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Wandering principal optical axes in van der
Waals triclinic materials
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Dmitriy V. Grudinin1, Ilia M. Fradkin1, Arslan Mazitov4, Aleksandr S. Slavich3,
Mikhail K. Tatmyshevskiy3, Dmitry I. Yakubovsky3, Valentin R. Solovey1,
Roman V. Kirtaev1, Sergey M. Novikov3, Elena S. Zhukova 3, Ivan Kruglov1,
Andrey A. Vyshnevyy1, Denis G. Baranov 3, Davit A. Ghazaryan 3,5,
Aleksey V. Arsenin 1,5, Luis Martin-Moreno 6,7, Valentyn S. Volkov1,5 &
Kostya S. Novoselov 8,9,10

Nature is abundant inmaterial platformswith anisotropic permittivities arising
from symmetry reduction that feature a variety of extraordinary optical
effects. Principal optical axes are essential characteristics for these effects that
define light-matter interaction. Their orientation – an orthogonal Cartesian
basis that diagonalizes the permittivity tensor, is often assumed stationary.
Here, we show that the low-symmetry triclinic crystalline structure of van der
Waals rheniumdisulfide and rheniumdiselenide is characterized bywandering
principal optical axes in the space-wavelength domain with above π/2 degree
of rotation for in-plane components. In turn, this leads to wavelength-
switchable propagation directions of their waveguide modes. The physical
origin of wandering principal optical axes is explained using a multi-exciton
phenomenological model and ab initio calculations. We envision that the
wandering principal optical axes of the investigated low-symmetry triclinic van
derWaals crystals offer a platform for unexplored anisotropic phenomena and
nanophotonic applications.

Symmetry plays a pivotal role in fundamental laws of nature1–7,
including classical equations of motion, conservation laws, super-
position principle, selection rules, and exchange interaction8–11. In
condensed matter, it governs many of the material’s mechanical,
electronic, and optical properties, such as stress tensor, electron
mobility, conductivity, refractive index, and allowed nonlinear pro-
cesses, among others12–15. Highly symmetric atomic lattices, such as Al,
Ni, and Au, result in isotropy of electronic and optical properties,

severely limiting their use16–18. For instance, they lack even-harmonic
generation, birefringence, and chirality4,19,20. On the other hand,
reducing the lattice’s symmetry group leads to the emergence of ani-
sotropy – the change of particular property in the observation
direction5,21. The most known consequence is the birefringence phe-
nomenon, wherein a birefringent material doubles an image22. This
effect is just one of the numerous implications of anisotropic optical
properties, traditionally described via the permittivity tensor23.
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It effectively describes the difference in refractive indices along var-
ious directions. This anisotropy produces complex isofrequency con-
tours in the reciprocal space24 enabling hyperbolic materials21, ghost1

and shear10,25 polaritons, negative refraction26,27, canalization of
radiation4, and many other intriguing wave phenomena.

Van der Waals (vdW) crystals offer a flexible and highly functional
platformwith a built-in anisotropy due to their fundamental difference
between intralayer covalent and interlayer vdW bonding28. Therefore,
such layered materials allow exotic light-matter interactions29, result-
ing in exciton-30, phonon-31, edge-32, and moiré-polaritons33. In most
cases, this anisotropy is purely uniaxial, and the principal optical axes
of the permittivity tensor are stationary with wavelength28. Some vdW
crystals, however, have biaxial anisotropy because of the in-plane low-
symmetry crystal structure34–38. Combined with non-orthogonally
polarized in-plane exciton resonances34, rhenium disulfide and rhe-
nium diselenide can enable the wandering (wavelength-dispersive)
direction of the principal optical axes of the permittivity tensor.
Although the prediction of wavelength-dispersive principal optical
axes dates back to 192839, experimental evidence of the discussed
behavior has been elusive in inorganic crystals. We anticipate that
more exotic optical responses and applications may be expected in
materials with wandering principal optical axes, which can extend the
evergrowing phenomena in low-symmetry nanophotonics40.

