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“It is clear that our beliefs arise from certain dispositions and experiences which, so far as we 
know, don't guarantee their truth and are compatible with radical error. The trouble is that we 
can't fully take on the skepticism that this entails, because we can't cure our appetite for belief, 
and we can't take on this attitude toward our own beliefs while we're having them. Beliefs are 
about how things probably are, not just about how they might possibly be, and there is no way 
of bracketing our ordinary beliefs about the world so that they dovetail neatly with the possibility 
of skepticism.” 
 

The view from nowhere, Thomas Nagel 
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Foreword 

Xhemsi Malja's doctoral thesis deals with several topics relating to the reliability of reinforced 
concrete structures and the redistribution of internal forces. The first theme concerns the 
uncertainties associated with the calculation of internal forces in a statically indeterminate 
reinforced concrete structure. Internal forces are very often calculated assuming linear elastic 
behaviour, where the concrete is considered to be uncracked and the contribution of the 
reinforcing steel is neglected. In the verification, these internal forces are compared with the 
resistance of the cross-sections, often assuming that the concrete is cracked and that the 
reinforcing steel behaves according to an elastic-plastic law. It is often overlooked that these two 
assumptions are clearly inconsistent, but studies to investigate the influence of this problem on 
the reliability of structures are rare. In this context, Xhemsi Malja addresses the issue from the 
point of view of model uncertainties, an aspect often neglected in reliability analyses and the 
calibration of partial factors (which should be accounted for in the partial factors for actions). 

The second topic concerns the behaviour of concrete close to failure, where non-linear creep in 
case of sustained loading leads to a reduction in strength. This well-known detrimental effect is 
accounted for in the standards, which define a concrete strength reduction in case of significant 
sustained loads. What is overlooked, however, is the fact that non-linear creep has also a 
beneficial effect since it leads to a significant increase in deformation capacity, with an increased 
possibility of internal force redistribution at the ultimate limit state. The results of this work are 
interesting and have been implemented in the 2nd generation of the European standards for 
concrete structures EN 1992-1-1:2023 and in the latest draft of the international standard for 
concrete structures fib MC2020 published some months ago. This topic, apparently disconnected 
from the others, is in fact linked to them, as the deformation capacity plays an important role in 
the safety of statically indeterminate structures. 

The third topic refers to the partial factors to be applied to the self-weight of the structure and 
other non-load-bearing elements. It has often been suspected that this factor, assumed to be equal 
to 1.35 for both cases, is overestimated for the self-weight of the structure, while it may be 
underestimated for the weight of the non-load-bearing elements. The rigorous reliability analysis 
carried out by Xhemsi Malja confirms these suspicions and proposes more consistent values for 
the case of bridges. 

As described above, the results of the second topic have been implemented in new codes for 
practice. The results of the other topics can have also a significant influence in the design of new 
structures and the assessment of existing structures. For these reasons, the outcome of this 
research, which has been supported by the Swiss Federal Road Administration, has a significant 
practical relevance. 

 

Lausanne, February 2024,       Prof. Aurelio Muttoni 
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Abstract 
Most codes of practice adopt a semi-probabilistic design approach for the dimensioning and 
assessment of structures. Accordingly, structural safety is ensured by performing limit state 
verifications using design values determined with adequately calibrated Partial Safety Factors. 
Depending on the type of structure, the analysis performed and the code of practice used, 
structural verifications can be performed by comparing actions effects to sectional resistances 
or by comparing the load bearing capacity directly to the actions. Both verification methods lead 
to the same result for statically determinate structures, but the results can be different for 
statically indeterminate structures. While extensive studies have been performed to quantify the 
model uncertainty on the resistance side, the model uncertainties related to the calculation of 
actions effects and load bearing capacity in statically indeterminate structures have not been 
properly investigated yet. Thus, the first contribution of this thesis is to quantify this uncertainty 
for reinforced concrete structures by considering various mechanical models and failure modes. 
As there is little experimental data available on statically indeterminate systems, to perform 
statistical analyses, the experimental response of statically indeterminate systems is obtained by 
using a simple and effective technique. Practical implications are finally discussed on the basis 
of parametric analyses and case studies. 

The second contribution of this thesis is to clarify the influence of high-level sustained loading 
on the resistance and deformation capacity of reinforced concrete members in compression. 
While the detrimental effect of high-level sustained loading on the concrete compressive 
strength is already acknowledged in current codes of practice, its influence in terms of 
deformation capacity is generally neglected. Besides the uncertainty in calculating the member 
compressive strength due to a larger activation of the reinforcement, the deformation capacity 
influences also the calculation of the action effects, which is caused by forces redistribution 
between elements of the same structural system. On this basis, the effects of high-level sustained 
loading and its practical consequences are addressed in this thesis on the basis of an experimental 
programme which consists of 14 prismatic specimens tested under various uniaxial stress rates 
and a theoretical investigation using a mechanical model. The results allow clarifying the 
materials responses and validating the mechanical model. Practical implications are discussed 
based on parametric analyses performed for different concrete ages, reinforcement ratios and 
materials properties. 

The last part of the thesis focuses on updating the partial safety factors for permanent loads in 
road bridges by means of updated statistical distributions. To accurately estimate the sensitivity 
factors, in addition to permanent loads, the variability of the resistance calculation, materials 
strength and traffic loads is investigated. Finally, parametric analyses are performed to calibrate 
the partial safety factors for permanent loads. Two different partial factors are proposed for 
structural and non-structural self-weight and, by means of case studies, it is demonstrated that a 
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sufficient level of safety is ensured, both in absolute terms and when compared to the current 
partial factors. 

Keywords: reinforced concrete, structural reliability, model uncertainty, failure modes, action 
effects, statically indeterminate, sustained loading, permanent loads, partial factors, materials 
strength, traffic variability, road bridges 

  



 

ix 

Résumé 
La plupart des normes adoptent une approche de vérification structurelle semi-probabiliste pour 
le dimensionnement et l'évaluation des structures. Sur cette base, la sécurité structurale est 
assurée en effectuant des vérifications à l'état limite ultime avec des valeurs de calcul obtenues 
en utilisant des coefficients partiels de sécurité. En fonction du type de la structure, de l'analyse 
effectuée et de la norme utilisée, les vérifications structurelles peuvent être effectuées en 
comparant les effets des actions aux résistances sectionnelles ou en comparant la résistance à 
l’état limite ultime de la structure directement aux charges. Les deux méthodes de vérification 
amènent au même résultat pour les structures isostatiques, alors que pour les structures 
hyperstatiques, les deux résultats sont généralement différents. Alors que les incertitudes du 
modèle du côté de la résistance ont été largement étudiées dans le passé, les incertitudes du 
modèle pour le calcul des effets des actions dans les systèmes hyperstatiques n'ont pas encore 
été suffisamment étudiée. Par conséquent, la première contribution de cette thèse est de 
quantifier cette incertitude pour les structures en béton armé en considérant différents modèles 
mécaniques et plusieurs modes de rupture. Etant donné que les campagnes expérimentales 
concernant les systèmes structurels hyperstatique ne sont pas suffisantes pour effectuer des 
analyses statistiques, la réponse expérimentale de tels systèmes est obtenue à l'aide d'une 
technique simple et efficace. Les implications pratiques sont discutées sur la base d'analyses 
paramétriques et des cas d'étude. 

Le deuxième objectif de cette thèse est de clarifier l'influence des charges soutenues de haute 
intensité sur la résistance et la capacité de déformation des éléments en béton armé en 
compression. Bien que l'effet défavorable des charge soutenues sur la résistance à la compression 
du béton soit déjà considérée dans plusieurs normes actuelles, son influence en termes de 
capacité de déformation est généralement négligée. En plus de l'incertitude dans le calcul de la 
résistance à la compression des éléments due à une activation plus importante de l’armature, la 
capacité de déformation des éléments influence également le calcul des effets des actions, causés 
par la redistribution des forces entre les éléments d'un même système. Dans ce contexte, 
l’influence des charges soutenue de haute intensité et ses implications pratiques sont étudiée 
dans cette thèse sur la base d'un campagne expérimentale composée de 14 échantillons 
prismatiques testés avec une charge axiale et différentes vitesses de chargement. Les résultats 
permettent de clarifier la réponse des matériaux et de valider le modèle mécanique. Les 
implications pratiques sont ensuite discutées sur la base d'analyses paramétriques réalisées pour 
différents âges du béton, ratios d'armature et propriétés des matériaux. 

La dernière partie de cette thèse se concentre sur la mise à jour des coefficients partiels pour les 
actions permanentes (poids propre structurel et non structurel) pour les ponts routiers. En plus 
des charges permanentes, la variabilité du calcul de la résistance sectionnelle, de la résistance 
des matériaux et des charges de trafic sont étudiées pour estimer les facteurs de sensibilité. Enfin, 
des analyses paramétriques sont effectuées pour calibrer les coefficients partiels pour les actions 
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permanentes. Deux coefficients partiels différents sont proposés pour le poids propre structurel 
et non structurel et, à l'aide de plusieurs cas d’étude, il est démontré qu'un niveau de sécurité 
suffisant est assuré, à la fois en termes absolus et par rapport aux coefficients partiels de sécurité 
actuels. 

Mots-clefs : béton armé, fiabilité structurelle, incertitude de modèle, modes de rupture, effets 
des actions, systèmes hyperstatique, charge soutenue, charges permanentes, coefficients partiels, 
variabilité de la résistance des matériaux, variabilité des charges du trafic 
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Riassunto 

La maggior parte delle norme per le costruzioni adotta un approccio semi-probabilistico per il 
dimensionamento e la valutazione delle strutture. Di conseguenza, la sicurezza strutturale è 
garantita mediante verifiche allo stato limite utilizzando valori di progetto, questi valori sono 
determinati con fattori parziali di sicurezza adeguatamente calibrati. A seconda del tipo di 
struttura, dell'analisi effettuata e della norma utilizzata, le verifiche possono essere eseguite 
confrontando gli effetti delle azioni con le resistenze sezionali o confrontando la capacità 
portante direttamente con le azioni. Entrambi i metodi conducono allo stesso risultato per le 
strutture isostatiche ma i risultati possono differire per le strutture iperstatiche. Mentre per 
quantificare le incertezze di modello per il calcolo della resistenza sono stati condotti studi 
approfonditi, le incertezze di modello relative al calcolo degli effetti delle azioni e della capacità 
portante delle strutture iperstatiche non sono state ancora studiate adeguatamente. Pertanto, il 
primo contributo di questa tesi è quello di quantificare questa incertezza per le strutture in 
calcestruzzo armato, considerando diversi modelli meccanici e modi di rottura. Poiché i dati 
sperimentali disponibili per sistemi strutturali iperstatici sono scarsi, per poter eseguire analisi 
statistiche, la risposta sperimentale di tali sistemi si ottiene utilizzando una tecnica semplice ed 
efficace. Le implicazioni pratiche dei risultati ottenuti sono infine discusse sulla base di analisi 
parametriche e casi studio. 

Il secondo contributo di questa tesi è quello di chiarire l'influenza dei carichi sostenuti di alta 
intensità sulla resistenza e la capacità di deformazione degli elementi in calcestruzzo armato 
soggetti a compressione. Mentre l’effetto dannoso di questi carichi sulla resistenza a 
compressione del calcestruzzo è considerato nelle norme attuali, l’influenza in termini di 
capacità di deformazione è generalmente trascurata. Oltre all'incertezza nel calcolo della 
resistenza a compressione degli elementi, dovuta all’ulteriore attivazione dell'armatura, la 
capacità di deformazione influenza anche il calcolo degli effetti delle azioni, causati dalla 
ridistribuzione delle forze tra elementi dello stesso sistema strutturale. Su questa base, gli effetti 
dei carichi sostenuti di alta intensità e le sue conseguenze pratiche sono studiati in questa tesi 
mediante (1) un programma sperimentale, composto da 14 provini prismatici testati fino a rottura 
sotto uno sforzo assiale applicato con varie velocità e (2) mediante uno studio teorico utilizzando 
un modello meccanico. I risultati consentono di chiarire la risposta dei materiali e di validare il 
modello meccanico. Le implicazioni pratiche sono discusse sulla base di analisi parametriche 
eseguite per diverse età del calcestruzzo, tassi di armatura e proprietà dei materiali. 

L'ultima parte della tesi riguarda l'aggiornamento dei fattori parziali per i carichi permanenti nei 
ponti stradali mediante distribuzioni statistiche aggiornate. Per stimare accuratamente i fattori di 
sensibilità, oltre ai carichi permanenti, viene studiata anche la variabilità del calcolo della 
resistenza, della resistenza dei materiali e la variabilità dei carichi dovuti al traffico. Infine, 
vengono eseguite delle analisi parametriche per calibrare i fattori parziali per i carichi 
permanenti. Sono proposti due diversi fattori parziali per il peso proprio strutturale e non 
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strutturale e, attraverso casi studio particolari, si dimostra che un livello di sicurezza strutturale 
sufficiente è raggiunto, sia in termini assoluti che rispetto ai fattori di sicurezza attuali. 

Parole chiave: strutture in calcestruzzo armato, affidabilità strutturale, incertezza di modello, 
effetti delle azioni, capacità portante, sistemi iperstatici, analisi non lineari, carico sostenuto, 
scorrimento viscoso del calcestruzzo, ridistribuzione degli sforzi, variabilità dei carichi 
permanenti, variabilità della resistenza dei materiali, variabilità del carico da traffico, modi di 
rottura; 
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Zusammenfassung 
Die meisten Regelwerke verwenden für die Bemessung und Überprüfung von Bauwerken einen 
semiprobabilistischen Ansatz. Die Tragsicherheit wird mit Bemessungswerten in verschiedenen 
Grenzzuständen nachgewiesen, die mit hierfür kalibrierten Teilsicherheitsbeiwerten bestimmt 
werden. Je nach Art des Tragwerks, der durchgeführten Analyse und des angewandten 
Regelwerks können Tragsicherheitsnachweise durch den Vergleich von Auswirkungen mit 
Querschnittswiderständen oder durch den Vergleich der Tragfähigkeit mit den Einwirkungen 
durchgeführt werden. Bei statisch bestimmten Tragwerken führen beide Nachweismethoden 
zum selben Ergebnis, bei statisch unbestimmten Tragwerken können die Ergebnisse jedoch 
unterschiedlich ausfallen. Es wurden bereits umfangreiche Studien zur Quantifizierung der 
Modellunsicherheit auf der Widerstandsseite durchgeführt, während die Modellunsicherheiten 
im Zusammenhang mit der Berechnung der Auswirkungen und der Tragfähigkeit in statisch 
unbestimmten Tragwerken noch nicht ausreichend untersucht worden sind. Der erste Beitrag der 
vorliegenden Dissertation besteht darin, diese Unsicherheiten für Stahlbetonkonstruktionen 
unter Berücksichtigung verschiedener mechanischer Modelle und Versagensarten zu 
quantifizieren. Da für eine statistische Analyse statisch unbestimmter Systeme nur wenige 
experimentelle Daten zur Verfügung stehen, wird ihr Verhalten mit Hilfe einer einfachen und 
effektiven Prozedur ermittelt. Die für die Praxis relevanten Schlussfolgerungen Auswirkungen 
werden anhand von parametrischen Analysen und Fallstudien erörtert. 

Der zweite Beitrag dieser Arbeit betrifft die Klärung des Einflusses hoher Dauerbelastungen auf 
den Widerstand und das Verformungsvermögen von gedrückten Stahlbetonbauteilen. Während 
die nachteilige Wirkung hoher Dauerlasten auf die Betondruckfestigkeit in den aktuellen 
Regelwerken bereits anerkannt ist, wird ihr Einfluss auf das Verformungsvermögen im 
Allgemeinen vernachlässigt. Neben der Unsicherheit bei der Berechnung der 
Bauteildruckfestigkeit aufgrund der grossen Aktivierung der Bewehrung beeinflusst die 
Verformung auch die Berechnung der Einwirkungen, die durch die Umverteilung der Kräfte 
zwischen verschiedenen Elementen desselben Tragwerkssystems verursacht werden. 

Entsprechend werden in dieser Arbeit die Auswirkungen hoher Dauerbelastungen und ihre 
praktischen Folgen anhand eines Versuchsprogramms untersucht, bestehend aus 14 prismatische 
Probekörper. Diese wurden unter verschiedenen einachsigen Beanspruchungsraten getestet und 
mit Hilfe eines mechanischen Modells theoretisch untersucht. Die Ergebnisse ermöglichen eine 
Klärung des Materialverhaltens und die Validierung des mechanischen Modells. Auf der Basis 
parametrischer Analysen, die für verschiedene Betonalter, Bewehrungsgrade und 
Materialeigenschaften durchgeführt wurden, werden praktische Auswirkungen diskutiert. 

Der letzte Teil der Dissertation befasst sich mit der Aktualisierung der Teilsicherheitsbeiwerte 
für ständige Lasten im Fall von Straßenbrücken mit Hilfe von aktualisierten statistischen 
Verteilungen. Um die Sensitivitätsfaktoren genau abzuschätzen, werden neben den ständigen 
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Lasten auch die Variabilität in der Widerstandsberechnung, Materialfestigkeit und den 
Verkehrslasten untersucht. Schließlich werden parametrische Analysen durchgeführt, um die 
Teilsicherheitsbeiwerte für ständige Lasten zu kalibrieren. Es werden zwei verschiedene 
Teilsicherheitsbeiwerte vorgeschlagen, für strukturelles und nicht-strukturelles Eigengewicht. 
Anhand von Fallstudien wird gezeigt, dass hiermit ein ausreichendes Sicherheitsniveau 
gewährleistet ist, sowohl absolut als auch im Vergleich zu den derzeit verwendeten 
Teilsicherheitsbeiwerten. 

Schlagwörter: Stahlbeton, Strukturzuverlässigkeit, Modellunsicherheit, Versagensarten, 
Einwirkungseffekte, statisch unbestimmt, Dauerbelastung, ständige Lasten, Beiwerte, 
Materialfestigkeit, Verkehrsvariabilität, Straßenbrücken 
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Resumen 

La mayoría de códigos estructurales adoptan un enfoque semiprobabilístico para el 
dimensionamiento y la verificación de estructuras. En consecuencia, la seguridad estructural se 
garantiza realizando verificaciones de los estados límite utilizando valores de diseño 
determinados con Factores Parciales de Seguridad adecuadamente calibrados. Dependiendo del 
tipo de estructura, del análisis realizado y del código utilizado, las verificaciones estructurales 
pueden realizarse comparando los efectos de las acciones con las resistencias seccionales o 
comparando la capacidad portante directamente con las acciones. Ambos métodos de 
verificación conducen al mismo resultado para estructuras isostáticas, pero los resultados pueden 
ser diferentes para estructuras hiperestáticas. Mientras que amplios estudios se han realizado 
para cuantificar la incertidumbre del modelo del lado de la resistencia, las incertidumbres del 
modelo relacionadas con el cálculo de los efectos de las acciones y la capacidad portante en 
estructuras hiperestáticas aún no se han investigado adecuadamente. Así, la primera contribución 
de esta tesis consiste en cuantificar esta incertidumbre para estructuras de hormigón armado 
considerando varios modelos mecánicos y modos de fallo. Debido a la escasez de datos 
experimentales de sistemas hiperestáticos, se ha utilizado una técnica simple y efectiva para 
obtener la respuesta experimental de sistemas hiperestáticos de cara a realizar los análisis 
estadísticos. Por último, se explican las implicaciones prácticas a partir de análisis paramétricos 
y estudios de casos prácticos. 

La segunda contribución de esta tesis es aclarar la influencia de cargas sostenidas elevadas en la 
resistencia y la capacidad de deformación de elementos de hormigón armado en compresión. 
Mientras que el efecto desfavorable de cargas sostenidas elevadas en la resistencia a compresión 
del hormigón ya se recoge en los códigos estructurales, su influencia en términos de capacidad 
de deformación es generalmente despreciada. Además de la incertidumbre en el cálculo de la 
resistencia a la compresión del elemento debido a una mayor activación de la armadura, la 
capacidad de deformación influye también en el cálculo de los efectos de las acciones por la 
redistribución de esfuerzos entre elementos del mismo sistema estructural. Sobre esta base, los 
efectos de cargas sostenidas elevadas y sus consecuencias prácticas se abordan en esta tesis 
mediante un programa experimental compuesto por 14 probetas prismáticas ensayadas bajo 
distintos niveles de compresión uniaxial y una investigación teórica mediante un modelo 
mecánico. Los resultados permiten identificar la respuesta de cada material y validar el modelo 
mecánico. Se exponen también las implicaciones prácticas basadas en análisis paramétricos, 
realizados para diferentes edades del hormigón, tasas de armado y propiedades de los materiales. 

La última parte de la tesis se centra en la actualización de los factores parciales de seguridad 
para cargas permanentes en puentes de carretera mediante distribuciones estadísticas 
actualizadas. Para estimar con precisión los factores de sensibilidad, se investigan la variabilidad 
del cálculo de la resistencia, la resistencia de los materiales y las cargas de tráfico además de las 
cargas permanentes. Por último, se realizan análisis paramétricos para calibrar los factores 
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parciales de seguridad para las acciones permanentes. Se proponen dos factores parciales 
diferentes para el peso propio de los elementos estructurales y para la carga muerta y, mediante 
casos prácticos, se demuestra que se garantiza un nivel de seguridad suficiente, tanto en términos 
absolutos como en comparación con los factores parciales actuales. 

Palabras clave: hormigón armado, fiabilidad estructural, incertidumbre del modelo, modos de 
fallo, efectos debidos a las acciones, hiperestático, carga sostenida, cargas permanentes, factores 
parciales, resistencia de materiales, variabilidad del tráfico, puentes de carretera. 
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1.1 Context and motivation 

Starting in the second half of the last century, for the dimensioning and assessment of structures, 
most codes of practice adopted a semi-probabilistic design approach, the so-called Partial Safety 
Factor Format (PSFF). Accordingly, to ensure structural safety, limit state verifications are 
performed by means of design values, which are determined using adequately calibrated Partial 
Safety Factors (PSFs), see Figure 1.1. However, only in recent years some effort was made to 
establish a standard probability modelling framework [CEN02]. In fact, although the notion of 
probabilistic structural safety was already introduced at the beginning of the last century, the 
representative values and the partial safety factors were initially calibrated to ensure a similar 
level of safety to that obtained using previous standards or empirical rules [CEB59, CEB64]. 
Reliability analyses for calculating and updating the partial safety factors were introduced at a 
later stage [CEB74]. Nevertheless, each partial safety factor was calibrated independently from 
the others, e.g. the partial safety factor for the resistance was calibrated without considering the 
uncertainty related to the calculation of action effects, which is considered on the actions side. 
The current definition of the PSFF, with the partial factors calibrated using First and Second 
Order Reliability Method Analyses (FORM and SORM) as well as Monte-Carlo analyses (MC) 
was later introduced by [Cor69, Has74, Der91]. 

 

Figure 1.1:  Basic uncertainties and corresponding partial safety factors (PSFs). 

Figure adapted from [CEN02] and [Yu21], notation consistent with 

[CEN22]. The uncertainties investigated in this thesis are highligheted. 
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Figure 1.2: Illustration of a reinforced concrete arch bridge with most of the elements 

working in compression. Inspired from the work of Alexandre Sarrasin in 

canton Valais, Switzerland during the first half of the 20th century. 

Still nowadays, the sources of uncertainties covered by each partial factor are a matter of 
discussion in the scientific community since they are not clearly defined in codes of practice and 
the related background documents. To clarify this subject, Figure 1.1 presents on overview of 
the current partial factors based on the comprehensive literature review performed by [Yu21] 
and the information available in [CEN02] and the new generation [CEN22]. 

It is important to note that the statistical distributions of the basic random variables are assumed 
according to the best knowledge at a specific time. As knowledge evolves, technological 
advancement progresses and more data is available, these statistical data should be updated and 
lead to either a confirmation or an update of the partial safety factors. The fact that some of the 
partial safety factors do not have a solid scientific base might lead to insufficient levels of safety 
in different scenarios (type of structures, failure modes, materials etc.), or, in some cases, lead 
also to excessively expensive structures (too safe). In addition, an adequate knowledge of the 
basic uncertainties covered by each partial factor is fundamental to improve decision-making 
when dealing with existing structures. Within this context, to design safe and more cost-effective 
structures, the main uncertainties covered by each partial safety factor need to be clarified and 
updated according to newly available data. 

