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Abstract

Since the advent of internet and mass communication, two public-key cryptographic algo-

rithms have shared the monopoly of data encryption and authentication: Diffie-Hellman and

RSA. However, in the last few years, progress made in quantum physics –and more precisely

in quantum computing– has changed the state of affairs. Indeed, since Shor’s algorithm was

published in 1994, we know that both Diffie-Hellman and RSA could be broken by a quantum

computer. This motivated the National Institute of Standards and Technology in the US (NIST)

to launch in 2017 a call for Key-Encapsulation Mechanism (KEM) and Signature schemes that

resist quantum computers, i.e. Post-Quantum schemes.

An important building block that is used in the construction of most Post-Quantum KEMs is

the Fujisaki-Okamoto (FO) transform, that compiles a passively secure (IND-CPA) KEM into

an actively secure (IND-CCA) one. In short, the transform works by modifying the underlying

decryption procedure as follows: the ciphertext is decrypted into some plaintext, which is

output only if its re-encryption is equal to the input ciphertext.

In this thesis, we first focus on the security of Post-Quantum KEMs. In particular, we show

that it is critical that the FO transform is properly implemented and never leaks information

on the decrypted plaintext unless the re-encryption check passes. More precisely, for many of

the KEMs proposed to the NIST standardisation process, we demonstrate that it is possible

to recover the secret key with a few thousand decryptions if the leakage mentioned above is

present. We then prove that schemes based on the rank metric, such as RQC, are somewhat

immune to our kind of attacks.

We then focus on combiners, or how to combine several primitives together to obtain a more

secure one. We introduce a construction that generalises the FO transform by taking several

IND-CPA Public-Key Encryption schemes (PKEs) and outputting one IND-CCA KEM that is

secure as long as one of the underlying PKEs is secure. This is an interesting property as many

of the assumptions Post-Quantum cryptography is based on are relatively new and have been

less studied, and are therefore more likely to suffer a devastating cryptanalysis.

Then, based on the observation that the re-encryption step in the FO transform is expensive,

we tackle the question of whether this can be improved. It turns out that a previous result

by Gertner et al. rules out such a possibility in the classical model, in other words an IND-

CPA to IND-CCA black-box transform must re-encrypt in the decryption. We generalise this
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Abstract

impossibility result to the post-quantum setting.

In a subsequent chapter, we show that if the security requirement can be lowered from IND-

CCA to IND-qCCA (i.e. the adversary can only obtain a constant number q of decryptions),

the re-encryption is actually not needed. We also observe that this security notion is sufficient

in many applications, making this result most impactful. Using similar proof techniques, we

then solve a theoretical open question and prove that IND-CPA KEMs can be used in TLS 1.3

instead of Diffie-Hellman.

Finally, we present K-Waay, a Post-Quantum replacement for the X3DH key-exchange that is

notably used in Signal and WhatsApp. Our protocol is faster than previous work and the only

non-standard primitive used is a variant of the well-studied Frodo key-exchange.
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Résumé

Depuis l’avènement d’Internet, deux systèmes cryptographiques se sont historiquement par-

tagés le monopole du chiffrement des données et de l’authentification : Diffie-Hellman et

RSA. Cependant, les récentes avancées en physique quantique – et plus précisément en infor-

matique quantique – ont bouleversé cet état de fait. En effet, on sait depuis la publication de

l’algorithme de Shor en 1994 que Diffie-Hellman et RSA peuvent être cassés par un ordinateur

quantique. Les progrès dans ce domaine ont incité l’Institut National des Standards et de la

Technologie (NIST) aux Etats-Unis à lancer en 2017 un processus afin de trouver un Mécha-

nisme d’Encapsulation de Clé (KEM) et un système de signature digitale qui seraient capables

de résister aux ordinateurs quantiques. De tels algorithmes sont appelés “post-quantiques”.

Un outil important dans la construction des KEMs post-quantiques est la transformée de

Fujisaki-Okamato, qui convertit un KEM passivement sûr (IND-CPA) en un KEM activement

sûr (IND-CCA).

Dans la première partie de cette thèse, nous nous concentrons sur la sécurité des KEMs post-

quantiques. Nous montrons d’abord qu’il est indispensable que la transformée de Fujisaki-

Okamoto soit implémentée correctement. Plus précisément, pour la plupart des KEMs propo-

sés à la standardisation, nous démontrons qu’il est possible de retrouver la clé secrète après

quelques milliers de déchiffrements si un certain type d’information fuite. Nous prouvons

ensuite que des systèmes basés dans la métrique de rang tel que RQC sont plus résistants à ce

genre d’attaques.

Nous nous concentrons ensuite sur la notion de combineurs : des algorithmes qui combinent

plusieurs primitives cryptographiques ensemble afin d’obtenir un nouveau système plus sûr.

Nous présentons une construction qui généralise la transformée de Fujisaki-Okamoto en ce

sens qu’elle prend plusieurs systèmes à chiffrement publique (PKEs) et retourne un KEM qui

est IND-CCA du moment qu’un seul des PKEs sous-jacents est IND-CPA.

Fort du constat que l’étape de rechiffrement dans la transformée de Fujisaki-Okamoto est

coûteuse en terme de temps, nous nous attaquons à la question de savoir si ce calcul est

réellement nécessaire. Il s’avère qu’un résultat précédent de Gertner et al. confirme que c’est

le cas dans le modèle classique. En d’autres mots, les auteurs démontrent qu’une transfor-

mée en mode boîte-noire entre un algorithme IND-CPA et un autre IND-CCA nécessite un

rechiffrement dans la fonction de déchiffrement. Nous généralisons ce résultat au monde
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Résumé

post-quantique.

Dans le chapitre qui suit, nous prouvons que si la sécurité peut être abaissée à IND-qCCA

(c’est-à-dire que l’adversaire peut obtenir un nombre constant q de textes déchiffrés), cette

étape de rechiffrement n’est pas indispensable. Nous soulignons aussi que la notion de IND-

qCCA est suffisante dans pléthore d’applications, ce qui rend ce résultat intéressant aussi

bien au niveau pratique que théorique. Enfin, en utilisant notre technique de preuve, nous

résolvons une question ouverte en prouvant qu’un KEM IND-CPA peut être utilisé dans le

protocole TLS 1.3 à la place de Diffie-Hellman.

Enfin, nous présentons K-Waay, une alternative post-quantique au protocole d’échange de clé

X3DH notamment utilisé dans Signal et WhatsApp. Notre construction est plus rapide que les

protocoles similaires existants et la seule primitive non-standard utilisée est une variante de

Frodo.
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1 Introduction

Transmitting gibberish on a channel hoping that only the intended recipient will be able to

extract meaningful information out of it: that is the original goal of cryptography summed up.

From the early primitive ciphers relying on the limited computational capacity of the human

brain for security, cryptography evolved into a fully fledged science following the advent of

computers in the second half of the 20th century. Along the way, the field started to encompass

more concepts than mere confidentiality of information, like authenticity, integrity or, more

recently, deniability. A significant milestone in the history of cryptography is the discovery of

public-key cryptography in the 1970s, and in particular the invention of the Diffie-Hellman

(DH) key exchange and the RSA encryption and signature schemes. The great strength of these

constructions is that they can be proven secure assuming the computational hardness of a

problem. This concept is central to the present thesis and is known today as provable security.

Meanwhile, in the seemingly unrelated field of physics, progress in quantum mechanics

resulted in the formalisation of quantum computing in the 1980s. Instead of conveying and

storing information in electrical voltage as classical computers do, their quantum counterparts

process quantum particles like photons to perform computations. The link with cryptography

was established in the early 1980s, when Bennett and Brassard [BB84] proposed their quantum

key distribution (QKD) algorithm proven secure under the mere laws of physics. However, it is

only in 1994 that quantum computers became a serious cause of concern for cryptographers,

with the publication by Shor [Sho94] of a quantum algorithm that could solve both the discrete

logarithm and factoring problems, which underpin the security of Diffie-Hellman and RSA.

Post-Quantum cryptography & NIST standardisation process. While only theoretical at

first, the risk posed by Shor’s algorithm was seen by many as an opportunity to develop cryp-

tosystems based on computational problems that could resist quantum computers and offer

interesting properties. The study of these quantum resistant schemes is what is known as

post-quantum (PQ) cryptography and is the topic of this thesis. Among these post-quantum

assumptions, the most famous one is probably the learning with error (LWE) hardness as-

sumption proposed by Regev in 2005 [Reg05], which postulates that, given (a, a · s +e) where
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a, s ∈ Zn
q ,e ∈ Zq , and s,e are “small”, recovering s is hard. Since its introduction, the LWE

problem or variants of it have been used in countless applications, from public-key encryption

to multi-party computation.

In the 2010s, efforts and breakthroughs in quantum computing started to make part of the

security and cryptography community feel uneasy. This led the US National Institute of Stan-

dards and Technology (NIST), in 2017, to launch a call for standardisation of post-quantum

public-key schemes. More than 60 proposals of key-encapsulation mechanisms (KEMs),

public-key encryption (PKEs) and signature schemes were received. In 2022, the NIST decided

to standardise one KEM and three signature schemes, namely CRYSTALS-Kyber, CRYSTALS-

Dilithium, Falcon and SPHINCS+. Several other KEMs (BIKE, Classic McEliece, HQC and SIKE)

were also labelled as “alternate candidates” and will be considered for later standardisation,

except SIKE that was later broken by Castryck and Decru [CD23]. It is worth noting that out

of the four algorithms selected, only one (SPHINCS+) is not based on a problem involving

lattices. This drove the NIST to issue another call for post-quantum signatures based on

different assumptions, which is ongoing at the time of writing.

Overall, the NIST standardisation process brought a spotlight on the field of post-quantum

cryptography and induced a massive effort by researchers from all over the world; this thesis

is a modest contribution to this endeavour. Quantum computers powerful enough to break

cryptography might never exist, but PQ cryptosystems will be deployed and thus need to be

secure.

IND-CPA/CCA KEMs and Fujisaki-Okamoto. Let’s now dive into the details of post-quantum

key-encapsulation mechanisms (KEMs), which are central to this thesis. The notion of a

KEM was first proposed by Shoup in 2001 [Sho01] for an ISO standard and can be seen as

the formalisation of a public-key encryption (PKE) system that always encrypts a random

symmetric key. That is, in a PKE, the encryption algorithm takes the receiver’s public key and

a message, and outputs a ciphertext, whereas in a KEM, the encapsulation procedure takes

the receiver’s public key only, and outputs a random key and a ciphertext that contains the key.

Both the decryption of a PKE and the decapsulation of a KEM work similarly, except the KEM

outputs the key that was encrypted in the ciphertext instead of the message. An illustration

of the working flow of both primitives is given in Figure 1.1. Cramer and Shoup [CS03] then

proved that combining a KEM with a block cipher (using the symmetric key output by the

encapsulation function to encrypt symmetrically the message) was equivalent to building a

PKE. This construction, known today as the “KEM/DEM paradigm”, turned out to be extremely

popular as it reduces the problem of designing a PKE to the problem of designing a KEM. It

also gives a simple and efficient recipe for building PKEs for arbitrary long messages.

Two notions of security are usually considered for KEMs: security against passive adversaries

also called security against chosen plaintexts attacks (CPA) and security against active ad-

versaries, also called security against chosen ciphertexts attacks (CCA). Assuming a suitable
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Figure 1.1: Illustration of the difference between a PKE (top) and a KEM (bottom).

block cipher is used, the KEM/DEM paradigm implies that a CPA (resp. CCA) KEM can be

used to build a CPA (resp. CCA) PKE. As a consequence, most of the NIST PQ proposals were

CCA-secure KEMs and not PKEs. More precisely, the way a vast majority of these schemes are

built is as follows:

1. A CPA-secure PKE is built from a post-quantum hardness assumption (e.g. LWE).

2. The CPA-secure PKE is compiled into a CCA-secure KEM using a technique known as

the Fujisaki-Okamoto transform.

Thus, in short, a weak PKE is transformed into a strong KEM that can itself be used to build a

strong PKE through the KEM/DEM paradigm.

The core component of the recipe given above is the Fujisaki-Okamoto (FO) transform or vari-

ations of it (called FO-like transforms in this dissertation) that take a CPA-secure scheme and

output a CCA-secure one. The original construction was proposed by Fujisaki and Okamoto

in 1999 [FO99; FO13] and was building a strong PKE out of a weak one. Newer variants like

Hofheinz et al.’s [HHK17] build a KEM out of a PKE and these are the ones used by the NIST

candidates. At a high level, these transforms work as follows:

1. The encapsulation function of the KEM samples a random key k and encrypts it with

the underlying PKE using the hash of the key k as the source of randomness: ct ←
Enc(pk,k; H(k)), with H a hash function modelled as a random oracle, a concept we

discuss in more details in the next paragraph. The ciphertext is then simply ct and the

key is k.

2. In order to decapsulate, the KEM first decrypts the ciphertext ct to get the key k ′: k ′ ←
Dec(sk,ct). Then, it re-encrypts k ′ into a ciphertext ct′: ct′ ←Enc(pk,k ′; H(k ′)). Finally,

it outputs the key k ′ if ct= ct′, otherwise nothing (or an error).
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Informally, we see that due to the de-randomisation step in the encapsulation, each key

is associated to a unique ciphertext. Then, in the decapsulation, the KEM checks that the

ciphertext corresponds to the decrypted key and aborts otherwise.

ROM. One thing that might seem off in the FO transform presented above is the use of H (k) as

the source of randomness. Indeed, one could argue that Enc(pk,k; H(k)) might not be secure

even though the underlying encryption function is when used with random coins instead of

H(k). This intuition is actually correct and the security of the FO construction can only be

proven in a model where the hash function H is assumed to be perfectly random. That is, H

returns a value sampled uniformly at random on each fresh query and can only be accessed as

an external oracle by the different parties. This abstraction is called the Random Oracle Model

(ROM) and, like many cryptosystems used in practice, most of the constructions presented in

this thesis are proven secure in this ideal model only.

The ROM was first introduced by Bellare and Rogaway in 1993 [BR93] as a way to prove the

security of protocols that are much more efficient than their counterparts in the so-called

standard model (in opposition to the ROM). In order to understand why the ROM is so powerful,

we need to understand how security is proved: if we want to prove that a primitive Q is secure,

we first assume that another primitive or problem P is hard to break/solve. Then, we show that

if some algorithm A can break Q, one can build another algorithm B that breaks or solve P,

where typically B uses A as a subroutine. Now, in the ROM, A will typically query the random

oracle H on some “important” values that might help B break its own primitive. Thus, B can

observe these queries and exploit them, whereas in the standard model H would simply be a

hash function that can be implemented directly by A , making the computation of hash values

invisible to B. The FO transform example mentioned above perfectly illustrates how the ROM

can be helpful: by the uniform distribution of H , Enc(pk,k ′; H(k ′)) looks exactly the same as

Enc(pk,k ′;random coins) to any party, unless the latter queries H(k ′). In turn, such a query

would mean that k ′ is known and that would break the security of the encryption scheme.

The idealised properties of the ROM have sparked fierce debates among cryptographers

throughout the years on whether security in this model is meaningful or not (see e.g. [KM15]

for a summary). The detractors would say that a random oracle has little to do with a real hash

function, which must be simply collision and preimage resistant. In addition, it was proven

that ROM security does not imply standard security by Canetti et al. [CGH04]. That is, they

showed that there exists a scheme that is secure in the ROM but insecure when the random

oracle is instantiated with any hash function. Since then, several other works demonstrated

similar results [GK03; BBP04].

On the other hand, advocates of the ROM would argue that these counterexamples are con-

trived and “unnatural”. In addition, no real-world protocol or cryptosystem proven secure in

the ROM has ever been broken unless the underlying assumption turned out to be insecure in

the first place. This supports the idea that the ROM is a good heuristic. The dispute has been
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somewhat settled by practitioners, as an overwhelming majority of the schemes deployed in

practice are only proven secure in the ROM or other similar ideal model. Among these we can

mention RSA-OAEP, (EC)DSA, signatures and NIZKs based on the Fiat-Shamir transformation,

key-exchange schemes based on the PRF-ODH assumption, and consequently all protocols

that integrate one or several of these primitives, like X3DH and TLS 1.3. Last but not least,

post-quantum KEMs can also be added to the list.

In conclusion, as this thesis is concerned with efficient schemes that are meant to be widely

adopted by the public, the ROM is somewhat unavoidable and we will use it extensively.

QROM. The rationale behind the ROM is that hash functions are used by parties as black-

boxes that output random-looking strings. However, in a quantum world, it is conceivable that

quantum algorithms could access theses black-boxes (i.e. the hash functions) in superposition.

That is, instead of querying the random oracle H(x) for some value x, the quantum parties

would have access to a unitary that computes the operation: |x, y〉 7→ |x, y ⊕H(x)〉. Informally,

for the reader unfamiliar with quantum notation, this means that an algorithm could, with

one query, store all possible values of the random oracle in a state; then, in a later stage, it

could extract a random value out of it. This new model, called Quantum Random Oracle

Model (QROM) was introduced by Boneh et al. in 2011 [Bon+11] and it is now customary for

post-quantum schemes to be proven secure in the QROM.

It turns out that translating existing ROM proofs to the QROM setting is challenging. One

of the main reasons is that quantum queries made by an algorithm A cannot be observed

by B: all B can see is a quantum state that cannot be measured at the risk of A noticing it.

Coming back to the FO example, one cannot argue in the QROM that “A cannot distinguish

between H(k ′) and a uniform value unless H(k ′) was queried and is observable by other

parties”. Indeed, H(k ′) might have been queried in the superposition and thus is “hidden”

from external observers’ view. Several other subtle issues we will not detail here can also arise

in this model. However, many techniques to remedy these problems have been proposed,

among those we can cite the One-Way to Hiding lemma (OW2H) [Unr15] and the compressed

oracle technique [Zha19]. Leveraging these, we prove most of the constructions presented in

this thesis secure in the QROM.

Outline of the Thesis

The core of this thesis is divided in eight chapters, including the present introduction and the

conclusion. We briefly summarise each of them below.

First, in Chapter 2, we introduce the notation used throughout this document and we recall

useful primitives and concepts. In particular, we formally define PKE, KEMs and the corre-

sponding security notions. We also present the random oracle model and FO-like transforms

in detail. Finally, we give a short introduction to the QROM and we state several related
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lemmas.

In Chapter 3, we develop misuse attacks against several PQ KEMs submitted to the NIST

standardisation process. The threat model is as follows: we assume public keys are reused

multiple times by parties and that the adversary has access to an oracle that, on input ct,k,

returns whether Dec(sk,ct) = k, where Dec is the decryption function of the underlying PKE

(which is used to build the KEM through a FO-like transform). This corresponds to a real-

life scenario where the FO transform is badly implemented and leaks the decrypted key –or

simply whether it is equal to some other key– regardless of the result of the re-encryption

check. Alternatively, such a leakage could be obtained through side-channels (e.g. time of

execution, power consumption, electromagnetic radiations, etc.). We show that in this setting,

the secret key can be recovered with a few thousand queries to the oracle in most of the

schemes considered, completing the full picture of misuse attacks against PQ KEMs that had

passed to the second round of the NIST process. The high-level strategy behind our attacks is

always the same, it consists of learning the noise that is induced by the encryption in these

schemes. Then, solving an equation is enough to recover the secret key. The only algorithm

that seems to somewhat resist this tactic (i.e. ≈ 238 queries needed to recover the key) is

RQC [Mel+19a], a KEM based on the hardness of the syndrome decoding problem in the rank

metric, that was discarded by NIST after the second round. We prove that resistance to the

noise learning technique is inherent to rank-based schemes, hinting that constructions based

in such a metric are more robust against misuse attacks than others.

In Chapter 4, we look to strengthen the security of post-quantum cryptosystems. One simple

way to achieve this goal is to combine several schemes together into another one that is secure

as long as one (or more) of the underlying algorithms is secure. The way the underlying blocks

are merged into one is called a combiner in the literature. CCA-secure KEM combiners have

been proposed before [GHP18; Bin+19a] and these constructions all work in a similar fashion:

if C is the combiner and KEM1, . . . ,KEMn are KEMs, then C [KEM1, . . . ,KEMn] outputs a CCA-

secure KEM if there exists i ∈ {1, . . . ,n} s.t. KEMi is CCA-secure. We propose another kind of

combiner that generalises the concept of FO-like transforms as follows: let F be our type of

combiner and PKE1, . . . ,PKEn be PKEs, then F [PKE1, . . . ,PKEn] is a CCA-secure KEM if there

exists i ∈ {1, . . . ,n} s.t. PKEi is CPA-secure. In the context of the NIST post-quantum proposals,

this has the advantage of being simpler and more efficient as one transform can be applied on

the underlying PKEs to get a combined KEM, instead of applying a FO-transform n times and

then applying a KEM combiner. We present several of these FO-like combiners, some proven

in the ROM and others in the QROM, and we thoroughly formalise the theory underlying our

constructions. In a second part of the chapter, we investigate which of the second round NIST

algorithms should be combined together to maximise security and/or efficiency.

In Chapter 5, we study the efficiency of FO-like transforms and whether it is possible to do

better. In particular, the main overhead of these transforms compared to the underlying

CPA-secure PKE they take as input comes from the re-encryption step at decryption. A natural

question is therefore whether this extra computation can be removed. It turns out that Gertner
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et al. [GMM07] proved it is not possible in the standard model (their result readily extends

to the ROM as well). More precisely, they showed that there is no black-box construction of

CCA-secure scheme from a CPA-secure one, under the restriction that the decryption function

of the former does not call the encryption function of the latter, i.e. FO-like transforms are

evidently not covered by this result. Removing this limitation and proving a general separation

between CCA and CPA in the standard model is still a major open problem in theoretical

cryptography. On our side, we generalise Gertner et al.’s result to the post-quantum setting,

i.e. the primitive must still be computable classically but the adversaries/the reduction can

be quantum. Following the original work, our proof uses the two-oracle techniques by Hsiao

and Reyzin [HR04], which for us boils down to showing that there are two oracles (O,R) s.t. O

can be used to build a PQ CPA-secure PKE, but there exists an adversary that uses O and R

than can break any PQ CCA construction (with the restriction mentioned above). The main

part of the demonstration is to show that O is a CPA-secure PKE even if adversaries have

quantum black-box access to R. To do so, we reduce to several (information-theoretically)

hard quantum problems.

In Chapter 6, motivated by the previous negative result, we explore the potential use-cases of

post-quantum KEMs and identify several of them that do not require full CCA security but

some weaker security. Among these applications, we can cite TLS 1.3, a variant of it called

KEMTLS designed by Schwabe et al. [SSW20a], and ratcheting primitives. These protocols

require only 1CCA, or more generally qCCA-secure KEMs, where q is a constant that denotes

the number of decryptions the adversary is allowed to know (note that in normal CCA, the

number of decryption queries the adversary can do is not fixed a priori). We introduce two

very simple transforms that take a CPA-secure PKE/KEM and outputs a qCCA secure KEM. In

particular, our constructions do not induce a re-encryption step, offering a ≈ 2× speed-up at

decryption compared to the CCA secure KEM obtained through a FO-like transformation. Both

our designs are proven secure in the ROM and QROM. Then, using similar proof techniques,

we solve an open question raised in previous work (e.g. [PST20; Dow+20]), and prove that

replacing Diffie-Hellman in TLS 1.3 with CPA-secure KEMs is sound in the ROM. This result is

mainly theoretical, as our proof incurs a large security loss which would not offer any security

guarantees when instantiated with practical parameters. However, when replacing CPA-secure

KEMs with 1CCA-secure ones, the security bound becomes similar to the one of (classical)

TLS 1.3 [Dow+20]. Also, thanks to our transforms, 1CCA-secure KEMs can offer performances

similar to their CPA-secure counterparts.

In Chapter 7, we present K-Waay, a post-quantum variant of X3DH, the key-exchange algo-

rithm used in the Signal protocol. The challenge when designing a X3DH-like scheme is that it

must fulfil two properties: deniability, which means parties can plausibly deny having com-

pleted key exchange and asynchronicity, which means parties can immediately derive keys

after uploading them to a central server. Without the first requirement, X3DH could trivially

be made post-quantum using KEMs and signatures only; without the second requirement,

KEMs would suffice. In order to satisfy both, K-Waay uses at its core a split-KEM, a primitive

introduced by Brendel et al. [Bre+21] that we augment with two security properties (deniability
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and unforgeability) that are needed to prove our key-exchange protocol secure and deniable.

Then, we instantiate a split-KEM based on Frodo key exchange [Bos+16], which itself relies

on the LWE assumption: our proofs might be of independent interest as we show it satisfies

our novel unforgeability and deniability security notions. Compared to existing PQ X3DH

proposals [Has+22; Bre+22], K-Waay does not use ring signatures, which are generally not

proven secure in the QROM unlike our split-KEM, and are slower than standard primitives like

KEMs. Then, we provide a thorough benchmark of both K-Waay and existing X3DH protocols.

Our results show that, even when using plain LWE and a conservative choice of parameters,

K-Waay is significantly faster than previous work.
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2 Preliminaries

In this chapter, we introduce the notation and concepts used throughout this thesis.

2.1 Notation

Sets and sampling. We denote by [n] (resp. [n]−) the set {1, . . . ,n} (resp. {0, . . . ,n −1}). For

A a randomised algorithm, we write b ←$ A to indicate b is set to the value output by A .

Similarly, if Ψ (resp. X ) is a distribution (resp. a set), then x ←$Ψ (resp. x ←$ X ) means that x

is sampled from Ψ (resp. uniformly at random from X ). If x is a vector of dimension n or a

polynomial of degree n −1, we write x ←$Ψn to say that each component/coefficient of x is

sampled independently from Ψ. For f any function, Im( f ) denotes its image.

Multiplication. The multiplication in multiplicative groups, rings, and fields is denoted by ×,

·, or even nothing.

Algorithms and oracles. We denote by 1P the indicator function which returns 1 if the predi-

cate P is fulfilled and 0 otherwise. For any algorithmΓ that takes an input x, we write “Γ(x) ⇒ b”

to denote the event Γ(x) outputs b. Also, when it is clear from the context, we write that same

event “Γ⇒ b” or even “Γ” when b = 1. In a game, we write abort to mean that the algorithm is

stopped (i.e. the adversary “loses” the game).

For any classical algorithm A and O1, . . . ,On , we write A O1,...,On to denote the fact that A has

black-box access to O1, . . . ,On . When A computes Oi (x) for some input x, we say A queries Oi .

For any quantum algorithm A and unitaries O1, . . . ,On , we write A O1,...,On to denote the fact

that A can use the unitaries O1, . . . ,On as black-boxes. When A uses Oi , we say A queries Oi .

Sometimes, a quantum adversary has classical access to an oracle (e.g. a decryption oracle)

but quantum access to another (e.g. a random oracle). In this case, we write A O ,|H〉 to denote

that A can only query O classically but has quantum access to the oracle H , or simply A O,H

when it is clear from the context.
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Chapter 2. Preliminaries

Γ1-2

1 : x ← 0 // Γ1

2 : x ← 1 // Γ2

3 : return x

Figure 2.1: Pseudocode example.

If A (x) is a randomised algorithm running on input x, it is assumed that enough random

coins are implicitly passed to A . We sometimes write A (x;r ) to denote the fact that A is run

with random coins r .

We say an algorithm is efficient if it is a probabilistic polynomial-time (ppt) or quantum

polynomial-time (qpt) algorithm.

Pseudocode and error symbol. Errors are denoted with the symbol ⊥. In pseudocode, several

algorithms/games are often compressed into one with comments specifying which line is

executed in which game. We give an example in Figure 2.1, where two games Γ1 and Γ2 are

made explicit. In Γ1, only lines 1 and 3 are executed (0 is returned) and in Γ2 only lines 2 and 3

are executed (1 is returned).

Vectors and rounding. For some vector or polynomial x, xi is the i -th coefficient and (x)i

is the subset composed of the i -th first coefficients of x. For x ∈ Zq , we write x ′ = 〈x〉q for

the unique integer x ′ ∈ (−⌊ q
2 ⌋,⌊ q

2 ⌋] s.t. x ′ ≡ x (mod q). We denote by ⌈x⌋ rounding x to the

nearest integer, with ties rounded up. If f is a function defined on a component of a vector (or

polynomial) v , we write f (v) to denote the function being applied to each component of v .

Negligible function. We denote by negl(λ) any negligible function in a given parameter λ.

When it is clear from the context, we sometimes shorten the notation to negl. We recall that a

function f (λ) is negligible in λ iff ∀c ∈Z ∃λc s.t. ∀λ>λc | f (λ)| < 1
λc .

Advantage of an adversary. Security is often defined in terms of the probability of an adversary

winning an experiment, called game. We refer to this probability as the advantage of the

adversary. This quantity is denoted by Advsec
Π (A ), where sec, Π, and A stands for the security

definition, the primitive, and the adversary considered, respectively.

2.2 Primitives (PKE/KEM/Signatures/PRF)

In this section, we introduce the main cryptographic primitives employed in this dissertation

as well as the corresponding security definitions. All security definitions are valid in both the

12
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CORRPKE(A )

1 : (pk,sk) ←$ Gen(1λ)

2 : pt←A H (pk,sk)

3 : ct←$ Enc(pk,pt)

4 : return 1Dec(sk,ct)̸=pt

Figure 2.2: Correctness game with a random oracle H .

classical and quantum model of computation, depending on whether we let adversaries to be

quantum algorithms or not.

2.2.1 Public-Key Encryption scheme

Definition 2.2.1 (Public-Key Encryption). A Public-Key Encryption scheme (PKE) is composed

of three efficient algorithms Gen,Enc,Dec and is associated to a message space M :

• (pk,sk) ←$ Gen(1λ): The key generation algorithm takes the security parameter λ as input

and outputs the public key pk and the secret key sk.

• ct ←$ Enc(pk,pt): The encryption algorithm takes as inputs the public key pk and a

plaintext pt ∈M , and it outputs a ciphertext ct.

• pt′ ← Dec(sk,ct): The decryption procedure takes as inputs the secret key sk and the

ciphertext ct ∈C , and it outputs a plaintext pt′ ∈M ∪ {⊥}.

Gen and Enc are probabilistic algorithms that can be made deterministic by adding random

coins as inputs. The decryption procedure is deterministic.

Correctness. We define correctness as follows.

Definition 2.2.2 (Correctness). We consider the game CORR defined in Figure 2.2. We say a

PKE scheme is δ(qH ) correct if for any efficient adversary A making at most qH adversary to the

random oracle H, we have

Pr[CORRPKE(A ) ⇒ 1] ≤ δ(qH ,λ) ,

where λ is the security parameter. Note that we omit λ from now on for the sake of simplicity.

The correctness in the standard model is defined similarly except δ does not depend on qH .

Intuitively, correctness means that no adversary can find with probability greater than δ(qH ) a

plaintext such that its encryption does not decrypt to the original plaintext.

13
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IND-ATKPKE(A )

1 : b ←$ {0,1}

2 : (pk,sk) ←$ Gen(1λ)

3 : define ct∗ ←;
4 : pt0,pt1 ←A OATK1

(pk)

5 : ct∗ ←$ Enc(pk,ptb)

6 : b′ ←A OATK2
(pk,ct∗)

7 : return 1b=b′

IND-ATK′b
PKE(A )

1 : (pk,sk) ←$ Gen(1λ)

2 : define ct∗ ←;
3 : pt0,pt1 ←A OATK1

(pk)

4 : ct∗ ←$ Enc(pk,ptb)

5 : b′ ←A OATK2
(pk,ct∗)

6 : return b′

Oracle ODec(ct)

1 : if ct= ct∗ : return ⊥
2 : pt′ ←Dec(sk,ct)

3 : return pt′

Figure 2.3: Equivalent indistinguishability games and the decryption oracle.

Table 2.1: Oracles for IND and OW games.

ATK CPA CCA1 CCA
OATK1 ⊥ ODec ODec

OATK2 ⊥ ⊥ ODec

ATK CPA PCA VCA PVCA

OATK ⊥ OPCO OVCO OPCO,OVCO

γ-spreadness. In some of the proofs, we need the ciphertexts of a PKE to be well-spread.

That is, the probability to obtain a given ciphertext when encrypting should be negligible, or

at least upper-bounded by some value. This idea is formalised in the following definition.

Definition 2.2.3 (γ-spreadness). For any public key pk and plaintext pt, we define the min-

entropy of Enc(pk,pt) as

γ(pk,pt) =− log

(
max
ct∈C

Pr
[
ct=Enc(pk,pt)

])
,

where the probability is taken over the randomness of Enc, the logarithm is in base 2, and C is

the ciphertext domain. Then, we say that a PKE scheme is γ-spread if for any public key pk and

plaintext pt, we have γ(pk,pt) ≥ γ. This implies that Pr[ct=Enc(pk,pt)] ≤ 2−γ.

Rigidity. When introducing transforms from Hofheinz et al. [HHK17], we will need the notion

of rigidity, that states that either a ciphertext does not decrypt, or the decrypted message

re-encrypts to the same ciphertext. Note that this property can hold only if the scheme has

deterministic encryption.

Definition 2.2.4. We say a PKE PKE= (Gen,Enc,Dec) is rigid if for all (pk,sk) output by Gen
and for all ct ∈C , either Dec(sk,ct) =⊥ or Pr[Enc(pk,Dec(sk,ct)) = ct] = 1.

Indistinguishability.

14
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OW-ATKPKE(A )

1 : (pk,sk) ←$ Gen(1λ)

2 : pt∗ ←$ M

3 : ct∗ ←Enc(pk,pt∗)

4 : pt′ ←A OATK
(pk,ct∗)

5 : return 1pt′=pt∗

Oracle OPCO(pt,ct)

1 : pt′ ←Dec(sk,ct)

2 : return 1pt′=pt

Oracle OVCO(ct ̸= ct∗)

1 : pt′ ←Dec(sk,ct)

2 : return 1pt′∈M

Figure 2.4: One-Wayness games.

Definition 2.2.5 (PKE IND-CPA/CCA/CCA1). We consider the games induced by the pseudocode

given on the left of Figure 2.3, where the oracles given in each game are defined as in the left of

Table 2.1. A PKE scheme PKE= (Gen,Enc,Dec) is IND-ATK for ATK ∈ {CPA,CCA,CCA1} if for

any efficient adversary A we have

Advind-atk
A ,PKE :=

∣∣∣∣Pr[IND-ATKPKE(A ) ⇒ 1]− 1

2

∣∣∣∣= negl(λ).

Equivalently, we can consider the games induced by the pseudocode given in the middle of

Figure 2.3, where the oracles given in each game are defined as in the left of Table 2.1. Then, a

PKE scheme PKE= (Gen,Enc,Dec) is IND-ATK for ATK ∈ {CPA,CCA,CCA1} if for any efficient

adversary A we have

Advind-atk′
A ,PKE :=

∣∣∣Pr
[

IND-ATK′1
PKE(A ) ⇒ 1

]
−Pr

[
IND-ATK′0

PKE(A ) ⇒ 1
]∣∣∣= negl(λ).

Informally, these definitions state that no adversary should be able to distinguish between

the encryption of two different messages. In IND-CCA, the adversary has further access to a

decryption oracle that returns the decryption of any ciphertext except the challenge one ct∗.

In IND-CCA1, access to the decryption oracle is only granted before the challenge ciphertext

is generated. We stress that the two definitions of indistinguishability we gave for each notion

are equivalent, and we use them interchangeably in the rest of this thesis.

One-Wayness. We also recall four security definitions of one-wayness: One-Wayness un-

der Chosen-Plaintext Attacks (OW-CPA), One-Wayness under Plaintext-Checking Attacks

(OW-PCA), One-Wayness under Validity Checking Attacks (OW-VA), and One-Wayness under

Plaintext and Validity Checking Attacks (OW-PVCA).

Definition 2.2.6 (One-Wayness and Plaintext/Validity Checking). Let M be the message space,

PKE a PKE scheme, and we consider the games defined in Figure 2.4 with the different oracles

as defined on the right in Table 2.1. Then, PKE is OW-ATK, for ATK ∈ {CPA,PCA,VCA,PVCA},

if for any efficient adversary A we have

Advow-atk
PKE (A ) := Pr[OW-ATKPKE(A ) ⇒ 1] = negl(λ) ,
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KR-PCAPKE(A )

1 : (pk,sk) ←$ Gen(1λ)

2 : sk′ ←A OPCO
(pk)

3 : return 1sk′=sk

Oracle OPCO(pt,ct)

1 : pt′ ←Dec(sk,ct)

2 : return 1pt′=pt

Figure 2.5: KR-PCA game.

where Pr[OW-ATKPKE(A ) ⇒ 1] is the probability that the adversary wins the OW-ATK game.

These notions model the intuition that no adversary should be able to decrypt a ciphertext.

Note that one-wayness is weaker than indistinguishability as one can distinguish if one can

decrypt. Both the OPCO and OVCO oracles model reaction attacks, where the adversary is able

to check if a decrypted ciphertext matches a certain plaintext (PCA) or whether the decryption

is successful (VCA). Bleichenbacher’s attack is a famous example of a VCA [Ble98].

Remark. Any perfectly correct and deterministic OW-CPA PKE system is OW-PCA. Indeed,

since the encryption is deterministic, an adversary can always compute 1Enc(pk,pt)=ct, which

returns the same result as the plaintext-checking oracle in the perfect correctness case, making

the latter superfluous.

IND-CPA ⇒ OW-CPA. The following folklore result states that IND-CPA implies OW-CPA if

the message space M is large enough.

Lemma 2.2.1. Let PKE be any PKE. Then, for all adversaries A , there exists an adversary B s.t.

Advow-cpa
PKE (A ) ≤Advind-cpa

PKE (B)+ 1

|M | .

KR-PCA. Finally, we define the notion of key-recovery under plaintext-checking attack (KR-

PCA), where the adversary has access to the OPCO oracle and must recover the secret key sk,

given a public key pk. The game is given in Figure 2.5.

Definition 2.2.7 (Key-Recovery under Plaintext-Checking Attack). Let PKE be a PKE scheme.We

say PKE is KR-PCA if for any efficient adversary A we have

Advkr-pca
PKE (A ) = Pr[KR-PCAPKE(A ) ⇒ 1] = negl(λ) ,

where Pr[KR-PCAPKE(A ) ⇒ 1] is the probability that the adversary wins the KR-PCA game

given in Figure 2.5.
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IND-ATKKEM(A )

1 : (pk,sk) ←$ Gen(1λ)

2 : st ←A OATK1
(pk)

3 : b ←$ {0,1}

4 : ct∗,K0 ←$ Encaps(pk)

5 : K1 ←$ K

6 : b′ ←A OATK2
(st ,pk,ct∗,Kb)

7 : return 1b′=b

IND-ATK′b
KEM(A )

1 : (pk,sk) ←$ Gen(1λ)

2 : st ←A OATK1
(pk)

3 : ct∗,K0 ←$ Encaps(pk)

4 : K1 ←$ K

5 : b′ ←A OATK2
(st ,pk,ct∗,Kb)

6 : return b

Oracle ODec(ct)

1 : if ct= ct∗ : return ⊥
2 : K ′ ←Decaps(sk,ct)

3 : return K ′

Figure 2.6: Equivalent indistinguishability games and the decapsulation oracle.

2.2.2 Key Encapsulation Mechanism (KEM)

Definition 2.2.8 (Key Encapsulation Mechanism). A KEM is a tuple of three algorithms Gen,

Encaps, Decaps:

• (pk,sk) ←$ Gen(1λ): The key generation algorithm takes as input the security parameter,

and it outputs the public key pk and the secret key sk.

• ct,K ←$ Encaps(pk): The encapsulation algorithm takes as inputs the public key pk, and

it outputs a ciphertext ct ∈C and a key K ∈K .

• K ′ ←Decaps(sk,ct): The decapsulation procedure takes as inputs the secret key sk and

the ciphertext ct ∈ C , and it outputs a key K . If the KEM allows explicit rejection, the

output is a key K ∈K or the rejection symbol ⊥. If the rejection is implicit, the output is

always a key K ∈K .

The Gen and Encaps are probabilistic algorithms that can be made deterministic by adding

random coins as inputs. The decapsulation function is deterministic.

Correctness. We define correctness for KEMs as follows.

Definition 2.2.9 (KEM Correctness). We say a KEM (Gen,Encaps,Decaps) is δ-correct if

Pr

K ̸= K ′ :

(pk,sk) ←$ Gen(1λ);

ct,K ←$ Encaps(pk);

K ′ ←Decaps(sk,ct)

≤ δ .

Indistinguishability. We now recall the different notions of indistinguishability for KEMs.

Definition 2.2.10 (KEM IND-CPA/CCA1/CCA). We consider the games induced by the pseu-

docode on the left in Figure 2.6, where the oracles given in each game are defined as in the left of
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OW-ATKKEM(A )

1 : (pk,sk) ←$ Gen(1λ)

2 : ct∗,K ∗ ←Enc(pk)

3 : K ′ ←A OATK
(pk,ct∗)

4 : return 1K ′=K ∗

Oracle ODec(ct)

1 : if ct= ct∗ : return ⊥
2 : K ′ ←Decaps(sk,ct)

3 : return K ′

Figure 2.7: One-wayness games for KEM.

Table 2.1. A KEM scheme KEM= (Gen,Encaps,Decaps) is IND-ATK for ATK ∈ {CPA,CCA,CCA1}

if for any efficient adversary A we have

Advind-atk
A ,KEM :=

∣∣∣∣Pr[IND-ATKKEM(A ) ⇒ 1]− 1

2

∣∣∣∣= negl(λ).

Equivalently, we can consider the games induced by the pseudocode given in the middle in

Figure 2.6, where the oracles given in each game are defined as in the left of Table 2.1. Then, a

KEM scheme KEM= (Gen,Enc,Dec) is IND-ATK for ATK ∈ {CPA,CCA,CCA1} if for any efficient

adversary A we have

Advind-atk′
A ,KEM :=

∣∣∣Pr
[

IND-ATK′1
KEM(A ) ⇒ 1

]
−Pr

[
IND-ATK′0

KEM(A ) ⇒ 1
]∣∣∣= negl(λ).

As in the case of PKE, KEM indistinguishability means that an adversary, given a ciphertext

and a key, should not be able to tell whether the key is encapsulated in the ciphertext or is a

random key. The different flavours (CPA, CCA1, CCA) are analogous to the PKE case.

One-Wayness. We also recall the definition of one-wayness for KEMs.

Definition 2.2.11 (KEM One-Wayness). Let K be the message space, KEM a KEM scheme and

we consider the games defined in Figure 2.7 with the different oracles as defined on the left in

Table 2.1. Then, KEM is OW-ATK, for ATK ∈ {CPA,CCA}, if for any efficient adversary A we

have

Advow-atk
KEM (A ) = Pr[OW-ATKKEM(A ) ⇒ 1] = negl(λ) ,

where Pr[OW-ATKKEM(A ) ⇒ 1] is the probability that the adversary wins the OW-ATK game.

Similarly to the case of PKE, one-wayness means that an adversary cannot recover a key that is

encapsulated in a given ciphertext. In the CCA variant, the adversary has further access to a

decapsulation oracle, with the restriction that the challenge ciphertext cannot be queried.

As in the PKE case, it is easy to show that if the key space is large enough, IND-CPA security

implies OW-CPA in the KEM setting.

Lemma 2.2.2. Let KEM be any KEM. Then, for all adversaries A , there exists an adversary B

18



2.2 Primitives (PKE/KEM/Signatures/PRF)

SUF-CMASig(A )

1 : L ←;
2 : (pk,sk) ←$ Gen(1λ)

3 : m∗,σ∗ ←$ A SIGN(pk)

4 : if Vrfy(pk,m∗,σ∗) and (m∗,σ∗) ̸∈ L

5 : return 1

6 : return 0

SIGN(m)

1 : σ←$ Sign(sk,m)

2 : L ← L∪ {m,σ}

3 : return σ

Figure 2.8: SUF-CMA game.

s.t.

Advow-cpa
KEM (A ) ≤Advind-cpa

KEM (B)+ 1

|K | .

2.2.3 Signature

We recall here the notion of a digital signature scheme.

Definition 2.2.12. A signature scheme is a tuple of three efficient algorithms (Gen,Sign,Vrfy):

• (pk,sk) ←$ Gen(1λ): The key generation function outputs a pair of keys.

• σ←$ Sign(sk,m): The signing function takes as inputs a secret key sk and the message to

sign m, and it outputs a signature σ.

• 0/1 ←Vrfy(pk,m,σ): The verification function takes as inputs a public key pk, the signed

message m, and the signature σ, and it outputs either 0 or 1 (for failure and success,

respectively).

Finally, we say a signature scheme is δ-correct if for all messages m:

Pr

[
Vrfy(pk,m,σ) = 0 :

(pk,sk) ←$ Gen(1λ);

σ← Sign(sk,m)

]
≤ δ

Definition 2.2.13 (SUF-CMA security). We consider the game shown in Figure 2.8. We say a

signature scheme Sig is SUF-CMA if for all efficient adversaries A , we have

Advsuf−cma
Sig (A ) := Pr[SUF-CMASig(A ) ⇒ 1] = negl .

2.2.4 Pseudorandom Function (PRF)

We also recall the notion of Pseudorandom Function (PRF).
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PRFPRF(A )

1 : b ←$ {0,1}

2 : K ←$ K

3 : b′ ←$ A Oprf

4 : return 1b=b′

Oprf (x)

1 : if b = 0 : return PRFK (x)

2 : if b = 1 : return F (x)

Figure 2.9: PRF game, where F : K ×M 7→R is a random function.

Definition 2.2.14. We say PRF : K ×M 7→ R is a pseudorandom function (PRF) if for all

efficient adversaries A , we have

Advprf
PRF(A ) :=

∣∣∣∣Pr[PRFPRF(A ) ⇒ 1]− 1

2

∣∣∣∣= negl ,

where PRF is the game given in Figure 2.9.

2.2.5 Game-based proofs.

All theorems establishing the security of a construction in this thesis are proven using the

well-known game-playing framework formalised by Shoup and Bellare and Rogaway [Sho04;

Bel06a].

In these proofs, we usually start from the game defining the security we want to prove (e.g.

one of the indistinguishability games defined above) instantiated with the primitive we want

to prove secure. Then, the starting game is modified into a succession of hybrids, where each

of these is shown to be negligibly close in terms of adversarial advantage to the previous one.

This is formalised in the following facts.

Fact 1 (Hybrid argument for search-type game). LetΠ, sec and A be any primitive, security

notion, and adversary, respectively, s.t. the adversary’s advantage can be written as

Advsec
Π (A ) := Pr[Γ0(A ) ⇒ 1] ,

where Γ0 is some game. I.e. the security notion considered is defined with a search-type game.

Let Γ1, . . . ,Γn be s.t. |Pr[Γi (A ) ⇒ 1]−Pr[Γi−1(A ) ⇒ 1]| = negl for all i ∈ [n], and Pr[Γn(A ) ⇒
1] = negl. Then,

Advsec
Π (A ) = negl .

Proof. It follows from the fact that Pr[Γ0] can be written as∣∣(Pr[Γ0]−Pr[Γ1]
)+ (

Pr[Γ1]−Pr[Γ2]
)+ . . .+Pr[Γn]

∣∣
and the triangle inequality.
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Fact 2 (Hybrid argument for decision-type game of type I). Let Π, sec and A be any primitive,

security notion, and adversary, respectively, s.t. the adversary’s advantage can be written as

Advsec
Π (A ) := Pr[Γ0(A ) ⇒ 1]−Pr[Γn(A ) ⇒ 1] ,

where Γ0 and Γn are some games. Let Γ1, . . . ,Γn−1 be s.t. |Pr[Γi (A ) ⇒ 1]−Pr[Γi−1(A ) ⇒ 1]| =
negl for all i ∈ [n]. Then,

Advsec
Π (A ) = negl .

Proof. It follows from the fact that |Pr[Γ0]−Pr[Γn]| can be written as∣∣(Pr[Γ0]−Pr[Γ1]
)+ (

Pr[Γ1]−Pr[Γ2]
)+ . . .+ (

Pr[Γn−1]−Pr[Γn]
)∣∣

and the triangle inequality.

Fact 3 (Hybrid argument for decision-type game of type II). Let Π, sec and A be any primitive,

security notion, and adversary, respectively, s.t. the adversary’s advantage can be written as

Advsec
Π (A ) := Pr[Γ0(A ) ⇒ 1]− c ,

where Γ0 and Γn are some games and c ∈Q is a constant. Let Γ1, . . . ,Γn−1 be s.t. |Pr[Γi (A ) ⇒
1]−Pr[Γi−1(A ) ⇒ 1]| = negl for all i ∈ [n], and Γn be s.t. Pr[Γn(A ) ⇒ 1] = c. Then,

Advsec
Π (A ) = negl .

Proof. It follows from the fact that |Pr[Γ0]−c| can be written as |Pr[Γ0]−Pr[Γn]| and Fact 1.

In order to show that two games Γ,Γ′ are indistinguishable (i.e. Pr[Γ]−Pr[Γ′] = negl) the

following lemma, sometimes called the difference lemma [Sho04] or the fundamental lemma

of game-playing [Bel06a], is most useful.

Lemma 2.2.3 (Difference lemma). Let Γ and Γ′ be two games that are identical unless some

event bad occurs. Then, for any adversary A ,∣∣Pr[Γ(A ) ⇒ 1]−Pr[Γ′(A ) ⇒ 1]
∣∣≤ Pr[bad] .

Proof. Since both games are identical unless bad occurs, we have Pr[Γ|bad] = Pr[Γ′|bad]. Also,

note that the probability bad (or bad) occurs is the same in both games. Hence,

Pr[Γ]−Pr[Γ′] = Pr[Γ|bad]Pr[bad]+Pr[Γ|bad]Pr[bad]−Pr[Γ′|bad]Pr[bad]−Pr[Γ′|bad]Pr[bad]

= (
Pr[Γ|bad]−Pr[Γ′|bad]

)
Pr[bad]

≤ Pr[bad]
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H(x)

1 : if LH [x] does not exist :

2 : LH [x] ←$ {0,1}n

3 : return LH [x]

Figure 2.10: Random oracle implemented with lazy sampling. The parameter n should corre-
pond to the output size of the hash function the RO represents.

where the last inequality follows from the fact that the difference between two probabilities is

smaller or equal to 1.

2.2.6 ROM and game-based proofs

The Random Oracle. As briefly explained in the introduction, the random oracle model

(ROM) is an abstraction where hash functions are assumed to be perfectly random functions

that are accessed in a black-box way by the different parties in a security experiment. More

formally, a random oracle can be seen as an oracle that performs lazy sampling and keeps

track of values that have already been queried. Such a behaviour is illustrated in Figure 2.10,

where the list LH is assumed to be empty at the beginning. This representation of the random

oracle (RO) highlights the fact that a RO can be efficiently simulated with lazy sampling. This is

important as in security reductions we want to show that an efficient adversary B can simulate

A ’s environment and use it as a black-box to solve some hard problem.

We show in the following simple example how both the game-playing technique and the ROM

can be used together to prove the security of a construction. More precisely, we demonstrate

that, in the ROM, a OW-CPA PKE can be transformed into an IND-CPA KEM by simply hashing

a random plaintext and encrypting it.

Example 2.2.1. Let PKE = (Gen′,Enc,Dec) be any PKE and KEM = (Gen,Encaps,Decaps) be

the KEM built out of PKE as shown in Figure 2.11, where H is a random oracle. Then, for any

IND-CPA adversary A against KEM, there exists a OW-CPA adversary B against PKE s.t.

Advind-cpa
KEM (A ) ≤ qH ·Advow-cpa

PKE (B) ,

where qH is the number of queries A can make to the random oracle H. Therefore, if PKE is

OW-CPA, then KEM is IND-CPA.

Proof. We start with game Γ, which is the IND-CPA game instantiated with KEM and b = 0.

The game is detailed in Figure 2.11.

We then modify Γ into a game Γ′, where the real challenge key K0 is picked at random (see

Figure 2.11). As long as A does not query H(pt∗), both Γ and Γ′ are identical as K ∗ is picked

uniformly at random the first time H (pt∗) is queried by the game. Let bad be the event that A

22



2.3 Quantum Computing and QROM

Gen(1λ)

1 : return Gen′(1λ)

Encaps(pk)

1 : pt←$ M

2 : K ← H(pt)

3 : ct←Enc(pk,pt)

4 : return ct,K

Decaps(sk,ct)

1 : pt′ ←Dec(sk,ct)

2 : return H(pt′)

Γ(A )

1 : (pk,sk) ←$ Gen(1λ)

2 : pt∗ ←$ M

3 : K0 ← H(pt∗)

4 : ct∗ ←Enc(pk,pt∗)

5 : b′ ←A H (pk,ct∗,K0)

6 : return b′

Γ′(A )

1 : (pk,sk) ←$ Gen(1λ)

2 : pt∗ ←$ M

3 : K1 ←$ K

4 : ct∗ ←Enc(pk,pt∗)

5 : b′ ←A H (pk,ct∗,K1)

6 : return b′

B(pk,ct∗)

1 : K ←$ K

2 : run A H (pk,ct∗,K )

3 : (pt′,h) ←$ LH

4 : return pt′

Figure 2.11: From left to right: OW-CPA PKE to IND-CPA KEM transform, games Γ and Γ′ for
the proof in Example 2.2.1, and adversary B for the same proof. .

queries H(pt∗). Then, by Lemma 2.2.3, we have

Pr[Γ]−Pr[Γ′] ≤ Pr[bad] .

Now, we show that if bad happens, one can build an adversary B that retrieves pt∗. The

OW-CPA adversary B receives its own challenge ciphertext that encrypts pt∗, which is a valid

KEM ciphertext. Therefore, B can simply run A with ct∗ and a random key K . It also manages

A ’s call to H by simulating a random oracle by lazy sampling and managing a list LH , as

shown in Figure 2.10. Note that this perfectly simulates Γ′ for A . Then, if bad happens, then

pt∗ is in the list LH managed by B, which can then simply sample a random query pt out of it

and output it as its answer to the OW-CPA game. The pseudocode of B is given in Figure 2.11.

Overall, B wins when its guess is correct and bad occurred. Thus,

Advow-cpa
PKE (B) = 1

qH
Pr[bad] .

Hence,

Advind-cpa
KEM (A ) = Pr[Γ]−Pr[Γ′] ≤ Pr[bad] = qH ·Advow-cpa

PKE (B) .

2.3 Quantum Computing and QROM

2.3.1 Quantum computation

Providing a complete introduction to quantum information theory and computation is obvi-

oulsly out of the scope of this thesis and we present only the main concepts below.
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Hilbert space and quantum states. Quantum states are vectors in a Hilbert space H , which

in our case will be the complex space C2n
for some n indicating the number of qbits in our

system. These vectors are represented with a ket |·〉 and their conjugate transpose with a bra

〈·|. Moreover, 〈x|y〉 expresses the inner product between two vectors (i.e. states) |x〉 and |y〉.

Qbits. A qbit is simply a state in C2, the smallest space we are interested in (i.e. n = 1). If we

consider the following basis: {|0〉, |1〉}, where |0〉 =
(

1

0

)
and |1〉 =

(
0

1

)
, then each qbit can be

expressed as a linear combination of these vectors of norm 1. I.e. any qbit |ψ〉 can be expressed

as |ψ〉 =α0|0〉+α1|1〉 for α0,α1 ∈C s.t. |α0|2 +|α1|2 = 1. If α0 ̸= 0 and α1 ̸= 0, we say the qbit is

in superposition.

We can generalise the notion above to handle n qbits. That is, one can combine n systems

of 1 qbit to form a system with n qbits via the tensor product ⊗. More precisely, we write

|ψ1, . . . ,ψn〉 := |ψ1〉⊗ · · ·⊗ |ψn〉 ∈C2n
for any qbits |ψi 〉 ∈C2, i ∈ [n].

Quantum states. In general, any (pure) quantum state of n qbits |φ〉 ∈C2n
can be expressed

as a linear combination of a basis of the vector space, i.e. |φ〉 =∑
x αx |x〉, where {|x〉}x is a basis

of the Hilbert space and αx ∈C with
∑

x |αx |2 = 1. We will say the state is in superposition if

there exist x, x ′ s.t. x ̸= x ′, αx ̸= 0 and αx ′ ̸= 0. In this thesis, we will use only the computational

basis of C2n
, that is {|x〉}x∈{0,1}n .

Unitaries and computation. Quantum computation can be performed on quantum states

through unitary transformations described as unitary matrices. A unitary matrix U is s.t. its

conjugate transpose U∗ is its inverse, i.e. UU∗ = U∗U = I , for I the identity. In particular,

every unitary computation is invertible and linear (i.e. it is applied to every state in the

superposition).

A famous example of a unitary is the quantum CNOT gate which, given two qbits |b1,b2〉 with

b1,b2 ∈ {0,1}, outputs |b1,b1⊕b2〉. More generally, applying the CNOT gate on a quantum state∑
b1,b2∈{0,1}αb1,b2 |b1,b2〉 results in the state being transformed to

∑
b1,b2∈{0,1}αb1,b2 |b1,b1 ⊕b2〉.

This illustrates the power of quantum computing: a unitary/gate can be applied on all states

in the superposition at once.

In general, any function f : {0,1}i 7→ {0,1}o that can be computed classically can be imple-

mented quantumly with a unitary that performs the map |x, y〉 7→ |x, y ⊕ f (x)〉, for x ∈ {0,1}i

and y ∈ {0,1}o .

Measurements. In practice, a state in superposition must be observed before any useful value

can be extracted from it, this is where measurement comes into play. A state is measured

according to a basis, which is the computational basis in our case. At measurement, a state
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|φ〉 = ∑
x∈{0,1}n αx |x〉 collapses into a state |x ′〉 with probability |αx ′ |2 for any x ′ ∈ {0,1}n . In

addition, the measurement outputs the value x ′. Informally, this means that even if unitaries

can be applied to all the states in the superposition at once, only one value can be retrieved at

the end of some quantum computation.

Commutation. Let A and B be two quantum operations (i.e. unitaries or measurements). We

say A and B commute if executing A and then B or B and then A in an algorithm does not

affect the final result. We say they ϵ-almost commute if executing A and B in a different order

affects the probability of obtaining a given result by at most ϵ. That is, let A be any algorithm

where A is followed by B and let A ′ be the same as A except B is executed right before A.

Then, ∣∣Pr[A ⇒ x]−Pr[A ′ ⇒ x]
∣∣≤ ϵ

for any output x.

2.3.2 QROM

As stated above, any classically computable function f can be implemented by a unitary and

that includes hash functions. This led to the definition of the Quantum Random Oracle Model

(QROM) [Bon+11], where parties have quantum access to a random oracle. Formally, it means

that participants are given black-box access to a unitary

UH : |x, y〉 7→ |x, y ⊕H(x)〉 ,

where x (resp. y) is in the domain of x (resp. co-domain) and H is a random oracle. We often

write A |H〉 (or even A H when it is clear from the context) to denote the fact that an algorithm

A has black-box access to the unitary UH defined above.

As mentioned in the introduction, access to such a unitary makes QROM proofs more involved

than their classical counterparts, and we present below several results that help overcome

these difficulties.

One-Way to Hiding Lemma (OW2H). We first recall a variant of the well-known one-way to

hiding lemma (OW2H) of Unruh [Unr15] as stated by Hofheinz et al. [HHK17]. Informally, this

lemma states that if an adversary having quantum access to a RO H can distinguish with high

probability between H(x) and a uniform value, then one can extract the value x with high

probability as well.

Lemma 2.3.1 (OW2H [HHK17]). Let A be a quantum adversary making at most qH queries to

the quantum random oracle |H〉 with H : {0,1}ℓ 7→ {0,1}n and outputting 0 or 1. Let ExtA ,|H〉
qH

be
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ExtA ,H (i np)

1 : i ←$ {1, . . . , qH }

2 : run A H (i np) until i -th query |QUERYi 〉
3 : x ′ ← measure input register of |QUERYi 〉
4 : if A did not make i queries : return ⊥
5 : return x ′

Figure 2.12: Extractor Ext for the AOW2H lemma.

the algorithm in Figure 2.12. Then, for any algorithm F that does not call H,∣∣∣Pr
[
A |H〉(i np) ⇒ 1|σ∗ ←$ {0,1}ℓ; i np ← F(σ∗, H(σ∗))

]
−Pr

[
A |H〉(i np) ⇒ 1|(σ∗,K ) ←$ {0,1}n+ℓ; i np ← F(σ∗,K )

]∣∣∣
≤ 2qH

√
Pr

[
σ∗ ←ExtA ,|H〉(i np)|(σ∗,K ) ←$ {0,1}n+ℓ; i np ← F(σ∗,K )

]
.

Extractable random oracle. We also recall the notion of extractable RO-simulator introduced

by Don et al. [Don+22], which is based on Zhandry’s compressed oracle [Zha19].

The definition below is slightly simplified compared to the original version but it will be

sufficient for the proofs presented in this dissertation; we refer the reader to Don et al.’s paper

for more details.

Definition 2.3.1 (Theorem 4.3, Don et al. [Don+22]). We say two quantum queries are indepen-

dent if the input of one does not depend on the output of the other. An extractable RO-simulator

is a tuple S= (S.RO,S.Ext), where S.RO : {0,1}ℓ 7→ {0,1}n is a compressed RO and S.Ext is the

extractor. Then, S satisfies the following properties:

1. As long as S.Ext is never called, S.RO is indistinguishable from a (standard) RO.

2. Subsequent independent queries to S.RO commute.

3. Subsequent independent queries to S.Ext commute.

4. Subsequent independent queries to S.RO and S.Ext 8
p

2/2n-almost commute.

5. Making multiple identical classical queries to S.RO (resp. S.Ext) has the same effect on

the state of S.RO as making one of these queries.

6. Let x̂ ← S.Ext(t ) for some t, and t̂ ← S.RO(x̂) be two subsequent classical queries. Then,

Pr[t̂ ̸= t ∧ x̂ ̸=⊥] ≤ 2/2n .
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COLL(A )

1 : (x1, t1), . . . , (xm , tm) ←A S.RO

2 : for i ∈ {1, . . . ,m} : t ′i ← S.RO(xi )

3 : for i ∈ {1, . . . ,m} : x̂i ← S.Ext(ti )

4 : if ∃i : x̂i ̸= xi and ti = t ′i :

5 : return 1

6 : return 0

Figure 2.13: Collision game for Definition 2.3.1.

Γ f (A )

1 : (t ,o) ←A S.RO

2 : x ← f (o)

3 : h ← S.RO(x)

4 : return 1t=h

Γ′f (A )

1 : (t ,o) ←A S.RO

2 : x⋆← S.Ext(t )

3 : x ← f (o)

4 : h ← S.RO(x)

5 : return 1t=h∧x=x⋆

Figure 2.14: Early extraction games for Lemma 2.3.2.

7. Let t ← S.RO(x) for some x, and x̂ ← S.Ext(t ) be two subsequent classical queries. Then,

Pr[x̂ =⊥] ≤ 2/2n .

8. We consider the collision game in Figure 2.13. Then, for any A making at most q queries

to S.RO and outputting m tuples we have

Pr[COLL(A ) ⇒ 1] ≤ 40e2(q +m +1)3 +2

2n .

Finally, the following lemma will be useful.

Lemma 2.3.2 (Early Extraction). Let Γ and Γ′ be the games described in Figure 2.14. Then,

Pr[Γ⇒ 1]−Pr[Γ′ ⇒ 1] ≤ 2

2n +8
p

2/2n + 40e2(qH +2)3 +2

2n .

Proof. This follows from Corollary 4.7 in Don et al. [Don+22] and the fact that if h = t , where

h = S.RO(x), then Pr[x⋆ =⊥] ≤ 2
2n .

2.4 FO-like Transforms

Fujisaki and Okamoto introduced one of the first generic IND-CPA to IND-CCA transforms for

PKE [FO99; FO13] in 1999, which is detailed in Figure 2.15. This construction illustrates the
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Gen(1λ)

1 : (pk,sk) ←$ Gen′(1λ)

2 : return (pk,sk)

Enc(pk,pt)

1 : k ←$ K

2 : ct1 ← Ek (pt)

3 : ct2 ←Enc′(pk,k;G(k,ct1))

4 : return (ct1,ct2)

Dec(sk, (ct1,ct2))

1 : k ′ ←Dec′(sk,ct2)

2 : if ct2 ̸=Enc′(pk,k ′;G(k ′,ct1)) :

3 : return ⊥
4 : pt′ ← Dk ′ (ct1)

5 : return pt′

Figure 2.15: The original Fujisaki-Okamoto (FO) transform, where (Gen′,Enc′,Dec′) is the
underlying PKE, G is a hash function modelled as a random oracle, and K is the keyspace of
the underlying symmetric cipher (E ,D). The resulting PKE is (Gen,Enc,Dec).

Gen(1λ)

1 : return Gen′(1λ)

Enc(pk,pt)

1 : coins←G(pt)

2 : return Enc′(pk,pt;coins)

Dec(sk,ct)

1 : pt′ ←Dec′(sk,ct)

2 : if pt′ =⊥ or Enc(pk,pt′) ̸= ct
3 : return ⊥
4 : return pt′

Figure 2.16: T transform, where (Gen′,Enc′,Dec′) is the underlying PKE, G is a hash function
modelled as a random oracle, and (Gen,Enc,Dec) is the resulting PKE.

KEM/DEM paradigm, where a PKE transformed into a KEM is used to transport a symmetric

key, which is itself used to encrypt a message of arbitrary length.

Other transforms were introduced in the following years (e.g. [Jea+02; OP01]) but the topic only

took off recently, due to the heavy use of CPA-to-CCA transforms in the NIST PQ proposals. In

particular, several variants of the Fujisaki-Okamoto (FO) transform that build IND-CCA KEMs

out of CPA-secure PKEs have been proposed [SXY18; TU16; Bin+19b]. We recall here four

constructions of Hofheinz et al. [HHK17], which generalise and decompose FO-like transforms

in smaller parts.

T. The first one is the T transform (presented in Figure 2.16), which takes an OW/IND-CPA

PKE PKE′ = (Gen′,Enc′,Dec′) and outputs a rigid OW-PVCA PKE scheme PKE= (Gen,Enc,Dec),

where G : {0,1}∗ 7→ {0,1}λ is a hash function modelled as a RO. Informally, the transform de-

randomises the underlying scheme by computing the random coins as the hash of the message.

Then, the decryption function checks that the ciphertexts are well-formed by re-encrypting

the decrypted message.

Then, the following theorems formally state the security of the T transform in the ROM and

QROM, respectively.

Theorem 2.4.1 (OW-CPA
ROM===⇒ OW-PVCA, Theorem 3.1 [HHK17]). Let G be a hash function

modelled as a random oracle, PKE′ a γ-spread and δ(qG )-correct PKE scheme, and PKE the
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resulting PKE after applying T. Then, for any OW-PVCA adversary A issuing at most qG , qV , qP

queries to G, OVCO, and OPCO, respectively, there exists an OW-CPA adversary B s.t.

Advow−pvca
PKE (A ) ≤ (qG +qP ) ·δ+qV ·2−γ+ (qG +qP +1) ·Advow−cpa

PKE′ (B) ,

where the running time and the number of queries of B are similar to the ones of A . Moreover,

PKE is rigid (and deterministic).

Theorem 2.4.2 (OW-CPA
QROM====⇒ OW-PCA, Theorem 3.1 [HHK17]). Let G be a hash function

modelled as a quantumly accessible random oracle, PKE′ a δ(qG )-correct PKE scheme, and

PKE the resulting PKE after applying T. Then, for any OW-PVCA adversary A issuing at most

qG , qP queries to G and OPCO, respectively, there exists an OW-CPA adversary B s.t.

Advow−pca
PKE (A ) ≤ 8 · (qG +qP +1)2 ·δ+ (1+2qG ) ·

√
Advow−cpa

PKE′ (B) ,

where the running time and the number of queries of B are similar to the ones of A . Moreover,

PKE is rigid (and deterministic).

In addition, the following theorem gives an upper bound on the correctness of the resulting

PKE in the QROM.

Theorem 2.4.3 (Lemma 4.3, [HHK17]). Let PKE′ be δ′-correct and PKE be the PKE obtained

from applying T to PKE′. Then, PKE is δ-correct with

δ≤ 8 ·δ′ · (qG +1)2 ,

where qG is the number of quantum queries one can make to the random oracle.

U⊥ and U̸⊥. We present now two other transforms called U⊥ and U̸⊥. These transforms

convert an OW-PVCA (resp. OW-PCA) PKE into an IND-CCA KEM. The transforms are shown

in Figure 2.17. The only difference between both transforms is that in U̸⊥ the rejection is

implicit, i.e. when an error occurs during decryption a random key is returned instead of the

error symbol. The ROM security of these constructions is formally stated in the following

theorems.

Theorem 2.4.4 (PKE OW-PVCA
ROM===⇒ KEM IND-CCA, Theorem 3.3 [HHK17]). Let H be a

random oracle, PKE a δ-correct PKE scheme, and KEM the resulting KEM after applying U⊥

on PKE. Then, for any IND-CCA adversary A issuing at most qH , qD queries to H and ODec,

respectively, there exists an OW-PVCA adversary B s.t.

Advind−cca
KEM (A ) ≤Advow−pvca

PKE (B) ,

where B has roughly the same running time as A and B makes at most qH queries to both

OPCO and OVCO.

29



Chapter 2. Preliminaries

Gen(1λ)

1 : (pk,sk) ←$ Gen′(1λ)

2 : return (pk,sk)

Encaps(pk)

1 : pt←$ M

2 : ct←Enc′(pk,pt)

3 : K ← H(pt,ct)

4 : return ct,K

Decaps(sk,ct)

1 : pt′ ←Dec′(sk,ct)

2 : if pt′ =⊥: return ⊥
3 : return H(pt′,ct)

Gen(1λ)

1 : (pk,sk) ←$ Gen′(1λ)

2 : s ←$ M

3 : sk← (sk, s)

4 : return (pk,sk)

Encaps(pk)

1 : pt←$ M

2 : ct←Enc′(pk,pt)

3 : K ← H(pt,ct)

4 : return ct,K

Decaps(sk,ct)

1 : parse sk, s ← sk
2 : pt′ ←Dec′(sk,ct)

3 : if pt′ =⊥: return H(s,ct)

4 : return H(pt′,ct)

Gen(1λ)

1 : (pk,sk) ←$ Gen′(1λ)

2 : return (pk,sk)

Encaps(pk)

1 : pt←$ M

2 : ct←Enc′(pk,pt)

3 : tag← H ′(pt)

4 : ct← (ct,tag)

5 : K ← H(pt)

6 : return ct,K

Decaps(sk,ct)

1 : parse ct,tag← ct
2 : pt′ ←Dec′(sk,ct)

3 : if pt′ =⊥ or H ′(pt′) ̸= tag :

4 : return ⊥
5 : return H(pt′)

Figure 2.17: U⊥ (top), U̸⊥ (middle), and QU⊥
m (bottom) transforms from Hofheinz et

al. [HHK17]. PKE′ = (Gen′,Enc′,Dec′) is the underlying PKE that is transformed into a KEM
KEM= (Gen,Encaps,Decaps), and H , H ′ are hash functions modelled as random oracles.

Theorem 2.4.5 (PKE OW-PCA
ROM===⇒ KEM IND-CCA, Theorem 3.4 [HHK17]). Let H be a random

oracle, PKE a δ-correct PKE scheme, and KEM the resulting KEM after applying U̸⊥ on PKE.

Then, for any IND-CCA adversary A issuing at most qH queries to H, there exists an OW-PCA

adversary B s.t.

Advind−cca
KEM (A ) ≤Advow−pca

PKE (B)+ qH

|M | ,

where the running time of B is roughly the same as the one of A and B makes at most qH

queries to OPCO.

QU⊥
m . The last transform we present is the one called QU⊥

m , presented at the bottom of

Figure 2.17. The difference with U⊥ and U̸⊥ is that QU⊥
m attaches a confirmation hash to the

ciphertext, which is then checked at decapsulation. This allows for an easier proof in the

QROM, and the security of the transform in this model is stated in the following theorem. We

note that QU⊥
m needs the underlying PKE to be rigid.

Theorem 2.4.6 (PKE OW-PCA
QROM====⇒ KEM IND-CCA, Theorem 4.5 [HHK17]). Let H , H ′ be

quantumly accessible random oracles, PKE a δ-correct rigid PKE scheme, and KEM the resulting
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2.4 FO-like Transforms

Figure 2.18: Transforms and results from Hofheinz et al. [HHK17]. Solid arrows denote QROM
(thus ROM) security, dashed arrows denote ROM security.

KEM after applying QU⊥
m on PKE. Then, for any IND-CCA adversary A issuing at most qH

(resp. qH ′) queries to H (resp. H ′), there exists an OW-PCA adversary B s.t.

Advind−cca
KEM (A ) ≤ (2qH ′ +qH +2qD ) ·

√
Advow−pca

PKE (B)+δ ,

where the running time of B is roughly the same as the one of A and B makes at most qD qH ′

queries to OPCO.

Summary. We present an illustration of the different transforms in Figure 2.18. In short, the T
construction builds a rigid OW-P(V)CA PKE from a OW-CPA PKE in both the ROM and the

QROM. Then, in the ROM, both U⊥ and U̸⊥ can be used to build an IND-CCA KEM from the

PKE output by T, while in the QROM the QU⊥
m transform can be employed.
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3 Classical Misuse Attacks on NIST
Round 2 PQC: The Power of Rank-
based Schemes

In this chapter, we study the resistance against KR-PCA attacks of the CPA-secure PKEs under-

lying several NIST proposals. That is, most PQ IND-CCA KEMs are built applying a FO-like

transform to a IND/OW-CPA PKE; however, while the CPA scheme is not meant to be secure

if the secret key is used more than once, it is usually simpler and more efficient than its

strongly secure counterpart. Therefore, the threat of misuse of the weaker construction by

non-experts in the implementation stage is high. For instance, if the CPA-secure PKE is part of

a key-exchange protocol and the secret key is reused, an adversary might be able to mount

attacks by sending carefully crafted ciphertexts to the server and observe its behaviour while

trying to establish a shared secret (e.g. the server might return errors when the shared secret

on the server side does not match the adversary’s). This type of attacks is sometimes called

reaction attacks in the literature, and the plaintext-checking attack (PCA) model somewhat

captures these.

Another concern is the mis-implementation of the FO transform. For example, it was men-

tioned by Lepoint [Lep18] that badly implemented KEMs could leak information about the

underlying CPA construction via side channels. More precisely, these implementations leaked

whether the decryption of a ciphertext was correct or not, and several timing attacks exploiting

this flaw were subsequently proposed (e.g. [DAn+19b; Bet+19]). Again, these side-channel

attacks can be abstracted as plaintext-checking attacks.

The content of this chapter is a joint work with Serge Vaudenay and was published at ACNS

2020 [HV20]. The technique used to mount our KR-PCA attacks is inspired by the one we devel-

oped in a previous work published at EUROCRYPT 2019 [Băe+19]. At the time of publication,

the NIST had announced the proposals that passed to the second round of the standardis-

ation process, and these are the schemes considered in this chapter. It is worth noting that

parameters of the algorithms that passed to the third round and beyond (e.g. Kyber) might

have changed, and therefore the attacks presented below might not apply as is to these newer

versions.
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Chapter 3. Classical Misuse Attacks on NIST Round 2 PQC: The Power of Rank-based
Schemes

Table 3.1: KR-PCA on NIST round 2 post-quantum cryptosystems. For each attack, we report
the number of unknowns in the key, the number of oracle calls to recover the private key, and
the expected number of oracle calls, respectively. Values are rounded to the closest power of 2.
The results presented in this thesis are highlighted.

Schemes Unknowns max. #queries E[#queries]
CRYSTALS-Kyber-512 210 211 210

Frodo-640 [Băe+19] 212 216 -
HQC-128 215 216 216

LAC-128 29 211 211

NewHope1024 [QCD19a] 210 - 220

Round5 (HILA5) [Ber+18] 210 - 213

RQC-I 213 267 ≤ 238

SABER (LightSaber) 29 211 211

3.1 Contributions

We present several key-reuse attacks in the KR-PCA model (see Definition 2.2.7). More precisely,

we design KR-PCA attacks against the following NIST round 2 proposals: HQC, LAC, CRYSTALS-

Kyber, SABER, and RQC. In our attacks (except the one against RQC), only a few thousands

queries to the oracle are needed to recover the private key. Moreover, the complexity is

polynomial in the size of the parameters. The only exception is RQC [Mel+19a], a rank-

metric proposal, for which our best attack is exponential (but still practical for the proposed

parameters). We report our and other existing results against round 2 candidates in Table 3.1.

We included external results only when the attack was in the same model as ours and targeted

explicitly a version of a cryptosystem submitted to the NIST process. This does not mean that

other round 2 candidates are not vulnerable to existing reaction attacks. Actually, apart from

the schemes targeted in this thesis, nearly all round 2 candidates have existing reaction attacks

against them or similar schemes (e.g. attacks against ROLLO [Sam+19], LEDACrypt [FHZ18],

NTRU [How+03], the attack by Guo et al. [GJS16] probably works on BIKE, etc.).

