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Afterwards I went to school, studied at the university, and,
do you know, the more I learned, the more thoroughly

I understood that I was ridiculous.

— F. Dostoyevsky, The dream of a ridiculous man

From the English translation by Constance Garnett of the short story Сон смешного человека. Original text:
Потом я учился в школе, потом в университете и что же — чем больше я учился, тем больше я
научался тому, что я смешон.
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Abstract

Modern optimization is tasked with handling applications of increasingly large scale, chiefly
due to the massive amounts of widely available data and the ever-growing reach of Machine
Learning. Consequently, this area of research is under steady pressure to develop scalable and
provably convergent methods capable of handling hefty, high-dimensional problems. The present
dissertation contributes to recent efforts in this direction by proposing optimization algorithms
with improved scalability. Concretely,

1. We develop three novel Frank-Wolfe-type methods for minimizing convex stochastic ob-
jectives subject to stochastic linear inclusion constraints. The key feature of our algorithms
is that they process only a subset of the constraints per iteration, thus gaining an edge over
methods that require full passes through the data for large-scale problems.

2. We generalize Frank-Wolfe-type methods to a class of composite non-differentiable objec-
tives — a setting in which the classical Frank-Wolfe algorithm is known not to converge.
We circumvent the difficulties related to non-differentiability by leveraging the problem
structure and a modified linear minimization oracle of the constraint set, thus attaining
convergence rates akin to the smooth case.

3. We propose an adaptive primal-dual algorithm for solving structured convex-concave
saddle point problems, whose empirical convergence is improved as a result of tailoring
the stepsizes to the local problem geometry. Importantly, our method achieves adaptivity
“for-free” by using readily available quantities such as past gradients, and without relying
on more expensive linesearch subroutines.

Our methods are theoretically sound and empirically grounded, as they are each accompanied by
rigorous convergence guarantees and experiments showcasing their performance against relevant
baselines. In a nutshell, this dissertation provides new algorithmic approaches and points of
trade-off on the road toward scalably solving large optimization problems.

Key words: constrained optimization, scalability, convex optimization, Frank-Wolfe, Conditional
Gradient methods, adaptive algorithms, primal-dual methods
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Résumé

L’optimisation moderne est chargée de résoudre des problèmes de plus en plus vastes, princi-
palement en raison de quantités massives de données disponibles et de la portée croissante de
l’apprentissage automatique. Ce domaine de recherche est donc sous pression constante pour
développer des méthodes disposant de garanties de convergence qui sont capables de gérer des
problèmes volumineux de haute dimensionnalité. La présente thèse contribue aux efforts récents
dans cette direction en proposant des algorithmes d’optimisation plus aptes à s’adapter aux
grandes échelles. Concrètement,

1. Nous développons trois nouvelles méthodes de type Frank-Wolfe pour minimiser les objec-
tifs stochastiques convexes soumis à des contraintes d’inclusion linéaires stochastiques. La
propriété clé de nos algorithmes est qu’ils ne traitent qu’un sous-ensemble des contraintes
par itération, ce qui, pour les problèmes à grande échelle, leur donne un avantage par
rapport aux méthodes nécessitant des lectures complètes des données.

2. Nous généralisons les méthodes de type Frank-Wolfe à une classe d’objectifs composites
non différentiables — un cadre dans lequel l’algorithme classique de Frank-Wolfe ne
converge pas. Nous contournons cette difficulté en exploitant la structure du problème et
en modifiant l’oracle de minimisation linéaire sur l’ensemble de contraintes, atteignant
ainsi des taux de convergence similaires au cas continûment différentiable.

3. Nous proposons un algorithme primal-dual adaptatif pour les problèmes composites
convexes dont la vitesse de convergence empirique est améliorée grâce à l’adaptation
des pas à la géométrie locale du problème. Crucialement, notre méthode obtient cette
adaptabilité “gratuitement” en utilisant des quantités facilement disponibles telles que les
gradients passés, sans avoir à recourir à des sous-routines de calcul de pas plus coûteuses.

Nos méthodes sont théoriquement bien fondées et ont des performances empiriques solides,
car elles sont chacune accompagnées de garanties rigoureuses de convergence et d’expériences
montrant leurs performances par rapport aux bases pertinentes. En un mot, cette thèse propose de
nouvelles approches algorithmiques sans négliger les compromis nécessaires pour la résolution
efficace des problèmes d’optimisation à grande échelle.

The author thanks Leello Dadi for translating the abstract into French.
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Mots clefs : optimisation avec contraintes, grandes échelles, optimisation convexe, Frank-Wolfe,
méthodes de gradient conditionnel, algorithmes adaptatifs, méthodes primales-duales
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1 Introduction

The present dissertation centres around the design and analysis of first-order optimization algo-
rithms for constrained problems, with an emphasis on scalability. Let us break this statement
down into digestible bits and show how their coalescence is motivated.

1.1 Broad context of the work

Optimization is an area of applied mathematics concerned with solving problems of the form

x⋆ ∈ argmin
x∈X

f (x), (OPT)

for some objective f and a constraint set X of acceptable values for the parameter x (also called
a decision variable).

The ability to tackle this rather plain-looking problem is crucial for innovation, with applications
ranging from drug discovery and production [214, 151] to the design of VLSI circuits, rail
vehicles, transonic aircraft and spacecraft components [124, 202, 6, 104, 121, 107]. Moreover,
it enables us to tame the inherent complexity of delivering and regulating such innovation at
a global scale — optimization is central to reliable electricity distribution [156, 34, 106, 13],
reservoir systems planning and operation [129, 189], (real-time) routing and scheduling of rail
and airline traffic [57, 36, 35, 32, 10, 51, 17] and managing commodity supply chains [79, 150,
125]. Put simply, many of the developed world’s privileges heavily rest on the tractability of a
handful of instances of (OPT).

Unsurprisingly, closed-form solutions to problem (OPT) rarely exist, and they must, consequently,
be approximated. This is the overarching goal of mathematical optimization. Specifically, the
field focuses on the development and analysis of algorithms for computing such approximations,
and the rigorous study of functions f and sets X that allow for tractable formulations.

This area of research is in no way recent, with its origins dating back to the works of Newton,
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Euler and Lagrange in the 17th and 18th centuries. However, modern optimization was chiefly
shaped over the past eighty years, following the development of theory and algorithms for Linear
Programming in the 1940’s and 1950’s [119, 171, 61, 59, 87] 1. Thereafter, owing to the steady
increase in computing power and the growing number of applications2, optimization made the
profound and fast-paced progress that is now documented in textbooks [193, 194, 16, 161, 140,
186, 174, 23, 168]. While most of the aforementioned applications still drive research in the field,
their influence has somewhat been overtaken by that of a completely different and more recent
beast: Machine Learning.

As this thesis is being written, the Machine Learning (ML) revolution is in full swing. The field’s
emergence is inextricably linked to Turing’s formulation in the 1950’s of the quest for “thinking
machines” [216], which spurred research on endowing computers with the ability to “learn” and
“reason” like humans. The discipline encompassing such investigations is nowadays referred to as
Artificial Intelligence3 (AI). While rule-based methods dominated the early days of AI, they soon
reached their limits and propelled the field towards statistics-driven approaches, whereby rules are
inferred from data. The set of techniques — theoretical or empirical — that enable the inference
of patterns from data, along with their real-world embodiment as computational inference systems,
is collectively named ML. More concretely, ML is an engineering discipline [116] built upon the
scientific pillars of mathematics, statistics and computer science and aimed at creating systems
that make accurate predictions based on data.

Over the past 20 years, the field has grown to achieve some astonishing victories: defeating the
standing world champions of Jeopardy and Go [82, 206]; predicting protein structure to near
experimental accuracy [201, 118]; synthesizing high-quality images from text prompts [188,
195]; autonomous driving [8]; and simulating realistic human conversation [176, 175, 26]. With
less fanfare, however, ML pervades our daily lives from menial activities such as shopping on
Amazon [209] to life-altering ones like credit scoring [66] or delivering healthcare [172].

Broadly speaking, the type of questions addressed by ML are of the form

What are the best parameters of a computational inference system, as a function
of a given task and a training data set, such that it is able to make accurate
predictions for yet unseen data?

(Q)

The word “best” announces that the formal counterpart of (Q) is a problem of type (OPT) —

1Both Dantzig’s Simplex algorithm and von Neumann’s result on duality are dated to 1947, despite the cited
publications marking later years. The latter first circulated as a personal note, now part of von Neumann’s collected
works (cited). The former was developed during Dantzig’s time at the Pentagon and, while apparently communicated
to the scientific community [64, Chapter 3], its first published form was several years delayed according to Dantzig
and Cottle [64, p. 20]. More details can be found in the vivid historical notes of Dantzig [63, 62, 60], Polyak [185],
Giorgi and Kjeldsen [95], and Singh and Eisner [208].

2A sizeable collection of additional examples is provided in the NEOS case studies at https://neos-guide.
org/case-studies.

3The terms Artificial Intelligence and Machine Learning are often used interchangeably, leading to an unfortunate
dilution of the meaning of both. A critical discussion on the need to meaningfully differentiate the two is initiated
by Jordan [116] and nuanced by subsequent commentaries written in response (linked within the article).
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in other words, to answer the former one must solve an instance of the latter (with very few
exceptions). Mathematical optimization consequently emerges as the principal bearer of ML’s
computational burden and hence, is pressed to solve the challenges brought by its widespread
application.

The typical learning problems nowadays are of large scale — an extreme example of this is GPT-3,
with its 175 billion parameters and 45 TB of training data [25]. Even the more modest tasks such
as classifying images from the ImageNet dataset [198] involve models with tens of millions of
parameters trained on more than 100 GB worth of images [225]. Owing to its rapid expansion, ML
is placing steady pressure on the field of optimization to develop algorithms that are fast, robust
and able to handle large and high-dimensional learning problems. The need for such algorithms
is additionally driven by the advent of smart devices (e.g., smartphones or IoT devices), which
raise the challenge of fine-tuning models with scarce processing resources. Last but not least,
efficient optimization algorithms are important for accelerating the hypothesis-experiment-results
cycle in the study of critical system properties such as fairness [11], generalization ability [114,
236] or security and privacy [177]. These considerations motivate our focus on optimization
algorithms with an emphasis on scalability.

1.2 Scalable algorithms

One of the early studies aiming to formalize the notion of scalability for generic computing
systems describes it as “[. . .] the ability of a system to accommodate an increasing number of
elements or objects, to process growing volumes of work gracefully, and/or to be susceptible to
enlargement” [19]. Conversely, an unscalable system “[. . .] adds to labour costs or harms the
quality of service”.

In our case, the aforementioned “system” is understood to be an optimization algorithm. In this
context, the “elements or objects” are the amount of data and the dimensionality of a problem.
The ability to “process growing volumes of work gracefully” refers to a minimal or acceptable
degradation of convergence speed as a function of growing data or problem dimensionality.
Finally, we also include the plug-and-play character of a method as a marker of scalability, since
it reduces the “labour cost” of hyperparameter tuning and often enables improved convergence
by adapting to problem parameters on-the-fly.

In the sequel, we use terms such as cheap or expensive and their semantic relatives to denote the
computational cost of an algorithmic operation or design decision. The dimensions of time and
memory relative to which these coarse quantifiers are used will be evident from the context.
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1.3 Problem structure, scalability and the optimization literature

Most of the results in this dissertation address convex instances of (OPT). This structural
assumption is highly desirable due to its robustness and interpretability, and conveniently emerges
in a broad range of scenarios. Firstly, several widely-used learning formulations are convex:
linear regression and logistic regression as part of the more general class of maximum likelihood
estimation with log-concave distributions [23, Section 7.1.1], classification with Support Vector
Machines [217, 200], and Exact Matrix Completion [33]. Secondly, a number of important
NP-hard combinatorial problems such as Max-Cut, Sparsest Cut and K-means clustering are
well approximated via their convex relaxation as Semidefinite Programs (SDPs) [96, 7, 182].
Thirdly, convenient reformulations of neural-network training can surprisingly unearth convexity
in a different space than that of the parameters, where the problem is non-convex [110, 184,
49]. Finally, convexity appears as a “hidden” property of some generic classes of non-convex
problems (notably Quadratically Constrained Quadratic Programs), where the latter admit convex
reformulations with a shared optimal value [15, 226]. The remainder of this chapter assumes
convexity unless explicitly stated otherwise.

1.3.1 Optimization algorithms for constrained problems

An optimization algorithm is an iterative computational procedure that, at each step, updates
its current approximation of the solution to (OPT) in response to “oracle feedback”. The oracle
is a “source of information about the problem to be solved” [162] — or, more concretely, a
computational primitive providing (local) knowledge about the function f or set X at every
iteration. Oracle queries abstract away logical units of computation that are indispensable to but
otherwise unrevealing of the optimization mechanism itself, and are often the more expensive
part of an iteration. Together with the rate of convergence, the cost of accessing a method’s
associated oracles determines its efficiency for a given class of problems and is thus a primary
consideration in choosing a scalable algorithm for (OPT)4.

First, function-related oracles reveal the structure of f at a queried point x ∈X . More concretely,
for a d-dimensional problem X ⊆ Rd and a smooth f : X → R, zeroth-order oracles return
the value of f (x); first-order oracles additionally provide the gradient ∇ f (x) ∈ Rd ; second-
order oracles reveal the Hessian ∇2 f (x) ∈ Rd×d , and so on (the order designation extends to
the associated class of methods). Depending on the application, only a subset of them may
be accessible — for example, derivatives are not available if f is given as a simulation or is
otherwise a black box. Conversely, when f has an analytic expression, first and higher-order
oracles are accessible (though not necessarily affordable to compute). Since the latter case occurs
in a large portion of modern applications, we use it as the overarching assumption throughout
this dissertation.

4A detailed treatment of black-box optimization complexity for predefined classes of problems is given in the
seminal work of Nemirovsky and Yudin [162].
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Unfortunately, merely being able to jot down the expression of higher-order derivatives does
not readily translate into a practical advantage despite the additional information they provide.
The high dimensionality of modern optimization problems renders even second-order methods
prohibitively expensive. Take, for example, the task of learning a (poorly-performing5) linear
classifier for ImageNet pictures cropped down to 64×64 RGB pixels. The problem dimension
is d = 12,288, implying that the Hessian matrix in Rd×d requires 1.2 GB of memory (in double
precision float). The same problem using more reasonably sized images of 512× 512 RGB
pixels would need 4.9×103 GB of memory. In comparison, a first-order method requires a mere
9.8×10−5 and 6×10−3 GB to keep the gradient in memory for the two examples, respectively.
Additionally, the time to compute these two oracles differs by an order of magnitude in favour of
the latter — O (

d 2
)

versus O (d). This scenario is prototypical and motivates the overwhelming
preference for first-order methods in handling large and high-dimensional problems. Other more
refined considerations include that higher-order methods’ faster convergence (and consequently
better accuracy) is no longer required in modern settings due to the inherently noisy data — we
refer the reader to the reviews of Bottou, Curtis, and Nocedal [22] and Cevher, Becker, and
Schmidt [39], and references therein. In short, first-order oracles are the scalable choice for
modern applications, which motivates our focus on first-order optimization algorithms moving
forward.

When it comes to enforcing constraints, scalability becomes a more delicate matter since it
heavily depends on the structure of X . Broadly speaking, constrained optimization methods can
be split into projection-free and projection-based approaches. The literature in this area is vast,
and we have no intent of covering it here — relevant references are given within the respective
chapters. For now, we solely aim to describe the trade-offs underlying this dichotomy. The
remainder of this section assumes that we seek to approximate (OPT) up to an ϵ-additive error in
functional residual and, for simplicity, that f is L-smooth.

The classical algorithm for solving constrained problems over closed convex sets X is the
Projected Gradient Descent (PGD) [97, 140] — a natural extension of the unconstrained Gradient
Descent method, proposed by Cauchy in 1847 [139]. At every iteration k > 0, PGD refines
the current approximation xk by moving in the direction of the negative gradient −∇ f (xk ) and
projecting the result back onto the constraint set X . Mathematically, this writes as

xk+1 := projX
(

xk −γk∇ f (xk )
)

, (1.1)

where γk > 0 denotes the stepsize or update magnitude. The operator projX is defined as

projX (x) := argmin
y∈X

{
1

2

∥∥x − y
∥∥2

}
, (1.2)

5In the absence of a literature reference, we report results from researcher Andrej Karpathy’s blog for using a
linear classifier on the ImageNet dataset: 3.0% top-1 accuracy (and about 10% top-5). Even considering tuning issues,
these scores greatly contrast the higher-than-70% accuracy of various neural networks on the same task [203]. Link:
https://karpathy.github.io/2015/03/30/breaking-convnets.
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where ∥·∥ denotes the Euclidean norm over Rd , and is often referred to as the Projection Oracle
(PO). Expression (1.2) is nothing but the definition of the more general proximal operator [157,
158] particularized to the indicator function of set X .

PGD transfers all the desirable properties of Gradient Descent to the constrained setting: a O (
ϵ−1

)
convergence for smooth and convex functions, and a linear O (

κ log(ϵ−1)
)

convergence under
strong convexity, where κ is the condition number; the possibility of acceleration to O (

ϵ−1/2
)

and
O (p

κ log(ϵ−1)
)

for the same settings, respectively, under a slightly modified iteration [163, 215,
14]; and a straightforward extension to non-differentiable and Lipschitz continuous problems
via subgradients, with a convergence of O (

ϵ−2
)

and O (
ϵ−1

)
for the convex and strongly-convex

cases, respectively [204, 133]. Moreover, the PO-based approach readily generalizes to problems
with more complex structures (e.g., when X is the intersection of two closed and convex sets) by
leveraging duality and operator splitting schemes with similar convergence guarantees [42, 55,
222, 44].

However, this extensive list of benefits is conditioned on a computationally affordable PO for
the considered application. A closer look at the PGD iteration reveals that it can be equivalently
rewritten as the minimization of a quadratic form over X

xk+1 := argmin
x∈X

{
〈∇ f (xk ), x〉+ 1

2γk
∥x −xk ∥2

}
, (1.3)

where we used definition (1.2) and developed the square. In this light, it is apparent that closed-
form or efficient solutions cannot be expected for arbitrary X . Examples of sets with efficient
projections include box constraints, ℓp balls for p ∈ {1,2,∞}, and some polytopes such as the
standard simplex. In contrast, projections are expensive for a number of important cases like
nuclear norm balls and the positive semidefinite cone, both of which require O (

d 3
)

computations
for the SVD and eigenvalue decompositions, respectively; arbitrary ℓp balls for p ∉ {1,2,∞},
which rely on an iterative procedure with O (

dϵ−2
)

convergence; or the flow, Birkhoff and
matching polytopes which have a high polynomial dependence on d , are solved by slow iterative
methods, or no algorithm is known, respectively. Further details, complexities and references are
given by Combettes and Pokutta [53]. To summarize, the fast convergence and high versatility
of PO-based methods make them the scalable choice as long as X allows efficient projections,
which only happens for a handful of simple constraint sets.

The cases in which projections are difficult gave rise to the line of research studying projection-
free methods. The representative algorithm for this class is the Frank-Wolfe (FW) or Conditional
Gradient6 (CG) method proposed by Frank and Wolfe [84]. This method removes the quadratic
term in (1.3) and solves the resulting simpler linear minimization subproblem over X to determine
the update direction. At iteration k > 0, FW proceeds as

xk+1 ∈ argmin
x∈xk+γk (X−xk )

{ 〈∇ f (xk ), x〉 }
, (1.4)

6This naming version is due to Levitin and Polyak [140].
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where γk ∈ (0,1] denotes the stepsize. The method is inherently feasible due to its convex
combination-based update rule (provided that x0 ∈X ). Different from PGD, the FW algorithm
requires X to be additionally bounded, lest the minimizer in (1.4) take infinite values.

Much as before, FW’s tractability hinges on the efficiency of the set’s Linear Minimization Oracle
(LMO), defined as

lmoX (x) := argmin
y∈X

{ 〈y , x〉 }
. (1.5)

Subproblem (1.5) is notably efficient in the aforementioned cases for which projections are costly,
thus making FW the algorithm of choice in applications such as video co-localization [117],
training structural SVMs [132], optimal transport [180] or low-rank matrix retrieval [86], to name
a few. A detailed complexity comparison of PO and LMO oracles for a collection of practically
relevant sets X is given by Combettes and Pokutta [53] and Braun et al. [24]. Additional benefits
of FW are that the method is invariant to affine transformations of X and provides solutions with
a sparse representation [112]. The latter property makes this algorithm particularly well-suited
for large-scale optimization and accounts for the increased research interest it has drawn over the
past decade.

However, the vanilla FW algorithm given by (1.4) comes with its share of shortcomings. Different
from PGD, its O (

ϵ−1
)

convergence upper bound is met by an information-theoretic lower bound of
the same order for problems constrained to generic sets X [134]. In addition, a direct extension to
non-smooth settings via subgradients is not possible, as shown by the counterexample of Nesterov
[165]. While faster O (

ϵ−1/2
)

rates for the vanilla FW method are achieved in restricted settings of
f and X [91, 123], in general, improved convergence ensues from the development of algorithmic
variants. Such variants rely on either additional problem structure, stronger LMO-like oracles, or
an altogether modified iteration. For example, linear convergence is achieved for smooth and
strongly convex objectives over polytopes by the Away-Step FW, which maintains an active set
of relevant vertices [131]. In the same setting, local acceleration is established by coupling the
Away-Step FW with an accelerated, projection-based algorithm [71, 37]. For generic sets X and
smooth f , fast convergence relative to the number of gradient evaluations, but not LMO calls,
is attained via Nesterov’s accelerated scheme with inexact projections computed by FW [135].
Finally, non-differentiable objectives are tackled by using the method of Lan and Zhou [135] in
conjunction with smoothing [211]. Numerous other variants exist and are thoroughly discussed
in the monograph of Braun et al. [24]. In short, the cheap LMO and sparsity-inducing properties
of FW methods make them the scalable option when dealing with complex constraints and large
problems, though at the cost of a (usually) slower convergence rate.

We conclude this section by reiterating an earlier point: choosing the first-order constrained
optimization algorithm to solve problems of type (OPT) heavily depends on the problem structure,
and there is no one-size-fits-all approach with regard to scalability.
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1.3.2 Opportunities for improving scalability

Beyond the choice of optimization paradigm embodied in the function oracle and feasibility-
enforcing mechanism, scalability becomes a matter of identifying adequate and provable (as far
as this thesis is concerned) trade-offs. Typical examples include reducing both iteration time and
memory requirements by using a subset of the data for computing the gradient, at the expense
of a slower convergence in terms of the target accuracy ϵ; using stepsize-setting subroutines
for faster empirical convergence at the cost of additional (though generally cheap) computation
per iteration; or improving convergence rates as a function of ϵ, by solving more expensive
subproblems every iteration.

Concretely, given a first-order algorithm for constrained optimization, one may seek scalability
opportunities through the following (non-exhaustive) set of targeted questions.

1) Is processing the entire dataset at every iteration essential for convergence? While
gradients are scalable oracles with respect to the problem dimension (as per Section 1.3.1),
their computation may still pose a burden when the number of data points is large7. This
question motivates the development of stochastic or randomized algorithmic variants which
process only a subset of data points per iteration, and which are indispensable to ML due
to their cheap iterations (e.g., Stochastic Gradient Descent [191]).

2) Can the algorithm be parallelized? Can it be distributed? Such questions drive the efforts
to optimally leverage the computing infrastructure for solving large and high-dimensional
problems. Time and space requirements are alleviated by spreading the computation over
multiple workers running in parallel.

3) Is the stepsize adequate with respect to a given metric (e.g., local function curvature,
progress per iteration or sequence of iterations)? An algorithm’s stepsize commonly
depends on global constants related to the structure of f (e.g., the global smoothness
constant). Such stepsizes may lead to slow convergence by being overly conservative, since
these constants are usually not representative of f ’s local geometry. This question underlies
the development of stepsize schedules that speed up empirical convergence, oftentimes
through adaptivity, and have the added benefit of reducing the labour cost of stepsize tuning
for every instance of (OPT).

4) Does the algorithm adapt to varying structural properties of the problem and converge
optimally, without modifications? Related to point 3), this question motivates the study
of algorithmic “universality” as an avenue for enhancing the plug-and-play nature of
optimization algorithms [120, and references therein].

5) Does the algorithm optimally leverage the structure of a given problem? This question
underlies the development of methods tailored to practically relevant subclasses of problems

7Typical objectives in ML are represented as the sum of individual errors incurred by the model on each data point.
As such, computing the gradient requires a full pass over the dataset.
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with a prescribed form (e.g., additive composition). Such approaches eschew the lower
bounds for black-box optimization of generic function classes [161] and generally lead to
provably faster convergence rates.

6) Does the entire variable x in (OPT) have to be memorized, or does an approximation of
it suffice? This line of inquiry is especially relevant for matrix optimization problems
with high memory requirements (notably SDPs) and has led to the integration of random-
ized sketching techniques ensuring storage-optimality for a series of methods [235, and
references therein].

The above questions address scalability improvements solely from an algorithmic perspective.
Other avenues towards this goal involve, for example, problem modelling, data processing or
designing novel computing infrastructure. They are, however, outside of the scope of this thesis.

1.4 Contributions and manuscript organization

This dissertation rigorously tackles points 1), 3) and 5) above for a selection of constrained and
(mostly) convex problems. The algorithmic solutions we propose are geared towards enhancing
scalability in the sense discussed in Section 1.2. Our methods are empirically motivated and
theoretically sound, as they are each accompanied by rigorous convergence guarantees.

We further summarize our contributions while deferring the techniques and formalism associated
with each problem to the respective chapters.

1.4.1 Frank-Wolfe-type methods for stochastically constrained stochastic objec-
tives

Our first contribution is to propose three novel Frank-Wolfe-type methods for minimizing convex
stochastic objectives subject to stochastic linear inclusion constraints. The key benefit of our
algorithms is that they consider only a subset of the constraints per iteration, thus gaining an edge
over methods that process them in full at every step.

Specifically, in Chapter 2 we address problems of the form

min
x∈X

Eξ
[

f (x ,ξ)
]

, such that A(ξ)x ∈ b(ξ) almost surely, (1.6)

where f (x ,ξ) : Rd → R are random convex functions with L f -Lipschitz gradient; X ⊆ Rd is a
convex and compact set; A(ξ) is an m ×d matrix-valued random variable; and b(ξ) ∈ Rm is a
closed and convex random set for which we assume that projections are cheap. This template
covers at once finite-sum formulations typical for ML applications and scenarios where the
objective and linear constraints are revealed in an online fashion or are otherwise too large to keep
in memory. For example, instances of (1.6) naturally arise from SDP-relaxations of combinatorial
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problems, whose number of linear constraints is polynomial in the problem dimension d (e.g.,
O (

d 3
)

for the Sparsest Cut problem [7]).

Existing approaches either address this template through projection-based methods which scale
poorly when X is the semidefinite cone [81, 179] or process the entire set of linear constraints at
every iteration with Frank-Wolfe-type methods [232, 143, 101].

We propose two Frank-Wolfe-type methods for tackling problem (1.6) in full generality. Our
algorithms handle the constraints stochastically, and rely on smoothing and variance reduction
used in conjunction with LMO steps. The first method proposes a simple scheme using gradient
estimators in the spirit of Mokhtari, Hassani, and Karbasi [155], uses fixed-size minibatches
and has O (

ϵ−6
)

convergence8 in terms of both the number of LMO computations and that of
gradient oracles. Our second method reduces the number of required LMOs to O (

ϵ−2
)

and that
of stochastic gradient computations to O (

ϵ−4
)

by using minibatches of increasing size and the
SPIDER gradient estimator [80]. The difference in convergence rates emphasizes the trade-off
between the computational cost per iteration and the number of iterations required to reach the
constrained optimum.

Further, we propose a third method for the finite-sum restriction of objective (1.6). This algorithm
leverages a SAG-like gradient estimator [199] to remove the aforementioned increasing batch
size requirement, achieving O (

ϵ−2
)

complexity in terms of both the number stochastic gradients
and that of LMOs. The trade-off, this time, rests in requiring additional memory (linear in the
number of constraints).

We provide numerical experiments that illustrate the practical performance of all our methods
against relevant baselines.

In this instance, scalability is improved through stochasticity, which allows for cheaper iterations
in terms of both time and memory compared to prior work.

1.4.2 A Frank-Wolfe generalization for composite non-differentiable objectives

Our second contribution is to generalize Frank-Wolfe-type methods to a class of non-differentiable
objectives — a setting in which the classical Frank-Wolfe algorithm is known not to con-
verge [165].

Specifically, in Chapter 3 we address problems of the form

min
x∈X

F ( f (x), x), (1.7)

where X ∈ Rd is a convex and compact set, F : Rn ×X → R is a convex, subhomogenous but
possibly non-differentiable function and f :X →Rn is a smooth mapping satisfying a bounded

8The method performs much faster than its worst case bound in practice, closer to O
(
ϵ−2)

.
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curvature condition à la Jaggi [112]. We further assume that projections onto X are costly.
This template importantly covers max-type minimization problems, with applications such as
multi-objective optimization [153, Chapter 3.1] and constrained ℓ∞ regression.

Existing approaches either tackle (1.7) as a black-box, thus being subject to the O (
ϵ−2

)
lower

bounds prescribed for this class of objectives [211, 68, 128]; leverage problem structure in
conjunction with projections, which may be expensive [77]; or otherwise study this problem in
a similar setting to ours, but under more restrictive assumptions on f and without concern for
scalability [73].

We propose generalizations of the basic FW method (1.4) and the Conditional Gradient Sliding
(CGS) algorithm [135], which rely on a modified LMO and eschew the O (

ϵ−2
)

lower bounds
by leveraging the problem’s structure. Concretely, we handle the objective’s smooth and non-
differentiable components separately, linearizing only the former. The resulting generalized
LMO can be efficiently computed in several practical applications, notably including max-type
minimization problems. We provide the basic version of our method with an affine-invariant
analysis and prove global convergence rates of O (

ϵ−1
)

and Õ (
ϵ−2

)
for convex and non-convex9

objectives, respectively. Furthermore, we accelerate our basic method using the CGS framework
in the convex case, thus reducing the number of Jacobian computations required to reach ϵ

accuracy to O (
ϵ−1/2

)
. Finally, we report numerical experiments supporting our theoretical

results.

In this instance, we enhance scalability by leveraging the problem structure within the algorithm
and achieve provably faster convergence than prior work. We additionally propose a generalized
LMO which may be more efficient than projections for some applications.

1.4.3 An adaptive, linesearch-free primal-dual algorithm

Our final contribution is to propose an adaptive primal-dual algorithm for structured composite
problems, whose stepsize attunes to the local function curvature without relying on subroutines
or unknown quantities.

Specifically, in Chapter 4, we address convex-concave saddle point problems of the form

min
x∈Rd

max
y∈Rm

〈Ax , y〉+ f (x)− g∗(y), (1.8)

where f : Rd → R is convex, differentiable and has a locally Lipschitz-continuous gradient;
g∗ : Rm → R is the Fenchel dual of a convex and lower-semicontinuous function g , which we
assume to be proximal-friendly; and A : Rd → Rm is a linear mapping. This formulation is
equivalent via duality to

min
x∈Rd

f (x)+ g (Ax),

9The non-convex rate is attained on a non-standard metric. Relevant details are deferred to Chapter 3.
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Chapter 1 Introduction

which encompasses the constrained setting whenever g is the indicator function of a closed and
convex set. This class of problems has a broad range of applications in fields such as signal
processing, machine learning, inverse problems, telecommunications and many others [127].

Existing approaches either address the more general variational inequality formulation [146],
thus failing to leverage the problem structure at the expense of slower convergence; rely on fixed
stepsizes depending on global smoothness constants [55, 222, 144, 47, 75], which may lead to
overly conservative iterate updates; or otherwise rely on linesearch to achieve adaptivity, at the
expense of additional iterations spent in subroutines [149].

We propose an adaptive variant of the Condat-Vũ algorithm [55, 222] which, at each iteration,
updates the stepsize according to the local function geometry using readily-available quantities
(∥A∥ and recent gradients of f ). In doing so, we remove the need for more costly linesearch
subroutines. The method alternates between gradient steps in the primal space and proximal
steps in the dual space, achieving an O (

ϵ−1
)

ergodic convergence under the mild assumption of
local smoothness of f . Furthermore, we prove that our algorithm converges linearly when f is
additionally locally strongly convex and A has full row rank. We provide numerical experiments
to illustrate the practical performance of our method against relevant baselines.

In this instance, scalability is improved via stepsize adaptivity, which allows for faster empirical
convergence compared to fixed-stepsize methods. Moreover, our manner of ensuring adaptivity
eschews linesearch by relying on readily available quantities instead, thus being more efficient
than existing approaches.

1.5 Preliminaries and notation

This section collects the mathematical concepts and notation used throughout the dissertation.
Problem-specific conventions will be introduced in the respective chapters.

Vector related notation. We use bold lowercase letters to denote vectors and differentiate them
from scalar values. We denote by 111d and 000d the all-ones and all-zeros vectors of dimension
d , respectively. We use ei to denote the i th vector of the canonical basis in the appropriate
dimension. Unless stated otherwise, we use ∥·∥ to express the Euclidean norm and 〈·, ·〉 to denote
the corresponding inner product.

Matrix related notation. We use bold capital letters to denote matrices and linear operators.
We use I to denote the identity matrix of appropriate dimensions depending on the context. We
let 111d×m and 000d×m to be the all-ones and all-zeros matrices of size d ×m, respectively. The
transpose of a matrix A is written as A⊤. We denote by Tr(·) the trace of a matrix; by ∥·∥ its
spectral norm; by ∥·∥∗ its nuclear norm; and by ∥·∥F its Frobenius norm with the associated
Frobenius inner product 〈·, ·〉 defined as 〈A, B〉 := Tr(B⊤A) for appropriately sized matrices A

12



Introduction Chapter 1

and B . We use ⪰ and ≻ to indicate the Löwner order.

Set related notation. The indicator function of a set X is defined by

ιX (x) :=

 0, if x ∈X ,

∞, otherwise.
(1.9)

The distance between a point x ∈Rd and a closed convex set X ⊆Rd is defined as

dist(x ,X ) := inf
y∈X

∥∥ y −x
∥∥ . (1.10)

The corresponding quantity for matrices is defined with respect to the Frobenius norm.

We denote the diameter of a set X as

DX := sup
z ,y∈X

{ ∥∥z − y
∥∥ }

. (1.11)

The corresponding quantity for matrices is defined with respect to the Frobenius norm.

We use the notation ∆n := {λ ∈Rn+ : 〈λ,111n〉 = 1} to denote the standard n-dimensional simplex.
The notation Sd+ defines the cone of symmetric positive-semidefinite matrices in Rd×d . Finally,
we denote by [n] the set of integers {1,2, . . .n}.

Function related notation. For a differentiable function f :Rd →R, we denote by ∇ f :Rd →Rd

its gradient, and for a twice differentiable function, we write its Hessian as ∇2 f :Rd →Rd×d . We
differentiate vector-valued functions from scalar-valued functions by writing the former in bold
letters, e.g., f :Rd →Rm , f := ( f1, f2, . . . fm) with fi :Rd →R. We denote the Jacobian of such
vector-valued functions by ∇ f (x) :=

∑m
i =1 ei∇ fi (x)⊤ ∈ Rm×d .

We use the shorthand l.s.c. to mark the lower semi-continuity of a function f . For non-
differentiable convex functions f : Rd → R, we denote their subdifferential at a point x as
the set

∂ f (x) :=
{

v ∈Rd | f (y) ≥ f (x)+〈v , y −x〉∀y
}

.

We say that a function f :Rd →R is Lipschitz continuous with constant C > 0 if it satisfies

| f (x)− f (y)| ≤C
∥∥x − y

∥∥ , ∀x , y . (1.12)

We say that a function f :Rd →R is L-smooth if it is differentiable and its gradient is Lipschitz

13



Chapter 1 Introduction

continuous with constant L > 0:∥∥∇ f (x)−∇ f (y)
∥∥≤ L

∥∥x − y
∥∥ , ∀x , y . (1.13)

For C2 functions condition (1.13) is equivalent to the largest magnitude eigenvalue being bounded.
Furthermore, f is locally smooth if ∇ f is Lipschitz continuous on any compact subset C: ∀C ⊂
Rd , ∃LC ∈ (0,∞) such that ∥∇ f (x)−∇ f (y)∥ ≤ LC∥x − y∥,∀x , y ∈ C.

We say that a differentiable function f :Rd →R is µ-strongly convex if

f (y) ≥ f (x)+〈∇ f (x), y −x〉+ µ

2

∥∥x − y
∥∥2 ,∀x , y . (1.14)

Similarly, f is locally strongly convex if it is strongly convex on any compact subset C: ∀C ⊂
X , ∃µC > 0 such that f (y) ≥ f (x)+〈∇ f (x), y −x〉+ µC

2

∥∥x − y
∥∥2 ,∀x , y ∈ C.

The proximal operator of a function f :Rd →R∪ {∞} is given by

prox f (x) := argmin
y

{
f (y)+ 1

2

∥∥x − y
∥∥2

}
. (1.15)

Whenever f is proper, closed and convex, prox f (x) is a singleton, for any x . In the special case
when f ≡ ιX , for a non-empty closed and convex set X , then prox f ≡ projX .

Optimality conditions and notation. Any vector with a star superscript denotes an optimal
point with respect to some minimization problem, usually evident in the context — for example,
x⋆ with respect to problem (OPT). Correspondingly, any function with a star superscript denotes
the relevant function evaluated at one of its optimal points — for example, f ⋆ ≡ f (x⋆).

Unless specified otherwise, we wish to solve problems of type (OPT) up to an ϵ > 0 additive
error with respect to the functional residual. Concretely, we seek approximate solutions x ∈X for
which

f (x)− f ⋆ ≤ ϵ. (1.16)

Whenever our methods are only approximately feasible, we seek a point x which, in addition,
satisfies

dist(x ,X ) ≤ ϵ. (1.17)
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2 Frank-Wolfe-type methods for
stochastically constrained stochastic
objectives
This chapter is based on the published work Vladarean et al. [219], presented at ICML 2020
(Sections 2.1 to 2.5), and Dresdner et al. [74], presented at AISTATS 2022 (Section 2.6). Only
a subset of the latter results are included, based on their relevance to the topic of handling
constraints stochastically.

Co-authors of [219]: Ahmet Alacaoglu, Ya-Ping Hsieh, and Volkan Cevher

Contributions
M.-L. Vladarean — methodology 40%, formal derivations 90%, writing 80%, experi-

ments 100%
A. Alacaoglu — methodology 50%, formal derivations 10%, writing 20%
Y.-P. Hsieh — methodology 5%, writing – review and editing
V. Cevher — methodology 5%, project administration, supervision

Co-authors of [74]: Maria-Luiza Vladarean, Gunnar Rätsch, Francesco Locatello, Volkan
Cevher, and Alp Yurtsever

Contributions
G. Dresdner — methodology 50%, formal derivations 60%, writing 60%, experi-

ments 100%
M.-L. Vladarean — methodology 30%, formal derivations 40%, writing 40%
F. Locatello — methodology 10%, writing – review and editing
G. Rätsch — project administration, supervision
V. Cevher — writing – review and editing, project administration, supervision
A. Yurtsever — methodology 10%, writing – review and editing, supervision
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Chapter 2 Frank-Wolfe-type methods for stochastically constrained stochastic objectives

Summary. In this chapter, we propose three novel Conditional Gradient (or Frank-Wolfe-type)
methods for solving stochastic convex optimization problems with a large number of linear
constraints. Instances of this template naturally arise from SDP-relaxations of combinatorial
problems, which involve a number of constraints polynomial in the problem dimension. The
most important feature of our framework is that only a subset of the constraints is processed at
each iteration, thus gaining a computational advantage over prior works that require full passes.
Our algorithms rely on variance reduction and smoothing used in conjunction with Conditional
Gradient steps, and are accompanied by rigorous convergence guarantees. We provide numerical
experiments that illustrate the practical performance of our methods against relevant baselines.

2.1 Introduction

We study the following optimization template:

min
x∈X

f (x) := E
[

f (x ,ξ)
]

, such that A(ξ)x ∈ b(ξ) almost surely, (2.1)

where f (x ,ξ) :Rd →R are random convex functions with L f -Lipschitz gradient, X is a convex
and compact set of Rd , A(ξ) is an m ×d matrix-valued random variable, and b(ξ) are closed and
convex random sets in Rm for which we assume projections are affordable.

