the observables, which in turn requires very large Monte
Carlo data sets, often beyond what is feasible in practice. In ref. [5] we solved this problem
using unphysically large value of the Wilson coefficients for event generation and extrapolating
down to realistic values exploiting the analytic knowledge of the (quadratic) dependence of
the r ratio on c. This is a viable approach, which however requires a careful choice of the
Wilson coefficient values. The choice is problem-specific and arguably difficult to automate.

Reweighted data enable a precise determination of the Wilson coefficients effects on
observables, even if these effects are small, because the predictions are not affected by
independent statistical uncertainties in the c = 0 and in the c ̸= 0 data sets. Consider
the simplest prediction of the cross section in a bin. We can determine the c = 0 cross
section by summing the we(0) weights of the events that fall in the bin, the cross section for
c ̸= 0 by summing we(c), or even directly the difference between the two by summing up
we(c)− we(0) on the same events. In all cases, the finite Monte Carlo statistics will entail

— if the weights are not vastly different — a relative uncertainty that is of the order of one
over the square root of the number of events that fall in the bin. No matter how small the
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cross section difference is, a good relative accuracy on its prediction can be attained with
manageable Monte Carlo statistics. We expect a similar advantage using reweighted data
sets for the determination of the r ratio.

In this paper, we investigate the advantages of event reweighting through a direct compar-
ison with ref. [5], by proceeding as follows. First, in section 2, we describe a straightforward
adaptation to reweighted training sets of the methodology we developed in [5] for likelihood
learning. Next, in section 3, we describe the application of the novel strategy to the case
studies considered in ref. [5] and compare the performances. In section 2 we also introduce
novel techniques — expanding ideas from ref. [5]—for the assessment of the quality of the
r ratio reconstruction, which is crucial for hyper-parameters selection. Somewhat outside
the main line of development of the paper, in section 4 we describe a frequentist proposal
based on asymptotic formulas and the Asimov trick [40] for setting limits on the Wilson
coefficients using the learned likelihood ratio, and outline its Bayesian interpretation. Our
conclusions are in section 5.

2 Methodology

2.1 Learning from weights

A standard result in statistical learning theory — known as the likelihood-ratio trick —
is that a continuous-output classifier trained to tell apart two data sets approximates the
ratio between the probability distribution of the two training sets up to a given monotonic
transformation. More precisely, the statement is that the classification function f(x) ∈ (0, 1)
that minimizes the expectation value of the loss function — i.e., the loss of an infinite training
set — is in one-to-one correspondence with the distribution ratio. The classification function
that is actually obtained by training does not correspond to the exact distribution ratio
because training sets are finite (estimation error), because the class of functions does not
contain the exact ratio (approximation error), and because the optimization algorithm might
not converge to the actual minimum of the loss. Monitoring and reducing these sources of
error down to a satisfactory level is the universal goal of all practical applications of statistical
learning including those of the present paper.

2.1.1 The simple classifier

All the methods [1–12] to extract the distribution ratio r(x; c) in eq. (1.3) from Monte
Carlo events are implementations of the likelihood-ratio trick. If the Monte Carlo data
consists of a single set S = {ei}n(S)

i=1 , where the dependence of the parameters of interest c

is included by reweighting in the events e = (xe, we(c)), as described in the Introduction, a
straightforward adaptation of these ideas works as follows. Consider first the simpler task
of learning the ratio, r(x; c̄), at a fixed point c = c̄ in the parameter space. This can be
achieved with the loss function

ℓ[f(·)] =
∑
e∈S

we(c̄) [f(xe)]2 +
∑
e∈S

we(0) [f(xe)− 1]2 . (2.1)

Notice that the two summations are performed on the same data set. The classification
function f is thus evaluated on the same points in the two terms.
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The events in S are by construction such that a weighted sum over them approaches,
if the data set is large, the expectation value over the x variable multiplied by the total
cross section. Given that the probability distribution function of x is equal to dσ(x; c)/σ(c),
the loss function for infinitely large S approaches

ℓ[f(·)] →
∫

dσ(x; c̄) [f(x)]2 +
∫

dσ(x; 0) [f(x)− 1]2 . (2.2)

This functional attains its absolute minimum for

f(x) = 1
1 + dσ(x; c̄)/dσ(x; 0) = 1

1 + r(x; c̄) , (2.3)

which is in one-to-one correspondence with the ratio r(x; c̄). By inverting the above equation
we can thus turn the trained model, which minimizes the loss (2.1), into an estimate of r(x; c̄).

It is interesting to compare eq. (2.1) with the loss function that one would employ instead
in order to learn r from a Monte Carlo generator — either weighted or unweighted — that
does not implement event reweighting. The expression would be very similar (see for instance
eq. (6) of ref. [5]), but the two sums would be evaluated on two different event data sets,
S0 and S1. The two sets are generated by independent runs, with the parameters c set to
zero and to c̄, respectively. They do not contain the same xe points.

As described in the Introduction, event reweighting is in general beneficial for the accuracy
of the predictions thanks to a reduced sensitivity to the Monte Carlo statistical fluctuations.
Similar advantages are expected for the determination of the distribution ratio, most strikingly
when c̄ is small, enabling a more accurate determination of the small departures of r(x; c̄) from
one. A concrete verification and quantification of these advantages is postponed to section 3.
In the rest of the present section, we describe our theoretical understanding of this behavior.

When c̄ is small such that r is close to one, the optimal classification function (2.3) is close
to 1/2. In order to study this regime it is thus convenient to express f(x) = 1/2+δf(x), where
δf(x) is small in the optimal configuration (2.3), accounting for the small departures of r from
one. The trained model configuration, which minimizes the loss function, is also characterized
by a small δf . The question is whether this small learned δf is a good approximation of
the optimal δf , producing an accurate determination of the departure of the r ratio from
one. The loss function (2.1) reads∑

e∈S
we(c̄) δf(xe)−

∑
e∈S

we(0) δf(xe) +
∑
e∈S

we(c̄) δf(xe)2 +
∑
e∈S

we(0) δf(xe)2

=
∑
e∈S

[we(c̄)− we(0)] δf(xe) +
∑
e∈S

[we(c̄) + we(0)] δf(xe)2 , (2.4)

up to an additive constant that is irrelevant for the minimization. If c̄ is small, we(c̄)
and we(0) are almost identical and the term in the loss function which is linear in δf is
strongly suppressed. The suppression of the linear term in comparison with the quadratic
one eventually makes δf small at the minimum of the loss function. Importantly enough,
the linear term is small at each individual training point xe at which δf is evaluated. This
is outlined by the second line of eq. (2.4), where we collected under a single summation
the linear and the quadratic terms. If the training sample is large, the summations provide
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good approximations of the δf and δf2 terms of the loss function expectation (2.2). The
relative accuracy of these approximations scales like one over the square root of the number
of training points regardless of whether these terms are small or large. We will attain a
similarly small relative accuracy in the determination of the optimal δf by the minimization
of the loss function both if c̄ is large or if it is small and the linear term is suppressed.

We now compare eq. (2.4) with the analogous expression that we would obtain instead
when the two independent data sets S0 and S1 are used for training. We would get the
terms on the first line of the equation, but they will be evaluated on the different data sets.
In particular, the linear term will emerge from a cancellation between a summation over
S0 and one over S1, with opposite sign. The relative statistical uncertainties of order one
over the square root of the number of points will affect the two summations independently
entailing, if c̄ is small, a degradation of the accuracy in the reconstruction of the linear term.
A good determination of δf would thus require large training samples and eventually become
unfeasible for extremely small c̄, preventing a determination of the departure of r from one.
Using reweighted training data avoids this problem.

While presented in the case of quadratic loss, the considerations above hold for other
choices of the loss function including the binary cross-entropy that is most often employed
for classification. We tested the usage of the binary cross-entropy in our experiments, finding
essentially identical results as for the quadratic loss. Since we did not encounter a case where
it makes a difference, the impact of the choice of the loss function is not discussed further,
and the quadratic loss is employed throughout this paper.

An interesting peculiarity of the training scheme based on reweighted data concerns
the origin of overfitting. In regular training based on independent and unweighted data
sets S0 and S1, the classifier function f(x) receives, from the loss function minimization, a
push to approach zero at the xe points that belong to the S0 set, and a push to approach
one at the S1 points. Since the xe points in S0 and in S1 are distinct, this encourages
the development of overfitted configurations where the model f wildly oscillates from zero
to one in correspondence of individual training points. In the case of reweighted training
data instead, there is only one set of xe points where the loss function (2.1) is evaluated.
Overfitting thus emerges from a different mechanism. We explained in the Introduction that
the weights we(c) = we(0) dσ(ξ; c)/dσ(ξ; 0) are functions of latent variables, ξ, that are not
in one-to-one correspondence with the observables x. Two events in the training set that are
very near in the x space are typically far apart in the ξ space and hence their weights can
be vastly different. The loss (2.1) pushes the classifier towards zero at the xe point where
we(c̄) is large, and towards one at the nearby point where it is small. This can produce
overfitted configurations, by a mechanism that is slightly different than the one at work in
regular classifier training. Avoiding overfitting in regular training requires regularization,
which prevents the model to develop overly sharp features, and large training sets, which
populate the x space densely. These same overfitting mitigation strategies turn out to be
effective also for training with reweighted events.

2.1.2 The quadratic classifier for EFT

Learning the ratio between two specific distributions can be of practical interest. However, in
most cases one needs instead the ratio r(x; c) as a function of the parameters of interest c. The
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simple classifier described above can only learn r(x; c) point-by-point in the c space, making
extremely demanding or impossible to reconstruct the dependence on c, especially if there are
several parameters of interest, c = (c1, . . . , cd). It is possible to overcome this limitation if the
parametric dependence of r(x; c) on c is known, by employing a parametrized classifier [5].

Parametrized classifiers are useful in cases where the distribution ratio can be parametrized
in terms of a known function of c with x-dependent coefficient functions Γ(x), namely if r reads

r(x; c) = P (Γ(x); c) . (2.5)

In this case, we know from eq. (2.3) the dependence on c of the optimal classification function
f = 1/(1+r). We can thus make an Ansatz for the functional form of the classification function

f(γ(x); c) = 1
1 + P (γ(x); c) , (2.6)

by employing a flexible class of functions — such as neural networks — to model the coefficient
functions γ(x). The absolute minimum of the loss function will be attained for f = 1/(1 + r),
i.e. for γ(x) = Γ(x). By training, we can thus produce γ functions that approximate the
true Γ coefficient functions. By using the trained γ functions in eq. (2.5) in place of Γ, we
eventually obtain an estimate of the ratio r.

The configuration γ(x) = Γ(x) is a global minimum of the expectation value of any
conceivable loss function, including eq. (2.1) with arbitrarily chosen c̄. However, the minimum
needs to be unique in order for the loss function minimization to determine all the different
coefficient functions. The loss in eq. (2.1) possesses instead a family of degenerate global
minima,3 because it only contains information on the likelihood ratio at a single point c = c̄.
It is thus minimized by any of the many configurations that reproduce the likelihood ratio
at that point. More points in the c space are needed for a unique determination of all the
coefficient functions. We thus consider a set C = {c̄(1), . . . , c̄(κ)} of κ distinct points and
we define another loss function

ℓ[γ(·)] =
∑
e∈S

∑
c̄∈C

{
we(c̄) [f(γ(xe); c̄)]2 + we(0) [f(γ(xe); c̄)− 1]2

}
. (2.7)

This loss in the large-S limit has a unique global minimum for γ(x) = Γ(x), provided the
number κ of points in C is greater or equal than the number of coefficient functions to
be determined.

The systematic exploration of the effect of heavy new physics described through the SM
EFT is a prime target of the LHC, the HL-LHC, and future collider projects. In this context,
the parameters of interest c are the Wilson coefficients of the new EFT interactions. In
general, their effect on the differential cross sections dσ(x; c) can be captured by a second-order
polynomial. We could thus consider a parametrization

P (γ(x); c) = 1 +
d∑

i=1
ciγi(x) +

d∑
j≥i

cicjγij(x) , (2.8)

3This can be readily seen by rewriting the large-S limit of the loss, given by eq. (2.2), like in eq. (45) of
ref. [5].
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with a total of d(d + 3)/2 γ functions, when d Wilson coefficients are present. The constant
term equals one because r(x; 0) = 1 by definition.

It is worth mentioning that the quadratic parametrization in eq. (2.8) does not capture
all possible EFT effects. The EFT might affect parameters, like the mass or the width of SM
particles, whose effect on the differential cross section is not polynomial. These contributions
are often too small to be seen at the LHC. Still, they could be incorporated where needed
by learning the dependence of the γ functions on masses or widths with a point-by-point
approach. Including EFT contributions beyond the quadratic order, as they emerge from
loop diagrams involving more than one EFT operator, would require generalizing eq. (2.8).
However, these contributions are negligible. The quadratic parametrization accounts instead
for relevant loops involving one EFT vertex and SM vertices, such as those associated with
NLO QCD corrections.

A clear advantage [2] of employing the quadratic parametrization is that the number
of distinct points in the c space to be considered for learning the complete c-dependent
ratio r(x; c) scales quadratically with the dimensionality of c. It scales instead exponentially
in the point-by-point approach where the dependence on c is not imposed and needs to
be reconstructed.

Another advantage [5] is that, by exploiting the parametrization, strategies can be devised
for improving the quality of the likelihood reconstruction. We previously discussed that
the ratio is difficult to learn accurately if the Wilson coefficients c are small, at least when
unweighted training data are used. But we do not need to employ small values of c for the
training of the parametrized classifier, in spite of the fact that the values that are relevant
in the actual analysis of the data will eventually be small. The coefficient functions in the
parametrization (2.8) can be learned by training with much larger c. If these functions are
reconstructed with good relative accuracy, the departure from one of the r ratio is accurately
reconstructed also for small c. The exact analytical knowledge of the dependence of r(x; c)
on c enables the extrapolation from large to small values. On the other hand, the c values
used for training can not be arbitrarily large, otherwise the contribution of the quadratic
polynomial terms in eq. (2.8) would dominate, the effect of the linear terms would be hidden
and could not be learned. A proper selection of the c points in the set C = {c̄(1), . . . , c̄(κ)},
used for training, is the main factor that controls the quality of the r ratio reconstruction.
The selected c values should take into account the need of learning both the linear and the
quadratic terms in all the different regions of the phase space. Since the absolute and relative
magnitude of the two terms can vary radically in different regions of the phase space, several
different c̄ values are needed and must be included in the C set.

The strong sensitivity of the quality of the likelihood reconstruction to the choice of the
training points requires case-by-case optimization, which is an obstruction to the automation of
the methodology of ref. [5]. We will verify in section 3 that employing reweighted events reduces
this sensitivity because it enables accurate learning of small effects as previously discussed.

An alternative [6] to our strategy, which also employs reweighted events, is to learn
the linear and quadratic terms in separate training processes using suitable loss functions
that contain individual terms of the polynomial expansion of the weight we(c). We made
some attempts to adapt the strategy of [6] to our problem, without attaining satisfactory
performances. An extensive comparison with other methods, including also the approach of
ref. [10] possibly adapted to reweighted training data, is left to future work.
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2.1.3 The EFT learning strategy

Several options could be considered for the practical implementation of the quadratic classifier
approach. The simplest one would be to adopt the basic quadratic parametrization in
eq. (2.8) using feed-forward neural networks, with output in R, to model the γi(x) and
γij(x) coefficient functions. All the functions — there are d(d + 3)/2 of them, for d Wilson
coefficients — could be learned simultaneously in a single training using the loss in eq. (2.7)
with κ ≥ d(d + 3)/2 training points in C. A potential limitation of this scheme is that the
basic parametrization (2.8) does not take into account that the r ratio, being the ratio of
positive-defined physical cross sections, is itself positive. If the parametrization turns negative
at some point in x and c at some stage of the training process, the classification function
f(x; c) in eq. (2.6) exits the (0, 1) interval and potentially diverges, for P (γ(x); c) = −1.
This risks producing training instabilities, especially if the cross-entropy loss was used in
place of the quadratic loss. Furthermore, enforcing the physical constraint r(x; c) > 0 can
be beneficial for the accuracy of the ratio reconstruction.

Following [5], we can enforce cross section positivity using the parametrization

P (λ(x); c) =
d+1∑
I=1

[
d+1∑
J=1

λIJ(x)cJ−1

]2

, (2.9)

where we defined c0 = 1, and λ(x) is an upper triangular real (d + 1)-dimensional squared
matrix with λ11(x) = 1. This expression provides, for general λ(x), the most general positive
quadratic polynomial of c. Neural networks with output in R can be employed to model
the non-trivial entries of the λ matrix.

