
Acceptée sur proposition du jury

pour l’obtention du grade de Docteur ès Sciences

par

On the Theory and Practice of Modern Secure
Messaging

Daniel Patrick COLLINS

Thèse n° 10 544

2024

Présentée le 25 avril 2024

Prof. R. Guerraoui, président du jury
Prof. S. Vaudenay, directeur de thèse
Prof. P. Rösler, rapporteur
Dr B. Poettering, rapporteur
Prof. M. Kapralov, rapporteur

Faculté informatique et communications
Laboratoire de sécurité et de cryptographie
Programme doctoral en informatique et communications

To mum and dad.

Abstract

Billions of people now have conversations daily over the Internet. A large portion of this

communication takes place via secure messaging protocols that offer “end-to-end encryption”

guarantees and resilience to compromise like the widely-used Double Ratchet protocol of Per-

rin and Marlinspike. This thesis explores secure messaging from a cryptographic perspective

in both the analysis and improvement of existing messaging solutions as well as the design of

protocols with new security and efficiency characteristics.

The first half of the thesis considers communication between two parties. We first draw our

attention to the impending threat of quantum computers on Diffie-Hellman-based key ex-

change protocols, and in particular on the widely used Extended Triple Diffie-Hellman (X3DH)

key exchange protocol of Perrin and Marlinspike. We propose a new deniable authenticated

key exchange protocol, K-Waay, that is based on the relatively conservative plain learning-

with-errors (LWE) assumption and is faster than previous proposals. We then consider active

attack detection to ensure parties can detect if and when they have been compromised and

impersonated by an adversary, even if messages can be delivered out-of-order like in the Dou-

ble Ratchet protocol. We consider both in-band and out-of-band detection (the latter offering

better security but being less convenient for users) and prove formally that immediate active

attack detection is sometimes inherently expensive but, despite this, a relaxed yet meaningful

notion of active attack detection can be achieved practically.

The second half of this thesis then deals with communication between a dynamic group of

parties. Firstly, we formalise the group administration problem where a (dynamic) portion

of a given group is entrusted with additional privileges: we identify and formalise their core

role of enforcing access control. We propose two protocols extending the continuous group

key agreement methodology underpinning the recent IETF Messaging Layer Security (MLS)

standard, and demonstrate experimentally that administration can be achieved with very little

overhead for MLS. Finally, we formalise the practical Sender Keys group messaging protocol

used by WhatsApp and Signal (which in fact relies on two-party communication at its core)

and prove in a new security model that the core protocol structure is sound. Through our

formalisation, we report some drawbacks of Sender Keys, especially in terms of its resilience to

state compromise, and propose some tweaks to overcome them using standard cryptographic

primitives, each of which either incurs little overhead or in fact improves practical efficiency.

i

Résumé

De nos jours, des milliards de personnes utilisent régulièrement internet pour communiquer.

Une grande partie de ces communications utilisent des protocoles de messagerie sécurisée

qui offrent des garanties de “chiffrement de bout en bout” comme le très répandu protocole

Double Ratchet de Perrin et Marlinspike. Dans cette thèse, nous explorons ainsi la notion de

messagerie sécurisée. Nous étudions à la fois des solutions existantes mais nous proposons

aussi de nouveaux protocoles supportant de nouvelles contraintes de sécurité et d’efficacité.

La première moitié de cette thèse porte sur la communication entre deux parties. Nous portons

d’abord notre attention sur la menace imminente que les ordinateurs quantiques représentent

pour les protocoles d’échange de clés basés sur le protocole Diffie-Hellman. Le protocole

d’échange de clés Extended Triple Diffie-Hellman (X3DH) de Perrin et Marlinspike, qui est

largement utilisé, y est particulièrement vulnérable. Nous proposons ainsi un nouveau pro-

tocole, K-Waay, qui permet l’échange de clés authentifiées tout en offrant la possibilité de

déni plausible. Notre protocole est plus rapide que les propositions précédentes basées, et

repose sur l’hypothèse que le problème d’apprentissage avec erreurs (LWE) est difficile. Nous

examinons ensuite la détection d’attaques afin de garantir que les deux parties puissent détec-

ter si un adversaire a usurpé une identité ou s’il a réussi à les compromettre, et cela même

si les messages sont reçus dans le désordre, comme dans le protocole Double Ratchet. Nous

considérons à la fois la détection en bande et hors bande (cette dernière offrant une meilleure

sécurité mais étant moins pratique). Nous concluons que la détection immédiate d’une at-

taque active est parfois intrinsèquement coûteuse mais que, malgré cela, il est possible de la

rendre pratique et efficace en relaxant légèrement le modèle de sécurité.

La seconde partie de cette thèse traite des communications entre un groupe dynamique de

parties. Nous commençons par formaliser le problème d’administration de groupe où un sous-

ensemble (dynamique) d’un groupe donné se voit confier des privilèges supplémentaires :

nous identifions et formalisons leur rôle principal qui est de gérer le contrôle d’accès. Nous

proposons deux protocoles étendant la méthodologie d’accord de clé de groupe continu qui

étaye la nouvelle norme Messaging Layer Security (MLS) de l’IETF, et nous démontrons expéri-

mentalement que l’administration peut être réalisée avec un surcôut faible pour MLS. Enfin,

nous formalisons le protocole de messagerie de groupe Sender Keys utilisé par WhatsApp

et Signal (qui repose sur une communication bipartite). Nous prouvons dans un nouveau

modèle de sécurité que le protocole est robuste. Grâce à notre formalisation, nous signalons

iii

Résumé

certains inconvénients de Sender Keys, en particulier en matière de résilience face à un adver-

saire étatique, et nous proposons des ajustements basés sur des primitives cryptographiques

standardisées afin de les surmonter.

iv

Acknowledgements

I would first like to thank my advisor, Serge Vaudenay, for his continued guidance over the last

four years, for taking a chance on me, and for allowing me to flourish in his lab LASEC. Thank

you also to my private defence jury – Serge, Rachid Guerraoui, Michael Kapralov, Bertram

Poettering and Paul Rösler – for their valuable time and feedback.

Thank you to the current members of LASEC. Loïs, my officemate of four years, thank you

for our endless conversations, hilarious in-jokes and fun collaborations. Thank you Boris for

your advice and company, Bénédikt for our conversations and your insights, Abdullah for

your kindness and for bonding with me over our shared interests, and Laurane for our various

activities and many enjoyable chats. Thank you Sylvie for your support of both me and the lab.

Thank you to the former and spiritual members of LASEC. Andi, for bonding over pop culture,

projects and everything in between; Khashayar, for our variety of conversations and the mem-

orable lifts home; Ritam, for always being up for cake and to chat; Simone, for all the memories

– the travel, collaborations and friendship. David and Phillip, I’m glad our collaborations and

relationship did not end when you left LASEC. Thank you Subhadeep for your guidance and

companionship when it was just us two in the evenings. Thank you Khanh for your friendship.

Thank you Aymeric, Novak, Helen, Fatih and Gwangbae – your time at LASEC was valuable

to me. Martine, thank you for your help and service over the years. Thank you to my project

students for the opportunity to advise you and to the lab interns and visitors over the years.

Thank you to Rachid and Thanasis for your semester project supervision – distributed com-

puting is still in my heart – and Jovan for your friendship.

A special thank you to Dario, Giulio, Julian and Paul for each hosting me in their labs for

research visits – all of these trips were special and productive, and it was great to spend time

with you and everyone else who I met during these visits. Thank you to Julian for taking me

under your wing and Paul for mentoring me.

This thesis, and my research, would have been impossible without the effort and input of my

collaborators, both past and present, and all those who supported me in the cryptographic

community – a particular shoutout to those from Bochum, CISPA and IMDEA.

v

Acknowledgements

Thank you to all of the friends I met in Lausanne that helped met through my PhD since I

arrived in September 2019. Guohao, for the endless conversations (we have had several since I

started writing these acknowledgements) and irreplaceable friendship; Plouton, for always

outdoing yourself in cooking and your warm companionship; Rodrigo, for your integrity,

honesty and strength. Bakul, for teaching me how to be a roommate. ML4ED, for your com-

panionship on the second floor of INF – thank you Jade for visiting Loïs and I! Christian and

Sylvain, thanks for the memories. Nicolas, coucou! Greg, thanks for your friendship. Aditya,

Dina, Lars, Michal, Valentin and all those I’ve forgotten, merci!

Thank you to my Honours thesis advisor Vincent Gramoli for introducing me to and encourag-

ing me in the world of research. Thank you to Tyler Crain for your formative guidance and for

encouraging me to travel for my PhD, without whom this would not have happened. Thank

you to all my other colleagues, peers and friends from the University of Sydney. Thank you to

my teachers in school and university.

I would be remiss not to mention my friends, family and mentors who I met and grew up with

in Sydney and beyond. Thank you to my mum, dad and brother for your endless love and

support, to Tash and Joey, to Ash, Chris, Eric, Frank, Ian, and everyone else – I have missed

you all dearly.

Finally, I would like to thank all those who I did not thank above, as there were many more

who impacted my life and helped me.

Lausanne, April 9, 2024 D. C.

vi

Contents

Abstract (English/Français) i

Acknowledgements v

1 Introduction 1

1.1 Context and Motivation . 1

1.2 Contribution . 4

1.2.1 Part I: Two-Party Communication . 4

1.2.2 Part II: Group Messaging . 7

1.3 List of Works . 11

2 Preliminaries 13

2.1 Notation and Conventions . 13

2.2 Cryptographic Primitives . 15

2.2.1 Key-Encapsulation Mechanism (KEM) . 15

2.2.2 Signatures . 16

2.2.3 Pseudorandom Function (PRF) . 17

2.2.4 Hash Function . 18

2.2.5 Incremental Set Hash Function . 18

2.2.6 Symmetric Encryption . 19

I Two-Party Communication 23

3 K-Waay: Fast and Deniable Post-Quantum X3DH Without Ring Signatures 25

3.1 Contribution . 25

3.1.1 Summary . 27

3.1.2 Technical Overview . 29

3.1.3 Additional Related Work . 33

3.2 Split-KEM . 33

3.2.1 Security . 34

3.2.2 Deniability . 37

3.3 Deniable Authenticated Key Exchange . 38

3.3.1 Syntax . 38

3.3.2 Security Model . 39

vii

Contents

3.3.3 Deniability . 44

3.4 K-Waay: Post-Quantum X3DH from Split-KEM 45

3.4.1 Construction . 45

3.4.2 Security . 47

3.5 Deniable Split-KEM from Lattices . 56

3.5.1 Lattice Toolbox . 56

3.5.2 Extended-LWE . 57

3.5.3 Construction . 61

3.5.4 Security Analysis . 61

3.5.5 Building a UNF-1KCA and IND-1BatchCCA Split-KEM 69

3.5.6 Concrete Instantiation . 70

3.6 Evaluation and Discussion . 72

3.6.1 Benchmarks . 73

3.6.2 Advantages, Limitations and Discussion 76

4 On Active Attack Detection in Messaging with Immediate Decryption 79

4.1 Contribution . 79

4.1.1 Summary . 81

4.1.2 Technical Overview . 82

4.1.3 Additional Related Work . 85

4.2 (Authenticated) Ratcheted Communication . 85

4.3 In-Band Active Attack Detection: RID . 91

4.3.1 RID-Secure RC . 94

4.4 Out-Of-Band Active Attack Detection: UNF . 99

4.4.1 UNF-Secure ARC from a RID-Secure RC 100

4.4.2 UNF-Secure ARC from Any RC . 102

4.5 Lower Bounds for Active Attack Detection . 105

4.5.1 Communication Cost for r-RID Security 105

4.5.2 Communication Cost for r-UNF Security 111

4.6 Optimisations and Performance/Security Trade-Offs 111

4.6.1 On the Practicality of s-RID and s-UNF Security 112

4.6.2 Epoch-Based Optimisation for s-RID Security 113

4.6.3 Pruning for UNF Security . 115

4.6.4 Lightweight Bidirectional Authentication 119

II Group Messaging 125

5 Cryptographic Administration for Secure Group Messaging 127

5.1 Contribution . 127

5.1.1 Summary . 129

5.1.2 Technical Overview . 130

5.1.3 Additional Related Work . 132

viii

Contents

5.2 (Administrated) Continuous Group Key Agreement 132

5.2.1 Continuous Group Key Agreement . 132

5.2.2 Administrated CGKA . 136

5.2.3 Correctness . 137

5.2.4 Security . 140

5.3 A-CGKA Constructions . 145

5.3.1 Individual Admin Signatures . 146

5.3.2 Dynamic Group Signature . 159

5.3.3 Description . 160

5.3.4 Integrating A-CGKA into MLS . 169

5.4 Evaluation and Discussion . 170

5.4.1 Benchmarks and Performance . 171

5.4.2 Modelling in Related Work . 175

6 WhatsUpp with Sender Keys? Analysis, Improvements and Security Proofs 177

6.1 Contribution . 177

6.1.1 Summary . 179

6.1.2 Technical Overview . 180

6.1.3 Additional Related Work . 183

6.2 Two-Party Channels . 184

6.2.1 Primitive Definition and Correctness . 184

6.3 Group Messenger . 191

6.3.1 Security Model . 194

6.3.2 Modelling Two-Party Channel Ciphertexts 197

6.4 Sender Keys . 198

6.4.1 Protocol . 198

6.4.2 Security . 201

6.5 Analysis and Improvements . 206

6.5.1 Security Analysis and Limitations . 206

6.5.2 Proposed Improvements: Sender Keys+ . 209

6.5.3 Sender Keys/Sender Keys+ vs CGKA . 212

6.5.4 Sender Keys in Practice . 213

6.6 Sender Keys and Sender Keys+: Full Protocols and Security 214

6.6.1 Protocol Descriptions . 214

6.6.2 Sender Keys Security . 219

6.6.3 Sender Keys+ Security . 226

7 Conclusion 231

7.1 Primitive Summary . 231

7.1.1 Two-Party Communication . 231

7.1.2 Group Communication . 232

7.2 Discussion and Future Work . 233

ix

Contents

7.2.1 Composability . 233

7.2.2 Model Limitations . 233

7.2.3 Unification and Verification . 234

7.2.4 Deniable Post-Quantum X3DH (Chapter 3) 234

7.2.5 Active Attack Detection in Messaging (Chapter 4) 235

7.2.6 Group Administration (Chapter 5) . 236

7.2.7 Sender Keys (Chapter 6) . 238

A Appendices 241

A.1 QROM Preliminaries . 241

A.2 Proof of Theorem 5 (Chapter 3) . 243

A.2.1 Proof in the QROM . 243

A.2.2 Proof in the ROM . 246

A.3 Proof of Theorem 6 (Chapter 3) . 247

A.3.1 Proof in the ROM . 247

A.3.2 Proof in the QROM . 248

A.4 Tables for Sender Keys (Chapter 6) . 252

Bibliography 277

Curriculum Vitae 279

x

1 Introduction

1.1 Context and Motivation

For thousands of years, the primary aim of cryptography has been to enable secret communi-

cation between physically separated parties. In 1976, Diffie and Hellman proposed an elegant

and now ubiquitous method for enabling two parties to share a secret over an untrusted

network [DH76]. As a result of the ensuing cryptographic revolution, cryptography is used

today by billions of people and countless computers each day to protect communication via

protocols like Transport Layer Security (TLS) [Res18] and, more recently, secure messaging

applications.

Secure messaging, the focus of this thesis, has exploded in popularity and importance in

the last decade. This has been enabled by two main factors. Firstly, billions of people now

own and use smartphones, which enable highly convenient, fast and user-friendly digital

conversations. Secondly, and in connection with this, there has been an increased awareness of

mass surveillance, both in and especially outside of the security community, spearheaded most

notably by Edward Snowden’s whistleblowing in 2013 [Gua13]. The documents that Snowden

leaked to the public revealed that the National Security Agency (NSA), among other state

actors, ran (and undoubtedly continue to run) extensive national and international spying and

surveillance programs. Looking ahead, this motivates our consideration of advanced attack

vectors like secret state compromise in this thesis [BSJ+15].

Secure messaging shares many of the same security requirements as typical communication

protocols like TLS. Firstly, communication must be confidential, preventing an adversary from

deducing anything more from a communication transcript than possibly some metadata.

Authentication ensures that two (or more) parties can be sure that they are communicating

with each other and not some unintended party. Finally, integrity ensures that communication

cannot be feasibly tampered with by a network adversary without detection.

Messaging nevertheless imposes more requirements than say TLS, motivating specialised

protocol design. For one, messaging sessions between two parties are expected to last for

1

Chapter 1. Introduction

months or years, whereas TLS sessions are typically on the order of minutes. Due to this and

the fact that smartphones, the primary medium for instant messaging, have a particularly

large attack surface, state exposure (or compromise [CCG16]) is inevitable for many users.

Thus, resilience to state exposure has become a central requirement both in the literature and

in practice alike. Moreover, users are not expected to be online at all times, so users should

be able to communicate asynchronously as smoothly as possible (thus precluding multi-

round protocols for sending and receiving). In popular messaging systems like WhatsApp, an

intermediate service (or central server for simplicity) manages communication between all

parties that in particular forwards messages to users whenever they are online. Some level of

plausible deniability, or simply deniability, is also sometimes desirable, allowing users to deny

having either used a message system or simply having had a particular conversation.1

For dealing with state exposure in secure messaging, two complementary security notions

have become standard in the aftermath of the Snowden revelations. Firstly, forward security

(FS) [Gün90, BG21] ensures that, upon state exposure, communication prior to the exposure

is still secure. To achieve FS, secret keying material must somehow be updated over time and

new keys replaced with old ones. We will assume in this thesis that secure memory/state

erasures are possible since otherwise old keys are always accessible to the adversary upon

compromise, preventing FS. Secondly, post-compromise security (PCS) [CCG16] ensures that

upon state exposure, while security in the present is lost, parties can eventually and auto-

matically restore security such that the effect of state compromise is reduced or kept to a

minimum. Indeed, some form of PCS has been achieved in practice many years before it was

studied in the context of messaging through the common “good practice” of key rotation or

re-establishing secure channels after some time or on-demand.2 As computing power has

advanced significantly over the last few decades, however, it is now possible to cheaply and

continuously update keying material, enabling strong FS and PCS guarantees. An important

aspect of research is thus to identify inherent limitations in achieving FS and PCS and to

identify salient performance/security trade-offs for practice.

In the simpler case of two-party messaging, we assume both parties, which we will sometimes

refer to as Alice and Bob, send and receive messages between each other. Modern messaging

protocols are descendants of the seminal Off-The-Record (OTR) protocol [BGB04], which

provides FS and PCS through the use of continuous Diffie-Hellman key exchanges. OTR

was a significant step forward at the time since popular online messaging applications like

MSN Messenger and AOL Instant Messenger provided no end-to-end security guarantees

for users. Inspired by OTR, the Double Ratchet [PM16, ACD19] component of the Signal

protocol (previously TextSecure [FMB+16]) was proposed by Perrin and Marlinspike. It has

since become the de-facto standard for messaging [EM19], used by applications including

1In this thesis, we mainly consider deniability on the protocol level, e.g., constructing a deniable key exchange
protocol; achieving deniability on the system level or in a fully practical sense is more complex and sensitive, and
to some extent is more of a social or legal matter than a strictly technical one [CCHD23].

2Terms to describe post-compromise security in the literature include future secrecy, backward secrecy and
self-healing [DV19].

2

1.1 Context and Motivation

WhatsApp, Signal, Facebook Secret Conversations and Wire. In a nutshell, the Double Ratchet

extends OTR by employing a second ratchet, a forward-secure symmetric ratchet, in addition

to the continuous Diffie-Hellman exchange (the asymmetric ratchet) present in both protocols.

In group messaging, the group is now dynamic, meaning parties can be added and removed

from a given group and users must agree on the group state and messages over time, compli-

cating protocol design and implementation. A naive but nonetheless functional approach

here is for all parties to build group messaging on top of two-party channels, which necessarily

incurs O(n) sender communication overhead for every message sent in a group of n users. This

was, and in some edge cases still is, the approach taken by the Signal application in practice.

For increased efficiency, the Sender Keys protocol [Mar14] used by WhatsApp [Wha20] and

Signal [M+16] enables senders to produce constant-sized ciphertexts that are then forwarded

to all group members (via so-called server fan-out). In these protocols, refreshing all secrets

for post-compromise security incurs O(n2) communication overhead for a group with n users.

While Sender Keys was already deployed (as it still is), MLS (Message Layer Security) was

being developed by the IETF in a tight collaboration between industry and academia (and

was standardised in 2023 [BBR+23]). The MLS protocol, by contrast, achieves logarithmic-

sized per-party network overhead in “good” or “fair-weather” cases [ACDT20] for group key

updates.3

In either setting, parties must somehow authenticate each other before executing the mes-

saging protocol. This is most commonly achieved by assuming that some public key infras-

tructure (PKI) is made available to all parties with which they can upload long and short-term

keying material. In two-party communication, and sometimes group messaging, authen-

tication is realised via authenticated key exchange (AKE) that leverages the PKI to securely

establish initial keying material. Due to the combination of long-term and short-term keys

used, key exchange protocols can achieve forward secrecy, including many based on the Diffie-

Hellman key exchange mentioned above, which ensures that exposing long-term keys does

not compromise previously established session keys. Nowadays, many messaging systems use

the Extended Triple Diffie-Hellman (X3DH) protocol [MP16b], a descendent of the 3DH proto-

col [KP05], that provides features including asynchronicity, deniability and forward secrecy,

but notably not post-quantum security, i.e., security in the presence of an adversary equipped

with a quantum computer.4 In group messaging protocols like MLS, rather than performing

pairwise key exchange, parties instead upload keying material to a PKI that is directly used for

authentication, e.g., when new members are added to a group. In addition, given the threat of

state exposure and impersonation attacks that may go undetected, we will argue later on that

it is vital to continuously authenticate the conversation transcript itself.

In this thesis, we view secure messaging in the lens of provable security. In provable security, a

security definition for some primitive or protocol is proposed and its security is reduced to

3This nonetheless degrades to linear overhead in the worst case given a dynamic group in which members
adaptively update their keying material and the common group key over time.

4In 2023, Signal developed and deployed the PQXDH protocol [KS23] that provides security assuming the
adversary can perform active attacks using classical computation and passive attacks using quantum computation.

3

Chapter 1. Introduction

the (conjectured) hardness of mathematical problems like the hardness of factoring or, more

generally, to that of abstract cryptographic building blocks. From initial works on provable

security in the 1980s onwards, starting from the definition of semantic security [GM82], it

has become standard, at least when public-key cryptography is involved, that new construc-

tions are analysed in this framework. Moreover, as the techniques have been more widely

understood and developed, increasingly complex protocols and systems are now analysed in

terms of provable security. In the context of secure messaging, security definitions here are

experiments played between a challenger and an adversary driving protocol execution that

can, among other attacks, expose secret keying material during execution. We therefore adopt

this framework in order to precisely state and prove security properties about the protocols

that we consider in this thesis.

Finally, we observe that works that study secure messaging after authentication often consider

either ratcheted (or continuous) key exchange, or secure messaging proper. Throughout

this thesis, we focus on either secure messaging or continuous key exchange, depending on

context. To build ratcheted key exchange from messaging is straightforward in general as

parties can simply sample fresh keys and send them as (encrypted) application messages. One

has more freedom designing a protocol in the converse direction; for example, MLS employs a

complex key schedule on top of TreeKEM to build group messaging [ACDT21a]. Thus, the two

settings are closely related.

1.2 Contribution

In this section, we outline the main contributions of this thesis contained in Chapters 3 to 6.

Part I of this thesis, entitled Two-Party Communication, comprises of Chapters 3 and 4, and

Part II, entitled Group Messaging, comprises of Chapters 5 and 6. Before these two parts, we

introduce in Chapter 2 some notation and notions we use throughout the thesis. After these

two parts, we summarise and discuss the findings of this thesis in Chapter 7 before concluding.

1.2.1 Part I: Two-Party Communication

The first part of this thesis consists of Chapter 3, which is concerned with two-party authenti-

cated key exchange suitable for messaging, and Chapter 4, which considers the detection of

active attacks in two-party messaging.

K-Waay: Fast and Deniable Post-Quantum X3DH Without Ring Signatures

In Chapter 3, we first consider the problem of authenticated key exchange for bootstrapping

two-party channels which is useful for both two-party and group messaging (e.g., for protocols

that use two-party channels like Sender Keys). Indeed, Signal’s X3DH protocol is widely used

in practice and satisfies several unique requirements that make it suitable for messaging.

4

1.2 Contribution

Apart from asynchronicity, it provides a form of deniability [VGIK20], which in the case of

X3DH allows a party, who is being framed, to deny having participated in a conversation

with their counterpart who is framing them. However, since X3DH essentially consists of

several parallel Diffie-Hellman key exchanges, it does not provide protection against a passive

polynomial-time quantum adversary, and Signal’s recent PQXDH protocol does not protect

against an active quantum adversary.

To rectify this, Brendel et al. [BFG+22b] and Hashimoto et al. [HKKP21, HKKP22] concur-

rently proposed alternate X3DH protocols that protect against even active quantum attackers.

These protocols rely on two-user ring signatures [RST01], or equivalently [HKKP22], a form of

designated-verifier signatures, to achieve authentication while ensuring deniability. At present,

post-quantum instantiations of these primitives are more complex and their security is less

well-understood than primitives like the CRYSTALS-Kyber key encapsulation mechanism

(KEM) [BDK+18] recently standardised by the United States National Institute of Standards

and Technology (NIST) government agency. For example, existing works that rely on random

oracles [BR93] tend not to contain proofs in the quantum random oracle model [BDF+11],

i.e., a random oracle that the adversary can query in superposition. In addition, proposed

parameters for concrete instantiations tend not to be large enough since they tend not to take

the security loss of the security proofs into account as we observe in the chapter.

We propose instead to use a slightly modified variant of the Frodo key exchange proto-

col [BCD+16] to achieve deniable, post-quantum authentication. As such, its security is based

on the vanilla learning-with-errors (LWE) assumption, which is more conservative than using

structured lattices [ANS23]; for this same reason, the German agency BSI chose to recommend

FrodoKEM, a KEM derived from Frodo key exchange, over CRYSTALS-Kyber [BSI23]. In par-

ticular, structured lattices may very well have exploitable weaknesses due to their additional

mathematical structure [Tea21]. To capture this primitive generically, we significantly extend

the security requirements of the split-KEM primitive introduced by Brendel et al. [BFG+20]

as their security notions, as we show, are insufficient for building (deniable) authenticated

key exchange. In more detail, a split-KEM extends KEM in that encapsulation now requires

both a secret key and a public key, and decapsulation uses the corresponding public and

secret keys respectively. We introduce an unforgeability notion for split-KEM, which captures

the difficulty of crafting a ciphertext without any secrets, as well as a notion for deniability,

capturing that split-KEM encapsulation computationally looks the same using either the

intended secret and public keys or the decapsulation keying material as input.

We formalise an X3DH-like AKE protocol that we call K-Waay that uses split-KEM, ephemeral

and long-term KEMs, and signatures which parties use to attest to ephemeral KEM and split-

KEM public keys uploaded to a server to be used asynchronously by a given party’s counterpart.

Our AKE security model, like that of Hashimoto et al. [HKKP21, HKKP22], supports ephemeral

state exposure, although it is weaker than theirs since only the ephemeral-ephemeral portion

of the key exchange (that overall uses both long-term and ephemeral keys) relies on split-KEM.

As we do not model reusable semi-static keys directly, we propose a novel countermeasure in

5

Chapter 1. Introduction

the (quantum) random oracle model to allow for ephemeral key reuse that prevents ephemeral

key exhaustion under adversarial or otherwise extreme conditions. Our deniability notion for

AKE strengthens that of Brendel et al. [BFG+22b] by additionally giving the judge or adversary

the ephemeral state of the receiver. We also benchmark our key exchange protocol and

demonstrate even with our conservative choice of split-KEM instantiation and parameters

which capture the security loss from the proofs, that K-Waay is between 4x and 6x faster than

existing ring signature-based approaches.

On Active Attack Detection in Messaging with Immediate Decryption

In Chapter 4, we then consider two-party messaging proper where parties are assumed to

have successfully completed key exchange (e.g., by using K-Waay). A notable property of

Signal’s Double Ratchet core is that it supports immediate decryption as formalised by Alwen

et al. [ACD19] and achieved by a number of recent academic protocols [ACD19, PP22, BRT23,

CZ24]. That is, protocol execution should natively support receiving messages in different

orders to what they were sent in, as well as fully dropped ciphertexts. This is especially

important in challenging network settings like mesh networking [BRT23] and can also be

useful for efficiency, e.g., the messaging service provider can choose to buffer sent videos for

users.

Given the likelihood of state exposure, active attacks, where the adversary uses the state of a

compromised party and impersonates them, pose a significant threat. Messaging systems,

including Signal via its safety numbers protocol [Mar17], allow parties to compare their long-

term keys out-of-band via QR code or manual comparison. Hence, given the out-of-band

channel provides authenticity, this allows parties to audit the PKI and detect active attacks

affecting these keys. In the event of state compromise, however, the adversary can mount

an active attack and inject application messages, in which case there is no cryptographic

mechanism in place to detect it. Moreover, without an additional assumption or channel, it is

not possible to detect active attacks, since the adversary can block all honest messages sent by

a compromised party and replace them with its own. To alleviate this, some solutions based

on out-of-band communication have been previously proposed, but either do not fully au-

thenticate the conversation transcript [DH21] or have other drawbacks like requiring multiple

rounds of communication and not formally capturing immediate decryption [DGP22].

In contrast, to detect attacks in-band, that is, over the same channel as is used for commu-

nication, RECOVER security was defined by Durak and Vaudenay [DV19] and later extended

by Caforio et al. [CDV21]. RECOVER security allows parties to detect that, if a single honest

message is able to get through after compromise, that active attacks can be detected, even

if the adversary has full knowledge of secret states. More precisely, RECOVER security en-

compasses two complementary notions. First, r-RECOVER guarantees that if Bob receives a

forgery, Bob will reject all subsequent honest messages. Second, s-RECOVER guarantees that

if Bob receives a forgery, his communication partner Alice will reject all messages sent by Bob

after he received the forgery. However, their notions and constructions are not compatible

6

1.2 Contribution

with immediate decryption, and so cannot be readily adopted by systems like Signal.

To remedy these issues, we systematically explore active attack detection for messaging with

immediate decryption in both the in-band and out-of-band settings. For RECOVER security,

we generalise the two notions above to support immediate decryption, and propose a baseline

construction that compiles a messaging scheme into one that is secure under both of our

notions. We also propose two analogous security notions assuming parties have access to

an authentic out-of-band channel, and construct secure schemes in two ways: first, from a

RECOVER-secure messaging scheme, incurring no additional overhead, and secondly, from

any messaging scheme. We then show that in order to satisfy our r-RECOVER notion or

the analogous out-of-band notion, the ciphertext size must grow linearly in the number

of messages sent (and security parameter) assuming unidirectional communication. Our

information-theoretic argument implies that our baseline construction, which attaches all

sent ciphertexts to each ciphertext to achieve r-RECOVER security, is asymptotically optimal.

To bypass this negative result, we argue that s-RECOVER security is comparatively cheaper

to achieve and can be sufficient for practice as it still provides r-RECOVER-like guarantees

(albeit after an honest round-trip). We propose a series of optimisations, where ultimately the

communication overhead of s-RECOVER security is a single hash digest and a few indices (in

proportion to how synchronised parties are). Since s-RECOVER security effectively provides

‘delayed’ r-RECOVER guarantees, we believe that this solution is affordable enough to be

adopted in practice by systems like Signal.

1.2.2 Part II: Group Messaging

The second part of this thesis moves to group messaging: Chapter 5 considers the effects of

group administration on security, and Chapter 6 explores the Sender Keys protocol used by

WhatsApp and Signal.

Cryptographic Administration for Secure Group Messaging

In Chapter 5, we consider a problem that only arises in group messaging, namely group

administration. In practice in a group conversation, one or more group members are generally

afforded more privileges than others. Systems like Telegram offer admins diverse, fine-grained

control over the conversation flow, including disallowing certain types of messages from being

sent. Fundamentally, though, the core of administration, which is what we target here, is

to enforce access control. More precisely, we consider a privileged set of users, the group

administrators (or admins), who solely have the ability to add and remove users from the

conversation.

We observe that many practical protocols do not provide adequate protection for access

control, and in particular the ability to enforce group administration. The burgle into the group

attack [RMS18] allows an adversary to trivially forge messages that add and remove parties

7

Chapter 1. Introduction

from a group, thereby allowing them to completely bypass any cryptography used. This issue

notably affected WhatsApp in particular without the need for any state compromise.5 Similar

attacks have been reported for the federated messaging system Matrix [ACDJ23, ADJ24].

In this chapter, we aim to formalise group administration, which provides a natural mech-

anism to prevent these types of attacks and enable cryptographic access control within a

group. To this end, we start from the recent continuous group key agreement (CGKA) primi-

tive [ACDT20]. In CGKA, a sequence of secrets that can be used for messaging are established

over time by a dynamic group of users. CGKA captures the core of group messaging, and

TreeKEM, which can be cast as a CGKA [ACDT20, ACDT21a], forms the basis of the recently

standardised MLS protocol and largely determines its performance. In addition, MLS is ex-

pected to be increasingly adopted in the future [Hog23, Gie23], and MLS and CGKA have

received much academic attention in recent years [ACDT20, ACJM20, KPPW+21, ACDT21a,

HKP+21, AAN+22b, AJM22, BDG+22, AHKM22, AMT23]. We therefore consider group admin-

istration through the lens of CGKA. We observe that neither previous CGKA protocols, nor

existing work on group messaging in general, captured group administration at the crypto-

graphic level. The closest we are aware of here is the work of Rösler et al. [RMS18] which

considers group administration as a security requirement but does not adopt the provable

security methodology. Consequently, in CGKA protocols in the literature, this renders all group

members formally as group administrators with the same rights.

In this chapter, we introduce administrated CGKA, or A-CGKA, which natively captures admin-

istration and supports the adding, removing and updating of administrators (the latter being

for forward security and post-compromise security). Namely, we extend the (unauthenticated)

CGKA security notion of Alwen et al. [ACDT20] to additionally ensure that only admins can

change the group membership and update admin secrets, even if several non-admin users

are compromised, with the exception that we allow non-admins to update their own keys

and remove themselves. We provide two constructions with different efficiency and security

characteristics that build on top of a CGKA. Our first construction, Individual Admin Signa-

tures (IAS), associates each admin with an evolving signature key pair and requires messages

for admin-exclusive operations to be accompanied by admin signatures. Our second con-

struction, Dynamic Group Signature (DGS), associates the set of admins with a secondary

CGKA, or admin CGKA, following the observation that administration need not be exercised by

individually authenticated administrators. In particular, the admin CGKA is used to manage

the set of admins, where admins use the dynamic CGKA secret to derive common signature

key-pairs that attest to admin operations. The composition of CGKAs employed in DGS may

be of independent interest more generally for managing hierarchies in large-scale messaging.

We then formally prove our two protocols secure. Moving from CGKA to group messaging, we

detail how to integrate IAS-like administration into MLS by leveraging the existing credential

infrastructure in MLS. By extending an existing implementation of MLS, we benchmark the

5We are not aware of any information indicating that the attack has been fixed in WhatsApp [RMS18]. Signal, for
which state exposure was required to mount the attack, has since migrated to a newer private group management
system [CPZ20] that is immune to it.

8

1.2 Contribution

resulting protocol and demonstrate that it (as expected) incurs minimal overhead over MLS

without administration. We finally discuss several directions for future work in both theory

and practice for group administration.

WhatsUpp with Sender Keys? Analysis, Improvements and Security Proofs

In Chapter 6, the final main chapter of this manuscript, we focus on the group messaging

protocol Sender Keys [Mar14] used by applications like WhatsApp and Signal. The core of

Sender Keys is conceptually simple and works as follows. Each group member is associated

with a sender key, which consists of a symmetric chain key ck and a signature public/secret

key pair (spk,ssk). All group members learn each ck and spk corresponding to each group

member via two-party channels (maintained by each pair of group members). To send an

application message, a user hashes ck to derive a pair (ck′,mk), encrypts using mk, signs the

ciphertext and sends it alongside the signature. For forward security, they also delete mk and

replace ck with ck′. Fresh sender keys are shared over two-party channels, and in particular all

sender keys are refreshed whenever a group member is removed from a group.

Despite its practical importance, the protocol had not previously been formally modelled or

described in depth. Rösler et al. [RMS18] previously analysed WhatsApp’s implementation of

Sender Keys which revealed flaws like the aforementioned burgle into the group attack, but

did not provide a full protocol description or general characterisation of its security. While

being more complex, MLS and CGKA protocols have seen more academic attention despite

not yet being widely deployed. Sender Keys nonetheless remains as a practical alternative

to MLS: WhatsApp is able to support billions of daily users and supports up to 1024 users

per group [Wha23]. In addition, while offering logarithmic-sized updates in “good” cases,

sufficiently “bad” and concurrent executions can lead to O(n)-sized update messages, which

is inherent to CGKA at least when using off-the-shelf primitives [BDG+22].

Towards formalising Sender Keys, we first propose a primitive syntax and security model

suitable for the protocol. Our security model parametrises the security of the underlying

two-party channels, which allows us to observe that Sender Keys offers weaker than expected

post-compromise security guarantees. In particular, key refreshes after compromise may not

be secure due to the channels not having fully recovered, which can limit security in practice if

the channels remain stale. We provide a full protocol description based on our understanding

of Sender Keys mainly from WhatsApp’s white paper [Wha20] and Signal’s source code [M+16].

Our protocol also captures key updates without group changes that are implemented by Signal.

We then prove security in our model, in which we have to notably restrict the adversary due to

inherent limitations in Sender Keys. In this, we identify its deficiencies, including insecure

group membership (affecting WhatsApp and to a lesser extent Signal in practice) and a lack of

forward-secure authentication.

To remedy these security issues, we then propose and prove secure a new protocol that we

call Sender Keys+ that improves security without significantly affecting performance, and in

9

Chapter 1. Introduction

particular improves both the efficiency and security of key updates. By comparison to our

baseline Sender Keys protocol, Sender Keys+ now uses signatures to attest to group changes

and adds a message authentication code (or replaces encryption with an AEAD [Rog02]) in

sending and receiving. For updates, first observe that fully recovering from compromise

requires all sender keys to be refreshed, which incurs O(n2) communication for a group with

n members, since each user needs to send a (constant-sized) sender key to all O(n) users

over two-party channels. We observe that, given sufficient synchronisation of parties, that to

update, a user can sample a secret that is then hashed into each chain key, i.e., can update all

sender keys at once, which restores confidentiality (assuming restored two-party channels)

in just O(n) communication (which is optimal). We also provide a theoretical comparison

between Sender Keys(+) and CGKA-based protocols, from which we can conclude that Sender

Keys, and especially Sender Keys+, may be sufficiently secure and performant for many

practical deployments.

10

1.3 List of Works

1.3 List of Works

The following works were produced while the author of this manuscript was working at EPFL.

Works in bold appear in the body of this thesis. Full versions or preprints are also cited where

relevant.

1. Daniel Collins, Loïs Huguenin-Dumittan, Ngoc Khanh Nguyen, Nicolas Rolin, and

Serge Vaudenay. K-Waay: Fast and deniable post-quantum X3DH without ring signa-

tures. USENIX Security 2024. [CHDN+24a, CHDN+24b]

2. David Balbás, Daniel Collins, and Phillip Gajland. WhatsUpp with Sender Keys?

Analysis, improvements and security proofs. ASIACRYPT 2023. [BCG23b, BCG23a]

3. Khashayar Barooti, Daniel Collins, Simone Colombo, Loïs Huguenin-Dumittan, and

Serge Vaudenay. On active attack detection in messaging with immediate decryption.

CRYPTO 2023. [BCC+23a, BCC+23b]

4. Renas Bacho, Daniel Collins, Chen-Da Liu-Zhang, and Julian Loss. Network-agnostic

security comes (almost) for free in DKG and MPC. CRYPTO 2023. [BCLZL23, BCLZL22]

5. David Balbás, Daniel Collins, and Serge Vaudenay. Cryptographic administration for

secure group messaging. USENIX Security 2023. [BCV23, BCV22]

6. Subhadeep Banik, Daniel Collins, and Willi Meier. Near collision attack against Grain V1.

ACNS 2023. [BCM23a, BCM23b]

7. Daniel Collins, Simone Colombo, and Loïs Huguenin-Dumittan. Real world deniability

in messaging. Cryptology ePrint Archive, Paper 2023/403. [CCHD23]6

8. Andrea Caforio, Daniel Collins, Subhadeep Banik, and Francesco Regazzoni. A small

GIFT-COFB: Lightweight bit-serial architectures. AFRICACRYPT 2022. [CCBR22a,

CCBR22b]

9. Hailun Yan, Serge Vaudenay, Daniel Collins, and Andrea Caforio. Optimal symmetric

ratcheting for secure communication. The Computer Journal, 2021. [YVCC23]

10. Andrea Caforio, Daniel Collins, Ognjen Glamočanin, and Subhadeep Banik. Improv-

ing first-order threshold implementations of SKINNY. INDOCRYPT 2021. [CCGB21a,

CCGB21b]

11. Daniel Collins, Rachid Guerraoui, Jovan Komatovic, Petr Kuznetsov, Matteo Monti,

Matej Pavlovic, Yvonne-Anne Pignolet, Dragos-Adrian Seredinschi, Andrei Tonkikh,

and Athanasios Xygkis. Online payments by merely broadcasting messages. DSN 2020

[CGK+20a, CGK+20b]

6This extended abstract was accompanied by a presentation at the IACR conference RWC 2023.

11

2 Preliminaries

In this chapter, we present some preliminary material that is used in subsequent chapters in

this thesis. We first introduce some choices we make for notation and conventions, particularly

describing how we define security. We then introduce some cryptographic primitives that

either appear in several chapters or are otherwise suited to be defined here.

2.1 Notation and Conventions

We denote the empty string by ε and a blank value by ⊥, the latter which we return in case

of algorithm failure. Given a set S, S∗ (respectively Sn) is the set of all strings of arbitrary

length (resp. of length n) whose elements are in S. For two sets S and T , let S
∪←− T denote the

reassignment of S to the set S ∪T , and let S
−←− T denote the reassignment of S to the set S \ T .

Let [n] = {1, . . . ,n}, i.e., the set of integers between 1 and n. Let [a,b] = {a, . . . ,b}, i.e., the set of

integers between a and b. We consider randomised algorithms throughout the thesis: we let

R denote a randomness space. We write s $← S to denote uniformly sampling s from S, and

y $← f (x) to denote running randomised algorithm f with input x and uniform randomness.

Alternatively, we write y ← f (x;r) to denote running f with fixed randomness r . Let 1λ be the

security parameter (here stated in unary), and poly(λ) denotes a polynomial in λ. We denote

the indicator function with respect to boolean P by 1�P�, which is equal 1 if P is true and 0

otherwise.

Alice and Bob. A user, participant, or party is an entity that takes part in a protocol. In Part I

of this thesis (Chapters 3 and 4), we consider primitives that are executed between two parties.

As is common, we refer these two parties as Alice and Bob, or A and B. Let P be one party (A
resp. B) and P be their partner (B resp. A).

In Part II of this thesis (Chapters 5 and 6), we will consider primitives that deal with more

than two parties. Here, users are identified by a unique identity string ID, which is a public

value. Groups are also uniquely identified by a public group identifier gid. We assume these

are known by and agreed upon by all parties for simplicity. The core primitives of study in

13

Chapter 2. Preliminaries

these chapters will be stateful, thus users keep an internal state γ with all information used

for protocol execution. This may include keys, message records, dictionaries and parameters,

among other values.

Security. To capture the security of cryptographic primitives and protocols, we work within

the framework of provable security. In provable security, a security notion is defined as an

experiment played between an adversary, often A , and a challenger, say C , in which A is

tasked to perform some task, such as outputting a forged signature or more generally breaking

some cryptographic primitive in some experiment-dependent sense. The advantage of A

in the experiment will be stated as a probability that is taken over the randomness of the

challenger and adversary. In general, we say a scheme is secure if the advantage of any efficient

adversary is small (we define efficient and small below). Such a claim is proven by reduction

to hardness assumptions (e.g., the hardness of factoring integers) and/or the security of some

cryptographic building blocks (e.g., SUF-CMA security of a signature scheme).

We are interested in both classical and quantum security in this thesis, i.e., security against a

classical or quantum adversary. We denote by an efficient adversary a probabilistic polynomial-

time (PPT) algorithm or quantum polynomial-time (QPT) algorithm, unless explicitly stated

otherwise, where we mean polynomial in the security parameter λ. Our theorem statements

will therefore hold insofar as the underlying assumptions hold and/or building blocks are

secure with respect to a classical or quantum adversary. We consider an advantage to be small

if it is negligible in λ. A function f : N→ R is negligible if for every positive c, there exists

integer Nc such that for all x > Nc , | f (x)| < 1/xc (for our purposes f outputs a probability). We

let negl be a negligible function (in λ, which we omit writing and is implicit). We nonetheless

state our security bounds exactly when proving security, i.e., the advantage of the scheme

being proven secure will be upper bounded by some explicitly stated function of advantages

of other primitives/assumptions and other terms.

Maps. We use maps, or associative arrays, which associate keys with values: m[·] ← x defines a

new map with values initially set to x and m[k] returns the element indexed by key k. Keys are

tuples of any length n ≥ 1. We index maps with integers starting from 1; in this case, m[a : b]

returns the list of elements whose keys are between a and b. We access the element of a

tuple using a dot notation, e.g., γ.k denotes the value k in the tuple γ. The function length(m)

returns the number of keys in map m. All dictionaries can optionally be indexed by an oracle

query q to represent the state of a dictionary at the time q is made, e.g., E[ID; q] denotes the

value of E[ID] at the beginning of query q .

Keywords. In oracles and algorithms, some special predicates are used. The predicate ‘require

P ’ enforces that a logical condition P is satisfied; otherwise the oracle/algorithm finishes

immediately and returns ⊥. The predicate ‘reward P ’ is executed in games and is such that if

P holds, the adversary satisfies a winning condition in a game. Namely, in games where the

advantage is defined by the probability that the adversary outputs 1, a game variable win is

set to 1, and in indistinguishability games the game reveals the bit b ∈ {0,1} to the adversary.

14

2.2 Cryptographic Primitives

The keyword ‘public var’ indicates that the adversary has read access to the variable var. The

prefix operator Alg(++x), is equivalent to writing first x ← x +1 and then Alg(x). Algorithms,

oracle names and cryptographic parameters are denoted in sans-serif font.

(Quantum) Random Oracle Model. Some of our results will hold in the random oracle model

(ROM) [BR93] or the quantum random oracle model (QROM) [BDF+11]. A random oracle is a

uniformly random function, say H , associated with some input and output space. In the ROM

or QROM, the adversary’s queries are visible to whichever entity (the challenger or some other

adversary, for example) is controlling the random oracle. In the QROM, the adversary can

query the random oracle in superposition. That is, the adversary provides a quantum state as

input, say |φ〉 =∑
αx |x〉, and the quantum random oracle returns the evaluated state, in this

case
∑
αx |H(x)〉.

2.2 Cryptographic Primitives

We introduce some core cryptographic primitives, including their syntax as well as correctness

and security notions where appropriate, which we invoke throughout this thesis as needed.

2.2.1 Key-Encapsulation Mechanism (KEM)

Definition 1 (KEM). A KEM KEM is a tuple of three efficient algorithms (KeyGen,Encaps,Decaps)

defined as follows:

• (pk,sk) $←KeyGen(1λ): The key generation function takes the security parameter λ as

input, and outputs a pair of public/secret keys (pk,sk).

• K ,ct $← Encaps(pk): The encapsulation function takes a public key pk as input, and

outputs a ciphertext ct and a key K .

• K /⊥←Decaps(sk,ct): The decapsulation function takes a secret key sk and a ciphertext

ct as inputs, and outputs a key K or the error symbol ⊥.

Finally, we say a KEM is (1−δ)-correct if

Pr

K ̸= K ′ :

(pk,sk) $←KeyGen(1λ);

K ,ct $←Encaps(pk);

K ′ ←Decaps(sk,ct)]

≤ δ .

Definition 2 (KEM Indistinguishability). We consider the games defined in Figure 2.1. Let

K be a finite key space. A KEM scheme over K KEM= (KeyGen,Encaps,Decaps) is IND-CPA

(resp. IND-CCA) if for any efficient adversary A with no access to the decapsulation oracle

15

Chapter 2. Preliminaries

(respectively any efficient adversary A) we have

Advind-cpa/cca
KEM (A) :=

∣∣∣∣Pr[IND-CPA/CCAKEM(A) ⇒ 1]− 1

2

∣∣∣∣= negl .

where Pr[IND-CPA/CCAKEM(A) ⇒ 1] is the probability that A wins the

IND-CPA/CCAKEM(A) game defined in Figure 2.1.

Game IND-CPA/CCAKEM(A)

1 : b $← {0,1}

2 : (pk,sk) $←KeyGen(1λ)

3 : (ct∗,K0) $←Encaps(pk)

4 : K1
$←K

5 : b′ $←A DEC(pk,ct∗,Kb)

6 : return 1�b′ = b�

Oracle DEC(ct)

1 : if ct= ct∗ : return ⊥
2 : K ′ ←Decaps(sk,ct)

3 : return K ′

Figure 2.1: Indistinguishability games for KEM. In the IND-CPA game, the adversary cannot
query DEC.

2.2.2 Signatures

Definition 3. A signature scheme is a tuple of three efficient algorithms (KeyGen,Sign,Vrfy):

• (pk,sk) $←KeyGen(1λ): The key generation function outputs a pair of keys.

• σ $← Sign(sk,m): The signing function takes as inputs a secret key sk and the message to

sign m, and it outputs a signature σ.

• 0/1 ←Vrfy(pk,m,σ): The verification function takes as inputs a public key pk, the signed

message m, and the signature σ, and it outputs either 0 or 1 (for failure and success,

respectively).

Finally, we say a signature scheme is (1−δ)-correct if for all messages m:

Pr

[
Vrfy(pk,m,σ) = 0 :

(pk,sk) $←KeyGen(1λ);

σ← Sign(sk,m)

]
≤ δ

Definition 4 (SUF-CMA Security). We consider the game shown in Figure 2.2. We say a

signature scheme Sig is SUF-CMA if for all efficient adversaries A , we have

Advsuf-cma
Sig (A) := Pr[SUF-CMASig(A) ⇒ 1] = negl .

16

2.2 Cryptographic Primitives

Game SUF-CMASig(A)

1 : L ←;
2 : (pk,sk) $←KeyGen(1λ)

3 : m∗,σ∗ $←A SIGN(pk)

4 : return 1�Vrfy(pk,m∗,σ∗) and (m∗,σ∗) ̸∈ L�

Oracle SIGN(m)

1 : σ $← Sign(sk,m)

2 : L ← L∪ {(m,σ)}

3 : return σ

Figure 2.2: SUF-CMA game.

2.2.3 Pseudorandom Function (PRF)

We introduce security notions for a pseudorandom function (PRF) and two generalisations,

namely dual PRF and triple PRF. For these, we consider functions of the form F : K ℓ×D → R,

i.e., that map ℓ ≥ 1 keys in K and a value in a domain D to a value in a range R. For such

a function, we are interested in the security of F as a PRF when the i -th argument acts as

the PRF key for all i ∈ [1,ℓ]. Thus, we will consider the ℓ inputs to the function from the

perspective of the caller as the ℓ−1 other values in K and the D inputs, and use the notation

Fi as shorthand to indicate this. In fact, our notions match Giacon et al.’s formulation of a

split-key PRF [GHP18].

Definition 5 (PRF). Let F : K ×D → R be a function. We consider the game shown in Figure 2.3.

We say that F is a secure PRF if, for all efficient adversaries A , we have

Advprf
F (A) :=

∣∣∣∣Pr[PRFF (A) ⇒ 1]− 1

2

∣∣∣∣= negl .

Definition 6 (Dual PRF). Let F : K ×K ×D → R be a function. We consider the game shown

in Figure 2.3. We say that F is a secure dual PRF or 2PRF if, for all efficient adversaries A , we

have

Adv2prf
F (A) := max

i∈{1,2}

∣∣∣∣Pr
[
PRFFi (A) ⇒ 1

]− 1

2

∣∣∣∣= negl .

where Fi denotes F keyed in its i -th argument for i ∈ {1,2}.

Definition 7 (Triple PRF). Let F : K ×K ×K ×D → R be a function. We consider the game

shown in Figure 2.3. We say that F is a secure triple PRF or 3PRF if, for all efficient adversaries

A , we have

Adv3prf
F (A) := max

i∈{1,2,3}

∣∣∣∣Pr
[
PRFFi (A) ⇒ 1

]− 1

2

∣∣∣∣= negl .

where Fi denotes F keyed in its i -th argument for i ∈ {1,2,3}.

Observe the difference between our notion of dual PRF and the dual PRF introduced by

Bellare [Bel06], which is a function F : K1 ×K2 → R and PRF when keyed from either K1 or K2

(the latter referred to as the swap PRF case).

17

Chapter 2. Preliminaries

Game PRFF (A)

1 : Sample random function G : K ℓ−1 ×D → R

2 : k $←K

3 : b $← {0,1}

4 : b′ $←A EVAL

5 : X ←;
6 : return 1�b′ = b�

Oracle EVAL(a1, . . . , aℓ)

1 : require aℓ ̸∈ X

2 : X ← X ∪ {aℓ}

3 : if b = 0

4 : return Fk (a1, . . . , aℓ)

5 : else

6 : return G(a1, . . . , aℓ)

Figure 2.3: PRF game for function Fk taking ℓ arguments a1, . . . , aℓ as input where a1 ∈
K , . . . , aℓ−1 ∈K and aℓ ∈ D .

2.2.4 Hash Function

Definition 8. A hash function H consists of efficient algorithms KGen and Eval such that:

• hk $←KGen(1λ): The key generation function outputs a hash key hk.

• h ←Eval(hk,pt): The evaluation function takes as inputs a hash key hk and a message

pt ∈ {0,1}∗ and outputs digest h.

Definition 9 (Collision Resistance). We consider the game in Figure 2.4. We say that a hash

function H is collision resistant if, for all efficient adversaries, we have

Advcr
H(A) := Pr[CRH(A) ⇒ 1] = negl .

Game CRH(A)

1 : hk←KGen(1λ)

2 : (m1,m2) ←A (hk)

3 : return 1�H.Eval(hk,m1) =H.Eval(hk,m2)∧m1 ̸= m2�

Figure 2.4: Collision resistance of a hash function H.

2.2.5 Incremental Set Hash Function

Clarke et al. [CDv+03] define incremental multiset hash functions and multiset collision

resistance. That is, a hash function which takes a set of elements as input, where the digest

can be updated with an operation with complexity proportional to the number of elements

added/removed. For our purposes (i.e., in Chapter 4), it suffices to consider an incremental set

hash function and set collision resistance.

Definition 10. An incremental set hash function H consists of the following efficient algo-

rithms:

18

2.2 Cryptographic Primitives

• hk $← IncGen(1λ): The key generation function outputs a hash key hk.

• hS ← IncEval(hk,S = {m1, . . . ,mk }): The evaluation function for a set of messages takes a

hash key hk and set S and outputs digest hS .

• hS∪Sh ← IncEval(hk,h,Sh = {m′
1, . . . ,m′

k ′},S = {m1, . . . ,mk }): The evaluation function for

a set of messages and digest takes as input a hash key hk, digest h, set Sh (associated

with h) and set S and outputs a digest hSh∪S .

An incremental hash function is correct if for all hk $← IncGen(1λ) and non-empty S ←
{m1, . . . ,mk } it holds that

IncEval(hk,S) = h′ ,

where h′ ← IncEval(hk,h,Sh ,S′), Sh ∪ S′ = S, Sh ∩ S′ = ; and h is the result of either 1) a

call IncEval(hk,Sh) or 2) a call IncEval(hk,S1) and one or more calls to IncEval(hk, ·,S2,S3) for

disjoint sets S1,S2,S3 ⊂ Sh s.t. each pair of sets S2 and S3 is strictly increasing in cardinality

and the last call is s.t. S2 ∪S3 = Sh .

Definition 11 (Set Collision Resistance). Consider the game defined in Figure 2.5. A family of

incremental set hash function H is set collision resistant, if for any efficient adversary, we have

Advscr
H (A) := Pr[SCRH(A) ⇒ 1] = negl .

Game SCRH(A)

1 : hk $←H.IncGen(1λ)

2 : (S1 = {mi }i ,S2 = {m′
j } j) $←A (hk)

3 : return 1�H.IncEval(hk,S1) =H.IncEval(hk,S2)∧ (S1 ̸= S2)�

Figure 2.5: Set collision resistance of an incremental set hash function H.

We refer the reader to Clarke et al. [CDv+03] for more details about incremental set hash

functions.

2.2.6 Symmetric Encryption

Definition 12 (Symmetric Encryption). A symmetric encryption scheme SymEnc :=
(Gen,Enc,Dec) is a tuple of efficient algorithms such that:

• k $←Gen(1λ): Given the security parameter 1λ (encoded in unary) the generation algo-

rithm returns a key k ∈K .

• c $← Enc(k,m): Given a key k and a message m, the encryption algorithm returns a

ciphertext c.

19

Chapter 2. Preliminaries

• m ← Dec(k,c): Given a key k and a ciphertext c, the decryption algorithm returns a

message m.

For simplicity of exposition, we model Enc as probabilistic rather than explicitly modelling

input initialisation vectors (we therefore implicitly assume they are sampled randomly and

appended to the ciphertext where relevant). We say that SymEnc is correct if for any message

m ∈M and any key k ∈K it holds that,

Pr

[
Dec(k,c) = m

∣∣∣∣∣ k $←Gen(1λ)

c $←Enc(k,m)

]
= 1,

where the probability is taken over the random coins of Enc, and M and K denote the

message space and key space respectively.

Definition 13 (SymEnc IND-CPA Security). We consider the game in Figure 2.6. We say

that a symmetric encryption scheme SymEnc is secure under chosen plaintext attacks, or is

IND-CPA, if, for all efficient adversaries A , we have

Advind−cpa
SymEnc(A) := ∣∣Pr[IND-CPASymEnc,1(A) ⇒ 1]−Pr[IND-CPASymEnc,0(A) ⇒ 1]

∣∣= negl.

Game IND-CPASymEnc,b(A)

1 : k $← SymEnc.Gen(1λ)

2 : m0,m1 ←⊥
3 : (m0,m1,st) ←A ENC

4 : require |m0| = |m1|
5 : c∗ $←Enc(k,mb)

6 : b′ ←A (c∗,st)

7 : return b′

Oracle ENC(m)

1 : c $←Enc(k,m)

2 : return c

Figure 2.6: IND-CPA security for symmetric encryption scheme SymEnc.

Definition 14 (PRG Security of H). We consider the game in Figure 2.7. Let H be a function

H : S →W ×K . We say that H is a secure PRG if, for all efficient adversaries A , we have

Advprg
H (A) :=

∣∣∣∣Pr[PRGH(A) ⇒ 1]− 1

2

∣∣∣∣= negl .

Definition 15 (Message Authentication Code). A message authentication code

(MAC.Gen,MAC.Tag,MAC.Vrfy) is a tuple of efficient algorithms as follows:

• k $← Gen(1λ): The generation algorithm takes as input the security parameter 1λ (en-

coded in unary) and outputs a key k ∈K .

20

2.2 Cryptographic Primitives

Game PRGH(A)

1 : b $← {0,1}

2 : b′ ←A ROR

3 : return 1�b = b′�

Oracle ROR
1 : if b = 0 :

2 : (w,k) $← {0,1}λ× {0,1}λ

3 : if b = 1 :

4 : s $← {0,1}λ

5 : (w,k) ←H(s) ∈ {0,1}λ× {0,1}λ

6 : return (w,k)

Figure 2.7: Pseudorandom generator (PRG) security for H.

• τ $←Tag(k,m): The tag generation takes as inputs a key k and a message m, and outputs

a tag τ.

• b ←Vrfy(k,m,τ): The verification algorithm takes as inputs a key k, a message m and a

tag τ and outputs a bit b ∈ {0,1}.

We say that MAC is correct if for any message m ∈M and any key k ∈K it holds that

Pr

[
Vrfy(k,m,τ) = 1

∣∣∣∣∣ k $←Gen(1λ)

τ $←Tag(k,m)

]
= 1,

where the probability is taken over the random coins of Tag, and M and K denote the

message space and key space respectively.

Definition 16 (MAC SUF-CMA Security). We consider the game in Figure 2.8. Let MAC be a

message authentication scheme. We say that MAC satisfies strong existential unforgeability if,

for all efficient adversaries A , we have

Advsuf-cma
MAC (A) := Pr[SUF-CMAMAC(A) ⇒ 1] = negl .

Game SUF-CMAMAC(A)

1 : k $←MAC.Gen(1λ)

2 : Q ←;
3 : (m, t) ←A TAG

4 : return 1�(m, t) ̸∈Q ∧MAC.Vrfy(k,m, t) = 1�

Oracle TAG(m)

1 : τ $←MAC.Tag(k,m)

2 : Q ←Q ∪ {m,τ}

3 : return τ

Figure 2.8: SUF-CMA security for message authentication code MAC.

21

Part ITwo-Party Communication

23

3 K-Waay: Fast and Deniable Post-
Quantum X3DH Without Ring Signa-
tures

In this chapter, we propose a deniable, post-quantum authenticated key exchange proto-

col that we call K-Waay that can be used in place of Signal’s X3DH protocol [MP16b]. An

extended abstract corresponding to this work appeared at USENIX Security 2024, and was

joint work with Loïs Huguenin-Dumittan, Ngoc Khanh Nguyen, Nicolas Rolin and Serge

Vaudenay [CHDN+24a].

The author of this thesis was the primary contributor to the following parts of this work: the

deniable authenticated key exchange primitive, key indistinguishability security model and

definition of deniability, protocol description and protocol security proofs. The author further

contributed to several other parts of this work in various capacities. Moreover, this work was

the result of many hours of discussion and collaboration, and so it is difficult to attribute

precisely here. The contents of the full version of this paper is nonetheless included in this

thesis for comprehensibility and completeness.

3.1 Contribution

Researchers for several years now have sought to build cryptographic primitives and protocols

that are resistant to efficient quantum attacks [Sho94]. This is highly evidenced with the NIST

Post-Quantum Cryptography competition for standardising quantum-safe key encapsula-

tion mechanisms (KEM) and signatures, organised by the United States National Institute of

Standards and Technology (NIST). Recently, four schemes were selected by NIST for standard-

isation, out of which three rely on algebraic lattices. Indeed, with the US National Security

Agency releasing their new CNSA 2.0 Suite [US], which says that CRYSTALS-Kyber [BDK+18]

and CRYSTALS-Dilithium [DKL+18] should be the main cryptographic force for communica-

tion security beginning from 2030, lattices are a natural candidate for building more advanced

cryptographic primitives, such as secure messaging.

The widely used Signal protocol for secure messaging as currently deployed is not quantum-

safe since it is based on Diffie-Hellman key exchange [DH76]. The protocol, used in ap-

25

Chapter 3. K-Waay: Fast and Deniable Post-Quantum X3DH Without Ring Signatures

plications like Signal and WhatsApp, comprises two components, namely (1) the X3DH

key exchange [MP16b] which is used to bootstrap sessions of (2) the Double Ratchet mes-

saging protocol [PM16]. The Double Ratchet has been investigated in a line of recent

works [ACD19, BFG+22a, CJSV22] that each neatly abstract the protocol into primitives like

so-called continuous key agreement. Fortunately, these primitives have post-quantum (PQ)

instantiations that leaves the core structure and resulting security guarantees of the Double

Ratchet in place.

In standard X3DH, parties use a mixture of ephemeral (one-time), semi-static (many-time but

temporary) and long-term keys. First, parties upload their keying material to a central server

or public key infrastructure in a so-called prekey bundle. A party can then derive a session

key by downloading their partner’s bundle and performing three (or four) Diffie-Hellman key

exchanges with a mixture of ephemeral and long-term (resp. plus semi-static) keys, ensuring

at least confidentiality if the ephemeral or long-term key of each party is corrupted.

Observe that X3DH does not use signatures after signed prekeys are uploaded: at that point,

the DH exchanges provide (implicit) authentication guarantees. Consequently, the proto-

col provides a level of deniability [DNS04, DGK06, UG15] as was formalised by Vatandas et

al. [VGIK20]: informally, a participant can deny having performed key exchange with its coun-

terpart. This is an important privacy guarantee that prevents (at least on a cryptographic level)

a conversation transcript from incriminating an unsuspecting party, particularly in situations

like whistleblowing and protesting.

In 2023, Signal announced and rolled out their initial hybrid post-quantum key exchange

solution called PQXDH [KS23]. Like in X3DH, several Diffie-Hellman key exchanges are

performed at once, but in PQXDH, parties upload prekey bundles that also contain a Kyber-

1024 public key that the initiator additionally encapsulates to the responder with. Moreover,

prekey bundles are still signed with the same signature scheme as regular X3DH based on

Curve25519 [Ber06]. Although PQXDH provides post-quantum confidentiality [BJKS23a],

which is an important first step towards post-quantum security as it prevents “store-now-

decrypt-later” attacks, it does not provide post-quantum authentication as an active quantum

attacker can trivially forge pre-key bundles. It is thus prudent to design a suitable X3DH

alternative that is fully post-quantum secure.

A natural direction for building such a protocol is to emulate X3DH’s structure by replacing

Diffie-Hellman key exchange with a cryptographic group action, such as CSIDH [CLM+18]. In

order to broadly capture this protocol structure, Brendel et al. [BFG+20] introduce a primitive

called split-KEM that captures the symmetry of e.g. Diffie-Hellman. In a split-KEM, a party A
encapsulates to their partner B by using their own secret skA and their partner’s public key

pkB to produce a ciphertext; B then decapsulates it using skB and pkA. The authors define

indistinguishability-based security notions and notice that Frodo [BCD+16] lattice-based

key-exchange fulfills the split-KEM syntax and the weakest notion of indistinguishability they

26

3.1 Contribution

define.1 Although they present an X3DH-like protocol, they do not define a security model,

and, looking ahead, their split-KEM security notions do not suffice to construct X3DH-like key

exchange with authenticity and deniability.

In two recent works, Hashimoto et al. [HKKP21, HKKP22] and Brendel et al. [BFG+22b] concur-

rently proposed instead to construct X3DH-like key exchange using KEMs directly. Since a core

feature of X3DH is its asynchronicity, a challenge-response protocol cannot be employed using

KEMs alone to provide authentication [SSW20]. Thus to ensure deniability, two seemingly

different approaches were proposed: Hashimoto et al. [HKKP21] apply ring signatures while

Brendel et al. [BFG+22b] use a flavour of designated verifier signatures; these primitives were

later shown to be equivalent [HKKP22].

As described in the aforementioned works, the currently most efficient post-quantum ring

signatures [Beu20, ESZ22, LAZ19, LN22, YEL+21] are proven to be secure in the random oracle

model (ROM) [BR93] and can enjoy signatures that are a handful of kilobytes large. Often,

however, the constructions do not come with a security proof in the quantum random oracle

model (QROM) [BDF+11]. In this vein, parameters are generally optimistically chosen as the

security loss incurred by proofs in the ROM is not taken into account when setting them,

without even mentioning QROM loss, which is usually much larger. Further, security notions

can differ between works, making it less clear exactly when they are appropriate for use.

More generally, it is of interest to determine the cost (or overhead) that deniability incurs in

(X3DH-like) key exchange. Towards this goal, Hashimoto et al. [HKKP22] provide benchmarks

for their baseline, non-deniable X3DH-like protocol based on signatures and KEMs, and

Brendel et al. [BFG+22b] consider parameter sizes for (but do not benchmark) existing ring

and designated verifier signatures. As such, a more fine-grained and detailed evaluation will

help inform practitioners on the overhead incurred by deniability in the post-quantum setting.

While the use of ring signatures to build PQ and deniable X3DH is at least theoretically

understood, this far from exhausts the protocol design space. Motivated by this and the

above discussion, we therefore ask the following research question:

• Can we design a provably-secure, efficient and deniable post-quantum X3DH alternative

that does not require ring signatures?

3.1.1 Summary

In this chapter, we propose an efficient, deniable and post-quantum X3DH-like protocol

without ring signatures that we call K-Waay. To summarise our contributions:

• Towards building our protocol, we revisit the split-KEM formalism proposed by Brendel

1The construction can conceptually be seen as instantiating the lattice-based cryptographic group action of
Beullens [Beu20].

27

Chapter 3. K-Waay: Fast and Deniable Post-Quantum X3DH Without Ring Signatures

et al. [BFG+20] and deduce that several additional properties, namely notions of authen-

ticity and deniability, are needed to construct a secure X3DH-like deniable authenticated

key exchange protocol (DAKE) (Section 3.2).

• We propose K-Waay, an X3DH-like DAKE that uses deniable and unforgeable split-KEM

at its core (Section 3.4). Our protocol uses signatures to sign prekeys, and then uses

ephemeral KEM, long-term KEM and split-KEM for the final key exchange step. We

compare the security of our protocol with the state-of-the-art in Table 3.1.

• The main drawback of a naive version of our protocol is that parties can run out of

ephemeral keys, thus making the protocol synchronous if this happens (e.g. Bob needs

to wait for Alice’s fresh ephemeral key before sending a message). While such a problem

would rarely occur in practice, given enough keys are uploaded on the server, we propose

a simple trick that makes the reuse of ephemeral keys possible on the receiver’s side for

messages they received while offline. We think this trick could be of independent interest

as it – perhaps surprisingly – allows for a specific kind of key reuse for a split-KEM that is

not IND-CCA secure.

• We prove key indistinguishability in our model that captures ephemeral key reuse and

session state exposure, and prove a variant of deniability that strengthens the notion

of Brendel et al. [BFG+22b] by additionally leaking the victim’s session state to the

adversary in the security game.

• We instantiate a post-quantum split-KEM secure under our new security notions de-

rived from the Frodo key exchange protocol (FrodoKEX) [BCD+16] based on the plain

LWE assumption. The parameters we chose provide strong security guarantees, pro-

viding more than 192 bits of classical and quantum security for our core split-KEM

security notions OW-CPA, decaps-CPA and deniability. We then use a transform in the

(Q)ROM to prove it UNF-1KCA and IND-1BatchCCA (i.e., our new unforgeability and

indistinguishability definitions for split-KEM). This construction incurs a security loss

as usual in the (Q)ROM, but our final split-KEM still provides around 128 (resp. 64) bits

of security in the ROM (resp. QROM) assuming the adversary is limited to 264 (resp.

quantum) random oracle queries.

• We benchmark our protocol K-Waay using our modified version of FrodoKEX (which

we call FrodoKEX+) as the split-KEM, along with standard X3DH and the two previous

proposals for PQ X3DH-like AKE [HKKP22, BFG+22b] (Section 3.6). We find that while

K-Waay has larger prekeys, it is 6× faster compared to these. In addition, the only

non-standard primitive we use in K-Waay (FrodoKEX+) is based on both an assumption

(LWE) and a scheme (FrodoKEM) that have been thoroughly scrutinised by the cryp-

tographic community. Overall, we believe our protocol is more mature and therefore

suitable for short to medium-term integration compared to previous work based on

ring signatures.

28

3.1 Contribution

Protocol PQ Conf PQ Auth KCI FS SSR RR Deniability
X3DH [MP16b, CCD+20] ✗ ✗ ✓ PFS ✓ ✓ Malicious
PQXDH [KS23, BJKS23a] ✓ ✗ ✓ PFS ✗ ✗ Semi-honest+
KEM+Sigs [HKKP22] ✓ ✓ ✓ PFS ✓ ✗ ✗

HKKP [HKKP22] ✓ ✓ ✓ WFS ✓ ✗ Semi-honest
SPQR [BFG+22b] ✓ ✓ ✓ WFS ✗ ✓ Semi-honest
K-Waay (Section 3.4) ✓ ✓ ✓ WFS ✓ ✗ Semi-honest

Table 3.1: Comparison between different security properties proven for existing X3DH-like
key exchange protocols, namely post-quantum confidentiality (PQ Conf), authentication (PQ
Auth), resistance to key-compromise impersonation attacks when long-term keys are exposed
(KCI), perfect forward secrecy (PFS) or weak forward secrecy (WFS) [Kra05], session state reveal
(SSR), randomness reveal (RR) and deniability (where the judge/adversary is either honest-but-
curious or is malicious and can inject messages). Protocols can be generically strengthened
to handle randomness reveal by standard application of the so-called NAXOS trick [LLM07].
“KEM+Sigs” refers to the non-deniable baseline X3DH-like protocol proposed by Hashimoto et
al. [HKKP21, HKKP22], and “HKKP” refers to their deniable X3DH protocol without NIZKs
(their protcool with NIZKs implies maliciously-secure deniability w.r.t. a classical adversary).
The security of PQXDH is based on the recent analysis of Bhargavan et al. [BJKS23a] except
that Kret and Schmidt argue it also provides at least semi-honest deniability [KS23].

3.1.2 Technical Overview

X3DH-like Key Exchange. A quantum-secure X3DH-like protocol should satisfy certain prop-

erties. Apart from satisfying standard authenticated key exchange (AKE) properties like secrecy

and authentication, it should also be asynchronous. That is, parties should be able to upload

keying material to a central server, after which an initiating party can derive a session key

immediately with their counterpart who may be offline. This also entails receiver-obliviousness,

using the language of Hashimoto et al. [HKKP22], as the initial key upload should not depend

on the keys of any other party. Another is deniability, allowing parties to claim that they

plausibly did not participate in the key exchange. Note that we cannot possibly ensure that

parties can claim that they never uploaded prekeys as they are signed (and using primitives

like ring signatures would violate receiver-obliviousness). Finally, a deniable authenticated

key exchange protocol, or DAKE, should, like X3DH, provide security guarantees even if the

session state of a party is leaked.

Revisiting Split-KEM. In an attempt to model the primitive central to X3DH-like AKE, Brendel

et al. [BFG+20] introduced split-KEM, which is similar to a standard KEM except the encap-

sulator can contribute to the derived key. However, we discovered that the accompanying

security definitions were not sufficient to use such a primitive as the main component of a key

exchange protocol. The reason is that their notions ensure that an encapsulated ciphertext

will not leak information on its encapsulated key, but not that only the sender can send a “le-

gitimate” ciphertext to the receiver (or that only the sender and receiver can derive a common

key). In other words, there is no guarantee of implicit authentication. Therefore, we introduce

29

Chapter 3. K-Waay: Fast and Deniable Post-Quantum X3DH Without Ring Signatures

Alice (lpkB,vkB)

(eskskem
A ,epkskem

A) $←KeyGenAsKEM

Kℓ,ctℓ $←EncapsKEM(lpkB)

K skem
e ,ctskem

e
$←EncapssKEM(epkskem

B ,eskskem
A)

K kem
e ,ctkem

e
$←EncapsKEM(epkkem

B)

K ←KDF(Kℓ,K skem
e ,K kem

e)

Bob (lpkA,vkA)

(eskskem
B ,epkskem

B) $←KeyGenBsKEM

(eskkem
B ,epkkem

B) $←KeyGenKEM

K ′
ℓ

← DecapsKEM(lskB,ctℓ)

K ′
e
skem ← DecapssKEM(epkskem

A ,eskskem
B ,ctskem

e)

K ′
e
kem ← DecapsKEM(eskkem

B ,ctkem
e)

K ′
ℓ

?= ⊥ ∨ K ′
e
skem ?= ⊥ ∨ K ′

e
kem ?= ⊥

K ′ ← KDF(K ′
ℓ

,K ′
e
skem,K ′

e
kem)

{epkskem
A }skA{epkskem

B ,epkkem
B }skB

ctℓ,ctskem
e ,ctkem

e

Figure 3.1: High-level overview of the K-Waay protocol. Values in brackets {·}sk are signed
with sk and the signature is verified upon reception. For clarity, we omit the calculation and
addition of session identifier sid to KDF.

the notion of unforgeability against one known-ciphertext attacks for split-KEM (UNF-1KCA),

which ensures that if Alice receives a message allegedly sent by Bob, either Bob really sent

it or the decapsulation will fail. Looking ahead, this will be used in the security proof of the

protocol to argue that either the adversary relayed a legitimate split-KEM ciphertext to the

receiver that the adversary cannot learn the decapsulation of, or the receiver aborts as the

ciphertext is forged.

We also introduce an intermediary notion that we call decaps-CPA, which enforces that an

adversary should not be able to recover a key decapsulated by some party without knowing the

sender’s or receiver’s secret key. We will prove that our lattice-based split-KEM satisfies this

notion, then we will apply some transform in the (Q)ROM to obtain a UNF-1KCA split-KEM.

Finally, we also define a notion capturing deniability for split-KEM, which states that no judge

J can be convinced that a party A sent a given ciphertext to B, even knowing B’s secret key

but assuming both parties did not deviate from the protocol. This models a setting where B
communicates with A and later tries to frame the latter by giving the transcript and their own

secret key to J .

Construction. As any X3DH-like protocol, our construction works in 4 phases: long-term

key generation, prekey generation, sending and receiving. The first observation we make is

30

3.1 Contribution

that in X3DH, prekey bundles are signed with a long-term signing key before being uploaded

to the server. This fact is often abstracted away in formal analyses as it hurts the claims one

can make about the deniability of X3DH: as a signature is undeniable by definition, users

cannot deny they participated in the protocol. Based on this, our goal was to achieve some

level of peer-deniability [CF11], where parties can deny they communicated with someone

in particular, and to leverage the fact that we use signatures to authenticate the prekeys. Our

protocol works then as follows (see Figure 3.1 for a high-level overview). The long-term key

pair consists of a KEM and signature key pair, the latter being used to sign the prekey, which

consists of an ephemeral KEM key pair and ephemeral split-KEM key pair. The former is

used for forward secrecy while the second is used for implicit authentication of the sender.

Although usually ephemeral keys cannot be used for authentication as they are dynamic, in

our case we can since they are authenticated (i.e., signed) by their owner. Then, the sender

encapsulates against both KEM public keys of the receiver, and uses their own split-KEM

secret key and the receiver’s public key to derive a split-KEM ciphertext. Upon decapsulation,

the receiver recovers the three encapsulated keys and combines them using a PRF to derive

the shared key.

Ephemeral Split-KEM Key Reuse. The way our protocol is described above works perfectly

well if the split-KEM satisfies the UNF-1KCA unforgeability notion mentioned above. However,

in practice, it could happen that some party, say Bob, is offline for too long and all their

ephemeral split-KEM keys have been used. If that occurs, another sender would have to wait

for Bob to come online and upload new keys before they can send him a message.

We fix this issue by modifying the protocol as follows: when Bob’s ephemeral public keys have

run out on the server, a sender can simply reuse one of them. Then, when Bob is back online,

he groups the ciphertexts corresponding to the same public key and decrypts all ciphertexts in

a group at once. If one or more of the split-KEM decapsulations in a group fails, Bob outputs

⊥ for all ciphertexts and, e.g., restarts the protocol. Otherwise, Bob proceeds as before (and

never decapsulates again using the same split-KEM key).

DAKE Modelling. To formally capture ephemeral key reuse, our DAKE syntax includes an

algorithm BatchReceive that takes as input a session state and one or more messages to be

received. Our key indistinguishability notion therefore has to account for BatchReceive, and so

we extended the typical Bellare-Rogaway-style modelling [BR94] to this end (ignoring this, our

model combines aspects of the models of Hashimoto et al. [HKKP21, HKKP22] and Brendel

et al. [BFG+22b]). In particular, our notion of partnering between sending and receiving

sessions is such that a given sending session can be partnered with several receiving sessions.

Partnered sessions, in turn, are used when defining trivial attacks that our protocol (and often,

but not always any protocol) cannot prevent (e.g., the adversary exposing both the session

and long-term state of the receiver) as well as correctness checks. The adversary’s challenge

query, i.e., the query that returns to them either a real or random key, returns a single key,

which in the case of BatchReceive corresponds to only part of its output.

31

Chapter 3. K-Waay: Fast and Deniable Post-Quantum X3DH Without Ring Signatures

Security. We show this version of the protocol is secure assuming the split-KEM satisfies

a stronger notion than IND-CPA that we call IND-1BatchCCA (in addition to UNF-1KCA
security). This definition is the same as traditional IND-CPA (adapted to the split-KEM

syntax), except the adversary can query a decapsulation oracle once with multiple public keys

and ciphertexts, and the oracle returns ⊥ if one or more of the decapsulations failed, and the

resulting keys otherwise. We show that one can easily build an IND-1BatchCCA split-KEM

out of a CPA-secure one in the (Q)ROM, conveniently using the same transform mentioned

above that builds a UNF-1KCA scheme out of a decaps-CPA one.

As in previous protocols [BFG+22b, HKKP22], the long-term KEM provides implicit authen-

tication of the receiver as only they can decrypt. As mentioned above, the ephemeral KEM

provides forward secrecy, and the UNF-1KCA/IND-1BatchCCA split-KEM provides implicit

authentication of the sender, as it guarantees that only the sender could have sent a ciphertext

that correctly decapsulates (unforgeability), and no adversary knows what is inside that ci-

phertext (indistinguishability), even after seeing the decapsulation of one batch of ciphertexts

encapsulated against the same public key (given no decapsulation failed). We note that the

sender-to-receiver authentication depends both on a long-term key (i.e., the signing key) and

an ephemeral one (the split-KEM key). Consequently, our model (that allows session state

exposure) is more restrictive than that of Hashimoto et al. [HKKP22], since in particular it

suffices for the adversary to learn a receiver’s ephemeral state during key exchange to forge a

message that the receiver accepts. Intuitively, this is because split-KEM is effectively a sym-

metric primitive. Nevertheless, the security that we achieve is stronger than weak forward

security without session state exposure.

Deniable Split-KEM from Lattices. We provide a lattice-based split-KEM which satisfies both

deniability and UNF-1KCA security. Our starting point is the Frodo key-exchange (FrodoKEX)

[BCD+16], which was identified (among other schemes) as a split-KEM by Brendel et al.

[BFG+20], the security of which relies on the well-known learning-with-errors (LWE) problem

[Reg05]. We highlight that the vanilla construction of FrodoKEX does not enjoy the aforemen-

tioned properties.2 Indeed, when looking closely at the security games of deniability and

UNF-1KCA, partial information about the secret keys are revealed - thus making a reduction

to LWE completely non-trivial. We circumvent this problem in two ways.

First, we reduce deniability of our scheme to a so-called Extended-LWE problem [AP12], where

in addition to a standard LWE instance, the adversary is given a short random combination

of the secret coefficients. We show that deniability of our scheme reduces straightforwardly

to Extended-LWE, and then follow the methodology of Alperin-Sheriff and Peikert [AP12] to

reduce it further to plain LWE.

Towards UNF-1KCA security, we slightly modify the Frodo split-KEM by introducing masking

terms. As the name suggests, they are used to hide the partial information about secret keys.

In Section 3.6.2 we discuss the necessity of this (perhaps seemingly artificial) change.

2Nevertheless, we found no practical attack on deniability/UNF-1KCA for FrodoKEX.

32

3.2 Split-KEM

3.1.3 Additional Related Work

The security of X3DH has been modelled in detail by Cohn-Gordon et al. [CCD+20]. Vatan-

das et al. [VGIK20] investigate the deniability of X3DH and similar key exchange protocols

under the deniability notion of Di Raimondo et al. [DGK06], requiring strong knowledge-of-

exponent-type assumptions to prove X3DH secure. Dobson and Galbraith [DG22] propose

a SIDH-based X3DH-like protocol which is unfortunately now broken [CD23]. Very recently,

Kiltz et al. [KPRR23] prove a simplified version of X3DH tightly-secure in the generic group

model under a new multi-user assumption supporting corruptions although do not allow the

adversary to expose parties’ session states.

Unger and Goldberg build a number of different DAKEs [UG15, UG18]. However, the protocols

do not provide post-quantum guarantees: only in their later paper [UG18] is it suggested

to add a PQ KEM for post-quantum confidentiality and the authors do not propose a more

comprehensive hybrid protocol. Nevertheless, the protocols provide relatively strong online

deniability (where a judge and a party can communicate while trying to frame another party)

at the expense of stronger primitives like dual-receiver encryption and non-committing

encryption.

Alwen et al. [ABH+21] introduce the notion of authenticated key encapsulation mechanism

(AKEM) and some security definitions. AKEM captures the same primitive as a split-KEM, but

we opted for the syntax and language of the latter as it was meant to be used in an X3DH-like

protocol.

Cremers and Feltz [CF11] introduce peer-deniability, which captures the kind of participation

deniability property we are after, namely that a party cannot deny using a system but can deny

communicating with a particular party. However, their security notion does not require the

simulator to output the session key nor the judge/adversary to distinguish between the real

and simulated key, and so composability issues may arise from using it.

Related to split-KEM is signcryption [Zhe97], which in syntax is roughly its encryption analogue.

We are not aware of any works that consider deniable signcryption in the post-quantum

setting.

3.2 Split-KEM

The primitive at the core of our protocol is split-KEM, which we present in this section. It was

first defined by Brendel et al. [BFG+20].

Definition 17 (Split-KEM). A split-KEM sKEM is a tuple of four efficient algorithms (KeyGenA,

KeyGenB,Encaps,Decaps) defined as follows:

• (pkA,skA) $←KeyGenA(1λ) (resp. (pkB,skB) $←KeyGenB(1λ)): The key generation func-

tion of the first/second party takes the security parameter λ as input, and outputs a pair

33

Chapter 3. K-Waay: Fast and Deniable Post-Quantum X3DH Without Ring Signatures

of public/secret keys (pkA,skA) (resp. (pkB,skB)).

• (K ,ct) $←Encaps(pkA,skB): The encapsulation function takes the public key pkA of party

A and party B’s secret key skB as inputs, and outputs a ciphertext ct and a key K .

• K /⊥ ← Decaps(pkB,skA,ct): The decapsulation function takes the secret key skA of

party A, their counterpart’s public key pkB and a ciphertext ct as inputs, and outputs a

key K or the error symbol ⊥.

We say a split-KEM is (1−δ)-correct if

Pr

K ̸= K ′ :

(pkA,skA) $←KeyGenA(1λ);

(pkB,skB) $←KeyGenB(1λ);

(K ,ct) $←Encaps(pkA,skB);

K ′ ←Decaps(pkB,skA,ct)]

≤ δ .

Intuitively, a split-KEM is similar to a normal KEM except material from both participants is

used for encapsulation (i.e., the final key will depend on both parties’ secret/public keys). In

an X3DH-like protocol, it can be used to implicitly authenticate the party encapsulating. In the

language of Brendel et al. [BFG+20], our notion of split-KEM is “asymmetric”, as it is assumed

that B always encapsulates and A always decapsulates. This is sufficient for our purpose, but

we note that all the results presented in this chapter can be adapted to a symmetric split-KEM

where KeyGenA=KeyGenB.

3.2.1 Security

We will need several security properties from the split-KEM to prove our whole protocol secure.

We first define one-wayness (OW-CPA) for sKEM, which is very similar to the usual one for

KEM and another new notion called IND-1BatchCCA. Looking ahead, we will show that any

OW-CPA split-KEM can easily be transformed into a IND-1BatchCCA one in the (quantum)

random oracle model or (Q)ROM (c.f. Chapter 2).

Definition 18 (split-KEM OW-CPA). We consider the OW-CPA game defined in Figure 3.2. A

split-KEM scheme sKEM= (KeyGenA,KeyGenB,Encaps,Decaps) is OW-CPA if for any efficient

adversary A we have

Advow-cpa
sKEM (A) = Pr[OW-CPAsKEM(A) ⇒ 1] = negl .

Definition 19 (split-KEM IND-1BatchCCA). We consider the IND-1BatchCCA game de-

fined in Figure 3.2. Let K be a finite key space. A split-KEM scheme over K sKEM =
(KeyGenA,KeyGenB,Encaps,Decaps) is IND-1BatchCCA if for any efficient adversary A we

have

Advind-1batchcca
sKEM (A) :=

∣∣∣∣Pr[IND-1BatchCCAsKEM(A) ⇒ 1]− 1

2

∣∣∣∣= negl .

34

3.2 Split-KEM

Game IND-1BatchCCAsKEM(A)

1 : b $← {0,1}; q ← 0

2 : pkA,skA
$←KeyGenA(1λ)

3 : pkB,skB
$←KeyGenB(1λ)

4 : K0,ct∗ $←Encaps(pkA,skB)

5 : K1
$←K

6 : b′ $←A BatchDEC(pkA,pkB,ct∗,Kb)

7 : return 1�b′ = b�

Oracle BatchDEC({(pki ,cti)}d
i=1)

1 : if q = 1 : return ⊥
2 : else : q ← q +1

3 : for i ∈ {1, . . . ,d}

4 : if (pki ,cti) = (pkB,ct∗) : return ⊥
5 : K ′

i ←Decaps(pki ,skA,cti)

6 : if K ′
1 =⊥∨ . . .∨K ′

d =⊥ : return ⊥
7 : return (K ′

1, . . . ,K ′
d)

Game OW-CPAsKEM(A)

1 : pkA,skA
$←KeyGenA(1λ); pkB,skB

$←KeyGenB(1λ)

2 : K ∗,ct∗ $←Encaps(pkA,skB)

3 : K ′ $←A (pkA,pkB,ct∗)

4 : return 1�K ′ = K ∗�

Figure 3.2: IND-1BatchCCA and OW-CPA games.

We also recall the different notions of indistinguishability for (asymmetric) split-KEM defined

by Brendel et al. [BFG+20] that we do not use except to argue their insufficiency for AKE below:

Game xy-IND-CCAsKEM(A)

1 : b $← {0,1}

2 : nx ← 0;ny ← 0;

3 : pkA,skA
$←KeyGenA(1λ)

4 : pkB,skB
$←KeyGenB(1λ)

5 : K0,ct∗ $←Encaps(pkA,skB)

6 : K1
$←K

7 : b′ $←A ENC,DEC(pkA,pkB,ct∗,Kb)

8 : return 1�b′ = b�

Oracle ENC(pk)

1 : if ny ≥ y : return ⊥
2 : ny ← ny +1

3 : K ,ct $←Encaps(pk,skB)

4 : if (pk,ct) = (pkA,ct∗) : return ⊥
5 : return (K ,ct)

Oracle DEC(pk,ct)

1 : if nx ≥ x : return ⊥
2 : nx ← nx +1

3 : if (pk,ct) = (pkB,ct∗) : return ⊥
4 : return Decaps(pkP,skP,ct)

Figure 3.3: xy-IND-CCA games for an “asymmetric” split-KEM from Brendel et al. [BFG+20],
where x,y ∈ {n,s,m}. When doing the comparison on the first line of both oracles, we assume
n= 0, s= 1 and m=∞.

Definition 20 (split-KEM xy-IND-CCA). We consider the xy-IND-CCA game defined in Fig-

ure 3.3. A split-KEM scheme sKEM = (KeyGenA,KeyGenB,Encaps,Decaps) is xy-IND-CCA,

35

Chapter 3. K-Waay: Fast and Deniable Post-Quantum X3DH Without Ring Signatures

with x,y ∈ {n,s,m} if for any efficient adversary A we have

Advxy-ind-cca
sKEM (A) :=

∣∣∣∣Pr
[
xy-IND-CCAsKEM(A) ⇒ 1

]− 1

2

∣∣∣∣= negl .

These indistinguishability notions range from nn-IND-CCA, which is similar to a kind of IND-

CPA security as the adversary has no access to encapsulation or decapsulation oracles, to

mm-IND-CCA, which captures strong IND-CCA security for split-KEMs. More generally, all

notions are of the form xy-IND-CCA, x,y ∈ {n,s,m}, where x (resp. y) specifies the number of

queries an adversary can make to the decapsulation (resp. encapsulation) oracle (none, single,

or many).

On the Original Split-KEM Security Notions. We recall that the advantage of split-KEMs

over normal KEMs is that they capture the fact that the party encapsulating can contribute

(static) keying material towards the shared key, whereas it is not the case with KEMs, as the

encapsulation function only takes the receiving party’s public key as input. In particular, this

means that KEMs cannot be used for implicit authentication of the encapsulator, unlike split-

KEMs. However, we argue that the original xy-IND-CCA definitions for split-KEMs [BFG+20]

do not capture implicit authentication either and thus are not suited for their purpose (building

an asynchronous DAKE). In fact, any IND-CPA (resp. IND-CCA) KEM can easily be converted

to an (asymmetric) split-KEM satisfying nn-IND-CCA (resp. mm-IND-CCA).

More formally, imagine a setting where Alice and Bob know each other’s public key, and

Bob wants to implicitly authenticate to Alice using a split-KEM. In addition, we assume a

mm-IND-CCA split-KEM sKEM0 exists (note mm-IND-CCA security is the strongest so this

holds for all weaker notions). We first modify sKEM0 such that on a special ciphertext ct⋆ not

in the original ciphertext space, Decaps returns a constant key K⋆. Let’s call this modified

scheme sKEM. We observe that sKEM is still mm-IND-CCA secure as no adversary can break

an honestly-generated challenge ciphertext. Now, implicit authentication means that if Alice

decapsulates a ciphertext and obtains a key K , then only Alice knows K . However, in our case,

any adversary can send ct⋆ to Alice and set their own key to K⋆. Both the adversary and Alice

will share the same key and implicit authentication does not hold. In a way, xy-IND-CCA
security does not prevent forgeries.

UNF-1KCA. This leads us to define our notion of UNF-1KCA security for split-KEMs below

which, along with OW-CPA (which can be turned into IND-1BatchCCA), guarantees that only

Bob (and obviously Alice) can know the result of Alice’s decapsulation on some ciphertext.

More precisely, UNF-1KCA ensures that no adversary can forge a valid split-KEM ciphertext

for A even knowing a ciphertext that was computed with respect to a public key chosen

by the adversary3, under the condition that the public key used for encapsulation and the

known ciphertext are different from the pair made of A’s public key and the ciphertext output

3Looking ahead, the fact that the public key is adversarially-chosen will be useful for proving security under
key-compromise impersonation attacks for our full protocol.