Stochastically constrained convex optimization problems have recently gained interest in the
machine learning community, as they provide a convenient and powerful framework for handling
instances subject to a large, or even infinite number of constraints. For example, convex feasibility
and optimal control problems have variables lying in a possibly infinite intersection of stochastic,
projectable constraint sets, and hence are tackled through this lens by Patrascu and Necoara
[179]. Xu [229] also studies the minimization of a stochastic objective controlled by a very large
number of stochastic functional constraints, with application to stochastic linear programming.
Finally, put forth by Fercoq et al. [81], extensions to situations where the number of constraints is
unknown (e.g. online settings) can be modelled by a template similar to (2.1), thus addressing
important applications such as online portfolio optimization.

In this chapter, we are interested in a class of applications which can benefit from being cast under
template (2.1), namely semidefinite programs (SDPs) with a large number of linear constraints,
such as arise in combinatorial optimization. A prominent example in machine learning is the
k-Means clustering problem, whose SDP relaxation comprises O (

d 2
)

linear constraints where
d is the number of data samples [182]. Maximum a posteriori estimation [108], quadratic
assignment [240, 27], matrix completion [2], k-Nearest Neighbour classification [224], Max
Cut [96] and Sparsest Cut [7] are other relevant SDP instances with linear constraints of order
O (

d 2
)

or O (
d 3

)
. Coupled with large input dimensions, such SDPs become problematic for most

existing methods, due to the high cost of processing the constraints in full during optimization.

In contrast, casting such SDPs into (2.1) suggests a simple solution: treat the linear constraints
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stochastically by only accessing a random subset at each iteration, then solve (2.1) using cheap
gradient methods. However, the bottleneck in executing this idea is that existing methods require
efficient projections onto X , whereas projecting onto the semidefinite cone amounts to full
singular value decompositions — a prohibitively expensive operation even for moderate problem
dimensions. We hence ask:

Does a scalable method exist for solving (2.1) when the set X does not have an
efficient projection oracle?

We resolve the above challenge in the positive. To this end, we borrow tools from the Conditional
Gradient methods (CGMs) [85, 111], which rely on the generally cheaper Linear Minimization
Oracles (LMO), rather than their projection counterparts. In particular, as the Lanczos method
enables an efficient LMO computation for the spectrahedron [5], CGMs have already been
proposed for solving SDPs [111, 92, 232, 143]. However, none of these methods can handle the
constraints stochastically.

In a nutshell, our approach relies on homotopy smoothing of the stochastic constraints in conjunc-
tion with CGM steps and a carefully chosen variance reduction procedure. Our analysis gives
rise to two fully stochastic algorithms for solving problem (2.1) without projections onto X . The
first of the methods, H-SFW1, relies on a single sample (or fixed batch size) for computing the
variance-reduced gradient and converges at a cost of O(ϵ−6) LMO calls and O(ϵ−6) stochastic
first-order oracle (SFO) calls. The second, H-SPIDERFW, uses batches of increasing size under
the SPIDER variance reduction scheme [80] and attains a theoretical complexity of O(ϵ−2) LMO
calls and O(ϵ−4) SFO calls. The difference in convergence rates emphasizes the trade-off between
the computational cost per iteration and the number of iterations required to reach the constrained
optimum.

2.2 Related work

The results presented in this chapter lie at the intersection of several lines of research we now
review.

Proximal methods for almost sure constraints. Problems of similar formulation to (2.1) have
been addressed in prior literature under the assumption of an efficient projection oracle over X .
Patrascu and Necoara [179], Xu [229], and Fercoq et al. [81] solve these problems via stochastic
proximal methods and attain a complexity of O(ϵ−2) SFO calls, which is known to be optimal
even for unconstrained stochastic optimization. In particular, Patrascu and Necoara [179] study
convex constrained optimization, where the constraints are expressed as a (possibly infinite)
intersection of stochastic, closed, convex and projectable sets Xξ. Problem (2.1) can be partly
cast to this template, with A(ξ)x ∈ b(ξ) being the homologues of Xξ. However, our additional set
X does not allow for efficient projections, making this framework inapplicable.
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Xu [229] solves a convex constrained optimization problem over a convex set X , subject to a large
number of convex functional constraints f j , j ∈ [M ]. The functions f j are sampled uniformly at
random during optimization, which corresponds to a finitely sampled instance of problem (2.1)
for affine f j . However, we meet again with the limiting condition that projections onto X are
computationally expensive in our setting.

Finally, Fercoq et al. [81] study convex problems subject to a possibly infinite number of almost
sure linear inclusion constraints, a template which closely resembles ours. The limitation,
however, lies in their inclusion of a proximal-friendly component in the objective used to
perform stochastic proximal gradient steps. While this template encompasses ours when the
latter component is ιX , performing projections (i.e., proximal steps w.r.t. the indicator function)
is assumed prohibitively expensive in our setting.

Conditional Gradient methods for constrained optimization. The CGM or Frank-Wolfe
method was first proposed in the seminal work of Frank and Wolfe [85], and its academic interest
has witnessed a resurgence in the past decade. The advantage of CGMs lies in the low per-
iteration cost of the LMO, alongside their ability to produce sparse solutions — a comprehensive
treatment of these methods is provided by Jaggi [111] and Braun et al. [24]. In comparison to
projection-based approaches, the LMO is cheaper to compute for several important domains,
amongst which the spectrahedron, polytopes emerging from combinatorial optimization, and
ℓp norm-induced balls [89]. Consequently, CG-type methods have been studied under various
assumptions by Hazan [101], Clarkson [50], Hazan and Kale [103], Jaggi [111], Lan [134],
and Balasubramanian and Ghadimi [9], and have been incorporated as cheaper subsolvers into
algorithms which originally relied on projection oracles [135, 141].

CGMs have been further extended to the setting of convex composite minimization via the
Augmented Lagrangian framework by Gidel, Pedregosa, and Lacoste-Julien [94], Silveti-Falls,
Molinari, and Fadili [207], and Yurtsever, Fercoq, and Cevher [231]. Most relevant to our setting,
CGM-based quadratic penalty methods have been studied for convex problems with constraints
of the form Ax −b ∈K, where K is a closed, convex set [232, 143]. We compare our methods
against the latter two in Section 2.4.5.

Variance reduction. Stochastic variance reduction (VR) methods have gained popularity in
recent years following their initial study by Roux, Schmidt, and Bach [197], Johnson and Zhang
[115], and Mahdavi, Zhang, and Jin [145]. The VR technique relies on averaging schemes
to reduce the variance of stochastic gradients, with several different flavours having emerged
in the past decade: SAG [199], SVRG [115], SAGA [69], SVRRG++ [3], SARAH [173] and
SPIDER [80]. Such methods outperform the classical SGD under the finite sum model, a fact
which led to their widespread use in large-scale applications and their further inclusion into other
stochastic optimization algorithms (see for example Xiao and Zhang [227] and Hazan and Luo
[102]).
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Relevant to our setting, VR has been studied in the context of CGMs for convex minimization
by Mokhtari, Hassani, and Karbasi [155], Hazan and Luo [102], Locatello et al. [143], Yurtsever,
Sra, and Cevher [233], and Zhang et al. [237]. The SFO complexity of these methods for reaching
ϵ suboptimality varies depending on the gradient estimator (specific to each VR scheme), with the
best guarantee being of order O (

ϵ−2
)

[238, 233]. For a thorough comparison of the complexities,
we refer the reader to Section 6 of Yurtsever, Sra, and Cevher [233].

2.3 Preliminaries

Probability notation. For the probabilistic setting, we denote by ξ an element of our sample
space and by P (ξ) its probability measure. Unless stated otherwise, expectations will be taken
with respect to ξ. Further, following the setup of Fercoq et al. [81], the space of random variables
is defined as

H =
{

y(ξ)ξ ∈Rm | ξ ∈Rn , E
[∥∥ y(ξ)ξ

∥∥2
]
<+∞

}
,

where the associated scalar product is given by 〈x , z〉 := E
[

x(ξ)⊤z(ξ)
]

=
∫

x(ξ)⊤z(ξ)dP (ξ).

Smoothing. Nesterov [167] proposes a technique for obtaining smooth approximations parametrized
by β, of a non-smooth and convex function g . The resulting smoothed approximations take the
form

gβ(x) := max
y

〈y , x〉− g∗(y)− β

2

∥∥ y
∥∥2 ,

where g∗(y) := supz 〈z , y〉− g (z) is the Fenchel conjugate of g . Note that gβ is convex and
1
β -smooth. Whenever g has an efficient prox operator, we can compute the gradient of gβ as

∇gβ(x) =β−1
(

x −proxβg (x)
)

.

We are interested in the case of g (·,ξ) ≡ ιb(ξ)(·). Smoothing the indicator function is studied in the
context of proximal methods by Tran-Dinh, Fercoq, and Cevher [212] and Fercoq et al. [81] and
for deterministic CGM by Yurtsever et al. [232]. Of particular note is that when g (x) = ιX (x), the
smoothed function becomes gβ(x) = 1

2β dist(x ,X )2.

Optimality conditions. We denote by x⋆ a solution to problem (2.1) and say that x is an
ϵ-solution for (2.1) if it satisfies

E
[| f (x ,ξ)− f ⋆|]≤ ϵ,

√
E
[
dist(A(ξ)x ,b(ξ))2

]≤ ϵ. (2.2)

Oracles. Our complexity results are given relative to the following oracles:

• Stochastic First Order Oracle (SFO): For a stochastic function E
[

f (·,ξ)
]

with ξ∼ P , the
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SFO returns a pair ( f (x ,ξ),∇ f (x ,ξ)) where ξ is an i.i.d. sample from P [162].

• Incremental First Order Oracle (IFO): For finite-sum problems, the IFO takes an index
i ∈ [n] and returns a pair ( fi (x),∇ fi (x)).

• Linear Minimization Oracle (LMO): The linear minimization oracle of set X is given
by lmoX (y) ∈ argminx∈X 〈x , y〉 and is assumed efficiently computable throughout this
chapter.

2.4 Algorithms and convergence

We now describe our proposed methods for solving (2.1), H-1SFW and H-SPIDER-FW, and
provide their theoretical convergence guarantees.

2.4.1 Challenges and high-level ideas

Problem (2.1) can be rewritten equivalently as:

min
x∈X

F (x) := E
[

f (x ,ξ)+ ιb(ξ)(A(ξ)x)
]

. (2.3)

Note that objective (2.3) is non-smooth due to the indicator function, which makes the CGM
framework not applicable (see counterxample by Nesterov [165]). In order to leverage the
conditional gradient framework, we smooth ιb(ξ)(A(ξ)x) through the technique described in
Section 2.3, thus obtaining a surrogate objective Fβ. For notational simplicity, we refer to the
smoothed stochastic indicator as:

gβ(A(ξ)x) :=
1

2β
dist(A(ξ)x ,b(ξ))2. (2.4)

The minimization problem in terms of the smoothed objective thus becomes:

min
x∈X

Fβ(x) := E
[

f (x ,ξ)+ gβ(A(ξ)x)
]

, (2.5)

with lim
β→0

Fβ(x) = F (x). A natural idea is to optimize smooth approximations Fβ which are pro-

gressively more accurate representations of F . To this end, we apply Conditional Gradient steps
in conjunction with decreasing the smoothness parameter β, practically emulating a homotopy
transformation. As the iterations unfold, our algorithms, in fact, approach the optimum of the
original objective F (x), as stated theoretically in Sections 2.4.3 and 2.4.4.

However, the aforementioned idea faces a technical challenge: decreasing the smoothing parame-
ter β impacts the variance of the stochastic gradients ∇x gβ(A(ξ)x), which increases proportionally.
This issue has previously been signalled in the work of Fercoq et al. [81], where the authors
address a similar setting using stochastic proximal gradient steps. Here, the problem is further
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aggravated by the use of LMO calls over X , as it is well-known that CGMs are sensitive to
non-vanishing gradient noise [155].

Our solution is to simply perform VR on the stochastic gradients and theoretically establish a rate
for β→ 0 in order to counteract the exploding variance. Precisely, we show how two different
VR schemes can be successfully used within the homotopy framework:

• H-1SFW uses one stochastic sample to update a gradient estimator at every iteration,
following the technique introduced by Mokhtari, Hassani, and Karbasi [155]. Depending
on computational resources, the single-sample model can be extended to a fixed batch size
with the same convergence guarantees.

• H-SPIDER-FW uses stochastic minibatches of increasing size to compute the gradient
estimator, using the technique proposed by Fang et al. [80].

The theoretical results characterizing our algorithms are presented in Section 2.4.3 and 2.4.4.
First, we state the rate at which the β-dependent gradient noise vanishes under each VR scheme
in Lemma 2.1 and 2.2. The main convergence results, Theorem 2.1 and 2.2, describe the
performance of our algorithms in terms of the quantity E

[
Sβk (xk ,ξ)

]
:= E

[
Fβk (xk ,ξ)− f ⋆

]
, called

the smoothed gap. Finally, in Corollary 2.1 and 2.2, we translate the aforementioned results
into guarantees over the objective residual and constraint feasibility. All proofs are deferred to
Appendix A.

2.4.2 Assumptions

Assumption 2.1. The stochastic functions f (·,ξ) are convex and L f -smooth. This further implies
that f (x) is L f -smooth.

Assumption 2.2. The stochastic gradients ∇ f (x ,ξ) are unbiased and have a uniform variance
bound σ2

f . Formally,

E
[∇ f (x ,ξ)

]
= ∇ f (x) and E

[∥∥∇ f (x ,ξ)−∇ f (x)
∥∥2

]
≤σ2

f <+∞. (2.6)

Assumption 2.3. The domain X is convex and compact, with diameter DX .

Assumption 2.4. Slater’s condition holds for problem (2.3). Specifically, letting G : H →
R∪ {∞}, G(Ax) := E

[
ιb(ξ)(A(ξ)x)

]
, with the linear operator A : Rd →H defined as (Ax)(ξ) :=

A(ξ)x , ∀x , we require that
0 ∈ sri

(
dom(G)− A dom( f )

)
,

where sri is the strong relative interior of the set [12].

Assumption 2.5. The spectral norm of the stochastic linear operator A(ξ) is uniformly bounded
by a constant L A:

L A := sup
ξ

∥ A(ξ)∥2 <+∞.
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We note that Assumption 2.5 is also made by Fercoq et al. [81].

2.4.3 H(omotopy)-1SFW

We now describe our first algorithm, which uses the VR scheme proposed by Mokhtari, Hassani,
and Karbasi [155] and whose advantage lies in a simple update rule and single-loop structure.
All the proofs for this section are deferred to Appendix A.1.

Gradient estimator model

We denote the gradient estimator by dk . Note that dk is biased with respect to the true gradi-
ent ∇Fβ(xk ) and exhibits a vanishing variance. This scheme achieves VR while conveniently
considering only one stochastic constraint at a time. The estimator update rule is given by

dk = (1−ρk )dk−1 +ρk∇Fβk (xk ,ξk ),

where ∇Fβk (xk ,ξk ) = ∇ f (xk ,ξk )+∇gβk (A(ξk )xk ), and ρk is a decaying convex combination
parameter. The proposed method is summarized in Algorithm 2.1.

Algorithm 2.1 H-1SFW
Input: x1 ∈X ,β0 > 0,P (ξ)

for k = 1,2, . . . , do

Set ρk , βk and γk ; sample ξk ∼ P (ξ)

dk = (1−ρk )dk−1 +ρk∇x Fβk (xk ,ξk )

wk ∈ lmoX (dk )

xk+1 = xk +γk (wk −xk ).

end for

Convergence results

Before stating the results, we remark that Lemma 2.1 is the counterpart of Lemma 1 in [155] and
its proof follows a similar route, up to bounding β-dependent quantities. It is worth noting that in
our case, handling the stochastic linear inclusion constraints results in a rate surcharge factor of
O (

k1/3
)
.

Lemma 2.1. Let ρk = 3
(k+5)2/3 , γk = 2

k+1 , βk = β0

(k+1)1/6 , β0 > 0 in Algorithm 2.1. Then, for all k,

E
[∥∇Fβk (xk )−dk∥2]≤ C1

(k +5)1/3
,
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where C1 := max

{
61/3∥∇Fβ0 (x0)−d0∥2,2

[
18σ2

f +112L2
f D2

X + 522L2
AD2

X
β2

0

]}
.

Theorem 2.1. Consider Algorithm 2.1 with parameters ρk = 3
(k+5)2/3 , γk = 2

k+1 , βk = β0

(k+1)1/6 , β0 >
0 (identical to Lemma 2.1). Then, for all k,

E
[
Sβk (xk+1)

]≤ C2

k1/6
,

where C2 := max
{

S0(x1), b = 2DX
p

C1 +2D2
X

(
L f + L A

β0

)}
and C1 is defined in Lemma 2.1.

Corollary 2.1. The expected convergence in terms of objective suboptimality and feasibility of
Algorithm 2.1 is, respectively,∣∣E[

f (xk ,ξ)
]− f ⋆

∣∣ ∈O (
k−1/6)

√
E
[
dist(A(ξ)xk ,b(ξ))2

] ∈O (
k−1/6) .

Consequently, the oracle complexity is #(SFO) ∈O (
ϵ−6

)
and #(LMO) ∈O (

ϵ−6
)
.

2.4.4 H(omotopy)-SPIDER-FW

Our second algorithm presents a more complex VR scheme, which improves upon the complexity
of H-1SFW. The method relies on the SPIDER estimator originally proposed under the framework
of Normalized Gradient Descent by Fang et al. [80] and further studied for CGMs by Yurtsever,
Sra, and Cevher [233]. Different from Section 2.4.3, the results that follow distinguish two
scenarios: the first is customary to VR methods such as SVRG [115] or SARAH [173] and
assumes a finite-sum form of f ; the second, different from most other VR schemes, caters to
objectives of the form f (x) = E

[
f (x ,ξ)

]
where ξ ∼ P (ξ), and can handle a potentially infinite

number of stochastic functions. All the proofs for this section are deferred to Appendix A.2.

Gradient estimator model

We denote the SPIDER gradient estimator by vt ,k . We note that vt ,k is also biased relative
to ∇Fβk (xk ) and exhibits a vanishing variance. This scheme achieves VR through the use of
increasing-size minibatches. The estimator update rule is given by

vt ,k = vt ,k−1 −∇̃Fβt ,k−1 (xt ,k−1,ξSt ,k )+∇̃Fβt ,k (xt ,k ,ξSt ,k ), (2.7)

where ∇̃Fβt ,k (xt ,k ,ξSt ,k ) = ∇̃ f (xk ,ξSt ,k )+∇̃gβt ,k (A(ξSt ,k )xt ,k ) defines the averaged gradient over a
minibatch of size |St ,k |.
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The double indexing used in (2.7) hints at the double-loop structure of the algorithm. The method
is structured similarly to SPIDER-FW from [233], and proceeds in two steps: the outer loop
computes an “accurate” gradient estimator and sets the batch size for the inner iterations. The
inner loop then iteratively “refreshes” this gradient according to (2.7) and performs homotopy
steps on β using a theoretically-determined schedule. The proposed method is summarized in
Algorithm 2.2.

Algorithm 2.2 H-SPIDER-FW
Input: x̄1 ∈X ,β0 > 0,P (ξ)

for t = 1,2, . . . ,T do

xt ,1 = x̄t

Compute γt ,1,βt ,1,Kt ; sample ξQt

i.i.d∼ P (ξ)

vt ,1 = ∇̃Fβt ,1 (xt ,1,ξQt )

wt ,1 ∈ lmoX (vt ,1)

xt ,2 = xt ,1 +γt ,1(wt ,1 −xt ,1)

for k = 2, . . . ,Kt do

Compute γt ,k ,βt ,k ; sample ξSt ,k

i.i.d∼ P (ξ)

vt ,k = vt ,k−1 −∇̃Fβt ,k−1 (xt ,k−1,ξSt ,k )+∇̃Fβt ,k (xt ,k ,ξSt ,k )

wt ,k ∈ lmoX (vt ,k )

xt ,k+1 = xt ,k +γt ,k (wt ,k −xt ,k )

end for

Set x̄t+1 = xt ,Kt+1

end for

Convergence results

Again, we remark that Lemma 2.2 is the counterpart of Lemma 4, Appendix C in [233]. However,
in this case, our proof takes a different, more tedious route, as the latter result does not accommo-
date homotopy steps. In comparison, the bound we obtain depends linearly on the total iteration
count, whereas the aforementioned lemma depends only on the outer loop counter Kt .

Lemma 2.2 (Estimator variance for finite-sum problems). Consider Algorithm 2.2, and let
ξ be finitely sampled from set [n], ξQt = [n] and ξSt ,k , such that |St ,k | = Kt = 2t−1. Also, let
γt ,k = 2

Kt+k , βt ,k = β0p
Kt+k

, β0 > 0. Then, for a fixed t and for all k ≤ Kt ,

E
[∥∥∇Fβt ,k (xt ,k )−vt ,k

∥∥2
]
≤ C1

Kt +k
,

where C1 = 2D2
X

(
8L2

f +
98L2

A

β2
0

)
.
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Lemma 2.3 (Estimator variance for general expectation problems). Consider Algorithm 2.2

and let ξ ∼ P (ξ) and ξQt such that |Qt | =

⌈
2Kt

β2
t ,1

⌉
. Also, let ξSt ,k , such that |St ,k | = Kt = 2t−1,

γt ,k = 2
Kt+k , βt ,k = β0p

Kt+k
, β0 > 0. Then, for a fixed t and for all k ≤ Kt ,

E
[∥∥∇Fβt ,k (xt ,k )−vt ,k

∥∥2
]
≤ C2

Kt +k
,

where C2 = 16L2
f D2

X +2L2
AD2

X

(
98
β2

0
+1

)
+2β2

0σ
2
f .

Theorem 2.2. Consider Algorithm 2.2 with parameters γt ,k = 2
Kt+k , βt ,k = β0p

Kt+k
, β0 > 0, and

ξSt ,k , such that |St ,k | = Kt = 2t−1. Then,

• For ξ be finitely sampled from set [n], ξQt = [n] and ∀t ∈N, 1 ≤ k ≤ 2t−1,

E
[
Sβt ,k (xt ,k+1)

]≤ C3√
Kt +k +1

,

where C3 =max

{
Sβ1,0 (x1,1),2D2

X L f +2D2
X

√√√√16L2
f +

196L2
A

β2
0

+ 2D2
X L A

β0

}
;

• For ξ∼ P (ξ), ξQt such that |Qt | =

⌈
2Kt

β2
t ,1

⌉
and ∀t ∈N, 1 ≤ k ≤ 2t−1,

E
[
Sβt ,k (xt ,k+1)

]≤ C4√
Kt +k +1

,

where C4 =max

{
Sβ1,0 (x1,1), 2D2

X L f +
2D2

X L A

β0
+2DX

√√√√16L2
f D2

X +2L2
AD2

X

(
98

β2
0

+1

)
+2β2

0σ
2
f

}
.

Corollary 2.2. The expected convergence in terms of objective suboptimality and feasibility of
Algorithm 2.2 is, respectively,∣∣E[

f (xt ,k )
]− f ⋆

∣∣ ∈O (
(Kt +k)−1/2)

√
E
[
dist(A(ξ)xt ,k ,b(ξ))2

] ∈O (
(Kt +k)−1/2)

for both the finite sum and the general expectation setting. Consequently, the oracle complexities
are given by #(IFO) ∈O (

n log2(ϵ−2)+ϵ−4
)

and #(LMO) ∈O (
ϵ−2

)
for the finite-sum setting, and

by #(SFO) ∈O (
ϵ−4

)
and #(LMO) ∈O (

ϵ−2
)

for the expectation setting.
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2.4.5 Discussion

Rate degradation in the absence of projection oracles. Compared to proximal methods for
solving (2.1), our algorithms require O (

ϵ−2
)

times more SFO calls to reach an ϵ-solution. This is
well-known for CG-based methods: for instance, solving a fully deterministic version of (2.1)
with the Augmented Lagrangian framework has a gradient complexity of O (

ϵ−1
)

[228], whereas
the best known complexity for CG-based algorithms is O (

ϵ−2
)

[232].

Comparison with SHCGM [143]. The state-of-the-art for solving (2.1) is the half-stochastic
method SHCGM [143], in which stochasticity is restricted to the objective function f , while the
constraints are processed deterministically. This algorithm attains an O(ϵ−3) SFO complexity
and an O(ϵ−3) LMO complexity, by resorting to the same VR scheme as H-1SFW applied only
to f (x ,ξ). Since SHCGM handles the constraints deterministically, it does not face the challenge
of exploding variance as β→ 0.

Our analysis shows that handling the β-dependence of the gradient noise comes at the price of
H-1SFW being O (

ϵ−3
)

times more expensive in terms of both oracles. In contrast, owing to a
more powerful variance-reduction scheme, H-SPIDER-FW attains only an O (ϵ)-times worse
SFO complexity, while improving by an O (ϵ) factor in terms of the LMO complexity. Given that
an LMO call is generally more expensive than that of an SFO, we have, in fact, improved the
complexity over the state-of-the-art while being the first to process linear constraints stochastically.
Moreover, we note that the LMO complexity of H-SPIDER-FW is of the same order as its fully
deterministic counterpart, the HCGM [232].

The role of VR. The choice of VR technique dictates the worst-case convergence guarantees
of our methods, a fact which is apparent from the discrepancy between the variance bounds of
Lemmas 2.1 and 2.2- 2.3, respectively: O (

k−1/3
)

for dk vs. O (
k−1

)
for vt ,k . This signals the

existence of a trade-off: a more intricate way of handling stochastic penalty-type constraints can
ensure the better convergence guarantees of H-SPIDER-FW, while a simpler VR scheme comes
at the cost of the rather pessimistic ones of H-1SFW. Fortunately, as shown in Section 2.5, the
simple H-1SFW greatly outperforms its worst-case bounds.

2.5 Experiments

To demonstrate the empirical efficiency of our algorithms, we apply them to three problem
instances: synthetically generated SDPs, the k-Means clustering SDP relaxation and the Sparsest
Cut-associated SDP.

Experiment setup. The experiments presented in this chapter were implemented in MATLAB
R2019b and executed on a 2,9 GHz 6-Core Intel Core i9 CPU with 32 GB RAM. For retrieving the
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values of f ⋆, we used the code of Mixon, Villar, and Ward [154] which relies on SDPNAL+ [230]
for the clustering experiments, and CVX [100] for the Sparsest Cut ones.

Evaluation metrics. Our experiments subscribe to a finite-sum template, where we define
f (x) :=

∑n1
i =1 fi (x) and gβ(Ax) =

∑n2
i =1 gi ,β(A⊤

i x). The objective convergence is recorded as
| f (x)− f ⋆|. Due to imperfect feasibility, the value of f (x) can overshoot f ⋆, since the constrained
optimum is not the global one. This usually appears as the increase of | f (x)− f ⋆| immediately
after a significant drop when the quantity f (x)− f ⋆ becomes negative; then the decreasing
trend restarts, as the objective and constraints re-balance. Such a phenomenon is common for
homotopy-based methods; see, for instance, the experiments of Yurtsever et al. [232]. Lastly, the
feasibility is recorded as ∥Ax −b∥.

Baseline. To the best of our knowledge, the HCGM [232] and the SHCGM [143] are the only
algorithms which tackle SDPs under the conditional gradient framework. The latter represents
the empirical state-of-the-art and we choose it as the baseline for our experiments.

2.5.1 Synthetic SDP problems

This proof-of-concept experiment showcases the performance of our fully stochastic methods for
a fixed problem dimension and an increasing set of constraints. We consider the planted synthetic
SDP

min
X∈Sd

+
Tr(X )≤ 1

d

〈C , X 〉

subject to Tr (Ai X ) = bi , ∀i ∈ [n], (2.8)

where the entries of Ai and C are generated from U (0,1), and bi = 〈Ai , X ⋆〉 for a fixed X ⋆. We
perform uniform sampling on the pairs (Ai ,bi ) for computing their stochastic gradients in our
algorithms. We fix the dimension to be d = 20 and vary the size of constraints with n ∈ {5e2,5e3}.

For a fair comparison, we sweep the parameter β0 for the three algorithms in the range [1e−7,1e1].
We settle for 1e−7, 1e−7 and 1e−5 for SHCGM, H-1SFW and H-SPIDER-FW, respectively. For
H-1SFW and SHCGM, we choose the batch size to be 1% of the data.

Figure 2.1 illustrates the outcome of the experiments, where we observe a clear improvement of
the stochastic algorithms over the baseline with a stable margin throughout the test cases.

Interestingly, H-1SFW exhibits strong empirical performance on the synthetic data, much better
than its theoretical worst-case bound. A possible explanation is that the entries of C and Ai are
generated from a “benign” distribution and concentrate around its mean [138]. In such scenarios,
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Figure 2.1: Synthetic SDPs, with each column showing the convergence in objective
suboptimality (top) and in feasibility (bottom) for a given problem instance. The left
column corresponds to a problem with 5e2 constraints, while the right one to a problem
with 5e3 constraints.

even a small subset of constraints allows for effective variance reduction. Nevertheless, we
observe the same good performance of H-1SFW, even with real data, in the next sections.

Regarding H-SPIDER-FW, we observe that the suboptimality and feasibility decrease at the rate
k− 1

2 and k− 3
4 , respectively, which is better than the worst-case bounds of Theorem 2.2.

We further compare the algorithms on problem (2.8) under a less well-behaved distribution of
entries in matrices Ai and C . Specifically, we use the heavy-tailed Stable distribution with param-
eters (α = 1.5,β = 0,γ = 10,δ = 0). We sweep β0 for all three algorithms in the range [1e−7,1e−1]

and settle for 1e−5, 1e−7, 1e−6 for SHCGM, H-1SFW and H-SPIDER-FW, respectively. The
results are depicted in Figure 2.2.

Given this more difficult distribution, we observe that all methods are comparable in terms of
convergence speed in both objective suboptimality and feasibility, with H-SPIDER-FW having
an edge over the other two.
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Figure 2.2: Synthetic SDPs, with each column showing the convergence in objective suboptimality (top)
and in feasibility (bottom) for a given problem instance. From left to right, the columns depict the results
for problems with 5e2, 1e3 and 5e3 constraints.

2.5.2 The k-Means clustering relaxation

We consider the unsupervised learning task of partitioning d data points into k clusters. We adopt
the SDP formulation in [182], which amounts to solving:

min
X∈X

〈C , X 〉

subject to X 111d = 111d ,

Xi , j ≥ 0, 1 ≤ i , j ≤ d . (2.9)

Here, C ∈Rd×d is the Euclidean distance matrix of the d data points and X := {X ∈Rd×d |X ⪰
0, Tr(X ) ≤ k}. Notice that the number of linear constraints in (2.9) is O(d 2).

In order to compare against existing work, we adopt the MNIST dataset (k = 10) [137] with d = 103

samples and perform data preprocessing as Mixon, Villar, and Ward [154]. The same setup
appeared in prior works [232, 143], with SHCGM [143] showing the best practical performance.

We perform parameter sweeping on β0 ∈ [1e−7,1e2] for H-1SFW and H-SPIDER-FW, and settle
for 5e−2 and 6e0, respectively. For SHCGM, we adopt the same hyperparameter as in [143]. The
batch size for H-1SFW and SHCGM is set to 5%.

The comparison of our algorithms against SHCGM is reported in Figure 2.3. H-1SFW and
H-SPIDER-FW converge at a comparable rate, with both clearly overtaking the baseline with
regard to both objective suboptimality and feasibility.
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Figure 2.3: The k-Means SDP relaxation, with convergence in objective suboptimality (left)
and in feasibility (right).

2.5.3 Computing an ℓ2
2 embedding for the Uniform Sparsest Cut problem

The Uniform Sparsest Cut problem (USC) aims to find a bipartition (S, S̄) of the nodes of a graph
G = (V ,E), |V | = d , which minimizes the quantity

E(S, S̄)

|S||S̄| ,

where E(S, S̄) is the number of edges connecting S and S̄. This problem is of broad interest, with
applications in areas such as VLSI layout design, topological design of communication networks
and image segmentation, to name a few. Relevant to machine learning, it appears as a subproblem
in hierarchical clustering algorithms [65, 46].

Computing such a bipartition is NP-hard and intense research has gone into designing efficient
approximation algorithms for this problem. In the seminal work of Arora, Rao, and Vazirani [7]
an O (√

logd
)

approximation algorithm is proposed for solving USC, which relies on finding a
well-spread ℓ2

2 geometric representation of G where each node i ∈ V is mapped to a vector vi

in Rd . In this experimental section, we focus on solving the SDP that computes this geometric
embedding, as its high number of triangle inequality constraints (O (

d 3
)
) makes it a suitable

candidate for our framework.

The original formulation of the SDP given by Arora, Rao, and Vazirani [7] is

min
1

d 2

∑
(i , j )∈E

∥∥vi −v j |
∥∥2

subject to
∑

i , j∈V
i ̸= j

∥∥vi −v j
∥∥2 = d 2

∥∥vi −v j
∥∥2 +∥∥v j −vk

∥∥2 ≥ ∥vi −vk ∥2 , ∀ i , j ,k ∈V ,
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Figure 2.4: The Sparsest Cut-associated SDP relaxation, where each column shows the con-
vergence in objective suboptimality (top) and feasibility (bottom) for a given problem instance.
From left to right, the results correspond to graphs mammalia-primate-association-13,
insecta-ant-colony1-day37 and insecta-ant-colony4-day10, sorted by increasing
size.

while its equivalent canonical formulation is given by the expression

min
X∈X

〈L, X 〉

subject to d Tr(X )−Tr(1d×d X ) =
d 2

2

Xi , j +X j ,k −Xi ,k −X j , j ≤ 0, ∀ i , j ,k ∈V ,

(2.10)

where L represents the Laplacian of G, X = {X ∈ Rd×d : X ⪰ 0, Tr(X ) ≤ d} and Xi , j = 〈vi , v j 〉
gives the geometric embedding of the nodes. We use form (2.10) with an added trace constraint,
Tr(X ) ≤ d . This additional constraint does not change the optimal objective [109].

We run our algorithms on three graphs of different sizes from the Network Repository dataset
[196], whose details are summarized in Table 2.1. Note the cubic dependence of the number of
constraints relative to the number of nodes. We perform parameter sweeping on β0 ∈ [1e−5,1e5]

using the smallest graph, mammalia-primate-association-13, and keep the same
parameters for all the experiments. The values of β0 for SHCGM, H-1SFW and H-SPIDER-FW
are 1e2, 1e−2 and 1e1 respectively, and the batch size for both H-1SFW and SHCGM is set to
5%.

Figure 2.4 depicts the outcomes of the experiments, with both our algorithms consistently
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Graph name |V ||V ||V | |E ||E ||E |
Avg. node

degree
Max. node

degree
USC SDP
dimension

USC SDP
# constraints

mammalia-
primate-

association-13
25 181 14 19 X ∈R25×25 ∼ 6.90e3

insecta-ant-
colony1-day37

55 1k 42 53 X ∈R55×55 ∼ 7.87e4

insecta-ant-
colony4-day10

102 4k 79 99 X ∈R102×102 ∼ 5.15e5

Table 2.1: Details of the Network Repository graphs [196] used in the Sparsest Cut experiments.

outperforming SHCGM, and H-SPIDER-FW attaining the fastest convergence. A possible
explanation is that, given the much larger number of constraints relative to the problem dimension,
specifically O (

n3
)

v.s O (
n2

)
, H-SPIDER-FW’s increasing minibatches readily reach an adequate

balance between feasibility enforcement and objective minimization.

2.6 Improved guarantees for the finite sum case

Previous sections considered the problem of minimizing a stochastic objective over the constraint
set X subject to a possibly infinite number of stochastic constraints (2.1). This is a very general
formulation, encompassing a variety of problem templates and therefore comes with a lot of
flexibility. This same generality, however, serves as its drawback. This will become apparent
in the coming sections, where improved convergence is achieved for the closely related but
less general finite sum counterpart of (2.1). Specifically, we consider the following finite-sum
template

min
x∈X

F (x) := f (H x)+ g (Ax) where


f (H x) := 1

n

∑n
i =1 fi (h⊤

i x)

g (Ax) := 1
m

∑m
i =1 gi (a⊤

i x).

(2.11)

We work under the same assumptions as before: X ⊂Rd is a compact and convex set for which
projections are expensive but the LMO is efficient; each fi : R→ R is convex and L f -smooth;
A and H are data matrices in Rm×d and Rn×d , whose i th rows are denoted by the vectors a⊤

i

and h⊤
i , respectively; and gi : R→ R∪ {+∞} are convex but possibly non-differentiable, and g

has an efficient prox operator. This kind of separability for g translates into separability of its
prox operator [178, see Section 2.1 ], a fact which we leverage in the design and analysis of our
method.

Note that formulation (2.11) recovers a restricted instance of template (2.1), as follows. We let
gi be indicator functions of closed and convex intervals in R denoted as bi . Furthermore, we let
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A(ξ) ≡ a⊤
i . Then, problem (2.11) becomes

min
x∈X

1

n

n∑
i =1

fi (h⊤
i x) such that a⊤

i x ∈ bi , ∀i ∈ [m], (2.12)

which is nothing but (2.1) for which ξ∼U ([m]) (the uniform distribution with discrete support).
This type of separable model includes, for example, box-constrained problems.

The separable finite-sum structure of (2.11) allows us to tackle both g and f stochastically and,
therefore, more efficiently when m and n are large. We study Conditional Gradient methods
(CGMs), otherwise known as the Frank-Wolfe algorithm, tailored for problem (2.11), for the case
where g is either Lipschitz continuous or an indicator function of a set onto which projections are
easy. The running example for the remaining sections is that of strongly constrained semidefinite
programs (SDPs), that is, those which have a very large number of constraints. We have already
seen such examples in the previous sections, notably the Sparsest Cut SDP in Section 2.5.3 for
which m ∈O (

d 3
)
.

Concretely, the SDP template is given by

min
X∈Sd×d+

〈H , X 〉

subj. to 〈Ai , X 〉 ◁ bi , i ∈ [m]
(2.13)

where Sd×d+ denotes the set of symmetric positive semidefinite matrices, H ∈Sd×d is the symmet-
ric cost matrix, (Ai ,bi ) ∈Sd×d ×R characterize the constraints, and ◁ represents either equality
‘=’ or inequality ‘≤’ relations.

As already mentioned in Section 2.1, solving SDPs is computationally challenging due to their
semidefinite cone constraint for which projections are expensive (O (

d 3
)
), the large cost of storing

the decision variable X , and the possibly large number of constraints for problems such as those
mentioned above. The former concern is addressed by resorting to conditional gradient-based
solvers [101, 113, 88, 232] since they avoid projection via LMOs. Further, reducing the storage
requirements to optimal orders through sketching was studied by Yurtsever et al. [235]. However,
scalable approaches to solving SDPs with a large number of constraints remain comparatively
underexplored. We take a step in this latter direction by developing CGM variants that handle
linear constraints in a randomized fashion.

Concretely, we propose a new CGM variant for convex finite-sum problems and analyze it for the
case where g is either Lipschitz continuous or an indicator function of a set for which projections
are easy. The method extends the recent work on stochastic Frank-Wolfe [159] to the composite
template in (2.11). Our algorithm finds an ϵ-suboptimal solution after O (

ϵ−2
)

iterations, matching
the iteration complexity in Vladarean et al. [219] (presented in Section 2.4.4 as H-SPIDER-FW).
However, we achieve this rate with a constant, as opposed to increasing, batch size strategy.
Furthermore, Vladarean et al. [219] require a full gradient computation at predefined intervals
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Algorithm Reference Iteration
complexity Total cost Fixed batch

size

SHCGM Locatello et al. [142] O(ϵ−3) O
(
ϵ−3d m

)
N/A

H-1SFW Vladarean et al. [219] O(ϵ−6) O
(
ϵ−6d

)
✓

H-SPIDER-FW Vladarean et al. [219] O(ϵ−2) O
(
ϵ−2d m

)
✗

MOST-FW+ Akhtar and Rajawat
[1]

O(ϵ−4) O
(
ϵ−4d

)
✓

H-SAG-CGM This Paper O
(
ϵ−2)

O
(
ϵ−2d

)
✓

Table 2.2: This table presents the costs of finding an ϵ-suboptimal solution for a given problem while
treating the parameters d , n and m as constants. The O notation hides the parameters L f , ∥ A ∥, DX , and
the absolute constants. We tailor the cost of existing methods for problem (2.11), noting that their cost
for other problems can differ. The last column indicates whether the algorithm has an increasing or fixed
batch size, and N/A refers to the fact that SHCGM processes all gi at every iteration.

for the finite-sum setting, which is something we eschew in the sequel thanks to a different VR
paradigm. Thus, our algorithm enjoys a total cost of O (

ϵ−2d
)

which is independent of m. In
contrast, the cost in Vladarean et al. [219] is O (

ϵ−2dm
)
. There is, of course, a trade-off: the

gradient estimator we use to achieve this improvement requires an additional O (m) memory. We
assume this trade-off to be acceptable for the considered applications. We support our theory with
numerical experiments on matrix completion, k-Means clustering, and Sparsest Cut problems.