The conceptually straightforward approach of learning all the coefficients functions in a
single training, using the parametrization in eq. (2.9), suffers from practical limitations when
the number d of Wilson coefficients is large. Typically available GPUs have limited memory.
They can hardly accommodate all the gradients that have to be stored for the training of
more than around 10 reasonably complex neural network models using the large number of
training points required for an accurate learning of the coefficient functions. This prevents
using GPUs for more than 2 or 3 Wilson coefficients, with a dramatic impact on the training
execution time.4 A different scheme is needed, in which the different polynomial terms of the
basic parametrization of eq. (2.8) are learned in separate trainings. These individual training
stages could be run in parallel, if several GPUs are available, or sequentially on a single GPU
still entailing a strong improvement of the execution time in comparison with CPU training.

A scheme that is suitable for parallelization works as follows. Since the polynomial is
quadratic, all its coefficients can be extracted by considering configurations where only two
Wilson coefficients — in all possible pairings — are turned on, while the others are set to
zero. Let us then start from the case of a 2-dimensional coefficient vector c = (c1, c2), for
which we can employ the manifestly positive parametrization in eq. (2.9), with d = 2. For
reasons that will become momentarily clear, we do not employ neural networks to model the

4Using mini-batches can circumvent GPU memory limitations, but slows down training. Notice that the
mini-batch gradients need to be accumulated and the weight update step taking only after the whole training
data set is processes. This is because an accurate determination of the gradients pointing towards the true
minimum of the loss function is needed for an accurate learning.
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entries of the λ matrix directly. We instead express the upper triangular matrix λ as

λ(x) =

 1 ρ1(x) sin θ11(x) ρ2(x) sin θ22(x)
0 ρ1(x) cos θ11(x) ρ2(x) cos θ22(x) sin θ12(x)
0 0 ρ2(x) cos θ22(x) cos θ12(x)

 , (2.10)

using polar and spherical coordinates for the second and third columns, respectively. With
this expression, the parametrization (2.9) of the distribution ratio becomes

P(ρ1, ρ2, θ11, θ22, θ12; c) = 1 + 2 c1ρ1 sin θ11 + c2
1ρ2

1 + 2 c2ρ2 sin θ22 + c2
2ρ2

2

+ 2 c1c2ρ1ρ2 (cos θ11 cos θ22 sin θ12 + sin θ11 sin θ22) . (2.11)

We employ neural networks to parametrize the two radial functions ρ1,2 and the three angular
functions θ11, θ22 and θ12. We consider networks with unconstrained outputs spanning the
whole real axis, and we ignore the periodicity of the angular functions and the positivity of
the radial functions. This choice does not invalidate the generality and the positivity of our
parametrization. It merely makes it redundant, which is not a limitation: during training,
the networks will pick up one of the equivalent configurations that correspond to the correct
distribution ratio. No training instability will emerge because each equivalent configuration
is a separate global minimum of the loss function.

If only d = 2 Wilson coefficients are present, the GPU memory is probably sufficient
to store all the gradients and the 5 neural networks ρ1,2 and θ11,22,12 could be learned in a
single training. Consider however the following alternative, which is suited for generalization
to the case d > 2. In eq. (2.11), the c1 and c2

1 terms are fully determined by the ρ1 and the
θ11 networks. These networks can thus be learned separately from the others by training
data involving only c1, with vanishing c2. Similarly, we can learn ρ2 and θ22 by training
with c2 only. Training data where both c1 and c2 are non-vanishing are only needed in order
to learn θ12, which in turn gives access to the mixed polynomial term c1c2. Learning θ12
requires the knowledge of ρ1,2 and of θ11,22, thus the determination of θ12 can not proceed
in parallel with the determination of the other networks. However, while training θ12, the
ρ1,2 and θ11,22 networks can be kept frozen to their previously-learned configurations and
they are not optimized. The only gradients to be stored in the GPU memory are those
of the θ12 network parameters.

If d > 2 Wilson coefficients are present, one can first run d separate trainings with a
single non-vanishing Wilson coefficient, ci, using a parametrization

P(ρi, θii; ci) = 1 + 2 ciρi sin θii + c2
i ρ2

i , (2.12)

which is the one-dimensional version of eq. (2.11). These training stages can operate in parallel
and they give access to the ci and c2

i terms of the polynomial, for all i = 1, . . . , d. Next, we
turn on a pair (ci, cj) of Wilson coefficients and consider a 2-dimensional parametrization
like the one of eq. (2.11), with networks ρi, ρj , θii, θjj and θij . The ρi, ρj , θii and θjj

networks are those of eq. (2.12), and they were previously learned in the one-dimensional
trainings. The remaining network, θij , can be trained keeping the others fixed, as previously
explained. This gives access to the cicj mixed term. Extracting all the mixed terms requires
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d(d − 1)/2 separate trainings — corresponding to the distinct pairings of Wilson coefficient
— that can run in parallel. Finally, once all the polynomial coefficients are known, they
can be pulled together in eq. (2.8) providing the full knowledge of the distribution ratio
everywhere in the Wilson coefficients space.

For the case studies of the present paper, with d = 2, the distribution ratio parametrized
by eq. (2.11) can be learned in a single training and the protocol described above is not needed.
However, it will be essential in order to deal with the large number of Wilson coefficients
that are required, as emphasized in [10], for global EFT fits. Our methodology offers an ideal
solution to this problem. It enables parallelization or serial execution on GPUs with limited
memory while, at the same time, rigorously enforcing the physical constraint of distribution
ratio positivity at all training stages. The only potential limitation, in comparison with
directly learning all the coefficient functions of the general manifestly positive parametrization
in eq. (2.9), is that our strategy based on learning the individual terms of the basic polynomial
parametrization (2.8) does not produce a distribution ratio that is necessarily positive when
more than 2 coefficients are non-vanishing. It is unclear whether negative ratios will be ever
encountered. Their occurrence for the small values of the Wilson coefficients we will be
interested in probing would signal overfitting because the true effect of the EFT operators
should typically produce a small correction to the SM cross section that can hardly cause
a strong departure of the ratio from unity.

2.2 Performance metrics

Learning the distribution ratio with the strategy described in the previous section is not
very different from training a classifier. It requires choosing a model — feed-forward neural
networks, in our case — and selecting its parameters as well as training hyper-parameters
like the training sample size, the number of epochs and the learning rate plus, if needed,
explicit regularization parameters. The loss function (2.7) also features the number and the
values of the Wilson coefficients in the C set, c̄(1), . . . , c̄(κ), as additional hyper-parameters.
However, when training a classifier for regular classification purposes one operates hyper-
parameter selection based on figures of merit that quantify the performances of the trained
classification function. Standard performance metrics are the accuracy or the AUC. Our
scope is not classification, we thus need to define different performance metrics. This is
the goal of the present section.5

Our goal is to extract a good approximation of the distribution ratio r(x; c). Denoting
as r̂(x; c) the reconstructed ratio, the most straightforward performance metrics to assess
the quality of our results should thus measure some sort of distance between the true ratio
r(x; c) and r̂(x; c). Even if the true ratio is of course unknown, valid notions of distance
can be constructed as follows. The true distribution ratio relates the SM differential cross
section, dσ(x; 0), to the c-dependent cross section, dσ(x; c), by

dσ(x; c) = r(x; c) dσ(x; 0) . (2.13)

We can thus define an approximate cross section

dσ̂(x; c) = r̂(x; c) dσ(x; 0) , (2.14)
5Most of what follows is a refinement of ideas we first presented in ref. [5].
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by employing r̂ in place of r. Comparing dσ(x; c) with dσ̂(x; c) measures the distance between
r and r̂. We do not have access to the differential cross section, but we can compute the cross
section ∆σ(c) integrated in some bin using Monte Carlo events. If the events are reweighted,
the cross section is the sum of the weights of the events that fall into the bin

∆σ(c) =
∑

xe∈bin
we(c) . (2.15)

This quantity can be compared with the integral of dσ̂(x; c) in the bin

∆σ̂(c) =
∑

xe∈bin
we(0) r̂(xe; c) . (2.16)

By performing this comparison for relevant binned univariate marginals, we can visualize
the quality of the distribution ratio reconstruction. Results are presented in section 3. See
for instance figure 3.

An alternative measure of the distance between r̂ and r, which does not rely on the
arbitrary selection of marginals, can be defined by exploiting a certain characteristic property
of the true distribution ratio r(x; c), seen as a one-dimensional variable depending on x, for
fixed c. We actually work with the logarithm of this variable, τc, and with its reconstruction,
τ̂c, namely

τc(x) = log r(x; c) , τ̂c(x) = log r̂(x; c) . (2.17)

The differential cross-section for the τc variable is the integral of dσ̂(x; c) on slices of fixed
r(x; c). Hence, using eq. (2.13), we have

dσ(τc; c) = eτcdσ(τc; 0) ⇒ log [dσ(τc; c)/dσ(τc; 0)] = τc . (2.18)

The reconstructed log-ratio variable, τ̂c, does not obey eq. (2.18) because it is not the
logarithm of the true distribution ratio, but of the reconstructed one. We can thus quantify
the quality of the approximation by studying the validity of eq. (2.18) for the differential
distributions of the τ̂c variable: dσ(τ̂c; c) and dσ(τ̂c; 0). We proceed by binning τ̂c and
computing, for each bin with boundaries (τ−, τ+), the integrated cross section

∆σ(c) =
∑

τc(xe)∈(τ−,τ+)
we(c) . (2.19)

For each bin we then compute

Tc = log
[
∆σ(c)/∆σ(0)

]
. (2.20)

If eq. (2.18) is approximately verified for the dσ(τ̂c; c) and dσ(τ̂c; 0) cross sections, and
if the bin is sufficiently narrow, Tc approximately follows a straight line, Tc ≃ τavg with
τavg = (τ+ + τ−)/2. By plotting Tc in the different bins we can thus visualize the validity of
eq. (2.18). One example is shown, for instance, on the left panel of figure 4.

A further refinement exploits that if τ̂c was equal to the true τc, the cross section ∆σ(c)
in the bin τ̂c(x) ∈ (τ−, τ+) would be bounded by

eτ−∆σ(0) < ∆σ(c) =
∫ τ+

τ−
dσ(τ̂ ; c) < eτ+∆σ(0) , (2.21)
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using τ̂(x) = τ(x), and eq. (2.18). Therefore, if τ̂c was equal to τc, Tc would be bounded as

τ− < Tc < τ+ → |Tc − τavg| <
τ+ − τ−

2 . (2.22)

Verifying if Tc sits in this window — see for instance the right panel of figure 4—gives an
indication of the validity of eq. (2.18) for the reconstructed ratio that is more quantitative
than checking qualitatively the relation Tc ≃ τavg.

2.2.1 The Neyman-Pearson p-value: definition

The previously-described strategies provide an important assessment of the quality of the
r ratio reconstruction. We have found them effective in practice to discriminate between
different trained models and therefore helpful for hyper-parameters selection. However, they
do not constitute our prime performance metric, because of two reasons. First, because it
is difficult to condense the information they provide into a single quality indicator. Second,
because they do not offer an objective criterion to quantify the improvement obtained by a
certain configuration in comparison with another one. One can improve indefinitely the quality
of the reconstruction by employing more computational resources i.e., typically, by using
more training data and bigger neural networks. In order to balance performances against
computational resources, we must be able to judge the significance of the improvement
attained by a given configuration, relative for instance to a configuration with smaller
networks and less data.

Our prime performance indicator is still sensitive to the distance between r(x; c) and
r̂(x; c), but less directly than the other ones. Ultimately, we seek access to r in order to
model the likelihood log-ratio λ, in eq. (1.2), of a given collider experiment. In turn, its
knowledge would enable us to extract maximal — i.e., optimal — statistical information
on the parameters of interest from the experimental data. It is thus natural to measure
the quality of the reconstructed ratio r̂ in terms of its statistical performances, if used in
place of r in eq. (1.2), on the collider experiment under examination. We thus define the
reconstructed likelihood log-ratio

λ̂(c;D) = N(0)− N(c) +
∑
x∈D

log r̂(x; c) = N(0)− N(c) +
∑
x∈D

τ̂c(x) , (2.23)

where, as explained in the Introduction, N(c) = L σ(c), with L the integrated luminosity of the
experiment. The total cross section, σ(c), is taken from the Monte Carlo with negligible error.

Several different statistical analyses could be potentially performed by employing the
reconstructed likelihood log-ratio λ̂ (2.23), ranging from setting a limit on the allowed size
of the c parameters, excluding the SM point c = 0, or measuring the parameters. Classical
or Bayesian methodologies could be employed. Without committing to any of these options
for the analysis of the actual data, here we pick up one statistical analysis that could be
performed — in line of principle — using λ̂ and that is endowed with a sharp guarantee
of statistical optimality if the learned likelihood log-ratio λ̂ was exactly equal to the true
log-ratio λ. The statistical performances of this analysis improve as λ̂ approaches λ, providing
another way to quantify the agreement between r̂ and r. The performances saturate when
the agreement between r̂ and r is sufficient, and do not improve indefinitely. When saturation
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occurs and the performance gain stops being significant, it means that the reconstructed λ̂

contains the same information as λ on the parameters of interest and no further improvement
of the ratio reconstruction is needed.

The Neyman-Pearson Lemma [41] guarantees the optimality of employing the true
likelihood ratio in order to discriminate between two different values c0 and c1 of the
parameters of interest. The one considered in the Lemma is a test of hypothesis that could
in principle be used to exclude the existence of EFT interaction operators with a specific
value c of the Wilson coefficients. The performances of such exclusion analysis would be
quantified — prior to the experiment — in terms of its expected sensitivity to non-vanishing
c under the SM hypothesis that no EFT interaction exists and thus c is equal to 0. In the
standard Neyman-Pearson notation, we should thus identify c0 = c and c1 = 0 as the null
and the alternative hypothesis, respectively.

A generic test of hypothesis works by defining a “test statistic” variable, t(D), which
depends collectively on the whole set of data D = {xi}Ni=1 that are collected in the experiment.
Any quantity could be employed as a test statistic, in line of principle. However, a meaningful
test statistic is one that is typically small when the null hypothesis H0 (c ̸= 0, in our case) is
true, and large if instead the alternative hypothesis H1 (i.e., c = 0) is true. Observing on
the data a value of t that is way larger than the typical values of t attained in the presence
of the EFT interactions disfavors the presence of the new interactions. A statistical notion
of typicality is provided by the p-value

pc(t) =
∫ ∞

t
dt′pdf(t′|c) . (2.24)

The p-value relates the observed value of t to the probability that an even larger value is
observed when the EFT interactions are present in the data distribution. Small pc signals
that EFT interactions with Wilson coefficient c are unlikely to be present.

An efficient [41] hypothesis test for c exclusion is one that excludes with high confidence,
i.e. with low p-value, if the SM hypothesis c = 0 is true. The metric that quantifies
the test efficiency thus considers the typical value of t(D) in the SM hypothesis, and the
corresponding p-value (2.24). We use the median of t and, since pc(t) is monotonic in t,
define the median p-value

p(c) = Median
[
pc(t)|c = 0

]
. (2.25)

The median p-value is the figure of merit that quantifies the efficiency of hypothesis tests.
Lower p(c) indicates better performances.

Any choice of the test statistic variable t(D) defines a valid test, whose efficiency is
evaluated by the median p-value (2.25). However, the Lemma [41] identifies the most efficient
hypothesis test as the one that employs as test statistic minus the logarithm of the ratio
between the likelihood in the null and in the alternative hypotheses, times a conventional
factor of two

tc(D) = −2λ(c;D) = 2
[
N(c)− N(0)−

∑
x∈D

τc(x)
]

. (2.26)

The Lemma guarantees that the test based on tc(D) (or a monotonic function of it) has
the lowest possible median p-value. Any other variable has inferior performances, namely a
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larger median p-value. In particular, this means that the performances of the reconstructed
likelihood log-ratio

t̂c(D) = −2 λ̂(c;D) = 2
[
N(c)− N(0)−

∑
x∈D

τ̂c(x)
]

, (2.27)

are not optimal, but they approach the optimum as the reconstructed λ̂ approaches the true
λ. We can thus employ the median p-value of the t̂c(D) test statistic as a metric to evaluate
the performances of the ratio reconstruction. We denote this quantity as p̂(c).