For the dimensioning and assessment of structures, it is common practice for designers to 
compare action effects with sectional resistances. To calculate actions effects in statically 
indeterminate structures, engineers assume a linear-elastic uncracked mechanical behaviour of 
the structure, neglecting both cracking of concrete and the influence of the reinforcement on the 
stiffness, see Figure 1.3. On the other hand, the sectional resistance is generally calculated 
considering cracking of concrete and non-linear behaviour of materials, assuming that each 
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section or member can reach its design resistance. This assumption, while not consistent with 
the one related to the stiffness, is certainly true if all sections have a sufficient deformation 
capacity, nonetheless, a premature failure of the system can occur if this is not the case. 

While model uncertainties on the resistance side have been extensively investigated in the past, 
the model uncertainty in the calculation of action effects in statically indeterminate systems has 
not been properly investigated yet. Currently the statistical distribution recommended by the 
Joint Committee of the Structural Safety report (JCSS) is used to account for this 
uncertainty [JCS01], though, as stated in part 3, section 3.9.3, to estimate this uncertainty “… a 
more or less standard structural Finite Element Model has been kept in mind” without 
specifying the adopted mechanical behaviour. It is assumed that the values are determined using 
a linear elastic model. 

Regarding codes of practice, in EN1990:2002 [CEN02], the model uncertainty in action effects 
is implicitly covered by the partial factors for permanent and variable actions, see Figure 1.1. 
For particular verifications, the designer is allowed to decouple this uncertainty, however, the 
recommended values are based on the prescriptions originally proposed by [CEB59] to consider 
uncertainties related to the calculation methodology and tools (“moderately careful or uncertain 
studies and calculations”, in French “études et calculs moyennement soignés ou incertains”), 
while statically indeterminate systems were not explicitly mentioned. 

One can note that the approach used by current codes of practice, PSF for calculation of action 
effects considered on the action side, does not allow to account for the type of system failure. 
Nonetheless, FprEN1990:2022 [CEN22] specifies that the partial factors on the load side may 
be used for both linear and non-linear calculation, although the verifications are generally 
different: sectional verifications for linear analyses (local) and load bearing verifications for 
non-linear analyses (global). In this context there is a need to quantify the model uncertainty in 
action effects and load-bearing capacity for different mechanical behaviours and clarify whether 
the failure mode of the system has an influence. 

For reinforced concrete structures which rely on members working in compression, the 
calculation of the load bearing capacity is strictly related to the calculation of the compressive 
strength of the members, see Figure 1.2. If failure of the structure occurs due a member failing 
in compression under high intensity sustained loading, the detrimental effect on the concrete 
strength is already acknowledged in most of current codes of practice but the increased 
deformation capacity, which can be beneficial, has not been properly investigated yet. This 
enhancement of the deformation capacity influences both the uncertainty in calculating the 
resistance of the member, since it influences the activation of the reinforcement, and the 
uncertainty in calculating the action effects in different members since it allows redistribution 
between members of the system. Therefore, a deeper investigation in this field is necessary to 
clarify the redistribution of forces within the same member and provide the tools to quantify the 
redistribution between different members part of the same structural system. 
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Figure 1.3: Illustration of the approach used by designes to perform structural 

verifications:, a linear-elastic uncracked mechanical behaviour of the 

members is used to calculate actions effects in statically indeterminate 

structures (right) while the sectional resistance is calculated considering 

cracking of concrete and non linear behaviour of materials (left). 

Within the context of the PSFF, it is not correct to refer to an individual PSF; instead, one must 
consistently consider a set of PSFs. In fact, in addition to the variability of each random variable, 
the extent to which these quantities contribute to the limit state function, which separates the 
safe structural domain from the unsafe one, must be considered. For instance, in the First Order 
Reliability Analysis Method (FORM), this contribution is represented by the sensitivity factors 
(refer to the following section). According to EN 1990:2002 [CEN02]) the sensitivity factors on 
the resistance and action side are assumed αR = 0.8 and αE = -0.7. While this assumption 
simplifies considerably the calibration of the partial factors, allowing to calibrate the PSFs on 
the resistance and action side separately, it also makes the strong simplification that these values 
are constant and do not depend on the failure scenario and the structure considered. Due to the 
wide range of scenarios covered, such simplification requires the choice of conservative values. 
In the case of EN 1990:2002 [CEN02], this can be observed by the fact that the sum of the 
squares of the sensitivity factors αR and αE is 1.13, however, per definition, for a specific failure 
scenario and structural system the sum of the squares of all the sensitivity factors must be 
1.0 [Sch17]. Nowadays, with increasing computational power and data availability it is 
fundamental to verify the suitability of the above-mentioned assumptions. This is especially 
significant in road bridges where, for instance the variability of the traffic is very large and it is 
not clear whether the values presented above are suitable. Further investigation on this topic not 
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only allows the design of safe structures but also cost-effective and environmentally sustainable, 
with more conscious and rational use of materials. That is especially true for existing structures, 
in fact, in the near future a large number of bridges and structures will reach the end of their 
design life and will require an adequate evaluation of the structural safety to improve 
decision-making concerning rehabilitation interventions. 

1.2 Reliability analyses 

The general formulation of the probability of failure Pf calculation is formulated as in Eq. (1.1), 
where: 

 X is the transposed vector containing the random variables, which are assumed 
continuous and represent uncertain structural quantities, e.g., material properties, 
geometry of the members, loads, and models, 

 fX(x) is the joint probability density function of X, 

 g(X) is the so-called limit state function specific to that scenario and is formulated in 
such a way that g(X) > 0 and g(X) < 0 represent respectively the survival and the failure 
of the structure. 

    1

( ) 0

( ) 0 ( ) with 
T

f n

g

P P g f d X X


    X

X

X x x X  (1.1) 

Typically, for structural reliability the function g(X) may be difficult to evaluate and, although 
g(X) could be easily calculated and fX(x) is known, the computation of high dimensional integrals 
is very difficult [Sch17]. Thus, the approaches mentioned in the previous section, FORM, 
SORM and MC, were developed to overcome these challenges and allow calculating the Pf.  

According to the FORM approach, the limit surface is approximated by a plane and the 
probability of failure is calculated using the First Order Reliability Index β [Mad06], which is 
calculated as in Eq. (1.2) with Φ being the reversed cumulative distribution function of the 
standard normal distribution. The reliability index is the minimum distance from the origin to 
the failure surface in a normalized space. This assumption is based on the fact that the value of 
fX(x) becomes negligible with increasing distance from the origin of the normalized space. The 
closest point on the failure surface to the origin is the so-called design point. Using this approach, 
a valuable information can be obtained by computing the partial derivatives of the limit state 
function in the design point. This value is the so-called FORM sensitivity factor (α) and 
represents the weight of each variable for the calculation of the reliability index β. 

 ( )fP     (1.2) 
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Figure 1.4: Illustration of the approaches used for calculating the probability of failure 

Pf : FORM, SORM and MC. 

In the SORM approach, the failure surface is approximated using a paraboloid instead of a plane, 
which leads generally to better estimations of the failure probability [Der91].  

Besides approximating the limit surface, the probability of failure Pf can also be calculated using 
numerical simulation methods. To this purpose, in the Crude-Monte-Carlo (CMC) method the 
limit state function is evaluated multiple times with a set of random variables resulting from a 
random sampling. For each evaluation, by means of an indicator function I(x), it is recorded if 
structural failure occurs. The probability of failure is then calculated as the ratio between the 
simulations leading to structural failure and the overall number of simulations. These concepts 
are formulated in Eq. (1.3) and (1.4). The main drawback of this method is related to the large 
amount of simulations necessary to obtain an accurate estimation of Pf. In fact, to estimate 
accurately a probability of failure of 10-n, the number of simulations required ranges from 10n+2 
to 10n+3. Figure 1.4 illustrates these approaches for a limit state function formulated in the 
classical form g(R, E) where R is the resistance and E is the action effect. To simplify the 
illustration both probability density functions of R and E are assumed normally distributed. 

To reduce the number of simulations required to estimate Pf, a commonly used variation of the 
CMC method is the Importance Sampling Monte Carlo method (MC-IS). In this case, the 
random sampling for evaluating the limit state function is performed around a predefined point 
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which generally corresponds to the design point calculated using the FORM method. To account 
for the biased sampling of the random variables the Eq. (1.4) is modified by introducing a 
weighting factor which depends on the selected point. 

 
( ) 0 ( ) 0

( ) ( ) ( ) ( ( ))f g g
P f d I f d E I
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1.3 Objectives 

Within the context introduced in the previous section, the main objectives of this thesis can be 

summarized as follows: 

 quantify the model uncertainty in action effects and load-bearing capacity calculations 

of reinforced concrete structures for various mechanical models, 

 clarify whether the failure mode has an influence on the model uncertainty in action 

effects and load-bearing capacity calculations, 

 investigate stress redistributions in reinforced concrete members under uniaxial 

compressive load accounting for linear and nonlinear creep strains, 

 clarify if the compressive strength of reinforced concrete members can be enhanced by 

using higher reinforcement grade steel, 

 estimate the value of the sensitivity factors on the load and resistance side for a wide 

range of scenarios, 

 update the partial safety factors for permanent loads in road bridges to provide a constant 

level of safety and better reflect the basic uncertainties covered, 

 clarify how the uncertainties related to structural system change are considered and 

which are the uncertainties are covered by the partial factors for permanent loads. 
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1.4 Structure of the thesis 

This thesis is structured in three main parts accompanied by this introduction and a general 
conclusion resumed as follows: 

 Chapter 1: Introduction 

The research context, the need to pursue this work and the main objectives are 
elaborated. 

 Chapter 2: Model uncertainties in action effects and load bearing capacity calculation in 
statically indeterminate reinforced concrete structures 

In this chapter the model uncertainties in actions effects and load bearing capacity 
calculation are investigated and results are discussed along with practical implications. 

 Chapter 3: Influence of sustained loading on resistance and deformation capacity of 
reinforced concrete members in compression 

In this chapter the influence of high-level sustained loading on reinforced concrete 
members under compression is investigated by means of an experimental and theoretical 
work, the detrimental and beneficial effects are discussed along with practical 
implications. 

 Chapter 4: Recalibration of partial safety factors for permanent loads in road bridges 

In this chapter the partial safety factors for permanent loads, within the context of the 
partial safety factor format are calibrated using updated statistical distributions. A new 
set of partial safety factors is proposed and the basic uncertainties covered by each 
partial factor is clarified. 

 Chapter 5: Conclusion and Outlook 

The conclusions of each chapter are resumed and the outlook for potential future 
research is discussed. 

As the present thesis is a compilation of journal articles, it must be noted that chapters 2, 3 and 
4 include their own abstract, introduction, conclusion and notation. The bibliography is unique 
and can be found at the end of the thesis. 

1.5 Scientific contributions 

Details on the contributions of each chapter can be found at the beginning of the chapter. A 
general, non-exhaustive summary given below: 
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 comprehensive literature review for each of the investigated topics, 

 collection of detailed databases (including force displacement relationship) regarding 
experimental tests on reinforced concrete beams and columns, 

 implementation of algorithms for analysis and visualisation of large amounts of data for 
the model uncertainty in action effects and load bearing capacity calculation, 

 recommendations for implementation of the results concerning the model uncertainty in 
codes of practice, 

 experimental programme consisting of 14 specimens with various reinforcement ratios 
tested under a wide range of uniaxial stress rates, 

 proposition of a mechanical model to account for the reinforcement contribution in 

reinforced concrete members under high-level sustained loading, 

 practical recommendations concerning the use of high strength grades reinforcement 
steel in reinforced concrete members under compression, 

 investigation of structural and non-structural self-weight of actual bridges, 

 collection and analysis of databases for reinforcement steel and concrete properties used 
in Switzerland, 

 quantification of the sectional resistance variability of reinforced concrete members, 

 recommendation of new partial safety factors for permanent loads in bridges. 

1.6 Limitations of the thesis 

Chapter 2 is limited to the investigation of linear reinforced concrete elements; however, the 
methodology can be generalised and applied to other structural elements (i.e. slabs, walls, etc.). 
When referring to the modelling assumptions made by engineers, the standard practice in several 
European countries is generally taken as a reference (constant stiffness independently of 
cracking). Also, this investigation focuses on models that are most likely to be used in practice, 
additional models can be investigated using the same methodology. 

The experimental programme presented in Chapter 3 is limited to the investigation of members 
failing under variable loading rate, different loading patterns should be investigated to further 
validate the mechanical model for reinforced concrete members as already performed for plain 
concrete specimens [Tas18]. Concerning the parametric analyses for concrete loaded at older 
ages, no tests are available for comparison, an experimental programme should be designed to 
this purpose. 
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Chapter 4 is limited to the investigation of reinforced concrete and mixed (steel-reinforced
concrete) bridges. Additional research should be performed to investigate the variability of 
structural and non-structural self-weight for various structures and additional materials.  

1.7 List of publications 

The research was conducted at the Structural Concrete Laboratory (IBETON) of the Swiss 
Institute of Technology of Lausanne (École Polytechnique Fédérale de Lausanne, EPFL). The 
following publications have been published, submitted or will be submitted in the near future: 

• Malja X., Muttoni A., Evaluation of the model uncertainty of action effects in statically 
indeterminate systems, 14th fib International PhD Symposium in Civil Engineering, pp.
895-902, Rome, Italy, 2022.

• Malja X., Motlagh H.R.E., Fernández Ruiz M., Muttoni A., Influence of sustained 
loading on resistance and deformation capacity of reinforced concrete members in 
compression, Structural Concrete, Vol. 24.3, pp. 3656-3673, 2023. 
https://doi.org/10.1002/suco.202200571

• Malja X., Nussbaumer A., Muttoni A., Model uncertainty in action effects and load 
bearing capacity calculation in statically indeterminate reinforced concrete structures,
(Submitted in January 2024)

• Malja X., Nussbaumer A., Muttoni A., Recalibration of partial safety factors for 
permanent loads in road bridges, (to be submitted in 2024).
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This chapter is the pre-print version of the following paper submitted in January 2024: 

Malja X., Nussbaumer A., Muttoni A., Model uncertainties in action effects and load bearing 
capacity calculation in statically indeterminate reinforced concrete structures. 

The work is performed by Xhemsi Malja under the supervision of Prof. Aurelio Muttoni and 
Prof. Alain Nussbaumer. 

The main contributions of Xhemsi Malja are the following: 

 comprehensive literature review, 

 collection of a detailed database of experimental tests, 

 implementation of the mechanical models available in literature, 

 implementation of an algorithm to perform simulations of the assembled systems, 

 implementation of an algorithm to perform parametric reliability analyses, 

 interpretation of the results, 

 design recommendations, 

 elaboration of the figures and tables, 

 writing of the manuscript. 
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Abstract 

For the dimensioning and assessment of structures, it is common practice to compare action 
effects with sectional resistances. Extensive studies have been performed to quantify the model 
uncertainty on the resistance side. However, for statically indeterminate systems, the model 
uncertainty in the calculation of action effects has not been properly investigated yet. The aim 
of this work is to contribute in quantifying the model uncertainty in action effects and load-
bearing capacity calculations for reinforced concrete structures, accounting for the type of 
mechanical model used and for various failure modes. To collect a sufficient amount of data and 
perform statistical analyses, the experimental response of statically indeterminate systems is 
obtained with a simple and effective technique which allows using experimental results available 
in literature. Finally, on the basis of a parametric analysis and case studies, practical implications 
are discussed and recommendations are given concerning the implementation in the Partial 
Safety Factor Format. 

Keywords: reinforced concrete, structural reliability, model uncertainty, action effects, 
load-bearing capacity, statically indeterminate systems, redistribution, non-linear analysis 

2.1 Introduction 

The typical design process of reinforced concrete structures consists of three main steps. First, 
the structure is conceived considering the constrains and requirements. Experience and empirical 
rules (e.g., span/depth ratios) govern this phase, which results in the definition of the structural 
members geometry. Second, the relevant load cases are identified and the action effects are 
calculated by means of idealised models. Finally, with the geometry and the action effects for 
each section, the reinforcement is designed and dimensioned so that the sectional resistance is 
larger than the action effects. If the initial geometry of the structure is not suitable, the process 
can be repeated. 

To calculate actions effects in statically indeterminate structures, engineers assume a linear-
elastic uncracked mechanical behaviour of the structure, neglecting the influence of the 
reinforcement on the stiffness. The main advantages of these assumption are that the stiffness of 
the members does not depend on the load level and consequently no iteration is required. Thus, 
the process is direct and the results are easily obtainable, making these assumptions suitable for 
practical applications. However, for statically indeterminate systems (Figure 2.1a and 2.1b), a 
linear-elastic uncracked behaviour does not provide a completely realistic prediction of the 
action effects. In fact, because cracking is neglected, so is the ensuing redistribution of internal 
forces. 
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In spite of that, the sectional resistance is generally calculated considering cracking of concrete 
and non-linear behaviour of materials, assuming that each section or member can reach its design 
resistance. This assumption, while not consistent with the one related to the stiffness, is certainly 
true if all sections have a sufficient deformation capacity. However, a premature failure of the 
system can occur if this is not the case. To illustrate this scenario, Figure 2.1c shows the 
evolution of the bending moment (in absolute value) in the sagging and hogging section of a 
continuous beam under a distributed load q (see Figure 2.1a [Mut89]). Several regimes can be 
observed: (1) uncracked behaviour; (2) cracking in the hogging region, with the hogging 
moment increasing less than the sagging moment; (3) cracking of the sagging region, with the 
hogging moment increasing again more rapidly and (4) plastic regime with reinforcement’s 
yielding in the hogging region. In the presented case, after some plastification of the 
reinforcement in the hogging region, due to insufficient deformation capacity (failure of the 
compression zone or of the reinforcement in tension), the sagging section is unable to reach its 
design resistance, leading to failure of the system for a load q* < qd, which is the theoretical 
failure load predicted assuming an elastic uncracked mechanical behaviour. Compared to the 
predicted linear elastic behaviour (dashed lines in Figure 2.1c), not only the actual load-bearing 
capacity can be underestimated (q* < qd), but also in terms of actual internal forces, deviations 
can be expected (differences between continuous lines and dashed lines). These deviations are 
one of the components contributing to the uncertainty in calculating action effects. 

 
Figure 2.1: Redistribution of forces: (a) continuous beam, (b) frame system; 

(c) bending moment redistribution between the hogging and the sagging 

section of a continuous beam with regimes (1)-(4) (see explanation in the 

text) and premature failure of the hogging section. 

To ensure structural safety, most current codes of practice adopt a semi-probabilistic design 
approach. Accordingly, limit state verifications are performed by means of design values and 
adequately calibrated Partial Safety Factors (PSFs), which cover uncertainties related to 
geometry, materials, actions effects and models, as shown in Figure 2.2. Regarding the 
uncertainty in model assumptions (idealization of the actual structure), previous research was 
mainly focused in investigating the model uncertainty related to the sectional resistance, while 
little effort was put in investigating the uncertainty in action effects. Depending on the type of 
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action, for the ratio of the actual internal force to the calculated value, the JCSS Probabilistic 
Model Code [JCS01] recommends a log-normal distribution with mean equal to 1.0 and CoV 
between 0.05 and 0.2. However, the origin of this recommendation is not clear. As stated in the 
JCSS Probabilistic Model Code (part 3, section 3.9.3), to obtain those values “… a more or less 
standard structural Finite Element Model has been kept in mind” without specifying the adopted 
mechanical behaviour. The authors assume that the recommended values are based on a linear 
elastic uncracked mechanical behaviour. 

Regarding codes of practice, in EN1990:2002 [CEN02], the model uncertainty in action effects 
is implicitly covered by the partial factors for permanent and variable actions (γG and γQ). 
However, for particular verifications, the designer is allowed to decouple the model uncertainty 
in action effects, γSd, from the uncertainty in the representative values of actions, γg and γq. In 
those cases, the recommended value for γSd is between 1.05 and 1.15, consistent with the 
prescriptions of the first codes dealing with the topic, which proposed a factor γSd equal to 
1.15 [CEB59]. This value was originally proposed to consider uncertainties related to the 
calculation methodology and tools (“moderately careful or uncertain studies and calculations”, 
in French “études et calculs moyennement soignés ou incertains”, [CEB59]), while statically 
indeterminate systems and redistribution of forces were not explicitly mentioned. Additional 
literature review on this topic can be found in [Yu21]. In the latest available draft of 
FprEN1990:2022 [CEN22], the model uncertainty in action effects is still covered by the partial 
safety factor for permanent and variable actions, presented with slightly different notation 

(γF = γf ⋅ γSd). It is also specified that γF may be used for both linear and non-linear calculation, 

although the different verifications types may differ: local verifications for linear analyses, 
global verifications for non-linear analyses. In FprEN1990:2022 [CEN22], except for some 
specific design cases, no recommended values of γSd are specified. It is worth noting that one of 
the possible disadvantages of considering γSd on the actions side is the impossibility to consider 
the mode of failure of the system (brittle vs. ductile), as it depends on the sectional resistance 
model. 

Interestingly, the approach of codes of practice nowadays does not account for the type of system 
in terms of uncertainties in modelling and determination of action effects. For statically 
determinate systems, the calculation of action effects is only influenced by equilibrium and 
geometry, whereas the stiffness and the mechanical behaviour have no influence on the results, 
provided that second order effects can be neglected. For statically indeterminate systems, 
however, additional phenomena and basic uncertainties contribute to the uncertainty in action 
effects, as can be schematically observed in Figure 2.2, adapted from [Yu21] and [CEN02], 
notation consistent with [CEN22]. As shown in Figure 2.1, one of the main components 
influencing the calculation of action effects is modelling of the mechanical behaviour. Indeed, 
any model is a simplification of the actual structure and leads to a different degree of accuracy 
and precision. Generally, more complex models lead to more precise but not necessarily more 
accurate results and they require additional parameters and calculation time, often involving 
iterative processes and more complex interpretation of results. Also, time-dependent 
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deformations due to creep can influence the uncertainties in action effects. Another phenomenon 
that can increase the uncertainty in action effects, is the system change during construction 
(casting of concrete parts which constitute a statically indeterminate structure at different times 
time or/and assembly of precast members). Generally, in the design process, the model of the 
structure is generated as a whole and the totality of the load is applied at once, including 
self-weight. In actual structures, however, self-weight is applied according to construction 
stages, permanent load is incrementally applied after construction and live loads are applied 
sporadically. In statically indeterminate systems, this sequential application of the loading can 
lead to internal force redistributions, increasing the uncertainty in action effects. In addition, the 
internal forces are affected by the uncertainties related to the actual creep behaviour, the age of 
concrete at system change and the time at activation of self-weight (removal of propping or 
scaffolding). Finally, combinations of different actions, which is generally a task left to the 
designer, can lead to further uncertainties in calculating action effects. 

 
Figure 2.2: Basic uncertainties and corresponding partial safety factors (PSFs), figure 

adapted from [CEN02] and [Yu21], notation consistent with [CEN22] 

As numerical models evolve, they are becoming more and more complex, giving designers many 
options to model a structure. For instance, the modelling of boundary conditions, the type of 
elements, the interaction between different element types and the adopted solver can influence 
the calculated action effects. As there is no standard for modelling structures, these choices are 
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left to the discretion and the experience of the designer, leading to further uncertainties in the 
value of action effects. 

The aim of this work is to contribute to quantifying the model uncertainty in action effects and 
load-bearing capacity calculations of reinforced concrete structures and clarify whether the 
failure mode of the system influences this uncertainty. This investigation focuses on 
uncertainties related to the mechanical behaviour of the structure, see highlighted box in 
Figure 2.2, by comparing tests results and calculated values. Uncertainties related to geometrical 
variability effects on model uncertainties and system changes are not considered. Based on 
updated distributions, the partial safety factor γSd is calculated by means of parametric analyses 
and case studies. Finally, uncertainties covered by γSd are clarified and practical implications are 
discussed. 

2.2 Investigated structural system and practical relevance 

Since there is little experimental data available on statically indeterminate systems, it cannot be 
used to perform statistical analyses. To overcome these difficulties, the experimental response 
of statically indeterminate systems is obtained by assembling the response of simply supported 
beams tested in a 3-point bending setup. This technique has already been used by [Yu21] with 
structural members exhibiting brittle failure modes. It is also applicable to reinforced concrete 
systems where both brittle and ductile failure modes can occur. The deformability of supports is 
also considered by supporting beams on reinforced concrete columns tested under concentric 
uniaxial load. 