36

3.2 Split-KEM

by the adversary. We also define a security notion called decaps-CPA that will serve as a

building block to build UNF-1KCA. The decaps-CPA notion ensures that it is hard for an

adversary knowing a ciphertext ct (under an adversarially-chosen public key) to come up with

a ciphertext ct′ (possibly equal to ct) and a key K ′ such that the decapsulation of ct′ returns K ′.

Definition 21 (split-KEM UNF-1KCA). We consider the UNF-1KCA game defined in Figure 3.4.

A split-KEM scheme sKEM = (KeyGenA,KeyGenB,Encaps,Decaps) is UNF-1KCA if for any

efficient adversary A we have

Advunf-1kca
sKEM (A) := Pr[UNF-1KCAsKEM(A) ⇒ 1] = negl .

Definition 22 (split-KEM decaps-CPA). We consider the decaps-CPA game defined in Fig-

ure 3.4. A split-KEM scheme sKEM= (KeyGenA,KeyGenB,Encaps,Decaps) is decaps-CPA if

for any efficient adversary A we have

Advdecaps-cpa
sKEM (A) :=

∣∣∣∣Pr
[
decaps-CPAsKEM(A) ⇒ 1

]− 1

2

∣∣∣∣= negl .

Game UNF-1KCAsKEM(A)

1 : pkA,skA
$←KeyGenA(1λ)

2 : pkB,skB
$←KeyGenB(1λ)

3 : pk,st $←A (pkA,pkB)

4 : KB,ct $←Encaps(pk,skB)

5 : ct′ $←A (pkA,pkB,ct,KB,st)

6 : if (ct,pk) = (ct′,pkA) : return 0

7 : KA ←Decaps(pkB,skA,ct′)
8 : if KA =⊥ : return 0

9 : return 1

Game decaps-CPAsKEM(A)

1 : pkA,skA
$←KeyGenA(1λ)

2 : pkB,skB
$←KeyGenB(1λ)

3 : pk,st $←A (pkA,pkB)

4 : KB,ct $←Encaps(pk,skB)

5 : K ′
A,ct′ $←A (pkA,pkB,ct,st)

6 : KA ←Decaps(pkB,skA,ct′)
7 : if KA =⊥ : abort

8 : return 1�KA = K ′
A�

Figure 3.4: Games UNF-1KCA and decaps-CPA.

3.2.2 Deniability

Finally, we state the notion of split-KEM deniability we would like to achieve.

Definition 23 (Deniability). We consider the game shown in Figure 3.5. We say a split-KEM

sKEM is deniable if there exists a simulator Sim s.t. for all efficient adversaries A , we have

Advdeny
sKEM,Sim(A) :=

∣∣∣Pr[DENYREAL
sKEM,Sim(A) ⇒ 1]−Pr[DENYSIM

sKEM,Sim(A) ⇒ 1]
∣∣∣= negl .

Informally, the setting considered is the following. Alice and Bob use the split-KEM to establish

a shared key (we assume the public keys are only used for this one exchange), and Alice (while

37

Chapter 3. K-Waay: Fast and Deniable Post-Quantum X3DH Without Ring Signatures

Game DENYREAL
sKEM,Sim(A)

1 : (pkA,skA) $←KeyGenA(1λ)

2 : (pkB,skB) $←KeyGenB(1λ)

3 : K ,ct $←Encaps(pkA,skB)

4 : b $←A (pkA,pkB,skA,K ,ct)

5 : return b

Game DENYSIM
sKEM,Sim(A)

1 : (pkA,skA) $←KeyGenA(1λ)

2 : (pkB,skB) $←KeyGenB(1λ)

3 : K ,ct $← Sim(pkB,skA)

4 : b $←A (pkA,pkB,skA,K ,ct)

5 : return b

Figure 3.5: Deniability game (we assume w.l.o.g. that B encapsulates and A simulates).

following the protocol) wants to frame Bob and prove that he did communicate with her.

Therefore, after receiving Bob’s ciphertext and deriving the key, Alice gives both public keys,

the derived key, the ciphertext and her own secret key to a judge (i.e., the adversary) that must

decide whether Bob actually sent the ciphertext that was used to derive the key or not. The

scheme is deniable if there is a simulator that, given Alice’s view, outputs a ciphertext and

a key indistinguishable from the ones output by Bob. We discuss deniability further after

introducing our key exchange deniability notion (Section 3.3.3) and in Section 3.6.

3.3 Deniable Authenticated Key Exchange

In this section, we describe our model for deniable authenticated key exchange (DAKE) that

we tailor to the semantics and flow of X3DH.

3.3.1 Syntax

Definition 24. A DAKE DAKE is a tuple of four efficient algorithms (KeyGen, Init,

Send,BatchReceive) defined as follows:

• (pk,sk) $←KeyGen(1λ). This function takes as input the security parameterλ and outputs

the long-term public/secret key pair of the caller.

• (sti ,preki) $← Init(ski ,role). This function takes as inputs a long-term secret key ski

and a role role ∈ {sender,receiver} and outputs a session state sti and a prekey bundle

preki . Init models the creation of key material that will be uploaded to the public key

infrastructure by both parties (e.g., a prekey bundle in X3DH). The output values depend

only on the public key of party i executing the function.

• (k,m) $← Send(ski ,pk j ,sti ,prek j). This function takes as inputs the secret key of the

executing party i , the public key of the intended recipient pk j , party i ’s session state sti

and the (claimed) prekey bundle of the intended recipient prek j , and outputs a key k
and a message m.

• {ks}s ←BatchReceive(ski ,sti , {pk j ,prek j ,m j } j). This function takes as inputs the secret

38

3.3 Deniable Authenticated Key Exchange

key of the executing party i , an ephemeral state of party i sti and a vector of size d ≥ 1 of

the form (pk j ,prek j ,m j) for party i ’s session with the public key of the (claimed) sender

pk j , the (claimed) prekey bundle of party j prek j and a message m j , and outputs a

vector of d keys (k1, . . . ,kd), some or all of which may be ⊥.

Init explicitly captures parties uploading ephemeral keys to a central server in the first protocol

step. This contrasts with the formal modelling in some previous works on X3DH-like key

exchange [BFG+22b, HKKP22] that model a three-move key exchange with a single initiator. As

Init is independent of keying material from the caller’s counterpart, our definition captures so-

called receiver obliviousness [HKKP22] (sometimes post-specified peers [CK02]), corresponding

to some, but not all, key exchange protocols in the literature.

The most novel part of our primitive is BatchReceive which in particular captures ephemeral

key reuse when uploaded ephemeral keys are exhausted. In the case of key exhaustion, when

a party comes back online, they execute BatchReceive several times (once per ephemeral

state sti), where the number of inputs of the form (pk j ,prek j ,m j) in a given BatchReceive
call corresponds to how many times sti is re-used. Otherwise, BatchReceive can be used as

in standard AKE with a single value (pk j ,prek j ,m j) as input. Note that BatchReceive takes

sender prekey bundles prek j as input to emphasise that they are generated via Init and not

Send, although each bundle could in principle be contained in each m j .

3.3.2 Security Model

We now describe the security model we consider for our DAKE, which extends existing models

in some ways to support BatchReceive.

Parties and Sessions. We assume that there are n parties P1, . . .Pn (or 1, . . . ,n) where party

Pi (resp. or i) is associated with long-term key pair (pki ,ski) output by KeyGen. Each party

runs one or more sessions (sometimes called oracles [BFG+20]), where the s-th session of Pi is

denoted by πs
i . Each session πs

i is associated with the following local fields:

• sid, the session identifier or session id.

• pid, the partner identifier.

• role ∈ {⊥,sender,receiver}, the role of Pi .

• status ∈ {⊥,accept,reject}, the status of πs
i .

• k, the session key.

• st, the session state.

• r, the session randomness.

39

Chapter 3. K-Waay: Fast and Deniable Post-Quantum X3DH Without Ring Signatures

All fields are initialised to ⊥ except r which is initialised to uniform randomness. A session

either has role sender or receiver, and its counterpart, its partner pid, has the other role; note a

receiver may have several counterparts (capturing ephemeral key reuse).

Fields pid, role, status and r in session πs
i are set directly by the challenger, and the rest

are (sometimes implicitly) set by the underlying DAKE algorithms called by the challenger.

Moreover, in light of the definition of BatchReceive, sid, pid and k are vectors for a receiver

(role= receiver); we sometimes write s⃗id, p⃗id and k⃗ for clarity to indicate this.

Suppose Pi is acting as a receiver. Initially, Pi calls Init, and then eventually calls BatchReceive.

Before this point, one or more senders P j (i.e., parties with role= sender) may call Init and then

Send with respect to the output prek from Pi ’s Init call (assuming honest message delivery),

which output messages of the form m j . Finally, Pi invokes BatchReceive with one or more m j

values as input. A party has status= accept if and only if k ̸= ⊥4, and stores any session state

after calling Init and before setting status ̸= ⊥ due to a Send or BatchReceive call in st.

Partnering. We define partnering between two sessions to capture security using session

identifiers:

Definition 25 (Partnering). For any (i ,P j , s, t), we say that sessions πs
i and πt

j are partners if

1. πs
i .role ̸=πt

j .role.

2. If πs
i .role = sender, then πs

i .pid = j and i ∈ πt
j .p⃗id. If πs

i .role = receiver, then j ∈ πs
i .p⃗id

and i =πt
j .pid.

3. If πs
i .role= sender, then πs

i .sid ∈πt
j .s⃗id and πs

i .sid ̸= ⊥. If πs
i .role= receiver, then πt

j .sid ∈
πs

i .s⃗id and πt
j .sid ̸= ⊥.

Looking ahead, this definition ensures that two sessions can only be partners if they both have

set status= accept. Our definition mainly differs from previous work in that there can be many

senders (and thus partnered sessions) for a given receiver. Ignoring this aspect, our definition

is only slightly different from that of Hashimoto et al. [HKKP22] in that we restrict sid to be not

equal to ⊥; this is an artifact of the fact we model ‘four-move’ key exchange (including prekey

uploading).

KIND Security Game. We first define key indistinguishability (KIND) and then define denia-

bility separately. Following previous work, we define a KIND experiment played between a

challenger C and adversary A in text below. The experiment KINDn
DAKE(A) is parameterised

by the DAKE DAKE and integer n, the number of parties (honest or otherwise) in the lifetime

of the game’s execution. The game is divided into distinct phases defined as follows.

4In particular, BatchReceive may output several keys; as long as at least one of them is not ⊥, the calling party
accepts.

40

3.3 Deniable Authenticated Key Exchange

Setup. C first uniformly samples challenge bit b ∈ {0,1}. Then, for each party Pi , C calls

(pki ,ski) $←KeyGen(1λ) and provides {pk1, . . . ,pkn} and 1λ as input to A .

Phase 1. A adaptively makes any number of the following queries in any order:

• EXEC(i , s,prek,m): A starts or runs the next step of execution in session πs
i . In each

call, C uses randomness tape πs
i .r as needed.

– To start the execution in session πs
i not previously started, A calls

EXEC(i , s,prek,m) with special input m = (start,sender, j) (resp.

(start,receiver, j⃗)) (where start is defined only in the context of this game)

that, if not previously called, sets πs
i .pid= j (resp. πs

i .pid= j⃗) and πs
i .role= sender

(resp. πs
i .role = receiver); observe input prek is ignored by C . Then, C invokes

(sti ,preki) $← Init(ski ,role) and outputs preki to A .

– Given that Pi has started in πs
i , πs

i .status =⊥ and πs
i .role = sender, when A calls

EXEC(i , s,prek,⊥), C invokes (k,m) $← Send(ski ,pk j ,sti ,prek) (where j = πs
i .pid),

returns output m to A and sets πs
i .status to reject (resp. accept) if k = ⊥ (resp.

k ̸= ⊥).

– If πs
i .role = receiver and πs

i .status = ⊥, when A calls

EXEC(i , s, {s j ,prek j ,m j } j∈ j⃗ ′), C aborts if j⃗ ′ ̸= πs
i .pid and otherwise invokes

k ← BatchReceive(ski ,sti , {pk j ,prek j ,m j } j) and outputs to A ⊥ if BatchReceive
fails (resp. nothing otherwise) and sets πs

i .status to reject (resp. accept).

• LTK(i) outputs ski . Pi is hereafter corrupted.

• REGISTER(pki , i) registers a new party Pi for i > n not previously registered, sets their

long-term public key to pki and distributes pki to all other oracles; Pi is immediately

marked as corrupted.

• STATE(i , s) outputs πs
i .st, which is hereafter revealed.

• KEY(i , s, j) outputs πs
i .k j if πs

i .role= receiver and πs
i .status ̸= ⊥ and otherwise outputs

πs
i .k.

Test. When A decides to move to the next phase, it issues the following query TEST which (if

successful) returns either a real or random key:

• TEST(i , s, j): If πs
i .status ̸= accept, C returns ⊥. Otherwise:

– If πs
i .role= sender, C aborts if j ̸=πs

i .pid, and otherwise returns either πs
i .k if b = 0

or a uniformly sampled key k if b = 1;

– If πs
i .role= receiver, C aborts if j ̸∈πs

i .p⃗id or πs
i .k j =⊥, and otherwise returns either

πs
i .k j if b = 0 or a uniformly sampled key k if b = 1.

At this point, πs
i (which we say is with respect to key j if πs

i .role= receiver) is said to be

the test session.

41

Chapter 3. K-Waay: Fast and Deniable Post-Quantum X3DH Without Ring Signatures

Phase 2. A adaptively issues queries as in Phase 1.

Guess, Freshness and Correctness. After Phase 2, A outputs bit b′. Suppose that A made

query TEST(i , s, j), i.e., πs
i is the test session with respect to key j and j ∈πs

i .pid (with equality

at least when πs
i .role = sender). The following freshness conditions are checked by C ; if any

condition is not satisfied, C sets b′ to a uniform bit (i.e., A gains no advantage):

1. KEY(i , s, j ′) has not been queried, where j ′ is arbitrary if πs
i .role = sender and j ′ = j if

πs
i .role= receiver.

2. If πs
i and πt

j are partners, then KEY(j , t , i ′) has not been queried, where i ′ is arbitrary if

πs
i .role= sender and i ′ = i if πs

i .role= receiver.

3. Pi is not corrupted or πs
i .st has not been revealed.

4. If πs
i and πt

j are partners, then P j is not corrupted or πt
j .st has not been revealed.

5. If πs
i has no partner session, then P j is not corrupted when πs

i .status=⊥.

6. If πs
i has no partner session, then if πs

i .role= sender, for any session πt
j such that prek j

was both output by Init(sk j ,receiver) and input to Send in πs
i by C , P j is not corrupted

or πt
j .st is not revealed.

7. If πs
i has no partner session, then if πs

i .role= receiver, for any session πt
j such that prek j

was both output by Init(sk j ,sender) and input to BatchReceive in πs
i by C , πt

j .st is not

revealed and πs
i .st is not revealed.

Then, the following correctness conditions are checked by C which, iterating over all relevant

parties i , j ,k, only consider the subset of sessions corresponding to honest protocol runs

where A faithfully follows the protocol specification. If any condition is satisfied, C sets b = b′

(i.e., A wins):

1. There exist distinct sessions πs
i and πt

j such that πs
i .role = πt

j .role and either (1) πs
i =

receiver and πs
i .sid j =πt

j .sidi or (2) πs
i .sid=πt

j .sid.

2. Assuming πs
i .role= receiver, there exist sessions πs

i with respect to key j and πt
j that are

partners such that πs
i .k j ̸=πt

j .k (analogously when πs
i .role= sender).

3. There exist distinct sessions πs
i , πt

j and πu
k such that πs

i .status=πt
j .status=πu

k .status=
accept and πs

i .sidk =πt
j .sidk =πu

k .sid (assuming i , j are receivers here but analogously

in other cases).

Finally, the game outputs 1 if and only if b = b′.

Security is formally defined in Definition 26.

42

3.3 Deniable Authenticated Key Exchange

Definition 26 (DAKE Key Indistinguishability). We consider the KIND game described

above. We say a DAKE DAKE is key indistinguishable if for all efficient adversaries A and

polynomially-bounded n (the total number of parties), we have

Advkind
DAKE,n(A) :=

∣∣∣∣Pr[KINDn
DAKE(A) ⇒ 1]− 1

2

∣∣∣∣= negl .

Discussion. Following previous work, we define freshness conditions to prevent the adversary

from mounting trivial attacks. Conditions 1 to 5 correspond exactly to the forward-secure

variant of security in [HKKP22]. Due to the design of our DAKE K-Waay, we additionally

restrict the adversary via conditions 6 and 7. The clauses in these conditions are essentially

due to the fact that in K-Waay the only secret keying material required to call Send is an

ephemeral split-KEM secret. For example, suppose that the tester πs
i is the receiver. Due

to the ‘symmetric’ nature of split-KEM, without these restrictions, revealing πs
i .st allows the

adversary to inject to Pi by simulating Send (akin to a key-compromise impersonation (KCI)

attack using Pi ’s ephemeral state) and trivially distinguish. Consequently, we restrict session

state exposure in this case.

Our model does not support randomness exposure or manipulation. As is standard, however,

one can employ the NAXOS trick [LLM07] to obtain security given, e.g., randomness but not

long-term keying material is exposed. Note also that we do not force Init to be called, e.g., by

the sender or senders first or Init to be called by both the sender or senders and receiver before

a party calls Send or BatchReceive.

Apart from the fact we make several extensions to typical AKE modelling to capture

BatchReceive, the game is closest to that of Hashimoto et al. [HKKP22] except that we ad-

ditionally enforce correctness checks as Brendel et al. [BFG+22b] do. To capture partnering,

we consider partner and key identifiers that may be vectors for a receiver, such that several

sender sessions may be partnered with a receiver session if, for a given sender session, it

partners with a part/component of the receiver session. We do not capture semi-static keys

explicitly as in Brendel et al.’s work [BFG+22b], although in principle they could be captured

in Init. Like Hashimoto et al.’s [HKKP22], our game supports message injection, session state

exposure or revealing (unlike Brendel et al.), session key exposure, long-term key exposure

(corruption) and adversarial long-term key registration (also considered corruption). Follow-

ing previous work, we allow the adversary to expose session states individually, rather than

expose all states of a given party at once; security w.r.t. this weaker class of attacks is thus

tightly implied by our notion. During execution, a single challenge test query is made by the

adversary that reveals a real or random key output in some session. For BatchReceive which

can output several keys, just one of the output keys are tested.

Trivial Attacks. We restrict the adversary’s behaviour to prevent ‘trivial’ attacks (e.g. directly

revealing the challenge key) by defining freshness predicates. Due to our protocol’s design,

our notion restricts more than the full forward security notion under session state exposure

43

Chapter 3. K-Waay: Fast and Deniable Post-Quantum X3DH Without Ring Signatures

defined by Hashimoto et al. [HKKP22]. Our freshness predicates imply weak forward secrecy

and implicit authentication given session state exposure is not allowed (enforced in some

recent works like [BHJ+15, CCG+19]). Brendel et al.’s model provide these guarantees but

additionally protect against randomness exposure [BFG+22b], whereas we allow exposures on

session states under some conditions unlike them.

3.3.3 Deniability

We next introduce our security notion for a deniable DAKE. To this end, we introduce security

game DENYexp
DAKE,Sim in Figure 3.6.

Game DENYexp
DAKE,n,Sim(A)

1 : b $← {0,1}

2 : L ←;
3 : for i ∈ [n] :

4 : (pki ,ski) $←KeyGen(1λ)

5 : L ← L∪ {(pki ,ski)}

6 : b′ $←A CHAL(L)

7 : return 1�b′ = b�

Oracle CHAL(i , j)

1 : require i ∈ [n]∧ j ∈ [n]

2 : (k,m) ← (⊥,⊥)

3 : (sti ,preki) $← Init(ski ,sender)

4 : (st j ,prek j) $← Init(sk j ,receiver)

5 : if b = 0 : (k,m) $← Send(ski ,pk j ,sti ,prek j)

6 : else : (k,m) $← Sim(sk j ,pki ,st j ,preki ,prek j)

7 : T ← (preki ,prek j ,m)

8 : if exp = true : return (k,T,st j)

9 : else : return (k,T)

Figure 3.6: Deniability game.

Definition 27 (DAKE deniability). We consider the game shown in Figure 3.6. We say a DAKE

DAKE is DENYexp for exp ∈ {true, false} if there exists an efficient simulator Sim s.t. for all

efficient adversaries A and polynomially-bounded n, we have

Advdeny
DAKE,Sim,exp(A) :=

∣∣∣∣Pr[DENYexp
DAKE,n,Sim(A) ⇒ 1]− 1

2

∣∣∣∣= negl .

Our definition captures the following deniability property. Initially, the judge A is given the

long-term keys of all parties. A then observes honest protocol runs between pairs of parties

(via CHAL). Depending on the challenge bit b, either Send or a simulator Sim that takes as

input the secret keying material of the receiver trying to frame the sender is executed in each

run. Moreover, A is given the prekey messages independent of b and, if the parameter exp is

set to true, also the session state of the receiver in each protocol run. The goal of the adversary

is to distinguish whether Send or Sim is being called.

Our notion DENYfalse corresponds most closely with that of Brendel et al. [BFG+22b] which

was also adopted by Cremers et al. [CZ24]. Due to how Brendel et al.’s AKE primitive is defined,

they also consider semi-static key pairs which are also given to the adversary. DENYtrue

44

3.4 K-Waay: Post-Quantum X3DH from Split-KEM

provides stronger deniability, corresponding in practice to a receiver who co-operates with a

judge by handing over the entire contents of their device. Although incomparable formally, our

DAKE would not be considered deniable under a notion like that of Brendel et al. [BFG+22b]

since their protocol does not formally model long-term signatures. Note that our definition,

like Brendel et al.’s [BFG+22b], can be straightforwardly converted to a “simulation-based”

notion like Definition 23.

Finally, observe that our definition, like that of Brendel et al. [BFG+22b] does not consider de-

niability for the receiver but only for the sender. One could define such a notion, in which the

goal is for the judge (adversary) to distinguish between the output of BatchReceive and a sim-

ulator Sim that has access to the long-term and ephemeral states of all corresponding senders

and is given (honest) ciphertexts output by Send as input. Here, one could argue deniability

for K-Waay using the security of the ephemeral KEM and then the KDF. A weaker definition

would require the judge to distinguish between the output of Send and BatchReceive calls,

and the output of a simulator Sim given the senders’ states, which is trivial to satisfy (and thus

we did not capture it) but is closer to offline semi-honest deniability (whereas the first notion

sketched above is more ‘online’).

3.4 K-Waay: Post-Quantum X3DH from Split-KEM

In this section, we present our split-KEM-based protocol K-Waay before proving it satisfies

our key indistinguishability and deniability security notions formalised in Section 3.3.

3.4.1 Construction

We present our DAKE K-Waay (Key-exchange With asynchrony, authentication and peer-
deniability) in Figure 3.7.

Each party is associated with a long-term public/secret key pair which in K-Waay comprises

of a signature and KEM key pair generated in KeyGen. In Init, ephemeral KEM and split-KEM

keys for both parties are generated and the public keys are signed with the long-term signature

key.

After initialisation, the sender Pi (sometimes called the initiator) invokes Send that takes

the prekey prek j output by the receiver P j ’s Init call as input. After verifying the signature

in prek j , Pi encapsulates to (1) the long-term KEM key of P j ; (2) the ephemeral KEM key

contained in prek j ; and (3) the ephemeral split-KEM key contained in prek j . Note that the

split-KEM provides implicit authentication (without it, Send could be simulated without

secrets). Moreover, the sender’s prekey bundle and in particular the split-KEM public key

is generated before Send is called for deniability. Pi then combines the encapsulated keys

using a KDF and outputs the key and its message for P j consisting of the three encapsulation

ciphertexts.

45

Chapter 3. K-Waay: Fast and Deniable Post-Quantum X3DH Without Ring Signatures

KeyGen(1λ)

1 : // Long-term key generation

2 : (kpk,ksk) $←KeyGenLKEM(1λ)

3 : (spk,ssk) $←KeyGenSig(1λ)

4 : pk← (spk,kpk)

5 : sk← (ssk,ksk)

6 : return (pk,sk)

Init(ski ,role)

1 : // Prekey generation/upload

2 : if role= sender :

3 : (espki ,esski) $←KeyGenBsKEM(1λ)

4 : ekpki ←⊥
5 : else :

6 : (espki ,esski) $←KeyGenAsKEM(1λ)

7 : (ekpki ,ekski) $←KeyGenEKEM(1λ)

8 : σi
$← SignSig(ski .ssk, (espki ,ekpki))

9 : preki ← (espki ,ekpki ,σi)

10 : return (sti = (esski ,ekski ,preki),preki)

Send(ski ,pk j ,sti ,prek j)

1 : (esski ,ekski ,preki) ← sti

2 : (espk j ,ekpk j ,σ j) ← prek j

3 : msg ← (espk j ,ekpk j)

4 : require VrfySig(pk j .spk,msg ,σ j)

5 : (Kℓ,ctℓ) $←EncapsLKEM(pk j .kpk)

6 : (Kk ,ctk) $←EncapsEKEM(ekpk j)

7 : (Ks ,cts) $←EncapssKEM(espk j ,esski)

8 : m ← (ctℓ,ctk ,cts)

9 : sid← Pi ||P j ||pki ||pk j ||preki ||prek j ||m
10 : k←KDF(Kℓ,Kk ,Ks ,sid)

11 : return (k,m)

BatchReceive(ski ,sti ,S = {pk j ,prek j ,m j } j)

1 : (esski ,ekski ,preki) ← sti

2 : fail← false; k j ←⊥
3 : for j : (pk j ,prek j ,m j) ∈ S :

4 : (ctℓ,ctk ,cts) ← m j

5 : (espk j ,ekpk j ,σ j) ← prek j

6 : if ¬VrfySig(pk j .spk, (espk j ,ekpk j),σ j) :

7 : k j ←⊥
8 : continue

9 : Kℓ←DecapsLKEM(ski .ksk,ctℓ)

10 : Kk ←DecapsEKEM(ekski ,ctk)

11 : Ks ←DecapssKEM(espk j ,esski ,cts)

12 : sid← P j ||Pi ||pk j ||pki ||prek j ||preki ||m j

13 : if Ks =⊥ : fail← true
14 : if (Kℓ =⊥)∨ (Kk =⊥)∨ (Ks =⊥) : k j ←⊥
15 : else : k j ←KDF(Kℓ,Kk ,Ks ,sid)

16 : if fail : return ⊥|S|

17 : else : return {k j } j

Figure 3.7: K-Waay: An X3DH-like DAKE from IND-CCA KEMs EKEM and LKEM, SUF-CMA
signature scheme Sig and IND-1BatchCCA and UNF-1KCA split-KEM sKEM.

Receiving is analogous: receiver Pi verifies P j ’s prekey, decapsulates using its three respective

secret keys and derives the session key (recall though that sender prekey bundles were not

required in previous X3DH protocols). If Pi ’s prekeys have run out, it is possible that multiple

P j ’s have sent using the same prekey preki . In that case, Pi decapsulates for all sessions using

the same secret keys but aborts if any split-KEM decapsulations failed in any of the sessions (a

signature check failing does not however lead to the receiver aborting). We assume that for a

46

3.4 K-Waay: Post-Quantum X3DH from Split-KEM

given BatchReceive(ski ,sti ,S) call, each element of S corresponds to a different party.

3.4.2 Security

Theorem 1. Consider (1 − δEKEM)-correct IND-CCA KEM EKEM, (1 − δLKEM)-correct

IND-CCA KEM LKEM, (1−δSig)-correct SUF-CMA signature scheme Sig and (1−δsKEM)-

correct IND-1BatchCCA, UNF-1KCA split-KEM sKEM and triple PRF KDF used to build

K-Waay (Figure 3.7). Then, we have that for polynomially-bounded n and every efficient

adversary A that makes at most q oracle queries, one can build an adversary B such that

Advkind
K-Waay,n(A) ≤ q

3
· (δSig +δLKEM+δEKEM+δsKEM

) +
2q2 · (ϵEKEM+ϵLKEM+2ϵKDF+2ϵSig)+q3 · (ϵEKEM+ϵLKEM+ϵsKEM+3ϵKDF

)
,

where ϵEKEM = Advind−cca
EKEM (B), ϵLKEM = Advind−cca

LKEM (B), ϵSig = Advsuf−cma
Sig (B), ϵsKEM =

Advind−1batchcca
sKEM (B)+Advunf−1kca

sKEM (B) and ϵKDF =Adv3prf
KDF(B).

Proof. Our proof proceeds by constructing sequences of hybrids, which we first summarise.

Let Game Γ1 be exactly the KIND game played with respect to DAKE K-Waay (Figure 3.7). We

first transition to Game Γ2, which differs from Game Γ1 in that honest protocol runs, all VrfySig
checks in BatchReceive calls are removed and Decaps calls are replaced by the output of the

Encaps calls in the corresponding Send calls whenever they are consistent. To this end, we

invoke the correctness of K-Waay’s building blocks. Then, we transition to Game Γ3 in which

the challenger immediately outputs the session πs
i that the adversary makes real-or-random

challenge query TEST(i , s, j∗) with respect to. We then partition A ’s possible executions of

Game Γ3 into several events.

Suppose πs
i has a partner session (with respect to key j∗ if πs

i .role= receiver) (event Ep), say

πt
j . Observe that by definition of partnering and construction of the protocol (in particular by

definition of sid), it follows that partnered sessions correspond to honest protocol runs. Then,

considering πs
i and πt

j , if the receiver’s session state, say πt
j .st, is revealed (event Ep ∧Ec1),

we reduce to the IND-CCA security of the long-term KEM LKEM, since the freshness con-

ditions imply P j must not have been corrupted. Otherwise (event Ep ∧¬Ec1), we reduce to

the IND-CCA security of the ephemeral KEM EKEM. After both cases, we transition to an

unwinnable game by keying KDF with the now uniformly random key output by the respec-

tive KEM call, a transition we perform repeatedly and omit from this description hereafter.

Otherwise (event ¬Ep), we consider whether party Pi in test session πs
i has the role sender or

receiver:

• πs
i .role= sender (event ¬Ep ∧Es): As P j can only be corrupted after Pi accepts, we first

use the SUF-CMA security of Sig to argue that Pi ’s Send call in the test session must be

with honestly-generated input (prek). Then, let Ec2 be the event that P j is corrupted.

Given ¬Ep ∧Es ∧Ec2, we reduce to the security of EKEM, since by freshness the state

47

Chapter 3. K-Waay: Fast and Deniable Post-Quantum X3DH Without Ring Signatures

πt
j .st associated with prek must not have been exposed. Otherwise (¬Ep ∧Es ∧¬Ec2) we

reduce to the security of LKEM.

• πs
i .role= receiver (event ¬Ep ∧¬Es): As above, we first argue using SUF-CMA security

that input prek j used in the test session’s BatchReceive call must have been honestly

generated. Then by freshness, we know that neither πs
i .st nor πt

j .st associated with prek j

are revealed, in which case we first reduce to the UNF-1KCA security of sKEM to prevent

injections on the split-KEM ciphertext, after which we reduce to the IND-1BatchCCA
security of sKEM.

Let Advgi
DAKE,n(A) be the advantage of adversary A in winning game Game Γi for relevant

i which we introduce below. Furthermore, let Advgi
DAKE,n(A ,E) be the same advantage

except restricted to event E , so in particular if Advgi
DAKE,n(A) is of the form

∣∣Pr[X]− 1
2

∣∣,
Advgi

DAKE,n(A ,E) is of the form
∣∣Pr[X ∧E]− 1

2

∣∣.
Game Γ1: This is the original key indistinguishability game.

Game Γ2: This differs from Game Γ1 in that, in honest protocol runs, all signature ver-

ification calls in BatchReceive calls are removed and the output of Decaps calls are replaced

with the output of the corresponding Encaps call in Send. It follows at this point that the three

correctness checks in the KIND game evaluate to true. Since for a given BatchReceive(·, ·,S)

call there must be |S| corresponding Send and Init calls, there are at most q/3 iterations of

the for loop in BatchReceive (counting over all such calls in a given execution of Game Γ1). It

then follows from a standard hybrid argument and the correctness of Sig, LKEM, EKEM and

sKEM that:

Advg1
DAKE,n(A) ≤Advg2

DAKE,n(A)+ q

3
· (δSig +δLKEM+δEKEM+δsKEM

)
.

Game Γ3: This differs from Game Γ3 in that the challenger immediately outputs the session

πs
i that the adversary A calls TEST(i , s, j∗) with respect to. Noting that there are at most q

such possible sessions and applying a standard argument, it follows that:

Advg2
DAKE,n(A) ≤ q ·Advg3

DAKE,n(A) .

Case 1: Test session πs
i is partnered (Game Γ3a and Game Γ3b):

Game Γ3a.1: Let Ep be the event that test session πs
i has a partner, say πt

j . Let Ec1 be

the event that the ephemeral state st of the receiver (in πs
i and πt

j) is revealed. Games

Game Γ3a.i are defined given Ep ∧Ec1. Game Γ3a.1 differs from Game Γ3 in that the game

initially outputs πt
j , the partner of πs

i (observe that j = j∗ where j∗ is defined in the previous

hop), as well as a bit indicting whether πs
i is the sender or receiver. By the same reasoning as

48

3.4 K-Waay: Post-Quantum X3DH from Split-KEM

above, we have

Advg3
DAKE,n(A ,Ep ∧Ec1) ≤ 2q ·Advg3a.1

DAKE,n(A) .

Game Γ3a.2: Game Γ3a.2 differs from Game Γ3a.1 in that the output key K in the call to

LKEM.Encaps and the corresponding LKEM.Decaps call or calls (which are guaranteed to ex-

ist given Ep , and K is identical by definition of Game Γ2) made in the test and partner sessions

with respect to the receiver’s public key and secret key, respectively, are replaced with a key k

uniformly sampled by the challenger. Observe that since Ec1 holds, by freshness, P j cannot be

corrupted, and thus we reduce to the security of LKEM.

Let A ′ be a IND-CCA adversary who simulates for Game Γ3a.1/Game Γ3a.2 adversary A as

follows. Let pk be the IND-CCA challenge public key, (ct∗,K ∗) be the challenge ciphertext and

key respectively.

In the Setup phase, A ′ uniformly samples bit bsi m , calls (pkℓ,skℓ) $←KeyGen(1λ) locally for

ℓ ̸= k where k is the sender, sets pkk ← pk, and returns {pk1, . . .pkn} and 1λ to A . Observe here

(and later for Game Γ3b.2) that, since Ep holds, we have matching sid values for test session

πs
i and partner πt

j . Note by construction of sid, the presence of substring preki ||prek j and m

in the common value sid implies that Send must have been called honestly in πs
i and also in

BatchReceive for tuple (pk j ,prek j ,m j) in πt
j for Ep to hold. Thus, we do not need to consider

injections in the test session itself (although we have to in general in the BatchReceive call).

Before proceeding, we argue that A ′ can simulate on behalf of parties with a maliciously-

registered long-term key locally, which applies here and in the rest of the proof. Since πs
i is

partnered, as argued above, πs
i and πt

j correspond to honest (completed) executions, and so

neither Pi and P j can be malicious. For unpartnered sessions, since Send and BatchReceive
cannot be called by the game, the test session πs

i cannot be corrupted itself (since testing

requires πs
i .status ̸= ⊥), and otherwise condition 5 restricts the non-tested party P j from being

corrupted, thus precluding its key from being registered maliciously. Finally, computation

involving messages or prekey bundles from maliciously-registered parties does not require

any secret material not already known to A ′.

In Phase 1, when A calls EXEC(k ′, ·, ·, ·) where k ′ corresponds to the sender in πs
i and πt

j and

the challenger is supposed to invoke Send, A ′ replaces the call to EncapsLKEM with the output

(ct∗,K ∗), and otherwise simulates locally. When A calls EXEC(k, ·, ·, ·) corresponding to the

receiver in πs
i and πt

j and the challenger is supposed to invoke BatchReceive, A ′ replaces the

output of the relevant DecapsLKEM calls corresponding to either i or j , depending on who is

the receiver, with K ∗ and the output of other calls DecapsLKEM with the output obtained from

DEC(·); A ′ otherwise simulates locally.

In the Test phase, i.e., when A calls TEST(i , s, j), A ′ simulates with respect to bit bsi m . A ′

then simulates Phase 2 as above and the rest of the game locally, ultimately outputting the

same bit as A ; observe that A ′ can efficiently evaluate the freshness conditions. Since A ′

perfectly simulates Game Γ3a.1 when playing with respect to challenge bit 0 and Game Γ3a.2

49

Chapter 3. K-Waay: Fast and Deniable Post-Quantum X3DH Without Ring Signatures

when it is 1, it follows that:

Advg3a.1
DAKE,n(A) ≤Advg3a.2

DAKE,n(A)+Advind−cca
LKEM (A ′) .

Game Γ3a.3: This differs from Game Γ3a.2 in that, for the test and partner sessions, the call to

KDF made in Send and the corresponding calls made in BatchReceive with respect to cipher-

text ctℓ output by Send are replaced with uniformly sampled keys. Let A ′ be a PRF adversary

playing with respect to KDF keyed in its first argument simulating for Game Γ3a.2/Game Γ3a.3

adversary A as follows. A ′ simulates locally all calls except the Send and BatchReceive
calls made in πs

i and πt
j , where it replaces the relevant calls KDF(Kℓ,Kk ,Ks ,sid) with the call

EVAL(Kk ,Ks ,sid). Since Kℓ is uniform (by definition of Game Γ3a.2) and, by definition of

freshness, Kℓ is not revealed to A , the simulation is perfect and we have:

Advg3a.2
DAKE,n(A) ≤Advg3a.3

DAKE,n(A)+Adv3prf
KDF(A ′) .

Finally, we have Advg3a.3
DAKE,n(A) = 0 since the output of TEST is identical regardless of the

challenge bit and it is not otherwise used by the challenger or leaked to the adversary.

Game Γ3b.1: We now consider the case when Ep ∧ ¬Ec1, i.e., the case where the re-

ceiver’s session state st in πs
i and πt

j is not revealed. Game Γ3b.1 differs from Game Γ3 in that

the game initially outputs πt
j , the partner of πs

i , as well as a bit indicating whether πs
i is the

sender or receiver. Since Game Γ3b.1 is exactly Game Γ3a.1, we have

Advg3
DAKE,n(A ,Ep ∧¬Ec1) ≤ q ·Advg3b.1

DAKE,n(A) .

Game Γ3b.2: In Game Γ3b.2, the output of EncapsEKEM and the corresponding DecapsEKEM
call or calls in the test session are replaced with a uniformly random key k. IND-CCA adversary

A ′ simulates for Game Γ3b.1/Game Γ3b.2 adversary A as follows. A ′ follows the same broad

approach as the adversary defined in the hop between Game Γ3a.1 and Game Γ3a.2. In particu-

lar, A ′ simulates the receiver in their session’s call to Init except it uses the IND-CCA challenge

public key pk, replaces the output of EKEM in the test session Encaps and the corresponding

Decaps calls with the challenge ciphertext and key and replaces other Decaps calls with calls

to oracle DEC. By the same reasoning as before, it follows that:

Advg3b.1
DAKE,n(A) ≤Advg3b.2

DAKE,n(A)+Advind−cca
EKEM (A ′) .

Game Γ3b.3: This replaces the relevant outputs of KDF in the test session with a uniformly

random key. As in Game Γ3a.3, this game is now unwinnable, i.e., Advg3b.3
DAKE,n(A) = 0. As before,

we reduce to the security of KDF, except now we key KDF in the PRF game with the second

50

3.4 K-Waay: Post-Quantum X3DH from Split-KEM

argument Kk . We then arrive at:

Advg3b.2
DAKE,n(A) ≤Advg3b.3

DAKE,n(A)+Adv3prf
KDF(A ′) .

Case 2: Test session πs
i is unpartnered and πs

i .role= sender (Game Γ3c):

Game Γ3c.1: Let πs
i .pid = j and Es be the event that πs

i .role = sender. Game Γ3c.1 differs

from Game Γ3 in that the challenger immediately outputs j . By a standard argument, we have:

Advg3
DAKE,n(A ,¬Ep ∧Es) ≤ min{q,n} ·Advg3c.1

DAKE,n(A) .

Game Γ3c.2: This differs from Game Γ3c.1 in that the challenger aborts if the call

Send(ski ,pk j ,sti ,prek j) in the test session is such that prek j was not previously output by

a call to Init(sk j ,receiver). Note that by freshness condition 5 that P j must not be corrupted

until after πs
i .status is changed from ⊥, which, by definition of Es , means until after it is set to

accept. In order for Send to accept on input prek j = (espk j ,ekpk j ,σ j) not previously output by

Init(sk j ,receiver) (and thus for the game to abort), A needs to find a different prek j such that

Vrfy(pk j .spk, (espk j ,ekpk j),σ j) (by construction of Send). Using this observation, we reduce

to the SUF-CMA security of Sig.

Let A ′ be a SUF-CMA adversary simulating for Game Γ3c.1 adversary A . Let pk be the

SUF-CMA challenge public key. In the Setup phase, A ′ sets pk j = pk and otherwise simulates

locally. In particular, unlike in previous hops, A ′ also samples the random Game Γ3c.1 bit. In

each subsequent phase, for each call EXEC(j ,u, ·,m) such that m = (start,role, ·), A ′ replaces

the SignSig(sk j .ssk, (espk j ,ekpk j)) call in Init(sk j ,receiver) by a call to SIGN((espk j ,ekpk j)),

and otherwise simulates the call locally. When the challenger calls Send(·,pk j , ·,prek j) where

prek j = (espk j ,ekpk j ,σ j), A ′ checks whether (1) (espk j ,ekpk j) was previously queried to SIGN
which output σ j and (2) VrfySig(pk, (espk j ,ekpk j),σ j) = 1. Given (1) and (2) both hold, A ′

returns (m,σ) = ((espk j ,ekpk j),σ j) to its challenger. A ′ otherwise simulates locally, aborting

if A outputs a bit. The simulation is perfect and it follows that:

Advg3c.1
DAKE,n(A) ≤Advg3c.2

DAKE,n(A)+Advsuf−cma
Sig (A ′) .

Game Γ3c.3: In Game Γ3c.3, the challenger initially outputs πt
j , where πt

j is the session that

prek is output by Init(sk j ,receiver) and input to the Send call in test session πs
i . By a standard

failure event argument, we have:

Advg3c.2
DAKE,n(A) ≤ q ·Advg3c.3

DAKE,n(A) .

Game Γ3c.4a.1: Let Ec2 be the event that P j is corrupted. We construct hybrid sequence

Game Γ3c.4a (resp. Game Γ3c.4b) to deal with the case that Ec2 holds (resp. does not hold).

51

Chapter 3. K-Waay: Fast and Deniable Post-Quantum X3DH Without Ring Signatures

Game Γ3c.4a.1 differs from Game Γ3c.3 in that the output of EncapsEKEM in the Send call in

test session πs
i and of the (possible) corresponding DecapsEKEM calls in πt

j are replaced with

uniformly random output. By freshness, P j ’s session state πt
j .st associated with prek input to

the test Send call is not revealed.

IND-CCA adversary A ′ simulates for Game Γ3c.4a.1 adversary A as follows. Let (pk,k,ct) the

challenge public key, key and corresponding ciphertext (respectively) of A ′. A ′ embeds pk
in session πt

j by replacing the public key output by KeyGenEKEM in Init(sk j ,receiver) with pk,

which outputs prek j . Upon prek j being input to Send in the test session, A ′ replaces the output

of EncapsEKEM with (k,ct). When the challenger calls BatchReceive(sk j , ·, {·, ·,m j ′ = (·,ct′, ·)} j ′)

in session πt
j , if ct′ = ct, A ′ replaces the output of DecapsEKEM with k; else, A ′ replaces the

call DecapsEKEM(·,ct′) with the call DEC(ct′). A ′ otherwise simulates locally and outputs the

same bit as A . By similar reasons to before, we have:

Advg3c.3
DAKE,n(A ,Ec2) ≤Advg3c.4a.1

DAKE,n(A)+Advind−cca
EKEM (A ′) .

Game Γ3c.4a.2: This replaces the output of KDF in the Send and BatchReceive calls as before in

the test session and πt
j with uniformly random keys. Otherwise, by the exact same argument

as for Game Γ3b.3 (where since the two sessions are unpartnered, they must diverge in sid, and

so both EVAL queries are allowed in the simulation), we have Advg3c.4a.2
DAKE,n(A) = 0 and

Advg3c.4a.1
DAKE,n(A) ≤Advg3c.4a.2

DAKE,n(A)+Adv3prf
KDF(A ′) .

Game Γ3c.4b.1: We assume ¬Ec2, i.e., that P j is not corrupted. We reduce to the IND-CCA secu-

rity of LKEM. The reduction follows the same high-level strategy as previous hops (embedding

the challenge pk in pk j and the challenge in the test Send call and possibly the corresponding

BatchReceive call), noting that non-challenge DecapsLKEM(sk j , ·) queries are replaced with

calls to DEC. We then have:

Advg3c.3
DAKE,n(A ,¬Ec2) ≤Advg3c.4b.1

DAKE,n(A)+Advind−cca
LKEM (A ′) .

Game Γ3c.4b.2: As in Game Γ3c.4a.2, this replaces the output of KDF in the Send and

BatchReceive calls in πs
i and πt

j with a uniformly random key. As argued several times above,

it follows that Advg3c.4b.2
DAKE,n(A) = 0 and

Advg3c.4b.1
DAKE,n(A) ≤Advg3c.4b.2

DAKE,n(A)+Adv3prf
KDF(A ′) .

Case 3: Test session πs
i is unpartnered and πs

i .role= receiver (Game Γ3d):

Game Γ3d .1: Game Γ3d .1 differs from Game Γ3 in that the challenger immediately out-

52

3.4 K-Waay: Post-Quantum X3DH from Split-KEM

puts j , the third argument in A ’s TEST(i , s, j) call. As for Game Γ3c.1, we have

Advg3
DAKE,n(A ,¬Es) ≤ min{q,n} ·Advg3d.1

DAKE,n(A) .

Game Γ3d .2: This differs from Game Γ3d .1 in that the challenger aborts if the call

BatchReceive(ski ,sti , {pk j ′ ,prek j ′ ,m} j ′) in the test session is such that prek j was not previ-

ously output by a call to Init(sk j ,sender). As in Game Γ3c.2, P j must not be corrupted until

after πs
i .status is set to accept. By reducing to SUF-CMA security essentially as in Game Γ3c.2,

it follows that:

Advg3d.1
DAKE,n(A) ≤Advg3d.2

DAKE,n(A)+Advsuf−cma
Sig (A) .

Game Γ3d .3: This differs from Game Γ3d .2 in that the challenger initially outputsπt
j , the session

that generated prek j which formed part of the input to BatchReceive in the test session πs
i . By

a standard argument we have:

Advg3d.2
DAKE,n(A) ≤ q ·Advg3d.3

DAKE,n(A) .

Game Γ3d .4: This differs from Game Γ3d .3 in that the challenger aborts if the

Send(sk j ,pki ,st j ,preki) call in session πt
j (if it exists) and the relevant component in

the BatchReceive call in the test session πs
i were not both with respect to honestly generated

split-KEM keying material (namely, an honestly generated split-KEM public key from preki

and prek j from the previous hop) and the same split-KEM ciphertext. By freshness, neither

of the two ephemeral states πs
i .st and πt

j .st are revealed. Consequently, we reduce to the

UNF-1KCA security of split-KEM sKEM.

UNF-1KCA adversary A ′ simulates for Game Γ3d .3/Game Γ3d .4 adversary A as follows. Let

(pkA,pkB) be the two challenge public keys given to A ′. In the Init(ski ,receiver) call in ses-

sion πs
i , A ′ simulates except replaces the call to KeyGenAsKEM by pkA. Similarly, in the

Init(sk j ,sender) call in session πt
j , A ′ replaces KeyGenBsKEM by pkB. In the Send(...,prek) call

in session πt
j where prek = (espk, ...), A ′ outputs espk to its UNF-1KCA challenger, receives

(pkA,pkB,ct,KB) from its challenger, and replaces the call to EncapssKEM with tuple (ct,KB).

Finally, when the BatchReceive(ski , ·, {·,prek j ′ ,m = (·, ·,cts)} j ′) call in test session πs
i is made,

A ′ outputs cts corresponding to j ′ = j to its challenger. As the simulation is perfect and

the probability that A ′ wins is exactly the probability that 1) (ct,pkA) ̸= (cts ,pk) and 2) rel-

evant DecapssKEM call in BatchReceive outputs k ̸= ⊥, it follows by a standard failure event

argument that:

Advg3d.3
DAKE,n(A) ≤Advg3d.4

DAKE,n(A)+Advunf−1kca
sKEM (A ′) .

Game Γ3d .5: This differs from Game Γ3d .4 in that the output k of the relevant test session

split-KEM decapsulation and the corresponding encapsulation (if it exists) are both replaced

by a uniformly random key. Note that by definition of Game Γ3d .4, A can only input an

honestly generated split-KEM ciphertext to the BatchReceive call in the test session from P j

53

Chapter 3. K-Waay: Fast and Deniable Post-Quantum X3DH Without Ring Signatures

and that the split-KEM public key in P j ’s corresponding Send call (if it exists) must be honestly

generated. We therefore reduce to the IND-1BatchCCA security of sKEM. We embed the

IND-1BatchCCA keys pkA, pkB in the simulation as in the previous hop. When A queries

EXEC(i , s,S = {s j ′ ,prek j ′ ,m j ′} j ′), A ′ replaces all DecapssKEM calls involving skA except the call

corresponding to the test session by the output of its query to oracle BatchDEC, replaces this

final DecapssKEM call with the IND-1BatchCCA challenge key and otherwise simulates locally.

It follows that:

Advg3d.4
DAKE,n(A) ≤Advg3d.5

DAKE,n(A)+Advind−1batchcca
sKEM (A ′) .

Game Γ3d .6: This game replaces the relevant invocation of KDF in the test session’s

BatchReceive call by a uniformly random value. Note as usual that Advg3d.6
DAKE,n(A) = 0. By

keying KDF in its third argument as a PRF and a standard argument it follows that:

Advg3d.5
DAKE,n(A) ≤Advg3d.6

DAKE,n(A)+Adv3prf
KDF(A ′) .

Finally note that by the triangle inequality, we have, among other inequalities:

Advg3
DAKE,n(A) ≤Advg3

DAKE,n(A ,Ep)+Advg3
DAKE,n(A ,¬Ep) .

The result follows using this observation and by combining the sequences of hybrids together

in a standard way.

We now prove the deniability of K-Waay.

Theorem 2. Consider deniable split-KEM sKEM with simulator SimsKEM used to build K-
Waay (Figure 3.7). Then, we have that for every efficient adversary A that makes at most q

oracle queries, there exists an efficient Sim s.t. one can build an adversary B such that for

exp ∈ {true, false} we have:

Advdeny
K-Waay,Sim,exp(A) ≤ q ·Advdeny

sKEM,SimsKEM
(B) .

Proof. We construct a sequence of hybrids and reduce to the deniability of sKEM (i.e.,

DENYsKEM,SimsKEM security) in each step. Before this, we define the simulator Sim that we use

in the proof, which uses the simulator SimsKEM (which must exist if sKEM is deniable) as a

subroutine.

Observe in K-Waay that, given an honestly generated prek j , any party with knowledge only

of public keying material can simulate all steps in Send except for the EncapssKEM call which

requires sender Pi ’s secret key. Thus, our simulator Sim (Figure 3.8) simulates these steps

and since it takes the receiver’s key sk j as input it can also invoke the deniability simulator

SimsKEM to complete the call.

54

3.4 K-Waay: Post-Quantum X3DH from Split-KEM

Sim(sk j ,pki ,st j ,preki ,prek j)

1 : (essk j ,eksk j ,prek j) ← st j

2 : (espki ,ekpki ,σi) ← preki

3 : (espk j ,ekpk j ,σ j) ← prek j

4 : spk←GetPK(sk j .ssk)

5 : require VrfySig(spk, (espk j ,ekpk j),σ j) = 1

6 : (Kℓ,ctℓ) $←EncapsLKEM(pk j .kpk)

7 : (Kk ,ctk) $←EncapsEKEM(ekpk j)

8 : (Ks ,cts) $← SimsKEM(espki ,essk j)

9 : m ← (ctℓ,ctk ,cts)

10 : sid← Pi ||P j ||pki ||pk j ||preki ||prek j ||m
11 : k←KDF(Kℓ,Kk ,Ks ,sid)

12 : return (k,m)

Figure 3.8: Simulator Sim for the deniability game where we assume function GetPK(sk) that
takes a signature secret key as input and outputs the corresponding public key.

Let Γ0 be the DAKE DENY game instantiated with K-Waay. For i ∈ [q], let Γi be the same as

Γi−1 except that in the i -th CHAL call, the call to Send is replaced with a call to Sim. Note that

the steps executed in Send only differ in that it calls EncapssKEM rather than SimsKEM.

For i ∈ [q], let B be a split-KEM DENY adversary with input (pkA,pkB,skB,K ,ct) from its

challenger playing DENYREAL given A is playing Γi−1 and DENYSIM if it is playing Γi . B′

locally simulates long-term public key generation and the first i −1 calls to CHAL. When A

makes their i -th call to CHAL, B simulates CHAL until it reaches the if statement except that it

replaces the output of calls KeyGenA/KeyGenB calls in Init calls with pkA/pkB. Then, instead

of executing the if/else block in CHAL, B simulates Sim except that it replaces the output

of the call to SimsKEM with (K ,ct). B then simulates locally, and returns (k,T,str) (where

str contains skB) if exp = true and returns (k,T) otherwise. B continues simulating locally

and finally outputs the same bit as A . Noting that DAKE deniability game DENYK-Waay,Sim
considers only honest executions of K-Waay, it follows that the simulation is perfect, and so

by DENYsKEM security we have∣∣∣AdvΓi−1

DAKE(A)−AdvΓi

DAKE(A)
∣∣∣≤Advdeny

sKEM,SimsKEM
(B) .

By application of the triangle inequality and telescoping sums:∣∣∣AdvΓ0

DAKE(A)−AdvΓq

DAKE(A)
∣∣∣≤ q ·Advdeny

sKEM,SimsKEM
(B) .

To complete the proof, observe that AdvΓq

DAKE,n(A) = 0 since CHAL behaves identically inde-

pendent of challenge bit b.

55

Chapter 3. K-Waay: Fast and Deniable Post-Quantum X3DH Without Ring Signatures

3.5 Deniable Split-KEM from Lattices

In this section we build an efficient deniable split-KEM under the hardness of LWE. We start

by introducing briefly several concepts of lattice-based cryptography that we use to design

the scheme. We then present our split-KEM and prove that it is correct, OW-CPA, deniable

and decaps-CPA. After this, we provide a generic transformation in the (Q)ROM to build

UNF-1KCA and IND-1BatchCCA split-KEM assuming decaps-CPA and OW-CPA security

respectively. Finally, we provide concrete parameters for our split-KEM that provide at least

128 bits of classical and quantum security.

3.5.1 Lattice Toolbox

L∞ and Lα norms. We start by recalling what the L∞ and Lα norms over Zq are. For an

element w in Zq , we write ∥w∥∞ to mean |〈w〉q | (i.e., |w (mod q)|). Then, we define the L∞
and Lα norms for w = (w1, w2, . . . , wn) over Zq as follows:

∥w∥∞ = max
j∈[n]

∥w j∥∞, ∥w∥α = α
√∥w1∥α∞+ . . .+∥wn∥α∞.

By default, ∥w∥ := ∥w∥2.

Probability Distributions. For a finite set S, we define U (S) to be the uniform distribution on

S. We will also use the binomial distribution Bin1 which is defined as: Bin1(−1) =Bin1(1) = 1/4

and Bin1(0) = 1/2.

Rounding Functions. Given two parameters q and B < logq − 1, we define the rounding

function ⌊·⌉q,2 and the cross-rounding function 〈·〉q,B as follows:

⌊v⌉q,B :=
⌊

2B

q
· v

⌉
mod 2B , 〈v〉q,B :=

⌊
2B+1

q
· v

⌋
mod 2 ,

for any v ∈Zq .

Reconciliation Function. We recall the (generalised) reconciliation mechanism from Bos et al.

and Peikert [BCD+16, Pei14], which for every approximate agreement in Zq allows extracting

shared bits. We refer the reader to the aforementioned works for more details. Let q be a

positive integer. Let B be the number of bits we want to extract from one coefficient in Zq so

that B < logq −1. Now, for any v ∈Zq , which is represented as an integer in [0, q), we define

the following functions.

Definition 28 (Randomised doubling function (dbl)). For any v ∈ Zq , we define dbl(·) as

follows:

dbl(v) : v 7→ 2v −e, e $←Bin1

Then, we have the following property which comes from [BCD+16, Claim 3.1].

56

3.5 Deniable Split-KEM from Lattices

Lemma 1. Let q be odd. If v ∈Zq is uniformly random and v̄ $← dbl(v) ∈Z2q , then ⌊v̄⌉2q,B is

uniformly random given 〈v̄〉2q,B .

Now, we are ready to define the reconciliation function rec :Z2q ×Z2 →Z2B .

Definition 29 (Reconciliation function (rec)). For any w ∈Z2q and bit b ∈ {0,1}, let v be the

closest element to w ∈Z2q s.t. 〈v〉2q,B = b. Then, we define rec as

rec(w,b) := ⌊v⌉2q,B .

The next result gives an important property of the reconciliation function rec, as described by

Peikert [Pei14, Section 3.2].

Lemma 2. Let q be odd and v̄ $← dbl(v). If |v −w | ≤ ⌊ q
2B+2 ⌋ then

rec(2w,〈v̄〉2q,B) = ⌊v̄⌉2q,B .

Finally, we define the HelpRec :Zq 7→ {0,1} function as follows:

Definition 30 (HelpRec function). On any input v ∈Zq ,

HelpRec(v) := 〈v̄〉2q,B , where v̄ ← dbl(v) .

All the functions above can be naturally generalised to take as input vectors and matrices over

Zq by applying the function to each of the coefficients.

Learning-with-Errors. The security of our lattice constructions relies on the learning-with-

errors (LWE) problem introduced by Regev [Reg05]. In this chapter we will consider the case

where both the secret and error coefficients come from a probability distribution over Z.

Definition 31 (LWEn,m,χ,q). Let n,m ∈N and χ be a probability distribution over Z. The LWE
problem asks the adversary A to distinguish between the following two cases:

1. (A,As+e mod q) for A $←U (Zn×m
q), a secret s $←χm and error e $←χn ,

2. (A,t) $←U (Zn×m
q)×U (Zn

q).

We say that the LWEn,m,χ,q assumption holds if any efficient adversary cannot distinguish

between the two distributions except with negligible probability.

3.5.2 Extended-LWE

Our proof of deniability for the split-KEM will involve a new security assumption, which we

call the Extended-LWE problem (ELWE). Intuitively, it is similar to the plain LWE problem,

but the adversary is now also given random linear combinations of the secrets and errors.

57

Chapter 3. K-Waay: Fast and Deniable Post-Quantum X3DH Without Ring Signatures

Definition 32 (ELWEn,m,n̄,χ,q). Let n,m ∈N and χ be a probability distribution over Z. The

ELWE problem asks the adversary A to distinguish between the following two cases:

1.
(
A,As+e mod q,Z,W,Zs+We mod q

)
for A $← U (Zn×m

q), secret s $← χm , error e $← χn ,

and (Z,W) $←χn̄×m ×χn̄×n ,

2.
(
A,t,Z,W,Zs+We mod q

)
for A $← U (Zn×m

q), t $← U (Zn
q), secret s $← χm , error e $← χn ,

and (Z,W) $←χn̄×m ×χn̄×n .

We say that the ELWEn,m,n̄,k,χ,q assumption holds if any efficient adversary cannot distinguish

between the two distributions except with negligible probability.

This problem is a natural generalisation of the Extended-LWE problem by Alperin-Sheriff and

Peikert [AP12], where now (Z,W) are matrices and not just vectors. Here, we also simplify the

definition and assume that the coefficients of Z and W come from the same distribution χ as

the secrets and errors.

We show in the following theorem that the hardness of this newly introduced ELWE problem

reduces to the hardness of LWE.

Theorem 3. Let q be an odd prime and χ be symmetric around 0. If there is an efficient

adversary A which wins ELWEn,m,n̄,χ,q with probability ε, then there also exists an efficient

adversary B which wins LWEn+m,m,χ,q with probability at least δelwe ·ε−negl(n) where

δelwe := Pr
[
Z(e−d) = 0 (mod q) : Z $←χn̄×(n+m),e,d $←χn+m]

. (3.1)

Proof. We prove the statement by introducing a sequence of LWE-type games Γi . We start

with Γ1 :=ELWEn,m,n̄,χ,q and give an efficient reduction from Γi to Γi+1. In the end, we finish

with LWEn+m,m,χ,q . We denote Advi (A) to be the probability that A wins Γi . Then, the proof

follows by the composition of the constant number of efficient reductions.

Game Γ1: This is the standard ELWEn,m,n̄,χ,q game. The adversary A wins this game

with probability ε.

Game Γ2: Here, we consider the ELWE-type game where the secret vector is uniformly

random. Namely, the challenger samples the public A $← U (Z(n+m)×m
q), secret s $← U (Zm

q),

error e $←U (Zn+m
q) as well as the hint matrix Z $←χn̄×(n+m). Then it flips a bit b $←U ({0,1}). If

b = 0 then the challenger computes

t := As+e

and otherwise it samples t $←U (Zn+m
q). The challenger outputs (A,t,Z,Ze).

Lemma 3. For every efficient adversary A , there is an efficient adversary B such that

Adv2(B) ≥Adv1(A)−negl(n).

58

3.5 Deniable Split-KEM from Lattices

Proof. The reduction follows similarly as in the one by Applebaum et al. [ACPS09]. Suppose

the algorithm B is given a tuple (A,t,Z,h) from Γ2. With probability at most 1/q (n+m)−m−1 ≤
1/qn−1, matrix A is not full-rank. Let us exclude that case and assume without loss of generality

that we can write

A :=
[

A0

A1

]
, Z :=

[
Z0 Z1

]
, and t :=

[
t0

t1

]
where A1 ∈Zn×m

q and the matrix A0 ∈Zm×m
q , which contains the first m rows of A, is invertible.

Thus, define A′ := A1A−1
0 ∈Zn×m

q , and t′ := A′t0 − t1 ∈Zn
q . Then, it runs A on input(

A′,t′,Z0,−Z1,h
)

and returns what A outputs.

Suppose that t = As+e where s ∈Zm
q and e := (e0,e1) ∈Zm

q ×Zn
q . Then

t′ = A′t0 − t1 = A1A−1
0 (A0s+e0)− (A1s+e1) = A′e0 −e1

which is a valid LWE instance since χ is symmetric around 0. Also, if A is uniformly random

among all nonsingular matrices, then A′ and B′ are statistically close to uniformly random

matrices over Zq . As for the hints, note that

h = Z0e0 +Z1e1 = Z0e0 + (−Z1)(−e1),

so h is a well-formed hint for Γ1.

On the other hand, if t is uniformly random, then so is t′. It can be argued similarly as before

that all the other components follow the distribution for b = 1.

Game Γ3: We consider the knapsack version of ELWE. Here, the challenger samples the public

G := $← U (Zn×(n+m)
q), secret e $← U (Zn+m

q) and the hint matrix Z $← χn̄×(n+m). Then it flips a

bit b $← U ({0,1}). If b = 0 then the challenger computes t := Ge, and otherwise it samples

t $←U (Zn
q). Finally, the challenger outputs (G,t,Z,Ze).

Lemma 4. For every efficient adversary A , there is an efficient adversary B such that

Adv3(B) ≥Adv2(A)−negl(n).

Proof. The reduction is similar to the proof of Micciancio and Mol [MM11, Lemma 4.9]. Sup-

pose the algorithm B is given a tuple (G,t,Z,h) from Γ3. Then, B can construct a randomised

matrix A ∈Z(n+m)×m
q whose columns generate the kernel of G. In particular, if G is uniformly

random, then so are (A,B), up to the constraint that they are nonsingular. Then, B computes

any solution r such that Gr = t. Finally, it samples a uniformly random s $←U (Zm
q) and runs A

on input

(A,As+ r,Z,h)

59

Chapter 3. K-Waay: Fast and Deniable Post-Quantum X3DH Without Ring Signatures

and returns what A outputs.

Suppose that Ge = t = Gr. By definition of the matrix A, G(r−e) = 0 implies that there exists

some vector x ∈Zm
q such that r−e = Ax. Thus,

As+ r = A(s+x)+e

which is a valid LWE instance since s+x is still uniformly random over Zm
q . As for the hints, we

still have h = Ze and thus B correctly simulates Γ2 for b = 0. The case b = 1 follows by arguing

that t is uniformly random and if G is nonsingular then r must be uniformly random.

Game Γ4: This game is a plain knapsack LWE problem. The challenger samples the public

G $← U (Zn×(n+m)
q) and a secret e $← U (Zn+m

q). Then it flips a bit b $← U ({0,1}). If b = 0 then

the challenger computes t := Ge, and otherwise it samples t $←U (Zn
q). Finally, the challenger

outputs (G,t).

Lemma 5. For every efficient adversary A , there is an efficient adversary B such that

Adv4(B) ≥ δelwe ·Adv3(A).

Proof. We follow the proof strategy from [AP12, Theorem 1]. Suppose the algorithm B is

given a tuple (G0,G1,t) from Γ4. Then, it samples Z $← χn̄×(n+m), d $← χn+m and a matrix

V $←U (Zn×n̄
q). Further, it sets

G′ := G−VZ and t′ := t−VZd.

Finally, it runs A on input (
G′,t′,Z,Zd

)
and returns what A outputs.

Clearly, if G (resp. t) is uniformly random then so is G′ (resp. t′). Hence, the case b = 1 follows

directly. Suppose b = 0 and thus t = Ge. Then, we have

t′ = t−VZd = Ge−VZd = G′e+V(Ze−Zd).

Hence, if Ze = Zd then ([G′
0 G1],t′,Z,Zd) is indeed a valid knapsack ELWE tuple. This happens

exactly with probability at most δelwe by definition. Otherwise, V(Ze−Zd) is a uniformly

random vector over Zq , and so is t′. Thus, the tuple output by B follows the case b = 1 for Γ3.

The statement now follows by simple calculation.

Game Γ5: Here, we consider the plain LWE game. Recall that the challenger samples the public

A $←U (Z(n+m)×m
q), secret s $←U (Zm

q), error e $←U (Zn+m
q). Then it flips a bit b $←U ({0,1}). If

b = 0 then the challenger computes t := As+e, and otherwise it samples t $←U (Zn+m
q). At the

end, the challenger outputs (A,t).

60

3.5 Deniable Split-KEM from Lattices

Lemma 6. For every efficient adversary A , there is an efficient adversary B such that

Adv5(B) ≥Adv4(A)−negl(n).

Proof. The reduction is identical to the one of Micciancio and Mol [MM11, Lemma 4.8] which

we recall for completeness. Suppose the algorithm B is given a tuple (A,t) from Γ5. If A is

full-rank, then B can construct a (randomised) matrix G ∈Zn×(n+m)
q whose rows generate all

the vectors x such that xT A = 0. Also, if A is chosen at random among all full-rank matrices,

then G is also distributed statistically close to a uniformly random. Then, B outputs (G,Gt) to

A and returns what A outputs.

Suppose b = 0 and t = As+e. Then Gt = GAs+e = Ge, which is the correct instance of Γ4 for

b = 0. On the other hand, if t is uniformly random, then so is Gt.

The statement of the theorem now follows by combining all the previous lemmas using

reduction composition.

3.5.3 Construction

We can now present our Frodo-inspired [BCD+16] split-KEM, which we call FrodoKEX+. The

scheme is given in Figure 3.9. The key generation works as follows. The public key pkA for party

A is a pair (A,BA), where A is a uniformly random matrix over Zq given as a public parameter,

and BA := ASA +DA where SA,DA
$← χn×n̄ . The secret key becomes a pair skA = (SA,DA).

Similarly, the public key pkB for party B is a pair (A,BB), where BB := SBA+DB, while the

secret key is skB = (SB,DB), where SB,DB
$←χn̄×n .

Then, B samples a matrix EB
$← χn̄×n̄ and computes the matrix V := SBBA +EB. Next, it

computes ct←HelpRec(V) and K ← rec(V,ct). Then, B outputs ct. Then, party A decapsulates

as follows: given (pkB,skA,ct), it computes V′ = BBSA +FA and K′ = rec(2V′,ct). Finally, A
returns the key K′.

We note that the construction can easily be made symmetric, in the sense that A could

encapsulate using B’s public key by changing the order of matrices when multiplying in

Encaps such that the dimensions match. Then, Decaps can be modified similarly such that B
can decapsulate the resulting ciphertext.

3.5.4 Security Analysis

Lemma 7 (Correctness). Let χ be a symmetric distribution around 0 and δcorr be the following

probability:

Pr
[
|〈s,d〉+e + f | > q

2B+2
: s,d $←χ2n ,e, f $←χ

]
. (3.2)

Then, sKEM defined in Figure 3.9 is (n̄2δcorr)-correct.

61

Chapter 3. K-Waay: Fast and Deniable Post-Quantum X3DH Without Ring Signatures

KeyGenA(1λ)

1 : SA,DA
$←χ(Zn×n

q)

2 : FA
$←χn×n

3 : BA ← ASA +DA

4 : pkA ← (A,BA)

5 : skA ← (SA,DA,FA)

6 : return (pkA,skA)

Encaps(pkA = (A,BA),skB = (SB,DB,FB))

1 : // We assume B encapsulates

2 : EB
$←χn̄×n̄

3 : V ← SBBA +EB

4 : ct←HelpRec(V)

5 : K ← rec(2V,ct)

6 : return (K,ct)

KeyGenB(1λ)

1 : SB,DB
$←χn×n

2 : FB
$←χn×n

3 : BB ← SBA+DB

4 : pkB ← (A,BB)

5 : skB ← (SB,DB,FB)

6 : return (pkB,skB)

Decaps(pkB = (A,BB),skA = (SA,DA,FA),ct)

1 : V′ ← BBSA +FA

2 : K′ ← rec(2V′,ct)

3 : return K′

Figure 3.9: Our variant of FrodoKEX [BCD+16] expressed as a split-KEM. The matrix A ∈Zn×n
q

is assumed to be a public parameter and sampled uniformly at random.

Proof. Suppose (pkA,skA) $←KeyGenA(1λ) and (pkB,skB) $←KeyGenB(1λ), and let

(K,ct) $←Encaps(pkA,skB) and K′ $←Decaps(pkB,skA,ct).

We want to prove that K = K′. By definition of encapsulation, we know that K = rec(2V,ct)

where ct=HelpRec(V) and

V = SBBA+EB = SBASA+SBDA+EB.

Thus, by Lemma 2, K = ⌊V⌉2q,2B . On the other hand,

V′ = BBSA+FA = SBASA+DBSA+FA

which implies that V−V′ = SBDA+EB−DBSA −FA. If ∥V−V′∥∞ < q
2B+2 then by Lemma 2 we

must have

K′ = rec(2V′,HelpRec(V)) = ⌊V⌉2q,2B = K

so correctness holds. Now, using the fact that χ is symmetric around 0, the probability

∥V−V′∥∞ > q
2B+2 can be upper-bounded using the union bound as follows:

Pr
[
∥SBDA+EB−DBSA−FA∥∞ > q

2B+2

]
≤ n̄2 ·Pr

[
|sT

0 d0 +sT
1 d1 +e + f | > q

2B+2

]
where s0,s1,d0,d1

$←χn and e, f $←χ. This concludes the proof.

62

3.5 Deniable Split-KEM from Lattices

OW-CPA Security. Next, we focus on proving OW-CPA security.

Lemma 8 (OW-CPA Security). Let n̄ = O(λ) and χ be a symmetric distribution over [−γ,γ]

for any γ> 0. Then, under the LWEn,n,χ,q and LWEn+n̄,n,χ,q assumptions, for every efficient

adversary A , the probability of A winning the OW-CPA game is at most 2−Bn̄2 +negl(λ).

Proof. Let A be an efficient adversary against the OW-CPA game. We prove the statement

using the hybrid games described explicitly in Figure 3.10. In each game Γi , we define εi to be

the probability that the efficient adversary A wins the security game.

Game Γ1: This is the standard OW-CPA game.

Game Γ2: Instead of computing BA ← ASA +DA, the experiment samples BA ← U (Zn×n̄
q).

One can naturally build an efficient adversary, which can solve the LWEn,n,χ,q problem with

probability at least 1
n̄ |ε2 −ε1|. Hence, we deduce that this probability is negligible.

Game Γ3: Here, the experiment computes the values BB and V differently. Namely,

instead of computing: [
BB V

]
:= SB

[
A BA

]
+

[
DB EB

]
,

it samples [
BB V

]
$←U (Zn̄×(n+n̄)

q).

Thus, one can naturally construct an efficient reduction which solves LWEn+n̄,n,χ,q with

probability at least 1
n̄ |ε6 −ε5|.

Finally, it is easy to see that in Γ3 the matrix V is actually uniformly random over Zq .

Hence by Lemma 1, for the adversary A , which is given ct, the key K looks uniformly random.

Therefore, the probability of guessing the key is bounded by 2−n̄2B .

Deniability. We will use the (transposed) matrix version of ELWE where the secrets and errors

are now matrices. In particular, we will be interested in the problem of distinguishing between

(A,SA+E mod q,Z,W,SZ+EW mod q)

and

(A,T,Z,W,SZ+EW mod q)

where S $← χn̄×m , E $← χn̄×n and T $← U (Zn̄×n
q). This problem can be reduced to ELWE with

reduction loss n̄ via a standard hybrid argument.

We are ready to prove deniability of the split-KEM based on Extended-LWE. Intuitively, matri-

ces (S,E) := (SB,DB) will be the secret and error constructed by party B, which are hidden from

the adversary, while (Z,W) := (DA,SA) will be the error and the secret generated by A which are

63

Chapter 3. K-Waay: Fast and Deniable Post-Quantum X3DH Without Ring Signatures

Γ1(A)

1 : SA,DA
$←χ(Zn×n

q)

2 : FA
$←χn×n

3 : BA ← ASA +DA

4 : SB,DB
$←χn×n

5 : FB
$←χn×n

6 : BB ← SBA+DB

7 : EB
$←χn̄×n̄

8 : V ← SBBA +EB

9 : ct←HelpRec(V)

10 : K ← rec(2V,ct)

11 : K′ $←A (A,BA,BB,ct)

12 : return 1�K = K′�

Γ2(A)

1 : BA ←U (Zn×n̄
q)

2 : SB,DB
$←χn×n

3 : FB
$←χn×n

4 : BB ← SBA+DB

5 : EB
$←χn̄×n̄

6 : V ← SBBA +EB

7 : ct←HelpRec(V)

8 : K ← rec(2V,ct)

9 : K′ $←A (A,BA,BB,ct)

10 : return 1�K = K′�

Γ3(A)

1 : BA ←U (Zn×n̄
q)

2 : BB
$←U (Zn×n̄

q)

3 : V $←U (Zn̄×n̄
q)

4 : ct←HelpRec(V)

5 : K ← rec(2V,ct)

6 : K′ $←A (A,BA,BB,ct)

7 : return 1�K = K′�

Figure 3.10: Security games for the proof of Lemma 8. The lines in blue highlight the main
differences from the previous game.

given as input to the simulator. The key observation is that the additional hint provided as

SZ+EW mod q will be used to simulate the “shared key” V (before applying the reconciliation

function).

Theorem 4 (Deniability). Let n̄ = poly(λ). Then, the sKEM defined in Figure 3.9 is deniable

under the ELWEn,n,n̄,χ,q and LWEn,n,χ,q assumptions.

Proof. Let A be an efficient adversary against the deniability game. We prove the statement

using the hybrid games defined in Figure 3.12. In each game Γi , we define εi to be the

probability that the efficient adversary A outputs b = 1.

Game Γ1: This is the standard (real) deniability experiment, which we recall here. First, both

SA,DA
$← χn×n and SB,DB

$← χn×n and FA,FB
$← χn̄×n̄ are sampled. Then, the public keys

BA = ASA +DA and BB = SBA+DB are computed. The encapsulation algorithm samples

EB
$← χn̄×n̄ and sets V ← SBBA + EB. Finally, the experiment runs ct ← HelpRec(V) and

K ← rec(2V,ct) and eventually outputs

(A,BA,BB,SA,DA,FA,K,ct)

to the adversary A .

Game Γ2: The experiment is identical to the previous one, apart from the fact that

64

3.5 Deniable Split-KEM from Lattices

now V is explicitly computed as V = SBDA−DBSA+BBSA+EB. Clearly, ε1 = ε2 since

V = SBDA−DBSA+BBSA+EB

= SBDA−DBSA+ (SBA+DB)SA+EB

= SBBA+EB.

Game Γ3: Here, the experiment follows Γ2 with the only difference being that the experiment

samples BB uniformly at random from Zn̄×n
q instead of computing BB = SBA+DB.

Lemma 9. There exists an efficient algorithm B that solves the ELWEn,n,n̄,χ,q problem with

probability at least 1
n̄ |ε3 −ε2|.

Proof. We provide a reduction B to the (transposed) matrix version of the Extended-LWE

problem as described above. Namely, the reduction is given a tuple of matrices (A,B,Z,W,H).

Then, it sets SA :=−W, DA := Z and BB := B. Further, the reduction samples FA
$← χn×n and

computes

BA := ASA+DA and V := H+BBSA+EB

where EB
$←χn̄×n̄ . Finally, the reduction runs ct←HelpRec(V) and K ← rec(2V,ct) and outputs

(A,BA,BB,SA,DA,FA,K,ct) to the adversary.

Suppose the input tuple received by B is a true Extended-LWE instance, i.e. BB = B = SBA+DB
for SB,DB

$←χn×n . This implies that H = SBZ+DBW = SBDA−DBSA and hence

V = H+BBSA+EB = SBDA−DBSA+BBSA+EB.

This implies that when the input tuple is the Extended-LWE instance then B perfectly sim-

ulates the output of Γ2.5 On the other hand, if BB is uniformly random then B perfectly

simulates the output of Γ3. Finally the statement follows by further reducing the matrix

version of ELWE to the standard one.

Game Γ4: First, we rename the variables (SB,DB,EB) := (Ssim,Dsim,Esim). Further, instead

of picking BB uniformly at random, the experiment now samples alternative secrets/errors

SB,DB
$←χn×n for B and sets BB := SBA+DB. The rest is identical as in Γ3.

Lemma 10. There exists an efficient algorithm B′ solves the LWEn,n,χ,q problem with proba-

bility at least 1
n̄ |ε3 −ε2|.

Proof. We describe a reduction B which solves the matrix version of LWE. Then, the reduction

to plain LWE follows by a hybrid argument. First, B is given a tuple (A,B) where either

B = SBA+DB for short SB,DB or B is uniformly random. In either case, only given A and B, the

reduction B can simulate the rest of Γ3 (and Γ4). If B = SBA+DB then this becomes Γ4, and

when BB is uniformly random then B simulates Γ3.

5We used the fact that χ is symmetric around 0 to argue that SA :=−W is correctly distributed.

65

Chapter 3. K-Waay: Fast and Deniable Post-Quantum X3DH Without Ring Signatures

Sim(A,BB,SA,DA,FA)

1 : Ssim,Dsim
$←χn̄×n

2 : Esim
$←χn̄×n̄

3 : Vsim ← SsimDA −DsimSA +BBSA +Esim

4 : ct←HelpRec(Vsim)

5 : K ← rec(2Vsim,ct)

6 : return (K,ct)

Figure 3.11: Simulator for the deniability game.

Finally, we present the simulator in Figure 3.11. Γ4 can now be alternatively described in

the following way. The experiment first samples SA,DA
$← χn×n and SB,DB

$← Zn×n
q and

FA
$←χn̄×n̄ . Further, the public keys are defined as BA = ASA+DA and BB = SBA+DB. Finally, it

runs (K,ct) $← Sim(A,BB,SA,DA,FA) and outputs (A,BA,BB,SA,DA,FA,K,ct). Thus, deniability

follows by simply combining the previous lemmas.

decaps-CPA Security. Finally, we show that our split-KEM satisfies the decaps-CPA security

notion (see Definition 22).

Lemma 11 (decaps-CPA Security). Let n̄ =O(λ), m be such that the ciphertext space of sKEM
is {0,1}m , and χ be a probability distribution over [−γ,γ] symmetric around 0 for any γ> 0.

Suppose LWEn+n̄,n,χ,q is hard. Then, for every efficient algorithm A , the probability of winning

the decaps-CPA game is at most 2m · (δn̄2

cpa+negl(λ)) where

δcpa := max
ct∈{0,1}
u∈Z2B

Pr
w

$←Zq

[rec(2w,ct) = u] . (3.3)

Proof. Let A be an efficient adversary against the decaps-CPA game. We prove the statement

using the hybrid games described explicitly in Figure 3.13. In each game Γi , we define εi to be

the probability that the efficient adversary A wins the security game.

Game Γ1: This is the standard decaps-CPA game corresponding to the sKEM in Fig-

ure 3.9.

Game Γ2: In this game, the ciphertext ct is not given to the adversary anymore. Note

that the first phase adversary outputting B is now useless and it can be removed6, along with

the operations needed to compute ct. Given the ciphertext space is {0,1}m for some m ∈Z, we

have ϵ2 ≥ 1
2m ϵ1 as any adversary inΓ2 can simulate the view of an adversary inΓ1 by guessing ct.

Game Γ3: In this game, the only change is that instead of computing BB = SBA + DB,

it is picked uniformly at random from Zn̄×n
q . The indistinguishability between Γ3 and Γ2

6Formally, we would run it anyway to propagate the adversary’s state st, but we omit this for simplicity.

66

3.5 Deniable Split-KEM from Lattices

Γ1(A)

1 : SA,DA
$←χ(Zn×n

q)

2 : FA
$←χn×n

3 : BA ← ASA +DA

4 : pkA = (A,BA)

5 : skA = (SA,DA,FA)

6 : SB,DB
$←χn×n

7 : FB
$←χn×n

8 : BB ← SBA+DB

9 : pkB = (A,BB)

10 : EB
$←χn̄×n̄

11 : V ← SBBA +EB

12 : ct←HelpRec(V)

13 : K ← rec(2V,ct)

14 : b $←A (pkA,pkB,skA,K,ct)

15 : return b

Γ2(A)

1 : SA,DA
$←χ(Zn×n

q)

2 : FA
$←χn×n

3 : BA ← ASA +DA

4 : pkA = (A,BA)

5 : skA = (SA,DA,FA)

6 : SB,DB
$←χn×n

7 : FB
$←χn×n

8 : BB ← SBA+DB

9 : pkB = (A,BB)

10 : EB
$←χn̄×n̄

11 : V ← SBDA −DBSA +BBSA +EB

12 : ct←HelpRec(V)

13 : K ← rec(2V,ct)

14 : b $←A (pkA,pkB,skA,K,ct)

15 : return b

Γ3(A)

1 : SA,DA
$←χ(Zn×n

q)

2 : FA
$←χn×n

3 : BA ← ASA +DA

4 : pkA = (A,BA)

5 : skA = (SA,DA,FA)

6 : SB,DB
$←χn×n

7 : FB
$←χn×n

8 : BB ←U (Zn̄×n
q)

9 : pkB = (A,BB)

10 : EB
$←χn̄×n̄

11 : V ← SBDA −DBSA +BBSA +EB

12 : ct←HelpRec(V)

13 : K ← rec(2V,ct)

14 : b $←A (pkA,pkB,skA,K,ct)

15 : return b

Γ4(A)

1 : SA,DA
$←χ(Zn×n

q)

2 : FA
$←χn×n

3 : BA ← ASA +DA

4 : pkA = (A,BA)

5 : skA = (SA,DA,FA)

6 : SB,DB
$←χn×n

7 : FB
$←χn×n

8 : BB ← SBA+DB

9 : pkB = (A,BB)

10 : Esim
$←χn̄×n̄

11 : Ssim,Dsim
$←χn×n

12 : V ← SsimDA −DsimSA +BBSA +Esim

13 : ct←HelpRec(V)

14 : K ← rec(2V,ct)

15 : b $←A (pkA,pkB,skA,K,ct)

16 : return b

Figure 3.12: Security games for the proof of Theorem 4. The lines in blue highlight the main
differences from the previous game. The lines in gray correspond to the simulator defined in
Figure 3.11.

67

Chapter 3. K-Waay: Fast and Deniable Post-Quantum X3DH Without Ring Signatures

follows directly from LWEn,n,χ,q .

Game Γ4: Now, instead of computing BA and V′ as:[
BA
V′

]
=

[
A

BB

]
SA+

[
DA
FA

]
,

the experiment samples BA
$←U (Zn×n̄

q) and V′ $←U (Zn̄×n̄
q) uniformly at random. Then, the

reduction executes Lines 4 to 6 of Γ4. Clearly there is an efficient adversary which solves

LWEn+n̄,n,χ,q with probability at least 1
n̄ |ε4 −ε3|.

Finally, since V′ is uniformly random, the probability that any adversary wins Γ4, i.e.

KA = K′
A, can be upper-bounded by δn̄2

cpa by definition of δcpa. The statement now follows by

combining the previous hybrid games.

Γ1(A)

1 : SA,DA
$←χ(Zn×n

q)

2 : FA
$←χn×n

3 : BA ← ASA +DA

4 : SB,DB
$←χn×n

5 : FB
$←χn×n

6 : BB ← SBA+DB

7 : B,st $←A (BA,BB)

8 : EB
$←χn̄×n̄

9 : V ← SBB+EB

10 : ct←HelpRec(V)

11 : K ← rec(2V,ct)

12 : K′
A,ct′ $←A (A,BA,BB,ct,st)

13 : V′ ← BBSA +FA

14 : KA ← rec(2V′,ct′)
15 : return 1�KA = K′

A�

Γ2(A)

1 : SA,DA
$←χ(Zn×n

q)

2 : FA
$←χn×n

3 : BA ← ASA +DA

4 : SB,DB
$←χn×n

5 : BB ← SBA+DB

6 : K′
A,ct′ $←A (A,BA,BB)

7 : V′ ← BBSA +FA

8 : KA ← rec(2V′,ct′)
9 : return 1�KA = K′

A�

Γ3(A)

1 : SA,DA
$←χ(Zn×n

q)

2 : FA
$←χn×n

3 : BA ← ASA +DA

4 : BB
$←U (Zn̄×n

q)

5 : K′
A,ct′ $←A (A,BA,BB)

6 : V′ ← BBSA +FA

7 : KA ← rec(2V′,ct′)
8 : return 1�KA = K′

A�

Γ4(A)

1 : BA
$←U (Zn×n̄

q)

2 : BB
$←U (Zn̄×n

q)

3 : V′ $←U (Zn̄×n̄
q)

4 : K′
A,ct′ $←A (A,BA,BB)

5 : KA ← rec(2V′,ct′)
6 : return 1�KA = K′

A�

Figure 3.13: Security games for the proof of Lemma 11. The lines in blue highlight the main
differences from the previous game.

Remark. We highlight that the construction does not require a super-polynomial modulus.

To see this, let us first focus on δcpa in (3.3). In the instantiation we set B = O(1), n̄ = O(
p
λ)

and γ=O(1). Further, δcpa can be bounded by 2−B +1/q , and if q = poly(λ) then δcpa ≤ (2−B +
1/q)n̄2 = negl(λ). Hence, the winning probability in Lemma 11 is negligible for q = poly(λ).

68

3.5 Deniable Split-KEM from Lattices

Now, let us move on to Equation 3.2. Recall that n is a dimension responsible for hardness of

LWE, say n = poly(λ). Suppose as in Lemma 11 that the distributionχ outputs integers between

−γ and γ. Then, to obtain δcorr = 0, we need to pick q > 2B+2(2nγ2 +2γ) = poly(λ), hence

asymptotically the modulus can still be polynomial. In practice, we would allow negligible

δcorr (as we do for K-Waay), and thus we further decrease the modulus.

3.5.5 Building a UNF-1KCA and IND-1BatchCCA Split-KEM

KeyGensKEM(1λ)

1 : (pk,sk) $←KeyGensKEM0
(1λ)

2 : return (pk,sk)

DecapssKEM(pkB,skA, (ct, t))

1 : K ′
0 ←DecapssKEM0

(pkB,skA, (ct, t))

2 : if H ′(pkA,pkB,ct,K ′
0) ̸= t :

3 : return ⊥
4 : return H(pkA,pkB,ct,K ′

0)

EncapssKEM(pkA,skB)

1 : K0,ct $←EncapssKEM0
(pkA,skB)

2 : t ← H ′(pkA,pkB,ct,K0)

3 : K ← H(pkA,pkB,ct,K0)

4 : return K , (ct, t)

Figure 3.14: TCH transform for split-KEMs. We assume that pkB can be derived from skB or is
contained in it.

We have proven so far that the modified version of FrodoKEX given above is decaps-CPA
and OW-CPA. We show now that any scheme satisfying both these properties can easily

be transformed into a UNF-1KCA and IND-1BatchCCA split-KEM in the ROM and QROM.

The construction is similar to the TCH transform introduced by Huguenin-Dumittan and

Vaudenay [HV22] translated to the split-KEM setting. We present it in Figure 3.14. Then, the

following theorem states the security guarantees of the resulting split-KEM.

Theorem 5. Let sKEM0 be any split-KEM and sKEM := TCH(sKEM0) be the split-KEM ob-

tained from applying the TCH transform (Figure 3.14) to sKEM0. Then, in the ROM, we have

that for any efficient UNF-1KCA adversary A , one can build efficient B and C adversaries s.t.

Advunf−1kca
sKEM (A) ≤ q2

H ′ +1

2s + (qH +qH ′ +1) ·Advdecaps−cpa
sKEM0

(C) ,

where qH and qH ′ are the number of queries made by A to the random oracles H and H ′,
respectively, and s is the output size of both random oracles. In the QROM, the bound becomes

Advunf−1kca
sKEM (A) ≤ 8(qH +qH ′)2

22s +ϵ+2(2(qH +qH ′)+1)2 ·Advdecaps−cpa
sKEM0

(B) ,

where ϵ := 2
2s +8

p
2/2s + 40e2(qH ′+2)3+2

2s .

69

Chapter 3. K-Waay: Fast and Deniable Post-Quantum X3DH Without Ring Signatures

n n̄ q B χ |t | |pk| |ct|
1452 8 31751 4 U ({−1,1}) 64B 21.3KB 72B

Table 3.2: Concrete parameters for our lattice-based split-KEM. We note that in practice, we
do not need to include the whole matrix A in the public key pk, but rather the seed for the
pseudorandom function to generate it (as is the case in this table). The ciphertext ct comprises
the original split-KEM ciphertext (8B) and the tag t (64B).

n̄2δcorr (3.2) δelwe (3.1) δcpa (3.3)
2−48 2−46 2−3.9996

Table 3.3: Correctness and security terms.

Proof. We defer the proof to Appendix A.2.

Similarly, we have that the TCH transform makes an IND-1BatchCCA scheme out of an

OW-CPA one, which is stated in the following theorem.

Theorem 6. Let sKEM0 be any split-KEM and sKEM := TCH(sKEM0) be the split-KEM ob-

tained from applying the TCH transform (Figure 3.14) to sKEM0. Then, in the ROM, we have

that for any efficient IND-1BatchCCA adversary A , one can build efficient B s.t.

Advind−1batchcca
sKEM (A) ≤ q2

H ′ +d

2s +2(qH +qH ′ +d) ·Advow−cpa
sKEM0

(B)

where qH and qH ′ are the number of queries made by A to the random oracles H and H ′, re-

spectively, s is the output size of both random oracles, and d is the number of tuples submitted

to the IND-1BatchCCA oracle BatchDEC. In the QROM, the previous bound becomes

Advind−1batchcca
sKEM (A) ≤ δ+ϵ1 +ϵ2 +ϵ3 +2(qH +d +qH ′)

√
2Advow−cpa

sKEM0
(B) ,

where δ is the correctness error, ϵ1 = 40e2(qH ′+d+1)3+2
2s , ϵ2 = 8d(d +2qH ′ +1)

p
2/2s and ϵ3 = 4d

2s .

Proof. As the proof is nearly identical to the proof of IND-qCCA security of the TCH transform

for PKE/KEM [HV22], we defer it to the Appendix A.3.

3.5.6 Concrete Instantiation

In Table 3.2 we propose a parameter set for FrodoKEX+ where we aim for 256-bit security

before applying the transform and 128-bit (resp. 64-bit) security after the transform assuming

264 random oracle (resp. quantum random oracle) queries. In addition, we give the security

terms in Table 3.3. We show in the following how these parameters were computed, where we

set (B , n̄) = (4,8).

70

3.5 Deniable Split-KEM from Lattices

Correctness Error and Security Loss. One of the main challenges in instantiating our

FrodoKEX variant is computing δcorr and δelwe from Equations 3.2 and 3.1. They are re-

lated to the correctness error and the security of loss of ELWE. To this end, we introduce a

simple distribution χ which will allow us to efficiently compute these values. Namely, we set

χ to be a uniform distribution over the set {−1,1}. Clearly, it is symmetric around 0 and has

standard deviation equal to 1.

Another useful property of this distribution is that a product X Y , where X ,Y $←χ, still follows

the distribution of χ. Based on this observation, we have

δcorr = Pr
X1,...,X2n+1

$←χ

E
$←χ

[∣∣∣∣∣2n+1∑
i=1

Xi +E

∣∣∣∣∣> q

2B+2

]
.

We can directly compute this term using Laurent polynomials. Namely, define

P (X) := Pr
X

$←χ

[X = 1] ·X + Pr
X

$←χ

[X =−1] ·X −1 = 1

2
· (X +X −1) .

Then, using the convolution properties, we observe that the probability of X1 + . . .+X2n+2 = k,

for some −2n −2 ≤ k ≤ 2n +2, is equal to the k-th coefficient of the polynomial P (X)2n+2.

Hence, we calculate δcorr by computing P (X)2n+2 and summing all the k-th coefficients, such

that 2n +2 ≥ |k| > q
2B+2 .