Extensive use of p̂(c) is made in section 3 to compare different models and eventually select
the hyper-parameters. Various types of performance studies are conducted. For instance, the
evolution of p̂(c) during the training of a certain model is displayed on the right panel of
figure 2. The value of c considered in the figure has been chosen such that p̂(c) ≈ few%, close
to the threshold of 5% that is often conventionally considered to set an exclusion limit. This
is because we want to probe the quality of the ratio reconstruction when c is close to the
values that will be eventually relevant for the statistical analysis of the data. Alternatively,
we can identify the region where p̂(c) is exactly equal to 5% and draw exclusion contours, as
in figure 5. Figure 6 exemplifies instead the plots we made for hyper-parameter selection.
It shows, among other things, the saturation of p̂(c) for increasingly complex networks and
more training data. Section 3 describes these results extensively.

It should be noted that observing the saturation of p̂(c) does not guarantee that optimal
performances are attained: the p-value evolution might decrease very slowly towards its
(unknown) global minimum. However, a very slow decrease suggests that a significant
performance improvement, if any, would require radically larger training data sets and neural
networks, beyond what is feasible in practice. We can thus stop improving the quality of
the ratio reconstruction as soon as saturation is observed. The same criterion is routinary
adopted for the training of regular classifiers. Also in that context, the model improvement
is stopped when the performances saturate, without guarantee that optimal performances
have been attained.

2.2.2 The Neyman-Pearson p-value: calculation

The determination of the median p-value p̂(c) is conceptually straightforward, but numerically
cumbersome. The direct approach is to generate artificial instances of the experimental
data set D = {xi}Ni=1 that follow the H0 hypothesis with non-vanishing c, and data that
follow H1, with c = 0. These pseudo-data — called toy data — are build by first drawing
the total number N from a Poisson distribution with expected N(c) or N(0), as in the
hypothesis under examination, and next extracting N instances of the x variable, following
the appropriate distribution, from Monte Carlo data. Toy data with c ̸= 0 serve to determine
empirically the distribution of the t̂c variable (2.27) and in turn the pc(t) function. From
the c = 0 toys one computes the median and p̂(c) (2.24). This procedure is feasible, but
too slow to repeatedly compute p̂(c) for performance evaluation and hyper-parameters scan.
Two alternative approaches are described below.

The first approach [5] is to model analytically the probability density functions of t̂c under
the two hypotheses c ̸= 0 and c = 0. The former probability function determines pc(t) (2.27),
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while the knowledge of the latter one enables to compute the median in eq. (2.24). Such
analytical modeling is possible because t̂c (2.27) is trivially related to the sum over the data
set of the variable τ̂c(x). Since the data set is large, the Central Limit theorem ensures that
the distribution of t̂c is approximately Gaussian. Departures from Gaussianity can be taken
into account by modeling the t̂c distribution with a skew-normal distribution [5]. Its free
parameters, namely the mean, variance and skewness are related to the moments of τ̂c(x) by

µ(t̂c) = 2
[
N(c)−N(0)−N ⟨τ̂c⟩

]
, σ2(t̂c) = 4N ⟨τ̂2

c ⟩ , µ3(t̂c) =
1√
N

⟨τ̂3
c ⟩

⟨τ̂2
c ⟩3/2 . (2.28)

In the equation, N denotes the expected number of events when either c ̸= 0 or c = 0. The
expectation value, denoted as ⟨. . .⟩, is taken either under the c ̸= 0 or the c = 0 hypotheses
in order to determine the two distributions of t̂c(D).

This semi-analytical approach to the calculation of p̂(c) is extremely fast, especially when
using reweighted events that enable the determination of the averages in eq. (2.28) using
the same Monte Carlo sample for any value of c. Implemented on a GPU, it can be run
during training enabling online monitoring of the performances. It provides results that
are normally accurate, as one can verify by comparing with the empirical evaluation of p̂(c)
based on toy experiments. In some rare cases, however, the semi-analytical estimate of p̂(c)
fails due to the failure of the quasi-Gaussian approximation for the distribution of t̂c. This
typically occurs in networks that slightly overfit producing overly sharp peaks in τ̂c(x). The
contribution of the peaks to t̂c emerges from a small region in the x space, where few events
are present. This violates the Central Limit theorem even if the total number N of events is
large. When the Central Limit theorem violation occurs, the estimate of p̂(c) can be either
much larger or much smaller than the true p-value.

A determination of p̂(c) that is more robust, but computationally more demanding,
is obtained through quantile binning for the SM hypothesis as follows. We consider the
discretization of the variable τ̂c(x) in a large number nbin of non-overlapping bins. Namely,
we approximate τ̂c(x) with a piecewise constant function:

τ̂c(x) ≃ {τc[b] , for x s.t. τ̂c(x) ∈ (τb−1, τb)} , (2.29)

where τ0 = −∞ and τnbin = +∞ in order to cover the whole space. The approximately
constant value of τ̂c in each bin, τc[b], equals the central point of the bin apart from the
extremes, where we set τc[1] = τ1 and τc[nbin] = τnbin−1. Using this approximation, eq. (2.27)
becomes

t̂c(D) ≃ 2
[
N(c)− N(0)−

∑
b

Nbτc[b]
]

, (2.30)

where Nb is the number of points in D that fall in the bin. Nb follows a Poisson dis-
tribution with expected L∆σb(c), or L∆σb(0), with L the luminosity of the experiment.
Highly optimized computer packages exist to generate Poisson-distributed numbers. We can
thus efficiently determine p̂(c) empirically by generating toy data in the c ̸= 0 and in the
c = 0 hypotheses.

The binned determination of p̂(c) relies on the choice of a binning strategy, and of the
number of bins nbin. Binning is performed by ensuring that the cross sections of all bins are
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equal under the SM hypothesis c = 0. The number of bins must be large enough to ensure
that the binned test statistic in eq. (2.30) is a good enough approximation of un-binned t̂c in
eq. (2.27). At the same time, using too many bins reduces the accuracy of the determination
of ∆σb due to the finite Monte Carlo statistics. For the studies performed in section 3, we
found that nbin = 1000 is a good compromise.

3 Performance studies

We illustrate the performances of our methodology on the same case study considered in
ref. [5]. This will enable a direct assessment of the advantages of training with reweighted
Monte Carlo data, rather than populating the EFT Wilson coefficients parameter space by
independent data sets as done in [5]. We consider the production of a Z and of a W boson
at the 14 TeV LHC, and their decay to leptons. We restrict our analysis to the high energy
regime, with a cut of 300 GeV on the transverse momentum of the bosons. We study the
sensitivity of this process, with the full integrated luminosity L = 3 ab−1 of the HL-LHC,
to two specific dimension-six EFT interactions

Oφ = Gφ

(
QLσaγµQL

)
(iH†

←→
DµH) , OW = GW εabcW

a ν
µ W b ρ

ν W c µ
ρ . (3.1)

See appendix A for an extensive description of the process and of the two Monte Carlo
generators, namely the ideal and NLO generators, that we employ to model the distributions
and the effect of the Wilson coefficients c = (Gφ, GW ).

We do not aim at fully realistic sensitivity projections, nor at a comparative assessment
of the ZW process sensitivity to the EFT operators at hand and its role in a global fit.
Nevertheless, it is worth emphasizing [42–49] that the ZW process at high energy is a
promising probe of the operators Oφ and OW , because these operators produce growing-
with-energy effects in the ZW scattering amplitudes as displayed in eq. (A.7). The unique
ability of the LHC to probe the operators in the high energy regime, where their effects
are enhanced, can boost the sensitivity to their Wilson coefficients well beyond the current
bounds from measurements performed at lower energy. Furthermore, the three leptons from
the ZW decay define a sufficiently complex final state to expect a gain in sensitivity from
an unbinned multivariate analysis in comparison with a more standard approach based on
binned measurements of one- or two-dimensional distributions. A sensitivity gain by a factor
more than 2 was demonstrated in [5] for the GW Wilson coefficient, while the gain on Gφ

is more moderate. The different behavior of the two operators is due — see [5, 46]—to
the different role that is played by the kinematical variables that describe the decay of the
vector bosons: their measurement is essential in order to access the growing-with-energy
linear term in GW , while the growing-with-energy linear Gφ term is present already in the
differential di-boson cross section integrated over the decay angles. A simple binned analysis
that does not exploit the distribution of the decay angles fully is thus nearly optimal for
Gφ and vastly sub-optimal in the case of GW . At the technical level, this difference makes
the GW contribution to the distribution ratio r(x; c) a much more intricate function of the
kinematical variables x than the Gφ contribution. Learning the GW contribution is thus
a harder problem than learning the Gφ contribution.
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We consider the problem of learning the distribution ratio based on two different Monte
Carlo generators: the ideal and the NLO generators. The ideal generator offers a simplified
description of the process. It is based on approximations that are not sufficiently accurate
for the actual analysis of the data, but enable a simple analytical determination of the true
distribution ratio r(x; c). Applying our methodology to the ideal setup provides a validation
of the performances against ground-truth knowledge, on a learning problem of realistic
complexity. The NLO generator provides instead an accurate state-of-the-art description of
the ZW process. Studying the problem with the NLO generator validates our methodology
in a realistic setup and tests its ability to deal with events with negative weight, whose
presence is unavoidable for event generation beyond the tree level. Appendix A provides
an extensive technical description of the ideal and NLO Monte Carlo generators and of how
they are employed to produce reweighted data sets.

The implementation of our learning strategy (defined in section 2.1) and the study of its
performances (based on the metrics of section 2.2) on ideal and on NLO data is described in
the next two sections in turn. The direct comparison between the reconstructed and true
distribution ratios will be also employed as a performance indicator in the case of ideal data.

All our models are implemented in PyTorch version 1.11.0 [50] and CUDA 11.3. All
trainings were performed on NVIDIA A30 GPU and employing the Adam optimization
algorithm [51].

3.1 Ideal data

Reweighted ideal Monte Carlo data sets S = {ei}n(S)
i=1 , with e = (xe, we(c)), are sampled from

the ideal Monte Carlo generator — described in appendix A—implemented in a dedicated
code. A total of 20 million events have been generated to produce the results that follow. Ten
million are used for testing purposes, namely for the evaluation of the performance metrics
introduced in section 2.2. Training is performed with n(S) = 3M if not specified otherwise.
An independent sample of the same size is employed for validation during training. The
weights we(c) are computed by reweighting in the latent space as in eq. (A.11).

Each event is characterized by seven independent observable variables x, listed in
eq. (A.10). It facilitates the learning task to pre-process the input by performing change of
variables that avoid overly sharp one-dimensional marginal distributions, and by introducing
redundancies. We pre-process with the transformation

x →
{
log[s/GeV2], Θ, θZ , θW , log[pT /GeV], Q, sinφZ , sinφW , cosφZ , cosφW

}
. (3.2)

The neural networks we employ for our analysis thus receive a total of 10 features as input,
ordered as in the above equation. A normalization layer in the network shifts and scales each
variable to have zero mean and unit variance on the training sample. Our pre-processing (3.2)
follows relatively standard practice: the steeply-falling distribution of the center of mass
energy squared, s, is smoothed out by taking the logarithm. The 2π periodicity of the
azimuthal angles is enforced explicitly by giving the sine and the cosine, rather than the
angle itself, as input to the network. The variable pT =

√
s/2 sinΘ can be more useful to the

network than s and Θ to model the effect of the EFT operators in some kinematical regimes.
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3.1.1 The simple classifier

We start from the problem of learning the distribution ratio r(x; c̄) at a specific point c = c̄

of the Wilson coefficients parameter space. As explained in section 2.1.1, this is achieved
using the loss function in eq. (2.1) to train a classifier f(x) ∈ (0, 1). We consider the
classification function

f(x) = 1
1 + eρ(x) , (3.3)

where ρ(x) is a feed-forward neural network with real output. By comparing with eq. (2.3)
we see that, after training, the neural network provides an approximation, r̂(x, c̄), of the
true distribution ratio r(x, c̄). More precisely

log r̂(x, c̄) = τ̂c̄(x) = ρ(x) . (3.4)

The value of c̄ chosen for illustration has Gφ = 0 and GW = 10−2 TeV−2. Learning the
distribution ratio with the simple classifier for such a small value of GW was found to be
possible in ref. [5], but only modest accuracy could be attained. Better performances are
expected using reweighted training data for the reasons explained in section 2.1.1.

We use 3M training points, a ρ neural network with (10, 64, 64, 1) architecture — namely,
two hidden layers with 64 neurons each — and sigmoid activation functions. Pre-processing is
performed as in eq. (3.2). Training employs an initial learning rate of 3 · 10−3 for the first 20k
epochs, after which the initial learning rate parameter is lowered to 10−3 without re-initializing
the optimizer. This 2-step training scheme with decreasing initial learning rate is found to be
convenient in general: the first stage reduces the loss quickly, but the precise optimization with
a lower rate performed at the second stage is required in order to attain a deeper minimum of
the validation loss. Each training step is performed computing the gradients of the network
parameters on the whole training set. Updating the networks with mini-batches is found,
consistently with ref. [5], to degrade the accuracy of the distribution ratio reconstruction
strongly. A validation loss is computed on 3M independent Monte Carlo data. Training is
stopped at the minimum of the validation loss, which is reached in this case after around 45k
training epochs. However, the quality of the ratio reconstruction is very stable during training.
The behavior is similar to the one displayed in figure 2, discussed in the next section.

The central panel of figure 1 (labeled “SC w/ RW”) displays the quality of the log-ratio
reconstruction by direct comparison with the true log-ratio τc̄ = log r(x, c̄). The reconstruction
is more accurate than the one, shown on the left panel with label “SC no RW”, of the neural
network trained in ref. [5] with the same Monte Carlo statistics but using independent data sets
for c = 0 and for c = c̄. Using reweighted Monte Carlo data for training is evidently beneficial.

The visual comparison between the left and the middle panels of figure 1 conclusively
shows that a more accurate reconstruction of the distribution ratio is possible using reweighted
training data. On the other hand, the comparison does not offer a quantitative measure of
the advantages of reweighting, ultimately because it is unclear, a priori, which accuracy is
needed for a satisfactory reconstruction of the ratio. As explained in section 2.2.1, a useful
quantitative performance metric can be defined only in relation to the actual experimental
conditions in which the reconstructed ratio will be employed for statistical inference. We
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Figure 1. Density histograms displaying the correlation between the true τc̄ and the reconstructed τ̂c̄

obtained with three different strategy. From left to right: the simple classifier (SC) trained in ref. [5]
on independent Monte Carlo samples for c = c̄ and c = 0; the simple classifier trained with reweighted
(RW) data; the quadratic classifier (QC) trained as explained in section 3.1.2. The c̄ point has Gφ = 0
and GW = 10−2 TeV−2.

target the HL-LHC collider, with an integrated luminosity of 3 ab−1. The ideal Monte
Carlo predicts a total cross section σ(0) = 1.06 fb, and σ(c̄) = σ(0) + 4.0 ab, corresponding
to an expected data statistics N(0) = 3180, within the SM, and to N(c̄) − N(0) = 12.
Using this information we compute the median p-value p̂(c̄) defined in section 2.2.1. Ten
million ideal Monte Carlo data are employed to determine p̂(c̄) using the binned strategy
described in section 2.2.2. An error is assigned to p̂(c̄) by repeating the determination on
ten partitions of the 10M data set and computing the standard deviation. The model from
ref. [5], corresponding to the left panel of figure 1, has p̂(c̄) = (3.8 ± 0.3)%, while using
reweighted events (middle panel) we reach p̂(c̄) = (1.78 ± 0.04)%.

The right panel of figure 1 (labeled “QC w/ RW”) displays the reconstruction perfor-
mances of the quadratic classifier strategy defined in sections 2.1.2 and 2.1.3, trained with
reweighted data with the benchmark hyper-parameters described in the following section.
The reconstruction further improves in comparison with the “SC w/ RW” setup, but the
p-value only drops by 20%: p̂(c̄) = (1.40 ± 0.04)%. A 20% improvement of the p-value is
appreciable but modest, especially in comparison with the reduction of a factor more than two
of the “SC w/ RW” p-value relative to the p-value in the “SC no RW” setup. We discussed in
section 2.2.1 that the saturation of the p-value is expected to occur when the reconstructed
distribution ratio is so close to the true ratio that the test of hypothesis performed with the
reconstructed likelihood attains nearly-optimal performances. The optimal median p-value,
obtained using the knowledge of the true distribution ratio that is available for ideal data,
is p(c̄) = (1.12 ± 0.04)%. The “SC w/ RW” p-value is quite close to the optimal p-value.
The improvement in the ratio reconstruction that is achieved in the “QC w/ RW” setup can
lower the p-value, but obviously not push it below the optimal p-value. The performance
gain is thus unavoidably moderate.

