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Abstract

Recent advancements in fabrication techniques have enabled unprecedented clean inter-
faces and gate tunability in semiconductor-superconductor heterostructures. Inspired by
these developments, we propose protocols to realize Thouless quantum pumping in elec-
trically tunable Josephson junction arrays. We analyze, in particular, the implementation
of the Rice-Mele and the Harper-Hofstadter pumping schemes, whose realization would
validate these systems as flexible platforms for quantum simulations. We investigate nu-
merically the long-time behavior of chains of controllable superconducting islands in the
Coulomb-blockaded regime. Our findings provide new insights into the dynamics of pe-
riodically driven interacting systems and highlight the robustness of Thouless pumping
with respect to boundary effects typical of superconducting circuits.

Copyright S. Athanasiou et al.
This work is licensed under the Creative Commons
Attribution 4.0 International License.
Published by the SciPost Foundation.

Received 07-09-2023
Accepted 11-03-2024
Published 22-03-2024

Check for
updates

doi:10.21468/SciPostPhys.16.3.083

Contents

1 Introduction 2

2 Josephson junction arrays in hybrid superconductor - semiconductor platforms 3
2.1 Rice-Mele Hamiltonian 7
2.2 Harper-Hofstadter Hamiltonian 8
2.3 Coupling with external superconducting leads 9

3 Results of the Rice-Mele model 10
3.1 Role of the Josephson modulation 12
3.2 Coupling with the leads 13
3.3 Nearest-neighbor interactions 15

1

https://scipost.org
https://scipost.org/SciPostPhys.16.3.083
mailto:michele.burrello@nbi.ku.dk
http://creativecommons.org/licenses/by/4.0/
https://crossmark.crossref.org/dialog/?doi=10.21468/SciPostPhys.16.3.083&amp;domain=pdf&amp;date_stamp=2024-03-22
https://doi.org/10.21468/SciPostPhys.16.3.083


SciPost Phys. 16, 083 (2024)

4 Results of the Harper-Hofstadter model 16

5 Experimental implementation of the pumping schemes 19
5.1 Physical parameters to achieve the topological pumping 19
5.2 Coupling with the environment and dissipation 21

6 Conclusion 22

A Thouless pumping and Chern number 24

B Breakdown of the hardcore regime in the Rice-Mele protocol 25

References 27

1 Introduction

Josephson junction arrays (JJAs) and their intricate many-body physics have captivated the
attention of researchers since ground-breaking experiments in the 1990s (see the review [1]).
Due to the possibility of engineering complex networks and their long-range coherence, JJAs
have also been one of the leading candidates for quantum simulators in solid-state devices.
Their practical application as quantum simulators, however, has been hindered by techno-
logical limitations: on one side, difficulties in tuning their physical parameters entailed the
necessity of fabricating multiple devices to explore their phases of matter (see, for instance,
Refs. [2–6]), thus impeding detailed investigations; on the other, irregularities in the self-
capacitance, induced charge, and Josephson coupling of the superconducting elements, re-
sulted in an uncontrolled disorder.

These limitations have been mitigated by recent advancements in epitaxial growth tech-
niques [7] that have paved the way for the realization of clean superconductor-semiconductor
(SC-SM) interfaces. These breakthroughs enable an unprecedented tunability of the Joseph-
son couplings through electrostatic gates [8–12], as well as the fabrication of multiple quan-
tum dots on the same hybrid device [13, 14], thereby revolutionizing the potential of JJAs
as quantum simulators. Moreover, SC-SM platforms allow for on-chip patterning of arbitrary
geometries in one and two dimensions, a precise control of the magnetic fluxes in these sys-
tems [11, 12], and a relatively easy scalability. All these elements motivate the theoretical
design of novel phases of matter and quantum simulation protocols on controllable JJAs.

In this respect, topological phases of matter are an ideal target for quantum simulations in
solid-state platforms due to their intrinsic robustness against disorder, noise, interaction, and
possibly dissipation. When combined with a time-periodic driving, one can engineer novel
out-of-equilibrium states with no static analogs, known as Floquet topological phases [15–
20]. Among these, one of the simplest yet profoundly intriguing examples is Thouless pump-
ing [21–23], a phenomenon arising in one-dimensional (1D) insulators with suitable time-
periodic driving of the system parameters. The topology behind this phenomenon leads to
quantization of the charge adiabatically pumped during each driving period; in 1D JJAs, this
corresponds to a current I = 2eΩC, with Ω being the pumping frequency and C a suitably
defined Chern number characterizing the filled energy bands. Although theoretically well un-
derstood, experimental implementations of Thouless pumping have so far been confined to sys-
tems of ultracold atoms [24–28], optical waveguides [29], magneto-mechanical systems [30],
and superconducting quantum processors [31] which fall short in capturing genuine transport
phenomena of charged particles.
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In this paper, we propose an innovative approach that combines a JJA with the ability to
finely tune the induced charge on each SC island and the corresponding Josephson couplings.
Through numerical simulations of 1D arrays in the Coulomb-blockaded regime, we focus on
the long-time behavior of such systems. To investigate this limit, we connect a Josephson
junction chain with superconducting leads that act as Cooper pair (CP) reservoirs. We study
the effect of the electrostatic repulsion arising from the cross-capacitance between neighbor-
ing islands and show that topological pumping is remarkably robust with respect to both the
coupling to the leads and nearest-neighbor interactions. Our proposal is qualitatively differ-
ent from former experiments based on geometrical pumping which rely on optimal control of
the pumping protocol (e.g. Ref. [32] for electron junction systems and Ref. [33,34] for super-
conducting transistors). Topological pumping, on the other hand, is predicted to be robust
against disorder [35–37] and imperfections in the modulations [22,38]. Its resilience against
disorder, in particular, has also been experimentally investigated in ultracold Yb gases [27].
Our findings shed new light on the role of interaction and dissipation in topological pumping
schemes, which are currently at the core of intense debate [23,39–41]. Through this research,
we expand our understanding of JJAs as versatile platforms for quantum simulations while
unveiling new insights into topological phenomena and the dynamics of interacting systems.

The paper is organized as follows: In Sec. 2 we derive a bosonic model from the Hamil-
tonian of a 1D JJA. In particular, we specialize on two models characterized by nontrivial
topological properties: the Rice-Mele (RM) model [42, 43], which we introduce in Sec. 2.1,
and the Harper-Hofstadter (HH) model [44, 45], presented in Sec. 2.2. Our analysis of topo-
logical pumping in Josephson junction chains based on the RM model is presented in Sec. 3,
where we investigate in detail the role of the coupling with external superconducting leads and
the effects of nearest-neighbor interactions. In order to show that the findings are not model-
specific, but hold on a wide class of periodically driven systems, we report further numerical
analysis on the HH model in Sec. 4. In Sec. 5 we discuss the energy scales and constraints rele-
vant to realistic experimental implementations. Finally, we draw our conclusions and present
future outlooks in Sec. 6. Appendix A provides a brief overview of the relation between the
quantization of the pumped charge and the Chern number associated to the pumping scheme.
Appendix B presents data about the RM protocol for weak charging energies.

2 Josephson junction arrays in hybrid superconductor - semicon-
ductor platforms

Recent developments in the epitaxial growth techniques of hybrid SC-SM materials [7] allow
for the fabrication of 1D and 2D arrays of superconducting islands lithographically patterned in
arbitrary geometries [10–12] and contacted to a semiconducting substrate through atomically
pristine interfaces [46]. In such devices, the filling of the substrate can be controlled via a
global electrostatic gate (a top gate in the experiments in Refs. [10–12]). Additionally, smaller
gates can be used to locally change the potential and density of states of the SM [9].

In the following, we consider devices defined by a 1D chain of superconducting islands
of sub-micrometer size. For Al islands, the typical critical temperature of such systems is
∼ 1.6K [10], and we regard the related superconducting gap as the largest energy scale in
the description of these systems. As a consequence, when operating at temperatures of the
order of a few tens of milliKelvins, as customary in experiments, we can neglect effects de-
termined by the Bogoliubov quasiparticle excitations of the islands. We can thus describe the
low-energy physics of these JJAs by considering solely the dynamics of their CPs.

For a neighboring pair of SC islands, the dynamics can be modeled through the interplay
of two kinds of interaction; first, the electrostatic interaction determined by the capacitance
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Figure 1: Chain of superconducting islands (dark blue) on top of a semiconducting
substrate (green). Next to every island is a T-shaped side gate with tunable voltage
Vg, j . At each end of the chain, there is a superconducting lead.

matrix which describes not only the potential induced on one island by the charge of the other,
but also the charges induced in both islands by the surrounding environment. Second, the
tunneling of CPs between the two islands, which define an effective SC-SM-SC junction where
the coherent hopping of CPs is mediated by Andreev states [47]. These states are induced
in the SM layer below the two islands, where superconductivity is induced by proximity [9],
and in the in-between region. Both interactions can be affected by neighboring electrostatic
gates. Let us consider, for instance, a 1D chain as the one depicted in Fig. 1. In this setup, each
superconducting island is addressed by a side gate at potential Vg, j , controlling the induced
charge 2eng, j = Vg, jC

g
j . Additionally, we assume that a cutter gate at potential Vc, j can control

the filling of the semiconducting region in proximity of each Josephson junction and thereby
its transparency. In this way, the effective coherent hopping amplitude of CPs between the
islands can be modulated by varying the carrier density in the SM [9] and potentially turned
off by totally depleting the substrate.