We now turn into computing δelwe. The first step is the analysis of the following random

variable v = 1
2 · (e −d) · z, where e,d $← χ and z $← χn̄ . We denote this distribution as V . By

simple calculation we get:

Pr[v = a] = Pr

[
1

2
· (e −d) ·z = a

]
=

1
2 if a = 0

1
2n̄+1 if a ∈ {−1,1}n̄

0 otherwise

Then, the multivariate Laurent polynomial corresponding to v has an elegant form:

P (X1, . . . , Xn̄) = 1

2
+ 1

2n̄+1

n̄∏
i=1

(Xi +X −1
i).

As before, we observe that δelwe is the probability that for v1, . . . ,vn+m
$← V ,

2 · (v1 + . . .+vn+m) = 0 (mod q) ⇐⇒ v1 + . . .+vn+m = 07.

In terms of the newly defined Laurent polynomials, δelwe is the constant coefficient of:

P (X1, . . . , Xn̄)n+m =∑n+m
j=0

(n+m
j

) 1
2n+m− j · 1

2(n̄+1) j ·
∏n̄

i=1(Xi +X −1
i) j .

7This holds as long as n +m < q/2 since then no modulo overflow occurs.

71

Chapter 3. K-Waay: Fast and Deniable Post-Quantum X3DH Without Ring Signatures

We now look at the constant coefficient of each of the n +m +1 terms of the sum. The first

observation is that

(Xi +X −1
i) j =

j∑
k=0

(
j

k

)
X (j−k)

i X −k
i =

j∑
k=0

(
j

k

)
X (j−2k)

i .

Hence, the constant coefficient of the expression above is 0 if j is odd, and
(j

j /2

)
when j is even.

Consequently, the constant coefficient of
∏n̄

i=1(Xi +X −1
i) j is either 0, for odd j , or

(j
j /2

)n̄
for

even j . Hence, we conclude that

δelwe =
∑

j even

(
n +m

j

)
1

2n+m− j
· 1

2(n̄+1) j
·
(

j
j
2

)n̄

which can then be computed efficiently for our parameters. Finally, δcpa can be straightfor-

wardly computed for small primes 8, such as ≈ 215.

Hardness of Extended-LWE. We measure the hardness following the methodology used for

the original FrodoKEX [BCD+16] for fair comparison, and refer to it for more details on the

attacks. Here, the main bottleneck of setting the parameters is the reduction loss between

ELWE and plain LWE. Taking this into account for the parameters proposed above, we aim for

307-bit classical LWE security.

We consider the primal and dual BKZ attacks [SE94, CN11]. As a subroutine, the BKZ algo-

rithm with block-size b uses an algorithm for the shortest vector problem (SVP) in lattices of

dimension b. As in Frodo [BCD+16], for precautionary purposes we only count the cost of

one such call (even though in practice it will run the SVP sub-algorithm polynomially many

times). The lower-bound on the time complexity of one call is given by about b2cb CPU cycles,

where c ≈ 0.292 for classical attacks, and c ≈ 0.265 for quantum attacks (see Laarhoven [Laa16,

Section 14.2.10]). For 307-bit classical security, this corresponds to the block size being 1018,

and the root Hermite factor being ≈ 1.0020 (in the quantum setting these parameters corre-

spond to 279 bits of security). Further, we estimate the hardness of LWE against known attacks

using the LWE estimator by Albrecht et al. [APS15]. Namely, we run the estimator under both

“sieving” and “enumeration”, and set the final root Hermite factor δ as the largest root Hermite

factor returned by the program. Finally, we make sure that δn̄2

cpa ≈ 2−256 for the decaps-CPA
proof.

3.6 Evaluation and Discussion

In this section, we evaluate empirically our protocol both in terms of time and space usage,

and then discuss some aspects of our modelling and protocol. Hereafter, we refer to the

X3DH-like protocol of Brendel et al. [BFG+22b] as SPQR, and the baseline deniable protocol

8One can formally prove that δcpa can be bounded by 1
2B + 1

q , but we compute the value directly instead.

72

3.6 Evaluation and Discussion

Scheme Cl. (C) Cl. (Q) ROM bnd QROM bnd Assumption
FrodoKEX+ 128 64 (qH +d)/2192 (qH +d)/2128 LWE

Raptor [LAZ19] 114 103 ? ✗ NTRU
DualRing-LB [YEL+21] (128) (64) ? ✗ MSIS, MLWE

Falafl [Beu20] 128 64 ? ✗ MSIS, MLWE

Table 3.4: Security comparison between FrodoKEX+and several post-quantum RS. ‘Cl.’ stands
for claimed number of security bits. DualRing-LB’s authors do not seem to make a clear
security claim, we thus assume NIST level I. ‘?’ indicates that no bound is explicitly given for
the security, ‘✗’ indicates that no proof is provided in the QROM.

(i.e., with ring signatures and without NIZKs) by Hashimoto et al. [HKKP22] as HKKP.

3.6.1 Benchmarks

Security of the Relevant Non-Standard Primitive. Like K-Waay, SPQR and HKKP can each

be implemented using only (soon to be) standardised primitives, except for a single primitive

in each case, we consider here the security of the relevant non-standard primitives. In the case

of K-Waay it is a split-KEM, here implemented using a variant of FrodoKEX passed through

the TCH transform (that we call FrodoKEX+), and in the case of both HKKP and SPQR it is a

ring signature scheme, or RS (or a designated-verifier signature scheme (DVS) derived from

RS). The authors of both SPQR and HKKP proposed possible implementations for the RS

without picking one in particular. The most efficient one for a ring of size 2 we are aware of

that has an existing C implementation is Raptor [LAZ19] which we use for the benchmarks

below. Other candidates would be Falafl [Beu20] or DualRing-LB [YEL+21].

We present in Table 3.4 a summary of the security claims, approximate leading factor in the

bounds in the (Q)ROM, and assumptions for these non-standard primitives. We note that

none of these primitives are proven secure in the standard model and all are based on lattices.

First, we note that parameters for these RS schemes were chosen before the reduction in the

ROM was performed. That is, a primitive P based on lattices is built, parameters are chosen

such that P satisfies the security claim, then P is used to build a RS in the ROM, which incurs

a loss factor that usually depends on the number of queries to the random oracle qH . In

particular, it is common to have at least a qH factor in the security bound (e.g. if the adversary

can make 232 queries to the RO, the security level is reduced by 32 bits). Therefore, the claimed

security level does not match the provable security level. In the QROM, the security loss is

usually greater: square root and q2
H or q3

H losses are quite common, however these schemes

have not been proven secure in this model.

We took a different approach in designing a split-KEM with a conservative assumption (i.e.,

plain LWE) and choice of parameters. Therefore, FrodoKEX+ with our proposed parameters

achieve 128 (resp. 64) bits of classical (resp. quantum) security after the (Q)ROM proof.

We provide the (approximate) highest terms of both the ROM and QROM security bounds in

73

Chapter 3. K-Waay: Fast and Deniable Post-Quantum X3DH Without Ring Signatures

Table 3.4. These satisfy our security claims as long as qH ≤ 264 in the ROM and qH ·d ≤ 264 in the

QROM, where d is the number of public key/ciphertext tuples allowed in the IND-1BatchCCA
game. In K-Waay, d corresponds to the number of distinct users trying to communicate with

an offline receiver after all prekeys have run out, and thus should typically be small. We note

that the leading coefficients in all our bounds are always related to the (Q)ROM security (e.g.

finding a collision) and not to the underlying hardness assumptions. Therefore, one can easily

make these coefficients smaller by picking a larger digest size n, e.g. 512 bits.

The reason behind the approximations and lack of QROM proofs for PQ ring signatures is

likely the youth of the field and the speed at which it is evolving. Still, we believe it is worth

noting as it makes any comparison between our protocol and previous ones quite difficult.

Benchmarking. The protocols we benchmarked are: our own implementation of the X3DH

protocol; Brendel et al.’s [BFG+22b] protocol SPQR based on PQ KEMs, a signature scheme

and DVS; Hashimoto et al.’s [HKKP22] protocol HKKP based on PQ KEMs, a signature scheme

and RS; a baseline protocol made only with PQ KEMs and a signature scheme similar to

the non-deniable variant of HKKP; and our protocol K-Waay based on FrodoKEX+ as a PQ

split-KEM, PQ KEMs and a signature scheme.9

We chose Kyber-512 as the KEM, both Falcon-512 and Dilithium2 for signatures, and Raptor

for ring signatures. We implemented both HKKP and SPQR with signed prekeys as is the case

in Signal’s implementation of X3DH. That is, a PQ signature key pair is part of the long-term

key, and ephemeral keys uploaded to server are signed with it. Note that this is make explicit in

K-Waay as the ephemeral keys are signed with the long-term one. The authors of HKKP show

that this is not necessary in their protocol, however not doing so weakens perfect forward

secrecy.

We built the different protocols in C using the liboqs library10 for Kyber, Falcon, and

Dilithium, the Raptor implementation provided by the authors11, and a modified version

of the lwe-frodo library12 with scaled parameters to properly simulate FrodoKEX+. More

precisely, the modulus was set to the first power of 2 larger than the modulus in FrodoKEX+,

the addition of the noise during decapsulation was also added, and the noise distributions

were modified to match the ones of FrodoKEX+. We did not optimise the scheme in any way

(e.g. by using AVX instructions or parallelisation) and we leave this as future work. For the sake

of completeness, we also provide a reference implementation of FrodoKEX+ in Rust13 for the

interested reader. All benchmarks were run on a virtual machine running Ubuntu 22.04 with 2

cores of an Intel i7-9750H running at 2.60GHz and 4GB of RAM allocated.

9SPQR and HKKP do not formally treat (regular) signatures, but we include them for fair comparison and
because a practical system would use signatures for prekey bundles.

10https://github.com/open-quantum-safe/liboqs
11https://github.com/zhenfeizhang/raptor
12https://github.com/lwe-frodo/lwe-frodo
13https://github.com/lehugueni/frodokexp-rust

74

https://github.com/open-quantum-safe/liboqs
https://github.com/zhenfeizhang/raptor
https://github.com/lwe-frodo/lwe-frodo
https://github.com/lehugueni/frodokexp-rust

3.6 Evaluation and Discussion

101

104

107

1010

1013

Long term key generation Static key generation One-time key generation Initiator Responder

X3DH

Kyber-5
12 + Dili

th
iu

m
2

Kyber-5
12 + Falcon-5

12

SPQR
+ Dili

th
iu

m
2

SPQR
+ Falcon-5

12

HKKP
+ Dili

th
iu

m
2

HKKP
+ Falcon-5

12

K-W
aay + Dili

th
iu

m
2

K-W
aay + Falcon-5

12

101

104

107

1010

1013

1,
63

5,
94

0

69
1,

01
9

33
,1

85
,6

00

18
9,

06
3,

00
0

21
8,

34
6,

00
0

18
9,

30
8,

00
0

22
0,

31
4,

00
0

30
,4

43
,7

00

64
,0

89
,2

00

cy
cl

es

Figure 3.15: Speed benchmark for X3DH protocols.

Speed. For the speed benchmark, we measured how many cycles each protocol takes in one

execution. We summarise our results in a logarithmic graph on Figure 3.15 (note that the

internal division of the bars is linear).

Fixing the choice of KEM and signature scheme, our protocol K-Waay, depending on the

choice of KEM and signature scheme, is between 3 and 6 times faster than the previous

proposals even with our relatively conservative parameter choice. In our protocol K-Waay
using Dilithium2, most cycles are spent in the ephemeral key generation, while using Falcon

makes the static key generation as expensive as the ephemeral key one. Overall, one can

see that Falcon, while more compact than Dilithium2, has a great impact on efficiency. For

instance, K-Waay with Dilithium2 is faster than the non-deniable scheme using Kyber and

Falcon.

Apart from Falcon, we see that the most time-consuming primitives are the non-standard

ones, i.e., ring signatures and split-KEM. Hence, we see that the KEM+SIG protocol (HKKP’s

baseline proposal) performs even better than X3DH, which shows once again that lattice-

based schemes can be faster than their classical counterparts. However, we recall that it does

not provide deniability. At last, we note that X3DH is the only construction that spends more

time in sending and receiving than generating keys. Our protocol’s Send and Receive (i.e.,

BatchReceive with a single input message) procedures are very fast.

Data Size. In Table 3.5, we provide for each scheme the size of the long-term keys, the prekeys

(output by Init in our DAKE syntax), and the ciphertext output by the sender. We computed for

both HKKP and SPQR the size with and without long-term signatures. We see that K-Waay
compares well in term of long-term public key and ciphertext size as both are smaller than

signed HKKP and SPQR. However, the prekeys are much larger as one could expect from a

LWE-based scheme and due to our conservative setting of parameters.

75

Chapter 3. K-Waay: Fast and Deniable Post-Quantum X3DH Without Ring Signatures

Scheme |lpk| |prek| |ct|
K-Waay + Dilithium 2112 24520 1632
K-Waay + Falcon 1697 22790 1632
HKKP [HKKP22] 1700 1700 4056
HKKP [HKKP22] + Dilithium2 3012 4120 4056
HKKP [HKKP22] + Falcon 2597 2390 4056
SPQR [BFG+22b] 3400 1632 4824
SPQR [BFG+22b] + Dilithium2 4712 4052 4824
SPQR [BFG+22b] + Falcon 4297 2322 4824

Table 3.5: Size comparison in bytes between K-Waay instantiated with FrodoKEX+, HKKP
[HKKP22] and SPQR [BFG+22b]. We also computed the sizes for both HKKP and SPQR
implemented with signed prekey bundles.

3.6.2 Advantages, Limitations and Discussion

Running Out of Ephemeral Keys. The main disadvantage of our protocol is that running

out of ephemeral keys requires the receiver to abort if any of the sessions that used the same

prekey is bogus. If this happens, then a malicious party could mount some kind of denial of

service (DoS) attack against the user that was offline for too long by sending a bogus split-KEM

ciphertext. There is an obvious trade-off between the risk of such an attack happening and

the number of ephemeral keys uploaded on the server (and thus also storage). We leave the

analysis and the mitigation of such a threat as future work, but we believe that if a reasonable

amount of prekeys are uploaded, creating fake accounts is difficult (e.g., by requiring a phone

number as in Signal), and/or users are online often enough, such an attack would be difficult

to mount. Furthermore, several practical mitigations are possible. For instance, if the receiver

(i.e., the victim) received a bogus ciphertext among the n ciphertexts sent for the same prekey

while offline, they can restart K-Waay with each the n parties but as the initiator, which will

probably succeed. The victim could also send n new prekeys to the n initiators directly, making

sure the protocol will succeed at the next iteration. This would make the attack less useful as it

could only delay communication and not prevent it.

We also think it is worth mentioning that the trick we propose might be easy to misimplement.

In particular, it is crucial that no information about which split-KEM ciphertext failed leaks

if such a situation occurs. That is, precautions should be taken such that leakage via side-

channels in the scope of the system designer’s threat model are prevented.

Split-KEM Instead of Ring Signatures. The fact that we use a primitive similar to a post-

quantum KEM allows us to leverage the extensive literature on the topic and existing safe/op-

timised implementations. This also gives good security guarantees as post-quantum KEMs

have been heavily scrutinised as part of the NIST standardisation process. For example, as

mentioned above, our proposed lattice-based implementation is based on a key-exchange

variant of FrodoKEM, which is itself the PQ KEM recommended by the German Federal Office

for Information Security (BSI) [fIS23]. Overall we think that a split-KEM such as FrodoKEX+

76

3.6 Evaluation and Discussion

is more mature and closer to being usable in practice than ring signatures.

On the Necessity of Modifying FrodoKEX. Currently, our split-KEM significantly differs from

the original FrodoKEX in two aspects: (i) the modulus for our construction has to be prime in

order for our reduction from Extended-LWE to LWE to hold14, and (ii) we have to introduce

additional masking terms to prove UNF-1KCA security. However, we believe that both changes

are artefacts of the security proofs, and the original FrodoKEX split-KEM should be (up to a

reasonable security loss) deniable.

There are alternative reduction techniques from Extended-LWE to LWE in the literature

[BJRW21, BLP+13], which do not rely on having an odd modulus at the cost of using dis-

crete Gaussian error distributions with large parameters. It is thus an interesting research

problem to efficiently reduce Extended-LWE to LWE for even modulus with small reduction

loss. In practice, the most efficient LWE attacks do not consider the structure of the modulus,

so intuitively this should translate to the Extended-LWE setting15.

As for our second main modification, it is not immediately clear how to argue UNF-1KCA
security without the additional masking terms. Hence, we leave deniability and UNF-1KCA
security of the original FrodoKEX construction as exciting future work.

Deniability. While the signature on the ephemeral public keys might give the impression

that our protocol is less deniable than X3DH or previous PQ alternatives, this is actually not

the case. The reason is that prekey bundles in these protocols are signed as well, but this

detail is abstracted away in the analysis (i.e., it is assumed that all parties have received and

authenticated all public keys before the protocol actually starts). While this kind of analysis

allows for strong deniability claims, in practice these protocols do not satisfy something

stronger than some kind of peer-deniability. The exception is the ring signature based variant

by Hashimoto et al. [HKKP22], where the prekey bundle is not necessarily signed. However,

in this variant, the authors prove the security of their protocol in a weaker model than their

non-deniable, signature-based protocol (i.e., it satisfies a weaker notion of forward secrecy).

Overall, if deniability should not come at the price of security, peer-deniability seems like the

best notion one can achieve in these DAKEs.

We wished to provide a transparent model for peer-deniability, where the upload of signed

ephemeral keys is made explicit. We also strengthen the deniability definition of Brendel et

al. [BFG+22b] by allowing the exposure of one of the parties (i.e., the receiving one, which

would be the malicious party trying to frame the sender). While our protocol satisfies our

stronger (in term of key exposure) notion of deniability, we believe both previous PQ X3DH

alternatives satisfy it as well. Indeed, in these schemes, the ephemeral keys are KEM and RS

keys only, which are deniable. Hence, exposing these should not harm deniability.

14Recall FrodoKEX [BCD+16] uses a power-of-two modulus for efficiency.
15Recently, various frameworks have been developed [DDGR20, DSGHK23], which measure concrete hardness

of LWE given hints of specific form, such as linear combination of secrets with short random coefficients.

77

Chapter 3. K-Waay: Fast and Deniable Post-Quantum X3DH Without Ring Signatures

Hashimoto et al. [HKKP22] consider a strong notion of deniability where the adversary is

malicious (i.e., can arbitrarily deviate from the protocol) and show how to modify HKKP such

that it is secure against such a threat. However, such deniability comes at the expense of NIZKs,

which are complex, expensive and are not always proven secure in the QROM when random

oracles are used. Moreover, as in other deniable systems against malicious adversaries, non-

falsifiable assumptions (i.e., knowledge-type assumptions) are required to prove the security.

In addition, it seems difficult to defend against adversaries actively trying to frame a given

user in messaging in practice [GPA19, CCHD23]; for example, an adversary could also simply

ask questions that would identify the victim with good probability. Because of these reasons,

we do not consider such a notion of deniability here.

To contextualise our results, we remark here that cryptographic deniability, which is targeted

in this chapter and all previous work on deniable X3DH key exchange, translates to deniability

on a system level only if the application preserves deniability. For example, Collins et al.

[CCHD23] observe that Signal as currently deployed does not provide this kind of ‘practical’

deniability for ordinary users. Suppose Bob is trying to frame Alice and hands over their phone

that contains a transcript of communication between Alice and Bob to a judge. Because Signal

authenticates users (either directly or indirectly through Signal sealed sender [Lun18]), unless

Bob was able to modify their phone (which depends on the technical expertise of Bob), the

judge can deduce that the conversation plausibly took place as in the transcript, regardless

of the cryptographic protocols employed underneath. It is interesting future work to further

explore deniability on the broader system level and practical deniability [RMA+23, YGS23].

An Optimisation. As presented in Section 3.4, the K-Waay protocol generates a signature

for each ephemeral public key uploaded. This can easily be optimised by signing the whole

prekey bundle containing several ephemeral keys. This way, the server needs to store only one

PQ signature for each user. The downside is that now each user needs to download the whole

bundle to verify the signature. This offers a trade-off between data stored at the server and

sent to clients.

78

4 On Active Attack Detection in Messag-
ing with Immediate Decryption

In this chapter, we explore different trade-offs between security and performance for active

attack detection in two-party messaging when messages can be delivered in a different or-

der to what they were sent in by parties (i.e., messaging with immediate decryption). An

extended abstract corresponding to this work appeared at CRYPTO 2023. The work presented

in this chapter is the result of a close collaboration with Simone Colombo, noting that Loïs

Huguenin-Dumittan was the primary contributor for the lower bound result which we include

for completeness, with further contributions from Loïs, Khashayar Barooti and Serge Vaudenay.

A full version of this work can be found on the Cryptology ePrint Archive [BCC+23b].

4.1 Contribution

The asynchronicity of messaging and the unreliability of networks has driven the design of

ratcheting-based protocols with immediate decryption [ACD19, PP22, BRT23, CZ24], i.e., the

support of out-of-order delivery and message loss on the protocol level. This property ensures

that legitimate messages can be immediately decrypted by the receiver upon arrival and

placed correctly among other received messages. Furthermore, communication can continue

even if some messages are permanently lost. As highlighted in Chapter 1, the Signal protocol,

the current de-facto messaging standard, supports immediate decryption. By contrast, many

schemes in the literature fail if even a single message is lost (see [BSJ+17, PR18, DV19, CDV21]

for a non-exhaustive list).

The aforementioned security notions do not guarantee message authentication when the

adversary impersonates parties, e.g., through state compromise. The lack of authentication

implies that parties cannot detect active attacks. A recent phishing attack against Signal’s

phone number verification service enabled attackers to re-register accounts to another device,

demonstrating the practicality of impersonation attacks via secret state compromise [Sup22].

Similar attacks that steal verification codes to hijack accounts affect a plethora of messaging

applications. The proliferation of spyware such as Pegasus represents an additional—and

worrying—threat for secret exfiltration [SRCM+22].

79

Chapter 4. On Active Attack Detection in Messaging with Immediate Decryption

The most widely used mechanisms for detecting active attacks use an out-of-band authenti-

cated channel. All deployed mechanisms we are aware in practice [Mar17] and many proposed

in the literature [DH21, DGP22] assume such a channel. Solutions like Signal’s safety num-

bers [Mar17] enables parties to authenticate their long-term keys by comparing QR codes in

person. However, as observed by Dowling and Hale [DH20, DH21], Signal’s approach fails

to provide guarantees after a user’s state is exposed, since the safety numbers protocol only

authenticates the session key output from X3DH.

To remedy this situation, Dowling and Hale [DH21] proposed to add an additional authentica-

tion key to each iteration of Signal’s asymmetric ratchet for on-demand use in out-of-band

authentication. Their construction allows parties to immediately—that is, without additional

communication rounds—authenticate their entire asymmetric ratchet out of band. However

messages forged under symmetric keys will never be detected. The only other construction in

the literature to our knowledge, proposed by Dowling, Günter and Poirrier [DGP22], requires

three rounds of in-band communication before an out-of-band hash comparison can take

place. Contrary to Dowling and Hale’s solution, this approach authenticates all messages

(albeit does not formally treat out-of-order messages), but imposes additional rounds, which

is especially problematic in the presence of an active adversary. This raises our first research

question:

1. Can we authenticate all messages in a single round of out-of-band communication to

detect active attacks in the immediate decryption setting?

Out-of-band authentication is not always practical or even possible. A convenient alternative

is to detect active attacks in-band, i.e., using the same channel as the messaging protocol. The

adversary can, in the worst case, block all messages sent by honest parties, thereby forcing

users to resort to out-of-band communication, but mounting such a persistent attack requires

considerable resources. Durak and Vaudenay [DV19] thus introduced RECOVER security: if a

party receives a forgery, then this party does not accept subsequent messages sent honestly

by his counterpart. Caforio et al. [CDV21] then extended RECOVER security to enable a

party to detect whether their partner was compromised, i.e., whether they received a forgery.

By contrast to out-of-band authentication, no additional messages are required to support

attack detection: in-band ciphertexts contain the authentication information. However, these

notions and the corresponding constructions assume in-order message delivery and fail on

message dropping. This raises a second question, first suggested by Alwen et al. [ACD19]:

2. Can we achieve extended RECOVER security—immediate in-band active attack

detection—while supporting immediate decryption?

To detect active attacks, parties need to authenticate their entire message history: each mes-

sage may be a forgery, i.e., the result of an active attack. With immediate decryption, parties

cannot be sure which messages their partner has received until they receive an honest reply

80

4.1 Contribution

from them. Intuitively, each message needs to “contain” the message history up until when

it was sent. Looking ahead, we formalise and confirm this intuition, which motivates the

exploration of performance/security trade-offs and optimisations. In this regard, existing

protocols for both in-band and out-of-band active attack detection represent only a subset of

the potential design space. Consequently we also ask:

3. What are the communication costs of in- and out-of-band active attack detection for

messaging with immediate decryption, and what useful performance/security trade-offs

can be made?

4.1.1 Summary

In this chapter, we explore the aforementioned questions. In more detail:

• We introduce (Section 4.2) a primitive that we call authenticated ratcheted communica-

tion, which captures immediate decryption and models communication through both

insecure in-band and authentic out-of-band channels.

• In Section 4.3, we formalise in-band active attack detection for immediate decryption,

by extending RECOVER security [DV19, CDV21], with two notions, namely r-RID and

s-RID security, for detecting active attacks towards the receiver and on reception of mes-

sages from the sender after they were attacked; combined, these two notions comprise

RID (recover with immediate decryption) security. We propose a scheme secure under

these notions.

• We consider out-of-band active attack detection for immediate decryption messaging

in Section 4.4. We introduce notions r-UNF and s-UNF (which combine to UNF for

unforgeable), which are analogous to the notions for in-band detection. Demonstrating

their similarity, we construct a UNF-secure scheme from a RID-secure scheme. We also

construct a UNF-secure ARC scheme given a RC scheme.

• In Section 4.5, we prove with an information-theoretic argument that ciphertexts in a

scheme satisfying either r-RID or r-UNF security must grow linearly in the number of

messages sent, implying that attaching the set of sent ciphertexts to each message as we

do is essentially optimal.

• In Section 4.6, we consider different ways to bypass the aforementioned lower bounds.

First, we discuss ways to optimise the s-RID-secure scheme. We show how one can

drastically reduce the overhead as long as the communication between the two parties

is relatively synchronised. We believe the corresponding scheme is the most practical

that we propose. We also explore optimising the authenticated out-of-band channel

construction, by considering pruning-based optimisations, where parties securely prune

messages as soon as they are authenticated. We finally propose a new three-move

authentication protocol and a corresponding security notion.

81

Chapter 4. On Active Attack Detection in Messaging with Immediate Decryption

4.1.2 Technical Overview

We assume a network where parties communicate over two types of channels: insecure

channels and out-of-band authenticated channels. The adversary has full control over insecure

channels. In particular, it can read, deliver, modify and delay messages. Over the authenticated

channels, the integrity and authenticity of the messages are protected, that is, the adversary

can read, deliver, duplicate and delay messages but not modify them. In the Signal application,

the insecure channel is the usual network, whereas the out-of-band channel is that which is

used for safety number verification [Mar17], typically in-person.

(Authenticated) Ratcheted Communication. We introduce a syntax for ratcheted communi-

cation (RC) in which sent and received messages are associated with totally ordered ordinals

(epoch/index pairs in formalisations of the Double Ratchet [ACD19]). Ordinals enable our

protocol to support immediate decryption [ACD19], i.e., message loss and re-ordering on

the network. We build on this syntax to define authenticated ratcheted communication, or

ARC, which comprises two additional functions AuthSend and AuthReceive. A party can use

AuthSend to send an authentication tag through the out-of-band channel that the counterpart

processes with AuthReceive. AuthSend outputs an ordinal that is at least as large as the last

sent ordinal for that party. AuthReceive, if successful, should authenticate all messages up to

that ordinal; this is captured in UNF security. Our secondary correctness notion ORDINALS
enforces these semantics even in presence of forgeries.

RID Security. We revisit the definitions of RECOVER security [DV19, CDV21] in the

immediate decryption setting. We define two complementary security notions for RID secu-

rity:

• r-RID ensures that the receiver of a forgery does not accept honest messages with

ordinals larger than that of the forgery.

• s-RID security enables a party to detect if their counterpart has ever received a forgery

(i.e., a forgery from the sender).

If a scheme is both r-RID- and s-RID-secure, then it is RID-secure. These notions are orthogo-

nal to forward security and post-compromise security and we allow the adversary to have full

access to each party’s secret states and control their randomness.

We propose a construction that transforms any ratcheted communication scheme into a

provably RID-secure one. In the construction, both parties locally keep track of messages

they have sent and received. Every time they send a message, they attach all messages (i.e.,

the ciphertexts from the underlying RC) they have sent and received so far to their ciphertext.

When a party receives a message that “contradicts” what it has sent or received, it can deduce

that an active attack took place.

To reduce communication costs, parties send ordinals and hashes of messages, instead of

82

4.1 Contribution

complete ciphertexts. For r-RID security, a receiver P compares the input message and the

supposed set of sent messages contained inside it with what P has received previously. For

s-RID, it suffices for a receiver P (who knows exactly what it sent) to check whether the sender

claims to have received anything that P did not send. Here, P only needs to send a single hash

alongside the set of received ordinals (which are generally smaller than hashes), since P can

recompute the hash locally. Since the channel is insecure, parties need to perform a series of

checks on the ciphertexts to prevent the adversary from tampering with the sets of sent and

received messages sent. Both r-RID and s-RID security rely on the collision resistance of the

hash function.

UNF Security. We define notions analogous to r-RID and s-RID for authenticated ratcheted

communication schemes. The r-UNF (receiver unforgeable) notion ensures that a party does

not accept authentication tags after receiving a forgery, whereas s-UNF (sender unforgeable)

ensures that a party does not accept authentication tags coming from a counterpart that

received a forgery. We show that a RID-secure scheme can be turned into a UNF-secure

scheme. The transformation highlights the similarity between RID and UNF security. In the

former, parties authenticate all messages they have sent and received in band, whereas in the

latter the messages are authenticated out of band. Concretely, the transformation uses the

ciphertext of a RID-secure RC scheme as the authentication tag for an ARC scheme, which,

intuitively, moves authentication material to the out-of-band channel. We also provide a direct

construction that is analogous to our construction for RID security, except the performance

hit here is only taken when sending and receiving authentication tags, rather than for every

(in-band) message.

Lower Bounds. We prove a linear lower bound on the ciphertext size of any r-RID-secure

RC: assuming unidirectional communication, each ciphertext must capture all information

contained in previously sent ones. In fact, the security notion requires that the receiving party

is able to immediately detect if any subset of previous ciphertexts contains a forgery, since

(1) the sender does not know what has been received and (2) ciphertexts can be arbitrarily

re-ordered or dropped.

For the proof, we construct an (inefficient) encoder/decoder pair for a list of input messages

(m1, . . . ,mn) and randomness R , that uses the r-RID RC to compress the input. More precisely,

the encoder uses the RC to send messages (m1, . . . ,mn) with randomness R to produce a list

of ciphertexts (ct1, . . . ,ctn), and outputs only (ctn ,R). The decoder uses the RC to receive

ciphertext ctn , generates every possible ct1 for all possible messages m1 with randomness R

and attempts to successfully receive one of them. If this succeeds, it means m1 was the same

message as the one input to the encoder (i.e., the “honest” one). Then, the decoder continues

with m2 and so on, eventually outputting (m1, . . . ,mn ,R). Finally, by setting the distributions

of the messages and randomness as uniform1, one can argue by Shannon’s theorem that the

ciphertext space must be exponentially large in n · |mi |. The formal proof is actually more

complicated as the r-RID security does not need to be perfect and many ciphertexts might be

1A comparable argument can be made instead in terms of the entropy of the messages.

83

Chapter 4. On Active Attack Detection in Messaging with Immediate Decryption

successfully received when decoding.

Then, following a nearly identical proof, we prove a linear lower bound on the authentication

tag size of any r-UNF-secure ARC. These proofs might be of independent interest.

Practical Active Attack Detection. We explore how to overcome the linear communication

complexity that r-RID and r-UNF impose. We first observe that ciphertexts can be much

smaller to achieve s-RID or s-UNF security. As noted above, it suffices for P to send a single

hash of all received messages with the corresponding ordinals, since partner P can recompute

the hash if it stores all messages it sends. Assuming each ordinal uses c space, ciphertexts

reduce in size from O(n(λ+ c)) to O(λ+nc) given P has received n messages.

We propose an optimised protocol that achieves s-RID security. In the protocol, parties keep

track of epochs [ACD19]. Party A starts with ep = 0 and B with ep = 1. While sending each

message parties attach the ep alongside. If epA = t , A does not accept any messages with ep>
t+1 and if A receives a message with ep= t+1 they update their ep value t+2. The observation

is that epoch values only increase when both parties have received a message. Using this fact,

it can be shown that it suffices to convey information about the messages received in the last

two epochs to provide s-RID security. Thus, the number of ordinals required in each message

depends on the communication pattern: in practice, it should usually suffice to only send a

few ordinals and a hash digest achieve s-RID security. To see why the optimisation works, if an

honest message was sent from A to B after A received a forged message, either this forgery

was received in the last 2 epochs, or there was another forgery and honest message pair after

it, as otherwise the ep values would be out of sync.

We observe that parties achieve r-RID/r-UNF-like guarantees after one round of honest com-

munication from s-RID/s-UNF security. If P detects that their partner P has received a forgery,

P can let P know, and thus P can learn that they have received a forgery (which is what

r-RID/r-UNF guarantee). We also formalise this by proposing a lightweight three-move pro-

tocol over the out-of-band channel and a corresponding security model which captures

bidirectional message authentication. Participant P (resp. P) sends their set of received mes-

sages to their partner in the first and second moves. In the second and third moves, P (resp. P)

sends a bit that indicates whether the set of received messages was consistent with what they

actually sent.

Furthermore, for UNF security, we note that the authentication tags can be compressed over

time by including acknowledgements in tags. Since the out-of-band channel is authentic,

parties are sure that the authentication information—that is, the sets of sent and received

messages—coming from the counterpart is correct. This enables parties to prune already

authenticated messages.

84

4.2 (Authenticated) Ratcheted Communication

4.1.3 Additional Related Work

A growing line of work considers the performance and security of messaging in both

the two-party [BSJ+17, PR18, JS18, DV19, CDV21, BRV20] and more general group set-

tings [ACDT20, ACDT21a, AJM22] settings. Some of these works provide similar [JS18] and

sometimes weaker [JMM19a] guarantees for in-band active attack detection assuming in-order

communication. To our knowledge, in-band active attack detection has not yet been explicitly

explored in group messaging, but schemes like MLS ensure that if the state of two parties is

forked then their states become incompatible, in some protocol-specific sense.

Naor et al. [NRS20] introduced the concept of immediate key delivery for round-based group

key exchange: if some parties go offline, the remaining ones should be able to complete it

and successfully output a shared secret. This property is related but distinct from immediate

decryption in this work as it focuses on keys instead of messages.

Apart from Durak and Vaudenay and Caforio et al. who introduced the RECOVER notions,

Dowling et al. [DHRR22] ensure r-RECOVER, but not s-RECOVER security via signatures,

while providing anonymity guarantees even upon state exposure. Dowling et al. [DGP22]

frame their authentication guarantees as follows: if no long-term keys are compromised, then

all messages exchanged are authentic. Otherwise, active attacks can be detected out-of-band.

They achieve this by signing all messages with long-term keys. Our protocols and security

notions can be adapted to achieve these guarantees. In distributed computing, the problem

is formalised in terms of accountability, which enables parties to detect faulty (Byzantine)

nodes [HKD07, CGG+22]. In multi-party computation, a line of work has explored security

with identifiable abort [IOZ14] which ensures that if parties fail to compute a given function,

they can identify the party that caused the failure.

The encoder/decoder technique that we use to prove the lower bounds in Section 4.5 have been

used before in cryptography [LN18, JLN19]. While the basic idea is the same, the technical

details of the proofs are not comparable as the primitives are different. Related work in group

messaging achieves communication lower bounds in symbolic models of execution [BDR20,

ANPPP23] and in a black-box impossibility setting [BDG+22].

4.2 (Authenticated) Ratcheted Communication

In this section we introduce the ratcheted communication (RC) cryptographic primitive

and an extension authenticated ratcheted communication (ARC) supporting out-of-band

authentication. These primitives augment classic ratcheting-based secure messaging

schemes [JMM19a, ACD19, CDV21] in two ways: (1) sent and received messages are associated

with ordinals, and, for ARC, (2) the syntax encompasses two additional stateful algorithms

AuthSend and AuthReceive.

Ordinals associated with messages enable a party to (1) order incoming messages, which is

85

Chapter 4. On Active Attack Detection in Messaging with Immediate Decryption

essential in the immediate decryption setting; (2) keep track of how many messages have been

communicated; and (3) infer which messages have been authenticated using the out-of-band

channel. Ordinals of the form num can be elements of any set on which a total order is defined.

In Alwen et al.’s [ACD19] and Bienstock et al.’s [BFG+22a] modelling of Signal’s Double Ratchet

protocol, an ordinal num is defined as a pair of integers (e,c) such that (e,c) < (e ′,c ′) if e < e ′

or both e = e ′ and c < c ′. We formally define an RC scheme below.

Definition 33 (Ratcheted communication (RC)). A ratcheted communication (RC) scheme

comprises the following efficient algorithms:

• pp $← Setup(1λ): The setup algorithm takes as input the security parameter λ ∈N, ex-

pressed in unary, and outputs public parameters pp.

• (stA,stB, z) $← Init(pp): The initialisation algorithm takes as input public parameters pp
and outputs a state stP for P ∈ {A,B }, and public information z.

• (st′P,num,ct) $← Send(stP,ad,pt): The send algorithm takes as inputs state stP, asso-

ciated data ad and a plaintext pt and outputs a new state st′P, an ordinal num and

ciphertext ct.

• (acc,st′P,num,pt) ← Receive(stP,ad,ct): The receive algorithm takes as inputs a state

stP, associated data ad and ciphertext ct and outputs an acceptance bit acc ∈ {true, false},

state st′P, ordinal num and plaintext pt.

The Receive algorithm returns dummy st′P, num, pt which are ignored when acc= false.

The Double Ratchet. Signal’s Double Ratchet protocol can be viewed as an RC. In the work of

Alwen et al. [ACD19], a secure messaging scheme consists of an initialisation algorithm and

party-specific Send and Receive algorithms with no associated data. The Receive algorithms,

but not the Send algorithms, output an epoch/index pair (e, i) ∈N2 which plays the role of an

ordinal. The Double Ratchet as modelled by Alwen et al. [ACD19] can thus be considered an

RC by modifying its Send algorithm to output each (e, i) pair as an ordinal and enforcing that

ad=⊥ is always input to Send and Receive.

Authenticated Ratcheted Communication (ARC). In an ARC, parties rely on stateful

AuthSend and AuthReceive algorithms to authenticate the communication using a (possi-

bly narrowband) out-of-band authenticated channel. AuthSend outputs an authentication

tag and an ordinal, whereas AuthReceive takes an authentication tag as input and outputs

an authentication bit and an ordinal. Intuitively, the authentication tag is sent via the out-

of-band authenticated channel and it enables the receiver to detect active attacks using the

AuthReceive algorithm. Participants can decide when to invoke the algorithms and thus use

the authentication tag on-demand, e.g., when an out-of-band channel is available.

AuthSend and AuthReceive outputs ordinals with the same semantics as Send and Receive.

Namely, the num that AuthSend outputs is greater or equal to the last num that Send outputs;

86

4.2 (Authenticated) Ratcheted Communication

besides ordering authentication tags with respect to messages the party has sent or received,

the ordinal indicates which messages (all up until num) the authentication tag authenticates.

Similarly, for AuthReceive, the ordinal num indicates that all messages with num′ ≤ num have

been authenticated with the received tag.

Definition 34 (Authenticated ratcheted communication (ARC)). An authenticated ratcheted

communication (ARC) scheme comprises the following efficient algorithms:

• Setup, Init, Send, Receive are defined as in RC (Definition 33).

• (st′P,num,at) $←AuthSend(stP): The authenticated send function takes as input a state

stP and outputs a new state st′P, an ordinal num and an authentication tag at.

• (auth,st′P,num) ←AuthReceive(stP,at): The authenticated receiving function takes as

inputs state stP and authentication tag at and outputs an authentication bit auth ∈
{true, false}, an updated state st′P and an ordinal num.

The AuthReceive algorithm returns dummy st′P, num which the scheme ignores when auth=
false.

One could alternatively define AuthSend/AuthReceive to output sets of ordinals corresponding

to which messages have been authenticated, rather than single ordinals. Our security notions

ensure that this information can be efficiently computed by parties using the ordinals that the

algorithms output.

Correctness. We define correctness for an RC and ARC scheme with the CORRECT game

presented in Figure 4.1. The game takes a security parameter and a schedule sched as inputs.

We use a schedule to model the message flow between the participants, which can (1) send

a message, (2) receive a message, and for ARC only, (3) send an authentication tag, or (4)

receive a sent authentication tag. More precisely, sched is an ordered list of instructions of

the form (P,"send",ad,pt), (P,"rec", j), and for ARC only, (P,"authsend"), or (P,"authrec", j),

where P ∈ {A,B }, ad denotes associated data, pt denotes a plaintext, and j ∈N indicates either

the (ad,ct) pair or the at to be received—that is, to be processed by Receive or AuthReceive
respectively.

A correct (A)RC scheme must recover the correct plaintext from the corresponding associated

data/ciphertext pair. Moreover, the scheme must satisfy the following properties.

• Subsequent calls to the Send algorithm outputs strictly increasing ordinals (line 6 in

Figure 4.1).2

• Ordinals are equal for corresponding calls to Send (resp. AuthSend for ARC) and Receive
(resp. AuthReceive for ARC) (lines 11 and 21).

2This could instead require Send to output strictly increasing ordinals w.r.t. Send and Receive calls made by P,
which is satisfied in Alwen et al.’s work [ACD19], but we opted against this for generality’s sake.

87

Chapter 4. On Active Attack Detection in Messaging with Immediate Decryption

Game CORRECTRC(sched)

1 : pp $← Setup(1λ); (stA,stB, z) $← Init(pp)

2 : ad∗[·],pt∗[·],ct∗[·],at∗[·] ←⊥; received[·],sent[·] ← false; sent-num∗ ←⊥
3 : for i = 1 to length(sched) :

4 : if sched[i] parses as (P,"send",ad,pt) for some ad,pt,P ∈ {A,B} :

5 : (stP,num,ct) $← Send(stP,ad,pt)

6 : if i > 1∧num≤ sent-numP : return 1

7 : sent[i] ← true; adP[i] ← ad; ptP[i] ← (num,pt); ctP[i] ← ct; sent-numP ← num
8 : elseif sched[i] parses as (P,"rec", j) for some j ∈N,P ∈ {A,B} :

9 : if ¬sent[j]∨ received[j]∨atP[j] ̸= ⊥ : continue

10 : (acc,st′P,num,pt) ←Receive(stP,adP[j],ctP[j])

11 : if ¬acc∨ ((num,pt) ̸= ptP[j]) : return 1

12 : received[j] ← acc; stP ← st′P
13 : elseif sched[i] parses as (P,"authsend") for some P ∈ {A,B} :

14 : (stP,num,at) $←AuthSend(stP)

15 : if num< sent-numP : return 1

16 : sent[i] ← true; atP[i] ← (num,at)

17 : elseif sched[i] parses as (P,"authrec", j) for some j ∈N,P ∈ {A,B} :

18 : if ¬sent[j]∨ received[j]∨atP[j] =⊥ : continue

19 : (numP,atP) ← atP[j]

20 : (auth,st′P,num) ←AuthReceive(stP,atP)

21 : if ¬auth∨num ̸= numP : return 1

22 : received[j] ← true; stP ← st′P
23 : return 0

Figure 4.1: Correctness game for an RC/ARC scheme RC. Highlighted statements are only
executed for an ARC scheme.

• For ARC, AuthSend outputs an ordinal greater or equal to the ordinal returned by the

last call to Send (line 15).

We require that these properties hold even when forgeries are received by one or both parties,

and enforce them in the ORDINALS game presented in Figure 4.3. We also capture these

properties for clarity in our correctness game.

We formally define correctness for an (A)RC scheme in Definition 35 below.

Definition 35 (CORRECT). Consider the correctness game CORRECT presented in Figure 4.1.

An RC (resp. ARC) scheme RC is correct if, for all λ ∈N, and all sequences of the form sched
with elements of the form (P,"send",ad,pt), (P,"rec", j), (resp. also of the form (P,"authsend"),

88

4.2 (Authenticated) Ratcheted Communication

(P,"authrec", j)), for P ∈ {A,B }, we have

Pr[CORRECTRC(sched) ⇒ 1] = 0 .

Correctness states that AuthSend must output an ordinal greater or equal to the ordinal that

the last call to Send returned. If AuthSend does not increase the ordinal, then it is clear

which messages are authenticated; if the ordinal increases in AuthSend, the application

designer must keep track of the last num that Send returned to infer what the tag authenticates.

Nonetheless, the latter case may be desirable to ensure that all ordinals output by Send and

AuthSend are distinct.

Oracles. Our security notions for RC and ARC build on a common set of oracles, introduced

in Figure 4.2. The SEND (resp. RECEIVE) oracle enables the adversary to send (resp. receive)

a message on behalf of a party P. In SEND, the caller can specify the randomness used by

Send or let the challenger sample randomness uniformly. For ARC, AUTHSEND enables

the adversary to send an authentication tag on behalf of a party P, whereas AUTHRECEIVE
handles AuthReceive. The oracles EXPpt(j) and EXPst(j) expose plaintexts and states to the

adversary, respectively.

The oracles of Figure 4.2 model a communication network composed of insecure in-band and

authentic out-of-band channels. The SEND and RECEIVE oracles enable the adversary to

read, deliver, modify and delay messages, but AUTHSEND and AUTHRECEIVE do not allow

the modification of authentication tags.

We assume an always-authentic out-of-band channel. To our knowledge, all deployed solu-

tions for out-of-band authentication and relevant literature [DH20, DGP22] assume this. One

could conceivably define a stronger model where the out-of-band channel is authentic only in

some cases, e.g., the tampering rate is bounded, or multiple out-of-band channels exist but

the adversary can compromise only a subset of them.

Ordinals. For RC and ARC schemes, we require, even in the presence of an adversary that in-

jects forgeries, that Send and Receive (as well as AuthSend and AuthReceive for ARC schemes)

output correct ordinals. We consider these properties in CORRECT (Figure 4.1), but they

must hold also in presence of forgeries. We formalise this notion with the ORDINALS game in

Figure 4.3.

In this game the challenger verifies three predicates, which correspond to the conditions for

correct ordinals presented above. In Definition 36 we formalise ORDINALS security for (A)RC

schemes.

Definition 36 (ORDINALS). Consider the ORDINALS game in Figure 4.3. We say that an

(authenticated) ratcheted communication scheme RC is ORDINALS secure if, for all possibly

89

Chapter 4. On Active Attack Detection in Messaging with Immediate Decryption

Oracle SEND(P,ad,pt,r)

1 : i ← i +1

2 : if r= ε : r $←R

3 : (stP,num,ct) ← Send(stP,ad,pt;r)

4 : state[i] ← stP

5 : plaintext[i] ← pt
6 : log[i] ← ("send",P,num,ad,ct)

7 : return (num,ct)

Oracle AUTHSEND(P)

1 : i ← i +1

2 : (stP,num,at) $←AuthSend(stP)

3 : auth[(P, i)] ← at
4 : state[i] ← stP

5 : log[i] ← ("authsend",P,num,at)

6 : return (num,at)

Oracle EXPpt(j)

1 : i ← i +1

2 : log[i] ← ("ptexp", j)

3 : return plaintext[j]

Oracle RECEIVE(P,ad,ct)

1 : (acc,st,num,pt) ←Receive(stP,ad,ct)

2 : if ¬acc : return ⊥
3 : i ← i +1

4 : stP ← st; state[i] ← stP

5 : plaintext[i] ← pt
6 : log[i] ← ("rec",P,num,ad,ct)

7 : return num

Oracle AUTHRECEIVE(P, j)

1 : at← auth[(P, j)]

2 : if at=⊥ : return ⊥
3 : (auth,st,num) ←AuthReceive(stP,at)

4 : if ¬auth : return ⊥
5 : i ← i +1

6 : stP ← st; state[i] ← stP

7 : log[i] ← ("authrec",P,num,at)

8 : return num

Oracle EXPst(j)

1 : i ← i +1

2 : log[i] ← ("stexp", j)

3 : return state[j]

Figure 4.2: Oracles which use variables state, plaintext, log, auth, st∗ and i , all initialised in
games where the oracles are used. AUTHSEND and AUTHRECEIVE are only used when
considering ARC.

unbounded adversaries A we have

Pr[ORDINALSRC(A) ⇒ 1] = 0 .

The ORDINALS game in Figure 4.3 is not suited to the case where ordinals can be arbitrary and

in particular collide between parties. Thus, a given party and their partner must be associated

with disjoint ordinals: models of practical protocols like the Double Ratchet achieve this by

associating one party with even epochs and the counterpart with odd epochs.

90

4.3 In-Band Active Attack Detection: RID

Game ORDINALSRC(A)

1 : pp← Setup(1λ); (stA,stB, z) ← Init(pp)

2 : state[·],plaintext[·], log[·],auth[·],st∗ ←⊥
3 : i ← 0

4 : A SEND,RECEIVE,EXPpt,EXPst,AUTHSEND,AUTHRECEIVE(pp, z)

5 : if ∃ P,num,num′,ad,ct, x, y s.t.

6 : not-increasing(log,P,num,num′, x, y)∨different(log,P,num,num′,ad,ct,at) ∨
7 : auth-monotonic(log,P,num′, y) :

8 : return 1

9 : return 0

different(log,P,num,num′,ad,ct,at)

1 : return ((("send",P,num,ad,ct) ∈ log∧ ("rec",P,num′,ad,ct) ∈ log)) ∨
2 : (("authsend",P,num,at) ∈ log∧ ("authrec",P,num′,at) ∈ log)))∧ (num ̸= num′)

not-increasing(log,P,num,num′, x, y)

1 : return (("send",P,num,_,_) = log[x]∨ ("rec",P,num,_,_) = log[x]) ∧
2 : ("send",P,num′,_,_) = log[y]∧ (0 < x < y)∧ (num≥ num′)

auth-monotonic(log,P,num′, y)

1 : num← max{⊥,num′′ : ("send",P,num′′,_,_) = log[x]∧0 < x < y }

2 : return ("authsend",P,num′,_,_) = log[y]∧ (num> num′)

Figure 4.3: ORDINALS game. Highlighted statements are only considered for an ARC.

4.3 In-Band Active Attack Detection: RID
In this section we consider in-band active attack detection in the immediate decryption

setting.

Caforio et al. [CDV21] define RECOVER security, which encompasses both r-RECOVER se-

curity and s-RECOVER security, but their notions and constructions only support in-order

message delivery. Intuitively, r-RECOVER security prevents a party from being able to deliver

an honest message after delivering a forgery, and s-RECOVER security allows a party to detect

and stop communication when their partner has delivered a forgery. We extend these notions

to handle out-of-order message delivery by introducing r-RID and s-RID, which we present in

Figure 4.4 and illustrate in Figure 4.5. Combined, these two properties ensure RID security.

Note that these definitions are orthogonal to the usual forward and post-compromise security

notions that the ratcheting literature considers [BSJ+17, ACD19].

The winning condition in RID consists of three predicates:

91

Chapter 4. On Active Attack Detection in Messaging with Immediate Decryption

• forgery verifies whether a forgery was accepted by one of the participants. In the predi-

cate, we denote the impersonated party as P and the recipient of the forgery as P.

• bad-P checks whether the recipient of the forgery manages to detect the attack. This

predicate corresponds to r-RID security.

• bad-P establishes whether P, i.e., the participant that the adversary impersonates to

send the forgery, fails to detect the attack. Since P is the recipient of the forgery, the

detection of the attack by P relies on a ciphertext sent by P and honestly delivered. This

predicate corresponds to s-RID security.

The game imposes that if forgery returns true, then at least one between bad-P and bad-P
must return true for the adversary to win the game.

Definition 37 (RID). An RC RC is r-RID (resp. s-RID/RID) if, for all efficient adversaries A , we

have:

Advr−rid
RC (A) = Pr[r-RIDRC(A) ⇒ 1] = negl

(resp. Advs−rid
RC (A) = Pr[s-RIDRC(A) ⇒ 1]/Advrid

RC(A) = Pr[RIDRC(A) ⇒ 1])

where game r-RID (resp. s-RID/RID) is defined in Figure 4.4.

Game r-RIDRC(A) s-RIDRC(A)

1 : pp $← Setup(1λ); (stA,stB, z) $← Init(pp)

2 : state[·],plaintext[·], log[·] ←⊥
3 : auth[·],st∗ ←⊥
4 : i ← 0

5 : A O (pp, z)

6 : if ∃ P,num,num′,ad,ct,ad′,ct′, x, y s.t.

7 : forgery(log,P,num,ad,ct, x) ∧
8 : bad-P(log,P,num,num′,ad′,ct′) :

9 : bad-P(log,P,num′,ad′,ct′, x, y) :

10 : return 1

11 : return 0

Game RIDRC(A)

1 : return r-RIDRC(A)∨ s-RIDRC(A)

forgery(log,P,num,ad,ct, x)

1 : return ("send",P,num,ad,ct) ∉ log ∧
2 : ("rec",P,num,ad,ct) = log[x]

bad-P(log,P,num,num′,ad′,ct′)
1 : return ("rec",P,num′,ad′,ct′) ∈ log ∧
2 : ("send",P,num′,ad′,ct′) ∈ log ∧
3 : (num< num′)

bad-P(log,P,num′,ad′,ct′, x, y)

1 : return (y > x) ∧
2 : ("send",P,num′,ad′,ct′) = log[y] ∧
3 : ("rec",P,num′,ad′,ct′) ∈ log

Figure 4.4: r-RID, s-RID and RID games for O = {SEND,RECEIVE,EXPpt,EXPst }.

Although r-RID may seem stronger than s-RID at first glance, the two notions are not compa-

rable. There exist schemes which provide r-RID and not s-RID security and vice versa, e.g.,

92

4.3 In-Band Active Attack Detection: RID

Sender P Receiver P

(num1,ct1)

...

(numm ,ctm)

(num,ct) log[x]

...

num′ > num (num′,ct′) win?

Receiver P Sender P

(num1,ct1)

...

(numm ,ctm)

log[x] (num,ct)

...

log[y] (num′,ct′) win?

Figure 4.5: Visualising r-RID (left) and s-RID (right). Each figure showcases an adversary’s
winning condition in the respective game. The dashed arrows are forged messages. If P accepts
the message at time “win?” then the adversary wins.

the scheme proposed in Figure 4.6 if the checks for either r-RID or s-RID are removed from

the checks subroutine given the underlying RC is not r-RID or s-RID secure, respectively (the

Double Ratchet is neither, for example).

However, we note the following link between the two notions. Suppose we use an s-RID
scheme. This means that P is able to detect that P received a forged message. Then, if P sends

an “abort” message to P, P would be able to detect the forgery after one honest round-trip

of messages. In other words, s-RID RC schemes can be transformed (by adding an “abort”

message) into RC schemes with a weak variant of r-RID security: r-RID after a honest round-

trip.

On Fine-Grained Security. Suppose A sends 5 messages with num ∈ {1, . . . ,5}, B receives

a forgery with num = 1000, and then A sends 5 messages with num ∈ {6, . . . ,10}. If B never

sends, i.e., A is the sender and B the receiver, RID-security only guarantees that the forgery

might be detected when A sends the honest message with num′ = 1001 (observe the condition

“num < num′” in predicate bad-P in Figure 4.4). Intuitively, B should be able to detect the

forgery on receipt of the honest message with num= 6 since this message is “independent”

of the forgery with num = 1000. By the not-increasing predicate of the ORDINALS security,

all messages that A sends after one round-trip will have num > 1000, so such an attack will

nevertheless be eventually detected. Fine-grained security capturing these scenarios can

be formalised by tracking state exposures and message delivery timing at the cost of greater

definitional complexity; we leave it open to do so. Some forgeries will be defeated by our

construction below but it is likely required to leverage the security of the underlying RC to

build a scheme providing this kind of security. Looking ahead, this remark also applies to UNF
ARC schemes defined in Section 4.4.

93

Chapter 4. On Active Attack Detection in Messaging with Immediate Decryption

4.3.1 RID-Secure RC

In this subsection we build a RID-secure RC scheme that relies on an ORDINALS-secure RC

scheme and a collision-resistant hash function H (Definition 9). We present our transformation

in Figure 4.6.

Scheme Description. Each party P keeps track of every message it has sent and received (in

S and R, respectively). This information is communicated to P every time P calls Send (via

variables S and R′).

The Send procedure prepares the set R′, which contains the ordinals and a hash of all received

messages (line 3). This step can be optimised by using an incremental hash function as we

discuss in Section 4.6.1. Next, it calls RC.Send with input (ad′,pt) where ad′ = (ad,S,R′) is

the associated data. The ciphertext ct contains both ct′ and sets S and R′. Finally, it adds

the pair (num,h) to S (line 8), where the hash h is computed as H.Eval(stP.hk, (ad,ct)), where

ct= (ct′,S,R′). Intuitively, (num,h) acts as a summary of P’s state after calling RC.Send which

can be checked by P for inconsistency.

When P invokes Receive, the procedure calls RC.Receive, which outputs num ̸= ⊥ if the call

is successful. Since ct contains RP, P checks that what P received so far was correct (line 3

in checks). In addition, using the S set contained in the ciphertext ct, P can further check

whether the ciphertexts it received so far have indeed been sent by P. This is verified from

lines 5 to 18 of checks. Some checks detect tampering of ct by the adversary (e.g. ct.S should

not contain ordinals larger than the one of the current ciphertext, or if ct was sent earlier

than another ciphertext already received, ct.S should be consistent with messages already

acknowledged, etc.). If everything verifies, Receive stores (num,h) in R and adds ct.S to the set

of acknowledged messages (lines 9 and 10).

Associated Data. The sets S and R′ included in the ciphertext are also included in the authen-

ticated data passed to the underlying RC. This is actually not needed for RID security, but for

authentication and confidentiality. Although we do not define these notions here, this should

be done in practice and remains as future work to formalise.

On Errors. Note that our scheme outputs a generic error symbol ⊥ in all cases. In particular,

our construction outputs the same symbol regardless of whether the error was due to detecting

an active attack, or from the situation where the adversary did not expose any states and simply

sent a malformed ciphertext. The latter situation entails a denial of service attack vector if

errors are treated the same way in both cases, so in practice (and in future work) they should

be differentiated between.

Security Analysis. Correctness of RCRID follows from the correctness of the underlying RC

scheme RC and the fact that the checks always outputs false when only honest messages are

received. Similarly, ORDINALS-security follows from the ORDINALS security of RC, as RCRID
outputs the num that RC outputs. As the next theorems state, the construction of Figure 4.6

94

4.3 In-Band Active Attack Detection: RID

RCRID.Setup(1λ)

1 : pp0
$←RC.Setup(1λ)

2 : hk $←H.KGen(1λ)

3 : hk′ $←H.KGen(1λ)

4 : pp← (pp0,hk,hk′)
5 : return pp

RCRID.Send(stP,ad,pt)

1 : (st′P,hk,hk′,S,R,_,_) ← stP

2 : nums′ ← {num′ : (num′,_) ∈R}

3 : R′ ← (nums′,H.Eval(hk′,R))

4 : ad′ ← (ad,S,R′)

5 : (stP.st′P,num,ct′) $←RC.Send(st′P,ad′,pt)

6 : ct← (ct′,S,R′)
7 : h ←H.Eval(hk, (num,ad,ct))

8 : stP.S← S∪ {(num,h)}

9 : return (stP,num,ct)

RCRID.Receive(stP,ad,ct)

1 : (ct′,SP,RP) ← ct
2 : (st′P,hk,_,_,R,Sack,_) ← stP

3 : ad′ ← (ad,SP,RP)

4 : (acc,st′P,num,pt) ←RC.Receive(st′P,ad′,ct′)
5 : if ¬acc : return (false,stP,⊥,⊥)

6 : h ←H.Eval(hk, (num,ad,ct))

7 : if checks(stP,ct,h,num) :

8 : return (false,stP,⊥,⊥)

9 : stP.R←R∪ {(num,h)}

10 : stP.Sack ← Sack ∪SP

11 : stP.st′P ← st′P
12 : return (acc,stP,num,pt)

RCRID.Init(pp)

1 : (pp0,hk,hk′) ← pp
2 : (st′A,st′B, z ′) ←RC.Init(pp0)

3 : max-num← 0

4 : S,R,Sack ←;
5 : stA ← (st′A,hk,hk′,S,R,Sack,max-num)

6 : stB ← (st′B,hk,hk′,S,R,Sack,max-num)

7 : z ← (z ′,pp)

8 : return (stA,stB, z)

checks(stP,ct,h,num)

1 : (nums′,h′) ← ct.R
2 : R∗ ← {(num′,_) ∈ stP.S : num′ ∈ nums′)}

3 : s-bool← (H.Eval(stP.hk′,R∗) ̸= h′)
4 : R′ ← {(num′,_) ∈ stP.R : num′ ≤ num}

5 : r-bool← (R′ ̸⊆ ct.S)

6 : r-bool← r-bool ∨
7 : (∃(num∗,_) ∈ ct.S : num∗ ≥ num)

8 : if num< stP.max-num :

9 : r-bool← r-bool∨ ((num,h) ̸∈ st.Sack)

10 : r-bool← r-bool∨ (ct.S ̸⊆ st.Sack)

11 : Sack
′ ← {(num′,_) ∈ stP.Sack :

12 : num′ < num}

13 : r-bool← r-bool∨ (Sack
′ ̸⊆ ct.S)

14 : else :

15 : stP.max-num← num
16 : r-bool← r-bool ∨
17 : (∃(num′,_) ∈ st.Sack \ ct.S :

18 : num′ < stP.max-num)

19 : return r-bool∨ s-bool

Figure 4.6: RID-secure RC scheme RCRID based on a RC scheme RC (Definition 33) and a hash
function H (Definition 8). RCRID requires the following variables: max-num represents the
largest received num; S is the set of (num,h) pairs; R is the set of received (num,h) pairs; Sack
is the set of (num,h) which are expected to be received (according to the received ciphertext
ct). All sets are append-only.

is r-RID-secure (Theorem 7) and s-RID-secure (Theorem 8). The construction is therefore

RID-secure.

95

Chapter 4. On Active Attack Detection in Messaging with Immediate Decryption

Theorem 7. Consider collision resistant hash function H used to build RCRID (defined in

Figure 4.6). Then, we have that for every efficient adversary A , one can build an adversary B

such that

Advr−rid
RCRID

(A) ≤Advcr
H(B) .

Proof. Let us assume there exists an adversary Ã playing the r-RID game, running in time t̃

and making at most q̃ queries. Let us call the advantage of this adversary ϵ̃, hence we have

Pr[r-RIDRCRID (Ã) ⇒ 1] = ϵ̃.

Let E be an event that occurs when r-RIDRCRID (Ã) outputs 1 The proof strategy is to construct

an adversary A ∗, running in time ≈ t̃ such that

Pr[CRH(A ∗) ⇒ 1 | E] = 1.

By definition of r-RID, E occurring means that there exist P, (num,ad,ct), (num′,ad′,ct′), x

such that bad-P(log,P,num,num′,ad′,ct′) and forgery(log,P,num,ad,ct, x) are both true. This

means that the message with ordinal num was not sent by P but received at some point by P
(log[x] = ("rec",P,num,ad,ct)), and the message with ordinal num′ was also received and was

actually sent by P. Moreover, num< num′.

We separate the two cases where 1) the message with ordinal num (the forged message) is

received before the message with ordinal num′ (the honest message), and 2) the message with

ordinal num′ is received first. We first analyse the former case.

We argue that unless the adversary found a collision, the message with ordinal num′

(the honest message) would not have been delivered. Suppose that the honest mes-

sage was delivered. Let stP be the state of the receiver P while receiving message

num′, and stP be the state of the sender P while sending the message (num′,ad′,ct′). As

("rec",P,num′,ad′,ct′) ∈ log, it means RCRID.Receive(stP,ad′,ct′) → (true,st′P,num′,pt′), which

implies checks(stP,ct′,num′,H.Eval(hk, (num′,ad′,ct′)) returned false.

Note that as num≤ num′, we have

(num,H.Eval(hk, (num,ad,ct))) ∈R′ and (num,H.Eval(hk, (num,ad,ct))) ∈ ct′.S,

as otherwise r-bool would have been set to true in line 5. Let h f :=H.Eval(hk, (num,ad,ct)). As

(num,h f) ∈ ct′.S, we have

(num,h f) ∈ stP.S (4.1)

as ct′ was sent by P. This would mean that P did send a message with ordinal num, let us call

96

4.3 In-Band Active Attack Detection: RID

it (num,adh ,cth). Hence, we have that,

(H.Eval(hk, (adh ,cth ,num)),num) ∈ stP .S (4.2)

By combining (4.1) and (4.2) and the fact that num can appear only once in stP
(due to the ORDINALS security of RCRID), we get that H.Eval(hk, (num,adh ,cth)) =
H.Eval(hk, (num,ad,ct)) which gives a collision. This is because (adh ,cth) ̸= (ad,ct) as

("send",P,num,adh ,cth) ∈ log and ("send",P,num,ad,ct) ∉ log.

Now we discuss the case where (num′,ad′,ct′) is received before (num,ad,ct). As num≤ num′,
this would mean that while receiving (num,ad,ct), max-num≥ num′ ≥ num. This would mean

(num,h) ∈ stP.Sack, otherwise the condition on line 9 would have not been satisfied. As Sack is

only updated by adding the elements in SP when a message is received, and as (num,h f) is

not in ct∗.S, for any honest ct∗, there should exist a forged message (num′′,ad′′,ct′′) received

before (ad,ct,num) such that (num,h f ,) ∈ ct′′.S. As we considered (num,num′) to be the first

pair of messages violating the r-RID property, we know that num′′ > num′ > num.

We split the two cases where (num′′,ad′′,ct′′) is received before (num′,ad′,ct′) and the case

where it is received after (num′,ad′,ct′). Let us consider the first case. We argue in this

case (num′,ad′,ct′) (the honest message) would not be accepted. As num′′ is received be-

fore num′, num′ < num′′ ≤ max-num. And as r-bool = false, S′
ack ⊆ ct′.S (line 12). However

(num,h f) ∈ S′
ack, as it was in ct′′.S, hence it should also be in ct′.S, which would mean

h f =H.Eval(hk,adh ,cth ,num) which is again a collision.

Now let us consider the case where (num′′,ad′′,ct′′) is received after the message (num′,ad′,ct′).

We argue that (num′′,ad′′,ct′′) should not have been accepted. We split the cases where

num′′ ≥ max-num and num′′ < max-num. Let us consider the later first. As (ad′′,ct′′,num′′)
was accepted, and hence r-bool = false, ct′′.S ⊂ Sack (line 10). Now (num,h f) ∈ ct′′.S, so

(num,h f) ∈ Sack. As without loss of generality we can imagine (num′′,ad′′,ct′′) being the first

message vouching for (h f ,num), this would mean (num,h f) was added to Sack by an honest

message, i.e. h f = hh which leads to a collision again.

Finally for the case in which num′′ ≥max-num, again, considering that (num′′,ad′′,ct′′) is the

first message vouching for (h f ,num), we have (num,h f) ∈ Sack \ ct′′.S (and so r-bool would

be set to true) unless h f = hh . Moreover, at this point (num′,ad′,ct′) has already been re-

ceived so, max-num ≥ num′ > num. Hence, unless h f = hh , r-bool would be set to true in

line 7. This concludes the proof that (num′,ad′,ct′), (num,ad,ct) are accepted if and only if

H.Eval(hk, (num,adh ,cth)) =H.Eval(hk, (num,ad,ct)).

Now we describe the CR adversary A ∗. A ∗ runs the initialisation of RCRID by replacing

the sampling step of hk with the hk given by the CRH game, then runs Ã as a subrou-

tine, and computes ("rec",P,num,ad f ,ct f) ∈ log, and ("send",P,num,adh ,cth) ∈ log such that

(ad f ,ct f) ̸= (adh ,cth) and h f = hh if possible. Given E , this pair always exists as we have

Pr[CRH(A ∗) ⇒ 1 | E] = 1. Moreover, as A ∗ is just running Ã as a subroutine and not doing

97

Chapter 4. On Active Attack Detection in Messaging with Immediate Decryption

anything extra, the time it runs is also ≈ t̃ . Finally, we have

Pr[CRH(A ∗) ⇒ 1] ≥ Pr[CRH(A ∗) ⇒ 1 | E] ·Pr[E]

= Pr[r-RIDRCRID (Ã) ⇒ 1] = ϵ̃ .

Hence, ϵ̃≤ Pr[CRA ∗
H (1λ) ⇒ 1].

Theorem 8. Consider collision resistant hash function H used to build RCRID (defined in

Figure 4.6). Then, we have that for every efficient adversary A , one can build an adversary B

such that

Advs−rid
RCRID

(A) ≤Advcr
H(B) .

Proof. The proof strategy is essentially the same as the one taken for the proof of Theorem 7.

For any adversary Ã playing the s-RID game, we construct an adversary A ∗ playing the CR
game with comparable complexity. We first describe the adversary A ∗ in terms of Ã and

proceed by proving that A ∗ wins at least as often as Ã .

As with the previous proof we define an event E that occurs only when s-RIDRCRID (Ã) ⇒ 1,

and we prove that Pr[CRH(A ∗) ⇒ 1 | E] = 1.

The event s-RIDRCRID (Ã) ⇒ 1, means there exists P,num,ad,ct,num′,ad′,ct′, x, y such that

x < y , (num,pt,ct) is a forged message received by P and logged in log[x], and (num′,ad′,ct′)
is an honest message sent by P (logged in log[y]) and received by P. As (num′,ad′,ct′) was

received, P’s checks call returned false.

Let us define h f = H.Eval(hk, (num,ad,ct)). When receiving the forged message, P adds

(num,h f) to stP.R. As y > x, (num,h f) is in stP.R when P sends. Hence num ∈ nums′ for

the honest message (num′,ad′,ct′) sent by P. Now as (num′,ad′,ct′) was accepted, we have,

due to line 3 of checks, that H.Eval(hk′,R∗) =H.Eval(hk′,stP.R).

If R∗ ̸= stP.R we have already found a collision. So let us assume that R∗ = stP.R. Now as

(num,h f) ∈ stP.R, we also have that (num,h f) ∈R∗ ⊂ stP.S.

This would mean that there exists an honest message (num,adh ,cth) such that

H.Eval(hk, (num,adh ,cth)) = h f . But note that as (num,adh ,cth) is an honest message,

("send",P,num,adh ,cth) ∈ log but ("send",P,num,ad,ct) ∉ log as the message was forged,

hence (num,adh ,cth) ̸= (num,ad,ct), which again yields a collision pair.

Now the CR adversary A ∗ does the following: they run the s-RID adversary Ã as a subroutine

with the hk given by the CR challenger. They later find P,num,ad,ct ,num′,ad′,ct′, x, y satisfy-

ing the condition, in case they exist. Now (for example) by exposing the states of the parties

once (num′,ad′,ct′) was sent by P they can find the collision pair described above. Hence we

98

4.4 Out-Of-Band Active Attack Detection: UNF

have,

Pr[CRH(A ∗) ⇒ 1] ≥ Pr[CRH(A ∗) ⇒ 1 | E] ·Pr[E] = Pr[s-RIDRCRID (Ã) ⇒ 1] (4.3)

Observe that the run-time of A ∗ is roughly the run-time of Ã . This concludes the proof.

Optimisation. The s-RID notion imposes less overhead than r-RID: the construction can

be further optimised and still provide s-RID security. We describe an optimisation in Sec-

tion 4.6.2 that allows for the set of ordinals in R of each party to be pruned each round trip of

communication, which particularly improves communication complexity when parties are

well-synchronised.

4.4 Out-Of-Band Active Attack Detection: UNF
In-band active attack detection is not always possible, as an adversary may block all honest

messages sent by one or more parties. For example, modern messaging solutions in practice

use a (possibly malicious) third party server to relay messages between participants, thereby

introducing a single point of failure for in-band communication. This motivates us to consider

out-of-band active attack detection, whereby parties can exchange authentication tags out-of-

band, and to define unforgeable security (UNF).

An ARC scheme is unforgeable if, as soon as one of the two parties accepts a forgery, both

parties can detect this out-of-band. We formalise this security notion through the UNF
game (Figure 4.7), which, similarly to RID, encompasses r-UNF and s-UNF. The winning

condition in UNF consists of three predicates: forgery,bad-P (corresponding to r-UNF) and

bad-P (corresponding to s-UNF) that are essentially the same as the predicates that we use

to define RID security (Definition 37), except they rely on authentication tags instead of

ciphertexts for forgery detection (and thus active attack detection is performed on-demand).

Definition 38 (UNF). An ARC ARC is r-UNF (resp. s-UNF/UNF) if, for all efficient adversaries

A , we have:

Advr−unf
ARC (A) = Pr[r-UNFARC(A) ⇒ 1] = negl

(resp. Advs−unf
ARC (A) = Pr[s-UNFARC(A) ⇒ 1]/Advunf

ARC(A) = Pr[UNFARC(A) ⇒ 1])

where game r-UNF (resp. s-UNF/UNF) is defined in Figure 4.7.

As for RC schemes, we do not define message indistinguishability [DV19, ACD19] for ARC

schemes. In our constructions, the schemes include in the authentication tag only public

material, i.e., messages that have already been sent over the insecure channel. Since the

adversary already has access to the entire transcript of the insecure channel, the authentication

material should not give any additional advantage in a message indistinguishability game.

99

Chapter 4. On Active Attack Detection in Messaging with Immediate Decryption

Game r-UNFARC(A) s-UNFARC(A)

1 : pp $← Setup(1λ); (stA,stB, z) $← Init(pp)

2 : state[·],plaintext[·], log[·] ←⊥
3 : auth[·],st∗ ←⊥
4 : i ← 0

5 : A O (pp, z)

6 : if ∃ P,num,num′,ad,ct,at, x, y s.t.

7 : forgery(log,P,num,ad,ct, x) ∧
8 : bad-P(log,P,num,num′,at) :

9 : bad-P(log,P,num′,at, x, y) :

10 : return 1

11 : return 0

Game UNFARC(A)

1 : return r-UNFARC(A)∨ s-UNFARC(A)

forgery(log,P,num,ad,ct, x)

1 : return ("send",P,num,ad,ct) ∉ log ∧
2 : ("rec",P,num,ad,ct) = log[x]

bad-P(log,P,num,num′,at)

1 : return ("authrec",P,num′,at) ∈ log ∧
2 : (num≤ num′)

bad-P(log,P,num′,at, x, y)

1 : return (y > x) ∧
2 : ("authsend",P,num′,at) = log[y] ∧
3 : ("authrec",P,num′,at) ∈ log

Figure 4.7: r-UNF, s-UNF and UNF games for O = {SEND,RECEIVE,EXPpt,EXPst,
AUTHSEND,AUTHRECEIVE}.

4.4.1 UNF-Secure ARC from a RID-Secure RC

Highlighting the similarity between RID security and UNF security, we show in this subsection

that one can directly use a RID-secure RC to build a UNF-secure ARC. The ARC scheme uses

the Setup, Gen, Init, Send, Receive function of the RC. To send an authentication tag with

AuthSend, the ARC scheme calls the Send function on a dummy message to generate a cipher-

text ct that acts as the authentication tag. The function AuthReceive is then implemented as a

Receive call on the authentication tag/ciphertext. The construction is detailed in Figure 4.8.

Then, we can show the following theorem, which also implies that the scheme of Figure 4.8 is

r-UNF- and s-UNF-secure.

Theorem 9. Let RCRID be a RC scheme and ARCUNF be the ARC scheme built out of RC as

shown in Figure 4.8. If RCRID is RID, ORDINALS-secure and correct, then ARCUNF is UNF-,

ORDINALS-secure and correct.

Proof. Correctness follows from the correctness of the underlying RCRID and the use of do-

main separation for tags and ciphertexts.

We sketch a proof showing RID security of RCRID implies UNF security of ARCUNF. For any

adversary A playing the UNF game with ARCUNF, we build a RID adversary B for RCRID. Each

query made by A to the oracles SEND, RECEIVE, EXPpt, EXPst are forwarded by B to its

own corresponding oracles (and domain separation is correctly implemented where needed).

100

4.4 Out-Of-Band Active Attack Detection: UNF

ARCUNF.Setup(1λ)

1 : return RCRID.Setup(1λ)

ARCUNF.Init(pp)

1 : return RCRID.Init(pp)

ARCUNF.Send(stP,ad,pt)

1 : ct′ ←RCRID.Send(stP,ad,pt)

2 : ct← (0,ct′)
3 : return ct

ARCUNF.Receive(stP,ad,ct)

1 : (b,ct′) ← ct
2 : if b ̸= 0 : return (false,⊥,⊥,⊥)

3 : return RCRID.Receive(stP,ad,ct′)

ARCUNF.AuthSend(stP)

1 : (st′P,num,ct) ←RCRID.Send(stP,0,0)

2 : return (st′P,num, (1,ct))

ARCUNF.AuthReceive(stP,at)

1 : (b,at′) ← at
2 : if b ̸= 1 : return (false,⊥,⊥)

3 : (acc,st′P,num,pt) ←RCRID.Receive(stP,0,at′)
4 : return (acc,st′P,num)

Figure 4.8: UNF-secure ARC scheme ARCUNF based on a RID-secure RC scheme RCRID.

Queries of the form AUTHSEND(P) are simulated by B querying “at′ ← SEND(P,0,0)” and

setting “at ← (1,at′)”, which perfectly simulates the generation of a tag in ARCUNF. Finally,

AUTHRECEIVE queries are simulated using the RECEIVE oracle on the tag/ciphertext. B

can perfectly simulate the UNF game for A .

Now, let us assume that the UNF adversary A wins with the forgery and bad-P predicates both

evaluating to true. It means a forgery was received by a party P, then, later, that party sent a

tag (i.e. a ciphertext in the RID game played by B) that is honestly and successfully delivered

to a party P. That implies that in the RID game played by B, a party received a forgery, then

sent a message that was successfully delivered, which is a winning condition for B.

The second case is when the UNF adversary A wins with the forgery and bad-P predicates

both evaluating to true. This means that a forgery was received by a party P with ordinal num,

then a tag with ordinal num′ ≥ num was successfully received by P. Note that in our ARCUNF
construction the tags are ciphertexts, thus the ordinals are strictly increasing, i.e., num′ > num.

Therefore, in the RID game played by B, a forgery with ordinal num was received by P, then

later a honest ciphertext with ordinal num′ > num was successfully delivered to P, making the

bad-P predicate in the RID game true.

Hence, for any adversary A winning the UNF game, there exists a RID adversary B that wins

with at least the same probability.

Finally, ORDINALS-security follows from the ORDINALS security of RCRID and the fact that

ARCUNF.Send and ARCUNF.AuthSend calls directly output num from RCRID.Send.

101

Chapter 4. On Active Attack Detection in Messaging with Immediate Decryption

4.4.2 UNF-Secure ARC from Any RC

We present an unoptimised UNF-secure ARC scheme ARCbase given a RC scheme (Defini-

tion 33). We present our scheme in Figure 4.9. We later describe a communication-optimised

scheme in Section 4.6.3.

ARCbase.Setup(1λ)

1 : pp0
$←RC.Setup(1λ); hk $←H.KGen(1λ)

2 : return (pp0,hk)

ARCbase.Init(pp)

1 : (pp0,hk) ← pp
2 : (st′A,st′B, z ′) $←RC.Init(pp0)

3 : num,max-num←⊥; S,R,Sack ←;
4 : stA ← (st′A,hk,S,R,Sack,num,max-num)

5 : stB ← (st′B,hk,S,R,Sack,num,max-num)

6 : z ← (z ′,pp)

7 : return (stA,stB, z)

ARCbase.Send(stP,ad,pt)

1 : (st′P,hk,S,_,_,_,_) ← stP

2 : (stP.st′P,num,ct) $←RC.Send(st′P,ad,pt)

3 : h ←H.Eval(hk, (ad,ct))

4 : stP.S← S∪ {(num,h)}

5 : stP.num← num
6 : return (stP,num,ct)

ARCbase.AuthSend(stP)

1 : (_,_,S,R,_,num,_) ← stP

2 : at← (S,R,num)

3 : return (stP,num,at)

ARCbase.Receive(stP,ad,ct)

1 : (st′P,hk,_,R,Sack,_,max-num) ← stP

2 : (acc,st′P,num,pt) ←RC.Receive(st′P,ad,ct)

3 : if ¬acc : return (false,stP,⊥,⊥)

4 : h ←H.Eval(hk, (ad,ct))

5 : if num≤max-num∧ (num,h) ∉ Sack :

6 : return (false,stP,⊥,⊥)

7 : stP.R←R∪ {(num,h)}

8 : stP.st′P ← st′P
9 : return (acc,stP,num,pt)

ARCbase.AuthReceive(stP,at)

1 : (_,_,S,R,Sack,num,max-num) ← stP

2 : (SP,RP,numP) ← at
3 : // P received a forgery

4 : if RP ⊈ S : return (false,stP,num)

5 : RP
⊆ ← {(num,_) ∈R : num≤ numP}

6 : // P received a forgery

7 : if RP
⊆ ⊈ SP : return (false,stP,num)

8 : stP.Sack ← Sack ∪SP

9 : stP.max-num← max{max-num,numP}

10 : return (true,stP,numP)

Figure 4.9: UNF-secure ARC scheme ARCbase based on a RC scheme RC (Definition 33). The
scheme uses the following additional variables compared to RC: S is the set of sent values
stored as (num,h); R is the set of received values stored as (num,h); Sack is the set of (num,h)
expected to be received (according to the received authentication tag at); num is the ordinal
corresponding to the party’s last sent message; max-num represents the largest num received
in an at. For simplicity of exposition, we omit the optimisation where R is sent as a single hash
and n ordinals as done in Figure 4.6 for RID security.

Scheme Description. Procedures Send and Receive make use of the respective RC procedures.

Send stores the hash of (ad,ct) for the message being sent, together with the num that the

102

4.4 Out-Of-Band Active Attack Detection: UNF

underlying RC.Send algorithm outputs. A tuple composed of num and this hash is stored in a

set S, which is in turn stored by the calling party. Send also updates ordinal num in the caller’s

state. The Receive procedure verifies if the RC.Receive algorithm accepts the inputs and that

the received message is not a forgery on a previously authenticated message, which, as we will

describe, is contained in Sack. If both checks pass, Receive stores the hash of (ad,ct) together

with the ordinal num returned by RC.Receive in a set R.

AuthSend includes in the authentication tag (at) the hashes of the caller’s sent and received

messages together with the last ordinal num returned by RC.Send. Since the adversary can

reorder messages both in the normal channel and in the out-of-band channel, num indicates

to the recipient of the authentication tag which messages they should compare against at.

AuthReceive parses the authentication tag and checks whether the messages received by the

counterpart are in the caller’s local set S. Then, it verifies whether its local set of received

messages, excluding the messages not encompassed by at, is a subset of the messages sent by

the counterpart. If one of these conditions is not satisfied, then a forgery is detected. The sent

messages authenticated by the counterpart are stored in a set Sack. ARCbase.Receive uses this

set to avoid forgeries on already authenticated ordinals.

The size of the authentication tags and the state of each party in the scheme of Figure 4.9

is linear in the number of sent and received messages. We show in Section 4.6.3 that this

can be reduced by pruning. Messages can nevertheless be efficiently exchanged out-of-band

in practice, e.g., using Bluetooth. Otherwise, parties can send authentication information

over the insecure channel and authenticate it using the out-of-band channel by hashing and

comparing digests [PV06].

Security Analysis. We now analyze the security properties of the scheme in Figure 4.9. Cor-

rectness of the scheme follows from the correctness of the underlying RC scheme. Similarly,

ORDINALS security follows from the ORDINALS security of RC, as the scheme of Figure 4.9

outputs the same num that RC outputs.

The UNF-security of ARCbase (Figure 4.9) is derived, as before, from the collision resistance of

the hash function that the scheme uses, which we prove in what follows.

Theorem 10 (UNF security of ARCbase). Consider collision resistant hash function H used to

build ARCbase (defined in Figure 4.9). Then, we have that for every efficient adversary A , one

can build an adversary B such that

Advunf
ARCbase

(A) ≤Advcr
H(B) .

Proof. Assume an adversary A playing the UNF game (Figure 4.7), which makes at most q

oracle queries and runs in time at most t . We assume the advantage of A is ϵ, hence by

Definition 38 we have Pr[UNFARCbase (A) ⇒ 1] = ϵ. We construct an adversary B, running in

time approximately equal to t , which, running A as a subroutine, wins the collision resistance

game for H (Definition 9), that is Pr[CRH(BA) ⇒ 1] = 1.

103

Chapter 4. On Active Attack Detection in Messaging with Immediate Decryption

The UNF adversary A wins when one party accepts a forgery (predicate forgery) and at least

one of the two parties fails to detect the forgery (predicates bad-P and bad-P). Suppose there

exist P, num, num′, ad, ct, at, x, y such that forgery(log,P,num,ad,ct, x) = true. We analyze the

predicates bad-P and bad-P separately, starting with the latter.

The forgery predicate states that ("send",P,num,ad′,ct′) ∈ log and ("rec",P,num,ad,ct) =
log[x] for some x ∈N, where (ad′,ct′) ̸= (ad,ct). This means that (num,H.Eval(hk, (ad′,ct′)) ∈ SP

and (num,H.Eval(hk, (ad,ct)) ∈RP, otherwise the forgery is trivially detected because (num,_) ∉
RP. Moreover, by the bad-P predicate we know that RP⊆ ⊆ SP for any num≤ num′, which implies

that (num,H.Eval(hk, (ad′,ct′))) = (num,H.Eval(hk, (ad,ct))). By ORDINALS security, (num, ·)
can appear only once in SP, respectively in RP, and by assumption (ad′,ct′) ̸= (ad,ct), therefore

we have a collision for H.Eval(hk, ·).

We now analyze the bad-P predicate. The forgery predicate states that

("send",P,num,ad′,ct′) ∈ log and ("rec",P,num,ad,ct) = log[x] for some x ∈ N, where

(ad′,ct′) ̸= (ad,ct), otherwise the forgery is trivially detected. This implies that

(num,H.Eval(hk, (ad,ct)) ∈ RP when ARCbase.Receive(_,ad,ct) → (true,_,num,_). By the

bad-P predicate we know that P sends an authentication tag at after accepting (ad,ct), since

("authsend",P,num′,at) = log[y] and y > x, which means that (num,H.Eval(hk, (ad,ct)) is in

the RP that at contains. The rest of the argument follows the same approach as the previous

paragraph.

BA (hk)

1 : (1λ,hk0) ← hk; pp $←ARCbase.Setup(1λ); (pp0,hk′) ← pp; pp′ ← (pp0,hk)

2 : (stA,stB, z) $←ARCbase.Init(pp′)
3 : state[·],plaintext[·], log[·],auth[·],st∗ ←⊥; i ← 0

4 : A O (pp, z)

5 : if ∃ num,P,ad,ct,ad′,ct′ : ("send",P,num,ad,ct) ∈ log ∧
6 : ("rec",P,num,ad′,ct′)∧ (ad,ct) ̸= (ad′,ct′) :

7 : return (ad,ct), (ad′,ct′)
8 : else abort

Figure 4.10: CR adversary B where O = {SEND,RECEIVE,AUTHSEND,AUTHRECEIVE,
EXPpt,EXPst} for the proof of Theorem 10.

We describe in Figure 4.10 the adversary B which plays the collision resistance game. B runs

the ARCbase.Setup procedure and replaces the hash key hk′ that the procedure returns with

the hk that the adversary receives from the CR challenger. After running A as a subroutine, B

analyzes the log array to find the (ad,ct), (ad′,ct′) pairs that represents a forgery and returns

those. If A wins the UNF game, then B wins the CR game, that is

Pr[CRH(B) ⇒ 1] ≥ Pr[UNFARCbase (A) ⇒ 1] = ϵ.

104

4.5 Lower Bounds for Active Attack Detection

Moreover, B runs A as a subroutine and executes a negligible additional amount of work.

4.5 Lower Bounds for Active Attack Detection

We study in this section the size of (1) ciphertexts of any r-RID-secure RC and (2) authentication

tags of any r-UNF-secure ARC. In particular, all of our constructions so far (and hereafter)

achieving one of these properties incurs (at least in the worst case) linear growth in the

ciphertext or tag length in terms of the number of messages sent. We show here that one

cannot hope for better by proving two lower bounds. More precisely, we show that the

ciphertext space (resp. tag space) of a r-RID RC (resp. r-UNF ARC) grows exponentially in the

number of messages sent. Note that we cannot prove a lower bound on the ciphertext size

directly as it is always possible that some ciphertext is small. However, our bounds imply that

at least n bits are required to represent any ciphertext or tag in their respective domain after

the n-th message.

4.5.1 Communication Cost for r-RID Security

In what follows, we consider a RC that is perfectly correct:3 for all randomness r, valid states

stP and associative data ad, the function Send(stP,ad, ·;r) mapping a plaintext to a ciphertext

is injective.

The next theorem proves that the ciphertext size in a r-RID RC grows linearly in the number of

messages sent (multiplied by either the security parameter or message size).

Theorem 11. Let Π be a perfectly correct RC, ns and λ be fixed, and Tλ,ns be the time com-

plexity of the (efficient) adversary given on the left of Figure 4.12. In addition, let γ ∈Z be such

that, for all adversaries A running in at most time Tλ,ns which query oracle SEND at most ns

times, we have

Pr[r-RIDΠ(A) ⇒ 1] ≤ 1

2γ
.

Let M = {0,1}n and C = {0,1}k (without loss of generality) be the plaintext and ciphertext

space associated to Π, respectively. Then,

k ≥ n + (ns −1)(γ−2), if γ≤ n

k ≥ 2+ns(n −2), if γ> n.

A third lower bound gives

k ≥ nns − 1

1− 2n ns
2γ

,

which is tighter for low values of n (e.g. n = 1,2) and when γ> n + log(ns).

3We discuss how to relax this requirement directly after our proof.

105

Chapter 4. On Active Attack Detection in Messaging with Immediate Decryption

Proof. We show that if k is smaller than the given bounds, one can build an encoder/decoder

for a uniform source such that the expected bit-length of a codeword is strictly lower than the

entropy (i.e., the log of the size of the sampling set), contradicting Shannon’s source coding

theorem [Sha48].

More formally, we consider a source that samples uniformly at random from the set

{0,1}n×ns × {0,1}r , where r is the maximal number of bits (i.e., random coins) needed by

the two procedures Setup and Init of Π and ns invocations of Send. We present an encoder

and decoder for such a source in Figure 4.11 (the non-boxed instructions in the encoder, and

the decoder shown on the left). For the sake of explanation, assume that the RC used in the

encoder/decoder has perfect r-RID security. Then, the sender sends ns honestly generated

ciphertexts ct1, . . . ,ctns , and the receiver receives the last ciphertext ctns . By perfect r-RID
security, for any i < ns , any ciphertext ct′i ̸= cti should be rejected by the receiver. Thus, one

can build an (inefficient) decoder that tests all ct′i to find the correct one and recovers the

corresponding message. In a sense, all cti must be encoded in the last ciphertext ctns . The

actual encoding is more complicated as if the r-RID security is not perfect, there will be a

number of false positives (i.e., ct′i ̸= cti but ct′i is accepted by the receiver). Note that w.l.o.g.,

we omit the associated data throughout the proof (or assume ad=⊥) as it plays no role.

Lemma 12. Our encoder (Figure 4.11) is perfectly correct, i.e.,

Pr[Decode(Encode(m1, . . . ,mns ,R)) = (m1, . . . ,mns ,R)] = 1 .

Proof. The value R output by Decode is the same as the one input in Encode. Since the initial

states depend only on R and Π is correct, ctns will decrypt to mns . The states sti
A will be

identical in both the encoding and decoding procedures as they are generated from sti−1
A , the

previously recovered message mi−1 and randomness Ri . This implies that the sets of accepting

messages Si will be the same as they depend only on st1
B and sti−1

A . In addition, by the perfect

correctness ofΠ, each message mi will be in the corresponding set Si . Hence, the decoder can

recover each message mi by reading Si at the index given in the input.

Lemma 13. Let C be the random variable corresponding to the codeword length output by

Encode. In addition, let Fi := Si \ {mi } be the set of false positives, where Si and mi are as in

Encode. Then, E[C] ≤ k + r +∑ns−1
i=1 1+ log(E[|Fi |]+1).

Proof. By construction, the encoder outputs a codeword of k +r +∑ns−1
i=1 ⌈log(|Si |)⌉ bits. There-

fore, we have

E[C] = k + r +
ns−1∑
i=1

E[⌈log(1+|Fi |)⌉] ≤ k + r +
ns−1∑
i=1

1+E[log(1+|Fi |)]

which is upper bounded by k+r +∑ns−1
i=1 (1+ log(E[|Fi |]+1)), by the linearity of expectation and

the definition of Fi , the fact that ⌈x⌉ ≤ 1+x, and Jensen’s inequality applied consecutively.