The slight gap in performances between the “SC w/ RW” and the “QC w/ RW” models
probably emerges from the combination of two factors. First, the quadratic classifier strategy
is advantageous because it exploits the quadratic dependence of the ratio on the Wilson
coefficients in order to learn the ratio simultaneously from several different points in the c

parameter space. Second, no hyper-parameters optimization was performed in the case of the
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simple classifier, while the quadratic classifier hyper-parameters are optimized as discussed
in section 3.1.3. Regardless of performance, the simple classifier is not a viable strategy
for the EFT likelihood learning. We will thus not investigate it further, nor optimize its
performances, and devote the rest of this section to the quadratic classifier.

3.1.2 The quadratic classifier

Statistical inference requires the knowledge of the distribution ratio r(x; c) as a function of
the Wilson coefficients c. This can be learned efficiently by exploiting the known (quadratic)
dependence of the ratio on c as explained in sections 2.1.2 and 2.1.3. The implementation
of this strategy on ideal Monte Carlo data is presented below.

We are interested in the dependence of r on the two Wilson coefficients c = (Gφ, GW ),
however, we start from the simpler one-dimensional problem of learning the ratio in the
direction of each of the two coefficients, setting the other one to zero. This is a valid starting
point in general because the terms in the distribution ratio that are linear in the Wilson
coefficients are typically harder to reconstruct, and often more important for the sensitivity
because they account for the leading corrections to the SM distributions. It is thus convenient
to study and optimize the reconstruction of each of them separately in the different one-
dimensional problems, where they contribute individually. Furthermore, separate trainings
in the direction of each Wilson coefficient are the first step of the efficient parallelizable
learning strategy described in section 2.1.3. Learning the dependence of the ratio on Gφ

turns out — as anticipated — to be rather simple in the case at hand. We thus describe the
one-dimensional learning problem only in the Gφ = 0 direction and consider non-vanishing
Gφ only for the two-dimensional study.

We employ the one-dimensional parametrization in eq. (2.12) using two feed-forward
neural networks to model the two coefficient functions ρ(x) and θ(x). The input is pre-
processed by the transformation in eq. (3.2). In the benchmark configuration, (10, 24, 24, 1)
architecture and sigmoid activation functions are considered for the two networks. No
activation function is applied to the output of the network. The parametrization is inserted
in the classification function defined by eq. (2.6), out of which the loss function in eq. (2.7) is
constructed. At the end of training, the reconstructed distribution ratio r̂(x; c) is given by

r̂(x; c) = P(ρ(x), θ(x); c) = 1 + 2 c ρ(x) sin θ(x) + c2ρ2(x) , (3.5)

as a function of the Wilson coefficient c = GW .
The quadratic classifier loss function (2.7) depends on a list C = {c̄(1), . . . , c̄(κ)} of points

in the Wilson coefficient parameter space. These points can be freely chosen and they are
among the hyper-parameters associated with the training of the quadratic classifier. In the
benchmark configuration, we use the following values

C = {Ḡ
(1)
W , . . . , Ḡ

(6)
W } = {±5,±2.5,±1.25} × 10−2 TeV−2 . (3.6)

The criteria for selecting these hyper-parameters, and the (very mild) effect of departures
from the benchmark choice, are discussed in section 3.1.3.

Training is performed on 3M re-weighted Monte Carlo events, and 3M independent data
are used for validation. We adopt the 2-step training strategy with decreasing learning rate
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Figure 2. Evolution of the training loss and validation loss (left panel) and of the median p-value
evaluated at GW = 7 · 10−3 TeV−2 (right panel) for the benchmark network.

described in section 3.1.1. The left panel of figure 2 shows the evolution of the loss function
during training. Actually, the one reported in the figure is a re-scaled loss function, obtained
by dividing eq. (2.7) by the sum of all the weights that appear in the equation, namely
by we(c̄) + we(0) summed over e and over c̄ ∈ C. With this normalization, an indecisive
classification function f = 1/2 gives a loss of exactly 1/4. Our classification function will be
close to 1/2 because the distribution ratio is close to one. Plotting the normalized loss minus
0.25, times a large factor, thus provides a better representation of the training evolution.
Notice that the training and the validation loss are normalized separately. This avoids the
emergence of spurious differences due to the different total weight of the training and of
the validation data sets. Also notice that the normalized loss and not the original loss (2.7)
is passed to the optimizer in order to prevent possible issues associated with a loss that
is numerically very far from unity.

Training is run for many epochs, waiting for an increase in the validation loss that signals
overfitting. The trained model configuration is the one that minimizes the validation loss. In
figure 2, the minimum is attained after around 65k training epochs. We also evaluate, during
training, the median p-value p̂(c̄) for a representative value c = c̄ of the Wilson coefficient. This
is chosen to be close to the conventional threshold for exclusion of 5%. GW = 7 · 10−3 TeV−2

is employed in figure 2. The p-value computed at run time is obtained with the skew-normal
approximation of the test statistic distribution described in section 2.2.2. In figure 2 we report
instead the binned determination of the p-value, evaluated off-line on the saved models. The
two determinations are actually in good agreement in the specific case under examination.

Figure 2 displays a remarkable stability of the p-value during training, which extends
deeply in the overfitted region where the validation loss (moderately) increases. We also
observe a precise correspondence between the minimum of the validation loss — at 65k epochs

— and the onset of the p-value stability region. The figure also shows that good performances
could have been obtained also with less training epochs: after 10k epochs the p-value is only
10% larger than at the end of training. We are not limited by the training time because
training for 1000 epochs takes around 1 minute in the benchmark setup, on the NVIDIA A30
GPU we used to produce our results. A reduction of the number of training epochs could
however be considered in computationally more demanding problems.
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Figure 3. Linear (left) and quadratic (right) contributions of the OW operator to the cross section in
pT bins, in the ideal setup. The direct determination from Monte Carlo data, by eq. (2.15) is shown
in green. The determination from the reconstructed ratio (see (2.16)) in the benchmark configuration
is shown in blue. The one from the exact ratio is in red. Angular cuts | cosφW/Z | > 0.6 are applied.

We discussed in section 2.2 that the median p-value is our prime performance metric. It
is particularly powerful in the case of ideal data because the optimal p-value can be computed
owing to the knowledge of the r ratio. For the value GW = 7 · 10−3 TeV−2, considered in
figure 2, the optimal p-value is (6.5± 0.1)%, while the quadratic classifier in the benchmark
configuration gives (6.95 ± 0.04)%. We can thus conclude that the quadratic classifier in
the benchmark configuration has reached effectively optimal performances and no further
improvement is needed in the reconstruction of the distribution ratio. However, the r ratio
and in turn the optimal p-value is never known in realistic problems. A more direct validation
of the quality of the distribution ratio reconstruction must thus accompany the calculation
of the median p-value.

The simplest test of the r-ratio reconstruction quality is to compare the predictions
for the cross section in bins obtained from the reconstructed ratio r̂(x; c), as in eq. (2.16),
with direct Monte Carlo estimates. Particularly significant binned distributions must be
selected for the comparison. In figure 3 we consider the transverse momentum of the Z boson,
pT , with cuts | cosφW/Z | > 0.6 on the W and Z decay angles. The selections are needed
to access — in order to validate its reconstruction — the growing-with-energy linear term
in GW , which cancels in observable integrated over the angles. The linear and quadratic
contributions to the distribution, relative to the SM, are reported separately in the figure. The
reconstructed predictions (in blue) are in good agreement with the Monte Carlo predictions
(in green). Both predictions are affected by errors due to the finite Monte Carlo statistics.
Errors are obtained by splitting the test data in 10 subsets of 1M points each, repeating
the determination of the observables on each subset and computing the standard deviation.
The figures also reports the predictions obtained using, in eq. (2.16), the true r in place of
the reconstructed r̂. The perfect agreement with the Monte Carlo predictions provides a
cross-check and supports the credibility of our error estimate.

We can also monitor the quality of the reconstruction by exploiting the peculiar property of
Tc, defined in eq. (2.20) as the logarithm of the cross section ratio in bins of τ̂c(x) = log r̂(x; c).
We consider c = GW = 7 · 10−3 TeV−2 and we employ 50 bins, defined in such a way that
each bin contains 1/50 of the SM cross section. A finer binning could provide a more accurate
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Figure 4. The Tc quantity of eq. (2.20), for the reconstructed r̂ ratio obtained with the quadratic
classifier in the benchmark configuration, with ideal data. GW = 7 · 10−3 TeV−2 is considered.
The right panel illustrates the approximate validity of the bounds in eq. (2.22), as explained in the
main text.

test of the quality of the reconstruction, but it would compromise the accuracy of the Tc

prediction due to the finite Monte Carlo statistics. The results, shown on the left panel of
figure 4, display the approximate relation Tc = τavg — with τavg = (τ̂+ + τ̂−)/2 the center
of the bin — that signals a good agreement of the reconstructed ratio with the true ratio.
The right panel of the figure verifies the approximate validity of the bounds in eq. (2.22)
by plotting Tc − τavg overlaid with the intervals [(τ̂− − τ̂+)/2, (τ̂+ − τ̂−)/2], for each bin,
represented as a shadowed region. We see that Tc is often far from the center of the interval.
It falls preferentially close to the upper or to the lower extreme. This does not signal a poor
agreement between the reconstructed and the true ratio: we verified that the same behavior
is observed using the true log-ratio τc(x) = log r(x; c) instead of the reconstructed one for the
calculation of Tc. This is because the τc distribution is sharply peaked at zero. The cross
section integral — see for instance eq. (2.21)—is thus dominated by the lower or upper extreme
of the integration region for positive and negative τ , respectively. We thus preferentially
saturate the lower/upper extreme of eq. (2.22) for positive/negative τ , precisely like we see
happening for the reconstructed τ̂c, in the figure. Because of these considerations, the only
indication of a discrepancy between the reconstructed and the true ratio are those bins where
the bound is strictly violated. There are very few such bins on the right panel of figure 4.

Since we got satisfactory performances on the one-dimensional problem, we can now
address the complete task of learning the distribution ratio in the plane c = (Gφ, GW ).
We use the two-dimensional parametrization of eq. (2.10), employing 5 feed-forward neural
networks to model the two ρ and the three θ coefficient functions. For the modeling of ρ and
θ in the GW direction we use the (10, 24, 24, 1) architecture, which was found to perform
well on the one-dimensional problem. The architecture for ρ and θ in the Gφ direction could
in principle have been chosen differently, following a hyper-parameters optimization on the
one-dimensional Gφ problem. However, since learning the dependence of the ratio on Gφ

is a very simple task as previously discussed, no specific optimization is required and the
(10, 24, 24, 1) architecture is chosen for simplicity. The same architecture is also used for the
third θ network, which describes the GφGW mixed term. The parametrization is inserted in
the classification function (2.6) and eventually in the loss function (2.7). After training, the
reconstructed r̂(x; c) is obtained from the parametrization similarly to eq. (3.5).
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GW

r [−0.752(2), 0.756(3)]

r̂ [−0.770(2), 0.773(2)]

Gφ

r [−0.3657(4), 0.3642(3)]

r̂ [−0.3671(3), 0.3654(3)]

GW = Gφ

r [−0.3409(6), 0.3207(4)]

r̂ [−0.3436(6), 0.3228(4)]

GW = −Gφ

r [−0.3232(4), 0.3433(5)]

r̂ [−0.3257(4), 0.3477(5)]

Figure 5. LEFT: contour lines p̂(c) = 5% in the two-dimensional parameter space, for ideal data. The
blue contours are obtained with the reconstruction of the r-ratio obtained by the quadratic classifier
trained in two dimensions. The red contours are obtained using the exact ratio. RIGHT: reach at
NLO on Gφ and GW in 4 directions on the plane. The bounds are given in units of 10−2 TeV−2.

The training points in the C set are formed by the GW values in eq. (3.6) setting Gφ = 0,
plus GW = 0 points with Gφ in the set

Gφ ∈ {±2.5,±1.25,±0.625} × 10−2 TeV−2 , (3.7)

and six additional points with both GW and Gφ non-vanishing along the diagonal of the
grid formed by the two lists of values.

An alternative approach to the determination of the two-dimensional ratio (see sec-
tion 2.1.3) is to learn the diagonal ρ and θ networks in one dimension, and to perform
two-dimensional training only to train the mixed θ network. This computationally convenient
strategy is not needed for our analysis, because our resources are sufficient to train the five
neural networks at once directly in the two-dimensional setup. One might have expected
a more accurate reconstruction of the ratio with two individual one-dimensional trainings,
but in fact no such advantage has been observed in the case under examination. We have
verified that one-dimensional trainings give essentially identical results as training directly
in two dimension. In particular, the same p-values are found in the two cases along the
single-coefficient lines Gφ = 0 or GW = 0.

Several studies were performed to validate the accuracy of the distribution ratio recon-
struction along different directions of the 2-dimensional parameter space. The performances
are similar — or better, along the Gφ direction — than the ones previously described for
GW in the one-dimensional case. The corresponding plots are not reported for brevity.
In essence, we find that the quadratic classifier attains a basically perfect reconstruction
of the distribution ratio, that guarantees nearly-optimal statistical performances. This is
shown in figure 5 by drawing 95% exclusion contours in the (Gφ, GW ) plane. The plot is
obtained by computing and interpolating p̂(c) on a grid of points, and drawing the p̂(c) = 5%
contours. The red contour is obtained using the exact r ratio in place of the reconstructed
ratio r̂. By the Neyman-Pearson Lemma, the one that employs the exact ratio is the most
powerful hypothesis test, namely the one with the smallest median expected p-value that
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Figure 6. Median p-value for GW = 7 · 10−3 TeV−2 in the configurations described in the main text.
The blue band is the result obtained in the benchmark configuration. The red band is the optimal
p-value. Training is repeated with two different seeds for the 32 and 128 neurons architectures.

in turn corresponds to the optimal (smallest) exclusion contour. The contour obtained
with the reconstructed ratio, in blue, essentially coincides with the optimal contour. The
95 CL exclusion reach is also reported in the table in the right panel of figure 5 in different
directions of the parameter space.

3.1.3 Hyper-parameters selection

The benchmark choice of the hyper-parameters described in the previous section results from
an optimization of the performances. The median p-value was used as the prime indicator, but
other performance metrics such as those in figures 3 and 4 were also employed, finding good
correlation with the median p-value. The optimization was performed in the one-dimensional
setup with Gφ = 0 as previously explained. In this section, we report some of the results of
this hyper-parameters scan. In particular, we study the dependence of the performances on
each individual hyper-parameter, keeping the other ones fixed to the benchmark values. The
performances are measured by the median p-value at GW = 7 · 10−3 TeV−2. The results are
reported in figure 6 and compared with the benchmark p-value, reported as a blue band.

We consider variations of the benchmark architecture, employing two hidden layers
with a variable number of neurons. We observe, in figure 6, the expected saturation of
the performances. Small networks are not expressive enough to accommodate an accurate
modeling of the true distribution ratio. Large networks can instead model the distribution
ratio accurately, fully exploiting the information that is present in the training data. On
the other hand, large networks are more exposed to overfitting, which might prevent an
accurate learning. Indeed, the training of large networks behaves differently from the one
of the benchmark networks, displayed in figure 2: overfitting is more pronounced and it is
associated with a degradation of the p-value. Using the model configuration that minimizes
the validation loss eliminates this issue and delivers good performances also with rather
large networks, as the figure shows.

In figure 6 we also study the dependence on the number of Monte Carlo data points
used for training. A very significant degradation of the performances is observed only with a
significant reduction of the training data set size relative to the benchmark of 3M points. The

– 28 –



J
H
E
P
0
3
(
2
0
2
4
)
1
1
7

p-value is only slightly larger than the benchmark p-value using 1M training points. Using
6M points the p-value is smaller than the benchmark p-value, but the gain in performance
is too limited to justify doubling the training sample size. The benchmark choice of 3M
points is almost equally effective and in fact, very good results would have been obtained
already with 1M points.

We also report in figure 6 two technical checks of stability. The “Seed” column displays
the p-value obtained by repeating training in the benchmark configuration using 5 different
random seeds for the initialization of the neural network parameters. In the “Data” column
we repeat training on two independent data sets. Since they are independent of the seed and
of the specific data set used for training, our results are robust and reproducible.

