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Abstract—Deep learning has emerged as a promising avenue
for automatic mapping, demonstrating high efficacy in land cover
categorization through various semantic segmentation models.
Nonetheless, the practical deployment of these models encounters
important challenges from the imbalanced distribution of samples
between the classes, a problem inherent to real-world datasets.
This results in models biased towards frequent classes that
perform poorly on rare classes. While existing approaches to
fight class imbalance mainly focus on image classification, here
we propose to address this issue for semantic segmentation
with a multiple complementary experts (MCE) structure. Taking
inspiration from ensemble models, each expert in our MCE
specializes in certain classes and works with other experts in
a complementary manner to generate robust predictions for rare
classes. We compare our approach to other existing methods
and also explore different logit aggregation methods, to identify
the performance upper bounds and improvement directions. Our
model is evaluated on a large-scale and challenging alpine land
cover dataset that we make openly available. Additionally, we
evaluated our model on an imbalanced land cover mapping
dataset, FLAIR, to highlight its adaptability. Overall, our MCE
model yields notable improvement in performances on the
medium and rare classes compared to baseline methods, while
only slightly compromising on the overall accuracy. Despite its
simplicity, the MCE approach stands as a practical solution for
more operational semantic segmentation models, not trading off
performances on rare but important classes.

Index Terms—Class imbalance, land cover mapping, remote
sensing, multi-expert model.

I. INTRODUCTION

LAND cover (LC) mapping provides information about
the characteristics and spatial distribution of the Earth’s

surface. It plays a crucial role in many scientific and op-
erational applications, including environmental monitoring,
natural resources management, planning, disaster management
and climate change research [1]. The ever-increasing amount
of generated data created a shift in LC map production from
labour-intensive human annotations towards machine-driven
products. In the past decades, the development of LC maps
with machine learning algorithms has drawn considerable at-
tention from the scientific community. Computer vision meth-
ods and more specifically deep learning (DL) based models
exhibited outstanding performance [2] when confronted with
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Fig. 1: Multiple complementary expert (MCE) semantic seg-
mentation model. First, a common backbone extracts visual
features from the input images; then each expert’s model
predicts land cover classes, with one expert focusing on all
classes, while other experts focus on body and tail or tail-only
classes. The extracted features from each expert are combined
via different aggregation methods to produce the final network
predictions.

visual recognition tasks such as LC mapping [3], classifica-
tion [4] or object detection on remote sensing images [5].

While proficient on carefully balanced datasets with nu-
merous samples, the effectiveness of DL methods diminishes
when confronted with unequal distributions of instances over
different classes [6], [7], [8]. This issue originates from the
classifier’s objective of minimizing overall error rates during
training: Head classes dominate the network parameters up-
date, which tends to greatly diminish the recognition of tail
classes by the model [6], [9]. This problem called class im-
balance is an intrinsic problem for semantic segmentation, and
especially for land cover mapping: LC classes naturally have
very different surface coverage; some appear very frequently
and cover large areas, i.e. forested areas, whereas other LC
like wetlands have a limited frequency of occurrence and/or
only cover small proportions of the territory. This leads to
an asymmetry in the number of pixels representing each LC
type, with the number of pixels of rare or ‘tail’ classes being
lower by several orders of magnitude than pixels belonging
to frequent or so-called ‘head’ classes. Nevertheless, rare
classes hold particular significance for LC mapping since they
often represent specialized and unique regions of the territory
that may be of high interest, for instance, biodiversity hot
spots [10], or indicators of new patterns appearing in the
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landscape [4].
The class imbalance problem is a well-known problem in

computer vision and numerous methods have been proposed
to tackle it. The most intuitive approaches address the problem
at the data level by deploying data re-sampling [7] or re-
weighting methods [11], [12], [13] that give more visibility
to samples from rare classes. In practice, these methods
have been shown to lead to a rapid over-fitting of the rare
classes [6], [14] and improve the tail performances at the
cost of performances on the frequent classes [7], [9]. Other
methods also focus on augmenting the information via data
augmentation [15], on experimenting with different network
architectures i.e. by learning an ensemble [6] or by improving
the learning process by decoupling the training [16]. Recently,
multi-expert/multi-branch models have shown promising re-
sults [17], [18], [19]. These networks strategically associate
multiple diverse experts/branches to obtain the final predic-
tions. While a majority of the works tackle the imbalance
problem for image classification, only a few studies address
this problem for semantic segmentation [20], [21], [22]. The
transfer of long-tail classification methods to semantic seg-
mentation is not straightforward due to the inherent differences
between the two tasks: Unlike classification, where each
instance is treated individually, pixels occurring within the
same frame are spatially dependent. Methods that work for
classification might not capture the spatial correlations needed
for segmentation. Similarly, due to class co-occurrence in each
image, classes cannot be isolated easily for sampling or data
augmentation purposes [6].