106

4.5 Lower Bounds for Active Attack Detection

Encode(m1, . . . ,mns ,R)

1 : parse (R−1,R0, . . . ,Rns) ← R; pp← Setup(1λ;R−1); (st0
A,st0

B, z) ← Init(pp;R0)

2 : for i ∈ {1, . . . ,ns } do // send the ns messages

3 : (sti
A,num,cti) ← Send(sti−1

A ,mi ;Ri)

4 : (acc,st1
B,num,m′

ns
) ←Receive(st0

B,ctns) // Receive ctns : m′
ns = mns by perfect correctness

5 : // Collecting false positives and correct messages:

6 : for i ∈ {1, . . . ,ns −1} do

7 : Si ←;
8 : for m ∈ {0,1}n do

9 : (_,_,ct′) ← Send(sti−1
A ,m;Ri)

10 : (acc,_,_,m′) ←Receive(st1
B,ct′)

11 : if acc :

12 : if m ̸= mi : return (0,m1, . . . ,mns ,R)

13 : Si ← Si ∪ {m}

14 : Li ← sort(Si)

15 : ei ← index of mi in Li (in binary with ⌈log(|Li |)⌉ bits)

16 : encode ctns with k bits

17 : return (1,ctns ,R)

18 : return (ctns ,R,e0∥ . . .∥ens−1)

Decode(ctns ,R,E)

1 : parse (R−1,R0, . . . ,Rns) ← R

2 : pp← Setup(1λ;R−1)

3 : (st0
A,st0

B, z) ← Init(pp;R0)

4 : (acc,st1
B,num,mns) ←Receive(st0

B,ctns)

5 : // Collecting false positives:

6 : for i ∈ {1, . . . ,ns −1} do

7 : Si ←;
8 : for m ∈ {0,1}n do

9 : (_,_,ct′) ← Send(sti−1
A ,m;Ri)

10 : (acc,_,_,m′) ←Receive(st1
B,ct′)

11 : if acc : Si ← Si ∪ {m}

12 : Li ← sort(Si)

13 : ei ← read next ⌈log(|Li |)⌉ bits of E

14 : mi ← Li [ei]

15 : (sti
A,_,_) ← Send(sti−1

A ,mi ;Ri)

16 : return (m1, . . . ,mns ,R)

Decode(b,data,R)

1 : if b = 0 :

2 : (m1, . . . ,mns) ← data
3 : return (m1, . . . ,mns ,R)

4 : else ctns ← data
5 : parse (R−1,R0, . . . ,Rns) ← R

6 : pp← Setup(1λ;R−1); (st0
A,st0

B, z) ← Init(pp;R0)

7 : (acc,st1
B ,num,mns) ←Receive(st0

B,ctns)

8 : // Collecting false positives:

9 : for i ∈ {1, . . . ,ns −1} do

10 : Si ←;
11 : for m ∈ {0,1}n do

12 : (_,_,ct′) ← Send(sti−1
A ,m;Ri)

13 : (acc,_,_,m′) ←Receive(st1
B,ct′)

14 : if acc : mi ← m

15 : (sti
A,_,_) ← Send(sti−1

A ,mi ;Ri)

16 : return (m1, . . . ,mns ,R)

Figure 4.11: Encoder without (resp. with) boxed instructions and decoder on the left (resp.
right) for proving the first 2 (resp. third) lower bound(s) in Theorem 11.

107

Chapter 4. On Active Attack Detection in Messaging with Immediate Decryption

Finally, we show the following key lemma.

Lemma 14. Let Fi , i ∈ [ns −1] be defined as above and n,γ as in the statement of the Theorem

(Theorem 11). Then, E[|Fi |] ≤ 2n−γ.

Proof. We proceed by contradiction. That is, we show that if E[|Fi |] > 2n−γ, then there exists

an adversary Ai s.t. Pr[r-RIDΠ(Ai) ⇒ 1] > 1
2γ .

Ai

1 : m1, . . . ,mns
$← {0,1}n×ns

2 : R−1,R0, . . . ,Rns
$← {0,1}r

3 : for j ∈ {1, . . . ,ns } do

4 : if j = i :

5 : sti−1
A ←EXPst(A)

6 : (ct j ,num j) ← SEND(A,;,m j ,R j)

7 : RECEIVE(B,;,ctns)

8 : m $← {0,1}n

9 : _,_,ct← Send(sti−1
A ,m;Ri)

10 : RECEIVE(B,;,ct)

11 : return B

Ai

1 : m1, . . . ,mns
$← {0,1}n×ns

2 : R−1,R0, . . . ,Rns
$← {0,1}r

3 : for j ∈ {1, . . . ,ns } do

4 : if j = i :

5 : sti−1
A ←EXPst(A)

6 : (ct j ,num j) ← SEND(A,;,m j ,R j)

7 : (numat,at) ←AUTHSEND(A)

8 : iat ← index of at
9 : AUTHRECEIVE(B, iat)

10 : m $← {0,1}n

11 : _,_,ct← Send(sti−1
A ,m;Ri)

12 : RECEIVE(B,;,ct)

13 : return B

Figure 4.12: r-RID adversary for the proof of Theorem 11 (resp. Theorem 12) on the left (resp.
on the right).

We present such an adversary Ai on the left of Figure 4.12. The adversary samples ns messages

m1, . . . ,mns at random and, letting A and B be the two parties, makes A send these with ran-

domness R1, . . . ,Rns , respectively. Then, Ai makes B receive the last ciphertext ctns . Next, Ai

samples a random message m, sends it using state sti−1
A and randomness Ri to get a ciphertext

ct and makes B receive it. Now, as ctns is sent after ct (ctns is sent with stns−1
A and ct with sti−1

A),

ctns and ct will decrypt respectively to numns and numi s.t. numns > numi by correctness.

Then, if m ̸= mi , then ct is different from the i -th ciphertext cti (as we assume Send(sti−1
A , ·;Ri)

is injective). Therefore, if ct is accepted and m ̸= mi , then ct and numi satisfy the forgery
predicate of the r-RID game in Figure 4.4. In addition, as ctns is sent and delivered honestly,

forgery and bad-P in the r-RID game hold with respect to B,numi ,numns ,⊥,ct,⊥,ctns , relevant

x and any y (as in line 6 of Figure 4.4), so the adversary wins. We call this event win.

We now compute the probability that win happens, which is the probability that cti ̸= ct and

B accepts ct. Let m1, . . . ,mns and the whole randomness R (R = R−1,R0, . . . ,Rns) be fixed. As

before, let Si be the set of messages m s.t. Receive(st1
B ,ct) accepts, for ct= Send(sti−1

A ,m;Ri).

Note that since Si depends only (m1, . . . ,mns ,R) (which are now fixed), it is deterministic.

108

4.5 Lower Bounds for Active Attack Detection

Therefore, conditioned on m1, . . . ,mns ,R, we have

Pr
m

[win] = Pr
m

[m ∈ Si ∧m ̸= mi] = Pr
m

[m ∈ Fi] = |Fi |
2n

as m is sampled uniformly at random. Hence, overall

Pr
m,m1,...,mns ,R

[win] = Em1,...,mns ,R [Pr
m

[m ∈ Fi]] = E[|Fi |]
2n .

Note that both the source and the adversary sample m1, . . . ,mns ,R uniformly at random.

Finally, if E[|Fi ||] > 2n−γ, then Pr[win] > 2n−γ
2n = 2−γ, which leads to the contradiction.

By the previous lemma, we have log(E[|Fi |]+1) ≤ log(2n−γ+1) ≤ max(0,n −γ)+1 . Plugging

this result into Lemma 13, we get E[C] ≤ k + r + (ns −1)(max(0,n −γ)+2). In addition, as our

encoder outputs a uniquely decodable code, we know that nsn + r ≤ E[C] by Shannon’s source

coding theorem. Hence, we get

k + r + (ns −1)(n −γ+2) ≥ nsn + r ⇐⇒ k ≥ n + (ns −1)(γ−2)

if γ≤ n and otherwise

k + r + (ns −1)2 ≥ nsn + r ⇐⇒ k ≥ 2+ns(n −2).

Now that the first two lower bounds have been shown, we prove the final bound in the following

lemma.

Lemma 15. Let k,n,ns ,γ as in the statement of the theorem. Then,

k ≥ nns − 1

1− 2n ns
2γ

.

Proof. In order to prove this lemma, we build another encoder/decoder pair very similar to the

previous one. They are shown in Figure 4.11 (with the boxed instructions for the encoder and

the boxed decoder on the right). The only difference in the encoder is that if one false positive

is found, the encoder outputs a bit set to zero and the trivial encoding of the input. Let’s call

this event fail. If fail does not occur, a bit set to 1, the last ciphertext, and the randomness are

output.

In the decoder, either the first bit of the input is set to 0 and the input is returned straightaway,

or b = 1 and the decoder proceeds as before. However, as there are no false positives, the mi

can be recovered without using the indices ei (i.e., the correct message would be the only

element of Si). Overall, the expected codeword length is E[C] = 1+αnns + (1−α)k + r , where

α := Pr[fail], as if fail occurs a trivial encoding (on 1+nns + r bits) is used, and otherwise the

109

Chapter 4. On Active Attack Detection in Messaging with Immediate Decryption

encoder outputs 1+k + r bits. By Shannon source coding theorem, we obtain

1+αnns + (1−α)k + r ≥ nns + r ⇐⇒ k ≥ nns − 1

1−α

In addition, we have α := Pr[fail] = Pr[∪ns−1
i=1 {|Fi | ≥ 1}] ≤ ∑ns−1

i=1 Pr[|Fi | ≥ 1] as fail occurs if at

least one of the sets of false positives Fi contains an element. Then, we have Pr[|Fi | ≥ 1] ≤
E[|Fi |] ≤ 2n−γ, where the first inequality follows from Markov’s inequality and the second from

Lemma 14. Overall, we get α≤ ns 2n

2γ . Hence,

k ≥ nns − 1

1−α ≥ nns − 1

1− 2n ns
2γ

.

Finally, some algebra shows that this bound is tighter than the second one when

2γ ≥ 2nns
2−2ns

3−2ns
,

that is, when γ is larger than ≈ n + log(ns).

This completes the proof.

On Imperfect Correctness. For simplicity in the proof, we only considered RC schemes which

are perfectly correct. Note, however, that it should be possible to obtain a slightly worse bound

for RC schemes that are not perfectly (computationally or statistically) correct. In more detail,

perfect correctness is used twice in the proof of Theorem 11: (1) in the encoder to argue that

the encoded messages will decrypt properly and (2) in the reduction (Figure 4.12) to argue

that m ̸= mi ⇒ ct ̸= cti . Then, if the probability that a correctness error arises is at most δ,

we can argue as follows. In case (1), we can simply use the trick used to prove the 3rd bound

(i.e., output the trivial encoding if the encoded message does not decrypt properly) to get the

same bounds −1/(1−δ ·ns). Then, in case (2), we will have at the end Pr[win] > 2−γ−δ (the

bound calculated at the end of our proof of Lemma 14) as we need to take into account the

probability that m triggers a correctness error. This should incur an additional ≈−log(δ) loss

in the bound. Overall, the proof still holds with δ> 0, and if it is small then the bounds remain

nearly identical.

Beyond Uniformly Sampled Messages. As stated, our lower bound assumes that the ns

messages encoded are sampled uniformly at random from the message space. We note that a

comparable bound holds if the distribution is different from uniform given the bound is stated

in terms of the entropy of the messages.

110

4.6 Optimisations and Performance/Security Trade-Offs

4.5.2 Communication Cost for r-UNF Security

We consider a perfectly correct ARC (i.e., the function Send(stP,ad, ·;r) is injective for all

randomness r, valid states stP and associative data ad). The following theorem states that the

tag size of a secure ARC grows linearly in the number of messages (times either the security

parameter or message size).

Theorem 12. Let Π be a perfectly correct ARC, ns and λ be fixed, and Tλ,ns be the time

complexity of the (efficient) adversary given on the right of Figure 4.12. In addition, let γ ∈Z be

such that for all adversaries A running in at most time Tλ,ns which query oracle SEND at most

ns times, we have: Pr[r-UNFΠ(A) ⇒ 1] ≤ 1
2γ . Let M = {0,1}n and T = {0,1}k be the plaintext

and tag space associated to Π, respectively. Then, k ≥ ns(γ−2), if γ≤ n, and k ≥ ns(n −2), if

γ> n. A third lower bounds gives

k ≥ nns − 1

1− 2n (ns+1)
2γ

,

which is tighter for low values of n (e.g. n = 1,2) and when γ> n + log(ns).

Proof. We only provide the idea of the proof, as it is nearly identical to the one of Theorem 11.

The intuition is that if a party P sends ns messages and then an authentication tag at to P,

then at must contain information about all the ciphertexts previously sent. This is because P
cannot know in the worst case which messages were ever received by P.

More precisely, the only difference with the proof of Theorem 11 is that we use at instead of

ctns ; the rest follows similarly. In particular, the encoder outputs the randomness, the tag

and the indices of the encoded messages in the sets of correctly received messages. Then,

the decoder receives the authentication tag and tries to receive all possible ciphertexts ct1.

Among the ones that are successfully received, it extracts the correct message using the index

provided by the encoder. Next it moves to receiving all possible ciphertexts ct2 and so on, until

the ns messages are received. In addition, we give on the right of Figure 4.12 the adversary that

can be used to prove an upper bound on the number of messages that are correctly received

(i.e., the number of messages in the sets Si used in the proof of Theorem 11).

4.6 Optimisations and Performance/Security Trade-Offs

In Section 4.5, we showed that r-RID and r-UNF impose a linear communication complex-

ity on RC and ARC schemes respectively. In this section we explore ways to bypass these

lower bounds and propose practical approaches for active attack detection. We first argue

that s-RID/s-UNF security can be achieved at a much lower cost than r-RID/r-UNF security.

Noting that ciphertexts grow without bound in the schemes presented up to this point, we

propose two methods of pruning, or garbage collection, to reduce communication overhead.

The first involves pruning the set R that is sent for s-RID security every full round trip in

111

Chapter 4. On Active Attack Detection in Messaging with Immediate Decryption

Figure 4.6. The second involves pruning unnecessary values included in authentication tags

in our construction in Figure 4.9 for UNF security. We then conclude the chapter by proposing

a lightweight three-move protocol that authenticates communication in both directions over

the out-of-band channel.

4.6.1 On the Practicality of s-RID and s-UNF Security

Security Notion: r-RID s-RID
Overhead O (nλ+ cn) O (λ+ cn)
Optimised overhead (Section 4.6.2) N/A O

(
λ+ cnfresh

)
Table 4.1: Overhead induced by the two RID security notions. We assume that n messages
are received and ci is the space needed to encode i ordinals. The variable nfresh refers to the
number of messages received in the last two epochs.

We focus here on s-RID security, but similar arguments hold for s-UNF security. The scheme

RCRID (Figure 4.6) achieves s-RID security by sending to the counterpart the list of received

ordinals and an hash of the set R. Recall informally that this suffices for security because a

party can immediately detect when their counterpart has received a forgery (by keeping in

state their sent messages and recomputing the hash). Table 4.1 summarises the overhead

incurred by the two notions together with the optimisation presented in the next subsection

(Section 4.6.2), where we show that it is enough to only send information about messages

received during the two last epochs. This significantly reduces the overhead for the scenarios

in which the communication is “balanced”.

Ordinals. The RID-secure RC of Figure 4.6 sends the set of received ordinals for authentication

(line 2 of the RCRID.Send algorithm). Since ordinals are elements of a set on which a total order

is defined, a simple optimisation—that could reduce the overhead by up to 50%—consists in

sending the smallest set among the set of received ordinals or the set of not received ordinals

alongside a bit indicating which type of set has been sent. This optimisation applies to all

schemes that send sets of ordinals.

One can reduce ciphertext size further by optimising for the “good case” scenario where

messages are delivered in-order; in this case, ordinals can be encoded in ranges. For epochs

with no lost messages, it suffices to encode only the last index. In any case, as the size of a

single message in today’s secure messaging applications can be several kilobytes or more,

especially when audio and video is used, the overhead that s-RID imposes seems reasonable.

We leave a deeper and more concrete analysis to determine the impact of RID/UNF security

in practice to future work.

Incremental Hashing. In Figure 4.6, the entire set of received messages is hashed (using a

regular hash function) every time a message is sent by P. Consequently, when P receives a

new message, the entire hash must be re-computed when P sends their next message. To

112

4.6 Optimisations and Performance/Security Trade-Offs

avoid this, the scheme can instead use an incremental hash function (Definition 10) such

that, when a message is received, an efficient operation only depending on the new message

and the previous digest can be executed to derive the new digest. Hash digests can be as

small as a group element [CDv+03]. This enables parties to prune their set of sent/received

messages in state. For example, if P receives a message m claiming that P has received the

first k messages from P, and P has received messages for all possible ordinals that precede the

ordinal of m, then P can safely store just the incrementally-hashed value corresponding to

the first k messages, since P can no longer claim to have only received a strict subset of the k

messages.

The security proof then follows almost exactly as in the proof that use the collision resistance

of the hash function by instead assuming set collision resistance (Definition 11) and arguing

the that a set collision can be constructed in the exact same situations as a collision when

using a (regular) hash function.

4.6.2 Epoch-Based Optimisation for s-RID Security

In this subsection we show how to design an optimised s-RID-secure RC scheme given a

correct and ORDINALS-secure RC scheme. A formal description is given in Figure 4.13.

At initialisation, one party is associated with ep = 0, say P, and the other, say P, with ep = 1.

Each time a party sends a message they also attach their current ep to the message. Upon

receiving a message, a party P with ep = t checks whether the ep attached to the message

received from P is at most t +1. If the P’s ep is exactly t +1 the party P updates their ep to

t +2. The ep value of the parties are always one apart at each point in time. Note this is exactly

how epochs were defined by Alwen et al. [ACD19] except each epoch was associated with an

iteration of the Diffie-Hellman-based asymmetric ratchet.

To achieve s-RID security the sender does the following. Whenever sending a message with

ep= t , the sender attaches the num and the accumulated hash of all messages they received

during the time their ep was t and t −2. That is, the parties do the same as the original s-RID
construction, but only for the messages they have received in the last 2 epochs.

Although this optimisation does not change the worst-case complexity of Figure 4.6, if the

direction of the conversation changes frequently enough, the overhead significantly decreases.

We continue by stating the main theorem of this subsection and providing a proof sketch.

Theorem 13. Consider collision resistant hash function H used to build RCs-RID (defined in

Figure 4.13). Then, we have that for every efficient adversary A , one can build an adversary B

such that

Advs−rid
RCs-RID

(A) ≤Advcr
H(B) .

Proof sketch. Let [(ct f , ·, t f), (cth , ·, th)], be the closest pair of sent-received messages contra-

113

Chapter 4. On Active Attack Detection in Messaging with Immediate Decryption

RCs-RID.Setup(1λ)

1 : pp0
$←RC.Setup(1λ)

2 : hk $←H.KGen(1λ)

3 : hk′ $←H.KGen(1λ)

4 : pp← (pp0,hk,hk′)
5 : return pp

RCs-RID.Init(pp)

1 : (pp0,hk,hk′) ← pp
2 : (st′A,st′B, z ′) $←RC.Init(pp0)

3 : epack ← 0

4 : ep← 0

5 : S,Rcurr,Rprev ←;
6 : stA ← (st′A,hk,hk′,S,Rcurr,Rprev,ep)

7 : stB ← (st′B,hk,hk′,S,Rcurr,Rprev,ep)

8 : z ← (z ′,pp)

9 : return (stA,stB, z)

RCs-RID.Send(stP,ad,pt)

1 : (st′P,hk,hk′,S,Rcurr,Rprev,ep) ← stP

2 : nums′ ← {num′ : (num′,_) ∈Rcurr ∪Rprev}

3 : R′ ← (nums′,H.Eval(hk′,Rcurr ∪Rprev))

4 : ad′ ← (ad,ep,R′)

5 : (stP.st′P,num,ct′) $←RC.Send(st′P,ad′,pt)

6 : ct← (ct′,ep,R′)
7 : h ←H.Eval(hk, (num,ad,ct))

8 : stP.S← S∪ {(num,h)}

9 : return (stP,num,ct)

RCs-RID.Receive(stP,ad,ct)

1 : (ct′,epP,RP) ← ct
2 : (st′P,hk,hk′,S,Rcurr,Rprev,ep) ← stP

3 : ad′ ← (ad,epP,RP)

4 : (acc,st′P,num,pt) ←RC.Receive(st′P,ad′,ct′)
5 : if ¬acc : return (false,stP,⊥,⊥)

6 : h ←H.Eval(hk, (num,ad,ct))

7 : if checks(stP,ct,h,num) :

8 : return (false,stP,⊥,⊥)

9 : stP.Rcurr ←Rcurr ∪ {(num,h)}

10 : stP.st′P ← st′P
11 : // Advance epochs accordingly

12 : if epP = stP.ep+1 :

13 : stP.ep← stP.ep+2

14 : stP.Rprev ←Rcurr

15 : stP.Rcurr ←;
16 : return (acc,stP,num,pt)

checks(stP,ct,h,num)

1 : (nums′,h′) ← ct.R
2 : ep′ ← ct.ep
3 : if ep′ > stP.ep+1 :

4 : s-bool← 1

5 : R∗ ← {(num′,_) ∈ stP.S : num′ ∈ nums′}
6 : s-bool← s-bool∨ (H.Eval(stP.hk′,R∗) ̸= h′)
7 : return s-bool

Figure 4.13: Optimised s-RID-secure RC scheme RCs-RID given a correct and ORDINALS-
secure RC scheme RC.

dicting the s-RID condition. That is, (ct f , ·, t f) is a forgery received by P before they sent the

honest message (cth , ·, th) which was received by P. We consider the time when (cth , ·, th) was

sent by P. As mandated by the construction (cth , ·, th) contained num values and accumulated

hash of all messages P has received at epochs th and th −2. Following the same argument as

the proof of Theorem 8 one can show that no forgeries, including (ct f , ·, t f), were received by

P while epP ∈ {th , th −2}.

The two messages that changes epP from th −4 to th −2 and from th −2 to th , were honest

messages by P. Let us call them (ctth−3, ·, th −3) and (ctth−1, ·, th −1) respectively. Note that,

114

4.6 Optimisations and Performance/Security Trade-Offs

both these messages were received after (ct f , ·, t f) was received and before (ct f , ·, t f) was sent,

as otherwise (cth , ·, th) would contradict (ct f , ·, t f). Note that between sending the messages

(ctth−3, ·, th −3) and (ctth−1, ·, th −1), epP was changed meaning P received a message with

ep= th −2 that caused the change of epP. Let us call this message (ctth−2, ·, th −2). We argue

this message should have been forged.

Let us assume by contradiction that this message was honest. Note that (ctth−2, ·, th −2) was

sent after (ctth−3, ·, th−3) was received, hence after (ct f , ·, t f) was received. Now if (ctth−2, ·, th−
2) is honest it forms a pair with (ct f , ·, t f) which violates the s-RID condition and has less

distance from the original pair which is a contradiction. So (ctth−2, ·, th −2) must have been

forged. A visualisation of the scenario can be found in Figure 4.14.

Receiver P Sender P

ep= t f

...

ep= th −3 ep= th−3

ep= th −2

ep= th −2

ep= th −1 ep= th −1

ep= th

ep= th

Figure 4.14: Visualising the proof sketch of Theorem 13. The dotted messages are forged and
the others are honest messages. Intuitively we argue if the last message did not contradict the
first message, the fourth message would have contradicted the third, therefore violating s-RID
in the other direction.

One other observation is that, (ctth−2, ·, th −2) was received before (ctth−1, ·, th −1) was sent,

hence, before (cth , ·, th) was received. This shows that the pair [(ctth−2, ·, th−2), (ctth−1, ·, th−1)]

also violates the s-RID (for P and not P) and has less distance than the original pair.

4.6.3 Pruning for UNF Security

In this subsection, we present a scheme that optimises bandwidth consumption for UNF
security (Figure 4.15). A complete description and security proof are given below. Our scheme

takes advantage of the fact that messages sent out-of-band cannot be forged. Suppose that P
sends an authentication tag to P, then P acknowledge the reception of the tag to P. At this

point, P no longer needs to send the information that P has already obtained. Our scheme

supports out-of-order communication even on the authenticated channels. Our approach

is complicated by this and the fact that parties have to keep track of, e.g., which tags their

115

Chapter 4. On Active Attack Detection in Messaging with Immediate Decryption

partner has received to determine what is safe to prune from state (in SatSeen), which incurs

relatively small overhead in typical executions.

Scheme Description. Send stores the hash of (ad,ct) for the message being sent, together

with the corresponding num that the underlying RC.Send call returns. It stores (num,h) in a

set S, which is in turn stored in the party’s internal state. The Send algorithm also updates the

ordinal num in the state.

The Receive procedure verifies whether RC.Receive accepts the inputs and verifies that the

received message is not a forgery based on any information stored from previous AuthReceive
calls. Given this passes, Receive stores the hash of (ad,ct) together with the ordinal num
returned by RC.Receive in a set R.

The AuthSend procedure is similar to the unoptimised one, except that (1) it stores the set

of sent messages S authenticated within the current at into an array Sat, indexed by counter

cntat, and (2) it empties the set SatSeen locally; the goal of this set is to communicate which

tags that the caller has received from their counterpart.

Before processing the message, AuthReceive first verifies whether cntatP ≤ max-cntat. The

goal of this check is to avoid processing old authentication tags, since if the check is true,

AuthReceive must have previously authenticated the tag’s content in a newer (in terms of

cntatP) tag. However, pruning still needs to be performed before returning in this case since

the contents of set SatSeen is only sent once before being flushed in a given AuthSend call.

Otherwise, given the sent and received messages of the two parties are consistent, AuthReceive
first stores the counter of the input tag in SatSeen, which will be sent to the counterpart in

the next call to AuthSend. Then it removes the already authenticated messages from memory.

The caller already authenticated the subset RP⊆ and it can thus remove the corresponding

messages from its set R, which represents now the set of currently unauthenticated received

messages. Similarly, AuthReceive uses the set of authentication tags that the counterpart

already processed to prune the set of sent messages.

In detail, the pruning of sent messages works as follows. When a party P receives a set of

messages Sat
P[cntat] ← S sent by the counterpart with the authentication tag number cntat, it

stores them in a set Sack. Then, when P sends a subsequent authentication tag back to P, it

informs P that the authentication tag cntat was received using the SatSeenP set. When this tag

is delivered, P can remove the acknowledged messages Sat
P[cntat] for all counters in SatSeenP

from its set SP. This reduces the size of the authentication tag as, on every round-trip on the

out-of-band channel, all authenticated messages can be removed from the sets S and R. To

reduce the size even further, we can use the same hashing optimisation for the received set

that we used in Figure 4.6.

Security Analysis. We informally argue that the scheme prunes only messages that have

already been authenticated. The procedures use sets stP.S and stP.R to detect active attacks.

116

4.6 Optimisations and Performance/Security Trade-Offs

ARCOP.Setup(1λ)

1 : pp0 ←RC.Setup(1λ); hk←H.KGen(1λ)

2 : return (pp0,hk)

ARCOP.Init(pp)

1 : (pp0,hk) ← pp
2 : (st′A,st′B, z ′) ←RC.Init(pp)

3 : num,max-num,cntat,max-cntat ← 0

4 : S,R,Sack,Sat,SatSeen←;
5 : stA ← (st′A,hk,S,R,Sack,num,max-num,

6 : cntat,max-cntat,Sat,SatSeen)

7 : stB ← (st′B,hk,S,R,Sack,num,max-num,

8 : cntat,max-cntat,Sat,SatSeen)

9 : z ← (z ′,pp)

10 : return (stA,stB, z)

ARCOP.Send(stP,ad,pt)

1 : (st′P,hk,S, · · ·) ← stP

2 : (stP.st′P,num,ct) ←RC.Send(st′P,ad,pt)

3 : h ←H.Eval(hk, (ad,ct))

4 : stP.S← S∪ {(num,h)}

5 : stP.num← num
6 : return (stP,num,ct)

ARCOP.Receive(stP,ad,ct)

1 : (st′P,hk,_,R,Sack,_,max-num, · · ·) ← stP

2 : (acc,st′P,num,pt) ←RC.Receive(st′P,ad,ct)

3 : if ¬acc : return (false,stP,⊥,⊥)

4 : h ←H.Eval(hk, (ad,ct))

5 : if num≤max-num∧ (num,h) ∉ Sack :

6 : return (false,stP,⊥,⊥)

7 : stP.R←R∪ {(num,h)}

8 : stP.st′P ← st′P
9 : return (acc,stP,num,pt)

ARCOP.AuthSend(stP)

1 : (_,_,S,R,_,num,_,cntat,_,SatSeen) ← stP

2 : at← (S,R,num,cntat,SatSeen)

3 : stP.cntat ← stP.cntat +1

4 : stP.Sat[stP.cntat] ← S
5 : stP.SatSeen←;
6 : return (stP,num,at)

ARCOP.AuthReceive(stP,at)

1 : (_,_,S,R,Sack,num,max-num,

2 : cntat,max-cntat,Sat,_) ← stP

3 : (SP,RP,numP,cntat
P,SatSeenP) ← at

4 : RP
⊆ ← {(num,_) ∈R : num≤ numP}

5 : if cntat
P ≤max-cntat :

6 : prune(stP,RP,cntat
P,SatSeenP,RP

⊆)

7 : return (true,stP,numP)

8 : // P received a forgery

9 : if RP ⊈ S : return (false,stP,num)

10 : // P received a forgery

11 : if RP
⊆ ⊈ SP : return (false,stP,num)

12 : stP.Sack ← stP.Sack ∪SP

13 : stP.max-num← max{max-num,numP}

14 : stP.max-cntat ← max{cntat
P,stP.max-cntat}

15 : prune(stP,RP,cntat
P,SatSeenP,RP

⊆)

16 : return (true,stP,numP)

prune(stP,RP,cntatP,SatSeenP,RP⊆)

1 : stP.SatSeen← stP.SatSeen∪ {cntat
P}

2 : stP.R← stP.R \ RP
⊆

3 : for i ∈ SatSeenP do

4 : stP.S← stP.S \ stP.Sat[i]; stP.Sat[i] ←;

Figure 4.15: Optimised UNF-secure ARC scheme ARCOP based on a RC scheme RC (Defini-
tion 33). The sets S, R and Sack are as in Figure 4.6. The variable max-num represents the
largest num received in an at. The counters cntat and max-cntat keep track of how many tags
have been sent and largest cntat received inside of a tag, respectively. SatSeen is the list of
cntat of received at since the last sent one; Sat[i] contains the content of S sent in the i th at.

117

Chapter 4. On Active Attack Detection in Messaging with Immediate Decryption

AuthReceive prunes stP.R by removing elements in RP⊆; since the procedure authenticates

the elements in RP⊆ at line 11, it is safe to prune stP.R. AuthReceive prunes stP.S by removing

elements in stP[i] for i ∈ SatSeenP. The set SatSeenP contains counters of the authentication

tags that P sent to P and P correctly received. Moreover, the AuthReceive procedure updates

st.SatSeenP at line 1, i.e., after the integrity checks. Since the AuthSend stores the set of sent

messages S authenticated within the current at into the array Sat, pruning stP.S only removes

messages that have already been received and authenticated by P.

Recall that the adversary can only delete and replay authentication tags in the out-of-band

channel. We informally discuss how the scheme handles these cases. Assume P and P
exchange some messages, P receives an authentication tag atP from P and then sends the

authentication tag atP; the adversary removes atP from the channel. Since the adversary

removes atP, P does not acknowledge the reception of atP to P (because AuthSend empties

stP.SatSeen at every invocation). Consequently, P does not prune stP.S: these messages will

be authenticated with the next authentication tag and security is preserved. The AuthReceive
procedure handles adversarial reordering of authentication tags with counters cntat at line 5.

We formally state our security claim for ARCOP below.

Theorem 14. Consider collision resistant hash function H used to build ARCOP (defined in

Figure 4.15). Then, we have that for every efficient adversary A , one can build an adversary B

such that

Advunf
ARCOP

(A) ≤Advcr
H(B) .

Moreover, ARCOP is correct and ORDINALS secure.

Proof. Correctness and ORDINALS-security for the transformation of Figure 4.15 follow from

the scheme in Figure 4.9.

The scheme is the same as Figure 4.9 modulo the optimisations we introduced. The proof of

the theorem thus reduces to showing that the optimisations preserve the security properties

of the unoptimised ARC scheme ARCbase (Figure 4.9). Observe that stP.R and stP.S are used

to detect active attacks. We start by showing that pruning these sets does not undermine UNF
security.

• The set stP.R is pruned by removing elements from RP⊆, which was authenticated on

line 11 of AuthReceive. We therefore know that messages in RP⊆ are honest. Thus, we

can stop sending them to P hereafter.

• stP.S is pruned by all sets stP.Sat[i] for i ∈ SatSeenP. By construction we know that

SatSeenP contains counters for which P accepted the authentication tags, since those

are included in line 1 of prune. Therefore, {stP.Sat[i]}
i∈SatSeenP contains all messages in

stP.S that P correctly received and authenticated, which the procedure stores in stP.Sack
for future checks. Hence, P can safely stop sending those and prune S correspondingly.

118

4.6 Optimisations and Performance/Security Trade-Offs

We proceed by showing that UNF security still holds. By the arguments above, an authentica-

tion tag at that the AuthSend procedure generates after another authentication tag at′, will

contain only messages that have not been authenticated in at′. Therefore the check on line 5

preserves security.

The check on line 9 verifies whether RP ⊆ S. Without pruning, this property is met in the

absence of forgeries as shown for ARCbase. Assume for contradiction that RP contains a

message not authenticated yet, but S does not contain this message due to pruning. This

means that the message was removed from S by removing one of the values in stP.Sat whose

counter cntat was present in SatSeenP. Since the counter is present in SatSeenP, we know that

P accepted the authentication tag containing cntat, i.e., P correctly received and authenticated

the message. But this means by construction that P pruned the message from R on line 2 of

prune, which leads to a contradiction. Therefore the check preserves UNF security.

The check on line 11 verifies whether RP⊆ ⊆ SP. Without pruning, this property is met in

absence of forgeries as shown for ARC. Note that P removes from R only messages that have

been authenticated (on line 2 of prune), therefore RP⊆ only contains unauthenticated messages.

Similarly, by the argument presented in the paragraph above, SP contains messages included

in at’s whose counter was not included in SatSeenP, and therefore unauthenticated messages.

We conclude that this check also preserves UNF security.

Note that ARCOP (Figure 4.15) sends all the authentication material through the out-of-

band channel. This might be impractical when the authenticated out-of-band channel is

narrowband, e.g., if parties use QR-codes to authenticate the communication. We can improve

the scheme by using both channels: use the insecure channel to send the authentication data

and the possibly narrowband authenticated channel to verify the integrity of the data, e.g.,

using the protocol of Pasini and Vaudenay [PV06]. While the idea of using both channels for

authentication is natural [BSSW02], some security risks might arise when the scheme does not

correctly match the two messages. Since UNF security depends on both the messages, and

therefore on the messages being correctly matched, it might be safer to enforce this property

at the scheme level which we leave as future work to formalise.

4.6.4 Lightweight Bidirectional Authentication

In this subsection, we propose a three-move bidirectional authentication protocol. Figure 4.16

describes the protocol at a high level. Parties include in the authentication tag only the set of

received messages. The receiver of the tag compares then the set of received messages from

the counterpart with the set of sent messages. We envision this approach could be used when

participants meet in person or online and can both authenticate the respective views of the

conversation at the same time. Signal, among other messaging solutions, already requires

such an exchange for parties executing its safety numbers protocol that are aiming for mutual

verification [Mar17].

119

Chapter 4. On Active Attack Detection in Messaging with Immediate Decryption

P : P :

AuthSend(stP) RP

AuthReceive(stP,at)

RP,at-succ AuthSend(stP)

AuthReceive(stP,at)

AuthSend(stP) at-succ

AuthReceive(stP,at)

Figure 4.16: Overview of the three-move authentication procedure. The boolean at-succ
indicates whether the counterpart’s set of received messages is a subset of the caller’s local set
of sent messages.

In what follows, we propose an appropriate security model, describe the protocol in detail

and provide a security proof in our model.

Security Model. We modify the UNF game (Section 4.4) by requiring the adversary to run

authentication sessions in sequence. We present the corresponding game in Figure 4.17.

When the adversary, through the AUTHSEND′ oracle, starts the authentication protocol with

initial sender P, the adversary’s access to AUTH∗, SEND′ and RECEIVE′ oracles is restricted

until the three-move authentication session is completed between P and P. This is encoded

in the next-oob-op variable. This simplifies the exposition, but it is not necessary in particular

to restrict SEND′ and RECEIVE′ calls in practice, even though parties who authenticate in

person would generally not send messages during this time. To handle this, parties can simply

buffer messages during authentication that are authenticated in the next authentication

session. However, buffering messages implies that an attack carried out during the out-of-

band authentication will not be detected until the next authentication protocol. For this

reason we block in-band communication during the three-move protocol and we encourage

this restriction to be maintained also in practice. We note also that parties are guaranteed

slightly weaker security than in the UNF game. Namely, after receiving the first authentication

message, the receiver can deduce that their counterpart has not received a forgery but not that

they themselves have until they receive the third message in the protocol.

In Definition 39 we define 3M-UNF-security for ARC schemes.

Definition 39 (3M-UNF). An ARC ARC is 3M-UNF if, for all efficient adversaries A , we have:

Adv3m−unf
ARC (A) = Pr[3M-UNFARC(A) ⇒ 1] = negl ,

where game 3M-UNF is defined in Figure 4.17.

120

4.6 Optimisations and Performance/Security Trade-Offs

Game 3M-UNFARC(A)

1 : auth-state[·] ← 0; next-oob-op←⊥
2 : play UNFARC with A O (pp, z) and predicates

forgery,bad-P,bad-P

Oracle SEND′(P,ad,pt,r)

1 : if auth-state[P] ̸= 0 : return ⊥
2 : return SEND(P,ad,pt,r)

Oracle RECEIVE′(P,ad,ct)

1 : if auth-state[P] ̸= 0 : return ⊥
2 : return RECEIVE(P,ad,ct)

Oracle AUTHSEND′(P)

1 : if next-oob-op ̸∈ { (P,"authsend"),⊥ } :

2 : return ⊥
3 : i ← i +1

4 : (stP,num,at) $←AuthSend(stP)

5 : auth[(P, i)] ← at; state[i] ← stP

6 : Init← (auth-state[P]
?= 0) // Boolean

7 : auth-state[P] ← auth-state[P]+1 mod 3

8 : log[i] ← ("authsend",P,num,at, Init)

9 : next-oob-op← (P,"authrec", i)

10 : return (num,at)

forgery(log,P,num,ad,ct, x)

1 : As in Figure 4.7

Oracle AUTHRECEIVE′(P, j)

1 : if next-oob-op ̸= (P,"authrec", j) :

2 : return ⊥
3 : at← auth[(P, j)]

4 : if at=⊥ : return ⊥
5 : (auth,st,num) ←AuthReceive(stP,at)

6 : if ¬auth : return ⊥
7 : i ← i +1

8 : auth-state[P] ← auth-state[P]+1 mod 3

9 : if auth-state[P] = auth-state[P] = 0 :

10 : // Last step of the protocol completed

11 : next-oob-op←⊥
12 : else

13 : next-oob-op← (P,"authsend")

14 : stP ← st; state[i] ← stP

15 : log[i] ← ("authrec",P,num,at)

16 : return num

bad-P(log,P,num′,at, x, y)

1 : return (y > x) ∧
2 : ("authsend",P,num′,at,_) = log[y] ∧
3 : ("authrec",P,num′,at) ∈ log

bad-P(log,P,num,num′,at)

1 : return num≤ num′ ∧
2 : ("authrec",P,num′,at) ∈ log ∧
3 : ("authsend",P,num′,at, false) ∈ log

Figure 4.17: 3M-UNF game for O = {SEND′,RECEIVE′,AUTHSEND′, AUTHRECEIVE′,
EXPpt,EXPst}. Highlighted statements correspond to differences relative to the UNF game
(Figure 4.7).

The oracles in Figure 4.17 mandate that the participants send all messages in authentication

via the out-of-band channel. By providing no security guarantees on the first message (i.e.,

delaying guarantees for the receiver until receiving the third message), it is possible to send

the first message in the protocol over the in-band channel and then authenticate it in the

second message with an additional hash [PV06]. Consequently, the protocol can be made

essentially non-interactive out-of-band: the counterpart to the initiator can simply send the

message out-of-band, and the bit can be determined easily via determining e.g. QR code

scanning success/failure. By contrast, solutions like safety numbers require both parties to

121

Chapter 4. On Active Attack Detection in Messaging with Immediate Decryption

scan QR-codes out-of-band.

Scheme Description. We present a 3M-UNF-secure scheme in Figure 4.18. The AuthSend
and AuthReceive procedures encode the three-move authentication protocol of Figure 4.16.

To identify the different states of the bidirectional authentication, we borrow the terminology

from TCP and refer to SYN, SYN-ACK, and ACK messages and roles. When a party P first calls

AuthSend, it takes the SYN role and sends to P the set of received messages and the current

num, i.e., at← (R,num); this set is stored in a separate set Rat. As described below, we use Rat
in AuthReceive to optimise the scheme. The counterpart P replies with a SYN-ACK message,

containing its set of received messages, the current ordinal num and the bit at-succ. The bit

at-succ indicates whether P’s set of received messages is included in P’s set of sent messages

(line 10), i.e., at-succ indicates whether the authentication of P’s set of received messages was

successful. As the counterpart, P stores the current set of received messages in Rat. Upon

receiving the SYN-ACK message, the initiator P checks whether at-succP = true and rejects

the authentication tag otherwise. P then sends the ACK message at← (num,at-succ). Finally,

P calls AuthReceive to process the ACK message. The party checks the at-succ variable to

verify that the set RP is a subset of SP. If the check passes, the authentication protocol ends.

The optimisation of the scheme consists in pruning the set of received messages as soon as

the counterpart authenticates them. This reduces the size of the authentication tags, since

parties include in at only the received messages that have not been authenticated yet. The

AuthReceive algorithm on line 11 checks whether the counterpart authenticated set of received

messages R. If this is the case, all the authenticated messages are stored in Rack—this set is

used in the Receive algorithm to avoid replay attacks—and at the same time those messages

are removed from R thanks to set Rat, thereby reducing the size of the next authentication tag

and memory consumption. After the pruning, the R set contains only received messages that

the counterpart still needs to authenticate.

Related Work. Dowling et al. [DGP22] propose a scheme that is broadly similar to ours. In

particular, their protocol uses three moves in-band to allow parties to agree on a common

set of respectively received messages R and R′. Then, to authenticate messages and detect

active attacks, parties compare a hash H(R,R′) (with hash function H) out-of-band. Note

however that they do not consider RID security and that they do not formally treat out-of-order

message delivery.

The correctness of ARC3M can be shown using the underlying correctness of RC.

Security Analysis. ORDINALS security is inherited from the underlying RC scheme. As usual,

we argue that 3M-UNF security follows from the collision resistance of the underlying hash

function.

Theorem 15 (Unforgeability of ARC3M). Consider collision resistant hash function H used to

build ARC3M (defined in Figure 4.18). Then, we have that for every efficient adversary A , one

122

4.6 Optimisations and Performance/Security Trade-Offs

ARC3M.Setup(1λ)

1 : // As in Figure 4.9

2 : return ARCbase.Setup(1λ)

ARC3M.Init(pp)

1 : (pp0,hk) ← pp
2 : (st′A,st′B, z) $←RC.Init(pp0)

3 : num←⊥
4 : S,R,Rack,Rat ←;
5 : role-at,at-succ←⊥
6 : stA ← (st′A,hk,S,R,num,role-at,

7 : at-succ,Rack,Rat)

8 : stB ← (st′B,hk,S,R,num,role-at,

9 : at-succ,Rack,Rat)

10 : z ← (z ′,pp)

11 : return (stA,stB, z)

ARC3M.Send(stP,ad,pt)

1 : // As in Figure 4.9

2 : return ARCbase.Send(stP,ad,pt)

ARC3M.AuthSend(stP)

1 : (_,_,_,R,num,role-at,at-succ,_,Rat) ← stP

2 : if role-at=⊥ :

3 : stP.role-at← SYN
4 : at← (R,num); stP.Rat ←R
5 : elseif role-at= SYN-ACK :

6 : at← (R,num,at-succ)

7 : stP.Rat ←R; stP.at-succ←⊥
8 : else // role-at=ACK

9 : at← (num,at-succ)

10 : stP.role-at,stP.at-succ←⊥
11 : return (stP,num,at)

ARC3M.Receive(stP,ad,ct)

1 : (stP,hk,_,R,_,_,_,Rack,_) ← stP

2 : (acc,st′P,num,pt) ←RC.Receive(st′P,ad,ct)

3 : if ¬acc : return (false,stP,⊥,⊥)

4 : h ←H.Eval(hk, (ad,ct))

5 : if ∃ h′ : (num,h′) ∈Rack ∧h ̸= h′ :

6 : return (false,stP,⊥,⊥)

7 : R←R∪ {(num,h)}

8 : stP ← (stP,hk,_,R,_,_,_,Rack,_)

9 : return (acc,stP,num,pt)

ARC3M.AuthReceive(stP,at)

1 : (_,_,S,R,_,role-at,

2 : at-succ,Rack,Rat) ← stP

3 : RP ←;; at-succP ← true
4 : if role-at=⊥ :

5 : role-at← SYN-ACK; (RP,numP) ← at
6 : elseif role-at= SYN :

7 : (RP,numP,at-succP) ← at
8 : else // receive ACK case

9 : (numP,at-succP) ← at

10 : at-succ← (RP ?⊆ S) // Boolean

11 : if at-succP :

12 : Rack ←Rack ∪Rat; R←R \ Rat

13 : Rat ←;
14 : else // failure

15 : return (false,stP,num)

16 : stP ← (_,_,S,R,num,role-at,

17 : at-succ,Rack,Rat)

18 : return (at-succ,stP,numP)

Figure 4.18: Optimised 3M-UNF-secure ARC scheme ARC3M based on a RC scheme RC
(Definition 33). ARCbase refers to the unoptimised ARC defined in Figure 4.9. We assume
ARCbase.Send updates local variable num. As before, the representation of R communicated
can be optimised to contain only a single hash.

can build an adversary B such that

Adv3m−unf
ARC3M

(A) ≤Advcr
H(B) .

123

Chapter 4. On Active Attack Detection in Messaging with Immediate Decryption

Proof. We proceed similarly to the proof of Theorem 10. Without loss of generality, we analyze

the authentication of P, who we assume to be the initiator, towards P. The adversary cannot

call the SEND′ and RECEIVE′ oracles once the authentication process is started, therefore the

sets S and R of both parties are fixed until the completion of the protocol.

To authenticate the set of received messages RP, P first sends at← (RP,num) to P. To verify

the authenticity of RP, the party P verifies whether RP ⊆ SP. By the arguments of the proof for

Theorem 10, this reduces to the collision-resistance of the hash function H. After receiving the

first tag, P is able to detect forgeries received by P but not by itself. This is taken into account

in the 3M-UNF game (line 3 in bad-P), which states that a forgery received by P is valid only if

it is not detected after receiving the second or third tag in the authentication process. Then,

when receiving the second tag (RP,numP,at-succP) from P, P is able to tell if itself received a

forgery if at-succP = false.4 By the same arguments as before, P can tell whether P received a

forgery by checking RP ⊆ SP. Finally, upon receiving the third tag, P can detect a forgery using

at-succP.

The optimisation maintains 3M-UNF-security. Recall that the goal of the optimisation

(lines 11-13 in Figure 4.18) is to reduce the size of the R set by storing authenticated messages

in Rack. To achieve this reduction, the party executing AuthReceive removes from R the set Rat,

which is the set of received messages authenticated by the counterpart through the at-succ
variable. Since by construction all the messages in Rat have been already authenticated by the

counterpart, removing them from R does not remove unauthenticated messages from R.

4In fact, in our formalism, unsuccessful AuthReceive calls are not modelled, so at-succP will always be true,
but we argue this way to be more general.

124

Part IIGroup Messaging

125

5 Cryptographic Administration for
Secure Group Messaging

In this chapter, we formalise administration in group messaging by extending continuous

group key agreement to capture group administrators. An extended abstract corresponding

to this work appeared at USENIX Security 2023, and was joint work with David Balbás and

Serge Vaudenay [BCV23]. A full version of this work can be found on the Cryptology ePrint

Archive [BCV22]. The author of this thesis was an advisor of David Balbás for his MSc thesis

which contains some preliminary results [Bal21] on group administration that eventually led

to this publication after significant revision.

5.1 Contribution

One of the major challenges in the design of group messaging protocols is the need to account

for group evolution or dynamics, particularly to prevent membership changes from dimin-

ishing the confidentiality of sent messages. Since the list of group members may change at

any point in time, complex key agreement protocols are required. Overall, securing group

membership involves three main aspects: (1) key updates, ensuring that new members cannot

read past messages and removed members cannot read future messages; (2) membership

consistency, ensuring that all members faithfully know the list of members at any time; and

(3) securing control messages (i.e., notifications for member addition and removal operations)

from active adversaries and from the delivery service itself (i.e., ensuring authentication).

Many state-of-the-art protocols, including passively-secure continuous group key agreement

(CGKA) protocols [ACDT20, KPPW+21], Sender Keys (WhatsApp, Signal Messenger) [Wha20,

BCG23b] and Matrix [ACDJ23], include cryptographic mechanisms for securing key updates,

but provide weaker and sometimes even no guarantees for securing membership consistency

and control messages. We identify membership consistency as both a correctness and a

security property that is critical for confidentiality (otherwise, the sender of a message may not

know the receivers) but is often ignored in the literature. Failing to secure control messages

can also result in catastrophic attacks. Practical examples include the burgle into a group

attack [RMS18], which exploits the lack of authentication of control messages to allow an

127

Chapter 5. Cryptographic Administration for Secure Group Messaging

adversary with partial control over the central server to enter arbitrary group chats in Signal

and WhatsApp. Recent attacks on the Matrix protocol [ACDJ23, ADJ24] make use of similar

vulnerabilities, enabling the server to take over the control of a group.

In order to secure group membership, we observe that there is a strong trend in practice to

distinguish between at least two types of users in a group: group administrators (admins)

and standard users. In groups with administrators, all group changes are either performed or

approved by the admins. Therefore, we address the problem of secure group management by

developing a cryptographic framework for group administration.

Administration in Messaging Apps. Generally, an admin has all the capabilities of a standard

user plus a set of administrative rights. In practice, admins are implemented at the application

level via policies enforced either by the central server or users. Examples are the popular

messaging apps Signal, Telegram and WhatsApp (as of 2024).

• In WhatsApp, only admins can add and remove users, create a group invite link, and

govern the admin subgroup. All groups must have at least one admin, and in particular

when the last admin leaves, a user is selected randomly as the new admin.

• In Telegram, the group creator can designate other admins with diverse sets of capabili-

ties. Besides adding and removing users, admins can impose partial bans on any user’s

capabilities, such as sending or receiving messages, and can even restrict the content

that users can send [Tel].

• In Signal Messenger, admins can specify whether all members or only admins can add

and remove users from a group (in the latter case non-admins can request to add users)

and create a group invite link.

Despite administration mechanisms being widely deployed, there is little mention of admins

in the literature. Existing CGKA and group messaging approaches make no formal distinction

between admin and non-admin users, which results in giving admin capabilities to all users.

Security Goals. There are four main security goals that our cryptographic administrators aim

to achieve. In groups where no distinction is made between admins and standard members,

our solutions can be extended to the whole group by treating all members as admins; these

goals nonetheless still apply:

• Reduce trust on the delivery service, such that it has no control over group administra-

tion and membership.

• Mitigate the impact of insider attacks [KS05, AJM22] on protocol execution. Insider

adversaries, or compromised group members, will not be able to gain control of a group

unless they are administrators1.

1Note that denial-of-service attacks from malicious non-admin insiders as in [ACJM20] are not necessarily

128

5.1 Contribution

• Increase the resilience of implementations of messaging protocols, preventing pitfalls

such as the burgle into a group attack [RMS18] or the recent attacks on Matrix [ACDJ23].

• Reduce concurrency issues, especially when the delivery service is not a central server

[WKHB21], since only a reduced set of members are able to commit group changes.

Admin Capabilities. Let G = {ID1, . . . , IDn} be a group of users participating in messaging or

continuous key exchange and G∗ ⊆G be a non-empty subset of group administrators. Unlike

regular group members, the administrators ID ∈G∗ that we consider can: (1) add and remove

members from the group, (2) approve/reject join and removal requests, (3) designate other

administrators, (4) give up their admin status, (5) remove the admin status of other users. For

performance and security, regular group members should be able to remove themselves and

make key updates without admin approval.

These correspond to the common administration features among the solutions presented

above. In the case of Telegram, their “fine-grained administration” is practical due to the lack

of end-to-end encryption. By default, Telegram relies on a central server that decrypts all

messages, which is incompatible with our schemes.

5.1.1 Summary

In this chapter, we cast group administration as a formal cryptographic problem. The com-

plexity of secure messaging requires modular constructions and proofs of security; our main

goal in this chapter is to provide these. Our core contributions are as follows.

1. We introduce the administrated CGKA (A-CGKA) primitive in Section 5.2 by extending

the continuous group key agreement (CGKA) primitive.

2. We introduce a novel game-based correctness notion for both CGKA and A-CGKA in

Section 5.2.3 that emphasises the role of group dynamics which we argue is centrally

linked to group administration.

3. Extending existing CGKA key indistinguishability security notions, we introduce a game-

based security notion (Section 5.2.4) which further aims to prevent even fully compro-

mised non-admin users from modifying group membership.

4. We present two A-CGKA constructions, individual admin signatures (IAS) and dynamic

group signature (DGS), each built on top of a CGKA protocol. Each approach provides

different security and efficiency properties. In Section 5.3, we formalise both protocols

in detail and prove their correctness and security. We analyse their performance in

Section 5.4.1.

prevented; we also remark that this family of attacks does not affect confidentiality. This issue is discussed in later
sections.

129

Chapter 5. Cryptographic Administration for Secure Group Messaging

5. We propose an extension to MLS in Section 5.3.4 that provides efficient secure adminis-

tration that we also implement and benchmark locally (Section 5.4.1).

5.1.2 Technical Overview

From CGKA to A-CGKA. Inspired by the MLS standard (and later draft versions in par-

ticular), CGKA has been increasingly formalised in the so-called propose and commit

paradigm [ACJM20, AJM22, ACDT21a]. In CGKA, each user maintains a state which is in-

put to and updated by local CGKA algorithms. Users in a given group can create proposal

messages to propose to add or remove users, or to update their keying material for PCS reasons.

Proposals are then combined by a member to form a commit message, which is ordered and

distributed to all group members via a centralised delivery service. This is then processed by

users which make the committed changes effective.

We extend CGKA to A-CGKA to support administration on the primitive level. We support

additional proposal types, namely for adding and removing admins, as well as for admin key

updates. In A-CGKA, only admins can make admin proposals, and moreover only admins

can authorise all types of commit messages. That is, users only process group changes that

have been attested by an admin (except for users leaving the group by themselves, which can

always be processed).

Correctness. Our notion of A-CGKA correctness enforces that users that process the same

sequence of commit messages for a given group derive consistent views of both the evolution

of group members and admins, and also of the shared key. Our game explicitly checks that

group membership can change only through processing commit messages. We also enforce

that honest proposals have their intended effect when embedded in commit messages upon

processing.

Early CGKA game-based correctness notions were limited to key consistency [ACDT20] or

were not formally specified [KPPW+21]. It is only recently that group evolution guarantees

have been considered, notably in the latest version of Alwen et al. [AJM20, AJM22] which works

in the UC and the monolithic security definition of Alwen et al. [ACDT21b]. We emphasise this

because, given the length of our IAS construction and corresponding correctness proof, it is

possible that subtle bugs concerning group evolution are hidden in existing group messaging

constructions and implementations.2 In particular, we spotted (resolved) inconsistencies

while trying to prove our own protocols correct.

Security. Our security notion captures two core guarantees. Firstly, like previous

work [ACDT20, KPPW+21], we consider a key indistinguishability game where the adversary

drives CGKA execution via oracles and may compromise parties. We prevent the adversary

from winning the game trivially by restricting its behaviour using protocol-dependent clean-

2For example, in Figure 8 (SGM) and Figure 17 (RTreeKEM) in Alwen et al. [ACDT21b], commit processing is not
well-defined for a user who is processing their own removal from the group.

130

5.1 Contribution

ness predicates, similar to previous work on messaging and key exchange.

Secondly, differing from ‘standard’ CGKA, we require that the adversary is unable to forge

an (admin) commit message that results in a change in group structure for the processing

party, even if the adversary knows the group key. We model this by allowing the (semi-active)

adversary to inject commit messages to particular parties which process the messages (albeit

without updating their state). The adversary can adaptively expose the states of participants

and make challenge queries. Security is ensured insofar as the adversary does not trivially

compromise an administrator, so in particular they can compromise many non-admins. As

in the case of key indistinguishability, we also specify a separate admin cleanness predicate

to capture trivial attacks for this attack vector. Our security notion allows for FS and PCS

guarantees with respect to the admin keying material.

Constructions. In this chapter, we provide two separate, modular constructions of A-CGKA

from a CGKA that we describe in Section 5.3. We also introduce an extension of MLS that

supports administration. The security of the authentication mechanisms in all our protocols

matches the FS and PCS demands of modern group messaging.

In our first construction, individual admin signatures (IAS) (Section 5.3.1), admins keep track of

their own signature key pair. Admin proposals and commits which change the group structure

or admin structure or keys are signed using the committing admin’s signature key. Admins

update their signature keys via admin update proposals or by crafting commit messages.

Our second construction, dynamic group signature (DGS) (Section 5.3.2), relies on a secondary

CGKA and authenticates a group of admins as a whole (possibly all group members). This

highlights the fact that administration can be done without authenticating single users. Instead

of maintaining individual signatures, admins instead execute within this CGKA and use the

common secret to derive a signature key pair for each epoch. Non-admins keep track of the

signature public key over time and verify that commits are signed using it.

Proofs. We formally prove that our protocols IAS and DGS are correct and secure with respect

to our A-CGKA definitions. We prove IAS secure with respect to a sub-optimal admin cleanness

predicate (somewhat weak forward security). We argue that the protocol and proof can be very

easily modified to satisfy optimal security using forward-secure signatures [BM99] with no

asymptotic overhead; this is discussed in Section 5.3.1. By contrast, in DGS, forward security

is inherited from the admin CGKA.

MLS Extension. In Section 5.3.4, we embed the MLS protocol with A-CGKA functionality

more organically by making use of MLS’s credential infrastructure. We describe the main

modifications needed and propose an extension of MLS that admits secure administration.

Moreover, we implement and benchmark the efficiency of our MLS extension (and include a

reference to the source code); we present our results in Section 5.4.1.

131

Chapter 5. Cryptographic Administration for Secure Group Messaging

5.1.3 Additional Related Work

The TreeKEM protocol in MLS, initially proposed by Bhargavan et al. [BBR18], was inspired

by Asynchronous Ratchet Trees [CCG+18]. Later, variants of TreeKEM arose like Tainted

TreeKEM [KPPW+21], Insider-Secure TreeKEM [AJM22], Re-randomised TreeKEM [ACDT20],

and Causal TreeKEM [Wei19]. MLS as a whole is studied by Brzuska et al. [BCK22] and Alwen

et al. [ACDT21a].

CGKAs have been recently used to formally build full group messaging protocols [ACDT21a].

Besides TreeKEM, several CGKA variants have been proposed [ACJM20, AHKM22, WKHB21,

AAN+22b]. Side works deal with multi-group security [CHK21], efficient key schedules for

multiple groups [AAB+21], and concurrency [BDR20]. Separately, Rösler et al. [PRSS21] surveys

group key exchange protocols. Group admins were considered by Rösler et al. [RMS18],

although without a formal cryptographic approach, instead opting for property-based security

notions described more informally akin to a symbolic model of security.

An alternative approach towards securing group membership was taken in the Signal Private

Group System [CPZ20] which we discuss in Section 5.4.2.

5.2 (Administrated) Continuous Group Key Agreement

In this section, we introduce continuous group key agreement (CGKA) and then extend it to

formalise our administrated CGKA (A-CGKA) primitive. We also introduce our correctness and

security definitions for both CGKA and A-CGKA.

5.2.1 Continuous Group Key Agreement

The aim of the continuous group key agreement (CGKA) primitive [ACDT20] is to provide

shared secrets (denoted by k) to dynamic groups of users over time. In CGKA, each group,

labelled with a group identifier gid, is subject to additions (add), removals (rem), and user state

refreshes/key updates (upd).

The definition of CGKA is introduced below, in the so-called propose and commit paradigm

[AJM22, ACJM20], in which different operation proposals in a given group (for standard CGKA,

including add, remove and key update operations) are collated into a commit message by

a group member which is processed by users. The evolution of a CGKA in time is captured

by epochs; a group member advances to a new epoch every time they successfully process a

commit message, at which point there may be a change in the shared secret, in which case

there may also be a change in the group structure from their perspective.

Note that the primitive is stateful: each user keeps their own state γ and calls each of the

following algorithms locally which may update the state.

Definition 40. A continuous group key agreement (CGKA) scheme is a tuple of algorithms

132

5.2 (Administrated) Continuous Group Key Agreement

CGKA= (Init,Create,Prop, Commit,Proc,Prop-Info,Props) such that:

• γ $← Init(1λ, ID): The initialisation function takes as inputs a security parameter 1λ and

an identity ID and outputs an initial state γ.

• (γ′,T) $← Create(γ,gid,G): The group creation algorithm takes as inputs a state γ, a

group identifier gid, and a list of group members G = {ID1, . . . , IDn} and outputs a new

state γ′ and a control (welcome) message T , where T =⊥ indicates failure.

• (γ′,P) $← Prop(γ,gid, ID,type): The proposal algorithm takes as input a state, a group

identifier, an ID, and a proposal type type ∈ types= {add,rem,upd}, and outputs a new

state γ′ and a proposal message P , where P =⊥ indicates failure.

• (γ′,T,k) $← Commit(γ,gid, P⃗): The commit algorithm takes as inputs a state, a group

identifier, and a vector of proposals P⃗ , and outputs a new state γ′, a control message T

where T =⊥ indicates failure, and the (possibly new) group secret k.

• (γ′,acc) ← Proc(γ,T): The processing algorithm takes as inputs state and a control

message T , and outputs a new state γ′ and an acceptance bit acc ∈ {true, false}, where

acc= false indicates failure.

• (gid,type, ID, ID′) ←Prop-Info(γ,P): The proposal information algorithm takes as inputs

a state and a proposal P , and outputs the group identifier of the proposal gid, its type

type, the ID of the user affected by the proposal and the proposal creator ID′.

• P⃗ ←Props(γ,T): The proposal extractor algorithm takes as inputs a state and control

message T and outputs the vector of proposals P⃗ associated with T , where P⃗ = ⊥
indicates failure.

Finally, given ID’s state γ and gid, the (possibly empty) set of group members in gid from ID’s

perspective is stored as γ[gid].G , and the group secret k for gid is γ[gid].k.

Protocol Execution. For simplicity, we assume that all users and groups are associated with

a unique identifier ID and gid, respectively, which is, e.g., enforced by the PKI. Once every

user has initialised their state using Init, a group is created when some party calls Create with

some gid and a list of IDs as inputs. The Init algorithm can also serve to authenticate and

register keys on a PKI when appropriate [ACDT20, KPPW+21, ACJM20]. In Section 5.3, we

expand on authentication: for each protocol, we describe our assumptions on the PKI. The

Create algorithm outputs a control message T that must be processed by prospective group

members, including the group creator, to join the group gid.

In our formalism, any user can propose a member addition (add), member removal (rem) or

key update (upd, only available for the caller) at any time. This is done via the Prop method,

which outputs a proposal message P . Proposals encode the information needed to make a

133

Chapter 5. Cryptographic Administration for Secure Group Messaging

change in the group structure or keying material, but the encoded changes are not immediately

applied to the group. We emphasise that only the caller of Prop can use argument type= upd
to propose to update (i.e., refresh) their keying material, in which case the input ID is ignored.

Following Alwen et al. [ACDT21a], we define Prop-Info which outputs proposal attributes,

rather than allowing for their direct access, to support possibly encrypted proposals (e.g., as in

a PrivateMessage in the MLS standard [BBR+23]).

Proposed changes become effective once a user commits a (possibly empty) vector of pro-

posals P⃗ = (P1, . . . ,Pm) using Commit; we assume that proposals are suitably propagated in

the group. The Commit algorithm outputs the new group key k and a control message T that

contains the information needed by all current and incoming group members to process

the changes. Typically, the Commit algorithm also updates the keying material of the caller.

Control messages are processed via Proc, which updates the caller’s state and outputs a bit acc
indicating success or failure. We note that Proc and Props do not require a group identifier as

input; this models the standard behaviour of a messaging protocol where, upon reception of a

message, the user needs to determine which group the message corresponds to. In the event

that a group member needs to parse the proposals in a commit message T without processing

it, it can do so via the Props algorithm.

Example. Consider 5 parties {ID1, . . . , ID5} executing a CGKA protocol. After they each initialise

their states as γi
$← Init(1λ, IDi), the following actions take place:

1. ID1 calls Create(γ1,gid, {ID1, ID2, ID3, ID4}), which updates γ1 and outputs a control

message T0. At this stage, the group is still empty, G =;.

2. Each IDi (including ID1) processes the group creation as Proc(γi ,T0), which updates

each state γi and outputs acc= true to each user. At this stage, G = {ID1, ID2, ID3, ID4},

and the group members share a common secret k1.

3. Several users propose changes in the group:

• ID2 proposes to add ID5 to the group by calling (γ2,P1) $←Prop(γ2,gid, ID5,add).

• ID3 wants to update its keying material and thus calls (γ3,P2) $←
Prop(γ3,gid, ID3,upd).

• ID1 proposes to remove ID4 from the group and calls (γ1,P3) $←
Prop(γ1,gid, ID4,rem).

This is shown in Figure 5.1. The group remains the same.

4. ID2 collates all proposals in a commit message by calling (γ2,T1,k2) $←
Commit(γ2,gid, (P1,P2,P3)). The group remains the same, since parties have not

yet processed T1.

5. All parties process T1 by calling Proc(γi ,T1) and updating their states. Now, G =
{ID1, ID2, ID3, ID5} and these members share a new common secret k2, which is not

134

5.2 (Administrated) Continuous Group Key Agreement

known to ID4. In addition, ID3 (due to the update) and ID2 (due to the commit) have

refreshed their CGKA keying material for FS and PCS.

Figure 5.1: Diagram of a sample CGKA execution with 5 parties. Parties in green (ID2, ID3, ID5)
will update their keying material after ID2 commits, while ID4 will leave the group.

Commit Semantics. We assume that proposals input to Commit are processed in some deter-

ministic, publicly-known, a priori determined order, that we call the policy. It is possible to

extend the syntax of A-CGKA with a dedicated policy algorithm that defines this order [Bal21].

Alternative Definitions. In some CGKA definitions (especially older ones [ACDT20,

KPPW+21]) and older MLS drafts, group changes are made effective immediately by pro-

cessing proposals. To this end, the Commit and Prop algorithms are replaced by specific

‘action’ algorithms such as Add,Remove,Update. The propose and commit paradigm used in

this chapter was introduced in draft 8 of MLS to allow for multiple operations to be applied

at the same time to improve latency and concurrency support [BBR+23]. As mentioned in

[KPPW+21], the older protocols can be written in the propose and commit paradigm, which is

more flexible (and also better suited for group administrators as we will see).

A relevant difference between the definition in Alwen et al. [ACDT20] (and other game-based

formulations such as in [KPPW+21]) and ours is that we work in the multi-group setting, and

so we consider group identifiers of the form gid. Multi-group CGKAs have not been fully

formalised in the literature, although multi-group security has been studied [CHK21], as well

as efficient key schedules for multiple groups [AAB+21]. According to our definition, a user

can be in many groups, identified by different values gid and interleave operations from each

group arbitrarily. There are formulations of CGKA in the universal composability (UC) model

[ACJM20, AJM22] which use group identifiers. In fact, composability guarantees in the UC

model rely on the existence of unique, a priori established ‘session identifiers’ [Can01, KT11];

these can be established in practice via a central server or a distributed protocol [BLR04]. Note

Cremers et al. [CHK21] considers cross-group security for messaging but does not treat CGKA

as a primitive formally.

Finally, we note that there are other small differences in the literature. The semantics of Tainted

TreeKEM [KPPW+21] enable users to speculatively execute operations; our syntax could be

135

Chapter 5. Cryptographic Administration for Secure Group Messaging

modified to support this. In works on CGKA such as Alwen et al. [ACDT20], it is typical to make

a distinction between standard commit and welcome messages. We implicitly incorporate

this distinction in our constructions, but avoid it in the primitive syntax for simplicity. In

some works [AJM22, ACJM20], additional algorithms such as GetKey are provided; we treat

k as a state variable instead, which is output by Commit. As mentioned, it is also possible

to conceive a policy algorithm as in [Bal21] that determines what the effect of a sequence of

proposals should be (e.g., which proposals are prioritised, removing duplicates, etc.). Groups

in some works [ACDT21a, AJM22], as well as the MLS standard itself, are initially of size 1:

since initialising groups with several participants at once is common in practice, we believe

it is of interest to model it. Different works formalise the role of the PKI to different degrees:

Alwen et al. and Alwen et al. [ACDT21a, AJM22] consider an explicitly modelled PKI where

users can choose their own possibly malicious keying material. Nevertheless, all works on

CGKA to date formally assume that the PKI acts consistently for all users.

5.2.2 Administrated CGKA

An administrated continuous group key agreement (A-CGKA) is a CGKA where only a group

G∗ of ID’s, the so-called group administrators, can commit (and therefore make effective)

changes to the group structure, such as adding and removing users. As with the group of users

G in both CGKA and A-CGKA, the group of administrators G∗ is dynamic.

Definition 41. An administrated continuous group key agreement (A-CGKA) scheme is a tuple

of algorithms A-CGKA= (Init,Create,Prop,Commit,Proc,Prop-Info,Props) such that:

• Algorithms Init,Proc,Prop-Info,Props are defined as for a CGKA (Definition 40).

• In Prop and Prop-Info, types is redefined as types= {add, rem, upd, add-adm, rem-adm,

upd-adm}.

• (γ′,T) $←Create(γ,gid,G ,G∗) additionally takes as input a group of admins G∗.

• (γ′,T,k) $← Commit(γ,gid, P⃗ ,com-type) additionally takes as input a commit type

com-type ∈ com-types= {std,adm,both}.

Given ID’s state γ and gid, γ[gid].G and γ[gid].k are defined as in Definition 40, and γ[gid].G∗

stores the set of admins in gid from ID’s perspective.

The execution of an A-CGKA is analogous to CGKA. Besides the introduction of the group of

admins G∗, we introduce three additional proposal types add-adm, rem-adm, and upd-adm
which concern administrative changes. Namely, an admin can propose to add another admin

to the group of administrators, revoke the admin capabilities from a party, or update their

administrative keying material, respectively. The commit type com-type specifies the scope of

a commit operation, that is, whether it affects the general group (std), the administration of

136

5.2 (Administrated) Continuous Group Key Agreement

the group (adm), or both at the same time (both). For the latter, a simple example is when an

admin is both adding a member (group modification) and refreshing its admin keys (admin

modification).

We note that the Create algorithm, enforced by our correctness and security notions to

come, will require the condition ; ⊂ G∗ ⊆ G . Thus, the group administrators are al-

ways a subset of the group members. We take this approach following previous CGKAs

[ACDT20, KPPW+21, ACJM20] and group messaging protocols [BBR+23, ACDT21a] where

only group members can perform commits or make changes in the group. In these works and

ours, it is (computationally) impossible for an external user to administrate a group, since

external commits are not permitted.

Real-World Administrators. A-CGKA captures the core admin features of popular applica-

tions such as WhatsApp and Signal as mentioned in the introduction. We remark that the fact

that non-admins are not allowed to make changes (except for leaving a group) is a desired

consequence of our formulation of A-CGKA. A more fine-grained conceivable solution could

be to allow admins to send a policy change proposal, to, e.g., modify the ability of all members

to call Commit to add new users.

5.2.3 Correctness

Due to their similarity, we define the correctness of CGKA and A-CGKA together. Cor-

rectness of an (A)-CGKA scheme (A)-CGKA under the notion CORR is defined by game

CORR(A)-CGKA,Ccorr played by adversary A in Figure 5.2. The main properties captured by the

game are the following:

• View consistency: All users who transition to the same epoch (i.e., those which process

the same sequence of commit messages) have the same group view (i.e., G , G∗ and key

k).

• Message processing: The group structure (G , G∗) and k can only be modified due to calls

to Proc.

• Forking states: If the group is partitioned into subgroups that process different sequences

of commit messages (thus leading to different group views), the game ensures that

members in each partition have consistent views.

• Multiple groups: The adversary may create groups via CREATE on behalf of different

users, and interact with different IDs in multiple groups.

Separately, we ensure that a user’s state is not modified whenever a particular algorithm call

fails. As observed for two-party messaging [BSJ+17], we require incorrect inputs to not affect

the functionality of the protocol, and in particular to not cause a denial of service.

137

Chapter 5. Cryptographic Administration for Secure Group Messaging

Game CORR(A)-CGKA,Ccorr (A)

1 : public ep-view[·],ST[·],T[·] ←⊥
2 : public first-crt[·] ←⊥
3 : public prop-ctr,com-ctr← 0 // msg counters

4 : public ep[·] ← (−1,−1) // user epoch tracker

5 : win← 0

6 : ST[ID] $← Init(1λ, ID) ∀ ID

7 : A O

8 : require Ccorr // optional predicate

9 : return win // 1 if A is rewarded

Oracle CREATE(ID,gid,G ,G∗)

1 : (γ,T) $←Create(ST[ID],gid,G ,G∗)

2 : if T =⊥ : return

3 : reward ¬(; ̸=G∗ ⊆ G)

4 : CheckSameGroupState(ST[ID],γ,gid)

5 : T[gid, (−1,−1),com,++com-ctr] ← T

6 : ST[ID] ← γ

Oracle DELIVER(ID,gid, (t ,c),c ′)
1 : require ep[gid, ID] ∈ {(t ,c), (−1,−1),⊥}

2 : T ←T[gid, (t ,c),com,c ′] // honest delivery

3 : (γ,acc) ←Proc(ST[ID],T)

4 : if ¬acc : return // failure

5 : reward Props(ST[ID],T)

̸=T[gid, (t ,c),vec,c ′]
6 : reward ¬(; ̸= γ[gid].G∗ ⊆ γ[gid].G)

7 : if (t ,c) = (−1,−1) : // create msg

8 : UniqueCreatePerGID(γ,gid,c ′)
9 : if ID ̸∈ γ[gid].G : // ID removed

10 : ep[gid, ID] ←⊥
11 : reward γ[gid].k ̸= ⊥ : // key deleted

12 : else : // ID in group

13 : UpdateView(γ,gid, t ,c ′)
14 : reward γ[gid].k ̸=T[gid, (t ,c),key,c ′]
15 : ep[gid, ID] ← (t +1,c ′)
16 : ST[ID] ← γ

Oracle PROP(ID′,gid, ID,type)

1 : require type ∈ types

2 : (γ,P) $←Prop(ST[ID′],gid, ID,type)

3 : if P =⊥ : return // failure

4 : (gid∗,type∗, ID∗, ID′∗) ←Prop-Info(γ,P)

5 : reward (gid∗,type∗, ID∗, ID′∗) ̸= (gid,type, ID, ID′)
6 : CheckSameGroupState(ST[ID′],γ,gid)

7 : T[gid,ep[gid, ID′],prop,++prop-ctr] ← P

8 : ST[ID′] ← γ // upd. ST of proposer ID′

Oracle COMMIT(ID,gid, I ,com-type)

// I = (i1, . . . , ik) for some k

1 : require com-type ∈ com-types
2 : require ep[gid, ID] ̸∈ {(−1,−1),⊥}

3 : P⃗ ← (T [gid,ep[gid, ID],prop, i])i∈I

4 : (γ,T,k) $←Commit(ST[ID],gid, P⃗ ,com-type)

5 : if T =⊥ : return // failure

6 : reward ID ∉ST[ID][gid].G // no external comm.

7 : CheckSameGroupState(ST[ID],γ,gid)

8 : T[gid,ep[gid, ID],com,++com-ctr] ← T

9 : T[gid,ep[gid, ID],vec,com-ctr] ←Props(γ,T)

10 : T[gid,ep[gid, ID],key,com-ctr] ← k

11 : ST[ID] ← γ

UpdateView(γ,gid, t ,c ′)
1 : v ← ep-view[gid, t +1,c ′]
2 : if v =⊥ : ep-view[gid, t +1,c ′] ← γ

3 : else : CheckSameGroupState(v,γ,gid)

CheckSameGroupState(γ1,γ2,gid)

1 : reward γ1[gid].k ̸= γ2[gid].k
2 : reward γ1[gid].G ̸= γ2[gid].G

3 : reward γ1[gid].G∗ ̸= γ2[gid].G∗

UniqueCreatePerGID(γ,gid,c ′)
1 : if first-crt[gid] ̸= ⊥ :

2 : require c ′ =first-crt[gid]

3 : else : first-crt[gid] ← c ′

Figure 5.2: Correctness game for (A)-CGKA with respect to predicate Ccorr for O =
{CREATE,DELIVER,PROP,COMMIT}. Highlighted code is executed only when consider-
ing an A-CGKA. Note that when reward P is true for predicate P , variable win is set to 1.

138

5.2 (Administrated) Continuous Group Key Agreement

Overview. The game starts by setting up several public dictionaries. The main two are ST[·],
which is a dictionary indexed by ID which keeps the states of each of the users ID throughout

the game; and T[·], which keeps all control messages and proposals generated by the (A)-CGKA

algorithms. A message T stored in T is indexed by the corresponding gid, epoch, message

type (prop, com or vec, standing for proposal, commit or proposal vector, respectively), and a

message counter prop-ctr or com-ctr; keys output by Commit for some gid and epoch are also

stored in T and are marked with key. After initialisation, we let the adversary A interact with

the oracles with respect to multiple groups. The variable win is set to 1 if one of the reward

clauses is true, which leads to A winning given the (optional) predicate Ccorr is also true when

A finishes executing.

Epochs. Control messages output by successful Create and Commit calls are labelled uniquely

by the challenger. For correctness, an epoch is a pair (t ,c), where t is an integer relative to a

particular group and party which increments upon each successful Proc call while in the group,

and c is the value of the global variable com-ctr when the corresponding control message was

output. For a given group, each party’s epoch value is stored in ep[·] and initialised to (−1,−1),

and is set to ⊥ when they leave a group. To this end, we model correctness in the presence of an

adversary who maintains arbitrary network partitioning, so long as they provide a consistent

view of messages to parties in each ‘partition’.

Group Consistency. We enforce that, for each group member, that each group is only (pos-

sibly) updated upon a successful call to Proc (via CheckSameGroupState). For A-CGKA, we

ensure that, for a group gid, ; ̸= G∗ ⊆ G must hold at all times. In Proc, we enforce that all

users who transition to the same epoch have the same view of the group and set of admins

when relevant (via UpdateView). To this end, the dictionary ep-view stores the state of the first

party who transitions to a given epoch (t ,c) for a gid, and the state of subsequent parties who

transition to the same epoch are checked against the value stored in ep-view.

We also require that, even if there are multiple calls to Create, only one of them is processed

by group members (i.e., states do not fork from the initial epoch). To achieve this, the variable

first-crt tracks the commit number of the first successfully processed create message for a

given gid. This check is made in UniqueCreatePerGID.

Key Partnering. Note that new epoch keys are derived upon successful Proc calls, and that

a new key k (for group members) is always derived in this case. Correctness ensures that all

users who transition to the same epoch derive the same key k. The consistency between the

key output by Commit and the actual epoch keys is also verified. Moreover, whenever a user

derives a key k ̸= ⊥, they must be a group member (line 11 of DELIVER).

Liveness. We enforce that some algorithms, such as Prop, always succeed on ‘valid’ input,

since without such a check, an (A)-CGKA with algorithms that always fail is considered correct.

One example of a liveness check is an equality check between proposals output by Props
and the input proposals in COMMIT. Since the precise semantics of (A)-CGKA vary between

applications, additional checks are delegated to a correctness predicate Ccorr which, in part,

139

Chapter 5. Cryptographic Administration for Secure Group Messaging

parameterises the correctness game. In the previous example, Ccorr may depend on the

protocol policy for the application of proposals. Without extra checks, the predicate should be

set to Ccorr = true.

Definition 42 (CORR(A)-CGKA). Consider the correctness game CORR presented in Figure 5.2

A CGKA CGKA (resp. A-CGKA A-CGKA) is correct if, for all λ ∈ N and all computationally

unbounded adversaries A , we have Pr[CORR(A)-CGKA,Ccorr (A) ⇒ 1] = 0.

Naturally, this notion can be relaxed to consider correctness that holds with high probability

w.r.t. a computationally-bounded adversary (e.g., to capture decryption failures when using

lattice-based cryptography as done in Chapter 3).

5.2.4 Security

A-CGKA is a primitive that extends the functionality of a CGKA, which allows a group to

establish a sequence of group keys, to provide secure administration. Therefore, any A-CGKA

construction must satisfy at least ‘standard’ CGKA security (key indistinguishability).

The main additional goal of A-CGKA over standard CGKA is to prevent unauthorised (standard)

users from deciding on changes to a group, capturing the security of the group structure. Note

that an A-CGKA in which the adversary fully controls a standard group member is not secure

with respect to key indistinguishability, but should still prevent unauthorised group changes.

We define (A)-CGKA security in Definition 43 after describing our notion below.

Overview. At its core, the security game in Figure 5.3 is a key indistinguishability game that

captures the security of the common group secret for a single group (we implicitly assume a

fixed gid), extending the game in [ACDT20]. The game considers a partially active adversary

who can make forgery attempts and schedule messages but cannot totally control message

delivery. Namely, the adversary can inject a control message to a specific party ID, but this

message is not stored in the array T that keeps track of all honestly generated messages after

Proc is called. The main consequence of this is that injected proposals cannot be included in

commits generated by the challenger. Nevertheless, the adversary can make the challenger

commit on vectors of proposals created via PROP.

Informally, the adversary can win the game if it plays a clean game where it either 1) correctly

guesses the challenge bit by distinguishing between correct and uniformly sampled keys or

(for A-CGKA) 2) manages to forge a message which, after being processed by a user, changes

its view of (G ,G∗). We assume that the dependency on the PKI is implicit in the game; we

describe the PKI functionality we assume for each protocol as they are introduced. A detailed

description follows.

Epochs. Messages output by successful Create, Commit, and Prop calls are uniquely labelled

by the challenger via counters prop-ctr,com-ctr. Whenever such a call is made, the corre-

sponding messages are stored in variable T with (incremented) last argument ++com-ctr.

140

5.2 (Administrated) Continuous Group Key Agreement

Game KIND(A)-CGKA,Ccgka ,Cadm,Cforgery (A)

1 : b $← {0,1}

2 : K[·],ST[·] ←⊥
3 : public T[·],G[·],ADM[·] ←⊥
4 : prop-ctr,com-ctr,exp-ctr← 0

5 : ep[·],exp[·] ← (−1,−1); C[·] ←−1

6 : chall[·], forged← false

7 : ST[ID] $← Init(1λ, ID) ∀ ID

8 : b′ $←A O

9 : if ¬Ccgka∧¬forged

10 : b′′ $← {0,1}; return b′′

11 : else return 1�b = b′ ∨ forged�

Oracle CREATE(ID,G ,G∗)

1 : (γ,T) $←Create(ST[ID],G ,G∗)

2 : if T =⊥ return // failure

3 : T[(−1,−1),com,++com-ctr] ← (T,both)

4 : ST[ID] ← γ

Oracle PROP(ID, ID′,type)

1 : (γ,P) $←Prop(ST[ID], ID′,type)

2 : T[ep[ID],prop,++prop-ctr] ← P

3 : ST[ID] ← γ

Oracle COMMIT(ID, (i1, . . . , ik),com-type)

1 : P⃗ ← (T[ep[ID],prop, i])i=(i1 ,...,ik)

2 : (γ,T,k) $←Commit(ST[ID], P⃗ ,com-type)

3 : if T =⊥ return // failure

4 : T[ep[ID],com,++com-ctr] ← (T,com-type)

5 : T[ep[ID],vec,com-ctr] ←Props(ST[ID],T)

6 : (ts , ta) ← ep[ID]

7 : if com-type= adm ts ← ts −1

8 : K [ts +1] ← k; ST[ID] ← γ

Oracle EXPOSE(ID)

1 : exp[ID,++exp-ctr] ← ep[ID]

2 : return ST[ID]

Oracle DELIVER(ID, (ts ,ta),c)

1 : require ep[ID] ∈ {(ts , ta), (−1,−1)}

2 : (T,com-type) ←T[(ts , ta),com,c] // honest deliv.

3 : if C[(ts , ta)] ∈ {c,−1}, C[(ts , ta)] ← c

4 : else return // bad commit for epoch

5 : (γ,acc) ←Proc(ST[ID],T)

6 : if ¬acc return // failure

7 : if ID ̸∈ γ.G // ID removed

8 : ep[ID] ← (−1,−1)

9 : else // ID in group, update dictionaries

10 : ep[ID] ← (ts , ta)

11 : if com-type ∈ {std,both}

12 : K[ts +1] ← γ.k
13 : G[ts +1] ← γ.G

14 : ep[ID] ← ep[ID]+ (1,0)

15 : if com-type ∈ {adm,both}

16 : ADM[ta +1] ← γ.G∗

17 : ep[ID] ← ep[ID]+ (0,1)

18 : ST[ID] ← γ

Oracle CHAL(ts)

1 : require (K[ts] ̸= ⊥)∧¬chall[ts]

2 : chall[ts] ← true
3 : if b = 0 return K[ts]

4 : if b = 1 return r $← {0,1}λ

Oracle REVEAL(ts)

1 : require (K[ts] ̸= ⊥)∧¬chall[ts]

2 : chall[ts] ← true
3 : return K[ts]

Oracle INJECT(ID,m, ta)

1 : require Cadm ∧ (ep[ID] = (·, ta))∧ (ta ̸= −1)

2 : require (m, ·) ̸∈T // external forgery

3 : (γ,⊥) ←Proc(ST[ID],m)

4 : if Cforgery

5 : forged← true // successful forgery

6 : return b // adversary wins

7 : else return ⊥

Figure 5.3: Single-group key indistinguishability (KIND) security game for (A)-CGKA,
parametrised by predicate Ccgka (resp. and predicates Cadm and Cforgery for A-CGKA) for
O = {CREATE,PROP,COMMIT,CHAL,DELIVER,REVEAL,EXPOSE} (resp. and INJECT).
Highlighted code is executed only when considering an A-CGKA.

141

Chapter 5. Cryptographic Administration for Secure Group Messaging

The evolution of the group after parties process such control messages is modelled using

epochs (differing from the epochs considered for correctness), which are each represented

as an integer ts (for CGKA) or a pair of integers (ts , ta) (for A-CGKA). The standard epoch ts

represents the time between two successive key evolutions, where a different key should be

derived in each ts . The administrative epoch ta represents the time between two changes in

the group administration (i.e., between two sequences of simultaneous admin updates, adds

and/or removals).

For CGKA, epochs (ts) advance every time a commit is processed. For A-CGKA, ts advances

if the commit type com-type ∈ {std,both} and ta advances if com-type ∈ {adm,both}. Group

members can be in different epochs, captured by the variable ep[ID] which stores the current

standard/admin epoch pair for a given group member ID. If a participant ID is not in the

group, then ep[ID] =−1 (CGKA) or ep[ID] = (−1,−1) (A-CGKA) holds.

Challenges. At any point in the game, the adversary can challenge with respect to a standard

epoch ts by calling CHAL. In a challenge, the adversary is given the group key K [ts] if the

challenger’s bit is b = 0, and a random string r $← {0,1}λ if b = 1. The adversary must try to

determine the value of b by outputting a guess b′ of b. A given execution is considered valid

when either the standard cleanness predicate Ccgka is true or, for A-CGKA, the adversary makes

a forgery and the admin cleanness predicate is true. Cleanness ensures that no trivial attacks

on the game are possible; we elaborate on this below.

Exposure Mechanisms. In order to capture group key ratcheting (for FS and PCS), the ad-

versary has two mechanisms to obtain secret group material: it can expose a user ID using

EXPOSE and reveal the group secret k using REVEAL. An exposure leaks the entire current

state of ID stored in ST[ID]. We keep track of the specific epochs in which each ID was exposed

using the exp[·] variable. On the other hand, a reveal leaks the group key to the adversary

on a specified epoch ts , in which case chall[ts] is set to true to prevent the adversary from

challenging on ts (conversely, the reveal fails when chall[ts] = true).

Injections. For A-CGKA, the adversary can also win the game by successfully injecting a

forged commit. An injection can be attempted by calling INJECT(ID,m, ta), given that ID

is in admin epoch ta , where ID is the target group member and m is the forged message.

Note we require ta ̸= −1 since the adversary could otherwise trivially invite a new user into a

new group that it controls. Forgeries can only be attempted if the administrative predicate

Cadm is not violated. As discussed below, Cadm captures administration security by excluding

trivial attacks. A trivial scenario excluded by any predicate is when the adversaryadversary has

exposed an administrator immediately before a forgery attempt. The adversary wins the game

if the forgery is accepted by any group member ID ∈G and if the forgery predicate Cforgery that

we define below is true.

CGKA Cleanness Predicate. The security game in Figure 5.3 is parametrised by three clean-

ness predicates, Ccgka, Cadm and Cforgery. The first predicate Ccgka follows approaches like

[BRV20, ACDT20] to parametrise the security of the common (A)-CGKA key. Namely, this pred-

142

5.2 (Administrated) Continuous Group Key Agreement

icate excludes trivial attacks on indistinguishability, i.e., those that break security unavoidably

such as exposing a user and issuing a challenge before its keying material has been updated.

Further, it captures the exact security of the protocol (with respect to key indistinguishability),

which in our case comprises forward security and post-compromise security after updates.

If an independent CGKA is used to construct an A-CGKA, the predicate Ccgka may mostly

depend on the security of the CGKA. An example, as we show in later sections, is our second

construction DGS.

A more fine-grained characterisation of this predicate is to write it as Ccgka = Ccgka-opt ∧
Ccgka-add, where Ccgka-opt is an optimal, generic cleanness predicate that excludes only un-

avoidable trivial attacks, and Ccgka-add is an additional cleanness predicate that depends on the

scheme and excludes other attacks. We define Ccgka-opt in a similar way to the safe predicate

in [ACDT20]. Namely, we exclude the following cases: (1) the group secret in challenge epoch

t∗s was already challenged or revealed, and (2) a group member ID whose state was exposed

in standard epoch texp ≤ t∗s did not update their keys (i.e., processed their own commit, or

processed a commit in which they were the subject of an add, remove, or update proposal) or

was not removed before the challenge epoch t∗s . The optimal cleanness predicate is given in

Figure 5.4 for an adversary that makes oracle queries q1, . . . , qn in the game.

Ccgka-opt : ∀ (i , ID,ctr ∈ (0,exp-ctr]) : qi =CHAL(t∗i),(
ID ̸∈G[t∗i]

)∨(∃(ti ,c) : (tExp(ID,ctr).ts < ti ≤ t∗i) ∧hasUpdstd (ID,T[(ti , ·),com,c],T[(ti , ·),vec,c])∧ (C[(ti , ·)] = c)
)

∨ (
t∗i < tExp(ID,ctr).ts

)
.

Figure 5.4: Optimal CGKA predicate where the adversary makes oracle queries q1, . . . , qn .

The predicate is the logical disjunction of three clauses: for every exposure, adversarial chal-

lenge, and party ID, we require that either (1) ID was not a group member at the challenge

time; (2) the challenge epoch precedes the exposure (forward security); or (3) ID updated

between the exposure and the (subsequent) challenge (post-compromise security). To avoid

cluttering the predicate, our game already enforces that only one challenge or reveal can be

performed per epoch (which is optimal for our game).

We have used the following auxiliary functions. The function tExp is such that tExp(ID,ctr) =
exp[ID,ctr] if ∃k : qk = EXPOSE(ID), and −1 (for CGKA) or (−1,−1) (for A-CGKA) otherwise.

Given P⃗ , the function hasUpdstd(ID, (T,com-type), P⃗) (sans com-type for CGKA) outputs true
if either: (i) ID has processed a commit of his own, where com-type ∈ {std,both}, or (ii) ID is a

user affected by an add, update, or removal proposal in P⃗ that had an effect.

Admin Cleanness Predicate. The second predicate Cadm models administration security.

Intuitively, this predicate should be more permissive in some aspects than Ccgka, since a

forgery attempt should be permitted even if the adversary knows the state of a (standard)

group member. Following the approach above, we can decompose Cadm as Cadm =Cadm-opt∧
Cadm-add.

143

Chapter 5. Cryptographic Administration for Secure Group Messaging

Cadm-opt is symmetric to Ccgka-opt and excludes the following family of attacks: the adversary

attempts a forgery on a member ID′ at an administrative epoch t∗a while having exposed the

state of an administrator ID ∈G∗ at an administrative epoch texp ≤ t∗a , such that ID has not

updated at some point between them. The predicate is optimal, as any attack that it excludes

must occur while an administrator is directly under state exposure. In the game itself, we

also require that ID′ is in the challenge epoch specified by the adversary, i.e., ep[ID′] = (·, t∗a).

Notice that this predicate is unrelated to the common group secret and standard epochs ts ,

and only relates to administration dynamics.

Cadm-opt : ∀ (i , ID, ID′,ctr ∈ (0,exp-ctr]) : qi = INJECT(ID′, ·, t∗i),(
ID ̸∈ADM[t∗i]

)∨(∃(ti ,c) : (tExp(ID,ctr).ta < ti ≤ t∗i) ∧hasUpdadm (ID,T[(·, ti),com,c],T[(·, ti),vec,c])∧C[(·, ti)] = c)
)

∨ (
t∗i < tExp(ID,ctr).ta

)
.

Figure 5.5: Optimal administrative predicate where the adversary makes oracle queries
q1, . . . , qn .

The optimal administrative predicate Cadm-opt is captured in Figure 5.5. In the expression, the

function hasUpdadm is defined as in hasUpdstd, except it is defined with respect to com-type ∈
{adm,both} (rather than com-type ∈ {std,both}).

A-CGKA Forgery Predicate. For A-CGKA, we define security under active attacks performed

using the INJECT oracle with respect to a predicate Cforgery. The predicate we describe

captures the fact that if admins have not been compromised, then non-admins can only make

group changes for self-removes, i.e., when non-admins want to remove themselves. Moreover,

we require that self-removes cannot be forged themselves by parties that are not corrupted. If

there are no self-remove operations, then the predicate reduces to the fact that non-admins

cannot cause changes in the group.

