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Abstract

In inverse problems, the task is to reconstruct an unknown signal from its possibly noise-
corrupted measurements. Penalized-likelihood-based estimation and Bayesian estimation
are two powerful statistical paradigms for the resolution of such problems. They allow one
to exploit prior information about the signal as well as handle the noisy measurements
in a principled manner. This thesis is dedicated to the development of novel signal-
reconstruction methods within these paradigms, ranging from those that involve classical
sparsity-based signal models to those that leverage neural networks.

In the first part of the thesis, we focus on sparse signal models in the context of linear
inverse problems for one-dimensional (1D) signals. As our first contribution, we devise
an algorithm for solving generalized-interpolation problems with Lp-norm regularization.
Through a series of experiments, we examine features induced by this regularization,
namely, sparsity, regularity, and oscillatory behaviour, which gives us new insight about
it. As our second contribution, we present a framework based on 1D sparse stochastic
processes to objectively evaluate and compare the performance of signal-reconstruction
algorithms. Specifically, we derive efficient Gibbs sampling schemes to compute the
minimum mean-square-error estimators for these processes. This allows us to specify a
quantitative measure of the degree of optimality for any given method. Our framework
also provides access to arbitrarily many training data, thus enabling the benchmarking of
neural-network-based approaches.

The second part of the thesis is devoted to neural networks which have become the focus
of much of the current research in inverse problems as they typically outperform the
classical sparsity-based methods. First, we develop an efficient module for the learning
of component-wise continuous piecewise-linear activation functions in neural networks.
We deploy this module to train 1-Lipschitz denoising convolutional neural networks and
learnable convex regularizers, both of which can be used to design provably convergent
iterative reconstruction methods. Next, we design a complete Bayesian inference pipeline
for nonlinear inverse problems that leverages the power of deep generative signal models
to produce high-quality reconstructions together with uncertainty maps. Finally, we
propose a neural-network-based spatiotemporal regularization scheme for dynamic Fourier
ptychography (FP), where the goal is to recover a sequence of high-resolution images from
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several low-resolution intensity measurements. Our approach does not require training
data and yields state-of-the-art reconstructions.

Keywords: Inverse problems, statistical inference, Bayesian inference, sparsity, neural
networks, activation functions, 1-Lipschitz, learnable regularizers, deep generative models,
deep image prior.
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Zusammenfassung

Bei inversen Problemen besteht die Aufgabe darin, ein unbekanntes Signal aus seinen
möglicherweise durch Rauschen verfälschten Messungen zu rekonstruieren. Die Schätzung
auf der Grundlage der bestraften Wahrscheinlichkeit und die Bayes’sche Schätzung
sind zwei leistungsstarke statistische Paradigmen für die Lösung solcher Probleme. Sie
ermöglichen es, vorherige Informationen über das Signal auszunutzen und die verrauschten
Messungen auf prinzipielle Weise zu handhaben. Diese Arbeit widmet sich der Entwicklung
neuartiger Signalrekonstruktionsmethoden innerhalb dieser Paradigmen, die von solchen
reichen, die klassische, auf Sparsity basierende Signalmodelle beinhalten, bis hin zu
solchen, die neuronale Netze nutzen.

Im ersten Teil der Arbeit konzentrieren wir uns auf dünn besetzte Signalmodelle im
Kontext linearer inverser Probleme für eindimensionale (1D) Signale. Als unseren ersten
Beitrag entwickeln wir einen Algorithmus zur Lösung verallgemeinerter Interpolationsprob-
leme mit Lp-Norm-Regularisierung. Durch eine Reihe von Experimenten untersuchen
wir die Eigenschaften, die durch diese Regularisierung hervorgerufen werden, nämlich
Sparsamkeit, Regelmäßigkeit und oszillatorisches Verhalten, was uns neue Einblicke in
die Regularisierung ermöglicht. Als unseren zweiten Beitrag stellen wir einen Rahmen
vor, der auf spärlichen stochastischen 1D-Prozessen basiert, um die Leistung von Signal-
rekonstruktionsalgorithmen objektiv zu bewerten und zu vergleichen. Insbesondere leiten
wir effiziente Gibbs-Sampling-Schemata ab, um die Schätzer des minimalen mittleren
quadratischen Fehlers für diese Prozesse zu berechnen. Dadurch können wir ein quantita-
tives Maß für den Grad der Optimalität einer jede beliebige Methode angeben. Unser
Rahmenwerk bietet auch Zugang zu beliebig vielen Trainingsdaten und ermöglicht so das
Benchmarking von auf neuronalen Netzen basierenden Ansätzen.

Der zweite Teil der Arbeit ist neuronalen Netzen gewidmet, die im Mittelpunkt der
aktuellen Forschung zu inversen Problemen stehen, da sie in der Regel die klassischen,
auf Sparsity basierenden Methoden übertreffen. Zunächst entwickeln wir ein effizientes
Modul für das Lernen von komponentenweise kontinuierlichen, stückweise linearen Ak-
tivierungsfunktionen in neuronalen Netzen. Wir setzen dieses Modul ein, um 1-Lipschitz-
entrauschende Faltungs-Neuronale Netze und lernbare konvexe Regularisierer zu trainieren,
die beide zum Entwerfen nachweislich konvergenter iterativer Rekonstruktionsmethoden
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verwendet werden können. Als Nächstes entwerfen wir eine vollständige Bayes’sche Inferen-
zpipeline für nichtlineare inverse Probleme, die die Leistungsfähigkeit tiefer generativer
Signalmodelle nutzt, um hochwertige Rekonstruktionen zusammen mit Unsicherheit-
skarten zu erstellen. Schließlich schlagen wir ein auf neuronalen Netzwerken basierendes
räumlich-zeitliches Regularisierungsschema für die dynamische Fourier-Ptychographie
(FP) vor, bei der das Ziel darin besteht, eine Sequenz von hochauflösenden Bildern aus
mehreren niedrigauflösenden Intensitätsmessungen wiederherzustellen. Unser Ansatz
erfordert keine Trainingsdaten und liefert hochmoderne Rekonstruktionen.

Schlüsselwörter: Inverse Probleme, statistische Inferenz, Bayes’sche Inferenz, Sparsity, neu-
ronale Netze, Aktivierungsfunktionen, 1-Lipschitz, lernbare Regularisierer, tiefe generative
Modelle, tiefe Modelle für Bildverteilungen.
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∥yq−ỹq∥2 , are indicated

at the bottom right corners of the measurement images. Scale bar: 10 µm. 197
7.5 Reconstruction from noiseless measurements with a perfectly characterized

pupil function. Panel A: XY view for the frame index q = 26. Panel B:
XT view for the Y position indicated in Panel A (GT, Phase, dashed line).
Scale bar: 10 µm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

xiii



LIST OF FIGURES

7.6 Joint recovery of the dynamic sample and the pupil function from noiseless
measurements. Panel A: XY view for the frame index q = 26. Panel B:
XT view for the Y position indicated in Panel A (GT, Phase, dashed line).
Panel C: phase of the pupil function. Scale bar (for Panels A and B): 10 µm. 205

7.7 Recovered Zernike coefficients from noiseless measurements. The first (Noll
index = 1) Zernike mode only contributes a constant phase factor which
has no effect on the intensity measurements and thus can be ignored. . . . 205

7.8 Joint recovery of the dynamic sample and the pupil function from noisy
measurements. Panel A: XY view for the frame index q = 26. Panel B:
XT view for the Y position indicated in Panel A (GT, Phase, dashed line).
Panel C: phase of the pupil function. Scale bar (for Panels A and B): 10 µm. 207

7.9 Recovered Zernike coefficients from noisy measurements. The first (Noll
index = 1) Zernike mode only contributes a constant phase factor which
has no effect on the intensity measurements and thus can be ignored. . . . 207

xiv



List of Tables
3.1 The operator DN0 and the scaled B-spline βN0−1

h (x) and sequence (dN0 [k])k∈Z
associated with it. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.1 Convolution Layers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.1 Number of parameters and classification error rate. . . . . . . . . . . . . . 92
5.2 NIN error rates on CIFAR-10 and CIFAR-100. . . . . . . . . . . . . . . . 95
5.3 ResNet error rates on CIFAR-10 and CIFAR-100. . . . . . . . . . . . . . . 95
5.4 B-splines vs. gridded ReLUs vs. APLUs . . . . . . . . . . . . . . . . . . . 96
5.5 Convolution Layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
5.6 Sharing versus unsharing of the linear spline activation functions in B-spline

CNNs (L = 4). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
5.7 Performance of deep networks. . . . . . . . . . . . . . . . . . . . . . . . . 101
5.8 Mean and standard deviation of the estimated Wasserstein distance over

five trials for several architectures. . . . . . . . . . . . . . . . . . . . . . . 112
5.9 PSNR and SSIM values for the Lipschitz denoising experiment in terms of

activation functions and noise levels. . . . . . . . . . . . . . . . . . . . . . 114
5.10 Average number of effective linear regions (AELR) for several λ and noise

levels. The maximum number of available regions for the LLS is 50. . . . . 114
5.11 Single-coil MRI. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
5.12 Multi-coil MRI. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
5.13 CT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
5.14 Properties of different regularization frameworks. . . . . . . . . . . . . . . 133
5.15 Convex models and averaged denoisers tested on BSD68. . . . . . . . . . . 138
5.16 Single-coil MRI. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
5.17 CRR-NN: Single-coil MRI versus training setup. . . . . . . . . . . . . . . . 141
5.18 Multi-coil MRI. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
5.19 CRR-NN: Multi-coil MRI versus training setup. . . . . . . . . . . . . . . . 142
5.20 CT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
5.21 CRR-NN: CT versus training setup. . . . . . . . . . . . . . . . . . . . . . 143

xv



LIST OF TABLES

6.1 Generator and critic architectures (single disc). The negative slope for
LReLU is set as 0.2. The upsampling layer uses nearest-neighbor interpo-
lation while the downsampling layer involves max pooling. . . . . . . . . . 182

6.2 Generator and critic architectures (MNIST). The negative slope for LReLU
is set as 0.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

6.3 Generator and critic architectures (Fashion-MNIST). The negative slope
for LReLU is set as 0.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

6.4 Generator and critic architectures (two non-overlapping discs). The neg-
ative slope for LReLU is set as 0.2. The upsampling layer uses nearest-
neighbor interpolation while the downsampling layer involves max pooling. 184

7.1 Architecture of the network fθ. Size of input: (1×82). Conv: convolutional
layer with (3× 3) kernels and reflective boundary conditions. BN: batch
normalization layer. Upsampling: nearest neighbor interpolation. The
amplitude and phase branches take the same input of size (128× 256×
256) and output the magnitude and phase images of size (1 × 256 ×
256), respectively. DReLU is described in (7.24). The combination layer
generates a complex-valued image from the magnitude and phase images.
This network consists of 1,628,546 learnable parameters. . . . . . . . . . . 199

7.2 Reconstruction from noiseless measurements with a perfectly characterized
pupil function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

7.3 Joint recovery of the dynamic sample and the pupil function from noiseless
measurements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

7.4 Joint recovery of the dynamic sample and the pupil function from noisy
measurements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

xvi



1 Introduction

The topic of this thesis is the development of novel statistical methods for solving ill-posed
inverse problems. In this introductory chapter, we provide some context for the thesis,
followed by a summary of our contributions.

1.1 Background

What are inverse problems?

Put simply, the objective of an inverse problem is to determine from observed data,
its underlying cause. Such problems are encountered in many fields of science, such as
astrophysics, biomedical imaging, geophysics, and optics, to name a few [1–4]. There, a
physical quantity of interest, which we also refer to as a signal, is observed only indirectly
by performing a series of measurements. The measurement-acquisition process is typically
assumed to be known, and the task at hand is then to “invert” this process and recover
the signal from the measured data.

To make the above notion concrete, let us consider the example of computed tomography
(CT) [5] for medical imaging. During a CT scan, X-rays are directed at the patient from
multiple angles. As they pass through the patient’s body, they interact with tissues and
are absorbed to varying degrees depending on the density of the tissue. The intensities
of the attenuated X-rays exiting the patient thus contain some information about the
tissues within the body and are recorded by suitably-placed detectors. This acquired
data (measurements) then needs to be processed appropriately to reconstruct a three-
dimensional map of the internal structures (signal) of the patient, which can be used by
healthcare personnel for diagnostic purposes.

As evident in the example of CT, the ability to solve inverse problems is remarkably useful
as it provides one with access to physical quantities that cannot be observed directly.
Since the mid-twentieth century, aided by the rise of computers, there has been steady
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progress in the development of efficient numerical methods for solving inverse problems.
This has greatly contributed to a better understanding of the physical world by enabling
us, for instance, to visualize the structures of biomolecules [6, 7], body tissues [5, 8], as
well as celestial objects [9]. Thus, over time, due to its wide-ranging practical implications,
the resolution of inverse problems has become a crucial area of scientific research.

Why is it challenging to solve inverse problems?

In several applications, the inverse problem one faces is ill-posed in the sense that there
exist a multitude of plausible signals that can explain the measured data. For example, in
sparse-view CT [10], X-ray measurements are acquired only from a few angles to reduce
the patient’s radiation exposure. Consequently, they do not contain enough information
to uniquely determine the underlying signal (the anatomy of the patient). Thus, for such
ill-posed problems, one cannot rely on the direct inversion of the measurement-acquisition
process to obtain relevant solutions. Further, in practice, the collected measurements are
generally noisy, which adds to the difficulty of the reconstruction task.

How can we solve inverse problems?

The resolution of an ill-posed inverse problem hinges on the use of prior knowledge about
the signal of interest. In this thesis, we focus on two well-known statistical paradigms for
solving such problems, which allow one to exploit additional information about the signal
as well as handle the noise in the measurements in a principled manner.

1. Penalized-Likelihood-Based Estimation: In penalized-likelihood-based estimation,
the signal is treated as a fixed or deterministic quantity. The cornerstone of
this paradigm is the maximum penalized-likelihood (MPL) estimator1, where the
estimate of the signal is (equivalently) specified as the minimizer of a cost functional
that consists of a data-fidelity term and a penalty (or regularization) term. The
data-fidelity term is derived from a suitably chosen statistical model for the noise in
the measurements. It promotes solutions that yield a high likelihood (probability) of
observing the measured data, and thus ensures consistency with the measurements.
On the other hand, the regularization term imposes some constraints on the solution
by penalizing undesirable properties. This cost functional is typically minimized
with the help of iterative optimization algorithms.

2. Bayesian Estimation: In Bayesian estimation, the signal is assumed to be a re-
alization of a random quantity (for example, a random vector or process) with
an appropriate probability distribution that reflects our prior knowledge about

1In literature, this is also known as the penalized maximum-likelihood estimator or the regularized
maximum-likelihood estimator.
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it. The idea there is to characterize the posterior distribution of the signal using
statistical models for the measurement noise and signal, and to make inferences
based on it. The posterior distribution can be used for the derivation of several
point estimators. One such example is the maximum a posteriori (MAP) estimator,
which is the mode of the posterior distribution and leads to an optimization problem
that resembles the one seen in MPL estimation. Another example is the minimum
mean-square-error (MMSE) estimator which turns out to be the posterior mean.
Besides the derivation of such point estimators, the Bayesian framework allows one
to quantify the uncertainty about the signal. In general, inference tasks entail the
computation of expected values with respect to the posterior distribution. Typically,
these are high-dimensional integrals that cannot be evaluated analytically. Thus,
one relies on sampling algorithms to draw samples from the posterior and then use
them to approximate the integrals.

There is a fundamental difference between these paradigms in terms of what the signal
model—the regularization term in penalized-likelihood-based estimation and the prior
probability distribution in Bayesian estimation—represents. So, although a given MPL
estimator can also be interpreted as a MAP estimator for a specific choice of the prior
distribution, the two signal models do not necessarily reflect the same information about
the underlying signal. Thus, one must be careful while making such interpretations as they
can often be misleading [11, 12]. In Chapter 2, we provide a detailed description of the
two paradigms, including a discussion about the above-mentioned important distinction.

Practically speaking, the choice of the signal model is mainly driven by the consideration
that it should capture the characteristics of the signal of interest while allowing for the
deployment of an efficient reconstruction algorithm. For both paradigms, the process of
designing such models has undergone a similar transition over time.

Classical Signal Models

Early approaches for solving ill-posed inverse problems were based on quadratic (Tikhonov)
regularization terms [13, 14] and Gaussian random processes [15, 16]. Such models impose
some smoothness on the estimate of the signal. Their main advantage is that they yield
methods that are generally fast, well-understood, and come with performance and stability
guarantees. However, during the 1990s, these methods were found to be outperformed
by those that take into account sparsity—the property that a signal admits a concise
representation in some transform domain (e.g., wavelets) [17].

In MPL estimation, one typically uses an ℓ1-norm penalty to obtain sparse reconstructions
[18–20]. The corresponding optimization problem is non-smooth and is thus solved with
the help of sophisticated iterative algorithms [21–24]. A popular example of such models
that is widely used in practice is the total-variation regularizer [25, 26], which promotes
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solutions with sparse gradients. Besides the convex ℓ1-norm penalty, there has also been
some interest in investigating non-convex sparsity-promoting penalties such as the ones
based on ℓp-quasinorms (p < 1) [27] and relaxations of the ℓ0-pseudonorm [28, 29].

Within the Bayesian paradigm, a standard way of enforcing sparsity is to model the ele-
ments of the signal (e.g., pixels, voxels) or its transform-domain coefficients as independent
and identically distributed (i.i.d.) random variables with a suitable probability distribu-
tion, such as one that exhibits a mass at zero (e.g., Bernoulli-Gaussian-Mixtures [30–33])
or one that is heavy-tailed (e.g., Student’s t [34, 35], horseshoe [36]). The resulting
posterior distribution is then sampled using an efficient sampling algorithm tailored to
the chosen prior distribution.

Neural-Network-Based Signal Models

Over the past few years, researchers have started to deploy neural-network-based methods
to solve inverse problems [37, 38]. Such methods have been shown to yield significantly
better reconstructions than sparsity-promoting techniques. Broadly speaking, their under-
lying principle is to utilize large amounts of training data to improve the reconstruction
quality, as opposed to the specification of prior information about the signal in the form
of “hand-crafted” mathematical models, as in the classical approaches discussed above.

Neural networks (NNs) are powerful learning architectures that are typically constructed
via the composition of simple basic modules—linear (or affine) mappings and nonlinear
transformations (also called activation functions) [39, 40]. The first successful applications
of NNs in signal recovery involve training the network as a nonlinear mapping that relates
a low-quality estimate of the signal to the desired high-quality estimate [41–43]. The
reconstruction pipeline then consists of using a fast classical algorithm to obtain an initial
solution and then correcting for its artifacts using the trained network. This category of
methods includes unrolling [44–49], where the architecture of the network is designed by
studying iterations of algorithms used for computing the MPL estimator. There also exist
analogues of such approaches that involve training the network to approximate a Bayesian
estimator or even directly generate samples from the posterior distribution [50]. While
these end-to-end learning methods have achieved state-of-the-art performances in several
inverse problems, they suffer from the limitation of not being “flexible”. The networks in
such methods are trained on large datasets consisting of signals and their measurements
and are thus highly sensitive to the corresponding measurement-acquisition setup. In this
thesis, we will instead mainly focus on more versatile or “universal” NN-based methods,
where a network that has been pretrained to model only the prior knowledge about the
signal (in a generic way that does not depend on the inverse problem at hand) is applied
within the penalized-likelihood-based estimation or Bayesian estimation paradigm.

The plug-and-play priors (PnP) [51] and regularization-by-denoising (RED) [52, 53]
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frameworks are two successful examples of integrating NNs into the penalized-likelihood-
based estimation paradigm. In PnP (RED) methods, the idea is to replace the proximal
(gradient) operator of the regularization term that appears in the iterations of the proximal
(gradient) algorithms used for MPL estimation by an off-the-shelf denoiser (the residual
of an off-the-shelf denoiser). Generally, this denoiser only plays the role of an implicit
regularizer, that is, there is no explicit penalty term associated with it. Nonetheless,
the fixed-point convergence of such iterative schemes can be ensured if the denoiser
belongs to a suitable class of 1-Lipschitz operators [54, 55]. Learning-based variants of
these frameworks involve the use of a denoiser that is constructed from an appropriately
trained NN [56–62]. However, in order to ensure convergence, the network must be
constrained such that the denoiser belongs to the desired class of 1-Lipschitz operators.
This is a challenging task and remains an active area of research [55, 63]. More recently,
gradient-step NN denoisers have been used to devise PnP and RED methods that actually
minimize an explicit global cost functional [64–66]. Outside of these frameworks, NNs
have also been deployed for designing an explicit learnable general-purpose regularization
term [67]. There also exists another class of methods that involves deep generative
models such as variational autoencoders (VAEs) [68] and generative adversarial networks
(GANs) [69]. These models include a generator network that maps a low-dimensional
latent space to the high-dimensional signal space. They are trained on a dataset of signals
such that they capture its statistics and generate sample signals similar to those in the
dataset. Once such a deep generative model has been successfully trained, its application
to an inverse problem consists of finding a signal in the range of the generator that is
consistent with the given measurements. One way of performing this task is to formulate
a suitable estimator in the latent space [70–72]. Most of the NN-based signal models
described above can also be utilized in the context of Bayesian estimation. Specifically,
efficient customized posterior sampling schemes have been developed for prior probability
distributions encoded by denoising NNs (such as the ones used in the PnP or RED
frameworks) [73–75], GANs [76], VAEs [77, 78], score-based generative models [79, 80],
and energy-based generative models [81].

So far, we have only discussed NN-based methods that require training data. Remarkably,
it is also possible to define a signal model using an untrained NN. In such methods [82–84],
the signal of interest is represented as the output of a network corresponding to some fixed
input. The parameters of the network are then estimated such that the generated signal
is in agreement with the acquired measurements. This is typically done by minimizing
an appropriate data-fidelity term. In some scenarios, such schemes are deployed with
early stopping as deep networks have the capacity to fit noise. Alternately, one can
consider MPL estimation or Bayesian estimation for the network parameters with simple
models such as ℓ2-norm regularization or Gaussian priors [84]. The success of these
methods involving untrained NNs is attributed to the implicit signal model imposed by
the architecture of the network, which favours natural-looking signals (“good” solutions)
over noisy ones (“bad” solutions).
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Figure 1.1: Roadmap of the thesis.

1.2 Contributions

This thesis is dedicated to the development of new signal-reconstruction methods within
the penalized-likelihood-based estimation and Bayesian estimation paradigms, ranging
from those that involve sparsity-based models to those that leverage neural networks.
The roadmap of the thesis is shown in Figure 1.1. Next, we present a summary of our
contributions along with a list of the relevant publications.

Part I: The World of Sparsity

In the first part of the thesis, we visit the world of sparsity in the context of linear inverse
problems for one-dimensional (1D) signals.
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Continuous-Domain Lp-Norm Regularization (Chapter 3)

Most real-world inverse problems are concerned with the recovery of a continuous-domain
signal. The typical pipeline for tackling such problems first involves formulating them in
terms of a discrete representation of the underlying signal. Prior information about the
signal is then introduced through a model for its discrete representation. Alternately, one
can also directly specify the estimation task and signal model in the continuum (provided
that a solution can be computed analytically or numerically). In this chapter, we seek
to understand the effect of one such model for 1D signals—continuous-domain Lp-norm
regularization for p ≥ 1 and with a multi-order derivative regularization operator DN0 .
To that end, we develop a numerical method to solve the Lp-regularized generalized-
interpolation problem. Through a series of experiments, we then identify properties of
this regularization.

Specifically, we formulate our reconstruction problem as the task of finding a 1D continuous-
domain signal that minimizes the Lp-norm regularization term subject to some strict
data constraints (generalized-interpolation problem). We cast this problem exactly as a
finite-dimensional one by restricting the search space to a suitable space of polynomial
splines with knots on a uniform grid. Our splines are represented in a B-spline basis,
which results in a well-conditioned discretization. For a sufficiently fine grid, our search
space contains functions that are arbitrarily close to the solution of the underlying
problem where our constraint that the solution must live in a spline space would have
been lifted. This remarkable property is due to the approximation power of splines. We
use the alternating-direction method of multipliers along with a multiresolution strategy
to compute our solution. Through our numerical experiments for spatial and Fourier
interpolation, we examine features induced by Lp-norm regularization, namely, sparsity,
regularity (smoothness) and, oscillatory behaviour and overshoot.

Related publication
P. Bohra and M. Unser, “Continuous-Domain Signal Reconstruction Using Lp-Norm Regulariza-
tion”, IEEE Transactions on Signal Processing, vol. 68, pp. 4543-4554, 2020.

Sparse Stochastic Processes (Chapter 4)

We present a benchmarking environment based on sparse stochastic processes to objectively
evaluate and compare the performance of reconstruction algorithms for linear inverse
problems involving 1D signals. Our framework offers quantitative measures of the degree
of optimality (in the mean-square-error sense) for any given reconstruction method. Since
it is based on stochastic modelling, it provides access to unlimited amounts of data, which
enables the proper benchmarking of NN-based approaches without having to worry about
the representativity of the training data.

In our framework, we generate synthetic signals as realizations of 1D sparse stochastic
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processes. We derive Gibbs sampling schemes to compute the minimum mean-square error
estimators for processes with Laplace, Student’s t, and Bernoulli-Laplace innovations.
These allow us to provide statistical guarantees of optimality by specifying an upper limit
on the reconstruction performance. We showcase our framework by benchmarking the
performance of some well-known classical MPL estimators (such as the total-variation-
regularized method) and convolutional neural network architectures that perform direct
nonlinear reconstructions in the context of deconvolution and Fourier sampling. Our
experimental results support the understanding that, while these neural networks out-
perform the sparsity-based MPL estimators and achieve near-optimal results in many
settings, their performance deteriorates severely for signals associated with heavy-tailed
distributions.

Related publication
P. Bohra, P. del Aguila Pla, J. -F. Giovannelli, and M. Unser, “A Statistical Framework To
Investigate the Optimality of Signal-Reconstruction Methods”, IEEE Transactions on Signal
Processing, vol. 71, pp. 2043-2055, 2023.

Part II: The Neural Network Revolution

The second part of the thesis is driven by the neural network revolution in the field of
inverse problems. In particular, we investigate the integration of neural networks into
the penalized-likelihood-based estimation and Bayesian estimation paradigms for image
reconstruction.

Convergent Iterative Image-Reconstruction Methods (Chapter 5)

In this chapter, we first present an efficient module for learning continuous piecewise-linear
activation functions in neural networks. We then deploy this module to train 1-Lipschitz
denoising convolutional neural networks and learnable convex regularizers, both of which
can be used to design provably convergent iterative image-reconstruction methods. The
details of these contributions are provided in what follows.

1. Learning Activation Functions in Neural Networks
We develop an efficient computational solution to train neural networks with free-form
component-wise activation functions. To make the problem well-posed, we augment the
cost functional of the neural network by adding an appropriate shape regularization: the
sum of the second-order total-variations of the trainable nonlinearities. The representer
theorem for neural networks tells us that the optimal activation functions are adaptive
piecewise-linear splines, which allows us to recast the problem as a parametric optimization.
The challenging point is that the corresponding basis functions (ReLUs) are poorly
conditioned and that the determination of their number and positioning is also part of the
problem. We circumvent the difficulty by using an equivalent B-spline basis to encode the
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activation functions and by expressing the regularization as an ℓ1-penalty. This results
in the specification of parametric activation function modules that can be implemented
and optimized efficiently on standard development platforms. We present experimental
results that demonstrate the benefit of our approach.

2. Lipschitz-Constrained Neural Networks for Plug-and-Play Reconstruction
Within the PnP framework, one can use denoisers based on 1-Lipschitz NNs to design
convergent iterative reconstruction schemes. Since Lipschitz-constrained ReLU networks
have provable disadvantages, we instead consider the use of learnable 1-Lipschitz linear
spline activation functions. We propose an efficient method that utilizes our B-spline
module to train these neural networks. Our numerical experiments, which include
denoising and CT and MRI reconstruction, show that our trained networks compare
favorably with existing 1-Lipschitz neural architectures.

3. A Neural-Network-Based Convex Regularizer
Finally, we present a framework to learn a regularization term that is the sum of convex-
ridge functions. We use a one-hidden-layer neural network with learnable increasing linear
spline activation functions, which are again implemented using our B-spline module, to
parametrize the gradient of the regularizer. This network is trained within a few minutes
as a multistep Gaussian denoiser. Through numerical experiments for denoising and CT
and MRI reconstruction, we show that our method outperforms others that offer similar
reliability guarantees.

Related publications
P. Bohra, J. Campos, H. Gupta, S. Aziznejad and M. Unser, “Learning Activation Functions in
Deep (Spline) Neural Networks”, IEEE Open Journal of Signal Processing, vol. 1, pp. 295-309,
2020.
P. Bohra, D. Perdios, A. Goujon, S. Emery and M. Unser, “Learning Lipschitz-Controlled
Activation Functions in Neural Networks for Plug-And-Play Image Reconstruction Methods”,
NeurIPS 2021 Workshop on Deep Learning and Inverse Problems.
S. Ducotterd, A. Goujon, P. Bohra, D. Perdios, S. Neumayer, and M. Unser, “Improving Lipschitz-
Constrained Neural Networks by Learning Activation Functions”, arXiv preprint arXiv:2210.16222,
2022.
A. Goujon, S. Neumayer, P. Bohra, S. Ducotterd, and M. Unser, “A Neural-Network-Based
Convex Regularizer for Inverse Problems”, IEEE Transactions on Computational Imaging, vol. 9,
pp. 781-795, 2023.

Deep Generative Priors for Nonlinear Inverse Problems (Chapter 6)

In this chapter, we develop a Bayesian inference pipeline that leverages the power of deep
generative models as image priors to produce high quality reconstructions together with
uncertainty maps. To the best of our knowledge, this is one of the first deployments of
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such techniques for the resolution of nonlinear inverse problems.

Specifically, we present a Bayesian reconstruction framework for nonlinear inverse problems
where we specify the prior information about the image through a deep latent variable
generative model such as a GAN or a VAE. We develop a tractable posterior-sampling
scheme based on the Metropolis-adjusted Langevin algorithm for the class of nonlinear
inverse problems where the forward model has a neural-network-like structure. This class
includes most practical imaging modalities. We also introduce the notion of augmented
deep generative priors in order to suitably handle the recovery of quantitative images.
We illustrate the advantages of our framework by applying it to two nonlinear imaging
modalities—phase retrieval and optical diffraction tomography.

Related publication
P. Bohra, T. -a. Pham, J. Dong, and M. Unser, “Bayesian Inversion for Nonlinear Imaging
Models Using Deep Generative Priors”, IEEE Transactions on Computational Imaging, vol. 8,
pp. 1237-1249, 2022.

Deep Spatiotemporal Regularization for Dynamic Fourier Ptychography (Chap-
ter 7)

In our last contribution, we explore the use of an untrained neural network as an
implicit regularizer in the context of Fourier ptychography (FP). This modality involves
the acquisition of several low-resolution intensity images of a sample under varying
illumination angles. They are then combined into a high-resolution complex-valued
image by solving a phase-retrieval problem. The objective in dynamic FP is to obtain a
sequence of high-resolution images of a moving sample. There, the application of standard
frame-by-frame reconstruction methods limits the temporal resolution due to the large
number of measurements that must be acquired for each frame. We instead propose a
neural-network-based reconstruction framework for dynamic FP, which achieves high
temporal resolution without compromising the spatial resolution. It does not require
training data and also recovers the pupil function of the microscope.

Specifically, in our framework, each image in the sequence is represented as the output of a
shared deep convolutional network fed with an input vector that lies on a one-dimensional
manifold that encodes time. The parameters of the network and the pupil function of
the microscope, which is represented using Zernike polynomials, are then estimated by
optimizing a likelihood-based criterion. Here, the architecture of the network and the
constraints on the input vectors impose a spatiotemporal regularization on the sequence
of images. Through numerical experiments, we show that our framework drastically
improves the quality of reconstruction over standard frame-by-frame methods and thus
paves the way for high-quality ultrafast FP.

Related publication
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P. Bohra, T. -a. Pham, Y. Long, J. Yoo, and M. Unser, “Dynamic Fourier Ptychography With
Deep Spatiotemporal Priors”, Inverse Problems, vol. 39, no. 6, paper no. 064005, 2023.
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2 Resolution of Inverse Problems: An
Overview

In this chapter, we set the scene for the thesis by presenting a mathematical formulation
of inverse problems and by briefly describing two statistical reconstruction paradigms—
penalized-likelihood-based estimation and Bayesian estimation—for their resolution.

2.1 Inverse Problems

2.1.1 Continuous-Domain Formulation

The goal in an inverse problem is to recover an unknown signal s0 from a collection of its
possibly noisy measurements y ∈ RM . Since most real-world signals are analog in nature,
we consider the signal of interest s0 : Rd → R to be a d-dimensional continuous-domain
function. We model the measurements as

y = N
(
ν(s0)

)
, (2.1)

where ν : s 7→ ν(s) ∈ RM is the (linear or nonlinear) forward operator that describes
the physics of the acquisition process and N : RM → RM is an operator that models
the corruption of measurements by noise. Here, we have assumed that the signal and
measurements are real-valued in order to simplify the exposition. However, the inverse
problem formulation and reconstruction methods presented in this chapter can be easily
extended to handle complex-valued signals and measurements.

2.1.2 Discretization

The first step towards solving an inverse problem is the discretization of the signal s0
and the forward operator ν as this allows us to perform computations digitally. We can
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then write the discrete measurement model as

y = N
(
H(s0)

)
, (2.2)

where s0 ∈ RK is the finite-dimensional discrete representation of s0 (the typical choice is
a vector containing samples of s0 within some region of interest) and H1 : RK → RM

is the discrete counterpart of ν. Ideally, the discretization of ν is performed such that
H only yields a small discretization error (if any), that is, ν(s0) ≈ H(s0), while being
computation-friendly, that is, it can be evaluated efficiently in terms of computation
time and memory. We will present some concrete examples of discretization schemes in
Chapters 3, 4 and 7. For the remainder of this chapter, it is assumed that s0 and ν have
been discretized appropriately.

2.1.3 Ill-Posedness

So, the task at hand now is to recover s0 from y by “inverting” the measurement model
in (2.2). Besides the presence of noise in the measurements, which can already make the
reconstruction task difficult, most practical inverse problems are ill-posed in the sense
that the same set of measurements can be generated by multiple signals. Therefore, prior
knowledge about the signal of interest is required for the resolution of such problems.

2.2 Statistical Reconstruction Paradigms

Next, we describe two well-known statistical reconstruction paradigms for solving ill-posed
inverse problems. They enable one to incorporate prior information about the signal and
handle the noise in the measurements in a systematic way.

2.2.1 Penalized-Likelihood-Based Estimation

In this paradigm, the signal of interest s0 is treated as a fixed or deterministic quantity.
The main idea here is to specify the reconstructed signal as the solution of an optimization
problem that balances a data-fidelity term, which is based on a statistical model for the
noisy measurements, and a penalty (regularization) term, which imposes some favourable
properties on it.

Likelihood Function

In order to account for the nonideality of the measurement-acquisition setup, we consider
a statistical model that relates the noisy measurements y and the signal s0. Specifically,

1When H is a linear operator, by abuse of notation, we will also use the symbol H to denote its matrix
representation. Thus, in such cases, the quantity H(s) will be written as Hs.
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we assume that the operator N in (2.2) generates y as a realization of a random vector Y
that is distributed according to

Y ∼ pnoise

(
· ; ϕ = H(s0)

)
, (2.3)

where the probability density function (pdf) pnoise models the statistics of the noise in
the acquisition system and ϕ denotes (some of) its parameters.

Many practical setups involve multiple independent sources of noise. Thus, it is reasonable
to assume an additive white-Gaussian-noise (AWGN) model, as dictated by the central
limit theorem. For an AWGN model with variance σ2, we can write (2.2) as

y = H(s0) + n, (2.4)

where n ∈ RM is a realization of a Gaussian random vector consisting of i.i.d.entries with
zero mean and variance σ2. In this case, the pdf pnoise is given by

pnoise(· ; ϕ) = pGaussian(· ; ϕ) =
1

(2πσ2)M/2
exp

− ∥ · − ϕ∥22
2σ2

. (2.5)

Another model that is commonly used in practice is the shot- or Poisson-noise model. In
this case, we have that

pnoise(· ; ϕ) = pPoisson(· ; ϕ) =
M∏
m=1

([ϕ]m)
[·]m

([·]m)!
exp

(
− [ϕ]m

)
. (2.6)

Based on the statistical model for the noisy measurements in (2.3), the likelihood function
is defined as

L(· ; y) := pnoise

(
y ; ϕ = H(·)

)
. (2.7)

Maximum-Penalized-Likelihood Estimator

The maximum-penalized-likelihood (MPL) estimator for the signal is an extension of the
classical maximum-likelihood (ML) estimator. It is specified as

s∗MPL(y) ∈ argmax
s∈RK

(
log
(
L(s;y)

)
− τR(s)

)
∈ argmin

s∈RK

(
− log

(
pnoise

(
y;ϕ = H(s)

))
︸ ︷︷ ︸

D
(
y, H(s)

) + τR(s)
)
, (2.8)
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where the data-fidelity term D : RM × RM → R+ ensures consistency with the measure-
ments by promoting solutions that yield a high likelihood of observing the measured
data, the penalty (or regularization) term R : RK → R+ reflects our prior knowledge on
the signal by penalizing solutions with undesirable properties, and τ ∈ R+ is a tunable
hyperparameter that controls the strength of the regularization.

Remark: The family of MPL estimators constitutes a subclass of the so-called “variational”
methods that are well-known in the inverse problems community. In a generic variational
reconstruction method, the data-fidelity term is not necessarily derived from a statistical
model for the noise.

The cost functional in (2.8) is typically minimized in an iterative manner using gradient or
proximal methods [85, 86]. Here, we present two simple examples of these methods—the
gradient-descent (GD) and forward-backward splitting (FBS) [87] algorithms—that are
applicable when the data-fidelity term D is differentiable. The vanilla GD algorithm can
be used to compute the solution when the regularization term R is also differentiable.
The iterations for GD are given by

sk+1 = sk − γ
(
∇D

(
y,H(sk)

)
+ τ∇R(sk)

)
, (2.9)

where γ > 0 is a suitably chosen step-size. On the other hand, whenR is non-differentiable,
one can solve the optimization task with the help of a proximal method such as FBS. At
each iteration in FBS, the estimate is updated as

sk+1 = proxγτR

(
sk − γ∇D

(
y,H(sk)

))
, (2.10)

where γ > 0 is an appropriate step-size and the proximal operator of a function g : RK → R
is defined as

proxg(·) = argmin
u∈RK

(
1

2
∥ · − u∥22 + g(u)

)
. (2.11)

Note that, in general, the convergence of these routines to a global minimum is guaranteed
only when D and R are convex functions. When the cost functional in (2.8) is non-convex,
we only expect the deployed optimization algorithm to find one of the stationary points.

2.2.2 Bayesian Estimation

In the Bayesian paradigm, the signal s0 is assumed to be a realization of a random vector
S with a probability distribution pS that captures our prior knowledge about it. The idea
here is to make inferences about the signal based on its posterior distribution, which is
characterized using a statistical model for the measurement noise and pS.
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Likelihood Function

We model the noisy data measured by the acquisition system as a random vector Y that
is related to the random vector S via the conditional distribution

pY|S(· | s) = pnoise

(
· ; ϕ = H(s)

)
, (2.12)

where s ∈ RK and, similar to what we have in the penalized-likelihood-based estimation
paradigm, pnoise is a pdf that accounts for noise in the acquisition system and ϕ denotes
some or all of its parameters (please see Equations (2.5) and (2.6) for examples of pnoise).
Under this statistical model, the observed measurements y can be interpreted as a
realization of the random vector Y|S = s0. Here, the likelihood function is given by

L(· | y) = pY|S(y | ·) = pnoise

(
y ; ϕ = H(·)

)
. (2.13)

Note that this function is equal to the one shown in (2.7); it has just been specified under
a different formalism.

Posterior Distribution

In Bayesian estimation, the quantity of interest is the posterior distribution of the random
vector S|Y = y as it provides a complete statistical characterization of the inverse problem.
Using Bayes’ theorem, its pdf is written as

pS|Y(·|y) =
pY|S(y|·)pS(·)∫

RK pY|S(y|s̃)pS(s̃)ds̃
. (2.14)

The posterior distribution pS|Y(·|y) can be used for the derivation of various point estima-
tors for the signal s0. Two examples of such estimators that are commonly used in practice
are the maximum a posteriori (MAP) estimator and the minimum mean-square-error
(MMSE) estimator. The MAP estimator calculates the mode of pS|Y(·|y) and is given by

s∗MAP(y) = argmax
s∈RK

pS|Y(s|y)

= argmax
s∈RK

(
log
(
pY|S(y|s)

)
+ log

(
pS(s)

))
= argmin

s∈RK

(
− log

(
pnoise

(
y;ϕ = H(s)

))
− log

(
pS(s)

))
. (2.15)

The primary reason for the popularity of MAP estimators is that they can be computed
efficiently using the iterative gradient or proximal algorithms mentioned earlier. It is
noteworthy that the optimization problem in (2.15) closely resembles the one formulated
in MPL estimation (see Equation (2.8)). We will discuss this link between MPL and
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MAP estimation in detail later in Section 2.2.4. On the other hand, the MMSE estimator
is given by

s∗MMSE(y) = argmin
s∈RK

(∫
RK

∥s̃− s∥22 pS|Y(s̃|y)ds̃
)

=

∫
RK

s̃ pS|Y(s̃|y)ds̃, (2.16)

which is the mean of the posterior distribution pS|Y(·|y). In general, computing the MMSE
estimator is challenging as it requires one to numerically evaluate the high-dimensional
integral in (2.16).

Besides the derivation of point estimators, the Bayesian paradigm allows one to perform
advanced inferences such as uncertainty quantification (for example, computing higher-
order moments of pS|Y(·|y) or specifying credible regions that indicate where most of
the mass of the posterior distribution is concentrated) and model selection. Typically,
performing such inferences poses the same challenge as in MMSE estimation as it involves
calculating integrals of the form

If (y) =

∫
RK

f(s̃)pS|Y(s̃|y)ds̃, (2.17)

where f : RK → R is a real-valued function.

The high dimensionality of the integral in (2.17) (of which (2.16) is a special case) makes its
approximation by simple techniques such as uniform-grid-based Riemann sums infeasible.
Instead, one can rely on stochastic simulation techniques such as Markov Chain Monte
Carlo (MCMC) methods [88–91] for the numerical approximation of (2.17) in a tractable
manner. MCMC methods are designed for generating random samples from nontrivial
high-dimensional probability distributions. Broadly speaking, the idea in MCMC is to
construct a Markov chain such that the distribution that one wishes to draw samples
from is its stationary distribution. The desired samples can be obtained by simulating
the Markov chain and recording its states after a sufficient period of time (assuming
the chain converges theoretically [92]). Thus, in order to compute the integral in (2.17),
one first generates samples {s(q)}Qq=1 from pS|Y(·|y) using an MCMC method and then
approximates If (y) by its empirical estimate 1

Q

∑Q
q=1 f(s

(q)). Later in the thesis, we will
detail two MCMC algorithms—Gibbs sampling (Chapter 4) and the Metropolis Adjusted
Langevin algorithm (Chapter 6).

2.2.3 Signal Models

We now discuss some signal models—the regularization term in penalized-likelihood-based
estimation and the prior probability distribution in Bayesian estimation—that have been
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proposed in the literature, ranging from classical ones to recent neural-network-based
ones.

Classical Models

Tikhonov regularization of the form R(s) = ∥Ls∥22 [13, 14], where L is a linear transfor-
mation such as the discrete version of the gradient operator, is one of the classical choices
for the penalty term in (2.8). It imposes a constraint on the energy of the transformed
signal Ls and thus promotes solutions with some degree of smoothness. In particular, the
use of such a quadratic penalty has been extensively studied for linear inverse problems
with an AWGN model. There, it leads to solutions of the form

s∗MPL,ℓ2(y) =
(
HTH+ σ2τLTL

)−1
HTy, (2.18)

where σ is the standard deviation of the Gaussian noise, thereby yielding linear recon-
struction methods that are fast, well-understood, and equipped with stability guarantees
with respect to perturbations in the measurements.

The Gaussian prior distribution

pS(s) =
1√

(2π)K |det(C)|
exp

(
− 1

2
(s−m)TC−1(s−m)

)
, (2.19)

where s ∈ RK , m ∈ RK is the mean of the distribution and C ∈ RK×K is the covariance
matrix of the distribution, is the Bayesian counterpart of Tikhonov regularization. It also
yields estimates of the signal that exhibit some form of smoothness. Interestingly, for linear
inverse problems with an AWGN model, the MAP and MMSE estimates corresponding
to this Gaussian prior turn out to be equivalent. They are given by the reconstruction
scheme

s∗Gaussian(y) = m+
(
HTH+ σ2C−1

)−1
HT (y −Hm), (2.20)

where σ2 is the variance of the Gaussian noise.

Another popular category of classical regularization schemes involves the use of penalty
terms based on sparsity—the property that a signal can be represented in some transform
domain (e.g., wavelets) with only a few parameters [17]—which typically lead to better
reconstructions than their quadratic counterparts. This powerful concept of sparsity is at
the heart of the theory of compressed sensing, which gives conditions under which the
recovery of a signal from a limited set of its linear measurements is feasible [93–96] and
stable [97, 98]. One typically uses ℓ1-norm regularization of the formR(s) = ∥Ls∥1 [18–20]
to enforce sparsity in the transform domain specified by L (e.g., wavelet transform or
gradient operator). Since the ℓ1-norm is non-differentiable, the corresponding optimization
problem is often solved using proximal algorithms such as FBS and its variants [21, 23],
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or the alternating direction method of multipliers (ADMM) [24]. Besides the convex
ℓ1-norm penalty, one can also use non-convex penalties based on ℓp-quasinorms (p < 1)
[27] and relaxations of the ℓ0-pseudonorm [28, 29] to obtain sparse(r) reconstructions.

In Bayesian estimation, to enforce a sparse representation of the signal in a linear transform
domain L (e.g., wavelets), one typically models the random vector U = LS to have i.i.d.
entries with a suitable “sparse” pdf pU. Examples of such pdfs include those with a mass
at the origin (e.g., Bernoull-Gaussian-Mixtures [30–33]) and those that exhibit heavy tails
(e.g., Student’s t [34, 35], horseshoe [36]). For these sparsity-based priors, the resulting
posterior distribution is sampled using tailored MCMC methods. In Chapter 4, we will
study in detail prior distributions corresponding to the family of infinitely divisible pdfs
(for pU).

Neural-Network-Based Models

Neural-network-based methods, having been found to outperform the sparsity-promoting
methods discussed above, are now the focus of much of the research in signal reconstruction
[37, 38]. Broadly speaking, their principle is to exploit prior information about the signal
learned from a large collection of training data.

Neural networks (NNs) are powerful learning architectures that are typically constructed
via the composition of basic modules such as linear (or affine) mappings and nonlinear
transformations (also called activation functions) [39, 40]. For example, an archetypal
feedforward NN fθ : RN0 → RNL with component-wise ReLU activation functions is of
the form

fθ(x) = AL ◦ · · · ◦ σℓ ◦Aℓ ◦ · · · ◦ σ1 ◦A1(x), (2.21)

where the affine layer Aℓ : RNℓ−1 → RNℓ (for ℓ = 1, . . . , L) is given by

Aℓ(x) = Wℓx+ bℓ, (2.22)

with weight matrices Wℓ ∈ RNℓ×Nℓ−1 and bias vectors bℓ ∈ RNℓ , the component-wise
activation function σℓ : RNℓ → RNℓ (for ℓ = 1, . . . , L− 1) is given by

σℓ(x) =
(
ReLU(x1), . . . ,ReLU(xNℓ

)
)
, (2.23)

with ReLU(·) = max(0, ·), and θ := (Wℓ,bℓ)
L
ℓ=1 denotes the complete set of its adjustable

parameters. The idea behind using NNs for a specific task is to tune their parameters
with the help of a training dataset such that they exhibit the desired behaviour.

As mentioned in the introductory chapter, NNs (in particular, convolutional NNs or
CNNs which involve linear layers parametrized via convolutional operators with learnable
kernels) have been applied in several ways for solving ill-posed inverse problems. The first
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successful applications of NNs in signal recovery build upon (fast) classical reconstruction
algorithms, training a network to correct for their artifacts and output the desired high-
quality estimates [41–43]. Unrolling methods [44–49], where the architecure of the network
is based on iterations of the algorithms used in MPL estimation, also fall into this class
of direct nonlinear reconstruction schemes. The Bayesian analogues of such approaches
involve training the network to approximate a chosen estimator or even directly generate
samples from the posterior distribution [50]. While these end-to-end learning methods
have achieved state-of-the-art performances in a variety of applications such as MRI, CT,
optical imaging, and ultrasound, they are not “flexible”. More specifically, in such methods,
the networks are trained on datasets consisting of signals and their measurements, which
makes them highly sensitive to the corresponding measurement-acquisition setup. In this
thesis, we will mainly focus on universal NN-based reconstruction methods, which involve
using a network that has been pretrained to capture only some prior information about
the signal (in a generic way that is independent of the inverse problem at hand) for its
recovery. Here, we discuss some schemes that belong to the above-described category.