In the “Wilson” column we study the dependence on the values of the Wilson coefficients
used for training, namely on the set of values, C, that defines the loss function of the quadratic
classifier in eq. (2.1). The values used in the benchmark configuration — reported in eq. (3.6)—
were selected with a very simple criterion. At 95% CL, the analysis is sensitive to values of
GW that are of the order of 10−2 TeV−2. We should thus prioritize an accurate reconstruction
of the ratio when GW in this range, because much larger values will be in any case easy to
exclude while much lower values are invisible. We thus use for training values of GW that are
of this order of magnitude, with a substantial spacing among them in order to provide more
information about the dependence on the ratio on GW . In order to study the sensitivity to the
specific benchmark choice, the values (3.6) used in the benchmark configuration were raised
by a factor of 2 or of 4, or divided by 2. The results — labeled as “×2”, “×4” and “×0.5”
in figure 6, are essentially identical to the one in the benchmark configuration. Employing
values of GW that are loosely close to the reach thus ensures good performances and no
precise optimization is needed. Another advantage of considering relatively small values
of the Wilson coefficients for the training is the fact that the corresponding reweighting
factors are typically of order one, thus minimizing possible accuracy issues with the weighted
data-sets (see discussion in the Introduction). We also stress that, although weighted events
are essential for an efficient learning algorithm, unweighted sets could be used for the final
statistical analysis, thus solving possible issues due to a lower statistical accuracy.

We also tried a simpler training scheme that employs only 2 distinct equal and opposite
values of GW instead of 6 values as in the benchmark configuration. The results for GW =
±0.1 TeV−2 and GW = ±0.01 TeV−2 are reported in the figure. Two results are reported for
each value by employing different random seeds. A very mild degradation of the performances
is observed, showing that employing more than 2 values of GW for training as in the benchmark
configuration is beneficial, but only marginally. We also tried to use GW = ±0.001 TeV−2

and GW = ±1 TeV−2, much below and much above the reach, respectively. In the first case,
training was found to proceed too slowly, which was expected because the gradients of the
loss function become small if the training points are too close to the SM GW = 0 point.
In the second case, strong overfitting was observed, probably due to the fact that if GW

is overly large the loss function is dominated by the high-energy tail of the training data
points, where the EFT contribution from the quadratic terms dominates over the SM. In
summary, a good stability of the performances is observed under variations of the values
of the Wilson coefficients used for training, provided they are of the order of the expected
reach and not vastly above or below.
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These results should be contrasted with the findings of ref. [5], where the quadratic
classifier was trained on independent Monte Carlo samples generated at each point in C
without using reweighting. In that setup, the training points are a major factor controlling
the performances. They must be chosen by balancing two competing criteria. First, the
values of the Wilson coefficients used for training must be large enough to modify the SM
distribution considerably and typically well above the sensitivity reach. Otherwise, their
effects would be too small to be seen by comparing independent Monte Carlo data sets. We
explained in the Introduction and in section 2.1.1—and we verified in section 3.1.1—that
small departures from the SM are on the contrary effectively reconstructed if reweighted
data are used for training. Therefore, we do not need to employ large values of the Wilson
coefficients for training. The second criterion for the selection of the Wilson coefficients in
the setup of ref. [5] is to avoid overly large values. Otherwise, the contribution to the cross
section would be dominated by the quadratic term. The effect of the linear term would be a
small correction and could not be learned. Reweighted training is sensitive to small effects,
therefore also this second criterion is less relevant to our methodology. The optimal Wilson
coefficient that obeys the above-mentioned criteria depends on the phase space region because
the size of the EFT contribution to the cross section scales, in particular, with the energy of
the process. The optimal Wilson coefficients in three pT regions were identified in ref. [5] and
used for training producing good performances. However, the need of optimizing the choice
of the training points is an obstruction to the systematic deployment of the methodology
of ref. [5]. This optimization is not required because the performances are weakly sensitive
to the training points with the methodology of the present paper.

3.2 Results at NLO

We finally describe our results on NLO simulations of the ZW process. Reweighted Monte
Carlo samples are generated using the MadGraph software suite, as detailed in section A.2.
Like in the ideal case, 3M points are used for training and 3M independent points are used
to compute the validation loss. Only 3M points rather than 10M are employed for testing.
Ten independent observable variables x characterize the NLO events, listed in eq. (A.21).
These are pre-processed with the transformation

x →
{
log[s/GeV2], Θ, θZ , θW , log[pT /GeV],

log[1 + pT,ZW/GeV], Q, ℓZ , ℓW sinφZ , sinφW , cosφZ , cosφW

}
, (3.8)

and normalized to zero mean and unit variance on the training data set by a normalization
layer in the neural networks. The discrete labels ℓZ and ℓW that describe the flavor of
the leptons from the Z and the W boson decays assume the numerical values of 1 or 0 for
muons and electrons, respectively.

The implementation of the quadratic classifier method proceeds as explained in sec-
tion 3.1.2 and no significant difference is observed — neither in the behavior of the training
process nor in the performances — associated with the usage of NLO rather than ideal Monte
Carlo data. This is interesting because NLO Monte Carlo data sets contain events with
negative weights. These events give a negative contribution to the loss function that might
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Figure 7. Linear (left) and quadratic (right) contributions of the OW operator to the cross section
in pT bins, using NLO simulations. The direct determination from Monte Carlo data, by eq. (2.15) is
shown in green. The determination from the reconstructed ratio (see (2.16)) is shown in blue. Cuts
| cosφW/Z | > 0.6 and pT,ZW/pT < 0.5 are applied.

encourage overfitting, raising a concern about the possibility of applying our methodology to
realistic NLO simulation. Our methodology is instead found to behave on NLO data as well
as on ideal data, where no negative weights are present. It should be noted that currently
available NLO generators like MadGraph produce a small fraction of negative-weights
events: they are 3% of the total in the Monte Carlo data sets under consideration. A larger
fraction of negative weights that might be obtained with a non-optimized generator, or in
a different process, could in principle invalidate this conclusion.

Since no strong difference is found in comparison with the ideal results presented in the
previous section, we illustrate our findings directly on the full two-dimensional setup where
the distribution ratio — parametrized as in eq. (2.11)—is learned with a single training as a
function of the two Wilson coefficients Gφ and GW . All the hyper-parameters are set to the
benchmark values we used for ideal data in the previous section, apart from the architecture
of the neural networks that is now (13, 32, 32, 1) to account for the larger dimensionality of
the NLO input features. The performances of the trained model are shown in figures 7 and 8.

Figure 7 displays the ability of the trained model to reproduce the linear and quadratic
contributions of the OW operator to the cross section in pT bins and with cuts | cosφW/Z | > 0.6
on the azimuthal decay angles and pT,ZW/pT < 0.5 on the total transverse momentum. These
cuts emphasize the leading growing-with-energy contribution of the OW operator. The same
plot is shown in figure 3 for ideal data and the agreement between the reconstructed (blue)
and the Monte Carlo (green) predictions is at the same level as in figure 3. Figure 3 also
shows the results obtained using the knowledge of the true distribution ratio r, which is
available for ideal simulations and not available for NLO simulations. Figure 8 displays the
approximate linear behavior of the Tc variable and the validity of the bounds in eq. (2.22),
at the point c in the parameter space where GW = 7 · 10−3 TeV−2 and Gφ = 0. The plot
is obtained in the same way as figure 4 for ideal data. The results confirm that a good
reconstruction of the distribution ratio is obtained also at NLO.

Finally, the left panel of figure 9 displays the 5% contours of the median p-value p̂(c). For
its determination, we proceeded as explained in section 2.2.2 and in the previous section. The
right panel of the figure summarized the reach along four directions in the parameter space.
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Figure 8. The Tc quantity of eq. (2.20), for the reconstructed r̂ ratio obtained with the quadratic
classifier, with NLO data. The point GW = 7 · 10−3 TeV−2 and Gφ = 0 is considered. The right panel
illustrates the approximate validity of the bounds in eq. (2.22), as explained in the main text.

GW [−1.106(6), 1.108(7)]

Gφ [−0.412(1), 0.401(1)]

GW = Gφ [−0.405(1), 0.366(1)]

GW = −Gφ [−0.376(1), 0.419(1)]

Figure 9. LEFT: contour lines p̂(c) = 5% in the two-dimensional parameter space, for NLO data.
RIGHT: reach at NLO on Gφ and GW in the 4 directions of the 2D plane. The bounds are given in
units of 10−2 TeV−2.

4 A proposal for exclusions

We explained in the Introduction and in section 2.2.1 that our methodology is not tied to the
specific task of the statistical analysis one eventually aims at performing on the experimental
data, nor to the specific (frequentist or Bayesian) methodology that will be adopted for the
analysis. Our ultimate goal is to extract a good approximation of the distribution ratio (1.3),
to be later used for any analysis aimed at approaching optimality exploiting the accurate
knowledge of the ratio and in turn of the likelihood. On the other hand, it is worth discussing
and addressing the challenges in the design and in the practical implementation of one such
nearly-optimal analysis. We focus in particular on the design of a classical test of hypothesis
aimed at excluding the existence of EFT operators with a given pre-specified value c ̸= 0
for their Wilson coefficients (the H0 hypothesis) in favor of the SM value c = 0 (the H1
hypothesis). A Bayesian approach to the same problem is described in section 4.4.

As explained in section 2.2.1, the Neyman-Pearson Lemma guarantees the optimality
of the test based on the likelihood ratio test statistic tc(D) defined in eq. (2.26). Since we
are able to reconstruct the likelihood log-ratio, a natural option would be to employ the
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reconstructed test statistic t̂c(D) defined in eq. (2.27) for the actual statistical analysis on
the observed data. The test statistic depends on the variable τ̂c(x), which is the logarithm
of the reconstructed distribution ratio (2.17). If the reconstruction is accurate, we are
guaranteed that this test attains optimal performances, as we also verified in section 3. This
theoretical guarantee of optimality is precisely the reason why the median p-value of the
test based on t̂c(D) is used for a robust assessment of the quality of the distribution ratio
reconstruction. On the other hand, it would be difficult to apply this test to real data. In
this section, we define an alternative test that could be more viable in practice and with
expected performances that are not far from optimality.

The main factor that limits the applicability of the t̂c(D)-based test — or of the test
based on the exact tc(D), if available — is that the distribution of the test statistic variable
is in general not known. On the other hand, we need the distribution in the null c ̸= 0
hypothesis in order to obtain the p-value. We also need the distribution in the alternative
c = 0 hypothesis, if we want to quantify the expected sensitivity of the test. The determination
of the distributions has to be performed numerically, and this requires generating many toy
instances of the D data set, which is numerically expensive. In section 2.2.2 we addressed this
issue by discretizing the τ̂c(x) variable in a set of bins. This enabled us — in eq. (2.30)—to
express t̂c(D) in terms of the counts Nb in each bin, which are Poisson-distributed and efficient
to sample for the generation of toys. Inspired by that result, we consider the possibility of
defining an analysis strategy based on binning the τ̂c(x) variable.

4.1 The optimal binned test

On general grounds, a binned analysis is one that divides the x space in a set of non-
overlapping bins b ∈ B and computes the number of points in D, Nb, that fall in each bin.
The counts, DB = {Nb, ∀ b ∈ B}, are the aggregate data used for statistical inference, in
place of the original data set D. Importantly enough, the Nb variables are independent
Poisson distributions with an expected, Nb(c) = L∆σb, that can be accurately calculated
with the Monte Carlo, at least if the number of bins is not extremely large. Therefore, we
have complete analytical access to the distribution of the binned data. On the contrary, an
analysis based on variables such as the reconstructed (2.27) or the exact (2.26) log-ratio,
which depend directly on the observables vector x ∈ D, is called unbinned. The fact that
we do not have access to the x data distribution makes unbinned analyses generically more
difficult. Binned analyses are easier and way more common in LHC data analysis practice.

The analytical knowledge of the distribution of the binned data DB enables the deployment
of the optimal Neyman-Pearson strategy for hypothesis testing. This test would be based on
the negative of the log-ratio between the binned likelihoods in the c ̸= 0 and in the c = 0
hypotheses. Specifically, the optimal test statistic for binned data would be

−2 log L(c;DB)
L(0;DB)

= 2
∑
b∈B

[
Nb(c)− Nb(0)−Nb log

Nb(c)
Nb(0)

]
. (4.1)

One should be careful here with the notion of optimality. The guarantee of optimality of
the Neyman-Pearson Lemma is obviously tied to the nature of the data upon which the
statistical inference is based. The complete data set D contains all the information that is
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collected by the experiment, therefore the (unbinned) likelihood ratio associated with the D
data is the truly optimal test statistic. The binned likelihood ratio in eq. (4.1) would be the
optimal variable if the counts DB were the only available experimental information, but its
performances are in general sub-optimal because binning reduces information.

Consider however defining the bins in terms of the variable τc(x), which is the logarithm
of the true distribution ratio. Namely, the bins are defined by the conditions τc(x) ∈ (τb−1, τb),
with b = 1, . . . , nbin, τ0 = −∞ and τnbin = +∞ in order to cover the whole x space. In
this case, the binned likelihood log-ratio (4.1) is easily shown to coincide, when the bins are
infinitely narrow, with the unbinned likelihood ratio tc(D) defined in eq. (2.26). In fact, if
the bins are very narrow, the τc(x) variable is well-approximated over the entire x space
by the following piecewise constant function

τc(x) ≃
{
log ∆σb(c)

∆σb(0)
, for x s.t. τc(x) ∈ (τb−1, τb)

}
, (4.2)

where ∆σb(c) is the cross section in the bin. This approximation holds because τc(x) is the
logarithm of the distribution ratio and thus it can be computed as the logarithm of the
ratio of the cross sections integrated in a narrow bin.6 Notice that the value of τc in the
bin could have also been approximated by the center of the bin, which in fact coincides
with the log cross section ratio up to finite bin effects as we proved in eq. (2.21). Inserting
eq. (4.2) into the definition (2.26) of tc(D), we find

tc(D) ≃ 2
[
N(c)− N(0)−

∑
b∈B

Nb log
Nb(c)
Nb(0)

]
. (4.3)

This expression coincides with eq. (4.1) since
∑

b Nb = N . Therefore, the binned likelihood
ratio (4.1) approaches the optimal test statistics, and hence it is nearly-optimal, if the binning
is performed on the τc(x) variable and if a sufficiently narrow binning is employed. Clearly,
we do not have access to the exact τc(x) variable. The reconstructed τ̂c(x) variable will be
used instead to define the bins. Optimality will thus be attained only if the reconstruction
is accurate.

The development of methodologies aimed, like the one of the presented paper, at
reconstructing the distribution log-ratio τc(x) is often motivated by the need of accessing
the unbinned log-likelihood ratio for optimal statistical inference. The previous results
however show that binned data contain, up to finite-binning effects, the exact same amount
of information as the original data set D. In particular, we have seen that the optimal
log-likelihood ratio test on binned data has the same sensitivity as the optimal unbinned test.
An unbinned approach is thus not essential to attain near-optimality. The reconstruction
of τc(x) is instead essential because it is crucial that the binning is performed on the τc(x)
variable or a good approximation thereof. Binning any other variable would lead to sub-
optimal performances even for infinitely narrow binning, barring the possibility of binning all
the individual components of the data vector x, which is not feasible in more than two or

6The first and the last bins extend up to infinity and hence are not narrow. Eq. (4.2) still holds if τc is
bounded. If it is not, extreme tails of the τc distribution can be excluded from the analysis of the data without
sensitivity loss because they are not populated by the finite data statistics.

– 34 –



J
H
E
P
0
3
(
2
0
2
4
)
1
1
7

three dimensions. The τc(x) variable needs to be reconstructed because it brings the whole
information about the parameters of interest that is available in the data. It can be used
for an unbinned analysis, or for a binned analysis like we propose.

4.2 Maximum likelihood and Asymptotic formulas

The implementation of the optimal binned hypothesis test defined by eq. (4.1) still requires
drawing toys to determine the test statistic distributions empirically. Poisson-distributed
toys are numerically cheap to generate at one fixed point c in the parameter space, but
repeating the toys generation and the determination of the distribution point-by-point in
the parameter space can easily become unfeasible if the number of parameters is large. The
relevant parameters here are not only the parameters of interest c. Imperfections in the
Monte Carlo predictions due to the approximate knowledge of the underlying physical model,
or of the modeling of the detector response, need to be incorporated in the analysis in the
form of nuisance parameters, denoted as ν. Determining the dependence of the likelihood
on the nuisance parameters is rather standard practice in LHC data analysis. It requires
estimating the dependence of the number of expected events in each bin, Nb(c, ν), not only on
the parameters of interest but also on the nuisance parameters. This determination requires
dedicated Monte Carlo events, and it can be demanding to achieve but is feasible. It is
instead not feasible to scan this large parameter space for the empirical determination of the
test statistic distribution, which in general depends on the parameters as the test statistic
variable does. Practical LHC data analysis thus needs to rely on analytical approximations
of the distributions. These approximations are typically valid in the large-sample — or,
Asymptotic — limit. Therefore, they are called Asymptotic formulas.