Inspired by the success of multi-expert models in image
classification [14], [23], [18], we design a multiple comple-
mentary experts network (MCE) for semantic segmentation.
MCE combines a shared backbone with a set of learnable
modules trained on several overlapping subsets of classes.
We adopt some training techniques developed from classifi-
cation problems and observe their effectiveness for semantic
segmentation tasks. We explore different training strategies
and aggregation methods to identify the performance’s upper
bounds and some improvement directions. We evaluate our
approach on two large-scale datasets; a large-scale alpine land
cover dataset that we developed and made publicly available,
and the FLAIR dataset, a heavily imbalanced benchmarking
dataset for land cover mapping. Compared to other state-of-
the-art methods, our MCE network manages a significant im-
provement in rare classes accuracy while minimally decreasing
the performances in most frequent classes. Therefore biases of
classification towards majority classes are reduced, closing the
gap with national agencies’ production requirements.

II. RELATED WORK

A. Semantic segmentation for land cover mapping

LC mapping can be designed for image classification, i.e.
to provide a single label for an image, but also as a semantic
segmentation task, where each pixel from the input image
receives a label. Deep learning-based methods fit well with
the characteristics of remote sensing images thanks to the large
volume of data available. Rapid advances were made during

the past decade driven primarily by the development of power-
ful architectures such as deep convolutional networks (CNNs).
The fundamentals for DL semantic segmentation were estab-
lished by Long et al. in 2014 with the fully convolutional
networks (FCNs) [24], a CNN that can learn dense predictions
by preserving the spatial structure of the input image in an
efficient and end-to-end way. Ronneberger et al. designed U-
Net [25], an encoder-decoder network for semantic segmenta-
tion that consists of a contracting path and an expansive path,
which allows it to learn both local and global features of an
image. Later, the DeepLab series was introduced by Chen et
al. [26] where they proposed atrous convolution and atrous
spatial pyramid pooling to enlarge the receptive field of the
network and capture multi-scale contextual information. These
remain de facto standard approaches for LC mapping that
are being constantly improved upon, for example considering
rotation invariance [3], interpretability [27] or including more
modalities [28].

B. Class imbalance in classification problems

The problem of imbalanced distribution is well-studied and
diverse methods have been developed in recent years. Here
we review briefly two types of methods, class re-balancing
and ensemble learning, we refer to [6] for a more complete
review.

Class re-balancing via re-sampling and re-weighting.
Re-balancing methods aim at fighting the imbalance by in-
troducing prior information about the class distribution and
giving more importance to unfrequent samples. An intuitive
solution is data re-sampling which tries to achieve a balanced
distribution across classes through over-sampling tail classes
or under-sampling head classes [29], [7]. Practically, over-
sampling methods lead to rapid overfitting of the rare classes,
whereas under-sampling discards part of the data that may
contain important information.

Instead of acting at the sample level, the re-weighting
methods operate at the loss level and introduce a balancing
factor to adjust the loss value for different classes. The
vanilla solution is the weighted softmax that uses the inverse
of the class frequency as a factor. Some approaches also
use the prediction difficulty [11] or the effective number of
samples [12] to re-balance the loss, while others directly
modify the gradients [30] or the logits based on the training
labels frequencies [31]. These methods based on loss function
weighting improve rare classes’ performance but can often be
detrimental to the recognition of frequent classes.

Ensemble learning. Multi-expert or multi-branch models
combine multiple network modules in parallel that aim to
extract different representations from the data. Such ensemble
learning method is seen as state-of-the-art for imbalanced
visual recognition [23], [6] and their benefits are typically at-
tributed to the expert’s diversity: making diverse mistakes [32]
or exploring different local minima in the loss landscape [33].