For each scheme, we indicate the number of unknowns in the secret key in Zq , the maximal

and expected number of queries necessary to recover the key. Concretely, the number of oracle

calls can be seen as the number of times the key must be reused before the adversary can

recover it. As a proof-of-concept, we also implemented the attacks against CRYSTALS-Kyber

and SABER.

In addition, we show that the learning problem is hard in the rank-metric for some parameters.

As most key-reuse attacks solve an instance of the learning problem in order to recover the key,

this result demonstrates that such a strategy is not applicable to rank-based schemes. We stress

that this result does not prove that efficient KR-PCA are impossible in the rank-metric but that

common techniques are not applicable, which is still significant. From a more information-

theoretical point of view, this confirms the intuition that the rank distance between a secret
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and a given value leaks much less information on the secret than other distances such as

Hamming.

3.2 Related Work

Reaction attacks is an old topic in cryptography and one of the most famous examples is

Bleichenbacher’s attack against RSA published in 1998 [Ble98]. The term reaction attack was

probably first mentioned by Hall et al. in 1999 [HGS99]. In that paper, the authors showed that

in the McEliece scheme, an adversary can recover a plaintext by observing decryption results

of erroneous ciphertexts. In 2003, Howgrave-Graham et al. presented a reaction attack against

the NTRU cryptosystem, which recovers the secret key [How+03]. More recently, several key-

reuse and reaction attacks against post-quantum cryptosystems were published (e.g. attacks

against QC-MDPC [GJS16], LEDApkc [FHZ18], NewHope [Bau+19], HILA5 [Ber+18], etc.). In

2016, Fluhrer [Flu16] and Ding et al. [Din+17] showed how key-reuse can be exploited against

Ring-LWE based schemes.

In 2019, we introduced a framework capturing the similar structure shared by lattice-based

proposals [Băe+19]. In the same paper, the notion of key-recovery under plaintext-checking

attack (KR-PCA) was presented, which formalised the concept of reaction attacks. More

notably, we designed several misuse attacks against NIST candidates. It was shown that

with a few thousand queries, many proposals can be broken if the secret key is reused. The

algorithms attacked were (R.)EMBLEM, Frodo, KINDI, LIMA, LOTUS and Titanium. However,

results against several NIST round 2 candidates were missing and we complete the picture in

this chapter.

In that same paper [Băe+19], we also introduced the concept of learning problem where an

adversary tries to recover a secret value, having access to an oracle that returns whether the

distance between the secret and a given input is below some threshold. It was shown that an

efficient learning algorithm was sufficient to design a practical KR-PCA attack in most cases.

Interestingly, many key-reuse attacks solve an instance of the learning problem in one way or

another in order to recover the key (e.g. [Băe+19; Bau+19; Din+17]).

In an independent and concurrent work, D’Anvers et al. [DAn+19b] introduced a timing attack

against LAC similar to our KR-PCA attack. Finally, in another independent and concurrent

work, Qin et al. [QCD19b] presented a reaction attack against Kyber similar to ours. The

performance of their best attack is similar to ours, even if our algorithm seems to perform

slightly better on average, at least for Kyber512.

Subsequent work. Our results proved to be useful for designing side-channel attacks against

the schemes we targeted. For instance, Ueno et al. [Uen+22] used our key-recovery algorithm

against Lightsaber to perform a side-channel attack against that same algorithm. Another

example is the fault-injection attack against Kyber by Xagawa et al. [Xag+21], which is inspired

by our KR-PCA attack presented in Section 3.5.
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LEARNΨ,ρ,∥·∥(A )

1 : δ←$Ψ

2 : δ′ ←A O learn

3 : return 1δ′=δ

Oracle O learn(x)

1 : return 1∥δ+x∥≤ρ

Figure 3.1: Learning game.

3.3 The Learning Problem

The learning problem [Băe+19] is defined by the game detailed in Figure 3.1, which is parametrised

by a threshold ρ, a secret value distributionΨ, and a norm ∥ ·∥. The adversary has access to

the public parameters and to the oracle O learn and tries to guess the secret δ.

We showed [Băe+19] that for most of the lattice-based schemes of the NIST competition,

the KR-PCA game reduces to the LEARN game. In addition, for most common norms (e.g.

Hamming, L1 in Zq , ...) the learning game can be solved in a logarithmic number of queries in

the size of the secret domain D (i.e. O(log2(|D|)) for δ ∈ D). This led to the design of several

efficient KR-PCA attacks.

3.4 KR-PCA Attack against LAC

3.4.1 The LAC-CPA algorithm

We start by explaining how the LAC cryptosystem [Lu+19] works. Let Rq :=Zq [X ]/(X n +1) for

some parameter n. For v ∈Rq , x ∈Zq , let h(v, x) := |{i : vi = x, i ∈ [n]−}| be the function that

counts the number of coefficients set to x in v . Then, let Sw := {v : v ∈Rq ,h(v,−1) = h(v,1) =
w
2 } for some even parameter w be the set of polynomials in Rq that contains exactly w

2 1s and

−1s. In addition, we consider a centered binary distribution ψσ on {−1,0,1} with variance σ, a

BCH code [Hoc59; BR60] of error-correcting capacity t with codewords in Zℓv
q , and a message

space M := {0,1}k , where σ, t , ℓv , and k are given as parameters.

The scheme then works as follows:

• Gen: Sample (sk,d) ←$ S2
w and A ←$ Rq . Set pk= (A,B = A× sk+d).

• Enc(pk,pt ∈ {0,1}k ): Sample (t ,e, f ) ←$ S2
w ×Ψℓv

σ and output

(U ,V ) ←
(
t × A+e, (t ×B)ℓv + f +

⌈ q

2

⌋
×encodeBCH(pt)

)
.

• Dec(sk,U ,V ): Compute W ←V − (U × sk)ℓv and output decode(W ), where decode com-
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putes W ′ with

W ′
i =

1, if ⌈ q
4 ⌋ ≤Wi < ⌈3q

4 ⌋
0, otherwise

, (3.1)

and then outputs decodeBCH(W ′).

3.4.2 KR-PCA

W.l.o.g. we use pt= 0k in the KR-PCA attack. Then, we have

encodeBCH(pt) = 0ℓv ∈Zℓv
q .

Now, since the BCH code can correct up to t errors, the decryption of some ciphertexts (U ,V )

will be incorrect (i.e. OPCO(pt, (U ,V )) = 0) iff for at least t of the components of W we have

Wi ∈ [⌈ q
4 ⌋,⌈3q

4 ⌋) by Eq. (3.1). Therefore, we can consider the following plaintext-checking

attack (see Figure 3.2 for the detailed pseudocode).

First, we set U :=−(⌈ q
4 ⌋−1) ∈Rq (i.e. a constant polynomial). Then, we observe that

1+ (−U × sk)i ∉
[
−⌈q

4
⌋,⌈q

4
⌋
)
⇔ ski = 1 (3.2)

−2+ (−U × sk)i ∉
[
−⌈q

4
⌋,⌈q

4
⌋
)
⇔ ski =−1. (3.3)

Next, let V = 1 ∈ Zℓv
q be the vector with 1 in every component. By Eq. (3.2), if there are

more than t ones in sk, V − (U × sk)ℓv will decode incorrectly and OPCO(pt, (U ,V )) will re-

turn a failure. Then, by iteratively cutting the number of 1s in V by half and querying

the oracle, one can perform a binary search to find Ṽ = (Ṽ0, . . . ,Ṽℓv ),Ṽi ∈ {0,1} s.t. Ṽ − (U ×
sk)ℓv contains exactly t errors. Finally, given this vector Ṽ , one can perform the following

algorithm.

1. Let V := Ṽ and J := {i : Ṽi ̸= 1} be the subset of indices i for which Ṽi (= Vi ) is not 1.

Then, let’s pick some i ∈J and set Vi = 1. If the plaintext-checking oracle returns an

error on (pt, (U ,V )), it means that t +1 errors have been detected and thus the decoding

of the i th component failed. In turn, that implies that condition in Eq. (3.2) is fulfilled.

Hence, we know that ski = 1. Otherwise, if the oracle returns no error, we set Vi =−2

and query again. If an error is returned it means ski =−1 by Eq. (3.3), otherwise sk= 0.

One can iterate for every i ∈ J . Thus, at the end of this step, we recovered all ski s.t.

i ∈J .

2. To get the other components of sk, we set V := Ṽ as in the beginning of step 1 but we

add an extra error such that V − (U ×sk)ℓv contains t +1 errors (we can do it easily since

we know some values ski ). Then, for each i s.t. Vi = 1 (i.e. i ∉J ), we proceed as follows.

We set Vi = 0 and query the oracle. If the oracle does not return an error, it means the i th

component was part of the t +1 errors (i.e. Eq. (3.2) was fulfilled) and therefore ski = 1.
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Otherwise, if the oracle returns an error, we thus know ski ∈ {−1,0}. Let I be the indices

of such components.

3. Set V := Ṽ (i.e. V − (U ×sk)ℓv contains t errors). For each i ∈I , set Vi =−2. If the oracle

returns an error, it means that Eq. (3.3) is fulfilled and thus ski =−1, otherwise ski = 0.

Hence, we can recover all components ski for i ∈ {1, . . . ,ℓv }.

3.4.3 Remarks and results

Note that we assumed that (sk)ℓv contained more than t ones for the binary search to succeed

in finding Ṽ . If this is not the case, we can still perform the attack by first looking for Ṽ ,Ṽi ∈
{−1,0} s.t. the decryption contains t errors and modify the signs in the attack. Note that for the

parameters considered by LAC authors, it is very unlikely that sk contains less than t 1s (same

for −1s). For example, for LAC128 (n = 512, w = 256,ℓv = 400, t = 16,σ= 1), the probability

to have less than t ones and minus ones in (sk)ℓv if we assume each component i.i.d. with

Pr[ski = 0] = Pr[ski ∈ {−1,1}] = 1
2 is

Pr
[|{i : ski = 0,ski ∈ (sk)ℓv }| > ℓv − t

]= ℓv∑
i=ℓv−t+1

1

2ℓv

(
ℓv

i

)
≈ 2−311.

In the worst case, we perform the binary search and query the oracle 2 times for each com-

ponent, thus the total number of queries is log2(ℓv )+2×ℓv . Hence, since ℓv = 400, we can

recover 400 unknowns of sk in at most log2(400)+2×400 ≈ 210 queries.

Now, the attack presented above can recover the ℓv leftmost coefficients. We can recover the

n −ℓv remaining coefficients by applying the same attack using U = (⌈ q
4 ⌉−1)×X n−ℓv . This

will shift the n−ℓv coefficients to the leftmost positions (note that −X n = 1 in Rq ). Hence, we

need to apply at most two times the attack, resulting in a total number of queries smaller than

211.

Also, in the round 2 specifications of LAC [Lu+19], each component of V has its 4 least signifi-

cant bits dropped after encryption. At decryption, each component is thus multiplied by 24.

This does not impact our attack as Eq. (3.2)-(3.3) still hold with ±24 instead of 1,−2.

3.5 Misuse Attack against CRYSTALS-Kyber

3.5.1 Kyber-CPA

We first describe the CPA-secure PKE underlying Kyber, which is called Kyber-CPA. As in LAC,

the scheme works in Rq :=Zq [X ]/(X n+1) for some prime parameter q . Elements are sampled

from a distributionΨη which is computed as
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LAC_KR_PCA(pk)

1 : (A,B) ← pk
2 : pt← 0k

3 : U ←−
(⌈ q

4

⌋
−1

)
∈Rq

4 : Find Ṽ s.t. decode
(
Ṽ −U × sk

)
detects t errors.

5 : J ← {
i : Ṽi ̸= 1

}
6 : for i ∈J :

7 : V ← Ṽ ; Vi ← 1

8 : r ←OPCO(pt, (U ,V ))

9 : if r = 0 :

10 : ski ← 1; continue

11 : Vi ←−2; r ←OPCO(pt, (U ,V ))

12 : if r = 0 :

13 : ski ←−1; continue

14 : ski ← 0

15 : Set Ṽ ′ s.t. decode(V −U × sk) detects t+1 errors

16 : I =;
17 : for i ∈ [ℓv ]− \J :

18 : V ← Ṽ ′; Vi ← 0

19 : r ←OPCO(pt, (U ,V ))

20 : if r = 1 :

21 : ski ← 1; continue

22 : I ←I ∪ {i } // ski ∈ {−1,0}

23 : for i ∈I :

24 : V ← Ṽ ; Vi ←−2

25 : r ←OPCO(pt, (U ,V ))

26 : if r = 0 :

27 : ski ←−1; continue

28 : ski ← 0

29 : return sk

Figure 3.2: KR-PCA adversary against LAC-CPA.
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Ψη

{(ai ,bi )}i∈[η] ←$ {0,1}2×η

return
η∑

i=1
(ai −bi )

with η = 2. Thus, Ψη returns a value in {−2,−1,0,1,2}. For a polynomial P ∈ Rq , we write

P ←$Ψη to denote that each component of P is sampled independently fromΨη. Moreover,

we define

compress(x,d) :=
⌈

2d

q
×x

⌋
mod 2d

decompress(x,d) :=
⌈

q

2d
×x

⌋
.

Such functions guarantee that for any x ∈Zq , we have

∣∣∣〈x −decompress(compress(x,d),d)〉q

∣∣∣≤ ⌈
q

2d+1

⌋
.

When we apply these functions to vectors or polynomials in Rq , we assume they are applied

to each coefficient. Then, Kyber-CPA works as follows, where n,k,du ,dV ∈Z are parameters.

• Gen: Sample A ←$ Rk×k
q and (sk,d) ←$ (Ψk

η)2. Set pk← (A,B) = (A, A× sk+d).

• Enc(pk,pt ∈ {0,1}n): Sample (t ,e, f ) ←$ (Ψk
η)2 ×Ψη. Compute (U ,V ) ← (t × A+e, t ×B +

f +⌈ q
2

⌋×pt) ∈Rk
q ×Rq . Output (compress(U ,dU ),compress(V ,dV )).

• Dec(sk,U ′,V ′): Compute (U ,V ) ← (decompress(U ′,dU ),decompress(V ′,dV )). Return

compress(V −U × sk,1).

We note that with the parameters proposed by the authors, we have

compress(x,1) =
0, if −⌈ q

4 ⌋ ≤ 〈x〉q ≤ ⌈ q
4 ⌋

1, otherwise
. (3.4)

Finally, we define δ as V −U × sk= δ+encode(pt).

3.5.2 KR-PCA

From now on, we consider the parameters proposed by the authors for the round 2 version

of Kyber512, namely n = 256, q = 3329,η= 2,dU = 10, and dV = 3. Let’s also assume k = 1 for

now. In the plaintext-checking attack, we use the message with all components set to 0 (i.e.

pt= 0 ∈Rq ) for the sake of simplicity, although some minor changes would allow the attack
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to work for any pt. In addition, we let ρ := ⌈ q
4 ⌋. Then, by the definition of Dec and Eq. (3.4),

we know the plaintext-checking oracle (PCO) will return 1 (i.e. success) iff |〈δi 〉q | ≤ ρ,∀i ∈ [n].

First, we state the following lemma.

Lemma 3.5.1. Let U :=−⌈ q
4

⌋
/2 =−ρ/2 be a constant polynomial and U ′ := compress(U ,dU ).

Given ki ∈ {−3, . . . ,4}, i ∈ [n], let V ′ := (0, . . . ,ki , . . . ,0) be the polynomial with ki in the i -th

coefficient and 0 elsewhere. Then, for pt= 0 and the parameters of Kyber512, we have

OPCO(pt, (U ′,V ′)) = 1 ⇔
∣∣∣∣〈ski × ρ

2
+ki × ρ

2

〉
q

∣∣∣∣≤ ρ.

Proof. First, we observe that for the given parameters, decompress(U ′,dU ) =U .

Then, for V ′ = (0, . . . ,ki , . . . ,0), ki ∈ {−3, . . . ,4} we have V := decompress(V ′,dV ) = (0, . . . ,ki ×
ρ
2 , . . . ,0) because

decompress(ki ,dV ) =
⌈ q

8
×ki

⌋ ∗= ki ×
⌈ q

4

⌋
/2 = ki × ρ

2
, (3.5)

where the ∗ equality holds with the parameters q = 3329 and ki ∈ {−3, . . . ,4}.

Let δ=V −U × sk. Then, for all j ∈ [n], j ̸= i

δ j = 0− sk j ×U = sk j × ρ

2
∈ [−ρ,ρ]

since sk j ∈ {−2, . . . ,2} and U =−ρ/2 is a constant polynomial. For j = i we have δi = ki × ρ
2 +

ski × ρ
2 . Now, since δ j ∈ [−ρ,ρ] for all j ̸= i , an error in the decoding can only happen in the

i -th component. Hence, querying OPCO(pt, (U ′,V ′)) is equivalent to querying some oracle

O learn(ki ) = 1∣∣∣〈αi+ki× ρ

2 〉q

∣∣∣≤ρ , where αi = ski × ρ
2 ∈ [−ρ,ρ].

Note that the oracle O learn(ki ) in the proof above is similar to the one in the learning game

defined in Figure 3.1. Now, we set ki := −(k ′
i +2) for some k ′

i ∈ {−2, . . . ,1}, αi := ski × ρ
2 and

(U ′,V ′) as in Lemma 3.5.1. Then, if the condition

|αi +ki | =
∣∣∣αi −ρ−k ′

i ×
ρ

2

∣∣∣≤ ⌈q/2⌋ (3.6)

holds, then

OPCO(pt, (U ′,V ′)) = 1 ⇔|〈αi −ρ−k ′
i ×

ρ

2
〉q | ≤ ρ (3.6)⇔

|αi −ρ−k ′
i ×

ρ

2
| ≤ ρ⇔−ρ ≤αi −ρ−k ′

i ×
ρ

2
≤ ρ⇔

k ′
i ×

ρ

2
≤αi ≤ 2ρ+k ′

i ×
ρ

2
⇔ k ′

i ×
ρ

2
≤αi ⇔ k ′

i ≤ ski

where the first equivalence follows from Lemma 3.5.1, the second to last equivalence follows
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from αi ≤ ρ and k ′
i ×

ρ
2 ≤ ρ (hence the upper bound on αi always holds), and the last because

αi =−ski ×U = ski × ρ
2 . Hence, by setting ki =−(k ′

i +2) and (U ′,V ′) as in Lemma 1, one can

perform a binary search and recover ski by querying OPCO(0, (U ′,V ′)) and varying k ′
i . In order

for condition (3.6) to hold, we start with k ′
i = 0. Then, in the further iterations the condition

holds for any αi ,k ′
i ×ρ/2 ∈ [−ρ,0] or αi ,k ′

i ×ρ/2 ∈ [0,ρ].

The last difficulty is in the case where the final interval is [1,2] (i.e. we know ski ∈ {1,2} after

some iterations). In this case, we would need to pick k ′
i = 2 and set V ′

i = −(k ′
i + 2) = −4.

However, in this case the ∗ equality in Equation (3.5) of the proof of Lemma 3.5.1 does not

hold. A solution is to set V ′
i =−1 and U ′ = compress(ρ2 ,dU ) before querying OPCO(0n , (U ′,V ′)).

Then, for ski ∈ {1,2} we have ∣∣∣−ρ
2
− ski × ρ

2

∣∣∣≤ ρ⇔ ski = 1.

Hence, if the query returns a success we can set ski ← 1, otherwise ski ← 2.

Finally, in the general case where k > 2, one can simply iterate the attack k times, moving U ′

around the vector in Rk .

We give the full KR-PCA adversary in Figure 3.3.

3.5.3 Efficiency and implementation

Since we do 1 binary search with at most 3 queries and the total number of unknowns is

n ×k = 256×2 = 512 in Kyber512, one can recover sk in at most 3×512 = 1536 queries. In

addition, the number of queries in the binary search is only 2 when ski ∈ {−2,−1,0}. The

probability that happens given ski ←$ Ψη is Pr[ski ∈ {−2,1,0}] = 11
16 . Hence, E[#queries] =

512× (11
16 ×2+ 5

16 ×3
) = 1184. We implemented a proof of concept of the attack in Sage for

k = 1, which confirms these numbers.

Finally, we note that the only differences between Kyber512 and the more secure versions

are the parameter k and the compression factors dU ,dV . For the higher security levels, the

compression is less aggressive thus does not impact our attack and the number of queries

required increases linearly with k.

3.6 Misuse Attack against SABER

3.6.1 SABER-CPA

SABER [DAn+19a] works with vectors and matrices where components are polynomials in Rq

for some integer q , as in Kyber. Components of the secret key are sampled from a centered

binomial distribution Ψη, where the sampled elements are in the range [−η/2,η/2]. We apply

our attack to the weaker version of SABER, namely LightSaber. In this version, the parameters
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KR_PCA_KYBER(pk)

1 : (A,B) ← pk;ρ←
⌈ q

4

⌋
2 : pt← 0 ∈Rq

3 : U ′ ← compress(−ρ/2,dU ); U ′
2 ← compress(ρ/2,dU )

4 : for ℓ ∈ [k]

5 : We write U ′ (resp. U ′
2) for the vector in Rk

q with polynomial U ′ (resp. U ′
2)

6 : at position ℓ and 0 ∈Rq elsewhere.

7 : for i ∈ [n] :

8 : V ′ ← 0 ∈Rq

9 : a ←−2; b ← 2

10 : while b > a : // Binary search to find ski

11 : c ←
⌈

b +a

2

⌉
; V ′

i ←−2− c // decompress(V ,dV ) =−ρ− c × ρ

2

12 : if c = 2 : // special case

13 : V ′
i ←−1; r ←OPCO(pt, (U ′

2,V ′))

14 : if r = 1 : a ← 1

15 : else : a ← 2

16 : continue

17 : r ←OPCO(pt, (U ′,V ′))

18 : if r = 1 : // ski ≥ c

19 : a ← c

20 : else :

21 : b ← c −1

22 : skℓ,i ← a

23 : return sk

Figure 3.3: KR-PCA adversary against Kyber-CPA.
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are eq = 13,ep = 10,eT = 3, q = 2eq , p = 2ep ,T = 2eT ,η= 10,n = 256 and k = 2. We also define

the polynomial h ∈ Rp with all coefficients equal to 2ep−2 + 2ep−eT −1 + 2eq−ep−1 = 196 and

the polynomial h′ ∈Rp with all coefficients set to 2eq−ep−1 = 4. The × operation here is the

standard vector/matrix multiplication with component-wise polynomial multiplication (most

elements are matrices or vectors of polynomials). The CPA-secure PKE underlying SABER

(that we call SABER-CPA) works as follows.

• Gen: Sample sk ←$ (Ψn
η )k ∈ Rk

q , A ←$ Rk×k
q and set d ∈ Rk

q as the vector with each

coefficient set to h′. Then, compute B ← (A× sk+d) ≫ (eq − ep ) ∈Rk
p where ≫ is the

component-wise bitshift operation. Then, set pk := (A,B).

• Enc(pk,m ∈ {0,1}n): Sample t ←$ (Ψn
η )k , set e ∈Rk

q as the vector with each coefficient set

to h′, and compute U ← (A × t + e) ≫ (eq − ep ) ∈Rk
p . Set V ← (B T × t +h −2ep−1m) ≫

(ep −eT ) ∈RT and output (U ,V ).

• Dec(sk, (U ,V )): Output (U T × sk−2ep−eT V +h) ≫ (ep −1) ∈R2.

Let Wi := (U × sk)i −128×Vi +196. Then, a decrypted component can be written as

Dec(sk, (U ,V ))i =
0, if Wi < 2ep−1 = 29

1, if Wi ≥ 2ep−1 = 29
.

3.6.2 KR-PCA

The idea of the Plaintext-Checking attack is similar to the one used in the previous section.

However, here we have to deal with the addition of the polynomial h = 196+ . . .+196 ·X n−1.

Moreover, the domain of the components of the secret key is {−5, . . . ,5}, which is much larger

than in Kyber.

First, we consider k = 1, pt = 0n and V = 0 ∈ RT . Then, for any constant polynomial U ∈
[−⌊196

5 ⌋,⌊196
5 ⌋] and ski ∈ {−5, . . . ,5}, we have

Wi = (U × sk)i +196 < 29 ∀i ∈ [n]− ⇐⇒ OPCO(pt, (U ,V )) = 1.

This means that if we set V = vi ·X i (i.e. only the i -th term is non-null), we have the following

equivalence

OPCO(pt, (U ,V )) = 0 ⇐⇒ (U × sk)i −2ep−eT vi +196 ≥ 29.

In other words, an error can occur only in the i -th component. Let vi = 2, then −2ep−eT vi +196

(mod p) = 964. Now for c ∈ {2,3,4,5}, we have

OPCO
(
pt,

(
60

c
,2X i

))
= 1 ⇐⇒ 964+ ski × 60

c
(mod p) < 512 ⇐⇒ ski ≥ c.
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similarly, for c ∈ {−5, . . . ,−2}

OPCO
(
pt,

(
60

c
,2X i

))
= 1 ⇐⇒ 964+ ski × 60

c
mod p < 512 ⇐⇒ ski ≤ c.

Hence, by querying OPCO(pt, (U , vi ·X i )) with U = 60
c one can perform a binary search to find

all ski s.t. ski ∈ {−5, . . . ,−2,2, . . . ,5}. Let I be the set of indices of such components.

In a second step, we want to find all ski ∈ {−1,0,1}. As in the previous step, we can set

U =±60
1 ,V = 2X i . The problem is that in this case U ∉ [−⌊196

5

⌋
,
⌊196

5

⌋]
and therefore it is not

guaranteed that an error will occur only in the i -th component. However, since we know every

sk j , j ∈I , we can find two vectors Ṽ ± =∑
j∈I v±

j ·X j s.t. OPCO(pt, (±60,Ṽ ±)) = 1. Hence, by

setting U =±60 and V = Ṽ ±+2X i , one can find the remaining ski ∈ {−1,0,1}. Finally, for k > 1,

we can simply shift the polynomial U in a vector of size k and apply the same algorithm k

times. The full algorithm is given in Figure 3.4.

3.6.3 Efficiency and implementation

The binary search for one secret component takes at most ⌈log(η)⌉ queries and there are k ×n

components. For LightSaber, it means that one can recover sk in at most 4×512 = 211 queries.

The higher security levels for SABER require a less aggressive compression (as in Kyber) and

a smaller domain for the components of the secret key. It means that a similar attack can

be applied. For Saber and FireSaber, 3× 768 ≈ 211 and 3× 1024 = 3072 queries would be

needed, respectively. Interestingly, the maximal number of queries required for Saber would

be roughly the same as for LightSaber. As a proof of concept, we implemented the attack

against LightSaber using the reference implementation in C.

Finally, we leave as a future improvement the optimisation of the way the value c is picked in

the binary search. Following the results presented in [Băe+19], it should be feasible to design a

binary search algorithm with an expected number of queries close to H (ski ), where H (·) is the

Shannon entropy. For instance, in LightSaber we have H(ski ) ≈ 2.7.

3.7 Misuse Attack against HQC

We briefly explain here how the attack against Lepton presented in our previous work [Băe+19]

can be applied to HQC. The HQC [Mel+19b] scheme works mainly in R2 and with the Ham-

ming weight ∥x∥ = |{i : xi ̸= 0}|. In addition, let wsk , wt , w f be some integers given as parame-

ters and Sw = {v : v ∈R2,∥v∥ = w} be the set of polynomials in R2 with Hamming weight w .

Then, the CPA-secure PKE underlying HQC is defined as follows.

• Gen: Sample (sk,d) ←$ S2
wsk

and A ←$ R2. Set pk= (A,B = A× sk+d).

• Enc(pk,m ∈ {0,1}k ): Sample (t ,e, f ) ←$ S2
wt

×Sw f . Then, the ciphertext is (U ,V ) = (t ×
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KR_PCA_SABER(pk)

1 : (A,B) ← pk; ρ←
⌈ q

4

⌋
2 : pt← 0256

3 : for ℓ ∈ [k] :

4 : We write U for the vector in Rk
p with polynomial U

5 : at position ℓ and 0 ∈Rp elsewhere.

6 : I ←;
7 : for i ∈ [n]− :

8 : V ← 2 ·X i ∈RT

9 : a ←−5; b ← 5

10 : if OPCO(pt, (30,V )) = 1 : a ← 2

11 : else :

12 : if OPCO(pt, (−30,V )) = 1 :

13 : b ←−2

14 : else :

15 : I ∪ {i }; continue

16 : while b > a : // Binary search to find skℓ,i

17 : c ← sgn(a +b)

⌈ |b +a|
2

⌉
; U ← 60

c
// c|60 for all c ∈ {−5, . . . ,5}

18 : if OPCO(pt, (U ,V )) = 1 :

19 : if c > 0 : a ← c

20 : else : b ← c

21 : else :

22 : if c > 0 : b ← c −1

23 : else : a ← c +1

24 : skℓ,i ← a

25 : find two vectors Ṽ ± s.t. OPCO(0256, (±60,Ṽ ±)) = 1

26 : for i ∈I

27 : V ← Ṽ ++2X i

28 : if OPCO(pt, (60,V )) = 1 :

29 : skℓ,i ← 1; continue

30 : V ← Ṽ −+2X i

31 : if OPCO(pt, (−60,V )) = 1 :

32 : skℓ,i ←−1; continue

33 : skℓ,i ← 0

34 : return sk

Figure 3.4: KR-PCA adversary against SABER-CPA.
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A+e, t ×B + f +mG) where G is a generator matrix in Zk,n
2 for some linear [k,n]-code

C .

• Dec(sk,U ,V ): output decode(V −U × sk) where decode is the decoding function of the

code C generated by G .

Now, we have V −U × sk= mG +δ with δ= t ×d + f −e × sk. Thus, the decoding (hence the

decryption) is correct iff ∥δ∥ = ∥t ×d + f − e × sk∥ < ρ for some ρ. The goal is to recover δ

and use the known relation B = A× sk+d . Then, (t × A+e)× sk= t ×B + f −δ gives n linear

equations in n unknowns in Zq and we can solve for sk.

The code used in HQC is a composition of a d-repetitions code and BCH code. Namely,

decode= decodeBCH (decodeREP(c)) .

This is the same decoding function as the one in Lepton [YZ17] and therefore one can use the

same learning algorithm [Băe+19] to deduce δ and thus obtain n linear equations in sk. For

parameters of HQC-128, it requires

n + n

d
log2 d + n

d
+ log2

n

d
≈ 215

oracle queries to recover sk, with n = 24677 and d = 31. In the revised version of HQC for the

second round of the NIST standardisation process, the polynomial V is truncated to fit into

nc coefficients at the end of the encryption, where nc is the length of the code. Similarly, it is

expanded by ℓ coefficients set to 0 before decryption, with ℓ= n −nc . As n is picked as the

least prime larger than nc , the value ℓ is typically very small (e.g. ℓ= 1 for HQC-128). Still, this

implies that we can only get nc equations for n unknowns at the end of the attack. However,

one can run twice the attack to obtain enough equations or use a bruteforce technique (if ℓ is

small) to recover the full key sk.

3.8 RQC: Misuse Attack and Impossibility Result

3.8.1 Rank-based cryptography

The RQC cryptosystem [Mel+19a] is similar to HQC [Mel+19b] but uses the rank metric in-

stead of the Hamming distance. Let q be a prime and consider the finite field Fqm for some

parameter m ∈ Z. Let g ∈ Fq [X ] be an irreducible polynomial of degree m. Then, we have

Fqm ≃ Fq [X ]/〈g 〉 ≃ Fm
q . Now, let Fn

qm be the vector space over the finite field Fqm for some

parameter n ∈Z. Each element of this vector space can be seen as a polynomial in Fqm [X ]/〈 f 〉
where f ∈ Fq [X ] is an irreducible polynomial of degree n, using the trivial isomorphism

φ : v ∈ Fn
qm 7→

n−1∑
i=0

vi X i (mod f ).
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For elements in Fn
qm , the multiplication × is defined as the polynomial multiplication in

Fqm [X ]/〈 f 〉. More formally, for any a,b ∈ Fn
qm

a ×b :=φ−1(φ(a) ·φ(b)),

where · denotes the multiplication in Fqm [X ]/〈 f 〉. Similarly, the multiplication in Fqm is

defined as the polynomial multiplication in Fq [X ]/〈g 〉. In RQC-I, as m = 97 and n = 67, the

two polynomials are f = X 67 +X 5 +X 2 +X +1 and g = X 97 +X 6 +1.

Rank metric and support. Let v = (v0, v1, . . . , vn−1) ∈ Fn
qm and {βi }i∈[m] be a basis of Fqm

over Fq . Then, each component vi ∈ Fqm can be written as a vector in Fm
q using the basis

representation. Hence, v can be represented as a m×n matrix with elements in Fq . We denote

this matrix by M (v), which is of the form

M (v) :=


v0,0 · · · vn−1,0

...
. . .

...

v0,m−1 · · · vn−1,m−1


with vi , j ∈ Fq s.t. vi =∑

j∈[m] vi , jβ j . While not important, the choice of basis of Fqm impacts the

matrix representation. In what follows, we consider the canonical basis. That is, we consider

v ∈ Fqm as a polynomial in Fq [X ]/〈g 〉 and take the trivial representation of this polynomial as

a vector in Fm
q .

Definition 3.8.1 (Rank in Fn
qm ). Let v ∈ Fn

qm be a vector and M (v) ∈ Fm×n
q be its matrix represen-

tation as defined above. Then, we define the rank of v as

∥v∥ := rank (M (v))

that is, the rank of the matrix representation of v. Then, the distance between v, w ∈ Fn
qm is

defined as

∥v −w∥ = rank (M (v)−M (w)) .

For an arbitrary matrix A, let span(A) be the vector space spanned by the columns of A. Then,

the support of a vector is defined as follows.

Definition 3.8.2 (Support in Fn
qm ). Let v ∈ Fn

qm . Then, the support is

supp(v) := span(M (v))

i.e. the vector space spanned by the columns of M (v). Similarly, we write supp(vT ) for the vector

space spanned by the rows of M (v). Finally, by the definition of the rank of a matrix, we have

dim(supp(v)) = dim(supp(vT )) = ∥v∥.

A useful tool when dealing with vector subspaces is the q-binary coefficient (also called
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Gaussian coefficient), which counts the number of subspaces of dimension r in a vector space

of dimension n over a field of cardinality q . It is defined as[
n

r

]
q

:=
r−1∏
i=0

qn −q i

qr −q i
.

3.8.2 RQC scheme

Let w, w ′,k ∈ Z be parameters, Sn
w := {v ∈ Fn

qm : ∥v∥ := w}, and Sn
1,w := {v ∈ Fn

qm : ∥v∥ = w, 1 ∈
supp(v)}. RQC uses a random Gabidulin code [Gab85] defined by a generating matrix G ∈ Fk×n

qm

and with decoding capacity ρ = ⌊n−k
2 ⌋. We denote the corresponding decoding algorithm by

decodegab. Then, RQC-CPA, the PKE underlying RQC, works as follows.

• Gen: Sample (sk,d) ←$ S2n
1,w and A ←$Fn

qm . Set B ← A× sk+d . Pick a random generating

matrix G ∈ Fk×n
qm for some Gabidulin code. Output (pk := (A,B ,G),sk).

• Enc(pk,m ∈ {0,1}k ): Sample (t ,e, f ) ←$ S3n
w ′ . Compute U ← A × t + e and V ← B × t +

mG + f . Output (U ,V ).

• Dec(sk,U ,V ): Output decodegab(V −U × sk).

Correctness. Let δ := t ×d + f −e × sk. Then, for any honestly generated ciphertext (U ,V ) (i.e.

(U ,V ) =Enc(pk,m) for some pk,m) we have V −U ×sk= mG +δ. Since the decoding capacity

of the code is ρ, we assume Dec(sk,U ,V ) = m ⇐⇒ ∥δ∥ ≤ ρ thus,

OPCO(pt,U ,V ) = 1 ⇐⇒ ∥δ∥ ≤ ρ .

3.8.3 KR-PCA against RQC-CPA

We give a Key-Recovery under Plaintext-Checking attack that works with O(w qmin{m,n}−ρ+1)

queries in expectation. As q = 2, w = 5,m = 97,n = 67 and ρ = 31 for RQC-I, we obtain a

complexity of O(239).

First, we state a useful theorem and two lemmas.

Theorem 3.8.1 (Lemma 1, [Car75] or Theorem 11, [MS74]). Let X ,Y ∈ Fm×n be two m ×n

matrices over an arbitrary field F. Then,

rank(Y +X ) = rank(Y )+ rank(X )

iff

span(Y )∩ span(X ) = {0} and span(Y T )∩ span(X T ) = {0}.
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In other words, for two matrices over a field, the rank of their sum is equal to the sum of their

rank iff their column space (resp. their row space) trivially intersect.

Lemma 3.8.1. We consider the RQC-CPA. Let B = A × sk+d, sk,d ∈ Fn
qm , supp(sk) = supp(d)

and ∥sk∥ = ∥d∥ = w. Then, finding a subspace F ⊂ Fqm s.t. z = dim(F ) ≤ m
2 and supp(sk) =

supp(d) ⊆ F is sufficient to recover sk and d. Similarly, let z = dim(F ), z ′ = dim(F ′), then finding

F,F ′ ⊂ Fn
q s.t. z + z ′ ≤ n, supp(skT ) ⊆ F and supp(d T ) ⊆ F ′ is sufficient to recover sk and d.

Proof sketch. We give here an informal argument. A complete discussion can be found in

a paper by Aragon et al. [Ara+18]. If one can find a subspace F s.t. the support of sk (and

d) is contained in it, one can compute a basis {βi }i∈[z]− for the subspace F . Then, one can

write ski =∑z−1
j=0 ai , jβ j and di =∑z−1

j=0 bi , jβ j , where the 2nz coefficients ai , j ,bi , j are unknown.

Then, B = (A,1) · (sk,d)T ∈ Fn
qm can be seen as a system of nm linear equations in Fq with 2nz

unknown coefficients. Hence, as long as nm ≥ 2nz ⇐⇒ z ≤ m
2 , one can solve the system of

equations to recover sk,d .

Similarly, if one can find a basis for a subspace containing the row space of M (sk) and another

for the row space of M (d), one can write the system of mn equations in Fq given by B as a

system with m(z+z ′) unknown coefficients. In this case, the system is solvable for z+z ′ ≤ n.

Lemma 3.8.2. Let pn
k,w the probability that a random subspace of dimension k non-trivially

intersects a given subspace of dimension w in Fn
q , with k +w ≤ n. Then,

pn
k,w ≤ (qk −1)

(q w −1)

(qn −1)
≤ q w+k−n .

Proof. The proof of the first inequality is a simple union bound. The probability that a random

non-zero random vector is in the subspace of dimension w is (q w−1)
(qn−1) (i.e. the number of non-

zero vectors in the subspace over the number of non-zero vectors in Fn
q ). Then, the probability

that at least one of the qk −1 non-zero vectors of the random subspace is in the given subspace

is upper bounded by (qk −1) (q w−1)
(qn−1) . The second bound is straightforward analysis: one can

compute the following equivalence

(qk −1)
(q w −1)

(qn −1)
≤ q w+k−n ⇐⇒ q w +qk −1 ≥ q w+k

qn

which holds with k +w ≤ n.

The attack. Let V := x for some x ∈ Fn
qm and U :=−1 ∈ Fn

qm . Then,

OPCO(0, (U ,V )) = 1 ⇐⇒ ∥sk+x∥ ≤ ρ.

Let’s pick x ∈ Fn
qm at random s.t. ∥x∥ = ρ−w . Then, by Theorem 3.8.1, we have ∥sk+x∥ = ρ iff

the column spaces (resp. the row spaces) of sk and x do not intersect (i.e. trivially intersect). By
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Lemma 3.8.2, the probability an intersection occurs in the column space or in the row space is

upper bounded by pm
ρ−w,w +pn

ρ−w,w ≤ qρ−m +qρ−n . Since m ≥ n and ρ < n
2 in RQC, this can

be further bounded by O(q−n/2), which is negligible in n. Hence, we assume this does not

occur and ∥sk+ x∥ = ρ. In this case, supp(sk) ⊂ supp(sk+ x) and supp
(
skT )⊂ supp

(
(sk+x)T

)
.

Indeed, each vector in supp(sk+ x) can be written as a linear combination of vectors in the

union of the basis of sk and x. Clearly, the union of the two basis is then a basis for supp(sk+x)

since ∥sk+x∥ = w + (ρ−w). The same argument works for the row space. Hence, the attack

consists of finding a basis of supp(sk+ x) or supp
(
(sk+x)T

)
and then finding sk by Lemma

3.8.1. We focus on finding the first one.

Let u := sk+x with ∥u∥ = ρ and y := (α,0, . . . ,0) ∈ Fn
qm for some α ∈ Fqm . Then,

M (y) =


α0 0 · · · 0

α1 0 · · · 0
...

...
. . .

...

αm−1 0 · · · 0

 .

We observe that for ∥y∥ = 1

supp(u)∩ supp(y) ̸= {0} ⇐⇒ α ∈ supp(u) .

Therefore, by Theorem 3.8.1, ∥u + y∥ = ρ iff y ∈ supp(u) or (1,0, . . . ,0) ∈ supp(uT ) ⊂ Fn
q . Now,

if we consider supp(uT ) as a random subspace of dimension ρ in Fn
q , the probability that

(1,0, . . .0) ∈ supp(uT ) can be upper bounded by qρ+1−n ≤ q−n/2+1 by Lemma 3.8.2, which is

negligible. Hence, one can iterate over all α ∈ Fqm and mark α whenever ∥u + y∥ ≤ ρ. At the

end, all marked α’s form the vector space supp(u). Then, one can find a basis for this subspace

and recover the secret key sk by Lemma 3.8.1, since ρ < n
2 < m

2 . In this case, the total number

of queries needed is O(qm). Note that the strategy of querying y with only one non-null

component is similar to an independent and concurrent timing attack against RQC [Bet+19].

Improved attack. Now, instead of marking all α’s in the vector space supp(u), one can mark α

s.t. α is not in the subspace spanned by the already marked α’s. More formally, in the i -th step,

if we know that α(1), . . . ,α(i−1) ∈ supp(u), we do not mark α(i ) s.t. α(i ) ∈ span
(
α(1), . . . ,α(i−1)

)
. In

that way, the expected number of queries needed is lowered since we recover only a basis of

supp(u) and not the whole subspace. Note that we could check for linear independence of α(i )

before querying it, sparing a few queries but increasing the amount of offline work.

The expected number of queries needed can be approximated as follows. Let Xi be the

number of queries needed to find a new basis vector in supp(u), knowing we already found

α(1), . . . ,α(i ) ∈ supp(u). We refer to the vectors which are not a new basis vector as bad. In each

step, we assume we did not query any bad vectors. Thus, the number of potential basis vectors

is qρ − q i and the total number of vectors left to query is qm − i . The expected number of
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RQC_KR_PCA(pk)

1 : (A,B) ← pk
2 : pt← 0k

3 : U ←−1

4 : x ←$ Sn
ρ−w

5 : compute basis {βi }i∈[ρ−w]− of span(x)

6 : W ← {βi }i∈[ρ−w]−
7 : for α ∈ Fqm

8 : y ← (α,0, . . . ,0) ∈ Fn
qm

9 : V ← x + y

10 : r ←OPCO(pt, (U ,V ))

11 : if r = 1 :

12 : if α not in subspace spanned by the elements of W :

13 : W =W ∪ {α}

14 : if |W | = ρ : break

15 : Set ski =
ρ−1∑
i=0

ai , jγi and di =
ρ−1∑
i=0

bi , jγi with γi ∈W

16 : Solve B = (A,1) · (sk,d)T

17 : return sk

Figure 3.5: KR-PCA adversary against RQC-CPA.

draws before getting a good vector (i.e. a new basis vector) is therefore E[Xi ] = qm−i+1
qρ−q i−1+1

. At the

beginning, we already know that the basis of x is a set of ρ−w linearly independent elements

of supp(u). Therefore, we set α(1), . . . ,α(ρ−w) as the basis of x and only w basis vectors need to

be found. Hence, the expected total number of queries before getting the ρ basis vectors is

approximately
ρ−1∑

i=ρ−w

qm − i +1

qρ−q i +1
≤

ρ−1∑
i=ρ−w

qm

qρ−q i
≤ w qm−ρ+1.

Note that this is actually an upper bound on the real expectation, since we made an assumption

that worsens the actual performance (i.e. we forget we already queried some bad vectors). The

full attack is given in Figure 3.5. Hence, the expected total number of queries is O(w qm−ρ+1).

The success probability of the algorithm is at least 1−O(q−n/2+1). Finally, observe that in RQC,

sk,d are picked uniformly at random from Fn
qm s.t. ∥sk∥ = ∥d∥ = w , supp(sk) = supp(d) and

1 ∈ supp(sk) = supp(d). The fact that we know one vector of the subspace spanned by sk does

not impact the attack but merely decreases the randomness of sk.

Row support recovery. The attack that recovers a vector subspace supp(uT ) which contains

the row space of sk is nearly identical to the one above. The only difference is that we it-
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erate over all α ∈ Fn
q by setting y ∈ Fn

qm s.t. y = (α0X ,α1X , . . . ,αn−1X ). We do not set y =
(α0,α1, . . . ,αn−1), otherwise 1 ∈ supp(y) and thus ∥u+y∥ ≤ ρ for allα. Now, the row space of the

secret key supp(skT ) is not necessarily equal to the row space of d . However, one can recover a

subspace containing the latter in the exact same way. Indeed, the only difference is that we set

U := A,V := B+x for any x ∈ Fn
qm and then OPCO(pt, (U ,V )) = 1 ⇐⇒ ∥V −U×sk∥ = ∥d+x∥ ≤ ρ.

Note that Lemma 3.8.1 still applies since ρ < n
2 . The expected number of queries is upper

bounded by w qn−ρ+1.

Total cost. Hence, the total number of queries needed to recover the key is upper bounded by

w qmin{m,n}−ρ+1. For the CPA version of RQC-I (which targets 128-bit security), this amounts

to roughly 239 queries.

3.8.4 Hardness of Learning in the rank metric

As the KR-PCA attack against RQC given above has an exponential complexity, one could

wonder whether a polynomial attack would be possible. While not proving the hardness of

the KR-PCA game in the RQC setting, we show below that the learning game is hard for small

errors.

First, we state useful theorems and lemmas.

Lemma 3.8.3 (Corollary 8.1, [MS74]). Let X ,Y ∈ Fm×n be two m ×n matrices over a field F,

c := dim(span(X )∩ span(Y )) and d := dim(span(X T )∩ span(Y T )). Then,

rank(X )+ rank(Y )− c −d ≤ rank(X +Y ) ≤ rank(X )+ rank(Y )−max(c,d).

Lemma 3.8.3 directly implies the following corollary.

Corollary 3.8.1. Let x, y ∈ Fn
qm s.t. ∥x∥ = w, ∥y∥ = z and z ≥ w. Let c := dim(supp(x)∩ supp(y)),

d := dim(supp(xT )∩ supp(yT )) and ρ be some positive integer. Then, if z > ρ+w

∥x + y∥ > ρ.

Lemma 3.8.4 (Intersection of subspaces). Let w,d ,n ∈N and W be some random secret sub-

space of Fn
q of dimension w. We consider the following game. A participant who does not know

W tries to find a subspace X of Fn
q of dimension d s.t. the intersection W ∩X is non-trivial. The

game stops when such a subspace is found. Then, the probability pn,t
w,d of success in t trials is

pn,t
w,d ≤ t

qn−d−w
.

Proof. By a union bound, the probability of finding an intersection with a subspace of dimen-

sion d in a given trial is upper bounded by the probability of finding an intersection with a
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subspace of dimension 1 (i.e. a vector) in qd −1 trials. Therefore, we have

pn,t
w,d ≤ pn,(qd−1)t

w,1 ≤ pn,t ′
w,1 (3.7)

for t ′ := qd t −1 (and t > 0). Then, in any of the t ′ trials, the probability that a given vector

is in the secret subspace of dimension w is upper bounded by q w−1
qn−t ′−1 (i.e. there are q w −1

non-zero vectors in W and at most t ′ non-zero vectors have already been tried). Hence,

pn,t ′
w,1 ≤ t ′

q w −1

qn − t ′−1
≤ t ′

qn−w = t

qn−d−w
, (3.8)

where the first inequality follows from a union bound and the second holds iff t ′ + 1 ≤
qn−w ⇐⇒ t ≤ qn−w−d . As the theorem clearly holds for t > qn−w−d since pn,t

w,d ≤ 1, com-

bining Eq. (3.7) and (3.8) concludes the proof.

Now we can prove the hardness of the learning game in the rank metric setting.

Theorem 3.8.2 (Hardness of learning in the rank metric). Let q := 2, w,ρ,n,m and d := ρ+w

be some positive integers s.t. w +d = ρ+2w < min{m,n}. In addition, we consider Sn
w := {v ∈

Fn
qm : ∥v∥ = w}, Ψ the uniform distribution over Sn

w and ∥ · ∥ the rank distance. Then, for any

learning adversary At restricted to t number of queries with t < qmin{m,n}−w−d , we have

Advlearn
Ψ,ρ,∥·∥(At ) = Pr[LEARNΨ,ρ,∥·∥(At ) ⇒ 1] ≤ t

qn−w−d
+ t

qm−w−d
+negl

where negl=
([n

w

]
q

∏w−1
i=0 (qm −q i )

)−1
.

Proof. The idea of the proof is to show that the oracle of the learning game is useful only if the

adversary can find a non-trivial intersection with the subspace spanned by the columns or the

rows of M (δ). We proceed by the game hopping technique.

First, consider the learning game of Figure 3.1 but we replace the oracle with the oracle OG0

of Figure 3.6. We call this new game G0. One can see that this game is the same as the

learning game. Indeed, by Corollary 3.8.1, the condition in line 2 returns the same result as

1∥δ+x∥≤ρ . Then, if the column (and row) spaces of M (x) and M (y) trivially intersect, we have

∥δ+ x∥ = ∥δ∥+∥x∥ by Theorem 3.8.1. Hence, line 8 returns the correct result because the

condition on lines 5 were not satisfied. Finally, if this condition did hold, the result is obviously

the same as in the original oracle. Now, consider the game G1 which is the same as G0 except

it returns 1∥δ∥+∥x∥≤ρ when both ∥x∥ ≤ ρ+w and condition on line 5 holds. Let’s call this event

int. Clearly, G0 and G1 are the same except when int happens.

We want to compute Pr[int], that is, the probability that the adversary finds some x s.t. ∥x∥ ≤
ρ+w and a non-trivial intersection with the column or row space of δ in less than t queries.

Now, in the learning game, the oracle replies 1∥δ∥+∥x∥≤ρ (which contains no extra information
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Oracle OG0 (x)

1 : w ←∥δ∥
2 : if ∥x∥ > ρ+w :

3 : return 1∥δ∥+∥x∥≤ρ = 0

4 : end if

5 : if supp(x)∩ supp(δ) ̸= {0} or supp(xT )∩ supp(δT ) ̸= {0} :

6 : return 1∥δ+x∥≤ρ
7 : end if

8 : return 1∥δ∥+∥x∥≤ρ

Oracle OG1 (x)

1 : return 1∥δ∥+∥x∥≤ρ

Figure 3.6: Oracles of games G0 and G1.

about δ) as long as int does not occur. Therefore, the probability of int to occur is upper

bounded by the probability to find a non-trivial intersection in the row or column space in t

tries with ∥x∥ = ρ+w . Hence, by a union bound and Lemma 3.8.4, we have

Pr[int] ≤ t

qn−ρ−2w + t

qm−ρ−2w .

In G1, the oracle gives no information to the adversary, as ∥δ∥ and ∥x∥ are known. Therefore,

one can remove the oracle and the probability of success of the adversary is simply the

probability to guess the correct value δ. The number of vectors in Sn
w is

[n
w

]
q

∏w−1
i=0 (qm −q i )

(see Gadouleau et al. [GY06] for example). Therefore,

Pr[G1(At ) ⇒ 1] ≤
([

n

w

]
q

w−1∏
i=0

(qm −q i )

)−1

.

Hence,

Advlearn
Ψ,ρ,∥·∥(At ) ≤ |Pr[G0(At ) ⇒ 1]−Pr[G1(At ) ⇒ 1]|+Pr[G1(At ) ⇒ 1]

≤ Pr[int]+Pr[G1(At ) ⇒ 1]

≤ t

qn−w−d
+ t

qm−w−d
+

([
n

w

]
q

w−1∏
i=0

(qm −q i )

)−1

.

Discussion. While not proving the hardness of KR-PCA attacks, Theorem 3.8.2 shows that the

learning game in the rank metric is difficult for some parameters. As many reaction attacks are

based on the capability to solve an instance of the learning game, this result is still significant.

Note that when the error weight w is large, qn−ρ−2w ≤ 1 and the bound becomes meaningless.
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However, in most settings, the value w is picked small enough. For example, in RQC-I, we

have w = 5,ρ = 31,m = 97 and n = 67. Therefore, the advantage of a t-bounded adversary is

roughly bounded by t
226 . This means that a number of queries of the order of 226 is necessary

to win with good probability. While feasible, the cost is still exponential. More generally, if

ρ+2w is smaller but proportional to n (and m), the learning problem requires an exponential

number of queries in the rank metric.

Overall, this result shows that the learning problem is harder in the rank metric than in other

norms. Indeed, as we showed [Băe+19], the learning problem for other distances such as the

Hamming distance, the L∞ norm in Zq or some variants can be solved with a polynomial

number of queries. One explanation is that the learning problem for other metrics can be

solved component-wise. That is, by varying one component of x in the query, one can extract

information only about the corresponding component in the secret value. Then, it is sufficient

to recover the secret component by component. In the rank metric though, this strategy is not

possible as varying one entry in the value x does not necessarily give information about a given

component. More generally, this confirms the intuition that the rank leaks less information, as

flipping one entry in a vector always changes the Hamming weight but not necessarily the

rank.

This proof tends to show that the rank metric may be well suited to resist to key misuse and

similar attacks.
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4 FO-like Combiners and Hybrid Post-
Quantum Cryptography

While Fujisaki-Okamoto-like transforms can become security hazards if badly implemented,

we show in this chapter that one can use similar constructions to boost security. More precisely,

we study here how one can build KEMs that are based on several hardness assumptions.

Indeed, most of the assumptions the PQ schemes are based on (e.g. learning with errors,

syndrome decoding) have been less extensively studied than their classical counterparts.

Therefore, combining several systems into one to increase security seems a sound idea. For

example, one could combine both a classical PKE/KEM scheme such as RSA with a PQ one,

and ideally the resulting cryptosystem should be secure as long as one of the underlying

schemes is secure. Such systems have been popularised under the term hybrid schemes and

the way the underlying systems are combined is called a combiner. Moreover, if the resulting

hybrid scheme is secure as long as one of the underlying systems is secure, the combiner is

said to be robust.

When it comes to PQ cryptography, hybrid schemes may offer many advantages (depending

on how they are implemented), such as:

1. Providing trust regardless of the security of post-quantum assumptions.

2. Fulfilling the standards requirement by combining a standard scheme with another one

which is not.

3. Allowing a smooth transition between classical and PQ cryptography in practice, i.e.

hybrid cryptography can allow support of both classical and PQ schemes.

4. Combining multiple PQ schemes together might offer better confidence. Such hybrid

schemes would come at the cost of efficiency, however combining two efficient schemes

might result in a more efficient scheme than one inefficient one. Such ideas and issues

were briefly discussed on the NIST PQC forum1. We focus mostly on this application of

hybrid systems in this work.

1https://groups.google.com/a/list.nist.gov/forum/#!topic/pqc-forum/msRrR13muS4
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Unfortunately, hybrid schemes do not offer much improvement in terms of theoretical security.

Indeed, if both underlying schemes require 2λ operations to be broken, the hybrid system

would be broken in 2λ+1 operations (i.e. we gain only 1 bit of security). In practice however, the

security gain might be better, depending on the underlying schemes. Indeed, one might rea-

sonably argue that the probability of a major breakthrough in two different problems believed

to be hard by the community is lower than the probability of one devastating breakthrough. In

any case, while the practical security offered by hybrid cryptosystems obviously depends on

many parameters, we think that such schemes offer a greater security boost than what can be

deduced from the theoretical bounds only.

The results presented in this chapter are part of a joint work with Serge Vaudenay that was

published at CANS 2021 [HV21]. As in the previous chapter, this research was conducted

during the second round of the NIST PQ standardisation process.

4.1 Contributions

Several authors have considered KEM or signature combiners targeting post-quantum systems

in recent years [Bin+17; Bin+19a; GHP18]. However, all the combiners introduced in these

papers work in a black-box manner on IND-CCA KEMs. That is, these combiners take two

KEMs (or signature schemes) as inputs and output the hybrid construction. Yet, we know

that most PQ KEM proposals share a very similar structure: an OW/IND-CPA secure PKE is

introduced and then the Fujisaki-Okamato (FO) transform or a variant is applied to give an

IND-CCA KEM. Therefore, one could try to directly combine the IND-CPA schemes to give an

IND-CCA KEM, hopefully getting better performances. Therefore, we present in this report

several hybrid FO-like transforms which combine two OW-CPA PKEs into one IND-CCA KEM.

We also generalise these constructions to n schemes (i.e. n PKEs are combined into one KEM).

Compared to previous work, our combiners are simpler as they do not require extra prim-

itives such as special types of PRFs or MACs. As a result, they are slightly more efficient by

removing calls to these primitives and by optimising the use of hash functions. Finally, our

combiners follow a different paradigm as they replace FO transforms. Thus, they would likely

be implemented in cryptographic libraries directly, whereas previous combiners would likely

be implemented in applications/protocol libraries (e.g. openssl). Hence, our constructions

offer another approach that might be useful to implementors, for example for optimisation or

security purposes.

The main disadvantage of FO transforms is that they are only secure in the random oracle

model (ROM) and we prove the security of our FO-like hybrid combiner in the ROM as well.

However, as all PQ IND-CCA KEM submitted to the NIST process are only proven secure in the

ROM, it does not add an extra assumption. We also prove that one of our combiners is secure

in the Quantum Random Oracle Model (QROM). The results are summarised in Figure 4.1.

At a high level, our combiners share the same structure as a system that would apply a robust
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Figure 4.1: Solid arrows indicate results implied by our combiners, bold arrows indicate QROM
security. The dashed arrow indicates results from Hofheinz et al. [HHK17].

PKE combiner (e.g. concatenating ciphertexts) followed by a FO-like transform to get a KEM.

However, having one scheme for the whole process allows a fine-grained control over the

way key derivation and de-randomisation are performed, in turn offering better flexibility.

For instance, we study how one can combine hash functions (i.e. random oracles) s.t. our

main FO-like combiner is more efficient or secure. More precisely, we define the properties

the functions g (used to derive random coins in our construction) and h (used to derive the

shared key) should have in order for our construction to be secure. Such theoretical analysis is

important, as it was demonstrated that Random Oracles in FO transforms are easily combined

in an insecure way [BDG20]. Therefore, by presenting generic n-PKEs-to-KEM combiners with

detailed security proofs and several examples of ROs combinations, we hope to offer clear

flexibility and security guarantees to implementors.

As a proof of concept, we implemented a hybrid KEM based on the IND-CPA version of

HQC and LAC, two round 2 proposals to the NIST PQ standardisation process. We call this

hybrid KEM hqc_lac_128 and we report and analyse how this scheme compares to the other

round 2 proposals. In particular, we show that the performance of the hybrid scheme is

comparable to the performance of the least efficient underlying scheme (i.e. HQC in this case).

Moreover, as our combiner is highly parallelisable, our tests show that a parallelised version of

hqc_lac_128 is as efficient as HQC in terms of speed, excluding a negligible overhead (mainly

due to the creation of an additional thread). We think this demonstrates that using a hybrid

PQ system in place of a single PQ scheme may increase significantly the security at a small

cost.

Finally, we compute the theoretical performance (based on the data from eBACS [Be20]) of

every possible hybrid scheme based on two PQ IND-CPA schemes that are based on assump-

tions of a different type (e.g. a lattice-based scheme with a code-based scheme). We discuss

the performance of the most efficient ones in two metrics, namely public key/ciphertext size

and encapsulation/decapsulation speed. This analysis shows that a given hybrid scheme

struggles to perform as well as an efficient non-hybrid one in both metrics.
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4.2 Related Work

Many authors have considered robust combiners for different primitives, like combiners for

PKEs [DK05; Zha+16], hash functions [AHV98; FL08; FLP08], commitment schemes [Her05],

PQ signatures [Bin+17], AEAD [PR20]. Recently, robust combiners for KEMs have also been

considered by Giacon et al. in [GHP18]. In that work, they propose various robust combiners

in the standard model and in the random oracle model that take two IND-CCA KEMs and

output another IND-CCA KEM. Similarly, Bindel et al. [Bin+19a] propose similar robust KEM

combiners which are secure against quantum adversaries. Our combiners differ from these

as we aim at building a monolithic IND-CCA KEM based on several IND-CPA (or OW-CPA)

PKEs. In a way, we bypass the intermediate KEM constructions, as many KEMs are based on

FO-transformed IND-CPA schemes.

4.3 FO-like Combiners

Compared to FO-like transforms, we wish to design constructions that take two (or more)

IND/OW-CPA schemes instead of one and that output an IND-CCA KEM. Compared to black-

box combiners, this approach allows for lower-level combiners, which in turn can be more

efficient. As more precise examples, we consider KEM combiners proposed by Bindel et

al. [Bin+19a], given in Figure 4.2. These three constructions, namely XtM, dualPRF and N
are based on special kinds of MACs and PRFs (we refer the interested reader to the original

paper for the corresponding definitions). In the XtM combiner, the keys must be split and

a tag on the ciphertexts is computed. Similarly, in the dualPRF and N combiners, multiple

passes on the keys and ciphertext must be performed to derive the key. All these operations

add complexity and/or increase the ciphertext length while being redundant if the underlying

KEMs are built using a FO-like transform. Thus, one could hope to remove several superfluous

computations and primitives by looking at the actual implementation of the underlying KEMs.

We apply this idea to construct several new combiners, which we call FO-like combiners. In

addition of not being black-box, these combiners differ from other proposals in the fact that

they take several PKEs as inputs and output a KEM.

4.3.1 T∥ combiner

For our first construction, the idea is to apply twice the T transform of Hofheinz et al. [HHK17]

(see Figure 2.16) to obtain an OW-PCA PKE from two OW-CPA PKEs PKEi = (Geni ,Enci ,Deci )

with i ∈ {1,2}. We call this FO-like combiner T∥ and we present it in Figure 4.3. Then, one

can apply the U̸⊥ transform (see Figure 2.17) and Theorem 2.4.5 to obtain an IND-CCA KEM.

The message space M of the resulting PKE is M1 ×M2 (i.e. the space product of the two

message spaces). This construction is actually a useful intermediary step towards a more

general OW-CPA to KEM IND-CCA combiner we present in the next section.

The following theorem shows that T∥ is a robust combiner (as long as one of the two underlying
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EncapsXtM(pk1,pk2)

1 : (ct1,Kk,1∥Km,1) ←Encaps1(pk1)

2 : (ct2,Kk,2∥Km,2) ←Encaps2(pk2)

3 : Kk ← Kk,1 ⊕Kk,2

4 : Km ← Km,1∥Km,2

5 : ct← (ct1,ct2)

6 : tag←MACKm (ct)

7 : return ((ct,tag),Kk )

DecapsXtM((sk1,sk2),ct)

1 : parse (ct1,ct2,tag) ← ct
2 : K ′

k,1∥K ′
m,1 ←Decaps1(sk1,ct1)

3 : K ′
k,2∥K ′

m,2 ←Decaps2(sk2,ct2)

4 : K ′
k ← K ′

k,1 ⊕K ′
k,2

5 : K ′
m ← K ′

m,1∥K ′
m,2

6 : if VerK ′
m

(ct) = 0

7 : return ⊥
8 : return K ′

k

EncapsdualPRF(pk1,pk2)

1 : 2 : (ct1,K1) ←Encaps1(pk1)

3 : 4 : (ct2,K2) ←Encaps2(pk2)

5 : 6 : ct← (ct1,ct2)

7 : 8 : Kd ← dPRF(K1,K2)

9 : 10 : K ←PRF(Kd ,ct)

11 : 12 : return (ct,K )

13 :

DecapsdualPRF((sk1,sk2),ct)

1 : parse (ct1,ct2) ← ct
2 : K ′

1 ←Decaps1(sk1,ct1)

3 : K ′
2 ←Decaps2(sk2,ct2)

4 : K ′
d ← dPRF(K ′

1,K ′
2)

5 : K ′ ←PRF(K ′
d ,ct)

6 : return K ′

EncapsN(pk1,pk2)

1 : (ct1,K1) ←Encaps1(pk1)

2 : (ct2,K2) ←Encaps2(pk2)

3 : ct← (ct1,ct2)

4 : Kp ←PRF′(0,K1)

5 : Kd ← dPRF(Kp ,K2)

6 : K ←PRF(Kd ,ct)

7 : return (ct,K )

DecapsN((sk1,sk2),ct)

1 : parse (ct1,ct2) ← ct
2 : K ′

1 ←Decaps1(sk1,ct1)

3 : K ′
2 ←Decaps2(sk2,ct2)

4 : K ′
p ←PRF′(0,K ′

1)

5 : K ′
d ← dPRF(K ′

p ,K ′
2)

6 : K ′ ←PRF(K ′
d ,ct)

7 : return K ′

Figure 4.2: KEM combiners from Bindel et al. [Bin+19a]. The underlying KEMs are
(Gen1,Enc1,Dec1) and (Gen2,Enc2,Dec2). The key generation function of the resulting KEM is
omitted as it is simply the concatenation of Gen1 and Gen2.

PKEs is OW-CPA, the resulting PKE is OW-PCA).

Theorem 4.3.1. Let PKE be the PKE resulting from applying T∥ on PKE1 and PKE2, which

are respectively δ1 and δ2 correct. In addition, let G be a hash function modelled as a random

oracle. Then, for any efficient OW-PCA adversary A making at most qG queries to G and qP

queries to the plaintext-checking oracle, there exist adversaries B1 and B2 such that

Advow−pca
PKE (A ) ≤ (qG +qP ) · (δ1 +δ2)+ (qG +1) ·min{Advow−cpa

PKE1
(B1),Advow−cpa

PKE2
(B2)} ,

where B1 and B2 run in about the same time as A .

Proof. We first show that the trivial PKE combiner C in Figure 4.4 is a robust OW-PCA combiner.

Let PKE=C(PKE1,PKE2) be the PKE resulting from applying C on two PKEs PKE1 and PKE2.

We show w.l.o.g. that the OW-PCA security of PKE reduces to the OW-PCA security of PKE1.

The OW-PCA game against PKE is presented in Figure 4.5. One can see that the plaintext-

checking oracle can easily be simulated by an adversary having access to a plaintext-checking

oracle for PKE1 and holding the secret key sk2. Thus, we can easily build an adversary B

against the OW-PCA security of PKE1. This adversary generates itself pk2,sk2,ct∗2 , runs A and

simulates perfectly the PCO oracle with its own oracle and sk2. When A returns (pt′1,pt′2), B
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Gen(1λ)

1 : (pk1,sk1) ←$ Gen1(1λ)

2 : (pk2,sk2) ←$ Gen2(1λ)

3 : pk← (pk1,pk2)

4 : sk← (sk1,sk2)

5 : return (pk,sk)

Enc(pk, (pt1,pt2))

1 : parse (pk1,pk2) ← pk
2 : r1 ←G(pt1)

3 : r2 ←G(pt2)

4 : ct1 ←Enc1(pk1,pt1;r1)

5 : ct2 ←Enc2(pk2,pt2;r2)

6 : return (ct1,ct2)

Dec(sk, (ct1,ct2))

1 : parse (sk1,sk2) ← sk
2 : pt′1 ←Dec1(sk1,ct1)

3 : pt′2 ←Dec2(sk2,ct2)

4 : if Enc1(pk1,pt′1;G(pt′1)) ̸= ct1 :

5 : return ⊥
6 : if Enc2(pk2,pt′2;G(pt′2)) ̸= ct2 :

7 : return ⊥
8 : return (pt′1,pt′2)

Figure 4.3: T∥ combiner.

Gen(1λ)

1 : (pk1,sk1) ←$ Gen1(1λ)

2 : (pk2,sk2) ←$ Gen2(1λ)

3 : pk← (pk1,pk2)

4 : sk← (sk1,sk2)

5 : return (pk,sk)

Enc(pk, (pt1,pt2))

1 : parse (pk1,pk2) ← pk
2 : ct1 ←Enc1(pk1,pt1)

3 : ct2 ←Enc2(pk2,pt2)

4 : return (ct1,ct2)

Dec(sk, (ct1,ct2))

1 : parse (sk1,sk2) ← sk
2 : pt′1 ←Dec1(sk1,ct1)

3 : pt′2 ←Dec2(sk2,ct2)

4 : return (pt′1,pt′2)

Figure 4.4: Trivial PKE combiner C.

returns pt′1 and wins with at least the same advantage as A . Hence,

Advow−pca
PKE (A ) ≤ min{Advow−pca

PKE1
(B1),Advow−pca

PKE2
(B2)} .

To conclude, one can just observe that T∥(PKE1,PKE2) =C(T(PKE1),T(PKE2)), where T is the

OW-CPA to OW-PCA transform from Hofheinz et al. [HHK17]. Hence, applying Theorem 2.4.5

concludes the proof.

Corollary 4.3.1. Let KEM be the KEM resulting from applying U ̸⊥ ◦T∥ onto two PKE schemes

PKE1 and PKE2, which are δ1-correct and δ2-correct, respectively. Then, for any IND-CCA

adversary A making at most qH and qG queries to the ROs H and G, respectively, and qD

queries to the decapsulation oracle, there exist OW-CPA adversaries B1 and B2 such that

Advind−cca
KEM (A ) ≤ qH

|M1||M2|
+ (qG +qD ) · (δ1 +δ2)

+ (qG +1) ·min{Advow−cpa
PKE1

(B1),Advow−cpa
PKE2

(B2)} ,

where Mi is the message space of PKEi and Bi runs in about the same time as A .

Proof. This is a simple consequence of Theorems 2.4.5 and 4.3.1.
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OW-PCAPKE(A )

1 : ((pk1,pk2), (sk1,sk2)) ←$ Gen(1λ)

2 : (pt∗1 ,pt∗2 ) ←$ M1 ×M2

3 : ct∗ ←Enc(pk, (pt∗1 ,pt∗2 ))

4 : (pt′1,pt′2) ←A OPCO
(pk,ct∗)

5 : return 1(pt′1 ,pt′2)=(pt∗1 ,pt∗2 )

Oracle OPCO((pt1,pt2), (ct1,ct2))

1 : pt′1 ←Dec1(sk1,ct1)

2 : pt′2 ←Dec2(sk2,ct2)

3 : return 1(pt1 ,pt2)=(pt′1 ,pt′2)

Figure 4.5: OW-PCA game against PKE for the proof of Theorem 4.3.1.

BA ,OPCO1

1 (pk1,ct∗1 )

1 : (pk2,sk2) ←$ Gen2(1λ)

2 : pt∗2 ←$ M2

3 : ct∗2 ←Enc2(pk,pt∗2 )

4 : (pt′1,pt′2) ←A OPCO
((pk1,pk2), (ct∗1 ,ct∗2 ))

5 : return pt′1

Oracle OPCO((pt1,pt2), (ct1,ct2))

1 : r ←OPCO1 (pt1,ct1)

2 : pt′2 ←Dec2(sk2,ct2)

3 : return 1r=1∧pt2=pt′2

Figure 4.6: OW-CPA adversary for the proof of Theorem 4.3.1.

Discussion

Let UT̸⊥
∥ be the combiner resulting from composing U̸⊥ and T∥. One could wonder whether

combining two PKEs in a trivial way (i.e. encrypting pt1,pt2 as (Enc1(pt1),Enc2(pt2)) and

decrypting both ciphertexts independently) and then applying a FO-like transform would

output a robust IND-CCA KEM. In fact, this would give a combiner similar to UT ̸⊥
∥ , except

the random coins would be split into two parts (G(pt1,pt2))λ1 and (G(pt1,pt2))λ2 for each

encryption procedure, where λi is the number of coins needed by the encryption of PKEi .

As G is a RO, both shares would be independent and the result would be similar to the coins

G(pti ) in our UT ̸⊥
∥ transform. We preferred the latter solution as it is possible to compute the

coins in parallel and we think it makes the separation between both sets of coins clear. One

could also wonder whether setting the coins to G(pt1,pt2) would work. This, in turn, creates a

correlation between both ciphertexts, which cannot be dealt with in the security proof.

The choice of computing the deterministic coins for cti based on σi only (instead of σ1 and

σ2) has positive and negative impacts on the resulting scheme:

• Efficiency: Both ciphertexts are totally independent and can be computed in parallel.

In turn, this allows to keep a key share static for a period of time while varying the other

one. This could improve consequently the efficiency of hybrid schemes in protocols.

• Malleability and misuse resistance: The ciphertext of the resulting KEM ct∗ = (ct∗1 ,ct∗2 )

is somewhat malleable. Indeed, it is easy to modify a ciphertext into another one s.t. the

decryption is valid. For instance, ct′ = (ct∗1 ,ct′2), for a valid ct′2, will decapsulate properly

to the key H(σ∗
1 ,σ′

2,ct′). This has no consequence in the ROM as the RO hides perfectly
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Gen(1λ)

1 : (pk1,sk1) ←$ Gen1(1λ)

2 : (pk2,sk2) ←$ Gen2(1λ)

3 : pk← (pk1,pk2)

4 : sk← (sk1,sk2)

5 : return (pk,sk)

Encaps(pk)

1 : parse (pk1,pk2) ← pk
2 : (σ1,σ2) ←$ M1 ×M2

3 : ct1 ←Enc1(pk1,σ1;G(1,σ1,σ2))

4 : ct2 ←Enc2(pk2,σ2;G(2,σ1,σ2))

5 : K ← H(σ1 ⊕σ2)

6 : return (ct1,ct2),K

Decaps(sk, (ct1,ct2))

1 : parse (sk1,sk2) ← sk
2 : σ′

1 ←Dec1(sk1,ct1)

3 : σ′
2 ←Dec2(sk2,ct2)

4 : if Enc1(pk1,σ′
1;G(1,σ′

1,σ′
2)) ̸= ct1 :

5 : return ⊥
6 : if Enc2(pk2,σ′

2;G(2,σ′
1,σ′

2)) ̸= ct2 :

7 : return ⊥
8 : return H(σ′

1 ⊕σ′
2)

Figure 4.7: UT∥ combiner.

σ∗
1 , but this does not necessarily seem like a desired property. In particular, due to this

malleability effect, the key must be derived as H(σ1,σ2, . . .) and other KDFs that would

seem intuitive lead to security flaw. For instance, computing the key as H(σ1)⊕H(σ2)

in the transform makes a trivial IND-CCA attack possible.

Efficiency of T∥

One can see that the main cost of the combiner is to compute two hash values on the two

plaintexts (i.e. seeds) and then a hash on the two plaintexts and ciphertexts. This already

seems slightly more efficient than the XtM (XOR-then-MAC) combiner proposed by Bindel

et al. [Bin+19a]. Indeed, XtM doubles the size of the keys returned by the underlying KEMs,

splits them, and computes a MAC on the ciphertexts using two halves of the keys.

Now, as the ciphertexts in post-quantum cryptography can be large (usually a few kilobytes),

computing a hash on two ciphertexts can be an expensive operation. Our combiner presented

in the next section fixes this drawback.

4.3.2 UT∥ combiner

We now propose an FO-like combiner similar to T∥ that combines two OW-CPA PKEs into an

IND-CCA KEM. In a way, we skip the U̸⊥ transform to directly get a KEM. The idea is to encrypt

two seeds (i.e. plaintexts) σ1,σ2 using the PKE resulting from T∥ and then compute the key as

H (σ1⊕σ2). However, in order to avoid the malleability issue described in the previous section,

the deterministic coins are computed as G(i ,σ1,σ2). This links both ciphertexts together

and makes tampering one of the two more difficult. Note that in order to compute the XOR,

we assume that the seeds σi are binary strings or that there exists an efficient and unique

encoding of these objects as binary strings. Alternatively, one can take the hash of a plaintext

to get a binary seed. All these options are compatible with our combiner and the choice of an

approach depends on the underlying PKEs. We present the combiner in Figure 4.7.

Now, the following theorem formally states the security of the UT∥ combiner.
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Theorem 4.3.2. Let KEM be the KEM resulting from applying UT∥ on PKE1 and PKE2, which

are respectively δ1 and δ2-correct, and γ1 and γ2-spread. In addition, let G and H be hash

functions modelled as random oracles. Then, for any efficient IND-CCA adversary A making at

most qG , qH , and qD queries to G,H, and ODec, respectively, there exist adversaries B1 and B2

such that

Advind−cca
KEM (A ) ≤(qD +qG +1) · (δ1 +δ2)+qD · (2−γ1 +2−γ2 )

+ (qG +qH ) ·min{Advow−cpa
PKE1

(B1),Advow−cpa
PKE2

(B2)} ,

where B1 and B2 run in about the same time as A and make the same number of queries.