 

Figure 2.3: (a) Assembled system with beams on infinitely rigid supports 

and (b) supported by columns; (c) experimental response of the system 

(black) assembled with beams (red and blue) and linear-elastic uncracked 

model prediction (dashed); (d) Force-deflection (F-δ) response of a beam 

tested in a 3-point bending setup (red), a column tested in compression 

(blue) and a beam supported by two columns (black). 
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For the case presented in Figure 2.3a, the response of the assembled system in terms of 
force-displacement relationship (F-δ) is obtained by combining the response of various beams 
crossing at midspan. For compatibility reasons, the force applied to the system for a given 
displacement is the sum of the forces required to produce that same displacement in each of the 
beams composing the system, see Figure 2.3c. For the statically determinate systems with a 
beam supported on columns, which constitute the indeterminate system shown in Figure 2.3b, 
the displacement at midspan is obtained by adding the displacement of both members as shown 
in Figure 2.3d. 

The theoretical response predicted by the model is obtained by using the same technique, where 
the F-δ response of each beam is calculated using several models. As an example, Figure 2.3c 
shows the experimental F-δ response of a system composed of two beams and the response of a 
linear elastic model. It is important to note that the model uncertainty related to the sectional 
resistance calculation is not considered. For this reason, the predicted resistance of each beam is 
equalled to the experimental resistance (in Figure 2.3c R1,mod = R1,exp and R2,mod = R2,exp). With 
this assumption, the load-bearing capacity predicted by the elastic model for the system 
presented in Figure 2.3c is lower than the experimental one (Rsys,exp), which results from the 
superposition of the two experimental load-displacement curves. 

 

Figure 2.4: (a) F-δ response of an assembled 2-beams system; (b) double-clamped 

beam and assumed M-χ relationship; (c) experimental M-χ relationships of 

beams used in the comparison; (d) comparison of bending moment 

evolution as a function of the load for the 2-beams system (continuous 

curves) and the double-clamped beam (dashed curves). 
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To assess whether the assembled 2-beams system (Figure 2.4a) is representative of 
redistributions occurring in a continuous beam (Figure 2.4b), action effects in each beam of the 
system are compared with those in a double-clamped beam in the sagging and hogging sections. 
The double-clamped beam is subjected to both a distributed load q and a concentrated force at 
midspan Q = qꞏl. All beams used in the comparison have been tested by [Bos93], have the same 
cross section (b × h = 200 × 400 mm) and variable longitudinal reinforcement ratios 
(0.4% < ρl < 1.8%). The moment-curvature (M-χ) relationships (measured over a length equal 
to the effective depth of the corresponding beam) are shown in Figure 2.4c. In the 
double-clamped beam, the sagging and hogging bending moment are calculated using the 
measured M-χ relationship to fulfil equilibrium and compatibility. The shear deformations are 
neglected. 

Figure 2.4d shows the bending moments at midspan of the 2-beams system as well as the sagging 
and hogging bending moments in the double-clamped beam as a function of the normalized load. 
It can be observed that the bending moment at midspan of each beam in the 2-beams system 
(continuous curves) closely follows the bending moment in the double-clamped beam (dashed 
red at midspan and dashed blue at the clamped end). For the case shown in the bottom left of 
Figure 2.4d (system T4B1 + T7B1), the resistance of the midspan section of the double-clamped 
beam is extremely under-designed and its deformation capacity is not sufficient to allow the 
clamped section to reach its designed resistance. Overall, except for cases where sections are 
extremely under-designed, the redistribution of forces in the assembled system is a good 
approximation of the redistributions occurring in a continuous beam. Even when sections are 
under-designed, Figure 2.4d shows that the redistribution of internal forces between the 2-beam 
system and the continuous beam is very similar up to failure. Thus, the assembled 2-beams 
system is representative of several practical cases, including double-clamped beams and 
continuous beams. 

2.3 Definitions 

2.3.1 Random variables 

Depending on the type of analysis performed and the code of practice used, structural 
verifications can be performed by comparing action effects to sectional resistances (approach 
typically used in the design of new structures) or by comparing the load-bearing capacity directly 
to the actions (approach often used in the assessment of existing structures). In the present work, 
these two approaches are defined as local and global verification methods. For statically 
determinate structures, both methods lead to the same result, whereas for statically indeterminate 
structures, the results are typically different. The local verification method is typically used in 
combination with linear elastic analyses (or analyses with partial redistribution of internal 
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forces) whereas the global verification method is used with non-linear analyses or calculations 
based on limit analysis. 

To cover both cases, two random variables are defined in this work. The global random variable 
θG is defined in Eq. (2.1), where Rsys,exp is the experimental load-bearing capacity of the 2-beams 
assembled system and Rsys,mod is the theoretical load-bearing capacity predicted by the model, 
see Figure 2.5a. 

 ,exp

,mod

sys
G

sys

R

R
   (2.1) 

The local random variable θE is defined in Eq. (2.2), where Ej,mod is the theoretical action effect 
in each member of the system (predicted by the model) and Ej,exp is the experimental action effect 
for the theoretical load-bearing capacity (Rsys,mod). The random variables are graphically 
illustrated in Figure 2.5a. The action effects (Ej) are proportional to the force carried by each 
beam (Fj) at each load step where j is the index of the beam used to assemble the system. 
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As already mentioned, the aim of the present work is to investigate the model uncertainty in 
action effects related to the modelling of the mechanical behaviour. The model uncertainty 
related to calculation of the sectional resistance is not considered, in fact, it is removed by 
equalling the theoretical predicted resistance of each member of the system to the experimental 
value. 

 

Figure 2.5: (a) Global and local random variable definition, respectively θG and θE, for 

the shear force at the support κ1 = κ2 = 0.5 and for the bending moment at 

midspan κ1 = 4/l1 and κ2 = 4/l2; (b) elastic over-design ratio definition, ζEL 
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2.3.2 Elastic over-design ratio 

Overdesign of a section can result from several sources. Generally, structures are dimensioned 
by considering the envelope of action effects calculated using a linear elastic uncracked model 
for the relevant load combinations. As failure can occur for a specific load combination, this 
leads to some sections being over-designed with respect to others. Another source is often related 
to detailing and serviceability requirements (like minimal reinforcement ratio, limitation of 
deformations and cracking control) or fatigue and fire requirements. In addition, the effective 
amount of reinforcement provided is often slightly larger than calculated, to accommodate 
commercially available reinforcement bars and convenient spacings. Sometimes, simplicity of 
construction leads to uniform reinforcement diameters, leading to possible over-design. Finally, 
if various failure modes are involved, the uncertainty of the resistance model could also lead to 
over-design of some sections. To account for these effects, the elastic over-design ratio, defined 
in Eq. (2.3) is introduced to investigate the model uncertainty for action effects. 

 
,

j
EL

j opt

R

R
   (2.3) 

This ratio is graphically represented in Figure 2.5b and, by definition, cannot be lower than 1 as 
it is calculated on members that do not cause the failure of the system. 

2.4 Database and considered models 

A database of 93 beams and 75 columns was collected. Tables 2.1 and 2.2 shows details of the 
beams and columns database. All beams and columns used in the simulations have well 
documented F-δ experimental responses, including the post-peak branch and well as 
documented material and geometrical properties. For beams, only 3-points bending tests are 
considered. 

Among the beams included in the database, 46 failed in flexion and 47 in shear. Because one of 
the aims of this work is to clarify whether a brittle or a ductile mode of failure influences the 
model uncertainty, the deformation capacity is determined from the reported load-deformation 
relationships. To this aim, the indicator of the deformation capacity of each beam is calculated 
as the ratio between the deformation at 90% of the experimental post-peak branch δR and the 
predicted elastic uncracked ultimate displacement δy, see Figure 2.6a for a graphical 
representation. 
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Figure 2.6: (a) F-δ response of a beam tested in a 3-point bending setup with definition 

of δy and δR; (b) strain profile of a RC beam section at Ultimate Limit State 

(ULS); (c) beams grouped based on their deformation capacity ratio at 

failure, failure modes and the neutral axis depth; (d) histogram of the 

deformation capacity ratio by failure mode (bending in red and shear in 

blue). 

Table 2.1: Database of beams tested in a 3-points bending setup 

Reference 
Number 
of tests 

Span lb 

[mm] 

Effective 
depth d 
[mm] 

Long. 
reinf. ratio 
ρl [%] 

Shear 
reinf. ratio 
ρw [%] 

fc [MPa]  fy [MPa] 

[Hug82] 5 1600-2700 175 0.32-2.29 0.15-0.26 44.4 460 

[Bos93] 21 2000-6000 176-565 0.13-1.94 0.13-0.38 30.9 587-595 

[Big93] 2 2000 170 0.30-1.22 0 34.4-35.3 562-573 

[Shi99] 11 645-1075 215 3.77 0.45-1.81 52.0 414 

[Ang99] 8 5400 875-925 0.50-1.75 0-0.08 21.0-38.0 550 

[Yos00] 1 10800 1890 0.74 0 33.6 455 

[Vec04] 12 3600-6840 457 1.72-3.46 0-0.20 22.6-43.5 440-445 

[Saa09] 3 3000 372 1.51 0-0.21 55.2 464 

[Fuj09] 2 1400 210 2.46 0.5 42.0 418-426 

[Lau10] 3 4200 340-348 0.23-2.10 0.36 35.3-45.9 336-507 

[Lee11] 6 1175-1952 235-244 3.29-3.60 0.22-0.32 37.0-42.2 402-436 

[Fuj14] 6 1400 160-210 0.84 0-0.19 40.3 510-520 

[Cav15] 4 2800-7700 556 0.89 0 32.6-35.6 713 

[Adh15] 6 1600 140-210 0.80-1.6 0-0.20 39.9 520 

[Zha17] 3 3000-5000 460 1.37 0.09-0.19 23.8-27.0 495 
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Table 2.2: Database of columns tested under uniaxial compression 

Reference. 
Number 
of tests 

Width bc 
[mm] 

Slenderness 
ratio λG 

ρl [%]  fc [MPa]  fy [MPa] 

[She80] 24 305 4.0 1.72-3.66 31.3-40.0 372-438 

[Li16] 19 200-600 3.0-4.5 1.50-2.50 33.2 247-475 

[Du17] 6 267-600 3.0 0.28 42.8 458-494 

[Jin17] 26 267-600 3.0 0.28 42.8 458-494 

The failure is assumed to be ductile if the deformation capacity ratio is larger than 10 and brittle 
if it is smaller than 5 (intermediate behaviour for 5 ≤ δR / δy ≤ 10). Figure 2.6c shows the 
deformation capacity ratio plotted against the depth of the neutral axis calculated according to 
FprEN1992-1-1:2023 [Eur23] (see definition in Figure 2.6b). It can be observed that beams that 
fail in bending and respect the condition imposed by FprEN1992-1-1:2023 for performing 
plastic analyses (x/d ≤ 0.25) [Eur23], generally exhibit a ductile behaviour. As shown in 
Figure 2.6c and in the histograms of Figure 2.6d, shear failures lead to brittle or intermediate 
behaviour. 

All columns included in the database have a square cross section (width bc between 250 and 
600 mm) and a geometrical slenderness ratio of the specimen λG, (defined as the ratio of the 
height of the column over the width bc) between 3 and 4. None of the columns exhibit a buckling 
failure. 

2.4.1 Moment-curvature relationships and calculation models 

Besides the Linear Elastic Uncracked model (LEU), five additional models are considered to 
evaluate the model uncertainty in action effects. An overview of the models is given in Table 2.3 
and the corresponding M-χ relationships are shown in Figure 2.7a. 

For the LEU model, the flexural stiffness is calculated according to Eq. (2.4). In the Linear 
Elastic Fully-Cracked model (LEFC), and all sections are assumed to be fully cracked before 
applying the load, the flexural stiffness is calculated according to Eq. (2.5) where the location 
of the neutral axis is calculated according to Eq. (2.6). 
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Figure 2.7: (a) Assumed M-χ relationships for the various models; (b) computation of 

the deflection; (c) example of the experimental and predicted F-δ responses 

for beam VSB3 [Vec04]. 

Where n = Es/Ec is the ratio between elastic moduli of steel and concrete. In the Tri-Linear model 
(TL), the section is uncracked until the cracking moment Mr acacording to Eq. (2.7) is reached. 
For cracked sections, tension stiffening is accounted for by shifting the M-χ line by a value equal 
to Δχts, calculated according to Eq. (2.8), as shown in Figure 2.7a, see [Mut08]. The 
Quadri-Linear model, with and without limitation of the deformation capacity, respectively QL 
and QL-LIM, is identical to the TL model up to the level of the resisting moment MR. Thereafter, 
the M-χ relationship has an infinite plastic plateau in the QL model while in the QL-LIM model, 
the curvature is limited to match the experimental displacement at peak load. Finally, the 
behaviour of the Non-Linear model (NL), in brown in Figure 2.7a, is obtained by discretizing 
the section in fibres, with each concrete fibre having a uniaxial stress-strain response calculated 
according to FprEN1992-1-1:2023 [Eur23] for the compression zone and an elastic-brittle 
behaviour in tension. The reinforcement is modelled by fibres with an elastic-perfectly plastic 
stress-strain response. 
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Figure 2.7b shows the methodology used for calculating the force-displacement relationship of 
the simply supported beams for the TL model. At each load step, the beam is discretized and the 
displacement is calculated by updating the flexural stiffness of each element based on the 
calculated bending moment. For beams without shear reinforcement, the displacement due to 
shear deformations is calculated using the mechanical model proposed by [Can22], which is 
based on [Cav15]. For beams contain shear reinforcement, the model proposed by [Col78] is 
used. Figure 2.7c shows the experimental F-δ response of a simply supported beam (in black, 
beam VSB3 by [Vec04]) and the theoretical response predicted by the various models. 

Table 2.3: Implemented models for beams 

Model 
Abbrev
iation 

M-χ Section 
Shear 

deformation 
Tension 

stiffening 
Concrete 

σ-ε 
Steel 
σ-ε 

Linear Elastic 
Uncracked 

LEU Linear Uncracked No No Elastic Elastic 

Linear Elastic 
Fully-Cracked 

LEFC Linear Fully-cracked No No 
Parabola-rectangle 

[Eur23] 
Elastic 

Tri-Linear TL Tri-Linear 
Uncracked / 

Fully-cracked 
Non-linear Yes 

Parabola-rectangle 
[Eur23] 

Elastic / 
Plastic 

Quadri-Linear QL 
Quadri-
Linear 

Uncracked / 
Fully-cracked 

Non-linear Yes 
Parabola-rectangle 

[Eur23] 
Elastic / 
Plastic 

Quadri-Linear-
Limited 

QL-LI
M 

Quadri-
Linear 

Uncracked / 
Fully-cracked 

Non-linear Yes 
Parabola-rectangle 

[Eur23] 
Elastic / 
Plastic 

Non-Linear NL 
Non-

Linear 
Variable Linear No 

Parabola-rectangle 
[Eur23] 

Elastic / 
Plastic 

The F-δ response of the columns is modelled using either a linear elastic model (LE) or a 
non-linear model (NL). In the LE model, both concrete and the reinforcement constitutive laws 
are assumed linear-elastic, Figure 2.8a. In the non-linear model (NL), the constitutive law of 
concrete proposed by Guidotti et al. 2011 [Gui11] is used, and the increase of strength and 
deformation capacity due to transverse reinforcement is considered according to [Fer07]. The 
reinforcement is modelled by an elastic-perfectly plastic stress-strain behaviour. Figure 2.8b 
shows the experimental F-δ response of a column tested under uniaxial compression (column 
CAM1 by [Du17]) and the theoretical response predicted by the two models. 
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Figure 2.8: (a) Materials stress-strain for linear elastic and non-linear model; 

(b) example of the experimental and predicted F-δ responses for column 

CAM1 [Du17]. 

2.4.2 Examples of two-beams assembled systems 

Figure 2.9 shows the experimental and theoretical response, as predicted by the Linear Elastic 
Uncracked model, of three characteristic systems. In Figure 2.9a, the failure of the system is 
controlled by beam 1 in the experimental response and by beam 2 in the model prediction. Due 
to concrete cracking, the relative decrease of flexural stiffness for beam 2 is larger than for 
beam 1 and, since beam 1 fails in a brittle manner, so does the assembled system. This cannot 
be predicted by the LEU model, that in this case leads to an unsafe prediction (load-bearing 
capacity larger than the experimental value, θG < 1). A slightly larger theoretical load-bearing 
capacity with respect to the experimental is also observed in Figure 2.9b, where both beams have 
a relatively ductile behaviour, but their peak resistance occurs for significantly different 
displacements. A rather different result is shown, however, in Figure 2.9c, where the 
experimental peak resistance is reached for a similar displacement in both beams, leading to a 
experimental load-bearing capacity of the 2-beams system which is larger than the value 
predicted by the model. It must be noted that the examples in Figure 2.9 are for illustrative 
purposes and are not exhaustive. 
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Figure 2.9: Examples of theoretical (Linear Elastic Uncracked model) and 

experimental response of 2-beams assembled systems: (a) beam DB0530M 

[Ang99] and S130 [Lee11]; (b) beam DR572 [Adh15] and T1A1[Bos93]; 

(c) beam DR382[Adh15] and VSC2[Vec04]. 

2.5 Results and distribution fitting 

The combination of the 93 beams described in Table 2.1 allows to produce up to 4278 two-beams 
systems with the corresponding experimental behaviours. For all assembled systems, the internal 
forces and the theoretical load-bearing capacities have been determined according to the models 
defined above. Figure 2.10a shows the log-normal probability-plot of θE defined in Eq. (2.2) 
where the internal forces Ej,mod are calculated using the linear elastic uncracked model (LEU). 
the logarithm of the random variable (x-axis) is plotted against the normal quantile in terms of 
standard deviation σ (y-axis). The red, blue and green distributions correspond respectively to 
ζEL smaller than 1.1, 1.25 and 5 while the continuous line represents the fitting LN distribution. 
This type of graphical representation allows to graphically verify if a LN distribution is a good 
fit for a random variable. In fact, data lying on a straight line indicate an exact LN distribution 
and the slope corresponds to the coefficient of variation (CoV). Whether a LN distribution is 
suitable to represent the tail of the distribution has already been discussed in the past. According 
to [Dit94], to compare different propositions, a simple fitting criterion with an arbitrary choice 
of the distribution is practically non-verifiable and there is a need to have standardized 
distribution types to perform adequate comparisons. The present Chapter accounts for these 
considerations and, accordingly, a LN distribution is adopted to describe θE and θG. In fact, 
besides being a good fit for the distribution of θE as shown in Figure 2.10, the comparison with 
the recommendations of [JCS01] is facilitated. 
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Figure 2.10: (a) Probability plot of θE using a Linear Elastic Uncracked model and 

(b) detail of the tail fitting; (c) graphical representation of the distribution 

parameters with varying elastic over-design ratio; (d) CoV (black) and 

number of combinations (red). 

It can be observed that the LN distribution is a good fit for the distribution, including the tail 
regions. Figure 2.10b shows the histogram of θE and the detail of the upper tail fitting. Because 
θE is defined as the ratio between the experimental action effect and the calculated one, the 
values in the upper tail region are the unsafe cases where Eexp > Emod. The dashed line in 
Figure 2.10a represents the fitting of the data with a LN distribution (fitting performed using a 
linear least-squares fitting algorithm, tail values larger than the 95th percentile of the data are 
weighted by a factor equal to 2). 

Figure 2.10c shows the distribution parameters of θE (mean, 5th and 95th percentile) with varying 
elastic over-design ratio (ζEL). If one of the beams is largely over-designed compared to the other 
(large ζEL), redistribution of the force is more likely to occur, resulting in a larger uncertainty in 
determining action effects and leading to an increase of the coefficient of variation of θE, see 
Figure 2.10d. However, as shown in Figure 2.4d, if the elastic over-design ratio is very large 
(ζEL > 2), the assembled system is not necessarily representative of a practical case. In 
Figure 2.10c, it can be observed that the mean of the distribution is always close to unity. This 
is due to the fact that, if the action effect is overestimated in one member, it is generally 
underestimated in the other. The red line in Figure 2.10d shows the number of systems that is 
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possible to assemble for a given limit of ζEL. At least 500 systems are analysed for each ζEL value, 
which is sufficient to perform statistical analyses. 

2.5.1 Discussion of the results 

Using the same format proposed in Figure 2.10, Figure 2.11a shows the distribution parameters 
of θE (mean, 95th percentile and CoV) for the LEU, LEFC, TL and NL models (the results of the 
LEU model are already discussed in the previous section, they are presented again to allow for 
a comparison). For the LEFC model, very large CoVs can be observed. This is due to the fact 
that the flexural stiffness can be largely underestimated. For instance, if the failure of the system 
occurs with limited cracking in one of the beams (actual experimental behaviour), the action 
effect can be considerably underestimated considering the beam fully cracked. The probability 
for this scenario to occur is larger for large values of ζEL since the system has a higher probability 
to fail with one member still in the uncracked state. On the other hand, for the tri-linear (TL) and 
the non-linear model (NL), ζEL has a limited influence on the distribution of θE. In fact, for these 
models, the flexural stiffness depends on the load level, leading to a satisfactory prediction of 
the displacement and the internal forces for each load step. Since non-linear shear deformations 
and tension stiffening are considered in the tri-linear model (TL), but not in the non-linear model 
(NL), displacements are generally better predicted for the former and lead to a smaller CoV. 
Figure 2.11b shows the distribution of θE using the LEU model for systems exhibiting brittle and 
ductile failure modes (for details about the failure mode classification see Figure 2.6). Since the 
LEU model better describes the behaviour of brittle systems (uncracked section), for a given ζEL 
smaller CoVs are obtained for brittle systems than for ductile systems (see Figure 2.11b). 
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Figure 2.11: CoV (top) and distribution parameters (bottom) of θE: (a) for various 

models and (b) for the Linear Elastic Uncracked model with various 

ductility degrees. 

Figure 2.12 shows the CoV and the distribution parameters of θG according to Eq. (2.1) (ratio 
between the experimental and calculated load-bearing capacities, mean, 5th percentile and CoV) 
for the various models. Unlike θE, for which the values in the upper tail region are the less safe, 
for θG the unsafe values are located in the lower tail (θG < 1), where the experimental 
load-bearing capacity (Rexp) is smaller than the one predicted by the model (Rmod). As for θE, ζEL 
does not influence the distribution of θG for the TL and NL models. On the other hand, it does 
for the LEU and LEFC models, but this influence is less pronounced than for θE. Two major 
trends can be identified: (1) the mean value of θG tends towards unity with increasing refinement 
of the model (see continuous lines in the bottom of Figure 2.12); (2) the CoV decreases with 
increasing refinement of the model (top of Figure 2.12). The combination of these two 
phenomena leads to a 5th percentile of the distributions which is almost constant 
(p(0.05) ~ 0.95-0.98 for all the analysed models) despite the fact that the complexity and the 
calculation time for refined models increases considerably. A good compromise for estimating 
the load-bearing capacity of the system is achieved by using the LEFC model which does not 
require an iterative process for the assessment of an existing structure, but for which the 
reinforcement needs to be known in each section to determine the fully cracked flexural stiffness 
(this means that for designing a new structure, an iteration is needed). 
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Figure 2.12: CoV (top) and distribution parameters (bottom) of θG for various models 

Figure 2.13 shows the statistical values of θG for brittle and ductile systems using the LEU and 
the TL models. As already mentioned, ζEL only influences the results of the distribution of θG for 
the LEU model whereas it has no influence for the TL model. For both models, brittle systems 
exhibit a larger CoV compared to ductile systems (see Figure 2.13, top). Also, due to the 
redistribution of forces, the mean value of the distribution is larger for ductile systems. In fact, 
both the TL and the LEU model do not consider plastic deformations, thus underestimating on 
average the load-bearing capacity for ductile systems and leading to a larger safety margin 
(Rsys,exp > Rsys,mod). This does not occur for brittle systems that do not undergo plastic 
deformations, leading to mean values closer to unity. The combination of these two effects leads 
to a larger 5th percentile of θG for ductile systems (~ 1.00) compared to brittle systems (~ 0.90). 
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Figure 2.13: CoV (top) and distribution parameters (bottom) of θG for ductile and brittle 

systems: (a) using the LEU (Linear Elastic Uncracked) model and (b) using 

the TL (Tri-Linear) model. 