The diversity among various experts can be introduced
by learning on different groups of classes or different class
distributions. Various grouping of classes have been experi-
mented with: BNN [19] uses a two-branches architecture, one
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(a) Average logits (b) Maximum logits (c) Zero non-target logits (d) Oracle model

Fig. 2: Illustration of the aggregation methods for a MCE model with 3 experts. The blue, green and orange colours correspond
to the logits of head, body and tail classes respectively.

focusing on original distribution, the other on a re-balanced
version of it. BAGS [34] or LFME [17] groups classes with
similar numbers of samples. ACE [14] and ResLT [35] form
overlapping groups of classes so that experts have specific and
complementary recognition skills.

C. Multi-expert model for imbalanced semantic segmentation

Semantic segmentation can be formulated as a per-
point/pixel classification, thus several of the methods presented
above have been extended to segmentation tasks. Inspired
by re-weighting methods, Zhou et al. [36] have proposed a
dynamic sample weighting algorithm. Wang et al. [30] intro-
duced the Seesaw loss that re-balances the expert’s gradients
based on the label frequency and the number of misclassified
samples for each class. Recently, the imbalance problem has
been observed from the representation learning perspective and
focused on learning more balanced features in the latent space
[20], [37]. Closer to our work, [38] uses a region-re-balance
branch to better learn rare class features during training.
Other multi-expert models for semantic segmentation have
been developed recently [22], [18] but without specifically
addressing the class imbalance problem.

In this work, we take inspiration from the success of multi-
expert models developed for classification problems and we
adapt them to semantic segmentation tasks. We adopt an
approach with an overlapping grouping of classes, that allows
the ensemble to learn specific, but complementary skills.

III. METHOD

A. Model overview

The overall architecture of our multiple complementary
experts (MCE) network for alpine land cover mapping is
shown in Figure 1. The architecture comprises a shared
visual backbone, followed by several separated trainable layers
forming the experts, and finally, an aggregation module that
combines the experts’ predictions and produces the final model
output.

B. Experts design

The i expert modules E = {E1, ..., Ei} are branched out
from the same visual backbone. They all share the same
architecture but have different parameters to reflect the speci-
ficity of their respective inputs. Each expert is composed
of one convolutional layer with kernel 3x3 followed by a

ReLU [39] activation, a batch normalization layer [40] and
a final convolutional layer with a kernel size of 1x1. Li et
al. [41] observed that learning a more uniform distribution with
fewer samples is sometimes easier than learning a long-tailed
distribution with more samples. Moreover, following the spirit
of re-balancing, tail classes should be more exposed to the
model. Therefore, we divide the C classes into more balanced
but overlapping splits, similarly to ACE [14]. We assign the
first expert E1 to all the classes, and the consecutive experts
with progressively rarer and rarer classes (i.e. E2 focuses on
middle and rare classes, E3 only sees rare classes). Practically,
we feed each expert with all the pixels while attributing a
loss weight of 0 for samples whose class does not belong to
the target classes of the experts. Consequently, the expert Ei
only focuses on its target classes Ci, and the losses from pixel
belonging to non-target classes C̃i are not back-propagated.

Following the Linear Scaling Rule[42] for multi-expert
models [14],‘when the batch size is increased by a factor k,
the learning rate should be multiplied by a factor k’, we adapt
each expert learning rate and assign smaller values to those
trained with less data to avoid overfitting. The base learning
rate η0 is used to train the backbone and the most general
expert E1. The i-th expert Ei is trained with the adapted
learning rate ηi :

ηi = η0

∑
c∈Ci

nc∑
j∈C nj

(1)

where nc is the number of pixel in class c belonging to the
target classes Ci seen by expert Ei and Ci ⊂ C.

