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NMR and MS reveal characteristic
metabolome atlas and optimize esophageal
squamous cell carcinoma early detection

Yan Zhao 1,2,6, Changchun Ma3,6, Rongzhi Cai1, Lijing Xin 4, Yongsheng Li 5,
Lixin Ke1,Wei Ye1, TingOuyang1, Jiahao Liang1, RenhuaWu 1,7 & Yan Lin 1,7

Metabolic changes precede malignant histology. However, it remains unclear
whether detectable characteristicmetabolome exists in esophageal squamous
cell carcinoma (ESCC) tissues and biofluids for early diagnosis. Here, we con-
duct NMR- and MS-based metabolomics on 1,153 matched ESCC tissues, nor-
mal mucosae, pre- and one-week post-operative sera and urines from 560
participants across three hospitals, with machine learning and WGCNA.
Aberrations in ‘alanine, aspartate and glutamate metabolism’ proved to be
prevalent throughout the ESCC evolution, consistently identified by NMR and
MS, and reflected in 16 serum and 10 urine metabolic signatures in both dis-
covery and validation sets. NMR-based simplified panels of any five serum or
urinemetabolites outperform clinical serological tumormarkers (AUC=0.984
and0.930, respectively), and are effective in distinguishing early-stage ESCC in
test set (serum accuracy = 0.994, urine accuracy = 0.879). Collectively, NMR-
based biofluid screening can reveal characteristic metabolic events of ESCC
and be feasible for early detection (ChiCTR2300073613).

Esophageal cancer (EC) is a significant public health concern
worldwide1. China accounts for over half of the global annual incidence
and mortality, of which more than 90% are esophageal squamous cell
carcinoma (ESCC), and the T0, Tis, and T1 stages account for 10.8% of
the total cases2,3. The cure rate for early-stage ESCC exceeds 90%.
However, due to the subtle nature of symptoms and the lack of bio-
markers for early diagnosis, most patients are typically diagnosed in
late-stage T3-T4, resulting in a 5-year survival rate of only approxi-
mately 21%4. Currently, the gold standard for diagnosing ESCC pri-
marily relies on endoscopy coupled with histopathology, but its
invasive nature reduces patient compliance5. Barium swallow and CT
imaging techniques involve radiation exposure and tend to miss small
lesions. Conventional serological tumor markers, such as Cytokeratin-
19-fragment CYFRA21-1 (Crfr211), Squamous Cell Carcinoma Antigen
(SCC), Carcinoembryonic Antigen (CEA), Carbohydrate Antigen 19-9

(CA 19-9) and Carbohydrate Antigen 15-3 (CA 15-3) have shown sub-
optimal accuracy in clinical practice. With the advancements in omics
technologies, researchers have explored several novel biomarkers for
ESCC diagnosis, including DNA methylation markers, serum miRNA,
autoantibodies, somatic gene mutations, salivary exosomes, and arti-
ficial intelligence (AI)-assisted sponge cytology6–11. However, these
approaches face limitations due to the requirement of advanced
technology platforms, methodological instability, or high costs, hin-
dering their translation into large-scale clinical applications. Conse-
quently, there is an urgent need to develop reliable, non-invasive,
accessible and affordable tools for ESCC early detection12.

It takes years for ESCC to progress from squamous cell hyper-
plasia to atypical hyperplasia, carcinoma in situ, early-stage and inva-
sive cancer13. In addition, metabolic phenotypic changes could
precede malignant histological alterations, providing a significant
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opportunity for early detection and timely intervention14. However, it
remains to be established whether there are characteristic metabolic
changes during ESCC evolution and whether such metabolic changes
can be detected. Metabolomics holds great promise for identifying
disease-associated metabolites, highlighting its valuable insights into
early diagnosis, treatment strategies, and mechanistic investigations15.
Proton nuclear magnetic resonance (1H-NMR) and mass spectrometry
(MS) are the most mainstream technological platforms in
metabolomics16,17. MS exhibits high sensitivity (SE) but requires
expensive standard reagents. 1H-NMR has shown remarkable stability,
excellent reproducibility, quantitative nature, non-invasive sample
analysis, and has been well-suited for clinical multi-center, large-scale,
and longitudinalmonitoring studies for establishing successful clinical
applications in countries such as the United Kingdom and Canada18,19.

Most existing metabolomics studies of ESCC have mainly relied
on analyzing biofluid samples, such as serum and urine. Our previous
study showed that NMR-based biofluid metabolomic profiles can dis-
criminate ESCC patients from healthy controls (HCs), suggesting the
potential utility of biofluid metabolic fingerprinting as predictors for
ESCC20–22. However, potential confounders, such as environmental
factors, lifestyle habits, phenotypic variations and comorbidities,
might influence biological fluid metabolism, leading to a gap between
ESCC biofluids and characteristic molecular events of ESCC tissues. In
this study, we employed a comprehensive research strategy incor-
porating 1,153 multi-dimensional matched specimens, NMR and tar-
getedMS cross-platform testing, as well as multi-center validation. We
aimed to investigate tumor tissue-specific metabolic biomarkers dur-
ing ESCC evolution, and then leverage them as references to develop
and optimize biofluid metabolic classifiers based on NMR (a means
that can better achieve ‘health equity’), which not only faithfully reflect
the characteristics of tissue metabolic changes with high accuracy of
tissue origin, but also has sufficient clinical SE for ESCC early diagnosis
and screening.

Results
Clinical phenotypes of enrolled subjects
In this multi-center retrospective analysis, we included 560 partici-
pants with a total sample size of 1153 from three centers in southern

China to explore metabolic alterations associated with ESCC. Figure 1
illustrated the overall study schema, and Supplementary Fig. 1 pro-
vided the sample distribution. As shown from the demographics and
baseline characteristics summarized in Supplementary Table 1, clinical
tumor markers, such as CEA, CA19-9, CA15-3, SCC and CYFRA21-1, did
not present sufficient specificity (SP) and SE for diagnosing ESCC.
Supplementary Table 2 presented the clinical phenotypes of the vali-
dation set. As seen from this table, early-stage ESCC patients had no
apparent symptoms, and the incidence of thoracotomy and post-
operative Intensive Care Unit (ICU) transfer rates were low. Addition-
ally, six patients with ESCC were initially misdiagnosed with intrae-
pithelial neoplasia due to sampling errors caused by intratumoral
heterogeneity.

Early-stage tissue metabolomic landscape of ESCC patients by
NMR and MS
Given the potential influence of various confounders on biofluid bio-
markers, it is crucial to identify cancer-specific biomarkers closely
associated with ESCC evolution. In the discovery set, our three pre-
vious studies consistently identified metabolic biomarker candidates
that constituted our initial potential biomarker pool in ESCC tissues
using 400MHz 1H-NMR, including Acetate, Alanine, beta-Glucose, etc.,
represented with directional arrows indicating their increase or
decrease compared to normal controls (Supplementary Data 1, left
panel)20–22.

In the validation set, 600MHz 1H-NMR was performed on mat-
ched ESCC patients and HC samples. Representative 1H-NMR spectra
and metabolites resonance assignments were presented in Supple-
mentary Fig. 2A–C and Supplementary Data 2, respectively. Uniform
manifold approximation and projection (UMAP) and hierarchical
clustering analysis (HCA) analysis divided tissue samples into two
groups (Supplementary Fig. 3A, B). Orthogonal partial least squares
discriminant analysis (OPLS-DA) revealed distinct metabolic differ-
ences between ESCC tumors vs. normal mucosa (Fig. 2A), early-stage
ESCC tumors vs. normal mucosa (Fig. 2B), and early-stage ESCC vs.
advanced-stage ESCC (Fig. 2C). External permutation tests validated
that the models were suitable for data analysis (Fig. 2D–F). According
to the screening criteria (Variable importance in the projection