Additional related literature. The related literature discussion remains largely the same as
that of Section 2.2. We mention two additional works published after the results described in
Sections 2.1 – 2.5 and which are relevant to the remaining sections. First, Négiar et al. [159]
showed that optimal convergence guarantees for CGMs can be obtained for separable objectives
by considering a SAG-like gradient estimator [199]. Concretely, the authors achieve an iteration
complexity of O (

ϵ−1
)

in this setting, which is on par with deterministic CGMs. By combining
this idea with the homotopy framework, we are able to provide an improved randomized algorithm
for composite objectives. Second, the parallel work of Akhtar and Rajawat [1] addresses a similar
problem to (2.11) — we compare with their method in Table 2.2.

Additional notation. In addition to the diameter of a set defined in Equation (1.11), we define
the following diameters of X with respect to the column space of a matrix M as

Di (M) := max
u,v∈X

∥M(u −v )∥i , i ∈ {1,2,∞} (2.14)
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Algorithm 2.3 H-SAG-CGM

Input: β0 > 0, x0 ∈X , p0 ∈Rn , q0 ∈Rm , d f
0 ∈Rd , d g

0 ∈Rd

for k = 1,2, . . . do

Set γk = 2
k+1 , βk =β0/

p
k +1

Sample j ∼U ([n]), l ∼U ([m])

pk,i =


1
n f ′

j (h⊤
j xk ) i = j

pk−1,i i ̸= j

and qk,r =


1
m g ′

βk ,l (a⊤
l xk ) r = l

qk−1,r r ̸= l

d f
k = d f

k−1 + (pk, j −pk−1, j )h j

d g
k = d g

k−1 + (qk,l −qk−1,l )al

dk = d f
k +d g

k

wk = lmoX (dk )

xk+1 = xk +γk (wk −xk )

end for

2.6.1 Algorithm and convergence

Our method is presented in Algorithm 2.3. As before, the algorithm optimizes the smoothed
version of the objective in (2.11) obtained through the technique described in Section 2.3, and
given by the following expression

Fβ(x) := f (H x)+ gβ(Ax) =
1

n

n∑
i =1

fi (h⊤
i x)+ 1

m

m∑
j =1

gβ, j (a⊤
j x). (2.15)

The algorithm proceeds in three conceptual steps at every iteration k: (1) estimate the gradient
using random samples, (2) compute the LMO with respect to the gradient estimator dk and (3)
update the optimization variable xk .

The analysis of our algorithm consists of first establishing convergence for the smoothed gap

Sβk (xk+1) := E[Fβk (xk+1)−F ⋆],

and then translating this convergence into guarantees for the original problem. For the latter part,
we rely on the techniques proposed by Tran-Dinh, Fercoq, and Cevher [212]. For the case when
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g is a Lipschitz continuous function, we seek points xk such that

E
[
F (xk )−F ⋆]≤ ϵ.

Otherwise, when g is the indicator of a separable constraint set K ∈Rm := K1 × . . .×Km , Ki ⊂R,
we want also to quantify the degree of constraint violation. Therefore, we seek xk such that∣∣E[

f (xk )
]−F ⋆

∣∣≤ ϵ and E[dist(Axk ;K)] ≤ ϵ.

Our algorithm guarantees at every iteration that xk is in X and asymptotically that Axk ∈K. As
in prior sections, we assume that when using indicators of constraint sets, Slater’s condition holds
and therefore, strong duality is ensured.

Smoothed gap recurrence

We first establish a recursive inequality involving Sβk (xk+1), which lies at the heart of our analysis
and which appears with slight variations in Locatello et al. [142] and Vladarean et al. [219]. Its
proof is deferred to Appendix A.3.1.

Lemma 2.4. Consider H-SAG-CGM (Algorithm 2.3). Then, for all k ≥ 1, it holds that

Sβk (xk+1) ≤ (1−γk )Sβk−1 (xk )+γk DX E
[∥∇Fβk (xk )−dk∥

]+ γ2
k D2

X LFβk

2
,

where LFβk
=

∥H∥L f

n + ∥A∥
βk m represents the smoothness constant of the surrogate objective Fβk .

Lemma 2.4 shows how the smoothed gap’s convergence rate depends on the design parameters
γk and βk and the variance of the stochastic gradient estimator (the term E

[∥∇Fβk (xk )−dk∥
]

is

upper bounded by the square root of the variance
√
E
[∥∇Fβk (xk )−dk∥2

]
via Jensen’s inequality).

Since we have free choice over γk and βk to get the best possible rates in the analysis, this leaves
the variance of the stochastic gradient estimator as the decisive term. Prior work [219] (presented
in Sections 2.1—2.5) relies on variance-reduced gradient estimators devised to handle arbitrary
stochastic objectives, thus failing to exploit the separable finite-sum structure often encountered
in practice. Instead, we leverage the SAG-like gradient estimator, which was recently shown to
induce optimal rates for CGMs in the standard setting [159], and extend similar benefits to our
composite problem.

Stochastic Average Gradient (SAG) error bounds

We use a SAG estimator for each of the two components of the smoothed objective Fβ. Specifi-
cally, at each iteration of Algorithm 2.3, the j -th coordinate of the gradient of f is updated using
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the SAG estimator

pk,i =

 1
n f ′(h⊤

i xk ) i = j ,

pk−1,i i ̸= j .
(2.16)

Similarly, the SAG estimator for gβk updates the l -th coordinate of the gradient of gβk as

qk,r =

 1
m g ′

βk ,l (a⊤
l xk ) r = l ,

qk−1,r r ̸= l .
(2.17)

Thus, the overall gradient term dk in this case is the sum of two stochastic terms given by
dk = H⊤pk + A⊤qk . We now present two lemmas characterizing the errors of pk and qk in
ℓ1-norm.

Lemma 2.5 (Lemma 3 of Négiar et al. [159]). Consider H-SAG-CGM (Algorithm 2.3) and the
SAG estimator pk defined in (2.16). Then, for all k ≥ 2,

E
[∥∇ f (H xk )−pk∥1

]≤ (
1− 1

n

)k ∥∇ f (H x0)−p0∥1 +C1
(
1− 1

n

)k/2
logk + C2

k
,

where C1 = 2n−1L f D1(H), C2 = 4n−1(n − 1)L f D1(H) and the expectation is taken over all
previous steps in the algorithm.

Lemma 2.6. Consider H-SAG-CGM (Algorithm 2.3) and the SAG estimator γk defined in (2.17).
Then, for all k ≥ 2,

E[∥∇gβk (Axk )−qk∥1] ≤ (
1− 1

m

)k ∥∇gβ0 (Ax0)−q0∥1 + Cp
k

where C = 10β−1
0 D1(A) and the expectation is taken over all previous steps of the algorithm.

We present the proof of Lemma 2.6 in Appendix A.3.2, under the assumption that g is either the
indicator of a convex and separable constraint set or a Lipschitz continuous function. For the
proof of Lemma 2.5, we refer the reader to Négiar et al. [159].

Discussion. Lemma 2.5 shows that the SAG-like estimator of ∇ f provides an error bound in
ℓ1-norm decaying as O (1/k) in expectation. This decay does not carry over to the estimator of
∇gβk , as demonstrated by Lemma 2.6, due to the associated 1

βk
factor that results from smoothing.

Convergence of the smoothed gap and original objective

Combining Lemmas 2.5 and 2.6 with Lemma 2.4 gives the convergence rates for Algorithm 2.3,
which we now present. Its proof is deferred to Appendix A.3.3.
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Theorem 2.3. The sequence generated by H-SAG-CGM (Algorithm 2.3) satisfies, for all k ≥ 2,

Sβk (xk+1) ≤ C1p
k
+ C2

k
+ C3

k2 ,

for the following constants

• C1 =β−1
0 (2D2

X ∥ A ∥+10D1(A));
• C2 = 8L f D1(H)D∞(H)+2n−1L f ∥H ∥D2

X ;
• C3 = 2n2D∞(H)

(∥∇ f (H x1)−p0∥1 +32L f D1(H)
)+2m2D∞(A)∥∇gβ0 (Ax1)−q0∥1.

Using the techniques described by Tran-Dinh, Fercoq, and Cevher [212], we translate this bound
into convergence guarantees on the original problem in the following corollaries. Their proofs
are deferred to Appendix A.3.4 and A.3.5, respectively.

Corollary 2.3. Suppose g :Rm →R is Lg -Lipschitz continuous. Then, the estimates generated by
H-SAG-CGM (Algorithm 2.3) satisfy

E[F (xk+1)−F ⋆] ≤ C1p
k
+ C2

k
+ C3

k2 +
β0L2

g

2
p

k

where the constants C1,C2 and C2 are defined in Theorem 2.3.

Corollary 2.4. Suppose g is the indicator function of a closed and convex set K ∈ Rm , K :=

K1 × . . .×Km , Ki ⊆ R, ∀i ∈ [m]. Then, for H-SAG-CGM (Algorithm 2.3), we have a lower
bound on the suboptimality as E

[
f (H xk+1)− f (H x⋆)

]≥−∥λ⋆∥E [dist(Axk+1,K)], where λ⋆ is a
solution of the dual problem, and the following upper bounds on the suboptimality and feasibility:

E
[

f (H xk+1)− f (H x⋆)
]≤ C1 +β0p

k
+ C2

k
+ C3

k2 , and

E [dist(Axk+1,K)] ≤ C4p
k
+
p

2C2

k3/4
+
p

2C3

k5/4
,

where the constants C1,C2 and C3 are defined in Theorem 2.3 and C4 =
(

3β0∥λ⋆∥
2 +p

2C1

)
.

Discussion. Even in the deterministic setting studied by Yurtsever et al. [232], the convergence
rate of Homotopy CGM is lower bounded by Ω(1/

p
k), as demonstrated theoretically by Lan

[134] and practically by Kerdreux, d’Aspremont, and Pokutta [122]. Corollaries 2.3 and 2.4 show
that our algorithm achieves this lower bound.

Since H-SAG-CGM uses one LMO and one IFO per iteration, the convergence complexity in
terms of the number of calls to both oracles is O (

ϵ−2
)
.

While H-SAG-CGM and H-SPIDER-FW [219] (presented in prior sections) enjoy a similar
overall rate, the latter requires an exponentially increasing batch size. Combined with occasional
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Figure 2.5: Comparing H-SAG-CGM to state-of-the-art baselines on two distinct SDP-relaxation tasks,
k-Means (2.9) and Sparsest Cut (2.10). The objective residual and infeasibility error represent | f (xk )−
f ⋆|/| f ⋆| and dist(Axk ,K), respectively. The x-axis is in terms of the constraint epochs. One constraint
epoch corresponds to a full pass over all the constraints. Note that for the k-Means clustering experiment,
we deliberately prevented H-SPIDER-FW from performing full passes over the constraints, resulting in a
noticeable degradation in performance.

full passes, this quickly becomes impractical for strongly constrained problems. As an alternative,
Vladarean et al. [219] propose H-1SFW, which does use a fixed batch size but at the cost of
an impractical O (

ϵ−6
)

rate. In stark contrast, our algorithm enjoys the optimal rate without an
increasing batch size.

2.6.2 Experiments

We demonstrate the empirical performance of H-SAG-CGM for the k-Means clustering SDP
introduced in Section 2.5.2 and the uniform Sparsest Cut SDP introduced in Section 2.5.3. We
performed these experiments in MATLAB R2019b1.

Baselines. We compare H-SAG-CGM (Algorithm 2.3) against the following methods: SHCGM
[142], H-SPIDER-FW [219] and H-1SFW [219]. Note that SHCGM only works in the case of
deterministic g , and importantly, H-SPIDER-FW requires an increasing batch size.

1The codes are publicly available at https://github.com/ratschlab/faster-hcgm-composite
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Challenges. The hyperparameter β0 determines a trade-off between convergence in the objective
residual and the infeasibility error by modulating the relative magnitude of the two components’
gradients. This quantity needs to be tuned for every instance of the problem, a challenge that
is shared among homotopy CGM approaches [232, 142, 219]. Since the value of β0 impacts
convergence, developing principled ways of setting it is a meaningful direction for further
research.

The k-Means clustering relaxation

In this experiment, we test H-SAG-CGM on the k-Means Clustering SDP, introduced with full
details in Section 2.5.2. The problem is strongly constrained with a total of n2 +n constraints.
We use the same setup as before and find that β0 = 7 is appropriate for H-SAG-CGM.

We compare the methods based on the number of epochs (an epoch corresponds to a full pass
over the constraints) since different methods use different batch sizes in this experiment. The two
leftmost plots in the upper row of Figure 2.5 present the outcomes of this experiment.

Computing an ℓ2
2 embedding for the Uniform Sparsest Cut problem

In this experiment, we test H-SAG-CGM on the uniform Sparsest Cut SDP, introduced with full
details in Section 2.5.3. This problem is particularly interesting because of the O (

n3
)

number of
constraints. We use the same datasets described in Table 2.1. We use β0 = 100 for H-SAG-CGM
on all three network datasets.

Figure 2.5 presents the results of this experiment. As in the k-Means experiment, H-SPIDER-FW
is affected by the growing number of constraints because of its increasing batch size strategy.
Other methods, with constant batch size, are less affected. H-SAG-CGM performs competitively
against H-SPIDER-FW without requiring an increasing batch size.

2.7 Conclusion

This chapter introduced three stochastic Conditional Gradient-based methods for tackling convex
objectives subject to a large number of linear constraints. The key feature of our algorithms is
that they process only a subset of the constraints per iteration, thus gaining an edge over methods
that require full passes for large-scale problems.

We first proposed two methods addressing a general template of the problem, expressed in terms
of arbitrary probability distributions and a possibly infinite number of stochastic linear constraints.
The methods rely on two different variance reduction schemes for estimating the gradient: a
simple exponential moving average estimator using a constant batch size [155] and the more
sophisticated Stochastic Path-Integrated Differential Estimator [80] requiring increasing batch
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sizes. The former ensures a O (
ϵ−6

)
convergence with respect to both the number of LMOs

and stochastic gradient computations, while the latter requires only O (
ϵ−2

)
LMOs and O (

ϵ−4
)

stochastic gradient computations. We highlighted a trade-off between the simplicity of the
variance reduction scheme and the theoretical speed of convergence, and empirically observed
that our methods outperformed existing baselines.

To overcome the impracticality of increasing batch sizes in settings with finite data, we further
proposed and analyzed an algorithm for finite-sum-type objectives. Given this additional assump-
tion on the structure of the problem, we were able to leverage an efficient SAG-like estimator of
the gradient [199] to achieve O (

ϵ−2
)

convergence with respect to both the number of LMOs and
stochastic gradient computations. The trade-off, in this case, was between convergence speed
and additional memory requirements. Finally, we empirically observed that this latter method
performs on par with the initial, more sophisticated variance reduction scheme.

A possible future direction within the algorithmic framework of this chapter is to automate the
selection of the hyperparameter β0, common to all presented methods. We suspect it may be set
in a data-dependent manner to achieve a balanced optimization of the functional residual and the
smoothed constraints.
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3 A Frank-Wolfe generalization for
composite non-differentiable
objectives
This chapter is based on the published work Vladarean et al. [220], presented at COLT 2023.

Co-authors: Nikita Doikov, Martin Jaggi and Nicolas Flammarion

Contributions
M.-L. Vladarean — methodology 45%, formal derivations 60%, writing 70%, experi-

ments 100%

N. Doikov — methodology 45%, formal derivations 40%, writing 30%

M. Jaggi — methodology 5%, writing – review and editing

N. Flammarion — methodology 5%, writing – review and editing, project administration,
supervision

Summary. This chapter studies Frank-Wolfe-type methods for a class of non-differentiable
composite objectives, a setting which causes non-convergence for the standard formulation of
these algorithms. We propose methods that leverage the structure of the composition by handling
the differentiable and non-differentiable components separately, linearizing only the smooth parts.
We thus obtain new generalizations of the classical Frank-Wolfe and the Conditional Gradient
Sliding methods that successfully optimize the considered class of objectives. Our algorithms rely
on a stronger version of the linear minimization oracle, which can be efficiently implemented in
several practical applications. We provide the basic version of our method with an affine-invariant
analysis and prove global convergence rates for both convex and non-convex objectives, the
former of which are on par with the smooth setting. Furthermore, we propose an accelerated
method with improved complexity in terms of the number of Jacobian computations in the convex
case. Finally, we provide illustrative experiments supporting our theoretical results.
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3.1 Introduction

In this chapter, we consider fully composite optimization problems of the form

min
x∈X

[
ϕ(x) := F ( f (x), x)

]
, (3.1)

where X ⊂ Rd is a convex and compact set, F : Rn ×X → R is a simple but possibly non-
differentiable convex function and f :X →Rn is a smooth mapping, which is the main source of
computational burden.

Problems of this type cover and generalize many classical use cases of composite optimization
and are often encountered in applications. We develop efficient algorithms for solving (3.1)
by leveraging the structure of the objective and using the linearization principle. Our method
generalizes the well-known Frank-Wolfe algorithm [84] and ensures provably faster convergence
rates than methods treating ϕ in a black-box fashion.

A classical algorithm for solving smooth versions of problem (3.1) is the Gradient Descent
method (GD), proposed by Cauchy in 1847 (see historical note by Lemaréchal [139]). It rests
on the idea of linearizing the function around the current iterate, taking a step in the negative
gradient direction and projecting the result onto the feasible set X for k ≥ 0:

yk+1 = projX
(

yk −αk∇ϕ(yk )
)
, αk > 0. (3.2)

Surprisingly, the same kind of iterations can minimize general non-smooth convex functions by
substituting ∇ϕ(yk ) with any subgradient in the subdifferential ∂ϕ(yk ). The resulting Subgradient
method was proposed by Shor [204].

Another notable approach to solving smooth instances of (3.1) over a convex and bounded
constraint set X is the Frank-Wolfe (FW) or Conditional Gradient (CG) method [84]. Again,
a linearization of the objective around the current iterate is used to query the so-called Linear
Minimization Oracle (LMO) associated with X , for every k ≥ 0:

yk+1 ∈ argmin
x

{〈∇ϕ(yk ), x〉 | x ∈ yk +γk (X − yk )
}
, γk ∈ (0,1]. (3.3)

Steps of type (3.3) are significantly cheaper than those involving projections (3.2) for a few
important domains such as nuclear norm balls and spectrahedrons [53], rendering FW the
algorithm of choice in such scenarios. Moreover, the solutions found by FW methods can
benefit from additional properties such as sparsity [112]. These desirable features make FW
methods suitable for large-scale optimization, a fact which prompted an increased interest in
recent years (we point the reader to the monograph of Braun et al. [24] for a detailed presentation).
Unfortunately, the vanilla FW algorithm does not extend to non-differentiable problems as
straightforwardly as GD — a counterexample is given by Nesterov [165]. The question of
developing non-smooth versions of the FW algorithm, therefore, remains open and is the main
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focus of this chapter.

Finally, we touch on the issue of convergence rates — the main avenue for characterizing
optimization methods’ practicality. Nemirovski and Yudin [161] establish that the O

(
1/
p

k
)

rate
of the aforementioned projected Subgradient method is optimal for general non-differentiable
convex problems, while the O (1/k) rate of its counterpart projected GD is far from the Ω(1/k2)

lower bound for L−smooth convex functions. Analogous results are established by Lan [134] for
LMO-based algorithms, although in this case, the O (1/k) rate is matched by a lower bound of
the same order for smooth convex problems. This relatively slow convergence of FW algorithms
results from their affine-invariant oracle, which is independent of the choice of norm. In light of
these stringent lower bounds established for black-box models (i.e., generic function classes), the
only avenue for improving convergence rates is to impose additional structure on the objective.

Starting from this observation, we study the structured subclass of non-smooth and possibly
non-convex problems given by (3.1). We propose methods that require only linearizations of
the differentiable component f , while the non-differentiable function F is kept as a part of the
subproblem solved within oracle calls. We show that this approach is a viable way of generalizing
FW methods to address problem (3.1), with the possibility of acceleration in convex scenarios.
Our contributions are summarized as follows.

• We propose a basic method for template (3.1), which is affine-invariant and equipped with
accuracy certificates. We prove the global convergence rate of O (1/k) in the convex setting
and of Õ

(
1/
p

k
)

in the non-convex case.

• We propose an accelerated method with inexact proximal steps which attains a convergence
rate of O (

1/k2
)

for convex problems. Our algorithm achieves the optimal O (
ϵ−1/2

)
oracle complexity for smooth convex problems with respect to the number of Jacobian
computations (∇ f ).

• We provide proof-of-concept experiments demonstrating our approach’s efficiency for
solving the structured template (3.1).

3.2 Related work

Our results lie at the intersection of two broad lines of study: general methods for composite
optimization and FW algorithms. The former category encompasses many approaches that single
out non-differentiable components in the objective’s structure and leverage this knowledge in the
design of efficient optimization algorithms. This approach originated in the works of Burke [28,
29], Nesterov [166], Nemirovski [160], Pennanen [183], and Boţ, Grad, and Wanka [21, 20]. A
popular class of additive composite optimization problems was proposed by Beck and Teboulle
[14] and Nesterov [164] and the modern algorithms for general composite formulations were
developed by Cui, Pang, and Sen [58], Drusvyatskiy and Lewis [76], Drusvyatskiy and Paquette
[77], Bolte, Chen, and Pauwels [18], Burke, Tim, and Nguyen [31], and Doikov and Nesterov
[73].
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The primitive on which most of the aforementioned methods rely is a proximal-type step — a
generalization of (3.2). Such steps may pose a significant computational burden depending on
the geometry of the set X (see discussion in Section 1.3.1). Doikov and Nesterov [73] propose an
alternative contracting-type method for fully composite problems, which generalizes the vanilla
FW algorithm. Their method relies on a simpler primitive built on the linearization principle,
which can be much cheaper in practice. We study the same problem structure as Doikov and
Nesterov [73] and devise methods with several advantages over the aforementioned approach,
including an affine-invariant analysis, accuracy certificates, convergence guarantees for non-
convex problems and, in the convex case, an accelerated convergence. Moreover, we decouple
stepsize selection from the computational primitive to enable efficient line search procedures.

Our methods are also intimately related to FW algorithms, which they generalize. For smooth
and convex problems, vanilla FW converges at the cost of O (

ϵ−1
)

LMO and First Order Oracle
(FO) calls with respect to the Frank-Wolfe gap (a convenient accuracy measure) [112]. For
smooth non-convex problems, a gap value of at most ϵ is attained after O (

ϵ−2
)

LMO and FO
calls [130]. This relatively slow convergence of LMO-based methods has driven recent efforts
towards devising variants with improved guarantees, as we review next. The number of FO
calls was improved to match the lower bound for smooth convex optimization by Lan and Zhou
[135]; local acceleration was achieved following a burn-in phase by Diakonikolas, Carderera,
and Pokutta [71], Carderera et al. [37], and Chen and Sun [48]; and empirical performance was
enhanced by adjusting the update direction with gradient information by Combettes and Pokutta
[52]. Of the aforementioned works, the closest to ours is the Conditional Gradient Sliding (CGS)
algorithm proposed by Lan and Zhou [135] and further studied by Yurtsever, Sra, and Cevher
[234] and Qu, Li, and Xu [187]. CGS uses the acceleration framework of Nesterov [163] and
solves the projection subproblem inexactly via the FW method, achieving the optimal complexity
of O (

ϵ−1/2
)

FO calls for smooth convex problems. We rely on a similar scheme for improving
FO complexity for our structured non-smooth template whenever convexity is ensured.

The FW algorithm was also studied for generic non-smooth convex problems by Lan [134], who
proposed a smoothing-based approach matching the lower bound of Ω(ϵ−2) LMO calls. The
method however requires O (

ϵ−4
)

FO calls, a complexity which is later improved to O (
ϵ−2

)
by

Garber and Hazan [90] and Ravi, Collins, and Singh [190] through a modified LMO, and by
Thekumparampil et al. [211] through a combination of smoothing and the CGS algorithm. We
also mention FW methods for additive composite optimization [4, 232, 231, 241], with the former
three relying on smoothing and additional proximal steps, and the latter assuming a very restricted
class of objectives. In comparison, our methods leverage the structure of problem (3.1) and a
modified LMO to speed up convergence, with the added benefits of an affine invariant algorithm
and analysis.

Finally, two concurrent works study FW methods for some restricted classes of non-smooth and
non-convex problems. De Oliveira [68] shows that vanilla FW with line-search can be applied to
the special class of upper−C 1,α functions when one replaces gradients with an arbitrary element
in the Clarke subdifferential. A rate of O (

ϵ−2
)

is shown for reaching a Clarke-stationary point
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in a setting comparable to ours. A similar rate is shown by Kreimeier et al. [128] for reaching
a d-stationary point of abs-smooth functions by using a modified LMO. Both these algorithms
are structure-agnostic. A summary of method complexities for solving non-smooth problems is
provided in Table 3.1.

Reference ϕ class Use
structure? # FO # PO/LMO Notes

Shor [204] cvx, L-cont no O
(
ϵ−2)

(1) O
(
ϵ−2)

(1) projection

Thekumparampil et al. [211] cvx, L-cont no O
(
ϵ−2)

(1) O
(
ϵ−2)

(1) smoothing,
vanilla LMO

Doikov and Nesterov [73] cvx, fully-comp yes O
(
ϵ−1)

(1) O
(
ϵ−1)

(1) modif. LMO

(our results) Alg. 2 cvx, fully-comp yes O
(
ϵ−1/2)

(1) O
(
ϵ−1)

(1) modif. LMO

De Oliveira [68]
non-cvx,

upper-C 1,α no O
(
ϵ−2)

(2) O
(
ϵ−2)

(2) vanilla LMO

Kreimeier et al. [128]
non-cvx,

abs-smooth
no O

(
ϵ−2)

(3) O
(
ϵ−2)

(3) modif. LMO

Drusvyatskiy and Paquette [77] non-cvx, comp yes O
(
ϵ−2)

(4) O
(
ϵ−2)

(4) prox. steps

(our results) Alg. 1 non-cvx,
fully-comp

yes Õ
(
ϵ−2)

(5) Õ
(
ϵ−2)

(5) modif. LMO

Table 3.1: Summary of convergence complexities for solving non-differentiable composite problems. PO
denotes the projection oracle, and the symbol # prefixing an oracle type denotes the number of such oracle
calls. Note (1) marks complexities reaching an ϵ functional residual. Note (2) marks complexities for
reaching Clarke-stationary points. Note (3) marks complexities for obtaining d−stationary points. Note
(4) marks the complexity of reaching a small norm of the gradient mapping. Finally, note (5) marks the
complexity of minimizing the positive quantity (3.14).

3.3 Problem setup, assumptions and examples

The problems addressed in this chapter adhere to the following template

ϕ⋆ = min
x∈X

[
ϕ(x) := F ( f (x), x)

]
, X ⊂Rd , (3.4)

where X is a convex and compact set and the inner mapping f : X → Rn is differentiable and
defined as f (x) = ( f1(x), . . . , fn(x)) ∈ Rn , where each fi : X → R is differentiable. We assume
access to a first-order oracle ∇ f , which is the main source of computational burden. The outer
component F : Rn ×X → R, on the other hand, is directly accessible to the algorithm designer
and is simple (see assumptions). However, F is possibly non-differentiable.

We propose two algorithmic solutions addressing problem (3.4), which we call a fully composite
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problem. Our methods importantly assume that subproblems of the form

argmin
x∈X

F
(

Ax +b, x
)+〈u, x〉 (3.5)

are efficiently solvable, where A ∈Rn×d and b ∈Rn ,u ∈Rd . Oracles of type (3.5) are sequentially
called during the optimization procedure and take as arguments linearizations of the difficult
nonlinear components of (3.4). Naturally, solving (3.5) cheaply is possible only when F is simple
and X has an amenable structure.

In particular, template (3.4) encompasses some standard problem formulations. For example,
the classical Frank-Wolfe setting is recovered when F (u, x) ≡ u(1), in which case problem (3.4)
becomes minx∈X f1(x) and subproblem (3.5) reduces to a simple LMO: argminx∈X 〈u, x〉. The
setting of proximal-gradient methods is similarly covered, by letting F (u, x) ≡ u(1) +ψ(x) for a
given convex function ψ (e.g., a regularizer). Then, problem (3.4) reduces to additive composite
optimization minx∈X

{
f1(x)+ψ(x)

}
, and subproblem (3.5) becomes argminx∈X

{
〈u, x〉+ψ(x)

}
.

For the remainder of this chapter, we use the notation defined in Section 1.5. In addition,
we introduce the following shorthand for representing the second directional derivatives ap-
plied to the same direction h ∈ Rd as ∇2 f (x)[h]2 := 〈∇2 f (x)h,h〉 ∈ R, and ∇2 f (x)[h]2 :=∑n

i =1 ei∇2 fi (x)[h]2 ∈ Rn , for scalar-valued and vector-valued functions, respectively. We now
formally state the assumptions on the fully composite problem (3.4).

Assumption 3.1. The outer function F :Rn ×X →R is jointly convex in its arguments. Addition-
ally, F (u, x) is subhomogeneous in u,

F (γu, x) ≤ γF (u, x), ∀u ∈Rn , x ∈X , γ≥ 1. (3.6)

Assumption 3.1.a. The inner mapping f : X → Rn is differentiable and the following affine-
invariant quantity is bounded

S = S f ,F,X := sup
x ,y∈X ,γ∈(0,1]
yγ=x+γ(y−x)

F
( 2
γ2

[
f (yγ)− f (x)−∇ f (x)(yγ−x)

]
, yγ

) < +∞. (3.7)

Assumption 3.1.b. Each component fi (·) has a Lipschitz continuous gradient on X with constant
Li , ∥∥∇ fi (x)−∇ fi (y)

∥∥≤ Li
∥∥x − y

∥∥ , ∀x , y ∈X , ∀i ∈ [n].

We denote the vector of Lipschitz constants by L = (L1, . . . ,Ln) ∈Rn .

Assumption 3.2. Each component fi :X →R is convex. Moreover, F (·, x) is monotone ∀x ∈X .
Thus, for any two vectors u, v ∈Rn such that u ≤ v (component-wise), it holds that

F (u, x) ≤ F (v , x). (3.8)
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A few comments are in order. Assumption 3.1, which is also required by Doikov and Nesterov
[73], represents the formal manner in which we ask that F be simple — through convexity and
bounded growth in u. This assumption ensures convexity of subproblem (3.5), irrespective of the
nature of f .

Assumption 3.1.a is a generalization of the standard bounded curvature premise typical for
Frank-Wolfe settings [112]. Requirement (3.7) is mild, as it only asks that the curvature of f

remains bounded under F over X . Importantly, the quantity S is affine-invariant (i.e., remains
unchanged under affine reparametrizations of X ), which enables us to obtain convergence rates
with the same property. Further discussion on the importance of affine-invariant analysis for
FW algorithms is provided by Jaggi [112]. For mappings f that are twice differentiable, we can
bound the quantity S from Assumption 3.1.a using Taylor’s formula and the second derivatives as

S ≤ sup
x ,y∈X ,γ∈[0,1]
yγ=x+γ(y−x)

F (∇2 f (yγ)[y −x]2, x).

This quantity is reminiscent of the quadratic upper bound used to analyze smooth optimization
methods. In particular, for monotone non-decreasing F , a compact X and Lipschitz continuous
∇ fi with respect to a fixed norm ∥ ·∥, the assumption is satisfied with

S ≤ F (LD2
X ) := sup

x∈X
F (LD2

X , x).

Assumption 3.1.b is standard and considered separately from Assumption 3.1.a to allow for
different levels of generality in our results. The restriction to X makes this a locally Lipschitz
gradient assumption on fi .

Finally, Assumption 3.2 (also made by Doikov and Nesterov [73]) is required whenever we
must ensure the overall convexity of ϕ(x). The monotonicity of F is necessary in addition to the
convexity of each fi , since the composition of convex functions is not necessarily convex [23].
We rely on this assumption to prove faster convergence rates in the convex setting (Section 3.4.2).

To conclude this section, we provide the main application examples that fall under our fully
composite template and which satisfy our assumptions.

Example 3.1. Let F (u, x) ≡ max
1≤i≤n

u(i ). Function F satisfies Assumptions 3.1 and 3.2 and problem

(3.4) becomes

min
x∈X

max
1≤i≤n

fi (x), (3.9)

while oracle (3.5) becomes

min
x∈X

max
1≤i≤n

〈ai , x〉+bi ⇔ min
x∈X ,t∈R

{
t : 〈ai , x〉+bi ≤ t , 1 ≤ i ≤ n

}
. (3.10)

Max-type minimization problems of this kind result from scalarization approaches to multi-

49



Chapter 3 A Frank-Wolfe generalization for composite non-differentiable objectives

objective optimization, and their solutions are (weakly) Pareto optimal [Chapter 3.1 in 153].
As such, problem (3.9) is relevant to a wide variety of applications requiring optimal trade-offs
amongst several objective functions and appears in areas such as machine learning, science and
engineering [see the introductory sections of, e.g., 67, 239]. Problem (3.9) also covers some
instances of constrained ℓ∞ regression.

When X is a polyhedron, subproblem (3.10) is efficiently solved via Linear Programming, while
for general X one can resort to Interior-Point Methods [170]. Another option for solving (3.10)
is to note that under strong duality [192] we have

min
x∈X

max
1≤i≤n

〈ai , x〉+bi = min
x∈X

max
λ∈∆n

n∑
i =1
λ(i )

[〈ai , x〉+bi
]

= max
λ∈∆n

g (λ), (3.11)

where g (λ) := min
x∈X

∑n
i =1λ

(i )
[〈ai , x〉+bi

]
. The maximization of g in (3.11) can be done very

efficiently for small values of n (with, e.g., the Ellipsoid Method or the Mirror Descent algorithm),
since evaluating g (λ) and ∂g (λ) reduces to a vanilla LMO call over X . An interesting case
is n = 2, for which (3.11) becomes a univariate maximization problem and one may use binary
search to solve it at the expense of a logarithmic number of LMOs.

Example 3.2. Let F (u, x) ≡ ∥u∥ for an arbitrary fixed norm ∥ ·∥. Function F satisfies Assump-
tion 3.1 and problem (3.4) can be interpreted as solving a system of non-linear equations over
X

min
x∈X

∥ f (x)∥, (3.12)

while oracle (3.5) amounts to solving the (constrained) linear system minx∈X ∥Ax+b∥. Problems
of this kind have applications such as robust phase retrieval [78] with phase constraints.

The iterations of Algorithm 3.1 can be interpreted as a variant of the Gauss-Newton method [30,
169, 213], solving the (constrained) linear systems:

xk+1 ∈ argminx∈X ∥ f (yk )+∇ f (yk )(x − yk )∥, and yk+1 = (1−γk )yk +γk xk+1. (3.13)

In the particular case of solving systems of non-linear equations over compact convex sets, our
algorithms can be seen as modified Gauss-Newton methods with global convergence guarantees.

3.4 Algorithms and convergence

3.4.1 The Basic Method

We describe our first approach to solving problem (3.4) in Algorithm 3.1. The central idea is to
linearize the differentiable components of the objective and minimize the resulting model over
X , via calls to an oracle of type (3.5). The next iterate is defined as a convex combination with
coefficient (or stepsize) γ between the computed minimizer and the preceding iterate.
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Algorithm 3.1 Basic Method
Input: y0 ∈X
for k = 0,1, . . . do

Compute xk+1 ∈ argminx∈X F
(

f (yk )+∇ f (yk )(x − yk ), x
)

Choose γk ∈ (0,1] by a predefined rule or with line search

Set yk+1 = (1−γk )yk +γk xk+1

end for

A similar method for tackling problems of type (3.4) in the convex setting was proposed by
Doikov and Nesterov [73]. Different from theirs, our method decouples the parameter γk from
the minimization subproblem. This change is crucial since it allows us to choose the parameter
γk after minimizing the model, thus enabling us to use efficient line search rules. Moreover,
we provide Algorithm 3.1 with a more advanced affine-invariant analysis and establish its
convergence in the non-convex setup.

We also mention that for solving problems of type (3.9), oracle (3.5) reduces to the minimization
of a piecewise linear function over X . Therefore, it has the same complexity as the modified
LMOs of Kreimeier et al. [128].

Accuracy certificates. The standard accuracy measure of FW algorithms, which Algorithm 3.1
generalizes, is the Frank-Wolfe or Hearn gap [105]. For smooth objectives, it is defined as
Gk := G(yk ) = maxy∈X 〈∇ϕ(yk ), yk − y〉, for each iterate yk . This quantity is computed cost-
free during the iterations and it upper bounds functional suboptimality in the convex case:
Gk ≥ϕ(yk )−ϕ⋆. Its semantics straightforwardly extend to non-convex settings, where it is zero
if and only if yk is a stationary point [130]. Additionally, convergence guarantees on the gap are
desirable due to its affine invariance, which aligns with the affine invariance of the FW algorithm.

Our setting does not permit a direct generalization of the FW gap with all of the above properties.
Rather, we introduce the following accuracy certificate, which is readily available in each
iteration.

Gk := G(yk ) = ϕ(yk )−F
(

f (yk )+∇ f (yk )(xk+1 − yk ), xk+1
)

(3.14)

For minimization of a smooth (not necessarily convex) function, quantity (3.14) indeed reduces
to the standard FW gap. Moreover, for convex ϕ(x) (Assumption 3.2) we can conclude that

Gk ≥ max
x∈X

[
ϕ(yk )−F

(
f (yk )+∇ f (yk )(x − yk ), x

)]
≥ max

x∈X

[
ϕ(yk )−F ( f (x), x)

]
= ϕ(yk )−ϕ⋆.

(3.15)

Hence, for a tolerance ε> 0, the criterion Gk ≤ ε can be used as the stopping condition for our
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method in convex scenarios. Moreover, the value of Gk can be used for computing the parameter
γk through line search.

Convergence on convex problems. In the following, we prove the global convergence of
Algorithm 3.1 in the case when ϕ(x) is convex.

Theorem 3.1. Let Assumptions 3.1, 3.1.a, and 3.2 be satisfied. Let γk := min
{

1, Gk
S

}
or γk := 2

2+k .
Then, for k ≥ 1 it holds that

ϕ(yk )−ϕ⋆ ≤ 2S
1+k

and min
1≤i≤k

Gi ≤ 6S
k

. (3.16)

The proof is provided in Appendix B.1.1. Our method recovers the rate of classical FW in the
smooth case while being applicable to the wider class of fully composite problems (3.4). Thus,
our O(1/k) rate improves upon the O(1/

p
k) of black-box non-smooth optimization. Clearly, the

improvement is achievable by leveraging the structure of the objective within the algorithm.

Convergence on non-convex problems. Under non-convexity, Gk defined in (3.14) no longer
represents an accuracy certificate. This quantity is nevertheless important since it enables us to
quantify the algorithm’s progress while maintaining an affine-invariant analysis. Put differently,
Gk has become merely a progress, rather than an accuracy, measure. The next theorem provides
convergence guarantees on Gk for non-convex problems.

Theorem 3.2. Let Assumptions 3.1 and 3.1.a be satisfied. Let γk := min
{

1, Gk
S

}
or γk := 1p

1+k
.

Then, for all k ≥ 1 it holds that

min
0≤i≤k

Gi ≤ ϕ(y0)−ϕ⋆+0.5S(1+ln(k+1))p
k+1

. (3.17)

The proof is given in Appendix B.1.2. Theorem 3.2 recovers a similar rate to the classical FW
methods [130]. The line search rule for parameter γk makes our method universal, thereby
allowing us to attain practically faster rates automatically when the iterates lie within a convex
region of the objective.

As previously mentioned, the progress measure (3.14) no longer represents an accuracy certificate
in the non-convex setting. Nevertheless, in some cases, we can still establish convergence of
the linearization method with respect to meaningful quantities under non-convexity. Namely, let
us consider problem (3.12) in Example 3.2 for the Euclidean norm, i.e., F (u, x) = ∥u ∥, and the
following simple iterations

yk+1 ∈ argmin
y∈yk+γk (X−yk )

∥ f (yk )+∇ f (yk )(y − yk )∥. (3.18)
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Note that in (3.18), differently from (3.13), the value of γk is selected prior to the oracle call.
Denoting the squared objective as Φ(x) := 1

2

[
ϕ(x)

]2 = 1
2∥ f (x)∥2 and following our analysis, we

can state the convergence of process (3.18) in terms of the classical FW gap with respect to Φ.
The proof is deferred to Appendix B.1.5.

Proposition 3.1. Let γk := 1p
1+k

. Then, for the iterations (3.18), under Assumption 3.1.b and for
all k ≥ 1, it holds that

min
0≤i≤k

max
y∈X

〈∇Φ(yi ), yi − y〉 ≤ O
(

ln(k)p
k

)
.

