
Acceptée sur proposition du jury

pour l’obtention du grade de Docteur ès Sciences

par

Seeking the new, learning from the unexpected: 

Computational models of surprise and novelty in the brain

Alireza MODIRSHANECHI

Thèse n° 9716

2024

Présentée le 26 avril 2024

Dr O. Lévêque, président du jury
Prof. W. Gerstner, directeur de thèse
Prof. S. J. Gershman, rapporteur
Prof. J. Gold, rapporteur
Prof. M. Mathis, rapporteuse

Faculté informatique et communications
Laboratoire de calcul neuromimétique (IC/SV)
Programme doctoral en informatique et communications 





Philosophy is written in this grand book,
the universe, which stands continually
open to our gaze. But the book cannot
be understood unless one first learns to
comprehend the language and read the let-
ters in which it is composed. It is written
in the language of mathematics.

— Galileo
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Abstract

Human babies have a natural desire to interact with new toys and objects, through which
they learn how the world around them works, e.g., that glass shatters when dropped,
but a rubber ball does not. When their predictions are proven incorrect, such as when
a glass does not shatter after a fall, they feel surprised. This, in turn, impacts their
subsequent decisions and makes them reconsider their beliefs, e.g., they may continue
dropping the glass until they realize it does not shatter because it falls on a carpet.
Similarly, human adults and other species react differently to new and surprising events
compared to familiar and expected ones, possibly due to the vital importance of these
events in a continuously changing world with sparse resources. The influence of novelty
and surprise on the brain and behavior has been a prominent topic in neuroscience and
psychology. However, quantifying surprise and novelty and their contribution to various
brain functions remain unresolved and disputed.
In this thesis, I take a mathematical approach to study (i) definitions of surprise and
novelty as well as (ii) their computational roles in the brain. I first present an exhaustive
analysis of 18 mathematical definitions of surprise, investigating their similarities, differ-
ences, and conditions that make them indistinguishable. I classify these definitions into
different categories and propose a unified framework for systematic comparison of different
approaches to quantifying surprise. Within this framework, I propose a formalism that
distinguishes novelty from surprise. I use this mathematical distinction to construct a
Reinforcement Learning (RL) model of human behavior that describes surprise as the
modulator of the learning speed (‘learning from the unexpected’) and novelty as the drive
of goal-directed exploration (‘seeking the new’). I test this model against behavioral and
electroencephalogram (EEG) data of human participants and show that both surprise
and novelty are crucial determinants of human behavior in volatile environments with
sparse rewards. Then, I ask whether these results generalize to stochastic environments
where novelty-driven exploration has proven suboptimal. To answer this question, I
compare models of exploration driven by novelty and different surprise definitions in
stochastic environments. Testing these models against the behavioral data of human
participants shows that human exploration closely aligns with novelty-driven models,
even when they are not optimal. This establishes novelty as a dominant drive of human
goal-directed exploration.
This thesis offers a comprehensive comparison of various computational models and
definitions of surprise and novelty, from both mathematical and experimental points

iii



Abstract

of view. Our theoretical findings allow fresh insights into previous research and lay a
foundation for future theoretical and experimental studies. Moreover, our computational
modeling of experimental data expands our understanding of the computational roles of
surprise and novelty in learning and exploration.

Keywords: Surprise, Novelty, Information Gain, Adaptive Learning, Exploration,
Computational Models, Reinforcement Learning, Human Behavior, EEG
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Résumé

Les bébés humains manifestent naturellement un intérêt pour l’interaction avec de
nouveaux jouets et objets, contribuant à leur apprentissage du monde. Par exemple, ils
apprennent que le verre se brise lors d’une chute, contrairement à une balle en caoutchouc.
En cas d’incohérence, comme un verre qui ne se brise pas, les bébés manifestent de la
surprise, répétant l’expérience jusqu’à comprendre qu’un tapis le prévient de se casser. De
même, les humains adultes et d’autres espèces réagissent différemment aux événements
nouveaux et surprenants par rapport aux événements familiers et attendus, peut-être en
raison de leur importance dans un monde en constante évolution et où les ressources sont
rares. Bien que l’effet de la nouveauté et de la surprise sur le cerveau et le comportement
ait été largement exploré en neurosciences et en psychologie au fil des décennies, la mesure
précise de ces phénomènes et leur impact sur différentes fonctions cérébrales demeurent
des questions non résolues et contestées.
Dans cette thèse, j’adopte une approche mathématique pour étudier (i) les définitions de
la surprise et de la nouveauté ainsi que (ii) leurs rôles computationnels dans le cerveau.
Je présente tout d’abord une analyse mathématique complète de 18 définitions distinctes
de la surprise, en étudiant leurs similitudes, leurs différences et les conditions qui les
rendent indiscernables. Je catégorise ces définitions et crée un cadre unifié facilitant la
comparaison systématique des diverses méthodes de quantification de la surprise. Dans
ce cadre, je propose un formalisme qui distingue la nouveauté de la surprise. J’utilise
cette distinction mathématique pour construire un modèle d’apprentissage par renfor-
cement du comportement humain, décrivant la surprise comme le modulateur de la
vitesse d’apprentissage (’apprendre de l’inattendu’) et la nouveauté comme le moteur
de l’exploration orientée vers un but (’chercher la nouveauté’). Je teste ce modèle à
l’aide de données comportementales et d’électroencéphalogrammes (EEG) de participants
humains et démontre que la surprise et la nouveauté sont des déterminants cruciaux
du comportement humain dans des environnements volatils et où les récompenses sont
rares. Ensuite, j’explore l’applicabilité de ces résultats aux environnements stochastiques
où l’exploration guidée par la nouveauté s’est avérée sous-optimale. Pour cela, j’analyse
des modèles d’exploration guidés par la nouveauté et différentes définitions de la sur-
prise. La comparaison de ces modèles aux données comportementales des participants
humains montre que l’exploration humaine s’aligne étroitement sur les modèles axés sur
la nouveauté, même lorsqu’ils ne sont pas optimaux. Cela établit que la nouveauté est
un moteur dominant de l’exploration humaine orientée vers un but.
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Résumé

Cette thèse propose une comparaison complète de divers modèles informatiques et
définitions de la surprise et de la nouveauté, d’un point de vue à la fois mathématique et
expérimental. Nos résultats théoriques apportent un nouvel éclairage sur les recherches
précédentes et posent les fondements de futures études théoriques et expérimentales.
Notre modélisation informatique des données expérimentales élargit notre compréhension
des rôles de la surprise et de la nouveauté dans l’apprentissage et l’exploration.

Mots-clés : Surprise, Nouveauté, Apprentissage adaptatif, Exploration, Modèles infor-
matiques, Apprentissage par renforcement, Comportement humain, EEG
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1 Introduction

When a movie’s villain turns out to be the warm-hearted hero, when a presidential
candidate, who was considered by our friends to surely lose, suddenly wins the election,
or when we see the image of our old friend’s face suddenly distorted through the new
fisheye lens of our camera, we feel something special. Later we may want to watch other
movies by the same director, we may rethink how limited our social bubble is, or we may
keenly watch our friends through our new camera lens.

We probably all agree that our special feelings at such moments are due to how unexpected
(surprising) or new (novel) our experiences at those moments are. Although we use
the same set of adjectives to describe these moments, one may wonder if there is any
‘objective’ commonality between these experiences beyond introspection. Specifically,
how similar are the measurable reactions of our brain to the movie’s plot twist and
to the election news? Through what mechanisms do these events influence our future
behavior? And is it possible to predict our measurable reactions to future situations
when we experience something ‘similar’?

Following common practices in sensory and motor neuroscience (Fyhn et al., 2004; Henry
et al., 1974; Hubel and Wiesel, 1968; O’Keefe and Dostrovsky, 1971), neuroscientists
approached these questions by proposing ‘experimental’ definitions of the ‘new’ and
‘unexpected’; e.g., since a rarely encountered stimulus can intuitively be called ‘new’ or
‘unexpected’, one may consider the occurrence probability of a stimulus as an indicator of
its surprise and novelty (e.g., Duncan-Johnson and Donchin (1977); Figure 1.1). Hence,
analogously to earlier research on the neuroscience of vision that studied the links between
the physical features of visual stimuli and their corresponding neural signals (Figure 1.1A),
neuroscientists attempted to understand surprise and novelty in the brain by studying
the links between the occurrence probability of stimuli and their corresponding neural
signals (Hershenhoren et al., 2014; Näätänen et al., 2007; Näätänen and Picton, 1987;
Tiitinen et al., 1994; Tueting et al., 1970; Ulanovsky et al., 2003) (Figure 1.1B).

The premise of such studies is that experimental subjects infer the statistical properties
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Figure 1.1: Studies on surprise and novelty started with the same approach as
the early studies of vision in neuroscience. A. Schematic of a simplified version of the
experimental paradigm used by Henry et al. (1974) to study the tuning curve of simple neurons
in the cat’s primary visual cortex. A1. Cats were presented with images of a single bar. As a
response to the stimulus, the firing rate of single neurons in the primary visual cortex was recorded
as a function of the rotation angle ϕ of the bar. A2. Toy illustration of a single neuron’s tuning
curve where the firing rate shows a bell-shaped response to ϕ. Such results were interpreted as
evidence for some neurons working as edge-detectors with a particular orientation (in this case 60
degrees). B. Schematic of a simplified version of the experimental paradigm used by Duncan-
Johnson and Donchin (1977) to study the surprise and novelty responses in auditory oddball
tasks. B1. Human participants listened to a sequence of pure auditory tones with frequencies
randomly sampled from 1.0 kHz (with 0.9 probability; frequent stimulus) and 1.5 kHz (with
0.1 probability; rare stimulus). As a response to the stimulus, the electroencephalogram (EEG)
signals were recorded from the subjects’ scalp. B2. Toy illustration of the average time-locked
EEG signals (a.k.a. Event-Related Potential or ERP) for the frequent and rare stimuli. The
signal amplitude at around 300 ms (P300 amplitude) after the stimulus was considered as the
‘surprise’ signal – as it took higher values for the rare than for the frequent stimuli. B3. The
dependence of the P300 amplitude on the occurrence probability of stimuli can be seen as a
tuning curve (similar to A2) for the P300 component. Such results were interpreted as evidence
for some ERP components being signatures of surprise and novelty.

of their observations and accordingly assign a subjective surprise or novelty value to
each stimulus. Because such subjective values cannot be measured by a third person, a
statistical property of stimuli such as their occurrence probabilities may be considered as
an approximation of these subjective values (averaged over many repetitions). Numerous
alternative approaches have been proposed to define the ‘new’ and ‘unexpected’ in terms
of experimental variables and operations (see section 1.1). Although this perspective
has been successful in characterizing many of the neural and behavioral consequences of
surprising and novel experiences (see section 1.2), it has remained unclear whether there
is any common quantity that is measured by experimental variables that have served
as intuitive approximations of subjective surprise and novelty values. This challenges
the legitimacy of using the same terminology to describe and link different experimental
phenomena believed to be related to ‘surprise’ or ‘novelty’.

Computational models of learning and memory address this challenge by defining surprise
and novelty in mathematical frameworks that can be adapted to specific experiments.

2



1.1 How to experimentally define the new and unexpected

These models enable inferring the subjective surprise and novelty values of each obser-
vation, propose a common ground for different experimental approximations of these
notions, and have significantly expanded our understanding of how surprise and novelty
contribute to different brain functions (see section 1.3). However, there is currently
no consensus on either the best modeling approach or the mathematical definitions
of surprise and novelty in a given model (Baldi, 2002; Barto et al., 2013; Palm, 2012;
Schmidhuber, 2010). The difficulty of a consensus is largely due to the field’s focus on
simplistic situations where many models and definitions are indistinguishable. Neverthe-
less, even subtle differences between different models and definitions result in diverging
predictions in complex experimental paradigms (section 1.3). This highlights the need
for more complex and theory-driven experimental paradigms that enable the comparison
of different computational models and definitions of surprise and novelty.

This thesis aims (i) to provide a mathematical framework along with a systematic
comparison of different definitions of surprise and novelty, to facilitate designing theory-
driven experiments, and (ii) to study the computational roles of surprise and novelty in
two examples of such experiments. In the rest of this introduction, I give an overview
of experimental paradigms for studying surprise and novelty (section 1.1) and review
related neural and behavioral studies with and without explicit use of computational
models (section 1.2 and section 1.3). I finish the introduction with an overview of the
thesis and how it contributes to addressing some of the open questions of the field.

1.1 How to experimentally define the new and unexpected

The general recipe for designing experiments on surprise and novelty involves two parts:
(i) phases of learning and familiarization that induce expectations in experimental subjects
(i.e., humans or animals) and (ii) observations that violate those expectations. In general,
the observations that violate the induced expectations can be presented throughout the
experiments and be even followed by further phases of learning and familiarization. In
this section, I review and classify experimental paradigms into six different classes based
on the type of expectations that the experimentalists aim to induce in the subjects
throughout the phases of learning and familiarization. It is often unknown before the
experiment whether experimental subjects will actually build the desired expectations;
as we will discuss in section 1.2, this may remain unknown even after conducting the
experiment. Toy examples of each category are illustrated in Figure 1.2.

1.1.1 Category 1. Stable observation distribution

The first category includes experimental paradigms where subjects are presented with
a sequence of observations that are randomly and independently sampled from a stable
distribution, where ‘stable’ implies that the observation statistics remain fixed throughout
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the experiment. The most famous example of this category in both human (Näätänen
et al., 2007) and animal studies (Hershenhoren et al., 2014; Paller et al., 1988) is the
binary oddball task where the observation sequence is composed of a rare and a frequent
stimulus (see the auditory example in Figure 1.1B and the visual example in Figure 1.2A).
In general, the observations do not need to be categorical and can, for example, be
auditory tones with frequencies sampled from a Gaussian distribution (Garrido et al.,
2013, 2016).

The rationale behind such experiments is that experimental subjects infer the stable
distribution of observations and form expectations on which stimulus is more likely to be
observed next. The unlikely stimuli are hence considered as ‘unexpected’. Because the
unlikely stimuli are encountered less often than the others, they are also less ‘familiar’ in
general. It is hence impossible to dissociate surprise from novelty in these experiments
without further modifications. This is reflected in the interchangeable use of related
terms in oddball studies (Näätänen et al., 2007; Näätänen and Picton, 1987; Tiitinen
et al., 1994; Tueting et al., 1970). One option to introduce surprising events that are
not ‘novel’ is to omit stimuli with a fixed probability, i.e., with a fixed probability no
stimulus is presented to the subjects (Yabe et al., 1997). If the omission probability is
small and observations are presented with a regular timing, then the omission trials are
‘unexpected’ but cannot be called ‘new’ because no stimulus is presented to the subjects
(see Heilbron and Chait (2018) for further discussions).

1.1.2 Category 2. Volatile observation distribution

The second category includes experimental paradigms where subjects are presented
with a sequence of observations that are randomly and independently sampled from
a distribution that abruptly changes at random points in time, i.e., the observation
statistics are ‘volatile’ (Figure 1.2B). In general, the observation distribution can also
gradually change between every two abrupt changes (Gershman et al., 2014). Similar
to Category 1, observations can be either categorical (Foucault and Meyniel, 2023) or
continuous (Glaze et al., 2018, 2015; Nassar et al., 2012, 2010). The rationale behind
these experiments is similar to that of the experiments in Category 1, with the particular
advantage that, if experimental subjects can rapidly update their inference about the
observation distribution after each change point, then the momentarily unlikely stimuli
are not necessarily the same as those encountered less frequently overall. Therefore,
volatility in the observation distributions allows for dissociating between ‘new’ stimuli
from ‘unexpected’ ones – and hence novelty from surprise.
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1.1 How to experimentally define the new and unexpected

1.1.3 Category 3. Never-seen-before stimuli

The third category includes experimental paradigms where subjects are first familiarized
with a set of stimuli, often over days in animal experiments (i.e., training phase). They
are then presented with stimuli that are chosen from a new and previously unobserved
set, potentially combined with the familiar set (i.e., testing phase). For example, the
training phase in an animal experiment may take several consecutive days of presenting
random sequences of familiar stimuli (Figure 1.2C1). The testing phase can then be
similar to an oddball task where the rare and frequent observations are chosen from
the familiar set except for the occasional presentation of a new stimulus that was never
presented during the training phase (Morrens et al. (2020); Figure 1.2C1).

During the testing phase, other experiments present pairs of familiar and new stimuli
side-by-side (Ghazizadeh et al., 2020, 2016; Ogasawara et al., 2022; Sheldon, 1969) or
allow free exploration of new objects in a familiar environment (Ahmadlou et al. (2021);
Akiti et al. (2022); see Figure 1.2C2). The rationale is that differences between reactions
to familiar and new stimuli must be related to their different novelty values. However,
since completely new stimuli are always also unexpected, the influence of novelty and
surprise on these reactions cannot be directly studied in these experiments. One indirect
approach in experiments like the one in Figure 1.2C1 is to compare the reactions to
the new stimuli with the reactions to the rare familiar stimuli that, after an extensive
training phase, are unexpected but not new (Morrens et al., 2020).

1.1.4 Category 4. Between-observation associations

The fourth category includes experimental paradigms where between-observation associa-
tions can be used by subjects to predict the next observations. The most basic example
is the Posner task (Posner, 1980) where experimental subjects are presented with a
cue followed by a stimulus; the cue predicts, with some probabilities, which stimulus is
presented next (Figure 1.2D1). A straightforward extension is a sequence of categorical
observations where the distribution of the upcoming observation depends on the current
observation – given by ‘transition probabilities’. The transition probabilities can be
either stable (Meyer and Olson, 2011) or volatile (Heilbron and Meyniel, 2019). Such
experimental paradigms have been used in both human (Maheu et al., 2019; Meyniel,
2020; Todorovic and de Lange, 2012) and animal studies (Homann et al., 2022; Meyer
and Olson, 2011; Zhang et al., 2022).

The category of between-observation associations also includes complex sequential pat-
terns of categorical observations (see Barascud et al. (2016); Bekinschtein et al. (2009);
Yaron et al. (2012) for some examples and Heilbron and Chait (2018) for a review)
and associations of visual stimuli with location, e.g., a corridor’s wallpaper (Fiser et al.
(2016); see Figure 1.2D2). The rationale behind such experiments is that, with ‘sufficient’
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Figure 1.2: (Caption next page.)

experience, the experimental subjects infer these associations and accordingly use the
current observations to predict the next. If the next observation is unlikely according
to the current observations and the inferred associations, then it can be considered
as ‘unexpected’ and ‘surprising’. An unlikely observation can be either an outlier or
the result of a change in associations (Meyniel, 2020). It can also be due to a purely
memory-based mismatch such as a sudden interruption of a video that experimental
subjects previously watched during a familiarization phase (Sinclair and Barense, 2018;
Sinclair et al., 2021). In principle, the correlation between surprise and novelty can
be avoided by careful experimental design. Experiments in this category can combine
never-seen-before stimuli (as in Category 3) with designs involving between-observation
associations (e.g., see Zhang et al. (2022)).

6



1.1 How to experimentally define the new and unexpected

Figure 1.2: Toy illustration of some example experiments in each category
reviewed in section 1.1. A. A visual oddball task (similar to Figure 1.2B) as an
example in Category 1: Stable observation distribution. B. A volatile oddball task as an
example in Category 2: Volatile observation distribution. Subjects are presented with
a sequence of visual stimuli as in A except that the observation distribution abruptly
changes at random and unknown (to subjects) points in time (i.e., hidden change
points). C. Category 3: Never-seen-before stimuli. C1. A simplified illustration of
Morrens et al. (2020). Subjects are presented with a sequence of visual stimuli as in A.
During the training phase, the observations are randomly sampled from two stimuli with
equal probability. After days of training, the testing phase starts where observations
are randomly sampled from the two known stimuli plus a never-seen-before stimulus
(yellow triangle). C2. A simplified illustration of Ahmadlou et al. (2021); Akiti et al.
(2022). During the training phase, mice freely explore an empty box to habituate to
the environment. After a few days, a new object (yellow triangle) is added to the box.
During the testing phase, the mice explore the box and the new object. D. Category
4: Between-observation associations. D1. An example Posner task (Posner, 1980). At
each trial, subjects receive a cue predicting the next observation (blue or red). The
next observation is sampled from a distribution determined by the cue, e.g., the cue’s
predictions are 90% correct. The subjects do not a priori know the association. D2. A
simplified illustration of Fiser et al. (2016). Head-fixed mice run in a virtual tunnel. At
each location in the tunnel, a particular visual stimulus appears on the wall (a blue circle
or a red square). The first four visual stimuli are fixed over all trials – a trial ends when
the mice arrive at the end of the tunnel. The fifth stimulus is randomly sampled and
is more likely to be the blue circle. The mice do not a priori know the association. E.
Category 5: Action-observation associations. E1. A reward-free two-armed bandit task.
At each trial, subjects choose between two different actions (the mouse icon). The next
observation is sampled from a distribution determined by the chosen action, e.g., the
right action leads to a higher probability of the blue circle. The subjects do not a priori
know the association. E2. A simplified illustration of Jordan and Keller (2023). Given a
virtual reality setting, head-fixed mice run on a freely moving ball (left). On the screen,
they see a tunnel with walls patterned with diagonal lines. The diagonal patterns move
at a speed matching the running speed of the mice, as if they are running in the tunnel
(right). At certain points in time, the visual bars are frozen, leading to a mismatch
between the visual flow and running speed. F. Category 6: Core knowledge and common
sense. F1. Example from Hodapp and Rabovsky (2021). Subjects are presented with two
sentences that are only slightly different (‘Bavaria’ versus ‘Italy’). The slight difference
between the two sentences makes a common word (‘pretzel’) expected in one sentence
(sentence 1) and unexpected in the other (sentence 2). F2. A simplified illustration of
Stahl and Feigenson (2015). Subjects watch videos where intuitive physics is violated,
e.g., a solid blue disk passes through a wall.

1.1.5 Category 5. Action-observation associations

The fifth category includes experimental paradigms where experimental subjects can
predict the next observations by learning the consequences of their actions (i.e., asso-
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ciations between actions and observations). For example, in multi-armed bandit tasks,
experimental subjects choose among some available actions and receive a reward as
an outcome, sampled from a distribution that depends on the chosen action. These
action-dependent reward distributions (i.e., action-observation associations) can be either
stable or volatile but must be unknown to the subjects initially (Behrens et al., 2007;
Findling et al., 2021; Gershman, 2019a; Horvath et al., 2021; Kao et al., 2020b; Li et al.,
2019); see Figure 1.2E1 for a modified example.

The category of action-observation associations also includes action-dependent transitions
between different observations1 (Daw et al., 2011; Gläscher et al., 2010), associations
between running speed and visual flow in a virtual reality task (Jordan and Keller
(2023); O’Toole et al. (2023); see Figure 1.2E2), and associations between intended force
and a joystick movement (Mathis et al., 2017). The rationale is the same as the one
for experiments in Category 4 except that the experimental subjects have the choice
to influence upcoming observations – and their expectations depend on their actions.
Similarly to the experiments in Category 4, the correlation between surprise and novelty
can be avoided in these experiments.

1.1.6 Category 6. Core knowledge and common sense

The sixth category includes experiments where expectations are assumed to be based
on core knowledge and common sense (e.g., based on natural language or intuitive
physics). Hence, these experiments bypass the familiarization and learning phases of
the other categories and directly design observations that violate core knowledge and
common sense. In an example from the language literature, experimental subjects read
sentences in which some words are considered, by experimentalists, either ‘expected’ or
‘unexpected’ (Hodapp and Rabovsky (2021); see Figure 1.2F1). In another example from
developmental psychology, babies watched videos where intuitive physics was violated, e.g.,
solid objects passed through each other (Stahl and Feigenson (2015); see Figure 1.2F2).
Many other examples can be found in the psychology literature (see Schützwohl and
Reisenzein (2012); Stone et al. (2023) for two examples and Reisenzein et al. (2019) for a
review). These experiments are mainly focused on surprise and are the closest among
the above-mentioned experiments to our real-life experiences of the ‘unexpected’.

1.1.7 Summary

I proposed a classification of typical experimental paradigms on surprise and novelty into
six categories based on the type of expectations that experimentalists either induce in
experimental subjects (Categories 1-5) or assume because of core knowledge or common
sense (Category 6). I reviewed some specific examples (Figure 1.2) and discussed the

1We use similar paradigms in chapter 3 and chapter 5.
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complexity of associations in each category as well as their potential to dissociate surprise
from novelty. I use the proposed classification in the next sections to review neural and
behavioral signatures of surprise and novelty.

1.2 How far we can go without computational models

The focus of this section is on studies without any ‘explicit’ computational modeling.
Specifically, I review studies that are based on statistical links between variables that are
either (i) set by the experimentalists (e.g., the occurrence probability of stimuli) or (ii)
‘directly’ measurable in standard experiments (e.g., EEG amplitude and neural firing
rate).

It is debated what it means for a variable to be ‘directly’ measurable, what is considered
a standard experimental operation, and whether it is possible to make experimental
statements without implicit assumptions about the underlying computations (Chang,
2021; Gershman, 2021). For example, consider statements based on estimated parameters
of Generalized Linear Models (Walz et al., 2013) or based on the inferred ‘learning rate’
reflected in changes in the subject’s self-reports (Nassar et al., 2010). In both cases, the
variables can be defined independently of any computational models, but the logic of
the definitions is essentially based on computational assumptions. Hence, the boundary
between computational and non-computational studies is blurry.

To determine whether some statements are made based on explicit use of computational
models, my conservative criterion in this section is whether the statements are based on
variables that are extracted from a model that could simulate an experimental subject
throughout (an abstract version of) the experiment (as in Figure 1.3). In the following
subsections, we go through all six categories defined in section 1.1 and present examples
of experimental results without any ‘explicit’ computational modeling.

1.2.1 Categories 1-2. Stable and volatile observation distributions

Oddball tasks have been extensively used to study the signatures of surprise and novelty
among the Event-Related Potential (ERP) components (Duncan-Johnson and Donchin,
1977; Näätänen et al., 2007; Näätänen and Picton, 1987; Tiitinen et al., 1994; Tueting
et al., 1970). ERP components are peaks and troughs of the stimulus-specific average
of the EEG or MEG (magnetoencephalography) signal, time-locked to the onset of
the stimulus presentation (e.g., the P300 peak visualized in Figure 1.1B2; see Luck
(2014)). Both the amplitude and the latency of many of these components (e.g., N100
and P300) are correlated with how infrequently a stimulus is presented (Duncan-Johnson
and Donchin, 1977; Näätänen et al., 2007), how different the rare and frequent stimuli
are (Näätänen and Picton, 1987; Tiitinen et al., 1994), and in what order the stimuli
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are presented (SanMiguel et al., 2021; Squires et al., 1976). Similar correlations have
been found for pupil dilation (Friedman et al., 1973; Qiyuan et al., 1985) and even
single-neuron firing rates in animal studies (Hershenhoren et al., 2014; Ulanovsky et al.,
2003).

The ERP components of EEG and MEG signals are also studied in tasks with stable
observation distributions other than oddball tasks (Garrido et al., 2013, 2016). In a
task with observations composed of auditory tones with frequencies sampled from a
Gaussian distribution, unlikely frequencies resulted in a higher N100 amplitude (Garrido
et al., 2016). Interestingly, the authors showed that this response increases with task-
independent cognitive load (Garrido et al., 2016). The unequivocal message of the studies
in Category 1 is that the brain treats the new and unexpected differently (e.g., with
stronger responses) than the familiar and expected.

On the other hand, experiments with volatile observation distributions (Category 2)
have been mainly used to study adaptive learning in humans. Subjects are often asked
to report their prediction of the probability of the next categorical observation (e.g.,
as in Figure 1.2B1; Foucault and Meyniel (2023)) or the value of the next continuous
observation (Nassar et al., 2012, 2010). The goal is to quantify how fast subjects update
their predictions upon the presentation of unexpected observations following a change
point. While most results in these experiments are based on computational models of
learning in volatile environments (see section 1.3), the increased learning rate immediately
after each change point is interpreted as evidence for surprise-modulation of the learning
speed (Foucault and Meyniel, 2023; Nassar et al., 2012, 2010).

1.2.2 Category 3. Never-seen-before stimuli

Experiments with never-seen-before stimuli have been successful in characterizing novelty-
driven behavior and neural circuitry involved in novelty processing. For example, mice
have a higher breathing frequency when sniffing new odors than those already known
(e.g., as in Figure 1.2C1; Morrens et al. (2020)) and show a higher desire for approaching
and exploring novel objects than familiar ones (e.g., as in Figure 1.2C2; Ahmadlou et al.
(2021); Sheldon (1969)). Similarly, monkeys show faster saccades to new fractals than
to familiar ones (Ghazizadeh et al., 2020, 2016; Ogasawara et al., 2022). Hence, it is
believed that animals show a general tendency to explore the new – see also Akiti et al.
(2022) for different results and perspectives.

Physiological studies with these paradigms have been used to identify the differences and
similarities of the neural circuits of novelty-seeking and reward-seeking. For example,
Morrens et al. (2020) showed that dopamine neurons that respond to unexpected rewards
also respond to new odors but not to rare familiar stimuli (similar to Figure 1.2C1). On
the other hand, studies on novelty-seeking in monkeys revealed overlapping but parallel
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pathways for novelty- and reward-seeking (Ghazizadeh et al., 2020, 2016; Ogasawara
et al., 2022). Ogasawara et al. (2022) identified the Zona Incerta (ZI) as a brain region
whose inactivation impairs novelty-seeking but does not influence reward-seeking (see
also Wang et al. (2022)). Parallel works on the neural circuitry of novelty detection show
that the neural response in the monkey’s Inferior Temporal (IT) cortex differs between
the 1st and the 2nd exposure to a particular image, even if the low-level visual features of
the image (e.g., contrast) are modified (Mehrpour et al., 2021). Collectively, these results
imply that a reward-independent mechanism in the brain is responsible for detecting and
exploring the new.

1.2.3 Categories 4-5. Between- and action-observation associations

Experiments with between-observation associations (Category 4) have found ERP re-
sponses to unexpected transitions similar but not identical to the ERP responses to
infrequent stimuli in oddball tasks (Todorovic and de Lange, 2012). Similarly, single
neurons in mice respond less strongly to rare stimuli in a periodic sequence of observa-
tions (i.e., when the rare stimulus is predictable due to between-observation associations;
Category 4) than to rare stimuli in a random sequence (i.e., when the rare stimulus is
unpredictable due to the independence of observations; Category 1) (Yaron et al., 2012).
Moreover, introducing never-seen-before stimuli in experiments with between-observation
associations has shown that neural responses to new stimuli overlap with but are not
identical to neural responses to unexpected familiar stimuli (Garrett et al., 2023, 2020;
Homann et al., 2022; Zhang et al., 2022). These results show that the brain treats
surprise and novelty through related but not identical mechanisms.

Similar to studies with humans and mice, studies with monkeys have shown that, after
extensive training in tasks where each observation predicts the next one with high accuracy,
neurons in the monkey’s IT cortex respond more strongly to unexpected transitions than
to expected ones (Meyer and Olson, 2011; Meyer et al., 2014; Ramachandran et al., 2017).
However, such transition-dependent surprise signals were not observed in experiments
without extensive training (Solomon et al., 2021). In a similar experimental paradigm
with humans, Solomon et al. (2021) found the MEG signatures of unexpected transitions
only when participants actively looked for unexpected patterns. The importance of
attention has also been highlighted in the correlation between pupil dilation and surprise
across a variety of tasks (Alamia et al., 2019; Zhao et al., 2019). These results challenge
the main premise of Category 4 that experimental subjects infer and use the between-
observation associations to predict the next observations. Importantly, if an experimental
measurement (e.g., population activity in the IT cortex) does not differ between expected
and unexpected observations, then it is not clear whether the conclusion must be ‘the
measurement does not correlate with surprise’ or ‘the experimental subjects failed to
learn the associations’.
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Experiments with action-observation associations (Category 5) allow us to identify
whether the experimental subjects learn the experiment’s associations. For example,
if experimental subjects perform the task as instructed (Daw et al., 2011; Gläscher
et al., 2010) or show a rapid adaptation in their behavior after an abrupt change in
the associations (Hamid et al., 2016; Mathis et al., 2017), then one can argue that they
infer some information about the associations. Experiments with action-observation
associations have been used to study error-based and surprise-based learning in humans
and animals, both with and without computational models; see section 1.3 for the former
and Jordan (2023) for a review of the latter. In a recent seminal example, Jordan
and Keller (2023) studied neural activities in the mice Locus Coeruleus (LC) during
mismatches between visual flow and running speed (as in Figure 1.2) and showed that
the modulation of the LC activity by unexpected mismatches facilitates synaptic changes
in the visual cortex. Such studies propose potential mechanisms for how unexpected and
surprising events influence learning in the brain, conceptually in line with studies on
surprise-modulation of memory (Sinclair and Barense, 2018; Sinclair et al., 2021).

1.2.4 Category 6. Core knowledge and common sense

Experiments based on core knowledge and common sense have been employed to study
neural and behavioral signatures of surprise and novelty in realistic situations. For
example, a significantly higher amplitude of the N400 ERP component was found for
unexpected words in a sentence than for expected words (Hodapp and Rabovsky (2021);
Stone et al. (2023); Figure 1.2F1). Lindborg et al. (2023) used different word categories
as stimuli in a categorical task from Category 3 (roving-oddball paradigm) and showed
an increase in the amplitude of the N400 component even for words that are unexpected
only according to a between-observation association. In the example from developmental
psychology in Figure 1.2F2, Stahl and Feigenson (2015) showed that 11-month infants
had a desire to explore the objects that violated intuitive physics compared to a new
distractor object. The infants had also a higher score in learning about hidden features
of the objects that violated intuitive physics compared to a new distractor object. These
results suggest that there are commonalities in behavioral and neural responses to the
new and unexpected in real life and the experimental findings in controlled experimental
settings.

1.2.5 Challenges and open questions

How far can we go without computational models? The answer seems to be: Quite
far. Neuroscientists have identified numerous physiological signatures of surprise and
novelty using different techniques (e.g., neuroimaging, pupilometry, electrophysiology),
have shown that surprise and novelty modulate learning and memory in a variety of
tasks, and have found strong evidence for a general desire to explore new and unexpected
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1.3 Computational models of surprise and novelty

objects across species.

However, it is inevitable to notice that both (i) the definition of the new and unexpected
and (ii) the experimental variables linked to these definitions differ across studies. A
natural question is ‘How do these results relate to each other?’. For example, is there a
common basis for the N100 and P300 ERP components in oddball tasks (section 1.1A),
the N400 component in the language tasks (section 1.1F1), and the LC activity in the mice
virtual reality task (section 1.1E2)? Or is there any link between the desire of monkeys
to look at new fractals, the desire of mice to approach new objects (section 1.1C2), and
the desire of human babies to explore objects defying intuitive physics (section 1.1F2)?

The reviewed studies imply such links based on an implicit and unspoken belief that
there must be a common, but hidden value of surprise and novelty that influences
different experimental measurements across different experimental paradigms and species.
However, without explicit and formal assumptions about how experimental subjects form
expectations and make decisions based on these expectations, it is not clear how one
can infer such hidden variables from experimental measurements. This is particularly
challenging because (i) many of these experimental variables also respond to other task
variables (e.g., cognitive load and extrinsic reward), (ii) not all unexpected or new
observations are equally unexpected or new, and (iii) how expectations are formed can
potentially be different across sensory modalities and levels of abstractions.

1.3 Computational models of surprise and novelty

In this section, I review computational models and mathematical definitions of surprise
and novelty and discuss how these models have enabled neuroscientists (i) to define
surprise and novelty on a trial-by-trial basis, (ii) to formally articulate and test hypotheses
on how surprise and novelty contribute to learning, memory, and decision-making, and
(iii) to clarify links between different experimental responses to surprise and novelty
reviewed in section 1.2.

Computational studies of surprise and novelty involve two parts (Figure 1.3A): (i) an
abstract and formal description of the experimental paradigm, conceptually similar
to illustrations in Figure 1.2, and (ii) a computational model that can ‘participate’
in such an experiment by interacting with an experiment simulator. For example, a
simple computational model of an oddball task (Figure 1.3A) receives a binary input
(representing one of the two stimuli) at each trial and updates its estimate of the input
distribution after each observation – without taking any actions. The computational
model can potentially contain different components for memory (to model familiarity
with different stimuli), associative learning (to model how expectations are formed),
and decision-making (to model how actions are selected); see Figure 1.3A. Surprise and
novelty values are outputs of the model and are mathematically defined as a function of
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Figure 1.3: Schematic of computational modeling of surprise and novelty in the brain.
A. Computational modeling of surprise and novelty consists of an abstract description of the
experiment to generate cues and observations and a computational model of experimental subjects
participating in the experiment. The computational model can potentially contain different
components for associative learning, memory, and decision-making. In principle, given a choice of
parameters, a computational model can run autonomously and ‘participate’ in the experiment.
B. Internal variables of the computational model, using the same sequences of observations and
actions as in the real experiment, can be used to assign a surprise and novelty value to each
observation, infer the probability of taking a particular action, and extract other relevant variables
that can describe, for example, learning in the model. Trial-by-trial statistical methods (middle)
can be used to relate these variables to different experimental measurements collected during the
real experiment (e.g., P300 amplitude and self-reported degree of surprise; right).

the input to the computational model (i.e., observations) and its internal variables (e.g.,
expected probability of the observation).

There are two main approaches to using computational models in understanding surprise
and novelty in the brain: (i) the correlational approach and (ii) the model-testing approach.
While the two are often combined, they serve different purposes. In the correlational
approach, the computational model is used to infer the surprise and novelty value of
each stimulus; these values are then used to explain the variability in the experimental
measurements collected from real experiments (Figure 1.3B), e.g., to quantify the influence
of surprise on the P300 ERP component. In the model-testing approach, the hypothesis
about how surprise and novelty influence different brain functions (e.g., adaptive learning)
is formalized in the design of the model, e.g., by considering different candidates for how
surprise influences the associative learning module in Figure 1.3A. Different hypotheses
can be tested by quantifying which model best explains experimental data (e.g., predicts
the subjects’ actions with the highest accuracy). Hence, computational modeling in the
first approach is only used to infer the hidden value of surprise and novelty, whereas, in
the second approach, it is also used to make inferences about brain functions.

In the next four subsections, I review the correlational and model-testing results on the
influence of surprise and novelty on physiological measurements, learning, memory, and
exploration. To minimize the overlap with the content of the next chapters (particu-
larly chapter 2 and chapter 4), I stick to a conceptual level and do not use a precise
mathematical formulation.
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1.3 Computational models of surprise and novelty

1.3.1 Physiological signatures

Typical computational models of oddball tasks (Figure 1.1B and Figure 1.2A) and many
other sequential tasks in Categories 1, 2, and 4, use variants of Bayesian learners as the
associative learning module in Figure 1.3 to estimate the probability of observing different
stimuli on a trial-by-trial basis: They often define the surprise of each observation as a
decreasing function of its estimated probability (i.e., less likely observations are considered
more surprising), called ‘Shannon’ surprise or ‘surprisal’ (Barto et al., 2013; Faraji et al.,
2018). Numerous studies with a correlational approach have shown that the Shannon
surprise explains a significant trial-by-trial variability of EEG (Gijsen et al., 2021; Kolossa
et al., 2015; Kopp and Lange, 2013; Mars et al., 2008; Meyniel et al., 2016; Modirshanechi
et al., 2019; Mousavi et al., 2022) and MEG signals in oddball tasks (Maheu et al., 2019;
Meyniel, 2020; Mousavi et al., 2022).

In a seminal work, Meyniel et al. (2016) used a combination of correlational and model-
testing approaches and showed that the Shannon surprise can be seen as the hidden
variable modulating the P300 EEG amplitude, reaction time, and human self-reports of
surprise in variants of oddball tasks. Surprisingly, model-testing results revealed that,
although the observations in oddball tasks are sampled independently of each other (as
in Category 1 in section 1.1), human participants automatically assume that there are
between-observation associations and learn the transition probabilities between stimuli
(as in Category 4 in section 1.1). Maheu et al. (2019) confirmed this result for the late
MEG components such as P300 but showed the opposite for early components such as
N100. This implies that the ERP components that had been previously linked to a single
notion of being ‘unexpected’ (as reviewed in section 1.2) are related to being ‘unexpected’
due to different expectations. Whether these components are signatures of surprise or
novelty is debated (Barto et al., 2013).

An alternative definition, known as ‘Bayesian’ surprise, considers the amount of update
in the model’s predictions as a measure of surprise (Baldi, 2002; Schmidhuber, 2010).
The signatures of Bayesian surprise have been compared to those of Shannon surprise
(Gijsen et al., 2021; Kolossa et al., 2015; Mars et al., 2008; Mousavi et al., 2022; Ostwald
et al., 2012; Visalli et al., 2021). In two separate tasks in Categories 1 and 4 (section 1.1),
the P300 amplitude at the frontal and frontocentral electrodes has been reported to be
explained better by Bayesian surprise than Shannon surprise, and the P300 amplitude at
the parietal electrodes has been reported to be explained better by Shannon surprise
than Bayesian surprise (Kolossa et al., 2015; Visalli et al., 2021), linked to the P3a and
P3b sub-components of the P300 component (Polich, 2007). In addition to Bayesian
and Shannon surprise, Kolossa et al. (2015) reported a significant positive correlation
between another definition of surprise (Postdictive surprise; see chapter 2) and the EEG
amplitudes in a later time window (i.e., the EEG slow wave component). Gijsen et al.
(2021) reported similar results for another task from Category 3, another set of surprise
definitions (Shannon, Bayesian, and Confidence-Corrected surprise; see chapter 2), and
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another set of EEG components.

Further correlates of different mathematical definitions of surprise have been found in a
variety of experimental paradigms and measurements (Antony et al., 2021; Cogliati Dezza
et al., 2022; Daw et al., 2011; Gläscher et al., 2010; Kao et al., 2020a,b; Kolossa et al.,
2015; Konovalov and Krajbich, 2018; Kopp and Lange, 2013; Li et al., 2019; Lindborg
et al., 2023; Loued-Khenissi and Preuschoff, 2020; Mars et al., 2008; McGuire et al.,
2014; Meyniel, 2020; Modirshanechi et al., 2019; Mousavi et al., 2022; Nassar et al., 2012;
Nour et al., 2018; Ostwald et al., 2012; O’Reilly et al., 2013; Preuschoff et al., 2011).
The main takeaway is that computational models (i) have helped to link many separate
experimental measurements to concrete and precise notions of surprise (and novelty), but
they (ii) have also falsified the belief that there is a single notion of ‘new’ or ‘unexpected’
in the brain.

1.3.2 Surprise and novelty in learning

To characterize the role of surprise and novelty in learning, we can use a model-testing
approach to identify the best candidate for the associative learning module (Figure 1.3A).
Different candidate models include (approximate) Bayesian models, mechanistic and
heuristic models (Barry and Gerstner, 2022; Grossman et al., 2022; Iigaya, 2016; Wilmes
et al., 2023), and data-driven models (e.g., large language models (Heilbron et al., 2022;
Kumar et al., 2023) or models of intuitive physics (Piloto et al., 2022)). How surprise and
novelty contribute to learning can be directly incorporated into the design of mechanistic
and heuristic models (e.g., Barry and Gerstner (2022); Grossman et al. (2022); Iigaya
(2016); Pearce and Hall (1980); Rouhani and Niv (2021)), but, for optimal and data-driven
models, it is often needed to be inferred from analyzing the model’s internal dynamics.

Bayesian and approximate Bayesian models have been frequently used to analyze behav-
ioral data of human participants in experimental paradigms with volatile observation
distribution (Category 2 in section 1.1; Nassar et al. (2012, 2010)), volatile between-
observation associations (Category 3 in section 1.1; Heilbron and Meyniel (2019); Meyniel
(2020)), and volatile action-observation associations (Category 4 in section 1.1; Behrens
et al. (2007); Kao et al. (2020b), and chapter 3). The unified message of these studies is
that human behavior in volatile environments is explained better by models that have an
adaptive rate of learning, modulated by a definition of surprise (e.g., Shannon surprise
or the difference between subjects’ predictions and true observations).

These results have been further supported by correlational studies that found neural
correlates of different internal variables of Bayesian models in humans (Kao et al.,
2020b; McGuire et al., 2014) and monkeys (Li et al., 2019). Studies in mice have even
provided examples of these models guiding experiment design to unravel the functional
roles of different brain regions in adaptive learning (Mathis et al., 2017). Alternative
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heuristic models with explicit surprise-modulation of learning have been tested against
experimental data (Findling et al., 2021; Grossman et al., 2022; Rouhani and Niv, 2021;
Rouhani et al., 2018). All these models provide concrete quantitative descriptions of
learning in humans and animals and argue that ‘surprise’ increases the rate of learning,
but they disagree on the definition of surprise. The role of novelty in learning (e.g., as
experimentally discussed by Morrens et al. (2020)) has remained relatively unexplored
from the perspective of computational modeling.

1.3.3 Surprise and novelty in memory

Bayesian, heuristic, and data-driven models have also been used to study the link between
surprise and memory. For example, according to Bayesian models of volatile observation
distribution (Category 2; Gershman et al. (2014)) and volatile between-observation
associations (Category 4; Gershman et al. (2017)), whether a surprising observation
makes humans and animals (i) modify their current estimate of associations, (ii) switch
their estimate to another previously learned association, or (iii) allocate a new memory
trace for learning a new association depends on the amplitude of their error in predicting
the next observations. Mechanistic approximations have shown that such a surprise-
modulated allocation and modification of memories can be implemented in a network of
spiking neurons under biological constraints (Barry and Gerstner, 2022). The indicator
signal of whether a new memory trace should be allocated to learn new associations can
be seen as a novelty signal in these models.

Heuristic models in experiments with volatile action-observation associations (Category
5 in section 1.1) have shown a positive correlation between a definition of surprise and
the memorability of task-independent stimuli (Rouhani and Niv, 2021; Rouhani et al.,
2018). Similar models have shown that surprise values predict how human participants
chunk their sensory observations into segments that are memorized (Rouhani et al., 2018,
2020). Data-driven models have reproduced these results in experiments based on core
knowledge and common sense (Category 6 in section 1.1; Antony et al. (2021); Kumar
et al. (2023)) but with different definitions of surprise.

In summary, computational models have proposed concrete mechanisms for how surprise
and novelty contribute to the consolidation, modification, and segmentation of memories.
However, the results of different studies appear as a portfolio of separate findings as they
use different modeling assumptions and different mathematical definitions for surprise
and novelty.

1.3.4 Surprise and novelty in exploration

Computational studies of surprise and novelty in exploration propose models of how these
signals, derived from the memory and associative learning modules, guide action selection
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in the decision-making module (Figure 1.3). Recent models of exploration consider
intrinsically motivated Reinforcement Learning (RL; Aubret et al. (2019); Ladosz et al.
(2022); Singh et al. (2010b)) algorithms as models of decision-making modules (Gottlieb
and Oudeyer, 2018; Murayama, 2022; Oudeyer, 2018). These models describe decision-
making by action policies that are learned, via interaction with the environment, to collect
the maximum amount of ‘reward’, where ‘reward’ is assumed to be a combination of
extrinsically valuable goods (e.g., food or money) and intrinsically generated satisfactory
signals (e.g., the excitement of experiencing something novel).

For several experiments with action-observation associations (Category 5 in section 1.1),
the exploratory actions of human participants are accurately predicted by reward signals
that include mathematical definitions of novelty (Cogliati Dezza et al., 2022; Poli et al.,
2022) or surprise (Horvath et al., 2021; Kobayashi et al., 2019; Nelson, 2005; Poli et al.,
2022; Ten et al., 2021). For example, in a task where the participants’ actions did not
influence their total monetary reward, participants showed a clear preference for actions
that decreased their uncertainty of total monetary value, i.e., actions whose outcomes
were least predictable and, hence, most ‘surprising’ (Kobayashi et al., 2019). Other
studies have shown that both surprise and novelty predict exploratory action choices of
human participants (Cockburn et al., 2022; Poli et al., 2022), but these studies do not
agree on the exact definition of surprise and novelty; this, importantly, may be due to
fundamental differences in the experimental design and modeling approach.

Bayesian surprise (i.e., the amount of update in the estimates of associations after a new
observation) and signals correlated with Bayesian surprise predict exploratory actions of
human participants in multi-armed bandit tasks (Gershman, 2019a; Horvath et al., 2021;
Schulz and Gershman, 2019) as well as their gaze orientation (Itti and Baldi, 2006, 2009).
On the other hand, correlational studies on gaze orientation in human infants (Kidd
et al., 2012), human young adults (Cubit et al., 2021), and monkeys (Wu et al., 2022)
proposed Shannon surprise as the main predictor of gaze orientation, with an inverted-U
relationship.

While intrinsically motivated RL algorithms have proven to be powerful models of human
exploration, there is no consensus on the choice of intrinsic reward signal in different
experiments. It is unclear why the best predictor of subjects’ exploratory actions appears
to be different in different experimental paradigms (see Dubey and Griffiths (2019) for
further discussion and potential answers).

1.3.5 Challenges and open questions

Computational models have enabled neuroscientists to go beyond the traditional approach
(as in Figure 1.1) by exploiting precise mathematical definitions to describe surprise and
novelty. Computational models have provided quantitative descriptions of how surprise
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and novelty influence learning, memory, and exploration, and importantly, have shown
that several definitions of surprise and novelty are potentially involved in the neural and
behavioral responses to the new and unexpected.

Although the diversity of modeling approaches and definitions has helped to explain many
experimental phenomena, the diversity also challenges generalization across different
studies. In particular, it is not clear (i) how different mathematical definitions of surprise
and novelty relate to each other and, given an experimental paradigm and specific task,
(ii) which definitions are best suited to describe experimental measurements.

1.4 Thesis contribution

The main purpose of this thesis is to take a step towards addressing two of the main
challenges of computational models of surprise and novelty reviewed above, i.e., (i) how
different mathematical definitions of surprise and novelty relate to each other and (ii)
which definitions are best suited to describe experimental measurements in a given task.

In chapter 2 (based on the publication Modirshanechi et al. (2022) together with J
Brea and W Gerstner), I present a detailed mathematical investigation of 18 different
definitions of surprise. I study their similarities and differences, identify conditions under
which they are indistinguishable, and propose a taxonomy of these definitions based on
two classification schemes. These results propose a refined terminology and a solid ground
for relating previous studies of surprise to each other. The unifying framework and
common mathematical language also enable the design of new experimental paradigms.

In chapter 3 (based on the publication Xu et al. (2021) together with HA Xu2, MP
Lehmann, W Gerstner3, and MH Herzog3), I propose a mathematical formalism to
distinguish novelty from surprise and design an augmented RL algorithm that formalizes
the hypothesis that surprise modulates the rate of learning while novelty drives exploratory
actions. I test this model against experimental data of human participants (collected
by HA Xu) and compare it to 12 alternative algorithms. I show that the model’s
internal variables (including the definition of surprise and novelty) can explain significant
variabilities of the EEG signals in frontal electrodes (collected by HA Xu). These results
propose concrete and distinct roles for surprise and novelty in sequential decision-making
tasks with sparse rewards and volatile action-observation associations (Category 5 in
section 1.1). The surprise-modulated learning model used in this chapter is based on
the earlier publication Liakoni et al. (2021) (with V Liakoni4, W Gerstner, and J Brea)
which is not included in the main text of the thesis for the sake of space (abstract in
Appendix D).

2HA Xu and I are joint first authors.
3W Gerstner and MH Herzog are joint senior authors.
4V Liakoni and I are joint first authors.
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Chapter 4 (based on the publication Modirshanechi et al. (2023a) together with S
Becker, J Brea, and W Gerstner) plays the role of an intermediate discussion where
I review different studies on physiological signatures of surprise and novelty in light
of our taxonomy in chapter 2 and our formal separation of surprise and novelty in
chapter 3. In a complementary review paper Modirshanechi et al. (2023b) (together with
K Kondrakiewicz, W Gerstner, and S Haesler), I review the different roles of surprise
and novelty in studies of curiosity-driven exploration. This publication is not included in
the main text of the thesis for the sake of space (abstract in Appendix E).

In chapter 5 (based on the preprint Modirshanechi et al. (2023c) together with WH
Lin, HA Xu, MH Herzog, and W Gerstner), I build upon the formal categorizations
developed throughout chapters 2-4 and compare intrinsically motivated RL algorithms
based on novelty, surprise, and information gain as models of human exploration. Given
a specifically designed experimental paradigm that dissociates different exploration
strategies, I study the behavioral data of human participants (collected by WH Lin and
HA Xu) and show that their exploratory actions can be explained best by novelty-driven
exploration, even though novelty-seeking is suboptimal in our experimental paradigm.
These results extend the results of chapter 3 and provide further evidence that novelty is
the dominant drive of human exploration in environments with sparse rewards. Finally, I
present a brief discussion of the main results of the thesis along with potential future
directions in chapter 6.

In addition to the main publications in the thesis, Appendix F contains the abstracts
of my other publications as a contributing author through my Ph.D. (Bellec et al., 2021;
Brea et al., 2023; Esmaeili et al., 2021; Liakoni et al., 2022; Oryshchuk et al., 2024). My
contribution to these publications mainly includes analyzing data as well as helping with
statistical methodology, computational modeling, and interpretation of results (detailed
author contribution is provided for each paper).
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This chapter was published in the Journal of Mathematical Psychology (Modirshanechi
et al., 2022)1.

Authors: Alireza Modirshanechi, Johanni Brea, and Wulfram Gerstner

Abstract: Surprising events trigger measurable brain activity and influence human
behavior by affecting learning, memory, and decision-making. Currently there is, however,
no consensus on the definition of surprise. Here we identify 18 mathematical definitions
of surprise in a unifying framework. We first propose a technical classification of these
definitions into three groups based on their dependence on an agent’s belief, show how
they relate to each other, and prove under what conditions they are indistinguishable.
Going beyond this technical analysis, we propose a taxonomy of surprise definitions and
classify them into four conceptual categories based on the quantity they measure: (i)
‘prediction surprise’ measures a mismatch between a prediction and an observation; (ii)
‘change-point detection surprise’ measures the probability of a change in the environment;
(iii) ‘confidence-corrected surprise’ explicitly accounts for the effect of confidence; and
(iv) ‘information gain surprise’ measures the belief-update upon a new observation.
The taxonomy poses the foundation for principled studies of the functional roles and
physiological signatures of surprise in the brain.

Funding: This research was supported by the Swiss National Science Foundation (no. 200020
184615).

Author contribution: All authors contributed to the conceptualization of the study. AM did
the formal analyses and visualization and wrote the original draft. All authors revised the text.

1For consistency across the thesis chapters, the mathematical notation has been slightly adjusted.
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Chapter 2. A taxonomy of surprise definitions

2.1 Introduction

Imagine you open the curtains one morning and find the street in front of your apartment
covered by fresh snow. If you have expected a warm and sunny morning according to the
weather forecast, you feel ‘surprised’ as you see the white streets; as a consequence of
surprise, the activity of many neurons in your brain changes (Kolossa et al., 2015; Mars
et al., 2008; Squires et al., 1976) and your pupils dilate (Antony et al., 2021; Nassar et al.,
2012; Preuschoff et al., 2011). Surprise affects how we predict and perceive our future
and how we remember our past. For example, some studies suggest that you would rely
less on the weather forecast for your future plans after the snowy morning (Behrens
et al., 2007; Nassar et al., 2010; Xu et al., 2021). Other studies predict that you would
remember more vividly the face of the random stranger who walked past the street in
that very moment you felt surprised (Rouhani and Niv, 2021; Rouhani et al., 2018), and
some predict that this moment of surprise might have even modified your memory of
another snowy morning in the past (Gershman et al., 2017; Sinclair and Barense, 2018).
To understand and explain the computational role of surprise in different brain functions,
one first needs to ask ‘what does it really mean to be surprised?’ and formalize how
surprise is perceived by our brain. For instance, when you see the white street, do you
feel ‘surprised’ because what you expected turned out to be wrong (Faraji et al., 2018;
Gläscher et al., 2010; Meyniel et al., 2016) or because you need to change your trust in
the weather forecast (Baldi, 2002; Liakoni et al., 2021; Schmidhuber, 2010)?

Computational models of perception, learning, memory, and decision-making often assume
that humans implicitly perceive their sensory observations as probabilistic outcomes
of a generative model with hidden variables (Findling et al., 2021; Fiser et al., 2010;
Friston, 2010; Gershman et al., 2017; Liakoni et al., 2021; Soltani and Izquierdo, 2019;
Yu and Dayan, 2005). In the example above, the observation is whether it snows or not
and the hidden variables characterize how the probability of snowing depends on old
observations and relevant context information (such as the current season, yesterday’s
weather, and the weather forecast). Different brain functions are then modeled as aspects
of statistical inference and probabilistic control in such generative models (Behrens et al.,
2007; Daw et al., 2011; Dubey and Griffiths, 2019; Findling et al., 2021; Friston et al.,
2017; Gershman et al., 2017; Gläscher et al., 2010; Horvath et al., 2021; Liakoni et al.,
2021; Meyniel et al., 2016; Nassar et al., 2012; Yu and Dayan, 2005). In these probabilistic
settings, surprise of an observation depends on the relation between the observation and
our expectation of what to observe.

In the past decades, different definitions and formal measures of surprise have been
proposed and studied (Baldi, 2002; Barto et al., 2013; Faraji et al., 2018; Friston, 2010;
Gläscher et al., 2010; Kolossa et al., 2015; Liakoni et al., 2021; Palm, 2012; Schmidhuber,
2010). These surprise measures have been successful both in explaining the role of
surprise in different brain functions (Antony et al., 2021; Findling et al., 2021; Gershman
et al., 2017; Itti and Baldi, 2006; Rouhani and Niv, 2021; Xu et al., 2021) and in
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identifying signatures of surprise in behavioral and physiological measurements (Gijsen
et al., 2021; Gläscher et al., 2010; Maheu et al., 2019; Mars et al., 2008; Modirshanechi
et al., 2019; Rubin et al., 2016). However, there are still many open questions including,
but not limited to: (i) Are the quantities that different definitions of surprise measure
conceptually different? (ii) Can we identify mathematical relations between different
surprise definitions? In particular, is one definition a special case of another one,
completely distinct, or do they have some common ground?