Proof. We first show that if a valid ciphertext is submitted to the decapsulation oracle, then

the corresponding plaintexts have been queried to G , and thus one can simulate the decap-

sulation oracle without the secret key. Then, one can show that the deterministic coins used

to compute the challenge ciphertexts look perfectly random until the adversary queries the

challenge plaintexts to G . Finally, by the same property of the RO, the challenge key looks

perfectly uniform unless the adversary queries σ1 ⊕σ2 to H . We proceed by game hopping,

the sequence of games is presented in Figure 4.8.

Game Γ0: This is the original KEM IND-CCA game for the KEM obtained by applying the

UT∥ combiner on two PKEs.

Game Γ1: In this game, we enforce the correctness of the challenge ciphertexts and the ci-

phertexts that can be computed by the adversary using the RO G . In particular, we abort if

the challenge ciphertexts break the correctness property or if any σi in a query m to G is of

the form (i ,σ1,σ2) and is s.t. Enci (pki ,σi ;G(m)) breaks the correctness property. Now, both

challenge queries to G made by the game (i.e. (i ,σ∗
1 ,σ∗

2 )) are fresh, hence by the property

of the RO and the δi -correctness of the underlying schemes PKEi , the probability there is a

correctness error is at most δ1 +δ2. Then, throughout the game, at most 2qD queries is made

to G by the game in the decapsulation oracle (qD of the form (1,σ1,σ2) and qD of the form

(2,σ1,σ2)) and qG by the adversary. Hence, in the worst case all these queries are fresh and the

probability there is a correctness error is upper bounded by (qD +qG +1) · (δ1 +δ2). Hence, we

have ∣∣Pr[Γ0 ⇒ 1]−Pr[Γ1 ⇒ 1]
∣∣≤ (qD +qG +1) · (δ1 +δ2) .

Game Γ2: We modify the previous game as follows in the decapsulation oracle. We check

whether there exist both ((1,σ1,σ2), g1) and ((2,σ1,σ2), g2) in LA s.t. Enci (pki ,σi ; gi ) = cti .

If this is the case, (let’s call this event found) we return H(σ1 ⊕σ2), otherwise we return the

key K output by the decapsulation function. Now, if found occurs, we return the same key

as in game Γ1. Indeed, by the perfect correctness of the tuples in LA enforced in game Γ1,

if we find (σ1,σ2) s.t. Enci (pki ,σi ;G(i ,σ1,σ2)) = cti , then Deci (ski ,cti ) =σi . Hence, we have,

Pr[Γ1 ⇒ 1] = Pr[Γ2 ⇒ 1].
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Game Γ3: We modify the previous game as follows. In the decapsulation oracle, we sim-

ply return ⊥ if found does not occur. Hence, game Γ2 and Γ3 differ iff the decapsulation oracle

successfully decrypts the given ct but the adversary did not query (1,σ′
1,σ′

2) or (2,σ′
1,σ′

2) to

G , where (Enc1(pk1,σ′
1),Enc2(pk2,σ′

2)) = ct (i.e. at least one tuple is not in LA ). Now, by the

perfect correctness of tuples in LA , this event is equivalent to the decapsulation oracle suc-

cessfully (i.e. the re-encryption checks pass) recovering the seeds σ1,σ2 but either (1,σ1,σ2),

or (2,σ1,σ2), or both were not queried to G by the adversary. Let fail be this event and we

prove the following lemma.

Lemma 4.3.1.

Pr[fail] ≤ qD · (2−γ1 +2−γ2 ) .

Proof. Let failk be the event that fail happens at the k-th decapsulation query and pk =
Pr[failk ]. By a union bound, it is clear that

Pr[fail] ≤
qD∑

k=1
pk .

Now, let’s consider an algorithm Bk as defined in Figure 4.9. This adversary simulates perfectly

the view of the adversary in game Γ3 until the k-th query. In particular, for each decapsulation

query ct = (ct1,ct2), it checks whether there exist both ((1,σ1,σ2), g1) and ((2,σ1,σ2), g2) in

LG s.t. Enci (pki ,σi ; gi ) = cti for i ∈ [2]. We call this condition cond and if it is fulfilled Bk

outputs H(σ1 ⊕σ2), otherwise it outputs ⊥.

In the k-th decapsulation query, if cond is fulfilled it aborts. Otherwise, it sets i s.t. there is

no ((i ,σ1,σ2), gi ) ∈ LG s.t. Enci (pki ,σi ; gi ) = cti . Note that such an i will be found because

cond was not fulfilled. Also, this condition might be fulfilled for both i = 1 and i = 2. If it

is the case, the algorithm sequentially performs the remaining of the instructions for both

i = 1 and i = 2. Next, it decrypts ct1 and ct2 to both σ′
1 and σ′

2. By the definition of i and the

perfect correctness of the values σi in LG , we have that (i ,σ′
1,σ′

2) ∉LG . In addition, by the

perfect correctness of the challenge ciphertexts we have (σ′
1,σ′

2) ̸= (σ∗
1 ,σ∗

2 ). Finally, Bk queries

g ′
i ← G(i ,σ′

1,σ′
2) and outputs 1 iff Enci (pki ,σi ; g ′

i ) = cti . Now, as g ′
i = G(i ,σ′

1,σ′
2) was never

queried to G , it is sampled uniformly at random and thus Pr[Enci (pki ,σ′
i ; g ′

i ) = cti ] ≤ 2−γi by

the γi -spreadness of PKEi . In the worst case, the check is performed for both i = 1 and i = 2

and thus Pr[Bk (A ) ⇒ 1] ≤ 2−γ1 +2−γ2 . Now, we simply observe that if failk occurs, then Bk

perfectly simulates the decapsulation oracle in Γ2 and Γ3 in the first k −1 queries and it will

output 1 by the definition of failk . Thus,

pk ≤ Pr[Bk (A ) ⇒ 1] ≤ 2−γ1 +2−γ2 .

Taking the union bound on the pk ’s concludes the proof.
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By the previous lemma, we have

|Pr[Γ2 ⇒ 1]−Pr[Γ3 ⇒ 1]| ≤ qD · (2−γ1 +2−γ2 ) .

Game Γ4: First, note that the decapsulation oracle does not use the secret key anymore. Then,

in Γ4, we raise a flag chal1 and abort if the adversary queries (i ,σ∗
1 ,σ∗

2 ). In addition, we raise

a flag chal2 and abort if the adversary queries σ∗
1 ⊕σ∗

2 to H . Now, if chal1 or chal2 happens,

one can break the OW-CPA property of both PKEs. We give the reduction B1 that breaks the

one-wayness of PKE1 in Figure 4.10. More precisely, as long as chal1 ∪chal2 does not happen,

the adversary cannot distinguish a game where the coins used to compute the challenge

ciphertexts are deterministic from a game where the coins are taken at random. In addition, it

cannot distinguish a game where K is random from a game where K = H(σ∗
1 ⊕σ∗

2 ). Therefore,

the probability that chal1∪chal2 happens is the same in Γ4 and in the OW-CPA game played by

B1. Now, if chal1∪chal2 happens in a game where the challenge coins and the key are random,

one can break the one-wayness of the underlying scheme. Thus, we have

|Pr[Γ3 ⇒ 1]−Pr[Γ4 ⇒ 1]| ≤ (qG +qH ) ·min{Advow−cpa
PKE1

(B1),Advow−cpa
PKE2

(B2)} .

Note that we have a factor qG +qH because in the reduction we cannot check which query m

contains the challenge seeds σ∗
i (if we picked a query to G) or σ∗

1 ⊕σ∗
2 (if we picked a query to

H). Indeed, in the OW-CPA game, the challenge coins are taken at random and are unknown

to the adversary. More details are given in the proof of Theorem 4.3.1.

Game Γ5: Finally, in this last game we replace the challenge key K0 by a random one. As K0 and

K1 have the same distribution now, we have Pr[Γ5 ⇒ 1] = 1
2 . In addition, since the adversary

cannot query σ∗
1 ⊕σ∗

2 anymore, it cannot distinguish between a real key and a random key

by the property of the RO H . Hence, we have |Pr[Γ4 ⇒ 1]−Pr[Γ5 ⇒ 1]| = 0. Collecting the

probabilities and folding the OW-CPA adversaries into one concludes the proof.

Generalisation to n PKEs

While the UT∥ combiner presented in Figure 4.7 takes two PKEs as input, it is straight-

forward to generalise it to n PKEs. Each of the n ciphertexts will simply be computed as

Enci (pki ,σi ;G(i ,σ1, . . . ,σn)) and the key as H(⊕n
i σi ). Then, the security of such a combiner

(we call it UTn
∥ ) can be stated in the following Theorem, which is a generalisation of Theo-

rem 4.3.2.

Theorem 4.3.3. Let KEM be the KEM resulting from applying UTn
∥ on PKE1, . . . ,PKEn , which

are respectively δ1, . . . ,δn-correct, and γ1, . . . ,γn-spread. In addition, let G and H be hash

functions modelled as random oracles. Then, for all efficient IND-CCA adversary A making at

most qG , qH and qD queries to G,H and ODec, respectively, there exist adversaries B1, . . . ,Bn
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Γi (A )

1 : (pk,sk) ←$ Gen(1λ)

2 : (σ∗
1 ,σ∗

2 ) ←$ M1 ×M2

3 : coins1 ←G(1,σ∗
1 ,σ∗

2 );coins2 ←G(2,σ∗
1 ,σ∗

2 ) // Γ0-Γ4

4 : coins1,coins2 ←$ R2 // Γ5

5 : ct∗1 ←Enc1(pk1,σ∗
1 ;coins1)

6 : ct∗2 ←Enc2(pk2,σ∗
2 ;coins2)

7 : if ∃i ∈ [2] s.t. Deci (ski ,ct∗i ) ̸=σ∗
i : abort // Γ1-Γ5

8 : b ←$ {0,1}

9 : K0 ← H(σ∗
1 ⊕σ∗

2 ) // Γ0-Γ4

10 : K0 ←$ K // Γ5

11 : K1 ←$ K

12 : b′ ←A ODec ,G ,H (pk, (ct∗1 ,ct∗2 ),Kb )

13 : return 1b′=b

Oracle ODec(ct= (ct1,ct2))

1 : flag← false

2 : if ct= ct∗ : return ⊥
3 : if ∃((1,σ1,σ2), g1) ∈LA s.t. Enc1(pk1,σ1; g1) = ct1

4 : and ∃((2,σ1,σ2), g2) ∈LA

5 : s.t. Enc2(pk2,σ2; g2) = ct2 : // Γ2-Γ5

6 : return H(σ1 ⊕σ2) // Γ2-Γ5

7 : return ⊥ // Γ3-Γ5

8 : K ′ ←Decaps(sk,ct) // Γ0-Γ2

9 : return K ′ // Γ0-Γ2

H(m)

1 : if ∃h s.t. (m,h) ∈LH :

2 : return h

3 : if m = (σ∗
1 ⊕σ∗

2 ) : // Γ4-Γ5

4 : chal2 ← true // Γ4-Γ5

5 : abort // Γ4-Γ5

6 : h ←$ {0,1}n

7 : LH ←LH ∪ {(m,h)}

8 : return h

G(m)

1 : if ∃g s.t. (m, g ) ∈LG :

2 : return g

3 : if m = (1,σ∗
1 ,σ∗

2 ) or // Γ4-Γ5

4 : m = (2,σ∗
1 ,σ∗

2 ) : // Γ4-Γ5

5 : chal1 ← true // Γ4-Γ5

6 : abort // Γ4-Γ5

7 : g ←$ {0,1}n

8 : LG ←LG ∪ {(m, g )}

9 : if parse m = (i ,σ1,σ2) succeeds : // Γ1-Γ6

10 : if Deci (ski ,Enci (pki ,σi ; g )) ̸=σi : // Γ1-Γ5

11 : abort // Γ1-Γ5

12 : if m queried by A : // Γ1-Γ5

13 : LA ←LA ∪ {(m, g )} // Γ1-Γ5

14 : return g

Figure 4.8: Sequence of games for the proof of Theorem 4.3.2.

such that

Advind−cca
KEM (A ) ≤(qD +qG +1) ·

n∑
i=1

δi +qD ·
n∑

i=1
2−γi

+ (qG +qH ) ·min{Advow−cpa
PKE1

(B1), . . . ,Advow−cpa
PKEn

(Bn)}

where B1, . . . ,Bn run in about the same time as A and make the same number of queries.

Proof. The proof is exactly the same as the one for the security of UT∥ with two PKEs except we

consider n schemes. In particular, the probability of having a correctness or spreadness error

in some query is upper bounded by
∑n

i=1δi and
∑n

i=1 2−γi , respectively. Also, the reductions

Bi from the OW-CPA security of the PKEs work the same, as an adversary Bi picks all σ∗
j s.t.

j ̸= i . That is, if (i ,σ∗
1 , . . . ,σ∗

n) is queried, Bi can recover σ∗
i , otherwise we can replace the

deterministic coins by random ones. Similarly, if σ∗ =⊕n
j σ

∗
j is queried by the adversary to H ,

Bi can recover σ∗
i by computing σ∗⊕ j ̸=i σ

∗
j .
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Bk (A )

1 : (pk,sk) ←$ Gen(1λ)

2 : (σ∗
1 ,σ∗

2 ) ←$ M1 ×M2

3 : coins1 ←G(1,σ∗
1 ,σ∗

2 );coins2 ←G(2,σ∗
1 ,σ∗

2 )

4 : ct∗1 ←Enc1(pk1,σ∗
1 ;coins1)

5 : ct∗2 ←Enc2(pk2,σ∗
2 ;coins2)

6 : if ∃i ∈ [2] s.t. Deci (ski ,ct∗i ) ̸=σ∗
i : abort

7 : b ←$ {0,1}

8 : K0 ← H(σ∗
1 ⊕σ∗

2 )

9 : K1 ←$ K

10 : b′ ←A ODec
(pk, (ct∗1 ,ct∗2 ),Kb )

11 : return 1b′=b

Oracle ODec(ct= (ct1,ct2))

1 : if ct= ct∗ : return ⊥
2 : if ∃((1,σ1,σ2), g1) ∈LG s.t. Enc1(pk1,σ1; g1) = ct1

3 : and ∃((2,σ1,σ2), g2) ∈LG

4 : s.t. Enc2(pk2,σ2; g2) = ct2 :

5 : if k-th query : abort

6 : return H(σ1 ⊕σ2)

7 : if k-th query :

8 : (σ′
1,σ′

2) ← (Dec1(sk1,ct1),Dec2(sk2,ct2))

9 : for i s.t. ̸ ∃((i ,σ1,σ2), gi ) ∈LG s.t. Enci (pki ,σi ; gi ) = cti :

10 : g ′
i ←G(i ,σ′

1,σ′
2)

11 : if Enci (pki ,σ′
1; g ′

i ) = cti : return 1

12 : abort

13 : return ⊥

G(m)

1 : if ∃g s.t. (m, g ) ∈LG :

2 : return g

3 : g ←$ {0,1}n

4 : LG ←LG ∪ {(m, g )}

5 : if parse m = (i ,σ1,σ2) succeeds :

6 : if Deci (ski ,Enci (pki ,σi ; g )) ̸=σi :

7 : abort

8 : return g

Figure 4.9: Adversary Bk for the proof of Lemma 4.3.1.

Security in the QROM

As the original FO-transform, our combiner could be made secure in the QROM by adding a

hash in the ciphertext, this technique is often called plaintext confirmation. For simplicity,

here we show that our T∥ transform generalised to n PKEs is secure in the QROM (it outputs an

OW-PCA scheme). We call this transform Tn
∥ and it is detailed in Figure 4.11. Then, it suffices

to combine the QU⊥
m transform from Hofheinz et al. [HHK17] (see Figure 2.17) with T∥ to get

an IND-CCA secure KEM in the QROM. We show the following theorem.

Theorem 4.3.4. Let PKE be the PKE resulting from applying Tn
∥ on PKE1, . . . ,PKEn , which are

respectively δ1, . . . ,δn-correct. In addition, let Gi be hash functions modelled as (independent)

quantum random oracles. Then, for all quantum OW-PCA adversary A making at most qG

queries to all oracles Gi and qP queries to the plaintext-checking oracle, there exist adversaries
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BA ,G
1 (pk1,ct∗1 )

1 : (pk2,sk2) ←$ Gen2(1λ)

2 : σ∗
2 ←$ M2

3 : ct∗2 ←Enc2(pk,σ∗
2 )

4 : K ←$ K

5 : run A ODec
2 ,G ,H ((pk1,pk2), (ct∗1 ,ct∗2 ),K )

6 : sample a random query (m,h) from LG ∪LH

7 : if (m,h) ∈LG :

8 : parse ((i ,pt′1,σ∗
2 ), g ) ← m

9 : return pt′1
10 : if (m,h) ∈LH :

11 : return σ∗
2 ⊕m

Figure 4.10: OW-CPA adversary for the proof of Theorem 4.3.2. The oracles G and H are
simulated by B1.

Gen(1λ)

1 : for i ∈ [n] :

2 : (pki ,ski ) ←$ Geni (1λ)

3 : pk← (pk1, . . . ,pkn)

4 : sk← (sk1, . . . ,skn)

5 : return (pk,sk)

Enc(pk, (pt1, . . . ,ptn))

1 : parse (pk1, . . . ,pkn) ← pk
2 : for i ∈ [n] :

3 : ri ←Gi (pt1, . . . ,ptn)

4 : cti ←Enci (pki ,pti ;ri )

5 : return (ct1, . . . ,ctn)

Dec(sk, (ct1, . . . ,ctn))

1 : parse (sk1, . . . ,skn) ← sk
2 : for i ∈ [n] :

3 : pt′i ←Deci (ski ,cti )

4 : for i ∈ [n] :

5 : ri ←Gi (pt′1, . . . ,pt′n)

6 : if Enci (pki ,pt′i ;ri ) ̸= cti :

7 : return ⊥
8 : return (pt′1, . . . ,pt′n)

Figure 4.11: Tn
∥ combiner.

B1, . . . ,Bn such that

Advow−pca
PKE (A ) ≤ (

8 · (1+qG +qP )2 +1
) ∑

i∈[n]
δi

+ (1+2qP +2qG ) ·
√

min{Advow−cpa
PKE1

(B1), . . . ,Advow−cpa
PKEn

(B2)} ,

where B1, . . . ,Bn run in about the same time as A and make at most qG +qP queries to the

QROs.

Proof. We start by recalling a lemma that will be useful for the proof.

The first one, by Zhandry [Zha12], essentially states that a quantum random oracle can be

efficiently simulated.

Lemma 4.3.2 (Theorem 3.1, [Zha12]). No adversary limited to qH quantum queries to an oracle

|H〉 can distinguish between the case where |H〉 is a QRO and the case where |H〉 is a 2qH -wise
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independent function.

We now proceed with the proof. The sequence of hybrid games used is detailed in Figure 4.12.

The adversary has access to the n different QROs |G1, . . . ,Gn〉 which can be defined as one

oracle |G〉 = |G1, . . . ,Gn〉. We assume that the message spaces Mi are equal to {0,1}ℓi for some

integer ℓi and that G j : {0,1}∗ 7→ {0,1}k .

Game Γ0: This is the original OW-PCA game in the QROM except we enforce correctness

of the challenge ciphertext (i.e. Dec(pk,ct∗) = pt∗). As the correctness is broken for ct∗ if it is

broken for at least one of the components ct∗i , the probability of that happening is at most∑
i∈[n]δi .

Game Γ1: In this game, we simulate the plaintext-checking oracle by checking whether

Enc j (pt j ;G j (pt1, . . . ,pt j )) = ct j for all j ∈ [n]. As seen in the proof of Theorem 4.3.1, the

simulation is not perfect iff one of the (pt1, . . . ,ptn) queried is such that the correctness is

broken, i.e. Dec j (Enc j (pt j ;G j (pt1, . . . ,ptn))) ̸= pt j for some j ∈ [n] at any point in the game.

We call this event fail j . One can see that faili occurs if one can find a correctness error in

the scheme generated by T(PKEi ). By Theorem 2.4.3, this happens with probability at most

8 ·δi · (qG +1)2, where qG is the number of calls made to the random oracle, which in our case

is qG +qP .

Overall, we have

|Pr[Γ0 ⇒ 1]−Pr[Γ1 ⇒ 1]| ≤ Pr
[∪ j∈[n]fail j

]≤ 8 · (1+qG +qP )2 · ∑
j∈[n]

δ j ,

where the second inequality follows from a union bound.

Game Γ2: In game Γ2, we replace the deterministic coins G j (pt∗1 , . . . ,pt∗n) by random coins

r j ←$ {0,1}r for all j ∈ [n]. We can then use the One-Way to Hiding Lemma (Lemma 2.3.1)

to upper bound |Pr[Γ2 ⇒ 1]−Pr[Γ1 ⇒ 1]|. First, we consider the RO G := G1 ⊗ . . .⊗Gn s.t.

G(m) = (G1(m), . . . ,Gn(m)) and the function F(x, y) shown in Figure 4.13 which outputs

i np = (pk,ct∗). In addition, let A ′ be the adversary that receives i np, run A OPCO
1 (pk,pt∗)

by simulating the plaintext-checking oracle (this is possible since the secret key is not used

in OPCO
1 anymore) and outputs 1 iff A outputs pt′ s.t. Enc(pk,pt′) = ct∗ (this is equivalent

to pt′ = pt∗ by the perfect correctness of the challenge ciphertext). By the AOW2H Lemma

(Lemma 2.3.1), one can easily see that∣∣Pr[Γ2 ⇒ 1]−Pr[Γ1 ⇒ 1]
∣∣=∣∣Pr[A ′|G〉(i np) ⇒ 1|pt∗ ←$ {0,1}ℓ1+...+ℓn ; i np ← F(pt∗,G(pt∗))]

−Pr[A ′|G〉(i np) ⇒ 1|(pt∗,r∗) ←$ {0,1}ℓ1+...+ℓn+r ·n ; i np ← F(pt∗,r∗)]
∣∣

≤ 2qow2h

√
Pr[pt∗ ←ExtA ′,|G〉(i np)|(pt∗,r∗) ←$ {0,1}ℓ1+...+ℓn+r ·n ; i np ← F(pt∗,r∗) ,
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Γi (A )

1 : ((pk1, . . . ,pkn ), (sk1, . . . ,skn )) ←$ Gen(1λ)

2 : (pt∗1 , . . . ,pt∗n ) ←$ {0,1}ℓ1+...+ℓn

3 : ct∗ ←Enc(pk, (pt∗1 , . . . ,pt∗n ))

4 : for i ∈ [n] : // Γ2

5 : (r∗1 , . . . ,r∗n ) ←$ {0,1}r n // Γ2

6 : ct∗i ←Enci (pki ,pt∗i ;r∗i ) // Γ2

7 : if Dec(sk∗,ct∗) ̸= (pt∗1 , . . . ,pt∗n ) :

8 : abort

9 : pt′ ←A |G1 ,...,Gn 〉,OPCO
0 (pk,ct∗) // Γ0

10 : pt′ ←A |G1 ,...,Gn 〉,OPCO
1 (pk,ct∗) // Γ1-Γ2

11 : return 1pt′=(pt∗1 ,...,pt∗n )

Oracle OPCO
0 ((pt1, . . . ,ptn), (ct1, . . . ,ctn))

1 : (pt′1, . . . ,pt′n ) ←Dec(sk,ct)

2 : return 1(pt1 ,...,ptn )=(pt′1 ,...,pt′n )

Oracle OPCO
1 ((pt1, . . . ,ptn), (ct1, . . . ,ctn))

1 : for j ∈ [n] :

2 : r j ←G j (pt1, . . . ,ptn )

3 : if Enc j (pk j ,pt j ;r j ) ̸= ct j :

4 : return 0

5 : return 1

Figure 4.12: Sequence of games for the proof of Theorem 4.3.4.

F(pt∗,r∗)

1 : parse (r∗1 , . . . ,r∗n ) ← r∗

2 : parse (pt∗1 , . . . ,pt∗n ) ← pt∗

3 : (pk,sk) ←$ Gen(1λ)

4 : for i ∈ [n] :

5 : ct∗i ←Enci (pki ,pt∗i ;r∗i )

6 : return (pk,ct∗)

Figure 4.13: Function F for applying the AOW2H Lemma in the proof of Theorem 4.3.4.

where Ext is the extractor defined in Figure 2.12 and qow2h is the number of queries made

by A ′ to G , which is qG to answer A ’s queries plus qP to simulate the plaintext-checking

oracle (i.e. one can compute the coins (G j (pt1, . . . ,ptn)) j∈[n] with one quantum query to

G). Thus, qow2h = (qP +qG ). Now, the probability that the extractor outputs pt∗ is precisely

the probability that the OW-CPA property of all underlying PKEi is broken. We provide in

Figure 4.14 an adversary B j that breaks the OW-CPA security of any PKE j given ExtA ′
. Thus,

we have

∣∣Pr[Γ2 ⇒ 1]−Pr[Γ1 ⇒ 1]
∣∣≤ 2(qP +qG )

√
Advow−cpa

PKE j
(B j )

for any j ∈ [n]. Finally, Pr[Γ2 ⇒ 1] is the probability to win the OW-CPA game against any

underlying PKE j . We provide the given adversary C j that breaks PKE j in Figure 4.14. Hence,

Pr[Γ2 ⇒ 1] ≤Advow−cpa
PKE j

(C j ) ≤
√

Advow−cpa
PKE j

(C j ). Collecting the bounds and folding adversaries

concludes the proof.

This result then implies that QU⊥
m ◦Tn

∥ is a robust FO-like combiner in the QROM by using

Theorem 4.5 of Hofheinz et al. [HHK17]. Note that the proof of Theorem 4.3.4 is very similar
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BExtA ′
,G

1 (pk j ,ct∗j )

1 : for i ∈ [n], i ̸= j :

2 : (pki ,ski ) ←$ Geni (1λ)

3 : pt∗i ←$ {0,1}ℓi

4 : ct∗i ←Enci (pki ,pt∗i )

5 : pt′ ←ExtA
′
((pk1, . . . ,pkn ), (ct∗1 , . . . ,ct∗n ))

6 : return pt′j

C ′A ,G
1 (pk j ,ct∗j )

1 : for i ∈ [n], i ̸= j :

2 : (pki ,ski ) ←$ Geni (1λ)

3 : pt∗i ←$ {0,1}ℓi

4 : ct∗i ←Enci (pki ,pt∗i )

5 : pt′ ←A OPCO
1 ,|G1 ,...,Gn 〉((pk1, . . . ,pkn ), (ct∗1 , . . . ,ct∗n ))

6 : return pt′j

Figure 4.14: OW-CPA adversaries for the proof of Theorem 4.3.4. The oracle OPCO
1 is defined

as in Figure 4.12.

to the proofs of FO security in the QROM. As a result, the bound could much likely be made

tighter using recent QROM techniques (e.g. [Bin+19b; Kuc+20; SXY18]). In addition, we

conjecture that our main combiner UT∥ could be proven secure in the QROM without the

additional hash. We leave these improvements as future work.

4.4 Other Combiners

It has been shown that the implementation of ROs in FO-like transforms, in particular in the

de-randomisation step (i.e. computation of the deterministic coins), is particularly vulnerable

to implementation mistakes [BDG20]. Thus, it is of interest to study how these coins can be

computed without compromising the security of the resulting scheme. We show in this section

how hash functions (i.e. ROs) can be combined s.t. the de-randomisation step is secure and

efficient. Many combinations of hash functions are possible and we propose a few of those

below, offering flexibility to implementors. Finally, we consider using different hash functions

to increase the security at no (or very small) cost. This relates to the notion of hash com-

biner [FL08; FLP08], which constructs a hash function that fulfils certain security properties as

long as one of the underlying hash functions has this property. In our case, we want the hash

functions to behave as random oracles, thus we can combine two different functions to make

the whole scheme secure as long as one of the hash functions is indistinguishable from a RO.

How to combine hash functions. From now on, in order to distinguish (random) functions

from random oracles, we denote a function by a small letter and a RO by a capital letter

(e.g. g (x) is a function evaluated on x and G(x) is a RO queried on x). Note that in our case,

the functions are defined using random oracles (e.g. g (x) := G(1, x)⊕G(2, x)). We consider

replacing the RO G in our combiners by such a random function g (but still in the ROM).

One can see from the proofs of security of both T∥ and UT∥ that we want the deterministic

coins to be indistinguishable from random ones until we can recover the seeds (or plaintexts)

from the list of queries. In addition to this property, one also wants the values g (i ,σ1,σ2)

to be close to uniform. Indeed, in the proof of Theorem 4.3.2, we extensively use the fact
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that the correctness and spreadness property hold with probability at least δ and 2−γ, re-

spectively, even when the coins are not random but computed as g (i ,σ1,σ2). Obviously, if

the values g (1,σ1,σ2) are not sampled uniformly at random, this may not hold anymore. In

other words, we want g (i ,σ1,σ2) to be either computable by the adversary using its queries

to G or distributed uniformly at random. We present below formal definitions (called Ex-

tractable Random Function (ERF) and Indistinguishable unless Queried (IUQ)) capturing these

properties.

4.4.1 Extractable Random Functions (ERFs)

We start by introducing the notion of Extractable Random Functions (ERFs), which formalise

the fact that the coins computed as g (i ,σ1,σ2) should look uniform given the adversary’s view,

or an extractor can be used to recover both seeds σ1,σ2.

We first define the notion of extractor.

Definition 4.4.1 (Extractor). Let g be a random function defined using a random oracle G.

An extractor Extg for a function g is a ppt deterministic function that takes a set of tuples

LG = {(xi ,hi )}i∈[qG ] of cardinality qG defining the event {∧i∈[qG ]G(xi ) = hi } and that outputs a

set of qE tuples E = {((i j ,σ j
1,σ j

2), g j )} j∈[qE ] s.t.

1. (correctness) Pr
[

g (i j ,σ j
1,σ j

2) = g j
∣∣LG

]
= 1,∀ j ∈ [qE ].

2. (initial emptiness) Extg (;) =;.

3. (increasing) LG ⊆L ′
G ⇒Extg (LG ) ⊆Extg (L ′

G ).

4. (initial queries) Let L ∗
G be the set of queries/responses made when computing g (1,σ1,σ2)

and g (2,σ1,σ2). Then,

Extg (L ∗
G ) = {(

(1,σ1,σ2), g (1,σ1,σ2)
)

,
(
(2,σ1,σ2), g (2,σ1,σ2)

)}
.

That is, one call to the function g (i ,σ1,σ2) (for different i ’s) does not give away any

information on other values of g .

Note that the number of tuples output by the extractor qE is a function of qG , that is the number

of queries made to the RO G. In addition, we define q1
E as the maximum number of tuples of the

form (i ,σ1,σ2) with a fixed σ1 (or σ2) output by the extractor.

Now, we can define the notion of extractable random functions.

Definition 4.4.2 (Extractable Random Function (ERF)). Let g : {0,1}∗ 7→ {0,1}n be a (ran-

dom) function defined using a random oracle G. Let Jσ1,σ2 = {((i ,σ′
1,σ′

2), g (i ,σ′
1,σ′

2)) : σ′
1 ̸=

σ1,σ′
2 ̸=σ2} be the set of input/output tuples of g for values σ′

1 and σ′
2 different from σ1 and σ2,
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g (i ,σ1,σ2)
G(σ1 ⊕σ2)⊕G(i ,σi )
G1(i ,σ1)⊕G2(i ,σ2)

Table 4.1: Different g functions, where G ,Gi are ROs.

where each tuple (x, y) ∈Jσ1,σ2 defines the event {g (x) = y}. Then, g is an extractable random

function (ERF) if there exists an extractor Extg s.t. for any i ,σ1,σ2, y,LG and J ′ ⊆Jσ1,σ2 s.t.

Pr[J ′,LG ] > 0,

Pr[g (i ,σ1,σ2) = y |LG ,J ′] =


1

2n , if ((i ,σ1,σ2), y) ∉Extg (LG )

1, if ((i ,σ1,σ2), y) ∈Extg (LG )

0, if ∃y ′ ̸= y s.t. ((i ,σ1,σ2), y) ∈Extg (LG )

In short, as hinted above, this notion captures the fact that either g (i ,σ1,σ2) is uniformly

distributed, or the extractor can compute it based on the queries made to G . In addition,

we require that there is no correlation between different values of g when both inputs are

different. Finally, we stress that when a party computes g (i ,σ1,σ2), the value of g becomes

deterministic. In other words, if we let LG be the set of corresponding queries/responses used

to compute g (i ,σ1,σ2), the list Extg (LG ∪L ′
G ) will contain g (i ,σ1,σ2), for any L ′

G .

Example 4.4.1 (ROs are ERF functions.). As an example, we show that ROs are ERFs. More

precisely, let g (i ,σ1,σ2) =G(i ,σ1,σ2) as in the UT∥ combiner. Then, we define the extractor Extg

as a function that takes all tuples of the form ((i ,σ1,σ2),h) ∈ LG and outputs them. Clearly,

if the extractor does not output a given value (i ,σ1,σ2), then it was not queried to the RO

and it is indistinguishable from a uniform value, as requested. Also, by the property of ROs, a

value G(i ,σ1,σ2) is mutually independent from any set of values G(i ′,σ′
1,σ′

2) with σ1 ̸=σ′
1 and

σ2 ̸= σ′
2. Note also that the maximum number of tuples output by the extractor qE is upper

bounded by qG .

Other examples of ERFs We give two other examples of functions g satisfying the properties

of ERF in Table 4.1.

Proposition 4.4.1. The two functions g (i ,σ1,σ2) presented in Table 4.1 are ERFs.

Proof.

• G(σ1 ⊕σ2)⊕G(i ,σi ): We first define the extractor Extg . We can define LGi as the list of

query/responses (m, g ) s.t. m is of the form (i ,σi ) and LG is the list of remaining query

responses. The extractor outputs the union of:
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1.
{(

(1,σ1,σ1 ⊕σ), g ⊕ g1
)

: (σ, g ) ∈LG ,
(
(1,σ1), g1

) ∈LG1

}
. That is for each (1,σ1) that

has been queried, it recovers σ2 from the queries in LG and outputs the corre-

sponding value of g (1,σ1,σ2).

2.
{(

(2,σ2 ⊕σ,σ2), g ⊕ g2
)

: (σ, g ) ∈LG ,
(
(2,σ2), g2

) ∈LG2

}
.

This is straightforward to see that this function fulfils the properties of an extractor. In

particular, if qG queries are made to G , we have qE ≤ q2
G and q1

E ≤ qG . Finally, we show

that if g (i ,σ1,σ2) is not in the output of the extractor, then it is indistinguishable from a

value sampled uniformly at random. Let g (i ,σ1,σ2) = Y +X with Y :=G(σ1 ⊕σ2) and

X :=G(i ,σi ). Clearly, by the property of RO, if σ1 ⊕σ2 or (i ,σi ) was not queried to G , we

have Y , resp. X uniformly distributed. Then, g (i ,σ1,σ2) is uniformly distributed as well.

Finally, if both are queried, the extractor will be able to compute g (i ,σ1,σ2).

• G1(i ,σ1)⊕G2(i ,σ2): We define the extractor as follows. For a given i , let LGi j be the list

of query/answer for queries of the type (i ,σ j ) to G j . For any i (here i ∈ [2]), the extractor

considers all pairs of tuples
(
(i ,σ1), g1

)
,
(
(i ,σ2), g2

) ∈LGi 1 ×LGi 2 and for each of them

outputs
(
(i ,σ1,σ2), g1 ⊕ g2

)
. Clearly, such an extractor fulfils the necessary properties.

Now, we show that g (i ,σ1,σ2) is distributed uniformly at random unless the extractor

outputs a corresponding tuple. For a given i , let X j :=G j (i ,σ j ) and Z := X1 +X2. Then,

following a similar argument as in the previous point, we see that Z is uniform unless

(i ,σ1) and (i ,σ2) have been queried to G1 and G2, respectively. If that happens, the

extractor recovers g (i ,σ1,σ2). Finally, as in the previous function, we have qE ≤ q2
G and

q1
E ≤ qG .

4.4.2 IUQ functions

Now we define a weaker assumption than ERF for the hash function h that derives the key in

the encapsulation/decapsulation procedures. Indeed, we notice that the only property we

need from this function is to look indistinguishable unless one can recover one challenge seed

given the other. We call such property Indistinguishability unless Queried (IUQ) and we define

it as follows.

Definition 4.4.3 (IUQ functions). Let h(σ1 ∈M1,σ2 ∈M2) be a (random) function based on

a random oracle H where M1 and M2 are some message spaces. We consider the IUQ game

defined in Figure 4.15, where the RO H is defined as shown in the game. Then, if there exists a

ppt function Exth s.t. for any efficient adversary A

Adviuq
h,H ,Exth

(A ) =
∣∣∣Pr

[
IUQ1

h,H ,Exth
(A ) ⇒ 1

]
−Pr

[
IUQ0

h,H ,Exth
(A ) ⇒ 1

]∣∣∣= 0

we say h is IUQ (Indistinguishable from Uniform unless Queried).
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IUQ-b
h,H ,Exth

(A )

1 : chal1 ← false

2 : chal2 ← false

3 : (σ1,σ2) ←$ M1 ×M2

4 : h0 ←$ {0,1}n

5 : h1 ← h(σ1,σ2)

6 : b′ ←A H (σ1,σ2,hb)

7 : return b′

H(m)

1 : if ∃x s.t. (m, x) ∈LH :

2 : return x

3 : x ←$ {0,1}n

4 : LH ←LH ∪ {(m, x)}

5 : if σ1 ∈Exth(1,σ2,LH ) : chal1 ← true

6 : if σ2 ∈Exth(2,σ1,LH ) : chal2 ← true

7 : if chal1 and chal2 : abort

8 : return x

Figure 4.15: IUQ game.

While looking cumbersome, this definition simply generalises what we want from the functions

that derives the key. Indeed, in the IUQ game, we ask the adversary to distinguish between a

uniformly distributed value and h(σ1,σ2) for some random (σ1,σ2). However, if there exists

some extractor (or parsing function) Exth that can recover (σ1,σ2) by observing the queries to

the random oracles, the game aborts. That captures the fact that either the adversary cannot

distinguish, or one can recover the challenge seeds (or plaintexts). Note that the function Exth

takes the index of the seeds it must recover and the other seed to capture the fact that in a

reduction attacking the one-wayness of PKE1, the adversary can pick σ2 (and the other way

around).

Example 4.4.2 (H(σ1)⊕H(σ2) is IUQ.). As an example of a IUQ function, one can consider

h(σ1,σ2) := H(σ1) ⊕ H(σ2). As an extractor, we define Exth(i ,σ,LH ) as the function that

goes through all tuples (m,h) ∈ LH and outputs the set of m’s. Now, unless σ1 and σ2 are

queried, the adversary cannot distinguish a random value from h(σ1,σ2). But if both values

are queried, the IUQ game will abort because both lists output by the extractor Exth(1,σ2,LH )

and Exth(2,σ1,LH ) will contain σ1 and σ2, respectively. In this case, the advantage of IUQ

adversary is 0.

4.4.3 IUQ and ERF in UT∥

Now, based on the IUQ and ERF definitions, we prove the following theorem, which states that

the UT∥ combiner is still robust if G and H are replaced by ERF and IUQ functions, respectively.

Theorem 4.4.1 (UT∥ and ERF/IUQ). Let h(σ1,σ2) and g (i ,σ1,σ2) be a IUQ, resp. ERF function,

and H and G be the ROs h and g are based on, respectively. In addition, let qE (|LG |), qEh (|LH |)
be the maximum number of tuples output by Extg (LG ), Exth(LH ), respectively (they are a

function of the length of the input). We also let q1
E (|LG |) be the maximal number of tuples with

a fixed σ output by Extg (LG ) (see Definition 4.4.1). Finally, let KEM be the hybrid KEM built on

top of two OW-CPA PKEs using the UT∥ combiner, where the deterministic coins for encrypting

the seed σi are computed as g (i ,σ1,σ2) instead of G(i ,σ1,σ2), and the key is computed as
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h(σ1,σ2) instead of H(σ1 ⊕σ2).

Then, for all efficient IND-CCA adversary A making at most qG , qH , and qD queries to the

oracles G,H, and ODec respectively, there exist adversaries B1 and B2 such that

Advind−cca
PKE (A ) ≤qE (qg ·2(qD +1)+qG ) ·max{δ1,δ2}

+ (qD +q1
E (qG )) · (2−γ1 +2−γ2 )

+ (q1
E (qG )+qEh (qH )) ·min{Advow−cpa

PKE1
(B1),Advow−cpa

PKE2
(B2)} ,

where qg is the number of queries to G needed to evaluate g . Both B1 and B2 run in about the

same time as A and make the same number of queries.

Proof. The proof is very similar to the proof of security of the UT∥ transform. The only

difference is that we use the output of the extractors associated with the ERF/IUQ properties

of g /h instead of the list of queries LG ,LH . In particular, we argue that if some value is not in

these extracted lists, it is uniformly distributed.

Let Extg and Exth be the functions s.t. g and h are ERF and IUQ, respectively. We also assume

that the key space is {0,1}n for some n. We give the sequence of games in Figure 4.16.

Game Γ1: In this game, we enforce the correctness of all ciphertexts that can be computed

using the function g . In particular, we abort if the challenge ciphertexts break the correctness

property or if any (i ,σ1,σ2) output by Extg is s.t. Enci (pki ,σi ; g (i ,σ1,σ2)) breaks the correct-

ness property. Let LG collect all tuples of query/responses made throughout the game by the

adversary and the game itself, and L k
G its state after the k-th query to G is made. Then, we can

define the set of new tuples output by the extractor at query k as T k =Extg (L k
G )\Extg (L k−1

G ).

Hence, when submitting the k-th query m to G , the probability a tuple in the corresponding

T k =Extg (L k−1
G ∪ (m,G(m))) \Extg (L k−1

G ) contains a plaintext that breaks the correctness is

Pr

[ ∨
((i ,σ1,σ2),g (i ,σ1,σ2))∈T k

Deci (ski ,Enci (pki ,σi ; g (i ,σ1,σ2))) ̸=σi

∣∣∣L k−1
G

]
≤ ∑

((i ,σ1,σ2),g (i ,σ1,σ2))∈T k

Pr
[
Deci (ski ,Enci (pki ,σi ; g (i ,σ1,σ2))) ̸=σi

∣∣L k−1
G

]
= ∑

((i ,σ1,σ2),g (i ,σ1,σ2))∈T k

Pr
[
Deci (ski ,Enci (pki ,σi ;coins)) ̸=σi : coins←$ {0,1}n]

≤ |T k | ·max{δ1,δ2}

for any query m. The equality follows from the definition of extractable random functions and

the last inequality from the δi correctness of PKEi . Then, by a union bound, the probability

a correctness error happens for any of the qE tuples output by Extg is upper bounded by

qE ·max{δ1,δ2}. Note that qE is a function of the total number of queries submitted to G ,

which is qg ·2(qD +1)+qG in this case, where qg is the number of queries made to G at each

78



4.4 Other Combiners

evaluation of g (i.e. in total 2 calls to g for the challenge ciphertexts and for each decapsulation

query, and qG queries made by the adversary). Hence, we have∣∣Pr[Γ0 ⇒ 1]−Pr[Γ1 ⇒ 1]
∣∣≤ qE ·max{δ1,δ2} .

Game Γ2: In this game, we consider LG , which is the transcript of the queries made to G by

any party (i.e. game or adversary). We enforce that at no point the extractor Extg (LG ) contains

a tuple ((1,σ∗
1 ,σ2), g ′

1) with σ2 ̸=σ∗
2 or ((2,σ1,σ∗

2 ), g ′
2) with σ1 ̸=σ∗

1 s.t. Enc1(pk1,σ∗
1 ; g ′

1) = ct∗1
or Enc2(pk2,σ∗

2 ; g ′
2) = ct∗2 , respectively. We proceed as in the previous game and let T k =

Extg (L k
G ) \Extg (L k−1

G ) where L k
G is the state of L k

G after the k-th query to G . Finally, let L 0
G

be the state of LG after computing the challenge ciphertexts. Then, when submitting the k-th

(k ≥ 2) query m to G , the probability a tuple in T k breaks the first condition is

Pr

 ∨
((1,σ∗

1 ,σ2),g (1,σ∗
1 ,σ2))∈T k

Enc1(pk1,σ∗
1 ; g (1,σ∗

1 ,σ2)) = ct∗1
∣∣∣L k−1

G


≤ ∑

((1,σ∗
1 ,σ2),g (1,σ∗

1 ,σ2))∈T k

Pr
[
Enc1(pk1,σ∗

1 ; g (1,σ∗
1 ,σ2))) = ct∗1

∣∣L k−1
G

]
= ∑

((1,σ∗
1 ,σ2),g (1,σ∗

1 ,σ2))∈T k

Pr[Enc1(pk1,σ∗
1 ;coins)) = ct∗1 : coins←$ {0,1}n]

≤
∣∣∣{(

(1,σ∗
1 ,σ2), g

) ∈T k
}∣∣∣ ·2−γ1

for any m, where the equality holds by the definition of ERF and the fact that by definition

a tuple in T k is not in L k−1
G . Now, the equation holds for k = 1 as well by the last property

of extractors (i.e. (1,σ∗
1 ,σ2) ∉L 0

G for any σ2 ̸=σ∗
2 ). Then, it is similar for the second type of

failure and the probability it happens for any of the qE tuples in Ext(Lg ) is upper bounded

by q1
E · (2−γ1 +2−γ2 ), where q1

E is the maximum number of tuples g (i ,σ1,σ2) output by the

extractor for a fixed value σ1 or σ2. Thus, we have∣∣Pr[Γ1 ⇒ 1]−Pr[Γ2 ⇒ 1]
∣∣≤ q1

E · (2−γ1 +2−γ2 ) .

We also prove the following proposition.

Proposition 4.4.2. Let cti ̸= ct∗i . In game Γ2, if A submits (ct1,ct∗2 ) or (ct∗1 ,ct2) to the decapsu-

lation oracle, the latter either returns ⊥ or the game aborts.

Proof. We assume w.l.o.g. that the adversary submits (ct1,ct∗2 ). Let σ′
1 := Dec1(sk1,ct1). By

the perfect correctness of ct∗2 , Dec2(sk2,ct∗2 ) =σ∗
2 . If σ′

1 =σ∗
1 , then Enc1(pk1,σ′

1; g (1,σ′
1,σ∗

2 )) =
ct∗1 ̸= ct1 and the oracle replies ⊥. Otherwise, in the re-encryption check, the game will

compute g (1,σ′
1,σ∗

2 ) withσ′
1 ̸=σ∗

1 and thus the extractor will output ((1,σ′
1,σ∗

2 ), g (1,σ′
1,σ∗

2 )) at

some point. By the abort condition in game Γ2, either Enc1(pk1,σ∗
1 ; g (1,σ′

1,σ∗
2 )) = ct∗1 and the

game aborts, or Enc1(pk1,σ∗
1 ; g (1,σ′

1,σ∗
2 )) ̸= ct∗1 and the decapsulation oracle outputs ⊥.

Game Γ3: We make nearly the exact same modifications as in game Γ2 in the proof of The-
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orem 4.3.2. That is, we check whether there exist both ((1,σ1,σ2), g1) and ((2,σ1,σ2), g2) in

Extg (LA ) s.t. Enci (pki ,σi ; gi ) = cti . If this is the case, (let’s call this event found) we return

h(σ1,σ2), otherwise we return the key K output by the decapsulation function. In other words,

this game is the same as Γ2 of the proof of Theorem 4.3.2 except we check for plaintexts

in Extg (LA ) instead of LA . Now, if found occurs, we return the same key as in game Γ1.

Indeed, by the perfect correctness of the tuples in Extg (LA ) ⊆ Extg (LG ) enforced in game

Γ1, if we find (σ1,σ2) s.t. Enci (σi ; g (i ,σ1,σ2)) = cti , then Deci (ski ,cti ) =σi . Hence, we have,

Pr[Γ2 ⇒ 1] = Pr[Γ3 ⇒ 1].

Game Γ4: We modify the previous game as follows. As before, this game is the same as game

Γ3 of the proof of Theorem 4.3.2 except we replace LA by Extg (LA ). In the decapsulation

oracle, we simply return ⊥ if found does not occur. Hence, game Γ3 and Γ4 differ iff the de-

capsulation oracle successfully decrypts ct but the extractor could not find neither (1,σ′
1,σ′

2)

or (2,σ′
1,σ′

2) (i.e. at least one tuple is not in Extg (LA )), where (Enc1(pk1,σ′
1; g (1,σ′

1,σ′
2)),

Enc2(pk2,σ′
2; g (2,σ′

1,σ′
2))) = ct . Now, the ciphertexts corresponding to the seeds in Extg (LA )

are perfectly correct. Thus, this event is equivalent to the decapsulation oracle successfully (i.e.

the re-encryption checks pass) recovering the seeds σ1,σ2 but either (1,σ1,σ2) or (2,σ1,σ2)

or both were not recovered by the extractor. Let fail be this event and we prove the following

lemma.

Lemma 4.4.1.

Pr[fail] ≤ qD · (2−γ1 +2−γ2 ) .

Proof. The proof is nearly the same as the proof of Lemma 4.3.1. Let failk be the event that fail
happens at the k-th decapsulation query and pk = Pr[failk ]. By a union bound, we have

Pr[fail] ≤
qD∑

k=1
pk .

Then, we consider an algorithm Bk defined in Figure 4.17, which is the same as the one

defined in Figure 4.9 for Lemma 4.3.1, except the calls to G are replaced by invocations of g

and the checks for values in LG by checks in Extg (LG ). This adversary simulates perfectly

the view of A in game Γ4 until the k-th query. In particular, for each decapsulation query

ct= (ct1,ct2), it checks whether there exist both ((1,σ1,σ2), g1) and ((2,σ1,σ2), g2) in Ext(LG )

s.t. Enci (pki ,σi ; gi ) for i ∈ [2]. We call this condition cond and if it is fulfilled Bk outputs

h(σ1,σ2), otherwise it outputs ⊥.

In the k-th decapsulation query, if cond is fulfilled it aborts. Otherwise, it sets i s.t. there is no

((i ,σ1,σ2), gi ) ∈Ext(LG ) s.t. Enci (pki ,σi ; gi ) = cti . Next, it decrypts ct1 and ct2 to both σ′
1 and

σ′
2. By the definition of i and the perfect correctness of the valuesσi in Extg (LG ), we have that

(i ,σ′
1,σ′

2) ∉Extg (LG ). In addition, by the perfect correctness of the challenge ciphertexts and

Proposition 4.4.2 we have σ′
1 ̸= σ∗

1 and σ′
2 ̸= σ∗

2 . Finally, Bk computes g ′
i ← g (i ,σ′

1,σ′
2) and

outputs 1 iff Enci (pki ,σi ; g ′
i ) = cti . Now, as g ′

i = g (i ,σ′
1,σ′

2) is not in LG and σ′
1 ̸=σ∗

1 ,σ′
2 ̸=σ∗

2 ,
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it is sampled uniformly at random. More precisely, if we fix all random coins but the ones

used by G , only the responses of G and the challenge ciphertexts (which only depend on

g (i ,σ∗
1 ,σ∗

2 )) are random. Thus, we have

Pr[Enci (pki ,σ′
i ; g (i ,σ′

1,σ′
2)) = cti |LG ,ct∗] =

Pr[Enci (pki ,σ′
i ;coins) = cti : coins←$ {0,1}n] ≤ 2−γi

by the γi -spreadness of PKEi and the definition of ERF. In the worst case, the check is per-

formed for both i = 1 and i = 2 and thus Pr[Bk (A ) ⇒ 1] ≤ 2−γ1 +2−γ2 . Now, we simply observe

that if failk occurs, then Bk perfectly simulates the decapsulation oracle in Γ3 and Γ4 in the

first k −1 queries and it will output 1 by the definition of failk . Thus,

pk ≤ Pr[Bk (A ) ⇒ 1] ≤ 2−γ1 +2−γ2 .

Taking the union bound on the pk concludes the proof.

By the previous Lemma, we have∣∣Pr[Γ3 ⇒ 1]−Pr[Γ4 ⇒ 1]
∣∣≤ qD · (2−γ1 +2−γ2 ) .

Game Γ5: We replace the deterministic coins used in the computation of the challenge cipher-

texts by random coins and we abort if the extractor Extg outputs a tuple (i ,σ∗
1 ,σ∗

2 ) on an input

m to the RO G . Let’s call this event chalg . In addition, we replace the key by a random one

when b = 0 and we raise a flag chalh when the extractor Exth can recover both σ∗
1 and σ∗

2 .

One can see that as long as chalg ∪chalh does not occur, the adversary cannot distinguish be-

tween the coins g (i ,σ1,σ2) and random coins, and between a real and random key. Indeed, it

means the extractors Extg ,Exth cannot recover the values g (i ,σ∗
1 ,σ∗

2 ) and σ∗
1 ,σ∗

2 , respectively.

By the definition of ERF and IUQ this means that g (i ,σ∗
1 ,σ∗

2 ) is uniformly distributed and a

random key is indistinguishable from h(σ∗
1 ,σ∗

2 ). Then, if chalg ∪chalh happens, the adversary

can recover the challenge seeds and break the one-wayness properties of both ciphertexts by

inspecting the values output by both extractors. We give the OW-CPA adversary B1 breaking

PKE1 in Figure 4.18, which wins whenever chalg ∪ chalh happens and it picked the correct

extracted value. The adversary B1 picks the second seed σ∗
2 at random and runs the adversary

A with both challenge ciphertexts and a random key K , and it can simulate the decapsulation

oracle perfectly as the latter does not use the secret key. Then, if chalg ∪chalh happens, clearly

(i ,σ∗
1 ,σ∗

2 ) or σ∗
1 will be in the output of the extractors until the end of the game. Thus, B1 can

recover σ1

1. by looking for a tuple of the form (i ,σ1,σ∗
2 ) for some i ,σ1 in the output of Extg . There

are at most q1
E such tuples, where we recall that q1

E is the maximum number of tuples of

the form (i ,σ1,σ2) for a fixed σ1 or σ2 output by the extractor.

2. by outputting a random value σ1 in the output of Exth(1,σ∗
2 ,LH ). There are at most qEh
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of these values.

Hence, the probability that B1 wins is at least 1
q1

E+qEh

Pr[chalg ∪chalh], as it needs to pick the

correct tuple/value. On the other hand, as long as chalg ∪chalh does not happen, both games

are indistinguishable. Hence,∣∣Pr[Γ4 ⇒ 1]−Pr[Γ5 ⇒ 1]
∣∣≤ (q1

E +qEh ) ·min
{
Advow−cpa

PKE1
(B1),Advow−cpa

PKE2
(B2)

}
.

Now, since both K0 and K1 are uniformly distributed in Γ5, Pr[G5 ⇒ 1] = 1
2 .

Collecting the probabilities and folding similar adversaries into one concludes the proof.

Hence, when h is IUQ and g is ERF, Theorem 4.3.2 still holds, but with a bound that might be

less tight.
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Γi (A )

1 : (pk,sk) ←$ Gen(1λ)

2 : (σ∗
1 ,σ∗

2 ) ←$ M1 ×M2

3 : coins1 ← g (1,σ∗
1 ,σ∗

2 ) // Γ0-Γ4

4 : coins2 ← g (2,σ∗
1 ,σ∗

2 ) // Γ0-Γ4

5 : coins1,coins2 ←$ R2 // Γ5

6 : ct∗1 ←Enc1(pk1,σ∗
1 ;coins1)

7 : ct∗2 ←Enc2(pk2,σ∗
2 ;coins2)

8 : if ∃i ∈ [2] s.t. Deci (ski ,ct∗i ) ̸=σ∗
i : abort // Γ1-Γ5

9 : b ←$ {0,1}

10 : K0 ← h(σ∗
1 ,σ∗

2 ) // Γ0-Γ4

11 : K0 ←$ K // Γ5

12 : K1 ←$ K

13 : b′ ←A ODec ,G ,H (pk, (ct∗1 ,ct∗2 ),Kb )

14 : return 1b′=b

Oracle ODec(ct= (ct1,ct2))

1 : flag← false

2 : if ct= ct∗ : return ⊥
3 : if ∃((1,σ1,σ2), g1) ∈Extg (LA )

4 : s.t. Enc1(pk1,σ1; g1) = ct1

5 : and ∃((2,σ1,σ2), g2) ∈Extg (LA )

6 : s.t. Enc2(pk2,σ2; g2) = ct2 : // Γ3-Γ5

7 : return h(σ1,σ2) // Γ3-Γ5

8 : return ⊥ // Γ4-Γ5

9 : K ′ ←Decaps(sk,ct) // Γ0-Γ3

10 : return K ′ // Γ0-Γ3

H(m)

1 : if ∃h s.t. (m,h) ∈LH :

2 : return h

3 : if m = (σ∗
1 ⊕σ∗

2 ) : // Γ5

4 : chal2 = true // Γ5

5 : abort // Γ5

6 : h ←$ {0,1}n

7 : LH ←LH ∪ {(m,h)}

8 : if σ∗
1 ∈Exth (1,σ∗

2 ,LH ) : // Γ5

9 : chal1h ← true // Γ5

10 : if σ∗
2 ∈Exth (2,σ∗

1 ,LH ) : // Γ5

11 : chal2h ← true // Γ5

12 : if chal1h and chal2h : // Γ5

13 : abort // Γ5

14 : return h

G(m)

1 : if ∃g ′ s.t. (m, g ′) ∈LG : g ← g ′

2 : else : g ←$ {0,1}n

3 : LG ←LG ∪ {(m, g )}

4 : for ((i ,σ1,σ2), g ) ∈Extg (LG ) : // Γ1-Γ5

5 : if Deci (ski ,Enci (pki ,σi ; g )) ̸=σi : // Γ1-Γ5

6 : abort // Γ1-Γ5

7 : if σ1 =σ∗
1 and σ2 ̸=σ∗

2 : // Γ2-Γ5

8 : if Enc1(pk1,σ1; g ) = ct∗1 : // Γ2-Γ5

9 : abort // Γ2-Γ5

10 : if σ2 =σ∗
2 and σ1 ̸=σ∗

1 : // Γ2-Γ5

11 : if Enc2(pk2,σ2; g ) = ct∗2 : Γ2-Γ5

12 : abort // Γ2-Γ5

13 : if m queried by A

14 : LA ←LA ∪ {(m, g )}

15 : if ((1,σ∗
1 ,σ∗

2 ), g ) ∈Extg (LA )

16 : or ((2,σ∗
1 ,σ∗

2 ), g ) ∈Extg (LA ) : // Γ5

17 : abort // Γ5

18 : return g

Figure 4.16: Sequence of games for the proof of Theorem 4.4.1.
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Bk (A )

1 : (pk,sk) ←$ Gen(1λ)

2 : (σ∗
1 ,σ∗

2 ) ←$ M1 ×M2

3 : coins1 ← g (1,σ∗
1 ,σ∗

2 )

4 : coins2 ← g (2,σ∗
1 ,σ∗

2 )

5 : ct∗1 ←Enc1(pk1,σ∗
1 ;coins1)

6 : ct∗2 ←Enc2(pk2,σ∗
2 ;coins2)

7 : if ∃i ∈ [2] s.t. Deci (ski ,ct∗i ) ̸=σ∗
i : abort

8 : b ←$ {0,1}

9 : K0 ← h(σ∗
1 ,σ∗

2 )

10 : K1 ←$ K

11 : b′ ←A ODec ,G ,H (pk, (ct∗1 ,ct∗2 ),Kb )

12 : return 1b′=b

Oracle ODec(ct= (ct1,ct2))

1 : if ct= ct∗ : return ⊥
2 : if ∃((1,σ1,σ2), g1) ∈Extg (LG ) s.t. Enc1(pk1,σ1; g1) = ct1

3 : and ∃((2,σ1,σ2), g2) ∈Extg (LG )

4 : s.t. Enc2(pk2,σ2; g2) = ct2 :

5 : if k-th query : abort

6 : return h(σ1,σ2)

7 : if k-th query :

8 : (σ′
1,σ′

2) ← (Dec1(sk1,ct1),Dec2(sk2,ct2))

9 : for i s.t. ̸ ∃((i ,σ1,σ2), gi ) ∈Extg (LG )

10 : s.t. Enci (pki ,σi ; gi ) = cti :

11 : g ′
i ← g (i ,σ′

1,σ′
2)

12 : if Enci (pki ,σ′
1; g ′

i ) = cti : return 1

13 : abort

14 : return ⊥

G(m)

1 : if ∃g s.t. (m, g ) ∈LG :

2 : return g

3 : g ←$ {0,1}n

4 : LG ←LG ∪ {(m, g )}

5 : for ((i ,σ1,σ2), g ) ∈Extg (LG ) :

6 : if Deci (ski ,Enci (pki ,σi ; g )) ̸=σi :

7 : abort

8 : if σ1 =σ∗
1 and σ2 ̸=σ∗

2 :

9 : if Enc1(pk1,σ1; g ) = ct∗1 :

10 : abort

11 : if σ2 =σ∗
2 and σ1 ̸=σ∗

1 :

12 : if Enc2(pk2,σ2; g ) = ct∗2 :

13 : abort

Figure 4.17: Adversary Bk for the proof of Lemma 4.4.1.

4.4.4 Hash combiners.

As some of the proposed functions g use more than one hash functions, these functions are

themselves hash combiners. Thus, it is of interest to study the robustness of such constructions.

That is, if one of the underlying hash functions is broken (i.e. shown not to behave as a RO),

is the g function (thus the whole FO-like combiner) still secure? As one of the main security

concerns of the use of FO-like transforms is that the proofs are in the ROM, using robust hash

combiners may improve the trust in such constructions.

The last function g in Table 4.1 (p. 75) is actually a robust combiner with respect to the

RO property. That is, G1(i ,σ1)⊕G2(i ,σ2) is indistinguishable from a RO, even if G1 (or G2)

is any function. Hence, if we take both g (i ,σ1,σ2) = G1(i ,σ1)⊕G2(i ,σ2) and h(σ1,σ2) =
H1(σ1)⊕H2(σ2) in the FO-like combiner, we will obtain a secure KEM as long as Gi and Hi

and PKEi are secure for some i ∈ [2].
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BA ,G
1 (pk1,ct∗1 )

1 : (pk2,sk2) ←$ Gen2(1λ)

2 : σ∗
2 ←$ M2

3 : ct∗2 ←Enc2(pk,σ∗
2 )

4 : K ←$ K

5 : run A ODec
2 ,G ,H ((pk1,pk2), (ct∗1 ,ct∗2 ),K )

6 : L ∗
G ← {σ1 : ((1,σ1,σ∗

2 ), g ) ∈Extg (LG )}

7 : σ1 ←$ L ∗
G ∪Exth (1,σ∗

2 ,LH )

8 : return σ1

Figure 4.18: OW-CPA adversary for the proof of Theorem 4.4.1.

Proposition 4.4.3 (Informal). Let g (i ,σ1,σ2) =G1(i ,σ1)⊕G2(i ,σ2) and h(σ1,σ2) = H1(σ1)⊕
H2(σ2). We call a tuple (Gi , Hi ,PKEi ) secure if Gi , Hi are ROs and PKEi is OW-CPA. Let

KEM be the hybrid KEM resulting from applying UT∥ on PKE1 and PKE2 with g and h to

derive the deterministic coins and key, respectively. Then, KEM is IND-CCA if (G1, H1,PKE1) or

(G2, H2,PKE2) (or both) is secure.

Proof sketch. We assume w.l.o.g. that the tuple (G1, H1,PKE1) is secure and G2, H2 can be any

functions and PKE2 might not be OW-CPA. In addition, we assume G1, H1,G2, H2 are mutually

independent functions (e.g. this can be implemented by RO separation). The result follows

simply from the fact that in the IND-CCA game against KEM, as long as G1 is a RO, the coins

G1(i ,σ1)⊕G2(i ,σ2) are indistinguishable from uniform unless (i ,σ1) is queried, irrespectively

of the value G2(i ,σ2). But in turn such a query would break the OW-CPA assumption on PKE1

(or happens with negligible probability). The same argument for h(σ1,σ2) = H1(σ1)⊕H2(σ2)

implies that the key will always be indistinguishable from uniform if H1 is a RO and PKE1 is

OW-CPA.

4.5 Implementation

As a proof of concept, we implemented a fully PQ hybrid KEM using two IND-CPA proposals

that passed to the Round 2 of the standardisation process and our combiner. As the main goal

of our combiner is to increase the security while still offering good performances, we chose

HQC and LAC since

1. LAC is one of the most efficient schemes in terms of speed and public key/ciphertext

size but it has been attacked recently in [GJY19]. More generally, it seems LAC is more

vulnerable to failure attacks than other schemes and that led this scheme to be dropped

for Round 3. Thus, using it along another cryptosystem does not imply a large overhead

while preventing a failure attack alone against LAC to break the whole scheme.

2. HQC is a code-based scheme that offers good performance, although the hardness
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assumption it is based on has not been extensively studied as of yet. Thus, combining

it with another efficient scheme might provide more confidence in this scheme at the

expense of a small overhead.

3. HQC is code-based while LAC is lattice-based. Therefore, one can hope that any im-

provement in breaking the assumption of one does not lead to a better cryptanalysis of

the other.

4.5.1 Design choices

For both schemes, we used the reference IND-CPA implementations provided by the authors

in the second round. Then, we applied our UT∥ combiner. In practice we implemented G(1, ·, ·)
as SHA256(·), G(2, ·, ·) as the AES-based expansion function provided by the NIST, and H(·) as

SHA512(·)2. These choices made the implementation easier as we could stick to most of the

author’s choices. For example, HQC encryption function in the original FO transform is using

a seed output by the AES-based expander and our choice of G(2,σ1,σ2) makes it possible to

reuse most of the code.

We implemented two versions of the hybrid cryptosystem, a standard version that we are

calling hqc_lac128 and a parallel version denoted by hqc_lac128_par, both using the Level

1 (i.e. aiming at 128 bits of classical security) reference implementations of LAC and HQC.

The parallel implementation uses the pthread library and is implemented without any other

optimisation. In particular, only the encryption of the seeds is parallelised in the encapsulation

function (i.e. the encryption functions of LAC and HQC are called in different threads) and

only the decryption and re-encryption is parallelised in the decapsulation procedure.

4.5.2 Results and efficiency

We tested both our hybrid schemes on a laptop running Ubuntu 14.04 with an Intel(R)

Core(TM) i7-3520M CPU @ 2.90GHz. The results for our hybrid schemes, the original schemes

and reference implementations of two other popular lattice-based schemes (Frodo and Kyber)

are reported in Table 4.2. The sizes are in bytes and the times are given in microseconds (10−6s)

and are averaged over 10000 runs. Obviously, the size of the public/secret key and ciphertext

are the addition of the corresponding ones in LAC and HQC, except for the ciphertext, which

is a bit smaller. This follows from the fact that the ciphertext in HQC contains a confirmation

hash that we omit in our FO-like combiner. One can see that compared to a proposal with

large keys and ciphertexts (i.e. Frodo), our hybrid compares well. In addition, as LAC produces

small outputs, the increase compared to HQC is small. That is, the size of the secret key, public

key and ciphertext is increased by roughly 33%, 17% and 10%, respectively.

Considering the speed, the non-optimised hybrid hqc_lac128 performs slightly better than

both LAC and HQC run one after the other. However, all procedures are still much faster

2In practice a KDF should be used, but for the sake of benchmarking SHA512 is sufficient.
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Scheme SK (B) PK (B) CT (B) KeyGen (µs) Encaps (µs) Decaps (µs)
frodo640 19888 9616 9720 847.553 4650.037 4602.284
hqc128 3165 3125 6234 144.166 298.120 528.624
kyber512 1632 800 736 154.077 210.857 263.194
lac128 1056 544 712 115.308 199.776 311.709
hqc_lac128 4221 3669 6882 260.032 484.969 813.452
hqc_lac128_par 4221 3669 6882 162.502 315.137 549.516

Table 4.2: Performance of hqc_lac128 and hqc_lac128_par compared to other schemes.
The size of the public/secret key and ciphertext are in bytes. The time for key generation,
encapsulation, decapsulation is in microseconds.

than the ones of a slower scheme, like Frodo. On the other hand, the parallelised hybrid

hqc_lac128_par offers very good performance as one could expect from such a parallelis-

able design. In particular, we observe only a 13%, 6%, and 4% increase of latency com-

pared to HQC for key generation, encapsulation, and decapsulation, respectively. Therefore,

hqc_lac128_par can perform nearly as good as HQC on systems that offers efficient paral-

lelisation, such as laptops or any machine with regularly idle processors.

We give on Figure 4.19 a visualisation of the performance of hqc_lac128 compared to other

round 2 candidates with security Level 1. Most of the data comes from the SUPERCOP [Be20]

benchmarking system (we picked the results of a test performed on a 2018 Intel Core i7-8809G).

All round 2 proposals are represented, except for BIKE, Round 5, and LEDACrypt, which did

not have an IND-CCA version benchmarked at the time of the test. We still included the keys

and ciphertext sizes of BIKE as they are similar to the ones of HQC.

For the hybrid scheme hqc_lac128, we computed the cycles needed for key generation,

encapsulation and decapsulation as the sum of the corresponding cycles needed by LAC

and HQC. Note that this is a pessimistic approximation as the hybrid system requires less

instructions than the sum of both underlying schemes (e.g. we apply some hash functions

only once), this is confirmed in practice by the results shown in Table 4.2. We do not plot the

parallelised version hqc_lac128_par as the sizes are the same as the ones of hqc_lac128
and the time is upper bounded by the latter as well.

Analysis. From all three graphs in Figure 4.19, we can deduce that our hybrid does not perform

particularly well compared to other schemes in these metrics. However, one can see that the

bottleneck is the use of HQC here. In particular, hqc_lac128 performs nearly as well as HQC

in the metrics considered. This confirms that boosting security by combining a very efficient

scheme with one that is less so does not worsen much the performance of the latter one. In

other words, if one is willing to use HQC, one can as well use the hybrid hqc_lac128 for a very

small overhead but arguably much better security.

Finally, one can wonder what is the speedup of our combiners compared to existing ones.
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We take as an example the XtM combiner from Bindel et al. [Bin+19a], which applies a

special kind of MAC to the ciphertexts and keys. It is proposed to implement this primitive

as the concatenation (or the XOR) of two standard MACs. This computation is the main

overhead compared to our construction and we simulated it as two calls to SHA256 on both

ciphertexts and keys. This takes approximately 40µs on our setup, hence the speedup when

considering hqc_lac128_par is slightly over 10% for encapsulation. This obviously depends

on many factors like hardware, hash functions, parallelisation, and the underlying schemes.

For example, for small ciphertexts the speedup will be negligible while for large ones it will be

more important. Finally, we note that PQ schemes are not optimised thus the gain might be

more noticeable in the future.

4.5.3 Other hybrid KEMs.

While hqc_lac128 is an interesting example of the advantages offered by a PQ hybrid KEM,

one might wonder what is the optimal combination of schemes according to some metrics.

Using the same data [Be20], we computed the theoretical performance of all possible hybrids

made of two PKEs based on different assumptions (e.g. code and lattice). We considered

the fastest ones in encapsulation/decapsulation and the ones with the smallest public key/-

ciphertext size. We present some of the most efficient ones according to these metrics in

Table 4.3. We leave the ones based on SIKE for the sake of completeness but stress that

SIKE is broken [CD23]. We also include a lattice/rank-based hybrid scheme for completeness

(i.e. NTRUhps_rqcI) and a LAC-RSA hybrid KEM as an interesting comparison. Overall, non-

lattice-based schemes are considerably slower than lattice-based ones (although some data

on BIKE is missing), thus it seems that combining schemes of these two types will not give

small public key and fast encapsulation/decapsulation.

We give a visualisation of the performance of these hybrid schemes compared to the NIST

proposals (and RSA 2048) in Figure 4.20. On the first figure, one can easily identify the hybrid

schemes based on McEliece and NTS on the right. Both the hybrid schemes based on BIKE and

NTRUhps_rqcI have public key and ciphertext sizes that lie between those of the rank-based

proposals and some code-based ones.

On the second figure, one can see that hybrid schemes based on SIKE are slow due to the

underlying scheme. On the second figure, one can see that in terms of speed the hybrid

systems based on McEliece and NTS offer competitive performance. However, NTRUhps_rqcI
is the only full PQ hybrid considered that has slightly worse than average performance in all

metrics considered (i.e. bandwidth and speed). Interestingly, we see that the decapsulation

latency of RSA is one of the worst among the schemes considered, and thus the hybrid lac_rsa
suffers from slow decapsulation as well.

In general, several lattice-based schemes offer good performance in both the chosen metrics.

Hence, the hybrid constructions mostly inherits the advantages and disadvantages of the

second PKE scheme used in the construction (i.e. isogeny, code or rank-based). Furthermore,
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Scheme PK (B) CT (B) Encaps (cycles) Decaps (cycles)
kyber512_sike∗ 1 178 1 138 17 652 847 18 817 320
lac128_sike∗ 922 1 114 17 677 983 18 871 919
NTRUhps_sike∗ 1 077 1 101 17 643 917 18 826 865
NTRUhps_bike2 2 171 2 171 - -
lightsaber2_bike2 2 144 2 208 - -
lac_bike2 2 016 2 184 - -
NTRUhps_McEliece 261 819 827 74 361 168 478
kyber512_McEliece 261 920 928 83 291 158 933
lightsaber2_McEliece 261 792 864 102 172 186 370
NTRUhps_NTSkem 320 187 827 140 165 371 082
kyber512_NTSkem 320 288 928 123 001 334 107
lightsaber2_NTSkem 320 160 864 141 882 361 544
NTRUhps_rqcI 1 552 2 389 374 470 1 265 545

Table 4.3: Selection of efficient hybrid schemes. *SIKE has been broken since the publication
of this research [CD23].

one can see from Figure 4.20 that composing a hybrid KEM from an “extreme” scheme (i.e. a

scheme that performs very well in one metric but very badly in another) might not be the best

option.

It seems that a better approach would be to combine two schemes based on the same type of

assumptions. However, that would probably lower the practical security of the hybrid scheme,

as a breakthrough in breaking one of the assumptions could automatically imply breaking the

other one. A more complete study is out of the scope of this thesis and we leave it as future

research.

4.6 Discussion

In this last short section of the chapter, we wish to discuss in more details the security im-

plications of using hybrid KEMs in applications. In particular, we argue that the security

boost offered by robust combiners might be greater in practice than what is suggested by the

mathematical bounds. Indeed, one can see from security proofs of robust combiners (e.g.

proofs of Theorem 4.3.2 & 4.4.1) that at some point between two games Γi and Γ j we define

some event E s.t. ∣∣∣Pr[Γi (A ) ⇒ 1]−Pr[Γ j (A ) ⇒ 1]
∣∣∣≤ Pr[E] .

Typically, the event E occurring implies that two adversaries can break both underlying

schemes with good probability. For instance, in the proof of Theorem 4.3.2 we have (in-

formally) Pr[E ] ≤ qG ·Pr[B1 breaks PKE1,B2 breaks PKE2] for some adversaries B1 and B2.
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Unfortunately, the term

Pr[B1 breaks PKE1,B2 breaks PKE2]

is not very informative in terms of security. Indeed, for example if we set PKE1 =PKE2, then

most likely we will have Pr[B 1,B 2] ≈ Pr[B 1] (where we set B i := B1 breaks PKEi ) and the

combiner gives no security improvement. More generally, it seems very difficult to formally

define the correlation between B 1 and B 2, and thus to give a concrete approximation of

Pr[B 1,B 2]. Hence, the bound appears to give no (easily computable) information on the

security advantage of using a hybrid combiner.

Another gap between theory and practice in the case of hybrid schemes relates to the notion

of security bits. In short, in the NIST PQ standardisation process, a scheme is deemed having

λ-bits of security if the complexity to break it is at least the complexity to break AES-λ. In

general, we see that if the best known attack (which succeeds with probability 1) against a

scheme PKEi has complexity ≈ 2λi , then the complexity of an attack against a hybrid scheme

based on PKE1 and PKE2 is ≈ 2λ1 +2λ2 . Thus, the increase in the number of security bits is at

most one, even if it is required to break two supposedly hard problems to break the hybrid

scheme. Overall, it seems to us that such metrics are not the best to quantify the security of

hybrid schemes.