In this work, we experimentally observed the rotation of principal
optical axes in triclinic vdW crystals. We explained it via a bi-excitonic
model, also recreating the wandering of such principal optical axes
with first-principle calculations of the permittivity tensor. Here, only
the individual components of the obtained permittivity tensor satisfy
the Kramers–Kronig (KK) relations. In contrast, the generalized KK
relation for crystallographic axes41 is not applicable to triclinic rhenium
disulfide (and diselenide). Hence, these crystals have extraordinary
optical properties that set them apart from vdWand non-vdWcrystals.

Furthermore, from a practical point of view, our near-field nanoima-
ging results reveal high wavelength sensitivity of light-matter interac-
tion in triclinic vdWcrystals, which canbe leveraged for advanced light
routing. Thus, triclinic van der Waals rhenium disulfide (and dis-
elenide) offer a platform for anisotropic phenomena and next-
generation nanophotonics.

Results
Impact of triclinic crystal structure on optical axes
ReS2 and ReSe2 are ideal materials for asymmetry-driven phenomena
since they exhibit the lowest symmetry triclinic crystal structure42,
shown in Fig. 1a–c. Consequently, they received considerable interest
in recent works34–37,43–45, which reported a high linear and nonlinear
optical anisotropy originating from non-collinear excitons34. In parti-
cular, the angle between the polarizations of excitons46 is about 70°
instead of the expected 90°. It arises from Peierls’ distortion of the 1 T
structure (Fig. 1a)36. This feature should, naturally, cause nontrivial
optical responses, such asnon-orthogonal self-hybridized polaritons47.
Therefore, a more thorough investigation of the anisotropic dielectric
tensor ε̂ of ReS2 and ReSe2 remains a significant challenge both
because their dielectric tensors cannot be diagonalized in Cartesian
coordinates39 and for their great demand for low-symmetry photonics.

Nevertheless, according to Onsager’s theorem48, their dielectric
tensors are symmetric (ε̂ = ε̂T ). They thus canbedivided intoHermitian
(Re[ε̂]) and skew-Hermitian (Im[ε̂]) parts (Fig. 1d–e), primarily
responsible for polarization and losses, respectively. It is worth noting
that the diagonalization basis for Hermitian and skew-Hermitian ten-
sors can differ and vary with wavelengths, as schematically illustrated
in Fig. 1d–e, which can result inwavelength-dispersive principal optical
axes. In fact, principal optical axes rotation explains the effects
observed in earlier reports35,38,49 on optical properties of ReS2 (Sup-
plementary Note 1).

Fig. 1 | Conceptualization of wavelength-dispersive principal optical axes in
triclinic crystals. Crystal structure of ReS2 and ReSe2 (a) along the c-axis and (b)
along the a-axis, (c) three-dimensional view of the unit cell, where α, β, and γ are
crystallographic angles of triclinic crystal. Schematic illustration of wandering

principal optical axes for (d) Hermitian and (e) skew-Hermitian parts of dielectric
tensors. εxx, εyy, and εzz stands for dielectric permittivities in the basis of principal
optical axes along principal optical axes for two wavelengths λ1 and λ2.
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Physical origins of wandering principal optical axes
To visualize this effect, we prepared ReS2 and ReSe2 samples (Fig. 2a, b
and Supplementary Note 2) and measured polarised transmittance
(Fig. 2c) around the exciton resonances. Figure 2c demonstrates how
the angle for maximum transmittance shifts for different excitons,
showing that the principal optical axes change with exciton reso-
nances. In order to capture its wavelength dependence, we provide
polarization spectra in Fig. 2d–e for ReS2 and in Supplementary Note 2
for ReSe2. Note that excitonic spectral dips vanish at certain polar-
izations (Fig. 2d), indicating the orientation of excitons. Of immediate
interest are wandering (wavelength-dispersive) principal optical axes,
shown in Fig. 2e and Supplementary Note 2. In fact, a recent study50

showed that the principal optical axis at 550 and 650nm tilts by 3° and
2°, respectively, with respect to the b-axis for few-layer ReS2, which is
close to our 7° and 8° observed for bulk ReS2 (see Fig. 2e). At large
wavelengths, the principal optical axes almost coincide with the crys-
tallographic axes (Fig. 2e). However, the principal optical axes vary
rapidly at fundamental exciton frequencies and then demonstrate
complex behavior for high-energy photons, owing to the material’s
rich excitonic structure51. Still, the crystallographic axes influence the

position of the principal optical axes since, at the fundamental exciton
resonances, the principal optical axes switch from the crystallographic
b-axis to the a-axis (Fig. 2e). At infrared wavelengths, this wandering of
principal optical axes reaches 65° whereas, for the whole spectral
range, it exceeds 110° change, as seen in Fig. 2e.