In this work, we analyze and discuss 18 previously proposed measures of surprise in
a unifying framework. We first present our framework, assumptions, and notation in
section 2.2. Then, in section 2.3 to section 2.6, we give definitions for each of the 18
surprise measures and show their similarities and differences. In particular, we identify
conditions that make different surprise measures experimentally indistinguishable. Finally,
in section 2.7, we build upon our theoretical analyses and propose a taxonomy of surprise
measures by classifying them into four conceptually different categories.

2.2 Subjective world-model: A unifying generative model

Our goal is to study the theoretical properties of different formal measures of surprise in
a common mathematical framework. To do so, we need to make assumptions on how an
agent (e.g., a human participant or an animal) thinks about its environment. We assume
that an agent thinks of its observations as probabilistic outcomes of a generative model
with hidden variables and, hence, consider a generative model that captures several
key features of daily life and unifies many existing model environments in neuroscience
and psychology (cf. subsection 2.2.2). More specifically, we assume that the generative
model describes the subjective interpretation of the environment from the point of view
of the agent and, importantly, that the agent takes the possibility into account that
the environment may undergo abrupt changes at unknown points in time (i.e., the
environment is volatile), similar to the experimental paradigms studied by Behrens et al.
(2007); Glaze et al. (2015); Heilbron and Meyniel (2019); Maheu et al. (2019); Nassar
et al. (2010); Xu et al. (2021). See Figure 2.1 for four typical experimental paradigms
that are used to study behavioral and physiological signatures of surprise. Note that we
do not assume that the environment has the same dynamics as those assumed by the
agent.

2.2.1 General definition

At each discrete time t ∈ {0, 1, 2, ...}, the agent’s model of the environment is characterized
by a tuple of 4 random variables (Xt, Yt, Θt, Ct) (Figure 2.2A). Xt and Yt are observable,
whereas Θt and Ct are unobservable (hidden). We refer to Xt as the cue and to Yt as the
observation at time t. Examples of an observation are an image on a computer screen
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Figure 2.1: Four typical experimental paradigms to study functional roles and
physiological signatures of surprise in the brain. A. Volatile Gaussian task (Nassar
et al., 2012, 2010): Participants see a sequence of numbers randomly sampled from a Gaussian
distribution whose mean is piece-wise constant but abruptly changes at random points in time
(change-points, e.g., t = 5 in the figure). The goal of participants is to predict the next observation;
hence, the first few observations after a change-point are unexpected. Variants of this paradigm
have been studied by O’Reilly et al. (2013) and Visalli et al. (2021). B. Volatile oddball task
(Heilbron and Meyniel, 2019; Meyniel, 2020): Participants see a sequence of binary stimuli (e.g., a
red square and a blue disk). The stimulus frequencies are piece-wise constant but abruptly change
at random points in time (change-points, e.g., t = 6 in the figure). During the stationary periods
between two consecutive change-points (before t = 6 in the figure), one stimulus (the blue disk,
called ‘deviant’) is less frequent than the other (the red square, called ‘standard’) and hence more
surprising than the other. Variants of the paradigm with more than 2 types of stimuli (Lieder
et al., 2013; Mars et al., 2008) or without change-points (Huettel et al., 2002; Maheu et al., 2019;
Modirshanechi et al., 2019; Squires et al., 1976) have also been studied. C. Volatile two-armed
bandit task (Behrens et al., 2007; Horvath et al., 2021): Participants select one action (e.g., click
on one of the grey disks in the figure) at a time and receive a reward value randomly sampled from
a distribution specific to the selected action. The reward distributions are piece-wise stationary
but switch at random change points (e.g., t = 4 in the figure). Participants optimize reward
and have to adapt their strategy after a change-point. Variants of the paradigm include, e.g.,
multi-dimensional actions (Niv et al., 2015) or context-dependent reward distributions (Rouhani
and Niv, 2021). D. Multi-step decision-making task (Gläscher et al., 2010; Liakoni et al., 2022;
Xu et al., 2021): Participants move between states (e.g., images of different objects) by selecting
one action (e.g., clicking on one of the disks in the figure) at a time. Assuming some transitions
have been experienced before (e.g., the ‘light bulb’ state followed by selecting the right action
in the ‘cup’ state), observing the ‘light bulb’ state at t = 12 is expected, whereas observing
the ‘thumb’ state at t = 15 after the same stimulus-action sequence at t = 14 as at t = 11 is
unexpected and hence surprising.

(Kolossa et al., 2015; Mars et al., 2008) (e.g., Figure 2.1), an auditory tone (Imada et al.,
1993; Lieder et al., 2013), and an electrical stimulation (Ostwald et al., 2012). The cue
variable Xt can be interpreted as a predictor of the next observation, since it summarizes
the necessary information needed for predicting the observation Yt. Examples of a cue
variable are the previous observation Yt−1 (Meyniel et al., 2016; Modirshanechi et al.,
2019), the last action of a participant (which we will denote by At−1) (Behrens et al.,
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A

...

...

B

... ...

D

C

E

...

...
...

Figure 2.2: Subjective model of the environment. A. The Bayesian network (Barber, 2012)
corresponding to the most general case of our generative model in Equation 2.1 and Equation 2.2.
The arrows show conditional dependence, the grey nodes show the hidden variables (C1:t+1 and
Θ1:t+1), the red nodes show the observations (Y1:t+1), and the blue nodes show the cue variables
(X1:t+1). A variety of tasks can be written in the form of a reduced version of our generative
model. Specifically: B. Standard generative model for modeling and studying passive learning in
experiments with volatile environments like the one in Figure 2.1A (Adams and MacKay, 2007;
Fearnhead and Liu, 2007; Liakoni et al., 2021; Nassar et al., 2012, 2010; Wilson et al., 2013), C.
generative model for modeling human inference about binary sequences in experiments like the
one in Figure 2.1B (Gijsen et al., 2021; Maheu et al., 2019; Meyniel et al., 2016; Modirshanechi
et al., 2019; Mousavi et al., 2022), D. generative model corresponding to variants of bandit and
volatile bandit tasks like the one in Figure 2.1C (Behrens et al., 2007; Findling et al., 2021;
Horvath et al., 2021), where the cue variable Xt = At is a participant’s action, and E. classic
Markov Decision Processes (MDPs) to model experiments like the one in Figure 2.1D (Daw
et al., 2011; Gläscher et al., 2010; Huys et al., 2015; Lehmann et al., 2019; Schultz et al., 1997;
Sutton and Barto, 2018), where the cue variable Xt = (At−1, Yt−1) consists of previous action
and observation. See subsection 2.2.2 for details.

2007; Horvath et al., 2021) (e.g., Figure 2.1C-D), and a conditioned stimulus in Pavlovian
conditioning tasks (Gershman et al., 2017).

At time t, given the cue variable Xt, the agent assumes that the observation Yt comes
from a distribution that is conditioned on Xt and is parameterized by the hidden variable
Θt. We do not put any constraints on the sets to which Xt, Yt, and Θt belong. We refer to
Θt as the environment parameter at time t. The sequence of variables Θ1:t = (Θ1, ..., Θt)
describe the temporal dynamics of the observations Y1:t given the cue variables X1:t in the
agent’s model of the environment. Similar to well-known models of volatile environments
(Adams and MacKay, 2007; Behrens et al., 2007; Fearnhead and Liu, 2007; Findling
et al., 2021; Glaze et al., 2015; Heilbron and Meyniel, 2019; Liakoni et al., 2021; Meyniel
et al., 2016; Nassar et al., 2012, 2010; Wilson et al., 2013; Xu et al., 2021; Yu and Cohen,
2009; Yu and Dayan, 2005), the agent assumes that the environment undergoes abrupt
changes at random points in time (e.g., Figure 2.1A-C). An abrupt change at time t

is specified by the event Ct = 1 and happens with a probability pc ∈ [0, 1); otherwise
Ct = 0. If the environment abruptly changes at time t (i.e., Ct = 1), then the agent
assumes that the environment parameter Θt is sampled from a prior distribution b(0)

independently of Θt−1; if there is no change (Ct = 0), then Θt remains the same as Θt−1.
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Chapter 2. A taxonomy of surprise definitions

We refer to pc as the change-point probability.

We use P to refer to probability distributions: Given a random variable W and a value
w ∈ R, we use P(W = w) to refer to the probability of event {W = w} for discrete
random variables and, with a slight abuse of notation, to the probability density function
of W at W = w for continuous random variables. In general, we denote random variables
by capital letters and their values by small letters. However, for any pair of arbitrary
random variables W and V and their values w and v, whenever there is no risk of
ambiguity, we either drop the capital- or the small-letter notation and, for example, write
P(W = w|V = v) as P(w|v). When there is a risk of ambiguity, we keep the capital
notation for the random variables, e.g., we write P(W = v, V = v) as P(W = v, v). Given
this convention, the agent’s model of the environment described above is formalized in
Definition 1 (cf. Figure 2.2A).

Definition 1. (Subjective world-model) An agent’s model of the environment is defined
for t > 0 as a joint probability distribution over Y1:t, X1:t, Θ1:t, and C1:t as

P
(
y1:t, x1:t, θ1:t,c1:t

)
:= P

(
c1

)
P

(
θ1

)
P

(
x1

)
P

(
y1|x1, θ1

)
×

t∏
τ=2

P
(
cτ

)
P

(
θτ |θτ−1, cτ

)
P

(
xτ |xτ−1, yτ−1

)
P

(
yτ |xτ , θτ

)
,

(2.1)

where c1 is by definition equal to 1 (i.e., P(c1) := δ{1}(c1)), P
(
θ1

)
:= b(0)(θ1) for an

arbitrary distribution b(0), and

P(cτ ) :=Bernoulli(cτ ; pc)
P

(
θτ |θτ−1, cτ

)
:=b(0)(θτ )δ{1}(cτ ) + δ{θτ−1}(θτ )δ{0}(cτ )

P
(
yτ |xτ , θτ

)
:=PY |X(yτ |xτ ; θτ ),

(2.2)

where δ is the Dirac measure (cf. Table 2.1), and PY |X is a time-invariant conditional
distribution of observations given cues2. We do not make any assumption about P

(
x1

)
and P

(
xτ |xτ−1, yτ−1

)
.

See Table 2.1 for a summary of the notation.

2.2.2 Special cases and links to related works

Many of the commonly used experimental paradigms (e.g., see Figure 2.1) can be formally
described in our framework as special cases of Definition 1. The standard generative
models for studying passive learning in volatile environments (Adams and MacKay, 2007;
Liakoni et al., 2021; Nassar et al., 2012, 2010) is obtained if we remove the cue variables

2The last line of Equation 2.2 implies that P
(
Yτ = y|Xτ = x, Θτ = θ

)
= P

(
Yτ ′ = y|Xτ ′ = x, Θτ ′ =

θ
)

= PY |X(y|x; θ) for any τ and τ ′ ∈ {0, 1, 2, ...}.
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2.2 Subjective world-model: A unifying generative model

Table 2.1: Notation summary

Notation Meaning
Xt Cue at time t

Yt Observation at time t

Θt Environment parameter at time t

Ct Change-point indicator at time t

pc Change-point probability, i.e., the probability of Ct = 1
PY |X(y|x; θ) Time invariant distribution of observation y given cue x, parame-

terized by θ

P The distribution corresponding to the subjective model of the
environment; see Definition 1

P(t) P conditioned on observations and cues until time t, i.e., x1:t and
y1:t

P(t)
W An alternative notation for the distribution of random variable W

conditioned on x1:t and y1:t, i.e., P(t)
W (w) := P(t)(W = w)

b(0) Prior distribution over the environment parameter; equivalently,
the distribution of Θt given Ct = 1

b(t) The belief about parameter Θt at time t, i.e., b(t)(θ) := P(t)(Θt = θ)
P (y|x; b(t)) The marginal probability of observation y given cue x and belief

b(t); see Equation 2.4
P (.|x; b(t)) The full marginal distribution over the space of observations given

cue x and belief b(t)

||w||1 ℓ1-norm of the vector w = (w1, ..., wN ) ∈ RN defined as ||w||1 :=∑N
n=1 |wn|

||w||2 ℓ2-norm of the vector w = (w1, ..., wN ) ∈ RN defined as ||w||2 :=√∑N
n=1 w2

n

δ{w∗} The Dirac measure at w∗, i.e., P(W = w) = δ{w∗}(w) implies that
the probability of the event {W = w∗} is one.

X1:t (Figure 2.2B). For example, in the Gaussian experiment of Nassar et al. (2010)
(Figure 2.1A), Yt is a sample from a Gaussian distribution with a mean equal to Θt and
a known variance, and b(0) is a very broad uniform distribution.

The minimal model of human inference about binary sequences of Meyniel et al. (2016)
(Figure 2.2C) assumes that participants estimate probabilities of transitions between
stimuli instead of stimulus frequencies, even when the stimuli are by design independent
of each other. They show that such an assumption helps explaining many experimental
phenomena. Their model is obtained as a special case of our generative model if the cue
variable Xt is equal to the previous observation Yt−1. There, Yt, conditioned on Yt−1,
is a sample from a Bernoulli distribution with parameter Θt. In this setting, we have
P

(
xτ |xτ−1, yτ−1

)
:= δ{yτ−1}(xτ ). This class of generative models has been used to study

the neural signatures of surprise via encoding (Gijsen et al., 2021; Maheu et al., 2019)
and decoding (Modirshanechi et al., 2019) models in oddball tasks (Figure 2.1B).
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Chapter 2. A taxonomy of surprise definitions

Variants of bandit and reversal bandit tasks (Behrens et al., 2007; Findling et al., 2021;
Horvath et al., 2021) can be modeled by considering the cue variables X1:t as actions A1:t
(Figure 2.2D). For example, in the experiment of Behrens et al. (2007) (Figure 2.1C),
Xt = At is one of the two possible actions that participants can choose, Yt is the indicator
of whether they are rewarded or not, and Θt indicates which action is rewarded with
higher probability. In this setting, P

(
xτ |xτ−1, yτ−1

)
= P

(
xτ

)
is the probability that

participants take action xτ , independently of the dynamics of the environment3.

Classic Markov Decision Processes (MDPs) (Sutton and Barto, 2018) can also be written
in the form of our generative model. To reduce our generative model to an MDP, we
set pc = 0, consider the observation Yt as the pair of the current state and immediate
reward value, and consider the cue variable Xt as the previous pair of action and
observation (or state) (At−1, Yt−1) (Figure 2.2E). In this setting, we have P

(
Xτ =

(aτ−1, y)|xτ−1, yτ−1
)

:= δ{yτ−1}(y)P
(
aτ−1|yτ−1

)
, where P

(
aτ−1|yτ−1

)
is called the action

selection policy in Reinforcement Learning theory (Sutton and Barto, 2018) and is
independent of the dynamics of the environment4. The theory of Reinforcement Learning
for MDPs has been frequently used in neuroscience and psychology to model human
reward-driven decision-making (Daw et al., 2011; Gläscher et al., 2010; Huys et al., 2015;
Lehmann et al., 2019; Niv, 2009; Xu et al., 2021) (Figure 2.1D).

2.2.3 Additional notation, belief, and marginal probability

We define P(t) as P conditioned on the sequences of observations y1:t and cue variables
x1:t. For example, for an arbitrary random variable W with value w, we write P(t)(w) :=
P(w|y1:t, x1:t). Following this notation, we define an agent’s belief about the parameter
Θt at time t as

b(t)(θ) := P(t)(Θt = θ), (2.3)

that is the posterior probability (or density, for continuous Θt) of Θt = θ conditioned
on y1:t and x1:t. The belief plays a crucial role in the perception of surprise (cf. subsec-
tion 2.3.1), and we assume that an agent constantly updates its belief, through either
exact or approximate Bayesian inference, as it makes new observations – see Barber
(2012) and Liakoni et al. (2021) for examples of inference algorithms in generative models
similar to ours. According to exact Bayesian inference (Barber, 2012), the updated belief
b(t+1)(θ) = P(t+1)(Θt+1 = θ) can be found by normalizing the product of the prior belief

3We note that the action probability P
(
aτ

)
in bandit tasks often depends on the whole his-

tory of the agent, i.e., a1:τ−1 and y1:τ−1 (Sutton and Barto, 2018). In these situations, one can
define xτ as the concatenation of a1:τ and y1:τ−1. In this case, the dynamics are described by
P
(
Xτ = (a′

1:τ , y′
1:τ−1)|xτ−1, yτ−1

)
:= δ{a1:τ−1}(a′

1:τ−1)δ{y1:τ−1}(y′
1:τ−1)P

(
a′

τ |a1:τ−1, y1:τ−1
)

where P
(
a′

τ |
a1:τ−1, y1:τ−1

)
is the non-stationary action selection policy – cf. Sutton and Barto (2018).

4Similar to the case of bandit tasks, action selection policies in reinforcement learning algorithms used
for solving MDPs often depend on the sequence of previous actions a1:τ−1 and observations y1:τ−1, i.e.,
through estimation of action values (Sutton and Barto, 2018). In these situations, we can define xτ as
the concatenation of a1:τ and y1:τ−1.
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2.3 Surprise measures and indistinguishability

P(t)(Θt+1 = θ) about Θt+1 and the likelihood PY |X(yt+1|xt+1; θ). In subsection 2.4.1, we
give a simple and interpretable expression of the updated belief for the generative model
of Definition 1 (cf. Proposition 1).

Another important quantity is the marginal probability of observing y given the cue x

and a belief b(t):
P (y|x; b(t)) := Eb(t)

[
PY |X(y|x; Θ)

]
=

∫
PY |X(y|x; θ)b(t)(θ)dθ,

(2.4)

where the integration is replaced by summation whenever θ is discrete.

2.3 Surprise measures and indistinguishability

Conditioned on the previous observations y1:t and cue variables x1:t+1, how surprising is
the next observation yt+1? We address this question by examining previously proposed
measures of surprise. In this section, we propose a technical classification of different
surprise measures and a notion of indistinguishability between different measures and,
in the next three sections, we define all surprise measures in the same mathematical
framework and discuss their differences and similarities. We present the proofs of these
results in Appendix A.

2.3.1 A technical classification

Given θt+1, the observation yt+1 is independent of the previous observations y1:t and
cue variables x1:t and only depends on xt+1 (Figure 2.2A). Hence, the influence of y1:t
and x1:t on the surprise of observing yt+1 is exclusively through the belief b(t), which
indicates the importance of b(t) in surprise computation. More precisely, a surprise
measure is a function S : Y × X × P → R that takes an observation yt+1 ∈ Y, a cue
xt+1 ∈ X , and a belief b(t) ∈ P as arguments and gives the value S(yt+1|xt+1; b(t)) ∈ R
as the corresponding surprise value. However, the specific form of how b(t) influences
surprise computation changes between one measure and another. Based on how they
depend on b(t), we divide existing surprise measures into three categories: (i) probabilistic
mismatch, (ii) observation-mismatch, and (iii) belief-mismatch surprise measures (Fig-
ure 2.3). Probabilistic mismatch surprise measures depend on the belief b(t) only through
the marginal probability P (yt+1|xt+1; b(t)); an example is the Shannon surprise (Barto
et al., 2013; Tribus, 1961). In other words, probabilistic mismatch surprise depends only
on the integral P (yt+1|xt+1; b(t)) =

∫
PY |X(yt+1|xt+1; θ)b(t)(θ)dθ (Equation 2.4) and is

independent of other characteristics of the belief b(t). Observation-mismatch surprise
measures depend on b(t) only through some estimate ŷt+1 of the next observation ac-
cording to the marginal distribution P (.|xt+1; b(t)) (cf. Table 2.1); an example is the
absolute difference between yt+1 and ŷt+1 (Nassar et al., 2010; Prat-Carrabin et al., 2021).
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Probabilistic mismatch

surprise

Belief-mismatch
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Observation-mismatch
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Abbreviations: 

: Bayes Factor surprise

: Absolute error

: Bayesian surprise

: Shannon surprise

: Squared error

: Confidence Corrected surprise

: State prediction error

: Minimized free energy

: Postdictive surprise

: Unsigned reward prediction error

Figure 2.3: Technical classification of surprise measures based on the form of their
dependence upon the agent’s belief. Surprise depends on expectations. Therefore, all surprise
measures depend on the belief b(t). However, the specific form of the dependence changes between
one measure and another. ‘Observation-mismatch’ surprise measures use the marginal distribution
P (.|xt+1; b(t)) (cf. Table 2.1) to calculate an estimate ŷt+1 of the next observation, which is then
compared with the real observation yt+1 by an error function such as ||ŷt+1−yt+1||1 (cf. Table 2.1).
‘Probabilistic mismatch’ surprise measures use the marginal probability P (yt+1|xt+1; b(t)) directly,
without extracting a specific estimate. ‘Belief-mismatch’ surprise measures use the belief b(t)

directly, without extracting the marginal probability P (yt+1|xt+1; b(t)). See section 2.3 for details.

In other words, observation-mismatch surprise depends only on some statistics (e.g.,
average or mode) of P (.|xt+1; b(t)) that is used as the estimate ŷt+1 and is independent
of the other characteristics of b(t) and P (.|xt+1; b(t)). To compute the belief-mismatch
surprise measures, however, we need to have the whole distribution b(t); an example is
the Bayesian surprise (Baldi, 2002; Schmidhuber, 2010). In other words, neither the
marginal distribution P (.|xt+1; b(t)) nor the estimate ŷt+1 can solely determine the value
of a belief-mismatch surprise measure.

2.3.2 Notion of indistinguishability

Surprise measures are commonly used in experiments to study whether a behavioral or
physiological variable Z (e.g., the amplitude of the EEG P300 component (Kolossa et al.,
2015)) is sensitive to or representative of surprise. Given two measures of surprise S and
S′, a typical experimental question is which one of them (if any) more accurately explains
the variations of the variable Z (Gijsen et al., 2021; Kolossa et al., 2015; Ostwald et al.,
2012; Visalli et al., 2021); see Figure 2.4A1. However, if there exists a strictly increasing
mapping between S and S′ (e.g., as in Figure 2.4A2), then the two surprise measures
have the same explanatory power with respect to Z – because any function of S can be
written in terms of S′ and vice-versa. For example, assume that S = f(S′) for a strictly
increasing function f . If an estimator of the variable Z is found using the measure S as
Ẑ = g(S), then we can rewrite the same estimator in terms of S′ as Ẑ = g̃(S′) = g(f(S′)).
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Figure 2.4: Indistinguishable surprise measures. A. A typical question in human and
animal experiments is whether a surprise measure S explains the variations of a behavioral
or physiological variable Z better than an alternative surprise measure S′. A1. A common
experimental paradigm: A sequence of cues x1:t and observations y1:t is presented to participants,
the sequence z1:t is measured, and the sequence of surprise values s1:t or s′

1:t is predicted by
computational modeling. Then statistical tools are used to study whether the sequence s1:t or
s′
1:t is more informative about the sequence of measurements z1:t. A2. If there exists a strictly

increasing function f such that S′ = f(S), then the two surprise measures are equally informative
about the measurable variable Z. In this case, S and S′ are ‘indistinguishable’ (cf. Definition 2).
B. Schematic of the theoretical relation between different measures of surprise. A line connecting
two measures indicates that the two measures are indistinguishable, i.e., one is a strictly increasing
function of the other, under the condition corresponding to the color and the type of the line.
The conditions are shown on the bottom right of the panel: a solid black line means the two
measures are always indistinguishable; a dashed black line corresponds to the condition pc = 0; a
solid red line corresponds to the prior marginal probability P (.|xt+1; b(0)) being flat; a dashed
red line corresponds to the prior belief b(0) being flat; a solid blue line corresponds to the limit of
pc → 1; and a dashed blue line means that the relation holds only for some special cases (e.g., for
Gaussian tasks or when the observation is 1-dimensional). Table 2.2 summarizes which of these
conditions are satisfied in several experimental paradigms used to study measures of surprise. Two
lines indicate that one of the conditions is sufficient for the two measures to be indistinguishable.
The text beside each line shows where in the text the existence of the mapping is proven, e.g.,
R1, C2, and P3 stand for Remark 1, Corollary 2, and Proposition 3, respectively. The purple
box includes surprise measures that are computed in the parameter (Θt) space, whereas the
surprise measures outside of the purple box are computed in the space of observations (Yt). See
section 2.3 for details.

Because g(S) and g̃(S′) have the same explanatory power given any function g and any
measure of performance, the two surprise measures S and S′ are equally informative
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Chapter 2. A taxonomy of surprise definitions

about the variable Z in this regard5. We formalize this idea in Definition 2.

Definition 2. (Indistinguishability) For the generative model of Definition 1, we say S
and S′ are indistinguishable if there exists a strictly increasing function f : R→ R such
that S = f(S′) for all choices of belief b(t), cue xt, and observation yt.

One of our goals in the next three sections is to determine under what conditions different
surprise measures are indistinguishable (Figure 2.4B and Table 2.2).

2.4 Probabilistic mismatch surprise measures

2.4.1 Bayes Factor surprise

An abrupt change in the parameters of the environment influences the sequence of
observations. Therefore, a sensible way to define the surprise of an observation is that
‘surprise’ measures the probability of an abrupt change in the eye of the agent, given
the present observation. To detect an abrupt change, it is not enough to measure how
unexpected the observation is according to the current belief of the agent. Rather, the
agent should measure how much more expected the new observation is under the prior
belief than under the current belief. The Bayes Factor surprise was introduced by Liakoni
et al. (2021) to quantify this concept of surprise, motivated by the idea that surprise
modulates the speed of learning in the brain (Frémaux and Gerstner, 2016; Iigaya, 2016).

Here, we apply their definition to our generative model. Similar to Xu et al. (2021), we
define the Bayes Factor surprise of observing yt+1 given the cue xt+1 as the ratio of the
marginal probability of observing yt+1 given xt+1 and Ct+1 = 1 (i.e., assuming a change)
to the marginal probability of observing yt+1 given xt+1 and Ct+1 = 0 (i.e. assuming no
change):

SBF(yt+1|xt+1; b(t)) :=
P(t)(yt+1|xt+1, Ct+1 = 1

)
P(t)(yt+1|xt+1, Ct+1 = 0

)
= P (yt+1|xt+1; b(0))

P (yt+1|xt+1; b(t))
.

(2.5)

The name arises because SBF(yt+1|xt+1; b(t)) is the Bayes Factor (Bayarri and Berger,
1997; Kass and Raftery, 1995) used in statistics to test whether a change has occurred at
time t. For a given P (yt+1|xt+1; b(0)), the Bayes Factor surprise is a decreasing function of
P (yt+1|xt+1; b(t)): Hence, more probable events are perceived as less surprising. However,

5This statement is not necessarily true if one restricts the estimators to a particular class of functions
– e.g., if the estimators are constrained to be linear with respect to surprise measures while f is nonlinear.
Such limitations can be avoided by using non-parametric statistical methods like Spearman or Kendall
correlations (Corder and Foreman, 2014). For example, the Spearman correlation (a measure of monotonic
relationship between two random variables) between S′ and Z is the same as the Spearman correlation
between S = f(S′) and Z, but this is not the case for Pearson correlation (a measure of linear relationship
between two random variables) if f is nonlinear.
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2.4 Probabilistic mismatch surprise measures

Table 2.2: Indistinguishability conditions of Figure 2.4 for several experimental
paradigms. Publications specified by ⋄ use a generative model similar to ours to describe their
experiment from the point of view of participants, even if the actual experimental condition has a
slightly different structure compared to their generative model. Publications specified by ∗ include
either (i) features that are not part of our generative model or (ii) additional experiments not
covered by our model. See the original publications for details and Figure 2.1 for a description of
four of the tasks. A value pc > 0 in the last column indicates a volatile environment; however, we
note that participants may by default assume that the environment is volatile even in situations
where the actual experimental conditions are stationary (Meyniel et al., 2016).
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Chapter 2. A taxonomy of surprise definitions

the key feature of SBF(yt+1|xt+1; b(t)) is that it measures not only how unexpected
(unlikely) the observation yt+1 is according to the current belief b(t) but also how expected
it would be if the agent had reset its belief to the prior belief. More precisely, for a given
P (yt+1|xt+1; b(t)), the Bayes Factor surprise is an increasing function of P (yt+1|xt+1; b(0)).

Such a comparison is necessary to evaluate whether a reset of the belief (or an increase in
the update rate of the belief) can be beneficial in order to have a more accurate estimate
of the environment’s parameters (cf. Soltani and Izquierdo (2019)). This intuition is
formulated in a precise way by Liakoni et al. (2021) in their Proposition 1, where they
show that, for the generative model of Figure 2.2B, the exact Bayesian inference for the
update of b(t) to b(t+1) upon observing yt+1 leads to a learning rule modulated by the
Bayes Factor surprise. Proposition 1 below states that this result is also true for our
more general generative model (Figure 2.2A).

Proposition 1. (Extension of Proposition 1 of Liakoni et al. (2021)) For the generative
model of Definition 1, the Bayes Factor surprise can be used to write the updated (according
to exact Bayesian inference) belief b(t+1), after observing yt+1 with the cue xt+1, as

b(t+1)(θ) = (1− γt+1)b(t+1)
integration(θ) + γt+1b

(t+1)
reset (θ), (2.6)

where γt+1 is an adaptation rate modulated by the Bayes Factor surprise

γt+1 := mSBF(yt+1|xt+1; b(t))
1 + mSBF(yt+1|xt+1; b(t))

with m := pc

1− pc
, (2.7)

and

b
(t+1)
integration(θ) :=

PY |X(yt+1|xt+1; θ)b(t)(θ)
P (yt+1|xt+1; b(t))

,

b
(t+1)
reset (θ) :=

PY |X(yt+1|xt+1; θ)b(0)(θ)
P (yt+1|xt+1; b(0))

.

(2.8)

Therefore, the Bayes Factor surprise SBF controls the trade-off between the integration
of the new observation into the old belief (via b

(t+1)
integration) and resetting the old belief to

the prior belief (via b
(t+1)
reset )6.

2.4.2 Shannon surprise

No matter if there has been an abrupt change (Ct+1 = 1) or not (Ct+1 = 0), an unlikely
event may be perceived as surprising. Therefore, another way to measure the surprise
of an observation is to quantify how unlikely the observation is in the eye of the agent.

6Thesis footnote: The adaptation rate γt+1 is also known the posterior Change-Point-Probability
and has been interpreted as a surprise measure (Kao et al., 2020b). Given a fixed pc, the Bayes Factor
surprise SBF is indistinguishable from γ (Definition 2), but they are distinguishable across experiments
with different pc, e.g., same value of SBF corresponds to different values of γ for different pc.
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2.4 Probabilistic mismatch surprise measures

Shannon surprise, also known as surprisal (Barto et al., 2013), is a way to formalize this
concept of surprise. It comes from the field of information theory (Shannon, 1948) and
statistical physics (Tribus, 1961) and is widely used in neuroscience (Gijsen et al., 2021;
Kolossa et al., 2015; Konovalov and Krajbich, 2018; Kopp and Lange, 2013; Maheu et al.,
2019; Mars et al., 2008; Meyniel et al., 2016; Modirshanechi et al., 2019; Mousavi et al.,
2022; Visalli et al., 2021).

Formally, for the generative model of Definition 1, one can define the Shannon surprise
of observing yt+1 given the cue xt+1 as

SSh1(yt+1|xt+1; b(t)) := − logP(t)(yt+1|xt+1
)

= − log
(
pcP (yt+1|xt+1; b(0)) + (1− pc)P (yt+1|xt+1; b(t))

)
,

(2.9)

where the 2nd equality is a result of the marginalization

P(t)(yt+1|xt+1
)

=
∑

c

P(t)(yt+1, Ct+1 = c|xt+1
)
. (2.10)

The Shannon surprise SSh1 measures how unexpected or unlikely yt+1 is considering
the possibility that there might have been an abrupt change in the environment. As
a result, for a fixed P (yt+1|xt+1; b(t)), the Shannon surprise is a decreasing function of
P (yt+1|xt+1; b(0)) (cf. Equation 2.9): It is less surprising to observe an event that is
more probable under the prior belief because this event is also in total more probable
if we consider the possibility of an abrupt change at time t + 1. In contrast, the Bayes
Factor surprise is an increasing function of P (yt+1|xt+1; b(0)) (cf. Equation 2.5): It is
more surprising to observe an event that is more probable under the prior belief because
such events indicate higher chances that an abrupt change has occurred. This essential
difference between the Shannon and the Bayes Factor surprise has been exploited by
Liakoni et al. (2021) to propose experiments where these two measures of surprise make
different predictions.

Experimental evidence (Nassar et al., 2012, 2010) indicates that in volatile environments
like the one in Figure 2.2B, human participants do not actively consider the possibility
that there may be an abrupt change while predicting the next observation yt+1 – even
though they update their belief after observing yt+1 by considering the possibility that
there might have been a change before the current observation at time t + 1. To arrive
at a Shannon surprise measure consistent with this observation, we suggest a second
definition:

SSh2(yt+1|xt+1; b(t)) := − logP(t)(yt+1|xt+1, Ct+1 = 0
)

= − log P (yt+1|xt+1; b(t)).
(2.11)

In other words, SSh2(yt+1|xt+1; b(t)) neglects the potential presence of change-points,
and, therefore, it is independent of both pc and P (yt+1|xt+1; b(0)). For a non-volatile
environment that does not allow for abrupt changes (pc = 0), the two definitions of
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Chapter 2. A taxonomy of surprise definitions

Shannon surprise are identical: SSh1 = SSh2 (Figure 2.4B).

Proposition 2 shows that the Bayes Factor surprise SBF is related to SSh1 and SSh2:

Proposition 2. (Relation between the Shannon surprise and the Bayes Factor surprise)
For the generative model of Definition 1, the Bayes Factor surprise SBF(yt+1|xt+1; b(t))
can be written as

SBF(yt+1|xt+1; b(t)) = (1− pc)e∆SSh1(yt+1|xt+1;b(t))

1− pce∆SSh1(yt+1|xt+1;b(t))

= e∆SSh2(yt+1|xt+1;b(t)),

(2.12)

where

∆SShi(yt+1|xt+1; b(t)) := SShi(yt+1|xt+1; b(t))− SShi(yt+1|xt+1; b(0)) (2.13)

for i ∈ {1, 2}.

Proposition 2 states that the Bayes Factor SBF(yt+1|xt+1; b(t)) has a behavior similar
to the difference in Shannon surprise (i.e., ∆SSh1 or ∆SSh2) as opposed to Shannon
surprise itself (i.e., SSh1 or SSh2). The difference in Shannon surprise (i.e., ∆SSh1 or
∆SSh2) compares the Shannon surprise under the current belief with that under the prior
belief. Two direct consequences of this proposition are summarized in Corollaries 1 and
2. Corollary 1 states that the modulation of learning as presented in Proposition 1 can
also be written in the form of the difference in Shannon surprise (i.e., ∆SSh1 or ∆SSh2).

Corollary 1. The adaptation rate γt+1 in Proposition 1 can be written as

γt+1 = pc exp
(
∆SSh1(yt+1|xt+1; b(t))

)
γt+1 = Sigmoid

(
m̃∆SSh2(yt+1|xt+1; b(t))

)
,

(2.14)

with m̃ := log pc

1−pc
= log m (cf. Proposition 1) and Sigmoid(u) := 1

1+e−u

Corollary 2 indicates that, under a flat prior, the Bayes Factor surprise and the two
definitions of the Shannon surprise are indistinguishable from each other (Figure 2.4B):

Corollary 2. (Flat prior prediction) For the generative model of Definition 1, if the
probability of observing yt+1 with the cue xt+1 is flat under the prior belief b(0) (i.e.,
if P (yt+1|xt+1; b(0)) is uniform), then there are strictly increasing mappings between
SBF(yt+1|xt+1; b(t)), SSh1(yt+1|xt+1; b(t)), and SSh2(yt+1|xt+1; b(t)).

A consequence of Corollary 2 is that experiments with flat marginal priors of the agent
cannot be used to distinguish SBF from SSh1 or SSh2 (Figure 2.4).
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2.5 Observation-mismatch surprise measures

2.4.3 State prediction error

The State Prediction Error (SPE) was introduced by Gläscher et al. (2010) in the
context of model-based reinforcement learning in Markov Decision Processes (MDPs –
cf. Figure 2.2E) (Sutton and Barto, 2018). Similar to the Shannon surprise, the SPE
considers less probable events as the more surprising ones.

Whenever observations y1:t come from a discrete distribution so that we have PY |X(yt+1|
xt+1; θ) ∈ [0, 1] for all θ, xt+1, and yt+1, we can generalize the definition of Gläscher
et al. (2010) to the setting of our generative model. Analogously to our two definitions
of Shannon surprise (cf. Equation 2.9 and Equation 2.11), we give also two definitions
for SPE:

SSPE1(yt+1|xt+1; b(t)) :=1− P(t)(yt+1|xt+1
)

=1−
(
pcP (yt+1|xt+1; b(0)) + (1− pc)P (yt+1|xt+1; b(t))

)
,

(2.15)

and
SSPE2(yt+1|xt+1; b(t)) :=1− P(t)(yt+1|xt+1, Ct+1 = 0

)
=1− P (yt+1|xt+1; b(t)).

(2.16)

In non-volatile environments (pc = 0), the two definitions of SPE are identical (Fig-
ure 2.4B). In particular, in an MDP without abrupt changes (pc = 0; Figure 2.2E), both
definitions are equal to 1 − P(t)(st, at → st+1), where P(t)(st, at → st+1) is an agent’s
estimate (at time t) of the probability of the transition to state st+1 after taking action
at in state st; cf. Gläscher et al. (2010).

Proposition 3 states that both definitions (SSPE1 and SSPE2) can always be written as
strictly increasing functions of Shannon surprise (Figure 2.4B):

Proposition 3. (Relation between the Shannon surprise and the SPE) For the generative
model of Definition 1, for i ∈ {1, 2}, the state prediction error SSPEi(yt+1|xt+1; b(t)), can
be written as

SSPEi(yt+1|xt+1; b(t)) =1− exp
(
− SShi(yt+1|xt+1; b(t))

)
. (2.17)

Therefore, the SPE and the Shannon surprise are indistinguishable (Figure 2.4).

2.5 Observation-mismatch surprise measures

2.5.1 Absolute and squared errors

Assume an agent predicts ŷt+1 for the next observation yt+1. Then, a measure of surprise
can be defined as the prediction error or the mismatch between the prediction ŷt+1
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Chapter 2. A taxonomy of surprise definitions

and the actual observation yt+1 (Nassar et al., 2012, 2010; Prat-Carrabin et al., 2021)
(Figure 2.3). For the sake of completeness, we discuss four possible definitions for
observation-mismatch surprise measures.

Before turning to an ‘observation-mismatch’, we first need to define an agent’s prediction
for the next observation. Analogously to our two definitions for the Shannon surprise
(cf. Equation 2.9 and Equation 2.11), we define two different predictions for the next
observation yt+1 given the cue xt+1

7:

E1[Yt+1] :=pcEP (.|xt+1;b(0))[Yt+1] + (1− pc)EP (.|xt+1;b(t))[Yt+1] (2.18)

and
E2[Yt+1] := EP (.|xt+1;b(t))[Yt+1]. (2.19)

Although E1[Yt+1] is a more reasonable prediction for yt+1 given the fact that there
is always a possibility of an abrupt change according to our generative model of the
environment (Definition 1), Nassar et al. (2010) have shown that, in a Gaussian task,
E2[Yt+1] explains human participants’ predictions better than E1[Yt+1].

We note that the observation yt+1 is, in general, multi-dimensional. As two natural
ways of measuring mismatch, we define the squared and the absolute error surprise, for
i ∈ {1, 2}, as

SAb,i(yt+1|xt+1; b(t)) := ||yt+1 − Ei[Yt+1]||1

SSq,i(yt+1|xt+1; b(t)) :=
(
||yt+1 − Ei[Yt+1]||2

)2
,

(2.20)

where ||.||1 and ||.||2 stand for the ℓ1- and ℓ2-norms (cf. Table 2.1), respectively, and E1
and E2 are defined in Equation 2.18 and Equation 2.19, respectively. Similar definitions
have been used in neuroscience (Nassar et al., 2010; Prat-Carrabin et al., 2021) and
machine learning (Burda et al., 2019; Pathak et al., 2017). In Propositions 4-6, we show
for three special cases that the absolute and the squared error surprise can be written as
strictly increasing functions of either each other or the SPE and the Shannon surprise
(Figure 2.4B).

Proposition 4. (Relation between the absolute and squared errors and the SPE for
categorical distributions) For the generative model of Definition 1, if Yt+1 is represented
as one-hot coded vectors, i.e., vectors with one element equal to 1 and the others equal to
0, then we have, for i ∈ {1, 2},

SAbi(yt+1|xt+1; b(t)) = 2SSPEi(yt+1|xt+1; b(t)), (2.21)

7The evaluation of the full distribution P (.|xt+1; b(t)) may not always be necessary for the computation
of E1 and E2 (Aguilera et al., 2022; Liakoni et al., 2021; Nassar et al., 2010).
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2.5 Observation-mismatch surprise measures

and

SSqi(yt+1|xt+1; b(t)) =2SSPEi(yt+1|xt+1; b(t)) + Conf.
[
P (.|xt+1; b(t))

]
, (2.22)

where Conf.
[
P (.|xt+1; b(t))

]
can be seen as a measure of confidence in the prediction (see

Appendix A).

Proposition 5. (Relation between the squared error surprise and the Shannon surprise
for Gaussian distributions – from Pathak et al. (2017)) For the generative model of
Definition 1, if the marginal distribution of Yt+1 ∈ RN given the cue xt+1 and the belief
b(t) is a Gaussian distribution with a covariance matrix equal to σIN×N , where IN×N is
the N ×N identity matrix, then SSq2(yt+1|xt+1; b(t)) is a strictly increasing function of
SSh2(yt+1|xt+1; b(t)).

Proposition 6. (Observation-mismatch surprise measures for 1-D observations) For
the generative model of Definition 1, if Yt ∈ R, then we have SSqi = S2

Abi for i ∈ {1, 2}
implying that the two observation-mismatch surprise measures are indistinguishable.

We note that, according to Proposition 3, the SPE is a strictly increasing function of the
Shannon surprise. Hence, for categorical distributions with one-hot coding, the SPE, the
Shannon surprise, and the absolute error surprise are indistinguishable, and for Gaussian
distributions with scaled identity covariance, the SPE, the Shannon surprise, and the
squared error surprise are indistinguishable (Figure 2.4).

2.5.2 Unsigned reward prediction error

A particular form of observation-mismatch surprise in the context of reward-driven
decision making is the Unsigned Reward Prediction Error (uRPE, i.e., the absolute value
of Reward Prediction Error) (Hayden et al., 2011; Pearce and Hall, 1980; Roesch et al.,
2012; Rouhani and Niv, 2021; Talmi et al., 2013). In this section, we first discuss the
definition of the uRPE as it often appears in experimental studies and then analyze a
generalized definition of the uRPE in general sequential decision-making tasks.

Many of the experimental paradigms (e.g., Hayden et al. (2011); Roesch et al. (2012);
Talmi et al. (2013)) for the study of uRPE can be modeled by a non-volatile (i.e., pc = 0)
contextual bandit task where, given a context st (e.g., conditioned stimulus), the agent
takes an action at and receives a real-valued reward rt+1. The uRPE corresponding to
the tuple (st, at, rt+1) is (Sutton and Barto, 2018)

uRPE(st, at → rt+1) := |rt+1 −Q(t)(st, at)|, (2.23)

where Q(t)(st, at) is the latest estimate of the expectation of Rt+1 given st and at. The
generative model of Definition 1 is reduced to a model of contextual bandit tasks if
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Chapter 2. A taxonomy of surprise definitions

we put Xt+1 := (St, At) and Yt+1 := Rt+1. Then, the unsigned reward prediction error
uRPE(st, at → rt+1) is syntactically equal to SAb (cf. Equation 2.20; note that E1 = E2
since pc = 0) and indistinguishable from SSq (Proposition 6):

Remark 1. (Relation between the common definition of uRPE and the other two
observation-mismatch surprise measures) The uRPE signal that was previously investi-
gated in many experimental studies (Equation 2.23) (Hayden et al., 2011; Pearce and
Hall, 1980; Roesch et al., 2012; Talmi et al., 2013) is a special case of the absolute and
the squared error surprise (Equation 2.20).

However, one can go beyond contextual bandit tasks and define uRPE for a general
Markov Decision Process (MDP) (Sutton and Barto, 2018). To reduce our generative
model of Definition 1 to a (potentially volatile, i.e., pc ≥ 0) MDP, we put the cue variable
Xt+1 equal to the state-action pair (St, At) and the observation Yt+1 equal to the pair of
the next state St+1 and the next extended reward R̃t+1 that we define as

R̃t+1 := Rt+1 + λV (St+1), (2.24)

where λ ∈ [0, 1) is the discount factor in infinite-horizon reinforcement learning (Sutton
and Barto, 2018), and V (St+1) is the perceived value of state St+1. Here, we do not
discuss the exact definition of V and how it is computed; we only assume that each
state s has a value V (s) that is informative about the expected amount of total reward
that one can collect starting from state s – see Sutton and Barto (2018) for details.
Analogously to our two definitions for the absolute and the squared error surprise (cf.
Equation 2.20), we give two definitions of uRPE:

SuRPEi(yt+1|xt+1;b(t)) := |rt+1 + λV (st+1)−Q
(t)
i (st, at)|, (2.25)

where i ∈ {1, 2} and Q
(t)
i (st, at) := Ei[R̃t+1] (cf. Equation 2.18, Equation 2.19, and

Equation 2.24). Equation 2.25 implies that the uRPE surprise is like the absolute error
surprise if an agent focuses exclusively on the extended reward r̃t+1 and ignores the state
st+1. We make this intuition formal in Proposition 7.

Proposition 7. (Relation between the uRPE, the absolute error, and squared error
surprise measures) For the generative model of Definition 1, for i ∈ {1, 2}, the unsigned
reward prediction error SuRPEi(yt+1|xt+1; b(t)) can be written as

SuRPEi(yt+1|xt+1; b(t)) = SAbi(yt+1|xt+1; b(t))− SAbi(st+1|xt+1; b(t)) (2.26)

and (
SuRPEi(yt+1|xt+1; b(t))

)2
= SSqi(yt+1|xt+1; b(t))− SSqi(st+1|xt+1; b(t)). (2.27)

where SAbi(st+1|xt+1; b(t)) := ||st+1 − Ei[St+1]||1 and SSqi(st+1|xt+1; b(t)) := ||st+1 −
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2.6 Belief-mismatch surprise measures

Ei[St+1]||22 (Equation 2.20).

Therefore, if observation yt+1 does not include state st+1 (e.g., in contextual bandit tasks,
similar to Hayden et al. (2011); Roesch et al. (2012); Talmi et al. (2013)) or if all possible
values of state st+1 are equally surprising (i.e., have constant SSqi or SAbi, similar to the
experiment of Rouhani and Niv (2021)), then SuRPEi is indistinguishable from SAbi and
SSqi (Figure 2.4).

2.6 Belief-mismatch surprise measures

2.6.1 Bayesian surprise

Another way to think about surprise is to define surprising events as those that change
an agent’s belief about the world. Bayesian surprise (Baldi, 2002; Baldi and Itti, 2010;
Schmidhuber, 2010) is a way to formalize this concept of surprise. Whereas the Bayes
Factor surprise measures how likely it is that the environment has changed given the
new observation, the Bayesian surprise measures how much the agent’s belief changes
given the new observation.

Bayesian surprise (Baldi, 2002) has been originally introduced in non-volatile environ-
ments, i.e., where there is no change (pc = 0) and as a result Θ1 = Θ2 = ... = Θt = Θ.
In this case, the Bayesian surprise of observing yt+1 with cue xt+1 is defined as
DKL[P(t)

Θ ||P
(t+1)
Θ ] (Baldi, 2002; Baldi and Itti, 2010; Schmidhuber, 2010), where DKL

stands for the Kullback-Leibler (KL) divergence (Cover, 1999), and P(t)
Θ is an alternative

notation for the distribution of Θ conditioned on x1:t and y1:t (cf. Table 2.1). Hence, in
non-volatile environments, Bayesian surprise measures the pseudo-distance DKL between
two distributions, i.e., the belief b(t) = P(t)

Θ before and the belief b(t+1) = P(t+1)
Θ after

observing yt+1. To generalize this definition to volatile environments, we have to choose
two equivalent distributions that we want to compare. The natural choice for P(t+1)

Θ is
P(t+1)

Θt+1
= b(t+1); however, it is unclear whether P(t)

Θ should be taken as the momentary
belief P(t)

Θt
= b(t) or its one-step forward-propagation P(t)

Θt+1
before the next observation

yt+1 is integrated. If pc ̸= 0, the two choices are different:

b(t) = P(t)
Θt
̸= P(t)

Θt+1
= pcb

(0) + (1− pc)b(t). (2.28)

Therefore, for the case of volatile environments, we give two definitions for the Bayesian
surprise:

SBa1(yt+1|xt+1; b(t)) := DKL
[
pcb

(0) + (1− pc)b(t)||b(t+1)
]
, (2.29)

and
SBa2(yt+1|xt+1; b(t)) := DKL

[
b(t)||b(t+1)

]
. (2.30)

The first definition is more consistent with the original definition of the Bayesian surprise

41



Chapter 2. A taxonomy of surprise definitions

(Baldi, 2002; Baldi and Itti, 2010; Schmidhuber, 2010) applied to our generative model be-
cause the belief before the observation should include the knowledge that the environment
is volatile. However, the second definition looks more intuitive from the neuroscience
perspective (Gijsen et al., 2021; Mousavi et al., 2022). Note that, in Equation 2.29 and
Equation 2.30, the observation yt+1 does not appear explicitly on the right hand side;
the observation has, however, influenced the update of the belief to its new distribution
b(t+1). For the case of pc = 0, the two definitions are identical (Figure 2.4B).

In Proposition 8 and Remark 2, we show that the Bayesian surprise is correlated with
the difference between the Shannon surprise and its expectation (over all possible values
of Θt+1).

Proposition 8. (Relation between the Bayesian surprise and the Shannon surprise) In
the generative model of Definition 1, the Bayesian surprise can be written as

SBa1(yt+1|xt+1; b(t)) =pcEb(0)

[
SSh2(yt+1|xt+1; δ{Θ})

]
+

(1− pc)Eb(t)

[
SSh2(yt+1|xt+1; δ{Θ})

]
−

SSh1(yt+1|xt+1; b(t)),

(2.31)

and
SBa2(yt+1|xt+1; b(t)) =Eb(t)

[
SSh2(yt+1|xt+1; δ{Θ})

]
−

SSh1(yt+1|xt+1; b(t))+

DKL
[
b(t)||pcb

(0) + (1− pc)b(t)
]
,

(2.32)

where δ{θ} is the Dirac measure at θ (cf. Table 2.1).

Remark 2. As a direct consequence of Proposition 8, when the change point probability
is zero, i.e. pc = 0, the Bayesian surprise is equal to the expected Shannon surprise
minus the Shannon surprise, i.e.,

SBa(yt+1|xt+1; b(t)) =Eb(t)

[
SSh(yt+1|xt+1; δ{Θ})

]
− SSh(yt+1|xt+1; b(t)), (2.33)

where SBa = SBa1 = SBa2 and SSh = SSh1 = SSh2.

There are two consequences of this observation. First, Bayesian surprise is distinguishable
from Shannon surprise since it cannot be found only as a function of Shannon surprise.
Second, we need access to the full belief distribution b(t) for computing the expectation
(Figure 2.3).

In general, surprise measures similar to the Bayesian surprise can be defined also by
measuring the change in the belief via distance or pseudo-distance measures different
from the KL-divergence (Baldi, 2002).
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2.6.2 Postdictive surprise

We saw that the Bayesian surprise measures how much the new belief b(t+1) has changed
after observing yt+1. Kolossa et al. (2015) introduced ‘postdictive surprise’ with a similar
idea in mind but focused on changes in the marginal distribution P (y|xt+1; b(t+1)) (cf.
Equation 2.4). More precisely, whereas the Bayesian surprise measures the amount of
update in the space of distributions over the parameters (i.e., how differently the agent
thinks about the parameters), the postdictive surprise measures the amount of update in
the space of distributions over the observations (i.e., how differently the agent predicts
the next observations).

Analogous to our two definitions for the Bayesian surprise (Equation 2.29 and Equa-
tion 2.30), there are two definitions for the postdictive surprise in volatile environments:

SPo1(yt+1|xt+1; b(t)) :=

DKL
[
pcP

(
.|xt+1; b(0)) + (1− pc)P

(
.|xt+1; b(t))||P (

.|xt+1; b(t+1))]
,

(2.34)

and
SPo2(yt+1|xt+1; b(t)) := DKL

[
P

(
.|xt+1; b(t))||P (

.|xt+1; b(t+1))]
, (2.35)

where the dot refers to a dummy variable y that is integrated out when evaluating DKL
(cf. Table 2.1). Note that for pc = 0, the two definitions are identical (Figure 2.4B).

Although the amount of update is computed over the space of observations, SPo1 and
SPo2 cannot be categorized as probabilistic mismatch surprise measures, since the update
depends explicitly on the belief b(t). The statement is further explained in our Lemma 1
in Appendix A.

2.6.3 Confidence Corrected surprise

Since surprise arises when an expectation is violated, the violation of an agent’s expecta-
tion should be more surprising when the agent is more confident about its expectation.
Based on the observation that neither Shannon nor Bayesian surprise explicitly cap-
tures the concept of confidence, Faraji et al. (2018) proposed the ‘Confidence Corrected
Surprise’ as a new measure of surprise that explicitly takes confidence into account.

To define the Confidence Corrected surprise, we first define bflat as the flat (uniform)
distribution over the space of parameters, i.e., over the set to which Θt belongs. Then,
following Faraji et al. (2018), we define the normalized likelihood after observing yt+1
(i.e., the posterior given the flat prior) as

bflat(θ|yt+1, xt+1) :=
PY |X(yt+1|xt+1; θ)bflat(θ)

P (yt+1|xt+1; bflat)
=

PY |X(yt+1|xt+1; θ)∫
PY |X(yt+1|xt+1; θ)dθ

. (2.36)
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If the prior b(0) is equal to bflat (i.e., if the prior is uniform), then bflat(θ|yt+1, xt+1) is the
same as b

(t+1)
reset (θ) defined in Proposition 1. Note that the prior bflat does not necessarily

need to be a proper distribution (i.e., does not necessarily need to be normalized) as
long as

∫
PY |X(yt+1|xt+1; θ)dθ is finite and the posterior bflat(.|yt+1, xt+1) is a proper

distribution (Efron and Hastie, 2016). Using this terminology, the original definition for
the Confidence Corrected surprise is (Faraji et al., 2018)

SCC1(yt+1|xt+1; b(t)) := DKL
[
b(t)||bflat(.|yt+1, xt+1)

]
. (2.37)

To interpret SCC1, Faraji et al. (2018) defined the commitment (or confidence) C[b]
corresponding to an arbitrary belief b as its negative entropy (Cover, 1999), i.e.,

C[b] := Eb

[
log b(Θ)

]
. (2.38)

Then, in a non-volatile environment (i.e., pc = 0), they show that SCC1 can be written as
(Faraji et al., 2018)

SCC1(yt+1|xt+1; b(t)) =SSh(yt+1|xt+1; b(t))+
SBa(yt+1|xt+1; b(t))+
C

[
b(t)]−A(yt+1, xt+1),

(2.39)

where A(yt+1, xt+1) := SSh(yt+1|xt+1; bflat) + C[bflat] is independent of the current belief
b(t). Note that because pc = 0, we have SSh1 = SSh2 and SBa1 = SBa2. Therefore,
in a non-volatile environment (i.e., pc = 0), SCC1 is correlated with the sum of the
Shannon and the Bayesian surprise regularized by the confidence of the agent’s belief.
However, such an interpretation is no longer possible in volatile environments (pc > 0),
and Equation 2.39 must be replaced by Proposition 9 below.

In order to account for the information of the true prior b(0) and to avoid cases where
bflat(.|yt+1, xt+1) is not a proper distribution, we also give a 2nd definition for the
Confidence Corrected surprise as

SCC2(yt+1|xt+1; b(t)) := DKL
[
b(t)||b(t+1)

reset

]
, (2.40)

where b
(t+1)
reset (θ) is defined in Proposition 1. Whenever b(0) = bflat, the two definitions

are identical (Figure 2.2B). Proposition 9 shows how the Confidence Corrected surprise
relates to the Shannon surprise, the Bayesian surprise, and the confidence in the general
case.

Proposition 9. (Relation between the Confidence Corrected surprise, Shannon surprise,
and Bayesian surprise) For the generative model of Definition 1, the original definition
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of the Confidence Corrected surprise can be written as

SCC1(yt+1|xt+1; b(t)) = SSh1(yt+1|xt+1; b(t))− SSh2(yt+1|xt+1; bflat)
+ SBa2(yt+1|xt+1; b(t))

−DKL
[
b(t)||pcb

(0) + (1− pc)b(t)
]

+ C
[
b(t)]− C

[
bflat

]
,

(2.41)

and our 2nd definition can be written as

SCC2(yt+1|xt+1; b(t)) = ∆SSh1(yt+1|xt+1; b(t))
+ SBa2(yt+1|xt+1; b(t))

−DKL
[
b(t)||pcb

(0) + (1− pc)b(t)
]

+ DKL
[
b(t)||b(0)

]
.

(2.42)

Proposition 9 conveys three important messages. First, both definitions of the Confidence
Corrected surprise depend on differences in the Shannon surprise as opposed to the
Shannon surprise itself (cf. first line in Equation 2.41 and Equation 2.42). Second, both
definitions depend on the difference between the Bayesian surprise (i.e., the change in
the belief given the new observation) and the a priori expected change in the belief
(because of the possibility of a change in the environment; cf. second and third lines in
Equation 2.41 and Equation 2.42). Third, both definitions regularize the contributions
of Shannon surprise and Bayesian surprise by the relative confidence of the current belief
compared to either the flat or the prior belief (cf. the last line in Equation 2.41 and
Equation 2.42). ‘Relative confidence’ quantifies how different the current belief is with
respect to a reference belief; note that C

[
b(t)]− C

[
bflat

]
= DKL

[
b(t)||bflat

]
.