2.5.2 Plastic models 

If a quadrilinear model (Quadri-Linear, QL) with a plastic plateau without deformation limit is 
used, the results will be identical to a rigid plastic investigation according to limit analysis.  In 
this case, the random variable θG cannot be larger than one. In fact, the theoretical load-bearing 
capacity (Rsys,mod), is always equal to the sum of the single resistances of the individual beams. 
For the experimental load-bearing capacity of the system (Rsys,exp), this scenario occurs only if 
the experimental peak resistance of the individual beams in the 2-beams assembled system is 
reached for the same displacement, as shown in Figure 2.9c. The CoV of the θG values for the 
QL model are shown in Figure 2.14a. The QL model allows for unlimited redistribution between 
the members of the 2-beams system. However, the beams included in the database exhibit both 
brittle and ductile failure modes, thus, redistribution in the assembled 2-beams system can be 
limited. This leads to large values of CoV for the QL model (see Figure 2.14a). As an example, 
the probability-plot of θG for ζEL ≤ 2 is presented in Figure 2.14c. It must be noted that the mean 
value of the log-normal distribution it is not meaningful for the cases where the maximum value 
is limited (i.e. to 1 for the QL model). In fact, in these cases, a log-normal distribution is not 
suitable to represent the whole distribution but only the lower-tail, see Figure 2.14c for the QL 
model. However, this choice allows performing comparisons between the different models. 

If the deformation capacity of the beams is limited to the experimental displacement at peak 
resistance, as in the QL-LIM model, the CoV of θG decreases and does not depend on ζEL, see 
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Figure 2.14a. Moreover, the 5th percentile of the distribution is closer to unity than for the QL 
model. Also, since the deformation capacity is the same as the experimental one, the predicted 
load-bearing capacity is not necessarily equal to the sum of the single members resistance and 
the value of θG is not limited to 1.0 as can be observed in Figure 2.14c. If the QL model is used 
for systems assembled with beams failing in bending and complying with the requirements 
according to FprEN1992-1-1:2023 [Eur23] (QL-LIM-REQ model), the CoV of θG reduces 
considerably with respect to the QL and QL-LIM models and the 5th percentile is very close to 
unity, see Figure 2.14a. The limitations mentioned above for the QL-LIM-REQ model are shown 
in Figure 2.14b and include the depth of the neutral axis according to [Eur23] (x/d ≤ 0.25, 
Figure 2.6b) and the relative resistance of the critical sections (0.5 ≤ R1/R2 ≤ 2). 

 

Figure 2.14: (a) CoV (top) and distribution parameters of θG for a Quadri-Linear model 

with a plastic plateau (QL in red), a Quadri-Linear model with limitation 

of the deformation capacity (QL-LIM in blue) and a Quadri-Linear model 

with a plastic plateau used for beams respecting the requirements of FprEN 

1992-1-1:2023 (QL-REQ in green); (b) requirements according to FprEN 

1992-1-1:2023 [Eur23] to perform plastic analyses without explicit checks 

on the deformation capacity (QL-REQ model); (c) probability plots for the 

presented models with ζEL = 2 

2.5.3 Deformability of supports 

Figure 2.15 shows the comparison of the 2-beams system investigated above with the same 
system supported on columns (see insert in Figure 2.15a). A slenderness ratio λG = 10 is 

θ G

ζ
EL

C
o
V

 [
%

]

R
2

R
2

R
1

R
1

R
2

R
1

0.1

0.2

0.4

0.6

1.5

1.0

2.0

0

10

20

30

40

1.251.1 2.0 5.0 10 No limit

QL-REQ

(Quadri-Linear-Ductility Requirements)

QL-LIM

(Quadri-Linear-Limited)

FprEN 1992-1-1:2023 limitations for plastic analysis

Q
u
an

ti
le

4

3

2

1

0

-1

-2

-3

-4

θ
G

0.25 0.5 2.01.0 1.5

p(0.05)

QL (Quadri-Linear)

d

x

d
x

≤ 0.25

≤ 2.0

≥ 0.5

0

F

δ

mean

p(0.05)

p(0.05)

P
D

F

θ
G

(a) (b)

(c)

QL-REQ
QL

QL-LIM



Model uncertainties in action effects and load bearing capacity calculation 

36 

considered for all columns without accounting for 2nd order effects and only cases where column 
resistance is not governing are considered. The load-deformation relationships are produced with 
the methodology presented in Figure 2.3d. The results are presented in Figure 2.15 in terms of 
CoV and mean values of θE and θG (case with ζEL = 1.1). Regardless of the model considered, 
the CoV of θE shows a decrease of 1 to 3% while the mean values of θE also decrease. With 
respect to θG defined as in Eq. (2.1), a reduction of the mean values and the CoV can also be 
observed (minor reduction in the case of the CoV). These results can be explained by the fact 
that the deformability of supports leads to an increased redistribution of forces. 

 

Figure 2.15: CoV and mean values of the of (a) θE and (b) θG for the 2-beams system on 

infinitely rigid supports and supported by columns (slenderness ratio 

λG = 10) 

2.6 Case study: reinforced concrete frame 

As already mentioned, the model uncertainties related to the calculation of action effects are 
usually covered by the partial factors for permanent and variable actions (γG and γQ). In 
FprEN1990:2022 [CEN22], γG and γQ are obtained by multiplying γSd with γg and γq, which cover 
respectively the model uncertainty in action effects and the uncertainty in the representative 
values of the actions, see Figure 2.2. To estimate the value of γSd based on the distribution 
parameters of θE, reliability analyses are performed on the 1st floor beam of the RC frame, shown 
presented in Figure 2.16. To account for various ratios between structural and non-structural 
self-weight, the spacing between frames, s, is varied between 4 and 12 m, see Figure 2.16b. The 
building is designed for a design life of 50 years and for various intended uses. For each intended 
use, design loads are assumed according to [Eur02]. Only gravity actions are considered, wind 
and seismic actions are assumed to be carried by a bracing system. In all case studies, action 
effects are calculated using a linear elastic model with uncracked sectional stiffness (LEU). 
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Figure 2.16: (a) Elevation and (b) plan view of the investigated office building; 

(c) simulations of 50 year live load for s=6 m 

The variability of the structural self-weight, denoted by G1, is modelled considering the 
geometrical and the specific weight variability according to [JCS01]. For non-structural 
self-weight, G2, a general model is not available since it largely depends on the types of building 
and on common construction practices of different countries. In this work, the variability of G2 
is modelled using a discrete choice model to consider a large number of possible combinations 
of screed, insulation, flooring, ceiling and partition walls. For each of the above components, 
mean values and CoV are defined based on experience on similar buildings in Switzerland. 
Figure 2.17a shows the normal probability-plot of G1 and G2 distribution resulting from 10’000 
simulations. Besides showing that a normal distribution is a good fit for G1 and G2, it can be 
observed that the CoV of G2 is much larger that of CoV of G1, which reflect the large variability 
of non-structural self-weight in buildings. These results refer to a building with an intended use 
as an office and a spacing s equal to 6 m. The live load, Q, is modelled according to part 2 of the 
JCSS report [JCS01] with the tributary area assumed as shown in Figure 2.16b (shaded red area). 
Each simulation lasts 50 years and leads to a maximum value of EUDL (Equivalent Uniform 
Distributed Load) as shown in Figure 2.16c. Figure 2.17b shows the log-normal probability-plot 
of the live load distribution, Q, resulting from 10’000 simulations. It confirms that a LN 
distribution is a good fit for the distribution of Q. Besides the office space, the other investigated 
uses are: residence, hotel, lobby, retail and classroom. The same methodology described above 
and shown in Figure 2.16c is used to determine the distribution of Q for each intended use and 
spacing of the frame, s. 
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Figure 2.17: (a) Normal probability-plot of G1 and G2; (b) log-normal probability-plot 

of Q; (c) log-normal probability plot of the sectional resistance R for 

flexural failure and shear failure; s=6m, intended use as office, design life 

of 50 years. 

Table 2.4 presents the characteristic load values and the distribution parameters as a function of 
the spacing s for an intended use as office space. The representative value of the non-structural 
self-weight is calculated considering the mean values of the discrete choice model. It has to be 
noted that, according to EC1 [Eur02] linear load of partition walls cannot exceed 3 kN/m to 
assume the load uniformly distributed. This threshold is satisfied in the discrete choice model 
used for calculating the distribution of G2. 

Table 2.4:  Characteristic value and distribution parameters of G1, G2 and Q for an 

intended use of the building as office space and increasing spacing (s) 

between frames 

s 
[m] 

G1k 

[kN/m] 
G2k 

[kN/m] 
Qk 

[kN/m] 
G1k/G2k G/Q 

Distributions 

G1 [kN/m] G2 [kN/m] Q [kN/m] 

Mean 
CoV 
[%] 

Mean 
CoV 
[%] 

Mean 
CoV 
[%] 

4 17.43 12.4 12 1.41 2.49 0.99 4.48 12.88 13.59 0.79 35.00 

5 24.15 15.5 15 1.56 2.64 0.99 4.42 16.10 13.59 0.73 32.73 

6 31.88 18.6 18 1.71 2.80 0.99 4.34 19.32 13.59 0.69 31.41 

7 40.38 21.7 21 1.86 2.96 0.99 4.29 22.54 13.59 0.66 30.23 

8 48.03 24.8 24 1.94 3.03 0.99 4.27 25.76 13.59 0.63 29.38 

9 58.28 27.9 27 2.09 3.19 0.99 4.23 28.98 13.59 0.61 28.71 

10 67.18 31 30 2.17 3.27 0.99 4.21 32.20 13.59 0.60 27.84 

11 79.18 34.1 33 2.32 3.43 0.99 4.18 35.42 13.59 0.59 27.90 

12 92.25 37.2 36 2.48 3.60 0.99 4.15 38.64 13.59 0.57 27.59 

The shear resistance and resisting bending moment, denoted respectively with RShear and RFlex, 
are calculated according to Chapter 8 of FprEN1992-1-1:2023 while their variability is 
calculated using the statistical distributions of materials strength, geometric and models 
variabilities according to annex A of FprEN1992-1-1:2023 [Eur23], see background documents 
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[Mut23] for details. Figure 2.17c shows that a log-normal distribution is a good fit for both 
resisting moment and shear resistance calculation variabilities. It can also be observed that the 
CoV of the shear resistance calculation is much larger than the resisting moment calculation. 
This is mainly due to the large uncertainty in the model uncertainty for the calculation of the 
shear resistance for members with shear reinforcement, see [Pej22]. 

Table 2.5:  Statistical parameters of the random variables used to perform reliability 

analysis for the investigated case studies. If a range is given, the value 

varies for buildings with different spacing s and intended use. 

Variable Distribution μ V [%] 

EG1 Normal 0.98-1.00 4.1-4.9 

EG2 Normal 1.00 13.6 

EQ Log-normal 0.55-0.80 19.1-58.3 

RFlex. Log-normal 1.09-1.12 8.1-8.4 

RShear Log-normal 1.07-1.14 20.4-22.9 

θE Log-normal 1.00 6.5 

Table 2.5 presents the distribution parameters of the random variables used to perform the 
reliability analyses for all the investigated case studies. The limit state function is formulated in 
the classical form as shown in Eq. (2.9). The uncertainty in calculating action effects is 
considered as an independent random variable that multiplies the action effects calculated using 
the adopted mechanical model. In the presented case studies, a Linear Elastic Uncracked (LEU) 
model is adopted, and each section is designed so that R / E = 1. Therefore, the distribution of θE 
is assumed for a LEU mechanical behaviour considering ζEL ≤ 1.1 as shown in Table 2.5, see 
Figure 2.11. 

 1 2( , ) ( )G G Q Eg R E R E R E E E         (2.9) 

 exp( ) with 20%Sd E E tgt E EV V            (2.10) 

Sensitivity factors α, are calculated for each variable using the FORM (First Order Reliability 
Method) analysis. Based on the sensitivity factor relative to the model uncertainty in action 
effects (αθE), the partial safety factor γSd is calculated using Eq. (2.10) where βtgt,50y is assumed 
equal to 3.8 according to FprEN1990:2022 [CEN22]. The choice of βtgt depends on the level of 
risk acceptance at the societal level and is not treated in this work. For details regarding the 
FORM analysis and the derivation of the partial safety factors, refer to [Sch17]. In addition to 
the case studies described above, a parametric study was performed to investigate the influence 
of VQ, VR and G/Q on γSd. In particular, VQ is varied between 15 and 70%, VR is varied between 
5 and 25% and G/Q is assumed equal to 1.5 and 3.5, where G = G1 + G2. 

Figure 2.18a and 2.18b present the results of the parametric analysis while Figure 2.18c and 
2.18d present the results of the investigated case studies. For all plots two axis labels are 
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provided, on the left axis indicating the value of αθE, on the right indicating the corresponding 
value of γSd calculated using Eq. (2.10). 

Figure 2.18a shows the variation of αθE and γSd as a function of VQ for various values of VR while 
Figure 2.18b shows the variation of αθE and γSd for two selected values of VR with G/Q equal to 
1.5 and 3.5. Generally, results from the parametric analyses show that αθE, and consequently γSd, 
decrease with increasing values of VR and VQ. Also, the ratio G / Q has no influence if VR is large, 
on the other hand, if VR is small, an increase of γSd is observed for larger values of G/Q. 
Figures 2.18c and 2.18d show that the results obtained from the investigated case studies are 
within the boundaries found with the parametric analyses. 

 

Figure 2.18: αθE and corresponding γSd as a function of VQ resulting from: (a) parametric 

analysis for various VR; (b) parametric analysis for two selected VR and 

G/Q = 1.5 and 3.5; (c) case studies for various VR; (d) case studies for two 

selected VR and G/Q = 1.5 and 3.5 

These results can be explained considering that the sensitivity factors, α, represent the weight of 
each random variable for a defined limit state function and the sum of their square is equal to 
unity by definition. Thus, if the weight of one variable increases in the limit state function, the 
weight of the other variables must decrease. This explains the finding that for flexural failures 
(with lower CoVs of the resistance model), the required γSd factor is larger than for shear failures 
(where the CoV of the resistance model is significantly larger). Nevertheless, this influence can 
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be compensated by the fact that for flexural failures, which are typically more ductile than shear 
failures (see Figure 2.6), the load-bearing capacity shows smaller uncertainties (smaller CoV 
and higher mean value of ratio θG as shown in Figure 2.13). In other words, underestimating an 
action effect when the behaviour is ductile behaviour has typically smaller consequences then 
when it is brittle. 

Based on the results of the parametric analysis, the performed simulations and the obtained 
distributions of θE, it is reasonable to assume a value of γSd between 1.05 and 1.15 as initially 
specified by [CEB59] but based on significantly different motivations. It is important to note 
that the model uncertainty related to changes of the structural system during construction 
(including the redistributions due to creep) is not covered by the estimation of the factor γSd 

presented in this Chapter. This means that for structural systems subjected to significant system 
changes (e.g. high-rise buildings), a sensitivity analysis should be performed to determine the 
most relevant parameters influencing the calculation of action effects and load bearing capacity. 

It is a matter of fact that the model uncertainty related to the action effects significantly depends 
on the complexity and the level of statical indeterminacy of the structure. In fact, only the 
influence of geometrical uncertainties can have an influence in statically determinate structures, 
whereas the uncertainties can increase for highly indeterminate complex structures. In addition, 
for complex structures, additional uncertainties can be expected with respect to the models 
implemented in commercial analysis software tools and the choices by the designer in modelling 
the structures. This applies for linear elastic calculations, but also to a larger extent for nonlinear 
analyses. These considerations, which were not the aim of the present work, deserve to be 
investigated in the future also accounting for the increasing complexity of the analysis tools used 
nowadays. 

2.7 Conclusions 

This Chapter investigates the model uncertainty in action effects and load-bearing capacity 
calculations for statically indeterminate concrete structures accounting for the type of 
mechanical model used and for various failure modes. Based on the presented investigations, 
the main conclusions are: 

1. Compared to more refined models, the Linear Elastic Uncracked model leads to larger 
CoV of model uncertainty in load bearing capacity calculation (θG); however, the mean 
of the distribution is larger, leading to similar tail’s distribution, thus, similar safety 
margin; 

2. For Linear Elastic Uncracked models, an over-design of one or more components of a 
statically indeterminate system influences the CoV of the model uncertainty in action 
effects calculation (θE); 
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3. Refined calculation models lead to more accurate results and generally to lower CoV of 
the internal forces ratio θE and the load bearing capacity ratio θG; 

4. The failure mode influences the model uncertainty in load bearing capacity calculation 
but it does not influence the model uncertainty in action effects calculation. Larger CoVs 
of θG are observed for brittle systems, independently of the calculation model; 

5. Plastic calculation models with unlimited deformation capacity, if performed without 
ductility requirements (QL), lead to very large CoV and can lead to unsafe results. 
Limiting the deformation capacity, or verifying that ductility requirements are met 
reduces considerably the CoV. 

6. Considering supports deformability allows larger redistribution of forces and leads to 
slightly smaller CoV. 

7. Parametric analyses and investigated case studies show that the partial factor γSd to cover 
the uncertainties of the internal force calculation ranges between 1.05 and 1.15. It must 
be noted that the estimated γSd factor does not account for uncertainties related to 
structural system variations during construction or structural modelling of complex 
structures. These additional uncertainties, which deserve to be investigated more in 
detail, significantly depend on the complexity of the structure, the construction method, 
the tools used tools and the experience of the designer. 
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Notation 

Acronyms: 

RC:  Reinforced Concrete 

PSF:  Partial Safety Factor 

CoV:  Coefficient of Variation 

LE:  Linear Elastic 

LEU:  Linear Elastic Uncracked 

LEFC:  Linear Elastic Fully-Cracked 

NL:  Non-Linear 

QL:  Quadri-Linear with plastic plateau 

QL-LIM: Quadri-Linear Limited deformation capacity 

QL-REQ: Quadri-Linear with plastic plateau and ductility requirements 

TL:  Tri-Linear 

Variables: 

F:  Force 

δ:  Displacement 

δy:  Displacement at maximum load predicted with a linear elastic uncracked model 

δR:  Displacement at 90% of the F-δ post-peak branch 

R:  Load-bearing capacity 

Rexp:  Experimental load-bearing capacity 

Rmod:  Theoretical predicted load-bearing capacity 

M:  Bending moment 

Mr:  Cracking bending moment 

MR:  Resisting bending moment 

χ:  Curvature 

χr:  Curvature at the cracking bending moment 

χR:  Curvature at the resisting bending moment 

θG:  Global random variable 
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θE:  Local random variable 

Eexp:  Experimental action effect 

Emod:  Theoretical predicted action effect 

lc:  Column height 

λG:  Geometrical slenderness of a column (height / width) 

lb:  Beam span 

b:  Width of the section 

bc:  Square column section width 

d:  Effective depth of a cross section 

c:  Concrete cover 

x:  Neutral axis depth 

xc:  Center of gravity of the concrete section 

ρl:  Bottom longitudinal reinforcement ratio 

ρ’
l:  Top longitudinal reinforcement ratio 

ρw:  Shear reinforcement ratio 

fc:  Concrete compressive strain (uniaxial) 

fct:  Concrete tensile strength 

fy:  Steel yielding strength 

Ec:  Concrete elastic modulus 

Es:  Steel elastic modulus 

n:  Es / Ec 

EI:  Flexural stiffness 

ΔχTs:  Decrease of curvature due to tension stiffening 

q:  Distributed load 

Q:  Concentrated force 

ζEL:  Elastic over-design ratio 

γF:  Partial factor for actions including model uncertainties [CEN22] 

γf:  Partial factor for action values [CEN22] 

γG:  Partial factor for permanent actions including model uncertainties [CEN02] 
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γg:  Partial factor for representative values of permanent actions [CEN02] 

γQ:  Partial factor for variable actions including model uncertainties [CEN02] 

γq:  Partial factor for representative values of variable actions [CEN02] 

γSd:  Partial factor covering uncertainty in action effects (model uncertainty) 

γM:  Partial factor for the material including model and geometrical uncertainties 

γm:  Partial factor for material properties 

γRd:  Partial factor covering uncertainty in the resistance model 

Frep:  Representative value of action variables 

Xk:  Characteristic value of material strength 

anom:  Nominal value of geometrical variables 

Ed:  Design value of actions 

Rd:  Design value of resistance 

σ:  Standard deviation 

α:  Sensitivity factors 
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Abstract 

As acknowledged explicitly or implicitly in most of current design codes, a high level of 
sustained loading has a detrimental effect on the concrete compressive strength. However, its 
beneficial effect in terms of deformation capacity is neglected in most cases. This latter topic 
and its practical consequences are addressed in the present work on the basis of an experimental 
and theoretical investigation. In particular, the development of nonlinear creep strains in 
structural concrete members is investigated, clarifying the internal redistribution of forces 
between concrete and the reinforcement. The results of an experimental programme with refined 
measurements are presented to better understand the phenomenon and to verify the predictions 
of a mechanical model developed by the authors on the time-dependent response of concrete. 
The experimental programme consists of 14 prismatic specimens with different reinforcement 
ratios tested under a wide range of uniaxial stress rates. The results allow clarifying the material 
response and validating the mechanical model, both in terms of strength reduction and 
enhancement of deformation capacity. Finally, the results of parametric analyses, performed 
considering different concrete ages, reinforcement ratios and materials properties are presented 
to evaluate the practical implications of the findings. 

Keywords: reinforced concrete, sustained loading, deformation capacity, strength reduction, 
stress redistribution, non-linear creep strain 

3.1 Introduction 

Sustained loading effects on reinforced concrete (RC) structures has attracted many research 
efforts in the past. The first works focused on low levels of sustained loading, typically below 
50% of the compressive concrete strength [Fab28, Wil28, Dav31, Nev55, Flu58]. Such 
researches were followed by more comprehensive loading levels and patterns, investigating 
higher levels of sustained loading [Sha49, Rüs56]. Following these works, the term "sustained 
loading strength" was introduced to account for the detrimental effect of sustained loading on 
the concrete compressive strength. Such value was defined as the maximum stress level at which 
concrete can be permanently loaded without leading to failure and was set to approximatively 
75% of the short-term concrete strength, see Figure 3.1a (a detailed review is available 
in [Tas18]). Also, the development of creep strains with time and the level of load was 
investigated [Hog51, Vie56, Rüs60], showing a significant increase of the ultimate strains for 
long loading durations. Despite the potentially beneficial implications of such increase of 
deformation capacity, most studies in the following decades still focused primarily on the 
concrete strength reduction [Sel59, Dia71]. 
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Figure 3.1: Stress redistributions due to creep in reinforced concrete members: 

(a) short-term and long-term longitudinal stress-strain diagrams for plain 

concrete; (b) compressive strain limit according to 

EN 1992-1-1:2004 [EN104] 

Concrete long-term response at high levels of load has traditionally been investigated for plain 
concrete specimens [Stu65, Sha70, Nga80, Sma85, Mae04, Fer07, Sur13]. However, some 
researches focused on RC elements, observing a redistribution of internal forces between 
concrete and the reinforcement [Vie56, Dry71, Mic92]. The first extensive research was 
performed in the 1930s [Ric31, Ric32]. As part of a large experimental programme, 26 RC and 
6 PC (plain concrete) columns (Ø × h ≈ 0.2 × 1.5 m) were kept under sustained loading for six 
years [Ric38]. Later, Troxell [Tro58] investigated creep and shrinkage deformations in 36 
spirally-reinforced RC cylinders (longitudinal reinforcement ratio, ρ = As/A, between 1.9% and 
5%). In both cases, the applied level of sustained load was lower than 30% of the short-term 
concrete strength. Other studies aimed at investigating the role of creep in buckling of RC 
columns [Mau63, Dry71]. It was observed that creep can significantly reduce the strength and 
increase the deformation capacity in the compression zone. These results were later confirmed 
by an experimental programme performed at the University of New South Wales [Gil91, Mic92] 
on 15 RC columns with square section (150 × 150 mm2). 

With respect to squat RC columns subjected to high levels of load, 120 specimens with variable 
eccentricities were tested at the University of Illinois [Hog51]. Failure occurred within 1 hour 
in most of the tests while time-delayed effects of sustained loading were investigated in 44 
specimens [Vie56]. In this programme, specimens with small eccentricity (where failure 
occurred by crushing of concrete in compression) showed large strain values in the compression 
zone due to the development of non-linear creep strains (up to 6-8‰). Following these 
experimental results [Hog51, Vie56], as well as those of other researchers at the time [Tro58, 
Mau63, Dry71], it was acknowledged the significance of nonlinear creep strains on the global 
response of columns and compressed members, particularly for slender ones. This issue was 
subsequently considered in codes of practice as discussed in [Gil91]. 