Fig. 1 | Schema of overall study design.A total of 560 participants from three centers were involved in this study. Tissue, serum and urine specimens were collected and
subjected to 1H-NMR- and MS-based metabolomics analysis, followed by pattern recognition, machine learning and WGCNA analysis.
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Fig. 2 | Tissue metabolomic landscape of ESCC patients based on NMR-based
metabolomics. A–C OPLS-DA score plot based on 1H-NMR tissue spectra from
ESCC patients at different stages. Red: ESCC tumor; Blue: Normal mucosa; Yellow:
Early-stage ESCC tissue; Orange: Advanced-stage ESCC tissue. D–F Statistical vali-
dation of the correspondingmodel by permutation analysis (200 times). The x-axis
represents the permutation retention rate of the permutation test, and the dots in
the upper right corner represent the R2 (light blue) andQ2 (dark blue) values of the
original model when the permutation retention rate is 1. R2 measures the goodness
of fit, while Q2 measures the predictive ability of the model. Light blue dots
represent the R2 values obtained from the permutation test, while dark blue dots
represent the Q2 values obtained from the permutation test. The two dashed lines
represent the regression lines of R2 and Q2, respectively. G–I Metabolic pathway
analysis. Relative betweenness centrality was the selected node importance mea-
sure for pathway topological analysis. All pathways are represented as bubbles. The
color and size of each bubble correspond to its p-value and pathway impact value,

respectively. In general, bubbles on the right side of the map have higher weights,
while bubbles at the top have smaller p-values. The precise p-values for metabolic
pathway analysis are provided in the Source Data without adjustments. J Multiple
Volcano plot based on the same batch of samples, showing the comparison of
differential metabolites between different groups (Tumor vs Normal; Early ESCC vs
Normal; Early ESCC vs Advanced ESCC). P-values were determined by two-sided t-
test without adjustments. Metabolites with p <0.05 were visualized as solid circles
on the plot, while those with p >0.05 were not displayed. A log10 transformation
was applied to the p-values of each significantly differential metabolite to visualize
their significance levels. K Statistical analysis of principal metabolic pathway dis-
turbances in the evolution of ESCC. A pathway impact greater than 0.1 and p <0.05
was used as the cut-off value for the statistical significance. (A, D, G, left panel)
ESCC vs. normal mucosa patients; (B, E, H, middle panel) early-ESCC vs. normal
mucosa patients; and (C, F, I, right panel) early-ESCC vs. advanced -ESCC patients.
Source data are provided as a Source Data file.
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(VIP) > 1, adjusted p < 0.05 and significant p|corr| values), there were
43, 34, 12 and 45 potential metabolic biomarkers identified for ESCC
tissues vs. normal mucosa, early-ESCC tissues vs. normal mucosa,
early-ESCC tissue vs. advanced ESCC tissue, and advanced ESCC tissue
vs. Normal mucosa, respectively, as shown in Supplementary Data 3,
Supplementary Fig. 3C and multiple volcano plots (Fig. 2J). Given our
study’s emphasis on early detection, we primarily focused on meta-
bolites already showing diagnostic efficacy in the early stage, and
further screening included selecting those with high fold change (FC)
and areas under the curve (AUC) values, recorded in Supplementary
Data 1, middle panel. Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway analysis revealed perturbations of ‘Alanine, aspartate,
and glutamate metabolism’ and arginine-related metabolic pathways
during ESCC progression, from normal mucosa to early and to
advanced stages of tissues (Fig. 2G–I). Additionally, ‘D-glutamine and D-
glutamate metabolism’, ‘Glutathionemetabolism’, Taurine-, pyruvate-,
and histidine-related metabolism’ were found to be significantly dis-
rupted during ESCC tumorigenesis (Fig. 2K).

TargetedquantitativeMSwere used to validate theNMR results of
early-ESCC tissues on the same batch. Over 500 biochemicals were
quantified by multiple reaction monitoring (MRM) mode, including

544metabolites across 13 classes detected via Liquid chromatography-
tandem mass spectrometry (LC/MS–MS) and 11 fatty acids (FAs)
detected via gas chromatography-tandem mass spectrometer (GC/
MS–MS), covering most of the substances we identified in NMR.
Quality control (QC) and HCA analysis were carried out (Supplemen-
tary Fig. 3D, E). We identified 315 differential metabolites from various
categories (Fig. 3A, Supplementary Data 3) and visualized them with
volcano plots (Fig. 3B). Consistent expression trends and significant
pathways were observed for the same differential metabolites detec-
ted across NMR and targeted MS platforms (Fig. 3C; Supplementary
Data 1, middle panel). Random forest (RF) algorithm showed that
Glutamate, a key molecule in the ‘Alanine, aspartate and glutamate
metabolism’ pathway, was the most significant metabolite to distin-
guish early-stage ESCC from normal tissues (Supplementary Fig. 3F).

To pinpoint the unique metabolic biomarkers in early-ESCC tis-
sues, we constructed a two-way orthogonal partial least squares
(O2PLS) model by integrating NMR and MS data matrices. We then
identified the top 30 metabolite variables with high correlation and
weight in both datasets using the loading plot (Fig. 3D) and listed them
in SupplementaryData 1, right panel. Combining the overall changes in
key metabolic pathways in the tissue and considering them
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comprehensively, we identified the cancer-specific metabolic bio-
markers in early-ESCC tissues, including 2-hydroxybutyrate, 3-Hydro-
xybutyrate, 3-Hydroxypropionic acid, etc., shown in Table 1.

Metabolic changes in biofluids reflect specific alterations in
ESCC tissues
In the aforementioned validation set, we collected pre- and one-week
post-operative serum and urine samples from ESCC patients and
analyzed them by 600MHz NMR spectroscopy. Pairwise comparison
using OPLS-DA models showed significant differences in serum
(Fig. 4A–C) and urine (Fig. 4G–I) profiles between pre-operation, post-
operation, and HC groups. Following the same screening criteria for
tissue analysis, we identified serum and urinemetabolites that differed
between groups (Supplementary Data 3). KEGG metabolic pathway
enrichment analysis was further performed (Fig. 4D–F, J–L), and we
found that ‘Alanine, aspartate and glutamate metabolism’ consistently
exhibited the most significant changes from tumor-bearing to tumor-
resected phase and to healthy status in biofluids (Supplementary
Fig. 4A, B).

Using the Mantel test to assess the correlation between potential
biomarkers in keymetabolic pathways (such as ‘Alanine, aspartate and
glutamate metabolism’ and ‘Arginine and proline metabolism’) in
early-stage ESCC tissues, and the differential metabolites in serum and
urine, we found that the correlation between tissue metabolome and
serummetabolome was greater than urine metabolome, and ‘Alanine,
aspartate and glutamate metabolism’ in tissues was more relevant to
the biofluid metabolome than the ‘Arginine and proline metabolism’

(Fig. 4M, N). O2PLS model was performed to analyze the associations
between ‘tissue-specific biomarkers’ and ‘biofluid potential bio-
markers’, and we identified the top 20 serum (Supplementary Fig. 4C)
and urine (Supplementary Fig. 4D) metabolites that correlated most
with tissue biomarkers. After further screening, the serum signatures
(including alpha-Ketoisovalerate, Arginine, Asparagine, etc), and the
urine signatures (including 3-hydroxybutyrate, Ascorbate, Dimethyla-
mine, etc), linked to early-stage ESCC, were summarized in Table 2.

‘Alanine, aspartate and glutamatemetabolism’ is crucial in ESCC
progression
WeightedGene Co-ExpressionNetworkAnalysis (WGCNA)was used to
explore the critical driver metabolite modules in early ESCC. To

compare early-ESCC tissues and normal mucosa, we divided metabo-
lites into four modules (Fig. 5A, Supplementary Fig. 5A, B). Two mod-
ules were significant: the Turquoise module with 172 metabolites and
the Blue module with 45 metabolites (Supplementary Data 4). We
found correlations between module-membership scores and the
standardizeddifferencebetween ESCCandHC.Notably, theTurquoise
module had the highest weight, and Glutamate and Asparagine levels
weremost associatedwith eigen-metabolite levels (Fig. 5B). Functional
enrichment analysis of the Turquoise module showed the role of var-
ious amino acid metabolism in driving this module (Fig. 5C). To com-
pare the pre- and post-operative serum, the metabolic changes were
closely associated with 41 metabolites contained in the Turquoise
module (Supplementary Fig. 5C, D, Supplementary Data 4). The net-
works of these metabolites were inferred using Cytoscape. Interest-
ingly, key molecules from the ‘Alanine, aspartate, and glutamate
metabolism’ pathway were consistently identified as hub metabolites,
aligning with the earlier KEGG metabolic pathway analysis (Fig. 5D).