Hence, the Confidence Corrected surprise should be distinguishable from both the Shannon
and the Bayesian surprise (for pc < 1). An interesting consequence of Proposition 9,
however, is that SCC2 is identical to SBa2 when the environment becomes so volatile that
its parameter changes at each time step (i.e., in the limit of pc → 1):

Corollary 3. For the generative model of Definition 1, when pc → 1, we have SCC2(yt+1|
xt+1; b(t)) = SBa2(yt+1|xt+1; b(t)).

2.6.4 Minimized free energy

Although an agent can perform computations over the joint probability distribution in
Equation 2.1 and Equation 2.2, finding the belief b(t+1)(θ) (i.e., the posterior distribution
in Equation 2.3) can be computationally intractable (Barber, 2012; Liakoni et al., 2021).
Therefore, it has been argued that the brain uses approximate inference (instead of
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exact Bayesian inference) for finding the belief (Daw and Courville, 2008; Faraji et al.,
2018; Findling et al., 2021; Fiser et al., 2010; Friston, 2010; Friston et al., 2017; Liakoni
et al., 2021; Mathys et al., 2011). An approximation of the belief b(t+1)(θ) can for
example be found via variational inference (Blei et al., 2017; MacKay, 2003) over a
family of distributions q(θ; ϕ) parameterized by ϕ. Such approaches are popular in
neuroscience studies of learning and inference in the brain (Friston, 2010; Friston et al.,
2017; Gershman, 2019b).

Formally, in variational inference, the belief b(t+1)(θ) is approximated by b̂(t+1)(θ) := q(θ;
ϕ(t+1)), where ϕ(t+1) is the minimizer of the variational loss or free energy, i.e., ϕ(t+1) :=
arg minϕ F (t+1)(ϕ) (MacKay, 2003). To define F (t+1)(ϕ), we introduce a new notation:

PΘt+1

(
θ, yt+1|xt+1; b

)
:=PY |X(yt+1|xt+1; θ)

(
pcb

(0)(θ) + (1− pc)b(θ)
)
, (2.43)

where b is an arbitrary distribution over the parameter space. Using this notation, we can
write the joint distribution over the observation and the parameter P(t)(θt+1, yt+1|xt+1

)
as PΘt+1

(
θt+1, yt+1|xt+1; b(t)) and the updated belief b(t+1)(θ) as PΘt+1

(
θ|yt+1, xt+1; b(t)).

The variational loss or free energy can then be defined as (Liakoni et al., 2021; Markovic
et al., 2021; Sajid et al., 2021)

F (t+1)(ϕ) := Eq(.;ϕ)
[

log q(Θ; ϕ)− logPΘt+1

(
Θ, yt+1|xt+1; b̂(t))]

. (2.44)

For any value of ϕ, one can show that (Blei et al., 2017; Sajid et al., 2021)

F (t+1)(ϕ) = SSh1(yt+1|xt+1; b̂(t)) + DKL
[
q(.; ϕ)||PΘt+1

(
.|yt+1, xt+1; b̂(t))]

≥SSh1(yt+1|xt+1; b̂(t)),
(2.45)

where the right side of the inequality is independent of ϕ, and PΘt+1

(
.|yt+1, xt+1; b̂(t)) is

the exact Bayesian update of the belief (according to the generative model in Definition
1) given the latest approximation of the belief b̂(t) (Liakoni et al., 2021; Markovic et al.,
2021).

The minimized free energy F ∗ := minϕ F (t+1)(ϕ) has been interpreted as a measure
of surprise (Friston, 2010; Friston et al., 2017; Schwartenbeck et al., 2013), which,
according to Equation 2.45, can be seen as an approximation of SSh1(yt+1|xt+1; b̂(t)). The
parametric family of q(.; ϕ) and its relation to the exact belief b(t+1) determine how well
F ∗ approximates SSh1(yt+1|xt+1; b̂(t)) (Figure 2.4B). More precisely, the minimized free
energy measures both how unlikely the new observation is (i.e., how large SSh1(yt+1|xt+1;
b̂(t)) is) and how imprecise the best parametric approximation of the belief b̂(t+1) is (i.e.,
how large DKL[b̂(t+1)||PΘt+1

(
.|yt+1, xt+1; b̂(t))] is). Therefore, the minimized free energy

is in the category of belief-mismatch surprise measures (Figure 2.3).
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Puzzlement surprise measures Enlightenment surprise measures

Information

gain

Prediction Change-point

detection

Confidence

correction

Abbreviations: : Bayes Factor surprise : Absolute error : Bayesian surprise

: Minimized free energy

: Shannon surprise : Squared error : Postdictive surprise

: Confidence Corrected surprise: State prediction error : Unsigned reward prediction error

Observation-mismatch surprise Belief-mismatch surpriseProbabilistic mismatch surprise

Figure 2.5: Taxonomy of surprise definitions. Measures of puzzlement surprise (Faraji
et al., 2018) can be further classified into 3 sub-categories of surprise measures highlighting (i)
prediction, (ii) change-point detection, and (iii) confidence correction. According to surprise
measures focused on prediction, the agent’s puzzle is finding the most accurate prediction of the
next observation. According to surprise measures focused on change-point detection, the agent’s
puzzle is to detect environmental changes. Surprise measures focused on confidence correction
do not determine a specific puzzle (change-point detection or accurate prediction, visualized by
overlapping boxes) for the agent but stress that confidence should explicitly influence puzzlement.
The enlightenment surprise measures can be seen as measures of information gain. In addition to
the 18 definitions of surprise discussed in section 2.3, we included in the figure the difference in
Shannon surprise (∆Sh1 and ∆Sh2) introduced in Proposition 2. Color code shows the technical
classification presented in Figure 2.3.

2.7 Taxonomy of surprise definitions

In a unified framework, we discussed 10 previously proposed measures of surprise: (1) the
Bayes Factor surprise; (2) the Shannon surprise; (3) the State Prediction Error; (4) the
Absolute and (5) the Squared error surprise; (6) the unsigned Reward Prediction Error;
(7) the Bayesian surprise; (8) the Postdictive surprise; (9) the Confidence Corrected
surprise; and (10) the Minimized Free Energy. We considered different ways to define
some of these measures in volatile environments and, overall, analyzed 18 different
definitions of surprise. In this section, we propose a taxonomy of these 18 definitions
and classify them into four main categories regarding the semantic of what they quantify
(Figure 2.5).

Measures of surprise in neuroscience have been previously divided into two categories
(Faraji et al., 2018; Gijsen et al., 2021; Hurley et al., 2011): ‘puzzlement’ and ‘enlight-
enment’ surprise. Puzzlement surprise measures how puzzling a new observation is for
an agent, whereas enlightenment surprise measures how much the new observation has
enlightened the agent and changed its belief – a concept closely linked but not identical to
the ‘Aha! moment’ (Dubey et al., 2021; Kounios and Beeman, 2009). The Bayesian and
the Postdictive surprise can be categorized as enlightenment surprise since both quantify
information gain (Figure 2.5). Based on our theoretical analyses, however, we suggest to
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further divide measures of puzzlement surprise into 3 sub-categories (Figure 2.5):

i. ‘Prediction surprise’ quantifies how unpredicted, unexpected, or unlikely the new
observation is. This category includes the Shannon surprise, State Prediction Error, the
Minimized Free Energy, and all observation-mismatch surprise measures (Figure 2.5).
According to these measures, the agent’s puzzle is to find the most accurate predictions of
the next observations. Surprise in natural language is defined as ‘the feeling or emotion
excited by something unexpected’ (Oxford-English-Dictionary, 2021b). If we focus on
the term ‘unexpected’, identify it with ‘unlikely under the current belief’, and neglect
the terms ‘feeling’ and ‘emotion’, then the quality measured by prediction surprise is
closely related to the definition of surprise in natural language.

ii. ‘Change-point detection surprise’ quantifies relative unlikeliness of the new
observation and are designed to modulate the learning rate and to identify environmental
changes. This category includes the Bayes Factor surprise and the difference in Shannon
surprise (cf. Corollary 1; Figure 2.5). According to these measures, the agent’s puzzle is
to detect environmental changes8.

iii. ‘Confidence correction surprise’ explicitly accounts for the agent’s confidence.
The idea is that higher confidence (or higher commitment to a belief) leads to more
puzzlement, where the puzzle is either to detect environmental changes or to find the
most accurate prediction. Faraji et al. (2018) argue, using a thought experiment, that
such an explicit account for confidence is crucial to explain our perception of surprise.
The only current candidates of this category are SCC1 and SCC2 that assume that the
agent’s puzzle is to detect environmental changes (cf. Proposition 9); but we anticipate
that more examples in this category might be found in the future9.

While our proposed taxonomy is solely conceptual and based on the theoretical properties
of different definitions, we note that there have been a significant number of studies
investigating the neural and physiological correlates of prediction (Gijsen et al., 2021;
Gläscher et al., 2010; Kolossa et al., 2015; Konovalov and Krajbich, 2018; Kopp and
Lange, 2013; Loued-Khenissi and Preuschoff, 2020; Maheu et al., 2019; Mars et al., 2008;
Meyniel, 2020; Modirshanechi et al., 2019; Mousavi et al., 2022), change-point detection
(Liakoni et al., 2022; Nassar et al., 2012; Xu et al., 2021), confidence correction (Gijsen
et al., 2021), and information gain (Gijsen et al., 2021; Kolossa et al., 2015; Nour et al.,

8Thesis footnote: Accordingly, the change-point detection surprise definitions present a quantitative
explanation for the locus coeruleus activity, which has been interpreted as a global model failure signal
that modulates learning throughout the cortex (Jordan, 2023).

9Thesis footnote: After the publication of these results, we encountered further instances of
confidence-corrected surprise in the psychology literature (Macedo and Cardoso, 2019; Macedo et al.,
2004; Reisenzein et al., 2019; Teigen and Keren, 2003). In these studies, confidence is (implicitly)
delineated as maxy P (y|xt+1; b(t)), implying that an agent is confident if it assigns a high probability to
a specific observation. It should be noted that maxy P (y|xt+1; b(t)) bounds the definition of confidence
as the negative entropy of P (.|xt+1; b(t)); this latter definition is similar to the confidence definition in
Equation 2.38 but in the observation space.
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2018; Ostwald et al., 2012; O’Reilly et al., 2013; Visalli et al., 2021) surprise measures
(Figure 2.1). We, therefore, speculate that at least one measure from each of these
categories is computed in the brain but potentially through different neural pathways
and to be used for different brain functions10.

2.8 Discussion

What does it formally mean to be surprised? And how do existing definitions of surprise
relate to each other? To address these questions, we reviewed 18 definitions of surprise
in a unifying mathematical framework and studied their similarities and differences. We
showed that several extensions of known surprise measures to volatile environments
are possible and potentially relevant; hence, further experimental evidence is needed to
elucidate the relevance of precise definitions of surprise for brain research. Based on
how different definitions depend on the belief b(t), we divided them into three groups of
probabilistic mismatch, observation-mismatch, and belief-mismatch surprise measures
(Figure 2.3). We then showed how these measures relate to each other theoretically and,
more importantly, under which conditions they are strictly increasing functions of each
other (i.e., they become experimentally indistinguishable – Figure 2.4 and Table 2.2).
We further proposed a taxonomy of surprise definitions by a conceptual classification
into four main categories (Figure 2.5): (i) prediction surprise, (ii) change-point detection
surprise, (iii) confidence-corrected surprise, and (iv) information gain surprise.

It is believed that surprise has important computational roles in different brain functions
such as adaptive learning (Gerstner et al., 2018; Iigaya, 2016), exploration (Dubey and
Griffiths, 2020; Gottlieb and Oudeyer, 2018), memory formation (Rouhani and Niv,
2021), and memory segmentation (Antony et al., 2021). Our results propose a diverse
toolkit and a refined terminology to theoreticians and computational scientist to model
and discuss the different functions of surprise and their biological implementation. For
instance, it has been argued that the computation of observation-mismatch surprise
measures is biologically more plausible than more abstract measures such as Shannon
surprise (Iigaya, 2016). Our results identify conditions under which observation-mismatch
surprise measures behave identically to probabilistic mismatch surprise measures that
are optimal for adaptive learning (cf. Figure 2.4B, Proposition 1, and Corollary 1); such
insights can be exploited in future network models of adaptive behavior.

Moreover, our results can be used to design novel theory-driven experiments where
different measures of surprise make different predictions. Importantly, most of the
previous experimental studies have focused on one measure of surprise and its role and
signatures in behavioral and physiological measurements. The examples that considered
more than one surprise measure (Gijsen et al., 2021; Kolossa et al., 2015; Mars et al.,
2008; Mousavi et al., 2022; Ostwald et al., 2012) have mainly focused on model-selection

10Thesis footnote: See chapter 4 for further discussions and links to physiological measurements.
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methods to compare different models and did not look for fundamentally different
predictions of these measures – see Visalli et al. (2021) for an exception. Even if two
surprise measures are formally distinguishable, it may be that, in a given experimental
set-up, the number of samples or effect size are not big enough to extract the quantitative
differences between the two. For example, SBF and SSh1 are distinguishable for any prior
marginal distributions other than uniform distribution (Figure 2.4B), but, in practice,
the distinction is hard to detect for nearly-uniform priors. Our theoretical framework
enables us to go further and design experiments that enable to dissociate different surprise
measures based on their qualitatively different predictions and to avoid experiments where
different measures are either formally or practically indistinguishable.
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3 Novelty is not Surprise: Human ex-
ploratory and adaptive behavior in
sequential decision-making
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Abstract: Classic reinforcement learning (RL) theories cannot explain human behavior
in the absence of external reward or when the environment changes. Here, we employ a
deep sequential decision-making paradigm with sparse reward and abrupt environmental
changes. To explain the behavior of human participants in these environments, we show
that RL theories need to include surprise and novelty, each with a distinct role. While
novelty drives exploration before the first encounter of a reward, surprise increases the
rate of learning of a world-model as well as of model-free action-values. Even though the
world-model is available for model-based RL, we find that human decisions are dominated
by model-free action choices. The world-model is only marginally used for planning, but
it is important to detect surprising events. Our theory predicts human action choices
with high probability and allows us to dissociate surprise, novelty, and reward in EEG
signals.
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Chapter 3. Novelty is not Surprise: Human exploratory and adaptive
behavior in sequential decision-making

3.1 Introduction

Humans seek not only explicit rewards such as money or praise (Daw et al., 2011, 2005;
Gläscher et al., 2010; Lehmann et al., 2019; O’Doherty et al., 2003; Pessiglione et al.,
2006; Schultz et al., 1997; Wunderlich et al., 2012) but also novelty (Gershman and
Niv, 2015; Jaegle et al., 2019), an intrinsic reward-like signal which is linked to curiosity
(Dubey and Griffiths, 2019; Gershman and Niv, 2015; Gottlieb et al., 2013; Jaegle et al.,
2019; Niv and Langdon, 2016; Schmidhuber, 2010; Singh et al., 2010a). In the theory of
reinforcement learning, novelty is considered as a drive for exploration (Bellemare et al.,
2016; Chentanez et al., 2005; Martin et al., 2017; Schmidhuber, 2010), and novelty-driven
exploratory actions have been interpreted as steps towards building a model of the world
(‘world-model’) which is then used for action planning (Sutton and Barto, 2018). A
world-model represents implicit knowledge that links actions to observations, such as ‘if
I open the door to my kitchen, I will see my fridge’.

However, since the world is much more complex than any model of it, there will occa-
sionally be a mismatch between the expectations arising from the model and the actual
observation, e.g., when you return from work and the location of the fridge is suddenly
empty because your room-mate has sent it off for repair. Such mismatches generate the
feeling of surprise, known to manifest in pupil dilation (Nassar et al., 2012) and EEG
signals (Maheu et al., 2019; Modirshanechi et al., 2019; Ostwald et al., 2012). Whereas
the reward prediction error (RPE) is a mismatch between the expected reward and the
actual reward, surprise is a mismatch between an expected observation and an actual
observation. Behavioral experiments (Behrens et al., 2007; Heilbron and Meyniel, 2019;
Nassar et al., 2012, 2010; Soltani and Izquierdo, 2019) and theories (Faraji et al., 2018;
Findling et al., 2021; Liakoni et al., 2021; Soltani and Izquierdo, 2019) suggest that
surprise helps humans to adapt their behavior quickly to changes in the environment,
potentially by modulating synaptic plasticity (Gerstner et al., 2018; Yagishita et al., 2014;
Yu and Dayan, 2005).

Surprise is fundamentally different from novelty; if you already know that your fridge
would be fetched for repairing, the new arrangement of the kitchen without the fridge
is novel but not surprising. However, although there is some agreement that novelty
and surprise are two separate notions, it has been debated how they can be formally
distinguished (Barto et al., 2013; Dubey and Griffiths, 2020; Hurley et al., 2011; Palm,
2012), whether they manifest themselves differently in EEG signals (Gijsen et al., 2021;
Maheu et al., 2019; Mars et al., 2008; Modirshanechi et al., 2019), and how they influence
learning and decision-making (Behrens et al., 2007; Dubey and Griffiths, 2019, 2020;
Gershman and Niv, 2015; Gottlieb et al., 2013; Heilbron and Meyniel, 2019; Jaegle et al.,
2019; Juechems and Summerfield, 2019; Moens and Zénon, 2019; Nassar et al., 2012,
2010; Schmidhuber, 2010).

In this study, we address three questions: First, how do surprise and novelty influence
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human reinforcement learning? Second, what is their relative contribution to exploratory
and adaptive behavior? And third, can surprise be distinguished from novelty in human
behavioral choices and event related potentials (ERP) of the electroencephalogram
(EEG)? We show, via a specifically designed deep sequential decision task and a novel
hybrid reinforcement learning model, that we can dissociate contributions of surprise
from those of novelty and reward in human behavior and ERP.

Our key findings can be summarized in three points: (i) We find that novelty-seeking
explains participants’ exploratory behavior better than alternative exploration strategies
such as seeking surprise or uncertainty (Achiam and Sastry, 2017; Burda et al., 2019);
(ii) we observe that participants use their world-model only rarely for action planning
and mainly to extract moments of surprise; and importantly, (iii) we show that surprise
calculated by the world-model does not only modulate the learning of the world-model
(Behrens et al., 2007; Heilbron and Meyniel, 2019; Liakoni et al., 2021; Nassar et al.,
2010) but also the learning of model-free action-values. In particular, we show that such
a modulation is necessary to explain participants’ adaptive behavior.

3.2 Results

3.2.1 Experimental paradigm and human behavior

In order to distinguish between novelty, surprise, and reward, and to study their effects
on exploratory and adaptive behavior, we designed an environment (cf. Tartaglia et al.
(2017)) consisting of 10 states with 4 possible actions per state plus one goal state
(Figures 3.1A and 3.1B). In the human experiments, states were represented as images on
a computer screen and actions as four grey disks below the image. Before the experiment,
12 participants were shown all images of the states and were informed that their task
was to find the shortest path to the goal image. Throughout the experiment, at each
state, participants chose an action (by clicking on one of the grey disks) which brought
them to the next image, where they then chose the next action, and so on (Figure 3.1A).
Such an episode ended when the goal image was found.

Unknown to the participants, the non-goal states could be classified into the progressing
states (1 to 7 in Figure 3.1B) and the trap states (8 to 10 in Figure 3.1B). At each
progressing state, one action (‘good’ action) either brought participants to another
progressing state closer to the goal or led them directly to the goal, two actions (‘bad’
actions) brought them to one of the trap states, and one action (‘neutral’ action) made
them stay at the current state. At each trap state, three actions brought participants to
either the same or another trap state, and one action brought them to state 1, at the
beginning of the path of progressing states. The assignment of action buttons to specific
transitions was random and not the same for different states, e.g., in state 1, the neutral
action is action 2, whereas in state 3, the neutral action is action 3 (Figure 3.1B). Note
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Figure 3.1: Experimental paradigm. A. After image onset, participants had to wait for
700-1700ms (randomly chosen) until four grey disks were presented at the bottom of the image.
After clicking on one disk, a blank screen was presented for another random interval of 700
to 1700ms. The next image appeared afterwards. Different participants saw different images,
but the underlying structure was identical for all participants. The goal image is a ‘thumb-up’
image in this example. The blue lines indicate the window of EEG analysis. B. Structure of
the environment during block 1. There were 10 states with 4 actions each plus a goal state (G).
States 1-7 are progressing states and states 8-10 are trap states. For each progressing state, one
action led participants to the next progressing state, two actions led participants to one of the
trap states, and one action made participants stay at the current state. The action which made
participants stay at the current state is shown for states 1, 3, and 7, as an example. For each
trap state, three actions led participants to one of the trap states, and one action led participants
to state 1. Not all action arrows are drawn for the trap states to simplify illustration. C. Average
number of actions of participants during block 1 (blue) and block 2 (red): The 1st episode of block
2 was significantly shorter than the 1st episode of block 1 (one-sample t-test, p-value=0.035).
Error bars show the standard error of the mean, and each grey point shows the data of one
participant. D. Environment used in block 2: The images presenting state 3 and state 7 (in red)
were swapped. Other transitions remained unchanged.

that the underlying structure of the environment, the assignment of images to specific
states, and the assignment of action buttons to specific transitions were unknown to
the participants. We also did not tell the participants whether or not transitions were
deterministic (i.e., whether the same action from a certain state always led to the same
next state).

The experiment was organized in 10 episodes, i.e., it ended after the 10th time that
participants found the goal state. Unknown to the participants, we divided these 10
episodes into 2 blocks of 5 episodes each; we refer to the first 5 episodes as block 1 and
to the second 5 episodes as block 2. During the 1st episode of block 1, participants
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took between 34 and 214 actions (mean 118 and std 54) until they arrived at the goal
(Figure 3.1C). They then continued for another 4 episodes, each time starting in a new
initial state. The initial state for each episode was chosen randomly, but it was kept
fixed across participants. After the 1st episode, participants had learnt to reach the goal
in less than 20 steps (episodes 2 to 5 in Figure 3.1C). After the end of the 5th episode
(the end of block 1), two states (state 3 and 7 in Figure 3.1D) were swapped, without
announcing it to the participants. Participants continued for another 5 episodes with the
novel layout of the environment (2nd block, Figure 3.1D).

In the 1st episode of block 1, participants explored the environment to find the goal,
but they received no intermediate reward or other sign of progress while doing this.
If participants followed a purely random exploration (i.e., choosing each action with
1/4 probability), it would take them on average about 104 actions to find the goal,
starting at any non-goal state (see section B.4). This high number is an indication of the
complexity and depth of our environment. Our results suggest that participants followed
a non-random strategy for finding the goal (Figure 3.1C). With increasing experience, the
latency of escape from the trap states was reduced (Figure 3.2A) and the good actions
at progressing states were chosen with higher probability (Figure 3.2B). It is important
to note that these improvements were observed in the absence of any external feedback
indicating progress and before the 1st encounter of the goal state. Here, we ask whether
novelty of states played a role in the way participants chose their actions and searched
for the goal.

In the 1st episode of block 2, when states 3 and 7 had been swapped, participants spent
a great amount of time (68± 16 actions on average) re-exploring the environment and
searching for the goal state, but they were significantly faster in finding the goal than in
the 1st episode of block 1 (Figure 3.1C). After the swap, participants continued escaping
from the trap states (Figure 3.2A) and choosing the good actions at the unchanged
progressing states (states 1, 2, and 4 in Figure 3.2C). Moreover, they rapidly adapted their
behavior and found the new good actions at the swapped states (state 7 in Figure 3.2C).
Our results indicate that participants adapted their behavior to the new situation while
exploiting the knowledge they had acquired before. This observation suggests that
surprise triggered by unexpected transitions helped participants to rapidly adapt their
behavior. Here, we ask how surprise affects participants’ adaptive behavior.

3.2.2 Defining Novelty and Surprise

In Oxford-English-Dictionary (2021a), novelty is defined as ‘the quality or state of being
new, original, or unusual’. Here, our focus is on the quality of being ‘unusual’, and by
saying that a state is novel, we mean that it has not been encountered often, i.e., it
is not ‘usual’ to encounter this state. We, therefore, assume that (i) the novelty of a
state s at time t is a decreasing function of the number C

(t)
s of encounters of state s
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Figure 3.2: Behavioral results for episode 1 of blocks 1 and 2. A. Escape from the
trap states: Median number of actions of participants between falling into a trap state and
reaching state 2 in episode 1 of block 1 (left) and block 2 (right). Error bars show the 25%
and 75% quantiles, and each grey point shows the data of one participant. The grey dashed
lines correspond to the minimum number of actions (2) that are needed to escape the trap
states. x-axis shows the number of visits of the trap states, for example, 10 means the 10th times
participants fall from a progressing state into the trap states. Because of between-participant
differences, not all participants visited the trap states for, e.g., 20 times. The size of circles
indicates number of participants over which the average is taken. In the 1st episode of block 2
(right), four participants reached the goal state without falling into the trap states; thus, only the
data for the other 8 participants is shown. A moving average of length three was applied to the
data. B. Average progress of participants each time visiting states 1, 2, 3, and 4 in episode 1 of
block 1. We assign a progress value of 1 to good actions (the ones taking participants closer to
the goal), 0.5 to neutral actions (the ones making participants stay where they are), and -0.75
to bad actions (the ones taking participants to the trap states); with this assignment, average
progress vanishes for random exploration. The size of circles shows the number of participants
over which the average is taken, and error bars show the standard error of the mean. A moving
average of length three was applied to the data. C. Average progress of participants each time
visiting states 1, 2, 7 (swapped with 3), and 4 in episode 1 of block 2. See Figure B.3A for the
average progress at the progressing states in the proximity of the goal.
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until time t, e.g., a state that has been encountered 5 times is less novel than a state
that has been encountered only once. Moreover, we assume that (ii) a state s that has
been encountered for example C

(t)
s = 5 times within a total of t = 5 trials is less novel

compared to a state s′ that has been encountered for example C
(t′)
s′ = 5 times within a

total of t′ = 500 trials. Following assumptions (i) and (ii), we define the novelty of a
state s as a decreasing function of the observation frequency

p
(t)
f (s) = C

(t)
s + 1( ∑

s′ C
(t)
s′

)
+ 11

. (3.1)

p
(t)
f (s) has two different interpretations. First, it can be seen as the empirical frequency

of observing state st until time t. In fact, because one of the counters Cs′ increases by one
at each time step, the time can be expressed as t = ∑

s′ C
(t)
s′ . In this interpretation, the

numbers 1 in the numerator and 11 (11 is the total number of states in the environment)
in the denominator correspond to the one encounter of each state before the start of
the experiment. In the second interpretation, p

(t)
f (s) can be seen as the probability of

observing state s at time t, estimated in a Bayesian framework and with the assumption
of independence between observations (see section B.1); measures similar to p

(t)
f (s),

sometimes called ‘density models’, have been used in machine learning, for example, to
quantify how frequently an image has been observed (Bellemare et al., 2016). In the
Bayesian interpretation, the numbers 1 in the numerator and 11 in the denominator
correspond to a uniform prior that makes all states equally likely at time t = 0.

We define the novelty of state s at time t as

N(t)(s) = − log p
(t)
f (s). (3.2)

Consistent with the literature (Barto et al., 2013; Shannon, 1948; Tribus, 1961), we chose
the logarithm in order to smooth out temporal fluctuations and compress differences in
the novelty of frequent versus infrequent states (Figure 3.3A). Since our novelty measure
depends on the frequencies (relative counts, p

(t)
f (s) in Equation 3.1) rather than the

raw counts (C(t)
s ), one may also interpret N(t)(s) as a measure of ‘relative novelty’ or

‘rareness’. See Discussion for the relation of our measure of novelty to other measures2.

With our definition of novelty, at the beginning of the 1st episode in block 1, all states
have identical novelty. Since participants often fall into one of the trap states, the novelty
of the trap states decreases rapidly (Figure 3.3A). Hence, before the end of the 1st
episode, the novelty is highest for states in the proximity of the goal (Figure 3.3B). This
observation suggests that seeking novel states will, in our environment, effectively lead
a participant closer to the goal, even before the participant knows where the goal is
located, i.e., before encountering the goal for the first time. We conclude that novelty is

2Thesis footnote: See chapter 4 for further discussions on how the definition in Equation 3.2 links
to physiological signatures and also other definitions of novelty.
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potentially an important signal and will exploit this insight further below.

Figure 3.3: Novelty in episode 1 of block 1. A. The number of state visits (left panel) and
novelty (right panel) as a function of time for one representative participant: The number of
visits increases rapidly for the trap states and remains 0 for a long time for the states closer to
the goal. Novelty of each state is defined as the negative log-probability of observing that state
(see Equation 3.2 and Equation 3.1) and, hence, increases for states which are not observed as
time passes. The first time participants encounter state 7 (the state before the goal state) is
denoted by t∗. B. Average (over participants) novelty (color coded) at t∗: Novelty of each state
is a decreasing function of its distance from the goal state.

Surprise is defined in the Oxford-English-Dictionary (2021b) as ‘the feeling or emotion
excited by something unexpected’ or ‘the feeling or mental state, akin to astonishment
and wonder, caused by an unexpected occurrence or circumstance’. Whereas novelty is
about being unusual, surprise is about being unexpected. Following this intuition, we
define surprise as a measure expressing how ‘unexpected’ the next image (state st+1)
is given the previous state st and the chosen action at. To quantify expectations, we
assume that participants build an internal model of the environment (‘world-model’), i.e.,
we hypothesize that participants estimate the probability p(t)(st+1|st, at) of a transition
from a given state st to another state st+1 when performing action at. More precisely, we
assume that the world-model counts transitions from state s to s′ under action a using
either a leaky (Meyniel et al., 2016; Modirshanechi et al., 2019; Yu and Cohen, 2009)
or a surprise-modulated (Faraji et al., 2018; Liakoni et al., 2021; Markovic et al., 2021)
counting procedure, described by the pseudo-count C̃

(t)
s,a→s′ . The conditional probability

is then

p(t)(st+1|st, at) = C̃
(t)
st,at→st+1 + ϵ

C̃
(t)
st,at + 11ϵ

, (3.3)

where ϵ is a parameter corresponding to a prior in the Bayesian framework, 11 is the total
number of states in the environment, and C̃

(t)
st,at = ∑

s′ C̃st,at→s′ is the pseudo-count of
taking action at at state st (see Methods and section B.1). If there is no linear or nonlinear
filtering (e.g., leaky integration) applied during the counting process, pseudo-counts are
equal to real counts.

Higher values of the conditional probability p(t)(st+1|st, at) indicate that a participant
expects to experience the transition from the pair of state and action (st, at) to the next
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state st+1 with higher probabilities and, hence perceives this transition as less surprising.
Therefore, we consider the surprise of such a transition to be a decreasing function
of p(t)(st+1|st, at). More precisely, we use a recent measure of surprise motivated by
a Bayesian framework for learning in volatile environments, called the ‘Bayes Factor’
surprise (Liakoni et al., 2021). The Bayes Factor surprise of the transition from state st

to state st+1 after taking action at is

S(t+1)
BF = const.

p(t)(st+1|st, at)
, (3.4)

where p(t)(st+1|st, at) is the conditional probability of observing state st+1 at time t + 1
derived from the present world-model. Our surprise measure is an increasing function of
the state prediction error (Gläscher et al., 2010) and Shannon surprise (Meyniel et al.,
2016; Shannon, 1948) (see Methods) and takes high values during the 1st episode of block
2 whenever participants encounter states 3 or 7 or transit from state 3 or 7 to another
state (Figures 3.4A and 3.4B). See Discussion for the relation of our measure of surprise
to other measures3.

3.2.3 The SurNoR algorithm: Distinct contributions of novelty and
surprise to behavior

We hypothesize that participants use novelty to explore the environment and surprise
to modulate the rate of learning. The hypothesis is formalized in the form of the
Surprise-Novelty-Reward (SurNoR) algorithm and tested given the behavioral data of 12
participants.

Novelty in SurNoR plays a role analogous to that of reward. For example, in standard
Temporal-Difference (TD) Learning, a reward-based Q-value QR(s, a) is associated with
each state-action pair (s, a) (Sutton and Barto, 2018); the Q-value QR(s, a) estimates
the mean discounted reward that can be collected under the current policy when starting
from state s and action a, and the reward prediction error RPE, derived from QR(s, a),
serves as a learning signal even for states a few steps away from the goal (Sutton
and Barto, 2018). Analogously, in the SurNoR model, novelty is a reward-like signal
with associated novelty-based Q-values QN(s, a) and an associated novelty prediction
error (NPE) derived from QN(s, a). In the SurNoR model, the two sets of Q-values,
reward-based and novelty-based, are used in a hybrid model (Daw et al., 2011; Gläscher
et al., 2010) that flexibly combines model-based with model-free action selection policies
(Figure 3.4C).

3Thesis footnote: Given the taxonomy of surprise definitions we presented in chapter 2, the Bayes
Factor surprise in Equation 3.4 is in the category of change-point detection surprise definitions. However,
given that our task in this section is a categorical task with a uniform prior marginal distribution, the
Bayes Factor surprise is indistinguishable from the Shannon surprise, State Prediction Error, and the
Absolute Error surprise (see Figure 2.4). See chapter 4 for further discussions on how these definitions
link to physiological signatures of surprise.
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Figure 3.4: Surprise as a modulator of the learning rate in episode 1 of block 2.
A. Surprise as a function of time since the start of block 2 for one representative participant:
Surprise values are almost zero most of the time, because the participant has already learned
the transitions in the environment during block 1. The surprising transitions are the ones to
the swapped states (blue) and the ones from the swapped states (red). B. Maximal log-surprise
values (yellow=large surprise) during the 1st episode of block 2, averaged over all participants.
The swapped states are marked in red and the states before them in blue. One action from each
swapped state is not surprising, i.e., the action leading participants to trap states both before and
after the swap. C. Block diagram of the SurNoR algorithm: Information of state st and reward rt

at time t is combined with novelty nt (grey block) and passed on to the world-model (blue block,
implementing the model-based branch of SurNoR) and TD learner (red block, implementing the
model-free branch). The surprise value computed by the world-model modulates the learning
rate of both the TD-learner and the world-model. The output of each block is a pair of Q-values
i.e, Q-values for estimated reward QMF,R and QMB,R as well as for estimated novelty QMF,N and
QMB,N. The hybrid policy (in purple) combines these values.

Surprise in SurNoR is derived from a mismatch between observations of the next state
and predictions arising from the world-model embedded in the model-based branch of
SurNoR. To adapt both model-based and model-free policies of the SurNoR algorithm,
surprise is used in two different ways. First, high values of surprise systematically lead
to a larger learning rate for the update of the world-model than smaller ones, consistent
with earlier models (Liakoni et al., 2021; Soltani and Izquierdo, 2019). Second, going
beyond previous models of behavior (Behrens et al., 2007; Findling et al., 2021; Heilbron
and Meyniel, 2019; Nassar et al., 2012, 2010), surprise also influences the learning rate of
the model-free reinforcement learning branch.
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We predict that, if the behavior of participants is well described by the SurNoR algorithm,
they should use an action policy that attracts them to novel states, in particular during
the 1st episode of block 1. If participants do not exploit novelty, standard (potentially
hybrid) reinforcement learning schemes in combination with one of several alternative
exploration strategies (see next section) should be sufficient to explain the behavior.
Furthermore, we predict that, if the behavior of participants is well described by the
SurNoR algorithm, then surprising events during the 1st episode of block 2 should
significantly change the behavior of participants; if participants do not exploit surprise,
standard hybrid models combining model-based and model-free reinforcement learning
(Daw et al., 2011; Gläscher et al., 2010) should be sufficient to describe the behavior.

3.2.4 Both surprise and novelty are needed to explain behavior

SurNoR has three main components: (i) action selection by Hybrid policy, (ii) exploration
by novelty-seeking, and (iii) learning by surprise-modulation. To test our hypothesis, and
to test whether all three components of SurNoR are necessary for explaining behavior
or whether a simpler or an alternative model would have the same explanatory power,
we compared SurNoR with 11 alternative algorithms plus a null algorithm based on a
random choice (RC) of actions (Figure 3.5A). Three out of 11 algorithms use a hybrid
policy (+Hyb), five use novelty-seeking (+N), and seven use surprise-modulation (+S).

Alternatives for (i) action selection were pure model-based (MB; 4 out of 11 algorithms)
and pure model-free (MF; 4 out of 11) policies. Note that we allow for the possibility that
MF algorithms are equipped with a world-model for computation of surprise but do not
use this world-model for action-planning. As alternatives for (ii) exploration strategy, we
used optimistic initialization (+OI; 3 out of 11) (Sutton and Barto, 2018) and uncertainty
(surprise) seeking (Achiam and Sastry, 2017; Burda et al., 2019) (+U; 3 out of 11); see
below for more explanations and section B.1 for details. Finally, as an alternative to
surprise modulation, we used constant learning rates for learning the world-model and
model-free Q-values (Maheu et al., 2019; Meyniel et al., 2016; Modirshanechi et al., 2019;
Yu and Cohen, 2009) (all algorithms without +S; 4 out of 11). For the details of the
alternative algorithms see section B.1.

Given the behavioral data of all 12 participants, we estimated the log-evidence of all
13 algorithms, including SurNoR (see Methods). Comparison of the algorithms’ log-
evidence (Figure 3.5A) shows that SurNoR explains human behavior significantly better
than its alternatives. In addition, a Bayesian model selection approach with random
effects (Rigoux et al., 2014; Stephan et al., 2009) indicates that the SurNoR algorithm
outperforms the alternatives with a protected exceedance probability of 0.99 (Figure 3.5B
and Methods).

The 1st episode of the 1st block is ideally suited to study how novelty influences behavior
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Figure 3.5: Model comparison of model-based (MB, blue bars), model-free (MF, red
bars), and hybrid algorithms (Hyb and SurNoR, purple bars). Exploratory behavior is
either induced by optimistic initialization (+OI), uncertainty-seeking (+U), unbiased random
action choices (RC), or novelty-seeking (+N); e.g., a model-based algorithm with novelty seeking
is denoted as MB+N. SurNoR and the model-free or hybrid algorithms annotated with ‘+S’ use
surprise to modulate the learning rate of the model-free TD learner; SurNoR and all algorithms
annotated with ‘+S’ use surprise modulation also during model building (see Methods). A.
Difference in log-evidence (with respect to RC) for the algorithms for all episodes of both blocks
(left panel), the 1st episode of block 1 (middle), and the 1st episode of block 2 (right panel). High
values indicate good performance; differences greater than 3 or 10 are considered as significant
or strongly significant, respectively (see Methods); a value of 0 corresponds to random action
choices (RC). The random initialization of the parameter optimization procedure introduces a
source of noise, and the small error bars indicate the standard error of the mean over different
runs of optimization (Methods, statistical model analysis). B. The expected posterior model
probability (Rigoux et al., 2014; Stephan et al., 2009) given the whole dataset (Methods) with
random effects assumption on the models. C. Accuracy rate of actions predicted by SurNoR
(left scale and purple bars: mean and the standard error of the mean across participant) and
the average uncertainty of SurNoR (right scale and dashed grey curve: entropy of action choice
probabilities).

(middle panel in Figure 3.5A). Our results show that all algorithms with novelty-seeking
(+N) explain the behavior significantly better than models with random exploration
strategy (RC) or optimistic initialization (MB+S+OI, MF+OI, and Hyb+S+OI), i.e., two
classic approaches for exploration (Sutton and Barto, 2018). Our results also show that

62



3.2 Results

novelty-seeking explains behavior better than uncertainty-seeking (+U), a state-of-the-art
exploration method in reinforcement learning (Achiam and Sastry, 2017; Burda et al.,
2019). The models with uncertainty-seeking (MB+S+U, MF+S+U, and Hyb+S+U) use
surprisal (i.e., the logarithm of our surprise measure) as an intrinsic reward as opposed
to our model of novelty-seeking that uses novelty of states as an intrinsic reward.

As an alternative to novelty-seeking, participants might also solve the task simply by
detecting and avoiding trap states. If so, the behavior of the participants can be explained
if we replace the continuous novelty signal by a simple intrinsically generated binary signal
equivalent to a negative reward. To address this issue, we tested two modified versions of
the SurNoR algorithm (‘Binary Novelty’, see section B.1). The 1st modification detects
those states that have been encountered more often than some threshold value and
assigns a fixed negative reward to them. The 2nd modification considers the n most
frequently encountered states as bad states and, similar to the 1st modification, assigns
a fixed negative reward to them – where n is a free parameter of the algorithm. Note
that in both control algorithms, the constant negative rewards are treated as an intrinsic
motivation signal – similar to novelty in SurNoR-algorithm except that the signal is
a binary one. We estimated the log-evidence for both control algorithms. Our results
show that SurNoR outperforms the 1st control algorithm by a 244 ± 11 difference in
total log-evidence and by a 235± 5 difference in the log-evidence of the 1st episode of
block 1, and outperforms the 2nd control algorithm by a 240 ± 11 difference in total
log-evidence and by a 234± 5 difference in the log-evidence of the 1st episode of block 1.
This observation rejects the hypothesis that participants simply identify ‘bad’ states by
some binary signal.

Surprise becomes important in the 1st episode of block 2 (right panel in Figure 3.5A).
Indeed, the SurNoR model is significantly better than a hybrid model with novelty but
without surprise (Hyb+N); similarly, model-free reinforcement learning with novelty and
surprise (MF+S+N) is significantly better than model-free reinforcement learning with
novelty alone (MF+N, right panel in Figure 3.5A). Our results show that a constant
adaptation rate as implemented in standard models without surprise is not sufficient
to explain the choices of participants in the episode after the swap. Rather, the rate of
learning and forgetting has to be modulated by a measure of surprise.

Overall, SurNoR is better than all 12 competing algorithms by a large margin, indicating
that a combination of model-based and model-free algorithms explains behavior better
than each algorithm separately, consistent with the notion of parallel, model-based and
model-free, policy networks in the brain (Daw et al., 2011, 2005; Gläscher et al., 2010).
Going beyond these earlier studies, our results with SurNoR indicate that surprise and
novelty are both necessary to explain human behavior in our task. Novelty is necessary
to explain behavior during phases of exploration while surprise is necessary to explain
behavior during the rapid re-adaption after a change in the environment.
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3.2.5 Individual decisions are dominated by the model-free policy net-
work

We wondered whether the SurNoR model is also able to predict the individual actions
of participants. Taking the most probable action of the model in a given state as the
prediction of a participant’s next action in that state, SurNoR predicted the correct
action in the 1st episode of the block 1 with an accuracy of 51±3% (3-fold cross validated,
mean ± standard error of the mean over 12 participants, see Methods – Figure 3.5C).
Note that this accuracy is achieved in the absence of any a priori preference of actions
at initialization and is significantly higher than the accuracy rate of the naive random
exploration strategy (25%, chance level).

SurNoR’s predictions are also significantly better than the predictions of directed explo-
ration through optimistic initialization (OI) or an uncertainty-seeking policy (U). Models
with OI could at best predict 36±3% of the actions (for MB+S+OI), and the uncertainty-
seeking strategy could at best predict 46±3% (for Hyb+S+U); one-sample t-test p-values
for comparing their accuracy rates versus SurNoR’s are 0.01 and 0.0025, respectively.
A crucial difference between OI and novelty-based exploration is that OI prefers those
actions that have been less frequently chosen in the past, while novelty-seeking prefers
actions that lead to novel states, even if these are a few actions ahead and the outcome of
the current action is known. Uncertainty-seeking is similar to OI because the uncertain
actions are also those that have been less frequently chosen in the past.

Similarly, in the 1st episode of block 2, after the swap of states 3 and 7, the SurNoR
algorithm predicts 56± 3% of the actions of the 12 participants (Figure 3.5C). In the
remaining episodes 2-5 of the two blocks, the SurNoR algorithm predicts 89± 2% of the
action choices (Figure 3.5C). Most of these actions move participants closer to the goal.
The intrinsic uncertainty of action choices with the SurNoR model can be estimated from
the entropy of the action choice probabilities across the four possible actions (Figure 3.5C).
Uncertainty decreases during the first three episodes as participants become familiar
with the environment, but it jumps back to higher values after the swap of states at the
beginning of block 2.

To see what aspects of behavior the different components (i.e., hybrid policy, surprise,
and novelty) of SurNoR capture, we fitted the parameters of the SurNoR algorithm to the
behavior of the 12 participants (see Methods). Since SurNoR combines in its hybrid action
selection policy a model-free with a model-based component (Figure 3.6A2), we first
wanted to analyze the relative importance of each of the two components in explaining
the action choices of participants; see section B.6 for a qualitative comparison of these
two components. In order to evaluate the relative importance of the two components,
we normalized the Q-values of both branches and determined the relative weight of
each branch (see Methods) during the 1st episode and 2nd-5th episodes of each block
(Figure 3.6A4). We find that the model-free branch dominates the actions. Thus the
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world-model is of secondary importance for action selection and is mainly used to detect
surprising events.

Figure 3.6: A. Model-based surprise modulates model-free learning. A1. The learning
rate of the model-free branch as a function of the model-based surprise, after fitting parameters
to the behavior of all participants (see Equation 3.9 in Methods). The model-free learning rate for
highly surprising transitions is more than 8 times greater than the one for expected transitions.
A2. Three modules from the block diagram of Figure 3.4C. There are two types of interactions
between the model-based and the model-free branches of SurNoR: (i) The model-based branch
modulates the learning rate of the model-free branch and (ii) the weighted (arrow thickness)
outputs of the model-based and the model-free branches influence action selection (hybrid policy).
A3. The histogram of surprise values across all trials of 12 participants. The distribution
is multimodal with high surprise for the unexpected transitions in the 1st episode of block 2,
medium surprise for whenever a transition is experienced for the first time, and low surprise
for the expected transitions. A4. The relative importance of model-free (MF) compared to
model-based (MB) in the weighting scheme of the hybrid policy during different episodes. Vertical
axis: dominance of model-free (see Methods). Values larger than one (dashed line) indicate that
the model-free branch dominates action selection. Error bars show the standard error of the
mean. B. Action choice probability indicates that surprise boosts learning during a
single episode. Action choice probabilities of 8 participants (data, grey) are compared with
those of SurNoR and Hyb+N at the fist time visiting state 7 (B1) or state 3 (B2) in episodes 1
(left) and 2 (right) of block 2. Note that only 8 (out of the 12) participants encountered state 7
in the first episode of block 2 before reaching the goal. We therefore limit the data analysis to
these participants. B1. In state 7, action 1 is the good action before the swap, and action 4 is
the good action after the swap. Error bars show the standard error of the mean, and the black
dashed line corresponds to random choice action probability (0.25). In episode 2, SurNoR assigns
a significantly higher probability to action 4 than to action 1, while according to the Hybrid
model without surprise modulation, the action probabilities of action 1 and action 4 are not
significantly different. B2. In state 3, action 4 is the good action before the swap, and action 1 is
the good action after the swap. Behavioral data and SurNoR show a more rapid re-adaptation to
the good action than Hyb+N.
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Figure 3.7: Posterior predictive checks. A. Average number of actions of all 12 simulated
participants for each episode (cf. Figure 3.1C). B. Median number of actions of simulated
participants to escape the trap states at each of their visits in episode 1 of block 1 (left) and
block 2 (right) (cf. Figure 3.2A) C. Average progress of participants each time visiting states 1, 2,
3, and 4 in episode 1 of block 1. (cf. Figure 3.2B). D. Average progress of simulated participants
each time visiting states 1, 2, 7 (swapped with 3), and 4 in episode 1 of block 2. (cf. Figure 3.2C).
See Figure B.4 and Figure B.5 for two other sets of 12 simulated participants with different
random seeds. See Figure B.3B for the average progress at the progressing states in the proximity
of the goal.

Second, in order to quantify the influence of surprise on learning, we plot the learning rate
(of the model-free Q-values QMF,R and QMF,N) as a function of surprise (Figure 3.6A1).
We find that non-surprising events lead to a small learning rate of 0.06 whereas highly
surprising events induce a learning rate that is more than 8 times higher (Figures 3.6A1
and 3.6A3) indicating that surprise strongly influences the update of model-free Q-values.
Moreover, we compared the action choices of participants with those of SurNoR and the
model Hyb+N (i.e., SurNoR without surprise-modulation) at the swapped states in the
1st and 2nd episodes of block 2 (Figure 3.6B). Our results show that the modulation of
the learning rate by surprise in SurNoR is necessary to explain the rapid adaptation of
participants after the switch of states.

Finally, to see if the SurNoR model captures, in addition to other aspects, also the

66



3.2 Results

Figure 3.8: When data is generated by SurNoR, the true model can be recovered. We
applied our model-selection method to the data of three sets of 12 simulated participants. The
left column corresponds to the data shown in Figure 3.7, and the middle and the right columns
correspond to the data shown in Figure B.4 and Figure B.5, respectively. We compared the
SurNoR model with the strongest competitors of SurNoR: MF+S+N, Hyb+S+U, and Hyb+N
(cf. Figure 3.5). A. Difference in log-evidence with respect to random choice (RC) and B. the
expected posterior model probability (Rigoux et al., 2014; Stephan et al., 2009) for the algorithms
for all episodes of both blocks given the data of each of the three sets (different columns) of 12
simulated participants (cf. Figures 3.5A and 3.5B).

exploratory behavior of participants (Figure 3.1C and Figure 3.2), we computed posterior
predictive checks (Nassar and Frank, 2016; Wilson and Collins, 2019). To do so, we
simulated SurNoR with its parameters fitted to behavior and generated data for 12
simulated participants; see Figure 3.7 for one set of 12 simulated participants and
Figure B.4 and Figure B.5 for two other sets with different random seeds. Our results
show that several important features of the behavior of participants are observed also
in the behavior of the simulated participants: (i) They are faster in finding the goal
in the first episode of block 2 than in the first episode of block 1 (Figure 3.7A), (ii)
they learn to escape the trap states and to choose the good action at progressing states
in the 1st episode of block 1 (Figures 3.7B and 3.7C), and (iii) after the swap, they
continue choosing the same actions at unchanged states but rapidly unlearn previously
learned actions at the swapped states (Figures 3.7B and 3.7D). Moreover, our model-
selection approach can successfully recover the true model (SurNoR) given the data of
12 simulated participants (Figure 3.8). This observation shows that our experimental
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paradigm is capable of differentiating between SurNoR and its alternatives, and as few as
12 participants are sufficient for drawing conclusions based on our model-selection results
(Wilson and Collins, 2019) (Figure 3.5); see section B.3, Figure B.6, and Figure B.7 for
parameter recovery analysis.

In conclusion, the SurNoR algorithm is able to capture different aspects of participants’
behavior and to predict individual actions with a high accuracy: it predicts 63± 2% of
all actions and 74± 3% of the actions after the first time finding the goal. Our results
suggests that participants (i) rely on propagation of novelty information via NPE in
the first episode, (ii) base their decisions mainly on the model-free learner, and (iii) use
surprise to modulate the learning rate.

3.2.6 EEG correlates with novelty and surprise

Since surprise and novelty turned out to be important and independent components of
SurNoR in explaining the participants’ behavior, we wondered whether they are both
reflected in the ERP. We first performed a grand correlation analysis in which we pooled
the more than 2500 trials of 10 participants together after normalizing their ERPs to unit
energy (see Methods; two participants were excluded because of noise artifacts in the
recordings). We then computed the correlations of the ERP amplitudes, for each time
point after the trial onset, with the model variables ‘Surprise’, ‘Novelty’, ‘Reward’, ‘NPE’,
or ‘RPE’ (capital initial letters indicate the 5 model variables). Note that by ‘Reward’
variable we mean the goal-state indicator, i.e., it is equal to one when a participant visits
the goal state and zero otherwise; importantly, it should not be confused with MB or
MF reward values.

We find that Surprise, Reward, and RPE show significant positive correlations with the
ERP amplitudes at around 300ms after stimulus onset (Figure 3.9), in agreement with
the well known correlation of the P300 amplitude with Surprise (Kolossa et al., 2015;
Meyniel et al., 2016; Modirshanechi et al., 2019) and the well known correlation of the
Feedback-Related Negativity (FRN) component with RPE (Holroyd and Coles, 2002;
Walsh and Anderson, 2012). Moreover Novelty and NPE have, compared to Surprise,
a broader positive correlation window with the ERP starting at around 200ms and
ending at around 320ms after stimulus onset, and a second window with significant
negative correlations from around 450ms to 550ms. Thus, Novelty and NPE have an
ERP signature that is distinct from that of Surprise, Reward, or RPE (Figure 3.9).

Second, we wondered how much of the variations in the ERP amplitudes could be
explained by a linear combination of our five model variables, i.e., Suprise, Novelty,
NPE, RPE, and Reward. We performed a trial-by-trial multivariate linear regression
(MLR), separately for each participant. To be able to more precisely identify the separate
contributions of each model variable to the regression, we needed to decorrelate them from
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Figure 3.9: Grand correlation analysis of normalized ERPs over all 2524 trials of
10 participant. The dashed lines show confidence intervals. Shaded areas indicate intervals of
significant correlations (FDR controlled by 0.1, one-sample t-test). Correlations of ERP with A.
Surprise, B. Novelty, C. NPE, D. RPE (computed after excluding the trials from the 1st episode
of the 1st block during which RPE is equal to 0) and E. Reward.

each other. As expected from the design of the experiment, the cross-correlations between
the normalized (zero mean and unit variance) sequences of Surprise, Novelty, and NPE
are negligible (see Figure B.8); however, the sequences of Reward and RPE are highly
correlated with each other, mainly because Reward and RPE are both high at the goal
state. Using principal components analysis over Reward and RPE, we find R+ (the sum
of RPE and Reward) and R− (their difference) as their decorrelated combinations (see
Methods). We then extracted the components of Surprise, Novelty, and NPE orthogonal
to R+ and R− (see Methods). The resulting variables, denoted by an index ⊥, are
each orthogonal to R+ and R−, while staying very similar to the original signals, e.g.,
Surprise⊥ is highly correlated with Surprise, and NPE⊥ is highly correlated with NPE;
see section B.2, Figure B.8, and Figure B.9 for more details.

For each participant, we considered the normalized Surprise⊥, Novelty⊥, NPE⊥, R+, and
R− as explanatory variables in order to predict the ERP amplitude at a given time point.
We found 4 time intervals with an encoding power (adjusted R-squared, see Methods)
significantly greater than zero (one-sample t-test, FDR controlled by 0.1, Figures 3.10A
and 3.10B; note that the adjusted R-squared can take negative values, e.g., see baseline
in Figure 3.10A). The 1st time window is around 193± 5ms; the P300 component can be
linked to the 2nd time window which spans from 286 to 321± 5ms; since the 3rd time
interval is long (from 392 to 487± 5ms), we split it into two time windows of equal size
(W3a and W3b in Figure 3.10B); and the last window extends from 532 to 574± 5ms.

To study the contribution of surprise and novelty to encoding power, we focused on these
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Figure 3.10: ERP variations explained by trial-by-trial and participant-by-participant
multivariate linear regression analysis. Surprise⊥ (magenta), Novelty⊥ (dark blue), NEP⊥
(light blue), R+ (brown) and R− (red) were used as explanatory variables, and the ERP amplitude
at each time point was considered as the response variable. A. Encoding power (adjusted R-
squared values) averaged over 10 participants (dashed lines show the standard error of the
mean) at each time point. Shaded areas and horizontal lines indicate four time intervals (W1,
..., W4) of significant encoding power (FDR controlled by 0.1, one-sample t-test, only for the
time-points after the baseline). The 3rd time interval has been split into two time windows
of equal length for the analysis in C. B. Values of the regression coefficients (averaged over
participants) for Surprise⊥, Novelty⊥, NEP⊥, R+, and R− as a function of time. Errors are not
shown to simplify the illustration. C. In each of the 5 time windows, the regression coefficients
plotted in B have been averaged over time. Error bars show the standard error of the mean
(across participants). Asterisks show significantly non-zero values (FDR controlled by 0.1 for
each time window, one-sample t-test). The Novelty⊥ coefficients in the 1st and the last time
windows (dot) have p-values of 0.03 and 0.04, respectively, which are not significant after FDR
correction. In the second time window, Surprise⊥, Novelty⊥, NEP⊥, and R+ have significantly
positive coefficients.

time windows and tested the average regression coefficients of all explanatory variables
in each time window in a second level analysis (Figure 3.10C). Our results show that in
the the second time window (286 to 321± 5ms), Surprise⊥, Novelty⊥, NPE⊥, and R+ all
have a significant positive regression coefficient in MLR (Figure 3.10C, 2nd panel, FDR
controlled by 0.1). While the coefficients for Surprise⊥, NPE⊥, and R+ sharply peak at
around 300ms, the coefficient for Novelty⊥ has a broader peak starting at around 200ms
(Figure 3.10B) with a close to significant positive value during the 1st time window.
This observation suggests that positive correlations of novelty with the ERP potentially
extend from the 1st time window to the 2nd one, in agreement with our grand correlation
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analysis.

While consistent with previous studies of surprise in the ERP (Kolossa et al., 2015; Maheu
et al., 2019; Meyniel et al., 2016; Modirshanechi et al., 2019), our results indicate that
Surprise⊥ and Novelty⊥ contribute each separately to the ERP components at around
300ms. Furthermore, we find that NPE⊥ is yet another independent contributor to
these components. As expected from previous studies (Holroyd and Coles, 2002; Walsh
and Anderson, 2012), R+ also shows a positive correlation with the ERP amplitude at
around 300ms. While the multivariate analysis based on the 5 explanatory variables
shows significance in the later time windows (Figure 3.10A), individual contributions
of Surprise⊥ or Novelty⊥ or NPE⊥ alone remain below significance level even though
Novelty⊥ has a close to significant negative coefficient in the last window (Figure 3.10C).

To summarize, the grand correlation analysis yields time windows of significance for
Novelty and NPE that start 50 to 100ms before those of Surprise or Reward, indicating
distinct contributions. Moreover, Novelty⊥ and NPE⊥ explain a significant fraction of the
variations of the ERP at around 300ms that is not explained by Surprise⊥ and R+ alone.
Importantly, NPE has significant correlations both in the grand correlation analysis and
in the regression analysis, consistent with our earlier finding that NPE is important to
explain behavior.