The plug-and-play (PnP) priors [51] and regularization-by-denoising (RED) [52, 53]
frameworks are two well-known frameworks where NNs are deployed within the penalized-
likelihood-based estimation paradigm. In PnP (RED) methods, the proximal (gradient)
operator of R that appears in the iterations of the proximal (gradient) algorithms used
for MPL estimation is replaced by an off-the-shelf denoiser (the residual of an off-the-shelf
denoiser). To give some examples, the iterations for the PnP-FBS and RED-GD methods
are given by

sk+1 = D

(
sk − γ∇D

(
y,H(sk)

))
(2.24)

and
sk+1 = sk − γ

(
∇D

(
y,H(sk)

)
+ τ
(
sk −D(sk)

))
, (2.25)

respectively, where D : RK → RK is the chosen denoiser, γ ∈ R+ is the step-size and
τ ∈ R+ is the regularization parameter. Generally speaking, such iterative schemes do
not minimize an explicit cost functional, that is, the denoiser D plays the role of an
implicit regularizer. However, convergence of the iterates to a fixed point can still be
ensured if D belongs to a suitable class of 1-Lipschitz2 operators [54, 55] (we provide
the details for PnP-FBS in Section 5.2.2 of Chapter 5). In the learning-based variants
of these frameworks, one uses denoising routines constructed from appropriately trained
NNs [56–62]. The delicate point there is that in order to ensure convergence, the network
must be constrained such that the corresponding denoiser belongs to the desired class of
1-Lipschitz operators. This is a challenging task and remains an active area of research [55,
63]. In Chapter 5 (Section 5.2), we will present a novel approach for designing and training
powerful 1-Lipschitz denoising NNs which can then be used to develop provably convergent

2An operator T: RK → RK is L-Lipschitz (with respect to the norm ∥ · ∥) if ∥T(x1) − T(x2)∥ ≤
L∥x1 − x2∥ for all x1,x2 ∈ RK .
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iterative reconstruction methods within the PnP and RED frameworks.

More recently, gradient-step denoisers of the form D = Id −∇gθ, where the function
gθ : RK → R+ is parametrized with the help of a network, have been used to devise PnP
and RED methods that actually minimize an explicit global cost functional [64–66] and
are thus more interpretable. Outside of these frameworks, NNs have also been deployed
for directly designing an explicit learnable general-purpose regularization term [67]. In
line with this recent trend of developing interpretable convergent NN-based reconstruction
algorithms, we will present an efficient approach for learning convex regularizers R in
Chapter 5 (Section 5.3).

There also exist regularization schemes that utilize deep latent variable generative models
such as variational autoencoders (VAEs) [68] and generative adversarial networks (GANs)
[69]. These models consist of a generator network Gθ : Rd → RK (d≪ K), where θ ∈ RP

denotes its parameters, that maps a low-dimensional latent space to the high-dimensional
signal space. They are trained on a dataset of signals such that they capture its statistics
and generate sample signals Gθ∗(z), where θ∗ are the parameters of the network after
the training is complete and z ∈ Rd is sampled from a fixed simple distribution such as
the uniform or Gaussian distribution, similar to those in the dataset. The application
of such a trained deep generative model (DGM) to an inverse problem [70–72] typically
involves specifying the signal estimator as s∗DGM(y) = Gθ∗(z∗DGM(y)) with

z∗DGM(y) ∈ argmin
z∈Rd

D
(
y, H(Gθ∗(z))

)
. (2.26)

Here, s∗DGM(y) is an MPL estimator for the signal corresponding to the regularization
term that is an indicator function that assigns an infinite cost to any signal not in the
range of Gθ∗ . As proposed in [70], one can also include a suitable penalty term in (2.26)
to introduce a bias towards certain regions in the latent space. In this case, although
z∗DGM(y) can be viewed an MPL estimator (for the latent vector), s∗DGM(y) no longer
has such an interpretation.

Most of the NN-based models mentioned above can also be utilized within the Bayesian
estimation paradigm. In fact, efficient posterior sampling schemes have been developed for
prior probability distributions encoded by denoising NNs [73–75], GANs [76], VAEs [77,
78], score-based generative models [79, 80], and energy-based generative models [81]. In
Chapter 6, we will present a Bayesian framework for solving nonlinear inverse problems
that leverages deep latent variable models (e.g., VAEs, GANs).

Finally, we also discuss a class of NN-based methods that remarkably do not require any
training data [82, 83, 99]. There, the main idea is to use the structure of an untrained
neural network (UNN) Gθ : Rd → RK , where θ ∈ RP denotes its parameters, to specify a
signal model. In these methods, the reconstruction is given by s∗UNN(y) = Gθ∗

UNN(y)(zin),
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where

θ∗
UNN(y) ∈ argmin

θ∈RP

D
(
y, H(Gθ(zin))

)
(2.27)

and zin ∈ Rd is an input vector that is randomly initialized and then kept fixed during the
optimization of the network parameters. Similar to the case of trained DGMs, s∗UNN(y) is
an MPL estimator for the signal corresponding to the regularization term that constrains
it to lie in the range of the network for the fixed input zin. In practice, if Gθ is a deep
network, one typically deploys early stopping while optimizing the criterion in (2.27) to
prevent the network from fitting the noise in the measurements. Alternately, one can
also perform MPL estimation or Bayesian estimation for the network parameters with
simple models such as ℓ2-norm regularization or Gaussian priors [84]. The success of these
schemes involving untrained NNs is attributed to the implicit signal model imposed by
the architecture of the network, which favours natural-looking signals (“good” solutions)
over noisy ones (“bad” solutions). In Chapter 7, we will present an extended version of
such a method in the context of dynamic Fourier ptychography.

2.2.4 A Philosophical Note

We can see from Equations (2.8) and (2.15) that for a fixed noise model (pnoise), an MPL
estimator with the regularization term R(·) can be interpreted as a MAP estimator
corresponding to the prior distribution pS(·) ∝ exp(−R(·)). However, as pointed out in
some works such as [11, 12], one must exercise caution while making such interpretations.
The key point that we want to emphasize here is that there is a fundamental difference
between the penalized-likelihood-based estimation and Bayesian estimation paradigms in
terms of what the respective signal models (R and pS) represent. Specifically, the goal in
MPL estimation is to choose R such that the solution to the optimization problem in
(2.8) exhibits some desirable properties. On the other hand, in Bayesian estimation, the
holy grail is to specify pS such that samples generated from this distribution resemble the
signal of interest. An important implication of this difference in philosophies is that the
above-mentioned interpretation of a given MPL estimator as some MAP estimator can
be misleading as the two signal models—R(·) and pS(·) ∝ exp(−R(·))—might not reflect
the same information about the underlying signal. For example, the regularization term
R(s) = ∥s∥1 is known to promote sparse solutions [100]. On the contrary, samples from
the multivariate Laplace distribution pS(s) ∝ exp(−∥s∥1) are not sparse vectors.

2.3 Summary

In this chapter, we have discussed two well-known statistical reconstruction paradigms—
penalized-likelihood-based estimation and Bayesian estimation—for solving ill-posed
inverse problems. In the following chapters, we will present our contributions to developing
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novel signal-reconstruction methods within these paradigms.
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3 Continuous-Domain Lp-Norm Regu-
larization

As mentioned in Chapter 2, most real-world inverse problems are concerned with the
recovery of a continuous-domain signal. The typical pipeline for tackling such problems
first involves formulating them in terms of a discrete representation of the underlying
signal. Prior information about the signal is then introduced through a model for its
discrete representation. Alternately, one can also directly specify the estimation task and
signal model in the continuum (provided that a solution can be computed analytically
or numerically) [13, 101]. 1In this chapter, we seek to understand the effect of one such
model for 1D signals—continuous-domain Lp-norm regularization for p ≥ 1 and with a
multi-order derivative regularization operator DN0 . To that end, we develop a numerical
method to solve the Lp-regularized generalized-interpolation problem. Through a series
of experiments, we then identify properties of this regularization.

3.1 Introduction

For a 1D continuous-domain signal s, a natural candidate for the regularization term is
∥L{s}∥, where L is a linear operator. Continuous-domain regularization schemes such as
Tikhonov [13, 103, 104], which uses the L2-norm ∥ · ∥L2 , and generalized total variation
(gTV) [101, 105], which involves the use of the M-norm ∥ · ∥M (an extension of the
L1-norm), have been intensively studied and their behavior is well-documented. To see
the effect of these schemes, we consider the interpolation problem shown in Figure 3.1.
The objective there is to construct a continuously defined function that passes through
the given data points exactly. However, as shown in the figure, it is possible to construct
infinitely many valid solutions. In this problem, we regularize the solution by imposing
a minimum-norm requirement of the form ∥L{s}∥. This enables us to obtain solutions
with certain desired properties. It is well-known that Tikhonov (or L2) regularization
tends to produce smooth solutions while gTV regularization promotes sparsity. These
characteristics can be seen in Figure 3.1. For example, when we impose gTV regularization

1This chapter is based on our work [102].
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Figure 3.1: Interpolation of data points symbolized by crosses. The solid line represents
an arbitrary solution. For the other two cases, it is regularization that dictates how the
points are connected.

with L = D (the derivative operator), we obtain a piecewise-constant solution whose
derivative is sparse.

The purpose of this chapter is to study the effect of continuous-domain Lp-norm regular-
ization for a general p ≥ 1 and a multi-order derivative operator L = DN0 . To that end, we
consider the generalized interpolation problem with Lp-norm regularization. Generalized
interpolation is an extension of interpolation. Specifically, given certain measurement
functionals (ν1, ..., νM ) and a value (or measurement) ym corresponding to each functional,
we aim at constructing a continuously defined function that explains the measurements
exactly. We formulate this problem as

min
s
∥DN0{s}∥Lp s.t. ⟨νm, s⟩ = ym, m = 1, 2, ...,M, (3.1)

where ∥·∥Lp denotes the Lp-norm.

3.1.1 Why Generalized Interpolation?

Consider the problem of reconstructing a signal s0 from a finite number of its noisy linear
measurements y ∈ RM . The continuous-domain MPL estimate for s0 can be written as

S = argmin
s∈X

(
D
(
y,ν(s)

)
+ τR(s)

)
, (3.2)
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where X is a suitable function space, the operator ν : s 7→ ν(s) = (⟨ν1, s⟩, . . . , ⟨νM , s⟩)
describes the measurement model, D : RM × RM → R is the data-fidelity term which
depends on the statistics of the noise and R is the regularization. It can be shown (see
Appendix 3.8) that, if D is strictly convex and R is convex, then all the solutions s∗ ∈ S
generate the same measurement vector z0 = ν(s∗) ∈ RM . This property allows us to
characterize the solution set S as

S = argmin
s∈X

R(s) s.t. ν(s) = z0. (3.3)

By understanding the effect of the regularization term R(s) in (3.3), we can understand
its effect for a much broader class of problems such as (3.2).

3.1.2 Related Work

The Lp-regularized interpolation problem and its variants, with p ≥ 1 and L = DN0 , have
been studied in [106–111] in the context of approximation theory and splines. These works
are theoretical, for the most part. They discuss the existence of a solution, conditions
of optimality, and provide the functional form of the N0th derivative of the solution. A
specific instance of minimizing the Lp-norm of the second derivative of polynomial spline
interpolants has been looked at in [112] and [113]. To the best of our knowledge, however,
there exists no work that numerically solves the general continuous-domain problem (3.1)
and demonstrates the effect of Lp-norm regularization.

3.1.3 Contributions

In this chapter, we propose an algorithm to compute the solution to (3.1). Through a
series of experiments, we then identify some properties of Lp-norm regularization. Here is
a list of our contributions.

• We discretize the continuous-domain problem (3.1) by using a basis that consists of
shifted polynomial B-splines of degree N0, with knots on a uniform grid. This basis
leads to an exact discretization, thus transforming our continuous-domain problem
into an equivalent finite-dimensional discrete one which can be solved by algorithms
such as the alternating-direction method of multipliers (ADMM) [24].

• We implement a multiresolution algorithm that progressively decreases the grid
size until a solution with the desired precision is obtained. This strategy relies
on the theory of approximation. It dictates that, when the grid size is sufficiently
small, the search space spanned by our B-spline basis contains functions that are
arbitrarily close to the solution of the full continuous-domain problem where our
constraint that the solution must live in a spline space would have been lifted.
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• We present numerical results for measurement operators that correspond to inter-
polation in the spatial and Fourier domains. In these experiments, we show the
existence of a continuum of solutions as p varies from ∞ to 1. We then examine
properties of Lp-regularized solutions such as sparsity, regularity (smoothness) and,
oscillatory behavior and overshoot, as well as the effect of N0 on the solutions.

The chapter is organized as follows: In Section 3.2, we introduce the continuous-domain
framework and discuss some existing theoretical results. We provide background in-
formation on polynomial splines in Section 3.3. Section 3.4 includes the details of our
discretization scheme, along with a discussion on the approximation power of splines. We
present the multiresolution algorithm in Section 3.5 and illustrate our numerical results
in Section 3.6.

3.2 Generalized Interpolation

In this section, we define and discuss the key components of our framework: the mea-
surement operator, the regularization operator, the regularization norms, and the search
space for the optimization problem. We then briefly review theoretical results available
for this problem.

3.2.1 Continuous-Domain Framework

In generalized interpolation, the aim is to construct a function s : R→ R that explains
the measurements y ∈ RM , with

ν(s) =
(
⟨ν1, s⟩, . . . , ⟨νM , s⟩

)
= y, (3.4)

where ⟨νm, s⟩ represents the action of the linear functional νm : s 7→ ⟨νm, s⟩ = νm(s) ∈ R.
When νm and s are ordinary functions defined over R, the mth measurement is given
by the Lebesgue integral ⟨νm, s⟩ =

∫
R νm(x)s(x)dx. In the pure interpolation problem,

the measurement functionals are shifted Dirac distributions νm = δ(· − xm), with the
property that ⟨δ(· − xm), s⟩ = s(xm).

In order to specify the regularization operator L, we introduce the Schwartz space S(R) of
smooth and rapidly decaying functions defined over R. Its continuous dual is the space of
tempered distributions, denoted by S ′(R). In our framework, we focus on regularization
operators of the form L = DN0 : S ′(R) → S ′(R), where D is the derivative operator
extended to S ′(R) [114, Chapter 3] and N0 ≥ 1. The null space of the operator DN0 is
NDN0 = span{pn}N0

n=1, with pn(x) = xn−1. The Green’s function of DN0 is denoted by
ρDN0 ; it satisfies the property that DN0{ρDN0} = δ. The Green’s function is not unique
due to the existence of the null space.
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Next, we specify the the continuous-domain Lp-norm. For a measurable function w : R→
R, the Lp-norm (1 ≤ p <∞) is defined as

∥w∥Lp ≜

(∫
R
|w(x)|pdx

) 1
p

, (3.5)

while the L∞-norm is defined as2

∥w∥L∞ ≜ ess sup
x∈R

|w(x)|. (3.6)

Equation (3.5) also specifies the Lp quasinorm for values of p ∈ (0, 1). The Lebesgue
space of functions Lp(R) = {w : R → R | ∥w∥Lp < ∞}, where p ∈ [1,∞], is a Banach
space. Here, we also define the M-norm used in gTV regularization, which is closely
related to L1 regularization, as

∥w∥M ≜ sup
φ∈S(R),∥φ∥∞=1

⟨w,φ⟩ (3.7)

for any w ∈ S ′(R). The Banach space associated with ∥·∥M is M(R) = {w ∈
S ′(R) | ∥w∥M < +∞}. The M-norm is an extension of the L1-norm. Indeed, for
any w ∈ L1(R), we have that

∥w∥M = ∥w∥L1 . (3.8)

However, the Dirac impulse δ is included inM(R) with ∥δ∥M = 1 but does not belong
to L1(R). Thus, we have that L1(R) ⊂M(R).

Finally, we define the search spaces for the gTV-regularized and Lp-regularized problems
as

M(N0)(R) = {s ∈ S ′(R) | DN0{s} ∈ M(R)} (3.9)

L(N0)
p (R) = {s ∈ S ′(R) | DN0{s} ∈ Lp(R)}. (3.10)

Here, we consider all generalized functions in S ′(R) for which the regularization term is
finite.

Now that we have described all the components involved in our regularized generalized-
interpolation framework, we state the optimization problems that we consider in this

2The essential supremum is a generalization of the supremum in Lebesgue’s theory of integration. For
a measurable function w : R → R, it is the smallest value a ∈ R such that w(x) ≤ a almost everywhere
(i.e., everywhere except on a set of measure zero). The essential supremum is equivalent to the supremum
for continuous functions.
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work. They are

SM = argmin
s∈M(N0)(R)

∥DN0{s}∥M s.t. ν(s) = y (3.11)

Sp = argmin
s∈L(N0)

p (R)
∥DN0{s}∥Lp s.t. ν(s) = y, (3.12)

where N0 ≥ 1.

3.2.2 Theoretical Results

Before the discussion of theoretical results, we need to make some assumptions.
Assumptions 3.1. In the following statements, the symbol X represents the search space
M(N0)(R) or L(N0)

p (R), depending on the problem at hand.

i. The measurement operator ν is weak∗-continuous on X .

ii. For the given measurements y ∈ RM and measurement operator ν, there exists at
least one function s0 ∈ X such that ν(s0) = y.

iii. The intersection of the null spaces of ν and DN0 is {0}.

Assumption (1.i) implies that the measurement functionals satisfy νm ∈ Y form = 1, ...,M ,
where the predual space Y is such that X = Y ′. In practice, this imposes a minimum
degree of regularity and decay on {νm}Mm=1. Assumption (1.ii) states a feasibility condition
and is needed to ensure that the generalized interpolation problem is well-defined. If
(1.i) holds and the νm are linearly independent, then (1.ii) is satisfied for any y ∈ RM .
Assumption (1.iii) ensures that the problem is well-posed over the null space of the
regularization operator, where the penalization is immaterial. This can be checked by
verifying that the matrix P with entries [P]m,n = ⟨νm, pn⟩ is full-rank.

For the gTV-regularized and L2-regularized problems, there exist representer theorems
that provide a parametric characterization of the possible range of solutions. In the
case of L2 regularization, the solution is unique, smooth, and lies in a finite-dimensional
subspace that depends on the measurement and regularization operators [104]. The gTV
problem can have infinitely many solutions, but the extreme points of the solution set
SM are known to be splines whose type depends on the regularization operator only [101].
These splines have adaptive knots which are fewer than the number of measurements.
On applying the operator DN0 to these extreme points, we recover Dirac impulses at the
knot locations, which implies a sparse N0th order derivative. We refer to such solutions
as the sparse solutions of the gTV problem.

Beside providing insights about the nature of the solutions, the representer theorems also
play a role in the design of numerical methods to solve these problems. The parametric
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forms of the solution provided by the theorems are used for the discretization of the
continuous-domain problems, leading to finite-dimensional optimization tasks which can
be solved using standard optimization algorithms. A detailed comparison of L2 versus
gTV regularization can be found in [104]. The reader can refer to [104, 115] for the
algorithms.

In this work, our main focus is on (3.12) with a general p ≥ 1. This kind of a problem
has been addressed in [106] for the case of pure interpolation, when the measurement
functionals are Dirac impulses. Here, we state the result from [106] in a form that is
compatible with our framework. When p ∈ (1,∞), there exists a unique solution s∗ to
the Lp-regularized interpolation problem. It satisfies

DN0{s∗} = |v∗|q−1

∥v∗∥q−2
Lq

sgn(v∗), (3.13)

where 1
p +

1
q = 1 and

v∗(x) =
M∑
m=1

amρDN0 (x− xm) +
N0∑
n=1

bnpn(x) (3.14)

is a polynomial spline with knots at the data points {xm}Mm=1, and where {am}Mm=1 and
{bn}N0

n=1 are suitable sets of coefficients. On setting p = 2, we recover the result given
in [104]. Equations (3.13)-(3.14) show that the N0th derivative of the solution to our
continuous-domain problem lies in a finite-dimensional manifold. The solution itself can
then be obtained by taking an N0-fold integral, subject to adequate boundary conditions.
However, for p ̸= 2, we have a nonlinear mapping in (3.13). This makes it difficult to
interpret other effects of regularization on the solution. Moreover, due to this nonlinear
mapping, these solutions do not readily lend themselves to a discretization scheme, unlike
in the gTV and L2 cases. Therefore, we propose a spline-based discretization scheme to
numerically solve the Lp-regularized generalized-interpolation problem for p ≥ 1.

3.3 Polynomial Splines

Polynomial splines of degree N0 form an essential component of our discretization scheme.
They are piecewise-defined functions where each piece is a polynomial of degree N0. These
pieces are connected in a manner such that the first (N0 − 1) derivatives of the function
are continuous. The points where the pieces are connected are called knots. A cardinal
polynomial spline of degree N0 has its knots on the integer grid and can be expressed
uniquely in the form of a B-spline expansion [116]

s(x) =
∑
k∈Z

c[k]βN0
+ (x− k), (3.15)
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Figure 3.2: Causal B-splines βN0
h (x) with scaling factor h.

where βN0
+ (x) is the causal B-spline of degree N0 and (c[k])k∈Z are the expansion coeffi-

cients. The causal B-spline of degree 0 is defined as:

β0+(x) =

{
1, if 0 ≤ x < 1

0, otherwise,
(3.16)

while the causal B-spline of degree N0 is obtained by the (N0 + 1)-fold convolution of
β0+(x) given by

βN0
+ (x) = (β0+ ∗ β0+ ∗ · · · ∗ β0+)︸ ︷︷ ︸

N0 convolutions

(x). (3.17)

We are interested in polynomial splines with knots located on a uniform grid of size h
(in other words, the knots lie in hZ). Such a spline of degree N0 admits the B-spline
expansion

sh(x) =
∑
k∈Z

ch[k]β
N0
h (x− kh), (3.18)

where βN0
h (x) = βN0

+

(
x
h

)
is the causal scaled B-spline of degree N0. It is uniquely specified

by its coefficients ch = (ch[k])k∈Z. We illustrate in Figure 3.2 that βN0
h (x) is compactly

supported in [0, (N0+1)h]. In fact, the B-spline βN0
h (x) is the polynomial spline of degree

N0, with knots in hZ, that has the shortest support [117].

Polynomial splines are closely linked to derivative operators of the form DN0 (N0 ≥ 1).
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Table 3.1: The operator DN0 and the scaled B-spline βN0−1
h (x) and sequence (dN0 [k])k∈Z

associated with it.

L = DN0 βN0−1
h (x) (dN0

[0], . . . , dN0
[N0])

D β0
h(x) =

{
1, 0 ≤ x < h

0, otherwise
(1,−1)

D2 β1
h(x) =


x/h, 0 ≤ x < h

(2h− x)/h, h ≤ x < 2h

0, otherwise
(1,−2, 1)

D3 β2
h(x) =


x2/2h, 0 ≤ x < h

(−2x2 + 6xh− 3h2)/2h2, h ≤ x < 2h

(3h− x)2)/2h2, 2h ≤ x < 3h

0, otherwise

(1,−3, 3,−1)

The operator DN0 is associated with the scaled B-spline of degree (N0 − 1) according to

DN0{βN0−1
h }(x) = 1

hN0−1

∑
k∈Z

dN0 [k]δ(x− kh). (3.19)

The sequence (dN0 [k])k∈Z is characterized by its z-transform

dN0(z) = (1− z−1)N0 (3.20)

and is supported in {0, . . . , N0}. In Table 3.1, we provide the explicit forms of βN0−1
h (x)

and (dN0 [k])k∈Z for N0 = 1, 2, 3.

3.4 Discretization Scheme

3.4.1 Search Space

We discretize the continuous-domain problem (3.12) by restricting the search space to a
suitable space of polynomial splines, defined as

LN0
p,h(R) =

{∑
k∈Z

c[k]βN0
h (· − kh) : c ∈ ℓN0

p (Z)
}
, (3.21)

where βN0
h is the scaled B-spline of degree N0, h > 0 is the grid size, and

ℓN0
p (Z) =

{
(c[k])k∈Z : (dN0 ∗ c) ∈ ℓp(Z)

}
. (3.22)

The choice of the search space LN0
p,h(R) is guided by its exact discretization property
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which we discuss in Section 3.4.2. Moreover, the approximation power of splines ensures
that, when h is sufficiently small, the search space LN0

p,h(R) contains functions that are
arbitrarily close to the solution of the unrestricted continuous-domain problem (3.12). We
present a detailed argument for this in Section 3.4.4. The fact that LN0

p,h(R) is represented
in a B-spline basis is another advantage. B-splines are compactly supported and form a
Riesz basis [118], thus resulting in a well-conditioned discretization.

3.4.2 Exact Discretization

The exact discretization property of the function space LN0
p,h(R) stems from Proposition

3.1.

Proposition 3.1. For any function s ∈ LN0
p,h(R) with p ∈ (0,∞], we have that

∥DN0{s}∥Lp =

∥∥∥∥ 1

hN0−1/p
(dN0 ∗ c)

∥∥∥∥
ℓp

. (3.23)

Proof. A scaled B-spline of degree N0 can be expressed as

βN0
h (x) =

1

h
(βN0−1
h ∗ β0h)(x). (3.24)

Using (3.19) and (3.24), we deduce that

DN0{βN0
h }(x) =

1

hN0

∑
k∈Z

dN0 [k]β
0
h(x− kh). (3.25)

Therefore, for any s ∈ LN0
p,h(R) it stands that

DN0{s}(x) = 1

hN0

∑
k∈Z

(dN0 ∗ c)[k]β0h(x− kh). (3.26)

Equation (3.26) implies that DN0{s} is a piecewise-constant function. For p ∈ (0,∞), the
following holds:

∥DN0{s}∥Lp =

(∫
R

∣∣∣∣ 1

hN0

∑
k∈Z

(dN0 ∗ c)[k]β0h(x− kh)
∣∣∣∣pdx) 1

p

=

(∑
k∈Z

h
∣∣∣ 1

hN0
(dN0 ∗ c)[k]

∣∣∣p) 1
p

= ∥ 1

hN0−1/p
(dN0 ∗ c)∥ℓp . (3.27)
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For the case p =∞, we have that

∥DN0{s}∥L∞ = ess sup
x∈R

∣∣∣∣ 1

hN0

∑
k∈Z

(dN0 ∗ c)[k]β0h(x− kh)
∣∣∣∣

= sup
k∈Z

∣∣∣∣ 1

hN0
(dN0 ∗ c)[k]

∣∣∣∣
= ∥ 1

hN0
(dN0 ∗ c)∥ℓ∞ . (3.28)

On plugging the parametric form (3.21) of any function s ∈ LN0
p,h(R) into Problem (3.12)

and using Proposition 3.1, we obtain the equivalent discrete problem

Sp,h = argmin
c∈ℓN0

p (Z)
∥ 1

hN0−1/p
(dN0 ∗ c)∥ℓp s.t.

∑
k∈Z

c[k]ν(βN0
h (· − kh)) = y (3.29)

The important thing to note here is that Problem (3.29) is exactly equivalent to the
continuous-domain problem (3.12) restricted to the search space LN0

p,h(R). In other words,
by solving the above discrete problem, we effectively find a solution to the restricted
continuous-domain problem, which is given by

∑
k∈Z c

∗[k]βN0
h (· − kh) with c∗ ∈ Sp,h. As

indicated by Proposition 3.1, this discretization scheme is also valid for Lp quasinorm
regularization with p ∈ (0, 1). However, these values of p correspond to non-convex
problems.

Interestingly, the function space LN0
1,h(R) can also be used for discretizing the gTV problem

(3.11), which then also happens to be equivalent to the p = 1 case.

Proposition 3.2. For any function s ∈ LN0
1,h(R), we have that

∥DN0{s}∥M = ∥DN0{s}∥L1 . (3.30)

Proof. Equation (3.26) implies that DN0{s} is piecewise-constant. Moreover, since (dN0 ∗
c) ∈ ℓ1(Z), we conclude that DN0{s} ∈ L1(R). The relationship between the M-norm
and L1-norm (3.8) leads to (3.30).

By restricting the search space in (3.11) to LN0
1,h(R) and using Propositions 3.1 and 3.2,

we obtain the discrete problem (3.29) with p = 1.

The salient and novel aspect of our method is the exact discretization of the continuous-
domain problem. To the best of our knowledge, there is no prior work that discretizes
Lp-regularized continuous-domain problems, with a general p, exactly. As mentioned
earlier, the cases of p = 2 and gTV have also been handled in [104, 115]. However, those
discretization schemes have been specifically derived from representer theorems for L2
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and gTV regularization, and unlike the method proposed in this paper, are not applicable
for other values of p.

3.4.3 Finite-Dimensional Problem

In practice, we assume that the measurement functionals νm are supported over a finite
interval IT = [0, T ]. Consequently, a finite number of B-spline expansion coefficients are
now involved in the constraint term in (3.29). We denote the set of the indices of these
coefficients by K = {kmin, . . . , kmax}; the cardinality of this set is |K| = N . We now state
Proposition 3.3, which has been adapted from Lemma 3 in [115].

Proposition 3.3. If the measurement functionals {νm}Mm=1 are supported in IT , then
a solution c∗ ∈ Sp,h of Problem (3.29) is uniquely determined by the N coefficients
c∗|K = (c∗[kmin], . . . , c

∗[kmax]).

This result ensures that we only need to optimize over theN B-spline coefficients that affect
the constraint (or data) term in (3.29). As described in [115], the expansion coefficients
outside the interval of interest IT can be set in a way such that all the regularization terms
that they affect are nullified. This allows us to write the infinite-dimensional convolution
in (3.29) as a matrix multiplication, leading to the finite-dimensional optimization problem

Sp,h = argmin
c∈RN

∥Lc∥ℓp s.t. Hc = y, (3.31)

where the system matrix H : RN → RM is

H =


...

...
ν(βN0

h (· − kminh)) · · · ν(βN0
h (· − kmaxh))

...
...

 , (3.32)

and the regularization matrix L : RN → RN−N0 is

L =
1

h
N0− 1

p


dN0 [N0] · · · dN0 [0] 0 · · · 0

0
. . . . . . . . .

...
...

. . . . . . . . . 0

0 · · · 0 dN0 [N0] · · · dN0 [0]

 . (3.33)

The solutions c∗ ∈ Sp,h and c∗ ∈ Sp,h are related in the following manner: c∗ = c∗|K =

(c∗[kmin], . . . , c
∗[kmax]). Proposition 3.3 implies that the solution to Problem (3.29) can

be uniquely determined from c∗. Thus, we conclude that Problem (3.31) is equivalent
to the continuous-domain problem (3.12) ((3.11), respectively) restricted to the search
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space LN0
p,h(R) (LN0

1,h(R), respectively), in the sense that the continuous-domain solution
can be fully described by c∗.

3.4.4 Effect of the Grid Size

So far, we have seen that the solutions to our continuous-domain problems, when restricted
to LN0

p,h(R), can be obtained by simply solving the finite problem (3.31). Now, we look at
the influence of the grid size h on these solutions. We define a linear projection operator
for the function space LN0

p,h(R) as

P
L
N0
p,h

{s}(x) =
∑
k∈Z

〈
s,

1

h
β̃N0

(
.

h
− k
)〉

βN0
+

(
x

h
− k
)
, (3.34)

where β̃N0 is a (generalized) function such that〈
βN0
+ (· − p), β̃N0(· − q)

〉
= δ[p− q]. (3.35)

The operator defined in (3.34) is a valid projection operator since it is idempotent. This
can be shown by using the biorthonormality condition (3.35).

We now state Theorem 3.1, adapted from [119], which bounds the Lp-norm of the error
between a function s ∈ L(N0)

p (R) (the search space of the unrestricted continuous-domain
problem, as defined in (3.9)) and its projection onto LN0

p,h(R).

Theorem 3.1. Let P
L
N0
p,h

be a linear projection operator for LN0
p,h(R), as defined in (3.34).

When p ∈ (1,∞), the error of approximation for any s ∈ L(N0)
p (R) is

∥s− P
L
N0
p,h

{s}∥Lp = O(hN0). (3.36)

For a small-enough grid size h, the error of approximation for any s ∈ L(N0)
p (R) will

be negligible. Therefore, our restricted search space LN0
p,h(R) will contain functions

(projections) which are arbitrarily close to the solution of the unrestricted continuous-
domain problem. Finally, to compute the solution to the restricted continuous-domain
problem, we only need to solve the finite problem (3.31).

3.5 Multiresolution Algorithm

In this section, we discuss a multiresolution algorithm that computes a solution with the
desired precision by gradually making the grid finer.
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3.5.1 Solving the Finite Problem for a Fixed Grid Size

We first discuss the algorithm that we use to solve finite-dimensional problems of the form
(3.31). As constrained-optimization problems are typically harder to solve numerically
compared to their unconstrained counterparts, to make the optimization easier we consider
the unconstrained version of (3.31) given by

S′
p,h = argmin

c∈RN

(
∥y −Hc∥22 + τψp(∥Lc∥ℓp)

)
(3.37)

where τ ∈ R+ is the regularization parameter and the function ψp : R+ → R+ is defined
as

ψp(x) =

{
xp if p ∈ [1,∞),

x if p =∞. (3.38)

Since ψp is monotonic over R+, the solution(s) to the constrained problem (3.31) can
be obtained from (3.37) in the limit by taking τ → 0. Thus, we propose to solve our
finite-dimensional problem (3.31) by solving (3.37) with a very small value of τ .

The case p = 2 is special since then the optimization problem (3.37) is quadratic
and can be solved directly without the need for an iterative algorithm. The unique
solution in this scenario can be obtained by solving the linear system of equations
(HTH+ τLTL)c∗ = HTy, which is obtained by setting to zero the gradient with respect
to c of the cost functional in (3.37). This can be done by various methods, including
direct matrix inversion.

For the values of p ∈ [1,∞] \ {2}, we use the well-known ADMM [24] to solve Problem
(3.37). The update rules for ADMM in our case are

ck+1 = (HTH+
ρ

2
LTL)−1(HTy +

ρ

2
LT (zk + uk)) (3.39)

zk+1 = proxτ̃ψp(∥·∥ℓp )(Lc
k+1 + uk) (3.40)

uk+1 = uk + Lck+1 − zk+1, (3.41)

where c and z are the primal variables, u is the dual variable, ρ > 0 is the augmented-
Lagrangian parameter and τ̃ = τ/ρ. The proximal operator of a function g is defined as
[120]

proxg(x) = argmin
u

(
1

2
∥u− x∥22 + g(u)

)
. (3.42)
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Figure 3.3: Lookup tables for the proximal operators of | · |p

For p = {1,∞}, the proximal operators involved in (3.40) have the closed-form expressions

proxτ̃∥·∥ℓ1 (x) = sgn(x)⊗max(|x| − τ̃ , 0) (3.43)

proxτ̃∥·∥ℓ∞ (x) = x− τ̃proj∥·∥ℓ1≤1(x/τ̃), (3.44)

where the operators sgn(·) and max(·) are applied component-wise, ⊗ denotes component-
wise multiplication, and the projection operator is

proj∥·∥ℓ1≤1(x) = argmin
u:∥u∥ℓ1≤1

∥u− x∥22. (3.45)

This projector is computed as explained in [121]. Thus, the proximal operators can be
computed efficiently for these two cases.

In general, we do not have a closed form expression for the proximal operator when
p ∈ (1,∞). The additive separability of the function ψp(∥ · ∥ℓp) can be used to observe
that

[proxτ̃ψp(∥·∥ℓp )(x)]m = proxτ̃ |·|p([x]m). (3.46)

Now, we only need to compute the proximal operator for the 1D function τ̃ | · |p : R→ R,
which we do with the help of lookup tables (LUTs). We provide in Figure 3.3 a few
examples of LUTs. An efficient implementation is achieved by exploiting properties of
proxτ̃ |·|p(·) such as antisymmetry and monotonicity.

So far, we have seen that ADMM can be used to compute the unique solution to (3.37)
when p ∈ (1,∞). When p = {1,∞}, ADMM gives us one out of the possibly many
solutions. In order to obtain a sparse solution for p = 1, we follow the procedure proposed
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Algorithm 1 Multiresolution Algorithm
1: Input: p, T , y, ν, N0, τ , hinit, ϵ.
2: Output: c∗

3: Initialization: c = 0, t = 0, rel_error = ϵ + 1, prev_cost = +∞
4: while rel_error > ϵ do
5: h = hinit/2

t

6: Update H, L
7: if p = 2 then
8: c = (HTH+ τLTL)−1HTy
9: else

10: c ← ADMM(c↑2; p, y, H, L, τ)
11: end if
12: rel_error = |cost(c) − prev_cost| / prev_cost
13: prev_cost = cost(c)
14: t ← t + 1
15: end while
16: if p = 1 then
17: yτ = Hc
18: c∗ = Simplex(yτ , H, L)
19: else
20: c∗ = c
21: end if

in [104]. The solution c∗ ∈ S′
p,h obtained via ADMM is used to generate the measurements

yτ = Hc∗. Using these “denoised” measurements, Problem (3.37) is then recast as a
linear program which we solve using the simplex algorithm [122]. The simplex algorithm
guarantees that we reach an extreme point of S′

1,h, which is sparse.

3.5.2 Grid Refinement

We begin with a coarse grid hinit and make it finer gradually until a further decrease of
the grid size does not affect the solution much. At each iteration t ∈W, we pick a grid
size ht = hinit/2

t, splitting the grid from the previous iteration in half. We then solve the
corresponding finite problem.

For this sequence of grid sizes, we observe that the search spaces are embedded like
LN0
p,ht

(R) ⊂ LN0
p,ht+1

(R). This ensures that, by splitting the grid in half, we obtain a refined
solution that is at least as good in terms of the cost function. Finally, we keep making
the grid finer until the relative decrease in cost is less than some desired tolerance level ϵ.
Another advantage of this embedding property is that the solution from the previous grid
can be used as initialization for ADMM, which tends to improve the speed of convergence.
This algorithm is adapted from the work in [115].
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In Algorithm 1, c↑2 corresponds to the coefficients c modified to match a grid that is
twice as fine as that of c. The routine ADMM(c↑2; p, y, H, L, τ) runs ADMM on
Problem (3.37) with c↑2 as the initialization while the routine Simplex(yτ , H, L) runs
the simplex algorithm on the linear program obtained from Problem (3.37) by using the
denoised measurements yτ .

3.6 Numerical Experiments

We now present numerical results that allow us to identify certain properties of Lp-norm
regularization and thus understand its effect. We have implemented our multiresolution
algorithm using GlobalBioIm [123], a MATLAB library designed for solving inverse
problems.

3.6.1 Setup

In our experiments, we have considered two types of measurement functionals.

• Dirac Impulses: In this setting, the given measurement operator takes the form
ν(s) =

(
⟨δ(· − x1), s⟩, . . . , ⟨δ(· − xM ), s⟩

)
=
(
s(x1), . . . , s(xM )

)
, where the points

{xm}Mm=1 lie within the interval IT . This operator corresponds to the standard
interpolation problem that was discussed in Section 3.1. We ensure that the points
{xm}Mm=1 are pairwise distinct and that M ≥ N0, so that the operator ν satisfies
the condition NDN0 ∩Nν = {0}.

• Dephased Cosines: In this case, the measurement functionals are ν1 = 1[0,T ] and
νm = cos(ωmx + θm) × 1[0,T ] for m = {2, 3, . . . ,M}. This operator corresponds
to a variant of the Fourier interpolation problem which is relevant to magnetic
resonance imaging. In order to construct such an operator and the corresponding
measurements for our experiments, we first generated a function s0 and picked
a threshold frequency ωmax such that the spectrum of s0 had little energy above
ωmax. The frequencies ωm were then drawn uniformly at random from (0, ωmax]

while the phases θm were drawn uniformly at random from [0, π). This operator
ν was applied to s0 to generate the measurements that we use in the experiments
involving dephased cosines.

The regularization parameter was set to τ = 10−10 in the first two experiments and
τ = 10−15 in the last two experiments. For all examples that we present in this section,
the grid tolerance was set to ϵ = 10−3. In each example, we compute the solution for
several values of p ∈ [1,∞].
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Figure 3.4: Unique gTV solution (L = D2). The simplex and ADMM solutions are
coincident.

3.6.2 Results

1) Continuum of Solutions and Sparsity: We first present two examples (Figures 3.4 and
3.5) to talk about the behavior of the solution as the value of p is changed. In these
examples, the measurement functionals are Dirac impulses (interpolation problem) and
the regularization operator is L = D2. Both examples show that, as we vary p from ∞ to
1 (note that p = 1 corresponds to the gTV case), the solutions gradually move towards
the (or one of the) gTV solution(s). For the example in Figure 3.4, the computed gTV
solutions with and without applying the simplex are the same and resemble a linear spline
with two knots, in agreement with [101]. It can be shown that this particular sparse
solution is the unique solution to the gTV problem. In this case, we see that the solution
for p = 1.001 is close to the unique sparse gTV solution.

By contrast, the configuration of the data points in Figure 3.5 is such that the gTV
problem has multiple solutions. This can be seen in the plots as the solution obtained by
running the simplex after ADMM is sparse (linear spline with three knots), while the
solution obtained via ADMM only is non-sparse. Interestingly in this case, the solution
for p = 1.001 is close to a non-sparse gTV solution. Based on the above observations and
additional experiments of the same nature, we make several claims.

• There exists a continuum of solutions when p is varied from ∞ to 1.

• When the gTV problem has a unique solution, the continuum converges to that
unique sparse solution as p→ 1.

• When the gTV problem has multiple solutions, the continuum converges to one of
its non-sparse solutions as p→ 1.

We discuss two implications of our claims. Firstly, the existence of a continuum implies
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Figure 3.5: Multiple gTV solutions (L = D2).
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Figure 3.6: Dephased-cosine measurement functionals (L = D, M = 15). For p = 1, the
simplex and ADMM solutions are coincident.

that one can use Lp-norm regularization with p ∈ (1,∞), to “interpolate" between the
properties of the gTV and L∞ solutions. One such property is regularity or smoothness.
In Figures 3.4 and 3.5, we observe that the smoothness of the solution reduces as p
decreases. Secondly, we conclude that Lp-norm regularization with a small p can be used
as a sparsity-promoting prior in settings where the gTV solution is guaranteed to be
unique. This is in line with the use of discrete ℓp-norm regularization, with a small p, in
compressed-sensing frameworks.

As further illustration, we also provide an example with the dephased-cosine measurement
functionals. In this case, the regularization operator was L = D, leading to a piecewise-
constant gTV solution in Figure 3.6. The continuum of solutions and change in regularity,
as p is varied from ∞ to 1, is evident in this figure.

2) Gibbs-Like Oscillations: In the interpolation of step-like functions using splines, Gibbs-
like oscillations are observed at the discontinuities [112, 124, 125]. We use the step and
staircase functions (Figure 3.7) to investigate this effect in our Lp-regularized problem.
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Figure 3.7: Illustration of Gibbs-like oscillations (L = D2). For p = 1, the simplex and
ADMM solutions are coincident.

In these cases, we observe that the solutions exhibit an oscillatory behavior (with an
overshoot at the discontinuity) which decreases as p goes from ∞ to 1. Moreover, as p
becomes smaller, the oscillatory effect of the discontinuity becomes more localized. We
claim that

• Lp-norm regularization with a smaller p results in weaker Gibbs-like oscillations at
the edges.

We would like to point out that the above claims exclude the special case of spatial
interpolation with L = D. Here, all values of p ∈ (1,∞) generate the same solution, which
is a linear spline with knots at the data points. This can be inferred from the theoretical
result stated in Section 3.2.

3) Effect of N0: We now discuss the influence of the operator L = DN0 which is the second
component of our regularization term. In Figure 3.8, we present an example where we fix
p = 1.5 and compute the solutions for different values of N0. Our general observation is
that
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Figure 3.8: Effect of the regularization operator DN0 for a fixed p = 1.5.

• For any p ∈ [1,∞], the solution becomes smoother and exhibits more oscillations as
N0 increases.

4) Comparison with Shannon’s sinc interpolation: Consider a standard interpolation
problem with uniformly spaced points

xm = m∆, m = 1, 2, . . . ,M, (3.47)

where ∆ > 0 is the spacing between any two consecutive points xm, and measurements
{ym}Mm=1. In this case, the well-known sinc interpolant is given by

ssinc(x) =

M∑
m=1

ym sinc
(
x−m∆

∆

)
. (3.48)

Remarkably, the variational formulation (3.12) of the above interpolation problem includes
Shannon’s sinc interpolation scheme as a special case corresponding to p = 2 and N0 →∞
[126].

In many applications such as image scaling and image registration, smoother interpolating
functions are desirable since they are well-behaved with well-defined multi-order derivatives.
While ssinc(x) is a highly regular function, unfortunately it also exhibits strong Gibbs-
like oscillations at sharp transitions. On the other hand, as observed in the previous
experiments, by controlling the values of p and N0, Lp-regularized solutions can be made
to achieve a balance between smoothness and oscillatory behaviour.

To illustrate this advantage of our framework, we consider interpolation of the data points
from Figure 3.8. We compute the maximum overshoot (which is related to the extent
of the oscillations) of the sinc interpolant and the Lp-regularized interpolant for several
values of p and N0, and we plot the results in Figure 3.9. For ease of comparison, we
indicate the maximum overshoot for sinc interpolation, which is quite high, as a horizontal
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Figure 3.9: Maximum overshoot values for interpolation of the data points from Figure
3.8.

dashed line. The plots for the Lp-regularized solutions show that N0 and p (more so
when N0 is small) can be varied to control the overshoots or oscillations, and balance
them with the desired smoothness.

3.7 Summary

We have implemented a multiresolution algorithm to solve numerically the generalized-
interpolation problem with Lp-norm regularization, along with its unconstrained variants.
We have shown that an appropriate grid-based B-spline basis can be used to exactly
discretize the (restricted) continuous-domain problem. Based on previous results from
approximation theory and splines, we have argued that as the grid size goes to zero, the
computed solution approaches the solution of the unrestricted continuous-domain problem.
With the help of numerical results in the context of spatial and Fourier interpolation, we
have established the existence of a continuum of solutions as p goes from ∞ to 1. Finally,
we have made insightful observations about properties of the Lp-regularized solutions
such as sparsity, regularity, and Gibbs-like oscillations.

3.8 Appendix

Consider the unconstrained optimization problem in (3.2):

S = argmin
s∈X

(
D
(
y,ν(s)

)
+ τR(s)︸ ︷︷ ︸

J (s)

)
. (3.49)

Here, we show that if D is strictly convex and R is convex, then all the solutions s∗ ∈ S
generate the same measurement vector z0 = ν(s∗). The proof is adapted from [127] and
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is based on standard arguments in convex analysis.

Let s∗1, s∗2 ∈ S be two solutions of (3.49) such that they produce different measurements i.e.,
ν(s∗1) ̸= ν(s∗2). Let the minimum value of the objective function be J ∗ = J (s∗1) = J (s∗2).
For a candidate function sc = αs∗1 + (1− α)s∗2, with α ∈ (0, 1), we have

J (sc) = D
(
y,ν

(
αs∗1 + (1− α)s∗2

))
+ τR

(
αs∗1 + (1− α)s∗2

)
<

(
α

(
D
(
y,ν(s∗1)

)
+ τR(s∗1)︸ ︷︷ ︸

J ∗

)

+ (1− α)D(y,ν(s∗2)) + τR(s∗2)︸ ︷︷ ︸
J ∗

)
= J ∗. (3.50)

The above strict inequality is due to the fact that D is strictly convex and R is convex.
The relation J (sc) < J ∗ is a contradiction and thus ν(s∗1) = ν(s∗2) = z0.
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4 Sparse Stochastic Processes

1In this chapter, we present a benchmarking environment based on sparse stochastic
processes [114] to objectively evaluate and compare the performance of reconstruction
algorithms for linear inverse problems involving 1D signals. Our framework offers quan-
titative measures of the degree of optimality (in the mean-square-error sense) for any
given reconstruction method. Since it is based on stochastic modelling, it provides access
to unlimited amounts of data, which enables the proper benchmarking of NN-based
approaches without having to worry about the representativity of the training data.

4.1 Introduction

NN-based methods that make use of prior information learned from a large collection of
training data are now the focus of much of the current research in signal reconstruction.
In several applications such as MRI, CT, optical imaging, and ultrasound, their gain
over state-of-the-art classical methods is impressive. Specifically, they shine in extreme
scenarios where one wishes to achieve more with fewer measurements. However, NN-based
methods have certain limitations that currently hinder their further development.

Unlike the classical methods, which are backed by sound mathematics, the development
of NN-based approaches is empirical. Expressivity is obtained through the composition of
simple units, but the working of the whole is hard to comprehend and the architectural
options are overwhelming (e.g., depth, number of channels, size of the filters). In
practice, one usually proceeds by trial and error using the training, validation, and
testing errors as quantitative criteria. Further, the training of NNs is poorly understood
and often difficult because of the underlying over-parameterization: getting a stochastic
optimization algorithm to perform properly for a specific application typically requires a
lot of adjustments and experimentation.