C. Loss function

The model is trained with a combination of classification
losses and complementary losses. We compute a classification
loss on each expert output separately, to learn expert-specific
features. Given the label yc and the logits zi ∈ R1×C from
expert Ei, the classification loss for expert Ei is a cross-entropy
loss over its target classes Ci :

Lcls,i = −
∑
c∈Ci

yc log(σ(zi)) (2)

with σ(.) representing the SoftMax operation.
Similarly to [14], we use a complementary loss that penal-

izes the experts for predicting any of the non-target classes
C̃i. Since the classification loss is not computed on the pixels
belonging to these classes, no gradient updates the parameters,

This article has been accepted for publication in IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JSTARS.2024.3369876

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 4

therefore their output should be close to zero. It is defined as
a L2-penalty term :

Lcom,i = −
∑
c∈C̃i

∥zi,c∥2 (3)

where zi,c ∈ R is the logit of Ei for the class c belonging to
the non-target classes C̃i. Thus the network loss for K experts
for a given pixel can be written as :

L =

K∑
i=1

Lcls,i +

K∑
i=1

Lcom,i (4)

It is interesting to notice that there is no loss on the final
model output; we avoid updating together the experts’ weights
to ensure diversity between their predictions.

D. Aggregation

The aggregation module combines the logits from all the
experts into the final model output via algebraic operations as
shown in Figure 2.

• The output logits oc of class c can be computed as the
mean of the logits from all experts:

oc,mean =
1

K

K∑
i=1

zi,c (5)

where zi,c are the logits for class c from expert i. The
logits coming from non-target classes (i.e. logits from
a head class in the rare class expert) can be ignored by
setting them to zero at the expert level, i.e. zi,c = 0 if c ∈
C̃i.

• As an alternative, we consider the group maximum
logits for each class, where:

oc,max = max
1≤i≤K

{zi,c} (6)

• We conduct an oracle case study to establish an upper
bound on the performance of the MCE model. As each
expert concentrates more than the others on some subset
of the classes, i.e. the tail expert predicts best the tail
classes, the model would achieve optimal performance
when each pixel gets predictions only from the expert
who specialises in its category. For this assumption, we
introduce prior knowledge about the best expert for every
pixel in the inference phase and obtain the oracle results.
Note that this approach is used only for benchmarking,
as it requires the ground truth to be applied at inference.

IV. EXPERIMENTS

In this section, we present the data, the experimental details
and the evaluation metrics.

A. TLM Dataset

1) The TLM raw image data: consists of very high-
resolution aerial images and a digital elevation model (DEM)
that covers approx. 2, 300km2 of land above 2, 000m altitude
in the southwestern part of Switzerland as shown in Figure 4.
The raw data are made openly available by the Federal Office

(a) Bedrock (b) Bedrock with grass (c) Snow and Glaciers

(d) Scree (e) Scree with grass (f) Forest

(h) Large blocks (i) Large blocks with grass (j) Water and rivers

Fig. 3: Examples of alpine land cover classes from our dataset,
where the entire surface is occupied by the specified target land
cover category.

Fig. 4: Map of the study area located in southwest Switzerland
with altitude above 2000m.
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Fig. 5: Pixel distribution among the alpine land cover classes
in the TLM dataset on a logarithmic scale
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Fig. 6: Pixel distribution in the FLAIR dataset on a logarithmic
scale

of Topography swisstopo1 under the Open Government Data
policy. The aerial images with RGB channels have been taken
from the swissIMAGE product from the year 2020 and have
RGB bands and a spatial resolution of 25cm. The DEM is
derived from the swissALTI3D product from the year 2019
with a ground resolution of 0.5m and accuracy of 1m to 3m.
RGB data have been upsampled to 50cm to have a consistent
resolution with the DEM.

2) The TLM land cover labels: used in this study focuses
on alpine land cover ( hence the choice of limiting the dataset
to areas higher than 2, 000m). The labels are taken from the
Swiss Topographic Landscape Model model (swissTLM3D)
layer generated through visual photo-interpretation by experts
from swisstopo based on the aerial images from 2014-2017.
The nine land cover types in our study area include bedrock,
bedrock with grass, large blocks, large blocks with grass,
scree, scree with grass, water area, forest and glacier and are
shown in Figure 3. Multiple classes within rocky areas present
high visual similarity, adding to the challenge of imbalance.
Areas without labels are regarded as a background class and
images with background (unlabeled) pixels over 10% of the
total number of pixels are removed. The final dataset contains
229, 538 tiles with a size of 200 × 200 pixels (1ha) and is
available for download 2.