It can be noted that research on the phenomena of creep strains at high levels of stress is of large 
practical relevance. For instance, in RC columns, nonlinear creep strains lead to redistributions 
of internal forces, reducing the stresses in concrete and increasing them in the reinforcement. 
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Such phenomenon is potentially beneficial for the overall structural resistance, as the most 
critical and brittle component (concrete) is partly unloaded. In addition, high-strength 
reinforcement grades (requiring large strains to yield) could be fully activated in compression. 
With this respect, the post-peak response of concrete as well as the region where strain 
localization occurs [Sha87, Sig95, Jan97] considering also its time-dependent response at high 
levels of load, are of particular relevance. Some works have been performed in the past on this 
topic (refer for instance to El-Kashif1 and Maekawa [El-04] for a general finite-element based 
approach). However, there are still scanty simple models to predict how loading rates affect the 
structural response both in terms of strength and deformation capacity at ULS (particularly in 
view of their implementation into codes of practice, [Tas19]). Such lack of consistent models, 
as well as too simplistic and safe design approaches, can hide several beneficial influences and 
not lead the engineer to adopt suitable design choices. For instance, with respect to RC members 
in compression, the strain limits considered in many cases do not allow yielding of the 
reinforcement. This can be observed in Figure 3.1b where the pivot diagram for sections 
subjected to combined bending and axial force is shown according to EN1992-1-1:2004 
[EN104], limiting the maximum strain under pure axial compressive force to 2‰. This 
contradicts experimental evidence [Vie56] and does not allow taking advantage of the 
enhancement in terms of strength when high reinforcement grades are used. 

Within this context, the present Chapter investigates the stress redistributions in RC members 
accounting for linear and nonlinear creep strains. To that aim, centrically loaded squat columns 
are used as a representative case study for the response of reinforced structural concrete in 
compression. The phenomenon is investigated by means of an experimental programme on 
columns with different reinforcement ratios and tested under varying loading rates. Advanced 
measurement techniques, such as FOM (Fibre Optic Measurements) and DIC (Digital Image 
Correlation) are used, which allow obtaining detailed information on the reinforcement and 
concrete strains. The results are then investigated on the basis of the mechanical model 
developed for plain concrete by Fernández Ruiz et al. [Fer07] and Tasevski et al. [Tas18]. The 
model shows sound agreement with the experimental results and is eventually used to perform 
parametric analyses aimed to derive practical design recommendations. 

3.2 Experimental programme 

The experimental programme includes 14 prismatic specimens (cross section of 150 × 150 mm2 
and height equal to 500 mm, including the end steel plates) tested under uniaxial compression. 
The longitudinal reinforcement is arranged in the form of one bar centred in the cross section 
and welded to 20 mm thick steel plates at the ends (Figure 3.2). All specimens are without 
confinement reinforcement. Some reference specimens were cast without longitudinal 
reinforcement to determine the response of plain concrete. The diameter of the longitudinal 
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reinforcement bar is varied so that the reinforcement ratio (ρ = As/A) is equal to 0%, 0.5%, 0.9%, 
2.3% and 4%. These values cover a wide range of practical cases, typically representing light, 
medium and high reinforcement ratios of columns and compression zones. The tests are 
performed with different loading rates, leading to failures occurring between approximately 2 
minutes and 8 hours. Details on the specimen are given in Table 3.3 (named according to the 
diameter of the bar and target loading duration). All tests were performed in the Structural 
Laboratory of École Polytechnique Fédérale de Lausanne (EPFL), Switzerland. 

 
Figure 3.2: Test setup: (a) view and sections of the specimen; (b) 3D view of the 

specimen and of the performed measurements; (c) test setup; (d) applied 

loading patterns 

3.2.1 Material properties 

The specimens were produced using normal strength concrete with a maximum aggregate size 
of 16 mm provided by an external supplier. The cement was CEM-II 42.5R and the water-to-
cement ratio was equal to 0.56. Twenty-one cylinders (Ø × h = 160 × 320 mm) were cast to 
characterize the concrete mechanical properties. Standard compression tests were performed 
with a strain rate of 0.02‰ s−1 (failure reached within approximately 120 seconds). An overview 
of the results in compression is given in Table 3.1 and in Figure 3.3b. The average modulus of 
elasticity at 28 days Ec was 35.5 GPa (secant stiffness between 0.03ꞏfc and 0.3ꞏfc in the loading 
phase after three loading and unloading cycles). 
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The development of the concrete compressive strength with time is estimated with the 
expression provided in MC2010 [FIB13] as in Eq. (3.1) with t representing the concrete age in 
days. 
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,28
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c cf t f e
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Table 3.1: Concrete cylinders compression tests 

Name 
Age 

[days] 
fc 

[MPa] 
Avg 

[MPa] 

C1 
7 

36.5 
34.3 

C2 32.0 

C3 
14 

34.9 
35.9 

C4 37.1 

C5 
21 

40.2 
37.9 

C6 35.6 

C7 

28 

39.1 

37.5 C8 34.9 

C9 38.4 

C10 
28 

37.6 
38.1 

C11 38.6 

C12 
31 

40.9 
41.4 

C13 41.9 

C14 
37 

40.7 
41.5 

C15 42.3 

C16 
38 

42.4 
42.4 

C17 42.4 

C18 
44 

41.5 
42.3 

C19 43.0 

C20 
51 

41.3 
42.2 

C21 43.2 

The parameters fc,28 (reference strength at 28 days measured in concrete cylinders with diameter 
160 mm and a height of 320 mm) and s (coefficient defining the early-age evolution of the 
compressive strength) are determined by least-square fitting of the test results, leading 
eventually to s = 0.189 and fc,28 = 39.6 MPa with a coefficient of variation of 4.4% (experimental 
results and Eq. (3.1) are compared in Figure 3.3a). Figure 3.3b shows the measured short-term 
stress-strain response (failure occurring in about 2 minutes) of 4 representative concrete 
cylinders (2 tests performed at 28 days and 2 performed at 38 days). 

Shrinkage and linear creep strains were measured on a total of 6 cylinders stored under standard 
laboratory conditions (temperature equal to 21±0.5°C and relative humidity (RH) equal to 
55±1%). Three cylinders were placed within a shrinkage rig after demoulding, performed at 
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14 days for all specimens of the programme, and measurements were performed during the 
following 3 months covering the testing programme duration. The remaining 3 cylinders were 
used to perform linear creep measurements in a standard creep rig. The applied load was equal 
to 30% of the short-term concrete strength. The expressions provided in MC2010 [FIB13] for 
predicting shrinkage and linear creep development are calibrated to best fit the experimental 
results, as shown in Eq. (3.2) and Eq. (3.3), respectively. The time of evaluation is indicated 
with t (in days) while ts and t0 are the age at demoulding and loading, respectively. The calibrated 

coefficients result εcs,1 = -0.0609‰; εcs,2 = -0.804‰; tc = 61.2 days; 1 = 2.73; 2 = 0.477; 

k = 0.357 and tcr = 476 days. Test results and the analytical expressions are compared in 

Figure 3.3c and Figure 3.3d. 
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Figure 3.3: Time-dependent concrete properties: (a) compressive strength with respect 

to time; (b) concrete monotonic compressive curves; (c) linear creep 

coefficient; (d) longitudinal shrinkage strain (positive strains refer to 

shortening) 
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With respect to the reinforcement, steel B500B according to [EN105] was used (specified 
characteristic yield strength fyk = 500 MPa, ductility class B). The bars with diameter 12 and 
16 mm were cold-worked whereas the bars with diameter 26 and 34 mm were hot-rolled. For 
each bar diameter, at least 2 tests in compression and 2 in tension were performed. For the 
tension tests, reinforcement bars of one meter were instrumented with extensometers. For the 
compression tests, the length of the bars was limited to five times the bar diameter to limit 
second-order effects and steel plates were welded at both ends to ensure a uniform stress 
distribution. In addition, DIC was used to obtain accurate strain measurements and to track 
lateral displacements. Figure 3.4 shows the stress-strain curves in tension and compression while 
details are given in Table 3.2. 

Table 3.2: Main results from rebars testing (average values) 

Ø [mm] fy,tens [MPa] fy,comp [MPa] fy,comp / fy,tens ft,tens [MPa] Ɛlim,tens 

12 500 479 0.958 567 0.030 

16 525 487 0.928 582 0.063 

26 535 527 0.985 626 0.096 

34 512 533 1.041 654 0.121 

One can observe that for the cold-worked steel, the yield strength in compression is 4-7% lower 
than in tension, while for the hot-rolled steel, the ratio fy,comp / fy,tens varies between 0.985 and 
1.041 (in all cases, the yield strength is defined as the stress with 2‰ irreversible strain). 

 
Figure 3.4: Reinforcement bars: (a) stress-strain curves from experimental tests; 

(b) detail of a rebar being tested in compression (tensile stresses and 

strains positive) 
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3.2.2 Test setup and measurements 

Demoulding of all specimens was performed at 14 days. Thereafter, the specimens were stored 
and tested under standard laboratory conditions. All tests were performed between 28 and 
37 days (details are given in Table 3.3) using a Schenck Hydroplus servo-hydraulic testing 
machine with a capacity of 2.5 MN. A load cell positioned between the steel frame and the 
specimen measured the force, while the longitudinal strain εc,long was tracked by means of three 
LVDTs (Linear Variable Differential Transformers) placed on three faces of the specimen and 
with a measurement length of 300 mm. Figure 3.3 presents an overview of the test setup. 

To accurately investigate the interaction between concrete and the reinforcement, Digital Image 
Correlation (DIC) was used on the concrete surface and Fibre Optic Measurements (FOM) on 
the reinforcement bar. For the DIC measurements (Figure 3.2d), a pair of CMOS IMX304 sensor 
cameras (12 Mpx) in combination with controlled lighting conditions were used. Cameras were 
calibrated before the test and lighting conditions were controlled to avoid temperature variations 
and reduce the displacement noise in the measurements. The front face of the specimens was 
painted with a random speckle pattern (spray painting with a size of 1 ± 0.5 mm) to increase the 
contrast of the pixels in the acquired pictures. Based on the calibration images acquired before 
the tests (zero displacement), a displacement noise below 1/50 times the size of the pixel (pixel 
size ≈ 0.5 mm) was observed. The displacement analysis is performed with Vic3D 
software [Cor10] by adopting a subset size of 27 × 27 pixels. Pictures were generally acquired 
with a frequency up to 1 Hz but it was increased close to the failure load to better investigate the 
development of cracking. 

In addition, to accurately measure the reinforcement strain, FOM were performed on two 
opposite sides of the bars. A cutting disc was used to generate two 1×1 mm2 grooves on the sides 
of the rebar to embed and glue the fibres as shown in Figure 3.5 (further details on the adopted 
technique can be consulted in [Can20]). For the acquisition of data, the Odisi–B version by Luna 
Innovations [Lun13] was used. Odisi–B allows extracting strain profiles at relatively high 
sampling rates and refined spatial resolution (around 1mm). The rebar region covered by FOM 
is shown in Figure 3.2a. 

 
Figure 3.5: Detail of FOM in rebars 
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3.2.3 Loading patterns 

The response of the specimens was investigated for decreasing stress rates. Such loading pattern 
allows investigating efficiently the time-dependent response of concrete, both in terms of the 
strength and deformation capacity (Figure 3.2d), as shown by Tasevski et al. [Tas18]. 

Table 3.3: Overview of the main experimental results (positive strains refer to shortening, 

A refers to the toal area of the specimen) 

Specimen 
Ø 

[mm] 
σ  

[MPa/s] 

Concrete 
age 

[days] 
Test duration 

Nmax /A 
[MPa] 

εc,long 
[‰] 

CX-0-2m - 3.46E-01 34 1.9 min. 39.7 1.92 

CX-0-30m - 2.10E-02 28 31.0 min. 40.4 2.45 

CX-0-2h - 5.63E-03 29 1.9 hour 38.1 2.68 

CX-0-8h - 1.47E-03 38 7.6 hour 37.5 2.92 

CX-12-2m 12 3.16E-01 35 2.1 min. 40.9 1.94 

CX-16-2m 16 3.04E-01 35 2.2 min. 42.6 2.01 

CX-16-30m 16 1.98E-02 29 33.0 min. 41.8 2.38 

CX-16-2h 16 5.01 E-03 28 2.2 hour 40.3 2.72 

CX-16-8h 16 1.33E-03 37 8.4 hour 39.3 3.07 

CX-26-2m 26 2.83E-01 35 2.4 min. 44.7 2.10 

CX-26-30m 26 1.67E-02 28 39.0 min. 44.3 2.61 

CX-26-2h 26 4.41E-03 29 2.5 hour 42.2 2.74 

CX-26-8h 26 1.13E-03 36 9.8 hour 43.3 3.06 

CX-34-2m 34 2.61E-01 34 2.5 min. 47.4 2.15 

3.2.4 Experimental results 

Table 3.3 presents for each specimen the actual stress rate, the test duration, the maximum 
average stress Nmax /A (maximum compression force attained divided by the gross cross-
sectional area) and the longitudinal strain at peak load (shortening positive). Figure 3.6 shows 
the longitudinal stress-strain response and Figure 3.7 the Poisson’s coefficient 
(ν = −εc,trans / εc,long) as a function of the stress in concrete calculated on the basis of the measured 
total force and the reinforcement  force calculated from the strain measurements. 

The longitudinal strain εc,long presented in Table 3.3 is calculated as the average value of the 
LVDTs placed in the two opposite lateral faces. In addition to the average strain measured with 
the lateral LVDTs (continuous lines), Figure 3.6 shows the FOM of the strains integrated on a 
total length of 100 mm at selected load levels (dots). Sound agreement is observed between 
LVDTs measurements and FOM. Some limited scatter is observed for specimens CX-26-2m, 
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CX-34-2m and CX-16-30m. This might be due to the initial calibration of the fibres. Overall, 
experimental data confirms a decreasing trend of the failure load with decreasing stress rate 
(increasing load duration) and an increasing value of the Poisson’s coefficient for lower stress 
rates. 

 
Figure 3.6: Axial force (N) divided by total area (A) as a function of strain (εlong) 

3.3 Analysis of the response of concrete under variable 
loading rates 

Several approaches have been developed in the past to analyse the time-dependent response of 
concrete accounting for its linear and nonlinear response [Zho92,El-04, Tas18]. In this Chapter, 
the approach proposed by Fernández Ruiz et al. [Fer07] is adopted, consistently with the 
methodology applied by Tasevski et al. [Tas18, Tas19] for failures in plain concrete specimens 
under variable loading rates. According to this approach, concrete micro-cracking and its 
associated damage are considered as the source of nonlinear creep strains. Such damage starts 
developing when the applied stress exceeds 40% of the uniaxial compressive strength fc(t). 
Above this threshold, the nonlinear creep strains are assumed to be affine to the linear creep 
strains (according to a ratio η [Fer07]) and ensure up to 2/3 of the creep strains at failure, as 
shown in Figure 3.8a. For stress levels above 75% of fc(t), micro-cracking leads to crack 
coalescence [Tas18] along with a rapid increase of nonlinear creep strains (Figure 3.8a). 
Eventually, such rapid increase of creep strains leads to failure under sustained compression. 
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Figure 3.7: Resulting Poisson's coefficients as a function of the concrete stress 

3.3.1 Failure criterion 

As assumed by Fernández Ruiz et al. [Fer07], concrete failure occurs when the total inelastic 
strain associated to micro-cracking is equal to the available inelastic strain capacity (εcc,in,av). The 
inelastic strain capacity is defined as the difference between the strain in the softening branch 
(post-peak) and the strain in its ascending branch (pre-peak) for a fixed level of applied stress 
(Figure 3.8b). The reference stress-strain diagram is obtained by using a strain rate of 0.02‰ s−1 
(rapid loading conditions) with the peak strength reached approximately after two minutes of 
loading. 

Such approach has been experimentally verified for a large number of cases by Tasevski et 
al. [Tas18]. Another advantage of this approach is that the inelastic strain capacity, which 
determines the failure criterion, allows calculating not only the resistance, but also the 
deformation capacity of concrete as shown in Figure 3.8c. 
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Figure 3.8: Inelastic creep strain development: (a) evolution of creep with time for low 

and high sustained loads (primary, secondary and tertiary); (b) εcc,in,av 

calculation for different levels of stress; (c) failure criterion according to 

the development of the inelastic strains (εcc,in) 

3.3.2 Inelastic strain development in concrete 

The total strain of concrete εc for a time t is expressed in a general manner as the sum of the 
instantaneous strains εc,0 , the shrinkage strains εcs and the creep strains εcc as in Eq. (3.4). The 
time t0 corresponds to the application of the load, ts to the demoulding time (start of hygrometric 
shrinkage) and σc / fc to the level of applied concrete stress. 
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In this Chapter, the shrinkage strain is assumed to be independent from creep effects. With 
respect to creep strains, they are generally divided into 3 main components [Mae04, Tas18] 
named primary (εcc,1), secondary (εcc,2) and tertiary (εcc,3) as shown in Eq. (3.5). 
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Primary creep strains εcc,1(t,t0) (see for instance Eq. (3.3)) are related to the response of the 
undamaged material, i.e. when the stress level is lower than approximately 40% than its uniaxial 
strength and micro-cracking is negligible. Its value is linearly related to the instantaneous strain 
εc,0 through the linear creep coefficient φlin as in Eq. (3.6). 
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    ,1 0 0 ,0, ,cc lin ct t t t     (3.6) 

For higher levels of load, the correlation between the instantaneous and creep strains is no longer 
linear. A reasonable estimate is obtained by assuming the affinity hypothesis [Fer07], which 
relates the nonlinear and linear creep strain through the parameter η as in Eq. (3.7): 
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This parameter accounts for micro-crack propagation and depends on the stress level as 
expressed in Eq. (3.8): 
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The parameter ητ(t,t0) in this Equation is estimated using Eq. (3.9), where tm = 100 days and 
n = 0.75 [Tas18] (for large values of t, the parameter is approximated as 1). 
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Tertiary creep, associated to micro-cracks coalescence, develops for stress levels larger than 
approximately 75% of fc(t). Unlike primary and secondary creep, tertiary creep strains can lead 
to failure of concrete in compression. In this Chapter, the tertiary creep is estimated using the 
general formulation in Eq. (3.10) which was proposed by Tasevski et al [Tas18]. 
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For levels of stress higher than 75% of the short-term concrete strength, the parameter γ is 
calculated as in Eq. (3.11) with α = 4 according to [Tas18]. Figure 3.8c shows failure occurring 
when εcc,in equals εcc,in,av. Since the model is strain based, the amount of material damage as well 
as its associated deformation capacity is estimated independently from the loading history. 
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3.3.3 Application to reinforced concrete elements 

The above presented model has been extensively checked for unreinforced 
concrete [Fer07, Tas18]. However, for reinforced concrete members, there is an interaction 
between concrete and the longitudinal reinforcement [Tas19]. In general, when nonlinear strains 
develop in concrete, a fraction of its load is transferred to the reinforcement (stiffer component) 
if the latter is still in its elastic domain. In some cases, this process can lead to yielding of the 
reinforcement and to failure of the member. Such response and its structural implications will 
be investigated hereafter under the following assumptions: 

 Concrete is modelled according to the response described in Section 3.3. Also, concrete 
ageing is considered consistently with [Tas18]; 

 Steel reinforcement is considered to have a bilinear response, characterized by the 
modulus of elasticity (Es) and the yield strength (fy) as in Figure 3.9. Strain hardening in 
the reinforcement is not considered (although this would be possible). 

 Compatibility of deformations and perfect bond is assumed (εs = εc). 

When the load is applied, pre-existing strains due to shrinkage (which develops before 
application of the load (Figure 3.3d)) and the related stresses are calculated by imposing the 
compatibility of the deformations between concrete and the reinforcement. After applying the 
load, for every increment of time the general analysis procedure is described above: 

1. Determination of initial strains and stresses in each material (time ti). Concrete and 
reinforcement are uncoupled and concrete is left to develop freely its delayed strains 
(shrinkage and creep), accounting for previous history of loading [Tas19]: 
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2. Compatibility is reinstalled by applying a set of self-equilibrated forces in concrete and 
in the reinforcement, considering the instantaneous response of concrete to that aim. 
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Figure 3.9: Stresses in the column and adopted materials constitutive laws 

3.4 Comparisons to test results 

To validate the failure criterion, the response of plain concrete specimens (series CX-0) is first 
investigated. The inelastic strain development is calculated according to Eq. (3.13) and 
consistently with the previous section. 
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In Figure 3.10, the continuous curves refer to the experimental results, while the black dashed 
curve represents the calculated failure criterion εcc,in,av (Tasevski et al. [Tas18]). The comparison 
shows the consistency of the failure criterion, confirming the trend of decreasing strength for 
increasing deformation capacity (as loading rates are lower). 
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Table 3.4: Comparison of measured-to-predicted strain and stress values at peak load 

Specimen 
peakσ  [MPa] peak,test

peak,mod

σ
σ

 
peakε  [‰] peak,test

peak,mod

ε
ε

 
Test Model Test Model 

CX-0-2m 39.7 39.9 0.99 1.93 2.09 0.92 

CX-0-30m 40.4 37.1 1.08 2.46 2.43 1.01 

CX-0-2h 38.1 36.0 1.06 2.86 2.59 1.10 

CX-0-8h 37.5 36.1 1.04 2.89 2.78 1.04 

CX-12-2m 42.1 42.7 0.99 1.88 1.71 1.09 

CX-16-2m 44.9 44.2 1.02 1.98 1.74 1.14 

CX-16-30m 43.8 42.1 1.04 2.57 2.26 1.14 

CX-16-2h 42.4 41.2 1.03 2.86 2.49 1.15 

CX-16-8h 41.2 41.1 1.00 3.10 2.66 1.16 

CX-26-2m 51.0 50.2 1.02 2.04 1.84 1.11 

CX-26-30m 50.5 49.3 1.02 2.72 2.45 1.11 

CX-26-2h 48.1 48.6 0.99 2.64 2.64 1.00 

CX-26-8h 49.3 48.5 1.02 2.84 2.84 1.00 

CX-34-2m 58.8 58 1.01 1.95 2.09 0.93 

  Avg 1.022  Avg 1.065 

  StDev 0.027  StDev 0.080 

  CoV 0.027  CoV 0.075 

Figure 3.11 presents a comparison of the predicted stress-strain response (accounting also for 
shrinkage strains) and the experimental results of the reinforced specimens (details are given in 
Table 3.4). The model shows fine agreement for both strength and deformation capacity 
independently on the reinforcement ratio and the loading pattern. Also, strain values are 
consistent with those observed by Hognestad [Hog51]. Such good agreement is based on the fact 
that the failure criterion reproduces accurately the maximum strain capacity as well as its 
development in time (Figures 3.12a-c). Figures 3.12a-c show that for low loading rates, larger 
strains develop due to a significant level of linear and nonlinear creep strains in concrete. Also, 
for low loading rates, larger strains develop, activating more the reinforcement and leading to 
an overall increase of strength of the member. However, the contribution of the reinforcement 
is eventually limited by its yield strength (if strain-hardening effects in the reinforcement are 
neglected). 

More details on the response of the tests, and particularly on the reinforcement contribution are 
presented in Figures 3.12d-e. The x-axis refers to the time (normalized with respect to the load 
duration at failure) while the y-axis refers to the total force carried by each material. It can be 
observed that the reinforcement ratio and the loading rate influence significantly the 
redistribution of internal forces. For failures observed between 2 minutes and 1 hour, the limited 
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development of linear and nonlinear creep strains in concrete does not allow for significant stress 
redistributions and the reinforcement does not yield at peak load (refer to red and blue curves in 
Figures 3.12d-e). For failures occurring after more than 2 hours, the reinforcement yields before 
the peak load is reached (refer to green and magenta curves in Figures 3.12d-e). It is important 
to note that cold-worked steel might show some additional hardening that is not considered in 
Figures 3.12d-e. 

If the load rate is kept constant, once the reinforcement yields and does not carry additional 
force, concrete is subjected to a higher stress rate and develops additional non-linear creep strain. 
This transition is more visible in members with higher reinforcement ratio as it can be observed 
in Figures 3.12d-e. Shrinkage also influences the response of the reinforcement which is 
compressed before the application of the load (refer to Figures 3.12d-e where the force carried 
by the reinforcement is higher than zero at Δt / Δtfailure = 0; it is assumed that the concrete tensile 
strength is sufficient to prevent shrinkage cracks). 