To further investigate the intricate details of this characteristic
molecular event, we analyzed the expression profiles of relevant
metabolic enzymes and transporters using the TCGA-GTEx-ESCA
dataset (Fig. 5E). The changes in the expression levels of GLS (Gluta-
minase), ASNS (Asparagine synthetase), SLC1A5 (Solute carrier family 1
member 5) and GPT2 (Glutamic-pyruvic transaminase 2), were con-
sistent with the alterations of 14 metabolites (including 2-Oxo-gluta-
rate, 4-Aminobutanoate(GABA), Citrate, Fumarate, L-Alanine, L-
Arginino-succinate, L-Asparagine, L-Aspartate, L-Glutamate, L-Gluta-
mine, N-Acetyl-L-aspartate, N-Carbamoyl-L-aspartate, Pyruvate, Succi-
nate) involved in ‘alanine, aspartate and glutamate metabolism’,
quantified and visualized in Fig. 5F.

Validations of serum and urine biomarkers for ESCC early
diagnosis
As an internal validation, we continued our research to verify the
diagnostic and predictive capabilities of the biofluid biomarkers for
ESCC. Since patients usually provide only blood or urine samples in
clinical practice, we therefore analyzed 16 serum signatures (Fig. 6, left
panel) and 10 urine signatures (Fig. 6, right panel) screened in Table 2,
respectively. STAMP analysis showed significant differences between
ESCC and HCs (Fig. 6A, B). Receiver operating characteristic curve
(ROC) analysis showed that most serum and urine metabolites had
good diagnostic potential, with AUC above 0.80 (Fig. 6C–F). Linear
support vector machine (SVM) algorithm was further applied to
improve the diagnostic ability by combining all the serum or urine
signatures. The serum biomarker panel achieved an AUC of 0.999 at
70% cross-validations (CV) and 0.996 at 30% hold-out data, with a
predictive accuracy of 0.996 (Fig. 6G, H). The urine biomarker panel
had an AUC of 0.975 for both 70% CV and 30% hold-out data, with a
predictive accuracy of 0.909 (Fig. 6I, J).

Considering the simplicity of clinical application, we used SVM
algorithms to try a panel with limited metabolites. Our results showed
that any five metabolites could achieve good predictive accuracy for
ESCC (Fig. 6K, M). Logistic regression was then used to construct a
theoretically low-performing combined biofluid panel, using the five
metabolites with the lowest AUC values from the screened serum and
urine signatures (Fig. 6C–F, Table 2). Here, we established a serum
panel (comprising arginine, beta-aminoisobutyrate, glutamine, histi-
dine, low-density lipoprotein, Fig. 6L) and a urine panel (comprising 3-
hydroxybutyrate, dimethylamine, malonate, para-hydrxoyphenylace-
tate, taurine, Fig. 6N). As hypothesized, these simplifiedpanels showed
good diagnostic ability (Table 3), and the serum panel had an AUC of
0.984 (95% CI 0.968–1.000) with a SE of 0.955 and SP of 0.948, while
the urine panel had an AUC of 0.930 (95% CI 0.913–0.976) with a SE of
0.850 and SP of 0.949. We also compared the diagnostic performance
of biofluid panels using XGBoost, Gaussian Naive Bayes, and K-Nearest
Neighbors algorithms. While the results closely approximated those

Table 1 | Potential biomarkers in early-stage ESCC tissues
identified by integrated 1H-NMRandMS-basedmetabolomics
analysis

Potential biomarkers in early-ESCC tissue

2-Hydroxybutyrate ↑ Phosphocholine ↑

3-Hydroxybutyrate ↑ Proline ↑

Acetate ↑ Propionate ↑

Arginine ↑ Threonine ↑

Asparagine ↑ Tyrosine ↑

Choline ↑ Uridine ↑

Flavin mononucleotide ↑ Valine ↑

Glutamate ↑ 3-Hydroxypropionic acid ↓

Glutathione ↑ Alanine ↓

Glycine ↑ beta-Glucose ↓

Histidine ↑ Creatine ↓

Isoleucine ↑ Glutamine ↓

Leucine ↑ Isocitric acid ↓

Lysine ↑ Sarcosine ↓

Ornithine ↑ Taurine ↓

Phenylalanine ↑ Trimethylamine N-oxide ↓

↑: upregulation; ↓: downregulation.
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obtained through the classical logistic regressionmethod, the efficacy
of the logistic regression model remained better (Supplementary
Table 3), indicating that the machine learning methods we used were
robust. In other words, any five combinations of the 16 serum or 10
urine metabolites were effective in distinguishing between ESCC and
HCs, and all were superior to the conventional clinical markers and

even their combined models (Fig. 7A), although the diagnostic per-
formance of the urine signatures was slightly inferior to the
serum ones.

To further assess the cross-laboratory performanceof the biofluid
classifiers, we conducted external validation in the test set. We com-
pared the metabolic differences between ESCC and colorectal cancer
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(CRC), a common digestive tract tumor, and HCA showed distinct
metabolic profiles between the two cancers (Fig. 7B). The serum joint
model had a lower diagnostic efficiency for CRC, with an AUC of 0.733
(Fig. 7C). In addition, the metabolic profiles of four different types of
esophageal tumors, including esophageal adenocarcinoma (EAC),
gastroesophageal junction adenocarcinoma (GEJ), esophageal undif-
ferentiated carcinoma and stromal tumors, differed from those of
ESCC (Fig. 7D, E), further confirming the unique metabolomics sig-
natures of ESCC.Notably, in clinical practice, distinguishing early-stage
ESCC from healthy populations poses a big challenge. Therefore, we
used the serum and urine panels to predict 18 new early-stage ESCC
cases (with 18 serum and 18 urine samples) in the test set, with an
accuracy of 0.994 and 0.879, respectively (Fig. 7F, Supplementary
Table 4). Themulti-center results confirmed that thebiofluid classifiers
captured the metabolic changes in early ESCC.

Logistic regression was used to analyze the metabolite char-
acteristics to identify the risk and protective factors for early-stage
ESCC. Wemade a nomogram (Supplementary Fig. 6A) and validated it
with calibration plots and decision curve analysis (DCA) (Supplemen-
tary Fig. 6B, C). Notably, in the Nightingale dataset from prospective
UK Biobank (UKB) cohort closer to real-world data, the pre-diagnosis
levels of Clinical LDL-C, Glutamine, and 3-Hydroxybutyrate in plasma
were associated with the risk of future esophageal malignancy onset18.
For each 1-SD increment in the concentration of these three bio-
markers, the median risk ratio decreased or increased by 0.90, 0.89,
and 1.14 times, respectively (Supplementary Fig. 6D), which was con-
sistent with the down-regulation of LDL (low-density lipoprotein) and
glutamine, and the up-regulation of 3-hydroxybutyrate in the ESCC
biofluids in this study.

Discussion
Global predictions for ESCC across 185 countries or territories indicate
an estimated 806,000 new cases by 2040 if incidence rates remain
stable1. Despite significant advances in treatment over the past 20
years, the survival rate remains low due to its late diagnosis. Mean-
while, research has shown that ESCC screening emerges as the most
cost-effective option based on ranking the cost per life-year saved to
China’s per capita GDP ratio23. Therefore, there is an urgent need to
discover and establish biomarkers for ESCC screening or early diag-
nosis. It is well known that metabolic changes precede malignant his-
tological alterations, however, it remains to be confirmed whether
detectable characteristic metabolomics exists in tissues and biofluids
for ESCC early diagnosis14. In this study, we characterize a compre-
hensive metabolome atlas of 1153 ESCC tissues, adjacent normal
mucosae, pre- and post-operative sera and urines from 560 partici-
pants across three hospitals, using four platforms (including 1H-NMR-
and targeted MS) combined with machine learning and WGCNA. We
demonstrated that changes in ‘alanine, aspartate and glutamate
metabolism’were prevalent throughout the progressionof ESCC, from
normal mucosae to early and to advanced stages of tissues, and from
tumor-bearing to tumor-resected recovery phase and to healthy status
in biofluids, suggesting that it is a characteristic molecular event in
ESCC evolution. Based on the tissue metabolic characteristics con-
sistently identified by NMR and targeted MS technique, we developed
and optimized NMR-based 16 serum and 10 urinemetabolic signatures
that could reliably reflect the characteristic metabolic features of the
ESCC tissues. Simplified NMR-based classifiers incorporating any five
serum or urine metabolite signatures can effectively diagnose and
predict early ESCC, making it suitable for clinical screening and thus