At low temperature, the JJAs can be modeled through a standard quantum phase model
(see, for instance, the review [1]). To describe a chain as the one depicted in Fig. 1, we assign a
superconducting phase operator ϕ̂ j and a number operator N̂ j to each superconducting island.
N̂ j defines the number of CPs in the island with respect to an arbitrary offset. The two operators
obey the standard commutation relation [N̂ j , eiϕ̂ j ] = −eiϕ̂ j , and eiϕ̂ j annihilates a CP in the
island j. The Hamiltonian for the chain is written as Ĥ = ĤC + ĤJ and describes the interplay
between the electrostatic interactions and CP tunneling, respectively. Let us first consider the
charging energies of the islands in the chain, defined by

ĤC = 4e2
M
∑

i, j=1

C−1
i j (N̂i − ng,i)(N̂ j − ng, j) . (1)

Here C−1 is the inverse capacitance matrix of the islands and M is the number of islands in the
chain. However, by assuming that the semiconducting environment and the electrostatic gates
in the hybrid device effectively screen the charge of the SCs, we reduce the sum to single-island
and nearest-neighbor interactions:

ĤC ≈ EC

M
∑

j=1

(N̂ j − ng, j)
2 + ECC

M−1
∑

j=1

(N̂ j − ng, j)(N̂ j+1 − ng, j+1) . (2)

In this equation, we introduced two customary energy scales: EC = 4e2/C self sets the charg-
ing energy of a single island, with C self being the sum of all capacitances to the other islands
and environment elements; ECC = 4e2(C−1) j, j+1 determines the electrostatic energy between
neighboring islands. We will assume for simplicity that these quantities are translationally
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invariant, which is the expected behavior for a strong screening imposed by the environment.
Weak variations along the chain, however, do not affect our analysis and can be easily ac-
counted for. ng, j is the charge induced in each superconducting island and can be controlled
by the surrounding electrostatic gates (see Fig. 1). In particular, we assume that each induced
charge ng, j is primarily controlled by the voltage of the side gate addressing the island j,
ng, j = Vg, jC

g
j /2e. Here Cg

j defines the mutual capacitance between the island j and its neigh-
boring side gate. More complex scenarios to account for the charge induced by all electrostatic
gates can be easily investigated. The energy scale EC is determined by the geometry of the
islands and their electrostatic environment. We consider, as an example, gated devices with Al
islands patterned over an InAs 2D electron gas; for rectangular islands of size∼ 750nm×80nm,
the resulting charging energy is approximately EC ≈ 0.125meV≈ h30GHz [48].

The coherent tunneling of CPs is modeled by the Hamiltonian

ĤJ = −
M−1
∑

j=1

EJ , j cos
�

ϕ̂ j+1 − ϕ̂ j − θ j, j+1

�

. (3)

Here EJ , j is the Josephson coupling between island j and j + 1 and the Peierls phase

θ j, j+1 =
2e
ħhc

∫ j+1
j A⃗ d x⃗ is the line integral of the vector potential A⃗ along a path between island

j and j + 1, which accounts for the role of the magnetic field when embedding the chain in a
closed superconducting loop. Eq. (3) corresponds to tunneling of single CPs between neigh-
boring islands. Hence, we are neglecting terms characterized by higher harmonics of the phase
difference ϕ̂ j+1 − ϕ̂ j . In SC-SM-SC junctions, such an approximation is justified for cases in
which the transmissibilities of the Andreev channels connecting the islands are low [47]. This,
in turn, corresponds to a sufficiently depleted semiconducting substrate. Higher-harmonic
terms can be considered as well, giving rise to non-quadratic interactions in terms of the anni-
hilation and creation operators of CPs (for instance, coherent tunnelings of charge 4e objects).
These are, however, considerably weaker than the energy scale EJ , j of the single-CP tunneling,
and we expect them not to play a crucial role in the implementation of Thouless pumping.

Concerning the Josephson amplitudes EJ , j , these can be globally controlled by a top gate
as in Ref. [10], and the maximal value vastly depends on the width and length of the junction.
Additionally, for the implementation of the RM model, we require the ability to separately
address them through the voltage Vc, j of suitable cutter gates. In general, the function EJ , j(Vc, j)
may be complicated (see the experimental data related to gate-tunable devices in Refs. [49–
51]). We consider, however, a regime in which EJ , j = 0 when Vc, j is below a certain threshold
V ∗c, j , such that the substrate is totally depleted, and, for simplicity, we impose that EJ , j is
approximately linear in Vc, j above this threshold [see Fig. 3(a)]. Importantly, the topological
character of the RM model makes the pumped current robust against the details of the function
EJ , j(Vc, j) as long as it is monotonic and sufficiently regular. Therefore, we consider a device
in which the average value of the Josephson coupling EJ , j is set by a global gate, whereas an
additional periodic time modulation can be imposed by the cutter gate voltages. Experiments
on hybrid Josephson junction showed that, for a width of about 0.3µm, the amplitude EJ
at zero cutter voltage is of the order of h50GHz [9] and it can be switched off by applying
sufficiently strong negative potentials (see, for instance, Ref. [50]).

When the Josephson energy dominates over the electrostatic terms, the system displays
global phase coherence and behaves as a SC, allowing for coherent transport of CPs. Instead,
the regime in which the electrostatic interaction EC dominates over the Josephson energies
EJ , j , results in an insulating phase unless all the induced charges ng, j are fine-tuned close to
1/2. In this scenario, the transport of CPs across the chain is suppressed, as we can consider
each island in a Coulomb-blockaded state. In order to devise charge pumping protocols, we
consider the regime EC , j > EJ , j , ECC , j , and, initially, we neglect the nearest-neighbor electro-
static interactions. We can rewrite the Hamiltonian Ĥ by introducing the operators Σ̂ j = eiϕ̂ j
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Figure 2: Charging energy of a single island as a function of the induced charge ng, j
for states with N − 1, N , etc. CPs. The thicker red and blue curves mark the two
charge states we consider in the hardcore-boson approximation and the shaded area
is the maximum region of validity of such an approximation. The effective chemical
potential is the energy difference between the N + 1 (blue) and N (red) parabolas.

and Σ̂†
j = e−iϕ̂ j which, respectively, lower and raise the number of CPs in the island j by 1,

such that [N̂ j , Σ̂ j] = −Σ̂ j . We obtain:

Ĥ =
M
∑

j=1

EC(N̂ j − ng, j)
2 −

1
2

M−1
∑

j=1

EJ , j

�

Σ̂†
j+1Σ̂ j e−iθ j, j+1 +Σ̂†

j Σ̂ j+1 eiθ j, j+1
�

. (4)

This expression shows explicitly that the quantum phase model corresponds to a tight-binding
Hamiltonian for the CPs.

The dispersion of the charging energy of a single island is depicted in Fig. 2 as a function
of the induced charge ng, j for different number states. When ng, j is a half-integer, states that
differ by one CP are degenerate; let us consider, for instance, the case ng ≈ 0.5. If EJ ≪ EC ,
we may assume that only the two lowest-energy states, with charge N = 0 and N = 1, are
significantly occupied. States corresponding to the other parabolas are separated in energy by a
gap ∼ 2EC and their population in the many-body ground state is negligible. Therefore, under
the assumption EC > EJ , j , T , where T is the system temperature, we can further simplify our
description of the JJA and map the Hamiltonian Ĥ into a hardcore boson model. We may then
replace Σ̂ j by a new hardcore boson operator b̂ j , such that b̂†

j b̂ j = {0, 1} and b̂2
j = (b̂

†
j )

2 = 0.
The energy difference between the two lowest charge states is EC(1−2ng, j) for ng ≈ 0.5 (Fig.
2). Hence, we can define an on-site potential, resemblant of an effective chemical potential,

µ j = EC(1− 2ng, j) , (5)

which vanishes for ng, j = 0.5. We rewrite the total Hamiltonian (with ECC = 0) as a tight-
binding model of hardcore bosons:

Ĥ = ĤC + ĤJ ≈
M
∑

j=1

µ j b̂
†
j b̂ j −

1
2

M−1
∑

j=1

EJ , j

�

b̂†
j+1 b̂ j eiθ j, j+1 +H.c.

�

. (6)

This Hamiltonian shows that, in the hardcore limit EC ≫ EJ , j , the system can be mapped into
a chain of free fermions via a Jordan-Wigner transformation. Any time modulation of the
electrostatic gates would translate into a time modulation of the onsite potentials µ j and the
tunneling amplitudes EJ , j . Hence, by implementing a suitable periodic modulation of these
parameters, we expect that the Josephson junction chain is able to reproduce the physics of
periodically driven systems of non-interacting fermions.
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In the following, we will focus on the two most known schemes for the realization of adi-
abatic Thouless pumping: the periodically driven RM model and HH model. We restrict our
analysis to the hardcore boson description: its breakdown and the effect of onsite interac-
tions in the RM model have been theoretically investigated in Ref. [40]. We provide a further
analysis on the hardcore boson approximation specialized to JJA platforms in Appendix B.

Both models rely on a periodic drive of the onsite potential. We consider a generic time
modulation of the side gates with

Vg, j(t) = V0, j +δVg, j cos
�

ωt +χ j

�

, (7)

where ω= 2πΩ. Such modulation yields:

µ j(t) = µ0, j −δµ cos
�

ωt +χ j

�

≡ EC

�

1−
Cg

j V0, j

e

�

−
EC Cg

j δVg, j

e
cos
�

ωt +χ j

�

. (8)

If µ0, j ≈ µ̄ is approximately independent of the position along the chain, it plays the role of
an overall chemical potential for the hardcore bosons. The static voltages V0, j can therefore
be used to set the average filling of the system. In case of position-dependent variations of the
Cg

j parameters, instead, these voltages can be tuned to reduce the fluctuations of the onsite
potentials µ0, j which, essentially, play the role of onsite disorder in the Hamiltonian (6). Fi-
nally, the oscillation amplitudes δVg, j determine the modulation of the onsite potential, which
is additionally characterized by a position-dependent phase χ j that we will suitably set to im-
plement the RM and HH models, as described in the next subsections. Throughout this paper,
we set ħh= 1.

