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Recovering static and time-varying communities
using persistent edges

Konstantin Avrachenkov, Maximilien Dreveton, and Lasse Leskelä

Abstract—This article focuses on spectral methods for recovering communities in temporal networks. In the case of fixed communities,
spectral clustering on the simple time-aggregated graph (i.e., the weighted graph formed by the sum of the interactions over all
temporal snapshots) does not always produce satisfying results. To utilise information carried by temporal correlations, we propose to
employ different weights on freshly appearing and persistent edges. We show that spectral clustering on such weighted graphs can be
explained as a relaxation of the maximum likelihood estimator of an extension of the degree-corrected stochastic block model with
Markov interactions. We also study the setting of evolving communities, for which we use the prediction at time t− 1 as an oracle for
inferring the community labels at time t. We demonstrate the accuracy of the proposed methods on synthetic and real data sets.

Index Terms—graph clustering, temporal networks, spectral methods, stochastic block model

✦

1 INTRODUCTION

Complex networks are commonly used to describe and
analyze interactions between entities. A natural problem
arising in complex network analysis consists of identifying
meaningful structures within the network. Community re-
covery, i.e., partitioning the set of nodes of a network into
communities based on some common properties of the ver-
tices, is now a well-established area [1]. In many situations,
interactions between node pairs vary over time, and classi-
cal graph-based models are replaced by temporal network
models [2]. Temporal networks naturally arise in various
situations, such as communication or face-to-face interac-
tions between individuals. In brain networks, interactions
between neurons are also time-varying. Finally, ecological
networks such as food webs experience seasonal changes.
The longitudinal dimension of data raises new challenges to
traditional clustering algorithms. Moreover, the community
structure of temporal networks can either be static or time-
varying, and different clustering algorithms need to be used
in each case. For example, community structures in a brain
network are likely to be static, while the communities in a
social network can vary.

If communities are static, then each additional snapshot
makes clustering easier. Furthermore, when snapshots are
temporally uncorrelated, simple time-aggregation of data
does not lose any information and recovers communities
optimally [3]. Nonetheless, for time-correlated models, this
simple temporal aggregation of the data might lose im-
portant features such as temporal patterns. As such, [4]
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describes information-theoretic recovery criteria for Markov
edge evolution dynamics, while [5], [6] study a spectral
algorithm based on the squared adjacency matrix.

Previous research on community detection in temporal
networks has also focused on evolving communities, for
example by generalizing belief-propagation methods [7],
developing variational EM algorithms [8] and introducing
new spectral methods [9], [10], [11] or modularity-based
methods [12], [13]. We refer to [14], [15] for an overview.
All of the aforementioned works focus on evolving com-
munities for which the interactions between nodes are re-
sampled at every time step. One can then treat each layer
independently by applying static community detection and
smoothing the community predictions. A more challenging
situation is when the edges at a given time step also depend
on the edges at the previous time step. It is argued in [16]
that link persistence makes the inference of communities
harder.

In this work, we first study the case of static community
memberships. We introduce a temporal extension of the
degree-corrected stochastic block model [17], [18], in which
the community structure is fixed and the interactions be-
tween node pairs follow a Markov evolution which only de-
pends on the community structure and the degree correction
parameters. We show that maximum likelihood estimation
reduces to the maximisation of a regularized modularity of
a time-aggregated graph, in the limit of a large number of
snapshots and sparse interactions. This weighted graph is
not given by a simple sum of the adjacency matrices over all
snapshots. Instead, we show that the maximum likelihood
estimator distinguishes, at each snapshot, the newly formed
edges from the persistent ones. Indeed, the information
contained in these two types of temporal edges is different.
Thus, we propose a time-aggregation corresponding to the
sum of all snapshots of the signal coming from the newly
formed and persistent edges, but with different weights.
This leads to a weighted graph that better takes into ac-
count the temporal nature of the signal than the vanilla
time-aggregation. A continuous relaxation of this maximum
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likelihood estimator then leads to a normalized spectral
clustering algorithm. We finally extend this study to higher-
order temporal correlations.

We also study evolving communities with temporal cor-
relation in the edge formation. In this case, we propose
to recover the community at a given time step by using
the prediction of the previous time step as a noisy oracle.
This naturally leads to a noisy semi-supervised inference
problem [15], which we tackle using spectral methods.

The article is structured as follows. Section 2 studies
the static communities, while Section 3 focuses on evolv-
ing communities. Numerical experiments are presented in
Section 4 and the conclusions and future research directions
are given in Section 5.

This article is an extension of [19]. Compared to the
conference article, the section on evolving communities is
entirely new. Moreover, the spectral algorithm for fixed
communities is modified (in order not to require any hyper-
parameters besides the number of communities). The exten-
sion to higher-order Markov chains is also new. Finally, we
present experiments on a wider collection of data sets.

2 STATIC COMMUNITIES

This section studies the recovery of static communities in a
temporal network. We introduce in Section 2.1 a temporal
stochastic block model where dynamic interaction patterns
between node pairs follow a Markov chain. We render this
model more versatile by adding degree correction param-
eters, describing the tendency of each node to start new
interactions. We show that in some cases the likelihood of
this model is approximated by a regularized modularity of
a time-aggregated graph. This time-aggregated graph in-
volves a trade-off between new edges and persistent edges.
A continuous relaxation reduces the regularized modularity
maximisation to a normalized spectral clustering.

2.1 Degree-corrected temporal network model
A degree-corrected temporal stochastic block model with N
nodes, K blocks and T snapshots is a probability distribu-
tion

P(A |σ, F, θ) =
∏

1≤i<j≤N

F θiθj
σiσj

(A1
ij , . . . , A

T
ij) (2.1)

of a symmetric adjacency tensor A ∈ {0, 1}N×N×T with
zero diagonal entries, defined by At

ij = 1 if nodes i and
j interact at time t, and At

ij = 0 otherwise. Moreover,
σ = (σ1, . . . , σN ) is a community assignment with σi ∈
{1, . . . ,K} indicating the community of node i, F =

(
F ηθ
kℓ

)
is a collection of probability distributions on {0, 1}T indexed
by community labels k, ℓ ∈ [K] = {1, . . . ,K} and numbers
η, θ ≥ 0 (representing the degree correction parameters),
and θ = (θ1, . . . , θN ) is a vector of node-specific degree
correction parameters θi ≥ 0.