Fig. 4 | Changes in serum and urine metabolism in ESCC patients before and
after surgery. A–LOPLS-DA score plots of 1H-NMR serum spectra (A–C) and urine
spectra (G–I) between experimental groups. Red: Pre-operation; Yellow: Post-
operation; Blue: Healthy control (HC).Metabolic pathway analysis of distinguishing
metabolites in serum (D–F) and urine (J–L) of ESCC patients. Relative betweenness
centrality was the selected node importance measure for pathway topological
analysis. The precise p-values for metabolic pathway analysis were provided in the
Source Data without adjustments. (A, D, G, J, left panel) Pre-operation group vs.
healthy group; (B, E, H, K, middle panel) Pre-operation group vs. post-operation
group; and (C, F, I, L, right panel) post-operation group vs. healthy group.
M, N Mantel test quantified the degree of correlation between tissue metabolome

and serum metabolome, together with the urine metabolome in early-ESCC
patients. The key metabolites (potential biomarkers) in the alanine, aspartate and
glutamatemetabolismpathway, or arginine and prolinemetabolismpathway, from
tissue profiles, were compared with serum and urine differential metabolites,
respectively.Mantel statistics are provided in the right area in the plot. The network
heatmap showed the correlation between the principal tissue biomarkers and
biofluid metabolites (edge color denotes the statistical significance (p-values were
determined by two-sided t-tests without adjustments for comparisons), and edge
width corresponds to Mantel’s r statistic for the corresponding distance correla-
tions; the color gradient in the boxes represents Pearson’s correlation coefficients).
Source data are provided as a Source Data file.

Table 2 | Serum and urine biomarkers are closely linked with the occurrence and progression of ESCC

Serum signatures AUC (95% CI) Urine signatures AUC (95% CI)

alpha-Ketoisovalerate 0.984 (0.954–1.000) 3-Hydroxybutyrate 0.673 (0.561–0.785)

Arginine 0.887 (0.827–0.946) Ascorbate 0.764 (0.669–0.859)

Asparagine 0.948 (0.916–0.980) Dimethylamine 0.670 (0.550–0.791)

beta-aminoisobutyrate 0.893 (0.820–0.965) Inosine 0.776 (0.683–0.870)

Choline 0.977 (0.959– 0.995) Malonate 0.751 (0.650–0.852)

Citrate 0.920 (0.875–0.966) N-Methylnicotinamide 0.834 (0.749–0.919)

Glutamate 0.947 (0.906–0.989) para-Hydrxoyphenylacetate 0.735 (0.636–0.835)

Glutamine 0.725 (0.638– 0.813) Riboflavin 0.759 (0.660–0.857)

Histidine 0.809 (0.736–0.883) Taurine 0.691 (0.585–0.798)

Low-density lipoprotein 0.887 (0.834–0.940) Trigonelline 0.882 (0.816–0.949)

Methionine 0.922 (0.880–0.964)

N,N-Dimethylglycine 0.990 (0.976–1.000)

Ornithine 0.893 (0.835–0.951)

Phenylalanine 0.999 (0.997–1.000)

Sarcosine 0.894 (0.841–0.947)

Trimethylamine 0.928 (0.885–0.971)

AUC areas under the curve, 95% CI 95% CI confidence Interval.
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dendrogram branch cutting. Turquoise, blue and brown were the most strongly
associated modules between tumor and normal tissue. B Early-ESCC tissue vs.
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represents the p-value. D Pre-operative vs. post-operative serum groups: hub
metabolites in the only crucialWGCNAmodule specific to themetabolic changesof
ESCC patients before and after esophagectomy. E Differential expression (log2FC)
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(Wilcoxon rank sum test) was performed for comparison, and the p-values were
obtained. F Summary of the alanine, aspartate, and glutamatemetabolism pathway
including metabolites, enzymes and transporters where relevant (blue: down-reg-
ulation; red: up-regulation). Source data are provided as a Source Data file.
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Fig. 6 | Internal validation of serum and urine metabolite biomarkers.
A, B STAMP analysis indicates expressional differences of serum (A) and urine (B)
metabolite biomarkers between the ESCC (n = 54 biologically independent serum
samples; n = 54 biologically independent urine samples) and HC groups (n = 87
biologically independent serum samples; n = 39 biologically independent urine
samples). The results were divided into two parts: 1) Bar Chart on the left side: The
red bars represent the ESCCgroup,while the blue bars represent theHCgroup. The
length of each bar indicates the proportion of expression. The black lines on the
bars represent the Standard Error of the Mean (SEM). 2) Dot Plot on the right side:
When a differential metabolite has a higher abundance in the ESCC group than the
HC group, it is represented by a red dot to the right of the dashed line. Conversely,
if a metabolite’s expression is lower in the ESCC group than in the HC group, it is
marked with a blue dot to the left of the dashed line. The distance of the dot from
the central dashed line represents the magnitude of the difference (95% CI). The
vertical axis on the right displays the p-values for the differences (two-sidedWelch
t-test without adjustments for comparisons, FDR-adjusted), arranged from smallest

to largest. Themean, standarddeviation (SD), and SEMof themetabolite signatures
in both groups have been provided in the source data. 95% CI: 95% Confidence
Interval. C–F AUC of ROC curves for the 16 serum (C, D) and 10 urine (E, F) meta-
bolic signatures discriminating ESCC from HC in the validation set, respectively.
G–N ROC curves and AUCs from cross-validated serum (G) or urine (I) joint models
(red), run on the 30% hold-out test dataset (blue). Prediction of class probabilities
(average of the cross-validation) for each sample using the best classifier based on
serum (H) or urine (J) AUC. Predictive accuracies of SVM models with different
numbers of serum (K) or urine (M) features. Image shows the average of each
sample’s predicted class probabilities across 100 cross-validations. As the algo-
rithm used a balanced sub-sampling approach, the classification boundary is
located at the center (x =0.5, the dotted line). ROC curve shows the efficacy of five
serum (L) or five urine (N) metabolites (with the lowest AUC value) combined with
the logistic regression model of ESCC. CV cross-validation. Source data are pro-
vided as a Source Data file.

Article https://doi.org/10.1038/s41467-024-46837-0

Nature Communications |         (2024) 15:2463 9



Table 3 | ROC information for serum or urine biomarker panels

Predicted probability panels AUC (95% CI) Cut-off SE SP Accuracy PPV NPV Youden

Serum panel (five metabolites) 0.984 (0.968–1.000) 0.502 0.955 0.943 0.948 0.926 0.965 0.897

Urine panel (five metabolites) 0.930 (0.913–0.976) 0.833 0.850 0.949 0.889 0.962 0.804 0.799

AUC areas under the curve, 95% CI 95% CI confidence interval, SE sensitivity, SP specificity, PPV positive predictive value, NPV negative predictive value.
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providing a potential model for adoption and implementation in other
laboratories.

Current clinical diagnostic methods for ESCC have limitations.
Successfully developing a novel diagnostic approach requires new
tools to surpass existing methods. The potential of liquid biopsies has
been highlighted by studies showing that they can track the evolu-
tionary dynamics and heterogeneity of tumors and detect the early
emergence of diseases24. It can be used to examine cancer-derived
circulating tumor cells (CTCs), circulating nucleic acids such as circu-
lating tumor DNA (ctDNA) and cell-free DNA (cfDNA), extracellular
vesicles (EVs), tumor-educated platelets, proteins, and metabolites25.
Due to their abundance across biofluids, especially the cfDNA
methylation-based technology, which can faithfully reflect tissue-SP
with high tissue origin accuracy, liquid biopsy offers a promising
strategy for the early detection of various human cancers, including
ESCC26–28. However, the high cost and complex isolation procedures of
the above-mentioned methods need to be considered. In the era of
liquid biopsy, metabolomics is emerging, representing the clinical
phenotype and metabolic reprogramming15,24,29–31. NMR-based meta-
bolomics is robust, reproducible, cost-effective and sufficiently sensi-
tive for clinical testing, no matter whether it involves a large sample
size of tens of thousands,multi-center studies spanningmany years, or
cancer patients with only non-specific symptoms before onset18,32–35.
Meanwhile, triple quadrupole (TQ) MS operated in MRM mode and
coupled with LC or GC instruments are ideal complementary techni-
ques to NMR due to their broad dynamic range and high SE36,37. Pre-
vious studies have proposedmetabolic biomarkers for ESCC based on
blood, urine, paired pre- and post-operative serum, ormultiple serum-
based analytical detection platforms38–42. However, these results were
generally inconsistent or even contradictory between studies, due to
potential factors, such as non-standardized sample collection pro-
cesses, single and unmatched sample types, incomplete control
designs, lack of validation or inconsistent detection methods. Tumor
tissues contain global metabolic information at metabolic enzymes
and metabolites levels. Investigations originating from tissue analysis
are considered a more robust approach, offering explicit biochemical
insights into disease pathogenesis and responses to stimuli43. There-
fore, detecting cancer-specific metabolites in ESCC tissues first, and
then measuring the metabolic phenotypes in biofluids that could
reflect the characteristicmetabolic features of the ESCC tissues, will be
more likely to define specific and functional clinical biomarkers.

