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Accurate and rapid antibiotic susceptibility
testing using a machine learning-assisted
nanomotion technology platform
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Gino Cathomen 1, Anthony Vocat1, Amanda Luraschi-Eggemann1,
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Alexandre Delfino3, Florian Tagini 3, Sandor Kasas4,5, Cornelia Lass-Flörl 6,
Ronald Gstir6, Rafael Cantón 2,7, Gilbert Greub 3,8 & Danuta Cichocka1,8

Antimicrobial resistance (AMR) is a major public health threat, reducing
treatment options for infectedpatients. AMR is promotedby a lackof access to
rapid antibiotic susceptibility tests (ASTs). Accelerated ASTs can identify
effective antibiotics for treatment in a timely and informed manner. We
describe a rapid growth-independent phenotypic AST that uses a nanomotion
technology platform to measure bacterial vibrations. Machine learning tech-
niques are applied to analyze a large dataset encompassing 2762 individual
nanomotion recordings from 1180 spiked positive blood culture samples
covering 364 Escherichia coli and Klebsiella pneumoniae isolates exposed to
cephalosporins and fluoroquinolones. The training performances of the dif-
ferent classification models achieve between 90.5 and 100% accuracy. Inde-
pendent testing of the AST on 223 strains, including in clinical setting,
correctly predict susceptibility and resistance with accuracies between 89.5%
and 98.9%. The study shows the potential of this nanomotion platform for
future bacterial phenotype delineation.

Antimicrobial resistance (AMR) has become a significant threat to
public health worldwide with almost five million AMR associated
deaths in 20191. AMR largely stems from excessive and improper
antibiotic use in healthcare and animal husbandry2–4. Its proliferation,
combinedwith a lack of industry investment in antibiotic research5 and
a low pass rate for antimicrobials in clinical trials, has caused an
alarming decrease in treatment options available for infected
patients6,7. Consequently, the clinical usage of last-resort antibiotics

has expanded, but this comes at the cost of promoting AMR spread.
AMR diagnostic strategies such as antibiotic susceptibility testing
(AST) help provide clinicians with sufficient data to reach informed
decisions and promote the administration of narrow-spectrum
antibiotics4. In turn, treatment de-escalation is vital in reducing the
spread of AMR while maintaining therapeutic efficacy for the patient,
shortening hospital stay durations, and reducing healthcare-
associated costs. Among the most critical and prevalent threats are
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Enterobacterales resistant to third-generation cephalosporins8. From
this group, Escherichia coli and Klebsiella pneumoniae are the most
frequently occurring Gram-negative pathogens in bloodstream infec-
tions (BSI) in Europe9,10. In the event of cephalosporin resistance,
fluoroquinolones are commonly used. In cases of resistance to both
classes, treatment is escalated to carbapenems or cephalosporin-β-
lactamase inhibitor combinations.

Many current phenotypic AST methodologies rely on detecting
growth metrics, such as doubling time or biomass change. This limits
further technological development in minimizing the time to result
(TTR), despite numerous recent innovations utilizing microfluidics,
advanced sensor systems, and analysis pipelines of increasing
sophistication11–16. All current workhorse instruments in European
clinics rely on automated bacterial growth measurements17–19 or disk
diffusion assays (Kirby Bauer)20. These methods can offer next-day
turnaround, at best, for fast-growing bacteria such as those frequently
found in BSI. The TTR can be as high as one month for slow-growing
bacteria such as Mycobacterium tuberculosis. This lag poses a sig-
nificant obstacle to select the best treatment option for critically ill
patients21.

Nanomotion technology is based on atomic force microscopy
(AFM)22 and has been proposed as potential means of circumventing
these limitations by measuring bacterial viability and response to
antibiotics in a growth-independent manner23–30. Here, a functiona-
lized cantilever oscillates in response to bacterial vibrations. Condi-
tions that alter bacterial vibrations, such as drug exposure, modulate
cantilever oscillations, and these changes can be detected, measured,
and outputted using an optical read-out system23,31. Nanomotion
technology can distinguish the differing responses of resistant and
susceptible bacteria to antibiotic treatment and has already been
employed to detect antibiotic susceptibility for several different
microorganisms, including Enterobacterales, Staphylococcus aureus,M.
tuberculosis, and Candida albicans23,30,32–36. However, these studies
largely delivered a proof-of-concept for a nanomotion AST, using
laboratory prototypes to study a few susceptible and resistant refer-
ence strains. Until now, antibiotic effects on bacteria were analysed by
quantifying the cantilever position variance as a function of time. To
address the diversity of strains encountered in the clinical setting with
a wide range of minimal inhibitory concentrations (MICs) and various
responses to a given antibiotic, the set of analysis tools of nanomotion
signals needed to be expanded to develop a clinically relevant AST.

For that matter, we have developed an integrated nanomotion
technology platform with both hardware and software components
that demonstrates high test repeatability and reproducibility. This
platform comprises the Phenotech device and cantilever sensors but
also includes sample preparation, data acquisition at a frequency of
60 kHz, and advanced analysis of large datasets (Fig. 1a) available to
the general microbiologist without prior knowledge of AFM. It is a
robust, highly sensitive, and user-friendly technology. The cell
attachment kit facilitates fast sample preparation from positive blood
cultures (PBCs) and prevents bacterial detachment during the
experiment. The biggest enhancement, however, is the development
of an advanced mathematical analysis strategy for large datasets. Raw
nanomotion signals initially appear random and require signal trans-
formation for interpretation. One of the signal transformations
employed in earlier studies was the comparative analysis of the var-
iance over time23. This novel nanomotion technology platform
employs supervised machine learning (ML) to develop classification
models for different susceptibility phenotypes. To differentiate
between clinical samples containing antibiotic-resistant or -susceptible
bacteria, it extracts signal parameters (SP) from the power spectrum
(PSD) over different time intervals within the nanomotion signal
(Supplementary Information). A few informative SPs were selected
from a pool of >100,000 to create a given classification model. Some
examples of SPs include the variance ratio between time intervals, the

slopederived froman exponentialfit of the variance curve, the integral
within a certain frequency range of the PSD, flicker noise, minima,
maxima or slopes etc. in the PSD, and ratios derived of these mea-
surements (Supplementary Information). Afterward, the models were
cross-validated and tested on independent test datasets (Methods and
Supplementary Fig. 1).