3) Dataset construction and splitting: Figure 5 shows the
distribution of pixels among classes and presents a typical
case of a long-tailed distribution with an imbalance factor,
defined as the ratio of the most frequent to the rarest class,
close to 1000. The classes are grouped by frequency into
‘head’, ‘body’, and ‘tail’ groups. We divide the images into
training, validation and test sets with a ratio of [0.6 : 0.2 : 0.2].
To achieve a balanced distribution in each split, we perform
stratified sampling at the tile level based on the most frequent
label in each tile.

B. FLAIR dataset

The FLAIR [43] dataset was developed by the French
National Institute of Geographic and Forest Information (IGN)

1https://www.swisstopo.admin.ch/en/geodata/images
2https://dx.doi.org/10.21227/n61c-k282

and is a comprehensive benchmarking dataset that combines
aerial imagery with land cover annotations. This dataset
contains an extensive collection of more than 77, 412 high-
resolution patches, each measuring 512 × 512 pixels, with a
spatial resolution of 0.2m and with 19 semantic classes. For
our work, we use the RGB bands, the elevation channel and
the land cover labels. We discard other spectral bands. The
pixel distribution across different land cover classes exhibits
a significant long-tailed distribution with an imbalance factor
of approximately 2, 000, as shown in Figure 6.

C. Experimental setting

We selected two semantic segmentation visual backbones
for our experiments: the DeepLabv3+ [26] architecture and
the U-Net [25]. Both backbones use a ResNet-50 [44] im-
age encoder that is initialized using the pre-trained weights
from ImageNet-1K [45] for the RGB channels and the DEM
channel weights are copied from the first (red) channel. Other
convolution layers are initialized with the He initialization
method [46] and normalization layers, with zero mean and
unit norm. We use the Adam [47] optimizer with a weight
decay value of 0.01, a base learning rate of 1e−4, and a batch
size of 64 for the DeepLabv3+ backbone, respectively 1e−5

and 32 for the U-Net backbone. The hyper-parameters were
chosen through a grid search on the validation set. We train
all models for 50 epochs, with a learning rate decay factor of
0.1 if no improvement occurs over the last 10 epochs.

We use basic data augmentation (random horizontal and
vertical flips, rotations, colour jittering and normalization) for
training all models, but only normalization for testing and
validation. All the experiments are implemented with Pytorch
and run with one GPU NVIDIA GeForce RTX 3090, delivering
120 samples/s for inference, and 68 samples/s in training.

D. Evaluation metrics

The performance of different classes is usually considered to
be equally important in long-tail recognition. We thus report
results with overall accuracy (OA), mean Intersection-over-
Union (mIoU) as well as macro-average accuracy (mAcc) on
head, body and tail groups and accuracy per class. The results
are computed over a separate test set with a distribution similar
to the training and validation set.

V. RESULTS

A. Comparison of different methods

Table I presents the results for our MCE network with
2 (MCE-2) or 3 experts (MCE-3) with both DeepLabV3+
and U-Net backbones on the TLM dataset. We compare them
with similar visual backbones trained with a cross-entropy
loss (CEL), with inverse frequency weights (WCEL), with
class balanced weights (CBL) [12] with β = 0.9999, and
with the seesaw loss (SL) [30]. We also add the results for
the performance of the Oracle model based on the MCE-
3 model. We observe an improvement in performance for
mIoU, mAcc and tail classes accuracy for both U-Net and
DeepLabv3+ backbones with our MCE-2 and MCE-3 models,
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TABLE I: Comparison of our approach with two different backbones, DeepLabv3+ and U-Net. We present the results for the
MCE model with 2 (MCE-2) or 3 experts (MCE-3) with mean aggregation, with a cross-entropy loss model (CEL), a weighted
cross entropy loss (WCEL), a class balanced loss (CBL), a seesaw loss (SL). Results on head, body and tail classes are average
accuracy per group. The Oracle model is based on the MCE-3 model. The best results are in bold, second best are underlined.