1This chapter is based on our work [128].
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Beside the strain that this empirical approach exerts on developers, the performance
greatly depends on the quality, cardinality, and representativity of the training dataset.
The bottleneck with several applications (e.g., biomedical imaging) is often a limited
access to large, representative datasets. This explains why the works that demonstrate the
superiority of the NN-based approaches over the classical ones for signal reconstruction
have used limited benchmarks so far.

4.1.1 Contributions

In this chapter, we present an objective environment to benchmark the performance of
reconstruction algorithms for linear inverse problems, in particular, NN-based methods
that require large amounts of training data.

We synthesize ground-truth signals and then simulate the measurement process (e.g.,
convolution for deconvolution microscopy, Fourier sampling for MRI) in the presence of
noise. Specifically, we consider a statistical framework where the underlying signals are
realizations of 1D sparse stochastic processes (SSPs) [114]. Since the true statistical distri-
bution of the signal is known exactly in our framework, the minimum-mean-square-error
(MMSE) estimator is indeed optimal in the mean-square-error (MSE) sense. Therefore,
we are able to provide statistical guarantees of optimality by specifying an upper limit on
the reconstruction performance.

Our framework also provides training data for NN-based methods. Indeed, for some
chosen stochastic signal model, we can produce datasets consisting of any desired number
of signals or signal-measurement pairs for a given measurement model, which allows for an
informed comparison of network architectures. Thus, the availability of the goldstandard
(MMSE estimator) and training data make our benchmark a good ground for the tuning
of NN architectures and for the identification of the best designs in a tightly controlled
environment.

The MAP estimates of SSPs are solutions of optimization problems and can be computed
efficiently. However, it has been observed that these MAP estimators are suboptimal in
the MSE sense [34, 129], except in the Gaussian scenario where the MAP and MMSE
estimators (generalized Wiener filter) coincide [15]. In this work, we focus on non-
Gaussian signal models. In principle, the MMSE estimator involves the calculation of
high-dimensional integrals, which are not numerically tractable in general. Thus, we
develop efficient Gibbs-sampling-based algorithms to compute the MMSE estimators
for specific classes of SSPs, with innovations following the Laplace, Student’s t, and
Bernoulli-Laplace distributions. To the best of our knowledge, no such working solution
for generic linear inverse problems with SSPs has been presented in the literature.

Finally, we present experimental results that illustrate the usefulness of our framework.
Specifically, we benchmark the performance of some well-known classical MPL estimators
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and end-to-end trained CNNs that perform direct nonlinear reconstructions, in the context
of deconvolution and Fourier sampling for first-order SSPs. The CNNs that we consider
are optimized by minimizing the MSE loss for training datasets. On one hand, when the
innovations follow a Bernoulli-Laplace distribution, we observe that CNNs (with sufficient
capacity and training data) outperform the sparsity-promoting MPL estimators, which
are well-suited to these piecewise-constant signals. In fact, some of these CNNs achieve
near-optimal MSE performance. On the other hand, our experiments with Student’s
t innovations indicate regimes where CNNs fail to reconstruct the signals well. More
specifically, we observe that, when the tails of the Student’s t distribution are made
heavier (i.e., when we move towards a Cauchy distribution), CNNs perform rather poorly.

The chapter is organized as follows: In Section 4.2, we describe a continuous-domain
measurement model along with a way to discretize it. In Section 4.3, we introduce Lévy
processes as stochastic models for our signals and we derive the probability distribution for
samples of such processes. We then develop Gibbs samplers for Lévy processes associated
with Laplace, Student’s t, and Bernoulli-Laplace distributions in Section 4.4. Finally, we
present experimental results in Section 4.5.

4.2 Measurement Model

In the proposed framework, we consider the recovery of a continuous-domain signal
s† : R→ R from a finite number M of measurements y† = (y†

m)
M
m=1.

4.2.1 Continuous-Domain Measurement Model

We model the measurements y† = (y†
m)

M
m=1 as

y†
m =

∫
R
s†(t)νm(t)dt+ n†[m], (4.1)

where (νm)
M
m=1 are linear functionals that describe the physics of the acquisition process

and n†[·] is a realization of white Gaussian noise with variance σ2n. By choosing appropriate
functionals (νm)

M
m=1, we can study a variety of linear inverse problems such as denoising,

deconvolution, inpainting, and Fourier sampling.

4.2.2 Discrete Measurement Model

We need to discretize (4.1) to obtain a computationally feasible model for the measure-
ments. To that end, we consider a finite region of interest Ω = (0, T ) of the signal and
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approximate it with

s†h(t) =

K∑
k=1

s†(kh)sinc
(
t

h
− k
)
, (4.2)

where h is the sampling step and K =
( ⌊

T
h

⌋
− 1
)
. When h is small enough, s†h is a good

approximation of s† within the interval Ω [130]. On introducing (4.2) into (4.1), we get
that

y† = Hs† + n†, (4.3)

where s† = (s†(kh))Kk=1 ∈ RK contains equidistant samples of the signal, H : RK → RM

is the discrete system matrix with

[H]m,k =

∫
R

sinc
(
t

h
− k
)
νm(t)dt, (4.4)

and n† ∈ RM is the noise.

Thus, for any given signal samples s† ∈ RK , we can simulate noisy measurements using
(4.3). Next, we derive the discrete system matrices for deconvolution and Fourier sampling.
Hereafter, we assume for simplicity that h = 1.

4.2.3 Deconvolution

In deconvolution, the measurements are acquired by sampling the result of the convolution
between the signal and the point-spread function (PSF) ψ of the acquisition system,
which we model by letting the measurement functionals be νm = ψ(m− ·). We assume
that the cutoff frequency of ψ is ω0 ≤ π, as this allows us to sample (s† ∗ψ) on an integer
grid without aliasing effects. In this case, The entries of the resulting system matrix H

are given by

[H]m,k =

∫
R

sinc(t− k)ψ(m− t)dt

= ψ(m− k). (4.5)

Here, H is a discrete convolution matrix whose entries are samples of the bandlimited
PSF ψ.

4.2.4 Fourier Sampling

In Fourier sampling, the measurements are acquired by sampling the Fourier transform of
the signal at arbitrary frequencies {ωm}Mm=1. Accordingly, the measurement functionals
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are the complex exponentials νm = e−jωm·. Assuming that |ωm| ≤ π, we get that

[H]m,k =

∫
R

sinc(t− k)e−jωmtdt

= e−jωmk. (4.6)

Here, H is a discrete Fourier-like matrix, except that the frequencies ωm do not necessarily
lie on an uniform grid.

4.3 Stochastic Signal Model

In this section, we describe a continuous-domain stochastic model for the signal. We also
derive the probability distribution for its samples.

4.3.1 Lévy Processes

In our framework, the underlying signals are realizations of a well-known class of first-order
sparse stochastic processes: the Lévy processes [114, 131].

Definition 4.1 (Lévy process). A stochastic process (or collection of random variables)
S = {S(t) : t ∈ R+} is a Lévy process if

1. S(0) = 0 almost surely;

2. (independent increments) for any N ∈ N \ {0, 1} and 0 ≤ t1 < t2 · · · < tN <∞, the
increments

(
S(t2) − S(t1)

)
,
(
S(t3) − S(t2)

)
, . . . ,

(
S(tN ) − S(tN−1)

)
are mutually

independent;

3. (stationary increments) for any given step h, the increment process Uh = {S(t)−
S(t− h) : t ∈ R+} is stationary;

4. (stochastic continuity) for any ϵ > 0 and t ≥ 0

lim
h→0

Pr{|S(t+ h)− S(t)| > ϵ} = 0.

Lévy processes are closely linked to infinitely divisible (id) distributions.

Definition 4.2 (Infinite divisibility). A random variable X is infinitely divisible if, for
any N ∈ N \ {0}, there exist independent and identically distributed (i.i.d.) random
variables X1, . . . ,XN such that X = X1 + · · ·+ XN .

For any Lévy process S, the random variable S(t) for some t > 0 is infinitely divisible.
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(a) Gaussian: p(x) = 1√
2πσ2

e−
x2

2σ2

(b) Laplace: p(x) = b
2e

−b|x|

(c) Bernoulli-Laplace: p(x) = λδ(x) + (1− λ) b2e−b|x|

(d) Student’s t: p(x) = Γ(α+1
2 )

Γ

(
α
2

) 1
√
π(1+x2)

α+1
2

Figure 4.1: Realizations of different Lévy processes as characterized by the corresponding
infinitely divisible pdfs.

Moreover, its probability density function (pdf) is given by

pS(t)(x) =

∫
R

(∫
R
pS(1)(y)e

jωydy

)t
e−jωxdω

2π
. (4.7)
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Conversely, for any id distribution with pdf pid, it is possible to construct a Lévy process S
such that pS(1) = pid. Thus, there is a one-to-one correspondence between Lévy processes
and id distributions [131].

Among all id distributions, the pdf of the Gaussian distribution exhibits the fastest rate
of decay at infinity. In this sense, we refer to the non-Gaussian, heavier-tailed members
(e.g., Laplace, Bernoulli-Laplace, Student’s t, symmetric-alpha-stable) of the class of id
distributions as sparse [132]. Indeed, some of these sparse distributions have a mass at
the origin in their probability distribution (e.g., Bernoulli-Laplace) and some of them are
strongly compressible (e.g., Student’s t, symmetric-alpha-stable) [133].

The stochastic model of Lévy processes allows us to consider a variety of signals with
different types of sparsity. In our framework, we focus on the subclass of Lévy processes
associated with the Gaussian, Laplace, Bernoulli-Laplace and Student’s t distributions.
Some realizations of these processes are shown in Figure 4.1.

4.3.2 Discrete Stochastic Model

Now, we derive the pdf of the random vector S = (S(k))Kk=1, which contains uniform
samples of a Lévy process. Consider the stationary increment process U(t) = {S(t) −
S(t− 1) : t ∈ R+} whose first-order pdf pU is the same as pS(1) and so is infinitely divisible.
Its samples U = (U(k))Kk=1 can be expressed as

U = DS, (4.8)

where D is a finite-difference matrix of the form

D =


1 0 0 · · · 0

−1 1 0 · · · 0

0 −1 1 · · · 0
. . . . . .

0 0 · · · −1 1

 . (4.9)

Using (4.8) and the fact that the increments are independent, we obtain the pdf of the
discrete signal as

pS(s) =

K∏
k=1

pU

(
[Ds]k

)
. (4.10)

Note that (4.8) can also be written as

[S]k =
k∑

n=1

[U]n, k = 1, . . . ,K, (4.11)

57



Chapter 4 Sparse Stochastic Processes

which gives us a direct way to generate samples of Lévy processes.

4.3.3 Extensions

In this work, we have considered inverse problems involving 1D signals that are modelled
as realizations of Lévy processes with increments that follow the Gaussian, Laplace,
Bernoulli-Laplace and Student’s t distributions. Our framework can further be extended
in a straightforward manner to include the more general signal model of continuous-
domain first-order autoregressive processes [114, Chapter 7] driven by white noises
associated with the aforementioned distributions. These AR(1) processes yield a discrete
stochastic model that is similar to the one described in (4.10). There, the application of a
suitable transformation matrix to the random vector containing equidistant samples of the
process decouples it and generates a random vector (called the innovation or generalized
increments) with i.i.d. entries. Thus, the MMSE estimation methods presented in Section
4.4 can be readily adapted for such AR(1) processes.

We can also directly extend the proposed framework to handle multidimensional signals
for the particular stochastic model of continuous-domain AR Lévy sheets [134, Chapter
3], [114] associated with the Gaussian, Laplace, Bernoulli-Laplace and Student’s t dis-
tributions. These are higher-dimensional generalizations (based on separable whitening
operators) of the corresponding AR(1) processes and they result in desirable discrete
models of the form (4.10). Unfortunately, the random vectors constructed from samples of
other (“non-separable") higher-dimensional stochastic processes described in [114] cannot
be fully decoupled by applying a linear transformation. This makes the task of designing
schemes to evaluate their MMSE estimators very challenging. An alternate way of extend-
ing our framework could be to define a new class of continuous-domain multidimensional
stochastic models using the spline-operator-based framework of [135, 136]. However, this
approach would require substantial development of novel mathematical ideas and is thus
not discussed further in this work.

4.4 MMSE Estimators for Sparse Lévy Processes

So far, we have introduced the signal and measurement models that allow us to generate
our ground-truth signals and simulate their noisy measurements for a certain acquisition
setup. Next, we focus on the MMSE estimator for the reconstruction problem at hand,
which is to recover the signal s† from its measurements y†.

Let Y be the underlying random vector for the measurements that takes values in RM .
Since we have an AWGN model, using Bayes’ rule, (4.3) and (4.10), we can write the pdf
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of the posterior distribution of S|Y = y† as

pS|Y(s|y†) =
pY|S(y

†|s)pS(s)∫
RK pY|S(y†|s̃)pS(s̃)ds̃

∝ exp

(
− ∥y

† −Hs∥22
2σ2n

)
K∏
k=1

pU

(
[Ds]k

)
. (4.12)

The MMSE estimator is then given by

s∗MMSE(y
†) = argmin

s∈RK

(∫
RK

∥s̃− s∥22 pS|Y(s̃|y†)ds̃

)

=

∫
RK

s̃ pS|Y(s̃|y†)ds̃, (4.13)

which is the mean of the posterior distribution pS|Y(·|y†). For a fixed stochastic model,
the MMSE estimator is the optimal reconstructor in the MSE sense and thus serves as the
goldstandard in our benchmarking framework. In the Gaussian case, the MMSE estimator
is known to coincide with the MAP estimator and is straightforward to calculate [15, 137].
However, in the non-Gaussian case, we need to numerically evaluate the high-dimensional
integral in (4.13), which is computationally challenging.

In the remainder of this section, we present efficient methods to compute the MMSE
estimator for sparse Lévy processes with increments that follow the Laplace, Student’s t,
and Bernoulli-Laplace distributions, which constitutes a key contribution of this chapter.

4.4.1 Gibbs Sampling

In order to compute the integral in (4.13), one can generate samples {s†(q)}Qq=1 from the
posterior distribution pS|Y(·|y†) using an MCMC method and approximate s∗MMSE(y

†) by
the empirical mean s∗Q(y

†) = 1
Q

∑Q
q=1 s

†(q). In this work, we propose to use the MCMC
method called Gibbs sampling [138, 139] to first generate samples {u†(q)}Qq=1 from the
distribution pU|Y(·|y†). These can then be transformed in accordance with (4.11) to obtain
the desired samples {D−1u†(q)}Qq=1 from pS|Y(·|y†). We now give the gist of this algorithm.

Let X and Y be two random variables. Consider the task of generating samples from their
joint distribution pX,Y. Gibbs sampling is advantageous whenever it is computationally
difficult to sample from the joint distribution directly but the conditional distributions
pX|Y(·|y) and pY|X(·|x) are easy to sample from. The steps involved in this method are
presented in Algorithm 2. They yield a Markov chain whose stationary distribution is
indeed pX,Y [139]. In practice, one discards some of the initial samples (burn-in period) to
allow the chain to converge. Moreover, quantities (expectation integrals) based on the
marginal distributions pX and pY can be computed from the individual samples {x(q)}Qq=1
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Algorithm 2 Gibbs sampling
1: Input: Q (number of samples), B (burn-in period)
2: Initialization:

(
x̃(0), ỹ(0)

)
3: for q = 1, . . . , B +Q do
4: Generate x̃(q) according to pX|Y

(
· |ỹ(q−1)

)
5: Generate ỹ(q) according to pY|X

(
· |x̃(q)

)
6: end for

7: Output:
{(

x(q), y(q)
)}Q

q=1

=

{(
x̃(q+B), ỹ(q+B)

)}Q
q=1

and {y(q)}Qq=1, respectively.

Next, we present Gibbs sampling schemes for Lévy processes with Laplace, Student’s t,
and Bernoulli-Laplace increments. Our strategy is to introduce an auxiliary random vector
W and perform Gibbs sampling for the joint distribution pU,W|Y(·, ·|y†) [140, 141]. The
key is to choose W such that the conditional distributions pU|W,Y(·|·,y†) and pW|U,Y(·|·,y†)

can be sampled from in an efficient manner.

Hereafter, we assume that the noise variance σ2n and the parameters of the signal model
are known.

4.4.2 Laplace Increments

For Lévy processes with Laplace increments, we adapt the approach that was developed
in [142].

The pdf for the Laplace distribution is

pU(u) =
b

2
exp

(
− b|u|

)
, (4.14)

where b is the scale parameter. The density in (4.14) can be expressed as a scale mixture
of normal distributions [143], as

pU(u) =

∫
R
pU|W(u|w)pW(w)dw, (4.15)

where

pU|W(u|w) =
1√
2πw

exp

(
− u2

2w

)
(4.16)
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is the Gaussian pdf and

pW(w) =
b2

2
exp

(
− b2w

2

)
1+(w) (4.17)

is a mixing exponential pdf2 with λ = 2/b2. This property allows us to define an auxiliary
random vector W that takes values in RK with i.i.d. entries following the distribution pW
in (4.17), such that

pU|W(u|w) =
K∏
k=1

pU|W

(
[u]k|[w]k

)
, (4.18)

where u,w ∈ RK and pU|W is shown in (4.16).

By the chain rule of probability (or the general product rule), the full joint distribution
pY,U,W can be written as

pY,U,W(y,u,w) = pY|U,W(y|u,w)pU,W(u,w)

= pY|U(y|u)pU|W(u|w)pW(w), (4.19)

where y ∈ RM . Consequently, the distribution pU,W|Y takes the form

pU,W|Y(u,w|y) ∝ exp

(
− 1

2σ2n
∥y −Au∥22

)
×

K∏
k=1

[w]
− 1

2
k exp

(
− [u]2k

2[w]k

)

×
K∏
k=1

b2

2
exp

(
− b2[w]k

2

)
1+

(
[w]k

)
, (4.20)

where A := HD−1.

Based on (4.20), the conditional distribution pU|W,Y is then obtained as

pU|W,Y(u|w,y) ∝ exp

(
− 1

2

(
1

σ2n
∥y −Au∥22 + uTCL(w)u

))
, (4.21)

where CL(w) is a diagonal matrix with elements
(
[w]−1

k

)K
k=1

. Specifically, pU|W,Y(·|w,y)

is a multivariate Gaussian density with mean u = σ−2
n

(
σ−2
n ATA+CL(w)

)−1
ATy and

covariance matrix R =
(
σ−2
n ATA + CL(w)

)−1
. There exist several methods for the

efficient generation of samples from a multivariate Gaussian density [144–147].

2The pdf of the exponential distribution is

pexp(x) = (1/λ)e−x/λ
1+(x),

where λ > 0 is the scale parameter.
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The conditional distribution pW|U,Y is

pW|U,Y(w|u,y) ∝
K∏
k=1

pW|U,Y

(
[w]k|[u]k,y

)
, (4.22)

where

pW|U,Y

(
w|u,y

)
∝ exp

(
− 1

2

(
u2

w
+ b2w

))
× w− 1

21+(w) (4.23)

belongs to the family of generalized inverse Gaussian distributions3 with λ1 = b2, λ2 = u2

and a = 0.5. We can rely on the method proposed in [148] to draw samples from the pdf
in (4.23).

To conclude, with the help of the conditional distributions derived in (4.21) and (4.23),
we construct a blocked Gibbs sampler, where at at each iteration q, we generate u†(q)

according to pU|W,Y

(
· |w†(q−1),y†

)
and [w†(q)]k according to pW|U,Y

(
· |[u†(q)]k,y

†
)

for all
k ∈ {1, . . . ,K}. The collected samples {u†(q)}q follow the desired distribution pU|Y(·|y†).

4.4.3 Student’s t Increments

The case of Student’s t increments can be handled by adapting the method shown in
[149], which is in fact similar to the one we described for Laplace increments.

The Student’s t pdf is given by

pU(u) =
Γ(α+1

2 )

Γ
(
α
2

) 1
√
π(1 + u2)

α+1
2

, (4.24)

where α is the number of degrees of freedom and controls the tail of the distribution, and
where Γ denotes the gamma function. It can also be expressed as

pU(u) =

∫
R
pU|W(u|w)pW(w)dw, (4.25)

where

pU|W(u|w) =
√
w

2π
exp

(
− wu2

2

)
(4.26)

3The pdf of the generalized inverse Gaussian distribution is

pgig(x) =
(λ1/λ2)

a/2

2Ka(
√
λ1λ2)

xa−1e−(λ1x+λ2/x)/2
1+(x),

where Ka is the modified Bessel function of the second kind, λ1 > 0, λ2 > 0, and a ∈ R.
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is a Gaussian pdf and

pW(w) =
(0.5)

α
2

Γ(α2 )
w

α
2
−1 exp

(
− w

2

)
1+(w) (4.27)

is the pdf of a gamma4 distribution. Again, we introduce an auxiliary random vector W

that takes values in RK whose i.i.d. entries follow pW defined in (4.27). It is such that

pU|W(u|w) =
K∏
k=1

pU|W

(
[u]k|[w]k

)
, (4.28)

where u,w ∈ RK and pU|W is defined in (4.26).

Here, the distribution pU,W|Y is given by

pU,W|Y(u,w|y) ∝ exp

(
− 1

2σ2n
∥y −Au∥22

)
×

K∏
k=1

[w]
1
2
k exp

(
− [w]k[u]

2
k

2

)

×
K∏
k=1

[w]
α
2
−1

k exp

(
− [w]k

2

)
1+

(
[w]k

)
, (4.29)

where y ∈ RM and A := HD−1.

Now, the conditional distribution pU|W,Y turns out to be

pU|W,Y(u|w,y) ∝ exp

(
− 1

2

(
1

σ2n
∥y −Au∥22 + uTCT(w)u

))
, (4.30)

where CT(w) is a diagonal matrix with entries
(
[w]k

)K
k=1

. Similar to what we observed
in the Laplace case, pU|W,Y(·|w,y) is a multivariate Gaussian density with mean u =

σ−2
n

(
σ−2
n ATA+CT(w)

)−1
ATy and covariance matrix R =

(
σ−2
n ATA+CT(w)

)−1
.

The distribution pW|U,Y is again separable and takes the form

pW|U,Y(w|u,y) ∝
K∏
k=1

pW|U,Y

(
[w]k|[u]k,y

)
, (4.31)

4The pdf of the gamma distribution is

pgam(x) =
1

λλ1
2 Γ(λ1)

xλ1−1e−x/λ2
1+(x),

where λ1 > 0 and λ2 > 0 are the shape and scale parameters, respectively.
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where

pW|U,Y

(
w|u,y

)
∝ exp

(
− (1 + u)2w

2

)
× w

α−1
2 1+(w). (4.32)

is a gamma distribution with λ1 = α+1
2 and λ2 = 2

(1+u)2
, which can easily be sampled

from.

4.4.4 Bernoulli-Laplace Increments

In [150], Gibbs sampling schemes have been designed for a deconvolution problem where
the underlying signal is an i.i.d. spike train that follows the Bernoulli-Gaussian distribution.
Unfortunately, the Bernoulli-Gaussian distribution is not infinitely divisible and so is not
compatible with our framework of Lévy processes. While there exists some work [32]
on Bernoulli-Laplace priors, according to the analysis presented in [150], their proposed
sampler would have a tendency to get stuck in certain configurations. Thus, we build
upon the method in [150] and develop a novel Gibbs sampler for Lévy processes with
Bernoulli-Laplace increments.

The Bernoulli-Laplace pdf is

pU(u) = λδ(u) + (1− λ) b
2
exp

(
− b|u|

)
, (4.33)

where λ ∈ (0, 1) denotes the mass probability at the origin and b is a scale parameter.
We can represent this same density as

pU(u) =

∫
R

(
1∑
v=0

pU|V,W(u|v, w)pV(v)
)
pW(w)dw, (4.34)

where
pV(v) = (λ)1−v(1− λ)v for v ∈ {0, 1} (4.35)

is a Bernoulli distribution,

pW(w) =
b2

2
exp

(
− b2w

2

)
1+(w) (4.36)

is an exponential pdf, and pU|V,W is defined such that

pU|V,W(u|v = 0, w) = δ(u) (4.37)

pU|V,W(u|v = 1, w) =
1√
2πw

exp

(
− u2

2w

)
. (4.38)

Based on this representation, we introduce two independent auxiliary random vectors V
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and W that take values in RK . Their elements are i.i.d. and follow the distributions pV
and pW, as defined in (4.35) and (4.36), respectively. Further, these vectors satisfy

pU|V,W(u|v,w) =

K∏
k=1

pU|V,W

(
[u]k|[v]k, [w]k

)
, (4.39)

where u,v,w ∈ RK and pU|V,W is defined in (4.37) and (4.38).

Here, the full joint distribution pY,U,V,W is given by

pY,U,V,W(y,u,v,w) = pY|U,V,W(y|u,v,w)pU,V,W(u,v,w)

= pY|U(y|u)pU|V,W(u|v,w)pV(v)pW(w), (4.40)

where y ∈ RM . As a result, the distribution pU,V,W|Y takes the form

pU,V,W|Y(u,v,w|y) ∝ exp

(
− 1

2σ2n
∥y −Au∥22

)
×

K∏
k=1

pU|V,W

(
[u]k|[v]k, [w]k

)
×

K∏
k=1

λ1−[v]k(1− λ)[v]k ×
K∏
k=1

b2

2
exp

(
− b2[w]k

2

)
1+([w]k),

(4.41)

where A = HD−1.

Let us now introduce some notations. For any binary vector q ∈ RK , let Iq,0 and Iq,1
denote sets of indices such that [q]k = 0 for k ∈ Iq,0 and [q]k = 1 for k ∈ Iq,1. Further, let
A(q) be the matrix constructed by taking the columns of A corresponding to the indices
in Iq,1. We then define the matrix B(q, r) = σ2nI+A(q)CBL(q, r)A(q)T , where r ∈ RK is
a vector with positive entries and CBL(q, r) is a diagonal matrix with entries ([r]k)k∈Iq,1 .
Here, we also introduce the vector q(−k) ∈ RK−1 that contains all the entries of q except
the kth one, so that q(−k) = ([q]1, . . . , [q]k−1, [q]k+1, . . . , [q]K)T . Similarly, for a random
vector Q that takes values in RK , we have Q(−k) = ([Q]1, . . . , [Q]k−1, [Q]k+1, . . . , [Q]K)T .
Lastly, for q ∈ {0, 1}, we define the vector qq(−k) ∈ RK such that qq(−k) = ([q]1, . . . , [q]k−1, q

, [q]k+1, . . . , [q]K)T .

First, we look at the conditional distribution pU|V,W,Y. From (4.37) and (4.41), we deduce
that any sample from pU|V,W,Y(·|v,w,y) takes the value of zero at the indices in Iv,0. If
we define (U1|V = v,W = w,Y = y) = ([U|V = v,W = w,Y = y]k)k∈Iv,1 , then we get

pU1|V,W,Y(u1|v,w,y) ∝ exp

(
− 1

2

(
1

σ2n
∥y −A(v)u1∥22 + uT1 CBL(v,w)u1

))
, (4.42)

where u1 ∈ R|Iv,1|. Thus, pU1|V,W,Y is a multivariate Gaussian density with mean u1 =
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σ−2
n

(
σ−2
n A(v)TA(v)+CBL(v,w)

)−1
A(v)Ty and covariance matrix R =

(
σ−2
n A(v)TA(v)+

CBL(v,w)
)−1

.

The conditional distribution pW|U,V,Y takes the form

pW|U,V,Y(w|u,v,y) ∝
K∏
k=1

pW|U,V,Y

(
[w]k|[u]k, [v]k,y

)
, (4.43)

where pW|U,V,Y is given by

pW|U,V,Y(w|u, v = 0,y) ∝ b2

2
exp

(
− b2w

2

)
1+(w) (4.44)

pW|U,V,Y(w|u, v = 1,y) ∝ exp

(
− 1

2

(
u2

w
+ b2w

))
× w− 1

21+(w). (4.45)

The densities in (4.44) and (4.45) correspond to the exponential distribution with λ = 2/b2

and the generalized inverse Gaussian distribution with λ1 = b2, λ2 = u2, and a = 0.5.

Next, inspired by the work in [150], we consider sampling from the marginalized conditional
distribution of [V]k|V(−k) = v−(k),W = w,Y = y in a sequential manner as this can
allow for a more efficient exploration of configurations of V|Y = y. More specifically, at
each iteration q, we will draw [v(q)]k from the distribution p[V]k|V(−k),W,Y

(
v|v(q)

(−k),w
(q),y

)
,

where v
(q)
(−k) =

(
[v(q)]1, . . . , [v

(q)]k−1, [v
(q−1)]k+1, . . . , [v

(q−1)]K

)
and k ∈ {1, . . . ,K}.

The marginalized posterior distribution pV,W|Y is given by

pV,W|Y(v,w|y) ∝ pY|V,W(y|v,w)pV(v)pW(w), (4.46)

where
pY|V,W(y|v,w) =

∫
RK

pY|U,V,W(y|u,v,w)pU|V,W(u|v,w)du. (4.47)

It can be shown that (4.46) and (4.47) lead to

pV,W|Y(v,w|y) ∝ |B(v,w)|− 1
2 exp

(
− 1

2
yTB(v,w)−1y

)

×
K∏
k=1

λ1−[v]k(1− λ)[v]k ×
K∏
k=1

b2

2
exp

(
− b2[w]k

2

)
1+([w]k). (4.48)
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From (4.48), we see that p[V]k|V(−k),W,Y is a Bernoulli distribution with

p[V]k|V(−k),W,Y(v|v(−k),w,y) =

(
1 + exp

(
− 1

2

(
h
(
1− v;v(−k),w,y

)
− h
(
v;v(−k),w,y

))))−1

, (4.49)

where

h
(
v;v(−k),w,y

)
= yTB

(
vv(−k),w

)−1
y + log

(
|B
(
vv(−k),w

)
|
)
+ 2v log

(
λ

1− λ

)
.

(4.50)

To conclude, using the conditional distributions derived above, we construct a Gibbs sam-
pler, where in each iteration q, we generate w†(q) according to pW|U,V,Y

(
·|u†(q−1),v†(q−1),y†

)
,

[v†(q)]k according to p[V]k|V(−k),W,Y

(
· |v†(q)

(−k),w
†(q),y†

)
for all k ∈ {1, . . . ,K} and u†(q) ac-

cording to pU|V,W,Y

(
· |v†(q),w†(q),y†

)
. This particular order of updates is important as it

yields a partially collapsed Gibbs sampler [151] where the stationary distribution is still
pU,V,W|Y(·, ·, ·|y†).

4.5 Numerical Experiments

In our experiments, we benchmark the performance of some popular signal reconstruction
schemes, including a CNN-based method, on deconvolution and Fourier sampling problems
with Lévy processes associated with the Bernoulli-Laplace and Student’s t distributions.

4.5.1 Signal Models

We consider a signal vector s† ∈ R100 that contains samples of a Lévy process whose
increments follow the Bernoulli-Laplace or Student’s t distribution.

Bernoulli-Laplace increments

The Bernoulli-Laplace pdf (4.33) is characterized by the parameters λ and b, where λ
determines the mass probability at the origin and b represents the scale of the Laplace
component. We perform experiments for models corresponding to λ ∈ {0.6, 0.7, 0.8, 0.9}.
The scale parameter is set to b = 1 for each case.
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Student’t t increments

The Student’s t pdf (4.24) is parameterized by α, which controls the tails of the distribution.
We conduct experiments for α ∈ {1, 3, 5, 39}.

4.5.2 Measurement Models

We consider both deconvolution and Fourier sampling problems for each of the above-
described signal models.

Deconvolution

As shown in Section 4.2.3, the system matrix H for deconvolution is a discrete convolution
matrix. Accordingly, we construct H : R100 → R88 such that

H =


[h]13 · · · [h]1 0 · · · 0

0
. . . . . . . . .

...
...

. . . . . . . . . 0

0 · · · 0 [h]13 · · · [h]1

 , (4.51)

where h ∈ R13 consists of the central samples of a truncated Gaussian PSF with variance
σ20 = 4.

Fourier Sampling

For Fourier sampling in 1D, which is reminiscent of MRI, the forward model H resembles a
discrete Fourier matrix (see Section 4.2.4). Thus, in order to construct H, we first sample
M ′ = 16 rows of the DFT matrix. The first row of the DFT matrix (DC component) is
always kept, while the remaining ones are selected in a quasi-random fashion with a denser
sampling at low frequencies. We then create the real system matrix H : R100 → RM ,
where M = 2M ′ − 1, by separating the real and imaginary parts.

In both measurement models, the AWGN variance σ2n is chosen such that the (average)
measurement SNR is around 30 dB.

4.5.3 Reconstruction Algorithms

For each combination of the signal and measurement models, we compare the performance
of some classical MPL estimators, a CNN-based scheme and the MMSE estimator. We
generate validation and test datasets, each consisting of 1,000 pairs of ground-truth signals
and their noisy measurements. Further, in order to train the CNNs, we also synthesize a
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repository T containing a large number of training examples.

Classical methods

We consider the MPL estimators

s∗ℓ2(y
†) = arg min

s∈RK

(
∥y† −Hs∥22 + τ∥Ds∥22

)
, (4.52)

s∗ℓ1(y
†) = arg min

s∈RK

(
∥y† −Hs∥22 + τ∥Ds∥1

)
, (4.53)

and

s∗log(y
†) = arg min

s∈RK

(
∥y† −Hs∥22 + τ

K∑
k=1

log

(
1 +

(
[Ds]k

)2))
, (4.54)

where τ ∈ R+. For each of these methods, the same regularization parameter τ is used
for the entire test dataset. This particular value of τ is the one that yields the lowest
MSE for the validation dataset.

These estimators are implemented in MATLAB using GlobalBioIm [123]—a library for
solving inverse problems. Specifically, the ℓ2 estimator is expressed in closed-form as

s∗ℓ2(y
†) =

(
HTH+ τDTD

)−1
HTy†. (4.55)

The ℓ1 and log estimators are computed iteratively using ADMM. Since the cost functional
in (4.54) is non-convex, we initialize ADMM for computing the log estimate with the ℓ1
estimate so that it can reach a better local minimum.

CNN-based method

The concept here is to train a CNN as a regressor that maps an initial low-quality
reconstruction s∗init(y

†) to a high-quality one [41–43, 152, 153]. The architecture of the
CNN used in our experiments is based on the well-known denoising network DnCNN
[154] and is described in Figure 4.2 and Table 4.1.

First, we build a training dataset of cardinality MT by taking the first MT examples
{s†m,y†

m}MT
m=1 from the repository T . We then train the model by minimizing the MSE

loss function

L(θ) = 1

MT

MT∑
m=1

∥∥∥s†m − CNNθ

(
s∗init(y

†
m)
)∥∥∥2

2
, (4.56)

where θ represents the learnable parameters of the network, with the help of the ADAM
optimizer [155]. The CNN is trained for 1,000 epochs with a batch size of 256 and a weight
decay of γ. The initial learning rate is set as 10−2. For some duration of the training (first
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Figure 4.2: Architecture of the CNN, where BN denotes the operation of batch normal-
ization.

Table 4.1: Convolution Layers.

Layer Filter size Input channels Output channels

1 (F × 1) 1 C

2 ∼ (L− 1) (F × 1) C C

L (F × 1) C 1

600 epochs for deconvolution and first 750 epochs for Fourier sampling), it is decreased
by a factor of 0.5 every 50 epochs. We choose the initial low-quality reconstruction to
be s∗init(y

†) = HTy† for the deconvolution problems. In the case of Fourier sampling,
s∗init(y

†) is the zero-filled reconstruction. All the CNN-based reconstruction schemes are
implemented in PyTorch.

Goldstandard (MMSE estimator)

Our MMSE estimators are implemented in MATLAB, according to the methods detailed
in Section 4.4. There, we set the number of samples as Q = 8,000 and the burn-in period
as B = 3,000 for signals with Bernoulli-Laplace increments. We use Q = 15,000 and
B = 5,000 for signals associated with the Student’s t distribution.

4.5.4 Results

We present our results for all the test datasets in Figures 4.3, 4.4, 4.6 and 4.5. For the
sake of clarity, instead of the MSE, we display the “MSE optimality gap" which is the
difference between the MSE obtained by a specific method and the MSE attained by the
MMSE estimator. In these figures, the CNNs are labelled using the tuple (F,C, L,MT , γ),
where F is the filter size, C is the number of channels, L is the number of layers, MT
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Figure 4.3: Deconvolution of Lévy processes with Bernoulli-Laplace increments.

is the cardinality of the training dataset and γ is the weight decay. For the interested
reader, we also provide information about the computation times required by all the
methods in the supplementary material.

Lévy processes with Bernoulli-Laplace increments

Here, we summarize our observations for both the deconvolution and Fourier sampling
experiments (Figures 4.3 and 4.4).

The sparsity-promoting ℓ1 estimator, which corresponds to the popular TV regularization,
is known to be well-suited to piecewise-constant Lévy processes with Bernoulli-Laplace
increments. As the value of λ increases, these signals become sparser and exhibit fewer
jumps. Consequently, we observe that the ℓ1 estimator performs better than the ℓ2
estimator. The log estimator also promotes sparse solutions [29] and we see that it
performs well for these piecewise-constant signals. However, despite the good fit, there is
still some gap between the MSE attained by the ℓ1 and log, and MMSE estimators.

The performance of the CNN-based method improves as we increase the capacity of the
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Figure 4.4: Fourier sampling of Lévy processes with Bernoulli-Laplace increments.

CNN and the amount of training data. In fact, with sufficient capacity and training data,
they outperform the ℓ1 and log estimators. Remarkably, some of the CNNs achieve a
near-optimal MSE.

Lévy processes with Student’s t increments

The parameter α allows us to consider a wide range of signals. As α→∞, we approach
the Gaussian regime. The other extreme is α = 1, which corresponds to the super heavy-
tailed (sparse) Cauchy distribution. This scenario can be particularly challenging for the
correct setting of algorithm parameters. Due to the heavy tails of the Cauchy distribution,
the validation and test datasets may contain signals with a vastly different range of values.
Consequently, for a given model-based method, the regularization parameter τ that is
chosen to yield the lowest MSE for the validation dataset may differ significantly from
the value τ∗ that achieves the lowest MSE on the test dataset. Thus, in Figures 4.6 and
4.5, we also include the performance of model-based methods when their regularization
parameter is tuned for optimal MSE performance on the test dataset directly. These
“boosted" model-based methods are labelled as ℓ∗2, ℓ∗1 and log∗.
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In Figures 4.6 and 4.5, we can see that the ℓ2 estimator is optimal for a large value of α.
As the value of α decreases, the performance of the ℓ2 estimator deteriorates and becomes
worse than that of the ℓ1 estimator. For all the cases, the log estimator attains reasonable
MSE values. Note that for the deconvolution experiment involving Cauchy signals, there
is a significant gap between the MSE values obtained by the ℓ2 and ℓ1 and ℓ∗2 and ℓ∗1
estimators, respectively. Interestingly, the log estimator is less affected by this issue.

Finally, for both deconvolution and Fourier sampling problems, CNNs with sufficient
capacity and training data perform well up to α = 3, after which there seems to be a
steep transition and their performance drops sharply. In fact, for Cauchy signals, we
observe that the training process for these CNNs is quite unstable—the training loss
marginally decreases and seems to converge, and the networks do not generalize to the
validation (or test) datasets. We believe that this last example poses an open challenge for
designing robust neural-network-based schemes that can handle signals following (super)
heavy-tailed distributions.

4.6 Summary

We have introduced a controlled environment, based on sparse stochastic processes (SSPs),
for the objective benchmarking of reconstruction algorithms, including NN-based methods
that require lots of training data, in the context of linear inverse problems. We have
developed efficient posterior sampling schemes to compute the minimum-mean-square-
error estimators for specific classes of SSPs. These yield the upper limit on reconstruction
performance and allow us to provide a measure of statistical optimality. We have
highlighted the abilities of our framework by benchmarking some popular classical MPL
estimators and convolutional neural-network (CNN) architectures for deconvolution and
Fourier-sampling problems. In particular, we have observed that, while CNNs outperform
the sparsity-based MPL estimators and achieve a near-optimal performance in terms of
mean-square error for a wide range of conditions, they can sometimes fail too, especially
for signals with heavy-tailed innovations.
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Figure 4.5: Fourier sampling of Lévy processes with Student’s t increments. The figure
at the bottom is a zoomed-in version of the dotted rectangular box shown in the figure at
the top.
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Figure 4.6: Deconvolution of Lévy processes with Student’s t increments. The figure at
the bottom is a zoomed-in version of the dotted rectangular box shown in the figure at
the top.
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5 Convergent Iterative Image-
Reconstruction Methods

1In this chapter, we focus on the development of universal neural-network-based approaches
within the penalized-likelihood-based estimation paradigm for solving linear inverse
problems in imaging. Here, we first present an efficient module for learning continuous
piecewise-linear activation functions in neural networks (Section 5.1). We then deploy
this module to train 1-Lipschitz denoising convolutional neural networks (Section 5.2) and
learnable convex regularizers (Section 5.3), both of which can be used to design provably
convergent iterative image-reconstruction methods.

5.1 Learning Activation Functions in Neural Networks

2In this section, we present an efficient computational solution for learning component-wise
activation functions in neural networks.

5.1.1 Introduction

During the past decade, deep neural networks (DNNs) have evolved into a major player
for machine learning. They have been found to outperform the traditional techniques of
statistical learning [160] (e.g., kernel methods, support-vector machines, random forests)
in many real-world applications that include image classification [161], speech recognition
[162], image segmentation [163], and medical imaging [41].

The basic principle behind DNNs is to construct powerful learning architectures via
the composition of simple basic modules; that is, linear (or affine) transformations and
pointwise nonlinearities [40]. The qualifier “deep” refers to the depth (or number of
layers) of such a composition which is typically much larger than one. Formally, a typical
feedfoward DNN is a map fθ : RN0 → RNL that admits a factorized representation of the

1This chapter is based on our works [156–159].
2This section is based on our work [156].
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form

fθ(x) : AL ◦ · · · ◦ σℓ ◦Aℓ ◦ · · · ◦ σ1 ◦A1(x), (5.1)

where L is the depth of the neural net and θ is a list of parameters that collects all
adjustable quantities. Specifically, a given layer ℓ of the network is characterized by

1. a linear transformation RNℓ−1 → RNℓ : x 7→ Aℓ(x) = Wℓx, where Wℓ ∈ RNℓ×Nℓ−1

is a matrix of weights, and

2. the pointwise responses of its neurons

σℓ(x) =
(
σℓ,1(x1), · · · , σℓ,Nℓ

(xNℓ
)
)
,

where the scalar map σℓ,n : R→ R is the activation function of the neuron indexed
by (ℓ, n).

In essence, Wℓ encodes the strength of the neural connections from the previous layer,
while σℓ represents the (parallel) responses of theNℓ neurons at layer ℓ. In the conventional
setup, the response of the individual neurons is fixed and takes the form

σℓ,n(x) = σ(x− bℓ,n), (5.2)

where σ : R → R is a common activation function—typically, a sigmoid or a rectified
linear unit (ReLU)—and bℓ,n ∈ R is an adjustable bias [39]. In summary, the parameters
θ associated with the DNN in (5.1) are composed of the linear weights of Wℓ and the
biases bℓ ∈ RNℓ , ℓ = 1, . . . , L.

The topic of this work deviates from the standard paradigm in the sense that it explores
the option of adapting the responses of the individual neurons in an attempt to further
improve the performance of such systems. In other words, instead of assigning a single
bias parameter to each neuron as in (5.2), we investigate the possibility of redesigning
or adjusting the activation functions σℓ,n : R→ R on a neuron-by-neuron basis. While
the typical way in which this can be achieved is via the introduction of a suitable
parametrization, which may be linear or nonlinear, we will see that one can also formulate
the problem in a functional framework with the help of a suitable regularization [164].
At any rate, the main point is that this augmented form of training results in a more
difficult optimization problem and that it calls for more powerful algorithms.

The purpose of this work is to unify the parametric and functional approaches by
representing the neural activation functions in terms of B-spline basis functions. This is
possible as long as we restrict ourselves to the class of deep spline neural networks3, which

3The denomination “deep spline neural network” refers to a DNN whose activation functions are linear
splines, which includes ReLUs.
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cover the complete family of continuous piecewise-linear (CPWL) mappings [165–167].
Our approach builds on the intimate connection between ReLU networks and splines,
which has been observed by a number of authors [164, 168–171]. The spline interpretation
is actually present at two levels: (i) the fact that such DNNs are describable as hierarchical
splines and (ii) the property that the global response is CPWL, which allows one to
interpret them as piecewise perceptrons [169]. While the local linear (perceptron-like)
behavior of deep spline networks is both reassuring and enlightening, the part that is
less obvious is the global continuity of the response, which ensures that the linear pieces
(facets of polytopes) are seamlessly joined together.

The section is organized as follows: We start with a review of prior work on neural design
in Section 5.1.2. In Section 5.1.3, we explain the main theoretical results on deep spline
networks; namely, the CPWL property and the fact that they are optimal with respect to
TV(2) regularization. We then introduce our parametrization and optimization framework
in Section 5.1.4 and present experimental results in Section 5.1.5.

5.1.2 Prior Work

We now briefly review the prior works on the design of neural activation functions, which
can be broadly classified into three categories.

Inspiration from Neurophysiology

The traditional activation function for neural networks inspired by neurophysiology is
a saturating sigmoid whose sharpness can be tuned for best performance [172]. Since
splines have the ability to encode arbitrary functions, they can be used to generate
a much richer variety of activation functions, which can then be optimized for best
performance. Relevant examples of parametric activation function models for traditional
neural networks include B-spline receptive fields [173], Catmull-Rom cubic splines [174,
175], and smooth piecewise polynomials [176].

Link with Iterative Soft-Thresholding Algorithms

One can make an interesting connection between neural networks and sparse-encoding
techniques [20, 177] by considering the unrolled version of an iterative soft-thresholding
algorithm (ISTA) [44, 178]. This connection suggests that the activation function fulfills
the role of the nonlinearity in classical ISTA [21, 179]. Incidentally, the canonical
nonlinearity associated with ℓ1 minimization is an antisymmetric linear spline, which
can be expressed as a linear combination of two ReLUs. In recent years, researchers
have considered more general parametric nonlinearities whose weights are learned during
training. Such models involve linear combinations of Gaussian radial-basis functions [45]
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and cubic B-splines [180, 181].

ReLU Variations

While many (fixed) activation functions σ in (5.2) have been considered in the literature,
the preferred choice that has emerged over the years is the rectified linear unit ReLU(x) =

(x)+ ≜ max(0, x) [182]. In particular, it has been observed that ReLUs facilitate training
[39]. Two ReLU variants, by order of improving performance, are “leaky ReLU” [183], in
which the vanishing part of the response is replaced by one with a fixed nonzero linear
slope, and “parametric ReLU” (PReLU) [184], where the linear slope is learnable. Also
related to ReLU is Agostinelli et al.’s model of adaptive piecewise-linear (APL) units
[185]. It results in an activation function that is a linear spline with a small fixed number
of knots and has been found to outperform plain ReLU activation functions. Another
instance is [186], where piecewise-linear units with learnable parameters are used as
activation functions.

5.1.3 Theoretical Justification of Spline Activation Functions

Many of the state-of-the-art DNNs rely on ReLU activation functions or some variant
thereof. Beside the issue of practical efficiency, a key feature of ReLU networks is that
they result in a global continuous and piecewise-linear (CPWL) input-output relation.
This is a fundamental property that generalizes to a wider class of spline activation
functions and that also ensures that deep ReLU networks have universal approximation
properties [187–189].

Deep Neural Nets as High-Dimensional Splines

A polynomial spline of degree 1 is a one-dimensional function that is continuous and
piecewise-linear. In fact, the simplest nontrivial example of polynomial spline of degree 1
is x 7→ (x− bk)+ = ReLU(x− bk), which is made up of two linear pieces separated by a
single knot at bk. The concept is generalizable to higher dimensions [190, 191].

Definition 5.1 (CPWL function). A function f : RN0 → R is continuous piecewise-linear
if

1. it is continuous RN0 → R;

2. its domain RN0 =
⋃K
k=1 Pk can be partitioned into a finite set of non-overlapping

polytopes Pk over which it is affine.

Likewise, a vector-valued function f = (f1, . . . , fN ) : RN0 → RN is CPWL if each of the
component functions fn is CPWL.
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What is truly remarkable with CPWL functions is that they remain CPWL through the
operations that typically occur in a deep neural network [166, 167]. Specifically,

1. any linear combination of CPWL functions is CPWL;

2. the composition of any two CPWL functions is CPWL;

3. the max or min of two CPWL functions is CPWL.

Since the functions Aℓ in (5.1) are trivially CPWL, the resulting DNN is CPWL whenever
the pointwise nonlinearities σℓ are CPWL, for instance when they are piecewice-linear
splines, which is indeed the case for deep ReLU networks. It is therefore perfectly
legitimate to interpret deep ReLU networks—and, by extension, deep spline networks—as
multidimensional splines of polynomial degree 1.

Variational Optimality of Deep Spline Networks

Lesser known is the property that the CPWL behavior can also be enforced indirectly
through the use of an appropriate regularization [164]. To that end, one simply augments
the cost functional that is used to train the network by an additive second-order total-
variation regularization term for each adjustable activation function.

In our framework, we consider deep neural networks fdeep : RN0 → RNL composed of L
layers with the generic feedforward architecture described by (5.1).