In this study, we first used NMR and MS to identify the potential
biomarkers in early-stage ESCC tissues that play a central role in global
metabolism homeostasis. ‘Alanine, aspartate and glutamate metabo-
lism’ and arginine-related metabolic pathways were observed to be
remarkably disrupted throughout the progression of ESCC from nor-
mal to early and to advanced stages. Interestingly, the expression
trends of biomarkers and significant pathways in early-ESCC tissues in
our study were highly consistent with those detected in ESCC tissues
by Zeper Abliz’s team using high-resolution MS imaging spatially
resolved metabolomics, including downregulation of Glutamine and
up-regulation of Glutamate, Proline, Uridine, Histidine, Short-chain
FAs, Arginine, and Ornithine44. This further validated the reliability of
our NMR-based results. We then used biofluid-based strategies to
minimize the impact of tumor heterogeneity. By using a strictly

matched sample design and correlation analysis, we addressed the
challenges of high-dimensional datasets, and identified NMR-based
longitudinal blood and urine metabolites, which were closely asso-
ciated with tissue metabolome in early-stage ESCC patients. Using
WGCNA-based mechanistic exploration and quantitative depiction of
KEGG metabolic pathways, we discovered that the most significant
metabolic reprogramming in serum and urine was primarily involved
in the ‘Alanine, aspartate and glutamate metabolism’ pathway, from
tumor-bearing to tumor-resected phase and to healthy status in bio-
fluids, consistent with the characteristics metabolic disorders in early-
ESCC tissues. Therefore, we proposed that NMR-based biofluid meta-
bolites can reflect the characteristic molecular events of early-ESCC
tissues, and have great potential for ESCC early detection.

Our findings reveal varying degrees of disruption across most
categories ofmetabolic pathways during ESCC progression, and this is
because human metabolism is a complex, resilient and sophisticated
regulatory ecosystem where a single change can affect the entire sys-
tem. However, this study primarily focuses on observing the long-
itudinal metabolic changes specific to ESCC tissues. From this
perspective, changes in amino acidmetabolism appear notably active.
Amino acids serve essential roles within tumors and their micro-
environment. First, they are vital nutrients for all cell types, con-
tributing substantially to cancer cell survival and growth. For example,
glutamine is largely anaplerotic and relinquishes both amine groups to
support the TCA cycle45. Second, enhanced biosynthetic activities are
an essential feature of metabolic reprogramming in cancer, and amino
acids play crucial roles in the synthesis of proteins, lipids, and nucleic
acids46. Third, proliferating cancer cells accumulate reactive oxygen
species, damaging macromolecules and eventually causing cell death.
Cancer cells rely on glutamine, glycine, and cysteine to synthesize
glutathione and regulate redox balance to address this problem47,48. In
addition, amino acid derivatives contribute to epigenetic regulation
and immune response associated with tumor occurrence and
metastasis49. We also illustrate how the ‘Alanine, aspartate and gluta-
mate metabolism’ pathway, a characteristic molecular event in ESCC,
can inspire potential metabolic liabilities as therapeutic targets. This
pathway involves key molecules such as GLS, SLC1A5, ASNS and Glu-
tamine. GLS and SLC1A5 inhibitors have shown efficacy in preclinical
models and are under trials; Glutamine can act as an intercellular
metabolic checkpoint andmodulate tumor immunity; and ASNS could
be a vulnerability in gastric and liver cancer tumor cells, suggesting
l-asparaginase as a potential therapy50–52. These collectively suggest
that concurrent metabolome analysis offers valuable insights for early
detection, biological significance studies and targeted therapies
for ESCC.

Study design also plays a vital role in developing high-
performance biomarker panels. On the basis of identifying character-
isticmolecular events of ESCC evolution,multiple phases of biomarker
development and advanced data interpretation methods are also
required53. First, we identified 16 serum and 10 urine metabolic sig-
natures in the discovery and validation sets (internal validation). The
identified metabolites encompass both common classic metabolites
(such as glutamate, asparagine, etc.) and relatively niche but specific
molecules associated with ESCC (such as alpha-Ketoisovalerate, 3-
Hydroxybutyrate, etc.). These biofluid signatures were closely

Fig. 7 | External validation of the biofluid models using multi-center data.
A ROC analysis for the five tumor biomarkers commonly used in the clinic (CEA,
CA15-3, CA19-9, Crfr211, SCC) discriminating ESCC from HC. B Unsupervised hier-
archical clustering of ESCC and CRC groups across all metabolites (Ward’s method
clustering). Yellow: CRC; Orange: ESCC. C ROC curve shows poor diagnostic effi-
cacy of the serum joint model for CRC patients. Shaded areas represent the 95% CI
of the corresponding ROC curves. D, E Circos heatmap was used to compare the
serum (D) and urine (E) metabolic profiles of different pathological types of eso-
phageal tumors, including ESCC, EAC, GEJ, undifferentiated carcinoma of the

esophagus and esophageal stromal tumors. F Performanceof SVM-based classifiers
was examined by ROC curves and evaluated by 100-fold cross-validation. The black
dots in the box plot represent the predictive accuracy of the serum or urine panels
in distinguishing early stage ESCC (red, n = 18 biologically independent early-stage
serum samples; blue, n = 18 biologically independent early-stage urine samples)
from HC groups. Notably, the serum panel data points exhibit proximity, while
those of the urine panel are more dispersed. Source data are provided as a Source
Data file.
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associatedwith the occurrence of early-ESCC tissues, and canbe stably
detected by NMR. Considering the simplicity and flexibility of clinical
promotion, we determined the optimal number of metabolites in the
present model and its components by using machine learning algo-
rithms, which has proven successful in the early detection of other
diseases54. Any five combinations of 16 serum or 10 urine metabolic
signatures showed high accuracy in clinical validation and test set
(external validation). Combining ‘classic molecules’ and ‘niche mole-
cules’ to build amodelmight be a better choice in clinical applications.
Our approach is superior to conventional methods, has high SP for
ESCC, is sensitive for early prediction, and advances the diagnostic
windowof ESCC to the early histological or even pre-cancerous stages,
and could be used as an indicator to detect different digestive tract
abnormalities. Therefore, we propose and emphasize that this could
be a valuable contribution to liquid biopsy in the early detection of
ESCC. If an individual is identified as ‘high risk’ through this screening
strategy, further endoscopy and image-based examination can be
recommended for personalized clinicalmanagement and intervention.

Our study has several strengths. First, it combinedmulti-platform
metabolomics andmatched study design to reveal ESCC-characteristic
molecular events. Second,metabolomic analysis of tumor tissue is not
susceptible to confounding effects, and we identified NMR-based
serum and urine signatures that can be traced back to tumors through
cross-talk of tissue and biofluid metabolic markers. Third, we suc-
cessfully identified minimalistic metabolic biomarker panels with
robust and generalizable performance in early-stage ESCC detection.
This study also has limitations. First, it was limited to the southern
Chinese population, further research is required to establish its gen-
eralizability to other populations. Second, due to the limited matched
early-stage sample size, it used internal and external validation rather
than multiple testing correction. Therefore, more large-scale pro-
spective cohort studies in different regions are needed to confirm our
findings under the control of confounding factors. Third, following the
identification of tissue-specific biomarkers detectable in biofluids, we
need to promptly validate them in high-risk populations (including
low-grade intraepithelial neoplasia (LGIN), high-grade intraepithelial
neoplasia (HGIN), gastroesophageal reflux disease (GERD), Barrett’s,
etc.) to refine the model further.