Backbone Deeplabv3+ U-Net
Methods mIoU mAcc OA head body tail mIoU mAcc OA head body tail

CEL 53.2 59.6 89.2 91.7 60.8 23.6 45.2 51.1 86.8 89.6 50.9 0.0
WCEL 27.1 41.5 68.6 73.7 40.0 0.0 22.4 35.7 63.0 68.9 27.2 0.0
CBL 40.4 52.6 77.0 80.4 68.0 0.0 33.2 44.1 79.6 83.2 36.2 0.0
SL 50.5 64.6 86.9 89.4 71.3 37.6 48.0 65.0 86.3 88.6 74.4 36.4
MCE-2 53.9 68.8 87.6 89.7 73.7 54.2 52.0 66.0 86.1 88.4 73.0 44.0
MCE-3 53.6 70.0 87.2 89.3 72.8 62.0 49.0 69.1 85.0 87.5 71.2 63.4

Oracle 69.5 82.3 89.3 90.6 92.7 91.1 69.2 81.2 88.0 89.6 91.7 89.6

TABLE II: Comparison of our MCE network with the
DeepLabv3+ backbone on the FLAIR dataset with 2 (MCE-
2) or 3 experts (MCE-3). We use mean aggregation, with a
cross-entropy loss model (CEL), a weighted cross entropy
loss (WCEL), a class balanced loss (CBL), and a seesaw
loss (SL). Results on head, body and tail classes are average
accuracy per group. The Oracle model is based on the MCE-3
model. The best results are in bold, second best are underlined.

FLAIR
Methods mIoU mAcc OA head body tail

CEL 37.9 52.4 73.1 73.7 64.5 17.5
WCEL 33.2 63.0 66.0 65.8 74.1 50.4
CBL 36.7 59.5 71.9 70.7 66.6 40.4
SL 37.4 54.0 71.3 72.6 66.6 21.9
MCE-2 39.0 55.8 72.8 70.5 73.0 24.3
MCE-3 38.8 61.6 73.3 70.8 73.3 41.2

Oracle 49.1 71.9 77.2 72.3 91.4 55.0

compared to all other approaches. A small decrease in the
performance on head classes and overall accuracy is observed
compared to the CEL. However, this trade-off between head-
tail accuracy is shared among all re-balancing methods, with
the MCE-2 and MCE-3 models offering the smallest or second
smallest deterioration in performances for the frequent classes.
The seesaw loss performance also offers a generally good
compromise between all classes, however, the MCE models
introduce a better performance for tail classes, mIoU and
mAcc. With the increase in the number of experts from MCE-
2 to MCE-3, the performance remains consistent between the
head and body classes, but the significant enhancement in the
performance of the tail classes underlines the effectiveness of
the third expert in the network.

Similar results are observed for models trained on the
FLAIR dataset (Table II). The MCE approaches obtain the
best metrics for mIoU and OA, and the second-best results for
the mAcc, body and tail accuracy. The results are surprisingly
good with the WCEL loss, which obtained the best body and
tail accuracy. Compared to other re-balancing methods, MCE
approaches consistently exhibit a superior trade-off, effectively
enhancing the accuracy of both body and tail classes while
minimizing the compromise in accuracy for head classes. It
is important to note that the results reported in FLAIR [43]
focus on the 13 most common classes and discard the 6 ‘tail’

classes, thus the numerical value of the metrics should not be
compared.

B. Oracle model and accuracy per class

As expected, the Oracle outperforms all other models in
terms of performance, since we introduce prior knowledge
about the specific expert to look at for each pixel, and thus
it forms a performance upper bound. The results with MCE-2
and MCE-3 models are very close to the oracle upper bounds
for the head classes, however, the body and tail classes exhibit
much lower values. This indicates the head expert predictions
are well incorporated into the network output, however, the
predictions of body or tail experts could be better taken into
account.

Table III provides more details on individual expert predic-
tions for the MCE-3 model, where we look at each expert’s
probabilities before the aggregation module. The high level of
accuracy of each expert on their set of target classes demon-
strates that our training strategy is effective in specializing
each expert on a given subset of classes. Expert 1 closely
aligns with the results observed in Table I for the CEL network
for all head, body and tail classes, where the CEL is commonly
seen as an upper boundary regarding overall accuracy and
head classes. Each expert focuses on the most frequent classes
among its target classes, and the accuracy is reduced for
underrepresented samples for each expert(i.e. body and tail
classes for the head expert), illustrating that models better learn
from smaller but balanced sets of classes. The complementary
loss pushes the expert’s predictions for non-target classes
toward zero, however, the logits of the latter are not exactly
zeros, leading to some infrequent but correct predictions of
non-target classes (expert 2 on head, expert 3 on head and
body classes). In light of these results, enhancing the network
capabilities seems to depend upon a more effective aggregation
of expert logits, which is further analysed in Section V-D.