The linear transformation in layer ℓ, represented by the matrix Wℓ : RNℓ−1 → RNℓ , is
associated with some free (adjustable) parameters ϕℓ ∈ RNlin,ℓ . In order to specify the
latter, one has to distinguish between two configurations. When the layer is fully connected,
ϕℓ is the vectorized version of Wℓ, which amounts to a total of Nlin,ℓ = Nℓ−1×Nℓ tunable
weights. The other important configuration is that of a convolutional layer where ϕℓ
contains much fewer convolution filter weights than Nℓ−1 × Nℓ. Similarly, to share
nonlinearities across neurons, we specify each nonlinear mapping σℓ : RNℓ → RNℓ by
the vector gℓ = (gℓ,1, . . . , gℓ,Nnonlin,ℓ

) of adjustable activation functions gℓ,n : R → R,
where Nnonlin,ℓ ∈ N denotes the number of unique activation functions used in layer ℓ.
For example, in a fully connected layer, it can be advantageous to use an independent
activation function for each neuron. In this case, Nnonlin,ℓ = Nℓ and gℓ,n = σℓ,n. By
contrast, for convolutional layers, it is natural to use a single activation function per
feature map, so that Nnonlin,ℓ will typically match the number of channels. When the
same nonlinearity is shared across all channels, one has that Nnonlin,ℓ = 1.

With this extended notation, given a dataset {(xm,ym)}Mm=1, the training of the network
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is formulated as the functional optimization problem

min
ϕℓ∈RNlin,ℓ

gℓ∈BV(2)(R)Nnonlin,ℓ

M∑
m=1

E(fdeep(xm),ym) +

L∑
ℓ=1

µℓ∥ϕℓ∥22 +
L−1∑
ℓ=1

λℓTV
(2)(gℓ), (5.3)

where E : RNL × RNL → R+ is an arbitrary proper convex function and TV(2)(g) =

TV(2)(g1, . . . , gN ) =
∑N

n=1TV
(2)(gn), where

TV(2)(gn) =
∥∥∥D2gn

∥∥∥
M

≜ sup
φ∈S(R): ∥φ∥∞≤1

⟨gn,
d2φ

dx2
⟩ (5.4)

is the second-order total variation of the component function gn : R→ R. Let us remark
that the two first terms in (5.3) are the standard criteria used to train deep neural
networks. The first (data loss) quantifies the goodness of fit, while the second (the
so-called weight decay) favors solutions with a smaller amplitude of the linear weights
ϕℓ. The novel element here is the additional optimization over the individual neuronal
activation functions gℓ, which is made possible because of the inclusion of the third
term: the sum of the second-order total variations of the trainable nonlinearities. Since
this regularization only penalizes the second derivative of the activation function, it
favors simple solutions—preferably linear or with “sparse” second derivatives—while
ensuring that the activations be differentiable almost everywhere, which is essential for
the backpropagation algorithm. For further explanation on the regularization functional
TV(2) and the definition of the search space BV(2)(R), we refer to Appendix 5.4.1.

Unser’s representer theorem for DNNs states that (5.3) admits a global minimizer (deep
spline network) with neuronal activation functions of form

x 7→ gℓ,n(x) = b0,ℓ,n + b1,ℓ,nx+

Kℓ,n∑
k=1

ak,ℓ,n(x− τk,ℓ,n)+ (5.5)

with Kℓ,n ≤ (M − 2) and TV(2)(gℓ,n) =
∑Kℓ,n

k=1 |ak,ℓ,n| = ∥aℓ,n∥1. Thus, the optimal
activation functions are adaptive piecewise-linear splines. Specifically, every nonlinearity
has a parametric description that is given by (5.5). It is characterized by its number
K = Kℓ,n of knots, the knot locations τ1, . . . , τK , and the linear weights b ∈ R2, a ∈ RK ,
where we have dropped the network indices (ℓ, n) for simplicity. While Characterization
(5.5) is elegant, it does not tell one how to determine the underlying parameters. We
thus now face a more challenging optimization problem. The main complication is the
allocation of knots—the determination of Kℓ,n and the locations τk,ℓ,n on a neuron-by-
neuron basis—which is now also part of the problem.

Let us mention that we can also handle the case where the nonlinear mapping is shared
across the layers, so that σ1 = · · · = σL = σ and σ is specified by a vector g =
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(g1, . . . , gNnonlin
) of adjustable scalar maps. Here, the training problem is formulated as

min
ϕℓ∈RNlin,ℓ

g∈BV(2)(R)Nnonlin

M∑
m=1

E(fdeep(xm),ym) + λTV(2)(g) +
L∑
ℓ=1

µℓ∥ϕℓ∥22. (5.6)

By adapting Unser’s representer theorem, we can show that the optimal shared activation
functions have the same form as in (5.5).

Remarkably, the parametric form that results from the functional minimization of (5.3)
is compatible with the model proposed by Agostinelli et al. [185]. They represent the
activation functions as gℓ,n(x) = hℓ,n(x− bℓ,n), where hℓ,n is an APL unit of the form

x 7→ hℓ,n(x) = (x)+ +
K∑
k=1

ak,ℓ,n(−x+ τk,ℓ,n)+. (5.7)

Here, the number K of knots is fixed beforehand; the bias bℓ,n, weights ak,ℓ,n, and knot
locations τk,ℓ,n are learnable parameters. While (5.7) bears a close resemblance to (5.5),
there are a few key differences that we highlight here.

1. The justification of APL units in [185] is empirical while the spline parametrization
of (5.5) is based on a global functional optimization.

2. The APL units involve a fixed ReLU positioned at 0, and so, unlike (5.5), they
cannot reproduce all affine functions of the form b0 + b1x.

3. The number of spline knots in APL units is fixed (and is the same for all neurons),
whereas it is adaptive in our approach. In fact, the determination of Kℓ,n is part of
the optimization problem that we consider.

4. The ReLU weights of the APL units are either not constrained, or slightly regularized
through some empirical ℓ2-norm weight decay. By contrast, in our approach, the
theory dictates the use of a sparsity-promoting ℓ1-regularization. In fact, as we
shall see in Section 5.1.4, the ℓ1-norm regularization is of great practical significance
as it allows us to control Kℓ,n by removing unnecessary knots.

5.1.4 Optimization of Activation Functions

Convex Proxy for Shallow Networks

The major difficulty in optimizing the DNN with respect to the spline parameters in
(5.5) is that the number K = Kℓ,n of knots is unknown and that the activation model is
nonlinear with respect to the knot locations τk = τk,ℓ,n. Our workaround is to place a
fixed but highly redundant set of knots on a uniform grid with a step size T . We then
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Figure 5.1: Decomposition of a deep spline activation function (solid line) in terms of
B-spline basis functions (dashed lines), as expressed by (5.9) with T = 1. The basis is
composed of (K − 2) triangular functions, which are compactly supported and shifted
replicates of each other, plus 4 one-sided outside functions. The key property is that the
evaluation of σ(x) for any fixed x ∈ R involves no more than two basis functions.

rely on the sparsifying effect of ℓ1-minimization to nullify the coefficients of a = (ak) that
are not needed. This amounts to representing the spline activation functions by

σ(x) = b0 + b1x+

kmax∑
k=kmin

ak(x− kT )+, (5.8)

with TV(2)(σ) = ∥a∥1. The consideration of the linear model (5.8), thereafter referred to
as “gridded ReLU,” gives rise to a classical ℓ1-optimization problem that can be handled
by most neural-network software frameworks. In the case of a shallow network with L = 1,
it even results in a convex problem that is reminiscent of the LASSO [192]. We also note
that (5.8) can be made arbitrarily close to (5.5) by taking T sufficiently small. While the
solution a is expected to be sparse, with few active knots, the downside of the approach
is that the underlying representation is cumbersome and badly conditioned due to the
exploding behavior of the basis functions (· − kT )+ at infinity.

From ReLUs to B-Splines

While the direct connection with ℓ1-minimization in (5.8) is very attractive, the less
favorable aspect of the model is that its computational cost is proportional to the
underlying number of ReLUs (or spline knots); that is, K = (kmax − kmin + 1), which can
be arbitrarily large depending on the value of T . Here, we propose a way to bypass this
limitation by switching to another equivalent but maximally localized basis: the B-splines.
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Our model takes the form

σ(x) =

kmax+1∑
k=kmin−1

ckφk

( x
T

)
, (5.9)

which involves triangular-shaped basis functions that are rescaled versions of B-splines
defined on an integer grid. As illustrated in Figure 1, the central bases for k = (kmin + 1)

to (kmax − 1) are shifted replicates of the compactly supported linear B-spline

φk(x) = β1(x− k), for kmin < k < kmax, (5.10)

where

β1(x) = (x+ 1)+ − 2(x)+ + (x− 1)+ =

{
1− |x|, x ∈ [−1, 1]
0, otherwise.

(5.11)

The four remaining boundary basis functions are one-sided splines that allow the activation
function defined in (5.9) to exhibit a linear behavior at both ends, for x < kminT as well
as for x > kmaxT . Specifically, we have that

φkmin−1(x) = (−x+ kmin)+ =

{
kmin − x, x < kmin

0, otherwise
(5.12)

φkmin
(x) = (−x+ kmin + 1)+ − (−x+ kmin)+

=


1, x ≤ kmin

1− (x− kmin), x ∈ (kmin, kmin + 1)

0, x ≥ kmin + 1

(5.13)

φkmax(x) = (x− kmax + 1)+ − (x− kmax)+

=


0, x ≤ kmax − 1

x− kmax + 1, x ∈ (kmax − 1, kmax)

1, x ≥ kmax

(5.14)

φkmax+1(x) = (x− kmax)+ =

{
0, x ≤ kmax

x− kmax, x > kmax.
(5.15)

The B-spline model defined in (5.9) has the same knots as those of the gridded ReLU
representation given by (5.8). It also has the same number of degrees of freedom; namely,
K + 2 = (kmax + 1) − (kmin − 1) + 1. By using the property that the φk can all be
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expanded in terms of integer shifts of ReLUs (see the central term of (5.10)-(5.15)), we
can show that the two sets of basis functions span the same subspace. In doing so, we
obtain a formula for the retrieval of the ak and, hence, the TV(2)(σ)—in terms of the
second-order difference of the ck (see Appendix 5.4.2). While the gridded ReLU and
B-spline models (5.8) and (5.9) are mathematically equivalent, the advantage of (5.9) is
that there are at most two active basis functions at any given point x = x0, independently
of the step size T . This has important implications for the efficiency and scalability of
both the evaluation of the DNN at a given point xm and the computation of its gradient
with respect to ck (as opposed to ak in the equivalent ReLU representation). Details of
our implementation of the B-spline model are given in Appendix 5.4.2.

5.1.5 Experimental Results

In this section, we illustrate the capabilities of the proposed learning framework. Our main
intent is to assess the benefit of optimizing the activation functions and to demonstrate
the following claims:

1. The use of learned activation functions tends to improve the testing performance.

2. More complex activation functions can allow for simpler/smaller networks.

3. Learning with gridded ReLUs yields good performance for small values of K.
However, the time and memory required for learning explodes as K grows.

4. The B-spline configuration is easy to train and is scalable in time and memory as K
grows. Hence, it has the ability to learn more complex activation functions, which
then typically also translates into better performance.

Further, we investigate the effect of the regularization parameter λ on the number of
active knots in the learned spline activation functions and the performance of the neural
network.

We consider both classification and signal-recovery (deconvolution) problems to highlight
the versatility of our approach. The code (in PyTorch) is available on GitHub4.

Classification

1. Area Classification
First, we discuss a simple two-class classification example with input dimension N0 = 2.
It allows us to obtain a better understanding of our learning scheme and to illustrate our
claims visually.

4https://github.com/joaquimcampos/DeepSplines
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Figure 5.2: Ground truth and training dataset.

Setup
The task is to classify points in the two-dimensional space [−1, 1]× [−1, 1] as lying inside
or outside an S shape (see Figure 5.2a). Mathematically, this region is represented by
the binary function f : [−1, 1]× [−1, 1] 7→ {0, 1} given by

f(x1, x2) =

{
1, |x1 − g(x2)| ≤ 0.3 and |x2| < 0.8,

0, otherwise,
(5.16)

where g(x) = 0.4 sin(−5x). We generate training and validation datasets with M = 1,500

data points each. The coordinates xm = (x1,m, x2,m) of the data points are sampled from
a uniform distribution on [−1, 1]× [−1, 1] and the labels ym are assigned according to
(5.16). The training dataset is shown in Figure 5.2b.

We tackle this problem using a fully connected network with Nh hidden layers, which
takes a 2D input x = (x1, x2) and outputs a real value f̂(x) ∈ [0, 1]. The number of
neurons in each hidden layer is W ; thus, the layer descriptor (N0, . . . , NL) of the network
is of the form (2,W, . . . ,W, 1). In the B-spline network, spline activation functions with
K = 19 knots on a grid of size T = 0.1 are used as nonlinearities after each linear step,
except the final one which involves a fixed sigmoid activation function. In the adaptive
piecewise-linear unit (APLU) network, the nonlinearities take the form (5.7) with the
number of adjustable knots set to K = 19. We compare the performance of our, ReLU,
PReLU, and APLU networks on a test dataset that consists of 40,000 points that lie on a
2D grid of width 0.01× 0.01 in [−1, 1]× [−1, 1]. To evaluate the performance of these
networks on a dataset, the output values f̂ are quantized into predictions

f̂pred(x) =

{
1, f̂(x) > 0.5

0, otherwise.
(5.17)
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The classification accuracy is computed as

accuracy (%) =
# correct predictions
# total predictions

× 100. (5.18)

The binary cross-entropy loss is given by

L(θ) = 1

M

M∑
m=1

(
(−ym) log(f̂(xm))− (1− ym) log(1− f̂(xm))

)
, (5.19)

where θ represents the parameters of the network. This loss is chosen for the training
process. In all the networks, the weights are initialized using Xavier’s initialization [193].
For the B-spline network, half of the spline activation functions are initialized with σabs

and the other half with σsoft, where

σabs(x) =

{
−x, x < 0

x, x ≥ 0
(5.20)

σsoft(x) =


x+ 1

2 , x ≤ −1
2

0, x ∈ (−1
2 ,

1
2)

x− 1
2 , x ≥ 1

2 .

(5.21)

This initialization is based on the fact that any function can be represented as the
sum of an even and an odd function. In the APLU network, the ReLU weights ak,ℓ,n
and knot locations τk,ℓ,n are initialized by randomly sampling them from zero-mean
Gaussian distributions with standard deviations 0.1 and 1, respectively. The loss function
is minimized over a total of 500 epochs using the ADAM optimizer [194]. The initial
learning rate, set to 10−3, is decreased by a factor of 10 at the epochs 440 and 480. A
small batch size of 10 is helpful to avoid local minima.

Comparison with ReLU, PReLU, and APLU Networks
We compare in Figure 5.3 and Table 5.1 the performance of the ReLU, PReLU, B-spline,
and APLU networks for three different architectures. For the B-spline networks, the
optimal values of µℓ and λℓ, in terms of the performance for the validation dataset, are
found using the method described in Appendix 5.4.3. The weight decays for the ReLU,
PReLU, and APLU networks are tuned with the help of a grid search. In the APLU
network, an ℓ2-norm penalty with scaling factor 10−3 is also applied to the activation
function parameters (ak,ℓ,n, τk,ℓ,n). With these optimal hyperparameters, the networks
are then retrained 9 times independently. The median performance (over these 9 runs)
for the test dataset is reported in Figure 5.3 and Table 5.1.

In the interest of fairness, in Table 5.1 we also mention the number of parameters
associated with the networks. A fully connected network with Nh hidden layers has
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Figure 5.3: Learned probability maps for the area-classification problem.

3W + (Nh − 1)W 2 linear weights and 1 bias parameter for the fixed sigmoid activation
function. The network also has some additional parameters that depend on the choice
of the activation function. The ReLU networks have NhW biases while, in addition to
these biases, the PReLU networks have NhW learnable parameters that represent the
linear slopes of the PReLU activation functions in R−. In the B-spline networks, the
number of additional parameters (per activation function) is equal to the number of
active knots in the learned linear-spline nonlinearity plus the 2 coefficients that determine
its linear (null-space) component. Lastly, the APLU networks have (2K + 1) additional
parameters per activation function, where the number of adjustable knots K was set to
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Table 5.1: Number of parameters and classification error rate.

Architecture Nparam Error rate (%)

ReLU (2,4,1) 17 17.02

(2,120,1) 481 2.59

(2,6,6,1) 67 15.39

PReLU (2,4,1) 21 17.00

(2,120,1) 601 1.87

(2,6,6,1) 79 2.89

APLU (2,4,1) 169 5.15

(2,120,1) 5041 1.64

(2,6,6,1) 523 1.42

B-spline (2,4,1) 68 1.66

(2,120,1) 822 1.40

(2,6,6,1) 171 1.60

19 beforehand.

For the simplest architecture (2, 4, 1), we observe that the B-spline and APLU networks
outperform the ReLU and PReLU models which lack capacity and perform rather poorly.
This demonstrates that the learning of activation functions improves the accuracy; more
so, if the activation function has reasonably many learnable parameters.

Remarkably, the simplest B-spline network outperforms the ReLU and PReLU networks
with richer architectures despite having fewer parameters. This is because it is capable of
learning more complex activation functions. This, in turn, translates into an overall map
that is more faithful to the gold standard—the ideal S shape. This suggests that, instead
of making the architecture of the network more complex, for example by including more
neurons in the initial layers and/or adding more layers, one can increase the accuracy by
relying on more sophisticated, learnable nonlinearities.

The results of Table 5.1 also illustrate the advantages of our learning scheme over the APL
units. For the architecture (2, 4, 1), the B-spline network yields a better accuracy than the
APLU network even though it has fewer parameters. One possible explanation is that the
APL units, which have a fixed number of knots, face difficulties in optimizing their knot
locations, whereas the adaptive B-splines bypass this problem with the help of a grid and
sparsity-promoting ℓ1-regularization. Another possible reason could be the ill-conditioned
nature of expansion (5.7), in the sense that a small perturbation of one ReLU coefficient
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Figure 5.4: Effect of λ on the number of active knots and on the classification error.

has a nonlocal effect on the activation function, which makes the optimization task more
challenging. For the other two richer architectures, we get similar performances for the
APLU and B-spline networks. However, the B-spline networks require fewer knots.

Effect of the Regularization Parameter λ
We consider now a B-spline network with layer descriptor (2, 4, 1) for the area-classification
task. The weight decay is fixed as µ1 = µ2 = 10−4 and λ is varied in the interval
[10−10, 102]. For each value of λ, 10 independent models are trained on the training
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dataset. The median number of total active knots5 and the classification error (on the
test dataset) of the corresponding model are shown as functions of λ in Figure 5.4.

The number of active knots decreases (or, equivalently, the sparsity of the learned
activation functions increases) as λ increases, which means that the hyperparameter λ
controls the complexity of the network. The performance of the network remains (nearly)
constant, up to a critical value of λ, after which it begins to deteriorate. This is crucial
since it suggests that, by carefully tuning λ, we can obtain simpler networks that still
perform well.

2. CIFAR-10 and CIFAR-100
Now, we look at the application of the proposed learning scheme to the classification
of standard datasets such as CIFAR [195]. We consider two network architectures—the
network-in-network [196] (NIN) and a deep residual network [197] (ResNet32) for the
CIFAR-10 and CIFAR-100 classification tasks. Each dataset consists of 50,000 training
images and 10,000 test images of size (32× 32).

First, we compare the performance of the B-spline, ReLU, and APLU networks. We
then also demonstrate the advantages of our B-spline solution over its gridded ReLU
counterpart. In the B-spline networks (NIN and ResNet), we use spline nonlinearities
with K = 49 knots on a grid of size T = 0.16. We rely on one activation function per
output channel for the convolutional layers and one spline activation function per output
unit for the fully connected layers. For the APLU networks6 (NIN and ResNet), we
set the number of adjustable knots to K = 1, with one APL activation function per
output unit for the convolutional layers as well as the fully connected layers. All networks
include a softmax unit in the final layer and are trained by minimizing the categorical
cross-entropy loss.

For each dataset, 5,000 samples are reserved for validation during training, while the
remaining 45,000 samples are augmented as in [197]. The weights in the NINs are
initialized by random sampling from a Gaussian distribution with zero mean and a
standard deviation of 0.05. The weights in the ResNets are initialized using He’s recipe
[184]. The B-spline activation functions are initialized as leaky ReLUs while the APL
units are initialized in the same manner as in the area-classification experiment. For
the B-spline NIN, B-spline ResNet, and APLU ResNet, the parameters of the activation
functions are updated using the ADAM optimizer [194] with an initial learning rate of
10−3. The remaining network parameters are updated using an SGD optimizer with
an initial learning rate of 10−1. For the APLU NIN, an SGD optimizer with an initial
learning rate of 10−1 is used to update all the learnable parameters. The NINs are trained
for 320 epochs with a batch size of 128. The learning rate is decreased by a factor of 10

5The number of total active knots is the sum of the number of active knots or ReLUs in each learned
activation function in the network.

6The reported configurations are the ones that were found to give the best performance.
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Table 5.2: NIN error rates on CIFAR-10 and CIFAR-100.

Activation function CIFAR-10 CIFAR-100

ReLU 8.78% 32.44%

APLU 8.71% 31.74%

B-spline 8.29% 30.43%

Table 5.3: ResNet error rates on CIFAR-10 and CIFAR-100.

Activation function CIFAR-10 CIFAR-100

ReLU 6.31% 29.02%

APLU 6.45% 28.85%

B-spline 6.02% 28.24%

in epochs 80, 160, and 240. The ResNets are trained for 300 epochs with a batch size of
128 while the learning rate is divided by 10 in epochs 150, 225, and 262, following the
training scheme in [198].

Comparison with ReLU and APLU Networks
For the ReLU networks (NIN and ResNet), we deploy a grid search to optimize the
weight decays in terms of the performance on the validation dataset. For the B-spline
and APLU networks, we use the same weight decays as those found for the corresponding
ReLU networks, and we perform grid searches to find the optimal values of λ and the
ℓ2-norm penalty scaling factor. We then use the optimal hyperparameters and retrain the
networks NT times independently on the complete training datasets, with 50,000 samples.
We set NT = 5 for the NINs and NT = 9 for the ResNets. Finally, we compute the error
rates over the test datasets. The median test errors are reported in Table 5.2 and Table
5.3. We see that the B-spline networks outperform the ReLU and APLU networks here
as well. Surprisingly, the APLU ResNet is slightly inferior to the ReLU ResNet for the
CIFAR-10 dataset. It turns out that, for residual networks with APL units, a similar
observation has been made in [199].

B-splines vs. gridded ReLUs vs. APLUs
In this experiment7, we record the memory consumption and computation time (per
epoch) for the B-spline, gridded ReLU, and APLU ResNets.

As we see in Table 5.4, the time/memory consumption during forward and backward
propagation for gridded ReLUs and APLUs explodes with the number of knots. This
is because the point evaluation of an activation function requires a summation over

7This experiment was run on a TITAN X (Pascal) GPU with 12196 MB of memory.
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Table 5.4: B-splines vs. gridded ReLUs vs. APLUs

Architecture, Nb. coefficients Memory (megabytes) Time per epoch (seconds)

B-splines, K = 9 1132 44.92

B-splines, K = 29 1133 41.89

B-splines, K = 499 1299 41.19

Gridded ReLUs, K = 9 3313 49.86

Gridded ReLUs, K = 29 9616 81.21

APLUs, K = 9 3316 49.72

APLUs, K = 29 9618 87.34

For the gridded ReLU and APLU networks, the maximum number of knots allowed
by the GPU memory is 31.

all contributing ReLUs, which results in a time complexity of O(K). Moreover, the
corresponding intermediate values need to be stored for backpropagation.

For B-splines, by contrast, each evaluation only requires the coefficients of two adjacent
basis functions, since the φk,T have minimal overlap, leading to a time complexity of
O(1). Accordingly, one only needs to store the coefficients and the index of the two active
basis functions.

Signal Recovery

We further illustrate the benefits of learning the activation functions through the applica-
tion of convolutional neural networks (CNNs) to inverse problems [37]. Here, the goal is
to recover a signal s ∈ Rd from its (noisy) measurements y ∈ Rm given by

y = Hs+ n, (5.22)

where H : Rd 7→ Rm is a linear operator that describes the measurement acquisition
process and n ∈ Rm is an additive noise. In our experiments, we consider CNN-based
regression schemes that relate an initial estimate of the signal to the desired estimate of
the signal [41, 43]. Specifically, we compare the performance of standard ReLU CNNs
with B-spline CNNs in a deconvolution task.

1. Setup
We consider the recovery of piecewise-constant statistical signals s ∈ R100 that satisfy the
discrete innovation model

u = Ds, (5.23)
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Figure 5.5: Piecewise-constant signal generated according to (5.25).

where D ∈ R100×100 is a finite-difference matrix and u ∈ R100 is a sparse random
vector with independent and identically distributed entries that are drawn from the
Bernoulli-Laplace distribution

pU (u) = (0.6)δ(u) + (0.4)
1

2
e−|u|. (5.24)

Under appropriate boundary conditions, we can invert (5.23) and derive the synthesis
formula

sk =
k∑
q=1

uq, k = 1, 2, . . . , 100, (5.25)

which has been used for our experiments. The dynamic range of each generated signal s
is adjusted so that its values lie in [−1, 1]. An example of such a signal is shown in Figure
5.5.

The noiseless measurement vector y0 ∈ R88 is obtained by convolving the signal s with a
Gaussian kernel of standard deviation σ = 2 and support (6σ + 1) × 1. The resulting
discrete-system matrix H ∈ R88×100, such that y0 = Hs, is

H =


h13 · · · h1 0 · · · 0
0

. . . . . . . . .
...

...
. . . . . . . . . 0

0 · · · 0 h13 · · · h1

 , (5.26)

where h ∈ R13 denotes the truncated Gaussian kernel. Finally, we add a white Gaussian
noise n ∈ R88 to the noiseless measurements y0 such that the input SNR, defined as

SNR(y0 + n) = 20 log10

(
∥y0∥2/∥n∥2

)
, (5.27)

is equal to 20dB.

Our training dataset for the CNN-based approaches consists of Mt = 10,000 samples.
Meanwhile, the validation and test datasets contain 1,000 samples each.
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Figure 5.6: Architecture of the convolutional neural network. In a ReLU CNN, the
nonlinearity is the ReLU, while in a B-spline CNN, the nonlinearity is a learnable linear
spline.

Table 5.5: Convolution Layers

Layer number (Filter size, number of input channels, number of output channels)

1 (3× 1, 1, C)

2 ∼ (L− 1) (3× 1, C, C)

L (3× 1, C, 1)

Similar to the work in [41, 43], we train CNNs to learn a mapping from an initial estimate
of the signal (in our case s∗init = HTy) to the desired estimate s∗ of the signal. The
architecture of the network is shown in Figure 5.6 and the details of the convolutional
layers are provided in Table 5.5. For all our experiments, the number of channels is set
as C = 5. In the B-spline CNN, we have learnable linear-spline activation functions with
K = 49 knots on a grid of size T = 0.1.

The loss function used for training is

L(θ) =
M∑
m=1

∥sm − s∗m(θ)∥22, (5.28)

where θ represents the parameters of the network. All the activation functions in the
B-spline CNN are initialized as leaky ReLUs with negative slopes set to 0.1. The loss
function is minimized using the ADAM optimizer. The networks are trained for 150

epochs with a batch size of 20. For ReLU CNNs, the initial learning rate is set as 10−2

and is decreased by a factor of 0.5 in the epochs [25, 50, 75, 100, 125]. The same learning
rate schedule is also used for B-spline CNNs with L ≤ 7. For B-spline CNNs with more
layers (L > 7), the initial learning rate is 10−3 and is decreased by a factor of 0.5 in the
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epochs [50, 75, 100, 125].

2. Results and Discussion
In our experiments, we compare the CNN-based approaches with the total-variation (TV)
method [25] given by

s∗TV = argmin
s∈RN

(
∥y −Hs∥22 + τ∥Ds∥1

)
, (5.29)

where τ ∈ R+ is a parameter that controls the regularization strength. It is known to
promote piecewise-constant solutions and is well matched to the signals that we consider
here. In order to make a fair comparison with the CNNs, we use the same regularization
parameter τ in the TV method for every signal in the test dataset. This value of τ is the
one that gives the best performance in terms of the mean-square error or, equivalently,

SNR(s∗, s) = 20 log10

(
∥s∥2/∥s∗ − s∥2

)
(5.30)

for the validation dataset.

Sharing versus Unsharing
We consider four configurations for the B-spline CNN. The first is the fully shared network,
where a single learnable spline activation function is shared across all layers and channels.
The second and third are the channel (layer, respectively) shared network, where the
nonlinearity is shared only across channels (layers, respectively). The fourth is the
unshared network, which has an independent nonlinearity in each layer and channel.

In a first experiment, we compare the performance of these four configurations. We fix the
number of layers to L = 4. In the B-spline CNN, we rely on our hyperparameter-tuning
method (see Appendix 5.4.3) to find the optimal µℓ and λℓ in terms of performance for
the validation dataset. The weight decay for the ReLU CNN is chosen via grid search.
Using the optimal values, we retrain the networks 9 times independently; the median
SNR over these 9 runs is shown for the test dataset in Table 5.6, where B-CNN means
B-spline CNN.

We provide the number of parameters for the networks in Table 5.6. A ReLU CNN with
L layers, C channels, and filter size (w × 1), has 2wC + (L− 2)wC2 convolutional-filter
weights, 1 bias term for the last convolutional layer, and 2(L− 1)C batch-normalization
parameters. The additional parameters in the B-spline CNN are the total number of
active knots in the learned spline activation functions.

We observe that all four versions of the B-spline CNN achieve a higher SNR than the
ReLU CNN. This further supports our claim that learning the activation functions tends
to improve the performance of the network. Moreover, as expected, configurations with a
greater number of parameters perform better. The option of sharing the learnable spline
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Table 5.6: Sharing versus unsharing of the linear spline activation functions in B-spline
CNNs (L = 4).

Method Nparam SNR (dB) Time per epoch (seconds)

ReLU CNN 211 14.95 4.59

Fully shared B-CNN 253 15.09 16.05

Channel shared B-CNN 346 15.16 17.04

Layer shared B-CNN 456 15.23 15.90

Unshared B-CNN 830 15.36 17.78

nonlinearities makes our framework flexible and allows us to benefit from the increased
capacity of the network while introducing fewer additional parameters. Also, note that
Table 5.6 confirms that the running times for the different versions of the B-spline CNN
are nearly the same.

Increase in the Depth of the Networks
Next, we compare the ReLU CNN and the fully shared B-spline CNN when the number
of layers increases. The procedure of the previous experiment is followed again to set the
hyperparameters and to report the performance of the test dataset (see Table 5.7).

We observe that the CNN-based approaches outperform the TV method, despite it being
particularly well matched to the piecewise-constant signals that we consider. This shows
the advantage of using learning-based methods over model-based ones when sufficient
training data is available. For all values of L, the B-spline CNN achieves a higher SNR
than the ReLU CNN. However, this improvement in performance diminishes as L increases
and is negligible for L ≥ 10. We believe that, when the network is sufficiently deep, the
ReLU CNN has a sufficient representation power and so the additional capacity offered
by the B-spline CNN does not translate into better performance. The main takeaway
here is that learning the activation functions results in a noticeable improvement in
performance for simpler/smaller networks, which are desirable for a number of reasons
such as better interpretability of the networks, computational efficiency, and controlled
Lipschitz constants [200].

5.1.6 Summary

We have presented an efficient computational solution to train deep neural networks with
learnable activation functions. Specifically, we have focused on deep spline networks.
They form a superset of the traditional ReLU networks and are known to be optimal
with respect to the second-order total variation of the adjustable nonlinearities. We have
tackled the resulting difficult joint-optimization problem by representing the linear-spline
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Table 5.7: Performance of deep networks.

Method Layers Parameters Performance

ReLU CNN

4 211 14.95

5 296 15.27

6 381 15.47

7 466 15.68

8 551 15.74

10 721 15.80

15 1146 15.84

Fully shared
B-CNN

4 253 15.09

5 339 15.34

6 430 15.59

7 503 15.73

8 587 15.79

10 760 15.81

15 1196 15.85

TV - - 14.92

nonlinearities in terms of B-spline basis functions and by expressing the second-order
total-variation regularization as an ℓ1-penalty, thus unifying the parametric and functional
approaches for the learning of activation functions. The proposed B-spline representation
was instrumental in making the training of the DNN computationally feasible. Indeed,
any computation concerning the activation functions involves only two basis elements
per data point. Finally, we have demonstrated the benefits of our framework through
experiments in the context of classification and deconvolution problems. In particular,
we have observed that our method compares favorably to the traditional ReLU networks,
the improvement being more pronounced for simpler/smaller networks.
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5.2 Lipschitz-Constrained Neural Networks for Plug-and-
Play Reconstruction

8In this section, we build upon the previously presented framework of deep spline neural
networks (DSNNs) to design expressive 1-Lipschitz denoising networks, which can be
deployed within provably convergent plug-and-play reconstruction schemes.

5.2.1 Introduction

In linear inverse problems, the goal is to reconstruct an image s ∈ Rd from measurements
y = Hs+ n ∈ Rm. The linear operator9 H : Rd → Rm models the acquisition system and
n ∈ Rm is a realization of additive white Gaussian noise. Here, the MPL estimator for
the image is given by

s∗ = argmin
s∈Rd

(
1

2
∥y −Hs∥22 + τR(s)

)
, (5.31)

where the regularization term R : Rd → R+ imposes some prior knowledge about the
image s and τ ∈ R+ is a tunable hyperparameter. The cost functional in (5.31) is typically
minimized using proximal algorithms such as forward-backward splitting (FBS) [87] and
the alternating direction method of multipliers (ADMM) [24].

As mentioned in Chapter 2, the main idea in the Plug-and-Play (PnP) priors framework
[51, 201] is to replace the proximal operator of R in the iterations of proximal algorithms
with some off-the-shelf denoiser, even though it might not correspond to an explicit
regularization term. This implicit regularization approach has been shown to yield better
results than classical sparsity-promoting methods for a variety of inverse problems since it
allows the use of powerful denoisers such as NLM [202], WNNM [203], BM3D [204], and
neural networks [57, 62, 205]. However, the delicate point that remains is ensuring the
convergence of these algorithms, which is non-trivial but essential for sensitive applications
(e.g., the ones encountered in medical imaging).

There exist several works that analyze conditions on the denoiser under which PnP
algorithms are guaranteed to converge [206–210]. For example, Ryu et al. [57] show that
PnP-FBS and PnP-ADMM provably converge to fixed points if the denoiser obeys an
appropriate Lipschitz condition. They then propose a practical way to enforce the derived
Lipschitz constraint while training neural network denoisers. However, their analysis
requires the data-fidelity term to be strongly convex and this unfortunately rules out ill-
posed inverse problems. In order to design convergent PnP schemes for ill-posed problems,
stricter conditions need to be enforced on the denoiser. More specifically, it has been

8This section is based on our works [157, 158].
9We assume that the inverse problem is ill-posed, that is, H is non-invertible.
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shown that averagedness (firm nonexpansiveness) of the denoiser is sufficient to guarantee
fixed point convergence of PnP-FBS (PnP-ADMM) [54, 55]. The design and training
of constrained neural networks to satisfy the averagedness or firm nonexpansiveness
conditions is a challenging task and remains an active area of research [55, 63].

In this work, we focus on the problem of training 1-Lipschitz10 (nonexpansive) neural
networks in order to construct averaged denoisers that can be used within PnP-FBS.
Specifically, we consider networks where the Lipschitz constant of each layer (linear and
nonlinear) is controlled to be one. Henceforth, we refer to such networks as 1-Lip neural
networks.

There are several ways to impose constraints on the linear layers. The most popular one
is spectral normalization [211], where the ℓ2 operator norm of each weight matrix is set
to one. The required spectral norms are computed via power iterations. To take this idea
even further, [212] and [213] have restricted the weight matrices to be orthonormal in
fully connected layers.

The use of ReLU activation functions in that setting, however, appears to be overly
constraining: it has been shown that 1-Lip ReLU networks cannot even represent simple
functions such as the absolute value function under 2-norm constraints on the linear layers
[212], as well as ∞-norm constraints [214]. This observation justifies the development
of new activation functions specifically tailored to 1-Lip architectures. Currently, the
most popular one is GroupSort (GS), proposed by [212], where the pre-activations are
split into groups that are sorted in ascending order. This results in a multivariate and
gradient-norm-preserving (GNP) activation function. The authors provide empirical
evidence that GS outperforms ReLU on several tasks such as Wasserstein-1 distance
estimation, robust classification, and function fitting under Lipschitz constraints.

Here, we propose an alternative way to boost the performance of 1-Lip neural networks via
the use of component-wise 1-Lipschitz learnable-linear-spline (LLS) activation functions.
Since the LLS activation functions presented in Section 3.1 are generally not Lipschitz-
constrained, we present an efficient method to explicitly control their Lipschitz constant.
Further, we also develop a normalization module that modulates the scale of each LLS
activation function without changing their Lipschitz constant and thus increases their
flexibility. We perform a systematic comparison of the proposed framework with other
1-Lip architectures (including ReLU and GS) for function fitting, Wasserstein-1 distance
estimation, and CT and MRI reconstruction within the PnP framework. Our results
show that our framework outperforms all the competing activation functions.

The section is organized as follows: We begin with a brief description of PnP-FBS in
Section 5.2.2. In Section 5.2.3, we present existing 1-Lip architectures. We then introduce

10An operator T: RK → RK is L-Lipschitz if ∥T(x) − T(y)∥ ≤ L∥x − y∥ for all x,y ∈ RK . The
smallest value of L is called the Lipschitz constant of T. In this section, we only consider ∥ · ∥ to be the
2-norm (also known as the Euclidean norm).

103



Chapter 5 Convergent Iterative Image-Reconstruction Methods

our method in Section 5.2.4 and present experimental results in Section 5.2.5.

5.2.2 Plug-and-Play Forward-Backward Splitting (PnP-FBS)

The iterates for PnP-FBS corresponding to the optimization problem in (5.31) are given
by

sk+1 = D
(
sk − αHT (Hsk − y)

)
, (5.32)

where D : Rd → Rd is the chosen denoiser and α is the stepsize.

Fixed-Point Convergence

A standard set of sufficient conditions to guarantee fixed-point convergence of the iterations
(5.32) is that

1. D is averaged, namely D = βN+ (1− β)Id where β ∈ (0, 1) and N: Rd → Rd is a
nonexpansive mapping;

2. α ∈ [0, 2/∥H∥2);

3. the update operator in (5.32) has a fixed point.

Note that in general, Condition (1) is not sufficient to ensure that D is the proximal
operator of some convex regularizerR. Hence, its interpretability is still limited. Condition
(2) implies that s 7→

(
s− αHT (Hs− y)

)
is averaged. As averagedness is preserved

through composition, the iterates are updated by the application of an averaged operator
(see [55] for details). With Condition (3), the convergence of the iterations (5.32) follows
from Opial’s convergence theorem.

Stability of the Reconstruction Map in the Measurement Domain

Beyond convergence, we can also show the stability of the reconstruction map in the
measurement domain.

Proposition 5.1. Let s∗1 and s∗2 be fixed points of the PnP-FBS algorithm (5.32) for the
measurements y1 and y2, respectively. If the denoiser is averaged with β ≤ 1/2, then for
any y1,y2 ∈ Rm, we have that

∥Hs∗1 −Hs∗2∥2 ≤ ∥y1 − y2∥2. (5.33)

Further, if we slightly increase the constraints on D, we get the result of Proposition 5.2
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Proposition 5.2. Let s∗1 and s∗2 be fixed points of the PnP-FBS algorithm (5.32) for the
measurements y1 and y2, respectively. If D is K-Lipschitz with K < 1 (if it is contractive),
then the reconstruction process is stable for any H, in the sense that, for any y1,y2 ∈ Rm,

∥s∗1 − s∗2∥2 ≤
α∥H∥K
1−K ∥y1 − y2∥2. (5.34)

The proofs for these propositions are given in Appendix 5.4.4. Overall, with PnP-FBS,
we can expect better data consistency than the one provided by the end-to-end neural
network frameworks that attempt to directly map the measurements y to the image s.
Those attempts are known to suffer from stability issues [215] and, more importantly,
have been found to remove or hallucinate tumors [216], which is unacceptable in the
context of diagnostic imaging. Relations (5.33) and (5.34) are protection against such
hallucinations. They tell us that, if two sets of measurements are close to each other,
then the corresponding reconstructions must also be close to each other.

5.2.3 1-Lipschitz Neural Networks

In this work, we consider feedforward neural networks fθ : RN0 → RNL of the form

fθ(x) : AL ◦ · · · ◦ σℓ ◦Aℓ ◦ · · · ◦ σ1 ◦A1(x), (5.35)

where each Aℓ : RNℓ−1 → RNℓ , ℓ = 1, . . . , L, is a linear layer given by

Aℓ(x) = Wℓx+ bℓ, (5.36)

with weight matrices Wℓ ∈ RNℓ,Nℓ−1 and bias vectors bℓ ∈ RNℓ . The model incorporates
fixed or learnable nonlinear activation functions σℓ : RNℓ → RNℓ . For component-wise
activation functions, we have that σℓ(x) = (σℓ,n(xn))

Nℓ
n=1 with individual scalar activation

functions σℓ,n : R→ R. The complete set of parameters of the network is denoted by θ.

A straightforward way to control Lip(fθ) is to use the sub-multiplicativity of the Lipschitz
constant for the composition operation, which yields the estimate

Lip(fθ) ≤ Lip(AL)
L−1∏
ℓ=1

Lip(σℓ) Lip(Aℓ). (5.37)

Consequently, one can obtain a bound for Lip(fθ) by controlling the Lipschitz constant of
each linear layer and of each activation function.
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Lipschitz-Constrained Linear Layers

It is known that the Lipschitz constant of the linear layer Aℓ is equal to the largest
singular value of its weight matrix. In our experiments, we constrain the weight matrices
Wℓ in two ways.

• Spectral Normalization: This method rescales each linear layer by dividing
its weight matrix by its largest singular value. The latter is estimated via power
iterations. This method was introduced for fully connected networks in [211] and
later generalized for convolutional layers in [57].

• Orthonormalization: Here, the weight matrices Wℓ are forced to be orthonormal,
so that WT

ℓ Wℓ is the identity matrix. Unlike spectral normalization, which only
constrains the largest singular value, this method forces all the singular values to be
one. Various implementations of orthonormalization have been proposed to handle
both fully connected [212] and convolutional layers [217, 218].

Lipschitz-Constrained Activation Functions

Here, we shortly introduce all activation functions that we compare against LLS.

• ReLU: The ReLU activation function is component-wise and 1-Lipschitz. It is
given by ReLU(x) = (max(0, xn))

N
n=1.

• Absolute Value: The absolute value (AV) activation function is component-wise,
1-Lipschitz, and GNP. It is given by AV(x) = (|xn|)Nn=1.

• Parametric ReLU: The parametric ReLU (PReLU) activation function [184] is
component-wise. It is given by PReLUa(x) = (max(anxn, xn))

N
n=1 with learnable

parameters (an)
N
n=1. It holds that Lip(PReLUa) = max(max1≤n≤N |an|, 1). Hence,

an easy way to make it 1-Lipschitz is to clip the parameters (an)
N
n=1 in [−1, 1].

• GroupSort: This activation function [212] separates the pre-activations into
groups of size k and then sorts each group in ascending order. Hence, it is locally
a permutation and is therefore GNP and 1-Lipschitz. If the group size is 2, this
activation function is called MaxMin. 1-Lip MaxMin and GS neural networks are
universal approximators for 1-Lipschitz functions in a specific setting where the
first weight matrix satisfies ∥W1∥2,∞ ≤ 1 and all other weight matrices satisfy
∥Wl∥∞ ≤ 1 [212, Theorem 3].

• Householder: The householder (HH) activation function [219] separates the
pre-activations into groups of size 2, and for any x ∈ R2, computes
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HHv (x) =

{
x, vTx > 0(
I− 2vvT

)
x, vTx ≤ 0,

(5.38)

where v ∈ R2 is a learnable parameter with ∥v∥2 = 1. The HH activation function
is always 1-Lipschitz and GNP.

For these choices, Proposition 5.3 holds. The proof is given in Appendix 5.4.5.

Proposition 5.3. On any compact set D ⊂ RN0 , 1-Lip neural networks with AV, PReLU,
GS, or HH activation functions can represent the same set of functions.

By contrast to Proposition 5.3, 1-Lip ReLU networks are less expressive and can only
represent a subset of these functions.

5.2.4 1-Lipschitz Deep Spline Neural Networks

As a first step towards Lipschitz-constrained deep spline neural networks, [200] added a
term in the training loss that penalizes a loose bound of the Lipschitz constant of the
LLS activation functions. This approach, however, does not offer a strict control of the
overall Lipschitz constant of the network. Here, we instead present a method to explicitly
control the Lipschitz constant of each LLS activation function.

As described in Section 5.4.2, we represent an LLS activation function σ in a B-spline
basis. It is fully described by the vector of its B-spline coefficients c ∈ RK and the
stepsize T . In practice, we choose a high number K and a small stepsize T . We then
ensure that a simple activation function is learned by using TV(2) regularization given by
TV(2)(σ) = ∥Lc∥1, where L is the second-order finite-difference matrix defined in (5.97).
The Lipschitz constant of σ is given by Lip(σ) = 1

T ∥Dc∥∞, where

D =



−1 1 0 0 · · · 0
0 −1 1 0 · · · 0
...

. . . . . . . . . . . .
...

...
. . . . . . . . . 0

0 · · · · · · 0 −1 1


. (5.39)

Overall, we aim to impose strict bounds on the first-order finite differences of the
coefficients c, and we seek to sparsify their second-order finite differences.

To ensure that every activation function σ is 1-Lipschitz, the absolute difference between
any two consecutive coefficients must be at most T . Hence, the corresponding set of
feasible coefficients is given by {c ∈ RK : ∥Dc∥∞ ≤ T}. A first attempt at a minimization
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over this set was made in our earlier work [157]. There, we used a method that divides
each activation function by its maximum slope after each training step. In Section 5.2.4,
we present an alternative projection scheme that is better suited to optimization and
yields a much better performance in practice, while being just as fast. Additionally, we
introduce a scaling parameter for each activation function, which facilitates the training
and increases the performance of the network even further at a negligible computational
cost.

Constrained Coefficients

The textbook approach to maintain the 1-Lipschitz property throughout an iterative
minimization scheme would be to determine the least-squares projection onto {c ∈ RK :

∥Dc∥∞ ≤ T} at each iteration. This operation would preserve the mean of c, as shown
in Appendix 5.4.6. Unfortunately, its computation is very expensive as it requires to
solve a quadratic program after each training step and for each activation function. As
substitute, we introduce a simpler projection PLip that also preserves the mean while
being much faster to compute. In brief, PLip computes the finite-differences, clips them,
sums them and adds a constant to the preservation of the mean.

Let us denote the Moore–Penrose pseudoinverse of D by D† and the vector of ones by
1 ∈ RK . Further, we define the component-wise operation

Clip[T1,T2](x) =


T1, x < T1

x, x ∈ [T1, T2]

T2, x > T2.

(5.40)

Proposition 5.4. The operation PLip defined as

PLip(c) = D†Clip[−T,T ](Dc) + 1
1

K

K∑
k=1

ck (5.41)

has the following properties:

1. it is a projection onto the set {c ∈ RK : ∥Dc∥∞ ≤ T};

2. it is almost-everywhere differentiable with respect to c;

3. it preserves the mean of c.

The proof of Proposition 5.4 can be found in Appendix 5.4.6.

In gradient-based optimization, one usually handles domain constraints by projecting the
variables back onto the feasible set after each gradient step. However, this turned out
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to be inefficient for neural networks in our experiments. Instead, we parameterize the
LLS activation functions directly with PLip(c), which leads to unconstrained training.
This strategy is in line with the popular spectral normalization of [211], where the weight
matrices are unconstrained and parameterized using an approximate projection. For
our parameterization approach, Property 2 of Proposition 5.4 is very important as it
allows us to back-propagate through PLip during the optimization process. To compute
PLip efficiently, we calculate D† in a matrix-free fashion with a cumulative sum. The
computational cost of PLip is negligeable compared to the cost of constraining the linear
layer to be 1-Lipschitz.

Scaling Parameter

We propose to increase the flexibility of our LLS activation functions by the introduction
of an additional trainable scaling factor γ. Specifically, we propose the new activation
function

σ̃(x) =
1

γ
σ(γx). (5.42)

With this scaling, σ̃ is nonlinear on [kminT/γ, kmaxT/γ] and the Lipschitz constant

Lip(σ̃) = sup
x1,x2∈R

∥ 1γσ(γx1)− 1
γσ(γx2)∥

∥x1 − x2∥
= sup

x1,x2∈R

1
γ ∥σ(γx1)− σ(γx2)∥

1
γ ∥γx1 − γx2∥

= Lip(σ) (5.43)

is left unchanged. We can see from Proposition 5.11 that the second-order total variation
is preserved as well. Basically, γ allows us to decrease the data-fitting term used for
training without breaking the constraints or increasing the complexity of the activation
functions. Experimentally, we indeed found that the performance of DSNNs improves
if we also optimize over γ. In contrast, the ReLU, AV, PReLU, GS, and HH activation
functions are invariant to this parameter and do not benefit from it. In practice, the
scaling parameter γ is initialized as one and updated via standard stochastic gradient-
based methods. Throughout our experiments, every LLS activation function has its own
scaling parameter γ.