In the following, we will restrict ourselves to homo-
geneous models with Markov edge dynamics, in which
the nodes’ static community memberships are sampled in-
dependently and uniformly at random from [K], and for
x ∈ {0, 1}T we have

F θiθj
σiσj

(x) =

{
µ
θiθj
x1

∏T
t=2 P

θiθj
xt−1,xt if σi = σj ,

ν
θiθj
x1

∏T
t=2 Q

θiθj
xt−1,xt otherwise,

(2.2)

with initial distributions

µθiθj =

(
1− θiθjµ1

θiθjµ1

)
,

νθiθj =

(
1− θiθjν1
θiθjν1

)
,

(2.3)

and transition probability matrices

P θiθj =

(
1− θiθjP01 θiθjP01

1− P11 P11

)
,

Qθiθj =

(
1− θiθjQ01 θiθjQ01

1−Q11 Q11

)
.

(2.4)

The parameters θi account for the fact that some nodes
might be more inclined than others to start new connec-
tions, similarly to the degree-corrected block model of [18].
More precisely, θiθjµ1 (resp., θiθjν1) is the probability of
an interaction between nodes i and j belonging to the
same (resp., different) cluster at the first snapshots. The first
snapshot is therefore an instance of the degree-corrected
block model of [18]. Moreover, the interaction between i
and j is a Markov chain whose transition matrix is P θiθj

(resp., Qθiθj ) if the two nodes belong to the same (resp.,
different) cluster. To obtain tractable analytical expressions
for the model likelihood, we do not add degree correction
parameters in front of P11 and Q11. This corresponds to
assuming that popularity does not affect the duration of
interactions. Moreover, we assume that maxi,j{θiθjδ} ≤ 1,
where δ = max{µ1, ν1, P01, Q01}. Finally, we normalise the
degree correction parameters so that 1

|Ck|
∑

i∈Ck
θi = 1 for

all i, where Ck = {i : σ(i) = k} indicates community k.

2.2 Maximum likelihood estimator

The following proposition presents a concise formulation of
the model likelihood, with proof presented in Appendix A.1.

Proposition 2.1. A maximum likelihood estimator for the
Markov block model defined by (2.1)–(2.2) is any community
assignment σ ∈ [K]N that maximises

∑
i,j

σi=σj

{
A1

ij

(
ρ
θiθj
1 − ρ

θiθj
0

)
+ ρ

θiθj
0 +

(
A1

ij −AT
ij

)
ℓ
θiθj
10

}

+
∑
i,j

σi=σj

T∑
t=2

{(
ℓ
θiθj
01 + ℓ

θiθj
10

)(
At

ij −At−1
ij At

ij

)

+ ℓ
θiθj
11 At−1

ij At
ij − log

Q
θiθj
00

P
θiθj
00

}

where ρθiθja = log µ
θiθj
a

ν
θiθj
a

and ℓ
θiθj
ab = log

P
θiθj
ab

Q
θiθj
ab

− log
P

θiθj
00

Q
θiθj
00

.

The MLE derived in Proposition 2.1 is more complex
than summing all snapshots independently. In particular,
the terms At−1

ij At
ij account for persistent edges over two

consecutive snapshots. Denote by At
pers = At−1 ⊙ At the

entrywise product of adjacency matrices At−1 and At. Then
At

pers is the adjacency matrix of the graph containing the
persistent edges between t−1 and t, and At

new = At−At
pers

corresponds to the graph containing the edges freshly appear-
ing at time t.
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Assuming that the number of snapshots T is large, we
can ignore the boundary terms, and the MLE expressed in
Proposition 2.1 reduces to maximising

T∑
t=2

∑
i,j :

σi=σj

{(
ℓ
θiθj
01 + ℓ

θiθj
10

)(
At

ij −At−1
ij At

ij

)

+ℓ
θiθj
11 At−1

ij At
ij − log

Q
θiθj
00

P
θiθj
00

}
.

By utilising (2.3)–(2.4), we can further simplify it to express
this as a modularity. Recall that given a weighted graph W ,
a partition σ, and a resolution parameter γ, the regularized
modularity is defined as [20], [21]

M (W,σ, γ) =
∑
i,j

δ(σi, σj)

(
Wij − γ

didj
2m

)
,

where di =
∑

j Wij and m =
∑

i di. Hence, suppose that
P θiθj and Qθiθj are nondegenerate, and µθiθj (resp. νθiθj )
is the stationary distribution of P θiθj (resp. Qθiθj ). In a
sparse setting, P01 and Q01 are small, and after a Taylor
expansion (see Section A.2 for detailed derivations) the
previous expression is approximately equal to M(W,σ, γ),
where W is defined by

W =
T∑

t=2

(
αAt

new + βAt
pers

)
, (2.5)

with
α = log

P01

Q01
+ log

1− P11

1−Q11
,

β = log
P11

Q11
,

(2.6)

γ = (P01 −Q01)
α(µ1+(K−1)ν1)+(β−α)(µ1P11+(K−1)ν1Q11)

K .

2.3 Comparison with previous work on static commu-
nities
The correspondence between maximum likelihood estima-
tion and modularity maximisation is known in static block
models [22]. Analogously to the single-layer case, the modu-
larity of a temporal network, with possibly time-dependent
community structure, was previously defined by Mucha et
al. [12] and Pamfil et al. [13] as

T∑
t=1

M(At, σt, γt) +
T∑

t=1

∑
s̸=t

∑
i

ωst
i δ

(
σs
i , σ

t
i

)
(2.7)

where γt is the resolution parameter for layer t, σt
i is the

community membership of node i at time step t, and wst
i

denotes a coupling between time instants s and t. For a static
community structure, the second term in (2.7) is irrelevant.
When the resolution is constant over time, the relevant term
in (2.7) can be written as

T∑
t=1

M(At, σ, γ) = M(Aagg, σ, γ),

where Aagg =
∑T

t=1 A
t is the weighted adjacency matrix

of the time-aggregated data. In contrast, the matrix W in
(2.5) involves a trade-off between new edges and persistent

edges. We notice that W ∝ Aagg only if α = β. This is
the case when freshly appearing and persistent edges are
equally important, and only in this case using the simple
time-aggregated adjacency matrix provides optimal infer-
ence.

2.4 Temporal spectral clustering combining new and
persistent edges
Following our analysis in Section 2.2, the community pre-
diction is given by

σ̂ = argmax
σ∈[K]N

M(W,σ, γ),

where W is defined in Equation (2.5) and γ is a proper
resolution parameter. This optimisation problem is NP-
complete in general [23] but can be approximately solved by
continuous relaxation. We can choose the relaxation so that
the optimisation problem reduces to normalized spectral
clustering on the weighted graph W (we refer to [24] and
to Section A.2 for detailed computations). We note that in
order to compute the normalized Laplacian of W , we should
assume α, β ≥ 0, which we observe in all our experiments.