2.1 Rice-Mele Hamiltonian

The RM model [42] offers the most paradigmatic example of topological pumping in 1D sys-
tems. It is a model with a two-site unit cell, and its hardcore boson formulation is defined by
a time-periodic Hamiltonian of the form

ĤRM (t) =
M/2
∑

j=1

�

µA(t)b̂
†
2 j−1 b̂2 j−1 +µB(t)b̂

†
2 j b̂2 j

�

−
EJ ,1(t)

2

M/2
∑

j=1

�

b̂†
2 j−1 b̂2 j +H.c.
�

−
EJ ,2(t)

2

M/2−1
∑

j=1

�

b̂†
2 j b̂2 j+1 +H.c.
�

. (9)

Here we consider a chain with an even number of islands M and open boundary conditions.
The instantaneous spectrum of ĤRM in the thermodynamic limit displays two bands with a
linear level crossing at EJ ,1 = EJ ,2 and µA = µB. For µA = −µB the ground state is found at half-

filling, and it is useful to define the two-component parameter vector h⃗ =
� EJ ,1−EJ ,2

2 ,µA−µB

�

.

The time-dependent single-particle gap is given by |h⃗(t)|, and a topological charge pumping
is obtained when h⃗(t) winds around the gapless point h⃗= 0 during one period.

To implement Thouless pumping, we adopt a modulation of the kind in Eq. (8) for the
onsite potentials and, in particular, we choose V0, j such that all islands are tuned close to the
charge degeneracy point µ0, j = 0 between the lowest energy parabolas (Fig. 2). In order to
enforce

µA(t) = −µB(t) = δµ sin(ωt) , (10)

we set χ j = (−1) j+1π/2 and choose modulation amplitudes δVg, j such that δµ is approxi-
mately constant along the chain. We observe that a residual µ̄ may reduce the energy gap of
the system, but in the limit of adiabatic pumping, it does not affect the pumped charge as long
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V ∗c
Vc,j

0.0

0.5

1.0

E
J
,j

(a)

0 π 2π

ωt

0.0

0.5

E
J
,j

(b)
EJ1

EJ2

0 π 2π

ωt

0.0

0.7

E
J
,j

(c)
EJ1

EJ2

Figure 3: (a) The blue curve displays the approximation considered to model the
Josephson energies EJ , j as a function of the cutter gate voltage Vc, j (arbitrary units).
The dashed vertical line indicates the threshold V ∗c below which EJ , j is considered
zero. Yellow and blue shaded areas schematically indicate the voltage range for the
sinusoidal and clipped modulations, respectively. Panels (b) and (c) display the cor-
responding modulated EJ , j(ωt); green and purple curves refer to odd and even junc-
tions, respectively.

as it remains sufficiently smaller than the single-particle gap at all times. The modulation of
the Josephson energies EJ , j(Vc, j) is achieved by time-periodic voltages in the cutter gates. In
particular, we adopt the following signals:

Vc, j(t) = Vc + (−1) j+1δVc cos (ωt) . (11)

We assume that all junctions in the chain are characterized by the same parameters, such that
this modulation approximately results in Josephson amplitudes of the kind

EJ , j(t) = fl r

�

J0 + (−1) j+1δJ cosωt
�

, (12)

where fl r is a linear rectifier function, with fl r(x) = x if x > 0 and fl r(x) = 0 otherwise, see
Fig. 3(a). Vc is used to control the offset J0 and the modulation δJ is roughly proportional
to δVc . If Vc − δVc > V ∗c , the Josephson amplitudes EJ , j are always positive and display a
sinusoidal modulation [see the example in Fig. 3(b)]. If instead Vc −δVc < V ∗c , EJ , j(t) = 0 for
a fraction of the time period and its modulation is clipped below zero [Fig. 3(c)].

The time-periodic nature of the Hamiltonian HRM allows us to consider the time coordinate
as a second dimension for the momentum, such that we can assign a Chern number C to each
energy band [21]. For the considered modulations, the Chern numbers are C0 = 1, C1 = −1,
where the index n = 0,1 labels the single-particle bands, resulting in an adiabatic Thouless
pumping at half filling with average current I = 2eC0Ω.

2.2 Harper-Hofstadter Hamiltonian

The 2D Hofstadter model [44] provides the simplest description of charged particles moving
on a square lattice and subject to a uniform out-of-plane magnetic field. The dynamics of
the model is determined by the magnetic flux per plaquette and the corresponding Aharonov-
Bohm phase Φ acquired by a particle that moves around it. Incommensurate values of the flux
result in the celebrated Hofstadter butterfly fractal spectrum, while for commensurate values
Φ = 2πp/q, the system can be modeled in the Landau gauge by introducing a q-site unit cell,
and displays q energy bands with non-trivial Chern numbers.
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Figure 4: Spectrum of the Harper-Hofstadter model as a function of momentum and
time at Φ= 2π/3 for δµ= 0.4EJ and µ̄= 0.

The equivalent driven 1D Hamiltonian, known as the Harper-Hofstadter model, is obtained
by replacing one of the momentum components of the Hofstadter model by the time coordinate
and, for hardcore bosons, it reads:

ĤHH(t) =
M
∑

j=1

[µ̄−δµ cos (ωt −Φ j)] b̂†
j b̂ j −

EJ

2

M−1
∑

j=1

�

b̂†
j+1 b̂ j + b̂†

j b̂ j+1

�

. (13)

The realization of this model in the Josephson junction chains requires exclusively the mod-
ulation (8) of the onsite potentials and is obtained by setting a position-dependent phase
χ j = Φ j in Eq. (7). In particular, setting Φ = 2π/3 yields the simplest example of the gapped
Hofstadter model. It corresponds to a 3-island periodicity of the phase χ j and, in the thermo-
dynamic limit, it yields three bands of the instantaneous spectrum (see Fig. 4), characterized
by Chern numbers Cn = 1,−2,1. The band gap is proportional to the minimum between EJ/2
and δµ.

The realization of the corresponding pumping scheme does not require a modulation of the
Josephson amplitudes. Furthermore, the uniform and constant potential µ̄ can be changed by
regulating the voltage offsets V0, j and be used to set the overall filling of the CPs. The Thouless
pumping is achieved when µ̄ lies in either of the band gaps depicted in Fig. 4. In particular,
the charge pumped adiabatically in the thermodynamic limit is proportional to the sum of the
Chern numbers of the filled bands: this implies that by varying µ̄ from the first to the second
gap, we expect the pumped current to change sign from 2eΩ to −2eΩ.

2.3 Coupling with external superconducting leads

So far, we have discussed the modeling of isolated Josephson junction chains. To investigate
their transport properties, however, it is necessary to embed these systems in a larger environ-
ment. Specifically, our aim is to model the driven transport of CPs across such JJAs. Therefore,
the most convenient choice is to include two superconducting leads coupled to the first and
last island of the chain (depicted in light blue in Fig. 1 and labeled by SCL and SCR). To this
purpose, we supplement the Hamiltonian Ĥ with a boundary term that describes a Josephson
junction between the two extreme islands and the related superconducting leads [52]

Ĥb = −EL [cos (ϕ̂1 − ϕ̂L) + cos (ϕ̂R − ϕ̂M )] , (14)
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where EL describes the associated Josephson energy which we consider constant in time. By
assuming that both leads are described by standard BCS coherent states, we can replace the re-
lated phase operators ϕ̂L/R with classical phases ϕL/R. When embedding the JJA in an external
SQUID, the phase difference φ = ϕR−ϕL would correspond to the magnetic flux threading it.
We observe that such a phase difference can be absorbed in the Peierls phases θ j, j+1 in Eq. (3)
by a suitable gauge transformation.

In the hardcore limit, the boundary Hamiltonian Ĥb becomes

Ĥb = −
EL

2

�

eiϕL b†
1 + eiϕR b†

M

�

+H.c. (15)

This boundary term violates the conservation of the total number of CPs in the chain, such
that, in general, the many-body ground and Floquet states will be superpositions of different
particle numbers. Hence, the adiabatic condition no longer involves the single-particle band
gap eg but a many-body energy gap Eg that depends on the interplay between the charging
energies of the SC islands, the Josephson energies of the junctions, and the coupling with the
leads.

We emphasize that the boundary Hamiltonian (15) provides a reliable description of the
coupling with an external environment, despite the fact that it constitutes a coherent coupling.
This is due to the fact that the external leads are treated as condensates of CPs, such that
only the exchange of particles with zero energy is allowed with the environment. This avoids
the non-coherent dissipation processes that would characterize, instead, a coupling with a
fermionic or bosonic thermal bath (as in the case of normal metallic leads of phononic baths)
and would require a thorough study of the related non-unitary dynamics.