We further show in Appendix B.2 that Gk can be related to the classical FW gap when our iterates
lie in a smooth region of F . Whether we can provide a meaningful interpretation of Gk in the
general non-convex case, however, remains an interesting open question.

3.4.2 The Accelerated Method

We now move away from the affine-invariant formulation of Algorithm 3.1 to a setting in
which, by considering regularized minimization subproblems along with convexity and Lipschitz
continuity of gradients, we can accelerate the Basic Method. We achieve acceleration by resorting
to the well-known three-point scheme of Nesterov [163], in which the proximal subproblem is
solved inexactly via calls to oracles of type (3.5). This approach was first analyzed in the context
of FW methods by Lan and Zhou [135].

We propose Algorithm 3.2, which consists of a two-level scheme: an outer-loop computing the
values of three iterates y , x and z in X , and a subsolver computing inexact solutions to the
proximal subproblem

argmin
u∈X

{
P (u) := F ( f (z)+∇ f (z)(u − z),u)+ β

2
∥u −x∥2

2, β> 0
}

. (3.19)

The minimization in (3.19) does not conform to our oracle model (3.5) due to the quadratic
regularizer. However, we can approximate its solution by iteratively solving subproblems in
which we linearize the squared norm to match the template of (3.5). This procedure, denoted as
InexactProx in Algorithm 3.2, returns a point u+ satisfying the optimality condition η-inexactly
for some η> 0,

F ( f (z)+∇ f (z)(u+− z),u+)+β〈u+−x ,u+〉

≤ F ( f (z)+∇ f (z)(u − z),u)+β〈u+−x ,u〉+η, ∀u ∈X . (3.20)

Note that condition (3.20) implies P (u+) ≤ P (u)+η, ∀u ∈X . Formally, the main convergence
result characterizing Algorithm 3.2 is the following.

Theorem 3.3. Let Assumptions 3.1, 3.1.b, and 3.2 be satisfied. We choose γk := 3
k+3 , βk :=
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Algorithm 3.2 Accelerated Method
Input: y0 ∈X , set x0 = y0

for k = 0,1, . . . do

Choose γk ∈ (0,1]

Set zk+1 = (1−γk )yk +γk xk

Compute xk+1 = InexactProx(xk , zk+1,βk ,ηk ) for some βk ≥ 0 and ηk ≥ 0

Set yk+1 = (1−γk )yk +γk xk+1

end for

cF (L)γk and ηk := δ
3(k+1)(k+2) where δ> 0 and c ≥ 0 are chosen constants, and F (L) := supx∈X F (L, x).

Then, for all k ≥ 1 it holds that

ϕ(yk )−ϕ⋆ ≤ δ+8cF (L)D2
X

(k+2)(k+3) + 2max{0,1−c}F (L)D2
X

k+3 .

The proof of Theorem 3.3 (deferred to Appendix B.1.3) comes from a natural sequence of steps
involving the properties of the operators and the approximate optimality of xk+1. The crucial
step in attaining the improved convergence is the choice of parameters γk , βk and ηk . Notably,
the decay speed required of ηk is quadratic, meaning that the subproblems are solved with
fast-increasing accuracy and at the cost of additional time spent in the subsolver. The constant δ
allows us to fine-tune the accuracy required for the first several iterations of the algorithm, where
we can accept a lower precision. In practice, we can always choose δ = 1 as a universal rule, and
the optimal choice is δ = F (L)D2

X when these parameters are known. The factor cF (L) in the
definition of βk can be interpreted as the quality of the approximation of the Lipschitz constant
for our problem. Namely, it is exactly computed for c = 1 and over or underestimated for c > 1

and c ∈ (0,1), respectively.

We describe each of the bounding terms independently: the first is highly reminiscent of the
usual bounds accompanying FW-type algorithms in terms of constants, albeit now with quadratic
decay speed. The second term indicates the behaviour of the algorithm as a function of c:
overestimation of F (L) ensures quadratic rates of convergence since the second term becomes
negative. Conversely, underestimation of F (L) brings us back into the familiar FW convergence
regime of O (1/k) as the second term becomes positive. The extreme case c = 0 (and hence βk = 0)
essentially reduces Algorithm 3.2 to Algorithm 3.1, since the projection subproblem reduces to
problem (3.5) which is easily solvable by assumption. We, therefore, have robustness in terms of
choosing the parameter c, and the exact knowledge of F (L) is not needed, even though it may
come at the cost of slower convergence. In contrast, classical Fast Gradient methods are usually
very sensitive to such parameter choices [70].

Theorem 3.3 provides an accelerated rate on the iterates yk — an analogous result to that
of Lan and Zhou [135] albeit under a different oracle. This convergence rate is conditioned on
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the subsolver returning an ηk-inexact solution to the projection subproblem and therefore any
subsolver satisfying the condition can achieve this rate. As with any optimization algorithm,
convergence guarantees may also be stated in terms of the oracle complexity required to reach ϵ
accuracy. For Algorithm 3.2 all the oracle calls are deferred to the subsolver InexactProx, which
we describe and analyze in the next section.

3.4.3 Solving the proximal subproblem

We now provide an instance of the InexactProx subsolver which fully determines the oracle
complexity of the Accelerated Method (Algorithm 3.2). It relies on a specific adaptation of
Algorithm 3.1 to the structure of (3.19). The quadratic regularizer is linearized and oracles of
type (3.5) are called once per inner iteration, while the Jacobian ∇ f (zk ) is computed once per
subsolver call. The main challenge here is to find a readily available quantity dictating the exit
condition of the subsolver, which we denote by Gt .

Algorithm 3.3 InexactProx(x , z , β, η)
Initialization: u0 = x .

for t = 0,1, . . . do

Compute vt+1 ∈ argminv∈X
{

F
(

f (z)+∇ f (z)(v − z), v
) + β〈ut −x , v〉

}
Compute Gt = F

(
f (z)+∇ f (z)(ut − z), ut

) − F
(

f (z)+∇ f (z)(vt+1 − z), vt+1
)

+ β〈ut −x ,ut −vt+1〉
if Gt ≤ η then return ut

Set αt = min
{

1, Gt

β∥vt+1−ut∥2
2

}
and ut+1 =αt vt+1 + (1−αt )ut

end for

The parameters of Algorithm 3.3 are fully specified, and the stopping condition depends on
Gt ≥ P (ut )−P⋆, which is a meaningful progress measure. The algorithm selects its stepsize via
closed-form line search to improve practical performance. When F (u) ≡ u(1), this procedure
recovers the classical FW algorithm with line search applied to problem (3.19).

We prove two results in relation to Algorithm 3.3: its convergence rate and the total oracle
complexity of Algorithm 3.2 when using Algorithm 3.3 as the subsolver. The rate and analysis
are similar to the ones of the Basic Method, up to using properties specific to problem (3.19).

Theorem 3.4. Let Assumptions 3.1, 3.1.b, and 3.2 be satisfied. Then, for all t ≥ 1 it holds that

P (ut )−P⋆ ≤ 2βD2
X

t+1 and min
1≤i≤t

Gt ≤ 6βD2
X

t .

Consequently, Algorithm 3.3 returns an η-approximate solution according to condition (3.20)

after at most O
(
βD2

X
η

)
iterations.
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Figure 3.1: Convergence of the Basic and Accelerated methods against the Projected Subgradient baseline
for problem (3.21), along with relevant theoretical rates.

The proof of this result is deferred to Appendix B.1.4. We note that oracle (3.5) is called once per
inner iteration, and the Jacobian ∇ f (zk ) is computed once per subsolver call. In particular, when
using Algorithm 3.3 as a subsolver, our Accelerated Method achieves the optimal number of
O (

ϵ−1/2
)

Jacobian computations typical of smooth and convex optimization, while maintaining a
O (

ϵ−1
)

complexity for the number of calls to oracle (3.5). The results are stated in the following
corollary.

Corollary 3.1. Consider the optimal choice of parameters for Algorithm 3.2, that is c := 1 and

δ := F (L)D2
X . Then, solving problem (3.4) with ε accuracy ϕ(yk )−ϕ⋆ ≤ ε, requires O

(√
F (L)D2

X
ε

)
computations of ∇ f . In addition, the total number of calls to oracle (3.5) is O

(
F (L)D2

X
ε

)
.

Finally, we note that for smaller values of parameter c ∈ [0,1] in Algorithm 3.2 (underestimating
the Lipschitz constant), the complexity of InexactProx procedure improves. Thus, for c = 0 we
have β = 0 (no regularization) and Algorithm 3.3 finishes after just one step.

3.5 Experiments

The experiments are implemented in Python 3.9 and run on a MacBook Pro M1 with 16 GB
RAM. For both experiments we use the Projected Subgradient method as a baseline [205], with a
stepsize of pp

k
where p is tuned for each experiment. We use the CVXPY library [72] to solve

subproblems of type (3.5). The random seed for our experiments is always set to 666013 (an
interesting prime number), and we set c = 1 since we can analytically compute the Lipschitz
constants or their upper bounds.

56



A Frank-Wolfe generalization for composite non-differentiable objectives Chapter 3

100 101 102 103

FO calls

10−6

10−4

10−2

100

ϕ
(y

)
−
ϕ
? ProjSubGd

BasicM

AccM

1/
√
k

1/k

1/k2

(a)

100 101 102 103

Subproblem Oracle calls

10−5

10−3

10−1

101

ϕ
(y

)
−
ϕ
?

(b)

Figure 3.2: Convergence of the Basic and Accelerated methods against the Projected Subgradient baseline
for problem (3.22), along with relevant theoretical rates.

3.5.1 Max-type minimization over the simplex

We consider the following optimization problem

min
x∈X

{
max
i∈[n]

x⊤Ai x −b⊤
i x

}
, for X =∆d , (3.21)

where Ai ∈Rd×d are random PSD matrices and bi ∈Rd . The problem conforms to Example 3.1,
and we use d = 500 and n = 10. We generate Ai = Qi DQ⊤

i , where D is a diagonal matrix
of eigenvalues decaying linearly in the interval [1e−6,1e0], and Qi is a randomly generated
orthogonal matrix using the method scipy.stats.ortho_group [152]. The vectors bi ,
which determine the position of the quadratics in space, are set as follows: bi = 10 ·ei , b9 = 0d

(the origin), b10 = 10 ·1d . We set δ = 0.2 in the Accelerated Method (see Theorem 3.3) and settle
for p = 1.42 following tuning of the Subgradient Method. Finally, we set x0 = e3 ∈∆d for all
methods.

The convergence results in terms of FO oracles and oracles of type (3.5) are shown in Fig-
ure 3.1a and 3.1b, respectively. The figures highlight the improvement in terms of the number
of FO calls, while showing comparable performance in terms of subproblem oracle calls, as
predicted by our theory.

3.5.2 Max-type minimization over the nuclear norm ball

We consider the following optimization problem

min
X∈X

max
i∈[n]

∑
(k,l )∈Ωi

(
Xk,l − A(i )

k,l

)2

 , for X := {X ∈Rd×m , ∥X ∥∗ ≤ r } (3.22)
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Formulation (3.22) models a matrix completion scenario where we wish to recover an X ⋆ that
minimizes the largest error within a given set of matrices A(i ). The matrices A(i ) are only partially
revealed through a set of corresponding indices Ωi . This problem conforms to Example 3.1 and
we use d = 30, m = 10, r = 7, where r is the rank of matrices A(i ). The data is generated in an
identical fashion to Section 5.2 of Lan and Zhou [135] on Matrix Completion. We set δ = 100 in
the Accelerated Method (see Theorem 3.3) and settle for p = 0.2 following tuning of the Projected
Subgradient method. Finally, we set x0 = 0d×m ∈X for all methods.

The convergence results in terms of FO calls and oracles of type (3.5) are shown in Fig-
ure 3.2a and 3.2b, respectively. The figures highlight the improvement in terms of the number
of FO calls, while showing comparable performance in terms of subproblem oracle calls, as
predicted by our theory.

3.6 Conclusion

This chapter introduced generalizations of the vanilla Frank-Wolfe [84, 112] and Conditional
Gradient Sliding algorithms [135] for a class of non-differentiable composite objectives, to which
the aforementioned methods do not straightforwardly extend. We showed how leveraging the
problem structure eschews the stringent lower bounds of optimizing black-box non-differentiable
objectives, to achieve convergence rates that are on par with the smooth setting. Moreover, we
showed how the principle of exclusively linearizing the differentiable components of a composi-
tion gives rise to subproblems that can be efficiently solved in some cases of interest. Finally,
we illustrated the practical performance of our algorithms against the Projected Subgradient
method [204] on matrix recovery problems, showing an improved convergence in terms of the
number of oracle calls.

Interesting future work may address relaxing the assumptions on the outer mapping F , extending
this framework to stochastic settings, and meaningfully interpreting the quantity Gk for non-
convex problems.
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4 An adaptive, linesearch-free
primal-dual algorithm

This chapter is based on the published work Vladarean, Malitsky, and Cevher [221], presented at
NeurIPS 2021.

Co-authors: Yura Malitsky, Volkan Cevher

Contributions
M. Vladarean — methodology 30%, formal derivations 100%, writing 100%, experi-

ments 100%

Y. Malitsky — methodology 70%, writing – review and editing, supervision

V. Cevher — project administration, supervision

Summary We consider the problem of finding a saddle point for the convex-concave objective
minx maxy f (x)+〈Ax , y〉− g∗(y), where f is a convex function with locally Lipschitz gradient
and g is a convex and possibly non-smooth function. We propose an adaptive version of
the Condat-Vũ algorithm, which alternates between primal gradient steps and dual proximal
steps. The method achieves stepsize adaptivity through a simple rule involving the norm of
recently computed gradients of f and ∥A∥. Under the aforementioned assumptions, we prove
the asymptotic convergence of iterates to a saddle point and an O(k−1) ergodic convergence rate
for the primal-dual gap. Furthermore, when f is additionally locally strongly convex and A has
full row rank, we show that our method converges with a linear rate. We provide numerical
experiments illustrating the practical performance of our algorithm against relevant baselines.
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4.1 Introduction

Consider the following composite minimization problem

min
x∈X

f (x)+ g (Ax), (4.1)

where X is a finite-dimensional real vector space, f and g are convex, proper and lower-
semicontinuous (l.s.c.), and A is a given matrix (or linear operator). This template is highly
versatile, encompassing a wide variety of regularized problems (including those with structured
regularization), as well as constrained minimization (whenever g is the indicator function of a
convex set).

Problems of the form (4.1) have been studied in the literature under various assumptions on
f and g . For the particular instances where g ◦ A is proximal-friendly1 and f is L-smooth,
the objective is suitable for applying forward-backward splitting algorithms like the Proximal
Gradient algorithm and its accelerated counterpart [164, 14]. In general, however, the proximal
operator of g ◦ A is not easily computable and, in such cases, a popular approach is to decouple A

and g by reformulating (4.1) as the convex-concave saddle-point problem

min
x∈X

max
y∈Y

〈Ax , y〉+ f (x)− g∗(y), (4.2)

where X ,Y are finite-dimensional real vector spaces, g∗ denotes the Fenchel conjugate of g .
Objective (4.2) is typically addressed by primal-dual splitting algorithms which, under strong
duality, can recover the solution to the original problem (4.1). In the particular case when f and
g are proximal-friendly and possibly non-smooth, a very popular method is the Primal-Dual
Hybrid Gradient proposed by Chambolle and Pock [42], which was further extended to handle an
additional L-smooth component in the Condat-Vũ algorithm [55, 222]. Convergence rates for the
latter are studied by Chambolle and Pock [44].

Together, these classes of algorithms cover a broad range of problems in diverse fields such as
signal processing, machine learning, inverse problems, telecommunications and many others.
As a result, a great amount of research effort has gone into addressing practical concerns
such as robustness to inexact oracles, acceleration and automation of stepsize selection. For a
comprehensive list of examples and theoretical details, we refer the reader to the review papers
of Combettes and Pesquet [54], Parikh, Boyd, et al. [178], Komodakis and Pesquet [127], and
Chambolle and Pock [43]. The work presented in this chapter falls in the latter category of stepsize
regime automation, which we study in the context of primal-dual algorithms for problem (4.2).

In their basic form, primal-dual methods require as input stepsize parameters belonging to a
designated interval of stability, which depends on problem-specific constants like the global
smoothness parameter L and ∥ A ∥. Dependence on such constants is undesirable because they

1We say that h is ‘proximal-friendly’ if proxh (x) defined in (1.15) has a closed-form solution or can be efficiently
computed to high accuracy.
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may be costly to compute and oftentimes one can only access upper-bound estimates, thus
leading to overly-conservative stepsizes and slower convergence. Moreover, the need to know L

for setting the stepsizes prevents these methods from being applied to functions which are not
globally L-smooth.

Consequently, recent efforts have gone towards devising methods with adaptive stepsizes [99, 98,
149, 181]. These approaches resort to linesearch for finding good stepsizes at every iteration and
come with improved empirical convergence. This practical advantage, however, comes at the cost
of an indeterminate number of extra steps (usually cheap) spent in the linesearch subprocedures.

In this chapter, we study problem (4.2) under the assumption that ∇ f is locally Lipschitz
continuous and g is proximal-friendly. To illustrate the motivation of our framework, we take a
prototypical example in image processing,

min
X∈Rm×d

1

2
∥K X −B ∥2

F +λ∥D X ∥2,1 , K :Rm×d →Rl×p , D :Rm×d →Rm×d×2,

where X is an image; K is a problem-specific linear measurement operator; B is the dimension-
appropriate and possibly noisy observation; D is the discrete gradient operator, and the overall
regularization term represents the isotropic TV norm. In order to apply any of the aforementioned
primal-dual algorithms, one needs to first choose how to decouple the linear operators. There
are three options: decoupling with respect to K leaves us with having to compute the proximal
operator of the TV norm for the primal step, which is an iterative procedure [40]. Decoupling D

implies performing gradient steps on f since, in general, its proximal operator is not efficient.
Finally, decoupling with respect to both implies increasing the dimensionality of the dual variable
to l p +2md , which is problematic whenever these dimensions are large. The sensible choice is
the second one (i.e., decoupling D), and the question we ask is

Does there exist a method for solving (4.2) that adapts to the local problem geometry
without resorting to linesearch?

Our contribution is to propose a first-order primal-dual scheme that answers this question in the
affirmative and is accompanied by theoretical convergence guarantees. Using standard analysis
techniques, we show an ergodic convergence of O (

k−1
)

when ∇ f is locally Lipschitz and g

is proximal-friendly, and a linear convergence rate for the case when f is additionally locally
strongly convex and A has full row rank. We provide numerical experiments for sparse logistic
regression and image inpainting, and further test our method as a heuristic for TV-regularized
non-convex phase retrieval.

The rest of the chapter is structured as follows: Section 4.2 provides details about related work;
Section 4.3 introduces notation, along with technical preliminaries and assumptions to be used
in our analysis; Section 4.4 reports the main theoretical results alongside partial proofs; finally,
numerical results are provided in Section 4.5.
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4.2 Related work

Adaptive Gradient Descent (GD) methods. Arguably the most widespread of optimization
methods, GD presents similar shortcomings for setting the stepsize as those described in the
previous section. In particular, much research effort has gone into devising variants of the
algorithm that remove the need to estimate the global smoothness constant L. In recent work,
Malitsky and Mishchenko [147] propose an extremely simple and effective alternative for setting
the stepsize τk adaptively at every iteration, as

τk = min

{
τk−1

√
1+ τk−1

τk−2
,

∥xk −xk−1 ∥
2
∥∥∇ f (xk )−∇ f (xk−1)

∥∥
}

. (4.3)

Adaptivity essentially comes “for free” in (4.3), as it involves solely quantities which have already
been computed. Moreover, their method requires only the weaker assumption of local smoothness,
thus extending the reach of provably convergent GD to a wider class of differentiable functions
while maintaining the standard O (

k−1
)

convergence rate.

In this chapter, we show that the above technique can be extended to the analysis of primal-dual
methods, where it gives rise to an algorithm whose stepsize adapts to the local geometry of the
objective’s (locally) smooth component f .

Adaptive monotone variational inequality (VI) methods. Malitsky [146] proposes an algo-
rithm for solving monotone VIs with a stepsize that adapts to local smoothness similarly to (4.3).
This method solves the very general formulation of finding u⋆ such that 〈F (u⋆),u −u⋆〉+h(u)−
h(u⋆) ≥ 0, ∀u for a given monotone operator F which is locally Lipschitz continuous. Our
template (4.2) can be recovered from theirs by setting u = (x , y), with

F (u) = F (x , y) =

∇ f (x)+ A⊤y

−Ax

 ,

and h(u) = g∗(y). The advantages of this approach are the relaxed requirement of local Lipschitz
continuity for F and the fact that knowledge of ∥A∥ is not required. However, since the VI
framework is very general and does not take advantage of the problem structure (e.g. the fact that
〈Ax , y〉 is a bilinear term), the method comes with worse convergence bounds than algorithms
specifically designed to solve (4.2). In addition, the algorithm requires as input an upper bound
on the stepsizes, despite them being set in accordance to the estimated local smoothness.

First order primal-dual algorithms and adaptive versions. A popular method for solv-
ing (4.2) when f is L-smooth is the Condat-Vũ algorithm (CVA) [55, 222]. The method’s
convergence is subject to a global stepsize validity condition given by

( 1
τ −L

) 1
σ ≥ ∥ A ∥2, where τ

and σ are the primal and dual stepsizes, respectively.
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Another approach to solving problem (4.2) is via the Primal–Dual Fixed-Point algorithm based
on the Proximity Operator (PDFP2O) or the Proximal Alternating Predictor–Corrector (PAPC)
methods [144, 47, 75]. This approach comes with less restrictive stepsize conditions than CVA
owing to a different iteration style, but which nevertheless depend on the global smoothness
constant L and ∥ A ∥ and have to be carefully chosen.

In order to alleviate the burden of choosing the stepsize parameters in CVA, Malitsky and
Pock [149] propose a linesearch procedure involving only dual variable updates and which, for
certain problems such as regularized least squares, does not require any additional matrix-vector
multiplications. A characteristic of this algorithm is that it maintains a constant ratio between
primal and dual stepsizes through a hyperparameter β — a setup which we also use here.

4.3 Preliminaries

Consider problem (4.2) and let X ,Y be finite-dimensional real vector spaces. We denote by g∗

the Fenchel conjugate of g in (4.1) defined as g∗(y) := supx {〈x , y〉− g (x)}.

One can easily see that (4.2) is a primal-dual formulation of the following primal and dual
optimization problems, of which the former is the same as (4.1).

min
x∈X

f (x)+ g (Ax), max
y∈Y

−( f ∗(−A⊤y)+ g∗(y))

A saddle-point (x⋆, y⋆) ∈X ×Y of problem (4.2) satisfies the following optimality conditions.

−A⊤y⋆ = ∇ f (x⋆), Ax⋆ ∈ ∂g∗(y⋆) (4.4)

For (x ′, y ′) ∈X ×Y we define the following quantities

Px ′,y ′(x) := f (x)− f (x ′)+〈x −x ′, A⊤y ′〉,
Dx ′,y ′(y) := g∗(y)− g∗(y ′)−〈Ax ′, y − y ′〉,
Gx ′,y ′(x , y) := Px ′,y ′(x)+Dx ′,y ′(y),

which are all convex for fixed (x ′, y ′). Whenever (x ′, y ′) = (x⋆, y⋆), it holds that Px⋆,y⋆(x) ≥ 0,
Dx⋆,y⋆(y) ≥ 0 and Gx⋆,y⋆(x , y) ≥ 0, with the latter quantity representing the primal-dual gap. We
also define the gap restricted to a bounded subset B1 ×B2 ⊂X ×Y as

GB1×B2 (x , y) := sup
(x ′,y ′)∈B1×B2

Px ′,y ′(x)+Dx ′,y ′(y),

and note that it is non-negative whenever B1 ×B2 contains a saddle-point.

Finally, the following two blanket assumptions hold throughout the chapter.

Assumption 4.1. Function f is convex and locally smooth, while g is convex, l.s.c., and proximal-
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friendly.

Assumption 4.2. A saddle-point exists for problem (4.2) and thus strong duality holds.

We note that Assumption 4.2 is standard in the literature (see e.g., [42]). Assumption 4.1, on
the other hand, is weaker than the usual global L-smoothness premise and thus enlarges the
category of admissible functions f with instances such as x 7→ exp(x). To illustrate, consider the
aforementioned function defined on the reals: the global smoothness assumption clearly does not
hold, however for any fixed interval [a,b] ⊂R the smoothness constant can be chosen as exp(b).

To prove linear convergence for our method, we will invoke a third assumption.

Assumption 4.3. Function f is locally strongly convex, and A has full row-rank.

4.4 Algorithm and convergence

Our method for solving problem (4.2) is given in Algorithm 4.1 under the abbreviation APDA,
which we use from here onwards. APDA follows the same structure as the basic CVA [44].
Notice that if we restrict Assumption 4.1 to L-smooth functions f , we can in fact recover CVA by
setting θk = θ = 1 and τk = τ, σk =σ fixed such that

( 1
τ −L

) 1
σ ≥ ∥ A ∥2.

Algorithm 4.1 Adaptive Primal-Dual Algorithm (APDA)
Input: x0 ∈X , y0 ∈Y , τinit > 0, τ0 = ∞, θ0 = 1, β> 0, c ∈ (0,1)

x1 = x0 −τinit(∇ f (x0)+ A⊤y0)

for k = 1,2, . . . do

Set τk = min

{
1

2
√

L2
k+(β/(1−c))∥ A ∥2

,τk−1
√

1+θk−1

}
, σk =βτk , θk = τk

τk−1

x̃k = xk +θk (xk −xk−1)

yk+1 = proxσk g∗(yk +σk Ax̃k )

xk+1 = xk −τk (∇ f (xk )+ A⊤yk+1)

end for

4.4.1 High level ideas

We can rephrase the global stepsize condition of CVA by introducing a free parameter β > 0,
which represents the ratio between the fixed dual and primal stepsizes: β := σ

τ . With this change

of variables, the stepsize validity condition becomes τ ∈
(
0, 2

L+
p

L2+4β∥ A ∥2

)
.

Our algorithm disposes of CVA’s global condition and relies instead on a very similar but local
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criterion given by τk ∈
(

0, 1

Lk+
√

L2
k+2β∥ A ∥2

)
, with β := σk

τk
. Here, Lk := ∥∇ f (xk )−∇ f (xk−1)∥

∥xk−xk−1 ∥ provides

an estimate of the local smoothness constant. Remaining in the interval of validity for τk is
ensured by the first part of the expression defining the stepsize in APDA,

τk = min

 1

2
√

L2
k + (β/(1− c))∥ A ∥2

,τk−1

√
1+θk−1

 (4.5)

where c ∈ (0,1). Intuitively, the first condition demands that τk does not overstep a constant related
to the local curvature, thus allowing for larger stepsizes in flatter regions and correspondingly
smaller ones otherwise.

By itself, the first term of (4.5) does not ensure convergence since overly aggressive and possibly
destabilizing stepsizes might occur in near-linear regions. This issue is addressed by the second
part of the expression (4.5), which, informally, prevents the stepsize from increasing “too fast” in
consecutive iterations. Specifically, the increase factor is at most

√
1+θk−1, where θk = τk−1

τk−2
.

Under these two local stepsize conditions, we are able to show APDA’s convergence using the
weaker assumption of local smoothness of f , thus conveniently removing the need to estimate a
global smoothness constant L.

Remark 4.1. While τk does not adapt to ∥ A ∥, for many practical problems this fact is not a big
hindrance. Function f typically represents the data fidelity term, whose smoothness constant L

(should it exist) can far exceed ∥ A ∥ — the matrix enforcing structured regularization on x . A
specific example is the TV-regularized imaging problem, where A is the matrix representation of
the discrete gradient operator whose norm is bounded by

p
8 [40], while the data fidelity term

may involve a very large number of measurements and a larger norm, consequently.

Remark 4.2. APDA takes an additional primal step prior to the for-loop, which is controlled
by τinit given as input. This is needed for estimating L1 in the first iteration. In practice, we set
τinit = 1e−9, a sufficiently small value to ensure that x1 does not depart too far from x0 and yield
a good estimate of L1. Furthermore, the setting of τ0 = ∞ simply ensures that in the first step,
τ1 = 1

2
√

L2
1+(β/(1−c))∥ A ∥2

and has no impact on further steps. Finally, in our experiments, we set

c = 1e−15 — this is a parameter introduced for theoretical purposes, as we explain shortly.

4.4.2 Analysis — the base case

Our analysis proceeds as follows. First, we establish the inequality that characterizes the dynamics
of APDA given in Lemma 4.1 below. Based on it, we are able to prove the boundedness of
sequences {xk } and {yk } in Theorem 4.1. In turn, sequence boundedness alongside the local
smoothness property of f allows us to conclude that there exists a constant L > 0 such that f

is L-smooth on the compact set conv({x⋆, x0, x1, . . .}) — the closed convex hull generated by
{x⋆, x0, x1, . . .}. Finally, we leverage this information to show that (xk , yk ) converges to a saddle

65



Chapter 4 An adaptive, linesearch-free primal-dual algorithm

point of (4.2) and derive the associated ergodic convergence rates presented in Theorem 4.1.

Lemma 4.1. Consider APDA along with Assumptions 4.1 and 4.2 and (x , y) ∈X ×Y . Then, for
all k and ηk ∈

(
βτk∥ A ∥

1−c , 1−2τk Lk
2τk∥ A ∥

)
,

∥xk+1 −x ∥2 + 1

β

∥∥ yk+1 − y
∥∥2 + (

1−ηkτk ∥ A ∥−τk Lk
)∥xk+1 −xk ∥2

+ ηk −τkβ∥ A ∥
βηk

∥∥ yk+1 − yk
∥∥2 +2τk (1+θk )Px ,y (xk )+2τk Dx ,y (yk+1)

≤ ∥xk −x ∥2 + 1

β

∥∥ yk − y
∥∥2 +τk Lk ∥xk −xk−1 ∥2 +2τkθk Px ,y (xk−1).

Moreover, it holds that:

1) τk Lk < 1
2 < 1−ηkτk ∥ A ∥−τk Lk ,

2) 1
β − τk∥ A ∥

ηk
> c

β > 0.

Proof sketch. We use algebraic manipulations, APDA’s update rules, the Cauchy-Schwarz and
Young inequalities and properties of the prox operator to get the recurrence

∥xk+1 −x ∥2 + 1

β

∥∥ yk+1 − y
∥∥2 + (

1−τk ∥ A ∥ηk −τk Lk
)∥xk+1 −xk ∥2

+
(

1

β
− τk ∥ A ∥

ηk

)∥∥ yk+1 − yk
∥∥2 +2τk (1+θk )Px ,y (xk )+2τk Dx ,y (yk+1)

≤ ∥xk −x ∥2 + 1

β

∥∥ yk − y
∥∥2 +τk Lk ∥xk −xk−1 ∥2 +2τkθk Px ,y (xk−1), (4.6)

where ηk > 0 is a free iteration-dependent constant involved in Young’s inequality.

In order to obtain anything worthwhile we would like to set ηk such that, when unrolling (4.6)
over the iterations, the terms containing ∥xk+1 −xk ∥2 and

∥∥ yk+1 − yk
∥∥2 accumulate on the LHS

with positive coefficients. More precisely, we ask that:
1
β − τk∥ A ∥

ηk
> c

β ,

1−τk ∥ A ∥ηk −τk Lk > 1
2 ,

(4.7)

where c ∈ (0,1). We note that the RHS of the first inequality could have been chosen as 0.
However, we made it strictly positive due to technical reasons related to controlling the sequence∥∥ yk+1 − yk

∥∥2. In practice, we choose c to be as small as possible.

A similar remark holds for the second inequality, where it would have been sufficient to set
its RHS to τk+1Lk+1. Since this would considerably complicate the analysis, we make the
observation that τk Lk < 1

2 , ∀k and use this simpler uniform upper-bound instead.
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The inequalities (4.7) are equivalent to asking that ηk ∈
(
τkβ∥ A ∥

1−c , 1−2τk Lk
2τk∥ A ∥

)
and what is left to

show is that this is a valid interval, i.e., that the left endpoint is strictly smaller than its right
counterpart. This condition amounts to solving a quadratic inequality in τk , whose solutions lie

in the interval

(
0, 1

Lk+
√

L2
k+2(β/(1−c))∥ A ∥2

)
. The proof is concluded by showing that our choice of

τk indeed satisfies this constraint. The full proof is deferred to Appendix C.1.

We are now ready to state the main convergence result in Theorem 4.1 below, whose full proof is
given in Appendix C.2.

Theorem 4.1. Consider APDA along with Assumptions 4.1 and 4.2, and let (x⋆, y⋆) ∈X ×Y be a
saddle point of problem (4.2). Then,

1) Boundedness. The sequence {(xk , yk )} is bounded. Specifically, for all k,∥∥xk −x⋆
∥∥2 +∥∥ yk − y⋆

∥∥2 ≤ M ,

where M := ∥x1 −x⋆ ∥2 + 1
β

∥∥ y1 − y⋆
∥∥2 + 1

2 ∥x1 −x0 ∥2 <∞.

2) Convergence to a saddle point. The sequence {(xk , yk )} converges to a saddle point
of (4.2).

3) Ergodic convergence. Let Sk :=
k∑

i =1
τi , xk :=

1

Sk

(
τk (1+θk )xk+

k−1∑
i =1

(τi (1+θi )−τi+1θi+1) xi

)

and y k :=
1

Sk

k∑
i =1
τi yi+1. Then, for any bounded B1 ×B2 ∈X ×Y and for all k,

GB1×B2 (xk , y k ) ≤
M(B1,B2)

√
L2 + (β/(1− c))∥ A ∥2

k
,

where L is the Lipschitz constant of ∇ f over the compact set conv({x⋆, x0, x1, . . .}) and
M(B1,B2) = sup(x ,y)∈B1×B2

∥x1 −x ∥2 + 1
β

∥∥ y1 −x
∥∥2 + 1

2 ∥x1 −x0 ∥2.

The boundedness result of Theorem 4.1 point 1) implies that the convex hull of the iterates
C = conv({x⋆, x0, x1, . . .}) is also bounded and hence compact. The local smoothness assumption
on f then ensures that there exists L > 0 such that f is L-smooth over C. Note that such an L

exists for any x0, y0 since the boundedness result itself holds for any initial conditions (though
the value of such L cannot generally be known, as it is path-dependent). Using this fact, we can

show a uniform lower-bound on the primal stepsize: τk ≥ 1

2

(
L2 + (β/(1− c))∥ A ∥2)−1/2 > 0, ∀k,

which is instrumental in deriving the subsequent convergence results, as well as Theorem 4.2.
We emphasize that the appearance of constant L in the provided rates is a consequence of iterate
boundedness, whose proof does not require its knowledge. Finally, we note that our rate is
comparable to that of CVA in terms of constants.
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4.4.3 Analysis under the additional Assumption 4.3

We now study APDA under the additional assumptions of local strong convexity of f and full
row rank of A. A few remarks are in order before proving Theorem 4.2. First, the boundedness
result of Theorem 4.1 point 1) also holds for constant c = 0, since this constant was required only
for proving convergence to a saddle point in point 2). Second, taking a smaller stepsize than the
originally defined τk will not change the validity of Lemma 4.1 or the boundedness result of
Theorem 4.1, as it remains within the required interval mentioned in Section 4.4.1.

Consequently, for studying APDA under the additional Assumption 4.3, we can simplify the
stepsize expression by taking c = 0. This is because now we can show iterate convergence directly
by using the strong convexity and full row rank assumptions. Specifically, we consider the
stepsize

τk = min

 1

2
√

4L2
k +β∥ A ∥2

,τk−1

√
1+θk−1/2

 , (4.8)

which is smaller than the one originally considered and, due to the aforementioned remarks, it
ensures that APDA produces a bounded sequence. It follows that, under the local smoothness
and local strong convexity assumptions, there exist constants L and µ such that f is L-smooth
and µ-strongly convex over conv({x⋆, x0, x1, . . .}).

The existence of these constants, along with the full row rank of A, in turn, allow us to derive a
strengthened version of the inequality in Lemma 4.1 for (x , y) = (x⋆, y⋆),

∥∥xk+1 −x⋆
∥∥2 +

(
1

β
+q1

)∥∥ yk+1 − y⋆
∥∥2 +

(
1

2
+q2

)
∥xk −xk+1 ∥2 +q3

∥∥ yk+1 − yk
∥∥2

+2τk (1+θk )Px⋆,y⋆(xk )+2τk Dx⋆,y⋆(yk+1)

≤ (
1−q4

)∥∥xk −x⋆
∥∥2 + 1

β

∥∥ yk − y⋆
∥∥2 +

(
1

2
−q5

)
∥xk −xk−1 ∥2 +2τkθk Px⋆,y⋆(xk−1),

where q1, q2, q3, q4, q5 > 0 are constants given in Appendix C.3. This new inequality represents,
in fact, a contraction guaranteeing the linear convergence stated in Theorem 4.2, below.

Theorem 4.2. Consider APDA along with Assumptions 4.1, 4.2 and 4.3. Let (x⋆, y⋆) ∈X ×Y be a

saddle point of problem (4.2). Furthermore, let τk be defined by (4.8) and let s :=
√

4L2 +β∥ A ∥2

and t :=
√

4µ2 +β∥ A ∥2, where µ, L are the strong convexity and smoothness constants of f over
the compact set conv({x⋆, x0, x1, . . .}). Then, for all k,

∥∥xk −x⋆
∥∥2 + 1

β

∥∥ yk − y⋆
∥∥2 ≤ (

1−min
{

p, q,r
})k M ,

where the rate constants are given by

p =
1

2
, q =

µ

4s
, r =

βσ2
min(A)µ

βσ2
min(A)µ+8s2t +4L2s

,
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and M = ∥x2 −x⋆ ∥2 +
(

1
β +T

)∥∥ y2 − y⋆
∥∥2 + 1

2 ∥x2 −x1 ∥2 +2τ1Px⋆,y⋆(x1), T =
σ2

min(A)µ

8s2t +4L2s
, with

σmin(A) representing the smallest singular value of A.

A few remarks are in order: first, as a sanity check, we observe that when A = 0 (the zero matrix
of appropriate dimensions), we recover the contraction factor of Malitsky and Mishchenko [147],
which is equal to q .

Second, we make some notes on how our rate compares with existing ones. To our knowledge,
there are no explicit results regarding the linear convergence of CVA under assumptions similar
to ours (linear rates are usually shown for the 3-component objective without assumptions on A

— see e.g., [44]). However, in the case of L-smooth and µ-strongly-convex f and full row-rank A,
Chen, Huang, and Zhang [47] show the linear convergence of PDFP2O with rate:

∥xk −x⋆∥2 ≤
(
∥x1 −x0∥2 + 1

σmax(A)
∥y1 − y0∥2

)(
1−min

{
σ2

min(A)

σ2
max(A)

,
µ

L

})k−1

,

The rate presented in Theorem 4.2 has a comparatively worse contraction factor. The reason is that
our iteration is set up in the style of CVA, where we essentially have a single stepsize to compute
using the rephrasing from Section 4.4.1. Therefore, τk needs to obey the problem structure with
respect to both L and ∥ A ∥, resulting in the “mixed” term appearing in the denominator.

Keeping the above in mind, the interested reader may find in the appendix that constants q and r

come from a product between τk and other condition number-related quantities, which is tightly
linked to the structure of the main inequality in Lemma 4.1. This makes the nice separation of
condition numbers achieved in PDFP2O’s rate not possible in our case, and it seems the analysis
necessary to achieve the present kind of adaptivity comes at the cost of worse constants (the same
remark holds for Malitsky and Mishchenko [147]).

PDFP2O, on the other hand, achieves a clean bound by having a different iteration style than
CVA, as well as a fundamentally different kind of analysis where the iteration is expressed in
fixed-point form to show convergence. In this context, the stability conditions on the stepsizes are
also relaxed — specifically, 0 <λ≤ 1/σ2

max(A) and 0 < γ< 2L [47]. A drawback of this approach,
however, is that the algorithm has no rate guarantees when f is only smooth and not strongly
convex and only asymptotic convergence is shown. Also, PDFP2O requires 3 matrix-vector
multiplications per iteration, whereas we only require 2.

4.5 Experiments

We now present some numerical experiments conducted for APDA2. Additional problems and
results are included in the appendix. The experiments were implemented in Python 3.9 and

2See https://github.com/mvladarean/adaptive_pda.
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executed on a MacBook Pro with 32 GB RAM and a 2,9 GHz 6-Core Intel Core i9 processor.

The baseline we compare against in this section is CVA, implemented as Algorithm 1 of Cham-
bolle and Pock [44] (using g ≡ 0). In the particular case of sparse logistic regression, we also
compare against FISTA [14]. For obtaining x⋆ we ran one of the algorithms for a large number
of iterations.