In the present study, we used the Phenotech nanomotion tech-
nology platform to generate and analyse a large dataset investigating
the response of 352 E. coli and K. pneumoniae isolates (Supplementary
Data 1) to four clinically important antibiotics (from two different
classes) used to treat BSI: the fluoroquinolone ciprofloxacin (CIP) as
well as the cephalosporins ceftriaxone (CRO), cefotaxime (CTX), and
ceftazidime in combination with the β-lactamase inhibitor avibactam
(CZA). We used this data to build specific machine-learning-generated
classification ASTmodels and compared their performance to existing
reference growth-based methodologies. We demonstrate how
increasing algorithm complexity to Pareto optimality37 by increasing
the number of inherent SPs until saturating performance. The final
models for our Phenotech-based nanomotionAST achieved accuracies
on independent test datasets ranging from 89.5% for CIP to 98.9% for
CRO evaluating 4-h recordings and 93.0% for CZA based on 2-h
recordings.

Results
Nanomotion AST experimental design
In contrast to classical methodologies, which typically use a set or
gradient of antibiotic concentrations, we measured bacterial
nanomotions only at a single antibiotic concentration above the
clinical breakpoints to see the effect of the antibiotic fast23,30,32,38.
For each experiment, a few hundred bacterial cells directly isolated
from spiked positive blood cultures (PBCs) were attached to the
cantilever (Fig. 1b, c and Supplementary Fig. 2). Bacterial nanomo-
tions were recorded during incubation for 2 h with 50% LB broth
(medium phase) and subsequently with 50% LB broth and an anti-
biotic (drug phase). In line with previous studies, upon adding the
cephalosporin CRO, we observed decreased variance over time for
the susceptible E. coli strain ATCC-25922 but sharply increased
variance for the resistant strain BAA-2452 (Fig. 1d)23,30. Previous
studies have measured mean medium phase/drug phase variance
over short intervals and taken that ratio as the sole indicator for
susceptibility23,32,34. This parameter can thus be considered a very
simple but informative signal parameter (SP), i.e., a discrete math-
ematical value extracted from the signal or a part of the signal.
Using the ratio between the variance from the drug and medium
phase or parts of them as described in previous publications23,32 did
not suffice in separating different clinical isolates (Supplemen-
tary Fig. 3).

Nanomotion recordings capture dose-based responses and
strain diversity
Since nanomotion AST was conducted using a single antibiotic con-
centration, it was imperative to elucidate the concentration that best
discriminated between susceptibility and resistance. Therefore, we
performed several nanomotion recordings for both reference strains
treated with CRO at concentrations ranging from sub-MIC to highly
inhibitory concentrations. For both strains, we observed a sharp
increase in signal variance after adding CRO at sub-MIC concentra-
tions—an increase steeper than the variance in the absence of the
drug. It is unclear whether this phenomenon is due to specific resis-
tance mechanisms (e.g., extended-spectrum β-lactamases, pumps,
target mutations, etc.) or stems from a common stress response that
manages the global impact of the drug at sub-inhibitory
concentrations39–41. Variance decreased or showed a lesser increase
than medium phase controls when bacteria were treated with supra-
MIC concentrations of CRO (Fig. 2a).
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As a first attempt to find better descriptive SPs, we quantified the
increase in signal variance during the 2-h CRO exposure period by
fitting an exponential equation to the generated data points. This
equation for the slope of the variance revealed that the distance
between susceptible and resistant reference strains was at its greatest
for CRO at a concentration of 32 µg/ml. Identifying an SP, such as the
slope, enabled us to distinguish the nanomotion responses of both
strains at several CRO concentrations (Fig. 2b). Dose-response testing
using the SP slope as the measure was performed for all species-
antibiotic combinations (Supplementary Fig. 4). The observation that

ATCC-25922 exhibited similar slopes at both the MIC and media con-
trol supports nanomotion as a growth-independent method and sug-
gests that cellular processes continue at the MIC as cells are not
presumed to be dead at this concentration and still exhibit metabolic
activity. This is in line with previous nanomotion observations23.

Since CRO at 32 µg/ml showed the best discrimination for the two
reference strains ATCC-25922 and BAA-2452, we continued recording
nanomotion responses to CRO for different E. coli and K. pneumoniae
strains at that concentration. The bacterial response to the CRO
exhibited high variability in the slope of the variance curve among
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Fig. 1 | Nanomotion detection and recording platform. a Representation of the
components of the nanomotion technology platform. b A representation of the
nanomotion measurement setup with the (1) bacteria-loaded cantilever, (2)
superluminescent light emitting diode (SLED) = light source, and (3) photo-
detector. c Schematic illustrating Gram-negative bacteria attached to the canti-
lever. Prior to attachment, bacteria are dispersed in gelling agarose while the
cantilever surface is functionalized using positively charged poly-D-lysine. The
gelling agent proved beneficial for an even distribution and stability of the bacterial

attachment. d Representative standard 4-h nanomotion recordings with a 2-h
medium phase (50% LB medium) followed by a 2-h drug phase with 32 µg/ml CRO
for the E. coli reference strains ATCC-25922 (S, susceptible) and BAA-2452 (R,
resistant). These recordings form the basis for using nanomotion to conduct AST.
This study contains 219 recordings of ATCC-25922 and 225 recordings of BAA-2452
exposed to 32 µg/ml CRO with similar results. Data are available in the source
data file.
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susceptible or resistant strains (Fig. 2c), suggesting a single empirically
found SP would not suffice for extensive datasets comprising various
clinical isolates with different drug response curves. Generalizing our
nanomotion signal observations across several strains posed an
obstacle. Additionally, the slope did not present a clear correlation to
the MIC. For instance, IHMA-2331518 (2 µg/ml MIC) displayed a steep
increase in the variance curve around the CRO-resistant breakpoint,
whereas B5 with a much higher MIC of 256 µg/ml exhibited a more
moderate increase (Fig. 2c). Similarly, B13 had a lowerMIC than B5 but
showed a less pronounced variance increase. Diverse responses were

also observed for K. pneumoniae and E. coli when treated with CIP or
CTX. For example, the nanomotion signal of resistant strains could
temporarily drop upon drug addition (Fig. 2c and Supplementary
Fig. 5a–c). Consequently, we could not establish a clear trend between
the MIC and SPs like the slope or simple statistical SPs such as the
variance median or mean. Although the lack of correlation to MICs
might appear counterintuitive, this may be explained by the induction
of cellular stress leading to increased nanomotions below and around
the MICs39,42–44. Distinct resistance mechanisms may also cause varied
nanomotion responses among strains carrying different beta-
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Fig. 2 | Nanomotion signals vary depending on antibiotic concentration and
strain variability. a Representative nanomotion recordings for E. coli ATCC-25922
(S, MIC =0.0048–0.064 µg/ml) and E. coli BAA-2452 (R, MIC = 48–64 µg/ml) cells
when treated with different CRO concentrations. A dose-response pattern is evi-
dent when comparing the slopes of the variance during the drug phase. b CRO
concentration-dependent slopes during drug phase calculated by the formula
log(x) = log(C) + at, where t is time, a is the slope of the common logarithm of the

variance trend, and log(C) is the intercept. (1) and (2) represent the MICs of ATCC-
25922 (0.047 µg/ml) andBAA-2452 (48 µg/ml), respectively, while (3) represents the
control without CRO. Shown are mean and SD of triplicates per concentration.
cNanomotion signal variability for four susceptible and four resistant E. coli isolates
(additional combinations can be found in Supplementary Fig. 5). Shown are
representative recordings for each isolate. Data are available in the source data file.