Indeed, for instance one could try to compare the security of an hybrid KEM based on two

(seemingly “independent”) 128-bits schemes with the one of a 256-bits KEM. In terms of

security bits, the hybrid scheme would have less than 129 bits of security while the KEM would

benefit of 256 bits of security. However, one might reasonably argue that the probability of a

major breakthrough in two different problems believed to be hard by the community is much

lower than the probability of one (but even more devastating) breakthrough. The cryptanalysis

of SIKE [CD23] and Rainbow [Beu22] are such examples: a 128-bits secure hybrid based on

Kyber and e.g. SIKE would still be deemed secure today, while SIKE with the parameters for

256-bits security would not. Moreover, two major breaks would likely occur in a long time

frame, giving the time to mitigate the effects of a complete cryptanalysis. Note that such

an argument holds only if the correlation between both events is low, that is solving a hard

problem (e.g. rank syndrome decoding) does not offer an immediate advantage in solving

the other (e.g. LWE). In summary, the practical security of a scheme (hybrid or not) obviously

depends on many parameters and knowledge yet to be discovered, but we think that hybrid

KEMs offer a greater security boost than what can be deduced from the theoretical bounds

only.
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Figure 4.19: Visualisation of the performance of hqc_lac128 compared to several Level 1
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compared to several Level 1 implementation of NIST round 2 proposals.
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5 Impossibility of Post-Quantum Shield-
ing Black-Box Constructions of CCA
from CPA

We saw in previous chapters how FO-like transforms could be used to construct generically

strongly secure KEMs and PKEs out of CPA-secure PKEs. However, we also highlighted the fact

that the re-encryption step implied by such constructions is both expensive and vulnerable to

misuse attacks. Therefore, a natural problem would be to study whether this re-encryption

step can be removed, and we tackle this question in this chapter.

It turns out that classically, this was proven to be impossible by Gertner et al. [GMM07]. In

particular, they showed that no shielding black-box reduction from IND-CCA to IND-CPA

exists. A shielding reduction means that the decryption algorithm of the IND-CCA PKE cannot

call the encryption function of the underlying IND-CPA PKE. While their result was shown

in the standard model, it readily extends to the ROM, implying that the re-encryption checks

cannot be removed from FO-like transforms. We generalise this result to the post-quantum

setting.

The results presented in this chapter are joint work with Serge Vaudenay and will be published

in the Communications in Cryptology journal [HV24].

5.1 Contributions

Our main contribution is to prove that no post-quantum shielding reduction from IND-CCA

PKE to IND-CPA PKE exists. Here, unlike in Gertner et al.’s, IND-CCA and IND-CPA are defined

relative to quantum adversaries. Moreover, the reduction algorithm is assumed to be quantum

as well. However, we still consider classical schemes, i.e. both the IND-CCA and IND-CPA

PKEs are assumed to be computable classically. This is why we call this type of reduction

post-quantum.

From a high-level, the proof uses similar techniques as the classical one. That is, we use

the well-known two oracles technique by Hsiao et al. [HR04], which is itself a variant of the

relativising method introduced by Impagliazzo and Rudich [IR89]. In short, we propose an

oracle O = (O,R) relative to which IND-CPA PKEs exist but IND-CCA schemesΠO (i.e. Π can
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query O but not R) do not. One of the main technical difficulties in the proof arises from

the fact that the IND-CPA adversaries are quantum, and therefore have quantum access to

the oracle. Therefore, we need to show that an adversary that can make quantum queries

to O cannot break the IND-CPA scheme. Our proof relies on reductions from several hard

(quantum) problems and thus minimal quantum knowledge is sufficient to verify it.

An obvious limitation, as in the original proof, is that we rule out only shielding reductions.

However, if non-shielding constructions existed, they would imply a re-encryption step during

decryption, as in the Fujisaki-Okamoto (FO) transform. Thus, our result rules out more

efficient transforms than the FO one.

5.2 Related Work

Since the seminal paper by Impagliazzo and Rudich [IR89], the topic of black-box separation

has been extensively studied (e.g. [AS16; HR04; Sim98]). In particular, as mentioned several

times, the present work is a generalisation of a result by Gertner et al. [GMM07]. More recently,

Hosoyamada et al. [HY20] defined the notion of quantum black-box reduction. In addition,

they showed that there is no quantum black-box reduction from collision-resistant hash

functions to one-way permutations [HY20]. Following this work, Cao et al. [CX21] proved that

one-way permutations cannot be obtained from different flavours of one-way functions in a

quantum black-box way.

Different notions of black-box reductions were first formalised by Reingold et al. [RTV04].

These were then extended by Baecher et al. [BBF13].

5.3 Technical Overview

We use the two-oracle technique by Hsiao et al. [HR04] to rule out post-quantum reductions

from (post-quantum) IND-CCA PKE to IND-CPA PKE. That is, we provide an oracle O that

helps implement a IND-CPA PKE, and an oracle R that helps break any construction of IND-

CCA PKE. More precisely, the oracle O will contain 3 sub-oracles (g,e,d), where g is an ideal

key-generation function, e an ideal public key encryption function, and d is the corresponding

decryption function. Then, (g,e,d) will correspond to the IND-CPA PKE scheme. Note that

without an additional breaking oracle R , the PKE would be IND-CCA secure against classical or

quantum adversaries. Now, R is composed of additional sub-oracles, which are approximately

defined as follows.

• w, which takes as input a public key pk and encrypts each bit of the corresponding sk
using e. That is, w(pk) → (e(pk,ski ))i∈[n], where sk is s.t. g(sk) = pk.

• u, which takes as input a public key pk and a ciphertext c, and outputs 1 iff both the

public key and the ciphertext are valid (i.e. the public key has a corresponding secret
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key and the ciphertext has a corresponding pre-image under the given public key).

We note that the set of oracles (g,e,d,w,u) is the same as the one used in Gertner et al.’s

proof [GMM07].

Then, in order to prove the separation, we need to show two results:

1. (g,e,d) is an IND-CPA PKE even if the adversary has access to w and u. In the classical

setting, this is quite straightforward to prove, as was done by Gertner et al. [GMM07].

In the quantum setting, this is much more tricky as the adversary can now query w in

superposition and the demonstration of this result turns out to be the technical contri-

bution of this chapter. Our proof involves two reductions to quantum problems. We first

introduce the IMG problem, where (informally) a quantum adversary must distinguish

between two sets of oracles (e1,e2, w1) and (e1,e2, w2), where e1,e2 are random injective

functions and w1 (resp. w2) is a random function that has the same image as e1 (resp.

e2). We then show that the IND-CPA security of (g,e,d) reduces to the IMG problem.

Intuitively, in the reduction, the encryption of a 1 (resp. 0) will be simulated by a call to

e1 (resp. e2) and wb will simulate the encryption of a bit of sk.

Finally, we prove that the IMG problem is hard for any quantum adversary by reducing

another provably hard problem (namely the set equality problem SETEQ [Zha13]) to it.

In SETEQ, the adversary is given two random injective functions f and g s.t. either f , g

have the same image or have completely distinct images, and must distinguish between

both cases.

We believe this proof might be of independent interest as it shows security of (ideal)

encryption even in the presence of ciphertexts that are highly correlated with the secret-

key.

2. Any shielding construction of a PKE from O is insecure against an IND-CCA adversary

having access to R . For this, we can simply reuse the proof from Gertner et al. [GMM07]

as the classical adversary they build can obviously be implemented quantumly.

We conclude the proof by combining these results and applying usual separation arguments.

5.4 Quantum Algorithms

We formally define in this section quantum oracle-aided algorithms and post-quantum reduc-

tions.

First, in order to understand the scope of our result, we need to formally define what kind of

quantum algorithms we consider. In this chapter, we will use the following definition, adapted

from Hosoyamada et al. [HY20] such that it works with uniform circuits.
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Definition 5.4.1 (Uniform quantum ). A quantum algorithm A is a family of uniform quantum

circuits {An}n∈N. A family of quantum circuits is uniform if it can be generated by a (classical)

deterministic Turing machine.

We refer the reader to Nishimura et al. [NO02] for more details on uniform quantum circuits.

Definition 5.4.2 (Oracle-aided quantum algorithms). A quantum oracle is a family of quantum

gates O = {On}n∈N. Let O1, . . . ,Ot be a set of t quantum oracles. Then, an oracle-aided quantum

algorithm A is a family of uniform quantum circuits {An}n∈N s.t. on a (classical) input x ∈
{0,1}n , A runs A

O1,n ,...,Ot ,n
n on the quantum state |x,0,0〉, measures the final state and returns the

result of the output register. In other words, A
O1,n ,...,Ot ,n

n can be defined as the unitary operator

A
O1,n ,...,Ot ,n

n =
(

q∏
i=1

(Ui ,t ,nOt ,n . . .Ui ,1,nO1,n)

)
U0,n ,

where Ui , j ,n ,U0,n are some unitary operators and q is the number of queries made by An to the

oracles. If an oracle O is randomised, it is sampled from a given distribution before A runs

A
On

n .

Remark. The oracles (classical or quantum) considered in this chapter are stateless. In the

quantum setting, that means the oracle does not keep a secret register that evolves with queries.

Therefore, we assume that having quantum access to an oracle means having an oracle access

to the corresponding unitary. The same assumption stays valid when an algorithm has oracle

access to another quantum algorithm.

Now we can define the notion of query magnitude. Informally, this is the quantum equivalent

to the probability that an adversary queries a certain value to an oracle.

Definition 5.4.3 (Query magnitude [HY20]). Let Γ = (O1, . . . ,Ot ) be a set of fixed (i.e. not

randomised) quantum oracles. In addition, let |φi
j 〉 be the state of A Γ (running on some fixed

input x) before the j -th query to an oracle Oi . We can assume w.l.o.g. that the oracle Oi acts on

the first i npi +outi qubits of |φi
j 〉 (i.e. i npi qubits of input and outi qubits of output). Then

there exist αz ∈C and a state |ψz〉 s.t.

|φi
j 〉 =

∑
z∈{0,1}i npi

αz |z,ψz〉 .

The query magnitude of z before the j -th query of A Γ(x) to Oi , for an input x ∈ {0,1}n is

µ
A ,Oi

z, j (x) := |αz |2 .

Note that if one measures the first i npi qubits of |φi
j 〉, z will be the result with probability

µ
A ,Oi

z, j (x) = |αz |2.

The total query magnitude of z is simply the sum of the query magnitude over all queries
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BA ,Γ(x)

1 : j ←$ [q]

2 : run A Γ(x) until the j -th query to Oi

3 : (z, z ′) ←$ measure first register of |φi
j 〉

4 : return z

Figure 5.1: Algorithm B for Lemma 5.4.1.

Ψ′
Ψ,Dx,z,Γ

1 : (x, z,Γ) ←$Ψ

2 : parse (O1, . . . ,Ot ) ← Γ

3 : for i ∈ {1, . . . , t } :

4 : O ′
i ←Oi

5 : for z ′ ∈ {0,1}i npi−k :

6 : y ←$ Dx,z,Γ

7 : // Oi =O ′
i except on values of the form (z, ·)

8 : O ′
i (z, z ′) ← y

9 : set Γ′ ← (O ′
1, . . . ,O ′

t )

10 : return (x, z,Γ,Γ′)

Figure 5.2: Distribution Ψ′ induced by Ψ and Dx,z,Γ for Lemma 5.4.1.

1 ≤ j ≤ q made by the adversary to Oi :

µ
A ,Oi
z (x) :=

q∑
j=1

µ
A ,Oi

z, j (x) .

Definition 5.4.4 (Quantum-accessible oracles). Let O be any classical oracle. The quantum-

accessible oracle O induced by O is a quantum oracle defined as the unitary operator O : |x, y〉 7→
|x, y +O (x)〉 for any classical inputs x and y. For the sake of simplicity, in this chapter we denote

by O both a classical oracle and its quantum-accessible oracle counterpart.

Now we can state the following lemma, which will be useful in our proof. Informally, this

lemma says that if a quantum algorithm can distinguish an oracle O from the same oracle

where all values O (z, ·) for z have been changed, then one can extract z with good probability.

Lemma 5.4.1. Let n, t ∈Z be some integers and Ψ be some distribution that outputs a tuple

(x, z,Γ), where Γ= (O1, . . . ,Ot ) is a sequence of t sub-oracles Oi : {0,1}i npi 7→ {0,1}outi , x ∈ {0,1}n ,

and z ∈ {0,1}k for some k < i npi . In addition, let Dxd ,zd ,Γd be a distribution parametrised by a

tuple (xd , zd ,Γd ) that is in the same domain as the output of Ψ defined above.

Then, we consider the distribution Ψ′ induced by Ψ and Dxd ,zd ,Γd defined by the sampling

algorithm given in Figure 5.2. In addition, let B be the algorithm presented in Figure 5.1. Then,
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for any oracle-aided quantum algorithm A limited to q quantum queries to Γ (or Γ′) and any

output y ∣∣∣Pr[A Γ(x) ⇒ y]−Pr[A Γ′(x) ⇒ y]
∣∣∣≤ 2q

√
Pr[BA ,Γ(x) ⇒ z] ,

where (x, z,Γ,Γ′) ←$ Ψ′ and the probabilities are taken over the internal randomness of the

adversaries, the randomness of measurements, and the sampling from Ψ′.

Proof. We first recall a generalised version of the Swapping Lemma [Vaz98], proven by Hosoya-

mada et al. [HY20]:

Lemma 5.4.2 (Generalised Swapping Lemma [HY20]). Let Γ= (O1, . . . ,Ot ) and Γ′ = (O ′
1, . . . ,O ′

t )

be sequences of fixed (i.e. not randomised) quantum-accessible oracles. In addition, for any

pair of quantum-accessible oracles O ,O ′, we define ∆(O ,O ′) := {x : O (x) ̸=O ′(x)}. Then, for any

oracle-aided quantum algorithm A and any input x ∈ {0,1}n

∣∣∣Pr[A Γ(x) ⇒ y]−Pr[A Γ′(x) ⇒ y]
∣∣∣≤ 2

t∑
i=1

√
q

∑
z∈∆(Oi ,O ′

i )

µ
A ,Oi
z (x)

for any output y.

We first note that sampling Γ′ is the same as sampling (Γ, z, x) and then the set of differing

outputs D ←$ Dx,z,Γ. Hence, the left-hand side of the equation can be written as∣∣∣∣ E
Γ,x,z,D

[
Pr

[
A Γ(x) ⇒ y

]]− E
Γ,x,z,D

[
Pr[A Γ′(x) ⇒ y]

]∣∣∣∣
=

∣∣∣∣ E
Γ,x,z,D

[
Pr[A Γ(x) ⇒ y]−Pr[A Γ′(x) ⇒ y]

]∣∣∣∣
≤ E
Γ,x,z,D

[∣∣∣Pr[A Γ(x) ⇒ y]−Pr[A Γ′(x) ⇒ y]
∣∣∣]

where we used the linearity of expectation and the inequality |E[X ]| ≤ E[|X |]. Now, Γ,Γ′, x are

fixed in the probabilities above (i.e. we conditioned on Γ,D, z and x). Thus, we can apply

Lemma 5.4.2 to get

E
Γ,x,z,D

[∣∣∣Pr[A Γ(x) ⇒ y]−Pr[A Γ′(x) ⇒ y]
∣∣∣]

≤ 2
p

q E
Γ,x,z,D

√ ∑
(z,z ′)∈∆(Oi ,O ′

i )

µ
A ,Oi

(z,z ′)(x)



≤ 2

√√√√√q E
Γ,x,z,D

 ∑
(z,z ′)∈∆(Oi ,O ′

i )

µ
A ,Oi

(z,z ′)(x)


= 2

√√√√q E
Γ,x,z,D

[
q∑

j=1
µ

A ,Oi

(z,·), j (x)

]

98



5.4 Quantum Algorithms

where we used the inequality E[
p

X ] ≤p
E[X ] and we set µA ,Oi

(z,·), j (x) =∑
(z,z ′)∈∆(Oi ,O ′

i )µ
A ,Oi

(z,z ′), j (x)

for some query j . Now, let Q be the query number sampled uniformly at random by B and

let’s assume Q = j . Then, the probability that B outputs z is the probability that the result

of measuring the j -th query made by A is of the form (z, z ′) for some z ′. By the definition of

query magnitude, it is at least µA ,Oi

(z,·), j (x), thus Pr[BA ,Γ(x) ⇒ z|Q = j ] ≥µA ,Oi

(z,·), j (x). Hence,

Pr[BA ,Γ(x) ⇒ z] = 1

q

q∑
j=1

Pr[BA ,Γ(x) ⇒ z|Q = j ] ≥ 1

q

q∑
j=1

µ
A ,Oi

(z,·), j (x) .

Finally, we get

2

√√√√q E
Γ,x,z,D

[
q∑

j=1
µ

A ,Oi

(z,·), j (x)

]
≤ 2

√
q2 E

Γ,x,z,D

[
Pr[BA ,Γ(x) ⇒ z]

]
= 2q

√
Pr[BA ,Γ(x) ⇒ z]

where the last probability is taken over the internal randomness of B, and the randomness

of the measurement, Γ, x and z. Note that we can remove the dependence over D as the

event {BA ,Γ(x) ⇒ z} is fully determined by Γ, x, z and the randomness of B. Collecting the

inequalities concludes the proof.

One can observe that the above lemma is a generalised version of OW2H lemma [Unr15]

(Lemma 2.3.1).

5.4.1 Post-Quantum reductions

We first define a classical primitive as Baecher et al. [BBF13].

Definition 5.4.5 (Algorithm computing a random variable). We say an algorithm A computes

a random variable A if A produces an output with the same distribution as A. In the following,

we often write A to denote both a random variable and the algorithm that computes it.

Definition 5.4.6 (Classical primitive). A (classical) primitive P is a tuple (FP ,RP ), where FP

is a set of random variables and RP is a relation between two random variables.

A classical algorithm (i.e. Turing machine) implements P , or is an implementation of P , if it

computes f for some f ∈FP .

A classical/quantum adversary “breaks f ” if it computes A s.t. ( f ,A ) ∈RP .

Finally, let f ∈FP be efficiently computable by a classical algorithm, then if there is no efficient

classical (resp. quantum) algorithm A s.t. ( f ,A ) ∈RP , we say f is secure (resp. post-quantum

secure).
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Remark. In this chapter, we are interested in classically computable primitives (PKEs) that

might resist quantum adversaries. Therefore, we do not consider quantum implementations

but only quantum adversaries. That is, any implementation can be computed by a classical

algorithm but the set of adversaries is the set of efficient quantum algorithms.

Finally, we define the notion of post-quantum black-box reduction.

Definition 5.4.7 (Post-Quantum black-box reduction). Let P and Q be classical primitives.

There exists a post-quantum black-box reduction from Q to P if there exist an efficient classical

algorithm G and an efficient quantum algorithm S s.t.

1. For every (classically computable) f ∈FP , then G f ∈FQ .

2. For every quantum adversary A and (implementation of) f ∈FP , if (G f ,A f ) ∈RQ then

( f ,S A , f ) ∈RP .

The second condition can be rewritten as

∃EFFc G ∃EFFq S ∀A ∀ f ∈FP

(G f ,A f ) ∈RQ ⇒ ( f ,S A , f ) ∈RP

where EFFc and EFFq stand for efficient classical and efficient quantum, respectively.

In the post-quantum black-box reduction defined above, we start with a classical primitive P

meant to be post-quantum secure. Then, for a black-box reduction to exist, there must be a

classical algorithm that builds a primitive Q using P . In addition, there must be an efficient

quantum reduction algorithm S , which, given quantum black-box access to any (even non

efficient) adversary that breaks Q, builds an adversary that breaks P .

Ruling out post-quantum reductions. We show in the following lemma that a two oracles

argument as described by Hsiao et al. [HR04] is sufficient to rule out post-quantum reductions.

The proof is basically the same as in the classical setting.

Lemma 5.4.3. Let P and Q be classical primitives. Then, there is no post-quantum reduction

from Q to P if there exist oracles (O,R) s.t.

1. There exist efficient classical algorithms f s.t. f O ∈FP .

2. For all efficient classical algorithms G:

• there is an efficient quantum adversary A s.t. (G f O
,A O,R ) ∈RQ

• for all efficient quantum algorithms S then ( f O ,S f ,O,R ) ̸∈RP
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Proof. For the sake of contradiction, we assume a pair of oracles (O,R) fulfilling the conditions

in Lemma 5.4.3 exists and a post-quantum reduction from Q to P exists as well. Let f be

the algorithm s.t. f ∈ FP as specified in condition (1). By condition (2), we have that for

all G there is an efficient quantum adversary A s.t. (G f O
,A O,R ) ∈ RQ . By the existence

of the post-quantum reduction, it means that there exists an efficient quantum reduction

S s.t. ( f O ,S A ′, f ) ∈RP with A ′ :=A O,R . Now, as f ,A are efficient classical and quantum

algorithms, one can embed these in S . Hence, there exists an efficient S s.t. ( f O ,S O,R ) ∈RP .

This contradicts the second part of condition (2), which completes the proof.

Informally, the two oracles technique works as follows. One builds an oracle O that trivially

implements the primitive P (i.e. the primitive exists relative to O). Then, we build another

oracle R and we show that the primitive is secure against even unbounded quantum adver-

saries (with bounded number of quantum queries to (O,R)). In particular, this implies that

all the security of the primitive must come from O. In a second step, we show that there

exists an inefficient adversary A (with bounded number of queries to (O,R)) that breaks any

implementation of Q relative to O. Then, in a final step, it is argued that A can be made

efficient. In the classical setting, this is done by assuming P = NP or by embedding a PSPACE

oracle in R . Looking ahead, this will be sufficient in our case as A will be classical in our proof.

Lemma 5.4.3 then states that this technique is sufficient to rule out post-quantum black-box

reductions.

5.5 The Oracle O

We recall that we want to rule out reductions from IND-CCA to IND-CPA using Lemma 5.4.3.

That is, we wish to find an oracle O = (O,R) s.t. an IND-CPA PKE exists relative to this oracle,

but IND-CCA PKEs do not. We consider here PKEs that encrypt 1 bit, as they are known to

imply PKEs for longer messages. We use the same oracle as the one defined by Gertner et

al. [GMM07].

Definition 5.5.1 (Oracle O ). The oracle O is made of several sub-oracles, more precisely O =
(g,e,d,u,w). Each sub-oracle will play a part in the proof: (g,e,d) will correspond to the IND-

CPA PKE, (w,u) will help the IND-CCA adversary break the underlying IND-CPA PKE in order to

win its own game. More precisely, if we follow the notation of Lemma 5.4.3, O = (g,e,d) and

R = (u,w).

We now formalise how an oracle

O = (g,e,d,u,w) ←$Ψ

is sampled. For each n ∈N, each sub-oracle is generated as follows.

• g: {0,1}n 7→ {0,1}3n is a random length-tripling one-to-one function. This function will be

used as a key-generation function that outputs a public key given a secret key.
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• e: {0,1}3n × {0,1}× {0,1}n 7→ {0,1}3n is s.t. e(pk, ·, ·) is a random one-to-one function for all

fixed pk. The oracle e will be used as a bit-encryption function.

• d: {0,1}n × {0,1}3n 7→ {0,1,⊥} is deterministically defined as follows. The oracle d(sk,ct)

outputs b s.t. e(g(sk),b,r ) = ct if such r exists. If not, e outputs ⊥. This oracle will be used

as a decryption function.

• w: {0,1}3n × {0,1}n 7→ {0,1}3n×n ∪ {⊥} is defined as follows. The function takes a public

key pk and an index i as inputs, and outputs ⊥ if there is no unique sk′ s.t. g(sk′) = pk.

Otherwise, w(pk, i ) returns a vector of n encryptions of the bits of sk′:

(e(pk,sk′1,r1,i ,pk), . . . ,e(pk,sk′n ,rn,i ,pk)) ,

where the rk,i ,pk are sampled at random when (pk, i ) is queried for the first time. This

function returns the bit-by-bit encryption of the secret key corresponding to the input

public key, with different random coins indexed by i .

• u: {0,1}3n × {0,1}3n 7→ {⊥,⊤} takes a public key pk and a ciphertext ct as inputs and

returns ⊤ if ∃b,r s.t. e(pk,b,r ) = ct. Otherwise it returns ⊥. This function returns whether

a ciphertext is valid or not.

5.6 Hard Problems

We introduce in this section several quantum hard problems that will be used to prove our

main technical result.

First, we recall the definition of the (average) set quality (SETEQ) problem.

Definition 5.6.1 (SETEQ). Let Injn,m be the set of one-to-one functions from {0,1}n to {0,1}m .

We define F b
n as the following distribution.

• If b = 0: Sample f , g ←$ Injn,n+1 s.t. Im( f ) = Im(g ).

• If b = 1: Sample f , g ←$ Injn,n+1 s.t. Im( f )∩ Im(g ) =;.

The SETEQ problem is hard if for any (possibly unbounded) quantum adversary A that makes

poly(n) quantum queries to f , g∣∣∣Pr[A f ,g ⇒ 1 : f , g ←$ F 1
n ]−Pr[A f ,g ⇒ 1 : f , g ←$ F 0

n ]
∣∣∣= negl(n) ,

where the probabilities are taken over the quantum randomness and the sampling of f , g .

It turns out the SETEQ problem is hard, according to the following theorem by Zhandry [Zha13].
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Theorem 5.6.1 (Hardness of SETEQ [Zha13]). Let F b
n be as defined above. Then, for any

quantum adversary we have∣∣∣Pr[A f ,g ⇒ 1 : f , g ←$ F 1
n ]−Pr[A f ,g ⇒ 1 : f , g ←$ F 0

n ]
∣∣∣=O(q3/2n) ,

where q is the number of queries A makes to f and g .

We now introduce an intermediary problem that we call the IMG problem.

Definition 5.6.2 (IMG problem). Let e0 : {0,1}n 7→ {0,1}3n and e1 : {0,1}n 7→ {0,1}3n be random

one-to-one functions s.t. Im(e0)∩ Im(e1) =;. I.e. e0 and e1 are random injective functions s.t.

their images are different. Let f : {0,1}n 7→ {0,1}n be a random function. We define wb(·) :=
eb( f (·)). In addition, we define an helper oracle u(c) that returns ⊤ if c ∈ Im(e0)∪ Im(e1) and

⊥ otherwise. The IMG problem is considered hard if for every (possibly unbounded) quantum

adversary A that makes poly(n) quantum queries to e0,e1, wb ,u, we have∣∣Pr[A e0,e1,w1,u ⇒ 1]−Pr[A e0,e1,w0,u ⇒ 1]
∣∣= negl(n) ,

where the probabilities are taken over the quantum randomness and the sampling of e0,e1, f .

Concretely, this problem is hard if with a polynomial number of quantum queries one cannot

say whether wb has the same image as e0 or e1. Note that we could also define wb as a random

function with domain {0,1}n and codomain Im(eb).

Jumping ahead, we will use the above problem with eb defined as e(pk∗,b, ·), u as u and wb as

one part of the w oracle.

Using this result, we prove that the IMG problem is hard by showing that SETEQ reduces to it.

Lemma 5.6.1 (SETEQ reduces to IMG). Let F b
n be as defined in the SETEQ problem and

e0,e1, wb ,u as defined in the IMG problem. Then, for any IMG quantum adversary one can

build a SETEQ adversary such that∣∣Pr[A e0,e1,w1,u ⇒ 1]−Pr[A e0,e1,w0,u ⇒ 1]
∣∣≤∣∣∣Pr[B f ,g ⇒ 1 : f , g ←$ F 1

n ]−Pr[B f ,g ⇒ 1 : f , g ←$ F 0
n ]

∣∣∣ ,

where the number of queries made by B is roughly twice the number made by A .

Proof. We first state the idea of the proof. In the SETEQ problem, when b = 1 (thus Im( f )∩
Im(g ) =;) one can set e0 = f and e1 = g and wb′ = eb′ ◦ r with b′ picked at random and r a

random function. Minus some technical details, this perfectly simulates an instance of the

IMG problem and the probability that the IMG adversary A outputs b′ is the advantage of A

(plus or minus 1
2 ) in the IMG problem. Then, if b = 0, images of e0 and e1 will be the same and

it is impossible to distinguish w0 from w1. Thus, in this case A outputs 0 or 1 with probability
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1
2 . Hence, if A makes the correct guess with probability p in a correct instance of the IMG
problem, the SETEQ reduction B has an advantage of p − 1

2 , which is equal to A ’s advantage.

More formally, the reduction B f ,g sets A ’s oracles as follows. First, B samples a random

one-to-one function h ←$ Injn+1,3n , a random function r : {0,1}n 7→ {0,1}n , and a random bit b′.
Then, each oracle is set as

• e0 := h ◦ g .

• e1 := h ◦ f .

• wb′ := eb′ ◦ r .

• u(c): return ⊤ if c ∈ Im(h), otherwise return ⊥. Note that the check c ∈ Im(h) can be

done because B is an unbounded adversary which sampled h.

Each oracle can be implemented in a quantum circuit that makes 2 calls to the quantum

oracles f or g . For instance, the unitary Ue0 : |x, y, z〉 7→ |x, y +e0(x), z〉 can be implemented as

Ue0 : |x, y,0, z〉 g−→ |x, y, g (x), z〉 h−→ |x, y +h(g (x)), g (x), z〉 g−→ |x, y +h(g (x)),0, z〉 .

The adversary B f ,g runs b′′ ←A e0,e1,wb′ ,u and returns 1b′=b′′ . We distinguish two cases:

• b = 1 (Im( f )∩ Im(g ) =;): By definition g and f are one-to-one functions from {0,1}n

to {0,1}n+1 and h is a random one-to-one function from {0,1}n+1 to {0,1}3n . Moreover,

as the images of g and f are distinct, e0 and e1 are random one-to-one functions from

{0,1}n to {0,1}3n s.t. Im(e0)∩ Im(e1) = ;. In addition, wb′ is defined as eb′ ◦ r and u(c)

returns whether c ∈ Im(e0)∪ Im(e1). Therefore,

Pr[B f ,g ⇒ 1 : f , g ←$ F 1
n ] = Pr[A e0,e1,wb′ ,u ⇒ b′ : b′ ←$ {0,1}]

= 1

2
Pr[A e0,e1,w1,u ⇒ 1]+ 1

2
Pr[A e0,e1,w0,u ⇒ 0] ,

where (e0,e1, wb′ ,u) follow the same distribution as in the IMG problem.

• b = 0 (Im( f ) = Im(g )): In this case, Im(e0) = Im(e1) = Im(w0) = Im(w1). As r is a

random function and cannot be accessed by the adversary, w0 and w1 are perfectly

indistinguishable. More precisely, given all values of e0,e1, wb′ (we omit u as it is

independent of b′), the optimal distinguisher would output the b that maximises

Pr[eb(r (0)) = wb′(0), . . . ,eb(r (2n − 1)) = wb′(2n − 1)|wb′ ,e0,e1]. The only randomness
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here is the one from r , as all values of e0,e1, wb′ are known. Now,

Pr
r

[eb(r (0)) = wb′(0), . . . ,eb(r (2n −1)) = wb′(2n −1)|wb′ ,e0,e1] =
Pr
r

[r (0) = e−1
b (wb′(0)), . . . ,r (2n −1) = e−1

b (wb′(2n −1))|wb′ ,e0,e1] =
1

2n2n

for both b′ = 0 or b′ = 1, as r is a random function. Hence, even with an unbounded

number of queries to e0,e1, wb′ , Pr[A e0,e1,w1,u ⇒ 1] = Pr[A e0,e1,w0,u ⇒ 1]. Therefore,

Pr[B f ,g ⇒ 1 : f , g ←$ F 0
n ] = Pr[A e0,e1,wb′ ,u ⇒ b′ : b′ ←$ {0,1}] = 1

2
.

Finally, we get that for any IMG adversary A that makes q quantum queries, there exists an

(unbounded) SETEQ adversary B s.t.

2 ·
∣∣∣Pr[B f ,g ⇒ 1 : f , g ←$ F 1

n ]−Pr[B f ,g ⇒ 1 : f , g ←$ F 0
n ]

∣∣∣=
2 ·

∣∣∣∣Pr[A e0,e1,wb′ ,u ⇒ b′ : b′ ←$ {0,1}]− 1

2

∣∣∣∣=∣∣Pr[A e0,e1,w1,u ⇒ 1]−Pr[A e0,e1,w0,u ⇒ 1]
∣∣ ,

where B makes at most 2q queries, which concludes the proof.

Corollary 5.6.1 (Hardness of IMG). The IMG is hard for quantum algorithms. More precisely,

for any IMG quantum adversary, we have∣∣Pr[A e0,e1,w1,u ⇒ 1]−Pr[A e0,e1,w0,u ⇒ 1]
∣∣=O(q3/2n) ,

where q is the number of quantum queries made by A .

Finally, we define partial inverse functions and recall a lemma by Cao et al. [CX21].

Definition 5.6.3 (Partial inverse function). Let f : {0,1}n 7→ {0,1}n+m be some injective function

and x∗ ∈ {0,1}n . Then, we define the partial inverse function f −1
̸=x∗ as

f −1
̸=x∗(y) =


x, if ∃x ̸= x∗ s.t. f (x) = y

⊥, if ̸ ∃x s.t. f (x) = y

⊥, if y = f (x∗)

.

In other words, f −1
̸=x∗ inverts f except on y = f (x∗).

Lemma 5.6.2 (Lemma 5 [CX21]). Let f ←$ Injn,n+m be a random injective function, x∗ ←$ {0,1}n ,

and f −1
̸=x∗ be the partial inverse function. Then, for any (possible unbounded) quantum adversary
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A making poly(n) quantum queries to f , f −1
̸=x∗ , we have

Pr[A f , f −1
̸=x∗ ( f (x∗)) ⇒ x∗ : x∗ ←$ {0,1}n , f ←$ Injn,n+m] = negl(n) ,

where the probability is taken over the randomness of A , f and x∗. I.e. inverting f (x∗) given f

and the partial inverse function is hard.

5.7 Existence of IND-CPA PKE

We first define what a (1-bit) PKE relative to an oracle is.

Definition 5.7.1 (PKE relative to O). Let O = (g,e,d) be an oracle. A valid PKE construction

relative to O is of the form PKEO = (GenO ,EncO ,DecO), where for all n ∈N and some constants

ρ0,ρ1,ρ2,ρ3, (GenO ,EncO ,DecO) is as follows.

• GenO : {0,1}n 7→ {0,1}nρ0 × {0,1}nρ1 . We consider GenO(S) = (SK ,PK ) as a key generation

function that takes a seed S and outputs a pair of secret/public keys (SK ,PK ).

• EncO : {0,1}nρ1 × {0,1}× {0,1}nρ2 7→ {0,1}nρ3 . We consider EncO(PK ,PT,R) = C T as an

encryption function that takes as inputs a public key PK , a bit PT , and random coins R,

and outputs a ciphertext C T .

• DecO : {0,1}nρ0 × {0,1}nρ3 7→ {0,1}∪ {⊥}. We consider DecO(SK ,C T ) = PT ′ as a decryption

function that takes as inputs a secret key SK and a ciphertext C T , and outputs a plaintext

bit PT ′ or the error symbol ⊥.

We also require perfect correctness, that is for any PT ∈ {0,1},R ∈ {0,1}nρ2 and S ∈ {0,1}n ,

DecO(SK ,EncO(PK ,PT,R)) = PT

for (SK ,PK ) =GenO(S). In addition, w.l.o.g. we assume there are constants s and q s.t. for any

security parameter n, (GenO ,EncO ,DecO) make at most nq queries to O and each query is at

most of size ns . In addition, the running time of (GenO ,EncO ,DecO) must be polynomial in n

as well.

We now prove the main theorem, that is (g,e,d) is IND-CPA relative to the oracle O .

Theorem 5.7.1. Let PKEq
O = (g g,e,d) be a PKE relative to O , where g g(s) sets sk ← s and

returns (sk,g(sk)). Then, for any (possibly unbounded) quantum adversary A we have

Advind-cpa

A O ,PKEq
O = negl(n) ,

where the number of quantum queries made by A to O is polynomial in n.
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Γ0-2

1 : b ←$ {0,1};sk∗ ←$ {0,1}n

2 : pk∗ ← g(sk∗)

3 : r∗ ←$ {0,1}n

4 : ct∗ ← e(sk∗,b,r∗)

5 : ∀pk ∈ {0,1}3n , i ∈ {0,1}n :

6 : ri ,pk ←$ { f : {0,1}n 7→ {0,1}n }

7 : b′ ←$ Bg,e,d,w,u(pk∗,ct∗) // Γ0

8 : b′ ←$ Bg,e,d′ ,w,u(pk∗,ct∗) // Γ1

9 : b′ ←$ Bg,e′ ,d′ ,w′ ,u(pk∗,ct∗) // Γ2

10 : return b′ = b

e′(pk,b,r )

1 : if pk= pk∗ and r = r∗ :

2 : return ⊥
3 : return e(pk,b,r )

d′(sk,ct)

1 : if sk= sk∗ :

2 : return ⊥
3 : return d(sk,ct)

w′(pk, i )

1 : if ∃sk s.t. g (sk) = pk :

2 : r ← (e′(pk,sk1,r1,pk(i )), . . . ,

3 : e′(pk,skn ,rn,pk(i )))

4 : return r

5 : return ⊥

Figure 5.3: Games Γ0-Γ2 for the proof of Thm 5.7.1.

Proof. We proceed with a sequence of hybrid games Γ0-Γ2 shown in Figure 5.3.

Game Γ0: It is the original IND-CPA game. We recall that a quantum (sub-)oracle o is a

family of quantum circuits: o = {oi }i∈N, where o ∈ (g,e,d,w,u). In the IND-CPA game with

security parameter n, we assume the adversary only queries oracle circuits on . As the adver-

sary’s input is independent of any suboracle oi , i ̸= n it does not change the distribution of

the output. For the sake of simplicity, we write o for on .

Game Γ1: We modify the d oracle into an identical oracle d′ except that d′(sk∗, ·) =⊥, where

· denotes any value in {0,1}3n and sk∗ is the challenge secret key (i.e. g(sk∗) = pk∗). That is,

the d′ oracle does not reply to decryption queries that could help the adversary decrypt the

challenge ciphertext ct∗. By Lemma 5.4.1, we have∣∣∣Pr[A g,e,d,w,u(pk∗,ct∗) ⇒ b]−Pr[A g,e,d′,w,u(pk∗,ct∗) ⇒ b]
∣∣∣

≤ 2q
√

Pr[Bg,e,d′,w,u(pk∗,ct∗) ⇒ sk∗] ,

where B runs A until some random quantum query qi , measures the input register, and

outputs the first n bits of the result. Now we prove the following lemma.

Lemma 5.7.1. Pr[Bg,e,d′,w,u(pk∗,ct∗) ⇒ sk∗] = negl(n) .

Proof. We proceed by building a sequence of hybrid games where the oracle w is modified.
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We first recall that

w(pk, i ) := (e(g(sk),sk1,r1,i ,pk), . . . ,e(g(sk),skn ,rn,i ,pk)) ,

where the values rk,i ,pk are sampled at random and pk is s.t. g(sk) = pk. Equivalently, we can

write

w(pk, i ) := (
e(g(sk),sk1,r1,pk(i )), . . . ,e(g(sk),skn ,rn,pk(i ))

)
,

where rk,pk : {0,1}n 7→ {0,1}n are random functions.

w1: Let eb(·) := e(pk∗,b, ·). We modify w into an oracle w1 s.t.

w1(pk, i ) =
w(pk, i ), if pk ̸= pk∗

(e0(r1,pk(i )),esk∗
2
(r2,pk(i )), . . . ,esk∗

n
(rn,pk(i ))), if pk= pk∗

.

In other words, when pk∗ is queried, the encryption of the first bit of sk∗ is replaced by the

encryption of a zero. All other values returned are the same as in the original w oracle. We now

wish to upper bound∣∣∣Pr
[
Bg,e,d′,w,u(pk∗,ct∗) ⇒ sk∗

]
−Pr

[
Bg,e,d′,w1,u(pk∗,ct∗) ⇒ sk∗

]∣∣∣=
1

2

∣∣∣Pr
[
Bg,e,d′,w,u(pk∗,ct∗) ⇒ sk∗

∣∣sk∗1 = 1
]
−Pr

[
Bg,e,d′,w1,u(pk∗,ct∗) ⇒ sk∗

∣∣sk∗1 = 1
]∣∣∣ (5.1)

where the equality follows from the fact that w is identically distributed to w1 if sk∗1 = 0. We

show that for any adversary B, one can construct a IMG adversary C s.t. Eq. (5.1) is upper

bounded by the advantage of C . We show the reduction in Figure 5.4.

First, we see C simulates perfectly the oracles for queries independent of (sk∗,pk∗). Indeed, C

samples a valid function g and random injective functions e(g (sk), ·, ·) for each sk ̸= sk∗. Then,

C can use its knowledge of these functions to reply to any query e ′(pk, ·, ·), d ′(sk, ·), w ′(pk, ·) or

u′(pk, ·) with pk ̸= pk∗,sk ̸= sk∗ as in the original game played by B.

Then, C sets the encryption oracle for pk∗ as

e ′(pk∗,b,r ) =
e0(r ), if b = 0

e1(r ) if b = 1
,

where e0,e1 are C ’s own oracles. As e0,e1 are random one-to-one functions s.t. their image do

not intersect, e ′(pk∗, ·, ·) is also a random one-to-one function {0,1}n+1 7→ {0,1}3n . Therefore,

e ′ simulates perfectly e. Then, d ′ simulates perfectly d′ as ⊥ is returned if it is queried on

(sk∗, ·). Similarly, u′ perfectly simulates u by using C ’s own u oracle to reply to queries of

the form u′(pk∗, ·). Finally, w ′(pk∗, ·) perfectly simulates w when wb := e1(r (·)) and perfectly

simulates w1 when wb := e0(r (·)), where r is a random function. Indeed, when C plays the

IMG game with b = 1, on a query w ′(pk∗, ·) made by B, C outputs a ciphertext with the first
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component set to e1(r (·)) = esk∗
0

(r (·)) (i.e. the “encryption” of the first bit of sk∗, which is equal

to 1). Similarly, when C plays the IMG game with b = 0, the returned ciphertext has a first

component set to e0(r (·)), as in the w1 oracle. Hence, C playing the IMG game with bit b = 1

(resp. b = 0) perfectly simulates B’s view with oracle w (resp. w1) and we have∣∣∣Pr[Bg,e,d′,w,u(pk∗,ct∗) ⇒ sk∗]−Pr[Bg,e,d′,w1,u(pk∗,ct∗) ⇒ sk∗]
∣∣∣

= 1

2

∣∣∣Pr
[
Bg,e,d′,w,u(pk∗,ct∗) ⇒ sk∗

∣∣sk∗1 = 1
]
−Pr

[
Bg,e,d′,w1,u(pk∗,ct∗) ⇒ sk∗

∣∣sk∗1 = 1
]∣∣∣

= ∣∣Pr[C e0,e1,w1,u ⇒ 1]−Pr[C e0,e1,w0,u ⇒ 1]
∣∣= negl(n) ,

where the last equality follows from Corollary 5.6.1.

w j : We successively modify the oracle w1 into an oracle w j , j ∈ [n] s.t. on a query (pk∗, ·),

the i -th first components of the resulting ciphertexts are encryptions of a 0 instead of the i -th

bit of the challenge secret key. Formally, we have

w j (pk, i ) =
w(pk, i ), if pk ̸= pk∗

(. . . ,e0(r j ,pk(i )),esk∗
j+1

(r j+1,pk(i ))), . . .), if pk= pk∗
.

By a similar reduction to the IMG problem as before, we have for all j ∈ {1, . . . ,n −1}∣∣∣Pr[Bg,e,d′,w j ,u(pk∗,ct∗) ⇒ sk∗]−Pr[Bg,e,d′,w j+1,u(pk∗,ct∗) ⇒ sk∗]
∣∣∣= negl(n) .

wn : Now, wn(pk∗, ·) returns a vector of ciphertexts encrypting 0 which means we do not use

sk∗ in wn anymore. In order to conclude the proof of the lemma, we wish to show that

Pr[Bg,e,d′,wn ,u(g (sk∗),ct∗) ⇒ sk∗] = negl(n) .

One can see that the oracles (g,e,d′,wn ,u) never invert pk∗ or use the secret key sk∗ anymore.

The only exception is the decryption oracle that returns ⊥ whenever sk∗ is equal to the queried

sk. However, this condition can be checked by verifying whether g (sk) = pk∗, as g is one-

to-one. Hence, we are going to show that if B outputs sk∗, one can build an adversary D

that inverts g on a random image, having access to a partial inverse oracle. We show the

adversary in Figure 5.5. As in Lemma 5.6.2, D
g ,g−1

̸=sk∗ receives g (sk∗), where g is a random

injective function, sk∗ is sampled at random, and the goal is to recover sk∗. Note that sk∗

and pk∗ = g (sk∗) are distributed as in B’s game. Then, D generates a challenge ciphertext ct∗
using pk∗ and runs B while simulating the oracles (g,e,d′,wn ,u) as follows.

• g (sk): D uses its own g oracle to reply to B’s queries to g. As they are similarly distributed

and pk∗ = g (sk)∗, the simulation is perfect.

• e ′(pk,b,r ): It simply returns the evaluation of e(pk,b,r ), where e(pk, ·, ·) is a random

one-to-one function sampled by D. This simulates perfectly e.
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C B,e0,e1,wb ,u

1 : b′ ←$ {0,1};sk∗ ←$ {0,1}n

2 : sk∗0 ← 1

3 : sample g ←$ Injn,3n

4 : pk∗ ← g (sk∗)

5 : ∀pk ∈ {0,1}3n s.t. pk ̸= pk∗ :

6 : sample e(pk, ·, ·) ←$ Injn+1,3n

7 : ∀pk ∈ {0,1}3n , i ∈ [n] :

8 : ri ,pk ←$ { f : {0,1}n 7→ {0,1}n }

9 : r∗ ←$ {0,1}n ;ct∗ ← eb′ (r∗)

10 : run sk′ ←$ Bg ,e′ ,d ′ ,w ′ ,u′
(pk∗,ct∗)

11 : return 1sk′=sk∗

e ′(pk,b,r )

1 : if pk= pk∗ :

2 : return eb (r )

3 : return e(pk,b,r )

d ′(sk,ct)

1 : if sk= sk∗ :

2 : return ⊥
3 : if ∃(b,r ) s.t. e(g (sk),b,r ) = ct :

4 : return b

5 : return ⊥

w ′(pk, i )

1 : if pk= pk∗ :

2 : r ← (wb (i ),esk∗2
(r2,pk(i )), . . . ,esk∗n (rn,pk(i )))

3 : return r

4 : if ∃sk s.t. g (sk) = pk :

5 : r ← (e(pk,sk1,r1,pk(i )), . . . ,e(pk,skn ,rn,pk(i )))

6 : return r

7 : return ⊥

u′(pk,ct)

1 : if pk= pk∗ :

2 : return u(ct)

3 : if ∃(b,r ) s.t. e(pk,b,r ) = ct :

4 : return ⊤
5 : return ⊥

Figure 5.4: C adversary.

• d ′(sk,ct): It returns the decryption of ct or ⊥ if sk= sk∗, as in the oracle d′. Note that D

uses its own oracle g to check whether g (sk) = pk∗.

• w ′(pk, i ): It simulates wn perfectly. Indeed, if pk= pk∗ it returns a vector of ciphertexts

encrypting 0. Otherwise, D uses its own g−1
̸=sk∗ to invert pk and encrypts the bits of the

corresponding secret key.

• u(pk,ct): It simulates perfectly u as D uses its knowledge of e(pk, ·, ·) to check whether

ct is a valid image.

Note that while the simulated oracles are described in a classical way, D implements them as

quantum accessible oracles. This can be done with a polynomial number of quantum queries

to its own oracles, as described before. Finally, we get

Pr[Bg,e,d′,wn ,u(g (sk∗),ct∗) ⇒ sk∗] = Pr[Dg ,g−1
̸=sk∗ (g (sk∗)) ⇒ sk∗] = negl(n) ,

where the last equality follows from Lemma 5.6.2. Collecting the probabilities as in a standard

hybrid argument concludes the proof of Lemma 5.7.1.

Game Γ2: We recall that Γ1 is the IND-CPA game except the oracle d has been modified into
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D
B,g ,g−1

̸=sk∗ (pk∗ = g (sk∗))

1 : b′ ←$ {0,1}

2 : ∀pk ∈ {0,1}3n :

3 : sample e(pk, ·, ·) ←$ Injn+1,3n

4 : ∀i ∈ {0,1}n :

5 : ri ,pk ←$ { f : {0,1}n 7→ {0,1}n }

6 : r∗ ←$ {0,1}n ;ct∗ ← e(pk∗,b′,r∗)

7 : sk′ ←$ Bg ,e′ ,d ′ ,w ′ ,u′
(pk∗,ct∗)

8 : return sk′

e ′(pk,b,r )

1 : return e(pk,b,r )

d ′(sk,ct)

1 : if g (sk) = pk∗ :

2 : return ⊥
3 : if ∃(b,r ) s.t. e(g (sk),b,r ) = ct :

4 : return b

5 : return ⊥

w ′(pk, i )

1 : if pk= pk∗ :

2 : r ← (e(0,r1,pk(i )), . . . ,e(0,rn,pk(i )))

3 : return r

4 : sk← g−1
̸=sk∗ (pk)

5 : if sk=⊥: return ⊥
6 : r ← (e(pk,sk1,r1,pk(i )), . . . ,e(pk,skn ,rn,pk(i )))

7 : return r

u′(pk,ct)

1 : if ∃(b,r ) s.t. e(pk,b,r ) = ct :

2 : return ⊤
3 : return ⊥

Figure 5.5: D adversary.

an oracle d′ that returns ⊥ on a query (sk∗, ·). Now, we modify Γ1 into a game Γ2 by building

another “encryption” oracle e′ that returns ⊥ whenever queried on (pk∗,b,r∗) for any bit b,

where r∗ is the randomness used to compute the challenge ciphertext (i.e. ct∗ = e(pk∗,b,r∗)).

Formally,

e′(pk,b,r ) =
⊥, if pk= pk∗∧ r = r∗

e(pk,b,r ), otherwise
.

In addition, we modify w into a w′ oracle s.t. it queries e′ instead of e. Note that as w (resp.

w′) encrypts n bits in parallel, one quantum query to w (resp. w′) can be computed with n

quantum queries to e (resp. e′). Thus, in total, there are at most q +qn queries made to e or

e′, where q is the number of queries made by A . Then, Γ2 is the same as Γ1 except A has

quantum oracle access to e′ and w′ instead of e and w. As in the previous transition Γ0 → Γ1,

one can apply Lemma 5.4.1 to get∣∣∣Pr[A g,e,d′,w,u(pk∗,ct∗) ⇒ b]−Pr[A g,e′,d′,w′,u(pk∗,ct∗) ⇒ b]
∣∣∣

≤ 2(q +qn)
√

Pr[Bg,e,d′,w,u(pk∗,ct∗) ⇒ r∗] ,

where (pk∗,ct∗ = e(pk∗,b,r∗)) is as in the IND-CPA game, and B runs A until some random

quantum query qi to e (made by A or w), measures the input register and outputs the last n

bits of the result. As before, we are going to upper bound the right-hand side of the equation by
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the probability a quantum adversary F inverts a random one-to-one length-tripling function

with the help of a partial inverse oracle. This time, F will simulate queries of the form

e(pk∗,b, ·) using the function e ∈ Injn,3n it wants to invert. We show F in Figure 5.6. As in

previous reductions, F samples its own functions g ,rpk,i and e(pk, ·, ·) for pk ̸= pk∗. Using

these, it can reply consistently to B’s queries that do not involve sk∗ or pk∗. In addition, F

samples a random challenge bit b′ that plays the role of the challenge bit of the IND-CPA game.

Then, it sets

e ′(pk∗,b,r ) =
e(r ), if b = b′

e1−b′(r ), if b = 1−b′ ,

where e is the function F wants to invert and e1−b′ ∈ Injn,3n is sampled by F . Now, as both

e,e1−b′ are injective functions in Injn,3n , the probability that e ′(pk∗, ·, ·) is not a random function

from Injn+1,3n is Pr[coll] = Pr[Im(e)∩ Im(e1−b′) ̸= ;] = O( 1
2n ). Thus, assuming coll does not

occur, e ′(pk∗, ·, ·) follows the same distribution as e. In addition, F can simulate perfectly d

and w using its knowledge of sk∗ and its own oracles/functions. In particular, each quantum

query w(pk∗, ·) can be simulated with at most n quantum queries to its oracle e. Finally,

queries of the form u′(pk∗,ct) for some ct ∈ {0,1}3n can be simulated perfectly, as:

• if ct= ct∗: F can return ⊤ as ct∗ is a valid ciphertext.

• if ct ̸= ct∗: F can query its oracle e−1
̸=r ∗ to check whether ct is a valid ciphertext of the

form ct = e ′(pk∗,b′,r ), for some r . If that is not the case, F further checks whether

ct= e ′(pk∗,1−b′,r ) for some r using its knowledge of e1−b′ .

• if the two previous conditions are not fulfilled, then ct is not a valid ciphertext.

Hence, if coll does not occur, F simulates perfectly B’s view and we get

Pr[Bg,e,d′,w,u(pk∗,ct∗) ⇒ r∗] ≤O

(
1

2n

)
+Pr[F e,e−1

̸=r∗ (e(r∗)) ⇒ r∗] = negl(n) ,

where the last equality follows from Lemma 5.6.2. Thus,∣∣∣Pr[A g,e,d′,w,u(pk∗,ct∗) ⇒ b]−Pr[A g,e′,d′,w′,u(pk∗,ct∗) ⇒ b]
∣∣∣= negl(n).

Finally, we argue that

Pr[A g,e′,d′,w′,u(pk∗,ct∗) ⇒ b] = 1

2
.

Indeed, we recall that the challenge ciphertext is ct∗ = e(pk∗,b,r∗), where e(pk∗, ·, ·) is a

random injective function and b is a random bit. Then, the decryption oracle d′ is useless as

d′(sk∗, ·) returns ⊥, thus A cannot invert ct∗. In addition, no oracle (i.e. e′ or w′) ever returns

e(pk∗,b,r∗) for any bit b (i.e. ⊥ is returned in both cases). Finally, u(pk∗,e(pk∗,b,r∗)) returns

⊤ for both b = 0 and b = 1. Hence, given A ’s view, Pr[ct∗ = e(pk∗,0,r∗)] = Pr[ct∗ = e(pk∗,1,r∗)]

and A cannot distinguish. Therefore, Pr[Γ2 ⇒ 1] = 1
2 and collecting the probabilities concludes

the proof.
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F
B,e,e−1

̸=r∗ (ct∗ = e(r∗))

1 : b′ ←$ {0,1};sk∗ ←$ {0,1}n

2 : sample g ←$ Injn,3n

3 : pk∗ ← g (sk∗)

4 : ∀pk ̸= pk∗ ∈ {0,1}3n :

5 : sample e(pk, ·, ·) ←$ Injn+1,3n

6 : ∀pk ∈ {0,1}3n ,∀i ∈ {0,1}n :

7 : ri ,pk ←$ { f : {0,1}n 7→ {0,1}n }

8 : e1−b′ ←$ Injn,3n

9 : sk′ ←$ Bg ,e′ ,d ′ ,w ′ ,u′
(pk∗,ct∗)

10 : return sk′

e ′(pk,b,r )

1 : if pk= pk∗ :

2 : if b = b′ : return e(r )

3 : else : return e1−b (r )

4 : return e(pk,b,r )

d ′(sk,ct)

1 : if sk= sk∗ :

2 : return ⊥
3 : if ∃(b,r ) s.t. e(g (sk),b,r ) = ct :

4 : return b

5 : return ⊥

w ′(pk, i )

1 : if ∃sk s.t. g (sk) = pk :

2 : r ← (e′(pk,sk1,r1,pk(i )), . . . ,e′(pk,skn ,rn,pk(i )))

3 : return r

4 : return ⊥

u′(pk,ct)

1 : if pk= pk∗ :

2 : if ct= ct∗ : return ⊤
3 : if e−1

̸=r∗ (ct) ̸=⊥: return ⊤
4 : if ∃r s.t. e1−b′ (r ) = ct : return ⊤
5 : return ⊥
6 : if ∃(b,r ) s.t. e(pk,b,r ) = ct :

7 : return ⊤
8 : return ⊥

Figure 5.6: F adversary.

Corollary 5.7.1. Let PKEq
O = (g g,e,d) be a PKE relative to O , where g g(s) sets sk ← s and

returns (sk,g(sk)). Then, we have

Pr
O←$Ψ

[
∀EFFq A : Advind-cpa

A O ,PKEq
O = negl(n)

]
= 1

where EFFq stands for “efficient quantum”. In other words, for measure 1 of oracles, PKEq
O is

IND-CPA secure.

Proof. This follows from a now standard trick in impossibility results based on the Borel-

Cantelli lemma, Markov inequalities, and a counting argument (e.g. see Lemma 2 and 5 by

Buldas et al. [BN13]). Note, however, that for the proof to work, the set of efficient quantum

adversaries must be countable. This is the case here, as we consider uniform quantum circuits,

which are countable (as they can be generated by deterministic Turing Machines).

5.8 Non-existence of IND-CCA PKE

We first recall which type of constructions we will rule out, namely shielding constructions.
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Definition 5.8.1 (Shielding construction). A valid PKE construction relative to O = (g,e,d)

PKEO = (GenO ,EncO ,DecO) is shielding iff the decryption function Dec never queries the ora-

cles e. In other words, we can write PKEO = (Geng,e,d,Encg,e,d,Decg,d).

Informally, the decryption function of a PKE resulting from a shielding transform never queries

the encryption function of the underlying PKEs.

Now, in order to complete the proof of the impossibility result, we need to show that any

shielding black-box construction

PKEO = (Geng,e,d,Encg,e,d,Decg,d)

is not IND-CCA secure. We can simply reuse Gertner et al.’s result [GMM07], as they showed

there exists a classical IND-CCA adversary that breaks any shielding PKE construction. This

implies that there is such a quantum adversary as well.

This is stated in the following theorem.

Theorem 5.8.1 (Theorem 2 [GMM07]). Let PKE= (Gen,Enc,Dec) be any shielding construc-

tion. Then, there exists a (non-efficient) adversary A = (A1,A2) making a polynomial number

of queries to (O,R) s.t.

Advind-cca
A O,R ,PKEO ≥ 1− 1

n
,

where the probability of the advantage is taken over the randomness of the game and of the

adversary, and the sampling of (O,R) ←$Ψ, where Ψ is defined as in Definition 5.5.1.

Proof sketch. We recall the idea of the proof here.

1. In the first step, the public keys g(sk) for some sk’s embedded into the public key PK

(which is output by GenO) are collected. In order to do this, the adversary executes

EncO(PK , M ,R) for many different M and R, collecting all pk in queries e(pk, ·, ·) made

by Enc. Obviously not all pk’s possibly embedded in PK are recovered as some could

never be used, but the useful ones (most likely) are. Indeed, the secret keys sk’s that are

going to be used in decryption should correspond to the public keys used in encryption.

Thus, the main goal of the next steps will be to invert the public keys pk’s that have been

collected in this part.

2. In this step, the public keys corresponding to the IND-CPA scheme are inverted. This

is the only part where the decryption oracle provided to the classical adversary in the

IND-CCA game is used. The approximate idea is the following. Many ciphertexts

C =EncO(PK , M ,R) for a random bit M and coins R are generated. Then, the process

is repeated but in each encryption, some query e(pk,b,r ) (for some b and r ) made

by Enc is replaced by some value e(pk,ski ,r ′) obtained through the w oracle, where
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pk = g(sk). Let C ′ be such a modified ciphertext and C = EncO(PK , M ,R) the original

one. Then, C ′ is queried to the decryption oracle to get M ′ = DecO(SK ,C ′). We first

observe that if ski = b, then M ′ should be equal to M . Indeed, we replaced ct := e(pk,b,r )

by ct′ := e(pk,b,r ′), but since Dec cannot query e, it cannot distinguish ct from ct′. Now

we can distinguish two cases:

• M ̸= M ′: By the previous observation, it means that (most likely) b ̸= ski and thus

ski = 1−b can be recovered, as b is known.

• M = M ′: Either ski = b or the ciphertext corresponding to the modified query (or

the decryption of the ciphertext) does not impact the decryption result. However,

by repeating many times the experiment with different (M ,R), it is possible to

distinguish both cases with high probability and one can recover the corresponding

bit of the secret key sk.

Note that if no ciphertext of the form e(pk, ·, ·) ever impacts the decryption, the secret

key sk s.t. g(sk) = pk will not be recovered using this technique. However, it also means

that recovering such a secret key is not important as it is not used in decryption. Hence,

after this step, all useful sk’s should be recovered with high probability.

3. In the last step, using the knowledge of the secret keys recovered and of the queries made

throughout the different experiments, the adversary builds a key SK ′ and simulates the

decryption algorithm DecO using its own version D̂ecÔ
. Then, with high probability

we will have D̂ecÔ
(SK ′,C∗) = M∗, where C∗ is the challenge ciphertext and M∗ the

challenge bit of the IND-CCA game (remember we consider 1-bit PKEs). This step is the

only non-efficient one, as the adversary needs to sample an oracle Ô consistent with the

values observed in the previous step.

Corollary 5.8.1. If P = NP, for measure one of oracles (O,R), there exists an efficient adversary A

that breaks the IND-CCA security of every shielding construction PKEO = (GenO ,EncO ,DecO).

Proof. This follows from Theorem 5.8.1 and the fact that the adversary defined in the proof is

efficient if P = NP. Indeed, the adversary is efficient except in the last step, where it samples an

oracle that must be consistent with the queries seen. Sampling such an oracle is equivalent to

sampling an NP witness, which can be done efficiently if P = NP. More details can be found in

the original proof [GMM07].

It follows that that disproving the previous result would imply proving P ̸= NP. However, we

note that the assumption P=NP is not necessary. One can also embed a PSPACE oracle in the

breaking oracle R, then the proof holds as PPSPACE = NPPSPACE.

The main result of this chapter then follows.
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Theorem 5.8.2. There is no post-quantum shielding black-box construction of IND-CCA PKE

from IND-CPA PKEs.

Proof. From Corollaries 5.7.1 and 5.8.1 we know that for measure one of oracles (O,R), IND-

CPA PKEs exist but IND-CCA PKEs do not. Thus, there exists a tuple of oracle (O,R) s.t.

IND-CPA PKEs exist but IND-CCA PKEs do not. Hence, the conditions for Lemma 5.4.3 to hold

are fulfilled and that concludes the proof.

116



6 On IND-qCCA Security in the ROM
and Its Applications: CPA Security Is
Sufficient for TLS 1.3

We showed in the previous chapter that CCA-secure PKE or, equivalently, CCA-secure KEMs

can only be obtained from CPA-secure PKE in a black-box way at the price of a re-encryption

check. In addition to be quite costly in terms of computation time, we saw that this step can

be tricky to implement properly, which can lead to security issues. Since it is impossible to

remove it to get IND-CCA in a general way, a natural question is whether IND-CCA security is

really necessary in the post-quantum protocols that are meant to replace existing classical

ones.

For example, if we consider the flagship example of cryptographic protocols, namely TLS in its

current version 1.3, we know that it is secure classically assuming the underlying primitives are

themselves secure. However, as TLS relies on Diffie-Hellman, it would obviously be vulnerable

to quantum adversaries. Therefore, in order to remedy this, several post-quantum variants

of TLS 1.3 have been proposed. The simplest one is what we will call PQ TLS 1.3, which

has been implemented as part of the OQS-OpenSSL project [SM23]. In this version, the

changes compared to the standard version of the TLS 1.3 handshake are minimal. That is, the

client’s (resp. the server’s) Diffie-Hellman share is replaced by a public key (resp. a ciphertext

encapsulated under the public key), and the shared secret is the key encapsulated in the

ciphertext. Several works have analysed the performance and implementation challenges of

OQS-OpenSSL (e.g. [CPS19; PST20]).

More recently, based on the observation that (post-quantum) KEM public keys/ciphertexts are

usually more compact than (post-quantum) public keys/signatures, Schwabe et al. [SSW20a]

proposed KEMTLS as a variant of the TLS 1.3 handshake. The main difference between PQ

TLS 1.3 and KEMTLS is that the latter uses a KEM for implicit server authentication instead of

a signature. This reduces the overall bandwidth of the handshake and the computation time

on the server-side. Thus, two KEMs are used in KEMTLS: one for establishing an ephemeral

shared secret and the other one to authenticate the server. While the latter KEM needs to be

IND-CCA secure as it uses long-term keys, the authors showed that IND-1CCA security of the

former is sufficient for the whole handshake to be secure. That is, the KEM needs to be secure

against an adversary that can make a unique decapsulation query. Similarly, in the security
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proof of TLS 1.3 handshake by Dowling et al. [Dow+20], DH key-exchange can be replaced by

an IND-1CCA KEM and the proof would still go through.

Therefore, it seems that sometimes IND-1CCA KEMs are sufficient for security, and thus we

focus on this primitive in this chapter. More specifically, we study whether IND-1CCA KEMs

can be obtained from CPA-secure PKEs through a more efficient transform than FO-like ones

(in the ROM and QROM). We reply in the affirmative by showing that IND-1CCA KEMs with

much faster decapsulation than FO-derived IND-CCA KEMs can be obtained from any CPA-

secure PKE. Using similar tools, we also study the security of the PQ TLS 1.3 handshake when

the KEM used for key exchange is only CPA-secure.

The content of this chapter is a joint work with Serge Vaudenay and was published at EURO-

CRYPT 2022 [HV22].

6.1 Contributions

We show how to build an efficient IND-qCCA KEM (i.e. the adversary can only make q

decapsulation queries with q constant) from any OW-CPA PKE in the (Q)ROM. The bound has

a loss factor of 2q , making it insecure or impractical for large q . However, such construction

is sufficient to build an efficient IND-1CCA KEM from any OW-CPA public-key encryption

scheme. The transform simply sends a confirmation hash along the ciphertext encrypting the

seed. In addition, we prove the security of this construction in the QROM as well.

Such a transform might be useful in several applications such as the KEMTLS protocol [SSW20a]

mentioned above, PQ variants of TLS 1.3, or ratcheting, as discussed in Section 6.6.

Similarly, we show that deriving the key as K := H (m,ct), where m is the seed encrypted in the

ciphertext ct, holds an IND-qCCA KEM in the ROM. The security bound is less tight compared

to the first transform, having a ≈ q2q
H factor, where qH is the number of queries an adversary

can make to the random oracle H . The intuition is that any decapsulation query that returns

H (m,ct) with ct ̸= ct∗ does not help much the adversary to recover the real key H (m∗,ct∗) due

to the independence of RO values. However, each query to the decapsulation oracle still leaks

a little information (such as equality between decrypted values), leading to the ≈ q2q
H factor.

Compared to the FO transform and its variants, our CPA-to-qCCA transforms offer several

advantages. The main one is a significant speedup of the decapsulation, as there is no need for

re-encryption. Depending on the cost of encryption of the underlying scheme, the difference

can be large. For instance, as shown in Table 6.1 (we leave the benchmarks for SIKE for the

sake of completeness), removing the re-encryption check in Kyber or Lightsaber cuts by more

than 50% the decapsulation time on our setup. The speedup is even larger for Frodo (> 6×),

which has a slow underlying encryption procedure compared to the decryption. We also

note that our transform does not perform de-randomisation of the underlying encryption (i.e.

computing the random coins for encapsulation as the hash of the message/seed), removing
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6.1 Contributions

Scheme Decaps with re-enc. (µs) Decaps without re-enc. (µs) Speedup
SIKE∗ 2316 1020 2.27
Kyber 6.1 2.8 2.17

Lightsaber 11.1 4.0 2.78
Frodo-AES 295.0 48.3 6.11

Table 6.1: Benchmark of Decaps with/without re-encryption with liboqs (avx2 enabled, NIST
security level I) on Ubuntu 21.04, Intel Core i7-1165G7@2.8Ghz.*SIKE has been broken since
the publication of this research [CD23].

the need for an additional random oracle.

Another interesting feature of the second transform (i.e. the one where the key is derived as

H(m,ct)) is that the symmetric structure of the underlying KEM, if it exists, is preserved. That

is, if the underlying KEM is a non-interactive key-exchange (NIKE), the scheme output by our

transform will still be a NIKE. For instance, the IND-qCCA KEM derived from Diffie-Hellman

or CSIDH [Cas+18] with our second transform will be a NIKE.

We then consider the PQ TLS 1.3 handshake as implemented in OQS-OpenSSL [SM23]. Based

on the observation that the key-schedule computes the keys as key-derivation functions

(KDFs) applied on the shared secret and (the hash of) the transcript so far (including the

ciphertext), we prove that if the KEM is OW-CPA secure, then the handshake is secure in the

MultiStage model of Dowling et al. [Dow+20]. The proof is inspired by the proof of security

of our second transform. Note that this result holds in the ROM (the KDFs/hash function

are assumed to be ROs) and the security bound is very much “non-tight”. Still, this shows

that CPA-secure KEMs are sufficient for the TLS 1.3 handshake to be secure, solving an open

problem raised by several authors (e.g. [Dow+20; PST20]). Then, since one can consider DH as

a KEM, this implies that TLS 1.3 is secure as long as the computational Diffie-Hellman (CDH)

problem is hard, showing that the PRF-ODH assumption used in the original proof [Dow+20]

is not necessary (in the ROM). We note that this last result can also be derived from the fact

that DH as used in TLS 1.3 is a IND-1CCA KEM in the ROM, assuming that CDH is hard. We

prove this in Appendix A.

Finally, in Section 6.6, we discuss possible use cases of IND-qCCA in the context of commu-

nication protocols and ratcheting primitives. In particular, we note that IND-1CCA security

is sufficient in many recent applications as the trend is to move to forward secure schemes,

which discard key pairs after one use.

Remark on IND-CPA vs IND-1CCA

We note that plain IND-CPA PQ schemes are often not IND-1CCA. In particular, it is stated in

Section 4.3 of the KEMTLS paper [SSW20b]:
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“We leave as an open question to what extent non-FO-protected post-quantum KEMs may be

secure against a single decapsulation query, but at this point IND-CCA is the safe choice.”

The answer to this question obviously depends on how the “non-FO protected” IND-CPA

PKE is used as a KEM. However, if it is used in the trivial way (i.e. m ←$ M , K := H(m),ct :=
Enc(pk,m)), the resulting KEM can usually be broken with 1 query for most of the PQ schemes.

The adversary receives K ∗,ct∗ :=Enc(pk,m∗), queries ct∗+δ and gets back H(m∗) with high

probability, if δ is “small”. Then, it can just compare whether H(m∗) = K ∗ or not and break

IND-1CCA security. The reaction attacks (like the ones presented in Chapter 3) requiring

thousands of queries mentioned in the same paper [SSW20b] are key-recovery attacks, not

distinguishing attacks. The simple distinguishing adversary given above actually gives a good

intuition of why adding a confirmation hash H ′(m,ct) along the ciphertext as in our first

transform yields an IND-qCCA KEM. In order to submit a valid decapsulation query, the

adversary must compute H ′(m,ct) with ct ̸= ct∗. Hence, the adversary itself needs to query

H ′(m,ct) beforehand, thus it knows m and the decapsulation query is (nearly) useless.

6.2 Related Work

The notion of bounded IND-CCA (i.e. IND-qCCA) has been studied in several works. Bellare

et al. [BS99] defined the notion of indistinguishability under parallel attack (IND-PA), which

can be seen as a generalisation of IND-1CCA, where the adversary can submit once a vector

of ciphertexts to a decryption oracle. Cramer et al. [Cra+07] defined IND-qCCA and showed

that one can build an IND-qCCA PKE from any CPA-secure PKE in a black-box manner in the

standard model, using one-time signatures. While this construction is valid in the standard

model and ours in the ROM only, their reduction is inefficient compared to FO transforms,

which we aim to improve. Following their work, Peirera et al. [Per+10] built a more efficient

IND-qCCA PKE based on the CDH assumption and Yamakawa et al. [Yam+15] proposed other

constructions based on the factoring and bilinear CDH assumptions. As far as we know, we

are the first to note that a IND-qCCA KEM can be obtained from any CPA-secure PKE through

a very simple and efficient transform in the ROM.

Starting from the original Fujisaki-Okamoto transform [FO99; FO13], many works have been

dedicated to building variants of FO with tighter security bounds in the QROM (e.g. [HHK17;

Bin+19b; Kuc+20; SXY18]). While these are CPA-to-CCA transforms, ours guarantee qCCA

security only but at a lesser computational cost.

Dowling et al. [Dow+20] proved the security of the standard TLS 1.3 handshake in their

MultiStage security model. We extend their result by showing that TLS 1.3 security still holds

if the DH key-exchange is replaced by a CPA-secure KEM (in the ROM). In turn, this also

implies that the CDH assumption is sufficient for proving the security of the original TLS 1.3,

which was based on the PRF-ODH assumption so far. In two more recent papers, Diemert

and Jager [DJ21] and Davis and Günther [DG21] aimed at proving a tighter security bound for
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IND-qCCAKEM(A )

1 : i ← 0

2 : (pk,sk) ←$ Gen(1λ)

3 : b ←$ {0,1}

4 : ct∗,K0 ←$ Encaps(pk)

5 : K1 ←$ K

6 : b′ ←A ODec
(pk,ct∗,Kb )

7 : return 1b′=b

IND-qCCA’b
KEM(A )

1 : i ← 0

2 : (pk,sk) ←$ Gen(1λ)

3 : ct∗,K0 ←$ Encaps(pk)

4 : K1 ←$ K

5 : b′ ←A ODec
(pk,ct∗,Kb )

6 : return b′

Oracle ODec(ct)

1 : if ct= ct∗ : return ⊥
2 : if i = q : return ⊥
3 : K ′ ←Decaps(sk,ct)

4 : i ← i +1

5 : return K ′

Figure 6.1: Equivalent IND-qCCA games and the decapsulation oracle.

TLS 1.3. Their proofs are valid in the ROM and are based on the Strong Diffie-Hellman (SDH)

assumption. Our result on TLS 1.3 is complementary to theirs in the sense that we prove that

TLS security holds under a weaker assumption but with a looser security bound.

Brendel et al. [Bre+17] studied the PRF-ODH assumption. In particular, they showed that PRF-

ODH is hard if the SDH assumption holds in the ROM. The PRF-ODH notion considered in

their work is generic as the adversary can query two types of “decapsulation” oracles multiple

times. On the other hand, if we restrict ourselves to the notion where the adversary can make

a unique query (which is sufficient for TLS 1.3 security), we show in Appendix A that CDH

hardness is sufficient.

Finally, following the KEMTLS paper [SSW20a], several variants of the protocol (e.g. [SSW21;

Gün+22]) as well as a post-quantum replacement of X3DH [Bre+22] have been using IND-1CCA

KEM as a building block, showing the growing importance of such a notion.

6.3 IND-qCCA KEM

We first need to formally define the notion of IND-qCCA, which is defined as IND-CCA (see

Definition 2.2.10) but the adversary is limited to q queries in the game.

Definition 6.3.1 (KEM IND-qCCA). We consider the games induced by the pseudocode on the

left in Figure 6.1. A KEM scheme KEM= (Gen,Encaps,Decaps) is IND-qCCA if for any efficient

adversary A we have

Advind-qcca
A ,KEM :=

∣∣∣∣Pr
[
IND-qCCAKEM(A ) ⇒ 1

]− 1

2

∣∣∣∣= negl(λ).

Equivalently, we can consider the game given in the middle in Figure 6.1. Then, a KEM scheme

KEM= (Gen,Enc,Dec) is IND-qCCA if for any efficient adversary A we have

Advind-qcca′

A ,KEM := ∣∣Pr
[
IND-qCCA’1

KEM(A ) ⇒ 1
]−Pr

[
IND-qCCA’0

KEM(A ) ⇒ 1
]∣∣= negl(λ).
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Gen(1λ)

1 : (pk,sk) ←$ genp(1λ)

2 : return (pk,sk)

Encaps(pk)

1 : σ←$ M

2 : ct0 ←$ encp(pk,σ)

3 : tag← H ′(σ,ct0)

4 : K ← H(σ)

5 : return K , (ct0,tag)

Decaps(sk,ct)

1 : (ct′0,tag′) ← ct
2 : σ′ ← decp(sk,ct′0)

3 : if H ′(σ′,ct′0) ̸= tag′ :

4 : return ⊥
5 : return H(σ′)

Figure 6.2: TCH transform.

6.4 OW-CPA to IND-qCCA Transforms

We first prove the following simple lemma, which states that a OW-CPA PKE is OW-PCA up to

a factor 2q , where q is the number of queries one can make to the plaintext-checking oracle.

Lemma 6.4.1. Let PKE be a PKE. Then, for any efficient OW-PCA adversary A making at most

q queries to the PCO oracle, there exists a OW-CPA adversary B s.t.

Advow−pca
PKE (A ) ≤ 2q ·Advow−cpa

PKE (B) .

Proof. We can simply see that the PCO oracle returns 1 bit of information, thus PKE loses

at most q bits of security when a PCO oracle is available. More formally, given A , one can

build B as follows. It passes its input to A and simulates the PCO oracle by sampling a

response at random in {0,1}. Then, it returns the response of A . Its probability of success is

Advow−cpa
PKE (B) ≥ 1

2q Advow−pca
PKE (A ), as the probability the q responses are correct is 1

2q .

We consider the transform TCH given in Figure 6.2. This construction takes a PKE PKE =
(genp,encp,decp) and outputs a KEM (Gen,Encaps,Decaps). Note that TCH is basically the

REACT transform [OP01] without the asymmetric part (to get a KEM instead of a PKE).