4.5.1 Sparse binary logistic regression

We consider the problem of sparse binary Logistic Regression on 4 LIBSVM datasets [45] and
show that adaptivity provides faster convergence in 3 of these cases. The objective we consider is

min
x∈Rd

F (x) :=
m∑

i =1
log(1+exp(−bi 〈qi , x〉))︸ ︷︷ ︸

f

+λ∥x ∥1︸ ︷︷ ︸
g

, (4.9)

where (qi ,bi ) ∈Rd ×{−1,1} and λ is the regularization parameter. APDA and CVA can be applied
to this problem by setting A = I in formulation (4.2). Primal-dual algorithms are not the typical
choice for solving (4.9), which is usually addressed by methods such as Proximal Gradient or
FISTA [14]. However, we note that the computational costs of APDA and FISTA are comparable
since the matrix-vector multiplication cost of the former is removed due to a A = I .

We choose λ = 0.005
∥∥Q⊤b

∥∥∞, where Q⊤ =
[

q⊤
1 , . . . q⊤

m

]⊤. For APDA we perform a parameter
sweep over β ∈ [1e−3,1e6] for each dataset and settle for: β = 2.68e3 for ijcnn; β = 5.18e4 for
a9a; β = 3.16e1 for mushrooms; β = 3.73e−1 for covtype.

For CVA we sweep p ∈ [1e−3,1e6] and set τ = 1
∥ A ∥/p+L and σ = 1

p∥ A ∥ — by construction, these
stepsizes satisfy the validity condition and are as large as possible since the condition is satisfied
with equality. We do an additional tuning procedure where we choose constants τ ∈ [1e−10,1e2]

and ξ ∈ [1e−5,1e2] and set σ = τξ, which are subject to verifying the stepsize validity condition
of CVA. Finally we select the best stepsizes across the two tuning phases to be (truncated
to 3 decimals): τ = 9.869e−4, σ = 1.125e1 for ijcnn; τ = 2.655e−4, σ = 7.896e1 for a9a;
τ = 9.936e−4, σ = 5.878e0 for mushrooms; τ = 7.728e−6, σ = 1e−6 for covtype.

Note that the Hessian of f is given by ∇2 f (x) = Q⊤D(x)Q , where D(x) is a diagonal matrix such
that Di ,i (x) =σi (x)(1−σi (x)), where σi (x) = 1

1+exp(−bi 〈qi ,x〉) ∈ (0,1). Clearly, over any compact
set in C ⊂ X there exist Dmin := mini ,x∈C Di ,i (x) ∈ (0,1) such that DminQ⊤Q ⪯Q⊤D(x)Q. As a
result, a sufficient condition for local strong convexity is that the minimum eigenvalue of Q⊤Q is
greater than 0.

The convergence results are presented in Figure 4.1 along with stepsize comparison plots. For
dataset ijcnn we run APDA with the modified τk used in Theorem 4.2, since λmin(Q⊤Q) =

75.13 and A has full rank. In the latter case, the legend identifier is APDA-strcnv. For the
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Figure 4.1: The first column shows algorithm convergence. The second column shows a comparison
of primal stepsizes between APDA and CVA. The third column shows a comparison of dual stepsizes
between APDA and CVA. Each subfigure represents a different dataset: (a) ijcnn; (b) mushrooms; (c)
a9a; (d) covtype.

remaining datasets we use only the basic setting for τk , as λmin(Q⊤Q) ≤ 1e−13.

While APDA outperforms FISTA and CVA on ijcnn, a9a and mushrooms, it shows a
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relatively poor performance on covtype. We hypothesize that this is related to the condition
number of Q⊤Q , which is almost three orders of magnitude larger in the latter case: 9.2e22 versus
5.3e1, 2e20 and 2e17 for ijcnn, mushrooms and a9a, respectively. A similar behaviour is
seen in Figure 1.(c) of Malitsky and Mishchenko [147].

Finally, the adaptive property of APDA’s stepsizes is visible in the stepsize comparison plots where
they are shown to oscillate within at least one order of magnitude throughout the optimization
process.

4.5.2 Non-convex phase retrieval
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Figure 4.2: (a) Convergence rate. (b) Primal stepsize comparison. (c) Primal stepsize comparison. (d)
APDA reconstruction, PSNR = 21.34, SSIM = 0.76. (e) CVA reconstruction, PSNR = 20.56, SSIM = 0.70.

In this section, we provide the results for applying our algorithm, heuristically, on the non-convex
least squares formulation of the phase retrieval (PR) problem. The phase-retrieval problem has
attracted intense interest recently, due to its application in domains such as optical imaging [223],
astronomy [83] and many others. Here, we consider the real counterpart of the original complex
PR formulation for square images, where given {(Ai ,bi ) ∈Rn×n×R} we want to recover X ⋆ ∈Rn×n

up to its sign, such that bi = Tr(A⊤
i X ⋆)2. To this end, we consider the following TV-regularized

optimization objective

min
X∈Rn×n

F (X ) :=
1

4m

m∑
i =1

(
bi −Tr(A⊤

i X )2)2

︸ ︷︷ ︸
f (X )

+λ∥D X ∥2,1︸ ︷︷ ︸
g (X )≡∥·∥TV

, (4.10)
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where D :Rn×n →Rn×n×2 represents the discrete gradient operator and

∥D X ∥2,1 :=
n,n∑

i , j =1

√
(D X )2

i , j ,1 + (D X )2
i , j ,2.

The regularization term represents the isotropic TV norm, which is known to help in recovering
sharp signals by preserving discontinuities and reducing noise [41, 56, 43].

We note a few things: first, objective (4.10) is non-convex due to f , and in addition, f is only
locally smooth. Secondly, Sun, Qu, and Wright [210] have recently shown that given m i.i.d
Gaussian measurements, the global geometry of F (X ) is “benign” for m >C d log(d)3, where d

is the problem dimension. By benign, the authors specifically mean “(1) there are no spurious
local minimizers, and all global minimizers are equal to the target signal X ⋆ up to a global phase;
(2) the objective function has a negative directional curvature around each saddle point”. It
is hypothesized that in such cases iterative algorithms should, with high probability, find the
minimizer without requiring special initialization as is needed for current state-of-the-art solvers.

For our experiments, we use 84×84-sized images and choose a smaller number of measurements
than suggested above: m = d log(d) ≈ 27,155. We generate m sparse matrices Ai ∈ Rn×n with
30% non-zero entries sampled i.i.d from the standard normal distribution, and corrupt a random
subset containing 10% of elements in bi by setting them to 0. We perform parameter sweep
for λ ∈ [1e−4,1e4], β ∈ [1e−3,1e4] and settle for λ = 1e2 and β = 2.78e2 . Without guidelines
for setting τ, σ for CVA since f is not L-smooth, we search for the best τ ∈ [1e−4,1e4] and
p ∈ [1e−2,1e2] such that σ = 1

pτ∥ A ∥ and settle for τ = 1e−4, p = 1.02e0. We note that CVA
diverged for 32/40 grid points, whereas our method converged for all instances. Finally, the
initial points x0 and y0 are sampled from the standard normal distribution.

The results are depicted in Figure 4.2, which contains the reconstructions and convergence plots.
For each reconstruction, we report the Peak Signal to Noise Ratio (PSNR) and the Structural
Similarity Index Measure (SSIM). We tested several random seeds and obtained similar results.
We also tried running CVA with the stepsize values used by APDA in its last iteration (notice
how in Figure 4.2 (d) τk essentially stabilizes in a very narrow band just above 1e−3 after the
first 250 iterations) — however, CVA diverged in this setting as well.

4.5.3 Image inpainting

Image inpainting involves reconstructing the missing parts of a subsampled image B = PΩX ♮,
where PΩ : Rm×n → Rm×n is a linear operator selecting a subset of q pixels from the original
image X ♮ ∈Rm×n , where q ≪ mn. This problem can be formulated as the following regularized
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Figure 4.3: (a) Original image downloaded from http://www.cs.tut.fi/~foi/GCF-BM3D/. (b) APDA
reconstruction, PSNR = 25.63, SSIM = 0.91. (c) CVA reconstruction, PSNR = 25.63, SSIM = 0.91. (d)
Convergence rate. (e) Primal stepsize comparison. (f) Dual stepsize comparison.

optimization objective

min
X∈Rm×n

F (X ) :=
1

2
∥B −PΩX ∥2

F︸ ︷︷ ︸
f (X )

+λ∥D X ∥2,1︸ ︷︷ ︸
g (X )≡∥·∥TV

, (4.11)

where D :Rn×m →Rn×m×2 is the discrete gradient operator and

∥D X ∥2,1 :=
n,m∑
i , j =1

√
(D X )2

i , j ,1 + (D X )2
i , j ,2.

For our experiments, we vectorize the images of size 256×256 and transform D accordingly.
We represent PΩ as a matrix built by removing rows uniformly at random from I and which,
via the Hadamard product, removes 60% of pixels from the original image (sampling ratio
0.4). We perform parameter sweep for λ ∈ [1e−4,1e0], and settle for λ = 1e−2. We also sweep
β ∈ [1e−5,1e0] and settle for β = 1.291e−2. Finally, we perform a similar two-phase tuning for
CVA as that described in Section 4.5 with p ∈ [1e−5,1e3] for the first phase and τ ∈ [1e−5,1e2],
ξ ∈ [1e−5,1e1] for the second phase. We settle for stepsizes τ = 8.722e−1 and σ = 1.831e−2.

Experiment results are presented in Figure 4.3, where we show the reconstructions, alongside
the convergence plot and a comparison of the fixed stepsizes of CVA with those of APDA. The
two algorithms are comparable both in terms of reconstruction quality and convergence speed,
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with APDA being marginally better for the latter criterion. The convergence plot also shows
an instance of CVA whose stepsizes were set to the values of those used by APDA in the final
iteration of these experiments. Finally, subfigures (e) and (f) show APDA’s stepsizes oscillating
within close range of CVA’s.

4.6 Conclusion

This chapter introduced an adaptive primal-dual algorithm (APDA) for finding the saddle point
of structured convex-concave objectives. The main feature of this algorithm is that it attains
adaptivity “for free”, without resorting to linesearch subroutines. Concretely, this is achieved
by leveraging past gradient information to estimate the local function curvature. In addition,
the method’s convergence relies on weaker assumptions than prior literature, by requiring only
local versions of the usually global smoothness or strong convexity conditions. The convergence
analysis recovers known rates, which are further confirmed by numerical experiments. Moreover,
our experiments showed APDA consistently outperforming its non-adaptive variant — the Condat-
Vũ [55, 222], as well as performing on par with the accelerated primal-only method FISTA [14]
for some problem instances.

A question that immediately emerges from this chapter is whether the same kind of adaptivity
can be extended to the forward-backward splitting scheme (this would allow us to handle hard
constraints on the primal variable, which APDA cannot ensure), or to more complex primal-dual
methods involving three operators. In the time since the work presented in this chapter was
published, Malitsky and Mishchenko [148] and Latafat et al. [136] have given affirmative answers
for the two scenarios, respectively.

A further open question is whether we can devise stochastic variants using the same or a similar
stepsize setting approach.
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5 Conclusion and future directions

5.1 Summary

This thesis proposed a series of approaches for ameliorating the scalability of first-order optimiza-
tion algorithms in several constrained problem settings. Our work was guided by the definition of
scalability discussed in Chapter 1. Concretely, we have achieved the following.

1. In Chapter 2, we proposed three stochastic Frank-Wolfe-type methods capable of han-
dling stochastic linear inclusion constraints. Through judicious use of variance reduction
techniques, in conjunction with smoothing and linear minimization steps, our methods
converge to an optimal feasible value in expectation, while only processing a subset of the
constraints per iteration. This gives them an edge over existing approaches that process the
constraints in full, and scalability is improved due to the reduced iteration cost.

2. In Chapter 3, we proposed generalizations of the vanilla Frank-Wolfe and Conditional
Gradient Sliding methods to a class of composite non-differentiable problems — a known
difficult setting for these algorithms. Our methods leverage the problem structure and
a modified linear minimization oracle to attain convergence rates akin to the smooth
setting for convex problems. Our approach thus eschews the stringent lower bound on the
convergence speed of black-box methods for this class of non-differentiability. Scalability
is, therefore, improved due to the algorithms’ faster convergence rate.

3. Finally, in Chapter 4, we proposed an adaptive primal-dual algorithm for solving structured
convex-concave saddle point problems. Our method reuses past gradients to estimate the
problem’s local curvature across the iterations and takes larger stepsizes in accordance.
Importantly, it does not resort to linesearch subroutines for achieving adaptivity, and
recovers known convergence rates under weaker (local) structural assumptions than prior
literature. In this case, scalability is enhanced thanks to the method’s faster empirical
convergence ensured by taking larger update steps.
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An overarching theme of these investigations was that under the right structural assumptions,
problems yield themselves to be scalably optimized. This translates into improvements in either
the convergence rate, the computational cost of iterations, or the methods’ ability to automatically
adapt to problem geometry. In short, we proposed theoretically-backed methods that effectively
leverage the problem structure to achieve a practical edge in terms of scalability.

5.2 Future directions

Most of the work in this thesis was done under the umbrella of convexity. However, as foreshad-
owed by the examples in Chapter 1, non-convexity is at the forefront of Machine Learning’s
present success. Therefore, we see it as a central consideration for future lines of inquiry along
with non-differentiability, which is also a mainstay of modern applications. In the following, we
delineate possible directions in addition to those proposed in each chapter’s closing section.

First, we turn to Frank-Wolfe algorithms. Chapter 3 showed that despite our method’s con-
vergence with respect to the generalized Frank-Wolfe gap, this does not guarantee reaching
a stationary point in non-convex scenarios. An immediate question is, therefore, whether a
different accuracy certificate could provide this guarantee. A separate route for investigating
convergence under non-smoothness and non-convexity is to consider other restricted problem
classes, as recently done by De Oliveira [68] for tackling upper-C 1,α functions, α ∈ (0,1]. Their
proposed method converges to Clarke stationary points but requires either precise knowledge
of problem constants, which are difficult to estimate in practice, or exact line research — this,
in itself, is an opportunity for investigation. Finally, convergence under non-differentiability
may be sought through modified LMOs that retain the efficiency of their vanilla counterpart on
specific constraint sets (an example is given by Garber and Wolf [93]), while eschewing the
non-convergence caused by the latter.

Second, there is great appeal to extending the type of adaptivity discussed in Chapter 4 to non-
convex settings. A primary application of this direction is the training of neural networks, where
faster empirical convergence is desired due to the high cost of training. At present, the simpler,
unconstrained case is still open and would have to be tackled first. The promising results on
non-convex problems reported in both the work that originated this technique [147] and our
Section 4.5.2 make this line of inquiry particularly intriguing. Furthermore, it is worth pursuing
whether (modifications of) this approach extend to non-differentiable problems, which suffer
from a slow convergence due to their decreasing stepsize requirement.

Finally, and more broadly, extending the techniques presented in this thesis to problems with
non-convex regularizers and constraint sets is an important future direction. Such structures occur
in the training of fair Machine Learning models [126, 38] and are the main tools preventing
harmful biases from creeping into the latter. Given Machine Learning’s fast-increasing reach, it is
necessary to improve the scalability of algorithms addressing such formulations in order to ensure
their widespread adoption and alleviate ethical issues related to automated decision making.
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Before delving into the proofs of the main results in Chapter 2, we introduce some additional
notation, a handful of supporting technical observations, and some useful known results.

First — a recap on smoothing [167]. Given a function g :Rm →R∪ {+∞} that is proper, closed
and convex, the smooth approximation of g is defined by

gβ(z) = max
λ∈Rd

{
〈z ,λ〉− g∗(λ)− β

2
∥λ∥2

}
(A.1)

where g∗ denotes the Fenchel conjugate and β > 0 is the smoothing parameter. Then, gβ is
convex and 1

β -smooth.

We let λ⋆
β(z) denote the solution of the maximization problem in (A.1), i.e.,

λ⋆
β(z) = arg max

λ∈Rd

{
〈z ,λ〉− g∗(λ)− β

2
∥λ∥2

}
= arg min

λ∈Rd

{
1

β
g∗(λ)− 1

β
〈z ,λ〉+ 1

2
∥λ∥2 + 1

2

∥∥∥∥ 1

β
z

∥∥∥∥2}
= arg min

λ∈Rd

{
1

β
g∗(λ)+ 1

2

∥∥∥∥λ− 1

β
z

∥∥∥∥2}
= proxβ−1g∗(β−1z)

=
1

β

(
z −proxβg (z)

)
(A.2)

where the last line is the Moreau decomposition.

We now invoke some results from prior literature that are essential for our statements. The
smoothed indicator was studied by Tran-Dinh, Fercoq, and Cevher [212], where the following
properties of gβ are noted for all z1, z2 ∈ Rm and all β,ρ > 0 (see Lemma 10 therein for the
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proofs).

gβ(z1) ≥ gβ(z2)+〈∇gβ(z2), z1 − z2〉+ β

2

∥∥∥λ⋆
β(z2)−λ⋆

β(z1)
∥∥∥2

(A.3)

g (z1) ≥ gβ(z2)+〈∇gβ(z2), z1 − z2〉+ β

2

∥∥∥λ⋆
β(z2)

∥∥∥2
(A.4)

gβ(z1) ≤ gρ(z1)+ ρ−β
2

∥∥∥λ⋆
β(z1)

∥∥∥2
(A.5)

Further, should g be Lg -Lipschitz continuous, then for ∀β> 0 and ∀z ∈Rm ,

gβ(z) ≤ g (z) ≤ gβ(z)+ β

2
L2

g . (A.6)

The proof follows immediately from Equation (2.7) in [167] with a remark on the duality between
bounded domain and Lipschitz continuity.

Notation recap and extras. For simplicity, we shall denote the indicator functions of the
stochastic constraint sets b(ξ) as

g (A(ξ)x ,ξ) := ι{b(ξ)}(A(ξ)x),

and their 1
β -smooth approximations resulted from Nesterov-type smoothing (see Section 2.3) as

gβ(A(ξ)x ,ξ) :=
1

2β
dist(A(ξ)x ,b(ξ))2 =

1

2β

∥∥∥ A(ξ)x −projb(ξ)(A(ξ)x)
∥∥∥2

.

Their counterparts resulting from applying expectations are capitalized and denoted as

Gβ(Ax) := E
[
gβ(A(ξ)x ,ξ)

]
and ∇Gβ(Ax) := E

[∇gβ(A(ξ)x ,ξ)
]

,

where A :Rd →H is a linear operator such that (Ax)ξ = A(ξ)x and Gβ :H→R∪ {∞}.

The composite stochastic objective resulting from smoothing the indicators becomes

Fβk (x ,ξ) := f (x ,ξ)+ gβk (x ,ξ),

with gradient ∇Fβk (x ,ξ) := ∇ f (x ,ξ)+∇gβk (x ,ξ). We will often drop the second ξ in the arguments
of g , since we distinguish its deterministic version through capitalization (different from f ).

We annotate averaged stochastic quantities with the symbol ∼. For example, the averaged
stochastic gradient of the constraints is expressed as ∇̃x gβ(A(ξ)x). The optimal value of the dual
problem at A(ξ)x is denoted as

λ⋆
β(A(ξ)x) :=

1

β

(
A(ξ)x −projb(ξ)(A(ξ)x)

)
. (A.7)
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Finally, the smoothed gap is defined as

Sβ(x) := Fβ(x)− f ⋆.

Technical observations. We now state a series of simple implications that will be used to prove
the main results.

From the definition of Gβ we get that

∇xGβ(Ax) = E
[∇x gβ(A(ξ)x)

]
= E

[
A⊤(ξ)∇gβ(A(ξ)x)

]
= E

[
1

β
A⊤(ξ)

(
A(ξ)x −projb(ξ)(A(ξ)x)

)]
. (A.8)

From the smoothness of Gβ, the iterate update rule and the non-expansiveness of projections, we
have that∥∥∇Gβ(Axk+1)−∇Gβ(Axk )

∥∥2

=

∥∥∥∥ 1

β
E
[

A⊤(ξ)
(

A(ξ)xk+1 −projb(ξ)(A(ξ)xk+1)
)
− A⊤(ξ)

(
A(ξ)xk −projb(ξ)(A(ξ)xk )

)]∥∥∥∥2

≤ 1

β2 E

[∥∥∥A⊤(ξ)A(ξ) (xk+1 −xk )+ A⊤(ξ)
(
projb(ξ)(A(ξ)xk )−projb(ξ)(A(ξ)xk+1)

)∥∥∥2
]

≤ 1

β2 E

[
2
∥∥A⊤(ξ)A(ξ) (xk+1 −xk )

∥∥2 +2
∥∥∥A⊤(ξ)

(
projb(ξ)(A(ξ)xk )−projb(ξ)(A(ξ)xk+1)

)∥∥∥2
]

≤ 2γ2
k L2

AD2
X

β2 + 2

β2 E

[
∥A(ξ)∥2

∥∥∥projb(ξ)(A(ξ)xk )−projb(ξ)(A(ξ)xk+1)
∥∥∥2

]
≤ 2γ2

k L2
AD2

X
β2 + 2

β2 E
[∥A(ξ)∥2 ∥A(ξ)xk − A(ξ)xk+1∥2]

≤ 4γ2
k L2

AD2
X

β2 . (A.9)

Further, we make the following statement about the variance of gβ(A(ξ)x ,ξ).

E
[∥∥∇gβ(A(ξ)x)−∇Gβ(Ax)

∥∥2
]

= E
[∥∥∇gβ(A(ξ)x)

∥∥2 −∥∥∇Gβ(Ax)
∥∥2

]
≤ E

[∥∥∇gβ(A(ξ)x)
∥∥2

]
≤ 1

β2 E

[
∥A(ξ)∥2

∥∥∥A(ξ)x −projb(ξ)(A(ξ)x)
∥∥∥2

]
≤ 1

β2 E
[
∥A(ξ)∥2

∥∥A(ξ)x − A(ξ)x⋆
∥∥2

]
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≤ L2
AD2

X
β2 , (A.10)

where we used the definition of Gβ and
∥∥∥ A(ξ)x −projb(ξ)(A(ξ)x)

∥∥∥2 ≤ ∥ A(ξ)x − A(ξ)x⋆ ∥2.

We observe that the smoothness constant of gβ(A(ξ)x) is L A
β , since

∥∥∇gβ(A(ξ)x)−∇gβ(A(ξ)y)
∥∥

=

∥∥∥∥ A⊤(ξ)

2β

(
A(ξ)x −projb(ξ)(A(ξ)x)

)
− A⊤(ξ)

2β

(
A(ξ)y −projb(ξ)(A(ξ)y)

)∥∥∥∥
≤ L A

2β

∥∥x − y
∥∥+ ∥ A(ξ)∥

2β

∥∥∥projb(ξ)(A(ξ)y)−projb(ξ)(A(ξ)x)
∥∥∥

≤ L A

2β

∥∥x − y
∥∥+ ∥ A(ξ)∥

2β

∥∥ A(ξ)y − A(ξ)x
∥∥

≤ L A

β

∥∥x − y
∥∥ . (A.11)

This implies that Fβ(x ,ξ) is (L f + L A
β )-smooth.

A direct consequence of relation (A.5), we get the following useful property for two consecutive
(as per the algorithm’s iterations) values of the smoothing parameter.

gβk (A(ξ)xk ) ≤ gβk−1 (A(ξ)xk )+ βk−1 −βk

2

∥∥∥λ⋆
βk

(A(ξ)xk )
∥∥∥2

(A.12)

We end this introductory section with a triplet of technical results that we will refer to in our
proofs. First, we restate Lemma 3.1 of Fercoq et al. [81] for completeness, as we rely on it
for translating the convergence rates from the smoothed gap onto objective suboptimality and
feasibility.

Lemma A.1 (Restatement of Lemma 3.1 of Fercoq et al. [81]).
Let (x⋆,λ⋆) be a saddle point of L(x ,λ) := f (x)+

∫
〈A(ξ)x ,λ(ξ)〉− suppb(ξ)(λ(ξ))µ(dξ), where

suppX (x) := supz∈X 〈z , x〉. Then the following holds:

1. Sβ(x) ≥−β
2

∥∥λ⋆
∥∥2

2. F (x)−F (x⋆) ≥− 1

4β

∫
dist(A(ξ)x ,b(ξ))2dP (ξ)−β∥∥λ⋆

∥∥2

3. F (x)−F (x⋆) ≤ Sβ(x)

4.
∫

dist(A(ξ)x ,b(ξ))2dP (ξ) ≤ 4β2∥λ⋆∥2 +4βSβ(x)
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Second, we will require an adaptation of Lemma 17 from Mokhtari, Hassani, and Karbasi [155],
which we state and prove below.

Lemma A.2 (Adaptation of Lemma 17 of Mokhtari, Hassani, and Karbasi [155]).
Let 0 <α≤ 1, 1 ≤β≤ 2, b ≥ 0, c > 1, t0 ≥ 0. Let φk be a sequence of real numbers satisfying

φk ≤ (1− c

(k +k0)α
)φk−1 +

b

(k +k0)β
. (A.13)

Then, the sequence φk converges to zero at the rate

φk ≤ Q

(k +1+k0)β−α
, (A.14)

when α = 1, 1 <β≤ 2, or α = 2
3 , β = 1, where Q = max(φ0(k0 +1)β−α,b/(c −1)).

Proof. We use induction. By the definition of Q, φ0 ≤Q/((k0 +1)β−α), so the base step holds.
Now assume it holds for k and check for k+1. To ease the notation let y = k+1+k0. When α = 1,

φk+1 ≤
(
1− c

y

)
Q

yβ−1
+ b

yβ
=

(
1− c

y

)
Q

yβ−1
+ (c −1)Q

yβ
=

Q

yβ−1
− Q

yβ
≤ Q

(y +1)β−1
,

where the last step follows since 1 ≤ β ≤ 2, i.e. y−1
yβ

≤ 1
(y+1)β−1 ⇐⇒ (y−1)(y+1)β

(y+1)yβ
≤ 1 and

(y−1)(y+1)β

(y+1)yβ
≤ (y−1)(y+1)2

(y+1)y2 ≤ 1, since β≤ 2.

For general α,β, we get 1
yβ−α − 1

yβ
≤ 1

(y+1)β−α ⇐⇒ yα−1
yβ

≤ (y+1)α

(y+1)β
. If α = 2/3,β = 1, then

y2/3−1
y ≤ (y+1)2/3

(y+1) ⇐⇒ (y2/3−1)(y+1)1/3

y ≤ 1 ⇐⇒ (y2/3−1)3(y+1)
y3 ≤ 1 ⇐⇒ (y2−3y4/3+3y2/3−1)(y+1)

y3 ≤
1 ⇐⇒ (y3+y2−3y7/3−3y4/3+3y5/3+3y2/3−y−1

y3 ≤ 1 which holds for y ≥ 1.

Finally, we require the following technical result.

Lemma A.1. Let ρn = 1− 1
n and ρm = 1− 1

m , m,n ≥ 1. We present the following bounds:

a)
k∑

i =1
iρi

n < n2 and
k∑

i =1
iρi

m < m2

b)
k∑

i =1
iρi /2

n log i < 16n3

Proof. a) Note that since ρn ∈ [0,1),
∑k

i =1 iρi
n ≤∑k

i =1 iρi−1
n . Furthermore,

k∑
i =1

iρi−1
n ≤

∞∑
i =1

iρi−1
n =

∞∑
i =1

∂ρi
n

∂ρn
=

∂
∞∑

i =1
ρi

n

∂ρn
=
∂

[
1

1−ρn
−1

]
∂ρn

=
1

(1−ρn)2 = n2, (A.15)
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where the inequality comes from all terms being non-negative, and the second equality comes
from the fact that the infinite sum exists for any ρn ∈ (−1,1) and is the Taylor series expansion of

1
1−ρn

.

b) Use the loose bound log i < i +1 and the fact that pρn ∈ [0,1):

k∑
i =1

iρi /2
n log i ≤

∞∑
i =1

iρi /2
n log i ≤

∞∑
i =1

i (i +1)
p
ρn

i−1 (A.16)

=
∂2 ∑∞

i =2
p
ρn

i

∂(
p

pn)2 =
∂2 1

1−pρn
−p

ρn −1

∂(
p

pn)2 =
2

(1−p
ρn)3 (A.17)

where the inequalities and equalities follow the same reasoning as in point a). Further noting that

2

(1−p
ρn)3 =

2(1+p
ρn)3

(1−ρn)3 = 2n3(1+p
ρn︸ ︷︷ ︸

≤2

)3 ≤ 16n3.
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A.1 Analysis of H-1SFW

This section provides the omitted proofs of Section 2.4.3 in the main text. We start with a
supporting lemma needed for the proof of Lemma 2.1.

Lemma A.3. Let dk = (1−ρk )dk−1 +ρk∇Fβk (xk ,ξk ), ρk ∈ [0,1]. Then, for all k,

Ek
[∥∇Fβk (xk )−dk∥2]

≤ (1− ρk

2
)∥∇Fβk−1 (xk−1)−dk−1∥2 +2ρ2

k

(
σ2

f +
L2

AD2
X

β2
k

)

+ 2

ρk

[
2L2

f γ
2
k−1D2

X +2L2
AD2

X

[(
1

βk
− 1

βk−1

)2

+ 4γk−1

βk−1

∣∣∣∣ 1

βk
− 1

βk−1

∣∣∣∣+ 4γ2
k−1

β2
k−1

]]
, (A.18)

where Ek [·] = E[·|Fk ] and Fk is a σ-algebra measuring all sources of randomness up to step k.

Proof. We use the definition dk = (1−ρk )dk−1 +ρk∇Fβk (xk ,ξk ) to write the difference

∥∇Fβk (xk )−dk∥2

= ∥∇Fβk (xk )− (1−ρk )dk−1 −ρk∇Fβk (xk ,ξk )∥2

= ∥∇Fβk (xk )+ (1−ρk )∇Fβk−1 (xk−1)− (1−ρk )∇Fβk−1 (xk−1)− (1−ρk )dk−1 −ρk∇Fβk (xk ,ξk )∥2

= ∥ρk (∇Fβk (xk )−∇Fβk (xk ,ξk ))+ (1−ρk )(∇Fβk (xk )−∇Fβk−1 (xk−1))

+ (1−ρk )(∇Fβk−1 (xk−1)−dk−1)∥2

= ρ2
k∥∇Fβk (xk )−∇Fβk (xk ,ξk )∥2 + (1−ρk )2∥∇Fβk (xk )−∇Fβk−1 (xk−1)∥2

+ (1−ρk )2∥∇Fβk−1 (xk−1)−dk−1∥2

+2ρk (1−ρk )〈∇Fβk (xk )−∇Fβk (xk ,ξk ),∇Fβk (xk )−∇Fβk−1 (xk−1)〉

+2ρk (1−ρk )〈∇Fβk (xk )−∇Fβk (xk ,ξk ),∇Fβk−1 (xk−1)−dk−1〉

+2(1−ρk )2〈∇Fβk (xk )−∇Fβk−1 (xk−1),∇Fβk−1 (xk−1)−dk−1〉

We remark that Ek
[∇Fβk (xk ,ξk )

]
= ∇Fβk (xk ), so the first two linear terms are 0. We now take

expectations conditioned on Fk ,

Ek
[∥∇Fβk (xk )−dk∥2]

= ρ2
kEk

[∥∇Fβk (xk )−∇Fβk (xk ,ξk )∥2]+ (1−ρk )2∥∇Fβk (xk )−∇Fβk−1 (xk−1)∥2

+ (1−ρk )2∥∇Fβk−1 (xk−1)−dk−1∥2
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+2(1−ρk )2〈∇Fβk (xk )−∇Fβk−1 (xk−1),∇Fβk−1 (xk−1)−dk−1〉 (A.19)

Invoking the variance bound (A.10), we have

Ek
[∥∇Fβk (xk )−∇Fβk (xk ,ξk )∥2]

≤ 2Ek
[∥∇ f (xk )−∇ f (xk ,ξk )∥2]+2Ek

[∥Gβk (Axk )−∇gβk (A(ξ)xk ,ξk )∥2]
≤ 2

(
σ2

f +
L2

AD2
X

β2
k

)
.

For the linear term, we use Young’s inequality for some σk > 0 to get

2(1−ρk )2〈∇Fβk (xk )−∇Fβk−1 (xk−1),∇Fβk−1 (xk−1)−dk−1〉
≤ (1−ρk )2σk∥∇Fβk−1 (xk−1)−dk−1∥2 + (1−ρk )2(1/σk )∥∇Fβk (xk )−∇Fβk−1 (xk−1)∥2.

For the ∥∇Fβk (xk )−∇Fβk−1 (xk−1)∥2 term, we use the iterate update rule and observation (A.9) to
get

∥∇Fβk (xk )−∇Fβk−1 (xk−1)∥2

= ∥∇ f (xk )−∇ f (xk−1)+∇Gβk (Axk )−∇Gβk−1 (Axk−1)∥2

≤ 2∥∇ f (xk )−∇ f (xk−1)∥2 +2∥∇Gβk (Axk )−∇Gβk−1 (Axk )+∇Gβk−1 (Axk )−∇Gβk−1 (Axk−1)∥2

≤ 2L2
f ∥xk −xk−1∥2 +2∥∇Gβk (Axk )−∇Gβk−1 (Axk )∥2 +2∥∇Gβk−1 (Axk )−∇Gβk−1 (Axk−1)∥2

+4∥∇Gβk (Axk )−∇Gβk−1 (Axk )∥∥∇Gβk−1 (Axk )−∇Gβk−1 (Axk−1)∥

≤ 2L2
f γ

2
k−1D2

X +2L2
AD2

X

(
1

βk
− 1

βk−1

)2

+ 8γ2
k−1L2

AD2
X

β2
k−1

+8γk−1

∣∣∣∣ 1

βk
− 1

βk−1

∣∣∣∣ L2
AD2

X
βk−1

.

Putting everything back into (A.19) we obtain

Ek
[∥∇Fβk (xk )−dk∥2]

= ρ2
kEk

[∥∇Fβk (xk )−∇Fβk (xk ,ξk )∥2]+ (1−ρk )2(1+σ−1
k )∥∇Fβk (xk )−∇Fβk−1 (xk−1)∥2

+ (1−ρk )2(1+σk )∥∇Fβk−1 (xk−1)−dk−1∥2
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≤ (1−ρk )2(1+σk )∥∇Fβk−1 (xk−1)−dk−1∥2 +2ρ2
k

(
σ2

f +
L2

AD2
X

β2
k

)

+ (1−ρk )2(1+σ−1
k )

[
2L2

f γ
2
k−1D2

X +2L2
AD2

X

[(
1

βk
− 1

βk−1

)2

+ 4γk−1

βk−1

∣∣∣∣ 1

βk
− 1

βk−1

∣∣∣∣+ 4γ2
k−1

β2
k−1

]]
.

Using the facts ρk ≤ 1, (1−ρk )2 ≤ (1−ρk ), (1−ρk )(1+ ρk

2 ) ≤ (1−ρk /2), (1−ρk )(1+ 2
ρk

) ≤ 2
ρk

and setting σk := ρk

2 , we get

Ek
[∥∇Fβk (xk )−dk∥2]

≤
(
1− ρk

2

)
∥∇Fβk−1 (xk−1)−dk−1∥2 +2ρ2

k

(
σ2

f +
L2

AD2
X

β2
k

)

+ 2

ρk

[
2L2

f γ
2
k−1D2

X +2L2
AD2

X

[(
1

βk
− 1

βk−1

)2

+ 4γk−1

βk−1

∣∣∣∣ 1

βk
− 1

βk−1

∣∣∣∣+ 4γ2
k−1

β2
k−1

]]

87



Chapter A Appendix for Chapter 2

A.1.1 Proof of Lemma 2.1

Lemma 2.1. Let ρk = 3
(k+5)2/3 , γk = 2

k+1 , βk = β0

(k+1)1/6 , β0 > 0 in Algorithm 2.1. Then, for all k,

E
[∥∇Fβk (xk )−dk∥2]≤ C1

(k +5)1/3
,

where C1 := max

{
61/3∥∇Fβ0 (x0)−d0∥2,2

[
18σ2

f +112L2
f D2

X + 522L2
AD2

X
β2

0

]}
.

Proof. We apply the expectation with respect to the whole history to (A.18),

E
[∥∇Fβk (xk )−dk∥2]≤ (1− ρk

2
)E

[∥∇Fβk−1 (xk−1)−dk−1∥2]+2ρ2
k

(
σ2

f +
L2

AD2
X

β2
k

)

+ 2

ρk

[
2L2

f γ
2
k−1D2

X +2L2
AD2

X

[(
1

βk
− 1

βk−1

)2

+ 4γk−1

βk−1

∣∣∣∣ 1

βk
− 1

βk−1

∣∣∣∣+ 4γ2
k−1

β2
k−1

]]
,

and estimate the rate of
∣∣∣ 1
βk

− 1
βk−1

∣∣∣
0 ≤ 1

βk
− 1

βk−1

=
(k +1)1/6 − (k)1/6

β0

=
1

β0
[
(k +1)5/6 + (k +1)4/6k1/6 + (k +1)3/6k2/6 + (k +1)2/6k3/6 + (k +1)1/6k4/6 +k5/6

]
≤ 1

6β0k5/6
.

Replacing the parameter rates, we further get

E
[∥∇Fβk (xk )−dk∥2]
≤

(
1− 3

2(k +5)2/3

)
E
[∥∇Fβk−1 (xk−1)−dk−1∥2]+ 18

(k +5)4/3

(
σ2

f +
L2

AD2
X (k +1)2/6

β2
0

)

+ 2(k +5)2/3

3

[
8L2

f D2
X

k2 + 2L2
AD2

X
β2

0

(
1

36k10/6
+ 4

3k10/6
+ 16

k10/6

)]

≤
(
1− 3

2(k +5)2/3

)
E
[∥∇Fβk−1 (xk−1)−dk−1∥2]+ 18σ2

f

k +5
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+ 18L2
AD2

X
β2

0(k +5)
+ 2(k +5)2/3

3k10/6

(
8L2

f D2
X + 36L2

AD2
X

β2
0

)

≤
(
1− 3

2(k +5)2/3

)
E
[∥∇Fβk−1 (xk−1)−dk−1∥2]+ 18σ2

f

k +5

+ 18L2
AD2

X
β2

0(k +5)
+ 14

k +5

(
8L2

f D2
X + 36L2

AD2
X

β2
0

)
(A.20)

=

(
1− 3

2(k +5)2/3

)
E
[∥∇Fβk−1 (xk−1)−dk−1∥2]+ 1

k +5

(
18σ2

f +112L2
f D2

X + 522L2
AD2

X
β2

0

)
,

where line (A.20) follows from the fact that

(k +5)2/3

k10/6
=

(k +5)4/6

k10/6

(k +5)6/6

(k +5)6/6
=

(
1+ 5

k

)4/6+6/6 1

(k +5)6/6
=

(
1+ 5

k

)5/3 1

k +5
< 65/3

k +5
< 21

k +5

We can now invoke Lemma A.3 for b = 18σ2
f +112L2

f D2
X + 522L2

AD
2
X

β2
0

and c = 3
2 , α = 2

3 and β = 1,
k0 = 5 to conclude the result.
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A.1.2 Proof of Theorem 2.1

Theorem 2.1. Consider Algorithm 2.1 with parameters ρk = 3
(k+5)2/3 , γk = 2

k+1 , βk = β0

(k+1)1/6 , β0 >
0 (identical to Lemma 2.1). Then, for all k,

E
[
Sβk (xk+1)

]≤ C2

k1/6
,

where C2 := max
{

S0(x1), b = 2DX
p

C1 +2D2
X

(
L f + L A

β0

)}
and C1 is defined in Lemma 2.1.