Furthermore, this extraordinary optical response influences the
Raman spectra (Supplementary Note 3). For instance, polarisation-
resolved Raman measurements reveal the change of phonon modes’
preferential direction when the excitation wavelength switches from
532 nm to 633nm and then to 780nm (Supplementary Note 3).
Although phononmodes’directions havemore complex behavior since
theydependnotonly on theorientationof theprincipal optical axesbut
on the phonon modes themself, their dispersion follows a similar pat-
tern to principal optical axes (Supplementary Note 3). This trend is
unique to ReS2 and ReSe2, as we demonstrate in Supplementary Note 4,
exemplifying a highly anisotropic As2S3 with static principal optical
axes52. Indeed, As2S3 also has a reduced symmetry, which in principle,
may cause a similar effect ofwandering principal optical axes. However,
unlike ReS2 and ReSe2, the crystal structure of As2S3 is close to
orthorhombic phase with the following crystallographic parameters52:
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Fig. 2 | Observation of wandering (wavelength-dispersive) principal optical
axes in triclinic ReS2. (a) Optical and (b) ellipsometry micrographs of bulk ReS2.
Reddashed lines show the region for polarizedmicrotransmittancemeasurements.
(c) Polarized transmittance of bulk ReS2 presented in panel (a), for three different
exciton wavelengths of 830 nm (exc-1), 816 nm (exc-2), and 774 nm (exc-3). Each
curves shifted by 0.2 for clarity. Polarized transmittance (d) spectra and (e) heat-
map. In panel (d) dashed lines show the positions of fundamental excitons of bulk
ReS2. In panel (e), red and blue points show the positions of in-plane principal
optical axes. Dashed lines correspond to the crystallographic a-axis (orange line)
and b-axis (cyan line). Zero degree corresponds to the crystallographic b-axis. The
red and blue points are obtained through the fitting of polarization-resolved

microtransmittance at each wavelength (see Methods section Determination of
principal optical axes). Arrows show the maximum position change of principal
optical axes. (f) Depiction of non-orthogonal excitons (phenomenological theory).
Solid lines represent the binding between electron and hole in exciton. Arrows
shows the preferential direction of excitons and n1 and n2 are unit vectors
describing the in-plane polarization of the corresponding excitonic transition.
(g) Dielectric tensor corresponding to the bi-exciton model. Solid lines show the
real parts of dielectric permittivity, while dashed lines show the imaginary parts of
dielectric permittivity. (h) Principal optical axes orientation as a function of
wavelength. Solid red lines show principal optical axis change predicted by bi-
exciton model. Dashed line is experimental positions of principal optical axis.
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a =0.42546(4) nm, b =0.95775(10) nm, c = 1.14148(10) nm, α =90°,
β =90.442°, and γ=90°; because the monoclinic angle β differs from
90° by just 0.442(4)°. Moreover, As2S3 is transparent in the measured
spectral interval (450–1350 nm) implying that its excitons lie below
450nm, and hence, their effect is negligible52. In other words, an illus-
tration of static principal optical axes in As2S3 highlights the nontrivial
behavior ofwanderingprincipal optical axes inReS2 andReSe2 since the
observed effect requires both strongly reduced crystal symmetry and
the presence of material’s directional resonances: in our case excitons.