We now show that the resulting KEM is IND-qCCA assuming the underlying PKE is OW-PCA.

Theorem 6.4.1. We consider two random oracles H , H ′ : {0,1}∗ 7→ {0,1}n . Let KEM be the

KEM resulting from applying the TCH transform to a δ-correct PKE. Then, for any IND-qCCA

adversary A that makes at most qH (resp. qH ′) queries to H (resp. H ′), there exists a OW-PCA

adversary B s.t.

Advind−qcca
KEM (A ) ≤ (q +qH ′ +1)2

2n +δ+ q

2n + (qH +qH ′) ·Advow−pca
PKE (B) ,

where B makes at most q queries to its plaintext-checking oracle. In addition, if PKE is a

deterministic encryption scheme, the bound becomes

Advind−qcca
KEM (A ) ≤ (q +qH ′ +1)2

2n +δ+ q

2n +Advow−pca
PKE (B) .
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Γ0−3(A )

1 : (pk,sk) ←$ Gen(1λ)

2 : b ←$ {0,1}

3 : σ∗ ←$ {0,1}n

4 : ct∗0 ←$ encp(pk,σ∗)

5 : K0 ← H(σ∗);h∗ ← H ′(σ∗,ct∗0 )

6 : K1 ←$ K

7 : ct∗ ← (ct∗0 ,h∗)

8 : b′ ←A ODec ,H ,H ′
(pk,ct∗,Kb ) // Γ0-1

9 : b′ ←A ODec2 ,H ,H ′
(pk,ct∗,Kb ) // Γ2-3

10 : if query : abort // Γ3

11 : return 1b′=b

H(σ)

1 : if ∃h s.t. (σ,h) ∈LH :

2 : return h

3 : if σ=σ∗ : query← true // Γ3

4 : h ←$ {0,1}n

5 : LH ←LH ∪ {(σ,h)}

6 : return h

Oracle ODec(ct)

1 : if ct= ct∗ : return ⊥
2 : if more than q queries :

3 : return ⊥
4 : (ct0,h) ← ct

5 : if ct0 = ct∗0 or h = h∗ : // Γ1-3

6 : return ⊥ // Γ1-3

7 : σ′ ← decp(sk,ct′0)

8 : if H ′(σ′,ct0) ̸= h :

9 : return ⊥
10 : return H(σ′)

H ′(σ,ct)

1 : if ∃h s.t. ((σ,ct),h) ∈LH ′ :

2 : return h

3 : if σ=σ∗ : // Γ3

4 : query← true // Γ3

5 : h ←$ {0,1}n

6 : LH ′ ←LH ′ ∪ {((σ,ct),h)}

7 : if ∃x, x′,h s.t. x ̸= x′

8 : ∧ (x,h) ∈LH ′

9 : ∧ (x′,h) ∈LH ′ :

10 : abort

11 : return h

Oracle ODec2(ct)

1 : if ct= ct∗ : return ⊥
2 : if more than q queries :

3 : return ⊥
4 : (ct0,h) ← ct
5 : if ct0 = ct∗0 or h = h∗ :

6 : return ⊥
7 : if ∃σ s.t. ((σ,ct0),h) ∈LH ′ :

8 : if OPCO(σ,ct0) :

9 : return H(σ)

10 : return ⊥

Figure 6.3: Sequence of games for the proof of Theorem 6.4.1. OPCO is defined as in the
OW-PCA game (see Figure 2.4).

Proof. We proceed by game hopping, the sequence of games is presented in Figure 6.3. Let LH

(resp. LH ′) be the list of queries (x,h) made to the RO H (resp. H ′) s.t. H (x) = h (resp. H ′(x) =
h). In addition, let the challenge ciphertext be ct∗ = (ct∗0 ,h∗), and σ∗ be s.t. encp(pk,σ∗) = ct∗0 .

We start with game Γ0 which is the IND-qCCA game, except we abort if the adversary finds

a collision on H ′ (i.e. H ′(x) = H ′(x ′) for x ̸= x ′ and (x,h), (x ′,h) ∈ LH ′). This happens with

probability at most (q+qH ′+1)2

2n and we have

∣∣Pr
[
IND−qCCAKEM(A ) ⇒ 1

]−Pr[Γ0(A ) ⇒ 1]
∣∣≤ (q +qH ′ +1)2

2n .

Game Γ1 : The decapsulation oracle is modified s.t. it returns ⊥ whenever ct∗0 or h∗ is queried

(note that both cannot be submitted at the same time). This game is the same as Γ0 except if

the oracle in Γ0 does not return ⊥ on such queries. Let bad be this event. We split this into two

cases:
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• ODec(ct∗0 ,h ̸= h∗) ̸=⊥. This happens only if

H ′(Dec(sk,ct∗0 ),ct∗0 ) = h ̸= h∗ = H ′(σ∗,ct∗0 ) .

In turn, this implies that Dec(sk,ct∗0 ) ̸= σ∗ and thus it is a correctness error. Such an

error happens with probability at most δ.

• ODec(ct0 ̸= ct∗0 ,h∗) ̸=⊥. It means that h∗ = H ′(σ∗,ct∗0 ) = H ′(σ′,ct0), withσ′ ← decp(sk,ct0),

which is not possible since ct0 ̸= ct∗0 and we assume no collision occurs.

Therefore, overall Pr[bad] ≤ δ and

|Pr[Γ0 ⇒ 1]−Pr[Γ1 ⇒ 1]| ≤ Pr[bad] ≤ δ .

Game Γ2 : We modify the decapsulation oracle into another oracle ODec2
as follows. On a

decapsulation query (ct0,h) (with σ′ ←Dec(sk,ct0)):

1. If there is no ((∗,ct0),h) in LH ′ : return ⊥. This differs from the previous game only

if h = H ′(σ′,ct0) but (σ′,ct0) was never queried to H ′. As the RO values are uniformly

distributed, this happens with probability at most 1
2n .

2. If ((σ,ct0),h) ∈LH ′ for some σ: If OPCO(σ,ct0) := 1Dec(sk,ct0)=σ = 1, return H(σ). Other-

wise, return ⊥. This perfectly simulates the previous oracle as OPCO(σ,ct0) = 1 iff σ=σ′

and we know h = H(σ=σ′,ct0).

Note that there is at most one σ s.t. ((σ,ct0),h) ∈LH ′ as we assume no collision occurs.

In particular, it means that OPCO is called at most once every decapsulation query.

Therefore, by a union bound we get

|Pr[Γ1 ⇒ 1]−Pr[Γ2 ⇒ 1]| ≤ q

2n .

Game Γ3 : Finally, we abort whenever A queries σ∗ to H or (σ∗, ·) to H ′. Let this event be

query. Note that A could also learn the value of H(σ∗) through a query to ODec2. However,

the latter oracle would return H(σ∗) only if A queried H ′(σ∗, ·) before (thus triggering query).

Then, we can build a OW-PCA adversary B (shown in Figure 6.4) that perfectly simulates A ’s

view as long as query does not happen. More precisely, B can simulate the decapsulation

oracle using its PCO oracle. Then, on input (pk,ct∗0 ), B runs A (pk, (ct∗0 ,h∗),K ∗), where h∗ and

K ∗ are picked at random. Unless query occurs, A cannot distinguish between these random
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BOPCO
(pk,ct∗)

1 : init LH ,LH ′ ←;
2 : h∗ ←$ {0,1}n

3 : K∗ ←$ {0,1}n

4 : simulate H , H ′ for A with lazy sampling:

5 : run A H ,H ′ ,ODec2
(pk, (ct∗,h∗),K∗)

6 : σ′ ←$ {σ :σ ∈L A
H ∨ (σ,∗) ∈LH ′ }

7 : return σ′

Oracle ODec2(ct)

1 : if more than q queries :

2 : return ⊥
3 : (ct0,h) ← ct
4 : if ct0 = ct∗0 or h = h∗ :

5 : return ⊥
6 : if ∃σ s.t. ((σ,ct),h) ∈LH ′ :

7 : if OPCO(σ,ct0) : return H(σ)

8 : return ⊥

Figure 6.4: B adversary for the proof of Theorem 6.4.1.

h∗,K ∗ and the real ones. Finally, if query occurs, B can recover σ∗ with probability 1
qH+qH ′

by sampling a random σ from S = {σ : (σ,∗) ∈L A
H ∨ ((σ,∗),∗) ∈LH ′}, where L A

H is the set of

queries to H made by A . Thus,

|Pr[Γ2 ⇒ 1]−Pr[Γ3 ⇒ 1]| ≤ Pr[query] ≤ (qH +qH ′) ·Advow−pca
PKE (B) ,

where B makes q query to the PCO oracle. Note that if PKE is deterministic, B can check

whether Enc(pk,σ) = ct∗0 for all σ ∈ S to find σ∗. This fails only if there exists σ′ ̸= σ∗ s.t.

Enc(pk,σ′) = ct∗0 . In turn this implies that there existsσ ∈ S∪{σ∗} that would break correctness,

but such an event is already covered by the previous δ factor. In this case, we obtain

|Pr[Γ2 ⇒ 1]−Pr[Γ3 ⇒ 1]| ≤ Pr[query] ≤Advow−pca
PKE (B) .

Finally, since A cannot query σ∗ to H anymore, it cannot distinguish between a random key

and H(σ∗). Hence, Pr[Γ3 ⇒ 1] = 1
2 . Collecting the probabilities concludes the proof.

Corollary 6.4.1. We consider two random oracles H , H ′ : {0,1}∗ 7→ {0,1}n . Let KEM be the

KEM resulting from applying the TCH transform to a δ-correct PKE. Then, for any IND-qCCA

adversary A that makes at most qH (resp. qH ′) queries to H (resp. H ′), there exists a OW-CPA

adversary B s.t.

Advind−qcca
KEM (A ) ≤ (q +qH ′)2

2n +δ+ q

2n + (qH +qH ′ +q)2q ·Advow−cpa
PKE (B) .

If PKE is deterministic, we get

Advind−qcca
KEM (A ) ≤ (q +qH ′)2

2n +δ+ q

2n +2q ·Advow−cpa
PKE (B) .

In particular, in the case of IND-1CCA (i.e. q = 1), if the underlying PKE is OW-CPA, then the

KEM obtained from the TCH transform is IND-1CCA with a security loss of ≈ 1 bit compared

to the OW-CPA advantage (if we omit the other negligible terms). Finally, we note that as q is a

constant that does not depend on the security parameter of the PKE, if the OW-CPA advantage
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of the PKE is negligible, so is the KEM IND-qCCA one. However, in practice, we would need

to set the security parameter to a very large value to guarantee security for more than a few

queries.

6.4.1 Security in the QROM.

We also show that the TCH transform is secure in the Quantum Random Oracle Model (QROM)

by proving that Theorem 6.4.1 holds in the QROM.

Theorem 6.4.2. We consider two quantum random oracles H , H ′ : {0,1}∗ 7→ {0,1}n . Let KEM
be the KEM resulting from applying the TCH transform to a PKE. Then, for any IND-qCCA

adversary A that makes at most qH (resp. qH ′) quantum queries to H (resp. H ′), there exists a

OW-PCA adversary B that makes at most q queries to its plaintext-checking oracle s.t.

Advind−qcca
KEM (A ) ≤ δ+2(qH ′ +qH +q)

√
Advow−pca

PKE (B)+ϵ1 +q((qH ′ +2q)ϵ2 +2ϵ3) ,

where ϵ1 := 40e2(qH ′+q+1)3+2
2n , ϵ2 := 8

p
2/2n and ϵ3 := 2/2n .

Proof. Thanks to the use of the extractable RO-simulator (see Definition 2.3.1), the proof

technique is very similar to the classical one and most of the QROM subtleties are abstracted

away. The sequence of games is shown in Figure 6.5.

Game Γ0 : This is the original IND-CCA game.

Game Γ1 : The decapsulation oracle is modified s.t. it returns ⊥ whenever (ct∗, ·) is queried to

ODec (note that (ct∗,tag∗) cannot be queried). This game is the same as Γ0 except when the

oracle in Γ0 does not return ⊥ on such queries. Now, let’s assume ODec(ct∗,tag ̸= tag∗) ̸=⊥.

This happens only if

H ′(Dec(sk,ct∗),ct∗) = tag ̸= tag∗ = H ′(σ∗,ct∗) .

In turn, this implies that decp(sk,ct∗) ̸=σ∗ and thus the challenge ciphertext in the IND-CCA

game would trigger a correctness error. Such an error happens with probability at most δ.

Therefore, overall

|Pr[Γ0 ⇒ 1]−Pr[Γ1 ⇒ 1]| ≤ δ .

Game Γ2 : We replace the challenge key K ∗ and tag tag∗ by random values. As the key is now

always random we have

Pr[Γ2 ⇒ 1] = 1

2
.
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Γ0−2,Υ0-7(A )

1 : (pk,sk) ←$ Gen(1λ)

2 : b ←$ {0,1}

3 : σ∗ ←$ {0,1}n

4 : K0 ← H(σ∗);ct∗ ←$ encp(pk,σ∗)

5 : tag∗ ← H ′(σ∗,ct∗)

6 : K0 ←$ {0,1}n ;tag∗ ←$ {0,1}n // Γ2,Υ0-7

7 : K1 ←$ {0,1}n

8 : b′ ←A ODec ,H ,H ′
(pk, (ct∗,tag∗),Kb ) // Γ0-Γ1

9 : return 1b′=b // Γ0-Γ2

10 : σ′ ←$ ExtA
ODec ,H ,H ′

(pk, (ct∗,tag∗),Kb ) // Υ0-5

11 : σ′ ←$ ExtA
ODec2 ,H ,H ′

(pk, (ct∗,tag∗),Kb ) // Υ6-7

12 : for i ∈ [q] : (σ̂i , ĉti ) ←S.Ext(tagi ) // Υ1-2

13 : for i ∈ [q] : σ′ ← decp(sk,cti ); H ′(σ′,cti ) // Υ7

14 : return 1σ′=σ∗ // Υ0-7

H(σ), H ′(σ,ct)

1 : use standard QROs to reply // Γ0-Γ1

2 : use two QROs (H , H ′
ct∗0

) and H ′
̸=ct∗0

: // Γ2,Υ0

3 : use compressed oracle instead of H ′
̸=ct∗0

: // Υ1-7

Oracle ODec(ct,tag)

1 : i ← query number

2 : if (ct,tag) = (ct∗,tag∗) : return ⊥
3 : if i > q : return ⊥
4 : if ct= ct∗ : // Γ1-Γ2,Υ0-5

5 : return ⊥ // Γ1-Γ2,Υ0-5

6 : σ′ ← decp(sk,ct)

7 : (σ̂, ĉt) ←S.Ext(tag) // Υ5

8 : tag′ ← H ′(σ′,ct)

9 : (σ̂, ĉt) ←S.Ext(tag) // Υ3-4

10 : if tag′ ̸= tag : return ⊥
11 : if (σ̂i , ĉti ) =⊥: // Υ4-5

12 : bad′i ← true; abort // Υ4-5

13 : if (σ′
i ,cti ) ̸= (σ̂i , ĉti ) ̸=⊥: // Υ2-5

14 : bad← true; abort // Υ2-5

15 : return H(σ′)

Oracle ODec2(ct,tag)

1 : if ct= ct∗ : return ⊥
2 : if more than q queries : return ⊥
3 : σ′ ← decp(sk,ct) // Υ6

4 : (σ̂, ĉt) ←S.Ext(tag)

5 : tag′ ← H ′(σ′,ct) // Υ6

6 : if (σ̂, ĉt) ̸=⊥ and ĉt= ct and OPCO(σ̂, ĉt) :

7 : return H(σ̂)

8 : return ⊥

Figure 6.5: Sequence of games for Theorem 6.4.2.

We now consider H ′ as two random oracles H ′
ct∗ and H ′

̸=ct∗ , where the former is called on

queries of the form H ′(ct∗, ·), and the latter on queries of the form H ′(ct ̸= ct∗, ·).

Then, by the OW2H lemma (Lemma 2.3.1) applied on (H , H ′
ct∗) with F as in Figure 6.6, we have

Pr[Γ1 ⇒ 1]−Pr[Γ2 ⇒ 1] ≤ 2(qH ′ +qH +q) ·
√

Pr[Υ⇒ 1] ,

where Υ0 is the same game as Γ2, except that we measure the input register of a random

quantum query made to H , H ′
ct∗ (by the adversary or the decapsulation oracle) and outputs 1

iff this is equal to the challenge seed σ∗. Note that the number of queries made to this oracle

(i.e. to H and H ′
ct∗) throughout the game is at most qH ′ +qH +q as the adversary can make

qH ′ +qH queries to the oracles and the decapsulation oracle makes 1 query to H (and none to

H ′
ct∗ due to the change in the previous game).
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F(σ∗, (K ∗,tag∗))

1 : (pk,sk) ←$ Gen(1λ)

2 : ct∗ ←$ encp(pk,σ∗)

3 : return (pk, (ct∗,tag∗),K∗)

Figure 6.6: F function for applying the AOW2H lemma in the proof of Theorem 6.4.2.

Game Υ1 : From now on, let (ct1,tag1), . . . , (ctq ,tagq ) be the queries to the decapsulation oracle,

and σ′
i := decp(sk,cti ) be the decrypted seed from the i -th ciphertext. We modify Υ0 s.t. the

compressed oracle of the extractable RO-simulator S is used instead of the standard RO for

H ′
̸=ct∗ . For the sake of simplicity, we will refer to the compressed RO as H ′

̸=ct∗ (instead of

S.H ′
̸=ct∗). In addition, at the end of the game, we call the extractor on all tags tag1, . . . ,tagq ,

to get extracted values (σ̂1, ĉt1), . . . , (σ̂q , ĉtq ). As the standard and compressed oracles are

indistinguishable (Property 1 of Def. 2.3.1), and the extractor calls are made at the end of the

game, this does not change anything to the outcome and we have

Pr[Υ0 ⇒ 1] = Pr[Υ1 ⇒ 1] .

Game Υ2 : Let bad be the event that on any query (cti ,tagi ), the decapsulation oracle outputs

no error (i.e. H ′(σ′
i ,cti ) = tagi ) but the corresponding extracted values at the end are such that

(σ̂i , ĉti ) ̸=⊥ and (σ̂i , ĉti ) ̸= (σ′
i ,cti ). Then, by Property 8 of Def. 2.3.1, we have that Pr[bad] ≤ ϵ1,

where ϵ1 := 40e2(qH ′+q+1)3+2
2n . Now, let Υ2 be the same as Υ1, except we abort if bad happens.

We get

Pr[Υ1 ⇒ 1]−Pr[Υ2 ⇒ 1] ≤ ϵ1 .

We note that in the game description in Figure 6.5, we check whether bad happens in the

decapsulation oracle for the sake of presentation, even though it is not technically correct (i.e.

the values (σ̂i , ĉti ) are not defined at this time). This issue will disappear in the next game.

Game Υ3 : We now move all extractions to the corresponding decapsulation query, just after

the tag is verified. We have that moving each extraction to the decapsulation oracle implies at

most (qH ′ +q) swaps with RO queries to H ′. Thus, by Property 4 of Def. 2.3.1 we get

Pr[Υ1 ⇒ 2]−Pr[Υ1 ⇒ 1] ≤ q(qH ′ +q)ϵ2 ,

where ϵ2 := 8
p

2/2n .

Game Υ4 : Let bad′
i be the event that on a query (cti ,tagi ), the decapsulation oracle outputs

no error (i.e. H ′(σ′
i ,cti ) = tagi ) but the corresponding extracted values at the end are such that

(σ̂i , ĉti ) =⊥. By Property 7 of Def. 2.3.1, this happens with probability at most ϵ3 = 2 ·2−n . Let
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Υ4 be the same as Υ3 except we abort if bad′
i happens for any i ∈ {1, . . . , q}. Then, we have

Pr[Υ3 ⇒ 1]−Pr[Υ4 ⇒ 1] ≤ qϵ3 .

Game Υ5 : In the decapsulation oracle, we move the classical RO query made for tag verifica-

tion after the extraction. By Property 4 of Def. 2.3.1, we have that

Pr[Υ4 ⇒ 1]−Pr[Υ5 ⇒ 1] ≤ qϵ2 .

Game Υ6 : We modify the previous game such that after the extraction in the decapsulation

oracle, we call a PCO oracle on the extracted values that returns a bit r that is 1 iff decp(sk, ĉti ) =
σ̂i . Then, we modify the decapsulation oracle s.t. we return H(σ̂i ) iff r = 1 and ĉti = cti .

Otherwise, ⊥ is returned. If the extracted values are null, ⊥ is returned as well. Now we argue

that the decapsulation oracle in Υ5 returns identical outputs as the ones in the previous game.

We split the analysis in two cases:

1. Assume H(σ′) ̸=⊥ is output by ODec(cti ) in Υ5. Since we assume bad and bad′
i do not

occur, it means that (σ̂i , ĉti ) = (σ′
i ,cti ), and thus the decapsulation oracle in Υ6 returns

H(σ′
i ) = H(σ̂i ).

2. Assume H(σ′) =⊥ is output by ODec(cti ) inΥ5 (i.e. the tag verification failed). In addi-

tion, let’s assume toward contradiction that ODec(cti ) outputs H(σ̂i ) ̸=⊥ in Υ6. Since

the checks passed, we know that ĉti = cti and decp(sk, ĉti ) = decp(sk,cti ) = σ̂i =σ′
i . By

Property 6 of Def. 2.3.1, we know that H ′(σ̂i , ĉti ) = H ′(σ′
i ,cti ) = tagi except with prob-

ability at most 2
2n = ϵ3. Hence, this contradicts the fact that the tag verification would

have failed in ODec(cti ) in Υ5.

We also remove the original tag verification and logic, as these instructions do not influence

on the probability of success. In the end, we get

Pr[Υ5 ⇒ 1]−Pr[Υ6 ⇒ 1] ≤ qϵ3 .

Game Υ7 : In this last game, we move hash queries to H ′ made during tag verification in the

decapsulation oracle to the end of the game. Note that the outputs of the decapsulation oracle

are independent of the tag verification now, so we can apply Property 8 of Def. 2.3.1 again.

We also remove the call to the decryption procedure as it is not useful anymore. Finally, we

change the game s.t. the random query that is measured is taken uniformly at random from

the queries made by the adversary to H or H ′, and the queries made by the decapsulation

oracle to H . In other words, we forget about the queries to H ′ that have been moved at the

end of the game. As these queries are classical and are never equal to H ′(ct∗,σ∗), this does

not lower the probability ofΥ7 to output 1 compared to the previous game.
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Gen(1λ)

1 : (pk,sk) ←$ genp(1λ)

2 : return (pk,sk)

Encaps(pk)

1 : σ←$ M

2 : ct←$ encp(pk,σ)

3 : K ← H(σ,ct)

4 : return K ,ct

Decaps(sk,ct)

1 : σ′ ← decp(sk,ct)

2 : if σ′ =⊥: return ⊥
3 : return H(σ′,ct)

Figure 6.7: TH transform.

Thus, we have

Pr[Υ6 ⇒ 1]−Pr[Υ7 ⇒ 1] ≤ (q −1)qϵ2

as we move at most q queries to H ′ and each is going to be swapped with at most (q −1) calls

to the extractor.

Now, one can see that a OW-PCA adversary B can perfectly simulate Υ7 as both the challenge

key Kb and tag tag∗ are random, and the decapsulation oracle can be perfectly simulated

with a plaintext-checking oracle (which is called at most q times). In addition, wheneverΥ7

outputs 1, B can recover σ∗ from the query measurement. Hence, we have

Pr[Υ7 ⇒ 1] ≤Advow−pca
PKE (B) .

Collecting the probabilities concludes the proof.

Corollary 6.4.2. We consider two quantum random oracles H , H ′ : {0,1}∗ 7→ {0,1}n . Let KEM
be the KEM resulting from applying the TCH transform to a δ-correct PKE. Then, for any

IND-qCCA adversary A that makes at most qH (resp. qH ′) queries to H (resp. H ′), there exists a

OW-CPA adversary B s.t.

Advind−qcca
KEM (A ) ≤ δ+2(qH ′ +qH +q)

√
2q ·Advow−cpa

PKE (B)+ϵ1 +q((qH ′ +2q)ϵ2 +2ϵ3) ,

where ϵ1 := 40e2(qH ′+q+1)3+2
2n , ϵ2 := 8

p
2/2n and ϵ3 := 2/2n .

6.4.2 Hashing the plaintext and ciphertext

One can also wonder what is the leakage of the decapsulation oracle in the ROM, when the key

is simply the hash of the seed and the plaintext. That is, we consider the simple PKE to KEM

transform given in Figure 6.7, which we call TH. Note that this is the same transform as the U⊥

transform from Hofheinz et al. [HHK17] presented in Figure 2.17. We now show that if q is

small (logarithmic in the security parameter), then TH outputs a secure IND-qCCA scheme in

the ROM, given that the underlying PKE is OW-CPA.

Theorem 6.4.3. We consider a random oracle H : {0,1}∗ 7→ {0,1}n . Let KEM be the KEM resulting

from applying the TH transform to a δ-correct PKE PKE (which never queries H). Then, for any
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O i(LH ,ct)

1 : sort LH according to query order :

2 : LH = ((σi ,cti ),Ki )i∈{1,...,|LH |}
3 : σ′ ← decp(sk,ct)

4 : if σ′ =⊥: return ⊥d

5 : for i ∈ {1, . . . , |LH |} :

6 : if cti = ct and σ′ =σi :

7 : return i

8 : return ⊥

Figure 6.8: O i oracle for the proof of Theorem 6.4.3.

IND-qCCA adversary A that makes at most qH queries to H, there exists a OW-CPA adversary

B s.t.

Advind−qcca
KEM (A ) ≤ qH · ((qH +1)(qH +2))q ·Advow−cpa

PKE (B) .

If PKE is deterministic, we get

Advind−qcca
KEM (A ) ≤ δ+ ((qH +1)(qH +2))q ·Advow−cpa

PKE (B) .

Proof. We start by defining an oracle O i(LH ,ct) (see Figure 6.8). This oracle returns the index

i s.t. ((σi ,cti ),Ki ) ∈ LH (we first sort LH according to some fixed order) and cti = ct and

decp(sk,cti ) = σi . If such a i does not exist and decp(sk,cti ) =⊥ it returns ⊥d , otherwise it

returns ⊥.

Now we show how to simulate the IND-qCCA decapsulation oracle in the ROM, using O i and

OPCO only. The original (resp. modified) oracles ODec and H (resp. ODec′ and H ′) are on the

left (resp. right) in Figure 6.9. We now prove that any IND-qCCA adversary cannot distinguish

between the real and modified oracles.

First, we show that the outputs of the ROs H and H ′ on any query (σ,ct) have the same

distribution, given the adversary’s view. We break this into four subcases:

• (σ,ct) was queried before to H (resp. H ′): In this case, both H and H ′ return the value h

returned on the previous similar query. Thus, we assume from now on that every RO

query made by the adversary is unique.

• ct was never queried to the decapsulation oracle before: In this case, both H and H ′

return a random value h and store the query/response in LH .

• ct was queried to the decapsulation oracle before: In both cases (original and modified

oracles) one can see that if the decryption of ct either fails or σ′ = decp(sk,ct) is different

from σ, then the output of the decapsulation oracle is independent of H(σ,ct) (and

H ′(σ,ct)). In both cases, the ROs sample a fresh value (H ′ will do so because OPCO(σ,ct)

will output 0 in this case, as σ ̸= σ′ or the ciphertext is not valid). Now, if ct decrypts
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Oracle ODec(ct)

1 : if ct= ct∗ : return ⊥
2 : if more than q queries :

3 : return ⊥
4 : σ′ ← decp(sk,ct)

5 : if σ′ =⊥: return ⊥
6 : return H(σ′,ct)

H(σ,ct)

1 : if ∃h s.t. ((σ,ct),h) ∈LH :

2 : return h

3 : h ←$ {0,1}n

4 : LH ←LH ∪ {((σ,ct),h)}

5 : return h

Oracle ODec′(ct)

1 : if ct= ct∗ : return ⊥
2 : if more than q queries : return ⊥
3 : if ∃K s.t. (ct,K ) ∈LK :

4 : return K

5 : i ←O i(LH ,ct)

6 : if i =⊥d : return ⊥
7 : if i ̸=⊥:

8 : ((σi ,cti ),Ki ) ←LH [i ]

9 : return Ki // return i -th valued returned by H ′

10 : K ←$ {0,1}

11 : LK ←LK ∪ {(ct,K )}

12 : return K

H ′(σ,ct)

1 : if ∃h s.t. ((σ,ct),h) ∈LH :

2 : return h

3 : if ∃K s.t. (ct,K ) ∈LK :

4 : if OPCO(σ,ct) :

5 : LH ←LH ∪ {((σ,ct),K )}

6 : return K

7 : h ←$ {0,1}n

8 : LH ←LH ∪ {((σ,ct),h)}

9 : return h

Figure 6.9: Original and modified oracles for the proof of Theorem 6.4.3.

to σ, the original decapsulation oracle outputs H(σ,ct). In the modified game, the

decapsulation oracle outputs a random K . Indeed, as we assume (σ,ct) was never

queried to H , O i(LH ,ct) outputs ⊥. Then, the modified RO will output the same K , as

OPCO(σ,ct) will verify. In both cases, the ROs output the same value as the decapsulation

oracle.

We now show that the decapsulation oracles ODec and ODec′ are indistinguishable. Let ct be

the queried ciphertext and σ= decp(sk,ct).

• ct= ct∗: both oracles return ⊥.

• σ=⊥: Both oracles return ⊥, as O i(LH ,ct) returns ⊥d .

• H (σ,ct) (resp. H ′(σ,ct)) was never queried. Both oracles return a random value if ct was

never queried, or a consistent value if it was. It is straightforward to see this is the case

in the original oracle. In the modified oracle, as H ′(σ,ct) was never queried, we have

O i(LH ,ct) that returns ⊥. Thus, the decapsulation oracle returns a random K if ct was

not queried or a consistent K if it was.
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B(pk,ct∗)

1 : init LH ,LK ←;
2 : init Lq ← []

3 : K∗ ←$ K

4 : run A H ′′,ODec′′
(pk,ct∗,K∗)

5 : sample random query (σ′,ct′) made to H ′′

6 : return σ′

H ′′(σ,ct)

1 : iq ← query number

2 : if ∃h s.t. ((σ,ct),h) ∈LH :

3 : return h

4 : if ∃K s.t. (ct,K ) ∈LK :

5 : if Lq [ct] = iq :

6 : LH ←LH ∪ {((σ,ct),K )}

7 : return K

8 : h ←$ {0,1}n

9 : LH ←LH ∪ {((σ,ct),h)}

10 : return h

Oracle ODec′′(ct)

1 : if ct= ct∗ : return ⊥
2 : if more than q queries : return ⊥
3 : if ∃K s.t. (ct,K ) ∈LK :

4 : return K

5 : i ←$ {1, . . . , qH ,⊥,⊥d }

6 : if i =⊥d : return ⊥
7 : if i ̸=⊥:

8 : (cti ,Ki ) ←LH [i ]

9 : return Ki // return i -th valued returned by H ′′

10 : K ←$ {0,1}

11 : LK ←LK ∪ {(ct,K )}

12 : Lq [ct] ←$ {0, . . . , qH }

13 : return K

Figure 6.10: B adversary for the proof of Theorem 6.4.3.

• H(σ,ct) (resp. H ′(σ,ct)) was queried and it output K . Both oracles return K . In the

modified decapsulation oracle, O i(LH ,ct) will output a valid i s.t. H ′(σi ,ct) = hi and hi

is returned. Thus, the answer is consistent with the RO.

Now we can prove the theorem by game hopping as before. We define Γ0 as the original

IND-qCCA game.

Game Γ1 : We modify the original IND-qCCA game into another game Γ1 where the ran-

dom/decapsulation oracles are the modified ones (i.e. H ′ and ODec′) described above. As

shown, both games are indistinguishable and thus

|Pr[Γ0 ⇒ 1]−Pr[Γ1 ⇒ 1]| = 0 .

Game Γ2 : We replace the challenge key by a random one, as in the previous proof. Then,

similarly, the real key is indistinguishable from a random one unless H(σ∗,ct∗) is queried. We

define this event as query and

|Pr[Γ1 ⇒ 1]−Pr[Γ2 ⇒ 1]| ≤ Pr[query] .

We can upper bound this probability by the advantage of a OW-CPA adversary B against PKE.

That is, given a IND-qCCA adversary playing game Γ2, we build an adversary B as shown in

Figure 6.10. One can see that if B was simulating A with the H ′ and ODec′ oracles (instead

133



Chapter 6. On IND-qCCA Security in the ROM and Its Applications: CPA Security Is
Sufficient for TLS 1.3

of its own oracles H ′′ and ODec′′), the simulation would be perfect as long as query did not

occur. Then, whenever query would happen, B would recover σ∗ with probability 1
qH

. Now B

does not simulate the modified oracles perfectly but instead makes some guessing in its own

oracles H ′′ and ODec′′ :

• ODec′′ : In line 5, i is picked at random instead of being the returned value of the O i

oracle. On each query the simulation is perfect with probability 1/(qH +2) and overall

with probability 1
(qH+2)q , as there are at most q queries to this oracle. In line 12, we

associate a random index to each ct s.t. (ct,∗) ∈LK .

• H ′′: In line 5, when (ct,∗) ∈LK , instead of querying the plaintext-checking oracle we

check whether the corresponding sampled index Lq [ct] is equal to the query number. If

it is, we reply with K s.t. (ct,K ) ∈LK otherwise we proceed as before (i.e. as in H ′). Let’s

assume w.l.o.g that each query to H ′′ is unique. For each ct s.t. (ct,∗) ∈LK , there can be

at most one query (σ,ct) s.t. OPCO(σ,ct) returns 1 (it is when σ is the decryption of ct).

Here, B guesses beforehand which query it is (or if no such query will be made) and

gets the correct answer with probability 1
qH+1 . Note that B needs to make one guess per

query to ODec′′ (not per query to H ′′). Overall, the probability H ′′ simulates correctly H ′

is 1
(qH+1)q .

From this we can deduce that B correctly simulates Γ2 with probability 1
((qH+1)(qH+2))q and

wins the OW-CPA game with probability at least 1
qH

·Pr[query]. Hence,

|Pr[Γ1 ⇒ 1]−Pr[Γ2 ⇒ 1]| ≤ Pr[query] ≤ qH · ((qH +1)(qH +2))q ·Advow−cpa
PKE (B) .

Note that when PKE is deterministic, in order to recover σ∗, B can check which σ′ queried

is s.t. Enc(pk∗,σ′) = ct∗ instead of guessing. This works as long as the challenge seed σ∗ and

queried seeds are correct. If that is not the case, one can build an adversary that wins the

correctness game defined in Figure 2.2. Note that this adversary knows which will be the

correct seed as it is given sk and the PKE is deterministic. As the correctness advantage is

upper bounded by δ, we obtain that for deterministic PKEs the last inequality becomes

|Pr[Γ1 ⇒ 1]−Pr[Γ2 ⇒ 1]| ≤ Pr[query] ≤ δ+ ((qH +1)(qH +2))q ·Advow−cpa
PKE (B) .

Finally, in game Γ2, the challenge key is always random and thus Pr[Γ2 ⇒ 1] = 1
2 . Collecting

the probabilities concludes the proof.

6.5 CPA-security Is Sufficient for TLS 1.3 in the ROM

We show in this section that a CPA-secure KEM is sufficient for the handshake in TLS 1.3

to be secure in the ROM. The security bound is very loose, but this still solves an interest-
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IND-1CCA-MACKEM(A )

1 : b ←$ {0,1}

2 : (pk,sk) ←$ Gen(1λ)

3 : ct∗,K ∗ ←$ Encaps(pk)

4 : n∗ ←$ {0,1}n

5 : HS∗ ←G(K ∗)

6 : CHTS0 ← H1(HS∗, HT (ct∗,n∗))

7 : SHTS0 ← H2(HS∗, HT (ct∗,n∗))

8 : dHS0 ← H3(HS∗)

9 : (CHTS1,SHTS1,dHS1) ←$ {0,1}3n

10 : b′ ←A ODec,ODec
MAC,G ,{Hi }i∈[4]

(
pk,ct∗,n∗,

11 : (CHTSb ,SHTSb ,dHSb)
)

12 : return 1b′=b

Oracle ODec((ct,n))

1 : if more than 1 query : return ⊥
2 : if (ct,n) = (ct∗,n∗) : return ⊥
3 : K ′ ←Decaps(sk,ct)

4 : if K ′ =⊥: return ⊥
5 : HS′ ←G(K ′)
6 : CHTS← H1(HS′, HT (ct,n))

7 : SHTS← H2(HS′, HT (ct,n))

8 : tkc ← HD (CHTS)

9 : tks ← HD (SHTS)

10 : return (tkc,tks)

Oracle ODec
MAC(ct,n,tag,txt)

1 : if more than 1 query : return ⊥
2 : if (ct,n) = (ct∗,n∗) : return ⊥
3 : K ′ ←Decaps(sk,ct)

4 : HS′ ←G(K ′)
5 : SHTS← H2(HS′, HT (ct,n))

6 : fkS ← H4(SHTS)

7 : if MAC.Vrf(fkS ,txt,tag) = true :

8 : return HS′

9 : return ⊥

Figure 6.11: IND-1CCA-MAC game.

ing open problem. TLS 1.3 only supports DH key-exchange but it can be trivially modified

to support KEMs as done in several PQ variants of TLS (e.g.[SM23; Cel+21]). That is, the

client runs (sk,pk) ←$ Gen and sends pk as its share (instead of g x ). Then, the server runs

K ,ct ←$ Encaps(pk) and sends ct as its secret share (instead of g y ). Finally, the client runs

K ← Decaps(sk,ct) and the shared secret is set to K . By abuse of language, we refer to this

modified protocol as TLS 1.3 in what follows. An overview of this modified handshake is given

in Figure 6.15.

6.5.1 IND-1CCA-MAC

In order to show that a CPA-secure KEM is sufficient for TLS 1.3 to be secure, we first introduce

an intermediary notion of security for KEMs, called IND-1CCA-MAC. This security definition

has no application and will serve only as a useful intermediary building block for the proof.

Definition 6.5.1 (IND-1CCA-MAC). We consider the games defined in Figure 6.11. Let K be

the key space, G , H1, H2, H3, H4, and HD be key-derivation functions with images in {0,1}n , HT

be a hash function with images in {0,1}n , and MAC a MAC scheme. A KEM scheme KEM =
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(Gen,Encaps,Decaps) is IND-1CCA-MAC if for any efficient adversary A we have

Advind-1cca-mac
K E M (A ) :=

∣∣∣∣Pr[IND-1CCA-MACKEM(A ) ⇒ 1]− 1

2

∣∣∣∣= negl(λ) ,

where Pr
[
IND-1CCA-MACb

KEM(A ) ⇒ 1
]

is the probability that A wins the IND-1CCA-MAC

game defined in Figure 6.11.

In this game, the adversary receives a challenge ciphertext encapsulating a key K , a nonce

n∗, and either three secrets (CHTSb ,SHTSb ,dHSb) derived from K through a key schedule, or

three random secrets. Jumping ahead, these three values are computed (nearly) in the same

way as their identically named counterparts in the modified TLS 1.3 protocol. The adversary

has also access to two oracles that it can query at most once. The first is simply a decapsulation

oracle that applies a key schedule (similar to TLS’s) on the decapsulated key and returns two

secrets tkc and tks. The second oracle takes a ciphertext (which must be different than the

challenge ciphertext), a tag, and some data. Then, the ciphertext is decrypted to recover a

secret HS′ that is passed through a key schedule to get a MAC key fkS . Finally, the oracle

checks whether tag is a valid MAC on the data with the key fkS . If this is the case it returns HS′,
otherwise it returns an error ⊥. Informally, this last oracle outputs the root secret HS if the

adversary can forge a valid tag corresponding to the tuple (ct,n). In the TLS proof, this will be

used to argue that if a participant can send a valid tag, it should know the root secret HS.

6.5.2 OW-CPA implies IND-1CCA-MAC

First, we briefly define the notion of MAC unforgeability we will need.

Definition 6.5.2 (MAC EUF-0T). Let MAC= (MAC.Vrf,MAC.Tag) be a message authentication

code scheme (MAC). We say MAC is EUF-0T if for any efficient adversary A ,

Adveuf−0t
MAC (A ) := Pr[MAC.Vrf(K , M ,T ) = 1 : (M ,T ) ←$ A ;K ←$ K ]

is negligible in the security parameter, where the probability is taken over the sampling of the

key and the randomness of the adversary.

We now prove that any OW-CPA KEM is also IND-1CCA-MAC secure in the ROM if the MAC

used is EUF-0T secure. More precisely, the KDFs G , H1, H2, H3, H4, and HD , and the hash

function HT in the IND-1CCA-MAC games are assumed to be ROs.

Theorem 6.5.1. Let KEM= (Gen,Encaps,Decaps) be a KEM. Let the KDFs and the hash function

in the IND-1CCA-MAC game be modelled as random oracles. Then, for any efficient adversary A

making at most qG , qH1 , qH2 , qH3 , qH4 qHD , qHT queries to G , H1, H2, H3, H4, HD , HT respectively,
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Γ0-6
KEM(A )

1 : b ←$ {0,1}

2 : (pk,sk) ←$ Gen(1λ)

3 : ct∗,K∗ ←$ Encaps(pk)

4 : n∗ ←$ {0,1}n

5 : HS∗ ←G(K∗)

6 : CHTS0 ← H1(HS∗, HT (ct∗,n∗))

7 : SHTS0 ← H2(HS∗, HT (ct∗,n∗))

8 : dHS0 ← H3(HS∗)

9 : (CHTS1,SHTS1,dHS1) ←$ {0,1}3n

10 : b′ ←A
ODec ,ODec

MAC,H1 ,H2 (pk,ct∗,n∗,

11 : (CHTSb ,SHTSb ,dHSb )) // Γ0-Γ3

12 : b′ ←A
ODec′ ,ODec

MAC ,H ′
1 ,H ′

2 (pk,ct∗,n∗,

13 : (CHTSb ,SHTSb ,dHSb )) // Γ4-

14 : if collision on HT : abort // Γ1-

15 : if A queries Hi (HS∗, HT (ct∗,n∗)), i ∈ [2] or H3(HS∗) :

16 : abort // Γ6

17 : if A did not query G(K∗) : abort // Γ5

18 : return 1b′=b

Oracle ODec
MAC(ct,n,tag,txt)

1 : if more than 1 query : return ⊥
2 : if (ct,n) = (ct∗,n∗) : return ⊥
3 : K ′ ←Decaps(sk,ct)

4 : HS′ ←G(K ′);SHTS← H2(HS′, HT (ct,n))

5 : fkS ← H4(SHTS)

6 : if SHTS=SHTSb : // Γ2-

7 : abort // Γ2-

8 : if MAC.Vrf(fkS ,txt,tag) = true :

9 : if A did not query H4(SHTS) : // Γ2-

10 : abort // Γ2-

11 : if A did not query H2(HS′, HT (ct,n)) : // Γ3-

12 : abort // Γ3-

13 : return HS′

14 : return ⊥

H j (HS, y), j ∈ {1,2}

1 : if ∄(ct,n) s.t. ((ct,n), y) ∈LHT : // Γ1-

2 : h ←$ {0,1}n ; return h // Γ1-

3 : usual lazy sampling

Figure 6.12: Games for the proof of Theorem 6.5.1. The adversary has access to all the other
ROs G , H3, H4 and HD , even if it is not explicited in the games. H ′

1, H ′
2 and ODec′ are defined in

Figure 6.13.

there exists a OW-CPA adversary B s.t.

Advind-1cca-mac
KEM (A ) ≤Adveuf−0t

MAC (B)+ 3qH1 +4qH2 +qH3 +qH4 +qHD +1

2n

+ (qHT +4)2

2n +qG (qH1 +2)2(qH2 +2)3 ·Advow−cpa
KEM (C ) ,

where B has approximately the same running time as A .

Proof. The first step of the proof is very similar to the proof of Theorem 6.4.3. Indeed, one

can see that the decapsulation oracle outputs secrets that are computed as (a function of)

Hi (HS, HT (ct,n)), where Hi and HT are ROs. Note that the only difference is that HT is applied

on (ct,n). However, as HT is a RO, this difference will not matter much in the proof. Hence, as

in Theorem 6.4.3, one can program the ROs s.t. the decapsulation oracle ODec can be simulated

without the secret key. In a second step, we show that the adversary can also simulate the

ODec
MAC oracle with good probability. More precisely, let HS be the secret corresponding to the

submitted ciphertext ct. Then, either H2(HS, HT (ct,n)) has been queried by the adversary, or

it is very unlikely that A knows the MAC key fkS . In the first case we can recover HS from the

list of queries, and in the second we can return ⊥ as most likely the MAC verification will fail.
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We proceed with a sequence of games, which are given in detail in Figure 6.12.

Game Γ0 : This is the original IND-1CCA-MAC game. From now on, we assume w.l.o.g. that

each query to ROs are unique (i.e. they never repeat).

Game Γ1 : We modify the previous game as follows. First, we abort if a collision on HT occurs

in the game. As there are at most qHT +4 queries to HT in the game, a collision occurs with

probability less than
(qHT +4)2

2n . Then, on adversary’s queries H j (HS, y), j ∈ {1,2}, if HT (ct,n) = y

was never queried by A for some (ct,n), we mark y as unpaired and return a random value.

The only way it differs from the previous game, is if a query H j (HS, y) for an unpaired y is

performed by the game (i.e. not by the adversary), either before or after y was marked as

unpaired. Now, A does not get any information about values HT (ct,n) from the game (or

oracles), except a few values H j (HS, HT (ct,n)) (or values that depends on these), for some HS.

Note that these values completely “hide” the result of the HT query, as H j is a RO. Hence, the

best strategy for A to query H j (HS, y) s.t. y is unpaired but is queried by the game at some

point, is to try random values for y . As the game makes at most 2 queries to H1 (one in the

challenge part and one in the decapsulation oracle) and 3 queries to H2 (one in the challenge

part and one in each oracle), the probability that a random unpaired y is s.t. y was the result of

a HT query by the game at some point is at most 2
2n for a H1 call, and 3

2n for a H2 call. Overall,

we have

|Pr[Γ0 ⇒ 1]−Pr[Γ1 ⇒ 1]| ≤ 2qH1 +2qH2

2n .

We note that this step ensures that on a query H j (HS, y) one can recover a unique tuple (ct,n)

s.t. HT (ct,n) = y , or a random value is returned.

Game Γ2 : We modify the original game s.t. we abort whenever the MAC verification succeeds

on the query ODec
MAC(ct,n,tag,txt) but fkS := H4(SHTS) was never queried, where SHTS :=

H2(G(K ), HT (ct,n)) and K := Decaps(sk,ct). If that is the case, it means the MAC key fkS :=
H4(SHTS) is indistinguishable from a random value for A , but it managed to forge a valid tag.

Thus, one can build an adversary B that breaks MAC unforgeability. More formally, B samples

a pair of keys (sk,pk) ←$ Gen, generates a valid input for A and simulates the decryption oracle

with the secret key. Then, when A submits (ct,n,tag,txt) to ODec
MAC, B outputs (txt,tag) as a

forgery. We also abort if the value SHTS computed in the oracle is s.t. SHTS = SHTSb . As

there are no collision on HT and (ct,n) ̸= (ct∗,n∗), this happens with probability at most 1
2n .

Then, we have

|Pr[Γ1 ⇒ 1]−Pr[Γ2 ⇒ 1]| ≤Adveuf−0t
MAC (B)+ 1

2n .

Game Γ3 : We abort whenever the MAC verification succeeds on the query ODec
MAC(ct,n,tag,txt)

but H2(G(K ), HT (ct,n)) was never queried, where K :=Decaps(sk,ct). By the previous game, it

means that the adversary queried SHTS := H2(G(K ), HT (ct,n)) to H4 without having queried
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Oracle ODec′(ct,n)

1 : if (ct,n) = (ct∗,n∗) : return ⊥
2 : if more than 1 query : return ⊥
3 : q1 ←$ {0, . . . , qH1 }

4 : q2 ←$ {0, . . . , qH2 }

5 : i ←O i(LH1 ,ct,n)

6 : if i =⊥d : return ⊥
7 : if i ̸=⊥:

8 : // get i -th valued returned by H1

9 : ((HSi ,cti ,ni ),hi ) ←LH1 [i ]

10 : CHTS← hi

11 : else :

12 : CHTS←$ {0,1}

13 : L 1
K ← (ct,n,CHTS)

14 : i ←O i(LH2 ,ct,n)

15 : if i ̸=⊥:

16 : // get i -th valued returned by H2

17 : ((HSi ,cti ,ni ),hi ) ←LH2 [i ]

18 : SHTS← hi

19 : else :

20 : SHTS←$ {0,1}

21 : L 2
K ← (ct,n,SHTS)

22 : return (HD (CHTS), HD (SHTS))

H ′
j (HS, y), j ∈ {1,2}

1 : if ∄(ct,n) s.t. ((ct,n), y) ∈LHT :

2 : h ←$ {0,1}n ; return h

3 : set (ct,n) s.t. ((ct,n), y) ∈LHT

4 : if L
j

K = (ct,n,h) for some h :

5 : if HS=G(Decaps(sk,ct)) :

6 : LH j
←LH j

∪ {((HS,ct,n),h)}

7 : return h

8 : h ←$ {0,1}n

9 : LH j
←LH j

∪ {((HS,ct,n),h)}

10 : return h

O i
G (L ,n,ct)

1 : sort L according to query order :

2 : L = ((HSi ,cti ,ni ),hi )i∈{1,...,|LH |}
3 : K ′ ←Decaps(sk,ct)

4 : if K ′ =⊥: return ⊥d

5 : HS′ ←G(K ′)
6 : for i ∈ {1, . . . , |L |} :

7 : if (cti ,ni ) = (ct,n) and HS′ =HSi :

8 : return i

9 : return ⊥

Figure 6.13: Simulation of decapsulation and random oracles with sub-oracle O i
G for the proof

of Theorem 6.5.1. Note that as we assume that each query to H j is unique, H ′
j does not check

whether a query was previously made.

H2(G(K ), HT (ct,n)) beforehand. If we analyse what information A has about SHTS ̸= SHTSb

if it did not query H2(G(K ), HT (ct,n)), we see that the only potential “leakage” is from a

decapsulation query that returns tks := HD (SHTS), where HD is a RO perfectly hiding SHTS.

Thus, the best strategy for A to find SHTS without querying H2 is to query random values

x ∈ {0,1}n to HD or H4 until it finds x s.t. HD (x) = tks or H4(x) = fkS . This happens with

probability at most
qHD +qH4

2n . Hence, we have

|Pr[Γ2 ⇒ 1]−Pr[Γ3 ⇒ 1]| ≤ qHD +qH4

2n .

Game Γ4 : We program both ROs H1 and H2 s.t. we can perfectly simulate the decapsulation

oracle with an oracle O i
G . This follows exactly the idea of the proof of Theorem 6.4.3. First, we

introduce an oracle O i
G in Figure 6.13 that takes a list of RO queries, a nonce n, and a ciphertext

ct, then checks whether (G(K ), HT (ct,n)) (where K is the key encapsulated in ct) was ever

139



Chapter 6. On IND-qCCA Security in the ROM and Its Applications: CPA Security Is
Sufficient for TLS 1.3

queried and if that is the case, the index of the corresponding query. This is exactly the same

as the oracle O i in the proof of Theorem 6.4.3, except we query the decapsulated K to the RO

G and there is the additional nonce. Thus, we can program the ROs H j , j ∈ {1,2} and simulate

the (1-time) decapsulation oracle as shown in Figure 6.13.

The simulation works nearly as in the proof of Theorem 6.4.3. Let ct be the unique decap-

sulation query, K :=Decaps(sk,ct) and HS :=G(K ). For j ∈ [2], the simulated decapsulation

oracle checks whether (G(K ), HT (ct,n)) was already queried to H j using O i
G , if that is the case

it recovers the corresponding value, otherwise it means H j (HS, HT (ct,n)) was never queried

by the adversary nor the challenger, as (ct,n) ̸= (ct∗,n∗). Thus it samples the hash value at

random, queries it to HD and returns it to the adversary.

The simulation of H j is such that it is consistent with the values returned by the simulated

decapsulation oracle. First, if H j (HS, y) is queried s.t. y is unpaired, we can simply return a

random value, this is consistent with the game. Then, if y is not unpaired, one can recover

the unique (as there are no collision) tuple (ct,n) s.t. y = HT (ct,n). We consider from now on

only queries with y s.t. HT (ct,n) = y for some (ct,n). On a query H j (HS, HT (ct,n)), if (ct,n)

was already queried to the decapsulation oracle, then h := H j (HS,ct,n) was set by ODec′ iff

HS=G(K ), where K :=Decaps(sk,ct). Hence, we return the same K if G(Decaps(sk,ct)) =HS.

Otherwise we sample a random value and return it. Note that this is the only place where the

secret key sk is used anymore (except implicitly in the O i
G oracle). The simulation is perfect

and therefore we have

|Pr[Γ3 ⇒ 1]−Pr[Γ4 ⇒ 1]| = 0 .

Game Γ5 : In game Γ5, we abort whenever the adversary did not query G(K ∗) (which is equal

to HS∗) but it queried H1(HS∗, HT (ct∗,n∗)), H2(HS∗, HT (ct∗,n∗)) or H3(HS∗). Note that

the (modified) decryption oracle never queries H1(HS∗, HT (ct∗,n∗)), H2(HS∗, HT (ct∗,n∗))

or H3(HS∗). In addition, the challenge values given to A are either perfectly random or com-

pletely hide HS∗. Thus, the probability that A queries HS∗ to H1, H2 or H3 is upper bounded

by
qH1+qH2+qH3

2n and hence we have

|Pr[Γ4 ⇒ 1]−Pr[Γ5 ⇒ 1]| ≤ qH1 +qH2 +qH3

2n .

Game Γ6 : Finally, in game Γ6 we abort whenever H1(HS∗, HT (ct∗,n∗)), H2(HS∗, HT (ct∗,n∗))

or H3(HS∗) is queried by the adversary. Let query be this event. By the previous game, it

means that K ∗ was queried to G before query happens. Finally, as in the previous proofs, we

can upper bound Pr[query] by the advantage of a OW-CPA adversary times a constant. The

challenge keys (CHTSb ,SHTSb ,dHSb) are sampled at random in the reduction, as long query
does not happen both the real and random cases are perfectly indistinguishable. We present

such a OW-CPA adversary C in Figure 6.14. The only challenge for C is to simulate the oracles

without having access to the secret key.
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• ODec′′
MAC : This oracle returns something else than ⊥ iff (HS, HT (ct,n)) was queried to H2,

where HS :=G(K ) and K :=Decaps(sk,ct). Hence, one can simply pick a random value

r ←$ {0, . . . , qH2 } and guess whether ODec
MAC(ct) fails (if r = 0) or succeeds and HS is in the

r -th query made to H2. In the latter case, one can recover HS in the r -th query and

return it. Overall the simulation works with probability 1
qH2+1 .

• ODec′′ : In this oracle, the secret key is used only in the O i
G sub-oracle. A reply of O i

G is in

the set {⊥,⊥d ,1, . . . , qH j } for j ∈ [2]. Thus, one can guess the correct reply by sampling

a random value in that set, which gives a success probability of 1
(qH j +2) . Overall, there

are at most 2 calls to O i
G (one for j = 1 and j = 2) and therefore the probability that the

simulation is successful is 1
(qH1+2)(qH2+2) .

• H ′′
j , j ∈ [2]: The only time the secret key is used is when there is a query (HS, HT (ct,n))

s.t. (ct,n) was already queried to ODec′ (i.e. L
j

K = (ct,n,h) for some h). In this case h is

returned iff G(Decaps(sk,ct)) =HS (let’s call this Condition (1)). Recalling that queries

to H j never repeat by assumption, there will be at most one query H ′′
j (HS, HT (ct,n))

s.t. (ct,n) was queried to the decapsulation oracle and Condition (1) is fulfilled. Hence,

one can simulate H j by sampling an index q j ∈ {0, . . . , qH j } and returning h (if it exists)

in the q j -th query or never in case q j = 0. This successfully simulates H j with prob-

ability 1
(qH j +1) . Overall, the probability that both H1 and H2 are simulated correctly is

1
(qH1+1)(qH2+1) .

The other ROs can be simulated perfectly by C using lazy sampling. Overall, C simulates

perfectly A ’s view in game Γ6 (as long as query does not occur) with probability

p = 1

(qH2 +1)2(qH1 +2)(qH2 +2)(qH1 +1)
.

Then if query happens, K ∗ will be in the list of queries made by A to G . The adversary can

guess which one it is and succeeds with probability 1
qG

. Hence, we have

|Pr[Γ5 ⇒ 1]−Pr[Γ6 ⇒ 1]| ≤ Pr[query] ≤ qG (qH1 +2)2(qH2 +2)3 ·Advow−cpa
KEM (C ) .

Finally, in game Γ6, as H1(HS∗,ct∗,n∗), H2(HS∗,ct∗,n∗) or H3(HS∗) cannot be queried any-

more, the challenge keys are perfectly indistinguishable from random for the adversary. Hence,

Pr[Γ6 ⇒ 1] = 1

2
.

Collecting the probabilities concludes the proof.
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C (pk,ct∗)

1 : init LH ,LK ←;
2 : q1 ←$ {0,1, . . . , qH1 }; q2 ←$ {0,1, . . . , qH2 }

3 : n∗ ←$ {0,1}n

4 : (CHTS∗,SHTS∗,dHS∗) ←$ {0,1}3n

5 : run A
ODec′′ ,ODec′′

MAC ,H ′′
1 ,H ′′

2 ,G ,H3 ,H4 ,HD

6 : (pk,ct∗,n∗, (CHTS∗,SHTS∗,dHS∗))

7 : sample random query K made to G

8 : return K

H ′′
j (HS, y), j ∈ [2]

1 : if ∄(ct,n) s.t. ((ct,n), y) ∈LHT :

2 : h ←$ {0,1}n ; return h

3 : set (ct,n) s.t. ((ct,n), y) ∈LHT

4 : iq ← query number

5 : if ∃h s.t. ((HS,ct,n),h) ∈LH j
:

6 : return h

7 : if L
j

K = (ct,n,h) for some h :

8 : if iq = q j :

9 : LH j
←LH j

∪ {((HS,ct,n),h)}

10 : return h

11 : h ←$ {0,1}n

12 : LH j
←LH j

∪ {((HS,ct,n),h)}

13 : return h

Oracle ODec′′
MAC(ct,n,tag,txt)

1 : if more than 1 query : return ⊥
2 : if (ct,n) = (ct∗,n∗) : return ⊥
3 : r ←$ {0, . . . , qH2 }

4 : if r = 0 : return ⊥
5 : if less than r queries have been made to H2 :

6 : abort

7 : get r -th query (HS,ct,n) made to H2

8 : return HS

Oracle ODec′′(ct,n)

1 : if (ct,n) = (ct∗,n∗) : return ⊥
2 : if more than 1 query : return ⊥
3 : q1 ←$ {0, . . . , qH1 }

4 : q2 ←$ {0, . . . , qH2 }

5 : i ←$ {1, . . . , qH1 ,⊥,⊥d }

6 : if i =⊥d : return ⊥
7 : if i ̸=⊥:

8 : ((HSi ,cti ,ni ),hi ) ←LH1 [i ]

9 : CHTS← hi

10 : else :

11 : CHTS←$ {0,1}

12 : L 1
K ← (ct,n,CHTS)

13 : i ←$ {1, . . . , qH2 ,⊥,⊥d }

14 : if i ̸=⊥:

15 : ((HSi ,cti ,ni ),hi ) ←LH2 [i ]

16 : SHTS← hi

17 : else :

18 : SHTS←$ {0,1}

19 : L 2
K ← (ct,n,SHTS)

20 : return (HD (CHTS), HD (SHTS))

Figure 6.14: C adversary for the proof of Theorem 6.5.1.
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6.5.3 MultiStage security

We briefly recall in this section the notion of MultiStage security as defined by Dowling et

al. [Dow+20]. We refer the reader to their work for further details and discussion.

MultiStage syntax

Each protocol has a set of properties encoded in a tuple (M,AUTH,FS,USE,REPLAY) which

respectively indicates the number of stages in the protocol, the stage at which a key becomes

(unilaterally or mutually) authenticated, which keys are forward secret, which keys are meant

to be used internally/externally to the protocol and finally which stage is “replayable”.

Then, we denote by U the set of honest participants and each session is defined as π =
(U ,V ,n) ∈U ×U ×N, which denotes the n-th session of participant U with intended partner

session V . In addition, each participant can have a long-term secret such as a secret key or

pre-shared secret. Then, each session has a list of properties:

• id ∈U : the identity of the session owner.

• pid ∈U ∪ {∗}: the identity of the intended partner.

• role ∈ {initiator,responder}: the role of the session (e.g. client/server for TLS).

• auth ∈AUTH: the intended authentication type.

• pssid ∈ {0,1}∗∪ {⊥}: the identifier of the pre-shared secret, when any.

• stexec ∈ {running,accepted,rejected}M : indicates whether the session is running the i -th

stage, has accepted or rejected the i -th key.

• stage ∈ {0, . . . , M }: the current stage.

• sid ∈ ({0,1}∗∪ {⊥})M : indicates the session identifier in each stage.

• cid ∈ ({0,1}∗∪ {⊥})M : indicates the contributive identifier in each stage.

• key ∈ ({0,1}∗∪ {⊥})M : indicates the key established in each stage. The key keyi is set only

when the key was accepted in stage i .

• stkey ∈ {fresh,revealed}M : indicates the state of a session key in each stage.

• tested ∈ {true, false}M : testedi indicates whether keyi has been tested.

• corrupted ∈ {0, . . . , M ,∞}M : indicates which stage the session was in when a Corrupt
query was issued by the adversary (0 if it was before the session started and ∞ if no

party involved is corrupted).

We say two sessions π and π′ are partnered if π.sid=π′.sid ̸=⊥ and π.role ̸=π′.role. Similarly,

two sessions are contributive partners if π.cid=π′.cid ̸=⊥ and π.role ̸=π′.role.
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MultiStage adversarial model

In the MultiStage security model, the adversary is able to create sessions and make the send/re-

ceive messages. In addition, it can also reveal sessions keys and corrupt long-term secrets.

Finally, it can issue test queries, which return a real or random session key and the adversary

must distinguish between both cases. More precisely, the oracles are defined as follows.

• NewSession(U ,V ,role): returns a new session π with owner V , role role and intended

partner session V . If U is corrupted, π.corrupted← 0 is set.

• Send(π,m): sends a message m on behalf of session π. If a key is accepted during

the processing of this query, the process is stopped and accepted is returned to the

adversary, who can then test the key before it is used. In order to continue the process,

the adversary can query Send(π,continue). On key acceptance at stage i , if there exists

a partnered session π′ s.t. π′.testedi = true, then π.testedi ← true is set. If keyi is an

internal key, we furthermore set π.keyi ←π′.keyi .

• Reveal(π, i ): returns π.keyi if it exists and ⊥ otherwise. Then, π.stkeyi ← revealed is set.

• Corrupt(U ) or Corrupt(U ,V ,pssid): reveals the long-term or pre-shared secret, respec-

tively. It also marks U (resp. (U ,V ,pssid)) as corrupted and sets the corresponding labels

in each session π with π.id=U as corrupted. We refer the interested reader to the origi-

nal work [Dow+20] for more details on each case and the handling of flags depending

on the forward-security level required.

• Test(π, i ): tests the session key at stage i . This oracle depends on a random bit b (the

goal for A is to guess b). If πst.exec,i ̸= accepted or π.testedi = true, it returns ⊥. If stage

i is internal and there exists a partnered session π′ s.t. π′
stexec,i ̸= accepted, we set a lost

flag to true. Other flags are set depending on the level of authentication (see Dowling et

al. [Dow+20] for more details). Then, π.testedi is set to true. If b = 0, a key K is sampled

at random and if b = 1 K is set to the real key π.keyi . If the session key is internal, π.keyi

is replaced by K (thus K will be used for any future use of π.keyi in the protocol). If the

key is external, the oracle simply returns K . Finally, if there exists a partnered session π′

s.t. π′ has accepted the key at stage i , we set π′.testedi to true and if the key is internal

we set π′.keyi ←π.keyi .

MultiStage game

We can now describe the game that defines MultiStage security.

Definition 6.5.3. Let KE be a key-exchange with properties (M,AUTH,FS,USE,REPLAY). For

any efficient adversary A playing the following game MultiStageKE(A ):
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Setup: The random bit b ←$ {0,1} is sampled, the lost flag is set to false and in a public key

variant, long-term (pkU ,skU ) are generated for all U ∈U .

Query: The adversary A receives the public keys and can call every oracle defined above.

Guess: The adversary outputs a guess b′.

Finalise: The lost flag is set to true if there exist π,π′ s.t. π.sidi =π′.sidi , π.stkeyi = revealed and

π′.testedi = true. If lost= true the game outputs a random bit, otherwise it outputs 1b=b′ .

We define the MultiStage advantage of A as

Advmulti-stage
KE (A ) = Pr[MultiStageKE(A ) ⇒ 1]− 1

2
.

Then, we say KE is MultiStage secure if for any efficient A the advantage Advmulti-stage
KE (A ) is

negligible in the security parameter.

6.5.4 TLS 1.3 in the MultiStage model

We describe the parameters of the TLS 1.3 full 1-RTT handshake relevant to our proof in the

MultiStage model. The number of stages is M = 6, forward-secrecy is required (i.e. FS= 1), the

handshake traffic keys are used internally while other keys are external (i.e. USE= (internal :

{1,2},external : {3,4,5,6})). The first stages of our modified TLS 1.3 1-RTT handshake are shown

in Figure 6.15, for a detailed description of all the keys and stages, we refer the reader to Figure

1 in Downing et al. [Dow+20].

The session identifiers are set when a key is accepted in a given stage, they include a label and

the transcript up to this point:

sid1 = (“C HT S”,CH,CKS,SH,SKS)

sid2 = (“SHT S”,CH,CKS,SH,SKS)

sid3 = (“C AT S”,CH,CKS,SH,SKS,EE,CR∗,SCRT,SCV,SF)

sid4 = (“S AT S”,CH,CKS,SH,SKS,EE,CR∗,SCRT,SCV,SF)

sid5 = (“E MS”,CH,CKS,SH,SKS,EE,CR∗,SCRT,SCV,SF)

sid6 = (“RMS”,CH,CKS,SH,SKS,EE,CR∗,SCRT,SCV,SF,CCRT∗,CCV∗,CF)

where ∗ marks elements used only in the mutual authentication mode. The contributive identi-

fiers are the same as the sid except in stage 1 and 2. That is, cidi = sidi , i ∈ {3,4,5,6}. In stages 1

and 2, a client (resp. server) session sets cid1 = (“C HT S”,CH,CKS), cid2 = (“SHT S”,CH,CKS)

upon sending (resp. receiving) the CH (+ CKS) messages, then they set cid1 = sid1 and

cid2 = sid2 upon receiving (resp. sending) the SH and SKS messages.
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Now, as a client session only accepts the first stage key after receiving the SH message, a

contributive partner of a tested client session will have the same cid1 = sid1. Hence it means

the client and server sent and received the same messages in the first stage. On the other hand,

a server session accepts the first stage key (and thus can be tested) after receiving the CH,CKS
messages only. Hence, in this case it guarantees that the client and server sessions got the

same client messages but not necessarily that the server messages are the same.

6.5.5 Security of TLS 1.3 with IND-1CCA-MAC KEM

We can now use the (slightly modified) notion IND-1CCA-MAC KEM to prove the security of

the TLS 1.3 handshake in the multi-stage security model.

The security of (the original) TLS 1.3 handshake was proven by Dowling et al. [Dow+20] and

we refer the reader to their work for a complete analysis of the handshake. We will simply show

that IND-1CCA-MAC KEMs, thus OW-CPA KEMs (if the MAC is secure), can be used in place of

the original snPRF-ODH assumption for DH key-exchange.

First, we show the relevant part of the (full 1-RTT) handshake of TLS 1.3 in Figure 6.15. One

can see that the key schedule is nearly identical to the ones used in the IND-1CCA-MAC game.

Note that several simplifications have been made and several steps irrelevant to our proofs

are missing. In particular, we do not see the derivation of the finals keys, which all depend

on the secret dHS. As we will show, the intermediary secrets (CHTS,SHTS,dHS) are secure

(i.e. indistinguishable from random for a Multi-Stage adversary), thus all subsequent keys

will be secure as well, assuming the KDFs are secure. Finally, we write HKDF.Expi (HS,T2) for

HKDF.Exp(HS, labeli ,T2), where labeli is some string. As we assume the KDFs HKDF.Ext and

HKDF.Exp to be ROs, this denotes the fact that the label implements oracle separation.

The security of the modified 1-RTT TLS 1.3 handshake is stated in the following theorem.

Theorem 6.5.2. Let HKDF.Ext, HKDF.TK and HKDF.Exp j , j ∈ {0,4,5,6} (the KDFs in TLS 1.3)

be random oracles. Let Hash (the hash function used to compute the hashed transcripts Ti ) be a

RO, and Sig the signature scheme used for server authentication (not shown in Figure 6.15). For

any Multi-Stage efficient adversary A there exist efficient adversaries {Bi }i∈[6] s.t.

Advmulti-stage
TLS1.3−1RTT(A ) ≤ 6ts

(
Advcoll

H (B1)+ tuAdveuf−cma
Sig (B2)

+ ts

(
Advind-1cca-mac

KEM (B3)+2 ·Advprf
HKDF.Exp(B4)

+Advprf
HKDF.Ext(B5)+Advprf

HKDF.Exp(B6)
))

,

where ts (resp. tu) is the maximal number of sessions (resp. users). Note that for the sake of

the comparison with the original bound, we keep several PRF advantages and the collision

advantage in the bound, even though they could be replaced by negligible terms, as the KDFs

and Hash are ROs.
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TLS 1.3 with KEM Handhsake

Client Server

(sk,pk) ←$ Gen(1λ)

CH : nc ←$ {0,1}256

+pk
dES←HKDF(constant)

CH

K ,ct←$ Encaps(pk)

SH : ns ←$ {0,1}256

+ct

SH

K ←Decaps(sk,ct)

HS←HKDF.Ext(dES,K )

CHTS←HKDF.Exp4(HS,T2)

SHTS←HKDF.Exp5(HS,T2)

dHS←HKDF.Exp0(HS,T0)

. . . . . . . . . . . . . . . . . . . (Stage 1) accept tkc ←HKDF.TK(CHTS) . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . (Stage 2) accept tks ←HKDF.TK(SHTS) . . . . . . . . . . . . . . . . . . .

. . .

fkS ←HKDF.Exp6(SHTS)

{SF} : MAC(fkS ,T7)

{SF}

if MAC(fkS ,T7) ̸= SF : abort

. . .

Figure 6.15: TLS 1.3 handshake with KEM. {. . .} indicates an encrypted message with tkS, Ti is
the hash of the transcript up to message i . For simplicity, the CH (resp. SH) message captures
both the C l i ent Hel lo and C l i entK e yShar e (resp. Ser ver Hel l o and Ser ver K e yShar e).
Only the relevant steps for the proof are shown. Keys in the remaining stages (3-6, not shown)
are all derived from dHS.
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Proof. As hinted above, the idea of the proof is simply to replace the snPRF-ODH step of the

original proof by using our IND-1CCA-MAC. Note that while the snPRF-ODH assumption

is used to replace the root secret HS by a random one, we will be able to replace the values

(CHTS,SHTS,dHS) by random ones in one step, due to the structure of the IND-1CCA-MAC

definition. From a high-level point of view, the proof goes through because CHTS and SHTS
are computed similarly as in the TH transform (i.e. the secrets are the hashed seed and cipher-

text) and thus resist to 1 adversarial decapsulation query. Then, dHS is used only once a MAC

has been verified, which implies that an adversary relaying a correct tag should already know

the root key HS.

The proof proceeds by a sequence of games. As the first transitions are the same as in the

original proof by Dowling et al. (proof of Theorem 5.2 [Dow+20]) we do not explain them in

detail.

Game Γ0 : The first game is the original Multi-Stage game.

Game Γ1 : We modify the game s.t. A can only make one Test query. This brings the 6ts factor

in the security bound.

Game Γ2 : The game aborts if a collision on the hash function Hash occurs. We recall that Hash
is used to compute the hash of the transcripts (the values Ti in Figure 6.15).

We can then split the proof into two different cases: (A) A tests a session that does not have a

contributive partner or (B) A tests a session with a contributive partner. In case (A), one can

show that the probability of A winning the game is upper bounded by tuAdveuf−cma
Sig (B2) for

an adversary B2. Thus, we focus on case (B).

Game ΓB.0 : This is the same as Γ2 conditioned on the fact that A tests a session with a con-

tributive partner.

Game ΓB.1 : The adversary guesses which session will be the contributive partner at the begin-

ning of the game. As there are at most ts sessions, this incurs a loss factor of ts in the rest of

the proof.

Game ΓB.2 : This is the only game transition that will differ from the original proof. Let πc

be the client session that is either tested or the contributive partner of the tested session.

Similarly, let πs be the server session that is either tested or the contributive partner (note that

a session and its contributive partner always have opposite role). Let (ct,ns) (resp. (pk,nc ))

be the SH (resp. CH) message sent by πs (resp. πc ), where ct is the ciphertext, ns (resp. nc )

the nonce of the server (resp. client) session. Note that by an abuse of notation, we assume

SH (resp. CH) includes the server’s (resp. client’s) share. Then, in this game, we make the

following changes:

1. We replace the derived secrets (CHTS,SHTS,dHS) in πs by random ones.

2. If πc receives (ct,ns) in the SH message, we replace (CHTS,SHTS,dHS) with the same

random secrets as in the previous point.

Now, we can argue that distinguishing ΓB.2 from ΓB.1 implies breaking the IND-1CCA-MAC

security of KEM. First, we notice that T2 := Hash(CH,SH) = Hash(pk,nc ,ct,ns). Hence, the
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KDF HKDF.Exp j (·,T2), j ∈ {4,5} can be written as H j (·, HT (ct,ns)), i ∈ {1,2} where H j and

HT are ROs, if we omit the public key and the client nonce, which are not important in

the proof. Similarly, as T0 and dES are constant, one can write HKDF.Ext(dES, ·) as G(·),

HKDF.Exp0(·,T0) as H3(·), and HKDF.Exp6(·) as H4(·), with G , H3 and H4 some ROs. Finally,

one can rename HKDF.TDK as HD , where HD is a RO. Hence, one can see that the key-

schedule becomes exactly the one of the IND-1CCA-MAC game. Now let’s explain how the

reduction will work. We split ΓB.2 into 2 cases:

• Case 1: The tested session is the client sessionπc . Asπc can only be tested after receiving

the SH message and πs is a contributive partner, it means that the SH message sent

by πs is the same as the one received by πc . In particular it means that we make both

changes mentioned above. Then the reduction is straightforward. The IND-1CCA-MAC

adversary B3 receives a tuple (pk∗,ct∗,n∗, (CHTSb ,SHTSb ,dHSb)). It simulates the

tested session πc with these values. In particular, it sends pk∗ in the CH message, it uses

n∗ as the nonce of the contributive session πs , (CHTSb ,SHTSb ,dHSb) as the secrets

of πs and ct∗ as the ciphertext sent in the SH generated by πs . Finally, to simulate πc

after receiving SH, we use the same challenge secrets (CHTSb ,SHTSb ,dHSb). In case

b = 0, this perfectly simulates ΓB.1 (the secrets correspond to ct∗) and in case b = 1 this

perfectly simulates ΓB.2. Therefore, in Case 1 we have

AdvΓb.1

TLS1.3−1RTT(A ) ≤AdvΓb.2

TLS1.3−1RTT(A )+Advind-1cca-mac
KEM (B3) .

Note that we did not even need the oracles provided to B3 in this case.

• Case 2: The tested session is the server session πs . Again, either the SH sent by πs is the

same as the one received byπc and the reduction B3 is the same as in Case 1, or (ct,ns) is

not the same as the SH message received by πc . In the latter case, we build the reduction

B3 as follows. Again, B3 receives a tuple (pk∗,ct∗,n∗, (CHTSb ,SHTSb ,dHSb)), uses

pk∗ in the CH, (ct∗,n∗) as the SH sent by πs and (CHTSb ,SHTSb ,dHSb) as the secrets

derived by πs after receiving CH. Then, on the modified SH= (ct′,n′
s) ̸= (ct∗,n∗

s ) sent by

A to πc , B3 queries its decryption oracle ODec to obtain the correct (tkc,tks). Therefore,

B3 can correctly simulate πc and any Reveal queries until the SF message, as no other

secrets are needed. Then, when πc receives the SF message, which is a tag on T7, it

queries ODec
MAC(ct′,n′,SF,T7). If the tag in SF is correct (i.e. correspond to a MAC on T7

with a key derived from the secret encapsulated in ct′), B3 gets HS :=G
(
Decaps(sk,ct′)

)
and can derive all secrets to simulateπc correctly. Otherwise, the oracle returns ⊥, which

means the MAC is not valid and B3 aborts the client session πc . Again, this perfectly

simulates πc behaviour. Hence, the adversary can simulate perfectly A ’s view in game

ΓB1 in case b = 0 or game ΓB.2 in case b = 1, and we obtain

AdvΓb.1

TLS1.3−1RTT(A ) ≤AdvΓb.2

TLS1.3−1RTT(A )+Advind-1cca-mac
KEM (B3) .
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Game ΓB.3 : Note that from the previous game, all “main” secrets in the tested session are

random and independent of any session (except the partnered session in case πc is the tested

session and received the correct SH from A ). Hence, one can replace the relevant transport

keys (tkc ,tks) by random values (i.e. the ones in the πs session, and, in case πc received the

correct SH, the ones in πc as well). Overall this step transition is correct if HKDF.TK is a PRF.