Article https://doi.org/10.1038/s41467-024-46213-y

Nature Communications |         (2024) 15:2037 4



lactamases (Supplementary Fig. 6). However, the available data for
these strains are insufficient to exclude other influencing factors
beyond resistance mechanisms.

Classification algorithm development using machine learning
based on SPs
To enhance the clinical applicability of the nanomotion AST, amid
strain diversity, we needed multidimensional signal analysis techni-
ques. Informative SPs were derived from power spectral density45

(PSD), quantile spectrum46, and multi-fractal detrended analysis47

(MF-DFA), each providing unique insights into the signal’s frequency-
and time-domain properties (Supplementary Information, Methods).
Employing ML algorithms instead of handpicking SPs, we extracted
tens of thousands of SPs from 4-h nanomotion recordings across sets
of strains and antibiotic combinations. These strains ranged from 83
strains of K. pneumoniae+CIP to 160 for E. coli/K. pneumoniae+CRO

and were benchmarked against MIC strip or broth micro-dilution. The
ML algorithm autonomously selected a handful of the most relevant
SPs, as expected primarily from the drug phase, containing informa-
tion about antibiotic susceptibility irrespective of strain diversity,
background noise, and environmental fluctuations. Along these lines,
we did not predetermine specific SP-biological response relationships,
not excluding the possibility of future discoveries. Overall, this
agnostic approach was intended to lead to unbiased results.

The identified SPs were integrated using logistic regression to
generate a score, where positive values indicated predicted suscept-
ibility and negative values predicted resistance (Supplementary
Information). While these scores represented numerical values, they
were meant to be interpreted qualitatively as either susceptible (S) or
resistant (R). It is important to understand that these scores did not
directly correlate with MICs, and should not be compared across
models using different SPs. All models achieved Pareto optimality37,
i.e., maximizing accuracy as the first criterion while minimizing the
number of SPs as the second criterion. In other words, neither models
with more nor fewer SPs performed better. The validation of these
models occurred dynamically in a 3-fold cross-validation procedure
repeated 300 times.

The improvement of the classification performance, depending
on the number of SPs, is illustrated for the combination of K. pneu-
moniae and CIP. We evaluated 83 strains across 233 recordings. These
strains presented a MIC distribution ranging from very susceptible
(low MIC values) to very resistant (high MIC values) (Fig. 3a). A clas-
sification model built based on one SP delineated resistant and sus-
ceptible strains with an accuracy of 85.8%. This value increased up to
93.1% when subsequently a second, third, and fourth SP was added to
the previous SPs at which point no further improvement of the per-
formance was observed (Fig. 3b–d, Supplementary Data 2 and Sup-
plementary Information).

First general nanomotion AST for CRO and CIP
Similarly, we trained multi-SP-based classification models for E. coli/K.
pneumoniae+CRO (Fig. 4a), E. coli +CIP (Fig. 4b), and E. coli +CTX
(Supplementary Fig. 7) and used models with the number of SPs for
which the performance saturated (Supplementary Information). In this
setup, each sample from one blood pellet was measured in one or
more technical replicates (=recordings). Multiple samples were
obtained from some clinical isolates. For instance, a single isolate
could be used for spiking an anaerobic and an aerobic blood culture –
both used in hospitals. When multiple nanomotion recordings were
obtained from the same sample, we obtained a score for each
recording of a PBC sample and used the median score for sample
classification and reporting of the final result.
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Fig. 3 | Classificationmodels with different numbers of signal parameters (SPs)
differ in nanomotion AST performance for K. pneumoniae and CIP. a The MIC
distribution of the 83K. pneumoniae isolates used to train classification models.
The dotted line represents the border between the ≤S and R> classes, EUCAST
(2022).Conc. (dashed line) indicates a CIP concentration of 4 µg/ml for nanomotion
measurements. The yellow shaded area represents the “susceptible increased
exposure category” combined with the S class (green) in nanomotion AST.
b Classificationmodel accuracy, sensitivity, and specificity improve with more SPs.
c Classification according to nanomotion AST based on one SP. Each circle repre-
sents a single nanomotion measurement for which a score was calculated with the
two classes defined as S > 0 >R. Closed circles show correctly classified measure-
ments [True Positive (TP, correctly classified susceptible isolates), True Negative
(TN, correctly classified resistant isolates)], and open circles show falsely classified
measurements [False Positive (FP, falsely classified resistant isolates), False Nega-
tive (FN, falsely classified susceptible isolates)]. d Classification according to
nanomotion AST based on four SPs. The number of falsely classified experiments
decreased. e Classification model performance over 233 recordings improved as
moreSPswere introduced.Data are available in the sourcedatafile. Single SPvalues
and scores are available in Supplementary Data 2.
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Early during development, we discovered that specific models
utilizing different SPs for each antibiotic-species combination out-
performed a generalmodel. This is likely due to the nanomotion data’s
ability to capture the distinct mechanisms of action and reaction
kinetics associated with each combination, even when comparing 3rd-
generation cephalosporins like CTX and CRO.

TheCROmodel achieved 91.6% accuracy and relied exclusively on
four spectral - themost intuitive -SPs. SP1 has the biggest impacton the

performance and describes the ratio between two time intervals: the
integral of the PSD in the 20–28Hz frequency rangeof 90–120min and
0–30min of the drug phase. We measured a balanced set of 160 sus-
ceptible and resistant strains across 487 spiked PBC samples, with 30%
of the experiments using the E. coli reference strains ATCC-25922 and
BAA-2452. The model was based on 1485 recordings (Supplementary
Data 2). Similarly, themodel forCIPwasbasedon 127 strains across 210
PBC samples, achieving an accuracy of 90.5% using quantile and MF-

REFERENCE REFERENCE

N
A
N
O
M
O
TI
O
N

N
A
N
O
M
O
TI
O
N

REFERENCE REFERENCE

N
A
N
O
M
O
TI
O
N

N
A
N
O
M
O
TI
O
N

REFERENCE REFERENCE

N
A
N
O
M
O
TI
O
N

N
A
N
O
M
O
TI
O
N

REFERENCE REFERENCE

N
A
N
O
M
O
TI
O
N

N
A
N
O
M
O
TI
O
N

Fig. 4 |Multiple-SPmodel nanomotionAST performance relative toMIC strips.
a Left: To develop a model for CRO, the MIC distribution of 160 E. coli and K.
pneumoniae isolates that were analysed in 4-h nanomotion recordings at 32 µg/ml
CRO (Conc., dashed line). Right: Classification according to nanomotion and a 4-SP
model, with MIC strip serving as a reference. Circles represent median scores for a
PBC samples measured ≥1 time (487 PBC samples and 1485 recordings, Supple-
mentary Data 2). Score is defined as S > 0 >R. Closed circles show correctly clas-
sified measurements (TP, TN), open circles show falsely classified measurements
(FP, FN). b Left: MIC distribution of 127 E. coli strains at 8 µg/ml CIP (conc. dashed
line) analysed to develop a CIP model (210 PBC samples, 573 recordings). Right:

Classification according to nanomotion and a 4-SPmodel, withMIC strip serving as
a reference. c Independent testing of the CRO model in (a) on 91 E. coli and K.
pneumoniae isolates (left,MICdistribution) and classification (right),withMIC strip
serving as a reference. d Independent testing of the CIP model in (b) on 65 E. coli
strains (left, MIC distribution) and classification (right), with MIC strip serving as a
reference.eTraining and test performance for eachof the two classificationmodels
including results from the PHENOTECH-1 study reporting accuracy [(TP + TN)/n],
sensitivity [TP/(TP + FN)], and specificity [TN/((TN+ FP)], with Kirby-Bauer serving
as a reference. Data are available in the source data file. Single SP values and scores
are available in Supplementary Data 2.
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DFA SPs. To further validate the models’ generalizability, we tested
them on independent data sets comprising either spiked PBCs or
direct isolates from anonymized patient PBCs. Importantly, none of
the isolates used for training were reused for testing and neither fea-
ture selection nor classifier training was repeated on the new isolates.
The results confirmed themodels’ applicability for a highly performing
AST (accuracyCRO = 98.9%, accuracyCIP = 89.5%, Fig. 4c–e). The CRO
model is being clinically validated on patient samples in the
PHENOTECH-1 clinical performance study (NCT05613322). On a cur-
rent sample size of 85 strains, including E. coli and K. pneumoniae, the
model achieved an accuracy of 97.6% with a mean TTR of 4.24 h
(SD =0.21 h) across three different hospital sites (Fig. 4e). Here, results
were again reported based on triplicate measurements.

Susceptible or resistant isolates further off the clinical break-
points did not pose a problem for any of the classification models
(Fig. 4a–d). However, samples closer to the breakpoints, including
those classified as “susceptible with increased exposure” (EUCAST “I”
clinical category), weremore prone to incorrect classification, as seen
with other phenotypic ASTmethods. This issuewasmost pronounced
for CIP, as bacterial point mutations often confer low-level resistance
to the antibiotic that only leads to a high MIC after further mutations
accumulation48. Measurements of the low-resistant isolates NARA-
5033, IHMA-2195830, and RYC-130 from different PBCs were repeat-
edly misclassified in the training (Supplementary Data 2). In the
future, these models require training with more isolates exhibiting
MICs around the breakpoints to better capture the nanomotion
phenotype corresponding to the underlying low-resistance
mechanisms.

4-h TTR nanomotion AST for antibiotic-inhibitor combination
ceftazidime-avibactam (CZA)
The AST involved three E. coli isolates incubated with different con-
centrations of the last-resort cephalosporin/β-lactamase inhibitor
combination ceftazidime-avibactam, considered strongly bactericidal.
BAA-2452 and IHMA-2155385 exhibited resistance to ceftazidime
alone, but IHMA-2155385 became susceptible to ceftazidime after the
inhibitor avibactam was added, thereby inhibiting the extended-
spectrum beta-lactamase (Fig. 5a). BAA-2452 remained resistant as it is
known to produce ametallo-beta-lactamase (blaNDM). Similar to CRO,
the SP slope decreased with rising ceftazidime concentrations at a
consistent inhibitory concentration of avibactam (Fig. 5b). Using a
balanced set of susceptible and resistant isolates (Fig. 5c, Supple-
mentary Data 1) and our machine-learning pipeline, we developed a
classification model that relies on a single SP (Supplementary Infor-
mation). This model effectively differentiated susceptible isolates
from resistant isolates, achieving an accuracy of 100% on recording
level (Fig. 5d). The perfect performance is most likely attributed to the
small dataset size and the limited diversity of resistance mechanisms
towards ceftazidime-avibactam as a relatively newly deployed anti-
biotic compared to CRO or CIP.

2-h TTR nanomotion AST for CZA
We challenged the performance of the CZA 4-h AST by decreasing the
recording time to 2 h (0.5 h medium phase, 1.5 h drug phase, Supple-
mentary Fig. 8). This became feasible by updating the device with
temperature control, allowingmeasurements at 37 °C to which human
pathogens are well adapted and show quicker reactions. We increased
the diversity of isolates by training the model on 25 E. coli and 21K.
pneumoniae isolates, anticipating a higher degree of diversity would
necessitate a more complexmodel based onmore information, i.e., ≥1
SP. Indeed, with 6 SPs, the training performance saturated at an
accuracy of 95.8% (Fig. 6a, c, Supplementary Information). Following
this, the 6-SPmodel was tested on an independent set comprising 17 E.
coli and 4K. pneumoniae isolates and demonstrated an accuracy of
93.0%. (Fig. 6b, c). This result supports that information in a 2-h

nanomotion recording is sufficient to build general classification
models for a rapid TTR, further expediting the reception of actionable
results in the clinic.

Discussion
The nanomotion technology platform presented herein represents
different approach to AST—one that does not rely on assessing bac-
terial growth. Our platform, by directly processing PBC samples and
assessing bacterial cell vibration measurements, generated results in
two (at 37 °C) or 4 h (at RT) instead of the 24 h required by current
ASTmethodologies. Moreover, thismethod bypasses the plating step
that usually occurs after PBC sample collection and before cartridge
inoculation in current automated AST systems although poly-
microbial samples were not tested in this study and could affect the
results. During the training of classification models, this platform
consistently achieved accuracy rates ranging from 90.5% to 100% for
fluoroquinolones, cephalosporins, and cephalosporin-inhibitor com-
binations, demonstrating comparability to standard clinical diag-
nostic methods. Independent testing of these models further
confirmed their generalizability, with accuracies ranging from 89.5%
to 98.9%.

As of 2020, E. coli resistance frequency to CTX, CRO, and CIP was
greater than 50% in some European countries49,50. To continue using
these antibiotics rather than further increasing reliance on last-resort
broad-spectrum agents such as carbapenems or cephalosporin/car-
bapenem-inhibitor combinations, clinicians need access to AST infor-
mation to avoid inadequate antibiotic therapy. A drastic reduction in
ASTTTR is necessary to limit the time of empirical drug administration
and early switch to an informeddecision-basedparadigm.With the set-
up outlined in this study, a nanomotion-based AST takes 2 or 4 h to
generate a sufficient recording starting from a PBC.