Since α and β are likely to be unknown in practical
situations, we propose to estimate them as follows. For
a, b ∈ {0, 1}, the empirical probability of observing a transi-
tion a→ b in the interaction pattern between nodes i and j
is

nab(i, j)

na(i, j)
,

where nab(i, j) =
∑T

t=2 1(A
t−1
ij = a, At

ij = b) is the
observed number of transitions a → b between i and j,
and na(i, j) =

∑
b nab(i, j). Thus, if σ̂ is an estimator of the

community labelling, then

P̂ab =
1

|{i, j : σ̂i = σ̂j}|
∑

i,j : σ̂i=σ̂j

nab(i, j)

na(i, j)
,

Q̂ab =
1

|{i, j : σ̂i ̸= σ̂j}|
∑

i,j : σ̂i ̸=σ̂j

nab(i, j)

na(i, j)
,

(2.8)

are estimators of P and Q from which one can compute esti-
mates of α and β. These observations motivate the following
algorithm. We start with α = β = 1, and we let σ̂ be the
output of spectral clustering on W =

∑T
t=2 αA

t
new+βAt

pers.
Using σ̂ we compute estimates P̂ and Q̂, which lead to a
new value of α and β. We iterate the procedure until some
convergence criterion is met. This leads to Algorithm 1.

2.5 Extension to higher-order Markov chains
Interactions with a longer memory can be modelledusing
higher-order Markov chains [25], [26]. We demonstrate be-
low how Algorithm 1 can be extended to a long-memory
context. Suppose the interactions are Markov chains of order
M . Namely, the intra- and inter-block interaction connectiv-
ity functions, defined previously by (2.2), are now given by

Fσiσj
(x) =


µ(x1:M )

T∏
t=M+1

P (xt | st) if σi = σj ,

ν(x1:M )
T∏

t=M+1
Q (xt | st) otherwise,
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Algorithm 1: Spectral clustering for temporal net-
works with Markov edge dynamics and static node
labelling.

Input: Adjacency matrices A1, . . . , AT , number of
clusters K , stopping parameter ϵ

Output: Predicted membership matrix σ̂ ∈ [K]N

Process:
Let α = β = 1 and stopping = False;
while stopping = False do

• Let W =
T∑

t=2
αAt

new + βAt
pers where

At
new=At−At−1⊙At and At

pers=At−1⊙At;
• σ̂ ← SPECTRAL CLUSTERING (W,K);
• Let P̂ and Q̂ as defined by (2.8);
• Let α̃ = log P̂01

Q̂01
+ log P̂10

Q̂10
and β̃ = log P̂11

Q̂11
.

if ∥(α, β)− (α̃, β̃)∥2 < ϵ then
stopping = True;

else
α = α̃ and β = β̃.

Return: σ̂

where st = (xt−M , · · · , xt−1). Following a similar reason-
ing, we propose to apply spectral clustering on the weighted
matrix W defined by

Wij =
T∑

t=M+1

∑
s∈{0,1}M

b∈{0,1}

αsb 1
(
A

(t−M):(t−1)
ij = s,At

ij = b
)
,

with αsb=log P (b | s)
Q(b | s) and A

(t−M):(t−1)
ij =(At−M

ij , · · · , At−1
ij ).

Moreover, an estimator of P is given by

P̂ (b | s) =
1

|{i, j : σ̂i = σ̂j}|
∑
i,j

σ̂i=σ̂j

nsb(i, j)

ns(i, j)
,

Q̂(b | s) =
1

|{i, j : σ̂i ̸= σ̂j}|
∑
i,j

σ̂i ̸=σ̂j

nsb(i, j)

ns(i, j)
,

(2.9)

where nsb(i, j) =
∑T

t=M 1
(
A

(t−M):(t−1)
ij = s,At

ij = b
)

and
ns(i, j) =

∑
b∈{0,1} nsb(i, j). This can be formalised as

Algorithm 2.

3 EVOLVING COMMUNITIES

In this section, we consider a population of N nodes par-
titioned into K time-evolving communities. At time t, we
denote by σt

i ∈ [K] the community membership of node i
and by At

ij ∈ {0, 1} the observed interaction between nodes
i and j. We investigate methods of recovering the commu-
nity structure, denoted by

(
σ1, · · · , σT

)
where σt ∈ [K]N ,

from an observed adjacency tensor A =
(
At

ij

)
.

3.1 Model description

Similarly to several articles on dynamic SBM [7], [8], [16], we
first assume that each node community labels σ1:T

i ∈ [K]T

Algorithm 2: Spectral clustering for temporal net-
works with higher-order Markov edge dynamics.

Input: Adjacency matrices A1, . . . , AT , number of
clusters K , Markov order M , stopping
parameter ϵ

Output: Predicted membership matrix σ̂ ∈ [K]N

Process:
Let α = (αsb)s∈{0,1}M ,b∈{0,1} and initialise αsb = 1
for all s, b. Let stopping = False;
while stopping = False do

• Wij :=
T∑

t=2

∑
s,b

αsb1
(
A

(t−M):(t−1)
ij = s,At

ij = b
)

;

• σ̂ ← SPECTRAL CLUSTERING (W,K);
• Let P̂ and Q̂ as defined by (2.9);
• Let α̃sb := log P̂

Q̂
(b | s) for all s ∈ {0, 1}M and

b ∈ {0, 1}.

if ∥α− α̃∥2 < ϵ then
stopping = True;

else
α = α̃.

Return: σ̂

is a Markov chain of length T with initial probability α and
transition probability matrix π. Hence,

P
(
σ1:T

)
=

N∏
i=1

α
(
σ1
i

) T∏
t=2

π
(
σt−1
i , σt

i

)
. (3.1)

For simplicity, we will assume that the initial labels and the
transitions are uniform, that is

α =
1

K
1K and π = ηIK +

1− η

K
1K1TK .

In other words, a node keeps its label with probability
η ∈ [0, 1] and chooses a label uniformly at random with
probability 1− η.

We then assume that the interaction between two nodes i
and j is a Markov chain depending only on the community
labelling1. Hence,

P(A |σ) =
∏

1≤i<j≤N

P
(
A1

ij |σ1
i , σ

1
j

) T∏
t=2

P
(
At

ij |At−1
ij , σt

i , σ
t
j

)
.