3 Results of the Rice-Mele model

In the following, we will investigate Thouless pumping in short chains coupled to external SC
leads to identify experimentally relevant regimes where charge quantization can be observed.
In particular, we will focus on the role played by the Josephson coupling to the leads, which
breaks particle number conservation, and on the effects of the nearest-neighbor interaction
ECC . To this end, we adopt a Floquet description of the driven Josephson chain in the hardcore
boson limit. We consider the Hamiltonian

ĤRM ,tot(t,φ) = ĤRM (t) + Ĥb(φ) , (16)

which describes a RM chain, as defined in Eq. (9), embedded in a superconducting circuit
through the contact with the leads in Eq. (15). ĤRM ,tot(t,φ) is periodic in both t and φ, and
we can analyze the dynamics of the related system by defining a many-body Floquet operator
which, for a generic Hamiltonian Ĥ, reads

U(τ) = T e−i
∫ τ

0 Ĥ(t)d t . (17)

Here T indicates time ordering and τ= 1/Ω is the time period such that Ĥ(t+τ) = Ĥ(t). We
consider system sizes up to M = 8, compatible with realistic devices in which all islands can
be independently addressed by gate voltages, and we numerically diagonalize U(τ) to obtain
the many-body Floquet eigenstates {|Φν(τ)〉}:

U(τ) |Φν(τ)〉= e−iEvτ |Φν(τ)〉 , (18)

where Eν labels the many-body Floquet quasienergies. In the infinite-time limit, for a given
phase difference φ, the time-averaged pumped charge per cycle corresponds to [22,53,54]

Q∞ ≡ lim
m→∞

2e
m

∫ mτ

0

d t ′ tr
�

ρ(t ′)∂φ Ĥ(t ′,φ)
�

= 2eτ
∑

ν

Nν (φ)∂φEν , (19)

10

https://scipost.org
https://scipost.org/SciPostPhys.16.3.083


SciPost Phys. 16, 083 (2024)

Figure 5: Pumped charge at infinite time Q∞ as a function of the phase difference
φ between the external superconducting leads for M = 4,6, 8 islands. The data cor-
respond to the following parameters: δJ = 0.7J0,δµ= 1.5J0, EL = 2J0,ω= 0.05J0.
The table represents the deviations from perfect quantization of the phase averages
pumped charge Q̄ as a function of the systems size M .

with
Nν(φ) = |〈Φν(τ)|Ψ0〉|

2 . (20)

Here Ψ0 is the state of the Josephson chain at the beginning of the pumping protocol, which we
set to the ground state of ĤRM,tot(t = 0,φ), ρ(t) is the density matrix of the system at time t,
and 2e∂φ Ĥ = Ĵ corresponds to the current operator. In the adiabatic limit, the ground state
|Ψ0〉 of ĤRM,tot(t = 0,φ) has a large overlap with the Floquet state with the lowest energy
expectation value [45], which we denote by |Φ0(τ)〉, such that Nν → δν,0. Hence, Q∞ is
carried by a single Floquet state. An equivalent expression for the pumped charge per cycle in
the infinite-time limit is [54]

Q∞ =
∑

ν

Nν(φ)
∫ τ

0

dt〈Φν(t)|Ĵ (t)|Φν(t)〉 , (21)

where Ĵ (t) is the time-dependent current operator, and |Φν(t)〉 are the time-evolved Flo-
quet states within one period. Given the difficulty of accurately differentiating numerically the
quasienergies with respect to the external SC phase, due to the many (avoided) level crossings
in the Floquet spectrum, we will use Eq. (21) to extract the pumped charge from the time
evolution. Our numerical calculations are based on exact diagonalization and performed with
the QuTiP Python framework [55,56].

The phase difference between the two external superconducting leads, rescaled by the
number of islands in the chain, φ/M , can be interpreted as a shift of the quasimomenta of
the system CPs via a suitable gauge transformation. For small systems, this shift causes a non-
trivial dependence of ∂φEν on φ that yields, in turn, a dependence of Q∞ on the external
phase. This is expected to be relevant only for small systems and vanishes completely in the
thermodynamic limit, provided the system is in an insulating phase [57]. To evaluate these
finite-size effects for the Hamiltonian ĤRM ,tot, we depict in Fig. 5 the time-averaged pumped
charge Q∞(φ) for ECC = 0, EL = 2J0 and a ratio ∼ 1/16 between ω and the many-body gap
Eg . For M = 4 and M = 6 islands, the dependence on φ is significant, but the oscillation
around the average quantized value reduces to ∼ 2% for M = 8. We find analogous results
for the HH model, see Sec. 4.
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Figure 6: Pumped charge Q∞ of the RM model for 20 discretized values of φ (blue
points) as a function of the Josephson energy modulation δJ . The red crosses cor-
respond to Q̄. The phase dependence and the charge quantization considerably im-
prove approaching the clipped modulation. The driving frequency is ω= 0.05J0.

To recover an exact quantization in short chains, it is therefore necessary to average the
pumped charge over φ. By following the Thouless construction [35], we define

Q̄ = 2eτ
∑

ν

∫ 2π

0

dφ
2π

Nν(φ) ∂φEν =
∫ 2π

0

dφ
2π

Q∞(φ) . (22)

For systems with periodic boundary conditions conserving the particle number (such that φ is
a phase twist in the boundary conditions), this quantity is quantized in the adiabatic limit at
half-filling and corresponds, when Nν = δν,0, to the Chern number of the lowest energy band
(see Appendix A). More in general, Eq. (22) implies that only Floquet many-body states with
a quasienergy that winds in the Floquet-Brillouin zone as a function of φ contribute to the
pumped charge Q̄ (see, for instance, Fig. 7). Our results show that Q̄ displays a precise quan-
tization towards the adiabatic limit within an error of 1%, even when including the boundary
term Ĥb. The residual small deviation originates from non-adiabatic effects due to the finite
frequency and the choice of the driving protocol [43,45]. Adiabatic perturbation theory gives

a leading-order estimate of this correction which scales as 1− Q̄ ∼
�

ω
Eg

�2
.

In the following, we will consider small system sizes, for which the phase dependence is
sizable, and we will investigate the dependence of the pumped charge on the modulation δJ
of the Josephson coupling, the coupling EL , and the nearest-neighbor interaction ECC .

3.1 Role of the Josephson modulation

The amplitude δVc of the cutter gate modulation and, consequently, the amplitude δJ in
Eq. (12), determine the waveform of EJ , j(t) (see the examples in Fig. 3). In this respect,
the role of δJ is twofold: on one hand, it determines the minimum single-particle bulk gap
εg = min
�

|h⃗(t)|
�

over one period, which is given by min
�

δJ , J0+δJ
2 , 2δµ
�

. Consequently, δJ
plays a major role in determining non-adiabatic corrections to the pumped charge quantiza-
tion. On the other hand, δJ determines whether the chain dimerizes exactly during the driving
protocol. Although this has no effect in the thermodynamic limit, as the topological nature
of Thouless pumping makes it insensitive to such details, it becomes important for the short
chains we consider in this work.
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Figure 7: Comparison of the many-body Floquet eigenenergies of the RM model for
(a) small sinusoidal modulations δJ = 0.5J0 (b) and clipped modulation δJ = 1.2J0
of the Josephson tunnelings. The dot colors represent the overlap Nν(φ) of the initial
ground state with the Floquet states. In the clipped regime ∂φE0 is almost constant,
leading to a pumped charge almost independent on the phase. The data refer to a
system with M = 6 islands, ω= 0.05J0, and EL = 2J0.

To estimate these effects, we consider the dependence of Q∞ on δJ for different values
of φ (Fig. 6) in an array with M = 6 islands. In the sinusoidal regime, where δJ is small,
finite-size effects induce a large dispersion of Q∞ as a function of φ, and averaging over the
phase is fundamental to obtain the charge quantization. The dispersion rapidly decreases
by increasing δJ , until the variation of Q∞(φ) drops below 0.8% when δJ ≥ J0. The weak
dependence of Q̄ (red crosses) on δJ , instead, originates from non-adiabatic corrections. These
are suppressed with δJ since the band gap εg increases accordingly, bringing the system deeper
into the adiabatic regime without changing the driving frequency. In particular, the residual
nonadiabatic and finite-size corrections of Q̄ are less than 0.6% for ω = 0.05J0 in the clipped
regime.

This dependence on the Josephson energy modulation can be understood by comparing the
behavior of populated Floquet many-body states as a function of φ for δJ = 0.5J0 (sinusoidal
waveform) and δJ = 1.2J0 (clipped waveform). They are shown in the left and right panels
of Fig. 7, respectively, where we plot the Floquet quasienergies as a function of the phase φ,
using the corresponding occupation number Nν to set the color of each data point. In both
cases, a single low-energy Floquet state |Φ0(τ)〉 has an almost perfect overlap with the initial
ground state, allowing us to follow the winding of E0 around the Floquet-Brillouin zone and
confirming the quantization of Q̄, which follows from Eq. (19). In the sinusoidal regime, E0 is,
in general, far from linear inφ, leading to a strong dependence of Q∞(φ) on this phase. In the
clipped regime, instead, the derivative ∂φE0 of the most populated state is practically constant,
and, for the chosen value of ω, N0 ∼ 1−O(ω2/E2

g) for all values of φ. We conclude that even
with small systems (M = 6), the phase dependence is very weak in the clipped regime, and a
good quantization can be observed without averaging over the SC phase difference.