5.2.5 Experimental Results

We evaluate the performance of 1-Lip neural networks on a variety of tasks. In each
case, we compare the performance of LLS and the five activation functions discussed in
Section 5.2.3. For all the experiments, we tune the initialization of PReLU, the group size
of GS, and the initialization, range, number of linear regions, and TV(2) regularization of
LLS for best performance. To train the respective networks, we use the Adam optimizer
[194] and the default hyperparameters of its PyTorch implementation. The deep spline
NNs have three optimizers with different learning rates: one for the weights (with learning
rate η), one for the scaling parameters (with learning rate η/4) and one for parameters of

109



Chapter 5 Convergent Iterative Image-Reconstruction Methods

−1 0 1
−0.25

0.30
Function f1

−1 0 1
−0.25

0.30
Function f2

−1 0 1
−0.05

0.05
Function f3

Figure 5.7: Three 1-Lipschitz functions that we attempt to fit with 1-Lip neural networks.
All functions have zero mean over the interval [−1, 1].

the activation function (with learning rate η/40). These ratios remain fixed throughout
this section and, hence, only η is going to be stated. Our implementation is available on
Github11.

One-Dimensional Function Fitting

Here, we train 1-Lip neural networks to fit 1-Lipschitz functions f : R → R within the
model Y = f(X), where X is uniformly distributed on [−1, 1]. The task is to fit the three
1-Lipschitz functions depicted in Figure 5.7. The aim of this experiment is twofold. First,
we want to probe the impact of the two methods described in Sections 5.2.4 and 5.2.4 on
the performance of the DSNNs by comparing the proposed 1-Lip DSNNs (denoted as LLS
New) with the ones from our earlier work [157] (denoted as LLS Old) which operate by
simple normalization. Second, we want a simple but challenging experiment to compare
the various available methods.

Let us briefly comment on the functions in Figure 5.7. For f1, we have |∇f1| = 1 almost
everywhere. Hence, the GNP activation functions are expected to perform well and
serve as a baseline against which we compare LLS activation functions. The function
f2 alternates between |∇f2| = 1 and |∇f2| = 0. It was designed to test the ability of
LLS to fit functions with constant regions. Lastly, we benchmark all methods on the
highly varying function f3(x) = sin(7πx)/7π, which is challenging to fit under Lipschitz
constraints.

For each method, we consider two variants: orthonormalization, and spectral normalization
of the weights. In both cases, we use the mean squared error (MSE) as loss function. The
train loss is computed over 1000 random points sampled uniformly from [−1, 1]. The test
loss is computed over a uniform partition of [−1, 1] with 10000 points. This experiment
lets us assess the expressivity of the models without caring about generalization. The
hyperparameters were all tuned on the test set. For each activation function, we tuned
the width and the depth of the neural network for best performance. ReLU networks
have 10 layers and a width of 50; AV, PReLU, and HH networks have 8 layers and a

11https://github.com/StanislasDucotterd/Lipschitz_DSNN
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Figure 5.8: Fitting performances for the functions from Figure 5.7. The red markers
represent the median performance. The black bars represent the lower and upper quartiles,
respectively.

width of 20; GS networks have 7 layers and a width of 20; DSNNs have 4 layers and a
width of 10. For the activation functions, we initialized the PReLU as the absolute value,
we used GS with a group size of 5, and the LLS was initialized as ReLU and had a range
of [−0.5, 0.5], 100 linear regions, and we set λ = 10−7 for the TV(2) regularization. The
DSNNs used a learning rate of η = 2× 10−3 for every function while the other networks
used η = 4 × 10−3 for f1, f2 and η = 10−3 for f3. Every network relied on Kaiming
initialization [184] and was trained 25 times with a batch size of 10 for 1000 epochs. We
report the median and the two quartiles of the test losses in Figure 5.8.

For the spectral normalization, we observe that AV, PReLU, and HH have a tendency
to get stuck in local minima when fitting f3 (the associated upper quartile of the MSE
loss is quite large). In return, we observe that LLS consistently outperforms the other
activation functions in all experiments. Particularly striking is the improvement of LLS
New over LLS Old, which clearly demonstrates the beneficial role of the two modules
described in Sections 5.2.4 and 5.2.4. Accordingly, from now on, we drop LLS Old and
only retain LLS New.
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Table 5.8: Mean and standard deviation of the estimated Wasserstein distance over five
trials for several architectures.

Depth ReLU AV PReLU GS HH LLS

3 0.727 1.190/0.002 1.190/0.002 1.189/0.001 1.165/0.001 1.190/0.002
5 0.881/0.001 1.368/0.003 1.371/0.002 1.369/0.002 1.369/0.002 1.373/0.003
7 0.960 1.406/0.008 1.437/0.002 1.436/0.001 1.440/0.003 1.439/0.001

Estimation of the Wasserstein Distance

The Wasserstein-1 distance is a metric between two probability distributions P1 and P2.
This metric has been used in [220] to improve the performance of GANs, which were
first introduced in [69]. Using the Kantorovich dual formulation [221], we can compute
the Wasserstein-1 distance W1 by solving an optimization problem over the space of
1-Lipschitz functions, leading to

W1(P1, P2) = sup
Lip(f)≤1

Ex∼P1 [f(x)]− Ex∼P2 [f(x)]. (5.44)

In our Wasserstein experiment, P1 is a uniform distribution over a set of real MNIST12

images and P2 is the generator distribution of a GAN trained to generate MNIST
images. The architecture of this GAN is taken from [222]. It has been shown in [223]
that, under reasonable assumptions, any f∗ that maximizes (5.44) satisfies |∇f∗| = 1

almost everywhere. Further, [212] have shown experimentally that, in the context of
Wasserstein distance estimation, spectral normalization of the linear layers is outperformed
by orthonormalization. Hence, we use the latter parameterization for the Wasserstein
experiments. All networks are fully connected with a width of 1024, and various depths.
They were trained 5 times each for 2000 epochs with η = 2 × 10−3 and orthogonal
initialization [224]. For the networks with a depth of 3, GS has group size of 8, and
PReLU and LLS were initialized as the absolute value. For a depth of 5 or 7, GS has
a group size of 2, and PReLU and LLS were initialized with the identity in half of the
activation functions and as the absolute value in the other half. The LLS have a range of
[−0.15, 0.15], 20 linear regions, and λ = 10−10. The spline coefficients only increase the
total number of parameters in the neural network by 2%. We train the networks on 54000
images from the MNIST training set and use the 6000 remaining ones as a validation set.
The test set contains 10000 MNIST images.

In Table 5.8, we report the estimated Wasserstein distance between the MNIST images
of the test set and the ones generated by the GAN. The dimensionality of the problem
is such that it is practically unfeasible to compute accurate baseline estimates based on
the sampling of both measures and the computation of their true Wasserstein distance.

12http://yann.lecun.com/exdb/mnist/
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ReLU has an estimate that is significantly lower than the other methods. Most likely,
this corresponds to a gross underestimation of the true Wasserstein distance because of
its lack of expressivity. We can see that the performances are quite similar between all
the other activation functions except for AV and HH with depth 7 and 3, respectively,
which are worse than the others.

Image Reconstruction via PnP-FBS

Next, we consider provably convergent PnP-FBS for two ill-posed inverse problems—MRI
and CT reconstruction. Recall that a β-averaged denoiser is of the form D = βN+(1−β)Id
, where β ∈ (0, 1) and N is nonexpansive. Here, we parametrize N as a 1-Lip neural
network and train it as a denoiser. Before we talk about the inverse problem setups, we
describe our denoising experiments.

1. Denoising

The state-of-the-art image denoising architectures [154, 225, 226] are not natively 1-
Lipschitz. They rely on dedicated modules designed to improve the performance of the
denoising network, such as skip connections, downsampling and upsampling layers, batch
normalization, and attention modules. These can make it challenging to build provably
averaged denoisers, and their effectiveness remains to be demonstrated in a constrained
setting. For this reason, we use a simple CNN architecture without batch normalization.
This provides excellent performance while relying on a simple architecture that can be
directly constrained.

We train N as a 1-Lip denoiser that is composed of 8 orthogonal convolutional layers
parameterized with the BCOP framework [217]. For LLS, we take 64 channels; to
compensate for the additional spline parameters, we train every other model with 68
channels. We use kernels of size (3× 3).

The training dataset consists of 238400 patches of size (40× 40) taken from the BSD500
dataset [227]. We report the results on the BSD68 test set. All images take values in [0, 1].
For our experiment, we add Gaussian noise with σ = 5/255, 10/255, 15/255. We train all
networks for 50 epochs with a batch size of 128 and the MSE loss function. The PReLU
activation functions were initialized as the absolute value. GS has a group size of 2. The
LLS activation functions have 50 linear regions, a range of 0.1, and were initialized as the
identity. We set η = 4× 10−5 for every noise level and every model. In this experiment,
we also investigated the effect of the TV(2) regularization parameter λ (we used the same
parameter for all the layers) on the performance and the number of linear regions in all
the activation functions. The performance results are provided in Table 5.9. As expected,
ReLU is doing worse than the other activation functions. For each noise level, LLS is
outperforming every other activation function.
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Table 5.9: PSNR and SSIM values for the Lipschitz denoising experiment in terms of
activation functions and noise levels.

Noise level σ = 5/255 σ = 10/255 σ = 15/255
Metric PSNR SSIM PSNR SSIM PSNR SSIM

ReLU 36.10 0.9386 31.92 0.8735 29.76 0.8203
AV 36.58 0.9499 32.33 0.8889 30.09 0.8375
PReLU 36.58 0.9498 32.25 0.8887 30.11 0.8367
GS 36.54 0.9489 32.23 0.8845 30.11 0.8346
HH 36.47 0.9476 32.25 0.8866 30.11 0.8350
LLS (λ = 0) 36.85 0.9540 32.59 0.8978 30.35 0.8464
LLS (λ = 10−6) 36.86 0.9546 32.55 0.8962 30.38 0.8479
LLS (λ = 10−5) 36.86 0.9543 32.55 0.8960 30.34 0.8455
LLS (λ = 10−4) 36.82 0.9534 32.57 0.8970 30.36 0.8468
LLS (λ = 10−3) 36.63 0.9497 32.47 0.8924 30.31 0.8437
LLS (λ = 10−2) 35.15 0.9142 32.00 0.8782 29.73 0.8156

Table 5.10: Average number of effective linear regions (AELR) for several λ and noise
levels. The maximum number of available regions for the LLS is 50.

Noise level σ = 5/255 σ = 10/255 σ = 15/255

LLS (λ = 0) 9.24 8.76 8.07
LLS (λ = 10−6) 1.21 1.24 1.44
LLS (λ = 10−5) 1.11 1.15 1.24
LLS (λ = 10−4) 1.07 1.14 1.25
LLS (λ = 10−3) 1.02 1.06 1.10
LLS (λ = 10−2) 1.00 1.01 1.02

The number of linear regions for the LLS activation function σℓ,n is equal to ∥Lcℓ,n∥0 +1.
This metric can lead to an overestimation of the number of linear regions due to numerical
imprecisions. Instead, we define the effective number of linear regions as (|{1 ≤ k ≤
Kℓ,n : |(Lcℓ,n)k| > 0.01}| + 1). For each DSNN, we report in Table 5.10 the average
number of effective linear regions (AELR) of all the LLS activation functions. An AELR
close to one indicates that the large majority of neurons become skip connection, which
corresponds to a simplification of the network. Without regularization, the LLS activation
functions have an AELR of 8.07 to 9.24 out of the 50 available linear regions. The TV(2)

regularization drastically sparsifies the LLS activation functions. With λ ∈ [10−6, 10−4],
the AELR is between 1.07 and 1.44, which is a large decrease without degradation in the
denoising performances. For λ = 10−3, the LLS are even further sparsified at the cost
of a small loss of performance. We observe a significant loss of performance when λ is
increased to 10−2 where the network is almost an affine mapping. Notice that the AELR
is 2 for ReLU and AV, meaning that LLS outperforms them while being simpler. Another
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interesting observation is that, despite being very sparse on average, the DSNNs with
λ ∈ [10−6, 10−3] have at least one activation function with at least three linear regions.
This suggests that most of the common activation functions might be suboptimal as they
have only two linear regions.

2. Biomedical Image Reconstruction

Finally, we deploy the trained 1-Lip denoisers within PnP-FBS to solve MRI and CT
reconstruction problems.

(A) MRI The ground-truth images for our MRI experiments are proton-density weighted
knee MR images from the fastMRI dataset [228] with fat suppression (PDFS) and without
fat suppresion (PD). They are generated from the fully-sampled k-space data. For each
of the two categories (PDFS and PD), we create validation and test sets consisting of
10 and 50 images, respectively, where every image is normalized to have a maximum
value of one. We consider both single-coil and multi-coil setups with several acceleration
factors. In the single-coil setup, we simulate the measurements by masking the Fourier
transform of the ground-truth image. In the multi-coil case, we consider 15 coils, and the
measurements are simulated by subsampling the Fourier transforms of the multiplication
of the ground-truth images with 15 complex-valued sensitivity maps (these were estimated
from the raw k-space data using the ESPIRiT algorithm [229] available in the BART
toolbox [230]). For both cases, the subsampling in the Fourier domain is performed with
a Cartesian mask that is specified by two parameters: the acceleration Macc ∈ {2, 4, 8}
and the center fraction Mcf = 0.32/Macc. A fraction of Mcf columns in the center of the
k-space (low frequencies) is kept, while columns in the other region of the k-space are
uniformly sampled so that the expected proportion of selected columns is 1/Macc. In
addition, Gaussian noise with standard deviation σn = 2× 10−3 is added to the real and
imaginary parts of the measurements. The PSNR and SSIM values for each method are
computed on the (320× 320) centered ROI.

(B) CT We target the CT experiment proposed in [231]. The data consist of human
abdominal CT scans for 10 patients provided by Mayo Clinic for the low-dose CT Grand
Challenge [232]. The validation set consists of 6 images taken uniformly from the first
patient of the training set from [231]. We use the same test set as [231], more precisely,
128 slices with size (512× 512) that correspond to one patient. The projections of the
data are simulated using a parallel-beam acquisition geometry with 200 angles and 400
detectors. Lastly, Gaussian noise with standard deviation σn ∈ {0.5, 1, 2} is added to the
measurements.

For the above-described setups, we run the PnP-FBS algorithm (5.32) with the trained
denoising networks (for LLS we use the network corresponding to λ = 10−6). We tune
the noise level σ of each N over σ = 5/255, 10/255, 15/255. Also, for each σ, we tune
β ∈ (0, 1) and the stepsize α given in (5.32) using the coarse-to-fine method given in
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Appendix 5.4.7. The hyperparameters for all the methods are tuned on the validation set
to maximize the average PSNR.

The reconstruction performances over the test sets are reported in Tables 5.11, 5.12 and
5.20. We observe a significant gap between LLS and the other activation functions for all
the setups in terms of PSNR and SSIM. Some example reconstructions are reported in
Figures 5.9, 5.10, 5.11, 5.12, 5.13 and 5.14.

5.2.6 Summary

In this work, we have proposed a framework to efficiently train Lipschitz-constrained
neural networks with learnable linear-spline activation functions. Our implementation
embeds the Lipschitz constraint on the activation functions directly into the forward
pass and adds learnable scaling factors, which preserves the Lipschitz constant of the
activation functions and enhances the overall expressivity of the model. Empirically, we
have shown that our approach outperforms other Lipschitz-constrained neural networks
for a variety of tasks including plug-and-play image reconstruction.
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Table 5.11: Single-coil MRI.

2-fold 4-fold
PSNR SSIM PSNR SSIM

PD PDFS PD PDFS PD PDFS PD PDFS

ReLU 38.15 37.41 0.938 0.918 30.62 31.45 0.818 0.786
AV 38.99 38.05 0.946 0.925 31.34 32.02 0.832 0.797
PReLU 38.97 38.09 0.946 0.925 31.22 32.22 0.832 0.800
GS 38.80 37.92 0.944 0.924 31.27 31.93 0.829 0.796
HH 38.72 37.89 0.944 0.924 31.22 31.94 0.830 0.796
LLS 40.06 38.63 0.955 0.931 32.81 33.04 0.859 0.817

Table 5.12: Multi-coil MRI.

4-fold 8-fold
PSNR SSIM PSNR SSIM

PD PDFS PD PDFS PD PDFS PD PDFS

ReLU 37.21 37.06 0.929 0.915 31.37 32.57 0.837 0.822
AV 37.81 37.48 0.935 0.919 31.82 32.95 0.845 0.829
PReLU 37.71 37.51 0.934 0.919 31.67 33.11 0.845 0.832
GS 37.76 37.41 0.933 0.919 31.79 32.9 0.843 0.829
HH 37.66 37.39 0.933 0.919 31.68 32.91 0.843 0.829
LLS 38.68 37.96 0.943 0.924 32.75 33.61 0.859 0.835

Table 5.13: CT.

σn=0.5 σn=1 σn=2
PSNR SSIM PSNR SSIM PSNR SSIM

FBP 32.14 0.697 27.05 0.432 21.29 0.204

ReLU 36.94 0.914 33.65 0.860 30.34 0.782
AV 37.15 0.926 34.19 0.885 31.07 0.813
PReLU 37.18 0.927 34.21 0.887 30.87 0.812
GS 36.95 0.920 33.99 0.877 30.87 0.806
HH 36.94 0.918 34.11 0.877 30.92 0.809
LLS 38.19 0.931 35.15 0.897 31.85 0.844
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Ground-truth HTY - 31.05dB, 0.835 ReLU - 37.90dB, 0.939 AV - 38.83dB, 0.948 GS - 38.73dB, 0.947 HH - 38.50dB, 0.945 LLS - 39.75dB, 0.956

Figure 5.9: Reconstructed images for the 2-fold accelerated single-coil MRI experiment.
The reported metrics are PSNR and SSIM.

Ground-truth HTY - 24.57dB, 0.655 ReLU - 28.27dB, 0.773 AV - 29.10dB, 0.795 GS - 29.29dB, 0.798 HH - 28.96dB, 0.790 LLS - 30.91dB, 0.837

Figure 5.10: Reconstructed images for the 4-fold accelerated single-coil MRI experiment.
The reported metrics are PSNR and SSIM.

Ground-truth HTY - 25.67dB, 0.716 ReLU - 39.01dB, 0.949 AV - 39.64dB, 0.954 GS - 39.53dB, 0.953 HH - 39.44dB, 0.952 LLS - 40.19dB, 0.958

Figure 5.11: Reconstructed images for the 4-fold accelerated multi-coil MRI experiment.
The reported metrics are PSNR and SSIM.
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Ground-truth HTY - 22.14dB, 0.603 ReLU - 32.26dB, 0.853 AV - 32.98dB, 0.868 GS - 33.00dB, 0.867 HH - 32.79dB, 0.864 LLS - 34.06dB, 0.885

Figure 5.12: Reconstructed images for the 8-fold accelerated multi-coil MRI experiment.
The reported metrics are PSNR and SSIM.

Phantom FBP - 32.07dB, 0.713 RELU - 36.76dB, 0.920 AV - 36.84dB, 0.928 GS - 36.58dB, 0.922 HH - 36.61dB, 0.923 LLS - 37.76dB, 0.934

Figure 5.13: Reconstructed images for the CT experiment with σn = 0.5. The reported
metrics are PSNR and SSIM.

Phantom FBP - 32.01dB, 0.701 RELU - 36.71dB, 0.908 AV - 36.87dB, 0.921 GS - 36.65dB, 0.916 HH - 36.68dB, 0.916 LLS - 38.04dB, 0.932

Figure 5.14: Reconstructed images for the CT experiment with σn = 0.5. The reported
metrics are PSNR and SSIM.
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5.3 A Neural-Network-Based Convex Regularizer

13In this section, we show how we can leverage our learnable linear spline module to
design explicit neural-network-based convex regularizers.

5.3.1 Introduction

Like in the previous section, we again consider ill-posed linear inverse problems with an
AWGN model. Thus, the goal is to reconstruct the image s ∈ Rd from the measurement
vector y ∈ Rm given by

y = Hs+ n, (5.45)

where H ∈ Rm×d models the physics of the acquisition process and n ∈ Rm accounts for
the additive Gaussian noise. The generic MPL estimator for the image can be written as

s∗ ∈ argmin
s∈Rd

1

2
∥Hs− y∥22 +R(s), (5.46)

whereR : Rd → R is a regularizer that incorporates prior information about s to counteract
the ill-posedness of (5.45). Here, we will focus on the learning of the regularization term
R in (5.46). Pioneering work in this direction includes the fields of experts [233–235],
where R is parameterized by an interpretable and shallow model, namely, a sum of
nonlinear one-dimensional functions composed with convolutional filters. Some recent
approaches rely on more sophisticated architectures with much deeper CNNs, such as
with the adversarial regularization (AR) [236, 237], NETT [238], and the total-deep-
variation frameworks [67], or with regularizers for which a proximal operator exists [64–66,
239]. There exists a variety of strategies to learn R, including bilevel optimization [234],
unrolling [67, 235], gradient-step denoising [64, 65], and adversarial training [236, 237].
When R is convex, a global minimizer of (5.46) can be found under mild assumptions. As
the relaxation of the convexity constraint usually boosts the performance [234, 240], it is
consequently the most popular approach. Unfortunately, one can then expect convergence
only to a critical point.

In this work, we prioritize the reliability and interpretability of the method. Thus, we
revisit the family of learnable convex-ridge regularizers [181, 233–235, 240]

R : s 7→
∑
i

ψi(w
T
i s), (5.47)

where the profile functions ψi : R→ R are convex, and wi ∈ Rd are learnable weights. A
popular way to learn R is to solve a non-convex bilevel optimization task [241, 242] for a
given inverse problem. It was reported in [234] that these learnt regularizers outperform
the popular TV regularizer for image reconstruction. As bilevel optimization is computa-

13This section is based on our work [159].
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tionally quite intensive, it was proposed in [240] to unroll the forward-backward splitting
(FBS) algorithm applied to (5.46) with a regularizer of the form (5.47). Accordingly, R
is optimized so that a predefined number t of iterations of the FBS algorithm yields a
good reconstruction. Unfortunately, on a denoising task with learnable profiles ψi, the
proposed approach does not match the performance of the bilevel optimization.

To deal with these shortcomings, we introduce an efficient framework14 to learn some R
of the form (5.47) with free-form convex profiles. We train this R on a generic denoising
task and then plug it into (5.46). This yields a generic reconstruction framework that is
applicable to a variety of inverse problems. The main contributions of the present work
are as follows.

• Interpretable and Expressive Model: We use a one-hidden-layer neural network
(NN) with learnable increasing linear-spline activation functions to parameterize
∇R. We prove that this yields the maximal expressivity in the generic setting
(5.47).

• Embedding of the Constraints into the Forward Pass: The structural
constraints on ∇R are embedded into the forward pass during the training. This
includes an efficient procedure to enforce the convexity of the profiles, and the
computation of a bound on the Lipschitz constant of ∇R, which is required for our
training procedure.

• Ultra-Fast Training: The regularizer R is learnt via the training of a multi-
gradient-step denoiser. Empirically, we observe that a few gradient steps suffice to
learn a best-performing R. This leads to training within a few minutes.

• Best Reconstruction Quality in a Constrained Scenario: We show that our
framework outperforms recent deep-learning-based approaches with comparable
guarantees and constraints in two popular medical-imaging modalities (CT and
MRI). This includes the PnP method with averaged denoisers and a variational
framework with a learnable deep convex regularizer. This even holds for a strong
mismatch in the noise level used for the training and the one found in the inverse
problem.

5.3.2 Architecture of the Regularizer

In this section, we introduce the notions required to define the convex-ridge regularizer
neural network (CRR-NN).

14All experiments can be reproduced with the code published at https://github.com/axgoujon/convex_
ridge_regularizers
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General Setting

Our goal is to learn a regularizer R for the variational problem (5.46) that performs
well across a variety of ill-posed problems. Similar to the PnP framework, we view the
denoising task

s∗ = argmin
s∈Rd

1

2
∥s− y∥22 + τR(s) (5.48)

as the underlying base problem for training, where y is the noisy image. Since we prioritize
interpretability and reliability, we choose the simple convex-ridge regularizer (5.47) and
use its convolutional form. More precisely, the regularity of an image s is measured as

R : x 7→
NC∑
i=1

∑
k∈Z2

ψi

(
(hi ∗ s)[k]

)
, (5.49)

where hi is the impulse response of a 2D convolutional filter, (hi ∗ s)[k] is the value of
the k-th pixel of the filtered image hi ∗ s, and NC is the number of channels. In the
sequel, we mainly view the (finite-size) image s as the (finite-dimensional) vector s ∈ Rd,
and since (5.49) is a special case of (5.47), we henceforth use the generic form (5.47) to
simplify the notations. We use the notation Rθ to express the dependence of R on the
aggregated set of learnable parameters θ, which will be specified when necessary. From
now on, we assume that the convex profiles ψi have Lipschitz continuous derivatives, i.e.
ψi ∈ C1,1(R).

Gradient-Step Neural Network

Given the assumptions on Rθ, the denoised image in (5.48) can be interpreted as the
unique fixed point of TRθ ,τ,α : Rd → Rd defined by

TRθ ,τ,α(s) = s− α
(
(s− y) + τ∇Rθ(s)

)
. (5.50)

Iterations of the operator (5.50) implement a gradient descent with stepsize α, which
converges if α ∈ (0, 2/(1 + τLθ)), where Lθ = Lip(∇Rθ) is the Lipschitz constant of
∇Rθ. In the sequel, we always enforce this constraint on α. The gradient of the generic
convex-ridge expression (5.47) is given by

∇Rθ(s) = WTσ(Ws), (5.51)

where W = [w1 · · ·wp]
T ∈ Rp×d and σ is a pointwise activation function whose compo-

nents (σi = ψ′
i)
p
i=1 are Lipschitz continuous and increasing. In our implementation, the

activation functions σi are shared within each channel of W. The resulting gradient-step
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operator

TRθ ,τ,α(s) = (1− α)s+ α
(
y − τWTσ(Ws)

)
(5.52)

corresponds to a one-hidden-layer convolutional NN with a bias and a skip connection.
We refer to it as a gradient-step NN. The training of a gradient-step NN will give a
CRR-NN.

5.3.3 Characterization of Good Profile Functions

In this section, we provide theoretical results to motivate our choice of the profiles ψi
or, equivalently, of their derivatives σi = ψ′

i. This will lead us to the implementation
presented in Section 5.3.4.

Existence of Minimizers and Stability of the Reconstruction

The convexity of Rθ is not sufficient to ensure that the solution set in (5.46) is nonempty
for a noninvertible forward matrix H. With convex-ridge regularizers, this shortcoming
can be addressed under a mild condition on the functions ψi (Proposition 5.5). The
implications for our implementation are detailed in Section 5.3.4.

Proposition 5.5. Let H ∈ Rm×d and ψi : R→ R, i = 1, . . . , p, be convex functions. If
argmint∈R ψi(t) ̸= ∅ for all i = 1, . . . , p, then

∅ ≠ argmin
s∈Rd

1

2
∥Hs− y∥22 +

p∑
i=1

ψi(w
T
i s). (5.53)

Proof. Set Si = argmint∈R ψi(t). Then, each ridge ψi(wT
i ·) partitions Rd into the three

(possibly empty) convex polytopes

• Ωi0 = {s ∈ Rd : wT
i s ∈ Si};

• Ωi1 = {s ∈ Rd : wT
i s ≤ inf Si};

• Ωi2 = {s ∈ Rd : wT
i s ≥ supSi}.

Based on these, we partition Rd into finitely many polytopes of the form
⋂p
i=1Ω

i
mi

, where
mi ∈ {0, 1, 2}. The infimum of the objective in (5.53) must be attained in at least one of
these polytopes, say, P =

⋂p
i=1Ω

i
mi

.

Now, we pick a minimizing sequence (sk)k∈N ⊂ P . Let M be the matrix whose rows
are the rows of H and the wT

i with mi ̸= 0. Due to the coercivity of ∥ · ∥22, we get
that Hsk remains bounded. As the ψi are convex, they are coercive on the intervals
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(−∞, inf Si] and [supSi,+∞) and, hence, wT
i sk also remains bounded. Therefore, the

sequence (Msk)k∈N is bounded and we can drop to a convergent subsequence with limit
u ∈ ran(M). The associated set

Q = {s ∈ Rd : Ms = u} = {M†u}+ ker(M) (5.54)

is a closed polytope. It holds that

dist(sk, Q) = dist
(
M†Msk + Pker(M)(sk), Q

)
≤ dist(M†Msk,M

†u)→ 0 (5.55)

as k → +∞ and, thus, that dist(P,Q) = 0. The distance of the closed polytopes P and
Q is 0 if and only if P ∩Q ≠ ∅ [243, Theorem 1]. Note that ψi(wT

i ·) is constant on P if
mi = 0. Hence, any s ∈ P ∩Q is a minimizer of (5.53).

The proof of Proposition 5.5 directly exploits the properties of ridge functions. Whether
it is possible to extend the result to more complex or even generic convex regularizers is
not known to the authors. The assumption in Proposition 5.5 is rather weak as neither
the cost function nor the one-dimensional profiles ψi need to be coercive. The existence
of a solution for Problem (5.46) is a key step towards the stability of the reconstruction
map in the measurement domain, which is given in Proposition 5.6.

Proposition 5.6. Let H ∈ Rm×d and ψi : R→ R, i = 1, . . . , p, be convex, continuously
differentiable functions with argmint∈R ψi(t) ̸= ∅. For any y1,y2 ∈ Rm let

sq ∈ argmin
s∈Rd

1

2
∥Hs− yq∥22 +

p∑
i=1

ψi(w
T
i s) (5.56)

with q = 1, 2 be the corresponding reconstructions. Then,

∥Hs1 −Hs2∥2 ≤ ∥y1 − y2∥2. (5.57)

Proof. Proposition 5.5 guarantees the existence of sq. Since the objective in (5.53) is
smooth, it holds that HT (Hsq − yq) +∇R(sq) = 0. From this, we infer that

HTH(s1 − s2) + (∇R(s1)−∇R(s2)) = HT (y1 − y2). (5.58)

Taking the inner product with (s1 − s2) on both sides gives

∥Hs1 −Hs2∥22 + (s1 − s2)
T (∇R(s1)−∇R(s2))

=(H(s1 − s2))
T (y1 − y2). (5.59)

To conclude, we use the fact that the gradient of a convex map is monotone, i.e. (s1 −
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s2)
T (∇R(s1)−∇R(s2)) ≥ 0, and apply the Cauchy-Schwarz inequality to estimate

(H(s1 − s2))
T (y1 − y2) ≤ ∥Hs1 −Hs2∥∥y1 − y2∥. (5.60)

Expressivity of Profile Functions

The gradient-step NN TRθ ,τ,α introduced in (5.52) is the key component of our training
procedure. Here, we investigate its expressivity depending on the choice of the activation
functions σi used to parametrize ∇Rθ.

Let C0,1
↑ (R) be the set of scalar Lipschitz-continuous and increasing functions on R, and

let LSm↑ (R) be the subset of increasing linear splines with at most m knots. We also
define

E(Rd) =
{
WTσ(W·) : W ∈ Rp×d, σi ∈ C0,1

↑ (R)
}

(5.61)

and, further, for any Ω ⊂ Rd,

E(Ω) =
{
f |Ω : f ∈ E(Rd)

}
. (5.62)

In the following, we set ∥f∥C(Ω) := sups∈Ω ∥f(s)∥ and ∥f∥C1(Ω) := sups∈Ω ∥f(s)∥ +
sups∈Ω ∥Jf (s)∥.

The popular ReLU activation function is Lipschitz-continuous and increasing. Unfortu-
nately, it comes with limited expressivity, as shown in Proposition 5.7.

Proposition 5.7. Let Ω ⊂ Rd be compact with a nonempty interior. Then, the set{
WTReLU(W · −b) : W ∈ Rp×d,b ∈ Rp

}
(5.63)

is not dense with respect to ∥ · ∥C(Ω) in E(Ω).

Proof. Since Ω has a nonempty interior, there exists v ∈ Rd with ∥v∥2 = 1, a ∈ R, and
δ > 0 such that for lv : R→ Rd with lv(t) = tv, it holds that lv((a− δ, a+ δ)) ⊂ Ω. Now,
we prove the statement by contradiction. If the set (5.63) is dense in E(Ω), then the set{

(Wv)TReLU(Wv · −b) : W ∈ Rp×d,b ∈ Rp
}

=

{
p∑
i=1

wiReLU(wi · −bi) : wi, bi ∈ R

}
(5.64)

is dense in E((a− δ, a+ δ)). Note that all functions f in (5.63) can be rewritten in the
form

f(x) =

p1∑
i=1

ReLU(wix− bi) +
p2∑
i=1

(−ReLU(−w̃ix− b̃i)), (5.65)
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where wi, w̃i ∈ R+, bi, b̃i ∈ R, and p1 + p2 = p. Every summand in this decomposition is
an increasing function. For the continuous and increasing function

g : t 7→ ReLU(t− a+ δ/2)− ReLU(t− a− δ/2), (5.66)

the density implies that there exists f of the form (5.65) satisfying ∥g − f∥C((a−δ,a+δ)) ≤
δ/16. The fact that g(a+ δ/2) = g(a+ δ) implies that (f(a+ δ)− f(a+ δ/2)) ≤ δ/8. In
addition, it holds that

f(a+ δ)− f(a+ δ/2)

≥
p1∑
i=1

ReLU
(
wi(a+ δ)− bi

)
− ReLU

(
wi(a+ δ/2)− bi

)
≥

∑
{i:bi≤wi(a+δ/2)}

wi(a+ δ − a− δ/2)

=
∑

{i:bi≤wi(a+δ/2)}
wiδ/2. (5.67)

Hence, we conclude that
∑

{i:bi≤wi(a+δ/2)}wi ≤ 1/4. Similarly, we can show that∑
{i:b̃i≥w̃i(δ/2−a)} w̃i ≤ 1/4. Using these two estimates, we get that

7

8
δ = g(a+ δ/2)− g(a− δ/2)− 1

8
δ

≤ f(a+ δ/2)− f(a− δ/2)

≤
∑

{i:bi≤wi(a+δ/2)}
δwi +

∑
{i:b̃i≥w̃i(δ/2−a)}

δw̃i ≤
δ

2
, (5.68)

which yields a contradiction. Hence, the set (5.63) cannot be dense in E(Ω).

Remark 5.1. Any increasing linear spline s with one knot is fully defined by the knot
position t0 and the slope on its two linear regions (s− and s+). This can be expressed as
s = uTReLU(u(t− t0)) with u = (

√
s+,−√s−). Hence, among one-knot spline activation

functions, the ReLU already achieves the maximal representational power for CRR-NNs.
We infer that increasing PReLU and Leaky-ReLU induce the same limitations as the ReLU
when plugged into CRR-NNs.

In contrast, with Proposition 5.8, the set E(Ω) can be approximated using increasing
linear-spline activation functions.

Proposition 5.8. Let Ω ⊂ Rd be compact and m ≥ 2. Then, the set{
WTσ(W·) : W ∈ Rp×d, σi ∈ LSm↑ (R)

}
(5.69)

is dense with respect to ∥ · ∥C(Ω) in E(Ω).
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Proof. First, we consider the case d = 1. By rescaling and shifting, we can assume that
S ⊂ [0, 1] without loss of generality. Let f ∈ C0,1

↑ ([0, 1]), and φn be the linear-spline
interpolator of f at locations 0, 1/2n, . . . , (1− 1/2n), 1. Since f is increasing and φn is
piecewise linear, φn is also increasing. Further, we get that

∥f − φn∥C([0,1]) ≤ max
k∈{1,...,2n}

f(k/2n)− f((k − 1)/2n). (5.70)

Continuous functions on compact sets are uniformly continuous, which directly implies
that ∥f − φn∥C([0,1]) → 0. Now, we represent φn as a linear combination of increasing
linear splines with 2 knots

φn(x) = f(0) +
2n∑
k=1

ak,ng
(
2n · −(k − 1)

)
, (5.71)

where ak,n = (f(k/2n)− f((k − 1)/2n)) and g is given by

g(x) =


0, x ≤ 0

x, 0 < x ≤ 1

1, otherwise.

(5.72)

Finally, (5.71) can be recast as φn(x) = wT
nσn(xwn), where each σn,i is an increasing

linear spline with 2 knots and w ∈ R2n . This concludes the proof for d = 1.

Now, we extend this result to any d ∈ N+. Let Φ : Rd → Rd be given by s 7→WTσ(Ws)

with components σi ∈ C0↑(R). Let Si = {wT
i s : s ∈ Ω}, where wi ∈ Rd is the ith row of

W. Using the result for d = 1, each σi can be approximated in C(Si) by a sequence
of functions (uTn,iφn(un,i·))n∈N, where φn has components φn,i ∈ LS2↑(R) and un,i are
vectors with a size that does not dependend on i. Further, the un,i can be chosen such
that the jth component is only nonzero for a single i. Let Un be the matrix whose
columns are un,i. Then, we directly have that

lim
n→∞

max
s∈{y∈Rd:yi∈Si}

∥∥∥UT
nφn(Uns)− σ(s)

∥∥∥
2
= 0. (5.73)

Hence, the sequence of functions ((UnW)Tφn(UnW·))n∈N converges to Φ in C(Ω). This
concludes the proof.

In the end, Propositions 5.7 and 5.8 imply that using linear-spline activation functions
instead of the ReLU for the σi enables us to approximate more convex regularizers Rθ.

Corollary 5.1. Let Ω ⊂ Rd be convex and compact with a nonempty interior. Then, the
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regularizers of the form (5.47) with Jacobians of the form (5.69) are dense in{
p∑
i=1

ψi(w
T
i s) : ψi ∈ C1,1(R) convex,wi ∈ Rd

}
(5.74)

with respect to ∥ · ∥C1(Ω). The density does not hold if we only consider regularizers with
Jacobians of the form (5.63).

Proof. Let R be in (5.74). Consequently, its Jacobian is in E(Ω). Due to Proposition 5.7,
the regularizers with Jacobians of the form (5.63) cannot be dense with respect to ∥·∥C1(Ω).
Meanwhile, by Proposition 5.8, we can choose s0 ∈ Ω and corresponding regularizers Rn of
the form (5.47) with JRn ∈ (5.69), ∥JRn −JR∥C(Ω) → 0 as n→∞, and Rn(s0) = R(s0).
Now, the mean-value theorem readily implies that ∥Rn −R∥C1(Ω) → 0 as n→∞.

Motivated by these results, we propose to parameterize the σi with learnable linear-spline
activation functions. This results in profiles ψi that are splines of degree 2, being piecewise
polynomials of degree 2 with continuous derivatives.

5.3.4 Implementation

Training a Multi-Gradient-Step Denoiser

Let {sm}Mm=1 be a set of clean images and let {ym}Mm=1 = {sm + nm}Mm=1 be their noisy
versions, where nm is the noise realisation. Given a loss function L, the natural procedure
to learn the parameters of Rθ based on (5.48) is to solve

θ∗
t , τ

∗
t ∈ argmin

θ,τ

M∑
m=1

L
(
T t
Rθ ,τ,α

(ym), sm
)

(5.75)

for the limiting case t =∞ and an admissible stepsize α. Here, T t
Rθ ,τ,α

denotes the t-fold
composition of the gradient-step NN given in (5.52). In principle, one can optimize the
training problem (5.75) with t =∞. This forms a bilevel optimization problem that can
be handled with implicit differentiation techniques [234, 244–246]. However, it turns out
that it is unnecessary to fully compute the fixed-point T∞

Rθ ,τ,α
(ym) to learn Rθ in our

constrained setting. Instead, we approximate T∞
Rθ ,τ,α

(ym) in a finite number of steps.
This specifies the t-step denoiser NN T t

Rθ ,τ,α
, which is trained such that

T t
Rθ ,τ,α

(ym) ≃ sm (5.76)

for m = 1, . . . ,M . This corresponds to a partial minimization of (5.48) with initial guess
ym or, equivalently, as the unfolding of the gradient-descent algorithm for t iterations with
shared parameters across iterations [47, 247]. For small t, this yields a fast-to-evaluate
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denoiser. Since it is not necessarily a proximal operator, its interpretability is, however,
limited.

Once the gradient-step NN is trained, we can plug the corresponding Rθ into (5.48),
and fully solve the optimization problem. This yields an interpretable proximal denoiser.
In practice, turning a t-step denoiser into a proximal one requires the adjustment of τ
and the addition of a scaling parameter, as described in Section 5.3.4. Our numerical
experiments in Section 5.3.6 indicate that the number of steps t used for training the
multi-gradient-step denoiser has little influence on the test performances of both the t-step
and proximal denoisers. Hence, training the model within a few minutes is possible. Note
that our method bears some resemblance with the variational networks (VN) proposed
in [240], but there are some fundamental differences. While the model used in [240]
also involves a sum of convex ridges with learnable profiles, these are parameterized by
radial-basis functions and only the last step of the gradient descent is included in the
forward pass. The authors of [240] observed that an increase in t deters the denoising
performances, which is not the case for our architecture. More differences are outlined in
Section 5.3.4.

Implementation of the Constraints

Our learning of the t-step denoiser is constrained as follows.

1. The activation functions σi must be increasing (convexity constraint on ψi).

2. The activation functions σi must take the value 0 somewhere (existence constraint).

3. The stepsize in (5.52) should satisfy α ∈ (0, 2/(1 + τLθ)) (convergent gradient-
descent).

Since the methods to enforce these constraints can have a major impact on the final
performance, they must be designed carefully.

1. Monotonic Splines

Here, we address Constraints (i) and (ii) simultaneously. Similar to our previous contri-
butions in Sections 5.1 and 5.2, we use learnable linear splines σci : R→ R with (M + 1)

uniform knots νm = (m−M/2)∆, m = 0, . . . ,M , where ∆ is the spacing of the knots.
For simplicity, we assume that M is even. The learnable parameter ci = (cim)

M
m=0 ∈ RM+1

defines the value σci(νm) = cim of σci at the knots. To fully characterize σci , we extend
it by the constant value ci0 on (−∞, ν0] and ciM on [νM ,+∞). This choice results in a
linear extension for the corresponding indefinite integrals that appear for the regularizer
Rθ in (5.48). Further details on the implementation of learnable linear splines can be
found in Appendix 5.4.2.
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Let D ∈ RM×(M+1) be the one-dimensional finite-difference matrix with (Dci)m =

cim+1 − cim for m = 0, . . . , (M − 1). As σci is piecewise-linear, it holds that

σci is increasing⇔ Dci ≥ 0. (5.77)

In order to optimize over {σc : Dc ≥ 0}, we reparameterize the linear splines as σPcvx(ci),
where

Pcvx(·) = CD†ReLU(D ·) (5.78)

is a nonlinear projection operator onto the feasible set. There, D† denotes the Moore-
Penrose inverse of D and C = (IdM+1 − 1M+1e

T
M/2+1) shifts the output such that the

(M/2 + 1)th element is zero. In effect, this projection simply preserves the nonnegative
finite differences between entries in ci and sets the negative ones to zero. As the
associated profiles ψi are convex and satisfy ψ′

i(0) = σi(0) = 0, Proposition 5.5 guarantees
the existence of a solution for Problem (5.46).

The proposed parameterization σPcvx(ci) of the splines has the advantage to use uncon-
strained trainable parameters ci. The gradient of the objective in (5.75) with respect to
ci directly takes into account the constraint via Pcvx. This approach differs significantly
from the more standard projected gradient descent—as done in [240] to learn convex
profiles—where the ci would be projected onto {ci : Dci ≥ 0} after each gradient step.
While the latter routine is efficient for convex problems, we found it to perform poorly
for the non-convex problem (5.75). For an efficient forward and backward pass with
auto-differentiation, Pcvx is implemented with the cumsum function instead of an explicit
construction of the matrix D†, and the computational overhead is very small.

2. Sparsity-Promoting Regularization

The use of learnable activation functions can lead to overfitting and can weaken the
generalizability to arbitrary operators H. Hence, the training procedure ought to promote
simple linear splines. Here, it is natural to promote the better-performing splines with the
fewest knots. This is achieved by penalizing the second-order total variation ∥LPcvx(ci)∥1
of each spline σPcvx(ci), where L ∈ R(M−1)×(M+1) is the second-order finite-difference
matrix. The final training loss then reads

M∑
m=1

L
(
T t
Rθ ,τ,α

(ym), sm
)
+ λ

p∑
i=1

∥LPcvx(ci)∥1, (5.79)

where λ ∈ R+ allows one to tune the strength of the regularization.

3. Convergent Gradient Steps

Constraint (iii) guarantees that the t-fold composition of the gradient-step NN T t
Rθ ,τ,α

computes the actual minimizer of (5.48) for t→∞. Therefore, it should be enforced in
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any sensible training method. In addition, it brings stability to the training. To fully
exploit the model capacity, even for small t, we need a precise upper-bound for Lip(∇Rθ).
The estimate that we provide in Proposition 5.9 is sharper than the classical bound
derived from the sub-multiplicativity of the Lipschitz constant for compositional models.
It is easily computable as well.

Proposition 5.9. Let Lθ denote the Lipschitz constant of ∇Rθ(s) = WTσ(Ws) with
W ∈ Rp×d and σi ∈ C0,1↑ (R). With the notation Σ∞ = diag(∥σ′1∥∞, . . . , ∥σ′p∥∞) it holds
that

Lθ ≤ ∥WTΣ∞W∥ = ∥
√
Σ∞W∥2, (5.80)

which is tighter than the naive bound

Lθ ≤ Lσ∥W∥2. (5.81)

Proof. The bound (5.81) is a standard result for compositional models. Next, we note
that the Hessian of Rθ reads

HRθ
(s) = WTΣ(Ws)W, (5.82)

where Σ(z) = diag(σ′1(z1), . . . , σ
′
p(zp)). Further, it holds that Lθ ≤ sups∈Rd ∥HRθ

(s)∥.
Since the functions σi are increasing, we have for every s ∈ Rp that Σ∞ −Σ(Ws) ⪰ 0

and, consequently,
WT

(
Σ∞ −Σ(Ws)

)
W ⪰ 0. (5.83)

Using the Courant-Fischer theorem, we now infer that the largest eigenvalue of WTΣ∞W

is greater than that of WTΣ(Ws)W.

The bounds (5.80) and (5.81)are in agreement when the activation functions are identical,
which is typically not the case in our framework. For the 14 NNs trained in Section 5.3.6,
we found that the improved bound (5.80) was on average 3.2 times smaller than (5.81). As
(5.80) depends on the parameters of the model, it is critical to embed the computation into
the forward pass. Otherwise, the training gets unstable. This is done by first estimating
the normalized eigenvector u corresponding to the largest eigenvalue of WTΣ∞W via
the power-iteration method in a non-differentiable way, for instance under the torch.no_-
grad() context-manager. Then, we directly plug the estimate Lθ ≃ ∥WTΣ∞Wu∥ in
our model and hence embed it in the forward pass. This approach is inspired by the
spectral-normalization technique proposed in [211], which is a popular and efficient way
to enforce Lipschitz constraints on fully connected linear layers. Note that a similar
simplification is also proposed and studied in the context of deep equilibrium models [248].
In practice, the estimate u is stored so that it can be used as a warm start for the next
computation of Lθ.
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From Gradients to Potentials

To recover the regularizer R from its gradient ∇R, one has to determine the profiles ψi,
which satisfy ψ′

i = σPcvx(ci). Hence, each ψi is a piecewise polynomial of degree 2 with
continuous derivatives, i.e. a spline of degree two. These can be expressed as a weighted
sum of shifts of the rescaled causal B-spline of degree 2 [249], more precisely as

ψi =
∑
k∈Z

dikβ
2
+

( · − k
∆

)
. (5.84)

To determine the coefficients (dik)k∈Z, we use the fact that (β2+)′(k) = (δ1,k−δ2,k), where δ
is the Kronecker delta, see [249] for details. Hence, we obtain that dik−dik−1 = (Pcvx(c

i))k,
which defines (dik)k∈Z up to a constant. This constant can be set arbitrarily as it does not
affect ∇R. Due to the finite support of β2+, one can efficiently evaluate ψi and then R.

Boosting the Universality of the Regularizer

The learnt Rθ depends on the training task (denoising) and on the noise level. To solve
a generic inverse problem, in addition to the regularization strength τ , we propose to
incorporate a tunable scaling parameter µ ∈ R+ and to compute

argmin
s∈Rd

1

2
∥Hs− y∥22 + τ/µRθ(µs). (5.85)

While the scaling parameter is irrelevant for homogeneous regularizers such as the
Tikhonov and TV, it is known to boost the performance within the PnP framework when
applied to the input of the denoiser [250]. During the training of t-step denoisers, we
also learn a scaling parameter µ by letting the gradient step NN (5.50) become

TRθ ,τ,µ,α(s) = s− α
(
(s− y) + τ∇Rθ(µs)

)
, (5.86)

with now α < 2/(1 + τµLip(∇Rθ)).