We consider a homogeneous model in which the initial
distribution is given by

P
(
A1

ij |σ1
i , σ

1
j

)
=

{
µ(A1

ij), if σ1
i = σ1

j ,

ν(A1
ij), otherwise,

and the transition probabilities are

P
(
At

ij = b |At−1
ij = a, σt

i , σ
t
j

)
=

{
Pab if σt

i = σt
j ,

Qab otherwise.

1. For simplicity, in this section we do not add any degree correction
parameters.
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3.2 Community inference

The inference of the temporal community structure is com-
plicated because interactions observed in a distant past are
less informative for inferring the current community mem-
bership of a node. To mitigate the bias caused by outdated
information, we propose a two-stage online algorithm:

1) at time t = 1, we use a static community detection
algorithm to output σ̂1, a prediction of the initial node
labels σ1 from the observation of the first snapshot A1;

2) at time t > 1, we will use the observation of the
first t snapshots A1, . . . , At as well as the previous
predictions σ̂1, · · · σ̂t−1. This will be treated as a semi-
supervised learning problem, where the prediction
σ̂t−1 is seen as a noisy oracle for the true node la-
belling σt.

From the Markov structure, the prediction at time t > 1
reduces to predicting σt using only the network at time
t − 1 and t and the previous prediction σ̂t−1. This can
be interpreted as a noisy semi-supervised problem, where
the previous prediction σ̂t−1 plays the role of an oracle
for the node labels at time t. This oracle is biased, as it
bears two kinds of potential mistakes. Firstly, σ̂t−1 is not
necessarily exactly equal to the perfect community labelling
σt−1. Furthermore, since the node labels vary through time,
σt−1 does not precisely correspond to σt. Assume that the
network data A and community labels σ come from the
model described in Section 3.1. We denote the oracle bias at
time t by

ρt = P
(
σt
i ̸= σ̂t−1

i

)
, (3.2)

and we will make a simplifying assumption that it does not
depend on node i.

The MAP estimator for the online learning problem is

σ̂t = argmax
z∈[K]N

P
(
z |At, At−1, σ̂t−1

)
= argmax

z∈[K]N
P
(
At |At−1, z, σ̂t−1

)
P
(
z |At−1, σ̂t−1

)
by Bayes’ rule.

Since P
(
At |At−1, z, σ̂t−1

)
= P

(
At |At−1, z

)
, then by

proceeding similarly to the proof of Proposition 2.1, the log-
likelihood term log P

(
At |At−1, z

)
can be rewritten as

1

2

∑
i,j

zi=zj

{
ℓ
θiθj
01

(
At

ij −At−1
ij At

ij

)
+ ℓ

θiθj
10

(
At−1

ij −At−1
ij At

ij

)

+ℓ
θiθj
11 At−1

ij At
ij − log

Q
θiθj
00

P
θiθj
00

}
.

The oracle information is equal to

P
(
z | σ̂t−1

)
=

N∏
i=1

P
(
σ̂t−1
i | zi

)
P
(
σ̂t−1
i

) P (zi)

=

(
ρt

1− ρt

)|{i∈[N ] : zi ̸=σ̂t−1
i }|

(1− ρt)
N
K−N ,

where we used the uniformity of the node labels and where
ρt is defined in (3.2).

The MAP estimator at time t is therefore any labelling σ
that maximises∑

i,j
zi=zj

{
ℓ
θiθj
01

(
At

ij −At−1
ij At

ij

)
+ ℓ

θiθj
10

(
At−1

ij −At−1
ij At

ij

)

+ℓ
θiθj
11 At−1

ij At
ij − log

Q
θiθj
00

P
θiθj
00

}
+ 2λt

N∑
i=1

1 (zi = si) ,

where ℓ
θiθj
ab = log

P
θiθj
ab

P
θiθj
ab

− log
P

θiθj
00

P
θiθj
00

and λt = log 1−ρt

ρt
, and

where si = σt−1
i .

3.3 Continuous relaxation

Denote by At
pers = At−1 ⊙ At the persistent edges, by

Anew = At − At
pers the freshly formed edges, and by

Aold = At−1 − Apers the disappearing edges between time
t− 1 and t. Denote by Σ ∈ {0, 1}N×K (resp., by S) the one-
hot encoding of σ ∈ [K]N (resp., of s). In other words, we
have Σik = 1(σi = k) and Sij = 1(si = k). We observe
that

∑
i 1(σi = si) = ΣTS. Thus, using a Taylor expansion

as in Section 2.1, we can approximate the MAP estimator at
time t as the maximisation over Σ ∈ {0, 1}N×K of

Tr
(
ΣT

(
W t − τ1N1TN

)
Σ+ 2λΣTS

)
, (3.3)

where W t = α01A
t
new + α10A

t
old + α11A

t
pers with αab =

log Pab

Qab
and τ = P01 −Q01 is a resolution parameter, and Σ

verifies the constraints
∑

k∈[K] Σik = 1 for all i ∈ [N ].
We perform a continuous relaxation (mirroring what is

commonly done for spectral methods [24]) and solve instead

argmax
X∈RN×K

N∑
i=1

κiX
2
ik=

N∑
i=1

κi

Tr
(
XTWτX + 2λXTS

)
, (3.4)

where κ = (κ1, . . . , κN ) is a vector of positive entries.
In what follows, we choose to constrain X to verify(
XTDX

)
kk

= 1 by taking κi = di

2m
2. This leads to the

optimisation problem

argmax
X∈RN×K

∀k∈[K] : (XTDX)kk=1

Tr
(
XTWτX + 2λXTS

)
. (3.5)

In order to solve (3.5), let us introduce the eigenvalue
decomposition of −D−1/2WτD

−1/2, written as

−D−1/2WτD
−1/2 = Q∆QT , (3.6)

where ∆ = diag(δ1, . . . , δN ) with δ1 ≤ · · · ≤ δN and
QTQ = IN .

The following Proposition, whose proof is deferred to
Appendix B, gives an expression for the solution of (3.5).

2. Another possible relaxation is to constraint X such that XTDX =
IK , so that D−1/2X belongs to a Stiefel manifold. The minimisation
problem obtained with this (stronger) constraint is similar to an un-
balanced orthogonal Procrustes problem, for which necessary or sufficient
conditions for the local and/or global minimiser exist, but no closed-
form expression of the solution is available [27], [28].
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Proposition 3.1. Let B = λQTD−1/2S where Q is defined
in (3.6). The solution X̂ = (X̂·1, · · · , X̂·K) of the optimisation
problem (3.5) satisfies for all k ∈ [K]

(−Wτ − γ∗
kD) X̂·k = λS·k, (3.7)

where γ∗
k is the smallest solution of

N∑
i=1

(
Bik

δi − γ

)2

− 1 = 0. (3.8)

The expression of the solution of (3.5) given in Proposi-
tion 3.1 leads to Algorithm 3.