3.2 Coupling with the leads

Besides the dependence of the pumped charge on the external phase φ, it is important to
investigate the role of the coupling EL between the edge islands and the superconducting
leads. When EL dominates over the other energy scales, the first and last islands are effectively
merged with the two external leads and, in practice, the system behaves as a shorter chain. If
instead EL is weak compared to J0, the transport of CPs across the system is hindered, as the
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Figure 8: (a) Pumped charge Q∞(φ = 0) and many-body energy gap Eg as a function
of EL for δJ = J0 (threshold between clipped and sinusoidal modulations). The data
are obtained in a system with parameters δµ = 1.5J0, ω = 0.05J0, and M = 6.
(b) The many-body Floquet eigenenergies of the Rice-Mele model for δJ = J0 and
EL = 0.5J0. In this situation, multiple Floquet states overlap significantly with the
initial ground state resulting in a non-quantized current. Data are obtained for 6
islands and a driving frequency of ω= 0.05J0.

pumped current is faster than the rate of charge transfer to or from the leads. Consequently,
the system behaves as an open chain. To examine the interpolation between these two limits,
it is instructive to consider the behavior of the system for a clipped modulation δJ > J0. In
this situation, the onsite potentials µA/B and EJ ,1 vanish in the middle of the pumping period,
t = (n+ 1/2)τ. Therefore, the ground state of the Hamiltonian ĤRM (τ/2) corresponds to the
extreme topological dimerized state of the Su-Schrieffer-Heeger (SSH) model, and it displays
the typical four-fold degeneracy associated with localized zero-energy boundary modes. The
boundary Hamiltonian Ĥb, however, gaps the SSH edges; the ground states of the first and
last islands in this dimerized limit result

�

�ψ1/M (τ/2)
�

=
1
p

2

��

�N̂1/M = 0
�

+ eiϕL/R
�

�N̂1/M = 1
��

, (23)

and are separated by an energy gap EL from the localized excited states in the same islands.
Therefore, when EL <

J0+δJ
2 , 2δµ, it sets the many-body energy gap Eg . Notably, the limit

EL → 0 corresponds to the isolated RM chain in which the zero-energy SSH edge modes cause
transitions between the two energy bands, thereby disrupting the Thouless pumping. Only
when EL is sufficiently larger than ω, this non-adiabatic effect vanishes and the quantized
pumping can be restored.

Fig. 8(a) displays the pumped charge Q∞(φ = 0) and the many-body gap Eg as a function
of EL/J0 for a modulation δJ = J0 and a driving frequency ω = 0.05J0. The two quantities
are clearly correlated; Q∞ saturates to the quantized value as the gap induced by the coupling
with the leads becomes sufficiently large. As expected, Eg eventually saturates as well at the
value Eg = J0, when EL ≥ J0. In the case of sinusoidal modulation, instead, the dimerized
SSH limit is never reached during the driving period. Therefore the many-body gap saturates
at smaller values for large EL/J0.

The region 0 < EL < J0 is the most susceptible to non-adiabatic errors since the ratio
between the many-body gap and the driving frequency changes continuously between 0 and
J0/ω. Hence, we expect the pumped charge to saturate faster to Q∞ = 2e for smaller values
of ω. In the adiabatic limit ω→ 0, a finite gap opens for any value of EL > 0, leading to the
quantization of Q∞. However, in a realistic scenario, the driving frequency is finite and sets
the average magnitude of the current flowing through the array. Thus, EL needs to be large
enough to prevent the CPs from accumulating on one side of the chain, similar to what happens
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Figure 9: Pumped charge Q∞(φ = 0) as a function of the coupling with the leads
EL and the nearest neighbor interactions ECC for the RM model with 6 islands. The
data are obtained with δJ = J0, ω= 0.05J0 and δµ= 1.5J0.

in an open system, suppressing the charge pumping. In the Floquet framework, this can be
understood by observing the winding of the quasienergies associated with Floquet states with
the highest occupation. When the charge is quantized and the driving is sufficiently slow, there
is a clear correspondence between Floquet states and energy eigenstates, leading to an almost
perfect fidelity N0 ≃ 1, for any value of the phase difference φ. Instead, when EL < J0, there
are multiple Floquet states that display a large overlap with the initial ground state, as shown
in Fig. 8(b), which might interfere destructively. Moreover, large avoided crossings appear in
the spectrum as φ changes, further suppressing quantized transport.

We conclude that, in order to avoid additional non-adiabatic corrections to the pumped
charge, EL must be larger than the single-particle band gap of the chain.

3.3 Nearest-neighbor interactions

In the most common trapped ultracold atom quantum simulators [23], nearest-neighbor inter-
actions are negligible. Only very recently, motivated by experiments with dipolar atoms with
long-range interactions [58], the role of nearest-neighbor repulsion in topological pumping
schemes has been investigated in extended spinful RM models [59].

As in the case of dipolar gases, JJAs can be characterized by sizeable nearest-neighbor
interactions. These interactions are bounded by ECC < 2EC , however, in the hardcore limit,
they can be highly relevant because nothing prevents ECC from being of the same order of J0
or the single-particle gap. For hardcore bosons, the nearest-neighbor interaction reads:

Ĥint(t) = ECC

M−1
∑

j=1

�

b̂†
j b̂ j − ng, j(t)
��

b̂†
j+1 b̂ j+1 − ng, j+1(t)

�

. (24)

Ĥint has two effects on the chain: a static repulsion, ECC b̂†
j+1 b̂†

j b̂ j+1 b̂ j , and a shift in the chem-
ical potential, −ECC(ng, j−1 + ng, j+1), due to the charge of the neighboring islands. The stag-
gered modulation (10) of ng, j in the RM scheme implies that the interaction (24) always favors,
to a certain extent, the dimerization characterizing the half-filled topological state and the on-
set of charge-density states with occupations |0101 . . .〉 or |1010 . . .〉 that evolve one into the
other.

In Fig. 9 we plot the pumped charge Q∞(φ = 0) at the onset of the clipped regime
(δJ = J0), as a function of both EL and ECC . Q∞ is remarkably stable against the nearest-
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neighbor interactions and there is a wide region of the phase diagram where the pumped
charge is quantized. The role of ECC seems indeed to be negligible for the Rice-Mele pumping:
although the Hamiltonian HRM ,tot does not conserve the CP number, its many-body ground
states are in good approximation the half-filled charge-density states where CPs are localized
on every other SC island for most of the driving protocol. Therefore, the role of moderate
interactions does not affect the pumping efficiency. In particular, for realistic ranges of ECC ,
our simulations indicate that the nearest-neighbor interactions do not cause any topological
phase transition in the effective 2D Floquet topological insulating state that determines the
onset of the quantization of the pumped charge.

4 Results of the Harper-Hofstadter model

The HH model contains two main differences from the RM model. First, its implementation
does not require modulation of the tunneling amplitudes but only of the induced charges. This
makes it more suitable for experimental implementations but, at the same time, more suscep-
tible to finite-size effects since this protocol does not rely on any dimerization. Second, when
the Aharonov-Bohm phase Φ is set to 2π/3, the model displays two insulating phases with
opposite Chern numbers and filling 1/3 and 2/3.1 This implies that by varying the parameter
µ̄ in Eq. (13), it is possible to invert the direction of the pumped charge. The two insulat-
ing states correspond to intervals in µ̄ with bounds approximately given by the band gaps.
These states are separated by a gapless phase in which pumping is not quantized. In addi-
tion, since the topological insulating Floquet states of the HH model appear at fillings 1/3 and
2/3, the role of nearest-neighbor interaction is less trivial than in the RM model: on one side,
the HH pumping does not rely on the staggered charge configurations favored, for a broad
range of parameters, by the interaction (24); therefore, for large values of ECC , we expect the
HH pumping to be suppressed. On the other, with respect to the RM scheme, the different
position dependence of the induced charges in the HH model reduces the interaction energy
difference between the half-filled charge-density waves and density-wave states at filling 1/3
(for instance |100100〉) and 2/3 (for instance |011011〉), whose time evolution is beneficial
for the HH pumping schemes and matches the ECC → 0 limit of this protocol.

In the hardcore limit, the two topological insulating phases of the HH model are related
by a particle-hole-like symmetry which is fulfilled also in the presence of the nearest-neighbor
interaction in Eq. (24). This symmetry is defined by

b̂r → b̂†
r , (25)

ng, j → 1− ng, j . (26)

The second equation corresponds to the mapping µ0, j →−µ0, j and t → t+τ/2. This symmetry
relates states with complementary fillings and implies that the pumped charge changes sign
when reflecting ng, j around 1

2 . In particular, this holds for any value ECC , implying that the
effect of the interaction is the same in both insulating phases. To control the filling factor and,
therefore, the direction of the current, we tune the offset of the chemical potential µ̄ through
the average value of the induced charge during one driving period:

n̄g = CgV0 =
1
2
−
µ̄

2EC
. (27)

Here we consider, for simplicity, uniform Cg and V0 across the chain.

1The appearance of topological bands with nonzero Chern numbers is not limited to Φ = 2π/3 but holds for
any rational value of the flux Φ= 2πp/q, with p, q ∈ N, which results in up to q non-overlapping bands.
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Figure 10: Pumped charge Q̄ as a function of the coupling with the leads EL for
different values of the nearest-neighbor interaction. The data are obtained with pa-
rameters M = 6, EC = 4EJ , δµ = EJ , and ω = 0.01EJ , in the gapped topological
phase at filling 1/3.

To investigate the stability of Thouless pumping in the presence of interactions, we consider
the dynamics dictated by the Hamiltonian

ĤHH,tot(t,φ) = ĤHH(t) + Ĥb(φ) + Ĥint(t) , (28)

defined by the Hamiltonians in Eqs. (13), (15) and (24) with the drive obtained by a modu-
lation of the induced charge with position-dependent phases χ j = 2π j/3. We calculate the
charge using Eq. (21): the system is initialized in the ground state of the Hamiltonian in
Eq. (28) at t = 0 and the time dependence of the Floquet states is computed by solving nu-
merically the Schrödinger equation.