3.3 Discussion

Combining a deep sequential decision-making task with the SurNoR model, an augmented
reinforcement learning algorithm, we were able to extract the distinct contributions of
surprise, novelty, and reward to human behavior. We found that the human brain
(i) uses surprise to adapt their behavior to changing environments by modulating the
learning rate and (ii) uses novelty as an intrinsic motivational drive to explore the world.
Moreover, the model variables Suprise, Novelty, NPE, Reward, and RPE could well
explain variations of the EEG amplitudes on a trial-by-trial basis.

3.3.1 Novelty is not surprise

In the SurNoR model, surprise measures how unexpected the next state is according to an
acquired world-model conditioned on the current state and the chosen action; in contrast,
novelty measures how infrequent the next state has been, independent of our expectations
derived from a world-model. More precisely, in our formulation (Equation 3.2 and
Equation 3.4), surprise and novelty have two essential differences: The first difference is
that while surprise is assigned to transitions, novelty is assigned to states. If this was the
only difference between novelty and surprise, one could argue that surprise and novelty
are essentially the same, while one measures the infrequency of transitions and the other
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the infrequency of states. However, the second and more important difference is that
novelty uses the exact number of encounters of each state (Equation 3.1) to measure how
infrequent that state has been, while surprise uses the surprise-modulated pseudo-counts
(Equation 3.3) computed by the world-model to measure how unexpected a transition
is. As a consequence, if there is a sudden change in the environment, then an expected
transition can rapidly become surprising, but a long time is needed for a state that has
been encountered frequently to become novel again. This is consistent with ideas that
novelty is more related to memory-recall and surprise is more related to predictions
(Barto et al., 2013). Moreover, these ideas are also supported by recent findings showing
that the brain estimates the frequency of stimuli over a much longer time-scale than the
transition probabilities (Maheu et al., 2019).

Measures of surprise in neuroscience have been divided into two subgroups (Faraji et al.,
2018; Gijsen et al., 2021; Hurley et al., 2011): ‘puzzlement’ and ‘enlightenment’ surprise.
The conceptual definition of surprise we gave above is known as puzzlement surprise. In
addition to the Bayes factor surprise (Liakoni et al., 2021) that we used here (Equation 3.4),
other examples of puzzlement surprise are Shannon surprise (Shannon, 1948), minimized
free energy (Friston, 2010; Friston et al., 2017), state prediction error (Gläscher et al.,
2010), and the confidence corrected surprise (Faraji et al., 2018). Orthogonal to these
measures, enlightenment surprise measures how much an event changes our model of the
world and, as a consequence, our expectations; well-known examples are Bayesian surprise
(Baldi, 2002; Itti and Baldi, 2006; Schmidhuber, 2008, 2010; Storck et al., 1995) and
compression surprise (Schmidhuber, 2008, 2010). We would like to emphasize here that
even a measure like Bayesian surprise (Baldi, 2002; Itti and Baldi, 2006; Schmidhuber,
2010; Storck et al., 1995) has the aforementioned differences with our definition of novelty.

Measures of novelty can also be divided into two subgroups (Barto et al., 2013): the
ones that are ‘memory-based’ and the ones that represent ‘statistical outliers’. Memory-
based novelty measures focus on whether an event already exists in the memory or not
(Gershman et al., 2017, 2014). Our measure of novelty (Equation 3.2) belongs to the 2nd
group that considers an event as novel if it has ‘a low estimated probability of occurrence’
(Barto et al., 2013). Many measures of novelty that belong to this group simply consider
novelty to be a decreasing function of the number of occurrences (Bellemare et al., 2016;
Dubey and Griffiths, 2019; Gershman and Niv, 2015); in contrast, our measure of novelty
is a decreasing function of the frequency of occurrence (Equation 3.1), and because of
this reason one may refer to it as ‘relative novelty’ or a measure of ‘rareness’.

3.3.2 Surprise modulates learning

As expected from previous theoretical (Faraji et al., 2018; Findling et al., 2021; Frémaux
and Gerstner, 2016; Gerstner et al., 2018; Liakoni et al., 2021; Yu and Dayan, 2005)
and experimental work (Behrens et al., 2007; Heilbron and Meyniel, 2019; Nassar et al.,
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2012, 2010), our results suggest that the human brain uses surprise to modulate the
learning of its world-model. Rather unexpectedly, however, our results indicate that
humans hardly use this world-model to plan behavior; instead they mainly rely on
model-free TD learning with eligibility traces to choose their next actions. Importantly,
although the surprise signal is triggered by a mismatch between an observation and
the predictions of the world-model, the modulatory effect of surprise is not limited to
readjusting the world-model but also used to modulate the learning rate of model-free TD-
learning. Following the common interpretations of model-based reinforcement learning
algorithms as descriptions of human planning behavior and model-free reinforcement
learning algorithms as descriptions of human habitual behavior (Akam et al., 2015; Daw
et al., 2011, 2005; Gläscher et al., 2010), our results suggest that (i) in the absence of
surprise, humans prefer habitual behavior (potentially to reduce computational costs of
decision-making (Huys et al., 2015; Kahneman, 2013)) and (ii) errors in their world-model
make them reconsider their habitual behavior.

Our results extend findings that humans use hybrid policies in two-stage decision tasks
(Daw et al., 2011; Gläscher et al., 2010) to the case of deep sequential decision tasks
in the presence of abrupt changes. In general, the balance between model-free and
model-based behaviors depends on multiple aspects and features of the task that humans
are dealing with (Daw et al., 2005; Gläscher et al., 2010; Huys et al., 2015; Kool
et al., 2016). For example, we observe that the model-based branch becomes more
important when participants explore the environment to find the goal state, although
the participants’ behavior in our environment is always dominated by model-free action
choices (Figure 3.6A4). Moreover, the dominance of model-free behavior in such deep
tasks does not exclude that humans use model-based planning in shallow tasks that are
easily comprehensible thanks to a spatial arrangement of states or explicit instructions
(da Silva and Hare, 2020).

An interesting direction for future studies is to combine surprise modulation with more
abstract model building algorithms, e.g., for learning the structure of neighborhood
relations of an environment in the form of a graph (Whittington et al., 2020; Wu et al.,
2020). Such algorithms may explain the slight difference between the participants’
adaptive behavior and SurNoR’s predictions (Figure 3.6B).

3.3.3 Novelty drives exploration

Our results show that exploration based on novelty-seeking can explain human behavior
in our sequential decision-making task better than its alternatives: random exploration
(Schulz and Gershman, 2019), optimistic initialization (Sutton and Barto, 2018), and
uncertainty or surprise-seeking (Achiam and Sastry, 2017; Burda et al., 2019). In contrast
to many exploration strategies that give preference to those actions for which the outcome
is most uncertain, i.e., those that have been tried least (Achiam and Sastry, 2017; Burda
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et al., 2019; Cohen et al., 2007; Kobayashi et al., 2019; Schulz and Gershman, 2019),
exploration based on novelty-seeking gives preference to actions that ultimately lead
a participant to previously unvisited or less visited states, even if the participant is
perfectly sure about the transition to the next state.

In general, it has been shown that exploration in humans can have more than one drive
(Kobayashi et al., 2019) and that participants’ desire for seeking novel events depends
on their goal, inductive biases, and assumptions about their environment (Dubey and
Griffiths, 2019, 2020; Gershman and Niv, 2015). In situations like our experimental
paradigm where participants are sure that there exists a rewarding state but do not
know how to reach it, seeking novelty and exploring the parts of the environment that
have been less visited are natural ways to search for the rewarding state; however, if, for
example, participants were asked to find the most accurate map of the environment, then
uncertainty-seeking might be a more reasonable way to solve the task. In addition, the
presence of trap states in our environment makes novelty an internally rewarding signal
that helps participants to avoid ‘traps’. We do not claim that novelty is always the only
drive of exploration; rather, we believe that our results show that for a class of tasks
similar to ours where the goal is to search for a rewarding state and novelty is a relevant
signal, humans use a novelty-seeking strategy for exploration. Following the idea of
information search in active sampling (Gottlieb and Oudeyer, 2018; Niv et al., 2015), we
speculate that whether novelty is an informative cue (e.g., about the location of the goal)
or not must be itself inferred by participants through the exploration procedure. From
a different but similar perspective, we speculate that it is possible to take a normative
approach and, by defining a function of curiosity (Dubey and Griffiths, 2019, 2020),
show that novelty-seeking is the optimal or a close to optimal way to search for reward
in a class of environments. Formulating and testing such hypotheses is an interesting
direction for future studies.

The SurNoR algorithm suggests that participants treat novelty and reward as separately
estimated values – as opposed to adding them into a single value estimator (Bellemare
et al., 2016; Jaegle et al., 2019; Martin et al., 2017). This separation enables participants
to rapidly switch from exploration to exploitation, once they have found the goal. Based
on this insight, we make the following prediction: if participants find a goal state but
expect a second more rewarding goal state, they will continue to explore and potentially
spend a large amount of time in a novelty-rich segment of an extended version of the
environment of Figure 3.1 (see section B.5).

3.3.4 Neural signatures of surprise and novelty

Our EEG analysis shows that variables of the SurNoR model can significantly explain
the variations of ERP amplitudes in several time-windows: Surprise, Novelty, NPE,
and Reward/RPE all significantly contribute to the encoding power in the time-window
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around 300ms. The positive contributions of Novelty, Surprise, and Reward/RPE in this
time-window are consistent with previous studies of the P300 and the FRN component
(Holroyd and Coles, 2002; Kolossa et al., 2015; Maheu et al., 2019; Mars et al., 2008;
Meyniel et al., 2016; Modirshanechi et al., 2019; Walsh and Anderson, 2012). Whereas in
earlier studies contributions of Novelty, Surprise, and Reward were often mixed together
(Holroyd and Coles, 2002; Kolossa et al., 2015; Maheu et al., 2019; Mars et al., 2008;
Meyniel et al., 2016; Modirshanechi et al., 2019; Walsh and Anderson, 2012), we have
shown here separate, additive contributions of these three variables as well as a further
contribution of NPE. The effect of Novelty appears in ERPs earlier (at around 200ms)
than the correlations with the other variables; moreover, contributions of Novelty are
distinct from those of Surprise in the time window after 400ms.

Since, in the SurNoR model, Novelty is treated analogously to an external Reward,
TD-learning based on NPE along with eligibility traces rapidly diffuses information
about novel states to far-away non-novel states just as TD-learning based on RPE along
with eligibility traces rapidly diffuses information about rewarding states to far-away
non-rewarding states. Several studies have shown that the reward-driven activity of
dopaminergic neurons encodes RPE and not reward values (Kim et al., 2020a; Schultz
et al., 1997; Starkweather and Uchida, 2021). Therefore, the manifestation of a separate
NPE signal in neural activities may open a new door for further developments of
theories and experiments on novelty-driven activity of dopaminergic neurons and other
neuromodulators (Horvitz et al., 1997; Kakade and Dayan, 2002; Morrens et al., 2020;
Schultz, 1998).

3.3.5 Conclusions

In conclusion, surprise and novelty are conceptually distinct concepts that also give
rise to different temporal components in the ERP. Our results suggest that humans use
novelty-seeking for efficient exploration and surprise for a rapid update of both their
internal world-model and their model-free habitual responses.

3.4 Methods

3.4.1 Ethics Statement

The data were collected under CE 164/2014, and the protocol was approved by the
Commission cantonale d’éthique de la recherche sur l’être humain. All participants were
informed that they could quit the experiment at any time, and they all signed a written
informed consent. All procedures complied with the Declaration of Helsinki (except for
pre-registration).
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3.4.2 Experimental setup

Stimuli were presented on an LCD screen that was controlled by a Windows 7 PC.
Experiments were scripted in MATLAB using the Psychophysics Toolbox (Brainard and
Vision, 1997).

3.4.3 Participants

14 paid participants joined the experiment. Two participants quit the experiment
(14 ± 10% of all participants), hence, we analysed data for 12 participants (5 females,
aged 20-26 years, mean = 22.8, sd = 1.7). All participants were right-handed and naive
to the purpose of the experiment. All participants had normal or corrected-to-normal
visual acuity.

3.4.4 Stimuli and general procedure

Before starting the experiment, we showed the participants the goal image that they were
required to find on a computer screen. Next, participants were presented, in random
order, all the other images that they might encounter during the experiment. Thereafter,
participants clicked the ‘start’ button to start the experiment. At each trial, participants
were presented an image (state) and four grey disks below the image. Clicking on one
of the disks (action) led participants to a subsequent image; for details of timing see
Figure 3.1A. Participants clicked through the environment until they found the goal state
which finished the episode. An episode n started at a random state i(n) which was the
same for all participants; in our experiment we used i(1) = 6, i(2) = 9, i(3) = 4, i(4) = 5,
and i(5) = 8.

3.4.5 EEG recording and processing

EEG signals were recorded using an ActiveTwo Mk2 system (BioSemi B.V., The Nether-
lands) with 128 electrodes at a 2048Hz sampling rate. Two participants were excluded
from EEG analysis because of their noisy and low quality signals caused by substantial
movements during the experiment. Data were band pass filtered from 0.1Hz to 40Hz and
down sampled to 256Hz. EEG data were recorded with a Common Mode Sensor (CMS)
and re-referenced using the common average referencing method. We used EEGLAB
(Delorme and Makeig, 2004) toolbox in MATLAB to perform the EEG preprocessing.
We extracted EEG trials from 200ms before to 700ms after the state onset. Trials in
which the change in voltage at any channel exceeded 35 µV per sampling point were
discarded. Eye movements and electromyography (EMG) artefacts were removed by
using independent component analysis (ICA). The baseline activity was removed by
subtracting the mean calculated over the interval from 200ms to 0ms before the state
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onset. EEG data of selected prefrontal electrodes (Fz, F1, F2, AFz, FCz) were averaged
for ERP analysis. We further smoothed (moving averaging with the window of length
50ms) and downsampled (to the sampling rate of 1 sample per 11.7ms) ERPs. Data
were analyzed during the time window from 0 to 650ms after state onset (blue interval
in Figure 3.1A). For multivariate regression analysis, a 100ms-baseline was also included
for sanity check. As a result, each trial (from 100ms before to 650ms after the onset of
the state) consisted of 65 time points.

3.4.6 SurNoR algorithm

We present a more detailed formulation and the psudocode of the SurNoR algorithm in
section B.1. Here we outline the algorithm in brief.

We formally define the Novelty of a state s at time t as N(t)(s) = − log p
(t)
f (s), where

p
(t)
f is defined in Equation 3.1; see section B.1 for further discussion. When observing

the image corresponding to state st+1 at time t + 1, after taking action at, the novelty
nt+1 = N(t)(st+1) is treated as an internal novelty-reward, completely analogous to the
treatment of external rewards in reinforcement learning. This analogy between external
reward and novelty is inspired by earlier experimental studies (Ghazizadeh et al., 2020;
Horvitz et al., 1997; Schultz, 1998). As a result, at time t + 1, agents receive three signals:
the next state st+1, the external reward rt+1 (i.e., the indicator of whether st+1 is the
goal state or not), and the novelty nt+1 (indicated as the output of the grey block in
Figure 3.4C).

The SurNoR algorithm has two branches, i.e., a model-based and a model-free one, which
interact with each other (Figure 3.4C, blue and red blocks). The model-based branch
computes the Bayes Factor Surprise (Liakoni et al., 2021)

S(t+1)
BF = preset(st+1|st, at)

p(t)(st+1|st, at)
(3.5)

where p(t)(st+1|st, at) is the probability of observing st+1 by taking action at in state st

as estimated from the current world-model (cf., Equation 3.3), and preset(st+1|st, at) is
the probability of observing st+1 by taking action at in state st with the assumption that
the environment has experienced an abrupt change between time t and t + 1, so that the
world-model should be reset to its prior estimate. In this work, we assume that the prior
estimate preset(st+1|st, at) = 1/11 is a uniform distribution over states and hence constant
as stated in Equation 3.4; see section B.1 and Liakoni et al. (2021) for further discussion.
Note that in Figure 3.4A, Figure 3.4B, and Figure 3.6 we suppressed the factor 1/11 and
directly plotted 1/p(t)(st+1|st, at) as the surprise value. As an aside we note that since the
state prediction error (Gläscher et al., 2010) is defined as SPEt+1 = 1− p(t)(st+1|st, at),
the Bayes Factor Surprise can be written as S(t+1)

BF ∝ 1/(1 − SPEt+1). The definition
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of the Bayes Factor Surprise is valid for arbitrary volatile environments (Liakoni et al.,
2021). However, since in our experimental setting preset(st+1|st, at) is assumed to be
uniform, the Bayes Factor Surprise SBF is a monotone function of Shannon Surprise and
hence comparable to previous studies (Meyniel et al., 2016; Modirshanechi et al., 2019;
Shannon, 1948).

The value S(t+1)
BF is used in the model-based branch to update the world-model using the

Variational SMiLe algorithm (Liakoni et al., 2021), an approximate Bayesian learning
rule with surprise-modulated learning rate designed for volatile environments with abrupt
changes. Updating the world-model is equivalent to updating the pseudo-counts C̃

(t)
s,a→s′ ,

introduced in Equation 3.3, for all possible s, a, and s′. The Variational SMiLe algorithm
(Liakoni et al., 2021) yields the updates

C̃
(t+1)
s,a→s′ =

 (1− γt+1)C̃(t)
s,a→s′ + δ(s′, st+1) if s = st, a = at

C̃
(t)
s,a→s′ otherwise,

(3.6)

where δ is the Kronecker delta function, and γt+1 is the surprise modulated adaptation
factor (Liakoni et al., 2021)

γt+1 = mS(t+1)
BF

1 + mS(t+1)
BF

∈ [0, 1], (3.7)

with m ≥ 0 a free parameter related to the volatility of the environment (Liakoni et al.,
2021). Note that if the transition from s to s′ caused by action a is unsurprising, then
the pseudo-count of that transition is increased by one (because γ = 0 for SBF = 0).
However, if this transition has a high surprise, the earlier pseudo-count is reset to zero
(because γ → 1 for SBF → ∞) and the observed transition is counted as the first one.
The updated world-model is then used to update a pair of Q-values, i.e., Q

(t+1)
MB,R for

Reward and Q
(t+1)
MB,N for Novelty, by solving the corresponding Bellman equations with

a variant of prioritized sweeping (Brea, 2017; Sutton and Barto, 2018; Van Seijen and
Sutton, 2013); see section B.1 for details.

The model-free branch computes Reward and Novelty prediction errors, RPEt+1 and
NPEt+1. As usual, RPE is defined as RPEt+1 = rt+1 + λRVMF,R(st+1)−QMF,R(st, at),
where λR is the discount factor for reward, and VMF,R(st+1) = maxa QMF,R(st+1, a) is the
value of the state st+1. Analogously, NPE is defined as NPEt+1 = nt+1+λN VMF,N(st+1)−
QMF,N(st, at), where λN is the discount factor for novelty, and VMF,N(st+1) = maxa

QMF,N(st+1, a) is the novelty value of the state st+1.

A Surprise-modulated TD-learner with eligibility traces is used for updating the two
separate sets of Q-values. To have the most general setting, two separate eligibility traces
are used for the update of Q-values, one for reward e

(t)
R and one for novelty e

(t)
N . The

eligibility traces are initialized at zero at the beginning of each episode. The update rules
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for the eligibility traces after taking action at at state st is

e
(t+1)
R (s, a) =

{
1 if s = st, a = at

λRµRe
(t)
R (s, a) otherwise

e
(t+1)
N (s, a) =

{
1 if s = st, a = at

λN µN e
(t)
N (s, a) otherwise ,

(3.8)

where λR and λN are the discount factors defined above, and µN ∈ [0, 1] and µR ∈ [0, 1]
are the decay factors of the eligibility traces for novelty and reward, respectively. The
update rule is then ∆Q

(t+1)
MF (s, a) = ρt+1e(t+1)(s, a)PEt+1, where e(t+1) is the eligibility

trace (i.e., either e
(t+1)
R or e

(t+1)
N ), PEt+1 is the prediction error (i.e., either RPEt+1 or

NPEt+1) and
ρt+1 = ρb + γt+1δρ (3.9)

is the surprise-modulated learning rate with parameters ρb for the baseline learning rate
and δρ for the effect of Surprise.

Finally, actions are chosen by a hybrid policy (section B.1) using a softmax function of a
linear combination of the values Q

(t+1)
MF,R, Q

(t+1)
MF,N, Q

(t+1)
MB,R, and Q

(t+1)
MB,N (the purple block

in Figure 3.4.A), similar, but not identical to Daw et al. (2011); Gläscher et al. (2010).
The weight of Q

(t+1)
MF,N and Q

(t+1)
MB,N is non-zero only in the 1st episodes of blocks 1 and 2

to reduce number of parameters and make the model simpler. We tested the version
with an additional free parameter for the weights of Q

(t+1)
MF,N and Q

(t+1)
MB,N in episodes 2-5 of

blocks 1 and 2, but we did not find any significant improvement in the fit (difference in
log-evidence = 15± 13).

Overall, the SurNoR algorithm has 18 free parameters.

3.4.7 Statistical model analysis and fit to behavior

In addition to SurNoR, we considered 12 alternative algorithms with 0 to 18 free
parameters and two control algorithms for SurNoR with Binary Novelty with 19 free
parameters (section B.1). For each algorithm, we used 3-fold cross-validation and
computed its maximum log-likelihood for each participant, similar to existing methods
(Lehmann et al., 2019): (i) we divided participants into 3 folds each consisting of four
participants; (ii) for participant i, we estimated the parameters of the algorithm by
maximizing the likelihood function of the folds which did not include participant i; and
(iii) we computed the log-likelihood for participant i using the estimated parameters.
The maximization procedure was done by coordinate ascent (using grid search for each
coordinate); we repeated the procedure until convergence starting from 25 different
random initial points. We further repeated the whole process 4 times to have an
estimation of the variability resulting from random initialization of the optimization
procedure. The error bars in Figure 3.5A are calculated using these 4 samples.
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Similar to studies in economics and statistics (Fong and Holmes, 2020; Rust and Schmit-
tlein, 1985), we considered, for each participant and each algorithm, the cross-validated
maximum log-likelihood (averaged over the 4 repetitions) as the log-evidence (Efron and
Hastie, 2016). Similarly, the log-evidence could also be approximated by other measures
like AIC or BIC (Daw, 2011), but cross-validation has been shown to have a more robust
behavior (Ito and Doya, 2011). The sum (over participants) of the log-evidences for
each algorithm is shown in Figure 3.5A – see Daw (2011) for a tutorial on the topic. As
a convention, differences greater than 3 or 10 are considered as significant or strongly
significant, respectively (Daw, 2011; Efron and Hastie, 2016). The model posterior and
protected exceedance probabilities in Figure 3.5B are computed by using the participant-
wise log-evidences (averaged over the 4 repetitions) and following the Bayesian model
selection method of Rigoux et al. (2014); Stephan et al. (2009) (available in SPM12
toolbox for MATLAB). We used a Dirichlet distribution with parameters equal to 1 over
the number of models (1/13) as the prior distribution. This choice of prior is equivalent
to stating that the prior information is worth as much as the observation coming from
a single participant (Efron and Hastie, 2016); it is also a default choice of prior in the
VBA toolbox (Daunizeau et al., 2014).

The accuracy rate and the uncertainty in Figure 3.5C are computed by the same cross-
validation procedure. We define accuracy as the ratio of the number of trials with
correctly predicted actions to the total number of trials; for a given trial, whenever the
action taken by the participant had the maximum probability under the policy but shared
with other n − 1 (e.g., 2) actions, we counted that trial as 1/n (e.g., 0.333) correctly
predicted. With this procedure, the accuracy rate of the random choice algorithm is
25%. We define the uncertainty of one participant in an episode as the average of the
entropy of his or her policy over all trials of that episode. Both the accuracy rate and
the uncertainty were computed for each participant separately, but only the mean and
the standard error across participants are reported in Figure 3.5C.

For EEG analysis, we only considered the SurNoR algorithm (i.e., the winner of statistical
model selection). To have the same set of parameters for all participants, we fitted our
model to the whole behavioral data set (overall 3047 actions) by maximizing total log-
likelihood – similar to Daw et al. (2011). For each of 500 random initialization points,
maximization was implemented as coordinate ascent until convergence (using grid search
for each coordinate). Amongst the 5 local maxima with high but not significantly (< 3)
different log-evidence, we kept the model which had the greatest encoding power in
multivariate regression analysis of EEG. The fitted parameters are reported in section B.3.

The plots in Figure 3.6 corresponds to this set of parameters. Since the softmax operator
of the hybrid policy has a free scale parameter, the effective weight of each branch of
the hybrid policy in Figure 3.6A4 (i.e., model-free and model-based) is computed as the
fitted weight of each component times its average difference in Q-values. For example,
ωeff

MF is equal to ωMF × ⟨∆QMF ⟩, where ωMF is the weight of model-free Q-values in the
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hybrid policy and ⟨∆QMF ⟩ is the average (over trials) of the difference between QMF of
the best and the worst actions. The weight ωeff

MB for the model-based branch is defined
analogously. The dominance of the model-free branch is defined as ωeff

MF /ωeff
MB.

We used the same set of parameters to generate synthetic data for Figure 3.7. We
simulated 200 agents with different random seeds. We considered the 62 agents (31± 3%
of all agents) who took more than 500 actions in any of the 10 episodes to be similar to
the participants who quit the experiments (14± 10% of all participants – not significantly
different from 31± 3%; p-value for two-sample t-test=0.12). Based on this criterion, we
discarded 62 agents. From the remaining 138 agents, we randomly chose three subsets
of 12 agents (called simulated participants in the Results section) and repeated all our
behavioral analyses for the synthetic data. The results for one subset of agents is shown
in Figure 3.7 and for two other subsets in Figure B.4, Figure B.5. Given the three sets
of 12 simulated agents, the results for model recovery is shown in Figure 3.8, and the
results for parameter recovery are reported in section B.3, Figure B.6, and Figure B.7.

3.4.8 EEG Analysis

Participant-based regression analysis

Given N trials (across all episodes of both blocks) of a given participant, the matrix
Xraw for this participant is an N by 5 matrix whose rows correspond to trials and whose
columns correspond to normalized model variables (i.e., Surprise, Novelty, NPE, RPE,
and Reward). For example, if the sequence of reward prediction error values for this
participant is z1:N , then one column of the matrix Xraw is equal to (z1:N − µz)/σz where
µz is the mean and σz is the standard deviation of z1:N , and one row of the matrix Xraw
is equal to the normalized values of Surprise, Novelty, NPE, RPE, and Reward for one
trial. We constructed the feature matrix X from Xraw by applying the following steps: (i)
we put 2 columns of X to be equal to normalized Reward plus RPE and Reward minus
RPE, calling them R+ and R−, respectively; since Reward and RPE were normalized,
their sum and difference correspond to their principal components (section B.2); (ii) we
orthogonalized each of the other variables to R+ and R−. For example, NPE⊥ is NPE
minus its projection on R+ and R−, followed by a renormalization step (see section B.2
and Figure B.8).

For each trial, time of the ERP is measured with respect to the image onset. For a given
time point, we defined the target vector y as an N dimensional vector whose elements are
equal to the normalized (zero mean, unit variance) amplitude of ERPs at that particular
time point in different trials. Since we have 65 time points, the response matrix Y is a N

by 65 matrix. We then performed multivariate linear regression (MLR) by considering
ŷ = Xβ as an estimation of y and found β by ordinary least squared error minimization.
The encoding power for a single time point and for the given participant was calculated
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as adjusted R-squared (Miles, 2005). Note that adjusted R-squared can in principle be
negative – which is the case for our regression analysis over baseline in Figure 3.10A.

Figure 3.10A shows the mean and the standard error of the mean of the encoding power
over participants and for each time-point. The threshold for rejecting the null hypothesis
is computed using the Benjamini and Hochberg algorithm (Efron and Hastie, 2016) for
controlling false discovery rate (FDR) by 0.1. Figure 3.10B shows the average (over
participants) of β values as a function of time. For Figure 3.10C, we first average the
β values over time within each time window, and then evaluate their mean and their
standard error of the mean (over participant). The FDR correction was done separately
for each time window.

Grand correlation analysis

Similar to the approach of Makeig et al. (2004), we pooled all trials of all participants
together, i.e., we concatenated Xraws and Y s for different participants. However, before
concatenation, to remove the difference in the between-participant variations of ERPs
energy (i.e., 2nd moment), we divided ERPs of each participant by the overall squared-
energy of that participant’s ERPs, i.e., we replaced Y by Y/

√
E[Y 2]. The correlations in

Figure 3.9 are computed between columns of concatenated Xraws and concatenated Y s.
For RPE, we removed the trials corresponding to 1st episodes of the 1st blocks because
RPEs are exactly equal to zero.
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This chapter was published in Current Opinion in Neurobiology (Modirshanechi et al.,
2023a)1. In this thesis, it plays the role of intermediate summary and discussion.

Authors: Alireza Modirshanechi, Sophia Becker, Johanni Brea, and Wulfram Gerstner

Abstract: Notions of surprise and novelty have been used in various experimental
and theoretical studies across multiple brain areas and species. However, ‘surprise’ and
‘novelty’ refer to different quantities in different studies, which raises concerns about
whether these studies indeed relate to the same functionalities and mechanisms in the
brain. Here, we address these concerns through a systematic investigation of how different
aspects of surprise and novelty relate to different brain functions and physiological signals.
We review recent classifications of definitions proposed for surprise and novelty along
with links to experimental observations. We show that computational modeling and
quantifiable definitions enable novel interpretations of previous findings and form a
foundation for future theoretical and experimental studies.

Funding: This research was supported by the Swiss National Science Foundation (no. 200020
184615).

Author contribution: All authors contributed to the conceptualization of the study. AM did
the formal analyses and visualization and wrote the original draft. All authors revised the text.

1For consistency across the thesis chapters, the mathematical notation has been slightly adjusted.
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4.1 Introduction

An unexpected video interruption strengthens human memory of the video’s content
(Sinclair et al., 2021), mismatches between visual flow and locomotion facilitate synaptic
changes in the mouse visual cortex (Jordan and Keller, 2023), monkeys show faster
saccades to unseen objects than to familiar ones (Ogasawara et al., 2022), and mice have
a higher breathing frequency when sniffing new odors than those already known (Morrens
et al., 2020).

What these four statements have in common is that they all concern situations where
words like ‘surprise’ and ‘novelty’ seem applicable: The first two statements assess neural
responses to violation of expectations, potentially caused by a feeling of surprise, whereas
the second two statements assess behavioral responses to unfamiliar stimuli, potentially
triggered by novelty of the stimuli. It hence feels tempting to rephrase the first two
statements to ‘surprise strengthens memory and modulates learning’ and the second two
to ‘novelty attracts attention and drives curiosity’.

However, the rephrased statements imply notably more than the original statements:
They suggest common mechanisms for different experimental phenomena across different
species. Such generalizations are important for moving towards a unified understanding
of the brain, but they can be misleading if not justified.

Intuitive usage of ‘surprise’ and ‘novelty’ is common practice in neuroscience (Schomaker
and Meeter, 2015), psychology (Reisenzein et al., 2019), and machine learning (Ladosz
et al., 2022). However, it has remained a mystery how humans’ self-reported degree
of ‘surprise’ when entering a new and unexpected room (Schützwohl and Reisenzein,
2012) relates to the brain activity of monkeys seeing ‘surprising’ fractals (Zhang et al.,
2022). This is particularly worrisome as the words ‘surprise’ and ‘novelty’, sometimes
used interchangeably, refer to different measurable variables in different studies (Barto
et al., 2013; Modirshanechi et al., 2022). Moreover, neural and behavioral signatures of
several novelty- or surprise-related variables have been found simultaneously in single
experiments (Gijsen et al., 2021; Kolossa et al., 2015; Maheu et al., 2019; Visalli et al.,
2021; Xu et al., 2021).

If there are indeed common principles of how ‘surprise’ and ‘novelty’ contribute to
different brain functions across brain areas and species, then we need systematic studies
that enable neuroscientists to distinguish between different ‘aspects’ of surprise and
novelty. In this paper, we argue that computational modeling and quantifiable definitions
are necessary first steps for such systematic studies.
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4.2 A unifying computational framework

In experimental paradigms for studying surprise and novelty, experimental subjects
(human participants or animals) are presented with unlikely or infrequent observations
(Gläscher et al., 2010; Mars et al., 2008), observations violating repeating patterns (Fiser
et al., 2016; Homann et al., 2022; Nassar et al., 2012; Ostwald et al., 2012), or, in general,
any observation that can intuitively be called ‘novel’ or ‘surprising’ (e.g., Figure 4.1A1).
The goal of these experiments is to study how novel or surprising observations influence
physiological brain signals (Antony et al., 2021; Maheu et al., 2019) and action choices
(Behrens et al., 2007; Xu et al., 2021) (Figure 4.1A2).

In an example of human multi-step decision-making (Xu et al., 2021), participants see
an image on a computer screen and are instructed to select an action by clicking on
one of the disks below the image (Figure 4.1A1). The next image to appear on the
screen depends on the current image and the selected action and is determined by some
underlying rules that are unknown to the participants. After several trials, participants
associate a particular action with a particular outcome, e.g., clicking on the right action
below the coffee cup yields the light bulb as the next image (t = 31 and t = 32 in
Figure 4.1A1). Participants will feel surprised if they see a different image than the
expected one (e.g., the thumb at t = 35 in Figure 4.1A1). The experimental design is
based on the idea that measurable changes in, e.g., EEG, pupil dilation, or reaction time
after seeing the unexpected image can be attributed to surprise.

Computational models and quantifiable definitions allow us to go beyond mere ideas. A
computational model consists of two parts: (i) an abstract description of the experimental
paradigm (from the perspective of experimental subjects; Figure 4.1B1) and (ii) a formal
description of subjects’ perception and behavior (Figure 4.1B2). We can describe most
existing experiments on surprise and novelty by using only three variables at time
t + 1 (Figure 4.1B1): The observation yt+1, a potential cue xt+1, and a set of hidden
parameters θt+1 (Table 4.1; Modirshanechi et al. (2022)). The cue xt+1 summarizes all
information in time step t + 1 that subjects may consider for predicting yt+1, e.g., the
pair (yt, at) of observation yt and action at (Figure 4.1B1). We always include the action
at in the cue variable xt+1; this allows us to use the same mathematical formulation for
experiments with or without the possibility of selecting actions. The set of parameters θt+1
summarizes the hidden rules (for example action-dependent transitions in Figure 4.1B1)
that subjects, potentially unconsciously, imagine to explain the observation yt+1 given
xt+1. The imagined rules are estimates of the ‘real’ rules of the experiment.

Defining novelty and surprise for the observation yt+1 needs a formal model of how exper-
imental subjects perceive yt+1, which is described by the second part of a computational
model. All modeling studies on surprise and novelty assume that subjects use their past
experiences (x1, y1; ...; xt, yt) and some internal update dynamics to make a prediction
of the next observation ŷt+1 (Table 4.1) and, if required, select an action at accordingly
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Figure 4.1: Computational modeling of experimental paradigms studying surprise
and novelty. A. The goal of experiments on surprise and novelty is to study the influence of
‘novel’ or ‘surprising’ observations (A1) on various behavioral and physiological measurements
(A2). The example in A1 shows a simplified version of the task of Xu et al. (2021): In each trial,
human participants see an image on a computer screen and select one of the two available actions
(i.e., disks below the image; selected actions are shown in blue). The next image depends on the
current image and the selected action and is determined by the underlying rules of the experiment
that are unknown to participants (i.e., the graph on the left side; the black arrows correspond
to available actions and the red one to a potentially surprising transition after an unannounced
change of rules). Assuming all transitions have been experienced in the first 30 trials, observing
the ‘light bulb’ at t = 32 is expected, whereas observing the ‘thumb’ at t = 35 is unexpected and
potentially surprising (after taking action ‘right’ when seeing the ‘coffee cup’). See Figure 4.2A
and Modirshanechi et al. (2022) for other examples. B. A computational model of an experiment
consists of an abstract description of the experimental paradigm (B1) and a formal description
of the subjects’ behavior (B2). B1. The great majority of experiments can be described using
three variables for the trial at time t + 1: The observation yt+1, the cue xt+1, and the parameter
set θt+1 (Modirshanechi et al., 2022). For the example in A1, yt+1 is the image at time t + 1,
xt+1 = (yt, at) is the pair of the last image yt and action at, and θt+1 models the transitions
according to the rules imagined by the subject. B2. A subject is modeled by an algorithm that
receives a cue xt+1 and an observation yt+1 as inputs and gives an inferred surprise value st+1,
an inferred novelty value nt+1, and, when required, an action at+1 as outputs. The algorithm
has an internal state that is iteratively updated according to some internal dynamics by using
the past cues and observations (x1, y1; ...; xt, yt). In general, the internal state includes a belief
b(t)(θt+1) about the parameter set θt+1, a predictive model p(t)(yt+1|xt+1) to summarize the
subject’s expectations (e.g., Equation 4.1), and a familiarity measure p

(t)
f (yt+1) to quantify the

familiarity of observations (e.g., Equation 4.2); see Table 4.1. Novelty and surprise values of each
observation are evaluated according to the internal state of the algorithm as in Equation 4.3 and
Equation 4.4, respectively. These values are used for trial-by-trial prediction of experimental
measurements (e.g., using linear regression). See Modirshanechi et al. (2022); Xu et al. (2021) for
precise definitions and Findling et al. (2021); Maheu et al. (2019) for some examples.

(Figure 4.1B2) (Friston, 2010; Meyniel et al., 2016; Soltani and Izquierdo, 2019; Yu and
Dayan, 2005). Depending on the model assumptions, the internal dynamics can have
different levels of abstractions (Marr, 1982), ranging from algorithmic implementations

86



4.3 Novelty is not surprise

of Bayesian inference (Baldi, 2002; Liakoni et al., 2021; Piray and Daw, 2021b; Schmid-
huber, 2010) to detailed models of biological neural networks (Barry and Gerstner, 2022;
Berlemont and Nadal, 2022; Iigaya, 2016; Wilmes et al., 2023). In the most general
setting, the model describes (i) the belief b(t)(θt+1) of the subject about the unknown set
of parameters θt+1 and (ii) a predictive distribution of the next observation p(t)(yt+1|xt+1)
based on that belief (Table 4.1). The belief b(t)(θt+1) indicates the probability of θt+1
to be the ‘real’ rule of the experiment at time t + 1 according to the subjects’ past
experience up to time t. The predictive distribution p(t)(yt+1|xt+1) summarizes subjects’
expectations of what they might observe next (Table 4.1). For example, in a simple
case where xt+1 and yt+1 take discrete values, we can define the predictive distribution
as (Meyniel et al., 2016; Modirshanechi et al., 2019)

p(t)(yt+1|xt+1) = C(t)(yt+1|xt+1) + constant

C(t)(xt+1) + constant
, (4.1)

where C(t)(xt+1) is the count of how many times a subject has received cue xt+1 until
time t, C(t)(yt+1|xt+1) is the count of those trials that were followed by observation yt+1,
and constants are added to avoid having zero probabilities.

4.3 Novelty is not surprise

Homann et al. (2022) identify a population of neurons in the mouse primary visual
cortex that shows strong responses to novel stimuli but not to familiar stimuli even
if the latter violate highly predictable observation patterns (Figure 4.2A1 versus
Figure 4.2A2; Table 4.1). In the computational framework described above, this means
that the physiological variables studied by (Homann et al., 2022) do not depend on the
unexpectedness of yt+1 given the cue xt+1 (i.e., preceding stimuli in this case) but only
on the unfamiliarity of yt+1 independently of any inferred regularities in the sequence
of observations (Table 4.1).

These experimental results support the earlier proposition of Xu et al. (2021) to separate
notions of surprise and novelty based on their relation to unexpectedness and familiarity:
Surprising stimuli violate expectations; hence, surprise is a measure of the unexpectedness
of yt+1 according to the predictive model p(t)(yt+1|xt+1). Novel stimuli, however, violate
familiarity; hence, novelty is a measure of the unfamiliarity of yt+1 according to the
familiarity p

(t)
f (yt+1) (Table 4.1 and Figure 4.2). The familiarity p

(t)
f (yt+1) quantifies

how frequent yt+1 (e.g., a specific image) has been up to time t independently of the cue
xt+1 and potential regularities in observations (see Bellemare et al. (2016) for similar
ideas in machine learning). For example, in cases where xt+1 and yt+1 take discrete
values (same assumption as in Equation 4.1), one can define familiarity as the observation
frequency

p
(t)
f (yt+1) = C(t)(yt+1) + constant

t + constant
, (4.2)
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Chapter 4. Zooming out: Surprise and novelty in the brain

Table 4.1: Glossary. Explanation of technical terms used to describe experiments, experimental
subjects, and observations.

When describing an experiment

• Cue refers to information that subjects use to predict the next observation. The
previously selected action (Figure 4.1A1) or the previous observation (Figure 4.2A)
can be used as cues.

• Hidden parameters describe the rules that generate experimental observations. A
rule may imply that observation B always comes after observation A (Figure 4.2A).
The rules are called hidden because they are not known by the subject but need to be
inferred from observations. The rule in the mind of a subject may not be the same as
the ‘real’ rule of the experiment.

• A Volatile experiment is an experiment where the ‘real’ rule changes at unknown
moments in time, e.g., Behrens et al. (2007); Nassar et al. (2012).

When describing an experimental subject

• The Belief summarizes the subject’s guess about the hidden rules, based on past
observations. Belief forms a probability distribution over all possible rules of the
experiment.

• Expectations summarize a subject’s guess about possible next observations, based
on the current cue and the current belief. Expectations form a probability distribution
over all possible next observations.

• A Prediction condenses a subject’s expectations into a single guess for the next
observation.

• Confidence quantifies the certainty of a subject about either (i) the hidden rule or
(ii) the next observation.

• Familiarity quantifies how often a specific observation has occurred or how similar it
is to other frequent observations. Familiarity does not depend on cues.

When describing an observation

• Predictable observations can in principle (i.e., if experimental rules are known) be
predicted with high probability from cues. For example, observations in repeating or
regular patterns are predictable (Figure 4.2A).

• Unexpected observations are either unlikely given the subject’s expectations or
predicted inaccurately given the subject’s prediction. Given sufficient experience, pre-
dictable observations are on average less unexpected than unpredictable ones. Whether
an observation is unexpected depends on the cue.

• Unfamiliar observations are those that have been encountered rarely by subjects
and are not similar to other frequent observations (i.e., low familiarity). An expected
observation can be unfamiliar (Figure 4.2A3), while a familiar observation can be
unexpected (Figure 4.2A2). Whether an observation is unfamiliar does not depend on
the cue.
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4.3 Novelty is not surprise

where C(t)(yt+1) is the count of how many times a subject has observed yt+1 until time
t, and constants are added to avoid having zero frequencies. Novelty of observation
yt+1 defined as nt+1 = − log p

(t)
f (yt+1) (‘frequency-based novelty’; Figure 4.2B) explains

some significant trial-by-trial variabilities of human EEG signals (Xu et al., 2021). More
generally, novelty of yt+1 can be defined as

nt+1 = N(t) (yt+1) , (4.3)

where N(t) is a general function that (i) takes yt+1 as its argument, (ii) is independent
of the cue xt+1, and (iii) depends on the subject’s current internal state at time t

(Figure 4.1B2).

The central criterion proposed by Xu et al. (2021) is that definitions of surprise quantify
the unexpectedness of yt+1 and must be conditioned on xt+1, whereas definitions of novelty
quantify the unfamiliarity of yt+1 and must be independent of xt+1. Almost all existing
definitions of novelty in neuroscience and psychology meet this criterion and can be
written as in Equation 4.3 (Barto et al., 2013; Schomaker and Meeter, 2015). For example,
two alternative approaches to defining novelty are to (i) consider only the first encounter
of a specific observation as novel (‘absolute novelty’; Figure 4.2B) (Cogliati Dezza et al.,
2021; Gershman et al., 2017) or (ii) define the novelty of yt+1 as a decreasing function
of the count C(t)(yt+1) (‘always decreasing novelty’; Figure 4.2B) (Dubey and Griffiths,
2019; Gershman and Niv, 2015). Note that according to novelty definitions based on
observation frequency (e.g., Equation 4.2), the novelty of the observation yt+1 increases
if it has not been observed for some time.

The distinction proposed by Xu et al. (2021) enables new interpretations of earlier
results: For example, the separate MEG signatures found by Maheu et al. (2019) for
‘frequency-based’ and ‘transition-based’ surprise can alternatively be interpreted as
separate signatures for novelty and surprise, respectively; what has been called ‘expected
surprise’ by Lecaignard et al. (2022) can be seen as novelty; and what has been called
‘contextual novelty’ in neuroscience (Schomaker and Meeter, 2015) is a form of surprise
and not novelty. These interpretations help connect otherwise separate experimental
phenomena in a single coherent framework.

Finally, the perceived novelty of a stimulus does not only depend on how often the exact
same stimulus has been experienced. For example, a familiar image with an altered
contrast level is a novel stimulus per se, but it may be perceived as a familiar one if the
subject cares only about the image identity (Mehrpour et al., 2021); similarly, some novel
stimuli may be perceived less novel than others if they look similar to familiar stimuli.
Many experimental studies support such feature-dependency in novelty responses in
the brain (Homann et al., 2022; Meyer and Rust, 2018; Zhang et al., 2022). Novelty
definitions based on the simple observation frequency in Equation 4.2 can be generalized
to account for feature-dependent novelty estimation as the familiarity measure p

(t)
f (yt+1)
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Figure 4.2: A taxonomy of surprise and novelty definitions. Novelty quantifies the
unfamiliarity of an observation (Equation 4.3), whereas surprise quantifies its unexpectedness
conditioned on the cue variable xt+1 (Equation 4.4) (Xu et al., 2021). A. Average familiarity and
expectedness can be manipulated in an experimental paradigm where each observation yt = xt+1
is the predictor of the next observation yt+1 (e.g., Gijsen et al. (2021); Homann et al. (2022);
Zhang et al. (2022); Table 4.1). A blue triangle in the middle of a repeating sequence of red
squares and circles is unexpected and unfamiliar (high surprise, high novelty; A1), whereas a
misplaced red circle is unexpected although familiar (high surprise, low novelty; A2). A blue
triangle observed for the 2nd time after a switch in the observation pattern from repeating red
square-red circle to repeating blue square-blue triangle is expected but not familiar (low surprise,
high/medium novelty; A3). B. Most definitions of novelty can be classified into three groups: 1.
‘Absolute novelty’ considers novel observations as those never observed before (C(t)(yt+1): the
count of yt+1 until time t). 2. ‘Always decreasing novelty’ is a decreasing function of the count
C(t)(yt+1). 3. ‘Frequency-based novelty’ is a decreasing function of the observation-frequency
p

(t)
f (yt+1) (e.g., Equation 4.2). C. A technical classification of surprise definitions (columns)

(Modirshanechi et al., 2022): 1. Observation-mismatch surprise needs only a prediction ŷt+1 of
the next observation. 2. Probabilistic mismatch surprise needs the full predictive distribution
p(t)(yt+1|xt+1). 3. Belief-mismatch surprise needs the subject’s full belief distribution b(t)(θt+1);
DKL denotes Kullback-Leibler divergence. An additional conceptual classification of surprise
definitions (rows) (Modirshanechi et al., 2022): 1. Prediction surprise defines surprising events
as those that violate predictions. 2. Change-detection surprise quantifies possibility of changes
in θt+1 and defines surprising events as those predicted inaccurately in comparison with an
alternative predictive model p(alt.)(yt+1|xt+1) (Liakoni et al., 2021). 3. Information-gain surprise
defines surprising events as those that change a subject’s belief. 4. Confidence-corrected surprise
adds an explicit measure of confidence into a definition of surprise, e.g., Shannon surprise plus
a measure of confidence; note that the categorization as probabilistic or belief-mismatch also
depends on the definition of confidence. While the two classifications are complementary, they
are not fully independent: One needs b(t) to evaluate an information-gain surprise, and it is
not possible to define confidence without access to b(t) or p(t) (hatched boxes). Question marks:
Categories without any example in the literature. See Modirshanechi et al. (2022) for a detailed
mathematical treatment of different definitions, their placement in the categories, and their
relationships.
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4.4 A taxonomy of surprise definitions

can be an arbitrary (non-negative and normalized) function of the stimulus. Analogously,
count-based novelty definitions can account for feature-dependent novelty estimation by
turning to frequency-based pseudo-counts (Bellemare et al., 2016; Jaegle et al., 2019).

4.4 A taxonomy of surprise definitions

Surprise is caused by a violation of expectations. However, even if we agree that surprise
quantifies the unexpectedness of yt+1 conditioned on xt+1, there are multiple possibilities
for quantifying unexpectedness (Baldi, 2002; Barto et al., 2013; Faraji et al., 2018; Kolossa
et al., 2015; Liakoni et al., 2021; Macedo et al., 2004; Palm, 2012; Schmidhuber, 2010).
In general, surprise of yt+1 can be written as

st+1 = S(t) (yt+1|xt+1) , (4.4)

where S(t) is a general function that (i) takes both yt+1 and xt+1 as arguments (in
contrast to Equation 4.3) and (ii) depends on the subject’s current internal state at
time t (Figure 4.1B2) (Modirshanechi et al., 2022). A recent systematic taxonomy
of commonly used definitions of surprise proposes two classification schemes for these
definitions (Modirshanechi et al., 2022) (Figure 4.2C).

The first classification is based on the minimal information, about the subject’s internal
state, that is needed for computing surprise with a given definition (columns in Fig-
ure 4.2C): 1. Observation-mismatch surprise is defined based on the assumption that, at
each time t, an experimental subject makes a prediction ŷt+1 of the upcoming observation
yt+1. Observation-mismatch surprise quantifies surprise as a mismatch between yt+1
and ŷt+1; an example is the absolute difference st+1 = |yt+1 − ŷt+1|, where ŷt+1 is, e.g.,
the mean of the predictive distribution (Nassar et al., 2010). 2. Probabilistic mismatch
surprise depends on the full distribution p(t)(yt+1|xt+1) of possible outcomes and, hence,
requires more information than a single prediction ŷt+1; an example is the Shannon
surprise or surprisal st+1 = − log p(t)(yt+1|xt+1) (Barto et al., 2013). 3. Belief-mismatch
surprise can be evaluated only by having access to the full belief b(t)(θt+1) about the
hidden parameter set θt+1 and requires even more information than the full distribution
p(t)(yt+1|xt+1); an example is the Bayesian surprise st+1 = DKL(b(t), b(t+1)), where DKL
denotes Kullback-Leibler divergence (Baldi, 2002; Schmidhuber, 2010).

The second classification is a conceptual one (rows in Figure 4.2C): 1. Prediction
surprise defines surprising events as those that violate predictions, e.g., the Shan-
non surprise st+1 = − log p(t)(yt+1|xt+1). 2. Change-detection surprise also defines
surprising events as those that violate predictions but only in comparison with an
alternative predictive model; an example is the difference in the Shannon surprise
st+1 = − log

[
p(t)(yt+1|xt+1)/p(alt.)(yt+1|xt+1)

]
, where p(alt.)(yt+1|xt+1) is a prior or naive

predictive model (Liakoni et al., 2021). According to change-detection surprise definitions,
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Chapter 4. Zooming out: Surprise and novelty in the brain

Table 4.2: Example experimental papers with more than one signal related to surprise
and novelty. ‘T-by-T’ indicates whether trial-by-trial data analysis is performed. ‘Compared
signals’ list precise mathematical definitions (for trial-by-trial analysis) or the description of trial
types (otherwise) that are compared. Animal studies with trial-by-trial analysis exist (e.g., English
et al. (2023); Rubin et al. (2016)) but none with more than one definition of surprise or novelty.
Abbrevations: CI: Calcium Imaging. Conf.: Confidence. Cort.: Cortex. DA: Dopamine. EEG:
Electroencephalography. EP: Electrophysiology. Exp.: Expected. fMRI: Functional Magnetic
Resonance Imaging. FP: Fiber photometry. MEG: Magnetoencephalography. OG: Optogenetic.
Seq.: Sequence. Unexp.: Unexpected.
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4.4 A taxonomy of surprise definitions

if the observation yt+1 is unlikely according to both the predictive model p(t) and its
alternative, then it is not perceived as surprising. Hence, change-detection surprise
can be interpreted as a measure of relative surprise. Importantly, change-detection
surprise is optimal to modulate learning in volatile environments (Liakoni et al., 2021;
Modirshanechi et al., 2022) (Table 4.1), in agreement with experimental observations
(Behrens et al., 2007; Nassar et al., 2012; Pasturel et al., 2020). 3. Information-gain
surprise defines surprising events as those that change a subject’s belief about the world,
e.g., the Bayesian surprise st+1 = DKL(b(t), b(t+1)). We note, however, that only a handful
of information-gain measures (Nelson, 2005) have been previously interpreted as measures
of surprise (Baldi, 2002; Kolossa et al., 2015; Schmidhuber, 2010). 4. Confidence corrected
surprise is defined based on the argument that a given error in prediction should feel
more surprising if it is made with higher confidence (Table 4.1); examples have been
suggested both in neuroscience (Faraji et al., 2018) and psychology (Macedo et al., 2004).

The two classifications together propose a refined terminology necessary for a systematic
study of surprise in the brain. The first classification is important to judge whether
surprise computation based on different definitions can be biologically plausible. For
example, evaluating observation-mismatch surprise in a recurrent network of spiking
neurons might be simpler than evaluating probabilistic mismatch and belief-mismatch
surprise under similar biological constraints (Barry and Gerstner, 2022; Iigaya, 2016;
Wilmes et al., 2023); see Fiser et al. (2010); Knill and Pouget (2004) for different views
on the neural implementation of probabilistic inference. The first classification can thus
help studies to bridge the gap between algorithmic and mechanistic neural models of
‘surprise-driven’ attention (Itti and Baldi, 2009), exploration (Gottlieb and Oudeyer,
2018), and learning (Soltani and Izquierdo, 2019).

The second classification is important as it suggests that observations that intuitively
feel surprising can do so because of different aspects of surprise. Importantly, experi-
mental studies of surprise have found separate neural signatures for different definitions
(Table 4.2). For example, Gijsen et al. (2021) found independent EEG signatures of pre-
diction, information-gain, and confidence-corrected surprise in an experimental paradigm
using somatosensory roving stimuli. Similarly, Kolossa et al. (2015) showed in an earlier
study that even different definitions in the same surprise category (e.g., information-gain
surprise) can have different neural signatures. These results suggest that the experimental
phenomena previously attributed to a single broad notion of ‘surprise’ might relate to
very different but precise definitions of surprise.

The proposed taxonomy can also provide new interpretations of existing experiments:
Beyond the comparison of trial types (e.g., expected versus unexpected trials), mathe-
matical definitions of surprise and novelty enable trial-by-trail data analysis (Table 4.2).
For example, Zhang et al. (2022) observe in monkeys that neural responses to an unex-
pected stimulus are different depending on whether the stimulus appears in a random
unpredictable sequence or in a regular predictable sequence (Table 4.1). The observed
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difference may be an indication that surprise signals in different brain areas relate to
different surprise categories rather than a single notion of surprise. Such a hypothesis
can be tested by trial-by-trial data analysis combined with computational modeling.

Finally, surprise can also quantify the unexpectedness of a scalar (or low dimensional)
summary signal extracted from the (high dimensional) observation yt+1 instead of yt+1
itself. For example, the unsigned reward prediction error (uRPE) (Hayden et al., 2011;
Rouhani and Niv, 2021) measures the mismatch between the reward r(yt+1) associated
with stimulus yt+1 and a prediction r̂t+1 thereof (see Modirshanechi et al. (2022)).
Similarly, an unsigned novelty prediction error (uNPE) measures the unexpectedness
of the novelty value N(t)(yt+1) of an observation yt+1 (Kakade and Dayan, 2002; Xu
et al., 2021). We can think of uRPE and uNPE as secondary surprise signals since
they are derived from a scalar summary signal. When interpreting neural responses to
‘novel’ stimuli, it is hence important to consider that responses correlated with novelty
may in fact be caused by errors in novelty prediction (Kakade and Dayan, 2002; Xu
et al., 2021). Moreover, subjects may assume potential associations between novelty (or
similarly between surprise) and threats or rewards (Akiti et al., 2022; Gershman and Niv,
2015), which can lead to confounding effects of threats and rewards on neural responses
to novelty (or surprise); hence, ideal experimental paradigms for studying neural and
behavioral signatures of novelty and surprise require a dissociation of these signals from
threats and rewards.

In addition, there can be multiple forms of neural responses to surprise and novelty of
an abstract observation yt+1 depending on how it is neurally represented regarding, for
example, sensory modality (e.g., auditory versus visual (Grundei et al., 2023)) or the
hierarchy of representations (e.g., image identity (Mehrpour et al., 2021; Xu et al., 2021)
versus primary visual features (Homann et al., 2022; Jordan and Keller, 2023)). For
example, a repeating sequence of binary observation as in Figure 4.2A can be presented
as either a sequence of tones or a sequence of images (i.e., different modalities); Grundei
et al. (2023) found separate modality-specific and modality-independent EEG signatures
of surprise in an experimental paradigm using somatosensory, auditory, and visual roving
stimuli. Moreover, a sequence of images could consist of meaningless fractals, sketches of
meaningful objects, or different visual drawing styles of always the same object, which
results in the same temporal sequence of stimuli in the visual domain but at different
levels of abstraction.

4.5 Towards a systematic study of surprise and novelty

Different computational roles in learning (Pearce and Hall, 1980; Piray and Daw, 2021b)
and decision-making (Berlyne, 1950; Horvath et al., 2021; Schulz and Gershman, 2019),
broadly attributed to ‘surprise’ and ‘novelty, may correspond to different but math-
ematically precise definitions of novelty and surprise and ultimately also to distinct
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physiological signals. This leaves us with two main questions: 1. How many fundamen-
tally distinct physiological signals are involved in brain computations related to surprise
and novelty? 2. What is the role of each physiological signal in each brain function?
Addressing these questions requires interactions of theory and experiments.

Recent years have seen an increasing interest in this line of research. For example, Akiti
et al. (2022) show that mice exhibit different behavioral patterns when inspecting novel
versus surprising objects and that Striatal dopamine release modulates the inspection
of novel objects differently from the inspection of surprising ones. Dubey and Griffiths
(2019) show that seeking novelty and information-gain (i.e., two distinct curiosity-related
behavioral patterns) can be considered special cases of seeking a single ‘curiosity signal’
that is ‘optimal’ for exploration and depends on experimental conditions. Another study
on exploratory behavior, on the other hand, shows that novelty-driven algorithms explain
the human search for rewarding states better than algorithms driven by prediction
surprise or information-gain, even when novelty-seeking is suboptimal (Modirshanechi
et al., 2023c). Similar approaches can be applied to studying the influence of different
aspects of surprise and novelty on learning, memory, and attention.