Algorithm 3: Online clustering of time-varying
communities.

Input: Observed graph sequence
A1:T =

(
A1, . . . , AT

)
; number of

communities K ; static graph clustering
algorithm algo; parameters α01, α10, α11 and
λ1, . . . , λT

Output: Node labelling σ̂1:T

Initialise: Compute σ̂1 ← algo
(
A1

)
.

1 for t = 2, . . . , T do
2 Compute W = α01A

t
new + α10A

t
old + α11A

t
pers.

3 For all k ∈ [K], let γ∗
k be the smallest solution of

Equation (3.8).
4 Compute X̂·k as the solution of Equation (3.7).
5 Let σ̂t

i = K-means(X̂i·) for all i ∈ [N ].

3.4 Comparison with previous work on evolving com-
munities

It is often natural to assume that the pairwise interactions
evolve over time, but the temporal changes in connectivity
patterns occur gradually. Therefore, many works in the lit-
erature propose dynamic extensions of the stochastic block
model, where both community memberships and connec-
tions can vary through time.

To model a smooth evolution of communities across
time, the majority of works describe changes in the mem-
berships via a Markov evolution. Moreover, previous works
almost always suppose that the interaction at time t depends
only on the block structure at time t. For example, Yang
et al. [29] assume that the community membership of each
node forms a Markov chain independent of the member-
ships of other nodes. Xu and Hero [30] extend this model
and allow for both the community memberships and con-
nectivity parameters to vary. This renders the model uniden-
tifiable. This issue was raised by Matias and Miele [8],
who established identifiability conditions for models with
both community memberships and connectivity parameters
varying over time. Pensky and Zhang [31] assume that at
most s nodes can switch their memberships between two
consecutive time instants, and that the connection probabil-
ities vary smoothly over time.

All of the aforementioned works suppose that the inter-
actions at a given snapshot t are conditionally independent
of all past snapshots given the current community member-
ships. Namely, it is assumed that the temporal interactions

are resampled at each time instant (i.e., the interaction
At

ij between nodes i and j at time j depends only on
the community labels σt

i and σt
j at time t, and not on

the previous interactions At−1
ij between i and j). Barucca

et al. [16] propose a model similar to ours but assume
that the edge persistence is the same for intra- and inter-
community interactions. More precisely, using the notations
of Section 3.1, [16] supposes that

P
(
At

ij = b |At−1
ij = a, σt

i , σ
t
j

)
=

{
Pab, if σt

i = σt
j ,

Qab, otherwise,

where the transition matrices P and Q can be written as

P = ξ1T2 12 + (1− ξ)P̃ ,

Q = ξ1T2 12 + (1− ξ)Q̃,
(3.9)

and where P̃ and Q̃ are given transition matrices and
ξ ∈ [0, 1] is an edge persistence parameter. Such a decom-
position implicitly supposes that the Markov chain is pos-
itively autocorrelated3 (Cov(X0, X1) ≥ 0) for a stationary
Markov chain (Xt)). While positive autocorrelation can be
a reasonable assumption for social networks, it might not
be suitable for other situations (for example, in biological
networks spiking phenomena might occur).

To generalise the model even further, in addition to
time-varying interactions and community memberships, the
Markov transition matrices describing the persistence of
edges may also evolve over time. An instance of such a
model was discussed by Xu [32], by assuming a Gaussian
evolution for log-transformed transition matrices, and ex-
perimenting with an extended Kalman filter for inferring
community memberships and model parameters. Further
exploration of such more general Markov models appears
an interesting direction for future research.

4 NUMERICAL EXPERIMENTS

4.1 Static communities

We compare the performances of temporal spectral clus-
tering data sets with static communities. In this section,
improved time-aggregation refers to Algorithm 1, while simple
time-aggregation refers to spectral clustering on the time-
aggregated graph

∑
t A

t.
In our experiments, we set ϵ = 0.1 and a maximum

number of iterations = 10. We observed empirically that
Algorithm 1 frequently required less than 5 iterations to con-
verge. The only cases when Algorithm 1 did not stop within
10 iterations were the cases when the time-aggregated
graphs were too sparse (this may happen when the time
horizon T is not enough long).

4.1.1 Synthetic data sets
We plot in Figure 1 the averaged adjusted rand-index (ARI)
obtained on 25 realisations of stochastic block models with

3. This comes from the following Lemma. A 2-by-2 binary stochastic

matrix P ̸= I2 admits a representation P = ξI2+(1−ξ)

(
π0 π1

π1 π0

)
for

some ξ ∈ [0, 1] and some probability distribution π = (π0, π1) iff both
eigenvalues of P are non-negative iff Cov(X0, X1) ≥ 0 for a stationary
Markov chain (X0, X1, · · · ) on {0, 1} with transition matrix P .
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Markov edge dynamics for various degree-correction pa-
rameters θ. More precisely:

• θi = 1 for all i ∈ [N ] in Figure 1a;
• in Figure 1b, the θi’s are generated θi according to
|N (0, σ2)| + 1 − σ

√
2/π where |N (0, σ2)| denotes

the absolute value of a normal random variable with
mean 0 and variance σ2, where σ = 0.25;

• in Figure 1c, the θi’s are generated from a Pareto
distribution with density function f(x) = ama

xa+1 1(x ≥
m) with a = 2.5 and m = 2/3.

Note that the sampling of the θi’s enforces Eθi = 1 in all
settings.

While the simple time aggregation works well, it is striking
to notice that Algorithm 1 provides better results. For ex-
ample, when the degree-corrected parameters are generated
according to a Gaussian distribution, Figure 1b shows that
the simple time-aggregation requires around 100 snapshots
to get a perfect ARI, while Algorithm 1 only requires 30
snapshots.

4.1.2 Real world data

We investigate data sets of face-to-face contacts between in-
dividuals, for which ground-truth communities are known.
The data sets are available on SocioPatterns website4. Three
data sets were collected in a high school [33], [34], one in
a primary school [35] and two in a work environment [36],
[37]. For each data set, nodes correspond to individuals (stu-
dents or workers), time-varying network edges correspond
to close proximity interactions, measured by wearable sen-
sors able to sense proximity, and communities correspond
to school classes or work departments. The data set dimen-
sions are given in Table 1.