The classification models highlighted in this study were devel-
oped using clinical isolates from several hospitals and strain collec-
tions. Since these models are based on relatively few SPs, processing
nanomotion signals and establishing a classification as either resistant
or susceptible is a relatively quick process of a few minutes. The fact
that the test does not rely on growth-based parameters, the fixed
recording duration, and the automated data processing procedure
ensure a standardized TTR that varies by only a few minutes from
experiment to experiment. Indeed, this AST strategy is currently being
tested for bacteremia and sepsis patients in two clinical studies
(NANO-RAST51 and PHENOTECH-1). The results reported here are those
concerning the performance and TTR for one-third of the study
population of the multicentric PHENOTECH-1 study.

Moreover, measurement parallelization is needed to address
hospital sampling frequency requirements. Parallelization would also
permit the simultaneous measurement of different drug concentra-
tions, which is potentially required for agents like CIP, for which our
method encountered difficulties around MIC-based clinical break-
points. Moreover, parallelization enables rapid test results formultiple
antibiotics, crucial for patients allergic to a tested drug or with docu-
mented resistance to first-line treatment.

This study focused specifically on two drug classes: cephalos-
porins andfluoroquinolones. Both are heavily used in the clinic and are
susceptible to an increasingly diverse range of resistancemechanisms,
leading to steadily rising resistance rates. This study is the first pub-
lished large-scope dataset to investigate strain antibiotic resistance
diversity with nanomotion technology. The novel analysis tools and
classification modeling employed herein have enabled the utilization
of complex information for AST development (e.g., signal acquisition
at 60 kHz, advanced signal processing, computational power, and
machine learning to identify and filter useful information). Given this,
we believe a comprehensive nanomotion database containing infor-
mation on sequenced strains will allow us to link an SP or group of SPs
to a specific resistance mechanism or process in a bacterial cell. This
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would surpass the limitations of this study, where only the overall
resistance phenotype could be identified.

Because it is growth-independent, nanomotion technology offers
major advantages for assessing the susceptibility of slow-growing
bacteria such as M. tuberculosis34,36,52 or non-growing phenotypes
found inmanypathogenicbacteria53–55. Therefore, antibiotic tolerance,
a state enabling bacteria to endure inhibitory concentrations without
growing, can be measured. This method also assesses phage
susceptibility56 and evaluates drug effects on fungal57 or cancer cells58.
Therefore, nanomotion-based technology platforms such as

Phenotech open the door for developing similar growth-independent
rapid susceptibility testing platforms for antifungal and anticancer
therapeutics.

Methods
All experimental procedures and bioinformatic analyses in this work
complywith ethical regulations andgood scientific practices. An ethics
approval for the pre-clinical experiments was not required as anon-
ymized biological material, i.e., anonymized blood for the blood cul-
ture incubation, was provided by a blood donation center in

b c d

MICCZA in µg/ml

0.01 0.1 1 10 100

10

5

0

no
. o

f s
tr

ai
ns

susceptible resistant

1.4

1.2

1

1.03

0.8

S
P

 C
Z

A

a

ATCC-25922S BAA-2452RIHMA-2155385R/S

time (min)

0 100 200

10-2

10-3

10-4

10-5

10-6

va
ria

nc
e 

(V
2 /

V
2 )

time (min)

0 100 200

10-2

10-3

10-4

10-5

10-6
va

ria
nc

e 
(V

2 /
V

2 )

time (min)

0 100 200

10-2

10-3

10-4

10-5

10-6

va
ria

nc
e 

(V
2 /

V
2 )

Before adding
antibiotic

After adding
antibiotic

Before adding 
antibiotic

After adding
antibiotic

Before adding
antibiotic

After adding
antibiotic

br
ea
kp
oi
nt

S R

32 µg/ml CAZ + 4µg/ml AVI (CZA)32 µg/ml CAZ

IHMA-2155385R/S

BAA-2452ATCC-25922S resistantsusceptible

S R/S R

CAZ [µg/ml] + AVI 4µg/ml 

0.02

0.01

0

-0.01

E
xp

on
en

tia
l S

lo
pe

V
ar

ia
nc

e D
ru

g 
(m

in
-1
)

0.
06
25

0.
25 1 4 16 64

Fig. 5 | Nanomotion AST for strongly bactericidal CZA based on 1-SP classifi-
cation. aNanomotion recordings for three E.coli isolates: the susceptible (S) ATCC-
25922 (left), the resistant to ceftazidime, CAZ, but susceptible to ceftazidime-avi-
bactam, CZA, (R/S) IHMA-2155385 (middle), and the resistant (R) BAA-2452 (right).
Strains were exposed to 32μg/ml of CAZ either alone (blue) or in combinationwith
4μg/ml of the β-lactamase inhibitor avibactam, AVI (red). The median variance of
three recordings is shown. b SP “slope” for all three strains exposed a constant
concentration of 4μg/ml avibactam (AVI) as well as increasing concentrations of

ceftazidime (CAZ). Each data point depicts the median of three experiments, with
the shadedareamarking the standarderror.cMICdistributionof E. coli strains used
to develop a CZA classification model. d A single-SP model perfectly discriminates
all susceptible (S) and resistant (R) E. coli strains; nanomotion AST was performed
on cells treated with a combination of ceftazidime (32μg/ml) and avibactam (4 μg/
ml). A two-tailed Mann–WhitneyU test was used for statistical analysis, p ≤0.0001.
Data are available in the source data file. Single SP values and scores are available in
Supplementary Data 2.
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Switzerland. The clinical study protocol for the PHENOTECH-1 study
(NCT05613322) was approved by the Ethics Committee for Investiga-
tion with Medicinal Products (CEIm) in Madrid (ID 239/22), the Can-
tonal Commission for Ethics in Research onHumanBeings (CER-VD) in
Lausanne (ID 2022-02085), and the Ethics Committee of the Medical
University of Innsbruck in Innsbruck (ID 1271/2022).

Bacterial strains and medium compositions
The strain collection used in this study consists of ATCC reference
strains and clinical isolates either from patient blood samples at
hospital sites or procured from strain collections (Supplementary
Data 1). In order to establish a methodology for nanomotion-
based AST, we used the E. coli reference strain ATCC-25922, which
is susceptible to ceftriaxone (CRO; ceftriaxone disodium salt
hemi(heptahydrate) analytical standard, Merck & Cie, Schaffhausen,
Switzerland), cefotaxime (CTX; cefotaxime sodium, Pharmaceutical
Secondary Standard, Supelco, Merck & Cie, Schaffhausen, Switzer-
land), ciprofloxacin (CIP; ciprofloxacin, VETRANAL®, analytical stan-
dard, Merck & Cie, Schaffhausen, Switzerland), and ceftazidime-
avibactam (SigmaAldrich, Merck & Cie, Schaffhausen, Switzerland).
Our reference strains for antibiotic resistance were BAA-2452 (resis-
tant to CRO and CTX, blaNDM producer) and BAA-2469 (resistant to
CIP). The K. pneumoniae reference isolates ATCC-27736 was suscep-
tible to CRO.