In conclusion, different aspects of surprise and novelty can be captured and quantified by
precise definitions and well-designed experiments. The classifications in Figure 4.2 offer
a foundation for future experimental and theoretical studies on surprise and novelty.
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An earlier version of this chapter is also available as a pre-print on bioRxiv (Modirshanechi
et al., 2023c).
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5.1 Introduction

Humans and animals consistently explore their environments, potentially driven by
objectives such as finding more valuable sources of reward (e.g., more nutritious foods
or better-paid jobs) than those currently available (Cohen et al., 2007; Gottlieb et al.,
2013; Kidd and Hayden, 2015; Schulz and Gershman, 2019). This exploratory behavior
has been modeled by Intrinsically Motivated Reinforcement Learning (RL) algorithms
(Gottlieb and Oudeyer, 2018; Jaegle et al., 2019; Modirshanechi et al., 2023b; Murayama,
2022; Oudeyer et al., 2007) that, initially inspired by research in psychology (Santucci
et al., 2013; Singh et al., 2010b), were designed to solve complex machine learning tasks
with sparse ‘extrinsic’ rewards (Bellemare et al., 2016; Haber et al., 2018; Kim et al.,
2020b; Mendonca et al., 2021; Ostrovski et al., 2017; Pathak et al., 2017; Sekar et al.,
2020). These algorithms use internally generated signals like ‘novelty’, ‘surprise’, or
‘information gain’ as ‘intrinsic’ rewards to guide exploratory action choices (Ladosz et al.,
2022; Santucci et al., 2013; Singh et al., 2010b). Since different intrinsic rewards result
in different exploration strategies (Aubret et al., 2019; Ladosz et al., 2022), a crucial
challenge in computational neuroscience is to identify the intrinsic reward that best
describes exploration in humans and animals (Modirshanechi et al., 2023b).

Our goal in this study is to identify the dominant drive of human goal-directed exploration
in complex multi-step tasks with sparse ‘extrinsic’ rewards. We define exploratory actions
as goal-directed when they are aimed at searching for extrinsic rewards. We define
multi-step tasks as those where a single action, or even a pair of actions, does not lead to
an extrinsic reward or provide final information about the resolution of a ‘puzzle’ (i.e.,
‘non-instrumental’ information; Gottlieb and Oudeyer (2018)). Instead, success, in terms
of reward or non-instrumental information, requires many successive actions. Exploration
in such multi-step tasks had not been explored until recently (Fox et al., 2023; Xu et al.,
2021) and is qualitatively different from exploration in widely studied 1-step and 2-step
tasks for reward (Cockburn et al., 2022; Daw et al., 2011; Gershman, 2019a; Gläscher
et al., 2010; Horvath et al., 2021; Wilson et al., 2014; Wu et al., 2018; Zajkowski et al.,
2017) or non-instrumental information (Daddaoua et al., 2016; Kobayashi et al., 2019;
Ogasawara et al., 2022; Poli et al., 2022; Ten et al., 2021); see Brändle et al. (2022);
Gottlieb and Oudeyer (2018); Modirshanechi et al. (2023b) for recent reviews.

In particular, multi-step environments with a stochastic component enable the dissociation
of different intrinsic rewards based on their behavioral signatures. Machine learning
research has shown that intrinsically motivated RL agents are prone to distraction
by stochasticity (the so-called ‘noisy TV’ problem; Aubret et al. (2019); Ladosz et al.
(2022)), i.e., they are attracted to novel, surprising, or just noisy states independently of
whether or not these states are rewarding (Burda et al., 2019). However, the extent of
distraction varies between different algorithms (Jarrett et al., 2022; Mavor-Parker et al.,
2022; Pathak et al., 2019; Savinov et al., 2019). It is well-known that artificial RL agents
seeking information gain eventually lose their interest in stochasticity when exploration
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yields no further information, whereas RL agents seeking surprise or novelty exhibit a
persistent or increasing attraction by stochasticity (Aubret et al., 2019; Ladosz et al.,
2022; Schmidhuber, 2010). Here, we ask (i) whether humans get distracted in the same
situations as intrinsically motivated RL agents and, if so, (ii) whether this distraction
vanishes (similar to seeking information gain) or persists (similar to seeking surprise or
novelty) over time.

To answer these questions, we bring ideas from machine learning (Aubret et al., 2019;
Ladosz et al., 2022) to behavioral neuroscience and design a novel multi-step decision-
making paradigm in a complex environment with a highly stochastic but reward-free
sub-region. We test the predictions of three different intrinsically motivated RL algorithms
(i.e., driven by novelty, surprise, and information gain) against the behavior of human
participants and show that human behavior is both qualitatively and quantitatively
consistent with that of novelty-driven RL agents: When searching for extrinsic rewards,
human participants exhibit a persistent attraction to novelty signals in the stochastic
sub-region. Our results provide evidence for novelty-driven RL algorithms as models of
human goal-directed exploration even when novelty-seeking is suboptimal.

5.2 Results

5.2.1 Experimental paradigm

We employ a multi-step decision-making paradigm (Lehmann et al., 2019; Liakoni et al.,
2022; Tartaglia et al., 2017) for navigation in an environment with 58 states plus three
goal states (Figure 5.1A-B). Three actions are available in each non-goal state, and agents
can move from one state to another by choosing these actions (arrows in Figure 5.1A-B).
We use the term ‘agents’ to refer to either human participants or agents simulated
by RL algorithms. In the human experiments, states are represented by images on a
computer screen and actions by three disks below each image (Figure 5.1C); for simulated
participants, both states and actions are abstract entities (i.e., we consider RL in a
tabular setting (Sutton and Barto, 2018)). The assignment of images to states and disks
to actions is random but fixed throughout the experiment. Agents are informed that
there are three different goal states in the environment (G∗, G1, or G2 in Figure 5.1A)
and that their task is to find a goal state 5 times; see Methods for how this information
is incorporated in the RL algorithms. Importantly, neither human participants nor RL
agents are aware of the total number of states or the structure of the environment (i.e.,
how states are connected to each other).

The 58 states of the environment can be classified into three groups: Progressing states
(1 to 6 in Figure 5.1A), trap states (7 and 8 in Figure 5.1A), and stochastic states (S-1 to
S-50 in Figure 5.1B, shown as a dashed oval in Figure 5.1A). In each progressing state,
one action (‘progressing’ action) takes agents one step closer to the goals and another
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Figure 5.1: Experimental paradigm and computational model. A. Structure of the
environment with the stochastic states merged (dashed oval; see B). Each circle represents a
state and each solid arrow an action. All actions except for the ones to the stochastic part or to
the goal states are deterministic. Dashed arrows indicate random transitions; values (e.g., 1− ε)
show the probabilities of each transition. We choose ε≪ 1 (see Methods). B. Structure of the
stochastic part of the environment (states S-1 to S-50), i.e., the dashed oval in A. B1. In state 4,
one action takes agents randomly (with uniform distribution) to one of the stochastic states. B2.
In each stochastic state (e.g., state S-1 in the figure), one action takes agents back to state 4 and
two actions to another randomly chosen stochastic state. C. Time-line of one episode in human
experiments. The states are represented by images on a computer screen and actions by disks
below each image. An episode ends when a goal image (i.e., ‘3 CHF’ image in this example) is
found. D. Block diagram of the intrinsically motivated RL algorithm. Given the state st at time
t, the intrinsic reward rint,t (i.e., novelty, information gain, or surprise) and the extrinsic reward
rext,t (i.e., the monetary reward value of st) are evaluated by a reward function and passed to
two identical (except for the reward signals) parallel RL algorithms. The two algorithms compute
two policies, one for seeking intrinsic reward πint,t and one for seeking extrinsic reward πext,t.
The two policies are then weighted according to the relative importance of the intrinsic reward
and are combined to make a single hybrid policy πt. The next action at is selected by sampling
from πt. See Methods for details.

action (‘bad’ action) takes them to one of the trap states. The third action in states
1-3 and 5-6 is a ‘self-looping’ action that makes agents stay in the same state. Except
for the progressing action in state 6, all these actions are deterministic, meaning that
they always lead to the same next state. The progressing action in state 6 is almost
deterministic: It takes participants to the ‘likely’ goal state G∗ with a probability of
1− ε and to the ‘unlikely’ goal states G1 and G2 with equal probabilities of ε

2 ≪ 1. In
state 4, instead of a self-looping action, there is a ‘stochastic’ action that takes agents
to a randomly chosen (with equal probability) stochastic state (Figure 5.1B1). In each
stochastic state, one action takes agents back to state 4, and two stochastic actions take
them to another randomly chosen stochastic state (Figure 5.1B2). In each trap state, all
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three actions are deterministic: Two actions bring agents to either the same or the other
trap state and one action to state 1.

The stochastic part of the environment – which is inspired by the machine-learning
literature and mimics the main features of a ‘noisy TV’ (Burda et al., 2019) – is a crucial
difference to existing paradigms in the literature of behavioral neuroscience (Daw et al.,
2011; Fox et al., 2023; Huys et al., 2015; Xu et al., 2021). Without the stochastic part,
intrinsic motivation helps agents to avoid the trap states and find the goal (Xu et al.,
2021), hence it helps exploration before and does not harm exploitation after finding a
goal. By adding the stochastic part, we aim to identify the dominant drive of exploration
and quantify its influence on the exploitation of the discovered goal versus attraction to
the stochastic part.

We organize the experiment in 5 episodes: Agents are randomly initialized at state 1 or
2 and are instructed to find a goal 5 times. After finding a goal, agents are randomly
re-initialized at state 1 or 2. We choose a small enough ε (Figure 5.1A) to safely assume
that all agents visit only G∗ while being aware that G1 and G2 exist (Methods).

5.2.2 Simulating intrinsically motivated agents with efficient algorithms

We simulate three intrinsically motivated RL algorithms to test whether our experimental
paradigm dissociates the exploration strategies driven by different intrinsic reward signals.
Agents simulated by each algorithm can navigate in an environment with an unknown
number of states by seeking a combination of extrinsic and intrinsic rewards (Figure 5.1D).
Intrinsic rewards are given to agents by themselves and upon visiting ‘novel’, ‘surprising’,
or ‘informative’ states, whereas extrinsic rewards are received only when visiting the three
goal states (see Methods for details). Specifically, at each time t, an agent observes state
st and evaluates an extrinsic reward value rext,t (which is zero except at the goal states)
and an intrinsic reward value rint,t (e.g., novelty of state st). Extrinsic and intrinsic
reward values are then passed to two parallel blocks of RL, each working with a single
reward signal. Independently of each other, the two blocks use efficient model-based
planning (Mattar and Lengyel, 2022; Van Seijen and Sutton, 2013) to propose a policy
πext,t that maximizes future extrinsic rewards and πint,t that maximizes future intrinsic
rewards (Aubret et al., 2019; Xu et al., 2021), respectively. The two policies are combined
into a hybrid policy πt for taking the next action at, controlled by a set of free parameters
that indicate the relative importance of intrinsic over extrinsic rewards (Methods). The
degree of exploration is high if πint,t dominates πext,t during action selection.

For the intrinsic reward rint,t, we choose one option from each of the three main categories
of intrinsic rewards in machine learning (Aubret et al., 2019; Ladosz et al., 2022): (i)
novelty (Bellemare et al., 2016; Ostrovski et al., 2017; Xu et al., 2021) quantifies how
infrequent the state st has been until time t; (ii) information gain (Little and Sommer,
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2013; Mendonca et al., 2021; Mobin et al., 2014; Sekar et al., 2020) quantifies how much
the agent updates its belief about the structure of the environment upon observing the
transition from the state-action pair (st−1, at−1) to state st; and (iii) surprise (Burda
et al., 2019; Modirshanechi et al., 2022; Pathak et al., 2017) quantifies how unexpected
it is to observe state st after taking action at−1 at state st−1.

The three different intrinsic reward signals lead to three efficient intrinsically motivated
algorithms and to three groups of simulated efficient agents: those (i) seeking novelty,
(ii) seeking information gain, and (iii) seeking surprise. In the following section, we
characterize the behavior of these simulated efficient agents (i) to test whether our
experimental paradigm dissociates action choices of different intrinsically motivated RL
algorithms and (ii) to gain insights about their principal differences. These simulations
can also be seen as qualitative predictions of different algorithms for human behavior, but
we note that these predictions are made by using efficient RL algorithms with perfect
memory and high computational power and must not be taken as precise quantitative
predictions; we present a more realistic simulation of human behavior in a later section.

5.2.3 Different intrinsically motivated algorithms exhibit principally
different behavioral patterns

To avoid arbitrariness in the choice of parameters, we fine-tune the parameters of each
algorithm to have on average the lowest number of actions in episode 1 (to have the
most efficient exploration; Methods). As a result, different algorithms achieve similar
performance during episode 1 and find the goal G∗ almost equally fast (Appendix C).
Hence, exploration policies driven by different intrinsic rewards cannot be qualitatively
distinguished during episode 1.

Given the same set of parameters, we study how different simulated efficient agents
behave in episodes 2-5 (Figure 5.2). After finding the goal G∗ for the 1st time, an agent
has two options: (i) return to the discovered goal state G∗ (exploitation) or (ii) search
for the other goal states G1 and G2 (exploration). In our simulations, we consider three
choices for the trade-off between exploration and exploitation by changing the relative
importance of πint,t over πext,t (Figure 5.1D): pure exploitation (the action policy does
not depend on intrinsic rewards, i.e., πt = πext,t), pure exploration (the action policy
does not depend on extrinsic rewards, i.e., πt = πint,t), and a mixture of both (different
shades of each color in Figure 5.2). If the extrinsic reward value assigned to G1 or G2 is
higher than the one assigned to G∗, then the policy πext,t for seeking extrinsic rewards
can also contribute to exploration in episodes 2-5 (Methods). In order to characterize
qualitative features essential to exploration driven by different intrinsic rewards, we
assume a symmetry between the three goal states in the simulated efficient agents and
assign the same extrinsic reward value to all goals (Methods); we drop this assumption
in the next sections and quantify the additional but negligible contribution of πext,t to
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explaining human exploration.

For all three groups of simulated efficient agents, decreasing the relative importance of
intrinsic rewards decreases both the search duration (Figure 5.2A1, C1, and E1) and the
fraction of time spent in the stochastic part (Figure 5.2A2, C2, and E2). This observation
implies that intrinsically motivated exploration leads to an attraction to the stochastic

0

1
0
0
0

2
0
0
0

3
0
0
0

0

1
0
0
0

2
0
0
0

3
0
0
0

53±3 %

of simulations

medium nohigh

SA: Stochastic action

PA: Progressing action4

B

A
c

ti
o

n
 p

ro
p

o
rt

io
n

 i
n

 E
p

i 
2

PA SA PA SA PA SA

0.0

0.2

0.4

0.6

0.8

1.0

A1

M
e

d
ia

n
 n

u
m

b
e

r 
o

f 
a

c
ti
o

n
s

A3

M
e

d
ia

n
 N

u
m

b
e

r 
o

f 
a

c
ti
o

n
s

F
ra

c
ti
o

n
 o

f 
ti
m

e
 i
n

 s
to

c
h

a
s
ti
c

 p
a

rt

Average Epi 2-5Average Epi 2-5
0.0

0.2

0.4

0.6

0.8

1.0
A2

corr.=

-0.80 ± 0.01

corr.=

-0.90 ± 0.01

corr.=0.33 ± 0.02

Epi 2 E3 E4 E5

BA: “Bad” action

Relative importance of novelty

Pure exploitationPurely seeking novelty

medium nohigh

relative importance of novelty

Pure

exploitation

Purely seeking

novelty

Purely seeking

novelty

high

medium nohigh

SA: Stochastic action

PA: Progressing action4

D

A
c

ti
o

n
 p

ro
p

o
rt

io
n

 i
n

 E
p

i 
2

PA SA PA SA PA SA

0.0

0.2

0.4

0.6

0.8

1.0

C1

M
e

d
ia

n
 n

u
m

b
e

r 
o

f 
a

c
ti
o

n
s

C3

F
ra

c
ti
o

n
 o

f 
ti
m

e
 i
n

 s
to

c
h

a
s
ti
c

 p
a

rt

Average Epi 2-5Average Epi 2-5
0.0

0.2

0.4

0.6

0.8

1.0
C2

corr.=

-0.77±0.01

corr.=

-0.84±0.01

corr.=-0.59±0.02

Epi 2 E3 E4 E5

BA: “Bad” action

Relative importance of information-gain

Pure exploitationPurely seeking inf.-gain

medium nohigh

relative importance of inf.-gain

Pure

exploitation

Purely seeking

inf.-gain

Purely seeking

inf.-gain

high

medium nohigh

SA: Stochastic action

PA: Progressing action4

F

A
c

ti
o

n
 p

ro
p

o
rt

io
n

 i
n

 E
p

i 
2

PA SA PA SA PA SA

0.0

0.2

0.4

0.6

0.8

1.0

E1

M
e

d
ia

n
 n

u
m

b
e

r 
o

f 
a

c
ti
o

n
s

E3

M
e

d
ia

n
 N

u
m

b
e

r 
o

f 
a

c
ti
o

n
s

F
ra

c
ti
o

n
 o

f 
ti
m

e
 i
n

 s
to

c
h

a
s
ti
c

 p
a

rt

Average Epi 2-5Average Epi 2-5
0.0

0.2

0.4

0.6

0.8

1.0
E2

corr.=

-0.53 ± 0.01

corr.=

-0.92 ± 0.01

corr.=0.51 ± 0.02

Epi 2 E3 E4 E5

BA: “Bad” action

Relative importance of surprise

Pure exploitationPurely seeking surprise

medium nohigh

relative importance of surprise

Pure

exploitation

Purely seeking

surprise

Purely seeking

surprise

high

0

30

60

90

120

150

0

30

60

90

120

150

M
e

d
ia

n
 N

u
m

b
e

r 
o

f 
a

c
ti
o

n
s

0

30

60

90

120

150

0

30

60

90

120

150

Figure 5.2: (Caption next page.)
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Figure 5.2: (Previous page.) Simulated efficient agents seeking novelty (A-B), surprise
(C-D), and information gain (E-F) have principally different behavioral characteristics
during episodes 2-5. We consider three levels of importance for intrinsic rewards (Figure 5.1D):
high (dark colors), medium (shaded colors), and no (light colors). For each level, we run 500
simulations of each algorithm. A1, C1, and E1. Median number of actions over episodes
2-5. Error bars show the standard error of the median (SEMed; evaluated by bootstrapping).
Single dots show the data of 20 (randomly chosen out of 500) individual simulations to illustrate
variabilities among simulations. Simulations stopped after 3000 actions even if a goal state was
not reached. The Pearson correlation between the search duration and the degree of exploitation
is negative (red numbers), indicating that search duration decreases if the degree of exploitation
increases (Methods). A2, C2, and E2. Average fraction of time spent in the stochastic part of
the environment during episodes 2-5. The Pearson correlation between the fraction of time spent
in the stochastic part and the degree of exploitation is negative (Methods). Error bars show
the standard error of the mean (SEMean) and single dots the data of 20 individual simulations.
A3, C3, and E3. Median number of actions in episodes 2-5 for simulated efficient agents
purely driven by intrinsic rewards (i.e., pure exploration). The Pearson correlation between the
search duration and episode number is positive for seeking novelty or surprise but is negative for
seeking information gain. Error bars show the SEMed and single dots the data of 20 individual
simulations. B, D, and F. Fraction of time taking the progressing action (PA) and the stochastic
action (SA) when encountering state 4 during episode 2. Purely seeking novelty shows a smaller
difference between the preference for SA and PA in state 4 compared to purely seeking information
gain or surprise. Error bars show the SEMean.

part of the environment, effectively keeping the simulated efficient agents away from the
goal region beyond state 6 (Figure 5.1A). Our results thus confirm earlier findings in
machine learning (Aubret et al., 2019; Burda et al., 2019) that intrinsically motivated
agents get distracted by stochastic reward-independent stimuli.

While all three groups of simulated efficient agents get distracted by the stochastic part,
their degree of distraction is different (different colors in Figure 5.2A3, C3, and E3). For
efficient agents that purely seek information gain (i.e., pure exploration), the time spent
in the stochastic part decreases over episodes (Figure 5.2C3), whereas we observe the
opposite pattern for efficient agents that purely seek novelty (Figure 5.2A3) or surprise
(Figure 5.2E3). In particular, efficient agents that purely seek surprise get most often
(i.e., in > 50% of simulations in episode 5) stuck in the stochastic part and do not escape
it within 3000 actions (Figure 5.2E3). These observations confirm the inefficiency of
seeking surprise and the efficiency of seeking information gain in dealing with noise
(Aubret et al., 2019).

In order to further dissociate action choices of different algorithms, we analyze the action
preferences of simulated efficient agents in state 4 during episode 2 (Figure 5.2B, D, and
F). For all three groups of efficient agents, increasing the relative importance of intrinsic
rewards increases their preference for the stochastic action. However, for the highest
importance of intrinsic rewards, the probability of choosing the progressing action is
substantially lower than the probability of choosing the stochastic action for seeking
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surprise or information gain (15% vs. 85%; Figure 5.2D and F), whereas this difference
is much smaller for seeking novelty (40% vs. 60%; Figure 5.2B).

This distinct behavior of novelty-seeking is due to the fact that novelty is defined for
states, whereas surprise and information gain are defined for transitions (i.e., state-action
pairs; see Methods): By the end of episode 1, the goal state has been observed only
once and remains, during episode 2, relatively novel (and hence attractive for an efficient
novelty-seeking agent) compared to most stochastic states, whereas there are many
actions between the stochastic states that have rarely or potentially never been chosen
and are, thus, attractive for an efficient agent seeking surprise or information gain.

To summarize, different intrinsically motivated algorithms exhibit principally different
behavioral patterns in our experimental paradigm. We consider these behavioral patterns
as qualitative predictions for human behavior.

5.2.4 Human participants

To characterize the key features and the dominant drive of human exploration in our
experimental paradigm, we first compare the exploratory behavior of human participants
with that of simulated efficient agents. For simulated efficient agents, the relative
importance of the intrinsic reward for action selection (Figure 5.1D) determines the
balance of exploration versus exploitation. A challenge in human experiments is that we
do not have explicit control over the variable that controls the relative importance of
intrinsic rewards compared to extrinsic rewards. Inspired by earlier studies (Gershman
and Niv, 2015; Stojić et al., 2020; Traner et al., 2021), we conjecture that human
participants who are more optimistic about finding a goal with a high value of reward are
more curious to explore the environment than human participants who are less optimistic.
In other words, we hypothesize that the motivation to explore and hence the relative
importance of intrinsic rewards in human participants is positively correlated with their
degree of ‘reward optimism’, where we define reward optimism as the expectancy of
finding a goal of higher value than those already discovered.

Based on this hypothesis, we include a novel reward manipulation in the instructions
given at the beginning of the experiment: We inform human participants that there are
three different possible reward states corresponding to values of 2 Swiss Franc (CHF), 3
CHF, and 4 CHF, represented by three different images (Methods). At the beginning of
the experiment, we randomly assign the three different reward values to the goal states
G∗, G1, and G2 in Figure 5.1A, separately for each participant (without informing them),
and keep the assignment fixed throughout the experiment. After this random assignment,
G∗ has a different value for different participants. Even though all participants receive
the same instructions, participants who are randomly assigned to an environment with
4 CHF reward value for G∗ do not have any monetary incentive to further explore in
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episodes 2-5 (4 CHF group = a low degree of reward optimism), whereas participants
who are assigned to an environment with 2 CHF reward value for G∗ have a monetary
incentive in episodes 2-5 to further explore the environment to find a higher reward (2
CHF group = a high degree of reward optimism). We therefore expect participants in
the 2 CHF group to keep searching for more valuable goals in episodes 2-5. Our goal is to
characterize the exploration strategy for this search behavior. Therefore, we have three
different groups of participants with three different levels of reward optimism in episodes
2-5; this information is incorporated in the RL algorithms as prior knowledge about
action values and the environment structure (Methods). We note that our definition
of reward optimism in the context of our experiment is in line but independent of the
notion of general optimism that is quantified for individual participants in psychology
(Carver et al., 2010).

Following a power analysis based on the data of simulated efficient agents (Methods), we
recruited 63 human participants and collected their action choices during the 5 episodes
of our experiment: 23 participants in an environment with 2 CHF reward value for G∗

and two times 20 human participants in environments with 3 CHF and 4 CHF reward
value for G∗, respectively. In the rest of the manuscript, we refer to each group by their
reward value of G∗, e.g., the 3 CHF group is the group of human participants who were
assigned to 3 CHF reward value for G∗ (as in Figure 5.1C). We excluded the data of 6
human participants from further analyses since they either did not finish the experiment
or had an abnormal performance (Methods).

5.2.5 Human participants exhibit a persistent attraction to stochasticity

We perform the same series of analyses on the behavior of human participants as those
performed on the behavior of simulated efficient agents (Figure 5.3). In episodes 2-5, the
search duration of human participants (Figure 5.3A1) and the fraction of time they spend
in the stochastic part (Figure 5.3A2) are both negatively correlated with the goal value
of their environment, e.g., the 2 CHF group has a longer search duration and spends
more time in the stochastic part than the other two groups. Moreover, increasing the
goal value increases the preference of human participants for the progressing action in
state 4 during episode 2 (Figure 5.3B). These observations support our hypothesis that
increasing the degree of reward optimism influences the behavior of human participants
in the same way as increasing the relative importance of intrinsic rewards influences
the behavior of simulated efficient agents (e.g., compare Figure 5.3A1, A2, and B with
Figure 5.2A1, A2, and B, respectively).

The behavior of the 2 CHF group is particularly interesting since they are the most
optimistic group of participants and have the highest motivation to search for the other
goal states. The 2 CHF group exhibits a constant search duration over episodes 2-5
(zero correlation accepted by Bayesian hypothesis testing (Kass and Raftery, 1995);
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Figure 5.3A3). This implies that they persistently explore the stochastic part. Moreover,
during episode 2, the 2 CHF group chooses the progressing and the stochastic actions
equally often (no-difference in means accepted by Bayesian hypothesis testing (Kass and
Raftery, 1995); Figure 5.3B). If we assume that the high degree of reward optimism
in the 2 CHF group results in a policy that is driven dominantly by intrinsic rewards
(driving exploration) and only marginally by extrinsic rewards, then these observations
are more similar to the qualitative predictions of seeking novelty than those of seeking
information gain or surprise (compare Figure 5.3B against Figure 5.2B, D, and F).

The mismatch between the behavior of human participants (Figure 5.3) and novelty-
seeking simulated efficient agents (Figure 5.2A-B) can be because (i) the action choices
of the 2 CHF group are not purely exploratory, (ii) they are not as efficient as the RL
algorithm used for simulating efficient agents (Figure 5.1), or (iii) novelty is not the
dominant drive of human exploration. In the next section, we remove the constraints
related to the first two possibilities and directly test the last one.

5.2.6 Novelty-seeking is the most probable model of human exploration

In the previous section, we observed that human participants exhibit patterns of behavior
qualitatively similar but not identical to those of novelty-seeking simulated efficient agents.
The qualitative predictions in Figure 5.2 were made based on the assumptions of (i)
using efficient RL algorithms with perfect memory and high computational power, (ii)
using parameters that were optimized for the best performance in episode 1, and (iii)
assigning the same extrinsic reward value to different goal states. In this section, we use
a more realistic model of behavior than that of efficient agents in Figure 5.2: In order to
model the behavior of human participants, we use a hybrid RL model (Daw et al., 2011,
2005; Liakoni et al., 2022; Xu et al., 2021) combining model-based planning (Mattar
and Lengyel, 2022) and model-free habit-formation (Gläscher et al., 2010), account for
imperfect memory and suboptimal choice of parameters, and allow our algorithms to
assign different extrinsic reward values to different goal states (Methods). We fit the
parameters of our three intrinsically motivated algorithms to the action choices of each
individual participant by maximizing the likelihood of data given parameters (Methods).
Such a flexible modeling approach allows each of the three algorithms to find its closest
version to the behavior of human participants, constrained on using one specific intrinsic
reward signal (i.e., novelty, surprise, or information gain).

Given the fitted algorithms, we use Bayesian model-comparison (Daw, 2011; Rigoux et al.,
2014) to quantitatively test whether human behavior is explained better by seeking novelty
than seeking information gain or surprise (Methods). Our model-comparison results show
that seeking novelty is the most probable model for the majority of human participants,
followed by seeking information gain as the 2nd most probable model (Figure 5.4A;
Protected Exceedance Probability = 0.99 and 0.01 for seeking novelty and information
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Figure 5.3: Human participants persistently explore the stochastic part if they are
highly optimistic. A. Search duration in episodes 2-5. A1. Median number of actions over
episodes 2-5 for the three different groups: 2 CHF (dark), 3 CHF (medium), and 4 CHF (light).
Error bars show the SEMed (evaluated by bootstrapping) and single dots the data of individual
participants. The Pearson correlation between the search duration and the goal value is negative
(correlation test; t = −4.2; 95%Confidence Interval (CI) = (−0.67,−0.27); Degree of Freedom
(DF) = 55; Methods). A2. Average fraction of time spent in the stochastic part of the environment
during episodes 2-5. The Pearson correlation between the fraction of time spent in the stochastic
part and the goal value is negative (correlation test; t = −4.7; 95%CI = (−0.70,−0.32); DF
= 55; Methods). Error bars show the SEMean and single dots the data of individual participants.
A3. Median number of actions in episodes 2-5 for the 2 CHF group. A Bayes Factor (BF) of
1/3.7 in favor of the null hypothesis (Kass and Raftery, 1995) suggests a zero Pearson correlation
between the search duration and the episode number (one-sample t-test on individual correlations;
t = 0.63; 95%CI = (−0.20, 0.37); DF = 20). Error bars show the SEMed and single dots the data
of individual participants. C. Fraction of time choosing the progressing action (PA) and the
stochastic action (SA) when encountering state 4 during episode 2; see Appendix C for other
progressing states. Error bars show the SEMean. The difference between PA and SA for the 4
CHF group is significant (one-sample t-test; t = 2.99; 95%CI = (0.14, 0.81); DF = 16). A BF of
1/4.6 in favor of the null hypothesis (Kass and Raftery, 1995) suggests an equal average between
PA and SA for the 2 CHF group (one-sample t-test; t = 0.039; 95%CI = (−0.25, 0.26); DF = 20).
The test for 3 CHF group is inconclusive (one-sample t-test; t = 1.17; 95%CI = (−0.13, 0.47); DF
= 18). Red p-values: Significant effects with False Discovery Rate controlled at 0.05 (Efron and
Hastie, 2016) (see Methods). Red BFs: Significant evidence in favor of the alternative hypothesis
(BF≥ 3). Blue BFs: Significant evidence in favor of the null hypothesis (BF≤ 1/3).

gain, respectively; see Methods). This result shows that seeking novelty describes the
behavior of human participants better than seeking information gain and surprise, but it
does not tell us which aspects of data statistics cannot be explained by algorithms driven
by information gain or surprise. To investigate this question, we use our three intrinsically
motivated algorithms with their fitted parameters and simulate new participants, i.e.,
we perform Posterior Predictive Checks (PPC) (Nassar and Frank, 2016; Wilson and
Collins, 2019). As opposed to the simulations in Figure 5.2, we do not freely choose
the level of exploration in simulations for PPC. Rather, the level of exploration of each
newly simulated participant is completely determined by the previously fitted parameters
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Figure 5.4: Novelty-seeking is the most probable model of human behavior. A. Human
participants’ action choices are best explained by novelty-seeking (see Methods for details). A1.
Model log-evidence summed over all participants (i.e., assuming that different participants have
the same exploration strategy but can have different parameters; see Daw (2011)) is significantly
higher for seeking novelty than seeking information gain or surprise. High values indicate good
performance, and differences greater than 10 are traditionally (Efron and Hastie, 2016) considered
as strongly significant. A2. The expected posterior model probability with random effects
assumption (i.e., assuming that different participants can have different exploration strategies
and different parameters; see Rigoux et al. (2014)) given the data of all participants. PXP stands
for Protected Exceedance Probability (Rigoux et al., 2014), i.e., the probability of one model
being more probable than the others. Error bars show the standard deviation of the posterior
distribution. B. Confusion matrix from the model recovery procedure: Each row shows the
results of applying our model-fitting and -comparison procedure (as in A2) to the action choices of
simulated participants by one of the three algorithms (with their parameters fitted to human data;
see Methods). Color-code shows the expected posterior probability and numbers in parentheses
the PXP (both averaged over 5 sets of 60 simulated participants). We could always recover the
model that had generated the data (PXP ≥ 0.98), using almost the same number of simulated
participants (60) as human participants (57).

from one of the 57 human participants; specifically, each simulated participant belongs
to one of the three groups of human participants (e.g., the 3 CHF group), and its action
choices are simulated using a set of parameters fitted to the action choices of one human
participant randomly selected from the participants in that group (Methods).

Given the PPC results, we first perform model-recovery (Wilson and Collins, 2019) on
the data from the simulated participants: Indeed, model recovery confirms that we can
infer which algorithm has generated the action choices of simulated participants (by
repeating our model-fitting and -comparison; Figure 5.4B). This implies that even the
versions of different algorithms that are closest to human data can be dissociated in our
experimental paradigm (average Protected Exceedance Probability ≥ 0.98 for the true
model in Figure 5.4B; see Methods). Next, we perform a systematic comparison between
the statistics of the action choices of human participants and those of the simulated
participants (the two most discriminating statistics are reported in Figure 5.5A-B and
a systematic analysis in Appendix C). Our results show that simulated participants
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Figure 5.5: Seeking novelty, but not surprise or information gain, can reproduce
data statistics. For each of the three intrinsic rewards, we run 1500 simulations of algorithms
with parameters fitted to individual human participants; random seeds are different in each
simulation. We divide the simulated participants into three groups (corresponding to the 2 CHF,
3 CHF, and 4 CHF goal values) and use the same criteria as we used for human participants
to detect and remove outliers among simulated participants (Methods). A. Average fraction of
time during episodes 2-5 spent by the 2 CHF group of human participants (blue circles, same
data as in Figure 5.3A2) and the simulated participants (bars). Error bars: SEMean. P-value
and BF: Comparison between the simulated and human participants (unequal variances t-test).
Human participants spend a significantly greater fraction of their time in the stochastic part than
simulated participants seeking information gain (t = 4.4; 95%CI = (0.08, 0.23); DF = 21.2) or
surprise (t = 6.3; 95%CI = (0.15, 0.30); DF = 21.6). No significant difference was observed for
novelty-seeking (t = 1.0; 95%CI = (−0.04, 0.11); DF = 22.3). B. Pearson correlation between
the fraction of time during episodes 2-5 spent in the stochastic part and the goal value. Human
participants’ data shows the same correlation value as reported in Figure 5.3A2. Error bars:
Standard deviation evaluated by bootstrapping. P-values are from permutation tests (1000
sampled permutations; Bayesian testing was not applicable). C. The relative contribution of
intrinsic rewards (i.e., the dominance of πint,t over πext,t; Equation 5.18 in Methods) in episodes
2-5 for the 2 CHF group of simulated participants. P-value and BF: Comparison with 0.5
(one-sample t-test). We observe a dominance of πint,t for seeking novelty (t = 58.2; 95%CI
= (0.88, 0.91); DF = 416) and information gain (t = 12.7; 95%CI = (0.63, 0.67); DF = 379) but
a dominance of πext,t for seeking surprise (t = −14.6; 95%CI = (0.27, 0.32); DF = 327). Red
p-values: Significant effects with False Discovery Rate controlled at 0.05 (Efron and Hastie, 2016)
(see Methods). Red BFs: Significant evidence in favor of the alternative hypothesis (BF≥ 3).

using novelty as intrinsic rewards reproduce all data statistics (including the zero correla-
tion observed in Figure 5.3A3; see Appendix C), whereas simulated participants using
information gain or surprise fail to do so. The failure of algorithms using information
gain or surprise is most evident regarding the fraction of time spent in the stochastic
part during episodes 2-5: 1. We observe that the 2 CHF group of simulated participants
who seek information gain or surprise spends a significantly smaller fraction of their
time (less than half) in the stochastic part of the environment than the 2 CHF group
of human participants (Figure 5.5A). 2. Simulated participants using information gain
or surprise fail to reproduce the observed negative correlation between the goal value
and the fraction of time spent in the stochastic part (Figure 5.5B). We emphasize that
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both shortcomings are observed even though the parameters of the algorithms had been
previously optimized to explain as best as possible the sequence of action choices across
the whole experiment.

The failure of surprise-seeking algorithms to reproduce these statistics is due to the
detrimental consequences of seeking surprise in the presence of stochasticity (e.g., as
observed for the simulated efficient agents in Episode 5 of Figure 5.2E3). Hence, to stop
the simulated participants from spending an enormous amount of time during episode 5
in the stochastic part of the environment, fitting surprise-seeking to action choices of
human participants yields a set of parameters that causes action choices to be dominated
by extrinsic reward (relative importance of surprise-seeking about 0.3 for the 2 CHF
group; Figure 5.5C), which in turn cannot explain the overall high level of exploration
observed in the 2 CHF group of human participants (Figure 5.5A). Similarly, the relative
importance of information gain is around 0.65 when parameters of a hybrid algorithm
driven by information gain are optimized to fit human behavior. A higher value of relative
importance would make, during episode 2, the algorithm too attracted to the stochastic
action in state 4 compared to humans (compare Figure 5.2D with Figure 5.3B). With
such reduced importance of information gain, the hybrid algorithm cannot, however,
explain the specific behavioral features in Figure 5.5A and B. Therefore, the attraction of
human participants to the stochastic part has specific characteristics that are explained
by seeking novelty but not by seeking surprise or information gain.

Taken together our results provide strong quantitative and qualitative evidence for novelty
as the dominant drive of human exploration in our experiment.

5.2.7 Reward optimism correlates with the relative importance of
novelty

Using novelty-seeking as the most probable model of human behavior, we can now
explicitly test our hypothesis that reward optimism increases human motivation to
explore by increasing the relative importance of novelty. By analyzing the parameters of
our novelty-seeking algorithm fitted to the behavioral data, we observe, in agreement
with our hypothesis, a significant negative correlation between the relative importance of
novelty during action selection (in episodes 2-5) and the goal value participants found in
episode 1 (Figure 5.6A; parameter-recovery in Figure 5.6C). Moreover, the participants
in the 2 CHF group continue with an almost fully exploratory policy in episodes 2-5
indicating that they have only a small bias towards exploiting the small but known
reward (Figure 5.6A).

Since our simulated participants are informed that there are three different goal states
in the environment, the reward-seeking component πext,t of the action policy can also
contribute to exploratory behavior, e.g., through optimistic initialization of Q-values
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Figure 5.6: Reward optimism increases the relative importance of novelty in action
selection. A. The relative importance of novelty-seeking in episodes 2-5 is computed for each
participant after fitting the model to data (similar to Figure 5.5C but using action choices of
human participants instead of simulated participants; Methods). Error bars show the SEMean
and single dots the data of individual participants. We observe a significant negative correlation
between the relative importance of novelty and the goal value (correlation test; t = −3.6; 95%CI
= (−0.63,−0.20); DF = 55). P-values and BFs on top: Comparison with 0.5 (one-sample t-test).
We observe a significant dominance of πint,t for the 2 CHF group (t = 5.9; 95%CI = (0.70, 0.92);
DF = 20). A BF of 1/4.0 in favor of the null hypothesis (Kass and Raftery, 1995) suggests an
equal contribution of πext,t and πint,t for the 4 CHF group (t = −0.23; 95%CI = (0.35, 0.62);
DF = 16). The test for 3 CHF group is inconclusive (t = 1.8; 95%CI = (0.48, 0.80); DF = 18).
B. The relative importance of novelty-seeking in episode 1 implies a significant dominance of
novelty-seeking against optimistic initialization for exploration (t = 7.3; 95%CI = (0.68, 0.82);
DF = 56). C. Parameter-recovery (Wilson and Collins, 2019) using the action choices of 150
(= 50 per group) simulated participants seeking novelty (Methods). The comparison between
the true contribution of novelty-seeking to action selection (computed with the parameters used
for simulations) and the recovered contribution (computed with the parameters fitted to the
simulated action choices) shows that the relative importance of novelty-seeking is on average
identifiable in our experimental paradigm: Positive correlations both for episode 1 (t = 9.0;
95%CI = (0.48, 0.70); DF = 148) and episodes 2-5 (t = 12; 95%CI = (0.63, 0.79); DF = 148). Red
p-values: Significant effects with False Discovery Rate controlled at 0.05 (Efron and Hastie, 2016)
(see Methods). Red BFs: Significant evidence in favor of the alternative hypothesis (BF≥ 3).
Blue BFs: Significant evidence in favor of the null hypothesis (BF≤ 1/3).

(Sutton and Barto, 2018) or prior assumptions about the state-transitions (see Methods
for a theoretical analysis). To study the extent of this contribution, we focus on episode
1 where this effect is most easily detectable: We observe a dominant influence of novelty-
seeking on action selection (Figure 5.6B). This implies that, to explain human behavior,
the knowledge of the existence of different goal states must drive exploration through a
novelty-seeking policy instead of the optimistic initialization of a reward-seeking policy.
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5.3 Discussion

We designed a novel experimental paradigm to study human goal-directed exploration in
multi-step stochastic environments with sparse rewards. We made two main observations:
(i) Human participants who are optimistic about finding higher rewards than those already
discovered are persistently attracted to stochasticity; and (ii) this persistent attraction
is explained better by seeking novelty than seeking information gain or surprise, even
though seeking information gain is theoretically more robust in dealing with stochasticity.

How humans explore their environments has been a long-lasting question in neuroscience
and psychology (Cohen et al., 2007; Schulz and Gershman, 2019; Wilson et al., 2021).
Experimental studies have shown that humans use a combination of random and directed
exploration (Gershman, 2019a; Wilson et al., 2014), potentially linked to different
neural mechanisms (Dubois et al., 2021; Tomov et al., 2020; Wittmann et al., 2008;
Zajkowski et al., 2017). Theoretical studies have proposed distinct motivational signals
as potential drives of directed exploratory actions (Friston et al., 2017; Klyubin et al.,
2005; Modirshanechi et al., 2023b; Murayama, 2022; Schulz and Gershman, 2019). While
human exploration is in general driven by a mixture of these signals (Brändle et al., 2023;
Cockburn et al., 2022; Kobayashi et al., 2019; Poli et al., 2022), a particular signal can
dominate exploration in specific tasks with (Gershman and Niv, 2015; Giron et al., 2023;
Horvath et al., 2021; Meder and Nelson, 2012; Wu et al., 2018) and without extrinsic
rewards (Cubit et al., 2021; Dubey and Griffiths, 2019; Itti and Baldi, 2009; Kidd et al.,
2012; Ten et al., 2021; Wu et al., 2022). However, most results on human exploration
are limited to 1-step decision-making tasks (e.g., multi-armed bandits), and it is unclear
whether they can be generalized to more complex and realistic situations (Brändle et al.,
2022; Modirshanechi et al., 2023b).

To bridge a link between exploration in 1-step and multi-step tasks, we showed in an earlier
study (Xu et al., 2021) that novelty dominantly drives human exploration in complex but
deterministic environments with sparse rewards, i.e., situations where novelty-seeking is
empirically shown to be an efficient and close-to-optimal exploration strategy (Bellemare
et al., 2016; Ostrovski et al., 2017). Observations (i) and (ii) above provide further
evidence for novelty as the dominant drive of human goal-directed exploration even in
situations where seeking novelty is not optimal. Specifically, after episode 1, participants
can reasonably assume that the task is solvable, i.e., if they have succeeded in finding
the 2 CHF reward, then they should be able to also find the higher rewards. Hence, the
fact that the participants in the 2 CHF group continue the search during episodes 2-5
is expected and economically rational, but our results show that their novelty-driven
search strategy is suboptimal. Further experimental studies are needed to investigate the
implications of our results for other types of human exploratory behavior. In particular,
it is unclear whether goal-directed exploration, as studied here, shares some drives and
mechanisms with reward-free exploration strategies in, e.g., reactive orienting and passive
viewing (Kidd et al., 2012; Morrens et al., 2020), navigation (Montgomery, 1953, 1954),
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and non-instrumental decision-making tasks (Daddaoua et al., 2016; Kobayashi et al.,
2019; Ogasawara et al., 2022).

Our results appear to be in contradiction with the long-lasting belief that humans are
not prone to the ‘noisy TV’ problem (Gottlieb et al., 2013; Mavor-Parker et al., 2022;
Schmidhuber, 2010). It is important, however, to note that the stochasticity in our
environment is different from passively watching a noisy grey-flickering TV screen. Rather
the environment allows participants to take actions that are in spirit similar to exploring
different TV channels, where each channel contains images or videos – similar to the
recent realizations of ‘noisy TV’ in machine learning (Burda et al., 2019). In this context,
our experimental paradigm is a model experiment of recent social media where users
spend hours on the ‘endless scrolling option’ to watch new videos (Montag et al., 2019,
2021) – despite the availability of alternative activities with ‘extrinsic’ rewards.

Accordingly, our results challenge the optimality of human exploration (Dubey and
Griffiths, 2019; Singh et al., 2010b) and imply that algorithmic advances in machine
learning may not contribute to finding better models of human exploration. However,
we note that, for computing novelty, an agent only needs to track the state frequencies
over time and does not need any knowledge of the environment’s structure (Methods);
hence computing novelty is computationally cheaper than computing information gain.
This suggests that a potentially higher level of distraction by novelty in humans may be
the price of spending less computational power. In other words, novelty-seeking in the
presence of stochasticity may not be a globally optimal strategy for exploration but can
be an optimal strategy given a set of prior assumptions and computational constraints,
i.e., a ‘resource rational’ policy (Bhui et al., 2021; Binz and Schulz, 2022; Lieder and
Griffiths, 2020).

In addition to observations (i) and (ii), we found that the relative importance of novelty-
and reward-induced behaviors in human participants is correlated with the degree of
reward optimism. This is in line with the known influence of environmental variables
on an agent’s preference for novelty (Akiti et al., 2022; Gershman and Niv, 2015; Stojić
et al., 2020). In particular, theories of ‘motivation crowding effect’ (Frey and Jegen,
2001) and ‘undermining effect’ (Deci et al., 1999; Murayama et al., 2010) suggest that the
absolute value of extrinsic reward might contribute, in addition to the reward optimism,
to the observed negative correlation in Figure 5.6A, predicting that even if participants
were confident that there is no other goal state in the environment, the 2 CHF group
would spend more time in the stochastic part than the 4 CHF group – simply because 2
CHF is not an attractive reward anyway. A potential future direction is to investigate
the interplay of novelty and reward in various experimental environments with various
reward distributions and sources of stochasticity.

Optimism in psychology has been defined as a ‘variable that reflects the extent to which
people hold generalized favorable expectancies for their future’ (Carver et al., 2010) and
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has been linked to several neural and behavioral characteristics (Carver et al., 2010;
Sharot et al., 2011; Strunk et al., 2006). While the traditional approach to measure
optimism is through self-tests (Scheier et al., 1994), more recently statistical inference
using RL (Lefebvre et al., 2017) and Bayesian (Gesiarz et al., 2019; Stankevicius et al.,
2014) models of behavior have been proposed to quantify variables correlated with
traditional measurements. While there are multiple traditional ways to incorporate the
notion of optimism into the RL framework (Methods), seeking intrinsic rewards has
also been interpreted in the machine learning community as an ‘optimistic policy’ for
exploration (Ghavamzadeh et al., 2015). Our results show that the preference for an
intrinsic reward is indeed correlated with a notion of optimism defined in the context
of our experiment as the expectancy of finding a goal of higher value in episodes 2-5
(‘reward optimism’ in Figure 5.6A). Moreover, the persistent exploration of the stochastic
part of our environment observed in the behavior of human participants (Figure 5.3B3)
is conceptually consistent with the known phenomena of optimism bias (Sharot, 2011)
and optimistic belief updating in humans (Garrett and Sharot, 2017; Palminteri and
Lebreton, 2022; Sharot et al., 2011).

Even though notions of ‘novelty’, ‘surprise’, and ‘information gain’ are frequently used in
neuroscience (Baldi, 2002; Kolossa et al., 2015; Xu et al., 2021), psychology (Maguire
et al., 2011; Nelson, 2005; Reisenzein et al., 2019), and machine learning (Aubret et al.,
2019; Ladosz et al., 2022; Schmidhuber, 2010), there is no consensus on the precise
definitions of these notions as scientific terms (Barto et al., 2013; Modirshanechi et al.,
2022). Our results in this paper are based on the specific mathematical formulations
that we have chosen (Methods), but we expect our conclusions to be invariant to the
precise choice of definitions as long as (i) novelty quantifies infrequency of states (Xu
et al., 2021), e.g., defined based on density models in machine learning (Bellemare et al.,
2016; Ostrovski et al., 2017); (ii) surprise quantifies mismatches between observations and
agents’ expectations, where the expectations are made based on the previous state-action
pair, including all measures of prediction surprise (Modirshanechi et al., 2022) and typical
measures of prediction error in machine learning (Burda et al., 2019; Pathak et al.,
2017); and (iii) information gain quantifies improvements in the agents’ world-model
and vanishes by accumulation of experience, e.g., including Bayesian (Baldi, 2002) and
Postdictive surprise (Kolossa et al., 2015) and measures of disagreement and progress-rate
in machine learning (Kim et al., 2020b; Mendonca et al., 2021; Oudeyer, 2018; Pathak
et al., 2019; Sekar et al., 2020).

In conclusion, our results show (i) that human decision-making is influenced by an
interplay of intrinsic with extrinsic rewards that is controlled by reward optimism and
(ii) that novelty-seeking RL algorithms can successfully model this interplay in tasks
where humans search for rewarding states.
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5.4 Methods

5.4.1 Ethics statement

The data for human experiment were collected under CE 164/2014, and the protocol was
approved by the ‘Commission cantonale d’éthique de la recherche sur l’être humain’. All
participants were informed that they could quit the experiment at any time, and they
all signed a written informed consent. All procedures complied with the Declaration of
Helsinki (except for pre-registration).

5.4.2 Experimental procedure for human participants

63 participants joined the experiment. Data of 6 participants were removed (see below)
and, thus, data of 57 participants (27 female, mean age 24.1± 4.1 years) were included
in the analyses. All participants were naïve to the purpose of the experiment and had
normal or corrected-to-normal visual acuity. The experiment was scripted in MATLAB
using the Psychophysics Toolbox (Brainard and Vision, 1997).

Before starting the experiment, the participants were informed that they need to find
either one of the 3 goal states 5 times. They were shown the 3 goal images and informed
that different images had different reward values of 2 CHF, 3 CHF, and 4 CHF. Specifically,
they were given the example that ‘if you find the 2 CHF goal twice, 3 CHF goal once, and
4 CHF goal twice, then you will be paid 2× 2 + 1× 3 + 2× 4 = 15 CHF’; see ‘Informing
RL agents of different goal states and modeling optimism’ for how simulated efficient
agents and simulated participants were given this information. At each trial, participants
were presented an image (state) and three grey disks below the image (Figure 5.1C).
Clicking on a disk (action) led participants to a subsequent image which was chosen
based on the underlying graph of the environment in Figure 5.1A-B (which was unknown
to the participants). Participants clicked through the environment until they found one
of the goal states which finished an episode (Figure 5.1C).

The assignment of images to states and disks to actions was random but kept fixed
throughout the experiment and among participants. Exceptionally, we did not make
the assignment for the actions in state 4 before the start of the experiment. Rather, for
each participant, we assigned the disk that was chosen in the 1st encounter of state 4
to the stochastic action and the other two disks randomly to the bad and progressing
actions, respectively (Figure 5.1A). With this assignment, we made sure that all human
participants would visit the stochastic part at least once during episode 1. The same
protocol was used for simulated efficient agents and simulated participants.

Before the start of the experiment, we randomly assigned the different goal images
(corresponding to the three reward values) to different goal states G∗, G1, and G2 in
Figure 5.1A, separately for each participant. The image and hence the reward value
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were then kept fixed throughout the experiment. In other words, we randomly assigned
different participants to different environments with the same structure but different
assignments of reward values. We, therefore, ended up with 3 groups of participants: 23 in
the 2 CHF group, 20 in the 3 CHF group, and 20 in the 4 CHF group. The probability of
encountering a goal state other than G∗ is controlled by the parameters ε. We considered
ε to be around machine precision 10−8, so we have (1− ε)5×63 ≈ 1− 10−5 ≈ 1, meaning
that all 63 participants would be taken almost surely to the goal state G∗ in all 5 episodes.
We note, however, that a participant could in principle observe any of the 3 goals if
they could choose the progressing action at state 6 sufficiently many times because
limt→∞(1− ε)t = 0.

2 participants (in the 2 CHF group) did not finish the experiment, and 4 participants (1
in the 3 CHF group and 3 in the 4 CHF group) took more than 3 times group-average
number of actions in episodes 2-5 to finish the experiment. We considered this as a sign
of being non-attentive and removed these 6 participants from further analyses.

The sample size was determined by a power analysis performed on the data of the
efficient simulations done for Figure 5.2 (see ‘Efficient model-based planning for simulated
participants’ for the simulation details). Our goal was to have a statistical power of more
than 80% (with a significance level of 0.05) for correlations in panels Figure 5.2A, C,
and E as well as for the differences for the highest importance of intrinsic rewards in
Figure 5.2D and F.

The correction for multiple hypotheses testing was done by controlling the False Discovery
Rate at 0.05 (Efron and Hastie, 2016) over all 22 null hypotheses that are tested in
Figure 5.3, Figure 5.5, and Figure 5.6 (p-value threshold: 0.034). All Bayes Factors
(abbreviated BF in the figures) were evaluated using Schwartz approximation (Kass
and Raftery, 1995) to avoid any assumptions on the prior distribution. We note that
evaluating the Bayes Factors using priors suggested by Rouder and Morey (2012); Rouder
et al. (2009) does not change our conclusions. We also note that using the Spearman
correlation instead of the Pearson correlation in Figure 5.2A, C, and E, Figure 5.3A, and
Figure 5.6A does not change our conclusions.

5.4.3 Full hybrid model

We first present the most general case of our algorithm as visualized in Figure 5.1D and
then explain the special cases used for simulating efficient agents (Figure 5.2) and for
modeling human behavior (Figure 5.4-Figure 5.6). We used ideas from non-parametric
Bayesian inference (Ghahramani, 2013) to design an intrinsically motivated RL algorithm
for environments where the total number of states is unknown. We present the final
results here and present the derivations and pseudo-code in Appendix C.

We indicate the sequence of actions and states until time t by s1:t and a1:t, respectively,
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and define the set of all known states at time t as

S(t) =
{

s : ∃ t′ ∈ {1, ..., t} s.t. s = st′

}
∪ {G̃0, G̃1, G̃2}, (5.1)

where G̃is are our three different goal states – G̃0 corresponds to the 2 CHF goal, G̃1 to
the 3 CHF goal, and G̃2 to the 4 CHF goal. Note that {G̃0, G̃1, G̃2} represents the images
of the goal states and not their locations G∗, G1, and G2 and that the assignment of
images to locations is unknown to the model. Hence, since t = 0, the simulated efficient
agents and the simulated participants are aware of the existence of multiple goal states in
the environment. In a more general setting, {G̃0, G̃1, G̃2} should be replaced by the set
of all states whose images were shown to participants prior to the start of the experiment.
After a transition to state st+1 = s′ resulting from taking action at = a at state st = s,
the reward functions Rext and Rint,t evaluate the reward values rext,t+1 and rint,t+1. We
define the extrinsic reward function Rext as

Rext(s, a→ s′) = δs′,G̃0
+ r∗

1δs′,G̃1
+ r∗

2δs′,G̃2
, (5.2)

where δ is the Kronecker delta function, and we assume (without loss of generality) a
subjective extrinsic reward value of 1 for G̃0 (2 CHF goal) and subjective extrinsic reward
values of r∗

1 ≥ 1 and r∗
2 ≥ 1 for G̃1 and G̃2, respectively. The prior information of human

participants about the difference in the monetary reward values of different goal states
can be modeled in simulated participants by varying r∗

1 and r∗
2 (see ‘Informing RL agents

of different goal states and modeling optimism’). We discuss choices of Rint,t in the next
section.

As a general choice for the RL algorithm in Figure 5.1D, we consider a hybrid of model-
based and model-free policy (Daw et al., 2011; Gläscher et al., 2010; Liakoni et al., 2022;
Xu et al., 2021). The model-free (MF) component uses the sequence of states s1:t,
actions a1:t, extrinsic rewards rext,1:t, and intrinsic rewards rint,1:t (in the two parallel
branches in Figure 5.1D) and estimates the extrinsic and intrinsic Q-values Q

(t)
MF,ext and

Q
(t)
MF,int, respectively. Traditionally, MF algorithms do not need the total number of

states (Sutton and Barto, 2018), thus the MF component of our algorithm remains similar
to that of previous studies (Lehmann et al., 2019; Xu et al., 2021): At the beginning of
episode 1, we initialize Q-values at Q

(0)
MF,ext and Q

(0)
MF,int. Then, the estimates are updated

recursively after each new observation. After the transition (st, at) → st+1, the agent
computes extrinsic and intrinsic reward prediction errors RPEext,t+1 and RPEint,t+1,
respectively:

RPEext,t+1 = rext,t+1 + λextV
(t)

MF,ext(st+1)−Q
(t)
MF,ext(st, at)

RPEint,t+1 = rint,t+1 + λintV
(t)

MF,int(st+1)−Q
(t)
MF,int(st, at),

(5.3)

where λext and λint ∈ [0, 1) are the discount factors for extrinsic and intrinsic reward
seeking, respectively, and V

(t)
MF,ext(st+1) = maxa′ Q

(t)
MF,ext(st+1, a′) and V

(t)
MF,int(st+1) =
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maxa′ Q
(t)
MF,int(st+1, a′) are the extrinsic and intrinsic V -values (Sutton and Barto, 2018)

of the state st+1, respectively. We use two separate eligibility traces (Lehmann et al.,
2019; Sutton and Barto, 2018) for the update of Q-values, one for extrinsic reward eext,t
and one for intrinsic reward eint,t, both initialized at zero at the beginning of each episode.
The update rules for the eligibility traces after taking action at at state st is

eext,t+1(s, a) =
{

1 if s = st, a = at

λextµexteext,t(s, a) otherwise

eint,t+1(s, a) =
{

1 if s = st, a = at

λintµinteint,t(s, a) otherwise ,

(5.4)

where λext and λint are the discount factors defined above, and µext and µint ∈ [0, 1]
are the decay factors of the eligibility traces for the extrinsic and intrinsic rewards,
respectively. The update rule is then ∆Q

(t+1)
MF (s, a) = ρet+1(s, a)RPEt+1, where et+1 is

the eligibility trace (i.e., either eext,t+1 or eint,t+1), RPEt+1 is the reward prediction error
(i.e., either RPEext,t+1 or RPEint,t+1), and ρ ∈ [0, 1) is the learning rate.