Data set name N T K

High school 2011 118 5391 3
High school 2012 180 11273 5
High school 2013 327 7375 9
Workplace 2013 88 7027 4
Workplace 2015 161 17508 5
Primary school 232 3100 10

TABLE 1
Dimensions of six data sets from SocioPattern library.

We plot in Figure 2 the accuracy obtained by Algorithm 1
on each of these data sets, compared to the spectral clus-
tering done on the time aggregated graph

∑T
t=1 A

t. We
observe a clear improvement in the accuracy of most data
sets. This highlights the importance of weighting differently
the persistent edges and the freshly appearing edges. Ad-
ditionally, we would like to emphasise that Algorithm 1
estimates the values of α and β using the network data.
Only two data sets (workplace 2015 and primary school)
show no improvements. Nonetheless, we demonstrate in
Figure 3 that we can improve the accuracy of these two data
sets by taking into account higher-order correlations.

4. http://www.sociopatterns.org/

4.2 Evolving communities
In this section, we evaluate the performance of Algorithm 3
on synthetic data sets.

We compare in Figure 4 the averaged accuracy obtained
by Algorithm 3 with Algorithm 1 (spectral clustering with
persistent edges) and an algorithm performing spectral
clustering on each snapshot individually. In particular, we
observe that when η = 1 (i.e., static community structure),
Algorithm 1 is extremely efficient, as expected. Since it
takes into account all previous snapshots, it in particular
outperforms Algorithm 3. On the contrary, when η ̸= 1, the
lagging problem arises, and Algorithm 1 ends up with a
very poor accuracy after a few snapshots. On the contrary,
Algorithm 3 keeps a very high accuracy over all snapshots.

In Figure 4, we choose λt to be constant with respect
to time and equal to 0.5, while Figure 5 explores other
constant possible values of λ. We observe that when λ is
in the range [0.1, 1], the algorithm provides good accuracy.
On the other hand, when λ becomes too large, Algorithm 3
gives too much importance to the oracle, and the accuracy
becomes worse. In practice, the choice of the parameters
λt could be optimised from the data, e.g. based on η or
on the transition matrices P and Q. Moreover, it would be
intuitive to increase λt with t, as the confidence in the oracle
is higher when more temporal data is available. We leave
these research ideas for future work.

Finally, we compare in Figure 6 the performance of
Algorithm 3 with the VEM algorithm of [8]5. The VEM
algorithm of [8] is tailored for models with time-varying
communities but where the interactions are resampled at
every time step. Thus, we observe that its performances are
excellent when the links are resampled at every time step
(Figure 6(a)), but the performance decreases when the time-
persistency increases (Figures 6(b) and 6(c)). In contrast,
Algorithm 3 performs better than VEM when the correlation
in the edge dynamics is strong.

5 CONCLUSION

In this article, we derived spectral algorithms for clustering
temporal networks, both in the case of static and evolving
communities. For static communities, the Markov chain
assumption for the edge formation implies a difference in
the information carried by persistent and newly formed
edges. This difference is lost by performing a simple time
aggregation that indifferently sums all the interactions. In-
stead, we proposed to weigh differently the persistent and
the newly formed edges. In the evolving community setting,
we highlighted the possibility of using a past prediction as a
semi-supervised oracle for the prediction at a current snap-
shot. Overall, the derived spectral algorithms for clustering
temporal networks provide a valuable tool for inferring
community structure in complex systems, and the proposed
weighing methods for persistent and newly formed edges
offer a refined approach to analyse dynamic networks.

One direction for future research is online/adaptive tun-
ing of hyperparameters such as estimates of the bias of the
noisy semi-supervised oracle.

5. To implement this VEM algorithm, we used the R package dynsbm
provided by the authors of [8] and at http://lbbe.univ-lyon1.fr/
dynsbm.
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Fig. 1. Accuracy of Algorithm 1 with α = 1 and different β, on a degree-corrected temporal SBM with 300 nodes and K = 3 blocks (with a uniform
prior), and a stationary Markov edge evolution µ1 = 0.02, ν1 = 0.01, P11 = 0.7 and Q11 = 0.2, for a different generation of the degree correction
parameters θ. The results are averaged over 25 synthetic graphs, and error bars show the standard error.
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Fig. 2. Comparison of accuracy obtained on the SocioPatterns data sets by using spectral clustering with simple time-aggregation versus improved
time-aggregation (Algorithm 1).
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Fig. 3. Comparison of the ARI obtained on workplace 2015 and primary school data sets by using temporal spectral clustering with higher order
correlations (Algorithm 2).
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(b) η = 0.85

Fig. 4. ARI obtained by various clustering algorithms on time-varying Markov Block Models with 300 nodes and K = 2 blocks (with a uniform prior),
and a stationary Markov edge evolution µ1 = 0.1, ν1 = 0.05, P11 = 0.6 and Q11 = 0.2. The results are averaged over 25 synthetic graphs, and
error bars show the standard error. We ran Algorithm 3 (online-ssl) with parameters α01 = 1, α10 = 0 and α11 = 2), and we compare with weighted
SC (Algorithm 1 with α = 1, β = 2) and an algorithm performing spectral clustering on each snapshot individually (individual SC).
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Fig. 5. ARI of Algorithm 3 with α01 = 1, α10 = 0 and α11 = 2 for various
choices of λ. Simulations are performed on time-varying Markov Block
Models with n = 200, K = 2, µ1 = 0.2, ν1 = 0.1, P11 = 0.7, Q11 = 0.3
and η = 0.8. The results are averaged over 25 synthetic graphs, and
error bars show the standard error.

Several approximations and relaxations were made in
deriving a weighted similarity matrix used for spectral clus-
tering and for tuning its weights. Analysing the accuracy
of these approximations, and proving that the proposed
algorithms terminate in a finite time remain topics for future
research.
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APPENDIX A
PROOFS FOR SECTION 2
A.1 MLE computation

Proof of Proposition 2.1. By the temporal Markov property,
the log-likelihood of the model can be written as

log P(A |σ, θ) = log P(A1 |σ, θ)+
∑T

t=2 log P(A
t |At−1, σ, θ).