Proof. We essentially follow the steps for proving Theorem 9 of [143], modified to suit our
setting. Using observation (A.11) and the definition of DX :

Fβk (xk+1) = Ek+1
[
Fβk (xk+1,ξ)

]
≤ Ek+1

[
Fβk (xk ,ξ)+〈∇Fβk (xk ,ξ), xk+1 −xk〉+

1

2

(
L f +

L A

βk

)
∥xk+1 −xk ∥2

]
≤ Fβk (xk )+γk〈∇Fβk (xk ), wk −xk〉+

γ2
k

2

(
L f +

L A

βk

)
D2

X (A.21)

We treat the term 〈∇Fβk (xk ), wk − xk〉 separately, using the fact that wk ∈ argminy 〈dk , y〉 and
the definition of DX :

〈∇Fβk (xk ), wk −xk〉 = 〈∇Fβk (xk )−dk , wk −xk〉+〈dk , wk −xk〉
= 〈∇Fβk (xk )−dk , wk −x⋆〉+〈∇Fβk (xk )−dk , x⋆−xk〉+〈dk , wk −xk〉
≤ 〈∇Fβk (xk )−dk , wk −x⋆〉+〈∇Fβk (xk )−dk , x⋆−xk〉+〈dk , x⋆−xk〉
= 〈∇Fβk (xk )−dk , wk −x⋆〉+〈∇Fβk (xk ), x⋆−xk〉
≤ ∥∇Fβk (xk )−dk∥∥wk −x⋆∥+〈∇Fβk (xk ), x⋆−xk〉
≤ ∥∇Fβk (xk )−dk∥DX +〈∇Fβk (xk ), x⋆−xk〉
= ∥∇Fβk (xk )−dk∥DX +〈∇ f (xk )+∇xGβk (Axk ), x⋆−xk〉. (A.22)

Using property (A.4) we observe that

〈∇xGβk (Axk ), x⋆−xk〉 = Ek
[〈∇x gβk (A(ξ)xk ), x⋆−xk〉

]
= Ek

[〈∇gβk (A(ξ)xk ), A(ξ)x⋆− A(ξ)xk〉
]

≤ Ek

[
g (A(ξ)x⋆)− gβk (A(ξ)xk )− βk

2

∥∥∥λ⋆
βk

(A(ξ)xk )
∥∥∥2

]
= G(Ax⋆)−Gβk (Axk )− βk

2
Ek

[∥∥∥λ⋆
βk

(A(ξ)xk )
∥∥∥2

]
.
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Using the above and the convexity of f , we obtain

〈∇Fβk (xk ), wk −xk〉

≤ ∥∇Fβk (xk )−dk∥DX + f ⋆+G(Ax⋆)− f (xk )−Gβk (Axk )︸ ︷︷ ︸
=−Fβk

(xk )

−βk

2
Ek

[∥∥∥λ⋆
βk

(A(ξ)xk )
∥∥∥2

]
.

Substituting everything back into Equation (A.21) and noting that G(Ax⋆) = 0:

Fβk (xk+1) ≤ (1−γk )Fβk (xk )+γk∥∇Fβk (xk )−dk∥DX +γk f ⋆

− γkβk

2
Ek

[∥∥∥λ⋆
βk

(A(ξ)xk )
∥∥∥2

]
+ γ2

k

2

(
L f +

L A

βk

)
D2

X .

Using observation (A.12) we note that

Fβk (xk ) = Ek
[

f (xk ,ξ)+ gβk (A(ξ)xk )
]

≤ Ek

[
f (xk ,ξ)+ gβk−1 (A(ξ)xk )+ βk−1 −βk

2

∥∥∥λ⋆
βk

(A(ξ)xk )
∥∥∥2

]

= Fβk−1 (xk )+Ek

[
βk−1 −βk

2

∥∥∥λ⋆
βk

(A(ξ)xk )
∥∥∥2

]
.

Substituting the above, we obtain

Fβk (xk+1) ≤ (1−γk )Fβk−1 (xk )+γk∥∇Fβk (xk )−dk∥DX +γk f ⋆

+ (1−γk )(βk−1 −βk )−γkβk

2
Ek

[∥∥∥λ⋆
βk

(A(ξ)xk )
∥∥∥2

]
+ γ2

k

2

(
L f +

L A

βk

)
D2

X

≤ (1−γk )Fβk−1 (xk )+γk∥∇Fβk (xk )−dk∥DX +γk f ⋆+ γ2
k

2

(
L f +

L A

βk

)
D2

X , (A.23)

where the last line comes from the fact that (1−γk )(βk−1 −βk )−γkβk < 0:

(1−γk )(βk−1 −βk )−γkβk =βk−1 −βk −γkβk−1 =
β0

k1/6
− β0

(k +1)1/6
− 2β0

(k +1)k1/6

=
β0

k1/6

(
1− k1/6

(k +1)1/6
− 2

k +1

)
=
β0

k1/6

(
k −1

k +1
− k1/6

(k +1)1/6

)
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< β0

k1/6

 k

k +1︸ ︷︷ ︸
∈(0,1)

− k1/6

(k +1)1/6


< 0.

Starting from Equation (A.23) and subtracting f ⋆ from both sides, noting the definition of
Sβk (x) := Fβ(x)− f ⋆ and taking the expectation on both sides we get

E
[
Sβk (xk+1)

]≤ (1−γk )E
[
Sβk−1 (xk )

]+ γ2
k

2
D2

X

(
L f +

L A

βk

)
+γkE

[∥∇Fβk (xk )−dk∥
]DX . (A.24)

Replacing the parameter rates for the second term, we bound by

γ2
k

2
D2

X (L f +
L A

βk
) =

2D2
X L f

k2 + 2D2
X L A

β0k11/6

≤ 2D2
X

k7/6

(
L f +

L A

β0

)

For the last term we use the parameter rates and Lemma 2.1 together with Jensen’s inequality

E
[∥∇Fβk (xk )−dk∥

]
=

√
E
[∥∇Fβk (xk )−dk∥

]2 ≤
√
E
[∥∇Fβk (xk )−dk∥2

]
to get

γkDX E
[∥∇Fβk (xk )−dk∥

]
=

2DX
k +1

p
C1

(k +5)1/6
≤ 2DX

p
C1

k7/6
,

Substituting the above into (A.24), we get

E
[
Sβk (xk+1)

]≤ (
1− 2

k

)
E
[
Sβk−1 (xk )

]+ 2DX
p

C1 +2D2
X

(
L f + L A

β0

)
k7/6

.

Finally, we use Lemma A.2 with α = 1, β = 7/6, c = 2, b = 2DX
p

C1 +2D2
X

(
L f + L A

β0

)
to arrive at

the statement.
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A.1.3 Proof of Corollary 2.1

Corollary 2.1. The expected convergence in terms of objective suboptimality and feasibility of
Algorithm 2.1 is, respectively,∣∣E[

f (xk ,ξ)
]− f ⋆

∣∣ ∈O (
k−1/6)

√
E
[
dist(A(ξ)xk ,b(ξ))2

] ∈O (
k−1/6) .

Consequently, the oracle complexity is #(SFO) ∈O (
ϵ−6

)
and #(LMO) ∈O (

ϵ−6
)
.

Proof. The stated result comes from applying Lemma A.1 in conjunction with the convergence
smoothed-gap rate obtained in Theorem 2.1. Considering that, at every iteration, we take one
stochastic sample and compute one LMO, along with the O (

k−1/6
)

convergence rate, we obtain
the stated oracle complexities.
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A.2 Analysis of H-SPIDER-FW

This section provides the omitted proofs of Section 2.4.4 in the main text. We start with a
supporting lemma, needed for the proof of Lemma 2.2 and Lemma 2.3.

Lemma A.4. Let vt ,k = vt ,k−1 −∇̃Fβt ,k−1 (xt ,k−1,ξSt ,k )+∇̃Fβt ,k (xt ,k ,ξSt ,k ), with |St ,k | = Kt = 2t−1

and vt ,1 = ∇̃Fβt ,1 (xt ,1,ξQt ). Also, let γt ,k = 2
Kt+k , βt ,k = β0p

Kt+k
. Then, for a fixed t and for all

k ≤ Kt ,

Et ,1

[∥∥∇Fβt ,k (xt ,k )−vt ,k
∥∥2

]
≤ 2D2

X
Kt +k

(
8L2

f +
98L2

A

β2
0

)
+Et ,1

[∥∥∇Fβ1 (x1)−v1
∥∥2

]
(A.25)

Proof.∥∥∇Fβt ,k (xt ,k )−vt ,k
∥∥2

=
∥∥∇Fβt ,k (xt ,k )−vt ,k−1 −∇̃Fβt ,k (xt ,k ,ξSt ,k )+∇̃Fβt ,k−1 (xt ,k−1,ξSt ,k )

∥∥2

=
∥∥∇Fβt ,k (xt ,k )−∇Fβt ,k−1 (xt ,k−1)+∇Fβt ,k−1 (xt ,k−1)−vt ,k−1

−∇̃Fβt ,k (xt ,k ,ξSt ,k )+∇̃Fβt ,k−1 (xt ,k−1,ξSt ,k )
∥∥2

=
∥∥∇Fβt ,k−1 (xt ,k−1)−vt ,k−1

∥∥2

+∥∥∇Fβt ,k (xt ,k )−∇Fβt ,k−1 (xt ,k−1)−∇̃Fβt ,k (xt ,k ,ξSt ,k )+∇̃Fβt ,k−1 (xt ,k−1,ξSt ,k )
∥∥2

+2〈∇Fβt ,k−1 (xt ,k−1)−vt ,k−1, ∇Fβt ,k (xt ,k )−∇Fβk−1(xt ,k−1)

−∇̃Fβt ,k (xt ,k ,ξSt ,k )+∇̃Fβt ,k−1 (xt ,k−1,ξSt ,k )〉

We now take the expectation on both sides conditioned on all randomness up to step (t ,k) (i.e.
the expectations are taken solely with regards to ξSt ,k , and we denote Et ,k [·] := E

[· |Ft ,k
]
).

Et ,k

[∥∥∇Fβt ,k (xt ,k )−vt ,k
∥∥2

]
=

∥∥∇Fβt ,k−1 (xt ,k−1)−vt ,k−1
∥∥2

+Et ,k

[∥∥∇Fβt ,k (xt ,k )−∇Fβt ,k−1 (xt ,k−1)−∇̃Fβt ,k (xt ,k ,ξSt ,k )+∇̃Fβt ,k−1 (xt ,k−1,ξSt ,k )
∥∥2

]
+2〈∇Fβt ,k−1 (xt ,k−1)−vt ,k−1,

Et ,k
[∇Fβt ,k (xt ,k )−∇Fβt ,k−1 (xt ,k−1)−∇̃Fβt ,k (xt ,k ,ξSt ,k )+∇̃Fβt ,k−1 (xt ,k−1,ξSt ,k )

]︸ ︷︷ ︸
=000d , since ∇Fβ(x)=E

[
∇̃F (x ,ξSt ,k

)
] 〉

=
∥∥∇Fβt ,k−1 (xt ,k−1)−vt ,k−1

∥∥2
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+Et ,k

[∥∥∇Fβt ,k (xt ,k )−∇Fβt ,k−1 (xt ,k−1)−∇̃Fβt ,k (xt ,k ,ξSt ,k )+∇̃Fβt ,k−1 (xt ,k−1,ξSt ,k )
∥∥2

]
︸ ︷︷ ︸

=T

(A.26)

We continue by bounding T and get

T = Et ,k

[∥∥∇Fβt ,k (xt ,k )−∇Fβt ,k−1 (xt ,k−1)−∇̃Fβt ,k (xt ,k ,ξSt ,k )+∇̃Fβt ,k−1 (xt ,k−1,ξSt ,k )
∥∥2

]

= Et ,k

[∥∥∥∥∥ 1

Kt

Kt∑
i =1

∇Fβt ,k (xt ,k )−∇Fβt ,k−1 (xt ,k−1)−∇Fβt ,k (xt ,k ,ξi )+∇Fβt ,k−1 (xt ,k−1,ξi )

∥∥∥∥∥
2]

(A.27)

=
1

K 2
t

Et ,k

[
Kt∑
i =1

∥∥∇Fβt ,k (xt ,k )−∇Fβt ,k−1 (xt ,k−1)−∇Fβt ,k (xt ,k ,ξi )+∇Fβt ,k−1 (xt ,k−1,ξi )
∥∥2

]

+ 2

K 2
t

Et ,k
[ ∑

i , j<Kt
i< j

〈∇Fβt ,k (xt ,k )−∇Fβt ,k−1 (xt ,k−1)−∇Fβt ,k (xt ,k ,ξi )+∇Fβt ,k−1 (xt ,k−1,ξi ),

∇Fβt ,k (xt ,k )−∇Fβt ,k−1 (xt ,k−1)−∇Fβt ,k (xt ,k ,ξ j )+∇Fβt ,k−1 (xt ,k−1,ξ j )〉]
(A.28)

=
1

K 2
t

Kt∑
i =1
Et ,k

[∥∥∇Fβt ,k (xt ,k )−∇Fβt ,k−1 (xt ,k−1)−∇Fβt ,k (xt ,k ,ξi )+∇Fβt ,k−1 (xt ,k−1,ξi )
∥∥2

]
(A.29)

=
Kt

K 2
t

Et ,k

[∥∥∇Fβt ,k (xt ,k )−∇Fβt ,k−1 (xt ,k−1)−∇Fβt ,k (xt ,k ,ξ)+∇Fβt ,k−1 (xt ,k−1,ξ)
∥∥2

]

=
1

Kt
Et ,k∥∇ f (xt ,k )−∇ f (xt ,k−1)−∇ f (xt ,k ,ξ)+∇ f (xt ,k−1,ξ)

+∇Gβt ,k (Axt ,k )−∇Gβt ,k−1 (Axt ,k−1)−∇gβt ,k (A(ξ)xt ,k )+∇gβt ,k−1 (A(ξ)xt ,k−1)∥2

≤ 2

Kt
Et ,k∥∇ f (xt ,k )−∇ f (xt ,k−1)−∇ f (xt ,k ,ξ)+∇ f (xt ,k−1,ξ)∥2︸ ︷︷ ︸

=T1

+ 2

Kt
Et ,k∥∇Gβt ,k (Axt ,k )−∇Gβt ,k−1 (Axt ,k−1)−∇gβt ,k (A(ξ)xt ,k )+∇gβt ,k−1 (A(ξ)xt ,k−1)∥2.︸ ︷︷ ︸

=T2

Line (A.27) comes from the use of an averaged gradient with batch size Kt . Line (A.28) comes
from applying the square norm to the inner sum and linearity of expectation. Line (A.29) comes
from passing the expectation inside the inner product as allowed by the independence of the
samples A(ξi ) and A(ξ j ) (if X ⊥ Y , then E [X Y ] = E [X ]E [Y ]). This results in each term being
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zero owing to stochastic gradient unbiasedness.

We evaluate the terms T1 and T2 separately:

T2 =
2

Kt
Et ,k∥∇Gβt ,k (Axt ,k )−∇Gβt ,k−1 (Axt ,k−1)−∇gβt ,k (A(ξ)xt ,k )+∇gβt ,k−1 (A(ξ)xt ,k−1)∥2

=
2

Kt
Et ,k

[∥∥∇Gβt ,k (Axt ,k )−∇Gβt ,k−1 (Axt ,k−1)
∥∥2

−2〈∇Gβt ,k (Axt ,k )−∇Gβt ,k−1 (Axt ,k−1), ∇gβt ,k (A(ξ)xt ,k )−∇gβt ,k−1 (A(ξ)xt ,k−1)〉
+∥∥∇gβt ,k (A(ξ)xt ,k )−∇gβt ,k−1 (A(ξ)xt ,k−1)

∥∥2 ]
=

2

Kt

(∥∥∇Gβt ,k (Axt ,k )−∇Gβt ,k−1 (Axt ,k−1)
∥∥2

−2〈∇Gβt ,k (Axt ,k )−∇Gβt ,k−1 (Axt ,k−1), Et ,k
[∇gβt ,k (A(ξ)xt ,k )−∇gβt ,k−1 (A(ξ)xt ,k−1)

]〉
+Et ,k

[∥∥∇gβt ,k (A(ξ)xt ,k )−∇gβt ,k−1 (A(ξ)xt ,k−1)
∥∥2

])
=

2

Kt

(
Et ,k

[∥∥∇gβt ,k (A(ξ)xt ,k )−∇gβt ,k−1 (A(ξ)xt ,k−1)
∥∥2

]
−∥∥∇Gβt ,k (Axt ,k )−∇Gβt ,k−1 (Axt ,k−1)

∥∥2 )
≤ 2

Kt
Et ,k

[∥∥∇gβt ,k (A(ξ)xt ,k )−∇gβt ,k (A(ξ)xt ,k−1)+∇gβt ,k (A(ξ)xt ,k−1)−∇gβt ,k−1 (A(ξ)xt ,k−1)
∥∥2

]
=

2

Kt
Et ,k

[
∥ 1

βt ,k
A⊤(ξ)A(ξ)

(
xt ,k −xt ,k−1

)+ 1

βt ,k
A⊤(ξ)

[
projb(ξ)

(
A(ξ)xt ,k−1

)−projb(ξ)

(
A(ξ)xt ,k

)]
+

(
1

βt ,k
− 1

βt ,k−1

)
A⊤(ξ)

[
A(ξ)xt ,k−1 −projb(ξ)

(
A(ξ)xt ,k−1

)]∥2
]

≤ 2

Kt
Et ,k

[3L2
A

β2
t ,k

∥xt ,k −xt ,k−1∥2 + 3L A

β2
t ,k

∥projb(ξ)

(
A(ξ)xt ,k−1

)−projb(ξ)

(
A(ξ)xt ,k

)∥2

+3L A

(
1

βt ,k
− 1

βt ,k−1

)2

∥A(ξ)xt ,k−1 −projb(ξ)

(
A(ξ)xt ,k−1

)∥2
]

≤ 2

Kt
Et ,k

[
3L2

A

β2
t ,k

∥xt ,k −xt ,k−1∥2 + 3L2
A

β2
t ,k

∥xt ,k−1 −xt ,k∥2

+3L A

(
1

βt ,k
− 1

βt ,k−1

)2

∥A(ξ)xt ,k−1 − A(ξ)x⋆∥2

]
(A.30)

≤ 2

Kt

[6L2
Aγ

2
t ,k−1D2

X

β2
t ,k

+3L2
AD2

X

(
1

βt ,k
− 1

βt ,k−1

)2 ]
(A.31)

≤ 2L2
AD2

X
β2

0Kt (Kt +k −1)

[ 24(Kt +k)

(Kt +k −1)
+ 3

4

]
(A.32)
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≤ 98L2
AD2

X
β2

0Kt (Kt +k −1)
, (A.33)

where line (A.30) comes from the nonexpansiveness of projections and ∥A(ξ)xt ,k−1−projb(ξ)

(
A(ξ)xt ,k−1

)∥ ≤
∥A(ξ)xt ,k−1 − y∥, ∀y ∈ b(ξ), and line (A.31) comes from the iterate update rule and the definition
of DX . Line (A.32) comes from replacing the parameter rates and

0 ≤ 1

βt ,k
− 1

βt ,k−1
=

1

β0

(√
Kt +k −

√
Kt +k −1

)
=

1

β0

(
1√

Kt +k +
√

Kt +k −1

)

≤ 1

2β0
√

Kt +k −1
.

Now we evaluate T1 and use the fact that ∇ f (x ,ξ) are L f -Lipschitz:

T1 =
2

Kt
Et ,k

[∥∇ f (xt ,k )−∇ f (xt ,k−1)−∇ f (xt ,k ,ξ)+∇ f (xt ,k−1,ξ)∥2]
=

2

Kt

(
∥∇ f (xt ,k )−∇ f (xt ,k−1)∥2 +Et ,k

[∥∇ f (xt ,k ,ξ)−∇ f (xt ,k−1,ξ)∥2]
−2〈∇ f (xt ,k )−∇ f (xt ,k−1),Et ,k

[∇ f (xt ,k ,ξ)−∇ f (xt ,k−1,ξ)
]〉)

≤ 2

Kt
Et ,k

[∥∇ f (xt ,k ,ξ)−∇ f (xt ,k−1,ξ)∥2]
≤

2L2
f

Kt
∥xt ,k −xt ,k−1∥2

≤
2L2

f γ
2
t ,k−1D2

X

Kt

=
8L2

f D2
X

Kt (Kt +k −1)2 . (A.34)

Plugging in (A.34) and (A.33) into the expression of T , we get

T ≤
8L2

f D2
X

Kt (Kt +k −1)2 + 98L2
AD2

X
β2

0Kt (Kt +k −1)

≤
D2

X

(
8L2

f +
98L2

A

β2
0

)
Kt (Kt +k −1)

. (A.35)
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Telescoping the sum in Equation (A.26) we get

Et ,1

[∥∥∇Fβt ,k (xt ,k )−vt ,k
∥∥2

]
= Et ,1

[
Et ,2

[
. . .Et ,k

[∥∥∇Fβt ,k (xt ,k )−vt ,k
∥∥2

]]]

≤ D2
X

Kt

(
8L2

f +
98L2

A

β2
0

)
k∑

i =2

1

Kt + i −1
+Et ,1

[∥∥∇Fβt ,1 (xt ,1)−vt ,1
∥∥2

]
≤ D2

X
Kt

(
8L2

f +
98L2

A

β2
0

)
k∑

i =2

1
Kt+k

2

+Et ,1

[∥∥∇Fβt ,1 (xt ,1)−vt ,1
∥∥2

]
(A.36)

=
2D2

X
Kt

(
8L2

f +
98L2

A

β2
0

)
k −1

Kt +k
+Et ,1

[∥∥∇Fβt ,1 (xt ,1)−vt ,1
∥∥2

]
≤ 2D2

X
Kt +k

(
8L2

f +
98L2

A

β2
0

)
+Et ,1

[∥∥∇Fβt ,1 (xt ,1)−vt ,1
∥∥2

]
(A.37)

where line (A.36) uses

2 ≤ k ≤ 2t−1 = Kt =⇒ 2t−2 +1 ≤ Kt +k

2
≤ 2t−1 and

2 ≤ i ≤ k ≤ 2t−1 =⇒ 2t−1 +1 ≤ Kt + i −1 ≤ 2t −1

and line (A.37) comes from k −1 ≤ Kt .
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A.2.1 Proof of Lemma 2.2

Lemma 2.2 (Estimator variance for finite-sum problems). Consider Algorithm 2.2, and let
ξ be finitely sampled from set [n], ξQt = [n] and ξSt ,k , such that |St ,k | = Kt = 2t−1. Also, let
γt ,k = 2

Kt+k , βt ,k = β0p
Kt+k

, β0 > 0. Then, for a fixed t and for all k ≤ Kt ,

E
[∥∥∇Fβt ,k (xt ,k )−vt ,k

∥∥2
]
≤ C1

Kt +k
,

where C1 = 2D2
X

(
8L2

f +
98L2

A

β2
0

)
.

Proof. The result directly follows from the fact that we take a full gradient in the outer loop
(ξQt = [n]), thus zeroing out the term Et ,1

[∥∥∇Fβt ,1 (xt ,1)− vt ,1
∥∥2

]
of Lemma A.4. Taking the full

expectation on both sides gives us the stated result.
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A.2.2 Proof of Lemma 2.3

Lemma 2.3 (Estimator variance for general expectation problems). Consider Algorithm 2.2

and let ξ ∼ P (ξ) and ξQt such that |Qt | =

⌈
2Kt

β2
t ,1

⌉
. Also, let ξSt ,k , such that |St ,k | = Kt = 2t−1,

γt ,k = 2
Kt+k , βt ,k = β0p

Kt+k
, β0 > 0. Then, for a fixed t and for all k ≤ Kt ,

E
[∥∥∇Fβt ,k (xt ,k )−vt ,k

∥∥2
]
≤ C2

Kt +k
,

where C2 = 16L2
f D2

X +2L2
AD2

X

(
98
β2

0
+1

)
+2β2

0σ
2
f .

Proof. From the use of averaged gradient and the variance bound (A.10), we have

Et ,1

[∥∥∇Fβt ,1 (xt ,1)−vt ,1
∥∥2

]
≤ 1

|Qt |
Et ,1

[∥∥∇ f (xt ,1)−∇ f (xt ,1,ξ)+∇Gβt ,1 (Axt ,1)−∇gβt ,1 (A(ξ)xt ,1)
∥∥2

]
≤ 1

|Qt |
(
2Et ,1

[∥∥∇ f (xt ,1)−∇ f (xt ,1,ξ)
∥∥2

]
+2Et ,1

[∥∥∇Gβt ,1 (Axt ,1)−∇gβt ,1 (A(ξ)xt ,1)
∥∥2

)]

≤
β2

t ,1

2Kt

(
2σ2

f +
2L2

AD2
X

β2
t ,1

)

≤ β2
0

2Kt (Kt +1)

(
2σ2

f +
2L2

AD2
X (Kt +1)

β2
0

)

≤
β2

0σ
2
f

K 2
t

+ L2
AD2

X
Kt

≤ 1

Kt +k

(
2β2

0σ
2
f +2L2

AD2
X

)
,

where we used 2Kt ≥ Kt +k and K 2
t ≥ Kt = 2Kt

2 ≥ Kt+k
2 , ∀Kt ∈ N,Kt ≥ 1,∀k ≤ Kt . Replacing

in (A.37), we obtain the desired result.
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A.2.3 Proof of Theorem 2.2

Theorem 2.2. Consider Algorithm 2.2 with parameters γt ,k = 2
Kt+k , βt ,k = β0p

Kt+k
, β0 > 0, and

ξSt ,k , such that |St ,k | = Kt = 2t−1. Then,

• For ξ be finitely sampled from set [n], ξQt = [n] and ∀t ∈N, 1 ≤ k ≤ 2t−1,

E
[
Sβt ,k (xt ,k+1)

]≤ C3√
Kt +k +1

,

where C3 =max

{
Sβ1,0 (x1,1),2D2

X L f +2D2
X

√√√√16L2
f +

196L2
A

β2
0

+ 2D2
X L A

β0

}
;

• For ξ∼ P (ξ), ξQt such that |Qt | =

⌈
2Kt

β2
t ,1

⌉
and ∀t ∈N, 1 ≤ k ≤ 2t−1,

E
[
Sβt ,k (xt ,k+1)

]≤ C4√
Kt +k +1

,

where C4 =max

{
Sβ1,0 (x1,1), 2D2

X L f +
2D2

X L A

β0
+2DX

√√√√16L2
f D2

X +2L2
AD2

X

(
98

β2
0

+1

)
+2β2

0σ
2
f

}
.

Proof. The proof has two steps, coming from the nested loop structure of Algorithm 2.2. We
first determine the recursion for Sβt ,k (xt ,k+1) for all the iterates of the inner loop (constant t) and
then show that the recursion holds at the ‘edges’ i.e. when going from t −1 to t .

1. Convergence recursion

1.1 Recursion of Sβt ,k for constant t (inner loop)

Using observation (A.11), the definition of DX and the optimality of wt ,k :

Fβt ,k (xk+1)

= Et ,k+1
[
Fβt ,k (xt ,k+1,ξ)

]
≤ Et ,k+1

Fβt ,k (xt ,k ,ξ)+〈∇Fβt ,k (xt ,k ,ξ), xt ,k+1 −xt ,k〉+
L f + L A

βt ,k

2

∥∥xt ,k+1 −xt ,k
∥∥2



≤ Fβt ,k (xt ,k )+γt ,k〈∇Fβt ,k (xt ,k ), wt ,k −xt ,k〉+
γ2

t ,k (L f + L A
βt ,k

)

2

∥∥wt ,k −xt ,k
∥∥2

≤ Fβt ,k (xt ,k )+γt ,k〈∇Fβt ,k (xt ,k ), wt ,k −xt ,k〉+
D2

Xγ
2
t ,k

2
(L f +

L A

βt ,k
)
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≤ Fβt ,k (xt ,k )+γt ,k
(〈∇Fβt ,k (xt ,k )−vt ,k , wt ,k −xt ,k〉+〈vt ,k , x⋆−xt ,k〉

)
+
D2

Xγ
2
t ,k

2

(
L f +

L A

βt ,k

)
(A.38)

We process the second term in (A.38) separately, using the convexity of f , observation (A.4) and
noting that vt ,k−1 −vt ,k = ∇̃Fβt ,k−1 (xt ,k−1,ξSt ,k )−∇̃Fβt ,k (xt ,k ,ξSt ,k ):

〈∇Fβt ,k (xt ,k )−vt ,k , wt ,k −xt ,k〉+〈vt ,k , x⋆−xt ,k〉

= 〈∇Fβt ,k (xt ,k )−vt ,k , wt ,k −x⋆〉+〈∇Fβt ,k (xt ,k )−vt ,k , x⋆−xt ,k〉

+〈vt ,k−1 −∇̃Fβt ,k−1 (xt ,k−1,ξSt ,k )+∇̃Fβk (xt ,k ,ξSt ,k ), x⋆−xt ,k〉

= 〈∇Fβt ,k (xt ,k )−vt ,k , wt ,k −x⋆〉
+〈∇Fβt ,k (xt ,k )−vt ,k +vt ,k−1 −∇̃Fβt ,k−1 (xt ,k−1,ξSt ,k ), x⋆−xt ,k〉

+〈∇̃ f (xt ,k ,ξSt ,k ), x⋆−xt ,k〉+〈A⊤(ξSt ,k )∇̃gβt ,k (A(ξSt ,k )xt ,k ), x⋆−xt ,k〉

≤ 〈∇Fβt ,k (xt ,k )−vt ,k , wt ,k −x⋆〉

+〈∇Fβt ,k (xt ,k )−∇̃Fβt ,k (xt ,k ,ξSt ,k ), xt ,k −x⋆〉

+ f̃ (x⋆,ξSt ,k )− f̃ (xt ,k ,ξSt ,k )+〈∇̃gβt ,k (A(ξSt ,k )xt ,k ), A(ξSt ,k )x⋆− A⊤(ξSt ,k )xt ,k〉

≤ 〈∇Fβt ,k (xt ,k )−vt ,k , wt ,k −x⋆〉+〈∇Fβt ,k (xt ,k )−∇̃Fβt ,k (xt ,k ,ξSt ,k ), xt ,k −x⋆〉

+ f̃ (x⋆,ξSt ,k )+ g̃ (A(ξSt ,k )x⋆)︸ ︷︷ ︸
=0 a.s.

− f̃ (xt ,k ,ξSt ,k )− g̃βt ,k (A(ξSt ,k )xt ,k )︸ ︷︷ ︸
=−F̃βt ,k

(xt ,k ,ξSt ,k
)

− βt ,k

2

ã∥∥∥λ⋆
βt ,k

(A(ξSt ,k )xt ,k )
∥∥∥2

(A.39)

We can now resume Equation (A.38) by plugging in the inequality in (A.39), subtracting f ⋆ from
both sides, and taking the conditional expectation Et ,k [·] = E

[· |Ft ,k
]
.

Et ,k
[
Fβt ,k (xk+1)− f ⋆]

≤ Et ,k

[
Fβt ,k (xt ,k )+γt ,k

(〈∇Fβt ,k (xt ,k )−vt ,k , wt ,k −xt ,k〉+〈vt ,k , x⋆−xt ,k〉
)

+
D2

Xγ
2
t ,k

2

(
L f +

L A

βt ,k

)]
− f ⋆
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≤ Fβt ,k (xt ,k )+γt ,k

(
〈∇Fβt ,k (xt ,k )−vt ,k , wt ,k −x⋆〉

+Et ,k
[〈∇Fβt ,k (xt ,k )−∇̃Fβt ,k (xt ,k ,ξSt ,k ), xt ,k −x⋆〉]︸ ︷︷ ︸

=0, unbiasedness

+Et ,k

[
f̃ (x⋆,ξSt ,k )− F̃βt ,k (xt ,k ,ξSt ,k )− βt ,k

2

ã∥∥∥λ⋆
βt ,k

(A(ξSt ,k )xt ,k )
∥∥∥2

])

+
D2

Xγ
2
t ,k

2

(
L f +

L A

βt ,k

)
− f ⋆

≤ Fβt ,k (xt ,k )+γt ,k

(
〈∇Fβt ,k (xt ,k )−vt ,k , wt ,k −x⋆〉+ f ⋆−Fβt ,k (xt ,k )

−Et ,k

[
βt ,k

2

ã∥∥∥λ⋆
βt ,k

(A(ξSt ,k )xt ,k )
∥∥∥2

])
+
D2

Xγ
2
t ,k

2

(
L f +

L A

βt ,k

)
− f ⋆

= (1−γt ,k )(Fβt ,k (xt ,k )− f ⋆)+γt ,k〈∇Fβt ,k (xt ,k )−vt ,k , wt ,k −x⋆〉

− γt ,kβt ,k

2
Et ,k

[ ã∥∥∥λ⋆
βt ,k

(A(ξSt ,k )xt ,k )
∥∥∥2

]
+
D2

Xγ
2
t ,k

2

(
L f +

L A

βt ,k

)

Using property (A.12) we note that

Fβt ,k (xt ,k ) = Et ,k
[

f̃ (xt ,k ,ξSt ,k )+ g̃βt ,k (A(ξSt ,k )xt ,k )
]

≤ Et ,k

[
f̃ (xt ,k ,ξSt ,k )+ g̃βt ,k−1 (A(ξSt ,k )xt ,k )+ βt ,k−1 −βt ,k

2

ã∥∥∥λ⋆
βt ,k

(A(ξSt ,k )xt ,k )
∥∥∥2

]

= Fβt ,k−1 (xt ,k )+Et ,k

[
βt ,k−1 −βt ,k

2

ã∥∥∥λ⋆
βt ,k

(A(ξSt ,k )xt ,k )
∥∥∥2

]
.

Using the above and the definition of DX , we continue the inequality as

Et ,k
[
Fβt ,k (xk+1)− f ⋆]

≤ (1−γt ,k )(Fβt ,k−1 (xt ,k )− f ⋆)+γt ,kDX
∥∥∇Fβt ,k (xt ,k )−vt ,k

∥∥
+ (1−γt ,k )(βt ,k−1 −βt ,k )−γt ,kβt ,k

2
Et ,k

[ ã∥∥∥λ⋆
βt ,k

(A(ξSt ,k )xt ,k )
∥∥∥2

]
+
D2

Xγ
2
t ,k

2

(
L f +

L A

βt ,k

)
. (A.40)
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Using the stated parameter rates, we notice that (1−γt ,k )(βt ,k−1 −βt ,k )−γt ,kβt ,k < 0, as follows:

(
1− 2

Kt +k

)(
β0√

Kt +k −1
− β0√

Kt +k

)
− 2β0

(Kt +k)
√

Kt +k

=
β0√

Kt +k −1
− β0√

Kt +k
− 2β0

(Kt +k)
√

Kt +k −1

=β0
Kt +k −

√
Kt +k

√
Kt +k −1−2

(Kt +k)
√

Kt +k −1

=β0

(Kt +k −1)−2
√

Kt+k
4

√
Kt +k −1+ Kt+k

4 − Kt+k
4 −1

(Kt +k)
√

Kt +k −1

=β0
(
√

Kt +k −1−
p

Kt+k
2 )2 − Kt+k

4 −1

(Kt +k)
√

Kt +k −1

=β0
(
√

Kt +k −1−
p

Kt+k
2 −

p
Kt+k
2 )(

√
Kt +k −1−

p
Kt+k
2 +

p
Kt+k
2 )−1

(Kt +k)
√

Kt +k −1

=β0

<0︷ ︸︸ ︷
(
√

Kt +k −1−
√

Kt +k)
√

Kt +k −1−1

(Kt +k)
√

Kt +k −1

< 0 (A.41)

Finally, noting the definition of Sβt ,k (xt ,k+1) and taking full expectation on both sides, we arrive
at

E
[
Sβt ,k (xt ,k+1)

]
≤ (1−γt ,k )E

[
Sβt ,k−1 (xt ,k )

]+γt ,kDX E
[∥∥∇Fβt ,k (xt ,k )−vt ,k

∥∥]+D2
Xγ

2
t ,k

2

(
L f +

L A

βt ,k

)
. (A.42)

1.2 Recursion of Sβt ,k at the ‘edges’

We now want to show that the same recursion holds when going for Sβt ,1 (xt ,2) and Sβt−1,Kt−1
(xt−1,Kt−1+1).

We follow similar steps as in the previous section (which we shorten now for conciseness). Using
smoothness and xt ,1 = xt−1,Kt−1+1 (from Algorithm 2.2), we get

Fβt ,1 (xt ,2) ≤ Fβt ,1 (xt ,1)+γt ,1〈∇Fβt ,1 (xt ,1), wt ,1 −xt ,1〉+
D2

Xγ
2
t ,1

2

(
L f +

L A

βt ,1

)
. (A.43)
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Since vt ,1 = ∇Fβt ,1 (xt ,1) and wt ,1 = LMOX (vt ,1), it holds that 〈∇Fβt ,1 (xt ,1), wt ,1−xt ,1〉 ≤ 〈∇Fβt ,1 (xt ,1), x⋆−
xt ,1〉. Further using the definition of Fβ, the convexity of f and property (A.4) we get

〈∇Fβt ,1 (xt ,1), wt ,1 −xt ,1〉
≤ 〈∇Fβt ,1 (xt ,1), x⋆−xt ,1〉

= 〈∇ f (xt ,1)+∇xGβt ,1 (Axt ,1), x⋆−xt ,1〉

≤ f ⋆− f (xt ,1)+Et ,1
[〈∇̃x gβt ,1 (A(ξQt )xt ,1), x⋆−xt ,1〉

]
≤ f ⋆− f (xt ,1)+Et ,1

g̃ (A(ξQt )x⋆)︸ ︷︷ ︸
=0 a.s.

−g̃βt ,1 (A(ξQt )xt ,1)− βt ,1

2

ã∥∥∥λ⋆
βt ,1

(A(ξQt )xt ,1)
∥∥∥2


≤ f ⋆− f (xt ,1)−Gβt ,1 (Axt ,1)︸ ︷︷ ︸

=−Fβt ,1 (xt ,1)

−βt ,1

2
Et ,1

[ ã∥∥∥λ⋆
βt ,1

(A(ξQt )xt ,1)
∥∥∥2

]
. (A.44)

We remark that we can still transition from Fβt ,1 (xt ,1) to Fβt−1,Kt−1
(xt ,1) using property (A.12)

since the β’s are ‘continuous’ at the edge, i.e., βt−1,Kt−1 = β0p
Kt−1+Kt−1

= β0p
Kt

and βt ,1 = β0p
Kt+1

. It
thus holds that

Fβt ,1 (xt ,1)

= Et ,1
[

f̃ (xt ,1,ξQt )+ g̃βt ,1 (A(ξQt )xt ,1)
]

≤ Et ,1

[
f̃ (xt ,1,ξQt )+ g̃βt−1,Kt−1

(A(ξQt )xt ,1)+ βt−1,Kt−1 −βt ,1

2

ã∥∥∥λ⋆
βt ,1

(A(ξQt )xt ,1)
∥∥∥2

]

= Fβt−1,Kt−1
(xt ,1)+Et ,1

[
βt−1,Kt−1 −βt ,1

2

ã∥∥∥λ⋆
βt ,1

(A(ξQt )xt ,1)
∥∥∥2

]
. (A.45)

Using (A.45) and (A.44), (A.43) becomes

Fβt ,1 (xt ,2) ≤ (1−γt ,1)Fβt ,1 (xt ,1)+γt ,1 f ⋆− γt ,1βt ,1

2
E

[ ã∥∥∥λ⋆
βt ,1

(A(ξQt )xt ,1)
∥∥∥2

]
+
D2

Xγ
2
t ,1

2

(
L f +

L A

βt ,1

)
≤ (1−γt ,1)Fβt−1,Kt−1

(xt ,1)+γt ,1 f ⋆

+ (1−γt ,1)(βt−1,Kt−1 −βt ,1)−γt ,1βt ,1

2︸ ︷︷ ︸
<0, as before

Et ,1

[ ã∥∥∥λ⋆
βt ,1

(A(ξQt )xt ,1)
∥∥∥2

]
+
D2

Xγ
2
t ,1

2

(
L f +

L A

βt ,1

)
.
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Finally, subtracting f ⋆ from both sides and taking the expectation, we have

E
[
Sβt ,1 (xt ,2)

]≤ (1−γt ,1)E
[

Sβt−1,Kt−1
(xt ,1)

]
+
D2

Xγ
2
t ,1

2

(
L f +

L A

βt ,1

)
. (A.46)

2. Convergence rates for the finite sum case For ease, we first cast the index pairs
(t ,k) to their corresponding global index counterparts (in a sense, we flatten the double loop
structure). The variables indexed by (t ,k) can be seen as equivalently indexed by ρ(t ,k) =

Kt +k := 2t−1 +k, t ∈N, k ∈ [2t−1].

The following properties hold for ρ:

• ρ(t ,k +1) = ρ(t ,k)+1

• ρ(t −1,Kt−1 +1) = ρ(t −1,Kt−1)+1 = ρ(t ,1) (the ‘increment-by-one’ rule holds between
the last iteration of epoch t −1 and the first iteration of epoch t)

In other words, ρ(t ,k) returns for iteration (t ,k) its global index since the beginning of Algo-
rithm 2.2.

We use this new indexing scheme and its properties to rewrite relations A.42 and A.46 into a
single, global inequality. Note that here ρ should be read as ρ(t ,k), for some given, arbitrary t ,k.