We first examine the pumping for values of µ̄ where the system lies deep in one of the
Floquet topological insulator phases. Fig. 10 shows the behavior of Q̄ as a function of the lead
coupling EL for different values of the nearest-neighbor interactions, up to half the charging
energy, ECC < EC/2 = 2EJ . The behavior is qualitatively analogous to that observed for the
RM pumping with clipped modulation (compare Fig. 8(a) and Fig. 10): a good quantization
of Q̄ is achieved for sufficiently strong EL ≳ 0.4EJ . Importantly, even interactions comparable
with the many-body gap (ECC = 1.9EJ in the data) do not significantly alter the behavior of
the pumped charge, which appears remarkably stable.

We emphasize that for the HH model, averaging over the phase differenceφ is necessary to
obtain the predicted quantization of the pumped charge since we consider small system sizes
(M = 6, 9). This is caused by the winding of the eigenenergies of the populated Floquet states,
displayed in Fig. 11. For the most occupied state at filling 1/3 [panel (a)] the quasienergy
winds three times in the positive direction and twice in the negative direction, resulting in
a total winding number +1. Panel (b) in Fig. 11 shows instead the opposite winding for the
gapped phase at filling 2/3, corresponding to pumping in the opposite direction. In both cases,
the current ∂φE(φ) strongly depends on φ and even changes sign (see Fig. 12(a) for the state
at filling 1/3). Therefore, a quantized pumping can be obtained only by averaging over φ.
This is a characteristic of small-size systems. By comparing the results for M = 6 and M = 9
in Fig. 12(a) we see that the phase dependence considerably decreases with the chain length.
However, in general, the HH model is considerably more influenced by finite-size effects than
the RM model in the clipped regime (see Fig. 5 for comparison).

In an experimental setup, control over the voltage offset V0 of the side gates provides a
possibility of interpolating between the two gapped phases and exploring the phase diagram
of the system as a function of µ̄ [Fig. 12(b)]: our results clearly show the appearance of the
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Figure 11: Winding of the quasienergies of the many-body populated state as a func-
tion of the lead phase difference φ for M = 6, EC = 4EJ , ECC = 0.2EJ , δµ = EL = EJ
and ω = 0.01EJ . (a) Winding in the gapped phase at filling 1/3 (n̄g = 0.4). We
observe that the quasienergy winds three times in the positive direction and twice in
the negative direction, corresponding to a Chern number C1 = 1 of the lowest band.
(b) Winding in the phase at filling 2/3 (n̄g = 0.6). The winding is opposite with
respect to panel (a).

two topological Floquet phases with quantized charge Q̄ = ±1 · 2e both without interactions,
ECC = 0, and for strong interactions, ECC = EJ/2. Moderate values of ECC seem indeed to be
beneficial for the stability of the topological phases, as the interactions increase the width of
the plateaus where the pumped charge is quantized. Above a certain threshold (ECC ≳ 2EJ ,
not shown), however, the repulsions in Eq. (24) favor the charge-density waves states at filling
1/2, thus destroying the quantized HH pumping.

In the data of Fig. 12(b), the symmetry in Eqs. (25) and (26) is not exactly reflected. The
discrepancy results from the fact that the initial time of the pumping protocol is the same for all
values of µ̄. The missing translation t → t +τ/2 violates the requirement (26), but the effect
is only seen when µ̄ is close to the band extrema and the initial conditions strongly affect the
pumping outcome. This strong dependence is shown explicitly in the inset of Fig. 12(b), where
Q̄ fluctuates with n̄g around the transition between the gapless metallic states (n̄g ≲ 0.35) and
the Floquet topological insulator, (n̄g ≳ 0.35). Indeed, when µ̄ lies close to a topological
band edge, a small change in the SC phase difference φ can change the initial state between
being either metallic or insulating. Consequently, Q∞(φ) has discontinuities in φ and its
phase average Q̄ strongly depends on the driving frequency, the precise sampling of φ, and
the system size, which is reflected in the single-particle level spacing within the bands.

We show this irregular behavior in Fig. 12(a), where we plot the infinite-time-averaged
pumped charge Q∞ as a function of the SC phase φ. A comparison of the data obtained at
the edge (n̄g = 0.35, orange triangles) and inside (n̄g = 0.4, teal circles) the topological phase
clearly shows the different role of φ in the two cases. While the amplitude of the variation
of Q∞ is the same, in the topological phase the pumped charge has a smooth dependence on
φ and it oscillates around the quantized value Q̄ = 1 marked by the horizontal dashed line.
On the edge between the metallic and the insulating phase, on the other hand, Q∞ has many
discontinuities that are reflected in the fluctuations of Q̄ in the inset of panel (a).
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Figure 12: Pumped charge in the hardcore boson HH model. (a) Dependence of the
pumped charge on the phase difference φ for chains of M = 6 and M = 9 islands
around the transition n̄g = 0.35 (orange) and in the topological insulating phase
n̄g = 0.4 (teal and maroon). (b) Averaged pumped charge Q̄ for M = 6 islands. The
blue curve corresponds to vanishing nearest-neighbor interactions. The orange curve
is obtained for ECC = EJ/2. Interactions extend the Floquet topological phases. Inset:
fluctuations of Q̄ close to the transition between the metallic and the topological
insulating phases for ECC = 0.

5 Experimental implementation of the pumping schemes

Several aspects must be considered for designing an experimental realization of the proposed
pumping protocols. In the following, we analyze first the tuning of the physical parameters
to mitigate non-adiabatic and disorder effects. Then we discuss the main dissipative effects
related to the coupling with the environment.

5.1 Physical parameters to achieve the topological pumping

The analysis presented in the previous sections and the observation of a quantized Thouless
pumping rely on several constraints, important in devising an experimental realization of the
presented models.

The most fundamental parameter in both driving protocols is the frequency Ω. On one
side, Ω determines the ideal pumped current I = 2eΩC; therefore, in order to obtain clearly
measurable currents (I ≳ 10pA), we require Ω ≳ 300MHz. On the other, the frequency de-
termines the onset of nonadiabatic errors, typically scaling as (hΩ/Eg)2. Therefore Ω must be
sufficiently small compared to the many-body gaps Eg . For both the RM model with clipped
modulation and the HH model at Φ = 2π/3, the gap is given by the minimum between 2δµ
and a Josephson term proportional to EJ (for sufficiently large EL). δµ is proportional to EC ,
and to enter the regime of quantized pumping it is necessary that EC ≳ EJ . EJ can be tuned
more easily than EC , for example by applying a suitable voltage to a global gate as in the de-
vices analyzed in Ref. [10]. Therefore, we consider the charging energy as the limiting factor
in determining the gap which, for small superconducting islands, is approximately of the order
of h30 GHz [48]. This poses an upper limit to the frequency, Ω ≲ 10 GHz, to avoid excessive
nonadiabatic errors. The frequency range Ω ∈ (300 MHz, 10 GHz) of the voltage drive of the
electrostatic gates can be explored with standard waveform generators.

The RM model has the disadvantage of requiring modulation of both the induced charges
and the Josephson couplings. This can be particularly challenging as the cutter gates control-
ling the Josephson energies may additionally induce a charge on the neighboring islands. Such
an effect can, however, be compensated with suitable corrections of the voltages Vg of the side
gates. At the same time, the RM model displays, for M = 6 islands, smaller finite-size effects
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than the HH model, and, in particular, does not show a strong dependence of the pumped
charge Q∞ on the lead phase φ, especially in the clipped regime. For the same number of
superconducting islands, the HH model requires control of only half of the electrostatic gates
but displays instead a very strong dependence on the phase φ for M = 6 [Fig. 12(a)]. To avoid
this limitation, two strategies can be envisioned: either implementing the pumping in longer
chains or embedding the system in a device that allows for averaging in time over the phase
φ, similar to the proposals of Refs. [52,60].

Concerning the scalability of the HH model at flux 2π/q, only q independent voltage signals
are needed for sufficiently uniform SC chains, such that the capacitances Cg

j and charging
energies present only minor variations along the system. These q signals need then to be
distributed across suitable gate structures.

Regarding the averaging over the phase φ, several options can be envisioned. The first
possibility is based on introducing a suitable voltage bias Vb between the two external SC
leads (see Ref. [52]). This yields a linear winding of the phase φ with period τφ = h/2eVb.
The number of pumped CPs in this period is given by Q(τφ) = CΩτφ , and the average over the
phase φ is suitably implemented if Ωτφ ≫ 1. An alternative method would require instead
embedding the HH Josephson junction chain in a superconducting ring, in order to impose a
phase bias φ that can be varied in time through a driven magnetic flux.

In our analysis of short Josephson junction chains, we did not consider explicitly the role of
disorder. For both the RM Hamiltonian (9) and the HH Hamiltonian (13), the onsite disorder
corresponds to a position dependence of the time-independent part of µ j in Eq. (8). This can
be caused by non-uniform capacitances Cg

j and a failure in balancing them with the voltages
V0, j . The effect of this kind of disorder on Thouless pumping has been extensively studied
(see, for instance, Refs. [27, 35–38]); in general, the quantization of the pumped charge is
robust as long as the random variations of the onsite potential are weaker than the energy
gap. In Coulomb-blockaded JJAs, the disorder amplitude of the onsite energy depends on
the variance of EC n̄g , whereas the energy gaps are determined by the Josephson energies.
Therefore, to approach an accurate quantization of the pumped charge, we need to consider
a balance between the following competing constraints.