In conclusion, our findings demonstrate that there are NMR-
detectable characteristic metabolomics in ESCC tissues and biofluids,
and significantmetabolic features inbiofluid could faithfully reflect the
metabolomics signatures in ESCC tissues.NMR-based simplified serum
or urine metabolic classifiers exhibited high accuracy and SP in
detecting ESCC, regardless of the histological stage of the disease, and
can therefore be used as potential non-invasive ESCC early screening
tools. Moving forward, we plan to expand the dataset with esophageal
pre-cancerous lesions and follow-updata to build ametabolic timeline,
while also incorporating metabolic data from different anatomical
sites of the esophagus to construct spatiotemporal metabolomics of
ESCC. Furthermore, we will conduct integrated multi-omics analyses,
including metabolome, proteome and microbiome, to shed light on
metabolites’ origins and functional mechanisms. This work is ongoing.

Methods
Subject recruitment and clinical sample distribution
The study protocol has been approved by the Ethics Committee of
Shantou University Medical College (#2021-92, #2022-103) and regis-
tered at the Chinese Clinical Trial Registry (Registration number:
ChiCTR2300073613). Sample collection followed established bio-
banking protocols and ethical and legal standards, following informed
consent. The report follows the Standards for Reporting of Diagnostic
Accuracy Studies (STARD) reporting guideline.

We conducted a retrospective case-control study on 1153 samples
from 560 participants across three medical centers in southern China.
The diagnosis of patients was made using endoscopy combined with

biopsy, imaging, clinical symptoms, medical history, and further con-
firmed by histopathological examination of the surgically resected
specimen. Healthy subjects from the high-incidence coastal area of
ESCC were also included, and all clinical examinations were within
normal ranges. The exclusion criteria were as follows: (1) subjects with
a current or past history of other malignancies and history of gastro-
intestinal operations, (2) patients with neoadjuvant treatment before
operation, (3) participants missing clinical information, (4) bacterial
infection or use of antibiotics or probiotics within one month before
surgery, and (5) presence of hypertension, diabetes, or other meta-
bolic diseases. We rigorously applied inclusion and exclusion criteria
to ensure that the study population is closely representive of the target
population, thereby minimizing selection bias. The preliminary inclu-
sion for this study involved 568 participants from three centers, with
eight individuals excluded for the following reasons: patients with
neoadjuvant treatment before operation (n = 5), participants missing
clinical information (n = 1), and presence of hypertension, diabetes, or
other metabolic diseases (n = 2).

The distribution of data from three clinical centers was as follows.
Discovery set from center 1 (n = 362 biologically independent sam-
ples): 181 ESCC tissue samples and their corresponding 181 normal
mucosae were collected between 2016 and 2020. Samples were
detected using 400MHz 1H-NMR and reanalyzed for the discovery set.
The collection process and ethics statement can be found in the pre-
viously reported articles20,21. Validation set from center 2 (n = 450
biologically independent samples): 54 ESCC patients were included in
this study, whose matched ESCC tissues, normal mucosae, pre- and
one-week post-operative serum and urine samples, as well as their
clinical phenotype data were obtained between 2021 and 2022,
resulting in a total of 324 samples. 126 healthy subjects (including
87 serum and 39 urine samples) with no history of gastrointestinal
problems were obtained as control groups. The metabolite analysis in
this validation set was conducted using 600MHz NMR and MS-based
metabolomics techniques. Test set from center 3 (n = 341 biologically
independent samples): 18 early-stage ESCC serumandurine specimens
each; 24 matched tissue and longitudinal biofluids from 4 different
pathological types of esophageal tumors patients, including esopha-
geal adenocarcinoma (EAC), adenocarcinoma of the esophagogastric
junction (GEJ), undifferentiated carcinoma of the esophagus, and
esophageal stromal tumors; 104 colorectal cancer CRC tissues and
their 104 normal mucosae; 42 control serum and 31 control urine
specimens,were collected between 2021 and 2022. All specimenswere
subjected to 600MHz NMR-based metabolomics.

To further investigate protective or risk factors within the EC
metabolite signatures, we conducted a comprehensive literature
search to identify publicly available datasets of NMR-based metabo-
lomics for malignant neoplasm of the esophagus. As part of this
investigation, we utilized data from a prospective UK Biobank (UKB)
cohort. A total of 118,461 plasma sampleswere randomly selected from
the full UKBprospective cohort, which included 502,543 participants18.
Among them, 346 cases of malignant esophagus neoplasms (ICD-10
codes: C15; p <0.05) occurred. In this study, biofluid samples were
analyzed using NMR following a certified protocol, and 37 metabolic
markers underwent rigorous clinical validation. The complete results
of all 249 measured biomarkers can be accessed at https://biomarker-
atlas.nightingale.cloud/.

Statistics and reproducibility
Regarding the sample size estimation, we used the PASS (Power Ana-
lysis and Sample Size) software and relevant formulas to estimate the
sample size based on the standard deviation, discrimination, test level,
and test efficiency of metabolic biomarkers detection obtained in our
previous work. When the sample size estimation parameters were set
to SP of 90 ± 10%, SE of 80 ± 10%, significance level (α) = 0.05, con-
fidence level (1-α) of 0.95, and two-sided test type, the required sample
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size per groupwas estimated to be n = 44.We tried tomake the sample
size of multiple subgroups exceed this threshold in this project. The
cut-off value for the correlation coefficient (r) was determined based
on the sample size; a p|corr|≥0.294 indicates a significant correlation
between the two types of metabolites in the group. The p-value was
obtained from the Mann–Whitney U-test of metabolite concentration,
and the FC values represented the concentration ratio of each meta-
bolite between the pairwise groups. Moreover, due to the limited
sample size of early-stage ESCC patients, metabolomics studies can be
conducted with as few as 16 cases per group, according to a previous
study in Nature Communications, which showed that considering SE,
reproducibility, detection limit, linearity and dynamic range, selectiv-
ity, identification, coverage, etc., theminimumoptimal sample size for
metabolomics and other omics studies was 16 cases, with an average
power of at least 0.8, false discovery rate (FDR) of 0.05, and initial
Cohen’s d of 0.855.

The study participantswere consecutively and randomly enrolled.
Tissue sampleswere allocated to theNMRplatform in randomorder in
the discovery and validation sets. For paired analysis, the serum and
urine samples from the same patient were subjected to corresponding
NMR and targeted MS analyses, following the order of tissue samples.
The study participants were consecutively and randomly enrolled.
Tissue sampleswere allocated to theNMRplatform in randomorder in
the discovery and validation sets. For paired analysis, the serum and
urine samples from the same patient were subjected to corresponding
NMR and targeted MS analyses, following the order of tissue samples.
The histopathological results, which serve as clinical reference testing
data, were kept confidential to individuals responsible for processing
and setting up the metabolomics testing (index tests). The investiga-
tors were blinded to group allocation when performing NMR or MS
data acquisition. No adverse effectswere related tousing the reference
and index tests.

Sample preparation
We strictly followed the same detailed protocols and used the same
brandof reagents and consumables for sample collection16,56. (1) Tissue
samples, including tumor tissues and distant non-cancerous tissues
(5 cm away from the edge of the tumor), were obtained under the
guidance of an experienced pathologist without compromising the
patients’ pathological examinations. The collected tissues were rinsed
with PBS to avoid contamination, as well as to remove excess water,
and then quickly frozen in liquid nitrogen to arrest enzymatic or che-
mical reactions. Samples were subsequently stored at −80 °C until
metabolite extraction. (2) Serum samples: Fasting blood was drawn
into additive-free vacuum blood collection tubes and attention was
paid to avoid hemolysis. Samples were coagulated naturally for 30min
and then centrifuged at 5000 × g at 4 °C for 10min (Thermo Scientific
Sorvall ST 16R centrifuge, TX-400 rotor). Following centrifugation, the
serum supernatant was aliquoted into storage tubes, immediately
frozen in liquid nitrogen, and then stored at −80 °C until further ana-
lysis. (3) Urine samples: Patients were instructed to collect morning
midstream urine. After mild centrifugation, the urine was aliquoted
into storage tubes, promptly frozen in liquid nitrogen, and then stored
at −80 °C until further analysis.