The model-based (MB) component builds a world-model that summarizes the
structure of the environment by estimating the probability p(t)(s′|s, a) of the transition
(s, a)→ s′. To do so, an agent counts the transition (s, a)→ s′ recursively and using a
leaky integration (Liakoni et al., 2021; Yu and Cohen, 2009):

C̃
(t+1)
s,a,s′ =

κC̃
(t)
s,a,s′ + δs′,st+1 if s = st , a = at

C̃
(t)
s,a,s′ otherwise,

(5.5)

where δ is the Kronecker delta function, C̃
(0)
s,a,s′ = 0, and κ ∈ [0, 1] is the leak parameter

and accounts for imperfect memory and model-building in humans. If κ = 1, then
C̃

(t+1)
s,a,s′ is the exact count of transition (s, a)→ s′. These counts are used to estimate the

transition probabilities

p(t)(s′|s, a) =


ϵobs+C̃

(t)
s,a,s′

ϵnew+ϵobs|S(t)|+C̃
(t)
s,a

if s′ ∈ S(t) ,

ϵnew
ϵnew+ϵobs|S(t)|+C̃

(t)
s,a

if s′ = snew ,
(5.6)

where C̃
(t)
s,a = ∑

s′ C̃
(t)
s,a,s′ is the counts of taking action a at state s, ϵobs ∈ R+ is a free

parameter for the prior probability of transition to a known state (i.e., states in S(t)),
and ϵnew ∈ R+ is a free parameter for the prior probability of transition to a new state
(i.e., states not in S(t)) – see Appendix C for derivations. Choosing ϵnew = 0 is equivalent
to assuming there is no unknown state in the environment, for which the estimate in
Equation 5.6 is reduced to the classic Bayesian estimate of transition probabilities in
bounded discrete environments (Liakoni et al., 2022; Xu et al., 2021). The transition
probabilities are then used in a novel variant of prioritized sweeping (Sutton and Barto,
2018; Van Seijen and Sutton, 2013) adapted to deal with an unknown number of states.

119



Chapter 5. Even if suboptimal, novelty drives human exploration

The prioritized sweeping algorithm computes a pair of Q-values, i.e., Q
(t)
MB,ext for extrinsic

and Q
(t)
MB,int for intrinsic rewards, by solving the corresponding Bellman equations (Sutton

and Barto, 2018) with TP S,ext and TP S,int iterations, respectively for Q
(t)
MB,ext and Q

(t)
MB,int.

See Supplementary Material for details.

Finally, actions are chosen by a hybrid softmax policy (Sutton and Barto, 2018): The
probability of taking action a in state s at time t is

πt(a|s) ∝ exp
[
βMB,extQ

(t)
MB,ext(s, a) + βMF,extQ

(t)
MF,ext(s, a) +

βMB,intQ
(t)
MB,int(s, a) + βMF,intQ

(t)
MF,int(s, a)

]
,

(5.7)

where βMB,ext ∈ R+, βMF,ext ∈ R+, βMB,int ∈ R+, and βMF,int ∈ R+ are free parameters
(i.e., inverse temperatures of the softmax policy (Sutton and Barto, 2018)) expressing
the contribution of each Q-value to action-selection. For Figure 5.1D, we defined

πext,t(a|s) ∝ exp
[ βMB,ext
βMB,ext + βMF,ext

Q
(t)
MB,ext(s, a) + βMF,ext

βMB,ext + βMF,ext
Q

(t)
MF,ext(s, a)

]
πint,t(a|s) ∝ exp

[ βMB,int
βMB,int + βMF,int

Q
(t)
MB,int(s, a) + βMF,int

βMB,int + βMF,int
Q

(t)
MF,int(s, a)

]
,

(5.8)
and as a result πt ∝ π

βMB,ext+βMF,ext
ext,t · πβMB,int+βMF,int

int,t .

In general, the contribution of seeking extrinsic reward and seeking intrinsic reward
as well as the MB and MF branches to action-selection depends on different factors,
including time passed since the beginning of the experiment (Gläscher et al., 2010; Huys
et al., 2015), cognitive load (Piray and Daw, 2021a), and whether the location of reward is
known (Xu et al., 2021). Here, we make a simplistic assumption that these contributions
(expressed as the 4 inverse temperatures) are constant within but potentially different
between the two phases of the experiment:

• Phase 1: Before finding the goal state in episode 1, we consider βMB,ext = β
(1)
MB,ext,

βMF,ext = β
(1)
MF,ext, βMB,int = β

(1)
MB,int, and βMF,int = β

(1)
MF,int as four independent

free parameters chosen independently for each agent.

• Phase 2: After finding the goal, i.e., in all episodes after episode 1, we consider
βMB,ext = β

(2)
MB,ext, βMF,ext = β

(2)
MF,ext, βMB,int = β

(2)
MB,int, and βMF,int = β

(2)
MF,int as

another four independent free parameters chosen independently for each agent.

See ‘Relative importance of novelty in action-selection’ for how these inverse temperatures
relate to the influence of intrinsic and extrinsic rewards on action-choices (Figure 5.5C
and Figure 5.6).

Summary of free parameters: To summarize, the full hybrid algorithm has 22 free
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parameters:

Φ = {r∗
1, r∗

2, Q
(0)
MF,ext, Q

(0)
MF,int, λext, λint, µext, µint, ρ, κ, ϵnew, ϵobs, TP S,ext, TP S,int,

β
(1)
MB,ext, β

(2)
MB,ext, β

(1)
MB,int, β

(2)
MB,int, β

(1)
MF,ext, β

(2)
MF,ext, β

(1)
MF,int, β

(2)
MF,int},

(5.9)

where r∗
1 and r∗

2 are subjective values of the 3 CHF goal and the 4 CHF goal, respectively
(with the 2 CHF goal being the reference goal with a value of 1), Q

(0)
MF,ext and Q

(0)
MF,int are

the initial values for MF Q-values, λext and λint are the discount factors, µext and µint are
the decay rates of the eligibility traces, ρ is the MF learning rate, κ is the leak parameter
for model-building, ϵnew and ϵobs are prior parameters for model-building, TP S,ext and
TP S,int are the numbers of iterations for prioritized sweeping, and β

(1)
MB,ext, β

(2)
MB,ext, β

(1)
MB,int,

β
(2)
MB,int, β

(1)
MF,ext, β

(2)
MF,ext, β

(1)
MF,int, and β

(2)
MF,int are the inverse temperatures of the softmax

policy.

5.4.4 Different choices of intrinsic reward

The intrinsic reward function Rint,t maps a transition (s, a)→ s′ to an intrinsic reward
value, i.e., rint,t+1 = Rint,t(st, at → st+1). In this section, we present our 3 choices of
Rint,t.

Novelty: For an agent seeking novelty (red in Figure 5.2, Figure 5.4, and Figure 5.5),
we define the intrinsic reward function as

Rint,t(s, a→ s′) = − log p
(t)
f (s′), (5.10)

where p
(t)
f (s′) = 1+C̃

(t)
s′

1+|S(t)|+
∑

s′′ C̃
(t)
s′′

is the state frequency with C̃
(t)
s′ the pseudo-count of

encounters of state s′ up to time t (similar to Equation 5.5): C̃
(t+1)
s′ = κC̃

(t)
s′ + δs′,st+1

with C̃
(0)
s′ = 0. With this definition, that generalizes earlier works (Xu et al., 2021) to

the case where the number of states is unknown, the least novel states are those that
have been encountered most often (i.e., with highest C̃

(t)
s′ ). Moreover, novelty is at its

highest value for the unobserved states as we have C̃
(t)
s′ = 0 for any unobserved state

s′ /∈ S(t). Similar intrinsic rewards have been used in machine learning (Bellemare et al.,
2016; Ostrovski et al., 2017).

Surprise: For an agent seeking surprise (orange in Figure 5.2, Figure 5.4, and Fig-
ure 5.5), we define the intrinsic reward function as the Shannon surprise (a.k.a. surprisal)
(Modirshanechi et al., 2022)

Rint,t(s, a→ s′) = − log p(t)(s′|s, a), (5.11)

where p(t)(s′|s, a) is defined in Equation 5.6. With this definition, the expected (over s′)
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intrinsic reward of taking action a at state s is equal to the entropy of the distribution
p(t)(s′|s, a) (Cover, 1999). If ϵnew < ϵobs, then the most surprising transitions are the
ones to unobserved states. Similar intrinsic rewards have been used in machine learning
(Burda et al., 2019; Pathak et al., 2017).

information gain: For an agent seeking information gain (green in Figure 5.2, Figure 5.4,
and Figure 5.5), we define the intrinsic reward function as

Rint,t(s, a→ s′) = DKL
[
p(t)(.|s, a)||p(t+1)(.|s, a)

]
, (5.12)

where DKL is the Kullback-Leibler divergence (Cover, 1999), and p(t+1) is the updated
world-model upon observing (s, a)→ s′. The dots in Equation 5.12 denote the dummy
variable over which we integrate to evaluate the Kullback-Leibler divergence. Note that
if s′ /∈ S(t), then there are some technical problems in the naïve computation of DKL –
since p(t) and p(t+1) have different supports. We deal with these problems using a more
fundamental definition of DKL using the Radon–Nikodym derivative; see Appendix C
for derivations and see Mobin et al. (2014) for an alternative heuristic solution. Note
that the information gain in Equation 5.12 has been also interpreted as a measure
of surprise (called ‘Postdictive surprise’ (Kolossa et al., 2015)), but it has a behavior
radically different from that of the Shannon surprise introduced above (Equation 5.11) –
see Modirshanechi et al. (2022) for an elaborate treatment of the topic. Importantly, the
expected (over s′) information gain corresponding to a state-action pair (s, a) converges
to 0 as C̃

(t)
s,a →∞ (see Appendix C for the proof). Similar intrinsic rewards have been

used in machine learning (Mobin et al., 2014; Pathak et al., 2019; Schmidhuber, 2010;
Sekar et al., 2020).

5.4.5 Informing RL agents of different goal states and modeling opti-
mism

Human participants had been informed that there were different goal states in the
environment with different monetary reward values. This information was aimed to
motivate participants to further explore the environment after they received the first
reward at the end of episode one. This information is incorporated into our hybrid
algorithms through a few mechanisms, where some include explicit information about
the goal states but some others only an implicit notion of optimism.

Our main focus throughout the paper has been on modeling reward optimism by balancing
intrinsic rewards against extrinsic rewards (Figure 5.2, Figure 5.5, and Figure 5.6).
In particular, assigning different values to βMB,ext, βMF,ext, βMB,int, and βMF,int (c.f.
Equation 5.7) during the two phases of the experiment enables us to implicitly make the
relative importance of intrinsic rewards depend on the difference between the reward
value of the discovered goal rG∗ and the known reward values r∗

1 and r∗
2 of the other
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goal states (Equation 5.2). Our results for the fitted relative importance of intrinsic
reward across different groups of human participants (Figure 5.6A) support this very
assumption, which implies that the influence of reward optimism on the action-choices is
via regulation of the balance between two separate policies, one for seeking intrinsic and
one for seeking extrinsic rewards.

However, there are two other alternative mechanisms, purely based on seeking extrinsic
rewards, that can contribute to reward-optimism in our hybrid algorithms: The model-
based and model-free optimistic initialization. In this section, we discuss these mechanisms
and how they balance exploration versus exploitation. We note that our results in
Figure 5.4 and Figure 5.6 (particularly Figure 5.6B) show that these two mechanisms
alone are not enough and that a novelty-seeking module is necessary to explain the
behavior of human participants; otherwise, all three intrinsically motivated algorithms
would have the same probability of generating human data – because the purely reward-
seeking algorithm with optimistic initialization is a special case of all three intrinsically
motivated algorithms that we compared. In other words, if optimistic initialization
alone were sufficient to explain human behavior, then all three algorithms would perform
equally well in Figure 5.4 and the best fit would indicate a relative importance of 0 for
novelty in Figure 5.6.

Model-based optimistic initialization.MB optimistic initialization is an explicit
approach to model reward-optimism through designing the world-model. The MB branch
of the hybrid algorithm finds the extrinsic Q-values Q

(t)
MB,ext by solving the Bellman

equations

Q
(t)
MB,ext(s, a) = R̄

(t)
ext(s, a) + λext

∑
s′

p(t)(s′|s, a) max
a′

Q
(t)
MB,ext(s

′, a′), (5.13)

where p(t)(s′|s, a) is estimated transition probability in Equation 5.6, and

R̄
(t)
ext(s, a) =

∑
s′

p(t)(s′|s, a)Rext(s, a→ s′)

= p(t)(G̃0|s, a) + r∗
1p(t)(G̃1|s, a) + r∗

2p(t)(G̃2|s, a)
(5.14)

is the average immediate extrinsic reward expected to be collected by taking action a

in state s (see Equation 5.2). Hence, the knowledge of the existence of three different
goal states with three different rewards has an explicit influence on the MB branch of
our algorithms. For example, because no transitions to any of the goal states have been
experienced during episode 1, we have

R̄
(t)
ext(s, a) = ϵobs(1 + r∗

1 + r∗
2)

ϵnew + ϵobs|S(t)|+ C̃
(t)
s,a

. (5.15)
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This equation has two important implications. First, R̄
(t)
ext(s, a) is an increasing function

of ϵobs. This implies that the expected reward of a transition during episode 1 increases by
increasing the prior probability of transition to states in S(t). This is a direct consequence
of our Bayesian approach to estimating the world-model. Second, R̄

(t)
ext(s, a) is a decreasing

function of C̃
(t)
s,a. This implies that the expected reward of a state-action pair decreases

by experience. Importantly, R̄
(t)
ext(s, a) converges to 0 as C̃

(t)
s,a →∞, which makes a link

between exploration driven by the MB optimistic initialization and exploration driven by
information gain.

During episodes 2-5, the exact theoretical analysis of the MB optimistic initialization is
rather complex. However, using a few approximation steps for episode 2, we can find a
condition for whether the MB extrinsic Q-values show a preference for exploring or leaving
the stochastic part (Appendix C). The condition involves a comparison between the
discounted reward value of the discovered goal state λ2

extrG∗ and an optimistic estimate
of a reward-to-be-found R

(t)
Stoch. in the stochastic part that depends on r∗

1, r∗
2, λext, ϵobs,

|S(t)|, and the average pseudo-count C̄(t) of state-action pairs in the stochastic part
(Appendix C). We can show that if rG∗ < r∗

2, then increasing r∗
2 would eventually result

in a preference for staying in the stochastic part: If the reward value of a goal state
is much greater than the value of the discovered goal state, then the agent prefers to
keep exploring the stochastic part. However, for any value of r∗

2 and rG∗ , increasing
C̄(t) would eventually result in a preference for leaving the stochastic part and going
towards the already discovered goal: After a sufficiently long and unsuccessful exploration
phase, agents will eventually give up exploration. This is another qualitative link
between exploration based on the MB optimistic initialization and exploration driven
by information gain. This qualitative link leads to the conclusion that an agent with
only the MB optimistic initialization cannot explain human behavior for the same reason
that an agent with intrinsic reward based on information gain cannot explain human
behavior.

Model-free optimistic initialization.As opposed to the MB branch of the hybrid
algorithm, the MF branch does not have any explicit knowledge about the existence
of different goal states and their values. However, the initial value Q

(0)
MF,ext of the MF

extrinsic Q-values quantifies an expectation of the reward values in the environment prior
to any interaction with the environment. During episode 1, no extrinsic reward is received
by the agent, hence, for a small enough learning rate ρ and an optimistic initialization
Q

(0)
MF,ext > 0, the extrinsic reward prediction errors are always negative (Equation 5.3).

As a result, Q
(t)
MF,ext(s, a) decreases as an agent keeps taking action a in state s, which

motivates the agent to try new actions. This is a well-known mechanism for directed
exploration in the machine learning community (Sutton and Barto, 2018). Similar to the
MB optimistic initialization, the effect of the MF optimistic initialization fades out over
time – which makes them both similar to exploration driven by information gain.
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During episode 2-5, the exact theoretical analysis of the MF optimistic initialization is
complex and dependent on an agent’s exact trajectory (because of the eligibility traces).
However, whether the MF extrinsic Q-values show a preference for exploring or leaving
the stochastic part essentially depends on the reward value of the discovered goal state
rG∗ and the initialization value Q

(0)
MF,ext. For example, if an agent, starting at s1, takes

the perfect trajectory of s1→ s2→ s3→ s4→ s5→ s6→ G∗ in episode 1, then, given a
unit decay rate of the eligibility traces (i.e., µext = 1), it is easy to see that, in the 1st visit
of state 4 in episode 2, the agent prefers the stochastic/bad action over the progressing
action if rG∗ < 1

λ2
ext

(1 − λext)(1 + λext + λ2
ext)Q

(0)
MF,ext. This implies that, even though

the MF branch is not explicitly aware of different goal states and their reward values,
it is still able to model a type of reward optimism through initialization of Q-values.
Nevertheless, since model fitting reveals an importance factor significantly greater than
0.5 (Figure 5.6), the effective reward optimism generated by optimistic initialization is
not strong enough to explain human behavior.

5.4.6 Efficient model-based planning for simulated participants

For simulating efficient agents in Figure 5.2, we set ε = 0 (see Figure 5.1A) and used a
pure MB version of our algorithm with 13 parameters:

{r∗
1, r∗

2, λext, λint, κ, ϵnew, ϵobs, TP S,ext, TP S,int, β
(1)
MB,ext, β

(2)
MB,ext, β

(1)
MB,int, β

(2)
MB,int}. (5.16)

We considered perfect model-building by assuming κ = 1 and almost perfect planning by
assuming TP S,ext = TP S,int = 100. We chose discount factors λext and λint as well as prior
parameters ϵnew and ϵobs in the range of fitted parameters reported by Xu et al. (2021):
λext = 0.95, λint = 0.70, ϵnew = 10−5 and ϵobs = 10−4. To relatively separate the effect
of optimistic initialization (Sutton and Barto, 2018) from seeking intrinsic reward in
episode 2-5, we assumed the same value of reward for all goals, i.e., r∗

1 = r∗
2 = 1. Finally,

we considered β
(1)
MB,ext = 0 to have pure intrinsic reward seeking in episode 1.

After fixing parameter values for 10 out of 13 parameters in Equation 5.16, we fine-tuned
β

(1)
MB,int to minimize the average length of episode 1 (to find the goal as fast as possible;

see Appendix C). For episodes 2-5, we first set β
(2)
MB,int = 0 and β

(2)
MB,ext = 10 to have

a non-deterministic policy for purely seeking extrinsic reward after the 1st encounter
of the goal (the lightest shade of colors in Figure 5.2). Different shades of color in
Figure 5.2 corresponds to different choices of ω ∈ [0, 1] for β

(2)
MB,int = ωβ

(1)
MB,int and

β
(2)
MB,ext = (1−ω) · 10. More precisely, we used ω = 0 for the darkest color (pure extrinsic

reward seeking), ω = 1 for the lightest color (pure intrinsic reward seeking), and ω = 0.7
for the one in between. Higher values of ω indicates higher relative importance of the
intrinsic reward.
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5.4.7 Model-fitting and model-comparison

To compare seeking different intrinsic rewards based on their explanatory power, we
considered our full hybrid (with both MF and MB components) algorithm – except that
we put TP S,ext = TP S,int = 100 to decrease number of parameters, based on the results of
Xu et al. (2021) showing the negligible importance of this parameter. As a result, we
had 20 free parameters for each of the three intrinsic rewards (i.e., novelty, information
gain, and surprise). For each intrinsic reward R ∈ {novelty , inf-gain , surprise} and for
each participant n ∈ {1, ..., 57}, we estimated the algorithm’s parameters by maximizing
likelihood of data given parameters:

Φ̂n,R = arg max
Φ

P (Dn|Φ, Rn = R) (5.17)

where Dn is the data of participant n, Rn is the intrinsic reward assigned to participant n,
P (Dn|Φ, Rn = R) is the probability of Dn being generated by our intrinsically motivated
algorithm seeking Rn = R with its parameter equal to Φ (see Equation 5.9), and Φ̂n,R is
the set of estimated parameters that maximizes that probability. For optimization, we
used Subplex algorithm (Rowan, 1990) as implemented in Julia NLopt package.

Because all algorithms have the same number of parameters, we considered the maximum
log-likelihood as the model log-evidence, i.e., for intrinsic reward R and participant n,
we consider log P (Dn|Rn = R) ≈ log P (Dn|Φ̂n,R, Rn = R) – which is equal to a shifted
Schwarz approximation of the model log-evidence (also called BIC) (Daw, 2011; Kass
and Raftery, 1995). Figure 5.4A1 shows the total log-evidence ∑

n log P (Dn|Rn = R).
With the fixed effects assumption at the level of models (i.e., assuming that R1 =
R2 = ... = R57 = R∗), the total log-evidence is equal to the log posterior probability
log P (R∗ = R|D1:57) of R being the intrinsic reward used by all participants (plus a
constant). See Daw (2011); Wilson and Collins (2019) for tutorials.

We also considered the Bayesian model selection method of Rigoux et al. (2014) with the
random effects assumption, i.e., assuming that participant n uses the intrinsic reward
Rn = R, which is not necessarily the same as the one used by other participants, with
probability PR. We performed Markov Chain Monte Carlo sampling (using Metropolis
Hasting algorithm (Efron and Hastie, 2016) with uniform prior and 40 chains of length
10′000) for inference and estimated the joint posterior distribution

P (R1:57, Pnovelty, Pinf-gain, Psurprise|D1:57).

Figure 5.4A2 shows the expected posterior probability E[PR|D1:57] as well as the pro-
tected exceedance probabilities P (PR > PR′ for all R′ ≠ R|D1:57) computed by using the
participant-wise log-evidences.

The boxplots of the fitted parameters of novelty-seeking are shown in Appendix C. The
same set of parameters were used for model-recovery in Figure 5.4B, posterior predictive
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checks in Figure 5.5, computing the relative importance of novelty in Figure 5.6A-B
(see ‘Relative importance of novelty in action-selection’), and parameter recovery in
Figure 5.6C.

5.4.8 Posterior predictive checks, model-recovery, and parameter-recovery

For each intrinsic reward R ∈ {novelty , inf-gain , surprise} and participant group G ∈
{2 CHF, 3 CHF, 4 CHF}, we repeated the following two steps 500 times: 1. We sampled
participant n from group G with probability P (Rn=R|D1:57)∑

m∈G P (Rm=R|D1:57) . 2. We ran a 5-episode

simulations in our environment using the intrinsic reward R and the parameter Φ̂n,R, i.e.,
we sampled a trajectory D from P (D|Φ̂n,R, Rn = R) (with the G∗ of the environment
corresponding to the group G). As a result, we ended up with 1500 simulated participants
(with randomly sampled parameters) for each algorithm.

We considered the simulated participants who took more than 3000 actions in any of
the 5 episodes to be similar to the human participants who quit the experiment and
excluded them from further analyses: 238 (∼ 16%) of simulated participants seeking
novelty, 166 (∼ 11%) of those seeking information gain, and 374 (∼ 25%) of those seeking
surprise. We note that, even with the marginal influence of surprise on action-selection
(Figure 5.5C), one fourth of participants seeking surprise cannot escape the stochastic
part in less than 3000 actions. Moreover, we excluded, separately for each algorithm,
the simulated participants who took more than 3 times group-average number of actions
in episodes 2-5 to finish the experiment (i.e., the same criterion that we used to detect
non-attentive human participants): 45 (∼ 3%) of simulated participants seeking novelty,
77 (∼ 5%) of those seeking information gain, and 27 (∼ 2%) of those seeking surprise. We
then analyzed the remaining participants (1217 simulated participants seeking novelty,
1257 seeking information gain, and 1099 seeking surprise) as if they were real human
participants. Figure 5.5 and its supplements in Appendix C show the data statistics of
simulated participants in comparison to human participants.

Given the participants simulated by each of the three intrinsically motivated algorithms,
we fitted all three algorithms to the action-choices of 150 simulated participants (50 from
each participant group, i.e., 2 CHF, 3 CHF, and 4 CHF). Then, we applied the Bayesian
model selection method of Rigoux et al. (2014) to 5 randomly chosen sub-populations of
these 150 simulated participants (each with 60 participants, i.e., 20 from each participant
group). Figure 5.4B shows the results of the model-comparison averaged over these 5
repetitions. Figure 5.6C shows the relative importance of novelty in action-selection (see
Equation 5.18) for each of the 150 simulated participants estimated using the original
parameters (which were used for simulations) and the recovered parameters (which were
found by re-fitting the algorithms to the simulated data).
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5.4.9 Relative importance of novelty in action-selection

The relative importance of novelty in action-selection depends not only on the inverse-
temperatures βMB,ext, βMF,ext, βMB,int, and βMF,int but also on the variability of Q-values;
for example, if the extrinsic Q-values Q

(t)
MB,ext(s, a) and Q

(t)
MF,ext(s, a) are the same for

all state-action pairs, then, independently of the values of the inverse-temperatures, the
action is taken by a pure novelty-seeking policy – because the policy in Equation 5.7
can be re-written as π(t)(a|s) ∝ exp

[
βMB,intQ

(t)
MB,int(s, a) + βMF,intQ

(t)
MF,int(s, a)

]
. Thus,

to measure the contribution of different components of action-selection to the final policy,
we need to consider the variations in their Q-values as well.

In this section, we propose a variable ωi2e ∈ [0, 1] for quantifying the relative importance
of seeking intrinsic reward in comparison to seeking extrinsic reward. We first define total
intrinsic and extrinsic Q-values as Q

(t)
ext(s, a) = βMB,extQ

(t)
MB,ext(s, a)+βMF,extQ

(t)
MF,ext(s, a)

and Q
(t)
int(s, a) = βMB,intQ

(t)
MB,int(s, a) + βMF,intQ

(t)
MF,int(s, a), respectively. We further

define the state-dependent variations in Q-values as ∆Q
(t)
ext(s) = maxa Q

(t)
ext(s, a) −

mina Q
(t)
ext(s, a) and ∆Q

(t)
int(s) = maxa Q

(t)
int(s, a)−mina Q

(t)
int(s, a) as well as their temporal

average ∆Q̄ext =
〈
∆Q

(t)
ext(st)

〉
and ∆Q̄int =

〈
∆Q

(t)
int(st)

〉
, where ⟨.⟩ shows the temporal

average. ∆Q̄ext and ∆Q̄int show the average difference between the most and least
preferred action with respect to seeking extrinsic and intrinsic reward, respectively.
Therefore, a feasible way to measure the influence of seeking intrinsic reward on action-
selection is to define ωi2e as

ωi2e = ∆Q̄int

∆Q̄ext + ∆Q̄int
. (5.18)

Figure 5.6A shows the value ωi2e in episode 2-5 computed for each human participant
(dots) and averaged over different groups (bars), and Figure 5.6B shows the same for
episode 1. Figure 5.5C shows the value ωi2e in episode 2-5 for the 2 CHF group of
simulated participants. See Appendix C for a similar approach for quantifying the
relative importance of the MB and MF policies in action-selection.
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6 Conclusion and future directions

In this thesis, I conducted a mathematical analysis of various definitions and computa-
tional models of surprise and novelty. I showed that these theoretical results facilitate
the interpretation of past research in a different light and inform experimental designs to
dissociate different computational roles of surprise and novelty in the brain. I studied two
particular examples of such experiments and quantified the contribution of surprise and
novelty to human adaptive and exploratory behavior. Each chapter offered an individual
discussion section with an outline of potential future directions. The goal of this general
conclusion is to present a wider perspective on the next steps toward demystifying the
role of surprise and novelty in the brain. I hope that the results of this thesis can help
us, as a community, move forward in these directions.

Examining several definitions of surprise and novelty raises an immediate question: How
many fundamentally unique physiological signals are involved in the brain computations
related to surprise and novelty? More specifically, we can ask: How does the computation
of surprise and novelty vary across different sensory modalities (e.g., visual versus auditory;
Grundei et al. (2023)) and levels of abstraction (e.g., low-level visual features versus
high-level image categories; Richter et al. (2023))? Given a specific sensory modality
and a level of abstraction, what are the characteristics of surprise and novelty signals
in different brain regions (e.g., Gijsen et al. (2021); Kolossa et al. (2015); Visalli et al.
(2019))? What is the link between the local neural circuitry of surprise and novelty
computation in sensory areas and the global signals transmitted through neuromodulators
like dopamine, norepinephrine, or serotonin (e.g., Jordan (2023))? And, what is the
relationship between these neural responses and the subjective perception of surprise
in human participants measured by self-reports (Maguire et al., 2011; Reisenzein et al.,
2019)?

Addressing such questions will ideally help us narrow down the set of ‘brain-related’
mathematical definitions of surprise and novelty, which in turn help identify their
respective computational role in different cognitive functions of the brain. One goal of
this thesis was to show that careful experiment design enables dissociating the predictions
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of different definitions of surprise and novelty for, e.g., goal-directed exploration (chapters
3 and 5). Similar methodologies can be used to study the contribution of different
definitions to curiosity-driven exploration (see Appendix E) or behavioral patterns that
are influenced by multiple motivational signals. Theory-driven experiments can then be
used for such cases to answer questions like: What are the principal drives (e.g., novelty,
information gain, nutrition, sexual drive, etc.) of decision-making (e.g., Ahmadlou
et al. (2021); Kobayashi et al. (2019))? How, and at which stage of processing, do
these signals interact to influence decision-making (e.g., Bromberg-Martin et al. (2024);
Ogasawara et al. (2022))? How do environmental factors (e.g., task instruction, optimism,
prior knowledge) influence this interaction (e.g., Meder and Nelson (2012); Traner et al.
(2021))? And, importantly, how do answers to these questions change across species
(e.g., Bromberg-Martin et al. (2024)) or even across individual subjects (e.g., Kelly et al.
(2021))?

Along the same line of research, similar methodologies can be used to design experiments
concerning the role of surprise and novelty in learning and memory. A fundamental
challenge in this context involves identifying the distinct mechanisms by which surprise
and novelty influence memory consolidation (Rouhani and Niv, 2021), modification
(Sinclair and Barense, 2018), and segmentation (Antony et al., 2021). It remains unclear
whether these mechanisms are also involved in the surprise modulation of learning speed
(Gershman et al., 2017; Glaze et al., 2018; Jordan and Keller, 2023). Further questions
then arise concerning the influence of attention, task instruction, cognitive load, and
similar factors on each of these mechanisms for learning and memory modulation (e.g.,
Solomon et al. (2021); Zhao et al. (2019)). Computational modeling can particularly help
this line of research by providing insights into the cognitive computations underlying
these mechanisms. For example, since change detection surprise is proven to be optimal
for adaptive learning, the mechanisms involved in adaptive learning are likely to entail a
comparison between two contrasting predictive models (see chapter 2 and Appendix D).
Such insights can support the interpretation of neural data within the scope of behavioral
measurements (Niv, 2021).

Finally, similarly to every subfield of computational neuroscience, computational models
of surprise and novelty are distributed across different levels of analysis, e.g., across
computational, algorithmic, and mechanistic levels as termed in Marr’s vocabulary (Marr,
1982) and normative, heuristics, and data-driven modeling levels as discussed in the
Introduction (chapter 1). Bridging these different levels of modeling is a key step toward
a unified understanding of how surprise and novelty influence the brain and behavior.
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A Appendix to chapter 2

In this appendix, we provide proofs for our Propositions and Corollaries mentioned in
the main text. We also provide further results for the postdictive surprise in Lemma 1.

A.1 Proof of Proposition 1

The proof is in essence the same as the proof of Proposition 1 of Liakoni et al. (2021).
We write

b(t+1)(θ) = P(t+1)(Θt+1 = θ)
=P(t+1)(Θt+1 = θ|Ct+1 = 0)P(t+1)(Ct+1 = 0)+
P(t+1)(Θt+1 = θ|Ct+1 = 1)P(t+1)(Ct+1 = 1).

(A.1)

We use Bayes’ rule and write P(t+1)(Θt+1 = θ|Ct+1 = 0) (c.f. the 1st term in Equation A.1)
as

P(t+1)(Θt+1 = θ|Ct+1 = 0) = P(t)(Θt+1 = θ|Ct+1 = 0, xt+1, yt+1)

=P(t)(yt+1|Ct+1 = 0, xt+1, Θt+1 = θ)
P(t)(yt+1|Ct+1 = 0, xt+1)

× P(t)(Θt+1 = θ|Ct+1 = 0, xt+1)

=
PY |X(yt+1|xt+1; θ)b(t)(θ)

P (yt+1|xt+1; b(t))
= b

(t+1)
integration(θ),

(A.2)
and similarly

P(t+1)(Θt+1 = θ|Ct+1 = 1) =
PY |X(yt+1|xt+1; θ)b(0)(θ)

P (yt+1|xt+1; b(0))
= b

(t+1)
reset (θ). (A.3)
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Then, for P(t+1)(Ct+1 = 1) and P(t+1)(Ct+1 = 0) = 1− P(t+1)(Ct+1 = 1) we have

P(t+1)(Ct+1 = 1) = P(t)(Ct+1 = 1|xt+1, yt+1)

= pcP (yt+1|xt+1; b(0))
(1− pc)P (yt+1|xt+1; b(t)) + pcP (yt+1|xt+1; b(0))

= mSBF(yt+1|xt+1; b(t))
1 + mSBF(yt+1|xt+1; b(t))

= γt+1

(A.4)

with m = pc

1−pc
. Therefore, the proof is complete by substituting these terms in Equa-

tion A.1. ■

A.2 Proof of Proposition 2

Based on the definition of the adaptation rate γt+1 (c.f. Proposition 1), we have

SBF(yt+1|xt+1; b(t)) = 1− pc

pc

γt+1
1− γt+1

. (A.5)

For the difference in the 1st definition of the Shannon surprise (c.f. Equation 2.9), we
can write

∆SSh1(yt+1|xt+1; b(t)) = SSh1(yt+1|xt+1; b(t))− SSh1(yt+1|xt+1; b(0))

= log
( P (yt+1|xt+1; b(0))

pcP (yt+1|xt+1; b(0)) + (1− pc)P (yt+1|xt+1; b(t))
)

= log γt+1
pc

.

(A.6)

As a result, we have γt+1 = pc exp ∆SSh1(yt+1|xt+1; b(t)) and hence

SBF(yt+1|xt+1; b(t)) = (1− pc) exp ∆SSh1(yt+1|xt+1; b(t))
1− pc exp ∆SSh1(yt+1|xt+1; b(t))

. (A.7)

The proof is more straightforward for the difference in the 2nd definition (c.f. Equa-
tion 2.11) where we have

∆SSh2(yt+1|xt+1; b(t)) = SSh2(yt+1|xt+1; b(t))− SSh2(yt+1|xt+1; b(0))

= log
(P (yt+1|xt+1; b(0))

P (yt+1|xt+1; b(t))
)

= log SBF(yt+1|xt+1; b(t)).
(A.8)

Therefore, the proof is complete. ■
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A.3 Proof of Proposition 3

A.3 Proof of Proposition 3

Based on the definitions of the two versions of the Shannon surprise (c.f. Equation 2.9
and Equation 2.11), we have

P(t)(yt+1|xt+1
)

= exp
(
− SSh1(yt+1|xt+1; b(t))

)
,

P (yt+1|xt+1; b(t)) = exp
(
− SSh2(yt+1|xt+1; b(t))

)
.

(A.9)

The proof is complete by using these equations and replacing the probabilities in Equa-
tion 2.15 and Equation 2.16. ■

A.4 Proof of Proposition 4

For a categorical task with N categories and one-hot coded observations, we have (c.f.
Equation 2.18 and Equation 2.19)

E1[Yt+1] =
[
pcP (n|xt+1; b(0)) + (1− pc)P (n|xt+1; b(t))

]N

n=1

E2[Yt+1] =
[
P (n|xt+1; b(t))

]N

n=1

(A.10)

where z = [zn]Nn=1 is an N -dimensional vector with zn the nth element. To be able to prove
the proposition for E1[Yt+1] and E2[Yt+1] simultaneously, we define Ei[Yt+1] = [pi,n]Nn=1,
where p1,n = pcP (n|xt+1; b(0)) + (1− pc)P (n|xt+1; b(t)) and p2,n = P (n|xt+1; b(t)).

We show the one-hot coded vector corresponding to category m ∈ {1, ..., N} by em. For
the absolute error surprise, we have (c.f. Equation 2.20)

SAbi(yt+1 = em|xt+1; b(t)) =
N∑

n=1
|δm,n − pi,n| = |1− pi,m|+

N∑
n=1,n ̸=m

pi,n

= 2(1− pi,m),
(A.11)

which is the same as 2SSPEi(yt+1 = em|xt+1; b(t)) (c.f. Equation 2.15 and Equation 2.16).

For the squared error surprise, we have (c.f. Equation 2.20)

SSqi(yt+1 = em|xt+1; b(t)) =
N∑

n=1
(δm,n − pi,n)2 = (1− pi,m)2 +

N∑
n=1,n ̸=m

p2
i,n

= 2(1− pi,m) + ||[pi,n]Nn=1||22 − 1,

(A.12)
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where we have 2(1− pi,m) = 2SSPEi(yt+1 = em|xt+1; b(t)) and

Conf.
[
P (.|xt+1; b(t))

]
= ||[pi,n]Nn=1||22 − 1 (A.13)

shows the ℓ2-norm of the estimate vector [pi,n]Nn=1 as a measure of confidence; ||[pi,n]Nn=1||22
takes its maximum value when the prediction has a probability of 1 for one category
and zero for the rest and takes its minimum when it is distributed uniformly over all
categories. Therefore, the proof is complete. ■

A.5 Proof of Proposition 5

Assume that Yt+1 ∈ RN , given the cue xt+1 and the belief b(t), has a Gaussian distribution
with a covariance matrix σ2I, i.e.,

P (yt+1|xt+1; b(t)) = N
(
yt+1; E2[Yt+1], σI

)
. (A.14)

We then have
SSh2(yt+1|xt+1; b(t)) = − logN

(
yt+1; E2[Yt+1], σI

)
= N

2 log
(
2πσ

)
+ ||yt+1 − E2[Yt+1]||22

2σ2

= a0 + a1SSq,2(yt+1 = em|xt+1; b(t)),

(A.15)

where a0 = N log
(
2bσ

)
/2 and a1 = 1/(2σ2). Therefore, the proof is complete. ■

A.6 Proof of Proposition 6

Using the definition of the two surprise measures in Equation 2.20, we have, for yt+1 ∈ R,

SSqi(yt+1|xt+1; b(t)) = ||yt+1 − Ei[Yt+1]||22
= |yt+1 − Ei[Yt+1]|2 = SAbi(yt+1|xt+1; b(t))2.

(A.16)

Therefore, the proof is complete. ■

A.7 Proof of Proposition 7

Using the definition of the uRPE and the absolute error surprise in Equation 2.20 and
Equation 2.25, we have

SAbi(yt+1|xt+1; b(t)) = ||yt+1 − Ei[Yt+1]||1
= |r̃t+1 − Ei[R̃t+1]|+ ||st+1 − Ei[St+1]||1
= SuRPEi(yt+1|xt+1; b(t)) + SAbi(st+1|xt+1; b(t)),

(A.17)
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which complete the proof for the absolute error surprise. Then, we can similarly write

SSqi(yt+1|xt+1; b(t)) = ||yt+1 − Ei[Yt+1]||22
= |r̃t+1 − Ei[R̃t+1]|2 + ||st+1 − Ei[St+1]||22
= SuRPEi(yt+1|xt+1; b(t))2 + SSqi(st+1|xt+1; b(t)).

(A.18)

Therefore, the proof is complete. ■

A.8 Proof of Proposition 8

For the 1st definition of the Bayesian surprise (c.f. Equation 2.29), we have

SBa1(yt+1|xt+1; b(t)) = DKL
[
P(t)

Θt+1
||P(t+1)

Θt+1

]
= EP(t)

[
log

P(t)(Θt+1
)

P(t+1)(Θt+1
)]

. (A.19)

We know
P(t)

Θt+1
= pcb

(0) + (1− pc)b(t), (A.20)

and
P(t+1)(θt+1

)
=

P(t)(θt+1
)
PY |X

(
yt+1|xt+1; θt+1

)
P(t)(yt+1|xt+1

)
⇒

P(t+1)(θt+1
)

P(t)(θt+1
) =

PY |X
(
yt+1|xt+1; θt+1

)
P(t)(yt+1|xt+1

) .

(A.21)

We, therefore, have

SBa1(yt+1|xt+1; b(t)) = −pcEb(0)

[
log PY |X(yt+1|xt+1; Θ)

]
− (1− pc)Eb(t)

[
log PY |X(yt+1|xt+1; Θ)

]
+ logP(t)(yt+1|xt+1

)
,

(A.22)

which is equivalent to (c.f. Equation 2.9 and Equation 2.11)

SBa1(yt+1|xt+1;b(t)) = pcEb(0)

[
SSh2(yt+1|xt+1; δ{Θ})

]
+ (1− pc)Eb(t)

[
SSh2(yt+1|xt+1; δ{Θ})

]
− SSh1(yt+1|xt+1; b(t)).

(A.23)

For the 2nd definition of the Bayesian surprise (c.f. Equation 2.30), we have

SBa2(yt+1|xt+1; b(t)) = DKL
[
b(t)||b(t+1)

]
= Eb(t)

[
log

b(t)(Θ
)

b(t+1)(Θ
)]

. (A.24)
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We use Equation 2.28 and Equation A.21 and write

SBa2(yt+1|xt+1; b(t)) = −Eb(t)

[
log PY |X(yt+1|xt+1; Θ)

]
+ logP(t)(yt+1|xt+1

)
+ Eb(t)

[
log

b(t)(Θ
)

pcb(0)(Θ
)

+ (1− pc)b(t)(Θ
)]

,

(A.25)

which is equivalent to (c.f. Equation 2.9 and Equation 2.11)

SBa2(yt+1|xt+1; b(t)) = Eb(t)

[
SSh2(yt+1|xt+1; δ{Θ})

]
− SSh1(yt+1|xt+1; b(t))

+ DKL
[
b(t)||pcb

(0) + (1− pc)b(t)
]
.

(A.26)

Therefore, the proof is complete. ■

A.9 Proof of Proposition 9

First, we prove the statement for the 2nd definition of the Confidence Corrected surprise
(c.f. Equation 2.40) for which we have

SCC2(yt+1|xt+1; b(t)) = DKL
[
b(t)||b(t+1)

reset

]
= Eb(t)

[
log

b(t)(Θ
)

b
(t+1)
reset

(
Θ

)]
.

(A.27)

Using the definition of b
(t+1)
reset in Proposition 1, we can write

SCC2(yt+1|xt+1; b(t)) =− Eb(t)

[
log PY |X(yt+1|xt+1; Θ)

]
+ log P

(
yt+1|xt+1; b(0))

+ Eb(t)

[
log

b(t)(Θ
)

b(0)(Θ
)]

,

(A.28)

which is equivalent to (c.f. Equation 2.9 and Equation 2.11)

SCC2(yt+1|xt+1; b(t)) =Eb(t)

[
SSh2(yt+1|xt+1; δ{Θ})

]
− SSh1(yt+1|xt+1; b(0))

+ DKL
[
b(t)||b(0)

]
.

(A.29)
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Now, we can replace Eb(t)

[
SSh2(yt+1|xt+1; δ{Θ})

]
by using Equation A.26 and have

SCC2(yt+1|xt+1; b(t)) = SSh1(yt+1|xt+1; b(t))
− SSh1(yt+1|xt+1; b(0))
+ SBa2(yt+1|xt+1; b(t))

−DKL
[
b(t)||pcb

(0) + (1− pc)b(t)
]

+ DKL
[
b(t)||b(0)

]
,

(A.30)

which is the same as Equation 2.42. For the 1st definition of the Confidence Corrected
surprise (c.f. Equation 2.37), we can repeat all steps to have

SCC1(yt+1|xt+1; b(t)) = SSh1(yt+1|xt+1; b(t))
− SSh1(yt+1|xt+1; bflat)
+ SBa2(yt+1|xt+1; b(t))

−DKL
[
b(t)||pcb

(0) + (1− pc)b(t)
]

+ DKL
[
b(t)||bflat

]
.

(A.31)

If b(t) is absolutely continuous with respect to bflat, then we have DKL
[
b(t)||bflat

]
=

C
[
b(t)

]
− C

[
bflat

]
, which completes the proof. ■

A.10 Proof of Corollary 1

The corollary is the direct conclusion of Equation A.6 and Equation A.8. ■

A.11 Proof of Corollary 2

Let us show the set of possible observations by Y. We assume that Y is bounded, i.e.,
|Y| < ∞. By assumption, we have P (yt+1|xt+1; b(0)) = 1/|Y|. We therefore (using
Equation 2.5, Equation 2.9, and Equation 2.11) have

SSh1(yt+1|xt+1; b(t)) = log mSBF(yt+1|xt+1; b(t))
1 + mSBF(yt+1|xt+1; b(t))

+ log |Y|
pc

,

SSh2(yt+1|xt+1; b(t)) = log SBF(yt+1|xt+1; b(t)) + log |Y|.
(A.32)

Both mappings are strictly increasing. Therefore, the proof is complete. ■
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A.12 Proof of Corollary 3

In the limit of pc → 1, we have SSh1(yt+1|xt+1; b(t)) = SSh1(yt+1|xt+1; b(0)) (c.f. Equa-
tion 2.9) which implies that ∆SSh1(yt+1|xt+1; b(t)) (c.f. Proposition 2) in Equation 2.42
is equal to 0. Similarly, in the limit of pc → 1, we have DKL

[
b(t)||pcb

(0) + (1− pc)b(t)
]

=

DKL
[
b(t)||b(0)

]
. Therefore, in the limit of pc → 1 and given Equation 2.42, we have

SCC2(yt+1|xt+1; b(t)) = SBa2(yt+1|xt+1; b(t)). ■

A.13 Theoretical results for the postdictive surprise

Lemma 1. (Relation between the postdictive surprise and the Shannon surprise) In the
generative model of Definition 1, the postdictive surprise can be written as

SPo1(yt+1|xt+1; b(t)) = E
P

(
.|xt+1;P(t)

Θt+1

)[
SSh2

(
yt+1|xt+1;P(t)

Θt+1|Y,xt+1

)]
− SSh1(yt+1|xt+1; b(t))

(A.33)

and

SPo2(yt+1|xt+1; b(t)) = E
P

(
.|xt+1;b(t)

)[
SSh2

(
yt+1|xt+1;P(t)

Θt+1|Y,xt+1

)]
− SSh1(yt+1|xt+1; b(t))

+ DKL
[
P

(
.|xt+1; b(t))||P (

.|xt+1;P(t)
Θt+1

)]
,

(A.34)

where P(t)
Θt+1|y,xt+1

:= P(t)
Θt+1

(
.|Yt+1 = y, xt+1

)
is the belief at time t + 1 if we observe

Yt+1 = y with the cue xt+1.

According to Lemma 1, the postdictive surprise is equal to the difference between the
expected (over all values of Yt+1) Shannon surprise of Yt+2 = yt+1 given Xt+2 = xt+1
and the Shannon surprise of yt+1 given xt+1.

Proof: We first prove the equality for SPo1 for which we have (c.f. Equation 2.34)

SPo1(yt+1|xt+1; b(t)) = DKL
[
P

(
.|xt+1;P(t)

Θt+1

)
||P

(
.|xt+1; b(t+1))]

= E
P

(
.|xt+1;P(t)

Θt+1

)[
log

P
(
Y |xt+1;P(t)

Θt+1

)
P

(
Y |xt+1; b(t+1)) ]

,

(A.35)

where
P

(
y|xt+1;P(t)

Θt+1

)
=

∫
PY |X(y|xt; θ)P(t)(Θt+1 = θ

)
dθ, (A.36)
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and, using Bayes’ rule,

P
(
y|xt+1; b(t+1)) =

∫
PY |X(y|xt+1; θ)b(t+1)(θ)dθ

=
∫

PY |X(y|xt+1; θ)
P(t)(Θt+1 = θ

)
PY |X(yt+1|xt+1; θ)

P
(
yt+1|xt+1;P(t)

Θt+1

) dθ.
(A.37)

Using the Bayes’ rule and the definition of the marginal probability (c.f. Equation 2.4),
we can find

P
(
y|xt+1; b(t+1))

P
(
y|xt+1;P(t)

Θt+1

) = 1
P

(
yt+1|xt+1;P(t)

Θt+1

)
×

∫
PY |X(yt+1|xt+1; θ)

P(t)(Θt+1 = θ
)
PY |X(y|xt+1; θ)

P
(
y|xt+1;P(t)

Θt+1

) dθ

(A.38)

that is equal to∫
PY |X(yt+1|xt+1; θ)P(t)(Θt+1 = θ|Yt+1 = y, xt+1

)
dθ

P
(
yt+1|xt+1;P(t)

Θt+1

)
=

∫
PY |X(yt+1|xt+1; θ)P(t)

Θt+1|y,xt+1
(θ)dθ

P
(
yt+1|xt+1;P(t)

Θt+1

) =
P

(
yt+1|xt+1;P(t)

Θt+1|y,xt+1

)
P

(
yt+1|xt+1;P(t)

Θt+1

) ,

(A.39)

and as a result (using Equation 2.9 and Equation 2.11)

log
P

(
y|xt+1;P(t)

Θt+1

)
P

(
y|xt+1; b(t+1)) =− log P

(
yt+1|xt+1;P(t)

Θt+1|y,xt+1

)
+ log P

(
yt+1|xt+1;P(t)

Θt+1

)
=SSh2(yt+1|xt+1;P(t)

Θt+1|y,xt+1

)
− SSh1(yt+1|xt+1; b(t)),

(A.40)
which, using Equation A.35, makes the proof complete.

To prove the 2nd equality, we note that (c.f. Equation 2.35)

SPo2(yt+1|xt+1; b(t)) = DKL
[
P

(
.|xt+1; b(t))||P (

.|xt+1; b(t+1))]
= E

P
(

.|xt+1;b(t)
)[

log
P

(
Y |xt+1; b(t))

P
(
Y |xt+1; b(t+1))]

,
(A.41)

and

log
P

(
y|xt+1; b(t))

P
(
y|xt+1; b(t+1)) = log

P
(
y|xt+1;P(t)

Θt+1

)
P

(
y|xt+1; b(t+1)) + log

P
(
y|xt+1; b(t))

P
(
y|xt+1;P(t)

Θt+1

) . (A.42)

Therefore, using Equation A.40 and the definition of DKL, the proof is complete. ■
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B Appendix to chapter 3

B.1 SurNoR and alternative algorithms

B.1.1 Surprise-Novelty-Reward (SurNoR) algorithm

The SurNoR algorithm (Alg. 1) combines surprise signals with novelty and reward so
as to explore and learn the environment and exploit rewards. A simple block diagram
of the algorithm is shown in Figure 3.4C of the main text. In the SurNoR algorithm,
a model-based and a model-free branch interact with each other. The output of each
branch is a pair of Q-values for estimated novelty and estimated reward. The model-based
branch updates model-based Q-values using a world-model that is estimated online, while
the model-free branch uses a surprise-modulated TD-learner for updating the model-free
Q-values. Finally, actions are selected following a hybrid policy that combines model-free
and model-based Q-values - see Daw et al. (2011); Gläscher et al. (2010) for similar
approaches. In this section, we describe the SurNoR algorithm in detail. For the sake of
clarity and coherence, we repeat here some details already explained in the main text.

Formalization of the environment. The state and the action at time t are random
variables St and At which take values in the finite sets S and A, respectively. In the
particular case of our experiment, we have S = {1, ..., 10, G} and A = {1, ..., 4}. Taking
a Bayesian perspective, we consider the transition probability matrix as another random
variable Θ, i.e.

P(St+1 = s′|St = s, At = a, Θ = θ) = θs,a(s′). (B.1)

where the values of θs,a(s′) for combinations of s, a, and s′ are unknown and needed to
be estimated from experience. Since our environment is deterministic, except for the
switch of two states before the start of block 2, the real transition probabilities are

θreal
s,a (s′) = δ(s′, T (s, a)), (B.2)

where T (s, a) denotes the target state of the transition from state s given action a, and
the Kronecker δ is defined as δ(x, x′) = 1 if x = x′ and zero otherwise; T (s, a) corresponds
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Algorithm 1 Pseudocode for SurNoR
1: Specify S and A
2: Specify Episode (Epi) and Block

# Parameter specification
3: Specify {ϵ, m, λR, λN , β1, β2, βN1, βN2, TPS, µR, µN , QN0, ρb, δρ, ωscale, ω0, ω11, ω12}.
4: if Block = 1 and Epi = 1, then Put β = β1, ω = ω11 and βN = βN1.
5: if Block = 1 and Epi ̸= 1, then Put β = β1, ω = ω0 and βN = 0.
6: if Block = 2 and Epi = 1, then Put β = β2, ω = ω12 and βN = βN2.
7: if Block = 2 and Epi ̸= 1, then Put β = β2, ω = ω0 and βN = 0.

# Initialization
8: Put e

(1)
R (s, a) = e

(1)
N (s, a) = 0, ∀(s, a) ∈ S ×A.

9: if Epi = 1 and Block = 1 then
10: Put C

(1)
s = 0, U

(1)
R (s) = 0, U

(1)
N (s) = log(|S|)

1−λ , ∀s ∈ S.
11: Put Q

(1)
MB,R(s, a) = 0, Q

(1)
MB,N(s, a) = U

(1)
N (s), ∀(s, a) ∈ S ×A.

12: Put Q
(1)
MF,R(s, a) = 0, Q

(1)
MF,N(s, a) = QN0, ∀(s, a) ∈ S ×A.

13: Put α
(1)
s,a(s′) = ϵ, ∀(s, s′, a) ∈ S × S ×A.

14: else
15: Initialize C

(1)
s , U

(1)
R (s), U

(1)
N (s), Q

(1)
MB,R(s, a), Q

(1)
MB,N(s, a), Q

(1)
MF,R(s, a),

Q
(1)
MF,N(s, a) and α

(1)
s,a(s′) with their latest values in the previous Episode.

16: end if
17: Initialize state S1 = s1 and update counts C

(1)
s ← C

(1)
s + δ(s, s1).

18: t← 1.
# Going through the task

19: while st ̸= sGoal do
# Making action

20: Compute Q
(t)
MF(s, a) = Q

(t)
MF,R(s, a) + βN Q

(t)
MF,N(s, a).

21: Compute Q
(t)
MB(s, a) = Q

(t)
MB,R(s, a) + βN Q

(t)
MB,N(s, a).

22: Sample at from π(At = a|St = s) ∝ exp
{

β
[

ω
(
ωscaleQ

(t)
MF(s, a)

)
+ (1 −

ω) Q
(t)
MB(s, a)

] }
.

23: Observe St+1 = st+1.
# Updating internal variables

24: Update counts C
(t+1)
s = C

(t)
s + δ(s, st+1) and novelty N(t+1)(s) = log t+|S|

C
(t+1)
s +1

.

25: Update α(t+1), U
(t+1)
R , U

(t+1)
N , Q

(t+1)
MB,R, and Q

(t+1)
MB,N using the model-based branch

in Alg. 2.
26: Update e

(t+1)
N , e

(t+1)
R , Q

(t+1)
MF,R, and Q

(t+1)
MF,N using the model-free branch in Alg. 4.

# Going to the next step
27: t← t + 1.
28: end while
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to the arrows in Figure 3.1B and Figure 3.1D in the main text. The target state depends
on the block number in our experiment. Note that T (s, a) is unknown to the participants
and to the SurNoR algorithm.

Definition of novelty. While a participant moves in the environment, the count

C(t)
s = |{t′ : 1 ≤ t′ ≤ t and st′ = s}|

indicates how often state s has been encountered up to time t. We assume that at each
time t, participants are able to estimate the empirical frequency p

(t)
f (s) of encountering

state s ∈ S, formally defined as

p
(t)
f (s) = C

(t)
s + 1

t + |S| , (B.3)

where |S| is the total number of states (i.e., 11 for our experiment). Note that the
participants know the total number of states, due to the pre-experiment introduction.
The empirical frequency in Equation B.3 is equal to the expected probability of observing
state s given s1:t under the assumption of a uniform prior over the probabilities of
observing different states: before the start of the experiment all |S| states have the same
prior probability p

(0)
f (s) = 1/|S|.

We define the novelty of the state s at time t as the negative logarithm of the empirical
frequency

N(t)(s) = −log(p(t)
f (s)). (B.4)

In our algorithm, novelty acts just like an internally generated reward or exploration
bonus (see subsection ‘Formalizing model-based Q-values’). The main difference between
our definition of novelty and most of the previously proposed measures of ‘exploration
bonus’ (Achiam and Sastry, 2017; Burda et al., 2019; Kolter and Ng, 2009; Little and
Sommer, 2013; Martin et al., 2017; Mobin et al., 2014; Pathak et al., 2017) is in their
dependency upon states and actions: while the usual exploration bonus measures are
functions of state-action pairs, we define our novelty as a function of states only. Our
choice is more consistent with the behavior of participants in our experiment, since a
reasonable strategy of participants is to visit the states that they rarely encounter in
the experiment as opposed to testing all actions in all states. From this perspective, our
novelty measure is similar to the exploration bonus proposed by Bellemare et al. (2016).