On one side, the ratio EC/EJ cannot be too large. Specifically, the standard deviation of the
island-dependent EC n̄g (where n̄g represents the targeted ng average) must be considerably
smaller than δJ and EJ in the RM and HH pumping schemes, respectively. Our calculations
rely on the CP hardcore assumption EC ≫ EJ ; however, numerical investigations [40] of the
RM model with interactions of the form (2) reveal that the RM Floquet topological insulator
phase survives even when the ratio EC/δJ decreases to EC/δJ ∼ 3 if δµ is sufficiently strong.
Therefore, keeping a moderate value of EC/EJ ≳ 3 may be beneficial to reduce onsite disor-
der and nonadiabatic effects. On the other side, the Josephson energies cannot exceed the
threshold corresponding to the insulator-SC transition in the static case. Thouless pumping
can indeed be realized only when the instantaneous energy spectrum of the system and the
related ground states at each time t correspond to insulating phases. In the appendix, we
provide data acquired by relaxing the hardcore constraint. The short time dynamics of the RM
model for δJ = J0 confirms the results in Ref. [40] and suggests that quantized pumping is
observed for charging energies above a threshold roughly given by EC > 2J0. By decreasing
the ratio EC/EJ , however, the nonadiabatic errors are expected to become more consistent,
therefore lower pumping frequencies are required to observe a good quantization.

A different kind of disorder characterizing JJAs are random variations in the Josephson
energies and, in the RM model, differences in the functions EJ , j(Vc, j) associated with the junc-
tions along the chain. Also in this case, the related disorder in the hopping terms of Eq. (6)
becomes detrimental for an accurate quantization of Thouless pumping when the amplitude
becomes comparable with the energy gaps of the systems.
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Given the accuracy of the lithographic techniques adopted for the fabrication of hybrid
JJAs, however, we expect the typical disorder amplitudes in the Josephson energies to be
below 10% (see related experimental estimates in Ref. [61]). A disorder strength in this range
is not harmful for the implementation of Thouless pumping as it is way below the necessary
threshold to close the many-body gap and suppress quantized transport.

5.2 Coupling with the environment and dissipation

Our simulations considered exclusively the coherent and unitary time-evolution of the Joseph-
son junction systems, such that they do not capture dissipative effects. The coupling with the
environment and, in particular, to phononic baths can, in principle, affect the quantization of
Thouless pumping. The most relevant dissipation effects will involve the population of states
above the many-body gap Eg . We observe, however, that, based on the above values for EC ,
we may estimate Eg ≈ EC/3 ≲ KB500mK. This gap must be compared with the typical tem-
perature T ≲ 50mK of operation of dilution refrigerators. Therefore, in standard conditions,
we expect the environment temperature to be considerably lower than the many-body gaps.
In such a regime, it has been shown in the case of the non-interacting RM model that the
quantization of the pumping is actually improved by the coupling with a cold environment
with respect to the coherent time-evolution for a broad range of parameters [62]. We do not
expect a qualitatively different behavior in the presence of interactions and, even relaxing
the assumption of hard-core bosons, the additional excited states of the system will be char-
acterized by energies proportional to EC , thus much higher than the temperature. A similar
conclusion holds also when considering the effect of Bogoliubov quasi-particles in the system,
whose energy is higher than the SC gap, which corresponds to about 1.6K.

Besides the phononic environment studied in Ref. [62], another potential source of dissipa-
tion is provided by thermal charge fluctuations. This problem has been addressed in Ref. [53]
for non-topological pumping protocols in driven SC devices. The charge noise affects the in-
duced charges of the system ng, j and can be modelled, for instance, by a resistive thermal
noise of the voltages Vg, j parameterized by an effective resistance R.

The analysis of the impact of this kind of dissipation effects on the system dynamics can
be performed via a generalized master equation approach. Also for this non-unitary kind of
time evolution, the many-body Floquet representation can be efficiently adopted to calculate
the expectation value of the observables of interest [63]. For a weak coupling between the
system and the thermal environment, the master equation approach models the dissipation
through decay rates that depend on the environment via its spectral function, which can be
taken Ohmic to model the noise of the gate voltages.

At low temperatures, an estimate of the relaxation rates associated to the noise of the
induced charges results in Γ ≈ 2EgR(e2/h)

�

2C g/C self
�2
[53] corresponding to Γ/Eg ≲ 10−3

for realistic parameters.
Within a Markovian approximation, this kind of dissipation dictates the relaxation of the

system towards a Floquet steady state that assumes the form of a time-periodic density matrix
diagonal in the Floquet eigenbasis. For temperatures considerably below the many-body gap,
as the ones expected in experiments, this implies that the noise of the induced charges only
provides weak corrections of the parameters Nν with respect to the unitary evolution. This
applies in a straightforward way to the HH protocol, that relies exclusively on the driving of the
ng, j parameters. A similar analysis, however, can be performed for the RM model, in which
thermal noise can also affect the Josephson energies. In this case, the dissipation rates are
proportional to Eg(R/h) (δJ/δVc)

2, roughly corresponding to 10−4Eg

�

Re2/h
�

based on the
data in Ref. [51]. Analogously to the charge noise, we expect that also these rates provide
only small corrections to the populations Nν.
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For a strong coupling with the environment, instead, the Markov approximation breaks
down and alternative methods to study the dynamics are required. A first step in this direction
has been considered in the study of the RM model coupled to a non-thermal phononic mode
[64].

In general, however, the experimental results on the dynamics of SC circuits seem consis-
tent with what expected in a Markovian description: we predict that the robustness against
heating and dissipative effects of the presented pumping protocols in JJ chains will be anal-
ogous to what experimentally achieved for non-topological pumping schemes in different SC
circuits [33, 34], which allow for achieving pumping in the non-equilibrium Floquet steady
state. This provides an important difference from ultracold atom setups, which are often more
susceptible to heating given their considerably stronger isolation and where topological pump-
ing is usually achieved only during a transient time window. Recent experiments with ultracold
potassium atoms, however, allowed for the observation of Thouless pumping in a Rice-Mele-
Hubbard protocol over more than a hundred cycles [65].

In conclusion, we expect that by operating the presented pumping protocols in standard
conditions for superconducting circuits, such that the temperature of the environment is con-
siderably lower than the relevant energy gaps, the coupling with a colder environment can
actually assist against non-adiabatic effects [62]. A beneficial effect of dissipation to improve
the transport quantization of the RM pumping scheme has also been observed in experiments
based on plasmonic waveguide arrays, in which it was shown that time-periodic and space-
periodic dissipation can lead to the restoration of quantized transport for nonadiabatic driving
conditions [66].

6 Conclusion

Motivated by recent advances in fabrication techniques, we numerically investigated possible
driving protocols to implement topological Thouless pumping in short 1D arrays of tunable
Josephson junctions. We considered the JJAs to be in a Coulomb-blockaded regime, where the
charging energy of each SC island and the SC gap are the dominant energy scales, allowing us
to approximate CPs as hardcore bosons. To study quantized transport in the long-time regime,
we connected the array to two grounded SC leads, breaking the conservation of particle num-
ber and allowing for the observation of currents in the resulting non-equilibrium steady states.
In particular, we used Floquet theory to extract the pumped charge at a small but finite driving
frequency in the limit of an infinite number of driving cycles.

We focused on two prototypical models for topological quantum pumping, the periodically
driven Rice-Mele and Harper-Hofstadter models. For both, we analyzed the role played by the
coupling with the SC leads and their phase bias, as well as the effect of nearest-neighbor
interactions originating from cross-capacitance between the SC islands. These ingredients are
specific to the solid-state implementation of Thouless pumping with JJAs, and they extend
the recent analyses of the role of interactions in Floquet topological insulators inspired by
ultracold-atom experiments [23,28,40,59,65,67] which, in contrast, are closed systems with
a fixed number of particles such that topological pumping is embodied in the motion of their
center of mass. For the hybrid SC-SM devices we analyzed, instead, the understanding of the
role of the external SC leads is essential for a successful experimental realization of topological
quantized transport and the determination of the resulting currents.

Both the RM and the HH models display remarkable robustness with respect to nearest-
neighbor interaction, which does not affect their transport properties, even when it becomes
larger than the Josephson tunneling. Moreover, the coupling to the leads helps to stabilize
transport as it gaps out the zero-energy edge modes, which would otherwise appear in an
open chain, and allows for an adiabatic evolution at sufficiently low driving frequency.
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In the RM model, finite-size effects are most easily suppressed in a clipped driving regime
where the modulation of the Josephson coupling is tuned such that the SM substrate below the
Josephson junctions is depleted at half periods, effectively dimerizing the chain. However, the
implementation requires simultaneous tuning of both the Josephson couplings and the charge
induced on each island, resulting in a more complicated experimental protocol.

The HH model, on the other hand, requires fewer control gates as the Josephson couplings
are constant in time. The drawback is that for small system sizes (M = 6, 9 islands) we find
that it is necessary to dynamically average over the phase difference of the external leads
to obtain a good quantization of the pumped charge. This behavior appears analogous to
previous proposals to achieve quantized pumping in short Josephson junction chains [52].
However, even at constant phase bias, the discrepancies from the ideal quantized case rapidly
decrease with the system size. Moreover, the HH model displays a richer topological phase
diagram since the number of bands with nontrivial Chern number depends on the effective
magnetic flux Φ which in turn is determined by the position-dependence of the on-site energy
modulation. In the simplest scenario, where Φ = 2π/3, the tuning of the average induced
charge n̄g on the SC islands allows for control of the chemical potential. Tuning this to lie in
different band gaps leads to a quantized current flowing in different directions.