The pre-processing workflow for clinical samples in the NMR
method was optimized using previous literature and practical
considerations16,57,58. Tissue homogenate preparation: Tissue samples
weighing 300mg were ground using a 60Hz grinder at 4 °C for 1min
in a mixture of 4mL/g of CH3OH and 2mL/g of ultrapure water. The
resulting homogenate was then subjected to vortexing for 1min after
adding 4mL/g of CHCl3 and 4mL/g of ultrapure water. The mixture
was allowed to settle on ice for 15min and subsequently centrifuged at
14,000 × g for 10min at 4 °C (Eppendorf centrifuge 5427R, FA-45-48-11
and FA-45-17 rotors). The supernatant was carefully transferred to a
new 5mL Eppendorf (EP) tube and treated with running nitrogen to

remove the methanol. The resulting liquid was freeze-dried at −80 °C
until further analysis. The freeze-dried powder was dissolved in 550μL
of PBS/D2O buffer (pH 7.4, 150mM), which contained 0.05% TMSP-
2,2,3,3-D4 (D, 98%) SODIUM-3-TRIMETHYLSILYLPROPIONATE (TSP,
Cambridge Isotope Laboratories (CIL), Inc. #DLM-48, CAS #24493-21-
8). After thorough mixing, the solution was centrifuged at 14,000 × g
for 10min at 4 °C. Finally, 500μL of the supernatant was transferred
into a 5mm NMR tube (NORELL, #S55 SECURE SERIES) for analysis.
Serum preparation: A total of 400 μL of serum was combined with
200μL of PBS/D2O buffer (pH 7.4, containing 0.9% NaCl) using vor-
texing to ensure thorough mixing. The resulting mixture was then
centrifuged at 14,000 × g for 10min at 4 °C. Finally, the supernatant,
which amounted to 550μL, was carefully transferred into a 5mmNMR
tube for further analysis. Urine preparation: A total of 500μL of urine
was mixed with 50μL of PBS/D2O buffer (pH 7.4, 1.5M, containing
0.05% TSP) using vortexing to ensure thorough mixing. The mixture
was then centrifuged at 14,000 × g for 10min at 4 °C. After cen-
trifugation, 500μL of the supernatant was transferred into a 5mm
NMR tube for further analysis.

Targeted quantitative MS-based metabolomics detection was
conducted on early-stage ESCC tissues from the same batch in the
validation set at another accredited diagnostic laboratory. For LC/MS-
MS, 1000μL of acetonitrile-methanol-H2O (2:2:1, containing isotope
internal standards) was added to 50mg samples. The samples were
then homogenized, sonicated, and this process was repeated three
times. After incubating the samples at −40 °C for 2 h, they were cen-
trifuged at 17,000 × g for 15min at 4 °C. Subsequently, 800μL of
supernatant from each sample was transferred to a new EP tube and
dried using a centrifugal concentrator. Next, 160μLof 60%acetonitrile
was added to reconstitute the dried samples. The mixture was vor-
texed for 30 s, and sonicated in an ice-water bath for 5min, followedby
centrifugation at 17,000 × g for 15min at 4 °C. Finally, 100μL of
supernatant from each sample was transferred into glass vials for
LC–MS/MS analysis. For GC/MS–MS analysis, samples were collected
in 2mL EP tubes. Then, 1mL of pure water was added and the mixture
was vortexed for 10 s; the samples were homogenized and sonicated
three times. Following centrifugation at 7000 × g for 20min at 4 °C,
800μL of the supernatant was transferred into a new 2mL EP tube.
Subsequently, 100μL of 50% H2SO4 and 800μL of the extraction
solution (containing 25mg/L stock in methyl tert-butyl ether and
2-Methylvaleric acid as an internal standard) were added to the sam-
ples. The samples were then vortexed for 10 s, oscillated for 10min,
and sonicated in an ice-water bath for 10min. After centrifugation, the
supernatant was transferred into a vial for GC/MS–MS analysis.

1H-NMR and MS acquisition and data pre-processing
In brief, metabolites in tissue, serum and urine were measured using
four platforms, including 400MHz and 600MHz 1H-NMR, together
with LC/MS–MS and GC/MS–MS in MRM mode. The results obtained
from NMR and MS approaches complement each other, enabling a
comprehensive metabolome analysis.

The 400MHz 1H-NMRspectrumanalysis was conducted following
themethodology outlined in our previously published article57. For the
600MHz 1H-NMR spectra of the validation and test samples, a Bruker
AdvanceNMRspectrometer (Bruker BioSpin, Germany) equippedwith
a triple resonance cryogenic probe operating at 600.13MHz and
298.0 K was used. The NMR data acquisition was performed using
TopSpin 3.2 software. Tissue extracts were subjected to a standard
one-dimensional (1D) Nuclear Overhauser Effect Spectroscopy
(NOESY, [RD-90°-t1-90°-tm-90°-ACQ]) presaturation pulse sequence
with the following acquisition parameters: a spectral width of
12019.2Hz, an acquisition time of 1.36 s, a relaxation delay (RD) of
2.0 s, a scan accumulation of 64 times, and a data point of 16 K. Serum
samples were analyzed using a Car-Purcell-Meiboom-Gill (CPMG, [RD-
90°-(t-180°-t)n-ACQ]) pulse sequence with a spectral width of
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12,019.2 Hz, an acquisition time of 1.36 s, a RD of 4.0 s, a scan accu-
mulation of 64 times, and a data point of 16 K. Urine samples were
collected using a NOESY pulse sequence with a spectral width of
12,335.5 Hz. The acquisition time was 2.66 s, the RD was 4.0 s, the scan
accumulation was 32 times, and the data point was 32 K.

The spectra were processed using MestReNova (version 14.0,
Mestrelab Research, Spain). The chemical shifts were referenced to the
singlet peak of TSP at δ 0.00 (for tissue and urine) or the doublet of
endogenous lactate at δ1.33 (for serum) for spectral alignment. The
spectral region containing residual water, urea, or methanol signals
was removed to eliminate interference. The remaining spectral region
(from δ0.50 to δ 9.00) was then divided into discrete regions of 0.002
ppm. The resulting NMR spectral data were normalized to the total
integral area to account for concentration differences between sam-
ples. The normalized data were then imported into SIMCA (version
14.1, Umetrics, Sweden) for pattern recognition analyses. The NMR
signals were assigned to individual metabolites based on previous lit-
erature data, confirmed by the referenced chemical shift libraries on
Human Metabolome Database (HMDB, http://www.hmdb.ca/) and
Biological Magnetic Resonance Data Bank (BMRB, https://bmrb.
io/)57–60.

The targeted detection was performed by Biotree Biomedical
TechnologyCo., Ltd. The core protocol ofMSanalysis wasdescribed in
the literature17. For LC–MS Analysis, high metabolite coverage,
including over 500 metabolites across 13 classes, was detected. Each
substance has a standard, and absolute quantification was performed
using isotope internal standard correction. Metabolic extracts were
analyzed using an ACQUITY UPLC H-Class (Waters) ultra-high-
performance liquid chromatography system, utilizing the Atlantis
Premier BEH Z-HILIC Column (Waters, 1.7 µm, 2.1mm × 150mm) for
chromatographic separation of target compounds. Mobile phase A
consisted of ddH2O: acetonitrile (8:2, v/v) with 10mM ammonium
acetate, while mobile phase B comprised acetonitrile: ddH2O (9:1, v/v)
with 10mM ammonium acetate. Both phases were adjusted to pH 9
using aqueous ammonia. The auto-sampler temperature was main-
tained at 8 °C, and the injection volume was 1μL. Additionally, AB
SCIEX 6500 QTRAP+ triple quadrupole MS equipped with IonDrive
Turbo V ESI ion source was used for MS analysis in MRM mode. The
parameters of the ion source were as follows: Curtain Gas = 35 psi,
IonSpray Voltage = +5000V/−4500V, Temperature = 400 °C, Ion
Source Gas 1 = 50psi, and Ion Source Gas 2 = 50psi.