Reconstruction Algorithm

The objective in (5.85) is smooth with Lipschitz-continuous gradients. Hence, a recon-
struction can be computed through gradient-based methods. We found the fast iterative
shrinkage-thresholding algorithm (FISTA, Algorithm 3) to be well-suited to the problem
while it also allows us to enforce the positivity of the reconstruction. Other efficient
algorithms for CRR-NNs include the adaptive gradient descent (AdGD) [251] and its
proximal extension [252]; both benefit from a stepsize based on an estimate of the local
Lipschitz constant of ∇R instead of a more conservative global one.
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Algorithm 3 FISTA [23] to solve (5.85)
Input: s0 ∈ Rd, y ∈ Rm, τ ≥ 0, µ > 0
Set k = 0, z0 = s0, α = 1/(µτLip(∇R) + ∥H∥2), t0 = 1
while tolerance not reached do

sk+1 = (zk − α(HT (Hzk − y) + τ∇R(µzk)))+
tk+1 = (1 +

√
4t2k + 1)/2

zk+1 = sk+1 +
tk−1
tk+1

(sk+1 − sk)

k ← k + 1
end while
Output: sk

Table 5.14: Properties of different regularization frameworks.

Explicit Provably Universal Shallow Smooth
cost convergent reg.

TV ✓ ✓ ✓ ✓ ✗

ACR ✓ ✓ ✗ ✗ ✗

DnICNN ✓ ✓ ✓ ✗ ✓

PnP-βCNN ✗ ✓ ✓ ✗ -
PnP-DnCNN ✗ ✗ ✓ ✗ -
CRR-NN ✓ ✓ ✓ ✓ ✓

5.3.5 Connections to Deep-Learning Approaches

Our proposed CRR-NNs have a single nonlinear layer, which is rather unusual in an the
era of deep learning. To further explore their theoretical properties, we briefly discuss
two successful deep-learning methods, namely, the PnP and the explicit design of convex
regularizers, and state their most stable and interpretable versions. This will clarify
the notions of strict convergence, interpretability, and universality. All the established
comparisons are synthesized in Table 5.14.

Plug-and-Play and Averaged Denoisers

1. Convergent Plug-and-Play

The training procedure proposed for CRR-NNs leads to a convex regularizer Rθ, whose
proximal operator (5.48) is a good denoiser. Conversely, the proximal operator can be
replaced by a powerful denoiser D in proximal algorithms, which is referred to as PnP.
In the PnP-FBS algorithm derived from (5.46) [23, 87], the reconstruction is carried out
iteratively via

sk+1 = D
(
sk − αHT (Hsk − y)

)
, (5.87)
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Figure 5.15: The distance between the two noisy images (x1 + ϵ1) and (x2 + ϵ2) can be
smaller than that between their clean versions x1 and x2. This limits the performance of a
nonexpansive denoiser D since ∥D(x1+ϵ1)−D(x2+ϵ2)∥ ≤ ∥x1+ϵ1−(x2+ϵ2)∥ < ∥x1−x2∥
in the scenario depicted.

where α is the stepsize and D : Rd → Rd is a generic denoiser. As mentioned in Section
5.2, a standard set of sufficient conditions15 to guarantee convergence of the iterations
(5.87) is that

1. D is averaged, namely D = βN+ (1− β)Id where β ∈ (0, 1) and N : Rn → Rn is a
nonexpansive mapping;

2. α ∈ [0, 2/∥H∥2);

3. the update operator in (5.87) has a fixed point.

In general, Condition (i) is not sufficient to ensure that D is the proximal operator of
some convex regularizer R. Hence, its interpretability is still limited. Further, Condition
(ii) implies that s 7→

(
s− αHT (Hs− y)

)
is averaged. Hence, as averagedness is preserved

through composition, the iterates are updated by the application of an averaged operator
(see [55] for details). With Condition (iii), the convergence of the iterations (5.87) follows
from Opial’s convergence theorem. Beyond convergence, it is known that averaged
denoisers with β ≤ 1/2 yield a stable reconstruction map in the measurement domain
(see Section 5.2.2), in the same sense as given in Proposition 5.6 for CRR-NNs.

2. Constraint vs Performance

As discussed in [66, 201], the performance of the denoiser D is in direct competition
with its averagedness. A simple illustration of this issue is provided in Figure 5.15.
Unsurprisingly, Condition (i) is not met by any learnt state-of-the-art denoiser, and it is
usually also relaxed in the PnP literature.

For instance, it is common to use non-1-Lipschitz learning modules, such as batch
normalization [57], or to only constrain the residual (Id−D) to be nonexpansive, which
enables one to train a nonexpansive NN in a residual way [55, 57, 253], with the caveat
that Lip(D) can be as large as 2. Another recent approach consists of penalizing during
training either the norm of the Jacobian of D at a finite set of locations [66, 254] or of
another local estimate of the Lipschitz constant [246, 255]. Interestingly, even slightly
relaxed frameworks usually yield significant improvements in the reconstruction quality.

15Here, H can be noninvertible; otherwise, weaker conditions exist [57].
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However, they do not provide convergence guarantees for ill-posed inverse problems, which
is problematic for sensitive applications such as biomedical imaging.

3. Averaged Deep NNs

To leverage the success of deep learning, N is typically chosen as a deep CNN of the
form16

N = CK ◦ σ ◦ · · · ◦C2 ◦ σ ◦C1, (5.88)

where Ck are learnable convolutional layers and σ is the activation function [57, 211].
To meet Condition (i), N must be nonexpansive, which one usually achieves by con-
straining Ck and σ to be nonexpansive. This is predicated on the sub-multiplicativity
of the Lipschitz constant with respect to composition; as in Lip(f ◦ g) ≤ Lip(f)Lip(g).
Unfortunately, this bound is not sharp and may grossly overestimate Lip(f ◦ g). For deep
models, this overestimation aggravates since the bound is used sequentially. Therefore, for
averaged NNs, the benefit of depth is unclear because the gain of expressivity brought by
the many layers is reduced by a potentially very pessimistic Lipschitz-constant estimate.
Put differently, these CNNs can easily learn the zero function while they struggle to
generate mappings with a Lipschitz constant close to one. For the same reason, the
learning process is also prone to vanishing gradients in this constrained setting. Under
Lipschitz constraints, the zero-gradient region of the popular ReLU activation function
causes provable limitations [212, 214, 256]. As we saw in Section 5.2, some of these can
be resolved by the use of 1-Lipschitz learnable linear spline activation functions instead.

In this work, CRR-NNs are compared against two variants of PnP.

• PnP-DnCNN corresponds to the popular implementation given in [57]. The
denoiser is a DnCNN with 1-Lipschitz linear layers (the constraints are therefore
enforced on the residual map only) and unconstrained batch-normalization modules.
Hence this method has no convergence and stability guarantees, especially for
ill-posed inverse problems.

• PnP-βCNN corresponds to PnP equipped with a provably averaged denoiser (the
methods we saw in Section 5.2). This method comes with similar guarantees as
CRR-NNs but less interpretability. It is included to convey the message that the
standard way of enforcing Lipschitz constraints affects expressivity as reported for
instance in [257]. With that in mind, CRR-NNs provide a way to overcome this
limitation.

4. Construction of Averaged Denoisers from CRR-NNs

The training of CRR-NNs offers two ways to build averaged denoisers. Since proximal
16The benefit of standard skip connections combined with the preservation of the nonexpansiveness of

the NN is unclear.
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operators are half-averaged, we directly get that the proximal denoiser (5.48) is an
averaged operator. For the t-step denoiser, the following holds.

Proposition 5.10. The t-step denoiser (5.76) is averaged for α ∈ [0, 2/(2 + τLθ)] with
Lθ = Lip(∇Rθ).

Proof. The t-step denoiser is built from the gradient-step operator TRθ ,τ,α. Here, we use
the more explicit notation

T (s,y) = s− α((s− y) + τ∇Rθ(s)). (5.89)

This makes explicit the dependence on y and, for simplicity, the dependence on Rθ, τ , and
α are omitted. It is known that T is averaged with respect to s for α ∈ (0, 2/(1 + τLθ)).
This ensures convergence of gradient descent, but it does not characterize the denoiser itself.
The t-step denoiser depends on the initial value s0 = y and is determined by the recurrence
relation sk+1 = T (sk,y). For the map Lk : y 7→ sk, it holds that Lk+1 = U ◦Lk + αId,
where U = Id− α(Id+ τ∇Rθ). The Jacobian of U reads JU = I− α(I+ τHRθ

) and
satisfies that ((1− α)− ατLθ)I ⪯ JU ⪯ (1− α)I. From this, we infer that

Lip(U) ≤ max
(
ατLθ − (1− α), 1− α

)
. (5.90)

Since α ≤ 2/(2 + τLθ), we then get that Lip(U) ≤ (1 − α). Hence, Lip(U ◦ Lk) ≤
(1− α)Lip(Lk). Since L0 = Id is averaged, the same holds by induction for all the t-step
denoisers Lt.

Note that for α ∈ (2/(2+ τLθ), 2/(1+ τLθ)), the 1-step denoiser is also averaged but, for
1 < t < +∞, it remains an open question. The structure of t-step and proximal denoisers
differs radically from averaged CNNs as in (5.88). For instance, the t-step denoiser uses the
noisy input y in each layer. Remarkably, these skip connections preserve the averagedness
of the mapping. While constrained deep CNNs struggle to learn mappings that are not
too contractive, both proximal and t-step denoisers can easily reproduce the identity by
choosing Rθ = 0. This seems key to account for the fact that the proposed denoisers
outperform averaged deep NNs, while they can be trained two orders of magnitude faster,
see Section 5.3.6.

Deep Convex Regularizers

Another approach to leverage deep-learning-based priors with stability and convergence
guarantees consists of learning a deep convex regularizer R. These priors are typically
parameterized with an ICNN, which is a NN with increasing and convex activation
functions along with positive weights for some linear layers [258]. There exist various
strategies to train the ICNN.
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The adversarial convex regularizer (ACR) framework [231, 259] relies on the adversarial
training proposed in [236]. The regularizer is learnt by minimizing its value on clean
images and maximizing its value on unregularized reconstructions. This allows for learning
non-smooth R and also avoids bilevel optimization. A key difference with CRR-NNs and
PnP methods is that ACR is modality-depend (it is not universal). In addition, with
R being non-smooth, it is challenging to exactly minimize the cost function, but the
authors of [231, 259] did not find any practical issues in that matter using gradient-based
solvers. To boost the performance of R, they also added a sparsifying filter bank to the
ICNN, namely, a convex term of the form ∥Us∥1, where the linear operator U is made of
convolutions learnt conjointly with the ICNN.

In [64], the regularizer is trained so that its gradient step is a good blind Gaussian denoiser.
There, the authors use ELU activations in the ICNN17 to obtain a smooth R.

The aforementioned ICNN-based frameworks [64, 231, 259] have major differences with
CRR-NNs: (i) they typically require orders of magnitude more parameters; (ii) the
computation of ∇R, used to solve inverse problems, requires one to back-propagate
through the deep CNN which is time-consuming; (iii) the role of each parameter is not
interpretable because of the depth of the model (see Section 5.3.6). As we shall see,
CRR-NNs are much faster to train and tend to perform better (see Section 5.3.6).

5.3.6 Experimental Results

Training of CRR-NNs

The CRR-NNs are trained on a Gaussian-denoising task with noise levels σ ∈ {5/255, 25/255}.
The same procedure as in [57, 154] is used to form 238,400 patches of size (40× 40) from
400 images of the BSD500 dataset [227]. For validation, the same 12 images as in [57, 154]
are used. The weights W in Rθ are parameterized as the composition of two zero-padded
convolutions with kernels of size (7× 7) and with 8 and 32 output channels, respectively.
This composition of two linear components, although not more expressive theoretically,
facilitates the patch-based training of CRR-NNs. For inference, the convolutional layer
can then be transformed back to a single convolution. Similar to [234], the kernels of the
convolutions are constrained to have zero mean. Lastly, the linear splines have M +1 = 21

equally distant knots with ∆ = 0.01, and the sparsifying regularization parameter is
λ = 2× 10−3(255σ). We initially set ci = 0.

The CRR-NNs are trained for 10 epochs with t ∈ {1, 2, 5, 10, 20, 30, 50} gradient steps.
For this purpose, the ℓ1 loss is used for L along with the Adam optimizer with its default
parameters (β1, β2) = (0.9, 0.999), and the batch size is set to 128. The learning rates are
decayed with rate 0.75 at each epoch and initially set to 0.05 for the parameters τ and µ,

17The authors also explore non-convex regularization but they offer no guarantees on computing the
global minimum.
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Table 5.15: Convex models and averaged denoisers tested on BSD68.

σ = 5/255 σ = 25/255

TV*,‡ [261] 36.41 27.48
Higher-order MRFs*,‡ [234] NA 28.04
VN1,t†[240] NA 27.69
βCNNσ

‡ 36.86 27.93
DISTA

‡ [260] 36.54 NA
GS-DnICNN†[64] 36.85 27.76
DADMM

‡[260] 36.62 NA
CRR-NN-ReLU (t-step)†,‡ 35.50 26.75
CRR-NN (t-step)†,‡ 36.97 28.12
CRR-NN (proximal)*,‡ 36.96 28.11
* Full minimization of a convex function
† Partial minimization of a convex function
‡ Stable steps (averaged layers)

to 10−3 for W, and to 5× 10−5 for ci.

Recall that for a given t, the training yields two denoisers.

• t-Step Denoiser: This corresponds to T t
Rθ ,τ,α

and is the denoiser optimized during
training. It is natural to compare it to properly constrained PnP methods based on
averaged deep denoisers as in [157, 260], which in general also do not correspond to
minimizing an energy.

• Proximal Denoiser: The learnt regularizer Rθ is plugged into (5.85) with H = I,
and the solution is computed using Algorithm 3 with small tolerance (10−6 for
the relative change of norm between consecutive iterates). The parameters τ and
µ are tuned on the validation dataset with the coarse-to-fine method given in
Appendix 5.4.7. This important step enables us to compensate for the gap between
(i) gradient-step training and full minimization, and (ii) training and testing noise
levels, if different.

Denoising: Comparison with Other Methods

Although not the final goal, image denoising yields valuable insights into the training
of CRR-NNs. It also enables us to compare CRR-NNs to the related methods given in
Table 5.15 on the standard BSD68 test set.

Now, we briefly give the implementation details of the various frameworks. CRR-NN-
ReLU models are trained in the same way as CRR-NNs, but with ReLU activation
functions (with learnable biases) instead of linear splines. To emulate [64], we train
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Figure 5.16: Test denoising performance of CRR-NNs for noise level σ = 5/255 and
σ = 25/255 versus the number of gradient steps used for training, the denoiser type
(t-step vs proximal), and the noise level used for training.

a DnICNN with the same architecture (ELU activations, 6 layers, and 128 channels
per layer, 745 344 parameters) as a gradient step denoiser for 200 epochs, separately
for σ ∈ {5/255, 25/255}, and refer to it as GS-DnICNN. For the averaged deep CNN
denoiser βCNNσ = βN+(1−β)Id, we took N as the LLS network (with λ = 10−6) from
Section 5.2, trained as a denoiser separately for σ ∈ {5/255, 25/255}, and we set β = 0.99.
The other reported frameworks do not provide public implementations. Therefore, the
numbers are taken from the corresponding papers. Lastly, the TV denoising is performed
with the algorithm proposed in [261]. The results for all models are presented in Table 5.15
and Figure 5.16.

• t-Step/Averaged Denoisers: The CRR-NN-ReLU models perform poorly and
confirms that ReLU is not well-suited to our setting. This limitation of ReLU was
also observed in our experiments of Section 5.2 in the context of 1-Lipschitz denoisers.
Our models improve over the gradient-step denoisers parameterized with ICNNs,
even though the latter has many more parameters. The CRR-NN implementation
improves over the special instance VN1,t of variational-network denoisers proposed
in [240], which also partially minimizes a convex cost. With a convex model similar
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to CRR-NNs (see Section 5.3.4 for a discussion), it is shown that an increase in
t decreases the performance (reported as VN1,t

24 in [240, Figure 5]). The model
VN1,t cannot compete with the proximal denoiser trained with bilevel optimization
in [234]. By contrast, for σ = 25/255 we obtain an improvement over VN1,t of
0.2dB for t = 1, and more than 0.6dB as t increases. Note that, in [240], the layers
of the t-step VN1,t denoiser are not guaranteed to be averaged. Our models also
outperform the averaged βCNNσ (+0.1dB for σ = 5, +0.2dB for σ = 25/255), and
the two averaged denoisers DISTA and DADMM [260] (+0.4/+0.3dB for σ = 5/255).
In their simplest form, the latter are built with fixed linear layers (patch-based
wavelet transforms) and learnable soft-thresholding activation functions.

• Proximal Denoisers: Our models yield slight improvements over the higher-
order Markov random field (MRF) model in the pioneering work [234] (28.04dB vs
28.11dB for σ = 25/255). With a similar architecture—but with fixed smoothed
absolute value ψi—the latter approach involves a computationally intensive bilevel
optimization with second-order solvers. Here, we show that a few gradient steps
for training already suffice to be competitive. This leads to ultrafast training and
bridges the gap between higher-order MRF models and VN denoisers. Lastly, we
remark that our proximal denoisers are robust to a mismatch in the training and
testing noise levels.

Biomedical Image Reconstruction

The six CRR-NNs trained on denoising with t ∈ {1, 10, 50} and σ ∈ {5/255, 25/255} are
now used to solve the MRI and CT reconstruction problems described in the experiments
of Section 5.2.

1. Reconstruction Frameworks

A reconstruction with isotropic TV regularization is computed with FISTA [23], in which
proxR is computed as in [26] to enforce positivity. We also consider reconstructions
obtained with the PnP method with (i) provably averaged denoisers βCNNσ (σ = 5, 25);
and (ii) the popular pretained DnCNNs [57] (σ = 5, 15, 40). The latter are residual
denoisers with 1-Lipschitz convolutional layers and batch normalization modules, which
yield a non-averaged denoiser with no convergence guarantees for ill-posed problems. To
adapt the strength of the denoisers, in addition to the training noise level, we use relaxed
denoisers Dγ = γD+ (1− γ)Id for all denoisers D, where γ ∈ (0, 1] is tuned along with
the stepsize α given in (5.87). We only report the performance of the best-performing
setting. The ACR framework [231, 259] yields a convex regularizer for (5.46) that is
specifically designed to the described CT problem. To be consistent with [231, 259], we
apply 400 iterations of gradient descent, even though the objective is nonsmooth, and
tune the stepsize and τ . The results are consistent with those reported in [231, 259].

140



Convergent Iterative Image-Reconstruction Methods Chapter 5

Table 5.16: Single-coil MRI.

2-fold 4-fold
PSNR SSIM PSNR SSIM

PD PDFS PD PDFS PD PDFS PD PDFS

Zero-fill 33.32 34.49 0.871 0.872 27.40 29.68 0.729 0.745
TV 39.22 37.73 0.947 0.917 32.44 32.67 0.833 0.781
PnP-βCNN 40.06 38.63 0.955 0.931 32.81 33.04 0.859 0.817
CRR-NN 40.95 38.91 0.961 0.934 33.99 33.75 0.880 0.831

PnP-DnCNN [57] 40.52 39.02 0.956 0.935 35.24 34.63 0.884 0.840

Table 5.17: CRR-NN: Single-coil MRI versus training setup.

2-fold 4-fold
PSNR SSIM PSNR SSIM

image σtrain t PD PDFS PD PDFS PD PDFS PD PDFS

BSD 5/255 1 40.55 38.71 0.959 0.932 33.32 33.37 0.866 0.819
BSD 5/255 10 40.52 38.69 0.959 0.932 33.30 33.36 0.865 0.817
BSD 5/255 50 40.50 38.67 0.958 0.931 33.29 33.32 0.865 0.816
BSD 25/255 1 40.75 38.84 0.960 0.934 33.62 33.60 0.875 0.828
BSD 25/255 10 40.78 38.81 0.960 0.933 33.63 33.59 0.875 0.826
BSD 25/255 50 40.71 38.77 0.960 0.932 33.57 33.54 0.872 0.824
MRI 5/255 10 40.95 38.91 0.961 0.934 33.99 33.75 0.880 0.831
MRI 25/255 10 40.61 38.73 0.959 0.932 33.93 33.71 0.878 0.830

To assess the dependence of CRR-NNs on the image domain, we also train models for
Gaussian denoising of CT and MRI images (t = 10, σ ∈ {5/255, 25/255}). The training
procedure is the same as for BSD image denoising, but a larger kernel size of 11 was
required to saturate the performance.

The hyperparameters for all these methods are tuned to maximize the average PSNR
over the validation set with the coarse-to-fine method given in Appendix 5.4.7.

2. Results and Discussion For each modality, a reconstruction example is given
for each framework in Figures 5.17 and 5.18. The PSNR and SSIM values for the test
set given in Tables 5.16, 5.18, and 5.20 attest that CRR-NNs consistently outperform
the other frameworks with comparable guarantees. It can be seen from Tables 5.17,
5.19, and 5.21 that the improvements hold for all setups explored to trained CRR-NNs.
The training of CRR-NNs on the target image domain allows for an additional small
performance boost. The performances of CRR-NNs are close to the ones of PnP-DnCNN,
which has however no guarantees and little interpretability. PnP-DnCNN typically yields
artifact-free reconstructions but is more prone to over-smoothing (Figure 5.17) Lastly,
observe that the properly constrained PnP-βCNN is not always better than TV. This
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Table 5.18: Multi-coil MRI.

4-fold 8-fold
PSNR SSIM PSNR SSIM

PD PDFS PD PDFS PD PDFS PD PDFS

HTy 27.71 29.94 0.751 0.759 23.80 27.19 0.648 0.681
TV 38.06 37.31 0.935 0.914 32.77 33.38 0.850 0.824
PnP-βCNN 38.68 37.96 0.943 0.924 32.75 33.61 0.859 0.835
CRR-NN 39.54 38.29 0.950 0.927 34.29 34.50 0.881 0.852

PnP-DnCNN [57] 39.55 38.52 0.947 0.929 35.11 35.14 0.881 0.858

Table 5.19: CRR-NN: Multi-coil MRI versus training setup.

4-fold 8-fold
PSNR SSIM PSNR SSIM

image σtrain t PD PDFS PD PDFS PD PDFS PD PDFS

BSD 5/255 1 39.15 38.09 0.947 0.925 33.82 34.22 0.873 0.846
BSD 5/255 10 39.14 38.08 0.946 0.925 33.82 34.20 0.873 0.845
BSD 5/255 50 39.14 38.05 0.946 0.924 33.78 34.16 0.872 0.844
BSD 25/255 1 39.34 38.21 0.948 0.926 34.02 34.35 0.876 0.849
BSD 25/255 10 39.33 38.19 0.948 0.926 34.01 34.34 0.876 0.848
BSD 25/255 50 39.29 38.15 0.948 0.926 33.96 34.29 0.876 0.847
MRI 5/255 10 39.54 38.29 0.950 0.927 34.29 34.50 0.881 0.852
MRI 25/255 10 39.33 38.14 0.947 0.925 34.22 34.40 0.878 0.849

Table 5.20: CT.

σn=0.5 σn=1 σn=2
PSNR SSIM PSNR SSIM PSNR SSIM

FBP 32.14 0.697 27.05 0.432 21.29 0.204
TV 36.38 0.936 34.11 0.906 31.57 0.863
PnP-βCNN 38.19 0.931 35.15 0.897 31.85 0.844
ACR [231, 259] 38.06 0.943 35.12 0.911 32.17 0.868
CRR-NN 39.30 0.947 36.29 0.916 33.16 0.878

PnP-DnCNN [57] 38.93 0.941 36.49 0.921 33.52 0.897
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Table 5.21: CRR-NN: CT versus training setup.

σn=0.5 σn=1 σn=2
image σtrain t PSNR SSIM PSNR SSIM PSNR SSIM

BSD 5/255 1 38.84 0.943 35.70 0.907 32.48 0.860
BSD 5/255 10 38.90 0.943 35.73 0.908 32.49 0.860
BSD 5/255 50 38.82 0.940 35.64 0.904 32.47 0.855
BSD 25/255 1 39.01 0.945 35.91 0.913 32.72 0.867
BSD 25/255 10 39.07 0.945 35.95 0.911 32.71 0.867
BSD 25/255 50 39.04 0.944 35.89 0.912 32.71 0.860
CT 5/255 10 39.30 0.947 36.29 0.916 33.15 0.873
CT 25/255 10 38.89 0.945 36.11 0.917 33.16 0.878

confirms the difficulty of training provably 1-Lipchitz CNN, which is also reported for
MRI image reconstruction in [257].

Under the Hood of the Learnt Regularizers

The filters and activation functions for learnt CRR-NNs with σ ∈ {5/255, 25/255} and
t = 5 are shown in Figures 5.19 and 5.20.

1. Filters

The impulse responses of the filters vary in orientation and frequency response. This
indicates that the CRR-NN decouples the frequency components of patches. The learnt
kernels typically come in groups that are reminiscent of 2D steerable filters [262, 263].
Interestingly, their support is wider when the denoising task is carried out for σ = 25/255

than for σ = 5/255.

2. Activation Functions

The linear splines converge to simple functions throughout the training. The regulariza-
tion (5.79) leads to even simpler ones without a compromise in performance. Most of
them end up with 3 linear regions, with their shape being reminiscent of the clipping
function Clip(x) = sign(x)min(|x|, 1). The learnt regularizer is closely related to ℓ1-norm
based regularization as many of the learnt convex profiles ψi resemble some smoothed
version of the absolute-value function.

3. Pruning CRR-NNs

Since the NN has a simple architecture, it can be efficiently pruned before inference by
removal of the filters associated with almost-vanishing activation functions. This yields
models with typically between 3000 and 5000 parameters and offers a clear advantage
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Ground-truth Hty - 25.67dB, 0.710 TV - 39.56dB, 0.954 PnP- CNN - 40.19dB, 0.958 CRR - 40.85dB, 0.964 PnP-DnCNN - 40.43dB, 0.958

Figure 5.17: Reconstructed images for the 4-fold accelerated multi-coil MRI experiment.
The reported metrics are PSNR and SSIM. The last row shows the squared differences
between the reconstructions and the ground-truth image.

over deep models, which can usually not be pruned efficiently.

4. A Signal-Processing Interpretation

Given that the gradient-step operator s 7→ (s− αWTσ(Ws)) of the learnt regularizer is
expected to remove some noise from s, the 1-hidden-layer CNN WTσ(W·) is expected
to extract noise. The response of s to the learnt filters forms the high-dimensional
representation Ws of s. The clipping function preserves the small responses to the filters,
while it cuts the large ones. Hence, the estimated noise WTσ(Ws) is reconstructed by
essentially removing the components of s that exhibit a significant correlation with the
kernels of the filters. All in all, the learning of the activation functions leads closely to
wavelet- or framelet-like denoising. Indeed, the proximal operator of x 7→ ∥DWT(s)∥1 is
given by

prox∥DWT(·)∥1(s) = IDWT(soft(DWT(s)))

= s− IDWT(clip(DWT(s))), (5.91)

where soft(·) is the soft-thresholding function, DWT and IDWT are the orthogonal
discrete wavelet transform and its inverse, respectively. The equivalent formulation with
the clipping function follows from IDWT(DWT(s)) = s and soft(s) = (s− clip(s)). The
soft-thresholding function is used for direct denoising while the clipping function is tailored
to residual denoising. Note that the given analogy is, however, limited since the learnt
filters are not orthonormal (WTW ̸= I).

5. Role of the Scaling Factor
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Phantom FBP - 32.07dB, 0.713 TV - 35.92dB, 0.936 PnP- CNN - 37.76dB, 0.934 ACR - 37.53dB, 0.940 CRR - 38.75dB, 0.948 PnP-DnCNN - 38.71dB, 0.944

Figure 5.18: Reconstructed images for the CT experiment with σn = 0.5. The reported
metrics are PSNR and SSIM. The last row shows the squared differences between the
reconstructions and the ground-truth image.

To clarify the role of the scaling factor µ introduced in (5.85), we investigate a toy problem
on the space of one-dimensional signals. Since these can be interpreted as images varying
along a single direction, a signal regularizer R1 can be obtained from Rθ by replacing
the 2D convolutional filters with 1D convolutional filters whose kernels are the ones of
Rθ summed along a direction. Next, we seek a compactly supported signal with fixed
mass that has minimum regularization cost, as in

ĉ = argmin
c∈Rd

R1(µc) s.t.

{
1T c = 1,

ck = 0, ∀k ̸∈ [k1, k2].
(5.92)

The solutions for various values of µ are shown in Figure 5.21. Small values of µ promote
smooth functions in a way reminiscent of the Tikhonov regularizer applied to finite
differences. Large values of µ promote functions with constant portions and, conjointly,
allows for sharp jumps, which is reminiscent of the TV regularizer. This reasoning is in
agreement with the shape of the activation functions shown in Figures 5.19 and 5.20.
Indeed, an increase in µ allows one to enlarge the region where the regularizer has constant
gradients, while a decrease of µ allows one to enlarge the region where the regularizer has
linear gradients.

5.3.7 Summary

We have proposed a framework to learn universal convex-ridge regularizers with adaptive
profiles (implemented using learnable linear spline activation functions). When applied
to inverse problems, it is competitive with those recent deep-learning approaches that
also prioritize the reliability of the method. Not only CRR-NNs are faster to train, but
they also offer improvements in image quality.
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Figure 5.19: Impulse response of the filters and activation functions of the CRR-NN
trained with σ = 5. The crosses indicate the knots of the splines. For the 8 missing filters,
the associated activation functions were numerically identically zero.

Figure 5.20: Impulse response of the filters and activation functions of the CRR-NN
trained with σ = 25/255.
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Figure 5.21: Solutions of the one-dimensional problem (5.92) for increasing values of µ.
The plotted functions are supported in [25, 175] and minimize the learnt regularizer given
a unit sum of their values.
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5.4 Appendix

5.4.1 Second-Order Total Variation

In this section, we briefly explain the notion of second-order total variation and provide
the definition of the corresponding native space BV(2)(R). We refer to [164] for more
details.

The second-order total-variation seminorm of a function f : R→ R is defined as

TV(2)(f) = ∥D2f∥M, (5.93)

where D is the (weak) derivative operator and the total-variation norm ∥ · ∥M is defined
over the Banach spaceM(R) of bounded Radon measures as

∥w∥M ≜ sup
φ∈S(R): ∥φ∥∞=1

⟨w,φ⟩,

where S(R) is Schwartz’ space of smooth and rapidly decaying test functions. The space
M(R) is a generalization of the space L1(R) of absolutely integrable functions, in the
sense that L1(R) ⊆M(R) and, for any f ∈ L1(R), the two norms satisfy ∥f∥L1 = ∥f∥M.
The generalized spaceM(R) is, however, larger than L1(R) as it contains the set of all
shifted Dirac impulses δ(· − τ) with ∥δ(· − τ)∥M = 1 for any τ ∈ R. In particular, this
implies that

wδ =
∑
k∈Z

a[k]δ(· − τk) ∈M(R) and ∥wδ∥M =
∑
k∈Z

∣∣∣a[k]∣∣∣
for any absolutely summable sequence a[·] ∈ ℓ1(Z). Likewise, since D2{(·−τk)+} = δ(·−τk)
(Green’s function property), one readily deduces that TV(2)(σ) = ∥a∥ℓ1 for the generic
spline activation function defined by (5.8).

Finally, the native space BV(2)(R) is the space of functions with second-order bounded
variation

BV(2)(R) = {f : R→ R : TV(2)(f) < +∞}.

5.4.2 Learnable Spline Activation Function Module

In this section, we describe our implementation of the B-spline formulation of the learnable
linear-spline activation functions. We also detail our sparsification procedure which is a
postprocessing step during training; the intent is to control the number of active knots in
the network.
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Figure 5.22: The left and right linear extrapolations beyond [−3, 3] of the activation
function are computed with the help of two extra B-splines on each side.

B-Spline Formulation

We place a highly redundant set of knots (for the linear spline) on a finite uniform grid
of size T . The cardinality of this set of knots is K, with K odd. We define the indices
kmin = −(K − 1)/2 and kmax = (K − 1)/2. The spline we want to build will extend
linearly outside the interval [kminT, kmaxT ] and can be represented in the gridded ReLU
basis as

σ(x) = b0 + b1x+

kmax∑
k=kmin

ak(x− kT )+, (5.94)

with TV(2)(σ) = ∥a∥1.

Here, we represent σ in a B-spline basis as

σ(x) =


ckmin + 1

T (ckmin − ckmin−1)(x− kminT ), x ∈ (−∞, kminT )
kmax+1∑
k=kmin−1

ckφT (x− kT ), x ∈ [kminT, kmaxT ]

ckmax +
1
T (ckmax+1 − ckmax)(x− kmaxT ), x ∈ (kmaxT,∞),

(5.95)

where φT is the triangle-shaped B-spline

φT (x) =

1−
∣∣∣ xT ∣∣∣, −T ≤ x ≤ T,

0, otherwise.
(5.96)

The B-spline representation in (5.95) is equivalent to the one in (5.9). Here, we place
K + 2 triangular basis functions on the grid and, instead of using one-sided boundary
basis functions, the linear extrapolations beyond [kminT, kmaxT ] are handled with the
help of the last two B-spline coefficients on each side: (kmin−1, kmin) and (kmax, kmax+1).
An example of this construction is shown in Figure 5.22.

The relationship between the ReLU coefficients a ∈ RK and the B-spline coefficients

149



Chapter 5 Convergent Iterative Image-Reconstruction Methods

c ∈ RK+2 is given by

akmin
...

akmax

 =
1

T



1 −2 1 0 · · · · · · 0
0 1 −2 1 0 · · · 0
...

. . . . . . . . .
...

...
. . . . . . . . . 0

0 · · · · · · 0 1 −2 1


︸ ︷︷ ︸

L∈R(K+2)×K


ckmin−1

ckmin
...

ckmax

ckmax+1

 , (5.97)

while the linear-term parameters b0, b1 can be determined from ckmin−1
and ckmin . From

(5.97), we see that the TV(2) regularization of σ can also be computed from the B-spline
coefficients as TV(2)(σ) = ∥Lc∥1.

Sparsification

To train networks with learnable spline nonlinearities, we augment the cost function with
the TV(2) regularization of the activation functions. This translates into an ℓ1-penalty
on the ReLU coefficients a = (ak) or, equivalently, on the filtered version of the B-spline
coefficients Lc. We rely on the sparsifying effect of the ℓ1-norm to remove some of the
redundant knots. In practice, we observe that, while some of the coefficients ak = [Lc]k
attain small values, they never vanish entirely. In order to fix this and have a tight control
on the number of knots, we have applied a further “sparsification" as a postprocessing
step after training.

The first step is to retrieve the ReLU coefficients a from the trained B-spline coefficients c
using (5.97). Then, every coefficient ak with absolute value below a certain threshold is set
to zero, yielding â = (âk). Finally, we transform these modified ReLU coefficients to the
new B-spline coefficients ĉ. In this step, the coefficients ĉkmin−1

and ĉkmin that determine
the linear term are assigned the same values as ckmin−1

and ckmin , respectively. The other
coefficients ĉk are computed from âk using the relations in (5.97). The sparsification is
achieved by selecting the maximum threshold such that the training accuracy does not
drop by more than 0.2%.

5.4.3 Hyperparameter Tuning: Training Deep Spline Neural Networks

In this section, we propose a method to tune the hyperparameters of Problems (5.3) and
(5.6). Our hyperparameter-tuning method is based on some optimality conditions that
we prove for the global minimizers of these problems. It is flexible with respect to the
choice of linear layers and architecture and can be applied to any deep spline network.
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Optimality Conditions

The main principle of our optimality conditions is based on the scale- and dilation-
invariance properties of the second-order total-variation regularization, as we state in
Proposition 5.11.

Proposition 5.11. The second-order total-variation regularization TV(2) : BV(2)(R)→ R
is scale- and dilation-invariant. Specifically, for any σ ∈ BV(2)(R) and any c ̸= 0, we
have that

TV(2) (cσ) = |c|TV(2) (σ) , (5.98)

and
TV(2) (σ(c·)) = |c|TV(2) (σ) . (5.99)

Proof. We first recall that

TV(2)(σ) = ∥D2σ∥M = sup
φ∈S(R)\{0}

⟨D2σ, φ⟩
∥φ∥∞

. (5.100)

One deduces (5.98) from the linearity of D2 and the homogeneity of the M-norm. To
derive (5.99), we use the relation D2{σ(c·)} = c2D2{σ}(c·) and the equality ⟨f(c·), g⟩ =
c−1⟨f, g(·/c)⟩ which, together with (5.100), yields

TV(2)(σ(c·)) = sup
φ∈S(R)\{0}

c
⟨D2σ, φ(·/c)⟩
∥φ∥∞

= |c| sup
ψ∈S(R)\{0}

⟨D2σ, ψ⟩
∥ψ∥∞

, (5.101)

where the latter is obtained via the change of variable ψ = sgn(c)φ(·/c). The last step is
to notice that

sup
ψ∈S(R)\{0}

⟨D2σ, ψ⟩
∥ψ∥∞

= TV(2)(σ)

which, when combined with (5.101), yields (5.99).

In Theorem (5.1), we prove that the energies of all linear and nonlinear layers of any
global minimizer of (5.3) are inversely proportional to their corresponding regularization
parameters.

Theorem 5.1. Let fθ∗ be a global minimizer of (5.3) with linear parameters ϕ∗
ℓ and

learned activation functions g∗
ℓ . Then, we have that

2µ1∥ϕ∗
1∥22 = λ1TV

(2)(g∗
1) = · · · = λL−1TV

(2)(g∗
L−1) = 2µL∥ϕ∗

L∥22. (5.102)

Proof. Let us denote by G∗ the geometric mean of the L+2(L− 1) = (3L− 2) quantities

{
µℓ∥ϕ∗

ℓ∥22
}L
ℓ=1

⋃{
λℓ
2
TV(2)(g∗

ℓ )

}L−1

ℓ=1

⋃{
λℓ
2
TV(2)(g∗

ℓ )

}L−1

ℓ=1

.
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It turns out that G∗ can be computed via the relation

G∗(3L−2) =

(
L∏
ℓ=1

µℓ∥ϕ∗
ℓ∥22

)(
L−1∏
ℓ=1

λℓ
2
TV(2)(g∗

ℓ )

)2

.

Due to the inequality of arithmetic and geometric means (AM and GM, respectively), we
have that

(3L− 2)G∗ ≤
L−1∑
ℓ=1

λℓTV
(2)(g∗

ℓ ) +
L∑
ℓ=1

µℓ∥ϕ∗
ℓ∥22, (5.103)

where the inequality is saturated if and only if (5.102) holds.

Inspired from the mentioned AM-GM inequality, we now define a new set of linear
parameters ϕ̃ℓ, ℓ = 1, . . . , L and adjustable activation functions g̃ℓ, ℓ = 1, . . . , L− 1, as

ϕ̃ℓ = cℓϕℓ, cℓ =

(
G∗

µℓ∥ϕℓ∥22

) 1
2

,

g̃ℓ = dℓgℓ

( ·
cℓdℓ−1

)
, dℓ = cℓdℓ−1

G∗

λℓ
2 TV

(2)(gℓ)
,

with the convention that d0 = 1. Let us specify the corresponding linear and nonlinear
layers by W̃ℓ and σ̃ℓ, respectively. One readily observes that

W̃ℓ = cℓWℓ, σ̃ℓ = dℓσℓ

( ·
cℓdℓ−1

)
in all layers. Interestingly, the input-output relation of this new neural network is the
same as that of fθ∗ . This is due to two simple observations.

• For ℓ = 1, . . . , L− 1, we have that

W̃ℓ ◦ σ̃ℓ(·) = dℓWℓ ◦ σ(·/dℓ−1).

• For the output-layer, we have that cLdL−1 = 1.

Since the input-output relation remains unchanged, the data-fidelity term in the cost
functional of the minimization (5.3) does not change either. Now, due to the optimality
of fθ∗ , we deduce that

L−1∑
ℓ=1

λℓTV
(2)(g∗

ℓ ) +

L∑
ℓ=1

µℓ∥ϕ∗
ℓ∥22 ≤

L−1∑
ℓ=1

λℓTV
(2)(g̃ℓ) +

L∑
ℓ=1

µℓ∥ϕ̃ℓ∥22. (5.104)
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Using Proposition 5.11, we have that

λℓTV
(2)(g̃ℓ) = λℓ

dℓ
cℓdℓ−1

TV(2)(gℓ) = 2G∗,

for ℓ = 1, . . . , L− 1. Similarly, from the scale invariance of the ℓ2-norm, we deduce that

µℓ∥ϕ̃ℓ∥22 = µℓc
2
ℓ∥ϕ∗

ℓ∥22 = G∗.

Replacing these in (5.104), we obtain that

L−1∑
ℓ=1

λℓTV
(2)(g∗

ℓ ) +

L∑
ℓ=1

µℓ∥ϕ∗
ℓ∥22 ≤ (3L− 2)G∗,

which is the converse of the AM-GM inequality (5.103). This shows that (5.103) is
saturated and, hence, that (5.102) holds.

For the case where the activation functions are shared across layers, we show in Theorem
5.2 that the optimal configuration is such that there would be a balance between the
total energy of linear layers and the second-order total variation of the learned activation
functions.

Theorem 5.2. Let fθ∗ be a global minimizer of (5.6). Then, we have that

λTV(2)(g∗) = 2

L−1∑
ℓ=1

µℓ∥ϕ∗
ℓ∥22. (5.105)

Proof. The proof is very similar to the one for Theorem 5.1. We define G∗ as

G∗ =
(
λ

2
TV(2)(g∗)

) 2
3

(
L∑
ℓ=1

µℓ∥ϕℓ∥22

) 1
3

.

The AM-GM inequality implies in this case that

3G∗ ≤ λℓTV(2)(g∗) +
L∑
ℓ=1

µℓ∥ϕ∗
ℓ∥22, (5.106)

with equality if and only if (5.105) holds. Now, we define a new set of linear parameters
and adjustable activation functions as

ϕ̃ℓ = c−1ϕℓ, ℓ = 1, . . . , L,

g̃ = cg(c·),
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where the constant c > 0 is
c =

G∗

λ
2TV

(2)(g)
.

Again, the data-fidelity term remains unchanged. From the optimality of fθ∗ , we deduce
that

λTV(2)(g∗) +
L∑
ℓ=1

µℓ∥ϕ∗
ℓ∥22 ≤ λTV(2)(g̃) +

L∑
ℓ=1

µℓ∥ϕ̃ℓ∥22.

By direct calculations, similar to what we did in Theorem 5.1, we simplify the above
inequality into

λTV(2)(g∗) +
L∑
ℓ=1

µℓ∥ϕ∗
ℓ∥22 ≤ 3G∗

which, together with (5.106) implies that the AM-GM equality holds, ultimately leading
to (5.105).

Hyperparameter Tuning

Using Theorems 5.1 and 5.2, we now introduce a way to tune the hyperparameters
of our optimization problems. The main idea is to enforce the optimality condition
in the initial settings (before training) and, consequently, to reduce the dimension of
the hyperparameter space so that it is sufficient to perform a grid search over a single
parameter.

Our scheme is described as follows:

1. Initialize the linear parameters ϕ0
ℓ (e.g., using Xavier’s rule) and the activation

functions g0
ℓ (e.g., soft-threshold/absolute value) and compute the quantities ∥ϕ0

ℓ∥22
and TV(2)(g0

ℓ ) for all layers.

2. Set
µℓ =

C

2∥ϕ0
ℓ∥22

, (5.107)

where C > 0 is the unique hyperparameter that is required to be tuned.

3. If the activation functions are shared across layers, set

λ =
(L− 1)C

TV(2)(g0)
. (5.108)

Otherwise, set

λℓ =
C

TV(2)(g0
ℓ )
. (5.109)

4. Perform a grid search to find the optimal value of C > 0.
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5.4.4 Stability Results for PnP-FBS

Proof of Proposition 5.1

We start by showing that, if D is β-averaged with β ≤ 1/2, then 2D− Id is 1-Lipschitz
since

∥(2D− Id)(z1 − z2)∥2 = ∥2β(N(z1)−N(z2)) + (1− 2β)(z1 − z2)∥2
≤ 2β∥N(z1)−N(z2)∥2 + (1− 2β)∥z1 − z2∥2
≤ ∥z1 − z2∥2, ∀z1, z2 ∈ Rn. (5.110)

Let f(Hs,y) = 1
2∥Hs− y∥22. Using the above property, we get that

∥(2D− Id)(s∗1 − α∇∇∇f(Hs∗1,y1))− (2D− Id)(s∗2 − α∇∇∇f(Hs∗2,y2))∥2
≤ ∥(s∗1 − α∇∇∇f(Hs∗1,y1))− (s∗2 − α∇∇∇f(Hs∗2,y2))∥2 (5.111)

and, from the fixed-point property of s∗1 and s∗2, we get that

∥2(s∗1 − s∗2)− (s∗1 − α∇∇∇f(Hs∗1,y1)) + (s∗2 − α∇∇∇f(Hs∗2,y2))∥2
≤ ∥(s∗1 − α∇∇∇f(Hs∗1,y1))− (s∗2 − α∇∇∇f(Hs∗2,y2))∥2. (5.112)

Using the fact that ∇∇∇f(Hs,y) = HT (Hs− y) and developing on both sides, we get that

⟨s∗1 − s∗2,H
T (Hs∗2 − y2)−HT (Hs∗1 − y1)⟩ ≥ 0. (5.113)

We finally get the result by switching HT to the other side and by using the Cauchy-
Schwartz inequality, which leads to

∥H(s∗1 − s∗2)∥2∥y1 − y2∥2 ≥ ⟨H(s∗1 − s∗2),y1 − y2⟩ ≥ ∥H(s∗1 − s∗2)∥22. (5.114)

Proof of Proposition 5.2:

We show the relation between the difference of the kth iterate of PnP-FBS and the
difference of its starting points using the fact that the matrix I− αHTH has a spectral
norm of one when α has an appropriate value. The modulus is
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∥sk1 − sk2∥2 = ∥D(sk−1
1 − αHT (Hsk−1

1 − y1)−D(sk−1
2 − αHT (Hsk−1

2 − y2)∥2
≤ K∥(I− αHTH)(sk−1

1 − sk−1
2 )− αHT (y1 − y2)∥2

≤ K∥sk−1
1 − sk−1

2 ∥2 + αK∥H∥∥y1 − y2∥2
≤ K2∥sk−2

1 − sk−2
2 ∥2 + α∥H∥(K +K2)∥y1 − y2∥2

≤ Kk∥s01 − s02∥2 + α∥H∥∥y1 − y2∥2
k∑

n=1

Kn. (5.115)

Taking the limit k →∞, we get that

∥s∗1 − s∗2∥2 ≤
α∥H∥K
1−K ∥y1 − y2∥2. (5.116)

5.4.5 Proof of Proposition 5.3

We show that the four activation functions can be expressed in terms of each other
on compact sets without violating the 2-norm weight constraints. Choose B such that
x+B > 0 for all x in the compact set and any pre-activation in the network.

AV as Expressive as PReLU

We can express AV using PReLU with a = −1. For the other direction, we have that

PReLUa(x)

=
[√

(1 + a)/2 −
√
(1− a)/2

]
AV

([√
(1 + a)/2√
(1− a)/2

]
x+

[√
(1 + a)/2B

0

])
− 1 + a

2B
.

(5.117)

AV as Expressive as GS

This was already proven in [212], but we include the expressions for the sake of complete-
ness. It holds that[

max(x1)

min(x2)

]
= MAV

(
M

[
x1
x2

]
+

[
B

0

])
−
[√

2B

0

]
, (5.118)

where

M =
1√
2

[
1 1

1 −1

]
. (5.119)
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For the reverse direction, we have that

AV(x) =
[

1√
2
− 1√

2

]
MaxMin

([
1√
2
1√
2

]
x

)
. (5.120)

GS as Expressive as HH

For v = 1√
2
(1,−1) we have that HHv = MaxMin. Further, we can also express HHv

using MaxMin as

HHv (z) = R(v)MaxMin
(
R(v)T z

)
, (5.121)

where R(v) is the rotation matrix

R(v) =

[
cos γ(v1, v2) − sin γ(v1, v2)

sin γ(v1, v2) cos γ(v1, v2)

]
with γ(v1, v2) =

π

4
+ 2 arctan

v2
1 + v1

. (5.122)

■

5.4.6 Properties of PLip

1. The Least-Square Projection onto {c ∈ RK : ∥Dc∥∞ ≤ T} Preserves the
Mean

Let x ∈ RK and y ∈ {c ∈ RK : ∥Dc∥∞ ≤ T} and x = x̄+ µx1, y = ȳ + µy1, where x̄

and ȳ have zero mean. It holds that

∥x− y∥22 = ∥x̄− ȳ + 1(µx − µy)∥22 = ∥x̄− ȳ∥22 + (µx − µy)2K. (5.123)

Hence, we can add (µx − µy)1 to y and decrease the distance without violating the
constraints.