By denoting ρ
θiθj
a = log µ

θiθj
a

ν
θiθj
a

, we find that

log P(A1 |σ, θ)

=
1

2

∑
i,j

∑
a

δ(A1
ij , a)

(
δ(σi, σj)ρ

θiθj
a + log νθiθja

)
=

1

2

∑
i,j

δ(σi, σj)
∑
a

δ(A1
ij , a)ρ

θiθj
a + c1(A),

where c1(A) = 1
2

∑
i,j

∑
a δ(A

1
ij , a) log ν

θiθj
a does not de-

pend on the community structure. Similarly, by denoting

R
θiθj
ab = log

P
θiθj
ab

Q
θiθj
ab

, we find that

log P(At |At−1, σ, θ)

=
1

2

∑
i,j

∑
a,b

δ(At−1
ij , a)δ(At

ij , b)
(
δ(σi, σj)R

θiθj
ab + logQ

θiθj
ab

)
=

1

2

∑
i,j

δ(σi, σj)
∑
a,b

δ(At−1
ij , a)δ(At

ij , b)R
θiθj
ab + ct(A),

where ct(A) = 1
2

∑
i,j

∑
a,b δ(A

t−1
ij , a)δ(At

ij , b) logQ
θiθj
ab

does not depend on the community structure. Simple com-
putations show that∑

a

δ(A1
ij , a)ρ

θiθj
a = A1

ij(ρ
θiθj
1 − ρ

θiθj
0 ) + ρ

θiθj
0

and ∑
a,b

δ(At−1
ij , a)δ(At

ij , b)R
θiθj
ab

= R
θiθj
00 +At−1

ij

(
R

θiθj
10 −R

θiθj
00

)
+At

ij

(
R

θiθj
01 −R

θiθj
00

)
+At−1

ij At
ij

(
R

θiθj
11 −R

θiθj
01 −R

θiθj
10 +R

θiθj
00

)
= R

θiθj
00 +At−1

ij ℓ
θiθj
10 +At

ijℓ
θiθj
01

+At−1
ij At

ij

(
ℓ
θiθj
11 − ℓ

θiθj
01 − ℓ

θiθj
10

)
.
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Fig. 6. Comparison of ARIs obtained by Algorithm 3 and the VEM algo-
rithm of [8] on time-varying Markov Block Models with 250 nodes and
K = 2 blocks (with a uniform prior), η = 0.75, and a stationary Markov
edge evolution µ1 = 0.2, ν1 = 0.1, Q11 = 0.1 and for various P11.
Figure 6(a) is a setting where links are re-sampled at each time step,
while Figures 6(b) and 6(c) models medium and high intra-community
link persistency. The results are averaged over 25 synthetic graphs, and
error bars show the standard error.

By collecting the above observations, we now find that
log P(A |σ, θ) equals

1

2

∑
i,j

σi=σj

{
A1

ij(ρ
θiθj
1 − ρ

θiθj
0 ) + ρ

θiθj
0 + (A1

ij −AT
ij)ℓ

θiθj
10

}

+
1

2

∑
i,j

σi=σj

T∑
t=2

{
(ℓ

θiθj
01 + ℓ

θiθj
10 )

(
At

ij −At−1
ij At

ij

)

+ℓ
θiθj
11 At−1

ij At
ij − log

Q
θiθj
00

P
θiθj
00

}
+ c(A),

where c(A) =
∑

t ct(A) does not depend on σ. Hence the
claim follows.

A.2 Sparse MLE and modularity
Recall the structural assumptions (2.3)–(2.4) about the de-
gree correction parameters. Because P01, Q01 = o(1), a first-

order Taylor expansion yields

log
1− θiθjQ01

1− θiθjP01
= θiθj (P01 −Q01) + o (P01 +Q01) ,

as well as ℓ
θiθj
01 ≈ log P01

Q01
, ℓθiθj10 ≈ log 1−P11

1−Q11
and ℓ

θiθj
11 ≈

log P11

Q11
. Using these approximations in the MLE expression

leads to the maximisation of
T∑

t=2

∑
i,j : σi=σj

(
ãtij − θiθj (P01 −Q01)

)
, (A.1)

where ãtij = α (At
new)ij + β

(
At

pers

)
ij

. Since µ and ν are
stationary distributions,

E
(
At

new

)
ij

=

{
θiθjµ1(1− P11) if σi = σj ,

θiθjν1(1−Q11) otherwise,

E
(
At

pers

)
ij

=

{
θiθjµ1P11 if σi = σj ,

θiθjν1Q11 otherwise.

Therefore, using Wij =
∑T

t=2 ãij , we have

EWij =

{
(T − 1)θiθjµ1 (α(1− P11) + βP11) if σi = σj

(T − 1)θiθjν1 (α(1−Q11) + βQ11) otherwise.

Since the community labelling is sampled
uniformly at random, using the normaliza-
tion for the θi’s, we obtain d̄i = (T −
1)θiN

µ1(α(1−P11)+βP11)+(K−1)ν1(α(1−Q11)+βQ11)
K , together

with m̄ = (T−1)N2

2
µ1(α(1−P11)+βP11)+(K−1)ν1(α(1−Q11)+βQ11)

K .
Hence, we observe that

θiθj(P01 −Q01) = γ
d̄id̄j
2m̄

,

where γ = (P01 − Q01)(T −
1)µ1(α(1−P11)+βP11)+(K−1)ν1(α(1−Q11)+βQ11)

K . We end
the proof by employing equation (A.1).

A.3 Modularity and spectral clustering

The regularized modularity of a partition σ ∈ [K]N of the
graph A is defined as

M (A, σ, γ) =
∑
i,j

δ (σi, σj)

(
Aij − γ

didj
2m

)
,

where d = A1n is a vector of degrees and γ is a resolution
parameter. The above equation can be rewritten as

M (A, σ, γ) = Tr Z̃T

(
A− γ

ddT

2m

)
Z̃,

where Z̃ ∈ {0, 1}N×K is the membership matrix associated
with the vector σ, that is Z̃ik = 1 for k = σi, and Z̃ik = 0
otherwise. As maximising the modularity over σ ∈ [K]N

is in general NP-complete [23], it is convenient to perform
a continuous relaxation. Following [24], we transform the
problem into

X̂ = argmax
X∈RN×K

XTDX=IK

TrXT

(
A− γ

ddT

2m

)
X. (A.2)
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The predicted membership matrix Ẑ is then recovered by
performing an approximated solution to the following k-
means problem (see [38])(

Ẑ, Ŷ
)

= argmin
Z∈ZN,K ,Y ∈RK×K

∥∥∥ZY − X̂
∥∥∥
F
. (A.3)

The Lagrangian associated to the optimisation prob-
lem (A.2) is

TrXT

(
A− γ

ddT

2m

)
X − Tr

(
ΛT

(
XTX − IK

))
,

where Λ ∈ RK×K is a symmetric matrix of Lagrangian
multipliers. Up to a change of basis, we can assume that Λ is
diagonal. The stationarity condition for the solution of (A.2)
becomes(

A− γ
ddT

2m

)
X = DXΛ and XTDX = IK ,

which is a generalized eigenvalue problem: the columns
of X are the generalized eigenvectors, and the diagonal
elements of Λ are the eigenvalues. In particular, since the
constant vector 1n satisfies (A−γ ddT

2m )1n = (1−γ)D1n, we
conclude that the eigenvalues should be larger than 1 − γ
for the partition to be meaningful.