Game ΓB.4 : We replace the relevant master secret MS by a random value. Again the transition

is correct if the KDF is a PRF.

Game ΓB.5 : Finally, all the remaining keys are replaced by random values in the tested session

(and in the partnered session if πc the received the correct SH). Again, this is correct if the

KDF used is a PRF. Then, all keys in the tested session are random and independent of values

in any other session (except the partnered session as mentioned before). Hence, A cannot

win as the tested keys are always random. This concludes the proof.

Similarly, one can prove the security of the modified TLS 1.3 PSK-(EC)DHE 0-RTT handshake.

Note that in our case the key-exchange will be done with KEMs, but we keep the “-(EC)DHE”

in the name for consistency with the original protocol. We state this in the following informal

theorem.

Theorem 6.5.3. The modified TLS 1.3 handshake in the pre-shared key (optional) 0-RTT mode

with key-exchange (i.e. TLS 1.3 PSK-(EC)-DHE 0-RTT) is secure in the MultiStage model if the

underlying KEM is OW-CPA (and signature, MAC, etc. are secure), in the sense of Dowling et

al. [Dow+20].

Proof. The only step in the original proof involving the KEMs can be dealt with a similar

reduction from IND-1CCA-MAC as in the proof of Theorem 6.5.2.

Corollary 6.5.1. The original TLS 1.3 handshake is MultiStage secure in the ROM if the CDH

problem is hard (and the signature, MAC, etc. are secure). Stronger assumptions used in previous

proofs (e.g. PRF-ODH [Dow+20]) are not necessary.

Proof. This simply follows from the fact that DH can be described as a KEM (sk,pk) := (x, g x ),

(K ,ct) := (pky , g y ) and Decaps(sk,ct) := ctx . Integrating this KEM in our modified TLS 1.3

handshake results in the standard TLS 1.3 handshake. Finally, this KEM is OW-CPA as long as

the CDH problem is hard, thus by Theorems 6.5.1 and 6.5.2, the handshake is secure. One can

also directly show that DH as used in TLS 1.3 is a IND-1CCA KEM. We provide such a proof in

Appendix A.

Remarks. Note that due to non-tightness of the bound in Theorem 6.5.1, the overall bound

for TLS security is very much non-tight. This is clearly not sufficient to guarantee security in

practice, and we leave as an interesting open question the improvement of the bounds. In

addition, we leave security in the QROM as future work.
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6.6 Impact

The transforms introduced in Section 6.4 produce IND-qCCA KEMs without any de-randomisation

and re-encryption steps. Thus, using IND-1CCA ephemeral KEMs obtained through these

transforms could speed up the decapsulation process in several protocols.

KEMTLS. As discussed in the introduction of this chapter, improving the KEMTLS proto-

col [SSW20a] was the main motivation behind this research. In particular, a more efficient

decapsulation in the ephemeral KEM would decrease overall latency and computation on the

client-side. In particular, this could be of interest for less powerful clients like IoT devices,

which would not need to perform re-encryption. Overall, the efficiency gain in practice would

obviously depend on the ephemeral KEM used, as encryption is expensive in some schemes

while it is not in others.

The same remarks apply to the very recent variants of KEMTLS with pre-distributed keys

proposed by Günther et al. [Gün+22] and Schwabe et al. [SSW21].

Note also that following a similar proof as the one in Section 6.5, we conjecture that one should

be able to prove that CPA-security of the ephemeral KEM should suffice for KEMTLS to be

secure in the ROM (but at the expense of a non-tight security bound, as in the TLS case).

TLS 1.3. TLS 1.3 only supports ephemeral DH as a key-exchange. In turn, in the original

security proof [Dow+20], the snPRF-ODH assumption is used for the key-exchange security.

The snPRF-ODH assumption can be seen as a variant of the hashed Diffie-Hellman assumption

with a 1-time “decapsulation” oracle. More precisely, an adversary is given (g , g u , g v ) and

either y0 := PRF(g uv ,ad∗) or a random y1, where ad∗ is some auxiliary data chosen by the

adversary. Then, the adversary must distinguish between y0 and y1 with the help of one query

to an oracle O ((x,ad) ̸= (g u ,ad∗)) :=PRF(xv ,ad).

One can notice that snPRF-ODH security is very close to IND-1CCA security transposed to

DH key-exchange. Actually, one can show that IND-1CCA KEM is sufficient for the PQ TLS 1.3

handshake to hold. Indeed, instead of using our IND-1CCA-MAC assumption in the proof, one

can use the decapsulation oracle of the IND-1CCA adversary to recover the key if needed. One

can check the transition between games B.1 and B.2 in the proof of KEMTLS security [SSW20a]

for more details.

Therefore, using IND-1CCA KEMs in the PQ TLS 1.3 handshake seems a sound idea, as in this

case the security bound will offer better guarantees than with a OW-CPA KEM. In addition, the

handshake would be faster using IND-1CCA KEMs generated by our transforms instead of the

slower IND-CCA KEMs derived with FO.

Finally, by Corollary 6.5.1, we now know that the snPRF-ODH assumption is not necessary in

the ROM for TLS 1.3 to be secure (even though the security bound is very much non-tight),
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but CDH is sufficient. Alternatively, as shown in Appendix A, DH as used in TLS 1.3 is actually

an IND-1CCA KEM (≈ snPRF-ODH) in the ROM if CDH holds. This gives a tighter security

bound compared to Corollary 6.5.1.

Ratcheting. IND-1CCA security is also a property used (often implicitly) in several works

on ratcheting. For instance, Jost et al. [JMM19] build a healable and key-updating public-

key encryption scheme based on a one time IND-CCA2 PKE (with authenticated data). The

latter primitive can easily be made out of an IND-1CCA KEM using KEM/DEM techniques.

Another paper by Poettering et al. [PR18] introduces a construction of unidirectional ratcheted

key exchange (URKE) that is based (implicitly) on IND-1CCA KEMs, as noticed by Balli et

al. [BRV20].

In another recent paper, Brendel et al. [Bre+22] propose a post-quantum alternative to the

Signal handshake based on KEMs and designated verifier signature schemes. They first define

a core protocol that uses two KEMs in the same vein as KEMTLS: one with long-term keys

for implicit authentication of one of the parties and another one with ephemeral keys for

guaranteeing forward security. Again, the latter one requires only IND-1CCA security for the

handshake to be secure. Similarly, in the full Signal-like handshake built upon the core protocol

(called SPQR), three KEMs are used and one requires only IND-1CCA security. Looking ahead,

we will use a generalised variant of IND-1CCA security (called IND-1BatchCCA) in the next

chapter to build our own PQ variant of the Signal handshake.

Concerns over key-reuse. The main security risk of using an IND-1CCA KEM instead of its

IND-CCA counterpart is the vulnerability to key-reuse/misuse attacks. Indeed, if a system/pro-

tocol is mis-implemented s.t. the IND-1CCA KEM is used with a “static” public key instead of

an ephemeral one, an adversary might be able to recover the secret key after several decryption

queries as shown in Chapter 3. In KEMTLS, this risk is mitigated by the use of an IND-CCA

KEM in addition to the ephemeral one (which can be IND-1CCA). In particular, the final shared

key is derived from shares of both KEMs. Thus, even if the public key meant to be ephemeral

is reused, the final shared key should remain “secure” (but forward security would be lost).

In other systems (e.g. TLS 1.3), the risk of key recovery after a few reuses could be mitigated by

using hybrid cryptography. For instance, a very efficient IND-CCA KEM could be combined

with an IND-1CCA one. That would improve the overall security and resistance against key-

reuse attacks at a small cost (see Chapter 4 for a complete discussion on hybrid schemes).
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7 K-Waay: Fast and Deniable Post-
Quantum X3DH without Ring Signa-
tures

We saw in the previous chapter that TLS 1.3 can easily be adapted to the post-quantum setting.

It is not the case of all protocols, as for instance X3DH, the key-agreement protocol used in

Signal, cannot simply be instantiated with KEMs while keeping all its security properties, in

particular deniability. In this chapter, we introduce K-Waay, a post-quantum key-exchange

protocol that could replace X3DH and that provides similar security guarantees.

This research is a joint work with Daniel Collins, Ngoc Khanh Nguyen, Nicolas Rolin, and Serge

Vaudenay. The corresponding paper was accepted at USENIX Security 2024. A chapter based

on the same material will appear in Daniel Collins’ PhD thesis. Therefore, in order to avoid

any confusion, we now detail the contributions of the author of the present dissertation:

• Main idea behind this research, i.e. the K-Waay protocol with the signed ephemeral

split-KEM keys, and with a modified Frodo key-exchange as the split-KEM scheme.

• Identification of the shortcomings of the original split-KEM security definitions.

• Definition of appropriate split-KEM security notions (with input from Daniel Collins).

I.e. the definitions of deniability, decaps-OW-CPA, UNF-1KCA, and IND-1BatchCCA

(including idea of the key-reuse “trick”).

• Help with the deniability proof of K-Waay and with the game hops involving the split-

KEM in the security proof of K-Waay.

• Security proofs (deniability, OW-CPA security, decaps-OW-CPA) of our Frodo-inspired

split-KEM (joint work with Ngoc Khan Nguyen).

• Idea and ROM/QROM security proofs of the TCH transform.

• Supervision of the implementation of the benchmarking system and of the correspond-

ing experiments (conducted by Nicolas Rolin).

• Analysis and discussion (i.e. Section 7.9) is joint work with Daniel Collins.
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In terms of sections, the contributions of the author of this thesis can be roughly summarised

as follows (ignoring the introductory sections):

• Section 7.5 with input from Daniel Collins.

• Design of the protocol presented in Section 7.7 and help for the parts relevant to split-

KEM in the security proofs (Section 7.7.1).

• Sections 7.8.3 and 7.8.4 with Ngoc Khan Nguyen.

• Section 7.8.5.

• Section 7.9 with Daniel Collins, excluding implementation of the benchmarking system.

Although it is hard to define where one’s contribution starts and ends, results presented

outside of the sections listed above can be regarded as existing work extracted from the

original paper [Col+ar] and included for the sake of completeness.

7.1 Background

In order to properly understand our contribution, we first need to introduce X3DH in more

details, as well as the efforts that have been made to make it quantum resistant.

In the classical X3DH protocol, parties first upload their keying material to a central server

or public key infrastructure in a so-called prekey bundle. A party can then derive a session

key by downloading their partner’s bundle and performing three (or four) Diffie- Hellman key

exchanges with a mixture of ephemeral and long-term (resp. plus semi-static) keys, ensuring

at least confidentiality even if the ephemeral or long-term key of each party is corrupted. In

particular, no signatures are used after signed prekeys are uploaded: at that point, the DH

exchanges provide implicit authentication guarantees. Consequently, the protocol provides

a level of deniability: informally, a participant can deny having performed key exchange

with its counterpart. This is a privacy guarantee that prevents (at least on a cryptographic

level) a conversation transcript from incriminating an unsuspecting party, which is especially

pertinent in situations like whistleblowing and protesting.

Conscious of the quantum threat, Signal announced and rolled out in 2023 their initial hybrid

post-quantum key exchange solution, namely the “PQXDH protocol”.1 Like in X3DH, several

Diffie-Hellman key exchanges are performed at once, but in PQXDH, parties upload prekey

bundles that also contain a Kyber-1024 public key that the initiator additionally encapsu-

lates to the responder with. Moreover, prekey bundles are still signed with the same classical

signature scheme as regular X3DH. Although PQXDH appears to provide post-quantum confi-

dentiality [Bha+23], it does not provide post-quantum authentication as a quantum attacker

can trivially forge prekey bundles by breaking the classical signature scheme.

1https://signal.org/docs/specifications/pqxdh.
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7.2 Contributions

A natural direction for building a post-quantum equivalent of X3DH is to emulate X3DH’s

symmetric structure with a post-quantum construction. As a result, Brendel et al. [Bre+21]

introduced the syntax of such a primitive, which they called split-KEM. In a split-KEM, a party

B encapsulates to their partner A by using their own secret skB and their partner’s public key

pkA to produce a ciphertext, then A decapsulates it using skA and pkB. The authors define

indistinguishability-based security notions and notice that the Frodo [Bos+16] lattice-based

key-exchange fulfils the split-KEM syntax and the weakest notion of indistinguishability they

define. Although they present an X3DH-like protocol, they do not define a security model,

and, looking ahead, their split-KEM security notions do not suffice to construct an X3DH-like

key exchange with both authenticity and deniability.

In two other recent works, Hashimoto et al. [Has+21; Has+22] and Brendel et al. [Bre+22]

concurrently proposed instead to construct X3DH-like key exchange using KEMs directly. In

order to ensure deniability, two seemingly different approaches were proposed: Hashimoto

et al. [Has+21; Has+22] apply ring signatures while Brendel et al. [Bre+22] use a flavour of

designated verifier signatures; these primitives were later shown to be equivalent [Has+22].

As described in the aforementioned papers, the currently most efficient post-quantum ring

signatures [BKP20; ESZ22; LAZ19; LN22; Yue+21] are proven to be secure in the ROM and

can enjoy signatures that are a handful of kilobytes large, making them practical. Often,

however, the constructions do not come with a security proof in the quantum random oracle

model (QROM). In this vein, parameters are generally optimistically chosen as the security

loss incurred by proofs in the ROM is not taken into account when setting these, without even

mentioning QROM loss, which is usually much larger. Further, security notions can differ

between papers, making it less clear exactly when they are appropriate for use. More generally,

it is of interest to determine the cost (or overhead) that deniability incurs in (X3DH-like) key

exchange. Towards this goal, Hashimoto et al. [Has+22] provide benchmarks for their baseline,

non-deniable X3DH-like protocol based on signatures and KEMs, and Brendel et al. [Bre+22]

consider parameter sizes for (but do not benchmark) existing ring and designated verifier

signature schemes.

While the use of ring signatures to build PQ and deniable X3DH is at least theoretically

understood, this far from exhausts the protocol design space. Motivated by this and the

above discussion, we therefore address the following problem in this chapter:

Can we design a provably-secure, efficient, and deniable post-quantum X3DH alternative that

does not require ring signatures?

7.2 Contributions

In this chapter, we propose an efficient, deniable, and post-quantum X3DH-like protocol

without ring signatures that we call K-Waay. Our contributions can be summarised as follows:
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• Towards building our protocol, we revisit the split-KEM formalism proposed by Brendel

et al. [Bre+21] and deduce that several additional properties, namely notions of authen-

ticity and deniability, are needed to construct a secure X3DH-like deniable authenticated

key exchange protocol (DAKE).

• We propose K-Waay, a X3DH-like DAKE that uses a deniable and unforgeable split-KEM

at its core. Our protocol uses a signature scheme to sign prekeys, and then uses an

ephemeral KEM, a long-term KEM, and the split-KEM for the final key exchange step.

• The main drawback of a naive version of our protocol is that parties can run out of

ephemeral keys, thus making the protocol synchronous if this happens (e.g. Bob needs

to wait for Alice’s fresh ephemeral key before sending a message). While such a problem

would rarely occur in practice, given enough keys are uploaded on the server, we propose

a simple trick that makes the reuse of ephemeral keys possible on the receiver’s side for

messages they received while offline. We think this trick could be of independent interest

as it – perhaps surprisingly – allows for a specific kind of key reuse for a split-KEM that is

not IND-CCA secure. This technique is inspired by the IND-qCCA transforms defined in

Chapter 6.

• We prove key indistinguishability in our model that captures ephemeral key reuse and

session state exposure, and prove a variant of deniability that strengthens the notion

from Brendel et al [Bre+22] by additionally leaking the victim’s session state to the

adversary in the security game.

• We instantiate a post-quantum split-KEM secure under our new security notions derived

from the Frodo key exchange protocol (FrodoKEX) [Bos+16] based on the plain LWE

assumption. The parameters we choose provide strong security guarantees, providing

more than 192 bits of classical and quantum security for our core split-KEM security

notions OW-CPA, decaps-OW-CPA, and deniability. We then use a transform in the

(Q)ROM to prove it UNF-1KCA and IND-1BatchCCA (i.e. our new unforgeability and

indistinguishability definitions for split-KEM). This construction incurs a security loss

as usual in the (Q)ROM, but our final split-KEM still provides around 128 (resp. 64) bits

of security in the ROM (resp. QROM) assuming the adversary is limited to 264 (resp.

quantum) random oracle queries. In other words, our parameters take into account the

loss due to the (Q)ROM proof.

• We benchmark our protocol K-Waay using our modified version of FrodoKEX (which

we call FrodoKEX+) as the split-KEM, along with standard X3DH and the two previous

proposals for PQ X3DH-like AKE [Has+22; Bre+22]. We find that while K-Waay has larger

prekeys, it is approximately 6× faster compared to these. In addition, the only non-

standard primitive we use in K-Waay (i.e. FrodoKEX+) is based on both an assumption

(i.e. LWE) and a scheme (FrodoKEM) that have been thoroughly scrutinised by the

cryptographic community. Overall, we believe our protocol more mature for short to

medium-term integration compared to previous work based on ring signatures.
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7.3 Additional Related Work

The security of X3DH has been modelled in detail by Cohn-Gordon et al. [Coh+20]. Vatandas

et al. [Vat+20] investigated the deniability of X3DH and similar key exchange protocols under

the deniability notion of Di Raimondo et al. [RGK06], requiring strong knowledge-of-exponent-

type assumptions to prove X3DH secure. In 2022, Dobson and Galbraith [DG22] proposed

a X3DH-like protocol based on SIDH, which is thus now broken. More recently, Kiltz et

al. [Kil+23] proved X3DH tightly-secure in the generic group model under a new multi-user

assumption although they do not allow the adversary to expose parties’ session states.

Unger and Goldberg built a number of different DAKEs [UG15; UG18]. However, the protocols

do not provide post-quantum guarantees: even though it is suggested in the latter work [UG18]

to add a PQ KEM for post-quantum confidentiality. Nevertheless, the protocols provide rela-

tively strong online deniability (i.e. where a judge and a party can communicate while trying

to frame another party) at the expense of stronger primitives like dual-receiver encryption

and non-committing encryption.

In 2021, Alwen et al. [Alw+21] defined the notion of authenticated key encapsulation mecha-

nism (AKEM) and some security definitions. AKEM captures the same primitive as a split-KEM,

but we opted for the syntax and language of the latter as it was meant to be used in a X3DH-like

protocol.

Cremers and Feltz [CF11] introduced peer deniability, which captures the kind of participation

deniability property we are after in this chapter, namely that a party cannot deny using a

system but can deny communicating with a particular party. However, their security notion

does not require the simulator to output the session key and the adversary to distinguish

between the real and simulated key, and so composability issues may arise from using it.

7.4 Technical Overview

As the length of this chapter is consequent, we review in this section the techniques developed

and used in the design of K-Waay.

7.4.1 X3DH-like key exchange

A quantum-secure X3DH-like protocol should satisfy certain properties. Apart from satisfying

standard authenticated key exchange (AKE) properties like secrecy and authentication, it

should also be asynchronous. That is, parties should be able to upload keying material to a

central server, after which an initiating party can derive a session key immediately with their

counterpart who may be offline. This also entails receiver-obliviousness in the language of

Hashimoto et al. [Has+22] as the initial key upload should not depend on the keys of any other

party. Another is deniability, allowing parties to claim that they plausibly did not participate in

the key exchange. Note that we cannot possibly ensure that parties can claim that they never
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uploaded prekeys as they are signed (and using e.g. ring signatures would violate receiver-

obliviousness). Finally, a DAKE should, like X3DH, provides security guarantees even if the

session state of a party is leaked.

7.4.2 Revisiting split-KEM

In an attempt to model the primitive central to X3DH-like AKE, Brendel et al. [Bre+22] intro-

duced split-KEM, which is similar to a standard KEM except the encapsulator can contribute

to the derived key with their own secret key. However, we discovered that the accompanying

security definitions were not sufficient to use such a primitive as the main component of

an AKE. The reason being that their notions ensure that an encapsulated ciphertext will not

leak information on its encapsulated key, but not that only the sender can send a “legitimate”

ciphertext to the receiver (or that only the sender and receiver can derive a common key). In

other words, there is no guarantee of implicit authentication. Therefore, we introduce the

notion of unforgeability against one-known-ciphertext attacks for split-KEM (UNF-1KCA),

which roughly states that if Alice receives a message allegedly sent by Bob, either Bob really

sent it or the decapsulation will fail. Jumping ahead, this will be used in the security proof

of the protocol to argue that either the adversary relayed a legit split-KEM ciphertext to the

receiver, or the sender aborts as the ciphertext is forged.

We also introduce an intermediary notion of decaps-OW-CPA, which says that an adversary

should not be able to recover a key decapsulated by some party without knowing the sender’s

or the receiver’s secret key. We then prove that our lattice-based split-KEM satisfies such a

definition and we apply some transform in the (Q)ROM to obtain a UNF-1KCA split-KEM.

Finally, we also define the notion of deniability for split-KEM, which states that no party J

can be convinced that a party B sent a given ciphertext to A, even knowing A’s secret key

but assuming both parties did not deviate from the protocol. This models a setting where A

communicates with B and later tries to frame the latter by giving the transcript and their own

secret key to J .

7.4.3 Construction

As any X3DH-like protocol, our construction works in 4 phases: long-term key generation,

prekey generation, send, and receive. The first observation we make is that in X3DH imple-

mentation, prekey bundles are signed with a long-term signing key before being uploaded

to the server. This fact is often abstracted away in formal analysis as it hurts the claims one

can make about the deniability of X3DH: as a signature is undeniable by definition, users

cannot deny they participated in the protocol. Based on this, our goal was to achieve some

level of peer-deniability [CF11], where parties can deny they communicated with someone

in particular, and to leverage the fact that we use signatures to authenticate the prekeys. Our

protocol works then as follows (see Figure 7.1 for a high-level overview). The long-term key
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Bob (lpkA,vkA)

(eskskem
B ,epkskem

B ) ←$ KeyGenBsKEM

Kℓ,ctℓ←$ EncapsKEM(lpkA)

K skem
e ,ctskem

e ←$ EncapssKEM(epkskem
A ,eskskem

B )

K kem
e ,ctkem

e ←$ EncapsKEM(epkkem
A )

K ←KDF(Kℓ,K skem
e ,K kem

e )

Alice (lpkB,vkB)

(eskskem
A ,epkskem

A ) ←$ KeyGenAsKEM

(eskkem
A ,epkkem

A ) ←$ KeyGenKEM

K ′
ℓ

← DecapsKEM(lskA,ctℓ)

K ′
e
skem ← DecapssKEM(epkskem

B ,eskskem
A ,ctskem

e )

K ′
e
kem ← DecapsKEM(eskkem

A ,ctkem
e )

K ′
ℓ

?= ⊥ ∨ K ′
e
skem ?= ⊥ ∨ K ′

e
kem ?= ⊥

K ′ ← KDF(K ′
ℓ

,K ′
e
skem,K ′

e
kem)

{epkskem
B }skB{epkskem

A ,epkkem
A }skA

ctℓ,ctskem
e ,ctkem

e

Figure 7.1: High-level overview of the K-Waay protocol. Values in brackets {·}sk are signed
with sk and the signature is verified upon reception. For clarity, we omit the calculation and
addition of session identifier sid to KDF.

pair consists of a KEM and signature key pair, the latter being used to sign the prekey, which

comprises an ephemeral KEM key pair and ephemeral split-KEM key pair. The former is used

for forward secrecy while the second is used for the implicit authentication of the sender.

Although usually ephemeral keys cannot be used for authentication as they are dynamic, in

our case we can since they are authenticated (i.e. signed) by their owner. Then, the sender

encapsulates against both KEM public keys of the receiver, and uses their own split-KEM

secret key and the receiver’s public key to derive a split-KEM ciphertext. Upon decapsulation,

the receiver recovers the three keys and combines them using a PRF to derive the shared key.

Ephemeral split-KEM key reuse. The way our protocol is described above works perfectly

well if the split-KEM satisfies the UNF-1KCA unforgeability notion introduced above. However,

in practice, it could happen that some party, say Alice, is offline for too long and all their

ephemeral split-KEM keys have been used. If that occurs, another sender would have to wait

for Alice to come online and upload new keys before they can send her a message.

We fix this issue by modifying the protocol as follows: when Alice’s ephemeral public keys have

run out on the server, a sender can simply reuse one of them. Then, when Alice is back online,

she groups the ciphertexts corresponding to the same public key and decrypts all ciphertexts

in a group at once. If one or more of the decapsulations of the split-KEM ciphertexts in a
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group fails, Alice outputs ⊥ for all ciphertexts and e.g., restarts the protocol. Otherwise, Alice

proceeds as before (and never decapsulates again using the same split-KEM key). We formally

model this key reuse with an algorithm BatchReceive that takes as input a given session state

and one or more messages to be received.

Security. We show this version of the protocol is secure assuming the split-KEM satisfies a

stronger notion than IND-CPA that we call IND-1BatchCCA. This definition is the same as

traditional IND-CPA (adapted to the split-KEM syntax), except the adversary can query a

decapsulation oracle once with multiple public keys and ciphertexts, and the oracle returns

⊥ if one or more of the decapsulations failed, and the resulting keys otherwise. We show that

one can easily build an IND-1BatchCCA split-KEM out of a CPA secure one in the (Q)ROM,

conveniently using the same transform mentioned above that builds a UNF-1KCA scheme out

of a decaps-OW-CPA one.

As in previous protocols ([Bre+22; Has+22]), the long-term KEM provides implicit authentica-

tion of the receiver as only they can decrypt. The ephemeral KEM provides forward secrecy,

and the UNF-1KCA/IND-1BatchCCA split-KEM provides implicit authentication of the sender,

as it guarantees that only the sender could have sent a ciphertext that correctly decapsulates

(unforgeability), and no adversary knows what is inside that ciphertext (indistinguishability),

even after seeing the decapsulation of one batch of ciphertexts encapsulated against the same

public key (if all decapsulated correctly). We note that the sender-to-receiver authentication

depends both on a long-term key (i.e. the signing key), and an ephemeral one (the split-KEM

key). Consequently, our model (that allows session state exposure) is more restrictive than

that of Hashimoto et al. [Has+22], since in particular it suffices for the adversary to learn a

receiver’s ephemeral state during key exchange to forge a message that the receiver accepts.

Intuitively, this is because a split-KEM is effectively a symmetric primitive.

Deniable split-KEM from lattices. We provide the first lattice-based split-KEM which satis-

fies both deniability and UNF-1KCA security. Our starting point is the Frodo key-exchange

(FrodoKEX) [Bos+16], which was identified (among other schemes) as a split-KEM by Brendel

et al. [Bre+21], the security of which relies on the well-known Learning with Errors (LWE)

problem [Reg05]. We highlight that the vanilla construction of FrodoKEX does not enjoy the

aforementioned properties. Indeed, when looking closely at the security games of deniabil-

ity, partial information about the secret keys are revealed, which makes a reduction to LWE

completely non-trivial2. We circumvent this problem in two ways.

First, we reduce deniability of our scheme to a so-called Extended-LWE problem [AP12], where

in addition to a standard LWE instance, the adversary is given a short random combination of

the secret coefficients. We show that deniability of our scheme reduces straightforwardly to

Extended-LWE and then, following the methodology of Alperin-Sheriff and Peikert [AP12], we

2Nevertheless, we found no deniability/UNF-1KCA attack on FrodoKEX [Bos+16].
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reduce it further to plain LWE. In order to make the reduction tighter, we use an odd modulo,

unlike in the original FrodoKEX scheme.

Then, towards UNF-1KCA security, we slightly modify the Frodo split-KEM by introducing

masking terms that make the security proof go through. In Section 7.9.2 we discuss the

necessity of these (seemingly artificial) changes.

7.5 Split-KEM

As mentioned above, the primitive at the core of our protocol is a split-KEM, which we present

in this section. It was first defined by Brendel et al. [Bre+21].

Definition 7.5.1 (Split-KEM). An (asymmetric) split-KEM sKEM is a tuple of four efficient

algorithms (KeyGenA,KeyGenB,Encaps,Decaps) defined as follows:

• (pkA,skA) ←$ KeyGenA(1λ) (resp. (pkB,skB) ←$ KeyGenB(1λ)): The key generation func-

tion of the first/second party takes the security parameter λ as input, and outputs a pair

of public/secret keys (pkA,skA) (resp. (pkB,skB)).

• K ,ct←$ Encaps(pkA,skB): The encapsulation function takes the public key pkA of a party

A and the other party’s secret key skB as inputs, and outputs a ciphertext ct and a key K .

• K /⊥ ← Decaps(pkB,skA,ct): The decapsulation function takes the secret key skA of a

party A, the other party’s public key pkB and a ciphertext ct as inputs, and outputs a key

K or the error symbol ⊥.

We say a split-KEM is δ-correct if

Pr

K ̸= K ′ :

(pkA,skA) ←$ KeyGenA(1λ);

(pkB,skB) ←$ KeyGenB(1λ);

K ,ct←$ Encaps(pkA,skB);

K ′ ←Decaps(pkB,skA,ct)]

≤ δ .

Intuitively, a split-KEM is similar to a normal KEM except material from both participants is

used for encapsulation (i.e. the final key will depend on both parties’ secret/public keys). In a

X3DH-like protocol, it can be used to implicitly authenticate the party encapsulating. In the

language of Brendel et al. [Bre+21], our notion of split-KEM is “asymmetric”, as it is assumed

that B always encapsulates and A always decapsulates. This is sufficient for our purpose, but

we note that all the results presented in this chapter can be adapted to a symmetric split-KEM

where KeyGenA=KeyGenB.
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IND-1BatchCCAsKEM(A )

1 : b ←$ {0,1}

2 : q ← 0

3 : pkA,skA ←$ KeyGenA(1λ)

4 : pkB,skB ←$ KeyGenB(1λ)

5 : K0,ct∗ ←$ Encaps(pkA,skB)

6 : K1 ←$ K

7 : b′ ←$ A BatchDec(pkA,pkB,ct∗,Kb)

8 : return 1b′=b

BatchDec({(pki ,cti )}d
i=1)

1 : if q = 1 : return ⊥
2 : else : q ← q +1

3 : for i ∈ {1, . . . ,d} :

4 : if (pki ,cti ) = (pkB,ct∗) : return ⊥
5 : K ′

i ←Decaps(pki ,skA,cti )

6 : if K1 =⊥∨ . . .∨Kd =⊥ : return ⊥
7 : return (K1, . . . ,Kd )

OW-CPAsKEM(A )

1 : pkA,skA ←$ KeyGenA(1λ)

2 : pkB,skB ←$ KeyGenB(1λ)

3 : K ∗,ct∗ ←$ Encaps(pkA,skB)

4 : K ′ ←$ A (pkA,pkB,ct∗)

5 : return 1K ′=K ∗

Figure 7.2: IND-1BatchCCA and OW-CPA games.

7.5.1 Security

We will need several security properties from the split-KEM to prove our whole protocol secure.

We first define one-wayness (OW-CPA3) for sKEM, which is very similar to the usual one for

KEM, and another new notion called IND-1BatchCCA. Looking ahead, we will show that any

OW-CPA split-KEM can easily be transformed into a IND-1BatchCCA one in the (Q)ROM.

Definition 7.5.2 (split-KEM OW-CPA). We consider the OW-CPA game defined in Figure 7.2. A

split-KEM scheme sKEM= (KeyGenA,KeyGenB,Encaps,Decaps) is OW-CPA if for any efficient

adversary A we have

Advow-cpa
sKEM (A ) := Pr[OW-CPAsKEM(A ) ⇒ 1] = negl .

Definition 7.5.3 (split-KEM IND-1BatchCCA). We consider the IND-1BatchCCA game de-

fined in Figure 7.2. Let K be a finite key space. A split-KEM scheme over K sKEM =
(KeyGenA,KeyGenB,Encaps,Decaps) is IND-1BatchCCA if for any efficient adversary A we

have

Advind-1batchcca
sKEM (A ) :=

∣∣∣∣Pr[IND-1BatchCCAsKEM(A ) ⇒ 1]− 1

2

∣∣∣∣= negl .

We also recall the different notions of indistinguishability for (asymmetric) split-KEM defined

by Brendel et al. [Bre+21]:

3Strictly speaking, the notion does not correspond to the “chosen-plaintext attack” setting, but we call it OW-CPA
nonetheless as it resembles the OW-CPA notion for KEMs (Definition 2.2.11).
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xy-IND-CCAsKEM(A )

1 : b ←$ {0,1}

2 : nx ← 0;ny ← 0;

3 : pkA,skA ←$ KeyGenA(1λ)

4 : pkB,skB ←$ KeyGenB(1λ)

5 : K0,ct∗ ←$ Encaps(pkA,skB)

6 : K1 ←$ K

7 : b′ ←$ A DEC,ENC(pkA,pkB,ct∗,Kb)

8 : return 1b′=b

ENC(pk)

1 : if ny ≥ y : return ⊥
2 : ny ← ny +1

3 : K ,ct←$ Encaps(pk,skB)

4 : if (pk,ct) = (pkA,ct∗) : return ⊥
5 : return K ,ct

DEC(pk,ct)

1 : if nx ≥ x : return ⊥
2 : nx ← nx +1

3 : if (pk,ct) = (pkB,ct∗) : return ⊥
4 : return Decaps(pkB,skA,ct)

Figure 7.3: xy-IND-CCA games for an “asymmetric” split-KEM from Brendel et al. [Bre+21],
where x,y ∈ {n, s, m}. When doing the comparison on the first line of both oracles, we assume
n = 0, s = 1 and m =∞.

Definition 7.5.4 (split-KEM xy-IND-CCA). We consider the xy-IND-CCA game defined in

Figure 7.3. A split-KEM scheme sKEM= (KeyGenA,KeyGenB,Encaps,Decaps) is xy-IND-CCA,

with x,y ∈ {n, s, m} if for any efficient adversary A we have

Advxy-ind-cca
sKEM (A ) :=

∣∣∣∣Pr
[
xy-IND-CCAsKEM(A ) ⇒ 1

]− 1

2

∣∣∣∣= negl .

These indistinguishability notions range from nn-IND-CCA, which is similar to some kind of

IND-CPA security as the adversary has no access to encapsulation or decapsulation oracles, to

mm-IND-CCA, which captures strong IND-CCA security for split-KEMs. More generally, all

notions are of the form xy-IND-CCA, x,y ∈ {n, s, m}, where x (resp. y) specifies the number of

queries an adversary can make to the decapsulation (resp. encapsulation) oracle (i.e. none,

single, or many).

On the original split-KEM security. We recall that the advantage of split-KEMs over nor-

mal KEMs is that they capture the fact that the party encapsulating can contribute (static)

keying material towards the shared key, whereas it is not the case with KEMs, as the encap-

sulation function only takes the receiving party’s public key as input (and random coins). In

particular, this means that KEMs cannot be used for implicit authentication of the encap-

sulator, unlike split-KEMs. However, we argue that the original xy-IND-CCA definitions for

split-KEMs [Bre+21] do not capture implicit authentication either and thus are not suited for

their purpose (i.e. building an asynchronous DAKE). In fact, any IND-CPA (resp. IND-CCA)

KEM can easily be converted to an (asymmetric) split-KEM satisfying nn-IND-CCA (resp.

mm-IND-CCA).
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More formally, imagine a setting where Alice and Bob know each other’s public key, and Bob

wants to implicitly authenticate to Alice using a split-KEM. In addition, we assume that a

mm-IND-CCA split-KEM sKEM0 exists (note mm-IND-CCA security is the strongest so this

holds for all weaker notions). We first modify sKEM0 such that on a special ciphertext ct⋆ not

in the original ciphertext space, Decaps returns a constant key K⋆. Let’s call this modified

scheme sKEM. We observe that sKEM is still mm-IND-CCA secure as no adversary can break

an honestly-generated challenge ciphertext. Now, implicit authentication means that if Alice

decapsulates a ciphertext and obtains a key K , then only Bob knows K . However, in our case,

any adversary can send ct⋆ to Alice and set their own key to K⋆. Both the adversary and Alice

will share the same key and implicit authentication does not hold. In a way, xy-IND-CCA

security does not prevent forgeries.

UNF-1KCA. This leads us to define our notion of UNF-1KCA security for split-KEMs below

which, along with OW-CPA (which can be turned into IND-1BatchCCA), guarantees that only

Bob (and obviously Alice) can know the result of Alice’s decapsulation on some ciphertext.

More precisely, UNF-1KCA ensures that no adversary can forge a valid split-KEM ciphertext

for B even knowing a ciphertext that was computed with respect to a public key chosen by the

adversary4, under the condition that the public key used for encapsulation and the known

ciphertext are different from the pair made of A’s public key and the ciphertext output by

the adversary. We also define a security notion called decaps-OW-CPA that will serve as a

building block to build UNF-1KCA. The decaps-OW-CPA notion ensures that it is hard for an

adversary knowing a ciphertext ct (under an adversarially-chosen public key) to come up with

a ciphertext ct′ (possibly equal to ct) and a key K ′ such that the decapsulation of ct′ returns K ′.

Definition 7.5.5 (split-KEM UNF-1KCA). We consider the UNF-1KCA game defined in Fig-

ure 7.4. A split-KEM scheme sKEM= (KeyGenA,KeyGenB,Encaps,Decaps) is UNF-1KCA if for

any efficient adversary A we have

Advunf-1kca
sKEM (A ) := Pr[UNF-1KCAsKEM(A ) ⇒ 1] = negl .

Definition 7.5.6 (split-KEM decaps-OW-CPA). We consider the decaps-OW-CPA game defined

in Figure 7.4. A split-KEM scheme sKEM = (KeyGenA,KeyGenB,Encaps,Decaps) is decaps-

OW-CPA if for any efficient adversary A we have

Advdecaps-ow-cpa
sKEM (A ) :=

∣∣∣∣Pr
[
decaps-OW-CPAsKEM(A ) ⇒ 1

]− 1

2

∣∣∣∣= negl .

7.5.2 Deniability

We finally state the notion of split-KEM deniability we would like to achieve.

4Looking ahead, the fact that the public key is adversarially-chosen will be useful for proving security under
key-compromise impersonation attacks for our full protocol.
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UNF-1KCAsKEM(A )

1 : pkA,skA ←$ KeyGenA(1λ)

2 : pkB,skB ←$ KeyGenB(1λ)

3 : st,pk←$ A (pkA,pkB)

4 : KB,ct←$ Encaps(pk,skB)

5 : ct′ ←$ A (st,pkA,pkB,ct,KB)

6 : if (ct,pk) = (ct′,pkA) : return 0

7 : KA ←Decaps(pkB,skA,ct′)
8 : if KA =⊥ : return 0

9 : return 1

decaps-OW-CPAsKEM(A )

1 : b ←$ {0,1}

2 : pkA,skA ←$ KeyGenA(1λ)

3 : pkB,skB ←$ KeyGenB(1λ)

4 : st,pk←$ A (pkA,pkB)

5 : KB,ct←$ Encaps(pk,skB)

6 : K ′
A,ct′ ←$ A (st,pkA,pkB,ct)

7 : KA ←Decaps(pkB,skA,ct′)
8 : if KA =⊥ : return 0

9 : return 1KA=K ′
A

Figure 7.4: Games UNF-1KCA and decaps-OW-CPA.

DENYREAL
sKEM,Sim(A )

1 : (pkA,skA) ←$ KeyGenA(1λ)

2 : (pkB,skB) ←$ KeyGenB(1λ)

3 : K ,ct←$ Encaps(pkA,skB)

4 : b ←$ A (pkA,pkB,skA,K ,ct)

5 : return b

DENYSIM
sKEM,Sim(A )

1 : (pkA,skA) ←$ KeyGenA(1λ)

2 : (pkB,skB) ←$ KeyGenB(1λ)

3 : K ,ct←$ Sim(pkB,skA)

4 : b ←$ A (pkA,pkB,skA,K ,ct)

5 : return b

Figure 7.5: Deniability game.

Definition 7.5.7 (Deniability). We consider the game shown in Figure 7.5. We say a split-KEM

sKEM is DENY if there exists a simulator Sim s.t. for all efficient adversaries A , we have

Advdeny
sKEM,Sim(A ) :=

∣∣∣Pr[DENYREAL
sKEM,Sim(A ) ⇒ 1]−Pr[DENYSIM

sKEM,Sim(A ) ⇒ 1]
∣∣∣= negl .

Informally, the setting considered is the following. Alice and Bob use the split-KEM to establish

a shared key (we assume the public keys are only used for this one exchange), and Alice (while

following the protocol) wants to frame Bob and prove that he did communicate with her.

Therefore, after receiving Bob’s ciphertext and deriving the key, Alice gives both public keys,

the derived key, the ciphertext and her own secret key to a judge (i.e. the adversary) that must

decide whether Bob actually sent the ciphertext that was used to derive the key or not. The

scheme is deniable if there is a simulator that, given Alice’s view, outputs a ciphertext and a

key indistinguishable from the ones output by Bob.

7.6 Model for DAKE

In this section, we describe our model for deniable authenticated key exchange (DAKE) that

we tailor to the semantics and flow of X3DH.
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7.6.1 Syntax

A DAKE is a tuple of four efficient algorithms (KeyGen, Init,Send,BatchReceive) defined as

follows:

• (pk,sk) ←$ KeyGen(1λ). This function takes as input the security parameter λ and out-

puts the long-term public/secret key pair of the caller.

• (sti ,preki ) ←$ Init(ski ,role). This function takes as inputs a long-term secret key ski

and a role role ∈ {sender,receiver} and outputs a session state sti and a prekey bundle

preki . Init models the creation of key material that will be uploaded to the public key

infrastructure by both parties (e.g., a prekey bundle in X3DH). The output values depend

only on the public key of party i executing the function.

• (k,m) ←$ Send(ski ,pk j ,sti ,prek j ). This function takes as inputs the secret key of the

executing party i , the public key of the intended recipient pk j , party i ’s session state sti

and the (claimed) prekey bundle of the intended recipient prek j , and outputs a key k
and a message m.

• {ks}s ←BatchReceive(ski ,sti , {pk j ,prek j ,m j } j ). This function takes as inputs the secret

key of the executing party i , an ephemeral state of party i sti and a vector of size d ≥ 1 of

the form (pk j ,prek j ,m j ) for party i ’s session with the public key of the (claimed) sender

pk j , the (claimed) prekey bundle of party j prek j and a message m j , and outputs a

vector of d keys (k1, . . . ,kd ), some or all of which may be ⊥.

Init explicitly captures parties uploading ephemeral keys to a central server in the first protocol

step. This contrasts with the formal modelling in some previous works on X3DH-like key

exchange [Bre+22; Has+22] that model a three-move key exchange with a single initiator.

The most novel part of our primitive is BatchReceive which captures ephemeral key reuse

when uploaded ephemeral keys are exhausted. In the case of key exhaustion, when a party

comes back online, they execute BatchReceive several times (once per ephemeral state sti ),

where the number of inputs of the form (pk j ,prek j ,m j ) in a given BatchReceive call corre-

sponds to how many times sti is re-used. Otherwise, BatchReceive can be used as in standard

AKE with a single value (pk j ,prek j ,m j ) as input.

7.6.2 Security model

We now describe the security model we consider for our DAKE, which extends existing models

in some ways to support BatchReceive.
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Parties and sessions

We assume that there are n parties P1, . . .Pn (or 1, . . . ,n), where party Pi (resp. or i ) is associated

with long-term key pair (pki ,ski ) output by KeyGen. Each party runs one or more sessions

(sometimes called oracles [Bre+21]), where the s-th session of Pi is denoted byπs
i . Each session

πs
i is associated with the following local fields:

• sid, the session identifier or session id.

• pid, the partner identifier.

• role ∈ {⊥,sender,receiver}, the role of Pi .

• status ∈ {⊥,accept,reject}, the status of πs
i .

• k, the session key.

• st, the session state.

• rand, the session randomness.

All fields are initialised to ⊥ except rand which is initialised to uniform randomness. A session

either has role sender or receiver, and its counterpart, its partner pid, has the other role; note a

receiver may have several counterparts (capturing ephemeral key reuse).

Fields pid, role, status and rand in session πs
i are set directly by the challenger, and the rest

are (sometimes implicitly) set by the underlying DAKE algorithms called by the challenger.

Moreover, in light of the definition of BatchReceive, sid, pid and k are vectors for a receiver

(role= receiver); we sometimes write s⃗id, p⃗id and k⃗ for clarity to indicate this.

Suppose Pi is acting as a receiver. Initially, Pi calls Init, and then eventually calls BatchReceive.

Before this point, one or more senders P j (i.e., parties with role= sender) may call Init and then

Send with respect to the output prek from Pi ’s Init call (assuming honest message delivery),

which output messages of the form m j . Finally, Pi invokes BatchReceive with one or more m j

values as input. A party has status= accept if and only if k ̸= ⊥5, and stores any session state

after calling Init and before setting status ̸= ⊥ due to a Send or BatchReceive call in st.

Partnering

We define partnering between two sessions to capture security using session identifiers:

Definition 7.6.1 (Partnering). For any (i ,P j , s, t ), we say that sessions πs
i and πt

j are partners if

1. πs
i .role ̸=πt

j .role.

5In particular, BatchReceive may output several keys; as long as at least one of them is not ⊥, the calling party
accepts.
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2. If πs
i .role = sender, then πs

i .pid = j and i ∈ πt
j .p⃗id. If πs

i .role = receiver, then j ∈ πs
i .p⃗id

and i =πt
j .pid.

3. If πs
i .role= sender, then πs

i .sid ∈πt
j .s⃗id ̸= ⊥. If πs

i .role= receiver, then πt
j .sid ∈πs

i .s⃗id ̸= ⊥.

Looking ahead, this definition ensures that two sessions can only be partners if they both have

set status= accept. Our definition mainly differs from previous work in that there can be many

senders (and thus partnered sessions) for a given receiver. Ignoring this aspect, our definition

is only slightly different from that of Hashimoto et al. [Has+22] in that we restrict sid to be not

equal to ⊥; this is an artifact of the fact we model “four-move” key exchange (including prekey

uploading).

KIND Security Game

We first define key indistinguishability (KIND) and then define deniability separately. Follow-

ing previous work, we define a KIND experiment played between a challenger C and adversary

A in text below. The experiment KINDn
DAKE is parameterised by the DAKE DAKE and integer

n, the number of parties (honest or otherwise) in the lifetime of the game’s execution. The

game is divided into distinct phases defined as follows.

Setup. C first uniformly samples challenge bit b ∈ {0,1}. Then, for each party Pi , C calls

(pki ,ski ) ←$ KeyGen(1λ) and provides {pk1, . . . ,pkn} and 1λ as input to A .

Phase 1. A adaptively makes any number of the following queries in any order:

• EXEC(i , s,prek,m): A starts or runs the next step of execution in session πs
i . In each call,

C uses randomness tape πs
i .rand as needed.

– To start the execution in session πs
i not previously started, A calls

EXEC(i , s,prek,m) with special input m = (start,sender, j ) (resp.

(start,receiver, j⃗ )) (where start is defined only in the context of this game)

that, if not previously called, sets πs
i .pid= j (resp. πs

i .pid= j⃗ ) and πs
i .role= sender

(resp. πs
i .role = receiver); observe input prek is ignored by C . Then, C invokes

(sti ,preki ) ←$ Init(ski ,role) and outputs preki to A .

– Given that Pi has started in πs
i , πs

i .status =⊥ and πs
i .role = sender, when A calls

EXEC(i , s,prek,⊥), C invokes (k,m) ←$ Send(ski ,pk j ,sti ,prek) (where j = πs
i .pid),

returns output m to A and sets πs
i .status to reject (resp. accept) if k = ⊥ (resp.

k ̸= ⊥).

– If πs
i .role = receiver and πs

i .status = ⊥, when A calls

EXEC(i , s, {s j ,prek j ,m j } j∈ j⃗ ′), C aborts if j⃗ ′ ̸= πs
i .pid and otherwise invokes
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k ← BatchReceive(ski ,sti , {pk j ,prek j ,m j } j ) and outputs to A ⊥ if BatchReceive
fails (resp. nothing otherwise) and sets πs

i .status to reject (resp. accept).

• LTK(i ) outputs ski . Pi is hereafter corrupted.

• REGISTER(pki , i ) registers a new party Pi for i > n not previously registered, sets their

long-term public key to pki and distributes pki to all other oracles; Pi is immediately

marked as corrupted.

• STATE(i , s) outputs πs
i .st, which is hereafter revealed.

• KEY(i , s, j ) outputs πs
i .k j if πs

i .role = receiver and πs
i .status ̸= ⊥ and otherwise outputs

πs
i .k.

Test. When A decides to move to the next phase, it issues the following query TEST which (if

successful) returns either a real or random key:

• TEST(i , s, j ): If πs
i .status ̸= accept, C returns ⊥. Otherwise:

– If πs
i .role= sender, C aborts if j ̸=πs

i .pid, and otherwise returns either πs
i .k if b = 0

or a uniformly sampled key k if b = 1;

– If πs
i .role = receiver, C aborts if j ̸∈ πs

i .p⃗id, and otherwise returns either πs
i .k j if

b = 0 or a uniformly sampled key k if b = 1.

At this point, πs
i (which we say is with respect to key j if πs

i .role= receiver) is said to be

the test session.

Phase 2. A adaptively issues queries as in Phase 1.

Guess, freshness and correctness. After Phase 2, A outputs bit b′. Suppose that A made

query TEST(i , s, j ), i.e., πs
i is the test session with respect to key j and j ∈πs

i .pid (with equality

at least when πs
i .role = sender). The following freshness conditions are checked by C ; if any

condition is not satisfied, C sets b′ to a uniform bit (i.e., A gains no advantage):

1. KEY(i , s, j ′) has not been queried, where j ′ is arbitrary if πs
i .role = sender and j ′ = j if

πs
i .role= receiver.

2. If πs
i and πt

j are partners, then KEY( j , t , i ′) has not been queried, where i ′ is arbitrary if

πs
i .role= sender and i ′ = i if πs

i .role= receiver.

3. Pi is not corrupted or πs
i .st has not been revealed.

4. If πs
i and πt

j are partners, then P j is not corrupted or πt
j .st has not been revealed.
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5. If πs
i has no partner session, then P j is not corrupted when πs

i .status=⊥.

6. If πs
i has no partner session, then if πs

i .role= sender, for any session πt
j such that prek j

was both output by Init(sk j ,receiver) and input to Send in πs
i by C , P j is not corrupted

or πt
j .st is not revealed.

7. If πs
i has no partner session, then if πs

i .role= receiver, for any session πt
j such that prek j

was both output by Init(sk j ,sender) and input to BatchReceive in πs
i by C , πt

j .st is not

revealed and πs
i .st is not revealed.

Then, the following correctness conditions are checked by C which, iterating over all relevant

parties i , j ,k, only consider the subset of sessions corresponding to honest protocol runs

where A faithfully follows the protocol specification. If any condition is satisfied, C sets b = b′

(i.e., A wins):

1. There exist distinct sessions πs
i and πt

j such that πs
i .role = πt

j .role and either 1) πs
i =

receiver and πs
i .sid j =πt

j .sidi or 2) πs
i .sid=πt

j .sid.

2. Assuming πs
i .role= receiver, there exist sessions πs

i with respect to key j and πt
j that are

partners such that πs
i .k j ̸=πt

j .k (analogously when πs
i .role= sender).

3. There exist distinct sessions πs
i , πt

j and πu
k such that πs

i .status=πt
j .status=πu

k .status=
accept and πs

i .sidk =πt
j .sidk =πu

k .sid (assuming i , j are receivers here but analogously

in other cases).

Finally, the game outputs 1 if and only if b = b′.

Security is formally captured in Definition 7.6.2 below.

Definition 7.6.2 (DAKE key indistinguishability). We consider the KIND game described above.

We say a DAKE DAKE is KIND if for all efficient adversaries A and polynomially-bounded n

(the total number of parties), we have

Advkind
DAKE,n(A ) :=

∣∣∣∣Pr[KINDn
DAKE(A ) ⇒ 1]− 1

2

∣∣∣∣= negl .

Discussion. Following previous work, we define freshness conditions to prevent the adversary

from mounting trivial attacks. Conditions 1 to 5 correspond exactly to the forward-secure

variant of security by Hashimoto et al. [Has+22]. Due to the design of our DAKE K-Waay, we

additionally restrict the adversary via conditions 6 and 7. The clauses in these conditions

essentially due to the fact that in K-Waay the only secret keying material required to call Send
is an ephemeral split-KEM secret. For example, suppose that the tested πs

i is the receiver. Due

to the “symmetric” nature of split-KEM, without these restrictions, revealing πs
i .st allows the

adversary to inject to Pi by simulating Send (akin to a key-compromise impersonation (KCI)
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attack using Pi ’s ephemeral state) and trivially distinguish. Consequently, we restrict session

state exposure in this case.

Apart from the fact that we make several extensions to typical AKE modelling to capture

BatchReceive, the game is closest to that of Hashimoto et al.’s [Has+22] except that we addi-

tionally enforce correctness checks as in Brendel et al.’s model [Bre+22]. To capture partnering,

we consider partner and key identifiers that may be vectors for a receiver, such that several

sender sessions may be partnered with a receiver session if, for a given sender session, it

partners with a part/component of the receiver session. We do not capture semi-static keys

explicitly as in [Bre+22], although in principle they could be captured in Init. Like [Has+22], our

game supports message injection, session state exposure (revealing) (unlike [Bre+22]), session

key exposure, long-term key exposure (corruption) and adversarial long-term key registration

(also considered corruption). During execution, a single challenge test query is made by the

adversary that reveals a real or random key output in some session. For BatchReceive which

can output several keys, just one of the output keys are tested.

Trivial attacks. We restrict the adversary’s behaviour to prevent trivial attacks by defining

freshness predicates. Due to our protocol’s design, our notion restricts more than the full

forward security notion under session state exposure defined by Hashimoto et al. [Has+22].

Our freshness predicates imply weak forward secrecy and implicit authentication given ses-

sion state exposure is not allowed (enforced in some recent works like [Bad+15; Coh+19]).

Brendel et al.’s model provides these guarantees but additionally protects against randomness

exposure [Bre+22], whereas we allow exposures on session states under some conditions

unlike them.

7.6.3 Deniability

We next introduce our security notion for a deniable DAKE. To this end, we introduce security

game DENYexp
DAKE,Sim in Figure 7.6.

Definition 7.6.3 (DAKE deniability). We consider the game shown in Figure 7.6. We say a

DAKE DAKE is DENYexp for exp ∈ {true, false} if there exists an efficient simulator Sim s.t. for

all efficient adversaries A and polynomially-bounded n, we have

Advdeny
DAKE,Sim,exp(A ) :=

∣∣∣∣Pr[DENYexp
DAKE,n,Sim(A ) ⇒ 1]− 1

2

∣∣∣∣= negl .

Our definition captures the following deniability property. Initially, the judge A is given the

long-term keys of all parties. A then observes honest protocol runs between pairs of parties

(via CHAL). Depending on the challenge bit b, either Send or a simulator Sim that takes as

input the secret keying material of the receiver trying to frame the sender is executed in each

run. Moreover, A is given the prekey messages independent of b and, if the parameter exp is
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DENYexp
DAKE,n,Sim(A )

1 : b ←$ {0,1}

2 : L ←;
3 : for i ∈ [n] :

4 : (pki ,ski ) ←$ KeyGen(1λ)

5 : L ← L∪ {(pki ,ski )}

6 : b′ ←$ A CHAL(L)

7 : return 1b′=b

CHAL(i , j )

1 : require i ∈ [n]∧ j ∈ [n]

2 : (k,m) ← (⊥,⊥)

3 : (sti ,preki ) ←$ Init(ski ,sender)

4 : (st j ,prek j ) ←$ Init(sk j ,receiver)

5 : if b = 0 : (k,m) ←$ Send(ski ,pk j ,sti ,prek j )

6 : else : (k,m) ←$ Sim(sk j ,pki ,st j ,preki ,prek j )

7 : T ← (preki ,prek j ,m)

8 : if exp = true : return (k,T,st j )

9 : else : return (k,T )

Figure 7.6: Deniability game.

set to true, also the session state of the receiver in each protocol run. The goal of the adversary

is to distinguish whether Send or Sim is being called.

Our notion DENYfalse corresponds most closely with that of Brendel et al. [Bre+22] which was

also adopted by Cremers et al. [CZ24]. Due to how Brendel et al.’s AKE primitive is defined, they

also consider semi-static key pairs which are also given to the adversary. DENYtrue provides

stronger deniability, corresponding in practice to a receiver who co-operates with a judge by

handing over the entire contents of their device. Although incomparable formally, our DAKE

would not be considered deniable under a notion like that of Brendel et al. [Bre+22] since

their protocol does not formally model long-term signatures. Note that our definition, like

Brendel et al.’s [Bre+22], can be straightforwardly converted to a “simulation-based” notion

like Definition 7.5.7.

Finally, observe that our definition, like that of Brendel et al. [Bre+22] does not consider

deniability for the receiver but only for the sender. One could define such a notion, in which

the goal is for the judge (adversary) to distinguish between the output of BatchReceive and

a simulator Sim that has access to the long-term and ephemeral states of all corresponding

senders and is given (honest) ciphertexts output by Send as input. Here, one could argue

deniability for K-Waay using the security of the ephemeral KEM and then the KDF.

7.7 K-Waay: Post-Quantum X3DH from Split-KEM

We present our DAKE K-Waay (Key-Exchange with Asynchrony, Authentication, and Peer-
Deniability) in Figure 7.7.

Each party is associated with a long-term public/secret key pair which in K-Waay comprises

of a signature and KEM key pair generated in KeyGen. In Init, ephemeral KEM and split-KEM

keys for both parties are generated and the public keys are signed with the long-term signature

key.
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Init(ski ,role)

1 : // prekey generation/upload

2 : if role= sender :

3 : (espki ,esski ) ←$ KeyGenAsKEM(1λ)

4 : ekpki ←⊥
5 : else :

6 : (espki ,esski ) ←$ KeyGenBsKEM(1λ)

7 : (ekpki ,ekski ) ←$ KeyGenEKEM(1λ)

8 : σi ←$ SignSig(ski .ssk, (espki ,ekpki ))

9 : preki ← (espki ,ekpki ,σi )

10 : return (sti = (esski ,ekski ,preki ),preki )

KeyGen(1λ)

1 : // long-term key generation

2 : (kpk,ksk) ←$ KeyGenLKEM(1λ)

3 : (spk,ssk) ←$ KeyGenSig(1λ)

4 : pk← (spk,kpk)

5 : sk← (ssk,ksk)

6 : return (pk,sk)

Send(ski ,pk j ,sti ,prek j )

1 : (esski ,ekski ,preki ) ← sti

2 : (espk j ,ekpk j ,σ j ) ← prek j

3 : require VrfySig(pk j .spk, (espk j ,ekpk j ),σ j )

4 : (Kℓ,ctℓ) ←$ EncapsLKEM(pk j .kpk)

5 : (Kk ,ctk ) ←$ EncapsEKEM(ekpk j )

6 : (Ks ,cts ) ←$ EncapssKEM(espk j ,esski )

7 : m ← (ctℓ,ctk ,cts )

8 : sid← Pi ||P j ||pki ||pk j ||preki ||prek j ||m
9 : k←KDF(Kℓ,Kk ,Ks ,sid)

10 : return (k,m)

BatchReceive(ski ,sti ,S = {pk j ,prek j ,m j } j )

1 : (esski ,ekski ,preki ) ← sti

2 : fail← false; k j ←⊥
3 : for j : (pk j ,prek j ,m j ) ∈ S :

4 : (ctℓ,ctk ,cts ) ← m j

5 : (espk j ,ekpk j ,σ j ) ← prek j

6 : if ¬VrfySig(pk j .spk, (espk j ,ekpk j ),σ j ) :

7 : k j ←⊥
8 : continue

9 : Kℓ←DecapsLKEM(ski .ksk,ctℓ)

10 : Kk ←DecapsEKEM(ekski ,ctk )

11 : Ks ←DecapssKEM(espk j ,esski ,cts )

12 : sid← P j ||Pi ||pk j ||pki ||prek j ||preki ||m j

13 : if Ks =⊥ : fail← true

14 : if (Kℓ =⊥)∨ (Kk =⊥)∨ (Ks =⊥) :

15 : k j ←⊥
16 : else : k j ←KDF(Kℓ,Kk ,Ks ,sid)

17 : if fail : return ⊥|S|

18 : else : return {k j } j

Figure 7.7: K-Waay: X3DH-like DAKE from IND-CCA KEMs EKEM and LKEM, SUF-CMA
signature scheme Sig and IND-1BatchCCA and UNF-1KCA split-KEM sKEM.
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PRFF (A )

1 : Sample random function G

2 : k ←$ K

3 : b ←$ {0,1}

4 : b′ ←$ A Oprf (1λ)

5 : return 1b′=b

Oprf (a,b,c)

1 : if b = 0 :

2 : return Fk (a,b,c)

3 : else :

4 : return G(a,b,c)

Figure 7.8: PRF game for function Fk taking three arguments as input.

After initialisation, the sender Pi (sometimes called the initiator) invokes Send that takes the

prekey prek j output by the receiver P j ’s Init call as input. After verifying the signature in prek j ,

Pi encapsulates to 1) the long-term KEM key of P j ; 2) the ephemeral KEM key contained

in prek j ; and 3) the ephemeral split-KEM key contained in prek j . Note that the split-KEM

provides implicit authentication (without it, Send could be simulated without secrets). Pi

then combines the encapsulated keys using a KDF and outputs the key and its message for P j

consisting of the three encapsulation ciphertexts. Receiving is analogous: receiver Pi verifies

P j ’s prekey, decapsulates using its three respective secret keys, and derives the session key.

If Pi ’s prekeys have run out, it is possible that multiple P j ’s have sent using the same prekey

preki . In that case, Pi decapsulates for all sessions using the same secret keys but aborts if

any split-KEM decapsulations failed in any of the sessions (a signature check failing does not

however lead to the receiver aborting). We assume that for a given BatchReceive(ski ,sti ,S)

call, each element of S corresponds to a different party.

7.7.1 Security

Before proving the security of K-Waay, we introduce the notion of a triple PRF (3PRF), which

generalises the by now common notion of a dual PRF [Bel06b]. Looking ahead, we will assume

in the security proof that the key-derivation function (KDF) used in our protocol fulfils this

property. A triple PRF Ftriple can be trivially constructed in the random oracle model.

Definition 7.7.1 (Triple PRF). Let F : K ×K ×K ×D → R be a function. We consider the game

shown in Figure 7.8. We say that F is a 3PRF if for all efficient adversaries, we have

Adv3prf
F (A ) := max

i∈{1,2,3}

∣∣∣∣Pr
[
PRFFi (A ) ⇒ 1

]− 1

2

∣∣∣∣= negl ,

where Fi denotes F keyed in its i -th argument for i ∈ {1,2,3}.

Theorem 7.7.1. Consider a δEKEM-correct IND-CCA KEM EKEM, a δLKEM-correct IND-

CCA KEM LKEM, a δSig-correct SUF-CMA signature scheme Sig, and a δsKEM-correct IND-

1BatchCCA, UNF-1KCA split-KEM sKEM and 3PRF KDF used to build K-Waay (Figure 7.7).

Then, we have that for polynomially-bounded n and every efficient adversary A that makes at
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most q oracle queries, one can build an adversary B such that

Advkind
K-Waay,n(A ) ≤ q

3
· (δSig +δLKEM+δEKEM+δsKEM

) +
2q2 · (ϵEKEM+ϵLKEM+2ϵKDF+2ϵSig) +
q3 · (ϵEKEM+ϵLKEM+ϵsKEM+3ϵKDF

)
,

where ϵEKEM = Advind-cca
EKEM (B), ϵLKEM = Advind-cca

LKEM (B), ϵSig = Advsuf-cma
Sig (B), ϵsKEM =

Advind-1batchcca
sKEM (B)+Advunf-1kca

sKEM (B), and ϵKDF =Adv3prf
KDF(B).

Proof. Our proof proceeds by constructing sequences of hybrids, which we first summarise.

Let Game1 be exactly the KIND game played with respect to DAKE K-Waay (Figure 7.7). We

first transition to Game2, which differs from Game1 in that honest protocol runs, all VrfySig
checks in BatchReceive calls are removed and Decaps calls are replaced by the output of the

Encaps calls in the corresponding Send calls whenever they are consistent. To this end, we

invoke the correctness of K-Waay’s building blocks. Then, we transition to Game3 in which

the challenger immediately outputs the session πs
i that the adversary makes real-or-random

challenge query TEST(i , s, j∗) with respect to. We then partition A ’s possible executions of

Game3 into several events.

Suppose πs
i has a partner session (with respect to key j∗ if πs

i .role= receiver) (event Ep ), say

πt
j . Observe that by definition of partnering and construction of the protocol (in particular by

definition of sid), it follows that partnered sessions correspond to honest protocol runs. Then,

considering πs
i and πt

j , if the receiver’s session state, say πt
j .st, is revealed (event Ep ∧Ec1), we

reduce to the IND-CCA security of the long-term KEM LKEM, since the freshness conditions

imply P j must not have been corrupted. Otherwise (event Ep ∧¬Ec1), we reduce to the IND-

CCA security of the ephemeral KEM EKEM. After both cases, we transition to an unwinnable

game by keying KDF with the now uniformly random key output by the respective KEM call, a

transition we perform repeatedly and omit from this description hereafter. Otherwise (event

¬Ep ), we consider whether party Pi in test session πs
i has the role sender or receiver:

• πs
i .role= sender (event ¬Ep ∧Es): As P j can only be corrupted after Pi accepts, we first

use the SUF-CMA security of Sig to argue that Pi ’s Send call in the test session must be

with honestly-generated input (prek). Then, let Ec2 be the event that P j is corrupted.

Given ¬Ep ∧Es ∧Ec2, we reduce to the security of EKEM, since by freshness the state

πt
j .st associated with prek must not have been exposed. Otherwise (¬Ep ∧Es ∧¬Ec2) we

reduce to the security of LKEM.

• πs
i .role= receiver (event ¬Ep ∧¬Es): As above, we first argue using SUF-CMA security

that input prek j used in the test session’s BatchReceive call must have been honestly

generated. Then by freshness, we know that neither πs
i .st nor πt

j .st associated with prek j

are revealed, in which case we first reduce to the UNF-1KCA security of sKEM to prevent

injections on the split-KEM ciphertext, after which we reduce to the IND-1BatchCCA
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security of sKEM.

Let Advgi
DAKE,n(A ) be the advantage of adversary A in winning game Gamei for relevant

i which we introduce below. Furthermore, let Advgi
DAKE,n(A ,E) be the same advantage

except restricted to event E , so in particular if Advgi
DAKE,n(A ) is of the form Pr[X ] − 1

2 ,

Advgi
DAKE,n(A ,E) is of the form Pr[X ∧E ]− 1

2 .

Game1: This is the original key indistinguishability game.

Game2: This differs from Game1 in that, in honest protocol runs, all signature verifica-

tion calls in BatchReceive calls are removed and the output of Decaps calls are replaced with

the output of the corresponding Encaps call in Send. It follows at this point that the three

correctness checks in the KIND game evaluate to true. Since for a given BatchReceive(·, ·,S)

call there must be |S| corresponding Send and Init calls, there are at most q/3 iterations of

the for loop in BatchReceive (counting over all such calls in a given execution of Game1). It

then follows from a standard hybrid argument and the correctness of Sig, LKEM, EKEM and

sKEM that

Advg1
DAKE,n(A ) ≤Advg2

DAKE,n(A )+ q

3
· (δSig +δLKEM+δEKEM+δsKEM

)
.

Game3: This differs from Game3 in that the challenger immediately outputs the session πs
i

that the adversary A calls TEST(i , s, j∗) with respect to. Noting that there are at most q such

possible sessions and applying a standard argument, it follows that

Advg2
DAKE,n(A ) ≤ q ·Advg3

DAKE,n(A ) .

Case 1: Test session πs
i is partnered (Game3a and Game3b):

Game3a.1: Let Ep be the event that test session πs
i has a partner, say πt

j . Let Ec1 be

the event that the ephemeral state st of the receiver (in πs
i and πt

j ) is revealed. Games Game3a.i

are defined given Ep ∧Ec1. Game3a.1 differs from Game3 in that the game initially outputs πt
j ,

the partner of πs
i (observe that j = j∗ where j∗ is defined in the previous hop), as well as a bit

indicting whether πs
i is the sender or receiver. By the same reasoning as above, we have

Advg3
DAKE,n(A ,Ep ∧Ec1) ≤ 2q ·Advg3a.1

DAKE,n(A ) .

Game3a.2: Game3a.2 differs from Game3a.1 in that the output key K in the call to LKEM.Encaps
and the corresponding LKEM.Decaps call or calls (which are guaranteed to exist given Ep , and

K is identical by definition of Game2) made in the test and partner sessions with respect to the

receiver’s public key and secret key, respectively, are replaced with a key k uniformly sampled

by the challenger. Observe that since Ec1 holds, by freshness, P j cannot be corrupted, and

thus we reduce to the security of LKEM.
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Let A ′ be a IND-CCA adversary who simulates for Game3a.1/Game3a.2 adversary A as follows.

Let pk be the IND-CCA challenge public key, (ct∗,K ∗) be the challenge ciphertext and key

respectively.

In the Setup phase, A ′ uniformly samples bit bsi m , calls (pkℓ,skℓ) ←$ KeyGen(1λ) locally for

ℓ ̸= k where k is the sender, sets pkk ← pk, and returns {pk1, . . .pkn} and 1λ to A . Observe

here (and later for Game3b.2) that, since Ep holds, we have matching sid values for test session

πs
i and partner πt

j . Note by construction of sid, the presence of substring preki ||prek j and m

in the common value sid implies that Send must have been called honestly in πs
i and also in

BatchReceive for tuple (pk j ,prek j ,m j ) in πt
j for Ep to hold. Thus, we do not need to consider

injections in the test session itself (although we have to in general in the BatchReceive call).

Before proceeding, we argue that A ′ can simulate on behalf of parties with a maliciously-

registered long-term key locally, which applies here and in the rest of the proof. Since πs
i is

partnered, as argued above, πs
i and πt

j correspond to honest (completed) executions, and so

neither Pi and P j can be malicious. For unpartnered sessions, since Send and BatchReceive
cannot be called by the game, the test session πs

i cannot be corrupted itself (since testing

requires πs
i .status ̸= ⊥), and otherwise condition 5 restricts the non-tested party P j from being

corrupted, thus precluding its key from being registered maliciously. Finally, computation

involving messages or prekey bundles from maliciously-registered parties does not require

any secret material not already known to A ′.

In Phase 1, when A calls EXEC(k ′, ·, ·, ·) where k ′ corresponds to the sender in πs
i and πt

j and

the challenger is supposed to invoke Send, A ′ replaces the call to EncapsLKEM with the output

(ct∗,K ∗), and otherwise simulates locally. When A calls EXEC(k, ·, ·, ·) corresponding to the

receiver in πs
i and πt

j and the challenger is supposed to invoke BatchReceive, A ′ replaces the

output of the relevant DecapsLKEM calls corresponding to either i or j , depending on who is

the receiver, with K ∗ and the output of other calls DecapsLKEM with the output obtained from

DEC(·); A ′ otherwise simulates locally.

In the Test phase, i.e. when A calls TEST(i , s, j ), A ′ simulates with respect to bit bsi m . A ′

then simulates Phase 2 as above and the rest of the game locally, ultimately outputting the

same bit as A ; observe that A ′ can efficiently evaluate the freshness conditions. Since A ′

perfectly simulates Game3a.1 when playing with respect to challenge bit 0 and Game3a.2 when

it is 1, it follows that

Advg3a.1
DAKE,n(A ) ≤Advg3a.2

DAKE,n(A )+Advind−cca
LKEM (A ′) .

Game3a.3: This differs from Game3a.2 in that, for the test and partner sessions, the call to KDF
made in Send and the corresponding calls made in BatchReceive with respect to ciphertext ctℓ
output by Send are replaced with uniformly sampled keys. Let A ′ be a PRF adversary playing

with respect to KDF keyed in its first argument simulating for Game3a.2/Game3a.3 adversary A

as follows. A ′ simulates locally all calls except the Send and BatchReceive calls made inπs
i and

πt
j , where it replaces the relevant calls KDF(Kℓ,Kk ,Ks ,sid) with the call Oprf (Kk ,Ks ,sid). Since
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Kℓ is uniform (by definition of Game3a.2) and, by definition of freshness, Kℓ is not revealed to

A , the simulation is perfect and we have

Advg3a.2
DAKE,n(A ) ≤Advg3a.3

DAKE,n(A )+Adv3prf
KDF(A ′) .

Finally, we have Advg3a.3
DAKE,n(A ) = 0 since the output of TEST is identical regardless of the

challenge bit and it is not otherwise used by the challenger or leaked to the adversary.

Game3b.1: We now consider the case when Ep ∧¬Ec1, i.e. the case where the receiver’s session

state st in πs
i and πt

j is not revealed. Game3b.1 differs from Game3 in that the game initially

outputs πt
j , the partner of πs

i , as well as a bit indicating whether πs
i is the sender or receiver.

Since Game3b.1 is exactly Game3a.1, we have

Advg3
DAKE,n(A ,Ep ∧¬Ec1) ≤ q ·Advg3b.1

DAKE,n(A ) .

Game3b.2: In Game3b.2, the output of EncapsEKEM and the corresponding DecapsEKEM call

or calls in the test session are replaced with a uniformly random key k. IND-CCA adversary

A ′ simulates for Game3b.1/Game3b.2 adversary A as follows. A ′ follows the same broad

approach as the adversary defined in the hop between Game3a.1 and Game3a.2. In particular,

A ′ simulates the receiver in their session’s call to Init except it uses the IND-CCA challenge

public key pk, replaces the output of EKEM in the test session Encaps and the corresponding

Decaps calls with the challenge ciphertext and key, and replaces other Decaps calls with calls

to oracle DEC. By the same reasoning as before, it follows that

Advg3b.1
DAKE,n(A ) ≤Advg3b.2

DAKE,n(A )+Advind−cca
EKEM (A ′) .

Game3b.3: This replaces the relevant outputs of KDF in the test session with a uniformly

random key. As in Game3a.3, this game is now unwinnable, i.e. Advg3b.3
DAKE,n(A ) = 0. As before,

we reduce to the security of KDF, except now we key KDF in the PRF game with the second

argument Kk . We then arrive at

Advg3b.2
DAKE,n(A ) ≤Advg3b.3

DAKE,n(A )+Adv3prf
KDF(A ′) .

Case 2: Test session πs
i is unpartnered and πs

i .role= sender (Game3c ):

Game3c.1: Let πs
i .pid = j and Es be the event that πs

i .role = sender. Game3c.1 differs

from Game3 in that the challenger immediately outputs j . By a standard argument, we have

Advg3
DAKE,n(A ,¬Ep ∧Es) ≤ q ·Advg3c.1

DAKE,n(A ) .

Game3c.2: This differs from Game3c.1 in that the challenger aborts if the call

Send(ski ,pk j ,sti ,prek j ) in the test session is such that prek j was not previously output by
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a call to Init(sk j ,receiver). Note that by freshness condition 5 that P j must not be corrupted

until after πs
i .status is changed from ⊥, which, by definition of Es , means until after it is set to

accept. In order for Send to accept on input prek j = (espk j ,ekpk j ,σ j ) not previously output

by Init(sk j ,receiver) (and thus for the game to abort), A needs to find a different prek j such

that VrfySig(pk j .spk, (espk j ,ekpk j ),σ j ) (by construction of Send). Using this observation, we

reduce to the SUF-CMA security of Sig.

Let A ′ be a SUF-CMA adversary simulating for Game3c.1 adversary A . Let pk be the SUF-CMA

challenge public key. In the Setup phase, A ′ sets pk j = pk and otherwise simulates locally.