No Asymptotic formula exists to model the distribution of the likelihood log-ratio test
statistic (4.1). We thus need to employ a different variable, which in turn defines a different
(and sub-optimal) hypothesis test. Following the standard LHC data analysis practice [40],
we use the maximum likelihood ratio test statistics, which is defined as follows. Consider
an open curve that interpolates from the SM point c = 0 to the point c ̸= 0 that we are
interested in testing, in the space of the parameters of interest. For definiteness, we choose
a straight line but other options would be also viable as depicted in figure 10. Be γµ an
explicit parametrization of the curve, where µ ∈ R would correspond to the “signal strength”
parameter in the notation of ref. [40]. The curve γµ defines a one-parameter family of
statistical hypotheses for the distribution of the data, within the larger space span by the
Wilson coefficients c, which interpolates between H0 and H1. The maximum likelihood test
statistics is −2 times the logarithm of the ratio between the likelihood at c and the maximum
of the likelihood along the γµ curve, namely

tml
c (DB) = −2 log L(c;DB)

L(γµ̂;DB)
= 2

∑
b∈B

[
Nb(c)− Nb(γµ̂)−Nb log

Nb(c)
Nb(γµ̂)

]
. (4.4)

The expression is similar to the likelihood log-ratio test statistics (4.1). The difference is
that the likelihood in the denominator is not computed at the SM nor at any other pre-
specified point of the parameter space. It is computed at the point c = γµ̂ that maximizes
the likelihood along the curve for the specific instance, DB, of the binned data set under
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Figure 10. Schematic representation of the interpolation between the H0 hypothesis (the point c in
the parameter space) and the H1 hypothesis (the origin, c = 0).

examination. The maximal point on the curve, located at µ = µ̂, is thus an implicit function
of the data: µ̂ = µ̂(DB).

Unlike the likelihood log-ratio (4.1), the maximum likelihood test statistics (4.4) is
endowed with Asymptotic formulas. Under the null hypothesis c ̸= 0, it approaches a χ2

with one degree of freedom in the Asymptotic limit. Under the alternative hypothesis c = 0
it approaches a non-central χ2 with one degree of freedom. These formulas allow us to
implement the test of hypothesis based on the maximum likelihood ratio test statistic without
having to resort to toy data. The p-value associated to a given observed value t of the tml

c (DB)
test statistic, defined as in eq. (2.24), is simply given by

pc(t) = p[t] = 1− CDFχ2
1
(t) , (4.5)

where CDF denotes the cumulative distribution function. Notice that the association between
the value of the test statistic and the p-value, namely the pc(t) function, depends on c in
general because the distribution of the test statistics does depend on c. The function is
instead independent of c in this particular case because the Asymptotic formula for the
distribution is a χ2 independently of c.

We can also use approximations to compute the expected p-value under the SM hypothesis
c = 0. Several methods were considered in ref. [40]. The one that is most commonly employed
is based on the so-called “Asimov” data set, DAB . The Asimov data set is one where all the
observables are exactly equal to their expected value. In the case at hand

DAB = {Nb(0), ∀ b ∈ B} , (4.6)

where Nb(0) is the expected number of events in each bin as predicted by the SM c = 0
hypothesis. Ref. [40] proposed to estimate the median of the tml

c variable as the value it
assumes on the Asimov data set. Consequently, the median p-value can be estimated as

pml
med(c) = p

[
tml
c (DAB )

]
. (4.7)

A few comments are in order. First, the validity of the Asymptotic formulas relies on
the availability of a large data statistics. Giving for granted that the total expected number
of events is large, for the validity of the Asymptotic formulas we still have to ensure that the
number of expected events in each bin is also large. Experience reveals that 10 events are
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sufficient for the Asymptotic formulas to hold accurately.7 This limits the maximum number
of bins that can be employed in the analysis, entailing some loss of sensitivity because, as
we have seen, the data binned in the τ̂c variable contain the same amount of information as
the original data only in the limit of infinitely narrow binning. However, in practice, we do
not expect this to be the main source of degradation in comparison with the optimal test
sensitivity. In fact, it should be stressed that the one based on maximum likelihood is a
different test of hypothesis than the one based on the likelihood ratio test statistic (4.1), and
hence it is intrinsically sub-optimal. Extensive experience in statistical practice ensures that
its performances are typically not far from optimal, but as far as we know this fact is not
guaranteed by any rigorous result. Whenever possible, it is useful to compare its sensitivity
with the one of the optimal test for a few representative points of the parameter space in
order to get an idea of the degradation. Finally we also mention that the use of the maximum
likelihood test is essential in the presence of nuisance parameters, whose impact can not be
taken into account through a likelihood ratio statistical test à la Neyman-Pearson.

The role played by the curve γµ along which the maximum of the likelihood is computed
also deserves to be described in detail. First, we notice that the shape of the curve plays
no role in sensitivity projections based on the Asymptotic formulas and on the Asimov
trick. Namely, the median expected p-value in eq. (4.7) is independent of the shape of the
curve. The p(t) function is universally provided by the cumulative of the χ2, and obviously
independent of the γµ curve. The value of the test statistic on the Asimov data set is also
independent of the curve, because of the following. On the Asimov data set, the logarithm
of the likelihood along the γµ curve is

logL(γµ;DAB ) =
∑
b∈B

[−Nb(γµ) + Nb(0) logNb(γµ)] + const. , (4.8)

and attains its absolute maximum, in each bin, when Nb(γµ) = Nb(c). The point on the
curve that maximizes the likelihood is thus the SM point, γµ̂ = 0. Evaluating the maximum
likelihood test statistic (4.4) on the Asimov data set thus gives

tml
c (DAB ) = −2 log L(c;DAB )

L(0;DAB )
= 2

∑
b∈B

[
Nb(c)− Nb(0)− Nb(0) log

Nb(c)
Nb(0)

]
, (4.9)

regardless of the shape of the γµ curve.
The shape of the curve does affect, on the contrary, the determination of tml

c on the
real data, and in turn it affects the p-value that will be obtained in the analysis of the data
collected by the experiment. Each curve formally defines a different test of hypothesis. Since
all these tests have the same expected sensitivity as previously discussed, they are all equally
valid and each of them could be applied to the data. The most sensible line of action would
be to select, prior to the experiment, a simple curve like a straight line and stick to that
choice. Otherwise, one could combine the p-values obtained with different curves easily,
because all curves have the same expected sensitivity.

One might wonder why considering a curve, rather than interpolating between c and the
origin with a higher-dimensional surface. A seemingly natural choice would be to employ

7The validity of the Asymptotic formulas can be directly related, in the case at hand, to the accuracy of
the Gaussian approximation for the Poisson distribution, which is good for more than 5 or 10 expected events.
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in fact the whole c space for the interpolation. In the present paper we are dealing with
two Wilson coefficients: one might have considered defining the maximum likelihood ratio
test statistic (4.4) by minimizing over the whole Wilson coefficient plane rather than on the
curve γµ. Asymptotic formulas are available for the test statistic distribution even if the
maximization is performed on a multidimensional family of hypotheses. They involve χ2

distributions with a number of degrees of freedom that is equal to the dimensionality of the
family. In particular, a central χ2 with two degrees of freedom would have been obtained for
the distribution of the test statistic in the null c ̸= 0 hypothesis, if the maximization was
performed on the entire plane. In eq. (4.5) we would thus have encountered the cumulative
of the χ2 with two rather than one degree of freedom. On the contrary, the determination
of the median expected value of the test statistics, estimated by the Asimov trick, would
have remained the same as in eq. (4.9). The χ2 with two degrees of freedom is broader
than the χ2 with one degree of freedom. Therefore, the median expected p-value in eq. (4.7)
would be higher if the maximization was performed on the two variables rather than on
the one-dimensional curve. We thus discard this possibility because it would produce a test
that is less performant and farther from optimality.

Finally, we notice that the inclusion of nuisance parameters in the maximum likelihood
ratio framework is conceptually straightforward, following ref. [40]. It merely amounts to
maximizing over the nuisance parameters, independently, the likelihoods in the numerator and
in the denominator of eq. (4.4). The Asymptotic χ2 formulas still hold. On the Asimov data
set — defined at the central value of the nuisance parameters ν = 0, namely Nb = Nb(0, 0) —
the likelihood is still maximal at the SM point c = γµ̂ = 0 and with central-value nuisance.
The maximum likelihood-ratio test statistics on the Asimov data is similar to eq. (4.9), though
it involves a potentially costly minimization over the nuisance parameters. Namely, in the
presence of nuisance parameters ν, eq. (4.9) becomes

tml
c (DAB )= 2min

ν

 ∑
b∈B

[
Nb(c,ν)−Nb(0,0)−Nb(0,0) log Nb(c,ν)

Nb(0,0)−log L(ν)
L(0)

] . (4.10)

In the equation, L(ν) is the likelihood for the nuisance parameters as determined from
measurements that are independent of the data under examination. This likelihood is often
simply approximated with a multivariate Gaussian centered on the central-value nuisance
configuration ν = 0. The minimization to be performed in eq. (4.10) and other elements that
are peculiar to our proposal could complicate its practical implementation in the presence of
many nuisance parameters. This is discussed in the following section.

4.3 Implementation

The implementation of our proposal requires, in the first place, to select a suitable set of
points τb on the real axis for binning the τ̂c(x) variables. For a given chosen number of bins,
nbin, these points are selected in such a way that all resulting bins have an equal cross section
in the SM hypothesis, namely ∆σb(0) = σ(0)/nbin. The points are determined by evaluating
τ̂c(x) on the Monte Carlo data set, sorting the list and scanning through it cumulating
the SM weights we(0) until when integer multiples of the target cross section σ(0)/nbin are
reached. We use nbin = 300 because this produces — both with the ideal and with the NLO
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Figure 11. Contours of pml
med(c) = 5% (i.e., tml

c (DA
B ) = 3.84) in the Wilson coefficient plane

c = (Gφ, GW ) for ideal (left panel) and NLO (right panel) simulations. The contours obtained using
the exact τc rather than the reconstructed τ̂c are displayed in red color on the left panel. The dashed
lines are the contours from figures 5 and 9.

predictions — around 10 expected events in each bin, ensuring the validity of the Asymptotic
formulas. Once the binning points τb are determined, the cross sections and the expected
number of events for non-vanishing c are determined by summing the we(c) weights of the
events that fall in each bin. Finally, the Asimov estimator, tml

c (DAB ), is computed by eq. (4.9).
The median p-value pml

med is given by eq. (4.7).
We applied this algorithm to draw 95% CL expected exclusion contours in the plane

of the two Wilson coefficients c = (Gφ, GW ) that we studied in section 3. The results are
displayed as continuous blue lines in figure 11. The left/right panel of the figure shows
the results for ideal/NLO simulations. The reconstructed distribution ratio is obtained
from the parameterized classifier trained as explained in sections 3.1 and 3.2 for ideal and
NLO simulations, respectively, using benchmark hyper-parameters. The plots are obtained
computing tml

c (DAB ) on a grid of points on the plane. The 95% CL contour is the region where
pml

med(c) = 5%, i.e. where tml
c (DAB ) = 3.84 because of the χ2 formula. The contours are drawn

from an interpolation of the grid. The exact distribution ratio is available for ideal data. We
can thus run the previous algorithm but use the exact τc(x) in place of the reconstructed
τ̂c(x). The result is shown with a red continuous line on the left panel of the figure. The
excellent agreement with the blue contour provides an additional cross-check of the accuracy
of the distribution ratio reconstruction, though arguably a less powerful one than those we
performed in section 3 because it is based on an inherently less sensitive hypothesis test
methodology than the likelihood-ratio test we employ as a performance metric.

The figure also displays, in dashed, the contours previously reported in figures 5 and 9.
These are the 5% contours of the optimal Neyman-Pearson test p-value. They provide tighter
exclusion bounds than the test based on the maximum likelihood ratio, as expected. However,
the contours are relatively close, showing that the maximum likelihood ratio test is not
vastly sub-optimal, in the case at hand.

As a cross-check, we verify in figure 12 the validity of the Asymptotic and Asimov
approximations of the maximum likelihood ratio test sensitivity. For this study, we generated
Poisson-distributed toy data sets for the binned data under the null and under the alternative
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Figure 12. Upper and lower exclusion reach at 95% CL along four directions in the Wilson coefficient
plane c = (Gφ, GW ). Blue bars are obtained empirically with toy data sets. Red bands make use
of the Asymptotic χ2 approximation for the test statistics distribution under the null hypothesis,
while the median p-value is determined empirically on the toys. The green band employs both the
Asymptotic and the Asimov approximations as in eq. (4.7).

hypotheses, and we computed tml
c (DB) from the definition (4.4), performing the maximization

along the γµ curve. The curve is taken to be a straight line interpolating from c = 0 to the
test point c ̸= 0. We determine by interpolation the eight points on the c plane where the
empirically-determined p-value equals 5%, along four directions in the plane. Ideal simulations
are used for this study. The results are shown as blue bars in figure 12. The green bars are
obtained using the Asymptotic χ2 formula for the distribution under the null hypothesis
and the Asimov data set for the determination of the median. They correspond to the
intersection between the contour on the left panel of figure 11 and the four selected directions
in the plane. The red bars in the figures employ instead the Asymptotic χ2 formula, but
estimate the median by toy experiments performed under the alternative hypothesis. The
three sets of results are in excellent agreement, confirming the accuracy of the Asymptotic and
Asimov approximations. The result was widely expected because these approximations are
well-established and routinely employed for binned data with sufficient statistics in each bin.

Our proposal for setting exclusion limits is based on concepts and approximations that are
deeply routed in the LHC statistical practice. However, it should be stressed that an analysis
based on our proposal is rather different from a regular LHC binned exclusion analysis, and
potentially more demanding computationally. In a regular binned analysis, both the variable
or variables used for binning and the bins are pre-specified. Here instead they depend on
the point c in the space of the parameters of interest that we are interested in probing. The
c = 0 and c ̸= 0 cross sections in each bin are thus computed once and for all in a regular
analysis, while in our case they are computed point-by-point as previously explained, because
we have access to the τ̂c(x) variable used for binning only after the relevant value of c is
specified. This is the price to pay for attaining nearly-optimal sensitivity: the variable to
be binned is optimized point-by-point in the c space.

The additional computational cost, in comparison with the cost of a regular binned
analysis on real LHC data, is not easy to quantify. A few considerations are reported below.
A realistic LHC analysis is affected by systematic uncertainties incorporated in a typically
large number of nuisance parameters. As previously explained, these parameters need to be
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incorporated in the likelihood by determining their effect on the expected Nb(c, ν) in each
bin using dedicated Monte Carlo data sets. This calculation is not a significant addition to
the total computational cost in a regular binned analysis, because it is performed once and
for all in the pre-defined bins. The most costly part of the analysis is the minimization over
the nuisance parameters, for each c, that has to be performed for the determination of the
Asimov estimate of the median tml

c as in eq. (4.10). For our strategy, one needs to run the
minimization, but also to first determine Nb(c, ν) at each point in the c space. The relative
computational cost of these two operations defines the additional cost of our proposal in
comparison with a regular binned analysis. The Bayesian counterpart of minimization, i.e. the
integration over the nuisance, would pose a similar challenge in the alternative approach
described in the next section.

4.4 Bayes factor

The problem of comparing the agreement with data of two hypotheses H0 and H1 — in
our case, the hypotheses that c assumes one given non-vanishing value, and the one that
c = 0, respectively — could be also addressed in a Bayesian framework without performing a
test of hypothesis. In this case, one would need to compute the Bayes factor, which is the
ratio of the posterior probabilities for the two hypotheses if the priors P (H1) and P (H0)
are equal.8 In the absence of nuisance parameters

B10(D) = P (H1|D)
P (H0|D) = L(0;D)

L(c;D) = e−λ(c;D) = etc(D)/2 , (4.11)

with λ the unbinned log-likelihood ratio in eq. (1.2) and tc(D) the optimal Neyman-Pearson
test statistic in eq. (2.26). A large value of B10, which corresponds to large and positive
tc(D), signals poor agreement of the H0 hypothesis with the data and in turn a low posterior
H0 probability.