The predicate Cforgery is defined as follows with respect to variables in INJECT and the

KIND game in general. Suppose m is input to INJECT. Let P⃗ = Props(ST[ID],m). Consider

P⃗ ′ = {P ∈ P⃗ : P ′ ∈ T[ep[ID],prop, ·]∧Prop-Info(ST[ID],P) = Prop-Info(ST[ID],P ′)}.3 Let H =
{ID : (gid,rem, ID, ID) =Prop-Info(ST[ID],P)∧ (P ∈ P⃗ ′)} and H∗ = {ID : (gid,rem-adm, ID, ID) =
Prop-Info(ST[ID],P)∧ (P ∈ P⃗ ′)}. Then Cforgery is true if and only if (ST[ID].G \ H ,ST[ID].G∗ \

H∗) ̸= (γ.G ,γ.G∗). If there are no self-removes, i.e., H = H∗ =;, this simplifies to the predicate

(ST[ID].G ,ST[ID].G∗) ̸= (γ.G ,γ.G∗); let Cforgery
∗ be this simplified predicate.

Definition 43 (KIND). A CGKA CGKA (resp. A-CGKA A-CGKA) is KIND w.r.t. predicate Ccgka
(resp. and Cadm,Cforgery) if, for all efficient adversaries A , we have

Advkind
(A)-CGKA(A) :=

∣∣∣∣Pr[KIND(A)-CGKA,Ccgka,(Cadm,Cforgery)(A) ⇒ 1]− 1

2

∣∣∣∣= negl ,

3The effect of the equality check with respect to Prop-Info is that a dishonest proposal P ′ that has the same
semantics as an honest proposal P will not be considered a ‘forgery’ by Cforgery.

144

5.3 A-CGKA Constructions

where game KIND is defined in Figure 5.3.

Limitations. Our security definition, which is based on Alwen et al.’s unauthenticated CGKA

notion [ACDT20], does not allow arbitrary message injections to participants. Thus, attacks

on robustness are not captured by our security model. In particular, so long as non-admins

are allowed to make commits, our A-CGKA schemes will only provide as much security as

the underlying core CGKA: using MLS’s TreeKEM, for example, a malicious non-admin can

deny service by sending a malformed commit message that can be successfully processed

only by some of the users. This can be fixed at the expense of using NIZKs within TreeKEM

[ACJM20, DDF21]. In any case, we note that confidentiality is not compromised under this

family of attacks, as their main consequence is to “disconnect” users from the protocol (in

particular, new users cannot be added).

If only admins are allowed to commit, then our schemes (to be introduced) are safe against

this attack vector for some non-strongly robust variants of TreeKEM, such as the one used in

MLS [BBR+23]. Standard users can still attain FS and PCS guarantees, and in particular PCS

when their update proposals are committed.

Among the broader family of group key agreement protocols, where long-lived sessions and

PCS are not always considered, modelling fully active adversaries is common [PRSS21]. We

also do not explicitly model authentication (we implicitly assume an incorruptible PKI) and

randomness manipulation, and we do not explicitly model parties who do not delete their

state as instructed by the algorithm and are then exposed (via a no-deletion oracle or similar

[ACDT21a]). We leave these for future work.

Multi-group security can be captured rather easily. The main difference (besides increased

notation complexity introduced by the gids as in Figure 5.2) appears in the state exposure

oracle: exposing the state of a party implies a security loss in all groups that the party is

a member of simultaneously. The feature is not included as our security proofs are in the

single-group setting.

Our INJECT oracle does not allow the adversary to inject group creation messages. Of course,

the adversary can always make a new group with whatever users it chooses. It is nonetheless

possible to extend our security notion to allow for injections, such that the adversary can only

create a group for ‘valid’ users, i.e., those who have registered their keys with the PKI (which

would be checked when a user processes a welcome message).

5.3 A-CGKA Constructions

In this section, we first present two different constructions for A-CGKA: individual admin

signatures (IAS) and dynamic group signature (DGS). In the first construction, we construct

A-CGKA on top of a CGKA by adding additional administration mechanisms based on authen-

tication via signatures. In the second construction, we use two independent but synchronised

145

Chapter 5. Cryptographic Administration for Secure Group Messaging

CGKAs. We selected these two approaches due to their simplicity, efficiency and flexibility to

adapt to different underlying CGKAs.

A first attempt of A-CGKA is to simply require group members to keep a list of administrators

over time. Whenever an admin wants to make a commit, it can simply check whether the

admin-changing proposals have been made by administrators, then commit them, and the

other users will verify the admin condition upon processing. This approach is functional,

but not secure in our model due to a lack of admin authentication. An adversary can easily

forge a commit message and impersonate an admin unless this message is authenticated

(for example signed). Many notions of CGKA security [ACDT20, KPPW+21] do not necessarily

imply such a level of authentication.

One partial fix is to require admins to sign using a key derived from a long-term identity

key. Then, security cannot be recovered if the admin is compromised once, resulting in the

adversary winning the A-CGKA game too. Our constructions provide FS and PCS for the

relevant admin authentication mechanisms in order to circumvent this problem.

In the following two subsections, all implemented A-CGKA algorithms, including Init, are

stateful as if executed by the same party and, as written, do not explicitly return the updated

local state. Instead, they modify the state during runtime. In the event of algorithm failure, the

state is not modified and appropriate failure values are output.

5.3.1 Individual Admin Signatures

In our first construction, individual admin signatures (IAS), we build a generic and modular

administration mechanism on top of an arbitrary CGKA protocol (denoted by CGKA). Each

group administrator ID ∈G∗ maintains their own signature key pair (ssk,spk) that is updated

over time. Each key pair is independent from the keys used in CGKA, which is mostly used

as a black-box. Group members keep track of the list of admins G∗ which is (possibly) up-

dated upon processing each control message. Proposed changes to the group and to the

administration are signed using an admin’s keying material.

The IAS construction is presented in Figures 5.6, 5.7 and 5.8. The first figure describes the

A-CGKA algorithms, and the second and third describe helper functions and auxiliary methods.

We note that the algorithms defined in Figure 5.6 are incomplete without the helper functions;

therefore, the construction spans all three figures.

States. We represent the state of a participant by the symbol γ, which is in part a dictionary

of states indexed by group identifiers, i.e., γ[gid]. Users further maintain a common state via

γ.s0 encoding the underlying CGKA state, security parameter 1λ in γ.1λ and the user’s ID in

γ.ME. For each group gid, users keep a separate variable γ[gid].adminList that encodes the

group administrators and two administration-related signature key pairs. The state also tracks

the group members as γ[gid].G = γ[gid].s0.G and the CGKA key as γ[gid].k= γ[gid].s0.k from

the underlying CGKA, as well as the admins as γ[gid].G∗ = {ID : γ[gid].adminList[ID] ̸= ⊥}.

146

5.3 A-CGKA Constructions

Description

In our functions in Figures 5.6, 5.7 and 5.8, we often omit the group identifier of the state

to simplify presentation. We assume that γ refers to γ[gid] whenever gid is a subject of the

algorithm, such as when it is a parameter of the function, and sometimes omit gid when it is

clear from context. We note that our scheme nevertheless supports multiple groups.

Randomness. In our construction, we make randomness used by protocol algorithms explicit,

including sampled randomness r0 ∈ {0,1}λ as input. Namely, for the input randomness r0

used in any randomised method, we apply a PRF (r1, . . . ,rk) ← Hk (r0,γ) that combines the

entropy of r0 and the state γ. We do this to reduce the impact of randomness leakage and

manipulation attacks [BRV20]: without prior knowledge of γ (and assuming it has a sufficient

entropy), an adversary that reads or manipulates r0 will not be able to derive a corresponding

ri value. This is an additional feature that aims to maintain certain security properties in

stronger adversarial models than considered in this chapter, and does not interfere with the

rest of the protocol.

PKI. IAS assumes a basic, incorruptible PKI functionality where all parties are authenticated

with the PKI. The PKI provides a fresh signature public key spk for which only the party ID can

retrieve the corresponding secret key ssk. This functionality is used in for two main reasons:

1. When the group of administrators expands; namely, when a party ID′ crafts a group gid
or makes an admin add proposal4; and

2. When a non-admin user wishes to remove themselves from gid (a ‘self-remove’).

For these purposes, we define a getSpk algorithm, which on input (ID, ID′,gid) for subject ID

and caller ID′ outputs spk relevant to the context the call is made in. We also assume a method

of the form getSsk(spk, ID,gid) that returns the ssk associated to spk when called by ID given

they uploaded it. During protocol execution, parties upload signature key pairs (ssk,spk) to

the PKI via an abstract registerKeys(ID) method in initialisation and via registerKey(ID) during

the two aforementioned scenarios.5 Formally, the adversary is only exposed to getSpk and

registerKey; we assume the other functions are called as needed in the security game though.

Initialisation. Before the creation of a group, a participant starts by calling the init method,

which initialises the state γ. In turn, Init calls CGKA.Init from the underlying CGKA to initialise

its state γ.s0. (ssk,spk) and (ssk′,spk′) are two signature key pairs for group administration.

The first pair is the valid admin signature key pair using during protocol execution, while the

second pair stores updated keys after a commit or a key update operation is performed by

the participant but before it is processed (i.e., acts as a temporary variable). After successfully

processing a commit message, the second key pair replaces the first.

4Since admin proposals are all signed, and at proposal time it is not clear if a commit will contain an admin add
proposal, admins always upload their updated signature key to the PKI at proposal time. For simplicity, signature
keys are also always uploaded to the PKI when sampled at commit time also.

5This abstraction is made to reduce notational complexity.

147

Chapter 5. Cryptographic Administration for Secure Group Messaging

IAS.Init(1λ, ID;r0)

1 : (r1,r2) ← H2(r0,γ); γ.s0←CGKA.Init(1λ, ID;r1)

2 : γ.ME← ID; γ.1λ← 1λ

3 : γ[·].adminList[·] ←⊥ // maps ID to spk
4 : γ[·].ssk,γ[·].spk←⊥ // active admin key pair

5 : γ[·].ssk′,γ[·].spk′ ←⊥ // temporary key pair

6 : registerKeys(ID) // gen/upload keys to PKI

IAS.Prop(gid, ID,type;r0)

1 : P ←⊥; (r1,r2,r3,r4) ← H4(r0,γ)

2 : if type=∗-adm
// Note if type= upd-adm, keys are updated

3 : require γ.ME ∈ γ.G∗

4 : P ←makeAdminProp(gid,type, ID;r1,r2)

5 : else (γ.s0,P) ←CGKA.Prop(γ.s0,gid, ID,type;r1)

6 : if (type= rem)∧ (ID = ME)∧ (ID ̸∈ γ.G∗)

7 : (ssk,spk) ←KeyGen(γ.1λ;r3); registerKey(ID)

8 : P ← (P,Sign(ssk′,P ;r4))

9 : return P

IAS.Commit(gid, P⃗ ,com-type;r0)

1 : require γ.ME ∈ γ.s0.G ∧com-type ∈ {adm,std,both}

2 : (r1, . . . ,r4) ← H4(r0,γ)

3 : (P⃗0, P⃗ A ,Σ,admReq) ← propCleaner(gid, P⃗)

4 : require verifyPropSigs(P⃗0,Σ, P⃗ A)

5 : if admReq∨ (com-type ∈ {adm,both})

6 : require γ.ME ∈ γ.G∗

7 : if com-type ∈ {adm,both} : C A ← P⃗ A

8 : if com-type ∈ {std,both}

9 : (C0,W0,adminList,k) ← c-Std(gid, P⃗0, P⃗ A ;r1)

10 : require C0 ̸= ⊥
// Generate new key pair and sign new spk

11 : (γ.ssk′,γ.spk′) ←KeyGen(γ.1λ;r2); registerKey(ID)

12 : TC ← (‘comm’,γ.ME,C0,C A ,⊥,γ.spk′)
13 : if W0 ̸= ⊥ // share updated admin list

14 : TW ← (‘wel’,γ.ME,W0,adminList)

15 : else TW ←⊥
16 : σT ←Sign(γ.ssk, (gid,TC ,TW);r4)

17 : else // only self-removes - no admin sig

18 : (C0,⊥,⊥,k) ← c-Std(gid, P⃗0,⊥;r3)

19 : TC ← (‘comm’,γ.ME,C0,⊥,Σ,⊥)

20 : TW ←⊥; σT ←⊥
21 : return ((gid,TC ,TW ,σT),k)

IAS.Create(gid,G ,G∗;r0)

1 : require (γ.ME ∈G∗)∧ (G∗ ⊆G)

2 : (r1,r2) ← H2(r0,γ)

3 : (γ.s0,W0) ←CGKA.Create(γ.s0,gid,G ;r1)

4 : if W0 =⊥ return ⊥
5 : adminList[·] ←⊥ // this is not γ.adminList
6 : for ID ∈G∗ :

7 : adminList[ID] ← getSpk(ID,γ.ME)

8 : γ.spk′ ← adminList[ME]

9 : γ.ssk′ ← getSsk(γ.spk′,ME)

10 : TW ← (‘wel’,γ.ME,W0,adminList)

11 : return (gid,⊥,TW ,Sign(γ.ssk′, (gid,⊥,TW);r2))

IAS.Proc(T)

1 : (gid,TC ,TW ,σT) ← T ; acc← false
2 : if (γ.ME ̸∈ γ[gid].s0.G)∧ (TW ̸= ⊥)

3 : require TW .msg-type= ‘wel’

4 : acc← p-Wel(gid,TW ,σT) // welcome helper

5 : else if (γ.ME ∈ γ[gid].s0.G)∧ (TC ̸= ⊥)

6 : (msg-type, ID,C0, ·,Σ, ·) ← TC

7 : require msg-type= ‘comm’

8 : for σ : (P, ID′,σ) ∈Σ :

9 : if ¬Vrfy(getSpk(ID′,ME),σ,P)

∨ (ID′ ∈ γ[gid].G∗) return false
10 : if σC =⊥ // no sign - check only self-removes

11 : (γ′,acc) ←CGKA.Proc(γ[gid].s0,C0)

12 : SR ← {ID′ : (·, ID′) ∈Σ}

13 : if ¬acc∨γ′[gid].s0.G ∪SR ̸= γ[gid].s0.G

14 : return false
15 : γ[gid].s0← γ′; return true
16 : if ¬[(ID ∈ γ[gid].G∗) ∧

(Vrfy(γ[gid].adminList[ID], (gid,TC ,TW),σT))]

17 : return false // verification failed

18 : acc← p-Comm(gid,TC) // admin commit helper

19 : return acc

IAS.Prop-Info(P)

1 : if P is of the form (P,σ) : (P,σ) ← P // self-removes

2 : if P is a CGKA proposal

3 : (P.gid,P.type,P.ID,P.ID′) ←CGKA.Prop-Info(γ.s0,P)

4 : else if P is an admin proposal

5 : (P.gid,P.type,P.ID,P.ID′,⊥,⊥) ← P

6 : return (P.gid,P.type,P.ID,P.ID′)

Figure 5.6: Individual admin signatures (IAS) A-CGKA built from a CGKA CGKA, a signature
scheme Sig, and PRFs Hn : R ×ST → Rn for n ≤ 4, randomness space R and state space
ST. We let γ[gid].G = γ[gid].s0.G , γ[gid].G∗ = {ID : γ[gid].adminList[ID] ̸= ⊥}, and γ[gid].k =
γ[gid].s0.k.
148

5.3 A-CGKA Constructions

valid(P)

// Predicate checks validity of admin proposal

1 : (P.gid,P.type,P.ID,P.ID′) ←Prop-Info(P)

2 : S1 := (P.gid= gid) // correct group

3 : S2 := (P.ID ∈ γ[gid].G) // ID member

4 : S3 := (P.ID′ ∈ γ[gid].G∗) // ID′ admin

5 : C1 := (P.type= rem-adm)

6 : S4 := (P.ID ∈ γ[gid].G∗) // ID admin

7 : C2 := (P.type= add-adm)

8 : return S1 ∧S2 ∧S3 ∧ (¬C1 ∨S4)∧¬(C2 ∧S4)

makeAdminProp(gid,type, ID;r1,r2)

1 : P0 ←⊥
2 : if type= add-adm
3 : spkpki ← getSpk(ID,γ.ME)

4 : P0 ← (gid,type, ID,γ.ME,spkpki)

5 : else if type= rem-adm
6 : P0 ← (gid,type, ID,γ.ME,⊥)

7 : else if type= upd-adm
8 : if (γ.ssk′,γ.spk′) ̸= (⊥,⊥)

9 : return ⊥ // only one update per epoch

10 : (γ.ssk′,γ.spk′) ←KeyGen(γ.1λ;r1); registerKey(ID)

11 : P0 ← (gid,type,γ.ME,γ.ME,γ.spk′)
12 : else return ⊥
13 : return (P0,Sign(γ.ssk,P0;r2))

c-Std(gid, P⃗0, P⃗ A ;r1)

1 : (γ.s0, (C0,W0),k) ←CGKA.Commit(γ.s0,gid, P⃗0;r1)

2 : if W0 ̸= ⊥ // list for new users only

3 : adminList′ ← updAL(γ.adminList, P⃗ A)

4 : return (C0,W0,adminList′,k)

5 : else return (C0,⊥,⊥,k)

verifyPropSigs(P⃗0,Σ, P⃗ A)

1 : for (P, ID,σ) ∈Σ // non-admin self-removes

2 : spk← getSpk(ID,γ.ME)

3 : if ¬Vrfy(spk,P,σ)∨P ̸∈ P⃗0 ∨ ID ∈ γ.G∗

4 : return false

5 : for (P,σP) ∈ P⃗ A : // admin props

6 : (⊥,⊥,⊥, ID′) ←Prop-Info(P)

7 : spkP ← γ.adminList[ID′]
8 : if ¬(Vrfy(spkP ,P,σP)∧valid(P))

9 : return false
10 : return true

propCleaner(gid, P⃗)

1 : admReq← false; P⃗0, P⃗ A ,Σ← []

2 : for P ∈ P⃗ :

3 : (gid,P.type,P.ID,P.ID′) ←Prop-Info(P)

4 : if (P.type=∗-adm)∧valid(P)

5 : P⃗ A ← [P⃗ A ,P]

6 : admReq← true

7 : else // P⃗0 is handled by CGKA
8 : if P.type= rem ∧

(P.ID = P.ID′)∧ (P.ID ̸∈ γ[gid].G∗)

9 : (P ′,σ) ← P

10 : P⃗0 ← [P⃗0,P ′]; Σ← [Σ, (P,P.ID,σ)]

11 : else if P.type ∈ {add,rem}

12 : admReq← true

13 : else P⃗0 ← [P⃗0,P]

// Admin rem from G =⇒ rem from G∗

14 : if (P.type= rem)∧ (P.ID ∈ γ[gid].G∗)

15 : P ′ ←makeAdminProp(gid,rem, ID;⊥)

16 : P⃗ A ← [P⃗ A ,P ′]
17 : (P⃗0, P⃗ A) ← enforcePolicy(P⃗0, P⃗ A)

18 : return (P⃗0, P⃗ A ,Σ,admReq)

p-Wel(gid,TW ,σ)

1 : (⊥, ID,W0,adminList) ← TW

2 : (γ[gid].s0,acc) ←CGKA.Proc(γ.s0,W0)

3 : acc← acc∧Vrfy(getSpk(γ.ME, ID), (gid,⊥,TW),σ)

4 : if acc
5 : γ[gid].adminList← adminList
6 : if adminList[ME] ̸= ⊥
7 : γ.spk← adminList[ME]

8 : γ.ssk← getSsk(spk,ME)

9 : return acc

updAL(adminList, P⃗ A)

1 : for P ∈ P⃗ A

2 : (gid,type, ID,⊥,spk,⊥) ← P

3 : if type ∈ {add-adm,upd-adm}

4 : if (type= add-adm)∧ (ID = γ.ME)

5 : γ.spk,γ.ssk← (spk,getSsk(spk, ID))

6 : adminList[ID] ← spk
7 : if type= rem-adm
8 : adminList[ID] ←⊥
9 : if (ID = γ.ME)

10 : (γ.ssk,γ.spk) ← (⊥,⊥)

11 : return adminList

Figure 5.7: Helper functions for IAS in Figure 5.6 (part I).

149

Chapter 5. Cryptographic Administration for Secure Group Messaging

IAS.Props(T)

// Supports non-welcome control messages

1 : (TC ,TW ,σT) ← T

2 : P⃗0 ←CGKA.Props(TC .C0); P⃗ A ← TC .C A

3 : return P⃗0||P⃗ A

enforcePolicy(P⃗0, P⃗ A)

// This method can be extended to other policies

1 : numAdmins← ∣∣G∗∣∣
2 : for P ∈ [P⃗0, P⃗ A]

3 : (gid,P.type,P.ID,P.ID′) ←Prop-Info(P)

4 : if type= rem // if duplicates, removal prevails

5 : Delete any other P ′ s.t. P.ID = P ′.ID

except for rem-adm proposals

6 : else if type= rem-adm
7 : Delete any other admin P ′ s.t. P.ID = P ′.ID

8 : numAdmins–
9 : else if type= add-adm, numAdmins++

10 : require numAdmins≥ 1 // ensures ; ̸=G∗ ⊆G

11 : return (P⃗0, P⃗ A)

p-Comm(gid,TC)

1 : (⊥, ID,C0,C A ,Σ,spk) ← TC

// Check signatures in proposals

2 : if C A ̸= ⊥ // C A = P⃗ A

3 : if ¬verifyPropSigs(⊥,⊥,C A) return false
// Apply commit

4 : if C0 ̸= ⊥
5 : (γ′,acc) ←CGKA.Proc(γ.s0,C0)

6 : if acc= false return false
7 : if γ.ME ̸∈ γ′.G // user removed

8 : γ[gid] ←⊥ // reinitialise state (only for gid)

9 : else γ[gid].s0← γ′

// Set temporary updated keys

10 : if (ID = γ.ME)∨ (∃P ∈C A : P.ID = γ.ME)

11 : (γ.ssk,γ.spk) ← (γ.ssk′,γ.spk′)
12 : γ.ssk′,γ.spk′ ←⊥
13 : γ.adminList← updAL(γ.adminList,C A)

14 : γ.adminList[ID] ← spk // committer’s key

15 : return true

Figure 5.8: Helper functions for IAS in Figure 5.6 (part II).

Group Creation. The Create algorithm creates the group gid from the list of members G , the

admin list from G∗, and outputs a (signed) control message T for the new members in G .

The adminList variable maps identifiers ID ∈ G∗ to signature public keys spkID. The public

signature keys are obtained via getSpk and each admin’s private key can be retrieved from the

PKI via getSsk while they are processing T , the control message that adds them to the group.

The group creator directly stores such key pair as (γ.ssk′,γ.spk′).

Proposals. Any group member can use Prop to create a proposal of a non-admin type; the

algorithm calls CGKA.Prop in this case. Administrative proposals are restricted to admins and

crafted by makeAdminProp, which includes an administrative signature in the proposal. The

signature is included to prevent an (insider) adversary from forging the sender of the proposal

in an attempt to impersonate an admin.6 Proposal creation does not have any effect on the

state other than the storage of temporary keys for proposals with type type= upd-adm. In the

case of an add-adm proposal to promote ID to admin status, the proposer γ.ME retrieves a

public signature key spk of ID from the PKI using getSpk. In the case of a rem proposal where

ID = ME and ID ̸∈ γ[gid].G∗ (i.e., a non-admin self-remove), the caller samples a new signature

key pair, registers the public key spk with the PKI and signs their proposal.

The Prop-Info method simply retrieves the main information of a proposal. As mentioned in

6Note in MLS that all proposals are in any case signed.

150

5.3 A-CGKA Constructions

the previous section, it could be adapted to support CGKAs and A-CGKAs where proposals are

encrypted7 (under some key derived from the group key, for instance).

Commits. The Commit algorithm can only be called by group administrators (except for the

special case in which only key updates and self-removes are proposed, in which cases standard

users can commit), and performs the following actions:

1. Clean the input vector of proposals P⃗ , ensuring that they are well-formed. This is

done via the propCleaner algorithm, which in turn calls the enforcePolicy method. For

security reasons, we adopt the main features of the MLS policy (removing duplicates

and prioritising removals) in our construction [BBR+23], but extensions to this policy

can be implemented. In addition, we verify the legitimacy of the admin proposals and

the fact that self-remove proposals are correctly signed via verifyPropSigs. Then, the

predicate valid(P) verifies that the gid matches, that added users (respectively admins)

do not belong to G (resp. G∗), that removed users do belong to G (resp. G∗), and that the

proposer is an admin. Finally, we ensure that all users removed from G are also removed

from the adminList.

2. Carry out the administrative and the standard commits and produce an administrative

commit message C A (which is the clean admin proposal vector), a standard CGKA

commit C0, and an updated adminList. We split the CGKA commit in two components

C0 and W0 as is usual in the literature [ACDT20, AJM22, KPPW+21, ACJM20]. If the

CGKA does not allow for this, it is easy to modify the protocol without compromising

security8.

3. Generate a new administrative signature key pair (γ.ssk′,γ.spk′) stored as the temporary

key pair.

4. Produce the final control message T which includes the new spk′. The message T is

again split into two components: A first component TW (for welcome) includes all the

required information for incoming A-CGKA members, including the new list of admins.

A second component TC (for commit) contains the updating information for group

members. Both components are signed together using the committer’s current γ.ssk.

The Props method, given a commit, retrieves the list of proposals that it implements; this

simply calls the underlying CGKA.Props algorithm and combines the output with the list of

admin updates directly contained in a well-formed commit message.

Processing Control Messages. The Proc method takes a control message T as input and

updates the state accordingly. The algorithm returns an acceptance bit acc which is true if

7Some precaution must be taken with respect to security when proposals are encrypted under the CGKA key, as
the adversary gains access to multiple additional ciphertexts which can result in a security loss.

8This division is made for clarity, but it may be used to improve efficiency too. Namely, the welcome part W0 of
a commit message does not need to be processed by existing group members, so in principle C0 can be sent only
to these. In A-CGKAs such as IAS, this can also be applied if signatures are handled carefully.

151

Chapter 5. Cryptographic Administration for Secure Group Messaging

the processing succeeds, in which case the state is updated. Otherwise, the state remains

the same. During an execution of Proc, some checks must pass before the state is updated.

For newly added users, p-Wel verifies the message signature on the adminList, attempts to

process the message via the underlying CGKA, and updates the state given this succeeds. For

group members, p-Com verifies the administrator signature and the signatures in the admin

proposals. The state is updated if all verification succeeds; a removed user deletes their state,

and temporary keys are updated if necessary. The case in which the control message T is

not signed is handled by Proc directly by verifying that no changes to the group structure are

made except possibly for valid signed self-removals.

Features

We first note that the IAS protocol can be built over any (unauthenticated or authenticated)

CGKA. Since signatures are often already present in CGKAs such as [AJM22], the extension

from CGKA to A-CGKA can be more direct (and thus incur less overhead) than presented

here. This also holds true for any group messaging scheme, such as the administrated MLS

extension we describe in Section 5.3.4.

Commit and Propose Policies. Our construction allows standard users to perform a commit

if there are no changes in the group structure or administration. This is an optional design

choice that does not affect security in our model (and could be reflected in a correctness

predicate), although, as previously discussed, adversarial group members may deny service

if the underlying CGKA is not robust. We also enforce that standard users cannot propose

administrative changes (even if these could be later ignored by admins), and similarly can be

allowed as required by an application.

Security Mechanisms. The security of the group administration is provided by the admin

signatures; an adversary should not be able to commit changes to the group unless it compro-

mises the state of one of the group administrators. The update mechanism provides optimal

post-compromise security in our model.

On the other hand, administrative actions are undeniable and traceable both by group mem-

bers and by the message delivery service. Separately, additional protections (i.e. checking

members are registered on the PKI) are needed to ensure that parties are not invited to fake

groups where the list of group administrators is forged.

On Optimal Forward Security. Note that, as defined, our construction does not satisfy forward

security with respect to injection queries even if the underlying CGKA provides optimal

forward security. Concretely, suppose that ID makes their last update in epoch 3, and then

their state is exposed in epoch 5. Then ID can trivially forge commit messages for parties that

are in epochs 3 and 4 since their keying material has not been updated. A similar forward

security issue is present in the MLS standard affecting confidentiality [ACDT20]. Optimal

security can be straightforwardly achieved by replacing regular signatures with forward-secure

152

5.3 A-CGKA Constructions

signatures [BM99]. Forward-secure signatures allow signers to non-interactively update their

secret keys and provide forward security given state exposure. In IAS, it suffices to use forward-

secure signatures such that whenever an epoch passes and an admin has not sampled a new

signature key, they invoke the signature scheme’s secret key update function, where new

signature keys are otherwise derived as in the construction. We note that forward-secure

signatures involve an overhead that may be undesirable in some cases, and also they are

not used in current protocols (signatures are already used in MLS’s CGKA, for instance). In

Theorem 17, we characterise the exact security of IAS using standard primitives via our sub-

optimal predicate. In this way, the security of both alternatives is fully characterised.

Correctness and Security

We proceed to proving correctness and security.

Theorem 16. Let CGKA be a correct CGKA (Definition 42) and Sig be a 1-correct signature

scheme. Then, the IAS protocol (Figures 5.6, 5.7 and 5.8) is correct with respect to Definition

42.

Proof. We want to prove that no adversary A can win CORRA-CGKA,Ccorr (where we set Ccorr =
true) played with respect to IAS (Figures 5.6, 5.7 and 5.8) given that CGKA is correct. We

analyze the different game oracles separately and sketch parts derived by direct inspection or

based on CGKA correctness.

For PROP, A can win the game in PROP if either Prop-Info incorrectly interprets the proposal

or if the Prop call changes the view of the group. In the first case, correctness follows from the

correctness of CGKA.Prop-Info if the proposal is standard, and by inspection of IAS otherwise.

In the second case, the group view is never changed by Prop (as makeAdminProp only updates

γ.ssk′,γ.spk′ in case of an admin proposal, and CGKA.Prop is correct in the case of a standard

proposal).

CREATE and COMMIT can be proven correct by inspection in a similar way.

For DELIVER, we examine each reward clause. Note that in line 2 of DELIVER, T is either a

commit message created by Create or by Commit.

We start with the clause (; ̸= γ[gid].G∗ ⊆ γ[gid].G). If T is a create message, then line 1 of

Create and the fact that variable adminList is populated ensures that this condition is fulfilled

for T . Upon processing, and after a correct PKI retrieval, p-Wel overwrites γ.adminList and

γ.s0 (via CGKA.Proc), so the condition holds. If T is a (standard) commit made by a non-

admin user – that is, one without a signature – then there are no changes to the group as

checked explicitly by the Proc algorithm from line 10. Otherwise, if T an admin commit, then

it is processed by p-Comm. We can distinguish some further cases depending on the proposals

contained in T :

153

Chapter 5. Cryptographic Administration for Secure Group Messaging

• If T contains proposals of types upd,upd-adm,add only, then the condition is trivially

met.

• If T additionally contains rem proposals, for every removed ID a corresponding rem-adm
proposal is generated by an honest admin in propCleaner, hence G∗ ⊆G .

• If T additionally contains add-adm proposals, the valid(P) predicate checks that the

added admins are already group members (via S2), hence G∗ ⊆G .

• If T additionally contains rem-adm proposals, the final check in enforcePolicy ensures

that G ̸= ;.

• Any other combination of several contradicting proposals affecting the same ID is

handled by enforcePolicy, which prioritises removals (while preserving admin removals

for the same user) which performs a final check on the size of G∗.

We conclude that, for any possible combination of proposals, the condition is always met

provided that acc= true with respect to T .

The next cases are the reward Props(ST[ID],T) ̸=T[gid, (t ,c),vec,c ′] and the reward γ[gid].k ̸=
⊥ condition given Proc outputs γ such that ID ̸∈ γ[gid].G . It is straightforward to see that both

conditions are met by correctness of CGKA.Props.

The check by UpdateView rewards the adversary if two users processing the same commit

message (on epoch (t ,c)) differ in their group view. We show correctness by induction. Suppose

ID1 and ID2 process the same commit message T . If they are in epoch (−1,−1) and process a

create message, correctness is easily seen. For the inductive step, we assume that their group

views were equal in (t ,c), and we want to show that they remain equal after moving to epoch

(t +1,c ′). The commit is handled by p-Comm, and the only parts that can change for different

users are the if condition in line 10 and updAL. The behaviour of both sections of code varies

only on the modification of γ’s signature keys, but not on the group structure. Hence, by the

correctness of CGKA, we conclude that ID1 and ID2 end up having consistent views.

The edge case in which a user is just added to the group is handled by p-Wel, and follows from

CGKA correctness and the fact that γ.adminList← adminList is executed where adminList is

directly provided in T .

Finally, the check reward γ[gid].k ̸= T[gid, (t ,c),key,c ′] follows from the correctness of the

CGKA.Commit algorithm which outputs the new group key k.

Recall that IAS, which uses a (regular) digital signature scheme, does not provide optimal

forward security. Therefore, we prove security with respect to a sub-optimal admin cleanness

predicate Cadm where Cadm =Cadm-opt∧Cadm-add and Cadm-opt is defined in Section 5.2.4.

Theorem 17. Consider KIND CGKA CGKA with respect to cleanness predicate Ccgka,

SUF-CMA signature scheme Sig and PRF H4. Then, for A-CGKA IAS, we have, with respect

154

5.3 A-CGKA Constructions

to predicates Ccgka,Cadm,Cforgery, that for every efficient adversary A that makes at most q

oracle queries, one can build an adversary B such that

Advkind
IAS (A) ≤ q ·Advprf

H4
(B)+Advkind

CGKA(B)+q2 ·Advsuf−cma
Sig (B) .

Proof idea. We first bound an adversary A ’s advantage in distinguishing between the

KINDA-CGKA game and a game G1 which replaces calls to hash functions Hi by uniformly

sampling the output (modelling each Hi in IAS as a PRF). Then, we divide A ’s behaviour in G1

into two events based on whether they successfully query the INJECT oracle (event E1) or not

(event E2). Given E1, we reduce security via a number of SUF-CMA adversaries. Otherwise, we

reduce directly with KINDCGKA adversary, at which point the claim follows.

We start with the definition of the predicate Cadm predicate (Figure 5.9) that we prove IAS

secure with respect to. After proving security, we discuss how one can (easily) extend the

proofs and ensure optimal security using forward-secure signatures.

Cadm : ∀ (i , ID, ID′,ctr ∈ (0,exp-ctr]) : qi = INJECT(ID′, ·, t∗i),(
ID ̸∈ADM[t∗i]

)∨(∃(ti ,c) : (tExp(ID,ctr).ta < ti ≤ t∗i)∧
hasUpdadm (ID,T[(·, ti),com,c],T[(·, ti),vec,c])∧
(C[(·, ti)] = c)

)
.

Figure 5.9: Sub-optimal administrative predicate where the adversary makes oracle queries
q1, . . . , qn .

Note that it differs from the optimal predicate (Figure 5.5) only by the lack of (t∗i <
tExp(ID,ctr).ta) condition, so it holds that Cadm ∧Cadm-opt = Cadm. In particular, the for-

ward security guarantees are weaker since, e.g., if a party updates their admin key in admin

epoch 3 then if they are exposed in epoch 5 then the adversary can make a trivial forgery in

the construction (and thus it is considered a trivial attack by Cadm).

Towards proving security, we prove the following lemma.

Lemma 16. Let A be a KINDA
A-CGKA,Ccgka,Cadm,Cforgery

adversary playing with respect to IAS.

Consider any query A makes of the form INJECT(ID,m, ta) which outputs v ̸= ⊥. Then there

is an efficient algorithm that, given the inputs/outputs of oracle queries A makes, parses

m = (gid,TC ,TW ,σT) and derives pk such that Vrfy(pk,σT , (gid,TC ,TW))) = 1.

Proof. Consider a given query INJECT(ID,m, ta) made by A that outputs v ̸= ⊥. Given v ̸=
⊥ and by definition of INJECT, a call (γ,true) ← Proc(ST[ID],m) was previously made by

the challenger such that Cforgery = true. Note A cannot register (malicious) signature keys

with the PKI, and keys are assumed to be bound to the context that they are used in, e.g.,

for self-removals. In addition, any non-admin commit comprising of group changes that

only consists of self-removes will not result in the adversary winning by construction of IAS,

155

Chapter 5. Cryptographic Administration for Secure Group Messaging

and if a self-remove is created then even if another ‘dishonest’ self-remove can be created

for that party, Cforgery will consider it equivalent to the ‘original’ self-remove. Thus, self-

removes cannot cause Cforgery to be true. Now, INJECT disallows ta ̸= −1, which is the case if

and only if ID ∉G , and that unsigned control messages cannot change the group structure.

Thus, we only need to consider control messages that are input to p-Comm in Proc and

result in output acc= true when σT ̸= ⊥. To reach p-Comm, the Proc call must be such that

Vrfy(γ[gid].adminList[ID], (gid,TC ,TW),σT) = 1. Since γ[gid].adminList[ID] must have been

previously sent in some commit or welcome message by construction of IAS, it follows that

pk= γ[gid].adminList[ID] is efficiently computable.

We prove IAS secure below.

Proof. Let G0 be the KINDA
IAS,Ccgka,Cadm,Cforgery

game. Let G1 be as in G0, except that all calls of

the form (r1, . . . ,ri) ← Hi (r0,γ) are replaced with calls of the form (r1, . . . ,ri) $← R i where R is

the space of random coins used by each (A)-CGKA algorithm. Note that in IAS we always have

i ≤ 4; we assume for simplicity that each Hi for i ≤ 4 is implemented by calling H4 and then

truncating the output as needed.

Let G0,0 =G0. Let G0, j be G0 except that the first j calls of the form Hi (r0,γ) that adversary A

makes are replaced as above, and the rest remain unchanged. Note that since every oracle

query that A makes results in at most one call to a function of the form Hi (·, ·), G0,k =G1 for

some k ≤ q .

Consider G0, j−1 and G0, j where j ≥ 1; suppose these games are played by adversary A . Let

A ′ be a PRF adversary (keyed with the first argument). A ′ simulates directly except when A

makes their oracle query which leads to the j -th call to a function of the form Hi . Upon this call,

A simulates this call by calling EVAL(γ) for the input γ, and truncates the response (r1, . . . ,r4)

to (r1, . . . ,ri) when necessary before continuing execution (i.e., its simulation). Clearly A ′

perfectly simulates G0, j−1 when A ′’s challenger’s bit is 1. When A ′’s challenger’s bit is 0, note

that the output of A ′’s EVAL call, namely (r1, . . . ,r4), is of the form F (γ) for a uniformly random

function F : ST→ R4, where ST is the A-CGKA state space. Since F is randomly chosen, this

output is distributed identically to (r1, . . . ,r4) where each ri is uniformly sampled from R. It

follows that A ′ perfectly simulates G0, j when its challenge bit is 0. By combining the sequence

of game hops, it follows that∣∣∣∣Pr[G0(A) ⇒ 1]− 1

2

∣∣∣∣≤ ∣∣∣∣Pr[G1(A) ⇒ 1]− 1

2

∣∣∣∣+q ·Advprf
H4

(A ′).

In the following, we will simulate for a G1 adversary via either a SUF-CMA or CGKA adversary.

Without hopping from G0 to G1, the simulation would not have been identical when e.g.

using the SUF-CMA SIGN oracle. Since we have transitioned to G1, which uses randomness

normally, there are no issues regarding simulation and randomness.

156

5.3 A-CGKA Constructions

Let A be a G1 adversary. Let E1 be the event that A makes a query to INJECT such that

INJECT outputs value v ̸= ⊥ (i.e., the challenge bit). Let E2 be the event that this does not

occur; clearly Pr[E1]+Pr[E2] = 1. We consider each event separately. Without loss of generality,

we restrict our simulations given E1 to the case where Cadm is true as otherwise the adversary

cannot win, and similarly given E2 to the case where Ccgka is true. It suffices to observe that

these two predicates are efficiently computable such that the adversaries we construct below

can abort during unclean executions.

E1: By construction of IAS and Lemma 16, note, given that INJECT outputs v ̸= ⊥, that a

signature forgery has occurred where the signature keying material is sampled due to an oracle

call. Given E1, we need to determine which input values ID and ta are used by A on the first

INJECT call which outputs v ̸= ⊥. By construction of IAS, this can happen as a result of a

query to CREATE, PROP or COMMIT. However, A may make at most q injection attempts

with respect to this key pair, each of which may be a winning one. Thus, the reduction has to

guess both 1) the INJECT query which first outputs v ̸= ⊥ and 2) the query qi which generates

the signature key pair corresponding to this injection.

Let E1,i , j be the event that A makes query qi which leads to the generation of signature key

pair (ssk,spk) such that query q j is the first query to INJECT resulting in output v ̸= ⊥9. Note

that IAS is such that each oracle query qi results in at most one new signature key pair being

sampled by the challenger. By the union bound, we have:

Pr[G1(A) ⇒ 1∧E1] ≤ ∑
i , j∈{1,...,q}

Pr[G1(A) ⇒ 1∧E1,i , j].

Suppose E1,i , j holds. Let A ′ be an SUF-CMA adversary that simulates for G1 adversary A . We

aim to show that Pr[G1(A) ⇒ 1∧E1,i , j] ≤Advsuf−cma
Sig (A ′).

A ′ simulates as follows. A ′ simulates variable initialisation as in G1 except that it lasily

simulates Init calls (ensuring it remains polynomially-bounded). A ′ simulates the first i −1

of A ’s oracle queries locally, i.e., simulates all relevant behaviour resulting in corresponding

state and game variables being set and updated. This includes queries of the form getSsk and

getSpk which A ′ simulates via signature scheme Sig.

Consider A ′’s i -th oracle query qi . Let (ssk∗,spk∗) denote the signature key pair sampled by

the SUF-CMA challenger; recall that SUF-CMA adversary A ′ has access to oracle SIGN. A ′

simulates as follows:

• If qi is to CREATE, then (ssk∗,spk∗) plays the role of (γ.ssk′,γ.spk′). Namely, A ′ sets the

output of getSpk(ID,γ.ME) to spk∗ and that of getSsk(γ.spk′,ME) to ssk∗ after embed-

ding spk∗ in adminList[ME] at line 7 of Create. A ′ also calls SIGN((gid,⊥,TW)) which

9Note that we only consider the first such query since the simulation will end after this point.

157

Chapter 5. Cryptographic Administration for Secure Group Messaging

outputs σ. A ′ otherwise simulates and returns the result to A (which includes σ).

• If qi is to PROP with input type = upd-adm, then (ssk∗,spk∗) plays the role of

(γ.ssk′,γ.spk′) (line 10 of makeAdminProp). Similarly to above, A ′ embeds spk∗ in P0

(line 11 of makeAdminProp), and then simulates the rest of the oracle call.

• Otherwise, qi is to COMMIT. Note we assume E1,i , j holds. Thus, the branch at line 5

in Commit must be executed. As before, (ssk∗,spk∗) plays the role of (γ.ssk′,γ.spk′); A ′

simulates the remainder of the call.

All other oracle queries, except to INJECT, are simulated locally by A ′ except when signatures

with respect to spk∗ are required, in which case SUF-CMA oracle SIGN is used, or when spk∗

is to be embedded in a message. Note that at most q SIGN queries are made by A ′ since each

oracle query A makes produces at most one signature (which may or may not require SIGN
to simulate).

Note by construction of IAS that each signature key pair is sampled by a single party and

is never revealed/embedded in another message, and that each key pair is uniformly and

independently sampled. Thus, the simulation is valid, ignoring EXPOSE queries, since the

challenge key pair is independent of all other keying material and challenge secret key ssk∗ is

never revealed. Regarding EXPOSE queries, since Cadm is true (since we assume E1), A will

never query EXPOSE with respect to the challenge key pair, a query which would otherwise

not be able to be simulated.

For A ’s query q j ′ = INJECT(ID) such that j ′ ̸= j , A ′ simulates by returning ⊥ to A . When

A makes query q j = INJECT(ID,m, ta), A ′ inspects m = (gid,TC ,TW ,σT) and returns the

message/signature pair ((gid,TC ,TW),σT) to A which, by Lemma 16, exists. These two steps

are valid by definition of E1,i , j and that j ′ < j in the first step since we only simulate up to

query j .

It thus follows that the simulation is perfect. Noting that A wins at most as often as A ′ (since

e.g., A may come up with a forgery (m,σ) nevertheless rejected by Proc), we have:

Pr[G1(A) ⇒ 1∧E1,i , j] ≤Advsuf−cma
Sig (A ′).

E2: Note first that given E2, we can deduce that every query to INJECT will have output ⊥. Let

A ′ be a KINDA ′
CGKA,Ccgka

adversary. A ′ simulates for KINDA
A-CGKA,Ccgka,Cadm,Cforgery

adversary A

as follows. When A makes an oracle query, A ′ executes all code in IAS except for that which

makes use of CGKA algorithms, which are processed via A ′’s oracles; A ′ then returns each

response to A . One case we must deal with is when Proc is called at line 11; the call may

succeed but the caller may ignore the state update, undoing the changes made; this happens

given the group state changes as a result of the call. Note that A ′ can determine whether this

case occurs or not using the fact that commit messages are honestly delivered by construction

of the KIND game and by correctness which ensures that honestly-generated and delivered

158

5.3 A-CGKA Constructions

commit messages are accepted. In particular, A ′ can use the policy to determine whether or

not the call would update the group state, and only call its DELIVER when the group state is

not changed. Finally, A ′ outputs the same bit as A .

To see that the simulation is perfect, first note that CGKA algorithms are used as black boxes

in IAS. Moreover, except in the case dealt with above, CGKA state variables s0 for each ID are

not used except as input to CGKA algorithms, after which they are immediately overwritten,

exactly as done by the CGKA KIND challenger given correctness and in particular the fact that

failing algorithm calls do not update the state. Thus, it suffices to simulate CGKA code using

A ′’s oracles. Thus:

Pr[G1(A) ⇒ 1∧E2] = Pr[KINDCGKA,Ccgka (A ′) ⇒ 1]

We then have:∣∣∣∣Pr[G1(A) ⇒ 1]− 1

2

∣∣∣∣= ∣∣∣∣Pr[G1(A) ⇒ 1∧ (∨i , j E1,i , j ∨E2)]− 1

2

∣∣∣∣
≤

∣∣∣∣∣∑
i , j

Pr[G1(A) ⇒ 1∧E1,i , j]+Pr[G1(A) ⇒ 1∧E2]− 1

2

∣∣∣∣∣
≤

∣∣∣∣∣∑
i , j

Pr[G1(A) ⇒ 1∧E1,i , j]

∣∣∣∣∣+
∣∣∣∣Pr[G1(A) ⇒ 1∧E2]− 1

2

∣∣∣∣
≤ q2 ·Advsuf−cma

Sig (A ′)+Advkind
CGKA(A ′) ,

where the second and third lines follow from the union bound and triangle inequality, respec-

tively. The result follows by combining this with the game hop earlier.

Optimal Forward Security. As described above, we can achieve optimal forward security, and

thus optimal admin security (i.e., security with respect to Cadm-opt) by replacing signatures

with forward-secure signatures [BM99, MMM02]. The logic of the security reduction is very

similar to that presented with regular signatures above. The main difference is that forward-

secure signature calls are replaced by oracle calls, including possibly key exposure calls.

5.3.2 Dynamic Group Signature

In our second construction, dynamic group signature (DGS), the group administrators agree

on a common signature key pair that they use for signing administrative messages on an

underlying CGKA. To agree on a secret and generate a common key pair, they run a separate

CGKA. As opposed to IAS, group administrators may now be opaque to group members if the

concrete CGKA which is used allows it. The reason is that they authenticate admin messages

using an admin signature key that is shared among all admins. Notably, group members do

not need to keep track of an administrator list; admins implicitly track this via their CGKA.

159

Chapter 5. Cryptographic Administration for Secure Group Messaging

5.3.3 Description

Protocol. DGS is introduced in Figures 5.10 and 5.11. In the algorithm, we refer to the primary

(or standard) CGKA as CGKA, and to the administrative CGKA as CGKA∗. The first CGKA

allows group members to agree on a common secret and group over time as in IAS, whereas

the second exists only for administrative purposes (i.e., admins deriving a common signature

key). Note that CGKA∗ need not be implemented in the same way as the primary CGKA. This

can be exploited by a protocol designer either for performance reasons or if, for instance,

stronger FS and PCS guarantees are desired for the administrative CGKA. For simplicity of

exposition, DGS as written does not support self-signed removal operations that non-admins

can commit directly, but we note that the technique to implement them is identical to IAS.

States. Each party stores γ.s0, corresponding to the primary CGKA, as well as γ.sA, corre-

sponding to CGKA∗, which are used for each group they consider. For a given gid, let gid∗

be another group identifier such that for all gid1 ̸= gid2, gid1 ̸= gid2 ̸= gid∗
1 ̸= gid∗

2 . We as-

sume for DGS that gid is used by the main CGKA and gid∗ by the admin CGKA. Besides these

fields, the state includes the administrative public key γ[gid].spk known by all group members

(and can be a public group parameter, known for instance by a central server) to enable

verification. The state variables are now γ[gid].G = γ.s0[gid].G , γ[gid].G∗ = γ.sA[gid∗].G , and

γ[gid].k= γ.s0[gid].k.

PKI. As in IAS, we assume an incorruptible PKI functionality. Similar to IAS, DGS relies on

abstract helpers registerKey(gid) and getSpk(gid), both of which now only take an identifier

gid as input. We assume that admins register their admin signature public keys whenever

they are updated or created, which either happens at group creation time or during a Commit
call; nonetheless we only require that each user calls getSpk(gid) when they join group gid.

Authentication could be implemented while ensuring k-anonymity such that a member

authenticates his group membership but not his identity; such a feature cannot be provided

by IAS without modification.

Initialisation. The Init procedure calls the CGKA.Init and CGKA∗.Init algorithms to initialise

γ.s0 and γ.sA, respectively, and sets γ[·].spk,γ[·].ssk←⊥.

Group Creation. The Create algorithm creates a group for the two separate CGKAs by calling

the two corresponding Create methods. These calls output new states s0 and sA, which

overwrite the stored states, as well as control messages W0 and WA , which are collated into

a create control message T = TC R . We assume that an initial group signature public key is

sampled and uploaded to the PKI by the caller of Create.

Proposals. The Prop algorithm generates a proposal message P by using CGKA.Prop the input

type is standard and CGKA∗.Prop when it is administrative (i.e., of the form ∗-adm). As in IAS,

a validity check on the caller ID′ and the target ID of the proposal is made using the valid(P)

predicate (from IAS). Administrative proposals are signed with γ.spk; this is done to protect

against insider adversaries that may re-send previously crafted administrative proposals (i.e.,

160

5.3 A-CGKA Constructions

DGS.Init(1λ, ID)

1 : γ.s0 $←CGKA.Init(1λ, ID)

2 : γ.sA $←CGKA∗.Init(1λ, ID)

3 : γ.ME← ID; γ.1λ← 1λ

4 : γ[·].spk,γ[·].ssk←⊥

DGS.Create(gid,G ,G∗;r0)

1 : require (γ.ME ∈G∗)∧ (G∗ ⊆G)

2 : (r1,r2,r3,r4) ← H4(r0,γ)

3 : (W0,γ.s0) ←CGKA.Create(γ.s0,gid,G ;r1)

4 : (WA ,γ.sA) ←CGKA∗.Create(γ.sA,gid∗,G∗;r2)

5 : TC R ← (‘create’,W0,WA)

6 : (γ[gid].spk,γ[gid].ssk) ←Gen(γ.1λ;r3); registerKey(gid)

7 : σT ←Sign(γ.ssk, (gid,TC R);r4)

8 : return (gid,TC R ,⊥,⊥,σT)

DGS.Prop(gid, ID,type;r0)

1 : (r1,r2) ← H2(r0,γ)

2 : if type=∗-adm
3 : require γ.ME ∈ γ.sA.G

4 : (γ.sA,P0) ←CGKA∗.Prop(γ.sA,gid∗, ID,type;r1)

5 : P ← (P0,Sign(γ.ssk,P0;r2))

6 : else

7 : (γ.s0,P) ←CGKA.Prop(γ.s0,gid, ID,type;r1)

8 : return P

DGS.Prop-Info(P)

1 : (gid,type, ID, ID′) ←CGKA.Prop-Info(γ.s0,P)

2 : if γ.sA[gid] ̸= ⊥ // Must be an admin proposal

3 : type← type||-adm
4 : return (gid,type, ID, ID′)

DGS.Props(T)

// Supports non-welcome control messages

1 : (gid,TC R ,TW ,TC ,σT) ← T

2 : P⃗0 ←CGKA.Props(TC .C0); P⃗ A ←CGKA∗.Props(TC .C A)

3 : return P⃗0||P⃗ A

DGS.Commit(gid, P⃗ ,com-type;r0)

1 : require γ.ME ∈ γ.G

2 : require com-type ∈ {adm,std,both}

3 : (r1,r2,r3) ← H3(r0,γ)

4 : C0,C A ,W0,WA ,k ←⊥
5 : (P⃗0, P⃗ A ,admReq) ← propCleaner(gid, P⃗)

6 : if admReq∨ (com-type ∈ {adm,both})

7 : require γ.ME ∈ γ.G∗

8 : (ssk,spk) ← getSigKey(γ.sA.k) // old keys

9 : if com-type ∈ {adm,both} // update spk

10 : (spk,C A ,WA) ← c-Adm(gid, P⃗ A ;r1)

11 : if com-type ∈ {std,both}

12 : (C0,W0) ← c-Std(gid, P⃗0,k;r2)

13 : TC ← (‘comm’,C0,C A ,WA ,spk)

14 : TW ← (‘wel’,W0,spk)

15 : σT ←Sign(ssk, (gid,TC ,TW);r3)

16 : else // can be done by non-admins

17 : (C0,⊥,k) ← c-Std(P⃗0;r1)

18 : TC ← (gid, ‘comm’,C0,⊥,⊥)

19 : TW ,σT ←⊥
20 : if k =⊥ k ← γ.s0.k

21 : return ((⊥,TC ,TW ,σT),k)

DGS.Proc(T)

1 : (gid,TC R ,TW ,TC ,σT) ← T ; acc← false
2 : if TC R ̸= ⊥∧TW = TC =⊥
3 : if γ.ME ∈ γ[gid].s0.G return false
4 : acc← p-Create(gid,TC R ,σT)

5 : else if (γ.ME ̸∈ γ[gid].G)∧ (TW ̸= ⊥)

6 : acc← p-Wel(gid,TC ,TW ,σT)

7 : else if (γ.ME ∈ γ[gid].G)∧ (TC ̸= ⊥)

8 : acc← p-Comm(gid,TC ,TW ,σT)

9 : return acc

Figure 5.10: Dynamic group signature (DGS) construction of an A-CGKA, built from two
(possibly different) CGKAs CGKA and CGKA∗, a signature scheme Sig, and PRFs Hn : R ×
ST → Rn for n ≤ 4, randomness space R and state space ST. We let γ[gid].G = γ[gid].s0.G ,
γ[gid].G∗ = γ[gid].sA.G , and γ[gid].k= γ[gid].s0.k.

161

Chapter 5. Cryptographic Administration for Secure Group Messaging

c-Adm(gid, P⃗ A ;r1)

1 : for P ∈ P⃗ A

2 : if P.type= add-adm
3 : require P.ID ∈ γ.G

4 : (γ.sA, (C A ,WA),k) ←
CGKA∗.Commit(γ.sA,gid∗, P⃗ A ;r1)

5 : if C A =⊥ return ⊥
6 : (ssk,spk) ← getSigKey(k)

7 : return (spk,C A ,WA)

c-Std(gid, P⃗0;r2)

1 : (γ.s0,C0,W0,k) ←CGKA.Commit(γ.s0,gid, P⃗0;r2)

2 : return (C0,W0,k)

propCleaner(gid, P⃗)

1 : admReq← false; P⃗0, P⃗ A ← []

2 : for P ∈ P⃗

3 : (gid′,type, ID, ID′) ← prop-info(P)

4 : if gid′ = gid∗∧P.type=∗-adm∧ IAS.valid(P)

5 : P⃗ A ← [P⃗ A ,P]

6 : admReq← true
7 : else if gid′ = gid

8 : P⃗0 ← [P⃗0,P]

9 : if type ∈ {add,rem}

10 : admReq← true
// admin rem from G =⇒ rem also from G∗

11 : if (type= rem)∧ (ID ∈ γ.G∗)

12 : P ′ ←CGKA∗.Prop(γ.sA,gid∗, ID,rem)

13 : P⃗ A ← [P⃗ A ,P ′]
14 : (P⃗0, P⃗ A) ← enforcePolicy(P⃗0, P⃗ A)

15 : return (P⃗0, P⃗ A ,admReq)

p-Create(gid,TC R ,σT)

1 : (msg-type,W0,WA) ← TC R

2 : require msg-type= ‘create’

3 : (γ0,acc) ←CGKA.Proc(γ.s0,W0)

4 : (γA ,⊥) ←CGKA∗.Proc(γ.sA,WA)

5 : if γA [gid].G =⊥∨ (; ̸= γA [gid].G ⊆ γ0[gid].G)

6 : (γ.s0,γ.sA) ← (γ0,γA)

7 : else return false
8 : return acc∧Vrfy(getSpk(gid), (gid,TC R),σT)

p-Wel(gid,TC ,TW ,σT)

1 : (msg-type,W0,spk) ← TW

2 : require msg-type= ‘wel’∧getSpk(gid) = spk
3 : if ¬Vrfy(spk, (gid,TC ,TW),σT) return false
4 : (γ′,acc) ←CGKA.Proc(γ.s0,W0)

5 : if ¬acc return false
6 : γ[gid].s0← γ′

7 : γ[gid].spk← spk
8 : return true

p-Comm(gid,TC ,TW ,σT)

1 : (msg-type,C0,C A ,WA ,spk) ← TC

2 : require msg-type= ‘comm’

3 : γ′ ← γ.sA
4 : if σT =⊥ // no sig ⇒ check no changes to G

5 : (γ′,acc) ←CGKA.Proc(γ.s0,C0)

6 : if ¬acc∨ (γ′[gid].G ̸= γ[gid].G)

7 : return false
8 : γ[gid].s0← γ′

9 : return true
10 : else if ¬Vrfy(γ[gid].spk, (gid,TC ,TW),σT)

11 : return false
12 : if γ.ME ∈ γ.G∗

13 : (γ′,acc) ←CGKA∗.Proc(γ.sA,C A)

14 : if ¬acc return false
15 : else if WA ̸= ⊥
16 : (γ′,⊥) ←CGKA∗.Proc(γ.sA,WA)

17 : if C0 ̸= ⊥
18 : (γ†,acc†) ←CGKA.Proc(γ.s0,C0)

19 : if ¬acc† return false

20 : γ[gid].s0← γ†

21 : if γ.ME ̸∈ γ†.G // removed user

22 : γ[gid] ←⊥
23 : return true
24 : γ[gid].sA← γ′; γ[gid].spk← spk
25 : return true

getSigKey(r)

1 : (ssk,spk) ←KeyGen(1λ; Hro(r))

2 : return (ssk,spk)

enforcePolicy(P⃗0, P⃗ A)

1 : return (P⃗0, P⃗ A) ← IAS.enforcePolicy(P⃗0, P⃗ A)

Figure 5.11: Helper functions for DGS in Figure 5.10 w.r.t. random oracle Hro : {0,1}λ→ {0,1}λ.

162

5.3 A-CGKA Constructions

those that are legitimate but correspond to a previous epoch), or even create new ones if

these are sent in plaintext. The Prop-Info algorithm is fully based on the respective Prop-Info
algorithms (which in principle may not necessarily output fourth value ID′ if anonymous

proposals are allowed); we assume Props is likewise inherited from the underlying CGKAs.

Commits. For a given gid, administrative changes are committed via CGKA∗.Commit (which

outputs (C A ,WA)) and standard group changes via CGKA.Commit (outputting (C0,W0) as

usual). Note that the CGKA∗ secret kadm associated with the CGKA∗.Commit call is used to

generate each admin signature key pair (ssk′,spk′).

The new admin key spk′ is included in the final A-CGKA commit message so that (non-admin)

group members can process it. In order to prove the authenticity of the commit (and of spk′),

the committer signs the whole commit message including C A ,WA ,C0,W0 and spk′ with the

old admin signing key γ.ssk. In addition, the committer must verify all proposal signatures in

advance.

As before, a commit can be split into a welcome message TW for newly added users, and

a commit message TC for group members. These are signed jointly in our construction to

simplify the security proof, but may also be signed separately. In TC , we also include the

welcome messages to CGKA∗, since they must always be addressed to current group members

(i.e., of G). In a given Commit call, one or both of CGKA and CGKA∗ may be updated, and in

particular CGKA but not CGKA∗ (for a non-admin commit) and vice-versa (for an admin-only

commit).

Processing Control Messages. The Proc method takes a control message T , determines the

type of message (create, welcome, or commit) and the gid, and updates the state only if

processing succeeds (acc= true). Newly added users verify the admin signature, process the

welcome message using CGKA.Proc and store the new public admin key (spk′, provided in T)

in γ.spk.

Group members verify the administrator signature (if the commit requires administrative

rights) using γ.spk. Then, depending on the commit type at least one of CGKA and CGKA∗

are updated via the corresponding CGKA Proc algorithm. Given CGKA∗ or both CGKAs are

updated, the updated admin key is set as γ.spk← spk′. In case T contains a create message

TC R , both CGKAs process the respective welcome messages contained in TC R separately.

Features

DGS allows the use of two distinct and independent CGKA protocols that authenticate admins

as a group, providing some notable features that differ from IAS. One can also imagine a

‘hybrid’ approach where users run IAS except that some IAS keys are maintained and updated

via their own CGKA and/or a hierarchy of CGKAs is employed.

163

Chapter 5. Cryptographic Administration for Secure Group Messaging

Minimal Information Reveal. As opposed to IAS, the set of group administrators can be

opaque to the central server and to the rest of the group (whenever the underlying CGKAs

preserve the anonymity of group members with respect to external parties); this is reflected in

the way DGS uses a PKI.

Limitations. A drawback of DGS is that enforcing different “levels of administration”, for

which IAS can be easily extended, is not straightforward. Nevertheless, one can still implement

minor policies such as muting users at an application level (as done in practice). We also

note that admins may not have a reliable view of the set of admins if CGKA∗ is susceptible to

insider attacks that violate robustness10. If these attacks are relevant, one can deploy heavier

protocols such as the P-Act-Rob protocol from Alwen et al. [ACJM20]. A third limitation is

that admins cannot give up their admin status immediately; they must send a self rem-adm
proposal, erase their admin state, and wait for another admin to commit. This occurs generally

in CGKA when a member leaves a group; to minimise this delay, the MLS standard requires

users to commit immediately upon receipt of a valid proposal (in this case a removal). This

problem could nevertheless be solved using the same approach as for self-removes in IAS, i.e.,

allowing admin self-removes without an admin signature.

Security Mechanisms. We note the conceptual simplicity of achieving PCS and FS for the

group administration keys (in the adversarial model for CGKA∗) given the existence of secure

CGKA schemes in the literature, since both properties are ensured by CGKA∗ itself. Update

mechanisms are largely simplified due to a single admin key being used. Delegation and

revocation of admin keys are also straightforward.

Correctness and Security

Theorem 18. Let CGKA and CGKA∗ be correct CGKAs, and Sig be a 1-correct signature

scheme. Then, the DGS protocol (Figures 5.10 and 5.11) is correct with respect to Definition

42.

Proof. We prove that no adversary A can win CORRA-CGKA,Ccorr (where we set Ccorr = true)

played with respect to DGS (Figures 5.10 and 5.11) given that CGKA,CGKA∗ are correct. We

omit some details which are analogous to IAS’ correctness proof (note that IAS and DGS are

designed such that they share sections of their code).

For PROP, the correctness of Prop-Info follows from the correctness of

CGKA.Prop-Info,CGKA∗.Prop-Info by assumption. Also, the adversary cannot win af-

ter the group membership check as Prop only modifies the state by calling CGKA.Prop and

CGKA∗.Prop; which are correct by assumption.

The group membership check must always pass in CREATE and COMMIT for identical

reasons.

10This scenario is out of the scope of our security model where admins are fully trusted.

164

5.3 A-CGKA Constructions

For DELIVER, we examine each reward clause as done previously with IAS. As before, note

that in line 2 of DELIVER, T is a commit message created either by Create or by Commit. Also,

it is easy to see that the CGKA.Props check in PROP holds.

The clause (; ̸= γ[gid].G∗ ⊆ γ[gid].G) is met upon generation of any create message T (pro-

duced by CREATE) by construction (line 1 of Create). When any message is processed by

p-Create, the condition is enforced again.

If T is a (standard) commit made by a non-admin user – that is, one without a signature – then

there are no changes to the group in the commit as checked explicitly by the auxiliary c-Std
upon commit. The message must only contain a TC which is processed by p-Comm, which

again enforces this condition.

If T an admin commit, then it is processed by p-Comm or by p-Wel. In both cases, commit

messages are processed by the underlying CGKA,CGKA∗ methods. Therefore, correctness

depends on the Commit algorithm. The case distinction follows the exact same logic as in

IAS, since the algorithms propCleaner and enforcePolicy, and the predicate valid(P) enforce

the same conditions.

The next case is the reward γ[gid].k ̸= ⊥ for a removed (or non-member) ID, which is enforced

in DGS by p-Comm and by the correctness of the CGKAs.

For the last check by UpdateView, one can proceed by induction as in IAS. The main difference

is that the admin update is not done manually as in IAS (i.e., modifying adminList), but rather

by the underlying Proc algorithms of CGKA∗, which yields the result easily. The last check for

the consistency of the derived group key also follows as in IAS. We omit the details.

Theorem 19. Consider KIND CGKA CGKA with respect to cleanness predicate Ccgka, KIND
CGKA CGKA∗ with respect to Ccgka∗, SUF-CMA signature scheme Sig and PRF H4. Then, for

A-CGKA DGS, we have, with respect to cleanness predicates Ccgka,Cadm,Cforgery =Cforgery
∗,

that for every efficient adversary A that makes at most q oracle queries, one can build an

adversary B such that

Advkind
DGS(A) ≤Advkind

CGKA(B)+q ·
(
Advprf

H4
(B)+Advsuf−cma

Sig (B)+qro ·Advkind
CGKA∗(B)+2−λ

)
,

where Cadm is a function of Ccgka∗ defined below and Cforgery
∗ is defined in Section 5.2.4.

Proof idea. We first describe Cadm. Intuitively, Cadm ensures that the set of safe oracle queries

for DGS adversary A given inject queries of the form qi = INJECT(ID,m, ta) are those that

are safe for CGKA∗ adversary A ′ under essentially the same queries, replacing INJECT(·, ·, ta)

queries with queries of the form CHAL(ta). To prove security, we use a similar game-hopping

argument as in IAS. We first replace Hi calls using the PRF assumption. We then consider

E1 (a successful injection is made) and E2 (otherwise) as in IAS. Given E2, we can simulate

directly via the CGKA adversary. Given E1, we simulate differently depending on whether A

makes a query to random oracle Hro with a correct CGKA∗ key before the successful injection

165

Chapter 5. Cryptographic Administration for Secure Group Messaging

or not. Here, if A is successful, we reduce security to the CGKA∗ adversary by intercepting

the relevant random oracle query and guessing the correct bit using information from CHAL.

Otherwise, we can simulate via an EUF-CMA adversary as in IAS since the signature key is now

uniform from the adversary’s perspective.

Predicate Cadm. Cadm is tailored to DGS and is a function of the underlying CGKA∗ predicate

Ccgka∗. Intuitively, Cadm ensures that the set of safe oracle queries for DGS adversary A

given inject queries of the form qi = INJECT(ID,m, ta) are those that are safe for CGKA∗

adversary A ′ (i.e., the predicate Ccgka∗) under roughly the same queries, replacing at most one

INJECT(·, ·, ta) queries with a CHAL(ta) query. For example, noting the symmetry between

predicates Cadm-opt and Ccgka-opt, if CGKA∗ is secure with respect to CGKA predicate Ccgka-opt,

then DGS is secure with respect to admin predicate Cadm-opt.

We define Cadm more formally. Let Q = (qi)I be the ordered sequence of oracle queries made

by the DGS adversary A . To define Cadm, we construct an ordered sequence of queries Q∗

that are made by the CGKA∗ adversary A ′ in the security proof below by replacing, inserting

and/or deleting queries in-order. Let ℓ ∈ [1, qi n j]∪ {⊥} where qi n j is the number of INJECT
queries made by A . To this end, consider each qi ∈Q and, for each ℓ, define q∗

i to be either a

single query or a sequence of queries in Q∗ as follows:

• qi =CREATE(ID,G ,G∗): Set q∗
i =CREATE(ID,G∗).

• qi = PROP(ID, ID′,type): Set q∗
i = ⊥ if type ̸= ∗-adm and q∗

i = PROP(ID, ID′,type∗)

otherwise where type= type∗-adm.

• qi = COMMIT(ID, (i1, . . . , ik),com-type): If the condition (admReq ∨ ...) at line 6 of

Commit is false, com-type= std or ID is not currently an admin, set q∗
i =⊥. Otherwise,

let {I D1, . . . , I D j } be the (possibly empty) set of parties for which CGKA∗ rem proposals

are introduced by propCleaner (line 12). Let P⃗ A be the value input to CGKA∗.Commit at

line 4 of c-Adm (or P⃗ A =⊥ if the line is not reached), and (i1, . . . , ik) the corresponding

proposal indices in the CGKA∗ KIND game. Let q ′ be the REVEAL query that reveals

the key k output by Commit in the COMMIT call if the corresponding signature key pair

is not used for the first successful INJECT query, and ⊥ otherwise. Then, set q∗
i to the

sequence (PROP(ID, ID1,rem), . . . ,PROP(ID, ID j ,rem),COMMIT(ID, (i1, . . . , ik)), q ′).

• qi =CHAL(ts): Set q∗
i =⊥.

• qi = DELIVER(ID, (ts , ta),c): Let (T,com-type) = T[(ts , ta),com,c] for DGS KIND game

variable T. If Proc is called by the game, ID ∈G holds, Tc ̸= ⊥ holds and either ID ∈G∗

holds or WA (contained in T) is ̸= ⊥, set q∗
i = DELIVER(ID, ta ,c∗), where c∗ ≤ c is the

number of times CGKA∗.Commit was called after c queries to COMMIT. Otherwise, set

q∗
i =⊥.

• qi =REVEAL(ts): Set q∗
i =⊥.

• qi =EXPOSE(ID): Set q∗
i = qi .

166

5.3 A-CGKA Constructions

• qi = INJECT(ID,m, ta): Set q∗
i =⊥ if q∗

i is the j -th query to INJECT where j ̸= ℓ (possi-

bly ⊥) and CHAL(ta) otherwise (ℓ ̸= ⊥).

Then, Cadm is defined to be true if Ccgka∗ is true for runs where the first successful INJECT
query is the ℓ-th query to INJECT (where the ⊥-th query denotes no successful injection).

We prove DGS secure below.

Proof. Following the proof of Theorem 17 we let G0 be the KINDA
A-CGKA,Ccgka,Cadm,Cforgery

game,

and G1 be as in G0 except that all calls of the form (r1, . . . ,ri) ← Hi (r0,γ) are replaced with calls

of the form (r1, . . . ,ri) $← R i . We transition between G0 and G1 exactly as in Theorem 17. That

is, we define hybrids G0, j where G0,0 =G0, G0, j =G1 when j ≥ q and G0, j differs from G0 for

appropriate 0 < j < q by replacing the first j calls to functions of the form Hi with uniformly

sampled values by the challenger. As before, we have
∣∣Pr[G0, j−1(A) ⇒ 1]−Pr[G0, j (A) ⇒ 1]

∣∣≤
ϵF for each j ≥ 1, where ϵF is the advantage of PRF adversary A ′, which implies also that∣∣∣∣Pr[G0(A) ⇒ 1]− 1

2

∣∣∣∣≤ ∣∣∣∣Pr[G1(A) ⇒ 1]− 1

2

∣∣∣∣+q ·Advprf
H4

(A ′).

Let E1 be the event that A queries INJECT such that the oracle does not output ⊥ (i.e., it

outputs the challenge bit). Let E2 be the event that this does not occur; clearly Pr[E1]+Pr[E2] =
1. To prove security, we will reduce to the security of the primary CGKA, i.e., CGKA, given E2,

and to CGKA∗ and signature security given E1.

We first consider the simpler E2 case where no successful injection is made (and thus INJECT
calls can be easily simulated); let A ′ be a KIND adversary w.r.t. CGKA simulating for G1

adversary A given E2. A ′ simulates as follows. For each oracle query, A ′ simulates relevant

CGKA∗ calls locally unless stated otherwise. In particular, A ′ simulates Init(1λ, ID) for ID only

as needed (i.e., lazily). Then:

• CREATE(ID,G ,G∗): A ′ calls CREATE(ID,G) if needed and otherwise locally simulates.

• PROP(ID, ID′,type): A ′ simulates locally if type is of the form ∗-adm and simulates via

PROP(ID, ID′,type) otherwise.

• COMMIT(ID, (i1, . . . , ik),com-type): Since CGKA.Commit is called after

CGKA∗.Commit, A ′ can simulate CGKA∗ calls locally and call COMMIT(ID, J =
(j1, ..., jk ′)), where J corresponds to the set of relevant CGKA proposal indices derived

from (i1, . . . , ik), to simulate CGKA.Commit calls.

• DELIVER(ID, (ts , ta),c): A ′ simulates the relevant CGKA.Proc call (there is at most one

such call made by construction of DGS Proc) via DELIVER(ID, ts ,c ′) where c ′ is the

index of the relevant CGKA control message. A ′ simulates locally otherwise.

• REVEAL(ts) and CHAL(ts): A ′ simulates directly via their respective oracles.

167

Chapter 5. Cryptographic Administration for Secure Group Messaging

• EXPOSE(ID): A ′ calls EXPOSE(ID) and simulates the rest of the call locally.

• INJECT: By definition of E2, INJECT always returns ⊥, and since INJECT does not

modify the state, A ′ simply outputs ⊥ upon each INJECT call.

By construction, DGS inherits the (normal) CGKA cleanness predicate Ccgka from CGKA, and

so the simulation is perfect and it follows thus that:

Pr[G1(A) ⇒ 1∧E2] ≤Advkind
CGKA(A ′).

Now, consider adversary A playing G1 given E1 occurs, i.e., A makes a successful INJECT
call. Note that there are at most q different CGKA∗ epochs during a given execution and

consequently at most q different CGKA∗ signature key pairs computed by correct parties

(since each signature key pair is derived from a given CGKA∗ epoch secret).

Given E1, let F1 be the event that G1 adversary A calls random oracle Hro with input r that

corresponds to the signature key pair used in the successful INJECT query (guaranteed to exist

by Lemma 16) before the injection is made. That is, r is such that (ssk,spk) ←Gen(1λ; Hro(r))

is called by the challenger at some point. Let F2 be the complementary event (i.e., either such

a Hro query is made after the successful injection or not at all). We consider the case with F1

(by simulating via the CGKA∗ KIND game) and F2 (via the SUF-CMA game) separately.

Consider F1. Let Fi , j be the event that the aforementioned Hro(r) query is the i -th query

to Hro and is with respect to the j -th CGKA∗ key pair sampled by oracle queries during the

game’s execution; clearly at most q ·qro such events occur. Let A ′ be a CGKA∗ adversary who

simulates for G1 adversary A as follows given Fi , j ∧E1. We assume KIND is such that A ′ can

reveal secrets k output by Commit from oracle COMMIT. Note that our predicate Cadm is

designed for this simulation.

A ′ simulates by calling relevant CGKA∗ oracles and simulating locally otherwise. When Ai

calls getSigKey while simulating Commit calls, Hro is queried with input r ; Ai lazily samples

in this case. When A queries INJECT, A ′ simply returns ⊥. Note that COMMIT invokes

Commit but does not output the key k that Commit outputs. When A ′ first derives key k from

COMMIT for the x-th CGKA∗ key pair, for x ̸= j , A reveals secret k output by Commit; A can

thus simulate DGS algorithm Commit perfectly. When A ′ makes their i -th query to Hro with

input r , A ′ makes a CHAL query for the corresponding epoch, which outputs k ′; Ai finishes

simulating and returns bit 0 if and only if k ′ = r . The simulation is perfect, and when b = 0 Ai

wins iff A wins, since Ai outputs 0 only if they derive the correct key or signature public key

in the simulation, and when b = 0 the challenge oracle outputs the correct key. The b = 1 case

is similar except in the case that b = 1 and the r sampled by the game is the same as the real

key (which happens with probability 1
2λ

); it follows that

Pr[G1(A) ⇒ 1∧E1 ∧F1] ≤ q ·qro ·Pr[KINDCGKA∗,Ccgka∗(A ′) ⇒ 1]+ q

2λ
.

168

5.3 A-CGKA Constructions

We consider F2. Let F ′
i be the event, for 1 ≤ i ≤ q , that a successful injection is made which

uses the i -th CGKA∗ key pair sampled by oracle queries during the game’s execution. Note

that such a key pair must exist and that a signature forgery, by algorithm construction, is a

necessary but not sufficient condition to make a INJECT query with a non-bottom response.

Consider Ai who simulates as follows. Ai simulates all queries locally except that Ai embeds

his challenge key in the i -th such CGKA∗ key pair in relevant control messages and uses

the SIGN oracle to produce signatures as necessary. Note that the safety predicate is such

that, conditioned on F ′
i , that an EXPOSE query that leaks the corresponding signature key is

disallowed. In addition, A does not make any Hro query that would lead to a trivial exposure

by definition of F2, and thus the distribution of the challenge key pair is uniform (i.e., correct).

It follows that the simulation is perfect and that:

Pr[G1(A) ⇒ 1∧E1 ∧F2] ≤ q ·Advsuf−cma
Sig (A ′)

The proof is completed by combining the sequence of game hops considered hitherto.

5.3.4 Integrating A-CGKA into MLS

Some group messaging protocols already authenticate group members via signatures and

public-key infrastructure. The MLS specification [BBR+23] relies on credentials, which are

essentially public signature keys for each protocol user that are certified by a PKI; these keys

authenticate messages originating from that user11. Therefore, it is possible to extend the

CGKA used in MLS to an A-CGKA in a more efficient way than using a compiled A-CGKA

construction resembling IAS. We note that, in practice, it is feasible to support secure admin-

istration in MLS via an MLS extension, a feature that enables additional proposal types and

actions in the protocol [BBR+23]. Constructing such an extension is almost straightforward

and we identify three main necessary changes:

• Credentials are not necessarily refreshed in MLS, meaning that admins (and users

in general) whose state is compromised at some point lack forward security and post-

compromise security on their authentication keys (unless they proactively update them).

Our solution is to enforce an IAS-like credential update mechanism for admin signature

keys (providing post-compromise security) which may be invoked without updating the

core CGKA secret.

• Group members need to keep track of the administrators (for an IAS-like extension). To

this end, we introduce new admin proposal types and enforce that admin proposals

are signed, alongside corresponding update policies and modifications to Commit and

Proc.

• As in IAS, admins register their keys with the PKI as they are updated over time.
11Signatures play an important role in MLS: “...group members can verify a message originated from a particular

member of the group. This is guaranteed by a digital signature on each message from the sender’s signature key. The
signature keys held by group members are critical to the security of MLS against active attacks...” [BBR+23].

169

Chapter 5. Cryptographic Administration for Secure Group Messaging

Modifications. We propose an extension of the main algorithms of the MLS protocol (in

particular, of the CGKA-related Prop, Commit and Proc) in Figure 5.12, that we also benchmark

in Section 5.4.1. Our goal is to show how an IAS-like protocol can be easily achieved with

relatively low overhead. We follow Alwen et al. [ACDT21a] (in particular, Figure 8 in the full

version [ACDT21b]), as this is the most comprehensive formalisation of MLS in the literature

at the time of writing; therefore, we also work in the single-group setting and omit gids. We

omit the Send and Receive algorithms as these are used to send application messages only. We

note also that their Create method supports only one initial participant.

Protocol Details. The main modifications are to (1) the admins’ credentials, which are reg-

ularly updated via upd-adm proposals and admin commits; and (2) in the introduction of

the three additional proposal types from A-CGKA. For brevity, we omit several parts of the

protocol, such as some sanity checks (e.g., some require predicates), functionality that we

do not need to modify and details on a higher level than CGKA (like the use of a MAC by

MLS). Also for simplicity, we extend the CGKA state γ to include the state variables used in IAS.

Following Alwen et al. [ACDT21a], we split the processing algorithms in two – one for commit

messages, and one for welcome messages – that a committer produces for each incoming user

separately.

Overall, the overhead with respect to (bare-bones) MLS is minimal; we essentially only need to

support the new types of proposals and to refresh admin credentials for admin updates. Most

of the protocol logic relates to updating signatures and the adminList. Note that proposals are

always signed in MLS so signing within makeAdminProp can be foregone. We also support

self-removal proposals that can be committed by standard users.

Correctness and Security. We leave it open to formally propose and prove correctness and

security for an appropriate MLS extension; we sketch here how it could be done. The modelling

of messaging and MLS in particular of Alwen et al. [ACDT21a] is more complex than ours. In

particular, they consider CGKA as a sub-primitive that is used to build secure group messaging

(SGM) alongside several other primitives. Thus, one could re-define SGM to account for new

proposal types and administration as we have done for A-CGKA, including admin correctness

guarantees and security upon injections from non-admins. Since admin proposals are tightly-

coupled with protocol flow, proposing a model ‘on top’ of theirs to provide admin security

seems difficult, although modular guarantees would be ideal. Proving correctness and security

then boils down to similar case analysis and reductions to theirs and ours.

5.4 Evaluation and Discussion

In this section, we describe our implementation and corresponding experimental results for

our MLS extension proposed in Section 5.3.4. We then discuss how our modelling in this

chapter compares to the related work.

170

5.4 Evaluation and Discussion

Prop(ID,type;r0)

1 : if type=∗-adm
2 : require γ.ME ∈ γ.G∗

3 : (P,⊥) ← IAS.makeAdminProp(type, ID;r0)

// getSpk is replaced in makeAdminProp
4 : if type ∈ {add,rem,upd}

5 : (γ,P) ←CGKA.Prop(γ, ID,type;r0)

// Added users’ keys retrieved from contact list/PKI

6 : σ←Sign(γ.ssk,P) // all MLS proposals are signed

7 : return (P,σ)

Commit((P⃗0, P⃗ A),com-type;r0)

1 : (r1,r2,r3) ← H3(r0,γ)

2 : if com-type ∈ {adm,both}

3 : require γ.ME ∈ γ.G∗

4 : require IAS.verifyPropSigs(⊥,⊥, P⃗ A)

5 : C A ← P⃗ A

6 : adminList′ ← IAS.updAL(adminList, P⃗ A)

7 : (γ.ssk′,γ.spk′) ←KeyGen(γ.1λ;r1)

8 : γ← updSpk(γ, ID,spk′)
9 : if com-type ∈ {std,both}

10 : (γ,C0,W0,⊥) ←CGKA.Commit(P⃗0;r2)

11 : if W0 ̸= ⊥ // share updated adminList

12 : Prepare welcome msgs as in [ACDT21a] for W⃗

13 : for W ∈ W⃗ :

14 : W ←W ||adminList′

15 : σ $←Sign(γ.ssk,W) // rand.

16 : T ← (‘com’,γ.ME,C0,C A ,γ.spk′)
17 : σ←Sign(γ.ssk,T ;r3)

18 : return ((T,σ),W⃗)

Proc-WM(W)

// ID is the committer of W

1 : require W.adminList[ID] ̸= ⊥
2 : Run Proc-WM(W) in [ACDT21a]

3 : γ.adminList←W.adminList
4 : Check adminList[ID] with PKI

Proc-CM(T,σ)

1 : (‘com’, ID,C0,C A ,spk′) ← T

2 : if adminList[ID] =⊥
3 : require Vrfy(getSpk(ID),T,σ)

4 : Run Proc-CM(T) in [ACDT21a]

5 : require no membership changes to γ.G

except self-removals

6 : if adminList[ID] ̸= ⊥
7 : require Vrfy(adminList[ID],T,σ)

8 : if spk′ ̸= ⊥
// spk was registered

9 : require spk′ = getSpk(ID)

10 : Update keys and adminList as in IAS

11 : IAS.p-Comm(T)

12 : Check new adminList keys with PKI

getSpk(ID)

// Get spk from ID’s credential

1 : return Cred[ID].spk

updSpk(γ, ID,spk′)
// Register spk′ with the PKI

1 : γ← registerPKI(γ, ID,spk′)
// Update ID’s credential

2 : γ.Cred[ID].spk← spk′

Figure 5.12: Construction of an MLS extension that supports group administrators, effectively
turning the CGKA in MLS into an A-CGKA. Highlighted lines correspond to our main modifi-
cations in the original secure group messaging (SGM) construction of Alwen et al. [ACDT21a].
Cred[·] denotes a dictionary that stores the credentials of all ID’s. We also use the abstract
function registerPKI for standard PKI functionality of registering signature keys and getSpk for
fetching keys as in IAS. WM (resp. CM) denotes ‘welcome message’ (resp. ‘commit message).
Some technical details are omitted.

5.4.1 Benchmarks and Performance

We implemented the protocol in Section 5.3.4 to obtain a realistic estimate of the overhead

of securely administrating a real-world messaging protocol. We modified an open-source

171

Chapter 5. Cryptographic Administration for Secure Group Messaging

implementation of MLS in Go12 and compare the running times of MLS (which also performs

e.g. parent hashing and non-admin proposal signing), with the running times of administrated

MLS in different scenarios. In particular, we analyze the Commit and Proc algorithms in Figure

5.12, where the latter includes Proc-CM and also processing proposals when relevant (done

separately in the implementation). We ran our benchmarks on a laptop with a 4-core 11th

Gen Intel i5-1135G7 processor and 16 GB of RAM using Go’s testing package13. Core cryp-

tographic operations were implemented as HPKE [BBLW22] with ciphersuite DHKEM(P-256,
HKDF-SHA256), HKDF-SHA256, AES-128-GCM (in particular using ECDSA for signatures) from

Go standard libraries. We measured the time taken for a single group member to perform

the relevant operation. For each data point, we took the average over 100 iterations that

randomised the group members and admins performing group operations, as performance

can be affected by their position in MLS’s TreeKEM.

Our results are displayed in Figures 5.13 and 5.14, where we show the running time of the

Commit (Figure 5.13) and Proc (Figure 5.14) algorithms in different realistic scenarios. We

run experiments where relevant, i.e., when there are no admin operations, using the original

implementation as a baseline, as well as using our modified implementation, to demonstrate

that the additional admin logic we introduce does not noticeably affect performance.

On the one hand, we present the running time of both algorithms for varying group size |G|
with a fixed member/admin ratio |G|/|G∗| = 4. In the event of updating users, there are t = |G∗|
users updating and/or t/2 admins doing an admin-update. On the other hand, we benchmark

our algorithms for fixed group size |G| = 64, |G∗| = 16, while varying the number of updates t

(and/or t/2 updating admins) in a commit.

For both cases, we compare the committing and processing times of (1) standard commits

(com-type= std, omitted in fixed group size benchmarks), (2) standard commits with t update

proposals, (3) standard and admin commits (com-type= both) with t/2 admin-update pro-

posals but no standard-update proposals, and (4) standard and admin commits with t update

and t/2 admin-update proposals.

Communication Overhead. In both the baseline and our implementations, proposals used

364 to 366 bytes, and admin proposals used 364 to 368 bytes (all proposals being signed).

Commit message sizes in both implementations vary proportionally with the size of the group

and the number of proposals. In the baseline MLS implementation, a typical Commit for |G| = 8

and |G| = 128 with t = 2 and t = 32 update proposals uses 1.49 KB and 17.11 KB respectively.

In our implementation, corresponding commits use 1.56 KB and 17.17 KB respectively. If t/2

admin updates are added (1 and 16, respectively), commits require 1.60 KB and 17.65 KB.

In general, commits in our implementation, even with admin proposals, incur only a small

amount of overhead (tens of bytes) over the baseline implementation when fixing the number

of proposals.

12The original source code is available at https://github.com/cisco/go-mls.
13https://pkg.go.dev/testing

172

https://github.com/cisco/go-mls
https://pkg.go.dev/testing

5.4 Evaluation and Discussion

8 16 32 64 128
Group size

0

5

10

15

20

25

30

35
Ti

m
e

(m
s)

commit only
commit only (baseline)
com + upd
com + upd (baseline)
com + adm-upd
com + both upds

0 4(2) 8(4) 12(6) 16(8) 20(10) 24(12) 28(14)
Number of updates (admin updates)

7.5

10.0

12.5

15.0

17.5

20.0

22.5

25.0

Ti
m

e
(m

s)

com + upd
com + upd (baseline)
com + adm-upd
com + both upds

Figure 5.13: Benchmark of the Commit algorithm in the following scenarios: (1) standard
commits (com-type= std, omitted right), (2) standard commits with t update proposals, (3)
standard and admin commits (com-type= both) with t/2 admin-update proposals but no
standard-update proposals, and (4) standard and admin commits with t update and t/2
admin-update proposals. Original MLS is displayed as baseline. Left: running time with
respect to group size |G| on constant member/admin |G|/|G∗| = 4 ratio and constant number
of updates t = |G∗| (t/2 admin updates). Right: running time with respect to the number of
updating users t (and t/2 admin updates), for fixed |G| = 64.

Protocols. The results above show that the additional cost (for users) of running a securely-

administrated MLS is minimal. Figure 5.13 shows that the Commit algorithm involves less than

a 20% overhead when up to |G|/8 members carry out admin updates simultaneously (note

that admin updates also involve standard updates). Figure 5.14 shows that the processing

time of admin and standard updates is very similar, and increases linearly in the number of

updates.

Separately, we analyze the overhead of IAS and DGS for group members, both for number of

operations and for message size. We note that this assumes that IAS and DGS are implemented

modularly and not integrated with an existing CGKA as before. In IAS, admins generate a

signature key pair and sign every time they carry out a commit or a proposal, and verify a small

amount t of signatures (typically t ≤ |G∗|) in admin proposals before a commit. If we denote

the cost (time/length) of a message signature or verification by s, and the cost (time/length) of

a signature key pair generation by k, we obtain the values14 in Table 5.1. Note that s =O (λ)

and k =O (λ) (i.e., are constant) for security parameter λ.

The overhead of DGS depends heavily on the cost of the admin CGKA CGKA∗ (an optimistic

estimation can be O
(
logm

)
[ACDT20, KPPW+21, ACJM20] but can be O (m) in the worst case).

CGKA operations only affect administrators. Note that a DGS admin-only commit is not sent

to standard members (only the signed new admin key has to). Hence, DGS is very efficient for

standard users.

14We ignore the size of user identifiers IDs as we assume they are small and are each a constant or even
independent function of the security parameter. In any case, the overhead from identifiers should be similar in
existing application-level protocols.

173

Chapter 5. Cryptographic Administration for Secure Group Messaging

8 16 32 64 128
Group size

0

5

10

15

20

Ti
m

e
(m

s)

commit only
commit only (baseline)
com + upd
com + upd (baseline)
com + adm-upd
com + both upds

0 4(2) 8(4) 12(6) 16(8) 20(10) 24(12) 28(14)
Number of updates (admin updates)

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Ti
m

e
(m

s)

com + upd
com + upd (baseline)
com + adm-upd
com + both upds

Figure 5.14: Benchmark of the Proc algorithm when processing a commit message. The
different scenarios are those of Figure 5.13.

Length (Adm) Length (All) Time (Adm) Time (All)
IAS t s + tk t s + tk O (t s +k) O (t s)

DGS C + s +k s +k O (C + s +k) O (s +k)

Table 5.1: Additional cost of IAS and DGS with respect to a plain CGKA (per group) where t is
the number of admin proposals and C (for DGS only) refers to the cost of running CGKA∗.

The ratio of additional messages sent, which is application-specific, is hard to estimate. Admin-

only commits and admin modifications are expected to be less frequent than standard opera-

tions. The number of update proposals (although individually very cheap) is expected to be at

most linear in |G|.

Forward-secure signatures (for optimally-secure IAS) can be instantiated with essentially

constant amortised overhead in space and time relative to a regular signature scheme, while

supporting unbounded secret key updates [MMM02].

We conclude that IAS presents a generally affordable overhead for all users, while DGS in-

troduces basically no cost for standard users and is more costly for administrators if |G∗| is

relatively large.

Admins in TreeKEM Variants. The Tainted TreeKEM protocol provides efficiency advantages

if only a subset of users carry out tree-changing operations (adds and removals) [KPPW+21].

Tainted TreeKEM, however, is not formalised in the propose-and-commit-paradigm, which

complicates the efficiency comparison; such an analysis thus remains open. When stan-

dard users are allowed to commit updates, the tree blanking issue with MLS TreeKEM is not

worsened by administrators, hence efficiency should not decrease either.

174

5.4 Evaluation and Discussion

5.4.2 Modelling in Related Work

CGKAs and MLS. The CGKA abstraction has deviated from MLS and has become an ob-

ject of study of its own [AHKM22, BDG+22, AAN+22b], but in general still inherits important

limitations from MLS. Among them, CGKAs rely on the availability of a well-behaved PKI,

generally require total ordering on control messages (recent work relaxes this to causal order-

ing [AMT23]), and fail to capture messaging solutions that deviate from group key agreement

such as Signal and WhatsApp.

In MLS, there exists a strong architectural separation between the Delivery Service (DS, usually

a central server) and a so-called Authentication Service (AS) whose design is left to the infras-

tructure designers [BBR+23]. Following this separation, the Delivery Service is often modelled

adversarially in CGKAs whereas the AS is abstracted as a PKI [ACDT20, KPPW+21, ACJM20] as

in this chapter. A compromised AS allows for the corruption of user credentials, resulting in

trivial user impersonation.