To differentiate between resistant and susceptible phenotypes,
clinical isolates were selected based on theirMIC in accordancewith
the European Committee on Antimicrobial Susceptibility Testing
(EUCAST) interpretation guidelines59. MIC strips and disk diffusion
tests were performed on MH Agar plates (Mueller-Hinton agar VWR
International GmbH, Dietikon, Switzerland). During all nanomotion
experiments, bacteria in themeasurement chamber were incubated
with filtered (0.02 μm Polyethersulfone, PES, Corning, or Millipore)
LB (Miller’s LB Broth, Corning®) half-diluted in deionized water
(Molecular Biology Grade Water, Cytiva), hereafter referred to
as 50% LB.

All bacterial strains were stored at −80 °C in 20% glycerol. Bac-
terial samples for nanomotion experiments were prepared by first
thawing new cell aliquots and growing them at 37 °C on Columbia agar
medium solid plates (Columbia blood Agar, 5% sheep blood, VWR
International GmbH, Dietikon, Switzerland). These cells were then
used to inoculate blood culture medium and subsequently grown for
nanomotion experimentation.

Determining reference MICs (MIC gradient tests)
WeperformedMIC gradient tests (MIC strips) to determine theminimal
inhibitory concentration (MIC) for each antibiotic used in this study.
Cell suspensions were prepared by selecting three to five colonies
grown overnight (ON) at 37 °C on a Columbia agar plate and resus-
pending them in 0.9%NaCl solution (SodiumChloride, 0.9%, HuberLab,
PanReac Applichem) at a density of 0.5McFarland units (corresponding
to OD600nm =0.07). This suspension was then spread on MH plates
using a sterile cotton swab to create a confluent culture. MIC strips
(ceftriaxone 0.016–256 µg/mL, ciprofloxacin 0.002–32 µg/mL, cefotax-
ime 0.016–256 µg/mL, ceftazidime 0.016–256 µg/mL, and ceftazidime-
avibactam 0.016/4–256/4 µg/mL MIC test strips, Liofilchem, Roseto
degli Abruzzi, Teramo, Italy) were then placed onto inoculated plates
using tweezers. The plates were subsequently incubated at 37 °C for
16–20h, with the growth inhibition area surrounding the MIC strip
present after this incubation period used to interpret MICs.

While MIC strips served as the primary AST reference method,
some situations presented difficult interpretations or exceeded the
scale of the CRO MIC strips. Here, broth microdilution assays were
performed according to EUCAST recommendations59. Furthermore, a
disk diffusion assay (DDA) was performed in parallel to each sample
assessed using nanomotion technology for quality assurance
purposes20,60.

Cantilever functionalization
To facilitate bacterial attachment and prevent cellular detachment
during AST recording, we incubated the cantilever with 50μl of
0.1mg/ml PDL (Poly-D-Lysine hydrobromide, MP Biomedicals, Santa
Ana, California, USA) diluted in molecular biology grade water

Fig. 6 | ReductionofTTR to2 h retainshighperformance forCZA. aTodevelop a
model forCZAon2 hnanomotion recordings, theMICdistribution (left) of 46 E. coli
and K. pneumoniae strains was analysed at 32 µg/ml CAZ (conc. Dashed line) and
4 µg/ml AVI. Right: Classification according to nanomotion and a 6-SP model, with
MIC strip serving as a reference. b Independent testing of the 6-SP model in (a) on
21 different E. coli andK. pneumoniae isolates, left, MIC distribution, right, scores for
each recording. c Training and testing performance of the 2-h model for CZA,
accuracy [(TP + TN)/n], sensitivity [TP/(TP + FN)], and specificity [TN/((TN+ FP)].
Data are available in the source data file. Single SP values and scores are available in
Supplementary Data 2.
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(HyClone, Logan, Utah, United States) for 20min at room temperature
(RT). This treatment created a homogenous positive electric charge
that enabled the attachment of negatively charged bacteria. Following
incubation, the PDL drop was removed and discarded, after which the
cantilever tip was gently washed with 100μl of molecular biology-
gradewater. The sensors on the cantileverwere then allowed to dry for
at least 15min before use.

Generating spiked bacterial blood cultures
Spiking refers to the process of inoculating blood culture sampleswith
artificially infected blood. Here, we cultured strains of interest on
Columbia Agar plates ON at 37 °C, isolated a single colony, and
resuspended it in 0.9% NaCl with volumes adjusted to obtain a 0.5
McFarland density. We then performed two 1:10 serial dilutions,
starting with that suspension, to generate a final dilution of 1:100.
Finally, 10 µl of the final dilution were added to 9990 µl of EDTA blood
from a donor provided by a blood donation center in Switzerland.
Blood has been received fully anonymized.

To generate spiked blood cultures, we added 10ml of artificially
infected blood to either anaerobic (ANH) or aerobic (AEH) blood cul-
ture bottles (BD BACTECTM Lytic Anaerobicmedium and BDBACTECTM

Standard Aerobic medium Culture Vials; Becton Dickinson, Eysins,
Switzerland) using a syringe. These culture bottles were then incu-
bated until positivity, as determined by the BACTECTM 9240 auto-
mated blood culture system (Becton Dickinson), was reached. In most
cases, this process took 12 h or an overnight incubation.

Preparing bacterial pellets from positive blood cultures
Togenerate andpurify bacterial pellets for nanomotion recordings,we
used either the MBT Sepsityper® IVD Kit (Bruker) or the direct
attachmentmethod (DA).When using theMBT Sepsityper® IVDKit, we
followed themanufacturer’s instructions. Briefly, 1ml of blood culture
was combined with 200 µl Lysis Buffer, mixed by vortexing, and then
centrifuged for 2min at 12,000 × g to obtain a bacterial pellet. The
supernatant was discarded, while the bacterial pellet was resuspended
in 1ml ofWashingBuffer. The resuspensionwas then centrifuged again
for 1min at 12,000× g to remove debris. For DA, 1ml of positive blood
culture (PBC) was syringe filtered (5μm pore size, Acrodisc® Syringe
Filters with Supor® Membrane, Pall, Fribourg, Switzerland). The pellet
was then used for attachment to the cantilever.