The observed behavior of the principal optical axes of ReS2 and
ReSe2 can be described with a phenomenological bi-exciton model
(Fig. 2f and Supplementary Note 5). According to this model, the
permittivity tensor of ReS2 in the visible range can be expressed as:

ε̂ ωð Þ= Îε1 + f 1
ω2

1

ω2
1 � ω2 � iωγ1

n1 � n*
1 + f 1

ω2
1

ω2
1 � ω2 � iωγ1

n2 � n*
2 ð1Þ

whereω1,2 is the resonant frequencyof the exciton resonance, γ1,2 is its
non-radiative decay rate, f 1,2 is the rescaled oscillator strength, and
n1,2 = ðnx ,ny,nzÞT is a unit vector describing the in-plane polarization
of the corresponding excitonic transition. By varying theparametersof
the permittivity model (ωi, γi, f i), we managed to find a dielectric
tensor (Fig. 2g), which reproduces the wandering effect of ReS2
principal optical axes (Fig. 2h) within a phenomenological bi-exciton
model. The satisfactory agreement between the two-exciton model
and the experiment corroborates the leading role of excitons in the
observed behavior.

Real-space nanoimaging of wandering principal optical axes
Wandering of ReS2 and ReSe2 principal optical axes opens the door to
wavelength-switchable optics for efficient light manipulation. As a
practical demonstration, we show the effect of wavelength–dispersive
principal optical axes onwaveguidemodepropagation direction using
a scattering scanning near-field optical microscopy (s-SNOM) in the
transmission scheme, depicted in Fig. 3a. This scheme has no angular
rotation (Supplementary Note 6) which makes it advantageous over
the reflection scheme. Notably, the principal optical axes vary rapidly
at fundamental exciton frequencies (see Fig. 2e and Supplementary
Note 2). Therefore, formeasurements, we focused on ReSe2 because it
provides a strong variation in the orientation of the principal optical
axes within the measured wavelength range of our s-SNOM setup
(Methods). To eliminate the edge effect on the near-field image when

launching thewaveguidemodes and launch thosemodes isotropically,
we created a circular hole (the inset in Fig. 3a) inside the ReSe2 sample.
It allows us to visualize the asymmetry of waveguidemodes (Fig. 3b–d)
caused by material anisotropy only: Fig. 3b–d show elliptical light
propagation. As anticipated, these ellipses rotate with wavelength
change, as seen from the position of their major axes in Fig. 3e–g
(theoretical background of direction change which is provided
in SupplementaryNotes 7–9).Notably, the observednear-fieldmode is
an interference between the air and waveguidemodes. Still, according
to our analysis, the air mode’s contribution to the rotation of the
mode’s propagation direction is negligible with respect to the wave-
length (see Supplementary Note 9). Hence, wandering (wavelength-
dispersive) principal optical axes offer a platform to manipulate light
without additional structuring and engineering.

Anisotropic dielectric tensors with wandering optical axes
Given the strong wavelength dispersion of the principal optical axes, it
is challenging to describe the optical responses of ReS2 and ReSe2
correctly. Hence, we fitted the polarized transmittance spectra within
the isotropic approximation as the initial step (see Supplementary
Note 10). This approach yields a refractive index of about 4 in the
infrared range, close to earlier reports35,38,49, and allows for distin-
guishing the fundamental excitonic transitions. In the next step, we
irradiated samples with unpolarized light to obtain the optical proper-
ties averaged over polarization angles. Notably, the resulting optical
constants do not follow Kramers–Kronig relations (see Supplementary
Note 10) in contrast toother anisotropic vdWmaterials53. Consequently,
ReS2 and ReSe2 exhibit anomalous optical responses even for unpo-
larized light due to the wavelength-dispersive principal optical axes.

To better understand the wandering of principal optical axes, we
performed first-principle calculations of monolayer, bilayer, trilayer,
and bulk ReS2 and ReSe2 anisotropic permittivity tensors, shown in
Fig. 4 and Supplementary Note 9. As expected, the off-diagonal tensor
elements (Fig. 4a and g) are nonzero, and tensors are not diagonaliz-
able on the orthogonal basis (Supplementary Note 11) because of the
crystal’s low symmetry. Nonetheless, we can decouple Hermitian and
skew-Hermitian parts of tensors and diagonalize them separately, as
shown in Fig. 4 and Supplementary Note 11. The diagonalization pro-
cess also gives a diagonalization basis, which, in the case of the
dielectric tensors, coincides with principal optical axes. Moreover, it
allows us to directly observe a dramatic change of principal optical
axes orientations from theoretical calculations (Fig. 4c–f and i-l), which
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Fig. 3 | Real-space nanoimaging of wandering (wavelength-dispersive) princi-
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micrographof the hole patterned in the ReSe2 sample.Ω is an oscillation frequency
of a near-fieldmicroscope cantilever. Near-fieldmicrographs of waveguidemodeat
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agree with the experimental findings in Fig. 2, thereby unambiguously
verifying the effect of wandering (wavelength-dispersive) principal
optical axes in ReS2 and ReSe2. Moreover, the non-straight orientation
of the principal optical axes of the permittivity tensor leads to slanted
isofrequency surfaceswith respect to the global z-axis (Supplementary
Figure 21), which may enable interesting transmission phenomena,
such as negative refraction and the super-prism effect54. Hence, the
unique dielectric tensors of ReS2 and ReSe2 (Fig. 2 and Supplementary
Figure 17) provide great flexibility in optical engineering.