PKI. Both IAS and DGS rely on a PKI that we assume is incorruptible. In IAS, parties use

the PKI to verify the identity of administrators and self-removing users. In DGS, incoming

users use it to retrieve the current group-wide admin signature public key. As the PKI is only

used to establish an initial root of trust among parties, i.e., forward and post-compromise

security are ensured for existing group members without additional PKI calls, our modelling is

consistent with the separation between delivery and authentication discussed above. Note

that group administration aims to remove the trust in the DS (the server) but is still vulnerable

to a corrupt AS. Previous CGKA work follows similar PKI abstractions [ACDT20, KPPW+21],

or ignores the AS [CHK21]. That is, in all group messaging works we are aware of, the PKI

always behaves consistently and correctly for all users. Two partial exceptions are Alwen et

al. [AJM22] and Alwen et al. [ACDT21a], where malicious keys can be registered, although

security (inevitably) degrades strongly for such users. By abstracting away the AS, our schemes

are compatible with diverse authentication solutions such as out-of-band verification.

Signal Private Groups. In Chase et al. [CPZ20] and as deployed in Signal, a central server

manages the membership of a group whilst hiding the set of group members from non-

members (modulo metadata leaked to a network adversary). The main goals of this solution

are to achieve user privacy and act as a single source of truth for the membership of a group. We

believe that this approach could be extended to support secure administration; an advantage

is that users no longer have to track group membership individually as in (A)-CGKA, which

prevents consistency issues when users do not apply the same sequence of group updates

locally. We note that Signal Private Groups however does not fully protect from server and

network attacks as our A-CGKA constructions do: for example, it is possible for the server to

re-add removed users. In addition, the system has not been analysed in composition with an

underlying group messaging protocol (pairwise Signal) where concurrency issues can arise.

175

6 WhatsUpp with Sender Keys? Anal-
ysis, Improvements and Security
Proofs

In this chapter, we formally model and analyse the group messaging protocol Sender Keys

used by WhatsApp and Signal, and propose some extensions and improvements. An extended

abstract corresponding to this work appeared at ASIACRYPT 2023, and was joint work with

David Balbás and Phillip Gajland [BCG23b]. A preliminary version of this work appeared

at RECSI 2022 [BCG22]. A full version of this work can be found on the Cryptology ePrint

Archive [BCG23a].

6.1 Contribution

In the context of group messaging, Signal [M+16]1 and later WhatsApp [Wha20] have adopted

the so-called Sender Keys protocol [Mar14], which has enjoyed widespread adoption for nu-

merous years. Besides these, other popular solutions such as Matrix [ADJ24] and Session

[Jef20] implement variants of this protocol. In Sender Keys, messages are encrypted using a

user-specific symmetric key (which is then hashed forward) and then authenticated with a

signature. Additionally, parties rely on secure two-party channels (instantiated in practice with

the Double Ratchet) to share key material between them. Looking ahead, two-party channels

will be central to determine the security attained by any instantiation of Sender Keys.

As mentioned in Chapter 5, a baseline for secure group messaging has been recently estab-

lished by the IETF Messaging Layer Security (MLS) [BBR+23] standard, a joint effort between

academia and industry2. The protocol provides sub-linear complexity for group operations

(adding/removing members and updating key material). Academic works have also explored

so-called continuous group key agreement (CGKA) [BBR18, ACDT20, KPPW+21, ACJM20,

ACDT21a], although these are only a component of a fully-fledged group messaging pro-

tocol. So far, in terms of complete messaging protocols, only the modular construction

1Contrary to the folklore understanding that the Signal Messenger uses the pairwise channels approach for
group messaging in small groups, Signal currently uses Sender Keys whenever possible. We refer to Section 6.5.4
for details.

2Recent academic works and ongoing discussions in mailing lists have identified and addressed several security
issues that emerged during the standardisation of MLS [ACDT20, AJM22, IETF23].

177

Chapter 6. WhatsUpp with Sender Keys? Analysis, Improvements and Security Proofs

from [ACDT21a] building on CGKA (which includes MLS), DCGKA [WKHB21] in the decen-

tralised setting and very recently Matrix [ADJ24] have been formalised to date.

Despite being the most complete and well-studied protocol to-date in the literature, MLS and

CGKAs in general still have some drawbacks. While some exhibit sub-linear performance in

specific executions (and this class of executions is not well-characterised in the literature), their

performance can degrade to linear in general, which is unavoidable at least when using off-the-

shelf cryptographic primitives [BDG+22]. Moreover, they tend to be complex, increasing their

attack surface and making them more susceptible to design and implementation bugs. Finally,

given the standardisation of MLS only occurred recently, MLS is yet to be widely deployed.

Hence, Sender Keys and similar approaches to group messaging remain an essential and

practical alternative with different security / performance trade-offs. Firstly, Sender Keys

stands out for its relative simplicity, which reduces its potential attack surface, making the

protocol less susceptible to vulnerabilities in both its design and implementation. Secondly,

Sender Keys offers good performance in small to moderate-sized groups, as demonstrated by

its successful adoption for groups of up to 1024 parties in WhatsApp and Signal [Wha20, M+16].

While the main group operations (adding and removing users) respectively have O (n) and

O
(
n2

)
total communication complexity for groups of size n, concrete efficiency suffices in

practice. Thirdly, Sender Keys offers forward-secure confidentiality and robust support for

concurrent and out-of-order application message exchange.

Surprisingly, despite having the widest adoption and an open source implementation of its

core cryptographic operations [M+16], Sender Keys has not been formally studied in the

literature, prompting the following natural question:

Can we formalise the Sender Keys protocol in a meaningful security model?

To answer this question we start by introducing a new cryptographic primitive, along with a

security model, to capture a broad class of group messaging protocols that do not necessarily

employ CGKA [ACDT20] at their core. Our framework provides native support for group

messaging protocols that utilise secure two-party communication channels under the hood,

for which we introduce a clean level of abstraction. This novel framework proves instrumental

in our analysis, as existing literature predominately focuses on CGKA-oriented models that do

not suit Sender Keys and similar protocols.

Subsequently, we present a detailed description of the core Sender Keys protocol within our

framework and provide a security proof validating the soundness of the protocol. In our

analysis, we observe that Sender Keys presents several deficiencies that, despite not being

easily exploitable flaws, prevent several desirable and fundamental security notions from being

met. These include forward security under message injections, resilience against injections

impacting group membership changes3, and fast recovery from state compromise. These

3Note that Signal uses a dedicated private group management solution in practice [CPZ20] that we do not

178

6.1 Contribution

findings call into question the widespread use of the term “secure messaging” by commercial

messaging solutions, motivating the need for more detailed discussion about the nuances

around these protocols.

In this regard we propose an improved version of Sender Keys, that we call Sender Keys+,

where we only employ readily available cryptographic primitives that have minimal impact on

efficiency4. This addresses the following pertinent question:

How can we improve the security of Sender Keys whilst preserving its practical efficiency?

Overall, we believe that the formalisation and establishment of a provably secure variant

of Sender Keys, such as the Sender Keys+ protocol proposed in this chapter, can serve as a

valuable foundation for future implementations of the protocol.

6.1.1 Summary

In summary, the main scientific contributions of this chapter are the following:

• We introduce a new cryptographic primitive that we call Group Messenger (GM). We

establish a modular security model for GM designed to capture messaging protocols

like Sender Keys that are not necessarily based on group key agreement. It accounts

for an active adversary capable of controlling the network and adaptively learning the

secret states of different parties.

• We develop a general framework for composing two-party channels with group mes-

saging protocols that use them. Our approach parameterises the security of the Group

Messenger primitive based on the underlying two-party channels, presenting a novel

perspective that, to the best of our knowledge, has not been explored previously.

• We formally describe Sender Keys, based on an analysis of Signal’s source code [M+16],

WhatsApp’s security white paper [Wha20], and the yowsup library [Gal21].

• We prove the security of Sender Keys in our model and describe several shortcomings.

These force us to restrict the capabilities of the adversary substantially for the proof to

be carried out.

• We propose security fixes and improvements, several of which result in the improved

protocol Sender Keys+. In particular, we secure group membership changes, improve

the forward security of the protocol, and introduce an efficient key update mechanism.

We also formalise the additional security guarantees in our model.

capture and is less affected by this attack vector than WhatsApp [RMS18]; we refer to Section 6.5.4 for further
details.

4Our approach veers away from a theoretically systematic exploration to determine the “optimal” security
for a Sender Keys-like protocol, as this would require non-standard primitives that considerably degrade perfor-
mance [BRV20, ACJM20].

179

Chapter 6. WhatsUpp with Sender Keys? Analysis, Improvements and Security Proofs

6.1.2 Technical Overview

Security in Group Messaging. Besides standard notions such as confidentiality, authenticity,

and integrity of sent messages, we again consider forward security (FS) and post-compromise

security in this chapter. Additionally, protocols must secure group membership updates,

namely removed members must not be able to read messages sent after their removal, and

newly added members must not (by default) be able to read past messages.

Most of the different formalisations of security in the literature model an adversarial Delivery

Service (DS), the entity responsible for delivering messages between parties over the network.

The adversary (modelling the DS) can act as an eavesdropper with extended capabilities, e.g.,

that can schedule messages to be consistently delivered by users, as in Alwen et al. [ACDT20],

as a semi-active adversary that can schedule messages arbitrarily [KPPW+21], or as an active

adversary that can inject messages to different degrees [ACJM20, BCV23]. In many protocols,

including Sender Keys and MLS, the DS relies mainly on some centralised infrastructure (the

central server hereafter).

Sender Keys. In a Sender Keys group G , every user ID ∈G owns a so-called sender key which

is shared with all group members. A sender key is a tuple SK= (spk,ck), where spk is a public

signature key (with a private counterpart ssk), and ck is a symmetric chain key. Every time ID

sends a message m to the group, ID encrypts m using a message key mk that is deterministically

derived (via a key derivation function H1) from its chain key ck and erased immediately after

being used. Upon message reception, group members derive mk to decrypt the corresponding

ciphertext, which can also be delivered out-of-order as we discuss in later sections. Messages

are authenticated by appending the sender’s signature to them. In Figure 6.1, we provide a

high-level depiction of what takes place in a three-member group G = {A,B ,C } when A sends

a message that parties B and C receive.

Informally, forward security is provided by using a fresh message key for every message: every

time a message is sent, the chain key is symmetrically ratcheted, i.e., hashed forward using a

key derivation function H2. The protocol, that we describe further in Section 6.4, also requires

that there exist confidential and authenticated communication channels between each pair of

group members. These are used for sharing sender keys when parties are added or removed

from the group, or when some party updates their key material. For example, in the event that

some ID leaves the group, members erase their own sender key and start over. This mechanism

provides a form of PCS when a user is removed as the key material is refreshed.

Modelling Two-Party Channels. Formally capturing the security of two-party channels is

central to our analysis of Sender Keys since fresh sender keys are sent over these channels.

Two-party channels that are not regularly used can undermine security. For example, if a

group member ID’s state is compromised, there is no guarantee that fresh keys sent by other

members (via two-party channels) are not leaked, since ID’s two-party channels may not yet

have healed yet. Moreover, two-party channels can take more than one round trip to heal when

using the Double Ratchet, as is the case for WhatsApp and the Signal Messenger [ACD19].

180

6.1 Contribution

A B C

γA := (ckB ,spkB , γB := (ckA ,spkA , γC := (ckA ,spkA ,

ckC ,spkC , ckC ,spkC , ckB ,spkB ,

ckA ,spkA ,sskA) ckB ,spkB ,sskB) ckC ,spkC ,sskC)
. .

Send(mi ,γA) Recv(Ci ,γB) Recv(Ci ,γC)

mkA ←H1(ckA)
Ci−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ Vrfy(spkA ,σi)

?= 1
cti

$←Enc(mkA ,mi) Ci Vrfy(spkA ,σi)
?= 1 mkA ←H1(ckA)

DELETE(mkA) mkA ←H1(ckA) mi ←Dec(mkA ,cti)

ckA ←H2(ckA) mi ←Dec(mkA ,cti) DELETE(mkA)

σi
$←Sign(sskA , (cti , i , A)) DELETE(mkA) ckA ←H2(ckA)

Ci ← (cti , i , A,σi) ckA ←H2(ckA)

Figure 6.1: Simplified diagram for sending/receiving messages between three group members.
For ID ∈ {A,B ,C }, ID’s initial sender key is (ckID,spkID). The state γID of ID contains the sender
keys of all group members.

Our modelling starts in Section 6.2 with the introduction of a primitive 2PC for two-party

channels. We define a two-party channel with initialisation (Init), channel initialisation

(InitCh), send (Send) and receive (Recv) algorithms. Notably, InitCh allows parties to adaptively

bootstrap channels, and deviates from works on ratcheting-based two-party messaging that

abstract authentication away [BSJ+17]. Our security model captures both forward security

and post-compromise security. To model PCS, we introduce a crucial parameter, denoted as ∆

and referred to as the PCS bound. This parameter, inspired by Alwen et al. [ACD19] and Blazy

et al. [BBL+22], serves as an upper bound on the number of synchronous communication

steps or channel epochs required to restore security following a compromise.

Our Primitive: Group Messenger. In Section 6.3, we define a new cryptographic primitive,

Group Messenger (GM), which includes five stateful algorithms that: initialise a party’s state

(Init), send an application message (Send), receive an application message (Recv), execute a

change proposal in the group (Exec), and process a change in the group (Proc). Supported

group changes are: group creation, member addition, member removal, and sender key

updates. Note this contrasts with the three-phase propose/commit/process flow for updates

(the so-called propose-commit paradigm [ACJM20]) used by MLS and newer CGKA protocols.

We define a game-based security notion for GM that captures a partially active adver-

sary with control over the Delivery Service, taking inspiration from previous CGKA mod-

elling [ACJM20, BCV23]. In our model in Section 6.3.1, we capture the security of each protocol

by parameterising the game with a cleanness predicate (sometimes safety predicate in other

work), which excludes trivial attacks, including both those which are unavoidable and those

indicative of security weaknesses.

181

Chapter 6. WhatsUpp with Sender Keys? Analysis, Improvements and Security Proofs

Security Analysis of Sender Keys. With this formalism established, in Section 6.4.2 we de-

fine cleanness predicates for Sender Keys that precisely capture its security. We define three

sub-predicates that restrict the capabilities of the adversary for message challenges, cap-

turing confidentiality; for message injections, capturing integrity and authenticity; and for

re-orderings and forgeries of control messages (concurrency), capturing the message ordering

provided by the central server.

Notably, the restrictions that we impose via our cleanness predicates are necessary for the

security proof to go through and reveal several shortcomings in the protocol. Examples

include:

• Sender Keys achieves only a weak form of PCS through key updates. Healing from a

compromise requires multiple messages (at least ∆+1), even if a user is removed during

healing.

• Control messages lack proper authentication and are malleable. An adversary with

partial control over the network, such as the server, can make arbitrary changes in the

group membership (such as adding new users without any member’s authorisation),

which is a significant practical concern.

• Forward security is sub-optimal, as messages are malleable after they are sent if a state

exposure occurs.

Towards proving Sender Keys secure, we provide a somewhat detailed description of Sender

Keys for pedagogical reasons in Section 6.4.1 and a complete formalisation in Section 6.6.1; for

reference we also provide two tables in Appendix A.4 explaining variables used in our security

games and formal specification. These may be of independent interest, as in particular we pro-

vide the first complete formal specification of Sender Keys. In Section 6.6.2, we formally prove

that Sender Keys is secure under standard assumptions in our (necessarily restricted) model.

Since we treat the primitives (symmetric encryption, signatures, PRG, two party channels) as

black boxes, one can build, e.g., post-quantum Sender Keys following our specification.

In Section 6.5.4, we compare our description of Sender Keys with the implementations in

WhatsApp and Signal, clarifying the extent to which our findings are applicable to these

popular apps. We remark that our core analysis is nevertheless implementation-agnostic, and

the fact that we model the underlying two-party channels in a fine-grained fashion allows us

to capture their impact on security of Sender Keys in the face of state exposure (i.e., FS and

PCS).

Shortcomings and Proposed Improvements. Leaving aside the security limitations that are

intrinsic to the design of the protocol, we find that one can improve both its security and effi-

ciency in several aspects. Hence, in Section 6.5 we propose modifications to the protocol with

the aim of securing group membership, strengthening the (weaker than expected) forward se-

curity for authentication, and integrating efficient post-compromise security updates. Notably,

182

6.1 Contribution

our novel PCS update mechanism improves the key update mechanism implemented by our

core protocol and performed in Signal, bringing down the total communication complexity

from quadratic to linear in the group size. Moreover, as a result of our modular approach

with respect to modelling two-party channels, our modelling can capture the security im-

provement (or weakening) that results from replacing the Double Ratchet by an alternative

two-party messaging protocol. Note that our formal of Sender Keys (Section 6.6.1) also con-

tains our modifications for Sender Keys+ (they are nonetheless visually separated from the

core protocol).

We extend our modelling to establish the security of our modified protocol, called Sender

Keys+. The main technical step involves redefining the cleanness predicates (Section 6.5),

which are strictly less restrictive compared to those used for the original protocol. Notably,

the adversary is now allowed to inject control messages (given the group has recovered from

any state exposures). We also allow the adversary to mount more fine-grained attacks for

application message forgeries, and allow arbitrary challenges after some party has updated

over a refreshed channel (before, we could only re-allow challenges on the updater). In

Section 6.6.3 we formally prove security additionally assuming a secure MAC and dual PRF.

6.1.3 Additional Related Work

The formal extension of CGKA to group messaging was explored by Alwen et al. [ACDT21a],

while the key schedule of MLS was proven secure by Brzuska et al. [BCK22]. We provide

more thorough comparison between CGKA-based protocols and Sender Keys/Sender Keys+

in Section 6.5.3.

The work of Cong et al. [CEST22] shares some similarities with ours as it also constructs group

messaging from two-party channels and achieves O (n) key update complexity. However, they

do not model two-party channels as a standalone primitive nor dynamic groups formally,

and their protocols require more interaction than ours (e.g., the initial group key agreement

protocol can take several rounds in general).

Concurrency, a crucial aspect in CGKA-based protocols, has been a central topic in works

such as [AAN+22b, AAN+22a, BDR20]. Secure administration in CGKAs was explored in the

previous chapter (Chapter 5) of this thesis. Weidner et al. [WKHB21] adopt a Sender Keys-

like approach to construct a decentralised CGKA protocol but they do not capture group

messaging, and their security model does not support message injections (hence considering

a passive adversary). Moreover, the theorems in their work assume a non-adaptive adversary

where the adversary must announce all queries at the game’s outset. Their work nonetheless

extends the scope of modern messaging to decentralised networks without a central authority,

diverging from existing approaches that target centralised networks. A simplified (notably

lacking forward security) decentralised variant of Sender Keys is implemented by the Session

app [Jef20].

183

Chapter 6. WhatsUpp with Sender Keys? Analysis, Improvements and Security Proofs

Also relevant to our work are secure two-party messaging protocols that propose alternatives

to the Double Ratchet [MP16a], such as [JS18, PR18, DV19, ACD19, BRV20, PP22]. Inspired by

more practical-oriented endeavors, we acknowledge recent cryptographic audits conducted

on Telegram [AMPS22], Matrix [ACDJ23], Threema [KGP23], and WhatsApp’s backup service

[DFG+23].

Sender Keys. While some works on Sender Keys lack formalism and security proofs, they offer

valuable insights. Rösler et al. [RMS18] evaluate Sender Keys, provide a high-level description

of the protocol, and examine practical vulnerabilities in WhatsApp group chats. Multi-group

security and key update mechanisms for Sender Keys are informally discussed by Cremers

et al [CHK21]. In [BCG22], a preliminary analysis of the security of Sender Keys is carried

out. While the paper only includes informal discussions and no proofs, it serves as an initial

exploration for the ideas in the present work. We remark that the scope of [BCG22] is limited,

as it does not formally develop a security model, and assumes that all two-party channels used

by Sender Keys are perfectly secure, which is unrealistic and impossible to develop in practice.

Concurrent work by Albrecht et al. [ADJ24] develops a device-oriented security model and

a proof for a recent specification of Matrix (i.e., for the updated protocol that mitigates the

issues described in [ACDJ23]). For group messaging, Matrix implements the Megolm protocol,

which is Sender Keys-inspired but still deviates significantly from our description in this

chapter, particularly regading server interaction. Remarkably, [ADJ24] and our work arrive

to similar conclusions in our analysis, such as the insecurity of group management and

the challenges imposed by message ordering. Our works are complimentary and open new

research directions. Examples include exploring whether the improvements behind Sender

Keys+ can also be applied to Megolm, as well as extending our modelling to consider the

(challenging) multi-device setting as they do.

6.2 Two-Party Channels

In this section, we present our approach towards capturing two-party channels as a standalone

primitive for modelling Sender Keys.

6.2.1 Primitive Definition and Correctness

We start by defining two-party channels.

Definition 44 (Two-Party Channel). A two-party channel scheme is a tuple of efficient algo-

rithms 2PC := (Init, InitCh,Send,Recv) such that:

• γ $← Init(1λ, ID): The probabilistic initialisation algorithm takes a user identity ID as

input and outputs an initial state γ.

• acc $← InitCh(γ, ID∗): The probabilistic channel initialisation algorithm takes a state γ

184

6.2 Two-Party Channels

and a user identity ID∗ as inputs and outputs an acceptance bit acc ∈ {true, false} and

updates the caller’s state.

• (C ,e2pc, i2pc) $← Send(γ,m, ID∗): The probabilistic sending algorithm takes as inputs a

message m, the intended message recipient ID∗ and a state γ, and outputs a ciphertext

C , a channel epoch-index pair (e2pc, i2pc) corresponding to m (or ⊥ upon failure), and

updates the state.

• (m, ID∗,e2pc, i2pc) ←Recv(γ,C): The deterministic receiving algorithm takes as inputs a

ciphertext C and a state γ, and outputs a message m, a user identity ID∗ corresponding

to the sender of m and a channel epoch-index pair (e2pc, i2pc) corresponding to m (or ⊥
upon failure), and updates the state.

Our 2PC := (Init, InitCh,Send,Recv) primitive captures two initialisation functions. The first

function initialises the state of a party by taking its ID as input, while the second function

is used to initialise a communication channel with a counterpart ID∗. Consider two parties,

ID and ID∗ who intend to communicate over a two-party channel. Both parties initialise

their states, γID and γID∗ using the Init function. Subsequently, ID and ID∗ initiates the

communication channel by invoking InitCh(γID, ID∗) and InitCh(γID∗ , ID) (note we assume

both parties must call InitCh).5 It is worth noting that, similar to DCGKA [WKHB21], our

two-party channel primitive implicitly depends on some universally available and consistent

public-key infrastructure.

Channel Epochs and Indices. Our notion of channel epochs is exactly the notion of epochs as

defined in [ACD19] used to model the Double Ratchet protocol [MP16a] and is an example of

an ordinal as in Section 4.2. For a given two-party channel, ID and ID′ are each associated with

a channel epoch e2pc, which corresponds to how many times the direction of communication

has changed, alongside an index i2pc, indicating how many Send calls have been made by a

sender or the latest message received by a receiver. Initially, the sender (say ID) sets e2pc = 0

and the receiver ID′ sets e2pc =−1. Thereafter, party ID (resp. ID′) is the sender in even (resp.

odd) channel epochs, and the receiver in odd (resp. even) channel epochs. When a party is a

sender in channel epoch e2pc and receives a message from e2pc+1, they advance to e2pc+1;

likewise they advance channel epochs when they are a receiver and then send a message.

When a party sends as a sender, they increment their index i2pc, and as a receiver they set

i2pc to the message received with the highest index. Note that i2pc represents the number of

messages sent or received for a given channel epoch e2pc; i2pc is set to 0 whenever a party has

just become a sender again. Hence, we define a total ordering on channel epochs and indices

(e2pc, i2pc) such that (e2pc, i2pc) ≤ (e ′2pc, i ′2pc) when e2pc < e ′2pc, or e2pc = e ′2pc and i2pc ≤ i ′2pc.

Oracles for Correctness. To capture correctness we employ several oracles that the adversary

can query. We describe them briefly before describing the correctness notion.

5In practice, a party given pair of parties may initialise and tear down many channels between each other over
time; by associating a given ‘party’ with several identifiers, our modelling here is without loss of generality.

185

Chapter 6. WhatsUpp with Sender Keys? Analysis, Improvements and Security Proofs

INIT-CH(ID, ID′): This oracle initialises the two-party channel between parties ID and ID′.

SEND(ID, ID′,m): This oracle allows the sending of a message m (i.e., generating a ciphertext)

from party ID to party ID′.

RECEIVE(ID, ID′,e2pc, i2pc): This oracle delivers the ciphertext output by ID′ for channel

epoch (e2pc, i2pc) in a previous SEND call to ID.

EXPOSE(ID): This oracle leaks the state of party ID to the adversary.

Game 2PC-CORRA
2PC

1 : for all ID :

2 : γ[ID] $← Init(1λ, ID)

3 : M[·],CT[·] ←⊥
4 : CH←;
5 : win← 0

6 : A O

7 : return win

Oracle INIT-CH(ID, ID′)

1 : require (ID, ID′) ̸∈CH
2 : acc $← InitCh(ID′,γ[ID])

3 : if ¬acc
4 : win← 1

5 : CH ∪←− (ID, ID′)
6 : return acc

Oracle EXPOSE(ID)

1 : return γ[ID]

Oracle SEND(ID, ID′,m)

1 : require (ID, ID′) ∈CH
2 : (C ,e2pc, i2pc) $← Send(m, ID′,γ[ID])

3 : if C =⊥∨e2pc =⊥∨ i2pc =⊥
4 : win← 1

5 : M[ID, ID′,e2pc, i2pc] ← m

6 : CT[ID, ID′,e2pc, i2pc] ←C

7 : return (win,C ,e2pc, i2pc)

Oracle RECEIVE(ID, ID′,e2pc, i2pc)

1 : require (ID′, ID) ∈CH
2 : require CT[ID, ID′,e2pc, i2pc] ̸= ⊥
3 : C ←CT[ID, ID′,e2pc, i2pc]

4 : (m, ID′,e ′2pc, i ′2pc) ←Recv(C ,γ[ID])

5 : m′ ←M[ID, ID′,e2pc, i2pc]

6 : if (m′,e ′2pc, i ′2pc) ̸= (m,e2pc, i2pc)

7 : win← 1

8 : return win

Figure 6.2: 2PC-CORR correctness for 2PC where O = {INIT-CH,EXPOSE,SEND,RECEIVE}.
Lines in teal correspond only to bookkeeping and state update operations.

Correctness. We provide a correctness game played between a challenger and a computation-

ally unbounded adversary (Figure 6.2). here, The adversary can invoke the INIT-CH oracle

to establish a secure channel between ID and ID′ complete; we require that InitCh(ID, ID′)
is always successful when first called with input (ID, ID′). Subsequently, the adversary can

dynamically query the SEND and RECEIVE oracles to execute the protocol. Note that the

EXPOSE oracle is unrestricted, providing the adversary with leaked state information. It is

worth noting that RECEIVE only allows the adversary to make the challenger call Receive on

inputs that were output by the corresponding Send call in SEND.

We formally define correctness below.

186

6.2 Two-Party Channels

Definition 45 (Correctness of 2PC). We consider the 2PC-CORR2PC game defined in Fig-

ure 6.2. A two-party channels scheme 2PC is correct or 2PC-CORR if for any (possibly un-

bounded) adversary A we have

Adv2pc−corr
2PC (A) :=Pr[2PC-CORRA

2PC ⇒ 1] = 0 .

Security. The Double Ratchet protocol has been the subject of several academic

works [ACD19, CCD+20, CJSV22, BFG+22a] that analyse its security on a fine-grained level for

two-party communication. When used by multiple parties in a group during the execution of

Sender Keys, analysing the Double Ratchet protocol becomes complex, making it difficult to

replace it with other protocols. To tame this complexity, we adopt a comparatively simpler

notion of two-party communication in similar complexity to the formalism of Weidner et al.

for their DCGKA protocol [WKHB21]. Our modelling captures forward security, is parame-

terised by the post-compromise security of the underlying channels and supports out-of-order

message delivery. We define security after describing the security game and introducing some

predicates below.

Oracles for Security. Compared to correctness, the adversary A will be given access to the

following oracles in the security game:

INIT-CH(ID, ID′), SEND(ID, ID′,m), EXPOSE(ID): As in correctness.

CHAL(ID, ID′,m0,m1): This oracle generates a message challenge where the adversary A

provides two messages m0 and m1 of the same length, and party ID sends mb to party

ID′.

RECEIVE(ID,C): This oracle delivers the ciphertext C to party ID.

Game Description. The notion of security defined in the 2PC-IND2PC,b,C2pc,∆ game in Fig-

ure 6.3 is parameterised by a cleanness predicate C2pc and a PCS bound ∆> 0. Broadly, the

cleanness predicate prevents the adversary from winning the game by making a trivial attack,

i.e., via a bit guess (resp. forgery) based on a challenge (resp. delivery) using exposed key

material. PCS after an exposure is parameterised by ∆, which is the number of message steps

(i.e. number of times that the sender-receiver roles alternate) that the channel requires for

healing.

The game starts by initialising the states of all parties and the dictionaries CH and M, which

store challenge ciphertexts and all sent (including challenge) ciphertexts, respectively. It also

initialises EI as a variable that tracks the channel epoch-index pair of a given channel (ID, ID′).

Then, the adversary A can adaptively query all the oracles listed above. Finally, A outputs a

guess b′ of b that the challenger also outputs given that the execution has been clean, i.e., that

the cleanness predicate C2pc holds.

A can win the game in two different ways. Firstly, it can make a correct guess of the bit b; note

187

Chapter 6. WhatsUpp with Sender Keys? Analysis, Improvements and Security Proofs

Game 2PC-IND2PC,b,C2pc,∆(A)

1 : for all ID :

2 : γ[ID] $← Init(1λ, ID)

3 : CH[·],M[·],EI[·] ←⊥
4 : b′ ←A O

5 : require C2pc

6 : return b′

Oracle INIT-CH(ID, ID′)

1 : acc $← InitCh(γ[ID], ID′)
2 : return acc

Oracle SEND(ID, ID′,m)

1 : (C ,e2pc, i2pc) $← Send(γ[ID],m, ID′)
2 : require C ̸= ⊥
3 : M[ID, ID′] ∪←− {(C ,e2pc, i2pc)}

4 : EI[ID, ID′] ← (e2pc, i2pc)

5 : return (C ,e2pc, i2pc)

Oracle CHAL(ID, ID′,m0,m1)

1 : require |m0| = |m1|
2 : (C∗,e2pc, i2pc) $← Send(γ[ID],mb , ID′)
3 : require C∗ ̸= ⊥
4 : CH[ID, ID′] ∪←− {(C∗,e2pc, i2pc)}

5 : M[ID, ID′] ∪←− {(C∗,e2pc, i2pc)}

6 : EI[ID, ID′] ← (e2pc, i2pc)

7 : return (C∗,e, i)

Oracle RECEIVE(ID,C)

1 : (m, ID′,e2pc, i2pc) ←Recv(γ[ID],C)

2 : require m ̸= ⊥
3 : if (C ,e2pc, i2pc) ̸∈M[ID′, ID] :

4 : return (b, ID′,e2pc, i2pc) // forgery

5 : CH[ID′, ID]
−←− {(C ,e2pc, i2pc)}

6 : if (e2pc, i2pc) >EI[ID′, ID] :

7 : EI[ID′, ID] ← (e2pc, i2pc)

8 : return (⊥, ID′,e2pc, i2pc)

Oracle EXPOSE(ID)

1 : require CH[ID′, ID] =; ∀ ID′

2 : return γ[ID]

Figure 6.3: Indistinguishability (2PC-IND) security for 2PC where O = {INIT-CH,SEND,
CHAL,RECEIVE,EXPOSE}. Lines in teal correspond only to bookkeeping and state update
operations. Dictionaries CH,M and EI store challenged messages, sent messages, and channel
epoch-index respectively.

(ignoring RECEIVE) the only operation that depends on b is the CHAL oracle. Ciphertexts

C∗ generated by CHAL(ID, ID′,m0,m1) are stored in CH, and removed from CH once they are

delivered. We use CH to prevent trivial forgeries, as if there is any challenge C∗ that has not

yet been delivered to ID′ (and such that by correctness ID′ must be able to decrypt it), then A

cannot leak the state of ID′ via EXPOSE(ID′). Secondly, A can directly obtain b by making

a successful forgery that is accepted via RECEIVE(ID,C). To leak b to A , RECEIVE checks

that C does not correspond to a message sent by the sender ID′ in epoch (e2pc, i2pc), where

(ID′,e2pc, i2pc) are the outputs of the challenger’s Recv call within the RECEIVE query.

We note that the challenge-and-send style of our game is analogous to the security game for

GM (to be introduced). This game is also multi-user as it captures all channels at once, ex-

tending other single-user security models such as those in [ACD19, WKHB21]. Our modelling

presents some similarities with the modelling of two-party channels in [WKHB21], but differs

188

6.2 Two-Party Channels

from it in several aspects. It is also multi-challenge as CHAL can be called several times. Our

Init algorithm does not require the public key of the counterpart as opposed to theirs (we

capture this via InitCh for each channel), and correctness is captured as part of their security

model. More importantly, their adversary is not allowed to attempt forgeries (the model only

captures confidentiality of sent messages) or out of order delivery.

Predicates. The game is parametrised by the two-party channels cleanness predicate C2pc,

which we divide into two sub-predicates as C2pc := C2pc-chal ∧C2pc-inj. Both sub-predicates

capture PCS and are additionally parametrised by the PCS bound ∆. We follow the blueprint

of [ACD19] for the predicate definition.

C2pc-chal : ∀(i , ID, ID′,e2pc, i2pc) : qi =EXPOSE(ID) ∧
(e2pc, i2pc) = max{EI[ID, ID′; qi],EI[ID′, ID; qi]}, ̸ ∃ (e ′2pc, i ′2pc, j) : (i < j) ∧[

(q j =CHAL(ID′, ID, ·, ·)∧ (e ′2pc, i ′2pc) =EI[ID′, ID; q j]∧e ′2pc < e2pc +∆) ∨
(q j =CHAL(ID, ID′, ·, ·)∧ (e ′2pc, i ′2pc) =EI[ID, ID′; q j]∧e ′2pc < e2pc +∆)

]
Figure 6.4: Predicate C2pc-chal where A makes oracle queries q1, . . . , qq .

Challenge (Figure 6.4). Suppose that A exposes a party ID and later makes a CHAL query

involving ID (either as a sender or as a receiver) and some other party ID′. Essentially, the

predicate requires that the challenge message then must belong to a channel epoch e ′2pc that

is ∆ or more epochs past the channel epoch e2pc, where e2pc corresponds to the largest epoch

value between ID and ID′ at exposure time.

Injection (Figure 6.5). For an intuitive description, let C be a forged ciphertext that, when

processed by Recv by some ID′, claims to be from sender ID and from epoch-index (e∗2pc, i∗2pc).

Then, the predicate requires that if A exposes ID and later attempts to inject C to some

ID′, both the epoch e ′2pc of the (ID, ID′) channel at injection time and e∗2pc are ∆ or more

epochs further from the channel epoch e2pc at exposure time. Considering both epochs

e2pc,e∗2pc prevents injections on out-of-order messages. Self-injections (i.e., where ID = ID′)
are also restricted since the adversary can trivially mount such an attack on the Double

Ratchet [ACD19].

C2pc-inj : ∀(i , ID, ID′,e2pc, i2pc) : qi =EXPOSE(ID) ∧
(e2pc, i2pc) = max{EI[ID, ID′; qi],EI[ID′, ID; qi]},

̸ ∃ (e ′2pc, i ′2pc,e∗2pc, i∗2pc, j ,C) : (i < j)∧ (min{e∗2pc,e ′2pc} < e2pc +∆) ∧
(e ′2pc, i ′2pc) = min{EI[ID, ID′; q j],EI[ID′, ID; q j]} ∧[

(q j =RECEIVE(ID′,C) = (·, ID,e∗2pc, i∗2pc)∧ (C ,e∗2pc, i∗2pc) ̸∈M[ID, ID′; q j]) ∨
(q j =RECEIVE(ID,C) = (·, ID′,e∗2pc, i∗2pc)∧ (C ,e∗2pc, i∗2pc) ̸∈M[ID′, ID; q j])

]
Figure 6.5: Predicate C2pc-inj where A makes oracle queries q1, . . . , qq .

In order to model relevant injection predicates for our GM primitive such as C∆
sk-inj (Fig-

189

Chapter 6. WhatsUpp with Sender Keys? Analysis, Improvements and Security Proofs

ure 6.11), we abuse notation and refer directly to C2pc-inj. In the context of GM, we parametrise

the predicate by a ciphertext C2pc, and simply replace the belonging to M by the equivalent

condition in the GM security game (·,C2pc) ̸∈M[ID, ID′; q j].

We formally define security below.

Definition 46 (Security of 2PC). We consider the 2PC-IND2PC,C2pc,∆ game defined in Figure 6.3.

A two-party channels scheme 2PC satisfies indistinguishability or 2PC-IND security with

respect to cleanness predicate C2pc and PCS bound ∆> 0 if for any efficient adversary A we

have

Adv2pc−ind
2PC,C2pc,∆(A) :=

∣∣∣Pr[2PC-IND2PC,1,C2pc,∆(A) ⇒ 1]−Pr[2PC-IND2PC,0,C2pc,∆(A) ⇒ 1]
∣∣∣

= negl

Instantiations. By previous work [ACD19], the Double Ratchet can be seen to achieve a PCS

bound of ∆= 3. However, by replacing the Diffie Hellman key exchange component in the

Double Ratchet (referred to as continuous key agreement [ACD19]) with a KEM, the PCS

bound can be improved to ∆= 2. This is optimal since if a user is exposed in channel epoch

e2pc and acts as the sender, then they can decrypt a message from channel epoch e2pc +1

based on correctness requirements. While we do consider protocols with weak PCS and hence

larger values of ∆, including ∆ =∞ if new randomness is never injected in key derivation,

protocols lacking forward security like TLS are considered insecure within our model.

For channel initialisation InitCh, an initial key exchange between the parties needs to be

carried out. Typically this is done via the X3DH protocol [MP16b] and by relying on a PKI

which we abstract away in this chapter but previously explored in Chapter 3.

Extensions. Our security model adopts the core requirements of the modelling in [ACD19].

Our cleanness predicates are designed to suit a large class of two-party messaging protocols

parametrised by the PCS bound ∆. As a consequence, our analysis is not as fine-grained as

possible, but we gain in readability and modularity.

The recent work of Blazy et al. [BBL+22] devises metrics (generalising our PCS bound in some

sense) to classify different two-party messaging protocols based on their resilience to different

adversarial behaviours and the resulting PCS guarantees. Future work could incorporate these

factors into our modelling of two-party channels. Another direction would be to parametrise

the PCS bound based on whether a party is exposed while acting as a sender or receiver

on the channel (as opposed to considering a worst-case ∆). One could take an even more

fine-grained approach in the style of [CCD+20] also. A bound of ∆= 1 would be possible when

only considering receiver exposure.

We also note that if one replaces the Double Ratchet with another protocol, either keep-

ing [ACD19, CZ22, PP22] or dropping [JS18, PR18, DV19] support for out-of-order message

delivery along the way, it is possible to consider less restrictive injection predicates. For in-

190

6.3 Group Messenger

stance, by using signatures, one no longer needs to restrict self-injections. For simplicity,

we also restrict injections corresponding to out-of-order delivery (all epochs < e2pc +∆ in

C2pc-inj); notice that restricting winning injections only on message epochs corresponding to

old ciphertexts in-transit at corruption time is sufficient as done in [ACD19].

6.3 Group Messenger

We introduce our main cryptographic primitive called Group Messenger that captures sending

and receiving application messages between members of a dynamic group. We note that our

primitive captures a single group; extending it to multiple groups is straightforward by using

group identifiers (see e.g. [BCV23]).

Definition 47 (Group Messenger). A Group Messenger GM is a tuple of efficient algorithms

GM := (Init,Send,Recv,Exec,Proc) such that:

• γ $← Init(ID): The probabilistic initialisation algorithm takes as input a user identity ID

and outputs an initial state γ.

• C $← Send(γ,m): The probabilistic sending algorithm takes as inputs a message m and a

state γ, and outputs a ciphertext C (or ⊥ upon failure) and updates the state.

• (m, ID∗,e, i) ← Recv(γ,C): The deterministic receiving algorithm takes as inputs a ci-

phertext C and a state γ, and outputs a message m, an identity ID∗ corresponding to

the sender, a group epoch e and index i both corresponding to m (or ⊥ upon failure),

and updates the state.

• T $←Exec(γ,cmd, IDs): The probabilistic execution algorithm takes as inputs a command

cmd ∈ {crt,add,rem,upd}, a list of identities IDs and a state γ, and outputs a control

message T (or ⊥ upon failure) and updates the state.

• b ←Proc(γ,T): The deterministic processing algorithm takes as inputs a control mes-

sage T and a state γ, and outputs an acceptance bit b ∈ {0,1} and updates the state.

Finally, the (possibly empty) set of group members is stored as γ.G

In our syntax, a distinction is made between application messages and control messages.

Specifically, distinct algorithms are employed for the transmission and reception of appli-

cation messages, as well as for the execution and processing of group modifications. These

modifications, executed via Exec, are parameterised by a command cmd that encompasses op-

erations including in this chapter user addition add, removal rem, group creation crt, or user

key material update upd. Moreover, in scenarios where two-party messaging protocols are re-

quired for the group primitive (although not applicable to CGKAs such as TreeKEM [ACDT20]),

two-party messages are formally assumed to be sent alongside or within ciphertexts or control

191

Chapter 6. WhatsUpp with Sender Keys? Analysis, Improvements and Security Proofs

messages. Consequently, they are abstracted away from our syntax. Looking ahead, we will

model the fact that ciphertexts and control messages are sent alongside two-party channel

ciphertexts (and can be received with a different ciphertext or control message) when we

define security in Section 6.3.1.

Message Epochs. We define a message epoch as a pair of integers (e, i), internal to the state γ

of a party ID, that captures time and synchronisation between parties. Message epochs are

central to our description of Sender Keys and security model. Each application message sent

by ID corresponds to a single message epoch (e, i), which is output by the Recv algorithm at

the receiver’s end. The epoch e advances whenever ID processes a new group change (i.e., a

control message). The index i advances when ID sends a new message. If control messages

are delivered to group members in lockstep (i.e. sequentially in the same order), parties who

have the same epoch e will have the same view of the group membership. We define a total

ordering (e, i) ≤ (e ′, i ′) when e < e ′, or e = e ′ and i ≤ i ′. Nevertheless, we remark that 2PC
channel epochs are independent from GM message epochs.

Oracles for Correctness. We introduce a game-based notion for GM correctness (as well as

for security later), where the adversary A will have access to various oracles that we outline

below.

CREATE(ID, IDs): creates a group by executing Exec(γ,crt, IDs) with ID as the initiator, gen-

erating a control message T . Namely, A obtains Cb ← Send(γ[ID],mb).

SEND(ID,m): ID sends an application-level message m using the Send algorithm, producing

a ciphertext C .

RECEIVE(ID, ID′e, i): ID receives the ciphertext sent by ID′ corresponding to message epoch

(e, i) by calling Recv(γ[ID],C), where C is stored in CT[ID′,e, i] by the challenger (note

we only consider honest delivery for correctness).

ADD(ID, ID′) / REMOVE(ID, ID′) / UPDATE(ID): ID adds ID′ / removes ID′ / refreshes ID’s

secrets by calling Exec(γ[ID],add, ID′) / Exec(γ[ID],rem, ID′) / Exec(γ[ID],upd, ID), gen-

erating control message T . The e-th control message (i.e., the epoch e control message)

is stored as T[i].

DELIVER(ID): ID is delivered the next control message in T, if it exists, via

Proc(γ[ID],T[E[I D]]) (where ID is in epoch E[ID]).

EXPOSE(ID): Leaks the state γ of ID to A .

Correctness. We capture correctness in a game played by an unbounded adversary in Fig-

ure 6.6. Our game captures several properties, given that all messages are generated honestly:

• Message delivery: Application messages (generated by SEND) must be received correctly

by all group members (checked at lines 9-10 of RECEIVE).

192

6.3 Group Messenger

Game M-CORRGM(A)

1 : for all ID :

2 : γ[ID] $← Init(1λ, ID)

3 : T[·],M[·],CT[·] ←⊥
4 : ep,E[·], I[·] ← 0

5 : G[·] ←;
6 : win← 0

7 : A O

8 : return win

Oracle CREATE(ID, IDs)

1 : require ID ∈ IDs

2 : require ep= 0

3 : T $←Exec(γ[ID],crt, IDs)

4 : T[ep] ← T ; ep← ep+1

5 : G[0],G[1] ← IDs

6 : return T

Oracle SEND(ID,m)

1 : require ID ∈G[E[I D]]

2 : C $← Send(γ[ID],m)

3 : if C =⊥
4 : win← 1

5 : I[ID] ← I[ID]+1

6 : M[ID,E[ID], I[ID]] ← m

7 : CT[ID,E[ID], I[ID]] ←C

8 : return C

Oracle ADD(ID, ID′)

1 : require E[ID] = ep
2 : T $←Exec(γ[ID],add, {ID′})

3 : require T ̸= ⊥
4 : T[ep] ← T ; ep← ep+1

5 : G[ep] ←G[ep−1]∪ {ID′}
6 : return T

Oracle REMOVE(ID, ID′)

1 : require E[ID] = ep
2 : T $←Exec(γ[ID],rem, {ID′})

3 : require T ̸= ⊥
4 : T[ep] ← T ; ep← ep+1

5 : G[ep] ←G[ep−1] \ {ID′}
6 : return T

Oracle UPDATE(ID)

1 : require E[ID] = ep
2 : T $←Exec(γ[ID],upd, {ID})

3 : require T ̸= ⊥
4 : T[ep] ← T ; ep← ep+1

5 : G[ep] ←G[ep−1]

6 : return T

Oracle EXPOSE(ID)

1 : return γ[ID]

Oracle RECEIVE(ID, ID′,e, i)

1 : require ID ∈G[e]

2 : require CT[ID′,e, i] ̸= ⊥
3 : C ←CT[ID′,e, i]

4 : (m′, ID′,e ′, i ′)
←Recv(γ[ID],C)

5 : m ←M[ID′,e, i]

6 : if E[ID] < e :

7 : if m′ ̸= ⊥
8 : win← 1

9 : else if (m′,e ′, i ′) ̸= (m,e, i)

10 : win← 1

11 : return win

Oracle DELIVER(ID)

1 : require E[ID] < ep
2 : require ID ∈G[E[I D]]

3 : acc←Proc(γ[ID],T[E[ID]])

4 : if ¬acc
5 : win← 1

6 : E[ID] ←E[ID]+1

7 : if ID ∈G[E[ID]]

8 : if G[E[ID]] ̸= γ[ID].G

9 : win← 1

10 : I[ID] ← 0

11 : return win

Figure 6.6: Game defining M-CORRGM with adversary A for O = {CREATE,SEND,ADD,
REMOVE,UPDATE,EXPOSE,RECEIVE,DELIVER}. Lines in teal correspond only to book-
keeping and state update operations.

• Group evolution: Group operations, namely crt (group creation), add (user addition),

rem (user removal), and upd (key update), must have their intended effects on the group

when received and processed (checked at lines 4-5 and 7-9 of DELIVER).

• Group membership consistency: The list of group members must be consistent among

all group members, assuming they process the same sequence of control messages

(checked at lines 7-9 of DELIVER)

• Out-of-order delivery: Messages corresponding to past epochs must be decryptable if

193

Chapter 6. WhatsUpp with Sender Keys? Analysis, Improvements and Security Proofs

delivered out-of-order (checked at lines 9-10 of RECEIVE). Messages corresponding to

future epochs must be rejected upon reception (checked at lines 6-8 of RECEIVE)

We define correctness below.

Definition 48 (Correctness of GM). A Group Messenger GM := (Init,Send,Recv,Exec,Proc) is

M-CORR if, for all (possibly unbounded) adversaries A , we have

Advm−corr
GM (A) := Pr[M-CORRGM(A) ⇒ 1] = 0 ,

where game M-CORRGM is defined in Figure 6.6.

6.3.1 Security Model

We introduce a game-based model of security for our Group Messenger primitive that captures

the main desirable security properties of a group messaging scheme. In brief, our game

M-INDGM,Cgm captures a partially active adversary who can, in particular, expose the state of

users and inject (possibly malformed) messages at any time. We consider the confidentiality

of application messages with FS and PCS, and we also model the out-of-order delivery of

application and control messages.

Oracles for Security. Compared to correctness, the adversary A will be given access to the

following oracles in the security game:

CREATE(ID, IDs), SEND(ID,m), ADD(ID, ID′), REMOVE(ID, ID′), UPDATE(ID), EXPOSE(ID):

As in correctness.

CHAL(ID,m0,m1): outputs a ciphertext Cb corresponding to the message mb sent by ID,

where b is the bit that parametrises the game. Namely, A obtains Cb ← Send(γ[ID],mb).

RECEIVE(ID,C): ID receives a ciphertext C by calling Recv(γ[ID],C). The sender ID′ is in-

ferred from output of Recv. In the event of a successful forgery, A obtains the value of b

(and can thus return b to immediately win the game).

DELIVER(ID,T): ID is delivered a control message T via Proc(γ[ID],T).

Game Description. We introduce the M-INDGM,Cgm game in Figure 6.7, parameterised by bit

b that has to be guessed by A as in a message indistinguishability game. The adversary wins

the game if it directly guesses b correctly, which it can always do if it carries out a successful

forgery (since it is given b directly in this case). The game is further parameterised by a

protocol-specific cleanness predicate Cgm (sometimes safety predicate [ACDT20]) that rules

out trivial attacks and captures the exact security of the protocol.

194

6.3 Group Messenger

Game M-INDGM,b,Cgm (A)

1 : for all ID :

2 : γ[ID] $← Init(1λ, ID)

3 : T[·],M[·],CH[·],SM[·] ←⊥
4 : ep← 0

5 : E[·], I[·] ← 0

6 : b′ ←A O

7 : require Cgm

8 : return b′

Oracle CREATE(ID, IDs)

1 : require ID ∈ IDs

2 : require ep= 0

3 : T $←Exec(γ[ID],crt, IDs)

4 : T[ep] ← T ; ep← ep+1

5 : return T

Oracle CHAL(ID,m0,m1)

1 : require |m0| = |m1|
// Send mb based on b

2 : C∗ $← Send(γ[ID],mb)

3 : require C∗ ̸= ⊥
4 : I[ID] ← I[ID]+1

5 : CH[ID,E[ID], I[ID]] ←C∗

6 : return C∗

Oracle ADD(ID, ID′)

1 : T $←Exec(γ[ID],add, {ID′})

2 : require T ̸= ⊥
3 : T[ep] ← T ; ep← ep+1

4 : return T

Oracle REMOVE(ID, ID′)

1 : T $←Exec(γ[ID],rem, {ID′})

2 : require T ̸= ⊥
3 : T[ep] ← T ; ep← ep+1

4 : return T

Oracle UPDATE(ID)

1 : T $←Exec(γ[ID],upd, {ID})

2 : require T ̸= ⊥
3 : T[ep] ← T ; ep← ep+1

4 : return T

Oracle SEND(ID,m)

1 : C $← Send(γ[ID],m)

2 : require C ̸= ⊥
3 : I[ID] ← I[ID]+1

4 : M[ID,E[ID], I[ID]] ←C

5 : return C

Oracle EXPOSE(ID)

1 : return γ[ID]

Oracle RECEIVE(ID,C)

1 : (m, ID′,e, i)

←Recv(γ[ID],C)

2 : if m ̸= ⊥ :

3 : Update SM[ID, ID′]
4 : if recv-forgery(C) :

5 : return b

6 : return

Oracle DELIVER(ID,T)

1 : acc←Proc(γ[ID],T)

2 : require acc
3 : E[ID] ←E[ID]+1

4 : I[ID] ← 0

5 : if proc-forgery(T) :

6 : return b

7 : return

Figure 6.7: Game defining M-INDGM,Cgm with adversary A and cleanness predicate Cgm
for O = {CREATE,CHAL,ADD,REMOVE,UPDATE,SEND,EXPOSE,RECEIVE,DELIVER}.
Lines in teal correspond only to bookkeeping and state update operations.

Message Epochs. We define a function m-ep(ID, ID′, q) that indicates the highest message

epoch (e, i), as output by the Recv algorithm, for which a user ID has received a message from

ID′ at the time of query q for ID ̸= ID′. For ID = ID′, this indicates the local state value for

(E[ID], I[ID]). The m-ep function reflects the view of user ID′ by user ID.

Dictionaries. The challenger keeps a record of messages and game variables in several dictio-

naries. The state of each party is stored in γ[·] and updated when an algorithm is called on a

given γ[ID]. Ciphertexts and challenged ciphertexts are stored in M and CH, respectively, each

of them indexed by an ID and a message epoch (e, i). The unique honest control message that

starts a given epoch e is stored in T[e], and the most recent epoch of the group is stored in

variable ep (note that we implicitly assume a total ordering of control messages). The current

195

Chapter 6. WhatsUpp with Sender Keys? Analysis, Improvements and Security Proofs

message epoch of ID is stored in E[ID], I[ID]. Even if each control message in T corresponds

to a single epoch, different parties can be in different epochs. We say ID is in epoch e before

query q if the last control message processed by ID before query q is T[e].

The message epochs corresponding to skipped messages from sender ID′ stored by ID are kept

in SM[ID, ID′]. We keep SM updated in the RECEIVE oracle as follows: given a message epoch

(e, i) and an ID′ output by Recv, if (e, i) ∈ SM[ID, ID′] then (e, i) is erased from SM[ID, ID′].
Otherwise, we add all pairs (e ′, i ′) such that (e ′, i ′) < (e, i) and (e ′, i ′) corresponds to all messages

sent by ID′ not delivered to ID.

Outcome. After q oracle queries, A outputs a guess b′ of b if the cleanness predicate Cgm is

satisfied (otherwise the game aborts). A can win the game in three different ways: by directly

guessing the challenge bit correctly, by injecting a forged application message via RECEIVE
successfully, or by injecting a forged control message via DELIVER. The cleanness predicate

Cgm parameterises the security of a given protocol by restricting the capabilities of the adver-

sary to exclude a class of attacks. Additionally, we explicitly state predicates recv-forgery and

proc-forgery in our game, which model the conditions under which a RECEIVE or DELIVER
call result in a successful forgery (leaking b to A). We expand on these predicates in Sec-

tion 6.3.2.

We define security below.

Definition 49 (Message indistinguishability of GM). A Group Messenger GM :=
(Init,Send,Recv,Exec,Proc) is M-IND with respect to cleanness predicate Cgm if, for all ef-

ficient adversaries A , we have

Advm−ind
GM,Cgm

(A) :=
∣∣∣Pr[M-INDA

GM,1,Cgm
⇒ 1]−Pr[M-INDA

GM,0,Cgm
⇒ 1]

∣∣∣= negl.

where game M-INDGM,Cgm is defined in Figure 6.7.

Related Security Notions. Our security model takes inspiration from the game-based mod-

elling developed for MLS and for CGKA (which we introduced formally in Section 5.2). Never-

theless, it is not ideal to adopt these models as they consider a single group key, which is not

directly compatible with a Sender Keys (or similar) approach to group messaging. The closest

security model to ours in the literature comes from that of Weidner et al. for DCGKA [WKHB21],

which however does not consider message injections nor adaptive security.

Limitations. Our security game allows a single successful injection to occur, since after this

point the adversary is given the secret bit for free. That is, we do not allow ‘trivial’ message

forgeries that do not result in the adversary winning the game. Hence, full active security

cannot be captured by our modelling. Like several other models in the literature (e.g., [ACDT20,

KPPW+21, WKHB21]), our security model considers a single group (see [CHK21] for an analysis

of cross-group security) and ignores randomness exposure or manipulation [BRV20].

196

6.3 Group Messenger

6.3.2 Modelling Two-Party Channel Ciphertexts

Given that the GM protocol uses two-party channels (as Sender Keys does), these need to

be modelled accurately within the GM security game, particularly to describe forgeries via

the recv-forgery and proc-forgery predicates. We introduce additional notation to define how

two-party ciphertexts can be sent alongside GM messages; we opt for such modelling for

convenience, as in this way the adversary gets access to all two-party channels explicitly. We

remark that this subsection can be skipped for GM protocols that do not employ two-party

channels, since in this case, simply any ciphertext input to Proc (resp. Recv) that was not

previously output by Exec (resp. Proc) would be considered a forgery.

Essentially, we want to capture the fact that an Exec or Send call can output several two-

party channel ciphertexts, whereas Proc and Recv should only take as input a single two-

party channel ciphertext (i.e., the one intended for the caller) for efficiency. We thus assume

input/output ciphertexts and control messages for group messenger algorithms take the

following form. Let C2pc be a 2PC ciphertext and let Tcore (resp. Ccore) be the remaining part

of a control (resp. application) message in the GM primitive. For output, we assume control

messages output by Exec are of the form (Tcore,C 1
2pc, . . . ,C k

2pc) for some k, and ciphertexts

output by Send are of the form (Ccore,C 1
2pc, . . . ,C k

2pc). For input, we assume control messages

input to Exec (resp. to Recv) are of the form (Tcore,C2pc) (resp. (Ccore,C2pc)).

Forgery Predicates. We define the predicates proc-forgery and recv-forgery in Figure 6.8 using

the input/output semantics introduced above. Used in Figure 6.7, the purpose of these

predicates is to handle ciphertext ‘splitting’ resulting from the use of two-party channels.

Without accounting for this splitting, forgeries could be defined as usual. Essentially, we

consider that a control message T ∗ = (T ∗
core,C∗

2pc) is a forgery whenever either T ∗
core or C∗

2pc
are not part of an honestly generated message (i.e. in T[·]). Forgeries for Recv are defined

analogously.

proc-forgery(T ∗ = (T ∗
core,C∗

2pc)) : ̸ ∃{
(T,C⃗), (T ′,C⃗ ′)

}⊆T[·] :

(T ∗
core,C∗

2pc) ∈
{

(T,Ci), (T ′,Ci), (T,C ′
j)

}
∧ (Ci ∈ C⃗)∧ (C ′

j ∈ C⃗ ′)

recv-forgery(C = (C∗
core,C∗

2pc)) : ̸ ∃{
(C0,C⃗), (C ′

0,C⃗ ′)
}⊆CH[·]∪M[·] :

(C∗
core,C∗

2pc) ∈
{

(C0,Ci), (C ′
0,Ci), (C0,C ′

j)
}
∧ (Ci ∈ C⃗)∧ (C ′

j ∈ C⃗ ′)

Figure 6.8: Predicates that determine what is considered a forgery in Figure 6.7 for algorithms
Proc and Recv.

The predicates imply that it is not considered a forgery if a two-party ciphertext is received

with a different control message/ciphertext than it was sent with. That is, the adversary is

allowed to mix-and-match ciphertexts, i.e., by replacing the Ci corresponding to some T (resp.

C0) by C ′
i corresponding to some other T ′ (resp. C ′

0).

197

Chapter 6. WhatsUpp with Sender Keys? Analysis, Improvements and Security Proofs

6.4 Sender Keys

In this section, we explain and provide a simplified protocol description for Sender Keys. We

state our security theorem for Sender Keys, describe how we model the cleanness predicates

that characterise its security as a Group Messenger and then sketch its security. In Section 6.6

we provide a complete protocol description and proof.

6.4.1 Protocol

We describe the Sender Keys protocol in our GM syntax according to the details inferred

from [Wha20] and [M+16], although we acknowledge that our interpretation may not precisely

match the closed-source implementation of WhatsApp. In this subsection we present a

detailed overview of the main algorithms depicted in Figure 6.9. For Exec and Proc, we only

present the remove operation as it involves key refreshing and is considered the most complex,

while the create, add, and update operations follow a similar approach. For the sake of clarity,

we make some simplifications in this section, but the complete protocol logic can be found

later in Figures 6.19 to 6.22 (in Section 6.6, where we also provide supplementary descriptions

of the protocol logic).

Two-Party Channels and the Server. The Sender Keys protocol assumes the existence of

authenticated and secure two-party communication channels between each pair of users,

which can be achieved through the use of Signal’s Double Ratchet protocol [MP16a] also

used by WhatsApp [Wha20]. Additionally, the protocol relies on a central server to distribute

both control messages and application messages. We assume that the server provides a

total ordering for control messages, ensuring that all parties process control messages in the

correct order.6 Total ordering is not required for application messages. User authentication

is initially performed via the central server (modelled here with 2PC.InitCh), after which

users authenticate other group members through the underlying two-party communication

channel. We note that this deviates from other work in the literature such as [AJM22] where

the authentication service is different to the delivery service.

Primitives. The protocol relies on standard primitives including a symmetric encryption

scheme SymEnc= (Gen,Enc,Dec), a signature scheme Sig= (Gen,Sign,Vrfy), and two differ-

ent key derivation functions H1,H2 (our improved protocol also uses message authentication

codes). We include formal definitions in Chapter 2.

State Initialisation. Each user is assumed to maintain a state γ containing: a secret key used

for signing ssk, a list of current group members G , the current epoch ep, the current index of

their chain key ick (indicating the number of times the user’s sender key has been ratcheted

forward), a list of key counters kc (indicating the number of times that a sender key has been

re-sampled since ID initialised their state), a dictionary of sender keys SK[·] := (spkID,ckID, ick)

6We remark that total ordering is a standard assumption in the CGKA line of work [ACDT20, KPPW+21, ACJM20,
AJM22, ACDT21a] and is assumed by MLS.

198

6.4 Sender Keys

Init(ID,1λ)

1 : γ.ME ← ID

2 : γ.(ssk,G ,ep, iME) ←⊥
3 : γ.(SK[·],MK[·],kc[·]) ←⊥
4 : return γ

Send(m,γ)

1 : require ME ∈G

2 : if SK[ME,kc[ME]] =⊥ :

// Sample fresh sender key

3 : C⃗ ←PreSendFirst()

4 : if iME = 0 :

5 : C⃗ ← (C⃗ ,SendToMissing())

6 : mk←H1(SK[ME,kc[ME]].ck)

7 : ct $← SymEnc.Enc(mk,m)

// UpdateCK also updates iME

8 : UpdateCK(ME,kc[ME])

9 : M ← (ct, (ep, iME),kc[ME], ick,ME)

10 : σ $← Sig.Sign(ssk, M)

11 : return C := ((M ,σ),C⃗)

Exec(γ,cmd= rem, ID)

1 : require ID ∈G

2 : C⃗ [·] ←⊥
3 : T ← (rem,ME, ID,ep+1)

4 : return (T,C⃗)

Recv(γ,C = ((M ,σ),C2pc))

1 : parse M as (ct, (e, i),kc′, ick
′, ID)

2 : require ID ∈G

3 : if SK[ID,kc′] =⊥ :

4 : (SK[ID,kc′],kc∗,ep′,aux, ID∗) ← 2PC.Recv(γ,C2pc)

5 : require (ID,e,kc′) = (ID∗,ep′,kc∗)

6 : DeleteOldCK(ID,aux)

7 : else require C2pc =⊥
8 : require e ≤ ep
9 : require Sig.Vrfy(SK[ID,kc′].spk,σ, M)

// Derive or fetch mk from state

10 : mk←UpdateKeysRecv()

11 : m ← SymEnc.Dec(mk,ct)

12 : return (m, ID,e, i)

Proc(γ, (T = (rem, ID, ID′,ep′),C2pc))

1 : require ID ∈G ∧C2pc =⊥
2 : require ep′ = ep+1

3 : G
−←− {ID′}

4 : ep← ep+1; iME ← 0

5 : for all ID∗ ∈G :

6 : kc[ID∗] ← kc[ID∗]+1

7 : SK[ID′, ·] ←⊥
8 : if ID = ME :

9 : γ←⊥ // delete γ

10 : return true

Figure 6.9: Simplified Sender Keys protocol description (Init, Send, Recv, and example Exec
and Proc operations for cmd= rem) built from symmetric encryption scheme SymEnc, signa-
ture scheme Sig, PRG H= (H1,H2) and two-party channels scheme 2PC. For readability we
use and update state variables without explicitly referring to γ, and assume stateful algorithms
implicitly return (possibly updated) state. For conditions of the form “require T ” when T
is false, the function outputs ⊥ except for the state which is not updated. The full protocol
description is provided in Section 6.6 where the helper functions PreSendFirst, SendToMissing,
UpdateCK, DeleteOldCK and UpdateKeysRecv that appear in this Figure are defined.

indexed by a user ID and a key counter, and a list of message keys MK. The Init algorithm

initialises the state variable of users; in practice this is done by a user when they install the

messaging application.

Group Creation. This occurs via Exec(γ,crt, IDs), which takes a list of users G :=
{ID1, . . . , ID|G |} as input; two-party channels are initialised by users upon processing the control

199

Chapter 6. WhatsUpp with Sender Keys? Analysis, Improvements and Security Proofs

message via 2PC.InitCh (c.f. Section 6.6).

Message Sending. To send an application message m to the group, every ID ∈G must have

the caller’s (ME) sender key. The process is as follows:

• If ME does not have a sender key, ME calls helper PreSendFirst, which first generates

a fresh sender key ((γ.ssk,spk) $← Sig.Gen(1λ) and ck $← {0,1}λ). The sender key is then

set as SK[ME,kc[ME]] ← (spk,ck, ick) where ick = 0. ME shares this key with each ID ∈G

using 2PC.Send, resulting in a vector of ciphertexts C⃗ .

• If ME has a non-empty sender key but not all parties have it ME, calls helper

SendToMissing to share the key with them via 2PC.Send, therein updating C⃗ .

Then, ME generates a new message key mk from their chain key SK[ME,kc[ME]].ck, encrypts

m using mk, and ratchets its chain key forward by setting ck←H2(SK[ME,kc[ME]].ck). Finally,

ME signs the ciphertext and sends it together with C⃗ .

Message Receiving. To receive a message from ID, ME follows these steps:

• ME checks if they have ID’s sender key SK[ID,kc′] corresponding to the key counter kc′

indicated in the received message. If ME does not have it, they retrieve it from the two-

party ciphertext C2pc using 2PC.Recv, aborting the Recv call if the sender key cannot be

found.

• ME performs epoch consistency checks and verifies the signature on the ciphertext

using the signature public key SK[ID,kc′].spk.

• The message key mk required to decrypt the message is computed from the chain keys

as mk←H1(SK[ID,kc′].ck), and is deleted after use.

Out-of-Order Messages. In the scenario of out-of-order message delivery (handled by helper

UpdateKeysRecv), the following cases arise (we let ick := SK[ID,kc′].ick):

• If the received message comes from a past epoch (e, i) < (ep, ick), ME searches for the

relevant skipped message key in MK.

• If e = ep and i > ick, ME ratchets ID’s chain key i − ick times, and stores the skipped

message keys in MK.

• If e > e, the message reception fails since ME is not synchronised with the latest group

epoch and cannot (even) determine whether the sender is still a member of the group.

Handling out-of-order message delivery constitutes a significant portion of the protocol’s logic.

For instance, parties must keep track of (and announce) the highest ick associated with a given

kc. Failing to do so can result in correctness and security issues, as parties may overlook the

need to store and delete keys in MK.

200

6.4 Sender Keys

Key Updates. In at least Signal’s implementation of Sender Keys (it is not mentioned in

WhatsApp’s white paper [Wha20]) a simple (but somewhat weak) on-demand key update

mechanism is supported. A party ME can update its key material via Exec(γ,crt,ME). This

operation lazily samples a fresh sender key (spk,ck,0) and distributes it over the two-party

channels. All users sample a fresh key after processing a removal.

Membership Changes. The protocol allows individual group members to be added or

removed from the group via Exec(γ,add, ID) and Exec(γ,rem, ID). These operations result in

the distribution of a control message T to the group sent in clear. Newly added members are

also sent a welcome 2PC ciphertext containing group information. Note that we model single

adds/removes for simplicity but this can be extended in a straightforward manner to handle

batched group changes.

Upon processing a control message via Proc(γ,T), ME proceeds as follows:

• If some ID∗ is being removed at epoch e, ME erases all sender keys corresponding to ID∗

(except for skipped message keys).7 The sender keys corresponding to other users are

replaced with new ones when receiving messages from epoch e ′ ≥ e, ensuring messages

sent concurrently with the removal can still be received by ME.

• If some ID∗ is being added, ME initialises its 2PC with ID∗ via 2PC.InitCh.

• If ME is itself removed, it erases its state. If it is added to some group (or processes a

create message), it initialises two-party channels with every ID ∈G .

Note that after either updating or adding or removing a user, for performance and security

reasons, new sender keys are only distributed once a party sends his first message.

6.4.2 Security

In this subsection, we argue that Sender Keys as described in Section 6.4 is secure with respect

to our security model in Section 6.3.1. However, the security captured by our cleanness

predicate is far from theoretically optimal since Sender Keys is relatively weak in security, and

so in Section 6.5 we strengthen it by modifying the protocol in different ways. Our predicates

are parameterised by the security of the underlying two-party channels. We first state our

main theorem below.

Theorem 20. Consider IND-CPA symmetric encryption scheme SymEnc, SUF-CMA signature

scheme Sig, PRG function H : {0,1}λ→ {0,1}λ×{0,1}λ and 2PC-IND two-party channels scheme

2PC with respect to PCS bound δ and cleanness predicate C2pc (Figures 6.4 and 6.5). Then,

for Group Messenger Sender Keys (Figures 6.19 to 6.22) we have, with respect to cleanness

7A different deletion schedule may be applied as long as these keys are clearly marked as being no longer valid,
e.g., if ID∗ announces its maximum ick value over two-party channels when it processes its own removal.

201

Chapter 6. WhatsUpp with Sender Keys? Analysis, Improvements and Security Proofs

predicate Cgm =C∆
sk (Figure 6.13), that, for every efficient adversary A that makes at most q

oracle queries, one can build an adversary B such that

Advm−ind
GM,Cgm

(A) ≤ 2 ·ϵ2pc+q2 · (ϵ2pc+ϵsym+q ·ϵprg)+q ·ϵsig ,

where ϵsym = Advind−cpa
SymEnc(B), ϵsig = Advsuf−cma

Sig (B), ϵprg = Advprg
H (B) and ϵ2pc =

Adv2pc−ind
2PC,C2pc,∆(B).

We define Csk below and prove the theorem in Section 6.6.2. A proof sketch is provided at

the end of this section. Our security notion is adaptive as users can adaptively call oracles

and in particular compromise users. Security is tighter when we restrict the game to consider

non-adaptive adversaries as described below.

Corollary 1. Under the same conditions of Theorem 20, and considering a non-adaptive

security game, for every efficient adversary A that makes at most q oracle queries, one can

build an adversary B such that

Advm−ind
GM,Cgm

(A) ≤ 2 ·ϵ2pc+q · (ϵsym+q ·ϵprg)+q ·ϵsig ,

where ϵsym, ϵsig, ϵprg and ϵ2pc are defined above.

Sender Keys and Two-Party Channels. To illustrate how the cleanness predicates for Sender

Keys must depend on the underlying two-party channels, consider a strongly secure two-party

channel 2PC that provides optimal FS and PCS. Now, consider an execution of Sender Keys

where all parties share the same view of the group G = {ID1, ID2, ID3}, in which

1. ID1 generates a control message (Tcore,C⃗) to remove party ID3 (q1 =
REMOVE(ID1, ID3)),

2. ID1 and ID2 process T (q2,1 = DELIVER(ID1, (Tcore,C⃗ [ID1])), q2,2 =
DELIVER(ID2, (Tcore,C⃗ [ID2]))),

3. A exposes ID2 (q3 =EXPOSE(ID2));

4. ID1 sends an application message (q4 = SEND(ID1,m)).

Recall that in step 4, ID1 samples a new sender key that it sends to ID2 over 2PC, since

processing remove messages results in the sender keys of all parties being refreshed. Even

with optimally-secure 2PC, the adversary will be able to decrypt the key sent over 2PC (by the

correctness of the channel) and thus decrypt the ciphertext output in query q4.

Cleanness. Our goal is to describe a suitable cleanness predicate Csk for Sender Keys. The

intuition behind this cleanness predicate is based on the following observations about the

protocol:

202

6.4 Sender Keys

• The exposure of a group member compromises the security of subsequent chain and

message keys8 until a secure key refresh takes place. This enables the adversary to forge

messages since they also gain access to the exposed signature keys.

• Control messages can be trivially forged and injected by a network adversary as they are

not authenticated.

• Forward-secure confidentiality holds except for messages delivered out-of-order since

parties only delete message keys after using them, so a message that is delayed forever

results in the corresponding message key never being deleted.9

• All parties recover from state exposure (via EXPOSE(ID)) after security on the two-party

channels is restored (considering the PCS bound∆) and then either a) a removal is made

effective, or b) all parties update their keys successfully.

To formalise the security predicate we introduce conventions for tracking the channel epochs

of each user’s two-party channels. We assume the game M-IND maintains the largest channel

epoch-index for each user’s two-party channels over time. The game obtains this informa-

tion by observing the channel epoch-index pairs generated by the 2PC.Send and 2PC.Recv
operations within the group messenger. Specifically, we use a variable of the form EI[ID, ID′],
where EI[ID, ID′] represents the largest channel epoch-index pair from ID’s perspective for

the channel between them and user ID′, as for two-party channels. More generally, two-party

state variables that we use below can be tracked easily by an M-IND adversary such that our

predicates are well-defined.

The refresh∆ Predicate. We define the predicate refresh∆(ID, ID′, qi ,e), parameterised by the

PCS bound∆> 0 of the underlying two-party channels. Informally, given that ID′ is exposed in

query qi (qi =EXPOSE(ID′)), refresh∆(ID, ID′, qi ,e) is true if the (ID, ID′) channel has healed

and then ID has sampled a fresh sender key in or by epoch e (or will do so upon their next

Send call). If the predicate is true, ID has recovered from the exposure in qi .

More formally, let (e2pc, i2pc) = max{EI[ID′, ID; qi],EI[ID, ID′; qi]}. Then refresh∆(ID, ID′, qi ,e)

is true if a) for (e ′2pc, i ′2pc) =EI[ID′, ID; q j] for some j > i , e ′2pc ≥ e2pc +∆ holds; and b) during

query qk with k ≥ j , member ID processes one of the following control messages correspond-

ing to epoch e:

1. a removal of some member ID∗,

2. an addition of ID itself,

3. a group creation message, or

8Although it is not captured in our model, note that the exposure of a message key alone only compromises the
message it refers to and does not (computationally) leak information about the chain key or other message keys.

9In practice, applications like WhatsApp and Signal bound the amount of (logical) time that keys are active for
and the total number of keys that can be stored at once.

203

Chapter 6. WhatsUpp with Sender Keys? Analysis, Improvements and Security Proofs

4. an update from ID itself.

As such, if ID executes (and processes) an update that involves sending new key material

over a refreshed two-party channel, this key material should be safe. We also define a simpler

predicate refresh-s(ID,e) which is true if member ID processes one of the aforementioned

control messages corresponding to epoch e. Observe that both refresh∆ and refresh-s events

may only happen when ID moves to a new group epoch e.

Cleanness for Sender Keys. We divide our cleanness predicate into three components (chal-

lenge, injection, concurrency) that we specify below. The final predicate (the conjunction of

these three components) is defined in Figure 6.13.

Challenge (Figure 6.10). The effect of this predicate is to prevent challenges on exposed users

(i.e., due to EXPOSE calls). After exposing (with query qi) any user ID′, adversarial queries

to CHAL are disallowed for every ID in the group until refresh∆(ID, ID′, qi ,e) occurs for some

later epoch e > E[ID′; qi]. Note that this only restricts challenge queries q j where i < j . To

capture forward security precisely, some challenges made before an exposure (i > j) are also

forbidden. These affect messages sent by some ID in message epochs (e, i) ≥m-ep(ID′, ID, qi),

which correspond to keys that ID′ still stores (including skipped message keys stored at

exposure time) or can derive due to being in a previous message epoch (for example if the user

is offline).

C∆sk-chall: ∀(i , j , ID, ID′) : qi =EXPOSE(ID′)∧q j =CHAL(ID, ·, ·),(
i > j ∧m-ep(ID′, ID, qi) > (E[ID; q j], I[ID; q j]) ∧

(E[ID; q j], I[ID; q j]) ̸∈ SM[ID′, ID; qi]
)

∨ (
i < j ∧∃e : E[ID′; qi] < e ≤E[ID; q j]∧ refresh∆(ID, ID′, qi ,e)

)
Figure 6.10: Challenge cleanness predicate for Sender Keys where the adversary makes oracle
queries q1, . . . , qq .

Injection (Figure 6.11). Firstly, let us recall the two-party ciphertext splitting semantics

defined in Section 6.3.2. Namely, a GM ciphertext C naturally splits into C = (Ccore,C2pc)

where C2pc is processed by the two-party channels. An injection is said to have occurred when

a message with a forged Ccore and/or C2pc was successfully processed.

We define the injection predicate to prevent injections of application messages coming from

a user that has been exposed and has not refreshed its keys (we consider control messages

in the last predicate). We start with the definition for Ccore. After exposing a specific user

ID′ with query qi , A cannot make a query q j = RECEIVE(ID,C) to impersonate ID′ with a

forgery ciphertext C corresponding to some epoch e∗ (i.e., such that tuple (ID′,e∗) is output

by Recv(γ[ID],C) in the game) in the following situations:

1. e∗ ≥E[ID′; qi] and there hasn’t been a refresh∆(ID′, ID, qi ,e ′) event for the sender ID′ at

some epoch e ′ such that E[ID′; qi] < e ′ ≤ e∗, where the receiver ID has also processed

the key update from ID′’s message at injection time, i.e., E[ID; q j] ≥ e ′.

204

6.4 Sender Keys

2. e∗ < E[ID′; qi] but the signature key of ID′ at epoch e∗ was the same key as in the

exposure epoch E[ID′; qi]. Formally, this is expressed by the condition that there has not

been any event refresh-s(ID′,e ′) for an epoch e∗ < e ′ ≤E[ID′; qi].

For C2pc, we directly adopt the injection cleanness predicate C2pc-inj used to define two-party

channel security (Figure 6.5). For additional clarity, we parametrise the predicates by the

ciphertexts Ccore,C2pc. We also define the auxiliary predicate C∆sk-inj-core(Ccore) in Figure 6.11.

C∆sk-inj-core(Ccore) : ∀(i , j , ID, ID′) :

(Ccore, ·) ̸∈M[ID′, ·; q j]∧ (i < j)∧qi =EXPOSE(ID′) ∧
q j =RECEIVE(ID, (Ccore, ·))∧ (·,e∗, ·, ID′) ←Recv(γ[ID; q j], (Ccore, ·)) in q j ,

∃e ′ :
[

(E[ID′; qi] < e ′ ≤ e∗∧ refresh∆(ID′, ID, qi ,e ′))

∨ (e∗ < e ′ ≤E[ID′; qi]∧ refresh-s(ID′,e ′))
]

C∆sk-inj: ∀ Ccore,C2pc,C∆sk-inj-core(Ccore)∧C2pc-inj(C2pc)

Figure 6.11: Auxiliary core injection cleanness predicate (top) and injection cleanness pred-
icate (bottom) for Sender Keys, where the adversary makes oracle queries q1, . . . , qq . The
injection cleanness predicate additionally uses C2pc-inj (Figure 6.5).

Concurrency (Figure 6.12). This predicate ensures several properties in the protocol. Firstly,

it enforces that users process control message in the same order (albeit they need not be

synchronised beyond this restriction). Additionally, it prevents the injection of all control

messages. It is important to note that control messages are not signed in the core protocol,

making injections trivial. Furthermore, the predicate guarantees that every user proposing a

group change (via the Exec, ADD,REMOVE or UPDATE oracles) is in the most recent epoch.

In practice, this predicate ensures that there is a unique honest control message in each

epoch of the game. To complete the predicate, we further enforce that the two-party channel

ciphertext C2pc input to each DELIVER call is either honest or is allowed by the two-party

channel injection predicate C2pc-inj (Figure 6.5).

The concurrency predicate ensures both security and correctness by addressing scenarios

where members propose concurrent group changes or process group changes in different

orders. Without enforcing this predicate, the behaviour of the protocol, as specified in this

work, becomes ill-defined.

Csk-con : ∀(i , ID) : qi =DELIVER(ID, (Tcore,C2pc)),∃ j < i :

q j = (ADD or REMOVE or UPDATE or CREATE)(ID, ·)∧∃e ′ : (T,C⃗) =T[e ′] ∧
(C2pc ∈ C⃗ ∨ C⃗ =⊥∨C2pc-inj(C2pc))∧ (E[ID; qi] = e ′−1 =E[ID; q j])

Figure 6.12: Concurrency cleanness predicate in the ideal case where the adversary makes
oracle queries q1, . . . , qq . This predicate additionally uses C2pc-inj (Figure 6.5).

Limitations and Extensions. Our cleanness predicate enforces a total ordering on con-

trol messages, in contrast to considering causal ordering such as in Weidner et al.’s mod-

205

Chapter 6. WhatsUpp with Sender Keys? Analysis, Improvements and Security Proofs

C∆sk : C∆sk-chall ∧C∆sk-inj ∧Csk-con

Figure 6.13: Sender Keys cleanness predicate which makes use of sub-predicates defined
in Figures 6.10 to 6.12.

elling [WKHB21], or no ordering at all. This assumption is consistent with real-world protocols

(as in WhatsApp) where a central server is trusted to provide such an ordering, but makes our

model unsuitable for decentralised protocols. If our security model allowed for it, one could

modify our cleanness predicates to allow for ‘trivial’ injections that are non-winning, by not

giving the adversary the challenger’s bit b given that the forgery is trivial (i.e., it violates the

injection predicate). Our concurrency predicate and security model could be strengthened to

allow several Exec calls in an epoch, from which the network chooses one that is processed to

all parties, which has been modelled for TreeKEM in the past [ACDT20].

Proof Sketch for Theorem 20. Towards proving the theorem (see Section 6.6.2 for the full

proof), we construct a series of hybrids. We first transition to a game where injections on the

two-party channels are disallowed, following from their underlying security. After that, we

transition to a game where oracle RECEIVE never outputs challenge bit b, reducing the transi-

tion to SUF-CMA signature security, while still excluding trivial injections due to cleanness.

Then, we move to a game where the adversary is limited to a single CHAL query, losing a factor

of q in the resulting reduction. Subsequently, we transition to a game where the message

key used in the CHAL query (if it exists) is replaced by a uniformly random key that remains

unknown to the adversary due to cleanness, and the two-party ciphertexts that send the key’s

ancestor chain key are replaced by dummy ciphertexts, which follows from the 2PC security

and the PRG security of (H1,H2). Finally, we directly reduce to the IND-CPA security of the

symmetric encryption scheme.

6.5 Analysis and Improvements

For the proof of security of Sender Keys (Theorem 20) to go through, we need to impose severe

restrictions on the adversarial behaviour through the cleanness predicate Csk. Hence, even

though we managed to prove Sender Keys secure, we did so in a weak model that reveals

important security shortcomings of the protocol. In this section, we elaborate on these

limitations and propose changes to enhance security while maintaining efficiency. Some of

these findings were presented in a preliminary analysis in [BCG22].

6.5.1 Security Analysis and Limitations

Injection of Control Messages. Our first observation is that control messages lack user au-

thentication, necessitating a high level of trust in the server to prevent the crafting of its own

messages. To address this, in predicate Csk-con we need to enforce that every delivered control

206

6.5 Analysis and Improvements

message has been honestly generated. A server deviating from standard behavior could mount

a host of attacks. We give three examples below.

Censorship attack: The server can remove any member(s) ID from G such that all remaining

members assume ID left the group by himself, whilst ID believes a different user ID′ removed

him.

• The server delivers a control message T := (rem, ID, ID, ·) where (T, . . .) ←Exec(·,rem, ID)

to every ID′ ∈G \ {ID}.

• The server delivers a control message T ′ := (rem, ID′, ID, ·) where (T ′, . . .) ←
Exec(·,rem, ID) to ID ∈G .

Burgle into the group attack: This attack, observed by Rösler et al. [RMS18], allows the server to

add any member(s) ID to G . For this, the server just delivers a control message T := (add, ·, ID, ·)
where (T, . . .) ←Exec(·,add, ID) to every ID′ ∈G .

Unsafe group administration: In general, administration cannot be enforced or trusted due to

the lack of authentication of control messages, as discussed in Section 5.1.

Weak Post-Compromise Security. Sender Keys offers only a limited form of PCS. Essentially,

a refresh∆ event is the only possibility for ID to recover from a state compromise. This event

only occurs whenever another user is removed or whenever ID triggers an on-demand update

(or trivially when ID is new to the group). On-demand updates are supported by our primitive

syntax and protocol description, but it is not clear whether they are implemented in practice

beyond Signal (there is no mention to them in WhatsApp’s white paper [Wha20], for instance).

Moreover, the update mechanism is not satisfactory. Since only the updater ID refreshes its

sender key, this allows a passive adversary to eavesdrop on messages sent by any other group

member due to the adversary’s knowledge of the chain keys corresponding to those members.

Extending the update mechanism to the entire group in a naive manner would result in a total

communication complexity of O
(
n2

)
.

PCS and Two-Party Channels. PCS guarantees are even weaker due to the reliance of Sender

Keys on two-party channels. As parametrised by refresh∆, if ID sends new key material over a

two-party channel with ID′ that has not been healed (after ∆ back-and-forth messages) since

the last exposure of either ID or ID′, then such key material is still compromised. In practice, if

the state of ID is compromised, both the group and the two-party sessions will be exposed.

Therefore, unless parties refresh their individual two-party channels consciously (by sending

each other messages), executing updates or removals in the group session will not have the

desired healing effect.

In the real world, usually not all pairs of members of a group exchange private messages regu-

larly, hence not refreshing their two-party channels. The fact that even manually triggering a

207

Chapter 6. WhatsUpp with Sender Keys? Analysis, Improvements and Security Proofs

key update does not necessarily heal the group from a state compromise conveys an important

security limitation.

Lack of Forward Security on Authentication. Beyond PCS limitations, we observe that the

forward security guarantees for authentication provided by Sender Keys are sub-optimal.

Consider a simple group G = {ID1, ID2} and the attack described in Figure 6.14.

1 : q1 = SEND(ID1,m) generates ciphertext C encrypted under mk and signed under ssk1.

2 : q2 =EXPOSE(ID1), where A obtains ssk1, but not mk.

3 : A modifies C and signs it again under ssk1 to create a forgery C ′ corresponding

to the same message epoch as C.

4 : q3 =RECEIVE(ID2, ID1,C ′), which is a successful injection.

Figure 6.14: Attack on authentication forward security in Sender Keys.

Note that q3 is a forbidden query by Csk-inj. q3 attempts to inject a message that corresponds

to key material used before the state exposure, hence one can envision stronger FS where

queries like q3 are allowed. This attack can occur naturally if ID2 is offline when m is first sent

by ID1.

An attack of a similar nature can also occur in a messaging scheme where the same signature

keys are re-used across groups, and are refreshed at different times, as pointed out by Cremers

et al. [CHK21].

Additional Remarks. In a Sender Keys group, each user is associated with a distinct sym-

metric key, resulting in a state that contains O (n) secret material at all times. However, the

exposure of a single member compromises the keys of all group members, rendering this

use of multiple keys ineffective for enhancing security. The primary advantage of employing

multiple keys is for concurrency reasons. Nevertheless, in large groups, this approach can

pose scalability challenges. As a result, it is possible to explore trade-offs between the level

of concurrency supported and the amount of secret material that needs to be stored at any

given time. At the opposite end of the spectrum, all users could maintain a single symmetric

chain that is the same for everyone. This approach, suitable for scenarios where concurrent

message transmission is unlikely, reduces the state size to O (1) and requires O (n) PCS updates.

Moreover, this would improve security by reducing PCS updates to the sending and processing

of a single constant-sized message, which represents an optimal solution.

Sender Keys, as described in Section 6.2.1, is susceptible to randomness exposure and ran-

domness manipulation attacks. Namely, the adversary does not need to leak a member’s state,

but simply control the randomness used by the device, inhibiting any form of PCS. Protection

against this family of attacks can be attained at small cost if freshly generated keys are hashed

with the state [JS18] and the classic NAXOS trick used in authenticated key exchange [LLM07].

Other attacks are possible but unavoidable unless symmetric encryption for application

208

6.5 Analysis and Improvements

messages is replaced by some form of public-key encryption. Suppose that the adversary A

exposes user ID (γ←EXPOSE(ID)) and then calls C ←CHAL(ID,m0,m1). A can trivially win

since it can derive mk used in the CHAL query trivially from γ. Some ratcheting protocols

provide strong security in that, if a user is impersonated towards, their state should ‘diverge’

and no longer be useful for decrypting messages from honest parties [PR18, JS18, BRV20]. This

is not possible to achieve in a Sender Keys-like protocol (nor is achieved by the Double Ratchet

or MLS for messages in the same symmetric ratchet) since the key schedule for message

encryption is deterministic and independent of previously received messages.

Although our formalism does not capture multi-group security, it can be adapted to capture

it, for example by using group identifiers to label different groups. In principle, reusing the

same two-party channels between parties that are in several groups together could lead to

an increase in security by faster healing (since more messages would be sent on the same

channel).10 As argued by Cremers et al. [CHK21], if a party reuses the same signature key

across groups (ignoring any privacy concern from doing so), PCS authenticity guarantees

would improve, since replacing the key after channels are healed would immediately heal

authenticity across all groups (rather than just one). We leave it open to explore cross-group

security further and in particular capture multi-group security formally.

6.5.2 Proposed Improvements: Sender Keys+

We propose several improvements to Sender Keys below. Our improvements are constrained

by the desire to retain the performance characteristics and structure of Sender Keys. In

particular, we retain O (1)-sized ciphertexts, do not increase key sizes, and require only stan-

dard cryptographic primitives. Our improved version of Sender Keys, which we call Sender

Keys+, is presented fully in Figures 6.19 to 6.22. We formalise security by introducing several

modifications to our cleanness predicate that we describe at the end of this section.

Secure Control Messages. A simple way of resolving the attacks in Section 6.5.1 would be

for users to sign their own control messages and verify signatures before processing control

messages. Additional protocol logic for correctness is required, namely that users who craft a

control message but have not shared their sender key yet (because they have not spoken in the

group) generate a signature key pair and share their public key over the two-party channels.

By introducing this tweak, we can weaken the cleanness predicate such that it no longer

enforces honest control message delivery (Csk+-con). On the other hand, we need to introduce

the restriction that no secret signature key ssk can be known to the adversary at delivery

time, similar as in the injection predicate. We do so by introducing a new control predicate

C∆sk+-ctr that follows the blueprints of the injection predicate (Figure 6.11), and that we show

in Figure 6.15.

10Note this would not reduce security upon state exposure since all of a given party’s state, and therefore channels,
are assumed (in this thesis) to be compromised at the same time.

209

Chapter 6. WhatsUpp with Sender Keys? Analysis, Improvements and Security Proofs

Improved Forward-Secure Authentication. We propose two possible improvements that

address the attack in Section 6.5.1 (Figure 6.14) to varying extents.

MACing from the Chain Key. The first improvement, which has minimal overhead, is to

MAC the application messages with a MAC key τk that we derive via an additional H3(ck).

The modification is done in the Send algorithm as follows: given an unsigned ciphertext

C̃ = (ct, (e, i),ME), we obtain the MAC tag τ←MAC.Tag(τk,C̃). Then, we sign the ciphertext

with the appended tagσ← Sig.Sign(ssk, (C̃ ,τ)). The verification of the MAC tag is easily carried

out at the receiver’s end. We include this simple tweak in the protocol in Figures 6.19 to 6.22.

Naturally, symmetric encryption could instead be replaced with an AEAD to achieve the same

effect.

The main security improvement that results from this upgrade is that, in the attack in Sec-

tion 6.5.1, the adversary additionally needs knowledge of τk to forge the MAC tag. Hence, one

of the following situations must occur before delivery:

• The sender ID is exposed before the message is sent. Then, both τk and ssk are compro-

mised.

• The sender ID is exposed after the message is sent (leaking ssk), and another group

member ID′ is exposed before the message is delivered (leaking τk).

In particular, the attack of Figure 6.14 no longer results in a successful message delivery. The

MAC key can be stored together with the message key for out-of-order messages, such that the

MAC can always be verified in a correct execution of the protocol. We note that insider attacks

(forgeries from other group members) cannot be prevented by MACing, but we do not model

these.

The modified injection predicate that results from this improvement is shown in Figure 6.17.

Essentially, we define an auxiliary predicate C∆
sk+-inj-extra that considers the security given by

the message/MAC keys (similarly as in Figure 6.10). Then, the modified Csk+-inj is the logical

disjunction of the former injection predicate with C∆sk+-inj-extra, and is hence strictly weaker.

Ratcheting Signature Keys. An alternative mitigation strategy for the attack of Figure 6.14

is to ratchet signature keys. Let (ssk,spk) be ID’s signature key pair, where spk is part of its

sender key. Before sending a new message m to the group, ID can generate a new key pair

(ssk′,spk′) $← Gen(1λ). Then, ID can attach the new spk′ to the ciphertext corresponding to

encrypting m, and sign the package using ssk. This (by now standard) countermeasure not only

provides strong forward security but also post-compromise security for the authentication of

messages. Nevertheless, it involves larger overhead, so it may not be desirable in all scenarios

and we refrain from including it in Sender Keys+.

Efficient PCS Updates. We propose an asynchronous update mechanism to refresh all chain

keys at once, recovering PCS on-demand for the whole group with a single update (and O (n)

210

6.5 Analysis and Improvements

complexity for a group of n users). Recall that our Group Messenger primitive supports

updates via Exec(γ,upd, {ID}).

A Naive Solution. Let ID be the updating party. ID generates a new sender key for himself

as in the case of a remove operation; namely samples a fresh ck and a fresh (ssk,spk) $←
Sig.Gen(1λ). Additionally, ID samples randomness r $← {0,1}λ. Then, it distributes (ck,spk,r)

over the two-party channels. Upon reception, every group member (including ID itself)

sets SK[ID] ← (ck,spk); and then for every ID′ ∈G , set SK[ID′].ck ←H′(SK[ID′].ck,r), where

H′ : {0,1}λ× {0,1}λ → {0,1}λ is a secure key derivation function. Since r is freshly sampled

and distributed securely, all chain keys recover from exposure. Note that r must be used and

erased immediately, as all updated chain keys are exposed if r is leaked at any future time.