In three of our alternative algorithms (see Section ‘Alternative algorithms’) we use a
state-of-the-art exploration strategy (Achiam and Sastry, 2017; Burda et al., 2019) which
defines exploration bonus (or internal reward) as a function of the pairs of states and
actions. We compare these algorithms with SurNoR (see Figure 3.5 in the main text).
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Model-based branch of SurNoR

The pseudocode for the model-based branch is shown in Alg. 2. In this subsection, the
details are explained.

Algorithm 2 Pseudocode for the model-based branch of SurNoR
# Surprise and adaptation rate

1: Compute S(t+1) = θ̂
(1)
st,at(st+1)/θ̂

(t)
st,at(st+1).

2: Compute γt+1 = mS(t+1)/
(
1 + mS(t+1)).

# Updating the belief
3: Update α

(t+1)
st,at (s) = (1− γt+1)α(t)

st,at(s) + γt+1ϵ + δ(st+1, s), ∀s ∈ S.
4: Update α

(t+1)
s,a (s′) = α

(t)
s,a(s′), ∀s ̸= st, a ̸= at, and s′ ∈ S.

5: Update θ̂(t+1) as θ̂
(t+1)
s,a (s′) = α

(t+1)
s,a (s′)/ ∑

s̃′∈S α
(t+1)
s,a (s̃′).

# Updating the values
6: Update Q

(t+1)
MB,N(s, a) and U

(t+1)
N (s) using Alg. 3 and N(t+1)(s) as rewards.

7: if Epi = 1 and Block = 1 and st ̸= sGoal then
8: Update Q

(t+1)
MB,R(s, a) = U

(t+1)
R (s) = 0.

9: else
10: Update Q

(t+1)
MB,R(s, a) and U

(t+1)
R (s) using Alg. 3 and R(s) = δ(s, sGoal) as rewards.

11: end if

World-model. The participants knew that there were 11 states and 4 possible actions
in each state. However, they were not aware of the actual transition probability matrix.
In particular, they did not know whether the environment is deterministic or stochastic.
Therefore, we define a participant’s model of the world as an approximation b̂ of the
posterior distribution of the transition probability matrix, similar to the approach of
(Faraji et al., 2018; Friston, 2010; Friston et al., 2017),

b̂(t)(θ) ≈ P(Θ = θ|S1:t = s1:t, A1:t−1 = a1:t−1). (B.5)

In the following, we call b̂ the belief of the participant. We assume that a participant
estimates the transition probabilities by a weighted average

θ̂(t) = Eb̂(t) [Θ] =
∫

θb̂(t)(θ)dθ, (B.6)

where the weighting factor is given by the belief b̂(t). For convenience, the transition
probability θ̂

(t)
s,a(s′) is written as p(t)(s′|s, a) in the main text, e.g., in Equation 3.4 and

Equation 3.3.

For exact Bayesian inference one needs to explicitly specify the generative model which
governs the transition. Particularly, the dynamics of Θ over time should be known, e.g.,
whether it is fixed, continuously drifting, or experiencing abrupt changes (Behrens et al.,
2007; Liakoni et al., 2021; Mathys et al., 2011; Nassar et al., 2010). However, rather than
making explicit assumptions about the generative model as a starting point for exact
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Bayesian inference, we work with a general (parametric, see the next part) distribution
b̂(t) which is updated by an appropriate learning algorithm after each observation, similar
to approaches in machine learning (Masegosa et al., 2017; Ozkan et al., 2013).

Beliefs as Dirichlet distributions. We assume that the transition probabilities from
different state-action pairs are independent of each other, i.e.

b̂(t)(θ) =
∏

s∈S,a∈A
b̂(t)(θs,a), (B.7)

where θs,a is defined as in Equation B.1. As a natural1 choice for a probability distribution
over transition probabilities, we consider the belief b̂(t)(θs,a) to be a Dirichlet distribution
with parameter α

(t)
s,a:

b̂(t)(θs,a) = Dir(θs,a; α(t)
s,a). (B.8)

As a result, at each time t, the belief of participants about their environment can be
summarized in the set α(t) = {α(t)

s,a, ∀(s, a) ∈ S ×A}. We consider the parameter of the
prior belief b̂(1) (i.e., α(1)) to be the same for all transitions, i.e.,

α(1) = {α(1)
s,a(s′) = ϵ, ∀(s, s′, a) ∈ S × S ×A}, (B.9)

where ϵ > 0 is a free parameter. With this choice of prior, θ̂
(1)
s,a (i.e., the prior estimate of

the transition probabilities from the pair of state s and action a) is a uniform distribution
over states. Furthermore, the free parameter ϵ expresses how deterministic the transitions
are from the point of view of a participant, i.e., smaller values of ϵ indicate a more
deterministic interpretation of the environment.

Using a Dirichlet distribution for the belief b̂(t) and Equation B.6, a participant’s
estimation of the transition probabilities is

θ̂(t)
s,a(s′) = α

(t)
s,a(s′)∑

s̃′∈S α
(t)
s,a(s̃′)

. (B.10)

Note that, the pseudo-counts C̃
(t)
s,a→s′ in Equation 3.3 of the main text is equal to

α
(t)
s,a(s′)− ϵ.

Definitions of surprise. We work with the ‘Bayes Factor’ surprise SBF (Liakoni et al.,
2021). Consider the transition initiated at time t, i.e., (St = s, At = a)→ (St+1 = s′) .
The Bayes Factor surprise corresponding to this transition is (Liakoni et al., 2021)

S(t+1)
BF = θ̂

(1)
s,a(s′)

θ̂
(t)
s,a(s′)

. (B.11)

1If transition probabilities are stationary and have a uniform (or in general any Dirichlet) prior, exact
Bayesian inference yields a Dirichlet distribution.
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Due to the particular form of the prior b̂(1) that we chose, θ̂
(1)
s,a(s′) is constant. As a

result, the surprise S(t+1)
BF at time t + 1 is proportional to the inverse of the estimated

probability θ̂
(t)
s,a(s′) of the transition initiated at time t. In Equation 3.5 of the main text,

θ̂
(t)
s,a(s′) is written as p(t)(s′|s, a), and θ̂

(1)
s,a(s′) is written as preset(s′|s, a).

We note that in the particular case of our behavioral paradigm, the Shannon surprise
(Shannon, 1948) is just the shifted logarithm of the ‘Bayes Factor’ surprise, i.e., S(t+1)

Sh =
log S(t+1)

BF + log |S|. Furthermore, the state prediction error (SPE) (Gläscher et al., 2010)
is an increasing function of the ‘Bayes Factor’ surprise, i.e., SPEt+1 = 1− 1

|S| S(t+1)
BF

. Hence,
surprise-modulated learning rates in the SurNoR algorithm can alternatively be expressed
in terms of S(t+1)

BF or S(t+1)
Sh or SPEt+1.

Surprise-modulated update of the belief. Learning the world-model corresponds to
updating the parameters of the Dirichlet distribution after each transition. Consider the
transition (St = s, At = a)→ (St+1 = s′) initiated at time t which generates a surprise
S(t+1)

BF at time t + 1. The surprise-modulated adaptation rate is defined as (Liakoni et al.,
2021)

γ(S(t+1)
BF , m) = mS(t+1)

BF

1 + mS(t+1)
BF

∈ [0, 1], (B.12)

where m > 0 is a positive free parameter. The parameter m controls the sharpness of
the transition.

With this modulated adaptation rate, the change in a participant’s belief is given by an
update of the Dirichlet parameters α

(t+1)
s̃,ã (s̃′) for all (s̃, s̃′, ã) ∈ S × S ×A (Liakoni et al.,

2021)

α
(t+1)
s̃,ã (s̃′) =

{
(1− γt+1)α(t)

s̃,ã(s̃′) + γt+1α(1)(s̃′) + δ(s′, s̃′) if s̃ = s, ã = a

α
(t)
s̃,ã(s̃′) otherwise

, (B.13)

where γt+1 = γ(S(t+1)
BF , m). The update rule becomes the same as the one in Equation 3.6

of the main text if we replace α
(t)
s̃,ã(s̃′) by C̃

(t)
s̃,ã→s̃′ + ϵ. The update rule expresses the

new belief as a mix between two possibilities, represented by the current parameters
α

(t)
s̃,ã(s̃′) and the prior α(1)(s̃′), weighted with 1 − γt+1 and γt+1, respectively. In the

case of a large surprise, the value of γt+1 is close to one, and as a result, the current
parameters are forgotten. The update makes a step based on the currently observed
transition, expressed by the Kronecker-δ in the first line. The parameters of transitions
from the pairs of the states and actions different form the current one (i.e., s and a)
are not changed (second line). The update rule of Equation B.13 is called Variational
Surprise Minimizing Learning (VarSMiLe) rule in (Liakoni et al., 2021).

Formalizing model-based Q-values. The world-model of the participants is summa-
rized by their beliefs b̂(t)(θ) about the transition matrix of the environment. The belief
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is used for evaluation of two sets of Q-values (Sutton and Barto, 2018), one for novelty N
and the other one for the external reward R.

Novelty N(t)(s) of state s at time t (cf. Equation B.4) is useful to guide behavior during
exploration. Analogous to the common framework in reinforcement learning (Sutton and
Barto, 2018) where information of a reward at state s′ is propagated by the Bellman
equation to states s ̸= s′, we use a Bellman equation to propagate the novelty of state
s′ to other states s ̸= s′ by using the model of the world. More specifically, for the
model-based branch, we assign to each state-action pair a novelty-based value Q

(t)
MB,N(s, a)

which is an estimation of the accumulated future discounted novelty that can be gained
by taking action a in state s. The Bellman equation is

Q
(t)
MB,N(s, a) =

∑
s′∈S

θ̂(t)
s,a(s′)

(
N(t)(s′) + λN max

a′∈A
Q

(t)
MB,N(s′, a′)

)
, (B.14)

where θ̂
(t)
s,a(s′) are the estimated transition probabilities, and λN ∈ [0, 1] is a discount

factor for novelty. The Bellman equation assigns a value to the action a in state s as long
as a novel state is likely to be reached within the next few steps - even if the immediately
neighboring states are not novel. The discount rate λN controls the time horizon of
‘future novelty’. For λN → 0, only the novelty of the immediately following state matters;
for λN → 1, the time horizon becomes infinitely long.

Rewards R(s) of states s ∈ S guide behavior during exploitation. In the theory of
reinforcement learning, reward information is summarized in values Q

(t)
MB,R(s, a) that are

estimations of the accumulated future discounted reward that can be collected when
starting at state s with action a. The Q-values are given by the Bellman equation

Q
(t)
MB,R(s, a) =

∑
s′∈S

θ̂(t)
s,a(s′)

(
R(s′) + λR max

a′∈A
Q

(t)
MB,R(s′, a′)

)
, (B.15)

where λR ∈ [0, 1] is the discount factor for reward, which is not necessarily equal to the
discount factor for novelty λN . Note that in our environment R(s) = 0 at all states
except at the goal. Since the scale of the reward is arbitrary, we set R(sGoal) = 1. As a
result, the reward function is R(s) = δ(s, sGoal).

The total model-based Q-value is a linear combination of the Q-values for novelty
Q

(t)
MB,N(s, a) and reward Q

(t)
MB,N(s, a),

Q
(t)
MB(s, a) = Q

(t)
MB,R(s, a) + βN Q

(t)
MB,N(s, a), (B.16)

where βN ≥ 0 is a free parameter controlling the trade-off between exploitation and
exploration, i.e., between reward-seeking and novelty-seeking behavior.

In our model, βN depends on whether participants are in the exploration phase or the
exploitation phase. This dependency is simplified as follows: Since novelty is the main
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drive in the 1st episode of the 1st block, we keep βN fixed at a value βN1 throughout
this episode. However, at the end of the 1st episode of the 1st block, once participants
have found the goal and do not need further exploration, we set βN = 0 and keep it at
zero for all remaining episodes of the 1st block.

Surprise increases rapidly at the first mismatch that participants face in the 1st episode
of the 2nd block, when they encounter an unexpected transition. We hypothesize that the
unexpected transitions make them realize that something has changed in the environment
and they do not know anymore a path to the goal state and need to re-explore the
environment and search for the goal in the absence of any external reward; hence, we
assume that the huge surprise signal triggers renewed exploration and we therefore set
βN = βN2 for the 1st episode of the 2nd block. With the same arguments as for the 1st
block, we set βN to zero for the remaining episodes of the 2nd block. βN1 and βN2 are
free parameters of the model.

We also tested a variant of SurNoR with an additional free parameter βN = βN−2to5 for
the weights of Q

(t+1)
MF,N and Q

(t+1)
MB,N in episodes 2-5 of blocks 1 and 2, but we did not find

any significant improvement in the fit (difference in log-evidence = 15± 13).

Note that, for model comparison, we use the same assumptions for all other alternative
algorithms that either seek novelty or uncertainty - see Section ‘Alternative algorithms’.

Updating model-based Q-value. Since solving the non-linear equations B.14 and
B.15 for computing two separate sets of model-based Q-values (i.e., Q

(t)
MB,N(s, a) and

Q
(t)
MB,R(s, a) for all (s̃, ã) ∈ S ×A) is computationally costly, we use a variant (Algorithm

3) of Prioritized Sweeping (Brea, 2017; Sutton and Barto, 2018; Van Seijen and Sutton,
2013).

The idea of the algorithm, for example for updating Q
(t)
MB,R(s, a), is to define a set of |S|

mirror variables U
(t)
R (s), and rewrite Equation B.15 as

Q
(t)
MB,R(s, a) =

∑
s′∈S

θ̂(t)
s,a(s′)

(
R(s′) + λRU

(t)
R (s′)

)
U

(t)
R (s′) = max

a′∈A
Q

(t)
MB,R(s′, a′).

(B.17)

At the transition from time step t− 1 to time step t several iterations take place. The
algorithm first puts U

(t)
R (s) = U

(t−1)
R (s) and updates Q

(t)
MB,R(s, a) for all s, a with the

current values of U
(t)
R (s) using the 1st equation. The size of the update step for the value

of a state s′ is measured as ∆V (s′) = maxa′∈A Q
(t)
MB,R(s′, a′) − U

(t)
R (s′). The states s′

are then ordered in a priority queue with the state of biggest |∆V (s′)| at the top. The
algorithm updates the values of U

(t)
R (s′) of the top priority state using the 2nd equation.

This results in further updates ∆Q
(t)
MB,R(s, a) = θ̂

(t)
s,a(s′)λR∆V (s′) for all s, a induced by

the first equation. After these updates the priority list is resorted. Updating ends after
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TPS iterations where TPS ∈ N is a free parameter of the algorithm.

The values of Q
(1)
MB,R(s, a), U

(1)
R (s), Q

(1)
MB,N(s, a), and U

(1)
N (s) are initialized consistent

with the Bellman equations under the prior world-model (uniform distribution for all
transitions) and the prior reward (zero) and novelty values (log |S|). For details, see
Algorithms 1 and 3.

Algorithm 3 Pseudocode for the modified version of Prioritized Sweeping Algorithm
for one time-step at time t + 1

# Specifying whether the update is for the internal or the external reward
1: Put λ = λR for reward and λ = λN for novelty.
2: Put Q(t) = Q

(t)
MB,R, U (t) = U

(t)
R , and Reward = R for reward, and put Q(t) = Q

(t)
MB,N,

U (t) = U
(t)
N , and Reward = N(t+1) for novelty.

# Applying the effect of the latest observation on Q-values using previous U -values
3: for (s, a) ∈ S ×A do
4: Q(t+1)(s, a) = ∑

s′∈S θ̂
(t+1)
s,a (s′)

(
Reward(s′) + λU (t)(s′)

)
5: end for

# Making the priority queue
6: for s ∈ S do
7: U (t+1)(s) = U (t)(s)
8: Prior(s) = |U (t+1)(s)−maxa∈A Q(t+1)(s, a)|
9: end for

# Updating U -values for TPS steps
10: for TPS iterations do
11: s′ = arg maxs∈SPrior(s)
12: ∆V = maxa∈A Q(t+1)(s′, a)− U (t+1)(s′)
13: U (t+1)(s′) = maxa∈A Q(t+1)(s′, a)

# Applying the effect of the update of U -values on Q-values
14: for (s, a) ∈ S ×A do
15: Q(t+1)(s, a)← Q(t+1)(s, a) + λθ̂

(t+1)
s,a (s′)∆V

16: end for
# Updating the priority queue

17: for s ∈ S do
18: Prior(s) = |U (t+1)(s)−maxa∈A Q(t+1)(s, a)|
19: end for
20: end for

SurNoR model-free branch

The pseudocode for the model-free branch is shown in Alg. 4. In this subsection, the
details are explained.

Formalizing model-free Q-values. Analogous to the model-based branch, we define
Q

(t)
MF,R(s, a) and Q

(t)
MF,N(s, a) as values of the state-action pairs corresponding to the
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Algorithm 4 Pseudocode for the model-free branch of SurNoR
# Surprise-modulated learning rate

1: Compute ρt+1 = ρb + γt+1δρ.
# Prediction errors

2: Compute RPEt+1 = R(st+1) + λR maxa′∈A Q
(t)
MF,R(st+1, a′)−Q

(t)
MF,R(st, at).

3: Compute NPEt+1 = N(t)(st+1) + λN maxa′∈A Q
(t)
MF,N(st+1, a′)−Q

(t)
MF,N(st, at).

# Update of the eligibility traces
4: Update e

(t+1)
N (st, at) = 1, and e

(t+1)
N (s, a) = λN µN e

(t)
N (s, a), ∀s ̸= st, a ̸= at.

5: Update e
(t+1)
R (st, at) = 1, and e

(t+1)
R (s, a) = λRµRe

(t)
R (s, a), ∀s ̸= st, a ̸= at.

# TD-learners
6: Update Q

(t+1)
MF,R(s, a) = Q

(t)
MF,R(s, a) + ρt+1e

(t+1)
R (s, a)RPEt+1, ∀s ∈ S and a ∈ A.

7: Update Q
(t+1)
MF,N(s, a) = Q

(t)
MF,N(s, a) + ρt+1e

(t+1)
N (s, a)NPEt+1, ∀s ∈ S and a ∈ A.

external reward R and novelty N , respectively. In contrast to the model-based branch,
the model-free Q-values are updated using TD-learning (Sutton and Barto, 2018; Watkins
and Dayan, 1992), for which the model of the world is not directly used - see the paragraph
‘Updating model-free Q-values’.

Analogous to the total model-based Q-values, we define the total model-free Q-values as

Q
(t)
MF(s, a) = Q

(t)
MF,R(s, a) + βN Q

(t)
MF,N(s, a), (B.18)

where βN ≥ 0 has the same value as the one used in Equation B.16.

Reward and novelty prediction errors. A crucial signal in model-free reinforcement
learning is the reward prediction error (RPE), defined as the difference between the
expected ‘reward’ of a state-action pair and its real ‘reward’ (Sutton and Barto, 2018).
Since we defined two separate sets of Q-values, one for the external reward and one
for novelty (which plays the role of an ‘internal reward’), we also define two separate
corresponding prediction errors.

Consider the transition (St = s, At = a)→ (St+1 = s′). The RPE at time t + 1 is defined
as

RPEt+1 = R(s′) + λR max
a′∈A

Q
(t)
MF,R(s′, a′)−Q

(t)
MF,R(s, a), (B.19)

and similarly, the novelty prediction error (NPE) at time t + 1 is defined as

NPEt+1 = N(t)(s′) + λN max
a′∈A

Q
(t)
MF,N(s′, a′)−Q

(t)
MF,N(s, a), (B.20)

where λR and λN are the same discount factors as the ones used in the model-based
branch.

Eligibility trace. To keep track of the previously chosen state-action pairs, and to
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include them in the update rule, we use eligibility traces (Gerstner et al., 2018; Lehmann
et al., 2019; Sutton and Barto, 2018). To have the most general setting, we define two
separate eligibility traces, one for the external reward e

(t)
R (s, a) and one for novelty (the

internal reward) e
(t)
N (s, a) for all state-action pairs (s, a). We initialize the eligibility

traces at zero and reset their values to zero at the beginning of each episode. After the
transition (St = s, At = a)→ (St+1 = s′), the eligibility traces are updated to

e
(t+1)
R (s′, a′) =

{
1 if s′ = s, a′ = a

λRµRe
(t)
R (s′, a′) otherwise

e
(t+1)
N (s′, a′) =

{
1 if s′ = s, a′ = a

λN µN e
(t)
N (s′, a′) otherwise ,

(B.21)

where λR and λN are the discount factors defined above, and µN ∈ [0, 1] and µR ∈ [0, 1]
are free parameters expressing how fast eligibility traces decay in time.

Surprise modulation of model-free learning rate. Usual TD learning algorithms
use a constant (or decreasing in time) learning rate for updating Q-values (Sutton and
Barto, 2018). However, the model-free branch of SurNoR has a learning rate modulated
by the model-based branch. This novel interaction between model-based and model-free
modules has not been explored by previous hybrid models in neuroscience, e.g., (Daw
et al., 2011; Gläscher et al., 2010).

We define the surprise modulated model-free learning rate ρt as

ρt = ρb + γ(S(t)
BF, m)δρ, (B.22)

where γ(S(t)
BF, m) is the surprise modulated adaptation rate of the model-based branch

defined in Equation B.12, ρb ∈ [0, 1] is the baseline learning rate (when there is no
surprise, i.e., if S(t)

BF = 0), and δρ ∈ [0, 1− ρb] is the maximum possible variation of the
learning rate due to the surprise modulation. As a result, the learning rate value ρt

ranges between ρb (when S(t)
BF = 0) and ρb + δρ (when S(t)

BF →∞).

Updating model-free Q-value. The model-free Q-values for external reward are
initialized to zero, Q

(1)
MF,R(s, a) = 0 for all s, a. This initialization avoids any potential

bias towards optimistic initialization (OI). The reason for this choice is to have novelty as
the only exploration drive during the 1st episode of the 1st block. We separately test the
effect of the initialization of reward-based Q-values in three alternative algorithm which
use OI of Q

(1)
MF,R(s, a) as a drive for exploration (Sutton and Barto, 2018) - see Section

‘Alternative algorithms’. However, to consider the most general case, we initialize the
model-free Q-values for novelty at Q

(1)
MF,N(s, a) = QN0 with a free parameter QN0 ≥ 0.
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At each time step t+1, the model-free Q-values are updated with a TD-learning algorithm

Q
(t+1)
MF,R(s, a) = Q

(t)
MF,R(s, a) + ρt+1e

(t+1)
R (s, a)RPEt+1

Q
(t+1)
MF,N(s, a) = Q

(t)
MF,N(s, a) + ρt+1e

(t+1)
N (s, a)NPEt+1.

(B.23)

for all (s, a) ∈ S ×A.

Hybrid policy

The policy for action selection is based on a linear combination of Q-values, similar to
Daw et al. (2011); Gläscher et al. (2010). We use a softmax policy (Sutton and Barto,
2018) and consider the probability of choosing action a in state s as

π(At = a|St = s) = 1
Z(s) exp

{
β

[
ω

(
ωscaleQ

(t)
MF(s, a)

)
+ (1− ω) Q

(t)
MB(s, a)

] }
, (B.24)

where Z(s) is the normalization constant (that ensures that ∑
a π(At = a|St = s) = 1),

ωscale ≥ 0 is a free parameter to correct the potentially different scaling of the model-
based and model-free values, and ω ∈ [0, 1] is a free parameter to balance the relative
contribution of the model-based and model-free branches on the policy. When ω = 1,
the policy is purely model-free (but includes the effect of surprise modulation on the
TD-learning learning rate), and when ω = 0, the policy is purely model-based. Note that
ωMF and ωMB mentioned in the main texts are equal to ω×ωscale and 1−ω, respectively.
The reverse temperature β ≥ 0 controls the sharpness of policy (the larger β the more
deterministic is the policy).

As it was shown by Gläscher et al. (2010), ω can vary in time. Specific to our experiment,
we consider ω to be piece-wise constant in time: 1. ω = ω11 for the 1st episode of the 1st
block, when participants are in the pure exploration phase, 2. ω = ω12 for the 1st episode
of the 2nd block, when the goal is lost, and 3. ω = ω0 for the rest of the experiments
(i.e., episodes 2 to 5 for both blocks), when participants are in the exploitation phase.
Moreover, we allow the value of β to be different for the 1st and the 2nd block, β1 and β2
respectively. By doing so, we allow the model to change its confidence in action selection
after observing the sudden change in the environment.

Note that, for model comparison, we use the same assumptions for all other alternative
algorithms that use hybrid policy - see Section ‘Alternative algorithms’.

Summary of free parameters

SurNoR has 18 free parameters, summarized as

{ϵ, m, λR, λN , β1, β2, βN1, βN2, TPS, µR, µN , QN0, ρb, δρ, ωscale, ω0, ω11, ω12}. (B.25)
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ϵ is used for initialization of the belief in Equation B.9. m is used for modulation of the
adaptation rate in Equation B.12. λR and λN are discount factors used in the definitions
and the updates of Q-values. β1 and β2 are the inverse temperatures controlling the
sharpness of the hybrid policy in Equation B.24. βN1 and βN2 are used for balancing
novelty against external reward in equations B.16 and B.18. TPS is used for Prioritized
Sweeping in Algorithm 3. µR and µN are used for controlling the decay of eligibility
traces in Equation B.21. QN0 is used for initialization of QMF,N. ρb and δρ are used
for the baseline learning rate of the model-free branch and its surprise modulation in
Equation B.22. ωscale is used for correcting the potential different scaling of the model-
based and model-free values in Equation B.24, and ω0, ω11, and ω12 are used for balancing
model-free against model-based in the hybrid policy of Equation B.24.

B.1.2 Alternative algorithms

To statistically test the effect of surprise and novelty, we implemented 12 alternative
algorithms explained in this section. Their key features are summarized in Table B.1.
The modified versions of SurNoR which do not seek novelty but assign negative reward
to the most frequent states are explained at the end.

Model-based alternatives. Four out of 12 algorithms are purely model-based. They
all use world-model and prioritized sweeping to calculate model-based Q-values. However,
they have different approaches for learning the world-model and different strategies for
exploration.

(i) MB+S+N: This algorithm has both features of SurNoR in using surprise modulation
for model-building and novelty-seeking for exploration, but it does not use a parallel
TD-learner. MB+S+N is a reduced version of SurNoR with µR = µN = QN0 = ρb =
δρ = ωscale = ω0 = ω11 = ω12 = 0, which is equivalent to the model-based branch of
SurNoR. MB+S+N has 9 free parameters {ϵ, m, λR, λN , TP S , β1, β2, βN1, βN2}.

(ii) MB+N: This algorithm is a modified version of MB+S+N; it uses novelty-seeking
for exploration, but it does not have surprise modulation for learning the world-model.
MB+N uses leaky integration to update the belief parameters (analogous to Equa-
tion B.13),

α
(t+1)
s̃,ã (s̃′) =

{
κLeakα

(t)
s̃,ã(s̃′) + δ(s′, s̃′) if s̃ = s, ã = a

α
(t)
s̃,ã(s̃′) otherwise

, (B.26)

where κLeak ∈ [0, 1] is a constant free parameter. Such a learning rule has been used
previously to model human behavior (Maheu et al., 2019; Meyniel et al., 2016; Modir-
shanechi et al., 2019; Yu and Cohen, 2009). Overall, MB+N has 9 free parameters
{ϵ, κLeak, λR, λN , TP S , β1, β2, βN1, βN2}. It cannot be considered as a special case of
SurNoR, but it can be implemented in the framework of the SurNoR algorithm by
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using Equation B.26 instead of Equation B.13 for updating the belief and by putting
m = µR = µN = QN0 = ρb = δρ = ωscale = ω11 = ω12 = ω0 = 0.

(iii) MB+S+U: This algorithm is similar to MB+S+N; it uses surprise modulation for
learning the world-model, but it seeks uncertainty instead of novelty for exploration.
Following the ideas from Achiam and Sastry (2017); Burda et al. (2019), we define a
set of uncertainty-based Q-values, analogous to the SurNoR’s novelty-based Q-values
(Equation B.14), as

Q
(t)
MB,U(s, a) =

∑
s′∈S

θ̂(t)
s,a(s′)

(
− log θ̂(t)

s,a(s′) + λU max
a′∈A

Q
(t)
MB,U(s′, a′)

)
, (B.27)

where − log θ̂
(t)
s,a(s′), sometimes called surprisal (equal to Shannon surprise) is considered

as the intrinsic reward of the transition (s, a)→ s′. The model MB+S+U is implemented
by modifying SurNoR in 3 steps: 1. Replacing Equation B.14 by Equation B.27 and using
Q

(t)
MB,U(s, a) instead of Q

(t)
MB,N(s, a) in all equations. 2. Replacing λN by λU , βN1 by βU1,

and βN2 by βU2. 3. Putting µR = µN = QN0 = ρb = δρ = ωscale = ω0 = ω11 = ω12 = 0.
MB+S+U has 9 free parameters {ϵ, m, λR, λU , TP S , β1, β2, βU1, βU2}.

(iv) MB+S+OI: This algorithm removes the novelty-seeking block of MB+S+N and
uses optimistic initialization for exploration, i.e., it updates reward-based Q-values also
in the 1st episode of block 1 even before observing the goal states. MB+S+OI can be
implemented by modifying SurNoR in 2 steps: 1. Removing the ‘if’ condition in the
lines 7-10 of Alg. 2 and keeping only line 10. 2. Putting λN = βN1 = βN2 = µR = µN =
QN0 = ρb = δρ = ωscale = ω0 = ω11 = ω12 = 0. This algorithm has 6 free parameters
{ϵ, m, λR, TP S , β1, β2}.

Model-free alternatives. Four out of 12 algorithms are model-free. All of them use a
TD-learner for learning model-free Q-values. However, the ones with surprise-modulation
are also equipped with a world-model, but the world model is not used for computing a
set of model-based Q-values, and the policy is not hybrid.

(v) MF+S+N: This algorithm is equivalent to the model-free branch of SurNoR, but it
also uses the world-model in the model-based branch for surprise-computation. MF+S+N
can be seen as a reduced version of SurNoR by putting TP S = 0 and ωscale = ω11 = ω12 =
ω0 = 1. It has 13 free parameters {ϵ, m, λR, λN , β1, β2, βN1, βN2, µR, µN , QN0, ρb, δρ}.

(vi) MF+N: This algorithm is a reduced version of SurNoR by putting m = TP S = δρ = 0
and ωscale = ω11 = ω12 = ω0 = ϵ = 1, which is equivalent to the model-free branch of
SurNoR without any surprise modulation. It can also be seen as a modified version of
the famous Q(λ) algorithm (Sutton and Barto, 2018) (with λ = µR in our notation) but
with novelty as an exploration bonus (instead of optimistic initialization). The model
MF+N has overall 10 free parameters {λR, λN , β1, β2, βN1, βN2, µR, µN , QN0, ρb}.
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(vii) MF+S+U: The relation between MF+S+U and MB+S+U is the same as the relation
between MF+S+N and MB+S+N. All the features of MF+S+U (including the surprise
modulation of the learning rate of the model-free) except for its exploration strategy are
the same as the ones of MF+S+N. For exploration, MF+S+U seeks uncertainty instead
of novelty. Similar to what we did for MB+S+U, we followed the ideas from Achiam
and Sastry (2017); Burda et al. (2019) and defined the uncertainty-based Q-values as in
Equation B.27. Then, we define the Uncertainty Prediction Error (UPE), analogous to
the SurNoR’s NPE (Equation B.20), as

UPEt+1 = − log θ̂(t)
s,a(s′) + λU max

a′∈A
Q

(t)
MF,U(s′, a′)−Q

(t)
MF,U(s, a), (B.28)

and then we update the uncertainty-based model-free Q-values as

Q
(t+1)
MF,U(s, a) = Q

(t)
MF,U(s, a) + ρt+1e

(t+1)
U (s, a)UPEt+1, (B.29)

where e
(t+1)
U (s, a) is the uncertainty eligibility trace with a decay factor µU . Then

MF+S+U can be implemented by modifying SurNoR in three steps: 1. Replacing
Q

(t)
MF,N(s, a) by Q

(t)
MF,U(s, a) in all equations. 2. Replacing λN by λU , βN1 by βU1, βN2

by βU2, and µN by µU . 3. Putting TP S = 0 and ωscale = ω11 = ω12 = ω0 = 1. The model
MF+S+U has 13 free parameters {ϵ, m, λR, λU , β1, β2, βU1, βU2, µR, µU , QU0, ρb, δρ}.

(iix) MF+OI: This algorithm is our simplest algorithm, and neither surprise nor novelty
is used in it. MF+OI is equivalent to Q(λ)(Sutton and Barto, 2018), with λ = µR in our
notation. It uses optimistic initialization for exploration by putting Q

(0)
MF,R = QR0, where

QR0 is a free parameter. It can be seen as a modified version of SurNoR by initializing
Q

(0)
MF,R = QR0 and putting m = λN = βN1 = βN2 = TP S = µN = QN0 = δρ = 0 and

ωscale = ω11 = ω12 = ω0 = ϵ = 1. The model MF+OI has overall 6 free parameters
{λR, QR0, ρb, β1, β2, µR}.

Hybrid alternatives. Three out of 12 algorithms are hybrid, meaning they use both
model-free and model-based Q-values for decision-making.

(ix) Hyb+N: This algorithm uses MB+N and MF+N in parallel and combines their
Q-values (in the same fashion as in SurNoR) in a hybrid policy. It has overall 17 free
parameters {ϵ, κLeak, λR, λN , β1, β2, βN1, βN2, TP S , µR, µN , QN0, ρb, ωscale, ω11, ω12, ω0}.

(x) Hyb+S+U: This algorithm uses MB+S+U and MF+S+U in parallel and combines
their Q-values (in the same fashion as in SurNoR) in a hybrid policy. Hyb+S+U is as com-
plex as SurNoR and has overall 18 free parameters {ϵ, m, λR, λU , β1, β2, βU1, βU2, TP S , µR,

µU , QU0, ρb, δρ, ωscale, ω11, ω12, ω0}.

(xi) Hyb+S+OI: This algorithm uses MF+OI (but with surprise modulation of the
learning rate of the model-free branch) and MB+S+OI in parallel and combines their
Q-values (in the same fashion as in SurNoR) in a hybrid policy. Hyb+S+OI has overall

155



Appendix B. Appendix to chapter 3

14 free parameters {ϵ, m, λR, β1, β2, TP S , µR, QR0, ρb, δρ, ωscale, ω11, ω12, ω0}.

Table B.1: Summary of the key features of all models.

Algorithm World-model Hybrid-policy Novelty Surprise Param.
i MB+S+N ✓ ✗ ✓ ✓ 9
ii MB+N ✓ ✗ ✓ ✗ 9
iii MB+S+U ✓ ✗ ✗ ✓ 9
iv MB+S+OI ✓ ✗ ✗ ✓ 6
v MF+S+N ✓ ✗ ✓ ✓ 13
vi MF+N ✗ ✗ ✓ ✗ 10
vii MF+S+U ✓ ✗ ✗ ✓ 13
iix MF+OI ✗ ✗ ✗ ✗ 6
ix Hyb+N ✓ ✓ ✓ ✗ 17
x Hyb+S+U ✓ ✓ ✗ ✓ 18
xi Hyb+S+OI ✓ ✓ ✗ ✓ 14
xii RC ✗ ✗ ✗ ✗ 0
xiii BinaryNovelty ✓ ✓ (✓) ✓ 19
xiv SurNoR ✓ ✓ ✓ ✓ 18

Null model.

(xii) RC (Random Choice): According to this algorithm, participants choose actions with
uniform distribution, i.e., each action is selected with a probability equal to 1

|A| = 0.25.
We used this model as a reference to quantify the effect of our novelty-seeking exploration
in the 1st episode of the 1st block. This algorithm does not have any free parameter.

Control modifications of SurNoR. (xiii) Binary Novelty: The two control algorithms
mentioned in the main text are exactly the same as SurNoR except for a change in the
intrinsic motivation signal that drives exploration. While in the SurNoR algorithm the
continuous-valued novelty signal defined in Equation B.3 and Equation B.4 serves as
the intrinsic reward, in the control algorithms the intrinsic reward of state s at time t is
binary: in the first control algorithm it is considered to be −1 if the count C

(t)
s ≥ Cthr and

0 otherwise, where Cthr is a new free parameter, i.e., the algorithm considers the states
that are encountered more than Cthr times as bad states and assigns a constant negative
reward to them. Similarly, in the 2nd control algorithm, the intrinsic reward of state s

at time t is considered to be −1 if state s is among the n most frequently encountered
states and 0 otherwise, where n is a new free parameter, i.e., the algorithm considers
the n most frequently encountered states as bad states. Therefore, the pseudo-code of
the control algorithms is the same as the pseudo-code of SurNoR in Alg. 1 but with
2 modifications: (i) U

(1)
N (s) is initialized at a value 0. (ii) The definition of novelty is

changed to

N(t)(s) =
{
−1 if C

(t)
s ≥ Cthr

0 otherwise
(B.30)
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for the 1st algorithm and to

N(t)(s) =
{
−1 if C

(t)
s ∈ n highest counts

0 otherwise
(B.31)

for the 2nd algorithm. Overall, both algorithms have 19 free parameters, i.e., 18 free
parameters of SurNoR plus Cthr for the 1st and n for the 2nd control algorithm.

B.2 EEG preprocessing and control analyses

B.2.1 PCA over Reward and RPE

We show that PCA on the two normalized variables Reward and RPE yields R+ and R−.

Lemma. For two random variables X1 and X2 with zero mean (i.e., E(X1) = E(X2) = 0),
unit variance (i.e., E(X2

1 ) = E(X2
2 ) = 1), and correlation r = E(X1X2), the new variables

X+ = (X1 + X2)/
√

2 and X− = (X1−X2)/
√

2 are the projections on the two normalized
principal components of the correlation matrix.

Proof: The 2× 2 correlation matrix C has diagonal elements c11 = c22 = 1 because of the
normalization of each variable to unit variance and off-diagonal elements c21 = c12 = r

according to the assumption and symmetry of correlations. The normalized eigenvectors of
the correlation matrix are then e+ = (1, 1)T /

√
2 and e− = (1,−1)T /

√
2 with eigenvalues

λ± = 1± r. ■

Therefore, if Reward and RPE are normalized, then R+ = Reward+RPE and R− =
Reward−RPE are their principal components. Furthermore, for positive correlations
r > 0, the first principal component is R+.

B.2.2 Correlation and orthogonalization for EEG analysis

Novelty is nearly decorrelated from Surprise and NPE, but Reward and RPE are highly
correlated with each other and also correlated with Novelty and NPE (Figure B.8A).
PCA on the variables Reward and RPE yields new decorrelated variables R+ and R−
(Section B.2.1). After projecting Surprise, Novelty, and NPE on the space orthogonal to
R+ and R− (Figure B.8B), all five variables are decorrelated (Figure B.8C, left part).
Nevertheless, the new variables Surprise⊥, Novelty⊥, and NPE⊥ remain very similar to
the original variables Surprise, Novelty, and NPE as indicated by correlations equal to or
above 0.89 (Figure B.8C, right part).

The regression analysis without PCA and without orthogonalization (Figure B.9) yields
results quite similar to the one with PCA and with orthogonalization (Figure 3.10 in the
main text); the main difference is that the significant positive correlation of a reward-

157



Appendix B. Appendix to chapter 3

related variable (R+) with the EEG amplitude in the 3rd time-window disappears. The
reason is the very high correlation between Reward and RPE (Figure B.8A), which leads
to imprecise estimation of regression coefficients (compare Figure B.9B and Figure B.9C
with Figure 3.10B and Figure 3.10C in the main text). Please note that since the
regressors in Figure B.9 are a linear combination of the regressors in Figure 3.10, the
adjusted R-squared is the same for both analyses (compare Figure B.9A with Figure 3.10A
in the main text).

B.3 Fitted parameters and parameter-recovery

B.3.1 Fitted Parameters

The optimal parameters after fitting the SurNoR model to behavior are summarized
in Table B.2 (corresponding to light green lines in Figure B.6). The reported error for
each parameter is the maximum of its standard deviation approximated by Laplace
approximation (MacKay, 2003) and the optimization precision. Laplace approximation
was done for each dimension separately, i.e. the covariance matrix was assumed to be
diagonal to avoid the problems arising from approximation of the full Hessian matrix in
high-dimensional spaces. Therefore, the reported errors can be seen as lower bounds for
the real errors.

B.3.2 Simulated data, model recovery, and parameter recovery

The summary of the analyses of the data of two sets of 12 simulated participants (different
from the one shown in Figure 3.7 in the main text) is shown in Figure B.4 and Figure B.5.
While we observe some variabilities in data generated by different random seeds, the
main aspects of participants’ behavior are captured by the model (Figure 3.7 in the main
text, Figure B.4, and Figure B.5). The true model was successfully recovered in all 3
different cases (Figure 3.8 in the main text).

To check whether parameters of SurNoR are recoverable in our experimental paradigm,
we fitted SurNoR to the three sets of 12 simulated participants (corresponding to the
data shown in Figure 3.7 in the main text, Figure B.4, and Figure B.5). The recovered
parameters are shown in the log-likelihood landscape in Figure B.6. The true parameters
were successfully recovered with reasonable errors given the measured curvature of the
log-likelihood function.

B.3.3 Robustness of model-variables in EEG analysis

In the EEG analysis in Figure 3.10 of the main text, we used model variables (Surprise,
Novelty, NPE, Reward, and RPE) that were calculated from the SurNoR algorithm
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Table B.2: SurNoR parameters fitted to the behavioral data of all participants.
This set of parameters was used for EEG analysis and illustrations in Figure 3.6 in the
main text. The values correspond to the light green lines in Figure B.6.

Param. Value Error
ϵ 2e−4 2e−4
m 0.31 0.02
λR 0.97 0.01
λN 0.70 0.05
β1 4.7 0.2
β2 1.50 0.06
βN1 0.145 0.006
βN2 0.220 0.015
TPS 10 1
µR 0.94 0.01
µN 0.80 0.05
QN0 0.50 0.35
ρb 0.06 0.02
δρ 0.45 0.05
ωscale 5.8 0.2
ω0 0.75 0.05
ω11 0.20 0.05
ω12 0.15 0.05

with one specific parameter choice. We wanted to check the robustness of these model
variables with respect to changes in the parameters of SurNoR. Novelty and Reward are
by definition independent of the SurNoR parameters. To check the robustness of the
other variables, we used the 3 sets of recovered parameters (Figure B.6) and recalculated,
for each of our 12 participants, the time course of Surprise, NPE, and RPE for each of
the three recovered parameter sets. The model variables extracted given the recovered
parameters were extremely highly correlated (> 0.97) with the model-variables extracted
given the fitted parameters (Figure B.7).

B.4 The analysis of random exploration

For any stationary policy (e.g., random choice), the sequence of states {S1, S2, ...} forms
a stationary Markov chain. Let us define the random variable T as the time of the
1st encounter of the goal state, i.e., T is the length of the 1st episode. We connect
the expected number τi of actions to find the goal starting from state S1 = i (with
i ∈ {1, ..., 10}) to the expected number of actions τj in the possible next states S2 = j,

τi = E[T |S1 = i] = 1 +
10∑

j=1
pijτj , (B.32)
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where pij is the probability of transitioning from state i to state j (dependent on the
stationary policy), and we have already exploited that the goal state does not contribute
in the sum because τG is by definition zero.

For a random policy (0.25 probability for each of the four actions) and the layout of
the environment in Figure 3.1 in the main text, we find τtrap := τ8 = τ9 = τ10 = τ1 + 4,

because it takes on average 4 actions to leave the trap states. Similarly, from state 7,
you have a probability of 1/4 to reach the goal in one step, but you can also remain in
state 7 or go to one of the trap states. Evaluating all possibilities we arrive at

τtrap = τ1 + 4,

τi+1 = 3τi − 2τtrap − 4 for i ∈ {1, ..., 6},

τ7 = 4
3 + 2

3τtrap.

(B.33)

By solving this set of linear equations, we find

τ1 = 13116 , τ2 = 13104 , τ3 = 13068 , τ4 = 12960
τ5 = 12636 , τ6 = 11664 , τ7 = 8748
τ8 = τ9 = τ10 = τtrap = 13120.

(B.34)

The results of calculation show that, starting from state 6 (which is the starting state of
the first episode in our experiments), it takes on average more than 10000 actions to find
the goal with a random policy.

B.5 Precise statement of the prediction in ‘Discussion’

Consider an extended version of our environment in Figure B.1 which includes a new
(and not necessarily finite) set of states (i.e., the purple states in Figure B.1) that can
be accessed from state 4 in the middle of the direct path to the goal. Assume that a
participant has found the goal state G at the end of the first episode. In episodes 2 to
5 two different situations may arise. (i) If participants believe that the yellow goal in
Figure B.1 is the only (or the most) rewarding state in the environment, then they should
ideally stop exploration as soon as they have found the goal and go straight to the goal
in subsequent episodes. (ii) If participants wonder whether there may exist another state
with a higher value of reward than state G, then they will spend a large amount of time
in novelty-rich states like the purple states in Figure B.1. Our prediction, based on the
SurNoR model presented in the main text, is that both situations can be observed in
the behavioral data and that the difference depends on the prior knowledge given to the
participant about the environment before the start of the experiment.

The environment of Figure B.1 also provides a critical test for alternative algorithms of
SurNoR. Importantly, in the SurNoR model, information on novelty and external reward
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Figure B.1: An example of the extended version of our environment mentioned in
the ‘Discussion’ section of the main text. The existence of a set novelty-rich states may
distract participants from exploiting the reward at the goal in the episodes after the 1st episode.

are summarized in two separate set of Q-values. Consider an alternative model where
the novelty is treated as an internal reward and is added to the external reward in a
single set of Q-values. This is equivalent to adding Q-values of novelty and reward with
a fixed factor βN (see section B.1).

Since the novelty of the purple states is constantly increasing, no matter the values of β

and ω in section B.1, any fixed and non-zero value of βN (see section B.1) will eventually
drive the agent back towards novelty-seeking and hence exploration of the purple states.
This statement holds for non-deterministic model-free, model-based, or hybrid models.

A straightforward way to avoid being distracted from exploiting the external reward is to
stop seeking novelty after finding the goal for the first time. This is done in the SurNoR
algorithm by reducing βN , i.e., by reducing the relative importance of novelty.

B.6 Qualitative differences between model-based (MB) and
model-free (MF) branches of SurNoR

The difference in log-evidence of SurNoR and MF+N+S (Figure 3.5A in the main text)
shows that both branches, MF and MB, are need for explaining behavior, although the
participants’ decisions are dominated by the MF action choices (Figure 3.6A4 in the
main text). We wanted to find out at which point in the experiment the policy of MB is
different from MF.

To do so, we focus on the 1st episode of block 1 and analyze the MB and MF branches
of SurNoR with its parameters fitted to behavior (section B.3). We analyze below two
different situations where MB and MF have different preferences and show that in both
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cases a hybrid policy explains the behavior better than either MF or MB separately.
Note that our analyses are based on the specific set of fitted parameters.

After the 1st failure

Consider an agent and assume that during the first visit of state 1 it has chosen one of
the bad actions. We wondered which action the agent chooses the next time it visits
state 1: Does it repeat its last action or choose another action? We, therefore, analyzed
the behavior of participants, SurNoR, the MB branch of SurNoR, and the MF branch of
SurNoR in this situation for state 1, 2, and 3 (Figure B.2A). In all three states, while
the MB branch of SurNoR favors changing the action (and exploring the ones not chosen
before), the MF branch of SurNoR favors repeating the same action as chosen the first
time. SurNoR combines the two and prefers changing the action, which is consistent
with the behavior of participants.

The reason that the MB branch prefers a new action is that it is aware of the existence of
many other states that are more novel than any of the trap states, and hence, it assigns
a larger novelty value QMB,N to unexplored actions than the previously chosen one. On
the other hand, because the initial value QN0 of MF Q-values is very small (section B.3
and Figure B.6), the first encounter of a trap state increases the MF novelty value QMF,N
of the chosen state-action pair. Taken together, the MB branch literally plans to find
more novel states while the MF branch follows what have been internally rewarding
before. Hence, the MB branch is important to correctly guide action choices after the
first failure.

After the nth success

Consider an agent and assume that it has chosen n times the good action in state 1. We
wondered which action the agent chooses the next time it visits state 1: Does it further
repeat the good action or choose another action? We, therefore, analyzed the behavior
of participants, SurNoR, the MB branch of SurNoR, and the MF branch of SurNoR in
this situation for n equal to 2, 6, and 9 (Figure B.2B). As n increases, the MF branch of
SurNoR increases its preference for staying with the good action, while the MB branch of
SurNoR still favors exploring the environment (although with less confidence compared
to the case discussed above, Figure B.2A). SurNoR combines the two, and, as n increases,
gets closer to the MF preferences and to the participants’ behavior.

In summary, in the 1st situation, participants are more MB, while in the 2nd situation,
they are more MF. The take-home message is that the hybrid policy flexibly combines
the two and explains the participants’ behavior in both situations.
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Figure B.2: The MB and MF branches of SurNoR have different preferences
in different situations. Participants behave more MB in some situations and more
MF in the others, and a hybrid policy can capture their behavior in both situations. A.
Average probability of repeating the previous action or changing to another one in states
1, 2, and 3, with the condition that the 1st time the agent took the bad action. Error
bars show the standard error of the mean. B. Average probability of repeating the good
action or changing to another one after 2, 6, and 9 times taking the good action in state
1. Error bars show the standard error of the mean.
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B.7 Supplementary Figures

Figure B.3: Average progress at states in proximity of the goal (complement to
Figure 3.2 and Figure 3.7 of the main text). Average progress of participants (A) and
simulated participants (B-D) each time visiting states 5, 6, and 7 in episode 1 of block 1 (blue)
or states 5, 6, and 3 in episode 1 of block 2 (red). Panel A corresponds to the experimental
data shown in Figure 3.2, panel B to the simulated data shown in Figure 3.7, panel C to the
simulated data shown in Figure B.4, and panel D to the simulated data shown in Figure B.5.
While states 1 and 2 are visited by most participants at least 15 times (c.f. Figure 3.2, main
text), only very few participants visit the states close to the goal more than 5 times, and as a
result, total learning progress between the start and the end of the episode is smaller and data is
noisy. Similar observations can be made for the simulated participants (cf. Figure 3.2, main text;
size of circles indicates number of participants). Since the number of visits of states close to the
goal is small, the noise-induced differences between different simulations runs are large (compare
the runs in B, C, and D). In particular, at the state before the goal state (state 7 in block 1
and state 3 in block 2), the first time that (simulated) participants choose the good action, they
reach the goal state and finish the episode. Therefore, the average progress for the state before
the goal is always calculated across those (simulated) participants who did not choose the good
action when they visited that state previously.
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Figure B.4: Posterior predictive checks; the structure of figure is the same as Figure 3.7.
and their only difference is in the random seed used for generating data. A. Average number of
actions of 12 simulated participants at each episode (c.f. Figure 3.1C). B. Median number of
actions of simulated participants to escape the trap states at each of their visits in episode 1 of
block 1 (left) and block 2 (right) (c.f. Figure 3.2A) C. Average progress of participants each time
visiting states 1, 2, 3, and 4 in episode 1 of block 1. (c.f. Figure 3.2B). D. Average progress of
simulated participants each time visiting states 1, 2, 7 (swapped with 3), and 4 in episode 1 of
block 2. (c.f. Figure 3.2C). See Figure B.3C for the average progress at the progressing states in
the proximity of the goal.
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Figure B.5: Posterior predictive checks; the structure of figure is the same as Figure 3.7,
and their only difference is in the random seed used for generating data. A. Average number of
actions of 12 simulated participants at each episode (c.f. Figure 3.1C). B. Median number of
actions of simulated participants to escape the trap states at each of their visits in episode 1 of
block 1 (left) and block 2 (right) (c.f. Figure 3.2A) C. Average progress of participants each time
visiting states 1, 2, 3, and 4 in episode 1 of block 1. (c.f. Figure 3.2B). D. Average progress of
simulated participants each time visiting states 1, 2, 7 (swapped with 3), and 4 in episode 1 of
block 2. (c.f. Figure 3.2C). See Figure B.3D for the average progress at the progressing states in
the proximity of the goal.
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B.7 Supplementary Figures

Figure B.6: Parameter recovery results and log-likelihood landscape. The solid black
curve in each panel shows the log-likelihood of the behavioral data of 12 participants as a function
of one of the free parameters of SurNoR, while the other parameters are fixed at their fitted values
(section B.3). The fitted value for each parameter corresponds to the peak of the log-likelihood
function and is specified by the light green lines. The recovered parameters for 3 different sets
of 12 simulated participants (corresponding to the data shown in Figure 3.7 in the main text,
Figure B.4, and Figure B.5) are shown by the light red lines. Note that the procedure of fitting
parameters to the generated data were exactly the same as the procedure of fitting parameters
to the real data, i.e., we searched in the 18-dimensional space of parameters. The 1st column
corresponds to parameters mainly related to model-building and model-based planning (ϵ, m,
and TPS); the 2nd column corresponds to the softmax policy temperatures and the parameters
controlling the exploration and exploitation trade-off (β1, β2, βN1, and βN2); the 3rd column
corresponds to the discount factors and the decay rates of eligibility traces (λR, λN , µR, and
µN ); the 4th column corresponds to parameters mainly related to model-free learning (ρb, δρ,
and QN0); and the last column corresponds to the parameters controlling the trade-off between
model-based and model-free policies (ω0, ω11, ω12, and ωscale). See section B.3 for details.
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Figure B.7: Robustness of model-variables. Average correlation between the model-variables
extracted given the fitted parameters (the ones used for EEG analyses) and model-variables
extracted given the recovered parameters corresponding to A. Figure 3.7 in the main text, B.
Figure B.4, and C. Figure B.5. Error bars show the standard error of the mean, and each grey
point shows data of one participant. See section B.3 for details.

Figure B.8: Correlations (averaged over participants) between relevant variables. A.
The cross-correlations between Surprise, Novelty, NPE, RPE, and Reward during the behavioral
task. B. Novelty⊥ is the projection of Novelty onto the subspace orthogonal to the plane spanned
by Reward and RPE. The variables R+ and R− are the (normalized) sum and difference of RPE
and Reward, respectively. An analogous orthogonalization is applied to Surprise and NPE. C.
The cross-correlation matrix of the orthogonalized variables and the original ones. Surprise⊥,
Novelty⊥, and NPE⊥ are highly correlated with their raw values but have zero correlation with
reward and RPE. See section B.2 for details.
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Figure B.9: ERP variations explained by trial-by-trial and participant-by-participant
multivariate linear regression analysis. Figure B.9 uses a simplified preprocessing pipeline
without orthogonalization but is otherwise analogous to Figure 3.10 in the main text. Surprise
(magenta), Novelty (dark blue), NEP (light blue), Reward (brown) and RPE (red) were used as
explanatory variables, and the ERP amplitude at each time point was considered as the response
variable. A. Encoding power (adjusted R-squared values) averaged over 10 participants (dashed
lines show the standard error of the mean) at each time point. Shaded areas and horizontal
lines indicate four time intervals (W1, ..., W4) of significant encoding power (FDR controlled
by 0.1, one-sample t-test, only for the time-points after the baseline). The 3rd time interval
has been split into two time windows of equal length for the analysis in C. B. Values of the
regression coefficients (averaged over participants) for Surprise, Novelty, NEP, Reward, and RPE
as a function of time. Errors are not shown to simplify the illustration. C. In each of the 5 time
windows, the regression coefficients plotted in B have been averaged over time. Error bars show
the standard error of the mean (across participants). Asterisks show significantly non-zero values
(FDR controlled by 0.1 for each time window, one-sample t-test). The Novelty coefficients in the
1st and the last time windows (dot) have p-values of 0.03 and 0.04, respectively, which are not
significant after FDR correction. In the second time window, Surprise, Novelty, and NEP have
significantly positive coefficients. See section B.2 for details.
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C Appendix to chapter 5

C.1 Supplementary results for simulated efficient agents

C.1.1 Simulated efficient agents behave similarly in episode 1

All intrinsically motivated simulated efficient agents find the goal states faster than
simulated agents that randomly explore the environment (Figure C.1A1 vs. Figure C.1A2-
4). Importantly, in the 2nd half of episode 1, all intrinsically motivated simulated efficient
agents spend on average less time in the trap states and more time in the stochastic part
than in the 1st half (Figure C.1B2-4; compare it to Figure C.2B). For simulated agents
with random exploration, no change can be observed (Figure C.2B1). We conclude that
seeking different intrinsic rewards cannot be qualitatively distinguished during episode 1,
at least given based on the data statistics of simulated efficient agents in Figure C.1B2-B4.
This is expected as we fine-tuned the parameters of the simulated efficient agents to have
the most efficient exploration during episode 1.
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Figure C.1: Optimized performance of intrinsically motivated algorithms in episode 1
(supplementary to Fig. 2 in the main text). A. Distribution of number of actions (1500
simulations for each algorithm). SEMed is evaluated by bootstrapping. B. Fraction of time spent
in the trap states and in the stochastic part during the 1st and the 2nd half of episode 1. Error
bars show the SEMean and single dots the data of (60 out of 1500) individual simulations.
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C.2 Supplementary results for human participants

C.2.1 Human participants in episode 1

As expected, human participants are on average slower than the intrinsically motivated
simulated efficient agents in finding a goal state in episode 1 (Figure C.2A versus
Figure C.1A2-A4). However, they show the same qualitative pattern of behavior as the
intrinsically motivated simulated efficient agents: In the 2nd half of episode 1, all human
participants spend on average less time in the trap states and more time in the stochastic
part than in the 1st half (Figure C.2B versus Figure C.1B). These results show that
human participants exhibit patterns of directed exploration also in episode 1 – consistent
with the results of Xu et al. (2021).
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Figure C.2: Human behavior in episode 1 (supplementary to Fig. 3 in the main
text). A. Distribution of number of actions taken by all 57 participants in episode 1. SEMed is
evaluated by bootstrapping. B. Fraction of time spent in the trap states and in the stochastic
part during the 1st and the 2nd half of episode 1. Error bars: SEMean. Red p-values: Significant
effects with False Discovery Rate controlled at 0.05 for all tests in the figure. Red Bayes Factors
(BF): Significant evidence in favor of the alternative hypothesis (BF≥ 3).
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C.2.2 Action frequencies in progressing states other than states 4

During episode 2, the action frequencies of human participants have the same charac-
teristics in states 1, 2, 3, 5, and 6: A high preference for progressing actions and a
low preference for self-looping actions. This implies that all three groups of human
participants learned the ‘good’ action in the progressing states during episode 1.
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Figure C.3: Action frequencies of human participants during episode 2 (supplementary
to Fig. 3 in the main text). Fraction of time taking the progressing action (PA) and the self-
looping action (SA) when encountering state 1, 2, 3, 5, and 6 during episode 2 for three different
groups of participants (different colors) – supplementary to Fig. 5C in the main text. Error bars
show the SEMean. Red p-values: Significant effects with False Discovery Rate controlled at 0.05
for all tests in the figure. Red Bayes Factors (BF): Significant evidence in favor of the alternative
hypothesis (BF≥ 3).
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C.2.3 The relative importance of model-free in action-selection

Similarly to how we quantified the relative importance of novelty in action-selection
by ωi2e (see Methods in the main text), we can quantify the relative importance of the
model-free branch in action selection by

ωMF2MB = ∆Q̄MF

∆Q̄MB + ∆Q̄MF
. (C.1)

Consistent with the results of Xu et al. (2021), we observe a persistent dominance of
the model-free branch throughout the experiment (Figure C.4A-B). Parameter recovery
confirms the validity of this observation (Figure C.4C). The dominance of the model-
free policy in explaining the action choices of human participants is another source of
suboptimality in human behavior (in addition to exploration driven by novelty instead of
information gain).
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False Discovery Rate controlled at 0.05 for all tests in the figure. Red BFs: Significant evidence
in favor of the alternative hypothesis (BF≥ 3).
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C.2.4 Fitted parameters of novelty-seeking

Figure C.5 shows the fitted parameters of novelty-seeking algorithm for all 57 participants
– see Methods in the main text for the details of parameter fitting.
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C.3 Supplementary results for simulated participants

Our comparison of the two most discriminating data statistics of simulated participants
with those of human participants in the main text (Fig. 5) helped us gain insights about
why algorithms driven by information gain or surprise fail to explain the action-choices
of human participants in Bayesian model-selection (see Fig. 4 in the main text). In this
section, we present supplementary results on the data of simulated participants as further
evidence for our interpretations in the main text.