C. Study of the training strategy

The ablation study presented in Table IV compares the ef-
fectiveness of the complementary loss (Lcom) and the adapted
learning rate for each expert (adapt-lr) on a MCE model with
3 experts. While very effective on body and tail classes, a
model without adapted learning rate and complementary loss
significantly lowers its recognition ability on head classes,
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TABLE III: Performance in terms of accuracy per class from the MCE-3 model with the prediction from each expert, the
MCE-3 output and the oracle model. The oracle relies on the ideal aggregation of individual expert predictions to generate the
network output, achieving this with the prior knowledge of which expert to look at for each pixel.
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Expert 1 90.6 86.8 86.5 92.7 96.5 59.2 42.6 94.0 40.9 23.0 46.1 0.0
Expert 2 5.4 5.9 5.6 4.1 5.9 92.7 93.3 99.6 85.3 68.2 90.3 46.1
Expert 3 9.2 8.8 11.9 8.0 7.9 5.0 3.0 0.4 11.5 91.1 97.5 84.7

MCE-3 89.3 83.8 85.2 92.6 95.6 72.8 65.4 96.7 56.4 62.0 75.2 48.9
Oracle 90.6 86.8 86.5 92.7 96.5 92.7 93.3 99.6 85.3 91.1 97.5 84.7

TABLE IV: Effects of the complementary loss (Lcom) and the
adapted learning rate (adapt-lr) on the MCE-3 network.

adapt-lr Lcom mIoU mAcc head body tail

- - 37.9 72.1 72.9 87.1 84.1
✓ - 40.5 69.7 79.6 83.1 64.8
✓ ✓ 53.6 70.0 89.3 72.8 62.0

TABLE V: Comparison of aggregation methods for MCE-3.

Aggregation mIoU mAcc OA head body tail

MCE-3 (Mean) 53.6 70.0 87.2 89.3 72.8 62.0
Max-pool 51.5 72.1 86.4 88.4 77.4 67.6
zero-non target zi 54.6 68.3 87.6 89.8 69.9 57.3
MLP 51.6 59.5 86.0 88.9 56.8 34.5
CNN 50.0 67.8 85.5 88.1 63.9 67.2

leading to poor overall performance. The adapted learning rate
mechanism upholds an elevated level of accuracy in classifying
head categories while preserving a satisfactory degree of
recognition for less prevalent classes. The incorporation of the
complementary loss further amplifies this effect.

D. Comparison of aggregation methods

We study different alternatives for aggregating the experts’
output, as presented in Table V. We run inference passes
based on the MCE-3 model weights and only modify the
aggregation methods: instead of mean of logits (mean), we
use maximum-pooling of logits (max-pool), or we set to zero
the logits coming from non-target classes for each expert (zero
non-target logits). We also experimented with the aggregation
of the experts’ logits with learnable layers. We train a one-
layer CNN, and respectively a small 2-hidden layer multi-layer
perceptron (MLP), to aggregate the experts’ logits based on
the output of the frozen best-trained MCE-3 model. We trained
these smaller networks for 50 epochs each with a learning rate
of 5e−4 for the CNN, resp. 1e−5 for the MLP, decaying by a
factor 0.1 every 10 epochs.

The results indicate that max-pooling pushes again the head-
tail ratio toward the rarest classes, by compromising slightly
the performances on head classes. The zero-ing of the non-
target classes logits for each expert favours slightly the head
classes, but the performance for the body and tail classes
drops, indicating that the network benefits from the logits
coming from all experts, even if the expert is not specialised

in the subset of classes, showing that the experts have a truly
complementary action. The two learnable aggregation methods
based on the frozen MCE-3 model with mean aggregation
obtain lower performance in all metrics, illustrating the dif-
ficulty of the aggregation task. In summary, the mean logit
aggregation method appears to be effective for our network,
as the network autonomously learned to balance and aggregate
the sometimes conflicting experts’ predictions.