Our Solution. The previous solution fails in out-of-sync scenarios such as the following.

Suppose that ID′ is in message epoch (1,1) when ID sends an update message T . Then, ID′

speaks in the group before receiving T (for example, while being offline), ratcheting its key to

(1,2). All group members will update the chain key ck1,1
ID′ (i.e. corresponding to the message

epoch (e, i) = (1,1)) in SK[ID′], but ID′ will be in message epoch (1,2) (and therefore will have

erased ck1,1
ID′). In general, if there are application messages in transit concurrently with the

update, users will be out-of-sync.

To support asynchronicity, we propose that all parties ratchet their chain key N times forward,

where N is a fixed constant that we call the concurrency bound (for example N = 100; in

practice the cost of executing 100 hash function calls sequentially is negligible). In the event

that ℓmessages have been sent out-of-sync, then the chain key is ratcheted N−ℓ times instead.

Then, parties update the ratcheted chain keys with the sent randomness r . To synchronise

between them and the update initiator ID, the latter sends a list with his view of the key indices

of each group member (in the control message). We describe the update protocol as part

of Figures 6.19 to 6.22. Note that this mechanism requires the assumption of total ordering of

control messages to avoid overlapping updates.

The security improvement is reflected in the challenge cleanness predicate in Figure 6.16. The

predicate follows the blueprint of the challenge predicate for Sender Keys (Figure 6.10), except

that now it also suffices that some arbitrary member ID∗ that has a healed channel with ID′

updates after the exposure, and that ID processes such update before the challenge.

Efficient Remove Operations. The previous update mechanism can be extended to improve

the efficiency of group removals from O
(
n2

)
(everyone needs to generate and distribute a new

key) to O (n) in terms of communication complexity. Note a removal can be made effective

if the party that sends the remove message T distributes update material among all group

members except for the removed party ID′. If ID′ leaves, the next member that speaks in the

group must also trigger an update. This tweak, like our solution above, has the drawback that

the signature keys are not refreshed. To tame the written complexity of the protocol, we do

not include this tweak in Sender Keys+. Furthermore, considering the minimal overhead of

updates, they could potentially become the preferred method for sharing sender keys in the

211

Chapter 6. WhatsUpp with Sender Keys? Analysis, Improvements and Security Proofs

group under all circumstances (we also do not use this tweak when a user samples their first

sender key at group creation time or upon being added to a group). This approach allows the

group to achieve PCS almost for free.

Cleanness Predicates for Sender Keys+. The cleanness predicates corresponding to our

improvements and described informally above are detailed in Figures 6.15 to 6.17, and the

joint predicate C∆sk+ in Figure 6.18.

Csk+-con : ∀(i , ID) : qi =DELIVER(ID,T),∃ j < i :

q j = (ADD or REMOVE or UPDATE or CREATE)(ID, ·) ∧
∃e ′ : E[ID; qi] = e ′ =E[ID; q j]

C∆sk+-ctr-core(Tcore) : ∀(i , j , ID, ID′) :

(Tcore, ·) ̸∈T[·]∧ (i < j)∧qi =EXPOSE(ID′) ∧q j =DELIVER(ID, (Tcore, ·)),

∃e ′ :
[

(E[ID′; qi] < e ′ ≤ e∗∧ refresh∆(ID′, ID, qi ,e ′))∨ (e∗ < e ′ ≤E[ID′; qi]∧ refresh-s(ID′,e ′))
]

C∆sk+-ctr: ∀ Tcore,C2pc : C∆sk-ctr-core(Tcore)∧C2pc-inj(C2pc)

Figure 6.15: Modified concurrency predicate, additional auxiliary core control predicate, and
additional control predicate for Sender Keys+.

C∆sk+-chall : C∆sk-chall∨
[
i < j ∧∃e,e ′,k, ID∗ : E[ID′; qi] < e ′ < e ≤E[ID; q j] ∧

qk =UPDATE(ID∗)∧ep[qk] = e −1∧ refresh∆(ID∗, ID′,e ′, qk)
]

Figure 6.16: Modified challenge cleanness predicate for Sender Keys+.

C∆sk+-inj-extra(Ccore) : C∆sk-inj-core(Ccore)

∨ [
i > j ∧m-ep(ID′, ID, qi) > (E[ID; q j], I[ID; q j]) ∧ (E[ID; q j], I[ID; q j]) ̸∈ SM[ID′, ID; qi]

]
∨ [

i < j ∧∃e : E[ID′; qi] < e ≤E[ID; q j]∧ refresh∆(ID, ID′, qi ,e)
]

∨ [
i < j ∧∃e,e ′,k, ID∗ : E[ID′; qi] < e ′ < e ≤E[ID; q j] ∧

qk =UPDATE(ID∗)∧ep[qk] = e −1∧ refresh∆(ID∗, ID′,e ′, qk)
]

C∆sk+-inj: ∀ Ccore,C2pc : C∆sk+-inj-extra(Ccore)∧C2pc-inj(C2pc)

Figure 6.17: Modified auxiliary injection predicate and injection predicate for Sender Keys+.
We remark that the additional logic simply mimics the structure of C∆sk+-chall.

C∆sk+ : C∆sk+-chall ∧C∆sk+-inj ∧C∆sk+-con ∧C∆sk+-ctr

Figure 6.18: Modified cleanness predicate for Sender Keys+.

6.5.3 Sender Keys/Sender Keys+ vs CGKA

As remarked in the introduction, Sender Keys (and especially Sender Keys+) offers different ef-

ficiency and security trade-offs over CGKA-based protocols. We provide a detailed comparison

below.

212

6.5 Analysis and Improvements

PCS. When a user ID is exposed, the confidentiality of all subsequent messages is lost in

both CGKA and Sender Keys(+). For an update to take effect in Sender Keys(+), all two-party

channels must have healed. In this case, an update by ID′ only heals the confidentiality of

messages sent by ID′ in Sender Keys, as opposed to the confidentially of messages sent by all

members in Sender Keys+.

It is worth noting that both Sender Keys and Sender Keys+ require up to PCS bound∆messages

(or rounds) to heal after a compromise (due to the two-party channels) in addition to the

update message. In contrast, a single message suffices for some CGKA protocols [ACDT20,

KPPW+21, ACJM20, AHKM22].

Update Efficiency. In Sender Keys+, an update message requires O(n) communication by the

updating user, where each member is sent a constant-size message. In TreeKEM variants, or in

general binary-tree-based CGKAs, updates involve best-case O(logn) size for the updating user

and have to be entirely downloaded by each member, involving a total O(nlogn) download

overhead. Nevertheless, this can degrade to O(n) per member (i.e., O(n2) total). The multi-

recipient PKE approach taken by Hashimoto et al. [HKP+21] achieves the same asymptotic

complexity as Sender Keys+, although with larger concrete costs.

Insider Security. The attack of Alwen et al. [AJM22] that highlights the need for IND-CCA (and

not only IND-CPA) public-key encryption in TreeKEM also applies to symmetric encryption in

Sender Keys, but can be mitigated by using a MAC (appropriately) or an AEAD. Considering

the analysis of Alwen et al. [AJM22], it is not clear how to mount fake group attacks as they do,

although if different users process different control messages, they may end up with different

views of the group. This attack however also applies to CGKAs in general.

Separately, we note that Sender Keys(+) does not suffer from the forward security issues from

MLS’s CGKA [ACDT20].

6.5.4 Sender Keys in Practice

We discuss different aspects of how our formalism compares to the implementation of Sender

Keys by WhatsApp and Signal in practice.

AEAD for encryption. Both WhatsApp [Wha20] and Signal11 use AES-256 in CBC mode for

Sender Keys, which does not provide authentication guarantees.

Control messages in WhatsApp. Add and remove operations are processed following [RMS18,

Sec. 5.2.2, (p. 10)] via ‘modification messages’ which contain similar information to our control

messages. To our knowledge, dedicated sender key updates are not supported by WhatsApp,

as the feature is not mentioned in their white paper [Wha20].

11https://github.com/signalapp/libsignal/blob/3b7f3173cc4431bc4c6e55f6182a37229b2db6fd/rust/protocol/
src/group_cipher.rs#L43C29-L43C29

213

https://github.com/signalapp/libsignal/blob/3b7f3173cc4431bc4c6e55f6182a37229b2db6fd/rust/protocol/src/group_cipher.rs#L43C29-L43C29
https://github.com/signalapp/libsignal/blob/3b7f3173cc4431bc4c6e55f6182a37229b2db6fd/rust/protocol/src/group_cipher.rs#L43C29-L43C29

Chapter 6. WhatsUpp with Sender Keys? Analysis, Improvements and Security Proofs

Signal group management. At least on Android, Signal has since 2021 required the use of so-

called v2 groups, which encompasses Signal’s private group management system [CPZ20].12

Here, Sender Keys is used whenever possible, although occasionally pairwise channels are used

as a fallback.13 The state of the group membership is dictated by the central server; effectively,

adds and removes are totally ordered by it. Our control message abstraction captures this

latter fact, but our formalism does not capture the private group system. However, our signing

of control messages in Sender Keys+ provides more guarantees on group membership given

total ordering on control messages: a malicious Signal server can, e.g., re-add removed users

without authorisation from group members [CPZ20, p. 45/46].

Updates in Signal. Every sender key must be updated by default every two weeks and a global

maximum of 90 days14; these are sent via two-party channels, and there is no central control

message sent. In this chapter, we opted to model update control messages following the CGKA

line of work, for clarity, and because they are particularly well-suited to our improved update

mechanism from Section 6.5.2.

6.6 Sender Keys and Sender Keys+: Full Protocols and Security

6.6.1 Protocol Descriptions

We introduce the full Sender Keys and Sender Keys+ protocols in Figures 6.19 to 6.22, extending

the descriptions in Section 6.4 and Section 6.5. In Tables A.1 and A.2 (Appendix A.4) we describe

the variables and dictionaries used here and in this chapter in general which may be especially

useful in this subsection.

Below, we make some additional remarks intended to help the reader to parse the pseudocode

which is inherently complex, not least due to the additional variables and logic that is required

by our modifications.

Sent and Unsent Sender Keys. When a new user ID joins and a member ME processes the

message via Proc(·,T = (add, ·)), ID does not receive the sender key of ME until ID speaks

again. Hence, ME needs to keep track of this newly added user; it does so via the no-SK[·]
dictionary. Namely, no-SK[ID] = true in the view of ME if ME has not sent his sender key to ID

yet. This functionality is captured in the SendToMissing algorithm.

Sending Control Messages without a Sender Key. A different scenario is that ME calls Exec
and generates a control message T which, in Sender Keys+, needs to be signed. In the event

that ME does not have a working sender key yet (e.g., due to a recent removal), ME gener-

12https://github.com/signalapp/Signal-Android/blob/0775fc7ead818a8380e7e374d15898cbabccaa9c/app/
src/main/java/org/thoughtcrime/securesms/jobs/PushGroupSendJob.java#L325C76-L325C76

13See the ‘for’ loop at
https://github.com/signalapp/Signal-Android/blob/0775fc7ead818a8380e7e374d15898cbabccaa9c/app/src/
main/java/org/thoughtcrime/securesms/messages/GroupSendUtil.java#L249C1-L249C52

14https://github.com/signalapp/Signal-Android/commit/35393fc33165e5b1417e7b1a7d6f85d0d7919c6f

214

https://github.com/signalapp/Signal-Android/blob/0775fc7ead818a8380e7e374d15898cbabccaa9c/app/src/main/java/org/thoughtcrime/securesms/jobs/PushGroupSendJob.java#L325C76-L325C76
https://github.com/signalapp/Signal-Android/blob/0775fc7ead818a8380e7e374d15898cbabccaa9c/app/src/main/java/org/thoughtcrime/securesms/jobs/PushGroupSendJob.java#L325C76-L325C76
https://github.com/signalapp/Signal-Android/blob/0775fc7ead818a8380e7e374d15898cbabccaa9c/app/src/main/java/org/thoughtcrime/securesms/messages/GroupSendUtil.java#L249C1-L249C52
https://github.com/signalapp/Signal-Android/blob/0775fc7ead818a8380e7e374d15898cbabccaa9c/app/src/main/java/org/thoughtcrime/securesms/messages/GroupSendUtil.java#L249C1-L249C52
https://github.com/signalapp/Signal-Android/commit/35393fc33165e5b1417e7b1a7d6f85d0d7919c6f

6.6 Sender Keys and Sender Keys+: Full Protocols and Security

Init(ID,1λ)

1 : γ.ME ← ID

2 : γ.(ssk,G ,ep, iME , last-kc) ←⊥
3 : γ.SK[·, ·] ←⊥ // (ID,ck) → (spkID,ckID, ick)

4 : γ.MK[·, ·] ←⊥ // (ID, (kc, ick)) → (mk,τk)

5 : γ.no-SK[·] ← false // ID → boolean

6 : γ.max-ick[·, ·] ←⊥ // kc→ ick
7 : γ.kc[·] ←⊥ // ID → kc
8 : γ.rs[·] ←⊥ // kc→ random coin

9 : γ.γ2pc ← 2PC.Init(ID)

10 : return γ

Send(γ,m)

1 : require ME ∈G

2 : C⃗ [·] ←⊥
3 : if SK[ME,kc[ME]].ick =⊥ :

// Sample sender key if needed

4 : C⃗ ←PreSendFirst()

5 : if iME = 0 :

6 : C⃗ ← (C⃗ ,SendToMissing())

7 : (mk,τk) ← (H1,H3)(SK[ME,kc[ME]].ck)

8 : ct $←SymEnc.Enc(mk,m)

9 : UpdateCK(ME,kc[ME])

10 : M ← (ct, (ep, iME),kc[ME], ick,ME)

11 : τ←MAC.Tag(τk, M)

12 : σ $←Sig.Sign(ssk, M ,τ)

13 : return C := ((M ,τ,σ),C⃗)

UpdateCK(ID,kc′)
1 : SK[ID,kc′].ck←H2(SK[ID,kc′].ck)

2 : SK[ID,kc′].ick ←SK[ID,kc′].ick +1

3 : if ID = ME :

4 : iME ← iME +1

Recv(γ,C = ((M ,τ,σ),C2pc))

1 : parse M as (ct, (e, i),kc′, ick
′, ID)

2 : require ID ∈G

3 : if SK[ID,kc′] =⊥ :

// Receive ID’s sender key via 2PC if needed

4 : ((SK[ID,kc′],kc∗,ep′,max-ick
′, last-kc′), ID∗, ·, ·)

← 2PC.Recv(C2pc)

5 : require ID∗ = ID∧ep′ = e ∧kc∗ = kc
6 : DeleteOldCK(ID,max-ick

′, last-kc′)
7 : else require C2pc =⊥
8 : require e ≤ ep
9 : require Sig.Vrfy(SK[ID,kc′].spk,σ, M ,τ)

10 : (mk,τk) ←UpdateKeysRecv()

11 : require MAC.Vrfy(τk, M ,τ)

12 : m ←SymEnc.Dec(mk,ct)

13 : return (m, ID,e, i)

UpdateKeysRecv()

1 : ick ←SK[ID,kc′]
// Store skipped keys in MK given out-of-order delivery

2 : while ick < ick
′ :

3 : (mk,τk) ← (H1,H3)(SK[ID,kc′].ck)

4 : MK[ID, (kc′, ick
′)] ← (mk,τk)

5 : UpdateCK(ID,kc′)
6 : ick

′++

7 : if ick > ick
′ :

8 : require MK[ID, (kc′, ick
′)] ̸= ⊥

9 : (mk,τk) ←MK[ID, (kc′, ick
′)]

// Delete stored key for forward security

10 : MK[ID, (kc′, ick
′)] ←⊥

11 : else :

12 : (mk,τk) ← (H1,H3)(SK[ID′,kc′].ck)

13 : UpdateCK(ID,kc′)
14 : return (mk,τk)

Figure 6.19: Sender Keys and Sender Keys+ description (part 1 of 4: Init, Send/Recv, two
helpers). State variables are implicitly stateful where relevant for readability. Text in black
colour corresponds to standard Sender Keys. Coloured text corresponds to the modifications
in Sender Keys+ from Section 6.5.2: blue text corresponds to securing control messages via
signatures, teal text corresponds to MACing for forward security and violet text corresponds to
PCS updates.

ates an ephemeral sender key containing only a signature key spk. The key is immediately

distributed over the two-party channels via OneTimeSpk. We remark that whenever both

SendToMissing and OneTimeSpk are executed in the same algorithm (such as in Exec), only

215

Chapter 6. WhatsUpp with Sender Keys? Analysis, Improvements and Security Proofs

Exec(γ,cmd= rem, ID)

1 : require ID ∈G

2 : C⃗ [·] ←⊥
3 : T ← (rem,ME, ID,ep+1)

4 : C⃗ ← (SendToMissing(),OneTimeSpk())

5 : return (T ,σ :=Sig.Sign(ssk,T),C⃗)

Proc(γ, (T = (rem, ID, ID′,ep′),σ,C2pc))

1 : require ID ∈G

2 : if SK[ID,kc[ID]].spk=⊥ :

3 : ((SK[ID,kc[ID]],kc∗,ep∗,

max-ick
′, last-kc′), ID∗, ·, ·) ← 2PC.Recv(C2pc)

4 : require ID∗ = ID

5 : require ep′ = ep∗+1

6 : require kc∗ = kc[ID]

7 : DeleteOldCK(ID,max-ick
′, last-kc′)

8 : else require C2pc =⊥
9 : require Sig.Vrfy(SK[ID,kc[ID]].spk,σ,T)

10 : require ep′ = ep+1

11 : G ←G \ {ID′}
12 : ep← ep+1; iME ← 0

13 : for all ID+ ∈G :

14 : kc[ID+] ← kc[ID+]+1

15 : SK[ID′, ·] ←⊥
16 : if ID = ME :

17 : γ←⊥
18 : return true

Exec(γ,cmd= add, ID)

1 : require ID ̸∈G

2 : C⃗ [·] ←⊥
3 : T ← (add,ME, ID,ep+1)

4 : C⃗ ← (SendToMissing(),OneTimeSpk())

5 : welcome← (G ,kc,ep,spk)

6 : (C⃗ [ID], ·, ·) $← 2PC.Send(ID,welcome)

7 : return (T ,σ :=Sig.Sign(ssk,T),C⃗)

Proc(γ, (T = (add, ID, ID′ ̸= ME,ep′),σ,C2pc))

1 : require ID ∈G

2 : if SK[ID,kc[ID]].spk=⊥ :

3 : ((SK[ID,kc[ID]],kc∗,ep∗,max-ick
′, last-kc′),

ID∗, ·, ·) ← 2PC.Recv(C2pc)

4 : require ID∗ = ID

5 : require ep′ = ep∗+1

6 : require kc∗ = kc[ID]

7 : DeleteOldCK(ID,max-ick
′, last-kc′)

8 : else require C2pc =⊥
9 : require Sig.Vrfy(SK[ID].spk,σ,T)

10 : require ep′ = ep+1

11 : G ←G ∪ {ID′}
12 : ep← ep+1; iME ← 0

13 : acc← 2PC.InitCh(ID′)
14 : require acc
15 : no-SK[ID′] ← true
16 : kc[ID′] ← 0

17 : return true

Proc(γ, (T = (add, ID,ME,ep′),σ,C2pc))

1 : ((G ′,kc′,ep∗,spk), ID∗, ·, ·) ← 2PC.Recv(C2pc)

2 : require ID∗ = ID

3 : SK[ID,kc′[ID]].spk← spk
4 : require Sig.Vrfy(SK[ID,kc′[ID]].spk,σ,T)

5 : require ep∗+1 = ep′

6 : (G ,kc,ep) ← (G ′,kc′,ep′)
7 : for all ID′ ∈G \ {ME} :

8 : acc← 2PC.InitCh(ID′)
9 : require acc

10 : kc[ME], iME ← 0

11 : return true

Exec(γ,cmd= crt, IDs)

1 : G ← IDs; C⃗ [·] ←⊥
2 : T ← (crt,ME, IDs)

3 : C⃗ ←OneTimeSpk()

4 : return (T ,σ :=Sig.Sign(ssk,T),C⃗)

Figure 6.20: Sender Keys and Sender Keys+ description (part 2 of 4: Proc/Exec part 1 of 2).

216

6.6 Sender Keys and Sender Keys+: Full Protocols and Security

Proc(γ, (T = (crt, ID, IDs),σ,C2pc))

1 : if SK[ID,kc[ID]].spk=⊥ :

2 : ((SK[ID,kc[ID]],kc∗,ep∗, ·, ·), ID∗, ·, ·)
← 2PC.Recv(C2pc)

3 : require ID∗ = ID

4 : require ep∗ = kc∗ =⊥
5 : else require C2pc =⊥
6 : require Sig.Vrfy(SK[ID,kc[ID]].spk,σ,T)

7 : require ep=⊥
8 : G ← IDs

9 : for all ID′ ∈G :

10 : acc← 2PC.InitCh(ID′)
11 : require acc
12 : kc[ID′] ← 0

13 : ep, iME ← 0

14 : return true

Exec(γ,cmd= upd,ME)

1 : require ME ∈G

2 : Upd-Ind[·] ←⊥
3 : (spk,ssk) $←Sig.Gen

4 : r $← {0,1}λ

5 : Upd-Ind[ME] ←SK[ME,kc[ME]].ick

6 : ck $← {0,1}λ

7 : SK[ME,kc[ME]+1] ← (spk,ck, ick)

8 : m ← (SK[ME,kc[ME]+1],kc[ME]+1,ep,

max-ick[last-kc], last-kc,r)

9 : C⃗ [·] ←⊥
10 : for all ID ∈G \ {ME} :

11 : (C⃗ [ID], ·, ·) $← 2PC.Send(ID,m)

12 : Upd-Ind[ID] ←SK[ID′,kc[ID]].ick
13 : rs[kc[ME]] ← r

14 : T ← (upd,ME,kc[ME]+1,ep+1,Upd-Ind)

15 : return (T ,σ :=Sig.Sign(ssk,T),C⃗)

Proc(γ, (T = (upd, ID,kc′,ep′,Upd-Ind),σ,C2pc))

1 : require Sig.Vrfy(SK[ME].spk,σ,T)

2 : if ID = ME :

3 : require C2pc =⊥
4 : r ← rs[kc′]; rs[kc′] ←⊥
5 : else :

6 : ((SK[ID,kc[ID]+1],kc∗,ep∗,

max-ick
′, last-kc′,r), ID∗, ·, ·) ← 2PC.Recv(C2pc)

7 : require ID∗ = ID

8 : require ep′ = ep∗+1

9 : require kc∗ = kc[ID]+1

10 : require ep′ = ep+1

11 : ep← ep′; iME ← 0

12 : kc[ID] ← kc[ID]+1

13 : DeleteOldCK(ID,max-ick
′, last-kc′)

// Hash forward N times before hashing with r

14 : for all ID′ ∈G \ {ID} :

15 : if SK[ID′,kc[ID′]].ck=⊥ :

16 : continue (line 14)

17 : while SK[ID′,kc[ID′]].ick <Upd-Ind[ID′] :

18 : (mk,τk) ← (H1,H3)(SK[ID′,kc[ID′]].ck)

19 : MK[ID′, (kc[ID′],SK[ID′,kc[ID′]].ick)] ← (mk,τk)

20 : UpdateCK(ID′,kc[ID′])
21 : ℓ←SK[ID′,kc[ID′]].ick −Upd-Ind[ID′]
22 : require ℓ< N

23 : ck′ ←SK[ID′,kc[ID′]].ck
24 : do N −ℓ times : ck′ ←H2(ck′)
25 : SK[ID′,kc[ID′]].ck←F(ck′,r)

26 : return true

Figure 6.21: Sender Keys and Sender Keys+ description (part 3 of 4: Proc/Exec part 2 of 2).

one of them will output a non-blank ciphertext, depending on whether the caller’s signature

key SK[ME,kc[ME]].spk exists or not.

Index Updates. Most of the protocol logic behind our new update mechanism is explained

in Section 6.5. Due to the synchronisation issues mentioned there, the update initiator sends

his view (message epoch) of everyone else’s sender key. This information is stored in the

Upd-Ind[·] dictionary, which is sent as part of the control message.

217

Chapter 6. WhatsUpp with Sender Keys? Analysis, Improvements and Security Proofs

SendToMissing()

// Send my sender key to new parties via 2PC
1 : if SK[ME,kc[ME]].spk=⊥ : return

2 : m ← (SK[ME,kc[ME]],kc[ME]

ep,max-ick[last-kc], last-kc)

3 : C⃗ [·] ←⊥
4 : for all ID ∈G \ {ME} :

5 : if no-SK[ID] :

6 : (C⃗ [ID], ·, ·) $← 2PC.Send(ID,m)

7 : no-SK[ID] ← false

8 : return C⃗

OneTimeSpk()

// Sample and send spk to all via 2PC

1 : C⃗ [·] ←⊥
2 : if SK[ME,kc[ME]].spk=⊥ :

3 : (spk,ssk) $←Sig.Gen
4 : SK[ME,kc[ME]] ← (spk,⊥,⊥)

5 : m ← (SK[ME,kc[ME]],kc[ME],

ep,max-ick[last-kc], last-kc)

6 : for all ID ∈G \ {ME} :

7 : (C⃗ [ID], ·, ·) $← 2PC.Send(ID,m)

8 : last-kc← kc[ME]

9 : return C⃗

PreSendFirst()

// Sample and send new sender key to all via 2PC

1 : (spk,ssk) $←Sig.Gen

2 : ck $← {0,1}λ

3 : max-ick[last-kc] ←SK[ME, last-kc].ick
4 : SK[ME,kc[ME]] ← (ck,spk,0)

5 : m ← (SK[ME,kc[ME]],kc[ME],

ep,max-ick[last-kc], last-kc)

6 : C⃗ [·] ←⊥
7 : for all ID′ ∈G \ {ME} :

8 : (C⃗ [ID′], ·, ·) $← 2PC.Send(ID′,m)

9 : no-SK[ID′] ← false
10 : last-kc← kc[ME]

11 : return C⃗

DeleteOldCK(ID,max-ick
′, last-kc′)

// Store mk’s until max-ick
′ then delete ck

1 : if SK[ID, last-kc′].ck=⊥ :

2 : return

3 : while SK[ID, last-kc′].ick <max-ick
′ :

4 : (mk,τk) ← (H1,H3)(SK[ID, last-kc′].ck)

5 : MK[ID, (last-kc′,SK[ID, last-kc′].ick)] ← (mk,τk)

6 : UpdateCK(ID, last-kc′)
7 : SK[ID, last-kc′].ck←⊥

Figure 6.22: Sender Keys and Sender Keys+ description (part 4 of 4: remaining helpers).

Additional State Variables. The state variables max-ick[·] and last-kc were omitted in Fig-

ure 6.9. Essentially, these variables keep track of the maximum index max-ick[ID,kc], cor-

responding to the sender key SK[ID,kc], for which a message was sent. This is critical to

determine what skipped message keys (if any) should be stored in MK so that chain keys can

eventually be deleted for forward security. This synchronisation mechanism occurs in the

Recv algorithm via the two-party channels, where last-kc specifies the last key counter the

bound max-ick refers to.

Correctness. For completeness, we observe here that Sender Keys and Sender Keys+ are

correct as in Definition 48. The argument, which we sketch below, proceeds by a similar case

analysis to what we did for IAS and DGS in Section 5.3, except here we argue with respect to

the relevant winning conditions of Figure 6.6:

• Message delivery: By construction of Sender Keys/+ and the correctness of 2PC, for

a given message epoch, all active group members will derive the same message key,

from which this follows from the correctness of SymEnc (note we also must invoke the

218

6.6 Sender Keys and Sender Keys+: Full Protocols and Security

correctness of other primitives here and below, e.g., the fact that all Sig.Vrfy checks

pass).

• Group evolution: This follows from the consistency between how state variable G , by

construction of Exec and Proc, and dictionary G in Figure 6.6 are updated.

• Group membership consistency: This follows similarly to the previous point.

• Out-of-order delivery: Messages from past epochs or future indices in the current epoch

are handled correctly by construction of UpdateKeysRecv which stores skipped mes-

sage keys (as well as the correctness of other protocol components like 2PC as above).

Ciphertexts from future epochs will always be rejected since the caller of Recv compares

their local variable ep with epoch value e attached to each ciphertext output by Send.

6.6.2 Sender Keys Security

We here prove Theorem 20, i.e., the security of our core Sender Keys protocol. Let A be an

adversary against the Sender Keys protocol that plays the GM message indistinguishability

game M-INDGM,Cgm (Figure 6.7) with respect to cleanness predicate Cgm =C∆
sk (Figure 6.13),

and let q1, . . . , qq be the oracle queries of A in a given execution. The proof follows a series of

hybrid games, where Game Γ0 is the original game in Figure 6.7.

Exposed Keys and Key Sequences. Before diving into the details, we characterise the set of

exposed chain keys ExpKeysck as those keys that can be (trivially) derived by the adversary

following its state exposure queries. To this end, we observe that all chain keys (and also

message keys) generated during protocol execution are uniquely identified by three param-

eters: the epoch number e, the key index i , and the owner ID; we label them as cke,i
ID and

mke,i
ID . Given a user ID, its chain keys form sequences such that the key in message epoch

(e, i +1) is deterministically derived from the key in (e, i) as cke,i+1
ID =H1(cke,i

ID) in the chain. For-

mally, let qi =DELIVER(ID, (Tcore,C2pc)) where Tcore is either: a remove message for ID′ ̸= ID,

a create message, a message that adds ID to the group, or an update message for ID, and

q j =DELIVER(ID, (T ′
core,C ′

2pc)) where T ′
core is either the next remove message for any ID′ ∈G

for G from the perspective of ID before qi where j > i , or an update message for ID; otherwise,

q j = qq+1 (where E[ID; qq+1] denotes the state of E[ID] after query qq) if no such query was

made. Let also e =E[ID; qi] and ẽ =E[ID; q j]. Then,

cke,0
ID , . . . ,cke,ie

ID ,cke+1,0
ID , . . . ,ckẽ−1,i ẽ

ID

is the chain key sequence for ID in epochs e to ẽ. Note since cke,0
ID is the first key generated

after a removal or update that cke,0
ID is generated using fresh randomness and distributed to all

parties via two-party channels.

For every q j =EXPOSE(ID j) query such that (e j , i j) ←m-ep(ID j , ID′, q j), all the chain keys of

ID′ that are exposed are exactly those in the chain key sequence of ID′ starting from epoch

219

Chapter 6. WhatsUpp with Sender Keys? Analysis, Improvements and Security Proofs

(e j , i j). If we denote this set by EpCK(j)
ID′ , then we have that

ExpKeysck =
k⋃

j=1

{
cke,i

ID′ : ID′ ∈G[ID j ; qi j]∧ (e, i) ∈EpCK(j)
ID′

}
.

where G[ID j ; qi j] = ID j .γ.G represents the view of the group of ID j at the time of query qi j .

Note that, for any group member, if one of its keys in a chain key sequence is in ExpKeysck, all

the subsequent keys until either a removal or update for ID j is processed are also in ExpKeysck.

Hybrid Games. We define the main sequence of games below. We then bound the correspond-

ing advantages by a series of lemmas.

Game Γ0: This is the original M-IND game, parameterised by cleanness predicate Cgm =C∆sk.

Game Γ1: In this game, we remove the return b conditions whenever

DELIVER(ID, (Tcore,C2pc)) or RECEIVE(ID, (Ccore,C2pc)) are called such that C2pc was

not previously output in some previous oracle query that outputs a ciphertext or control

message.

Game Γ2: In this game, we remove the return b condition in the RECEIVE and DELIVER
oracles, so that they always returns nothing. Hence, the adversary can no longer win the game

by injecting.

Game Γ3: In this game, we allow a single call to the CHAL oracle, as opposed to arbitrarily

many calls.

Game Γ4: In this game, all chain keys and corresponding message keys in ID’s key sequence

that includes ck such that H2(ck) =mk, where mk is the message key used in the underlying

Send call in the CHAL(ID, ·, ·) query (if it exists), are replaced by uniformly random values.

In addition, all 2PC ciphertexts that transmit the chain key ck or keys earlier in the key

sequence leading to ck are replaced with encryptions of 0ℓ where ℓ is the length of the message

encrypted.

To complete the proof, Game Γ4 is simulated by an IND-CPA SymEnc adversary. In the lemmas

hereafter, we assume that an adversary B simulating a hybrid for A can efficiently determine

whether A has violated the cleanness predicate, and aborts execution since B can no longer

win.

Lemma 17. There exists an adversary B1 with similar running time to A such that

Advg0
GM,Cgm

(A) ≤Advg1
GM,Cgm

(A)+2 ·Adv2pc−ind
2PC,C2pc,∆(B1).

Proof. We proceed by constructing B1,b′ , a 2PC-IND2PC,b,C2pc,∆ adversary that simu-

lates Game Γ0/Game Γ1 for adversary A depending on 2PC-IND2PC,b,C2pc,∆ bit b and

M-INDGM,b′,Cgm bit b′. At a high level, B1,b′ simulates all M-INDGM,Cgm oracle queries using

220

6.6 Sender Keys and Sender Keys+: Full Protocols and Security

its own oracles and otherwise simulating locally, except every CHAL(ID,m0,m1) is simulated

as if the challenger’s bit is b′. In more detail, B1,b′ replaces all:

• 2PC.InitCh(ID′) calls from ID by the output of query INIT-CH(ID, ID′).

• 2PC.Send(m, ID′) calls from ID by the output of SEND(ID, ID′,m).

• 2PC.Recv(C) calls from ID as follows: B1,b′ first calls RECEIVE(ID,C), which outputs

(b, ID′,e2pc, i2pc). If b ̸= ⊥, B1,b′ returns b to its challenger and stops simulating. Other-

wise, by cleanness and construction of Sender Keys (argued below), C must have been

previously output by a SEND(ID, ID′,m) call. In this case, B1,b′ thus replaces the Recv
call with (m, ID′,e2pc, i2pc).

In addition:

• If A calls EXPOSE(ID), B1,b′ uses the output of its own EXPOSE(ID) call and its state

from locally simulating to respond to A ’s query.

• Finally, B1,b′ outputs the same bit as A .

Note that by construction of Sender Keys, after 2PC.Recv is called in Recv and Proc calls, the

output is checked so it is “appropriate” for the context it is called in (i.e., it is consistent with

the received Ccore or Tcore (e.g., by checking ID and epoch matches with the input C)). In

addition, in a given Sender Keys Recv/Proc call that does not invoke 2PC.Recv, C2pc =⊥ is

enforced, preventing GM forgeries that include an arbitrary C2pc value that is simply ignored.

Thus, if B1,b′ outputs (b, . . .) from RECEIVE or DELIVER such that b ̸= ⊥, it must be that a

valid 2PC forgery was made.

Using the triangle inequality, we have

Advg0
GM,Cgm

(A) = ∣∣Pr[G1
0 ⇒ 1]−Pr[G0

0 ⇒ 1]
∣∣

≤ ∣∣Pr[G1
0 ⇒ 1]−Pr[G1

1 ⇒ 1]
∣∣+ ∣∣Pr[G0

0 ⇒ 1]−Pr[G0
1 ⇒ 1]

∣∣
+ ∣∣Pr[G1

1 ⇒ 1]−Pr[G0
1 ⇒ 1]

∣∣
≤Adv2pc−ind

2PC,C2pc,∆(B1,1)+Adv2pc−ind
2PC,C2pc,∆(B1,0)+Advg1

GM,Cgm
(A)

where the inequality
∣∣∣Pr[Gb′

0 ⇒ 1]−Pr[Gb′
1 ⇒ 1]

∣∣∣≤Adv2pc−ind
2PC,C2pc,∆(B1,b′) holds because the sim-

ulation is perfect given RECEIVE never outputs (b, . . .) with b ̸= ⊥, and when RECEIVE does

output such a (b, . . .), B1,b′ ’s advantage is at least as large as A ’s since in this case B1,b′ always

outputs the correct bit. The result follows.

Lemma 18. There exists an adversary B2 with similar running time to A such that

Advg1
GM,Cgm

(A) ≤Advg2
GM,Cgm

(A)+q ·Advsuf−cma
Sig (B2).

221

Chapter 6. WhatsUpp with Sender Keys? Analysis, Improvements and Security Proofs

Proof. Let E be the event that A in a clean execution of Game Γ1 (i.e., when cleanness pred-

icate C evaluates to true) calls RECEIVE(ID, (Ccore,C2pc)) that outputs m ̸= ⊥ for some ID

such that (Ccore,C⃗) was not previously output by SEND, where C2pc is some (correct) 2PC
ciphertext by definition of Game Γ1. Observe first that Game Γ1 and Game Γ2 are identical

given ¬E . Note that at most q signature keys are sampled and sent over the two-party channels

during the game’s execution: the first Send call in an epoch and the (single) Exec(·,crt, IDs)

call result in one signature key being sampled in each call.

Then, let Ei be the event that A ’s first call to RECEIVE with argument (ID, (Ccore,C2pc)) satis-

fying the conditions of E is such that the internal Recv call outputs ID′ corresponding to the

i -th signature key sampled by the challenger (i.e., the i -th sender key).

We define SUF-CMA adversary BID′,e who simulates for Game Γ1 adversary A given Ei holds.

Bi simulates as follows. Bi locally simulates for A and responds to all of A ’s queries except

queries involving the i -th sender key sampled: let ID be the key holder. For these queries, ID

sets spk in variable SK to the SUF-CMA public key pk. Bi generates all signatures associated

with spk via SUF-CMA oracle SIGN.

Finally, consider when A makes their first query of the form RECEIVE(ID,C) that returns

m ̸= ⊥ that was not previously output by SEND. Observe that C = (Ccore = (M ,σ),C2pc) and

M = (c, (e, i),kc′, ick
′, ID) where σ is a signature on (c, (e, i), ick, ID). As forgeries on C2pc are

disallowed, only Ccore can possibly be the source of the forgery. By construction of Recv,

(c, (e, i),kc′, ick
′, ID) must be different from values previously input to Recv for a non-bottom

value to be output, and, by definition of event Ei , Ccore must differ from values previously

output by SEND. Moreover, by cleanness, A must not have been able to make a state exposure

that enables it to access signature secret key ssk. Thus, the simulation is well-defined and

signature σ is a valid forgery, and so Bi extracts σ from C and returns (M ,σ) to its SUF-CMA
challenger.

Finally, we have

Advg1
GM,Cgm

(A) = ∣∣Pr[G1
1 ⇒ 1∧¬E]−Pr[G0

1 ⇒ 1∧¬E]+Pr[G1
1 ⇒ 1∧E]−Pr[G0

1 ⇒ 1∧E]
∣∣

≤Advg2
GM,Cgm

(A)+ ∣∣Pr[G1
1 ⇒ 1∧E]−Pr[G0

1 ⇒ 1∧E]
∣∣

≤Advg2
GM,Cgm

(A)+Pr[E]

≤Advg2
GM,Cgm

(A)+∑
i

Pr[Ei]

≤Advg2
GM,Cgm

(A)+∑
i

Advsuf−cma
Sig (Bi)

≤Advg2
GM,Cgm

(A)+q ·Advsuf−cma
Sig (B2),

where the last step holds by combining each Bi into B2.

222

6.6 Sender Keys and Sender Keys+: Full Protocols and Security

Lemma 19. There exists an adversary B3 with similar running time to A such that

Advg2
GM,Cgm

(A) ≤ qchal ·Advg3
GM,Cgm

(B3)

where qchal ≤ q denotes the number of CHAL oracle queries made by A .

Proof. We adopt the same high-level strategy as the proof of Lemma 6 in [ACDT19] (conference

version [ACDT20]). Let H0 be exactly Game Γ2 with b = 0. For i ∈ [1, qchal], let Hi be exactly

Hi−1 except the i -th query CHAL(ID,m0,m1) uses m1 (i.e., acts as if the challenge bit is b = 1).

Observe first that we have Advg2
GM,Cgm

(A) = ∣∣Pr[H0 ⇒ 1]−Pr[Hqchal ⇒ 1]
∣∣. We will show, for

i ∈ [1, qchal], that there exists adversary B3,i playing GameΓ2 such that |Pr[Hi ⇒ 1]−Pr[Hi−1 ⇒
1]| =Advg3

GM,Cgm
(B3,i). The claimed result then follows by applying the sequence of hybrids

and the triangle inequality.

B3,i simulates as follows. For A ’s first i −1 CHAL(ID,m0,m1) calls, B3,i calls SEND(ID,m1)

and returns the result. For A ’s i th CHAL(ID,m0,m1) call, B3,i calls CHAL(ID,m0,m1) and

returns the result. For A ’s subsequent CHAL(ID,m0,m1) calls, B3,i calls SEND(ID,m0) and

returns the result. If A ever makes an EXPOSE query that would trivially allow for them to

decrypt any challenge ciphertext, or has previously called EXPOSE such that the resulting

CHAL query would be trivially decryptable, B3,i aborts. Note that this condition can be

efficiently determined based on A ’s oracle queries. B3,i processes all other queries using its

own oracles.

Note that if A ’s (multi-challenge) execution satisfies the cleanness predicate, then so too does

B3,i ’s. To see this, note that B3,i and A make the same queries to all oracles except for CHAL
and SEND. In particular, since B3,i makes the same EXPOSE queries as A (given B3,i does

not abort) and less CHAL queries, there are the same or possibly less opportunities for the

challenge predicate to fail in B3,i ’s execution as compared to A ’s. Moreover, the additional

SEND queries that B3,i makes do not affect any predicates. Thus, if B3,i ’s challenge bit b is 0,

then B3,i perfectly simulates Hi−1, and similarly B3,i perfectly simulates Hi given b = 1. The

result follows.

Lemma 20. There exists an adversary B4 with similar running time to A such that

Advg3
GM,Cgm

(A) ≤ q · (Advg4
GM,Cgm

(A)+Adv2pc−ind
2PC,C2pc,∆(B4)+q ·Advprg

H (B4))

Proof. The proof of this lemma proceeds via hybrid sub-games. Consider the (restricted) chain

key sequence in an execution of Game Γ3 starting from epoch e until key epoch (ID,e ′, i ′)
corresponding to the output of Send in the CHAL(ID, ·, ·) call, if it exists. If it does not exist, then

Game Γ3 adversary A has no advantage as their execution is independent of the challenge bit.

Otherwise, we replace all chain keys and their corresponding message keys in this sequence

by uniformly random values. Note that, in the protocol in Figures 6.19 to 6.22, we model H1

and H2 as a PRG H : {0,1}λ→ {0,1}2λ. Namely, H(cki) = (cki+1,mki) outputs an updated chain

223

Chapter 6. WhatsUpp with Sender Keys? Analysis, Improvements and Security Proofs

key and a new message key.

Let Eck be the event where call CHAL(ID, ·, ·) is made such that the underlying Send call uses

message key mk iteratively derived from some ck, where ck= cke,0
ID , for some e, is the start of

ID’s corresponding chain key sequence. Observe that at most q such chain key sequences

are possible at the start of an execution of Game Γ3 where A makes q oracle queries, and

each such ck is associated with a corresponding ID (the user who sampled ck). Denote for

simplicity this chain key sequence by ck1, . . . ,ckm (where ck1 := cke,0
ID , ckm := cke ′,i ′

ID and m ≤ q).

For each possible Eck, we can construct a sequence of hybrids Hi for i =−1,0, . . . ,m as follows.

Game H−1 is as in the original Game Γ3. Game H0 differs from Game H−1 in that all two-party

ciphertexts encrypting ck or ancestors in its key sequence are replaced with encryptions of

dummy message 0ℓ for messages of length ℓ. For i ≥ 1, Game Hi−1 differs from Game Hi in

that, in the latter, we replace both mki−1 and cki by uniformly random ri−1
$←K and si

$←W ,

respectively. Finally, Game Hm is Game Γ4; all non-exposed keys are independent.

We first construct 2PC-IND2PC,b,C2pc,∆ adversary B that simulates for adversary A playing (as

we will argue) Game H−1 or H0 depending on its challenger’s bit. B simulates similarly to

B1 in the proof of Lemma 17 except when simulating 2PC.Send(m, ID′) calls. Here, instead

of replacing all such calls with the output of SEND(ID, ID′,m), B replaces calls that encrypt

ck or its key sequence ancestors in m with the output of CHAL(ID, ID′,m,0|m|). B otherwise

simulates identically. Observe that in a clean execution of H−1, chain key ck1 must not be

exposed, and that B, who is parametrised by ck, can deduce exactly which 2PC.Send calls to

replace with a CHAL call. It follows that B simulates H−1 given the challenge bit is 0 and H0

given it is 1.

Note in a clean execution of H0 that the starting key in the chain cke,0
ID ̸∈ExpKeysck is generated

by ID using fresh randomness. Besides, cke,0
ID is only sent over two-party channels that contains

no information about the key due to the previous hop (noting in a clean execution that the

channels must have healed if previously compromised), so it is hidden from A . Now, let

A be an adversary that interpolates between any two Games Hi−1 and Hi . Then, we can

create an adversary B against PRG indistinguishability from A as follows. Since by induction

in Hi−1 the seed cki−1 of the PRG is a uniformly random value, B simply embeds a PRG

challenge in mki−1 and cki (recall that we consider a PRG with an expansion factor of 2 such

that H(cki−1) = (cki ,mki−1). Then, B simulates the rest of the game locally and returns the

guess of A .

It follows that the simulation is perfect. By considering all events Eck and the union bound, it

follows that there exists B4 so that:

Advg3
GM,Cgm

(A) ≤ q · (Advg4
GM,Cgm

(A)+Adv2pc−ind
2PC,C2pc,∆(B4)+q ·Advprg

H (B4))

224

6.6 Sender Keys and Sender Keys+: Full Protocols and Security

Lemma 21. There exists an adversary B with similar running time to A such that

Advg4
GM,Cgm

(A) ≤Advind−cpa
SymEnc(B)

Proof. We reduce to the security of the encryption scheme. Let A be an adversary against

Game Γ4. Then, we can build an adversary B against the IND-CPA security of the encryption

scheme. Let b∗ be the (hidden) bit that parameterises the IND-CPA game of B. Then, B

simulates Game Γ4 for A except for the challenge query q∗ = CHAL(ID∗,m0,m1), where it

proceeds as follows. B receives m0,m1 from A and forwards them to the IND-CPA challenger,

who outputs a ciphertext c∗. Then, B crafts a ciphertext C∗ as if it originated from ID∗ and

sends it to A . The simulation continues until the game finishes, and B returns the same guess

b′ as A .

As the message key mk used to encrypt the challenge message in the original Game Γ4 is

a uniformly random key, as we argued above, the simulation is perfect. Hence, the lemma

follows.

Finally, Theorem 20 follows by combining the sequence of hybrids above.

Proof Strategy for Corollary 1. The hybrids are defined similarly except that they differ in the

definition of Game Γ1 and Game Γ4. Let the resulting sequence of games be denoted Game

Γ1’, Game Γ2’, Game Γ3’, Game Γ4’. In Game Γ1’, all two-party channel ciphertexts that cannot

be trivially decrypted by the adversary are replaced with encryptions of dummy strings of the

form 0ℓ. Game Γ4’ differs as in Game Γ4 except that 2PC ciphertexts are not changed. We can

then essentially directly use the above lemmas except for Lemmas 17 and 20:

• For Game Γ1’, note that since 2PC-IND2PC,b,C2pc,∆ adversary B1,b′ is given all of A ’s

queries in advance, it can efficiently deduce which 2PC.Send queries to replace with

CHAL and SEND depending on which ciphertexts can be trivially exposed by A or not.

It then follows that

Advg0
GM,Cgm

(A) ≤Advg1’
GM,Cgm

(A)+2 ·Adv2pc−ind
2PC,C2pc,∆(B1)

• For Game Γ4’, the reduction no longer needs to guess ck, since this information can

be efficiently derived from the sequence of queries q1, . . . , qq initially given to A . A

sequence of hybrids Hi for i ≥ 0 can then be directly constructed; note we can ignore

the hop between H−1 and H0 since Game Γ1 already handles this. It then follows that

Advg3’
GM,Cgm

(A) ≤Advg4’
GM,Cgm

(A)+q ·Advprg
H (B4)

The result follows.

225

Chapter 6. WhatsUpp with Sender Keys? Analysis, Improvements and Security Proofs

6.6.3 Sender Keys+ Security

In this subsection, we prove the security of our Sender Keys+ protocol. We do so with respect

to the modified cleanness predicate in Figure 6.18. The proof follows similar steps as the proof

for Theorem 20.

From our Sender Keys+ protocol, we model H1,H2,H3 as a PRG H : {0,1}λ→ {0,1}3λ, and the

KDF F used for the update operation as a dual PRF. Note the proof would still work with

respect to the Sender Keys predicate C∆sk (Figure 6.13) as the new predicate C∆sk+ (Figure 6.18) is

strictly less restrictive. Towards the proof, we re-define the notion of key sequences introduced

in Section 6.6.2 to capture our new update mechanism. We now consider chain key sequences

for ID starting with cke,0
ID where zero or more update operations from ID′ ̸= ID are applied to a

chain key of the form cke ′,i ′
ID . In addition, updates from parties ID ̸= ID′ now result in a new key

sequence. We state the theorem below.

Theorem 21. Let SymEnc := (Enc,Dec) be a (q,ϵsym)-IND-CPASymEnc symmetric encryption

scheme, Sig := (Gen,Sign,Vrfy) a (q,ϵsig)-SUF-CMASig signature scheme, H : {0,1}λ→ {0,1}λ×
{0,1}λ a (q,ϵprg)-PRGH function, F a (q,ϵdprf)-dPRF function, MAC a (q,ϵmac)-SUF-CMAMAC
message authentication code and 2PC a (q,ϵ2pc)-2PC-IND2PC,C2pc,∆ two-party channels

scheme for PCS bound ∆> 0. Then Sender Keys+ (Figures 6.19 to 6.22) is

(q,2 ·ϵ2pc+q3 · (ϵ2pc+ϵsym+N ·q ·ϵprg +q ·ϵdprf +q ·ϵmac)+q ·ϵsig)-M-INDGM,Cgm

with respect to predicate Cgm = C∆
sk+ (Figure 6.18) and concurrency bound N , where the

two-party channels predicate C2pc is defined in Figures 6.4 and 6.5.

Hybrid Games. We define the main sequence of games below.

Game Γ0: This is the original M-IND game, parameterised by cleanness predicate Cgm =C∆sk+.

Game Γ1: In this game, we remove the return b conditions whenever

DELIVER(ID, (Tcore,C2pc)) or RECEIVE(ID, (Ccore,C2pc)) are called such that C2pc was

not previously output in some previous oracle query that outputs a ciphertext or control

message.

Game Γ2: In this game, we completely remove the return b condition in the DELIVER oracle

and in the RECEIVE oracle for forgeries that occur when predicate C∆sk-inj-core(Ccore) is true for

ciphertexts of the form Ccore.

Game Γ3: In this game, we allow a single call to the CHAL oracle, as opposed to arbitrarily

many calls.

Game Γ4: In this game, all chain keys and corresponding message and MAC keys in ID’s key

sequence that includes ck such that H2(ck) =mk and H3(ck) = τk, where mk (resp. τk) is the

message key (resp. MAC key) used in the underlying Send call in the CHAL(ID, ·, ·) query (if

it exists), are all replaced by uniformly random values. In addition, all 2PC ciphertexts that

226

6.6 Sender Keys and Sender Keys+: Full Protocols and Security

transmit the chain key ck or keys earlier in the key sequence leading to ck are replaced with

encryptions of 0ℓ where ℓ is the length of the message encrypted.

Game Γ5: In this game, we completely remove the return b condition in the RECEIVE oracles.

Hence, the adversary cannot win the game by injecting. To complete the proof, Game 5 is

simulated by an IND-CPA SymEnc adversary.

Lemma 22. There exists an adversary B1 with similar running time to A such that

Advg0
GM,Cgm

(A) ≤Advg1
GM,Cgm

(A)+2 ·Adv2pc−ind
2PC,C2pc,∆(B1).

Proof. The proof is essentially identical to that of Lemma 17 so we omit it.

Lemma 23. There exists an adversary B2 with similar running time to A such that

Advg1
GM,Cgm

(A) ≤Advg2
GM,Cgm

(A)+q ·Advsuf−cma
Sig (B2).

Proof. The proof follows the same high-level idea as for Lemma 18. That is, we consider events

Ei for i ∈ [1, q ′] for some q ≤ q such that the first successful forgery is made using the i -th

signature key pair sampled. For this proof, we consider forgeries now over both RECEIVE and

DELIVER rather than just RECEIVE. By construction of Sender Keys+, DELIVER forgeries

given C∆
sk-inj-core(Ccore) is true only occur as a result of a signature forgery. Thus, by a very

similar reduction to Lemma 18, the result follows. Note that unlike in the proof of Theorem 20

at this point, we have not yet completely disallowed injections on RECEIVE: we still allow

forgeries that are permitted by C∆sk+ but disallowed by C∆sk.

Lemma 24. There exists an adversary B3 with similar running time to A such that

Advg2
GM,Cgm

(A) ≤ qchal ·Advg3
GM,Cgm

(B3)

where qchal ≤ q denotes the number of CHAL oracle queries made by A .

Proof. The proof is identical to that of Lemma 19 so we omit it.

Lemma 25. There exists an adversary B4 with similar running time to A such that

Advg3
GM,Cgm

(A) ≤ q2 · (Advg4
GM,Cgm

(A)+Adv2pc−ind
2PC,C2pc,∆(B4)+N ·q ·Advprg

H (B4)+q ·Adv2prf
F (B4)

)
where N is the concurrency bound (c.f. Section 6.5.2).

Proof. The proof diverges from the proof of Lemma 20 in order to handle the new update

mechanism. As in Lemma 20, we consider the event Eck where the CHAL(ID, ·, ·) call invokes

Send with key mk in the key sequence starting from ck. Lemma 20 then constructs hybrids

H−1, H0, . . . , Hm given Eck.

227

Chapter 6. WhatsUpp with Sender Keys? Analysis, Improvements and Security Proofs

Observe that, fixing ck, mk could have been derived from zero or more update operations

initiated by ID′ ̸= ID. Now, by cleanness, after invoking the security of the two-party channels,

mk is hidden from the adversary. If no update operations were made, then it must be that ck is

not exposed. If there was one update operation, then by cleanness, either the update secret r

or ck are hidden (or possibly both).

Let i be the i -th last update operation applied to form mk, where i ∈ [0, q ′] for some q ′ < q .

Let Eck,i be the event that the i -th last update operation is hidden from the adversary for i ≥ 1,

and i = 0 where ck itself is secure. Observe that Eck =∪i∈[0,q ′]Ei ,q for some q ′ < q .

Our proof strategy then is as follows. For each Eck,i , we first hop by invoking the security of

the two-party channels to replace all two-party ciphertexts that communicate ‘safe’ value r

or ck (or a descendent in the key sequence) with encryptions of dummy messages (hopping

between H−1 and H0). The simulation proceeds analogously to that in Lemma 20. Then

(hopping to Hm):

• For i = 0, we hop by iteratively replacing all relevant H j calls using the PRG assumption;

there are at most N ·q such queries. We replace each F call (of which there are at most

q) along the way with a uniform value by the dual PRF assumption, keying F with ck′.

• For i ≥ 1, we first hop by replacing the first call to F made by the challenger with r with a

uniform value using the dual PRF assumption and keying F with r . We then hop using

the PRG assumption on H j and keying PRF F thereafter with ck′; note there are at most

N · i ≤ N ·q such calls.

By a similar argument to Lemma 20, the hop with the two-party channels and the hops with

the PRG and dual PRF are sound. The result follows by combining the sequence of hybrids.

Lemma 26. There exists an adversary B5 with similar running time to A such that

Advg4
GM,Cgm

(A) ≤Advg5
GM,Cgm

(A)+q ·Advsuf-cma
MAC (B5).

Proof. Let E be the event that a successful forgery to RECEIVE is made in a clean execution

of Game Γ4. Note Game Γ4 and Game Γ5 are identical given ¬E . Let Ei be the event that A ’s

first forgery with RECEIVE is with respect to the i -th key sequence starting from ck; note

E = ∪i∈[1,q ′]Ei for some q ′ ≤ q . Observe by the previous game hop that the corresponding

MAC key τk is uniform. We construct a SUF-CMAMAC adversary B that simulates for Game

Γ4 adversary A given Ei holds. B locally simulates all calls except MAC query using τk on

message m during the simulation is replaced with the output of query TAG. Finally, when A

makes a successful forgery using τk, B extracts the tag t from the message and returns it to its

challenger. The simulation is perfect and so the result follows by a similar derivation as in

Lemma 18.

228

6.6 Sender Keys and Sender Keys+: Full Protocols and Security

Lemma 27. There exists an adversary B with similar running time to A such that

Advg5
GM,Cgm

(A) ≤Advind−cpa
SymEnc(B)

Proof. The proof is essentially identical to that of Lemma 21 so we omit it.

229

7 Conclusion

In this thesis, we have considered four different aspects of messaging, the first two concerning

two-party communication (Part I), namely post-quantum X3DH key exchange (Chapter 3)

and active attack detection (Chapter 4), and the latter two group messaging (Part II), namely

group administration (Chapter 5) and the Sender Keys protocol (Chapter 6), each of which we

have reasoned about in the framework of provable security.

7.1 Primitive Summary

We introduced several primitives and abstractions over the course of this thesis to capture

different aspects of messaging. Here, we summarise and compare them, and consider how

they may be instantiated. As done for this thesis as a whole, we present our comparison in two

parts, namely in terms of 1) two-party communication and 2) group communication.

7.1.1 Two-Party Communication

Authentication. The goal of Chapter 3 is to construct a post-quantum X3DH-like authenti-

cated key exchange protocol, namely K-Waay. We capture this in our deniable authenticated

key exchange (DAKE) primitive that we introduce in Section 3.3. The syntax is somewhat

non-standard as it generalises previous work in the BatchReceive algorithm that allows a

receiver to simultaneously finish several key exchange sessions with different senders. Apart

from this, our security notion can be seen as a Bellare-Rogaway-style definition [BR94] that

combines aspects of the models of Hashimoto et al. [HKKP22] and Brendel et al. [BFG+22b].

DAKE assumes a public key infrastructure (PKI) is made available to all parties for registering

long-term keys (in particular, our model captures for malicious key registration).

(Authenticated) Ratcheted Communication. In Chapter 4, we define the ratcheted com-

munication (RC) primitive to capture stateful message exchange between two parties where

ciphertexts can be re-ordered or dropped (i.e., supports immediate decryption [ACD19]). To

capture an additional out-of-band channel that parties use for detecting active attacks, we

231

Chapter 7. Conclusion

then define the more general authenticated ratcheted communication (ARC) primitive. These

primitives abstract away authentication in the Init algorithm that outputs the initial states of

both parties; we assume this is implemented in practice through something like K-Waay.

Syntactically, RC and ARC both have stateful Send and Receive algorithms which take asso-

ciated data as input. Both algorithms output an ordinal, such as an index, which captures

information about the order of ciphertexts. ARC further provides two algorithms, AuthSend
and AuthReceive, that model sending and receiving authentication tags over the out-of-band

channel. We propose several instantiations of both RC and ARC throughout the chapter with

different security/efficiency trade-offs. All of our constructions make black-box use of an RC –

one construction (Figure 4.8) requires the underlying RC to be RID-secure (Definition 37), and

the rest only require correctness properties (Definitions 35 and 36) on the underlying RC to

hold.

Two-Party Channels. In Chapter 6 we introduce another abstraction for two-party communi-

cation, namely two-party channels (2PC). This primitive is tailored to its use in instantiating

Sender Keys and also supports immediate decryption. By contrast to Init in RC and ARC,

we allow a given party to initialise channels with several parties over time via InitCh after

initialising their own states with Init. In addition, our Send and Receive algorithms for 2PC do

not take associated data as input, and we specifically assume ordinals are pairs of integers,

which we call channel epochs that behave like the epoch/index pairs of Alwen et al. [ACD19].

We do not provide an explicit instantiation for 2PC here but we note that InitCh can be in-

stantiated as above via an AKE and PKI, and Send and Receive via, e.g., the Double Ratchet

protocol [ACD19] as done in implementations of Sender Keys in practice.

7.1.2 Group Communication

Authentication. Throughout Chapter 5, like our DAKE K-Waay, our protocols directly assume

the existence of a PKI on which parties can upload keys. Unlike for DAKE for which we

captured static long-term keys, we assume that parties can update their keys over time. Note

that our protocols do not require a two-party AKE protocol: in practice in MLS, parties upload

so-called key bundles that parties use as bootstrapping key material when a party is added to a

group. In Chapter 6, authentication is instead abstracted away in the underlying two-party

channels. Thus, Sender Keys and Sender Keys+ as written in Chapter 6 do not directly invoke a

PKI, although two-party channels in practice are of course instantiated with PKI and AKE.

Continuous Group Key Agreement. In Chapter 5, we study continuous group key agreement

(CGKA) and a generalisation that we introduce, namely administrated CGKA (A-CGKA). In

CGKA, a dynamic group agrees on a sequence of secret keys over time (that can be used to

build group messaging proper [ACDT21a] but may be useful in other contexts). Our formula-

tion of CGKA, following the current MLS standard, is in the propose-and-commit paradigm,

where group changes and key updates are first proposed (Prop) before being combined and

committed (Commit) by some group member, after which group members process the corre-

232

7.2 Discussion and Future Work

sponding commit message (Proc). We discuss and compare variants of CGKA in the literature

in Section 5.2.1.

Extending plain CGKA, A-CGKA provides first-class support for the addition, removal and

updating of the keying material of group administrators. In Section 5.3, we formalise and

prove secure two A-CGKA constructions, namely individual admin signatures, or IAS, and

dynamic group signature, or DGS.

Group Messenger. In Chapter 6, we model Sender Keys and our enhanced protocol Sender

Keys+ as instances of a group messenger, a primitive which we introduce. Unlike CGKA, a

group messenger captures the sending and receiving of application messages (via Send and

Recv). Our syntax here does not capture input associated data, and only Recv outputs an

ordinal, which we simply assume is an epoch/index pair. Epochs here increase whenever the

group membership changes (add/rem) or a group member performs a key update operation

(upd). Group operations are captured via dedicated algorithms Exec and Proc: for simplicity

we do not work in the propose-and-commit paradigm but it is straightforward to capture this

in a modified group messenger primitive.

7.2 Discussion and Future Work

7.2.1 Composability

Throughout this thesis, we have worked with game-based security definitions, which do not

immediately or necessarily provide security guarantees when the corresponding primitives

are used in a broader context and under concurrent composition. Note our DAKE indis-

tingishability notion (Definition 26) considers a single real/random challenge query (TEST
in our syntax); multi-challenge security follows with q multiplicative tightness loss for q

challenge queries via a standard argument. Moreover, results of Brzuska et al. [BFWW11]

indicate that Bellare-Rogaway-style key indistinguishability notions provide security guar-

antees for a broad class of protocols which assume that key exchange has taken place at

initialisation time. As many two-party ratcheting and messaging primitives assume this al-

ready, including our RC primitive, they benefit from these composition results. Since these

results only consider two-party key exchange, a natural direction is to devise similar ones

for game-based CGKA. Previous work on both two-party [BFG+22a, CJSV22] and group mes-

saging [AJM22, HKP+21, AHKM22, ACJM20] has alternatively considered simulation-based

security notions, mostly in the universal composability framework [Can01] (the work of Jost et

al.[JMM19b] in a variant of the constructive cryptography framework being an exception here).

7.2.2 Model Limitations

Whether the security notions are game-based or simulation-based, one must be careful

interpreting the security claims of a given work. As we note below in more detail, there are

233

Chapter 7. Conclusion

attack vectors, such as randomness manipulation [BRV20], that we do not always capture in

our security notions in this thesis.

Our notion of state exposure is not very fine-grained: in Chapter 3, we allow individual sesssion

states and long-term keys to be exposed separately, but otherwise we assume the entire secret

state of a party is given to the adversary at once. Consequently the effects of partial leakage or

state exposure are only captured through these means: bridging this gap further, for example

considering leakage resilience in messaging, is of interest.

Our security notions, like all work we are aware of on messaging, further assume where

relevant that code is faithfully and honestly executed at all times which may not always hold

in practice.

7.2.3 Unification and Verification

Due to the complexity of messaging primitives, different works tend to introduce their own

primitive syntax and security notions that can differ enough to render comparison across

works complex and time-consuming. For pedagogical purposes and to enable easier formal

comparison between different works, it is thus of interest to overcome this complexity. The

work of Jost et al. [JMM19b] provided some recourse for two-party messaging: they show com-

ponents of protocols in the literature [PR18, JS18, ACD19, DV19, JMM19a] can be expressed

with some minor modifications in their composable framework. In addition, some authors

have also compared related work in their particular security model, including the game-based

models of Durak and Vaudenay [DV18] and Cremers and Zhao [CZ22].

In addition, the complexity of messaging makes it error-prone and difficult to verify. It is

not always sufficient to reduce the complexity by considering a simplified security definition

either, since attack vectors can and have previously been overlooked when taking this ap-

proach [AJM22]. Formal analysis and verification is therefore a natural direction to pursue, and

has successfully been applied in messaging [KBB17, WPBB23]. However, there is still a gap in

the literature for messaging protocols as much of the previous work considers symbolic/Dolev-

Yao-style modelling rather than full computational security. Nonetheless, results like the

analysis of Signal’s PQXDH key exchange protocol [BJKS23b] in CryptoVerif [Bla07] are promis-

ing and indicate that formal computational analysis of different messaging protocols is in

reach.

7.2.4 Deniable Post-Quantum X3DH (Chapter 3)

In Chapter 3, we proved the key indistinguishability of our protocol K-Waay in a model

that considers state exposures like Hashimoto et al.’s [HKKP22] but is nonetheless weaker

(our protocol is provably secure under a notion similar to that of Brendel et al. [BFG+22b]).

This is mainly since K-Waay only uses ephemeral split-KEM keys. As noted by Brendel et

al. [BFG+20], however, it seems much more difficult to construct split-KEM secure under

234

7.2 Discussion and Future Work

several encapsulation/decapsulation queries, which we leave as important future work.

An interesting line of research would be to try to build other unforgeable IND-1BatchCCA split-

KEMs that are more efficient (mostly in key and ciphertext size). One obvious direction would

be to work over structured lattices [LS15, LPR10, SSTX09]. Indeed, Ring/Module-LWE with

hints (similar to our Extended-LWE problem) have already been analysed from a theoretical

point of view [BJRW21, MKMS22]. We also believe that our techniques can also be applied in

the ring setting. However, for security purposes one needs to take a ring dimension d to be at

least linear in the security parameter λ which becomes problematic when proving deniability.

Indeed, the leaked hint is informally the product of secret keys of both parties. Thus, in the ring

setting the hint would be at least a single polynomial, which contains d =O(λ) coefficients.

We predict that this would result with much larger reduction loss than what we have now.

However, the concrete analysis is left as future work.

On the more practical side, it would be informative to benchmark our protocol and others in a

real-life scenario or something close to it, and to implement other ring signatures schemes

to have a more complete comparison. In light of the recent deployment of the PQXDH

protocol [KS23], it would be prudent also to benchmark this and compare it with our protocols,

replacing our choice of Kyber-512 with Kyber-1024 to be consistent with PQXDH which uses

the latter KEM (note that the non-standard primitive used for the deniable PQ protocols

should nonetheless be more of a bottleneck).

One could also try to build one-time ring signatures that are both efficient and provably secure

(possibly in the QROM). In turn, these could possibly be used to build efficient ephemeral

split-KEMs. For instance, Scafuro and Zhang [SZ21] designed an efficient linkable one-time

ring signatures from hash functions alone and proved the security of the scheme in the ROM. It

would be of interest to understand whether split-KEMs can be built out of such a construction

or a variant, and/or to prove security in the QROM. Different parameter sets for K-Waay to

achieve higher levels of security could also be provided and benchmarked.

7.2.5 Active Attack Detection in Messaging (Chapter 4)

Firstly, it is of interest to evaluate our protocols/transformations and determine more prac-

tically the overhead that active attack detection incurs. We believe that our most practical

scheme is the epoch-based s-RID-secure one (Section 4.6.3) since the overhead can reason-

ably expected to be a single hash and a relatively small amount of indices in practice. By

applying a comparable optimisation for r-RID in future work and with some benchmarking

and evaluation, it may be deemed viable in some deployments to achieve r-RID security. Note

also here that our lower bound for r-RID security considers a worst-case execution where one

party is continually sending without receiving any messages from their counterpart.

A natural direction is to explore active attack detection in group messaging. In a first step, one

could generalise the RECOVER/RID definitions to the group setting and in particular capture

235

Chapter 7. Conclusion

any additional properties that may only arise in the group setting. In a second step, as done in

this thesis for the two-party case, it would be prudent to design practical schemes and explore

different trade-offs between security and efficiency. One could leverage properties of a given

group messaging scheme along the way – for example, it may be prudent to take advantage of

the assumption of in-order delivery provided by CGKA control messages in MLS to avoid the

inherent complexity of out-of-order delivery on the messaging layer. Rather than modelling

pairwise two-party out-of-band channels, assuming the existence of a ‘global’ out-of-band

channel may simplify protocol design and make more sense practically to capture something

like a public ledger.

7.2.6 Group Administration (Chapter 5)

We consider possible extensions of A-CGKA as a primitive and corresponding construction

ideas. We note that these extensions may provide stronger security guarantees, or additional

functionality, at reduced cost if the number of admins is small.

Admins Beyond CGKA. CGKA is not a suitable formalism for some group messaging pro-

tocols used in practice like pairwise channels and Sender Keys (the latter by Signal and

WhatsApp [BCG23b]). In these protocols, each user is associated with their own key or keying

material rather than a common group secret. Nevertheless, an IAS-like protocol can be easily

adapted to this setting. For Sender Keys, admins could replace their keying material at a low

cost (a signature attesting to their new signing key) for PCS authentication guarantees. We

leave it as useful future work to formalise group administration beyond CGKA.

Telegram, although not end-to-end encrypted, offers fine-grained administration features like

message filtering and delays. Some of these could be conceivably implemented cryptographi-

cally, e.g., by entrusting admins to process messages or through NIZKs.

Private Admins. In some applications, it may be desirable to hide the set of admins from

(non-admin) users within a group (or between themselves). DGS could achieve some notion of

administrative privacy if the underlying admin CGKA provides privacy guarantees. IAS could

be modified to achieve anonymity guarantees using ring signatures [RST01]. However, there is

overhead with ring signatures over regular signatures, at a minimum to parse the anonymity

set.

In MLS’ TreeKEM protocol, proposals are constant-sized, but commits are variable, which

leaks information about the contents of the commit even if it is encrypted. Thus, padding is

required at a minimum for privacy. In the MLS standard, ciphertexts (PrivateMessage) leak

the group ID, epoch and message content type (proposal or commit) in plaintext1, which need

to be hidden for additional privacy. The work of Hashimoto et al. [HKP22] tackles this issue by

hiding this information and further protecting against some additional leakage. In particular,

their CGKA compiler allows group members to anonymously authenticate themselves, taking

1https://www.rfc-editor.org/rfc/rfc9420.html#name-encoding-and-decoding-a-pri

236

https://www.rfc-editor.org/rfc/rfc9420.html#name-encoding-and-decoding-a-pri

7.2 Discussion and Future Work

advantage of the CGKA secret, like DGS, to this end. In practice, additional attack vectors like

timing and traffic analysis preclude privacy also, which are considered by some messaging

systems [TGL+17, CSM+20] that do not, however, provide FS and PCS; it remains open to, e.g.,

adapt CGKA to defend against these attack vectors. As discussed in the introduction, the Signal

Private Group System [CPZ20] hides the group membership from non-members (although

not all metadata); the mechanism could be extended for admins but adapting the technique

to (A)-CGKA is also open. Recently, some steps towards preserving anonymity in messaging

even under state exposure have been made [DHRR22, BRT23].

External Admins. Our A-CGKA constructions assume the admins comprise a subset of all

group members, i.e., G∗ ⊆G . Some applications may be better suited for external administra-

tion. For example, an online platform may wish to control the set of conversation participants

to ensure they are subscribers but nevertheless ensure they are provided confidentiality. Exter-

nal admins who then attempt to add users that group members do not trust can be detected

on the protocol level, rather than the less well-defined application level as previously done.

Given that the underlying CGKA allows for external commits, it is straightforward to adminis-

trate IAS and DGS-based groups externally. Namely, the admin who is approving the change

can inspect proposals and make commit messages for the corresponding parties. However,

TreeKEM and its variants are not ideal for this since the committer is the party who derives new

group secrets and can thus violate confidentiality. One way around this issue is to essentially

write a wrapper around each CGKA algorithm which declares that some CGKA group members

are not actually in the group. Here, the wrapper would also force admins to delete group

secrets as soon as they derive them, and would not consider admins as part of the group; the

solution is however clearly vulnerable to corrupted admins.

One conceptually simple solution is to allow commit messages from regular users which

play the role of proposals which have to be “committed” (e.g. signed) by admins. Additional

machinery like the use of NIZKs is however required in the malicious setting to enable admins

to verify that such commits are well-formed.

Hierarchical Admins. In messaging apps like Telegram and WhatsApp, the group creator has

stronger capabilities than other admins. For instance, the group creator can never be removed

by another admin. Extending this concept, one can conceive a hierarchy of administrators of

several levels, e.g., of the form G∗∗ ⊆G∗ ⊆G , where G∗∗ are super-administrators. Extending

IAS, one can imagine using signatures that attest to other signatures in a chain-of-trust fashion.

DGS can be extended by considering many CGKAs where the (i+1)-th CGKA must sign commit

messages for the i -th CGKA for each i ≥ 1. Attribute-based admins would enable greater

flexibility in the access structure.

Muting Admins. It is possible to provide some cryptographic guarantees to the process of

muting conversation participants. Although we do not explicitly consider group messaging

proper, we sketch how such a solution would look. One solution entails a DGS-like construc-

tion in which members must sign messages using a common signature key spk derived from

237

Chapter 7. Conclusion

a secondary CGKA; honest group members would then process application messages if and

only if they are signed using the common signature key (i.e., only from the set of unmuted

users). Then, muted members will be able to filter messages from other muted users (since

they could still be informed of the state of spk over time), but they will not able to sign their

own messages. Mechanisms that enable a central server to filter messages while maintaining

privacy [HS20] can be also be integrated into the encryption layer over A-CGKA. Nevertheless,

we note that in messaging services where the identity of the group members is known, muted

members can generally bypass a ban by sending individual messages to all group members

using two-party messages. At an application level, muting group members is a functionality

supported by both Signal and Telegram.

Threshold Admins. One issue with our A-CGKA constructions is that security breaks down if

a single admin is compromised. To improve the robustness of the protocol, a protocol can

enforce that some k > 1 admins must attest to a particular commit before it may be processed,

which can be achieved using threshold cryptography [Sho00].

Decentralised Admins. To allow for network decentralisation, it is straightforward in theory

for a given messaging group G to simply execute a state machine replication protocol [CL+99]

to order commit messages and require that users reliably broadcast [BT85] all proposal mes-

sages. Given that group members who are expected to execute the protocol on, e.g., mobile

devices, may not be available often, thus leading to liveness (and possibly unintended safety)

violations in protocol execution, a natural solution is to entrust administrators to provide

messages to users. These admins could indeed execute consensus.

7.2.7 Sender Keys (Chapter 6)

Our security model, both for two-party channels and our Group Messenger primitive that

captures Sender Keys and Sender Keys+, could be extended to encompass attack vectors like

randomness manipulation, successful message injections and insider threats not explicitly

captured in our modelling.

Investigating the practical behaviour of Sender Keys would provide valuable insights for

improved modelling and the identification of potential vulnerabilities. In particular, Sender

Keys is commonly supplemented by additional mechanisms not considered in our study,

such as support for multiple devices and encrypted cloud backups (the latter considered

in isolation recently by Davies et al. [DFG+23]) that increase the attack surface. Conversely,

features of Signal such as sealed sender (by increasing privacy) and delivery receipts (by

refreshing keys) can also improve security. Benchmarking both the baseline and extended

Sender Keys protocols would also contribute to assessing their practicality.

Additionally, it is important to address the challenges that arise when total order is violated,

and to design a protocol that avoids the drawbacks associated with decentralised continuous

group key agreement (DCGKA) such as the need for multi-round communication [WKHB21].

238

7.2 Discussion and Future Work

Towards a more concurrency-friendly Sender Keys protocol, an important direction is the

design of a mechanism for resolving ties in control messages that are sent concurrently. The

way that this is achieved for group membership in Signal’s private group system [CPZ20],

as discussed in Section 5.4.2 in the context of group administration, is by the central server

maintaining the canonical set of group members (bypassing the need for group members to

agree between themselves). It could be of interest therefore to model such a system composed

with Sender Keys, since the existing modelling of the private group system does not itself

capture messaging proper as written (even given it is modelled in a variant of the universal

composability framework [Can01]).

239

A Appendices

A.1 QROM Preliminaries

In this section, we assume the random oracles output values in {0,1}n for some integer

n. We first recall the notion of extractable random oracle simulator introduced by Don et

al. [DFMS22] and the corresponding properties as presented by Huguenin-Dumittan and

Vaudenay [HV22], and a useful lemma. We refer the reader to the original paper for more

details.

Definition 50 (Extractable RO [DFMS22]). An extractable RO-simulator is a tuple (S,Ext),

where S is a compressed RO efficiently simulatable and Ext is the extractor, such that the

following properties hold.

1. If the extractor is never called, the simulator is indistinguishable from a (standard) RO.

2. Any two subsequent independent queries to S commute.

3. Any two subsequent independent queries to Ext commute.

4. Any two subsequent independent queries to Ext and S 8
p

2/2n-almost commute.

5. Querying classically the simulator S on the same value multiples times in a row has the

same effect on the state of S as making one of these queries.

6. Let xe ←Ext(t) for some t , and t ′ ← S(xe) be two subsequent classical queries. Then,

Pr[t ̸= t ′∧xe ̸=⊥] ≤ 2/2n .

7. Let t ← S(x) for some x and xe ←Ext(t) be two subsequent classical queries. Then,

Pr[x̂ =⊥] ≤ 2/2n .

241

Appendix A. Appendices

COLL(A)

1 : (x1, t1), . . . , (xm , tm) ←A S

2 : for i ∈ {1, . . . ,m} : t ′i ← S(xi)

3 : for i ∈ {1, . . . ,m} : xe
i ←Ext(ti)

4 : if ∃i : xe
i ̸= xi and ti = t ′i :

5 : return 1

6 : return 0

Figure A.1: Collision game for Property 8 Definition 50.

8. Let COLL be the game defined in Figure A.1. Then, for any A we have

Pr[COLL(A) ⇒ 1] ≤ 40e2(q +m +1)3 +2

2n ,

where q is the number of queries A makes to S and m is the number of tuples output

by A in the game.

Lemma 28 (Early Extraction). Let Γ be a game where an adversary runs on some input, queries

a quantum RO H , and outputs two values t and o. Then, the game applies some deterministic

function on o to obtain a value x and queries h ← H(x). The game returns 1 if h = t . Now let

Γ′ be the same as Γ, except the extractor is called on t right after it is returned by A , and the

game returns 1 if h = t and x = x⋆, where x⋆ is the value extracted. Then,

Pr[Γ⇒ 1]−Pr[Γ′ ⇒ 1] ≤ 2

2n +8
p

2/2n + 40e2(qH +2)3 +2

2n .

Proof. This follows from Corollary 4.7 in Don et al. and the fact that if h = t , where h = H(x),

then Pr[x⋆ =⊥] ≤ 2
2n .

We also recall the algorithm one way to hiding lemma [HHK17].

Lemma 29 (AOW2H [HHK17]). Let A be a quantum adversary making at most qH queries to

the QRO H : {0,1}ℓ 7→ {0,1}n and outputting 0 or 1. Then, for any algorithm F that does not use

H ∣∣Pr[A H (x) ⇒ 1 :σ∗ $← {0,1}ℓ; x ← F(σ∗, H(σ∗))]

−Pr[A H (x) ⇒ 1 : (σ∗,K) $← {0,1}ℓ+n ; x ← F(σ∗,K)]
∣∣

≤ 2qH

√√√√Pr

[
σ∗ ←EA ,H (x) :

(σ∗,K) $← {0,1}ℓ+n ;

x ← F(σ∗,K)

]
.

where E is an algorithm that runs A , measures the input register of a random query made to

H , and outputs the result.

242

A.2 Proof of Theorem 5 (Chapter 3)

SH ,A
i∗ (Θ)

1 : (j ,b) $← (
{0, . . . qH −1} \ {i∗}× {0,1}

)∪ {(qH ,0)}

2 : q ← 1

3 : (x, z) $←A H ′
and

x ′ ← measure A ’s j +1-th query input register

4 : return (x, z)

H ′(x)

1 : if q = i∗ :

2 : returnΘ

3 : if q < j +b +1 :

4 : return H(x)

5 : else

6 : if x = x ′ : returnΘ

7 : else : return H(x)

Figure A.2: Algorithm S for Lemma 30.

Finally, we recall the measure-and-reprogram lemma of Jiang et al. [JMZ23].

Lemma 30 (Lemma 3.1 [JMZ23]). Let H : {0,1}m 7→ {0,1}n be a quantum random oracle and

A H be a quantum algorithm that makes q quantum queries to H and outputs (x, z), where x

and z are classical. Furthermore, we assume the i∗-th query of A to H is classical and equal

to x, for some i∗ ∈ [qH]. In addition, let V (x, y, z) be some predicate s.t. V (x, y, z) = 1 implies

that y was output on A ’s i∗-th query to H . Then, there exists an algorithm Si∗ (see Figure A.2),

that takes some Θ ∈ {0,1}n as input and is such that

Pr
[
V (x, H(x), z) = 1 : (x, z) ←A H]≤ 2(2qH +1)2 Pr

[
V (x,Θ, z) = 1 : (x, z) ← SA

i∗ (Θ)
]
+ 8q2

H

2n

where the probabilities are taken over the randomness of the algorithms, the random oracle

H and the sampling of Θ at random.

Informally, the previous lemma states that if some adversary A H can satisfy a predicate with

probability p, one can build another algorithm SA that does not query H on the i∗-th query

(but uses its input instead) but that can satisfy with probability ≈ p
q2

H
.

A.2 Proof of Theorem 5 (Chapter 3)

A.2.1 Proof in the QROM

We proceed with a sequence of games that is detailed in Figure A.3. The proof uses the

extractable RO-simulator of Don et al. [DFMS22] (see Definition 50).

Game Γ0: This is the UNF-1KCA game with sKEM := TCH(sKEM0) written explicitly.

In addition, the RO used to compute the tag corresponding to ct (i.e. t = H1(pk,pkB,ct,KB)) is

different from the one used to compute the tag for ct′ (i.e. tc = H2(pkA,pkB,ct′,KA)). Note

that since (pk,ct) ̸= (pkA,ct′) for the adversary to win, both oracles can be separated in this way.

243

Appendix A. Appendices

Game Γ1: The game is the same as the previous one, except we use the simulated RO for H2,

and we use the extractor on t ′ (the tag output by the adversary) at the end. Note that this does

not change anything to the probability of success of the game.

Game Γ2: Now the game outputs 0 if the values extracted are different than (pkA,pkB,ct′,KA).

For the game to return 1, tc must be equal to t ′, so let’s assume it is the case. Hence, Γ2 and

Γ1 differ only if S.Ext(tc) ̸= (pkA,pkB,ct′,KA) and H2(pkA,pkB,ct′,KA) = tc . By Lemma 28, this

happens with probability at most ϵ := 2
2n +8

p
2/2n + 40e2(qH ′+2)3+2

2n . Hence, we have

Pr[Γ1]−Pr[Γ2] ≤ ϵ .

Game Υ1: We see that if an adversary A wins Γ2, one can build an adversary B that wins the

game Υ1 defined in Figure A.3. The reduction works simply by B running A , simulating H2

with the simulated RO, and running the extractor on t ′ at the end. Therefore, we have

Pr[Γ2] ≤ Pr[Υ1] .

In addition, note that one can consider oracles H and H1 as one oracle H∗ := H1 ⊗ H with

images in {0,1}2n that can be accessed qH +qH ′ times by the adversary.

Game Υ2: We change the game such that (t ,K) are picked at random and the oracle used

is now Ĥ instead of H∗ := H1 ⊗ H . Now, let’s consider a game C that runs Γ1 and outputs

(x = (pk,pkB,ct,KB), z = ((t ,K),KA,K ′
A). In addition, let V (x, y, z) := 1z1=y ∧ 1�z2 = z3�. Clearly,

we have that

Pr[Υ1] ≤ Pr[V (x, H∗(x), z) : (x, z) $←C H∗
]

as V is satisfied iff KA = K ′
A. Also, note that the condition z1 = y in the predicate is always

satisfied by the definition of z1 itself. Therefore, one can apply Lemma 30 with i∗ equal to the

query to H∗ made by the game (i.e. (t ,K) ← H∗(pk,pkB,ct,KB)) and we get

Pr[Υ1] ≤ 2(2(qH +qH ′)+1)2 Pr
[

V (x, (t ,K), z) = 1 : (x, z) ← SA
i∗ ((t ,K)

]
+ 8(qH +qH ′)2

22n

where (t ,K) is sampled at random and Si∗ is the algorithm shown in Figure A.2. By inspection,

one can see that if the output of Si∗ satisfies the predicate V thenΥ2 would output 1. Therefore,

we have

Pr[Υ1] ≤ 2(2(qH +qH ′)+1)2 Pr
[

V (x, (t ,K), z) = 1 : (x, z) ← SA
i∗ ((t ,K)

]
+ 8(qH +qH ′)2

22n ≤ Pr[Υ2].

Finally, one can see that if A winsΥ2, one can build an adversary B s.t. B wins the decaps-CPA
game against sKEM0. That is, the first phase of B runs the first phase of A and outputs the

same public key pk. Then, in the second phase, B runs A Ĥ with its own input (pkA,pkB,ct)

244

A.2 Proof of Theorem 5 (Chapter 3)

and random tag and key (t ,K). In addition, note that B can perfectly simulate Ĥ . Finally,

B outputs the same as the adversary A . If KA = K ′
A then B wins the decaps-OW-CPA game.

Hence, we have that

Pr[Υ2] ≤ Pr[decaps-CPAsKEM0
(B) ⇒ 1] .

Collecting the probabilities concludes the proof.

Γ0(A)

1 : pkA,skA
$←KeyGenA(1λ)

2 : pkB,skB
$←KeyGenB(1λ)

3 : pk,st $←A H ,H1 ,H2 (pkA,pkB)

4 : (KB,ct) $←Encaps(pk,skB)

5 : t ← H1(pk,pkB,ct,KB)

6 : K ← H(pk,pkB,ct,KB)

7 : (ct′, t ′) $←A H ,H1 ,H2 (pkA,

8 : pkB, (ct, t),K ,st)

9 : if (pkA,ct′) = (pk,ct) : return 0

10 : KA ←Decaps(pkB,skA,ct′)
11 : tc ← H2(pkA,pkB,ct′,KA)

12 : if tc ̸= t ′ : return 0

13 : return 1

Γ1(A)

1 : pkA,skA
$←KeyGenA(1λ)

2 : pkB,skB
$←KeyGenB(1λ)

3 : pk,st $←A H ,H1 ,H2 (pkA,pkB)

4 : (KB,ct) $←Encaps(pk,skB)

5 : t ← H1(pk,pkB,ct,KB)

6 : K ← H(pk,pkB,ct,KB)

7 : (ct′, t ′) $←A H ,H1 ,H2 (pkA,

8 : pkB, (ct, t),K ,st)

9 : if (pkA,ct′) = (pk,ct) : return 0

10 : KA ←Decaps(pkB,skA,ct′)
11 : tc ← H2(pkA,pkB,ct′,KA)

12 : if tc ̸= t ′ : return 0

13 : (pk⋆1 ,pk⋆2 ,ct⋆,K⋆
A) ←S.Ext(t ′)

14 : return 1

Γ2(A)

1 : pkA,skA
$←KeyGenA(1λ)

2 : pkB,skB
$←KeyGenB(1λ)

3 : pk,st $←A H ,H1 ,H2 (pkA,pkB)

4 : (KB,ct) $←Encaps(pk,skB)

5 : t ← H1(pk,pkB,ct,KB)

6 : K ← H(pk,pkB,ct,KB)

7 : (ct′, t ′) $←A H ,H1 ,H2 (pkA,

8 : pkB, (ct, t),K ,st)

9 : (pk⋆0 ,pk⋆1 ,ct⋆,K⋆
A) ←S.Ext(t ′)

10 : if (pkA,ct′) = (pk,ct) : return 0

11 : KA ←Decaps(pkB,skA,ct′)
12 : tc ← H2(pkA,pkB,ct′,KA)

13 : if tc ̸= t ′ : return 0

14 : if (pk⋆1 ,pk⋆2 ,ct⋆,K⋆
A)

̸= (pkA,pkB,ct′,KA) :

15 : return 0

16 : return 1

Υ1(A)

1 : pkA,skA
$←KeyGenA(1λ)

2 : pkB,skB
$←KeyGenB(1λ)

3 : pk,st $←A H ,H1 (pkA,pkB)

4 : (KB,ct) $←Encaps(pk,skB)

5 : (t ,K) ← H∗(pk,pkB,ct,KB)

6 : in ← (pkA,pkB, (ct, t),K ,st)

7 : K ′
A,ct′ $←A H ,H1 (in)

8 : KA ←Decaps(pkB,skA,ct′)
9 : if (pkA,ct′) = (pk,ct) or KA ̸= K ′

A :

10 : return 0

11 : return 1

Υ2(A)

1 : (j ,b) $← (
{0, . . . qH −1}× {0,1}

)∪ {(qH ,0)}

2 : x′ ← measure A ’s j +1-th query input register

3 : q ← 0

4 : pkA,skA
$←KeyGenA(1λ)

5 : pkB,skB
$←KeyGenB(1λ)

6 : (KB,ct) $←Encaps(pkA,skB)

7 : pk,st $←A Ĥ (pkA,pkB)

8 : (KB,ct) $←Encaps(pk,skB)

9 : (t ,K) $← {0,1}2n

10 : K ′
A,ct′ $←A Ĥ (pkA,pkB, (ct, t),K ,st)

11 : KA ←Decaps(pkB,skA,ct′)
12 : if KA ̸= K ′

A :

13 : return 0

14 : return 1

Ĥ(x)

1 : q ← q +1

2 : if q < j +b +1 :

3 : return H∗(x)

4 : else

5 : if x = x′ :

6 : return (t ,K)

7 : else :

8 : return H∗(x)

Figure A.3: Sequence of games for the proof of Theorem 5. H∗ is defined as H1 ⊗H1.

245

Appendix A. Appendices

A.2.2 Proof in the ROM

The proof follows a similar approach as the one in the QROM.

Game Γ0: This is the same as the UNF-1KCA game with sKEM = TCH(sKEM0), except we

assume there is no collision on H ′. Thus, Γ0 is the same as UNF-1KCA except with probability

at most
q2

H ′
2n .

Game Γ1: In this game, we return 0 if A did not query H ′(pkA,pkB,ct′,KA). As we can

assume (pk,ct) ̸= (pkA,ct′), this changes the probability of A winning only if A outputs

t ′ = H ′(pkA,pkB,ct′,KA) without having made the oracle query. Since the query was not made,

one can actually lazy sample the value of H ′(pkA,pkB,ct′,KA) after A returns t ′, and the

probability both values are equal is 1
2n . Hence,

Pr[Γ0]−Pr[Γ1] ≤ 1

2n .

Game Υ1: If Γ1 outputs 1, it means A outputs (ct, t ′) s.t. ((pkA,pkB,ct′,KA), t ′) is in the

list of queries made by the A . Hence, if that happens, one can find ct′ and KA s.t.

Decaps(pkB,skA,ct′) = KA by running (ct′, t ′) $← A and looking for t ′ in the list of queries

(note that we assume there is no collision). Therefore, it means one can build an adversary

that wins the game Υ1 in Fig. A.3, and we have

Pr[Γ1] ≤ Pr[Υ1] .

Game Υ2: We modify the game s.t. the tag t and the key given to the adversary are picked

uniformly at random as shown in Figure A.3. Both games are indistinguishable unless A

queries (pk,pkB,ct,KB) to H or H ′. Then, an adversary B playing Υ2 can perfectly simulate

A ’s view in Υ1 if it guesses correctly which query it is going to be and if such a query is going

to happen. Overall, B can make a correct guess with probability 1
qH ′+qH+1 . If that happens

though, one can build an OW-CPA adversary B against sKEM0 that runs A and picks a

random query made by A to H or H ′. Hence, we have

Pr[Υ1] ≤ (qH ′ +qH +1)Pr[Υ2] .

Finally, one can see that Υ2 is the same as the decaps-CPA for sKEM0 if we omit the random

values K and t and the more restrictive winning condition (pkA,ct′) ̸= (pk,ct). Hence, one can

build an adversary C such that

Pr[Υ2] ≤ Pr[decaps-CPAsKEM0
(C) ⇒ 1] .

246

A.3 Proof of Theorem 6 (Chapter 3)

O (LH ′ , {(pki , (cti , ti))}d
i=1)

1 : for i ∈ [d] :

2 : K ′
i ←Decaps(pki ,skA,cti)

3 : if ((pki ,cti ,K ′
i), ti) ∉LH ′ : return 0

4 : return 1

Figure A.4: Oracle O used in the proof of Theorem 6.

A.3 Proof of Theorem 6 (Chapter 3)

A.3.1 Proof in the ROM

Proof. The idea of the proof is very similar to the IND-qCCA proof of the TCH transform by

Huguenin-Dumittan et al. [HV22] and is the following. Either all tags in the decapsulation

query are valid and thus they are the form H ′(pkA,pki ,cti ,K ′
i), or the oracle returns ⊥. Then,

if they are valid, with high probability the adversary queried (pkA,pki ,cti ,K ′
i) to H ′ and thus

K ′
i can be recovered from the list of queries to the RO, i.e. the decapsulation oracle can be

simulated without the knowledge of skA. In other words, the only information leaked by a

query to the decapsulation oracle is whether all tags are valid or not, i.e. 1 bit of information,

which is not sufficient to break the OW-CPA game. We prove this formally with a sequence of

hybrid games.