2. PLip Maps RK to {x ∈ RK : ∥Dx∥∞ ≤ T}

We have, for any c ∈ RK , that

∥DPLip(c)∥∞ = ∥DD†Clip[−T,T ](Dc) +D1
1

K

K∑
k=1

ck∥∞ = ∥Clip[−T,T ](Dc)∥∞ ≤ T.

(5.124)
Here, we used the fact that DD† is the identity matrix in RK−1,K−1 and that D1 is equal
to the zero vector in RK .

3. PLip is a Projection
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Using the same properties as above, it holds that

PLip(PLip(c)) = D†Clip[−T,T ](DD†Clip[−T,T ](Dc) +D1
1

K

K∑
k=1

ck) + 1
1

K

K∑
k=1

ck

= D†Clip[−T,T ](Clip[−T,T ](Dc)) + 1
1

K

K∑
k=1

ck

= D†Clip[−T,T ](Dc) + 1
1

K

K∑
k=1

ck = PLip(c). (5.125)

4. PLip Preserves the Mean of c

From the properties of the Moore-Penrose inverse, we have that ker((D†)T ) = ker (D),
therefore, 1TD† = 0 and

1

K
1TPLip(c) =

1

K
1TD†Clip[−T,T ](Dc) + 1T1

1

K2

K∑
k=1

ck =
1

K

K∑
k=1

ck. (5.126)

5. PLip is Differentiable Almost Everywhere with Respect to c

The Clip[−T,T ] function is differentiable everywhere except at T and −T . Therefore, the
operation D†Clip[−T,T ](Dc) is differentiable everywhere except on

S =

K−1⋃
k=1

{
x ∈ RK : |(Dx)k| = T

}
. (5.127)

The set S is a union of 2(K−1) hyperplanes with dimension K−1. Hence, it has measure
zero in RK .

5.4.7 Hyperparameter Tuning: Solving Inverse Problems

The parameters τ and µ used in (5.85) can be tuned with a coarse-to-fine approach. Given
the performance on the 3× 3 grid {(γτ )−1τ, τ, γττ} × {(γµ)−1µ, µ, γµµ}, we identify the
best values τ∗ and µ∗ on this subset and move on to the next iteration as follows:

• if τ∗ = τ , we refine the search grid by reducing γµ to (γµ)
ζ , ζ < 1;

• otherwise, τ is updated to τ∗.

A similar update is performed for the scaling parameter. The search is terminated when
both γτ and γµ are smaller than a threshold, typically, 1.01. In practice, we initialized
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γτ = γµ = 4 and set ζ = 0.5. The method usually requires between 50 and 100 evaluations
on tuples (τ, µ) on the validation set before it terminates. The proposed approach is
predicated on the observation that the optimization landscape in the (τ, µ) domain is
typically well-behaved. The same principles apply to tune a single hyperparameter, as
found in the TV method. Let us remark that the performances were found to change
only slowly with the scaling parameter µ for the MRI and CT experiments. Hence, in
practice, it is enough to tune µ very coarsely.
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6 Deep Generative Priors for Nonlin-
ear Inverse Problems

1In this chapter, we show how we can leverage the power of deep generative models
as image priors to develop a Bayesian inference pipeline that produces high quality
reconstructions together with uncertainty maps. To the best of our knowledge, this is
one of the first deployments of such techniques for the resolution of nonlinear inverse
problems.

6.1 Contributions

Here, we present a Bayesian framework to solve a broad class of nonlinear inverse problems,
where the prior knowledge about the image of interest is specified through a trained deep
latent variable generative model such as a GAN or a VAE. Our contributions are listed
below.

• We develop a method based on the Metropolis-adjusted Langevin algorithm (MALA)
[265, 266] to sample from the posterior distribution for the class of nonlinear inverse
problems where the forward model has a neural-network-like structure. This class
includes a wide variety of practical imaging modalities. We show that the structure
of the forward model and the low-dimensional latent space of the generative prior
enable tractable Bayesian inference.

• We introduce the concept of augmented generative models. This is motivated by
the observation that the above-mentioned deep generative models are easier to
train when the dataset consists of images with the same range of pixel values.
Unfortunately, such models are not well-matched to imaging modalities where one
is interested in extracting the precise value of objects rather than merely visualizing
contrast. Our proposed augmented models provide us with a simple but effective
way of dealing with quantitative data.

1This chapter is based on our work [264].
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• We illustrate the advantages of the proposed reconstruction framework through
numerical experiments for two nonlinear imaging modalities: phase retrieval and
optical diffraction tomography.

The chapter is organized as follows: In Section 6.2, we discuss the structure of the
forward model for our nonlinear inverse problems. We detail the Bayesian reconstruction
framework in Section 6.3. There, we introduce augmented generative models and we
explain our posterior-sampling scheme. We present our experimental results in Section
6.4.

6.2 Nonlinear Inverse Problems and Forward Models

In this section, we start by describing the class of nonlinear inverse problems that we
are interested in. We then focus on two concrete examples—phase retrieval and optical
diffraction tomography—and detail the physical models involved.

6.2.1 Nonlinear Inverse Problems

The objective is to recover an image s† ∈ RK from its noisy measurements y† ∈ CM given
by y† = N(y†

0) with
y†
0 = H(s†), (6.1)

where H : RK → CM is a nonlinear operator that models the physics of the imaging system
and N : CM → CM is an operator that models the corruption of the measurements
by noise. In this work, we consider the class of nonlinear forward models H whose
computational structure can be encoded by a directed acyclic graph and thus resembles a
neural network.

The Jacobian matrix of H at any point x = (x1, . . . , xK) ∈ RK is defined as

JH(x) =


∂
∂x1

[H(x)]1 · · · ∂
∂xK

[H(x)]1
...

. . .
...

∂
∂x1

[H(x)]M · · · ∂
∂xK

[H(x)]M

 . (6.2)

Gradient-based MCMC methods (see Section 6.3 for a specific example) involve the
computation of quantities such as JHH(x)r for some vectors x ∈ RK , r ∈ CM , and this can
be a potential bottleneck. The neural-network-like structure of H allows us to compute
these efficiently using the error backpropagation algorithm. This, in turn, makes Bayesian
inference computationally feasible.

The class of nonlinear inverse problems that fit this description is very broad and adaptable
to most existing imaging modalities. In principle, it covers all possible inverse problems,
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Figure 6.1: The forward model for phase retrieval (6.3) expressed as a one-layer fully-
connected neural network with linear weights A and quadratic activation functions.

in particular, the linear case is trivially covered. More generally, if sufficient data is
available, one can indeed train a neural network to mimic the physics of our forward
model. Next, we look at two particular problems that nicely fall within our predefined
class.

6.2.2 Phase Retrieval

Phase retrieval [267, 268] is a nonlinear inverse problem that is ubiquitous in computational
imaging. It consists in the recovery of a signal from its intensity-only measurements and
is a central issue in optics [269, 270], astronomy [271, 272], and computational microscopy
[273–276].

In the phase-retrieval problem that we consider in this paper, the noise-free measurements
are modeled as

y†
0 = Hpr(s

†) = |As†|2, (6.3)

where A : RK → CM is either the Fourier matrix [269, 276, 277] or some realization of a
random matrix with independent and identically distributed (i.i.d.) elements [268, 278,
279], and where | · |2 is a component-wise operator. As shown in Figure 6.1, the forward
model in (6.3) can be expressed as a one-layer fully-connected neural network with fixed
linear weights A and quadratic activation functions.

6.2.3 Optical Diffraction Tomography

In optical diffraction tomography (ODT), the aim is to recover the refractive-index (RI)
map of a sample from complex-valued measurements of the scattered fields generated
when the sample is probed by a series of tilted incident fields [280]. According to the
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Figure 6.2: Optical diffraction tomography. A sample of refractive index nb + s†(r) is
immersed in a medium of index nb and illuminated by an incident plane wave (wave
vector k). The interaction of the wave with the object produces scattered waves, which
are recorded at the detector plane.

scalar-diffraction theory, the propagation of the incident fields through the sample is
governed by the wave equation. While pioneering works relied on linear models to approx-
imate this propagation [280, 281], recent works have significantly improved the quality
of RI reconstruction by using more accurate nonlinear models that account for multiple
scattering [282]. Here, we look at one such nonlinear model called the beam-propagation
method (BPM).

Helmholtz Equation. We consider a sample with a real-valued spatially varying
refractive index that is immersed in a medium with constant refractive index nb, as
shown in Figure 6.2. The RI distribution in the region of interest Ω = [0, Lx] × [0, Lz]

is represented as n(r) = nb + s†(r), where r = (x, z) and s†(r) is the RI contrast. The
sample is illuminated with an incident plane wave uin(r) of free-space wavelength λ, whose
direction of propagation is specified by the wave vector k. The total field u(r) that results
from the interaction between the sample and the incident wave is then recorded at the
positions {rm}M ′

m=1 in the detector plane Γ to yield the complex measurements y† ∈ CM ′ .
The interplay between the total field u(r) at any point in space and the refractive index
contrast δn(r) is described by the Helmholtz equation

∇2u(r) + k20n
2(r)u(r) = 0, (6.4)

where k0 = 2π
λ .

Beam Propagation Method. For computational purposes, the region of interest Ω
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Figure 6.3: The computational structure for BPM resembles a neural network.

is subdivided into an (Nx ×Nz) array of pixels with sampling steps δx and δz along the
first and second dimension, respectively. The corresponding samples of the RI contrast
s†(r) and total field u(r) are stored in the vectors2 s† ∈ RK and u ∈ CK , respectively,
where K = NxNz. Further, let s†k ∈ RNx and uk ∈ CNx represent the above quantities
when restricted to the slice z = kδz.

BPM computes the total field u in a slice-by-slice manner along the z -axis. For a given
incident wave uin(r) that is propagated over a region larger than Ω, we set the initial

conditions as u−1(s
†
0) =

(
uin(iδx,−δz)

)Nx−1

i=0
∈ CNx . The total field over Ω is then

computed via a series of diffraction and refraction steps

ũk(s
†) = uk−1(s

†) ∗ hδzprop (diffraction) (6.5)

uk(s
†) = ũk(s

†
0)⊙ pk(s

†) (refraction), (6.6)

where k = 0, 1, . . . , (Nz−1), and the symbols ∗ and ⊙ stand for convolution and pointwise
multiplication, respectively. The convolution kernel hδzprop ∈ CNx for the diffraction step
is characterized in the Fourier domain as

F
{
hδzprop

}
(wx) = e

jδz

(√
k20nb

2 − w2
x

)
, (6.7)

where F denotes the discrete Fourier transform and wx ∈ RNx is the frequency variable.
The subsequent refraction step involves a pointwise multiplication with the phase mask

pk(s
†) = ejk0δzs

†
k . (6.8)

Finally, we define an operator R : CNx 7→ CM ′ that propagates uNz−1(s
†) to the detector

2Since the total field u(r) depends on the RI contrast s†(r), we also refer to its discretized version as
u(s†).
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plane Γ and restricts it to the sensor positions to give us the measurements y† ∈ CM ′ .
Thus, for a given incident wave uin, our noise-free nonlinear BPM forward model is of the
form

y†
0 = Hbpm(s†;uin) = R

(
uNz−1(s

†)
)
. (6.9)

In Figure 6.3, we show the implementation of Hbpm as a directed acyclic graph.

Complete Forward Model. We assume that the sample is illuminated with Q inci-
dent plane waves {uin

q }q∈{1,...,Q} and that the corresponding measurements are {y†
q ∈

CM ′}q∈{1,...,Q}. These measurements are related to the RI contrast s† of the sample
through the BPM forward model in (6.9). We define a stacked measurement vector as
y† = (y†

1, . . . ,y
†
Q) ∈ RM (M = QM ′). This allows us to rewrite the complete forward

model in the form of (6.1), where the operator H consists of the application of Hbpm

with all the illuminations and the concatenation of the outputs into a single vector.

6.3 Bayesian Reconstruction Framework

We now present our reconstruction framework that is based on Bayesian statistics for
solving the generic nonlinear inverse problem described in Section 6.2.1. Let Y and S

be the random vectors3 associated with the measurements and the signal, respectively.
As in Chapter 2, the statistical model for the measurement noise is specified via the
conditional distribution of Y|S = s, where s ∈ RK . In this section, we first discuss the
prior distribution of S, which, in our framework, is defined through a deep generative
model, followed by the posterior distribution of S|Y = y†. Finally, we detail a MCMC
scheme to generate samples from the posterior distribution. This allows us to perform
inference by computing point estimates and the uncertainties associated with them.

6.3.1 Prior Distribution

The choice of the distribution PS reflects our prior knowledge about the image of interest.
In classical Bayesian methods, PS is generally chosen from a family of distributions with
closed-form analytical expressions for their pdfs such that it fits the characteristics of the
image and also allows for efficient inference. Popular examples include the Gaussian and
Markovian models. In our framework, we instead propose to leverage the power of neural
networks to define a data-driven prior distribution.

We assume that we have access to a dataset that contains sample images from the true
(but unknown) probability distribution Pimage of our image of interest. The idea then is
to approximate Pimage with PS as defined by a deep generative model. More specifically,

3In this chapter, for a given random vector V, we will denote its probability distribution by PV (which
is a measure) and its pdf with respect to the Lebesgue measure (if PV admits one) by pV.

166



Deep Generative Priors for Nonlinear Inverse Problems Chapter 6

we consider deep latent variable generative models consisting of a generator network
G : Rd → RK (d≪ K) that maps a low-dimensional latent space to the high-dimensional
image space. For such a model, we have S = G(Z), where Z is a random vector that takes
values in Rd with a pdf pZ (typically a Gaussian or uniform distribution). If this model is
properly trained, the resulting PS (which is the pushforward of PZ through the mapping
G) is close to Pimage and the images generated by it are statistically similar to the ones
in the dataset.

In our experiments (see Section 6.4), we use the well-known Wasserstein GANs (WGANs)
[220] for our data-driven prior. We provide a brief description of WGANs in Appendix
6.6.2

Augmented Deep Generative Priors. The training of deep generative models such
as GANs requires large amounts of data and is a challenging task in general. Over the
past few years, there have been several proposals for performance improvements that
have led to the development of better training schemes and network architectures. Most
existing works use normalized datasets, where each image has the same range of pixel
values. However, this is not suitable if we wish to use such models as priors in quantitative
imaging (e.g., ODT). In these modalities, it is important to recover the actual values of
the object (image) as compared to only the contrast. Thus, we require our generative
model to be able to output images with different ranges of pixel values.

While performing our experiments, we observed that the training of high-quality WGANs
on unnormalized datasets was non-trivial. We propose a simple effective workaround,
which simplifies the training and allows us to build models that generate images with
different ranges. We define an augmented generative model Gh : Rd+1 → RK (d≪ K)
that consists of a (standard) generative network G : Rd → RK trained on a normalized
dataset and a deterministic function h : R → R. Here, the latent (random) vector
Z = (Z1,Z2) takes values in Rd+1 and has two independent components Z1 (that takes
values in Rd) and Z2 (that takes values in R) with pdfs pZ1 and pZ2 , respectively. The
output image of this model is S = Gh(Z) = h(Z2)G(Z1), where the term G(Z1) represents
it details or contrast, and the term h(Z2) represents it scaling factor.

Since G is now required to only produce images with the same range, we can rely on
existing GANs to obtain high-quality models. Moreover, the distribution of the scaling
factor can be easily controlled by carefully choosing the distribution pZ2 and the function
h.

6.3.2 Posterior Distribution

Since our prior distribution PS is defined by a pre-trained augmented deep generative model
Gh : Rd+1 → RK , z 7→ Gh(z) with pZ(z) = pZ1(z1)pZ2(z2) for any z = (z1, z2) ∈ Rd+1, our
posterior distribution PS|Y=y† is given by the push-forward of the posterior distribution
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PZ|Y=y† of the latent vector through the mapping Gh. The pdf for PZ|Y=y† can be written
as

pZ|Y(z|y†) =
pY|Z(y

†|z)pZ(z)∫
Rd+1 pY|Z(y†|z̃)pZ(z̃)dz̃

,

where pY|Z(·|z) = pY|S(·|s = Gh(z)).

A Bayesian inverse problem is said to be well-posed in some metric on the space of
probability measures if its solution (the posterior distribution) exists, is unique, and is
continuous with respect to the measurements for the chosen metric [283]. Depending
on the metric, the well-posedness of the Bayesian inverse problem ensures continuity
of posterior expectations of appropriate quantities of interest. Based on the work in
[283], we can show that for the AWGN model, our Bayesian problem is well-posed in the
Prokhorov, total-variation and Hellinger distances. Moreover, our problem is well-posed
in the Wasserstein distance if pZ satisfies a finite-moment-like condition. By using a result
from [78], we can also show the existence of the moments of our posterior distribution
under mild conditions on pZ and Gh. We provide the details regarding these properties in
Appendix 6.6.1.

6.3.3 Sampling from the Posterior Distribution

The proposed framework allows one to draw samples in the low-dimensional latent space
instead of the high-dimensional image space directly. Specifically, if we generate samples
{z†(t)}Tt=1 from pZ|Y(·|y†), then the images {s†(t) = Gh(z

†(t))}Tt=1 are samples from PS|Y=y† .

In this work, we use the MCMC method called Metropolis-adjusted Langevin algorithm
(MALA) [265, 266] to sample from pZ|Y(·|y†). Given a sample z†(t), it generates z†(t+1) in
two steps. In the first step, we construct a proposal z̃†(t+1) for the new sample according
to

z̃†(t+1) = z†(t) + η∇z log pZ|Y(z
†(t)|y†) +

√
2ηζ, (6.10)

where ζ is drawn from the standard multivariate Gaussian distribution and η ∈ R+ is a
fixed step-size. In the second step, the proposal z̃†(t+1) is either accepted or rejected, the
acceptance probability being

α = min

{
1,
pZ|Y(z̃

†(t+1)|y†)qy†(z†(t)|z̃†(t+1))

pZ|Y(z†(t)|y†)qy†(z̃†(t+1)|z†(t))

}
, (6.11)

where qy(z̄|z) = exp
(
− 1

4η∥z̄− z− η∇z log pZ|Y(z|y)∥22
)

for any y ∈ CM and z̄, z ∈ Rd+1.
If the proposal is accepted, then we set z†(t+1) = z̃†(t+1); otherwise, z†(t+1) = z†(t). One
advantage of MALA is that it uses the gradient of the (log) target distribution to construct
more probable proposals. In doing so, it explores the target distribution faster than
some other MCMC methods such as the well-known random walk Metropolis-Hastings
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algorithm [284].

The major computational bottleneck in MALA is the computation of the gradient term
∇z log pZ|Y(·|y†) as it involves terms such as JHH(x1)r1 and JHGh

(x2)r2, where x1 ∈ RK ,
r1 ∈ CM , x2 ∈ Rd+1, and r2 ∈ RK . For instance, if we assume an AWGN model with
variance σ2 and that pZ is the standard mutivariate Gaussian distribution, then pZ|Y can
be written as

pZ|Y(z|y†) =
1

C
exp

(
− ∥y

† −H(Gh(z))∥22
2σ2

− ∥z∥
2
2

2

)
, (6.12)

where C is the normalization factor. In this case, the gradient term is

∇z log pZ|Y(z|y†) = −
JHGh

(z)JHH(Gh(z))(y
† −H(Gh(z)))

σ2
− z. (6.13)

Since Gh is a neural network and H has a neural-network-like structure, we then compute
∇z log pZ|Y efficiently using an error backpropagation algorithm.

Once we have obtained the samples {z†(t)}Tt=1 from pZ|Y(·|y†), we transform them to get
the samples {Gh(z

†(t))}Tt=1 from PS|Y=y† and use them to perform inference. Specifically,
we approximate any integral of the form

∫
RK f(s)pS|Y(s|y†)ds, where f : RK → R is a

real-valued function, by its empirical estimate 1
T

∑T
t=1 f(Gh(z

†(t))).

In practice, we discard some of the samples generated at the beginning of the chain to
correct for their bias. This “burn-in” period can often be shortened by choosing a suitable
starting point for the chain. We propose to initialize MALA with

z∗init(y
†) = argmin

z∈Rd+1

∥s∗init(y
†)−Gh(z)∥22, (6.14)

where s∗init(y
†) is a low-quality estimate obtained by using some fast classical reconstruction

algorithm.

6.4 Results and Discussion

In this section, we show the benefits of our neural-network-based Bayesian reconstruction
framework by applying it to both phase retrieval and optical diffraction tomography.

6.4.1 Augmented Generative Models

In our first experiment, we highlight the importance of the proposed augmented generative
models. We consider the task of training WGAN models on synthetic datasets consisting of
(128× 128) images, where each image contains a constant-valued disc and its background
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(a) WGAN

(b) Augmented WGAN

Figure 6.4: Samples generated by trained models.

pixels are zero-valued. The coordinates (x, y) of the center of the disc, its radius r
(in pixels), and its constant-intensity value v follow the uniform distributions U(10,115),
U(10,115), U[8,35], and U(0,0.2], respectively. The aforementioned parameters implicitly
define the probability distribution Pdata that we wish to approximate using WGANs.

We qualitatively compare the performance of two models. The first model is a WGAN
trained on 50,000 images sampled from Pdata. In this case, the distribution pZ for the
latent variable is chosen to be the standard multivariate Gaussian distribution. The
second model is an augmented WGAN, where the WGAN component is trained on
a normalized dataset with 50,000 images. Thus, we first sample 50,000 images from
Pdata and we then normalize each of them such that the value of the disc is one. The
distributions pZ1 and pZ2 are chosen to be standard Gaussian distributions as well, and
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the function h is
h(x) =

0.2√
2π

∫ x

−∞
e−

t2

2 dt. (6.15)

This choice of h and pZ2 ensures that the scaling factor of the augmented WGAN follows
the uniform distribution U(0,0.2]. For both the models, we use the generator and critic
network architectures described in Appendix 6.6.3. The WGAN is trained for 2500 epochs
while the augmented WGAN is trained for 1250 epochs using RMSProp optimizers with
a learning rate of 5× 10−5 and a batch size of 64. The parameters λgp and ncritic (refer
to Appendix 6.6.2) are set as 10 and 5, respectively.

In Figure 6.4, we present typical samples generated by the two models. We observe that
the augmented WGAN, unlike the WGAN, is able to produce sharp constant-valued discs.

6.4.2 Phase Retrieval

Next, we look at the phase-retrieval problem. We present two examples where the
ground-truth images are taken from the MNIST [285] and Fashion-MNIST [286] testing
datasets. In both cases, the measurements y† ∈ NM are simulated according to (6.3) with
a Poisson-noise model, where A is one realization of a random matrix with i.i.d. entries
from a zero-mean Gaussian distribution with variance σ2A.

MNIST

The MNIST dataset contains (28× 28) images of handwritten digits. The ground-truth
image (Figure 6.5) is first normalized to have values in the range [0, 1] and is then
multiplied by a factor α which is picked uniformly at random from (0, 0.5].

In this case, the WGAN component of our augmented model Gh is trained on the
normalized MNIST training dataset which contains 50,000 images with values in the
range [0, 1]. The distributions pZ1 and pZ2 are standard Gaussian distributions and the
function h is

h(x) =
0.5√
2π

∫ x

−∞
e−

t2

2 dt. (6.16)

The architectures for the generator and critic networks can be found in Appendix 6.6.3.
The WGAN is trained for 2000 epochs using ADAM optimizers [194] with a learning
rate of 2 × 10−4, hyperparameters (β1, β2) = (0.5, 0.999), and a batch size of 64. The
parameters λgp and ncritic are set as 10 and 5, respectively.

Fashion-MNIST

The Fashion-MNIST dataset consists of (28× 28) grayscale images of different fashion
products. Our ground-truth image from this dataset is shown in Figure 6.6.
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Here, the WGAN for our augmented deep generative prior is trained on the normalized
Fashion-MNIST training dataset. It contains 60,000 images whose values lie in the range
[0, 1]. The distributions pZ1 and pZ2 are taken as standard Gaussian distributions while
the function h is

h(x) =
1√
2π

∫ x

−∞
e−

t2

2 dt. (6.17)

We provide the architectures for the generator and critic networks in Appendix 6.6.3.
The WGAN is trained for 2250 epochs using ADAM optimizers with a learning rate of
2× 10−4, hyperparameters (β1, β2) = (0.5, 0.999), and a batch size of 64. The parameters
λgp and ncritic are set as 10 and 5, respectively.

Methods

As discussed in Section 6.3.3, we draw samples from the posterior distribution using
MALA. The estimator s∗init(y

†) that we use for initializing the chain is

s∗init(y
†) = argmin

s∈RK

 M∑
m=1

(
− [y†]m log

([
|As|2

]
m

)
+
[
|As|2

]
m

)

+ τ∥∇s∥22,2 + i+(s)

. (6.18)

There, ∇ : RK → RK×2 is the gradient operator, ∥ ·∥p,q is the (ℓp, ℓq)-mixed norm defined
as

∥x∥p,q ≜
(

U∑
u=1

(
V∑
v=1

(
[x]u,v

)p)q/p)1/q

∀x ∈ RU×V , (6.19)

τ ∈ R+ is the regularization parameter and the functional i+ given by

i+(s) =

{
0, s ∈ RK+
+∞, otherwise

(6.20)

enforces the non-negativity constraint on the solution. The data-fidelity term in (6.18)
corresponds to the negative log-likelihood under the Poisson-noise model. We solve
the problem in (6.18) using a projected-gradient-descent algorithm. The regularization
parameter τ so that it minimizes the mean-square error (MSE) with respect to the
ground-truth is chosen via grid search.

After discarding the first Tb samples (burn-in period), we collect the next T samples for
performing inference. We compute the posterior mean which corresponds to the minimum
mean-square error (MMSE) estimate. Further, to quantify the uncertainty associated
with our estimation, we also compute the pixel-wise standard-deviation map.
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Figure 6.5: Reconstructions for phase retrieval (oversampling ratio M/K = 0.1).

We compare the performance of our GAN-based posterior-mean estimator with that of
the TV-regularized method [25]

s∗TV(y
†) = argmin

s∈RK

 M∑
m=1

(
− [y†]m log

([
|As|2

]
m

)
+
[
|As|2

]
m

)

+ τ∥∇s∥2,1 + i+(s)

. (6.21)

TV regularization is known to promote piecewise-constant solutions and is well-matched
to our test images. We solve (6.21) using FISTA [23] initialized with s∗init(y

†). The
regularization parameter τ is tuned for optimal MSE performance with the help of a grid
search.

Results

To illustrate the advantage of our neural-network-based prior, we consider extreme
imaging settings where the number of measurements M is very small. For the first case
(Figure 6.5), we have that α = 0.36,M/K = 0.1, σ2A = 10, η = 10−5, Tb = 8× 105, and
T = 12× 105. The parameters for the second case (Figure 6.6) are M/K = 0.15, σ2A =

0.5, η = 1.75× 10−6, Tb = 17.5× 105, and T = 5× 105.

173



Chapter 6 Deep Generative Priors for Nonlinear Inverse Problems

Ground-truth image

SNR: 8.81 dB
Initial reconstruction

SNR: 10.25 dB
TV reconstruction

0.0

0.2

0.4

0.6

0.8

SNR: 15.09 dB
Posterior mean Posterior standard deviation

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Figure 6.6: Reconstructions for phase retrieval (oversampling ratio M/K = 0.15).

In Figures 6.5 and 6.6, we see that the GAN-based posterior-mean estimator outperforms
the TV-regularized method considerably. Here, the very low oversampling ratios severely
affect the performance of TV regularization, even though it is a good fit for the underlying
images. By contrast, despite the scarcity of measurements, our estimator remarkably
yields excellent results. This highlights the potential of learning-based priors for highly
ill-posed problems. Finally, we observe that, as one would expect, the standard-deviation
maps indicate higher uncertainty at the edges for the posterior-mean estimator.

6.4.3 Optical Diffraction Tomography

We consider both simulated and real data for our ODT experiments.

Simulated data

In our simulated setup, the test image (Figure 6.7) that represents the RI contrast is a
random sample from the dataset described in Section 6.4.1: a disc with constant intensity
v.

The measurements are simulated using the BPM of Section 6.2.3 with an AWGN model
of variance σ2n = 0.05. We set the sampling steps to δx = δy = 0.1 µm, the medium RI
to nb = 1.52, and the wavelength to λ = 0.406 µm. We use Q = 20 incident tilted plane
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waves with angles that are uniformly spaced in the range [−π/12, π/12].

For this setting, we use the augmented WGAN prior of Section 6.4.1 in our reconstruction
framework.

Real data

In our experiment with real data, the sample is a 2D cross-section of two non-overlapping
fibres immersed in oil (nb = 1.525) [287]. The RI contrast of the sample is negative.
A standard Mach-Zehnder interferometer relying on off-axis digital holography (λ =

0.450 µm) is used to collect measurements from Q = 59 views in the range [−π/6, π/6].

We crop the acquired data such that the measurement vector for each view is of length
M ′ = 256. We take the discretized region of interest to be of the size (256× 256) and we
set the sampling steps for BPM (used for reconstruction) to δx = δy = 0.1257 µm. We
assume an AWGN model of variance σ2n = 0.15 for the measurements.

Here, the WGAN for our prior is trained on a synthetic dataset containing 100,000 images
of size (256×256), where each image consists of two non-overlapping discs with a constant
intensity of one and a zero-valued background. The coordinates of the centers of the two
discs are sampled from U(20,235) and their radii are sampled from U[10,50] subject to the
constraint that they do not overlap. The distributions pZ1 and pZ2 are standard Gaussian
distributions and the function h is taken to be

h(x) = − 0.1√
2π

∫ x

−∞
e−

t2

2 dt. (6.22)

The architectures for the generator and critic networks are detailed in Appendix 6.6.3.
The WGAN is trained for 500 epochs using RMSProp optimizers with a learning rate
of 5× 10−5 and a batch size of 128. The parameters λgp and ncritic are set as 10 and 5,
respectively.

Methods

For both settings, the estimate s∗init(y
†) for MALA is obtained by the application of a

filtered backpropagation algorithm that uses the Rytov approximation [281] to model
the scattering. We collect T samples from the posterior distribution using MALA with
a step-size τ and burn-in period Tb, and use them to compute the posterior mean and
pixel-wise standard-deviation map.
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Figure 6.7: Reconstructions for ODT (v = 0.07).

We compare our estimator with the TV-based method

s∗TV(y
†) = argmin

s∈RK

(
Q∑
q=1

∥y†
q −Hbpm(s;uin

q )∥22 + τ∥∇s∥2,1 + I(s)
)
, (6.23)

where I(s) = i+(s) for the simulated data and I(s) = i−(s) for the real data. This is a
state-of-the-art method for ODT and is commonly used in practice [288, 289]. Moreover,
it is well-suited for the constant-valued discs in our samples. The problem in (6.23) is
solved using FISTA initialized with s∗init(y

†). The regularization parameter τ is tuned
for optimal MSE performance in the simulated-data setting via a grid search, while it is
tuned manually in the real-data setting.

Results

The settings that we consider for our ODT experiments are highly ill-posed as the incident
waves only explore a limited range. As a result, the measurements lack information along
the horizontal axis, which leads to the so-called missing-cone problem. For the first case
(Figure 6.7), we have that v = 0.07, η = 2× 10−7, Tb = 2× 104, and T = 8× 104. For the
second case (Figure 6.8), we have that η = 5× 10−8, Tb = 15× 104, and T = 5× 104.

In Figures 6.7 and 6.8, we observe that the TV reconstructions (and the initial ones)
are elongated in the horizontal direction due to the lack of information along this axis.
However, the GAN-based estimator is able to overcome the missing-cone problem. It
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Figure 6.8: Reconstructions for ODT (real data).

yields reconstructions whose quality is remarkable.

6.4.4 Discussion

With the help of the above-described experiments, we have demonstrated the potential
of our deep-generative-prior-based Bayesian reconstruction framework for challenging
nonlinear inverse problems. We now mention some directions for future work which can
further improve this framework.

In the present form, our scheme lacks theoretical guarantees for MALA to be geometrically
ergodic (convergence to the equilibrium distribution at a geometric rate). A topic of future
work could be to investigate the imposition of appropriate constraints on the generative
model such that the resulting posterior distribution satisfies certain smoothness and tail
conditions [290] that ensure geometric ergodicity of MALA.

The performance of our scheme heavily relies on how well the prior models the object of
interest. Thus, any progress on the side of designing and training high-quality large-scale
deep generative models could be translated to our framework.

While the neural-network-like structure of our forward models make our approach tractable,
like MCMC methods in general, it requires a lot of computation. It could be interesting
to consider alternatives to MALA that might help in speeding up this approach.
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6.5 Summary

We have presented a Bayesian reconstruction framework for nonlinear inverse problems
where the prior information on the image of interest is encoded by a deep latent variable
generative model. Specifically, we have designed a tractable posterior-sampling scheme
based on the Metropolis-adjusted Langevin algorithm for the class of nonlinear inverse
problems where the forward model has a neural-network-like computational structure.
This class includes most practical imaging modalities. We have proposed the concept of
augmented generative models. They allow us to tackle the problem of the quantitative
recovery of images. Finally, we have illustrated the benefits of our framework by applying
it to two nonlinear imaging modalities—phase retrieval and optical diffraction tomography.

6.6 Appendix

6.6.1 Properties of the Posterior Distribution

Well-posedness

A Bayesian inverse problem is said to be well-posed in some metric on the space of
probability measures if the posterior distribution exists, is unique, and is continuous
with respect to the measurements for the chosen metric [283]. Here, we present sufficient
conditions from [283, Assumptions 3.5, 3.10 and Theorems 3.6, 3.12] that guarantee the
well-posedness of our problem in the latent space, that is, with respect to PZ|Y=y† as
described in Section 6.3.2.

The following conditions are stated for pZ-almost every (a.e.) z′ ∈ Rd+1 and every
y† ∈ RM .

Conditions.

1. pY|Z(·|z′) is a strictly positive pdf.

2.
∫
Rd+1 |pY|Z(y

†|z̃)|pZ(z̃)dz̃ <∞

3. There exists g with
∫
Rd+1 |g(z̃)|pZ(z̃)dz̃ <∞ such that pY|Z(y

‡|·) ≤ g for all y‡ ∈ RM .

4. pY|Z(·|z′) is continuous.

5. There exists g′ with
∫
Rd+1 |g′(z̃)|pZ(z̃)dz̃ < ∞ such that ∥z′∥p2 pY|Z(y

†|z′) ≤ g′(z′),
where p ∈ [1,∞).

If the conditions (1) − (4) hold, our Bayesian inverse problem in the latent space is
well-posed in the Prokhorov, Hellinger and total-variation distances. In addition, if
condition (5) holds, then the problem is also well-posed in the Wasserstein p-distance.
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For additive white-Gaussian-noise (AWGN) models, the conditions (1)− (4) are satisfied
for any physical forward model H and prior distribution pZ. Further, if pZ is such that∫
∥z̃∥p2 pZ(z̃)dz̃ < ∞ (e.g., Gaussian distribution), condition (5) is also satisfied [283,

Corollary 5.1]. As for the Poisson-noise models used in some of our experiments, they do
not fall within this framework of well-posedness developed in [283].

Existence of Moments

Based on Proposition 3.6 in [78], we also present some conditions under which the moments
of our posterior distribution PS|Y=y† exist. If the augmented deep generative prior Gh

is Lipschitz-continuous and the prior distribution pZ has finite moments EPZ
[|Z|k] for

k = 1, 2, . . . ,K, then the Kth posterior moment EP
S|Y=y†

[|(S|Y = y†)|K ] exists for almost
all measurements y†.

The typical choice for pZ is the standard Gaussian distribution, which has finite moments.
The Lipschitz-continuity of Gh is guaranteed if the generative network G and the function
h are both Lipschitz-continuous and bounded. The Lipschitz condition on the network G

holds when its weights and biases are finite-valued and it consists of Lipschitz-continuous
activation functions (e.g., ReLU, sigmoid). The boundedness of G is ensured when the
activation function in the output layer is bounded (such as the sigmoid function). These
are conditions that are satisfied by the networks used in Section 6.4. Further, in our
experiments, we choose the function h to be a scaled version of the cumulative density
function of the standard normal distribution, which is Lipschitz-continuous and bounded.

6.6.2 Wasserstein Generative Adversarial Networks (WGANs)

Classical generative adversarial networks (GANs) [69] are known to suffer from issues
such as the instability of the training process [291, 292], vanishing gradients, and mode
collapse. The framework of Wasserstein GANs (WGANs) [220] is an alternative that
alleviates these problems.

Let D be a dataset consisting of samples drawn from a probability distribution Pr. The
goal is to build a model using D that can generate samples that follow a distribution
that closely approximates Pr. A WGAN consists of a generator network Gθ : Rd → RK

(d ≪ K), where θ ∈ Rd1 denotes its trainable parameters. It takes an input vector
z ∈ Rd, sampled from a fixed pdf pZ, and outputs Gθ(z) ∈ RK . The samples generated
by this model follow some distribution Pθ that is characterized by Gθ and pZ. Thus, the
parameters θ need to be chosen such that Pθ approximates Pr well.

In the WGAN framework, the generator is trained to minimize the Wasserstein-1 (or
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Earth-Mover) distance between Pr and Pθ, which is given by

W (Pr,Pθ) = inf
γ∈π(Pr,Pθ)

E(U,V)∼γ

[
∥U− V∥

]
. (6.24)

Here, π(Pr,Pθ) is the collection of all joint distributions with marginals Pr and Pθ. The
Kantorovich-Rubinstein duality theorem [293] states that (6.24) can be written as

W (Pr,Pθ) = sup
f∈X

(
EU∼Pr [f(U)]− EV∼Pθ [f(V)]

)
, (6.25)

where X = {f : RK → R | f is 1-Lipschitz}. The space X is then replaced by a family of
1-Lipschitz functions represented by a critic neural network Dϕ : RK → R,w 7→ Dϕ(w)

with appropriately constrained parameters ϕ ∈ Rd2 . This leads to the minimax problem

min
θ∈Rd1

max
ϕ∈Y

(
EU∼Pr [Dϕ(U)]− EV∼Pθ [Dϕ(V)]

)
, (6.26)

where Y = {ϕ ∈ Rd2 | Dϕ is 1-Lipschitz}. In [220], the authors enforce the 1-Lipschitz
condition on Dϕ by clipping its weights during training. Instead, the 1-Lipschitz constraint
can also be enforced by adding a gradient penalty to the cost function in (6.26) [294].
The regularized minimax problem becomes

min
θ∈Rd1

max
ϕ∈Rd2

(
EU∼Pr [Dϕ(U)]− EV∼Pθ [Dϕ(V)

]
+ λgpEW∼Pint

[
(∥∇wDϕ(W)∥ − 1)2

])
,

(6.27)

where a point W ∼ Pint is obtained by sampling uniformly along straight lines between
points drawn from Pr and Pθ, and λgp > 0 is a hyperparameter.

In practice, Problem (6.27) is solved using mini-batch stochastic-gradient algorithms
in an alternating manner. During each iteration for the critic, we collect a batch of
samples {x(n)}Nc

n=1 from the dataset D. We sample vectors {z(n)}Nc
n=1 from pZ and a

sequence of numbers {α(n)}Nc
n=1 from the uniform distribution U[0,1], and we construct

w(n) = α(n)x(n)+(1−α(n))Gθ(z
(n)). The critic parameters are then updated by ascending

along the gradient given by

1

Nc
∇ϕ

 Nc∑
n=1

Dϕ(x
(n))−Dϕ(Gθ(z

(n))) + λgp(∥∇wDϕ(w
(n))∥ − 1)2

. (6.28)

During each iteration for the generator, we sample latent vectors {z(n)}Ng

n=1 from pZ. The
generator parameters are then updated by descending along the gradient given by

1

Ng
∇θ

 Ng∑
n=1

−Dϕ(Gθ(z
(n)))

. (6.29)
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Typically, for every generator iteration, the critic is trained for ncritic iterations.

6.6.3 WGAN Architectures

The generator and critic architectures used for datasets consisting of constant-valued
discs are shown in Table 6.1 and 6.4. The architectures used for the MNIST and Fashion
MNIST datasets are shown in Table 6.2 and 6.3, respectively.

181



Chapter 6 Deep Generative Priors for Nonlinear Inverse Problems

Layers Output shape
Conv 4× 4 + LReLU 512× 4× 4
Conv 3× 3 + LReLU 512× 4× 4

Upsample 512× 8× 8
Conv 3× 3 + LReLU 256× 8× 8

Upsample 256× 16× 16
Conv 3× 3 + LReLU 128× 16× 16

Upsample 128× 32× 32
Conv 3× 3 + LReLU 64× 32× 32

Upsample 64× 64× 64
Conv 3× 3 + LReLU 32× 64× 64

Upsample 32× 128× 128
Conv 3× 3 + LReLU 16× 128× 128

Conv 1× 1 + Sigmoid 1× 128× 128

(a) Generator network with (128× 1× 1) input shape.

Layers Output shape
Conv 1× 1 + LReLU 16× 128× 128
Conv 3× 3 + LReLU 16× 128× 128
Conv 3× 3 + LReLU 32× 128× 128

Downsample 32× 64× 64

Conv 3× 3 + LReLU 64× 64× 64
Downsample 64× 32× 32

Conv 3× 3 + LReLU 128× 32× 32
Downsample 128× 16× 16

Conv 3× 3 + LReLU 256× 16× 16
Downsample 256× 8× 8

Conv 3× 3 + LReLU 512× 8× 8
Downsample 512× 4× 4

Conv 3× 3 + LReLU 512× 4× 4
Conv 4× 4 + LReLU 512× 1× 1

Reshape 1× 512
Fully-connected 1× 1

(b) Critic network with (1× 128× 128) input shape.

Table 6.1: Generator and critic architectures (single disc). The negative slope for
LReLU is set as 0.2. The upsampling layer uses nearest-neighbor interpolation while the
downsampling layer involves max pooling.
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Layers Output shape
Fully-connected + LReLU 1× 128

Fully-connected + Batch-norm + LReLU 1× 256
Fully-connected + Batch-norm + LReLU 1× 512
Fully-connected + Batch-norm + LReLU 1× 1024

Fully-connected + Sigmoid 1× 784

(a) Generator network with (1× 100) input shape.

Layers Output shape
Fully-connected + LReLU 1× 512
Fully-connected + LReLU 1× 256

Fully-connected 1× 1

(b) Critic network with (1× 784) input shape.

Table 6.2: Generator and critic architectures (MNIST). The negative slope for LReLU is
set as 0.2.

Layers Output shape
Fully-connected + Batch-norm + ReLU 1× 1024
Fully-connected + Batch-norm + ReLU 1× 6272

Reshape 128× 7× 7
ConvTranspose 4× 4 + Batch-norm + ReLU 64× 14× 14

ConvTranspose 4× 4 + Sigmoid 1× 28× 28

(a) Generator network with (1× 100) input shape.

Layers Output shape
Conv 4× 4 + LReLU 64× 14× 14

Conv 4× 4 + Batch-norm + LReLU 128× 7× 7
Reshape 1× 6272

Fully-connected + Batch-norm + LReLU 1× 1024
Fully-connected 1× 1

(b) Critic network with (1× 28× 28) input shape.

Table 6.3: Generator and critic architectures (Fashion-MNIST). The negative slope for
LReLU is set as 0.2.
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Layers Output shape
Conv 4× 4 + LReLU 256× 4× 4
Conv 3× 3 + LReLU 256× 4× 4

Upsample 256× 8× 8
Conv 3× 3 + LReLU 128× 8× 8

Upsample 128× 16× 16
Conv 3× 3 + LReLU 64× 16× 16

Upsample 64× 32× 32
Conv 3× 3 + LReLU 32× 32× 32

Upsample 32× 64× 64
Conv 3× 3 + LReLU 16× 64× 64

Upsample 16× 128× 128
Conv 3× 3 + LReLU 8× 128× 128

Upsample 8× 256× 256
Conv 3× 3 + LReLU 4× 256× 256

Conv 1× 1 + Sigmoid 1× 256× 256

(a) Generator network with (128× 1× 1) input shape.

Layers Output shape
Conv 1× 1 + LReLU 4× 256× 256
Conv 3× 3 + LReLU 4× 256× 256
Conv 3× 3 + LReLU 8× 256× 256

Downsample 8× 128× 128

Conv 3× 3 + LReLU 16× 128× 128
Downsample 16× 64× 64

Conv 3× 3 + LReLU 32× 64× 64
Downsample 32× 32× 32

Conv 3× 3 + LReLU 64× 32× 32
Downsample 64× 16× 16

Conv 3× 3 + LReLU 128× 16× 16
Downsample 128× 8× 8

Conv 3× 3 + LReLU 256× 8× 8
Downsample 256× 4× 4

Conv 3× 3 + LReLU 256× 4× 4
Conv 4× 4 + LReLU 256× 1× 1

Reshape 1× 256
Fully-connected 1× 1

(b) Critic network with (1× 256× 256) input shape.

Table 6.4: Generator and critic architectures (two non-overlapping discs). The negative
slope for LReLU is set as 0.2. The upsampling layer uses nearest-neighbor interpolation
while the downsampling layer involves max pooling.
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7 Deep Spatiotemporal Regularization
for Dynamic Fourier Ptychography

1This chapter explores the use of an untrained neural network as an implicit regularizer in
the context of Fourier ptychography (FP). This modality involves the acquisition of several
low-resolution intensity images of a sample under varying illumination angles. They are
then combined into a high-resolution complex-valued image by solving a phase-retrieval
problem. The objective in dynamic FP is to obtain a sequence of high-resolution images
of a moving sample. There, the application of standard frame-by-frame reconstruction
methods limits the temporal resolution due to the large number of measurements that must
be acquired for each frame. We instead propose a neural-network-based reconstruction
framework for dynamic FP, which achieves high temporal resolution without compromising
the spatial resolution. It does not require training data and also recovers the pupil function
of the microscope.

7.1 Introduction

In Fourier ptychography (FP) [276], hundreds of low-resolution intensity images are
acquired by illuminating the object of interest with a coherent light source with varying
incidence angles. This task is typically performed using a LED array and a microscope
with a low numerical aperture (NA) objective lens, which makes FP a low-cost and
label-free imaging modality. The collection of measurements is then algorithmically
combined into a high-resolution complex-valued image of the sample over a large field of
view. Thus, FP has a high space-bandwidth product.

Building upon the pioneering work of Zheng et al. [276], the capabilities of FP have
been extended in a variety of ways by improving the optical acquisition setup. For
instance, in [296] and [297], the sequence of illuminations is optimized via an importance
metric and neural networks, respectively. Multiplexed FP is introduced in [298], where
one illuminates the sample with multiple LEDs and is able to reduce the number of

1This chapter is based on our work [295].
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measurements. Further, optimal combinations of LEDs are studied in [297, 299–301].

There have also been several improvements on the computational side for FP. At its core,
the reconstruction process involves the solution of a phase-retrieval (PR) problem—the
recovery of phase information from intensity measurements. In [276], this task is performed
by using the iterative Gerchberg-Saxton (GS) algorithm [302]. As PR is a non-convex
problem, the solution obtained by GS depends on the starting point. This problem of
initialization is tackled in [303]. In [304–306], PR is formulated as a convex optimization
problem with the help of a lifting scheme. However, this elegant approach comes at
the cost of a large computational burden. As the acquired measurements are typically
corrupted by noise, maximum-likelihood estimation offers an adequate framework for one
to incorporate the noise statistics [307]. The resulting optimization problems are solved
efficiently by gradient-based or higher-order methods [308, 309]. A thorough comparative
study of different methods for PR can be found in [310]. In addition to solving the PR
problem, algorithms that include the estimation of the pupil function of the microscope
[311] and correction of the LED positions [312, 313] have also been proposed.

While FP has matured into a versatile modality with numerous applications [314], high-
quality high-speed imaging remains a challenge. The temporal resolution in FP is
inherently limited by the large number of measurements that need to be acquired in
order to reconstruct the high-resolution image of the sample. To alleviate this problem,
ad hoc acquisition setups [299, 300, 315] have been devised. They allow one to obtain
a higher temporal resolution without a significant deterioration of the spatial resolu-
tion. Alternatively, there has been a lot of interest in the development of sophisticated
computational methods to solve the PR problem with only a few measurements. In
such ill-posed scenarios, regularization techniques can be used to incorporate some prior
knowledge about the sample of interest. These are typically applied by formulating PR as
an optimization problem where the cost functional consists of a data-fidelity term and a
regularization term. The data-fidelity term ensures that the solution is consistent with the
observed data while the regularization promotes solutions with the desired properties. For
example, the popular total-variation (TV) regularization [25] favors piecewise-constant
images and has been adapted for FP in several works [316–319]. Group-sparsity-based
priors have been successfully deployed in FP as well [320]. An online plug-and-play
approach for FP has also been proposed in [321], where sophisticated denoisers such as
BM3D [204] are used for (implicit) regularization.

Over the past few years, deep-learning-based methods have yielded impressive results,
outperforming the model-based regularized methods in a variety of imaging modalities,
especially in ill-posed settings [38, 322]. In the context of FP, deep neural networks have
been trained in a supervised manner as nonlinear mappings that take the low-resolution
measurements and output the high-resolution image of interest [323–325]. Further, in
[326, 327], pre-trained deep generative priors are used to solve the PR problem. For more
details regarding FP, we refer the reader to recent comprehensive reviews [314, 328].