Multiplying the first equation by 1Tn leads to (1 −
γ)dTX = dTXΛ, and therefore dTX = 0 (using the
previous remark on Λ). The system then simplifies in

AX = DXΛ and XTDX = IK .

Defining a re-scaled vector U = D−1/2X shows that U
satisfies D−1/2AD−1/2U = UΛ and UTU = IK . Thus, the
columns of U are eigenvectors of D−1/2AD−1/2 associated
with the K largest eigenvalues (or equivalently, the eigen-
vectors of L = IN − D−1/2AD−1/2 associated to the K
smallest eigenvalues).

APPENDIX B
PROOFS FOR SECTION 3
Proof of Proposition 3.1. By letting Γ ∈ RK×K be the diag-
onal matrix whose diagonal entries Γkk are the Lagrange
multipliers associated with the constraints (XTDX)kk = 1,
the Lagrangian of the relaxed optimisation problem (3.5) is

Tr
(
XTWτX + 2λSTX

)
+Tr

((
XTDX − Ik

)
Γ
)
.

This leads to the constrained linear system{
WτX +DXΓ = −λS,
(XTDX)kk = 1,

(B.1)

whose unknowns are Γ and X .
Firstly, we note that if (Γ1, X1) and (Γ2, X2) are so-

lutions of the system (B.1), then (see Lemma B.1 for the
computations)

C
(
X1

)
− C

(
X2

)
= Tr

[
(Γ1 − Γ2)(X1 −X2)TD(X1 −X2)

]
=

∑
k∈[K]

(
Γ2
kk − Γ1

kk

) ∥∥X1
·k −X2

·k
∥∥
D

where C(x) = Tr
(
XTWτX + 2λSTX

)
is the cost function

maximised in (3.5) and ∥x∥D = xTDx. Hence, among the

solution pairs (Γ, X) of the system (B.1), the solution of the
minimisation problem (3.5) is the vector X associated with
the diagonal matrix Γ whose entries are the smallest.

Secondly, the eigenvalue decomposition of
−D−1/2WτD

−1/2 reads as

−D−1/2WτD
−1/2 = Q∆QT ,

where ∆ = diag(δ1, . . . , δN ) with δ1 ≤ · · · ≤ δN and
QTQ = IN . Therefore, after the change of variables U =
QTD1/2X and B = λQTD−1/2S, the system (B.1) is trans-
formed to {

∆U = UΓ +B,
(UTU)kk = 1 ∀k ∈ [K].

Thus, the solution X̂ = (X̂·1, · · · , X̂·K) of the optimisation
problem (3.5) satisfies

(−Wτ − γ∗
kD) X̂·k = λS·k,

where for all k ∈ [K], γ∗
k is the smallest solution of the

explicit secular equation [39]

N∑
i=1

(
Bik

δi − γ

)2

− 1 = 0.

Lemma B.1. If (Γ1, X1) and (Γ2, X2) are solutions of the
system (B.1), then

C
(
X1

)
− C

(
X2

)
=

∑
k∈[K]

(
Γ2
kk − Γ1

kk

) ∥∥X1
·k −X2

·k
∥∥
D
,

where C(X) = Tr
(
XTWτX + 2λSTX

)
and ∥x∥D = xTDx.

Proof. Because (Γ1, X1) and (Γ2, X2) are solutions of (B.1),
it holds that

−WτX
1 −DX1Γ1 = λS,

−WτX
2 −DX2Γ2 = λS.

(B.2)

Using the definition of C(X) and the fact that (Γ1, X1) is
solution of (B.1), we notice that

C(X1) = Tr
(
−(X1)TDX1Γ1 + λ(X1)TS

)
,

and similarly for C(X2). Moreover, multiplying the first
equation of (B.2) (resp., the second equation) by (X2)T

(resp., by (X1)T ) gives

λ(X2)TS = −(X2)TWτX
1 − (X2)TDX1Γ1,

λ(X1)TS = −(X1)TWτX
2 − (X1)TDX2Γ2.

Because (X1)TWτX
2 = (X2)TWτX

1, we have

Tr
(
λST

(
X1 −X2

))
= Tr

(
−(X1)TDX2Γ2 + (X2)TDX1Γ1

)
.

Therefore,

C(X1)− C(X2) = Tr
(
−(X1)TDX1Γ1 + (X2)

TDX1Γ1
)

− Tr
(
−(X2)TDX2Γ2 + (X1)TDX2Γ2

)
.

(B.3)
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Moreover, because Γ1 and D are symmetric, we have

Tr
(
−(X1)TDX1Γ1 + (X2)

TDX1Γ1
)

=
∑

k∈[K]

Γ1
kk

((
−(X1)TDX1

)
kk

+
(
(X2)

TDX1
)
kk

)
=

∑
k∈[K]

Γ1
kk

(
−(X1

·k)
TDX1

·k + (X2
·k)

TDX1
·k

)
.

The constraints XT
·kDX·k = 1 verified by both X1 and X2

leads to

− (X1
·k)

TDX1
·k + (X2

·k)
TDX1

·k

= − (X1
·k)

TDX1
·k + (X2

·k)
TDX2

·k
2

+ (X2
·k)

TDX1
·k

= − ∥X1
·k −X2

·k∥D,

where the last equality uses (X2
·k)

TDX1
·k = (X1

·k)
TDX2

·k.
This ensures that

Tr
(
−(X1)TDX1Γ1 + (X2)

TDX1Γ1
)

= −
∑

k∈[K]

Γ1
kk∥X1

·k −X2
·k∥D. (B.4)

Similarly, we can establish that

Tr
(
−(X2)TDX2Γ2 + (X1)TDX2Γ2

)
= −

∑
k∈[K]

Γ2
kk∥X1

·k −X2
·k∥D. (B.5)

We finish the proof by combining (B.4) and (B.5) with (B.3).
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