E
[

Sβρ (xρ+1)
]
≤ (1−γρ)E

[
Sβρ−1 (xρ)

]
+γρDX E

[∥∥∥∇Fβρ (xρ)−vρ
∥∥∥]

+
D2

Xγ
2
ρ

2

(
L f +

L A

βρ

)
(A.47)

Further replacing the parameter rates and the variance bound of Lemma 2.2 (subject to Jensen’s
inequality):

E
[

Sβρ (xρ+1)
]

=

(
1− 2

ρ

)
E
[

Sβρ−1 (xρ)
]
+

2D2
X

√
16L2

f +
196L2

A

β2
0

ρ
p
ρ

+ 2D2
X L f

ρ2 + 2D2
X L A

β0ρ
p
ρ

≤
(
1− 2

ρ

)
E
[

Sβρ−1 (xρ)
]
+ 1

ρ3/2

2D2
X L f +2D2

X

√√√√16L2
f +

196L2
A

β2
0

+ 2D2
X L A

β0



We can now apply Lemma A.2, with α = 1, β = 3/2, b = 2D2
X L f +2D2

X

√
16L2

f +
196L2

A

β2
0

+ 2D2
X L A

β0
,

c = 2, k0 = 0 and
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C3 = max

{
Sβ1,0 (x1,1), 2D2

X L f +2D2
X

√
16L2

f +
196L2

A

β2
0

+ 2D2
X L A

β0

}
to get

E
[

Fβρ (xρ+1)− f ⋆
]
≤ C3√

ρ+1

⇕
E
[
Sβt ,k (xt ,k+1)

]≤ C3√
Kt +k +1

.

3. Convergence rates for the general expectation case

Following the same steps for the general expectation case, we get

E
[

Sβρ (xρ+1)
]

=

(
1− 2

ρ

)
E
[

Sβρ−1 (xρ)
]
+

2DX

√
16L2

f D2
X +2L2

AD2
X

(
98
β2

0
+1

)
+2β2

0σ
2
f

ρ
p
ρ

+ 2D2
X L f

ρ2 + 2D2
X L A

β0ρ
p
ρ

≤
(
1− 2

ρ

)
E
[

Sβρ−1 (xρ)
]
+ 1

ρ3/2

(
2D2

X L f +
2D2

X L A

β0

+2DX

√√√√16L2
f D2

X +2L2
AD2

X

(
98

β2
0

+1

)
+2β2

0σ
2
f

)
.

We can now apply Lemma A.2, with b = 2D2
X L f +2D2

X L A

β0
+2DX

√
16L2

f D2
X +2L2

AD2
X

(
98
β2

0
+1

)
+2β2

0σ
2
f ,

C4 = max

{
Sβ1,0 (x1,1), 2D2

X L f + 2D2
X L A

β0
+2DX

√
16L2

f D2
X +2L2

AD2
X

(
98
β2

0
+1

)
+2β2

0σ
2
f

}
and c = 2,

α = 1, β = 3/2, to get

E
[
Sβt ,k (x1,k+1)

]≤ C4√
Kt +k +1
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A.2.4 Proof of Corollary 2.2

Corollary 2.2. The expected convergence in terms of objective suboptimality and feasibility of
Algorithm 2.2 is, respectively,∣∣E[

f (xt ,k )
]− f ⋆

∣∣ ∈O (
(Kt +k)−1/2)

√
E
[
dist(A(ξ)xt ,k ,b(ξ))2

] ∈O (
(Kt +k)−1/2)

for both the finite sum and the general expectation setting. Consequently, the oracle complexities
are given by #(IFO) ∈O (

n log2(ϵ−2)+ϵ−4
)

and #(LMO) ∈O (
ϵ−2

)
for the finite-sum setting, and

by #(SFO) ∈O (
ϵ−4

)
and #(LMO) ∈O (

ϵ−2
)

for the expectation setting.

Proof. A simple application of Lemma 3.1 of Fercoq et al. [81] for the previously derived
convergence bounds of the smoothed gap, along with our chosen decrease rate for β yields the
stated results.

For the oracle complexities, we choose a total number of outer loops Tϵ in order to achieve a
desired ϵ-accuracy.

1√
Kt +k

≤ ϵ =⇒ 1

ϵ2 ≤ Kt +k ≤ 2t =⇒ Tϵ ≥ log2

(
ϵ−2)

We can now state the corresponding complexity in terms of #(IFO) and #(LMO) for the finite-sum
case of Algorithm 2.2:

#(IFO) =
Tϵ∑

t=1

(
n +

Kt∑
k=2

Kt

)

=
Tϵ∑

t=1

(
n +22(t−1))

= nTϵ+O (
22Tϵ

) ∈O (
ϵ−4)

#(LMO) =
Tϵ∑

t=1
Kt ≤ 2KTϵ = 2Tϵ ∈O (

ϵ−2)

For the general expectation case, following the same steps, we get:

#(SFO) =
Tϵ∑

t=1

(
|Qt |+

Kt∑
k=2

Kt

)
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=
Tϵ∑

t=1

(⌈
2Kt

β2
t ,1

⌉
+22(t−1)

)

≤
Tϵ∑

t=1

(
2Kt

β2
t ,1

+1+22(t−1)

)

=
Tϵ∑

t=1

(
2t (2t−1 +1)

β2
0

+1+22(t−1)

)

=
1

β2
0

Tϵ∑
t=1

22t−1

︸ ︷︷ ︸
∈O(22Tϵ)
≡O(ϵ−4)

+ 1

β2
0

Tϵ∑
t=1

2t

︸ ︷︷ ︸
∈O(2Tϵ)
≡O(ϵ−2)

+ Tϵ︸︷︷︸
∈O(log2(ϵ−2))

+
Tϵ∑

t=1
22(t−1)

︸ ︷︷ ︸
∈O(22Tϵ)
≡O(ϵ−4)

∈O (
ϵ−4)

#(LMO) =
Tϵ∑

t=1
Kt ≤ 2KTϵ = 2Tϵ ∈O (

ϵ−2)
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A.3 Analysis of H-SAG-CGM

A.3.1 Proof of Lemma 2.4

Lemma 2.4. Consider H-SAG-CGM (Algorithm 2.3). Then, for all k ≥ 1, it holds that

Sβk (xk+1) ≤ (1−γk )Sβk−1 (xk )+γk DX E
[∥∇Fβk (xk )−dk∥

]+ γ2
k D2

X LFβk

2
,

where LFβk
=

∥H∥L f

n + ∥A∥
βk m represents the smoothness constant of the surrogate objective Fβk .

Proof. We follow the steps laid out in Theorem 4.1 by Vladarean et al. [219], which in turn
builds upon Theorem 9 of Locatello et al. [142].

We use the quadratic upper bound ensured by the fact that Fβk is LFβk
-smooth:

Fβk (xk+1) ≤ Fβk (xk )+〈∇Fβk (xk ), xk+1 −xk〉+
LFβk

2
∥xk+1 −xk∥2 (A.48)

≤ Fβk (xk )+γk〈∇Fβk (xk ), wk −xk〉+
γ2

k LFβk
D2

X
2

(A.49)

where the second line follows from the boundedness of X .

Next, we use the rule for change of β in smoothing (see (A.5)), which gives

Fβk (xk+1) ≤ Fβk−1 (xk )+ βk−1 −βk

2
∥λ⋆

βk
(Axk )∥2 +γk〈∇Fβk (xk ), wk −xk〉+

γ2
k LFβk

D2
X

2
, (A.50)

where y⋆
βk

is defined as in (A.2).

Then, we bound the term 〈∇Fβk (xk ), wk −xk〉 as follows:

〈∇Fβk (xk ),wk −xk〉 = 〈∇Fβk (xk )−dk , wk −xk〉+〈dk , wk −xk〉 (A.51)

= 〈∇Fβk (xk )−dk , wk −x⋆〉+〈∇Fβk (xk )−dk , x⋆−xk〉+〈dk , wk −xk〉 (A.52)

≤ 〈∇Fβk (xk )−dk , wk −x⋆〉+〈∇Fβk (xk )−dk , x⋆−xk〉+〈dk , x⋆−xk〉 (A.53)

= 〈∇Fβk (xk )−dk , wk −x⋆〉+〈∇Fβk (xk ), x⋆−xk〉 (A.54)

where the inequality follows by the definition of wk .

Now, we focus on the term 〈∇Fβk (xk ), x⋆−xk〉 and bound it as follows:

〈∇Fβk (xk ), x⋆−xk〉 = 〈H⊤∇ f (H xk )+ A⊤∇gβk (Axk ), x⋆−xk〉 (A.55)

= 〈∇ f (H xk ), H(x⋆−xk )〉+〈∇gβk (Axk ), A(x⋆−xk )〉 (A.56)

≤ f (H x⋆)− f (H xk )+ g (Ax⋆)− gβk (Axk )− βk

2
∥λ⋆

βk
(Axk )∥2 (A.57)
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= F ⋆−Fβk (xk )− βk

2
∥λ⋆

βk
(Axk )∥2, (A.58)

where the inequality holds due to the convexity of f and g and the smoothing property in (A.4).

Combining all these bounds and subtracting F ⋆ from both sides, we get

Fβk (xk+1)−F ⋆ ≤ (1−γk )
(
Fβk−1 (xk )−F ⋆)+γk〈∇Fβk (xk )−dk , wk −x⋆〉

+ 1

2
((1−γk )(βk−1 −βk )−γkβk )∥λ⋆

βk
(Axk )∥2

2 +
γ2

k LFβk
D2

X
2

(A.59)

We cannot bound ∥λ⋆
βk

(Axk )∥2
2 in general, so we choose γk and βk carefully to vanish this term.

Let γk = 2
k+1 and βk = β0p

k+1
for an arbitrary β0 > 0. Then,

(1−γk )(βk−1 −βk )−γkβk =
β0p

k

(
k −1

k +1
−

p
kp

k +1

)
< 0, for all k ≥ 1. (A.60)

Finally, taking expectation on both sides and applying the definition of Sβ(x) := E
[
Fβ(x)−F ⋆

]
we arrive at our stated result:

Sβk (xk+1) ≤ (1−γk )Sβk−1 (xk )+γkE[〈∇Fβk (xk )−dk , wk −x⋆〉]+
γ2

k LFβk
D2

X
2

.
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A.3.2 Proof of Lemma 2.6

The following Lemma will be needed in the subsequent characterization of the estimator variance.

Lemma A.2 (Adaptation of the similar intermediary result from the proof of Lemma 3 of Négiar
et al. [159]). Let ρ ∈ (0,1), C > 0 and {uk }k∈N be a sequence such that

uk ≤ ρ(uk−1 +
1p
k

C ). (A.61)

Then, it holds that

uk ≤ ρk u0 + 2Cρp
k(1−ρ)

. (A.62)

Proof. Unrolling the recurrence yields

uk ≤ ρk u0 +C
k∑

i =1

ρk−i+1

p
i

(A.63)

Observe that ρk+1−i is a monotonically increasing with i because ρ ∈ (0,1). Therefore,

1∑k
i =1

1p
i

k∑
i =1

ρk−i+1

p
i

≤ 1

k

k∑
i =1
ρk−i+1 =

1

k

k∑
i =1
ρi (A.64)

since the left side of the inequality is a weighted average of ρk−i+1 with decreasing weights and
the right side is the simple average with uniform weights. The equality holds simply by change
of indices. Now, we rearrange as

k∑
i =1

ρk−i+1

p
i

≤ 1

k

(
k∑

i =1

1p
i

)(
k∑

i =1
ρi

)
≤ 2ρp

k(1−ρ)
(A.65)

We complete the proof by combining (A.63) and (A.65).

Lemma 2.6. Consider H-SAG-CGM (Algorithm 2.3) and the SAG estimator γk defined in (2.17).
Then, for all k ≥ 2,

E[∥∇gβk (Axk )−qk∥1] ≤ (
1− 1

m

)k ∥∇gβ0 (Ax0)−q0∥1 + Cp
k

where C = 10β−1
0 D1(A) and the expectation is taken over all previous steps of the algorithm.
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Proof of Lemma 2.6 for indicator functions

First, we prove Lemma 2.6 for the case in which g is an indicator function of a set K ∈Rm , with
K := K1 × . . .×Km , Ki ∈R, ∀i ∈ [m] . Observe that

Ek [|∇gβk (Axk ) j −qk, j |] =
1

m
0+ m −1

m
|∇gβk (Axk ) j −qk−1, j |. (A.66)

Summing over all coordinates gives

E[∥∇gβk (Axk )−qk∥1]

=
m −1

m
E[∥∇gβk (Axk )−qk−1∥1]

=
m −1

m
E[∥∇gβk (Axk )−∇gβk−1 (Axk−1)+∇gβk−1 (Axk−1)−qk−1∥1]

≤ m −1

m

(
E[∥∇gβk−1 (Axk−1)−qk−1∥1]+E[∥∇gβk (Axk )−∇gβk−1 (Axk−1)∥1]

)
. (A.67)

Now, we focus on the last term and bound it as follows:

∥∇gβk (Axk )−∇gβk−1 (Axk−1)∥1

= ∥∇gβk (Axk )±∇gβk (Axk−1)−∇gβk−1 (Axk−1)∥1

≤ ∥∇gβk (Axk )−∇gβk (Axk−1)∥1 +∥∇gβk (Axk−1)−∇gβk−1 (Axk−1)∥1 (A.68)

≤ 1

mβk
∥A(xk−1 −xk )∥1 + 1

m

( 1

βk
− 1

βk−1

)
∥Axk−1 −projK (Axk−1)∥1

≤ γk−1

mβk
D1(A)+ 1

m

( 1

βk
− 1

βk−1

)
∥Axk−1 − Ax⋆∥1

≤ D1(A)

m

(γk−1

βk
+ 1

βk
− 1

βk−1

)
(A.69)

where the third inequality is due to the fact that K = K1 ×K2 × ·· ·×Km . Simplifying further:
γk−1

βk
+ 1
βk

− 1
βk−1

= 2
k

p
k+1
β0

+
p

k+1
β0

−
p

k
β0

< 2
k

p
k+1
β0

+
p

k
p

k+1
β0

p
k

− k
β0

p
k
< 2

β0

p
k
+ 2
β0k + k+1

β0

p
k
− k
β0

p
k
< 5

β0

p
k

,
gives

∥∇gβk (Axk )−∇gβk−1 (Axk−1)∥1 ≤ 5D1(A)

mβ0
p

k
. (A.70)

Substituting this back into (A.67), we get

E[∥∇gβk (Axk )−qk∥1] ≤ m −1

m

(
E[∥∇gβk−1 (Axk−1)−qk−1∥1]+ 5D2(A)

p
m

β0
p

k

)
. (A.71)

This is in the form of (A.61). We conclude the proof by applying Lemma A.2:

E[∥∇gβk (Axk )−qk∥1] ≤
(

m −1

m

)k

E[∥∇gβ0 (Ax0)−q0∥1]+ 10D2(A)
p

m(m −1)

β0
p

k
.
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Proof of Lemma 2.6 for Lipschitz continuous functions

Suppose g is Lipschitz continuous with parameter Lg . Then, from (A.6), we get

f (H xk+1)+ g (Axk+1)︸ ︷︷ ︸
F (xk+1)

≤ f (H xk+1)+ gβk (Axk+1)︸ ︷︷ ︸
Fβk

(xk+1)

+βk

2
L2

g = Fβk (xk+1)+
β0L2

g

2
p

k +1
. (A.72)

We achieve the desired bound by subtracting F ⋆ and taking expectation on both sides:

E[F (xk+1)−F ⋆] ≤ Sβk (xk+1)+
β0L2

g

2
p

k +1
. (A.73)

To bound Sβk , we can follow the proof of Lemma 2.6 up to (A.68), which we repeat here for
convenience:

∥∇gβk (Axk )−∇gβk (Axk−1)∥1 +∥∇gβk (Axk−1)−∇gβk−1 (Axk−1)∥1

Recall that ∇gβ(z) =β−1(z−proxβg (z)). The first term can be bounded using the 1/β-smoothness
of gβ. For the second term, recall the well-established fact that proxg (z) = λproxg /λ(x/λ) for
any λ> 0. Thus,

∇gβk (Axk−1) =βk
−1(Axk−1 −proxβk g (Axk−1)) (A.74)

=βk
−1(Axk−1 −

βk

βk−1
proxβk−1g (

βk−1

βk
Axk−1)) (A.75)

= ∇gβk−1 (
βk−1

βk
Axk−1) (A.76)

Thus,

∥∇gβk (Axk )−∇gβk (Axk−1)∥1 +∥∇gβk (Axk−1)−∇gβk−1 (Axk−1)∥1 (A.77)

≤ 1

mβk
∥A(xk −xk−1)∥1 + 1

mβk−1
(
βk−1

βk
−1)∥Axk−1∥1 (A.78)

≤ γk−1

mβk
D1(A)+ 1

m
(

1

βk
− 1

βk−1
)∥Axk−1∥1 (A.79)

≤ D1(A)

m

(
γk−1

βk
+ 1

βk
− 1

βk−1

)
(A.80)

Note that this is identical to (A.69) in Lemma A.2. Thus, the rest of Lemma A.2 can be applied
to arrive at the same bound.
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A.3.3 Proof of Theorem 2.3

Theorem 2.3. The sequence generated by H-SAG-CGM (Algorithm 2.3) satisfies, for all k ≥ 2,

Sβk (xk+1) ≤ C1p
k
+ C2

k
+ C3

k2 ,

for the following constants

• C1 =β−1
0 (2D2

X ∥ A ∥+10D1(A));
• C2 = 8L f D1(H)D∞(H)+2n−1L f ∥H ∥D2

X ;
• C3 = 2n2D∞(H)

(∥∇ f (H x1)−p0∥1 +32L f D1(H)
)+2m2D∞(A)∥∇gβ0 (Ax1)−q0∥1.

Proof. Our aim is to get a rate on the smoothed gap Sβk (xk+1). We start from Lemma 2.4:

Sβk (xk+1)

≤ (1−γk )Sβk−1 (xk )+γkE[〈∇Fβk (xk )−dk , wk −x⋆〉]+ γ2
k

2

(∥H ∥L f

n
+ ∥ A ∥

βk

)
D2

X . (A.81)

We multiply both sides by k(k +1) and unroll the recurrence to get

k(k +1)Sβk (xk+1)

≤ (k −1)kSβk−1 (xk )+2kE[〈∇Fβk (xk )−dk , wk −x⋆〉]+ 2k

k +1

(∥H ∥L f

n
+ ∥ A ∥

βk

)
D2

X

≤
k∑

i =1
2iE[〈∇Fβi (xi )−di , wi −x⋆〉]︸ ︷︷ ︸

A

+
k∑

i =1

2i

i +1

(∥H ∥L f

n
+ ∥ A ∥

βi

)
D2

X︸ ︷︷ ︸
B

. (A.82)

We focus on the term B , and we use Lemma A.1 to obtain

B = 2D2
X

(∥H ∥L f

n

k∑
i =1

i

i +1
+ ∥ A ∥

β0

k∑
i =1

ip
i +1

)
≤ 2D2

X

(∥H ∥L f

n
k + ∥ A ∥

β0
k
p

k +1

)
. (A.83)

We get an upper-bound on the variance term A as follows:

E[〈∇Fβk (xk )−dk ,wk −x⋆〉]
= E[〈H⊤(∇ f (H xk )−pk )+ A⊤(∇gβk (Axk )−qk ), wk −x⋆〉]
= E[〈∇ f (H xk )−pk , H(wk −x⋆)〉+〈∇gβk (Axk )−qk , A(wk −x⋆)〉]
≤ E[

∥∥∇ f (H xk )−pk
∥∥

1

∥∥ H(wk −x⋆)
∥∥∞+∥∥∇gβk (Axk )−qk

∥∥
1

∥∥ A(wk −x⋆)
∥∥∞]

≤ E[
∥∥∇ f (H xk )−pk

∥∥
1]D∞(H)+E[

∥∥∇gβk (Axk )−qk
∥∥

1]D∞(A) (A.84)

where the first inequality is the Hölder’s inequality, and the second one is based on the bounded-
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ness of X .

Then, by Lemma 2.5, we have

E[∥∇ f (H xk )−pk∥1]

≤ (
1− 1

n

)k ∥∇ f (X w1)−p0∥1 +
2L f D1(H)

n

((
1− 1

n

)k/2
logk + 2(n −1)

k

)
(A.85)

And by Lemma 2.6, we have

E[∥∇gβk (Axk )−qk∥1] ≤ (
1− 1

m

)k
E[∥∇gβ0 (Aw1)−q0∥1]+ 10D2(A)

p
m(m −1)

β0
p

k
. (A.86)

Finally, we substitute (A.85) and (A.86) back into (A.84) to get

A ≤ 2D∞(H)

[
∥∇ f (H x1)−p0∥1

k∑
i =1

i
(
1− 1

n

)i + 2L f D1(H)

n

k∑
i =1

(
i
(
1− 1

n

)i /2
log i +2(n −1)

)]

+2D∞(A)

[∥∥∇gβ0 (Ax1)−q0
∥∥

1

k∑
i =1

i
(
1− 1

m

)i + 10D2(A)
p

m(m −1)

β0

k∑
i =1

p
i

]
(A.87)

≤ 2D∞(H)

[
∥∇ f (H x1)−p0∥1 n2 + 2L f D1(H)

n

(
16n3 +2(n −1)k

)]
+2D∞(A)

[∥∥∇gβ0 (Ax1)−q0
∥∥

1 m2 + 10D2(A)
p

m(m −1)

β0
k3/2

]
(A.88)

≤ 2D∞(H)
[∥∇ f (H x1)−p0∥1 n2 +4L f D1(H)

(
8n2 +k

)]
+2D∞(A)

[∥∥∇gβ0 (Ax1)−q0
∥∥

1 m2 + 10D2(A)m3/2

β0
k3/2

]
(A.89)

where we use Lemma A.1 for the second inequality.

Combining this with the bound on the smoothness term B from (A.82) gives the desired result:

Sβk (xk+1) ≤ 2D∞(H)

k(k +1)

{
∥∇ f (H x1)−p0∥1 n2 +4L f D1(H)

(
8n2 +k

)
+2D∞(A)

[∥∥∇gβ0 (Ax1)−q0
∥∥

1 m2 + 10D2(A)m3/2

β0
k3/2

]}

+ 2D2
X

k(k +1)

(∥H ∥L f

n
k + ∥ A ∥

β0
k
p

k +1

)
≤ C3

k(k +1)
+ C2

k +1
+ C1p

k +1
,
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where

C3 = 2n2D∞(H)
(∥∇ f (H x1)−p0∥1 +32L f D1(H)

)+2m2D∞(A)∥∇gβ0 (Ax1)−q0∥1

C2 = 8L f D1(H)D∞(H)+2n−1L f ∥H ∥D2
X

C1 =β−1
0 (2D2

X ∥ A ∥+10D1(A)).
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A.3.4 Proof of Corollary 2.3

Corollary 2.3. Suppose g :Rm →R is Lg -Lipschitz continuous. Then, the estimates generated by
H-SAG-CGM (Algorithm 2.3) satisfy

E[F (xk+1)−F ⋆] ≤ C1p
k
+ C2

k
+ C3

k2 +
β0L2

g

2
p

k

where the constants C1,C2 and C2 are defined in Theorem 2.3.

Proof. Suppose g is Lg -Lipschitz continuous. Then, from (A.6) we get

EF (xk+1)−F ⋆ = E[ f (H xk+1)+ g (Axk+1)]−F ⋆ (A.90)

≤ E[ f (H xk+1)+ gβk (Axk+1)]−F ⋆+
βk L2

g

2
(A.91)

= Sβk (xk+1)+
β0L2

g

2
p

k +1
.
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A.3.5 Proof of Corollary 2.4

Corollary 2.4. Suppose g is the indicator function of a closed and convex set K ∈ Rm , K :=

K1 × . . .×Km , Ki ⊆ R, ∀i ∈ [m]. Then, for H-SAG-CGM (Algorithm 2.3), we have a lower
bound on the suboptimality as E

[
f (H xk+1)− f (H x⋆)

]≥−∥λ⋆∥E [dist(Axk+1,K)], where λ⋆ is a
solution of the dual problem, and the following upper bounds on the suboptimality and feasibility:

E
[

f (H xk+1)− f (H x⋆)
]≤ C1 +β0p

k
+ C2

k
+ C3

k2 , and

E [dist(Axk+1,K)] ≤ C4p
k
+
p

2C2

k3/4
+
p

2C3

k5/4
,

where the constants C1,C2 and C3 are defined in Theorem 2.3 and C4 =
(

3β0∥λ⋆∥
2 +p

2C1

)
.

Proof. Suppose g (z) = ιK(z), the indicator function of a closed and convex set. We can write the
Lagrangian as

L(x ,r ,λ) := f (H x)+〈Ax − r ,λ〉, x ∈X , r ∈K. (A.92)

From the Lagrange saddle point theory, we have

f (H x⋆) ≤L(x ,r ,λ⋆) ≤ f (H x)+∥Ax − r ∥∥λ⋆∥, ∀x ∈X and ∀r ∈K. (A.93)

Letting x = xk+1 ∈X and r = projK(Axk+1) ∈K, taking expectation on both sides and rearranging,
we get

E
[

f (H xk+1)− f (H x⋆)
]≥−∥λ⋆∥E [dist(Axk+1,K)] (A.94)

This is the desired lower bound on the objective residual.

Next, we derive an upper bound on the objective residual. By definition of gβ (see (A.1)) for ιK,

gβ(Ax) =
1

2β
dist(Ax ,K)2. (A.95)

Note that f (H x⋆) = F (x⋆) since g (Ax⋆) = 0. Then,

E[ f (H xk+1)− f (H x⋆)] = E[Fβk (xk+1)−F ⋆− gβk (Axk+1)] (A.96)

≤ Sβk (xk+1)− 1

2βk
E[dist(Axk+1,K)2] (A.97)

≤ Sβk (xk+1). (A.98)

Finally, we derive the convergence rate of the infeasibility error. To this end, we combine (A.94)
and (A.97):

−∥λ⋆∥E [dist(Axk+1,K)] ≤ Sβk (xk+1)− 1

2βk
E[dist(Axk+1,K)2] (A.99)
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We rearrange and apply Jensen’s inequality to E[dist(Axk+1,K)2], and we get a second order
inequality with respect to E[dist(Axk+1,K)]:

1

2βk
E[dist(Axk+1,K)]2︸ ︷︷ ︸

t 2

−∥λ⋆∥ E[dist(Axk+1,K)]︸ ︷︷ ︸
t

−Sβk (xk+1) ≤ 0. (A.100)

By solving this inequality for t , we achieve the desired bound:

E[dist(Axk+1,K)] ≤βk

(
∥λ⋆∥+

√
∥λ⋆∥2 + 2Sβk (xk+1)

βk

)
≤ 2βk∥λ⋆∥+

√
2βk Sβk (xk+1), (A.101)

where we used
p

a2 +b2 ≤ a +b for a,b ≥ 0 in the last inequality to simplify the terms.
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B.1 Proofs

Assumption 3.1.a implies global progress bounds on our fully composite objective with an inner
linearization of f , as stated in the following Lemma B.1. This lemma provides a basis for all our
convergence results.

Lemma B.1. Let x , y ∈X and γ ∈ [0,1]. Denote yγ = x +γ(y −x). Then, it holds

ϕ(yγ) ≤ F
(

f (x)+∇ f (x)(yγ−x), yγ
) + γ2

2 S . (B.1)

Proof. Note that the subhomogenity assumption (3.6) is equivalent to the following useful
inequality for the outer component of the objective see (Theorem 7.1 in [73]):

F (u + t v , x) ≤ F (u, x)+ tF (v , x), ∀u, v ∈Rn , x ∈ X , t ≥ 0. (B.2)

Then, we have

ϕ(yγ) ≡ F ( f (yγ), yγ)

= F
(

f (x)+∇ f (x)(yγ−x)+ γ2

2 · 2
γ2

[
f (yγ)− f (x)−∇ f (x)(yγ−x)

]
, yγ

)
(B.2)≤ F

(
f (x)+∇ f (x)(yγ−x), yγ

)+ γ2

2 F
( 2
γ2

[
f (yγ)− f (x)−∇ f (x)(yγ−x)

]
, yγ

)
≤ F

(
f (x)+∇ f (x)(yγ−x), yγ

)+ γ2

2 S ,

which is the desired bound.
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B.1.1 Proof of Theorem 3.1

Theorem 3.1. Let Assumptions 3.1, 3.1.a, and 3.2 be satisfied. Let γk := min
{

1, Gk
S

}
or γk := 2

2+k .
Then, for k ≥ 1 it holds that

ϕ(yk )−ϕ⋆ ≤ 2S
1+k

and min
1≤i≤k

Gi ≤ 6S
k

. (3.16)

Proof. Indeed, for one iteration of the method, we have

ϕ(yk+1)
(B.1)≤ F

(
f (yk )+∇ f (yk )(yk+1 − yk ), yk+1

)+ γ2
k

2 S

= F
(
(1−γk ) f (yk )+γk ( f (yk )+∇ f (yk )(xk+1 − yk )),

(1−γk )yk +γk xk+1
)+ γ2

k
2 S

(∗)≤ ϕ(yk )+γk

[
F

(
f (yk )+∇ f (yk )(xk+1 − yk ), xk+1

)−ϕ(yk )
]
+ γ2

k
2 S

≡ ϕ(yk )−γkGk + γ2
k

2 S ,

where we used in (∗) that F (·, ·) is jointly convex. Hence, we obtain the following inequality for
the progress of one step, for k ≥ 0:

ϕ(yk )−ϕ(yk+1) ≥ γkGk − γ2
k

2 S . (B.3)

Now, let us choose use an auxiliary sequence Ak := k · (k +1) and ak+1 := Ak+1 − Ak = 2(k +1).
Then,

ak+1
Ak+1

= 2
2+k ,

which is one of the possible choices for γk . Note that for the other choice, we set γk = min
{
1, Gk

S
}
,

which maximizes the right hand side of (B.3) with respect to γk ∈ [0,1]. Hence, in both cases we
have that

ϕ(yk )−ϕ(yk+1) ≥ ak+1
Ak+1

Gk − a2
k+1

2A2
k+1

S , (B.4)
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or, rearranging the terms,

Ak+1
[
ϕ(yk+1)−ϕ⋆

] (B.4)≤ Ak+1
[
ϕ(yk )−ϕ⋆]−ak+1Gk + a2

k+1
2Ak+1

S

(3.15)≤ Ak
[
ϕ(yk )−ϕ⋆]+ a2

k+1
2Ak+1

S .

Telescoping this bound for the first k ≥ 1 iterations, we get

ϕ(yk )−ϕ⋆ ≤ S
2Ak

·
k∑

i =1

a2
i

Ai
= 2S

k(k+1) ·
k∑

i =1

i
i+1 ≤ 2S

k+1 . (B.5)

It remains to prove the convergence in terms of the accuracy measure Gk . For that, we telescope
the bound (B.4), which is

ak+1Gk ≤ ak+1ϕ(yk )+ Akϕ(yk )− Ak+1ϕ(yk+1)+ a2
k+1

Ak+1

S
2 , (B.6)

for the k ≥ 1 iterations, and use the convergence for the functional residual (B.5):

k∑
i =1

ai+1 · min
1≤i≤k

Gi ≤
k∑

i =1
ai+1Gi

(B.6)≤ a1
[
ϕ(y1)−ϕ⋆

]+ k∑
i =1

ai+1
[
ϕ(yi )−ϕ⋆

]+ S
2

k∑
i =1

a2
i+1

Ai+1

(B.5)≤ 2S ·
(
1+

k∑
i =1

ai+1
i+1 +

k∑
i =1

i
i+1

)
≤ 2S · (1+3k).

To finish the proof, we need to divide both sides by
k∑

i =1
ai+1 = Ak+1 −a1 = k(3+k).
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B.1.2 Proof of Theorem 3.2

Theorem 3.2. Let Assumptions 3.1 and 3.1.a be satisfied. Let γk := min
{

1, Gk
S

}
or γk := 1p

1+k
.

Then, for all k ≥ 1 it holds that

min
0≤i≤k

Gi ≤ ϕ(y0)−ϕ⋆+0.5S(1+ln(k+1))p
k+1

. (3.17)

Proof. As in the proof of the previous theorem, our main inequality (B.3) on the progress of one
step is:

ϕ(yk )−ϕ(yk+1) ≥ γkGk − γ2
k

2 S ,

where we can substitute γk = 1p
k+1

for both strategies of choosing this parameter.

Summing up this bound for the first k +1 iterations, we obtain

k∑
i =0
γiGi ≤ ϕ(y0)−ϕ(yk+1)+ S

2

k∑
i =0
γ2

i . (B.7)

Using the bound ϕ(yk+1) ≥ϕ⋆ and our value of γi , we get

min
0≤i≤k

Gi ·
p

k +1 ≤
k∑

i =0

Gip
1+i

(B.7)≤ ϕ(y0)−ϕ⋆+ S
2

k∑
i =0

1
1+i

≤ ϕ(y0)−ϕ⋆+ S
2 (1+ ln(k +1)),

which is (3.17).
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B.1.3 Proof of Theorem 3.3

Theorem 3.3. Let Assumptions 3.1, 3.1.b, and 3.2 be satisfied. We choose γk := 3
k+3 , βk :=

cF (L)γk and ηk := δ
3(k+1)(k+2) where δ> 0 and c ≥ 0 are chosen constants, and F (L) := supx∈X F (L, x).

Then, for all k ≥ 1 it holds that

ϕ(yk )−ϕ⋆ ≤ δ+8cF (L)D2
X

(k+2)(k+3) + 2max{0,1−c}F (L)D2
X

k+3 .

Proof. Let us consider one iteration of the method for some k ≥ 0.

Since all the components of f have the Lipschitz continuous gradients, it holds that

f (yk+1) ≤ f (zk+1)+∇ f (zk+1)(yk+1 − zk+1)+ L
2 ∥yk+1 − zk+1∥2,

where the vector inequality is component-wise. Then, using the properties of F , we have

ϕ(yk+1) = F ( f (yk+1), yk+1)

(3.8),(B.2)≤ F ( f (zk+1)+∇ f (zk+1)(yk+1 − zk+1), yk+1)+ F (L)
2 ∥yk+1 − zk+1∥2

= F
(
(1−γk )

[
f (zk+1)+∇ f (zk+1)(yk − zk+1)

]

+ γk
[

f (zk+1)+∇ f (zk+1)(xk+1 − zk+1)
]
,

(1−γk )yk +γk xk+1
) + γ2

k F (L)
2 ∥xk+1 −xk∥2

≤ (1−γk )F ( f (zk+1)+∇ f (zk+1)(yk − zk+1), yk )

+ γk F ( f (zk+1)+∇ f (zk+1)(xk+1 − zk+1), xk+1) + γ2
k F (L)

2 ∥xk+1 −xk∥2

≤ (1−γk )ϕ(yk ) + γk F ( f (zk+1)+∇ f (zk+1)(xk+1 − zk+1), xk+1)

+ γ2
k F (L)

2 ∥xk+1 −xk∥2,
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where the second equality comes from the update rule of yk+1, the second inequality comes
from the joint convexity in Assumption 3.1, the third inequality comes from convexity of the
components of f and monotonicity of F .

Since we are introducing a norm-regularized minimization subproblem for the purpose of acceler-

ation, the term
γ2

k F (L)
2 ∥xk+1 −xk∥2 can be further upper bounded using ηk -approximate guarantee

(3.20), as follows, for any x ∈X :

γ2
k F (L)

2 ∥xk+1 −xk∥2 =
(
γ2

k F (L)
2 − βkγk

2

)
∥xk+1 −xk∥2 + βkγk

2 ∥xk+1 −xk∥2

≤ βkγk

2 ∥xk+1 −xk∥2
2 +

γ2
k F (L)(1−c)

2 ∥xk+1 −xk∥2

= βkγk

2

(∥x −xk∥2
2 −∥x −xk+1∥2 −2〈xk −xk+1, xk+1 −x〉)

+γ2
k F (L)(1−c)

2 ∥xk+1 −xk∥2

(3.20)≤ βkγk

2

(∥x −xk∥2
2 −∥x −xk+1∥2

)+ γ2
k F (L)(1−c)

2 ∥xk+1 −xk∥2

+ γk F ( f (zk+1)+∇ f (zk+1)(x − zk+1), x)

− γk F ( f (zk+1)+∇ f (zk+1)(xk+1 − zk+1), xk+1)+γkηk ,

where we used our choice βk = cF (L)γk .

Therefore, by combining these two bounds together, we obtain

ϕ(yk+1) ≤ (1−γk )ϕ(yk )+γk F ( f (zk+1)+∇ f (zk+1)(x − zk+1), x)

+ βkγk

2

(∥x −xk∥2 −∥x −xk+1∥2
)+ γ2

k F (L)(1−c)
2 ∥xk+1 −xk∥2 +γkηk

≤ (1−γk )ϕ(yk )+γkϕ(x)+ βkγk

2

(∥x −xk∥2 −∥x −xk+1∥2
)

+γ2
k F (L)(1−c)

2 ∥xk+1 −xk∥2 +γkηk ,

for all x ∈X , where we used convexity of f and monotonicity of F .
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We now subtract ϕ(x) from both sides, let x = x⋆ and denote εk :=ϕ(yk )−ϕ⋆, which gives

εk+1 ≤ (1−γk )εk + γkβk

2

(∥xk −x⋆∥2 −∥xk+1 −x⋆∥2
)

+γ2
k F (L)(1−c)

2 ∥xk+1 −xk∥2 +γkηk .

(B.8)

We now move on to choosing the parameters γk , ηk and βk in a way that allows us to accelerate.
For more flexibility, we let γk := ak+1

Ak+1
, for some sequences {ak }k≥0 and {Ak }k≥0 that will be

defined later. Then (B.8) becomes:

Ak+1εk+1 ≤ A0ϵ0 +
k∑

i =0
ai+1ηi + 1

2

k∑
i =0

ai+1βi
(∥xi −x⋆ ∥2 −∥xi+1 −x⋆ ∥2)

+F (L)(1−c)
2

k∑
i =0

a2
i+1

Ai+1
∥xi+1 −xi∥2

≤ A0ϵ0 +
k∑

i =0
ai+1ηi + a1β0

2 ∥x0 −x⋆ ∥2 + 1
2

∑k
i =1

(
ai+1βi −aiβi−1

)∥xi −x⋆ ∥2

+F (L)(1−c)
2

k∑
i =0

a2
i+1

Ai+1
∥xi+1 −xi∥2

and therefore, we have

εk+1 ≤ A0ϵ0
Ak+1

+ 1
Ak+1

k∑
i =0

ai+1ηi + a1β0

2Ak+1
∥x0 −x⋆ ∥2

+ 1
2Ak+1

k∑
i =1

(
ai+1βi −aiβi−1

)∥xi −x⋆ ∥2 + F (L)(1−c)
2Ak+1

k∑
i =0

a2
i+1

Ai+1
∥xi+1 −xi∥2.

We wish to choose sequences Ak , ak , βk and ηk such that we obtain a O (
1/k2

)
rate of con-

vergence on the functional residual of ϕ(·). The constraint we require on the sequences is
γk F (L) ≤βk . The following choices

ηk = δ
ak+1

, for some constant δ> 0,

βk = cF (L)γk , for some constant c > 0

ak+1 = Ak+1 − Ak = 3Ak+1
k+3 , Ak+1 = (k +1)(k +2)(k +3),
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give us the desired outcome, since equation (B.9) becomes:

εk+1 ≤
δ

(k +2)(k +3)
+ 3cF (L)∥x0 −x⋆ ∥2

(k +1)(k +2)(k +3)
+ 5ckF (L)D2

X
(k +1)(k +2)(k +3)

+ 9F (L)(1− c)

2(k +1)(k +2)(k +3)

k∑
i =0

(i +1)∥xi+1 −xi∥2

≤ δ

(k +2)(k +3)
+ 8cF (L)D2

X
(k +2)(k +3)

+ 2max{0,1− c}F (L)D2
X

k +3

since ai+1βi −aiβi−1 =
9cF (L)(i 2+5i+4)

i 2+5i+6 < 9cF (L) and ∥xi −x⋆ ∥2 ≤D2
X .
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B.1.4 Proof of Theorem 3.4

Theorem 3.4. Let Assumptions 3.1, 3.1.b, and 3.2 be satisfied. Then, for all t ≥ 1 it holds that

P (ut )−P⋆ ≤ 2βD2
X

t+1 and min
1≤i≤t

Gt ≤ 6βD2
X

t .

Consequently, Algorithm 3.3 returns an η-approximate solution according to condition (3.20)

after at most O
(
βD2

X
η

)
iterations.

Proof. Let us introduce our subproblem in a general form, that is

s⋆ = min
u∈X

{
s(u) := r (u)+h(u),

}
(B.9)

where r (·) is a differentiable convex function, whose gradient is Lipschitz continuous with
constant β> 0, and h(u) is a general proper closed convex function, not necessarily differentiable.