186



Deep Spatiotemporal Regularization for Dynamic FP Chapter 7

In dynamic FP, when it is desired to image a moving sample, the computational methods
described above must be applied in a frame-by-frame manner to obtain the sequence
of high-resolution images, without accounting for the temporal dependencies in the
measurements. Yet, one can decrease the number of measurements required per frame
(thus increasing the effective imaging speed) by exploiting the temporal correlations in
the sequence of images to be recovered. Based on this idea, the concept of low-rank FP
is introduced in [329], where a low-rank constraint is enforced on the matrix formed by
stacking the (vectorized) images.

7.1.1 Contributions

In this chapter, we propose a novel computational framework for dynamic FP. Inspired
by the method developed in [330] for dynamic magnetic resonance imaging, we use
a deep neural network to impose a spatiotemporal regularization on the sequence of
complex-valued images to be recovered. More specifically, we parameterize each image
in the sequence as the output of a single convolutional network corresponding to some
fixed latent input vector. These input vectors are chosen to lie on a one-dimensional
manifold. The parameters of the network are then estimated by optimizing a likelihood-
based criterion. The architecture of the generative network imposes an implicit spatial
regularization on the images while the constraints on the input latent vectors allow the
network to associate their proximity with temporal variations in the sequence. Our
method does not require any training data. It also estimates the pupil function together
with the complex-valued images, which means it can be readily applied for different
settings. We assess the performance of our framework on simulated data with a single
measured low-resolution image per reconstructed frame and show that it paves the way
for high-quality ultrafast FP.

The chapter is organized as follows. In 7.2, we describe a continuous-domain physical
model for FP along with its computationally efficient discretization. We present the
proposed reconstruction framework in 7.3 and the experimental results in 7.4.

7.2 Physical Model

In this section, we first formulate the physical model that relates the acquired measure-
ments and the sample of interest in the continuous domain. Then, we present a discretized
version of the forward model that can be implemented in a computationally efficient
manner.
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Figure 7.1: Acquisition setup of Fourier ptychography.

7.2.1 Continuous-Domain Formulation

The optical system in FP usually involves an array of L LEDs (see Figure 7.1), where
the lth LED illuminates the specimen with a tilted plane wave with wave vector kl ∈ R2

(l ∈ L = {1, 2, . . . , L}) and wavelength λ > 0. In this work, we consider the case where
only one LED is turned on for each measured image. However, our framework is also
compatible with more sophisticated acquisition settings [298].

We model the sample of interest as a 2D complex object, which is a valid assumption for
thin samples. Therefore, we can represent the moving sample as a complex-valued function
s : ΩS × R≥0 → C, where ΩS ⊂ R2 includes the region of interest of the sample. Let
{tq}Qq=1 be the uniformly-spaced timestamps, with spacing ∆t, at which we are interested
in observing the sample. We assume that the sample moves very slowly in the intervals
{Tq = [tq−∆t/2, tq +∆t/2]}Qq=1. Thus, during Tq, we can acquire multiple measurements
{yq,w : ΩY → R}Ww=1, where W ≤ L and where ΩY ⊂ R2 includes the support of the
measurement, of the object s(·, tq). Here, the tradeoff between the temporal resolution
and the spatial resolution can be understood in terms of ∆t and W : a small value of
∆t (high temporal resolution) implies a small value of W, which yields a low spatial
resolution.

Let Iq ⊂ L, where q ∈ {1, 2, . . . , Q}, be the set of LEDs that are switched on during
Tq; the cardinality of this set is |Iq| =W . Further, for w ∈ {1, 2, . . . ,W}, we introduce
lq,w = Iq(w) ∈ L to denote the wth entry of Iq. The measurement image yq,w is obtained
when s(·, tq) is illuminated by the lq,wth LED with the tilted plane wave r 7→ ej⟨klq,w ,r⟩.
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As mentioned in [298, 310], it is given by

yq,w(r) =
∣∣∣F−1

{
p̂(k)F

{
s(·, tq)ej⟨klq,w ,·⟩

}
(k)
}
(r)
∣∣∣2

=
∣∣∣F−1

{
p̂(k)ŝ(k− klq,w , tq)

}
(r)
∣∣∣2. (7.1)

Here, the operators F and F−1 denote the Fourier transform and its inverse, respectively,
k ∈ R2 is the 2D spatial frequency variable, and the quantity ŝ(k, tq) denotes the Fourier
transform of s(r, tq). The pupil function2 p̂ : R2 → C models the pupil aperture and is
compactly supported on a disk of radius 2πNA

λ , where NA is the numerical aperture of
the system, thus cutting off high frequencies.

7.2.2 Camera Sampling

The camera in the acquisition setup samples yq,w on a uniform grid with stepsize ∆ and
records a discrete image ỹim

q,w of size3 (M ×M) such that

ỹim
q,w = Noise(yim

q,w), (7.2)

where the (M ×M) image yim
q,w is the sampled version of yq,w given by

yim
q,w[m1,m2] = yq,w

(
(m1 −M/2)∆, (m2 −M/2)∆

)
(7.3)

for m1 = 0, . . . , (M − 1) and m2 = 0, . . . , (M − 1), and the operator Noise(·) models the
corruption of yim

q,w by noise. Consider the quantity

uq,w(r) = F−1
{
p̂(k)F

{
s(·, tq)ej⟨klq,w ,·⟩

}
(k)
}
(r). (7.4)

Due to the compact support of the pupil function p̂, the maximum angular frequency of
uq,w is 2πNA

λ . Note that the Fourier transform of yq,w can be written as

F {yq,w} (k) = F
{
|uq,w|2

}
(k) =

(
û∨q,w ∗ ûq,w

)
(k), (7.5)

where û∨q,w denotes the complex conjugate of û∨q,w which is given by û∨q,w(k) = ûq,w(−k),
and ∗ denotes the convolution operation. Thus, the maximum angular frequency of yq,w
is 4πNA

λ . Consequently, the Nyquist criterion dictates that the sampling step ∆ of the
camera should satisfy

∆ ≤ λ

4NA
. (7.6)

2The pupil function p̂ is described directly in the Fourier domain.
3We consider square even-sized images for the sake of simplicity.
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7.2.3 Discretized Forward Model

In this work, we obtain a discrete version sim
q of s(r, tq) by sampling it on a uniform

(N ×N) grid with pixel-size ∆r, as

sim
q [n1, n2] = s

(
(n1 −N/2)∆r, (n2 −N/2)∆r, tq

)
(7.7)

for n1 = 0, . . . , (N − 1) and n2 = 0, . . . , (N − 1). The image size is given by N = rpM ,
where rp = ∆/∆r ∈ N is the upsampling factor. Now, consider the 2D discrete Fourier
transform (DFT) of sim

q . The corresponding pixel size in the Fourier domain (or angular
frequency resolution) is ∆k = 2π/N∆r. Thus, we discretize the pupil function such that

p̂im[k1, k2] = p̂

(
(k1 −M/2)∆k, (k2 −M/2)∆k

)
(7.8)

for k1 = 0, . . . , (M − 1) and k2 = 0, . . . , (M − 1). Note that the choice of ∆ and ∆k

ensures that the support of the pupil function lies within the (M ×M) sampling grid for
p̂. Moreover, in our discretization scheme, we assume that the wave vector klq,w can be
written as klq,w = (blq,w,1∆k, blq,w,2∆k), where blq,w,1, blq,w,2 ∈ Z.

We now introduce some additional notations to specify the discrete forward model. Let
yq,w ∈ RM2 , sq ∈ CN2 , and p̂ ∈ CM2 be the vectorized versions of yim

q,w, sim
q , and p̂im,

respectively. Then, let FQ,F
−1
Q ∈ CQ2×Q2 be matrices that represent the 2D DFT and

its inverse of a (Q×Q) image, respectively. Next, we define diag(p̂) ∈ CM2×M2 to be a
diagonal matrix whose entries are the values in p̂. Finally, Cklq,w

is a boolean matrix
that restricts an N2-dimensional vector to an M2-dimensional vector depending on the
illumination wave vector klq,w .

Proposition 7.1. The discrete counterpart of (7.1) can be computed as

yq,w = |Hlq,wsq|2 =
∣∣∣∣4π2r2p F−1

M diag(p̂)Cklq,w
FNsq

∣∣∣∣2. (7.9)

Proof. Consider the quantity

uq,w(r) = F−1
{
p̂(k)F

{
s(·, tq)ej⟨klq,w ,·⟩

}
(k)
}
(r)

=

∫
R2

p̂(k)ej⟨k,r⟩

∫
R2

s(x, tq)e
−j⟨k−klq,w ,x⟩dx

dk. (7.10)

We discretize the integrals in (7.10) using Riemann sums. A step-size ∆k is used for the
integral with respect to k and a step-size ∆r is used for the integral with respect to versus.
The samples uim

q,w[m1,m2] = uq,w

(
(m1−M/2)∆, (m2−M/2)∆

)
for m1 = 0, . . . , (M − 1)
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and m2 = 0, . . . , (M − 1), are then given by

uim
q,w[m1,m2] = (∆k∆r)

2
M−1∑
k1=0

M−1∑
k2=0

(
p̂
(
(k1 −M/2)∆k, (k2 −M/2)∆k

)
︸ ︷︷ ︸

p̂im[k1,k2]

× ej(k1−M/2)(m1−M/2)∆k∆ ej(k2−M/2)(m2−M/2)∆k∆ aq,w[k1, k2]

)
, (7.11)

where

aq,w[k1, k2] =

N−1∑
n1=0

N−1∑
n2=0

(
s
(
(n1 −N/2)∆r, (n2 −N/2)∆r, tq

)
︸ ︷︷ ︸

simq [n1,n2]

× e−j(k1−blq,w,1−M/2)(n1−N/2)∆k∆r e−j(k2−blq,w,2−M/2)(n2−N/2)∆k∆r

)
. (7.12)

The limits in the sums in (7.11) and (7.12) are dictated by the supports of p̂ and s(r, tq),
respectively. By rearranging some terms and using the fact that ∆k∆r = 2π/N , we
rewrite (7.12) as

aq,w[k1, k2] =

N−1∑
n1=0

N−1∑
n2=0

sim
q [n1, n2] e

−j 2π
N

(k1−blq,w,1−M/2)n1 e−j 2π
N

(k2−blq,w,2−M/2)n2

︸ ︷︷ ︸
ŝimq [k1−blq,w,1−M/2,k2−blq,w,2−M/2]



× ejπ(k1−blq,w,1−M/2) ejπ(k2−blq,w,2−M/2), (7.13)

where ŝim
q is the (N,N)-point DFT of sim

q and the shifts in the DFT are applied in a
circular manner. On plugging (7.13) into (7.11), we get that

uim
q,w[m1,m2] = (2π/N)2

M−1∑
k1=0

M−1∑
k2=0

p̂im[k1, k2] ŝ
im
q [k1 − blq,w,1 −M/2, k2 − blq,w,2 −M/2]

× ej(k1−M/2)(m1−M/2)∆k∆ ej(k2−M/2)(m2−M/2)∆k∆

× ejπ(k1−blq,w,1−M/2) ejπ(k2−blq,w,2−M/2)

. (7.14)

Next, we group all the exponential terms involving k1 and k2 and use ∆k∆ = 2π/M to
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obtain that

uim
q,w[m1,m2] = (2π/N)2

M−1∑
k1=0

M−1∑
k2=0

p̂im[k1, k2] ŝ
im
q [k1 − blq,w,1 −M/2, k2 − blq,w,2 −M/2]

× ej
2π
M
k1m1 ej

2π
M
k2m2

× e−jπ(m1+blq,w,1) e−jπ(m2+blq,w,2). (7.15)

Let gim
q,w be the (M,M)-point IDFT of ĝim

q,w[k1, k2] = p̂im[k1, k2] ŝ
im
q [k1−blq,w,1−M/2, k2−

blq,w,2 −M/2]. Then, the discrete measurements can be expressed as

yim
q,w[m1,m2] =

∣∣∣uim
q,w[m1,m2]

∣∣∣2 = ∣∣∣(4π2/r2p) gim
q,w[m1,m2]

∣∣∣2. (7.16)

Note that the computation of gim
q,w involves taking the (N,N)-point DFT of simq , (circularly)

shifting it according to the wave vector klq,w , restricting the shifted DFT to an (M ×M)

image, performing pointwise multiplication with p̂im, and then taking the (M,M)-point
IDFT. This allows us to write (7.16) in vectorized form as in the right-hand side of
(7.9).

While the discrete forward model (7.9) has previously been used in works such as [310],
to the best of our knowledge, a systematic derivation of (7.9) from the continuous model
(7.1) has not been presented in the literature.

7.3 Reconstruction Framework

The goal in dynamic FP is to reconstruct the images {sq ∈ CN2}Qq=1 from the recorded
measurements {{ỹq,w ∈ RM2}Ww=1}Qq=1. We first present our neural-network-based frame-
work for the case of a well-characterized pupil function. Then, we describe a way to
incorporate the recovery of the pupil function into our reconstruction algorithm.

7.3.1 Deep Spatiotemporal Regularization

In our framework, we propose to use an extended version of the untrained-neural-network-
based method presented in Section 2.2.3 to impose spatiotemporal regularization on the
sequence of images. We parameterize each of the Q images as the output of a single CNN
fθ : RN2

z → CN2 , with parameters θ ∈ RP , applied to some fixed input latent vector
zq ∈ RN2

z , q = 1, . . . , Q. We choose these latent vectors such that they lie on a straight
line, in accordance with

zq = z1 +
q − 1

Q− 1
(zQ − z1) , q = 1, . . . , Q, (7.17)
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ỹq,w, |Hlq,w fθ(zq)|

2
)

Figure 7.2: Spatiotemporal regularization using the generative neural network fθ.

where the end-points z1, zQ are fixed beforehand (for example, by drawing two samples
from some multivariate probability distribution). We then estimate the parameters of the
network according to

θ∗ ∈ argmin
θ∈RP

Q∑
q=1

W∑
w=1

D
(
ỹq,w, |Hlq,w fθ(zq)|2

)
, (7.18)

where D : RM2 × RM2 → R+ is a data-fidelity term derived from a suitable statistical
model for the Noise(·) operator (like in Equation 2.8) and the reconstructed sequence is
{s∗q}Qq=1 = {fθ∗(zq)}Qq=1. The rationale behind our choice of the latent vectors is to allow
the CNN to associate the spatial proximity between them with the temporal proximity of
the images. In this manner, the architecture of the network imposes spatial regularization
while the use of a shared network for all images and the design of the latent space impose
temporal regularization. A schematic illustration of our framework is given in Figure 7.2.

7.3.2 Optimization Strategy

The relation between the measurements and the underlying images is nonlinear, which
makes the inverse problem very challenging. The fact that only one LED is switched on
for each measurement further adds to the difficulty. Thus, in order to avoid bad local
minima while solving the optimization problem in (7.18), we initialize the parameters of
the network according to

θ̃ ∈ arg min
θ∈RP

Q∑
q=1

(∥∥∥|̃sq| − |fθ(zq)|∥∥∥
1
+
∥∥∥ arg (s̃q)− arg

(
fθ(zq)

)∥∥∥
1

)
, (7.19)

where {s̃q}Qq=1 are low-quality reconstructions obtained via a standard frame-by-frame
method. The magnitude | · | and phase arg(·) operations in (7.19) are applied component-
wise. We can solve (7.19) using off-the-shelf minibatch stochastic gradient-descent al-
gorithms. However, it is not desirable to run these algorithms till convergence as the
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Algorithm 4 Initialization of network parameters.

Input: Low-quality reconstructions {s̃q}Qq=1, latent vectors {zq}Qq=1, batch size BQ,
tolerance ϵtol, maximum number of iterations nmax.
Randomly initialize θ
Lbatch ← +∞, i← 0
while Lbatch > ϵtol do

Randomly sample a batch Q of size BQ from {1, 2, . . . , Q}
Compute Lbatch(θ) =

∑
q∈Q

(∥∥∥|̃sq| − |fθ(zq)|∥∥∥
1
+
∥∥∥ arg (s̃q)− arg

(
fθ(zq)

)∥∥∥
1

)
Update θ with gradient ∇θLbatch(θ)
i← i+ 1
if i > nmax then

Exit the while loop
end if

end while
Output: Network parameters θ

network then overfits the artifacts present in the low-quality reconstructions. Thus, in
our initialization routine, which is described in Algorithm 4, we deploy early stopping
by choosing suitable values for the tolerance ϵtol and the maximum number of iterations
nmax (see Section 7.4.1 for details).

After the initialization, we can solve (7.18) using again some minibatch stochastic gradient-
descent algorithm. In some cases (for example, when the measurements are corrupted
by a non-negligible amount of noise), running the optimization process beyond a certain
number of iterations leads to deterioration of the reconstruction quality as the network
begins to overfit the measurements. Thus, we also adopt early stopping when necessary.

For both the initialization and reconstruction tasks, we use (minibatch) stochastic gradient-
descent algorithms instead of deterministic ones. This introduces additional hyperparam-
eters (batch sizes) that must be set appropriately. However, stochastic methods with
small batch sizes require much less memory than the deterministic ones. In fact, if the
number of frames Q is large, applying a deteministic gradient-descent method is infeasible.
Further, such stochastic methods are also more likely to escape bad local minima and thus
reach better solutions. Indeed, in our experiments, we observed that using reasonably
small batch sizes (BQ = 10) led to better reconstructions than using large batch sizes
(BQ = 40).

7.3.3 Recovery of the Pupil Function

So far, we have assumed complete knowledge of the pupil function in our reconstruction
framework. However, the pupil function is typically not well-characterized in FP. Thus,
similar to the work in [311, 319], we estimate it along with the sequence of images.
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Algorithm 5 Joint recovery of dynamic sample and pupil function.

Input: Measurements {{ỹq,w}Ww=1}Qq=1, LED indices {{lq,w}Ww=1}Qq=1, latent vectors
{zq}Qq=1, initial network parameters θ̃, initial Zernike coefficients c̃, regularization
parameter τ , batch sizes {BW , BQ}, number of epochs nep.
θ ← θ̃, c← c̃
nW ← ⌊ WBW

⌋, nQ ← ⌊ QBQ
⌋

for nep epochs do
for nW iterations do

Randomly sample a batch W of size BW from {1, 2, . . . ,W}
for nQ iterations do

Randomly sample a batch Q of size BQ from {1, 2, . . . , Q}
Compute the loss Lbatch(θ, c) =

∑
q∈Q

∑
w∈W D

(
ỹq,w, |Hlq,w(c)fθ(zq)|2

)
Update θ with gradient ∇θLbatch(θ, c)
Update c with gradient ∇cLbatch(θ, c)

end for
end for

end for
Output: Reconstructed images {fθ(zq)}Qq=1, Zernike coefficients c

Following [319], we use Zernike polynomials to represent the pupil function with only
a few parameters (≪ M2). These functions are orthogonal on the unit circle and are
often used in optics for modeling aberrations. We express the pupil function in polar
coordinates (ρ, ϕ) as

p̂(ρ, ϕ) =

 exp

(
j
A∑
a=1

caZa

(
ρλ

2πNA , ϕ
))

, ρ ≤ 2πNA
λ

0, otherwise,

(7.20)

where Za is the ath Zernike polynomial according to Noll’s sequential indices (refer to
7.6.1 for details) and c = (ca)

A
a=1 ∈ RA (A≪M2) contains the Zernike coefficients. The

pupil function is discretized as in (7.8) by evaluating (7.20) on the required Cartesian grid.
We denote the vectorized discrete pupil function by p̂(c) ∈ RM2 to explicitly indicate the
dependence on the Zernike coefficients. Similarly, our forward model (7.9) is then written
as

yq,w = |Hlq,w(c)sq|2 =
∣∣∣∣4π2r2p F−1

M diag(p̂(c))Cklq,w
FNsq

∣∣∣∣2. (7.21)

Finally, the optimization problem for the joint recovery of the pupil function and the
sequence of images is

(θ∗, c∗) ∈ argmin
θ∈RP ,c∈RA

Q∑
q=1

W∑
w=1

D
(
ỹq,w, |Hlq,w(c)fθ(zq)|2

)
, (7.22)
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Figure 7.3: Simulated FP setup. Panel A: LED array. Panel B: Pupil function.

where D : RM2 × RM2 → R+ is the data-fidelity term. We can solve (7.22) using a
minibatch stochastic gradient-descent algorithm coupled with early stopping if required.
Our complete reconstruction algorithm is summarized in Algorithm 5.

7.4 Numerical Results

7.4.1 Simulated Setup

We demonstrate the advantages of our reconstruction method on simulated data. We
consider an FP setup consisting of L = 100 LEDs arranged in a (10 × 10) uniform
grid with a spacing of dL = 4mm. The maximum illumination NA of the LED array,
which is placed at distance h = 90.88mm from the sample, is 0.27. The LEDs emit
light with wavelength λ = 532 nm. The numerical aperture of the objective is NA = 0.1.
We have chosen these values of dL, h, λ and NA based on the experimental setup in
[314]. The pupil function is defined according to (7.20) using the first nine Zernike
polynomials with coefficients c = (0, 0.15, 0.3,−0.1, 0.2, 0, 0, 0, 0) ∈ R9. We take the
low-resolution measurements acquired by the camera to be of size (64×64) with pixel-size
∆ = λ

4NA = 1.33 µm and we set the oversampling ratio as rp = 4. Consequently, the pixel
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Figure 7.4: First and second row: frames of the ground-truth sequence (amplitude and
phase). Third and fourth row: corresponding low-resolution measurements (noiseless
and noisy, normalized for visualization). The signal-to-noise ratios for the noisy measure-
ments, computed as 20 log10

∥yq∥2
∥yq−ỹq∥2 , are indicated at the bottom right corners of the

measurement images. Scale bar: 10 µm.

size for the highresolution image is ∆r = 332.5 nm and the step-size for discretizing the
pupil function is ∆k = 0.074 µm−1. The LED array and the pupil function are shown in
Figure 7.3.

Our ground truth is a sequence of complex-valued images {sq ∈ C2562}100q=1 of size (256×256)
which we created from experimental phase images4. We place ourselves in the extremely
challenging ultrafast regime where only one measurement is acquired for each image in
the sequence. For each measurement, a single LED of index5 lq is randomly activated
and a low-resolution image5 yq ∈ R642 is simulated according to (7.21). The recorded
measurement image ỹq ∈ R642 is then generated according to

ỹq = yq + nq, (7.23)
4The experimental phase images are from [331] and are available at http://celltrackingchallenge.net/2d-

datasets/.
5We have dropped the index w as W = 1.
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where nq ∈ R642 is a realization of a zero-mean Gaussian random vector with covariance
matrix Σq ∈ R642×642 . Specifically, we consider two settings for our simulations. In
the first case, Σq is the zero matrix, which means that the recorded measurements are

noiseless. In the second case, Σq is a diagonal matrix with entries
(
([yq]m)/1000

)642
m=1

.
There, (7.23) corresponds to a Gaussian approximation of the Poisson noise model with a
photon budget of 1000.

We show some of the frames in the ground-truth sequence and the corresponding measure-
ments for both the settings (noiseless and noisy) in 7.4. The full sequences are provided
in the supplementary material.

7.4.2 Implementation of the Deep Spatiotemporal Regularizer

In this subsection, we describe the implementation of our reconstruction method—the
deep spatiotemporal regularizer (DSTR).

Network Architecture

It has been observed that the choice of the network architecture can greatly affect the
performance of untrained-neural-network-based methods [82]. Therefore, the common
practice when deploying such schemes is to select the architecture in an empirical trial-
and-error manner for the specific task at hand. For our experiments, inspired by [330],
we adopt a convolutional decoder-like architecture for fθ, which, as we demonstrate in
Sections 7.4.5 and 7.4.6, yields high-quality reconstructions. It takes a low-dimensional
input vector z ∈ R82 and outputs a complex-valued (vectorized) image fθ(z) ∈ C2562 .
The architectural details are described in Table 7.1. In particular, the complex-valued
image is generated from a pair of magnitude and phase images. The initial part of the
network creates feature maps of size (128 × 256 × 256). These are then fed into both
the magnitude and phase branches of the network. The magnitude branch consists of a
convolutional layer followed by the pointwise differentiable rectified linear unit (DReLU)
activation function, which we define as

DReLU(x) =

{
γ exp(xγ − 1), x < γ

x, otherwise,
(7.24)

where γ > 0 is set a priori. We use DReLU (with γ = 0.1) instead of ReLU to avoid the
“dead-neuron" issue during the first few iterations of the optimization, while ensuring that
the magnitude is positive. Meanwhile, the phase branch consists of a convolutional layer
followed by the π tanh nonlinearity to constrain the phase to lie within the range [−π, π].
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Layers Output shape

Reshape 1× 8× 8

2 × (Conv + BN + ReLU) 128× 8× 8

Upsampling + 2 × (Conv + BN + ReLU) 128× 16× 16

Upsampling + 2 × (Conv + BN + ReLU) 128× 32× 32

Upsampling + 2 × (Conv + BN + ReLU) 128× 64× 64

Upsampling + 2 × (Conv + BN + ReLU) 128× 128× 128

Upsampling + 2 × (Conv + BN + ReLU) 128× 256× 256

Magnitude: Conv + DReLU
Phase: Conv + π tanh

1× 256× 256
1× 256× 256

Combination: Magnitude ⊙ ejPhase 1× 256× 256

Reshape 1× 2562

Table 7.1: Architecture of the network fθ. Size of input: (1× 82). Conv: convolutional
layer with (3× 3) kernels and reflective boundary conditions. BN: batch normalization
layer. Upsampling: nearest neighbor interpolation. The amplitude and phase branches
take the same input of size (128× 256× 256) and output the magnitude and phase images
of size (1× 256× 256), respectively. DReLU is described in (7.24). The combination layer
generates a complex-valued image from the magnitude and phase images. This network
consists of 1,628,546 learnable parameters.

Latent Vectors

As mentioned in Section 7.3.1, the latent vectors {zq ∈ R82}100q=1 are chosen such that they
lie on the straight line defined in (7.17). We fix the end-points z1, z100 of this line by
drawing two samples from the standard multivariate normal distribution in 82 dimensions.

Initialization

In all our experiments, we initialize the parameters of the network using reconstructions
obtained from the Gerchberg-Saxton algorithm (briefly described in Section 7.4.3). We
run Algorithm 4 using the AMSGrad solver [332] with a learning rate of 10−3, batch
size BQ = 10, tolerance ϵtol = 0.1 × (BQ × 2562) and maximum number of iterations
nmax = 1000. We then freeze the tunable parameters of the batch-normalization layers.
For experiments involving the estimation of the pupil function, we initialize the Zernike
coefficients as c̃ = 0.

We have observed that the initialization of the network parameters has an impact on
the reconstruction quality. For example, randomly initializing the parameters does not
lead to satisfactory results. However, initializing the network by simply fitting it to
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low-quality solutions of the Gerchberg-Saxton algorithm (along with early stopping to
avoid overfitting the artifacts) allows us to obtain excellent reconstructions (see Sections
7.4.5 and 7.4.6).

Choice of the Data-Fidelity Term

In our simulations, we consider two kinds of measurements—noiseless and those corrupted
by (an approximation of) Poisson noise. For the latter, the data-fidelity term based on
the negative log-likelihood function corresponding to the Poisson distribution is given by

DPoisson(a,b) =

M∑
m=1

(
− [a]m log([b]m) + [b]m

)
, (7.25)

where a,b ∈ RM2 . However, for optimization-based FP reconstruction, it has been shown
(experimentally) in [310] that a cost function of the form

Dsqrt(a,b) =
1

2

∥∥∥√a−√b∥∥∥2
2

(7.26)

yields better reconstructions than the one in (7.25). Thus, for our reconstruction experi-
ments, we use the slightly modified version of (7.26) given by

D(a,b) = 1

2

∥∥∥√a+ ϵ1−
√
b+ ϵ1

∥∥∥2
2
, (7.27)

where 1 ∈ RM2 is a vector with all entries equal to 1 and ϵ = 10−10 helps us avoid
numerical instabilities in the computation of the gradient. We would like to mention that
Dsqrt can be interpreted from a statistical point of view as being based on the negative
log-likelihood function derived from the distribution of the transformed measurements√

ỹq. This is due to the well-known property that if X is a Poisson random variable
with mean µX, then Y =

√
X approximately follows a Gaussian distribution with mean

µY =
√
µX and variance σ2Y = 1/4 [333, 334].

For the noiseless setting, ideally we should optimize the network parameters such that
the generated sequence fits the measurements exactly. However, it is difficult to solve
this constrained optimization problem and thus we use the data-fidelity term from (7.27)
in this case as well.

Note: The details regarding the optimization process for (7.18) and (7.22) are provided
in Sections 7.4.5 and 7.4.6.

7.4.3 Comparisons

We compare our proposed framework to the following methods.
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Gerchberg-Saxton Algorithm The GS algorithm [302] is a classical method for phase
retrieval. Assuming that the Zernike coefficient vector c is known, it aims at solving the
feasibility problem

s∗GS,q ∈
{
s : ỹq = |Hlq(c)s|2

}
(7.28)

for q = 1, 2, . . . , 100, by alternately updating the image plane and the object plane. We
refer the reader to [302] for more details. When the pupil function is not well-characterized,
we do not incorporate its recovery within the GS algorithm. Instead, we solve (7.28)
assuming an idealized pupil function with no phase aberrations that corresponds to c = 0.

Data-Consistency Estimator Based on the work in [310], we consider a data-
consistency (DC) estimator that minimizes the (slightly modified) “amplitude-based" cost
function (7.27). For the joint recovery of the images and pupil function, it is given by

(
s∗DC,1, . . . , s

∗
DC,100, c

∗
DC

)
∈ arg min

s1,...,s100,c

100∑
q=1

D
(
ỹq, |Hlq(c)sq|2

)
, (7.29)

where D(·, ·) is defined in (7.27).

Spatially Total-Variation-Regularized Estimator In our numerical simulations,
we also consider a regularized estimator where the cost function in (7.29) is augmented
with spatial anisotropic TV regularization for each frame. It is given by

(
s∗STV,1, . . . , s

∗
STV,100, c

∗
STV

)
∈ arg min

s1,...,s100,c

100∑
q=1

(
D
(
ỹq, |Hlq(c)sq|2

)
+ τamp,q

∥∥∥L{|sq|}∥∥∥
1
+ τphase,q

∥∥∥L{arg(sq)}∥∥∥
1

)
, (7.30)

where the operator L : RN → R2N computes finite differences in both the directions for
the underlying image, and {τamp,q, τphase,q}100q=1 ⊂ R+ are hyperparameters that control
the strength of the regularization.

Spatiotemporally Total-Variation-Regularized Estimator Finally, we also im-
plement a spatiotemporally-regularized estimator where the cost function in (7.29) is
augmented with both spatial and temporal TV regularization. It is given by
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(
s∗STTV,1, . . . , s

∗
STTV,100, c

∗
STTV

)
∈ arg min

s1,...,s100,c

100∑
q=1

(
D
(
ỹq, |Hlq(c)sq|2

)
+ τamp,s

∥∥∥L{|sq|}∥∥∥
1
+ τphase,s

∥∥∥L{arg(sq)}∥∥∥
1

)
+

99∑
q′=1

(
τamp,t

∥∥∥|sq′+1| − |sq′ |
∥∥∥
1

+ τphase,t

∥∥∥ arg(sq′+1)− arg(sq′)
∥∥∥
1

)
, (7.31)

where L : RN → R2N is the finite-difference operator and {τamp,s, τphase,s, τamp,t, τphase,t} ⊂
R+ are the regularization hyperparameters.

7.4.4 Evaluation Metric

We quantify the performance of a method by computing the regressed signal-to-noise ratio
(RSNR) for the entire reconstructed sequence of images. Let s and s∗ denote vectorized
versions of the ground truth and reconstruction, respectively. These are created by
concatenating the vectorized representations of each frame in the sequence. The RSNR is
computed as

RSNR(s∗, s) = max
a∈C

20 log10
∥s∥2

∥s− as∗∥2
. (7.32)

We also report the SNR for the pupil function whenever it is jointly estimated with the
sequence of images. This metric is computed as

SNR
(
p̂(c), p̂(c∗)

)
= 20 log10

∥p̂(c)∥2
∥p̂(c)− p̂(c∗)∥2

, (7.33)

where c and c∗ are the ground-truth and estimated Zernike coefficients, respectively.

7.4.5 Reconstruction from Noiseless Measurements

We now present two experiments involving noiseless measurements. In both of them, we
run the iterative algorithm for each method for a sufficient number of iterations (details
are provided below), beyond which the reconstruction does not change significantly. In
other words, we do not deploy early stopping for any method as the measurements are
noiseless.
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Table 7.2: Reconstruction from noiseless measurements with a perfectly characterized
pupil function.

Method GS DC STV STTV DSTR
RSNR [dB] 17.24 9.66 17.85 18.58 28.61
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Figure 7.5: Reconstruction from noiseless measurements with a perfectly characterized
pupil function. Panel A: XY view for the frame index q = 26. Panel B: XT view for the
Y position indicated in Panel A (GT, Phase, dashed line). Scale bar: 10 µm.

Perfectly Characterized Pupil Function

We first consider an idealized setting where the pupil function is perfectly characterized
and is therefore not estimated during the reconstruction of the images of interest. In this
scenario, the DC and STV estimators can be computed in frame-by-frame manner (similar
to the GS method) by decomposing the overall optimization problems into Q = 100

smaller ones. We solve these by running AMSGrad with a learning rate of 10−3 for 1,000

iterations. In order to improve their performance, we initialize the GS, DC, and STV
methods for the timestamp tq with the reconstructed images from the previous timestamp
tq−1. The GS solution is used for initializing the STTV method. We solve (7.31) by using
AMSGrad for 10,000 epochs with a learning rate of 10−3 and a full batch size of 100.
The optimal hyperparameters {τamp,q, τphase,q}100q=1 and {τamp,s, τphase,s, τamp,t, τphase,t} for
the STV and STTV methods, respectively, are chosen via a grid-search. For DSTR, the
network parameters are initialized with the help of the GS solution. We then solve (7.18)
by running the AMSGrad optimizer for 10,000 epochs with a learning rate of 5× 10−5
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Table 7.3: Joint recovery of the dynamic sample and the pupil function from noiseless
measurements.

Method GS DC STV STTV DSTR
Sequence RSNR [dB] 14.70 14.82 15.88 17.10 28.04
Pupil SNR [dB] N.A. 8.28 9.57 12.74 31.22

and a batch size of BQ = 10.

We present the RSNR values for all the methods in Table 7.2. Further, we display some
slices of the (2D + time) reconstructions in Figure 7.5. The entire reconstructed sequences
can be found at the link given in Appendix 7.6.2. We observe that the proposed method
significantly outperforms the GS, DC, STV and STTV methods. Even though only one
measurement is acquired per frame, it yields a high-quality reconstruction, unlike the
other methods which exhibit various artifacts (for example, the features marked by arrows
in Figure 7.5).

Joint Recovery of Dynamic Sample and Pupil Function

Next, we consider a setting where the pupil function is not well-characterized and is
therefore estimated jointly with the dynamic sample in our framework and in the DC,
STV and STTV methods. (We do not adapt the GS algorithm for the recovery of the
pupil function; we simply assume the idealized pupil function c = 0.) For the DC, STV
and STTV methods, the sequence of images is initialized with the GS solution and the
Zernike coefficients are initialized as c̃ = 0. We solve (7.29) and (7.30) by running the
AMSGrad optimizer for 10,000 epochs with a learning rate of 10−3 and a batch size of
10. For solving (7.31), we run AMSGrad for 10,000 epochs with a learning rate of 10−3

and a full batch size of 100. In the STV method, we select two global hyperparameters
{τamp, τphase} via grid search and share them among all frames. The hyperparameters
{τamp,s, τphase,s, τamp,t, τphase,t} for the STTV method are also tuned for best performance
with the help of a grid search. In our method, we initialize the network parameters using
the GS solution and we initialize the Zernike coefficients as c̃ = 0. We solve (7.18) by
running AMSGrad for 10,000 epochs with a learning rate of 5× 10−5 and a batch size of
BQ = 10.

We present the RSNR and SNR values for the reconstructed sequence and the pupil
function, respectively, in Table 7.3. We also show some slices of the (2D + time)
reconstructions and the recovered pupil functions (phase) in Figure 7.6, as well as the
recovered Zernike coefficients in Figure 7.7. The full reconstructed sequences are provided
at the link mentioned in Appendix 7.6.2. Here, the DC, STV and STTV methods fail
to recover the Zernike coefficients (i.e., the pupil function) accurately and yield poor
reconstructions of the dynamic sample. On the contrary, our method provides a good
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Figure 7.6: Joint recovery of the dynamic sample and the pupil function from noiseless
measurements. Panel A: XY view for the frame index q = 26. Panel B: XT view for the
Y position indicated in Panel A (GT, Phase, dashed line). Panel C: phase of the pupil
function. Scale bar (for Panels A and B): 10 µm.
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Figure 7.7: Recovered Zernike coefficients from noiseless measurements. The first (Noll
index = 1) Zernike mode only contributes a constant phase factor which has no effect on
the intensity measurements and thus can be ignored.
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Table 7.4: Joint recovery of the dynamic sample and the pupil function from noisy
measurements.

Method GS DC STV STTV DSTR
Sequence RSNR [dB] 14.09 14.14 14.65 16.39 24.86
Pupil SNR [dB] N.A. 9.36 10.66 14.98 28.36

estimate of the pupil function along with a high-quality reconstruction of the moving
sample.

7.4.6 Reconstruction from Noisy Measurements

Finally, we consider the joint recovery of the sequence of images and the pupil function
from noisy measurements. In this case, we observe that the GS, DC and DSTR methods
require early stopping as running the corresponding iterative algorithm beyond a point
leads to overfitting the noisy measurements. Thus, we run each method for a sufficiently
large number of epochs (= 10,000) and we report the reconstruction that achieves the
best RSNR during these epochs. For each method, we use the initialization, optimizer,
learning rate and batch size described in Section 7.4.3. The hyperparameters for the STV
and STTV methods are also tuned in the same way as in Section 7.4.3.

We summarize the quantitative results for all the methods in Table 7.4. We display some
slices of the (2D + time) reconstructions and the estimated pupil functions (phase) in
Figure 7.8, and we present the recovered Zernike coefficients in Figure 7.9. The entire
reconstructed sequences are available at the link provided in Appendix 7.6.2. In this
setting, as shown in Figure 7.4, the dark-field measurements are corrupted by significant
amounts of noise, which makes the recovery problem quite challenging. Remarkably, our
method still yields reconstructions of very good quality and outperforms the DC, STV
and STTV methods by a big margin.

7.4.7 Computational Cost

In all our experiments, we used an Intel Xeon Gold 6240R (2.6 GHz) CPU for the GS
method and an NVIDIA V100 GPU for the DC, STV, SSTV and DSTR methods. While
DSTR achieves substantially better reconstruction quality than the other methods, its
computational cost is also higher. For example, the run time for DSTR was around 5.5

hours as opposed to 3− 30 minutes for the other approaches when jointly estimating the
sequence and the pupil function from noiseless measurements.
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Figure 7.8: Joint recovery of the dynamic sample and the pupil function from noisy
measurements. Panel A: XY view for the frame index q = 26. Panel B: XT view for the
Y position indicated in Panel A (GT, Phase, dashed line). Panel C: phase of the pupil
function. Scale bar (for Panels A and B): 10 µm.
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Figure 7.9: Recovered Zernike coefficients from noisy measurements. The first (Noll index
= 1) Zernike mode only contributes a constant phase factor which has no effect on the
intensity measurements and thus can be ignored.
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7.5 Summary

We have presented a neural-network-based framework that does not require training data
for the reconstruction of high-resolution complex-valued images of a moving sample in
dynamic Fourier ptychography. In our method, we have parameterized the sequence
of images to be reconstructed using a shared convolutional network with adjustable
parameters. We have encoded the temporal behavior of the sample in the input vectors of
the network by constraining them to lie on a one-dimensional manifold. In this manner, we
have leveraged both the structural prior of a neural network and the temporal regularity
between consecutive frames. Further, we have incorporated the recovery of the pupil
function of the microscope within our framework. Finally, with the help of simulations, we
have shown that the proposed approach drastically improves the quality of reconstruction
over standard frame-by-frame methods.

7.6 Appendix

7.6.1 Zernike Polynomials

In the polar coordinates (ρ, ϕ), the Zernike polynomials are given by

Zuv (ρ, ϕ) =

{
R

|u|
v (ρ) cos (|u|ϕ), u ≥ 0

R
|u|
v (ρ) sin (|u|ϕ), u < 0,

(7.34)

where u ∈ Z, v ∈ N, ρ ∈ [0, 1], ϕ ∈ [0, 2π), and

R|u|
v (ρ) =


(v−|u|)

2∑
s=0

(−1)s (v−s)!

s!

(
(v+|u|)

2
−s
)
!

(
(v−|u|)

2
−s
)
!

ρv−2s, (v − |u|) is even,

0, (v − |u|) is odd.

(7.35)

For a ∈ Z+ \ {0}, Noll’s sequential indexing defines a mapping Zuv 7→ Za such that

a =
v(v + 1)

2
+ |u|+


0, u > 0 ∧ ⌊v/2⌋ ∈ 2N
0, u < 0 ∧ ⌊v/2⌋ ∈ 2N+ 1

0, u ≥ 0 ∧ ⌊v/2⌋ ∈ 2N+ 1

0, u ≤ 0 ∧ ⌊v/2⌋ ∈ 2N.

(7.36)

7.6.2 Data Link

The data corresponding to our experiments (the full ground-truth sequences and all the
reconstructed sequences) can be found at https://iopscience.iop.org/article/10.1088/1361-
6420/acca72/meta.
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8 Conclusion

In this thesis, we have presented a collection of novel reconstruction methods for solving
ill-posed inverse problems. These methods were developed within the penalized-likelihood-
based estimation and Bayesian estimation paradigms and range from those that involve
classical sparsity-based signal models to those that exploit the power of neural networks.
In this concluding chapter, we first summarize our contributions and then briefly outline
some directions for future research.

8.1 Contributions

Part I: The World of Sparsity

In the first part of the thesis, we have focused on sparse signal models in the context of
linear inverse problems for 1D signals.

Continuous-Domain Lp-norm Regularization

We have devised an algorithm to numerically solve Lp-regularized generalized-interpolation
problems for p ≥ 1 and with a multi-order derivative regularization operator DN0 . Our
method involves the use of splines of degree N0, with uniformly spaced knots, for an exact
discretization. The resulting discrete problem is solved using the alternating direction
method of multipliers (ADMM) and a small-enough grid size is picked with the help of a
grid-refinement strategy. Through our experiments for spatial and Fourier interpolation,
we have established the existence of a continuum of solutions as p goes from ∞ to 1. We
have also made insightful observations about properties of Lp-regularized solutions such
as sparsity, regularity, and Gibbs-like oscillations and overshoot.
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Chapter 8 Conclusion

Sparse Stochastic Processes

We have introduced a sparse-stochastic-processes-based framework to objectively bench-
mark the performance of reconstruction algorithms in the context of 1D linear inverse
problems. In particular, our framework facilitates the benchmarking of neural-network-
based methods that require large amounts of training data. We have developed customized
Gibbs sampling schemes to compute the minimum-mean-square-error (MMSE) estimators
for specific classes of sparse processes. These provide an upper bound on reconstruction
performance and thus allow us to specify a quantitative measure of the statistical op-
timality of any given method. We have highlighted the abilities of our framework by
benchmarking some iterative sparsity-promoting techniques (such as the total-variation-
regularized method) and convolutional neural network (CNN) architectures that perform
direct nonlinear reconstructions for deconvolution and Fourier-sampling problems. There,
we have observed that, while CNNs outperform these sparsity-based approaches and
achieve a near-optimal performance in terms of the mean-square error for a wide range of
conditions, they can sometimes fail too, especially for signals with heavy-tailed innovations.

Part II: The Neural Network Revolution

In the second part of the thesis, we have looked at the integration of neural networks into
the penalized-likelihood-based estimation and Bayesian estimation paradigms for image
reconstruction.

Convergent Iterative Image-Reconstruction Methods

We have developed an efficient module for learning pointwise continuous piecewise-linear
activation functions in neural networks. We have shown how our module can be adapted
to train powerful 1-Lipschitz denoising neural networks and learnable convex regularizers,
which can then be deployed within provably convergent iterative image-recontruction
methods.

1. Learning Activation Functions in Neural Networks
We have presented an efficient computational solution based on B-splines to train neural
networks with adjustable linear spline activation functions. Through several experiments
for classification and signal-recovery, we have demonstrated that our method compares
favorably to the widely-used ReLU networks, the improvement being more pronounced
for simpler/smaller networks.

2. Lipschitz-Constrained Neural Networks for Plug-and-Play Reconstruction
We have proposed a framework to efficiently train Lipschitz-constrained neural networks
with learnable linear-spline activation functions. Empirically, we have shown that our
approach outperforms other Lipschitz-constrained neural architectures for a variety of
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tasks including plug-and-play image reconstruction.

3. A Neural-Network-Based Convex Regularizer
We have proposed a framework to learn universal convex-ridge regularizers with adaptive
profiles. When applied to inverse problems, it is competitive with recent deep-learning-
based approaches that also prioritize reliability of the method. Our models are not only
faster to train, but they also offer improvements in reconstruction quality.

Deep Generative Priors for Nonlinear Inverse Problems

We have developed a Bayesian reconstruction pipeline for the resolution of nonlinear
inverse problems that leverages the power of deep generative models (such as variational
autoencoders or generative adversarial networks) as image priors. Specifically, we have
designed a tractable posterior-sampling scheme based on the Metropolis-adjusted Langevin
algorithm (MALA) for the class of nonlinear inverse problems where the forward model
has a neural-network-like computational structure. This class includes a wide variety of
practical imaging modalities. We have also proposed the concept of augmented generative
models to tackle the problem of the quantitative recovery of images. We have illustrated
the advantages of our framework by applying it to phase retrieval and optical diffraction
tomography.

Deep Spatiotemporal Regularization for Dynamic Fourier Ptychography

We have presented a neural-network-based framework that does not require training
data for the reconstruction of high-resolution complex-valued images of a moving sample
in dynamic Fourier ptychography (FP). In our method, we parametrize the sequence
of images to be reconstructed as the outputs of a shared untrained deep convolutional
network driven by a series of fixed input vectors that lie on a one-dimensional (temporal)
manifold. The parameters of the network are then optimized to globally fit the acquired
measurements according to a suitable likelihood-based criterion. The architecture of the
network and the constraints on the input vectors impose spatiotemporal regularization on
the sequence of images. We have also incorporated the estimation of the pupil function
of the microscope within our framework. With the help of simulations, we have shown
that our approach yields state-of-the-art reconstructions.

8.2 Outlook

In Chapter 3, we designed an exact discretization scheme for the Lp-regularized generalized-
interpolation problem in 1D. Similar schemes have also been proposed to discretize MPL
estimators (formulated directly in the continuous domain) for 1D linear inverse problems
corresponding to the gTV regularization [104, 115]. The advantage of these approaches is
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that they incur no discretization error and are better matched to the underlying analog
signal. A potential direction of research is the development of such exact discretization
methods in higher dimensions for sparsity-based models such as the total-variation [25]
and Hessian total-variation [335, 336] regularizers.

In Chapter 4, we presented a framework based on 1D first-order sparse stochastic processes
to benchmark reconstruction algorithms. One can extend this framework to include hybrid
processes (constructed by the superposition of elementary processes), which are suitable
for modelling multicomponent signals. Another interesting (and more challenging) avenue
for research is to extend our framework to non-separable multidimensional signal models.
One possible way to do this would be to define a new class of multidimensional stochastic
processes using the spline-operator-based framework of [135, 136].

In Chapter 5, we developed a module for learning component-wise activation functions
in neural networks. An interesting direction of future work is the design of an efficient
module for learning multivariate activation functions. For example, one could attempt to
design nonlinearities σ : R2 → R2 using the box spline representation from [337], with a
possible application being the development of powerful complex-valued neural networks.

While our experiments in Chapter 6 demonstrated the potential of our deep-generative-
prior-based Bayesian reconstruction framework, in the present form, our scheme lacks
theoretical guarantees for MALA to be geometrically ergodic (convergence to the equilib-
rium distribution at a geometric rate). A topic of future work could be to investigate
the imposition of appropriate constraints on the generative model such that the resulting
posterior distribution satisfies certain smoothness and tail conditions [290] that ensure
geometric ergodicity of MALA. Also, the performance of our scheme heavily relies on how
well the prior models the object of interest. Thus, any progress on the side of designing
and training high-quality large-scale deep generative models could be translated to our
framework. Finally, while the neural-network-like structure of our forward models make
our approach tractable, like MCMC methods in general, it requires a lot of computation.
It could be interesting to consider alternatives to MALA that might help in speeding up
this approach.

In Chapter 7, we presented an untrained-neural-network-based spatiotemporal regular-
ization method for high-quality dynamic FP reconstruction. We deployed our method
with early stopping for simulations involving noisy measurements. Alternately, one can
adapt the idea in [84] and perform Bayesian estimation for the network parameters with a
simple Gaussian prior distribution, which would then eliminate the need for early stopping.
Moreover, this approach would also enable us to obtain a pixelwise variance map for each
image in the sequence in addition its point estimate.
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