Attaching bacteria to the cantilever
Bacterial cells from prepared pellets needed to be immobilized onto
the surface of the functionalized cantilever for nanomotion recording.
First, pellets were resuspended in a PBS (Phosphate Buffer Saline,
Corning) solution containing 0.04% agarose. Next, the sensor was
placed on a clean layer of Parafilm®M (Amcor, Victoria, Australia). The
tip of the sensor, containing the chip with the cantilever, was placed
into contact with a single drop of bacterial cell suspension for 1min.
After this, the sensor was removed, gently washed with PBS, and
assessed using phase microscopy for attachment quality. In the event
of unsatisfactory attachment, the sensor was re-incubated in the cell
suspension for an additional 30–60 s, or until satisfactory attachment
was achieved. We aimed for an even bacterial distribution across the
sensor (Fig. 1b, c, and Supplementary Fig. 2). The attachment of bac-
teria is part of a filed patent (PCT/EP2020/087821).

Nanomotion measurement platform
Our nanomotion measurement platform, the Resistell Phenotech
device (Resistell AG,Muttenz, Switzerland), comprises a stainless-steel
head with a measurement fluid chamber, an active vibration damping
system, acquisition and control electronics, and a computer terminal.

Nanomotion-based AST strategies utilize technologies that are
well-established in atomic-force microscopy (AFM). Specifically, our
nanomotion detection system is based on an AFM setup for cantilever-

based optical deflection detection. However, in contrast to standard
AFM devices, in the Phenotech device the light source and the pho-
todetector are placed below the cantilever to facilitate the experi-
mental workflow. A light beam, focused at the cantilever end,
originates in a superluminescent diode (SLED) module (wavelength:
650mm, optical power: 2mW), is reflected, and reaches a four-
sectional position-sensitive photodetector that is a part of a custom-
made precision preamplifier (Resistell AG). The flexural deflection of
the cantilever is transformed into an electrical signal, which is further
processed by a custom-made dedicated electronic module (Resistell
AG) and recorded using a data acquisition card (USB-6212; National
Instruments, Austin, TX, USA). The device is controlled using a dedi-
cated AST software (custom-made, Resistell AG).

The custom-made sensors used for the described experiments
(Resistell AG) contain quartz-like tipless cantilevers with a gold coating
acting as amirror for the light beam (SD-qp-CONT-TL, spring constant:
0.1 N/m, length × width × thickness: 130 × 40 ×0.75 µm, resonant fre-
quency in air: 32 kHz; NanoWorld AG, Neuchâtel, Switzerland). During
an AST experiment, bacterial nanoscale movements actuate the can-
tilever to deflect in specific frequencies and amplitudes.

For the development of temperature-controlled experimentswith
CZA at 37 °C, we usedmodularNanoMotionDevice (NMD) prototypes.
It allowed the reconfiguration of the hardware setup to work with
either a standard incubator or a modified measurement head to warm
up only the measurement chamber. For the merge of an NMD with a
BINDER BD 56 incubator, the size of the incubator fits the entire NMD
head with the active vibration damping module, also permitting the
user a comfortable manual operation. The incubator shelf was rigid
and able to hold the vibration isolator and NMD head (ca. 10 kg), and
the incubatorwasmodifiedwith anaccessport to pass through control
cables operating the light source, photodetector, and vibration
damping module from the outside. Another NMD prototype was
equipped with a locally-heated measurement chamber, thermally
insulated from the measurement head set-up. A Peltier module as a
heating element was installed under the measurement chamber,
adapted to temperature control by adding a Pt100 temperature sen-
sor. Temperature was kept at 37 °C by a Eurotherm EPC3016 PID
controller (Eurotherm Ltd, Worthing, United Kingdom) and a custom-
made Peltier module driver. Both setups had a temperature stability
<0.2 °C, which is amatching requirement for stable culture conditions.

Calculating variance over time and slope analysis
Each sampled nanomotion signal was split into 10 s timeframes. For
each timeframe, the linear trend was removed and the variance of the
residue frame was estimated. For some experiments, the variance
signal was too noisy for classification, necessitating the application of
an additional smoothing procedure. A running median with a 1min
time window was applied to smooth the variance signal and allow plot
interpretation. For the calculation of the SP slope of the variance in the
drug phase used for determining the nanomotion dose response in
Fig. 2b and Supplementary Fig. 4, we used the formula log(x) = log(C) +
at, where t is time (in min), a is the slope of the common logarithm of
the variance trend, and log(C) is the intercept. Variance plots were
used here for the visual inspection of results, and are currently the
primary tool accessible for investigators. However,more sophisticated
SPs are necessary for reliably classifying phenotypes in ASTs.

The Resistell nanomotion-based AST experimental setup
Nanomotion-based AST was performed using Resistell Phenotech
devices (Resistell AG, Muttenz, Switzerland) on a standard laboratory
benchtop. Each recording comprises two phases: a 2-h medium phase
and a 2-h drug phase. In addition, a short blank phase is conducted to
measure the baseline deflections of a new, bare, functionalized canti-
lever in 50% LB medium for 5–10min. Raw nanomotion recordings
were used to develop classification models using machine learning.
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The signal during the blank phase is expected to be constant and
primarily flat (variance around 2.6 E-6 or lower). Higher median values
or the clear presence of peaks are indicators of potential contamina-
tion of the culture medium inside the measurement fluid chamber,
sensor manufacturing errors, or an unusual external environmental
noise source that should be identified and rectified. In particular,
contamination (OD600 < 0.01) can cause deflection signals that are
several orders of magnitude higher than expected for sterile media
due to interactions between floating particles in the fluid chamber and
the laser beam. The blank phase serves as a quality control but is not
used for classificationmodels and, therefore, canbeperformed several
hours prior to recording medium and drug phases.

The medium phase records cantilever deflections after bacterial
attachment, showing the oscillations caused by natural bacterial
nanomotions stemming from metabolic and cellular activity. Here,
variance is expected to be greater (10−5 to 10−3) than during the blank
phase. The 2-h medium phase duration allows cells to adapt to their
new environment within the fluid chamber and generates a baseline
that canbe compared to bacterial nanomotions during the drugphase.
The drug phase measures cellular vibrations after an antibiotic has
been introduced to the fluid chamber. The antibiotic is directly
pipetted into the medium already present within the measurement
chamber.

Machine learning and development of classification models
The Phenotech device detects nanomotion signals resulting from the
activity of living cells. However, other sources can create detectable
noise during cantilever-based sensing61. Thermal drift occurring on the
cantilever62, as well as external sources such as acoustic noise and
mechanical vibrations, can all impact measurements. Distinguishing
cell-generated vibrations from background noise can be challenging.
As such, we employed a supervised machine learning-based approach
to extract signal parameters (SPs) containing diagnostic information
while minimizing overall background noise. The entire procedure of
analyzingmotional activity of particles is part of a filed patent (PCT/EP
2023/055596).