In particular, unlike in previous hops, A ′ also samples the random Game3c.1 bit. In each

subsequent phase, for each call EXEC( j ,u, ·,m) such that m = (start,role, ·), A ′ replaces

the SignSig(sk j .ssk, (espk j ,ekpk j )) call in Init(sk j ,receiver) by a call to SIGN((espk j ,ekpk j )),

and otherwise simulates the call locally. When the challenger calls Send(·,pk j , ·,prek j ) where

prek j = (espk j ,ekpk j ,σ j ), A ′ checks whether 1) (espk j ,ekpk j ) was previously queried to SIGN

which output σ j and 2) VrfySig(pk, (espk j ,ekpk j ),σ j ) = 1. Given 1) and 2) both hold, A ′

returns (m,σ) = ((espk j ,ekpk j ),σ j ) to its challenger. A ′ otherwise simulates locally, aborting

if A outputs a bit. The simulation is perfect and it follows that

Advg3c.1
DAKE,n(A ) ≤Advg3c.2

DAKE,n(A )+Advsuf−cma
Sig (A ′) .

Game3c.3: In Game3c.3, the challenger initially outputs πt
j , where πt

j is the session that prek is

output by Init(sk j ,receiver) and input to the Send call in test session πs
i .

By a standard failure event argument, we have

Advg3c.2
DAKE,n(A ) ≤ q ·Advg3c.3

DAKE,n(A ) .

Game3c.4a.1: Let Ec2 be the event that P j is corrupted. We construct hybrid sequence Game3c.4a

(resp. Game3c.4b) to deal with the case that Ec2 holds (resp. does not hold). Game3c.4a.1 differs

from Game3c.3 in that the output of EncapsEKEM in the Send call in test session πs
i and of the

(possible) corresponding DecapsEKEM calls in πt
j are replaced with uniformly random output.

By freshness, P j ’s session state πt
j .st associated with prek input to the test Send call is not

revealed.

IND-CCA adversary A ′ simulates for Game3c.4a.1 adversary A as follows. Let (pk,k,ct) the

challenge public key, key and corresponding ciphertext (respectively) of A ′. A ′ embeds pk
in session πt

j by replacing the public key output by KeyGenEKEM in Init(sk j ,receiver) with pk,

which outputs prek j . Upon prek j being input to Send in the test session, A ′ replaces the output

of EncapsEKEM with (k,ct). When the challenger calls BatchReceive(sk j , ·, {·, ·,m j ′ = (·,ct′, ·)} j ′)

in session πt
j , if ct′ = ct, A ′ replaces the output of DecapsEKEM with k; else, A ′ replaces the

call DecapsEKEM(·,ct′) with the call DEC(ct′). A ′ otherwise simulates locally and outputs the

same bit as A . By similar reasons to before, we have

Advg3c.3
DAKE,n(A ,Ec2) ≤Advg3c.4a.1

DAKE,n(A )+Advind−cca
EKEM (A ′) .
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Game3c.4a.2: This replaces the output of KDF in the Send and BatchReceive calls as before

in the test session and πt
j with uniformly random keys. By the exact same argument as for

Game3b.3, we have Advg3c.4a.2
DAKE,n(A ) = 0 and

Advg3c.4a.1
DAKE,n(A ) ≤Advg3c.4a.2

DAKE,n(A )+Adv3prf
KDF(A ′) .

Game3c.4b.1: We assume ¬Ec2, i.e. that P j is not corrupted. We reduce to the IND-CCA security

of LKEM. The reduction follows the same high-level strategy as previous hops (embedding

the challenge pk in pk j and the challenge in the test Send call and possibly the corresponding

BatchReceive call), noting that non-challenge DecapsLKEM(sk j , ·) queries are replaced with

calls to DEC. We then have

Advg3c.3
DAKE,n(A ,¬Ec2) ≤Advg3c.4b.1

DAKE,n(A )+Advind−cca
LKEM (A ′) .

Game3c.4b.2: As in Game3c.4a.2, this replaces the output of KDF in the Send and BatchReceive
calls in πs

i and πt
j with a uniformly random key. As argued several times above, it follows that

Advg3c.4b.2
DAKE,n(A ) = 0 and

Advg3c.4b.1
DAKE,n(A ) ≤Advg3c.4b.2

DAKE,n(A )+Adv3prf
KDF(A ′) .

Case 3: Test session πs
i is unpartnered and πs

i .role= receiver (Game3d ):

Game3d .1: Game3d .1 differs from Game3 in that the challenger immediately outputs j ,

the third argument in A ’s TEST(i , s, j ) call. As for Game3c.1, we have

Advg3
DAKE,n(A ,¬Es) ≤ q ·Advg3d.1

DAKE,n(A ) .

Game3d .2: This differs from Game3d .1 in that the challenger aborts if the call

BatchReceive(ski ,sti , {pk j ′ ,prek j ′ ,m} j ′) in the test session is such that prek j was not previ-

ously output by a call to Init(sk j ,sender). As in Game3c.2, P j must not be corrupted until after

πs
i .status is set to accept. By reducing to SUF-CMA security essentially as in Game3c.2, it follows

that

Advg3d.1
DAKE,n(A ) ≤Advg3d.2

DAKE,n(A )+Advsuf−cma
Sig (A ) .

Game3d .3: This differs from Game3d .2 in that the challenger initially outputs πt
j , the session

that generated prek j which formed part of the input to BatchReceive in the test session πs
i . By

a standard argument we have

Advg3d.2
DAKE,n(A ) ≤ q ·Advg3d.3

DAKE,n(A ) .

Game3d .4: This differs from Game3d .3 in that the challenger aborts if the
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Send(sk j ,pki ,st j ,preki ) call in session πt
j (if it exists) and the relevant component in

the BatchReceive call in the test session πs
i were not both with respect to honestly generated

split-KEM keying material (namely, an honestly generated split-KEM public key from preki

and prek j from the previous hop) and the same split-KEM ciphertext. By freshness, neither

of the two ephemeral states πs
i .st and πt

j .st are revealed. Consequently, we reduce to the

UNF-1KCA security of split-KEM sKEM.

UNF-1KCA adversary A ′ simulates for Game3d .3/Game3d .4 adversary A as follows. Let

(pkA,pkB) be the two challenge public keys given to A ′. In the Init(ski ,receiver) call in ses-

sion πs
i , A ′ simulates except replaces the call to KeyGenAsKEM by pkA. Similarly, in the

Init(sk j ,sender) call in session πt
j , A ′ replaces KeyGenBsKEM by pkB. In the Send(...,prek) call

in session πt
j where prek = (espk, ...), A ′ outputs espk to its UNF-1KCA challenger, receives

(pkA,pkB,ct,KB ) from its challenger, and replaces the call to EncapssKEM with tuple (ct,KB ).

Finally, when the BatchReceive(ski , ·, {·,prek j ′ ,m = (·, ·,cts)} j ′) call in test session πs
i is made,

A ′ outputs cts corresponding to j ′ = j to its challenger. As the simulation is perfect and

the probability that A ′ wins is exactly the probability that 1) (ct,pkA) ̸= (cts ,pk) and 2) rel-

evant DecapssKEM call in BatchReceive outputs k ̸= ⊥, it follows by a standard failure event

argument that

Advg3d.3
DAKE,n(A ) ≤Advg3d.4

DAKE,n(A )+Advunf−1kca
sKEM (A ′) .

Game3d .5: This differs from Game3d .4 in that the output k of the relevant test session split-

KEM decapsulation and the corresponding encapsulation (if it exists) are both replaced by

a uniformly random key. Note that by definition of Game3d .4, A can only input an hon-

estly generated split-KEM ciphertext to the BatchReceive call in the test session from P j and

that the split-KEM public key in P j ’s corresponding Send call (if it exists) must be honestly

generated. We therefore reduce to the IND-1BatchCCA security of sKEM. We embed the

IND-1BatchCCA keys pkA, pkB in the simulation as in the previous hop. When A queries

EXEC(i , s,S = {s j ′ ,prek j ′ ,m j ′} j ′), A ′ replaces all DecapssKEM calls involving skA except the call

corresponding to the test session by the output of its query to oracle BatchDec, replaces this

final DecapssKEM call with the IND-1BatchCCA challenge key and otherwise simulates locally.

It follows that

Advg3d.4
DAKE,n(A ) ≤Advg3d.5

DAKE,n(A )+Advind−1batchcca
sKEM (A ′) .

Game3d .6: This game replaces the relevant invocation of KDF in the test session’s BatchReceive
call by a uniformly random value. Note as usual that Advg3d.6

DAKE,n(A ) = 0. By keying KDF in its

third argument as a PRF and a standard argument it follows that

Advg3d.5
DAKE,n(A ) ≤Advg3d.6

DAKE,n(A )+Adv3prf
KDF(A ′) .

Finally note that by the triangle inequality, we have, among other inequalities:

Advg3
DAKE,n(A ) ≤Advg3

DAKE,n(A ,Ep )+Advg3
DAKE,n(A ,¬Ep ) .
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Sim(sk j ,pki ,st j ,preki ,prek j )

1 : (essk j ,eksk j ,prek j ) ← st j

2 : (espki ,ekpki ,σi ) ← preki

3 : (espk j ,ekpk j ,σ j ) ← prek j

4 : spk←GetPK(sk j .ssk)

5 : require VrfySig(spk, (espk j ,ekpk j ),σ j ) = 1

6 : (Kℓ,ctℓ) ←$ EncapsLKEM(pk j .kpk)

7 : (Kk ,ctk ) ←$ EncapsEKEM(ekpk j )

8 : (Ks ,cts ) ←$ SimsKEM(espki ,essk j )

9 : m ← (ctℓ,ctk ,cts )

10 : sid← Pi ||P j ||pki ||pk j ||preki ||prek j ||m
11 : k←KDF(Kℓ,Kk ,Ks ,sid)

12 : return (k,m)

Figure 7.9: Simulator Sim for the deniability game where we assume we have a function
GetPK(sk) that takes a signature secret key as input and outputs the corresponding public key.

The result follows using this observation and by combining the sequences of hybrids together

in a standard way.

Theorem 7.7.2. Consider deniable split-KEM sKEM with simulator SimsKEM used to build

K-Waay (Figure 7.7). Then, we have that for every efficient adversary A that makes at most

q oracle queries, there exists an efficient Sim s.t. one can build an adversary B such that for

exp ∈ {true, false} we have

Advdeny
K-Waay,Sim,exp(A ) ≤ q ·Advdeny

sKEM,SimsKEM
(B) .

Proof. We construct a sequence of hybrids and reduce to the deniability of sKEM (i.e.

DENYsKEM,SimsKEM security) in each step. Before this, we define the simulator Sim that we use

in the proof, which uses the simulator SimsKEM as a subroutine.

Observe in K-Waay that, given an honestly generated prek j , any party with knowledge only

of public keying material can simulate all steps in Send except for the EncapssKEM call which

requires sender Pi ’s secret key. Thus, our simulator Sim (Figure 7.9) simulates these steps

and since it takes the receiver’s key sk j as input it can also invoke the deniability simulator

SimsKEM to complete the call.

Let Γ0 be the DAKE DENY game instantiated with K-Waay. For i ∈ [q], let Γi be the same as

Γi−1 except that in the i -th CHAL call, the call to Send is replaced with a call to Sim. Note that

the steps executed in Send only differ in that it calls EncapssKEM rather than SimsKEM.

For i ∈ [q], let B be a split-KEM DENY adversary with input (pkA,pkB,skB,K ,ct) from its

challenger playing DENYREAL given A is playing Γi−1 and DENYSIM if it is playing Γi . B′
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locally simulates long-term public key generation and the first i −1 calls to CHAL. When A

makes their i -th call to CHAL, B simulates CHAL until it reaches the if statement except that it

replaces the output of calls KeyGenA/KeyGenB calls in Init calls with pkA/pkB. Then, instead

of executing the if/else block in CHAL, B simulates Sim except that it replaces the output

of the call to SimsKEM with (K ,ct). B then simulates locally, and returns (k,T,str ) (where

str contains skB) if exp = true and returns (k,T ) otherwise. B continues simulating locally

and finally outputs the same bit as A . Noting that DAKE deniability game DENYK-Waay,Sim
considers only honest executions of K-Waay, it follows that the simulation is perfect, and so

by DENYsKEM security we have∣∣∣AdvΓi−1

DAKE(A )−AdvΓi

DAKE(A )
∣∣∣≤Advdeny

sKEM,SimsKEM
(B) .

By application of the triangle inequality and telescoping sums:∣∣∣AdvΓ0

DAKE(A )−AdvΓq

DAKE(A )
∣∣∣≤ q ·Advdeny

sKEM,SimsKEM
(B) .

To complete the proof, observe that AdvΓq

DAKE,n(A ) = 0 since CHAL behaves identically inde-

pendent of challenge bit b.

7.8 Deniable Split-KEM from Lattices

In this section we build an efficient deniable split-KEM under the hardness of LWE. We start

by introducing briefly several concepts of lattice-based cryptography that we use to design the

scheme.

7.8.1 Lattice toolbox

L∞ and Lα norms. We start by recalling what the L∞ and Lα norms over Zq are. For an

element w in Zq , we write ∥w∥∞ to mean |〈w〉q |. Then, we define the L∞ and Lα norms for

w = (w1, w2, . . . , wn) over Zq as follows:

∥w∥∞ = max
j∈[n]

∥w j∥∞, ∥w∥α = α
√∥w1∥α∞+ . . .+∥wn∥α∞.

By default, ∥w∥ := ∥w∥2.

Probability distributions. We will use the binomial distribution Bin1 which is defined as

Bin1(−1) =Bin1(1) = 1/4 and Bin1(0) = 1/2.
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Rounding functions. Given two parameters q and B < log q − 1, we define the rounding

function ⌊·⌉q,B and the cross-rounding function 〈·〉q,B as follows:

⌊·⌉q,B : v 7→
⌊

2B

q
· v

⌉
mod 2B , 〈·〉q,B : v 7→

⌊
2B+1

q
· v

⌋
mod 2 ,

for any v ∈Zq .

Reconciliation function. We recall the (generalised) reconciliation mechanism from Bos et al.

and Peikert [Bos+16; Pei14], which for every approximate agreement in Zq allows extracting

shared bits. We refer the reader to the aforementioned works for more details. Let q be a

positive integer. Let B be the number of bits we want to extract from one coefficient in Zq so

that B < log q −1. Now, for any v ∈Zq , which is represented as an integer in [0, q), we define

the following functions.

Definition 7.8.1 (Randomised doubling function (dbl)). For any v ∈Zq , we define dbl(·) as

dbl(v) : v 7→ 2v −e, e ←$ Bin1 .

Then, we have the following property which comes from [Bos+16, Claim 3.1].

Lemma 7.8.1. Let q be odd. If v ∈Zq is uniformly random and v̄ ←$ dbl(v) ∈Z2q , then ⌊v̄⌉2q,B

is uniformly random given 〈v̄〉2q,B .

Now, we are ready to define the reconciliation function Rec :Z2q ×Z2 →Z2B .

Definition 7.8.2 (Reconciliation function (Rec)). For any w ∈Z2q and bit b ∈ {0,1}, let v be the

closest element to w ∈Z2q s.t. 〈v〉2q,B = b. Then, we define Rec as

Rec(w,b) := ⌊v⌉2q,B .

The next result gives an important property of the reconciliation function Rec, as described by

Peikert [Pei14, Section 3.2].

Lemma 7.8.2. Let q be odd and v̄ ←$ dbl(v). If |v −w | ≤ ⌊ q
2B+2 ⌋ then

Rec(2w,〈v̄〉2q,B ) = ⌊v̄⌉2q,B .

Finally, we define the HelpRec :Zq 7→ {0,1} function as follows:

Definition 7.8.3 (HelpRec function). On any input v ∈Zq ,

HelpRec(v) := 〈v̄〉2q,B , where v̄ ← dbl(v) .
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LWEn,m,χ,q (A )

1 : b ←$ {0,1}

2 : A ←$Zn×m
q

3 : t ←$Zn
q

4 : s ←$χm

5 : e ←$χn

6 : if b = 0 :

7 : b′ ←A (A,As+e mod q)

8 : else :

9 : b′ ←A (A,t)

10 : return 1b=b′

ELWEn,m,n̄,χ,q (A )

1 : b ←$ {0,1}

2 : A ←$Zn×m
q

3 : t ←$Zn
q

4 : e ←$χn

5 : (Z,W) ←$χn̄×m ×χn̄×n

6 : if b = 0 :

7 : b′ ←A (A,As+e mod q,Z,W,Zs+We mod q)

8 : else :

9 : b′ ←A (A,t,Z,W,Zs+We mod q)

10 : return 1b=b′

Figure 7.10: LWE and ELWE games.

All the functions above can be naturally generalised to take as input vectors and matrices over

Zq by applying the function to each of the coefficients.

Learning-with-Errors. Security of our lattice constructions relies on the Learning-with-Errors

(LWE) problem introduced by Regev [Reg05]. In this chapter we will consider the case where

both the secret and error coefficients come from a probability distribution over Z.

Definition 7.8.4 (LWEn,m,χ,q ). Let n,m ∈ N and χ be a probability distribution over Z. The

LWE problem asks the adversary A to distinguish between the following two distributions:

1. (A,As+e mod q) for A ←$Zn×m
q , a secret s ←$χm , and error e ←$χn .

2. (A,t) ←$Zn×m
q ×Zn

q .

The advantage of an adversary A is then defined as

Advlwe
n,m,χ,q (A ) :=

∣∣∣∣Pr
[
LWEn,m,χ,q (A ) ⇒ 1

]− 1

2

∣∣∣∣ ,

where LWE is the game defined on the left of Figure 7.10.

7.8.2 Extended-LWE

Our proof of deniability for the split-KEM will involve a new security assumption, which we

call the Extended-LWE problem (ELWE). Intuitively, it is similar to the plain LWE problem,

but the adversary is now also given random linear combinations of the secrets and errors.

Definition 7.8.5 (ELWEn,m,n̄,χ,q ). Let n,m ∈N and χ be a probability distribution over Z. The

ELWE problem asks the adversary A to distinguish between the following two cases:
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1.
(
A,As+e mod q,Z,W,Zs+We mod q

)
for A ←$Zn×m

q , secret s ←$χm , error e ←$χn , and

(Z,W) ←$χn̄×m ×χn̄×n ,

2.
(
A,t,Z,W,Zs+We mod q

)
for A ←$ Zn×m

q , t ←$ Zn
q , secret s ←$ χm , error e ←$ χn , and

(Z,W) ←$χn̄×m ×χn̄×n .

Formally, we define the advantage of an ELWE adversary A as

Advelwe
n,m,n̄,χ,q (A ) =

∣∣∣∣Pr
[
ELWEn,m,n̄,χ,q (A ) ⇒ 1

]− 1

2

∣∣∣∣ ,

where ELWE is the game defined on the right in Figure 7.10.

This problem is a natural generalisation of the Extended-LWE problem by Alperin-Sheriff and

Peikert [AP12], where now (Z,W) are matrices and not just vectors. Here, we also simplify the

definition and assume that the coefficients of Z and W come from the same distribution χ as

the secrets and errors.

We show in the following theorem that the hardness of this newly introduced ELWE problem

reduces to the hardness of LWE.

Theorem 7.8.1. Let q be an odd prime and χ be symmetric around 0. For any efficient

ELWEn,m,n̄,χ,q adversary A there exists an efficient LWEn+m,m,χ,q adversary B such that

Advelwe
n,m,n̄,χ,q (A ) ≤ 1/δelwe ·Advlwe

n+m,m,χ,q (B)+negl(n) ,

where

δelwe := Pr
[
Z(e−d) = 0 (mod q) : Z ←$χn̄×(n+m),e,d ←$χn+m]

. (7.1)

Proof. The proof is given in Appendix B.

7.8.3 Construction

We can now present our Frodo-inspired [Bos+16] split-KEM. The scheme is given in Figure 7.11.

The key generation works as follows. The public key pkA for party A is a pair (A,BA), where A

is a uniformly random matrix over Zq given as a public parameter, and BA := ASA+DA where

SA,DA ←$χn×n̄ . The secret key becomes a pair skA = (SA,DA). Similarly, the public key pkB for

party B is a pair (A,BB), where BB := SBA+DB, while the secret key is skB = (SB,DB), where

SB,DB ←$χn̄×n .

Then, B samples a matrix EB ←$ χn̄×n̄ and computes the matrix V := SBBA +EB. Next, it

computes ct←HelpRec(V) and K ←Rec(V,ct). Then, B outputs ct. Then, party A decapsulates

as follows: given (pkB,skA,ct), it computes V′ = BBSA +FA and K′ = Rec(2V′,ct). Finally, A
returns the key K′.

186



7.8 Deniable Split-KEM from Lattices

KeyGenA(1λ)

1 : SA,DA ←$χ(Zn×n
q )

2 : FA ←$χn×n

3 : BA ← ASA +DA

4 : pkA ← (A,BA)

5 : skA ← (SA,DA,FA)

6 : return (pkA,skA)

Encaps(pkA = (A,BA),skB = (SB,DB,FB))

1 : // We assume B encapsulates

2 : EB ←$χn̄×n̄

3 : V ← SBBA +EB

4 : ct←HelpRec(V)

5 : K ←Rec(2V,ct)

6 : return (K,ct)

KeyGenB(1λ)

1 : SB,DB ←$χn×n

2 : FB ←$χn×n

3 : BB ← SBA+DB

4 : pkB ← (A,BB)

5 : skB ← (SB,DB,FB)

6 : return (pkB,skB)

Decaps(pkB = (A,BB),skA = (SA,DA,FA),ct)

1 : V′ ← BBSA +FA

2 : K′ ←Rec(2V′,ct)

3 : return K′

Figure 7.11: Our variant of FrodoKEX [Bos+16] expressed as a split-KEM. The matrix A ∈Zn×n
q

is assumed to be a public parameter and sampled uniformly at random.

We note that our construction can easily be made symmetric, in the sense that A can encap-

sulate using B’s public key by changing the order of the operands in matrix multiplication in

Encaps, such that the dimensions match. Then, Decaps can be modified similarly such that B
can decapsulate the resulting ciphertext using A’s public key and its own secret key.

7.8.4 Security analysis

Lemma 7.8.3 (Correctness). Let χ be a symmetric distribution around 0 and δcorr be the

following probability:

Pr
[
|〈s,d〉+e + f | > q

2B+2
: s,d ←$χ2n ,e, f ←$χ

]
. (7.2)

Then, sKEM defined in Figure 7.11 is (n̄2δcorr)-correct.

Proof. Suppose (pkA,skA) ←$ KeyGenA(1λ) and (pkB,skB) ←$ KeyGenB(1λ). In addition, let

(K,ct) ←$ Encaps(pkA,skB) and K′ ←$ Decaps(pkB,skA,ct).

We want to prove that K = K′. By definition of encapsulation, we know that K = Rec(2V,ct)

where ct=HelpRec(V) and

V = SBBA+EB = SBASA+SBDA+EB.
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Thus, by Lemma 7.8.2, K = ⌊V⌉2q,2B . On the other hand,

V′ = BBSA+FA = SBASA+DBSA+FA

which implies that V−V′ = SBDA+EB−DBSA−FA. If ∥V−V′∥∞ < q
2B+2 then by Lemma 7.8.2

we must have

K′ =Rec(2V′,HelpRec(V)) = ⌊V⌉2q,2B = K

so correctness holds. Now, using the fact that χ is symmetric around 0, the probability

∥V−V′∥∞ > q
2B+2 can be upper-bounded using the union bound as follows:

Pr
[
∥SBDA+EB−DBSA−FA∥∞ > q

2B+2

]
≤ n̄2 ·Pr

[
|sT

0 d0 +sT
1 d1 +e + f | > q

2B+2

]
,

where s0,s1,d0,d1 ←$χn and e, f ←$χ. This concludes the proof.

OW-CPA security

Next, we focus on proving the OW-CPA security of our construction.

Lemma 7.8.4 (OW-CPA Security). Let χ be a symmetric distribution over [−γ,γ] for any γ> 0.

Let sKEM be the split-KEM defined in Figure 7.11. Then, for any efficient adversary A , there

exist efficient adversaries B and B′ such that

Advow-cpa
sKEM (A ) ≤ 2−Bn̄2 + n̄ ·

(
Advlwe

n,n,χ,q (B)+Advlwe
n+n̄,n,χ,q (B′)

)
.

Proof. Let A be an efficient adversary against the OW-CPA game. We prove the statement

using the hybrid games described explicitly in Figure 7.12.

Game Γ1: This is the standard OW-CPA game.

Game Γ2: Instead of computing BA ← ASA + DA, the experiment samples BA ← Zn×n̄
q .

One can naturally build an efficient adversary, which can solve the LWEn,n,χ,q problem with

probability at least 1
n̄ |Pr[Γ2]−Pr[Γ1]|. Hence, we deduce that this probability is negligible.

Game Γ3: Here, the experiment computes the values BB and V differently. Namely,

instead of computing: [
BB V

]
:= SB

[
A BA

]
+

[
DB EB

]
,

it samples [
BB V

]
←$Z

n̄×(n+n̄)
q .

Thus, one can naturally construct an efficient reduction which solves LWEn+n̄,n,χ,q with

probability at least 1
n̄ |Pr[Γ2]−Pr[Γ3]|.

Finally, it is easy to see that in Γ3 the matrix V is actually uniformly random over Zq .
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Γ1(A )

1 : SA,DA ←$χ(Zn×n
q )

2 : FA ←$χn×n

3 : BA ← ASA +DA

4 : SB,DB ←$χn×n

5 : FB ←$χn×n

6 : BB ← SBA+DB

7 : EB ←$χn̄×n̄

8 : V ← SBBA +EB
9 : ct←HelpRec(V)

10 : K ←Rec(2V,ct)

11 : K′ ←$ A (A,BA,BB,ct)

12 : return 1K=K′

Γ2(A )

1 : BA ←Zn×n̄
q

2 : SB,DB ←$χn×n

3 : FB ←$χn×n

4 : BB ← SBA+DB

5 : EB ←$χn̄×n̄

6 : V ← SBBA +EB
7 : ct←HelpRec(V)

8 : K ←Rec(2V,ct)

9 : K′ ←$ A (A,BA,BB,ct)

10 : return 1K=K′

Γ3(A )

1 : BA ←Zn×n̄
q

2 : BB ←$Zn×n̄
q

3 : V ←$Zn̄×n̄
q

4 : ct←HelpRec(V)

5 : K ←Rec(2V,ct)

6 : K′ ←$ A (A,BA,BB,ct)

7 : return 1K=K′

Figure 7.12: Security games for the proof of Lemma 7.8.4. The lines in blue highlight the main
differences from the previous game.

Hence by Lemma 7.8.1, for the adversary A , which is given ct, the key K looks uniformly

random. Therefore, the probability of guessing the key is bounded by 2−n̄2B .

Deniability

We will use the (transposed) matrix version of ELWE where the secrets and errors are now

matrices. In particular, we will be interested in the problem of distinguishing between

(A,SA+E mod q,Z,W,SZ+EW mod q)

and

(A,T,Z,W,SZ+EW mod q) ,

where S ←$ χn̄×m , E ←$ χn̄×n and T ←$ Zn̄×n
q . This problem can be reduced to ELWE with

reduction loss n̄ via a standard hybrid argument.

We are ready to prove deniability of the split-KEM based on Extended-LWE. Intuitively, matri-

ces (S,E) := (SB,DB) will be the secret and error constructed by party B, which are hidden from

the adversary, while (Z,W) := (DA,SA) will be the error and the secret generated by A which are

given as input to the simulator. The key observation is that the additional hint provided as

SZ+EW mod q will be used to simulate the “shared key” V (before applying the reconciliation

function).

Theorem 7.8.2 (Deniability). Let sKEM be the split-KEM defined in Figure 7.11 and Sim as

defined in Figure 7.13. Then, for any efficient adversary A , there exist efficient adversaries B
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and B′ such that

Advdeny
sKEM,Sim(A ) ≤ n̄ ·

(
Advelwe

n,n,n̄,χ,q (B)+Advlwe
n,n,χ,q (B′)

)
.

Proof. We proceed with a sequence of games detailed in Figure 7.14.

Game Γ1: This is the standard real deniability experiment, which we recall here. First,

SA,DA ←$ χn×n , SB,DB ←$ χn×n , and FA,FB ←$ χn̄×n̄ are sampled. Then, the public keys

BA = ASA +DA and BB = SBA+DB are computed. The encapsulation algorithm samples

EB ←$ χn̄×n̄ and sets V ← SBBA + EB. Finally, the experiment runs ct ← HelpRec(V) and

K ←Rec(2V,ct) and eventually outputs

(A,BA,BB,SA,DA,FA,K,ct)

to the adversary A .

Game Γ2: The experiment is identical to the previous one, apart from the fact that

now V is explicitly computed as V = SBDA−DBSA+BBSA+EB. Clearly, Pr[Γ1] = Pr[Γ2] since

V = SBDA−DBSA+BBSA+EB

= SBDA−DBSA+ (SBA+DB)SA+EB

= SBBA+EB.

Game Γ3: Here, the experiment follows Γ2 with the only difference being that the experiment

samples BB uniformly at random from Zn̄×n
q instead of computing BB = SBA+DB.

Lemma 7.8.5. There exists an efficient algorithm B that solves the ELWEn,n,n̄,χ,q problem with

probability at least 1
n̄ |Pr[Γ3]−Pr[Γ2]|.

Proof. We provide a reduction B to the (transposed) matrix-version of the Extended-LWE

problem as described above. Namely, the reduction is given a tuple of matrices (A,B,Z,W,H).

Then, it sets SA :=−W, DA := Z and BB := B. Further, the reduction samples FA ←$χn×n and

computes

BA := ASA+DA and V := H+BBSA+EB ,

where EB ←$ χn̄×n̄ . Finally, the reduction runs ct ← HelpRec(V) and K ← Rec(2V,ct), and

outputs (A,BA,BB,SA,DA,FA,K,ct) to the adversary.

Suppose the input tuple received by B is a true Extended-LWE instance, i.e. BB = B = SBA+DB
for SB,DB ←$χn×n . This implies that H = SBZ+DBW = SBDA−DBSA and hence

V = H+BBSA+EB = SBDA−DBSA+BBSA+EB.

This implies that when the input tuple is the Extended-LWE instance then B perfectly sim-
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Sim(A,BB,SA,DA,FA)

1 : Ssim,Dsim ←$χn̄×n

2 : Esim ←$χn̄×n̄

3 : Vsim ← SsimDA −DsimSA +BBSA +Esim
4 : ct←HelpRec(Vsim)

5 : K ←Rec(2Vsim,ct)

6 : return (K,ct)

Figure 7.13: Simulator for the deniability game.

ulates the output of Γ2
6. On the other hand, if BB is uniformly random then B perfectly

simulates the output of Γ3. Finally the statement follows by further reducing the matrix-

version of ELWE to the standard one.

Game Γ4: First, we rename the variables (SB,DB,EB) := (Ssim,Dsim,Esim). Further, instead

of picking BB uniformly at random, the experiment now samples alternative secrets/errors

SB,DB ←$χn×n for B and sets BB := SBA+DB. The rest is identical as in Γ3.

Lemma 7.8.6. There exists an efficient algorithm B′ that solves the LWEn,n,χ,q problem with

probability at least 1
n̄ |Pr[Γ4]−Pr[Γ3]|.

Proof. We describe a reduction B which solves the matrix-version of LWE. Then, the reduction

to plain LWE follows by a hybrid argument. First, B is given a tuple (A,B) where either

B = SBA+DB for short SB,DB or B is uniformly random. In either case, only given A and B, the

reduction B can simulate the rest of Γ3 (and Γ4). If B = SBA+DB then this becomes Γ4, and

when BB is uniformly random then B simulates Γ3.

Finally, we present the simulator in Figure 7.13. Γ4 can now be alternatively described in

the following way. The experiment first samples SA,DA ←$ χn×n and SB,DB ←$ Zn×n
q and

FA ←$χn̄×n̄ . Further, the public keys are defined as BA = ASA+DA and BB = SBA+DB. Finally,

it runs (K,ct) ←$ Sim(A,BB,SA,DA,FA) and outputs (A,BA,BB,SA,DA,FA,K,ct). Hence, Γ4 is

the same as the simulated deniability game. This concludes the proof.

Decaps-OW-CPA Security

Finally, we show that our split-KEM satisfies the decaps-OW-CPA security notion (see Defini-

tion 7.5.6).

Lemma 7.8.7 (decaps-OW-CPA Security). Let sKEM be the split-KEM defined in Figure 7.11, m

be such that the ciphertext space of the split-KEM is {0,1}m , and χ be a probability distribution

6We used the fact that χ is symmetric around 0 to argue that SA :=−W is correctly distributed.
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Γ1(A )

1 : SA,DA ←$χ(Zn×n
q )

2 : FA ←$χn×n

3 : BA ← ASA +DA
4 : pkA = (A,BA)

5 : skA = (SA,DA,FA)

6 : SB,DB ←$χn×n

7 : FB ←$χn×n

8 : BB ← SBA+DB
9 : pkB = (A,BB)

10 : EB ←$χn̄×n̄

11 : V ← SBBA +EB
12 : ct←HelpRec(V)

13 : K ←Rec(2V,ct)

14 : b ←$ A (pkA,pkB,skA,K,ct)

15 : return b

Γ2(A )

1 : SA,DA ←$χ(Zn×n
q )

2 : FA ←$χn×n

3 : BA ← ASA +DA
4 : pkA = (A,BA)

5 : skA = (SA,DA,FA)

6 : SB,DB ←$χn×n

7 : FB ←$χn×n

8 : BB ← SBA+DB
9 : pkB = (A,BB)

10 : EB ←$χn̄×n̄

11 : V ← SBDA −DBSA +BBSA +EB
12 : ct←HelpRec(V)

13 : K ←Rec(2V,ct)

14 : b ←$ A (pkA,pkB,skA,K,ct)

15 : return b

Γ3(A )

1 : SA,DA ←$χ(Zn×n
q )

2 : FA ←$χn×n

3 : BA ← ASA +DA
4 : pkA = (A,BA)

5 : skA = (SA,DA,FA)

6 : SB,DB ←$χn×n

7 : FB ←$χn×n

8 : BB ←Zn̄×n
q

9 : pkB = (A,BB)

10 : EB ←$χn̄×n̄

11 : V ← SBDA −DBSA +BBSA +EB
12 : ct←HelpRec(V)

13 : K ←Rec(2V,ct)

14 : b ←$ A (pkA,pkB,skA,K,ct)

15 : return b

Γ4(A )

1 : SA,DA ←$χ(Zn×n
q )

2 : FA ←$χn×n

3 : BA ← ASA +DA
4 : pkA = (A,BA)

5 : skA = (SA,DA,FA)

6 : SB,DB ←$χn×n

7 : FB ←$χn×n

8 : BB ← SBA+DB
9 : pkB = (A,BB)

10 : Esim ←$χn̄×n̄

11 : Ssim,Dsim ←$χn×n

12 : V ← SsimDA −DsimSA +BBSA +Esim
13 : ct←HelpRec(V)

14 : K ←Rec(2V,ct)

15 : b ←$ A (pkA,pkB,skA,K,ct)

16 : return b

Figure 7.14: Security games for the proof of Theorem 7.8.2. The lines in blue highlight the main
differences from the previous game. The lines in gray correspond to the simulator defined in
Figure 7.13.
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over [−γ,γ] symmetric around 0 for any γ> 0. Then, for any efficient adversary A , there exist

efficient adversaries B and B′ such that

Advdecaps-ow-cpa
sKEM (A ) ≤ 2m ·

(
δn̄2

cpa+ n̄ ·Advlwe
n,n,χ,q (B)+ n̄ ·Advlwe

n+n̄,n,χ,q (B′)
)

,

where

δcpa := max
ct∈{0,1}
u∈Z2B

Pr
w←$Zq

[Rec(2w,ct) = u] . (7.3)

Proof. Let A be an efficient adversary against the decaps-OW-CPA game. We prove the

statement using the hybrid games described explicitly in Figure 7.15.

Game Γ1: This is the standard decaps-OW-CPA game corresponding to the sKEM in

Figure 7.11.

Game Γ2: In this game, the ciphertext ct is not given to the adversary anymore. Note

that the first phase adversary outputting B is now useless and it can be removed, along with

the operations needed to compute ct. Given the ciphertext space is {0,1}m for some m ∈Z, we

have Pr[Γ2] ≥ 1
2m Pr[Γ1] as any adversary in Γ2 can simulate the view of an adversary in Γ1 by

guessing ct.

Game Γ3: In this game, the only change is that instead of computing BB = SBA+DB, it is

picked uniformly at random from Zn̄×n
q . The indistinguishability between Γ3 and Γ2 follows

directly from LWEn,n,χ,q .

Game Γ4: Now, instead of computing BA and V′ as:[
BA
V′

]
=

[
A

BB

]
SA+

[
DA
FA

]
,

the experiment samples BA ←$ Zn×n̄
q and V′ ←$ Zn̄×n̄

q uniformly at random. Then, the

reduction executes Lines 4 to 6 of Γ4. Clearly there is an efficient adversary which solves

LWEn+n̄,n,χ,q with probability at least 1
n̄ |Pr[Γ4]−Pr[Γ3]|.

Finally, since V′ is uniformly random, the probability that any adversary wins Γ4, i.e.

KA = K′
A, can be upper-bounded by δn̄2

cpa by definition of δcpa. Collecting the probabilities

concludes the proof.
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Γ1(A )

1 : SA,DA ←$χ(Zn×n
q )

2 : FA ←$χn×n

3 : BA ← ASA +DA

4 : SB,DB ←$χn×n

5 : FB ←$χn×n

6 : BB ← SBA+DB
7 : st,B ←$ A (BA,BB)

8 : EB ←$χn̄×n̄

9 : V ← SBB+EB
10 : ct←HelpRec(V)

11 : K ←Rec(2V,ct)

12 : K′
A,ct′ ←$ A (st,A,BA,BB,ct)

13 : V′ ← BBSA +FA
14 : KA ←Rec(2V′,ct′)
15 : return 1KA=K′

A

Γ2(A )

1 : SA,DA ←$χ(Zn×n
q )

2 : FA ←$χn×n

3 : BA ← ASA +DA

4 : SB,DB ←$χn×n

5 : BB ← SBA+DB
6 : K′

A,ct′ ←$ A (A,BA,BB)

7 : V′ ← BBSA +FA
8 : KA ←Rec(2V′,ct′)
9 : return 1KA=K′

A

Γ3(A )

1 : SA,DA ←$χ(Zn×n
q )

2 : FA ←$χn×n

3 : BA ← ASA +DA

4 : BB ←$Zn̄×n
q

5 : K′
A,ct′ ←$ A (A,BA,BB)

6 : V′ ← BBSA +FA
7 : KA ←Rec(2V′,ct′)
8 : return 1KA=K′

A

Γ4(A )

1 : BA ←$Zn×n̄
q

2 : BB ←$Zn̄×n
q

3 : V′ ←$Zn̄×n̄
q

4 : K′
A,ct′ ←$ A (A,BA,BB)

5 : KA ←Rec(2V′,ct′)
6 : return 1KA=K′

A

Figure 7.15: Security games for the proof of Lemma 7.8.7. The lines in blue highlight the main
differences from the previous game.

KeyGensKEM(1λ)

1 : (pk,sk) ←$ KeyGensKEM0
(1λ)

2 : return (pk,sk)

DecapssKEM(pkB,skA, (ct, t ))

1 : K ′
0 ←DecapssKEM0

(pkB,skA, (ct, t ))

2 : if H ′(pkA,pkB,ct,K ′
0) ̸= t :

3 : return ⊥
4 : return H(pkA,pkB,ct,K ′

0)

EncapssKEM(pkA,skB)

1 : K0,ct←$ EncapssKEM0
(pkA,skB)

2 : t ← H ′(pkA,pkB,ct,K0)

3 : K ← H(pkA,pkB,ct,K0)

4 : return K , (ct, t )

Figure 7.16: Tskem
CH transform for split-KEMs. We assume that pkB can be derived from skB or

is contained in it.
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7.8.5 Building a UNF-1KCA and IND-1BatchCCA split-KEM

We have proven so far that the modified version of FrodoKEX given above is decaps-OW-CPA

and OW-CPA. We show now that any scheme satisfying both these properties can easily be

transformed into a UNF-1KCA and IND-1BatchCCA split-KEM in the ROM and QROM. The

construction is actually very similar to the TCH transform introduced in Chapter 6 translated

to the split-KEM setting. We present it in Figure 7.16. Then, the following theorem states the

security guarantees of the resulting split-KEM.

Theorem 7.8.3. Let sKEM0 be any split-KEM and sKEM := TCH(sKEM0) be the split-KEM

obtained from applying the TCH transform (Figure 7.16) to sKEM0. Then, in the ROM, we have

that for any efficient UNF-1KCA adversary A , one can build efficient B and C adversaries s.t.

Advunf−1kca
sKEM (A ) ≤ q2

H ′ +1

2s + (qH +qH ′ +1) ·Advdecaps−ow−cpa
sKEM0

(C ) ,

where qH and qH ′ are the number of queries made by A to the random oracles H and H ′,
respectively, and s is the output size of both random oracles. In the QROM, the bound becomes

Advunf−1kca
sKEM (A ) ≤ 8(qH +qH ′)2

22s +ϵ+2(2(qH +qH ′)+1)2 ·Advdecaps−ow−cpa
sKEM0

(B) ,

where ϵ := 2
2s +8

p
2/2s + 40e2(qH ′+2)3+2

2s .

Proof. For the sake of brevity, we provide the proof in Appendix C.

Similarly, we have that the Tskem
CH transform makes an IND-1BatchCCA scheme out of an

OW-CPA one, which is stated in the following theorem.

Theorem 7.8.4. Let sKEM0 be any split-KEM and sKEM := TCH(sKEM0) be the split-KEM

obtained from applying the TCH transform (Figure 7.16) to sKEM0. Then, in the ROM, we have

that for any efficient IND-1BatchCCA adversary A , one can build efficient B s.t.

Advind−1batchcca
sKEM (A ) ≤ q2

H ′ +d

2s +2(qH +qH ′ +d) ·Advow−cpa
sKEM0

(B) ,

where qH and qH ′ are the number of queries made by A to the random oracles H and H ′,
respectively, s is the output size of both random oracles, and d is the number of tuples submitted

to the IND-1BatchCCA oracle BatchDec. In the QROM, the previous bound becomes

Advind−1batchcca
sKEM (A ) ≤ δ+ϵ1 +ϵ2 +ϵ3 +2(qH +d +qH ′)

√
2Advow−cpa

sKEM0
(B) ,

where δ is the correctness error, ϵ1 = 40e2(qH ′+d+1)3+2
2s , ϵ2 = 8d(d +2qH ′ +1)

p
2/2s and ϵ3 = 4d

2s .

Proof. As the proof is nearly identical to the proof of IND-qCCA security of the TCH transform

for PKE/KEM (c.f. Theorems 6.4.1 and 6.4.2), we defer it to Appendix D.
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n n̄ q B χ |t | |pk| |ct|
1452 8 31751 4 U ({−1,1}) 64B 21.3KB 72B

Table 7.1: Concrete parameters for our lattice-based split-KEM, where U ({−1,1}) denotes the
uniform distribution over {−1,1}. We note that in practice, we do not need to include the
whole matrix A in the public key pk, but rather the seed for the pseudorandom function to
generate it (as is the case in this table). The ciphertext ct comprises the original split-KEM
ciphertext (8B) and the tag t (64B).

n̄2δcorr (7.2) δelwe (7.1) δcpa (7.3)
2−48 2−46 2−3.9996

Table 7.2: Correctness and security terms.

We call the split-KEM obtained from applying the Tskem
CH transform on our modified version of

Frodo FrodoKEX+.

7.8.6 Concrete instantiation

In Table 7.1 we propose a parameter set for FrodoKEX+ where we aim for 256-bit security

before applying the transform and 128-bit (resp. 64-bit) security after the transform assuming

264 random oracle (resp. quantum random oracle) queries. In addition, we give the security

terms in Table 7.2. We show in the following how these parameters were computed, where we

set (B , n̄) = (4,8).

Correctness error and security loss

One of the main challenges in instantiating our FrodoKEX variant is computing δcorr and δelwe
from Equations 7.2 and 7.1. They are related to the correctness error and the security loss of

ELWE. First, we recall that we set χ to be a uniform distribution over the set {−1,1}. Clearly, it

is symmetric around 0 and has standard deviation equal to 1.

Another useful property of this distribution is that a product X Y , where X ,Y ←$χ, still follows

the distribution of χ. Based on this observation, we have

δcorr = Pr
X1,...,X2n+1←$χ

E←$χ

[∣∣∣∣∣2n+1∑
i=1

Xi +E

∣∣∣∣∣> q

2B+2

]
.

We can directly compute this term using Laurent polynomials. Namely, define

P (X ) := Pr
X←$χ

[X = 1] ·X + Pr
X←$χ

[X =−1] ·X −1 = 1

2
· (X +X −1) .

Then, using the convolution properties, we observe that the probability of X1 + . . .+X2n+2 = k,
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for some −2n −2 ≤ k ≤ 2n +2, is equal to the k-th coefficient of the polynomial P (X )2n+2.

Hence, we calculate δcorr by computing P (X )2n+2 and summing all the k-th coefficients, such

that 2n +2 ≥ |k| > q
2B+2 .

We now turn into computing δelwe. The first step is the analysis of the following random

variable v = 1
2 · (e −d) · z, where e,d ←$ χ and z ←$ χn̄ . We denote this distribution as V . By

simple calculation we get:

Pr[v = a] = Pr

[
1

2
· (e −d) ·z = a

]
=


1
2 if a = 0

1
2n̄+1 if a ∈ {−1,1}n̄

0 otherwise

.

Then, the multivariate Laurent polynomial corresponding to v has an elegant form:

P (X1, . . . , Xn̄) = 1

2
+ 1

2n̄+1

n̄∏
i=1

(Xi +X −1
i ).

As before, we observe that δelwe is the probability that for v1, . . . ,vn+m ←$ V ,

2 · (v1 + . . .+vn+m) = 0 (mod q) ⇐⇒ v1 + . . .+vn+m = 07.

In terms of the newly defined Laurent polynomials, δelwe is the constant coefficient of:

P (X1, . . . , Xn̄)n+m =∑n+m
j=0

(n+m
j

) 1
2n+m− j · 1

2(n̄+1) j ·
∏n̄

i=1(Xi +X −1
i ) j .

We now look at the constant coefficient of each of the n +m +1 terms of the sum. The first

observation is that

(Xi +X −1
i ) j =

j∑
k=0

(
j

k

)
X ( j−k)

i X −k
i =

j∑
k=0

(
j

k

)
X ( j−2k)

i .

Hence, the constant coefficient of the expression above is 0 if j is odd, and
( j

j /2

)
when j is even.

Consequently, the constant coefficient of
∏n̄

i=1(Xi +X −1
i ) j is either 0, for odd j , or

( j
j /2

)n̄
for

even j . Hence, we conclude that

δelwe =
∑

j even

(
n +m

j

)
1

2n+m− j
· 1

2(n̄+1) j
·
(

j
j
2

)n̄

which can then be computed efficiently for our parameters. Finally, δcpa can be straightfor-

wardly computed for small primes, such as ≈ 215. In our case, we make sure that δn̄2

cpa ≈ 2−256

for the decaps-OW-CPA proof.

7This holds as long as n +m < q/2 since then no modulo overflow occurs.
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Hardness of LWE

We measure the hardness following the methodology used for the original FrodoKEX [Bos+16]

for fair comparison, and refer to it for more details on the attacks. Here, the main bottleneck

of setting the parameters is the reduction loss between ELWE and plain LWE. Taking this into

account for the parameters proposed above, we aim for 307-bit classical LWE security.

We consider the primal and dual BKZ attacks [SE94; CN11]. As a subroutine, the BKZ algo-

rithm with block-size b uses an algorithm for the shortest vector problem (SVP) in lattices

of dimension b. As in Frodo [Bos+16], for precautionary purposes we only count the cost of

one such call (even though in practice it will run the SVP sub-algorithm polynomially many

times). The lower-bound on the time complexity of one call is given by about b2cb CPU cycles,

where c ≈ 0.292 for classical attacks, and c ≈ 0.265 for quantum attacks (see Laarhoven [Laa16,

Section 14.2.10]). For 307-bit classical security, this corresponds to the block size being 1018,

and the root Hermite factor being ≈ 1.0020 (in the quantum setting these parameters corre-

spond to 279 bits of security). Further, we estimate the hardness of LWE against known attacks

using the LWE estimator by Albrecht et al. [APS15]. Namely, we run the estimator under both

“sieving” and “enumeration”, and set the final root Hermite factor δ as the largest root Hermite

factor returned by the program.

7.9 Benchmarks, Comparison and Discussion

Hereafter, we refer to the scheme by Brendel et al. [Bre+22] as SPQR, and we refer to the

deniable (i.e. with ring signatures) scheme by Hashimoto et al. [Has+22] as HKKP.

7.9.1 Benchmarks

Security of non-standard primitive. As K-Waay, SPQR and HKKP can each be implemented

using, except for a single primitive in each case, only (soon to be) standardised primitives,

we wish to compare the security of the non-standard primitives. In the case of K-Waay
it is a split-KEM, here implemented using a variant of FrodoKEX passed through the TCH
transform (that we call FrodoKEX+), and in the case of both HKKP and SPQR it is a ring

signature (RS), or a designated verifier signature (DVS) derived from a ring signature. The

authors of both SPQR and HKKP proposed possible implementations for the RS without

picking one in particular. The most efficient one for a ring of size 2 that has an existing C

implementation is Raptor [LAZ19] which we use for the benchmarks below. Other candidates

would be Falafl [BKP20] or DualRing-LB [Yue+21].

We present in Table 7.3 a summary of the security claims, approximate leading factor in the

bounds in the (Q)ROM, and assumptions for these non-standard primitives. We note that

none of these primitives are proven secure in the standard model and all are based on lattices.

First, we note that parameters for these RS schemes are picked before the reduction in the
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Scheme Cl. (C) Cl. (Q) ROM bound QROM bound Assumption
FrodoKEX+ 128 64 (qH +d)/2192 (qH +d)/2128 LWE

Raptor [LAZ19] 114 103 ? ✗ NTRU
DualRing-LB [Yue+21] (128) (64) ? ✗ MSIS, MLWE

Falafl [BKP20] 128 64 ? ✗ MSIS, MLWE

Table 7.3: Security comparison between FrodoKEX+and several post-quantum RS. ‘Cl.’ stands
for claimed number of security bits. DualRing-LB’s authors do not seem to make a clear
security claim, we thus assume NIST level I. ‘?’ indicates that no bound is explicitly given for
the security, ‘✗’ indicates that no proof is provided in the QROM.

ROM. That is, a primitive P based on lattices is built, parameters are chosen such that P

satisfies the security claim, then P is used to build a RS in the ROM, which incurs a loss factor

that usually depends on the number of queries to the random oracle qH . In particular, it is

common to have at least a qH factor in the security bound (e.g. if the adversary can make 264

queries to the RO, the security level is reduced by 64 bits). Therefore, the claimed security level

does not match the provable security level. In the QROM, the security loss is usually greater:

square root and q2
H or q3

H losses are quite common, however these schemes are not proven

secure in this model.

We chose the opposite approach in designing a split-KEM with a conservative assumption

(i.e., plain LWE) and parameters. Therefore, FrodoKEX+ with our proposed parameters

achieves 128 (resp. 64) bits of classical (resp. quantum) security after the (Q)ROM proof.

We put the (approximate) highest terms of both the ROM and QROM security bounds in

Table 7.3. These satisfy our security claims as long as qH +d ≤ 264, where d is the number of

public key/ciphertext tuples allowed in the IND-1BatchCCA game. We note that in K-Waay, d

corresponds to the number of distinct users trying to communicate with an offline receiver

after all prekeys have run out, thus should typically be small.

The reason behind the approximations and lack of QROM proofs for PQ ring signatures is

likely the youth of the field and the speed at which it is evolving. Still, we believe it is worth

noting as it makes any comparison between our protocol and previous ones quite difficult.

Benchmarking. The protocols we benchmarked are: our own implementation of the current

X3DH protocol, a witness protocol made only with PQ KEMs, and a signature scheme similar

to the non-deniable variant of HKKP, Brendel et al.’s [Bre+22] construction SPQR using PQ

KEMs, a signature scheme and a DVS, Hashimoto et al.’s [Has+22] construction HKKP using

PQ KEMs, a signature scheme and a RS, and our scheme K-Waay using PQ KEMs, a signature

scheme and FrodoKEX+ as the split-KEM.

We picked Kyber512 as the KEM, both Falcon-512 and Dilithium2 as signatures, and Raptor as

the ring signature. We implemented both HKKP and SPQR with signed prekeys as is the case

in Signal’s implementation of X3DH. That is, a PQ signature key pair is part of the long-term
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Figure 7.17: Speed benchmark for X3DH protocols

key, and ephemeral keys uploaded to server are signed with it. Note that this is make explicit in

K-Waay as the ephemeral keys are signed with the long-term one. The authors of HKKP show

that this is not necessary in their protocol, however not doing so weakens perfect forward

secrecy.

We built the different protocols in C using the liboqs library8 for Kyber, Falcon, and Dilithium,

the Raptor implementation provided by the authors9, and a modified version of the lwe-frodo
library10 with scaled parameters to properly simulate FrodoKEX+. More precisely, the mod-

ulus was set to the first power of 2 larger than the modulus in FrodoKEX+, the addition of

the noise during decapsulation was also added, and the noise distributions were modified to

match the ones of FrodoKEX+. We did not optimise the scheme in any way (e.g. by using AVX

instructions or parallelisation) and we leave this as future work. For the sake of completeness,

we also provide a reference implementation of FrodoKEX+ in Rust11 for the interested reader.

All benchmarks were run on a virtual machine running Ubuntu 22.04 with 2 cores of an Intel

i7-9750H running at 2.60GHz and 4GB of RAM allocated.

Speed. For the speed benchmark, we measured how many cycles each protocol takes in one

execution. We summarise our results in a logarithmic graph on Figure 7.17 (note that the

internal division of the bars is linear).

Depending on the choice of KEM and signature scheme, our protocol K-Waay is between 3

and 6 times faster than the previous proposals even with our relatively conservative parameter

choice. In our protocol K-Waay using Dilithium2, most cycles are spent in the ephemeral key

generation, while using Falcon makes the static key generation as expensive as the ephemeral

key one. Overall, one can see that Falcon, while more compact than Dilithium2, has a great

8https://github.com/open-quantum-safe/liboqs
9https://github.com/zhenfeizhang/raptor

10https://github.com/lwe-frodo/lwe-frodo
11https://github.com/lehugueni/frodokexp-rust
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7.9 Benchmarks, Comparison and Discussion

Scheme |lpk| |prek| |ct|
K-Waay + Dilithium 2112 24520 1632
K-Waay + Falcon 1697 22790 1632
HKKP [Has+22] 1700 1700 4056
HKKP [Has+22] + Dilithium2 3012 4120 4056
HKKP [Has+22] + Falcon 2597 2390 4056
SPQR [Bre+22] 3400 1632 4824
SPQR [Bre+22] + Dilithium2 4712 4052 4824
SPQR [Bre+22] + Falcon 4297 2322 4824

Table 7.4: Size comparison in bytes between K-Waay instantiated with FrodoKEX+, HKKP
[Has+22] and SPQR [Bre+22]. We also computed the sizes for both HKKP and SPQR imple-
mented with signed prekey bundles.

impact on efficiency. For instance, K-Waay with Dilithium2 is faster than the non-deniable

scheme using Kyber and Falcon.

Apart from Falcon, we see that the most time-consuming primitives are the non-standard

ones, i.e., ring signatures and split-KEM. Hence, we see that the KEM+SIG protocol (HKKP’s

baseline proposal that does not provide deniability) performs even better than X3DH, which

shows once again that lattice-based schemes can be faster than their classical counterparts.

Interestingly, X3DH is the only construction that spends more time in sending and receiving

than generating keys. Finally, we note that our protocol’s Send and Receive (i.e. BatchReceive
with a single input message) procedures are very fast.

Data size. In Table 7.4, we provide for each scheme the size of the long-term keys, the prekeys

(output by Init in our DAKE syntax), and the ciphertext output by the sender. We computed for

both HKKP and SPQR the size with and without long-term signatures. We see that K-Waay
compares well in terms of long-term public key and ciphertext size as both are smaller than

in HKKP and SPQR with signed prekeys. However, the prekeys are much larger as one could

expect from a LWE-based scheme and due to our conservative choice of parameters.

7.9.2 Advantages, limitations, and discussion

Running out of ephemeral keys. The main disadvantage of our protocol is that running out

of ephemeral keys requires the receiver to abort if any of the sessions that used the same

prekey is bogus. If this happens, then a malicious party could mount some kind of denial of

service (DoS) attack against the user that was offline for too long by sending a bogus split-KEM

ciphertext. There is an obvious trade-off between the risk of such an attack happening and the

number of ephemeral keys uploaded on the server, thus the storage required on the server.

We leave the analysis and the mitigation of such a threat as future work, but we believe that

if a reasonable amount of prekeys are uploaded, creating fake accounts is difficult (e.g. by

requiring a phone number as in Signal), and/or users are online often enough, such an attack
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would be difficult to mount. Furthermore, several practical mitigations are possible. For

instance, if the receiver (i.e. the victim) received a bogus ciphertext among the n ciphertexts

sent for the same prekey while offline, they can restart K-Waay with the n parties but as the

initiator, which will probably succeed. The victim could also send n new prekeys to the n

initiators directly, making sure the protocol will succeed at the next iteration. This would make

the attack less useful as it could only delay communication and not prevent it.

We also think it is worth mentioning that the trick we propose might be easy to mis-implement.

In particular, it is crucial that no information about which split-KEM ciphertext failed leaks if

such a situation occurs. That is, all precautions should be taken such that such leakage via

side-channels is prevented.

split-KEM instead of ring signatures. The first advantage of using our protocol over existing

ones is the use of an ephemeral primitive instead of a long-term one, the former being often

more efficient as the security requirements are less strict. In addition, the use of a primitive

similar to a post-quantum KEM allows us to leverage the extensive literature on the topic

and existing safe/optimised implementations. This also gives good security guarantees as

post-quantum KEMs have been heavily scrutinised as part of the NIST standardisation process.

For example, as mentioned above, our proposed lattice-based implementation is based on a

key-exchange variant of FrodoKEM, which is itself the PQ KEM recommended by the German

Federal Office for Information Security (BSI) [Inf23]. Overall we think that a split-KEM such as

FrodoKEX+ is more mature and closer to being usable in practice than ring signatures.

On the necessity of modifying FrodoKEX. Currently, our split-KEM differs from the original

FrodoKEX in two aspects: (i) the modulus for our construction has to be prime in order for

our reduction from Extended-LWE to LWE to hold, and (ii) we have to introduce additional

masking terms to prove decaps-OW-CPA security. However, we believe that both changes

are artefacts of the security proofs, and the original FrodoKEX split-KEM should be (up to a

reasonable security loss) deniable.

There are alternative reduction techniques from Extended-LWE to LWE in the literature

[Bou+21; Bra+13], which do not rely on having an odd modulus at the cost of using dis-

crete Gaussian error distributions with large parameters. It is thus an interesting research

problem to efficiently reduce Extended-LWE to LWE for even modulus with small reduction

loss.

As for our second main modification, it is unclear how to argue decaps-OW-CPA security

without the additional masking terms.

Deniability. While the signature on the ephemeral public keys might give the impression

that our protocol is less deniable than X3DH or previous PQ alternatives, this is actually not
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the case. The reason is that prekey bundles in these protocols are signed as well, but this

detail is abstracted away in the analysis (i.e. it is assumed that all parties have received and

authenticated all public keys before the protocol actually starts). While this kind of analysis

allows for strong deniability claims, in practice these protocols do not satisfy something

stronger than some kind of peer-deniability. The exception is the ring signature based variant

by Hashimoto et al. [Has+22], where the prekey bundle is not necessarily signed. However, in

this variant, the authors can only prove the security of their protocol in a weaker model (i.e. it

satisfies a weaker notion of forward secrecy). Overall, if deniability should not come at the

price of security, peer-deniability seems like the best notion one can achieve in these DAKEs.

We wished to provide a transparent model for peer-deniability, where the upload of signed

ephemeral keys is made explicit. We also strengthen the deniability definition of Brendel et

al. [Bre+22] by allowing the exposure of one of the parties (i.e. the receiving one, which would

be the malicious party trying to frame the sender). While our protocol satisfies our stronger (in

terms of key exposure) notion of deniability, we believe both previous PQ X3DH alternatives

satisfy it as well. Indeed, in these schemes, the ephemeral keys are KEM and RS keys only,

which are deniable. Hence, exposing these should not harm deniability.

Hashimoto et al. [Has+22] consider a strong notion of deniability where the adversary is

malicious (i.e. can arbitrarily deviate from the protocol) and show how to modify HKKP s.t.

it is secure against such a threat. However, such deniability comes at the expense of NIZKs,

which are complex, expensive and are not always proven secure in the QROM when random

oracles are used. Moreover, as in other deniable systems against malicious adversaries, non-

falsifiable assumptions (i.e. knowledge-type assumptions) are required to prove the security.

In addition, it seems difficult to defend against adversaries actively trying to frame a given

user in messaging in practice [GPA19; CCH23]; for example, an adversary could also simply

ask questions that would identify the victim with good probability. Because of these reasons,

we do not consider such a notion of deniability here.

To contextualise our results, we remark here that cryptographic deniability, which is targeted

by this work and all previous work on deniable X3DH key exchange, translates to deniability

on a system level only if the application preserves deniability. For example, we observe in

another work not included in this thesis [CCH23] that Signal as currently deployed does not

provide this kind of ‘practical’ deniability for ordinary users. Suppose Bob is trying to frame

Alice and hands over their phone, that contains a transcript of communication between Alice

and Bob, to a judge. Because Signal authenticates users (either directly or indirectly through

Signal sealed sender [Lun18]), unless Bob was able to modify their phone (which depends

on the technical expertise of Bob), the judge can deduce that the conversation plausibly took

place as in the transcript, regardless of the cryptographic protocols employed underneath.

An optimisation. As presented in Section 7.7, the K-Waay protocol generates a signature

for each ephemeral public key uploaded. This can easily be optimised by signing the whole
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prekey bundle containing several ephemeral keys. This way, the server needs to store only one

PQ signature for each user. The downside is that now each user needs to download the whole

bundle to verify the signature. This offers a trade-off between data stored at the server and

sent to clients.
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8 Conclusion

We saw in this thesis the challenges that quantum computing poses to cryptography. In

particular, it seems that the design space of efficient post-quantum public-key encryption

schemes is somewhat narrow, as all candidates proposed to NIST for standardisation share a

similar structure. More precisely, they use a FO-like transform to guarantee IND-CCA security.

We studied in this dissertation how these transforms impact security and efficiency, and why

it is hard to get rid of them. We also explored the realm of post-quantum protocols and

how primitives weaker than IND-CCA KEMs can be employed to construct them. In this last

chapter, we briefly summarise the content of this thesis and discuss further directions that

could be explored.

We started by studying misuse attacks against several NIST candidates in Chapter 3. To no

surprise, the schemes based on lattices and codes in the Hamming metric were no more resis-

tant to KR-PCA than the candidates we previously studied [Băe+19]. That is, a few thousand

queries to the plaintext-checking oracle are needed to recover the key. These results have been

most impactful in the field of side-channel attacks, with several of them building upon our

techniques (e.g. [Uen+22; Xag+21]). Overall, numerous plaintext-checking attacks have been

proposed and this topic of research has been extensively studied since the publication of our

results (e.g. [Qin+21; Raj+23; Azo+22]). A more interesting direction for future work would be

to analyse further the resistance of rank-based schemes to KR-PCA, as we merely showed that

the learning problem was hard but other types of attacks might be more efficient.

In Chapter 4, we showed how to generalise the concept of FO-like transforms by introducing

FO-like combiners that take several PKEs as input and output a hybrid IND-CCA KEM. We

also analysed how random oracles can be combined in our construction, as for practical

reasons hash functions are often nested in FO implementations, which sometimes creates

difficulties in security proofs (e.g. [GMP22]). Finally, we studied how hybrid schemes based on

the NIST round 2 proposals would perform. We only scratched the surface there, and it would

be interesting to benchmark these hybrid schemes and others in real-life scenarios. Overall,

we believe that the devastating cryptanalyses of SIDH and Rainbow highlight the relevance of

hybrid cryptography and combiners.
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Chapter 8. Conclusion

In the subsequent chapter, we translated Gertner et al.’s impossibility result to the post-

quantum setting. That is, we showed that there is no shielding black-box reduction from

IND-CCA to IND-CPA, even when the reduction algorithm and the adversaries are quantum.

Going from there, the obvious open question is to extend such an impossibility result to the

general case, i.e. to show that there is no black-box reduction from IND-CCA to IND-CPA in

the standard model. This problem has been around for decades now and solving it would be a

major result in theoretical cryptography.

Next, in Chapter 6, we showed that there are very efficient transforms that take a CPA-secure

PKE and output an IND-qCCA KEM. Compared to FO-induced KEMs, those output by our

transform can be twice as efficient at decryption due to the absence of re-encryption. We did

not provide a QROM proof for the second transform we introduced (i.e. TH), but since the

publication of the corresponding paper such a result was produced by Jiang et al. [JMZ23]

for the IND-1CCA case. A proof for the generic IND-qCCA case is still missing. One could

also aim at reducing the loss in the security bounds. In the second part of the same chapter,

we proved that a CPA-secure KEM can be used in the post-quantum variant of TLS 1.3. Our

demonstration is only valid in the ROM and a proof in the QROM is left as future work. In

addition, the security loss induced by our proof is huge, thus reducing it to make the result

practically relevant would be of interest.

Finally, in Chapter 7, we introduced K-Waay, the first PQ asynchronous DAKE that does not

rely on ring signatures. Instead, we revisited the notion of split-KEM [Bre+21] by augmenting

it with additional security properties and we used it as the main building block of our protocol.

We then proposed an instantiation of the split-KEM using a modified version of the Frodo

key-exchange [Bos+16]. In order to prove our split-KEM deniable, we had to rely on the

Extended-LWE problem, which we showed to be as hard as plain LWE up to a loss factor. To

make the latter as small as possible, our construction uses an odd modulus, which impacts the

efficiency. Hence, providing a more efficient reduction for even modulus would be interesting

future work. In practice, the most efficient LWE attacks do not consider the structure of the

modulus, so intuitively this should translate to the Extended-LWE setting. More generally,

proving the original FrodoKEX scheme provides deniability and decaps-OW-CPA security is

left as an open problem.

The main drawback of our split-KEM FrodoKEX+ is that the public keys are quite large.

Therefore, another interesting line of work would be to build a more efficient split-KEM based

on, e.g., structured lattices. Indeed, the problem of Ring/Module-LWE with hints (equivalent

to Extended-LWE in these structures) has already been analysed [Bou+21; Mer+22]. However,

the problem is that in our case the hints are composed of the multiplication of both secret

keys, informally. Thus, in the ring setting that hint would be at least a single polynomial,

which would contain O(λ) coefficients, where λ is the security parameter. In turn, this would

probably make the reduction loss much larger.

On a more practical note, K-Waay could probably be optimised in several ways. First, the
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parameters we propose for the split-KEM are very conservative (e.g. we guarantee more than

200 bits of security for deniability), therefore one could propose smaller parameters for better

memory/storage efficiency. Also, it would be informative to benchmark K-Waay and other

protocols in real-life conditions, and to implement additional ring signature schemes to get a

more complete comparison. One could also try to find other applications of IND-1BatchCCA

and of the type of transforms introduced and used throughout Chapters 6 and 7.
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A Hashed DH is IND-1CCA

We prove here that Diffie-Hellman with hashed key as used in TLS 1.3 is a IND-1CCA KEM in

the ROM, if the CDH assumption holds.

Theorem A.0.1. Let DH be the Hashed Diffie-Hellman key-exchange modelled as a KEM, Z∗
p

be the associated group for a safe prime p, and g be a generator of a subgroup G of Z∗
p s.t. the

order of G is prime. In addition, let the hash function H be modelled as a RO. Then, for all ppt

adversaries A making at most qH queries to the RO, there exists a CDH solver B s.t.

Advind-1cca
DH (A ) ≤ qH (qH +1) ·Advcdh

G (B) ,

where B runs approximately in the same time as A .

Proof. The idea of the proof is similar to the previous ones. First, we notice that (contrary to

PQ schemes), the only ciphertext that decrypts to the challenge key in DH in a group of prime

order is the challenge ciphertext. Since the latter cannot be queried to the decapsulation

oracle, in the IND-1CCA game the adversary can only recover one RO value associated to

another key. Since the RO is perfectly hiding, this does not give much information to the

adversary. Then, in the CDH reduction B, one can simulate the decapsulation oracle for A

by always returning a random value. The only issue is if the corresponding value matches a

query to the random oracle. However, as this happens at most once, B can guess whether it

will happen and at which query (e.g. by sampling a value i in {0, . . . , qH }). If the guess is correct

the simulation is perfect. Finally, A can only distinguish the real and random keys if it queries

the CDH solution to the RO.

Formally, we proceed with a short sequence of games presented in Figure A.1. We assume

w.l.o.g. that each query A makes to the RO H is unique.

Γ0 : This is the IND-1CCA game with DH expressed as a KEM. I.e. we identify the public

key with g a , the secret key with a, the challenge ciphertext with g b , and the key as H(g ab).

Also, we assume the decapsulation oracle only accepts elements of the subgroup G as inputs.
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Γ0−2(A )

1 : (g a , a) ←$ Gen
2 : β←$ {0,1}

3 : (g b , g ab ) ←$ Encaps(g a )

4 : K0 ← H(g ab )

5 : K1 ←$ {0,1}n

6 : β′ ←A ODec
(g a , g b ,Kβ)

7 : if query : abort // Γ2

8 : return 1β′=β

H(σ)

1 : if σ= g ab : query← true // Γ2

2 : if ∃h s.t. (σ,h) ∈LH :

3 : return h

4 : h ←$ {0,1}n

5 : LH ←LH ∪ {(σ,h)}

6 : return h

Oracle ODec(g x ∈G)

1 : if g x = g b : abort

2 : if more than 1 query :

3 : return ⊥
4 : σ′ ← (g x )a

5 : if σ′ = g ab : abort // Γ1-Γ2

6 : return H(σ′)

Figure A.1: Sequence of games for the proof of Thorem A.0.1.

B(g , g a , g b)

1 : K ←$ K

2 : KDec ←⊥
3 : LH ←;
4 : i ←$ {0, . . . , qH +1}

5 : b′ ←A ODec ,H (g a , g b ,K )

6 : σ←$ LH

7 : return σ

H(σ)

1 : h ←$ {0,1}n

2 : if i -th query :

3 : if KDec ̸=⊥: h ← KDec
4 : else : KDec ← h

5 : LH ←LH ∪ {σ}

6 : return h

Oracle ODec(g x ∈G)

1 : if more than 1 query :

2 : return ⊥
3 : if KDec =⊥:

4 : KDec ←$ {0,1}n

5 : return KDec

Figure A.2: CDH adversary B for the proof of Theorem A.0.1. We assume all queries to H are
fresh (e.g. we do not check whether an identical previous query was made in H).

Note that w.l.o.g the game aborts if the adversary queries the challenge ciphertext to the

decapsulation oracle.

Γ1 : This is the same as Γ0, except we abort if on input g x , the decapsulation oracle computes

g ax s.t. g ax = g ab . Now, since G is a subgroup of prime order of Z∗
p , this happens iff

x = b ⇒ g x = g b . Since decapsulation queries on the challenge ciphertext g b are disallowed,

Γ0 and Γ1 are identical.

Γ2 : As in other proofs, we abort if the challenge seed g ab is queried by the adversary to the RO.
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We call this event query. We have

|Pr[Γ1 ⇒ 1]−Pr[Γ2 ⇒ 1]| ≤ Pr[query] .

We give in Figure A.2 a CDH adversary B s.t. B wins with probability at least 1
qH+1 Pr[query].

Note that in Γ2, as long as query does not happen, the decapsulation oracle and the random

oracle H always return fresh values sampled uniformly at random unless:

1. The decapsulation oracle returns H(g ab). However, by the condition enforced since Γ1,

this cannot happen.

2. The decapsulation oracle returns H(g ax ) for some x, and H(g ax ) is later queried by

A , or the other way around. Let i be s.t. H(g ax ) was the i -th query made to H by the

adversary and let i = 0 if no such case happen. If i > 0, then the i -th query to H must

return the same value as the result of the decapsulation oracle. In our reduction, we let

B guess i in advance and thus the simulation is perfect with probability 1
qH+1 .

Hence, if B guessed the correct i , the simulation of game Γ2 is perfect and if query happens,

B can recover g ab in the list of queries made to H . However, as it cannot check which value is

correct, it outputs a random query made to H and succeeds with probability 1
qH

. Overall, we

have

Advcdh
G (B) ≥ 1

qH (qH +1)
Pr[query] .

Collecting the probabilities concludes the proof.

Remark. In the proof, for simplicity, we used the fact that DH is performed in a subgroup of

prime order. We note that it is always the case in TLS 1.3 (the list of supported groups is given

in RFC 7919 [Gil16]).
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B Proof of Theorem 7.8.1

Proof. We prove the statement by introducing a sequence of LWE-type games Γi .

Game Γ1: This is the standard ELWEn,m,n̄,χ,q game. The adversary A wins this game

with probability Pr[Γ1].

Game Γ2: Here, we consider the ELWE-type game where the secret vector is uniformly

random. Namely, the challenger samples the public A ←$ Z
(n+m)×m
q , secret s ←$ Zm

q , error

e ←$Zn+m
q as well as the hint matrix Z ←$χn̄×(n+m). Then it flips a bit b ←$ {0,1}. If b = 0 then

the challenger computes

t := As+e

and otherwise it samples t ←$Zn+m
q . The challenger outputs (A,t,Z,Ze).

Lemma B.0.1. For every efficient adversary A , there is an efficient adversary B such that

Pr[Γ2] ≥ Pr[Γ1]−negl(n).

Proof. The reduction follows similarly as in the one by Applebaum et al. [App+09]. Suppose

the algorithm B is given a tuple (A,t,Z,h) from Γ2. With probability at most 1/q (n+m)−m−1 ≤
1/qn−1, the matrix A is not full-rank. Let us exclude that case and assume without loss of

generality that we can write

A :=
[

A0

A1

]
, Z :=

[
Z0 Z1

]
, and t :=

[
t0

t1

]

where A1 ∈Zn×m
q and the matrix A0 ∈Zm×m

q , which contains the first m rows of A, is invertible.

Thus, define A′ := A1A−1
0 ∈Zn×m

q , and t′ := A′t0 − t1 ∈Zn
q . Then, it runs A on input(

A′,t′,Z0,−Z1,h
)

and returns what A outputs.
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Suppose that t = As+e where s ∈Zm
q and e := (e0,e1) ∈Zm

q ×Zn
q . Then

t′ = A′t0 − t1 = A1A−1
0 (A0s+e0)− (A1s+e1) = A′e0 −e1 ,

which is a valid LWE instance since χ is symmetric around 0. Also, if A is uniformly random

among all nonsingular matrices, then A′ and B′ are statistically close to uniformly random

matrices over Zq . As for the hints, note that

h = Z0e0 +Z1e1 = Z0e0 + (−Z1)(−e1),

so h is a well-formed hint for Γ1.

On the other hand, if t is uniformly random, then so is t′. It can be argued similarly as before

that all the other components follow the distribution for b = 1.

Game Γ3: We consider the knapsack version of ELWE. Here, the challenger samples the public

G :=←$ Z
n×(n+m)
q , secret e ←$ Zn+m

q and the hint matrix Z ←$ χn̄×(n+m). Then it flips a bit

b ←$ {0,1}. If b = 0 then the challenger computes t := Ge, and otherwise it samples t ←$Zn
q .

Finally, the challenger outputs (G,t,Z,Ze).

Lemma B.0.2. For every efficient adversary A , there is an efficient adversary B such that

Pr[Γ3] ≥ Pr[Γ2]−negl(n).

Proof. The reduction is similar to the proof of Micciancio and Mol [MM11, Lemma 4.9]. Sup-

pose the algorithm B is given a tuple (G,t,Z,h) from Γ3. Then, B can construct a randomised

matrix A ∈Z(n+m)×m
q whose columns generate the kernel of G. In particular, if G is uniformly

random, then so are (A,B), up to the constraint that they are nonsingular. Then, B computes

any solution r such that Gr = t. Finally, it samples a uniformly random s ←$Zm
q and runs A on

input

(A,As+ r,Z,h)

and returns what A outputs.

Suppose that Ge = t = Gr. By definition of the matrix A, G(r−e) = 0 implies that there exists

some vector x ∈Zm
q such that r−e = Ax. Thus,

As+ r = A(s+x)+e

which is a valid LWE instance since s+x is still uniformly random over Zm
q . As for the hints, we

still have h = Ze and thus B correctly simulates Γ2 for b = 0. The case b = 1 follows by arguing

that t is uniformly random and if G is nonsingular then r must be uniformly random.

Game Γ4: This game is a plain knapsack LWE problem. The challenger samples the public

G ←$Z
n×(n+m)
q and a secret e ←$Zn+m

q . Then it flips a bit b ←$ {0,1}. If b = 0 then the challenger
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computes t := Ge, and otherwise it samples t ←$Zn
q . Finally, the challenger outputs (G,t).