If the exact distribution log-ratio τc(x) was known, we could simply evaluate tc(D),
compute the Bayes factor (4.11) and, based on its value, draw conclusions on the plausibility
of the null hypothesis H0. This could be done on a representative data set drawn under the
alternative c = 0 hypotheses — or the median could be computed over c = 0 toys — in order
to determine the expected sensitivity of the analysis. However, we do not have access to
τc(x), but only to the reconstructed τ̂c(x) and in turn to the reconstructed likelihood log-ratio
t̂c(D) in eq. (2.27). We can monitor the agreement between τ̂c and τc, but we have no way
to control quantitatively the departure of the reconstructed Byes factor B̂10 = exp(t̂c/2)
from the true Bayes factor.

It should be noted that the remark above is an obstruction to employ the reconstructed
Bayes factor for the analysis of the actual data, but an even more severe obstruction to
employ it as a metric to assess the performances of the distribution log-ratio reconstruction.
Errors on the determination of the log ratio can make B̂10 larger or smaller than the true
B10. In particular, any overfitting that makes τ̂c large and negative produces a large and
positive t̂c and in turn large B̂10. Therefore, monitoring B̂10 would not give any information
on the quality of the reconstruction and a model with larger B̂10 could easily be worse than

8In general, P (H1|D)/P (H0|D) = B10P (H1)/P (H0).
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one with smaller B̂10. The classical Neyman-Pearson median p-value is instead sensitive to
the quality of the reconstruction owing to the Neyman-Pearson Lemma, which guarantees
it to attain its absolute minimum when the true ratio is reconstructed, and obliges it to be
larger if the reconstruction is less accurate. This is the reason why a classical hypothesis
test was pursued in section 2.2.1 to define a performance metric and Bayesian inference
methods were not considered for that task.

We could, on the other hand, employ Bayesian inference on the analysis of the actual
data, by proceeding as follows. The distribution of the binned data is known exactly, hence
the Bayes factor can be exactly computed and reads

logBB
10(DB) =

∑
b∈B

[
Nb(c)− Nb(0)−Nb log

Nb(c)
Nb(0)

]
. (4.12)

We have seen that the binned data contain the same information as the original data set D if
the binning is performed on the τ̂c(x) variable, provided this variable is a good approximation
of τc(x). Errors in the τc(x) reconstruction can undermine the optimality of the analysis,
entailing some loss of information to occur in the process of binning. However, they do
not undermine eq. (4.12) as a consistent calculation of the Bayes factor for the binned
data, because the binned data are truly Poisson-distributed regardless of the variable that
is employed for binning.

It is interesting to notice that this binned Bayesian approach to exclusions is in fact very
similar to its frequentist counterpart based on the maximum likelihood ratio that we defined
in the previous section. Consider estimating the value of the Bayes factor that is expected to
be observed if the data are distributed as predicted by the SM, i.e. for c = 0. A reasonable
estimate is to evaluate the Bayes factor on the Asimov data set defined by eq. (4.6). This gives

logBB
01(DAB ) =

∑
b∈B

[
Nb(c)− Nb(0)− Nb(0) log

Nb(c)
Nb(0)

]
. (4.13)

This expression is equal to half the maximum likelihood ratio test statistics evaluated on the
Asimov set, as computed in eq. (4.9). The tml

c (DAB ) = 3.84 contour lines in figure 11, which
correspond to 95% CL frequentist exclusions, are thus also contours where the expected Bayes
factor equals exp(3.84/2) = 6.8. The two approaches thus give the same results up to the
conventional choice of the threshold for exclusion. On the other hand, notice that there is no
exact correspondence between the value of tml

c that will be observed on the truly collected
data set. Furthermore, nuisance parameters are treated differently in the Bayesian and in the
frequentist frameworks leading to potentially different findings in the two cases.

5 Conclusions and outlook

We studied the advantages of employing reweighted Monte Carlo events for learning the
dependence of the data distribution on the parameters of interest. We focused in particular
on the Wilson coefficients of EFT interaction operators, in the perspective of their extensive
investigation with the LHC and the forthcoming HL-LHC collider data. In section 2.1 we
defined our methodology. This extends our previous proposal in ref. [5] to exploit reweighted

– 42 –



J
H
E
P
0
3
(
2
0
2
4
)
1
1
7

Monte Carlo data sets for training. In section 3 we studied the performances of the new
methodology on the same benchmark problems of ref. [5], enabling direct comparisons.

Our first finding is that reweighted training data enable an accurate learning of the
distribution ratio even when the effect of the Wilson coefficients on the distribution is a small
correction to the SM prediction. This can be crucial in order to learn effects — within or
outside the EFT context — that cannot be parametrized and require point-by-point learning
with realistic values of the parameters, for which the effects are indeed small. Furthermore,
even if the effects can be parametrized like in the quadratic classifier setup, the capability of
reweighted training to capture small effects lies at the heart of the other major advantage
with respect to the methodology of ref. [5]: the weak sensitivity of the performances to
the choice of the values of the Wilson coefficients used for the training of the model (see
section 3.1.3). The method of [5] is on the contrary very sensitive to this choice. Even if
the origin of this sensitivity is understood, and criteria are defined in ref. [5] for an optimal
choice, the need of optimizing these hyper-parameters makes the proposal of ref. [5] harder
to implement systematically or to automate. For the methodology of the present paper
instead, a loose criterion of selecting the training points close to the sensitivity reach of the
experiment is enough for accurate learning.

In the table on the right panel of figure 5 we report (in the “r̂” entries) 95% CL expected
single-operator limits for the Wilson coefficient GW and Gφ on ideal simulations. They are
essentially identical in all directions of the plane to the limits obtained using the knowledge
of the exact r ratio (the “r” entries of the table). On the contrary, in ref. [5], a slight gap
in performances with the optimal reach could be observed in the GW direction.9 While the
sensitivity improvement is marginal, it should be noted that a total of 12M training points
were used in ref. [5], while only 3M are employed here. Furthermore, we saw in section 3.1.3
that almost identical performances would have been obtained using only 1M training points.
This shows that reweighted training enables a more accurate learning with fewer points.

All the advantages of reweighting listed above are specific to the problem of learning
the distribution ratio. On the other hand, our methodology also benefits from the generic
advantage of reweighting, which is to enable predictions in the entire space of the parameters
of interest using one single Monte Carlo sample generated at one point.

In the paper we also advanced, in section 2.2, the design of performance metrics to assess
the quality of the distribution ratio reconstruction. These metrics are extensions of ideas
from ref. [5], which however could be efficiently evaluated and employed systematically only
thanks to the fast and accurate Monte Carlo predictions obtained with reweighting. The main
performance indicator is the median p-value for the exclusion of EFT interactions. Its main
advantage is to assess the quality of the distribution ratio reconstruction in relation with
the actual experimental setup where it will be eventually employed for statistical inference.
The saturation of this quantity towards the absolute minimum — which can be only reached
with perfect reconstruction — signals that the quality of the reconstruction is sufficient for
optimal statistical inference using the data of the experiment under consideration. This

9The relevant results are in table 1 (specifically, the “QC” entries) of ref. [5]. Notice that the optimal reach
was estimated in ref. [5] using the near-Gaussian approximation rather than using bins (see section 2.2.2).
This results in a slight discrepancy between the “ME” limits of ref. [5] and the “r” limits of figure 5.
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defines a stopping criterion for the quality of the reconstruction, which should otherwise
be indefinitely improved with larger neural networks and training data sets until when
computationally feasible.

Finally, in section 4 we described how the learned distribution ratio could be used in
practice for statistical inference on real data, or for sensitivity projections. We focused in
particular on the task of setting exclusion limits point-by-point in the Wilson coefficient
parameter space by comparing the agreement with data of the SM hypothesis — where the
EFT Wilson coefficients vanish — with the hypothesis that they assume a given non-vanishing
value. The exclusion will be set where the SM agreement strongly exceeds the EFT agreement.
We saw that the problem can be addressed in a robust and computationally manageable
manner, without major sensitivity loss, by using the reconstructed ratio to bin the data. A
Bayesian approach to the problem is found to give the same result — in terms of sensitivity
projections, and in the absence of nuisance parameters — of a classical approach that exploits
Asymptotic formulas and the Asimov data set.

It should be noted that our ratio could be also used to reconstruct the unbinned likelihood
ratio and employed for a global EFT fit, like in ref. [10]. On the other hand, performing
a global fit is not necessarily the only or the most useful statistical inference task. The
result of the fit depends on the prior expectations on the Wilson coefficients, which in turn
depend on the microscopic physical model that gives origin to the effective interactions. Each
microscopic physics scenario gives origin to one subset of all possible dimension-six EFT
operators, or more generally it produces tight correlations between the Wilson coefficients of
different operators. The correct prior that corresponds to each microscopic physics scenario
should be used for a meaningful fit. A flat prior on all dimension-six operators, which is
typically employed in EFT global fits, is not a valid prior because it does not correspond
to the expectations of any known scenario: it never happens in concrete models that all
operators are generated with comparable coefficients and no correlation among them. Point-
by-point information in the Wilson coefficient parameter space, like the one we obtain with
the strategy of section 4, is instead meaningful regardless of the microscopic origin of the
EFT interaction operators. The information can be transferred easily to the parameter space
of any specific microscopic physics model.

Our methodology could be used for two distinct classes of applications. One is performing
systematic or even automated EFT sensitivity projections. The other, is performing real
analyses of the LHC data. The perspectives for progress in these two directions are discussed
in turn.

Automated nearly-optimal sensitivity projections would be extremely beneficial because
the number of EFT interaction operators, as well as the number of promising LHC processes
to detect their presence, are both large. Furthermore, each process is characterized by a
typically large number of potential observables that could help probe some of the possible EFT
operators. One out of many examples of non-trivial observables are the decay angles of the
bosons in the ZW process we studied in the present paper, and in ref. [5]. Their measurement
offers access to the leading contribution from the OW operator, which would on the contrary
cancel exactly if only the kinematical distributions of the two bosons were measured. We
would have discovered this fact empirically, if we had not known it theoretically, by observing
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strong sensitivity improvement due to the inclusion of the decay angles in the automated
nearly-optimal analysis, and/or by observing improvement in comparison with the sensitivity
of a regular analysis binned, for instance, on the transverse momentum of the bosons. A
similarly intricate interplay between observables and operators is definitely at work in many
other cases that have not been subject to a careful theoretical investigation. The discovery
of these phenomena enabled by automated sensitivity projections might eventually lead to
the design of suitable observables and binning strategies by which nearly optimal sensitivity
could be attained without using the learned distribution ratio in the actual analysis of the
data. Notice however that this has not yet been achieved for the GW operator in the ZW
process: the binned analysis performed in ref. [5] including binning over the decay angles in
order to access the relevant information about the decay of the bosons has a reach on GW

that is a factor of two larger than the nearly-optimal reach obtained with our methodology.

We consider that all elements are in place for the deployment of our methodology for
automated sensitivity projections. The scale of the problems to be faced is not different from
the one we addressed in the present paper with relatively limited computational resources.
It is likely that one would like to extend the analysis to a larger number of interaction
operators than the two operators we considered in the present paper. However, as discussed in
section 2.1.3, the fact that the dependence of the distribution ratio on the Wilson coefficient
is a quadratic polynomial implies that one can learn the dependence on any number of Wilson
coefficients without the need of training with more than two non-vanishing coefficients. A
parallelizable learning strategy was defined in section 2.1.3, based on which we expect to be
able to deal with tens of Wilson coefficients with reasonably available computational resources.
It is possible that further methodological advances will be achieved in the future. A direct
performance comparison with other approaches [6, 10] would facilitate the emergence of new
ideas for better and/or more efficient learning. However, the current state-of-the-art already
enables the systematic exploration of several LHC processes and EFT operators.

The actual perspectives for systematically employing the learned distribution ratio in the
analysis of the LHC data are instead still to be assessed. A major concern is the availability
of synthetic data for training, validation and testing. For the present paper, we used a factor
of few tens of thousands more data than the expected number of data points at the HL-LHC.
The majority of them were employed for testing purposes, namely for the evaluation of
performance metrics to assess the quality of the reconstruction ratio. Less accurate quality
studies than the one we performed here would require fewer testing points, and we saw that
also the size of the training data set could have been reduced without major sensitivity
degradation. Still, it is expected that order thousands of times more statistics than the actual
data would be required for the implementation of our strategy. Monte Carlo simulations
that simulate the response of the detector accurately are computationally costly, potentially
preventing the generation of such large data sets. Notice however that detector effects are
often modeled accurately by simplified simulation tools like Delphes [52], which are fast to
run. Training, validation and testing could be performed on Delphes samples, with the caveat
that the learned ratio will be an approximation of the exact ratio that corresponds to the
Delphes predictions, which is close but different from the true distribution ratio. Employing
the Delphes ratio for statistical inference on the actual data will not entail a strong departure
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from optimality, if the Delphes simulation is accurate. Clearly it will be essential to employ
a statistical inference methodology that is correct and internally consistent regardless of
the agreement between the reconstructed and the true ratio, like the one we outlined in
section 4. It is also essential that full detector simulations and not Delphes simulations
are used to perform the analysis of the actual data and for sensitivity projections. The
amount of simulated data required for this task is however expectedly not dissimilar from
the one needed for a regular analysis. A realistic treatment of nuisance parameters will
be also needed and this could challenge, for instance, the practical implementation of our
proposal in section 4 for real data analysis. The viability of this strategy should be assessed
for individual processes before drawing conclusions on the perspectives for the applicability
of our strategy to real data. It should also be noted that the SM background data sets in
real analyses of the LHC data often contain components that are estimated by data in a
control region—extrapolated to the signal region by transfer functions—and not by running
a Monte Carlo code. These data can be used like Monte Carlo data, that is included on top
of the Monte Carlo simulations of the EFT effects, but they must be available with sufficient
statistics and correctly model the distribution of all the relevant observables.

It is worth mentioning that strategies like ours aimed at learning the dependence of
the data distribution on parameters can find applications also outside the context of EFT
searches. One such application is to learn the dependence on nuisance parameters locally
in the space of observables x. Our parametrized classifier approach is perfectly suited for
this task because the nuisance parameters are precisely a parametrization of the effects of
imperfections in the theoretical predictions. Their effects are relatively small, hence they are
typically parametrized with a linear polynomial or other functional forms like an exponential
scaling factor to enforce cross section positivity strictly. All these options can be readily
implemented in a parametrized classifier as done in ref. [53] to learn the unbinned SM
likelihood in order to incorporate the effects of nuisance in an unbinned strategy for agnostic
new physics searches. When available, reweighted Monte Carlo data sets can facilitate the
learning task. A clear case is the one of uncertainties on the parton distribution functions,
which are incorporated in Monte Carlo event generators by event reweighting. It is expected
that our methodology could learn the effect of the many nuisance parameters associated
with parton distribution functions extremely efficiently.
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A Fully-leptonic ZW at high energy

We consider the production of a Z and of a W boson at the 14 TeV LHC, with a lower cut of
300GeV on their transverse momentum. The process is dominantly mediated by the reactions

uL dL → Z W + and dL uL → Z W− , (A.1)
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depending on the charge of the produced W boson. Leptonic decays are considered for
both bosons, namely

Z → ℓ+
χ ℓ−χ , W± → ℓ±L

(−)
νL , (A.2)

where ℓ is either an electron or a muon and χ = L, R denotes fermion chirality.
The observable final state contains three leptons. The lepton pair that emerges from

the decay of the Z boson can be identified as having opposite charge, same flavor (electron
or muon) and, in case of ambiguity, the closest invariant mass to the one of the Z particle.
The lepton chirality cannot be measured, hence the final states that are relevant for our
analysis are labeled by a total of three discrete indices: the total charge Q = ±1 of the
three leptons, which corresponds to the W boson charge; the flavor ℓZ = e, µ of the leptons
emerging from the decay of the Z; the flavor ℓW = e, µ of the W boson decay. These three
labels can be given as input to the neural network.

The neutrino escapes detection, however its momentum can be reconstructed starting
from the total missing transverse energy of the event by imposing that it originates, together
with an observable lepton, from the decay of a W boson. The reconstruction is performed by
imposing that the invariant mass of the pair formed by the neutrino and the visible lepton
is equal to the mass of the W particle. Since this defines a quadratic equation with two
solutions, the neutrino momentum reconstruction is possible only up to a twofold ambiguity.
We resolve this ambiguity by a random choice of the two solutions with equal probability
on an event-by-event basis.10 After the reconstruction, the following 7 variables are known
(see [5] and references therein) to be useful to characterize the kinematics of the event

{s, pT,ZW, Θ, θW , φW , θZ , φZ} . (A.3)

The first three variables describe the kinematics of the ZW pair, namely its total invariant
mass squared, its total transverse momentum, and the angle of the Z boson in the ZW rest
frame, relative to the direction of its boost in the lab frame. The remaining four variables
are the polar (θ) and azimuthal (φ) decay angles of the bosons in their rest frames. The
precise definition of these variables is detailed in [5, 46].