Our results suggest that quantized Thouless pumping is experimentally accessible with the
recently developed SC-SM JJAs, paving the way for a new generation of experiments investi-
gating topological transport in Floquet systems as an alternative to ultracold-atom approaches.
However, there are several further effects worth investigating to improve our analysis. First,
one could relax the hardcore boson approximation and allow for a standard onsite repulsion,
which has been studied for the RM model with periodic boundaries [39–41, 68]. We expect
that an intermediate ratio EC/EJ ≳ 3 is beneficial for experimental realizations because it
would mitigate the effects of disorder in the induced charges without driving the system away
from its insulating phases. In this situation, our estimates indicate that driving frequencies
Ω≳ 300MHz result in currents I ≳ 10pA without introducing excessive non-adiabatic effects.
Another important element to consider is the possible presence of longer-range interactions.
Indeed, the inverse of the capacitance matrix is approximately tri-diagonal only if the self-
capacitance of the SC islands is much larger than their cross-capacitance. While this can be
a reasonable approximation, depending on the geometry of the JJA, it is important to ex-
amine the pumping robustness when it breaks down. Far from being necessarily a problem,
longer-range electrostatic interactions can be exploited to study the transport of fractions of
CPs pumped at each cycle [60]. Finally, solid-state devices are subject to many decoherence
channels, either due to quasiparticle poisoning, incoherent tunneling, charge noise, or scat-
tering from crystal defects and imperfect interfaces. While precise modeling of these effects
is prohibitive, an interesting future perspective is investigating the robustness of quantized
transport with respect to simpler decoherence mechanisms, such as local dissipation or de-
phasing, similarly to Ref. [62], or incoherent coupling between the external (superconducting
or normal) leads and the SC islands of the JJA. In particular, the analysis in Ref. [62] suggests
that dissipations effect are beneficial to reduce non-adiabatic effects when operating in a cold
environment. Based on our estimates, we expect indeed that Thouless pumping is observable
in the Floquet steady state achieved under realistic conditions; this would provide a consider-
able advantage with respect to cold atom quantum simulators in which heating is often one of
the main limiting factors.
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A Thouless pumping and Chern number

In this Appendix, we briefly review the correspondence between one-dimensional adiabatic
quantum pumping and the integer quantum Hall effect (IQHE). This analogy emerges from
the role played by the Chern number C of the occupied bands in transport phenomena: while
in the IQHE the Chern number corresponds with the Hall conductance, in Thouless pumping
C is the charge pumped during each driving cycle. To show this, we start from a first-order
adiabatic expansion of the time-evolved wavefunction [21]

|Ψ(t)〉= eiγ0(t)e−i
∫ t

0 dt ′E0(t ′)





�

�Φ̃0(t)
�

+ i
∑

n̸=0

�

�Φ̃n(t)
� 


Φ̃n(t)
�

�∂t Φ̃0(t)〉
En(t)− E0(t)



+O
�

1
τ2

�

, (A.1)

where
�

�Φ̃n(t)
�

are the instantaneous many-body eigenstates with energies En(t) and Berry
phases γn(t). In the adiabatic limit, these instantaneous eigenstates converge to the time-
evolved Floquet eigenstates |Φn(t)〉 introduced in Eq. (21). We assume that the system is
initially prepared in the insulating ground-state |Ψ(t = 0)〉=

�

�Φ̃0(t = 0)
�

.
We consider the case of a one-dimensional system with periodic boundary conditions. In

this situation, the phase difference φ acquires the meaning of the phase twist associated with
a magnetic flux piercing the overall ring and the current operator maintains the form:

Ĵ = 2e∂φ Ĥ(t) , (A.2)

such that its expectation value results:

〈Ψ(t)| Ĵ (t) |Ψ(t)〉= 2e
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�∂φ Ĥ(t)
�

�Φ̃0(t)
�

+ i2e
∑

n̸=0

�


Φ̃0(t)
�

�∂φ Ĥ
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. (A.3)

Equation. (A.3) can be simplified using Hellmann-Feynman theorem to write



Φ̃0(t)
�

�∂φ Ĥ(t)
�

�Φ̃0(t)
�

= ∂φE0(t) , (A.4)

while in the sum over excited states we use the identity
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En(t)− E0(t)
= −



∂φΦ̃0(t)
�

� Φ̃n(t)〉 . (A.5)

En(t) − E0(t) > 0 , ∀t as the presence of an energy gap is necessary to ensure adia-
baticity throughout a driving cycle. The pumped charge Q(τ) is the integral of the cur-
rent over one driving period. Since E0(t) is periodic by construction, it does not give
any contribution to Q(t). Moreover, we can add the term n = 0 in the sum since



∂φΦ̃0(t)
�

� Φ̃0(t)〉



Φ̃0(t)
�

�∂t Φ̃0(t)〉 −H.c.= 0. Hence, we can write

Q(τ) = −i2e
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. (A.6)
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Since the system is always in an insulating state, in the thermodynamics limit is possible to
average over the phase twist φ at the boundary without affecting the expectation values of
local observables [57]. Thus we modify Eq.(A.6) as

Q̄(τ) = 2e

∫ τ

0

dt

∫ 2π

0

dφ
2π

�

− i



∂φΦ̃0(t)
�

�∂t Φ̃0(t)〉+H.c.
�

. (A.7)

The integrand is easily recognised as the Berry curvature B0(t,φ) = 2Im
�


∂φΦ̃0(t)
�

�∂t Φ̃0(t)〉
�

and its integral over the torus [0, t] × [0, 2π] gives, indeed, the first Chern number of the
ground state manifold.

Equation (A.7) is thus the equivalent of the TKNN formula [69] for particle transport with a
periodic driving, thus showing the same topological origin of the IQHE and quantized Thouless
pumping. Since, in the adiabatic limit, the time-evolved Floquet eigenstates converge to the
instantaneous eigenstates, Eq. (A.7) shows the convergence of Q̄ in Eq. (22) to a quantized
value.

B Breakdown of the hardcore regime in the Rice-Mele protocol

Throughout the paper we employed a hardcore-boson approximation to describe the dynam-
ics of Cooper pairs close to the charge degeneracy point ng = 1/2. This approach was mo-
tivated by the observation that, if EC is sufficiently strong, we expect only two charge states
per SC island to influence the system dynamics when the induced charge is modulated around
semi-integer values. This approximation is expected to provide reliable results only when the
charging energy is sufficiently stronger than the Josephson energy scales. To test the robust-
ness of the hardcore approximation, here we briefly investigate the dynamics of the RM model
in a larger Hilbert space, which includes instead Ncut charge states per SC islands. Because the
computational cost increases exponentially as N M

cut, M being the number of islands, we focus
our attention on Ncut = 4. The allowed local charge states are now labeled by N j = 0, . . . , 3
and we aim at driving the islands around the charge degeneracy point between states N j = 1
and N j = 2, therefore we set n̄g = 1.5. The hardcore-boson approximation is expected to fail
when the dynamics leads the system out of the N j = 1,2 subspace, such that also the N j = 0,3
charge states get considerably populated.

To monitor the effectiveness of the hardcore approximation and the breakdown of the
pumping for low values of the charging energy, we investigate the pumped charge over one
period of the driving and the instantaneous many-body gap for M = 6 islands, as we change
EC . All other simulation parameters are fixed: ECC = EL = δJ = J0, ω = 0.05J0, and the
initial state is taken to be the ground state of the system at t = 0.

Figure 13(a) shows the pumped charge during the first driving period for different values
of EC and compares the behavior for Ncut = 4 (solid lines) and the hardcore approximation
Ncut = 2 (dashed lines). The data For EC = 3J0 and 4J0 (the value used in the main text) do not
display any appreciable difference between the two cutoffs, suggesting that the hardcore-boson
approximation is valid and well describes the system dynamics in this regime. As EC is lowered,
larger discrepancies start to appear and the two behaviors becomes markedly different as the
Josephson energy dominates over the charging energy (EC < J0). Here, our simulations show
nonphysical results as they indicate the emergence of a quantized pumping in the opposite
direction with twice the Chern number. This is due to the spread of the charge over all the
available states, as highlighted by Fig. 13(c), where the upper bound N j = 3 is saturated.
A larger cutoff Ncut is therefore needed to model accurately the dynamics, but it becomes
unfeasible to study the time evolution with exact diagonalization. For comparison, Fig. 13(b)
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Figure 13: (a) Pumped charge during the first period of evolution for different values
of EC (color-coded) for a RM setup with M = 6 islands. Solid lines correspond to
Ncut = 4 and dashed lines to Ncut = 2. (b-c) Time-resolved local charge for EC = 4J0
(b) and EC = 0.5J0 (c). All data are taken for φ = 0.
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Figure 14: Instantaneous many-body energy gap as a function of time within one
driving period. Different lines correspond to different phase biases φ between the
superconducting leads. We show both the behavior for Ncut = 4 (blues solid lines)
and Ncut = 2 (orange dashed lines).

shows the density profile when the hardcore-boson approximation is valid and the average
charge oscillates between 〈N̂ j〉= 1,2.

Further insight on the approximation breakdown is provided by the instantaneous many-
body gap Eg as a function of time, shown in Fig. 14. As EC becomes smaller, the difference
between Ncut = 4 (blue solid lines) and Ncut = 2 (orange dashed lines) increases; in particular,
the system displays two gapless points (t = τ and t = τ/2) when EC = 0.5J0 and Ncut = 4,
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signaling the failure of the hardcore-boson approximation. This behavior is consistent with
the fast spread of the charge over all available states in Fig. 13, whereas, for larger values of
EC , the sectors away from N j = n̄g ± 0.5 are protected by the finite many-body gap.
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