In our case, for computing the inexact proximal step (3.19), we set

r (u) := β
2 ∥u −x∥2,

h(u) := F ( f (z)+∇ f (z)(u − z),u),

for a fixed x and z .

Then, in each iteration of Algorithm 3.3, we compute, for t ≥ 0:

vt+1 ∈ argminu∈X
{
〈∇r (ut ),u〉+h(u)

}
. (B.10)

The optimality condition for this operation is (see, e.g. Theorem 3.1.23 in [168])

〈∇r (ut ),u −vt+1〉+h(u) ≥ h(vt+1), ∀u ∈X . (B.11)
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Therefore, employing the Lipschitz continuity of the gradient of r (·), we have

s(ut+1) ≤ r (ut )+〈∇r (ut ),ut+1 −ut 〉+ β
2 ∥ut+1 −ut∥2 +h(ut+1)

= r (ut )+αt 〈∇r (ut ), vt+1 −ut 〉+ βα2
t

2 ∥vt+1 −ut∥2

+ h(αt vt+1 + (1−αt )ut )

≤ s(ut )+αt
(〈∇r (ut ), vt+1 −ut 〉+h(vt+1)−h(ut )

)+ βα2D2
X

2

≡ s(ut )−αtGt + βα2
t D2

X
2 ,

(B.12)

where the last equality comes from the definition of Gt in Algorithm 3.3.

Note that αt is defined as the minimizer of βα2
t

2 ∥vt+1 −ut∥2 −αtGt and hence, for any other
ρt ∈ [0,1] it will hold that:

s(ut+1) ≤ s(ut )−ρtGt +
βρ2

tD2
X

2
. (B.13)

At the same time,

Gt := h(ut )−h(vt+1)−〈∇r (ut ), vt+1 −ut 〉

(B.10)≥ h(ut )−h(u)−〈∇r (ut ),u −ut 〉

≥ s(ut )− s(u), ∀u ∈X

(B.14)

where the last line follows from the convexity of r (u). Letting u := u⋆ (solution to (B.9)) in
(B.14) and further substituting it into (B.13) and subtracting s⋆ from both sides, we obtain

[s(ut+1)− s⋆] ≤ (1−ρt ) [s(ut )− s⋆]+ βρ2
t D2

X
2 . (B.15)

Now, let us choose ρt := at+1
At+1

for sequences At := t · (t +1), and at+1 := At+1 − At = 2(t +1). Then,
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ρt := 2
2+t , t ≥ 0. Using this choice, inequality (B.15) can be rewritten as

At+1
[
s(ut+1)− s⋆

] ≤ At
[
s(ut )− s⋆

]+ a2
t+1βD

2
X

2At+1

Telescoping this inequality for the first iterations, we obtain, for t ≥ 1:

s(ut )− s⋆ ≤ βD2
X

2At
·

t∑
i =1

a2
i

Ai
=

βD2
X

2t (t+1) ·
t∑

i =1

4i
i+1 ≤ 2βD2

X
t+1 . (B.16)

This is the global convergence in terms of the functional residual. It remains to justify the
convergence for the accuracy certificates Gt . Multiplying (B.13) by At+1, we obtain

at+1Gt ≤ at+1s(ut )+ At s(ut )− At+1s(ut+1)+ a2
t+1

At+1

βD2
X

2 . (B.17)

Telescoping this bound, we get, for t ≥ 1:

t∑
i =1

ai+1 · min
1≤i≤t

Gi ≤
t∑

i =1
ai+1Gi

(B.17)≤ a1
[
s(u1)− s⋆

]+ t∑
i =1

ai+1
[
s(ui )− s⋆

]+ βD2
X

2

t∑
i =1

a2
i+1

Ai+1

(B.16)≤ 2βD2
X ·

(
1+

t∑
i =1

ai+1
i+1 + 1

4

t∑
i =1

a2
i+1

Ai+1

)

≤ 2βD2
X · (1+3t ).

Dividing both sides by
∑t

i =1 ai+1 = At+1 − A1 = t (3+ t ) completes the proof we finally get:

min
1≤i≤t

Gi ≤ 6βD2
X

t
.
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B.1.5 Proof of Proposition 3.1

Proposition 3.1. Let γk := 1p
1+k

. Then, for the iterations (3.18), under Assumption 3.1.b and for
all k ≥ 1, it holds that

min
0≤i≤k

max
y∈X

〈∇Φ(yi ), yi − y〉 ≤ O
(

ln(k)p
k

)
.

Proof. In our case, we have ϕ(x) ≡ ∥ f (x)∥2. Using Lemma B.1, we obtain

ϕ(yk+1) ≤ ∥ f (yk )+∇ f (yk )(yk+1 − yk )∥2 + γ2
k

2 S

= ∥ f (yk )+γk∇ f (yk )(xk+1 − yk )∥2 + γ2
k

2 S ,

(B.18)

where xk+1 ∈X is the point such that yk+1 = yk +γk (xk+1 − yk ). Using convexity of the function
g (x) := ∥ f (yk )+γk∇ f (yk )(x − yk )∥2, we get that

ϕ(yk ) = g (yk ) ≥ g (xk+1)+〈g ′(xk+1), yk −xk+1〉

= ∥ f (yk )+γk∇ f (yk )(xk+1 − yk )∥2 +〈g ′(xk+1), yk −xk+1〉,

where the subgradient g ′(xk+1) = γk∇ f (yk )⊤ fk+1

∥ fk+1∥2
with fk+1 := f (yk )+γk∇ f (yk )(xk+1 − yk ),

satisfies the stationary condition for the method step:

〈g ′(xk+1), x −xk+1〉 ≥ 0, ∀x ∈X . (B.19)

A few comments are in order now about the use of the subgradient above. Note that we wish
to impose an assumption on f which can ensure that f (yk )+γk∇ f (yk )(x − yk ) ̸= 0 ∈Rn . First,
some preliminaries. Under Assumption 3.1.b on f , it holds that:

∃F ∈ (0,∞) s.t.
∥∥ f (x)

∥∥≤F ,∀x ∈X by continuity of f (B.20)

∃H ∈ (0,∞) s.t.
∥∥∇ f (x)

∥∥≤H,∀x ∈X by continuous differentiability of f (B.21)

From here, we can bound the products between Jacobians and iterates as follows:∥∥∇ f (x)(y − z)
∥∥≤ ∥∥∇ f (x)

∥∥∥∥ y − z
∥∥≤HDX , ∀x , y , z ∈X . (B.22)

Thus, without loss of generality, we can shift f by a constant vector of identical values depending
on HDX such that we ensure, for example, f (yk )+γk∇ f (yk )(x − yk ) > 0 component-wise.
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Hence, combining these observations with (B.18), we have

ϕ(yk )−ϕ(yk+1) ≥ 〈g ′(xk+1), yk −xk+1〉− γ2
k

2 S

(B.19)≥ max
x∈X

〈g ′(xk+1), yk −x〉− γ2
k

2 S .

Then, by lower bounding appropriately using (B.20) and (B.21), we get:

ϕ(yk )−ϕ(yk+1) ≥ γk

F+HDX
max
y∈X

〈∇ f (yk )⊤ f (yk ), yk − y〉−γ2
k

( HD2
X

F+HDX
+ S

2

)

= γk

F+HDX
max
y∈X

〈∇Φ(yk ), yk − y〉−γ2
k

( HD2
X

F+HDX
+ S

2

)
.

Substituting γk := 1p
1+k

and telescoping this bound would lead to the desired global convergence
(for the details, see the end of the proof of Theorem 3.2).
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B.2 Interpretation of the generalized gap in non-convex settings

While we cannot make any strong claims about the meaning of Gk in general, we can provide
an additional observation for this quantity when the outer component F is smooth inside a ball
included in X .

Thus, consider a ball of radius ε centered at yk denoted by B(yk ,ε) = {x ∈Rd : ∥x − yk∥ ≤ ε}, and
set B = B(yk ,ε)∩X . Assuming that F (u, x) is differentiable at all points from Rn ×B, and that its
gradient is Lipschitz continuous with constant LF , we have for any x ∈B ⊆X :

Gk = max
x∈X

[
ϕ(yk )−F

(
f (yk )+∇ f (yk )(x − yk ), x

)]

≥ max
x∈B

[
ϕ(yk )−F ( f (yk ), yk )−〈∂F

∂u
( f (yk ), yk ),∇ f (yk )(x − yk )〉

− 〈∂F
∂x

( f (yk ), yk ), x − yk〉− LF
2

(∥∇ f (yk )∥2 +1
) ·ε2

]

= max
x∈B

[
〈∇ϕ(yk ), yk −x〉

]
− LF

2

(∥∇ f (yk )∥2 +1
) ·ε2.

Hence, for a small enough ball, Gk is an O (
ϵ2

)
-approximation of the original FW gap restricted

to the considered neighbourhood. If, in addition, the composite function ϕ is convex in B and
there is a local optimum x⋆ ∈B, then Gk is an O (

ϵ2
)
-approximation of functional suboptimality.
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C.1 Proof of Lemma 4.1

Lemma 4.1. Consider APDA along with Assumptions 4.1 and 4.2 and (x , y) ∈X ×Y . Then, for
all k and ηk ∈

(
βτk∥ A ∥

1−c , 1−2τk Lk
2τk∥ A ∥

)
,

∥xk+1 −x ∥2 + 1

β

∥∥ yk+1 − y
∥∥2 + (

1−ηkτk ∥ A ∥−τk Lk
)∥xk+1 −xk ∥2

+ ηk −τkβ∥ A ∥
βηk

∥∥ yk+1 − yk
∥∥2 +2τk (1+θk )Px ,y (xk )+2τk Dx ,y (yk+1)

≤ ∥xk −x ∥2 + 1

β

∥∥ yk − y
∥∥2 +τk Lk ∥xk −xk−1 ∥2 +2τkθk Px ,y (xk−1).

Moreover, it holds that:

1) τk Lk < 1
2 < 1−ηkτk ∥ A ∥−τk Lk ,

2) 1
β − τk∥ A ∥

ηk
> c

β > 0.

Proof. Using the primal update rule, we have

∥xk+1 −x ∥2 = ∥xk −x ∥2 +∥xk+1 −xk ∥2 −2τk〈∇ f (xk )+ A⊤yk+1, xk −x〉. (C.1)

We address each term in the RHS separately. Using the convexity of f we bound the last term of
(C.1):

−2τk〈∇ f (xk )+ A⊤yk+1, xk −x〉 ≤ 2τk
(

f (x)− f (xk )
)+2τk〈A(x −xk ), yk+1〉. (C.2)

For the second term of (C.1) we use an expansion similar to the analysis in [147] along with the
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primal update rule:

∥xk+1 −xk ∥2 = 2∥xk+1 −xk ∥2 −∥xk+1 −xk ∥2

= 2τk〈∇ f (xk )+ A⊤yk+1, xk −xk+1〉−∥xk+1 −xk ∥2

= 2τk〈∇ f (xk )−∇ f (xk−1), xk −xk+1〉+2τk〈A⊤yk+1 − A⊤yk , xk −xk+1〉
+2τk〈∇ f (xk−1)+ A⊤yk , xk −xk+1〉−∥xk+1 −xk ∥2 . (C.3)

Notice that the first term in (C.3) gives us the opportunity to insert a dependence on the local
Lipschitz constant Lk . Using Cauchy-Schwarz, the definition of Lk and Young’s inequality, we
indeed take this opportunity and get:

〈∇ f (xk )−∇ f (xk−1), xk −xk+1〉 ≤ Lk ∥xk −xk−1 ∥∥xk+1 −xk ∥

≤ Lk

2

(∥xk −xk−1 ∥2 +∥xk+1 −xk ∥2) . (C.4)

Similarly, we bound the second term in (C.3) and obtain:

〈A⊤yk+1 − A⊤yk , xk −xk+1〉 ≤
∥ A ∥η

2
∥xk+1 −xk ∥2 + ∥ A ∥

2η

∥∥ yk+1 − yk
∥∥2 , (C.5)

where η> 0 is a free parameter coming from Young’s inequality.

Finally, for the third term in (C.3) we use the update rule and the convexity of f :

〈∇ f (xk−1)+ A⊤yk , xk −xk+1〉 = 〈 1

τk−1
(xk−1 −xk ),τk (∇ f (xk )+ A⊤yk+1)〉

≤ θk
(

f (xk−1)− f (xk )
)+θk〈A(xk−1 −xk ), yk+1〉. (C.6)

Replacing (C.4), (C.5) and (C.6) into (C.3), we get

∥xk+1 −xk ∥2 ≤ τk Lk ∥xk −xk−1 ∥2 + (
τk ∥ A ∥η+τk Lk −1

)∥xk+1 −xk ∥2

+ τk ∥ A ∥
η

∥∥ yk+1 − yk
∥∥2 +2τkθk

(
f (xk−1)− f (xk )

)
+2τkθk〈A(xk−1 −xk ), yk+1〉. (C.7)

Finally, replacing (C.7) and (C.2) back into (C.1) and using the fact that θk〈A(xk−1−xk ), yk+1〉+
〈A(x −xk ), yk+1〉 = −〈A(x̃k −x), yk+1〉, we obtain the inequality for the primal iterate sequence:

∥xk+1 −x ∥2 ≤ ∥xk −x ∥2 +τk Lk ∥xk −xk−1 ∥2 + (
τk ∥ A ∥η+τk Lk −1

)∥xk+1 −xk ∥2

+ τk ∥ A ∥
η

∥∥ yk+1 − yk
∥∥2 +2τkθk

(
f (xk−1)− f (xk )

)+2τk
(

f (x)− f (xk )
)
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−2τk〈A(x̃k −x), yk+1〉. (C.8)

We now seek a similar result for the dual sequence. For this, we use the following characterization
of the proximal operator:

u = proxg∗(x) ⇐⇒ 〈u −x , z −u〉 ≥ g∗(u)− g∗(z) ∀z . (C.9)

Thus, letting u = yk+1, x = yk +σk Ax̃k and z = y in (C.9), we obtain:

g∗(y) ≥ g∗(yk+1)+〈 1

σk
(yk − yk+1), y − yk+1〉+〈Ax̃k , y − yk+1〉.

Using the cosine rule for the second term, the fact that σk =βτk and multiplying both sides by
2τk > 0, we obtain:

1

β

∥∥ yk+1 − y
∥∥2 ≤ 1

β

∥∥ yk − y
∥∥2 − 1

β

∥∥ yk+1 − yk
∥∥2 +2τk (g∗(y)− g∗(yk+1))

+2τk〈Ax̃k , yk+1 − y〉. (C.10)

Summing (C.10) with (C.8) we obtain the following recurrence:

∥xk+1 −x ∥2 + 1

β

∥∥ yk+1 − y
∥∥2

≤ ∥xk −x ∥2 + 1

β

∥∥ yk − y
∥∥2 +τk Lk ∥xk −xk−1 ∥2

+ (
τk ∥ A ∥η+τk Lk −1

)∥xk+1 −xk ∥2 +
(
τk ∥ A ∥

η
− 1

β

)∥∥ yk+1 − yk
∥∥2

+2τk
(
θk

(
f (xk−1)− f (xk )

)+ f (x)− f (xk )+ g∗(y)− g∗(yk+1
)

+2τk〈Ax , yk+1〉−2τk〈Ax̃k , y〉. (C.11)

We further process the terms involving f and g∗ on the right-hand side in order to form the Px ,y (·)
and Dx ,y (·):

f (x)− f (xk ) = −Px ,y (xk )+〈A(xk −x), y〉,

θk ( f (xk−1)− f (xk )) = θk Px ,y (xk−1)−θk Px ,y (xk )+〈θk A(xk −xk−1), y〉,

g∗(y)− g∗(yk+1) = −Dx ,y (yk+1)−〈Ax , yk+1 − y〉.

Replacing the above expressions into (C.11) and noting that 〈A(x̃k − x), y〉− 〈Ax , yk+1 − y〉+
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〈Ax , yk+1〉−〈Ax̃k , y〉 = 0, we obtain:

∥xk+1 −x ∥2 + 1

β

∥∥ yk+1 − y
∥∥2 + (

1−τk ∥ A ∥η−τk Lk
)∥xk+1 −xk ∥2

+
(

1

β
− τk ∥ A ∥

η

)∥∥ yk+1 − yk
∥∥2 +2τk (1+θk )Px ,y (xk )+2τk Dx ,y (yk+1)

≤ ∥xk −x ∥2 + 1

β

∥∥ yk − y
∥∥2 +τk Lk ∥xk −xk−1 ∥2 +2τkθk Px ,y (xk−1). (C.12)

What is left in order to obtain the stated result is to choose η, possibly depending on k, such
that the corresponding terms are positive. First, note that τk Lk ∥xk −xk−1 ∥2 < 1

2 ∥xk −xk−1 ∥2

because z 7→ z
2
p

z2+a
, a > 0 is an increasing function whose limit at ∞ is 1

2 and we have:

τk Lk ≤ Lk

2
√

L2
k + (β/(1− c))∥ A ∥2

< 1

2
. (C.13)

Next we need to choose η = ηk (iteration-dependent) to satisfy:
1
β − τk∥ A ∥

ηk
> 0,

1−τk ∥ A ∥ηk −τk Lk > 1
2 .

However, for theoretical purposes related to controlling the sequence
∥∥ yk+1 − yk

∥∥2, we strengthen

the first inequality to
1

β
− τk ∥ A ∥

ηk
> c

β
, c ∈ (0,1). In practice, this constant is chosen as small as

possible. The new conditions to be satisfied are:
1
β − τk∥ A ∥

ηk
> c

β ,

1−τk ∥ A ∥ηk −τk Lk > 1
2 ,

⇐⇒


ηk > βτk∥ A ∥

1−c ,

ηk < 1−2τk Lk
2τk∥ A ∥ .

(C.14)

The question we need to answer therefore is: given the expression of τk , is the interval always

valid for choosing ηk ∈
(
βτk ∥ A ∥

1− c
,

1−2τk Lk

2τk ∥ A ∥
)
?

To answer, we form the corresponding quadratic inequality in τk :

βτk ∥ A ∥
1− c

− 1−2τk Lk

2τk ∥ A ∥ < 0 ⇐⇒ 2βτ2
k ∥ A ∥2

1− c
+2τk Lk −1 < 0, (C.15)

138



Appendix for Chapter 4 Chapter C

whose 2 real roots are given by:
τk,1 = 1

Lk−
√

L2
k+2(β/(1−c))∥ A ∥2

< 0,

τk,2 = 1

Lk+
√

L2
k+2(β/(1−c))∥ A ∥2

> 0.

For inequality (C.15) to be satisfied, we need:

τk ∈ (0,τk,2) =

0,
1

Lk +
√

L2
k +2(β/(1− c))∥ A ∥2

 , ∀k. (C.16)

The lower bound for τk trivially holds, and for the upper bound, we make the following observa-
tion:

Lk +
√

L2
k +2(β/(1− c))∥ A ∥2 =

2
[√

L2
k +

√
L2

k +2(β/(1− c))∥ A ∥2
]

2

Jensen< 2

√
2L2

k +2(β/(1− c))∥ A ∥2

2

= 2
√

L2
k + (β/(1− c))∥ A ∥2.

Here Jensen’s inequality holds strictly because function
p· is strictly concave and L2

k ̸= L2
k +

2∥ A ∥2β. Thus, we obtain:

0 < τk ≤ 1

2
√

L2
k +∥ A ∥2β

< 1

Lk +
√

L2
k +2β∥ A ∥2

= τk,2 ∀k.

It follows that we can find an ηk ∈
(
βτk ∥ A ∥

1− c
,

1−2τk Lk

2τk ∥ A ∥
)

, ∀k, which implies that conditions (C.14)

can always be satisfied. This concludes the proof.
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C.2 Proof of Theorem 4.1

Theorem 4.1. Consider APDA along with Assumptions 4.1 and 4.2, and let (x⋆, y⋆) ∈X ×Y be a
saddle point of problem (4.2). Then,

1) Boundedness. The sequence {(xk , yk )} is bounded. Specifically, for all k,∥∥xk −x⋆
∥∥2 +∥∥ yk − y⋆

∥∥2 ≤ M ,

where M := ∥x1 −x⋆ ∥2 + 1
β

∥∥ y1 − y⋆
∥∥2 + 1

2 ∥x1 −x0 ∥2 <∞.

2) Convergence to a saddle point. The sequence {(xk , yk )} converges to a saddle point
of (4.2).

3) Ergodic convergence. Let Sk :=
k∑

i =1
τi , xk :=

1

Sk

(
τk (1+θk )xk+

k−1∑
i =1

(τi (1+θi )−τi+1θi+1) xi

)

and y k :=
1

Sk

k∑
i =1
τi yi+1. Then, for any bounded B1 ×B2 ∈X ×Y and for all k,

GB1×B2 (xk , y k ) ≤
M(B1,B2)

√
L2 + (β/(1− c))∥ A ∥2

k
,

where L is the Lipschitz constant of ∇ f over the compact set conv({x⋆, x0, x1, . . .}) and
M(B1,B2) = sup(x ,y)∈B1×B2

∥x1 −x ∥2 + 1
β

∥∥ y1 −x
∥∥2 + 1

2 ∥x1 −x0 ∥2.

Proof. 1) Sequence boundedness. Using the inequality of Lemma (4.1) with (x , y) = (x⋆, y⋆)

and the fact that τk Lk < 1
2 , ∀k, unrolling it over the iterations and rearranging the terms we

obtain:∥∥xk+1 −x⋆
∥∥2 + 1

β

∥∥ yk+1 − y⋆
∥∥2 + (

1−ηkτk ∥ A ∥−τk Lk
)∥xk+1 −xk ∥2

+
k−1∑
i =1

(
1

2
−ηiτi ∥ A ∥−τi Li

)
∥xi+1 −xi ∥2 + c

β

k∑
i =1

∥∥ yi+1 − yi
∥∥2 +2τk (1+θk )Px⋆,y⋆(xk )

+2
k−1∑
i =2

(τi (1+θi )−τi+1θi+1)Px⋆,y⋆(xi )+2
k∑

i =1
τi Dx⋆,y⋆(yi+1)

≤ ∥∥x1 −x⋆
∥∥2 + 1

β

∥∥ y1 − y⋆
∥∥2 + 1

2
∥x1 −x0 ∥2 +2τ1θ1Px⋆,y⋆(x0). (C.17)
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All the terms on the left hand-side of (C.17) are non-negative:

1

β
− τk ∥ A ∥

ηi
> c

β
> 0, ∀i ,

1

2
−ηiτi ∥ A ∥−τi Li > 0, ∀i ,

τi+1θi+1 ≤ τi

√
1+θi θi+1 ≤ τi (1+θi ),

Px⋆,y⋆(x) ≥ 0, Dx⋆,y⋆(y) ≥ 0 ∀x , y .

(by Lemma 4.1)

(by Lemma 4.1)

(by stepsize update rule)

(by the saddle point property)

Also, by our parameter setup, we have that θ1 = 0. Consequently, it holds that:

∥∥xk+1 −x⋆
∥∥2 + 1

β

∥∥ yk+1 − y⋆
∥∥2 ≤ M <∞ ∀k,

where M := ∥x1 −x⋆ ∥2+ 1
β

∥∥ y1 − y⋆
∥∥2+ 1

2 ∥x1 −x0 ∥2, which implies that the sequence is bounded.

We make the following remarks which will be useful for the remainder of the theorem’s proof:

• Boundedness of {xk } together with the local Lipschitz continuity of ∇ f from Assump-
tion 4.1 implies that there exists L > 0 such that f is L-smooth over conv({x⋆, x0, x1, . . .}).
Furthermore, L ≥ Lk ∀k.

• A consequence of the prior point is that τk has a uniform and positive lower bound. By the
definition of APDA, it holds that:

τ1 =
1

2
√

L2
1 + (β/(1− c))∥ A ∥2

≥ 1

2
√

L2 + (β/(1− c))∥ A ∥2

and, from the definition of τk , it is straightforward to see that at every iteration, we either
explicitly increase τk relative to τk−1 or otherwise set it to an expression dictated by the
local smoothness constant Lk . Thus it holds that:

τk ≥ 1

2
√

L2 + (β/(1− c))∥ A ∥2
, ∀k. (C.18)

• Furthermore, the existence of L guarantees that τk Lk can have a tighter upper bound than
the 1/2 shown before, as follows:

τk Lk ≤ Lk

2
√

L2
k + (β/(1− c))∥ A ∥2

≤ L

2
√

L2 + (β/(1− c))∥ A ∥2
, . (C.19)

141



Chapter C Appendix for Chapter 4

where we used the fact that z 7→ z
2
p

z2+a
, a > 0 is an increasing function.

• Finally, due to the point above, we can uniformly lower bound the coefficients of terms
∥xk+1 −xk ∥2 on the LHS of (C.17), and thus obtain:

1

2

1− L√
L2 + (β/(1− c))∥ A ∥2

k−1∑
i =1

∥xi −xi+1 ∥2 + c

β

k∑
i =1

∥∥ yi+1 − yi
∥∥2 ≤ M ,

which conveniently ensures that:
lim

k→∞
∥xk −xk−1 ∥2 = 0,

lim
k→∞

∥∥ yk − yk−1
∥∥2 = 0.

(C.20)

2) Convergence to a saddle point. Let (x̂ , ŷ) be an arbitrary cluster point of the sequence
{(xk , yk )}. Since we have shown that the sequence is bounded, then there must exist a subsequence
{(xki , yki )}, such that limi→∞(xki , yki ) = (x̂ , ŷ). We wish to prove that (x̂ , ŷ) is a saddle point of
(4.2).

More precisely, we wish to prove that P x̂ ,ŷ (x) ≥ 0 and D x̂ ,ŷ (y) ≥ 0 for ∀x , y , respectively. For
convenience, we remind the reader of the definitions of these two quantities:

P x̂ ,ŷ (x) = f (x)− f (x̂)+〈A(x − x̂), ŷ〉,
D x̂ ,ŷ (y) = g∗(y)− g∗(ŷ)−〈Ax̂ , y − ŷ〉.

We start with P x̂ ,ŷ (x):

P x̂ ,ŷ (x) = f (x)− f (x̂)+〈A(x − x̂), ŷ〉
= lim

i→∞
f (x)− f (xki )+〈A(x −xki ), yki 〉 (Continuity of f )

≥ lim
i→∞

〈∇ f (xki )+ A⊤yki+1, x −xki 〉+〈A⊤(yki − yki+1), x −xki 〉 (Convexity of f )

= lim
i→∞

〈xki+1 −xki

τki

, x −xki 〉+〈A⊤(yki − yki+1), x −xki 〉 (Primal update rule)

= 0. (By (C.18), (C.20))

Showing the analogous result for D x̂ ,ŷ (y) relies on similar arguments, with the additional require-
ment that θk is uniformly upper bounded. From the update rule of τk we have:

θk =
τk

τk−1
≤

√
1+θk−1 =⇒ θk ≤

√
1+ . . .+

√
1+θ2 ≤

√
1+ . . .+p

1+1︸ ︷︷ ︸
k−2 times

≤ 2, (C.21)

where the second to last inequality comes from the way APDA’s first two iterations are set up.
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Therefore, we have that ∀y ∈Y:

D x̂ ,ŷ (y) = g∗(y)− g∗(ŷ)−〈Ax̂ , y − ŷ〉
≥ g∗(y)− liminf

i→∞
g∗(yki )−〈A liminf

i→∞
xki , y − liminf

i→∞
yki 〉 (l.s.c. of g∗)

= limsup
i→∞

g∗(y)− g∗(yki )−〈Axki , y − yki 〉

≥ limsup
i→∞

〈 yki−1 − yki

σki−1
, y − yki 〉+〈A(x̃ki−1 −xki ), y − yki 〉 (Poperty (C.9))

= limsup
i→∞

〈 yki−1 − yki

βτki−1
, y − yki 〉+〈A

[
xki−1 −xki +θki−1(xki−1 −xki−2)

]
, y − yki 〉

= 0. (By (C.18), (C.20), (C.21))

3) Gap rate. Unrolling the inequality of Lemma 4.1 for some (x , y) ∈ B1 ×B2, we obtain:

∥xk+1 −x ∥2 + 1

β

∥∥ yk+1 −x
∥∥2 + (

1−ηkτk ∥ A ∥−τk Lk
)∥xk+1 −xk ∥2

+
k−1∑
i =1

(
1

2
−ηiτi ∥ A ∥−τi Li

)
∥xi+1 −xi ∥2 + c

β

k∑
i =1

∥∥ yi+1 − yi
∥∥2 +2τk (1+θk )Px ,y (xk )

+2
k−1∑
i =2

(τi (1+θi )−τi+1θi+1)Px ,y (xi )+2
k∑

i =1
τi Dx ,y (yi+1)

≤ ∥x1 −x ∥2 + 1

β

∥∥ y1 − y
∥∥2 + 1

2
∥x1 −x0 ∥2 . (C.22)

First, note that due to θ1 = 0, the following holds:

τk (1+θk )+
k−1∑
i =1

(τi (1+θi )−τi+1θi+1) =
k∑

i =1
τi =: Sk .

Second, since all the terms on the LHS of (C.22) except those involving Px ,y (·) and Dx ,y (·) are
non-negative and, for fixed (x , y) ∈X ×Y the functions Px ,y (·) and Dx ,y (·) are convex, we have:

2Sk
(
Px ,y (xk )+Dx ,y (y k )

)
≤ 2τk (1+θk )Px ,y (xk )+2

k−1∑
i =2

(τi (1+θi )−τi+1θi+1)Px ,y (xi )+2
k∑

i =1
τi Dx ,y (yi+1)

≤ ∥x1 −x ∥2 + 1

β

∥∥ y1 − y
∥∥2 + 1

2
∥x1 −x0 ∥2 . (C.23)

Lastly, since τk ≥ 1

2
p

L2+(β/(1−c))∥ A ∥2
, ∀k, we have that Sk ≥ k

2
p

L2+(β/(1−c))∥ A ∥2
and the rate for

the restricted gap is:
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GB1×B2 (xk , y k )

= sup
(x ,y)∈B1×B2

Px ,y (xk )+Dx ,y (y k )

≤ sup
(x ,y)∈B1×B2

(
∥x1 −x ∥2 + 1

β

∥∥ y1 − y
∥∥2 + 1

2 ∥x1 −x0 ∥2
)√

L2 + (β/(1− c))∥ A ∥2

k

=
M(B1,B2)

√
L2 + (β/(1− c))∥ A ∥2

k
,

which concludes the proof of the theorem.
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C.3 Proof of Theorem 4.2

Before proving the result of Theorem 4.2, a few remarks are in order. First, the boundedness
result of Theorem 4.1 point 1) also holds for constant c = 0, since this constant was required
only for proving convergence to a saddle point in point 2) of the theorem. Second, taking a
stepsize smaller than the originally considered τk will not change the validity of Lemma 4.1 or
the boundedness result of Theorem 4.1, as it remains within the interval given in (C.16).

Consequently, for studying APDA under the additional Assumption 4.3 we can simplify the
stepsize expression by taking c = 0, since now we will prove convergence of the iterates directly
by using the strong convexity and full row-rank assumptions. Specifically, we consider τk

as defined in (4.8), which is smaller than the one originally considered and, due to the above
remarks, it ensures that APDA produces a bounded sequence. It follows that, under the local
smoothness and local strong convexity assumptions, there exist constant L and µ such that f is
L-smooth and µ-strongly convex over conv({x⋆, x0, x1, . . .}). This observation suffices to show
linear convergence in Theorem 4.2.

Theorem 4.2. Consider APDA along with Assumptions 4.1, 4.2 and 4.3. Let (x⋆, y⋆) ∈X ×Y be a

saddle point of problem (4.2). Furthermore, let τk be defined by (4.8) and let s :=
√

4L2 +β∥ A ∥2

and t :=
√

4µ2 +β∥ A ∥2, where µ, L are the strong convexity and smoothness constants of f over
the compact set conv({x⋆, x0, x1, . . .}). Then, for all k,

∥∥xk −x⋆
∥∥2 + 1

β

∥∥ yk − y⋆
∥∥2 ≤ (

1−min
{

p, q,r
})k M ,

where the rate constants are given by

p =
1

2
, q =

µ

4s
, r =

βσ2
min(A)µ

βσ2
min(A)µ+8s2t +4L2s

,

and M = ∥x2 −x⋆ ∥2 +
(

1
β +T

)∥∥ y2 − y⋆
∥∥2 + 1

2 ∥x2 −x1 ∥2 +2τ1Px⋆,y⋆(x1), T =
σ2

min(A)µ

8s2t +4L2s
, with

σmin(A) representing the smallest singular value of A.

Proof. The outline of the proof is first arriving at a strengthened version of the inequality in
Lemma 4.1, then showing that the inequality expresses a contraction.

Since this new stepsize still ensures the boundedness result of Theorem 4.1, there exist µ and L

such that f is µ-strongly convex and L-Lipschitz smooth over the compact set conv({x⋆, x0, x1, . . .}).
From these properties, it follows that, for all k:

2τk〈∇ f (xk ), x⋆−xk〉 ≤ 2τk
(

f (x⋆)− f (xk )
)−µτk

∥∥xk −x⋆
∥∥2 ,

2τk〈∇ f (xk ), x⋆−xk〉 ≤ 2τk
(

f (x⋆)− f (xk )
)− τk

L

∥∥∇ f (xk )−∇ f (x⋆)
∥∥2 .
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Summing these two inequalities and dividing by 2, we obtain a stronger version of equation (C.2):

−2τk〈∇ f (xk )+ A⊤yk+1, xk −x⋆〉 ≤ 2τk
(

f (x⋆)− f (xk )
)− τkµ

2

∥∥xk −x⋆
∥∥2

− τk

2L

∥∥∇ f (xk )−∇ f (x⋆)
∥∥2 +2τk〈A(x⋆−xk ), yk+1〉. (C.24)

We further bound the term
∥∥∇ f (xk )−∇ f (x⋆)

∥∥2 in (C.24):

∥∥∇ f (x⋆)−∇ f (xk )
∥∥2 =

∥∥∥∥ A⊤(yk+1 − y⋆)− xk −xk+1

τk

∥∥∥∥2

(C.25)

≥ ∥∥ A⊤(yk+1 − y⋆)
∥∥2 + 1

τ2
k

∥xk+1 −xk ∥2

− 2

τk

∥∥ A⊤(yk+1 − y⋆)
∥∥∥xk+1 −xk ∥ (C.26)

≥ ∥∥ A⊤(yk+1 − y⋆)
∥∥2 + 1

τ2
k

∥xk+1 −xk ∥2

−
(

1

ξ+1

∥∥ A⊤(yk+1 − y⋆)
∥∥2 + ξ+1

τ2
k

∥xk+1 −xk ∥2

)
(C.27)

≥ ξσ2
min(A)

ξ+1

∥∥ yk+1 − y⋆
∥∥2 − ξ

τ2
k

∥xk+1 −xk ∥2 , (C.28)

where line (C.25) comes from the primal iterate update rule and the optimality condition (4.4);
line (C.26) comes from developing the square and applying Cauchy-Schwarz; line (C.27) comes
from applying Young’s inequality with constant 1+ξ, where ξ> 0; line (C.28) comes from the as-
sumption of A having full-row rank, which implies that

∥∥ A⊤(yk+1 − y⋆)
∥∥2 ≥σ2

min(A)
∥∥ yk+1 − y⋆

∥∥2.

Finally, setting ξ = 2τ2
k Lk L we obtain that:

−2τk〈∇ f (xk )+ A⊤yk+1, xk −x⋆〉 ≤ 2τk
(

f (x⋆)− f (xk )
)− τkµ

2

∥∥xk −x⋆
∥∥2

− τ3
k Lkσ

2
min(A)

1+2τ2
k Lk L

∥∥ yk+1 − y⋆
∥∥2 +τk Lk ∥xk+1 −xk ∥2

+2τk〈A(x⋆−xk ), yk+1〉. (C.29)

Replacing inequality (C.2) with inequality (C.29) in the proof of Lemma 4.1 and keeping
everything else identical, we obtain a strengthened version of Lemma’s 4.1 result:

∥∥xk+1 −x⋆
∥∥2 +

(
1

β
+ τ3

k Lkσ
2
min(A)

1+2τ2
k Lk L

)∥∥ yk+1 − y⋆
∥∥2 +

(
1−ηkτk ∥ A ∥−2τk Lk

)

∥xk+1 −xk ∥2 + ηk −τkβ∥ A ∥
βηk

∥∥ yk+1 − yk
∥∥2 +2τk (1+θk )Px⋆,y⋆(xk )+2τk Dx⋆,y⋆(yk+1)
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≤
(
1− µτk

2

)∥∥xk −x⋆
∥∥2 + 1

β

∥∥ yk − y⋆
∥∥2 +τk Lk ∥xk −xk−1 ∥2 +2τkθk Px⋆,y⋆(xk−1). (C.30)

In order to show that this is, in fact, a contraction, we note a few properties of the terms in (C.30):

a) It holds that 1−ηkτk ∥ A ∥−2τk Lk > 1/2 and ηk−τkβ∥ A ∥
βηk

> 0 since:
1−ηkτk ∥ A ∥−2τk Lk > 1/2

ηk−τkβ∥ A ∥
βηk

> 0
⇐⇒


ηk < 1

2τk∥ A ∥ − 2Lk
∥ A ∥

ηk > τkβ∥ A ∥

⇐⇒ 2β∥ A ∥2τ2
k +4Lkτk −1 < 0,

which holds for any τk ∈

0,
1

2Lk +
√

4L2
k +2β∥ A ∥2

. Our choice of τk belongs to this

interval and therefore ensures the stated properties;

b) It holds that τk Lk < 1/4, by the same observation as that in (C.13) but with a different limit
constant given by the new stepsize;

c) It holds that τkθk ≤ τk−1
√

1+θk−1/2 θk ≤ τk−1(1+θk−1/2), by the definitions of τk and
θk ;

d) It holds that:
1

2
√

4L2 +β∥ A ∥2
≤ τk ≤ 1

2
√

4µ2 +β∥ A ∥2
, (C.31)

by the existence of µ and L over conv({x⋆, x0, x1, . . .}) and a similar argument to that
in (C.18), plus the fact that under strong convexity

∥∥∇ f (x)−∇ f (y)
∥∥≥µ∥∥x − y

∥∥;

e) It holds that:
µ

2
√

4µ2 +β∥ A ∥2
≤ τk Lk ≤ L

2
√

4L2 +β∥ A ∥2
, (C.32)

by a similar argument to that in (C.19).

Using properties a), b), c) in the list above and ignoring the positive terms on the LHS that do not
have a correspondent on the RHS of (C.30), the main inequality becomes:

∥∥xk+1 −x⋆
∥∥2 +

(
1

β
+T

)∥∥ yk+1 − y⋆
∥∥2 + 1

2
∥xk+1 −xk ∥2 +2τk (1+θk )Px⋆,y⋆(xk )

≤
(
1− µτk

2

)∥∥xk −x⋆
∥∥2 + 1

β

∥∥ yk − y⋆
∥∥2 + 1

2

(
1− 1

2

)
∥xk −xk−1 ∥2

+2τk−1(1+θk−1/2)Px⋆,y⋆(xk−1), (C.33)
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where T is given by:

T :=
σ2

min(A)µ

8s2t +4L2s

=
σ2

min(A)µ

8(4L2 +β∥ A ∥2)
√

4µ2 +β∥ A ∥2 +4L2
√

4L2 +β∥ A ∥2

≤ τ3
k Lkσ

2
min(A)

1+2τ2
k Lk L

, (by d) and e) above)

where we used the definitions of s =
√

4L2 +β∥ A ∥2 and t =
√

4µ2 +β∥ A ∥2 to simplify notations.

We thus have the following contractions in (C.33):

• For 1
2 ∥xk+1 −xk ∥2 it is: 1− 1

2︸︷︷︸
=:p

;

• For
(

1
β +T

)∥∥ yk+1 − y⋆
∥∥2 it is:

1+ 1

1+Tβ
= 1− Tβ

1+Tβ

= 1− βσ2
min(A)µ

σ2
min(A)µ+8s2t +4L2s︸ ︷︷ ︸

=:r

• For ∥xk+1 −x⋆ ∥2 it is:

1− µτk

2
≤ 1− µ

4s︸︷︷︸
=:q

• For 2τk (1+θk )Px⋆,y⋆(xk ) it is:

1+θk−1/2

1+θk−1
= 1− θk−1

2(1+θk−1)

≤ 1− t

s
(By def. of θk−1 and property 5.)

Note that for the latter two contractions above, it always holds that µ/(4s) < t/s, so in the final
bound, we can ignore the latter. Finally, denoting the LHS of inequality (C.33) as Ek+1, we have
that:

Ek+1 ≤
(
1−min

{
p, q,r

})k+1 M .

where M = E2 and we used the fact that θ1 = 0.
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