GC-MS Analysis mainly detects seven short-chain and four
medium-chain FAs. Qualitative and quantitative analyses were also
performed using internal standard method. Metabolic extracts were
analyzed using the SHIMADZU GC2030-QP2020 NX gas
chromatography-mass spectrometer. The system employed an HP-
FFAP capillary column, and a 1μL aliquot of the analyte was injected in
split mode (5:1, v/v). Helium was used as the carrier gas with a front
inlet purge flow of 3mL/min and a gas flow rate of 1mL/min through
the column. The initial temperature wasmaintained at 50 °C for 1min,
then increased to 150 °C at a rate of 50 °C/min for 1min. Subsequently,
it was raised to 170 °C at a rate of 10 °C/min for 1min, further increased
to 210 °C at a rate of 20 °C/min for 1min, and finally raised to 240 °C at
a rate of 40 °C/min for 1min. The injection, transfer line, quad, and ion
source temperatures were set at 220 °C, 240 °C, 150 °C, and 200 °C,
respectively. The energy usedwas −70 eV in electron impactmode.MS
data were acquired in Scan/SIM mode within the m/z range of 33-150
after a solvent delay of 3min.

All MS data collection and quantitative analysis of target com-
pounds were performed using SCIEX Analyst Work Station Software
(version 1.7.2) and BIOTREE Bio Bud (version 2.1.4). Metabolite iden-
tification was performed using an in-house MS database. The pre-
processing of MS raw data involved filtering individual metabolites to
retain those with no more than 50% missing values. Missing values in

the original data were simulated by multiplying the minimum value
with a random number between 0.1 and 0.5.

Metabolomic data processing and statistical analyses
In short, metabolomic data processing and statistical analyses
(including univariate and multivariate analysis) were performed using
SPSS software (version 26, IBM SPSS Statistics, USA), SIMCA program,
R (version 4.2.1, https://www.r-project.org/) and MetaboAnalyst data-
base (version 6.0, https://www.metaboanalyst.ca/).

Multivariate data analysis was conducted on the metabolomic
data using the SIMCA program, following previously published
methods57,58. Metabolite differences were determined using the
Mann–Whitney U-test for non-normally distributed values and the
student’s t-test for normally distributed values. The statistical analysis
was performed with a Benjamini–Hochberg-based FDR, setting the
adjusted p-value < 0.05 as the significance level. SPSS software and R
were used for this analysis.

Unsupervised principal component analysis (PCA), UMAP, and
HCA were used to visualize the distribution and relationship between
samples, such as clusters or outliers. Pareto scaling (Par), which
involves mean-centering and dividing by the square root of the stan-
dard deviation of each variable, was optimized for supervised multi-
variate statistical analyses. This included OPLS-DA to extract and
maximize themetabolomedifferences betweendifferent groups in the
pattern recognition models. To confirm the results of the established
models and avoid overfitting, we performed 200 iterations of the
permutation test and CV-ANOVA. The Permutation Plot helps assess
the risk that the current model is spurious, i.e., the model fits the
training set well but does not predict Y well for new observations. The
idea of this validation is to compare the goodness of fit (R2 and Q2) of
the original model with the goodness of fit of several models based on
data where the order of the Y-observations has been randomly per-
muted, while the X-matrix has been kept intact. In addition, we used
various statistical measures including the correlation coefficient (r),
VIP from the OPLS-DA model, the adjusted p-value, and FC from the
univariate statistical analysis to identify significant differential
metabolites.

In this study, we utilized O2PLS and Mantel test to analyze the
correlation between NMR metabolomic and MS metabolomic data in
early-stage ESCC tissue, as well as the potential biomarkers thatmatch
between tissue and biofluid samples61,62. Our aim was to identify more
rigorous potential biomarkers. To analyze the individual metabolite
signatures obtained, we performed differential analysis using STAMP
software and ROC curve analysis63. We then used machine learning
algorithms for signature selection. Before conducting further analysis,
the data were standardized by sum and log-transformed. For the
individual metabolite, we performed univariate ROC analysis using the
pROC R package to calculate the AUC. The results were visualized
using the ggplot2 R package. Additionally, we generated multivariate
exploratory ROC curves using balanced sub-sampling by Monte-Carlo
cross-validation (MCCV) in the MetaboAnalyst 6.0 database64. Two-
thirds of the samples in each MCCV were used to evaluate the feature
importance, while the remaining one-third was used to validate the
classification models. This process was repeated 50 times to calculate
the performance and 95% confidence interval (CI) for each model and
determine the optimal number of features formaximumaccuracy. The
linear SVM and RF machine learning algorithms were employed for
sample classification, and the mean importance measure of the SVM
and RF was used for metabolite feature selection. The average accu-
racy of the model was based on 100 cross-validations. The selected
metabolic signatures were then used to construct serum and urine
jointmodels,with 70%of the samples used formodel building and30%
reserved for internal validation. The simplified biofluid panels were
evaluated based on the AUC (95%CI), SE, SP, and accuracy (probability
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of correct classification). The optimal probability cut-off value was
determined using the model’s maximum Youden Index (SE + SP-1).
Logistic regression, XGBoost, Gaussian Naive Bayes, and K-Nearest
Neighbors algorithms were used to compared the diagnostic perfor-
mance of biofluid panels. Samples predicted as early-stage ESCC or
HCs were classified based on whether their predicted probability was
less or greater than the cut-off value, respectively.

A multivariable logistic regression analysis was performed using
the glm function to analyze the biofluid metabolite signatures. Back-
ward step-wise selection was used with the likelihood ratio test and
Akaike’s information criterion as the stopping rule. In order to provide
clinicians with a quantitative tool to predict the risk of early-stage
ESCC, ametabolomics nomogramwasdeveloped based on the logistic
model, utilizing the rms R package for visualization. Calibration curves
were generated to assess the accuracy of the nomogram, and the
Hosmer-Lemeshow test was conducted. DCA was also performed to
evaluate the clinical usefulness of the nomogram, measuring the net
benefits at different threshold probabilities using the rmda R package
for visualization.

Metabolic module and pathway analyses
To explore the potential mechanisms underlying the progression of
ESCC, we utilized WGCNA and KEGG pathway analysis to evaluate
differential metabolic modules and pathways in ESCC patients and
HCs, as well as in pre- and post-operative ESCC patients.

The main objective of WGCNA analysis is to identify modules
consistingof interconnected nodes, such asmetabolites in this study65.
These modules can then be used for summary measurements in sub-
sequent analysis. Additionally, WGCNA can identify hub nodes
(metabolites) that are highly connected and located centrally within
themodule. Previous gene expression studies have demonstrated that
these hub nodes are more likely to be biologically relevant markers.
The principles and formulas for applying WGCNA to analyze metabo-
lomics data have been thoroughly described in existing literature66,67.
TheWGCNARpackagewas used toperformcomputations68. Initially, a
correlation network of metabolites was constructed and eigen-
metabolite scores (representing the first principal component) were
derived from the identified modules. These scores were then utilized
to assess the differential association between each module and the
‘ESCC patients vs HCs’ grouping, as well as the ‘pre- vs post-operation’
grouping. Furthermore, we identified potential hubmetabolites within
eachmodule based on their high intramodular importance, which was
determined by a strong correlation between the eigen-metabolite
score for a given module and the individual metabolite level.

KEGG pathway analysis was conducted to analyze metabolites,
including the contents within the driver modules and potential meta-
bolite biomarkers69. The analysis was performed usingMetaboAnalyst.
Additionally,metabolites involved in the key pathwayswerequantified
on the MS in MRMmode. The metabolic enzymes and transporters in
the pathways were extracted from TCGA-ESCA and GTEx databases.
The expression data were obtained from RNA-seq data in TPM format
from TCGA and corresponding normal tissue data from GTEx, which
were uniformly processed through the Toil pipeline. The UCSC XENA
database (https://xenabrowser.net/datapages/) was used to access the
data. Data analysis was performed using the stats and car R packages.
Data pre-processing involved log2(value + 1), and statistical analysis
was conducted using the Wilcoxon sum rank test.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The matched NMR andMSmetabolomics data generated in this study
have been deposited in the NIH Common Fund’s National

Metabolomics Data Repository (NMDR) website, the Metabolomics
Workbench database under accession code Project ID PR001876:
https://doi.org/10.21228/M87426. The NMR data from the previous
study and the smaller subset of the test set are not available due to
intellectual property agreements with different hospitals. Still, should
collaboration be established, these data can be obtained from the
corresponding author, Yan Lin (email: 994809889@qq.com). The
processed metabolomics data are provided in the Supplementary
Information/Source Data file. The RNA-seq data from TCGA-ESCA and
GTEx databases can be downloaded from https://xenabrowser.net/
datapages/. Source data are provided with this paper.
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