This analysis of the aggregation strategy is complemented
by Figure 7, which illustrates how the MCE-3 network handles
diverse expert predictions through mean aggregation. Each ex-
pert produces diverse LC predictions, focusing on their target
LC classes. When the experts produce conflicting predictions,
the aggregation via the mean of the logits allows to determine
whether to pick the predictions from one of the experts (rows
a,d,e) without disruption from other experts or to locally select
one expert’s predictions (rows b or c). When the classes from
the labels are not among one expert target classes (which
is often the case for the Expert 3), the expert predictions
are misguiding and meaningless, but also do not impact the
aggregated output (row a,b,e).

VI. LIMITATIONS

One notable limitation of the MCE models is that while
they show improved performance on rare classes, overall
accuracy might become slightly compromised, most probably
because of the lower recall on the majority classes; this
is observed on the TLM dataset with both backbones, but
not on the FLAIR dataset. For image classification tasks,
many re-balancing methods improve the performance on the
rare classes by sacrificing the overall accuracy, typically re-
weighting or data augmentation methods [12], [6]. However,
the recent multi-expert methods seem to better integrate these
constraints and several multi-expert works are advertised as
improving both minority and majority classes accuracy on
benchmarking datasets, such as ACE [14], RIDE [48] or
LFME [17], yet in a real-world scenario, it might not always
be the case as we observe it here on the TLM dataset. The
drop in overall accuracy in that dataset is less than 2%,
for a gain of 60% in accuracy on the minority classes. The
choice between emphasizing rare classes or optimizing overall
accuracy depends on the specific task objectives and should
align with specific application requirements. In the real-world
scenario of national mapping, the updating of land cover maps
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Input image Label MCE-3 Output Expert 1 Expert 2 Expert 3

(a)

(b)

(c)

(d)

(e)

Fig. 7: Example of input images, labels, final network output and individual expert predictions for the MCE-3 model. Labels
for semantic segmentation maps: background, water, glacier bedrock, bedrock with grass, large blocks, large
blocks with grass, scree, scree with grass.

still commonly resorts to manual verification of the predictions
due to stringent accuracy requirements. In such cases, the
priority shifts towards recall of these rare classes that were
maybe forgotten, even if it results in a compromise and slightly
reduces the performances of more prevalent classes, which
already meet very high accuracy standards. Furthermore, these
investigations are based on the assumption that the reference
data is correct. In reality, however, the interpreters who have
collected this reference data are also subject to a certain error
rate, leading to reference data with a certain amount of noise.
Greater uncertainties occur with complex land cover classes,
such as mixed classes (‘scree with grass’), as opposed to more
straightforward classes such as water. This a priori error cannot
be determined in practice. The results obtained must be viewed
with this restriction.

Through our experiments, we observed that each expert
obtained high accuracy on their designated set of classes, but
the aggregation of their predictions seemed to be the sensitive
part of the network. Even though several approaches have been
studied to better aggregate the individual expert’s predictions
(e.g. using an MLP), the learning of the rare categories in the
aggregation layer remains sensitive to the abundant negative
gradients from frequent classes and does not beat the simple
average of each expert logit.

VII. CONCLUSION

This work has presented a multiple complementary expert
model that effectively addresses the class imbalance problem
in semantic segmentation. These problems are common in
several real-world applications involving remote sensing data,
from land cover mapping to ecosystem classification or species
distribution models. In all those cases, long-tail distributed
classes require specialised approaches to detect and model
rare classes correctly. Extensive experiments conducted on two
land cover datasets have led to the development of an efficient
model and training strategy. Our approach involves training
several experts in a complementary manner, each specializing
in a balanced subset of classes. Through an ablation study, we
have demonstrated the effectiveness of adaptive learning rates
and the complementary loss function, enabling an advanta-
geous head-tail class trade-off. Overall, our MCE approach
surpasses the performance of commonly used methods for
handling class imbalance in terms of mean Intersection-over-
Union, mean accuracy and rare classes accuracy, showcasing
the ability of our experts to learn distinctive features tailored to
specific class subsets. These findings underscore the potential
of our approach in advancing semantic segmentation for real-
world applications by mitigating class imbalance effects.
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