Game Γ0: This is the IND-1BatchCCA game with sKEM=TCH(sKEM0).

Game Γ1: We modify the previous game s.t. we abort if the adversary finds any colli-

sion when querying H ′. We have that

Pr[Γ0]−Pr[Γ1] ≤ q2
H ′

2n

where q ′
H is the number of queries the adversary makes to H ′.

Game Γ2: We modify the game s.t. it aborts if BatchDEC({(pki , (cti , ti))}d
i=1) does not return ⊥

but one of the tags ti was not obtained through an adversary’s query to H ′. The probability

that some tag ti is valid but H ′(pkA,pki ,cti ,K ′
i) (with (pkA,pki ,cti , ti) ̸= (pkA,pkB ,ct∗, t∗i)) was

247

Appendix A. Appendices

not queried by the adversary is 1
2n . Hence, overall we have

Pr[Γ1]−Pr[Γ2] ≤ d

2n

Game Γ3: We now change the game as follows. We record all queries to H ′ of the form (pkA, ·, ·, ·)
made by the adversary in a list LH ′ = {((pk j ,ct j ,K j),h j)}

q ′
H

j=1 s.t. H ′(pkA,pk j ,ct j ,K j) = h j for

all j ∈ [qH ′]. Then, the BatchDEC oracle is modified as follows. If some tag ti is s.t. for

all K ∈ K ((pki ,cti ,K), ti) ∉ LH ′ then ⊥ is returned. Then, O (LH ′ , {(pki , (cti , ti))}d
i=1) → r is

queried, where O is defined in Figure A.4. If r = 0 BatchDEC outputs ⊥, otherwise it outputs

H(pkA,pki ,cti ,Ki) for all i ∈ [d], where Ki is s.t. ((pki ,cti ,Ki), ti) ∈ LH ′ . Note that all these

modifications are only syntactical as O outputs 1 iff for all i ∈ [d], Ki is (the unique) value in

LH ′ s.t. H ′(pkA,pki ,cti ,Ki :=Decaps(pki ,skA)) = ti . Hence, we have

Pr[Γ2] = Pr[Γ3] .

Game Γ4: We replace the challenge tag t∗ and the real key K0 by random values. This change

can only be noticed if the adversary or the BatchDEC oracle queries H(pkA,pkB,ct∗,K ∗) or

H ′(pkA,pkB,ct∗,K ∗) at some point in the game. Let QUERY be this event. We show that if

QUERY occurs, then one can break the OW-CPA security of sKEM0 with high probability.

The reduction works as follows. The OW-CPA adversary B receives a challenge ciphertext

ct∗ and public keys pkA,pkB from its own challenger. Next, it samples random values K , t∗

and passes all these to the IND-1BatchCCA adversary A . Then, B can simulate everything in

BatchDEC (except the oracle call to O) by recording A ’s queries to H ′. In order to simulate O ,

B samples a bit r at random instead, which succeeds with probability 1
2 . Finally, it samples

at random a query made by A to H or H ′ or a query made to H by itself, and it outputs the

key K that was part of this query. Overall, the simulation is correct with probability 1
2 and if

QUERY occurs B recovers K ∗ with probability 1
qH+qH ′+d . Hence,

Pr[Γ3]−Pr[Γ4] ≤ Pr[QUERY] ≤ 2(qH +qH ′ +d)Advow-cpa
sKEM (A) .

Finally, we see that the adversary’s view is independent of b in Γ4, therefore Pr[Γ4] = 1
2 . This

concludes the proof.

A.3.2 Proof in the QROM

Proof. As in the proof of Theorem 5, we use the extractable RO-simulator by Don et

al. [DFMS22] and we proceed with a sequence of hybrid games. We note the proof is nearly

identical to the QROM IND-qCCA proof of TCH [HV22] and we refer the reader to the latter for

248

A.3 Proof of Theorem 6 (Chapter 3)

a detailed explanation of the game transitions.

Game Γ0: This is the IND-1BatchCCA game with sKEM = TCH(sKEM0). We also assume

that the adversary only makes queries of the form (pkA, ·, ·, ·) to the oracles. This has no

consequence on the winning probability of the adversary as other type of queries are

independent of the key.

Game Γ1: We modify the BatchDEC oracle s.t. it returns ⊥ whenever the list of (pki ,cti , ti) in

the query contains (pki ,cti) = (pkB,ct∗) (and thus ti ̸= t∗). This change has no impact except

if Decaps(pkB,skA,ct∗) ̸= K0, where K0 is the challenge real key. In turn, this would imply that

ct∗ is an incorrect ciphertext. Hence,

Pr[Γ0]−Pr[Γ1] ≤ δ .

Game Γ2: Now, we split the random oracle H ′ into two oracles H ′
0 and H ′

1 s.t.

H ′(pkA,pk,ct,K) :=
H ′

0(K), if (pk,ct) = (pkB,ct∗)

H ′
1(pk,ct,K), otherwise

and we give the adversary access to H ′
0, H ′

1 instead of H ′. We also switch to the RO simulator

instead of using H ′
1. In addition, at the end of the game, the challenger calls the extractor

on all tags ti queried as part of the call to the BatchDEC oracle to obtain extracted values

(pke
i ,cte

i ,K e
i), i ∈ [d]. Note that H ′

0 is never called as part of a BatchDEC query due to the

modification in the previous game. These changes have no impact on the success of the game

and thus

Pr[Γ1] = Pr[Γ2] .

Game Γ3: We abort whenever the decapsulation oracle does not return ⊥ but the extracted

values (pke
i ,cte

i ,K e
i) are not equal to ⊥ or (pki ,cti ,K ′

i), where K ′
i = Decaps(pki ,skA,cti). By

Property 8 of the extractable oracle, we have

Pr[Γ2]−Pr[Γ3] ≤ 40e2(qH ′ +d +1)3 +2

2n .

Game Γ4: We move the extraction to the BatchDEC oracle, right after the corresponding tag

verification. By Property 4 of the extractable oracle, we have

Pr[Γ3]−Pr[Γ4] ≤ 8d(d +qH ′)
p

2/2n .

249

Appendix A. Appendices

Game Γ5: We modify the BatchDEC oracle s.t. we abort if all tag checks pass, i.e.

H ′(pki ,cti ,K ′
i) = ti ,∀i ∈ [d] but some extracted value is equal to ⊥, i.e. (pke

i ,cte
i ,K e

i) =⊥ for

some i ∈ [d]. By Property 7 of the extractable oracle we have

Pr[Γ4]−Pr[Γ5] ≤ d
2

2n .

Game Γ6: We modify the BatchDEC oracle s.t. the queries to H ′ made for the tag verification

are made after the corresponding extraction. By Property 8 of the extractable oracle we have

Pr[Γ5]−Pr[Γ6] ≤ 8d
p

2/2n .

Game Γ7: We modify the previous game as follows. Let r be a bit set to 1 iff for all i ∈ [d]

(pke
i ,cte

i) = (pki ,cti) and Decaps(pke
i ,skA,cte

i) = K e
i . Then, we change BatchDEC s.t. it returns

⊥ if r = 0, otherwise it returns H (pkA,pki ,cti ,K e
i) for all i ∈ [d]. In addition, the tag verification

is now skipped. We argue this affects only negligibly the advantage of the adversary compared

to the previous game:

• If BatchDEC returns H(pkA,pki ,cti ,K ′
i) , i ∈ [d] in Γ6, then by the previous changes

we know that (pke
i ,cte

i ,K e
i) = (pki ,cti ,K ′

i) for all i ∈ [d], therefore BatchDEC returns

H(pkA,pki ,cti ,K ′
i) , i ∈ [d] in Γ7 as well.

• If BatchDEC returns H(pkA,pki ,cti ,K e
i) , i ∈ [d] in Γ7, we know that (pke

i ,cte
i ,K e

i) =
(pki ,cti ,K ′

i). In addition, for each i ∈ [d], ti = H(pke
i ,cte

i ,K e
i) with probability 1− 2

2n by

Property 6 of the extractable oracle. Therefore, the tag verification would pass in Γ6 with

high probability and BatchDEC would return the same values in that game as well.

Overall, we have

Pr[Γ6]−Pr[Γ7] ≤ d
2

2n .

Game Γ8: Now we move all d queries to H ′ made in BatchDEC to the end of the game. By

Property 8 of the extractable oracle, we have

Pr[Γ7]−Pr[Γ8] ≤ 8d qH ′
p

2/2n .

Note that we can now forget about the queries to H ′ we just moved to the end of the game.

Game Γ9: We replace the real key K0 and the challenge tag t∗ by random values. We have

250

A.3 Proof of Theorem 6 (Chapter 3)

Pr[Γ9] = 1
2 . Applying the OW2H lemma on H ⊗H ′

0, we get

Pr[Γ8]−Pr[Γ9] ≤ 2(qH ′ +qH +d)
√

Pr[Υ]

where Υ is the same as Γ9, except the challenger measures a random query made to H ⊗H ′
0

and outputs 1 iff the query contains K ∗, where K ∗ is the key encapsulated in ct∗. We can build

an OW-CPA adversary B against sKEM0 that wins with high probability when Υ outputs 1.

The reduction works nearly as in the ROM proof: B receives a challenge ciphertext ct∗ and

two public keys pkA,pkB, then it samples t∗ and K ∗ at random and passes all these values to

A . Then, B can perfectly simulate BatchDEC as in Γ9, except for the bit r that it can guess

correctly with probability 1
2 . Finally, B measures a random query that was made to H or H ′ in

the execution and outputs the corresponding value K . Overall, we have

Pr[Υ] ≤ 2Advow-cpa
sKEM (A)

which concludes the proof.

251

Appendix A. Appendices

A.4 Tables for Sender Keys (Chapter 6)

We provide here two tables (Table A.1 and Table A.2) that serve as a reference for the variables

that we use in Chapter 6.

Variable Description
General

G sender keys group
γ state
ID user
ME caller
m application message
T control message
(e, i) message epoch counter
H random oracle

Keys
SK sender key
spk public signature key
ssk secret signature key
ck symmetric chain key
mk message key
τk MAC key

Game Dictionaries
M ciphertexts
CH challenged ciphertexts
T control messages
E message epochs
I message indices
SM skipped messages

Table A.1: Summary of variables used throughout Chapter 6 (part I).

252

A.4 Tables for Sender Keys (Chapter 6)

Variable Description
Protocol

add add command
crt create command
rem remove command
upd update command
acc acceptance bit
welcome welcome ciphertext
ep current epoch
ick current index of user’s chain key
iME current epoch-specific index of caller’s chain key
last-kc last chain key
max-ick maximum index of chain key
kc chain key counter
no-SK boolean indicator of whether sender key exists
rs self-sampled randomness (for updates)
r randomness sent (for updates)
C⃗ ciphertext vector
M message
τ MAC tag
σ signature
C ciphertext
γ2pc two-party channel state
C2pc two-party channel ciphertext
Upd-Ind view of update initiator

Table A.2: Summary of variables used throughout throughout Chapter 6 (part II).

253

Bibliography

[AAB+21] Joël Alwen, Benedikt Auerbach, Mirza Ahad Baig, Miguel Cueto Noval, Karen

Klein, Guillermo Pascual-Perez, Krzysztof Pietrzak, and Michael Walter. Grafting

key trees: Efficient key management for overlapping groups. In Kobbi Nissim

and Brent Waters, editors, TCC 2021: 19th Theory of Cryptography Conference,

Part III, volume 13044 of Lecture Notes in Computer Science, pages 222–253,

Raleigh, NC, USA, November 8–11, 2021. Springer, Heidelberg, Germany.

[AAN+22a] Joël Alwen, Benedikt Auerbach, Miguel Cueto Noval, Karen Klein, Guillermo

Pascual-Perez, and Krzysztof Pietrzak. DeCAF: Decentralizable continuous

group key agreement with fast healing. Cryptology ePrint Archive, Report

2022/559, 2022. https://eprint.iacr.org/2022/559.

[AAN+22b] Joël Alwen, Benedikt Auerbach, Miguel Cueto Noval, Karen Klein, Guillermo

Pascual-Perez, Krzysztof Pietrzak, and Michael Walter. CoCoA: Concurrent

continuous group key agreement. In Orr Dunkelman and Stefan Dziembowski,

editors, Advances in Cryptology – EUROCRYPT 2022, Part II, volume 13276 of

Lecture Notes in Computer Science, pages 815–844, Trondheim, Norway, May 30 –

June 3, 2022. Springer, Heidelberg, Germany.

[ABH+21] Joël Alwen, Bruno Blanchet, Eduard Hauck, Eike Kiltz, Benjamin Lipp, and

Doreen Riepel. Analysing the HPKE standard. In Anne Canteaut and François-

Xavier Standaert, editors, Advances in Cryptology – EUROCRYPT 2021, Part I,

volume 12696 of Lecture Notes in Computer Science, pages 87–116, Zagreb,

Croatia, October 17–21, 2021. Springer, Heidelberg, Germany.

[ACD19] Joël Alwen, Sandro Coretti, and Yevgeniy Dodis. The double ratchet: Security

notions, proofs, and modularization for the Signal protocol. In Yuval Ishai and

Vincent Rijmen, editors, Advances in Cryptology – EUROCRYPT 2019, Part I,

volume 11476 of Lecture Notes in Computer Science, pages 129–158, Darmstadt,

Germany, May 19–23, 2019. Springer, Heidelberg, Germany.

[ACDJ23] Martin R. Albrecht, Sofía Celi, Benjamin Dowling, and Daniel Jones. Practically-

exploitable Cryptographic Vulnerabilities in Matrix. In 2023 IEEE Symposium

on Security and Privacy, 2023.

255

https://eprint.iacr.org/2022/559

Bibliography

[ACDT19] Joël Alwen, Sandro Coretti, Yevgeniy Dodis, and Yiannis Tselekounis. Security

analysis and improvements for the IETF MLS standard for group messaging.

Cryptology ePrint Archive, Report 2019/1189, 2019. https://eprint.iacr.org/

2019/1189.

[ACDT20] Joël Alwen, Sandro Coretti, Yevgeniy Dodis, and Yiannis Tselekounis. Security

analysis and improvements for the IETF MLS standard for group messaging. In

Daniele Micciancio and Thomas Ristenpart, editors, Advances in Cryptology –

CRYPTO 2020, Part I, volume 12170 of Lecture Notes in Computer Science, pages

248–277, Santa Barbara, CA, USA, August 17–21, 2020. Springer, Heidelberg,

Germany.

[ACDT21a] Joël Alwen, Sandro Coretti, Yevgeniy Dodis, and Yiannis Tselekounis. Modu-

lar design of secure group messaging protocols and the security of MLS. In

Giovanni Vigna and Elaine Shi, editors, ACM CCS 2021: 28th Conference on Com-

puter and Communications Security, pages 1463–1483, Virtual Event, Republic

of Korea, November 15–19, 2021. ACM Press.

[ACDT21b] Joël Alwen, Sandro Coretti, Yevgeniy Dodis, and Yiannis Tselekounis. Modular

design of secure group messaging protocols and the security of MLS. Cryptology

ePrint Archive, Report 2021/1083, 2021. https://eprint.iacr.org/2021/1083.

[ACJM20] Joël Alwen, Sandro Coretti, Daniel Jost, and Marta Mularczyk. Continuous

group key agreement with active security. In Rafael Pass and Krzysztof Pietrzak,

editors, TCC 2020: 18th Theory of Cryptography Conference, Part II, volume

12551 of Lecture Notes in Computer Science, pages 261–290, Durham, NC, USA,

November 16–19, 2020. Springer, Heidelberg, Germany.

[ACPS09] Benny Applebaum, David Cash, Chris Peikert, and Amit Sahai. Fast crypto-

graphic primitives and circular-secure encryption based on hard learning prob-

lems. In Shai Halevi, editor, Advances in Cryptology – CRYPTO 2009, volume

5677 of Lecture Notes in Computer Science, pages 595–618, Santa Barbara, CA,

USA, August 16–20, 2009. Springer, Heidelberg, Germany.

[ADJ24] Martin R. Albrecht, Benjamin Dowling, and Daniel Jones. Device-Oriented

Group Messaging: A Formal Cryptographic Analysis of Matrix’ Core. In 2024

IEEE Symposium on Security and Privacy (to appear), 2024.

[AHKM22] Joël Alwen, Dominik Hartmann, Eike Kiltz, and Marta Mularczyk. Server-aided

continuous group key agreement. In Heng Yin, Angelos Stavrou, Cas Cremers,

and Elaine Shi, editors, ACM CCS 2022: 29th Conference on Computer and

Communications Security, pages 69–82, Los Angeles, CA, USA, November 7–11,

2022. ACM Press.

256

https://eprint.iacr.org/2019/1189
https://eprint.iacr.org/2019/1189
https://eprint.iacr.org/2021/1083

Bibliography

[AJM20] Joël Alwen, Daniel Jost, and Marta Mularczyk. On the insider security of MLS.

Cryptology ePrint Archive, Report 2020/1327, 2020. https://eprint.iacr.org/

2020/1327.

[AJM22] Joël Alwen, Daniel Jost, and Marta Mularczyk. On the insider security of MLS.

In Yevgeniy Dodis and Thomas Shrimpton, editors, Advances in Cryptology

– CRYPTO 2022, Part II, volume 13508 of Lecture Notes in Computer Science,

pages 34–68, Santa Barbara, CA, USA, August 15–18, 2022. Springer, Heidelberg,

Germany.

[AMPS22] Martin R. Albrecht, Lenka Mareková, Kenneth G. Paterson, and Igors Stepanovs.

Four attacks and a proof for Telegram. In 2022 IEEE Symposium on Security

and Privacy, pages 87–106, San Francisco, CA, USA, May 22–26, 2022. IEEE

Computer Society Press.

[AMT23] Joël Alwen, Marta Mularczyk, and Yiannis Tselekounis. Fork-resilient continu-

ous group key agreement. In Helena Handschuh and Anna Lysyanskaya, editors,

Advances in Cryptology – CRYPTO 2023, Part IV, volume 14084 of Lecture Notes

in Computer Science, pages 396–429, Santa Barbara, CA, USA, August 20–24,

2023. Springer, Heidelberg, Germany.

[ANPPP23] Benedikt Auerbach, Miguel Cueto Noval, Guillermo Pascual-Perez, and

Krzysztof Pietrzak. On the cost of post-compromise security in concurrent

continuous group-key agreement. In TCC 2023: 21st Theory of Cryptography

Conference, Part I, Lecture Notes in Computer Science. Springer, Heidelberg,

Germany, November 2023.

[ANS23] ANSSI. ANSSI views on the Post-Quantum Cryptography transition (2023 follow

up). https://www.ssi.gouv.fr/uploads/2023/09/follow_up_position_paper_on_

post_quantum_cryptography.pdf, 2023. Accessed: 28-09-2023.

[AP12] Jacob Alperin-Sheriff and Chris Peikert. Circular and KDM security for identity-

based encryption. In Marc Fischlin, Johannes Buchmann, and Mark Manulis,

editors, PKC 2012: 15th International Conference on Theory and Practice of

Public Key Cryptography, volume 7293 of Lecture Notes in Computer Science,

pages 334–352, Darmstadt, Germany, May 21–23, 2012. Springer, Heidelberg,

Germany.

[APS15] Martin R. Albrecht, Rachel Player, and Sam Scott. On the concrete hardness

of learning with errors. Cryptology ePrint Archive, Report 2015/046, 2015.

https://eprint.iacr.org/2015/046.

[Bal21] David Balbás. On Secure Administrators for Group Messaging Protocols, 2021.

MSc Thesis.

257

https://eprint.iacr.org/2020/1327
https://eprint.iacr.org/2020/1327
https://www.ssi.gouv.fr/uploads/2023/09/follow_up_position_paper_on_post_quantum_cryptography.pdf
https://www.ssi.gouv.fr/uploads/2023/09/follow_up_position_paper_on_post_quantum_cryptography.pdf
https://eprint.iacr.org/2015/046

Bibliography

[BBL+22] Olivier Blazy, Ioana Boureanu, Pascal Lafourcade, Cristina Onete, and Léo

Robert. How fast do you heal? A taxonomy for post-compromise security in

secure-channel establishment. Cryptology ePrint Archive, Report 2022/1090,

2022. https://eprint.iacr.org/2022/1090.

[BBLW22] Richard Barnes, Karthikeyan Bhargavan, Benjamin Lipp, and Christopher A.

Wood. Hybrid Public Key Encryption. Technical Report 9180, February 2022.

[BBR18] Karthikeyan Bhargavan, Richard Barnes, and Eric Rescorla. TreeKEM: Asyn-

chronous Decentralized Key Management for Large Dynamic Groups A protocol

proposal for Messaging Layer Security (MLS). Research report, Inria Paris, May

2018.

[BBR+23] Richard Barnes, Benjamin Beurdouche, Raphael Robert, Jon Millican, Emad

Omara, and Katriel Cohn-Gordon. The Messaging Layer Security (MLS) Protocol.

RFC 9420, July 2023.

[BCC+23a] Khashayar Barooti, Daniel Collins, Simone Colombo, Loïs Huguenin-Dumittan,

and Serge Vaudenay. On active attack detection in messaging with immediate

decryption. In Helena Handschuh and Anna Lysyanskaya, editors, Advances in

Cryptology – CRYPTO 2023, Part IV, volume 14084 of Lecture Notes in Computer

Science, pages 362–395, Santa Barbara, CA, USA, August 20–24, 2023. Springer,

Heidelberg, Germany.

[BCC+23b] Khashayar Barooti, Daniel Collins, Simone Colombo, Loïs Huguenin-Dumittan,

and Serge Vaudenay. On active attack detection in messaging with immediate

decryption. Cryptology ePrint Archive, Report 2023/880, 2023. https://eprint.

iacr.org/2023/880.

[BCD+16] Joppe W. Bos, Craig Costello, Léo Ducas, Ilya Mironov, Michael Naehrig, Valeria

Nikolaenko, Ananth Raghunathan, and Douglas Stebila. Frodo: Take off the

ring! Practical, quantum-secure key exchange from LWE. In Edgar R. Weippl,

Stefan Katzenbeisser, Christopher Kruegel, Andrew C. Myers, and Shai Halevi,

editors, ACM CCS 2016: 23rd Conference on Computer and Communications

Security, pages 1006–1018, Vienna, Austria, October 24–28, 2016. ACM Press.

[BCG22] David Balbás, Daniel Collins, and Phillip Gajland. Analysis and Improvements

of the Sender Keys Protocol for Group Messaging. XVII Reunión española sobre

criptología y seguridad de la información. RECSI 2022, 265:25, 2022.

[BCG23a] David Balbás, Daniel Collins, and Phillip Gajland. Whatsupp with sender keys?

analysis, improvements and security proofs. Cryptology ePrint Archive, Report

2023/1385, 2023. https://eprint.iacr.org/2023/1385.

[BCG23b] David Balbás, Daniel Collins, and Phillip Gajland. WhatsUpp with Sender

Keys? Analysis, improvements and security proofs. In Advances in Cryptology –

258

https://eprint.iacr.org/2022/1090
https://eprint.iacr.org/2023/880
https://eprint.iacr.org/2023/880
https://eprint.iacr.org/2023/1385

Bibliography

ASIACRYPT 2023, Part I, Lecture Notes in Computer Science. Springer-Verlag,

December 7–11, 2023.

[BCK22] Chris Brzuska, Eric Cornelissen, and Konrad Kohbrok. Security analysis of the

MLS key derivation. In 2022 IEEE Symposium on Security and Privacy, pages

2535–2553, San Francisco, CA, USA, May 22–26, 2022. IEEE Computer Society

Press.

[BCLZL22] Renas Bacho, Daniel Collins, Chen-Da Liu-Zhang, and Julian Loss. Network-

agnostic security comes for (almost) free in DKG and MPC. Cryptology ePrint

Archive, Report 2022/1369, 2022. https://eprint.iacr.org/2022/1369.

[BCLZL23] Renas Bacho, Daniel Collins, Chen-Da Liu-Zhang, and Julian Loss. Network-

agnostic security comes (almost) for free in DKG and MPC. In Helena Hand-

schuh and Anna Lysyanskaya, editors, Advances in Cryptology – CRYPTO 2023,

Part I, volume 14081 of Lecture Notes in Computer Science, pages 71–106, Santa

Barbara, CA, USA, August 20–24, 2023. Springer, Heidelberg, Germany.

[BCM23a] Subhadeep Banik, Daniel Collins, and Willi Meier. Near collision attack against

grain V1. In Mehdi Tibouchi and Xiaofeng Wang, editors, ACNS 23: 21st In-

ternational Conference on Applied Cryptography and Network Security, Part I,

volume 13905 of Lecture Notes in Computer Science, pages 178–207, Kyoto,

Japan, June 19–22, 2023. Springer, Heidelberg, Germany.

[BCM23b] Subhadeep Banik, Daniel Collins, and Willi Meier. Near collision attack against

grain v1. Cryptology ePrint Archive, Paper 2023/884, 2023. https://eprint.iacr.

org/2023/884.

[BCV22] David Balbás, Daniel Collins, and Serge Vaudenay. Cryptographic administra-

tion for secure group messaging. Cryptology ePrint Archive, Report 2022/1411,

2022. https://eprint.iacr.org/2022/1411.

[BCV23] David Balbás, Daniel Collins, and Serge Vaudenay. Cryptographic adminis-

tration for secure group messaging. In USENIX Security 2023: 32nd USENIX

Security Symposium, pages 1253–1270, Anaheim, CA, USA, August 2023. USENIX

Association.

[BDF+11] Dan Boneh, Özgür Dagdelen, Marc Fischlin, Anja Lehmann, Christian Schaffner,

and Mark Zhandry. Random oracles in a quantum world. In Dong Hoon Lee

and Xiaoyun Wang, editors, Advances in Cryptology – ASIACRYPT 2011, volume

7073 of Lecture Notes in Computer Science, pages 41–69, Seoul, South Korea,

December 4–8, 2011. Springer, Heidelberg, Germany.

[BDG+22] Alexander Bienstock, Yevgeniy Dodis, Sanjam Garg, Garrison Grogan, Moham-

mad Hajiabadi, and Paul Rösler. On the worst-case inefficiency of CGKA. In

259

https://eprint.iacr.org/2022/1369
https://eprint.iacr.org/2023/884
https://eprint.iacr.org/2023/884
https://eprint.iacr.org/2022/1411

Bibliography

Eike Kiltz and Vinod Vaikuntanathan, editors, TCC 2022: 20th Theory of Cryptog-

raphy Conference, Part II, volume 13748 of Lecture Notes in Computer Science,

pages 213–243, Chicago, IL, USA, November 7–10, 2022. Springer, Heidelberg,

Germany.

[BDK+18] Joppe Bos, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyubashevsky,

John M Schanck, Peter Schwabe, Gregor Seiler, and Damien Stehlé. Crystals-

kyber: a cca-secure module-lattice-based kem. In 2018 IEEE European Sympo-

sium on Security and Privacy (EuroS&P), pages 353–367. IEEE, 2018.

[BDR20] Alexander Bienstock, Yevgeniy Dodis, and Paul Rösler. On the price of con-

currency in group ratcheting protocols. In Rafael Pass and Krzysztof Pietrzak,

editors, TCC 2020: 18th Theory of Cryptography Conference, Part II, volume

12551 of Lecture Notes in Computer Science, pages 198–228, Durham, NC, USA,

November 16–19, 2020. Springer, Heidelberg, Germany.

[Bel06] Mihir Bellare. New proofs for NMAC and HMAC: Security without collision-

resistance. In Cynthia Dwork, editor, Advances in Cryptology – CRYPTO 2006,

volume 4117 of Lecture Notes in Computer Science, pages 602–619, Santa Bar-

bara, CA, USA, August 20–24, 2006. Springer, Heidelberg, Germany.

[Ber06] Daniel J. Bernstein. Curve25519: New Diffie-Hellman speed records. In Moti

Yung, Yevgeniy Dodis, Aggelos Kiayias, and Tal Malkin, editors, PKC 2006: 9th

International Conference on Theory and Practice of Public Key Cryptography,

volume 3958 of Lecture Notes in Computer Science, pages 207–228, New York,

NY, USA, April 24–26, 2006. Springer, Heidelberg, Germany.

[Beu20] Ward Beullens. Sigma protocols for MQ, PKP and SIS, and Fishy signature

schemes. In Anne Canteaut and Yuval Ishai, editors, Advances in Cryptology

– EUROCRYPT 2020, Part III, volume 12107 of Lecture Notes in Computer Sci-

ence, pages 183–211, Zagreb, Croatia, May 10–14, 2020. Springer, Heidelberg,

Germany.

[BFG+20] Jacqueline Brendel, Marc Fischlin, Felix Günther, Christian Janson, and Douglas

Stebila. Towards post-quantum security for Signal’s X3DH handshake. In Orr

Dunkelman, Michael J. Jacobson Jr., and Colin O’Flynn, editors, SAC 2020: 27th

Annual International Workshop on Selected Areas in Cryptography, volume

12804 of Lecture Notes in Computer Science, pages 404–430, Halifax, NS, Canada

(Virtual Event), October 21-23, 2020. Springer, Heidelberg, Germany.

[BFG+22a] Alexander Bienstock, Jaiden Fairoze, Sanjam Garg, Pratyay Mukherjee, and

Srinivasan Raghuraman. A more complete analysis of the Signal double ratchet

algorithm. In Yevgeniy Dodis and Thomas Shrimpton, editors, Advances in

Cryptology – CRYPTO 2022, Part I, volume 13507 of Lecture Notes in Computer

Science, pages 784–813, Santa Barbara, CA, USA, August 15–18, 2022. Springer,

Heidelberg, Germany.

260

Bibliography

[BFG+22b] Jacqueline Brendel, Rune Fiedler, Felix Günther, Christian Janson, and Douglas

Stebila. Post-quantum asynchronous deniable key exchange and the Signal

handshake. In Goichiro Hanaoka, Junji Shikata, and Yohei Watanabe, editors,

PKC 2022: 25th International Conference on Theory and Practice of Public Key

Cryptography, Part II, volume 13178 of Lecture Notes in Computer Science, pages

3–34, Virtual Event, March 8–11, 2022. Springer, Heidelberg, Germany.

[BFWW11] Christina Brzuska, Marc Fischlin, Bogdan Warinschi, and Stephen C. Williams.

Composability of Bellare-Rogaway key exchange protocols. In Yan Chen, George

Danezis, and Vitaly Shmatikov, editors, ACM CCS 2011: 18th Conference on

Computer and Communications Security, pages 51–62, Chicago, Illinois, USA,

October 17–21, 2011. ACM Press.

[BG21] Colin Boyd and Kai Gellert. A modern view on forward security. The Computer

Journal, 64(4):639–652, 2021.

[BGB04] Nikita Borisov, Ian Goldberg, and Eric Brewer. Off-the-record communication,

or, why not to use pgp. In Proceedings of the 2004 ACM workshop on Privacy in

the electronic society, pages 77–84, 2004.

[BHJ+15] Christoph Bader, Dennis Hofheinz, Tibor Jager, Eike Kiltz, and Yong Li. Tightly-

secure authenticated key exchange. In Yevgeniy Dodis and Jesper Buus Nielsen,

editors, TCC 2015: 12th Theory of Cryptography Conference, Part I, volume

9014 of Lecture Notes in Computer Science, pages 629–658, Warsaw, Poland,

March 23–25, 2015. Springer, Heidelberg, Germany.

[BJKS23a] Karthikeyan Bhargavan, Charlie Jacomme, Franziskus Kiefer, and Rolfe Schmidt.

An analysis of signal’s pqxdh, 2023. https://cryspen.com/post/pqxdh/ Accessed:

23.10.23.

[BJKS23b] Karthikeyan Bhargavan, Charlie Jacomme, Franziskus Kiefer, and Rolfe Schmidt.

An analysis of signal’s pqxdh, 2023.

[BJRW21] Katharina Boudgoust, Corentin Jeudy, Adeline Roux-Langlois, and Weiqiang

Wen. On the hardness of module-LWE with binary secret. In Kenneth G. Pater-

son, editor, Topics in Cryptology – CT-RSA 2021, volume 12704 of Lecture Notes

in Computer Science, pages 503–526, Virtual Event, May 17–20, 2021. Springer,

Heidelberg, Germany.

[Bla07] Bruno Blanchet. Cryptoverif: Computationally sound mechanized prover for

cryptographic protocols. In Dagstuhl seminar “Formal Protocol Verification

Applied, volume 117, page 156, 2007.

[BLP+13] Zvika Brakerski, Adeline Langlois, Chris Peikert, Oded Regev, and Damien Stehlé.

Classical hardness of learning with errors. In Dan Boneh, Tim Roughgarden,

and Joan Feigenbaum, editors, 45th Annual ACM Symposium on Theory of

Computing, pages 575–584, Palo Alto, CA, USA, June 1–4, 2013. ACM Press.

261

https://cryspen.com/post/pqxdh/

Bibliography

[BLR04] Boaz Barak, Yehuda Lindell, and Tal Rabin. Protocol initialization for the frame-

work of universal composability. Cryptology ePrint Archive, Report 2004/006,

2004. https://eprint.iacr.org/2004/006.

[BM99] Mihir Bellare and Sara K. Miner. A forward-secure digital signature scheme. In

Michael J. Wiener, editor, Advances in Cryptology – CRYPTO’99, volume 1666

of Lecture Notes in Computer Science, pages 431–448, Santa Barbara, CA, USA,

August 15–19, 1999. Springer, Heidelberg, Germany.

[BR93] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm

for designing efficient protocols. In Dorothy E. Denning, Raymond Pyle, Ravi

Ganesan, Ravi S. Sandhu, and Victoria Ashby, editors, ACM CCS 93: 1st Confer-

ence on Computer and Communications Security, pages 62–73, Fairfax, Virginia,

USA, November 3–5, 1993. ACM Press.

[BR94] Mihir Bellare and Phillip Rogaway. Entity authentication and key distribution.

In Douglas R. Stinson, editor, Advances in Cryptology – CRYPTO’93, volume 773

of Lecture Notes in Computer Science, pages 232–249, Santa Barbara, CA, USA,

August 22–26, 1994. Springer, Heidelberg, Germany.

[BRT23] Alexander Bienstock, Paul Rösler, and Yi Tang. Asmesh: Anonymous and se-

cure messaging in mesh networks using stronger, anonymous double ratchet.

Cryptology ePrint Archive, 2023.

[BRV20] Fatih Balli, Paul Rösler, and Serge Vaudenay. Determining the core primitive

for optimally secure ratcheting. In Shiho Moriai and Huaxiong Wang, editors,

Advances in Cryptology – ASIACRYPT 2020, Part III, volume 12493 of Lecture

Notes in Computer Science, pages 621–650, Daejeon, South Korea, December 7–

11, 2020. Springer, Heidelberg, Germany.

[BSI23] BSI. Cryptographic Mechanisms: Recommendations and Key Lengths.

https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/

TechGuidelines/TG02102/BSI-TR-02102-1.html, 2023. Accessed: 28-09-2023.

[BSJ+15] Richard Barnes, Bruce Schneier, Cullen Fluffy Jennings, Ted Hardie, Brian Tram-

mell, Christian Huitema, and Daniel Borkmann. Confidentiality in the Face

of Pervasive Surveillance: A Threat Model and Problem Statement. RFC 7624,

August 2015.

[BSJ+17] Mihir Bellare, Asha Camper Singh, Joseph Jaeger, Maya Nyayapati, and Igors

Stepanovs. Ratcheted encryption and key exchange: The security of messag-

ing. In Jonathan Katz and Hovav Shacham, editors, Advances in Cryptology

– CRYPTO 2017, Part III, volume 10403 of Lecture Notes in Computer Science,

pages 619–650, Santa Barbara, CA, USA, August 20–24, 2017. Springer, Heidel-

berg, Germany.

262

https://eprint.iacr.org/2004/006
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/TechGuidelines/TG02102/BSI-TR-02102-1.html
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/TechGuidelines/TG02102/BSI-TR-02102-1.html

Bibliography

[BSSW02] Dirk Balfanz, Diana K. Smetters, Paul Stewart, and H. Chi Wong. Talking to

strangers: Authentication in ad-hoc wireless networks. In ISOC Network and

Distributed System Security Symposium – NDSS 2002, San Diego, CA, USA,

February 6–8, 2002. The Internet Society.

[BT85] Gabriel Bracha and Sam Toueg. Asynchronous consensus and broadcast proto-

cols. Journal of the ACM (JACM), 32(4):824–840, 1985.

[Can01] Ran Canetti. Universally composable security: A new paradigm for crypto-

graphic protocols. In 42nd Annual Symposium on Foundations of Computer

Science, pages 136–145, Las Vegas, NV, USA, October 14–17, 2001. IEEE Com-

puter Society Press.

[CCBR22a] Andrea Caforio, Daniel Collins, Subhadeep Banik, and Francesco Regazzoni.

A small GIFT-COFB: Lightweight bit-serial architectures. In Lejla Batina and

Joan Daemen, editors, AFRICACRYPT 22: 13th International Conference on

Cryptology in Africa, volume 2022 of Lecture Notes in Computer Science, pages

53–77, Fes, Morocco, July 18–20, 2022. Springer Nature Switzerland.

[CCBR22b] Andrea Caforio, Daniel Collins, Subhadeep Banik, and Francesco Regazzoni.

A small GIFT-COFB: Lightweight bit-serial architectures. Cryptology ePrint

Archive, Report 2022/955, 2022. https://eprint.iacr.org/2022/955.

[CCD+20] Katriel Cohn-Gordon, Cas Cremers, Benjamin Dowling, Luke Garratt, and Dou-

glas Stebila. A formal security analysis of the Signal messaging protocol. Journal

of Cryptology, 33(4):1914–1983, October 2020.

[CCG16] Katriel Cohn-Gordon, Cas J. F. Cremers, and Luke Garratt. On post-compromise

security. In Michael Hicks and Boris Köpf, editors, CSF 2016: IEEE 29th

Computer Security Foundations Symposium, pages 164–178, Lisbon, Portugal,

June 27–1, 2016. IEEE Computer Society Press.

[CCG+18] Katriel Cohn-Gordon, Cas Cremers, Luke Garratt, Jon Millican, and Kevin Mil-

ner. On ends-to-ends encryption: Asynchronous group messaging with strong

security guarantees. In David Lie, Mohammad Mannan, Michael Backes, and

XiaoFeng Wang, editors, ACM CCS 2018: 25th Conference on Computer and Com-

munications Security, pages 1802–1819, Toronto, ON, Canada, October 15–19,

2018. ACM Press.

[CCG+19] Katriel Cohn-Gordon, Cas Cremers, Kristian Gjøsteen, Håkon Jacobsen, and

Tibor Jager. Highly efficient key exchange protocols with optimal tightness.

In Alexandra Boldyreva and Daniele Micciancio, editors, Advances in Cryp-

tology – CRYPTO 2019, Part III, volume 11694 of Lecture Notes in Computer

Science, pages 767–797, Santa Barbara, CA, USA, August 18–22, 2019. Springer,

Heidelberg, Germany.

263

https://eprint.iacr.org/2022/955

Bibliography

[CCGB21a] Andrea Caforio, Daniel Collins, Ognjen Glamočanin, and Subhadeep Banik.

Improving first-order threshold implementations of SKINNY. In Progress in

Cryptology–INDOCRYPT 2021: 22nd International Conference on Cryptology

in India, Jaipur, India, December 12–15, 2021, Proceedings 22, pages 246–267.

Springer, 2021.

[CCGB21b] Andrea Caforio, Daniel Collins, Ognjen Glamocanin, and Subhadeep Banik.

Improving first-order threshold implementations of SKINNY. Cryptology ePrint

Archive, Report 2021/1425, 2021. https://eprint.iacr.org/2021/1425.

[CCHD23] Daniel Collins, Simone Colombo, and Loïs Huguenin-Dumittan. Real world

deniability in messaging. Cryptology ePrint Archive, Paper 2023/403, 2023.

https://eprint.iacr.org/2023/403.

[CD23] Wouter Castryck and Thomas Decru. An efficient key recovery attack on sidh.

In Annual International Conference on the Theory and Applications of Crypto-

graphic Techniques, pages 423–447. Springer, 2023.

[CDv+03] Dwaine E. Clarke, Srinivas Devadas, Marten van Dijk, Blaise Gassend, and

G. Edward Suh. Incremental multiset hash functions and their application to

memory integrity checking. In Chi-Sung Laih, editor, Advances in Cryptology –

ASIACRYPT 2003, volume 2894 of Lecture Notes in Computer Science, pages 188–

207, Taipei, Taiwan, November 30 – December 4, 2003. Springer, Heidelberg,

Germany.

[CDV21] Andrea Caforio, F. Betül Durak, and Serge Vaudenay. Beyond security and

efficiency: On-demand ratcheting with security awareness. In Juan Garay,

editor, PKC 2021: 24th International Conference on Theory and Practice of Public

Key Cryptography, Part II, volume 12711 of Lecture Notes in Computer Science,

pages 649–677, Virtual Event, May 10–13, 2021. Springer, Heidelberg, Germany.

[CEST22] Kelong Cong, Karim Eldefrawy, Nigel P. Smart, and Ben Terner. The key lattice

framework for concurrent group messaging. Cryptology ePrint Archive, Report

2022/1531, 2022. https://eprint.iacr.org/2022/1531.

[CF11] Cas Cremers and Michele Feltz. One-round strongly secure key exchange with

perfect forward secrecy and deniability. Cryptology ePrint Archive, Report

2011/300, 2011. https://eprint.iacr.org/2011/300.

[CGG+22] Pierre Civit, Seth Gilbert, Vincent Gramoli, Rachid Guerraoui, Jovan Komatovic,

Zarko Milosevic, and Adi Serendinschi. Crime and punishment in distributed

byzantine decision tasks. Cryptology ePrint Archive, 2022.

[CGK+20a] Daniel Collins, Rachid Guerraoui, Jovan Komatovic, Petr Kuznetsov, Matteo

Monti, Matej Pavlovic, Yvonne-Anne Pignolet, Dragos-Adrian Seredinschi, An-

drei Tonkikh, and Athanasios Xygkis. Online payments by merely broadcasting

264

https://eprint.iacr.org/2021/1425
https://eprint.iacr.org/2023/403
https://eprint.iacr.org/2022/1531
https://eprint.iacr.org/2011/300

Bibliography

messages. In 2020 50th Annual IEEE/IFIP International Conference on Depend-

able Systems and Networks (DSN), pages 26–38. IEEE, 2020.

[CGK+20b] Daniel Collins, Rachid Guerraoui, Jovan Komatovic, Matteo Monti, Athanasios

Xygkis, Matej Pavlovic, Petr Kuznetsov, Yvonne-Anne Pignolet, Dragos-Adrian

Seredinschi, and Andrei Tonkikh. Online payments by merely broadcasting

messages (extended version). arXiv preprint arXiv:2004.13184, 2020.

[CHDN+24a] Daniel Collins, Loïs Huguenin-Dumittan, Ngoc Khanh Nguyen, Nicolas Rolin,

and Serge Vaudenay. K-Waay: Fast and deniable post-quantum X3DH without

ring signatures. In USENIX Security 2024: 33rd USENIX Security Symposium.

USENIX Association, August 2024.

[CHDN+24b] Daniel Collins, Loïs Huguenin-Dumittan, Ngoc Khanh Nguyen, Nicolas Rolin,

and Serge Vaudenay. K-waay: Fast and deniable post-quantum x3dh without

ring signatures. Cryptology ePrint Archive, Paper 2024/120, 2024. https://eprint.

iacr.org/2024/120.

[CHK21] Cas Cremers, Britta Hale, and Konrad Kohbrok. The complexities of healing

in secure group messaging: Why cross-group effects matter. In Michael Bailey

and Rachel Greenstadt, editors, USENIX Security 2021: 30th USENIX Security

Symposium, pages 1847–1864. USENIX Association, August 11–13, 2021.

[CJSV22] Ran Canetti, Palak Jain, Marika Swanberg, and Mayank Varia. Universally

composable end-to-end secure messaging. In Yevgeniy Dodis and Thomas

Shrimpton, editors, Advances in Cryptology – CRYPTO 2022, Part II, volume

13508 of Lecture Notes in Computer Science, pages 3–33, Santa Barbara, CA, USA,

August 15–18, 2022. Springer, Heidelberg, Germany.

[CK02] Ran Canetti and Hugo Krawczyk. Security analysis of IKE’s signature-based key-

exchange protocol. In Moti Yung, editor, Advances in Cryptology – CRYPTO 2002,

volume 2442 of Lecture Notes in Computer Science, pages 143–161, Santa Bar-

bara, CA, USA, August 18–22, 2002. Springer, Heidelberg, Germany. https:

//eprint.iacr.org/2002/120/.

[CL+99] Miguel Castro, Barbara Liskov, et al. Practical byzantine fault tolerance. In OSDI,

volume 99, pages 173–186, 1999.

[CLM+18] Wouter Castryck, Tanja Lange, Chloe Martindale, Lorenz Panny, and Joost Renes.

CSIDH: An efficient post-quantum commutative group action. In Thomas

Peyrin and Steven Galbraith, editors, Advances in Cryptology – ASIACRYPT 2018,

Part III, volume 11274 of Lecture Notes in Computer Science, pages 395–427,

Brisbane, Queensland, Australia, December 2–6, 2018. Springer, Heidelberg,

Germany.

265

https://eprint.iacr.org/2024/120
https://eprint.iacr.org/2024/120
https://eprint.iacr.org/2002/120/
https://eprint.iacr.org/2002/120/

Bibliography

[CN11] Yuanmi Chen and Phong Q. Nguyen. BKZ 2.0: Better lattice security estimates.

In Dong Hoon Lee and Xiaoyun Wang, editors, Advances in Cryptology – ASI-

ACRYPT 2011, volume 7073 of Lecture Notes in Computer Science, pages 1–20,

Seoul, South Korea, December 4–8, 2011. Springer, Heidelberg, Germany.

[CPZ20] Melissa Chase, Trevor Perrin, and Greg Zaverucha. The Signal private group

system and anonymous credentials supporting efficient verifiable encryption.

In Jay Ligatti, Xinming Ou, Jonathan Katz, and Giovanni Vigna, editors, ACM

CCS 2020: 27th Conference on Computer and Communications Security, pages

1445–1459, Virtual Event, USA, November 9–13, 2020. ACM Press.

[CSM+20] Raymond Cheng, William Scott, Elisaweta Masserova, Irene Zhang, Vipul Goyal,

Thomas Anderson, Arvind Krishnamurthy, and Bryan Parno. Talek: Private

group messaging with hidden access patterns. In Annual Computer Security

Applications Conference, pages 84–99, 2020.

[CZ22] Cas Cremers and Mang Zhao. Provably post-quantum secure messaging with

strong compromise resilience and immediate decryption. Cryptology ePrint

Archive, Report 2022/1481, 2022. https://eprint.iacr.org/2022/1481.

[CZ24] Cas Cremers and Mang Zhao. Secure messaging with strong compromise

resilience, temporal privacy, and immediate decryption. In IEEE S&P, 2024.

[DDF21] Julien Devigne, Céline Duguey, and Pierre-Alain Fouque. MLS group messag-

ing: How zero-knowledge can secure updates. In Elisa Bertino, Haya Shulman,

and Michael Waidner, editors, ESORICS 2021: 26th European Symposium on

Research in Computer Security, Part II, volume 12973 of Lecture Notes in Com-

puter Science, pages 587–607, Darmstadt, Germany, October 4–8, 2021. Springer,

Heidelberg, Germany.

[DDGR20] Dana Dachman-Soled, Léo Ducas, Huijing Gong, and Mélissa Rossi. LWE with

side information: Attacks and concrete security estimation. In Daniele Miccian-

cio and Thomas Ristenpart, editors, Advances in Cryptology – CRYPTO 2020,

Part II, volume 12171 of Lecture Notes in Computer Science, pages 329–358,

Santa Barbara, CA, USA, August 17–21, 2020. Springer, Heidelberg, Germany.

[DFG+23] Gareth T. Davies, Sebastian H. Faller, Kai Gellert, Tobias Handirk, Julia Hesse,

Máté Horváth, and Tibor Jager. Security analysis of the WhatsApp end-to-

end encrypted backup protocol. In Helena Handschuh and Anna Lysyanskaya,

editors, Advances in Cryptology – CRYPTO 2023, Part IV, volume 14084 of Lecture

Notes in Computer Science, pages 330–361, Santa Barbara, CA, USA, August 20–

24, 2023. Springer, Heidelberg, Germany.

[DFMS22] Jelle Don, Serge Fehr, Christian Majenz, and Christian Schaffner. Online-

extractability in the quantum random-oracle model. In Orr Dunkelman and Ste-

fan Dziembowski, editors, Advances in Cryptology – EUROCRYPT 2022, Part III,

266

https://eprint.iacr.org/2022/1481

Bibliography

volume 13277 of Lecture Notes in Computer Science, pages 677–706, Trondheim,

Norway, May 30 – June 3, 2022. Springer, Heidelberg, Germany.

[DG22] Samuel Dobson and Steven D. Galbraith. Post-quantum signal key agreement

from SIDH. In Jung Hee Cheon and Thomas Johansson, editors, Post-Quantum

Cryptography - 13th International Workshop, PQCrypto 2022, Virtual Event,

September 28-30, 2022, Proceedings, volume 13512 of Lecture Notes in Computer

Science, pages 422–450. Springer, 2022.

[DGK06] Mario Di Raimondo, Rosario Gennaro, and Hugo Krawczyk. Deniable authen-

tication and key exchange. In Ari Juels, Rebecca N. Wright, and Sabrina De

Capitani di Vimercati, editors, ACM CCS 2006: 13th Conference on Computer

and Communications Security, pages 400–409, Alexandria, Virginia, USA, Octo-

ber 30 – November 3, 2006. ACM Press.

[DGP22] Benjamin Dowling, Felix Günther, and Alexandre Poirrier. Continuous authen-

tication in secure messaging. In ESORICS, 2022.

[DH76] Whitfield Diffie and Martin E. Hellman. New directions in cryptography. IEEE

Transactions on Information Theory, 22(6):644–654, 1976.

[DH20] Benjamin Dowling and Britta Hale. There can be no compromise: The necessity

of ratcheted authentication in secure messaging. Cryptology ePrint Archive,

Report 2020/541, 2020. https://eprint.iacr.org/2020/541.

[DH21] Benjamin Dowling and Britta Hale. Secure Messaging Authentication against

Active Man-in-the-Middle Attacks. In EuroS&P, 2021.

[DHRR22] Benjamin Dowling, Eduard Hauck, Doreen Riepel, and Paul Rösler. Strongly

anonymous ratcheted key exchange. In Shweta Agrawal and Dongdai Lin,

editors, Advances in Cryptology – ASIACRYPT 2022, Part III, volume 13793 of

Lecture Notes in Computer Science, pages 119–150, Taipei, Taiwan, December 5–

9, 2022. Springer, Heidelberg, Germany.

[DKL+18] Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyubashevsky, Peter Schwabe,

Gregor Seiler, and Damien Stehlé. CRYSTALS-Dilithium: A lattice-based digital

signature scheme. IACR Transactions on Cryptographic Hardware and Embed-

ded Systems, 2018(1):238–268, 2018. https://tches.iacr.org/index.php/TCHES/

article/view/839.

[DNS04] Cynthia Dwork, Moni Naor, and Amit Sahai. Concurrent zero-knowledge. Jour-

nal of the ACM (JACM), 51(6):851–898, 2004.

[DSGHK23] Dana Dachman-Soled, Huijing Gong, Tom Hanson, and Hunter Kippen. Revis-

iting security estimation for lwe with hints from a geometric perspective. In

Helena Handschuh and Anna Lysyanskaya, editors, Advances in Cryptology –

CRYPTO 2023, pages 748–781, Cham, 2023. Springer Nature Switzerland.

267

https://eprint.iacr.org/2020/541
https://tches.iacr.org/index.php/TCHES/article/view/839
https://tches.iacr.org/index.php/TCHES/article/view/839

Bibliography

[DV18] F. Betül Durak and Serge Vaudenay. Bidirectional asynchronous ratcheted key

agreement with linear complexity. Cryptology ePrint Archive, Report 2018/889,

2018. https://eprint.iacr.org/2018/889.

[DV19] F. Betül Durak and Serge Vaudenay. Bidirectional asynchronous ratcheted key

agreement with linear complexity. In Nuttapong Attrapadung and Takeshi

Yagi, editors, IWSEC 19: 14th International Workshop on Security, Advances in

Information and Computer Security, volume 11689 of Lecture Notes in Computer

Science, pages 343–362, Tokyo, Japan, August 28–30, 2019. Springer, Heidelberg,

Germany.

[EM19] Ksenia Ermoshina and Francesca Musiani. “standardising by running code”:

the signal protocol and de facto standardisation in end-to-end encrypted mes-

saging. Internet Histories, 3(3-4):343–363, 2019.

[ESZ22] Muhammed F. Esgin, Ron Steinfeld, and Raymond K. Zhao. MatRiCT+: More

efficient post-quantum private blockchain payments. In 2022 IEEE Symposium

on Security and Privacy, pages 1281–1298, San Francisco, CA, USA, May 22–26,

2022. IEEE Computer Society Press.

[fIS23] BSI German Federal Office for Information Security. Bsi tr-01102-1, 2023.

https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/

TechGuidelines/TG02102/BSI-TR-02102-1.html.

[FMB+16] Tilman Frosch, Christian Mainka, Christoph Bader, Florian Bergsma, Jörg

Schwenk, and Thorsten Holz. How secure is textsecure? In 2016 IEEE Eu-

ropean Symposium on Security and Privacy (EuroS&P), pages 457–472. IEEE,

2016.

[Gal21] Tarek Galal. yowsup, Code Repository, 2021. https://github.com/tgalal/yowsup.

[GHP18] Federico Giacon, Felix Heuer, and Bertram Poettering. KEM combiners. In

Michel Abdalla and Ricardo Dahab, editors, PKC 2018: 21st International Con-

ference on Theory and Practice of Public Key Cryptography, Part I, volume 10769

of Lecture Notes in Computer Science, pages 190–218, Rio de Janeiro, Brazil,

March 25–29, 2018. Springer, Heidelberg, Germany.

[Gie23] Hauke Gierow. Wire welcomes the publication of Messag-

ing Layer Security as RFC 9420. https://wire.com/en/blog/

wire-welcomes-the-publication-of-messaging-layer-security-as-rfc-9420/,

2023. Accessed: 28-09-2023.

[GM82] Shafi Goldwasser and Silvio Micali. Probabilistic encryption and how to play

mental poker keeping secret all partial information. In 14th Annual ACM Sympo-

sium on Theory of Computing, pages 365–377, San Francisco, CA, USA, May 5–7,

1982. ACM Press.

268

https://eprint.iacr.org/2018/889
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/TechGuidelines/TG02102/BSI-TR-02102-1.html
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/TechGuidelines/TG02102/BSI-TR-02102-1.html
 https://github.com/tgalal/yowsup
https://wire.com/en/blog/wire-welcomes-the-publication-of-messaging-layer-security-as-rfc-9420/
https://wire.com/en/blog/wire-welcomes-the-publication-of-messaging-layer-security-as-rfc-9420/

Bibliography

[GPA19] Lachlan J. Gunn, Ricardo Vieitez Parra, and N. Asokan. Circumventing crypto-

graphic deniability with remote attestation. Proceedings on Privacy Enhancing

Technologies, 2019(3):350–369, July 2019.

[Gua13] The Guardian. The NSA files. https://www.theguardian.com/us-news/

the-nsa-files, 2013. Accessed: 28-09-2023.

[Gün90] Christoph G. Günther. An identity-based key-exchange protocol. In Jean-

Jacques Quisquater and Joos Vandewalle, editors, Advances in Cryptology –

EUROCRYPT’89, volume 434 of Lecture Notes in Computer Science, pages 29–37,

Houthalen, Belgium, April 10–13, 1990. Springer, Heidelberg, Germany.

[HHK17] Dennis Hofheinz, Kathrin Hövelmanns, and Eike Kiltz. A modular analysis

of the Fujisaki-Okamoto transformation. In Yael Kalai and Leonid Reyzin,

editors, TCC 2017: 15th Theory of Cryptography Conference, Part I, volume

10677 of Lecture Notes in Computer Science, pages 341–371, Baltimore, MD,

USA, November 12–15, 2017. Springer, Heidelberg, Germany.

[HKD07] Andreas Haeberlen, Petr Kouznetsov, and Peter Druschel. Peerreview: Practical

accountability for distributed systems. SIGOPS, 41(6):175–188, 2007.

[HKKP21] Keitaro Hashimoto, Shuichi Katsumata, Kris Kwiatkowski, and Thomas Prest.

An efficient and generic construction for Signal’s handshake (X3DH): Post-

quantum, state leakage secure, and deniable. In Juan Garay, editor, PKC 2021:

24th International Conference on Theory and Practice of Public Key Cryptogra-

phy, Part II, volume 12711 of Lecture Notes in Computer Science, pages 410–440,

Virtual Event, May 10–13, 2021. Springer, Heidelberg, Germany.

[HKKP22] Keitaro Hashimoto, Shuichi Katsumata, Kris Kwiatkowski, and Thomas Prest.

An efficient and generic construction for Signal’s handshake (X3DH): Post-

quantum, state leakage secure, and deniable. Journal of Cryptology, 35(3):17,

July 2022.

[HKP+21] Keitaro Hashimoto, Shuichi Katsumata, Eamonn Postlethwaite, Thomas Prest,

and Bas Westerbaan. A concrete treatment of efficient continuous group key

agreement via multi-recipient PKEs. In Giovanni Vigna and Elaine Shi, editors,

ACM CCS 2021: 28th Conference on Computer and Communications Security,

pages 1441–1462, Virtual Event, Republic of Korea, November 15–19, 2021. ACM

Press.

[HKP22] Keitaro Hashimoto, Shuichi Katsumata, and Thomas Prest. How to hide Meta-

Data in MLS-like secure group messaging: Simple, modular, and post-quantum.

In Heng Yin, Angelos Stavrou, Cas Cremers, and Elaine Shi, editors, ACM CCS

2022: 29th Conference on Computer and Communications Security, pages 1399–

1412, Los Angeles, CA, USA, November 7–11, 2022. ACM Press.

269

https://www.theguardian.com/us-news/the-nsa-files
https://www.theguardian.com/us-news/the-nsa-files

Bibliography

[Hog23] Giles Hogben. An important step towards secure and inter-

operable messaging. https://security.googleblog.com/2023/07/

an-important-step-towards-secure-and.html, 2023. Accessed: 28-09-2023.

[HS20] Martha Norberg Hovd and Martijn Stam. Vetted encryption. In Karthikeyan

Bhargavan, Elisabeth Oswald, and Manoj Prabhakaran, editors, Progress in

Cryptology - INDOCRYPT 2020: 21st International Conference in Cryptology

in India, volume 12578 of Lecture Notes in Computer Science, pages 488–507,

Bangalore, India, December 13–16, 2020. Springer, Heidelberg, Germany.

[HV22] Loïs Huguenin-Dumittan and Serge Vaudenay. On IND-qCCA security in

the ROM and its applications - CPA security is sufficient for TLS 1.3. In Orr

Dunkelman and Stefan Dziembowski, editors, Advances in Cryptology – EU-

ROCRYPT 2022, Part III, volume 13277 of Lecture Notes in Computer Science,

pages 613–642, Trondheim, Norway, May 30 – June 3, 2022. Springer, Heidelberg,

Germany.

[IETF23] (IETF) Internet Engineering Task Force. Messaging layer security, mailing list,

2023. https://mailarchive.ietf.org/arch/browse/mls/.

[IOZ14] Yuval Ishai, Rafail Ostrovsky, and Vassilis Zikas. Secure multi-party computation

with identifiable abort. In Juan A. Garay and Rosario Gennaro, editors, Advances

in Cryptology – CRYPTO 2014, Part II, volume 8617 of Lecture Notes in Computer

Science, pages 369–386, Santa Barbara, CA, USA, August 17–21, 2014. Springer,

Heidelberg, Germany.

[Jef20] Kee Jefferys. Session Protocol: Technical implementation details. https://

getsession.org/blog/session-protocol-technical-information (accessed July 4th

2023), 2020.

[JLN19] Riko Jacob, Kasper Green Larsen, and Jesper Buus Nielsen. Lower bounds

for oblivious data structures. In Timothy M. Chan, editor, 30th Annual ACM-

SIAM Symposium on Discrete Algorithms, pages 2439–2447, San Diego, CA, USA,

January 6–9, 2019. ACM-SIAM.

[JMM19a] Daniel Jost, Ueli Maurer, and Marta Mularczyk. Efficient ratcheting: Almost-

optimal guarantees for secure messaging. In Yuval Ishai and Vincent Rijmen,

editors, Advances in Cryptology – EUROCRYPT 2019, Part I, volume 11476 of Lec-

ture Notes in Computer Science, pages 159–188, Darmstadt, Germany, May 19–

23, 2019. Springer, Heidelberg, Germany.

[JMM19b] Daniel Jost, Ueli Maurer, and Marta Mularczyk. A unified and composable take

on ratcheting. In Dennis Hofheinz and Alon Rosen, editors, TCC 2019: 17th

Theory of Cryptography Conference, Part II, volume 11892 of Lecture Notes in

Computer Science, pages 180–210, Nuremberg, Germany, December 1–5, 2019.

Springer, Heidelberg, Germany.

270

https://security.googleblog.com/2023/07/an-important-step-towards-secure-and.html
https://security.googleblog.com/2023/07/an-important-step-towards-secure-and.html
https://mailarchive.ietf.org/arch/browse/mls/
https://getsession.org/blog/session-protocol-technical-information
https://getsession.org/blog/session-protocol-technical-information

Bibliography

[JMZ23] Haodong Jiang, Zhi Ma, and Zhenfeng Zhang. Post-quantum security of key

encapsulation mechanism against cca attacks with a single decapsulation query.

In ASIACRYPT 2023. Springer-Verlag, 2023.

[JS18] Joseph Jaeger and Igors Stepanovs. Optimal channel security against fine-

grained state compromise: The safety of messaging. In Hovav Shacham and

Alexandra Boldyreva, editors, Advances in Cryptology – CRYPTO 2018, Part I,

volume 10991 of Lecture Notes in Computer Science, pages 33–62, Santa Barbara,

CA, USA, August 19–23, 2018. Springer, Heidelberg, Germany.

[KBB17] Nadim Kobeissi, Karthikeyan Bhargavan, and Bruno Blanchet. Automated veri-

fication for secure messaging protocols and their implementations: A symbolic

and computational approach. In 2017 IEEE European symposium on security

and privacy (EuroS&P), pages 435–450. IEEE, 2017.

[KGP23] Kien Tuong Truong Kenneth G. Paterson, Matteo Scarlata. Three Lessons From

Threema: Analysis of a Secure Messenger. In 2023 USENIX Security Symposium,

2023.

[KP05] Caroline Kudla and Kenneth G. Paterson. Modular security proofs for key

agreement protocols. In Bimal K. Roy, editor, Advances in Cryptology – ASI-

ACRYPT 2005, volume 3788 of Lecture Notes in Computer Science, pages 549–565,

Chennai, India, December 4–8, 2005. Springer, Heidelberg, Germany.

[KPPW+21] Karen Klein, Guillermo Pascual-Perez, Michael Walter, Chethan Kamath, Mar-

garita Capretto, Miguel Cueto, Ilia Markov, Michelle Yeo, Joël Alwen, and

Krzysztof Pietrzak. Keep the dirt: Tainted TreeKEM, adaptively and actively

secure continuous group key agreement. In 2021 IEEE Symposium on Security

and Privacy, pages 268–284, San Francisco, CA, USA, May 24–27, 2021. IEEE

Computer Society Press.

[KPRR23] Eike Kiltz, Jiaxin Pan, Doreen Riepel, and Magnus Ringerud. Multi-user cdh

problems and the concrete security of naxos and hmqv. In Cryptographers’

Track at the RSA Conference, pages 645–671. Springer, 2023.

[Kra05] Hugo Krawczyk. HMQV: A high-performance secure Diffie-Hellman protocol.

In Victor Shoup, editor, Advances in Cryptology – CRYPTO 2005, volume 3621

of Lecture Notes in Computer Science, pages 546–566, Santa Barbara, CA, USA,

August 14–18, 2005. Springer, Heidelberg, Germany.

[KS05] Jonathan Katz and Ji Sun Shin. Modeling insider attacks on group key-exchange

protocols. In Vijayalakshmi Atluri, Catherine Meadows, and Ari Juels, editors,

ACM CCS 2005: 12th Conference on Computer and Communications Security,

pages 180–189, Alexandria, Virginia, USA, November 7–11, 2005. ACM Press.

271

Bibliography

[KS23] Ehren Kret and Rolfe Schmidt. The pqxdh key agreement protocol, 2023. https:

//signal.org/docs/specifications/pqxdh/pqxdh.pdf.

[KT11] Ralf Küsters and Max Tuengerthal. Composition theorems without pre-

established session identifiers. In Yan Chen, George Danezis, and Vitaly

Shmatikov, editors, ACM CCS 2011: 18th Conference on Computer and Com-

munications Security, pages 41–50, Chicago, Illinois, USA, October 17–21, 2011.

ACM Press.

[Laa16] Thijs Laarhoven. Search problems in cryptography: from fingerprinting to

lattice sieving, February 2016. Proefschrift.

[LAZ19] Xingye Lu, Man Ho Au, and Zhenfei Zhang. Raptor: A practical lattice-based

(linkable) ring signature. In Robert H. Deng, Valérie Gauthier-Umaña, Martín

Ochoa, and Moti Yung, editors, ACNS 19: 17th International Conference on

Applied Cryptography and Network Security, volume 11464 of Lecture Notes in

Computer Science, pages 110–130, Bogota, Colombia, June 5–7, 2019. Springer,

Heidelberg, Germany.

[LLM07] Brian A. LaMacchia, Kristin Lauter, and Anton Mityagin. Stronger security of

authenticated key exchange. In Willy Susilo, Joseph K. Liu, and Yi Mu, edi-

tors, ProvSec 2007: 1st International Conference on Provable Security, volume

4784 of Lecture Notes in Computer Science, pages 1–16, Wollongong, Australia,

November 1–2, 2007. Springer, Heidelberg, Germany.

[LN18] Kasper Green Larsen and Jesper Buus Nielsen. Yes, there is an oblivious RAM

lower bound! In Hovav Shacham and Alexandra Boldyreva, editors, Advances in

Cryptology – CRYPTO 2018, Part II, volume 10992 of Lecture Notes in Computer

Science, pages 523–542, Santa Barbara, CA, USA, August 19–23, 2018. Springer,

Heidelberg, Germany.

[LN22] Vadim Lyubashevsky and Ngoc Khanh Nguyen. BLOOM: Bimodal lattice one-

out-of-many proofs and applications. In Shweta Agrawal and Dongdai Lin,

editors, Advances in Cryptology – ASIACRYPT 2022, Part IV, volume 13794 of

Lecture Notes in Computer Science, pages 95–125, Taipei, Taiwan, December 5–9,

2022. Springer, Heidelberg, Germany.

[LPR10] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices and

learning with errors over rings. In Henri Gilbert, editor, Advances in Cryptology

– EUROCRYPT 2010, volume 6110 of Lecture Notes in Computer Science, pages

1–23, French Riviera, May 30 – June 3, 2010. Springer, Heidelberg, Germany.

[LS15] Adeline Langlois and Damien Stehlé. Worst-case to average-case reductions for

module lattices. Des. Codes Cryptogr., 75(3):565–599, 2015.

272

https://signal.org/docs/specifications/pqxdh/pqxdh.pdf
https://signal.org/docs/specifications/pqxdh/pqxdh.pdf

Bibliography

[Lun18] Joshua Lund. Technology preview: Sealed sender for signal. https://signal.org/

blog/sealed-sender/, 2018. Last visited on 13-09-2023.

[M+16] Moxie Marlinspike et al. Signal protocol repository, 2016.

[Mar14] Moxie Marlinspike. Private Group Messaging. https://signal.org/blog/

private-groups/ (accessed Sep 5th 2023), 2014.

[Mar17] Moxie Marlinspike. Safety number updates. https://signal.org/blog/

verified-safety-number-updates/, 2017. Accessed: 22-05-2022.

[MKMS22] Jose Maria Bermudo Mera, Angshuman Karmakar, Tilen Marc, and Azam

Soleimanian. Efficient lattice-based inner-product functional encryption. In

Goichiro Hanaoka, Junji Shikata, and Yohei Watanabe, editors, PKC 2022: 25th

International Conference on Theory and Practice of Public Key Cryptography,

Part II, volume 13178 of Lecture Notes in Computer Science, pages 163–193,

Virtual Event, March 8–11, 2022. Springer, Heidelberg, Germany.

[MM11] Daniele Micciancio and Petros Mol. Pseudorandom knapsacks and the sample

complexity of LWE search-to-decision reductions. In Phillip Rogaway, editor,

Advances in Cryptology – CRYPTO 2011, volume 6841 of Lecture Notes in Com-

puter Science, pages 465–484, Santa Barbara, CA, USA, August 14–18, 2011.

Springer, Heidelberg, Germany.

[MMM02] Tal Malkin, Daniele Micciancio, and Sara K. Miner. Efficient generic forward-

secure signatures with an unbounded number of time periods. In Lars R. Knud-

sen, editor, Advances in Cryptology – EUROCRYPT 2002, volume 2332 of Lec-

ture Notes in Computer Science, pages 400–417, Amsterdam, The Netherlands,

April 28 – May 2, 2002. Springer, Heidelberg, Germany.

[MP16a] Moxie Marlinspike and Trevor Perrin. The double ratchet algorithm, 2016.

[MP16b] Moxie Marlinspike and Trevor Perrin. The x3dh key agreement protocol. Open

Whisper Systems, 283:10, 2016.

[NRS20] Moni Naor, Lior Rotem, and Gil Segev. Out-of-band authenticated group key ex-

change: From strong authentication to immediate key delivery. In Yael Tauman

Kalai, Adam D. Smith, and Daniel Wichs, editors, ITC 2020: 1st Conference on

Information-Theoretic Cryptography, pages 9:1–9:25, Boston, MA, USA, June 17–

19, 2020. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik.

[Pei14] Chris Peikert. Lattice cryptography for the internet. In Michele Mosca, editor,

Post-Quantum Cryptography - 6th International Workshop, PQCrypto 2014,

pages 197–219, Waterloo, Ontario, Canada, October 1–3, 2014. Springer, Heidel-

berg, Germany.

273

https://signal.org/blog/sealed-sender/
https://signal.org/blog/sealed-sender/
https://signal.org/blog/private-groups/
https://signal.org/blog/private-groups/
https://signal.org/blog/verified-safety-number-updates/
https://signal.org/blog/verified-safety-number-updates/

Bibliography

[PM16] Trevor Perrin and Moxie Marlinspike. The double ratchet algorithm. GitHub

wiki, 2016.

[PP22] Jeroen Pijnenburg and Bertram Poettering. On secure ratcheting with imme-

diate decryption. In Shweta Agrawal and Dongdai Lin, editors, Advances in

Cryptology – ASIACRYPT 2022, Part III, volume 13793 of Lecture Notes in Com-

puter Science, pages 89–118, Taipei, Taiwan, December 5–9, 2022. Springer,

Heidelberg, Germany.

[PR18] Bertram Poettering and Paul Rösler. Towards bidirectional ratcheted key ex-

change. In Hovav Shacham and Alexandra Boldyreva, editors, Advances in

Cryptology – CRYPTO 2018, Part I, volume 10991 of Lecture Notes in Computer

Science, pages 3–32, Santa Barbara, CA, USA, August 19–23, 2018. Springer,

Heidelberg, Germany.

[PRSS21] Bertram Poettering, Paul Rösler, Jörg Schwenk, and Douglas Stebila. SoK: Game-

based security models for group key exchange. In Kenneth G. Paterson, editor,

Topics in Cryptology – CT-RSA 2021, volume 12704 of Lecture Notes in Computer

Science, pages 148–176, Virtual Event, May 17–20, 2021. Springer, Heidelberg,

Germany.

[PV06] Sylvain Pasini and Serge Vaudenay. An optimal non-interactive message au-

thentication protocol. In David Pointcheval, editor, Topics in Cryptology –

CT-RSA 2006, volume 3860 of Lecture Notes in Computer Science, pages 280–294,

San Jose, CA, USA, February 13–17, 2006. Springer, Heidelberg, Germany.

[Reg05] Oded Regev. On lattices, learning with errors, random linear codes, and cryp-

tography. In Harold N. Gabow and Ronald Fagin, editors, 37th Annual ACM

Symposium on Theory of Computing, pages 84–93, Baltimore, MA, USA, May 22–

24, 2005. ACM Press.

[Res18] Eric Rescorla. The Transport Layer Security (TLS) Protocol Version 1.3. RFC

8446, August 2018.

[RMA+23] Nathan Reitinger, Nathan Malkin, Omer Akgul, Michelle L Mazurek, and Ian

Miers. Is cryptographic deniability sufficientƒ non-expert perceptions of deni-

ability in secure messaging. In 2023 IEEE Symposium on Security and Privacy

(SP), pages 274–292. IEEE, 2023.

[RMS18] Paul Rösler, Christian Mainka, and Jörg Schwenk. More is less: On the end-

to-end security of group chats in signal, whatsapp, and threema. In 2018

IEEE European Symposium on Security and Privacy (EuroS&P), pages 415–429,

London, UK, 2018. IEEE.

[Rog02] Phillip Rogaway. Authenticated-encryption with associated-data. In Vijayalak-

shmi Atluri, editor, ACM CCS 2002: 9th Conference on Computer and Communi-

274

Bibliography

cations Security, pages 98–107, Washington, DC, USA, November 18–22, 2002.

ACM Press.

[RST01] Ronald L. Rivest, Adi Shamir, and Yael Tauman. How to leak a secret. In Colin

Boyd, editor, Advances in Cryptology – ASIACRYPT 2001, volume 2248 of Lecture

Notes in Computer Science, pages 552–565, Gold Coast, Australia, December 9–

13, 2001. Springer, Heidelberg, Germany.

[SE94] Claus-Peter Schnorr and M. Euchner. Lattice basis reduction: Improved practi-

cal algorithms and solving subset sum problems. Math. Program., 66:181–199,

1994.

[Sha48] Claude Elwood Shannon. A mathematical theory of communication. The Bell

system technical journal, 27(3):379–423, 1948.

[Sho94] Peter W. Shor. Polynominal time algorithms for discrete logarithms and factor-

ing on a quantum computer. In Leonard M. Adleman and Ming-Deh A. Huang,

editors, Algorithmic Number Theory, First International Symposium, ANTS-I,

Ithaca, NY, USA, May 6-9, 1994, Proceedings, volume 877 of Lecture Notes in

Computer Science, page 289. Springer, 1994.

[Sho00] Victor Shoup. Practical threshold signatures. In Bart Preneel, editor, Advances

in Cryptology – EUROCRYPT 2000, volume 1807 of Lecture Notes in Computer

Science, pages 207–220, Bruges, Belgium, May 14–18, 2000. Springer, Heidelberg,

Germany.

[SRCM+22] John Scott-Railton, Elies Campo, Bill Marczak, Bahr Abdul Razzak, Siena

Anstis, Gözde Böcü, Salvatore Solimano, and Ron Deibert. CatalanGate: Exten-

sive Mercenary Spyware Operation against Catalans Using Pegasus and Can-

diru. https://citizenlab.ca/2022/04/catalangate-extensive-mercenary-spyware-

operation-against-catalans-using-pegasus-candiru/, 2022. Accessed: 22-05-

2022.

[SSTX09] Damien Stehlé, Ron Steinfeld, Keisuke Tanaka, and Keita Xagawa. Efficient pub-

lic key encryption based on ideal lattices. In Mitsuru Matsui, editor, Advances

in Cryptology – ASIACRYPT 2009, volume 5912 of Lecture Notes in Computer Sci-

ence, pages 617–635, Tokyo, Japan, December 6–10, 2009. Springer, Heidelberg,

Germany.

[SSW20] Peter Schwabe, Douglas Stebila, and Thom Wiggers. Post-quantum TLS without

handshake signatures. In Jay Ligatti, Xinming Ou, Jonathan Katz, and Giovanni

Vigna, editors, ACM CCS 2020: 27th Conference on Computer and Communi-

cations Security, pages 1461–1480, Virtual Event, USA, November 9–13, 2020.

ACM Press.

275

https://citizenlab.ca/2022/04/catalangate-extensive-mercenary-spyware-operation-against-catalans-using-pegasus-candiru/
https://citizenlab.ca/2022/04/catalangate-extensive-mercenary-spyware-operation-against-catalans-using-pegasus-candiru/

Bibliography

[Sup22] Signal Support. Twilio Incident: What Signal Users Need to Know. https:

//support.signal.org/hc/en-us/articles/4850133017242, 2022. Accessed: 03-10-

2022.

[SZ21] Alessandra Scafuro and Bihan Zhang. One-time traceable ring signatures. In

Elisa Bertino, Haya Shulman, and Michael Waidner, editors, ESORICS 2021: 26th

European Symposium on Research in Computer Security, Part II, volume 12973

of Lecture Notes in Computer Science, pages 481–500, Darmstadt, Germany,

October 4–8, 2021. Springer, Heidelberg, Germany.

[Tea21] NTRU Prime Risk-Management Team. Risks of lattice KEMs. https://ntruprime.

cr.yp.to/latticerisks-20211031.pdf, 2021. Accessed: 28-09-2023.

[Tel] Telegram. Group Chats on Telegram. https://telegram.org/tour/groups.

[TGL+17] Nirvan Tyagi, Yossi Gilad, Derek Leung, Matei Zaharia, and Nickolai Zeldovich.

Stadium: A distributed metadata-private messaging system. In Proceedings of

the 26th Symposium on Operating Systems Principles, pages 423–440, 2017.

[UG15] Nik Unger and Ian Goldberg. Deniable key exchanges for secure messaging.

In Indrajit Ray, Ninghui Li, and Christopher Kruegel, editors, ACM CCS 2015:

22nd Conference on Computer and Communications Security, pages 1211–1223,

Denver, CO, USA, October 12–16, 2015. ACM Press.

[UG18] Nik Unger and Ian Goldberg. Improved strongly deniable authenticated key ex-

changes for secure messaging. Proceedings on Privacy Enhancing Technologies,

2018(1):21–66, January 2018.

[US] US National Security Agency. Announcing the commercial national security

algorithm suite 2.0. https://media.defense.gov/2022/Sep/07/2003071834/-1/

-1/0/CSA_CNSA_2.0_ALGORITHMS_.PDF.

[VGIK20] Nihal Vatandas, Rosario Gennaro, Bertrand Ithurburn, and Hugo Krawczyk. On

the cryptographic deniability of the Signal protocol. In Mauro Conti, Jianying

Zhou, Emiliano Casalicchio, and Angelo Spognardi, editors, ACNS 20: 18th

International Conference on Applied Cryptography and Network Security, Part II,

volume 12147 of Lecture Notes in Computer Science, pages 188–209, Rome, Italy,

October 19–22, 2020. Springer, Heidelberg, Germany.

[Wei19] Matthew A Weidner. Group messaging for secure asynchronous collaboration,

2019.

[Wha20] WhatsApp. WhatsApp Encryption Overview Technical white paper, v.3, oct 2020.

https://www.whatsapp.com/security/WhatsApp-Security-Whitepaper.pdf.

[Wha23] WhatsApp. How to create and invite into a group. https://faq.whatsapp.com/

3242937609289432/?cms_platform=web, 2023. Accessed: 29-09-2023.

276

https://support.signal.org/hc/en-us/articles/4850133017242
https://support.signal.org/hc/en-us/articles/4850133017242
https://ntruprime.cr.yp.to/latticerisks-20211031.pdf
https://ntruprime.cr.yp.to/latticerisks-20211031.pdf
https://telegram.org/tour/groups
https://media.defense.gov/2022/Sep/07/2003071834/-1/-1/0/CSA_CNSA_2.0_ALGORITHMS_.PDF
https://media.defense.gov/2022/Sep/07/2003071834/-1/-1/0/CSA_CNSA_2.0_ALGORITHMS_.PDF
https://www.whatsapp.com/security/WhatsApp-Security-Whitepaper.pdf
https://faq.whatsapp.com/3242937609289432/?cms_platform=web
https://faq.whatsapp.com/3242937609289432/?cms_platform=web

Bibliography

[WKHB21] Matthew Weidner, Martin Kleppmann, Daniel Hugenroth, and Alastair R. Beres-

ford. Key agreement for decentralized secure group messaging with strong

security guarantees. In Giovanni Vigna and Elaine Shi, editors, ACM CCS 2021:

28th Conference on Computer and Communications Security, pages 2024–2045,

Virtual Event, Republic of Korea, November 15–19, 2021. ACM Press.

[WPBB23] Théophile Wallez, Jonathan Protzenko, Benjamin Beurdouche, and Karthikeyan

Bhargavan. Treesync: Authenticated group management for messaging layer

security. In Joseph A. Calandrino and Carmela Troncoso, editors, 32nd USENIX

Security Symposium, USENIX Security 2023, Anaheim, CA, USA, August 9-11,

2023, pages 1217–1233. USENIX Association, 2023.

[YEL+21] Tsz Hon Yuen, Muhammed F. Esgin, Joseph K. Liu, Man Ho Au, and Zhimin Ding.

DualRing: Generic construction of ring signatures with efficient instantiations.

In Tal Malkin and Chris Peikert, editors, Advances in Cryptology – CRYPTO 2021,

Part I, volume 12825 of Lecture Notes in Computer Science, pages 251–281,

Virtual Event, August 16–20, 2021. Springer, Heidelberg, Germany.

[YGS23] Tarun Kumar Yadav, Devashish Gosain, and Kent Seamons. Cryptographic

deniability: A multi-perspective study of user perceptions and expectations.

In 32nd USENIX Security Symposium (USENIX Security 23), pages 3637–3654,

2023.

[YVCC23] Hailun Yan, Serge Vaudenay, Daniel Collins, and Andrea Caforio. Optimal sym-

metric ratcheting for secure communication. The Computer Journal, 66(4):987–

1016, 2023.

[Zhe97] Yuliang Zheng. Digital signcryption or how to achieve cost(signature & en-

cryption) ≪ cost(signature) + cost(encryption). In Burton S. Kaliski Jr., editor,

Advances in Cryptology – CRYPTO’97, volume 1294 of Lecture Notes in Computer

Science, pages 165–179, Santa Barbara, CA, USA, August 17–21, 1997. Springer,

Heidelberg, Germany.

277

Daniel Collins | Curriculum Vitae
Website: https://dcol.me | Nationality: Australian | Email: danielpatcollins@gmail.com

Education
PhD (Cryptography) (EPFL, Lausanne, Switzerland) Sep. 2019-Apr. 2024
- Advisor: Prof. Serge Vaudenay, LASEC (lasec.epfl.ch)

B.Sc. (Advanced Mathematics) (Honours) (University of Sydney, Australia) 2015-2018
Mathematics & Computer Science. Result: Honours Class I and the University Medal. Thesis:
Byzantine fault tolerant boardroom elections without synchrony. Advisor: AProf. Vincent Gramoli

Research Visits
- FAU, Erlangen-Nuremberg, Germany: Lab of Paul Rösler. Jul. 2023
- CISPA, Saarbrücken, Germany: Lab of Julian Loss. Sept. 2022, Dec. 2022
- MPI for Security and Privacy, Bochum, Germany: Lab of Giulio Malavolta. Aug. 2022
- IMDEA Software Institute, Madrid, Spain: Lab of Dario Fiore. Apr. 2022

Academic Publications
- K-Waay: Fast and Deniable Post-Quantum X3DH without Ring Signatures. Daniel Collins,
Loïs Huguenin-Dumittan, Ngoc Khanh Nguyen, Nicolas Rolin, Serge Vaudenay. USENIX Security
2024. Preprint: https://eprint.iacr.org/2024/120
- WhatsUpp with Sender Keys? Analysis, Improvements and Security Proofs. David Balbás,
Daniel Collins, Phillip Gajland. ASIACRYPT 2023. Preprint: https://eprint.iacr.org/2023/1385.
Poster at USENIX Security 2023. Preliminary Version: Best Paper Runner-Up at RECSI 2022.
- Network-Agnostic Security Comes (Almost) for Free in DKG and MPC. Renas Bacho, Daniel
Collins, Chen-Da Liu-Zhang, Julian Loss. CRYPTO 2023. Preprint: eprint.iacr.org/2022/1369
- On Active Attack Detection in Messaging with Immediate Decryption. Khashayar Barooti,
Daniel Collins, Simone Colombo, Loïs Huguenin-Dumittan, Serge Vaudenay. CRYPTO 2023.
Preprint: eprint.iacr.org/2023/880
- Cryptographic Administration for Secure Group Messaging. David Balbás, Daniel Collins,
Serge Vaudenay. USENIX Security 2023. Preprint: eprint.iacr.org/2022/1411
- Near Collision Attack against Grain v1. Subhadeep Banik, Daniel Collins, Willi Meier.
ACNS 2023. Preprint: eprint.iacr.org/2023/884
- A Small GIFT-COFB: Lightweight Bit-Serial Architectures. Andrea Caforio, Daniel Collins,
Subhadeep Banik, Francesco Regazzoni. AFRICACRYPT 2022. Preprint: eprint.iacr.org/2022/955
- Optimal Symmetric Ratcheting for Secure Communication. Hailun Yan, Serge Vaudenay,
Daniel Collins, Andrea Caforio. The Computer Journal (2022).
- Improving First-Order Threshold Implementations of SKINNY. Andrea Caforio, Daniel
Collins, Ognjen Glamocanin, Subhadeep Banik. INDOCRYPT 2021. Preprint:
eprint.iacr.org/2021/1425
- Online Payments by Merely Broadcasting Messages. Daniel Collins, Rachid Guerraoui, Jovan
Komatovic, Petr Kuznetsov, Matteo Monti, Matej Pavlovic, Yvonne-Anne Pignolet, Dragos-Adrian
Seredinschi, Andrei Tonkikh, Athanasios Xygkis. DSN 2020 (Best Paper Runner-Up). Preprint:
arxiv.org/abs/2004.13184
- Anonymity Preserving Byzantine Vector Consensus. Christian Cachin, Daniel Collins, Tyler
Crain, Vincent Gramoli. ESORICS 2020.

279

 Selected Presentations
- Cryptographic Administration for Secure Group Messaging. Swiss Crypto Day 2023 (8
September 2023).
- On Active Attack Detection in Messaging with Immediate Decryption. CRYPTO 2023; NYU
Crypto Reading Group (16 August 2023).
- Network-Agnostic Security Comes for Free in DKG and MPC. CRYPTO 2023.
- Near Collision Attack against Grain v1. ACNS 2023.
- Real World Deniability in Messaging. Joint work with Simone Colombo and Loïs Huguenin-
Dumittan. RWC 2023; FAU Erlangen-Nuremberg (26 June 2023). Preprint: eprint.iacr.org/2023/403
- K-Waay: Fast and Deniable Post-Quantum X3DH without Ring Signatures. RWPQC 2023.
- Secure Messaging: Past, Present and Future. IMDEA Software Institute (March 29 2022).
- Anonymity Preserving Byzantine Vector Consensus. ESORICS 2020 (online).

Academic Service
Program committee: AFRICACRYPT 2024

External reviewer: CRYPTO 2024, EUROCRYPT 2024, CANS 2023, CCS 2023, EUROCRYPT
2023, ASIACCS 2023, PKC 2022, CANS 2022, ASIACCS 2022, ANTS XV 2022, ASIACRYPT
2021, ACISP 2021, CANS 2020, SRDS 2018

Master thesis supervision at EPFL (overseen by Prof. Serge Vaudenay):
- Post-Quantum X3DH (Nicolas Rolin, Spring 2022; co-supervised with Loïs Huguenin-Dumittan)
- On Secure Administrators for Group Messaging Protocols (David Balbás, August 2021)

Master project supervision at EPFL: Andris Suter-Dörig (with Simone Colombo), David
Dervishi, Olivier Becker, Oliver Tran Si An, Nathan Duchesne (with Loïs Huguenin-Dumittan),
Sina Schaeffler, Alain Gautschi, Nicolas Rolin, Tanguy Rocher (with Andrea Caforio), Maxence
Courtet, Dejan Kovac.

Teaching assistant experience:
- Advanced information, computation, communication I (1st year, EPFL) Autumn 2022-2023
- Advanced cryptography (master, EPFL) Spring 2021-2022
- Cryptography and security (master, EPFL) Autumn 2021-2022
- Student seminar: security protocols and applications (master, EPFL) Spring 2020-2021
- Concurrent algorithms (master, EPFL) Autumn 2020-2021
- Theory of computation (2nd year, EPFL) Spring 2019-2020
- Computer Science Project (2nd year, USyd) 2018
- Introduction to Artificial Intelligence (2nd year, USyd) 2018
- Distributed Systems (3rd year, USyd) 2018, 2019

280

Awards
- EDIC Fellowship, EPFL 2019
-- Semester 1 Supervisor: Prof. Rachid Guerraoui
-- Semester 2 Supervisor: Prof. Serge Vaudenay
- CommBank Cyber Prize for Exceptional Academic Performance in Cyber Security 2018
- University of Sydney Academic Merit Prize 2018
- School of Information Technologies Senior High Honour Roll 2016
- Farrand Science Scholarship 2015
- HSC All-rounder Achievers List member (90+ in all subjects) 2014

Other Employment
Research assistant (University of Sydney) Dec. 2018-Aug. 2019
- First co-author to a paper (Anonymity Preserving Byzantine Consensus) at ESORICS’2020.
- Contributor to the Datalog compiler Soufflé; web development
Summer researcher (University of Sydney) Nov. 2017-Feb. 2018
- Surveyed some verifiable secret sharing schemes; implementation in golang
Major development project (GeoInteractive; University of Sydney) Jul. 2017-Nov. 2017
- Developed a computer vision driven back-end paired with a React/Node web application
leveraging AWS for feature detection and classification of pipe imagery
Programming intern (FluidIntel Pty Ltd) Nov. 2016-Feb. 2017
- Fully internationalised a Ruby on Rails web application and a C# application
Private tutor 2015-2018
- Taught students from years 7-12 in math and English and first/second year undergraduate courses

References
Available upon request.

281

	Abstract (English/Français)
	Acknowledgements
	Contents
	Introduction
	Context and Motivation
	Contribution
	Part I: Two-Party Communication
	Part II: Group Messaging

	List of Works

	Preliminaries
	Notation and Conventions
	Cryptographic Primitives
	Key-Encapsulation Mechanism (KEM)
	Signatures
	Pseudorandom Function (PRF)
	Hash Function
	Incremental Set Hash Function
	Symmetric Encryption

	I Two-Party Communication
	K-Waay: Fast and Deniable Post-Quantum X3DH Without Ring Signatures
	Contribution
	Summary
	Technical Overview
	Additional Related Work

	Split-KEM
	Security
	Deniability

	Deniable Authenticated Key Exchange
	Syntax
	Security Model
	Deniability

	K-Waay: Post-Quantum X3DH from Split-KEM
	Construction
	Security

	Deniable Split-KEM from Lattices
	Lattice Toolbox
	Extended-LWE
	Construction
	Security Analysis
	Building a UNF-1KCA and IND-1BatchCCA Split-KEM
	Concrete Instantiation

	Evaluation and Discussion
	Benchmarks
	Advantages, Limitations and Discussion

	On Active Attack Detection in Messaging with Immediate Decryption
	Contribution
	Summary
	Technical Overview
	Additional Related Work

	(Authenticated) Ratcheted Communication
	In-Band Active Attack Detection: RID
	RID-Secure RC

	Out-Of-Band Active Attack Detection: UNF
	UNF-Secure ARC from a RID-Secure RC
	UNF-Secure ARC from Any RC

	Lower Bounds for Active Attack Detection
	Communication Cost for r -RID Security
	Communication Cost for r -UNF Security

	Optimisations and Performance/Security Trade-Offs
	On the Practicality of s -RID and s -UNF Security
	Epoch-Based Optimisation for s -RID Security
	Pruning for UNF Security
	Lightweight Bidirectional Authentication

	II Group Messaging
	Cryptographic Administration for Secure Group Messaging
	Contribution
	Summary
	Technical Overview
	Additional Related Work

	(Administrated) Continuous Group Key Agreement
	Continuous Group Key Agreement
	Administrated CGKA
	Correctness
	Security

	A-CGKA Constructions
	Individual Admin Signatures
	Dynamic Group Signature
	Description
	Integrating A-CGKA into MLS

	Evaluation and Discussion
	Benchmarks and Performance
	Modelling in Related Work

	WhatsUpp with Sender Keys? Analysis, Improvements and Security Proofs
	Contribution
	Summary
	Technical Overview
	Additional Related Work

	Two-Party Channels
	Primitive Definition and Correctness

	Group Messenger
	Security Model
	Modelling Two-Party Channel Ciphertexts

	Sender Keys
	Protocol
	Security

	Analysis and Improvements
	Security Analysis and Limitations
	Proposed Improvements: Sender Keys+
	Sender Keys/Sender Keys+ vs CGKA
	Sender Keys in Practice

	Sender Keys and Sender Keys+: Full Protocols and Security
	Protocol Descriptions
	Sender Keys Security
	Sender Keys+ Security

	Conclusion
	Primitive Summary
	Two-Party Communication
	Group Communication

	Discussion and Future Work
	Composability
	Model Limitations
	Unification and Verification
	Deniable Post-Quantum X3DH (ch:kwaay)
	Active Attack Detection in Messaging (ch:recover)
	Group Administration (ch:admins)
	Sender Keys (ch:senderkeys)

	Appendices
	QROM Preliminaries
	Proof of Theorem 5 (ch:kwaay)
	Proof in the QROM
	Proof in the ROM

	Proof of Theorem 6 (ch:kwaay)
	Proof in the ROM
	Proof in the QROM

	Tables for Sender Keys (Chapter 6)

	Bibliography
	Curriculum Vitae