 

Figure 3.10: Comparison of the failure criterion (εcc,in,av) to experimental results (εcc,in) for 
plain concrete specimens 
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Figure 3.11: Comparison of the proposed model (dashed lines) and experimental results 

(continous lines) in terms of stress-strain response: (a) PC; (b) ρ = 0.9%; 
(c) ρ = 2.4%; (d) ρ = 0.5% and ρ = 4.0% 

 
Figure 3.12: (a-c) Strain development in time with predicted failure: (a) plain concrete; 

(b) ρ = 0.9%; (c) ρ = 2.4%; (d-e) Distribution of internal forces using the 
above described model: (d) ρ = 0.9%; (e) ρ = 2.4% 
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3.5 Parametric analysis and practical implications 

After validation of the proposed approach, the model presented in Section 3.3 is used to 
investigate the response of some selected cases and their practical implications. Other than the 
longitudinal reinforcement ratio (varied between 0.5 and 4%, as for the presented tests) and the 
loading rate (failure occurring between 2 minutes and 1.5 years), the influence of the concrete 
age is analysed (28, 91 and 365 days) along with the early-age evolution of the compressive 
strength (characterized by the dimensionless parameter s, refer to Eq. (3.1)). 

3.5.1 Influence of the loading rate on members loaded at different 
ages 

The concrete age is a key parameter influencing the long-term response of structures. Although 
the concrete strength increases with time due to continued cement hydration, the rate of such 
increase reduces for older concretes (i.e. a concrete loaded at early age can still significantly 
increase its strength while a fairly mature concrete shows very limited increase). As a result, for 
younger concretes, the strength reduction due to sustained loading is partly compensated while 
this does not hold for older concretes. Also, mature concretes show limited creep effects, having 
less influence on the global strain development. 

The strength variation with respect to the loading rate is presented in Figures 3.13d-f, where the 
concrete strength fc(t) is estimated using Eq. (3.1) and, in absolute terms, is higher for older 
concretes (Figure 3.3a). For fast loading conditions, leading to failure between 2 minutes and 
1.5 hours, a high reinforcement ratio is beneficial since its enhanced activation compensates for 
the decrease of strength due to sustained loading (green and magenta curves in Figures 3.13d-f, 
regime A). For failures occurring between 2 hours and 1.5 years, the reinforcement yields before 
concrete fails and the decrease of strength due to sustained loading is no longer compensated by 
the activation of the reinforcement (green and magenta curves in Figures 3.13d-f, regime B). 

For younger concretes, the decrease of strength due to sustained loading is compensated by the 
continued cement hydration (Figures 3.13d, regime C). Since the rate of such increase reduces 
over time (as shown in Figure 3.3a), regime C does not develop in members loaded at older ages 
(Figure 3.13f). 

For unreinforced or lightly reinforced members, the main difference with respect to highly 
reinforced members occurs in regime A. Due to the lower amount of force carried by the 
reinforcement, the latter cannot compensate for the decrease of strength due to sustained loading 
(black and red curves in Figures 3.13d-f, regime A). 

Based on the model presented in Section 3.3, Figures 3.13a-c show an increase of deformation 
capacity with decreasing loading rate. Since shrinkage is considered with the strains calculated 
as in Eq. (3.12), the reinforcement yields at a lower value than the theoretical yielding strain. 
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This value depends of the reinforcement ratio. In fact, members with high reinforcement ratio 
show limited shrinkage deformation (magenta curve in Figures 3.13a-c) when compared to 
lightly reinforced members (red curve in Figures 3.13a-c). 

 
Figure 3.13: Influence of concrete age at loading; (a-c) strain development and 

(d-f) strength variation with respect to the 2 minutes test for: t0 = 28 days, 

t0 = 91 days and t0 = 365 days 

3.5.2 Influence of concrete and reinforcement properties 

This section investigates the short-term concrete strength (fc,28 measured at 28 days), its evolution 
in time characterized by the coefficient s in Eq. (3.1) and the yield strength of the reinforcement 
fy. Figure 3.14 and Figure 3.15 present the results of the analyses performed for concrete loaded 
at 28 and 365 days. For low concrete strength (green line in Figures 3.14a-b), the longitudinal 
reinforcement (note that ρ =  0.9% for all members) provides a higher contribution to the overall 
resistance and increases the significance of regime A with respect to members with higher 
concrete strength (black line in Figures 3.14a-b). Thus, elements with higher concrete strengths 
are observed to be more sensitive to time-dependent effects. 

Figures 3.14c-d show the influence of the cement hardening rate (considered as in Eq. (3.1) with 
the parameter s) on the variation of the members resistance. For younger concretes 
(Figure 3.14c), the difference is negligible for failures occurring in less than one week. For 
failures occurring after more than one week, members with low cement hardening rate can 
compensate partially or fully the decrease of concrete strength due to sustained loading (green 
and blue curve in Figure 3.14c). 
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Figure 3.14: Influence of material properties on global strength for concretes loaded at 

different ages (Ec=33.5GPa and ρ = 0.9%): (a-b) concrete strength; (c-

d) cement hardening; (e-f) reinforcement yielding 

Such compensation does not occur in members with high cement hardening rate (where the 
cement hardening occurs at early stage, refer to black and red curve in Figure 3.14c). For 
members loaded at older ages (Figure 3.14d), since cement hardening is almost completed for 
all the concretes considered, no difference is observed. Figures 3.14e-f show the influence of the 
reinforcement yield strength. For failures occurring after yielding of the reinforcement, high 
reinforcement grades can compensate more the concrete decrease of strength (green curve in 
Figures 3.14e-f) if compared to low reinforcement grades (black curve in Figures 3.14e-f). 

Figure 3.15 presents the results of the analyses in terms of deformation capacity. Concrete 
strength appears to have a significant influence as shown in Figures 3.15a-b. In fact, the total 
strain increases with increasing concrete strength (this result is a consequence of the failure 
criterion considered in the model, as described in Section 3.3). This finding needs however to 
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be further verified with additional experimental research. On the other hand, limited influence 
on the deformation capacity is shown by the cement hardening rate and the yield strength of the 
reinforcement (Figures 3.15c-f). 

 

Figure 3.15: Influence of material properties on deformation capacity for concretes 

loaded at different ages (Ec=33.5GPa and ρ=0.9%): (a-b) concrete 

strength; (c-d) cement hardening; (e-f) reinforcement yielding 

3.5.3 Practical implications 

Following the previous findings, several practical implications are highlighted: 

 The resistance and the deformation capacity of RC members is significantly influenced 
by several parameters as materials properties, age of concrete and the loading rate. 
Despite the reduction of concrete strength under sustained loading, it is shown that low 
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to an enhanced activation of the reinforcement. Structural concrete members loaded at 
early ages exhibit an enhanced performance due to the continuous cement hydration 
which leads to an increase of the concrete strength with time. 

 For members loaded at early age, the minimum resistance is found for failures occurring 
after some weeks of loading. However, for members loaded after several years, the 
minimum resistance is attained after years of sustained loading. 

 High-grade yield strength reinforcement is beneficial for the overall strength when 
sufficiently low loading rates are applied. This allows yielding of the reinforcement 
before failure occurs due to concrete crushing. 

 Finally, an enhanced deformation capacity due to non-linear creep can lead to potential 
redistribution of stresses at structural level (between members). 

3.6 Conclusions 

This manuscript presents the results of an investigation on the strength and deformation capacity 
of reinforced concrete members failing in centric compression under variable loading rates. 
Differently to previous researches, which focused on the response only of concrete, this 
investigation addresses the response of systems composed by concrete and longitudinal 
reinforcement considering the redistributions of internal forces due to nonlinear behaviour. The 
main conclusions are listed below: 

1. The long-term response of concrete (long loading time) is detrimental with respect to its 
strength, but enhances its deformation capacity. This allows redistributing stresses and 
can allow, provided that sufficient reinforcement is available, increasing the 
load-carrying capacity of a structural compressed member; 

2. Columns with ordinary reinforcement centrically loaded under rapid loading conditions 
typically fail by concrete crushing prior to reinforcement yielding. However, when 
loading is applied slowly, higher levels of deformation allow increasing the 
reinforcement stresses up to yielding (typically occurring after one or two hours of 
loading); 

3. For very low loading rates, the reinforcement can yield, but the reduction of the concrete 
strength under sustained loading reduces the resistance (maximum strength typically 
obtained after one or two hours of loading); 

4. High reinforcement ratios and yield strengths are largely beneficial since the increase of 
deformation capacity allows yielding of the reinforcement, partly compensating for the 
loss of strength due to sustained loading; 



Influence of sustained loading on reinforced concrete members 

72 

5. Unlike concrete types with fast cement hardening, where the gain of strength occurs 
mostly in the first months, concretes with slower cement hardening have a better 
response under sustained loading (independently of the reinforcement ratio) 
compensating the loss of concrete strength under sustained loading even after years; 

6. Consistent modelling and design for these phenomena are performed on the basis of a 
rheological model for concrete accounting for its linear and nonlinear creep strains. Such 
approach allows considering suitably the implications on the strength and deformation 
capacity as well as internal force redistributions; 

  



Notation 

73 

Notation 

Acronyms: 

RC:  Reinforced Concrete 

PC:  Plain Concrete 

FOM:  Fibre-Optics Measurements 

DIC:  Digital Image Correlation 

RH:  Relative Humidity 

LVDT:  Linear Variable Differential Transformer 

Variables: 

A  specimen gross cross-sectional area 

As  reinforcement cross-sectional area 

ρ  longitudinal reinforcement ratio 

Ec  concrete modulus of elasticity 

Es  steel modulus of elasticity 

fc  concrete uniaxial compressive strength 

fyk  steel characteristic yield strength 

fy,tens  steel yield tensile strength 

fy,comp  steel yield compressive strength 

ft,tens  steel ultimate tensile strength 

εlim,tens  steel maximum tensile strain 

Ø  diameter 

Nmax  maximum compression force 

   stress rate 

s  cement hardening rate parameter 

t  generic time 

t0  time of load application 

ts  concrete age when drying starts 

∆t  test duration 
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εud  reinforcing steel tension strain 

εcu  concrete compression strain limit 

εc2  concrete pure compression strain limit 

εc  concrete strain 

εs  reinforcement strain 

εc,0  instantaneous pre-peak strain 

εc,trans  concrete transversal strain 

εc,long  concrete longitudinal strain 

ν  Poisson’s ratio 

η  affinity coefficient 

γ  micro-crack coalescence parameter 

σc  concrete stress 

σs  steel stress 

εcc,in  inelastic strain 

εcc,in,av  inelastic strain capacity 

εc,0  concrete instantaneous strain 

εcs  concrete shrinkage strain 

εcc  concrete creep strain 

εcc,1  concrete primary creep strain 

εcc,2  concrete secondary creep strain 

εcc,3  concrete tertiary creep strain 

φlin  linear creep coefficient 

  



 

Chapter 4 

Recalibration of partial safety factors 
for permanent loads in road bridges 
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This chapter is the pre-print version of the following paper to be submitted: 

Malja X., Nussbaumer A., Muttoni A., Recalibration of partial safety factors for permanent 
loads in road bridges. 

The work is performed by Xhemsi Malja under the supervision of Prof. Aurelio Muttoni and 
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 implementation of an algorithm to perform parametric FE simulations, 

 implementation of an algorithm to perform parametric reliability analyses, 

 interpretation of the results, 
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 writing of the manuscript. 
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Abstract 

For the dimensioning of structures, most current codes of practice adopt a semi-probabilistic 
design approach. Accordingly, structural safety is ensured by performing limit state verifications 
by means of design values determined with adequately calibrated Partial Safety Factors (PSFs). 
The calibration of the PSFs is generally performed to provide an acceptable level of safety for a 
wide range of design scenarios and each PSF covers well-defined uncertainties related to the 
variability of one or more basic random variables, such as actions, materials, geometry, and 
models. Besides clarifying the uncertainties covered by each partial safety factor, this work aims 
at updating the partial safety factor for permanent actions (structural and non-structural 
self-weight) in road bridges. To that aim, statistical distributions are updated using data collected 
on the Swiss road network and provided by institutions and private companies. Based on the 
updated statistics, parametric analyses are performed to investigate the sensitivity of the partial 
factors and to estimate their value. Accordingly, two partial factors are proposed for structural 
and non-structural self-weight, respectively. Finally, by means of case studies, it is demonstrated 
that a sufficient level of safety is ensured, both in absolute terms and when compared to current 
set of PSFs. 

Keywords: structural reliability, reinforced concrete bridges, permanent load, pavement 
thickness variability, materials strength variability, traffic variability, failure modes; 

4.1 Introduction 

In this Chapter, the partial safety factors (PSFs) for permanent actions, used for designing new 
structures and for the assessment of existing ones, are updated for the case of reinforced concrete 
(RC) road bridges based on available statistical distributions of geometrical, material, traffic and 
model uncertainties. In road bridges, permanent loads result from the self-weight of structural 
and non-structural elements, which include the pavement, safety barriers and if present, 
non-structural curbs. In the latest available draft of FprEN1990:2022 [Eur22], the recommended 
partial safety factor for all permanent loads, denoted with γGi, is equal to 1.35 and covers the 
uncertainty in the representative value of permanent loads and the model uncertainty in action 
effects calculation. For the model uncertainty in action effects calculation, the JCSS Probabilistic 
Model Code [JCS01] recommends a Log-Normal distribution with mean 1.0 and CoV between 
0.05 and 0.20, but no clear background is provided. These values are confirmed in Chapter 2 of 
this thesis (additional references on this topic can be found in [Yu21] and in Chapter 2). As 
mentioned above, the recommended values of PSFs for structural and non-structural self-weight 
FprEN1990:2022 [Eur22] are the same. However, the latest available draft of 
prEN1991-1-1:2023 [Eur23] recommends to assume a deviation of the pavement thickness of 
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[-20%, +20%] or [-20%, +40%] depending on whether the pavement has already been replaced 
or not. In order to clarify whether these values are reasonable, data collected from measurements 
on various bridges in Switzerland will be analysed and it will be assessed whether there is a need 
to decouple the two partial safety factors for structural and non-structural self-weight, 
respectively. Traffic variability will also be considered using Weight In Motion (WIM) data 
collected in several locations in Switzerland. To estimate the partial safety factors, parametric 
reliability analyses, covering a wide range of scenarios, are performed based on the updated 
statistical distributions using the First Order Reliability Method (FORM). Finally, to investigate 
if a sufficient level of safety is achieved with the proposed partial safety factors, reliability 
analyses are performed using more refined methods on selected case studies. 

4.2 Statistical uncertainties influencing structural 
self-weight 

The self-weight of structural members in concrete bridges is affected by three main variables: 
(1) the specific weight of concrete, (2) the dimensions of concrete and (3) the reinforcement 
content (typically expressed in kg/m3 and calculated on the basis of nominal dimensions). The 
bar diameter, the geometry and the specific weight of the reinforcement show also some 
variability affecting the self-weight, but these are negligible since the production is highly 
optimized and standardized. The same considerations apply also to composite bridges, where 
the largest source of variability for the structural self-weight is generally related to the reinforced 
concrete deck. Figure 4.1a shows the probability-plot of the specific weight of concrete obtained 
from around 3’500 samples (150×150×150 mm) collected in Western Switzerland between 2014 
and 2021 (courtesy by TFB SA, only samples with an air content smaller than 2.5% are included 
in the analysis). The resulting CoV, neglecting the lowest part of the distribution, is 1.4%, 
significantly smaller than the value recommended by the JCSS report of 4% [JCS01] (which is 
based on the publication 115 of the CIB report [CIB89]). It is also much smaller than the value 
proposed by Ellingwood of 10% [Ell80], however, this value also included the geometric and 
reinforcement content variability, therefore, not directly comparable. It must be noted that the 
values shown in Figure 4.1a refer to the production of concrete in a limited area, thus, different 
statistical values could be found in similar studies in different locations where several aggregate 
types and petrography’s can be found. 
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Figure 4.1: (a) Normal probability-plot of concrete specific weight; (b) equivalent 

bridge deck thickness as a function of the span (values from Menn, 1982 

[Men82] in blue circles and some investigated bridges of Table 4.1 in red 

squares); (c) CoV of the sectional area (Ac) variability assuming that 

tolerances correspond to standard deviations [ISO13] (dashed red) and 

statistical distributions according to the JCSS report [JCS01] (contionuous 

red); ratio of permanent load over traffic load (G/Q) for varying span (in 

blue). 

Figure 4.1c shows the coefficient of variation of the sectional area for increasing span of the 
bridge assuming that tolerances according to [ISO13] correspond to standard deviations (dashed 
red line) and using the statistical distributions recommended by the JCSS report [JCS01] 
(continuous red line). It can be observed that the importance of the geometric variability 
decreases with increasing cross-sectional dimensions. In fact, tolerances do not increase linearly 
and are limited for elements larger than a fixed threshold (e.g. 30 mm for cross-sectional 
dimensions larger than 2’500 mm [ISO13]). Thus, the geometrical variability has a relatively 
small influence on bridges with spans larger than 30 m. 

Although geometric variability has a stronger influence on the structural self-weight of short 
span bridges, in these cases permanent loads are generally less significant compared to traffic 
loads. This is illustrated in Figure 4.1c (continuous blue curve), where the ratio between 
permanent load (obtained from the empirical relationship plotted in Figure 4.1b) and 
characteristic traffic loads (according to SIA 261:2020 [SIA20]) is presented as a function of the 
span length L. One can observe that the ratio G / Q varies between 0.5 for bridges with a short 
span (~10 m) and 4 for bridges with longer spans (~50-100 m). 
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Figure 4.2: Longitudinal reinforcement ratio (red) and reinforcement content 
expressed in kg/m3 (black): (a) bridge Haute-Rive built in 1972 and 
(b) bridge Brocard built in 1964, see Table 4.1 

Figures 4.2a,b show the reinforcement content in two reinforced concrete bridges calculated 
using the original drawings considering both prestressing and passive reinforcement. While the 
longitudinal reinforcement ratio (red line) is almost constant along the longitudinal axis of the 
bridge, the reinforcement content expressed in kg/m3 increases close to the supports due to 
increased shear reinforcement and the more heavily reinforced transversal elements. However, 
close to the supports, as the load is directly transmitted to the latter, the reinforcement weight is 
less significant for the action effects. It must be noted that the reinforcement content in a bridge 
depends on several factors, such as the amount of prestressing, the structural system and the year 
of construction (generally, the reinforcement ratio of new structures being larger compared to 
older structures due to current more stringent requirements in terms of durability and 
serviceability as well as a reduced amount of prestressing). 

4.3 Statistical uncertainties influencing non-structural 
self-weight 

In addition to the structural self-weight, other non-structural loads contribute to the permanent 
load in road bridges. These include pavement, safety barriers and, if present, non-structural 
curbs. The same considerations made in the previous section for reinforced concrete elements 
apply also to reinforced concrete curbs while lane separation elements and safety barriers should 
be considered according to the corresponding specifications. In this work, the self-weight 
variability of the pavement is investigated whereas the variability of the other permanent actions 
is neglected. In particular, since the variability of the pavement thickness has a larger impact 
than the specific weight variability, the focus will be put on the former while the pavement 
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specific weight variability is assumed based on available literature [Hua89, Lyt93, Dal15]. 
Specifically, in this work, a mean value of 24.0 kN/m3 and a CoV = 4% is assumed, as found by 
Hugenschmidt on bridges that were demolished in Switzerland [Hug06]. 

Figure 4.3a shows some typical cases of pavement thickness variability in the transversal and 
longitudinal direction. In particular, in the transversal direction, thickness variations occur 
mostly due to pre-existing deformations of the deck before surfacing which are generally caused 
by self-weight, transversal prestressing or imperfections during construction. In the longitudinal 
direction, two main scenarios can occur as illustrated qualitatively in Figure 4.3a: if the 
precamber and the deformations caused by prestressing exceed those caused by self-weight, the 
pavement will be typically thicker close to the supports while in case of non-prestressed bridges 
or if precamber and prestressing are not sufficient to compensate deformations caused by 
self-weight, the pavement is typically thicker at midspan. In addition, the imperfections of the 
concrete surface just after casting add an aleatory component to the variability of the pavement 
thickness. An additional source of uncertainty is related to the resurfacing of the pavement with 
partial replacement and correction of the deflections/settlements after some decades. The effects 
described above can be more or less significant and are generally combined in actual bridges. 

Figure 4.3c shows the pavement thickness for one of the analysed bridges as part of this work 
using the Ground-Penetrating-Radar (GPR) technique. GPR measurements are performed by 
emitting electromagnetic waves which are reflected differently by the materials composing the 
different layers (i.e. bituminous pavement, concrete substrate). The propagation time of the 
electromagnetic waves is then recorded and converted to a dimension by determining the 
propagation speed of the wave in each layer. In all the analysed bridges, including this example, 
the propagation speed in the pavement is calibrated by means of control cores extracted at 
various locations along the bridge (red dots in Figure 4.3c). For details about GPR measurements 
and calibration see [Hug06, Hug10, Kal13]. The plot in Figure 4.3c shows that, in this case, in 
the transversal direction, the pavement is up to 50% thicker close to the edges. Also, the mean 
value of the thickness is significantly larger than the specified nominal value defined in the 
original drawings, suggesting that the pavement thickness was probably increased during 
resurfacing. Figure 4.3b shows the ratio between the mean of the measured thickness and the 
specified nominal value for 7 bridges build between 1963 and 1994 which were investigated as 
part of this research (raw data provided by Bridgology SA), see Table 4.1 for details. 
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Table 4.1: Details of the bridges where pavement thickness measurements are 

performed, raw data provided by Bridgology SA 

Bridge Location 
Constr. 

year 
Typology 

Span 
[m] 

Nominal 
thickness [m] 

μ* CoV [%] 

Viaduc du 
Brocard 

A21 Martigny - G. St. 
Bernard (km. 60.060) 

1964 Box-girder 19.6-25.0 0.050 1.3-1.7 17.0-20.0 

Pont de 
Rive-Haute 

A21 Martigny - G. St. 
Bernard (km. 250.875) 

1972 
H-Core 

Slab 
16.0-20.0 0.050 2.3-2.4 16.3-19.3 

Jonction de 
Vennes 

N9 Lausanne 
(km. 7.039) 

1963 
H-Core 

Slab 
39.0 0.070 2.0-2.2 19.0-21.6 

P. Supérieur 
Le Daillet 

N9 Sion-Sierre 
(km. 105.161) 

1992 
Multi-
beam 

33.5 0.060 1.4 9.4-10.8 

P. Supérieur 
Sierre-Ouest 

N9 Sion-Sierre 
(km. 113.392) 

1992 Slab 36.0 0.075 1.3-1.4 11.1-13.9 

Viaduc des Îles 
Falcon-Nord 

N9 Sion-Sierre 
(km. 116.104) 

1994 Box-girder 27.4-73.0 0.075 1.1-1.4 10.8-13.8 

Viaduc des Îles 
Falcon - Sud 

N9 Sion-Sierre 
(km. 116.104) 

1994 Box-girder 27.4-73.1 0.075 1.1-1.3 8.4-9.9 

*The bias is defined as the mean of the measured thickness in each span over the nominal thickness: 
μ = tpav,mean / tpav,nomina 

It can be observed that the bias factor μ, defined as the ratio between the measurements mean 
and the nominal thickness for each span, is generally between 1.1 and 1.7, which justifies the 
increase of the nominal value recommended by [Eur23] of 20 or 40%. The mean measured 
thickness is never found to be smaller than the nominal value. Also, it can be observed that for 
smaller spans, the bias ratio increases. This could be related to the fact that for short span bridges, 
the pavement thickness can depend mainly from requirement related to the level of the 
approaching road. 

Considering the equivalent thickness of the concrete section, heq, as shown in Figure 4.1b and a 
standard pavement thickness of 100 mm, the pavement weight is relatively more significant for 
smaller spans than for larger ones, accounting up to 25% of the total permanent load for spans 
between 8 and 12 m. Since the bias is also larger in those cases, potentially unsafe scenarios are 
more likely to occur. Considering all the measurements within each span, the CoV of the 
pavement thickness ranges between 8.4 and 21.6%, see Table 4.1. Despite a slightly larger upper 
limit, these values are in line with previous researches which presented a CoV between 8 and 
15% [Lyt93, Dal15]. 
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Figure 4.3: Typical pavement thickness variability in road bridges (a) qualitative 

transversal and longitudinal distributions; (b) ratio between the actual 

mean and the nominal pavement thickness as a function of the span for the 

investigated bridges; (c) greyscale map of the measured pavement 

thickness of the Rive-Haute bridge as an example, see Table 4.1 (raw data 

provided by Bridgology SA and analysed as part of this research) 

4.4 Updating of other statistical uncertainties 

In addition to the variability of the permanent loads in road bridges described above, an accurate 
estimation of the variability on the resistance side and of the traffic loads is necessary to calibrate 
the PSFs. In fact, all variabilities contribute to the limit function, which separates the safe 
structural domain from the unsafe one. In the First Order Reliability Method (FORM) analysis, 
the relative contribution of the single variabilities is represented by the sensitivity factors, α, 
which is the partial derivative of the limit state function with respect to the investigated variable. 
Per definition, the sum of the squares of all sensitivity factors corresponds to 1.0. Thus, if the 
weight of one variable increases, the weight of all the others must decrease (see [Sch17] for 
further details on the meaning of the sensitivity factors and FORM analysis). Therefore, to 
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accurately estimate the sensitivity factor of the permanent loads, in the following sections, the 
variability of the materials parameters, traffic loads and resistance models will be investigated. 