First, a batch of initial SPs related to frequency and time domains
were extracted, with timeand frequency resolutionbeing high to allow
for further statistical analysis at this level. Next, different statistical
parameters were created with a much coarser time and frequency
scale. Finally, various combinations (differences, ratios, etc.) were
calculated, forming a final batch of SPs that are more related to anti-
biotic susceptibility. SPswere estimated for experimentswith cells and
conditions with well-defined and known outputs (e.g., susceptibility to
a given antibiotic could be known through reference AST methods).
Here, extracted SPs and outputs formed labeled datasets that could be
used for supervised machine learning.

A feature selection algorithm extracted SPs related to the phe-
nomenonof interest. These SPswere selected from theoverall batchof
SPs to optimize the performance of this so-called machine learning
model. In this case, the model was a classifier validated by analysis of
metrics measuring the degree of distinguishing antibiotic suscept-
ibility. Therefore, a forward selectionmethodwas applied. All SPs were
subsequently evaluated in the classifier with repeated stratified cross-
validation. The SPs that enabled the classifier to reach maximal accu-
racy were added to the stack of selected SPs and deleted from the
remaining SPs. In thenext iteration, all remaining SPswereagain tested
with the already-selected SPs. The best-performing SPwas again added
to the selected SP stack. This process was repeated several times until
the overall performance reached a plateau or a predefined number of
SPs were selected. In the final model (iii), these newly found SPs were
then used as machine learning model features. Classifier models were
trained using the complete available dataset and could now be used to
classify previously unseen data. The Supplementary information

elaborates in more detail on that process and lists all SPs used in the
different classification models.

Independent testing of classification models
After achieving Pareto optimality, the models were tested on inde-
pendent test datasets consisting exclusively of strains of K. pneumo-
niae or E. coli that were not used in the training of the corresponding
model. We used either spiked blood cultures or directly anonymized
remnant PBC from the Lausanne University Hospital (CHUV) in Lau-
sanne. Spiking was predominantly utilized to increase the fraction of
resistant strains to obtain more representative specificity (classifica-
tion performance of resistant strains), as resistance rates at that hos-
pital are around 10 % for CRO and CIP and close to non-existent for
CZA. Each nanomotion recording was classified separately and com-
bined using the median to a sample reporting accuracy, sensitivity
and specificity – exactly as described for reporting the training
performance.

In addition to this, we performed an interim analysis of the mul-
ticentric clinical performance study PHENOTECH-1 (NCT05613322),
conducted in Switzerland (Lausanne University Hospital, Lausanne),
Spain (UniversityHospital RamónyCajal,Madrid) andAustria (Medical
University of Innsbruck, Innsbruck). The study evaluates the perfor-
mance of the nanomotion AST with the Phenotech device using the
CRO model on E. coli and K. pneumoniae from fresh residual PBC.
Ethical review and approval were obtained by the hospital ethics
committee at each participating site. In Lausanne and Innsbruck, only
samples from patients who had previously agreed to the use of their
residual biological material were utilized. In Madrid, consent for par-
ticipation was not required for this study in accordance with institu-
tional requirements. No compensation was paid to participants. The
interim results reported here comprise the first included 85 samples
with complete data entry. The eventual sample size of 250 was esti-
mated based on the expected rate of E. coli andK. pneumoniae samples
susceptible to the antibiotic in the three countries (i.e., 80%). Allowing
for up to 10% samples with missing data or technical errors, an overall
sample size of 250 would include 180 truly susceptible samples with
98% power to demonstrate that sensitivity is at least 90%. The
PHENOTECH-1 study is expected to conclude in 2024. The endpoints
of this study include the accuracy, sensitivity, and specificity of the
device according to ISO-20776-2 (2021), as well as the time to result
from the start of the AST to the generation of the result in form of a
time stamped report. Regarding inclusion criteria, patients aged 18
years or older, with positive blood cultures for either E. coli or K.
pneumoniae, are eligible for participation in the study. Additionally,
PhenotechAST needs to be performedwithin 24 h of the blood culture
turning positive. Patients with polymicrobial samples are excluded
from the study.

Qualitative results of the Kirby Bauer disk diffusion assay, i.e.,
either R or S, were used for benchmarking. Clinical breakpoints for the
class definition were according to EUCAST in 2022. The samples
coming from one PBC were measured in technical triplicates for 4 h.
The results from each recording were automatically combined to a
sample. Instead of the median score, a majority voting system was in
place that is, RRR, RRS and RR- return predicted resistance, SSS, SSR,
SS- return susceptibility. In this way even if one recording needed to be
excluded because of technical errors, or detection of substantial
elongation of the specimen, the sample could be interpretated. Only if
two or more recordings were excluded, or the exclusion of one
recording resulted in the disagreement between the two remaining
recordings, the sample would be classified as non-conclusive. The
experiments were not randomized and the investigators were unblin-
ded during experiments and outcome assessment. Information on sex,
gender, and age of participants was not collected in this study as
having no impact on the generalizability and translation of the
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findings. At the time of analysis, the data set included 119 samples, of
which 12 screening failures, 5 with technical errors or elongation, and
12 incomplete/unverified. Sampleswith complete, verified and cleaned
data accounted to 90. Of these, the first 85 samples were selected of
which 20 samples derived fromCHUV, 48 samples fromRamon y Cajal
Hospital and 17 samples from Medical University of Innsbruck.

Statistics and reproducibility
Statistical details can be found in the figure legends. Data are presented
as mean or median ± SD or representative single experiments and pro-
vided in the Source data file. In Figs. 3, 5, and 6, the performance cal-
culation is based on single recordings for which a score was calculated.
Each recording is depicted as a datapoint representing a biological
replicate originating from a different PBC. Performance calculation in
Fig. 4 is based on the median of the scores calculated for each technical
replicate originating from the same PBC. Thus, each datapoint repre-
sents the median score as it is currently implemented in the
PHENOTECH-1 clinical performance study. In each case, scores are logits
predicted by the corresponding logistic regression model. In Fig. 5e the
two-tailedMann–WhitneyU testwas performed for calculating ap-value.
Statistical analysis and graphs were generated with GraphPad Prism 10.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Data associated with figures is available in the Source data file and the
Supplementary data files. A comprehensive list of bacterial strains is
provided in Supplementary Data 1. For the development and testing of
classification models, detailed information about recordings, their
connection to samples, and associated strains can be found in Sup-
plementary Data 2. Here, we also list all SP values and scores. The
description of each SP used in these models as well as all Supple-
mentary Figs. can be found in the Supplementary Information file. The
clinical study protocol for Phenotech-1 is summarized at https://
clinicaltrials.gov/study/NCT05613322. Source data are provided with
this paper.

Code availability
The code used in this study for the calculation of the scores is available
under https://github.com/resistell-com/nat-commun-ast-ml.
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