Discussion
The permittivity tensor is the key optical characteristic of any artificial
or natural material. It describes the material’s polarizability via the
permittivity values and fundamental directions called principal optical
axes, where birefringence is absent. Although for an overwhelming
majority of inorganic materials, dielectric constant values are wave-
length-dispersive, enabling numerous phenomena such as ultraslow
light and Fano resonances55,56, principal optical axes remain static,
which limits nanophotonics since this “degree of freedom” is unavail-
able. In this regard, triclinic vanderWaalsmaterials offer a platform for
the emergence of wandering (wavelength-dispersive) principal optical
axes appearing in far- and near-fields and in quantum mechanical
calculations. This unconventional optical response was demonstrated
for rhenium disulfide (diselenide) and was shown to originate from
non-orthogonal exciton resonances. Furthermore, the properties
associated with wandering principal optical axes can be observed in
fields other than optics by considering the material’s non-Hermiticity
arising from broken crystal symmetries. We also anticipate wandering
principal optical axes in other low-symmetry crystals with triclinic and
monoclinic structures, including GeS2

57, Lu2SiO5
58, CdWO4

25, β-phase
Ga2O3

10, and many others10,25,57,58. These materials offer interesting
opportunities forwavelength-switchablemetamaterials,metasurfaces,
waveguides, and cavities59–62.

Methods
Sample preparation
Bulk ReS2 and ReSe2 crystals were purchased from 2D Semi-
conductors (Scottsdale, USA) andmicromechanically cleaved down
on top of required substrates (Si/SiO2 and glass). Those substrates
were subsequently decontaminated in acetone, isopropanol alco-
hol, and deionized water before the cleavage and then subjected to
oxygen plasma removing the ambient adsorbates. Following plasma
treatment, substrates were subjected to thermal treatment at tem-
peratures of 120 °C and then exposed to scotch-tape from Nitto
Denko Corporation (Osaka, Japan) with loaded bulk crystals of ReS2
and ReSe2. Eventually, the scotch-tape was removed, completing
the cleavage procedure. The thickness of as-papered thin ReS2 and
ReSe2 crystals was measured by an atomic force microscope
(NT-MDT Spectrum Instruments, Ntegra II) in HybriD Mode using
HA_NC tips with resonant frequency of 140 kHz and spring constant
of 3.5 N/m.

Determination of principal optical axes
We used polarized microtransmittance measurement technique
implemented on our Accurion nanofilm_ep4 ellipsometer to deter-
mine the principal optical axes. During the measurements, we aligned
the polarizer and analyzer of the ellipsometer and fitted the obtained
polarized microtransmittance for each wavelength by the
expression: T θ, λð Þ=a2cos4 θ� φð Þ+ b2sin4 θ� φð Þ+2abcos2 θ� φð Þ
sin2 θ� φð Þ cos Δϕð Þ, where T θ, λð Þ is the polarizedmicrotransmittance,
which depends on the polarizer’s/analyzer’s angle θ, and the incident
wavelength λ. a2 and b2 are the transmittances of beams polarized
along in-plane principal optical axes,Δϕ is a phase difference between
transmitted rays polarized along principal optical axes, andφ indicates
the angular position of the principal optical axis (see blue points in
Fig. 2e), whereas another principal optical axis is given by the sum
φ+90� (see red points in Fig. 2e).