4.4.1 Materials strength 

Regarding the reinforcement yield strength, fy, assumptions made in Annex A of 
prEN1992-1-1:2023 [Eur23] are assumed for new structures. For existing structures, these 
assumptions are verified on the basis of an existing database referring to steel produced in 
Switzerland [Ken15]. The data of more than 2’500 tests conducted between 1960 and 1994 for 
steel classes IIIa and IIIb according to SIA 162 [SIA68] (specified 5% characteristic value 
fyk ≈ 451MPa) are considered in this evaluation. Figures 4.4a and 4.4b show the mean and the 
CoV of the reinforcement yield strength, fy, as a function of the year of production and of the 
bar diameter. 

 

Figure 4.4: Mean and coefficient of variation of steel yield strength, respectively top 

and bottom: (a) as a function of time; (b) as a function of the bar diameter; 

(c) log-normal probability plot of two common steel products available in 

Switzerland 

The mean value increased with time, associated also with a decrease of the CoV. This was most 
likely due to the optimization of the industrial production processes over time. For bars with 
larger diameters, the yield strength shows a decreasing trend. In some cases, when products are 
categorized by steel type (based on the producer), the distribution deviates from the typical 
Log-Normal (LN) distribution, see difference between Roll-S and Box-Ultra in Figure 4.4c. This 
was perhaps the result of two different products grouped under the same designation. In fact, the 
two distributions can clearly be identified and show similar CoV. Overall, the CoV resulting 
from the analysed data for existing structures is in line with Annex A of 
prEN1992-1-1:2023 [Eur23] where a CoV = 4.5% has been assumed for new structures. These 
values are also confirmed by other publications [Now03, Bee16]. Previous researches [Mir79, 
Ell80] report larger CoV, up to 10-12%, however, they are based on a more limited amount of 
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data and different steel grades. With respect to the variability of the actual cross-section of the 
reinforcement bars, it is implicitly accounted for in the evaluation of the yield strength since the 
latter is calculated on the basis of the nominal cross-sectional area. 

Figure 4.5a shows the log-normal probability-plot of the yield strength (proof-stress at 0.1% 
irreversible strain) and the tensile strength of prestressing strands, respectively. The probability-
plot of the  Young’s modulus is presented in Figure 4.5b. Data refer to tests carried out in 
Switzerland in the period between 1968 and 1979 (see [Kre79]). In particular, Figure 4.5a shows 
that the CoV of the yield strength of prestressing strands is similar to that of passive 
reinforcement, confirming the assumptions made in Annex A of prEN1992-1-1:2023 [Eur23], 
namely CoV = 4.5% and is consistent with value reported by other researches [Mir80, Ell80, 
Bas98, Now03, Fos16]. In addition, the mean value of the Young's modulus is equal to 195 GPa 
with a CoV of 2.8%. This value is also consistent with results published by other researchers 
[Mir80]. 

Table 4.2: Distribution parameters of the concrete compressive strength variability 
at 28 days, data provided by TFB SA for samples with void content lower 
than 2.5%, collected in Western Switzerland between 2014 and 2021. The 
columns on the right refer to the concrete classification on the basis of the 
exposure (defined as concrete type according to the Swiss national annex 

to EN 206 [SIA21]). 

Strength 
Class 

Number 
of tests  

Mean 
fc,cube,28 
[MPa] 

CoV 
[%] 

P(0.05) 
[MPa] 

Type 
Number 
of tests 

Exposure Class 
Mean 

fc,cube,28 
[MPa] 

CoV 
[%] 

P(0.05) 
[MPa] 

C20/25 86 35.5 14.1 27.9 A 86 XC1, XC2 35.5 14.1 27.9 

C25/30 737 43.8 18.9 31.6 

A 227 XC1, XC2 40.0 17.2 29.8 

B 347 XC3 41.3 14.4 32.3 

D 120 
XC4, XD1, XF2, 

XF3, XD2a 
53.2 10.4 44.6 

P2 43 ND 50.8 9.9 43 

C30/37 2470 51.7 14.2 40.6 

A 75 XC1/XC2 44.8 13.6 35.8 

B 121 XC3 56.9 9.2 48.7 

C 1583 XC4/XF1 51.1 11.8 41.8 

F 173 
XC4, XD3, XF2, 

XD2b, XAA 
52.1 15.2 40.2 

G 438 
XC4, XD3, XF4, 

XD2b 
56.1 15.9 42.7 

P2 80 ND 62.5 13.3 49.8 

C35/45 167 59.2 10.9 49.2 

C 83 XC4, XF1 56.7 8.7 48.9 

F 40 
XC4, XD3, XF2, 

XD2b, XAA 
63.5 11.3 52.4 

G 44 
XC4, XD3, XF4, 

XD2b 
62.6 8.0 54.7 
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Figure 4.5c shows the probability-plot of the concrete compressive strength at 28 days (fc,cube,28) 
of various concrete strength classes (C20/25, C25/30, C30/37, C35/45). Distributions are 
obtained from ~3’500 compression tests performed on concrete cubes with an edge size of 
150 mm in Western Switzerland between 2014 and 2021. Tests include concretes used in 
residential buildings and engineering works with a void content lower than 2.5% and various 
exposure classes, see Table 4.2 for details. 

Data follows a log-normal distribution (see Figure 4.5) which is in line with recommendations 
of [JCS01] and [Eur22]. As it can be observed, the actual characteristic value of each concrete 
class (defined as the 5th percentile of the distribution) is generally slightly higher than the 
specified value (difference from 1.6 to 4.2 MPa). Also, the difference between mean value and 
5th percentile varies between 7.6 and 12.2 MPa, which is more or less in line with the typical 
assumption (between 8 and 10 MPa, see [Eur23]). Besides the strength class, on the right-hand 
side of Table 4.2, concrete samples are classified based also on their exposure class, see [SIA21]. 
Table 4.2 shows that a larger mean compressive strength is generally obtained for concretes with 
more stringent exposure requirements (e.g. for a C30/37 strength class, fc,cube,28 of Type G 
concrete typically used in engineering works is 56.1 MPa while that of Type A typically used in 
buildings is 44.8 MPa). This over-strength is related to the minimal cement content requirements 
and to the fact that exposure requirements are often governing in the mix design. This justifies 
also the large mean compressive strength of concretes used for underwater piles and slurry walls 
(Type P2). Overall, the resulting CoV for the concrete compressive strength is located in the 
upper range of results published in the literature, see Annex A of prEN1992-1-1:2023 [Eur23] 
and Torrenti & Dehn [Tor19]. The empirical rule: fcm - fck = 8 MPa, provided in 
prEN1992-1-1:2023 [Eur23] is generally confirmed, although, slightly higher values are 
obtained. However, it must be noted that these values are specific to the current Swiss concrete 
production situation which will probably evolve due to environmental requirements. 

 

Figure 4.5: Log-normal probability plot of: (a) yield strength (red) and tensile strength 
(blue) of prestressing strands; (b) elastic modulus of prestressing strands; 
(c) concrete compressive strength at 28 days (fc,cube,28) for various concrete 
strength classes (all exposure classes included in the analysis), see 
Table 4.2. 
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4.4.2 Traffic loads 

The aim of this investigation is not to reproduce a realistic scenario from the structural point of 
view but to quantify the variability of the traffic loads without considering the uncertainties 
related to the calculation of action effects and the transversal load distribution. To this purpose, 
a simply supported bridge with a width of 3 m (single lane) and span varying between 6 and 
24 m is used, as shown in Figure 4.6a. 

Traffic load is simulated using Weight In Motion (WIM) measurements which were performed 
during more than 20 years at 14 stations located in Switzerland. After being classified 
considering the vehicle type, the measurements are combined and directly applied on the 
structure (this simulation procedure is denoted as “direct WIM” in the following, for details 
regarding WIM data classification and generation of direct-WIM loads, see [Sja20]). Action 
effects calculated from direct WIM simulations are then compared with those obtained using a 
representative load model, assumed according to the SIA 261:2020 [SIA20], which is derived 
from EN1991-2:2003 [Eur03]. As already mentioned, the aim of this investigation is to quantify 
the variability of the traffic load in terms of CoV of the action effects. Since the investigated 
bridge is not representative of a real case (single lane), the bias of the action effects (EWIM /EREP) 
is not significant for this investigation. For this reason, the adjustment factors αact,Q,i and α act,q,i 
are set equal to 1.0 (not in accordance with SIA 261:2020 [SIA20]). 

Direct WIM simulations are performed using both the weekly maxima traffic loads distribution, 
obtained from WIM measurements, and the 50-year maxima traffic loads distribution, derived 
from the weekly maxima as explained further on. To determine the 50-year maxima distribution, 
the weekly maxima events are considered as Independent-Identically-Distributed (IID) 
variables. Based on this assumption, if FX(x) is the common Cumulative Distribution Function 
(CDF) of the weekly maxima traffic load, and FN(y) is the CDF of the 50-year maxima traffic 
loads, with Y = max{X1, X2,…, XN}, FN(y) is obtained from Eq. (4.1), with N equal to the number 
of weeks in 50 years (~2’607). Thus, the CDF of Y, the 50-year maxima distribution is obtained 
by taking the Nth power of the CDF of X, the weekly maxima distribution. 

    1 2( ) ( ) ( ) ( ) ( )
N

N N XF y P X y X y X y F y         (4.1) 

If N is a large number, the 50-year maxima distribution is either a Gumbel Extreme Values 
(GEV) Type-I or a Type-II depending on the tail approximation of the IID variable. In particular, 
if the tail of the Probability Density Function (PDF) of the weekly maxima distribution follows 
a Log-Normal (LN) or a GEV Type-I distribution, the 50-year maxima distribution will be a 
GEV Type- I (for additional details about the theoretical derivation and sample maxima 
distributions, see [Ric06]). 
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Figure 4.6: (a) Investigated structural system and representative load model according 
to [SIA20] with the adjustment factors αact,Q,i = α act,q,i = 1.0; (b) typical 
histogram of the bending moment at midspan obtained from the weekly 
maxima direct WIM simulation (EWIM) and tail fitting using a LN (red line) 
and a GEV Type-I distribution (blue line) with tail fitting details; (c) ratio 
between the bending moment at midspan obtained from direct WIM 
simulation with weekly maxima distribution and the bending moment at 
midspan obtained with the representative load model (MWIM/MRep), tail 
fitted using a LN distribution for a span of 10 m and 20 m; (d) same data 
presented in (c) but tail fitted using a GEV Type-I distribution; (e) 50-year 
maxima distributions resulting from the weekly maxima distributions 
presented in (c) and (d) 

Figure 4.6b shows a typical histogram obtained for the bending moment at midspan using the 
weekly maxima traffic distribution and the tail fitting using both a LN and a GEV Type-I 
distribution presented respectively in red and blue. As presented in the tail fitting details of 
Figure 4.6b, with example 1 and 2 corresponding respectively to a span of 6 and 24 m, the most 
suitable distribution type depends on the specific case. Since the accuracy in approximating the 
tail fitting of the weekly maxima distribution influences significantly the distribution of the 
50-year maxima and it is not possible to know a priori the best tail fitting distribution, both, a 
LN and a GEV Type-I distributions are used in the following to fit the tail of the weekly maxima 
distribution for each span L. Figure 4.6c shows the probability-plot of the ratio between the 
bending moment at midspan obtained using the traffic weekly maxima distribution (MWIM) and 
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the bending moment obtained with the representative load model (MREP) fitted using a LN 
distribution for a span L = 10 m and L = 20 m. The same cases are presented also in Figures 4.6d 
but using a GEV Type-I distribution. In Figures 4.6c and 4.6d, the fitting is performed 
considering only points on the upper part of the distribution (P > 0.5). Figure 4.6e shows the 
resulting 50-year maxima distribution using the weekly distributions of Figure 4.6c and 4.6d. 
Since the PDF tail of the GEV Type-I distribution shows a slower decrease than the LN 
distribution, it leads to larger bias and CoV. Based on the analysed spans, the CoV of the traffic 
load effects is found between 10% and 18% for the weekly maxima traffic load distribution and 
between 6% and 10% for the 50-year maxima traffic load distribution. 

4.4.3 Variability of resistance calculation 

The variability of the sectional resistance calculation is quantified by means of Monte-Carlo 
simulations performed considering the variability of the materials strength, the calculation 
models and the geometry. More specifically, this work focuses in quantifying the variability of 
the resisting bending moment calculation and the variability of the shear resistance calculation 
for members with shear reinforcement. To this purpose, the models provided in Section 8 of 
Fpr EN1992-1-1:2023 [Eur23] are implemented (provisions 8.1.1 and 8.1.2(1) for bending and 
8.2.3(1-3,5,7,8) for shear). In addition, to investigate the influence of the cross-sectional 
dimensions (see Figure 4.1c), a concrete section with constant width and depth, h, varying 
between 0.35 m and 1.4 m is investigated. 

Table 4.3: Statistical distributions assumed for performing Monte-Carlo analyses to 

quantify the variability of shear resistance for members with shear 

reinforcement and bending moment resistance for RC members 

Random variable CoV – V [%] Bias - μ Reference 

fc 10.0 1.18 Annex A of prEN1992 1 1:2023 [Eur23] 

ηis 12.0 0.95 Annex A of prEN1992 1 1:2023 [Eur23] 

fy 4.50 1.08 
Annex A of prEN1992 1 1:2023 [Eur23] 

and Section 4.4.1 

d 5ꞏ(200/d)2/3 1 – 0.05ꞏ(200/d)2/3 Annex A of prEN1992 1 1:2023 [Eur23] 

Ac 2.0 – 6.0 1.00 JCSS report, 2001 [JCS01] 

θR,Flex,steel 4.50 1.09 Annex A of prEN1992 1 1:2023 [Eur23] 

θR,Shear 19.4 1.11 Pejatovic et al. [Pej22] 

The variability of the materials strength is assumed according to Annex A of 
prEN1992-1-1:2023 [Eur23] while the geometric variability is assumed according to [JCS01], 



Recalibration of partial safety factors for permanent loads in road bridges 

90 

except for the effective depth which is assumed according to Annex A, see Table 4.3. With 
regard to the model uncertainty for the calculation of the resisting bending moment, with failure 
occurring on the steel side, the value proposed in Annex A is assumed while the model 
uncertainty for the calculation of the shear resistance in members with shear reinforcement is 
assumed according to [Pej22]. Table 4.3 gives an overview of the statistical parameters used to 
perform the Monte-Carlo simulations. For details on the implemented models, see 
Fpr EN1992-1-1:2023 [Eur23]. 

Figures 4.7a and 4.7b show the resulting CoV (VR) and the bias factor (μ) for the calculated 
resistances as a function of the section depth h. For each section depth, 10’000 simulations are 
performed for both shear resistance and bending moment resistance to determine the coefficient 
of variation and the bias factor. Figure 4.7c shows the probability plot for the case of h = 0.35 m. 

Figure 4.7a shows that for the calculation of the bending moment, the CoV decreases with 
increasing depth, h. This is due to the fact that the relative variability of the effective depth (d) 
is less significant for larger members. In fact, according to the formula in Table 4.3, an effective 
depth d = 1.2 m leads to μ =0.985 and V = 1.51% whereas for d = 0.2 m, μ =0.95 and V = 5%. 
On the other hand, for the calculation of the shear resistance, the variability of the effective depth 
is less significant, leading to a less pronounced reduction of CoV for larger members. 
Figure 4.7b shows that for the shear resistance calculation, the bias varies between 1.20 and 1.25 
while for the calculation of the bending moment, the bias varies between 1.14 and 1.16. 

It can be noted that, regardless of the beam depth, the coefficient of variation VR is much larger 
for the calculation of the shear resistance than for the calculation of the resisting bending 
moment. This is mainly due to the large model uncertainty for shear resistance calculation, see 
Table 4.3. Figure 4.7c shows also that a Log-Normal (LN) distribution is a good fit for the 
resistance variability both for the calculation of shear and bending moment resistance, in line 
with the recommendations of [JCS01] and Annex A of prEN1992-1-1:2023 [Eur23]. 

 

Figure 4.7: Variability of bending moment and shear resistance calculation for a beam 

with fixed width and varying depth between 0.35 m and 1.4 m: 

(a) coefficient of variation VR and (b) bias factor μ; (c) LN probability-plot 

of sectional resistance calculation for a beam with h = 0.35 m 

0 0.4 0.8 1.2 1.6

(a)

h [m]

0 0.4 0.8

8.2%

21.8%
20.5%

6.7%

1.2 1.6

V
R
 [

%
]

μ

0

5

10

15

1.2

1.3

1.5

1.1

1.0

20

25

30

Q
u
an

ti
le

-6

-4

-2

0

2

4

6

h [m]

(b)

1.4

μ 

(c)

C
oV

 =
 2

1.
8%

C
o
V

 =
 8

.2
%

0.25 0.5 1.0 2.0 3.0

h

ε
σ

s

σ
s

′

M

N

V

ν·f
c

θ z

σ
c

h = 0.35m

10’000 

simulations



Calibration of γG1 and γG2 using FORM 

91 

4.5 Calibration of γG1 and γG2 using FORM 

As already discussed in the previous sections, the variability of the structural and non-structural 
self-weight is significantly different in road bridges. Therefore, the partial safety factor for 
permanent loads, γGi, is treated separately for structural and non-structural self-weight, denoted 
with γG1 and γG2, respectively. To estimate their values, parametric FORM analyses are 
performed covering a wide range of scenarios. The statistical distribution parameters of action 
effects (E), sectional resistance (R) and model uncertainty in action effects calculation (θE) are 
presented in Table 4.4. 

The statistical distributions of the actions effects due to the structural and non-structural 
self-weight, respectively EG1 and EG2, are obtained on the basis of the considerations made in 
the previous sections which are resumed in Tables 4.5 and 4.6. To account for the large 
uncertainty related to the traffic loads, a wide range of CoVs is considered on the action effects 
due to the latter (VEQ). Also, since the variability of the sectional resistance calculation varies 
largely depending on the failure mode, the latter is investigated considering a wide range of the 
CoV (VR). Finally, the statistical distribution parameters of the uncertainty in action effects 
calculation are assumed according to Chapter 2 of this thesis. In particular, for a Linear Elastic 
model with uncracked sectional stiffness, a CoV of 6.5% is assumed as shown in Table 4.4. 

Regarding the representative values of the actions, the self-weight for reinforced concrete 
members is calculated using the nominal dimensions and the specific weight equal to 25 kN/m3 
[Eur23], including the reinforcement. The pavement load is calculated considering a 
representative thickness of the pavement of 100 mm (i.e., not accounting for the increase of 20-
40% recommended in [Eur23]) and the specific weight equal to 24 kN/m3 [Eur23]. Finally, the 
representative value of the traffic load (Q) is considered as a function of the permanent loads 
(G = G1+G2). Specifically, the ratio of the action effect due to permanent loads over the action 
effects due to traffic loads EG/EQ, is assumed equal to 4 and 0.5, which correspond respectively 
to a long and a short span bridge.  

1 2( , ) ( ) EG G Qg R E R E R E E E        (4.2)

)(
Gi Gi Gi Gi

V
tgt

exp       (4.3)

2 2 2 2

gi Egi E gi EG i G i G i
V VV

 
          (4.4)

The limit state function is formulated in the classical form as in Eq. (4.2) while γGi is calculated 
according to Eq. (4.3) with the sensitivity factors, α, obtained from the FORM analyses. Besides 
the uncertainty related to the representative value of the permanent loads, γGi covers also the 
model uncertainty in the action effects calculation, denoted with θE. Thus, to account for this 
uncertainty, αGi, VGi and μGi are calculated as in Eq. (4.4). The value of βtgt,50y is assumed 
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according to [Eur22], equal to 3.8. Indeed, the choice of βtgt depends on the risk acceptance at a 
societal level and is not treated in this work. 

Table 4.4: Distribution type and parameters of random variables used for the 

parametric analyses 

Var. Distribution μ V [%] 

EG1 Normal 1.00 3-6 

EG2 Normal 1.10-1.30 15-25 

EQ Log-normal 0.7-1.0 4-26 

R. Log-normal 1.09-1.12 4-24 

θE Log-normal 1.00 6.5 

Figure 4.8 shows the sensitivity factors α, smaller than 1 by definition, and the partial safety 
factors γ, larger than 1, obtained from the parametric analysis as a function of the coefficients of 
variation VR and VQ. As already mentioned, two ratios of EG / EQ are investigated, namely 4 and 
0.5, which correspond respectively to a long and short span bridge (the ratio total permanent 
load / total live load (G/Q) for bridges with increasing span is shown in Figure 4.1c). For a 
long-span bridge, Figures 4.8a and 4.8c show that VQ does not influence γG1 and γG2 while an 
increase of VR leads to smaller values of γG1 and γG2. In fact, since traffic loads are less significant 
compared to permanent loads, their variability does not lead to a remarkable change of the 
sensitivity factor (α), and consequently on the partial factors (γ). On the other hand, for short 
span bridges, an increase of both VQ and VR leads to a decrease of γG1 and γG2. Overall, for the 
investigated scenarios, the required value of γG1 varies between 1.1 and 1.2, whereas γG2 varies 
between 1.3 and 1.8. 

Based on the results of the parametric analysis, the proposed values for γG1 and γG2 are 1.2 and 
1.5, respectively. To cover the cases where γG2 is larger than 1.5, an increase of the representative 
value of the pavement thickness as required in [Eur02] and in [Eur23] is justified (an increase 
of the nominal value by 20% covers the cases where γG2 is larger than 1.5: 1.2×1.5 = 1.8). 
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Figure 4.8: αG1 , αG2 [0,1] and γG1 , γG2 (>1) as a function of VQ and VR for a road bridge 

with EG / EQ equal to 4 and 0.5, which correspond respectively to a long and 

short span bridge. 

4.6 Validation of the proposed partial factors for a 
particular case 

To investigate if a sufficient level of safety is achieved with the proposed partial safety factors, 
more refined reliability analyses are performed on two bridges with a maximum span of 20 and 
30 m, respectively. Figure 4.11a shows the longitudinal scheme and the transversal cross-section 
of the investigated bridges.  
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Both bridges are designed to fulfil the requirements of traffic loads for new bridges, according 
to [SIA20], and for existing bridges according to [SIA11], while representative permanent loads 
are calculated according to [Eur23] (but no increase of the nominal pavement thickness is 
considered). Dimensioning is performed according to Section 8 of 
Fpr EN1992-1-1:2023 [Eur23] with a reinforcement ratio in the tension zones ranging between 
0.4 and 0.8% and the posttensioning tendons designed to carry the remaining required tension 
force at ULS (the average compressive concrete stress due to prestressing P/Ac is 1.75 and 2.05 
MPa for the bridge with maximum span of 20 m and 30 m, respectively). The considered partial 
factors for the dimensioning are γS = 1.15 and γC = 1.50 whereas the currently recommended 
partial factors for the permanent actions γG1 = γG2 = 1.35 as well as the proposed combination 
γG1 = 1.20 and γG2 = 1.50 are considered. The strain difference in the prestressing steel and the 
hyperstatic moments due to prestressing are calculated considering: (i) an initial prestressing 
stress of 0.7ꞏfpk, (ii) the tendon’s geometry shown in Figure 4.10c, (iii) the friction losses 
according to Fpr EN1992-1-1:2023, and (iv) 15% losses due to relaxation, shrinkage and creep. 

For the refined reliability analyses, the variability of the geometry and the specific weight is 
modelled considering that a certain correlation exists between two points in the same element. 
This correlation is expressed by the Pearson correlation coefficient, which is denoted with ρcc 
and is calculated according to [JCS01] as shown by Eq. (4.5), where δ is the correlation length, 
characteristic of the member type (e.g. equal to 6 m for slabs and walls and 10 m for reinforced 
concrete beam) and Δr is the distance between the points. The parameter ρcc0 represents the 
correlation between two far away points in the same element. 

 
Figure 4.9: (a) Property of a reference point P* and property of a point at a distance 

Δr1 and Δr2 considering the Pearson correlation coefficient ρcc; 

(b) decrease of ρcc from a reference point; (c) typical simulations of 

pavement thickness variability in road bridges. 