In subsection C.3.1, we compare all data statistics of human participants reported in
Fig. 3 in the main text with the corresponding data statistics of simulated participants.
In subsection C.3.2, we go beyond analyzing a handful of data statistics and train a
model-agnostic classifier to separate different groups of simulated participants based on
their patterns of state visitation. The results in both subsections are consistent with our
model-selection results (Fig. 4 in the main text).

C.3.1 Systematic comparisons of data statistics

We analyzed 19 data statistics of human participants in Fig. 3 in the main text, but
only two of these data statistics were compared with the data statistics of simulated
participants (Fig. 5 in the main text). In this section, we compare all the 19 data
statistics of human participants with those of simulated participants (see Figure C.6).
Overall, the behavior of simulated participants seeking novelty seems to be the closest to
the behavior of human participants (Figure C.6A-B), followed by simulated participants
seeking information gain (Figure C.6C-D) and surprise (Figure C.6E-F), respectively.
This order is consistent with the results of our Bayesian model-selection in Fig. 4 in the
main text. Importantly, novelty-seeking simulated participants can precisely reproduce all
main data statistics of the human participants based on which we made our conclusions:
Correlations in Figure C.6A and the equal action preferences of the 2 CHF group for PA
and SA in Figure C.6B. We emphasize that these results are found despite the fact that
all the three algorithms have the same number of free parameters that were optimized to
maximize the likelihood of action-choices of human participants.

The results shown in Figure C.6 are overall consistent with the interpretations provided
in the main text on why algorithms driven by information gain and surprise fail to explain
the action-choices of human participants. An additional interesting observation is that
simulated participants seeking information gain or surprise can reproduce the between
group differences in the median number of actions taken by human participants (inset
of Figure C.6C1 and E1) but cannot reproduce the between group differences observed
in their fraction of time spent in the stochastic part (inset of Figure C.6C2 and E2).
This is due to the fact that the search duration can be, in general, manipulated by
the level of randomness in action-selection (controlled by the inverse temperatures of
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the Softmax policy; see Alg. 5 and Methods in the main text), i.e., increasing random
exploration increases the median number of actions even in the absence of any intrinsic
reward. However, increasing randomness does not make simulated participants attracted
to the stochastic part. Therefore, the failure of algorithms driven by information gain
and surprise are essentially due to their inaccuracy in explaining directed exploration.
Novelty-seeking can successfully explain this aspect of directed exploration in human
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Figure C.6: (Caption next page.)
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Figure C.6: (Previous page.) Data statistics of simulated participants (supplementary
to Fig. 5 in the main text). Red (A-B), green (C-D), and orange bars (E-F) show data
statistics of simulated participants seeking novelty, information gain, and surprise, respectively.
Data statistics of human participants are shown by blue disks for comparison (same data as
in Fig. 3 in the main text). Different shades of color indicate different reward groups: 2 CHF
(dark), 3 CHF (medium), and 4 CHF (light). A1, C1, and E1. Median number of actions over
episodes 2-5: Error bars show the SEMed (evaluated by bootstrapping) and single dots the data
of 20 individual participants. Inset: Correlation between the search duration and the goal value
of the environment (error estimated by bootstrapping). A2, C2, and E2. Average fraction of
time spent in the stochastic part of the environment during episodes 2-5. Error bars show the
SEMean and single dots the data of 20 individual participants. Inset: Correlation between the
fraction of time and the goal value of the environment (error estimated by bootstrapping). A3,
C3, and E3. Median number of actions in episodes 2-5 for the 2 CHF group. Error bars show
the SEMed and single dots the data of 20 individual participants. Inset: Correlation between the
search duration and episode number (error estimated by bootstrapping). B, D, and F. Fraction
of time choosing the progressing action (PA) and the stochastic action (SA) when encountering
state 4 during episode 2. Error bars show the SEMean.

participants (inset of Figure C.6A2).

C.3.2 Model-selection based on state visitation patterns

The results in Figure C.6 (and Fig. 5 in the main text) are based on a handful of data
statistics that we had picked to dissociate different intrinsically motivated algorithms.
In this section, we automatize the process of choosing discriminating data statistics by
training a classifier on state visitation patterns of simulated participants (Figure C.7).

Data representation: We divide each episode into 5 equal time-windows and, for
each simulated participant, compute the fraction of time it spends in different parts of
the environment during each of these time-windows. We average the state-visitation
patterns of episode 2-5 to summarize data into two 5× 8 matrices (for 5 time-windows
and 8 different parts of the environment), one for episode 1 and another for episodes
2-5 (Figure C.7A). By doing so, we summarize and represent the action-choices of each
simulated participants by a 80-dimensional vector of state visitations. The 80-dimensional
vector can be seen as a more general version of the fraction of time shown in Figure C.6A2,
C2, and E2.

Training procedure and classifier evaluation on testing sets: To make a large
enough dataset for accurate training of a classifier, we simulate 1500 participants for
each of the 3 reward groups of each of the 3 intrinsically motivated algorithms (resulting
in 3 × 3 × 1’500 = 13’500 simulated participants), following the procedure described in
‘Posterior Predictive Checks’ (PPC) section of Methods in the main text. We note that
due to stochastic action selection, the sequence of actions choices is different even when
the same parameter set is used for several simulated participants. Here, 57 parameter
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sets (corresponding to 57 individual human participants) is used several hundred times to
generate 1500 simulated participants with different action sequences and hence different
state visitation patterns (see ‘Posterior Predictive Checks’ section of Methods in the
main text). After removing the outliers (see Methods in the main text) and balancing
the number of remaining simulated participants for each algorithm, we train a neural
network classifier on the data of simulated participants: The input to the classifier is the
80-dimensional representation of the action-choices of a participant, and the output of the
classifier is 3 values for the probability that the participant’s action-choices were simulated
by seeking novelty, information gain, or surprise, respectively (Figure C.7B1); note that
we know the true intrinsic reward corresponding to each simulated participant as we ran
the simulations ourselves. We repeat the training procedure 100 times to evaluate the
robustness of our results (Figure C.7B1), where, for each training repetition, we use a
different random split of data to the training (90%) and testing sets (10%), a different
bootstrapping of the training and testing sets, and a different random initialization of
the network’s weights. The classifier robustly achieves an accuracy rate much higher
than chance level (Figure C.7B2); this observation is found despite the facts (i) that
the classifiers do not have access to the action-choices of simulated participants and
only receive the state visitation patterns, (ii) that the state visitation patterns for many
simulated participants (e.g., the 4 CHF group with high level exploitation) may look
very similar to each other, and (iii) that the classifiers receive information about different
algorithms only through simulations without any explicit access to the their likelihood
functions.

Application of the trained classifier to human data: We apply the trained
classifiers to the data of human participants represented by the 80-dimensional vectors as
in Figure C.7A-B. The output of classifiers applied to the data of a human participant
shows the posterior probability that the human participant’s action-choices were generated
by seeking novelty, information gain, or surprise, respectively. The average (over 100
training repetition) classifier output confirms the results of our Bayesian model-selection in
Fig. 4 in the main text (Figure C.7C). In summary, our results show that state-visitation
patterns of human participants are most similar to those of simulated participants seeking
novelty, followed by those seeking information gain and surprise, respectively.
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Figure C.7: A model-agnostic classifier trained on the data statistics of simulated
participants confirms the model-selection results in the main text (supplementary to
Fig. 4 and Fig. 5 in the main text). A. We divide each episode into 5 equal time-windows
and summarize the action-choices of a simulated or human participant into two matrices of state
visitations during these 5 time-windows, one for during episode 1 (top) and one averaged over
episodes 2-5 (bottom). Color-code indicates the fraction of time spent in different parts of the
environment (rows) in a given time-window (columns); the sum of the values in each column is
equal to 1. B. Given the representation in A, data of each human or simulated participant can be
represented by a 80-dimensional vector. B1. We consider a neural network with 3 hidden layers
as a classifier that receives, as input, the 80-dimensional representation of the action choices of a
participant and delivers, as output, the probability that the action-choices of this participant was
generated by an algorithm driven by novelty, information gain, or surprise. Each neuron includes
a batch-normalization unit and a Rectified Linear Unit (ReLu). B2. We train the neural network
in B1 for 100 times on the data of simulated participants, each time with a different random split
of data into the training and testing sets, a different bootstrapping of the training and testing sets,
and a different random initialization of the network’s weights (using cross-entropy loss function).
The average accuracy rate at the beginning of the training is equal to the chance level (i.e., 33.3%)
for both training (black) and testing sets (grey). At the end of the training, the network is able
to correctly classify more than 50% of the testing samples. Shaded areas: Standard deviation
across the 100 training repetitions. C. We apply the trained classifiers to the action-choices of
human participants (represented as in A). Average (across the 100 training repetitions; error
bars: SEMean) output of the classifiers matches the results of our Bayesian model-selection in the
main text. XP stands for the exceedance probability computed as the ratio of the 100 training
repetitions that resulted in a higher average P(novelty|x) than P(inf.-gain|x) and P(surprise|x)
for human participants. We emphasize that the action-choices of human participants were never
presented to the classifier throughout the training.
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C.4 Supplementary methods

C.4.1 Model-building in an environment of unknown size

In this section, we use ideas from non-parametric Bayesian inference (Gershman and
Blei, 2012; Ghahramani, 2013) and Dirichlet processes (Teh, 2010) to derive a Bayesian
estimate p(t)(s′|s, a) of the transition probabilities in an environment of unknown size.

Time dependent base distribution as the expected prior

Consider the 1st time an agent takes action a at state s. Which is the state s′ where the
agent is expected to land given that it has zero experience for taking action a at state s?
There are two possibilities: (i) s′ is one of the already known state, i.e., s′ ∈ S(t), and
(ii) s′ is one of the infinitely many imaginable states S that the agent has not observed
yet, i.e., s′ /∈ S(t). We assume that the agent considers different weights for these two
possibilities even in the prior distribution. We give a precise definition of this prior
distribution in the next subsection, but we first need to give a definition for our time
dependent base distribution (Teh, 2010) which we will used later.

We define the probability measure H as a continuous probability distribution (i.e. without
any atom) on the space of all imaginable states S – e.g., the space of all images that can
appear on the computer screen. Our results are independent of the exact shape of H –
as long as it is a continuous probability distribution. We then define the time-dependent
base distribution on S as

H(t) = ϵnew
ϵnew + ϵobs|S(t)|

H + ϵobs
ϵnew + ϵobs|S(t)|

∑
s∈S(t)

δs, (C.2)

where δs is the Dirac measure at s, ϵobs and ϵnew are the weights for combining the two
possibilities of (i) transiting to a known state s′ ∈ S(t) and (ii) transiting to a new and
unknown state s′ ∈ S. In the next section, we use this base distribution in a way to have
p(t)(.|s, a) = H(t) for any state-action pair (s, a) that has not been experienced before.

Derivation of the world-model

We indicate the matrix of transition probabilities as a parameter Θ that fully summarizes
the environment. Then, given underlying Θ = θ : S ×A → Measures[S], we have

P(St+1 = s′|St = s, At = a, Θ = θ) = θs,a(s′) (C.3)

182



C.4 Supplementary methods

for any s and s′ ∈ S and a ∈ A. Given the sequence of states S1:t = s1:t and actions
A1:t−1 = a1:t−1, an agent’s belief about the transition matrix θ is defined as the posterior

b(t)(θ) = Pt(θ|s1:t, a1:t−1) ∝ Pt(θ)Pt(s2:t|θ, a1:t−1, s1) = Pt(θ)
t−1∏
t′=1

θst′ ,at′ (st′+1), (C.4)

where the prior Pt is a time-dependent prior distribution over transition probabilities.
We assume that Θs,as are a priory i.i.d. samples of a Dirichlet process prior (Teh, 2010)
with the base distribution H(t) and a time-dependent concentration parameter α(t), that
is, for any finite and countable S ′ ⊆ S,

Pt
(
{θs,a : s ∈ S ′, a ∈ A}

)
=

∏
s∈S′,a∈A

DP(θs,a; α(t), H(t)), (C.5)

where DP stands for Dirichlet Process. H(t) is the prior expected value of Θ and can be
seen as a prior estimate of transition probabilities, and α(t) shows how many samples
this estimate is worth (Efron and Hastie, 2016; Teh, 2010). Putting a weight of ϵobs
for each known state and ϵnew for all unknown state (Equation C.2), we end up with
α(t) = ϵnew + ϵobs|S(t)| as the number of samples that H(t) is worth.

It is straightforward to show that the posterior distribution b(t) has a the same form as
the prior (Teh, 2010), that is, for any finite and countable S ′ ⊆ S,

b(t)({θs,a : s ∈ S ′, a ∈ A}
)

=∏
s∈S′,a∈A

DP
(
θs,a ; α(t) + C(t)

s,a ,
α(t)

α(t) + C
(t)
s,a

H(t) + 1
α(t) + C

(t)
s,a

∑
s′∈S(t)

C
(t)
s,a,s′δs′

)
,

(C.6)

where C
(t)
s,a is the number of times action a has been taken at state s′ until time t, and

C
(t)
s,a,s′ is the number of times transition (s, a)→ s′ has been experienced. We consider

the posterior expected value of Θ as an estimate of the world-model (Teh, 2010)

p(t)(s′|s, a) = θ̂(t)
s,a(s′) = Eb(t) [Θs,a(s′)]

= α(t)

α(t) + C
(t)
s,a

H(t)(s′) + 1
α(t) + C

(t)
s,a

∑
s′′∈S(t)

C
(t)
s,a,s′′δs′′(s′)

= α(t)(1− ct)
α(t) + C

(t)
s,a

H(s′) + 1
α(t) + C

(t)
s,a

∑
s′′∈S(t)

(α(t)ct

|S(t)|
+ C

(t)
s,a,s′′

)
δs′′(s′),

(C.7)

where we used ct = ϵobs|S(t)|
ϵnew+ϵobs|S(t)| to shorten the notation. Equation C.7 can be simplified

and written as

p(t)(s′|s, a) = θ̂(t)
s,a(s′) =


ϵobs+C

(t)
s,a,s′

ϵnew+ϵobs|S(t)|+C
(t)
s,a

if s′ ∈ S(t) ,

ϵnew
ϵnew+ϵobs|S(t)|+C

(t)
s,a

if s′ = snew .
(C.8)

183



Appendix C. Appendix to chapter 5

where by s′ = snew we mean s′ /∈ S(t), i.e.,

θ̂(t)
s,a(snew) = EΘs,a∼b(t)

[
ES′∼Θs,a [IS′ /∈S(t) ]

]
= α(t)(1− ct)

α(t) + C
(t)
s,a

∫
s′ /∈S(t)

H(s′)ds′ = α(t)(1− ct)
α(t) + C

(t)
s,a

.
(C.9)

For the case of ϵnew = 0, ϵobs = ϵ, and S(t) = S being a finite and countable set, the
transition matrix is the same as the transition matrix conventionally used for finite
state-spaces (Xu et al., 2021). For the case of ϵobs = 0, the transition matrix has the
form of a Chinese restaurant process (Blei and Frazier, 2011; Teh, 2010).

To account for imperfect model-building, we use leaky counts C̃
(t)
s,a,s′ and C̃

(t)
s,a = ∑

s′ C̃
(t)
s,a,s′

instead of C
(t)
s,a and C

(t)
s,a,s′ , where C̃

(t)
s,a,s′ is recursively updated via

C̃
(t+1)
s,a,s′ =

κC̃
(t)
s,a,s′ + δs′,st+1 if s = st , a = at

C̃
(t)
s,a,s′ otherwise,

(C.10)

where δ is the Kronecker delta function, C̃
(0)
s,a,s′ = 0, and κ ∈ [0, 1] is the leak parameter

(Liakoni et al., 2021; Meyniel et al., 2016; Yu and Cohen, 2009). If κ = 1, then
C̃

(t+1)
s,a,s′ = C

(t+1)
s,a,s′ .

One may argue that the whole Bayesian formulation could be avoided by considering
Equation C.8 as the starting point – similar to how we present the model in Methods in
the main text. However, as we will see in the next two sections, Equation C.8 without
the Bayesian formulation of this section is not enough for deriving (i) the update rule for
the model-based branch and (ii) computation of the information gain.

C.4.2 Prioritized sweeping for updating the MB Q-values

Given a reward function R (i.e., Rext for the extrinsic reward or Rint,t for the intrinsic
reward) the Bellman equations (Sutton and Barto, 2018) are

Q(t)(s, a) = E
S′∼θ̂

(t)
s,a

[
Rs,a(S′) + λ max

a′∈A
Q(t)(S′, a′)

]
, (C.11)

where Q(t) is the Q-value (i.e., Q
(t)
MB,ext for the extrinsic reward or Q

(t)
MB,int for the intrinsic

reward), λ ∈ [0, 1) is the discount factor (i.e., λext for the extrinsic reward or λint for the
intrinsic reward), and we show R(s, a→ s′) by Rs,a(s′) to shorten the notation.

We assume that Rs,a(s′) is the same for all s′ /∈ S(t). Then, given the fact that θ̂
(t)
s,a(s′) is

also the same for all s′ /∈ S(t) or s /∈ S(t) (according to Equation C.8), we can deduce
that Q(t)(s, a) is the same for all s /∈ S(t) and for all actions a ∈ A. Then, Equation C.11
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can be re-written as

Q(t)(s, a) =
∑

s′∈S(t)

θ̂(t)
s,a(s′)

(
Rs,a(s′) + λV (t)(s′)

)
+

θ̂(t)
s,a(snew)

(
Rs,a(snew) + λV (t)(snew)

)
,

(C.12)

where V (t)(s′) := maxa′∈A Q(t)(s′, a′). We use the fact that V (t)(snew) = Q(t)(snew, a) is
independent of a and find V (t)(snew) by solving

V (t)(snew) =
∑

s′∈S(t)

θ̂(t)
snew(s′)

(
Rsnew(s′) + λV (t)(s′)

)
+

θ̂(t)
snew(snew)

(
Rsnew(snew) + λV (t)(snew)

)
= ϵobs

ϵnew + ϵobs|S(t)|
∑

s′∈S(t)

(
Rsnew(s′) + λV (t)(s′)

)
+

ϵnew
ϵnew + ϵobs|S(t)|

(
Rsnew(snew) + λV (t)(snew)

)
,

(C.13)

where we used the fact that Rsnew(s′) := Rsnew,a(s′) is independent of a. The solution to
Equation C.13 is given by

V (t)(snew) = ϵobs
(1− λ)ϵnew + ϵobs|S(t)|

∑
s′∈S(t)

(
Rsnew(s′) + λV (t)(s′)

)
+

ϵnew
(1− λ)ϵnew + ϵobs|S(t)|

Rsnew(snew)

=W
(t)
obs

∑
s′∈S(t)

(
Rsnew(s′) + λV (t)(s′)

)
+ W (t)

newRsnew(snew),

(C.14)

where in the last line we shortened the notation by defining constants

W
(t)
obs := ϵobs

(1− λ)ϵnew + ϵobs|S(t)|
and W (t)

new := ϵnew
(1− λ)ϵnew + ϵobs|S(t)|

. (C.15)

We can combine Equation C.14 and Equation C.12 and found a set of equations for the
Q-values of states only in S(t):

Q(t)(s, a) =λ
∑

s′∈S(t)

(
θ̂(t)

s,a(s′) + λθ̂(t)
s,a(snew)W (t)

obs

)
V (t)(s′) +

∑
s′∈S(t)

θ̂(t)
s,a(s′)Rs,a(s′)+

θ̂(t)
s,a(snew)

(
Rs,a(snew) + λW (t)

newRsnew(snew) + λW
(t)
obs

∑
s′∈S(t)

Rsnew(s′)
)
.

(C.16)
To solve this set of equations, we use prioritized sweeping (Brea, 2017; Sutton and Barto,
2018; Van Seijen and Sutton, 2013) with some modifications (similar to Xu et al. (2021)).
The modified algorithm is presented in Alg. 7 in which we use the QUpdate operator
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defined as

QUpdate(s, a; λ,θ̂, V, R, Wobs, Wnew, S̃)

:=λ
∑
s′∈S̃

(
θ̂s,a(s′) + λθ̂s,a(snew)Wobs

)
V (s′) +

∑
s′∈S̃

θ̂s,a(s′)Rs,a(s′)+

θ̂s,a(snew)
(
Rs,a(snew) + λWnewRsnew(snew) + λWobs

∑
s′∈S̃

Rsnew(s′)
)
.

(C.17)

C.4.3 Derivation of information gain

information gain-seeking algorithms (Mobin et al., 2014; Schmidhuber, 2010) consider
the intrinsic reward as the amount of change in the world-model θ̂

(t)
s,a upon observing the

transition (s, a)→ s′, defined as

Rint,t(s, a→ s′) = IG(t)(s, a→ s′) = DKL
[

θ̂(t)
s,a || θ̂

(t+1)
s,a→s′

]
, (C.18)

where θ̂
(t+1)
s,a→s′ is θ̂

(t+1)
s,a if St+1 = s′, and DKL is the Kullback-Leibler divergence (Cover,

1999). In different contexts, IG(t)(s, a→ s′) is also called Postdictive surprise (Kolossa
et al., 2015), but it has a fundamentally different behavior from the prediction surprise
− log θ̂

(t)
s,a(s′) (Modirshanechi et al., 2022) that we used for our surprise-seeking algorithm

(see Methods in the main text).

If s′ /∈ St, the naïve definition of DKL cannot be used in Equation C.18 because θ̂
(t)
s,a and

θ̂
(t+1)
s,a→s′ has different supports for their atoms. To resolve this issue, Mobin et al. (2014)

propose a padding mechanism as a heuristic solution. We use a more general definitions
of DKL as the expected Radon–Nikodym derivative of θ̂

(t)
s,a with respect to θ̂

(t+1)
s,a→s′ that is

well-defined in our Bayesian framework:

DKL
[

θ̂(t)
s,a || θ̂

(t+1)
s,a→s′

]
= E

S′′∼θ̂
(t)
s,a

 dθ̂
(t)
s,a

dθ̂
(t+1)
s,a→s′

(S′′)

 , (C.19)

where dθ̂
(t)
s,a

dθ̂
(t+1)
s,a→s′

(S′′) is the Radon–Nikodym derivative of θ̂
(t)
s,a with respect to θ̂

(t+1)
s,a→s′ at

S′′ – note that θ̂
(t)
s,a is always absolutely continuous with respect to θ̂

(t+1)
s,a→s′ . Whenever

s′ ∈ S(t), the Radon–Nikodym derivative is

dθ̂
(t)
s,a

dθ̂
(t+1)
s,a→s′

(s′′) =


ϵnew+ϵobs|S(t)|+C

(t)
s,a+1

ϵnew+ϵobs|S(t)|+C
(t)
s,a

if s′′ ̸= s′ ,

ϵnew+ϵobs|S(t)|+C
(t)
s,a+1

ϵnew+ϵobs|S(t)|+C
(t)
s,a

ϵobs+C
(t)
s,a,s′

ϵobs+C
(t)
s,a,s′ +1

if s′′ = s′ .
(C.20)
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and whenever s′ /∈ S(t), the Radon–Nikodym derivative is

dθ̂
(t)
s,a

dθ̂
(t+1)
s,a→s′

(s′′) =


ϵnew+ϵobs|S(t)|+ϵobs+C

(t)
s,a+1

ϵnew+ϵobs|S(t)|+C
(t)
s,a

if s′′ ̸= s′ ,

0 if s′′ = s′ .
(C.21)

As a result, the information gain in Equation C.18 can be calculated as

Rint,t(s, a→ s′) =


log ϵnew+ϵobs|S(t)|+C

(t)
s,a+1

ϵnew+ϵobs|S(t)|+C
(t)
s,a

+ θ̂
(t)
s,a(s′) log

ϵobs+C
(t)
s,a,s′

ϵobs+C
(t)
s,a,s′ +1

if s′ ∈ S(t) ,

log ϵnew+ϵobs|S(t)|+ϵobs+C
(t)
s,a+1

ϵnew+ϵobs|S(t)|+C
(t)
s,a

if s′ /∈ S(t) .

(C.22)

If ϵnew → 0, then the momentary average gain in information after taking action a in
state s can be written as

¯IG
(t)(s, a) := E

S′∼θ̂
(t)
s,a

[
IG(t)(s, a→ S′)

]
= log

[
1 + 1

B
(t)
s,a

]
−

∑
s′∈S(t)

(
θ̂(t)

s,a(s′)
)2

log
[
1 + 1

B
(t)
s,aθ̂

(t)
s,a(s′)

]
,

(C.23)

where we defined B
(t)
s,a := ϵobs|S(t)|+ C

(t)
s,a. With a few line of algebra, we can show

∂ ¯IG
(t)(s, a)

∂C
(t)
s,a

= − 1
B

(t)
s,a(1 + B

(t)
s,a)

[
1−

∑
s′∈S(t)

(
θ̂(t)

s,a(s′)
)2 1 + B

(t)
s,a

1 + θ̂
(t)
s,a(s′)B(t)

s,a

]
≤ 0, (C.24)

where the equality holds if an only if θ̂
(t)
s,a(s′) = 1 for some s′. Hence, ¯IG

(t)(s, a) is a
decreasing function of the count C

(t)
s,a of the state-action pair (s, a), i.e., the more action

a is taken in state s, the less informative it becomes.

C.4.4 Analysis of the MB optimistic initialization in episode 2

To theoretically analyze the influence of the MB optimistic initialization in episode 2, we
make a few simplistic assumptions:

1. ϵnew in Equation C.8 is negligible.

2. All transition probabilities expect for the ones between the stochastic states and
the progressing action in state 6 (because of the only one time experience) have
been learned with certainty during the 1st episode, i.e., the progressing actions
have been identified to lead with probability 1 to the next progressing state.

3. The counts for the actions in the stochastic part are roughly the same for all states
and actions and is denoted by C̄(t), i.e., for any state ss in the stochastic part, we
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assume that C
(t)
ss,a = C̄(t) for every action a.

Given these assumptions, the Q-values in stochastic part are the same for all states
(due to the symmetry). In all following equations, we use ss to denote a representative
state in the stochastic part, use ap to refer to the progressing actions and as to the
stochastic/self-looping actions, denote state 4 by s4 and state 6 by s6, use rG∗ to denote
the reward value of the already discovered goal and define

R̄ := 1
|S(t)|

(1 + r∗
1 + r∗

2) and V̄ (t) := 1
|S(t)|

∑
s′

V
(t)

MB,ext(s
′).

Using these notations and assumptions as well as Equation C.8 and Equation C.11, we
have

Q
(t)
MB,ext(ss, ap) = p(t)

s

(
R̄ + λextV̄

(t)) + λext
(
1− p(t)

s

)
V

(t)
MB,ext(s4)

Q
(t)
MB,ext(ss, as) = p(t)

s

(
R̄ + λextV̄

(t)) + λext
(
1− p(t)

s

)
V

(t)
MB,ext(ss),

(C.25)

where
p(t)

s = ϵobs|S(t)|
ϵobs|S(t)|+ C̄(t) . (C.26)

Note that p
(t)
s

|S(t)| is equal to the probability of transition to any state s′ for which Css,a,s′ = 0
(see Equation C.8).

If the optimal policy is to leave the stochastic part and go to the already discovered goal
state, then we must have

Condition 1: Q
(t)
MB,ext(ss, as) < Q

(t)
MB,ext(ss, ap) = V

(t)
MB,ext(ss). (C.27)

According Equation C.25, Condition 1 is equivalent to Q
(t)
MB,ext(ss, ap) = V

(t)
MB,ext(ss) ≤

V
(t)

MB,ext(s4), which, by using Equation C.25 again and after a few lines of algebra, can be
written as

Condition 1 ≡ p
(t)
s

1− λext(1− p
(t)
s )

[
R̄ + λextV̄

(t)
]

< V
(t)

MB,ext(s4). (C.28)

Given that the optimal policy under Condition 1 is to leave the stochastic part and go to
the already discovered goal state, we can write the value of state 4 as

V
(t)

MB,ext(s4) = Q
(t)
MB,ext(s4, ap)

= λ2
extQ

(t)
MB,ext(s6, ap) = λ2

ext

[
p̃(t)

g

(
R̄ + λextV̄

(t)) +
(
1− p(t)

g

)
rG∗

]
,

(C.29)
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where
p(t)

g = ϵobs|S(t)|
ϵobs|S(t)|+ 1

and p̃(t)
g = p(t)

g + λext(1− p(t)
g ). (C.30)

Note that p
(t)
g

|S(t)| is equal to the probability of transition to any state s′ for which Cs6,ap,s′ =
0 (see Equation C.8). Using Equation C.29, we can simplify Equation C.28 as

Condition 1 ≡ fC1(r∗
1, r∗

2, λext, ϵobs, C̄(t), |S(t)|) < rG∗ , (C.31)

with

fC1(r∗
1, r∗

2, λext,ϵobs, C̄(t), |S(t)|) :=

1
λ2

ext(1− p
(t)
g )

[ p
(t)
s

1− λext(1− p
(t)
s )
− λ2

extp̃
(t)
g

][
R̄ + λextV̄

(t)
]
.

(C.32)

The variable R
(t)
Stoch. that is discussed in the Method section of the main text is equal to

λ2
extfC1.

An important observation is that, independently of the choice of the model free parameters,
we have

lim
C̄(t)→∞

fC1(r∗
1, r∗

2, λext, ϵobs, C̄(t), |S(t)|) < 0.

This implies that, for any value of r∗
2 and rG∗ > 0, increasing C̄(t) would eventually result

in a preference for leaving the stochastic part and going towards the already discovered
goal (Condition 1 is satisfied): After a sufficiently long and unsuccessful exploration
phase, agents will eventually give up exploration. This is essentially what makes the MB
optimistic initialization similar to exploration driven by information gain.

Moreover, by analyzing fC1, we can gain further insights about how the model free
parameters influence exploration based on the MB optimistic initialization:

1. For any value of r∗
2 and rG∗ , we have

lim
λext→0

fC1(r∗
1, r∗

2, λext, ϵobs, C̄(t), |S(t)|) =∞.

This implies that decreasing the discount factor to put a small weight on the future
rewards would make the agent stay in the stochastic part (Condition 1 is violated).

2. If rG∗ < r∗
2 (i.e., the agent knows that there exists a goal state with a reward higher

than the one already discovered) and λ2
extp̃

(t)
g < p

(t)
s

1−λext(1−p
(t)
s )

(i.e., the discount
factor is small enough; see point 1), then we have

lim
r∗

2→∞
fC1(r∗

1, r∗
2, λext, ϵobs, C̄(t), |S(t)|) > rG∗ .
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This implies that, if rG∗ < r∗
2, then increasing r∗

2 would eventually result in a
preference for staying in the stochastic part (Condition 1 is violated): If the reward
value of a goal state is much greater than the reward value of the discovered goal
state, then the agent prefers to keep exploring the stochastic part.

3. For any value of r∗
2 and rG∗ , we have

lim
ϵobs→0

fC1(r∗
1, r∗

2, λext, ϵobs, C̄(t), |S(t)|) < 0.

This implies that, independently of the reward value of the discovered goal state, if
the agent assigns a very small prior probability to the unseen transitions, then the
agent always prefer to leave the stochastic part and go to the already discovered
goal state (i.e., Condition 1 is satisfied).
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C.5 Algorithmic implementation

C.5.1 Initialization

For Epi > 1, S(0), C̃(0), U
(0)
ext , U

(0)
int , Q

(0)
MB,ext, Q

(0)
MB,int, Q

(0)
MF,ext, and Q

(0)
MF,int are initialized

by their latest value in the previous episode.

For Epi = 1, the initial values are as follows:

S(0) = {G0, G1, G2},

C̃(0) = 0,

Q
(0)
MF,ext(s, a) = Q

(0)
MF,ext,

Q
(0)
MF,int(s, a) = Q

(0)
MF,int.

(C.33)

For the model-based Q-values, we can analytically solve the bellman equations at time
t = 0, resulting in

U
(0)
ext(s) = Q

(0)
MB,ext(s, a) = θ̂obs + λextθ̂newWobs

1− λext|S(0)|
(
θ̂obs + λextθ̂newWobs

)(1 + r1 + r2),

U
(0)
int (s) = Q

(0)
MB,int(s, a)

=
θ̂obs|S(0)|R(int)

obs (sobs) + θ̂new
(
R

(int)
obs (snew) + λintWnewR

(int)
new (snew) + |S(0)|λintWobsR

(int)
new (sobs)

)
1− λint|S(0)|

(
θ̂obs + λintθ̂newWobs

) ,

(C.34)
with

Wobs = ϵobs
(1− λ)ϵnew + ϵobs|S(0)|

, Wnew = ϵnew
(1− λ)ϵnew + ϵobs|S(0)|

,

θ̂obs = ϵobs
ϵnew + ϵobs|S(0)|

, θ̂new = ϵnew
ϵnew + ϵobs|S(0)|

(C.35)

and

R(int)
new (sobs) = Rint,0(snew, a→ s) , R(int)

new (snew) = Rint,0(snew, a→ snew)

R
(int)
obs (sobs) = Rint,0(s, a→ s) , R

(int)
obs (snew) = Rint,0(s, a→ snew)

(C.36)

for any a ∈ A and s ∈ S(0).

However, the final (after learning the transition probabilities) values for QMB,ext(s, a) are
much smaller than the analytic solution to Bellman equation at t = 0 – due to the sparse
connections and the fact that there is only one path to one goal state. We, therefore, use
a heuristic and put U

(0)
ext(s) = Q

(0)
MB,ext(s, a) = 0.
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C.5.2 Pseudocode

See Algorithms 5, 6, 8, and 7 for . Note that, in all pseudocode, we use an alternative
shorter notation by defining R

(int,t)
s,a (s′) := Rint,t(s, a→ s′) and R

(ext)
s,a (s′) := Rext(s, a→

s′).

Algorithm 5 General pseudocode for algorithm
# Setting specification

1: Specify
Φ = {r∗

1 , r∗
2 , Q

(0)
MF,ext, Q

(0)
MF,int, λext, λint, µext, µint, ρ, κ, ϵnew, ϵobs, TP S,ext, TP S,int,

β
(1)
MB,ext, β

(2)
MB,ext, β

(1)
MB,int, β

(2)
MB,int, β

(1)
MF,ext, β

(2)
MF,ext, β

(1)
MF,int, β

(2)
MF,int}.

2: Specify the intrinsic reward function R
(int,t)
s,a (s′).

3: Specify Episode (Epi) and the set of possible actions A.
4: if Epi = 1 then
5: Put βMB,ext = β

(1)
MB,ext, βMF,ext = β

(1)
MF,ext, βMB,int = β

(1)
MB,int, and βMF,int = β

(1)
MF,int.

6: else
7: Put βMB,ext = β

(2)
MB,ext, βMF,ext = β

(2)
MF,ext, βMB,int = β

(2)
MB,int, and βMF,int = β

(2)
MF,int.

8: end if
# Initialization (all variables are defined only for s ∈ S(0))

9: Initialize S(0), C̃(0), U
(0)
ext , U

(0)
int , Q

(0)
MB,ext, Q

(0)
MB,int, Q

(0)
MF,ext, and Q

(0)
MF,int (cf. subsection C.5.1).

# 1st observation
10: t = 0
11: Initialize state S1 = s1 and update C̃

(1)
s = κC̃

(0)
s + δs,s1 and S(1) = S(0) ∪ {s1}.

12: Put C̃
(1)
s,a,s′ = C̃

(0)
s,a,s′ for all s and s′ ∈ S(0).

13: Put Q
(1)
MF,ext(s, a) = Q

(0)
MF,ext(s, a) and Q

(1)
MF,int(s, a) = Q

(0)
MF,int(s, a) for all s ∈ S(0).

14: Put e
(1)
ext = 0 and e

(1)
int = 0.

# Extensions of variables for s1 /∈ S(0)

15: Put C̃
(1)
s,a,s′ = 0 if s = s1 or s′ = s1 and s1 /∈ S(0).

16: Put Q
(1)
MF,ext(s1, a) = Q

(0)
MF,ext and Q

(1)
MF,int(s1, a) = Q

(0)
MF,int if s1 /∈ S(0).

17: Update U
(1)
ext , U

(1)
int , Q

(1)
MB,ext, and Q

(1)
MB,int using the model-based branch in Alg. 6.

# Going through the task
18: t← 1.
19: while st ̸= Gi for i ∈ {0, 1, 2} do

# Making action
20: Compute Q

(t)
MF(s, a) = βMF,extQ

(t)
MF,ext(s, a) + βMF,intQ

(t)
MF,int(s, a).

21: Compute Q
(t)
MB(s, a) = βMB,extQ

(t)
MB,ext(s, a) + βMB,intQ

(t)
MB,int(s, a).

22: Sample at from π(at|st) ∝ exp
{

Q
(t)
MF(st, at) + Q

(t)
MB(st, at)

}
.

23: Observe St+1 = st+1.
# Updating internal variables

24: S(t+1) = S(t) ∪ {st+1}.
25: Update counts C̃

(t+1)
s = κC̃

(t)
s + δs,st+1 and C̃

(t+1)
st,at,s′ = κC̃

(t)
st,at,s′ + δs′,st+1 .

26: Put C̃
(t+1)
s,a,s′ = C̃

(t)
s,a,s′ if s ̸= st or a ̸= at.

27: Update U
(t+1)
ext , U

(t+1)
int , Q

(t+1)
MB,ext, and Q

(t+1)
MB,int using the model-based branch in Alg. 6.

28: Update e
(t+1)
ext , e

(t+1)
int , Q

(t+1)
MF,ext, and Q

(t+1)
MF,int using the model-free branch in Alg. 8.

# Going to the next step
29: t← t + 1.
30: end while
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Algorithm 6 Pseudocode for the model-based branch

1: Put C̃
(t+1)
s,a =

∑
s′ C̃

(t+1)
s,a,s′ .

# Updating the world model
2: Update θ̂

(t+1)
s,a (s′) =

(
ϵobs + C̃

(t+1)
s,a,s′

)
/
(
ϵnew + ϵobs|S(t+1)|+ C̃

(t+1)
s,a

)
for s′ ∈ S(t+1).

3: Update θ̂
(t+1)
s,a (snew) =

(
ϵnew

)
/
(
ϵnew + ϵobs|S(t+1)|+ C̃

(t+1)
s,a

)
.

# Updating the values
4: Update Q

(t+1)
MB,int and U

(t+1)
int using Alg. 7 and R(int,t+1) as rewards.

5: Update Q
(t+1)
MB,ext and U

(t+1)
ext using Alg. 7 and R(ext) as rewards.

Algorithm 7 Pseudocode for the modified version of Prioritized Sweeping Algorithm
for one time-step at time t + 1

# Specifying whether the update is for the intrinsic or the extrinsic reward
1: Put λ = λext for extrinsic and λ = λint for intrinsic reward.
2: Put Q(t) = Q

(t)
MB,ext, U (t) = U

(t)
ext, and R = R(ext) for extrinsic, and put Q(t) = Q

(t)
MB,int, U (t) = U

(t)
int ,

and R = R(int,t+1) for intrinsic reward.
# Extending U -values

3: Compute Wobs = ϵobs/
(
(1− λ)ϵnew + ϵobs|S(t+1)|

)
and Wnew = ϵnew/

(
(1− λ)ϵnew + ϵobs|S(t+1)|

)
4: if st+1 /∈ S(t) then
5: Put U (t)(st+1) = Wobs

∑
s′∈S(t)

(
Rsnew (s′) + λU (t)(s′)

)
+ WnewRsnew (snew).

6: end if
# Applying the effect of the latest observation on Q-values using previous U -values

7: for (s, a) ∈ S(t+1) ×A do
8: Q(t+1)(s, a) = QUpdate(s, a; λ, θ̂(t+1), U (t), R, Wobs, Wnew,S(t+1)) defined in Eq. C.17.
9: end for

# Making the priority queue
10: for s ∈ S(t+1) do
11: U (t+1)(s) = U (t)(s)
12: PriorityQueue(s) = |U (t+1)(s)−maxa∈A Q(t+1)(s, a)|
13: end for

# Updating U -values for TPS steps
14: for TPS iterations do
15: s′ = arg maxs∈S(t+1) PriorityQueue(s)
16: ∆V = maxa∈A Q(t+1)(s′, a)− U (t+1)(s′)
17: U (t+1)(s′) = maxa∈A Q(t+1)(s′, a)

# Applying the effect of the update of U -values on Q-values
18: for (s, a) ∈ S(t+1) ×A do
19: Q(t+1)(s, a)← Q(t+1)(s, a) + λ

(
θ̂

(t+1)
s,a (s′) + λθ̂

(t+1)
s,a (snew)Wobs

)
∆V

20: end for
# Updating the priority queue

21: for s ∈ S(t+1) do
22: PriorityQueue(s) = |U (t+1)(s)−maxa∈A Q(t+1)(s, a)|
23: end for
24: end for
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Algorithm 8 Pseudocode for the model-free branch
# Prediction errors

1: Compute RP Eext,t+1 = R
(ext)
st,at (st+1) + λext maxa′∈A Q

(t)
MF,ext(st+1, a′)−Q

(t)
MF,ext(st, at).

2: Compute RP Eint,t+1 = R
(int,t)
st,at (st+1) + λint maxa′∈A Q

(t)
MF,int(st+1, a′)−Q

(t)
MF,int(st, at).

# Update of the eligibility traces
3: Update e

(t+1)
ext (st, at) = 1, and e

(t+1)
ext (s, a) = λextµexte

(t)
ext(s, a), for all s ̸= st and a ̸= at.

4: Update e
(t+1)
int (st, at) = 1, and e

(t+1)
int (s, a) = λintµinte

(t)
int(s, a), for all s ̸= st and a ̸= at.

# TD-learners
5: Update Q

(t+1)
MF,ext(s, a) = Q

(t)
MF,ext(s, a) + ρe

(t+1)
ext (s, a)RP Eext,t+1, ∀s ∈ S and a ∈ A.

6: Update Q
(t+1)
MF,int(s, a) = Q

(t)
MF,int(s, a) + ρe

(t+1)
int (s, a)RP Eint,t+1, ∀s ∈ S and a ∈ A.
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D Learning in volatile environments with
the Bayes Factor surprise

This appendix is a pointer to the author’s paper in Neural Computation (Liakoni et al.,
2021).

Authors: Vasiliki Liakoni∗, Alireza Modirshanechi∗, Wulfram Gerstner, and Johanni
Brea

*: V Liakoni and A Modirshanechi are joint first authors.

Abstract: Surprise-based learning allows agents to rapidly adapt to nonstationary
stochastic environments characterized by sudden changes. We show that exact Bayesian
inference in a hierarchical model gives rise to a surprise-modulated trade-off between
forgetting old observations and integrating them with the new ones. The modulation
depends on a probability ratio, which we call the Bayes Factor Surprise, that tests
the prior belief against the current belief. We demonstrate that in several existing
approximate algorithms, the Bayes Factor Surprise modulates the rate of adaptation to
new observations. We derive three novel surprise-based algorithms, one in the family of
particle filters, one in the family of variational learning, and one in the family of message
passing, that have constant scaling in observation sequence length and particularly
simple update dynamics for any distribution in the exponential family. Empirical results
show that these surprise-based algorithms estimate parameters better than alternative
approximate approaches and reach levels of performance comparable to computationally
more expensive algorithms. The Bayes Factor Surprise is related to but different from
the Shannon Surprise. In two hypothetical experiments, we make testable predictions
for physiological indicators that dissociate the Bayes Factor Surprise from the Shannon
Surprise. The theoretical insight of casting various approaches as surprise-based learning,
as well as the proposed online algorithms, may be applied to the analysis of animal and
human behavior and to reinforcement learning in nonstationary environments.

Funding: This research was supported by the Swiss National Science Foundation (200020
184615) and the European Union Horizon 2020 Framework Program under grant agreement
785907 (Human Brain Project, SGA2).
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surprise

Author contribution: VL, AM, and JB conceived and designed the project. AM defined the
Bayes Factor Surprise and worked out the surprise-based interpretation of the exact Bayesian
inference, with the help of VL and JB. VL, AM, and JL developed the biologically plausible
algorithms and worked out the surprise-based interpretation of the approximate algorithms. AM
and WG conceived and worked out the experimental predictions. VL wrote the code for the
algorithms, the simulations, the experimental predictions, and the visualization, with the help
and feedback of AM and JB. All authors interpreted the results and wrote the manuscripts.
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E Curiosity-driven exploration: founda-
tions in neuroscience and computational
modeling

This appendix is a pointer to the author’s paper in Trends in Neurosciences (Modirshanechi
et al., 2023b).

Authors: Alireza Modirshanechi, Kacper Kondrakiewicz, Wulfram Gerstner, and
Sebastian Haesler

Abstract: Curiosity refers to the intrinsic desire of humans and animals to explore
the unknown, even when there is no apparent reason to do so. Thus far, no single,
widely accepted definition or framework for curiosity has emerged, but there is growing
consensus that curious behavior is not goal-directed but related to seeking or reacting to
information. In this review, we take a phenomenological approach and group behavioral
and neurophysiological studies which meet these criteria into three categories according
to the type of information seeking observed. We then review recent computational models
of curiosity from the field of machine learning and discuss how they enable integrating
different types of information seeking into one theoretical framework. Combinations of
behavioral and neurophysiological studies along with computational modeling will be
instrumental in demystifying the notion of curiosity.

Funding: This work was supported by the Swiss National Science Foundation No. 200020 207426
(AM and WG), KU Leuven C14/21/111 (SH), Fonds Wetenschappelijk Onderzoek-Vlaanderen
(FWO-Flanders) postdoctoral fellowship 1276122N (KK) and grant G097022N (SH).

Author contribution: All authors contributed to the conceptualization of the study. AM and
SH did the visualization and wrote the original draft. All authors revised the text.
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F Pointers to other publications as a con-
tributing author

This appendix chapter consists of pointers to the other publications of the author as a
contributing author, during his doctoral study.

F.1 Rapid suppression and sustained activation of distinct
cortical regions for a delayed sensory-triggered motor
response

This appendix section is a pointer to the author’s paper in Neuron (Esmaeili et al., 2021).

Authors: Vahid Esmaeili∗, Keita Tamura∗, Samuel P. Muscinelli, Alireza Modir-
shanechi, Marta Boscaglia, Ashley B. Lee, Anastasiia Oryshchuk, Georgios Foustoukos,
Yanqi Liu, Sylvain Crochet, Wulfram Gerstner, and Carl C.H. Petersen

*: V Esmaeili and K Tamura are joint first authors.

Abstract: The neuronal mechanisms generating a delayed motor response initiated
by a sensory cue remain elusive. Here, we tracked the precise sequence of cortical
activity in mice transforming a brief whisker stimulus into delayed licking using wide-
field calcium imaging, multiregion high-density electrophysiology, and time-resolved
optogenetic manipulation. Rapid activity evoked by whisker deflection acquired two
prominent features for task performance: (1) an enhanced excitation of secondary whisker
motor cortex, suggesting its important role connecting whisker sensory processing to lick
motor planning; and (2) a transient reduction of activity in orofacial sensorimotor cortex,
which contributed to suppressing premature licking. Subsequent widespread cortical
activity during the delay period largely correlated with anticipatory movements, but
when these were accounted for, a focal sustained activity remained in frontal cortex,
which was causally essential for licking in the response period. Our results demonstrate
key cortical nodes for motor plan generation and timely execution in delayed goal-directed
licking.
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Appendix F. Pointers to other publications as a contributing author

Funding: This work was supported by the Swiss National Science Foundation (grants 310030B
166595, 31003A 182010, and CRSII5 177237 to CCHP and grant 200020 165538 to SPM), the
European Research Council (grant ERC-2011-ADG 293660 to CCHP), European Union’s Marie
Skłodowska-Curie Actions (grants 665667 and 798617), the Research Foundation for Opto-Science
and Technology, the Brain Science Foundation, the Japan Society for the Promotion of Science,
and the Ichiro Kanehara Foundation (KT).

Author contribution: VE, KT, SC, and CCHP conceptualized the study; VE and KT developed
neural and behavioral experiment setups; VE, KT, and MB obtained neural and behavioral
data; VE, KT, ABL, and AO obtained histological data; GF and YL built the two-photon
tomography system; VE, KT, SPM, and AM analyzed the data; WG advised clustering and
fitting of neuronal data; VE, KT, SC, and CCHP wrote the manuscript; all authors discussed
and edited the manuscript; and CCHP provided overall supervision.

F.2 Fitting summary statistics of neural data with a differ-
entiable spiking network simulator

This appendix section is a pointer to the author’s paper in NeurIPS 2021 (Bellec et al.,
2021).

Authors: Guillaume Bellec∗, Shuqi Wang∗, Alireza Modirshanechi, Johanni Brea∗∗,
and Wulfram Gerstner∗∗

*: G Bellec and S Wang are joint first authors.
**: J Brea and W Gerstner are joint senior authors.

Abstract: Fitting network models to neural activity is an important tool in neuroscience.
A popular approach is to model a brain area with a probabilistic recurrent spiking
network whose parameters maximize the likelihood of the recorded activity. Although
this is widely used, we show that the resulting model does not produce realistic neural
activity. To correct for this, we suggest to augment the log-likelihood with terms that
measure the dissimilarity between simulated and recorded activity. This dissimilarity is
defined via summary statistics commonly used in neuroscience and the optimization is
efficient because it relies on back-propagation through the stochastically simulated spike
trains. We analyze this method theoretically and show empirically that it generates more
realistic activity statistics. We find that it improves upon other fitting algorithms for
spiking network models like GLMs (Generalized Linear Models) which do not usually
rely on back-propagation. This new fitting algorithm also enables the consideration of
hidden neurons which is otherwise notoriously hard, and we show that it can be crucial
when trying to infer the network connectivity from spike recordings.

Funding: This research was supported by the Swiss National Science Foundation (no. 200020
184615) and the Intel Neuromorphic Research Lab.
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Author contribution: GB and SW conceived the project initially. SW did most of the
simulations under the supervision of GB. All authors contributed significantly to the theory and
the writing.

F.3 Brain signals of a Surprise-Actor-Critic model: Evi-
dence for multiple learning modules in human decision
making

This appendix section is a pointer to the author’s paper in NeuroImage (Liakoni et al.,
2022).

Authors: Vasiliki Liakoni∗, Marco P. Lehmann∗, Alireza Modirshanechi, Johanni
Brea, Antoine Lutti, Wulfram Gerstner∗∗, and Kerstin Preuschoff∗∗

*: V Liakoni and MP Lehmann are joint first authors.
**: W Gerstner and K Preuschoff are joint senior authors.

Abstract: Learning how to reach a reward over long series of actions is a remarkable
capability of humans, and potentially guided by multiple parallel learning modules.
Current brain imaging of learning modules is limited by (i) simple experimental paradigms,
(ii) entanglement of brain signals of different learning modules, and (iii) a limited number
of computational models considered as candidates for explaining behavior. Here, we
address these three limitations and (i) introduce a complex sequential decision making
task with surprising events that allows us to (ii) dissociate correlates of reward prediction
errors from those of surprise in functional magnetic resonance imaging (fMRI); and
(iii) we test behavior against a large repertoire of model-free, model-based, and hybrid
reinforcement learning algorithms, including a novel surprise-modulated actor-critic
algorithm. Surprise, derived from an approximate Bayesian approach for learning the
world-model, is extracted in our algorithm from a state prediction error. Surprise is
then used to modulate the learning rate of a model-free actor, which itself learns via
the reward prediction error from model-free value estimation by the critic. We find that
action choices are well explained by pure model-free policy gradient, but reaction times
and neural data are not. We identify signatures of both model-free and surprise-based
learning signals in blood oxygen level dependent (BOLD) responses, supporting the
existence of multiple parallel learning modules in the brain. Our results extend previous
fMRI findings to a multi-step setting and emphasize the role of policy gradient and
surprise signalling in human learning.

Funding: This research was supported by the Swiss National Science Foundation (CRSII2-147636
to KP and WG and 200020 184615 to WG) as well as by the European Union Horizon 2020
Framework Program No.785907 (Human Brain Project, SGA2).AL was supported by the ROGER
DE SPOELBERCH foundation and the Swiss National Science Foundation (320030 184784). The
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experimental work was carried out on the MRI platform of the Département des Neurosciences
Cliniques - Centre Hospitalier Universitaire Vaudois (CHUV), which is generously supported by
the ROGER DE SPOELBERCH and Partridge Foundations.

Author contribution: Conceptualization: VL, MPL, AM, JB, AL, WG, and KP. Methodology:
VL, MPL, AM, JB, AL, WG, and KP. Software: VL and MPL. Validation: VL, MPL, AM,
and AL. Formal analysis: VL and MPL. Investigation: VL, MPL, AM, JB, and AL. Writing
– original draft: VL, MPL, and WG. Writing – review & editing: VL, MPL, AM, JB, WG,
and KP. Visualization: VL and MPL. Resources: AL. Supervision: AL, WG, and KP. Project
administration and Funding acquisition: WG and KP.

F.4 Distributed and specific encoding of sensory, motor,
and decision information in the mouse neocortex during
goal-directed behavior

This appendix section is a pointer to the author’s paper in Cell Reports (Oryshchuk
et al., 2024).

Authors: Anastasiia Oryshchuk, Christos Sourmpis, Julie Weverbergh, Reza Asri, Vahid
Esmaeili, Alireza Modirshanechi, Wulfram Gerstner, Carl C.H. Petersen∗, and Sylvain
Crochet∗

**: CCH Petersen and S Crochet are joint senior authors.

Abstract: Goal-directed behaviors involve coordinated activity in many cortical areas,
but whether the encoding of task variables is distributed across areas or is more specifically
represented in distinct areas remains unclear. Here, we compared representations of
sensory, motor, and decision information in the whisker primary somatosensory cortex,
medial prefrontal cortex, and tongue-jaw primary motor cortex in mice trained to lick
in response to a whisker stimulus with mice that were not taught this association.
Irrespective of learning, properties of the sensory stimulus were best encoded in the
sensory cortex, whereas fine movement kinematics were best represented in the motor
cortex. However, movement initiation and the decision to lick in response to the whisker
stimulus were represented in all three areas, with decision neurons in the medial prefrontal
cortex being more selective, showing minimal sensory responses in miss trials and motor
responses during spontaneous licks. Our results reconcile previous studies indicating
highly specific vs. highly distributed sensorimotor processing.

Funding: This work was supported by the Swiss National Science Foundation: grants 31003A_182010
(CCHP), 310030_146252 (CCHP), and TMAG-3_209271 (CCHP).

Author contribution: AO, CCHP, and SC conceptualized the study; AO performed the
experiments; AO obtained histological data; AO, CS, JW, and RA analyzed the data; VE, AM,

202



F.5 Remembering the “When”: Hebbian Memory Models for the Time of
Past Events

and WG advised on clustering and decoding of neuronal data; AO, CCHP, and SC wrote the
manuscript; all authors discussed and edited the manuscript; and CCHP and SC provided overall
supervision.

F.5 Remembering the “When”: Hebbian Memory Models
for the Time of Past Events

This appendix section is a pointer to the author’s pre-print on bioRxiv (Brea et al.,
2023).

Authors: Johanni Brea, Alireza Modirshanechi, Georgios Iatropoulos, and Wulfram
Gerstner

Abstract: Humans and animals can remember how long ago specific events happened. In
contrast to interval-timing on the order of seconds and minutes, little is known about the
neural mechanisms that enable remembering the “when” of autobiographical memories
stored in the episodic memory system. Based on a systematic exploration of neural
coding, association and retrieval schemes, we develop a family of hypotheses about the
reconstruction of the time of past events, consistent with Hebbian plasticity in neural
networks. We compare several plausible candidate mechanism in simulated experiments
and, accordingly, propose how combined behavioral and physiological experiments can
be used to pin down the actual neural implementation of the memory for the time of
past events.

Funding: This research was supported by Swiss National Science Foundation (no. 200020
184615).

Author contribution: JB: Conceptualization, Simulations, Figures, Writing: original draft,
review, editing. AM: Conceptualization, Writing: review, editing. GI: Conceptualization, Writing:
review, editing. WG: Conceptualization, Writing: review, editing, Funding acquisition.
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