Fig. 4 | First-principle calculations of bulk ReS2 dielectric tensor. (a) Hermitian
partof thedielectric tensor. (b)Hermitian components of thedielectric tensor after
the diagonalization process. (c) Skew-Hermitian part of the dielectric tensor.
(d) Skew-Hermitian components of the dielectric tensor after the diagonalization
process. (e) Three-dimensional view of principal optical axes variation for the
Hermitian part of the dielectric tensor. Axes are dimensionless and serve as a
reference for eyes. Grey sphere is also a guideline for eyes. (f) Wavelength

dependence of principal optical axes positions for the Hermitian part of the
dielectric tensor in polar coordinates (φ, θ in panel (e)). (g) Three-dimensional view
of principal optical axes variation for the skew-Hermitian part of the dielectric
tensor. Axes are dimensionless and serve as a reference for eyes. Grey sphere is also
a guideline for eyes. (h) Wavelength dependence of principal optical axes positions
for the skew-Hermitian part of the dielectric tensor in polar coordinates
(φ, θ in panel (g)).
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Scanning near-field optical microscopy
The fabricated hole in ReSe2 was characterized by the amplitude-
and phase-resolved scattering-type scanning near-field optical
microscopy (s-SNOM) measurements using the “NeaSNOM” setup
(Neaspec GmbH). The s-SNOM works as an atomic force micro-
scope (AFM) in a tapping mode with a Pt-coated silicon tip oscil-
lating at the resonance frequency ofΩ ≈ 280 kHz with an amplitude
of ∼ 50 nm. In the s-SNOM working at transmission configuration,
the ReSe2 hole is illuminated from below by a linearly polarized
light at a normal angle to the sample surface focused by a bottom
parabolic mirror. As a light source, we used Ti:Sapphire continuous
wave tuning laser (TiC, AVESTA Lasers and Optical Systems) with
fiber coupling output, working at a wavelength range of
λ = 700−1000 nm. While mapping the near-field signal and AFM
topography around the hole with a scan area of 10×10 µm2, the
illumination from the bottom parabolic mirror always remained
aligned with the hole due to its synchronization moving with the
sample during the scan. A top parabolic mirror collects the tip-
scattered near-field signal and directs it into the highly sensitive
photodetector. To achieve a clear near-field image, the optical
background was suppressed by demodulation of the detected
signal at high-order harmonic frequency nΩ (n = 2, 3, 4) and using
an interferometric pseudoheterodyne detection scheme with a
modulated reference beam via oscillating mirror. In this work, the
demodulation signal at the third harmonic (3Ω) was taken, which is
enough for background-free near-field detection.

First-principle calculations
Optical constants of the ReS2 and ReSe2 crystals were calculated
within density functional theory (DFT) and GW approximation, as
implemented in VASP package63. First, the atomic positions of both
crystals were relaxed until the interatomic forces decreased below
10-3eV/Å, while their unit cells were fixed. The lattice parameters
were a=6:378 Å, b=6:417 Å, c=6:461 Å with α =91:62�, β= 119:07�,
γ = 105:115� for ReS2 and a=6:716 Å, b=6:602 Å, c=6:728 Å with
α = 104:90�, β =91:82�, γ = 118:94� for ReSe2. Next, we obtained
ground-state one-electron wavefunctions from DFT and used them
to initialize the GW routines. Finally, we calculated the imaginary
and real parts of the frequency-dependent dielectric function
within GW approximation and derived the refractive indices and
extinction coefficients of the material. The cutoff energy for the
plane-wave basis was set to 500 eV, while the first Brillouin zone
was sampled with a Γ-centred 6 ×6 ×6 grid. The exchange correla-
tion effects were described with a generalized gradient approx-
imation (Perdew-Burke-Ernzerhof functional), and the behavior of
wavefunctions in the core region was reconstructed with the pro-
jector augmented wave pseudopotentials.

Data availability
The relevant raw and generated data supporting the key findings of
this study are available in the figshare database under accession code
https://figshare.com/s/a1edc12b21d3a36315ab (https://doi.org/10.
6084/m9.figshare.24967593). All data are available from the corre-
sponding author upon a request.
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