Lemma B.0.3. For every efficient adversary A , there is an efficient adversary B such that

Pr[Γ4] ≥ δelwe ·Pr[Γ3].

Proof. We follow the proof strategy from Alperin-Sheriff and Peikert [AP12, Theorem 1]. Sup-

pose the algorithm B is given a tuple (G0,G1,t) from Γ4. Then, it samples Z ←$ χn̄×(n+m),

d ←$χn+m , and a matrix V ←$Zn×n̄
q . Further, it sets

G′ := G−VZ and t′ := t−VZd.

Finally, it runs A on input (
G′,t′,Z,Zd

)
and returns what A outputs.

Clearly, if G (resp. t) is uniformly random then so is G′ (resp. t′). Hence, the case b = 1 follows

directly. Suppose b = 0 and thus t = Ge. Then, we have

t′ = t−VZd = Ge−VZd = G′e+V(Ze−Zd).

Hence, if Ze = Zd then ([G′
0 G1],t′,Z,Zd) is indeed a valid knapsack ELWE tuple. This happens

exactly with probability at most δelwe by definition. Otherwise, V(Ze−Zd) is a uniformly

random vector over Zq , and so is t′. Thus, the tuple output by B follows the case b = 1 for Γ3.

The statement now follows by simple calculation.

Game Γ5: Here, we consider the plain LWE game. Recall that the challenger samples the public

A ←$Z
(n+m)×m
q , secret s ←$Zm

q , error e ←$Zn+m
q . Then it flips a bit b ←$ {0,1}. If b = 0 then the

challenger computes t := As+e, and otherwise it samples t ←$Zn+m
q . At the end, the challenger

outputs (A,t).

Lemma B.0.4. For every efficient adversary A , there is an efficient adversary B such that

Pr[Γ5] ≥ Pr[Γ4]−negl(n).

Proof. The reduction is identical to the one of Micciancio and Mol [MM11, Lemma 4.8] which

we recall for completeness. Suppose the algorithm B is given a tuple (A,t) from Γ5. If A is

full-rank, then B can construct a (randomised) matrix G ∈Zn×(n+m)
q whose rows generate all

the vectors x such that xT A = 0. Also, if A is chosen at random among all full-rank matrices,

then G is also distributed statistically close to a uniformly random. Then, B outputs (G,Gt) to

A and returns what A outputs.

Suppose b = 0 and t = As+e. Then Gt = GAs+e = Ge, which is the correct instance of Γ4 for

b = 0. On the other hand, if t is uniformly random, then so is Gt.
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Appendix B. Proof of Theorem 7.8.1

The statement of the theorem now follows by combining all the previous lemmas using

reduction composition.
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C Proof of Theorem 7.8.3

First, we recall the measure-and-reprogram lemma of Jiang et al. [JMZ23].

Lemma C.0.1 (Lemma 3.1 [JMZ23]). Let H : {0,1}ℓ 7→ {0,1}s be a quantum random oracle and

A H be a quantum algorithm that makes q quantum queries to H and outputs (x, z), where x

and z are classical. Furthermore, we assume the i∗-th query of A to H is classical and equal to

x, for some i∗ ∈ [qH ]. In addition, let V (x, y, z) be some predicate s.t. V (x, y, z) = 1 implies that

y was output on A ’s i∗-th query to H.

Then, there exists an algorithm Si∗ (see Figure C.1), that takes some Θ ∈ {0,1}s as input and is

such that

Pr
[
V (x, H(x), z) = 1 : (x, z) ←A H ]≤ 2(2qH +1)2 Pr

[
V (x,Θ, z) = 1 : (x, z) ←S A

i∗ (Θ)
]
+ 8q2

H

2s ,

where the probabilities are taken over the randomness of the algorithms, the random oracle H,

and the sampling of Θ at random.

Informally, the previous lemma states that if some adversary A H can satisfy a predicate with

probability p, one can build another algorithm S A that does not query H on the i∗-th query

(but uses its input instead) but that can satisfy the predicate with probability ≈ p
q2

H
.

C.1 Proof in the QROM

We proceed with a sequence of games that is detailed in Figure C.2. The proof uses the

extractable RO-simulator of Don et al. [Don+22] (see Definition 2.3.1).

Game Γ0: This is the UNF-1KCA game with sKEM := TCH(sKEM0) written explicitly.

In addition, the RO used to compute the tag corresponding to ct (i.e. t = H1(pk,pkB,ct,KB)) is

different from the one used to compute the tag for ct′ (i.e. tc = H2(pkA,pkB,ct′,KA)). Note

that since (pk,ct) ̸= (pkA,ct′) for the adversary to win, both oracles can be separated in this way.
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Appendix C. Proof of Theorem 7.8.3

S H ,A
i∗ (Θ)

1 : ( j ,b) ←$
(
{0, . . . qH −1} \ {i∗}× {0,1}

)∪ {(qH ,0)}

2 : q ← 1

3 : (x, z) ←$ A H ′
and

4 : x′ ← measure A ’s j +1-th query input register

5 : return (x, z)

H ′(x)

1 : if q = i∗ :

2 : return Θ

3 : if q < j +b +1 :

4 : return H(x)

5 : else

6 : if x = x′ :

7 : return Θ

8 : else :

9 : return H(x)

Figure C.1: Algorithm S for Lemma C.0.1.

Game Γ1: The game is the same as the previous one, except we use the simulated RO for H2,

and we use the extractor on t ′ (the tag output by the adversary) at the end. Note that this does

not change anything to the probability of success of the game.

Game Γ2: Now the game outputs 0 if the values extracted are different than (pkA,pkB,ct′,KA).

For the game to return 1, tc must be equal to t ′, so let’s assume it is the case. Hence, Γ2 and Γ1

differ only if S.Ext(tc ) ̸= (pkA,pkB,ct′,KA) and H2(pkA,pkB,ct′,KA) = tc . By Lemma 2.3.2, this

happens with probability at most ϵ := 2
2s +8

p
2/2s + 40e2(qH ′+2)3+2

2s . Hence, we have

Pr[Γ1]−Pr[Γ2] ≤ ϵ .

Game Υ1: We see that if an adversary A wins Γ2, one can build an adversary B that wins the

game Υ1 defined in Figure C.2. The reduction works simply by B running A , simulating H2

with the simulated RO, and running the extractor on t ′ at the end. Therefore, we have

Pr[Γ2] ≤ Pr[Υ1] .

In addition, note that one can consider oracles H and H1 as one oracle H∗ := H1 ⊗ H with

images in {0,1}2s that can be accessed qH +qH ′ times by the adversary.

Game Υ2: We change the game such that (t ,K ) are picked at random and the oracle used

is now Ĥ instead of H∗ := H1 ⊗ H . Now, let’s consider a game C that runs Γ1 and outputs

(x = (pk,pkB,ct,KB), z = ((t ,K ),KA,K ′
A). In addition, let V (x, y, z) := 1z1=y ∧1z2=z3 . Clearly, we

have that

Pr[Υ1] ≤ Pr[V (x, H∗(x), z) : (x, z) ←$ C H∗
]

as V is satisfied iff KA = K ′
A. Also, note that the condition z1 = y in the predicate is always

satisfied by the definition of z1 itself. Therefore, one can apply Lemma C.0.1 with i∗ equal to
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C.1 Proof in the QROM

the query to H∗ made by the game (i.e. (t ,K ) ← H∗(pk,pkB,ct,KB)) and we get

Pr[Υ1] ≤ 2(2(qH +qH ′)+1)2 Pr
[

V (x, (t ,K ), z) = 1 : (x, z) ←S A
i∗ ((t ,K )

]
+ 8(qH +qH ′)2

22s

where (t ,K ) is sampled at random and Si∗ is the algorithm shown in Figure C.1. By inspection,

one can see that if the output of Si∗ satisfies the predicate V thenΥ2 would output 1. Therefore,

we have

Pr[Υ1] ≤ 2(2(qH +qH ′)+1)2 Pr[Υ2]+ 8(qH +qH ′)2

22s .

Finally, one can see that if A winsΥ2, one can build an adversary B s.t. B wins the decaps-

OW-CPA game against sKEM0. That is, the first phase of B runs the first phase of A and

outputs the same public key pk. Then, in the second phase, B runs A Ĥ with its own input

(pkA,pkB,ct) and random tag and key (t ,K ). In addition, note that B can perfectly simulate Ĥ .

Finally, B outputs the same as the adversary A . If KA = K ′
A then B wins the decaps-OW-CPA

game. Hence, we have that

Pr[Υ2] ≤ Pr[decaps-OW-CPAsKEM0
(B) ⇒ 1] .

Collecting the probabilities concludes the proof.

C.1.1 Proof in the ROM

The proof follows a similar idea as the one in the QROM.

Game Γ0: This is the same as the UNF-1KCA game with sKEM = TCH(sKEM0), except we

assume there is no collision on H ′. Thus, Γ0 is the same as UNF-1KCA except with probability

at most
q2

H ′
2s .

Game Γ1: In this game, we return 0 if A did not query H ′(pkA,pkB,ct′,KA). As we can

assume (pk,ct) ̸= (pkA,ct′), this changes the probability of A winning only if A outputs

t ′ = H ′(pkA,pkB,ct′,KA) without having made the oracle query. Since the query was not made,

one can actually lazy sample the value of H ′(pkA,pkB,ct′,KA) after A returns t ′, and the

probability both values are equal is 1
2s . Hence,

Pr[Γ0]−Pr[Γ1] ≤ 1

2s .

Game Υ1: If Γ1 outputs 1, it means A outputs (ct, t ′) s.t. ((pkA,pkB,ct′,KA), t ′) is in the

list of queries made by the A . Hence, if that happens, one can find ct′ and KA s.t.

Decaps(pkB,skA,ct′) = KA by running (ct′, t ′) ←$ A and looking for t ′ in the list of queries

(note that we assume there is no collision). Therefore, it means one can build an adversary
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Γ0(A )

1 : pkA,skA ←$ KeyGenA(1λ)

2 : pkB,skB ←$ KeyGenB(1λ)

3 : st,pk←$ A H ,H1 ,H2 (pkA,pkB)

4 : (KB,ct) ←$ Encaps(pk,skB)

5 : t ← H1(pk,pkB,ct,KB)

6 : K ← H(pk,pkB,ct,KB)

7 : (ct′, t ′) ←$ A H ,H1 ,H2 (st,pkA,

8 : pkB, (ct, t ),K )

9 : if (pkA,ct′) = (pk,ct) : return 0

10 : KA ←Decaps(pkB,skA,ct′)
11 : tc ← H2(pkA,pkB,ct′,KA)

12 : if tc ̸= t ′ : return 0

13 : return 1

Γ1(A )

1 : pkA,skA ←$ KeyGenA(1λ)

2 : pkB,skB ←$ KeyGenB(1λ)

3 : st,pk←$ A H ,H1 ,H2 (pkA,pkB)

4 : (KB,ct) ←$ Encaps(pk,skB)

5 : t ← H1(pk,pkB,ct,KB)

6 : K ← H(pk,pkB,ct,KB)

7 : (ct′, t ′) ←$ A H ,H1 ,H2 (st,pkA,

8 : pkB, (ct, t ),K )

9 : if (pkA,ct′) = (pk,ct) : return 0

10 : KA ←Decaps(pkB,skA,ct′)
11 : tc ← H2(pkA,pkB,ct′,KA)

12 : if tc ̸= t ′ : return 0

13 : (pk⋆1 ,pk⋆2 ,ct⋆,K⋆
A ) ←S.Ext(t ′)

14 : return 1

Γ2(A )

1 : pkA,skA ←$ KeyGenA(1λ)

2 : pkB,skB ←$ KeyGenB(1λ)

3 : st,pk←$ A H ,H1 ,H2 (pkA,pkB)

4 : (KB,ct) ←$ Encaps(pk,skB)

5 : t ← H1(pk,pkB,ct,KB)

6 : K ← H(pk,pkB,ct,KB)

7 : (ct′, t ′) ←$ A H ,H1 ,H2 (st,pkA,

8 : pkB, (ct, t ),K )

9 : (pk⋆0 ,pk⋆1 ,ct⋆,K⋆
A ) ←S.Ext(t ′)

10 : if (pkA,ct′) = (pk,ct) : return 0

11 : KA ←Decaps(pkB,skA,ct′)
12 : tc ← H2(pkA,pkB,ct′,KA)

13 : if tc ̸= t ′ : return 0

14 : if (pk⋆1 ,pk⋆2 ,ct⋆,K⋆
A ) ̸= (pkA,pkB,ct′,KA) :

15 : return 0

16 : return 1

Υ1(A )

1 : pkA,skA ←$ KeyGenA(1λ)

2 : pkB,skB ←$ KeyGenB(1λ)

3 : st,pk←$ A H ,H1 (pkA,pkB)

4 : (KB,ct) ←$ Encaps(pk,skB)

5 : (t ,K ) ← H∗(pk,pkB,ct,KB)

6 : i n ← (st,pkA,pkB, (ct, t ),K )

7 : K ′
A,ct′ ←$ A H ,H1 (i n)

8 : KA ←Decaps(pkB,skA,ct′)
9 : if (pkA,ct′) = (pk,ct) or KA ̸= K ′

A :

10 : return 0

11 : return 1

Υ2(A )

1 : ( j ,b) ←$
(
{0, . . . qH −1}× {0,1}

)∪ {(qH ,0)}

2 : x′ ← measure A ’s j +1-th query input register

3 : q ← 0

4 : pkA,skA ←$ KeyGenA(1λ)

5 : pkB,skB ←$ KeyGenB(1λ)

6 : (KB,ct) ←$ Encaps(pkA,skB)

7 : st,pk←$ A Ĥ (pkA,pkB)

8 : (KB,ct) ←$ Encaps(pk,skB)

9 : (t ,K ) ←$ {0,1}2s

10 : K ′
A,ct′ ←$ A Ĥ (st,pkA,pkB, (ct, t ),K )

11 : KA ←Decaps(pkB,skA,ct′)
12 : if KA ̸= K ′

A :

13 : return 0

14 : return 1

Ĥ(x)

1 : q ← q +1

2 : if q < j +b +1 :

3 : return H∗(x)

4 : else

5 : if x = x′ :

6 : return (t ,K )

7 : else :

8 : return H∗(x)

Figure C.2: Sequence of games for the proof of Theorem 7.8.3. H∗ is defined as H1 ⊗H1.
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C.1 Proof in the QROM

that wins the game Υ1 in Figure C.2, and we have

Pr[Γ1] ≤ Pr[Υ1] .

Game Υ2: We modify the game s.t. the tag t and the key given to the adversary are picked

uniformly at random as shown in Figure C.2. Both games are indistinguishable unless A

queries (pk,pkB,ct,KB) to H or H ′. Then, an adversary B playingΥ2 can perfectly simulate

A ’s view in Υ1 if it guesses correctly which query it is going to be and if such a query is going

to happen. Overall, B can make a correct guess with probability 1
qH ′+qH+1 . If that happens

though, one can build an OW-CPA adversary B against sKEM0 that runs A and picks a random

query made by A to H or H ′. Hence, we have

Pr[Υ1] ≤ (qH ′ +qH +1)Pr[Υ2] .

Finally, one can see that Υ2 is the same as the decaps-OW-CPA for sKEM0 if we omit the

random values K and t and the more restrictive winning condition (pkA,ct′) ̸= (pk,ct). Hence,

one can build an adversary C such that

Pr[Υ2] ≤ Pr[decaps-OW-CPAsKEM0
(C ) ⇒ 1] .
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D Proof of Theorem 7.8.4

D.1 Proof in the ROM

Proof. As stated in the main body of this thesis, the idea of the proof is very similar to the

IND-qCCA proof of the TCH transform presented in Chapter 6 and is the following. Either

all tags in the decapsulation query are valid and thus they are the form H ′(pkA,pki ,cti ,K ′
i ),

or the oracle returns ⊥. Then, if they are valid, with high probability the adversary queried

(pkA,pki ,cti ,K ′
i ) to H ′ and thus K ′

i can be recovered from the list of queries to the RO, i.e. the

decapsulation oracle can be simulated without the knowledge of skA. In other words, the only

information leaked by a query to the decapsulation oracle is whether all tags are valid or not,

i.e. 1 bit of information, which is not sufficient to break the OW-CPA game. We prove this

formally with a sequence of hybrid games.

Game Γ0: This is the IND-1BatchCCA game with sKEM=TCH(sKEM0).

Game Γ1: We modify the previous game s.t. we abort if the adversary finds any collision when

querying H ′. We have that

Pr[Γ0]−Pr[Γ1] ≤ q2
H ′

2n

where q ′
H is the number of queries the adversary makes to H ′.

Game Γ2: We modify the game s.t. it aborts if BatchDec({(pki , (cti , ti ))}d
i=1) does not return ⊥

but one of the tags ti was not obtained through an adversary’s query to H ′. The probability

O (LH ′ , {(pki , (cti , ti ))}d
i=1)

for i ∈ [d ] :

K ′
i ←Decaps(pki ,skA,cti )

if ((pki ,cti ,K ′
i ), ti ) ∉LH ′ : return 0

return 1

Figure D.1: Oracle O used in the proof of Theorem 7.8.4.
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that some tag ti is valid but H ′(pkA,pki ,cti ,K ′
i ) (with (pkA,pki ,cti , ti ) ̸= (pkA,pkB ,ct∗, t∗i )) was

not queried by the adversary is 1
2n . Hence, overall we have

Pr[Γ1]−Pr[Γ2] ≤ d

2n .

Game Γ3: We now change the game as follows. We record all queries to H ′ of the form (pkA, ·, ·, ·)
made by the adversary in a list LH ′ = {((pk j ,ct j ,K j ),h j )}

qH ′
j=1 s.t. H ′(pkA,pk j ,ct j ,K j ) = h j for

all j ∈ [qH ′]. Then, the BatchDec oracle is modified as follows. If some tag ti is s.t. for

all K ∈ K ((pki ,cti ,K ), ti ) ∉ LH ′ then ⊥ is returned. Then, O (LH ′ , {(pki , (cti , ti ))}d
i=1) → r is

queried, where O is defined in Figure D.1. If r = 0 BatchDec outputs ⊥, otherwise it outputs

H(pkA,pki ,cti ,Ki ) for all i ∈ [d ], where Ki is s.t. ((pki ,cti ,Ki ), ti ) ∈ LH ′ . Note that all these

modifications are only syntactical as O outputs 1 iff for all i ∈ [d ], Ki is (the unique) value in

LH ′ s.t. H ′(pkA,pki ,cti ,Ki :=Decaps(pki ,skA)) = ti . Hence, we have

Pr[Γ2] = Pr[Γ3] .

Game Γ4: We replace the challenge tag t∗ and the real key K0 by random values. This change

can only be noticed if the adversary or the BatchDec oracle queries H(pkA,pkB,ct∗,K ∗) or

H ′(pkA,pkB,ct∗,K ∗) at some point in the game. Let QUERY be this event. We show that if

QUERY occurs, then one can break the OW-CPA security of sKEM0 with high probability. The

reduction works as follows. The OW-CPA adversary B receives a challenge ciphertext ct∗ and

public keys pkA,pkB from its own challenger. Next, it samples random values K , t∗ and passes

all these to the IND-1BatchCCA adversary A . Then, B can simulate everything in BatchDec

(except the oracle call to O ) by recording A ’s queries to H ′. In order to simulate O , B samples

a bit r at random instead, which succeeds with probability 1
2 . Finally, it samples at random a

query made by A to H or H ′ or a query made to H by itself, and it outputs the key K that was

part of this query. Overall, the simulation is correct with probability 1
2 and if QUERY occurs

B recovers K ∗ with probability 1
qH+qH ′+d . Hence,

Pr[Γ3]−Pr[Γ4] ≤ Pr[QUERY] ≤ 2(qH +qH ′ +d)Advow-cpa
sKEM (A ) .

Finally, we see that the adversary’s view is independent of b in Γ4, therefore Pr[Γ4] = 1
2 . This

concludes the proof.

D.2 Proof in the QROM

Proof. As in most of the QROM proofs presented in this thesis, we use the extractable RO-

simulator by Don et al. [Don+22] (c.f. Definition 2.3.1) and we proceed with a sequence of

hybrid games. Again, the proof is nearly identical to the QROM IND-qCCA proof of TCH (c.f.

Theorem 6.4.2) and we refer the reader to it for a detailed explanation of the game transitions.
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Game Γ0: This is the IND-1BatchCCA game with sKEM = TCH(sKEM0). We also assume

that the adversary only makes queries of the form (pkA, ·, ·, ·) to the oracles. This has no

consequence on the winning probability of the adversary as other type of queries are

independent of the key.

Game Γ1: We modify the BatchDec oracle s.t. it returns ⊥ whenever the list of (pki ,cti , ti ) in

the query contains (pki ,cti ) = (pkB,ct∗) (and thus ti ̸= t∗). This change has no impact except

if Decaps(pkB,skA,ct∗) ̸= K0, where K0 is the challenge real key. In turn, this would imply that

ct∗ is an incorrect ciphertext. Hence,

Pr[Γ0]−Pr[Γ1] ≤ δ .

Game Γ2: Now, we split the random oracle H ′ into two oracles H ′
0 and H ′

1 s.t.

H ′(pkA,pk,ct,K ) :=
H ′

0(K ), if (pk,ct) = (pkB,ct∗)

H ′
1(pk,ct,K ), otherwise

and we give the adversary access to H ′
0, H ′

1 instead of H ′. We also switch to the RO simulator

instead of using H ′
1. In addition, at the end of the game, the challenger calls the extractor

on all tags ti queried as part of the call to the BatchDec oracle to obtain extracted values

(pke
i ,cte

i ,K e
i ), i ∈ [d ]. Note that H ′

0 is never called as part of a BatchDec query due to the

modification in the previous game. These changes have no impact on the success of the game

and thus

Pr[Γ1] = Pr[Γ2] .

Game Γ3: We abort whenever the decapsulation oracle does not return ⊥ but the extracted

values (pke
i ,cte

i ,K e
i ) are not equal to ⊥ or (pki ,cti ,K ′

i ), where K ′
i = Decaps(pki ,skA,cti ). By

Property 8 of the extractable oracle, we have

Pr[Γ2]−Pr[Γ3] ≤ 40e2(qH ′ +d +1)3 +2

2n .

Game Γ4: We move the extraction to the BatchDec oracle, right after the corresponding tag

verification. By Property 4 of the extractable oracle, we have

Pr[Γ3]−Pr[Γ4] ≤ 8d(d +qH ′)
p

2/2n .

Game Γ5: We modify the BatchDec oracle s.t. we abort if all tag checks pass, i.e.

H ′(pki ,cti ,K ′
i ) = ti ,∀i ∈ [d ] but some extracted value is equal to ⊥, i.e. (pke

i ,cte
i ,K e

i ) =⊥ for
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some i ∈ [d ]. By Property 7 of the extractable oracle we have

Pr[Γ4]−Pr[Γ5] ≤ d
2

2n .

Game Γ6: We modify the BatchDec oracle s.t. the queries to H ′ made for the tag verification

are made after the corresponding extraction. By Property 8 of the extractable oracle we have

Pr[Γ5]−Pr[Γ6] ≤ 8d
p

2/2n .

Game Γ7: We modify the previous game as follows. Let r be a bit set to 1 iff for all i ∈ [d ]

(pke
i ,cte

i ) = (pki ,cti ) and Decaps(pke
i ,skA,cte

i ) = K e
i . Then, we change BatchDec s.t. it returns

⊥ if r = 0, otherwise it returns H (pkA,pki ,cti ,K e
i ) for all i ∈ [d ]. In addition, the tag verification

is now skipped. We argue this affects only negligibly the advantage of the adversary compared

to the previous game:

• If BatchDec returns H(pkA,pki ,cti ,K ′
i ) , i ∈ [d ] in Γ6, then by the previous changes

we know that (pke
i ,cte

i ,K e
i ) = (pki ,cti ,K ′

i ) for all i ∈ [d ], therefore BatchDec returns

H(pkA,pki ,cti ,K ′
i ) , i ∈ [d ] in Γ7 as well.

• If BatchDec returns H(pkA,pki ,cti ,K e
i ) , i ∈ [d ] in Γ7, we know that (pke

i ,cte
i ,K e

i ) =
(pki ,cti ,K ′

i ). In addition, for each i ∈ [d ], ti = H(pke
i ,cte

i ,K e
i ) with probability 1− 2

2n

by Property 6 of the extractable oracle. Therefore, the tag verification would pass in Γ6

with high probability and BatchDec would return the same values in that game as well.

Overall, we have

Pr[Γ6]−Pr[Γ7] ≤ d
2

2n .

Game Γ8: Now we move all d queries to H ′ made in BatchDec to the end of the game. By

Property 8 of the extractable oracle, we have

Pr[Γ7]−Pr[Γ8] ≤ 8d qH ′
p

2/2n .

Note that we can now forget about the queries to H ′ we just moved to the end of the game.

Game Γ9: We replace the real key K0 and the challenge tag t∗ by random values. We have

Pr[Γ9] = 1
2 . Applying the OW2H lemma on H ⊗H ′

0, we get

Pr[Γ8]−Pr[Γ9] ≤ 2(qH ′ +qH +d)
√

Pr[Υ]

where Υ is the same as Γ9, except the challenger measures a random query made to H ⊗H ′
0

and outputs 1 iff the query contains K ∗, where K ∗ is the key encapsulated in ct∗. We can build

226



D.2 Proof in the QROM

an OW-CPA adversary B against sKEM0 that wins with high probability when Υ outputs 1.

The reduction works nearly as in the ROM proof: B receives a challenge ciphertext ct∗ and

two public keys pkA,pkB, then it samples t∗ and K ∗ at random and passes all these values to

A . Then, B can perfectly simulate BatchDec as in Γ9, except for the bit r that it can guess

correctly with probability 1
2 . Finally, B measures a random query that was made to H or H ′ in

the execution and outputs the corresponding value K . Overall, we have

Pr[Υ] ≤ 2Advow-cpa
sKEM (A ) ,

which concludes the proof.
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[Băe+19] Ciprian Băetu, F Betül Durak, Loïs Huguenin-Dumittan, Abdullah Talayhan, and

Serge Vaudenay. “Misuse Attacks on Post-Quantum Cryptosystems”. In: Advances

in Cryptology–EUROCRYPT 2019: 38th Annual International Conference on the

Theory and Applications of Cryptographic Techniques, Darmstadt, Germany, May

19–23, 2019, Proceedings, Part II 38. Springer. 2019, pp. 747–776.

[Bar+23a] Khashayar Barooti, Daniel Collins, Simone Colombo, Loïs Huguenin-Dumittan,

and Serge Vaudenay. “On Active Attack Detection in Messaging With Immediate

Decryption”. In: Annual International Cryptology Conference. Springer. 2023,

pp. 362–395.

[Bar+23b] Khashayar Barooti, Alex B. Grilo, Loïs Huguenin-Dumittan, Giulio Malavolta, Or

Sattath, Quoc-Huy Vu, and Michael Walter. “Public-Key Encryption with Quan-

tum Keys”. In: Theory of Cryptography. Ed. by Guy Rothblum and Hoeteck Wee.

Springer Nature Switzerland, 2023, pp. 198–227.

[Bau+19] Aurélie Bauer, Henri Gilbert, Guénaël Renault, and Mélissa Rossi. “Assessment

of the Key-Reuse Resilience of NewHope”. In: Topics in Cryptology – CT-RSA

2019. Ed. by Mitsuru Matsui. Cham: Springer International Publishing, 2019,

pp. 272–292. ISBN: 978-3-030-12612-4.

[BB84] Charles H. Bennett and Gilles Brassard. “Quantum Cryptography: Public Key Dis-

tribution and Coin Tossing”. In: Proceedings of the IEEE International Conference

on Computers, Systems and Signal Processing. 1984, pp. 175–179.

[BBF13] Paul Baecher, Christina Brzuska, and Marc Fischlin. “Notions of Black-Box Re-

ductions, Revisited”. In: International Conference on the Theory and Application

of Cryptology and Information Security. Springer. 2013, pp. 296–315.

[BBP04] Mihir Bellare, Alexandra Boldyreva, and Adriana Palacio. “An Uninstantiable

Random-Oracle-Model Scheme for a Hybrid-Encryption Problem”. In: Interna-

tional Conference on the Theory and Applications of Cryptographic Techniques.

Springer. 2004, pp. 171–188.

[BDG20] Mihir Bellare, Hannah Davis, and Felix Günther. “Separate Your Domains: NIST

PQC KEMs, Oracle Cloning and Read-Only Indifferentiability”. In: Annual Inter-

national Conference on the Theory and Applications of Cryptographic Techniques.

Springer. 2020, pp. 3–32.

[Be20] Daniel J. Bernstein and Tanja Lange (editors). eBACS: ECRYPT Benchmarking of

Cryptographic Systems. https://bench.cr.yp.to. accessed 14 May 2020.

230

https://doi.org/10.1007/978-3-662-46494-6\_26
https://doi.org/10.1007/978-3-662-46494-6\_26
https://doi.org/10.1007/978-3-662-46494-6%5C_26
https://doi.org/10.1007/978-3-662-46494-6%5C_26
https://bench.cr.yp.to


Bibliography

[Bel06a] Mihir Bellare. “Code-Based Game-Playing Proofs and the Security of Triple En-

cryption”. In: Advances in Cryptology-Eurocrypt’06 (2006), pp. 409–426.

[Bel06b] Mihir Bellare. “New Proofs for NMAC and HMAC: Security Without Collision-

Resistance”. In: CRYPTO 2006. Springer. 2006, pp. 602–619.

[Ber+18] Daniel J. Bernstein, Leon Groot Bruinderink, Tanja Lange, and Lorenz Panny.

“HILA5 Pindakaas: On the CCA Security of Lattice-Based Encryption with Error

Correction”. In: Progress in Cryptology – AFRICACRYPT 2018. Ed. by Antoine Joux,

Abderrahmane Nitaj, and Tajjeeddine Rachidi. Cham: Springer International

Publishing, 2018, pp. 203–216. ISBN: 978-3-319-89339-6.

[Bet+19] Slim Bettaieb, Loïc Bidoux, Philippe Gaborit, and Etienne Marcatel. “Preventing

Timing Attacks Against RQC Using Constant Time Decoding of Gabidulin Codes”.

In: Post-Quantum Cryptography. Ed. by Jintai Ding and Rainer Steinwandt. Cham:

Springer International Publishing, 2019, pp. 371–386. ISBN: 978-3-030-25510-7.

[Beu22] Ward Beullens. “Breaking Rainbow Takes a Weekend on a Laptop”. In: Annual

International Cryptology Conference. Springer. 2022, pp. 464–479.

[Bha+23] Karthikeyan Bhargavan, Charlie Jacomme, Franziskus Kiefer, and Rolfe Schmidt.

An Analysis of Signal’s PQXDH. https://cryspen.com/post/pqxdh/ Accessed:

23.10.23. 2023.

[Bin+17] Nina Bindel, Udyani Herath, Matthew McKague, and Douglas Stebila. “Transi-

tioning to a Quantum-Resistant Public Key Infrastructure”. In: Post-Quantum

Cryptography: 8th International Workshop, PQCrypto 2017, Utrecht, The Nether-

lands, June 26-28, 2017, Proceedings 8. Springer. 2017, pp. 384–405.

[Bin+19a] Nina Bindel, Jacqueline Brendel, Marc Fischlin, Brian Goncalves, and Dou-

glas Stebila. “Hybrid Key Encapsulation Mechanisms and Authenticated Key

Exchange”. In: Post-Quantum Cryptography: 10th International Conference,

PQCrypto 2019, Chongqing, China, May 8–10, 2019 Revised Selected Papers 10.

Springer. 2019, pp. 206–226.

[Bin+19b] Nina Bindel, Mike Hamburg, Kathrin Hövelmanns, Andreas Hülsing, and

Edoardo Persichetti. “Tighter Proofs of CCA Security in the Quantum Random

Oracle Model”. In: Theory of Cryptography. Ed. by Dennis Hofheinz and Alon

Rosen. Cham: Springer International Publishing, 2019, pp. 61–90. ISBN: 978-3-

030-36033-7.

[BKP20] Ward Beullens, Shuichi Katsumata, and Federico Pintore. “Calamari and Falafl:

Logarithmic (Linkable) Ring Signatures From Isogenies and Lattices”. In: Ad-

vances in Cryptology–ASIACRYPT 2020: 26th International Conference on the

Theory and Application of Cryptology and Information Security, Daejeon, South

Korea, December 7–11, 2020, Proceedings, Part II. Springer. 2020, pp. 464–492.

231

https://cryspen.com/post/pqxdh/


Bibliography

[Ble98] Daniel Bleichenbacher. “Chosen Ciphertext Attacks Against Protocols Based on

the RSA Encryption Standard PKCS #1”. In: Advances in Cryptology — CRYPTO

’98. Ed. by Hugo Krawczyk. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998,

pp. 1–12. ISBN: 978-3-540-68462-6.

[BN13] Ahto Buldas and Margus Niitsoo. “Black-Box Separations and Their Adaptability

to the Non-Uniform Model”. In: Australasian Conference on Information Security

and Privacy. Springer. 2013, pp. 152–167.

[Bon+11] Dan Boneh, Özgür Dagdelen, Marc Fischlin, Anja Lehmann, Christian Schaffner,

and Mark Zhandry. “Random Oracles in a Quantum World”. In: Advances in

Cryptology – ASIACRYPT 2011. Ed. by Dong Hoon Lee and Xiaoyun Wang. Berlin,

Heidelberg: Springer Berlin Heidelberg, 2011, pp. 41–69. ISBN: 978-3-642-25385-

0.

[Bos+16] Joppe Bos, Craig Costello, Léo Ducas, Ilya Mironov, Michael Naehrig, Valeria

Nikolaenko, Ananth Raghunathan, and Douglas Stebila. “Frodo: Take Off the

Ring! Practical, Quantum-Secure Key Exchange From LWE”. In: Proceedings of

the 2016 ACM SIGSAC conference on computer and communications security.

2016, pp. 1006–1018.

[Bou+21] Katharina Boudgoust, Corentin Jeudy, Adeline Roux-Langlois, and Weiqiang Wen.

“On the Hardness of Module-Lwe With Binary Secret”. In: CT-RSA. Vol. 12704.

Lecture Notes in Computer Science. Springer, 2021, pp. 503–526.

[BR60] Raj Chandra Bose and Dwijendra K Ray-Chaudhuri. “On a Class of Error Cor-

recting Binary Group Codes”. In: Information and Control 3.1 (1960), pp. 68–

79.

[BR93] Mihir Bellare and Phillip Rogaway. “Random Oracles Are Practical: A Paradigm

for Designing Efficient Protocols”. In: Proceedings of the 1st ACM Conference on

Computer and Communications Security. 1993, pp. 62–73.

[Bra+13] Zvika Brakerski, Adeline Langlois, Chris Peikert, Oded Regev, and Damien Stehlé.

“Classical Hardness of Learning With Errors”. In: CoRR abs/1306.0281 (2013).

[Bre+17] Jacqueline Brendel, Marc Fischlin, Felix Günther, and Christian Janson. PRF-

ODH: Relations, Instantiations, and Impossibility Results. Cryptology ePrint

Archive, Report 2017/517. https://ia.cr/2017/517. 2017.

[Bre+21] Jacqueline Brendel, Marc Fischlin, Felix Günther, Christian Janson, and Dou-

glas Stebila. “Towards Post-Quantum Security for Signal’s X3DH Handshake”.

In: Selected Areas in Cryptography: 27th International Conference, Halifax, NS,

Canada (Virtual Event), October 21-23, 2020, Revised Selected Papers 27. Springer.

2021, pp. 404–430.

[Bre+22] Jacqueline Brendel, Rune Fiedler, Felix Günther, Christian Janson, and Douglas

Stebila. “Post-Quantum Asynchronous Deniable Key Exchange and the Signal

Handshake”. In: IACR International Conference on Public-Key Cryptography.

Springer. 2022, pp. 3–34.

232

https://ia.cr/2017/517


Bibliography

[BRV20] Fatih Balli, Paul Rösler, and Serge Vaudenay. “Determining the Core Primitive

for Optimally Secure Ratcheting”. In: International Conference on the Theory and

Application of Cryptology and Information Security. Springer. 2020, pp. 621–650.

[BS99] Mihir Bellare and Amit Sahai. “Non-malleable Encryption: Equivalence between

Two Notions, and an Indistinguishability-Based Characterization”. In: Advances

in Cryptology — CRYPTO’ 99. Ed. by Michael Wiener. Berlin, Heidelberg: Springer

Berlin Heidelberg, 1999, pp. 519–536. ISBN: 978-3-540-48405-9.

[Car75] David Carlson. “Matrix Decompositions Involving the Schur Complement”. In:

SIAM Journal on Applied Mathematics 28.3 (1975), pp. 577–587. ISSN: 00361399.

URL: http://www.jstor.org/stable/2100380.

[Cas+18] Wouter Castryck, Tanja Lange, Chloe Martindale, Lorenz Panny, and Joost Renes.

“CSIDH: An Efficient Post-Quantum Commutative Group Action”. In: Advances

in Cryptology–ASIACRYPT 2018: 24th International Conference on the Theory and

Application of Cryptology and Information Security, Brisbane, QLD, Australia,

December 2–6, 2018, Proceedings, Part III 24. Springer. 2018, pp. 395–427.

[CCH23] Daniel Collins, Simone Colombo, and Loïs Huguenin-Dumittan. “Real World

Deniability in Messaging”. In: Cryptology ePrint Archive (2023).

[CD23] Wouter Castryck and Thomas Decru. “An Efficient Key Recovery Attack on SIDH”.

In: Annual International Conference on the Theory and Applications of Crypto-

graphic Techniques. Springer. 2023, pp. 423–447.

[Cel+21] Sofía Celi, Armando Faz-Hernández, Nick Sullivan, Goutam Tamvada, Luke Va-

lenta, Thom Wiggers, Bas Westerbaan, and Christopher A Wood. “Implementing

and Measuring KEMTLS”. In: International Conference on Cryptology and Infor-

mation Security in Latin America. Springer. 2021, pp. 88–107.

[CF11] Cas Cremers and Michele Feltz. “One-Round Strongly Secure Key Exchange With

Perfect Forward Secrecy and Deniability”. In: Cryptology ePrint Archive, Paper

2011/300 (2011). URL: https://eprint.iacr.org/2011/300.

[CGH04] Ran Canetti, Oded Goldreich, and Shai Halevi. “The Random Oracle Methodol-

ogy, Revisited”. In: Journal of the ACM (JACM) 51.4 (2004), pp. 557–594.

[CN11] Yuanmi Chen and Phong Q. Nguyen. “BKZ 2.0: Better Lattice Security Estimates”.

In: ASIACRYPT. Vol. 7073. Lecture Notes in Computer Science. Springer, 2011,

pp. 1–20.

[Coh+19] Katriel Cohn-Gordon, Cas Cremers, Kristian Gjøsteen, Håkon Jacobsen, and

Tibor Jager. “Highly Efficient Key Exchange Protocols With Optimal Tightness”.

In: Advances in Cryptology–CRYPTO 2019: 39th Annual International Cryptology

Conference, Santa Barbara, CA, USA, August 18–22, 2019, Proceedings, Part III 39.

Springer. 2019, pp. 767–797.

233

http://www.jstor.org/stable/2100380
https://eprint.iacr.org/2011/300


Bibliography

[Coh+20] Katriel Cohn-Gordon, Cas Cremers, Benjamin Dowling, Luke Garratt, and Dou-

glas Stebila. “A Formal Security Analysis of the Signal Messaging Protocol”. In:

J. Cryptol. 33.4 (2020), pp. 1914–1983. DOI: 10.1007/s00145-020-09360-1. URL:

https://doi.org/10.1007/s00145-020-09360-1.

[Col+ar] Daniel Collins, Loïs Huguenin-Dumittan, Ngoc Khanh Nguyen, Nicolas Rolin,

and Serge Vaudenay. “K-Waay: Fast and Deniable Post-Quantum X3DH Without

Ring Signatures”. In: USENIX Security. 2024 (to appear).

[CPS19] Eric Crockett, Christian Paquin, and Douglas Stebila. “Prototyping Post-

Quantum and Hybrid Key Exchange and Authentication in TLS and SSH.” In:

IACR Cryptol. ePrint Arch. 2019 (2019), p. 858.

[Cra+07] Ronald Cramer, Goichiro Hanaoka, Dennis Hofheinz, Hideki Imai, Eike Kiltz,

Rafael Pass, Abhi Shelat, and Vinod Vaikuntanathan. “Bounded CCA2-secure

Encryption”. In: International Conference on the Theory and Application of Cryp-

tology and Information Security. Springer. 2007, pp. 502–518.

[CS03] Ronald Cramer and Victor Shoup. “Design and Analysis of Practical Public-Key

Encryption Schemes Secure Against Adaptive Chosen Ciphertext Attack”. In:

SIAM Journal on Computing 33.1 (2003), pp. 167–226.

[CX21] Shujiao Cao and Rui Xue. “Being a Permutation Is Also Orthogonal to One-

Wayness in Quantum World: Impossibilities of Quantum One-Way Permutations

From One-Wayness Primitives”. In: Theoretical Computer Science 855 (2021),

pp. 16–42.

[CZ24] Cas Cremers and Mang Zhao. “Secure Messaging With Strong Compromise

Resilience, Temporal Privacy, and Immediate Decryption”. In: IEEE S&P. 2024.

[DAn+19a] Jan-Pieter D’Anvers, Angshuman Karmakar, Sujoy Sinha Roy, Frederik Ver-

cauteren, and Ingrid Verbauwhede. SABER: Mod-LWR Based KEM. NIST Round

2 Submissions. https://csrc.nist.gov/projects/post-quantum-cryptography/

round-2-submissions. 2019.

[DAn+19b] Jan-Pieter D’Anvers, Marcel Tiepelt, Frederik Vercauteren, and Ingrid Ver-

bauwhede. “Timing Attacks on Error Correcting Codes in Post-Quantum Se-

cure Schemes”. In: Proceedings of ACM Workshop on Theory of Implementation

Security Workshop. 2019, pp. 2–9.

[DG21] Hannah Davis and Felix Günther. “Tighter Proofs for the SIGMA and TLS 1.3 Key

Exchange Protocols”. In: International Conference on Applied Cryptography and

Network Security. Springer. 2021, pp. 448–479.

[DG22] Samuel Dobson and Steven D. Galbraith. “Post-Quantum Signal Key Agreement

From SIDH”. In: Post-Quantum Cryptography - 13th International Workshop,

PQCrypto 2022, Virtual Event, September 28-30, 2022, Proceedings. Ed. by Jung

Hee Cheon and Thomas Johansson. Vol. 13512. Lecture Notes in Computer

Science. Springer, 2022, pp. 422–450. DOI: 10.1007/978-3-031-17234-2\_20. URL:

https://doi.org/10.1007/978-3-031-17234-2%5C_20.

234

https://doi.org/10.1007/s00145-020-09360-1
https://doi.org/10.1007/s00145-020-09360-1
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://doi.org/10.1007/978-3-031-17234-2\_20
https://doi.org/10.1007/978-3-031-17234-2%5C_20


Bibliography

[DHV20] F Betül Durak, Loïs Huguenin-Dumittan, and Serge Vaudenay. “BioLocker: A

Practical Biometric Authentication Mechanism Based on 3D Fingervein”. In: In-

ternational Conference on Applied Cryptography and Network Security. Springer.

2020, pp. 62–80.

[Din+17] Jintai Ding, Saed Alsayigh, RV Saraswathy, Scott Fluhrer, and Xiaodong Lin.

“Leakage of Signal Function With Reused Keys in RLWE Key Exchange”. In: 2017

IEEE international conference on communications (ICC). IEEE. 2017, pp. 1–6.

[DJ21] Denis Diemert and Tibor Jager. “On the Tight Security of TLS 1.3: Theoretically

Sound Cryptographic Parameters for Real-World Deployments”. In: Journal of

Cryptology 34.3 (2021), pp. 1–57.

[DK05] Yevgeniy Dodis and Jonathan Katz. “Chosen-Ciphertext Security of Multiple

Encryption”. In: Theory of Cryptography Conference. Springer. 2005, pp. 188–209.

[Don+22] Jelle Don, Serge Fehr, Christian Majenz, and Christian Schaffner. “Online-

Extractability in the Quantum Random-Oracle Model”. In: Advances in Cryptol-

ogy – EUROCRYPT 2022. Ed. by Orr Dunkelman and Stefan Dziembowski. Cham:

Springer International Publishing, 2022, pp. 677–706. ISBN: 978-3-031-07082-2.

[Dow+20] Benjamin Dowling, Marc Fischlin, Felix Günther, and Douglas Stebila. “A Cryp-

tographic Analysis of the TLS 1.3 Handshake Protocol”. In: Journal of Cryptology

(2020).

[ESZ22] Muhammed F. Esgin, Ron Steinfeld, and Raymond K. Zhao. “MatRiCT+: More

Efficient Post-Quantum Private Blockchain Payments”. In: IEEE Symposium on

Security and Privacy. IEEE, 2022, pp. 1281–1298.

[FHZ18] Tomas Fabsic, Viliam Hromada, and Pavol Zajac. “A Reaction Attack on

LEDApkc”. In: Cryptology ePrint Archive, Report 2018/140 (2018). https://eprint.

iacr.org/2018/140.

[FL08] Marc Fischlin and Anja Lehmann. “Multi-Property Preserving Combiners for

Hash Functions”. In: Theory of Cryptography Conference. Springer. 2008, pp. 375–

392.

[FLP08] Marc Fischlin, Anja Lehmann, and Krzysztof Pietrzak. “Robust Multi-Property

Combiners for Hash Functions Revisited”. In: International Colloquium on Au-

tomata, Languages, and Programming. Springer. 2008, pp. 655–666.

[Flu16] Scott Fluhrer. “Cryptanalysis of Ring-LWE Based Key Exchange With Key Share

Reuse”. In: Cryptology ePrint Archive, Report 2016/085 (2016). https://eprint.iacr.

org/2016/085.

[FO13] Eiichiro Fujisaki and Tatsuaki Okamoto. “Secure Integration of Asymmetric and

Symmetric Encryption Schemes”. In: Journal of Cryptology 26.1 (2013), pp. 80–

101. URL: https://doi.org/10.1007/s00145-011-9114-1.

235

https://eprint.iacr.org/2018/140
https://eprint.iacr.org/2018/140
https://eprint.iacr.org/2016/085
https://eprint.iacr.org/2016/085
https://doi.org/10.1007/s00145-011-9114-1


Bibliography

[FO99] Eiichiro Fujisaki and Tatsuaki Okamoto. “Secure Integration of Asymmetric and

Symmetric Encryption Schemes”. In: Annual International Cryptology Confer-

ence. Springer. 1999, pp. 537–554.

[Gab85] Ernst Gabidulin. “Theory of Codes With Maximum Rank Distance (Translation)”.

In: Problems of Information Transmission 21 (Jan. 1985), pp. 1–12.

[GHP18] Federico Giacon, Felix Heuer, and Bertram Poettering. “KEM Combiners”. In:

Public-Key Cryptography–PKC 2018: 21st IACR International Conference on Prac-

tice and Theory of Public-Key Cryptography, Rio de Janeiro, Brazil, March 25-29,

2018, Proceedings, Part I 21. Springer. 2018, pp. 190–218.

[Gil16] Daniel Gillmor. “Negotiated Finite Field Diffie-Hellman Ephemeral Parameters

for Transport Layer Security (TLS)”. In: Ietf RFC 7919 (2016).

[GJS16] Qian Guo, Thomas Johansson, and Paul Stankovski. “A Key Recovery Attack on

MDPC with CCA Security Using Decoding Errors”. In: Advances in Cryptology –

ASIACRYPT 2016. Ed. by Jung Hee Cheon and Tsuyoshi Takagi. Berlin, Heidelberg:

Springer Berlin Heidelberg, 2016, pp. 789–815. ISBN: 978-3-662-53887-6.

[GJY19] Qian Guo, Thomas Johansson, and Jing Yang. “A Novel CCA Attack Using De-

cryption Errors Against LAC”. In: International Conference on the Theory and

Application of Cryptology and Information Security. Springer. 2019, pp. 82–111.

[GK03] Shafi Goldwasser and Yael Tauman Kalai. “On the (In) Security of the Fiat-Shamir

Paradigm”. In: 44th Annual IEEE Symposium on Foundations of Computer Sci-

ence, 2003. Proceedings. IEEE. 2003, pp. 102–113.

[GMM07] Yael Gertner, Tal Malkin, and Steven Myers. “Towards a Separation of Seman-

tic and CCA Security for Public Key Encryption”. In: Theory of Cryptography

Conference. Springer. 2007, pp. 434–455.

[GMP22] Paul Grubbs, Varun Maram, and Kenneth G Paterson. “Anonymous, Robust Post-

Quantum Public Key Encryption”. In: Annual International Conference on the

Theory and Applications of Cryptographic Techniques. Springer. 2022, pp. 402–

432.

[GPA19] Lachlan J Gunn, Ricardo Vieitez Parra, and N Asokan. “Circumventing Crypto-

graphic Deniability With Remote Attestation”. In: Proceedings on Privacy En-

hancing Technologies 3 (2019), pp. 350–369.

[Gün+22] Felix Günther, Simon Rastikian, Patrick Towa, and Thom Wiggers. “KEMTLS

With Delayed Forward Identity Protection in (Almost) a Single Round Trip”.

In: International Conference on Applied Cryptography and Network Security.

Springer. 2022, pp. 253–272.

[GY06] Maximilien Gadouleau and Zhiyuan Yan. “Properties of Codes With the Rank

Metric”. In: CoRR abs/cs/0610099 (Oct. 2006). DOI: 10.1109/GLOCOM.2006.173.

236

https://doi.org/10.1109/GLOCOM.2006.173


Bibliography

[Has+21] Keitaro Hashimoto, Shuichi Katsumata, Kris Kwiatkowski, and Thomas Prest.

“An Efficient and Generic Construction for Signal’s Handshake (X3DH): Post-

Quantum, State Leakage Secure, and Deniable”. In: IACR International Confer-

ence on Public-Key Cryptography. Springer. 2021, pp. 410–440.

[Has+22] Keitaro Hashimoto, Shuichi Katsumata, Kris Kwiatkowski, and Thomas Prest.

“An Efficient and Generic Construction for Signal’s Handshake (X3DH): Post-

Quantum, State Leakage Secure, and Deniable”. In: Journal of Cryptology 35.3

(2022), p. 17.

[Her05] Amir Herzberg. “On Tolerant Cryptographic Constructions”. In: Cryptographers’

Track at the RSA Conference. Springer. 2005, pp. 172–190.

[HGS99] Chris Hall, Ian Goldberg, and Bruce Schneier. “Reaction Attacks against Several

Public-Key Cryptosystem”. In: Information and Communication Security. Ed. by

Vijay Varadharajan and Yi Mu. Berlin, Heidelberg: Springer Berlin Heidelberg,

1999, pp. 2–12. ISBN: 978-3-540-47942-0.

[HHK17] Dennis Hofheinz, Kathrin Hövelmanns, and Eike Kiltz. “A Modular Analysis of

the Fujisaki-Okamoto Transformation”. In: Theory of Cryptography Conference.

Springer. 2017, pp. 341–371.

[HL21] Loïs Huguenin-Dumittan and Iraklis Leontiadis. “A Message Franking Channel”.

In: Information Security and Cryptology: 17th International Conference, Inscrypt

2021, Virtual Event, August 12–14, 2021, Revised Selected Papers 17. Springer.

2021, pp. 111–128.

[Hoc59] Alexis Hocquenghem. “Codes Correcteurs d’Erreurs”. In: Chiffers 2 (1959),

pp. 147–156.

[How+03] Nick Howgrave-Graham, Phong Q. Nguyen, David Pointcheval, John Proos,

Joseph H. Silverman, Ari Singer, and William Whyte. “The Impact of Decryp-

tion Failures on the Security of NTRU Encryption”. In: Advances in Cryptology -

CRYPTO 2003. Ed. by Dan Boneh. Berlin, Heidelberg: Springer Berlin Heidelberg,

2003, pp. 226–246. ISBN: 978-3-540-45146-4.

[HR04] Chun-Yuan Hsiao and Leonid Reyzin. “Finding Collisions on a Public Road,

or Do Secure Hash Functions Need Secret Coins?” In: Advances in Cryptology–

CRYPTO 2004: 24th Annual International Cryptology Conference, Santa Barbara,

California, USA, August 15-19, 2004. Proceedings 24. Springer. 2004, pp. 92–105.

[HV20] Loïs Huguenin-Dumittan and Serge Vaudenay. “Classical Misuse Attacks on NIST

Round 2 PQC: The Power of Rank-Based Schemes”. In: International Conference

on Applied Cryptography and Network Security. Springer. 2020, pp. 208–227.

[HV21] Loïs Huguenin-Dumittan and Serge Vaudenay. “FO-like Combiners and Hybrid

Post-Quantum Cryptography”. In: International Conference on Cryptology and

Network Security. Springer. 2021, pp. 225–244.

237



Bibliography

[HV22] Loïs Huguenin-Dumittan and Serge Vaudenay. “On IND-qCCA Security in the

ROM and Its Applications: CPA Security Is Sufficient for TLS 1.3”. In: Annual Inter-

national Conference on the Theory and Applications of Cryptographic Techniques.

Springer. 2022, pp. 613–642.

[HV24] Loïs Huguenin-Dumittan and Serge Vaudenay. “Impossibility of Post-Quantum

Shielding Black-Box Constructions of CCA from CPA”. In: Communications in

Cryptology 1.1 (2024).

[HY20] Akinori Hosoyamada and Takashi Yamakawa. “Finding Collisions in a Quan-

tum World: Quantum Black-Box Separation of Collision-Resistance and One-

Wayness”. In: International Conference on the Theory and Application of Cryptol-

ogy and Information Security. Springer. 2020, pp. 3–32.

[Inf23] BSI - German Federal Office for Information Security. Bsi Tr-01102-1. https :

/ / www . bsi . bund . de / SharedDocs / Downloads / EN / BSI / Publications /

TechGuidelines/TG02102/BSI-TR-02102-1.html. 2023.

[IR89] Russell Impagliazzo and Steven Rudich. “Limits on the Provable Consequences

of One-Way Permutations”. In: Proceedings of the twenty-first annual ACM sym-

posium on Theory of computing. 1989, pp. 44–61.

[Jea+02] Coron Jean-Sébastien, Helena Handschuh, Marc Joye, Pascal Paillier, David

Pointcheval, and Christophe Tymen. “GEM: A Generic Chosen-Ciphertext Secure

Encryption Method”. In: Topics in Cryptology — CT-RSA 2002. Ed. by Bart Preneel.

Berlin, Heidelberg: Springer Berlin Heidelberg, 2002, pp. 263–276. ISBN: 978-3-

540-45760-2.

[JMM19] Daniel Jost, Ueli Maurer, and Marta Mularczyk. “Efficient Ratcheting: Almost-

Optimal Guarantees for Secure Messaging”. In: Annual International Conference

on the Theory and Applications of Cryptographic Techniques. Springer. 2019,

pp. 159–188.

[JMZ23] Haodong Jiang, Zhi Ma, and Zhenfeng Zhang. “Post-Quantum Security of Key

Encapsulation Mechanism Against CCA Attacks With a Single Decapsulation

Query”. In: Cryptology ePrint Archive (2023).

[Kil+23] Eike Kiltz, Jiaxin Pan, Doreen Riepel, and Magnus Ringerud. “Multi-User CDH

Problems and the Concrete Security of NAXOS and HMQV”. In: Cryptographers’

Track at the RSA Conference. Springer. 2023, pp. 645–671.

[KM15] Neal Koblitz and Alfred J Menezes. “The Random Oracle Model: A Twenty-Year

Retrospective”. In: Designs, Codes and Cryptography 77 (2015), pp. 587–610.

[Kuc+20] Veronika Kuchta, Amin Sakzad, Damien Stehlé, Ron Steinfeld, and Shi-Feng Sun.

“Measure-Rewind-Measure: Tighter Quantum Random Oracle Model Proofs for

One-Way to Hiding and CCA Security”. In: Annual International Conference

on the Theory and Applications of Cryptographic Techniques. Springer. 2020,

pp. 703–728.

238

https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/TechGuidelines/TG02102/BSI-TR-02102-1.html
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/TechGuidelines/TG02102/BSI-TR-02102-1.html
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/TechGuidelines/TG02102/BSI-TR-02102-1.html


Bibliography

[Laa16] Thijs Laarhoven. “Search problems in cryptography: from fingerprinting to lat-

tice sieving”. Proefschrift. PhD thesis. Mathematics and Computer Science, Feb.

2016. ISBN: 978-90-386-4021-1.

[LAZ19] Xingye Lu, Man Ho Au, and Zhenfei Zhang. “Raptor: A Practical Lattice-Based

(Linkable) Ring Signature”. In: ACNS. Vol. 11464. Lecture Notes in Computer

Science. Springer, 2019, pp. 110–130.

[Lep18] Tancrède Lepoint. “Algorithmic of LWE-based Submissions to NIST Post-

Quantum Standardization Effort”. In: Post-Scryptum Spring School (2018).

[LN22] Vadim Lyubashevsky and Ngoc Khanh Nguyen. “BLOOM: Bimodal Lattice One-

Out-of-Many Proofs and Applications”. In: ASIACRYPT (4). Vol. 13794. Lecture

Notes in Computer Science. Springer, 2022, pp. 95–125.

[Lu+19] Xianhui Lu, Yamin Liu, Dingding Jia, Haiyang Xue, Jingnan He, Zhenfei Zhang,

Zhe Liu, Hao Yang, Bao Li, and Kunpeng Wang. Lac. https ://csrc.nist .gov/

projects/post-quantum-cryptography/round-2-submissions. 2019.

[Lun18] Joshua Lund. Technology Preview: Sealed Sender for Signal. https://signal.org/

blog/sealed-sender/. Last visited on 13-09-2023. 2018.

[Mel+19a] Carlos Aguilar Melchor, Nicolas Aragon, Slim Bettaieb, Loïc Bidoux, Olivier Blazy,

Alain Couvreur, Jean-Christophe Deneuville, Philippe Gaborit, Adrien Hauteville,

and Gilles Zémor. Rank Quasi-Cyclic (RQC). NIST Round 2 Submissions. https:

//csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions.

2019.

[Mel+19b] Carlos Aguilar Melchor, Nicolas Aragon, Slim Bettaieb, Loïc Bidoux, Olivier Blazy,

Jean-Christophe Deneuville, Philippe Gaborit, Edoardo Persichetti, and Gilles

Zémor. Hamming Quasi-Cyclic (HQC). NIST Round 2 Submissions. https://csrc.

nist.gov/projects/post-quantum-cryptography/round-2-submissions. 2019.

[Mer+22] Jose Maria Bermudo Mera, Angshuman Karmakar, Tilen Marc, and Azam Solei-

manian. “Efficient Lattice-Based Inner-Product Functional Encryption”. In: Pub-

lic Key Cryptography (2). Vol. 13178. Lecture Notes in Computer Science. Springer,

2022, pp. 163–193.

[MM11] Daniele Micciancio and Petros Mol. “Pseudorandom Knapsacks and the Sam-

ple Complexity of LWE Search-to-Decision Reductions”. In: CRYPTO. Vol. 6841.

Lecture Notes in Computer Science. Springer, 2011, pp. 465–484.

[MS74] George Marsaglia and George P. H. Styan. “Equalities and Inequalities for Ranks

of Matrices”. In: Linear and Multilinear Algebra 2.3 (1974), pp. 269–292. DOI:

10.1080/03081087408817070.

[NO02] Harumichi Nishimura and Masanao Ozawa. “Computational Complexity of Uni-

form Quantum Circuit Families and Quantum Turing Machines Communicated

by O. Watanabe”. In: Theoretical Computer Science 276.1-2 (2002), pp. 147–181.

239

https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://signal.org/blog/sealed-sender/
https://signal.org/blog/sealed-sender/
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://doi.org/10.1080/03081087408817070


Bibliography

[OP01] Tatsuaki Okamoto and David Pointcheval. “REACT: Rapid Enhanced-Security

Asymmetric Cryptosystem Transform”. In: Topics in Cryptology — CT-RSA 2001.

Ed. by David Naccache. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001,

pp. 159–174. ISBN: 978-3-540-45353-6.

[Pei14] Chris Peikert. “Lattice Cryptography for the Internet”. In: PQCrypto. Vol. 8772.

Lecture Notes in Computer Science. Springer, 2014, pp. 197–219.

[Per+10] Mayana Pereira, Rafael Dowsley, Goichiro Hanaoka, and Anderson CA Nasci-

mento. “Public Key Encryption Schemes With Bounded CCA Security and Opti-

mal Ciphertext Length Based on the CDH Assumption”. In: International Confer-

ence on Information Security. Springer. 2010, pp. 299–306.

[PR18] Bertram Poettering and Paul Rösler. “Towards Bidirectional Ratcheted Key Ex-

change”. In: Annual International Cryptology Conference. Springer. 2018, pp. 3–

32.

[PR20] Bertram Poettering and Paul Rösler. “Combiners for AEAD”. In: IACR Transac-

tions on Symmetric Cryptology (2020), pp. 121–143.

[PST20] Christian Paquin, Douglas Stebila, and Goutam Tamvada. “Benchmarking Post-

Quantum Cryptography in TLS”. In: Post-Quantum Cryptography: 11th Interna-

tional Conference, PQCrypto 2020, Paris, France, April 15–17, 2020, Proceedings

11. Springer. 2020, pp. 72–91.

[QCD19a] Yue Qin, Chi Cheng, and Jintai Ding. “A Complete and Optimized Key Mismatch

Attack on NIST Candidate NewHope”. In: European symposium on research in

computer security. Springer. 2019, pp. 504–520.

[QCD19b] Yue Qin, Chi Cheng, and Jintai Ding. “An Efficient Key Mismatch Attack on the

NIST Second Round Candidate Kyber”. In: Cryptology ePrint Archive, Report

2019/1343 (2019). https://eprint.iacr.org/2019/1343.

[Qin+21] Yue Qin, Chi Cheng, Xiaohan Zhang, Yanbin Pan, Lei Hu, and Jintai Ding. “A Sys-

tematic Approach and Analysis of Key Mismatch Attacks on Lattice-Based Nist

Candidate KEMs”. In: Advances in Cryptology–ASIACRYPT 2021: 27th Interna-

tional Conference on the Theory and Application of Cryptology and Information

Security, Singapore, December 6–10, 2021, Proceedings, Part IV 27. Springer. 2021,

pp. 92–121.

[Raj+23] Gokulnath Rajendran, Ravi Ravi, Jan-Pieter D’Anvers, Shivam Bhasin, and Anu-

pam Chattopadhyay. “Pushing the Limits of Generic Side-Channel Attacks on

Lwe-Based KEMs-Parallel PC Oracle Attacks on Kyber KEM and Beyond”. In:

IACR Transactions on Cryptographic Hardware and Embedded Systems 2023.2

(2023), pp. 418–446.

[Reg05] Oded Regev. “On Lattices, Learning With Errors, Random Linear Codes, and

Cryptography”. In: Proceedings of the thirty-seventh annual ACM symposium on

Theory of computing. 2005, pp. 84–93.

240

https://eprint.iacr.org/2019/1343


Bibliography

[RGK06] Mario Di Raimondo, Rosario Gennaro, and Hugo Krawczyk. “Deniable Authen-

tication and Key Exchange”. In: Proceedings of the 13th ACM Conference on

Computer and Communications Security, CCS 2006, Alexandria, VA, USA, Octo-

ber 30 - November 3, 2006. Ed. by Ari Juels, Rebecca N. Wright, and Sabrina De

Capitani di Vimercati. ACM, 2006, pp. 400–409. DOI: 10.1145/1180405.1180454.

URL: https://doi.org/10.1145/1180405.1180454.

[RTV04] Omer Reingold, Luca Trevisan, and Salil Vadhan. “Notions of Reducibility

Between Cryptographic Primitives”. In: Theory of Cryptography Conference.

Springer. 2004, pp. 1–20.

[Sam+19] Simona Samardjiska, Paolo Santini, Edoardo Persichetti, and Gustavo Banegas.

“A Reaction Attack Against Cryptosystems Based on LRPC Codes”. In: Progress

in Cryptology–LATINCRYPT 2019: 6th International Conference on Cryptology

and Information Security in Latin America, Santiago de Chile, Chile, October 2–4,

2019, Proceedings 6. Springer. 2019, pp. 197–216.

[SE94] Claus-Peter Schnorr and M. Euchner. “Lattice basis reduction: Improved practi-

cal algorithms and solving subset sum problems”. In: Math. Program. 66 (1994),

pp. 181–199.

[Sho01] Victor Shoup. A Proposal for an ISO Standard for Public Key Encryption (Version

2.1). Manuscript. http://shoup.net/papers/. 2001.

[Sho04] Victor Shoup. “Sequences of Games: A Tool for Taming Complexity in Security

Proofs”. In: Cryptology Eprint Archive (2004).

[Sho94] Peter W Shor. “Algorithms for Quantum Computation: Discrete Logarithms and

Factoring”. In: Proceedings 35th annual symposium on foundations of computer

science. Ieee. 1994, pp. 124–134.

[Sim98] Daniel R Simon. “Finding Collisions on a One-Way Street: Can Secure Hash

Functions Be Based on General Assumptions?” In: International Conference on

the Theory and Applications of Cryptographic Techniques. Springer. 1998, pp. 334–

345.

[SM23] Douglas Stebila and Michele Mosca. OQS OpenSSL. https://github.com/open-

quantum-safe/openssl, August 2023. 2023.

[SSW20a] Peter Schwabe, Douglas Stebila, and Thom Wiggers. “Post-Quantum TLS Without

Handshake Signatures”. In: Proceedings of the 2020 ACM SIGSAC Conference on

Computer and Communications Security. 2020, pp. 1461–1480.

[SSW20b] Peter Schwabe, Douglas Stebila, and Thom Wiggers. “Post-Quantum TLS Without

Handshake Signatures”. In: Cryptology ePrint Archive, Report 2020/534 (2020).

https://eprint.iacr.org/2020/534.

[SSW21] Peter Schwabe, Douglas Stebila, and Thom Wiggers. “More Efficient Post-

Quantum KEMTLS With Pre-Distributed Public Keys”. In: Cryptology ePrint

Archive, Report 2021/779 (2021). https://eprint.iacr.org/2021/779.

241

https://doi.org/10.1145/1180405.1180454
https://doi.org/10.1145/1180405.1180454
http://shoup.net/papers/
https://github.com/open-quantum-safe/openssl
https://github.com/open-quantum-safe/openssl
https://eprint.iacr.org/2020/534
https://eprint.iacr.org/2021/779


Bibliography

[SXY18] Tsunekazu Saito, Keita Xagawa, and Takashi Yamakawa. “Tightly-Secure Key-

Encapsulation Mechanism in the Quantum Random Oracle Model”. In: Advances

in Cryptology – EUROCRYPT 2018. Ed. by Jesper Buus Nielsen and Vincent Rij-

men. Cham: Springer International Publishing, 2018, pp. 520–551. ISBN: 978-3-

319-78372-7.

[TU16] Ehsan Ebrahimi Targhi and Dominique Unruh. “Post-Quantum Security of the

Fujisaki-Okamoto and OAEP Transforms”. In: Theory of Cryptography Conference.

Springer. 2016, pp. 192–216.

[Uen+22] Rei Ueno, Keita Xagawa, Yutaro Tanaka, Akira Ito, Junko Takahashi, and Nao-

fumi Homma. “Curse of Re-Encryption: A Generic Power/Em Analysis on Post-

Quantum KEMs”. In: IACR Transactions on Cryptographic Hardware and Embed-

ded Systems (2022), pp. 296–322.

[UG15] Nik Unger and Ian Goldberg. “Deniable Key Exchanges for Secure Messaging”.

In: Proceedings of the 22nd ACM SIGSAC Conference on Computer and Commu-

nications Security, Denver, CO, USA, October 12-16, 2015. Ed. by Indrajit Ray,

Ninghui Li, and Christopher Kruegel. ACM, 2015, pp. 1211–1223. DOI: 10.1145/

2810103.2813616. URL: https://doi.org/10.1145/2810103.2813616.

[UG18] Nik Unger and Ian Goldberg. “Improved Strongly Deniable Authenticated Key

Exchanges for Secure Messaging”. In: Proc. Priv. Enhancing Technol. 2018.1

(2018), pp. 21–66. DOI: 10.1515/popets-2018-0003. URL: https://doi.org/10.1515/

popets-2018-0003.

[Unr15] Dominique Unruh. “Revocable Quantum Timed-Release Encryption”. In: Journal

of the ACM (JACM) 62.6 (2015), pp. 1–76.

[Vat+20] Nihal Vatandas, Rosario Gennaro, Bertrand Ithurburn, and Hugo Krawczyk. “On

the Cryptographic Deniability of the Signal Protocol”. In: Applied Cryptogra-

phy and Network Security - 18th International Conference, ACNS 2020, Rome,

Italy, October 19-22, 2020, Proceedings, Part II. Ed. by Mauro Conti, Jianying

Zhou, Emiliano Casalicchio, and Angelo Spognardi. Vol. 12147. Lecture Notes in

Computer Science. Springer, 2020, pp. 188–209.

[Vaz98] Umesh Vazirani. “On the Power of Quantum Computation”. In: Philosophical

Transactions of the Royal Society of London. Series A: Mathematical, Physical and

Engineering Sciences 356.1743 (1998), pp. 1759–1768.

[Xag+21] Keita Xagawa, Akira Ito, Rei Ueno, Junko Takahashi, and Naofumi Homma. “Fault-

Injection Attacks Against NIST’s Post-Quantum Cryptography Round 3 KEM

Candidates”. In: Advances in Cryptology–ASIACRYPT 2021: 27th International

Conference on the Theory and Application of Cryptology and Information Security,

Singapore, December 6–10, 2021, Proceedings, Part II 27. Springer. 2021, pp. 33–

61.

242

https://doi.org/10.1145/2810103.2813616
https://doi.org/10.1145/2810103.2813616
https://doi.org/10.1145/2810103.2813616
https://doi.org/10.1515/popets-2018-0003
https://doi.org/10.1515/popets-2018-0003
https://doi.org/10.1515/popets-2018-0003


Bibliography

[Yam+15] Takashi Yamakawa, Shota Yamada, Takahiro Matsuda, Goichiro Hanaoka, and

Noboru Kunihiro. “Reducing Public Key Sizes in Bounded CCA-Secure KEMs

With Optimal Ciphertext Length”. In: Information Security. Springer, 2015,

pp. 100–109.

[Yue+21] Tsz Hon Yuen, Muhammed F. Esgin, Joseph K. Liu, Man Ho Au, and Zhimin Ding.

“DualRing: Generic Construction of Ring Signatures With Efficient Instantia-

tions”. In: CRYPTO (1). Vol. 12825. Lecture Notes in Computer Science. Springer,

2021, pp. 251–281.

[YZ17] Yu Yu and Jiang Zhang. Lepton: Key Encapsulation Mechanisms From a Variant

of Learning Parity With Noise. NIST Round 1 Submissions. https://csrc.nist.gov/

projects/post-quantum-cryptography/round-1-submissions. 2017.

[Zha+16] Cong Zhang, David Cash, Xiuhua Wang, Xiaoqi Yu, and Sherman SM Chow.

“Combiners for Chosen-Ciphertext Security”. In: International Computing and

Combinatorics Conference. Springer. 2016, pp. 257–268.

[Zha12] Mark Zhandry. “Secure Identity-Based Encryption in the Quantum Random

Oracle Model”. In: Annual Cryptology Conference. Springer. 2012, pp. 758–775.

[Zha13] Mark Zhandry. “A Note on the Quantum Collision and Set Equality Problems”.

In: arXiv Preprint arXiv:1312.1027 (2013).

[Zha19] Mark Zhandry. “How to Record Quantum Queries, and Applications to Quantum

Indifferentiability”. In: Annual International Cryptology Conference. Springer.

2019, pp. 239–268.

243

https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions




Curriculum Vitae

Loïs Huguenin-Dumittan

Date of Birth 12.08.1995

Place of Birth Neuchâtel

Nationality Swiss

Education

2019-2024 PhD, Computer and Communication Sciences

Supervision: Prof. Serge Vaudenay

Area: Post-Quantum Cryptography

LASEC, Ecole Polytechnique Fédérale de Lausanne (EPFL)

2016-2019 MSc, Communication Systems

Ecole Polytechnique Fédérale de Lausanne (EPFL)

2013-2016 BSc, Communication Systems

Ecole Polytechnique Fédérale de Lausanne (EPFL)

Work Experience

2019 Research Engineer

LASEC, Ecole Polytechnique Fédérale de Lausanne (EPFL)

2017-2018 Software Engineer Intern

ELCA Informatique SA, Lausanne, Switzerland

245



Experience as Teaching Assistant

2023-2024 Cryptography and Security

2020-2021 Prof. Serge Vaudenay

2022-2023 Advanced Information, Computation, Communication

Prof. Tanja Käser

2021-2022 Information Security and Privacy

Prof. Jean-Pierre Hubaux

2021-2022 Networks out of Control

Prof. Patrick Thiran and Prof. Matthias Grossglauser

2020-2021 Advanced Cryptography

Prof. Serge Vaudenay

2019-2020 Information, Computation, Communication

Dr. Mirjana Stojilovic and Dr. Martin Rajman

2019-2023 Project supervision

Supervised 10 Master semester projects/Master theses

Languages

French Native

English Fluent

German Intermediate (Baccalaureate level)

Scottish Gaelic Intermediate (reading/writing)

Programming Languages

C/C++, Java, Python, Bash. Some knowledge of Rust, Perl, Scala, Sagemath, VHDL, R, and

Matlab.

Awards

EDIC PhD Fellowship, EPFL, 2018



Publications

1. Loïs Huguenin-Dumittan and Serge Vaudenay. Impossibility of Post-Quantum Shielding

Black-Box Constructions of CCA from CPA. Communications in Cryptology, Volume 1.

IACR, 2024.

2. Daniel Collins, Loïs Huguenin-Dumittan, Ngoc Khanh Nguyen, Nicolas Rolin, and Serge

Vaudenay. K-Waay: Fast and Deniable Post-Quantum X3DH without Ring Signatures.

USENIX Security’24.

3. Khashayar Barooti, Alex B. Grilo, Loïs Huguenin-Dumittan, Giulio Malavolta, Or Sattath,

and Quoc-Huy Vu. Public-Key Encryption with Quantum Keys. In Guy Rothblum and

Hoeteck Wee, editors. Theory of Cryptography – TCC 2023, Lecture Notes in Computer

Science, Volume 14372. Springer, 2023.

4. Khashayar Barooti, Daniel Collins, Simone Colombo, Loïs Huguenin-Dumittan and

Serge Vaudenay. On Active Attack Detection in Messaging with Immediate Decryption.

In Helena Handschuh and Anna Lysyanskaya, editors. Advances in Cryptology – CRYPTO

2023, Lecture Notes in Computer Science, Volume 14084. Springer, 2023.

5. Daniel Collins, Simone Colombo, and Loïs Huguenin-Dumittan. Real World Deniability

in Messaging. Extended abstract of a talk given at RWC 2023. https://eprint.iacr.org/2023/

403.pdf .

6. Loïs Huguenin-Dumittan and Serge Vaudenay. On IND-qCCA Security in the ROM

and Its Applications. In Orr Dunkelman and Stefan Dziembowski, editors. Advances

in Cryptology – EUROCRYPT 2022, Lecture Notes in Computer Science, volume 13277.

Springer, 2022.

7. Loïs Huguenin-Dumittan and Serge Vaudenay. FO-like Combiners and Hybrid Post-

Quantum Cryptography. In Mauro Conti, Marc Stevens, and Stephan Krenn, editors.

Cryptology and Network Security – CANS 2021, Lecture Notes in Computer Science, vol-

ume 13099. Springer, 2021.

8. Loïs Huguenin-Dumittan and Iraklis Leontiadis. A Message Franking Channel. In Yu Yu

and Moti Yung, editors. Information Security and Cryptology – Inscrypt 2021, Lecture

Notes in Computer Science, volume 13099. Springer, 2021.

9. F. Betül Durak, Loïs Huguenin-Dumittan, and Serge Vaudenay. BioLocker: A Practical

Biometric Authentication Mechanism Based on 3D Fingervein. In Mauro Conti, Jianying

Zhou, Emiliano Casalicchio, and Angelo Spognardi, editors. Applied Cryptography

and Network Security – ACNS 2020, Lecture Notes in Computer Science, volume 12147.

Springer, 2020.

10. Loïs Huguenin-Dumittan and Serge Vaudenay. Classical Misuse Attacks on NIST Round

2 PQC. In Mauro Conti, Jianying Zhou, Emiliano Casalicchio, and Angelo Spognardi,

https://eprint.iacr.org/2023/403.pdf
https://eprint.iacr.org/2023/403.pdf


editors. Applied Cryptography and Network Security – ACNS 2020, Lecture Notes in

Computer Science, volume 12146. Springer, 2020.
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