Figure 4.9a illustrates the correlation between the property of a reference point, P*, and the 
property of two different points, P(ΔR1) and P(ΔR2), part of the same structural element, 
respectively at a distance Δr1 and Δr2 from the reference point, see Figure 4.9b. Figure 4.9b 
shows the decrease of ρcc as a function of the distance Δr. For a distance between the points 
larger than the characteristic length (δ), ρcc = ρcc0, with ρcc0 = 0.85 in this particular case, assumed 
according to [JCS01]. If multiple points are involved, instead of a single coefficient, the 
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correlation is represented by a symmetric matrix [n × n] with n equal to the number of 
investigated points. The symmetry of the matrix is due to the fact that ρcc is calculated 
considering only the distance between points and not the direction. 

  2
0 0( ) (1 ) exp ( / ) 0.85cc cc cc ccr r w ith             (4.5) 

Correlation of the pavement thickness and specific weight in different points of the same bridge 
is modelled using the same procedure and the characteristic length δ = 6 m. 

Figure 4.9c presents the resulting pavement thickness modelled by discretizing the surface of 
the bridge deck and implementing the longitudinal, the transversal and the aleatoric variability 
(see Section 4.3). The correlation is implemented using the methodology described above. The 
longitudinal and transversal thickness variabilities, which account for the pre-existing 
deformations, are modelled assuming a parabolic profile in both directions with the ratio 
tlong,support / tlong,midspan and ttransv,center / ttransv,edge defined by the distribution presented in Table 4.6. 
Table 4.5 presents the distribution parameters assumed for modelling the variability of the 
structural self-weight. The geometric variability is modelled according to [JCS01] as shown in 
Figure 4.1c. For the reinforcement content, the statistical parameters presented in Table 4.5 are 
assumed, see also Figure 4.2. 

Table 4.5: Statistical parameters for modelling of the structural self-weight 

Random variable CoV – V [%] Bias factor – μ Mean value 

Ac 2.0 – 5.0 1.00 - 

ρconcrete [kN/m3] 4.0 - 24.0 

Reinforcement content [kg/m3] 15.0 - 130.0 

Table 4.6: Statistical parameters for modelling of the pavement load 

Random variable CoV – V [%] Bias factor - μ  Mean value 

tlong,support / tlong,midspan 20.0 1.00 - 

ttransv,center / ttransv,edge 20.0 1.00 - 

t / tnominal 4.0 1.00 - 

Vol/ Volnominal 22.0 1.25 - 

ρpav [kN/m3] 4.0 - 24.0 

The aleatoric variability, t / tnominal is not related to pre-existing deformations but to imperfections 
of the concrete substrate and paving placing precision. The variability of the total volume of the 
pavement is defined by a distribution with mean 1.25 and CoV of 22%, in line with previous 
researches and the findings of this work. It is important to note that cases where the nominal 
thickness is increased as a maintenance strategy are not considered as variability. 
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To obtain the variability of the action effect at a given position for both structural and 
non-structural load, a Monte-Carlo simulation is performed using the statistical distributions in 
Tables 4.6 and 4.5. For each draw, the load pattern (load of each discretized element) is defined 
accounting also for the correlation and the action effect at a given position is calculated using a 
finite element (FE) model with 2D elements as shown in Figure 4.10a. 

Due to the large number of simulations, the influence surfaces / lines are calculated for each 
investigated cross-section and internal force (i.e. shear and bending moment). Subsequently, the 
action effect (E), is calculated by performing fast matrix operations. As an example, 
Figure 4.10b shows the influence surface of the bending moment at midspan for one beam of 
the half-section. 

 
Figure 4.10: (a) FE model for calculation of influence lines/surfaces; (b) influence 

surface of the moment at midspan of the beam; (c) automatically 

determined profile of the prestressing tendon given the constraints on the 

curvature and the mandatory passing points; (d) longitudinal profile of the 

investigated bridge. 

For both investigated bridges (maximum spans of 20 and 30 m, respectively), 2×2×2 = 8 
different scenarios are investigated, as presented in Table 4.7. Specifically, they include two 
different traffic configurations (unidirectional and bidirectional), two vehicle typologies (up to 
42 t or 96 t, i.e., without and with mobile cranes) and two distribution types for fitting the tail of 
the WIM weekly maxima traffic loads (LN and GEV Type-I). For each scenario, reliability 
analyses are performed at the support and midspan section, denoted respectively with S1 and S2 
in Figure 4.11a. The following failure modes are considered: (1) shear failure for sections S1, 
(2) flexural failure with failure occurring on the steel side for both sections S1 and S2 (3) flexural 
failure with failure occurring on the concrete side for section S1. For the bridge with maximum 
span of 20 m and 30 m the ratio between the neutral axis depth and the effective depth in section 
S1, is respectively x /d = 0.36 (x = 469 mm) and x /d = 0.40 (x = 625 mm), justifying such a 
failure mode. As a comparison with the parametric reliability analysis, the ratio EG / EQ for the 
sections of the investigated bridges ranges between 0.55 and 1.25, thus, covered by the limit 
cases of 0.5 and 4.0 considered for the FORM calibration of γG1 and γG2 shown in the previous 
subsection. 
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Table 4.7: Scenarios considered for calculation of the reliability index β50y 

Scenario Traffic configuration Vehicles class Weekly maxima tail-fitting 
1 Unidirectional Including mobile cranes GEV 
2 Unidirectional Including mobile cranes LN 
3 Unidirectional Without mobile cranes GEV 
4 Unidirectional Without mobile cranes LN 
5 Bidirectional Including mobile cranes GEV 
6 Bidirectional Including mobile cranes LN 
7 Bidirectional Without mobile cranes GEV 
8 Bidirectional Without mobile cranes LN 

The traffic load variability is considered using the WIM measurements introduced in 
Section 4.3.2 while the variability of the structural and non-structural self-weight is modelled 
using the methodology presented above. The variability of the resistance calculation is 
calculated as in Section 4.3.3 while the variability of the model for calculation of action effects 
is assumed according to the results presented in Chapter 2 of this thesis, as for the parametric 
analysis. 

To reduce the time needed to perform the crude Monte-Carlo (MC) reliability analyses, the 
Importance Sampling technique (MC-IS) is adopted. Accordingly, a FORM analysis is first 
performed to determine the design point and subsequently, the Monte-Carlo simulations are then 
performed around that point. This technique requires a smaller number of simulations to 
determine the reliability index β (see [Mel18] for details about Monte-Carlo analysis and the 
Importance Sampling technique). 

The limit state function is formulated in the classical form as for the parametric reliability 
analyses in Eq. (4.2). For each analysis, the limit state function is evaluated ~100’000 times to 
calculate the reliability index β. Overall, for all the investigated scenarios, sections and failure 
modes, ~5’000’000 simulations were performed.  

Figures 4.11b and 4.11c show the β50y obtained from the MC-IS reliability analyses. The points 
corresponding to the same scenario refer to the different sections, failure modes, partial factors 
for permanent loads and different spans investigated. It can be observed that the β50y obtained 
with the proposed partial factors γG1 and γG2 is similar to the one obtained with the current partial 
safety factors. Thus, the overall structural safety remains unchanged. However, the partial safety 
factors reflect better the uncertainties they are supposed to cover. This observation is further 
supported by the fact that β50y is generally less dispersed with the newly proposed values. 
Figure 4.11b shows that for new bridges, regardless of the scenario, β50y is generally larger than 
4.5, indicating that a safety margin is present if compared to the target value βtgt,50y = 3.8. On the 
other hand, β50y calculated using reduced traffic loads for existing bridges shown in Figure 4.11c, 
is much closer to βtgt,50y (however, it must be noted that for existing structures, the value of βtgt,50y 
may be reduced). 
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Figure 4.11: (a) Longitudinal scheme and cross-section of the investigated bridges, 

resulting β50y calculated with the current (circles) and the proposed partial 

safety factors (squares): (b) considering adjustment factors αact,q,i and 

αact,Q,i according to [SIA20] for new structures and (c) according to [SIA11] 

for existing structures. 

4.7 Modelling of the structure, evolutions of structural 
system and designer’s choices 

It has to be noted that the proposed values for the partial safety factors γG1 and γG2 are based on 
the model uncertainties for the action effects presented in Chapter 2. As already mentioned, the 
model uncertainty related to the action effects significantly depends on the complexity and the 
level of statical indeterminacy of the structure. In fact, in statically determinate structures, where 
the internal forces depend almost only on the actions and on equilibrium, the model uncertainty 
related to the internal forces is very small and only depends on the geometrical uncertainties 
which has an almost negligible effect. In these cases, the assumed values for the model 
uncertainties of the action effects calculation can be considered as overly conservative. At the 
other side, for highly indeterminate complex structures, the model uncertainties can be 
significant, particularly in the case of system changes during construction. With this respect, the 
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exact construction sequence is not necessarily known during the design, the creep deformations 
which affect the redistributions of internal forces are also affected by significant uncertainties, 
and above all, these effects are usually not accounted for in a detailed manner. In this context, 
the deformation capacity of the critical cross sections associated to the governing failure modes 
plays also a significant role. In case of ductile behaviour, all these types of uncertainties have 
little influence on the load-bearing capacity since plastic redistributions of the internal forces 
can adjust a difference between calculated and actual internal forces (see Chapter 2 of this thesis) 
On the other side, for brittle behaviour, the possibility of a redistribution of internal forces is 
limited, so that the model uncertainties in the actions affect calculation can play a major role. In 
addition, for complex structures, additional uncertainties can be expected with respect to the 
models implemented in commercial analysis software tools and the choices by the designer in 
modelling the structures. This applies for linear elastic calculations, but also to an even larger 
extent for nonlinear analyses. These considerations, which were not the aim of the present work, 
deserve to be investigated in the future also accounting for the increasing complexity of the 
analysis tools used nowadays which can give to the designer the impression of a precision which 
cannot be reached for the reasons explained above. 

To solve these problems, an increase of the complexity in the analysis, the consideration of a 
larger number of load combinations and scenarios, as well as a detailed analysis of the effects 
related to system changes during construction are not necessarily to be recommended. Also, 
designer’s choices regarding structural modelling a complex structure in an apparently more 
detailed manner can lead to further uncertainties in calculating action effects. In fact, the 
increasing complexity of commercially available software makes it more difficult to verify the 
assumptions. For instance, the modelling of the load, the selection of the finite element, the 
interaction between different finite elements, the definition of the reference axis, the modelling 
of prestressing, the modelling of the system changes etc. are more or less conscious choices 
whose influences should be evaluated by the designers. In addition, an analysis with increasing 
complexity can even be counterproductive since it would increase the probability of human 
errors. According to the authors, it is more reasonable to invest time in thinking which is the 
most suitable and reasonably safe modelling, trying to evaluate qualitatively the potential 
uncertainties and interpret correctly the results. 

These considerations are not the aim of this Chapter and further effort should be put in 
investigating this topic. 

4.8 Conclusions 

This Chapter investigates the sources of structural and non-structural self-weight variability in 
road bridges along with other variabilities influencing structural safety in reinforced concrete 
structures. Based on the presented work, the main findings are: 
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1. Structural self-weight variability in bridges is mainly caused by geometrical, 
reinforcement content and concrete specific weight variability. Geometrical variabilities 
are less significant for large members. The CoV for structural self-weight of common 
members is generally between 3 and 6%; 

2. Variability of the pavement thickness in a road bridge can be significant. For each span 
of the investigated bridges, the ratio between the measurements mean and the nominal 
thickness is generally located between 1.1 and 1.7 (larger for smaller spans). 
Considering all the measurements within each span, the CoV of the pavement thickness 
ranges between 8.4 and 21.6%. In some cases, the ratio between the measurements mean 
and the nominal thickness is larger than 2 suggesting an increase of the nominal value 
during resurfacing. 

3. Distribution parameters of materials strength based on Swiss measurement are generally 
in line with values specified in Section 1. However, the CoV and bias factor of concrete 
strength for the analysed data are larger than data found in international literature. This 
over-strength is probably to be attributed to an increase in cement content to meet 
durability and workability criteria by producers; 

4. The variability of the traffic load for the weekly-maxima events is found between 10 
and 18%. Extrapolation of 50-year maxima distributions depends significantly on the 
tail fitting accuracy of the starting distribution. Considering log-normal and Gumbel 
distributions for the tail fitting leads to CoV of the traffic load variability between 6 and 
10%; 

5. According to the parametric reliability analyses, the required value of γG1 for self-weight 
to reach the target value of the reliability index βtgt,50y = 3.8 lies between 1.1 and 1.2 
while γG2 for other permanent actions is between 1.3 and 1.8 in case the nominal 
pavement thickness is considered as reference value. Reliability analyses performed on 
selected case studies including various failure modes confirm that γG1 = 1.2 and γG2 = 
1.5 lead in general to sufficiently safe results for the design of new and the assessment 
of existing structures. With respect to the reference value of the pavement thickness, an 
increase of 20% of the nominal value as recommended in Eurocode 1 is justified; 

6. Structural system changes during construction and significant differences between 
modelling of complex structures and actual behaviour are not accounted for in the partial 
safety factors on the load side described above. If relevant for the structural system, 
depending on its complexity and particularly in case of governing brittle failure modes, 
if the behaviour cannot be improved with sound detailing during the design process, the 
structure should be modelled in a reasonably conservative manner and the results 
interpreted accordingly. 
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Notation 

Acronyms: 

RC:  Reinforced Concrete 

WIM:  Weight In Motion 

FORM:  First Order Reliability Method 

MCIS:  Monte-Carlo Importance-Sampling 

IID:  Independent-Identically-Distributed 

CDF:  Cumulative Distribution Function 

PDF:  Probability Density Function 

GEV:  Gumbel Extreme Values 

LN:  Log-Normal 

CoV:  Coefficient of Variation 

GPR:  Ground Penetrating Radar Measurements 

PSF:  Partial Safety Factor 

PSFF:  Partial Safety Factor Format 

Variables: 

β:  Reliability index 

fc:  Concrete strength 

fy:  Steel yield strength 

fpk:  Characteristic value of the tensile strength of prestressing steel 

ρs:  Sectional reinforcement ratio 

Ac:  Concrete area 

heq:  Equivalent depth of concrete deck 

w:  Width of concrete element 

G:  Permanent load 

G1:  Structural self-weight 

G2:  Non-structural self-weight 

Q:  Live load 
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θE:  Model uncertainty in action effect calculation 

Vol:  Volume 

α:  Sensitivity factor 

αact:  Actualisation factors for the traffic load model 

V:  Coefficient of Variation of the resistance 

μ:  Bias factor 
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5.1 Conclusions 

This thesis addresses the current research gaps within the main method used by designers to 
ensure structural safety, namely, the partial safety factor format (PSFF). While this method 
simplifies considerably the process for determining if an acceptable level of structural safety is 
achieved, the underlying methods and simplifications are still not clear. In this context, three 
main topics are investigated: (1) the model uncertainty in action effects and load bearing 
capacity calculation, (2) the influence of high-intensity sustained loading on the compressive 
strength and deformation capacity of reinforced concrete members in compression and (3) the 
suitability of the currently recommended sensitivity factors on the load and resistance side 
followed by the recalibration of the partial factors for permanent loads. In the following sections 
the conclusions of the previous chapters are summarised. 

Chapter 2 investigates the model uncertainty in action effects and load-bearing capacity 
calculations in statically indeterminate concrete structures. In addition to the type of mechanical 
model, various failure modes are considered. Based on the outcome of the investigation the main 
conclusions can be resumed as follows: 

 compared to more refined models, the Linear Elastic Uncracked model, typically used 
by the majority of designers, leads to larger CoV of model uncertainty in load bearing 
capacity calculation, however, the mean of the distribution is larger (safer results), 
leading to similar tail’s distribution approximations, thus, similar safety margin, 

 for Linear Elastic Uncracked models, an over design of one or more components of a 
statically indeterminate system influences the CoV of the model uncertainty in action 
effects calculation, if one member is largely over-designed, the CoV is generally larger; 

 refined calculation models lead to more accurate results and generally to lower CoV of 
the internal forces ratio and the load bearing capacity ratio, 

 the failure mode influences the model uncertainty in load bearing capacity calculation 

but it does not influence the model uncertainty in action effects calculation. Larger CoVs 
are observed for brittle systems, independently of the calculation model, 

 plastic calculation models with unlimited deformation capacity, if performed without 
ductility requirements lead to very large CoV and unsafe results. Limiting the 
deformation capacity, or verifying that ductility requirements are met reduces 
considerably the CoV, 

 considering supports deformability allows larger redistribution of forces and leads to 
slightly smaller CoV. 

 parametric analyses and investigated case studies show that the partial factor γSd which 
covers the uncertainties of the internal force calculation ranges between 1.05 and 1.15. 
It must be noted that the estimated γSd factor does not account for uncertainties related 
to structural system variations during construction or structural modelling of complex 
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structures. These additional uncertainties, which deserve to be investigated more in 
detail, significantly depend on the complexity of the structure, the construction method, 
the tools used tools and the experience of the designer. 

Chapter 3 presents the results of an investigation on the strength and deformation capacity of 
reinforced concrete members failing in centric compression under variable loading rates. In this 
work the redistributions of internal forces due to nonlinear deformations are investigated by 
means of experimental results and a mechanical model. The main conclusions can be resumed 
as follows: 

 the long-term response of concrete (long loading duration) is detrimental with respect 
to its strength, but enhances its deformation capacity. This allows redistributing stresses 
and can allow, provided that sufficient reinforcement is available, increasing the load 
carrying capacity of a structural compressed member, 

 columns with ordinary reinforcement centrically loaded under rapid loading conditions 
typically fail by concrete crushing prior to reinforcement yielding. However, when 
loading is applied slowly, higher levels of deformation allow increasing the 
reinforcement stresses up to yielding (typically occurring after one or two hours of 
loading), 

 for very low loading rates, the reinforcement can yield, but the reduction of the concrete 
strength under sustained loading reduces the resistance (maximum strength typically 
obtained after one or two hours of loading), 

 high reinforcement ratios and yield strengths are largely beneficial since the increase of 
deformation capacity allows yielding of the reinforcement, partly compensating for the 
loss of strength due to sustained loading, 

 unlike concrete types with fast cement hardening, where the gain of strength occurs 
mostly in the first months, concretes with slower cement hardening have a better 
response under sustained loading (independently of the reinforcement ratio) 
compensating the loss of concrete strength under sustained loading even after years, 

 consistent modelling and design for these phenomena are performed on the basis of a 
rheological model for concrete accounting for its linear and nonlinear creep strains. Such 
approach allows considering suitably the implications on the strength and deformation 
capacity as well as internal force redistributions. 

Chapter 4 investigates the sources of structural and non-structural self-weight variability in road 
bridges along with other variabilities influencing structural safety in reinforced concrete 
structures. Based on the presented work, the main findings can be resumed as follows: 

 structural self-weight variability in bridges is mainly caused by geometrical, 
reinforcement content and concrete specific weight variability. Geometrical variabilities 
are less significant for large members. The CoV for structural self-weight of common 
members is generally between 3 and 6%, 



Conclusions and Outlook 

106 

 variability of the pavement thickness in a road bridge can be significant. For each span 
of the investigated bridges, the ratio between the measurements mean and the nominal 
thickness is generally located between 1.1 and 1.7 (larger for smaller spans). 
Considering all the measurements within each span, the CoV of the pavement thickness 
ranges between 8.4 and 21.6%. In some cases, the ratio between the measurements mean 
and the nominal thickness is larger than 2 suggesting an increase of the nominal value 
during resurfacing, 

 distribution parameters of materials strength based on Swiss measurement are generally 
in line with values specified in Section 1. However, the CoV and bias factor of concrete 
strength for the analysed data are larger than data found in international literature. This 
over strength is probably to be attributed to an increase in cement content to meet 
durability and workability criteria by producers, 

 the variability of the traffic load for the weekly maxima events is found between 10 and 
18%. Extrapolation of 50-year maxima distributions depends significantly on the tail 
fitting accuracy of the starting distribution. Considering log-normal and Gumbel 
distributions for the tail fitting leads to CoV of the traffic load variability between 6 and 
10%, 

 according to the parametric reliability analyses, the required value of γG1 for self-weight 
to reach the target value of the reliability index βtgt,50y = 3.8 lies between 1.1 and 1.2 
while γG2 for other permanent actions is between 1.3 and 1.8 in case the nominal 
pavement thickness is considered as reference value. Reliability analyses performed on 
selected case studies including various failure modes confirm that γG1 = 1.2 and γG2 = 
1.5 lead in general to sufficiently safe results for the design of new and the assessment 
of existing structures. With respect to the reference value of the pavement thickness, an 
increase of 20% of the nominal value as recommended in Eurocode 1 is justified, 

 structural system changes during construction and significant differences between 
modelling of complex structures and actual behaviour are not accounted for in the partial 
safety factors on the load side described above. If relevant for the structural system, 
depending on its complexity and particularly in case of governing brittle failure modes, 
if the behaviour cannot be improved with sound detailing during the design process, the 
structure should be modelled in a reasonably conservative manner and the results 
interpreted accordingly. 
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5.2 Outlook and future works 

Although the notions discussed in this thesis were already introduced early in the 20th century 
[May26]. Most of the scientific advances to date have been made starting at the end of the 
century. Nowadays, with the available tools and technological advancement, many of the still 
open questions can have an answer. However, other question arises due to the introduction of 
new tools and techniques to determine structural safety. A non-exhaustive list of significant 
topics for future researches in this domain is presented below. 

 The work of the designer is closely tied to that on the construction site, which usually 
takes place remotely both temporally and spatially. Currently, the variability of the 
geometry related to the manufacture of reinforced concrete elements does not consider 
technological advancements generally integrated in modern construction sites. In fact, 
the statistical parameters of geometric variability are typically assumed based on the 
recommendations of [JCS01] which are in turn, are based on the publication 115 of the 
CIB report [CIB89]. Therefore, these data refer to measurements made almost 50 years 
ago, in different parts of the world with, usually, different construction practices. Also, 
it is currently unclear which relationship exists between these commonly assumed 
statistics and tolerances of the codes of practice, see [ISO13, SIA13] 

 In the structural design process, one of the initial challenges the engineer faces is the 
modelling of the actual structure, which does not exist yet. Thus, to represent the actual 
behaviour as closely as possible, choices and hypotheses are constantly made. These 
choices depend on several factors, for instance, the complexity of the structure, the phase 
of the project, the experience of the engineer and the tools used. In a finite element 
calculation some of these choices can be related to the reference line chosen to model 
each element, the modelling of inclined elements, the modelling of variable cross 
sections, etc. Other choices specific to the finite element models are the dimensions of 
the finite elements, the link between different elements, and the simplification of some 
cross sections. To this should be added the modelling of the boundary conditions which 
can widely depend on the designer. The result of the choices mentioned above will be 
different structures that will inevitably have different levels of security, however, it is 
important to note that all these choices are rightful to the designer and human error is 
not included. 

 For complex structures, if the exact construction sequence is not known during the 

design, uncertainties related to the calculation of the action effects or the load bearing 
capacity can be very large. To avoid extremely safe-sided partial safety factors, those 
cases are typically not covered by the standard partial safety factors, i.e. γSd in [CEN02]. 
In addition, the creep deformations which can affect the redistributions of internal forces 
are also affected by significant uncertainties (cross-section, temperature, relative 
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humidity, material properties etc.). In a standard design scenario, these uncertainties are 
usually not accounted for in a detailed manner and might lead to unsafe scenarios if the 
structural system includes members with brittle behaviour. 

 Nowadays concrete is the most widely used material for construction. Many factors 
contribute to this dominance: availability of raw materials, durability, structural 
performance etc. Nonetheless, in terms of environmental impact, this material is a major 
source of greenhouse gas emissions. This has motivated many researchers to focus on 
the development of concretes with a lower environmental impact achieving extremely 
promising results. However, to build up confidence in designers regarding these 
materials, thorough studies must be performed to assess whether the current framework 
for safety assessment is suitable. 

 Most of the existing infrastructure in Europe and North America was built in the second 
half of the 20th century, meaning that in the next decades engineers will face a major 
challenge in assessing the safety of these structures. In order to improve the decision-
making process, it is necessary for the currently used partial safety factor format, which 
greatly simplifies the work of the designers, to be consistent and allow adjusting the 
factors according to the specific knowledge concerning a structure. In this context, a 
framework for performing probabilistic analyses with consistent and well-defined 
boundaries can be developed to determine the level of safety compared to the current 
requirements. This becomes even more important in a context where an increasing 
number of civil engineering works are considered part of the artistic and cultural 
heritage. 
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