We aim, as in [5], at studying the two specific dimension-six interaction operators11

Oφ = Gφ

(
QLσaγµQL

)
(iH†

←→
DµH) , OW = GW εabcW

a ν
µ W b ρ

ν W c µ
ρ , (A.4)

by modeling their effects on the distributions with two different Monte Carlo event generators:
the ideal and the NLO generators. The ideal generator is based on a simplified description of
the process, relying on approximations that are not sufficiently accurate for the description
of the actual experimental data. However, it produces distributions that are similar to
those obtained with realistic simulations, and defines a learning problem with the same scale
of complexity. At the same time, its simplifying assumptions enable the exact analytical

10The on-shell equation has no solution when the lepton transverse mass exceeds mW because of experimental
errors or because the W resonance was far from its mass-shell. In this case, the neutrino momentum is
reconstructed by taking its rapidity to be equal to the one of the lepton. See [46] for details.

11We use the definition H†
←→
DµH = H†DµH − (DµH)†H.
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calculation of the distribution ratio r(x; c), to be compared with the reconstructed ratio r̂(x; c).
This comparison provides an important validation of our methodology. The NLO generator
offers instead an accurate description of the process, including radiative corrections from QCD
at the one-loop order. This additional theoretical complexity does not change the complexity
of the learning problem: the NLO distributions are similar to the ideal ones, the number of
variables is (almost, see below) the same and no new relevant sub-process kicks in at NLO in
the phase-space region that is relevant for the analysis. On the other hand, introducing NLO
effects confronts our methodology with the novel challenge of negative weights. In fact, NLO
corrections can be included in Monte Carlo data sets only by allowing for some of the events to
have negative weight we(c) < 0. Such events give a negative contribution to the loss function,
encouraging overfitting. It is thus important to validate our methodology also on NLO data.
No performance degradation will be observed, showing that our approach is perfectly suited
to deal with negative-weight Monte Carlo data, at least if the fraction of negative weight is
as small as for the state-of-the-art NLO generator that we employ in our study.

The next two sections provide a technical description of the ideal and of the
NLO generators.

A.1 Ideal generator

The ideal generator relies, in the first place, on the narrow-width approximation for the decay
of the two bosons. This enables us to factorize the scattering amplitude for the partonic
processes (A.1) in terms of a “hard” amplitude describing the production of on-shell bosons,
times the amplitudes that describe the decay of the bosons. The contributions of intermediate
on-shell bosons with different helicities need to be summed up at the amplitude level, leading
to the following expression for the differential cross section [5, 46]

dσ(ξ; c) =
∑
h,h′

dρhard
hZhW h′W h′Z

dρZ
hZh′Z

dρW
hW h′W

. (A.5)

In the equation, dρhard is the density matrix for polarized WZ production, namely

dρhard
hZhW h′Zh′W

= 1
24 s

MhZhW
(Mh′Zh′W

)∗ dΦZW , (A.6)

where dΦZW is the phase-space factor. Since we are studying high-energy production, we
can consider the limit of massless vector bosons. The non-vanishing production amplitudes
in this limit read

M00 = −g2 sin Θ̄
2
√

2
−
√
2Gφs̄ sin Θ̄ , M++ = M−− = 3gcwGW s̄ sin Θ̄√

2
, (A.7)

M−+ = −g2(s2
w − 3 c2

w cos Θ̄)
3
√

2cw
cot Θ̄

2 , M+− = g2(s2
w − 3c2

w cos Θ̄)
3
√

2cw
tan Θ̄

2 ,

where g is the SU(2)L coupling, cw and sw are the cosine and the sine of the Weak angle.12

We denote as s̄ and Θ̄ the center of mass energy squared of the ZW system and the polar
12An overall factor equal to the cosine of the Cabibbo angle has not been reported for shortness. The ones

above are the amplitudes for W + production. Those of the du → ZW− process can be obtained with the
formal substitutions Θ̄ → −Θ̄ and s2

w → −s2
w.
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angle of the Z boson in order to distinguish them from the observable variables s and Θ.
The relation between these quantities will be discussed later.

The density matrices dρW,Z describe the decay of the bosons. They take the generic form

dρV
hV h′V

= 1
2mV ΓV

AhV
A∗h′V , with Ah = −

√
2gV mV eihφ̄dh(θ̄) , (A.8)

where dh are Wigner-d functions, θ̄ and φ̄ are the angles of the fermion or anti-fermion of
+1/2 helicity produced in the decay in the rest frame of each boson. Once again, they are
denoted with a bar to distinguish them from the observable quantities. See ref. [5] for details
and for the explicit expression of the gV couplings. Notice that the coupling for the Z boson
decay depends on the chirality of the final-state leptons, denoted as χ in eq. (A.2).

We saw in section 1 that Monte Carlo generators work by sampling in a space of latent
variables ξ, which are later projected into the space of the observable variables x. It is
instructive to illustrate these generic considerations in the concrete case at hand, starting
from listing the latent-space variables and next discussing their relation with the observables.
The partonic cross section A.5 depends on the following latent variables

ξ = {Q, χ, s̄, Θ̄, θ̄W , φ̄W , θ̄Z , φ̄Z , y} . (A.9)

Notice that the list does not include the total ZW transverse momentum pT,ZW, which vanishes
exactly at tree level, and the flavor of the leptons produced in the decays, ℓW,Z . The latter
variables are excluded because electrons and muons behave identically in our approximation.
The latent variable vector also includes the rapidity, y, of the partonic system center of mass
frame. The partonic cross section A.5 is boost-invariant and hence independent of y. However,
the rapidity is needed for the complete characterization of the kinematics of the event.

The electric charge of the W boson, Q, is the only variable in eq. (A.9) that can be
measured experimentally, as the sum of the lepton charges. The chirality of the leptons from
the Z boson decay, χ, is not observable. All the kinematical variables including s̄ and Θ̄
depend on the momentum of the neutrino, which is not measured directly. Actually, even a
direct measurement of the neutrino momentum would not enable the complete determination
of all the variables. In particular, the Z boson angle Θ̄ must be measured relative to the
direction of the incoming quark, which cannot be determined from the kinematics of the
final-state particles. We circumvent this issue with the ideal generator by enforcing that the
quark is always coming from the same direction. For the more realistic simulations at NLO,
we instead compute the scattering angle assuming that the incoming quark is more energetic
than the anti-quark. This is a reasonable approximation given the shape of the corresponding
parton distribution functions. The approximation enables us to determine the direction of
motion of the quark as the direction of the boost of the ZW system.

The difficulty in relating the latent-space variables to the observables is immaterial for
event generation. We can merely sample the ξ variables according to their distribution (A.5),13

compute the momentum of the three leptons and obtain the observables

x = {Q , s, Θ, θW , φW , θZ , φZ} , (A.10)
13We duly take into account parton distribution functions, using the nCTEQ15 [54] set and the ManeParse [55]

Mathematica implementation. See [5] for details.
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by running on the Monte Carlo data the same reconstruction algorithm that we would employ
on the real data. The reconstruction involves the determination of the momentum of the
neutrino which we perform, as previously explained, by imposing the on-shell condition for
the W boson. A random choice is performed between the two solutions. The corresponding
binary random variable should be regarded as an additional component of the latent-space
vector (A.9).

Unlike in ref. [5], we are interested in Monte Carlo data sets that incorporate the
dependence on the Wilson coefficients c = (Gφ, GW ) by the technique of event reweighting.
We thus generate unweighted events at the SM point c = 0 and assign to each of them a weight

we(c) = we(0)
dσ(ξe, c)
dσ(ξe, 0) , (A.11)

where we(0) is equal to the total cross section — as obtained from the Monte Carlo integration
— divided by the number of events in the data set. The determination of the weights is
trivial, owing to the knowledge of the value assumed by the latent variables for each event,
ξe, and to the analytic knowledge of the cross section A.5 in the latent space. On the
other hand, the observable variables x do not contain enough information to compute the
weights. In particular, this means that the weights cannot be computed on real data points.
Notice dσ(ξ, c), and in turn we(c) — is a quadratic polynomial of c. The coefficients of
this polynomial are stored in the event file, providing the complete representation of the
c-dependent weight function we(c) for each event.

The existence of a complicated relation between the latent and the observable variables
is immaterial for event generation and for event reweighting, but it prevents in general the
analytical calculation of the differential cross section, dσ(x; c), in the space of observables.
In turn, this prevents the determination of the cross section ratio r(x; c). However, the
relation between latent and observable variables is in fact simple within the assumptions that
underpin the ideal description of the ZW process. In the narrow width approximation, the W
particle is exactly on-shell, therefore the true momentum of the neutrino obeys the on-shell
condition exactly. One of the two solutions to the on-shell equation — call them p

(a)
ν and

p
(b)
ν — is thus exactly equal to the true momentum. Furthermore, it was noticed in ref. [46]

that a very simple relation exists between the two solutions in the massless limit mW → 0.
The reconstructed neutrino momenta approach each other in the limit, p

(a)
ν = p

(b)
ν , but they

become collinear to the momentum of the lepton produced in the W decay. The W decay
angles determined on the two solutions depend on how the collinear limit is approached,
and they are not identical. One finds that

φ
(a)
W = π − φ

(b)
W , (A.12)

while the two determinations of the polar angle are instead equal, θ
(a)
W = θ

(b)
W . All the

other kinematical variables are identical on the two solutions because they both reconstruct
the correct W boson momentum pW = pν + pℓ. The reconstruction of the observable
variables (A.10), starting from the latent variables (A.9), thus simply amounts to identify
s, Θ, θW , θZ and φZ with their barred version and to assign

φW = φ̄W or φW = π − φ̄W , (A.13)

at random with equal probability.
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Figure 13. Density histogram of the correlation, on ideal Monte Carlo data, between the true
distribution log-ratio τ(xe) = log r(xe, c̄) and the logarithm of the weight ratio we(c̄)/we(0). The c̄

point has Gφ = 0 and GW = 10−2 TeV−2.

These simplifications allow us to compute the differential cross section dσ(x; c) easily,
obtaining an exact analytical expression for the distribution ratio

r(x; c) = dσ(x; c)
dσ(x; 0) . (A.14)

As discussed in [5], one simply needs to average over the twofold ambiguity (A.13) in the
reconstruction of φW , and to sum over the two possible chiralities χ = L, R of the Z boson
decay. The knowledge of the exact distribution ratio will be used to validate the performances
of our method on ideal data.

Given that dσ(x; c) can be computed, our strategy for event generation appears unneces-
sarily complicated: we could have sampled directly in the x space and ignored latent variables
altogether. Event reweighting could have been also easily implemented, leading to weights

w̃e(c) = we(0)
dσ(xe; c)
dσ(xe; 0)

= we(0) r(xe; c) . (A.15)

Unlike the we weights that we will employ in the rest of this paper, defined by eq. (A.11),
the w̃e weights are uniquely determined by the observable variables x. Furthermore, they are
proportional to the r-ratio computed on the event. However, this alternative approach to
event generation that does not employ latent variables is not viable, because our purpose is to
define an idealized but still realistic setup to validate our ability to learn r. The cross section
in the x space cannot be computed for realistic simulators. The usage of latent variables is
mandatory and we do not have access to the w̃e weights in eq. (A.15), but only to the we
weights (A.11) in the latent space. Using the knowledge of the w̃e weights would define an
unrealistically simple problem that is not suited for the validation of our methodology.

It is instructive to discuss in more detail why employing the w̃e weights in place of the
we weights would define an overly simple problem. Consider learning the distribution ratio
at a specific point c = c̄ in the parameter space, as described in section 2.1.1. We have
shown that by employing a flexible set of trainable functions to model the classification
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function f(x) ∈ (0, 1) we obtain, after training with the loss function in eq. (2.1), a good
approximation r̂(x; c̄) of the distribution ratio. Owing to eq. (2.3), after training

f(x) = 1
1 + r̂(x; c̄) . (A.16)

This result holds provided the training data offer a consistent representation of the x

distribution, which is the case both if the reweighting is performed in the space of latent
variables with the we weights, or if instead the w̃e weights are used. However, in the latter case
the training problem becomes trivial because the loss function in eq. (2.1) can be rewritten as

ℓ[f(·)] =
∑
e∈S

[
we(c̄) + we(0)

] [
f(xe)−

1
1 + we(c̄)/we(0)

]2
+

∑
e∈S

we(c)we(0)
we(c) + we(0)

. (A.17)

The second term is a constant, irrelevant for the minimization. Consider the first term, and
suppose employing the w̃e weights in place of the we weights. Since w̃e(c)/w̃e(0) = r(xe, c̄),
by eq. (A.15), we see that the first term of the loss function is proportional to the square of
the difference between the trainable function f and the target function 1/(1 + r), evaluated
on the training points. This is the typical form of the loss function one would employ for
regression. In fact, eq. (A.17) shows that our learning problem reduces to a trivial problem
of regression without noise, if the w̃e weights were used for training. This would not offer
a fair representation of the realistic problem.

In order to appreciate how far our actual problem is from a regression, we show in
figure 13 a density histogram that displays the correlation between the true distribution ratio
r(xe; c̄) and the ratio of the weights, we(c̄)/we(0), on the generated events. More precisely, we
plot τ = log r versus the logarithm of the weights ratio. The c̄ point used for illustration has
Gφ = 0 and GW = 10−2 TeV−2. We observe a loose correlation between the two quantities.
Our problem is thus very far from a regression. It could still be described as a regression,
but one with large and non-Gaussian noise. We can compare figure 13 with the central and
right panels of figure 1 in section 3.1, which displays the much tighter correlation between
the true τ and the reconstructed τ̂ = log r̂, obtained of course from training with the we
weights and not with the w̃e weights.

A.2 NLO generator

Our NLO event generator is based on the MadGraph_aMC@NLO [38] software suite, ver-
sion 2.9.3, using Pythia 8.245 [56, 57] for showering. We generate the complete
2 → 4 processes

pp → ℓ+ℓ+ℓ−νℓ and pp → ℓ−ℓ−ℓ+ν̄ℓ , (A.18)

with ℓ = e, µ. Loose generation-level cuts are imposed to avoid singularities. The generated
events are passed through Delphes [52] for clustering. The Delphes “GenJet” objects, which
do no include detector effects, are used for the analysis. Clustering is performed with the
anti-kT algorithm with cone radius ∆R = 0.1. If leptons and photons carry more than 90%
of the GenJet cluster, the cluster is labeled as a lepton with the same flavor of the most
energetic lepton. Otherwise, it is labeled as a QCD jet.
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We impose the following acceptance cuts on the reconstructed leptons

pℓ
T > 25 GeV , ηℓ < 2.5 , (A.19)

and a minimum separation ∆R > 0.4 between the lepton and the jets. Only events with
exactly three leptons that satisfy these requirements — two of which with opposite charges
but the same flavor — are kept for the analysis. We further ask for a minimum missing
energy /ET > 30 GeV.

The leptons coming from the Z boson have same flavor and opposite charge. If more
than one lepton pair exists with these properties — because all three leptons have the same
flavor — the pair with invariant mass closest to the mass of the Z boson is chosen. The
other lepton is assumed to be coming from a W boson with the same charge as the lepton.
After the Z and W decay products are identified, we compute the invariant mass mZ∗ of
the virtual Z, the transverse mass mT,W ∗ of the W boson and the transverse momenta of
the Z and of the W, and we impose the selection cuts

70 GeV < mZ∗ < 110 GeV , mT,W ∗ < 90 GeV , min[pT,W , pT,Z ] > 300 GeV . (A.20)

We finally reconstruct the neutrino momentum as previously explained and compute the
vector of observables

x = {Q, ℓZ , ℓW , s, Θ, θW , φW , θZ , φZ , pT,ZW} . (A.21)

The events are generated according to the SM hypothesis c = 0 and are then
reweighted. We use the automated reweighting at NLO accuracy that is available in
MadGraph_aMC@NLO, with the implementation of the EFT operators (A.4) that is
provided in the SMEFTatNLO model [39]. The coefficients of the quadratic polynomial that
defines we(c) are computed and stored in the event file.

In comparison with the ideal data in eq. (A.10), more observables are considered at
NLO (A.21). The flavor ℓZ,W of the leptons are included because the NLO generator accounts
for the effect of QED showering, through Pythia. The electron and the muon shower differently,
hence their distributions are not identical unlike in ideal data. These additional discrete labels,
like the charge Q, will be given as input to the neural network. NLO data also include the total
transverse momentum of the ZW system, pT,ZW, which emerges from the real QCD radiation.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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